

ES Engineering Services, LLC 1036 W. Taft Avenue Orange, CA 92865 t 714.919.6500 f 714.919.6501 www.es-online.com

February 13, 2017

Ms. Jennifer Lind
Toxics Cleanup Program/CRO
State of Washington Department of Ecology
1250 W Alder Street
Union Gap, Washington 98903-0009

Facility Site ID# 91458995 Cleanup Site ID# 6845

Additional Site Assessment Report Site No. 0700

100 East Wine Country Road Grandview, Washington

Dear Ms. Lind:

On behalf of Eagle Canyon Capital, LLC (Eagle), ES Engineering Services, LLC (ES) is pleased to provide this *Additional Site Assessment Report* summarizing activities performed at the above referenced site (**Figure 1**). Site assessment activities were conducted from November 28 through December 1, 2016, and consisted of advancing ten (10) confirmation soil borings (identified as CB-1 through CB-10) to evaluate current soil conditions and fill data gaps in areas where high hydrocarbon concentrations were identified during previous site investigations. Soil samples were collected from each boring and analyzed for contaminants of concern (COCs). Additionally, a temporary well was installed west of Well MW-07 and a groundwater sample collected and analyzed for COCs. The activities were completed in response to the State of Washington Department of Ecology (DOE) opinion letter, dated September 9, 2016, stating that additional site characterization is required (**Appendix A**) and in general accordance with the *Additional Site Assessment Workplan*, dated August 31, 2016, with modification to include additional borings for site characterization based on discussion with the DOE.

Confirmation soil sample analytical results show a significant decrease in fuel hydrocarbon levels when compared to the historical soil sample results. However, samples collected at 17 and 22 feet below ground surface (bgs) in soil borings CB-3, CB-4 and CB-10 contained concentrations of fuel hydrocarbons that exceed the Model Toxics Control Act (MTCA) Method A Cleanup Levels (CULs). All remaining samples analyzed, including the groundwater sample, either did not contain detectible levels of petroleum hydrocarbon constituents or the concentrations of COCs detected were below the MTCA Method A CULs.

Based on the findings of the confirmation soil sampling, and prior site assessment results, the site appears to be sufficiently characterized laterally and vertically. However, laboratory analytical results show that hydrocarbon-affected soil is still present at the east (CB-4) and central (CB-3) portions of the site (north and west of the former tank cavity, respectively) at approximately 17 and 22 feet bgs. Soil borings CB-1, CB-2, CB-5, CB-6 and CB-9 define the lateral limits of the soil contamination plume to the North (CB-1), West (CB-2 and CB-6), South (CB-5) and East (CB-9). Soil boring CB-10 was reported to have a concentration of TPH-Gx above the CUL at approximately 17 feet bgs. Contamination in CB-10 is argued to be a derivative of contamination originating from the DeBocks Main Street Texaco station (Case #6910). Groundwater monitoring results from November 2016 (the most recent data) indicate that dissolved-phase hydrocarbons are below MTCA Method A CULs and have not exceeded CULs since ES began quarterly groundwater monitoring in January 2016.

Residual soil impacts at locations CB-3 and CB-4 exceed CULs and further remediation is needed to decrease remaining hydrocarbon levels to below CULs. ES will evaluate pertinent remedial options including conducting dual-phase extraction (DPE) in the area of these borings to reduce soil concentrations to levels that meet cleanup criteria. Additionally, continued quarterly groundwater monitoring is recommended to evaluate groundwater conditions during remediation and obtain the consecutive data necessary to support case closure.

A summary of the field observations, findings and results of the present study are presented in the following sections.

If there are questions regarding this report, or if additional information is required, please do not hesitate to contact the undersigned at (714) 919-6500.

Sincerely,

ES ENGINEERING SERVICES

Kris Kern, GIT Project Geologist Laura Skow, L.G. 2882

Project Manager

LAURA B. SKOW

Site No. 0700 Page 3
Grandview, Washington February 13, 2017

SITE AND CONTRACTOR OVERVIEW

Site Location: Site No. 0700

100 East Wine Country Road Grandview, Washington

Environmental Consultant: ES Engineering Services, LLC

1036 West Taft Avenue Orange, California 92865

Drilling Contractor: Environmental West Exploration (EWE)

1015 N. Yardley Street Spokane, WA 99212

Laboratory Contactor: ESN Northwest, Inc.

1210 Eastside Street SE, Suite 200 Olympia, Washington 98501 WADOE Accreditation No. C574-11

Waste Transporter: Able Clean-up Technologies, Inc.

4117 E Nebraska Avenue Spokane, WA 99217

SITE DESCRIPTION

Site No. 0700 is located at 100 East Wine Country Road in Grandview, Washington (Figure 1). The property is located on the southeast corner of the intersection of Wine Country Road and Division Street. The property is an active retail fueling station and consists of a convenience store building, a pump island canopy covering one product dispenser, and three USTs (one 6,000, one 8,000 and one 10,000 gallon all containing unleaded gasoline).

The active USTs are located in the southwestern portion of the property. Former USTs were located in the eastern portion of the property, in front and partially beneath the front of the convenience store building. The surface cover is primarily asphalt, concrete and landscaping.

Currently, a total of twenty-two (22) wells, including seven groundwater monitoring wells (MW-01 through MW-07), three vapor extraction wells (VW-01, VW-02 and VW-03), five recovery wells (RW-1 through RW-05) and seven sparge wells (SW-01 through SW-07) are located on the site. The current site configuration is shown on **Figure 2**.

Site No. 0700 Page 4
Grandview, Washington February 13, 2017

SCOPE OF WORK

Ten confirmation soil borings (identified as CB-1 through CB-10) were advanced in the vicinity of the fuel dispenser island, the former UST cavity, the active UST cavity and near previously advanced soil boring locations to evaluate current soil conditions. In addition, a temporary well was installed at location CB-10 and a groundwater sampled collected to evaluate groundwater quality down-gradient of Well MW-07, which historically contained dissolved-phase hydrocarbons. The confirmation boring locations are shown on Figure 2. Soil analytical results are summarized in Table 1 and shown on Figure 3 along with historical soil boring analytical results. Historical soil boring analytical results are included as Appendix B. Historical analytical results indicate that soil samples collected from borings B-1, B-3, B-4, B-13, CP-3 and well MW-03, prior to remediation, contained total petroleum hydrocarbons quantified as gasoline (TPH-Gx), benzene, ethylbenzene, toluene and total xylenes (collectively BTEX) above MTCA Method A CULs.

Past remedial efforts at the site included groundwater pump and treat coupled with air sparging/soil vapor extraction. Operation of the remediation system was initiated in March 2002 and continued through November 2006 which resulted in decreased hydrocarbon concentrations across the site. Detailed site background information is included as **Appendix C**.

Groundwater monitoring and sampling was conducted from 2000 through 2007. Historical groundwater monitoring and analytical results are summarized in the table (prepared by Sound Environmental Strategies [SES]) included as **Appendix D.** The historical groundwater monitoring data through August 2007 indicated a general groundwater flow direction toward the southwest. ES resumed groundwater monitoring in January 2016 and has conducted four consecutive events to date. Hydrocarbon concentrations have been below the MTCA Method A CULs for all four recent groundwater monitoring events. Historical groundwater analytical results conducted by ES including the most recent groundwater analytical results are summarized in **Table 4**. Overall, hydrocarbon trend analyses for TPH-Gx and benzene show generally stable to decreasing concentrations in a majority of the site wells. Additional details regarding the groundwater monitoring results are presented in the *Fourth Quarter 2016 Groundwater Monitoring Report*, dated December 28, 2016.

The objective of this assessment was to collect additional soil and groundwater data to support site closure. The MTCA Method A CULs for Unrestricted Land Use are the primary criteria for determining whether soil and groundwater have been effectively remediated.

The following section provides a brief summary of the confirmation soil and groundwater sampling field activities and analytical results. Subsequent sections provide a more detailed

Additional Site Assessment Report

Site No. 0700 Page 5
Grandview, Washington February 13, 2017

summary of the field activities, observations and findings and analytical results along with conclusions and recommendations.

SITE ASSESSMENT SUMMARY DATA

Field Activity Details

Drilling & Sampling Date(s): November 28, 2016 through December 1, 2016

One-Call Ticket No.: 16374177

Number of Borings: 10

Drilling Method: Geoprobe 5400DT – Direct Push

Depth to Groundwater: ~16-23 feet bgs⁽¹⁾

Total Depth: ranged from 26.0 to 30.5 feet bgs

Total Drums Generated: 2 (55-gallon, 1 soil and 1 decontamination water)

Soil Sampling Details

Sampling Method: Continuous core barrel with EPA 5035 Preparation

Number of Samples: 31 soil samples; 1 groundwater sample

Highest PID Reading: 850.2 ppmv (CB-10-17')

Sample Analyses: TPH-Gx by EPA 5035/NWTPH-Gx

TPH-Dx/Ox by EPA 5035/NWTPH-Dx/Dx Extended B/T/E/X/MTBE/additional VOCs by EPA 5035/8260

EDB by EPA 5035/8011

Naphthalenes by EPA 5035/8260 and 8270 Total and dissolved Lead by 6020A/3050B

(1): Based on field data

Soil Analytical Results (see Tables 1 and 2)

TPH-Gx Detects: 4 Maximum: 400 mg/kg (CB-3-17)
TPH-Dx Detects: 0 Maximum: ND (<50 mg/kg)
TPH-Ox Detects: 0 Maximum: ND (<100 mg/kg)

B/T/E/X Detects: 0/0/3/3 Maximum: ND (<0.02 mg/kg)/ ND (<0.05 mg/kg)/

0.61 mg/kg (CB-4-17)/ 2.6 mg/kg (CB-4-17)

Groundwater Analytical Results – CB-10W (see Table 3)

TPH-Gx Detects: 0 Maximum: ND (<100 μg/L)

B/T/E/X Detects: 0/0/0/0 Maximum: ND (<1.0 /<1.0 /<1.0/<3.0 µg/L)

 $\begin{array}{lll} \text{MTBE Detects:} & 1 & \text{Maximum: } 1.1 \ \mu\text{g/L} \ (\text{CB-10W}) \\ \text{Naphthalenes Detects:} & 0 & \text{Maximum: ND (<} 1.0 \ \mu\text{g/L}) \\ \text{EDB Detects:} & 0 & \text{Maximum: ND (<} 0.01 \ \mu\text{g/L}) \\ \text{Lead Detects:} & 0 & \text{Maximum: ND (<} 2.0 \ \mu\text{g/L}) \\ \end{array}$

Site No. 0700 Page 6
Grandview, Washington February 13, 2017

FIELD ACTIVITIES

The following subsections provide a summary of the field activities conducted as part of the scope of work. Field activities were conducted in accordance with the Site Health and Safety Plan (HASP), dated April 2016. Before commencing field activities a daily "tailgate" health and safety meeting was conducted by ES personnel with contracted employees. The site safety briefing forms are included as **Appendix E**. Upon request, an electronic copy of the HASP will be forwarded to Eagle as a separate, stand-alone document.

Pre-marking, Permitting and Notifications

The proposed boring locations were pre-marked in white spray paint and cleared of potential subsurface utilities/structures using geophysical techniques. On November 22, 2016, a private utility locator, Geomarkout (a trade name of ULS Services Corporation), was contracted to identify onsite subsurface utilities/structures within the proposed work areas. The geophysical report is included as **Appendix F**.

In a letter dated October 5, 2016 the City of Grandview (City) gave ES permission to proceed with the proposed borings (**Appendix G**). A pre-construction meeting was held with the City to inspect the work areas and approve the proposed boring locations within the public right-of-way. A Notice of Intent to Construct permit was submitted to the DOE by the drilling contractor (EWE). The City and DOE were notified 72 hours before drilling in accordance with the permit requirements. In addition, the State of Washington's mandatory underground utility locator, One-Call, was notified 72 hours before initiating field activities and requested to mark and delineate underground utilities servicing the site.

Drilling and Soil Sampling Activities

From November 28 to December 1, 2016, drilling and soil and groundwater sampling activities were conducted at the site. Ten confirmation soil borings (CB-1 through CB-10) were advanced using a Geoprobe 5400DT direct push drill rig. Borings CB-1, CB-2, CB-3, CB-4, CB-5 and CB-9 were located onsite and soil borings CB-6, CB-7, CB-8 and CB-10 were advanced offsite. Soil boring CB-1 was located slightly northwest of the existing fuel dispenser island. Borings CB-2 and CB-3 were advanced west and east of the existing UST complex, respectively. CB-5 was advanced in the southern portion of the site near the previous remediation compound. Borings CB-4 and CB-9 were advanced within the former UST complex and along the eastern border of the property, respectively. Based on discussion with the DOE, Boring CB-9 was added to the original workplan as a step-out location to confirm lateral limits of soil contamination onsite and is located along the eastern limits of the property near boring CB-4. Soil borings CB-6 and CB-7 were advanced along the western and eastern borders of Division Street near previous borings B-9 and B-12, respectively.

Site No. 0700 Page 7
Grandview, Washington February 13, 2017

boring B-13 and well MW-07. Boring CB-10 was also an addition to the original workplan for the purpose of delineating the groundwater contamination plume as well as confirming the western lateral limit of the soil contamination plume.

Each soil boring was cleared of potential subsurface utilities using a hand auger and hand tools to a depth of 5 feet bgs. Following the hole clearing, all borings were continuously cored using a direct-push drill rig and terminated at depths ranging from 26 feet bgs to 30.5 feet bgs. CB-1 and CB-2 were advanced to 26 feet bgs, CB-6, CB-8 and CB-10 were advanced to 27 feet bgs, and CB-3, CB-4, CB-5 and CB-7 were advanced to 28 feet bgs. CB-9 was advanced to 30.5 feet bgs, the deepest soil boring advanced.

During hole clearing and drilling, the retrieved soil was inspected and logged in accordance with the Unified Soil Classification System by a licensed Professional Geologist. Soil samples were field screened for volatile organic compounds (VOCs) using a photoionization detector (PID). Additionally, soil samples were collected from each boring for laboratory analysis. In general, PID field screening was performed at 3 foot intervals. Soil samples were collected at varying depths, generally at five foot intervals and were submitted for laboratory analysis. PID field screening was performed by placing a disaggregated portion of each soil sample in a sealed container and allowed for volatility followed by monitoring the head-space for hydrocarbon volatilization. PID readings ranged from non-detect (0.0 parts per million by volume [ppmv]) to a maximum of 850.2 ppmv (CB-10-17, see Table 1). Lithologic descriptions, PID readings and other visual and olfactory observations were recorded on boring logs and are presented as Appendix H. Subsurface soils described consisted of silty sand and well graded sand with silt to approximately 30.5 feet bgs, the maximum depth explored during this assessment. Soils encountered during previous assessments consist of medium-dense, damp to moist, fine grained sand with some silt to approximately 10 feet below ground surface (bgs), and damp to saturated, fine to medium grained sand with silt from 10 to 34 feet bgs, the maximum depth explored to date.

Following the advancement of soil boring CB-10, a temporary well (CB-10W) was installed to 25 feet bgs to collect a downgradient water sample in attempt to delineate the groundwater contamination plume. The well consisted of 0.75-inch diameter poly vinyl chloride (PVC). A peristaltic pump was used to pump groundwater from the temporary well. Groundwater was collected in three (3) VOA (volatile organic aromatics) vials and the samples were capped, labeled, immediately stored on ice in a cooler and delivered to an analytical laboratory under chain-of-custody protocol.

Soil samples submitted for laboratory analysis were collected in accordance with EPA Method 5035 using laboratory-prepared VOA vials. Each soil sample was comprised of two, 5-gram soil cores inserted into the vials and one 4-ounce glass soil jar. Sample containers were capped,

Site No. 0700 Page 8
Grandview, Washington February 13, 2017

labeled, immediately stored on ice in a cooler and delivered to an analytical laboratory under chain-of-custody protocol.

Down-hole drilling and sampling equipment were cleaned using a decontamination process consisting of a non-phosphate, laboratory-grade detergent wash and triple-rinsed. Tools and drilling rods were allowed to dry prior to use.

Soil borings were backfilled with hydrated bentonite chips and capped at the surface to match surrounding surface conditions. Additional details regarding the general field procedures used during the assessment are provided in **Appendix I**.

Laboratory Analysis

Soil samples were submitted under chain-of-custody to ESN Northwest, Inc., of Olympia, Washington (ESN) for chemical analysis. Soil samples were analyzed for TPH-Gx by Method NWTPH-Gx, full scan VOCs, including BTEX, methyl tert-butyl ether (MTBE) and 1,2-dibromoethane (EDB), by Method 8260C. BTEX was analyzed in select samples by EPA Method 8260. EDB was also analyzed by Method 8260SIM for select samples to achieve a lower detection limit. Select soil samples were also analyzed for naphthalenes, including naphthalene, 2-methylnaphthalene (2-methyl) and 1-methylnaphthalene (1-methyl) using Method 8270. All soil samples were analyzed for total lead using Method 6020A/3050B. Sample CB-8-20 was analyzed for total diesel-range petroleum hydrocarbons (TPH-Dx) and total oil-range petroleum hydrocarbons (TPH-Dx) by Method NWTPH-DX/Dx Extended.

The groundwater sample, CB-10W, was submitted to ESN and was analyzed for TPH-Gx by Method NWTPH-Gx, full scan VOCs by Method 8260C, Dissolved Lead and Total Lead by EPA Method 6020, EDB by EPA Method 8011 and Polynuclear Aromatic Hydrocarbons including naphthalene, 2-methyl and 1-methyl using Method 8270.

A copy of the laboratory analytical report is provided as **Appendix J.** The soil analytical results are summarized in **Tables 1 and 2.** The groundwater analytical results are summarized in **Table 3**.

Waste Management

Soil cuttings and decontamination fluids generated during the field activities were placed into two Department of Transportation (DOT) approved drums. The drums were appropriately sealed, labeled and staged in a secure location onsite pending waste characterization. The drums have been removed by a certified waste hauler (Able Clean-up Technologies). A copy of the non-hazardous waste manifest documenting the transportation and disposal of the waste material will be provided upon request.

Site No. 0700 Page 9
Grandview, Washington February 13, 2017

ASSESSMENT FINDINGS AND DISCUSSION

The results of the confirmation soil sampling are bulleted below. For discussion purposes, analytical results are evaluated based on the DOE's *MTCA Chapter 70.105D RCW and Cleanup Regulation Chapter 173-340 WAC* (Publication No. 94-06, revised 2013). Specifically, the soil analytical results from this assessment are compared to the respective MTCA Method A CULs for Unrestricted Land Use (Table 740-1). Historical soil analytical results are summarized in **Appendix B**. Historical groundwater monitoring data is included as **Appendix D**. Figures showing the groundwater gradient and distribution of dissolved-phase fuel hydrocarbons in groundwater on November 15, 2016 are included as **Figures 4 and 5**, respectively.

- Soil encountered during this assessment consists predominately of well graded sand and silt to approximately 30.5 feet bgs, the maximum depth explored.
- Groundwater was encountered between approximately 16 feet bgs and 23 feet bgs during drilling activities.
- As shown in the boring logs for CB-1, CB-2, CB-5, CB-6, CB-7 and CB-9 there was no evidence of petroleum hydrocarbon impact based on visual and olfactory observations. Additionally, VOCs were not detected in the field by the PID.
 - Slight to heavy hydrocarbon odor was noted in borings CB-3, CB-4, CB-8 and CB-10 from 17 feet bgs to 20 feet bgs (soil becomes wet at approximately 16 to 19 feet bgs). Maximum field PID readings of each boring were recorded at 662.6 ppmv (CB-3-17), 738.4 ppmv (CB-4-17), 80.6 ppmv (CB-8-20) and 850.2 ppmv (CB-10-17). Soil boring CB-8 had a slight hydrocarbon odor and low PID detection at 20 feet bgs, however, analytical results of soil samples from CB-8 indicate no hydrocarbon concentrations were detected above the MDLs. Soil borings CB-3, CB-4 and CB-10 had no PID detections or hydrocarbon odors between the surface and 15 feet bgs as well as from 22 feet bgs to the total depth of each boring; PID detections were only recorded between 17 and 22 feet bgs.
- A total of thirty one (31) soil samples [thirty eight (38) samples including duplicates] were submitted for laboratory analysis of TPH-Gx, TPH-Dx, TPH-Ox, full scan VOCs, EDB, naphthalene's (including naphthalene, 1-methyl, 2-methyl) and lead. As shown in Table 1, TPH-Gx was detected in four (4) of the 31 soil samples at concentrations ranging from 170 mg/kg (CB-4-22) to 400 mg/kg (CB-3-17). The TPH-Gx detections in all four samples exceed the respective MTCA Method A CUL of 100 mg/kg. The deepest detection of TPHg-Gx was at 22 feet bgs in soil boring CB-4. All other hydrocarbon detections in soil were at 17 feet bgs. Further, TPH-Dx, TPH-Ox, benzene, toluene, MTBE and EDB were not detected at or above the laboratory detection limits in any of

the analyzed soil samples collected during this assessment. Ethylbenzene and total xylenes were detected in three soil samples CB-3-17, CB-4-17 and CB-4-20 at maximum concentrations of 0.61 mg/kg and 2.6 mg/kg, respectively. These concentrations did not exceed their respective MTCA Method A CULs of 6 mg/kg and 9 mg/kg, respectively. Naphthalene was detected in three samples with a maximum concentration of 0.28 mg/kg (CB-7-28). 1-Methyl was only detected in samples CB-3-17 and CB-7-28 at concentrations of 0.04 mg/kg and 0.18 mg/kg, respectively. 2-Methyl was detected in three samples at concentrations ranging from 0.04 mg/kg (CB-7-28) to 0.07 mg/kg (CB-3-28). All naphthalenes detected were below the MTCA Method A CUL of 5 mg/kg. TPHg-Gx was the only COC to exceed the MTCA Method A CULs.

- Total lead was detected in twenty (20) of the 31 soil samples at concentrations ranging from 6.7 mg/kg (CB-7-28 and CB-8-20, 6.6 mg/kg was detected in the CB-8-20 duplicate sample) to 13 mg/kg (CB-4-15 and CB-9-10, 15 mg/kg was detected in the CB-9-10 duplicate sample). Total lead was not detected in soil borings CB-6 or CB-10. The detected lead concentrations are all below the MTCA Method A CUL of 250 mg/kg.
- For comparison, the highest TPH-Gx and benzene results for this assessment and previous site assessments are presented on Figure 3. Historical soil borings GP-1 through GP-5 and SB-3 through SB-7, affiliated with the DeBocks Main Street Texaco station (Case #6910), are also included in Figure 3 for reference. As shown in Figure 3, analytical results for the confirmation soil samples indicate that current adsorbed-phase petroleum hydrocarbon concentrations in soil are generally much lower than preremediation soil concentrations. For example, pre-remediation sample B-1, located slightly west of the fuel dispenser island, contained TPH-Gx at 1,800 mg/kg between 12 and 16 feet bgs (the highest concentration of TPH-Gx historically detected in soil); whereas, field PID readings in soil boring CB-1, adjacent to boring B-1, were non-detect (0.0 ppmv) and TPH-Gx as well as all other hydrocarbon constituents were not detected above the laboratory MDLs (see Table 1). Also pre-remediation samples B-4 and CP-3 (near the western limits of the active UST complex) contained TPH-Gx at 500 mg/kg and 578 mg/kg, respectively; whereas TPH-Gx was non-detect (<10 mg/kg) in the corresponding confirmation sample CB-2, located between the two historical borings. Additionally, pre-remediation borings B-9 and B-13, located offsite within Division Street and the alley, respectively, had TPH-Gx concentrations of 200 mg/kg (B-9) and 2,400 mg/kg (B-13) in January, 2000. Confirmation borings CB-6 and CB-8, adjacent to borings B-9 and B-13, respectively, did not have any detections of TPH-Gx during the November 2016 site assessment confirming a decrease in hydrocarbon concentrations.

Site No. 0700 Page 11
Grandview, Washington February 13, 2017

All soil sample concentrations detected during this site assessment are lower than the concentrations of the corresponding pre-remediation soil borings. However, a few of the recent samples collected contained concentrations of TPH-Gx that still exceed MTCA Method A CULs. Specifically, TPH-Gx concentrations exceed the MTCA Method A CUL in borings CB-3 (400 mg/kg), CB-4 (350 mg/kg) and CB-10 (210 mg/kg). Borings CB-3 and CB-4 are both located onsite. Boring CB-3 is located near the southeast corner of the existing UST complex next to pre-remediation boring B-3. Pre-remediation boring B-3 had a TPH-Gx concentration of 1,080 mg/kg at approximately 10 to 11.5 feet bgs. Corresponding confirmation boring CB-3 had a concentration of TPH-Gx at 400 mg/kg, the highest detection of TPH-Gx during this site assessment. Soil boring CB-4 is located near well MW-03, near the northeast limit of the former UST complex. Prior to remediation, Well MW-03 had a TPH-Gx detection in soil at 10-12 feet bgs at a concentration of 1,510 mg/kg. The corresponding confirmation soil sample for CB-4 shows a decrease in TPH-Gx, with a maximum TPH-Gx concentration of 350 mg/kg at 17 feet bgs. TPH-Gx was also detected in CB-4 at 22 feet bgs at a concentration of 170 mg/kg (the deepest detection for this assessment). Soil boring CB-9, a step-out location located approximately 12 feet southeast of CB-4, did not contain any detections of TPH-Gx or any other hydrocarbons above the laboratory MDLs. Boring CB-9 was the deepest boring advanced during this assessment, approximately 30.5 feet bgs, for purposes of plume delineation. The non-detectable results of boring CB-9 confirm the vertical extent and the eastern lateral extent of the hydrocarbon plume in soil. Similarly, soil samples collected from borings CB-1, CB-2, CB-5, CB-6, CB-7 and CB-8 demonstrate COC concentrations in soil are below CULs in these areas and further confirm lateral extent of the hydrocarbon plume to the north, west and south. Boring CB-10, located offsite in the alleyway and west of well MW-07, was drilled for additional characterization purposes. The TPH-Gx detection in soil at CB-10-17 is a suspected byproduct of the release at the DeBocks Main Street Texaco site, located west of the subject site.

• Adjacent to the subject site is a Department of Ecology cleanup site (#6910), DeBocks Main Street Texaco (Debocks Texaco). In March 1995, one 1,000 gallon unleaded gasoline tank, one 5,000 gallon leaded gasoline tank and one 8,000 gallon unleaded gasoline tank were removed during UST Closure site assessment activities. Following the UST closure activities, on February 19, 1998, Olympus Environmental, Inc. (Olympus) advanced four (4) soil borings (GP-1 through GP-4) within Division Street and Wine Country Road (previously West Main Street) and one (1) soil boring (GP-5) south of the Debocks Texaco facility within the previous location of the 5,000 gallon and 8,000 gallon

USTs (see Figure 3). The borings were advanced to 15 and 20 feet bgs. Soil and groundwater samples were collected at each location.

Soil analytical results for the Debocks Texaco borings confirmed hydrocarbon contamination in soil boring GP-5 at approximately 15 feet bgs with detections of TPH-Gx at 5,910 mg/kg, ethylbenzene at 14.3 mg/kg and total xylenes at 54.2 mg/kg. Soil sample GP-5-20, collected at 20 feet bgs contained no hydrocarbon detections. The groundwater sample collected at soil boring GP-5 also contained hydrocarbons; specifically, TPH-Gx at 2,930 μ g/L, benzene at 7.94 μ g/L, toluene at 4.87 μ g/L, ethylbenzene at 80.7 μ g/L and total xylenes at 113 μ g/L. The Debocks Texaco assessment results are documented in the *Preliminary Site Investigation Report (PSIR)*, by Olympus dated April 13, 1998, and excerpts from the report, including a site plan and a table presenting the soil and groundwater sample results, are provided as **Appendix K**. Three groundwater wells were proposed to be installed to collect additional soil samples, implement cyclical groundwater monitoring and determine hydrogeological conditions. However, no records documenting further site assessment activities on the DeBocks Texaco property following the PSIR were available for review.

Historically, hydrogeological conditions on the subject site have been relatively consistent, with a groundwater gradient of approximately 0.01 feet per foot flowing towards the southwest (**Table 5**). The aforementioned data suggests that the TPH-Gx detection in soil sample CB-10-17 (210 mg/kg) may be related to the release at the DeBocks Texaco property. Soil boring GP-5 is located up gradient (north-northeast) of confirmation boring CB-10 and contains hydrocarbon contaminants at 15 feet bgs. The location of CB-10, the location of GP-5 (former UST complex), the soil and groundwater analytical results from GP-5, and the consistent southwest flow of groundwater suggest that the contamination in CB-10 may be related to contamination originating from the DeBocks Texaco property.

• Analytical results for borings CB-1 through CB-10, located throughout the subject site near the former UST cavity, the active UST cavity and fuel dispenser island as well as offsite within Division Street and the near-by alley, fill data gaps, further delineate the subject site contamination both vertically and laterally, and in general meet the MTCA Method A CULs with a few exceptions (CB-3, CB-4 and CB-10). Analytical results for borings CB-3, CB-4 and CB-10 are above the MTCA Method A CULs and confirm that remaining soil contamination is primarily contained in the central and eastern portions of the site at approximately 17 feet bgs. Boring CB-10 is located offsite and the hydrocarbons detected are suspected to be related to the DeBocks Texaco property.

• Groundwater was encountered during drilling between approximately 16 and 23 feet bgs. Soil boring CB-10 was converted into a temporary groundwater well, CB-10W, and a groundwater sample was collected to delineate groundwater contamination. TPH-Gx, BTEX, EDB, dissolved lead, total lead and naphthalenes were not detected above the laboratory MDLs in sample CB-10W. MTBE was the only hydrocarbon constituent detected in sample CB-10W at a concentration of 1.1 μg/L, which is below the MTCA Method A CUL. Residual groundwater impacts at CB-10 may also be related to the Debocks Texaco release.

CONCLUSIONS AND RECOMMENDATIONS

Confirmation borings CB-1 through CB-10 have further characterized the nature and extent of soil contamination beneath the site and demonstrate that soil CULs have been attained across most of the site. Historical site assessment data (pre-remediation, **Appendices B and D**) show the highest levels of fuel hydrocarbons were detected near the former USTs, product piping and pump islands. Based on the analytical results of the confirmation sampling, COC concentrations in soil are below the MTCA Method A CULs with the exception of TPH-Gx detected in soil borings CB-3, CB-4 and CB-10. Borings CB-3 and CB-4 are located on the southeast corner of the existing UST complex and the northeast corner of the former UST complex, respectively. Boring CB-10 is located within the alley, west of soil boring CB-8 and south of the former UST complex of the DeBocks Texaco station.

The remaining soil boring analytical results are all below the MTCA Method A CULs and the soil borings are in compliance with MTCA cleanup criteria and meet the standard points of compliance. These soil borings include the following:

- Soil boring CB-1 located west of the fuel dispenser island, near boring B-1
- Soil boring CB-2 located on the western limit of the active UST complex, near borings B-4 and CP-3
- Soil boring CB-5 located in the southern portion of the site, near the remediation compound
- Soil boring CB-6 located on the west side of Division Street, near boring B-9
- Soil boring CB-7 located on the east side of Division Street, near boring B-12
- Soil boring CB-8 located in the alley west of Division Street, slightly north of well MW 07
- Soil boring CB-9 located along the eastern limit of the subject site, near boring CB-4

Site No. 0700
Grandview. Washington

Page 14 February 13, 2017

Residual source hydrocarbons are located within saturated soil at approximately 17 feet bgs in soil borings CB-3 and CB-4 (**Table 1**). Hydrocarbon concentrations in groundwater have either been non-detect or below the MTCA Method A CULs since January 2016 (**Table 4**).

ES recommends further remedial action, specifically targeting the locations of soil borings CB-3 and CB-4, in order to decrease the remaining source hydrocarbons to below MTCA Method A CULs and bring the site to closure. Conducting DPE in the area of these borings may be an effective remedial option to reduce soil concentrations. DPE systems are effective at removing hydrocarbon mass from the subsurface soil and groundwater simultaneously. Since groundwater at the site varies in depth from 16 to 23 feet, DPE can be utilized to lower the groundwater level to expose hydrocarbons in the submerged hydrocarbon impacted zone (between 17 and 22 feet bgs) for removal by vapor extraction. Existing wells can be utilized where possible and additional wells installed to provide adequate coverage of the treatment area. Prior to preparing a remedial workplan, ES recommends inspection of the existing onsite remediation system for potential use or reinstatement. Additionally, continued quarterly groundwater monitoring is recommended to evaluate groundwater conditions during remediation and obtain the consecutive data necessary to support case closure.

ES is pleased to be of service to Eagle. If there are questions regarding this report or if additional site information is required, please do not hesitate to contact ES at (714) 919-6500.

REFERENCES:

- ES Engineering Services, LLC. (ES), 2016, Additional Site Assessment Workplan, Site No. 0700, 100 East Wine Country Road, Grandview, Washington, dated August 31, 2016.
- ES Engineering Services, LLC (ES), 2016, Fourth Quarter 2016 Groundwater Monitoring Report, Site No. 0700, 100 East Wine Country Road, Grandview, Washington, dated January 27, 2017.
- Olympus Environmental, Inc. (Olympus), 1998, Preliminary Site Investigation Report, R.E. Powell Distributing, Inc., 100 West Main Street, Grandview, Washington, Olympus Work Order #7545, dated April 13, 1998.

Additional Site Assessment Report

Site No. 0700 Page 16
Grandview, Washington February 13, 2017

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Recent and Historical Soil Analytical Results
Figure 4	Groundwater Contour Map – November 15, 2016
Figure 5	Groundwater Analytical Results – November 15, 2016

TABLES

Table 1	Summary of Confirmation Soil Sample Analytical Results
Table 2	Summary of Additional VOCs Detected in Soil
Table 3	Temporary Well CB-10W Analytical Results
Table 4	Historical Groundwater Monitoring Data
Table 5	Groundwater Flow Direction and Gradient Data

Appendix A Agency Correspondence

APPENDICES

Appendix B	Historical Soil Analytical Results
Appendix C	Site Background Information
Appendix D	Historical Groundwater Monitoring Data
Appendix E	Site Safety Briefing Forms
Appendix F	Geophysical Report
Appendix G	Encroachment Permit
Appendix H	Boring Logs
Appendix I	General Field Procedures
Appendix J	Laboratory Analytical Report
Appendix K	DeBocks Texaco - Site Assessment Information – February 19, 1998

Additional Site Assessment Report

Site No. 0700 Page 17
Grandview, Washington February 13, 2017

ACRONYMS

amsl: above mean sea level bgs: below ground surface

BTEX: benzene, toluene, ethylbenzene and total xylenes

btoc: below top of casing
DIPE: di-isopropyl ether
DO: dissolved oxygen

DOE: Department of Ecology

DOT: Department of Transportation EPA: Environmental Protection Agency

ETBE: ethyl tert-butyl ether

ft: feet

ft/ft: feet per foot GW: groundwater

μg/L: micrograms per Liter
 HASP: health and safety plan
 MDL: Method detection limit
 mg/kg: milligrams per kilogram
 mg/L milligrams per Liter
 MTBE: methyl tert-butyl ether

MW: monitoring well nm: not measured na: not applicable ND: not detected

ORC: oxygen release compound

Pb: lead

pH: potential Hydrogen level PID: photo-ionization detector

ppb: parts per billionppm: parts per million

CB: confirmation soil boring
TAME: tert-amyl-methyl ether
TBA: tert-butyl alcohol

TPH-Dx: total diesel-range petroleum hydrocarbons TPH-Gx: total gasoline-range petroleum hydrocarbons TPH-Ox: total lube oil-range petroleum hydrocarbons

UST: underground storage tank
VOA: volatile organic analysis
VOCs: volatile organic compounds

EAST WINE COUNTRY ROAD

LEGEND

-A- RW-02 RECOVERY WELL

△ SW-04 SPARGE WELL

→ MW-01 MONITORING WELL
- - - PROPERTY BOUNDARY

B-11 APPROXIMATE GEOPROBE LOCATION

ES ENGINEERING
SERVICES
1036 W. Taft Avenue, Orange, CA 92865 | t714.919.6500 | f714.919.6501

FIGURE 2

SITE PLAN

Grandview, Washington

Site No. 0700 100 E. Wine Country Road DATE DRAWN 01/13/2017

PROJECT NO. 622

FILE NO. 622F2-SP

TABLE 1 Summary of Confirmation Soil Sample Analytical Results Site No. 0700 Grandview, Washington Page 1 of 2

	Sample ID	Date Sampled	Depth (ft bgs)	PID Reading (ppmv)	TPH-Dx (mg/kg)	TPH-Ox (mg/kg)	TPH-Gx (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	EDB (mg/kg)	Naph (mg/kg)	2-Methyl (mg/kg)	1-Methyl (mg/kg)	Other VOCs (mg/kg)	Total Pb (mg/kg)
					NWTPH	I-Dx Ext	N	lethod NW	ГРН-Gx/826	0 & Method	8260C/503	5	8260SIM		Method 8270		8260C/5035	6020A/3050B
CB-1	CB-1-10	11/29/16	10	0.0			<10	<0.02	<0.05	<0.05	<0.15	<0.05	<0.005	<0.02	<0.02	<0.02	(4)	7.1
	CB-1-26	11/29/16	26	0.0			<10	<0.02	<0.05	<0.05	<0.15	<0.05	<0.005	<0.02	<0.02	<0.02	(3)	11
CB-2	CB-2-10	11/29/16	10	0.0			<10	<0.02	<0.05	<0.05	<0.15	<0.05	<0.005	<0.02	<0.02	<0.02	(3)	11
	CB-2-28	11/29/16	28	0.0			<10	<0.02	< 0.05	<0.05	<0.15	<0.05	<0.005	<0.02	<0.02	<0.02	(3)	9.4
CB-3	CB-3-16	11/29/16	16	0.4			<10	<0.02	<0.05	<0.05	<0.15							12
	CB-3-17	11/29/16	17	662.6			400	<0.02	< 0.05	0.48	0.69	< 0.05	<0.005	0.08	0.06	0.04	(4)	8.3
	CB-3-28	11/29/16	28	0.0			<10	<0.02	<0.05	< 0.05	<0.15	< 0.05	<0.005	0.08	0.07	<0.02	(3)	8.6
	CB-3-28 (D)	11/29/16	28				<10						<0.005					
CB-4	CB-4-15	11/28/16	15	0.0			<10	<0.02	<0.05	<0.05	<0.15							13
	CB-4-15 (D)	11/28/16	15				<10	<0.02	< 0.05	<0.05	< 0.15							
	CB-4-17	11/28/16	17	738.4			350	<0.02	<0.05	0.61	2.6	< 0.05	<0.005	<0.02	<0.02	<0.02	(4)	7.1
	CB-4-22	11/28/16	22	0.0			170	<0.02	<0.05	0.39	0.53	< 0.05	<0.005	<0.02	<0.02	<0.02	(4)	7.5
CB-5	CB-5-10	11/29/16	10	0.0			<10	<0.02	<0.05	<0.05	<0.15							9.1
	CB-5-20	11/29/16	20	0.0			<10	<0.02	< 0.05	<0.05	<0.15	< 0.05	<0.005	<0.02	<0.02	<0.02	(3)	9.1
	CB-5-28	11/29/16	28	0.0			<10	<0.02	< 0.05	< 0.05	<0.15	< 0.05	<0.005	<0.02	<0.02	<0.02	(3)	9.0
	CB-5-28 (D)	11/29/16	28															8.5
CB-6	CB-6-10	11/30/16	10	0.0			<10	<0.02	<0.05	<0.05	<0.15							<5.0
	CB-6-10 (D)	11/30/16	10															<5.0
	CB-6-20	11/30/16	20	0.0			<10	<0.02	<0.05	<0.05	<0.15	<0.05	<0.005	<0.02	<0.02	<0.02	(3)	<5.0
	CB-6-27	11/30/16	27	0.0			<10	<0.02	<0.05	<0.05	<0.15	<0.05	<0.005	<0.02	<0.02	<0.02	(3)	<5.0
CB-7	CB-7-10	12/01/16	10	0.0			<10	<0.02	<0.05	<0.05	<0.15							<5.0
	CB-7-10 (D)	12/01/16	10				<10	<0.02	<0.05	<0.05	<0.15							
	CB-7-20	12/01/16	20	0.0			<10	<0.02	< 0.05	<0.05	<0.15	<0.05	<0.005	<0.02	<0.02	<0.02	(3)	<5.0
	CB-7-28	12/01/16	28	0.0			<10	<0.02	<0.05	<0.05	<0.15	<0.05	<0.005	0.28	0.04	0.18	(3)	6.7

TABLE 1 Summary of Confirmation Soil Sample Analytical Results Site No. 0700 Grandview, Washington Page 2 of 2

	Sample ID	Date Sampled	Depth (ft bgs)	Reading	TPH-Dx (mg/kg)	TPH-Ox (mg/kg)	TPH-Gx (mg/kg)	B (mg/kg)	T (mg/kg)	E (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	EDB (mg/kg)	Naph (mg/kg)	2-Methyl (mg/kg)	1-Methyl (mg/kg)	Other VOCs (mg/kg)	Total Pb (mg/kg)
				(6,6)	NWTPH	NWTPH-Dx Ext		lethod NW	ГРН-Gx/826	0 & Method	8260C/503	5	8260SIM		Method 8270		8260C/5035	6020A/3050B
CB-8	CB-8-10	12/01/16	10	0.0			<10	<0.02	<0.05	<0.05	<0.15							<5.0
	CB-8-18	12/01/16	18	0.0			<10	<0.02	<0.05	<0.05	< 0.15							<5.0
	CB-8-20	12/01/16	20	80.6	<50	<100		<0.02	<0.05	<0.05	< 0.15	< 0.05	<0.005	<0.02	<0.02	<0.02	(4)	6.7
	CB-8-20 (D)	12/01/16	20															6.6
	CB-8-22	12/01/16	22	0.0			<10	<0.02	<0.05	< 0.05	<0.15							<5.0
	CB-8-27	12/01/16	27	0.0			<10	<0.02	<0.05	<0.05	<0.15	<0.05	<0.005	<0.02	<0.02	<0.02	(3)	<5.0
CB-9	CB-9-10	11/28/16	10	0.0			<10	<0.02	<0.05	<0.05	<0.15							13
	CB-9-10 (D)	11/28/16	10															15
	CB-9-20	11/28/16	20	0.0			<10	<0.02	<0.05	< 0.05	< 0.15							<5.0
	CB-9-30	11/28/16	30	0.0			<10	<0.02	<0.05	<0.05	<0.15	<0.05	<0.005	<0.02	<0.02	<0.02	(3)	8.5
CB-10	CB-10-12	12/01/16	12	0.0			<10	<0.02	<0.05	<0.05	<0.15							<5.0
	CB-10-17	12/01/16	17	850.2			210	<0.02	<0.05	<0.05	< 0.15	< 0.05	<0.005	<0.02	<0.02	<0.02	(4)	<5.0
	CB-10-24	12/01/16	24	0.0			<10	<0.02	<0.05	<0.05	< 0.15							<5.0
	CB-10-27	12/01/16	27	0.0			<10	<0.02	<0.05	<0.05	<0.15	<0.05	<0.005	<0.02	<0.02	<0.02	(3)	<5.0
	MTCA Method A Cleanup Levels		up Levels ⁽¹⁾	2,000	2,000	100/30 ⁽²⁾	0.03	7	6	9	0.1	0.005		5 ⁽⁵⁾		ne	250	

Notes:

(1) = MTCA Method A Table 740-1 for unrestricted land use, WAC 173-340-900 Tables

 $^{(2)}$ = 100 mg/kg when benzene is absent and 30 mg/kg when benzene is present

(3) = No other VOCs detected

 $^{(4)}$ = Other VOCs detected, refer to Table 2 or laboratory analytical report (Appendix J)

(5) = Total value for naphthalene, 2-methylnaphthalene, and 1-methylnaphthalene

< = not detected at or above stated reporting limit (RL)

-- = not analyzed/not applicable

1-Methyl = 1-methyl naphthalene

2-Methyl = 2-methyl naphthalene

BTEX = benzene, toluene, ethylbenzene, total xylenes

CB = confirmation boring

EDB = 1.2 dibromoethane

Ext = extended

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

MTBE = methyl tert-butyl ether

MTCA = Model Toxics Control Act

MW = monitoring well

Naph = naphthalene

ne $\,=\,$ cleanup level not established in Table 740-1 for other VOCs detected in soil

Pb = lead

PID = photoionization detector

ppmv = parts per million by volume

TPH-Dx = total diesel-range petroleum hydrocarbons

TPH-Gx = total gasoline-range petroleum hydrocarbons

TPH-Ox = total oil-range petroleum hydrocarbons

VOCs = volatile organic compounds

(D) = duplicate sample

TABLE 2 Summary of Additional VOCs Detected in Soil Site No. 0700 Grandview, Washington

Page 1 of 1

Boring ID	Sample ID	Date Sampled	Depth (ft bgs)	PID Reading (ppmv)	IPB (mg/kg)	N-propyl- benzene (mg/kg)	1,3,5- Trimethylbenze ne (mg/kg)	1,2,4- Trimethylbenzen e (mg/kg)	SBB (mg/kg)	IPT (mg/kg)
							Method	8260C/5035		
CB-1	CB-1-10	11/29/2016	10	0.0	<0.05	<0.05	<0.05	0.074	<0.05	<0.05
CB-3	CB-3-17	11/29/2016	17	662.6	0.26	0.68	2.4	5.0	<0.05	0.41
CB-4	CB-4-17	11/28/2016	17	738.4	0.30	0.99	3.0	9.1	<0.05	0.57
CB-4	CB-4-22	11/28/2016	22	0.0	0.20	0.55	1.8	4.0	<0.05	0.32
CB-8	CB-8-20	12/1/2016	20	80.6	<0.05	<0.05	<0.05	<0.05	0.062	<0.05
CB-10	CB-10-17	12/1/2016	17	850.2	<0.05	<0.05	0.30	0.57	<0.05	0.78

Notes:

Bold indicates concentrations detected over laboratory reporting limits

Cleanup levels not established for listed 'other' VOCs

For the complete list of VOCs analyzed see laboratory analytical report (Appendix J)

<: not detected at or above stated reporting limit

 ${\sf IPB = isopropylbenzene}$

IPT = isopropyltoluene

ft bgs = feet below ground surface

mg/kg = milligrams per kilogram
PID = photoionization detector
ppmv = parts per million by volume
SBB = sec-butylbenzene

TABLE 3 Temporary Well CB-10W Analytical Results Site No. 0700 Grandview, Washington

Page 1 of 1

Well/Sample ID	Date Sampled	TPH-Dx (μg/L)	TPH-Ox (μg/L)	TPH-Gx (μg/L)	B (μg/L)	T (μg/L)	E (μg/L)	X (μg/L)	MTBE (μg/L)	EDB (μg/L)	Naph (μg/L)	2- Methyl (μg/L)	1- Methyl (μg/L)	Dissolved Pb (µg/L)	Total Pb (μg/L)
		NWTPH-Dx Ext		NWTPH-Gx		Meth	od 8260C/5	030C		8011		Method 827	0	EP#	1-6020
CB-10W	12/01/16			<100	<1.0	<1.0	<1.0	<3.0	1.1	<0.01	<0.1	<0.1	<0.1	<2.0	<2.0
MTCA Method	A Cleanup Goals ⁽¹⁾	500	500	1,000/800 ⁽²⁾	5	1,000	700	1,000	20	0.01		160 ⁽³⁾		ne	15

Notes:

(1): MTCA Method A Table 720-1 for groundwater, WAC 173-340-900 Tables

(2): 1,000 μg/L when benzene is absent and 800 μg/L when present

(3): total values for naphthalene, 2-methylnaphthalene, and 1-methylnaphthalene

< = not detected at or above stated reporting limit (RL)

-- = not analyzed/not applicable

TPH-Dx = total diesel-range petroleum hydrocarbons

TPH-Gx = total gasoline-range petroleum hydrocarbons

TPH-Ox = total oil-range petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, total xylenes

EDB = 1,2 dibromoethane

Ext = extended

μg/L = micograms per Liter

MTBE = methyl tert-butyl ether

MTCA = Model Toxics Control Act

MW = monitoring well

Naph = naphthalene

Pb = lead

2-Methyl = 2-Methylnaphthalene

1-Methyl = 1-Methylnaphthalene

TABLE 4 Historical Groundwater Monitoring Data Site No. 0700 Grandview, Washington Page 1 of 3

							ANAL	YTICAL F	PARAME	TERS							WELL ELE	VATION	
WELL	WELL	SAMPLE	TPH-Gx	Benzene	Toluene	E-benzene	Xvlenes	MTRF	EDC	EDB ⁽³⁾	n-	Naph	2-	1-	Total				
ID	STATUS	DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)		(μg/L)	(μg/L)	Hexane	(μg/L)	Methyl	Methyl	Lead	Casing	DTW	GW ⁽⁴⁾	GW Δ
			NWTPH-Gx			VOCs b	y EPA Me	thod 826	50		(µg/L)		(μg/L) Method 8	(μ g/L) 3270	(μg/L) Method 6020	(ft amsl)	(ft btoc)	(ft amsl)	(feet)
MW-01*	Active	01/06/16														94.80			
	Active	04/27/16														94.80			
	Active	08/15/16														94.80			
	Active	11/15/16														94.80			
MW-02	Active	01/06/16														95.21	20.15	75.06	
	Active	04/27/16														95.21	Dry		
	Active	08/15/16														95.21	19.11	76.10	
	Active	11/15/16														95.21	18.74	76.47	0.37
MW-03	Active	01/06/16														95.59	20.61	74.98	
	Active	04/27/16														95.59	21.52	74.07	-0.91
	Active	08/15/16														95.59	19.89	75.70	1.63
	Active	11/15/16														95.59	19.49	76.10	0.40
MW-04	Active	01/06/16														94.18	19.75	74.43	
10100 04	Active	04/27/16														94.18	20.78	73.40	-1.03
	Active	08/15/16														94.18	19.04	75.14	1.74
	Active	11/15/16														94.18	18.50	75.68	0.54
MW-05	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.22	19.21	73.01	
10.00	Active	04/28/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.22	19.91	72.31	-0.70
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	3.0	92.22	18.31	73.91	1.60
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	< 0.005	<1.0	<0.1	<0.1	<0.1	<2.0	92.22	17.89	74.33	0.42
MW-06	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.25	18.85	73.40	
14144-00	Active	04/28/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	12	92.25	19.52	72.73	-0.67
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	5.4	92.25	18.12	74.13	1.40
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	30	92.25	17.60	74.65	0.52
		11/30/16**	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	< 0.005	<1.0	<0.1	<0.1	<0.1	<2.0	92.25	17.74	74.51	
MW-07	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	94.03	21.03	73.00	
10100-07	Active	04/27/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	94.03	21.03	72.62	-0.38
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	94.03	20.31	73.72	1.10
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	< 0.005	<1.0	<0.1	<0.1	<0.1	<2.0	94.03	19.75	74.28	0.56
RW-01	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	95.00	20.40	74.60	
VAA-01	Active	04/28/16	<100	<1.0	<1.0	<1.0	<3.0 <3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	95.00	21.27	73.73	-0.87
	Active	04/28/16	<100	<1.0	<1.0	<1.0	<3.0 <3.0	<1.0	<1.0	< 0.005	<1.0	<0.1	<0.1	<0.1	<2.0	95.00	19.52	75.73 75.48	1.75
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	95.00	19.32	75.48 75.80	0.32
RW-02	Active	01/06/16			11.0				11.0							94.68	20.20	74.48	
AVV-02	Active	04/27/16														94.68	21.24	74.48	-1.04
	Active	04/27/16														94.68	19.48	73.44 75.20	-1.04 1.76
	Active	11/15/16														94.68	19.48	75.20 75.67	0.47
	Active	11/12/10		-												94.08	19.01	/0.0/	0.47

TABLE 4 Historical Groundwater Monitoring Data Site No. 0700 Grandview, Washington Page 2 of 3

							ANAL	YTICAL I	PARAME	TERS							WELL ELE	VATION	
WELL	WELL	SAMPLE	TPH-Gx	Benzene	Toluene	E-benzene	Yylanas	MTRF	EDC	EDB ⁽³⁾	n-	Naph	2-	1-	Total				
ID	STATUS	DATE	(μg/L)	(μg/L)	(μg/L)	(μg/L)	•	(μg/L)		LDB (μg/L)	Hexane	(μg/L)	Methyl	Methyl	Lead	Casing	DTW	GW ⁽⁴⁾	GW 🛆
				(1-67 -7	(1-87 -7		v EPA Me			(r6/ -/	(µg/L)		(μg/L) Method 8	(μg/L)	(µg/L) Method 6020	(ft amsl)	(ft btoc)	(ft amsl)	(feet)
DW 02	Astivo	01/06/16	NWTPH-Gx	-1.0	-1.0					<0.00C	-1.0					02.61	10.00	72.71	
RW-03	Active Active	01/06/16 04/27/16	<100 <100	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<3.0 <3.0	<1.0 <1.0	<1.0 <1.0	<0.006	<1.0 <1.0	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<2.0 <2.0	93.61 93.61	19.90 20.55	73.71 73.06	 -0.65
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	93.61	19.04	74.57	1.51
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	< 0.005	<1.0	<0.1	<0.1	<0.1	<2.0	93.61	18.58	75.03	0.46
RW-04	Active	01/06/16	110	<1.0	14	2.4	15	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	94.19	20.82	73.37	
1111 04	Active	04/27/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	94.19	21.49	72.70	-0.67
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	94.19	20.06	74.13	1.43
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	< 0.005	<1.0	< 0.1	<0.1	< 0.1	<2.0	94.19	19.62	74.57	0.44
RW-05	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.26	18.63	73.63	
	Active	04/27/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	< 0.006	<1.0	< 0.1	<0.1	< 0.1	3.2	92.26	19.29	72.97	-0.66
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	< 0.005	<1.0	< 0.1	< 0.1	< 0.1	2.4	92.26	17.88	74.38	1.41
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	3.2	92.26	17.29	74.97	0.59
VW-01	Active	01/06/16														92.61	Dry		
	Active	04/27/16														92.61	Dry		
	Active	08/15/16														92.61	Dry		
	Active	11/15/16														92.61	17.32	75.29	
VW-02	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.53	18.81	73.72	
	Active	04/28/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.53	19.42	73.11	-0.61
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	92.53	18.03	74.50	1.39
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	92.53	17.55	74.98	0.48
VW-03	Active	01/06/16														92.77	Dry		
	Active	04/27/16														92.77	Dry		
	Active Active	08/15/16 11/15/16														92.77 92.77	Dry Dry		
SW-01		01/06/16															20.33	74.58	
3VV-U1	Active Active	04/27/16														94.91 94.91	20.33	74.58 73.70	 -0.88
	Active	08/15/16							_							94.91	19.62	75.29	1.59
	Active	11/15/16														94.91	19.10	75.81	0.52
SW-02	Active	01/06/16														91.99	18.16	73.83	
311 02	Active	04/27/16														91.99	Dry		
	Active	08/15/16														91.99	17.71	74.28	
	Active	11/15/16														91.99	17.20	74.79	0.51
SW-03	Active	01/06/16														92.34	18.21	74.13	
	Active	04/27/16														92.34	19.31	73.03	-1.10
	Active	08/15/16														92.34	17.93	74.41	1.38
	Active	11/15/16														92.34	16.92	75.42	1.01

TABLE 4 Historical Groundwater Monitoring Data Site No. 0700 Grandview, Washington Page 3 of 3

							ANAL	YTICAL	PARAME	TERS							WELL ELE	VATION	
WELL ID	WELL STATUS	SAMPLE DATE	TPH-Gx (μg/L)	Benzene (μg/L)	Toluene (μg/L)	E-benzene (μg/L)	(μg/L)	(µg/L)	EDC (µg/L)	EDB ⁽³⁾ (μg/L)	n- Hexane (µg/L)	Naph (μg/L)	2- Methyl (μg/L)	1- Methyl (μg/L)	Total Lead (μg/L)	Casing (ft amsl)	DTW (ft btoc)	GW ⁽⁴⁾ (ft amsl)	GW ∆ (feet)
			NWTPH-Gx			VOCs b	y EPA Me	thod 826	50			EPA	Method 8	3270	Method 6020				
SW-04	Active	01/06/16														94.21	19.85	74.36	
	Active	04/27/16														94.21	20.62	73.59	-0.77
	Active	08/15/16														94.21	19.06	75.15	1.56
	Active	11/15/16														94.21	18.79	75.42	0.27
SW-05	Active	01/06/16														92.86	18.55	74.31	
	Active	04/27/16														92.86	19.24	73.62	-0.69
	Active	08/15/16														92.86	17.81	75.05	1.43
	Active	11/15/16														92.86	17.32	75.54	0.49
SW-06	Active	01/06/16								-						92.23	18.56	73.67	-
	Active	04/27/16														92.23	19.29	72.94	-0.73
	Active	08/15/16														92.23	17.85	74.38	1.44
	Active	11/15/16														92.23	17.28	74.95	0.57
SW-07	Active	01/06/16															18.71		
	Active	04/27/16															20.82		
	Active	08/15/16																	
	Active	11/15/16															19.99		
MTCA M	ethod A Cle	anup Goals (1)	1,000/800 ⁽²⁾	5	1,000	700	1,000	20	5	0.01			160		15				

Notes:

Results in **BOLD** indicate detections that exceed MTCA Method A cleanup levels for groundwater

- (1): MTCA Method A Table 720-1 for groundwater, WAC 173-340-900 Tables
- (2): 1,000 $\mu g/L$ when benzene is absent and 800 $\mu g/L$ when present
- (3): analysis for EDB in Water by EPA Method 8011 to obtain low detection limit
- (4): Groundwater elevations are realtive and referenced to a benchmark with assumed elevation of 100.00 feet
- *: well inaccesible due to locked compound
- $\ensuremath{^{**}}\xspace$ resampled due to high turbidity of water sample
- --: not sampled / not measured / not analyzed/ unknown
- <: less than the stated laboratory reporting detection limit
- °C: degree Celsius

μg/L: micrograms per Liter

μs/cm: microsiemens per centimeter

Active: groundwater well currently used for monitoring

amsl: above mean sea level btoc: below top of casing Cond: conductivity DIA: casing diameter DO: dissolved oxygen

DTP: depth to product DTP: depth to product

TPH-Gx: total gasoline-range petroleum hydrocarbons, analyzed by Northwest Method NWTPH-Gx

Turb:

VOCs: volatile organic compounds

E-benzene: ethylbenzene

EDB: 1,2-dibromoethane

EDC: 1,2-dichloroethane

GWA: change (difference) in groundwater elevation since last measurement

Fe2+: ferrous iron

GW: groundwater

mV: millivolts

mg/L: milligrams per Liter

MW: monitoring well

Naph: naphthalene

MTBE: methyl tert-butyl ether

NTU: nephelometric turbidity unit

ORP: oxygen reduction potential

TABLE 5 Groundwater Flow Direction and Gradient Data Site No. 0700 Grandview, Washington 1 of 1

	Groundwater							Grou	ndwater	Flow Dire	ection						
Date	Gradient (ft/ft)	N	NNE	NE	ENE	E	ESE	SE	SSE	S	ssw	sw	wsw	w	wnw	NW	NNW
01/06/16	0.01	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
04/27/16	0.02	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
08/15/16	0.01	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
11/15/16	0.01	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
T	OTAL	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	0

Notes:

Groundwater gradient and flow direction based on review of available historic groundwater monitoring reports

ft/ft: feet per foot

APPENDIX A AGENCY CORRESPONDENCE

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

1250 W Alder St • Union Gap, WA 98903-0009 • (509) 575-2490

September 9, 2016

Laura Skow ES Engineering Services, LLC. 1036 W. Taft Avenue Orange, CA 92865

Re: Further Action at the following Site:

Site Name:

Grandview Market Petrosun 1070

Site Address:

100 E. Wine Country Road, Grandview

Facility/Site ID No.:

91458995

Cleanup Site ID No.:

6845

VCP Project No.:

CE0442

Dear Ms. Skow:

The Washington State Department of Ecology (Ecology) received your request for an opinion on your independent cleanup of the Grandview Market Petrosun 1070 facility (Site). This letter provides our opinion. We are providing this opinion under the authority of the Model Toxics Control Act (MTCA), Chapter 70.105D RCW.

Issue Presented and Opinion

Is further remedial action necessary to clean up contamination at the Site?

YES. Ecology has determined that further remedial action is necessary to clean up contamination at the Site.

This opinion is based on an analysis of whether the remedial action meets the substantive requirements of MTCA, Chapter 70.105D RCW, and its implementing regulations, Chapter 173-340 WAC (collectively "substantive requirements of MTCA"). The analysis is provided below.

Description of the Site

This opinion applies only to the Site described below. The Site is defined by the nature and extent of contamination associated with the following release:

Gasoline range organics (GRO), benzene, ethyl benzene, toluene, total xylene, methyl
tertiary-butyl ether (MTBE), 1, 2 dichloroethane (EDC), and lead into the soil and
groundwater.

Please note a parcel of real property can be affected by multiple sites. At this time, we have no information that the parcel(s) associated with this Site are affected by other sites.

Laura Skow ES Engineering Services, LLC September 9, 2016 Page 2

Basis for the Opinion

This opinion is based on the information contained in the following documents:

- Time Oil Co. Soil Sampling Results/Confirmation of Release at Grandview Market 100 East Wine Country Road Grandview, Washington (Property No. 01-070). October 6, 1998.
- Maxim Technologies, Inc. Preliminary Soil and Groundwater Screening Time Oil Property 01-070 100 East Wine Country Road Grandview, Washington. February 17, 2000.
- Maxim Technologies, Inc. Remedial Investigation/Feasibility Study Time Oil Property 01-070 100 East Wine Country Road Grandview, Washington. April 7, 2000
- Brown and Caldwell. *Groundwater Monitoring*. June 2005 through 2002.
- Brown and Caldwell. Corrective Action Report Time Oil Property 01-070 Grandview, Washington. August 2001
- GeoEngineers, Inc. *Groundwater Monitoring/Operation & Maintenance Report.* 2003 through 2nd Quarter 2005.
- Sound Environmental Strategies. *Groundwater Monitoring Reports and Operation and Maintenance*. 2006 through 2007.
- Environ Strategy Consultants, Inc. *Transmittal: Voluntary Cleanup Program Application Site 01-070 100 East Wine Country Road Grandview, Washington.* June 15, 2010.
- Environ Strategy Consultants, Inc. *Voluntary Cleanup Program Terrestrial Ecological Evaluation Form.* Received by Ecology June 21, 2010.
- Grandview Market Petrosun 1070 Correspondence File, Ecology's Central Regional Office.

These documents are kept at the Central Regional Office (CRO) for review by appointment only. You can make an appointment by calling the CRO at 509-454-7658.

This opinion is void if any of the information contained in this document is materially false or misleading.

Laura Skow ES Engineering Services, LLC September 9, 2016 Page 3

Analysis of the Cleanup

Ecology has concluded that **further remedial action** is necessary to clean up contamination at the Site. That conclusion is based on the following analysis:

1. Characterization of the Site.

Ecology has determined your characterization of the Site is not sufficient to establish cleanup standards and select a cleanup action.

Additional monitoring wells have been suggested to adequately characterize the contamination at the Site.

2. Establishment of cleanup standards.

Ecology has determined the use of MTCA Method A Cleanup Levels for soil and groundwater, WAC 173-340-704, is appropriate for this Site.

3. Selection of cleanup action.

Ecology has determined the cleanup action you selected for the Site does not meet the substantive requirements of MTCA.

This is the third occurrence of this Site entering the Voluntary Cleanup Program. The release has never been fully delineated, despite a previous opinion from Ecology for additional wells, dated September 27, 2010.

4. Cleanup.

Ecology has determined the cleanup you performed does not meet any cleanup standards at the Site.

Limitations of the Opinion

1. Opinion does not settle liability with the state.

Liable persons are strictly liable, jointly and severally, for all remedial action costs and for all natural resource damages resulting from the release or releases of hazardous substances at the Site. This opinion **does not**:

- Resolve or alter a person's liability to the state.
- Protect liable persons from contribution claims by third parties.

Laura Skow ES Engineering Services, LLC September 9, 2016 Page 4

To settle liability with the state and obtain protection from contribution claims, a person must enter into a consent decree with Ecology under RCW 70.105D.040(4).

2. Opinion does not constitute a determination of substantial equivalence.

To recover remedial action costs from other liable persons under MTCA, one must demonstrate that the action is the substantial equivalent of an Ecology-conducted or Ecology-supervised action. This opinion does not determine whether the action you performed is substantially equivalent. Courts make that determination. *See* RCW 70.105D.080 and WAC 173-340-545.

3. State is immune from liability.

The state, Ecology, and its officers and employees are immune from all liability, and no cause of action of any nature may arise from any act or omission in providing this opinion. See RCW 70.105D.030(1)(i).

Contact Information

Thank you for choosing to clean up the Site under the Voluntary Cleanup Program (VCP). After you have addressed our concerns, you may request another review of your cleanup. Please do not hesitate to request additional services as your cleanup progresses. We look forward to working with you.

For more information about the VCP and the cleanup process, please visit our web site: www.ecy.wa.gov/programs/tcp/vcp/vcpmain.htm. If you have any questions about this opinion, please contact me by phone at (509) 454-7835 or e-mail at stephen.thomas@ecy.wa.gov.

Sincerely,

Stephen P. Thomas

Cleanup Project Manager

Toxics Cleanup Program/CRO

ce: Hamed Adib, Eagle Canyon Capital, LLC.

Cus Arteage, City of Grandview

APPENDIX B HISTORICAL SOIL ANALYTICAL RESULTS

Table 1
Summary of Analytical Results from Soil Samples Coller and During Installation of Cathodic Protection at Grandview Market, 100 East Wine Count Road, Grandview, Washington Time Oil Property No. 01-070

Hydrocarbon Identification by WTPH-HCID

	heavy oil- range	diesel-range	gasoline- range
Composite 1A-1B	ND	detected	detected
Composite 2A-2B	ND	detected	detected
Composite 3A-3B	ND	detected	detected

Soil Samples analyzed by WTPH-d and WTPH-g with BTEX distinction (in ppm)

	TPH-heavy oil	*TPH-diesel	TPH-gasoline	benzene 🗱	toluene	ethylbenzene	xylenes	total lead
Composite 1A-1B	222#4	58.4	800	ND	1.36	2.78	23.2	22.1
Composite 2A-2B	137	46.6	748	ND	1.94	3.9	. 253	13.5
Composite 3A-3B	103	60.1	576 章	ND	0.694	. 2.34	11.8	13.3
MTCA Method A	200	200	100	0.5	20 * * *	¥ # 40 i * *	20	250

• Anode Installation Location (Soil Sample Number)

Figure 1
Location of Cathodic Protection Anode Installation Points
Grandview Market, 100 E. Wine County Rd., Grandview, WA
Time Oil Co. Property No. 01-070

TABLE 1 Preliminary Screening Survey - Soil Sampling Summary Corrective Action Plan Time Oil Property 01-070

Grandview, Washington

Sample	Depth	PID	Benezene	Toluene	Ethylbenzene	Xylenes	TPH-G	TPH-D
Number	(feet)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MGB S1								
S1	0.5-3.0	6.8	***		Aus	***	***	
S-2	4.0-8.0	6.5	< 0.0500	<0.0500	< 0.0500	<0.100	<10.0	
S-3	9.0-12.0	560	<0.0500	<0.0500	<0.0500	<0.100	<10.0	***
S-4	12.0-16.0	1447	3.8	9.5	18	77	1800	<20
S-5	16.0-20.0	1285			*	•••	***	***
MGB S2	5000		7					
S-1	5.0-7.0	12.1	***		***		***	***
S-2	10.0-11.5	850	****		***	7.000		
S-3	15.0-17.0	1133	1.2	0.43	1.1	0.5	36	***
MGB S3	5050			r* r				
S-1	5.0-7.0	14			***			
S-2	10.0-11.5	1456	<0.100	0.694	4.17	29.4	1080	•••
S-3	15.0-17.0	2115	4.1	8.4	- 4	24	230	<20
S-4	17.0-20.0	1359	***	***			***	
MGB S4			γ					
S-1	5.0-7.0	10.7			***		***	
S-2	10.0-12.0	765	<0.100	<0.100	<0.100	0.207	86.4	
S-3	15.0-17.0	2133	7.2	12	10	56	500	
MGB S5			P			200		-1/22
S-1	5.0-7.0	9.9		7444		4		
S-2	1012.0	10.7		***	•••	·	***	
S-3	1517.0	11	< 0.05	< 0.05	<0.05	<0.05	<10	(444
MGB S6		0209202					-	
S-1	5.0-7.0	1.8	•••		***			
S-2	10.0-12.0	1.5	0 000		· · · · · · · · · · · · · · · · · · ·			***
S-3	15.0-17.0	3.0	< 0.05	<0.05	<0.05	0.15	<10	
MGB S7				*				
S-1	5.0-7.0	0.9			1444	122		
S-2	10.0-12.0	2.6	***		344			
S-3	12.0-15.0	6.1	< 0.05	< 0.05	<0.05	< 0.05	<10	
S-4	15.0-18.0	4.1			***	***	***	
MGB S8		920	1.1.1.1	2	Location	t	L	
S-1	5.0-7.0	1.5		***	***	144	122	
S-2	10.0-12.0	176	***	***		1		
S-3	15.0-17.0	178	0.23	< 0.05	0.43	1.2	13	<20
MGB S9								710
S-1	5.0-7.0	13.8	***			***	***	
S-2	10.0-12.0	10.9	***		***			NAME:
S-3	12.0-15.0	558	<0.05	0.05	1	1.5	200	
S-4	15.0-18.0	1863	***				200	
MGB S10				I				
S1	4.0-7.0	7.1			***		***	PROF.
S-2	10.0-12.0	7.3	***	***	***			
S-3	14.0-16.0	90.2	<0.05	<0.05	<0.05	<0.05	<10	***
S-4	16.0-19.0	7.6		***				
MGB S11	10.0 15.0	7.0		10.000		•••	***	***
S-1	4.0-6.5	3.2				1	т	
S-2	10.0-12.0	4.0			***		***	***
S-3	12.0-15.0	7.3	<0.05	<0.05	<0.05	-0.05	-10	
S-4	15.0-18.0	5.2	<0.05			<0.05	<10	***
MGB S12	12.0-10.0	3.4			•••	***		
S-1	4.0-7.0	2.4		т		r		
S-2	10.0-12.0		***		***	***	***	
S-3		3.0		***		***		*
	12.0-15.0	8.7	0.41		0.05			
S-4	15.0-18.0	360	0.41	0.39	<0.05	0.85	25	
MGB S13	100 100	50						
S-1	10.0-12.0	5.8					***	
S-2	12.0-15.0	301	<0.0500	<0.0500	0.0508	0.188	42.0	
S-3	15.0-18.0	1794	9.4	40	<0.05	105	2400	202
vitte & Alothi	od A CCL's:	_	0.5	40.0	20.0	20.0	100	200

NOTE:

TABLE 3 RI/FS - Soil Sampling Summary Corrective Action Plan Time Oil Property 01-070 Grandview, Washington

Sample Number	Depth (feet)	Benezene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Gasoline (mg/kg)
MW-3						
S-2	10.0-12.0	< 0.10	0.34	8.9	47.6	1510
S-3	15.0-17.0	0.847	0.789	2.93	10.9	236
MTCA Meth	od A CCL's:	0.5	40.0	20.0	20.0	100

APPENDIX C SITE BACKGROUND INFORMATION

Site No. 0700 100 East Wine Country Road Grandview, Washington

The Site has operated as a retail service station since 1965. In May 1991, the Grandview Fire Department contacted the previous property owner, Time Oil Co., concerning the presence of gasoline vapors in a building adjacent to the Site. At that time, the underground storage tank (UST) system was tested and determined to be tight. A soil vapor survey was conducted to determine if petroleum hydrocarbons were present in subsurface soil. Results of the survey identified elevated levels of total petroleum hydrocarbons quantified as gasoline (TPH-Gx), TPH quantified as diesel (TPH-Dx), benzene, toluene, ethylbenzene, and total xylenes (BTEX) in vapor samples collected in the vicinity of the former USTs (eastern area of property), existing USTs (southwestern area of property) and north of the convenience store. The existing UST system consists of one 6,000-gallon UST, one 8,000-gallon UST and one 12,000-gallon UST, all used to store gasoline.

In September 1998, a cathodic protection system was installed as part of site upgrade activities. Additionally, six borings were advanced to a depth of 15 feet below ground surface (bgs). Analytical results for soil grab samples collected at approximately 12 to 15 feet bgs indicated the presence of petroleum hydrocarbons at levels exceeding Washington State Model Toxics Control Act (MTCA) Model A cleanup levels (CULs) in soil immediately north, west and south of the existing USTs.

In February 2000, a preliminary soil and groundwater survey was performed where 13 geoprobe borings (B-1 through B-13) were advanced to depths ranging from 17 to 20 feet bgs. Groundwater was encountered at each of the locations and groundwater samples were collected. Analytical results indicated the presence of petroleum hydrocarbons in soil and groundwater on and off the Site; however, the hydrocarbon impacts were primarily related to groundwater. The groundwater plume was estimated to be 200-feet long by 80-feet wide, extending southwest from the existing USTs. The highest benzene detection [1,600 micrograms per liter (mg/L)] was observed within 20 feet of the existing USTs. Hydrocarbon levels in soil mimicked the groundwater plume, with benzene detected up to 7.2 milligrams per kilogram (mg/kg). The survey results are documented in Maxim Technologies, Inc.'s (Maxim) report titled *Preliminary Soil and Groundwater Screening Survey*, dated February 17, 2000.

In April 2000, a remedial investigation/feasibility study (RI/FS) was performed. Eleven soil borings were advanced, of which, six were completed as groundwater monitoring wells, four completed as groundwater recovery/vapor extraction wells, and one as an air sparge well. Several pilot tests, consisting of groundwater recovery, soil vapor extraction, and air sparging tests, were also performed to evaluate remedial alternatives. The RI/FS results concluded that hydrocarbon-affected soil and groundwater beneath the Site could be remediated with a combination of the above-referenced technologies. The results of the study are presented in Maxim's report titled *RI/FS*, dated April 7, 2000.

In June, September and December 2000, groundwater monitoring was conducted and the data used in the design of a remediation system. In March 2002, groundwater pump and treat coupled with air sparging/soil vapor extraction was initiated at the Site. From March 2002 through November 2006, operation of the remediation system resulted in decreases in hydrocarbon concentrations across the Site. Remediation system operation and maintenance reports document the remedial progress at the Site. The system was shut down in November 2006.

Quarterly groundwater monitoring and sampling was conducted at the Site. Historical groundwater monitoring and sample analytical results are summarized in the table [prepared by Sound Environmental Strategies (SES)] included as Appendix F. Groundwater monitoring conducted through August 2007 indicated that groundwater flow is directed to the southwest. As shown in the table (Appendix F), onsite groundwater monitoring wells MW-1 through MW-4 do not contain dissolved-phase hydrocarbons above the CULs, based on the most current sampling event for the respective well. Additionally, on August 20, 2007 groundwater samples were collected from three monitoring wells (Wells MW-05 through MW-07), two recovery wells (RW-03 and RW-05) and one vapor extraction well (VW-02), all of which are located southwest of the existing USTs. Note that Well MW-01 was inaccessible on August 20, 2007 and was not sampled. The remaining wells had been removed from the sampling program due to the historical absence of dissolved-phase contamination.

Analytical results for the August 20, 2007 event indicated that Wells MW-05, RW-03, and RW-05 did not contain detectable levels of TPH-Gx, BTEX, methyl tert-butyl ether (MTBE), ethylene dibromide (EDB), ethylene dichloride (EDC) or total lead. The analytes were not detected in the groundwater sample collected from Well VE-02, with the exception of total lead (1.08 mg/L). EDC was detected at concentrations exceeding CULs in Wells MW-06 and MW-07. MTBE was also detected at a concentration exceeding the CUL in Well MW-06. MTBE and benzene were detected at levels below their respective CULs in Well MW-07 and TPH-Gx was detected at concentrations below the CUL in Wells MW-06 and MW-07. Additional details regarding the groundwater monitoring activities are provided in SES's report titled *Groundwater Monitoring Report, Third Quarter 2007*, dated October 2, 2007.

Groundwater monitoring and sampling resumed in January 2016. Groundwater monitoring results for January 6, 2016 indicate that only one well (RW-04) contained detectible concentrations of dissolved-phase fuel constituents. The detected contaminants of concern (COCs; TPH-Gx, toluene ethylbenzene and total xylenes) in Well RW-04 are well below their respective CULs. RW-04 is located onsite and downgradient of the former UST cavity.

Groundwater monitoring results for April 27, 2016 indicate that only two wells (MW-06 and RW-05) contained detectible concentrations of lead; other COCs were not detected the site wells sampled. The detected concentrations of lead in Wells MW-06 and RW-05 are well below the respective CUL for lead in groundwater. MW-06 and RW-05 are located offsite and downgradient of the station property.

Groundwater monitoring results for August 15, 2016 (third consecutive quarter) indicate that three wells (MW-05, MW-06 and RW-05) contained detectible concentrations of lead; other COCs were not detected the site wells sampled. The detected concentrations of lead were all below the respective CUL for lead in groundwater. MW-05, MW-06 and RW-05 are located offsite and downgradient of the station property.

Groundwater monitoring results for November 15, 2016 (fourth consecutive quarter) indicate that one well (RW-05) contains detectible concentrations of lead; other COCs were not detected in the site wells sampled. The detected concentration of lead was below the respective CUL for lead in groundwater. MW-6 initially had lead above the CUL, but when resampled November 30, 2016 it was below the laboratory reporting limit. RW-05 and MW-06 are located offsite and downgradient of the station property.

APPENDIX D HISTORICAL GROUNDWATER MONITORING DATA

TABLE 2 Historical Groundwater Monitoring Data Site No. 0700 Grandview, Washington Page 1 of 3

							ANAL	YTICAL I	PARAME	TERS							WELL ELE	VATION	
WELL ID	WELL STATUS	SAMPLE DATE	TPH-Gx (μg/L)	Benzene (μg/L)	Toluene (μg/L)	E- benzene (µg/L)	Xylenes (μg/L)			EDB ⁽³⁾ (µg/L)	n- Hexane (µg/L)	Naph (μg/L)	2- Methyl (μg/L)	1- Methyl (µg/L)	Total Lead (μg/L)	Casing (ft amsl)	DTW (ft btoc)	GW ⁽⁴⁾ (ft amsl)	GW ∆ (feet)
			NWTPH-Gx			VOCs b	y EPA Me	thod 826	50			EPA	Method	8270	Method 6020			,	
MW-01*	Active	01/06/16														94.80			
	Active	04/27/16														94.80			
	Active	08/15/16														94.80			
	Active	11/15/16														94.80			
MW-02	Active	01/06/16														95.21	20.15	75.06	
	Active	04/27/16														95.21	Dry		
	Active	08/15/16														95.21	19.11	76.10	
	Active	11/15/16														95.21	18.74	76.47	0.37
MW-03	Active	01/06/16														95.59	20.61	74.98	
	Active	04/27/16														95.59	21.52	74.07	-0.91
	Active	08/15/16														95.59	19.89	75.70	1.63
	Active	11/15/16														95.59	19.49	76.10	0.40
MW-04	Active	01/06/16														94.18	19.75	74.43	
	Active	04/27/16														94.18	20.78	73.40	-1.03
	Active	08/15/16														94.18	19.04	75.14	1.74
	Active	11/15/16														94.18	18.50	75.68	0.54
MW-05	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.22	19.21	73.01	
10100-03	Active	04/28/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.22	19.91	72.31	-0.70
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	3.0	92.22	18.31	73.91	1.60
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	< 0.005	<1.0	<0.1	<0.1	<0.1	<2.0	92.22	17.89	74.33	0.42
MW-06	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.25	18.85	73.40	
IVIVV-UO	Active	04/28/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	12	92.25	19.52	73.40	-0.67
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	5.4	92.25	18.12	74.13	1.40
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	30	92.25	17.60	74.65	0.52
		11/30/16**	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	92.25	17.74	74.51	
MW-07	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.003	<1.0	<0.1	<0.1	<0.1	<2.0	94.03	21.03	73.00	
IVIVV-U7	Active	04/27/16	<100	<1.0	<1.0	<1.0	<3.0 <3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	94.03	21.03	73.00	-0.38
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	94.03	20.31	73.72	1.10
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	94.03	19.75	74.28	0.56
D144 04																			
RW-01	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	95.00	20.40	74.60	 0.97
	Active	04/28/16	<100 <100	<1.0	<1.0 <1.0	<1.0 <1.0	<3.0	<1.0	<1.0	<0.006 <0.005	<1.0	<0.1	<0.1	<0.1	<2.0	95.00 95.00	21.27 19.52	73.73	-0.87
	Active	08/15/16		<1.0			<3.0	<1.0	<1.0		<1.0	<0.1	<0.1	<0.1	<2.0			75.48	1.75
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	95.00	19.20	75.80	0.32
RW-02	Active	01/06/16														94.68	20.20	74.48	
	Active	04/27/16														94.68	21.24	73.44	-1.04
	Active	08/15/16														94.68	19.48	75.20	1.76
	Active	11/15/16								-						94.68	19.01	75.67	0.47

TABLE 2 Historical Groundwater Monitoring Data Site No. 0700 Grandview, Washington Page 2 of 3

				ANALYTICAL PARAMETERS													WELL ELE	VATION	
				_		E-				(2)	n-	l	2-	1-	Total				
WELL	WELL STATUS	SAMPLE DATE	TPH-Gx	Benzene	Toluene	benzene	Xylenes		EDC	EDB ⁽³⁾	Hexane	Naph	Methyl	Methyl	Lead	Casing	DTW	GW ⁽⁴⁾	GW 🛆
ID	SIAIUS	DATE	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(ft amsl)	(ft btoc)		(feet)
			NWTPH-Gx			VOCs b	y EPA Me	thod 826	50			EPA	Method	8270	Method 6020				
RW-03	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	93.61	19.90	73.71	
	Active	04/27/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	< 0.1	< 0.1	<2.0	93.61	20.55	73.06	-0.65
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	< 0.1	< 0.1	<2.0	93.61	19.04	74.57	1.51
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	93.61	18.58	75.03	0.46
RW-04	Active	01/06/16	110	<1.0	14	2.4	15	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	94.19	20.82	73.37	
	Active	04/27/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	< 0.1	< 0.1	<2.0	94.19	21.49	72.70	-0.67
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	94.19	20.06	74.13	1.43
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	94.19	19.62	74.57	0.44
RW-05	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.26	18.63	73.63	
	Active	04/27/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	3.2	92.26	19.29	72.97	-0.66
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	2.4	92.26	17.88	74.38	1.41
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	3.2	92.26	17.29	74.97	0.59
VW-01	Active	01/06/16														92.61	Dry		
	Active	04/27/16														92.61	Dry		
	Active	08/15/16														92.61	Dry		
	Active	11/15/16														92.61	17.32	75.29	
VW-02	Active	01/06/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	<0.1	<0.1	<0.1	<2.0	92.53	18.81	73.72	
	Active	04/28/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.006	<1.0	< 0.1	< 0.1	<0.1	<2.0	92.53	19.42	73.11	-0.61
	Active	08/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	92.53	18.03	74.50	1.39
	Active	11/15/16	<100	<1.0	<1.0	<1.0	<3.0	<1.0	<1.0	<0.005	<1.0	<0.1	<0.1	<0.1	<2.0	92.53	17.55	74.98	0.48
VW-03	Active	01/06/16														92.77	Dry		
	Active	04/27/16														92.77	Dry		
	Active	08/15/16														92.77	Dry		
	Active	11/15/16													-	92.77	Dry		
SW-01	Active	01/06/16														94.91	20.33	74.58	
	Active	04/27/16														94.91	21.21	73.70	-0.88
	Active	08/15/16														94.91	19.62	75.29	1.59
	Active	11/15/16														94.91	19.10	75.81	0.52
SW-02	Active	01/06/16													-	91.99	18.16	73.83	
	Active	04/27/16														91.99	Dry		
	Active	08/15/16														91.99	17.71	74.28	
	Active	11/15/16														91.99	17.20	74.79	0.51
SW-03	Active	01/06/16														92.34	18.21	74.13	
	Active	04/27/16														92.34	19.31	73.03	-1.10
	Active	08/15/16														92.34	17.93	74.41	1.38
	Active	11/15/16														92.34	16.92	75.42	1.01

TABLE 2 Historical Groundwater Monitoring Data

Site No. 0700

Grandview, Washington

Page 3 of 3

							ANAL	YTICAL	PARAME	TERS							WELL ELE	VATION	
WELL ID	WELL STATUS	SAMPLE DATE	TPH-Gx (μg/L)	Benzene (μg/L)	Toluene (μg/L)	E- benzene (μg/L)	Xylenes (μg/L)	(μg/L)	EDC (µg/L)	EDB ⁽³⁾ (µg/L)	n- Hexane (µg/L)	Naph (μg/L)	2- Methyl (μg/L)	(μg/L)		Casing (ft amsl)	DTW (ft btoc)	GW ⁽⁴⁾ (ft amsl)	GW ∆ (feet)
			NWTPH-Gx			VOCS D	y EPA Me	tnoa 82	50			EPA	Method	8270	Method 6020				
SW-04	Active	01/06/16														94.21	19.85	74.36	
	Active	04/27/16														94.21	20.62	73.59	-0.77
	Active	08/15/16														94.21	19.06	75.15	1.56
	Active	11/15/16														94.21	18.79	75.42	0.27
SW-05	Active	01/06/16						_		_					-	92.86	18.55	74.31	_
	Active	04/27/16														92.86	19.24	73.62	-0.69
	Active	08/15/16														92.86	17.81	75.05	1.43
	Active	11/15/16														92.86	17.32	75.54	0.49
SW-06	Active	01/06/16								-			-		-	92.23	18.56	73.67	
	Active	04/27/16														92.23	19.29	72.94	-0.73
	Active	08/15/16														92.23	17.85	74.38	1.44
	Active	11/15/16														92.23	17.28	74.95	0.57
SW-07	Active	01/06/16								-			-		-	-	18.71		
	Active	04/27/16															20.82		
	Active	08/15/16																	
	Active	11/15/16															19.99		
MTCA Me	ethod A Clea	anup Goals ⁽¹⁾	1,000/800 ⁽²⁾	5	1,000	700	1,000	20	5	0.01			160		15				

Notes:

Results in ${\bf BOLD}$ indicate detections that exceed MTCA Method A cleanup levels for groundwater

(1): MTCA Method A Table 720-1 for groundwater, WAC 173-340-900 Tables

(2): 1,000 $\mu g/L$ when benzene is absent and 800 $\mu g/L$ when present

(3): analysis for EDB in Water by EPA Method 8011 to obtain low detection limit

(4): Groundwater elevations are realtive and referenced to a benchmark with assumed elevation of 100.00 feet

*: well inaccesible due to locked compound

**: resampled due to high turbidity of water sample

--: not sampled / not measured / not analyzed/ unknown

<: less than the stated laboratory reporting detection limit

°C: degree Celsius

μg/L: micrograms per Liter

μs/cm: microsiemens per centimeter

Active: groundwater well currently used for monitoring

amsl: above mean sea level btoc: below top of casing

Cond: conductivity

DIA: casing diameter DO: dissolved oxygen

DTP: depth to product DTP: depth to product E-benzene: ethylbenzene

EDB: 1,2-dibromoethane

EDC: 1,2-dichloroethane

Fe2+: ferrous iron

ft: feet

 $\text{GW}\Delta\colon$ change (difference) in groundwater elevation since last measurement

GW: groundwater

mg/L: milligrams per Liter

MTBE: methyl tert-butyl ether

mV: millivolts

MW: monitoring well

Naph: naphthalene

NTU: nephelometric turbidity unit ORP: oxygen reduction potential

Temp: temperature

TPH-Gx: total gasoline-range petroleum hydrocarbons, analyzed by Northwest Method NWTPH-Gx

Turb: turbidity

VOCs: volatile organic compounds

Table 1 Historical Groundwater Data Time Oil Co. Facility No. 01-070 100 East Wine Country Road Grandview, Washington

www.sc	undenviro	nmental.con	1									
		Depth to	Groundwater				T-					
		Groundwater ¹	Elevation ²					Total				Total
Well ID	Sample Date		(feet)	GRPH ³	Benzene	Toluene ⁴	Ethylbenzene*	Xylenes*	MTBE'	EOB'	EDC*	Lead ⁵
MW-01	03/07/00	17.19	77.61	104	0.72	<0.500	<0.500					
TOC Elevation	03/20/00	17.35	77.45	-		-						-
94.80	06/28/00	15.07	79.73	68.5	1.44	<0.500	<0.500	<1.25				
	09/27/00	13.53	81.27	83.2	4.62	<0.500	<0.500	2.33				
	12/19/00	14.63	80.17	108	5.70	<0.670	<0.800	<1.55	1	-		-
	04/04/01	15.97	78.83	78.4	1.04	0.678	<0.500	2.06			-	
	07/05/01	14.36	80.44	75.6	1.24	0.678	<0.500	2.06	-		- ,	
	10/24/01	14.01	80.79	220	8.37	<0.500	<0.500	3.29	-			-
	01/22/02	15.98	78.82	159	2.00	<2.00	<1.00	<1.50	-			
1	04/19/02	17.05	77.75	88.1	1.06	<0.500	<0.500	<1.00	1		-	
	07/09/02	15.3	79.50	159	1.82	<0.500	<0.500	<1.00	1			
	10/16/02	14.07	80.73	135	5.67	<0.500	<0.500	<1.00				
1 .	01/24/03	16.44	78.36	51.2	0.841	<0.500	<0.500	<1.00			-	
-	04/21/03	16.63	78.17	<50.0	<0.500	< 0.500	<0.500	<1.00	1			
	07/10/03	14.94	79.86	101	0.591	<0.500	<0.500	<1.00	-	_		
1	10/22/03	13.97	80.83	64.0	<0.500	<0.500	<0.500	<1.00	-			
	01/14/04	15.79	79.01	92.3	<0.500	< 0.500	<0.500	<1.00	-			
	04/04/04	15.64	79.16	78.5	<0.500	< 0.500	<0.500	<1.00	-	-		-
i	07/13/04	14.36	80.44	136	<0.500	< 0.500	<0.500	<1.00	ı			
	10/15/04	13.71	81.09	106	<0.500	< 0.500	<0.500	<1.00	-			
	07/21/05	15.03	79.77	62.9	<0.500	<0.500	<0.500	<1.00	<5.00	<0.500	<0.500	<1.00
	10/26/05	14.79	80.01	<50.0	<0.500	<0.500	<0.500	<3.00	<1.00	<0.500	<0.500	<1.00
	02/07/06	16.00	78.80	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500	<1.00
1	05/11/06	16.04	78.76	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500	<1.00
1	08/04/06	14.28	80.52	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500	<1.00
	11/15/06	14.43	80.37	<50	<1	<1	<1	<3	<1	<1	<1	<1
	02/20/07	16.26	78.54	<100	<1	<1	<1	<3	<1	<1	<1	<1
	05/03/07	16.27	78.53	<100	<1	<1	<1	<3	<1	. <1	<1	<1
	08/20/07	_										
MW-02	03/07/00	16.95	78.26	<50.0	<0.500	< 0.500	< 0.500	<1.00		-		-
TOC Elevation	03/20/00	17.13	78.08			<u> </u>				-	<u> </u>	
95.21	06/28/00	14.56	80.65	<50.0	<0.500	< 0.500	<0.500	<1.00		••	_	
	09/27/00	13.04	82.17	<50.0	<0.500	<0.500	< 0.500	<1.00		**	-	
	12/19/00	14.31	80.90	<50.0	<0.500	<0.500	<0.500	<1.00				
	04/04/01	15.64	79.57	<50.0	<0.500	<0.500	<0.500	<1.00		••		
	07/05/01	13.88	81.33	<50.0	<0.500	<0.500	<0.500	<1.00				
	10/24/01	13.56	81.65	<50.0	<0.500	<0.500	<0.500	<1.00		-		
	01/22/02	15.72	79.49	<100	<0.500	<2.000	<1.000	<1.50	-			=
	04/19/02	16.57	78.64	<50.0	<0.500	<0.500	<0.500	<1.00				-
	07/09/02	14.81	80.40	<50.0	<0.500	<0.500	<0.500	<1.00				
	10/16/02	13.54	81.67	<50.0	<0.500	<0.500	<0.500	<1.00				
	01/24/03	16.16	79.05	<50.0	<0.500	<0.500	<0.500	<1.00				
	04/21/03	16.25	78.96	<50.0	<0.500	<0.500	<0.500	<1.00				
	07/10/03	14.45	80.76	<50.0	<0.500	<0.500	<0.500	<1.00				
	10/22/03	13.45	81.76	<50.0	<0.500	<0.500	<0.500	<1.00				
	01/14/04	15.50	79.71	<50.0	<0.500	<0.500	<0.500	<1.00				
	04/04/04	15.21	80.00	<50.0	<0.500	<0.500	<0.500	<1.00	ļ -			
	07/13/04	13.90	81.31	<50.0	<0.500	<0.500	<0.500	<1.00	-			
1	10/15/04	13.21	82.00	<50.0	<0.500	<0.500	<0.500	<1.00				
	07/21/05	14.55	80.66	<50.0	<0.500	<0.500	<0.500	<1.00	<5.00	<0.500	<0.500	<1.00
	10/26/05	13.81	81.40	<50.0	<0.500	<0.500	<0.500	<3.00	<1.00	<0.500	<0.500	<1.00
	02/07/06	15.71	79.50	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500	1.08
	05/11/06	15.55	79.66									 -
	08/04/06	14.33	80.88				-	<u> </u>	-			
	11/15/06	14.04	81.17								-	
	02/20/07	16.07	79.14			-						
	05/02/07	15.81	79.40	<100	<1	<1	<1	<3	<1	<1	<1	<1
Į.	08/20/07	13.88	81.33	-	l			l –				

08/20/07

13.88

		Depth to	Groundwater									
		Groundwater ¹	Elevation	onnui			F10.154	Total	MTBE"	EDB*	EDC ⁴	Total Lead ⁵
Well ID	Sample Date	(feet)	((eet)	GRPH ³	Benzene ⁴	Toluene*	Ethylbenzene*	Xylenes ⁴ 651	Hamiltonia and the second seco			Leau
MW-03	03/07/00	17.62	77.97	2,430	8.26	21,4	37.2	- 031				
TOC Elevation	03/20/00	17.78	77.81 80.30	- 754	4.43	1.74	3,12	165				
95.59	06/28/00	15.29	81.81	303	2.28	0.737	0.844	68.8				_
	09/27/00	13.78	80.59	52.6	2.80	<0.500	2.13	13.1			-	
	12/19/00	15.00	79.29	<50.0	<0.500	<0.500	<0.500	<1.00				
	04/04/01 07/05/01	16.30 14.61	80.98	<50.0	<0.500	<0.500	<0.500	<1.00	-			
	10/24/01	14.01	81.30	51.9	1.38	<0.500	1.25	11.1			-	-
	01/22/02	16.39	79.20	<100	<0.500	<2.000	<1.000	<1.50	_			
'	04/19/02	17.32	78.27	<50.0	<0.500	<0.500	<0.500	<1.00		_		-
	07/09/02	15.52	80.07	<50.0	<0.500	<0.500	<0.500	<1.00			-	_
:	10/16/02	14.27	81.32	<50.0	<0.500	<0.500	<0.500	1.30	_		_	
	01/24/03	16.84	78.75	<50.0	<0.500	<0.500	<0.500	<1.00				
	04/21/03	16.95	78.64	<50.0	<0.500	<0.500	<0.500	<1.00	-		-	_
	07/10/03	15.19	80.40	<50.0	<0.500	<0.500	<0.500	<1.00				
	10/22/03	14.22	81.37	<50.0	<0.500	<0.500	<0.500	<1.00				
	01/14/04	16.20	79.39	<50.0	<0.500	<0.500	<0.500	<1.00				_
	04/04/04	15.95	79.64	<50.0	<0.500	<0.500	<0.500	<1.00				
	07/13/04	14.65	80.94	<50.0	<0.500	<0.500	<0.500	<1.00				
	10/15/04	13.95	81.64	<50.0	<0.500	<0.500	<0.500	<1.00		_		
-	07/21/05	15.28	80.31	<50.0	<0.500	<0.500	<0.500	<1.00	<5.00	<0.500	< 0.500	<1.00
	10/26/05	14.55	81.04	<50.0	<0.500	<0.500	<0.500	<3.00	<1.00	<0.500	<0.500	<1.00
	02/07/06	16.40	79.19	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	< 0.500	<1.00
	05/11/06	15.32	80.27	-		-	_					
t	08/04/06	14.14	81.45			_			-			
	11/15/06	14.74	80.85				-			-		-
1	02/20/07	16.73	78.86	_					-		-	
	05/02/07	16.57	79.02	<100	<1	<1	<1	<3	<1	<1	<1	<1
ŀ	08/20/07	14.61	80.98	-	_			-				
MW-04	03/07/00	16.65	77.53	<50.0	<0.500	<0.500	<0.500	<1.00	-			
TOC Elevation	03/20/00	16.82	77.36					-				
94.18	06/28/00	14.28	79.90	<50.0	<0.500	<0.500	<0.500	<1.00				
	09/27/00	12.73	81.45	<50.0	<0.500	<0.500	<0.500	1.11				
	12/19/00	13.98	80.20	<50.0	<0.500	<0.500	<0.500	<1.00				
	04/04/01	15.29	78.89	<50.0	<0.500	<0.500	<0.500	<1.00				
	07/05/01	13.55	80.63	<50.0	<0.500	<0.500	<0.500	<1.00				
	10/24/01	13.26	80.92	<50.0	<0.500	<0.500	<0.500	<1.00				
	04/19/02	16.35	77.83	<50.0	<0.500	<0.500	<0.500	<1.00				••
	07/09/02	14.51	79.67	<50.0	<0.500	<0.500	<0.500	<1.00				
	10/16/02	13.29	80.89	<50.0	<0.500	<0.500	<0.500	<1.00				
	01/24/03	15.90	78.28	<50.0	<0.500	<0.500	<0.500	<1.00				
	04/21/03	16.02	78.16	<50.0	<0.500	<0.500	<0.500	<1.00				
1	07/10/03	14.26	79.92	<50.0	<0.500	<0.500	<0.500	<1.00				
	10/22/03	13.31	80.87	<50.0	<0.500	<0.500	<0.500	<1.00		-		
	01/14/04	15.32	78.86	<50.0	<0.500	<0.500	<0.500	<1.00				
	04/04/04	15.01	79.17	<50.0	<0.500	<0.500	<0.500	<1.00	_			
1	07/13/04	13.71	80.47	<50.0	<0.500	<0.500	<0.500	<1.00	-			
1	10/15/04	13.03	81.15	<50.0	<0.500	<0.500	<0.500	<1.00				
[07/21/05	14.25	79.93	<50.0	<0.500	<0.500	<0.500	<1.00	<5.00	<0.500	<0.500	<1.00
	10/26/05	13.52	80.66	<50.0	<0.500	<0.500	<0.500	<3.00	<1.00	<0.500	<0.500	<1.00
1	02/07/06	15.49	78.69	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500	<1.00
1	05/11/06	15.38	78.82	-								
	08/04/06	14.21	79.97		-							
	11/15/06	13.74	80.44									
	02/20/07	15.76	78.42	-								
1	05/03/07	15.54	78.64	<100	<1	<1	<1	<3	<1	<1	<1	<1
1 .	08/20/07	13.61	80.57	<u> </u>					**		<u> </u>	

711711195		nmental.com										
		Depth to	Groundwater					Total				Total
		Groundwater'	Elevation	GRPH³	Benzene ⁴	Toluene ⁴	Ethylbenzene*	Xylenes*	MTBE*	EOB*	EDC*	Lead ⁵
Well ID	Sample Date	((eet)	((eet) 75.75	22,700	4,540	1,610	823	3,580		<u> </u>	_	
MW-05	03/07/00 03/20/00	16.47 16.63	75.75	-	4,540	-	-				-	
TOC Elevation	06/28/00	14.28	77.94	3,890	1,290	137	132	827			_	_
92.22		13.33	78.89	1,740	338	48.0	41.9	310		-		
·	08/08/00	12.74	79.48	3,740	750	144	109	564	_			_
İ	09/27/00		78.39	13,100	2,840	927	576	1,420			_	
	12/19/00	13.83 15.17	77.05	3,740	1,720	218	196	542				
	04/04/01 07/05/01	13.55	78.67	5,000	1,420	196	190	490	_	••		_
	10/24/01	13.22	79.00	7,250	1,760	222	273	568				
1	01/22/02	15.26	76.96	12,600	1,930	238	204	331		_	_	
	04/19/02	12.50	79.72	8,950	1,870	114	220	593				_
	07/09/02		79.72	2,090	443	32.4	92.2	195		-	_	
	10/16/02		. 1	6,790	1,620	139	163	1,410			-	
		15.27	76.95	521	112	<2.50	5.21	39				
	01/24/03	11.00	81.22	71.3	13.0	<0.500	<0.500	<1.00				_
ļ.	04/21/03		81.77	1,890	763	19.9	56.8	259		_		
	07/10/03 10/22/03	10.45 12.85	79.37	<50.0	1.85	<0.500	<0.500	<1.00				
			78.40	355	93.4	1.00	6.85	42.8	-		_	-
ļ	01/14/04	13.82	77.52	52.0	18.1	<0.500	<0.500	<1.00		_		
	04/04/04	14.70	78.87	<50.0	5.31	<0.500	<0.500	<1.00			_	
	07/13/04	13.35	79.46	2,280	165	4.63	128	255	_			
i	10/15/04	12.76			0.585	<0.500	<0.500	<1.00	<5.00	<5.00	0.81	<1.00
	07/21/05	13.90	78.32	<50.0 94.3	3.88	0.570	4.86	22.7	<1.00	<0.500	3.46	1.88
	10/26/05	13.19	79.03		37.6	<2.00	76.0	405	<20.0	<2.00	9.52	1.24
Į.	02/07/06	15.10	77.12	3,730	0.830	<0.500	<0.500	<3.00	<5.00	<0.500	3.73	1.30
	05/11/06	15.03	77.19	78.0		~0.500	\0.500	~3.00 		~0.000	5.75	
1	08/16/06			100		<1	<1	<3.1	<1	<1	3.0	<1
	11/15/06	13.39	78.83	***	52	<1	210	41.9	<1	<1	4.8	<1
	02/20/07	15.25	76.97	2,900		<1	2.9	<3	<1	<1	1.4	<1
	05/03/07	15.15	77.07	<100 <100	<1 <1	<1	<1		<1	<1	<1	<1
	08/20/07	13.26	78.96		4,390	175	1,190	3,520				
MW-06	03/07/00	17.06	75.19	22,600	4,330	1/5	1,130	3,020				
TOC Elevation	03/20/00	17.21	75.04				370	1,600				
92.25	06/28/00	14.91	77.34	7,140	2,050	71.8 41.5	347	1,230	-			
	08/08/00	13.97	78.28	6,210	1,410		332					
1	09/27/00	13.35	78.90	7,810	1,740	47.5	407	1,300				
	12/19/00	14.42	77.83	9,250	1,590	36.7		1,100				
	04/04/01	15.74	76.51	7,840	2,570	45.8	568	1,260		-		
	07/05/01	14.16	78.09	9,260	1,980	44.2	508	1,550				
	10/24/01	13.85	78.40	10,300	1,820	36.6	465	1,180				
İ	01/22/02	15.87	76.38	19,000	2,850	45.1	580	1,200		**	-	
	04/29/02			496	79.0	0.76	19.9	27.5				
	07/09/02			6,070	1,100	3.52	390	684				
}	10/16/02			7,170	994	<10.0	267	1,140				
	01/24/03	15.17	77.08	66.0	3.70	<0.500	<0.500	2.27	-			
-	04/21/03	11.05	81.20	659	4.55	<0.500	16.3	24.0				
	07/10/03	14.00	78.25	<50.0	<0.500	<0.500	<0.500	<1.00				
	10/22/03	13.26	78.99	1,180	1.23	<0.500	14.7	7.01				
	01/14/04	13.98	78.27	59.2	<0.500	<0.500	0.601	<1.00 <1.00				
	04/04/04	17.94	74.31	<50.0	<0.500	<0.500	<0.500	1				
	10/15/04	12.94	79.31	68.3	1.10	<0.500	<0.500	<1.00	10.0	-0 50A		
	07/21/05	14.28	77.97	<50.0	<0.500	<0.500	<0.500	<1.00	12.6	<0.500	43.6	<1.00
	10/26/05	13.51	78.74	<50.0	0.820	<0.500	<0.500	<3.00	1.08	< 0.500	5.74	7.93
	02/07/06	15.31	76.94	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	4.60	<1.00
	05/11/06	15.32	76.93	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	2.67	1.01
	08/04/06	14.23	78.02	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	3.21	2.57
	11/15/06	13.35	78.90	<50	<1	<1	<1	<3	1.5	<1	7.0	<1
1	02/20/07	15.58	76.67	<100	<1	<1	<1	<3	14	<1	31.0	<1
l	05/03/07	15.53	76.72	<100	<1	<1	<1	<3	19	<1	39	<1
	08/20/07	13.67	78.58	120	<1	<1	<1	<3	26	<1	58	<1

		Depth to	Groundwater			ı						
		Groundwater ^t	Elevation ²					Total				Total
Well ID	Sample Date	(feet)	(feet)	GRPH ²	Benzene ⁴	Toluene ⁴	Ethylbenzene*	Xylenes ⁴	MT8E*	EDB'	EDC*	Lead ⁵
MW-07	10/24/01	15.13	78.90	1,400	81.2	2.44	1.62	6.93	_		_	
TOC Elevation	01/22/02	17.08	76.95	252	18.1	<2.00	<1.00	<1.50			••	
94.03	04/19/02	18.14	75.89	<50.0	3.13	<0.500	<0.500	<1.00	_			
	07/09/02	16.41	77.62	148	6.38	<0.500	<0.500	<1.00			_	
	10/16/02	15.24	78.79	398	23.0	0.519	0.653	1.67	_			
	01/24/03	17.65	76.38	<50.0	0.916	<0.500	<0.500	<1.00			**	P7
	04/21/03	17.73	76.30	<50.0	<0.500	<0.500	<0.500	<1.00				
	07/10/03	16.05	77.98	223	12.5	<0.500	<0.500	<1.00	-			
	10/22/03	15.11	78.92	275	3.84	0.530	0.507	1.36				
	01/14/04	16.91	77.12	59.5	1.41	<0.500	<0.500	<1.00			_	_
	04/04/04	15.74	78.29	<50.0	0.92	<0.500	<0.500	<1.00				
	07/13/04	15.49	78.54	222	2.74	<0.500	<0.500	<1.00				
	10/15/04	14.75	79.28	654	5.57	0.727	0.744	2.63	_		_	
	07/21/05	16.13	77.90	230	2.31	<0.500	<0.500	<1.00	<5.00	<0.500	43.7	<1.00
	10/26/05	15.33	78.70	427	. 3.09	<0.500	<0.500	<3.00	3.12	<0.500	50.8	<1.00
i	02/07/06	17.03	77.00	1,020	6,11	<0.500	0.780	<3.00	<5.00	<0.500	71.6	<1.00
1	05/11/06	17.03	77.00	85.7	1.04	<0.500	<0.500	<3.00	<5.00	<0.500	22.2	<1.00
	08/04/06	15.35	78.68	144	1.09	<0.500	<0.500	<3.00	<5.00	<0.500	17.5	<1.00
	11/15/06	15.45	78.58	490	2.2	<1	<1	<3	2.0	<1	27	<1
	02/20/07	17.35	76.68	620	4.3	<1	<1	<3	2.2	<1	37	<1
	05/03/07	17.35	76.68	<100	<1	<1	<1	<3	1.2	<1	21	<1
	08/20/07	15.49	78.54	170	1.1	<1	<1	<3	1.3	<1	11	<1
RW-01	03/07/00	17.38	77.62	2,100	18.7	15.7	54.6	328				
TOC Elevation	03/20/00	17.57	77.43									
95.00	06/28/00	14.98	80.02	1,010	17.4	12.0	28.0	193				
	09/27/00	13.50	81.50	1,950	48.3	6.15	57.1	232				
1	12/19/00	14.75	80.25	1,100	29.2	4.09	26.0	84.7		_		
	04/04/01	16.02	78.98	86.2	8.19	<0.500	3.47	8.00				
1	07/05/01	14.29	80.71	326	13.8	1,45	12.3	65.2			_	
	10/24/01	14.05	80.95	7,360	115	51.9	695	1,290				_
	01/22/02									**		
	04/19/02	17.25	77.75	_								_
	07/09/02	15.20	79.80				••					
	04/21/03	16.66	78.34									
	07/10/03	14.97	80.03							_	••	
	10/22/03	14.06	80.94									
	01/14/04	16.06	78.94					-				
1	04/04/04	15.75	79.25								••	-
	10/15/04	13.78	81.22					**				
	05/03/07	16.27	78.73	<100	<1	<1	<1	<3	<1	<1	<1	<1
	08/20/07	14.31	80.69					Ť	-			
RW-02	03/07/00	17.17	77.51	519	<0.900	<0.500	<1.10	<60.0				
TOC Elevation	03/20/00	17.35	77.33		_			••	_			
94.68	06/28/00	14.72	79.96	<50.0	<0.500	<0.500	<0.500	<1.00	••			
	09/27/00	13.22	81.46	451	0.615	<0.910	<2.72	5.87		-		
	12/19/00	14.49	80.19	66.4	0.923	<0.500	1.09	3.14				
} 1	04/04/01	15.75	78.93	<50.0	<0.500	<0.500	<0.500	<1.00				
	07/05/01	14.02	80.66	108	<0.500	<0.500	0.525	1.21		-	•	••
}	10/24/01	13.77	80.91	309	0.931	<0.500	4.23	8.66	-	-	_	
	01/22/02							••				
	04/19/02	16.85	77.83						-		••	
	07/09/02	14.98	79.70						_	-	-	
	05/03/07	16.01	78.67	<100	<1	<1	<1	<3	<1	<1	<1	<1
	08/20/07	14.02	80.66			**						
L	30,20101	1-174	00.00					L				

		Depth to	Groundwater				1					
		Groundwater ¹	Eleyation ²					Total				Total
WellID	Sample Date	(feet)	(feet)	GRPH ³	Benzene*	Toluene ⁴	Ethylbenzene*	Xylenes*	MT8E'	EDB*	EDC ⁴	Lead ⁵
RW-03	03/07/00	17.59	76.02	4,070	609	125	166	567	-			
TOC Elevation	03/20/00	17.76	75.85	-		-	_				_	
93.61	06/28/00	15.25	78.36	16,200	512	739	357	2,850	-			_
	08/08/00	14.24	79.37	10,000	169	253	158	1,810		_		
	09/27/00	13.72	79.89	5,640	58.2	36.9	25.7	578		_	1	
	12/19/00	14.91	78.70	1,850	345	22.7	14.2	203		••		
ļ	04/04/01	16.20	77.41	1,560	455	17.9	10.3	175		_	-	
	07/05/01	14.51	79.10	535	47.5	5.37	4.11	58.3			-	-
	10/24/01	14.27	79.34	1,990	596	11.6	31.3	161				_
1	01/22/02	16.36	77.25	5,470	685	51.3	74.0	345	_			
	04/19/02	••		1,610	292	85.7	10.7	259		-		
	07/09/02	14.24	79.37	3,390	506	13.5	164	286				_
	10/16/02	14.24	79.37	468	23.6	4.29	4.44	79.6	-	-		
	01/24/03	14.10	79.51	21,600	1,300	1,360	396	4,600	-	_		
	04/21/03	13.55	80.06	3,180	7.85	20.7	11.1	960			_	
	07/10/03	15.80	77.81	820	8.83	2.96	7.57	207		-		
	10/22/03	16.50	77.11	4,150	57.0	10.9	58.9	795	**			
	01/14/04		_	120		0.845	3.01	31.2				
	04/04/04	17.80	75.81	<50.0	1.07	< 0.500	<0.500	5.69	-			_
	07/13/04	17.03	76.58	2,220	30.0	1.82	44.0	215	_			••
	10/15/04	17.78	75.83	67.2	0.722	<0.500	1.19	5.67				_
	07/21/05	14,51	79.10	<50.0	<0.500	<0.500	<0.500	<1.00	<5.00	<0.500	<0.500	20.5
	10/26/05	13.85	79.76	<50.0	<0.500	<0.500	<0.500	<3.00	<1.00	<0.500	<0.500	1.54
]	02/07/08	15.81	77.80	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500	7.73
•	05/11/06	15.57	78.04	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500	24.3
	08/04/06	14.65	78.96	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500	35.7
1	11/15/06	14.07	79.54	<50	<1	<1	<1	<3	<1	<1	<1	6.91
	02/20/07	16.03	77,58	<100	<1	<1	<1	<3	<1	<1	<1	1.83
	05/03/07	15.81	77.80	<100	<1	<1	<1	<3	<1	<1	<1	2.05
1	08/20/07	13.85	79.76	<100	<1	<1	<1	<3	<1	<1	<1	<1
RW-04	03/07/00	17.66	76.53	4,080	309	273	155	608	-			
TOC Elevation	03/20/00	17.54	76.65			_						
94.19	06/28/00	15.32	78.87	1,930	122	158	47.6	427		_		**
	09/27/00	13.82	80.37	4,690	228	139	90.6	666				
	12/19/00	15.04	79.15	3,470	327	163	74.4	419		=-		
l i	04/04/01	16.32	77.87	818	199	25.0	35.5	172				
	07/05/01	14.51	79.68	535	47.5	5.37	4.11	58.3				
	10/24/01	14.37	79.82	2,060	333	58.2	89.5	391				
ļ i	01/22/02	-										
! I	07/09/02	14.52	79.67				_					
	05/03/07	16.73	77.46	<100	<1	<1	<1	<3	<1	<1	<1	<1
	08/20/07	14.82	79.37					7 1			- ',	
L	30/40/07	17.02	19.01	,								

		Depth to	Groundwater									
		Groundwater ¹	Elevation ²				diamental states	Total				Total
WellID	Sample Date	(feet)	(feet)	GRPH ³	Benzene	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴	MT8E ⁴	EOB ⁴	EDC*	Lead ⁵
RW-05	10/24/01	13.78	78.48	11,200	2,890	<5.00	857	298			_	
TOC Elevation	01/22/02	15.78	76.48	4,490	1,080	<2.00	65.8	82.1	_		-	
92.26	04/19/02	*-		322	151.6	0.776	14.1	47.1				
1 :	07/09/02	13.85	78.41	1,140	438	<5.00	14.3	10.8	-			
	10/16/02	13.85	78.41	<50.0	3.39	<0.500	0.672	2.36	-			
	01/24/03	16.75	75.51	3,360	369	2.01	211	403				
	04/21/03	14.03	78.23	<50.0	<0.500	<0.500	<0.500	<1.00				
1	07/10/03	13.40	78.86	<50.0	<0.500	<0.500	<0.500	<1.00	_	-		
	10/22/03	13.45	78.81	117	12.4	<0.500	2.27	5.17	-			
	01/14/04	17.55	74.71	<50.0	7.06	<0.500	<0.500	<1.00			_	
	04/04/04	17.44	74.82	73.9	0.592	<0.500	2.46	<1.00		••		-
	07/13/04	14.92	77.34	<50.0	<0.500	<0.500	<0.500	<1.00				
	10/15/04	12.37	79.89	<50.0	<0.500	<0.500	<0.500	<1.00				
	07/21/05	13.52	78.74	<50.0	<0.500	<0.500	<0.500	<1.00	<5.00	<0.500	<0.500	3.05
	10/26/05	12.80	79.46	<50.0	<0.500	<0.500	<0.500	<3.00	<1.00	<0.500	<0.500	2.72
	02/07/06	14.58	77.68	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	1.77	1.85
	05/11/06	14.55	77.71	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500	32,9
	08/04/06	13.21	79.05	<50.0	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500	7.81
	11/15/06	12.94	79.32	<50	<1	<1<1	<1	<3	<1	<1	<1	3.23
	02/20/07	14.88	77.38	<100	<1	<1	<1	<3	<1	<1	2.4	3.88
	05/03/07	14.82	77.44	<100	<1	<1	<1	<3	<1	<1	<1	2.22
	08/20/07	12.94	79.32	<100	<1	<1	<1	<3	<1	<1	<1	<10
VW-01	10/24/01	13.25	79.36	101	1.52	<0.500	<0.500	<1.00			-	
TOC Elevation	05/07/07	14.64	77.97	<100	<1	<1	<1	<3	<1	<1	<1	<1
92.61	08/20/07	12.67	79.94									
VW-02	10/24/01	13.20	79.33	10,200	53.3	<5.00	833	841				
TOC Elevation	05/07/07	14.73	77.80	840	<1	<1	<1	<3	<1	<1	<1	<1
92.53	08/20/07	12.94	79.59	<100	<1	<1	<1	<3	<1	<1	<1	1.59
VW-03	10/24/01	13.80	78.97	<50.0	1.81	0.614	0.639	2.50				
TOC Elevation	05/07/07			••			••					-
92.77	08/20/07	12.67	80.10									
SW-01	05/02/07	16.14	78.77	<100	<1	<1	<1	<3	<1	<1	<1	<1
TOC Elevation	08/20/07	12.19	82.72				**			••		
94.91	05/05/05											
SW-02	05/07/07	14.49	77.50	<100	<1	<1	<1	<3	<1	<1	<1	9.86
TOC Elevation	08/20/07	13.85	78.14									
91.99	05/07/07	4104	=2.00									
SW-03	05/07/07	14.01	78.33	<100	<1	<1	<1	<3	<1	<1	<1	8.24
TOC Elevation	08/20/07	12.40	79.94									
92.34	05/00/07	45.70	***								_	
SW-04 TOC Elevation	05/03/07	15.78	78.43	<100	<1	<1	<1	<3	<1	<1	<1	1.76
	08/20/07	12.73	81.48							**		
94.21 SW-05	06/07/07	44.00	70.50	4400								
1 1	05/07/07	14.36	78.50	<100	<1	<1	<1	<3	<1	<1	<1	11.2
TOC Elevation	08/20/07	12.40	80.46									
92.86	00/07/07	44.50										
SW-06	05/07/07	14.53	77.70	<100	<1	<1	<1	<3	<1	<1	<1	8.42
TOC Elevation	08/20/07	12.73	79.50			••						
92.23	05/07/07	48.00		4655							· · · · · · · · · · · · · · · · · · ·	
SW-07	05/07/07	15.08		<100	<1	<1	<1	<3	<1	<1	<1	11.9
TOC Elevation	08/20/07	13.31					·					
Not Surveyed	Clooner 1 acces	for Groundwater	8	4.000/0008		4.000	700			25.		
NOTES:	Cleanup Levers	id Groundwater		1,000/800°	5	1,000	700	1,000	20	0.01	5	15

NOTES:

Results measured in µg/L.

Red indicates concentrations exceeding the MTCA Method A Cleanup Level.

Data collected prior to July 2005 as reported in GeoEngineers Groundwater Monitoring Reports.

Analyzed by Friedman & Bruya, Inc. of Seattle, Washington.

Depth to water as measured from a fixed spot on the well casing rim.

Depth to water as measured from a fixed spot on the well casing rim.

*Elevations are relative and referenced to a benchmark with an assumed elevation of 100.00 feet.

³Analyzed by Northwest Method NWTPH-Gx.

Analyzed by EPA Method 8260B.

⁶Analyzed by EPA Method 6020 or 200.8.

^eMTCA Method A Cleanup Levels, Table 720-1 of the WAC 173-340-900.

*1,000 µg/L when benzene is not present and 800 µg/L when benzene is present.

- = not measured / not analyzed

< = not detected at a concentration exceeding the laboratory reporting limit

µg/L = mlcrograms per liter

EDB = ethylene dibromide (1,2-Dibromoethane)

EDC = ethylene dichloride (1,2-Dichloroethane)

EPA = United States Environmental Protection Agency

GRPH = gasoline-range petroleum hydrocarbons

MTSE = methyl tertiary-butyl ether

MTCA = Model Toxics Control Act
TOC = top of casing elevation (feet)

WAC = Washington Administrative Code

APPENDIX E SITE SAFETY BRIEFING FORMS

14.0 ACKNOWLEDGMENT AND UNDERSTANDING OF PLAN

This health & safety plan was prepared by the undersigned, having successfully completed OSHA standard 29 CFR 1910.120 40-hour hazardous materials health & safety training.

VP, Traii	ning, Safety & Risk Mgn	nt:	Scott Churbock
Site Hea	alth & Safety Officer:	Bar	Becky L. Hawkins
Program	n Manager:	la	DaneNygaard
I UNDERSTAND	AND AGREE TO THE A	BOVE PLAN	
	Name & Comp	any	Date
Contractors:	124LE MAI	oNE	11/28/16
	Rondy Wild	L EWE	11/28/2016
	Josh Mast	in PWE	11/28/16
e ⁸			
Geologist/Field Technicians:	Ma	Million (Samurament)	11/28/2016
g.ss			
Other:			
			1 1 1 1

Site: 11/28/2016 Date: Former Fagle# 0700 Project No: PROT100623. Task: Site Assessment / temp. boring S Person Providing Briefing: Nick Oliving	Time: 0945 Health/Safety Officer: Nick Olivier
Topics: Site HASP Chemical Hazards Equipment Hazards Electrical Hazards Heat Stress	 ✓ Personal Decontamination ✓ Personal Hygiene ✓ Employee Rights/Responsibilities ✓ Hazard Evaluations ✓ Emergency Response Procedures
Persons in Attendance: (Name/Organization) Sosh Martin EWE Romany Wilder EWE Forry Voita CP+C XANDY Voita CP+C XANDY Voita EWE KYLE MALENE EWE	Persons in Attendance: (Name/Organization)
Notes/Comments: "Traffic is # 1 Safety (soncern. "Discussed STOP WORK Authorit Procedures.	LOOK both ways X2 when crossing- y - Discussed Decontamination

Site: Eaglett 0700	
Date: 11/29/2016	Time: 0730
Project No: PROJIDO623	
Task: Soil Borings	Health/Safety Officer: Nick Olivier
Person Providing Briefing: Nick Olivie	
Topics:	
Site HASP	Personal Decontamination
Chemical Hazards	Personal Hygiene
Equipment Hazards	Employee Rights/Responsibilities
☐ Electrical Hazards	Hazard Evaluations
Heat Stress	☐ Emergency Response Procedures
Persons in Attendance: (Name/Organization) SHAWN SNELL E.W.E. Rondy Wilder EWE KYLE MALONE EWE	Persons in Attendance: (Name/Organization)
Selection, WOVE glo	and proper glove + PPE

Site: EAGLE# 0700	•
Date: 11/30/16	Time: 14:00
Project No: PROTIO0623	
Task: LOM Person Providing Briefing: Nick	Health/Safety Officer: Nick Olivier
Person Providing Briefing: NICK	Olivier
Topics:	
Site HASP	Personal Decontamination
Chemical Hazards	Personal Hygiene
Equipment Hazards	
Electrical HazardsHeat Stress	Emergency Response Procedures
	Zimorgono, recepcine i recedures
Persons in Attendance:	Persons in Attendance:
(Name/Organization)	(Name/Organization)
12410 MALONE	Was 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rady Wilde	
Jack Martin ENE	
- J03	
Notes /Comments	
Notes/Comments:	41 : 4 : 4 : 4 : 4 : 4 : 4
Traffic Still # hazard-	Maintein good exclusion Zove -
Take 5 before switching tas	Maintain good exclusion zore -
0	* 0

Site: <u>Site No.</u> 0700 Date: 12 / 1/16	Time: 0700
Project No: PROTIOOG23 Task: Confirmation being 5 Person Providing Briefing:	Health/Safety Officer: <u>Nick Olivier</u> Vick Olivier
Topics: ☐ Site HASP ☐ Chemical Hazards ☐ Equipment Hazards ☐ Electrical Hazards ☐ Heat Stress	 ✓ Personal Decontamination ✓ Personal Hygiene ☐ Employee Rights/Responsibilities ✓ Hazard Evaluations ☐ Emergency Response Procedures
Persons in Attendance: (Name/Organization) KYLE MULLINE Pady W//OW Josh Martin EWE	Persons in Attendance: (Name/Organization)
Notes/Comments: Discussed cold weather and pro- Reviewed Fake 5 mins before Discussed using the right top	- Switching tasks.

APPENDIX F GEOPHYSICAL REPORT

Work Order Agreement			FIELD SERVICES: SEATTLE/SAC/AK/HAW-PACIFIC RIM			
Job Site Location. 100 Job W.A. WINE COUNTRY RD			15151 52 nd Ave. South, Site 2 Tukwila, WA 98188 1 866 804-5734 SOCAL 1 800 528-8206 EXLORE SAFELY			
City, State. Job Date						
GRANDVEW, WA	22 NO	OV 16				
CLIENT ES ENGINEERING		FIELD TIME 1000- REPORT (2)	J-330. (5.5)		LABOR HOURS W/REPORT/ HRS 7.5	
ADDRESS					FAXED	
CITY, STATE, ZIP					TELEPHONED	
E-MAIL					E-MAILED	
WORK REQUESTED: UTILITY CLEAR	RANCES	S AT 5 PROPOSED	ON SIT	E LOCATIONS. AN	D 5 OFFSITE.	
WORK PERFORMED				PRELIMINARY REVIEW OF CLIENT PROVIDED UTILITY DRAWINGS/AS-BUILTS: LIMMITED		
VISUAL SITE INSPECTION (MANHOLES, DRAINS): SURFACE ONLY				EMPCL CONDUCTIVE UTILITY SURVEY: CHECKED YES GAS: X ELECTRIC: COMM.: WATER:		
EMIMD METAL DETECTION SURVEY: AMBIENT NOISE AND SETTINGS				EM INSERTION: NF - INSERTION METHODS		
LOW NOISE GAIN 7.5 LOW ELV NON FEASIBLE OVER CONCRETE				DO NOT PROVIDE MECHANICAL OR DRAIN "SNAKE" OR. PROBE SERVICE.		
GPR NON-CONDUCTIVE SURVEY: FAIR TO GOOD RESPONSE OVER KNOWN UTILITIES AND EM. ANOMALLIES.				CLIENT ON-SITE REVIEW OF FINDINGS: YES		
GENERAL LIMITATIONS						

WWW.ULSSERVICESCORP.COM

P.O. Box 724, Pocatello, ID 83204 (Mail only)

6742 West Buckskin Rd., Pocatello, Id 83204

WWW.GEOMARKOUT.COM

WWW.1ULS.COM

CORPORATE ADDRESS

NOTE: The work described herein is performed to industry standards (or higher) using multiple methodology and QA/QC protocol. ULS cannot guarantee the accuracy or the ability to detect all underground facilities and potential interferences. Nonconductive or conductive utilities/facilities may not be detected due to variables and constraints beyond ULS control. Where known, constraints and limitations will be brought to the client's attention. Excavation work may result in injury to persons and/or damage to facilities. Client and/or excavator are advised to take all steps necessary to avoid contact with underground facilities. This includes, but is not limited to, safe digging practices, hand tooling in congested areas and within two feet on side of marked utilities (distance may vary by law), utility drawing review, site facilities representative review, and "one-call" utilities notification. ULS and its representatives are not responsible for injury to persons or damage to facilities. This document and accompanying pages will be delivered to the client before commencement of intrusive work for the client's review. If any questions arise, please notify our office immediately.

NOTE: Specific comments/limitations/constraints, known and recognized will be recorded on attached pages (field notes). Caution - some facilities (conductive or non- conductive) may not be detected. Not all limitations and constraints may be recognized.

SIGNATURE OF ULS REPRESENTATIVE ON-SITE	PAGE	OF
		•.
MWB	1	

ULS SERVICES CORPORATION

.....

ULS / GEOMARKOUT

a trade name of ULS Services Corp EXPLORE SAFELY

100 WINE COUNTRY RD 21 NOV 16

METHODS AND GENERAL OBSERVATIONS:

METHODS:

ARRIVED SITE ATTENDED HS TAIL GATE -

SITE WALK TO REVIEW SURVEY AREAS (PROPOSED ZONES). CHECKED FOR SURFACE UTILITY MANIFESTATIONS SUCH AS VALVES, METERS, CONDUITS, TRENCHING SEAMS, VAULT LIDS AND EXISTING ONE CALL MARKINGS. BEGAN MARKOUT WORK.

METHODS UTILIZED INCLUDE: EM PIPE AND CABLE LOCATOR USING AMBIENT, GROUND INDUCTION AND CONNNECTION MODE SWEEPS. EM INDUCTION METAL DETECTOR, MAG, AND GPR. EVERYTHING UTILIZED AT EACH PROPOSED ZONE AND GENERAL AREA. OBSERVATIONS ARE MARKED WITH. WHITE/. HI VIS RED PAINT AND SURVEY ZONE IN WHITE.

SITE CALIBRATION - GENERAL OBSERVATIONS

EM PIPE AND CABLE TRANSMITTER TO RECIEVER (GROUND INDUCTION AND CONNECTION) BROADCASTING IS FAIR. EMIMD METAL DETECTOR BACKGROUND EM NOISE IS LOW -MED OVER ASPHALT ONLY. NON-EFFECTIVE OVER. CONCCRETE. GPR PENETRATION AND RESOLUTION IS POOR TO FAIR. PARABOLIC DATA IS OBSERVED OVER SOME EM / UTILITY OBSERVATIONS AND EM ANOMALIES. VERY SPOTTY.

SEE QA / QC OBSERVATION COMMENTS TO RIGHT SIDE / ABOVE AND COMMENTS BELOW>

X	QA / QC Follows
X	VISUALS
Х	ONECALL /DIG ALERT YES
X	UTILITY MAINS
Х	ELECTRIC – OVERHEAD
X	TELEPHONE – SAME AS E
Х	NAT GAS CAUUTION IN ALLEY. NEED TO VERIFY. ACTIVE AND OTHER ABANDONED LINES.
х	WATER CAUTION ONSITE SIGNAL FROM METER AT SE CORNER SITE TO BLDG.
X	SEWER/STORM ONNSITE REPORTED OUT TO BACK IN ALLEY. OFFSITE VERIFFY WITH CITY.
X	STORMDRAIN: CAUTION OFF. REPORTED SHALLOW DRAINS FROM BLDG SHOWN ON YOUR FIGURES. INLETS IN ROAD CHECKED.
X	SECONNDARY ELECTRIC CAUTION OF AIR ELECTRIC. E TO DISPENSORS AND LIGHT POLE AWAY.
Х	FUEL SYSTEM
	CAUTION OFF THREE USTS. NOT DETECTED UNDER REINFORCEED SEECTION. TANKS APPEAR TOO BEE METAL.
	. CAUTION OF VENTS. RISERS NEAR NWW CORNER USTS.
	CAUTION OF PRODUCT LINES

BETWEEN DISPENSORS AND

TANKS.

ULS / GEOMARKOUT

a trade name of ULS Services Corp EXPLORE SAFELY

100 WINE COUNTRYRD 21 NOV 16

SPECIFIC OBSERVATIONS AND COMMENTS OR CONCERNS:

UTILITY CLEARANCE

ONSITE

SW SITE

CAUTION OF UNKNOWN CONDUCTIVVE ANOMALY AND GENERAL GPR ✓ DISTURBANCE TOWARDS BLDG. (REPORTED. ABANDONED USTS THIS AREA). ALSO, CAUTION OF. AIR. ELECTRIC AND WATER IN THIS AREA.

SW ACTIVE USTS

CAUTION OF EXACT LOCATION OF END OF TANKS ESPECIALLY ON SOUTH END UNDER CONCRETE WHERE TANKS NOT DETECTED. CAUTION OF E TO PUMPS, LITES, CATHODIC PROTECTION, AND RW PIPING IN AREA.

NW ACTIVE USTS

CAUTION OF END OF TANKS TO SOUTH SIDE. CAUTION OF VENT RISERS AT WALL TO. SW SIDE. PIPING MAY TREND EAST OUT OVER TOP UST NEAR NORTH END. AIRKNIFE CAREFULLY. CAUTION OF RW PIPING TO NW SIDE.

NORTH CANOPY

E TO LITE. POLE AT NE CORNER SITE TRENDS SW WWEST OF LOCATION. CAUTION OF UNKOWN CAP SOUTH OF LOCATION ON VONCRETE UNDER CANOPY.

LIMITATION S. ON. SITE: WEAK SIGNAL AT WATER.METER DETECTED WITH BOTH EM AND GPR. ACTIVE USTS NOT DETECTED UNDER CONCRETE. CAUTION OF TANKS, VENTS AND PRODUCT LINES. AIRKNIFE CAREFULLY WATCH FOR PPGRAVEL.

SEWER LATERAL FROM RESTROOM IN BLDG NW CORNER NOT KNWNN. INFERRED TO TREND INTO ALLEY. CHEK WITH CITY.

ULS / GEOMARKOUT

a trade name of ULS Services Corp EXPLORE SAFELY

100 WINE COUNTRY RD 21 NOV 16

SPECIFIC OBSERVATIONS AND COMMENTS OR CONCERNS:

UTILITY CLEARANCE

OFFSITE

DIVISION ST. SOUTH SIDE

CAUTION OF UNKNOWN CONDUCTIVE ELECTRIC UTILITY TO NORTH. SIDE MAY BE. CITY WATER. RW BUNDLE PIPING UNDER CURB TO SOUTH AND WEST SIDE. UNKNOWN DRAIN FROM BLDG ON MAP NOT DETECTED. NAT GAS IN AREA AWAY FRO POINT.

DIVISION ST. NORTH SIDE

CAUTION OF RW PIPING RUNS EW. THRU ZONE. CAUTION OF WATER LATERAL TO. EAST SIDE.

ALLEY - NORTH SIDE (2 EACH)

CAUTION OF NATURAL GAS PIPES IN THIS AREA VERY CLOSE TO PROPOSED. A GAS MAIN EXISTS TO EAST SIDE AGAINST BLDG AND HAS SEVERAL PIPES THAT ARE NOT IN USE AND CAPPED. PIPING MAY BE IN COMMON TRENCH. NEED TO VERIFY.

DIRECT CONNECT INDICATES ONE TO TWO PIPES. VERIFY WITH. ONE CALL (GAS COMPANY) HAND TOOL MAY BE HIGHLY ADVISABLE. SEWER MAY EXIST CENTER OF ALLEY. OVERHEAD WIRES ABOVE LOCATION.

ALLEY - NORTH SIDE (2 EACH)

CAUTION OF UNKNOWN SHALLOW GPR LINEATION SOUTH OF LOCATION. RW PIPING BUNDLE. EXISTS NORTH OF LOCAATION. OVERHEAD WIRES EXIST.

END REPORT / REFER TO PHOTOS

UTILITY CLEARANCES 100 WINE COUNTRY RD.

APPENDIX G ENCROACHMENT PERMIT

207 W. 2nd Street

Grandview, Washington 98930

Tel: (509) 882-9200

Fax: (509) 882-3099

www.grandview.wa.us

October 5, 2016

Ms. Laura Skow, Project Manager ES Engineering Services, LLC 1036 W. Taft Avenue Orange, CA 92866

RE: Request for Encroachment Permit – Geoprobe Borings

Site No. 0700

100 East Wine Country Road, Grandview, WA

I have reviewed your September 26, 2016, letter in which you are requesting approval of an Encroachment Permit for Geoprobe Boring for the business located at 100 East Wine Country Road. This business was the former Time Gas Station which is now owned by Convenience Retailer, LLC. We are aware of the testing requirements that have taken place at this location for a number of years and as I understand, you are required to complete additional testing.

The City of Grandview doesn't have an official permit application, however, please consider this letter as the City's formal approval for you to proceed with the boring process once you have completed the following:

- You have contacted the one-call number for all utility locates 1-800-424-555 (or 811).
- You have met with Santos Trevino, Assistant Public Works Director to complete a preconstruction meeting. His contact information is (509) 882-9211 or email santost@grandview.wa.us.
- You will provide him with a construction schedule for him to monitor when the boring is taking place.

If you need any additional information, please don't hesitate to contact either Santos or myself.

Sincerely.

Cus Arteaga

City Administrator/Public Works Director

APPENDIX H

BORING LOGS

SOI		B	O	RI	N	G	L	n	G
201	_	•	J			u	•	_	u

Sheet 1 of

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700
Address:	100 E. Wine Country Road

Start date: 11/29/2016
Drilling Contractor: Environmental West Exploration Drilling Foreman: Randy Wilder

Completion date: 11/29/2016

Grandview, Washington Project No. 623
Logged by: Nick Olivier

Rig Type: Geoprobe 5400DT

Drilling Method: direct push Hole diameter (inches): 2.25 WELL CONSTRUCTION

WELL FILTER PACK AND BACKFILL sand (#10/20): from (ft.) n/a to

bentonite chips: from (ft.) 26

n/a 2

riser diameter: n/a riser material: n/a

screen diameter: n/a screen material: n/a screen slot size: n/a screened interval (ft): n/a total depth of boring: 26.0

	nite chips:		26	to 2	screen material:	n/a		n diameter: n/a screen slot size: n/a	
bento	nite chips: nite grout:	from (ft.)	n/a n/a	to n/a to n/a	denth	to GW durin		interval (ft): n/a total depth of boring: 26.0	
Denilo	concrete:		2	to 11/a		GW after sta			
Drilling S		Blow		ytical Samp		Depth Scale	USCS		PID
Туре	Recovery	Count	Time	Sample I		(feet)	Symbol	Descriptions of Materials and Conditions	(PPM)
						1 ————————————————————————————————————	FILL	0 - 0.5 asphalt surface underlain by medium brown, moist, medium dense FILL. No hydrocarbon odor or staining.	0.0
continuous	100%					4 5 6 7	SW/ML	Olive green to medium brown, moist, medium dense, fine to medium well graded SAND and SILT. No hydrocarbon odor or staining.	0.0
continuous core (1.125 inch diameter)	100% continuous re	n/a	11:45	CB-1-10		9 10 11 12 12 1	SW/ML	Same as above. No hydrocarbon odor or staining.	0.0
ich diameter)	recovery					13 14 15 16 17 18	SW/ML	Same as above, penetration rate slows significantly. No hydrocarbon odor or staining.	0.0
PZZ						19	SW/ML	Same as above, becomes wet.	0.0
Garage	rete onite chips r level at ti	me of dril	ling						
<u> </u>									

SOI		B	O	RI	N	G	L	n	G
201	_	•	J			u	•	_	u

WELL FILTER PACK AND BACKFILL

Boring/Well Number: CB-1

Sheet 2 of

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date: 11/29/2016	Completion date: 11/29/2016
Address:	100 E. Wine Country Road	Drilling Contractor: Environmental West Exploration	
	Grandview, Washington	Drilling Foreman: Randy Wilder	

Project No. 623
Logged by: Nick Olivier Rig Type: Geoprobe 5400DT
Drilling Method: direct push

Hole diameter (inches): 2.25 WELL CONSTRUCTION

sand (#10/20): from (ft.)	n/a	to	n/a	riser material: n/a riser diameter: n/a	а
bentonite chips: from (ft.)	26	to	2	screen material: n/a screen diameter: n/a	a
bentonite chips: from (ft.)	n/a	to	n/a	screened interval (ft): n/a	a
bentonite grout: from (ft.)	n/a	to	n/a	depth to GW during drilling: 20	
from (ft)	_		^	Donth to CW after stabilization: /-	

screen slot size: n/a total depth of boring: 26.0

	concrete:	from (ft.)	2	to 11/a	Depth to 0	GW aft	er stal	oilization:	n/a	
Drilling :		Blow		ytical Sample	Soil Boring	Depth		USCS		PID
Туре	Recovery	Count	Time	Sample ID		(fe		Symbol	Descriptions of Materials and Conditions	(PPM)
	Recovery		111110	Sample 15	Backfill			Symbol		(,
1						-				
co 12	10					22 -				
5 3	03					_				
<u> </u>	re %					23 -				
유 등	0 0					_				
continuous core 125 inch diamet	100% continuous recovery					24 -				
iar	→ 5								Oliver and the modificant become such damage first to	
⊒ ior	0					25 -			Olive green to medium brown, wet, dense, fine to medium well graded SAND and SILT. No hydrocarbon	
e e	S					25 -		SW/ML	odor or staining.	0.0
continuous core (1.125 inch diameter)		n/a	12:00	CB-1-26					odor or staining.	
						26 -				
						-				
	1				1	27 -				
						-				
					1	28 -				
						-				
					-	29 -				
						_				
						30 -				
						_				
						31 -				
						_				
						32 -				
						_				
						33 -				
						JJ -				
						24				
						34 -				
						-				
					1	35 -				
						_				
					1	36 -				
						-				
					1	37 -				
						-				
					1	38 -				
						-				
					-	39 -				
						-				
					4	40 -				
						_				
					4	41 -				
						_				
II 									Notes: Baring terminated with refusal at 26 O feet below	~~~d

bentonite chips

Notes: Boring terminated with refusal at 26.0 feet below ground surface. Boring backfilled with hydrated 3/8 inch sodium bentonite chips.

COL		D	٦ п	AIL		-	_
SOI	L	Dι	J٢	(III)	U	LU	u

WELL FILTER PACK AND BACKFILL

Boring/Well Number: CB-2

Sheet 1 of

Hole diameter (inches): 2.25

WELL CONSTRUCTION

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date:	11/29/2016	Completion date: 11/29/2016
Address:	100 E. Wine Country Road	Drilling Contractor:	Environmental West Exploration	
	Grandview, Washington	Drilling Foreman:	Randy Wilder	

Rig Type: Geoprobe 5400DT

Drilling Method: direct push Project No. 623
Logged by: Nick Olivier

n/a 2 sand (#10/20): from (ft.) n/a riser material: n/a riser diameter: n/a to screen material: n/a screen diameter: n/a bentonite chips: from (ft.) 28 screen slot size: n/a total depth of boring: 26.0 screened interval (ft): n/a bentonite chips: from (ft.) n/a n/a

bentonite grout: from (ft.) n/a n/a depth to GW during drilling: 18

	concrete: from (ft.)	2 t	to 0	depth to GW after stabilization: n/s
--	----------------------	-----	------	--------------------------------------

50.110	concrete:			to 0		GW after sta			
Drilling S		Blow Count		ytical Sample Sample ID	Soil Boring Backfill	Depth Scale (feet)	USCS Symbol	Descriptions of Materials and Conditions	PID (PPM)
						1 2	FILL	0 - 0.5 asphalt surface underlain by medium brown, moist, medium dense FILL. No hydrocarbon odor or staining.	0.0
continuous	100%					5 6	SW/ML	Olive green to medium brown, moist, medium dense, fine to medium well graded SAND and SILT. No hydrocarbon odor or staining.	0.0
continuous core (1.125 inch diameter)	100% continuous re	n/a	13:50	CB-2-10		8 9 10 11 12	SW/ML	Same as above, significant decrease in penetration rate. No hydrocarbon odor or staining.	0.0
ch diameter)	recovery					13 14 15 16 17 18	SW/ML	Same as above. No hydrocarbon odor or staining. Same as above, becomes wet. No hydrocarbon odor or staining.	0.0
P73						19	SW/ML	notes:	0.0
conc bento	onite chips	me of dri	lling						

SOI		B	O	RI	N	G	L	n	G
201	_	•	J			u	•	_	u

Sheet 2 of 2

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date:	11/29/2016	Completion date: 11/29/2016
Address:	100 E. Wine Country Road	Drilling Contractor:	Environmental West Exploration	
	Grandview, Washington	Drilling Foreman:	Randy Wilder	
Project No.	623	Rig Type:	Geoprobe 5400DT	
Logged by:	Nick Olivier	Drilling Method:	direct push	Hole diameter (inches): 2.25

 WELL FILTER PACK AND	BACKE	ILL		WELL CONSTRUCTION					
sand (#10/20): from (ft.)	n/a	to	n/a		riser material: n/a	riser diameter: n/a		_	
bentonite chips: from (ft.)	26	to	2		screen material: n/a	screen diameter: n/a	screen slot size:	n/a	
bentonite chips: from (ft.)	n/a	to	n/a			screened interval (ft): n/a	total depth of boring:	26.0	
bentonite grout: from (ft.)	n/a	to	n/a		depth to GW o	during drilling: 20		_	

concrete: from (ft.)	2	to	0	Depth to GW after stabilization: n/a	a

	concrete:			to 0	Depth to 0	GW after sta		_n/a	
Drilling S		Blow		ytical Sample	Soil Boring	Depth Scale	USCS	Descriptions of Materials and Conditions	PID
Type	Recovery	Count	Time	Sample ID	Backfill	(feet)	Symbol		(PPM)
0									
continuous core (1.125 inch diameter)						22 ——			
l ti	.00								
ת)%					23 ——			
0	22					23 ——			
ous core (1. diameter)	100% continuous recovery					24			
Z TE	in					24 ——			
net	or							Olive green to medium brown, wet, dense, fine to	
er (Sn					25 ——	SW/ML	medium well graded SAND and SILT. No hydrocarbon	0.0
) 1.1	re						,	odor or staining.	
[2	CO					26 ——			
5-	vei								
nc	~					27 —			
<u></u>		n/a	14:00	CB-2-28					0.0
		II/ a	14.00	CB-2-28	prororororororor	28 ——			0.0
					-	29 ——			
						30 ——			
						31 ——			
						32 ——			
						33 ——			
						33			
						2.4			
						34 ——			
						35 ——			
					-	36 ——			
						-			
					-	37 ——			
					-	38 ——			
					4	39 ——			
					_	40 ——			
					_	41 ——			
				· · · · · · · · · · · · · · · · · · ·					
						-			
Conc	roto							Notes: Boring terminated with refusal at 28.0 feet below	ground

concrete

bentonite chips

water level at time of drilling

surface. Boring backfilled with hydrated 3/8 inch sodium bentonite chips.

SOI		R	റ	R	IN	G	ı	റ	G
301	_	v	v	1	117	u	_	v	u

Sheet 1 of

		<u> </u>		
Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date:	11/29/2016	Completion date: 11/29/2016
Address:	100 E. Wine Country Road	Drilling Contractor:	Environmental West Exploration	
	Grandview, Washington	Drilling Foreman:	Randy Wilder	
Project No.	623	Rig Type:	Geoprobe 5400DT	

Logged by: Nick Olivier Drilling Method: direct push Hole diameter (inches): 2.25

WELL FILTER PACK AND BACKFILL WELL CONSTRUCTION

sand (#10/20): from (ft.) n/a to n/a riser material: n/a riser diameter: n/a screen slot size: n/a screen material: n/a screen diameter: n/a screen slot size: n/a screen material: n/a screen diameter: n/a screen slot size: n/a screen material: n/a screen diameter: n/a screen slot size: n/a screen material: n/a screen diameter: n/a screen slot size: n/a screen material: n/a screen diameter: n/a screen slot size: n/a screen slot size: n/a screen material: n/a screen diameter: n/a screen slot size: n/a s

	nite grout: concrete:		n/a 2	to n/a to 0		to GW durin GW after sta			
Drilling S		Blow		tical Sample	Soil Boring	Depth Scale	USCS		PID
Туре	Recovery	Count	Time	Sample ID	Backfill	(feet)	Symbol	Descriptions of Materials and Conditions	(PPM)
						12	FILL	0 - 0.5 asphalt surface underlain by medium brown, moist, medium dense FILL. No hydrocarbon odor or staining.	0.0
conti	1					3 4 5 6	SW/ML	Olive green to medium brown, moist, medium dense, fine to medium well graded SAND and SILT. No hydrocarbon odor or staining.	0.0
100% continuous recovery continuous core (2.0 inch diameter)					7 8 9		.,,	0.0	
e (2.0 in	tinuous re (2.0 ir			10	SW/ML	Same as above, significant decrease in penetration rate. No hydrocarbon odor or staining.	0.0		
ch diam	recovery				_	13			0.0
eter		n/a	8:40	CB-3-16		16 —			0.0
			8:50	CB-3-17		17	SM	16.5 to 19.0 zone of dark grey to black, wet, dense SILTY SAND. Moderate to heavey hydrocarbon odor, some mild staining.	662.6
						19 20	SW/ML	Olive green to medium brown, wet, dense, fine to medium well graded SAND and SILT. Mild hydrocarbon odor, no staining.	74.2
conce	onite chips	me of dril	ling					notes:	

SOIL BORING LOG	Boring/Well Number: CB-3	9	Sheet	2 of	f :	2
	- 1 11/20/2015	 	1 .	11/00/00		

Client/Site: Eagle Canyon Capital, LLC - Site No. 0700 Start date: 11/29/2016 Completion date: 11/29/2016 100 E. Wine Country Road Drilling Contractor: Environmental West Exploration Address: Grandview, Washington Drilling Foreman: Randy Wilder Project No. 623 Rig Type: Geoprobe 5400DT Logged by: Nick Olivier Drilling Method: direct push Hole diameter (inches): 2.25

WELL CONSTRUCTION WELL FILTER PACK AND BACKFILL

sand (#10/20): from (ft.) riser material: n/a riser diameter: n/a n/a n/a to screen material: n/a screen diameter: n/a screen slot size: n/a bentonite chips: from (ft.) to 2 screened interval (ft): n/a total depth of boring: bentonite chips: from (ft.) n/a to n/a 28.0 bentonite grout: from (ft.) depth to GW during drilling: 22 n/a n/a to

Depth to GW after stabilization: n/a concrete: from (ft.) 0 to **Drilling Sample** Blow **Depth Scale Analytical Sample** PID **Descriptions of Materials and Conditions** (feet) Count Time Backfill (PPM) Sample ID continuous core 22 100% continuous recovery diameter) (2.0 inch SW/ML 0.0 23 24 Olive green to medium brown, wet, dense, fine to SW/ML medium well graded SAND and SILT. No hydrocarbon 0.0 odor or staining. 26 core (1.125 inch continuous diameter) 10:00 CB-3-28 0.0 29 30 31 32 33 34 35 37 38 39 40 41 Notes: Boring terminated with refusal at 28.0 feet below ground concrete surface. Boring backfilled with hydrated 3/8 inch sodium bentonite chips. bentonite chips

SOII	BORING LO)G
JUIL	DOMING LO	Ju

Sheet 1 of

Completion date: 11/28/2016

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700
Address:	100 E. Wine Country Road
	Grandview, Washington

Start date: 11/28/2016
Drilling Contractor: Environmental West Exploration

Drilling Foreman: Randy Wilder

Project No. 623
Logged by: Nick Olivier

Rig Type: Geoprobe 5400DT

Drilling Method: direct push Hole diameter (inches): 2.25

WELL FILTER PACK AND BACKFILL

WELL CONSTRUCTION riser material: n/a riser diameter: n/a

sand (#10/20): from (ft.) n/a to n/a
bentonite chips: from (ft.) 28 to 2
bentonite chips: from (ft.) n/a to n/a
bentonite grout: from (ft.) n/a to n/a

screen material: n/a screen diameter: n/a screen slot size: n/a
screened interval (ft): n/a total depth of boring: 28.0

depth to GW during drilling: 19

	concrete:	from (ft.)	2	to 0	depth to	GW after sta	bilization:	on: n/a				
Drilling S		Blow Count		ytical Sample	Soil Boring	Depth Scale (feet)	USCS	Descriptions of Materials and Conditions	PID			
Туре	Recovery	Count	Time	Sample ID	Backfill	(1000)	Symbol		(PPM)			
					(//////////////////////////////////////			0 - 0.5 asphalt surface.				
					1//////////////////////////////////////	1 ——						
						-						
	_					2 ——						
							FILL		0.0			
						3 ——						
						4						
						4		0.5 - 12.0 feet medium to dark brown, medium dense,				
CC						5 —		moist FILL (previous tank pit backfill). Woody debris,				
2								concrete and ashphalt rubble present. No hydrocarbon	0.0			
)ti						6		odor or staining.				
)	1(
n)(7 ——						
כנ	%								0.0			
Sr	ó (8 ——			0.0			
C	\mathcal{O}					-						
0	Ď					9 ——						
Гe	ti					-						
	חַ					10 ——	FILL	Same as above (previous tank pit backfill).	0.0			
2.	100% continuous											
0	n(11 ——						
continuous core (2.0 inch diameter)						12 —						
)C	ЭЛ											
h	25					13 ——			0.0			
d	recovery											
ia	/е					14		Olive green to medium brown, moist, medium dense,				
\exists	Č					-	SW/ML	fine to medium, well graded SAND and SILT. No				
le		n/a	18:00	CB-4-15		15 ——		hydrocarbon odor or staining.	0.0			
te		11/a	16.00	CB-4-13		-			0.0			
7						16 ——						
)						-			0.0			
		n/a	18:10	CB-4-17		17 ——		Same as above. Moderate to heavy hydrocarbon odor	738.4			
						10		noted beginning at 16.0 feet, none to mild staining of				
						18 ——		soil.				
						19	>	Becomes wet at 19.0 feet.				
						20 —						
								Same as above. Decreasing hydrocarbon odor, no	11.8			
								staining.				
conci	ete							notes:				
Total hans	nito chin-											
	onite chips											
wate	r ievel at ti	me of dri	iiing									

COL		D	٦ п	AIL		-	_
SOI	L	Dι	J٢	(III)	U	LU	u

Sheet 2 of

Completion date: 11/28/2016

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700
Address:	100 E. Wine Country Road

Start date: 11/28/2016 Drilling Contractor: Environmental West Exploration Drilling Foreman: Randy Wilder

Grandview, Washington Project No. 623 Logged by: Nick Olivier

Rig Type: Geoprobe 5400DT Hole diameter (inches): 2.25 Drilling Method: direct push

WELL FILTER PACK AND BACKFILL sand (#10/20): from (ft.) n/a

WELL CONSTRUCTION riser material: n/a riser diameter: n/a

n/a bentonite chips: from (ft.) 28 2 bentonite chips: from (ft.) n/a n/a bentonite grout: from (ft.) n/a concrete: from (ft.) 2 to n/a

screen material: n/a screen diameter: n/a screen slot size: n/a screened interval (ft): n/a total depth of boring: 28.0

depth to GW during drilling: 19

Depth to GW after stabilization: n/a

	concrete:		to 0		Denth Scale			DID
		Count			(feet)		Descriptions of Materials and Conditions	
Type continuous core (2.0 inch diameter)		Blow	ytical Sample Sample ID CB-4-22	Soil Boring Backfill	Depth Scale	SW/ML	Descriptions of Materials and Conditions Olive green to medium brown, wet, medium dense, fine to medium, well graded SAND and SILT. No hydrocarbon odor or staining.	0.0 0.0
[]							Notes: Boring terminated at 28.0 feet below ground surfa	ice due

bentonite chips

to caving conditions at base of boring. Boring unable to be advanced with available technique. Boring backfilled with hydrated 3/8 inch sodium bentonite chips.

SOIL	RΩ	RI	NG	10	G
JUIL	-			-	u

Sheet 1 of

Client/Site: Eagle Canyon Capital, LLC - Site No. 0700 Completion date: 11/29/2016 Start date: 11/29/2016 Address: 100 E. Wine Country Road Drilling Contractor: Environmental West Exploration Grandview, Washington Drilling Foreman: Randy Wilder

Rig Type: Geoprobe 5400DT

Drilling Method: direct push Project No. 623
Logged by: Nick Olivier Hole diameter (inches): 2.25

WELL FILTER PACK AND BACKFILL sand (#10/20): from (ft.) n/a to n/a

bentonite chips: from (ft.) 28 bentonite chips: from (ft.) n/a bentonite grout: from (ft.) n/a

WELL CONSTRUCTION riser material: n/a riser diameter: n/a screen material: n/a screen diameter: n/a screen slot size: n/a

screened interval (ft): n/a total depth of boring: 28.0 denth to GW during drilling: 16

bento	nite grout:		n/a	to n/a		to GW durin			
5 ''' 6	concrete:		2	to 0		GW after stal		n/a I	
Drilling S		Blow		ytical Sample	Soil Boring	Depth Scale (feet)	USCS	Descriptions of Materials and Conditions	PID
Туре	Recovery	Count	Time	Sample ID	Backfill	(ieet)	Symbol		(PPM)
						1 —	FILL	0 - 0.5 asphalt surface. 0.5 - 1.5 feet medium brown, moist, loose FILL	0.0
continuous core (1.125 inch diameter)	100% cc					2 3 4 5 6 7 8	SW/ML	Olive green to medium brown, moist, medium dense, fine to medium, well graded SAND and SILT. No hydrocarbon odor or staining.	0.0
ore (1.125 in	100% continuous re	n/a	15:00	CB-5-10		9 10 11 12	SW/ML	Same as above. No hydrocarbon odor or staining.	0.0
ch diameter)	recovery					17	≾ W/ML	Same as above. Becomes wet at 16.0 feet. No hydrocarbon odor or staining.	0.0
		n/a	15:15	CB-5-20		20	SW/ML	Olive green, wet, dense, well graded SAND and SILT. No hydrocarbon odor or staining.	0.0
F.73								notes:	
conci	rete onite chips								
wate	r level at tii	me of dril	ling						
<u> </u>									

COIL		וח			~
SOIL	BU	ľΚΙ	NG	LC	U

Sheet 2 of

Completion date: 11/29/2016

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date: 11/29/2
Address:	100 E. Wine Country Road	Drilling Contractor: Environ
	Grandview Washington	Drilling Foreman: Randy V

mental West Exploration Wilder

Project No. 623 Logged by: Nick Olivier

Rig Type: Geoprobe 5400DT Hole diameter (inches): 2.25 Drilling Method: direct push

WELL FILTER PACK AND BACKFILL sand (#10/20): from (ft.) n/a n/a to

WELL CONSTRUCTION riser diameter: n/a riser material: n/a

bentonite chips: from (ft.) to 2 bentonite chips: from (ft.) n/a n/a bentonite grout: from (ft.) n/a to n/a screen material: n/a screen diameter: n/a screen slot size: n/a screened interval (ft): n/a total depth of boring: 28.0

depth to GW during drilling: 16

Descriptions of Materials and Conditions PID	concrete:			to 0	Depth to	GW a	fter sta	oilization:	on: n/a				
Type Recovery Count Time Sample D Backfil Vertical Symbol Counting		ample			-					Descriptions of Materials and Conditions			
28 SW/ML 0.0 29 30 30 31 32 33 34 34 35 36 36 37 38 38 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	Туре	Recovery	Count	Time	Sample ID	Backfill	(reetj	Symbol		(PPM)		
28 SW/ML 0.0 29 30 30 31 32 32 33 34 34 34 35 36 36 37 38 38 38 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	С												
28 SW/ML 0.0 29 30 30 31 32 32 33 34 34 34 35 36 36 37 38 38 38 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	on	\vdash					22						
28 SW/ML 0.0 29 30 30 31 32 32 33 34 34 34 35 36 36 37 38 38 38 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	tir	00							614/14				
28 SW/ML 29	ıuc	%					23		SW/ML				
28 SW/ML 29	b uc	οn											
28 SW/ML 29	s c ian	Ē.					24			oder or starring.			
28 SW/ML 29	or ne	uc											
28 SW/ML 29	e (tei	SD					25		SW/MI		0.0		
28 SW/ML 29 30 31 32 33 34 35 36 37 38 39 40 40	1.: r)	ē							SVV/IVIL		0.0		
28 SW/ML 29 30 31 32 33 34 35 36 37 38 39 40 40	12!	6					26						
28 SW/ML 29 30 31 32 33 34 35 36 37 38 39 40 40	5	/er											
28 SW/ML 29 30 31 32 33 34 35 36 37 38 39 40 40	ncl	<					27						
29	٦		n/a	16:00	CB-5-28		20		SW/ML	Same as above. No hydrocarbon odor or staining.	0.0		
30 — 31 — 32 — 33 — 34 — 35 — 36 — 37 — 38 — 39 — 40 —							28						
30 — 31 — 32 — 33 — 34 — 35 — 36 — 37 — 38 — 39 — 40 —							20						
31							29						
31							30						
32 — 33 — 34 — 35 — 36 — 37 — 38 — 39 — 40 —							30						
32 — 33 — 34 — 35 — 36 — 37 — 38 — 39 — 40 —							31						
33							31						
33							32						
34													
35							33						
35													
36 — 37 — 38 — 39 — 40 —						-	34						
36 — 37 — 38 — 39 — 40 —													
37						4	35						
37													
38						+	36						
38													
39						-	37						
39													
40						-	38						
40													
						1	39						
41						1	40						
						1	41						
Notes: Boring terminated with refusal at 28.0 feet below ground	77					-				Notes: Boring terminated with refusal at 28.0 feet below	ground		

concrete

bentonite chips

surface. Boring backfilled with hydrated 3/8 inch sodium bentonite chips.

00 00		2011116/ 11011111111111111111111111111111	UD U	0	_
Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date:	11/30/2016	Completion date: 11/30/2016	
Address:	100 E. Wine Country Road	Drilling Contractor:	Environmental West Exploration		
	Grandview, Washington	Drilling Foreman:	Randy Wilder		
Project No.	623	Rig Type:	Geoprobe 5400DT		
Logged by:	Nick Olivier	Drilling Mothod:	direct nuch	Hole diameter (inches): 2.25	

WELL FILTER PACK AND BACKFILL										
sand (#10/20): from (ft.)	n/a	to	n/a							
bentonite chips: from (ft.)	27	to	2							
bentonite chips: from (ft.)	n/a	to	n/a							
bentonite grout: from (ft.)	n/a	to	n/a							

riser material: n/a	riser diameter: n/a	
screen material: n/a	screen diameter: n/a	screen slot size: n/a
	screened interval (ft): n/a	total depth of boring: 27.0

WELL CONSTRUCTION

	concrete:	from (ft.)	n/a 2	to n/a to 0		to GW durin GW after stal			
Drilling S Type	ample Recovery	Blow Count	Analy Time	rtical Sample Sample ID	Soil Boring Backfill	Depth Scale (feet)	USCS Symbol	Descriptions of Materials and Conditions	PID (PPM)
Турс	Recovery		Time	Jumple 12		1 —	FILL	0 - 0.5 feet asphalt surface. 0 .5- 1.5 feet medium brown, moist, loose FILL.	
continu	10					2 3 4 5 6	SW/ML	Olive green to medium brown, moist, medium dense, fine to medium, well graded SAND and SILT. No hydrocarbon odor or staining.	0.0
continuous core (2.0 inch diameter)	100% continuous recovery	n/a	14:30	CB-6-10		7 8 9 10 11	SW/ML	Same as above. No hydrocarbon odor or staining.	0.0
inch diameter)	recovery					12 13 14 15 16 17 18	ZW/ML	Same as above. Becomes wet at 16.0 feet. No hydrocarbon odor or staining.	0.0
		n/a	15:15	CB-6-20		19	SW/ML	Olive green, wet, dense, well graded SAND and SILT. No hydrocarbon odor or staining.	0.0
concr	nite chips	me of dril	ling					notes:	

SOIL	RO	NDI	NG	10	16
JUIL	DU	וחי	IVG	L	vu

Sheet 2 of

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date:	11/30/2016	Completion date: 11/30/2016
Address:	100 E. Wine Country Road	Drilling Contractor:	Environmental West Exploration	
	Grandview, Washington	Drilling Foreman:	Randy Wilder	
Project No.	623	Rig Type:	Geoprobe 5400DT	
Logged by:	Nick Olivier	Drilling Method:	direct push	Hole diameter (inches): 2.25

WELL FILTER PACK AND	BACKI	-ILL		
sand (#10/20): from (ft.)	n/a	to	n/a	riser mate
bentonite chips: from (ft.)	27	to	2	screen mat
bentonite chips: from (ft.)	n/a	to	n/a	·
bentonite grout: from (ft.)	n/a	to	n/a	

	WELL CONSTRUCT	ION
riser material: n/a	riser diameter: n/a	
screen material: n/a	screen diameter: n/a	screen slot size: n/a
	screened interval (ft): n/a	total depth of boring: 27.0

depth to GW during drilling: 16

	concrete:	from (ft.)	2	to 0	Depth to GW after stabilization: n/a					
Drilling S Type		Blow Count		ytical Sample Sample ID	Soil Boring	Dept	th Scale eet)	USCS Symbol	Descriptions of Materials and Conditions	PID (PPM)
1.125 in. core					Backfill	22		SW/ML	Olive green to medium brown, wet, medium dense, fine to medium, well graded SAND and SILT. No hydrocarbon odor or staining.	0.0
continuous 2.0 inch core	100% continuous recovery					242526		SW/ML	odor or stalling.	0.0
ر	`	n/a	15:40	CB-6-27	reservatereseres Generalesereseres	27				0.0
						28				
						29				
						30				
						31				
						32				
						33				
						34				
						35				
						36				
						37				
						38				
						39				
						40				
					1	41				

concrete

bentonite chips

Notes: Boring terminated with refusal at 27.0 feet below ground surface. Boring backfilled with hydrated 3/8 inch sodium bentonite chips.

SOI		B	O	RI	N	G	L	n	G
201	_	•	J			u	•	_	u

Sheet 1 of

Completion date: 12/1/2016

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700
Address:	100 E. Wine Country Road

Start date: 12/1/2016
Drilling Contractor: Environmental West Exploration Drilling Foreman: Randy Wilder

Grandview, Washington

Project No. 623
Logged by: Nick Olivier

Rig Type: Geoprobe 5400DT

Drilling Method: direct push Hole diameter (inches): 2.25 WELL CONSTRUCTION

WELL FILTER PACK AND BACKFILL sand (#10/20): from (ft.) n/a

riser material: n/a riser diameter: n/a

n/a 2 bentonite chips: from (ft.) bentonite chips: from (ft.) n/a n/a bentonite grout: from (ft.) n/a n/a to

screen material: n/a screen diameter: n/a screen slot size: n/a screened interval (ft): n/a total depth of boring: 28.0

	concrete:	from (ft.)	2	to 0	depth to GW after stabilization: n/a				
Drilling S Type	ample Recovery	Blow Count	Anal Time	ytical Sample Sample ID	Soil Boring Backfill	Depth Scale (feet)	USCS Symbol	Descriptions of Materials and Conditions	PID (PPM)
.,,,,,					///////////////////////////////////////		,	0 - 0.5 feet asphalt surface.	(,
					[[22222222]		FILL		
	•				1//////////////////////////////////////	1 ——		0.5 - 1.5 feet medium brown, moist, loose FILL.	0.0
					100000000000000000000000000000000000000				
					- (* (* (* (* (* (* (* (* (* (* (* (* (*	2 ——			
				0.0					
						3 ——			0.0
						4			
C						4 —			
<u> </u>								Olive green to medium brown, moist, medium dense,	
l ↑						5 ——	SW/ML	fine to medium, well graded SAND and SILT. No hydrocarbon odor or staining.	0.0
≒						6		nyurocarbon outror or stanning.	
1	\vdash					0			
0	0					7			
<u> </u>	90								
S	%					8			0.0
\sim	\mathcal{C}								
\	2					9			
e	1								
continuous core (1.125 inch diameter)	100% continuous					10 ——			
1		n/a	7:45	CB-7-10			SW/ML	Same as above. No hydrocarbon odor or staining.	0.0
1	0					11			
25	Ϋ́								
<u> </u>						12 ———			
ב ו	recovery					-			
C	Õ					13 ———			0.0
	9								
<u> </u>	<i>-</i> е					14 ——			
<u>a</u>	Ž								
3						15 ——			0.0
<u>e</u>						-	SW/ML		0.0
e l						16 ——	3VV/IVIL	Same as above. No hydrocarbon odor or staining.	
<u> </u>						-			
						17 ———			
									0.0
						18 ——			
	ŀ					19 ——			
						20 -	_	Olive green, wet, dense, well graded SAND and SILT. No	
	ļ	n/a	8:00	CB-7-20		20 —	SW/ML	hydrocarbon odor or staining. Becomes wet at 20.0 feet.	
Concr								notes:	
concr	ete								
bento	nite chips								
wate	r Ievel at tii	ne of dri	lling						

COL		D	٦ п	AIL		-	_
SOI	L	Dι	J٢	(III)	U	LU	u

Sheet 2 of

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date: 12/1/2016	Completion date: 12/1/2016
Address:	100 E. Wine Country Road	Drilling Contractor: Environmental West Exploration	
	Grandview, Washington	Drilling Foreman: Randy Wilder	

Rig Type: Geoprobe 5400DT

Drilling Method: direct push Project No. 623
Logged by: Nick Olivier

Hole diameter (inches): 2.25 WELL FILTER PACK AND BACKFILL WELL CONSTRUCTION

riser material: n/a riser diameter: n/a sand (#10/20): from (ft.) n/a to n/a bentonite chips: from (ft.) 28 screen material: n/a screen diameter: n/a screen slot size: n/a 2 bentonite chips: from (ft.) n/a screened interval (ft): n/a total depth of boring: 28.0 to n/a bentonite grout: from (ft.) n/a concrete: from (ft.) 2 depth to GW during drilling: 20 to n/a

Depth to GW after stabilization: n/a

Drilling S	concrete:			vtical Sample		Denth Scale	1		DID
		Count	Time		Backfill	(feet)		Descriptions of Materials and Conditions	(PPM)
Continuous core (1.125 inch diameter)		Blow	Anal	ytical Sample Sample ID CB-7-28	Soil Boring	Depth Scale	SW/ML	Descriptions of Materials and Conditions Olive green to medium brown, wet, medium dense, fine to medium, well graded SAND and SILT. No hydrocarbon odor or staining. Same as above. No hydrocarbon odor or staining.	(PPM) 0.0 0.0
						37			
					-	40			
7 7								Notes: Boring terminated with refusal at 28.0 feet below	ground

concrete

bentonite chips

surface. Boring backfilled with hydrated 3/8 inch sodium bentonite chips.

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700
Address:	100 E. Wine Country Road

Project No. 623
Logged by: Nick Olivier

Start date: 12/1/2016
Drilling Contractor: Environmental West Exploration

Drilling Foreman: Randy Wilder

Rig Type: Geoprobe 5400DT

Drilling Method: direct push Hole diameter (inches): 2.25

WELL FILTER PACK AND BACKFILL

	sand (#10/20): from (ft.)	n/a	to	n/a
t	pentonite chips: from (ft.)	27	to	2
t	pentonite chips: from (ft.)	n/a	to	n/a
b	entonite grout: from (ft.)	n/a	to	n/a

WELL	CONST	ructio	NC

riser material: n/a riser diameter: n/a screen material: n/a screen diameter: n/a screen slot size: n/a screened interval (ft): n/a total depth of boring: 27.0

	concrete:	from (ft.)	2	to 0	depth to 0	SW after sta	bilization:	n/a	
Drilling S Type	Sample Recovery	Blow Count	Anal Time	ytical Sample Sample ID	Soil Boring Backfill	Depth Scale (feet)	USCS Symbol	Descriptions of Materials and Conditions	PID (PPM)
.,,,,	necovery				· · · · · · · · · · · · · · · · · · ·		· ,	0 - 0.5 feet asphalt surface.	(,
					() / / / / / / / /		FILL	0.456	
					122222223	1 ——		0 - 1.5 feet medium brown, moist, loose FILL.	0.0
					1833333333				
						2 ——			
						3 —			0.0
						4			
C						·		Olive green to medium brown, moist, medium dense,	
2						5 ——	4	fine to medium, well graded SAND and SILT. No	
<u> </u>							SW/ML	hydrocarbon odor or staining.	0.0
<u> </u>						6 ——	4		
\subseteq	1(1		
<u>၂</u>	0					7 ——	4		
S	%						-		0.0
0	0					8 ——	-		0.0
Ö	Ö						1		
	D.					9 ——			
continuous core (1.125 inch diameter)	100% continuous								
1	٦(n/a	9:00	CB-8-10		10 ——	SW/ML	Same as above. No hydrocarbon odor or staining.	0.0
i L	or					11			
2	ŭ					11 —			
5						12 ——			
<u> </u>	re								
C	Ö					13 —			0.0
	recovery						4		
<u> </u>	/e					14	_		
ar	7					-	1		
	_					15 ——	-		0.0
et							SW/ML		0.0
.e						16 ——	1	Same as above. Becomes wet at 17.0 feet. No	
こ						17		hydrocarbon odor or staining.	
						17 —			
						18 ——			0.0
		n/a	9:20	CB-8-18					
						19 ——			
							4	Olive green, wet, dense, well graded SAND and SILT.	
			0.40	OD 0 20		20 ——		Slight hydrocarbon odor from 17.5 to 18.5 feet. No	
		n/a	9:40	CB-8-20			SW/ML	staining on soil.	80.6
			<u> </u>		<u>vielelelelelelelele</u>		<u> </u>	notes:	1
concr	rete								
bento	onite chips								
wate	r level at ti	me of dri	lling						

SO					

Sheet 2 of

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date: 12/1/2016	Completion date: 12/1/2016
Address:	100 E. Wine Country Road	Drilling Contractor: Environmental West Exploration	
	Grandview, Washington	Drilling Foreman: Randy Wilder	
	62.0	0 1 1 1 1 1	

Project No. 623
Logged by: Nick Olivier Rig Type: Geoprobe 5400DT Hole diameter (inches): 2.25 Drilling Method: direct push

WELL CONSTRUCTION WELL FILTER PACK AND BACKFILL sand (#10/20): from (ft.) n/a riser material: n/a riser diameter: n/a n/a bentonite chips: from (ft.) 27 screen material: n/a screen diameter: n/a screen slot size: n/a 2 bentonite chips: from (ft.) n/a screened interval (ft): n/a total depth of boring: 27.0 to n/a bentonite grout: from (ft.) n/a concrete: from (ft.) 2 depth to GW during drilling: 17 to n/a

0 Depth to GW after stabilization: n/a

=	concrete:			to 0		3W after sta		I/a	
Drilling S		Blow		ytical Sample	Soil Boring	Depth Scale	USCS	Descriptions of Materials and Conditions	PID
Туре	Recovery	Count	Time	Sample ID	Backfill	(feet)	Symbol		(PPM)
contir ir	100% (n/a	9:30	CB-8-22		22	0.246.4		0.0
continuous core (1.125 inch diameter)	100% continuous recovery					23	SW/ML	Olive green to medium brown, wet, medium dense, fine to medium, well graded SAND and SILT. No hydrocarbon odor or staining.	
ore (1.1 neter)	us recov					25	SW/ML		0.0
25	ery	n/a	9:45	CB-8-27		26 ———			0.0
						28			
					_	29			
						30			
					_	32 —			
					-	33			
						34 ———			
					-	36 —			
					_	37			
					_	38			
						39 ———			
					-	41 —			
conci	rete	1	<u> </u>		I		1	Notes: Boring terminated with refusal at 27.0 feet below surface. Boring backfilled with hydrated 3/8 inch sodium	ground

bentonite chips

surface. Boring backfilled with hydrated 3/8 inch sodium bentonite chips.

		NG	

Sheet 1 of

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date:	11/28/2016	Completion date: 11/28/2016
Address:	100 E. Wine Country Road	Drilling Contractor:	Environmental West Exploration	
	Grandview, Washington	Drilling Foreman:	Randy Wilder	
Project No.	623	Rig Type:	Geoprobe 5400DT	
Logged by:	Nick Olivier	Drilling Mothods	direct nuch	Holo diameter (inches): 2.25

 ogged by. Mick Olivier			Drilling Method	Hole diameter (inches): 2.25	
WELL FILTER PACK AND BACKFI	LL			WELL CONSTRUCTION	
sand (#10/20): from (ft.) n/a	to	n/a	riser material: n/a	riser diameter: n/a	
hentonite chins: from (ft.) 30.5	to	2	screen material: n/a	screen diameter: n/a	screen slot size: n/a

bentonite chips: from (ft.) n/a to n/a screened interval (ft): n/a total depth of boring: 30.5 bentonite grout: from (ft.) n/a to n/a depth to GW during drilling: 23

depth to GW after stabilization: n/a concrete: from (ft.) 0 Blow **Drilling Sample Analytical Sample Depth Scale** PID **Descriptions of Materials and Conditions** (feet) Count (PPM) Time Sample ID Symbol 0.5 - 9.0 0 - 0.5 feet ashpalt surface. FILL feet medium brown, moist, loose FILL. No hydrocarbon 0.0 odor or staining. 0.0 FILL Asphalt and concrete rubble present. Likely old UST pit continuous core (2.0 inch diameter) backfill. No hydrocarbon odor or staining. 0.0 100% continuous recovery FILL 0.0 CB-9-10 14:40 SW/ML Olive green to medium brown, moist, dense, well graded 0.0 SAND and SILT. No hydrocarbon odor or staining. 11 12 0.0 13 14 0.0 SW/ML Same as above. No hydrocarbon odor or staining. 16 17 0.0 18 19 Olive green to medium brown, moist, dense, well graded 20 15:00 CB-9-20 SW/ML SAND and SILT. No hydrocarbon odor or staining. 0.0 notes: concrete bentonite chips water level at time of drilling

SOI		B	O	RI	N	G	L	n	G
201	_	•	J			u	•	_	u

Sheet 2 of

Completion date: 11/28/2016

Client/Site: Eagle Canyon Capital, LLC - Site No. 0700 100 E. Wine Country Road Address:

Grandview, Washington

bentonite chips: from (ft.) 30.5

bentonite chips: from (ft.) n/a

bentonite grout: from (ft.)

Drilling Contractor: Environmental West Exploration Drilling Foreman: Randy Wilder

Start date: 11/28/2016

Rig Type: Geoprobe 5400DT Drilling Method: direct push

Project No. 623
Logged by: Nick Olivier

n/a

Hole diameter (inches): 2.25

WELL FILTER PACK AND	BACKI	FILL		
sand (#10/20): from (ft.)	n/a	to	n/a	r

to n/a

n/a

WELL CONSTRUCTION riser material: n/a riser diameter: n/a screen material: n/a screen diameter: n/a

screen slot size: n/a screened interval (ft): n/a total depth of boring: 30.5

depth to GW during drilling: 23

	concrete:	from (ft.)	2	to 0	Depth to	GW after sta	bilization:	n/a	
Drilling 9	Sample	Blow		ytical Sample	Soil Boring	Depth Scale	USCS	Descriptions of Materials and Conditions	PID
Туре	Recovery	Count	Time	Sample ID	Backfill	(feet)	Symbol	2 constitution of materials and conditions	(PPM)
continu	10					22	ZSW/ML	Olive green to medium brown, wet, medium dense, fine to medium, well graded SAND and SILT. No hydrocarbon odor or staining.	
continuous core (2.0 inch diameter)	100% continuous recovery					24 25 26 27	SW/ML	Significant decrease in rate of penetration.	0.0
n diameter)	overy					28	SW/ML	Same as above. No evidence of hydrocarbon impacts in boring.	0.0
		n/a	15:15	CB-9-30		30 ——			0.0
						31			
conc	rete		<u>. </u>		•		•	Notes: Boring terminated with refusal at 30.5 feet below surface. Boring backfilled with hydrated 3/8 inch sodium bentonite chips.	

bentonite chips

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700
Address:	100 E. Wine Country Road
	Consideration Manager and

Drilling Foreman: Randy Wilder

Project No. 623
Logged by: Nick Olivier

Rig Type: Geoprobe 5400DT

Drilling Method: direct push Hole diameter (inches): 2.25

WELL CONSTRUCTION

WELL FILTER PACK AND BACKFILL sand (#10/20): from (ft.) n/a

n/a bentonite chips: from (ft.) 27.5 2 bentonite chips: from (ft.) n/a n/a bentonite grout: from (ft.) n/a n/a riser material: n/a riser diameter: n/a screen diameter: n/a

screen material: n/a screen slot size: n/a screened interval (ft): n/a total depth of boring: 27.0

concrete: from (ft.) 2 to 0					depth to 0	GW after sta	bilization:	n/a	
Drilling Sample Blow		Analytical Sample		- "		USCS	Descriptions of Materials and Conditions		
Type	Recovery	Count	Time	Sample ID	Backfill	(leet)	Symbol	·	(PPM)
					(/////////		FILL	0 - 0.5 asphalt surface. 0.5 - 1.5	
					1,444,444	1 ——	11.22	feet medium brown, moist, loose FILL.	0.0
						2			
						2			
						3 ——			0.0
						4 ——			
continuous core (1.125 inch diameter)						-	1	Olive green to medium brown, moist, medium dense,	
n						5 ——	SW/ML	fine to medium, well graded SAND and SILT. No	0.0
 								hydrocarbon odor or staining.	
	1					6 —			
ō	100% continuous					7 —			
L C)%								
5	6					8 ——			0.0
0	CO								
7	n					9 ——			
	ti					-			
1	חנ					10 ——	SW/ML	Same as above. No hydrocarbon odor or staining.	0.0
<u>.</u>	or					11	1		
2	Ù								
<u> </u>						12 ——			
ב	re	n/a	10:20	CB-10-12					
웃	C(13 ——			0.0
	recovery								
<u>∃</u> :	'e					14 ——			
l e	7					45			
■						15 ——	1		
i i						16 —	SW/ML		
e e									0.0
<u> </u>						17 —			
		n/a	10:45	CB-10-17				Same as above. Moderate to heavy hydrocarbon odor	850.2
						18 ——		starting at 17.0 feet.	
								Becomes wet.	
						19		Describes well	20.1
						20		Olive green, wet, dense, well graded SAND and SILT.	
						20	SW/ML	Moderate hydrocarbon odor, no staining.	610.7
concrete								notes:	
Para Constitution of the C									
bento	bentonite chips								
water level at time of drilling									
water level at time of arming									

SOI				

Sheet 2 of 2

Client/Site:	Eagle Canyon Capital, LLC - Site No. 0700	Start date:	12/1/2016	Completion date: 12/1/2	016
Address:	100 E. Wine Country Road	Drilling Contractor:	Environmental West Exploration		
	Grandview, Washington	Drilling Foreman:	Randy Wilder		
Project No.	623	Rig Type:	Geoprobe 5400DT		
Logged by:	Nick Olivier	Drilling Method:	direct push	Hole diameter (inches):	2.25

WELL FILTER PACK AND	BACKE	ILL			WELL CONSTRUCTION				
sand (#10/20): from (ft.)	n/a	to	n/a	riser material: n/a	riser diameter: n/a				
bentonite chips: from (ft.)	27.5	to	2	screen material: n/a	screen diameter: n/a	screen slot size: n/a			
bentonite chips: from (ft.)	n/a	to	n/a		screened interval (ft): n/a	total depth of boring: 27.0			
bentonite grout: from (ft.)	n/a	to	n/a	depth to GW d	depth to GW during drilling: 19				

Depth to GW after stabilization: n/a

concrete: from (ft.			to 0	Depth to 0	GW after sta		n/a		
	Drilling Sample Blow		Analytical Sample		Soil Boring Depth Scale		USCS	Descriptions of Materials and Conditions	PID
Туре	Recovery	Count	Time	Sample ID	Backfill	(feet)	Symbol	,	(PPM)
	<u> </u>								
continuous core (1 inch diameter)	100% continuous recovery					22 ——	SW/ML	Olive green to medium brown, wet, medium dense, fine	
_{=:} 1±:	%							to medium, well graded SAND and SILT. No hydrocarbon	
חכ חר	CO					23 ——		odor or staining.	
<u>ь</u> о	nt:								0.0
tinuous core (1 inch diameter)	l in					24 ——			
3 E	ا و	n/a	10:55	CB-10-24		24	SW/ML		
re	IS I					25 ——			
er (1	ЭЭ.					23			0.0
1	9					26			
125	en.					20		Company of the compan	
		n/a	11:05	CB-10-27		27	SW/ML	Same as above. No hydrocarbon odor or staining.	0.0
						27 ——			
						20			
						28 ——			
						20	1		
						29 ——	1		
						20			
						30 ——			
						31 ——			
						32 ——			
						33 ——			
						34 ——			
					_	35 ——			
					_	36 ——			
						37 ——			
							1		
					-	38 ——	-		
							-		
 					1	39 ——	1		
							1		
					-	40 ——	-		
							-		
					4	41 ——	4		
							4		
								<u></u>	
conc	rete							Notes: Boring terminated with refusal at 27.0 feet below	ground
	500							surface. Boring backfilled with hydrated 3/8 inch sodium	

bentonite chips

bentonite chips.

APPENDIX I GENERAL FIELD PROCEDURES

GENERAL FIELD PROCEDURES

General procedures used by ES Engineering Services, LLC (ES) in site assessments for drilling exploratory borings and collecting samples are described herein. The general procedures may be modified as appropriate based on site conditions. A Professional state-registered geologist supervises the following procedures.

PRE-FIELD WORK ACTIVITIES

Health and Safety Plan

Field work performed by ES at the site is conducted according to guidelines established in a Site Health and Safety Plan (HASP). The HASP is a document that describes the hazards that may be encountered in the field and specifies protective equipment, work procedures, and emergency information. A copy of the HASP is at the site and available for reference by appropriate parties during field work.

Locating Underground Utilities

Before commencement of subsurface work, the location of the excavation, boring, etc., is marked with white spray paint as required by law. An underground locating service such as One-Call is contacted 72-hours before initiating field work. The locating company contacts the owners of the various utilities in the vicinity of the site to mark the locations of their underground utilities. Invasive work is preceded by hand augering to a minimum depth of five feet below surface grade to avoid contacting potential underground utilities or structures.

FIELD METHODS AND PROCEDURES

Exploratory Soil Borings

Soil borings will be drilled using a truck-mounted, hollow stem auger (HSA) drill rig or using hydraulically actuated "direct-push" and percussion equipment, e.g. Geoprobe®. If HSA drilling techniques are utilized, soil samples for logging will be obtained from auger-return materials and by advancing a modified split-spoon sampler equipped with stainless steel liners or equivalent into undisturbed soil beyond the tip of the auger. Similarly, if direct-push technology (DPT) is used, soil samples will be retrieved from the borings using a 3-foot-long, 2-inch diameter continuous-core split-barrel sampler lined with six stainless steel/brass sleeves or a 4-foot-long acetate liner. Soils will be logged by a geologist according to the Unified Soil Classification System using standard geological techniques. Drill cuttings will be screened using a portable photoionization detector (PID) or a flame ionization detector (FID). Exploratory soil borings not used for monitoring well installation will be backfilled to the surface with bentonite-cement slurry and/or hydrated bentonite chips and capped at the surface to match surrounding conditions.

Soil Sample Collection

Auger Sampling: During drilling, soil samples will be collected in clean steel/brass, two by six inch tubes. The tubes will be set in an 18-inch-long split-barrel sampler. The sampler will be conveyed to the bottom of the borehole attached to a wire-line hammer device on the drill rig. When possible, the split-barrel sampler will be driven its entire length, either hydraulically or by repeatedly pounding a 140-pound hammer using a 30-inch drop. The number of drops (blows) used to drive the sampler will be recorded on the boring log. The sampler will be extracted from the borehole, and the tubes containing the soil samples will be removed. Upon removal, the ends of the lowermost tube will be sealed with Teflon sheets and plastic caps. Soil samples for chemical analysis will be labeled, placed on ice, and delivered to a state-certified analytical laboratory, along with the appropriate chain-of-custody documentation.

Geoprobe Sampling: The push-probe system is driven by a hydraulic hammer or vibrator. Each boring will be sampled at a minimum of 5-foot intervals. Shorter sampling intervals or continuous core sampling techniques may be employed to provide subsurface definition. As the core barrel is advanced, soil is driven into an inner 1¾-inch diameter core barrel, which is either lined with steel/brass or acetate sleeves. After being driven 5 feet, the rods are removed from the borehole. Upon removal, the ends of the lowermost sleeve will be sealed with Teflon sheets and plastic caps. Soil samples for chemical analysis will be labeled, placed on ice, and delivered to a state-certified analytical laboratory, along with the appropriate chain-of-custody documentation.

Soil Classification

As the samples are obtained in the field, they will be classified by the field geologist in accordance with the Unified Soil Classification System. Representative portions of the samples will be retained for further examination and for verification of the field classification. Logs of the borings indicating the depth and identification of the various strata and pertinent information regarding the method of maintaining and advancing the borehole will be prepared. Specifically, for each sampling interval, field estimates of soil type, density/consistency, plasticity, grading, moisture, color, and any other pertinent information will be recorded on the boring log.

Soil Sample Screening and Sampling

Soil samples selected for chemical analysis will be determined from a headspace analysis using a PID or an FID. The soil will be placed in a Ziploc® bag or equivalent, sealed, and allowed to reach ambient temperature, at which time the PID probe will be inserted into the Ziploc bag. The total volatile hydrocarbons present are detected in parts per million (ppm). The PID will be calibrated daily to an isobutylene standard. Additionally, a water trap will be fixed to the end of the PID sampling wand to minimize potential interference from entrained soil moisture.

Generally two soil samples from each soil boring will be submitted for chemical analysis unless otherwise specified in the scope of work (See applicable workplan or the client's specified scope of work). Soil samples selected for analysis typically represent the boring bottom sample or the sample just above the first-occurrence of groundwater and sample that exhibits the highest PID reading.

Important: Environmental Protection Agency 5035 sampling methodology will be followed for the collection of samples involving the analysis of volatile organic compounds.

HydroPunch® Sampling

A grab groundwater sample is collected using a Hydropunch® sampling device or equivalent. The hydropunch can be used with either a HSA drill or DPT rig. The hydropunch consists of a stainless steel probe, which is advanced in to the water-yielding zone then withdrawn to expose an internal screen. Once the probe is opened, groundwater enters while soil particles larger than silt are prevented from entering by a screen. A decontaminated stainless steel bailer or equivalent is inserted down the center of the well screen to obtain a "grab-type" groundwater sample for analysis. The samples are carefully transferred from the bailer to zero headspace, 40 milliliter glass vials fitted with Teflon-lined caps. The groundwater sample is labeled, placed on ice (i.e. chilled at approximately 4 degrees Celsius), and delivered to a state-certified analytical laboratory, along with the appropriate chain-of-custody documentation. The boring is backfilled with a cement/bentonite slurry and capped at the surface to match surface conditions.

Chain-of-Custody Protocol

Chain-of-Custody protocol is followed for all soil and groundwater samples selected for laboratory analysis. The Chain-of-Custody form(s) accompanies the samples to the laboratory and provides a continuous record of possession at all times.

Decontamination

Drill cuttings generated during the drilling procedure will be contained in labeled and marked, DOT-approved 55-gallon drums and placed in a secured onsite location. Drilling equipment is decontaminated by steam cleaning before being brought onsite. The augers are also steam cleaned before proceeding with each new boring/well. Before use, the sampler and sampling sleeves are brushed-scrubbed in a Liqui-nox and potable water solution and rinsed twice in clean potable water. Sampling equipment and sleeves are also decontaminated before each sample is collected to avoid cross-contamination between borings.

Waste Management

Soil cuttings, decontamination and/or development water will be contained in DOT-approved, 55-gallon drums. Each drum will be appropriately labeled, marked and temporarily stored in a

secured onsite location pending waste characterization. Upon receipt of analytical results, contained waste will be transported offsite to an appropriate disposal/recycling facility.

Exceptions

Additional tasks or non-standard practices/procedures, if any, that may be requested or required for a particular site will be documented in the field notes on the following pages.

December 2015 Version

APPENDIX J LABORATORY ANALYTICAL REPORT

December 21, 2016

Laura Skow ES Engineering 1036 West Taft Avenue Orange, CA 92865

Dear Ms. Skow:

Please find enclosed the analytical data report for the Site #0700 Project in Grandview, Washington. Soil and water samples were analyzed for Diesel and Oil by NWTPH-Dx/Dx Extended, Gasoline by NWTPH-Gx, VOC's by Method 8260, EDB by Method 8011, Naphthalene's by Method 8270, and Total & Dissolved Pb by Method 6020 on December 2 - 9, 2016.

The results of the analyses are summarized in the attached tables. All soil values are reported on a dry weight basis. Applicable detection limits and QA/QC data are included. An invoice for this analytical work is also enclosed.

ESN Northwest appreciates the opportunity to have provided analytical services to ES Engineering for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

Michael A. Korosec

michaela Korosec

President

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx Extended

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Diesel Range Organics (mg/kg)	Lube Oil Range Organics (mg/kg)
Method Blank	12/2/2016	12/2/2016	115	nd	nd
LCS	12/2/2016	12/2/2016	108	95%	***
CB-8-20	12/2/2016	12/2/2016	108	nd	nd
Reporting Limits				50	100

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 50% TO 150%

ES Engineering
PROJECT SITE NO. 0700
PROJECT #622
Grandview, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics & BTEX in Soil by Method NWTPH-Gx/8260

Sample	Date	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline Range Organics	Surrogate
Number	Prepared	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	12/5/2016	12/5/2016	nd	nd	nđ	nd	nd	109
LCS	12/5/2016	12/5/2016	110%	104%	110%	108%	83%	106
LCSD	12/5/2016	12/5/2016	107%	102%	107%	106%	-	105
CB-9-10	11/28/2016	12/5/2016	рđ	$\mathbf{n}\mathbf{d}$	$\mathbf{n}\mathbf{d}$	nd	nd	109
CB-9-20	11/28/2016	12/5/2016	nd	nd	nd	nd	nd	110
CB-4-15	11/28/2016	12/5/2016	nd	nd	nd	\mathbf{nd}	nd	111
CB-4-15 Duplicate	11/28/2016	12/5/2016	nd	$\mathbf{b}\mathbf{a}$	nd	nd	nd	113
CB-3-16	11/29/2016	12/5/2016	nd	nd	nd	nd	nd	112
CB-5-10	11/29/2016	12/5/2016	${\tt nd}$	nd	nd	nd	nd	113
CB-8-10	12/1/2016	12/5/2016	nd	пđ	${\tt nd}$	nd	nd	117
CB-8-18	12/1/2016	12/5/2016	nd	nđ	nd	nd	nd	115
CB-8-22	12/1/2016	12/5/2016	nd	${f nd}$	nd	nd	nđ	116
CB-10-12	12/1/2016	12/6/2016	\mathbf{nd}	nd	nd	nd	${f nd}$	117
CB-10-24	12/1/2016	12/6/2016	nd	nd	\mathbf{nd}	nd	nd	110
CB-6-10	11/30/2016	12/6/2016	nd	nd	nd .	nd	${f nd}$	114
CB-7-10	12/1/2016	12/6/2016	nd	nd	nd	рп	$\mathbf{n}\mathbf{d}$	114
CB-7-10 Duplicate	12/1/2016	12/6/2016	nd	nd	nd	nd	nd	115
Reporting Limits			0.02	0.05	0.05	0.15	10	

[&]quot;-" Indicates not tested for component.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Bromoflurorbenzene) & LCS: 65% TO 135%

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Soil by Method NWTPH-Gx

Sample	Date	Date	Surrogate	Gasoline Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)
Method Blank	12/6/2016	12/6/2016	112	nd
LCS	12/6/2016	12/6/2016	111	70%
CB-9-30	11/28/2016	12/6/2016	115	nd
CB-4-17	11/28/2016	12/6/2016	114	350
CB-4-22	11/28/2016	12/7/2016	112	170
CB-3-17	11/29/2016	12/9/2016	115	400
CB-3-28	11/29/2016	12/6/2016	110	nd
CB-3-28 Duplicate	11/29/2016	12/6/2016	112	nd
CB-1-10	11/29/2016	12/7/2016	117	nd
CB-1-26	11/29/2016	12/7/2016	112	nd
CB-2-10	11/29/2016	12/7/2016	117	nd
CB-2-28	11/29/2016	12/7/2016	117	nd
CB-5-20	11/29/2016	12/7/2016	115	nd
CB-5-28	11/29/2016	12/7/2016	113	nd
CB-8-27	12/1/2016	12/7/2016	112	nđ
CB-10-17	12/1/2016	12/9/2016	114	210
CB-10-27	12/1/2016	12/8/2016	114	nd
CB-6-20	11/30/2016	12/9/2016	112	nd
CB-6-27	11/30/2016	12/9/2016	113	nd
CB-7-20	12/1/2016	12/9/2016	117	nd
CB-7-28	12/1/2016	12/9/2016	113	nd
Conceting I imite				10

Reporting Limits	10

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 50% TO 150%

[&]quot;int" Indicates that interference prevents determination.

ES Engineering
PROJECT SITE NO. 0700
PROJECT #622
Grandview, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Water by Method NWTPH-Gx

Sample	Date	Surrogate	Gasoline Range Organics
Number	Analyzed	Recovery (%)	(ug/L)
Method Blank	12/5/2016	109	nd
LCS	12/5/2016	114	108%
MW-6	12/5/2016	112	nd
CB-10W	12/5/2016	114	nd
Reporting Limits			100

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 50% TO 150%

[&]quot;int" Indicates that interference prevents determination.

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-343: lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

0.05 0.05 0.05 0.02 0.05 0.05	12/06/16 12/06/16 nd nd nd	12/06/16 12/06/16	12/06/16 12/06/16	11/28/16 12/06/16 15%	11/28/16 12/06/16	11/28/16 12/07/16	11/29/16 12/06/16
0.05 0.05 0.02 0.05	nd nd	12/06/16	12/06/16				12/06/16
0.05 0.02 0.05	nd			15%	1 507		
0.05 0.02 0.05	nd				15%	17%	24%
0.05 0.02 0.05	nd			1	1	1	
0.02 0.05				nd	nd	nd	nd
0.05	na	6007	6907	nd	nd	nd	nd
		69%	68%	nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.25	nd			nd	nd	nd	nd
0.05	nd	77%	77%	nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
							nd
							nd
							nd
							nd
0.05	nd			nd	nd		nd
0.05	nd			nd	nd		nd
		102%	101%				nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0,05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.02	nd	110%	109%	nd	nd	nd	nd
0.02	nd	106%	109%	nd	nd	nd	nd
0.05	nd	108%	109%	nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.25	nd			nď	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd	104%	99%	nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
0.25	nd			nd	nd	nd	nd
0.05	nd			nd	nd	nd	nd
	nd			nd	nd	nd	nd
	nd	107%	102%	nd	nd	nd	nd
					nd	nd	nd
		106%	103%		nd	nd	nd
						nd	nd
		116%	99%				0.48
						0.53	0.69
							nd
							nd
							nd
							0,26
							nd
							nd
	0.05 0.05	0.05 nd 0.05 nd	0.05	0.05	0.05	0.05 nd nd nd nd 0.05 nd nd nd nd 0.05 nd nd nd nd 0.05 nd nd nd nd 0.05 nd nd nd nd 0.05 nd 102% 101% nd nd 0.05 nd nd nd nd nd 0.05 nd nd nd nd nd nd 0.05 nd nd	0.05 nd nd nd nd nd 0.05 nd nd nd nd nd nd 0.05 nd nd nd nd nd nd 0.25 nd nd nd nd nd nd 0.05 nd nd nd nd nd nd 0.05 nd 102% 101% nd nd nd 0.05 nd 102% 101% nd nd nd 0.05 nd 102% 101% nd nd

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-343: lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	MB	LCS	LCSD	CB-9-30	CB-4-17	CB-4-22	CB-3-17
Date extracted		12/06/16	12/06/16	12/06/16	11/28/16	11/28/16	11/28/16	11/29/16
Date analyzed	(mg/Kg)	12/06/16	12/06/16	12/06/16	12/06/16	12/06/16	12/07/16	12/06/16
% Moisture					15%	15%	17%	24%
n-Propylbenzene	0.05	nd			nd	0,99	0.55	0.68
2-Chlorotoluene	0.05	nd			nd	nd	nd	nd
4-Chlorotoluene	0.05	nd			nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.05	nd			nd	3,0	1.8	2.4
tert-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.05	nd			nd	9.1	4.0	5.0
sec-Butylbenzene	0.05	nd			nd	nd	nd	nd
1,3-Dichlorobenzene	0.05	nd			nd	nd	nd	nđ
1,4-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
Isopropyltoluene	0.05	nd			nd	0.57	0.32	0.41
1,2-Dichlorobenzene	0.05	nd			nd	nd	nd	nd
n-Butylbenzene	0.05	nd			nd	nd	nd	nđ
1,2-Dibromo-3-Chloropropane	0.05	nd			nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Hexachloro-1,3-butadiene	0.05	nd			nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.05	nd			nd	nd	nd	nd
Surrogate recoveries								
Dibromofluoromethane		105%	115%	105%	107%	107%	110%	107%
Toluene-d8		106%	101%	99%	109%	106%	107%	107%
4-Bromofluorobenzene		112%	100%	103%	115%	114%	112%	112%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-343: lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	CB-3-28	CB-1-10	CB-1-26	CB-2-10	CB-2-28	CB-5-20	CB-5-28
Date extracted		11/29/16	11/29/16	11/29/16	11/29/16	11/29/16	11/29/16	11/29/16
Date analyzed	(mg/Kg)	12/06/16	12/07/16	12/07/16	12/07/16	12/07/16	12/07/16	12/07/16
% Moisture		19%	13%	21%	17%	18%	22%	16%
Dichlorodifluoromethane	0.05	nd						
Chloromethane	0.05	nd	nd	nd	nd	nd nd	nd	nd
	0.03	nd						
Vinyl chloride	0.02	nd	nd	nd	nđ	nd	nd	nd
Bromomethane			nd nd		nd	nd	nd	nd
Chloroethane	0.05	nd	nd nd	nd	nd	na nđ	nd nd	na nd
Trichlorofluoromethane	0.05	nd		nd				
Acetone	0.25	nd	nd a	nd	nd d	nd d	nđ d	nd
1,1-Dichloroethene	0.05	nd	nd a	nd	nd	nd d	nd	nd
Methylene chloride	0.05	nd	nđ	nd	nd	nd	nd	nd
Methyl-t-butyl ether (MTBE)	0.05	nd						
trans-1,2-Dichloroethene	0.05	nd						
1,1-Dichloroethane	0.05	nd						
2-Butanone (MEK)	0.25	nd						
cis-1,2-Dichloroethene	0.05	nd						
2,2-Dichloropropane	0.05	nd						
Chloroform	0.05	nd						
Bromochloromethane	0.05	nd	nd	nđ	nd	nd	nd	nd
1,1,1-Trichloroethane	0.05	nd						
1,2-Dichloroethane (EDC)	0.05	nd						
1,1-Dichloropropene	0.05	nd						
Carbon tetrachloride	0.05	nd						
Benzene	0.02	nd						
Trichloroethene (TCE)	0.02	nd						
1,2-Dichloropropane	0.05	. nđ	nd	nd	nd	nd	nd	nd
Dibromomethane	0.05	nd	nđ	nd	nd	nd	nd	nd
Bromodichloromethane	0.05	nd						
I-Methyl-2-pentanone (MIBK)	0.25	nd	nd	nđ	nd	nd	nd	nd
sis-1,3-Dichloropropene	0.05	nd						
Coluene	0.05	nd	nd	nd	nđ	nd	nđ	nd
rans-1,3-Dichloropropene	0.05	nd						
1,2-Trichloroethane	0.05	nd						
-Hexanone	0.25	nd						
,3-Dichloropropane	0.05	nd						
Dibromochloromethane	0.05	nd						
'etrachloroethene (PCE)	0.03	nd						
, ,	0.02	nd						
,2-Dibromoethane (EDB)	0.05	nd						
Chlorobenzene	0.05	nd						
,1,1,2-Tetrachloroethane			nd	nd	nd	nd	nd	nd
thylbenzene	0.05	nd nd	nd	nd	nd	nd nd	nd	nd
ylenes	0.15	nd	nd nd	nd	nd	nd nd	nd	nd
tyrene	0.05	nd		nd nd	nd	nd nd	nd	nd
romoform	0.05	nd 4	nd d			na nd	nd nd	nd
1,2,2-Tetrachloroethane	0.05	nd	nd	nd	nd 			
opropylbenzene	0.05	nd	nd	nd	nd a	nd 	nd d	nd
2,3-Trichloropropane	0.05	nd						
romobenzene	0.05	nd						

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (3 (360) 459-343: lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	CB-3-28	CB-1-10	CB-1-26	CB-2-10	CB-2-28	CB-5-20	CB-5-28
Date extracted		11/29/16	11/29/16	11/29/16	11/29/16	11/29/16	11/29/16	11/29/16
Date analyzed	(mg/Kg)	12/06/16	12/07/16	12/07/16	12/07/16	12/07/16	12/07/16	12/07/16
% Moisture		19%	13%	21%	17%	18%	22%	16%
n-Propylbenzene	0.05	nd	nd	nd	nd ·	nd	nd	nd
2-Chlorotoluene	0.05	nd						
4-Chlorotoluene	0.03	nd						
1,3,5-Trimethylbenzene	0.05	nd						
tert-Butylbenzene	0.05	nd						
1,2,4-Trimethylbenzene	0.05	nd	0.074	nd	nd	nd	nd	nd
sec-Butylbenzene	0.05	nd						
1,3-Dichlorobenzene	0.05	nd						
1,4-Dichlorobenzene	0.05	nd						
Isopropyltoluene	0.05	nd						
1,2-Dichlorobenzene	0.05	nd						
n-Butylbenzene	0.05	nd	nd	nd	nd	nd	nđ	nd
1,2-Dibromo-3-Chloropropane	0.05	nd						
1,2,4-Trichlorobenzene	0.05	nd						
Hexachloro-1,3-butadiene	0.05	nd						
1,2,3-Trichlorobenzene	0.05	nd						
Surrogate recoveries								
Dibromofluoromethane		110%	112%	112%	110%	113%	108%	110%
Toluene-d8		109%	103%	105%	106%	107%	105%	108%
4-Bromofluorobenzene		110%	117%	112%	117%	117%	115%	113%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135%

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	CB-8-27	CB-10-17	CB-10-27	CB-6-20	CB-6-27	CB-7-20	CB-7-28	CB-8-20
Date extracted		12/01/16	12/01/16	12/01/16	11/30/16	11/30/16	12/01/16	12/01/16	12/01/16
Date analyzed	(mg/Kg)	12/07/16	12/07/16	12/08/16	12/09/16	12/09/16	12/09/16	12/09/16	12/09/16
% Moisture	·	23%	16%	16%	19%	21%	21%	18%	19%
militar da la la	0.05		. 1						
Dichlorodifluoromethane	0.05	nd	nd	nd	nd	nd d	nd	nd	nd t
Chloromethane	0.05	nd	nd	nd	nd 1	nd	nd	nd	nd
Vinyl chloride	0.02	nd 4	nd d	nd	nd	nd	nd	nd	nd
Bromomethane	0.05	nd d	nd	nd	nd d	nd	nd t	nd	nd
Chloroethane	0.05	nd							
Trichlorofluoromethane	0.05	nd	nd	nd d	nd	nd	nd	nd	nd
Acetone	0.25	nd							
1,1-Dichloroethene	0.05	nd							
Methylene chloride	0.05	nd							
Methyl-t-butyl ether (MTBE)	0.05	nd							
trans-1,2-Dichloroethene	0.05	nd							
1,1-Dichloroethane	0.05	nd							
2-Butanone (MEK)	0.25	nd							
cis-1,2-Dichloroethene	0.05	nd							
2,2-Dichloropropane	0.05	nd							
Chloroform	0.05	nd							
Bromochloromethane	0.05	nd							
1,1,1-Trichloroethane	0.05	nd							
1,2-Dichloroethane (EDC)	0.05	nd							
1,1-Dichloropropene	0.05	nd							
Carbon tetrachloride	0.05	nd							
Benzene	0.02	nd							
Trichloroethene (TCE)	0.02	nd							
1,2-Dichloropropane	0.05	nd							
Dibromomethane	0.05	nd							
Bromodichloromethane	0.05	nd							
4-Methyl-2-pentanone (MIBK)	0.25	nd							
cis-1,3-Dichloropropene	0.05	nd	nđ						
Toluene	0.05	nd							
trans-1,3-Dichloropropene	0.05	nd							
1,1,2-Trichloroethane	0.05	nd							
2-Hexanone	0.25	nd							
1,3-Dichloropropane	0.05	nd							
Dibromochloromethane	0.05	nd							
Tetrachloroethene (PCE)	0.02	nd	nd	nd	nd	nd	nd	nđ	nđ
1,2-Dibromoethane (EDB)	0.05	nd							
Chlorobenzene	0.05	nd							
1,1,1,2-Tetrachloroethane	0.05	nd							
Ethylbenzene	0.05	nd							
Kylenes	0.15	nd							
Styrene	0.05	nd							
Bromoform	0.05	nd							
,1,2,2-Tetrachloroethane	0.05	nd							
sopropylbenzene	0.05	nd							
,2,3-Trichloropropane	0.05	nd							
Bromobenzene	0.05	nd							

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (3 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

-	RL	CB-8-27	CB-10-17	CB-10-27	CB-6-20	CB-6-27	CB-7-20	CB-7-28	CB-8-20
Date extracted		12/01/16	12/01/16	12/01/16	11/30/16	11/30/16	12/01/16	12/01/16	12/01/16
Date analyzed	(mg/Kg)	12/07/16	12/07/16	12/08/16	12/09/16	12/09/16	12/09/16	12/09/16	12/09/16
% Moisture		23%	16%	16%	19%	21%	21%	18%	19%
n-Propylbenzene	0.05	nd							
2-Chlorotoluene	0.05	nd							
4-Chlorotoluene	0.05	nd							
1,3,5-Trimethylbenzene	0.05	nd	0.30	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.05	nd	nđ	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.05	nd	0.57	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.05	nd	nd	nd	nd	nd	nđ	nd	0.062
1,3-Dichlorobenzene	0.05	nd							
1,4-Dichlorobenzene	0.05	nđ	nd	nd	nd	. nd	nd	nd	nd
Isopropyltoluene	0.05	nd	0.78	nd	nđ	nd	nd	nd	nd
1,2-Dichlorobenzene	0.05	nd							
n-Butylbenzene	0.05	nd							
1,2-Dibromo-3-Chloropropane	0.05	nd							
1,2,4-Trichlorobenzene	0.05	nđ	nd						
Hexachloro-1,3-butadiene	0.05	nd							
1,2,3-Trichlorobenzene	0.05	nd							
Surrogate recoveries									
Dibromofluoromethane		108%	108%	108%	113%	107%	109%	104%	104%
Toluene-d8		108%	112%	107%	108%	105%	105%	108%	106%
4-Bromofluorobenzene		112%	109%	114%	112%	113%	117%	113%	110%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 35%

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest
1210 Eastside Street SE Suite 200
Olympia, WA 98501
(360) 459-4670 (360) 459-3432 Fax
lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results	RL	MB	LCS	LCSD	MW-6	CB-10W
Date analyzed	(ug/L)	12/05/16	12/05/16	12/05/16	12/05/16	12/05/16
D111 110 11						
Dichlorodifluoromethane	1.0	nd			nd 1	nd
Chloromethane	1.0	nd	0007	000/	nd	nd
Vinyl chloride	0.2	nd	80%	83%	nd	nd
Bromomethane	1.0	nd			nd	nd
Chloroethane	1.0	nd			nd	nd
Trichlorofluoromethane	1.0	nd			nd	nd
Acetone	10.0	nd			nd	nd
1,1-Dichloroethene	1.0	nd	88%	94%	nd	nd
Methylene chloride	1.0	nd			nd	nd
Methyl-t-butyl ether (MTBE)	1.0	nd			nd	1.1
trans-1,2-Dichloroethene	1.0	nd			nd	nd
1,1-Dichloroethane	1.0	nd			nd	nd
2-Butanone (MEK)	10.0	nd			nd	nd
cis-1,2-Dichloroethene	1.0	nd			nd	nd
2,2-Dichloropropane	1.0	nd			nd	nd
Chloroform	1.0	nd	97%	101%	nd	nd
Bromochloromethane	1.0	nd			nd	nd
1,1,1-Trichloroethane	1.0	nd			nd	nd
1,2-Dichloroethane (EDC)	1.0	nd			nd	nd
1,1-Dichloropropene	1.0	nd			nd	nd
Carbon tetrachloride	1.0	nd			nd	nd
Benzene	1.0	nd	99%	101%	nd	nd
Trichloroethene (TCE)	1.0	nd	101%	104%	nd	nd
1,2-Dichloropropane	1.0	nđ	95%	104%	nd	nd
Dibromomethane	1.0	nd			nd	nd
Bromodichloromethane	1.0	nd			nd	nd
I-Methyl-2-pentanone (MTBK)	1.0	nd			nd	nd
is-1,3-Dichloropropene	1.0	nd			nd	nd
Coluene	1.0	nd	90%	94%	nd	nd
rans-1,3-Dichloropropene	1.0	nd			nd	nd
,1,2-Trichloroethane	1.0	nd			nd	nd
-Hexanone	1.0	nd			nd	nd
,3-Dichloropropane	1.0	nd			nd	nd
ibromochloromethane	1.0	nd			nd	nd
etrachloroethene (PCE)	1.0	nd	96%	100%	nd	nd
2-Dibromoethane (EDB)	1.0	nd			nd	nd
hlorobenzene	1.0	nd	95%	99%	nd	nd
1,1,2-Tetrachloroethane	1,0	nd			nd	nd
thylbenzene	1.0	nd	98%	100%	nđ	nd
ylenes	3.0	nd	97%	102%	nd	nd
yrene	1.0	nd			nd	nď
romoform	1.0	nd			nd	nd
1,2,2-Tetrachloroethane	1.0	nd			nd	nd
propylbenzene	1.0	nd			nd	nd
2,3-Trichloropropane	1.0	nd			nd	nd
omobenzene	1.0	nd			nd	nd

ES Engineering
PROJECT SITE NO. 0700
PROJECT #622
Grandview, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results

Allarytical Results	- Takabagana ya wa ja Madanagasa	annuage behaviour or a behaviour or a behaviour				
	RL	MB	LCS	LCSD	MW-6	CB-10W
Date analyzed	(ug/L)	12/05/16	12/05/16	12/05/16	12/05/16	12/05/16
- Decreet Laurence	1.0				1	1
n-Propylbenzene	1.0	nđ			nd	nd
2-Chlorotoluene	1.0	nd			nd	nd
4-Chlorotoluene	1.0	nd			nd	nd
1,3,5-Trimethylbenzene	1.0	nd			nd	nd
tert-Butylbenzene	1.0	nd			nd	nd
1,2,4-Trimethylbenzene	1.0	nd			nd	nđ
sec-Butylbenzene	1.0	nd			nd	nđ
1,3-Dichlorobenzene	1.0	nd			nd	nd
1,4-Dichlorobenzene	1.0	nd			nd	nd
Isopropyltoluene	1.0	nd			nd	nd
1,2-Dichlorobenzene	1.0	nd			nd	nd
n-Butylbenzene	1.0	nd			nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd			nd	nd
1,2,4-Trichlorobenzene	1.0	nd			nd	nd
Hexachloro-1,3-butadiene	1.0	nd			nd	nd
1,2,3-Trichlorobenzene	1.0	nđ			nd	nd
Commence and according						
Surrogate recoveries Dibromofluoromethane		112%	103%	104%	108%	1000/
						108%
Toluene-d8		107%	98%	98%	107%	107%
4-Bromofluorobenzene	Commission and Section 1	109%	105%	107%	112%	114%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits
Acceptable Recovery limits: 65% TO 135%

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Total Lead in Soil by Method 6020A/3050B

Sample	Date	Date	Lead (Pb)
Number	Prepared	Analyzed	(mg/kg)
Method Blank	12/6/2016	5 12/8/2016	nd
CB-9-10	12/6/2016	12/8/2016	13
CB-9-10 Duplicate	12/6/2016	12/8/2016	15
CB-9-20	12/6/2016	12/13/2016	nd
CB-9-30	12/6/2016	12/13/2016	8.5
CB-4-15	12/6/2016	12/8/2016	13
CB-4-17	12/6/2016	12/8/2016	7.1
CB-4-22	12/6/2016	12/8/2016	7.5
CB-3-16	12/6/2016	12/8/2016	12
CB-3-17	12/6/2016	12/8/2016	8.3
CB-3-28	12/6/2016	12/8/2016	8.6
CB-1-10	12/6/2016	12/8/2016	7.1
CB-1-26	12/6/2016	12/8/2016	11
CB-2-10	12/6/2016	12/8/2016	11
CB-2-28	12/6/2016	12/8/2016	9.4
CB-5-10	12/6/2016	12/8/2016	9.1
CB-5-20	12/6/2016	12/8/2016	9.1
CB-5-28	12/6/2016	12/8/2016	9.0
CB-5-28 Duplicate	12/6/2016	12/8/2016	8.5
CB-8-10 ·	12/6/2016	12/8/2016	nd
CB-8-18	12/6/2016	12/8/2016	nd
CB-8-22	12/6/2016	12/8/2016	nd
CB-8-27	12/6/2016	12/8/2016	nd
CB-10-12	12/6/2016	12/8/2016	nd
CB-10-17	12/6/2016	12/8/2016	nd
CB-10-24	12/6/2016	12/8/2016	nd
CB-10-27	12/6/2016	12/8/2016	nd
CB-6-10	12/6/2016	12/8/2016	nd
CB-6-10 Duplicate	12/6/2016	12/8/2016	nd
CB-6-20	12/6/2016	12/8/2016	nd
CB-6-27	12/6/2016	12/8/2016	nd
CB-7-10	12/6/2016	12/8/2016	nđ
CB-7-20	12/6/2016	12/8/2016	nd
CB-7-28	12/6/2016	12/8/2016	6.7
CB-8-20	12/6/2016	12/8/2016	6.7
CB-8-20 Duplicate	12/6/2016	12/8/2016	6.6
Reporting Limit			5.0

"nd" Indicates not detected at listed detection limits.

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

QA/QC Data - Analysis of Total Metals in Soil by Method 6020A/3050B

Sample Number	r: CB-9-10						
		Matrix Spik	te	Mat	rix Spike Dı	plicate	RPD
	Spiked Conc, (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	(%)
Lead (Pb)	67.8	58.1	85.7	83.3	74.4	89,3	4.14
Sample Number:	: CB-8-20						
		Matrix Spike)	Matrix Spike Duplicate			RPD
	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	(%)
Lead (Pb)	97.6	84.9	87.0	79.4	69.1	87.0	0.05

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125%

	Laboratory Control Sample							
	Spiked Conc, (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)					
Lead (Pb)	100	106	106					

ACCEPTABLE RECOVERY LIMITS FOR LABORATORY CONTROL SAMPLES: 80%-120% ACCEPTABLE RPD IS 20%

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Total Lead in Water by EPA-6020 Method

Sample	Date	Lead (Pb)
Number	Analyzed	(ug/L)
Method Blank	12/5/2016	nd
MW-6	12/5/2016	nd
CB-10W	12/5/2016	nd

Reporting Limits 2.0

"nd" Indicates not detected at listed detection limits.

QA/QC Data - Total Metals EPA-6020

	Labo	ratory Control	Sample	Laboratory	Laboratory Control Sample Duplicate			
	Spiked	Measured	Spike	Spiked	Measured	Spike		
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery		
	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)	
Lead	20.0	19.3	96.5	20	23,8	119	20.9	

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 80%-120% ACCEPTABLE RPD IS 35%

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest
1210 Eastside Street SE Suite 200
Olympia, WA 98501
(360) 459-4670 (360) 459-3432 Fax
lab@esnnw.com

Dissolved Lead in Water by EPA-6020 Method

Sample	Date	Lead (Pb)
Number	Analyzed	(ug/L)
Method Blank	12/5/2016	nd
MW-6	12/5/2016	nd
CB-10W	12/5/2016	nd
Reporting Limits		2.0

[&]quot;nd" Indicates not detected at listed detection limits.

QA/QC Data - Dissolved Metals EPA-6020

	Labo	ratory Control	Sample	Laboratory	Control Sample	Duplicate	RPD
	Spiked	Measured	Spike	Spiked	Measured	Spike	
	Conc.	Conc.	Recovery	Conc.	Conc.	Recovery	
	(ug/L)	(ug/L)	(%)	(ug/L)	(ug/L)	(%)	(%)
Lead	20	19.3	96.5	20	23,8	119	20.9

ACCEPTABLE RECOVERY LIMITS FOR LABORATORY CONTROL SAMPLES: 80%-120% ACCEPTABLE RPD IS 20%

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest
1210 Eastside Street SE Suite 200
Olympia, WA 98501
(360) 459-4670 (360) 459-3432 Fax
lab@esnnw.com

Analysis of Naphthalenes in Soil by Method 8270

Analytical Results

		MTH BLK	LCS	CB-9-30	CB-4-17	CB-4-22	CB-3-17	CB-3-28
Date extracted	Reporting	12/06/16	12/06/16	12/06/16	12/06/16	12/06/16	12/06/16	12/06/16
Date analyzed	Limits	12/06/16	12/06/16	12/07/16	12/07/16	12/07/16	12/06/16	12/07/16
Moisture, %	(mg/kg)			15%	25%	17%	24%	19%
Naphthalene	0.02	nd	113%	nd	nd	nd	0.08	0.08
2-Methylnaphthalene	0.02	nd	114%	nd	nd	nd	0.06	0.07
1-Methylnaphthalene	0.02	nd	ns	nd	nd	nd	0.04	nd
Surrogate recoveries:								
2-Fluorobiphenyl		92%	113%	95%	99%	97%	57%	83%
p-Terphenyl-d14		97%	120%	105%	111%	108%	60%	90%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

ns - not spiked

Results reported on dry-weight basis

Acceptable Recovery limits: 50% TO 150%

^{* -} Carcinogenic Analyte

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Naphthalenes in Soil by Method 8270

Analytical Results

		CB-1-10	CB-1-26	CB-2-10	CB-2-28	CB-5-20	CB-5-28	CB-8-27
Date extracted	Reporting	12/06/16	12/06/16	12/06/16	12/06/16	12/06/16	12/06/16	12/06/16
Date analyzed	Limits	12/06/16	12/06/16	12/06/16	12/06/16	12/07/16	12/07/16	12/07/16
Moisture, %	(mg/kg)	13%	21%	17%	18%	22%	16%	23%
Naphthalene	0.02	nd						
2-Methylnaphthalene	0.02	nd						
1-Methylnaphthalene	0.02	nd						
Surrogate recoveries:								
2-Fluorobiphenyl		110%	80%	59%	69%	101%	94%	114%
p-Terphenyl-d14		122%	89%	62%	71%	110%	102%	119%

Data Qualifiers and Analytical Comments

* - Carcinogenic Analyte

nd - not detected at listed reporting limits

ns - not spiked

Results reported on dry-weight basis

Acceptable Recovery limits: 50% TO 150%

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Naphthalenes in Soil by Method 8270

Analytical Results

		CB-10-17	CB-10-27	CB-6-20	CB-6-27	CB-7-20	CB-7-28	CB-8-20
Date extracted	Reporting	12/06/16	12/06/16	12/06/16	12/06/16	12/06/16	12/06/16	12/06/16
Date analyzed	Limits	12/07/16	12/07/16	12/07/16	12/07/16	12/07/16	12/07/16	12/07/16
Moisture, %	(mg/kg)	22%	16%	19%	21%	21%	18%	19%
						-		
Naphthalene	0.02	nd	nd	nd	nd	nd	0.28	nd
2-Methylnaphthalene	0.02	nd	nd	nd	nd	nd	0.04	nd
1-Methylnaphthalene	0.02	nd	nd	nd	nd	nd	0.18	nd
Surrogate recoveries:								
2-Fluorobiphenyl		96%	99%	110%	103%	61%	57%	114%
p-Terphenyl-d14		101%	92%	117%	112%	70%	61%	119%

Data Qualifiers and Analytical Comments

* - Carcinogenic Analyte

nd - not detected at listed reporting limits

ns - not spiked

Results reported on dry-weight basis

Acceptable Recovery limits: 50% TO 150%

ES Engineering PROJECT SITE NO. 0700 PROJECT #622 Grandview, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Polynuclear Aromatic Hydrocarbons in Water by Method 8270

Analytical Results

7 mary treat resource	D	MD	T CIC	MANU C	CD 10X
	Reporting	<u>MB</u>	LCS	MW-6	CB-10W
Date extracted	Limits	12/06/16	12/06/16	12/06/16	12/06/16
Date analyzed	(ug/L)	12/06/16	12/06/16	12/06/16	12/06/16
Naphthalene	0.1	nd	61%	nd	nd
2-Methylnaphthalene	0.1	nd	61%	nd	nd
1-Methylnaphthalene	0.1	nd	ns	nd	nd
					
Surrogate recoveries:					
2-Fluorobiphenyl		90%	61%	87%	70%
p-Terphenyl-d14		96%	62%	89%	73%

Data Qualifiers and Analytical Comments

* - Carcinogenic Analyte

nd - not detected at listed reporting limits

ns - not spiked

Acceptable Recovery limits: 50% TO 150%

ES Engineering Services PROJECT SITE NO 290 PROJECT #PROJ100200 Burlington, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of EDB in Soil by Method 8260SIM

Sample	Date	Date	Surrogate	Ethylene Dibromide
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)
Method Blank	12/6/2016	12/6/2016	112	nd
LCS	12/6/2016	12/6/2016	100	109%
CB-9-30	11/28/2016	12/6/2016	115	nd
CB-4-17	11/28/2016	12/6/2016	114	nd
CB-4-22	11/28/2016	12/7/2016	112	nd
CB-3-17	11/29/2016	12/9/2016	115	nd
CB-3-28	11/29/2016	12/6/2016	110	nd
CB-3-28 Duplicate	11/29/2016	12/6/2016	112	nd
CB-1-10	11/29/2016	12/7/2016	117	nd
CB-1-26	11/29/2016	12/7/2016	112	nđ
CB-2-10	11/29/2016	12/7/2016	117	nd
CB-2-28	11/29/2016	12/7/2016	117	nd
CB-5-20	11/29/2016	12/7/2016	115	nd
CB-5-28	11/29/2016	12/7/2016	113	nd
CB-8-27	12/1/2016	12/7/2016	112	nd
CB-10-17	12/1/2016	12/9/2016	114	nd
CB-10-27	12/1/2016	12/8/2016	114	nd
CB-6-20	11/30/2016	12/9/2016	112	nd
CB-6-27	11/30/2016	12/9/2016	113	nd
CB-7-20	12/1/2016	12/9/2016	117	nd
CB-7-28	12/1/2016	12/9/2016	113	nd
CB-8-20	12/1/2016	12/9/2016	110	nd
Reporting Limits				0.005

[&]quot;nd" Indicates not detected at the listed detection limits.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE: 50% TO 150%

[&]quot;int" Indicates that interference prevents determination.

14204 21st Street Bellevue ,WA 98007

Tel: (425) 214-5858 Cell: (206)779-3758 Email: lisa@accu-lab.com Website: www.accu-lab.com

Analytical Report		
ESN NW, Inc	Acculab WO#	16-AL1206-6
1210 Eastside Street SE, Suite #200		
Olympia, WA 98501	Date Sampled	11/30, 12/1/2016

Project Manager Steve Loague
Project Name SITE NO 0700
Project# 622

Date Received 12/6/2016

Date Reported 12/8/2016

1,2-Dibromoethane (EDB) in Water by EPA 8011

Accu Lab Analytical Batch# AL120716-1

Client sample ID					Dup	RPD	MW-6	CB-10W	
Lab ID	MRL	Unit	MTH BLK	LCS	LCS	LCS	16-AL1206-6-1	16-AL1206-6-2	
Matrix									
Date Extracted									
Date Analyzed	lander i der Seiter Angrahas aggrangen Angrahas aggrangen		12/7/2016	12/7/2016	12/7/2016	12/7/2016	12/7/2016	12/7/2016	
1,2-Dibromoethane (EDB)	0.01	ug/L	nd	129%	104%	22%	nd	nd	

Acceptable Recovery Limits:

LCS/MS/MSD 60-140%

Acceptable RPD limit:

Client

30%

14204 21st Street Bellevue ,WA 98007

Tel: (425) 214-5858 Cell: (206)779-3758 Emall: lisa@accu-lab.com Website: www.accu-lab.com

Analytical Report

Client	ESN NW, Inc	Acculab WO#	16-AL1206-6
	1210 Eastside Street SE, Sulte #200		
*	Olympia, WA 98501	Date Sampled	11/30, 12/1/2016
Project Manager	Steve Loague	Date Received	12/6/2016
Project Name	SITE NO 0700	Date Reported	12/8/2016
Project//	622		

Data Qualifiers and Comments:

MRL- Method Reporting Limit

- nd- Indicates the analyte is not detected at the listing reporting limit.
- C- Coelution with other compounds.
- M- % recovery of surrogate, matrix spike or matrix spike duplicate is out of the acceptable limit due to matrix effect.
- B- Indicates the analyte is detected in the method blank associated with the sample.
- J- The analyte is detected at below the reporting limit.
- E- The result reported exceeds the calibration range, and is an estimate.
- D- Sample required dilution due to matrix. Method Reporting Limits were elevated due to dilutions.
- H- Sample was received or analyzed past holding time
- Q- Sample was received with head space, improper preserved or above recommended temperature.

ESN	Environmental
NORTHWEST, INC.	Services Network

CHAIN-OF-CUSTODY RECORD

CLIENT: <u>ES</u>	Eng	neev	ing	Services	<u> </u>								. [DATE:		12/	1/1	خ			1	PAG	iE	_2	(OF _	2		
ADDRESS:												·	. 1	PROJE	CT N	JAN	1E: _	\$í	ĪÉ	N	<u>) .</u>	0	100			<i></i>			_
PHONE:				FAX:									_ 1	LOCAT	ION	l:						DP	gref (art	UZ					_
CLIENT PROJECT #	: _6	22_		PROJECT	r man	4GE	R: _						_ (COLLE	сто	R: _	Ni	K	_(W E	Service Control		Bek	DATE COLL	E OF ECTION	J:		_
			Sample	Container	AND SE	2 36 2 36 2 36	(1) (2) (3) (3) (4) (5) (5)	it 10	360	20/0	rivo or	10/10/10	3887		AS A		/ /	M	//	//	Ι,	b	10) 30) 30)	il				Total Number of Containers	te Number
Sample Number			Type	Type VOA/JAR	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u>/ 5%</u>	7 97	- \\	<u> </u>	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	<u>/ ?`</u>	7	<u>(6)</u>	7	<u>~</u>	11/	_ <u>~```</u>	<u> </u>	· ·	OTES	101			<u>۽ ۾ ۽</u>	3 ž
1. 68-8-10	10		SOIL	W KIAK	 		4		\dashv		\dashv	\dashv	\dashv		*		-	_	-	+	\dashv	+		1200	16				\dashv
2. (3-8-18	18	920 948	130/ -	<u> </u>		L*	4		\dashv			-+	\dashv		<u> </u>		\dashv	-	+	\dashv	\dashv				+			\vdash	-
3. (B-8-22	22	740		 		 	8	_	+		_	-+			-+		+	+	+	\dashv	\dashv	,			-			\vdash	
4. CB-8-27		4304		 	}	*			4	10		-+			纠		\dashv	\dashv	+				1/2		-			\vdash	\dashv
5. CB-10-12		1020		-/-	├ ├		0		X	-	-	-+	-		3	_	_		-			X			4	· · · · ·		\vdash	
6. CB-10-17	17	1045		 	┤ ┤	X	7		1		\dashv	_			4	_	_	-	\dashv	- 0	4	ᄼᆛ		· · · · · · · · · · · · · · · · · · ·	-			\vdash	-
7. 63-10-24		1055	- <i> </i>	 	 	女	4	_	_		\dashv				≪		\dashv	-	-	_	_	<u> </u>			╄┈			\sqcup	_
8. cB-10-27		1105	 	 	 	4	<u> </u>		#						4			_	-			<u>~ </u>				7			
9. CB-6-10	10	1430		 <i> </i>	 	or.	5		-,						么		_	_		_	\dashv			fil:	3011	(0		igspace	
10. (B-6-20	_	1515		 / 	 	13			刘				\dashv		4		\dashv	_	_	_	\angle	_						<u> </u>	
11. CB-6-27				1—	 	14		$\sqcup \downarrow$	2				\dashv		0		_		_	;	⊬	\propto			4	,		<u> </u>	
12. CB-7-10	10	745		 	 	10	0								\checkmark		\dashv		_			\dashv		121	111	6		<u> </u>	<u> </u>
13. CB-7-20		800			1-1-	×			8						4		\		_		£							<u> </u>	
14. CB-7-28	28			V		2	_		4						4							L							
15. CB-8-20	20	940		<u></u>			<u> </u>		X	<u> </u>					×				_		<u>L</u>	×			1			<u> </u>	
16.										<u> </u>																			
17							<u> </u>																						
18.																													
RELINGUISHED BY (Signa			TE/TIME		EH/ED BY		ture				E/TIM				S	SAMP	LE RE	CEIP	Τ				LABO	RATOR	ON YS	TES:			
1 11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	12	12/10	6 130	20 8	5#h	21	خر				2-16	>		AL NUME															
							_>	}		13				IN OF CU			LS Y/	N/N	4				-						
RELINQUISHED BY (Signa	ture)	DA	TE/TIME	REC	EIVED BY	(Sign	ature)		DAT	E/TIV	1E		LS INTACT			100'						1						
			-	•									NOT	EIVED GC	OD C	LOND	./COL	ע.					-		.1 	. 54.	D 40		. D.4
L													INOI	E3:									urn	Aroun	a time	: 24 H	K 48	MK 5	DAY

1210 Eastside Street SE, Suite 200 Olympia, Washington 98501 Phone: 360-459-4670 Fax: 360-459-3432 Website: www.esnnw.com E-Mail: info@esnnw.com

APPENDIX K

DEBOCKS TEXACO – SITE ASSESSMENT INFORMATION FEBRUARY 19, 1998

TABLE 1 - GROUNDWATER AND SOIL SAMPLE ANALYSES R.E. Powell Distributing, Inc. Grandview, Washington

ield Information			Aromatic Volat	ile Organics: B	TEX (SW-846	Method 8021 E	3) and TPH-G (8015M)							
Sample	Depth (feet)	Date	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Xylenes (µg/l)	ТРН-G (Total Gasoline Range Hydrocarbons) (µg/l)	Comments							
Geoprobe Ground	Water A	\naiyses													
GP-1-15W	15	20-Feb-98	<u>1,910</u>	<u>8,400</u>											
GP-2-15W	15	20-Feb-98	<u>5.26</u>	2.49	1.76	6.63	77.7								
GP-3-15W	15	20-Feb-98	<u>22.1</u>	1.57	16.6	22.3	594	2009-1100							
GP-4-15W	15	20-Feb-98	92.0	3.88	72.0	13.7									
GP-5-15W	15	20-Feb-98	7.94	4.87	2,930										
ТВ	-	20-Feb-98	ND<0.500	ND<0.500	ND<0.500	ND<1.00	ND<50.0								
Department of Ecolo	gy Mod	el Toxics Conti	ol Act : Method	A Compliance	Cleanup Leve	ls									
Ground Water Clear	nup Leve	els (µg/l)	5	30	40	20	1,000								
Sample Identification	Depth (feet)	Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	WTPH-G (Gasoline Range Hydrocarbons) (mg/kg)	Comments							
Geoprobe Soll Ana			ш	<u> </u>	<u> </u>		<u> </u>								
GP-1-15	15	20-Feb-98	<u>1.33</u>	1.03	8.66	40.2	1,280								
GP-2-15	15	20-Feb-98	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.100	ND<5.00								
GP-3-15	15	20-Feb-98	ND<.250	ND<.250	0.584	0.803	<u>154</u> -								
GP-4-15	15	20-Feb-98	ND<0.500	ND<0.500	0.973	1.13	299								
GP-5-15	15	20-Feb-98	ND<2.50	ND<2.50	14.3	54.2	<u>5,910</u>								
GP-5-20	20	20-Feb-98	ND<0.0500	ND<0.0500	ND<0.0500	ND<0.100	ND<5.00								
GP-5-20	20	20-reb-96	ואטאט,טטטט	ND-0.000	14040.000	ואטיס, וטט	ND<5.00	<u> </u>							
Sage Earth Science (SB3) 0395-S3	10	24-Oct-95	ND<0.1	ND<0.1	ND<0.3	ND<0.1	ND<20.0								
(SB3) 0395-S4	15	24-Oct-95	ND<0.1	ND<0.1	1.7	4.1	1800								
(SB4) 0395-S7	10	24-Oct-95	ND<0.1	ND<0.1	ND<0.3	ND<0.1	<u>255</u>								
(SB5) 0395-S10	10	24-Oct-95	ND<0.1	ND<0.1	ND<0.3	ND<0.1	117								
(SB6) 0395-S13	10	24-Oct-95	ND<0.1 ND<0.1	ND<0.1 ND<0.1	ND<0.3 ND<0.3	ND<0.1 ND<0.1	ND<20.0								
(SB7) 0395-S16	10	24-Oct-95	ND<20.0												
(SB7) 0395-S17	12	24-Oct-95		ND<0.1	ND<0.3	ND<0.1	426								
Department of Ecol				1		T	400	T							
Soil Cleanup Levels		 	0.5	20.0	40.0	20.0	100	L							
Notes:	, -	micrograms pe													
		= milligrams p	-												
			t laboratory rep	orting limits											
		t analyzed or re	-					•							
	Underl	<u>ined</u> values ex	ceed DOE Met	nod A Complia	nce Cleanup Lo	evels									