Kennedy/Jenks Consultants

32001 32nd Avenue South, Suite 100 Federal Way, Washington 98001 253-835-6400 FAX: 253-952-3435

Public Review Draft Remedial Investigation/ Feasibility Study (RI/FS) Report

Former Circle K Site

14 December 2017

Prepared for

Washington State
Department of Ecology

3190 160th Avenue SE Bellevue, Washington 98008

K/J Project No. 1696010.00

Remedial Investigation/Feasibility Study (RI/FS) Report

Report Version: Public Review Draft

Site Name: Former Circle K Site

Site Address: 2350 24th Avenue East

Seattle, WA 98112

Alternate Tax Parcel 6788201335

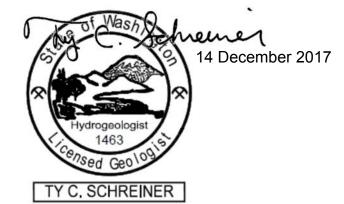
Location Info: Township 25N, Range 4E, Section 21

2322

Ecology Facility Site ID No.:

Consent Decree No.: 92-2-08095-8

Prepared By:
Ty Schreiner Prepared For:


Kennedy/Jenks Consultants Washington Department of

32001 32nd Avenue South, Suite Ecology

100 3190 160th Ave SE Federal Way, WA 98001 Bellevue, WA 98008

Signature:

Date:

Table of Contents

List of Tables			iii				
List of Figures.			iv				
List of Append	ices		v				
List of Acronyr	ns and A	bbreviations	vi				
Executive Sun	nmary		1				
Section 1:	Introduction						
	1.1 1.2 1.3	General Site Information Site History Site Use	1-2				
Section 2:	Site	Site History and Description2-1					
	2.1 2.2 2.3 2.4	GeoEngineers 1989-1990	2-3 2-3 2-3				
Section 3:	2016/2017 Remedial Investigation3-1						
	3.1 3.2 3.3	Data Gaps Summary	3-1 3-1 3-2 3-2 3-3 3-3 3-4				
Section 4:	Investigation Results4-1						
	4.1 4.2 4.3 4.4 4.5 4.6	Soil Results Groundwater Results Vapor Intrusion Assessment Quality Analyses In Situ Bioremediation Pilot Study Results Terrestrial Ecological Evaluation 4.6.1 TEE Exclusion	4-1 4-2 4-3 4-4 4-4				

	4.7	RI Conclusions	4-6			
Section 5:	Conceptual Site Exposure Model					
	5.1	Potential Sources	5-1			
	5.2	Fate and Transport	5-1			
	5.3	Exposure Pathways	5-2			
Section 6:	Cleanup Objectives, Proposed Cleanup Standards, and					
	Points of Compliance					
	6.1	Cleanup Objectives	6-1			
	6.2					
	6.3	Justification for Cleanup Levels				
	6.4	Points of Compliance	6-2			
Section 7:	Estimated Volumes of Impacted Media above Proposed					
	Clea	nup Levels	7-1			
	7.1	Soil	7-1			
	7.2	Groundwater	7-1			
Section 8:	Technology Screening and Alternative Development					
	8.1 Identification and Evaluation of Potential Remedial					
	Methods					
	8.2 Development of Alternatives					
		8.3 Alternative 1 - Excavation and Offsite Disposal				
	_	8.4 Alternative 2 – Soil Vapor Extraction				
		8.5 Alternative 3 - Soil Vapor Extraction with Air Sparging				
	8.6	Alternative 4 – In Situ Chemical Oxidation				
	8.7	Alternative 5 – In Situ Bioremediation	8-8			
Section 9:	Evaluation of Remedial Alternatives					
	9.1	MTCA Threshold Criteria	9-1			
	9.2	Detailed Analyses of Alternatives	9-1			
		9.2.1 Protectiveness	9-2			
		9.2.2 Permanence				
		9.2.3 Cost				
		9.2.4 Long-Term Effectiveness				
		9.2.5 Short-Term Risks				
		9.2.6 Ability to Implement				
		9.2.7 Consideration of Public Concerns				
		9.2.8 Restoration Timeframe	9-3			

			9.2.8.1	Alternative 1 – Excavation and Offsite Disposal	9-:	
			9.2.8.2	Alternative 2 – Soil Vapor Extraction	9-3	
			9.2.8.3	Alternative 3 – Soil Vapor Extraction with Air Sparging		
			9.2.8.4	Alternative 4 – In Situ Chemical Oxidation	9-4	
			9.2.8.5	Alternative 5 – In Situ Bioremediation	9-4	
		9.2.9		nce with Applicable or Relevant and Appropriate ments		
Section 10:	Comparative Analyses and Disproportionate Cost					
	Analysis					
	10.1	Comp	arative An	alyses	10-1	
		10.1.1 Protectiveness				
				nce		
		10.1.3 Cost				
			•	m Effectiveness		
				rm Risks		
			•	Implement		
	40.0			ation of Public Concerns		
	10.2	Dispro	portionate	e Cost Analyses	10-4	
Section 11:	Recommended Alternative					
References					1	

List of Tables

- 1 Soil Sample Analytical Results 1989 Monitoring Well Borings
- 2 Monitoring and Multi-Purpose Well Construction Details
- 3 Summary of 2016 Soil Sample Analytical Results
- 4 Summary of 2016 Reconnaissance Groundwater Analytical Results
- 5 Summary of 2016 Monitoring/Multi-Purpose Well Groundwater Sample Analytical Results
- 6 Summary of Natural Attenuation Parameter Results
- 7 Summary of Proposed Soil and Groundwater Cleanup Levels
- 8 General Response Actions, Remedial Technologies, and Process Options for Soil
- 9 General Response Actions, Remedial Technologies, and Process Options for Groundwater
- 10 Potential Remedial Process Options for Soil and Groundwater
- 11 MTCA's Threshold Criteria

- 12 Protectiveness of Human Health and the Environment
- 13 Permanent Reduction of Toxicity, Mobility, or Volume
- 14 Long-Term Effectiveness
- 15 Short-Term Risks
- 16 Ability to Implement
- 17 Potential Action-Specific Applicable, Relevant, and Appropriate Requirements (ARARs)
- 18 Disproportionate Cost Analysis
- 19 Excavation and Offsite Disposal (Estimated Cost), Feasibility Study
- 20 Soil Vapor Extraction (Estimated Cost), Feasibility Study
- 21 Soil Vapor Extraction and Air Sparging (Estimated Cost), Feasibility Study
- 22 In Situ Chemical Oxidation (Estimated Cost), Feasibility Study
- 23 In Situ Bioremediation (Estimated Cost), Feasibility Study

List of Figures

- 1 Site Location and Vicinity Map
- 2 Nearby Sites
- 3 Site Map and Utilities
- 4 Historical Site Features
- 5 Previous Investigations and Excavation Limits
- 6 2016 Soil Boring Soil Sample Results
- 7 Surface Representation of Interpretive Geologic Cross Sections A-A' and B-B'
- 8 Interpretive Geologic Cross Section A-A'
- 9 Interpretive Geologic Cross Section B-B'
- 10 Groundwater Potentiometric Surface 20 April 2016
- 11 Groundwater Potentiometric Surface 8 December 2016
- 12 Estimated Groundwater Gasoline-Range Organics Isoconcentrations December 2016
- 13 Estimated Groundwater Benzene Isoconcentrations December 2016
- 14 Conceptual Site Exposure Model
- 15 Alternative 1: Excavation and Offsite Disposal
- 16 Alternative 2: Soil Vapor Extraction and Alternative 3: Soil Vapor Extraction With Air Sparging
- 17 Alternative 4: In Situ Chemical Oxidation and Alternative 5: In Situ Bioremediation
- 18 Benefit/Cost Ratio
- 19 Benefit/Cost Ratio Relative to Most Permanent Alternative

List of Appendices

- A 1989 Underground Storage Tank Excavation Confirmation Sample Summary Tables
- B Boring and Well Construction Logs
- C Groundwater Purge and Sample Forms
- D Analytical Laboratory Reports and Chain-of-Custody Documentation
- E Data Validation Summaries
- F ETEC Field Notes

List of Acronyms and Abbreviations

ARAR Applicable or Relevant and Appropriate Requirement

ARI Analytical Resources, Incorporated

AS air sparging

bgs below ground surface

BTEX benzene, ethylbenzene, toluene, and xylenes

CAP Cleanup Action Plan

City City of Seattle

CLARC Cleanup Levels and Risk Calculation
COC contaminant/chemical of concern
CSID Cleanup Site Identification number
CSEM conceptual site exposure model

CUL cleanup level
cy cubic yard(s)
DO dissolved oxygen
DRO diesel-range organics

EA Engineering, Science, and Technology, Inc.

Ecology Washington State Department of Ecology
EDB 1,2-dibromoethane (ethylene dibromide)
EDC 1,2-dichloroethane (ethylene dichloride)

EFR enhanced fluid recovery

EPA U.S. Environmental Protection Agency
ETEC Environmental Technologies LLC

FS Feasibility Study

FSID Facility Site identification number

GAC granular activated carbon

GIS Geographic Information System

GRO gasoline-range organics

Holt Services, Inc.

IDW investigation-derived waste

in H₂O inches of water in Hg inches of mercury

ISCO *in situ* chemical oxidation Kennedy/Jenks Kennedy/Jenks Consultants

Landau Landau Associates lbs/hr pounds per hour

LNAPL light non-aqueous phase liquid

μg/L micrograms per liter mg/kg milligrams per kilogram

List of Acronyms and Abbreviations (cont'd)

MOHAI Museum of History and Industry

MTBE methyl-tertiary butyl ether MTCA Model Toxics Control Act

NPDES National Pollutant Discharge Elimination System

NWRO Northwest Regional Office (Ecology)

NWTPH-Gx Northwest Total Petroleum Hydrocarbon - Gasoline Range

O&M operation and maintenance
ORP oxidation-reduction potential
PID photoionization detector
psi pounds per square inch

PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation

ROW right-of-way

SHA Site Hazard Assessment
Site Former Circle K Site
SPU Seattle Public Utilities
SVE soil vapor extraction

TEA terminal electron acceptors
TEE Terrestrial Ecological Evaluation
TPH total petroleum hydrocarbon
UST underground storage tank

VI vapor intrusion

VOC volatile organic compound

WAC Washington State Administrative Code

Executive Summary

Kennedy/Jenks Consultants (Kennedy/Jenks) has prepared this Remedial Investigation/ Feasibility Study (RI/FS) Report for the Washington State Department of Ecology (Ecology) for the Former Circle K #1461 site located at 2350 24th Avenue East, Seattle, King County, Washington (Site) (see Figure 1). The purpose of the RI was to collect and evaluate data to characterize the current environmental conditions associated with past fuel releases at the Site and identify chemicals of concern (COCs) present at concentrations above Ecology's Model Toxics Control Act (MTCA) cleanup standards. The RI data was then used in the FS to evaluate potential COC exposure pathways, and support the evaluation and selection of a cleanup alternative(s) for the Site.

The Site is a former gasoline service station located in an area of primarily commercial and residential mixed-use development that the former service station operated from 1968 to 1990. Four gasoline underground storage tanks (USTs), one pump island, one waste oil UST, and one heating oil UST were located at the Site. Three other Ecology cleanup sites are located within two blocks of the Site and are identified on Figure 2.

In 1989, a leak was discovered in one of the four gasoline USTs. It was estimated that approximately 4,000 to 6,000 gallons of gasoline were released to the subsurface. Following the discovery of the release, all six USTs and the pump island were removed along with about 900 cubic yards (cy) of petroleum hydrocarbon-impacted soil. Follow-up investigative and remedial activities were conducted between 1989 and 2006 including groundwater monitoring, light non-aqueous phase liquid (LNAPL) recovery, groundwater extraction and treatment, soil vapor extraction (SVE), and enhanced fluid recovery (EFR). The Site was redeveloped in 1990 and 1991 and currently includes a single one-story building operated as a retail dry cleaning store (Jay's Cleaners) and a convenience store (Mont's Market).

In October 2009, Ecology prepared a draft RI/FS report based on the available investigative findings. Kennedy/Jenks was subsequently contracted by Ecology to conduct a review of the 2009 RI/FS report and other previous reports and documents pertaining to the Site. This review, including data gaps identified and proposed additional investigation work, was summarize in a 2016 technical memorandum. To address the data gaps identified in the technical mmemorandum, Kennedy/Jenks provided Ecology with a sampling and analysis work plan for additional RI activities.

Additional RI activities were performed in 2016 and 2017. These included (1) construction of three new groundwater monitoring wells (MW-17, MW-18, and MW-19) and nine new multipurpose wells (MW-20, MW-21, and RW-1 through RW-7); advancing 16 reconnaissance soil borings; collection and laboratory analyses of soil samples; and conducting additional rounds of groundwater monitoring.

A shallow perched groundwater zone is present beneath the Site and depths to groundwater were observed to range from 3 to 12 below ground surface (bgs) over the course of 2016 and 2017 field activities.

Gasoline-range organics (GRO) and benzene have been identified as the primary COCs at the Site. Concentrations of GRO and benzene in soil and groundwater appear to be highest in the

Kennedy/Jenks Consultants

western-central portion of the Site and appear to extend off-property to the north and east. The vertical extent of GRO/benzene concentrations in soil above MTCA Method A cleanup levels (CULs) appears to be generally limited to depths from about 8 to 20 feet bgs. No LNAPL was observed in the monitoring wells during the 2016/2017 RI activities. Potentially complete pathways for human exposure to contaminated soil, groundwater, and soil vapors are identified.

The FS evaluated the cleanup options for the Site, with the goal of identifying the most effective cleanup strategy that is protective of human health and the environment and meets the requirements of Ecology's MTCA regulations [Washington Administrative Code (WAC) 173-340].

After evaluating a range of options to address petroleum hydrocarbon-impacted soil and groundwater at the Site, the FS focused on five remedial alternatives:

- Alternative 1: Excavation of petroleum hydrocarbon-impacted soil and disposal at a permitted offsite facility.
- Alternative 2: SVE to mitigate the effects of vapor intrusion into the site buildings.
- Alternative 3: Air sparging combined with soil vapor extraction.
- Alternative 4: *In situ* chemical oxidation (ISCO) of hydrocarbon-impacted soil and groundwater.
- Alternative 5: *In situ* bioremediation of hydrocarbon-impacted soil and groundwater.

Natural attenuation and institutional controls, while not active remediation, are regarded as possible component components of each of the five remedial alternatives.

The preferred remedial action for the site includes a combination Alternative 5 (*In Situ* Bioremediation) to address impacted site saturated soil and groundwater and Alternative 2 (Soil Vapor Extraction) to support remediation of the vadose zone and to mitigate the vapor intrusion (VI) pathway into on-property buildings.

Section 1: Introduction

This Remedial Investigation/Feasibility Study (RI/FS) Report has been prepared for the Washington State Department of Ecology (Ecology) for the Former Circle K #1461 site located at 2350 24th Avenue East, Seattle, King County, Washington (Site) (see Figure 1). The purpose of the RI was to collect and evaluate data to characterize current environmental conditions related to past fuel releases at the Site and identify concentrations of chemicals of concern (COCs) above Ecology's Model Toxics Control Act (MTCA) cleanup standards. The RI data was then used to evaluate potential contaminant exposure pathways and support the evaluation of possible cleanup alternatives in the FS. Both the RI and the FS have been prepared pursuant to the requirements of Ecology's MTCA regulations established under Chapter 173-340 of the Washington Administrative Code (WAC).

This RI/FS was conducted by Kennedy/Jenks Consultants (Kennedy/Jenks) on behalf of Ecology's Northwest Regional Office (NWRO).

Ecology Site Manager:
Dale Myers, Ecology NWRO
3190 160th Avenue SE, Bellevue, Washington 98008
(425) 649-4426
damy461@ecy.wa.gov

Project Consultant: Ty Schreiner Kennedy/Jenks Consultants 32001 32nd Avenue South, Suite 100, Federal Way, Washington 98001 (253) 835-6400

1.1 General Site Information

The Site is located on the southeastern corner of the intersection of 24th Avenue East and East McGraw Street. The Site is a former Circle K gasoline service station. Two businesses currently operate at the Site, and include a general store (Mont's Market) and a dry cleaner (Jay's Cleaners).

The site has been assigned the following Cleanup Identifications by Ecology:

- Ecology Site Name: Former Circle K Site
- Facility Site Identification Number (FSID): 2322
- Cleanup Site Identification Number (CSID): 5089
- Order Number for Consent Decree: 92-2-08095-8, effective 8 April 1992.

The Site is located on Tax Parcel 6788201335 and is zoned for commercial use. According to the King County Department of Assessments, the tax parcel is currently owned by Mr. Kuk Jin Choung and Kathy-Kyung D. Choung. The legal description of the parcel is as follows:

PIKES 2ND ADD TO UNION CITY 1 & 2 LESS E 6 FT; PLAT BLOCK 29, PLAT LOT 1-2

Jay's Cleaners is operated by the Choung family. The Mont's Market space is owned by the Choung family but leased out and operated separately.

The Site is located in an approximately two-block long area of commercial and residential mixed-use development within the Montlake neighborhood of the City of Seattle (City) (a primarily residential neighborhood). Figure 2 is a map of the Site neighborhood and shows other nearby environmental cleanup sites. To the west of the Site, 24th Avenue East is a major north-south arterial that is on a King County Transit hybrid-electric bus route. Nearby properties include a public library to the northwest, several restaurants to the south, an antique store to the west, and residential properties to the north and east. An elementary school is located one block west from the Site. The Washington Park Arboretum, a 230-acre preserve, is located approximately 700 feet to the east of the Site.

The closest water bodies to the Site are Portage Bay, approximately 2,100 feet to the northwest; the Montlake Cut, approximately 2,500 feet to the north; and Duck Bay, approximately 1,500 feet to the northeast. Duck Bay is connected to Union Bay, and Union Bay and Portage Bay are connected via the manmade Montlake Cut.

The Site and the surrounding area to the east are relatively flat and slope gently to the east towards the Washington Park Arboretum and Duck Bay. The topography rises immediately west of the Site, across 24th Avenue East, where a small hill is present.

According to Site maps and Geographic Information System (GIS) information obtained from the City, several underground utility corridors are present near the Site, which are shown on Figure 3. Seattle Public Utilities (SPU) owns and operates 12-inch and 8-inch-diameter cast iron water distribution mains that run along the eastern side of 24th Avenue East and the northern side of East McGraw Street; King County owns and operates a 90-inch-diameter reinforced concrete sewer mainline that runs along the center of 24th Avenue East; and SPU owns and operates an 8-inch-diameter concrete sewer main that begins just to the north of the Site along the center of East McGraw Street. The King County sewer main flows to the north and the SPU sewer main flows to the east, both by gravity. The Site sanitary sewer is connected to the SPU main along East McGraw Street. According to GeoEngineers (1990a), the SPU sewer main is located approximately 12 feet below grade.

1.2 Site History

The Site was operated as a retail gasoline station from 1968 to mid-1990. Four gasoline underground storage tanks (USTs), one pump island, one waste oil UST, and one heating oil UST were located at the Site (see Figure 4). In 1989, a release from a leaking UST was discovered at the Site, and reported to Ecology. At the time of the release, it was estimated that approximately 4,000 to 6,000 gallons of gasoline were released.

Following discovery of the fuel release, six USTs and the gasoline pump island were removed. Approximately 900 cubic yards (cy) of petroleum hydrocarbon-impacted soil were excavated and disposed of off Site. The UST removal and impacted soil excavation activities were conducted in 1989. In October 1990, following the UST removals, property ownership was transferred to the current owner.

Additional remedial activities were conducted between 1989 and 2006 including groundwater monitoring and sampling, light non-aqueous phase liquid (LNAPL) recovery, groundwater extraction and treatment, soil vapor extraction (SVE), and enhanced fluid recovery (EFR). These activities are described in Section 2.

In February 1992, Mr. Choung entered into Consent Decree No. 92-2-08095-8 with Ecology to conduct additional investigation and remediation of petroleum contamination at the Site. Ecology's lien on the property for the sum of \$50,000 was released in January 2008 after Ecology received the full payment for past costs from mixed funding sources.

In 1994, Ecology conducted a Site Hazard Assessment (SHA) for the Site. The Site ranked a 3 out of 5, with 1 being the highest risk and 5 being the lowest risk (Ecology 1994).

A health investigation of the Site was reportedly conducted by the Washington State Department of Health in 1995, though the investigation report was not available for review in Ecology's files. The health department noted that while the Site posed a potential for adverse impact to public health, it was not of immediate concern due to the lack of any completed human exposure pathway (State of Washington Department of Health 1995).

1.3 Site Use

Two businesses currently operate at the Site including a dry cleaner (Jay's Cleaners) and a convenience store (Mont's Market). Jay's Cleaners is operated by the property owner and Mont's Market is operated independently under a lease agreement. The unbuilt portions of the Site are paved, and used as a parking area for the businesses.

Jay's Cleaners has a Resource Conservation and Recovery Act (RCRA) Site ID (WAD988515458) as a hazardous waste generator, but is listed as inactive as a hazardous waste generator since 31 December 1994. The Site is also listed in Ecology's Hazardous Waste program with Program ID CRK000003160. The start date for this interaction is listed as 1 January 1988 and the end date is listed in Ecology's database as 1 March 1989.

Section 2: Site History and Description

This section presents a summary of previous Site investigations and remedial activities.

2.1 **GeoEngineers 1989-1990**

The retail gasoline service station at the Site was in operation until mid-1990. Four gasoline USTs were located on the northern end of the Site and one pump island was located on the western portion of the Site (see Figure 4). One waste oil UST and one heating oil UST were also present at the Site but were reportedly not in operation in 1990 (GeoEngineers 1990a). One service building was also present on Site.

On 7 August 1989, a leak was detected in one of the gasoline USTs at the Site. Upon discovery of the release, the remaining product was removed from the leaking UST, and a release notification was made to Ecology (GeoEngineers 1990a). The capacity of the leaking UST was reportedly 4,000 gallons and it is unknown whether the tank stored leaded or unleaded gasoline. [Note: Leaded gasoline was not completely phased out in Washington until 1996]. Based on a review of tank inventory records by GeoEngineers, the release occurred between 22 June and 7 August 1989.

At approximately the same time the fuel release was discovered, fuel vapors were reportedly observed in a basement restroom of the Museum of History and Industry (MOHAI), located approximately 2,000 feet to the north of the Site (GeoEngineers 1990a) (see Figure 1). According to the Seattle Engineering Department, the source of the odors appeared to be the sanitary sewer (GeoEngineers 1990a). Fuel vapors were also observed at several locations between the Site and MOHAI, particularly along Lake Washington Boulevard, where construction was occurring at the time (GeoEngineers 1990a).

The area between MOHAI and the Site is primarily residential. The Site was believed to be the nearest upgradient source of vapors (GeoEngineers 1990a). The former leaking UST was located within 40 feet of the sewer line running east-west along East McGraw Street, and, according to (GeoEngineers 1990a), fill material around the sanitary sewer line could serve as a preferential pathway for vapor transport. No further information regarding a possible connection between the release at the Site and fuel vapors observed at the MOHAI was found in the project files.

In late 1989, 16 groundwater monitoring wells (MW-1 through MW-16) were constructed at the Site. During drilling, a petroleum-like odor was reportedly observed at several well locations (MW-2, MW-3, MW-4, MW-6, MW-10, MW-13, and MW-15) (GeoEngineers 1990a). Soil samples were collected from each of the monitoring well borings for analysis of gasoline- and diesel-range petroleum hydrocarbons [gasoline-range organics (GRO) and diesel-range organics (DRO)], benzene, ethylbenzene, toluene and xylenes (BTEX), and other gasoline-related compounds. Table 1 includes a summary of the results of the soil samples collected during the 1989 monitoring well installations. The highest detected concentration of GRO was in a soil sample collected from well boring MW-4 at 8.5 feet below ground surface (bgs) [1,200 milligrams per kilogram (mg/kg)].

All six USTs and the pump island were removed from the Site in October 1989. In addition to the USTs removals, approximately 900 cy of petroleum hydrocarbon-impacted soil were excavated and removed. The four gasoline USTs were removed from one excavation, and the used oil and heating oil USTs were each removed from separate excavations (GeoEngineers 1990a). Approximate limits of excavation are shown on Figure 5. Monitoring wells MW-2 and MW-3 were abandoned during excavation activities because they were located within the footprint of the main UST excavation. Following the excavation activities, the excavation was backfilled with pea gravel with a crushed gravel top course.

During excavation of the gasoline USTs, the sanitary and stormwater sewer lines located beneath the northern section of the property were exposed. These sewer lines connect to the main sewer main located beneath East McGraw Street. Due to previous detections of fuel vapors downgradient of the Site, the sewer lines were reportedly inspected for leakage of free product into the sewer system (GeoEngineers 1990a). During excavation of the utility lines, several previously unidentified abandoned sewer and drain lines were encountered at depths ranging from 3 to 6 feet bgs (GeoEngineers 1990a), above the grade of the bottom of the leaking UST. No evidence of free product transport to the sewer system was observed. Repairs were made to the sewer and drain lines to decrease the potential for vapors to migrate from the soil into the sewer system (GeoEngineers 1990a).

Following removal of the gasoline USTs, approximately 80 to 100 gallons of LNAPL were removed from the excavation. Petroleum hydrocarbon-impacted soil was removed from the UST excavation to a depth of approximately 14 to 16 feet bgs. Eight confirmation soil samples were collected from the sidewalls and base of the excavation. The locations of the confirmation samples are shown on Figure 5. The analytical results summary tables of the confirmation samples are provided in Appendix A. The results of the confirmation soil samples showed concentrations of gasoline- and/or diesel-range petroleum hydrocarbons and BTEX constituents that were above MTCA Method A cleanup levels (CULs) with the exception of the samples collected from the eastern sidewall. The concentrations of gasoline-range petroleum hydrocarbons identified in confirmation samples ranged from not detected (samples EW-1 and ET-3, eastern sidewall) to 1,700 mg/kg (sample NW-1 along the northern sidewall). The highest benzene concentration was also detected in sample NW-1.

The used oil and heating oil USTs reportedly contained residual product, which was removed prior to excavation (GeoEngineers 1990a). No perforations were observed in either tank; however, field screening of soil samples surrounding each tank indicated that some petroleum hydrocarbon-impacted soil was present. Approximately 10 cy of impacted soil were removed from the area surrounding the heating oil UST and approximately 80 cy of impacted soil were removed from the used oil UST excavation, primarily from the base and the eastern sidewall (GeoEngineers 1990a). Following excavation of petroleum hydrocarbon-impacted soil, confirmation soil samples were collected from each excavation sidewall and base and analyzed for total petroleum hydrocarbons. The concentration of petroleum hydrocarbons in all samples were below MTCA Method A CULs for diesel and oil in soil (see Appendix A).

The former pump island was reportedly removed from the Site in March 1990 (Ecology 2009); however, no information on confirmation sampling performed, if any, was available.

2.1.1 LNAPL Recovery and Remediation System

An LNAPL recovery system, groundwater treatment system, and SVE system were installed at the Site within the former gasoline tanks excavation area in late 1989. The remediation systems consisted of a 30-inch-diameter steel recovery well along the northern edge of the excavation, and a dual pumping system consisting of an LNAPL (free product) recovery pump and a water table depression pump (Ecology 2009). Three groundwater and LNAPL recovery trenches were also constructed within the excavation along the northern sidewall. These systems were installed under the supervision of GeoEngineers.

Approximately 538 gallons of LNAPL were recovered from December 1989 through September 1990 (GeoEngineers 1990b). In addition, measurable LNAPL was bailed from monitoring wells on a monthly basis. The groundwater treatment system was operated until May 2000, at which time Ecology made a decision to discontinue operation of the system and evaluate other cleanup alternatives (Glacier Environmental Services 2001).

An SVE system was installed in the excavation and consisted of horizontal slotted polyvinyl chloride (PVC) vapor extraction piping connected to a blower. Soil vapors were routed through a condensate trap, particulate filter, and a series of granular activated carbon (GAC) filters for treatment. Although the SVE system was installed at the same time the LNAPL recovery and groundwater treatment systems were installed, it was operated from the early 1990s until 1997, at which time it was shut down because no significant hydrocarbons were detected in the extracted soil vapor for 2 consecutive months (Ecology 2009).

2.2 Glacier Environmental Services 1992-1999

From 1992 through 1999, Glacier Environmental Services performed periodic groundwater monitoring and groundwater treatment system operation and maintenance (O&M) activities at the Site. Groundwater monitoring activities during this time period consisted of collection of groundwater samples and measurement of LNAPL in second quarter 1992 and second quarter 1999.

2.3 EcoVac Services 2005 Enhanced Fluid Recovery

In June 2005, an Enhanced Fluid Recovery (EFR®) mobile dual phase extraction technology pilot test was conducted by EcoVac Services, Inc. EFR® technology employs a combination of a specially designed truck-mounted vacuum and liquid handling system integrated with a mobile hydrocarbon vapor treatment system. High vacuum is applied to one or more monitoring or recovery wells with down-hole apparatuses to control the fluid elevation in each well. EFR® removes multiple phases of hydrocarbons (liquid, dissolved, adsorbed, and vapor phase) simultaneously by extracting free product, soil vapors, and groundwater from the selected monitoring and/or recovery wells. The purpose of the 8-hour EFR® pilot test was to evaluate this technology as a method for removal of LNAPL, impacted groundwater, and hydrocarbon vapors from monitoring wells MW-4, MW-8, MW-9, and MW-13, located near the former UST excavation area. The EFR® pilot test produced the following results:

Approximately 18 gallons of gasoline were removed during the test.

- Vapor-phase hydrocarbon removal rates ranged from 1.9 pounds per hour (lbs/hr) when extracting from monitoring well MW-13 located farthest from the former UST excavation area, to 38 lbs/hr when extracting from multiple monitoring wells simultaneously (i.e., MW-4, MW-8, and MW-9) located nearer to the former UST excavation area.
- Individual monitoring well vacuum readings ranged from 13 to 19 inches of mercury (in Hg).
- Vacuum influence generally ranged from no influence at distances greater than 22 feet from the extracting well to -0.07 inches of water (in H₂O) at a distance of 19 feet from the extracting well. One exception was the vacuum influence measured at monitoring well MW-7 (-0.06 in H₂O) at a distance of 48 feet (to the south, away from the former UST excavation area) from the well the used for extraction (i.e., MW-4).
- The groundwater drawdown measured in observation monitoring wells ranged from 0.08 foot to 2.75 feet when extracting from monitoring well MW-9 and generally correlated with distance from point of the applied vacuum. The groundwater drawdown measured in three observation wells when extracting from monitoring well MW-4 was approximately the same, regardless of distance.
- Pre-test LNAPL measurements ranged from a sheen in monitoring well MW-8 to 0.42 foot in monitoring well MW-4. LNAPL was not present in measurable thicknesses in measurements taken approximately 3 weeks following the pilot test. Measurements of LNAPL collected in the three subsequent quarters indicated that LNAPL was measurable on the groundwater but did not return to the pre-test thickness in monitoring well MW-4.

2.4 Groundwater Monitoring 2005-2006 (EA Engineering)

In 2005 and 2006, EA Engineering, Science, and Technology, Inc. (EA Engineering) conducted groundwater monitoring activities at the Site. The monitoring activities during this period consisted of collection of groundwater samples from selected monitoring wells and measurement for LNAPL approximately 1 week prior to the EFR pilot test described above and approximately 1 week after the pilot test. Three additional rounds of groundwater monitoring were conducted by EA Engineering in 2006. The results of the groundwater monitoring during this period indicate that GRO and benzene remained in the groundwater at concentrations above MTCA Method A CULs to the north of the former gasoline UST area. In addition, the LNAPL thickness in monitoring wells located in the former gasoline UST area slowly rebounded following the EFR pilot test but did not return to pre-test thicknesses in the monitoring well located adjacent to the former USTs (MW-4) where the greatest thickness had been observed prior to the test. Follow-up monitoring conducted in February 2008 indicated that LNAPL remained as film (i.e., no measurable thickness) in monitoring wells MW-4 and MW-13 and a hydrocarbon sheen was present in monitoring wells to the north (MW-8, MW-9, and MW-15) and that the extent of LNAPL-impacted groundwater was relatively stable.

Section 3: 2016/2017 Remedial Investigation

This section presents the scope and methods of the additional 2016/2017 RI activities as well as description of the Site geology and hydrogeology.

3.1 Data Gaps Summary

Kennedy/Jenks conducted a review of the 2009 RI/FS report and other previous reports and documents, including those described in Section 2, and summarized this information in a *Preliminary Summary of Data Gaps, Potential Exposure Pathways, and Proposed Initial Work Tasks Technical Memorandum* (Technical Memorandum) (Kennedy/Jenks 2016a), which was submitted to Ecology in February 2016. To address the data gaps identified in the Technical Memorandum, Kennedy/Jenks prepared the *Remedial Investigation Sampling and Analysis Work Plan, Former Circle K Site, 2350 24th Avenue East, Seattle, Washington* (RI Work Plan) (Kennedy/Jenks 2016b). This section presents a summary of identified data gaps and describes the activities conducted to address the data gaps and complete the RI.

3.1.1 Soil

Based on information provided in the Technical Memorandum, the lateral and vertical extent of petroleum hydrocarbon impacts to subsurface soil had not been adequately characterized by past investigative work to evaluate further cleanup action(s). The extent of impacts indicated by past sampling (e.g., primarily from the former UST excavation area but also from soil borings) had not been adequatelydelineated, and other areas of potential impacts to soil had not been previously investigated. Furthermore, the available analytical data was over 25 years old in some cases and new data reflecting current conditions were needed at some locations.

3.1.2 Groundwater

Based on information provided in the Technical Memorandum, the extent of petroleum hydrocarbon impacts to groundwater at the Site had not been fully characterized. Past findings indicate that impacted groundwater was present to the north (monitoring wells MW-4, MW-8, MW-9, and MW-15) and west (monitoring well MW-13) of the former gasoline UST area [primarily beneath the East McGraw Street right-of-way (ROW)], but current conditions and the overall extent of groundwater impacts were not adequately understood (e.g., groundwater sampling had not been conducted since 2006). In addition, the current extent and potential accumulation of LNAPL, previously identified to the north and west of the former gasoline UST area, were unknown. As with the soil data, available groundwater analytical data are over 10 years old in some cases and new data reflecting current Site conditions were needed.

3.1.3 Soil Vapor

Based on the information provided in previous Site reports, migration of vapors from gasoline-affected soil and groundwater is possible at the Site.

3.2 Site Characterization

In accordance with WAC 173-340-350, the RI was conducted to characterize the nature and extent of petroleum hydrocarbon-impacted soil and groundwater including identification of potential human and ecological exposure pathways and receptors.

The activities conducted during the RI are summarized below. The following work was conducted by and/or overseen by Kennedy/Jenks field personnel.

- Site reconnaissance and assessment of existing underground utilities.
- Visual inspection and measuring the depth to water in existing monitoring wells conducted in March 2016.
- Redevelopment of the existing monitoring well network, and collection and analyses of groundwater samples in April and December 2016.
- Soil and reconnaissance (one-time grab) groundwater sampling at 16 soil boring locations (KJB-1 through KJB-16) conducted in May 2016 (KJB-1 through KJB-13) and August 2016 (KJB-14, KJB-15, and KJB-16). The boring locations are shown on Figure 6. Each boring was advanced to a depth of 20 feet bgs with the exception of boring KJB-6, which was advanced to a depth of 25 feet bgs. Soil samples and reconnaissance groundwater samples were collected from each of the boring locations. The soil boring logs are included in Appendix B.
- Drilling and installation of three 2-inch-diameter groundwater monitoring wells (MW-17, MW-18, and MW-19) and two 4-inch-diameter multi-purpose wells (MW-20 and MW-21) in August and September 2016.
- Drilling and installation of seven 4-inch-diameter multi-purpose wells (RW-1 through RW-7) in February 2017.

Locations of the soil borings, groundwater monitoring wells, and multi-purpose wells are shown on Figure 3.

3.2.1 Field Methods

The methods used during the RI field activities were described in detail in the RI Work Plan (Kennedy/Jenks 2016b) and are briefly summarized below.

3.2.1.1 Groundwater Sampling

Groundwater sampling was conducted in April and December 2016. Prior to collection of groundwater samples, the depth to groundwater was measured using an electronic water level meter. In addition, an oil-water interface probe was used to determine if measurable LNAPL accumulations were present in wells where LNAPL had been observed previously. A disposable polyethylene bailer was used for the initial purging activities during the April 2016 sampling event to remove accumulated sediment and re-develop the monitoring wells. Following the use of the disposable bailer, a peristaltic pump was used to purge groundwater

prior to collection of groundwater samples, using low-flow techniques, until parameters of temperature, pH, specific conductance, dissolved oxygen (DO), and oxidation-reduction potential (ORP) were stabilized. Low-flow purging techniques were used on all of the wells for the December 2016 sampling event. The groundwater purge and sample forms are included in Appendix C.

Following purging, groundwater samples were collected in laboratory-supplied containers for analysis of GRO and BTEX. In addition, groundwater samples collected from monitoring well MW-14 and three of the monitoring wells installed in 2016 (MW-17, MW-19, and MW-21) were analyzed for fuel additives and natural attenuation parameters. Upon collection, the samples were labeled and placed in a chilled ice chest for transportation under chain-of-custody protocol to Analytical Resources, Incorporated (ARI) located in Tukwila, Washington, for analysis. Laboratory analytical methods are described in Section 4.

3.2.1.2 Direct-Push Soil Borings

Prior to performing drilling activities the following activities were performed:

- Reviewing utility information provided by the property owner and available online.
- Conducting a private utility survey using surface detection methods.
- Requesting a One-Call utility locate to identify public utilities.
- Advancing the upper 5 feet to 6 feet of each soil boring using air-knife techniques to assess possible underground utilities.

Soil and reconnaissance groundwater borings were advanced using Geoprobe® direct-push equipment operated by Holt Services, Inc., of Puyallup, Washington (Holt). Nine of the soil borings (KJB-1 through KJB-6, KJB-11, KJB-14, and KJB-15) were located within the City ROW in the planting strip along the northern and southern sides of East McGraw Street or along the western side of 24th Avenue East in accordance with a City Utility permit. One soil boring (KJB-16) was advanced on the neighboring property at 2415 East McGraw Street under an access agreement completed by Ecology.

Continuous soil cores were collected for lithologic identification, field screening, and collection of soil samples. The boring logs are included in Appendix B. Soil samples from selected depth intervals were placed in laboratory-supplied sample containers for analysis of GRO and BTEX. In addition, upon collection, the soil samples were labeled and placed in a chilled ice chest for transportation under chain-of-custody protocol to ARI for analysis. Laboratory analytical methods are described in Section 4.

3.2.1.3 Monitoring/Multi-Purpose Well Installation

All of the monitoring/multi-purpose well locations were cleared for utilities using the same methods described above. All of the new monitoring/multi-purpose wells except for wells MW-17 and MW-18 were drilled and completed using hollow-stem auger drilling methods. Monitoring wells MW-17 and MW-18 were constructed using direct-push methods. Monitoring wells MW-17, MW-18, and MW-19 are constructed with 2-inch-diameter PVC casing and screen and multi-purpose wells MW-20, MW-21, and RW-1 through RW-7 are constructed using 4-inch-

diameter PVC casing and screen. These wells are 20 feet deep with 15 feet of screen with the exception of well MW-18, which is 15 feet deep with 10 feet of screen. The well construction details are summarized in Table 2. All of the monitoring/multi-purpose wells were constructed by Holt under the supervision of a Kennedy/Jenks geologist.

Soil samples were collected at 5-foot intervals during well boring for lithologic identification, field screening, and possible laboratory analysis. The boring and well construction logs are included in Appendix B. Multi-purpose wells RW-1 through RW-7 are located in the general vicinity of other borings from which soil samples were collected for laboratory analysis. Therefore, no soil samples were collected from the RW wells for laboratory analysis.

The wellheads were surveyed for location and elevation by True North Land Surveying of Seattle, Washington. The top of casing elevations are summarized in Table 2.

3.2.1.4 Investigation-Derived Waste Disposal

Investigation-derived waste (IDW) generated during the RI consisted of drill cuttings, well development and equipment decontamination water, and purge water. The IDW was placed in 55-gallon drums, labeled, and temporarily stored onsite pending disposal. A waste profile was generated for this general waste stream based on soil and groundwater analytical results. After each phase of the investigation, the IDW was transported offsite, by Cascade Drilling, Inc. of Woodinville, Washington, for disposal at an approved disposal facility.

3.3 Site Geology

Based on review of boring logs generated during the RI activities conducted in 2016/2017 and previous investigations (primarily from GeoEngineers 1990), three generalized stratigraphic units are identified at the Site, as summarized below:

- Silt Typically encountered from the ground surface (i.e., beneath pavement and subgrade fill) to depths of approximately 2 to 8 feet bgs, but extends to greater depth (up to approximately 13 feet bgs) in the northern portion of the Site. The unit is generally described as soft to stiff, brown to gray, silt to sandy silt, locally with gravel and/or organics.
- Sand/silt Typically encountered below the silt layer to depths of approximately 17 to 22 feet bgs, and typically described as gray to brown, fine sand, silty fine sand, or sandy silt locally containing cobbles. The unit is described as loose, medium dense, dense, and very dense with vertical and lateral variation. This unit may locally include the uppermost, possibly weathered, portion of the underlying glacial till unit.
- Till Typically encountered below the sand/silt starting at approximately 17 to 22 feet bgs and generally described as gray silt, silty sand, or sandy silt with sand and gravel. The till unit is typically described as dense to very dense, hard to very hard, or stiff to very stiff, as indicated during drilling by increased drilling pressure and significant increases in blow counts required to drive split-spoon soil samplers.

Figure 7 shows the locations of interpretive geologic cross sections A-A' and B-B', which are presented as Figures 8 and 9, respectively.

None of the Site monitoring/multi-purpose wells or soil borings have been advanced through the till unit; however, a well installed by Landau Associates (Landau) near Site well MW-4 in 2013 (Landau 2013) was advanced to approximately 90 feet bgs. This well was part of an investigation for a separate site, Montlake Neighborhood Former Dry Cleaner, located on the west side of 24th Avenue East, across from the Former Circle K Site. The log for the 2013 Landau well (designated MW-3, included in Appendix B; location shown on Figure 7) shows the upper contact with the till at 18 feet bgs, dense (unweathered) till at 30 feet bgs (see Figure 8), and gray fine to medium sand beneath (or possibly interbedded with) the till from approximately 80 to 90 feet bgs.

3.3.1 Site Hydrogeology

The depth to groundwater at the Site ranges from 3 to 12 feet bgs, based on water levels measured from April to December 2016. This zone of shallow groundwater occurs under unconfined conditions, is perched on top of the Till unit, and is interpreted to represent the local water table aquifer. Although a seasonal fluctuation of a foot or less in the aquifer was generally observed near the former UST area during the April and December 2016 monitoring event, a fluctuation nearly 6 feet was recorded at northernmost monitoring well MW-11. It should be noted that Site wells MW-17 through MW-21 were completed in August and September 2016 and were therefore, only included in the December 2016 monitoring event. The inferred groundwater potentiometric surfaces of the shallow groundwater zone, based on water levels measured in April and December 2016, are shown on Figures 10 and 11, respectively.

Groundwater level data collected from wells located at the Site in April and December 2016 (within the property parking lot) show a flow direction to the southeast, with a localized area of depression in the vicinity of well MW-6 (see Figures 10 and 11). The potentiometric low around well MW-6 (located in East McGraw Street) is likely attributable to utility corridors located in the center of the street ROW.

Previous reports have indicated that the general direction of groundwater flow was towards the northeast, and that while the LNAPL recovery and remediation system was operating (December 1989 through May 2000, a stable cone of depression developed near the recovery well (see Figure 5).

Because of the nature of gasoline contamination, deeper groundwater units beneath the shallow groundwater zone are not expected to be impacted by the release at this Site, and have not been evaluated as part of this RI. Landau installed two deep monitoring wells as part of their characterization of the Montlake Cleaners site (MW-1 and MW-3; see Figure 3), that were screened in the first water-bearing zone beneath the Till unit. This zone was encountered from 80 to 90 feet bgs in Landau well MW-3, and a water level in this well (screened from 83 to 88 feet bgs) measured in April 2013 was 33 feet bgs (Landau 2013). This water level indicates confined conditions in the deeper groundwater zone and a downward vertical gradient from the perched zone to the deeper zone (see Figure 9).

Section 4: Investigation Results

This section presents a summary of the analytical results of the soil and groundwater samples collected during 2016/2017 RI. Analytical results discussed below are compared to MTCA Method A and B CULs developed for unrestricted land use and protection of potable groundwater.

4.1 Soil Results

A total of 48 soil samples were collected for laboratory analysis during advancement of soil borings and monitoring well construction activities in 2016. The samples were submitted to ARI for analysis of GRO by the Northwest Total Petroleum Hydrocarbon - Gasoline Range (NWTPH-Gx) and BTEX using U.S. Environmental Protection Agency (EPA) Method 8260. Analytical results for soil samples are summarized in Table 3, and are discussed below. Laboratory analytical reports and chain-of-custody documentation are included in Appendix D. In addition, three of the soil samples were analyzed for fuel additive compounds [1,2-dibromoethane (ethylene dibromide) (EDB), 1,2-dichloroethane (ethylene dichloride) (EDC), and methyl-tertiary butyl ether ((MTBE)], of which none were detected. Based on the soil analytical results, GRO and benzene are the primary COCs in Site soil. The detected concentrations of GRO and benzene in soil are shown on Figure 6.

Based on the analytical results of the soil samples, GRO concentrations exceed the MTCA Method A CUL for unrestricted land use (soil CUL) in soil samples collected from borings KJB-4, KJB-7 through KJB-10, KJB-13, MW-19, MW-20, and MW-21. Observations [i.e., staining, odor, and photoionization detector (PID) readings] made in the field during drilling are consistent with the laboratory results. Figure 6 shows the approximate lateral extent of GRO concentrations that exceed the soil CUL. The GRO concentrations appear to be highest in the western-central portion of the Site and may extend offsite beneath 24th Avenue East. The lateral extent of impacted soil appears to be limited on the southern side to a short distance south of boring KJB-13, on the eastern side to the approximate western edge of the building footprint (may extend beneath the building) and on the northern side to a short distance north of boring KJB-4.

Based on analytical results, field observations and the measured depths to groundwater, the vertical extent of GRO concentrations that exceed the soil CUL appear to be generally limited to unconsolidated sediments and perched groundwater above the till unit.

Similar to GRO, benzene concentrations that exceed the soil CUL appear to be limited laterally to the northwestern portion of the Site with the highest concentrations reported in soil samples collected from borings KJB-8, KJB-10, and MW-19. Concentrations of benzene in soil that exceed the soil CUL may also extend offsite to the west beneath 24th Avenue East, beneath the building to the east, and a short distance north of boring KJB-4. The vertical extent of benzene concentrations that exceed the soil CUL appear to be generally consistent with the distribution of GRO.

4.2 Groundwater Results

Groundwater samples were collected from monitoring wells in April and December 2016 and reconnaissance groundwater samples were collected from each of the KJB soil borings in May/August 2016. Monitoring wells MW-17 through MW-21 (located at the Site) were installed in August and September 2016 and were only sampled during the December 2016 event.

The groundwater samples were submitted to ARI for analysis of GRO and BTEX using the same analytical methods as for soil. In addition, several groundwater samples were analyzed for fuel additives (EDB, EDC, and MTBE), lead, and natural attenuation parameters. The laboratory results of the GRO, BTEX, and fuel additive analyses are summarized in Table 4 (reconnaissance groundwater samples) and Table 5 (monitoring well groundwater samples). The natural attenuation parameter results are summarized in Table 6. The complete laboratory reports are included in Appendix D. The estimated extents of GRO and benzene in groundwater in December 2016 are shown on Figures 12 and 13, respectively.

Based on the analytical results, GRO concentrations reported in groundwater samples collected from four wells (MW-4, MW-8, MW-9, and MW-13) in April 2016 exceeded the MTCA Method A groundwater CUL. GRO concentrations reported in groundwater samples collected from the same four wells and the four new wells (i.e., MW-17, MW-19, MW-20, and MW-21) in December 2016 exceeded the MTCA Method A groundwater CUL. GRO concentrations exceeding the MTCA Method A groundwater CUL were also reported for the reconnaissance groundwater samples collected from borings KJB-4 through KJB-10 and KJB-13, all of which are onsite. As with soil, the GRO concentrations are highest in the western-central portion of the Site and may extend offsite to the west beneath 24th Avenue East and to the north beneath East McGraw Street. No measurable LNAPL was observed in any of the monitoring wells during either the April or December 2016 monitoring events.

Benzene concentrations exceed the groundwater CUL in generally the same locations as the GRO concentration exceedances, except as noted. Benzene was either not detected or detected at a concentration less than the CUL in the groundwater samples collected from wells MW-7 and MW-9, respectively, in December 2016. Benzene was reported above the CUL in the groundwater samples collected from well MW-6 in April and December 2016. None of the fuel additives were detected in the groundwater samples analyzed for these compounds (samples collected from wells MW-20 and MW-21). Similar to GRO, BTEX concentrations exceeding the MTCA Method A groundwater CUL were reported for the reconnaissance groundwater samples collected from borings KJB-4 through KJB-10 and KJB-13, all of which are onsite. Exceptions are toluene concentrations in the samples collected from borings KJB-5, KJB-6, KJB-7, and KJB-13 and ethylbenzene, and xylene concentrations in the samples collected from boring KJB-6 were less that the MTCA Method A groundwater CUL. The EDC concentration in the reconnaissance sample collected from KJB-8 exceeded the MTCA Method A groundwater CUL.

Groundwater monitoring has been conducted periodically at the Site over the last 26 years. Available analytical results from groundwater monitoring events conducted between 1989 and 2006 indicate the GRO and benzene concentrations exceeded the groundwater CUL on the northern side of East McGraw Street. However, the results from more recent sampling events (including the 2016 events) indicate that the petroleum hydrocarbon plume is at least stable and

possibly diminishing in size over time. Several factors may be contributing to the reduction of petroleum hydrocarbon concentrations in groundwater, including:

- Removal of the USTs in 1989, including excavation of petroleum hydrocarbon-impacted soil.
- Past remedial efforts including groundwater extraction, operation of the SVE system, and LNAPL recovery efforts previously performed.
- Natural attenuation of petroleum hydrocarbons compounds.

Deep monitoring well MW-3, installed by Landau and associated with the Montlake Cleaners site, is screened in the first water-bearing zone beneath the Till unit. Groundwater samples collected from this well by Landau were not analyzed for petroleum hydrocarbons fuel mixtures; however, the groundwater samples did not contain BTEX constituents above laboratory reporting limits (reference).

4.3 Vapor Intrusion Assessment

Kennedy/Jenks conducted an initial (Tier 1) assessment of the potential for vapor intrusion (VI) in the main Site structure and adjacent residences following the methods described in the EPA's *Technical Guide for Addressing Petroleum Vapor Intrusion at Leaking Underground Storage Tank Sites* (EPA 2015). The VI assessment included an evaluation of the lateral and vertical distribution of impacted groundwater in relation to nearby structures and an evaluation of the EPA's defined lateral inclusion zone and vertical separation distance from the potential hydrocarbon source (primarily dissolved BTEX compounds in soil and groundwater). Volatile chemicals (e.g., BTEX) are present in groundwater, and are expected to be the primary source for possible subsurface VI issues in surrounding buildings which include the on-property commercial structures and off-property residences. This assessment was performed using available groundwater monitoring results and soil gas sampling was not included in the RI activities.

Ecology's Cleanup Levels and Risk Calculation (CLARC) groundwater screening levels were evaluated to provide a baseline assessment of potential VI resulting from volatilization of various organic compounds from groundwater. The occupied on-property commercial structure is within the lateral inclusion zone based on the maximum benzene, toluene, and xylene concentrations detected in groundwater near the building above the MTCA/CLARC groundwater VI screening levels of 2.4 micrograms per liter (μg/L), 1,560 μg/L, and 310 μg/L, respectively. Based on comparison to these groundwater screening levels, potential VI to the building appears possible. However, Site groundwater is typically encountered about 10 feet bgs adjacent to the building, exceeding EPA's vertical separation distance of 6 feet beneath the building slab for dissolved phase hydrocarbon compounds, suggesting there is adequate vertical distance for biological degradation of petroleum hydrocarbon compounds to prevent VI into on-property buildings. While not investigated during this assessment, underground utilities could provide a preferential pathway for soil vapors into the building. Consequently, the VI pathway into the on-property structure is considered potentially complete pending further characterization of preferential vapor pathways.

BTEX compounds were not detected above laboratory reporting limits in the groundwater samples collected in April and December 2016 from monitoring wells located on the northern side of East McGraw Street (MW-14, MW-15, and MW-16). The residential structures on the northern side of East McGraw Street are located at least 30 feet north of the monitoring wells and are considered to be outside of the lateral inclusion zone. Although soil gas samples have not been collected on the residential properties to the north of East McGraw Street, it does not appear that VI is a potentially complete exposure pathway for the adjacent residential structures based on EPA's lateral inclusion zone and the vertical separation distance criteria.

Several utility corridors are present along East McGraw Street and 24th Avenue East, as shown on Figure 3. The utility corridors (including laterals to residences) can provide a potential for preferential migration of vapors and increase the risk for soil VI to nearby structures. Because of the location of these underground utilities with respect to the dissolved-phase hydrocarbon concentrations in groundwater, VI into adjacent residential properties is not expected. However, in the absence of specific sampling at the residential properties, the VI pathway for off-property residential areas must be regarded as potentially complete.

[Note: In addition to possible VI conduits, due to the high concentrations of volatile petroleum hydrocarbon compounds in groundwater in close proximity to utility corridors (including the 90-inch sanitary sewer along 24th Avenue East), potentially explosive conditions could be created within the sewer line if vapors were able to accumulate and concentrate.]

4.4 Data Quality Evaluation

A Quality Assurance Project Plan (QAPP) was provided in Appendix D of the RI Work Plan (Kennedy/Jenks 2016b). In general, the appropriate field and laboratory quality control measures, analytical procedures, data management protocols, and laboratory report validation described in the QAPP were followed during the RI activities. Samples selected for potential laboratory analysis were submitted, under chain-of-custody protocol to ARI located in Tukwila, Washington. Overall, the findings of the data validations indicate that no adverse effects were identified in the analytical results and the analytical data are appropriate for the intended use. The data validation summaries are provided in Appendix E.

4.5 In Situ Bioremediation Pilot Study Results

To assist in the evaluation of remedial alternatives, a bioremediation pilot test was conducted to assess the efficacy of bioremediation for reducing petroleum hydrocarbon concentrations in groundwater. The pilot test was conducted in general accordance with the *Pilot Study Work Plan* (Kennedy/Jenks 2017) submitted to Ecology on 4 February 2017.

The 7-day bioremediation pilot test was performed in March 2017 by Environmental Technologies, LLC (ETEC), of Washougal, Washington, using monitoring and multi-purpose wells (MW-19, MW-20, MW-21, RW-2, RW-3, RW-4, RW-5, RW-7). The pilot study involved obtaining an Ecology Underground Injection Control (UIC) well registration; groundwater extraction; and injection of approximately 4,500 gallons of a solution of extracted groundwater (and tap water) and low-concentration surfactant, followed by injection of approximately 3,100 gallons of a solution of extracted groundwater, macronutrients, and a bacterial consortium. Detailed pilot test field notes prepared by ETEC are provided in Appendix F.

During the latter portion of the pilot test, traces of the injected surfactant solution were observed in monitoring wells located at least 15 feet away from the injection wells, indicating that the soil permeability in the saturated zone is amenable to injection and recirculation. Injection pressures ranged from zero pounds per square inch (psi) in the RW wells to 8 psi in wells MW-20 and MW-21. Follow-up groundwater sampling will be conducted in May 2017.

4.6 Terrestrial Ecological Evaluation

Kennedy/Jenks conducted a Terrestrial Ecological Evaluation (TEE) to evaluate the potential impacts to terrestrial ecological receptors, in accordance with regulations published in WAC 173-340-7490 through 173-340-7494. The purpose of the TEE process is to determine whether a release of hazardous chemicals at the Site may cause potential adverse effects to terrestrial ecological receptors. The first step in the TEE process evaluates whether the Site qualifies for a primary exclusion under WAC 173-340-7941. If the Site does not qualify for a primary exclusion, the next steps in the tiered approach are used to evaluate whether the Site qualifies for a simplified TEE under WAC 173-340-7942 or requires additional evaluation and a Site-specific TEE under WAC 173-240-7943.

4.6.1 TEE Exclusion

The Site was evaluated for the potential to pose a threat to terrestrial ecological receptors. To qualify for exclusion from a TEE, the Site must meet one of the four criteria below and described in WAC 173-340-7491:

- 1. **Point of Compliance.** All soil contamination is, or will be, at least 6 feet bgs (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
- 2. **Barriers to Exposure.** All contaminated soil, is or will be, covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
- 3. **Undeveloped Land.** There is less than 1.5 acres of contiguous undeveloped land on or within 500 feet of any area of the Site.
- 4. **Background Concentrations.** Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.

Based on an evaluation of the Site information and current and historical analytical data, the following four conclusions are made regarding each criterion:

1. Point of Compliance. During various phases of investigation, petroleum hydrocarbon-impacted soil has not been observed within 6 feet of the ground surface. While, no soil samples have been analyzed from depths within 6 feet of the ground surface, readily identifiable indications of significant petroleum hydrocarbon impacts were not identified in the RI vapor monitoring results using a PID or noted in the boring logs based on physical evidence (staining, odors, or sheen tests). Therefore, impacted soil in the upper 6 feet of soil is not expected.

- Barriers to Exposure. The entire Site, with the exception of small planter boxes is
 either covered with asphalt or concrete pavement or is covered by buildings with slabon-grade construction that prevents exposure to plants and wildlife. Therefore, the
 Barriers to Exposure criterion is met.
- 3. **Undeveloped Land.** There is no undeveloped land within 500 feet of any part of the Site. Therefore, the Undeveloped Land criterion is met.
- 4. **Background Concentrations.** Since petroleum hydrocarbons have been detected in soil and groundwater samples collected at the Site, the Background Concentrations criterion has not been met.

The Site qualifies for exclusion from a TEE based on meeting Criteria 1, 2, and 3. Therefore, further evaluation for the potential threat to terrestrial ecological receptors is not required.

4.7 RI Conclusions

Based on the results of the 2016 RI activities, GRO and benzene are the primary COCs in soil and groundwater at the Site and the drivers for evaluation of remedial alternatives. Other compounds reports above MTCA CULs include toluene, ethylbenzene, and xylenes; however, where these compounds are reported in soil and groundwater GRO and/or benzene are also reported. The distribution of GRO and benzene in soil and groundwater are summarized on Figure 6 (soil) and Figures 12 and 13 (groundwater). The RI results indicate that GRO and benzene concentrations in soil appear to be highest in the western portion of the Site and may extend offsite beneath 24th Avenue East. The lateral extent of impacted soil appears to be limited on the southern side to a short distance south of the location of boring KJB-13, on the eastern side to the approximate western edge of the on-property building footprint (may extend beneath this building), and on the northern side to a short distance north of boring KJB-4. Based on analytical results, field observations and the measured depths to groundwater, the vertical extent of GRO/benzene concentrations in soil that exceed the CULs appear to be generally limited to the smear zone created when LNAPL moved with the vertically fluctuations of the shallow water table elevation.

As with soil, the GRO and benzene concentrations in groundwater are highest in the western portion of the Site and may extend offsite to the north and west beneath East McGraw Street and 24th Avenue East, respectively. No measurable LNAPL was observed in the monitoring wells during either the April or December 2016 monitoring events.

The results of recent groundwater sampling events indicate that the petroleum hydrocarbon plume appears to be stable and probably diminishing in size over time. Source removal and subsequent remedial activities in conjunction with natural attenuation processes have contributed to plume stability. A shallow groundwater gradient across much of the Site may also have limited the lateral migration of dissolved-phased petroleum hydrocarbons in groundwater over time.

The utility corridors (including laterals to residences) can provide a potential for preferential migration of vapors and increase the risk for soil VI to nearby structures. Because of the location of these underground utilities with respect to the dissolved-phase concentrations in groundwater, VI into adjacent residential properties is not expected. However, in the absence of

Kennedy/Jenks Consultants

specific sampling at the residential properties, the potential for a complete VI pathway to offproperty residential areas cannot be dismissed.

The Site qualifies for exclusion from a TEE; therefore, further evaluation for the potential threat to terrestrial ecological receptors is not required.

Sections 8 through 11 of this report present an evaluation of potential cleanup alternatives for the Site and a recommendation for a cleanup action for soil and groundwater.

Section 5: Conceptual Site Exposure Model

Based on background Site information and the findings of the 2016/2017 RI and previous investigations, a conceptual site model (CSEM) and exposure pathway analysis were developed for the Site.

The CSEM exposure pathways for onsite and offsite human and ecological exposures based on the current understanding of the Site and vicinity is presented on Figure 14. The CSEM graphically depicts possible sources of COCs, possible COC-affected media, mechanisms of COC transfer between media, and the processes through which human receptors may be exposed to chemicals. Only those exposure pathways that are potentially complete were evaluated quantitatively in the RI.

The following summarizes the potential exposure scenarios for evaluation based on current and reasonably foreseeable future conditions at the Site.

5.1 Potential Sources

The primary source of the COCs is the former USTs located on the northern end of the Site. The USTs were removed in 1990. The primary release mechanism is considered to be a leak of between approximately 4,000 and 6,000 gallons of gasoline from the USTs discovered in 1989. Soil and groundwater impacted by the gasoline release are secondary sources.

5.2 Fate and Transport

Contaminant transport appears to have been mainly limited by (1) the volume of the gasoline release, (2) the relatively slow groundwater seepage velocities inferred for the Site based ion the saturated media and hydraulic gradients, and (3) natural attenuation processes. As previously discussed, the onsite groundwater gradient and flow direction is variable with a slight gradient to the north/northeast towards monitoring well MW-4. To the north and west of the Site, there appears to be a stronger hydraulic gradient primarily to the south and southeast, respectively, generally towards the Site. Groundwater movement may be influenced by recharge from the south (generally upgradient), utility corridors and the differential permeability of the native soil, and the gravel used for backfill material in the UST excavation area. Spreading of LNAPL (free product) after the release along with advection and dispersion of dissolved petroleum hydrocarbons in groundwater appear to be the major transport mechanism for COCs.

The glacial till identified in a significant number of borings at a depth of approximately 17 to 22 feet bgs, consisting of sandy silt with clay, presents a natural impediment to downward movement of groundwater from the shallow perched zone. Because of the presence of this till aquitard layer and the lower-than-water density of gasoline, lateral movement of COCs above the till is expected to predominate COC transport and very limited potential vertical COC migration is expected.

Potential transport processes between sources and exposure media may include (but are not limited to) the following:

- Direct release to media.
- Leaching from soil to groundwater in water-bearing zones.
- Partitioning of dissolved volatile COCs in groundwater into soil vapor.
- Vapor movement to the ground surface (e.g., infiltration into buildings/indoor air) from impacted soil and groundwater.

5.3 Exposure Pathways

Potential exposure pathways for the Site include direct contact for soil and groundwater, leaching (soil to groundwater), and VI to receptors in on-property structures. Potential exposure pathways are shown on Figure 14 and identified below.

- Soil direct contact and/or ingestion for construction and utility workers.
- Groundwater direct contact and/or ingestion by construction and utility workers.
- Vapor inhalation by construction and utility workers.
- VI into the on-property and off-property buildings by occupants and visitors.
- Potential consumption of groundwater if used for drinking water. A search of water wells within a 0.25-mile radius of the Site was conducted using Ecology's Well Log database and no water wells were identified in the search. City water supplies are available in this area of the Site; consequently, consumption of groundwater is not classified as a reasonably potentially complete exposure pathway.

Section 6: Cleanup Objectives, Proposed Cleanup Standards, and Points of Compliance

6.1 Cleanup Objectives

The objective of the cleanup action is to reduce potential risks to human health and the environment. Because the Site is zoned as "Neighborhood-Commercial", the proposed soil cleanup standards must be protective of unrestricted land use.

Specific risk-based cleanup objectives include:

- Reduce the potential for human contact with soil and groundwater containing COCs at concentrations that exceed the selected cleanup levels.
- Protect groundwater quality by reducing the source(s) of petroleum hydrocarbons for dissolution into groundwater to below levels that pose a threat to potable water supplies.
- Reduce the petroleum hydrocarbon concentrations in soil and groundwater to reduce the threat of potential for VI, both on-property and off-property.

6.2 Proposed Cleanup Standards

The proposed cleanup standards include:

- <u>Soil</u>: MTCA Method A soil CULs for unrestricted land use obtained from Ecology's CLARC database. For those compounds where MTCA Method A levels may not be available, soil cleanup levels will be based on MTCA Method B values.
- **Groundwater:** MTCA Method A groundwater CULs for fuel components (i.e., GRO and BTEX compounds).
- <u>Vapor Intrusion</u>: While no soil vapor samples were collected during the RI, screening levels for potential VI will be based on MTCA Method B groundwater screening levels for the vapor intrusion pathway obtained from Ecology's CLARC database.

These cleanup standards are summarized in Table 7 and provided in the tables presenting the analytical results for soil and groundwater at the Site. [Note: No soil gas or ambient/indoor samples has been collected]. While GRO and benzene are considered "driver compounds" in the evaluation of remedial alternatives, Table 7 includes proposed CULs for other fuel-related compounds (toluene, ethylbenzene, and xylenes) that have been reported above CULs during the RI and/or may be encountered during remedial action confirmation and performance monitoring.

6.3 Justification for Cleanup Levels

MTCA Method A or Method B (when a Method A cleanup level is not available) CULs for unrestricted land uses are proposed as part of the cleanup standards for this Site. These standards are protective of human exposure (direct contact pathway) and protective of

groundwater and surface water (Note: There are no surface water bodies in close proximity to the Site.).

Groundwater CULs selected for the Site are based on a combination of MTCA Method A groundwater for fuel components (i.e., GRO and BTEX). MTCA Method A groundwater CULs for GRO and BTEX were selected for fuel components because they are the most applicable and protective standards for gasoline-range hydrocarbon compounds (including BTEX). MTCA allows the use of potable drinking water standards for non-potable water when these standards are protective of human health and the environment and completion of a Site-specific risk assessment is not warranted.

6.4 Points of Compliance

The points of compliance, based on the expected exposure routes, are those points where cleanup levels established for the Site shall be achieved.

The points of compliance for Site media were established as follows:

- **Soil**: Based on WAC 173-340-740, the point of compliance for soil is as follows:
 - Throughout the site for protection of groundwater.
 - From the ground surface to the depth of shallow groundwater for possible vapor intrusion.
 - From the ground surface to a depth of 15 feet below grade for protection of humans based on direct contact.
- <u>Groundwater</u>: In accordance with WAC 173-340-720(8) throughout the site from the upper most saturated zone to the lowest depth potentially affected by site contaminants. [Note: This is regarded as a conservative approach, since no potable water supply wells were identified within a 0.25 mile radius of the site, based on a search of the Ecology Well Log database.]
- Air: In accordance with WAC 174-340-750 (6), in ambient air throughout the site.

Section 7: Estimated Volumes of Impacted Media above Proposed Cleanup Levels

This section presents an estimate of the area and volume of Site media (soil and groundwater) requiring remedial action. For purposes of the alternative evaluation, it is assumed that remediation of the primary COCs (i.e., GRO and benzene) in soil and groundwater will also address other COCs that are present at concentrations above CULs (see analytical data summary tables).

7.1 Soil

The current distribution of Site soil exceeding MTCA Method A CULs (for unrestricted land use) for GRO and benzene is shown on Figure 6. The area of GRO and benzene-containing soil is estimated to be approximately 0.1 acre (4,000 square feet).

The vertical distribution of GRO and benzene-impacted soil is presented on Interpretive Geologic Cross Section A-A' and B-B' (Figures 8 and 9). In general, GRO and benzene-containing soil is encountered from approximately 7 to 12 feet bgs but extends down to approximately 18 feet bgs at some locations, particularly on the western portion of the Site.

Laboratory analytical results and field screening information (i.e., visually stained soils, odor, and sheen) were used to estimate the depth intervals and volumes of assumed un-impacted overburden and petroleum hydrocarbon-impacted soil. The estimated volume of GRO and benzene-containing soil is approximately 2,200 cy.

7.2 Groundwater

The approximate limits of GRO and benzene-containing groundwater are shown on Figures 12 and 13, respectively, based on the results of groundwater samples collected in 2016 from groundwater monitoring wells. In general, the distribution of petroleum hydrocarbon compounds in groundwater is consistent with the extent of petroleum hydrocarbon-impacted soil at the Site. Similarly to the petroleum hydrocarbon-impacted soil, the lateral extent of benzene is greater than GRO in groundwater. Assuming an area of 8,000 square feet, average groundwater thickness of 6 feet, and total porosity of 25 percent (consistent with fine-grained soils), the volume of petroleum hydrocarbon-impacted groundwater is estimated to be approximately 90,000 gallons.

Section 8: Technology Screening and Alternative Development

This section presents the rationale for identifying remedial alternatives to address soil and groundwater containing COCs at concentrations exceeding Site CULs. Section 8.1 presents an initial evaluation (i.e., screening) to identify potentially applicable remedial methods (i.e., process options). In Section 8.2, remedial methods passing the initial screening process are combined to create potentially feasible remedial alternatives. The remedial alternatives are described in detail in the remainder of the section.

8.1 Identification and Evaluation of Potential Remedial Methods

General response actions, remedial technologies, and process options that may be appropriate for addressing Site conditions and COCs were identified. General response actions are broad categories of remedial methods that can address the cleanup of a specific matrix (i.e., soil or groundwater). Remedial technologies are various techniques within the general response actions. Process options are specific processes within each remedial technology category. The identification and evaluation of general response actions, remedial technologies, and process options for soil and groundwater are presented in Tables 8 and 9, respectively. Bold text in Tables 8 and 9 indicates the process option is included for further consideration in the FS.

Process options were initially screened using three criteria: effectiveness, ability to be implemented, and relative cost, as summarized below:

- Effectiveness involves consideration of a process option's ability to address the
 anticipated volume of soil and groundwater, meet cleanup standards, and protect human
 health and the environmental during construction and implementation.
- Ability to be implemented includes technical and administrative considerations. This
 criterion focuses on the ability to technically address COCs in soil and groundwater at
 concentrations detected during the RI. It also evaluates the permits necessary for onsite
 and offsite activities and discharges, and the availability of offsite facilities, services, and
 materials.
- Cost is based on engineering judgments rather than detailed estimates. Process options
 that are judged to be similar in effectiveness and ability to be implemented, yet costing
 several times more than other process options in the same technology category, were
 eliminated from further consideration.

Process options that are not appropriate for Site conditions, planned future Site uses, or COCs contained in soil and groundwater at concentrations detected during the RI were eliminated from further consideration. In addition, process options that are innovative but unproven were also eliminated. If more than one process option in a remedial technology group was identified as potentially appropriate for the Site, further screening was performed, and one process option was selected to represent that technology group.

Based on the initial evaluation, the general response actions and process options with the greatest potential for success in addressing petroleum hydrocarbon-impacted soil and groundwater at the Site include:

- Removal. Excavation and offsite disposal of accessible soils.
- In Situ Treatment. Treatment technologies include physical or chemical treatment through air sparging, SVE (including bioventing) and enhanced bioremediation, or chemical oxidation.
- Passive Treatment. Passive treatment includes natural source zone depletion and monitored natural attenuation.

Performance and/or confirmation monitoring are required components of all response actions. Performance monitoring includes sampling performed during removal or treatment to assess progress and/or achievement of cleanup levels. Groundwater confirmation monitoring is required to assess long-term effectiveness and compliance with cleanup levels.

MTCA requires that the process options used minimize the amount of untreated COCs remaining at the Site and that preference be given to a permanent solution and hierarchy of preferred remedial methods. In general, technologies that reuse, recycle, destroy, or detoxify hazardous substances will result in permanent solutions.

Table 10 summarizes the results of the process option evaluation, as completed in Tables 8 (soil) and 9 (groundwater). As indicated in Table 10, the selected process options passing the initial evaluation include a range of technologies that reuse, recycle, destroy, or detoxify affected Site media, resulting in a potential permanent solution.

8.2 Development of Alternatives

This section identifies alternatives that could be appropriate for addressing petroleum hydrocarbon-impacted soil and groundwater at the Site. These alternatives are identified using the requirements and expectations described in MTCA (WAC 173-340-360), which include:

- Meeting threshold requirements for remedial alternatives (refer to Section 7.1)
- Using permanent solutions to the maximum extent practicable
- Providing for a reasonable restoration timeframe.

Ecology has the following expectations for cleanup action alternatives (WAC 173-340-370):

- Use treatment technologies whenever practicable.
- Minimize the need for long-term management of contaminated materials by destroying, detoxifying, or removing hazardous substances that are above cleanup levels.
- Recognize the need to use engineering controls, such as containment for sites with large volumes of relatively low levels of hazardous substances.

- Implement measures to prevent precipitation and runoff from contacting affected soils and waste materials.
- Consolidate hazardous substances to the maximum extent practicable if the hazardous substances remain onsite.
- Prevent/minimize releases to surface water via runoff and groundwater discharges exceeding cleanup levels.
- Consider the use of natural attenuation of hazardous substances, which may be appropriate under some circumstances.
- Do not undertake cleanup actions that will result in a greater overall threat to human health and the environment than will other alternatives.

MTCA recognizes that treatment may not be practicable for all sites. Treatment is required, wherever practicable, for sites containing liquid wastes, areas containing high concentrations of hazardous substances, highly mobile materials, or discrete areas of hazardous substances that lend themselves to treatment. MTCA also recognizes that engineering controls (such as containment, caps, and covers) are appropriate for sites or portions of sites that contain large volumes of materials with relatively low levels of hazardous substances where treatment is impracticable [WAC 173-340-370(3)].

Based on the regulatory considerations and site-specific conditions, the following alternatives were developed for this Site:

- Alternative 1: Excavation of petroleum hydrocarbon-impacted soil and disposal at a permitted offsite facility.
- Alternative 2: SVE to mitigate the effects of vapor intrusion into the Site buildings.
- Alternative 3: Air sparging combined with soil vapor extraction.
- Alternative 4: *In situ* chemical oxidation (ISCO) of hydrocarbon-impacted soil and groundwater.
- Alternative 5: *In situ* bioremediation of hydrocarbon-impacted soil and groundwater.

8.3 Alternative 1 - Excavation and Offsite Disposal

This alternative involves excavation and disposing of affected soils offsite, performing *in situ* bioremediation through strategic placement of biologically amended backfill, and conducting groundwater compliance monitoring. Based on existing Site data, soil and groundwater with concentrations that exceed the cleanup level are present offsite to the west in 24th Avenue East and north beneath East McGraw Street. Excavation outside of the property boundary on 24th Avenue East and East McGraw Street is not feasible for various reasons including: the presence of major utilities; the presence of components of the King County Metro Transit line (including overhead electrical lines and a bus stop); and high traffic volumes. Alternative 1 consists of the following elements (see Figure 15):

- Site preparation activities would include, but are not limited to, Cleanup Action Plan
 (CAP) preparation and design, obtaining permits [National Pollutant Discharge
 Elimination System (NPDES) permit, Seattle Department of Planning and Development
 temporary use permit, etc.], and waste profiling and designation. The King County Metro
 bus station may need to be temporarily relocated during construction.
- Access to the market and cleaners would need to be constructed to keep the businesses open during construction.
- Utilities serving the Site, including water, sewer and electric would need to be temporarily rerouted.
- The excavation area includes the onsite area where soil concentrations exceed MTCA Method A soil CULs for GRO and benzene. Excavation depths are estimated to be between 2 and 18 feet bgs. The total volume of excavated material is estimated at 2,200 cy. Affected soils would be removed to the maximum extent practicable. Final configuration of the excavation area would be based on physical constraints and performance monitoring (soil sampling) results using a fixed offsite analytical laboratory. Affected soil would be transported and disposed of at a licensed Subtitle D landfill facility as a non-hazardous waste. Soil with concentrations of GRO and benzene that are less than the MTCA Method A CULs are anticipated in the upper portions of the excavation. However, due to Site space constraints, this soil will also be transported offsite for disposal.
- Dewatering would be performed during excavation activities, with the water treated via a
 temporary onsite groundwater treatment system consisting of particle separation (gravity
 settling in weir tanks and bag filtration) and GAC. The treated water would be
 discharged to directly to the City of Seattle combined sewer system under a NPDES
 permit. Sampling and chemical analyses would be performed to confirm that discharge
 requirements are met.
- After receipt of favorable performance monitoring results, the excavation would be backfilled and compacted to existing grade with imported clean fill.
- A portion of the imported backfill would be amended with an oxygen-releasing compound (or equivalent) to promote biological degradation of residual petroleum hydrocarbons in soil and groundwater. The amended backfill would be strategically placed alongside slopes and the floor of excavation in areas where affected soils may be inaccessible to further excavation. The volume of imported fill amended with the biological amendment is estimated to be 700 cy.
- Site restoration would include reconnection of utilities, repaving, and other restoration activities to return the Site to its original configuration.
- Five new groundwater monitoring wells would be installed to replace monitoring and multi-purpose wells removed during excavation activities. Quarterly groundwater confirmation monitoring would be conducted for at least a year to assess the effectiveness of remediation activities (including biological degradation of residual petroleum hydrocarbons) and to evaluate groundwater quality with respect to

groundwater cleanup standards. Groundwater samples would be analyzed for GRO, BTEX, and natural attenuation parameters.

 Time required to achieve cleanup standards onsite would be relatively short (likely less than 1 year); however, because excavation could not be performed in the off-property impacted areas full cleanup could not be performed in a reasonable time period.

8.4 Alternative 2 - Soil Vapor Extraction

This alternative involves construction of an SVE system, and performance/confirmation monitoring. A SVE system (or high vacuum extraction system) would be installed to remove volatile contaminant mass from the unsaturated zone and promote *in situ* aerobic biodegradation by drawing atmospheric oxygen into the subsurface. Contaminant mass removal would be conducted via long-term operation of the SVE system. The SVE system would also serve as a mitigation system for potential VI into buildings by creating a low pressure zone away from structures. The existing asphalt surface cover and slab-on-grade constructed buildings will prevent direct contact, infiltration, and enhance vapor extraction. Alternative 2 includes the following elements (see Figure 16):

- Site preparation activities would include, but would not be limited to, CAP preparation and design, obtaining permits (e.g., City of Seattle construction permit, Puget Sound Clean Air Agency air discharge permit, etc.), and waste profiling and designation.
- SVE system installation would include vapor extraction from approximately five wells, with treatment consisting of GAC or equivalent. System sampling and chemical analyses would be performed to estimate mass removal, assess treatment performance (including verifying vapor mitigation), and monitor for compliance with air discharge requirements.
- The SVE system components would be housed in an onsite constructed building located on the southeastern corner of the property. Effluent vapor treatment using GAC would likely be required to treat vapors prior discharge to the atmosphere. The need for treatment of vapors before discharge would be determined during a permitting process with the Puget Sound Clean Air Agency. Vapor monitoring of the effluent would be required periodically (monthly to quarterly) to ensure adherence with the discharge permit.
- The majority of the property is either paved or covered by the buildings, which are slabon-grade construction. The impermeable cap reduces surface water infiltration and will assist with vapor extraction by reducing the potential for SVE system short circuiting near vapor extraction wells. The asphalt pavement cover also prevents direct contact with affected soils.
- Periodic groundwater confirmation monitoring would be conducted until cleanup standards are met; to assess treatment effectiveness, and evaluate groundwater quality. Groundwater samples would be analyzed for GRO, BTEX, and natural attenuation parameters. If SVE is used to mitigate vapor intrusion, sub-slab monitoring would be needed to ensure a negative pressure is maintained below the onsite structures. Periodic change-out of the vapor treatment GAC would be required as needed (likely

every 6 to 12 months depending on design). Operation or maintenance of the system would be required throughout the duration of operation.

- A deed restriction would be required to prevent human exposure during potential future onsite excavation or subgrade utility work.
- Because the source mass is not removed, the restoration time period is expected to be several decades.

8.5 Alternative 3 - Soil Vapor Extraction with Air Sparging

This alternative involves construction of an SVE system and an AS system, and performance/confirmation monitoring. An SVE system (or high vacuum extraction system) would be installed to remove contaminant mass from the unsaturated zone, promote *in situ* aerobic biodegradation by drawing atmospheric oxygen into the unsaturated zone and to serve as a mitigation system for potential VI into Site buildings. In addition, AS wells would be installed to volatilize GRO and related volatile organic compounds (VOCs) (i.e., benzene) in the saturated zone and promote biodegradation in the saturated and unsaturated zones by increasing oxygen concentrations. Contaminant mass removal/ reduction would be conducted via long-term operation of the air sparging (AS)/SVE systems. The existing asphalt surface cover and slab-on-grade constructed buildings will prevent direct contact, infiltration, and enhance vapor extraction. Alternative 3 elements are similar to Alternative 2 and include the following (see Figure 16):

- Site preparation activities would include, but would not be limited to, CAP preparation and design, obtaining permits (e.g., City of Seattle construction permit, air discharge permit, etc.), and waste profiling and designation. A pilot test would be conducted to collect Site-specific information for incorporation in system design.
- The SVE system would include vapor extraction from approximately five wells (assuming a radius of influence of 30 feet each) with treatment consisting of GAC or functional equivalent.
- An AS system would include air sparging from up to 12 wells (assuming a radius of influence of 15 feet).
- System sampling and chemical analyses would be performed to estimate mass removal, assess treatment performance (including verifying vapor mitigation), and monitor for compliance with air discharge requirements.
- The AS/SVE wells would be connected to the system components located in an onsite enclosure which would be constructed on the southeastern corner of the property.
- The majority of the property is either paved or covered by the buildings, which are slabon-grade construction. The impermeable cap reduces surface water infiltration and will assist with vapor extraction by reducing the potential for short circuiting. The asphalt pavement cover also prevents direct contact with affected soils.
- Periodic groundwater confirmation monitoring would be conducted until cleanup standards are met; to assess treatment effectiveness, and evaluate groundwater quality.

Groundwater samples would be analyzed for GRO, BTEX, and natural attenuation parameters. If SVE is used to mitigate vapor intrusion, sub-slab monitoring would be needed to ensure a negative pressure is maintained below the onsite structures. Periodic change-out of the vapor treatment GAC would be required as needed (likely every 6 to 12 months depending on design). Operation or maintenance of the system would be required throughout the duration of operation.

- A deed restriction would be required to prevent human exposure during potential future onsite excavation or subgrade utility work.
- The restoration time period is expected to be approximately 10 to 15 years with this alternative.

8.6 Alternative 4 - In Situ Chemical Oxidation

The ISCO alternative involves injection and recirculation of reduction/oxidation chemicals in the saturated zone to chemically convert GRO and VOCs to innocuous byproducts through chemical reactions. For treatment of GRO and related compounds, the most commonly used ISCO chemicals are hydrogen peroxide/Fenton's Reagent, and ozone. The chemical injection and recirculation process would be accomplished using existing multi-purpose wells and strategically placed new vertical and horizontal remediation wells. Alternative 4 includes the following elements (see Figure 17):

- Site preparation activities would include, but would not be limited to, CAP preparation
 and design, obtaining permits (e.g., City of Seattle construction permit, Ecology
 underground injection control permit, NPDES permit, etc.), and waste profiling and
 designation. A pilot test would be conducted to collect Site-specific information for
 incorporation into system design and evaluation of the ISCO dose required to degrade
 GRO and BTEX in the sorbed and dissolved-phase.
- The ISCO system would include use of the existing multi-purpose wells (MW-20, MW-21, and RW-1 through RW-7), five additional multi-purpose wells, and two horizontal wells. The need for additional multi-purpose wells or ISCO injection points would be evaluated during the pilot test. A recirculation cell would likely be established with the new and existing well network to ensure distribution of chemical additives and contact with contaminated site media. The recirculation system would require installation of a permanent treatment system onsite.
- System sampling and chemical analyses would be performed to estimate mass reduction and assess treatment performance.
- The ISCO injection/recirculation wells would be connected to the system components located in an onsite enclosure which would be constructed on the southeastern corner of the property.
- Periodic groundwater confirmation monitoring would be conducted until cleanup standards are met; to assess treatment effectiveness, and evaluate groundwater quality. Groundwater samples would be analyzed for GRO, BTEX, and natural attenuation

parameters. Operation or maintenance of the system would be required throughout the duration of operation.

- A deed restriction would be required to prevent human exposure during potential future onsite excavation or subgrade utility work.
- The restoration time period is expected to be approximately 3 to 5 years with this alternative.

8.7 Alternative 5 - In Situ Bioremediation

This alternative involves an initial subsurface injection of a low-concentration surfactant followed by injection and recirculation of a solution of extracted groundwater and amendments (i.e., a cultured bacteria consortium and macronutrients) into the affected area to enhance biodegradation of GRO and BTEX in the saturated zone. Following desorption from the soil matrix, the petroleum hydrocarbons mobilized by the surfactant solution are drawn toward the recirculation system extraction wells for hydraulic capture and subsequent mixing with amendments to enhance biodegradation. Bioremediation involves bioaugmentation (i.e., addition of specific microorganisms) and/or stimulation of petroleum-degrading bacteria to mineralize the petroleum hydrocarbon compounds (i.e., convert them to carbon dioxide and water). In addition, this process typically requires adding now-depleted macronutrients (nitrogen as ammonia and phosphorous as phosphate), terminal electron acceptors (TEAs) for microbial respiration (i.e., DO, nitrate, etc.), and, if warranted, bacteria that are selectively cultured for their petroleum-degrading capabilities (e.g., facultative petroleum hydrocarbon-degrading bacteria). The bioremediation injection and recirculation process would be accomplished using existing multi-purpose wells and strategically placed new vertical and horizontal remediation wells. Alternative 5 includes the following elements (see Figure 17):

- Site preparation activities would include, but would not be limited to, CAP preparation
 and design based on the pilot study performed, obtaining permits (e.g., City of Seattle
 construction permit, Ecology underground injection control permit, NPDES permit, etc.),
 and waste profiling and designation.
- The bioremediation system would include use of the existing multi-purpose wells (MW-20, MW-21, and RW-1 through RW-7), five additional multi-purpose wells and three horizontal wells. A recirculation cell would likely be established with the new and existing well network to ensure distribution of chemical additives and contact with contaminated site media. The recirculation system would require installation of a permanent treatment system onsite.
- System sampling and chemical analyses would be performed to estimate mass reduction and assess treatment performance.
- The bioremediation injection/recirculation wells would be connected to the system components located in an onsite enclosure which would be constructed on the southeastern corner of the property.
- Periodic groundwater confirmation monitoring would be conducted until cleanup standards are met; to assess treatment effectiveness, and evaluate groundwater quality.

Kennedy/Jenks Consultants

Groundwater samples would be analyzed for GRO, BTEX, and natural attenuation parameters. Operation or maintenance of the system would be required throughout the duration of operation.

- A deed restriction would be required to prevent human exposure during potential future onsite excavation or subgrade utility work.
- The restoration time period is expected to be approximately 3 to 5 years with this alternative.

Natural attenuation and institutional controls, while not active remediation, will be considered as a possible component part of each of the five remedial alternatives identified above to address residual concentrations of hydrocarbons that may exceed cleanup standards.

Section 9: Evaluation of Remedial Alternatives

The section presents a preliminary analysis of the remedial alternatives against the MTCA threshold criteria in Section 9.1, followed by detailed analyses in Section 9.2.

9.1 MTCA Threshold Criteria

A remedial action must meet certain threshold criteria to be considered under the MTCA [WAC 173-340-360 (2)(a)]. An alternative cannot be selected if it cannot meet the following threshold requirements:

- Protect human health and the environment.
- Comply with cleanup standards
- Comply with applicable state and federal laws
- Provide for compliance monitoring.

A cleanup is presumed to be protective of human health and the environment at the Site if it achieves the cleanup levels. Compliance with cleanup standards involves achieving cleanup levels at an appropriate point of compliance and complying with applicable federal and state laws.

Compliance monitoring assesses the protection of human health and the environment during construction and the O&M period of a cleanup action. Compliance monitoring confirms that the remedial action has met cleanup standards and verifies its long-term effectiveness. Compliance with the threshold requirements does not imply that untreated hazardous substances cannot remain onsite. MTCA recognizes that non-treatment alternatives can comply with cleanup standards, provided compliance monitoring is included to ensure system integrity.

Table 11 summarizes the evaluation of the alternatives in relation to MTCA's threshold criteria. Based on this evaluation, all alternatives meet the threshold criteria. All alternatives can achieve cleanup levels; have an acceptable point of compliance; and provide for compliance monitoring.

9.2 Detailed Analyses of Alternatives

This section evaluates each remedial alternative against seven criteria set in WAC 173-340-360(3)(f) in order to establish whether a cleanup is permanent to the maximum extent practical. The seven criteria are:

- 1. Protectiveness
- 2. Permanence
- 3. Cost

- 4. Effectiveness over the long term
- 5. Management of short-term risks
- 6. Technical and administrative implementability
- 7. Consideration of public concerns.

These criteria, as well as a discussion of providing a reasonable restoration timeframe and compliance with federal and state Applicable or Relevant and Appropriate Requirements (ARARs), are evaluated below.

9.2.1 Protectiveness

This criterion includes the degree to which existing risks are reduced, the time required to reduce risk at the Site and attain cleanup standards, onsite and offsite risks resulting from implementing the alternative, and improvement of the overall environmental quality.

The overall protectiveness evaluation is included in Table 12.

9.2.2 Permanence

A permanent cleanup achieves cleanup standards without requiring further action such as long-term monitoring or institutional controls. The remedial action alternatives were compared based on their adequacy in destroying hazardous substances, reducing or eliminating hazardous substance releases and sources, the irreversibility of waste treatment process, and the characteristics and quantity of treatment residuals generated.

The overall permanence evaluation is included in Table 13.

9.2.3 Cost

The costs to implement the alternatives, including the cost of construction and the net present value of long-term costs, were estimated to determine practicability (see Section 10.1.3). Long-term costs include O&M costs, monitoring costs, equipment replacement costs, and the costs of maintaining institutional controls.

9.2.4 Long-Term Effectiveness

Long-term effectiveness is defined as the degree of certainty that the alternative will be successful, the reliability of the alternative during the period of time hazardous substances are expected to remain onsite at concentrations that exceed cleanup levels, the magnitude of residual risk with the alternative in place, and the effectiveness of controls required to manage treatment residues or remaining wastes.

The results of the evaluation of these sub-criteria are presented in Table 14.

9.2.5 Short-Term Risks

The short-term risks to human health, public, and the environment associated with each alternative during construction and implementation, and the effectiveness of measures that would need to be taken to manage such risks, were considered.

This evaluation is included in Table 15.

9.2.6 Ability to Implement

This criterion evaluates an alternative's ability to be implemented, including technical feasibility; availability of necessary offsite facilities, services and materials; administrative and regulatory requirements; scheduling; access constraints; and integration with existing facility operations and other current or potential remedial actions.

The implementability evaluation is included in Table 16.

9.2.7 Consideration of Public Concerns

Ecology would address public concerns, if any, during selection of the remedial action. A Public Notice and Participation period is required (WAC 173-340-600) before implementation of the action.

9.2.8 Restoration Timeframe

The time required to attain cleanup levels for each remedial alternative was estimated and summarized below.

9.2.8.1 Alternative 1 – Excavation and Offsite Disposal

For Alternative 1, it is estimated that soil cleanup levels onsite will be attained immediately. However, offsite soil impacts are not addressed with Alternative 1; therefore, it is inappropriate to estimate a timeframe for attaining Site soil cleanup levels offsite. Although Alternative 1 will remove a significant volume of hydrocarbon mass in the unsaturated and saturated zones, it will not fully address groundwater contamination either onsite or offsite.

9.2.8.2 Alternative 2 – Soil Vapor Extraction

For Alternative 2, it is estimated that soil cleanup levels will be attained within approximately 10 to 20 years, possibly longer, because source mass is not removed. Soil vapor extraction alone will not fully address impacted groundwater. The estimate is based on the following assumptions:

 Operation of the SVE system will reduce the potential for leaching to groundwater and mitigate VI into Site buildings. The asphalt pavement cover and deed restriction will prevent direct contact with affected media.

9.2.8.3 Alternative 3 – Soil Vapor Extraction with Air Sparging

For Alternative 3, it is estimated that soil and groundwater cleanup levels will be attained within approximately 10 to 15 years. The estimate is based on the following assumptions:

 Natural attenuation data suggest biological degradation is occurring at the Site (i.e., low ORP observed in monitoring wells within the impacted area suggests oxygen consumption and potential depletion of electron acceptors). Biological degradation would be accelerated through addition of oxygen through the AS system.

9.2.8.4 Alternative 4 – *In Situ* Chemical Oxidation

For Alternative 4, it is estimated that soil and groundwater cleanup levels will be attained within approximately 3 to 5 years. The estimate is based on the following assumptions:

- Site-specific soil permeability will allow adequate contact for destruction of contaminants.
- Access for installing infrastructure (vertical wells, horizontal wells, and associated piping) will not hinder implementation.
- Dissolved GRO/BTEX plume will not be appreciably displaced by the application of ISCO.

9.2.8.5 Alternative 5 – *In Situ* Bioremediation

For Alternative 5, it is estimated that soil and groundwater cleanup levels will be attained within approximately 3 to 5 years. The estimate is based on the following assumptions:

- Natural attenuation data suggest biological degradation is occurring at the Site (i.e., low ORP observed in monitoring wells within the impacted area suggests oxygen consumption and potential depletion of electron acceptors). Biological degradation would be accelerated through addition of a cultured bacteria consortium and macronutrients.
- Access for installing infrastructure (vertical wells, horizontal wells, and associated piping)
 will not hinder implementation.
- Dissolved GRO/BTEX plume will not be appreciably displaced by the application of ISCO.

9.2.9 Compliance with Applicable or Relevant and Appropriate Requirements

Action-specific ARARs regulate technologies or activities associated with the implementation of the remedial action. Action-specific ARARs are typically technology- or activity-based requirements or limitations. Table 17 summarizes the potential action-specific ARARs.

Section 10: Comparative Analyses and Disproportionate Cost Analysis

This section presents a comparative analysis using the MTCA criteria presented in the detailed analyses of alternatives presented in Section 9.0. A detailed analysis of alternatives for each MTCA criterion/sub-criterion is presented in Tables 12 through 16. In each table, the alternatives are ranked on a scale of 1 to 10 based on how completely each alternative satisfies the MTCA criteria (1 = does not meet criterion; 10 = meets criterion completely). A comparative analysis for each alternative is described below followed by a disproportionate cost analysis (DCA) using the comparative analysis multiplied by weighting factors. The comparative analyses scoring and DCA is summarized in Table 18.

10.1 Comparative Analyses

10.1.1 Protectiveness

For this criterion, the alternatives were ranked based on the degree that risk is reduced and/or managed and the time required to attain cleanup levels.

Alternative 5 was ranked as the most protective, as risk would be reduced significantly through operation of the bioremediation recirculation system. It is estimated that groundwater cleanup levels would be attained within approximately 3 to 5 years for Alternative 5.

The estimated timeframe for attaining cleanup groundwater cleanup levels for Alternative 4 is also approximately 3 to 5 years; however, there is a potential risk of spillage of oxidation chemicals. The estimated timeframe for attaining groundwater cleanup levels for Alternative 3 is approximately 10 to 15 years and several decades for Alternative 2 if other measures are not implemented to address saturated zone soils. For Alternatives 2 and 3, it is expected that effluent vapors will be treated with activated carbon prior to discharge to ambient air, mitigating risks to the surrounding community. Alternative 2 addresses contaminant mass in the unsaturated zone and mitigates the potential for vapor intrusion into on-property structures and off-property residences. By itself, the estimated restoration timeframe for Alternative 2 is expected to be several decades. However, combined with Alternative 5 (the proposed Site remedy which remediates saturated zone soil and groundwater), the restoration timeframe for mitigating the VI pathway is also expected to be 3 to 5 years.

Alternative 1 was ranked the least protective because impacted soil beneath the on-property building and off-property impacted areas is not addressed. Soil cleanup levels could be attained immediately on-property and the time to attain soil cleanup levels in inaccessible soil off-property and beneath the building cannot be reasonably estimated. Although significant contaminant mass will be removed through excavation of on-property impacted soil, residual hydrocarbon mass in soil beneath the building and off-property will be an ongoing contaminant source. In addition, there is a potential risk of exposure, via direct contact to construction workers and via the VI pathway from contaminant mass left in place. Lastly, there is a risk of recontamination of on-property areas from off-property areas that are not included in the cleanup action.

10.1.2 Permanence

Rankings of the alternatives for this criterion were based on the ability to permanently reduce toxicity, mobility, and volume of affected media. All alternatives were considered permanent, to some extent, based on the degree of contaminant mass removal. Alternative 5 was considered the most permanent alternative, as contaminant breakdown is complete, irreversible, and biodegradation products are inert. Alternative 4 is also relatively permanent although there is some potential for post-oxidant application rebound of dissolved petroleum hydrocarbon concentrations in groundwater.

Alternatives 2 and 3 remove contaminant mass through long-term operation of these systems. For each of these alternatives, rebounding may occur, which could extend the restoration timeframe. Alternatives 1 and 2 address contaminant mass in the unsaturated zone but not in the saturated zone. Furthermore, Alternative 1 only addresses impacted soil in accessible areas on-property as it would be impractical to excavate off-property locations due to the presence of critical utilities and high traffic volume on adjacent streets.

10.1.3 Cost

Cost estimates were developed for each alternative based on capital and long-term costs. Long-term costs were estimated using a discount rate of 2.5 percent. Estimated costs are summarized as follows:

- Alternative 1 (\$2,498,000) Table 19
- Alternative 2 (\$1,136,000) Table 20
- Alternative 3 (\$1,232,000) Table 21
- Alternative 4 (\$1,635,000) Table 22
- Alternative 5 (\$1,657,000) Table 23.

Note: The cost estimates for each evaluated remedial action alternative are estimated with an accuracy of -30/+50 percent of actual cost based on available information. The estimated costs, including capital and long-term costs, were prepared for the purpose of relative comparison among alternatives. These costs are not definitive cost estimates based on the final remedial designs and should not be used for budgetary purposes.

10.1.4 Long-Term Effectiveness

The alternatives were ranked for this criterion based on the degree of certainty that the alternative would be successful and its reliability during the period of time that affected media above cleanup levels remain onsite. Alternative 5 ranked the highest for long-term effectiveness as Site data suggest that natural attenuation is already occurring and the addition of bacterial consortium and macronutrients to the smear zone and saturated zone will enhance the existing biological activity.

Alternatives 2, 3, and 4 had equivalent rankings. For Alternative 4, groundwater cleanup levels are estimated to be attained within 3 to 5 years. However, there is some potential post-oxidant application rebound of dissolved petroleum hydrocarbon concentrations in groundwater. For Alternatives 2 and 3, contaminant mass removal would be performed over the long-term provided reliable operation of the AS/SVE systems; vapor mitigation would be maintained through continual operation of SVE system. Post-system operation reduction in contaminant concentrations would be permanent.

Alternative 1 only addresses impacted soil onsite as it would be impractical to excavate offsite locations due to the presence of critical utilities and high traffic volume on adjacent streets. Therefore, this alternative ranked lowest because of contaminant mass left in place.

10.1.5 Short-Term Risks

The alternatives were ranked for this criterion based on potential impacts to workers, the community, and environment during remediation activities.

Alternative 1 carries the highest short-term risk based on the highest potential for remediation workers to contact affected media (i.e., sheet pile shoring wall installation, and excavation/dewatering activities), potential for vehicular spillage during transportation of affected soil to the offsite disposal site.

Alternatives 2 through 5 carry moderate short-term risk to workers by direct contact with impacted soil and vapors during system construction and O&M activities. Alternatives 4 and 5 carry the lowest short-term risk because the shortest estimated timeframe for attaining cleanup levels reduces the amount of time spent onsite for operation and maintenance activities.

10.1.6 Ability to Implement

The alternatives were ranked based on the ease or difficulty of implementing the remedial action. Alternative 1 would be the most difficult to implement and would cause the most disturbances to Site infrastructure and businesses. Alternative 1 includes significant permitting requirements and challenges associated with rerouting Site utilities, installation of the sheet pile shoring, and management of excavated and imported soils while maintaining Site business operations.

Alternative 3 was considered less difficult to implement than Alternative 1 because of the reduced amount of disturbance to the Site businesses during AS/SVE well installation and system construction. Alternatives 2, 4, and 5 were considered the least difficult to implement. In addition, there are fewer permitting requirements for Alternatives 2 through 5 than for Alternative 1.

10.1.7 Consideration of Public Concerns

The alternatives were ranked based on whether the community has concerns regarding the alternative. Alternative 1 has the greatest potential to cause concerns to the public because of the considerable truck traffic and disruption to public transportation associated with excavation of impacted soil and importing of backfill material. In addition, exposure to an open excavation would cause public concern in this densely populated area. As Alternatives 2 through 5 involve

on-property construction activities with minimal transitory vehicle traffic, public concern is considered to be minimal.

10.2 Disproportionate Cost Analyses

MTCA specifies that when selecting a remedial action, preference shall be given to actions that are "permanent to the maximum extent practicable." To determine whether a remedial action uses permanent solutions to the maximum extent possible, a disproportionate cost analysis (DCA) shall be used (WAC 173-340-360[3][b]). Costs are disproportionate to benefits if the incremental cost of the alternative over that of a lower cost alternative exceed the incremental degree of benefits achieved by the alternative over that of the lower cost alternative.

The most practical permanent alternative evaluated in the FS shall be the baseline cleanup alternative against which other alternatives are compared. The permanency of alternatives is largely qualitative and is based on best professional judgment. To document the qualitative analysis, weighting factors are assigned for each of the six non-cost benefits criteria to represent the importance of each benefit criterion and are expressed as a percent. Weighting factors for each non-cost criteria are summarized below.

- Protectiveness. A weighting factor of 25% is assigned based on its overarching
 importance relative to the ultimate goal of environmental cleanup and protection of
 human health and the environment.
- **Permanence.** A weighting factor of **20**% is assigned in association with the need or lack thereof for further action in the future.
- Long Term Effectiveness. A weighting factor of **30%** is assigned in association with a measure of certainty related to the robustness of the action as well as confidence in the technology used for the protection of human health and the environment.
- Short Term Risk. A weighting factor of 15% is assigned because the majority of short term risks can be managed through the use of best practices during process design and construction.
- **Implementability.** A weighting factor of **5%** is assigned because, although an important consideration, implementability is less associated with environmental concerns than with the above criteria.
- Consideration of Public Concerns. A weighting factor of 5% is assigned because the
 majority of public concern issues are incorporated in the protectiveness, permanence,
 and long term effectiveness criteria.

Based on the DCA, Alternatives 2 and 5 provide the highest cost benefit ratio. The results of the DCA are summarized in Table 18. Table 18 also includes cost relative to the most permanent alternative. Figure 18 is a graphical representation of the benefit/cost ratio. Figure 19 presents the benefit/cost ratio and the benefit/cost ratio relative to the most permanent alternative. When combined, Alternatives 2 and 5 provide the highest degree of protection and the estimated fastest restoration timeframe with the lowest concerns for effectiveness. Cost efficiencies are

Kennedy/Jenks Consultants

expected for implementation of Alternatives 2 and 5 together due to decreased operation time for Alternative 2 and general construction efficiency when the two alternatives are combined. These efficiencies will increase the overall cost-benefit ratio for the proposed remedy.

Section 11: Recommended Alternative

The preferred remedial action for the Site includes a combination Alternative 5 (*In Situ* Bioremediation) to address impacted site saturated soil and groundwater and Alternative 2 (Soil Vapor Extraction) to support remediation of the vadose zone and to mitigate the VI pathway into on-property buildings. Of the alternatives evaluated, Alternative 5 provides the shortest estimated timeframe for completion and the highest potential to permanently attain soil and groundwater cleanup levels. However, Alternative 5 would not fully address the unsaturated zone and would not mitigate the VI pathway. Consequently, the combination Alternative 5 and Alternative 2 is the most projective of human health and the environment and best addresses the remedial action objectives.

Following installation of necessary wells and site equipment, Alternative 5 involves an injections of a low-concentration surfactant solution followed by injection and recirculation of a combination of extracted groundwater with amendments (i.e., a cultured bacteria consortium and macronutrients) into the target cleanup area to degrade GRO and BTEX in the saturated zone (including smear zone soils). Following desorption from the soil matrix, the petroleum hydrocarbon is mobilized by the surfactant solution in groundwater and drawn toward the recirculation system extraction wells where groundwater is treated with GAC, mixed with amendments and reinjected to enhance biodegradation. With full implementation, Alternative 5 is expected to be effective in reducing petroleum hydrocarbon concentrations in the target treatment zone saturated soil and groundwater to below cleanup levels. Groundwater monitoring will be performed to assess the effectiveness of the bioremediation and to evaluate groundwater quality for compliance.

To enhance the effectiveness of recommended remedial alternative, Alterative 2 is added to address the VI pathway and assist with remediation of vadose zone soils. Alternative 2 would include installation of several SVE wells across the Site connected with subsurface piping and operated until soil vapor concentrations no longer pose a threat to the on-property building occupants. Due to the urban and residential nature of the surrounding area, treatment of effluent vapors from the SVE unit using vapor phase GAC would likely be required following completion of permitting activities.

References

- The following is list of references used in the preparation of this RI.
- EA Engineering, Science, and Technology, Inc. 2006. *Circle K Station #1461, Groundwater Summary for August 2006, Recommendations for Additional Cleanup Action Tests.*7 November 2006.
- GeoEngineers. 1990a. Report of Geotechnical Services Subsurface Contamination Study and Remedial Action Monitoring Circle K Facility 1461 Seattle, Washington. 6 March 1990.
- GeoEngineers. 1990b. Progress Report No. 2 Remedial Monitoring Program Circle K Facility 1461 Seattle, Washington. 9 November 1990.
- Glacier Environmental Services. 2001. *Major Discharge Authorization No. 192-01, Jin's Enterprises, 2350 24th Avenue East, Seattle, WA.* 15 January 2001.
- Kennedy/Jenks Consultants. 2016a. *Preliminary Summary of Data Gaps, Potential Exposure Pathways, and Proposed Initial Work Tasks Technical Memorandum.* 24 February 2016.
- Kennedy/Jenks Consultants. 2016b. Remedial Investigation Sampling and Analysis Work Plan, Former Circle K Site, 2350 24th Avenue East, Seattle, Washington. 7 April, 2017.
- Landau Associates. 2013. Summary of Subsurface Investigation, Montlake Neighborhood Former Dry Cleaner, 2311, 2313, and 2315 24th Avenue East, Seattle, WA. 29 May 2013.
- U.S. Environmental Protection Agency. 2015. *Technical Guide for Addressing Petroleum Vapor Intrusion at Leaking Underground Storage Tank Sites*. EPA Publication 510-R-15-001, June 2015.
- Washington State Department of Ecology. 1994. Site Hazard Assessment Report, Circle K Station #1461. 30 June 1994.
- Washington State Department of Ecology. 2009. *Draft Remedial Investigation/Feasibility Study, Circle K Station #1461, Seattle, WA*. September 2009.
- Washington State Department of Ecology. Revised 2013. *Model Toxics Control Act Regulation and Statute*. Washington State Department of Ecology, Olympia, Washington. 324 pages. Publication No. 94-06. http://www.ecy.wa.gov/biblio/9406.html
- Washington State Department of Ecology. 2016. Model Toxics Control Act CLARC Database. Accessed 13 December 2016. https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx
- Washington State Department of Health. 1995. *Health Investigation, Circle K Station #1461*. 9 June 1995.

Tables

TABLE 1

SOIL SAMPLE ANALYTICAL RESULTS - 1989 MONITORING WELL BORINGS FORMER CIRCLE K SITE

Seattle, Washington

	Che	mical Name Units	Benzene mg/kg	Chlorobenzene mg/kg	1,2- Dichlorobenzene mg/kg	1,3- Dichlorobenzene mg/kg	1,4- Dichlorobenzene mg/kg	Toluene mg/kg	Ethylbenzene mg/kg	m,p-Xylene mg/kg	o-Xylene mg/kg	Total Xylenes mg/kg	Gasoline-Range Hydrocarbons mg/kg	Diesel-Range Hydrocarbons mg/kg
Location ID	Sample Depth (feet bgs)	Date Sampled	ilig/kg	ilig/kg	ilig/kg	ilig/kg	ilig/kg	ilig/kg	ilig/kg	ilig/kg	ilig/kg	ilig/kg	шулку	ilig/kg
MW-1	8.5	9/11/1989	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<5	<5
MW-2	8.5	9/11/1989	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<5	<5
MW-3	8.5	9/12/1989	<0.025	<0.025	<0.025	<0.025	<0.025	0.072	0.057	0.20	0.11	0.31	9	<5
MW-4	8.5	9/12/1989	<0.50	<0.50	<0.50	<0.50	< 0.50	27	27	110	49	159	1,200	<20
MW-5	8.5	9/12/1989	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<5	<5
MW-6	8.0	10/2/1989	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<5	<5
MW-6	10.0	10/2/1989	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025		<5	<5
MW-7	10.0	10/2/1989	<0.025	<0.025	<0.025	<0.025	<0.025	0.10	0.029	0.11	0.065	0.175	<5	<5
MW-8	10.0	10/3/1989	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025		<5	<5
MW-9	10.0	10/3/1989	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<5	<5
MW-10	10.0	10/3/1989	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025		<5	<5
MW-11	11.0	10/4/1989	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	< 0.025	<0.025	<0.025		<5	<5
MW-12	10.0	10/4/1989	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.050	<5	<5
MW-13	8.0	12/20/1989	0.46					1.1	0.22			1.2	<5	<5
MW-14	13.0	12/20/1989	<0.025					<0.025	<0.025			<0.025	<5	<5
MW-15	8.0	12/21/1989	<0.036					<0.036	<0.036			<0.036	<5	<5
MW-15	13.0	12/21/1989	0.51					0.84	0.090			0.51	<5	<5
MW-16	8.0	12/21/1989	<0.025					0.063	<0.025			<0.025	<5	<5
MTCA A (unre	estricted) (mg/kg)		0.03					7	6	9			30/100	2,000
MTCA B (dire	ct contact)			1,600	7,200		185							

0.46 < 0.036

Detected concentrations above the cleanup level are shaded yellow and bolded.

Non-detect values above the cleanup level are shaded gray and italicized.

Notes:

Detected concentrations are shown in bold.

Analytical data taken from Report of Geotechnical Services, Subsurface Contamination Study and Remedial Action Monitoring (GeoEngineer 1990a). Depths are in feet below ground surface (bgs).

Abbreviations and Symbols

- " -" denotes not measured, not available, or not applicable.
- " < " denotes not detected at or above the indicated method reporting limit.

mg/kg = milligrams per kilogram

Cleanup Levels:

Cleanup level values based on Model Toxics Control Act (MTCA) Method A values for unrestricted land use (Method A Un) based on Washington State Administrative Code (WAC) 173-340-740 Table 740-1. Where MTCA Method A values are not available, the lowest of MTCA Method B values (B Cancer or B Non Cancer) from Cleanup Levels and Risk Calculation (CLARC) tables have been used (Accessed January 2017).

Methods:

Samples analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8020.

Samples analyzed for purgeable aromatics using EPA Method 8020.

Samples analyzed for fuel hydrocarbons using EPA Method 8015 modified.

MONITORING AND MULTI-PURPOSE WELL CONSTRUCTION DETAILS FORMER CIRCLE K SITE Seattle, Washington

Monitoring Well ID	Date Installed	Well Diameter (inches)	Screened Interval (feet bgs)	Total Depth in 2006 (feet btoc)	Total Depth in 2016 (feet btoc)	Top of Casing Elevation (feet amsl)
MW-1	09/11/89	2	5.5-22.2	abandoned	abandoned	
MW-2	09/11/89	2	5.5-20.9	20.9	20.90	69.79
MW-3	09/12/89	2	7.5-22.9	abandoned	abandoned	
MW-4	09/12/89	2	4-18.8	17.9	17.90	63.62
MW-5	09/12/89	2	7-27.4	abandoned	abandoned	
MW-6	10/02/89	2	5-20.4	20.43	20.33	63.13
MW-7	10/02/89	2	5-20.2	20.49	20.20	62.66
MW-8	10/03/89	2	5-20.3	19.45	19.40	63.59
MW-9	10/03/89	2	5-21.2	20.35	20.23	64.30
MW-10	10/03/89	2	5-20.4	20.47	20.22	62.86
MW-11	10/04/89	2	5-20.0	20.31	20.00	63.59
MW-12	10/04/89	2	5-20.3	abandoned	abandoned	
MW-13	12/20/89	2	4-19.0	18.81	18.65	65.08
MW-14	12/20/89	2	4-19.3	18.87	15.50	63.30
MW-15	12/21/89	2	4-18.7	16.81	16.75	64.18
MW-16	12/21/89	2	4-19.2	18.94		64.00
MW-17	08/01/16	2	4.0-19.0		20.0	65.98
MW-18	08/01/16	2	5.0-15.0		20.0	66.73
MW-19	09/23/16	2	5.0-20.0		20.0	66.36
MW-20	09/23/16	4	5.0-20.0		21.0	66.17
MW-21	09/23/16	4	5.0-20.0		20.0	65.89
RW-1	02/07/17	4	5.5-21.5		21.5	
RW-2	02/09/17	4	5.0-20.0		21.5	
RW-3	02/09/17	4	5.0-20.0		21.5	
RW-4	02/08/17	4	5.0-20.0		21.5	
RW-5	02/08/17	4	5.0-20.0		21.5	
RW-6	02/10/17	4	5.0-20.0		21.5	
RW-7	02/07/17	4	5.0-20.0		21.5	

Notes:

TABLE 2

Top of casing elevations surveyed to City of Seattle Benchmark SNV-2541 located at the northeast quadrant of the intersection of East Boston Street and 24th Avenue.

Abbreviations and Symbols

" - -" denotes not measured, not available, or not applicable.

bgs = below ground surface

btoc = below top of casing

amsl = above mean sea level

SUMMARY 0F 2016 SOIL SAMPLE ANALYTICAL RESULTS FORMER CIRCLE K SITE Seattle, Washington

		Cr	nemical Name	Gasoline-Range Organics	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	1,2-Dichloroethane	1,2-Dibromoethane	Methyl tert-Butyl Ether
			Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Boring ID	Top of Sample Depth (feet)	Sample ID	Date Sampled									
	. , ,	•		-5.0	10.0040	10.0040	10.0010	1.0.0040	100040			
KJB-1	7.5	KJB-1-7.5	5/18/2016	<5.9 <5.1	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010			
KJB-1 KJB-2	19 8	KJB-1-19 KJB-2-8	5/18/2016 5/18/2016	<5.1 <7.0	< 0.0010 < 0.0010	< 0.0010 < 0.0010	< 0.0010 < 0.0010	< 0.0010 < 0.0010	< 0.0010 < 0.0010			
KJB-2	6 12	KJB-2-0 KJB-2-12	5/18/2016	<5.6	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010			
KJB-3	7.5	KJB-3-7.5	5/18/2016	<7.6	< 0.0010	< 0.0014	< 0.0014	< 0.0010	< 0.0010			
KJB-3	18.5	KJB-3-18.5	5/18/2016	<5.4	< 0.00090	< 0.00090	< 0.00090	< 0.00090	< 0.00090			
KJB-4	8.5	KJB-4-8.5	5/18/2016	80	0.022	0.094	2.9	14	5.1			
KJB-4	12	KJB-4-12	5/18/2016	1,700	1.8	17	7.5	31	11	< 0.57	< 0.57	< 0.57
KJB-4	19	KJB-4-19	5/18/2016	65	0.076	0.29	0.20	0.70	0.22			
KJB-5	7	KJB-5-7	5/18/2016	<9.4	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015			
KJB-5	12	KJB-5-12	5/18/2016	<5.6	0.0016	0.0068	0.0011	0.0038	0.0012			
KJB-5	19.5	KJB-5-19.5	5/18/2016	<6.2	0.031	0.0043	0.0015	0.0028	< 0.0011			
KJB-6	7	KJB-6-7	5/18/2016	<7.4	< 0.0011	0.0022	< 0.0011	0.0014	< 0.0011			
KJB-6	22	KJB-6-22	5/18/2016	<5.5	< 0.00090	< 0.00090	< 0.00090	< 0.00090	< 0.00090			
KJB-7	11	KJB-7-11	5/19/2016	2,200	3.9	4.4	22	100	32			
KJB-7	18.5	KJB-7-18.5	5/19/2016	1,700	1.4	13	13	63	22			
KJB-8	8	KJB-8-8	5/19/2016	<7.4	0.0022	0.0056	0.012	0.064	0.022			
KJB-8	12	KJB-8-12	5/19/2016	1,200	26	120	49	200	70	< 3.0	< 3.0	< 3.0
KJB-8	19	KJB-8-19	5/19/2016	<5.7	0.30	0.24	0.086	0.33	0.11			
KJB-9	8.5	KJB-9-8.5	5/19/2016	43,000	< 1.8	4.0	120	420	130			
KJB-9	13	KJB-9-13	5/19/2016	78	0.70	3.1	14	51	18	< 0.23	< 0.23	< 0.23
KJB-9	19	KJB-9-19	5/19/2016	<6.3	1.0	0.10	0.12	0.54	0.13			
KJB-10	8	KJB-10-8	5/19/2016	28,000	8.2	41	53	240	79			
KJB-10	13	KJB-10-13	5/19/2016	2,300	20	35	18	75	25			
KJB-10	19.5	KJB-10-19.5	5/19/2016	18,000	63	200	68	280	94			
KJB-11	8	KJB-11-8	5/19/2016	<6.5	< 0.0012	< 0.0012	< 0.0012	0.0014	< 0.0012			
KJB-11	19	KJB-11-19	5/19/2016	<7.6	< 0.00080	< 0.00080	< 0.00080	< 0.00080	< 0.00080			
KJB-12	8	KJB-12-8	5/19/2016	<5.5 <7.5	< 0.00090	< 0.00090	< 0.00090	< 0.00090	< 0.00090			
KJB-12 KJB-13	19 12	KJB-12-19 KJB-13-12	5/19/2016 5/19/2016	390	< 0.0012 < 0.10	< 0.0012 < 0.10	< 0.0012 0.54	< 0.0012 0.42	< 0.0012 < 0.10			
KJB-13		KJB-13-12 KJB-13-19	5/19/2016	<6.8/<6.6	< 0.0012/< 0.0011	< 0.0012/< 0.0011	0.010/0.010	0.030/0.030	0.0067/0.0066			
KJB-13 KJB-14	19 7	KJB-13-19 KJB-14-7	8/1/2016	<5.1	< 0.0012/< 0.0011	< 0.0012/< 0.0011	< 0.00090	< 0.00090	< 0.00090			
KJB-14	13	KJB-14-7	8/1/2016	<6.1	< 0.0014	< 0.00090	< 0.00090	< 0.0014	< 0.0014			
KJB-14	18	KJB-14-18	8/1/2016	<7.2	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014			
KJB-15	11	KJB-15-11	8/1/2016	<5.5	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011			
KJB-15	19	KJB-15-19	8/1/2016	<6.1	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012			
KJB-16	7.5	KJB-16-7.5	8/1/2016	<8.7	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011			
KJB-16	16	KJB-16-16	8/1/2016	<8.0	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013			
MW-17	8	MW-17-8	8/1/2016	<6.2	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012			
MW-17	19	MW-17-19	8/1/2016	<5.3	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010			
MW-18	12.5	MW-18-12.5	8/1/2016	<6.5	< 0.00090	< 0.00090	< 0.00090	< 0.00090	< 0.00090			
MW-18	17	MW-18-17	8/1/2016	<7.3/<6.6	< 0.0010/< 0.0011	< 0.0010/< 0.0011	< 0.0010/< 0.0011	< 0.0010/< 0.0011	< 0.0010/< 0.0011			
MW-19	10	MW-19-10	9/23/2016	12,600	31	230	81	350	140			
MW-19	19	MW-19-19	9/23/2016	<5.25	0.0072	0.017	0.0028	0.011	0.0053			
MW-20	10	MW-20-10	9/23/2016	630	0.12	< 0.10	2.4	8.8	2.7			
MW-20	20	MW-20-20	9/23/2016	<5.78	0.031	0.045	0.021	0.081	0.029			
MW-21	10	MW-21-10	9/23/2016	198	1.1	2.8	1.4	6.7	2.9			
MW-21	19.5	MW-21-19.5	9/23/2016	6.41	0.21 E	0.062	0.012	0.044	0.021			
	estricted (mg/kg)			30/100	0.03	7	6	9	9		0.005	0.10
INITO R (allect	t contact) (mg/kg)									11		

SUMMARY 0F 2016 SOIL SAMPLE ANALYTICAL RESULTS FORMER CIRCLE K SITE Seattle, Washington

Detected concentrations above the cleanup level are shaded yellow and bolded.

Non-detect values above the cleanup level are shaded gray and italicized.

Notes:

Detected concentrations at or above the method reporting limit are shown in bold.

Depths are in feet below ground surface (bgs).

When two values are presented, the second value is result of a duplicate sample.

Abbreviations and Symbols

- " -" denotes not measured, not available, or not applicable.
- " < " denotes not detected at or above the indicated method reporting limit.
- "E" denotes an estimated concentration. The reported concentration exceeded the calibration range of the instrument. mg/kg = milligrams per kilogram

Cleanup Levels

Cleanup level values based on Model Toxics Control Act (MTCA) Method A values for unrestricted land use (Method A Unrestricted) based on Washington State Administrative Code (WAC) 173-340-740 Table 740-1.

Methods

Samples analyzed for gasoline-range organics (GRO) using Northwest Total Petroleum Hydrocarbon (NWTPH) Method NWTPH-Gx.

Samples analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8260.

Samples analyzed for 1,2-dichloroethane (EDC), 1,2-dibromomethane (EDB), and methyl tert-butyl ether (MTBE) using EPA Method 8260.

SUMMARY OF 2016 RECONNAISANCE GROUNDWATER ANALYTICAL RESULTS FORMER CIRCLE K SITE

Seattle, Washington

							Ana	lytical Results	6					Field I	Parameters		
				Gasoline- Range						1,2- Dichloro-	1,2- Dibromo-	Methyl tert-			Dissolved		
			Chemical	Organics	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	ethane	methane	_	Temperature	Conductivity	Oxygen	рН	ORP
			Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	°C	mS/cm	mg/L	SU	mV
		Temporary Well	Depth to														
	Date	Screen Interval	Water														ı "
Boring ID	Sampled	(feet bgs)	(feet bgs)														
KJB-1	5/18/2016	9-19	8.95	<100	<0.20	<0.20	<0.20	<0.40	<0.20				15.01	0.676	1.27	6.55	-13.1
KJB-2	5/18/2016	8-18		<100	<0.20	<0.20	<0.20	<0.40	<0.20				15.06	0.358	0.88	6.56	69.5
KJB-3	5/18/2016	8-18.5		<100	<0.20	<0.20	<0.20	<0.40	<0.20				15.63	0.461	1.11	6.54	18.7
KJB-4	5/18/2016	9-19	11.02	70,000	6,500	8,300	1,600	6,400	2,600	<10	<10	<25	15.69	0.873	1.64	6.56	66.2
KJB-5	5/18/2016	9-19	10.79	13,000	1,400	290	890	1,800	270				15.44	0.764	1.07	6.57	-62.2
KJB-6	5/18/2016	13-23		860	27	2.2	24	14	1.5				14.99	0.178	0.61	6.81	-43.0
KJB-7	5/19/2016	9-19	11.40	90,000	3,100	940	2,000	12,000	5,500				14.98	0.843	0.96	6.64	-51.8
KJB-8	5/19/2016	9-19	11.79	110,000	31,000	34,000	2,600	13,000	5,500	33	<10	<25	15.63	0.912	0.82	6.83	-34.2
KJB-9	5/19/2016	5-15.5		75,000	750	6,200	2,100	7,000	2,400				16.34	1.227	1.16	6.74	-72.0
KJB-10	5/19/2016	8-18		76,000	16,000	16,000	1,700	6,500	2,700				16.86	0.592	1.22	6.79	-72.9
KJB-11	5/19/2016	10-20		<100/<100	0.31/0.26	0.41/0.39	<0.20/<0.20	0.45/0.41	<0.20/<0.20				16.48	0.359	1.21	6.97	77.1
KJB-12	5/19/2016	9-19		<100	<0.20	<0.20	<0.20	<0.40	<0.20				14.45	0.747	0.76	7.17	128.3
KJB-13	5/19/2016	9-19		25,000	20	120	700	2,300	590				16.42	0.630	0.78	7.14	65.1
KJB-15	8/1/2016	5-20	14.6	<100	<0.20	<0.20	<0.20	<0.40	<0.20								
MTCA Metho	od A (µg/L)			800/1,000	5	1,000	700	1,0	00	5	0.01	20					

70,000 <25

Detected concentrations above the cleanup level are shaded yellow and bolded.

Non-detect values above the cleanup level are shaded gray and italicized.

Notes:

Detected concentrations at or above the method reporting limit are shown in bold.

Depths are in feet below ground surface (bgs).

When two values are presented, the second value is result of a duplicate sample.

Abbreviations and Symbols

- " -" denotes not measured, not available, or not applicable.
- " < " denotes not detected at or above the indicated method reporting limit.

°C = degrees Celsius

mg/L = milligrams per liter

mV = millivolts

mS/cm = microSiemens per centimeter

μg/L = micrograms per liter

Cleanup Levels

Cleanup level values based on Model Toxics Control Act (MTCA) Method A values for groundwater (Method A) based on Washington State Administrative Code (WAC) 173-340-740 Table 720-1.

Methods

Samples analyzed for gasoline-range organics (GRO) using Northwest Total Petroleum Hydrocarbon (NWTPH) Method NWTPH-G.

Samples analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) using EPA Method 8260.

Samples analyzed for 1,2-dichoroethane (EDC), 1,2-dibromomethane (EDB), and methyl tert-butyl ether (MTBE) using EPA Method 8260.

SUMMARY OF 2016 MONITORING/MULTI-PURPOSE WELL GROUNDWATER SAMPLE ANALYTICAL RESULTS FORMER CIRCLE K SITE Seattle, Washington

				Chemical	Gasoline-Range Organics	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Xylenes, total	1,2- Dichloroethane		Methyl tert- butyl Ether
	1			Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Monitoring Well ID	Date Sampled	Top of Casing Elevation (feet amsl)	Depth to Water (feet btoc)	Water Elevation (feet amsl)										
MW-2	12/7/2016	69.79	9.75	60.04	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60			
MW-2	5/15/2017	69.79	9.41	60.38	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.600			
MW-4	4/20/2016	63.616	9.19	54.43	38,200	64.4	57.3	1,080	3,750	865	4610			
MW-4	12/8/2016	63.62	8.53	55.09	28,000	17.6	30	606	2,770	664	3,430			
MW-4	5/15/2017	63.62	8.57	55.05	39,300	20.5	20.0	593	2,990	601	3,590			
MW-6	4/20/2016	63.132	11.54	51.59	< 100	4.29	0.40	< 0.20	< 0.40 U	0.14	< 0.60 U			
MW-6	12/7/2016	63.13	11.55	51.58	101	16.5	1.56	1.64	1.88	0.70	2.58			
MW-6	5/15/2017	63.13	11.51	51.62	< 100	2.25	0.31	0.68	1.07	0.27	1.34			
MW-7	4/20/2016	62.660	8.45	54.21	< 100	< 0.20	< 0.20	< 0.20 U	< 0.40 U	0.04	< 0.60 U			
MW-7	12/8/2016	62.66	6.3	56.36	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60			
MW-7	5/15/2017	62.66	7.18	55.48	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.600			
MW-8 MW-8	4/20/2016	63.592 63.59	9.6 8.91	53.99 54.68	52,100 65,700	9.59 J 11.3	1,130 1,390	1,650	4580 5.590	1,790	6,370			
MW-8	12/7/2016 5/15/2017	63.59	8.91	54.68 54.62	76,500	11.3 < 10.0	1,390 1,210	1,800 1,780	5,590 5,160	2,360 2,230	7,950 7,390			
MW-9	4/20/2016	64.297	9.43	54.87	13,800	11.3	44.5	416	728	61.2	7,390			
MW-9	12/7/2016	64.30	8.31	55.99	7,910	2.05	10.6	125	203	21.3	224			
MW-9	5/15/2017	64.30	8.65	55.65	8,870	2.47	13.8	165	222	22.4	244			
MW-10	4/20/2016	62.86	9.61	53.25	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60			
MW-10	12/7/2016	62.86	8.81	54.05	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60			
MW-10	5/15/2017	62.86	9.12	53.74	< 100	< 0.20	< 0.20	0.21	0.75	< 0.20	0.95			
MW-11	4/20/2016	63.586	7.85	55.74	< 100	< 0.20	0.06	< 0.20 U	< 0.40 U	0.04	< 0.60			
MW-11	12/7/2016	63.59	1.92	61.67	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60			
MW-11	5/15/2017	63.59	3.04	60.55	< 100	< 0.20	0.47	< 0.20	0.41	< 0.20	0.61			
MW-13	4/20/2016	65.08	10.21	54.87	57,700	1,740	3,300	1,080	4,730	1,910	6,630			
MW-13	12/8/2016	65.08	9.38	55.70	40,000/38,600	1120/1140	949/1080	808/714	3,290/2,970	1,060/1,020	4,350/3,990			
MW-13	5/16/2017	65.08	9.41	55.67	56,300	1,610	1,840	729	3,510	1,410	4,920			
MW-13 Dup	5/16/2017	65.08	9.41	55.67	45,800	2,320	2,550	751	4,210	1,610	5,820			
MW-14	4/20/2016	63.300	7.18	56.12	< 100	< 0.20	< 0.20	< 0.20 U	< 0.40 U	0.09	< 0.60 U			
MW-14 MW-14	12/7/2016 5/16/2017	63.30 63.30	6.45 7.17	56.85 56.13	< 100 < 100	< 0.20 < 0.20	< 0.20 < 0.20	< 0.20 < 0.20	< 0.40 < 0.40	< 0.20 < 0.20	< 0.60 < 0.600			
MW-15	4/20/2016	64.176	8.73	55.45	< 100/< 100	< 0.20/< 0.20	< 0.20/< 0.20 U	< 0.20 U/< 0.20 U		0.04/ < 0.20	< 0.60 U/< 0.60 U			
MW-15	12/7/2016	64.18	3.28	60.90	< 100/< 100	< 0.20/< 0.20	< 0.20/< 0.20 0	< 0.20 0/< 0.20 0	< 0.40 0/< 0.40 0	< 0.20	< 0.60 0/< 0.60 0			
MW-15	5/16/2017	64.18	7.2	56.98	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.600			
MW-16	4/20/2016	64.000												
MW-16	12/7/2016	64.00	6.62	57.38	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60			
MW-16	5/15/2017	64.00	8.15	55.85	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.600			
MW-17	12/7/2016	65.98	10.2	55.78	1,060	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60			
MW-17	5/17/2017	65.98	9.56	56.42	4,650	< 1.00	< 1.00	< 1.00	< 2.00	< 1.00	< 3.00			
MW-18	12/7/2016	66.73	11.85	54.88	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60			
MW-18	5/16/2017	66.73	10.4	56.33	< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.600			
MW-19	12/8/2016	66.36	10.52	55.84	68,200	1,930	6,350	1,180	4,210	1,510	5,720			
MW-19	5/17/2017	66.36	10.22	56.14	68,300	4,060	8,820	953	4,380	1,740	6,120			
MW-20	12/8/2016	66.17	10.59	55.58	85,900	7,010	9,220	1,520	5,730	2,450	8,180			
MW-20 MW-21	5/17/2017	66.17	10.74	55.43	13,900	801	120	43.1	1,540	611	2,150	< 4.00	< 4.00	< 10.0
MW-21	12/8/2016 5/16/2017	65.89 65.89	10.38 10.28	55.51 55.61	163,000 29,300	21,400	21,400	2,280	9,230	4,010	13,240	 < 40.0	 < 40.0	< 100
RW-1	5/17/2017	80.00	10.26	00.01	946	< 0.20	 < 0.20	 < 0.20	 < 0.40	< 0.20	< 0.600	< 40.0	< 40.0	< 100
RW-2	5/16/2017		9.58		14.400	354	204	105	1,010	493	1,500			
RW-3	5/16/2017		9.55		4,580	957	27.8	0.99	135	493	546			
RW-4	5/16/2017		9.55		100,000	10,300	8,200	1,990	6,170	3,400	9,570			
RW-5	5/17/2017		10.13		62,800	4,370	6,290	1,440	5,400	2,400	7,800			
RW-6	5/15/2017		8.55		137.000	1.150	7,210	2,220	8,770	3.850	12.600			
RW-7	5/17/2017		10.04		45,000	3,070	4,370	425	1,840	855	2,700			
MTCA Method			10.0		800	5	1,000	700	1,000	1.000	1,000	5	0.01	20
INITION INICIIIOU	Λ (µg/L)				000		1,000	700	1,000	1,000	1,000	J	0.01	20

Detected concentrations above the cleanup level are shaded yellow and bolded. Non-detect values above the cleanup level are shaded gray and italicized.

Detected concentrations at or above the method reporting limit are shown in bold.

Depths are in feet below ground surface (bgs).

When two values are presented, the second value is result of a duplicate sample.

Abbreviations and Symbols

- " - " denotes not measured, not available, or not applicable.
- " < " denotes not detected at or above the indicated method reporting limit.

"J" indicates an estimated concentration.
"J+" denotes an estimated concentration with a potential high bias.
"U" denotes that the value has been qualified as undetected at the method reporting limit as a result of validation.

btoc = below top of casing

amsl = above mean sea level

μg/L = micrograms per liter Cleanup Levels

Cleanup level values based on Model Toxics Control Act (MTCA) Method A values for groundwater (Method A) based on Washington State Administrative Code (WAC) 173-340-740 Table 720-1.

Samples analyzed for gasoline-range organics (GRO) using Northwest Total Petroleum Hydrocarbon (NWTPH) Method NWTPH-G.

SUMMARY OF NATURAL ATTENUATION PARAMETER RESULTS FORMER CIRCLE K SITE

Seattle, Washington

	Chemical Units	Alkalinity, Total μg/L	Nitrate-N μg/L	Nitrite-N μg/L	Nitrate + Nitrite as N µg/L	Sulfide µg/L	Sulfate µg/L	Methane μg/L	Iron, Dissolved µg/L	Manganese, Dissolved µg/L	Lead, Total μg/L	Lead, Dissolved µg/L
Monitoring Well ID	Date Sampled											
MW-14	12/7/2016	170,000	< 20	2,500		510	15,000	730	420	71		
MW-14	5/16/2017	85,400	3,920	104	4,020	< 50	12,800	7.08	74	36.5	< 20.0	< 20.0
MW-17	12/7/2016	38,000	< 20	470		< 50	4,900	< 0.65	31	38		
MW-17	5/17/2017	40,200	2,210	< 10	2,210 D	< 50	12,200	< 0.65	< 50.0	13.8	< 20.0	< 20.0
MW-19	12/8/2016	110,000	< 20	< 10		68	6,200	29	1,900	930		
MW-19	5/17/2017	320,000	151,000	9,410 D	160,000 D	< 50	14,500	31.6	205	1,480	< 20.0	< 20.0
MW-21	12/8/2016	470,000	< 20	14		< 50	4,200	730	11,000	5,100		
MW-21	5/16/2017	1,510,000	1350000	26,000 D	1,380,000 D	< 50	50,800 D	25.2	< 50.0	67.8	< 20.0	< 20.0
MTCA Method A	Λ (μg/L)										15	15

###							
< 10.0							
170.000							

Detected concentrations above the cleanup level are shaded yellow and bolded.

Non-detect values above the cleanup level are shaded gray and italicized.

Detected concentrations at or above the method reporting limit are shown in bold.

Abbreviations and Symbols

- " - " denotes not measured, not available, or not applicable.
- " < " denotes not detected at or above the indicated method reporting limit.

μg/L = micrograms per liter

Cleanup Levels

Cleanup level values based on Model Toxics Control Act (MTCA) Method A values for groundwater (Method A) based on Washington State Administrative Code (WAC) 173-340-740 Table 720-1.

Methods

Samples analyzed for total alkalinity using Standard Method SM2320.

Samples analyzed for nitrate/nitrite using Standard Method SM4500.

Samples analyzed for sulfide/sulfate using Standard Method SM4500.

Samples analyzed for dissolved gasses using EPA RSK-175.

Sample analyzed for dissolved metals using EPA Method 6010. Samples were field filtered using 0.45 micron in-line filter.

SUMMARY OF PROPOSED SOIL AND GROUNDWATER CLEANUP LEVELS FORMER CIRCLE K SITE

Seattle, Washington

Chemicals of Concern (COCs)	Soil CULs	Groundwater CULs	CUL Basis ^(a)
Total Petroleum Hydrocarbon (TPH)-	100 mg/kg (w/o benzene)	1,000 µg/L (w/o benzene)	MTCA Method A ^(b)
Gasoline	30 mg/kg (with benzene)	800 μg/L (with benzene)	WTCA Method A
Benzene	0.03 mg/kg /	5 μg/L /	MTCA Method A /
Delizerie	18.2 mg/kg	0.795 μg/L	MTCA Method B
Toluene	7 mg/kg /	1,000 μg/L /	MTCA Method A /
louerie	6400 mg/kg	640 μg/L	MTCA Method B
Ethylhonzono	6 mg/kg /	700 μg/L /	MTCA Method A /
Ethylbenzene	8000 mg/kg	800 μg/L	MTCA Method B
Vidence	9 mg/kg /	1,000 μg/L /	MTCA Method A /
Xylenes	16000 mg/kg	1,600 μg/L	MTCA Method B
Mothyd tort butid other (MTDE)	0.1 mg/kg /	20 μg/L /	MTCA Method A /
Methyl-tert-butyl ether (MTBE)	556 mg/kg	24.3 μg/L	MTCA Method B
4.2 dibrara math and (FDD)	0.005 mg/kg /	0.01 μg/L /	MTCA Method A /
1,2-dibromomethane (EDB)	0.5 mg/kg	0.0219 μg/L	MTCA Method B
4.0. dish a mandh am a (FDO)	(MTCA A n/a) /	5 μg/L /	MTCA Method A /
1,2-dichoroethane (EDC)	11 mg/kg	0.481 μg/L	MTCA Method B
Load	250 mg/kg /	15 μg/L /	MTCA Method A /
Lead	(MTCA B n/a)	(MTCA B n/a)	MTCA Method B

Notes:

- (a) Model Toxics Control Act (MTCA) Method A/B cleanup levels (CULs) based on the following:
 - Method A (Soil unrestricted land use) Washington State Administrative Code (WAC) 173-340-740 Table 740-1.
 - Method A (Groundwater) WAC 173-340-720 Table 720-1.
 - Method B (Soil and Groundwater) Cleanup Levels and Risk Calculation (CLARC) (Accessed January 2017).
- (b) Tabulated values for MTCA Method B CULs are not available for total petroleum hydrocarbon (TPH)-gasoline. Evaluation of risk-based CULs for TPH may be performed, if needed, including analysis of TPH fractions using Ecology Methods for volatile petroleum hydrocarbons (VPH).

MTCA Method A values used as cleanup standards. Where MTCA Method A is not available, the lowest MTCA Method B value is used.

mg/kg = milligrams per kilogram

μg/L = micrograms per liter

Bold values denote the lower of the listed MTCA Method A and B cleanup levels.

TABLE 8 Page 1 of 6

GENERAL RESPONSE ACTIONS, REMEDIAL TECHNOLOGIES, AND PROCESS OPTIONS FOR SOIL FORMER CIRCLE K SITE

General Response Action	Remedial Technologies	Process Options	Description	Evaluation Comments
Institutional Controls	Access Restrictions	Physical Restrictions	Physical restrictions (e.g., fencing and signs) limit contact with media.	Risk receptor pathways not addressed.
		Deed Restrictions	Restrictive covenants recorded in the property deed prohibit site activities (e.g., excavation) that could result in exposure to chemicals of concern; requires worker protection and Soil/Groundwater Management Plan.	Applicable to reduce human contact with impacted media; excavation or subgrade utility work.
		Monitoring	Laboratory chemical analyses of soil, groundwater, and/or vapor samples.	Applicable for documenting conditions and concentrations of contaminants in soil, groundwater, and air. Applicable to document effectiveness of treatment technologies.
Containment	Covers	Soil	Clean soil is placed over ground surface to provide a physical barrier to chemicals of concern.	Not appropriate for site conditions.
		Clay	Low permeability clay layer overlain with soil over chemically impacted materials provides physical barrier that minimizes potential for contact and infiltration.	Not appropriate for site conditions.
			Concrete	Similar to clay cover description with concrete used as low permeability barrier.
		Asphalt	Similar to clay cover description with asphalt used as low permeability barrier.	Existing site conditions include concrete slab-on-grade building construction and asphalt cover.
		RCRA	Multi-media barrier consisting of low-permeability layer, synthetic liner, drainage layer, and vegetative cover. Performs functions similar to those described for clay cover.	Not appropriate for site conditions.
	Vertical Barriers	Slurry Wall	Subsurface vertical barrier consisting of low-hydraulic conductivity material surrounds a subsurface source to prevent chemical migration.	Not appropriate for site conditions.
		Grout Curtain	Subsurface vertical barrier consisting of low-hydraulic conductivity material is pressure injected into soil or rock. Performs function similar to slurry wall.	Not appropriate for site conditions.

TABLE 8 Page 2 of 6

GENERAL RESPONSE ACTIONS, REMEDIAL TECHNOLOGIES, AND PROCESS OPTIONS FOR SOIL FORMER CIRCLE K SITE

General Response Action	Remedial Technologies	Process Options	Description	Evaluation Comments
Containment (continued)	Horizontal Barriers	Sheet Pile Cutoff Wall	Interlocking sheet piling driven vertically into subsurface to form a low permeability barrier. Performs function similar to slurry wall.	Not appropriate for site conditions.
		Grout Injection	Injection of grout to form a horizontal barrier in the ground underneath chemical source to reduce the vertical movement of chemicals.	Not appropriate for site conditions.
		Block Displacement	Vertical barrier (slurry trench or grout curtain) surrounds source. Continued injection of grout through injection holes causes displacement of source and forms a barrier beneath source.	Not appropriate for site conditions.
	Surface Controls	Revegetation	Planting grasses, shrubs, or trees to minimize contact with soil, reduce dust generation, and control surface water runoff.	Not appropriate for site conditions.
	Dust Suppression	Wet Suppression	Watering ground surface to control dust generation.	Applicable for excavation and construction activities.
		Chemical Stabilization	A suppressant sprayed on the ground binds dust and surface particles into a protective crust that minimizes dust generation.	Not appropriate for site conditions.
		Physical Stabilization	Placing a cover (e.g. rock, soil, straw) on exposed surfaces to prevent particles from becoming airborne.	Not appropriate for site conditions.
		Vegetative Stabilization	Same as revegetation above.	Not appropriate for site conditions.
		Wind Fences/Screens	Fences or screens are installed around site perimeter to block wind and reduce dust generation.	Not appropriate for site conditions.
Removal	Excavation	Backhoe, Excavators, Loaders, Dozers	Excavate material for subsequent aboveground treatment and/or disposal.	Applicable for removal of impacted soils.
Ex Situ (Aboveground) Treatment	Solidification/ Stabilization	Solidification	Siliceous materials are combined with a setting agent (e.g., lime, cement, or gypsum) and soil. Treatment results in a solidified product that resists leaching.	Not appropriate for site conditions or chemicals of concern.
		Stabilization	Dry or liquid chemical mix which forms insoluble molecular bonds through hydroxyapaptite crystal formations with heavy metals [and polychlorinated biphenyls (PCBs)] which significantly reduces the metals leaching potential.	Not appropriate for site conditions or chemicals of concern.
	Physical/Chemical Soil Washing		Removal of inorganic or organic chemicals by washing excavated soil with a liquid medium (e.g., water). The wash water may be augmented with a basic leaching agent, surfactant, pH adjustment, or chelating agent to help remove organics and heavy metals.	Other more cost effective treatment methods are available. Creates secondary waste stream.

TABLE 8 Page 3 of 6

GENERAL RESPONSE ACTIONS, REMEDIAL TECHNOLOGIES, AND PROCESS OPTIONS FOR SOIL **FORMER CIRCLE K SITE**

General Response Action	Remedial Technologies	Process Options	Description	Evaluation Comments
Ex Situ (Aboveground) Treatment	Physical/Chemical (continued)	Organic Solvent Extraction	Removal of organics, oil, and grease from soil, using an organic solvent as the mass transfer medium and then recovering the solvent by distillation.	Other more cost effective treatment methods are available. Creates secondary waste stream.
(continued)		Vapor Extraction	Removal of low molecular weight organics by creating a vacuum pressure gradient in soil that causes volatile organics to transfer from soil to air stream.	In-Situ Vapor Extraction retained.
		Chemical Dehalogenation	Specially synthesized chemical reagents are used to dehalogenate certain classes of chlorinated organics (e.g., PCBs).	Not appropriate for chemicals of concern.
		Chemical Oxidation/Reduction	Reduction/oxidation chemically converts hazardous contaminants to non-hazardous or less toxic compounds that are more stable, less mobile, and/or inert.	In situ chemical oxidation retained.
		Solar Detoxification	Solar detoxification is a process that destroys contaminants by photochemical and thermal reactions using the ultraviolet energy in sunlight.	Other more cost effective treatment methods are available.
		Separation/Sieving	Sieving and physical separation processes use different size sieves and screens to effectively concentrate contaminants into smaller volumes. Physical separation can also be used to remove undesirable materials (i.e., debris) which may impact treatment processes.	Soil matrix does not consist of large particles (i.e., cobbles/ boulders).
	Biological/ Bioremediation	Landfarming	Contaminated soil is excavated, applied into lined beds, and periodically turned over or tilled to aerate the waste.	Assumes treated soil would be suitable for re-use as backfill. Extended period of an open excavation (i.e., not backfilled) not acceptable. Ex Situ treatment duration unknown.
		Land Treatment	Contaminated surface soil is treated in-place by tilling to achieve aeration, and if necessary, by addition of amendments. Periodically tilling, to aerate the waste, enhances the biological activity.	Assumes treated soil would be suitable for re-use as backfill. Extended period of an open excavation (i.e., not backfilled) not acceptable. Ex Situ treatment duration unknown.
		Composting	Contaminated soil is excavated and mixed with bulking agents and organic amendments such as wood chips, hay, manure, and vegetative (e.g., potato) wastes. Proper amendment selection ensures adequate porosity and provides a balance of carbon and nitrogen to promote thermophilic, microbial activity.	Assumes treated soil would be suitable for re-use as backfill. Extended period of an open excavation (i.e., not backfilled) not acceptable. Ex Situ treatment duration unknown.

TABLE 8 Page 4 of 6

GENERAL RESPONSE ACTIONS, REMEDIAL TECHNOLOGIES, AND PROCESS OPTIONS FOR SOIL **FORMER CIRCLE K SITE**

General Response Action	Remedial Technologies	Process Options	Description	Evaluation Comments
Ex Situ (Aboveground) Treatment (continued)	Biological/ Bioremediation (continued)	Biopiles	Excavated soils are mixed with soil amendments and placed in aboveground enclosures. It is an aerated static pile composting process in which compost is formed into piles and aerated with blowers or vacuum pumps.	Assumes treated soil would be suitable for re-use as backfill. Extended period of an open excavation (i.e., not backfilled) not acceptable. Ex Situ treatment duration unknown.
		Fungal Biodegradation	Fungal biodegradation refers to the degradation of a wide variety of organopollutants by using their lignin-degrading or wood-rotting enzyme system. White rot fungus has been tested under two different treatment configurations: in situ and bioreactor.	Other more cost effective treatment methods are available.
		Bio-Reactor System	Degradation with the use of a liquid/solids contact reactor. Reactor environment enhances mass transfer rates and contact between chemicals and microorganisms capable of degrading the chemicals.	Other more cost effective treatment methods are available.
	Thermal	Thermal Desorption	Soils are heated, driving off water and organics with boiling points less than 1,100°F. Organics are incinerated in an afterburner or collected for subsequent treatment.	Other more cost effective treatment methods are available.
		Rotary Kiln Incineration	Incineration process (in the presence of oxygen) uses temperatures ranging from 1,500°F to 3,000°F and turbulence caused by rotation to vaporize and destroy organics.	Other more cost effective treatment methods are available
In Situ Treatment	Solidification/ Stabilization	Pozzolanic Cement-Based	In situ treatment of soil by the injection and mixing of solidifying agents with soil. Treatment results in a solidified product that resists leaching.	Not appropriate for chemicals of concern.
		Chemical-Based Stabilization	Liquid chemical mix which forms insoluble molecular bonds through hydroxyapaptite crystal formations with heavy metals (and PCBs) which significantly reduces the metals leaching potential.	Not appropriate for chemicals of concern.
	Physical/Chemical	Soil Freezing	Freezing surrounding soil to create a physical barrier to chemical migration.	Not appropriate for site conditions.
		Soil Flushing	In situ extraction of inorganics or organics from soils, accomplished by passing solvents through soil using an injection/recirculation process.	Difficult to control; may result in groundwater contamination.
		Soil Vapor Extraction	Extraction of volatile organics from subsurface soil by creating a pressure gradient that causes volatile organics to transfer from soil to airstream.	Applicable for mass removal and vapor mitigation.

TABLE 8 Page 5 of 6

GENERAL RESPONSE ACTIONS, REMEDIAL TECHNOLOGIES, AND PROCESS OPTIONS FOR SOIL **FORMER CIRCLE K SITE**

General Response Action	Remedial Technologies	Process Options	Description	Evaluation Comments
	Physical/Chemical (continued)	Electrokinetic Separation	The Electrokinetic Remediation (ER) process removes metals and organic contaminants from low permeability soil. ER uses electrochemical and electrokinetic processes to desorb, and then remove, metals and polar organics. This in situ soil processing technology is primarily a separation and removal technique for extracting contaminants from soils.	Not appropriate for site conditions.
		Fracturing	Cracks are developed by fracturing beneath the surface in low permeability and over-consolidated sediments to open new passageways that increase the effectiveness of many in situ processes and enhance extraction efficiencies.	Not appropriate for site conditions.
		Precipitation	Application of specific treatment reagents which aid in the formation of insoluble metal precipitates that reduce chemical mobility. Metals could later resolubilize as conditions change.	Not appropriate for organics; may result in groundwater contamination.
		Chemical Oxidation/Reduction	Reduction/oxidation chemically converts hazardous contaminants to non-hazardous or less toxic compounds that are more stable, less mobile, and/or inert.	In situ chemical oxidation retained.
	Biological/ Bioremediation	Enhanced Bioremediation (Aerobic)	Application of nutrients, oxygen, and microorganisms to accelerate the natural biodegradation of organic compounds.	Applicable for biological treatment of both petroleum-impacted soils and groundwater.
		Enhanced Bioremediation (Anaerobic)	Same as aerobic process with the omission of oxygen application. The anaerobic process degrades organics generally slower than the aerobic process.	Not appropriate for chemicals of concern.
		Bioventing	Oxygen is delivered to contaminated unsaturated soils by forced air movement (either extraction or injection of air) to increase oxygen concentrations and stimulate biodegradation.	Applicable. Soil vapor extraction retained as In Situ Treatment technology; influx of air through SVE operation increases oxygen concentrations in unsaturated/smear zone.
		Phytoremediation	Phytoremediation is a process that uses plants to remove, transfer, stabilize, and destroy contaminants in soil and sediment. Contaminants may be either organic or inorganic.	Not appropriate for site conditions.
	Thermal	Vitrification	Using high temperatures to melt soil and bind chemicals in a stable non- crystalline solid that resists leaching. Organics are destroyed by pyrolysis.	Not appropriate for chemicals of concern.

TABLE 8 Page 6 of 6

GENERAL RESPONSE ACTIONS, REMEDIAL TECHNOLOGIES, AND PROCESS OPTIONS FOR SOIL FORMER CIRCLE K SITE

Seattle, Washington

General Response Action	Remedial Technologies	Process Options	Description	Evaluation Comments
In Situ Treatment (continued)	Thermal (continued)	Electrical Resistive Heating	Applying electrical current for heating subsurface soils to volatilize contaminants into the vapor phase for removal by soil vapor extraction.	More cost-effective methods are available.
		Steam-Enhanced Vapor Extraction	Vapor extraction with the addition of steam to increase chemical mobility and removal rate.	More cost-effective methods are available.
		Radio Frequency Heating	Application of radio frequency waves to heat soil and vaporize volatile organics. Volatiles are then collected for destruction or treatment.	Experimental. More tested and cost- effective methods are available.
Disposal	Offsite	Management Unit	Disposal of soil in a permitted offsite management unit.	Applicable for offsite disposal at a licensed landfill facility.
	Onsite	Containment	Containment of soil onsite.	Not appropriate for site conditions.
Reuse/Recycling	Onsite	Backfilling	Onsite reuse/recycling of site materials for suitable applications in accordance with applicable local, state, and federal regulations.	Not appropriate for site conditions.
			Onsite reuse/recycling of site materials for suitable applications in accordance with applicable local, state, and federal regulations. One option may be reuse treated soil onsite to consolidated impacted soils or bring low areas within an impacted zone to grade prior to placement of a cover.	Not appropriate for site conditions.

Note:

Bold text in table indicates the Process Option is included for further consideration.

TABLE 9 Page 1 of 4

GENERAL RESPONSE ACTIONS, REMEDIAL TECHNOLOGIES, AND PROCESS OPTIONS FOR GROUNDWATER **FORMER CIRCLE K SITE**

General Response Action	Remedial Technologies	Process Options	Description	Evaluation Comments		
Institutional Controls	Addressed under Ev	ressed under Evaluation of General Response Actions, Remedial Technologies, and Process Options for Soil (see Table 1).				
Containment	Covers	Addressed under Evaluation of General Response Actions, Remedial Technologies, and Process Options for Soil (see Table 1).				
	Vertical Barriers	Addressed under Evaluation of General Response Actions, Remedial Technologies, and Process Options for Soil (see Table 1).				
Collection	Extraction	Extraction Wells	Series of wells to extract contaminated groundwater.	Applicable for removal of petroleum- impacted groundwater for above- ground treatment; serve as hydraulic control. Retained for chemical oxidation and bioremediation.		
		Extraction/Injection Wells	Inject treated or uncontaminated groundwater to increase flow to extraction wells.	Applicable for removal of petroleum- impacted groundwater for above- ground treatment; serve as hydraulic control. Retained for chemical oxidation and bioremediation.		
	Subsurface Drains	Interceptor Trenches	Perforated pipe in trenches backfilled with porous media to collect contaminated water.	Not appropriate for site conditions.		
Aboveground Treatment (assuming extraction)	Physical/Chemical	Adsorption/ Absorption - Granulated Activated Carbon (GAC)/Liquid Phase Carbon Adsorption	In liquid adsorption, solutes concentrate at the surface of a sorbent, thereby reducing their concentration in the bulk liquid phase. Ground water is pumped through a series of canisters or columns containing activated carbon to which dissolved organic contaminants adsorb. Periodic replacement or regeneration of saturated carbon is required.	Applicable for above-groundwater treatment of extracted petroleum-impacted groundwater. Retained for chemical oxidation and bioremediation recirculation.		
		Air Stripping/Air Sparging	Volatile organics are partitioned from extracted ground water by increasing the surface area of the contaminated water exposed to air. Aeration methods include packed towers, diffused aeration, tray aeration, and spray aeration.	Other more cost effective treatment methods are available.		
		Ion Exchange	Ion exchange removes ions from the aqueous phase by exchange with counter ions on the exchange medium.	Other more cost effective treatment methods are available.		
		Precipitation/ Coagulation/ Flocculation	This process transforms dissolved contaminants into an insoluble solid, facilitating the contaminant's subsequent removal from the liquid phase by sedimentation or filtration. The process usually uses pH adjustment, addition of a chemical precipitant, and flocculation.	Other more cost effective treatment methods are available.		
		Separation	Separation techniques concentrate contaminated waste water through physical and chemical means. Includes distillation, filtration. ultrafiltration/microfiltration, freeze crystallization, membrane pervaporation, and reverse osmosis.	Other more cost effective treatment methods are available.		

TABLE 9 Page 2 of 4

GENERAL RESPONSE ACTIONS, REMEDIAL TECHNOLOGIES, AND PROCESS OPTIONS FOR GROUNDWATER **FORMER CIRCLE K SITE**

General Response Action	Remedial Technologies	Process Options	Description	Evaluation Comments
Treatment (assuming extraction) (continued)	Physical/Chemical (continued)	Sprinkler Irrigation	The process that involves the pressurized distribution of volatile organic compound (VOC)-laden water through a standard sprinkler irrigation system.	Not appropriate for site conditions.
		UV Oxidation	Ultraviolet (UV) radiation, ozone, and/or hydrogen peroxide are used to destroy organic contaminants as water flows into a treatment tank. If ozone is used as the oxidizer, an ozone destruction unit is used to treat collected off-gases from the treatment tank and downstream units where ozone gas may collect, or escape.	Not appropriate for site conditions.
	Biological/ Bioremediation	Bioreactors	Contaminants in extracted groundwater are put into contact with microorganisms in attached or suspended growth biological reactors. In suspended systems, such as activated sludge, contaminated groundwater is circulated in an aeration basin. In attached systems, such as rotating biological contractors and trickling filters, microorganisms are established on an inert support matrix.	Not appropriate for site conditions.
		Constructed Wetlands	The constructed wetlands-based treatment technology uses natural geochemical and biological processes inherent in an artificial wetland ecosystem to accumulate and remove metals, explosives, and other contaminants from influent waters. The process can use a filtration or degradation process.	Not appropriate for site conditions.
In Situ Treatment		Air Sparging	Air is injected into saturated matrices to remove contaminants through volatilization.	Applicable for desorbing low molecular weight petroleum hydrocarbons from saturated zone. Retained for SVE/air sparging.
		Bioslurping	Bioslurping combines the two remedial approaches of bioventing and vacuum-enhanced free-product recovery. Bioventing stimulates the aerobic bioremediation of hydrocarbon-contaminated soils. Vacuum-enhanced free-product recovery extracts light non-aqueous phase liquids (LNAPLs) from the capillary fringe and the water table.	LNAPL not present at the site.
		Soil Vapor Extraction (SVE)/Bioventing	A vacuum is applied to wells screen in the unsaturated zone. The flow of oxygenated air through the vadose zone enhances natural biodegradation of petroleum hydrocarbon compounds in soil. SVE can also be used to apply a negative pressure in the subsurface to mitigate potential vapor intrusion.	Applicable to Site conditions.
		Dual Phase Extraction	A high vacuum system is applied to simultaneously remove various combinations of contaminated groundwater, separate-phase petroleum product (LNAPLs), and hydrocarbon vapor from the subsurface.	LNAPL not present at the site.
		Fluid/Vapor Extraction	A high vacuum system is applied to simultaneously remove liquid and gas from low permeability or heterogeneous formations.	Other more cost-effective treatment options are available.

TABLE 9 Page 3 of 4

GENERAL RESPONSE ACTIONS, REMEDIAL TECHNOLOGIES, AND PROCESS OPTIONS FOR GROUNDWATER **FORMER CIRCLE K SITE**

General Response	Remedial Technologies	Process Options	Description	Evaluation Comments
	Physical/Chemical (continued)	Hot Water or Steam Flushing/Stripping	Steam is forced into an aquifer through injection wells to vaporize volatile and semivolatile contaminants. Vaporized components rise to the unsaturated zone where they are removed by vacuum extraction and then treated.	Other more cost-effective treatment options are available.
		Hydrofracturing	Injection of pressurized water through wells into low permeability and over- consolidated sediments. Cracks are filled with porous media that serve as substrates for bioremediation or to improve pumping efficiency.	Not appropriate for site conditions.
		In-Well Air Stripping	Air is injected into a double screened well, lifting the water in the well and forcing it out the upper screen. Simultaneously, additional water is drawn in the lower screen. Once in the well, some of the VOCs in the contaminated groundwater are transferred from the dissolved phase to the vapor phase by air bubbles. The contaminated air rises in the well to the water surface where vapors are drawn off and treated by a soil vapor extraction system.	Other more cost-effective treatment options are available.
		Passive/Reactive Treatment Walls	These barriers allow the passage of water while causing the degradation or removal of contaminants by employing such agents as zero-valent metals, chelators (ligands selected for their specificity for a given metal), sorbents, microbes, and others.	Not appropriate for site conditions.
	Biological/ Bioremediation	Co-metabolic Treatment	Injection of a dilute solution of primary substrate (e.g., toluene, methane) into the contaminated ground water zone to support the co-metabolic breakdown of targeted organic contaminants.	Not appropriate for chemicals of concern.
		Enhanced Biodegradation	Rate of bioremediation of organic contaminants by microbes is enhanced by increasing the concentration of electron acceptors and nutrients in groundwater. Oxygen is the main electron acceptor for aerobic bioremediation. Nitrate serves as an alternative electron acceptor under anoxic conditions.	Applicable for biological treatment of both petroleum-impacted soils and groundwater.
		Natural Attenuation	Natural subsurface processes such as dilution, volatilization, biodegradation, adsorption, and chemical reactions with subsurface materials are allowed to reduce contaminant concentrations to acceptable levels.	Applicable.
		Phytoremediation	Phytoremediation is a set of processes that uses plants to remove, transfer, stabilize and destroy organic/inorganic contamination in groundwater, surface water, and leachate.	Not appropriate for site conditions.

TABLE 9 Page 4 of 4

GENERAL RESPONSE ACTIONS, REMEDIAL TECHNOLOGIES, AND PROCESS OPTIONS FOR GROUNDWATER **FORMER CIRCLE K SITE**

Seattle, Washington

General Response Action	Remedial Technologies	Process Options	Description	Evaluation Comments
Disposal/Discharge	Onsite	Storm Drain	Discharge of treated groundwater to storm drain.	Not appropriate for site conditions.
	Offsite	Publicly Owned Treatment Works (POTW)		Applicable and retained for disposal/discharge of treated water generated during dewatering activities.
Reuse/Recycling	Onsite/Offsite	Landscape Irrigation	Use of treated groundwater for landscape irrigation.	Not appropriate for site conditions.

Note:

Bold text in table indicates the Process Option is included for further consideration.

POTENTIAL REMEDIAL PROCESS OPTIONS FOR SOIL AND GROUNDWATER **FORMER CIRCLE K SITE** Seattle, Washington

MTCA Preference ^(a)	General Technology Description	Soil and Groundwater Process Option
1	Reuse or Recycling	Soil
		Onsite: Soil for backfill/grading
		Offsite: Soil for daily landfill cover material
2	Destruction or Detoxification	Thermal Desorption
		In Situ Bioremediation
		In Situ Chemical Oxidation
3	Separation Followed by Reuse or Destruction	Excavation
		Soil Vapor Extraction
		Soil Vapor Extraction with Air Sparging
		Groundwater Extraction and Recirculation
4	Immobilization or Solidification	None
5	Onsite or Offsite Disposal	Offsite Management Unit (Landfill)
6	Containment	Asphalt or Concrete Cover
7	Institutional Controls and Monitoring	Deed Restriction
		Compliance Monitoring

Note:

Cleanup action components, in descending order, when assessing relative degree of long-term effectiveness [WAC 173-340-360(3)(C)(iv)].

MTCA'S THRESHOLD CRITERIA **FORMER CIRCLE K SITE** Seattle, Washington

Threshold Criteria	ALTERNATIVE 1 Excavation and Offsite Disposal	ALTERNATIVE 2 Soil Vapor Extraction	ALTERNATIVE 3 Soil Vapor Extraction with Air Sparging	ALTERNATIVE 4 In Situ Chemical Oxidation	ALTERNATIVE 5 In Situ Bioremediation
Protection of Human Health and Environment	Excavation and offsite disposal of impacted soils eliminates direct human contact. Residual contaminant mass would remain under the building	Soil vapor extraction provides mass removal in the unsaturated zone (prevents leaching to groundwater) and mitigates potential vapor migration into site buildings.	Soil vapor extraction with air sparging provides mass removal in the saturated and unsaturated zone and mitigates potential vapor migration into site buildings.	Chemical oxidation transforms contaminant mass within the smear/saturated zone reducing the risk of exposure through the vapor intrusion pathway.	Bioremediation degrades contaminant mass within the smear/saturated zone reducing the risk of exposure through the vapor intrusion pathway.
	and off site beneath the adjacent streets.	Asphalt pavement cover and deed restrictions prevent direct human contact with impacted media.	Asphalt pavement cover and deed restrictions prevent direct human contact with impacted media.		
Applicable State and Federal Laws	Yes.	Yes.	Yes	Yes	Yes.
Point of Compliance	The soil point of compliance is from the ground surface to the uppermost groundwater saturated zone throughout the site based on the vapor intrusion pathway.	The soil point of compliance is from the ground surface to the uppermost groundwater saturated zone throughout the site based on the vapor intrusion pathway.	The soil point of compliance is from the ground surface to the uppermost groundwater saturated zone throughout the site based on the vapor intrusion pathway.	The soil point of compliance is from the ground surface to the uppermost groundwater saturated zone throughout the site based on the vapor intrusion pathway.	The soil point of compliance is from the ground surface to the uppermost groundwater saturated zone throughout the site based on the vapor intrusion pathway.
	The groundwater point of compliance is throughout the site.	The groundwater point of compliance is throughout the site.	The groundwater point of compliance is throughout the site.	The groundwater point of compliance is throughout the site.	The groundwater point of compliance is throughout the site.
Compliance Monitoring	Confirmation soil samples would be collected and analyzed to evaluate compliance with soil cleanup levels. Quarterly groundwater confirmation monitoring would be conducted until cleanup standards are met; to assess treatment effectiveness, and evaluate groundwater quality.	Long-term vapor monitoring would be performed to estimate mass removal, assess treatment effectiveness (including vapor mitigation), and satisfy air discharge requirements. Quarterly groundwater confirmation monitoring would be conducted until cleanup standards are met; to assess treatment effectiveness, and evaluate groundwater quality.	Long-term vapor monitoring would be performed to estimate mass removal, assess treatment effectiveness (including vapor mitigation), and satisfy air discharge requirements. Quarterly groundwater confirmation monitoring would be conducted until cleanup standards are met; to assess treatment effectiveness, and evaluate groundwater quality.	Quarterly groundwater confirmation monitoring would be conducted until cleanup standards are met; to assess treatment effectiveness, and evaluate groundwater quality.	Quarterly groundwater confirmation monitoring would be conducted until cleanup standards are met; to assess treatment effectiveness, and evaluate groundwater quality.

TABLE 12

PROTECTIVENESS OF HUMAN HEALTH AND THE ENVIRONMENT FORMER CIRCLE K SITE Seattle, Washington

Sub-criteria	ALTERNATIVE 1 Excavation and Offsite Disposal	ALTERNATIVE 2 Soil Vapor Extraction	ALTERNATIVE 3 Soil Vapor Extraction with Air Sparging	ALTERNATIVE 4 In Situ Chemical Oxidation	ALTERNATIVE 5 In Situ Bioremediation
Degree to which existing risks are reduced.	Excavation and offsite disposal of impacted soils eliminates direct human contact, leaching to groundwater. The ongoing contaminant source to groundwater is reduced. Offsite contamination and contamination under the building is not addressed; therefore, a potential for vapor intrusion from residual contamination exists.	Soil vapor extraction provides mass removal in the unsaturated zone (prevents leaching to groundwater) and mitigates potential vapor migration into site buildings. Asphalt pavement cover and deed restrictions prevent direct human contact with impacted media.	Soil vapor extraction provides mass removal in the unsaturated zone (prevents leaching to groundwater) and prevents potential vapor migration into site buildings. Air sparging volatilizes groundwater contaminants in the saturated zone and promotes biodegradation in the saturated and unsaturated zones by increasing oxygen concentrations. Asphalt pavement cover and deed restrictions prevent direct human contact with impacted media.	Chemical oxidation involves reduction/oxidation (redox) reactions that chemically convert hazardous compounds to non-hazardous or less toxic compounds through transfer of electrons from one compound to another. Asphalt pavement cover and deed restrictions prevent direct human contact with impacted media.	Bioremediation degrades contaminant mass within the smear/saturated zone reducing the potential for contaminant migration to surface water. Asphalt pavement cover and deed restrictions prevent direct human contact with impacted media.
Time required in reducing risk and attaining cleanup standards.	Remediation and site restoration activities completed within 1 year. Performance groundwater monitoring conducted for an additional 5 years following remediation and restoration activities. It is estimated cleanup levels on site would be attained within 1 year of completion. Because excavation could not be performed in the off property impacted areas, full cleanup could not be performed in a reasonable time period.	Remedial construction activities completed within 1 year with long-term operation of soil vapor extraction system. Because the source mass is not removed, the restoration time frame is expected to be several decades.	Remedial construction activities completed within 1 year with long-term operation of air sparge and soil vapor extraction systems. It is estimated cleanup levels would be attained within 10 to 15 years.	Remedial construction activities will likely require multiple applications of chemicals over the course of several years. It is estimated cleanup levels would be attained within 3 to 5 years.	Remedial construction activities will likely require multiple applications of bioremediation components over the course of several years. It is estimated cleanup levels would be attained within 3 to 5 years.
Onsite and offsite risks from implementing alternative.	Onsite risk includes worker contact with impacted media during remediation activities. Offsite risk includes potential spillage of impacted soils during transport to landfill facility, potential dust exposure during excavation and biological amendment/backfill activities, and discharge of treated water.	Onsite risk includes worker contact with impacted media during remediation activities. Offsite risk to the community and environment include discharge of treated air.	Onsite risk includes worker contact with impacted media during remediation activities. Offsite risk to the community and environment include discharge of treated air.	Onsite risk includes worker contact with impacted media and oxidation chemicals during remediation activities. Offsite risk includes potential spillage of oxidation chemicals.	Onsite risk includes worker contact with impacted media during remediation activities. Offsite risk potential is low.
Improvement of overall environmental quality.	Will permanently reduce human exposure. Very little impact to environment for disposal of impacted soils at licensed landfill facility.	Soil vapor extraction will reduce contaminant mass over the long-term. Soil vapor extraction would reduce potential for vapor intrusion to site buildings.	Soil vapor extraction would reduce potential for vapor intrusion to site buildings. Air sparging with soil vapor extraction will reduce contaminant mass over the long-term.	In situ chemical oxidation within the smear/saturated zone reduces the contaminant mass over the long-term and reduces potential contaminant migration.	Biological degradation within smear/saturated zone reduces contaminant mass and potential contaminant migration.
"Benefit" Score	4	5	5	6	9

Note:

TABLE 13 Page 1 of 2

PERMANENT REDUCTION OF TOXICITY, MOBILITY, OR VOLUME **FORMER CIRCLE K SITE**

Sub-Criteria	ALTERNATIVE 1 Excavation and Offsite Disposal	ALTERNATIVE 2 Soil Vapor Extraction	ALTERNATIVE 3 Soil Vapor Extraction with Air Sparging	ALTERNATIVE 4 In Situ Chemical Oxidation	ALTERNATIVE 5 In Situ Bioremediation
Reduction or elimination of hazardous substance releases and sources of releases.	Excavation of impacted soils removes majority of contaminant mass from the Site. Residual petroleum hydrocarbons, offsite and under the building, would be naturally attenuated and/or biological degraded (i.e., portion of backfill amended with oxygen release compound or equivalent).	Contaminant mass is removed from the unsaturated zone through long-term operation of soil vapor extraction system.	Contaminant mass is removed from the unsaturated and saturated zones through long-term operation of soil vapor extraction and air sparging systems.	Contaminant mass is removed from the saturated zone through long-term operation of <i>in situ</i> chemical oxidation system.	Contaminant mass is removed through long-term operation of a bioremediation system.
Adequacy of alternative in destroying hazardous substances.	Extracted groundwater (dewatering during excavation activities) treated using granular activated carbon; mass transfer through adsorption as opposed to contaminant destruction. Introduction of biological amendment accelerates natural processes. Contaminant breakdown is complete.	Extracted vapor treated using granular activated carbon; mass transfer through adsorption as opposed to contaminant destruction.	Extracted vapor treated using granular activated carbon; mass transfer through adsorption as opposed to contaminant destruction.	Introduction and recirculation of chemical oxidant accelerated destruction of contaminant. Contaminant is chemically converted, through redox reactions, to less toxic compounds.	Introduction and recirculation of bacterial consortium and macronutrients accelerates natural processes. Contaminant breakdown is complete.
Irreversibility of waste treatment process.	Impacted soils are transported to and managed in a licensed landfill facility. Mass transfer through adsorption as opposed to	Mass transfer through adsorption as opposed to contaminant destruction.	Mass transfer through adsorption as opposed to contaminant destruction.	Chemical oxidation is irreversible.	Biological treatment is irreversible; enhancement of a natural process.
	contaminant destruction. Biological treatment is irreversible; enhancement of a natural process.				

TABLE 13 Page 2 of 2

PERMANENT REDUCTION OF TOXICITY, MOBILITY, OR VOLUME FORMER CIRCLE K SITE

Seattle, Washington

Sub-Criteria	ALTERNATIVE 1 Excavation and Offsite Disposal	ALTERNATIVE 2 Soil Vapor Extraction	ALTERNATIVE 3 Soil Vapor Extraction with Air Sparging	ALTERNATIVE 4 In Situ Chemical Oxidation	ALTERNATIVE 5 In Situ Bioremediation
Characteristics and quantity of treatment residuals generated.	Biodegradation by-products are inert.	Extracted soil vapor would be treated prior to discharge. Treatment residuals are non-hazardous.	Extracted soil vapor would be treated prior to discharge. Treatment residuals are non-hazardous.	Chemical oxidation by- products are non-hazardous.	Biodegradation by- products are inert.
Score	4	7	7	8	9

Note:

LONG-TERM EFFECTIVENESS FORMER CIRCLE K SITE Seattle, Washington

Sub-Criteria	ALTERNATIVE 1 Excavation and Offsite Disposal	ALTERNATIVE 2 Soil Vapor Extraction	ALTERNATIVE 3 Soil Vapor Extraction with Air Sparging	ALTERNATIVE 4 In Situ Chemical Oxidation	ALTERNATIVE 5 In Situ Bioremediation
Degree of certainty that alternative will be successful.	Excavation of impacted soils removes majority of contaminant mass from on site. Residual contaminant mass will remain beneath the building and offsite. Residual petroleum hydrocarbons would be naturally attenuated and/or biological degraded via strategically placed amended backfill.	Contaminant mass removal via soil vapor extraction would be slow and require long-term operation; vapor mitigation maintained through continual operation of soil vapor extraction system.	Contaminant mass removal via soil vapor extraction and air sparging would require long-term operation; vapor mitigation maintained through continual operation of soil vapor extraction system.	Contaminant mass removal via chemical oxidation would require long-term operation of the <i>in situ</i> chemical oxidation system.	Natural attenuation data indicate biological degradation is occurring. Biological degradation of petroleum hydrocarbons is well documented.
Magnitude of residual risk.	Residual risk would be moderate. Potential vapor intrusion risk from remaining contaminant mass beneath the building. Residual petroleum hydrocarbons would be naturally attenuated and/or biological degraded.	Contaminant mass would be removed slowly over the long-term through operation of the soil vapor extraction system. Soil vapor extraction system manages vapor intrusion pathway risk.	Contaminant mass would be removed slowly over the long-term through operation of the soil vapor extraction system. Soil vapor extraction system manages vapor intrusion pathway risk.	Contaminant mass would be removed over the long-term through operation of the <i>in situ</i> chemical oxidation system.	Contaminant mass would be removed over the long- term through operation of the bioremediation system
Effectiveness of controls required to manage treatment residues or remaining wastes.	Excavation of impacted soils permanently removes contaminant mass from the site. Long-term reliability of licensed landfill facility is expected to be adequate. Biological amendments longevity is estimated at approximately 1 year. Operations and maintenance (O&M) is not required; groundwater monitoring performed.	Contaminant mass removal effective provided reliable operation of soil vapor extraction system. Vapor mitigation maintained by continual operation of soil vapor extraction system.	Contaminant mass removal effective provided reliable operation of soil vapor extraction and air sparging systems. Vapor mitigation maintained by continual operation of soil vapor extraction system.	Contaminant mass removal effective provided reliable operation of the <i>in situ</i> chemical oxidation system.	Contaminant mass removal effective provided reliable operation of the bioremediation system.
Score	4	6	6	6	8

Note:

SHORT-TERM RISKS FORMER CIRCLE K SITE Seattle, Washington

Sub-Criteria	ALTERNATIVE 1 Excavation and Offsite Disposal	ALTERNATIVE 2 Soil Vapor Extraction	ALTERNATIVE 3 Soil Vapor Extraction with Air Sparging	ALTERNATIVE 4 In Situ Chemical Oxidation	ALTERNATIVE 5 In Situ Bioremediation
Protection of human health during construction and implementation	Remediation worker risk due to potential contact with impacted media during excavation/ dewatering activities. Fugitive dust emissions could be generated during soil handling and mixing of biological amendment (i.e., fine powder) with backfill. Use of water could control fugitive dust.	Remediation worker risk due to potential contact with impacted media during installation, operation, and maintenance of the soil vapor extraction system.	Remediation worker risk due to potential contact with impacted media during installation, operation, and maintenance of the soil vapor extraction system.	Remediation worker risk due to potential contact with impacted media during installation and operation of the <i>in situ</i> chemical oxidation system.	Remediation worker risk due to potential contact with impacted media during installation and operation of the <i>in situ</i> bioremediation system.
	Offsite transport of impacted soils would present risks for spillage and vehicle accident.				
Degree of risk prior to attainment of cleanup standards	High degree of risk to workers (contact with impacted media) and moderate risk to the community and environment (dust, impacted soil spillage, and discharge of treated water).	Moderate degree of risk to workers (contact with impacted media) and minimal risk to the community and environment (discharge of treated air).	Moderate degree of risk to workers (contact with impacted media) and minimal risk to the community and environment (discharge of treated air).	Moderate degree of risk to workers (contact with impacted media) and minimal risk to the community and environment (use of chemical oxidant).	Moderate degree of risk to workers (contact with impacted media) and minimal risk to the community and environment (use of macronutrient).
Time to achieve objectives	Soil cleanup levels would be attained following excavation of impacted soils except for residual contaminant mass beneath the building and off site. Soil cleanup levels in off property impacted areas would not be achieved in a reasonable timeframe.	Because the source mass is not removed, the restoration timeframe is expected to be several decades. Soil vapor extraction by itself does not address groundwater contamination.	It is estimated soil and groundwater cleanup levels would be attained within 10 to 15 years.	It is estimated soil and groundwater cleanup levels would be attained within 3 to 5 years.	It is estimated soil and groundwater cleanup levels would be attained within 3 to 5 years.
Score	4	6	6	8	9

Note:

ABILITY TO IMPLEMENT FORMER CIRCLE K SITE Seattle, Washington

Sub-Criteria	ALTERNATIVE 1 Excavation and Offsite Disposal	ALTERNATIVE 2 Soil Vapor Extraction	ALTERNATIVE 3 Soil Vapor Extraction with Air Sparging	ALTERNATIVE 4 In Situ Chemical Oxidation	ALTERNATIVE 5 In Situ Bioremediation
Consideration of whether alternative is technically possible.	Technically possible, although excavation is difficult due to physical constraints and proximity to buildings and public right-of-way. Sheet pile shoring will be implemented to prevent unstable excavation wall conditions.	Soil vapor extraction system installation, operation, and monitoring are relatively straightforward.	Soil vapor extraction and air sparging system installation, operation, and monitoring are relatively straightforward.	In situ chemical oxidation system installation, operation, and monitoring are relatively straightforward.	In situ bioremediation system installation, operation, and monitoring are relatively straightforward.
Availability of necessary offsite facilities, services, and materials.	Adequate offsite facilities, services, and materials are available.	Adequate offsite facilities, services, and materials are available.	Adequate offsite facilities, services, and materials are available.	Adequate offsite facilities, services, and materials are available.	Adequate offsite facilities, services, and materials are available.
Administrative and regulatory requirements.	Requirements include, but not limited to, the following: general construction permit, National Pollutant Discharge Elimination System (NPDES) permit. Permitting process may require up to 6 months.	Requirements include, but not limited to, the following: general construction permit, air discharge permit. Permit process may require up to 6 months.	Requirements include, but not limited to, the following: general construction permit, air discharge permit. Permit process may require up to 6 months.	Requirements include, but not limited to, the following: general construction permit and Underground Injection Control (UIC) permit. Permit process may require up to 6 months.	Requirements include, but not limited to, the following: general construction permit, and UIC permit. Permit process may require up to 6 months.
Scheduling, size, and complexity.	Dry season is more suitable for construction activities.	Dry season is more suitable for construction activities.	Dry season is more suitable for construction activities.	Dry season is more suitable for construction activities.	Dry season is more suitable for construction activities.
	Scheduling/traffic control for transportation of impacted soils offsite (in excess of 150 truck loads).	Installation of five soil vapor extraction wells. System installation would consist of trenching, piping, backfilling and construction of an onsite	12 air sparging wells. System installation would consist of trenching, piping, backfilling, and	Installation of five vertical multi-purpose wells and two horizontal wells. System installation would consist of trenching,	Installation of five vertical multi-purpose wells and two horizontal wells. System installation would consist of trenching,
	Maintaining access to on site businesses during construction activities.	enclosure to house system components.	construction of an onsite enclosure to house system components.	piping, backfilling, and construction of an onsite enclosure to house system components.	piping and backfilling and construction of an onsite enclosure to house system components.
Monitoring requirements.	Confirmation soil samples would be collected and analyzed to evaluate compliance with soil cleanup levels. Groundwater monitoring would be performed to assess the effectiveness of the	Long-term vapor monitoring would be performed to estimate mass removal, assess treatment effectiveness (including vapor mitigation), and satisfy air discharge requirements.	Long-term vapor monitoring would be performed to estimate mass removal, assess treatment effectiveness (including vapor mitigation), and satisfy air discharge requirements.	Long-term groundwater monitoring would be performed to assess treatment effectiveness, and evaluate groundwater quality.	Long-term groundwater monitoring would be performed to assess treatment effectiveness and evaluate groundwater quality.
	impacted soil removal and evaluate groundwater quality.	Long-term groundwater monitoring would be performed to assess treatment effectiveness, and evaluate groundwater quality.	Long-term groundwater monitoring would be performed to assess treatment effectiveness, and evaluate groundwater quality.		
Access for construction, operations, and monitoring.	Available. Periodic site access for groundwater monitoring.	Available. Access required for well and system installation.	Available. Access required for well and system installation.	Available. Access required for well and system installation.	Available. Access required for well and system installation.
	Traffic control required for entrance and egress of construction equipment and haul trucks.	Periodic site access required for soil vapor extraction system operation, maintenance, and groundwater monitoring.	Periodic site access required for soil vapor extraction and air sparging system operation, maintenance, and groundwater monitoring.	Periodic site access required for <i>in situ</i> chemical oxidation system operation, maintenance, and groundwater monitoring.	Periodic site access required for bioremediation system operation, maintenance, and groundwater monitoring.
Integration with existing facility operations and other current or potential remedial actions.	Site utilities would be temporarily relocated/restored as part of steel sheet pile installation and excavation activities. Highest degree of disturbance to site	Moderate degree of disturbance to site infrastructure during well installation and system construction. Minimal disturbance during long-term system operation and	Moderate degree of disturbance to site infrastructure during well installation and system construction. Minimal disturbance during long term system operation and maintenance and	Moderate degree of disturbance to site infrastructure during well installation and system construction. Minimal disturbance during long-term system operation and	Moderate degree of disturbance to site infrastructure during well installation and system construction. Minimal disturbance during long-term system operation and
"Benefit" Score	infrastructure of the evaluated alternatives.	maintenance and monitoring activities.	monitoring activities. 6	maintenance and monitoring activities.	maintenance and monitoring activities.
Denenii Score	4	0	0	0	0

Note:

TABLE 17 Page 1 of 2

POTENTIAL ACTION-SPECIFIC APPLICABLE, RELEVANT, AND APPROPRIATE REQUIREMENTS (ARARS) **FORMER CIRCLE K SITE** Seattle, Washington

Federal/State Citation	ALTERNATIVE 1 Excavation and Offsite Disposal	ALTERNATIVE 2 Soil Vapor Extraction	ALTERNATIVE 3 Soil Vapor Extraction with Air Sparging	ALTERNATIVE 4 In Situ Chemical Oxidation	ALTERNATIVE 5 In Situ Bioremediation	
Clean Water Act (CWA)	Applicable for groundwater	treatment and discharge).			
National Pollutant Discharge Elimination System (NPDES)						
Safe Drinking Water Act (National Primary and Secondary Drinking Water Regulations)	The remedial actions are b Method A (unrestricted use		e chemical concentrations	in soil and groundwate	er to MTCA	
Resource Conservation and Recovery Act (RCRA)	Waste generated during the of Washington Danger Was			ed per RCRA, as imple	emented by the State	
Clean Air Act, as Amended	Applicable for vapor treatm	ent and discharge; produ	uction of air emissions.			
Endangered Species Act (ESA)	Threatened or endangered will not jeopardize threaten			t not the Cornet Bay M	larina. Site activities	
National Historic Preservation Act, Archeological Resources Protect (36 CFR 800)		Historically significant archeological resources are not known to be present at the site. Historically significant properties will not be disturbed by any remedial action proposed.				
Occupational Safety and Health Act (29 CFR 1910)	Site activities will be performagnerated requirements.					
Standards Applicable to Transporters of Hazardous Waste (29 CFR 107, 29 CRF 171)	Hazardous waste, if any, go handling, and transportatio		e characterized/waste pro	filed as required to de	termine packaging,	
	STATE o					
Dangerous Waste Regulations (WAC 173-303)	Waste generated during the of Washington Danger Was			ed per RCRA, as imple	emented by the State	
Model Toxics Control Act (MTCA) (WAC 173-340)	Applicable to all aspects of regulations.	the project. Each remed	lial alternative would be co	ompleted in accordance	e with MTCA	
State Clean Air Act (RCW 70.94)	Applicable for vapor treatm	ent and discharge; produ	action of air emissions.			
Washington Industrial Safety and Health Act (WISHA) (WAC 296-62)	Site activities will be perform	med under appropriate V	/ashington Industrial and	Safety and Health Act	standards.	
Water Pollution Control Act (RCW 90.48)	Applicable for discharge of	effluents from remediation	on activities.			
Water Quality Standards for Groundwater of the State of Washington (WAC 173-200)	The remedial actions are being completed to reduce chemical concentrations in groundwater to MTCA Method A (unrestricted use) cleanup levels.					
Underground Injection Control (WAC 173-218)	Applicable for chemical oxidation and bioremediation recirculation systems.					
Maximum Environmental Noise Levels (WAC 173-60)	Relevant depending on ren	nedial action.				

TABLE 17 Page 2 of 2

POTENTIAL ACTION-SPECIFIC APPLICABLE, RELEVANT, AND APPROPRIATE REQUIREMENTS (ARARS) FORMER CIRCLE K SITE Seattle, Washington

Federal/State Citation	ALTERNATIVE 1 Excavation and Offsite Disposal	ALTERNATIVE 2 Soil Vapor Extraction	ALTERNATIVE 3 Soil Vapor Extraction with Air Sparging	ALTERNATIVE 4 In Situ Chemical Oxidation	ALTERNATIVE 5 In Situ Bioremediation	
Shoreline Management Act (RCW 90.58 and WAC 173-60)	Act directs local governments to develop and administer local shoreline master programs for regulation of uses of shoreline of the state.					
Minimum Standards for Construction and Maintenance of Wells (WAC 173-160)	Soil borings and well construction to be completed in accordance with these regulations.					
Maximum Environmental Noise Levels (WAC 173-60)	Applicable to all alternatives	s, especially those that in	nclude installation of a she	et pile bulkhead.		
State Environmental Policy Act (SEPA) (WAC 197-11)	Applicable to each alternati	ve.				
Puget Sound Clean Air Regulatory Requirements	Applicable for vapor treatme	ent and discharge; produ	uction of air emissions.			
Land Development Standards (SBC)	Compliance with substantive conditions of local permits; stormwater regulations, demolition, clearing, and grading.					
Building and Construction (SBC)	Compliance with substantive conditions of local building codes; building permits.					

Notes:

ARARs = Applicable, relevant, and appropriate requirements

CFR = Code of Federal Regulations
WAC = Washington Administrative Code
RCW = Revised Code of Washington

SBC = Seattle Building Code

TABLE 18

DISPROPORTIONATE COST ANALYSIS FORMER CIRCLE K SITE Seattle, Washington

Benefit	Benefit Weighting Factor	ALTERNATIVE 1 Excavation and Offsite Disposal	ALTERNATIVE 2 Soil Vapor Extraction	ALTERNATIVE 3 Soil Vapor Extraction with Air Sparging	ALTERNATIVE 4 In Situ Chemical Oxidation	ALTERNATIVE 5 In Situ Bioremediation
Protectiveness (Table 12)	25%	4	5	5	6	9
Permanence (Table 13)	20%	4	7	7	8	9
Long-Term Effectiveness (Table 14)	30%	4	6	6	6	8
Short-Term Risks (Table 15)	15%	4	6	6	8	9
Ability to Implement (Table 16)	5%	4	8	6	8	8
Consideration of Public Concerns	5%	4	6	6	6	6
Total Weighted Benefits	100%	4.0	6.1	6.0	6.8	8.5
Cost (Million \$)		\$2.498	\$1.136	\$1.232	\$1.635	\$1.657
Benefit/Cost Ratio		16	53	48	42	51
Benefit/Cost Ratio Relative to the Most Permanent Alternative		0.3	1.0	0.9	0.8	1.0

EXCAVATION AND OFFSITE DISPOSAL (ESTIMATED COST), FEASIBILITY STUDY FORMER CIRCLE K SITE Seattle, Washington

Item Description	Quantity	Unit	Unit Cost	Extension	Assumptions
·	quantity	Unit	Oline Gost	Extension	Additional
A. Preliminary Activities					
Cleanup Action Plan (CAP)	1	lump sum	\$20,000	\$20,000	
Design (plans and specifications)	<u>1</u> 1	lump sum	\$120,000 \$10,000	\$120,000 \$10,000	
Topographical Survey Permitting	1	lump sum	\$10,000	\$10,000	
General Demolition/Grading/Construction	1	lump sum	\$20,000	\$20,000	
National Pollutant Discharge Elimination System (NPDES)	1	lump sum	\$10,000	\$10,000	
City of Seattle Street use Permits	1	lump sum	\$15,000	\$15,000	
Coordination with King County Metro	1	lump sum	\$10,000	\$10,000	
Health and Safety Plan	1	lump sum	\$5,000	\$5,000	
Deed Restriction/Soil Management Plan	11	lump sum	\$30,000	\$30,000	
Item A. Estimated Cost				\$240,000	
B. Impacted Soil Evacuation and Dianocal/Amend and Bookfill/Compaction					
B. Impacted Soil Excavation and Disposal/Amend and Backfill/Compaction					
Mobilization/Demobilization	1	lump sum	\$98,018	\$98,018	8 percent of construction cost (Item C, excluding construction management).
Private Utility Locate Site Security	<u>1</u>	lump sum lump sum	\$2,000 \$10,000	\$2,000 \$10,000	Temporary fencing, signage, etc.
Erosion Control	1	lump sum	\$10,000	\$10,000	Construction entrance, silt fence, catch basin protection, stockpile management, etc.
Traffic Control	20	day	\$500	\$10,000	Traffic control for dump trucks entering and leaving site.
Protect Existing Public Trees	1	lump sum	\$5,000	\$5,000	3 trees.
Protect Existing Public Power Poles/Traffic Light/Overhead Bus Power	1	lump sum	\$15,000	\$15,000	Perform in accordance with Seattle City Light requirements.
Remove and Replace Existing Sign	1	lump sum	\$5,000	\$5,000	
Abandon Monitoring Wells	5	well	\$1,000	\$5,000	Wells MW-4, MW-13, MW-19, MW-20, and MW-21 require abandonment, located within designated excavation area.
Utility Disconnect/Re-Route	11	lump sum	\$40,000	\$40,000	Estimate.
Steel Sheet Pile Mobilization	1	lump oum	\$28,000	\$28,000	Length = 350 feet; Depth = 20 feet. 8. percent of sheet pile install cost.
Mobilization Materials/Installation/Removal	7,000	lump sum square feet	\$28,000 \$50	\$28,000 \$350,000	8. percent of sneet pile install cost. Onsite excavation only - 4000 sf 350ft perimeter.
Shoring Monitoring Survey	1	lump sum	\$8,000	\$8,000	Orisine Excavation (mig = 4000 st 3000 permitter). Survey for monitoring of potential settlement of City of Seattle street.
Sawcut Existing Pavement	350	linear feet	\$5,000	\$1,750	,
Demo and Remove Existing Pavement (4" to 6")	444	square yard	\$8	\$3,556	
Haul and Dispose Pavement	96	ton	\$15	\$1,436	
Excavation (landfill disposal)	2,963	cubic yard	\$15	\$44,444	Load directly to trucks. Assume material previously profiled. Excavate to 15' bgs.
Waste Profiling for Landfill Disposal	11	lump sum	\$1,000	\$1,000	Use existing laboratory analytical data for landfill waste profiling.
Hauling	6,111	ton	\$15	\$91,667	Hauling from site to landfill. Assumes wet soil.
Landfill Disposal Soil Chemical Analyses (confirmation sampling)	6,111	ton	\$45	\$275,000	Non-hazardous waste - Subtitle D landfill facility in Seattle, Washington (Robanco/Allied Waste).
TPH-Gasoline	50	sample	\$35	\$1,750	Discrete soil samples from excavation floor and sidewalls.
BTEX	50	sample	\$35	\$1,750	District Con Campion with Characteristic and Characteristic
TPH-Diesel	50	sample	\$35	\$1,750	
Metals	50	sample	\$75	\$3,750	
On-Site Temporary Water Treatment System Construction/Dismantling	1	lump sum	\$30,000	\$30,000	Pumps, hoses, weir tanks, bag filters, and activated carbon vessels.
Discharge of Treated Water	1	lump sum	\$20,000	\$20,000	
Dewatering/Treatment System Management NPDES Water Chemical Analyses	9	week	\$3,000	\$27,000	
TPH-Gasoline	18	sample	\$35	\$630	Weekly collection, influent and effluent water samples.
BTEX	18	sample	\$35	\$630	Trooty consoler, massivene oneste water campiles
TPH-Diesel	18	sample	\$35	\$630	
Imported Backfill (material and transport)	4,800	ton	\$30	\$144,000	Imported fill. Includes 20% compaction factor in quantity estimate.
Placement and Compaction (imported fill)	3,393	cubic yard	\$10	\$33,926	
Biological Amendment (material and transport)	660	lb	\$12	\$7,920	660 pounds amendment @ 3 pounds/tn of backfill; 1-foot amended backfill thickness placed a floor of excavation.
Placement/Mixing Amendment/Compaction CSBC Pavement Subgrade (6" thick)	163 82	cubic yard cubic yard	\$10 \$45	\$1,630 \$3,675	
Asphalt Concrete Pavement (4" thick)	444	square yard	\$21	\$9,333	Replace parking lot pavement.
Utility Restoration	1	lump sum	\$30,000	\$30,000	
Construction Management	1	lump sum	\$132,324	\$132,324	Project management, oversight, direct expenses, etc. 10 percent of construction cost (Item B).
Item B. Estimated Cost				\$1,455,569	
			+	. ,,	
C. Monitoring Well Installation/Groundwater Sampling and Chemical Analyses					
Monitoring Well Installation					Replacement wells for MW-4, MW-13, MW-19, MW-20, MW-21.
Mobilization/Demobilization	1	lump sum	\$2,000	\$2,000	
Well Installation	5	well	\$2,500	\$12,500	
Consultant Labor and Equipment	5	day	\$1,200	\$6,000	
Groundwater Sampling and Chemical Analyses	220	oon!-	60 F	644.700	Following completion of remediation activities, quarterly for 2 years from twelve monitoring wells. After 2 years, semi annual for 10 years.
TPH-Gasoline BTEX	336 336	sample sample	\$35 \$35	\$11,760 \$11,760	
TPH-Diesel	336	sample	\$35 \$35	\$11,760	
Natural Attenuation Parameters	336	sample	\$150	\$50,400	
Consultant Labor and Equipment	28	event	\$2,500	\$70,000	
Groundwater Monitoring Report	28	report	\$16,000	\$319,500	
Investigation-Derived Waste Water Handling/Disposal	28	events	\$1,000	\$20,000	1 disposal event per sampling event.
Item C. Estimated Cost				\$515,680	
D. Other			***	***	
Project Management	2	years	\$6,000 \$15,000	\$12,000 \$15,000	Lipshides as built drawings
Construction Report Groundwater Monitoring Report	1 28	report report	\$15,000 \$4,000	\$15,000 \$112,000	Includes as-built drawings. Quarterly for 2 years. After 2 years, semi annual for 10 years.
Washington State Sales Tax	<u>28</u> 1	lump sum	\$4,000 \$147,012	\$147,012	10.1 percent of construction capital cost (Item B).
Item D. Estimated Cost		ianip dani	ψ. rr,012	\$286,012	
Total Estimated Cost				\$2,498,000	
Notes:					

^{1.} Estimated cost was prepared at -30/+50% for relative comparison amongst alternatives. The prepared cost estimate is not intended for budgetary purposes.

2. An engineering cost estimate will be prepared in conjunction with CAP preparation and design (technical specifications and drawings).

SOIL VAPOR EXTRACTION (ESTIMATED COST), FEASIBILITY STUDY FORMER CIRCLE K SITE

Item Description	Quantity	Unit	Unit Cost	Extension	Assumptions
A. Preliminary Activities					
Cleanup Action Plan (CAP)	1	lump sum	\$20,000	\$20,000	
Design (plans and specifications)	1	lump sum	\$80,000	\$80,000	
Topographical Survey	1	lump sum	\$10,000	\$10,000	
Permitting			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
General Demolition/Grading/Construction	1	lump sum	\$10,000	\$10,000	
Air Discharge	1	lump sum	\$5,000	\$5,000	
Health and Safety Plan	1	lump sum	\$5,000	\$5,000	
Deed Restriction/Soil Management Plan	1	lump sum	\$30,000	\$30,000	
Item A. Estimated Cost				\$160,000	
B. Soil Vapor Extraction System Construction					
Mobilization/Demobilization	1	lump sum	\$13,225	\$13,225	8. percent of construction cost (Item C, excluding construction management).
Private Utility Locate	1	lump sum	\$2,000	\$2,000	-
Extraction Well Installation	5	well	\$2,900	\$14,500	
Investigation-Derived Waste (IDW) Water Transport and Disposal	1	Unit Cost	\$1,000	\$1,000	Decontamination and development water.
Investigation-Derived Waste (IDW) Soil Transport and Disposal	1	Unit Cost	\$3,000	\$3,000	6 drums per well SVE well; \$100 per drum T&D.
Power Drop/Electrical - Upgrade Existing	1	lump sum	\$3,000	\$3,000	
Enclosure Construction	1	lump sum	\$10,000	\$10,000	
Vaults/Well Head Appurtenances	5	each	\$1,400	\$7,000	
Saw Cut pavement	500	linear feet	\$5	\$2,500	
Demo and Remove Existing Pavement (4" to 6")	83	square yard	\$8	\$667	3' wide pavement cut.
Haul and Dispose Pavement	18	ton	\$13	\$233	
Excavation (landfill disposal)	31	cubic yard	\$15	\$463	
Waste Profiling for Landfill Disposal	1	lump sum	\$1,000	\$1,000	Use existing laboratory analytical data for landfill waste profiling.
Hauling Landfill Disposal	52	ton	\$15	\$781	Hauling from site to landfill . Non-hazardous waste - Subtitle D landfill facility in Seattle, Washington (Robanco/Allied Waste).
	52 650	ton linear feet	\$45 \$5	\$2,344 \$3,250	2" Schedule 80 PVC.
Piping Imported Backfill (material and transport)	50	ton	\$30	\$3,250 \$1,500	Imported fill. Includes 20% compaction factor in quantity estimate.
Placement and Compaction (imported fill)	22	cubic yard	\$10	\$216	Imported fill. Includes 20% compaction factor in quantity estimate.
CSBC Pavement Subgrade (6" thick)	6	cubic yard	\$45	\$271	
Asphalt Concrete Pavement (4" thick)	83	square yard	\$67	\$5,583	Pavement replacement over trench.
Knockout Tank/Vacuum Blower	1	lump sum	\$25,000	\$25,000	Tallian Topiaconia vol. acidi.
Activated Carbon Vessels	1	lump sum	\$18,000	\$18,000	Two, 2,000 carbon vessels in series.
System Installation	1	lump sum	\$20,000	\$20,000	W. Account of the control of the con
Consultant Labor (oversight)	30	day	\$1,500	\$45,000	
Item B. Estimated Cost				\$180,534	
C. Long-Term (Net Present Worth)				·	Soil vapor extraction system operation for 10 years.
SVE System O&M	10	year	\$3,250	\$28,500	General contractor labor, equipment, replacement equipment, activated carbon changeout, etc.
SVE System Consultant Labor (monthly sampling)	10	year	\$6,480	\$56,800	one person, 8 hours per event, \$135/hr, bi-monthly
SVE System Chemical Analyses	10	sample	\$6,000	\$52,600	Bi-monthly inf. and eff. vapor samples for VOCs. Select extraction well sampling and chem. analyses. 5 sample/event.
Investigation-Derived Waste GAC Handling/Disposal	10	year	\$200	\$1,800	Assume annual replacement of both 2000 lb carbon vessels @ \$100/tn for disposal, cost increased for small quantity.
SVE System Monthly Discharge Reports	10	report	\$6,000	\$52,600	Semi-annual for 10 years.
Groundwater Sampling and Chemical Analyses					Quarterly for 2 years from twelve monitoring wells. After 2 years, semi annual for 10 years.
TPH-Gasoline	336	sample	\$35	\$11,760	
BTEX	336	sample	\$35	\$11,760	
TPH-Diesel	336	sample	\$35	\$11,760	
Consultant Labor and Equipment	28	event	\$2,500	\$70,000	
Groundwater Monitoring Report	28	report	\$16,000	\$319,500	
Investigation-Derived Waste Water Handling/Disposal	28	events	\$3,000	\$59,900	1 disposal event per sampling event.
Item C. Estimated Cost				\$676,980	
D. Other					
Construction Report	1	report	\$25,000	\$25,000	Includes as-built drawings.
O&M Manuals (SVE system)	1	report	\$15,000	\$15,000	
Project Coordination	10	years	\$6,000	\$60,000	
Washington State Sales Tax	1	lump sum	\$18,234	\$18,234	10.1 percent of construction capital cost (Item B).
Item D. Estimated Cost				\$118,234	
Total Estimated Cost				\$1,136,000	

- Notes:

 1. Estimated cost was prepared at -30/+50% for relative comparison amongst alternatives. The prepared cost estimate is not intended for budgetary purposes.

 2. Net present worth cost prepared using discount rate of 2.5 percent (%).

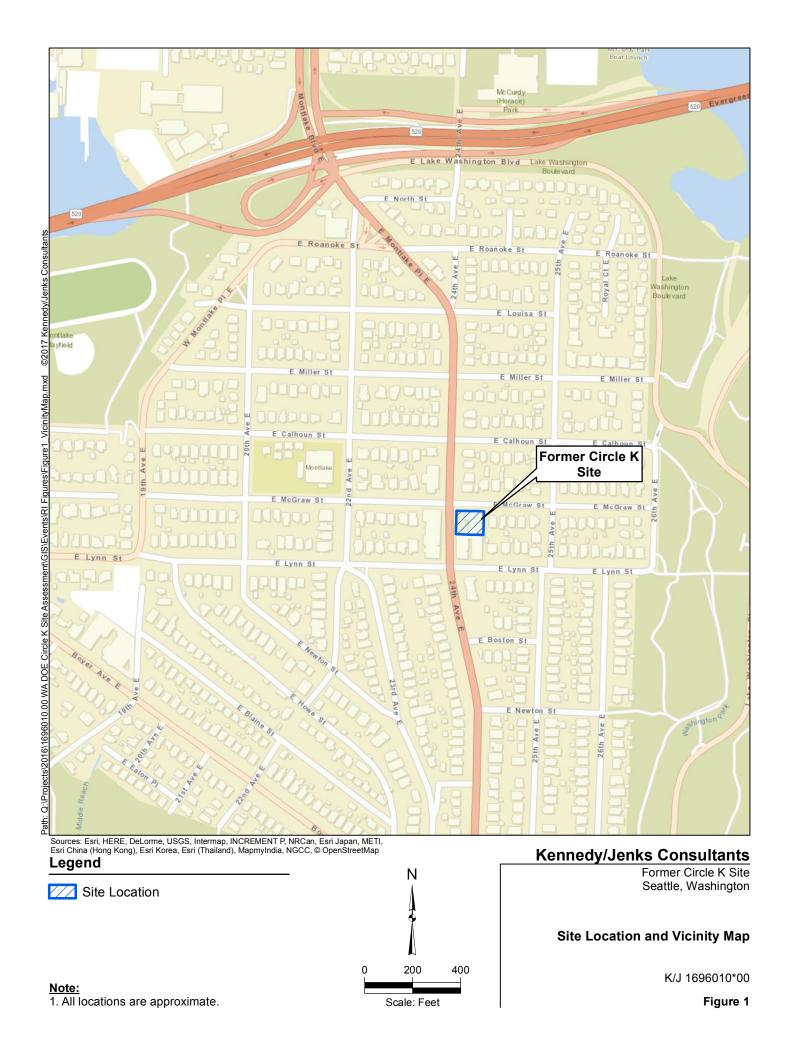
 3. An engineering cost estimate will be prepared in conjunction with CAP preparation and design (technical specifications and drawings).

SOIL VAPOR EXTRACTION AND AIR SPARGING (ESTIMATED COST), FEASIBILITY STUDY FORMER CIRCLE K SITE

Item Description	Quantity	Unit	Unit Cost	Extension	Assumptions
A. Preliminary Activities					
Cleanup Action Plan (CAP)	1	lump sum	\$20,000	\$20,000	
Design (plans and specifications)	<u>'</u>	lump sum	\$80,000	\$80,000	
Topographical Survey	1	lump sum	\$10,000	\$10,000	
Permitting		'	. ,		
General Demolition/Grading/Construction	1	lump sum	\$10,000	\$10,000	
Air Discharge	1	lump sum	\$5,000	\$5,000	
Health and Safety Plan	1	lump sum	\$5,000	\$5,000	
Deed Restriction/Soil Management Plan	1	lump sum	\$30,000	\$30,000	
Item A. Estimated Cost				\$160,000	
B. Air Sparge/Soil Vapor Extraction System Construction					
Mobilization/Demobilization	1	lump sum	\$14,444	\$14,444	8. percent of construction cost (Item C, excluding construction management).
Private Utility Locate	1	lump sum	\$2,000	\$2,000	
Extraction Well Installation	5	well	\$2,500	\$12,500	
Air Sparge Well Installation	10	well	\$2,500	\$25,000	
Investigation-Derived Waste (IDW) Water Transport and Disposal	1 1	Unit Cost Unit Cost	\$1,000	\$1,000	Decontamination and development water.
Investigation-Derived Waste (IDW) Soil Transport and Disposal Power Drop/Electrical - Upgrade Existing	1 1	lump sum	\$9,000 \$3,000	\$9,000 \$3,000	6 drums per well SVE/AS well; \$100 per drum T&D.
Enclosure Construction	1	lump sum	\$3,000	\$3,000 \$10,000	
Vaults/Well Head Appurtenances	15	each	\$1,400	\$10,000	+
Saw Cut pavement	700	linear feet	\$1,400	\$3,500	
Demo and Remove Existing Pavement (4" to 6")	117	square yard	\$8	\$933	3' wide pavement cut.
Haul and Dispose Pavement	25	ton	\$15	\$377	
Excavation (landfill disposal)	43	cubic yard	\$15	\$648	Load directly to trucks. Assume material previously profiled. Pipe trench 2' wide, 1.67' deep (excludes pavement thickness).
Waste Profiling for Landfill Disposal	1	lump sum	\$1,000	\$1,000	Use existing laboratory analytical data for landfill waste profiling.
Hauling	73	ton	\$15	\$1,094	Hauling from site to landfill.
Landfill Disposal	73	ton	\$45	\$3,282	Non-hazardous waste - Subtitle D landfill facility in Seattle, Washington (Robanco/Allied Waste).
Piping	1,950	linear feet	\$5	\$9,750	2" Schedule 80 PVC.
Imported Backfill (material and transport)	70	ton	\$30	\$2,100	Imported fill. Includes 20% compaction factor in quantity estimate.
Placement and Compaction (imported fill)	17	cubic yard	\$10	\$173	
CSBC Pavement Subgrade (6" thick)	8	cubic yard	\$45 \$67	\$379	December to a least to
Asphalt Concrete Pavement (4" thick) Knockout Tank/Vacuum Blower	117 1	square yard lump sum	\$25,000	\$7,817 \$25,000	Pavement replacement over trench.
Activated Carbon Vessels	<u>'</u> 1	lump sum	\$18,000	\$18,000	Two, 2,000 carbon vessels in series.
System Installation	1	lump sum	\$25,000	\$25,000	TWO, 2,000 Carbon vessels in series.
Consultant Labor (oversight)	30	day	\$1,500	\$45,000	
Item B. Estimated Cost			¥ 1,000	\$241,998	
C. Long-Term (Net Present Worth)				V =11,000	Soil vapor extraction system operation for 10 years.
SVE/AS System O&M	10	year	\$3,700	\$32,400	General contractor labor, equipment, replacement equipment, activated carbon changeout, etc.
SVE/AS System Consultant Labor (monthly sampling)	10	year	\$8,100	\$70,900	One person, 10 hours per event, \$135/hr.
SVE/AS System Consultant Labor (monthly sampling) SVE/AS System Chemical Analyses	10	sample	\$6,000	\$52,600	Bi-monthly inf. and eff. vapor samples for VOCs. Select extraction well sampling and chem. analyses. 5 sample/event.
Investigation-Derived Waste GAC Handling/Disposal	10	year	\$200	\$1,800	Assume annual replacement of both 2,000 lb carbon vessels @ \$100/tn for disposal, cost increased for small quantity.
SVE System Monthly Discharge Reports	10	report	\$6,200	\$54,300	Semi-annual for 10 years.
Groundwater Sampling and Chemical Analyses					Quarterly for 2 years from twelve monitoring wells. After 2 years, semi annual for 10 years.
TPH-Gasoline	336	sample	\$35	\$11,760	
BTEX	336	sample	\$35	\$11,760	
TPH-Diesel	336	sample	\$35	\$11,760	
Consultant Labor and Equipment	28	event	\$2,800	\$78,400	
Groundwater Monitoring Report	28	report	\$16,000	\$319,500	
Investigation-Derived Waste Water Handling/Disposal	28	events	\$3,000	\$59,900	1 disposal event per sampling event
Item C. Estimated Cost				\$705,080	
D. Other					
Construction Report	1	report	\$25,000	\$25,000	Includes as-built drawings.
O&M Manuals (SVE system)	1	report	\$15,000	\$15,000	
Project Coordination	10	year	\$6,000	\$60,000	
Washington State Sales Tax	1	lump sum	\$24,442	\$24,442	10.1 percent of construction capital cost (Item B).
Item D. Estimated Cost				\$124,442	
Total Estimated Cost				\$1,232,000	

Notes:
1. Estimated cost was prepared at -30/+50% for relative comparison amongst alternatives. The prepared cost estimate is not intended for budgetary purposes.
2. Net present worth cost prepared using discount rate of 2.5 percent (%).
3. An engineering cost estimate will be prepared in conjunction with CAP preparation and design (technical specifications and drawings).

IN SITU CHEMICAL OXIDATION (ESTIMATED COST), FEASIBILITY STUDY FORMER CIRCLE K SITE


Item Description	Quantity	Unit	Unit Cost	Extension	Assumptions
A. Preliminary Activities					
-			***	***	
Cleanup Action Plan (CAP)	1	lump sum	\$20,000	\$20,000	
Design (plans and specifications)	1	lump sum	\$80,000	\$80,000	
Topographical Survey	1	lump sum	\$10,000	\$10,000	
Permitting General Demolition/Grading/Construction	1	lump sum	\$10,000	\$10,000	
Air Discharge	1	lump sum	\$5,000	\$10,000	
Underground Injection Control (UIC)	<u> </u>	lump sum	\$5,000	\$5,000	
Health and Safety Plan	1	lump sum	\$5,000	\$5,000	
Deed Restriction/Soil Management Plan	1	lump sum	\$30,000	\$30,000	
Item A. Estimated Cost	<u>'</u>	idilip sum	Ψ00,000	\$165,000	
B. Chemical Oxidation System Construction				\$103,000	
	4	lumn aum	¢16 721	¢16 721	9. percent of construction cost //tem C. evaluation construction management)
Mobilization/Demobilization	<u>1</u> 1	lump sum	\$16,731 \$2,000	\$16,731 \$2,000	8. percent of construction cost (Item C, excluding construction management).
Private Utility Locate Multi-Purpose Vertical Well Installation	5	lump sum well	\$2,000	\$2,000 \$14,500	4-inch diameter well casing and screen.
Horizontal Well Installation	3	well	\$25,000	\$75,000	4-inch diameter well casing and screen. 4-inch diameter well casing and screen.
Investigation-Derived Waste (IDW) Water Transport and Disposal	<u>3</u> 1	Unit Cost	\$25,000	\$75,000	Decontamination and development water for vertical and horizontal wells.
Investigation-Derived Waste (IDW) Water Transport and Disposal	<u> </u>	Unit Cost	\$1,000	\$4,000	6 drums per well multi-purpose well; \$100 per drum T&D.
Power Drop/Electrical - Upgrade Existing	<u>'</u> 1	lump sum	\$3,000	\$3,000	Power drop exists at site but will need to be evaluated for viability for use. Assumes new power drop will be necessary.
Enclosure Construction	<u>'</u> 1	lump sum	\$10,000	\$10,000	To street along which are still but will freed to be extinuated for viability for date. Assumes frew power drop will be freedestary.
Vaults/Well Head Appurtenances	8	each	\$1,400	\$11,200	
Saw Cut pavement	560	linear feet	\$5	\$2,800	
Demo and Remove Existing Pavement (4" to 6")	93	square yard	\$8	\$747	3' wide pavement cut.
Haul and Dispose Pavement	20	ton	\$15	\$301	
Excavation (landfill disposal)	35	cubic yard	\$15	\$519	Load directly to trucks. Assume material previously profiled. Pipe trench 2' wide, 1.67' deep (excludes pavement thickness).
Waste Profiling for Landfill Disposal	1	lump sum	\$1,000	\$1,000	Use existing laboratory analytical data for landfill waste profiling.
Hauling	58	ton	\$15	\$875	Hauling from site to landfill.
Landfill Disposal	58	ton	\$45	\$2,626	Non-hazardous waste - Subtitle D landfill facility in Seattle, Washington (Robanco/Allied Waste).
Piping	1,040	linear feet	\$5	\$5,200	2" Schedule 80 PVC.
Imported Backfill (material and transport)	56	ton	\$30	\$1,680	Imported fill. Includes 20% compaction factor in quantity estimate.
Placement and Compaction (imported fill)	14	cubic yard	\$10	\$138	
CSBC Pavement Subgrade (6" thick)	7	cubic yard	\$45	\$303	
Asphalt Concrete Pavement (4" thick)	93	square yard	\$67	\$6,253	Pavement replacement over trench.
Knockout Tank/Vacuum Blower	1	lump sum	\$25,000	\$25,000	
Activated Carbon Vessels	1	lump sum	\$18,000	\$18,000	Two, 2,000 carbon vessels in series.
System Installation	1	lump sum	\$25,000	\$25,000	
Consultant Labor (oversight)	30	day	\$1,500	\$45,000	
Item B. Estimated Cost				\$272,874	
C. Long-Term (Net Present Worth)					Soil vapor extraction system operation for 5 years.
Chemical Oxidation System O&M	5	year	\$115,000	\$534,300	General contractor labor, chemical oxidation products, equipment, replacement equipment, activated carbon changeout, etc.
Chemical Oxidation System Consultant Labor (monthly site visit)	5	year	\$12,960	\$60,300	one person, 8 hours per event, \$135/hr.
Investigation-Derived Waste GAC Handling/Disposal	5	year	\$200		Assume annual replacement of both 2,000 lb carbon vessels @ \$100/tn for disposal, cost increased for small quantity.
Groundwater Sampling and Chemical Analyses	<u> </u>	yeai	ΨΖΟΟ	Ψ1,000	Quarterly for 2 years from 12 monitoring wells. After 2 years, semiannual for 10 years.
TPH-Gasoline	336	sample	\$35	\$11,760	Section, 16. 2 years from 12 monthly from 1 fitted 2 years, communication to years.
BTEX	336	sample	\$35	\$11,760	
TPH-Diesel	336	sample	\$35	\$11,760	
Consultant Labor and Equipment	28	event	\$2,500	\$70,000	
Groundwater Monitoring Report	28	report	\$16,000	\$319,500	
Investigation-Derived Waste Water Handling/Disposal	28	events	\$3,000	\$59,900	1 disposal event per sampling event.
Item C. Estimated Cost				\$1,080,280	
D. Other				., ., .,	
Construction Report	1	report	\$25,000	\$25,000	Includes as-built drawings.
Project Coordination	10	year	\$6,000	\$60,000	includes as-vuiit urawings.
O&M Manuals (chemical oxidation system)	1	report	\$15,000	\$15,000	1
Washington State Sales Tax	<u>'</u> 1	lump sum	\$16,665	\$16,665	10.1 percent of construction capital cost (Item B).
Item D. Estimated Cost	ı	iump sum	ψ10,000	\$116,665	16.1 porcont of constitution capital cost (item b).
Total Estimated Cost				\$1,635,000	
1 3121 25111111111 3351		1		+ -, -,	

- Estimated cost was prepared at -30/+50% for relative comparison amongst alternatives. The prepared cost estimate is not intended for budgetary purposes.
 Net present worth cost prepared using discount rate of 2.5 percent (%).
 An engineering cost estimate will be prepared in conjunction with CAP preparation and design (technical specifications and drawings).

IN SITU BIOREMEDIATION (ESTIMATED COST), FEASIBILITY STUDY FORMER CIRCLE K SITE

Item Description	Quantity	Unit	Unit Cost	Extension	Assumptions
A. Preliminary Activities					
Cleanup Action Plan (CAP)	1	lump sum	\$20,000	\$20,000	
Design (plans and specifications)	1	lump sum	\$100,000	\$100,000	
Permitting	-	,	,	, ,	
General Demolition/Grading/Construction	1	lump sum	\$10,000	\$10,000	
Underground Injection Control (UIC)	1	lump sum	\$5,000	\$5,000	
Health and Safety Plan	1	lump sum	\$5,000	\$5,000	
Deed Restriction/Soil Management Plan	1	lump sum	\$30,000	\$30,000	
Item A. Estimated Cost		·		\$170,000	
B. Bioremediation System Construction					
Mobilization/Demobilization	1	lump sum	\$16,731	\$16,731	bercent of construction cost (Item C, excluding construction management).
Private Utility Locate	1	lump sum	\$2,000	\$2,000	or personal control of the control o
Multi-Purpose Vertical Well Installation	5	well	\$2,900	\$14,500	4-inch diameter well casing and screen.
Horizontal Well Installation	3	well	\$25,000	\$75,000	4-inch diameter well casing and screen.
Investigation-Derived Waste (IDW) Water Transport and Disposal	1	Unit Cost	\$1,000	\$1,000	Decontamination and development water for vertical and horizontal wells.
Investigation-Derived Waste (IDW) Soil Transport and Disposal	1	Unit Cost	\$4,000	\$4,000	6 drums per well multi-purpose well; \$100 per drum T&D.
Power Drop/Electrical - Upgrade Existing	1	lump sum	\$3,000	\$3,000	Power drop exists at site but will need to be evaluated for viability for use. Assumes new power drop will be necessary.
Enclosure Construction	1	lump sum	\$10,000	\$10,000	. Since any similar at the but this house to be distincted for this interference from power drop this be recordedly.
Vaults/Well Head Appurtenances	8	each	\$1,400	\$11,200	
Saw Cut pavement	560	linear feet	\$5	\$2,800	
Demo and Remove Existing Pavement (4" to 6")	93	square yard	\$8	\$747	3' wide pavement cut
Haul and Dispose Pavement	20	ton	\$15	\$301	o wide pavement out
Excavation (landfill disposal)	35	cubic yard	\$15 \$15	\$519	Load directly to trucks. Assume material previously profiled. Pipe trench 2' wide, 1.67' deep (excludes pavement thickness).
Waste Profiling for Landfill Disposal			\$1,000	\$1,000	Use existing laboratory analytical data for landfill waste profiling.
Hauling	 58	lump sum ton	\$1,000	\$1,000	Hauling from site to landfill.
				\$2,626	Non-hazardous waste - Subtitle D landfill facility in Seattle, Washington (Robanco/Allied Waste).
Landfill Disposal	58	ton	\$45	. ,	
Piping	1,040	linear feet	\$5	\$5,200	2" Schedule 80 PVC.
Imported Backfill (material and transport)	56	ton	\$30	\$1,680	Imported fill. Includes 20% compaction factor in quantity estimate.
Placement and Compaction (imported fill)	14	cubic yard	\$10	\$138	
CSBC Pavement Subgrade (6" thick)		cubic yard	\$45	\$303	
Asphalt Concrete Pavement (4" thick)	93	square yard	\$67	\$6,253	Pavement replacement over trench.
Knockout Tank/Vacuum Blower	1	lump sum	\$25,000	\$25,000	7 000
Activated Carbon Vessels	1	lump sum	\$18,000	\$18,000	Two, 2,000 carbon vessels in series.
System Installation	1	lump sum	\$25,000	\$25,000	
Consultant Labor (oversight)	30	day	\$1,500	\$45,000	
Item B. Estimated Cost				\$272,874	
C. Long-Term (Net Present Worth)					Soil vapor extraction system operation for 5 years.
Bioremediation System O&M	5	year	\$115,000	\$534,300	General contractor labor, bioremediation products, equipment, replacement equipment, activated carbon changeout, etc.
Bioremediation System Consultant Labor (monthly site visit)	5	year	\$12,960	\$60,300	One person, 8 hours per event, \$135/hr.
Investigation-Derived Waste GAC Handling/Disposal	5	year	\$200	\$1,000	Assume annual replacement of both 2,000 lb carbon vessels @ \$100/tn for disposal, cost increased for small quantity.
Groundwater Sampling and Chemical Analyses	-	1			Quarterly for 2 years from 12 monitoring wells. After 2 years, semiannual for 10 years.
TPH-Gasoline	336	sample	\$35	\$11,760	
BTEX	336	sample	\$35	\$11,760	
TPH-Diesel	336	sample	\$35	\$11,760	
Consultant Labor and Equipment	28	event	\$2,500	\$70,000	
Groundwater Monitoring Report	28	report	\$16,000	\$319,500	
Investigation-Derived Waste Water Handling/Disposal	28	events	\$3,000	\$59,900	1 disposal event per sampling event.
Item C. Estimated Cost			, , , , , , ,	\$1,080,280	
D. Other				,	
		NO 10 0 114	#05.000	#2F 000	Includes as built drawings
Construction Report	1	report	\$25,000	\$25,000	Includes as-built drawings.
Project Coordination	11	year	\$6,000	\$66,000	
O&M Manuals (bioremediation system)	1	report	\$15,000	\$15,000	
Washington State Sales Tax	1	lump sum	\$27,560	\$27,560	10.1 percent of construction capital cost (Item B).
				\$133,560	
Item D. Estimated Cost				4100,000	

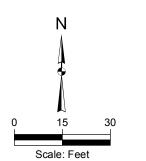
- Estimated cost was prepared at -30/+50% for relative comparison amongst alternatives. The prepared cost estimate is not intended for budgetary purposes.
 Net present worth cost prepared using discount rate of 2.5 percent (%).
 An engineering cost estimate will be prepared in conjunction with CAP preparation and design (technical specifications and drawings).

Legend Ν Site Location **Parcel Boundaries** Nearby State Listed Cleanup Sites Notes: 1. All locations are approximate. 75 150 2. Parcel boundaries from King County Assessor's Office. State listed cleanup sites from Ecology's Facility/Site Database. Scale: Feet

Kennedy/Jenks Consultants

Former Circle K Site Seattle, Washington

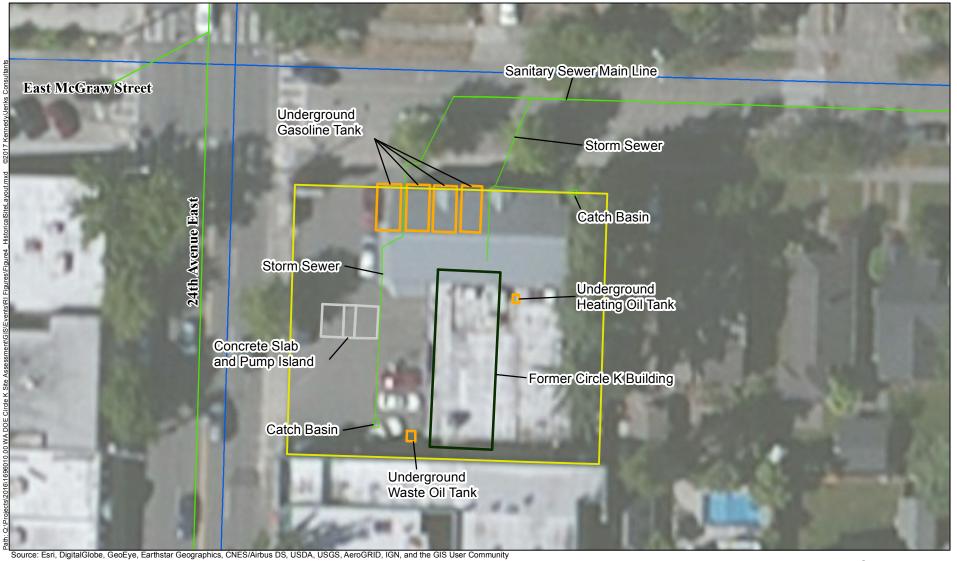
Nearby Sites


K/J 1696010*00

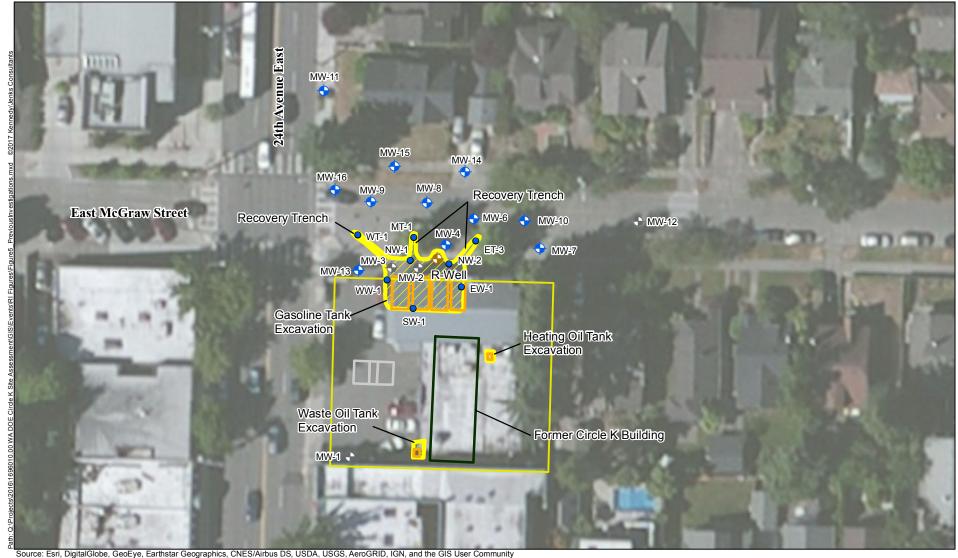
Legend Remediation Wells Sewer Line Monitoring Well Water Line Abandoned Well Parcel Boundary Landau Well Boring O Landau Boring

- Notes:

 1. All locations are approximate.
- 2. Sewer and water line locations are based on available site information and not appropriate for construction purposes.



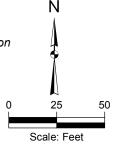
Kennedy/Jenks Consultants


Former Circle K Site Seattle, Washington

Site Map and Utilities

K/J 1696010*00

Kennedy/Jenks Consultants Legend Notes: Ν Former Circle K Site 1. All locations are approximate. Seattle, Washington Former Building 2. Sewer and water line locations are based on available site information and not appropriate for construction purposes. Former Pump Island 3. Former feature locations georeferenced from Report of **Historical Site Features** Geotechnical Services Subsurface Contamination Study and Former Tank Remedial Action Monitoring Circle K Facility 1461 Seattle, Parcel Boundary Washington, dated 6 March 1990 by GeoEngineers. 40 Sewer Line K/J 1696010*00 Water Line Figure 4 Scale: Feet

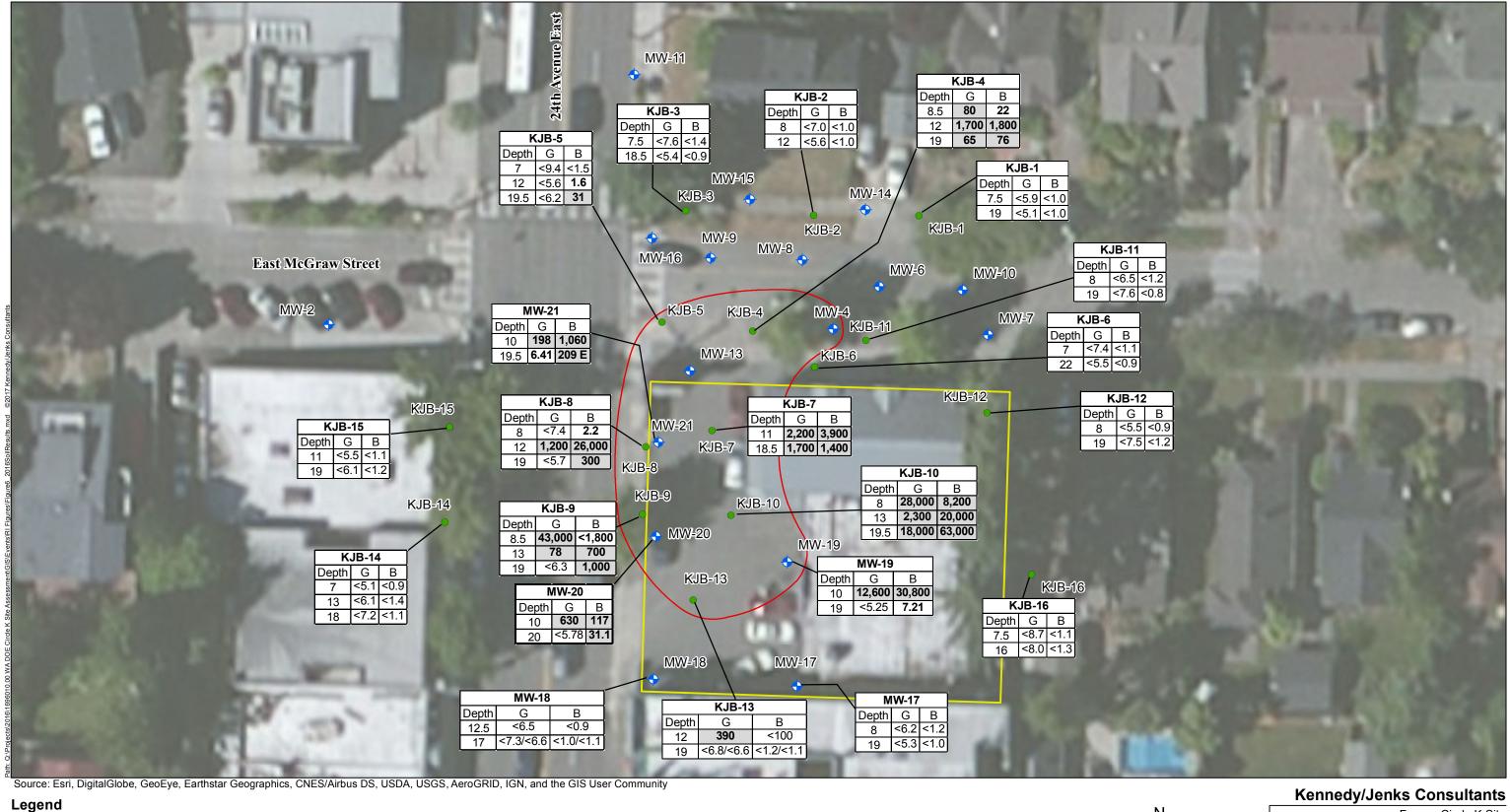


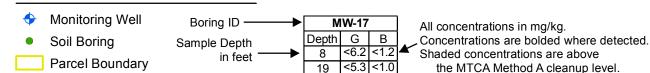
Legend

- 1989 Monitoring Well 💠
- Recovery Well Soil Sample
- **Abandoned Well**
- Excavations
- Former Building Former Pump Island
- Former Tank
- Site Boundary

Notes:

- 1. All locations are approximate.
- 2. Map locations georeferenced from Report of Geotechnical Services Subsurface Contamination Study and Remedial Action Monitoring Circle K Facility 1461 Seattle, Washington, dated 6 March 1990 by GeoEngineers.
- 3. MW-2 and MW-3 were abandoned in 1989 during excavation activities. MW-1 was abandoned in 2003, and MW-12 was abandoned between 2003 and 2005.

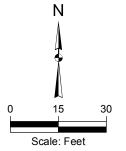



Kennedy/Jenks Consultants

Former Circle K Site Seattle, Washington

Previous Investigations and Excavation Limits

K/J 1696010*00

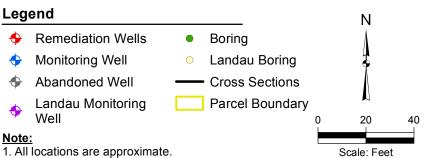


Approximate Extent of Gasoline-Range Organics/Benzene in Soil above MTCA Method A Cleanup Levels

Notes:

the MTCA Method A cleanup level.

- 1. All locations are approximate.
- 2. mg/kg = milligrams per kilogram.
- 3. G = gasoline-range organics.
- 4. B = benzene.



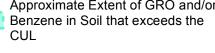
Former Circle K Site Seattle, Washington

2016 Soil Boring Soil Sample Results

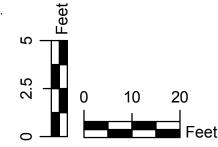
K/J 1696010*00

Kennedy/Jenks Consultants

Former Circle K Site Seattle, Washington


Surface Representation of Interpretive Geologic Cross Sections A-A' and B-B'

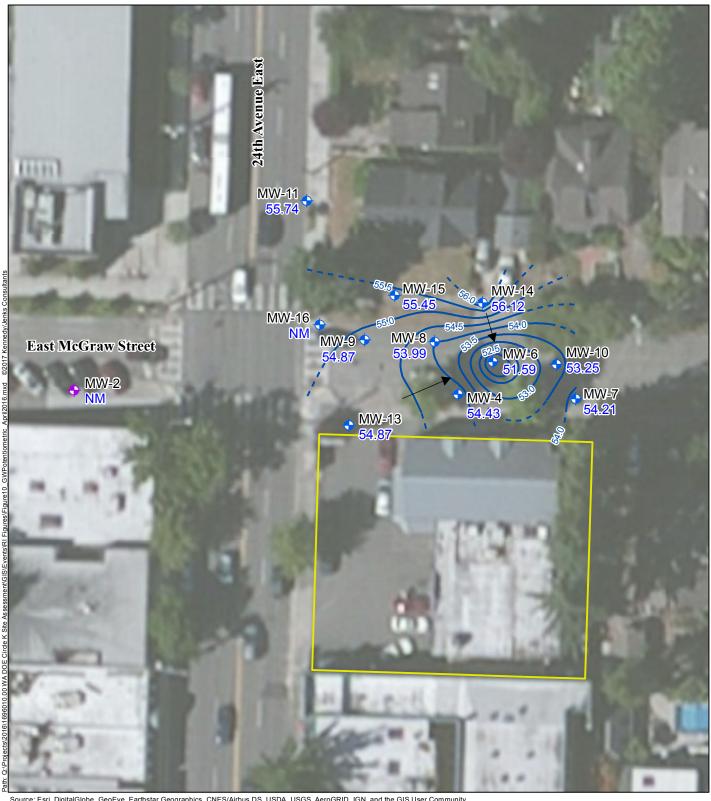
K/J 1696010*00


GRO and/or Benzene Concentration in Groundwater exceeds CUL GRO and/or Benzene Concentration

Sand with silt

Benzene in Soil that exceeds the

GRO and/or Benzene Concentration in Soil is less than CUL or Not Detected GRO and/or Benzene Concentration in Soil is greater than CUL


Interpretive Geologic Cross Section A - A'

K/J 1696010*00

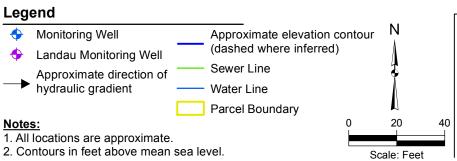
Detected

exceeds CUL

K/J 1696010*00

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community


Legend Ν Monitoring Well Approximate direction of hydraulic gradient Landau Monitoring Well Approximate elevation contour (dashed where inferred) 91.98 Groundwater elevation Parcel Boundary Notes: 40 1. All locations are approximate. 2. NM = not measured 3. Contours in feet above mean sea level. Scale: Feet


Kennedy/Jenks Consultants

Former Circle K Site Seattle, Washington

Groundwater Potentiometric Surface 20 April 2016

K/J 1696010*00

Groundwater Potentiometric Surface

8 December 2016

K/J 1696010*00

Former Circle K Site

Seattle, Washington

Monitoring Well

Landau Monitoring Well

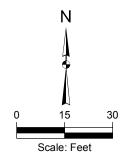
Parcel Boundary

(>1,000 µg/L)

Estimated Gasoline-Range

Organics Isoconcentration (>50,000 µg/L)

Estimated Gasoline-Range

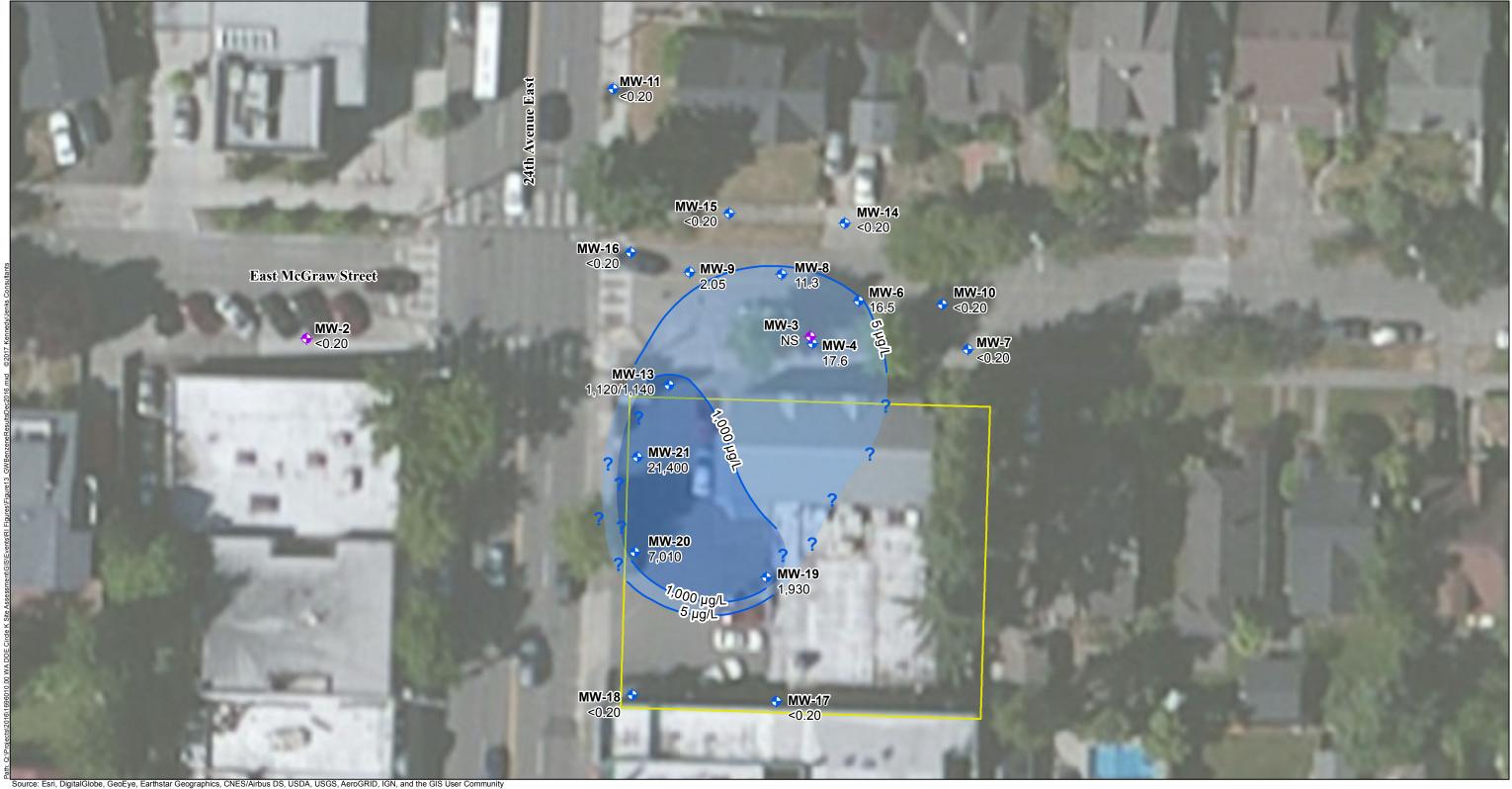

Organics Isoconcentration

7.910 Gasoline-Range Organics Concentration (µg/L)

— Water Line

Sewer Line

- 1. All locations are approximate.
- 2. Groundwater samples were collected 7-8 December 2016 from monitoring wells.
- 3. NS = not sampled.
- 4. μ g/L = micrograms per liter.



Kennedy/Jenks Consultants

Former Circle K Site Seattle, Washington

Estimated Groundwater Gasoline-Range Organics Isoconcentrations December 2016

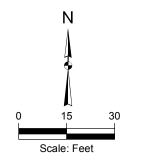
K/J 1696010*00

Legend

Monitoring Well

Landau Monitoring Well

Estimated Benzene 2.05 Benzene Concentration (µg/L) Isoconcentration (>5 μg/L)

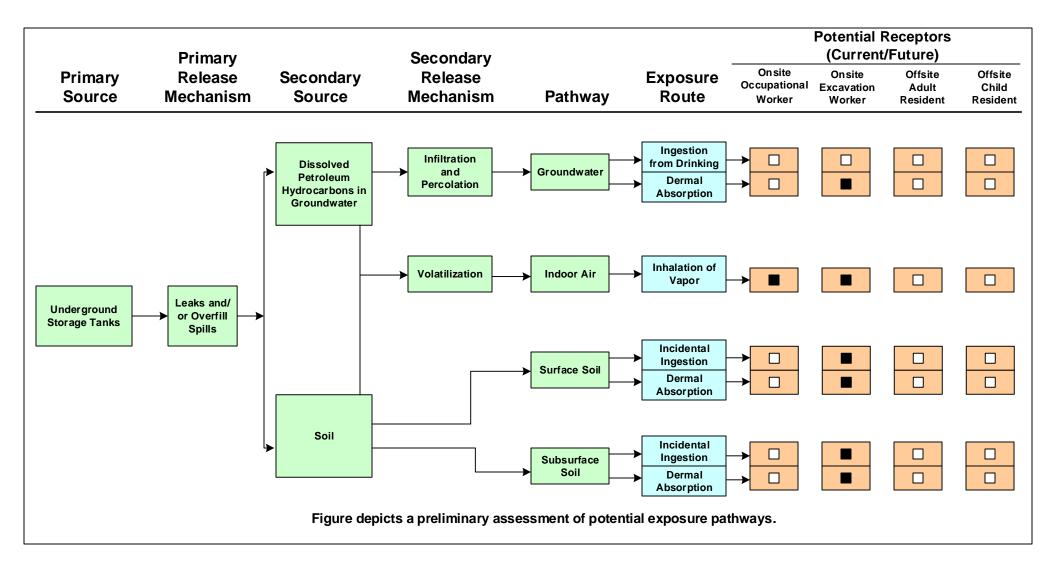

Estimated Benzene Isoconcentration (>1,000 μg/L)

Parcel Boundary

- 1. All locations are approximate.
- 2. Groundwater samples were collected 7-8 December 2016 from monitoring wells.

 3. NS = not sampled.

 4. µg/L = micrograms per liter.



Kennedy/Jenks Consultants

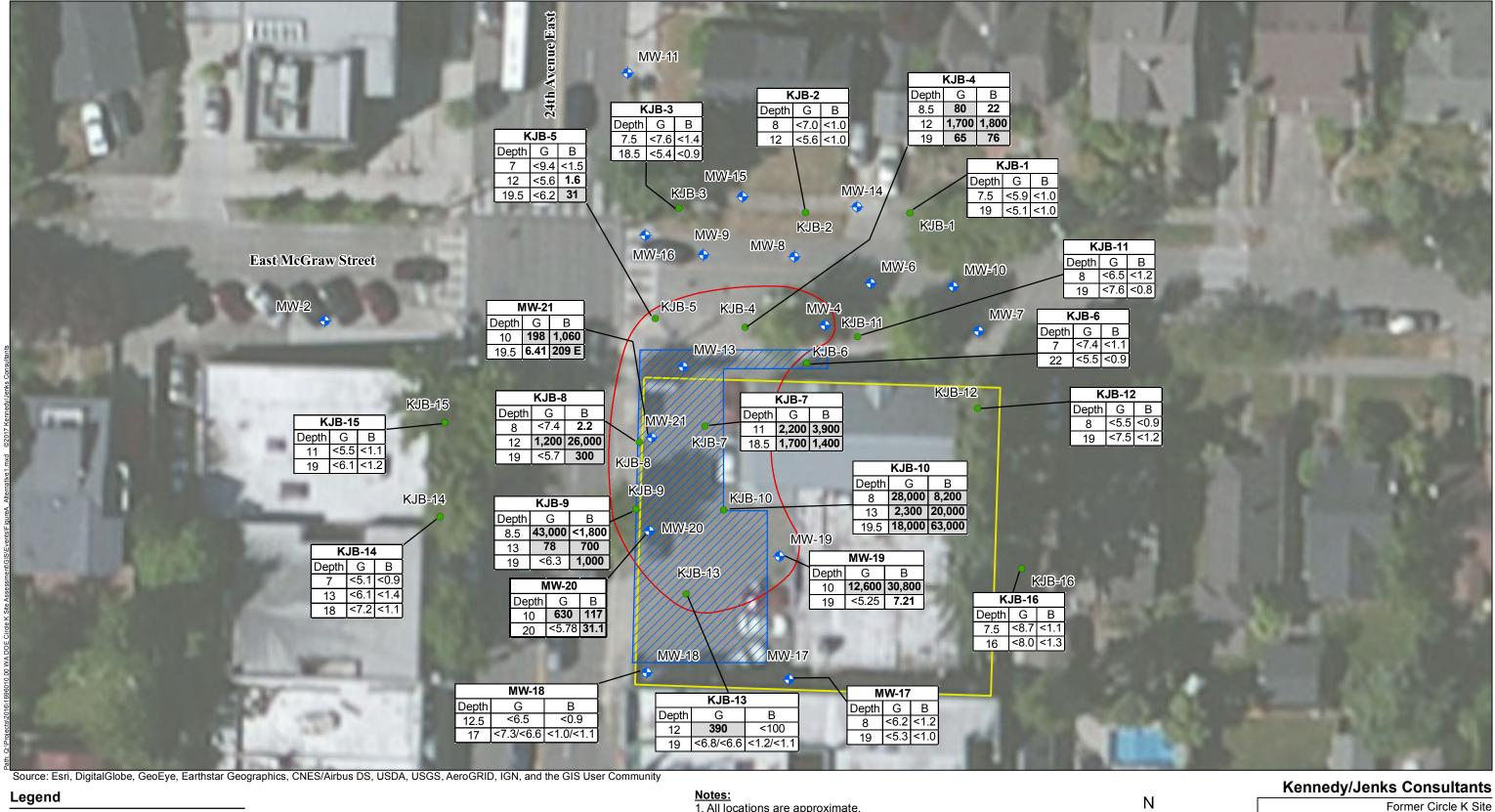
Former Circle K Site Seattle, Washington

Estimated Groundwater Benzene Isoconcentrations December 2016

K/J 1696010*00

<u>Legend:</u>

Potentially complete exposure pathway.

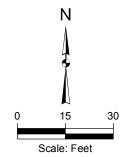

☐ Incomplete exposure pathway.

Kennedy/Jenks Consultants

Former Circle K Site Seattle, Washington

Conceptual Site Exposure Model

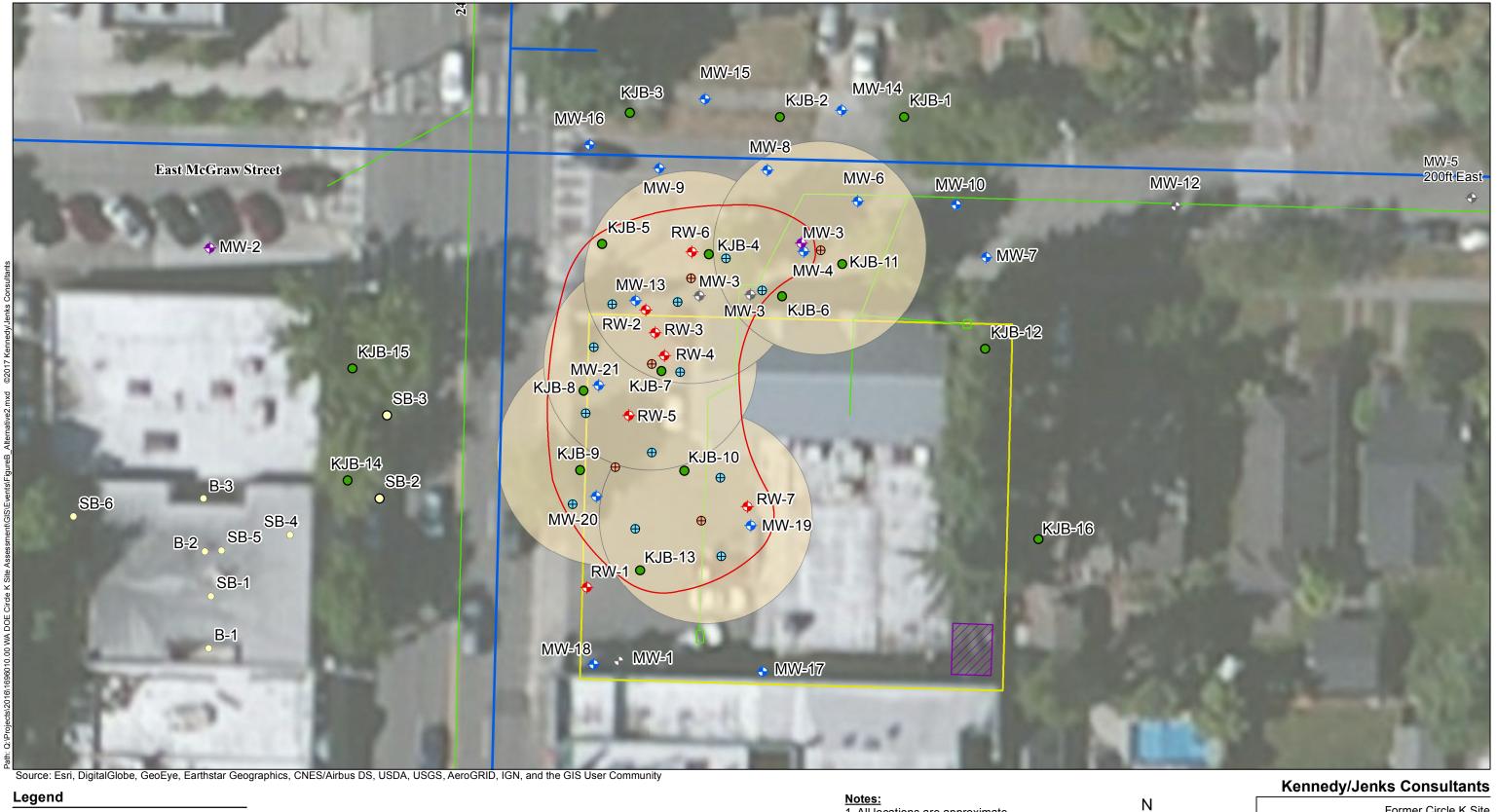
K/J 1696059*00



Monitoring Well Boring ID -MW-17 All concentrations in mg/kg. Depth G B Concentrations are bolded where detected. Soil Boring Sample Depth 8 <6.2 <1.2 Shaded concentrations are above Proposed Excavation Area 19 <5.3 <1.0 Approximate Extent of Gasoline-Range Organics/Benzene in Soil above MTCA Method A Cleanup Levels

Parcel Boundary

- 1. All locations are approximate.
- 2. mg/kg = milligrams per kilogram.
- 3. G = gasoline-range organics.
- 4. B = benzene.

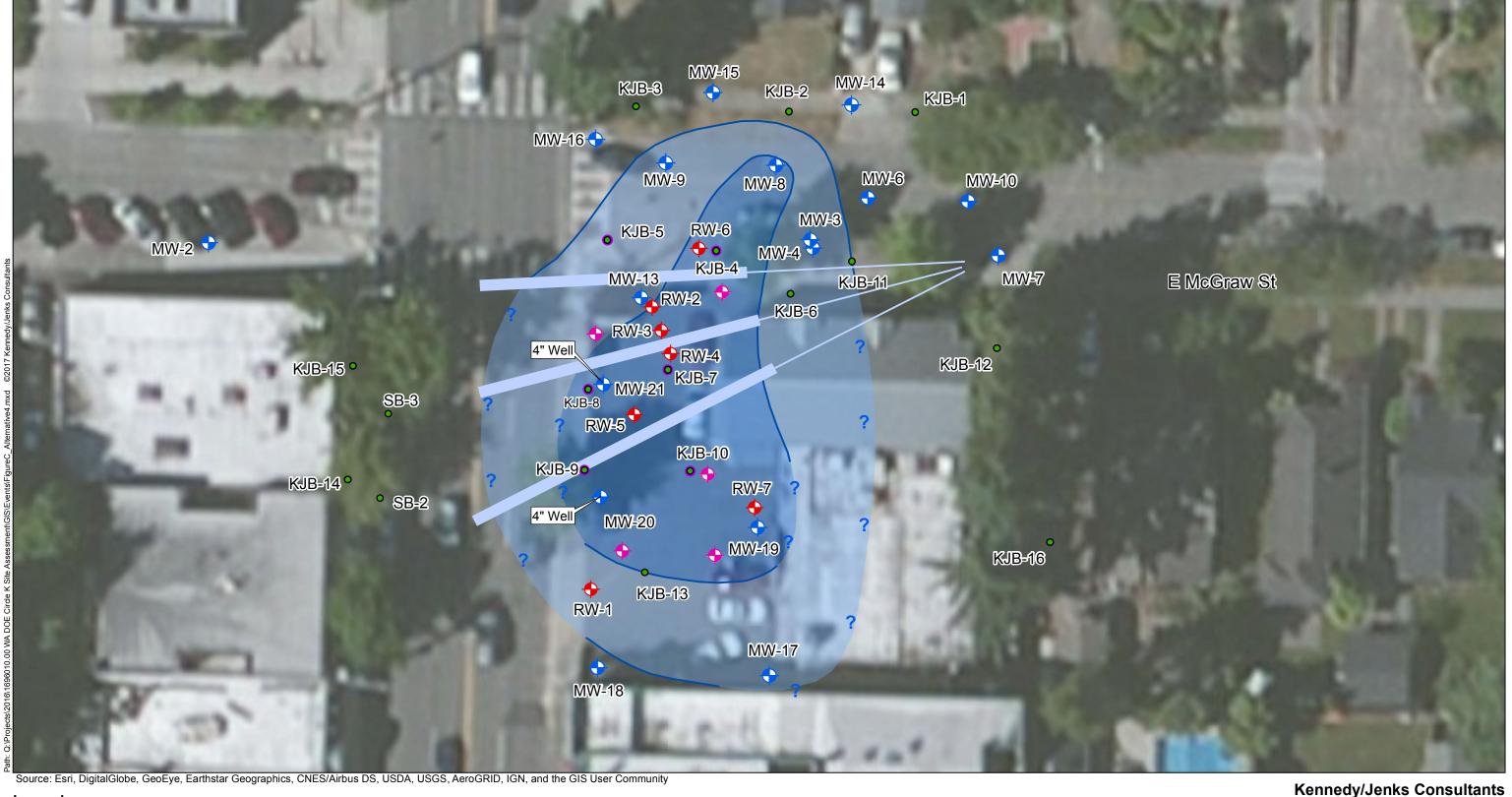

the MTCA Method A cleanup level.

Seattle, Washington

Alternative 1: Excavation and Offsite Disposal

K/J 1696010*00

1. All locations are approximate. Proposed Vapor Extraction Estimated Radius of Approximate Extent of Abandoned Well 2. Sewer and water line locations are based Well Influence for Soil Vapor Gasoline-Range on available site information and not appropriate Landau Monitoring Well **Extraction Wells** Organics/Benzene in Soil for construction purposes. Proposed Air Sparge Well above MTCA Method A Boring **Proposed Treatment** (Alternative 3 only) Cleanup Levels System Location Landau Boring Remediation Well Parcel Boundary Sewer Line Monitoring Well


--- Water Line

Former Circle K Site Seattle, Washington

Alternative 2: Soil Vapor Extraction and Alternative 3: Soil Vapor Extraction with Air Sparging

Scale: Feet

K/J 1696010*00

Legend

Proposed Multi-Purpose Remediation Well

Soil Boring Location with

Cleanup Level for Soil

Well

Gasoline-Range Organics above the MTCA Method A

Possible Future Horizontal

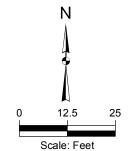
Existing Multi-Purpose Remediation Well

Monitoring Well

Soil Boring

Estimated Gasoline-Range

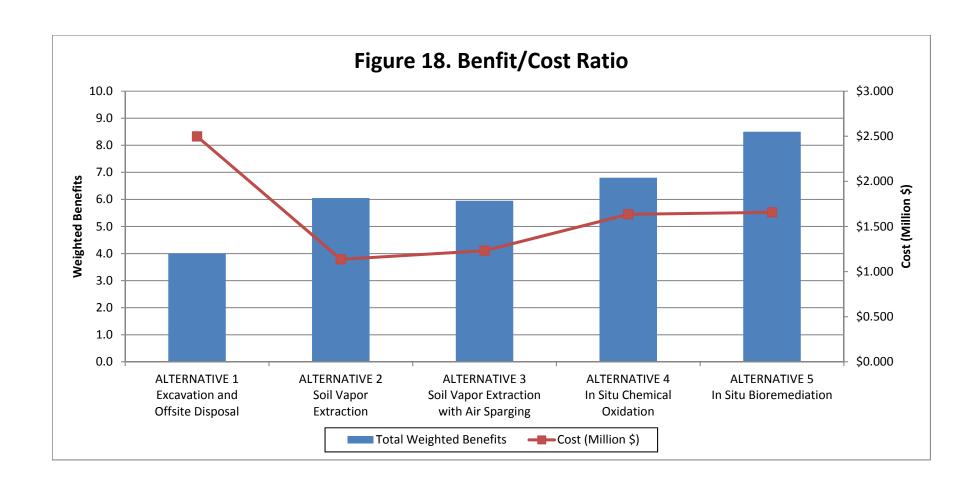
Organics Isoconcentration

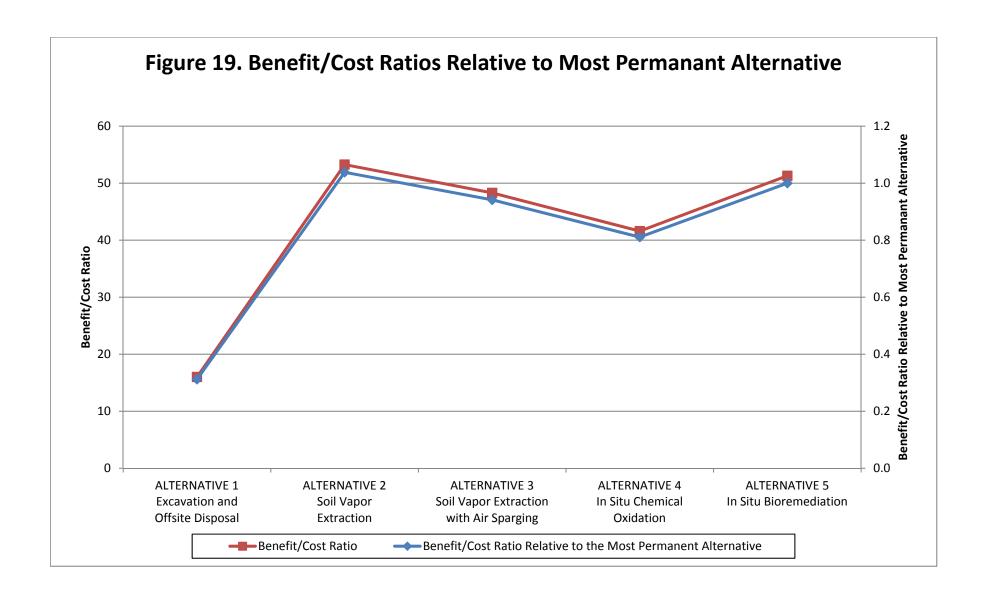

Estimated Gasoline-Range

Organics Isoconcentration

(>1,000 µg/L)

(>50,000 µg/L)


- 1. All locations are approximate.
- 2. μg/L = micrograms per liter.



Former Circle K Site Seattle, Washington

Alternative 4: In Situ Chemical Oxidation and Alternative 5: In Situ Bioremediation

K/J 1696010*00

Appendix A

1989 Underground Storage Tank Excavation Confirmation Sample Summary Tables

TABLE 5 SUMMARY OF GROUND WATER QUALITY DATA, MONITOR WELL SAMPLES

			EPA Met	nod 602		EPA Method
Monitor			Ethyl-		Total	418.1
Well	Sample	Benzene	Benzene	Toluene	Xylenes	TPH
Number	Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)
			-			
MW-1	09/13/89	1.5	ND	1.9	1.6	ND
MW-5	09/13/89	1.1	ND	2.5	2.6	ND
MW-6	10/09/89	250	ND	3.2	110	NA
MW-7	10/09/89	2.8	ND	1.4	ND	NA
MW-10	10/09/89	1.2	ND	ND	ND	NA
MW-11	10/09/89	2.6	ND	ND	3.0	NA
MW-12	10/09/89	ND	ND	ND	ND	NA
MW-13	12/21/89	13,000	1,700	20,000	8,800	NA
MW-14	12/21/89	1.1	1.9	5.7	13	NA NA
MW-15	12/21/89	7,300	1,000	9,000	5,800	NA
MW-16	12/21/89	4.3	7.1	20	36	NA

Notes:

"ppb" = parts per billion

"ppm" = parts per million

"ND" = "not detected"; see laboratory data sheets in Appendix C for analyte detection limits

"NA" = not analyzed

TABLE 6 SUMMARY OF SOIL SAMPLE ANALYTICAL DATA, WASTE OIL AND HEATING OIL TANK EXCAVATIONS

Tank Excavation	Sample Number	Sample Date	Location	Depth (feet)	TPH (ppm)
					,
Waste Oil Tank	WO-2	10/11/89	Excavation floor	8.0	76
	WO-6	10/12/89	Excavation floor	11.0	2
	WO-7	10/12/89	North wall	10.0	<1
	WO-8	10/12/89	East wall	9.5	6
	WO-9	10/12/89	South wall	10.0	1
	WO-10	10/12/89	West wall	9.5	<1
Heating Oil Tank	HO-2	10/13/89	North wall	6.0	8
	HO-3	10/13/89	East wall	7.0	1
	HO-4	10/13/89	South wall	6.5	2
	HO-5	10/13/89	West wall	6.5	110
	HO-6	10/13/89	Excavation floor	8.5	14

Notes:

"TPH" = Total Petroleum Hydrocarbons by EPA Method 418.1

"ppm" = parts per million

SUMMARY OF SOIL SAMPLE ANALYTICAL DATA, GASOLINE TANK AND RECOVERY TRENCH EXCAVATIONS **TABLE 7**

				-									_
d EPA	18015	Diesel	(maa)		S	009	4.100	Q	400	150	22	7	
Modified EPA	Method 8015	Gasoline	(mda)		QN	270	1,700	360	230	29	=	Q	-
	Total	Xvlenes	(qdd)		QN	53,000	300,000	10,000	57,000	3,500	610	310	
od 8020		Toluene	(qdd)		QN	20,000	140,000	6,300	17,000	1,000	250	190	
EPA Method 8020	Ethyl-	Benzene	(qdd)		2	9,700	55,000	1,600	12,000	390	74	QN	
		Benzene	(qdd)		S	1,300	31,000	1,000	1,300	110	ΩN	140	
		Depth	(feet)		10.0	13.0	13.0	9.0	10.0	12.0	10.0	10.0	
		Sample	Date		10/20/89	10/20/89	10/20/89	10/20/89	10/23/89	10/26/89	10/26/89	10/27/89	
		Sample	Number	-	EW-1	WW-1	NW-1	SW-1	NW-2	WT-1	MT-1	ET3	

Notes:
"ppb" = parts per billion
"ppm" = parts per million
"ND" = not detected; see laboratory data sheets in Appendix D
for analyte detection limits
Sample locations shown in Figure 6

Appendix B

Boring and Well Construction Logs

SOIL CLASSIFICATION SYSTEM

	MAJOR DIVISIONS		GROUP SYMBOL	GROUP NAME
COARSE	GRAVEL	CLEAN GRAVEL	GW	WELL-GRADED GRAVEL, FINE TO COARSE GRAVEL
GRAINED			GP	POORLY-GRADED GRAVEL
SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVEL WITH FINES	GM ·	SILTY GRAVEL
	RETAINED ON NO. 4 SIEVE	Williamed	GC	CLAYEY GRAVEL
MORE THAN 50% RETAINED ON NO. 200 SIEVE	SAND	CLEAN SAND	sw	WELL-GRADED SAND, FINE TO COARSE SAND
			SP	POORLY-GRADED SAND
	MORE THAN 50% OF COARSE FRACTION	SAND WITH FINES	SM	SILTY SAND
	PASSES NO. 4 SIEVE	WITHTIMES	sc	CLAYEY SAND
FINE	SILT AND CLAY		ML	SILT
GRAINED	. A	INORGANIC	CL	CLAY
SOILS	LIQUID LIMIT LESS THAN 50	ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY
	SILT AND CLAY		мн	SILT OF HIGH PLASTICITY, ELASTIC SILT
MORE THAN 50% PASSES NO. 200 SIEVE		INORGANIC	СН	CLAY OF HIGH PLASTICITY, FAT CLAY
2	LIQUID LIMIT 50 OR MORE	ORGANIC	ОН	ORGANIC CLAY, ORGANIC SILT
Н	IGHLY ORGANIC SOIL	s	РТ	PEAT

NOTES:

- Field classification is based on visual examination of soil in general accordance with ASTM D2488-83.
- Soil classification using laboratory tests is based on ASTM D2487-83.
- Descriptions of soil density or consistency are based on interpretation of blowcount data, visual appearance of soils, and/or test data.

SOIL MOISTURE MODIFIERS:

- Dry Absence of moisture, dusty, dry to the touch
- Moist Damp, but no visible water
- Wet Visible free water or saturated, usually soil is obtained from below water table

SOIL CLASSIFICATION SYSTEM

FIGURE A-1

LABORATORY TESTS:

CA Chemical Analysis

VAPOR CONCENTRATION DATA:

Vapor concentration given in parts per million

SHEEN CLASSIFICATION SYSTEM:

NS No visible sheen

SS Slight sheen

MS Moderate sheen

HS Heavy sheen

SOIL GRAPH:

SM

ML

SP-

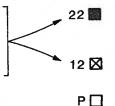
SM

Soil Group Symbol (See Note 2)

Distinct Contact Between Soil Strata

Gradual Change Between Soil Strata

Water Level


Bottom of Boring

BLOW-COUNT/SAMPLE DATA:

Blows required to drive a split—barrel sampler (2.4-inch l.D.) 12 inches or other indicated distances using 300 pound hammer falling 30 inches.

"P" indicates sampler pushed with weight of hammer or hydraulics of drill rig.

Blows required to drive a splitbarrel sampler (1.5-inch I.D.) 12 inches or other indicated distances using 140 pound hammer falling 30 inches.

Location of relatively undisturbed sample

Location of disturbed sample

Location of sampling attempt with no recovery

Location of sample attempt using Standard Penetration Test procedures

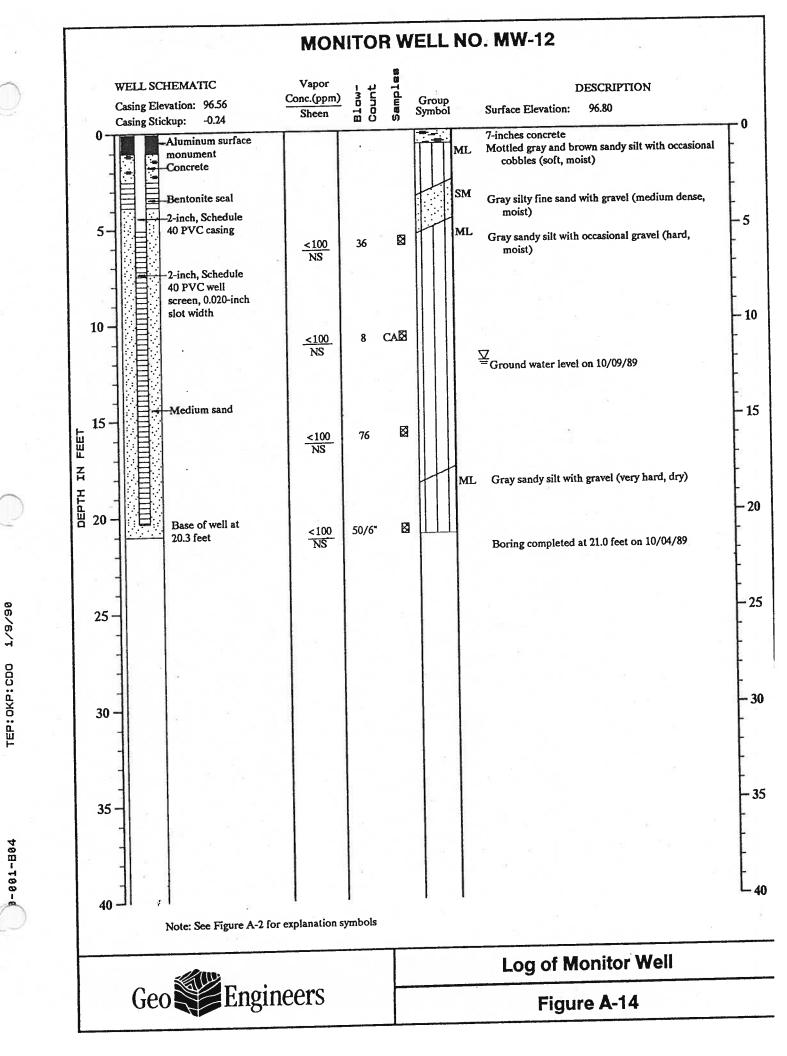
NOTES:

- Information presented in the attached text and the Key To Boring Log Symbols is required to adequately explain the data on the boring logs.
- 2. Soil classification system is summarized in Figure A-1.
- The reader must refer to the discussion in the report test as well as the exploration logs for a proper understanding of subsurface conditions.

KEY TO BORING LOG SYMBOLS

FIGURE A-2

TEP: OKP: CDO 1/9/90


TEP: OKP: CDO 1/9/98

TEP: OKP: CDO 1/10/90

TEP: OKP: CDO 1/18/90

TEP: OKP: CD0 2/8/90

TEP: OKP: CDO 2/8/90

TEP: OKP: CD0 2/8/90

TEP: OKP: CDO 1/18/98

TEP: OKP: CDO 1/10/90

TEP: OKP: CDO 1/18/90

Kennedy/Jenks Consultants

		n side	of E N	/lcGraw St										Boring Name		KJB-1
DRILLIN	IG COME	PANY Service	ces, In	С				DRIL		Mi	ch	nael R	unning	Project Name		Ecology Circle K
DRILLIN	IG METH	HOD(S)	h (Geo	oprobe 7822 [DT)			DRIL	L BI	T(S 2"	S) S	SIZE		Project Number		1696010.00
ISOLAT	ION CAS		,					FROI		N/A	Δ.	ТО	N/A FT.	MEAURING PT. ELEVAT	ΓΙΟΝ	TOTAL DEPTH
BLANK	CASING N/A							FROI	M	N/A		ТО	N/A FT.	bgs DATE STARTED		20.0 ft. bgs DATE COMPLETED
SLOTTE	D CASII	NG						FROI	M	N/A		ТО	FT.	5/18/16 INITIAL WATER DEPTH	(FT)	5/18/16
SIZE AN		OF FIL	TER PAC	CK				FROI	M	N/A		ТО	FT.	6.0 LOGGED BY		
SEAL		Hvdra	ted Be	entonite Chips				FROI				ТО	20 FT.	J. Schv SAMPLING METHODS	varz	WELL COMPLETION
GROUT		. ,						FROI		N/A		ТО	FT.			☐ SURFACE HOUSING ☐ STAND PIPE FT.
TYPE	RECOV (FEET)		DEPTH (FEET)	SAMPLE NUMBER	BAG	CKFILL DETAILS	3	PID		IOLO		USCS LOG		SAMPLE DESCRIPTION	N AND	
	(FEET)	BLOWS/6	•				+				1		Airkn	ifed to 4 ft		
-			1-				-						-			
			2-													
			\boxtimes	KJB-1-2.5					<u> </u>	٦-	 		Sand	 y SILT	- – –	
<u> </u>			3-				+						Grayi		some	e gravel, very hard, moist,
			4-				+	0.1				ML	_			
	1		- 5 -					0.1		 						
								0				SM	Browi		ravel,	soft, moist, no odor, no
			6-		¥		1	0			1			y SILT		
-			7-				+	0					Gray	(10 YR 6/1), stiff, mois	st to w	vet, no odor, no sheen
-	4		8-	KJB-1-7.5									L			
								0	ŀ							
			9-				1									
-			10-				+	0					At 10	ft, more silt, medium s	stiff	
-			11-				-	0				ML	Δ+ 11	ft, dry to moist, stiff to	verv	etiff
L			12-					0						it, dry to molot, still to	very	Sun
	5		12					0								
2			13-	KJB-1-13			1	0			.		At 12	ft, moist, more sand to	han a	bove, medium stiff
_			14-				-	0					-			
			15-													
								0				SM		SAND (10 YR 6/1), stiff, moi	st to	wet, no odor, no sheen
-			16-				+	0				CIVI				
			17-				-	0				ML	Gray	with sand (10 YR 6/1), some gra no sheen	ıvel, s	stiff to very stiff, wet, no

F-40.1 (6-87) (3-88) (8-90)

SHEET 1 OF 2

Boring Log

Kennedy/Jenks Consultants

Projec	t Nam	e		Ecology Circle	e K P	roject	Numl	эе	r	1696010.00 E	Boring Name	KJB-1
	RECOV.		DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLO	GY	USCS LOG	SAMPLE DESCRIP	TION AND DRILLING R	EMARKS
TYPE	(CCCT)	RESIST. BLOWS/6"	(1 LL1)		V///////				LOG	CII T with a and		
-	7.0		18- 19- 20-	KJB-1-19	-	0			ML	SILT with sand Gray (10 YR 6/1), some odor, no sheen (Continu	gravel, stiff to ver u ed)	y stiff, wet, no

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

KJ PNW BORINGLOGS_2016.GPJ KJ PNW.GDT 6/8/17

Kennedy/Jenks Consultants

BORING	North	ı side	of E N	/IcGraw St									Boring Name	KJB-2
DRILLIN			es, In	С				DRIL	Ν	/licl	hael R	unning	Project Name	Ecology Circle K
DRILLIN	G METH Direc	IOD(S)	h (Geo	oprobe 7822 D	T)			DRIL	L BIT 2	(S)	SIZE		Project Number	1696010.00
ISOLATI	ON CAS N/A		•					FROI	и N	/A	ТО	N/A FT.	MEAURING PT. ELEVATION bgs	
BLANK (CASING N/A							FROI		/A	ТО	N/A FT.	DATE STARTED	DATE COMPLETED 5/18/16
SLOTTE		NG						FROI	M	/A	ТО	N/A FT.	5/18/16 INITIAL WATER DEPTH (F	
SIZE AN	D TYPE	OF FIL	TER PAC	CK				FROI	M		ТО	FT.	8.0 LOGGED BY	
SEAL	N/A							FROI		/A	ТО	FT.	J. Schwa	WELL COMPLETION
GROUT		⊣ydra	ted Be	entonite Chips				FROI	vi	0	ТО	20 FT.	SAMPLING METHODS	☐ SURFACE HOUSING
S	N/A AMPLES				BAC	CKFILL DETAI	ıs		N	/A		N/A		☐ STAND PIPE FT.
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	DAG	ORI ILL DE IAI	LO	PID	LITHO	_OGY	USCS LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
												Airkn	ifed to 4.5 ft	
-			1-				-					-		
L			2-											
-			3-	KJB-2-3			_			٦.	├	Sand	 y SILT	
				N0D-2-3							ML		n, trace fine gravel, mois	t, no odor, no sheen
			4-						\downarrow					
	.5		5 -				_	0				1	y graded SAND with silt n (10 YR 5/3) to gravish	brown, some gravel, soft,
								0			SP/		, no odor, no sheen	, como g.a.o., com,
-			6-				-	U			SM			
			_					0	<u> </u>					
	4		7-										y SILT n (10 YR 5/3), some grey	mottling medium stiff
-			M 8-	LK ID O O	¥			0					to wet, no odor, no shee	
			М	KJB-2-8				0			ML			
 			9-				-							
			10-											
			10										SAND n (10 YR 5/3), poorly sor	ted sand, soft, wet, no odor,
-			11-				-	0				no sh		
								0						
<u></u>	5		12-	KJB-2-12			_							
) - -			13-					0						
9								0			SM			
2			14-				_	Ü			SIVI			
			45					0						
			15 -									Brown no od	n to grayish brown (10 Yl or, no sheen	R 5/2), siltier with depth, wet,
			16-					0				-		
								0						
-			17-	1								-		

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2__

Boring Log

Kennedy/Jenks Consultants

Projec	t Nam	e		Ecology Circle	eK P	roject	Num	be	r	1696010.00 Boring Name KJB-2
TYPE	RECOV. (FEET)	DENETO	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLO	GY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
-	5		18-		-	0			SM	
-			19- 20 -	KJB-2-19	-	0			ML	SILT with sand Gray (10 YR 5/1), some gravel and cobbles, stiff to very stiff, moist, no odor, no sheen

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

BORING	LOCAT	ION 1 side	of E N	1cGraw St							Boring Name	KJB-3
DRILLIN			es, In	c		DRIL			chael	Running	Project Name	Ecology Circle K
DRILLIN	G METH	IOD(S)		probe 7822 D	T)	DRIL	LΒ) SIZE	<u> </u>	Project Number	1696010.00
ISOLATI			•			FROI	М	N/A	то	N/A	MEAURING PT. ELEVATION	TOTAL DEPTH
BLANK (FROI	М	N/A	TO	FT. N/A	DATE STARTED	20.0 ft. bgs DATE COMPLETED
SLOTTE		NG				FROI	М	N/A	ТО	FT. N/A	5/18/16 INITIAL WATER DEPTH (FT)	5/18/16
SIZE AN		OF FILT	TER PAC	CK		FROI	М	N/A	TO	FT.	N/A LOGGED BY	
SEAL		Hvdra	ted Re	entonite Chips		FROI		(ТО	FT.	J. Schwarz SAMPLING METHODS	WELL COMPLETION
GROUT	N/A	iyulu	ica be	monite onipo		FROI		N/A	ТО	FT.	-	☐ SURFACE HOUSING ☐ STAND PIPE FT.
S	AMPLES	DENETO	DEPTH	04440154114050	BACKFILL DETAILS	PID			LICC		CAMPLE DECORPTION AND	
TYPE	(FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	V		LITH	lolog	LOG		SAMPLE DESCRIPTION AND	DORILLING REMARKS
										Airkn	ifed to 2 ft (refusal)	
-			1-	•								
							<u>ا</u> ا	m.~				
			2-	KJB-3-2					SM		SAND	ant organic material, moist,
F			3-				M	\blacksquare		no od	lor, no sheen	ant organic material, moist,
	1.5									Grayi	y SILT sh brown (10 YR 5/2) mot	tled with brown (10 YR
			4-							- 5/3), ·	very stiff, moist, no odor, r	o sheen
			5-									
								1				
-			6-		-	0				-		
						0						
	5		7-									
-			M 8-	KJB-3-7.5		0		+ +	ML	_		
						0						
-			9-		-					stiff		
			10-			0						
			10-								stiff, color grades towards nigher proportions of sand	
-			11-			0				12 ft,	sandier from 12 to 12.5 ft	·
						0						
<u>_</u>	_		12-									
000	5		X 13-	KJB-3-12.5		0	H					
5			10			0					y graded SAND with silt (10 YR 5/1), medium to co	parse sand with some
2			14-		-	0	: :			gravis	es, some grains visible with brown (10 YR 5/2) with	thin cobbles, grading to depth, no odor, no sheen
5						0	: :		SP/ SM		stiff, grading to dark gray (
-			15 -					.				
			16-			0			-	0	CAND	
						0			SM	Gray	SAND (10 YR 5/1), poorly graded	
- -			17-		-	Ü			SIVI	_ CODDI	es, grading to grayish brovestiff, wet, no odor, no shee	vn (10 YR 5/2) with depth, n

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2__

Boring Log

Kennedy/Jenks Consultants

Projec	t Nam	e		Ecology Circle	eK P	roject	Nun	nbe	r	1696010.00 Boring Name KJB-3
S	AMPLES		DEDTIL		BACKFILL DETAILS	PID			11000	
TYPE	RECOV. (FEET)		DEPTH (FEET)	SAMPLE NUMBER		PID	LITHO	LOGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
	4		18-			0	\blacksquare		SM	
_			X 19-	KJB-3-18.5		0			ML	SILT with sand Gray (10 YR 5/1), some gravel and cobbles, very stiff, moist, no odor, no sheen
			20 <u>-</u>							

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

Kennedy/Jenks Consultants

BORING	E sid	e of N	/lont's	Market drivew	ay, along S side			w St		Boring Name	KJB-4
DRILLIN			ces, In	С		DRIL	Mic	hael R	unning	Project Name	Ecology Circle K
DRILLIN	G METH Direc	IOD(S)	h (Geo	probe 7822 D)T)	DRIL	L BIT(S) 2"	SIZE		Project Number	1696010.00
ISOLATI			•		•	FRO		ТО	N/A FT.	MEAURING PT. ELEVATION	TOTAL DEPTH
BLANK (FRO		TO	N/A FT.	bgs DATE STARTED	20.0 ft. bgs DATE COMPLETED 5/18/16
SLOTTE		NG				FRO	M	ТО	FT.	5/18/16 INITIAL WATER DEPTH (FT)	
SIZE AN	ID TYPE	OF FIL	TER PAC	CK		FRO		TO	FT.	N/A LOGGED BY	
SEAL	N/A					FRO		TO	N/A FT.	J. Schwarz	
GROUT		Hydra	ted Be	entonite Chips		FRO	<u>0</u> м	TO	20 FT.	SAMPLING METHODS	WELL COMPLETION □ SURFACE HOUSING
S	N/A AMPLES				BACKFILL DETAILS		N/A		N/A		☐ STAND PIPE FT.
TYPE		DENETO	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOGY	, USCS LOG		SAMPLE DESCRIPTION AN	D DRILLING REMARKS
									Airkn	ifed to 4 ft	
-			1-	•							
 			2-		-		L		_		
			X 3-	KJB-4-2.5				T		y SILT (10 YR 5/1), fine to very fi	ne sand mottled with
								l		n, stiff, moist, no odor, no	
-			4-		-			ML			
			- 5 -							y graded SAND with silt	de annual ad Cara da annua
-			6-			1.9			sand,	n (10 YR 5/3) to gray, poo moderately stiff, moist, pe	etroleum-like odor
						1.9					
-			7-		-	1.5					
	4					2.0					
			8-								
-) ₉₋	KJB-4-8.5		33.5				u naturala uma libra adam mana	davata abaan
									Strong	g petroleum-like odor, mod	derate sneen
-			10-		-				Gray	(10 YR 6/1), same as abo	ve with pockets of coarser
			44			650		SP/ SM	sand,	strong petroleum-like odd	or, moderate sheen
			11-			1762					
-			12-			1986			lens o	of coarse sand with silt	
2 00	4		М	KJB-4-12		538 243					
2			13-			52.5			silt wi	th medium to fine sand (fi	ner than above), some
N N N N N N N N N N N N N N N N N N N			14					•	cobbl	es, moderately stiff, strong	g petroleum-like odor
2			14-								
<u> </u>			15-			64	::		-		
25						64 2259					
			16-						-		
			47			246		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	with sand	t stars and the ""
			17-				$\ \ \ $	ML	- Gray odor	(10 YR 5/1), very stiff, we	r, strong petroleum-like

F-40.1 (6-87) (3-88) (8-90)

SHEET 1 OF 2

Boring Log

Kennedy/Jenks Consultants

Project Name		Ecology Circle	e K P	roject	Numbe	r	1696010.00 Boring Name KJB-4
SAMPLES TYPE RECOV. PENETR RESIST. (FEET) BLOWS/6	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
- 4.5	18-	KJB-4-19	-	366 131		ML	SILT with sand Gray (10 YR 5/1), very stiff, wet, strong petroleum-like odor (<i>Continued</i>)

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

BORING	W sid	de of	Mont's	Market drive	иау,	along S side				aw St		Boring Name	KJB-5
DRILLIN	Holt S	Servi	ces, In	С			DRIL	- 1	Mic	hael R	unning	Project Name	
DRILLIN	Direc	t Pus	h (Geo	probe 7822 E	OT)				T(S) 2"	SIZE		Project Number _	1696010.00
ISOLATI	N/A						FRO		N/A		N/A FT.	MEAURING PT. ELEVATI	ON TOTAL DEPTH 20.0 ft. bgs
BLANK (N/A						FRO		N/A		N/A FT.	DATE STARTED 5/18/16	DATE COMPLETED 5/18/16
SLOTTE	N/A						FRO		N/A		N/A FT.	INITIAL WATER DEPTH (
SIZE AN	D TYPE N/A	OF FIL	TER PAC	CK			FRO		N/A		N/A FT.	LOGGED BY J. Schw	arz
SEAL	3/8" I	Hydra	ted Be	entonite Chips			FRO		0		20 FT.	SAMPLING METHODS	WELL COMPLETION
GROUT	N/A						FRO		N/A	то	N/A		☐ SURFACE HOUSING ☐ STAND PIPE FT.
TYPE	RECOV (FEET)	PENETR. RESIST. BLOWS/6	DEPTH (FEET)	SAMPLE NUMBER	BA	CKFILL DETAILS	PID	LITH	OLOGY	USCS		SAMPLE DESCRIPTION	AND DRILLING REMARKS
											Airkn	ifed to 4 ft	
-			1-			-					-		
-			2-			-					-		
-			3-			-	_				_		
			X 4-	KJB-5-3.5		-				†		with sand n (10 YR 5/3) to gray (1	0 YR 5/1), mottled color, very
	1										firm, i	moist, no odor, no shee	n
-			5 -			-					-		
-			6-			-	1.0				-		
-			7-			-	0.2			ML	Come	arrayal and aabblaa	
	5		X _	KJB-5-7			7.8				Some	e gravel and cobbles	
			8-		¥		0.9						
			9-			-	_				Cilt	CAND	
-			10-			-	0	$\ \ $			Gray	SAND (10 YR 6/1), medium st lor, no sheen	iff to very stiff, moist to wet,
-			11-			-	0				-		
			12-			_	1.0						
	4		X	KJB-5-12			0.7						
_ 			13-			-				SM			
2			14-			-	4.2				-		
			15-			-					- 05.5	or and there also are	of alight potrologies 1915 and a
							31.0				Coars	sei sand than above, we	et, slight petroleum-like odor
			16-			-	40.0						
-			17-			-	10.6		1111111		-		

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2__

Projec	t Nam	e		Ecology Circle	eK P	roject	Numbe	r	1696010.00	Boring Name	KJB-5
TYPE	(EEET)	DENETO	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOGY	USCS LOG	SAMPLE DE	SCRIPTION AND DRILLING F	REMARKS
-	5		18- 19-	KJB-5-19.5	-	6.8 2.7 0.2		SM	Silty SAND Gray (10 YR 6/1), r no odor, no sheen Finer sand than ab	`	f, moist to wet,

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

BORING	North	n of th	е Мо	nt's Market buil	ding,	within th	e fo	rmer	excav	ation :	area	Boring Name	KJB-6	
		Servic	ces, Ir	nc				DRIL	Micl	hael R	unning	Project Name	Ecology Circ	le K
DRILLIN	IG METH Direc	iod(s) et Pus	h (Ge	oprobe 7822 D	T)			DRIL	L BIT(S) - 2"	SIZE		Project Number	1696010.0	0
	ION CAS N/A		•	•	ĺ			FROI	M N/A	ТО	N/A FT.	MEAURING PT. ELEVAT	ON TOTAL DEPTH	t. bgs
BLANK	CASING N/A							FROI	M N/A	ТО	N/A FT.	DATE STARTED 5/18/16	DATE COMPLE	TED
SLOTTE	D CASIN	NG						FROI		ТО	N/A FT.	INITIAL WATER DEPTH		8/16
SIZE AN	ID TYPE N/A	OF FIL	TER PA	CK				FROI	M N/A	ТО	N/A FT.	LOGGED BY		
SEAL		ludro	tod D	entonite Chips				FROI	М	ТО	FT. 25	J. Schw SAMPLING METHODS	arz WELL COMPLE	TION
GROUT		iyura	ileu b	entorine Chips				FROI	<u>0</u> M	ТО	FT.		☐ SURFACE H	HOUSING
S	N/A SAMPLES				BACI	KFILL DETAIL	.s	DID	N/A		N/A		☐ STAND PIPE	<u>Ε</u> FΤ
TYPE	RECOV (FEET)	PENETR. RESIST. BLOWS/6'	DEPTH (FEET)	SAMPLE NUMBER				PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION	AND DRILLING REMARK	(S
								•			Asph	alt		
-			1	-			-	0		 -	Well-	graded GRAVEL		
								0	` ,		Pea d	gravel (assumed to be rootlets, dry to moist,	ormer excavation fi	ll material),
<u> </u>			2				1				_ 301116	Tooliets, dry to moist,	io odor, no sneem	
	3		3					0	\ \\ \\ . \\ . \\ . \\ . \\ . \\ . \\					
									<u></u>					
-			M 4	_ KJB-6-4			4		` ` .		-			
				NJB-0-4					<u></u> △ .					
-			5.	-			+		∤		-			
L			6					1.9	_ ´.		L			
									\ ₺.					
-			7	-			4	2.6			-			
	2.5		М	KJB-6-7				5.2	\ \$.					
-			8	-			+				-			
			9						\	GW				
			9						· · ,	l Gw				
-			10	_			+		∤ \$.		_			
								0.6	· ,					
-			11	-			+		△ .		-			
L			12					0.1	. ,					
	3		12											
5			13	_			4	0.1	` ,		-			
5									↓					
<u>-</u>			14				+		` ,		-			
5		L	1.5						<u></u> △ ·		L			
			15						. ,					
<u> </u>			16	-			-	0	<u></u>		-			
								22.4	` .					
1			17	1	¥		+			SM	(See	next page for litholog	/ description)	

F-40.1 (6-87) (3-88) (8-90)

roject Name _		Ecology Circle	<u> </u>	roject	Numbe	r	1696010.00 Boring Name KJB-6
SAMPLES TYPE RECOV. PENE RES BLOW	ETR. DEPTH IST. (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
5 BLOV	18 - 19 - 20 - 21 - 22 - 23 - 24 -	KJB-6-22	- -	11.9 8.4 2.0 11.9 11.8 22.0		SM	Silty SAND Gray (10 YR 5/1), fine to coarse sand with some gravel, stiff, moist to wet, petroleum-like odor, no sheen (Continued)

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

Kennedy/Jenks Consultants

BORING	2350	24th	Ave E	Parking Lot									Boring Name		KJB-7
DRILLIN	G COMF	PANY Servic	es, In	С			DF	RILI	ER N	1ic	hael R	unning	Project Name		cology Circle K
DRILLIN	G METH Direc	IOD(S)	h (Geo	oprobe 7822 [DT)		DF	RILI	_ BIT 2	(S)	SIZE		Project Number _		1696010.00
ISOLATI							FF	ROM	ΛI.	/A	ТО	N/A FT.	MEAURING PT. ELEVAT	ION T	TOTAL DEPTH
BLANK (FF	ROM	ΛI.	/A	TO	N/A FT.	bgs DATE STARTED	1	20.0 ft. bgs
SLOTTE		NG					FF	ROM	vI	/A	TO	N/A FT.	5/19/16 INITIAL WATER DEPTH ((FT)	5/19/16
SIZE AN		OF FILT	TER PAG	CK			FF	ROM	Л	/A	TO	N/A FT.	10.5 LOGGED BY		
SEAL		Hvdra	ted Re	entonite Chips			FF	RON		0	TO	FT.	J. Schw SAMPLING METHODS		WELL COMPLETION
GROUT	N/A	iyara	tou be	oritoriito Oriipo			FF	RON		/A	ТО	FT.			☐ SURFACE HOUSING ☐ STAND PIPE FT.
S	AMPLES	DENETO	DEPTH	CAMPLE ALLIMPED	ВА	CKFILL DETAILS	PID/Sh Tes	eer			USCS	IN/A	OAMBLE DECORIDATION	<u> </u>	
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER		VIIIIIIII	Tes	t	LITHOL	.OGY	LOG		SAMPLE DESCRIPTION	AND DE	RILLING REMARKS
												Airkn	ifed to 5 ft		
-			1-				-					_			
									JJ III	_					
			Z 2-	KJB-7-2			1						SAND (10 YR 6/1) mottled wit	th brov	vn (10 YR 5/3), medium
-			3-	-			-					stiff, r	noist, no odor, no shee	en	(10 11t 0/0), modium
			4-	_			1					_			
_			5 -									-			Laskklas
							0				SM	Browi	n, less gray, some grav	el and	CODDIES
-			6-	_			-				Sivi	_			
			7-				0								
	5		'-]								
-			8-	-			0/N	S				_			
							0								
			9-	_			1		\blacksquare				(10 YR 6/1), some cob		
			10-	KJB-7-9.5			206	3					y graded SAND with si (10 YR 6/1), fine to me		sand, soft, moist to wet,
					¥		580 / 1	MS				petrol	eum-like odor, sheen		,
-			11-	KJB-7-11			-					_			
			12-				199 / 1	MS							
_	4		12-								CD/				
8 -			13-	-			196 / :	SS			SP/ SM	_			
5							32 / N	۱S							
2			14-				1					_			
5			15-									_			
02 02 03							7.2 / 1	NS							
			16-	_			55.6			Щ		SILT	with sand		
Z O			4-				18.2	2			ML	Gray	(10 YR 6/1), fine to me to wet, strong petroleu	dium s ım-like	sand, stiff to very stiff,
<u> </u>			17-	1			1						s. s. s. g pouloidu		

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2__

Boring Log

Kennedy/Jenks Consultants

Pro	oject	Name	e		Ecology Circle	e K P	roject	Num	ıbe	er	1696010.00 Boring Name KJB-7
TY	TYPE (FEET) RESIST		PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID/Sheen Test		USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS	
-		4		18-	KJB-7-18.5	-	19.8 116.5 / SS 206 / NS			ML	SILT with sand Gray (10 YR 6/1), fine to medium sand, stiff to very stiff, moist to wet, strong petroleum-like odor <i>(Continued)</i>
<u> </u>				[∠] 19− 20 <u>−</u>					·		

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

Kennedy/Jenks Consultants

DRILLING COMPANY Holt Services, Inc DRILLING METHOD(S) Direct Push (Geoprobe 7822 DT) ISOLATION CASING N/A BLANK CASING N/A SLOTTED CASING N/A SIZE AND TYPE OF FILTER PACK N/A SAMPLES TYPE RECOV PRINTER TYPE RECOV PRINTER RECOV PRINTER DEPTH SAMPLE NUMBER DRILLE Michael Running DRILLER Michael Running DRILLE Michael Running DRILLE Project Name Proje	BORING	LOCAT 2350	ion 24th	Ave E	Parking Lot						Boring Name	KJB-8
DRILLING METHOD(S) Direct Push (Geoprobe 7822 DT) ISOLATION CASING N/A BLANK CASING N/A SLOTTED CASING N/A SIZE AND TYPE OF FILTER PACK N/A SEAL 3/8" Hydrated Bentonite Chips GROUT N/A SAMPLES TYPE RECOV RESIST. (FEET) BLOWS6 DRILL BIT(S) SIZE 2" Project Number 1696010.00 MEAURING PT. ELEVATION DOTAL DEPTH DOS DATE COMPLETED DATE COMPLETED 5/19/16 STAND PIPE FT. Project Number 1696010.00 Project Number 1696010.00 MEAURING PT. ELEVATION DOS DATE COMPLETED DATE COMPLETED S/19/16	DRILLIN	G COMF	PANY				DRIL		hael R	unning	1	Ecology Circle K
SOLATION CASING N/A	DRILLIN	G METH Direc	OD(S)	h (Geo	probe 7822 D)T)	DRIL	L BIT(S)	SIZE		1 -	
BLANK CASING N/A SLOTTED CASING N/A SIZE AND TYPE OF FILTER PACK N/A SEAL 3/8" Hydrated Bentonite Chips GROUT N/A SAMPLES TYPE RECOV PENETR (FEET) DATE COMPLETED DATE COMPLETION FROM N/A BACKFILL DETAILS PID/Sheen Lithology Logs BACKFILL DETAILS PID/Sheen Lithology Logs Airknifed to 4 ft DATE COMPLETION DATE COMPLETION DATE COMPLETION SAMPLING METHODS WELL COMPLETION SURFACE HOUSING STAND PIPE FT. SAMPLE SAMPLE SAMPLE NUMBER BACKFILL DETAILS PID/Sheen Lithology Logs Airknifed to 4 ft	ISOLATI	ON CAS N/A	ING	,	•	,	FROI		ТО	N/A	MEAURING PT. ELEVATION	I TOTAL DEPTH
SLOTTED CASING N/A SIZE AND TYPE OF FILTER PACK N/A SEAL 3/8" Hydrated Bentonite Chips GROUT N/A SAMPLES TYPE RECOV. PENETR (FEET) BLOWSE! Airknifed to 4 ft FROM N/A FROM TO N/A FROM TO SAMPLE SAMPLE NUMBER BACKFILL DETAILS PID/Sheen LITHOLOGY LOGS Test THOM N/A TO SAMPLE SAMPLE SAMPLE NUMBER FROM TO SAMPLE SEAL SAMPLE DESCRIPTION AND DRILLING REMARKS Airknifed to 4 ft	BLANK (CASING N/A					FROI	М	TO	N/A	DATE STARTED	DATE COMPLETED
SEAL 3/8" Hydrated Bentonite Chips GROUT N/A SAMPLES TYPE RECOV PENETR (FEET) BLOWS/6* FROM N/A FROM N/A FROM N/A FROM N/A TO N/A FROM TO N/A TO N/A TO N/A FROM TO N/A FROM N/A FROM N/A TO N/A FROM N/A SAMPLING METHODS WELL COMPLETION SAMPLE HOUSING STAND PIPE FT. SAMPLE DESCRIPTION AND DRILLING REMARKS Airknifed to 4 ft	SLOTTE	D CASIN	IG				FROI	М	TO	FT.	INITIAL WATER DEPTH (FT	
SEAL 3/8" Hydrated Bentonite Chips FROM TO 20 SAMPLING METHODS WELL COMPLETION SURFACE HOUSING STAND PIPE FT. SAMPLES TYPE RECOV PENETR (FEET) BLOWS/6" FROM N/A FROM	SIZE AN	D TYPE	OF FILT	TER PAC	K		FROI	М	TO	FT.	LOGGED BY	
SAMPLES TYPE RECOV RESIST. (FEET) BLOWS/6* TO N/A BACKFILL DETAILS PID/Sheen LITHOLOGY LOG Airknifed to 4 ft Airknifed to 4 ft	SEAL		Hvdra	ted Re	ntonite Chins		FROI	М	ТО	FT.		
TYPE RECOV PENETR (FEET) BLOWS 6* BACKFILL DETAILS PID/Sheen LITHOLOGY CEET SAMPLE NUMBER BACKFILL DETAILS PID/Sheen LITHOLOGY LOG SAMPLE DESCRIPTION AND DRILLING REMARKS Airknifed to 4 ft - 1	GROUT		iyara	100 DO			FROI	М	ТО	FT.		
Airknifed to 4 ft		AMPLES	PENETR.	DEPTH	SAMPLE NUMBER	BACKFILL DETAILS	PID/Sheer		USCS		SAMPLE DESCRIPTION AN	
	TYPE	(FEET)	RESIST. BLOWS/6"	(FEEI)			rest		LOG	Δirkn		
	-			1-		_				-		
	-			2-						_		
KJB-8-2.5				M	KJB-8-2.5							
	<u> </u>			₩ 3-						_		
4- SILT with sand	F			4-				 -		SILT	with sand	
ML Brown (10 YR 5/3), mottled with gray, stiff to very stiff, moist, no odor, no sheen									ML	Brow	n (10 YR 5/3), mottled witl	n gray, stiff to very stiff,
Silty SAND	-			5-		-				- ~		
Gray (10 YR 5/1), fine to coarse sand, some cobbles and gravel, some areas with more silt, stiff to medium stiff,	-			6-			0			grave	l, some areas with more s	silt, stiff to medium stiff,
moist, slight petroleum-like odor, no sheen							0			moist	, slight petroleum-like odd	r, no sheen
	-	_		7-		-				_		
5 3.9		5		8-			3.9					
KJB-8-8				M	KJB-8-8		7.8					
	-			9-		-	7.0			_		
9.6 / NS				10-			9.6 / NS					
				10			05					
- 11- SM -	-			11-		-	65		SM	-		
458 / MS				40			458 / MS					
12 KJB-8-12 T801 / HS	_	4			KJB-8-12			! !!!!!!!!!				
882 / HS	8 -			13-			882 / HS					
986 / HS	9.						986 / HS					
Coarser sand with depth, soft, strong petroleum-like odor, heavy sheen	2			14-								strong petroleum-like odor,
15-	- -			15 -						-		
370 / HS	7						370 / HS					
Sheen visible on surface of soil core, wet				16-						Shee	n visible on surface of soil	core, wet
59.8 / MS				17-		_	59.8 / MS			-		

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2__

Boring Log

Kennedy/Jenks Consultants

Projec	t Name	e		Ecology Circle	e K P	roject	Numbe	r	1696010.00 Boring Name KJB-8
TYPE	RECOV.	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID/Sheer Test	LITHOLOGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
-	4.5		18- 19- 20-	KJB-8-19	-	35.8 17.1 3.5 / NS		SM	Silty SAND Gray (10 YR 5/1), fine to coarse sand, some cobbles and gravel, some areas with more silt, stiff to medium stiff, moist, slight petroleum-like odor, no sheen (Continued) lenses of coarser and finer sand

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

BORING	LOCAT 2350	ION 24th	Ave E	Parking Lot									Boring Name		KJB-9
DRILLIN			ces, In	С				DRIL	N	1icl	hael R	unning	Project Name	E	Ecology Circle K
DRILLIN	G METH	OD(S)	h (Geo	oprobe 7822 D	OT)			DRIL	L BIT	(S)	SIZE		Project Number		1696010.00
ISOLATI			,		,			FRO		/A	ТО	N/A FT.	MEAURING PT. ELEVAT		TOTAL DEPTH
BLANK (FRO	М		ТО	N/A FT.	bgs DATE STARTED		20.0 ft. bgs DATE COMPLETED
SLOTTE		NG						FRO	M		ТО	N/A FT.	5/19/16 INITIAL WATER DEPTH	(FT)	5/19/16
SIZE AN		OF FIL	TER PAG	CK				FRO	М	/A	ТО	FT.	9.0 LOGGED BY		
SEAL		Jydra	tod Re	entonite Chips				FRO			ТО	FT.	J. Schv SAMPLING METHODS	varz	WELL COMPLETION
GROUT	N/A	iyura	ieu be	sinorine Criips				FRO	M		ТО	FT. N/A	4		☐ SURFACE HOUSING ☐ STAND PIPE FT.
S	AMPLES	DENETO	DEPTH		BAG	CKFILL DETAIL	_S	PID	N.		USCS	IN/A	<u> </u>		
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER		V			LITHOL	.OGY	LOG		SAMPLE DESCRIPTION	1 AND [DRILLING REMARKS
												Airkn	ifed to 3.5 ft		
-			1-				+					_			
									<u> </u>	_					
			2	KJB-9-2									SAND 0 (10 VP 5/2) fine to c	oaree	e sand, some fine gravel,
			3-				+					moist	, no odor, no sheen	oarsc	, sand, some inte graver,
	1		4-				-				SM	_			
			5 -												
								0.6							
-			6-				+	0.6	* :::	+		Poorl	y graded SAND with s	ilt	
			_					0				Grayi	sh brown (10 YR 5/2), I and cobbles, soft to i	fine to	o coarse sand, some
	4.5		7-				1					petrol	eum-like odor, sheen		,,,
-	4.5		8-				-	1.7				_			
			М	KJB-9-8.5				663							
-			9-	100 0 0.0	¥		+					_			
			10-							•••••					
								4404					e as above, siltier with sheen	depth	ı, wet, petroleum-like
-			11-				+	1431				_			
								122.7			SP/ SM				
<u>-</u>	5		12-				1			•••••	Sivi	_			
) - -			13-				-	488				_			
9.			Д	KJB-9-13				119.9							
É _ 2			14-				+					_			
			15-					774.6							
			15-									-			
			16-				+	166				_			
								38.3							
<u>-</u>			17-				+								

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2__

Boring Log

Kennedy/Jenks Consultants

Projec	t Name	e		Ecology Circle	e K P	roject	Numbe	er	1696010.00	Boring Name	KJB-9
TYPE	RECOV.	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOGY	USCS LOG	SAMPLE DESC	RIPTION AND DRILLING R	REMARKS
-	5		18-	KJB-9-19	-	5.6		SM	Silty SAND Gray (10 YR 5/1), sor slight petroleum-like o		rel, very stiff, wet,

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

Kennedy/Jenks Consultants

BORING	2350	24th	Ave E	Parking Lot									Boring Name	KJB-10
DRILLIN	G COMF Holt S	PANY Servic	ces, In	С			DRIL		Mid	chae	el R	unning	Project Name	Ecology Circle K
DRILLIN	G METH Direc	OD(S)	h (Geo	oprobe 7822 D	T)		DRIL	L BI	T(S 2"	S) SIZI	Ξ		Project Number	1696010.00
ISOLATI	ON CAS N/A		,	•	,		FRO	М	N/A	TO		N/A FT.	MEAURING PT. ELEVATION	N TOTAL DEPTH
BLANK (N/A						FRO		N/A	TO A		N/A	bgs DATE STARTED	20.0 ft. bgs DATE COMPLETED 5/19/16
SLOTTE		lG					FRO	М	N/A	TO	ı	N/A FT.	5/19/16 INITIAL WATER DEPTH (FT	
SIZE AN		OF FIL	TER PAG	CK			FRO	М	<u>۱//</u>	ТО	1	FT.	12.0 LOGGED BY	
SEAL		Jydra	tod Re	entonite Chips			FRO		<u>w//</u>	TO	1	FT.	J. Schwar	WELL COMPLETION
GROUT	N/A	iyura	icu De	entorinte Oriipa			FRO	M	V/A	TO		FT. N/A		☐ SURFACE HOUSING ☐ STAND PIPE FT.
S	AMPLES	PENETR	DEPTH	CAMPLE NUMBER	BAG	CKFILL DETAILS	PID			U:	scs	IN//A	CAMPLE DESCRIPTION AN	
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER		VIIIIII		LIIH	OLOG	L	OG		SAMPLE DESCRIPTION AN	D DRILLING REMARKS
												Airkn	ifed to 4 ft	
-			1-				-					_		
								<u></u>	D					
			2	KJB-10-2								Silty		with brown, stiff, moist, no
-			3-	-			_	ļ					no sheen	with brown, still, moist, no
			4-	_			-	ļ				_		
			5 -											
							5.0	ļ				Sandi	er, stiff with locally soft le	nses
-			6-				5.8					_		
							165							
 	4		7-	-						5	SM	-		
-	4		8-	_			403	ļ				Gradu - slight	ual color change to brown sheen, petroleum-like od	(10 YR 5/3), very stiff,
			Д	KJB-10-8								_		
-			9-	_			-					_		
L			10-											
			10-]						
-			11-	-			212					-		
							20.9							
<u> </u>	_		12-	-	¥		-						y SILT	
000	5		13-				26.3					Gray no sh	(10 YR 5/1), Poorly sorte een, petroleum-like odor	d fine to coarse sand, wet,
5				KJB-10-13			407.4							
2			14-	_			137.1					_		
							144.8				ЛL			
			15 -	1								Shee	n visible on surface	
			16-				10.3					 -		
							20							
- -			17-	-			- 25					_		

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2__

Projec	t Nam	e		Ecology Circle	eK P	roject	Numb	er	1696010.00	Boring Name	KJB-10
	(EEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOGY	USCS	SAMPLE DE	ESCRIPTION AND DRILLING F	REMARKS
-	5		18- 19-	KJB-10-19.5	-	472 801		ML		Poorly sorted fine to co m-like odor <i>(Continue</i>	

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

Kennedy/Jenks Consultants

BORING	LOCAT NE c	ion orner	of 325	0 24th Ave E	lot								Boring Name		KJB-11
DRILLIN	G COMF	PANY	ces, In					DRIL			hael F	Running	Project Name	F	Ecology Circle K
DRILLIN	G METH	IOD(S)	,	oprobe 7822 D)T)			DRIL	LΒ	IT(S) 2"	SIZE	tariiiig	Project Number		1696010.00
ISOLATI			,,, (OCC	501000 1022 2	<i>,</i> , ,			FRO	М	- N/A	ТО	N/A	MEAURING PT. ELEVA	TION	TOTAL DEPTH
BLANK (FRO	М	N/A	TO	FT.	bgs DATE STARTED		20.0 ft. bgs DATE COMPLETED
SLOTTE		NG						FRO	М	N/A	ТО	FT.	5/19/16 INITIAL WATER DEPTH	I (FT)	5/19/16
SIZE AN		OF FIL	TER PAC	CK				FRO	М	n/A N/A	TO	FT.	8.5 LOGGED BY		
SEAL		⊔vdro	tod Pa	entonite Chips				FRO		<u>1N/A</u> 0	TO	FT.	J. Sch	varz	WELL COMPLETION
GROUT	N/A	iyura	iteu De	entonite Onips				FRO		N/A	ТО	FT.	-		☐ SURFACE HOUSING ☐ STAND PIPE FT.
S	AMPLES		DEPTH	0444015 41114050	BA	CKFILL DETAIL	_S	PID			LICCO				
TYPE	RECOV (FEET)	RESIST. BLOWS/6	DEPTH (FEET)	SAMPLE NUMBER		V			LITH	HOLOGY	LOG		SAMPLE DESCRIPTION	N AND L	DRILLING REMARKS
												Airkn	ifed to 5 ft		
-			1-				-					-			
									Ļ,	\ _					
			2-	KJB-11-2								SILT	sh brown (10 YR 5/2)	trace	es of fine sand, dense, low
-			3-				_					plasti	city, moist, no odor, no	o shee	en
											ML				
<u> </u>			4-				-								
			5 -				_		H	+	-	Cond	v CII T		
								1.4				Pale	y SILT brown (10 YR 6/3), fin		
ŀ			6-				-						es, very stiff, moist, no with more cobbles and		
			7-					3.1			ML				
	4							2.5							
-			8-	KJB-11-8			-	2.0				-			
			9-		¥			3.7							
													SAND n (10 YR 5/3), stiff, we	et, no d	odor, no sheen
-			10-				+					-			
			44					.8							
			11-												
-			12-				-	.7				Grad	ual change to gray (10	YR 6	5/1)
	4							.7					an change is give, (iii		,
5			13-	KJB-11-13							SM	2 incl	n lens with many cobb	les	
			14-					.7				-			
5															
			15 -				+					Cobb	les scattered throughout	out	
			16-												
								.4							
			17-				+	.5		444	ML	(See	next page for litholog	gy de:	scription)

F-40.1 (6-87) (3-88) (8-90)

SHEET 1 OF 2

Boring Log

Kennedy/Jenks Consultants

Project	t Name	e		Ecology Circle	e K P	roject	Numb	er.		1696010.00 Boring Name KJB	-11
TYPE	RECOV.	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOG		JSCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS	
-	5		18- 19- 20-	KJB-11-19	-	.5			ML	Sandy SILT Gray (10 YR 6/1), some cobbles, very stiff, moist to no odor, no sheen (<i>Continued</i>) 2 inch lens gray sand with silt	o wet,

- NOTES

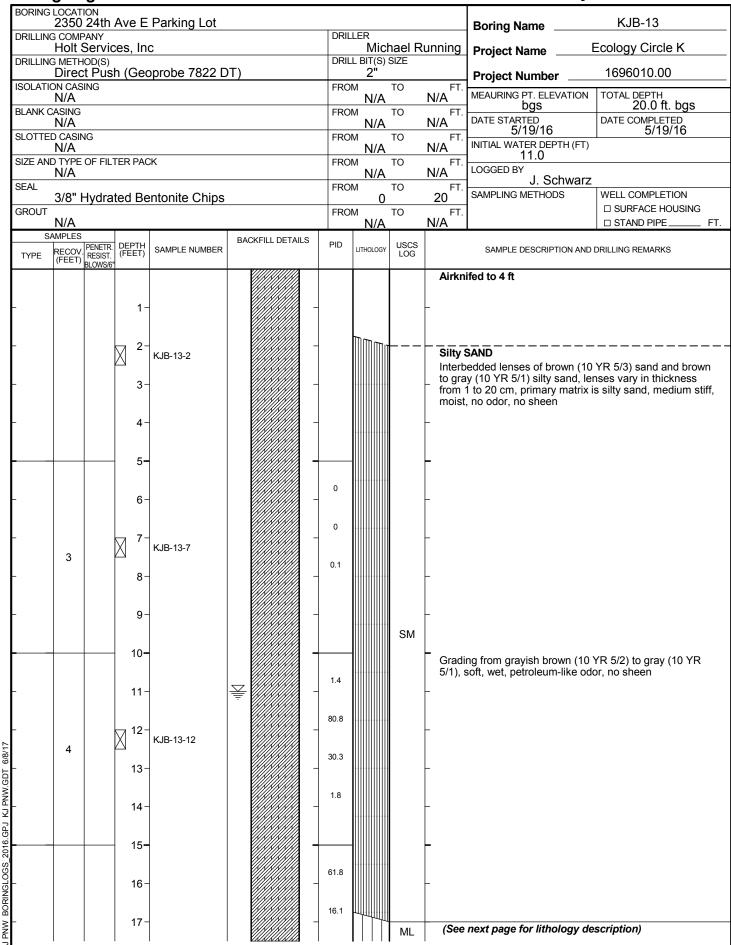
 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

BORING	Alley	to the	e east	of Mont's Mar	ket							Boring Name	KJB-12
DRILLIN	G COMF	PANY Service	ces, In	С			DRII		Mic	hael R	unning	Project Name	Ecology Circle K
DRILLIN	G METH Direc	OD(S)	h (Geo	oprobe 7822 D	T)		DRII	LL B	IT(S) 2"	SIZE		Project Number _	1696010.00
ISOLATI	ON CAS N/A	SING			·		FRC		N/A	ТО	N/A FT.	MEAURING PT. ELEVATION	ON TOTAL DEPTH
BLANK (CASING N/A						FRC		N/A	ТО	N/A FT.	DATE STARTED	20.0 ft. bgs DATE COMPLETED
SLOTTE	D CASIN	NG					FRC		N/A	ТО	N/A FT.	5/19/16 INITIAL WATER DEPTH (I	5/19/16 FT)
SIZE AN	D TYPE N/A	OF FIL	TER PAC	CK			FRC	M	N/A	TO	N/A FT.	LOGGED BY	
SEAL	3/8"	Hydra	ited Be	entonite Chips			FRC		0	TO	20 FT.	J. Schwa SAMPLING METHODS	WELL COMPLETION
GROUT	N/A			•			FRC		N/A	ТО	N/A FT.		☐ SURFACE HOUSING ☐ STAND PIPE FT.
TYPE	RECOV (FEET)	PENETR. RESIST. BLOWS/6	DEPTH (FEET)	SAMPLE NUMBER	BAG	CKFILL DETAILS	PID		HOLOGY	LICCO		SAMPLE DESCRIPTION A	AND DRILLING REMARKS
		BEOTTORO									Airkn	ifed to 4.5 ft	
-			1-				-				_		
-			2-	KJB-12-2			-			H	1	with sand	
-			3-	_			-					ic matter visible, low pla	sand, medium stiff, some asticity, moist, no odor, no
-			4-	_			-				_		
-			- 5 -								Grayi	SAND sh brown (10 YR 5/2), fi	ine to medium sand with
			6-				0				lense grave	s of coarser sand, some	e organic matter visible, some ut, medium stiff, moist, no
							0	ļ.,.					
	5		7-				0				_		
-			8-	KJB-12-8			-	1			More	cobbles, rounded to sul	brounded
-			9-	_							_		
-			10-				0	-		SM	_		
-			11-				0				_		
}			12-		¥		0.1				wet		
- - - -	1.5		13-				_				_		
-			14-								_		
5			15						1111111				
			15-	KJB-12-15			0						
			16-	_			"				-		
- -			17-				0			ML	Gray	with sand (10 YR 5/1), primarily si s above, no odor, no sh	ilt, very stiff, moist, but not as een

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2__


Boring Log

Kennedy/Jenks Consultants

Projec	t Nam	e		Ecology Circle	eK P	roject	Numb	er	1696010.00 Boring Name KJB-12	
TYPE	SAMPLES TPE RECOV. RESIST (FEET) BLOWS/		DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID	LITHOLOGY	USCS	SAMPLE DESCRIPTION AND DRILLING REMARKS	
-	4		18- 19- 20-	KJB-12-19	-	0		ML	SILT with sand Gray (10 YR 5/1), primarily silt, very stiff, moist, but not as wet as above, no odor, no sheen (<i>Continued</i>) 1 in lens of silt with sand, medium to coarse sand	

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million
- isobutylene standard.
 Boring backfilled with bentonite and finished to match existing grade.
 The 10 to 15 foot core was not sampled due to poor recovery. A rock was lodged in the bottom of the core, resulting in only 1.5 feet of recovery.

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

Boring Log

Kennedy/Jenks Consultants

Project	Name	•		Ecology Circle	e K P	roject	Num	be	er	1696010.00 Boring Name KJB-13
	SAMPLES TYPE RECOV. PENET (FEET). RESIS			CAMPLE MUMBER	BACKFILL DETAILS	PID			USCS	O MARIE DESCRIPTION AND RRIVENIA DEMARKS
	RECOV. PENET		DEPTH (FEET)	SAMPLE NUMBER			LITHOLO	JGY	LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
-	5		18- 19- 20-	KJB-13-19	-	0.2			ML	Sandy SILT Gray (10 YR 5/1), some rounded to subrounded gravel and cobbles, very stiff, moist but not as wet as above, no odor, no sheen (Continued)

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

Kennedy/Jenks Consultants

DRILLEN HOT SERVICES, Inc DRILLEN HOT SERVICES, Inc DRILLEN HOT SERVICES, Inc DRILLEN HOT SERVICES, Inc DRILLEN HOT DRILLEN HOT DRILLEN HOT SERVICES, INC DRILLEN HOT DRILLEN	BORING	LOCAT W sig	ion de of 2	24th A	ve E						Boring Name	KJB-14
DRILL BIT(S) SIZE Drive	DRILLIN	G COMF	PANY Service	ces, Ind	C		DRIL		hael R	Running		
SOLATION CASING FIRCH NI/A NI	DRILLIN	G METH	IOD(S)	h (Geo	probe 7822 D)T)	DRIL	L BIT(S)	SIZE		-	
FROM N/A	ISOLATI	ON CAS		(,	FROI	М		N/A	MEAURING PT. ELEVATION	N TOTAL DEPTH
SLOTIED CASMO NA SIZE AND TYPE OF FILTER PACK NA FROM NA NA FROM NA FR	BLANK (CASING					FROI	М	TO	FT.	DATE STARTED	DATE COMPLETED
SIZE AND TYPE OF FILTER PACK NAM FROM NA NA NA NA NA NA NA NA NA N	SLOTTE	D CASIN	NG				FROI	М	TO	FT.	8/1/16	8/1/16
SEAL 3/8" Hydrated Bentonite Chips FROM TO 20 FT SAMPLE NUMBER FROM N/A TO N/A SAMPLES	SIZE AN	D TYPE	OF FIL	TER PAC	CK		FROI	М	TO	FT.	N/A LOGGED BY	
SAMPLE SAMPLE NUMBER SAM	SEAL		Judra	tod Do	entonito Chino		FROI	М	TO	FT.	J. Schwa	
SAMPLE DESCRIPTION AND DRILLING REMARKS TYPE TOPIC TOPI	GROUT		iyura	ieu be	intornite Criips		FROI	M	ТО	FT.		☐ SURFACE HOUSING
Airknifed to 5 ft 1- 2- 3- 4- 5- 6- 7- KJB-14-7 8- 9- 10- 11- 12- 5 13- KJB-14-13 14- 15- 16- 15- 16- 16- 17- 17- 17- Airknifed to 5 ft Airknifed to 5 ft Silly SAND with gravel Brown (10 YR 5/3), fine to coarse sand, medium to large gray gravel with some coobbles, cobbles up to 2 in longest dimension, medium stiff to stiff at bottom, moist to wet no oddr, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some coobbles, very stiff, moist but less wet than above, no oddr, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some coobbles, very stiff, moist but less wet than above, no oddr, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some coobbles, very stiff, moist but less wet than above, no oddr, no sheen SILT with sand Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no oddr, no sheen	S	AMPLES		DEBTH		BACKFILL DETAILS	PID/Sheer			N/A		
Airknifed to 5 ft 1-	TYPE	RECOV (FEET)	PENETR. RESIST. BLOWS/6'	(FEET)	SAMPLE NUMBER		Test	LITHOLOGY	LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
Silty SAND with gravel Brown (10 YR 5/3), fine to coarse sand, medium to large gray gravel with some cobbles, cobbles up to 2 in longest dimension, medium stiff to stiff at bottom, moist to wet, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen										Airkn	ifed to 5 ft	
Sity SAND with gravel Brown (10 YR 5/3), fine to coarse sand, medium to large gray gravel with some cobbles, cobbles up to 2 in longest dimension, medium stiff to stiff at bottom, moist to wet, no odor, no sheen SM SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen Sity SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen	-			1-						-		
Sity SAND with gravel Brown (10 YR 5/3), fine to coarse sand, medium to large gray gravel with some cobbles, cobbles up to 2 in longest dimension, medium stiff to stiff at bottom, moist to wet, no odor, no sheen SM SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen Sity SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen												
Sity SAND with gravel Brown (10 YR 5/3), fine to coarse sand, medium to large gray gravel with some cobbles cobbles up to 2 in longest dimension, medium stiff to stiff at bottom, moist to wel, no odor, no sheen 7	-			2-						-		
Sity SAND with gravel Brown (10 YR 5/3), fine to coarse sand, medium to large gray gravel with some cobbles cobbles up to 2 in longest dimension, medium stiff to stiff at bottom, moist to wel, no odor, no sheen 7	-			3-						_		
Silty SAND with gravel Brown (10 YR 5/3), line to coarse sand, medium to large gray gravel with some cobbles, cobbles up to 2 in longest dimension, medium stiff to stiff at bottom, moist to wet, no odor, no sheen SM SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen Silty SAND with gravel Brown (10 YR 5/3), line to coarse sand, medium to large gray gravel in Some odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen												
Silty SAND with gravel Brown (10 YR 5/3), fine to coarse sand, medium to large gray gravel with some cobbles, cobbles up to 2 in longest dimension, medium stiff to stiff at bottom, moist to wet, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen	-			4-						-		
Silty SAND with gravel Brown (10 YR 5/3), fine to coarse sand, medium to large gray gravel with some cobbles, cobbles up to 2 in longest dimension, medium stiff to stiff at bottom, moist to wet, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen				_				mm~				
Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen				5-								area sand medium to large
The state of the s	-			6-			0			gray	gravel with some cobbles	s, cobbles up to 2 in longest
To KJB-14-7 8- 9- 10- 11- 12- 5 13- KJB-14-13 14- 15- 16- 17- 17- SM - SM -							0					r at bottom, moist to wet, no
SM - 9- 10- 11- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2- 2-	-			7-	KJB-14-7					-		
SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen		4					0 / NS		eM			
9 10 - 11 - 0 SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen 13 KJB-14-13									Sivi			
SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen ML SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen ML Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen	-			9-			0			-		
SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen ML SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen ML Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen												
SILT with sand Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen ML Silty SAND Gray (10 YR 5/1), very fine to medium sand, some cobbles, very stiff, moist but less wet than above, no odor, no sheen Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen				10-								
The state of the s	-			11-			0			OU T	and the second	
Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen SM Cobbles, very stiff, moist but less wet than above, no odor, no sheen Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen							0			Gray	(10 YR 5/1), very fine to	
KJB-14-13 14- 15- 16- 17- 17- KJB-14-13 ML Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen	}			12-								ess wet than above, no odor,
KJB-14-13 14- 15- 16- 17- KJB-14-13 O Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen		5		12			0 / NS		,,,			
Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen					KJB-14-13				IVIL			
Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen	-			14-			0			-		
Silty SAND Gray (10 YR 5/1) with layers of brown, some gravel and cobbles, medium stiff, moist, no odor, no sheen	5						0					
SM cobbles, medium stiff, moist, no odor, no sheen				15-								
				16-			0		SM	Gray cobbl	(10 YR 5/1) with layers o	of brown, some gravel and no odor, no sheen
							^					
	-			17-			U		MI	(See	next page for lithology	description)

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

Projec	t Nam	e		Ecology Circle	e K P	roject	Numb)e	r	1696010.00 Boring Name KJB-1	4
S. TYPE	I/EEET\	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID/Sheer Test	LITHOLOG	GY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS	
-	5		18- 19- 20 -		-	0 / NS 0			ML	SILT with sand Gray (10 YR 5/1), very fine to coarse sand, some gra and cobbles, very stiff, moist, no odor, no sheen (Continued)	ivel

NOTES

- 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million
- PID = MINIRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.
 Boring backfilled with bentonite and finished to match existing grade.
 Temporary well placed with screen from 5 20 feet (measured as 19.84 ft btoc). Static water level in temporary well at 19.24 ft btoc, with the top of casing at ground surface. No reconnaissance groundwater sample collected due to lack of

Kennedy/Jenks Consultants

BORING	LOCAT W sig	ion de of 2	24th A	ve E									Boring Name		KJB-15
DRILLIN	G COMF	PANY Service	ces, Ind					DRIL	M	ich	nael R	unning	Project Name	E	Ecology Circle K
DRILLIN	G METH	IOD(S)	h (Geo	probe 7822 D	OT)			DRIL	L BIT(2 "	S) :	SIZE		Project Number _		1696010.00
ISOLAT	ION CAS N/A		,	•				FROI	м N /		ТО	N/A FT.	MEAURING PT. ELEVAT	ION	TOTAL DEPTH
BLANK	CASING N/A							FROI			ТО	N/A FT.	DATE STARTED		20.0 ft. bgs
SLOTTE	D CASIN	NG						FROI			ТО	N/A FT.	8/1/16 INITIAL WATER DEPTH	(FT)	8/1/16
SIZE AN		OF FIL	TER PAC	K				FROI			ТО	N/A FT.	LOGGED BY		
SEAL		Hvdra	ted Be	ntonite Chips				FROI	М		ТО	FT.	J. Schw SAMPLING METHODS	arz	WELL COMPLETION
GROUT		<u></u>						FROI			ТО	FT.			☐ SURFACE HOUSING☐ STAND PIPE FT.
	AMPLES		DEPTH (FEET)	SAMPLE NUMBER	BA	CKFILL DETA	ILS P	ID/Sheer Test			USCS		SAMPLE DESCRIPTION	AND I	
TYPE	(FEET)	PENETR. RESIST. BLOWS/6'	(FEET)	O WIII EE HOMBER			1	Test	Limber		LOG	Airkn	ifed to 3 ft	71110	THE THE TALL WITH THE
												AllKii	neu to s it		
			1-									-			
-			2-									-			
			3-				+			7.			 y SILT		
L	2		4-					0				layers	n (10 YR 5/3) to grayisl s, some gravel and cob	n brov bles,	wn (10 YR 5/2) in thin organics (roots), stiff,
			-					0./10			ML	moist	, no odor, no sheen		
-			5 -				+	0 / NS				1 ft sa	ame as above with mor	e ara	ivel and cobbles with
								0				sand		. 3	
			6-										y graded SAND with s		parse sand, some gravel
-			7-				-	0				and c	obbles, localized areas um stiff, moist, no odor	(1 in	i) of coarser sand,
	3		M	KJB-15-7.5				0					,,	,	
-			8-								SP/	-			
_			9-								SM	_			
-			10-		¥		+					Coars	ser sand than above, so	oft, w	et
			11-					0							
				KJB-15-11.5				0				Silty S Brown		oarse	sand, some gravel, few
-			12-				-	0				cobbl	es, stiff, moist, no odor	, no s	sheen
	4.5		10					0 / NS							
			13-												
			14-				-	0			SM	_			
5								0							
			15 -									<u> </u>			
			16-									-			
								0							
1			17-					-		#	ML	(See	next page for litholog	y des	scription)

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

Projec	t Nam	e		Ecology Circle	eK P	roject	Numb	er	·	1696010.00	_ Boring Name _	KJB-15
TYPE	(EEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID/Sheer Test	LITHOLOG	SY	USCS LOG	SAMPLE DES	SCRIPTION AND DRILLING F	REMARKS
-	5		18- \(\) 19- 20-	KJB-15-19	-	0 / NS 0			ML	SILT with sand Gray (10 YR 5/1), s no sheen (Continue	ome gravel, very stiff, e d)	moist, no odor,

- 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million
- PID = MINIRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.
 Boring backfilled with bentonite and finished to match existing grade.
 Temporary well placed with screen from 5 20 feet. Static water level in temporary well at 15.60 ft btoc, with the top of casing approximately 1 ft above ground surface. Reconnaissance groundwater sample KJB-15 collected at 1150 on 1 August 2016.

Kennedy/Jenks Consultants

BORING	LOCAT Drive	ion way c	of 241	5 McGraw Ave	e E								Boring Name		KJB-16
DRILLIN			es, In	С				DRILL	M	ich	nael R	unning	Project Name	E	Ecology Circle K
DRILLIN	G METH Direc	OD(S)	h (Geo	probe 7822 E	DT)			DRILL	BIT(: 2"	S) S	SIZE		Project Number		1696010.00
ISOLATI	ON CAS N/A	ING						FRON	л N/.	A	TO	N/A FT.	MEAURING PT. ELEVA	TION	TOTAL DEPTH
BLANK (CASING N/A							FRON			ТО	N/A FT.	DATE STARTED		20.0 ft. bgs DATE COMPLETED
SLOTTE		lG						FRON			ТО	N/A FT.	8/1/16 INITIAL WATER DEPTH	l (FT)	8/1/16
SIZE AN		OF FIL	TER PAC	CK				FRON			ТО	N/A FT.	9.0 LOGGED BY		
SEAL		Hvdra	ted Be	entonite Chips				FRON	Л		ТО	FT.	J. Schv SAMPLING METHODS	varz	WELL COMPLETION
GROUT	N/A	iy a. a		micornico Ornipo				FRON			ТО	FT.			☐ SURFACE HOUSING ☐ STAND PIPE FT.
S	AMPLES		DEPTH	CAMPLE ALLIMPED	ВА	CKFILL DETA	ILS PI	ID/Sheen Test			USCS	14//	CAMPLE DESCRIPTION	NI AND I	
TYPE	RECOV. (FEET)	RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER		V		Test	LITHOLO	GY	LOG		SAMPLE DESCRIPTION	N AND I	DRILLING REMARKS
												Airkn	ifed to 4.5 ft		
-			1-				-					-			
			2-												
-			3-				-					_			
_			4-						_	$\left \cdot \right $					
-	.5		5-				\downarrow	0				- Brown	with sand n (10 YR 5/3) with sec	tions	of gray (10 YR 5/1),
								0			ML	mediu	um stiff, moist, no odo	r, no s	sheen
<u> </u>			6-										y graded SAND with		
-			7-					0					n (10 YR 5/3), fine to o , no odor, no sheen	oarse	e sand, some gravel,
	5		М	KJB-16-7.5				0 / NS				Lense	es of reddish brown ar	nd vell	lowish red sand
-			8-	10-7.5								surro	unded by lenses of gra	ay sar	nd
L			9-		¥			0							
					=							Wet			
-			10-				+	0				_			
								0			SP/ SM				
			11-									Same	e as above with lenses	of sil	tier material
-			12-					0				-			
	2														
<u>-</u>			13-									_			
			14-									_			
5															
			15 -				+		7,4	#			y SILT		
			16-					0		$\ \ $		Gray fine s	(10 YR 5/1), some largand, soft, wet, no odo	ge sai r, no s	nd grains, mostly very sheen
				KJB-16-16						$\ $	ML				
-			17-					0				-			
1	1	1	I	l	I	VXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	a	- 1	1.1	11		1			

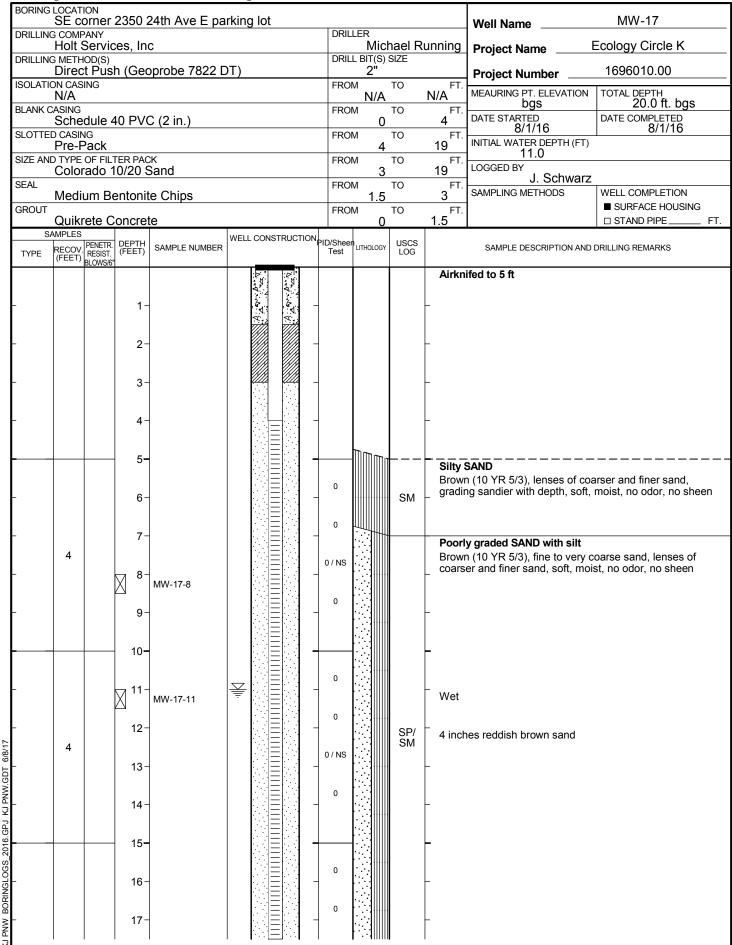
F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2__

Boring Log

Kennedy/Jenks Consultants

Projec	t Name	e		Ecology Circle	e K P	roject	Num	be	r	1696010.00 Boring Name KJB-16
S. TYPE	RECOV.	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	BACKFILL DETAILS	PID/Sheer Test	LITHOLO	OGY	USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS
-	5		18- 19-		-	0 / NS 0			ML	Sandy SILT Gray (10 YR 5/1), some large sand grains, mostly very fine sand, soft, wet, no odor, no sheen (<i>Continued</i>) Same as above but some cobbles, very stiff, moist


- NOTES

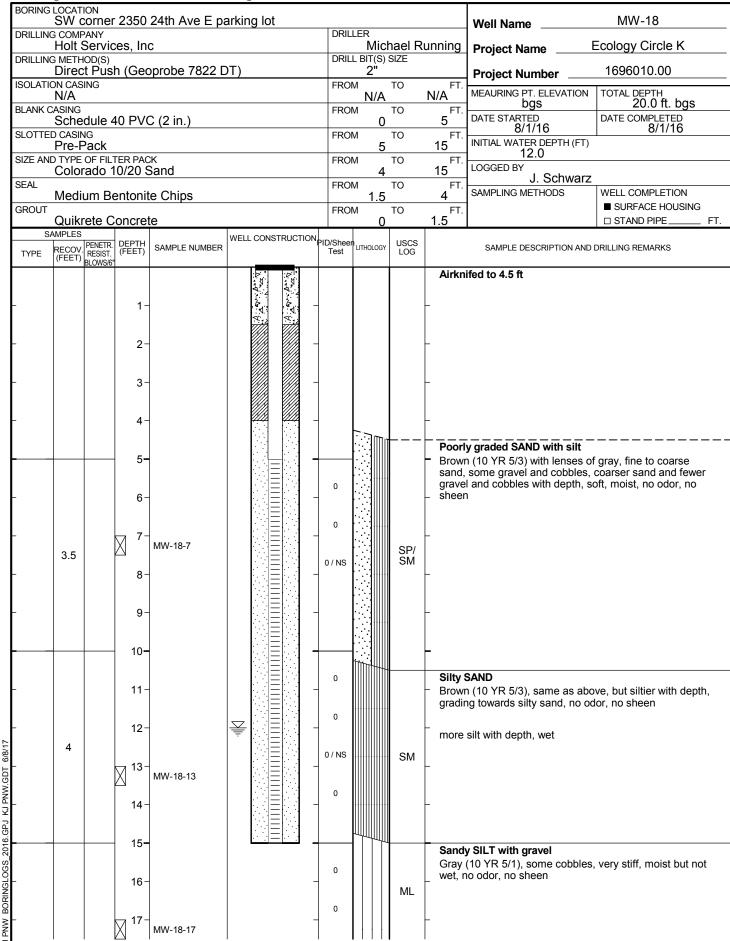
 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Boring backfilled with bentonite and finished to match existing grade.

 3. Temporary well placed with screen from 4 19 feet. No water observed in temporary well, no recharge observed after 15 minutes.

Kennedy/Jenks Consultants

Kennedy/Jenks Consultants


Projec	t Nam	e		Ecology Circle		roject l				1696010.00 Well Na	ıme	MW-17
TYPE	RECOV (FEET)	DENETO	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION	PID/Sheer Test	LITHO	DLOGY	USCS LOG	SAMPLE DESCRIPTION AND	D DRILLING F	REMARKS
_	5		18-		-	0 / NS	::::/		SP/ SM	-		
-			19-	MW-17-19		0			ML	Sandy SILT Gray (10 YR 5/1), some gravel moist but not wet, no odor, no s	and cobbl heen	es, very stiff,

- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Ecology Well Tag ID BJX-251.

Kennedy/Jenks Consultants

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2_

Kennedy/Jenks Consultants

Proje	ct Na	me _			Ecology Circle		roject l					1696010.00	Well Name	MW-18
TYPE	RECO (FEE	DENI	IST.	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION	PID/Sheer Test	LITH	OLOG'	Y	USCS LOG	SAMPLE DE	SCRIPTION AND DRILLING	S REMARKS
-	5			18 - 19 -		-	0 / NS 0				ML	Sandy SILT with gi Gray (10 YR 5/1), s wet, no odor, no sh	some cobbles, very s	tiff, moist but not

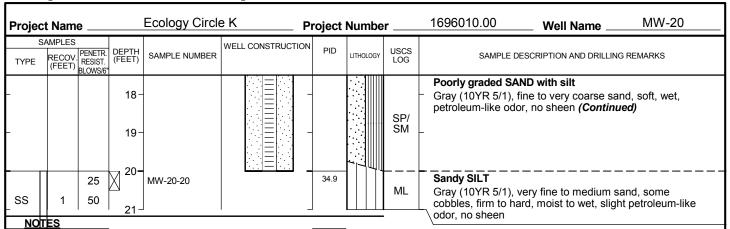
- NOTES

 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million
- isobutylene standard.
 Ecology Well Tag ID BJX-252.
 2 in soil boring to 20 ft bgs, but 3 in boring to install permanent monitoring well hit refusal at 15 ft bgs.

												-	t e e e e e e e e e e e e e e e e e e e
BORING	2350	ON 24th	Ave E	parking lot								Well Name	MW-19
DRILLIN	G COMP	PANY Servic	es, Ind	;				DRIL		e Caus	eland	Project Name	Ecology Circle K
DRILLIN	G METH Hollo	OD(S) w Ste	m Aug	er				DRIL	L BIT(S) 2"	SIZE		Project Number	1696010.00
ISOLATI								FRO		ТО	N/A FT.	MEAURING PT. ELEVATION	N TOTAL DEPTH
BLANK (CASING	dule /	10 PV/	C (2 in.)				FRO		TO	FT.	bgs DATE STARTED	20.0 ft. bgs DATE COMPLETED
SLOTTE	D CASIN	IG		40 PVC				FRO	М	TO	 FT. 20	9/23/16 INITIAL WATER DEPTH (FT	9/23/16
SIZE AN	D TYPE	OF FIL	TER PAC	K				FRO		TO	FT.	N/A LOGGED BY	,
SEAL				Silica Sand				FRO		ТО	20 FT.	J. Schwar	WELL COMPLETION
GROUT				n Bentonite C	hips			FRO	<u>1</u> M	ТО	3.5 FT.	SAMPLING METHODS	■ SURFACE HOUSING
S	AMPLES		oncret	e	WELL	CONST	RUCTION		0		1		☐ STAND PIPE FT.
TYPE	RECOV. (FEET)	PENETR. RESIST.	DEPTH (FEET)	SAMPLE NUMBER	WELL	CONST	ROCTION	PID	LITHOLOGY	USCS		SAMPLE DESCRIPTION AN	ID DRILLING REMARKS
		BLOWS/6"				V	: Þ				Airkn	ifed to 6 feet	
-			1-			\$ <u>.</u>	- A						
			·										
-			2-				-				-		
			3-										
_			4-			1							
-		6	5 -				-				-		
SS	1.5	10						40.4					
_		10	6-					10.4				y graded SAND with silt (10YR 6/1), color grading	to graviah brown (10VP
-			7-				-				5/1), 1	firm, moist, no odor, no sl	neen
											Firme	er than above, higher silt o	content, some gravel
-			8-				-				_		
			9-										
			9-										
-		10	√ 10 -	MW-19-10			-				Grav	(10YR 6/1), fine to coarse	e sand wet strong
ss	1.5	12		10100-19-10								leum-like odor, sheen	o dana, wet, dirong
- "		12	11-				-	1877					
			12-				_			SP/ SM			
			12										
<u> </u>			13-				-				_		
 			14 –										
			15 -										
		10										e as above but more medi and, wet, strong petroleul	
SS	1.5	9 11	16-				-	69.1	:		_		
		.,							 				
<u> </u>			17-						:: <u> </u>				

Kennedy/Jenks Consultants

Projec	t Nam	e		Ecology Circle	e K Pı	roject	Numbe	r	1696010.00	Well Name	MW-19
	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION	PID	LITHOLOGY	USCS LOG	SAMPLE DI	ESCRIPTION AND DRILLING	REMARKS
-		8	18- 			50.1		SP/ SM	Poorly graded SAI Gray (10YR 6/1), c 5/1), firm, moist, n Slight petroleum-lil	color grading to grayis o odor, no sheen <i>(Co</i>	h brown (10YR ntinued)
SS	1.5	6 9	20-	MW-19-19		7.9		ML	SILT with sand Gray (10YR 6/1), s but not wet, no odd	some gravel and cobb or, no sheen	les, hard, moist


- NOTES

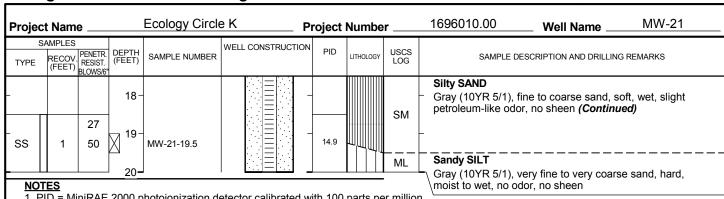
 1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

 2. Ecology Well Tag ID BKY-105.

14/	CATION	-0 0 411	. –	1.6						1 A) A / O O
DRILLING CC	OMPANY		n Ave E parkir	ig lot	DRIL				Well Name	MW-20
Ho DRILLING ME	olt Servic	es, Ind			DRII	Abe L BIT(S)	Caus	eland	Project Name	Ecology Circle K
Но	ollow Ste	m Aug	er			4"			Project Number	1696010.00
ISOLATION O	<u> </u>				FROI	N/A		N/A FT.	MEAURING PT. ELEVATION bgs	TOTAL DEPTH 21.0 ft. bgs
	hedule 4	10 PVC	C (4 in.)		FROI	м О	ТО	FT. 5	DATE STARTED 9/23/16	DATE COMPLETED 9/23/16
SLOTTED CA	ASING -slot Sch	nedule	40 PVC		FROI	м 5	ТО	FT. 20	INITIAL WATER DEPTH (FT)	9/23/10
SIZE AND TY	PE OF FILT	TER PAC			FRO		ТО	20 FT.	N/A LOGGED BY	
SEAL					FROI	М	ТО	FT.	J. Schwarz SAMPLING METHODS	WELL COMPLETION
GROUT			n Bentonite Cl	nips	FROI	<u>1.5</u> м	ТО	4 FT.	O WILLIAM WETTIODS	■ SURFACE HOUSING
Qu SAMPL	uikrete C		e	WELL CONSTRUCTION		0		1.5		☐ STAND PIPE FT.
TYPE REC	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL CONSTRUCTION	PID	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	DRILLING REMARKS
(, _,	BLOWS/6"			יאל יאל				Airkn	ifed to 5 feet	
				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX						
-		1-		\(\frac{\pi}{4}\)						
_		2-						_		
-		3-						_		
		4-						_		
		5-								
	9	5							y SILT sh brown (10YR 5/2), color	mottled with aray very
SS 1.		6-			1.0			fine to	coarse sand, some gravel no sheen	
	7							odoi,	no sneen	
Г		7-								
							ML			
-		8-								
_		9-								
						$\ \ \ $				
 		√ 10 -	NAM 00 40				╁	Silty	SAND	
SS 1.	.5 8		MW-20-10					Gray	(10YR 5/1), some mottling,	very fine to coarse sand,
- 33 1.	.5 6	11-			2485			firm to	o hard, moist, petroleum-like	e oaor, slight sheen
	-									
-		12-					SM			
_		13-					SIVI			
		.5								
-		14-						-		
-	8	15 -					 		y graded SAND with silt	
SS 1.					112.6	:		Gray	(10YR 5/1), fine to very coa eum-like odor, no sheen	irse sand, soft, wet,
-	8	16-			113.6	[: : <u> </u>	SP/ SM		, , ,	
_ _		17-				[::				
4 I		'				I : :	l			

Kennedy/Jenks Consultants

PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.


2. Ecology Well Tag ID BKY-106.

	<u> </u>				<u> </u>							•
BORING	W sic	ion de 23	50 24tl	n Ave E parkii	ng lot						Well Name	MW-21
DRILLIN	G COMP	PANY Servic	es, Ind	3			DRIL	LER Abe	e Caus	eland	Project Name	Ecology Circle K
DRILLIN	G METH Hollo	OD(S) w Ste	m Auc	ıer			DRIL	L BIT(S) 4") SIZE		Project Number	1696010.00
ISOLATI							FRO		ТО	N/A FT.	MEAURING PT. ELEVATIO	N TOTAL DEPTH
BLANK (CASING	dule 4	10 PV	C (4 in.)			FRO		TO	FT. 5	bgs DATE STARTED	20.0 ft. bgs DATE COMPLETED
SLOTTE	D CASIN	NG		40 PVC			FRO		ТО	20 FT.	9/23/16 INITIAL WATER DEPTH (F	9/23/16 T)
SIZE AN	D TYPE	OF FILT	TER PAC				FRO		TO	20 FT.	N/A LOGGED BY	
SEAL				n Bentonite C	hine		FRO		ТО	FT.	J. Schwa SAMPLING METHODS	WELL COMPLETION
GROUT			oncret		прз		FRO		TO	FT.		■ SURFACE HOUSING □ STAND PIPE FT.
S	AMPLES				WELL CO	NSTRUCTION	PID		LICCO	1.5		•
TYPE	RECOV. (FEET)	RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER				LITHOLOGY	LOG		SAMPLE DESCRIPTION A	ND DRILLING REMARKS
					D 3	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\				Airkn	ife to 5 feet	
-			1-		A	A A	-			-		
			_									
-			2-									
-			3-				-			-		
-			4-			2 (2//2) .						
			5-									
		8								Gray	SAND (10YR 5/1), fine to very o	coarse sand, some gravel,
SS -	1.5	11 13	6-				0.1			soft to	o firm, moist, no odor, no	sheen
			_					-				
			7-						SM			
-			8-				-			-		
-			9-									
ļ.,			10 -							ļ.,		
ss	1.5	19 11		MW-21-10						Gray	y graded SAND with silt (10YR 5/1), fine to coars	e sand, some gravel, soft,
33	1.5	10	11-				543			moist	, slight petroleum-like od	or, no sheen
			12-									
			12						SP/ SM			
5			13-				-		Sivi	-		
			14-									
<u></u>			15 -						-	Ciltar	SAND	
SSS	1.5	8 12								Gray	SAND (10YR 5/1), fine to coars	e sand, soft, wet, slight
		14	16-				188.2		SM	petroi	eum-like odor, no sheen	
			17-					1				
1	1		''						H			

F-40.1 (6-87) (3-88) (8-90)

SHEET __1__OF __2__

Kennedy/Jenks Consultants

1. PID = MiniRAE 2000 photoionization detector calibrated with 100 parts per million isobutylene standard.

2. Ecology Well Tag ID BKY-107.

			Cor	struction	<u>Log</u>							Kenned	dy/Jenks Consultant
	lorth c	f MV	V-18									Well Name	RW-1
DRILLING (COMPAN Holt Se		es, Ind) .				DRIL	LER Joh	n Ber	nett	Project Name	Ecology Circle K
DRILLING N	METHOD	D(S)		Stem Auger				DRIL	L BIT(S)	SIZE	6.26"ID	Project Number	1696010.00
ISOLATION	CASING	3						FRO		TO	FT. N/A	MEAURING PT. ELEVATION	ON TOTAL DEPTH
BLANK CAS		-dul	. 40 🖪	N/C				FRO	M	ТО	FT. 5.5	bgs DATE STARTED	21.5 ft. bgs DATE COMPLETED
SLOTTED (CASING							FRO		ТО	FT.	2/7/17 INITIAL WATER DEPTH (I	2/7/17
SIZE AND	TYPE OF	FILT	ER PAC					FRO		TO	20.5 FT.	11.0	
SEAL				Silica Sand				FROI	<u>4.5</u> и	TO	20.5 FT.	J. Sawde	
GROUT	/8" Hy	drat	ed Be	ntonite Chips				FROI	<u>1</u> и	ТО	4.5 FT.	SAMPLING METHODS Split Spoon	WELL COMPLETION ■ SURFACE HOUSING
SAM	Concre				WELL	0010771	071011		0		1	Opin Opoon	☐ STAND PIPE FT.
TYPE RI	ECOV. PE	NETR. SIST. DWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL	CONSTRUC	CTION	PID / ST	LITHOLOGY	USCS		SAMPLE DESCRIPTION	AND DRILLING REMARKS
			- - - 5 -			Δ 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3		0.0 / NS				5/4, Air/vac clearance to	o 6' bgs - silt with sand, traces o odor, no sheen
. SS		6 9 10	10-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			0.0 / NS		ML	7.5YF	with sand R 4/3, Fine to medium s led gravel, brown, occas content, dry, no odor, n	sional increase in gravel and
SS	1	12 18 16	15 - - - -					0.0 / NS			Same conte	e as above, except no gr nt	ravel and increased silt
ss	1 :	11 28 47	20-		Ŀ		ַ נ	0.0 / NS		SP ML		y graded SAND	change from yellowish brown
NOTES		47	l				L			-	to gra	y, poorly graded fine to	medium sand, wet, no odor,
1. ppm 2. bgs 3. ST : 4. NS	n = part = belov = sheer = no sh	w gro n test leen,	und su ; PID = WS = '	rface photoionization weak sheen, MS	S = mc	oderate s	heen,	, SS = 9	strong	sheen	Sand Gley	y SILT with gravel	silt, sand, and gravel, dry, no
				bon-like odor an ado Silica Sand				u III DOI	ii iy				

- 5. No petroleum hydrocarbon-like odor and/or sheen observed in boring 6. Added 14.5 bags Colorado Silica Sand to the annular

F-40.1 (6-87) (3-88) (8-90)

DOME	y a	AACII		1311 4611011	LUg							Remied	y/Jenks Consultants
	Adjec	ent to	North	n Sidewalk								Well Name	RW-2
DRILLING			es, Ind	С.				DRIL		n Ben	nett	Project Name	Ecology Circle K
DRILLING			ollow S	Stem Auger				DRIL	L BIT(S) 11"		.26"ID	Project Number	1696010.00
ISOLATIO	ON CASI N/A	ING						FRO		TO	N/A	MEAURING PT. ELEVATIO	N TOTAL DEPTH
BLANK C	ASING	hadul	e 40 F	DVC				FRO		TO	FT. 5	DATE STARTED	21.5 ft. bgs DATE COMPLETED
SLOTTE	O CASIN	IG						FRO	М	ТО	FT.	2/9/17 INITIAL WATER DEPTH (F	2/9/17
SIZE AND) TYPE	OF FILT	TER PAC	C - 20-Slot K				FRO	<u>5</u> м	ТО	20 FT.	9.5	
SEAL	10/20) Colo	rado S	Silica Sand				FRO	<u>4</u>	TO	20 FT.	LOGGED BY J. Sawde	у
	3/8" F	-lydra	ted Be	ntonite Chips	and I	Pellets			1		4	SAMPLING METHODS	WELL COMPLETION
GROUT	Conc	rete						FRO	м О	ТО	FT. 1	Split Spoon	■ SURFACE HOUSING □ STAND PIPE FT.
TYPE	RECOV. (FEET)	PENETR. RESIST. BLOWS/6"	DEPTH (FEET)	SAMPLE NUMBER	WELL	CONSTRU	CTION	PID / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AI	ND DRILLING REMARKS
_		DLOW0/0	_		:	Þ : Þ					Air/Va	ac clearance to 6' 2" bgs	
-			_								-		
-			_				-	0.0 / NS			Stiff s		bgs, damp to dry, no odor,
-			_								- 110 311	CCII	
-			5 - -									ecoming less stiff with ind , no odor, no sheen	creased sand content, damp
-			_								Poorl	y graded SAND with silt	
-			_								every		of silt, stiff silt interbeds petroleum hydrocarbon-like
-			_		<u></u>		1 +				odor	and sheen	
ss	0.5	1	10-		=		1 +	275 / SS		SP/	-		
	0.5	5 10	_				1 1			SM			
-			_						[: : <u> </u>		-		
ļ		5	15-					NO PID /		<u> </u>	Boort	v graded SAND with are	vol
_ SS	1	580	_					SS	:::::	1	Mediu	y graded SAND with gra um to coarse sand, some	fine gravel up to 1/2" in
-			-		:		1 +			SP		eter (up to 20%), wet, stro carbon-like odor and she	
-			_				1 +		:::::		-		
Ĺ			-				<u>.</u>						
SS	0	8 50	20 - -			, ,		NO PID / NS				covery 20' to 21.5' - assu and, gravel	ımed refusal on very dense
										-			

- NOTES
 1. ppm = parts per million

- ppm parts per million
 bgs = below ground surface
 ST = sheen test; PID = photoionization detector (readings in ppm)
 NS = no sheen, WS = weak sheen, MS = moderate sheen, SS = strong sheen
 Petroleum hydrocarbon-like odor and/or sheen observed in boring
 Added 14 bags Colorado Silica Sand to the annular

builing & vv	eli Coi	IStruction	LOG								Kerineuy	Jenks Consultants
BORING LOCATION North Er	nd of Par	king Lot									Well Name	RW-3
DRILLING COMPANY Holt Ser		C.				DRILL		hr	n Ben	nett	Project Name	Ecology Circle K
DRILLING METHOD(CME 85		Stem Auger				DRILL	BIT(8 11	S) (S	SIZE OD / 6	.26"ID	Project Number	1696010.00
ISOLATION CASING N/A		<u> </u>				FROM			ТО	N/A FT.	MEAURING PT. ELEVATION	I TOTAL DEPTH
BLANK CASING 4" Scheo	dule 40 F	PVC				FROM	Л		ТО	FT. 5	bgs DATE STARTED	21.5 ft. bgs DATE COMPLETED
SLOTTED CASING		C - 20-Slot				FROM	И		ТО	FT.	2/9/17 INITIAL WATER DEPTH (FT)	2/9/17
SIZE AND TYPE OF I	FILTER PAC	K				FROM	И		ТО	FT.	10.0 LOGGED BY	,
SEAL		Silica Sand				FROM		4	TO	20 FT.	J. Sawdey	
3/8" Hyd	Irated Be	entonite Chips	and F	Pellets		FROM	И	1_	TO	4 	SAMPLING METHODS Split Spoon	WELL COMPLETION ■ SURFACE HOUSING
Concrete SAMPLES	<u> </u>		l					0		1	орис ороби	☐ STAND PIPE FT.
TYPE RECOV. PENE (FEET) BLOW	DEPTH (FEET)	SAMPLE NUMBER	WELL C	CONSTRUCTION	PI	ID / ST	LITHOLO	GY	USCS LOG		SAMPLE DESCRIPTION ANI	D DRILLING REMARKS
-	5 -		¥		- - - - -	.0 / NS			ML	- 2.5Y (sand dry, n	o odor, no sheen	5.5' bgs: Fine to medium nded gravel, low plasticity,
SS 1 5 7 9	-					,000+ / SS				Gley abunctis soft	t and wet, silt interbeds ar g petroleum-like odor and	sh gray, poorly graded sand te firm/stiff and damp, wet, sheen
SS 0.5 3 9	- - - - -					1.7 / WS			SP/ SM	-	as above, decresing odo	
SS 1.5 10	5					2.1 / NS				Same - sheer	as above, no petroleum l	hydrocarbon-like odor or
110==0												

- NOTES

 1. ppm = parts per million
 2. bgs = below ground surface
 3. ST = sheen test; PID = photoionization detector (readings in ppm)
 4. NS = no sheen, WS = weak sheen, MS = moderate sheen, SS = strong sheen
 5. Petroleum hydrocarbon-like odor and/or sheen observed in boring
 6. Added 14 bags Colorado Silica Sand to the annular

- 1. ppm = parts per million
- 2. bgs = below ground surface
- 3. ST = sheen test; PID = photoionization detector (readings in ppm)
- 4. NS = no sheen, WS = weak sheen, MS = moderate sheen, SS = strong sheen
- 5. Petroleum hydrocarbon-like odor and/or sheen observed in boring
- 6. Added 13.5 bags Colorado Silica Sand to the annular

6/8/17

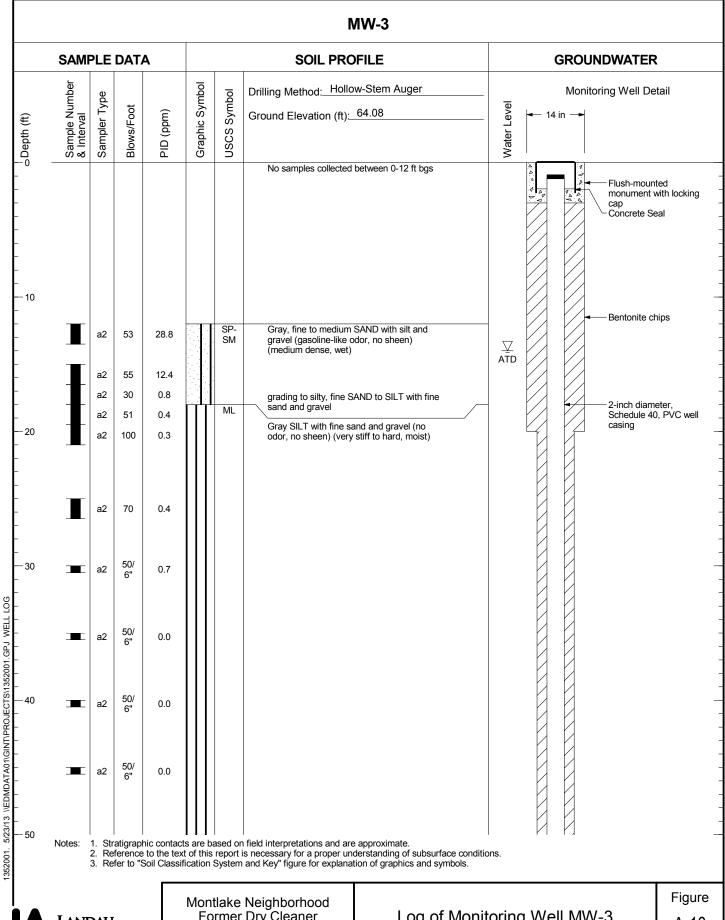
REMEDIATIONWELLS2017 1.GPJ KJ PNW.GDT

PNW

Boning & Well Construction Log		Kennedy/Jenks Consultants	
BORING LOCATION Near KJB-10		Well Name RW-5	
DRILLING COMPANY Holt Services, Inc.	DRILLER John Bennett	Project Name Ecology Circle K	
DRILLING METHOD(S) CME 85 Hollow Stem Auger	DRILL BIT(S) SIZE 11"OD / 6.26"ID	Project Number 1696010.00	
ISOLATION CASING N/A	FROM TO FT.	MEAURING PT. ELEVATION TOTAL DEPTH	
BLANK CASING 4" Schedule 40 PVC	FROM TO FT. 0 5	bgs 21.5 ft. bgs DATE STARTED DATE COMPLETED	
SLOTTED CASING Schedule 40 PVC - 20-Slot	FROM TO FT. 5 20	2/8/17 2/8/17 INITIAL WATER DEPTH (FT)	
SIZE AND TYPE OF FILTER PACK	FROM TO FT.	10.5 COGGED BY	
10/20 Colorado Silica Sand SEAL	4 20 FROM TO FT.	J. Sawdey SAMPLING METHODS WELL COMPLETION	
3/8" Hydrated Bentonite Chips and Pellets GROUT	1 4 FROM TO FT.	Split Spoon Split Spoon	
Concrete SAMPLES LPENETR DEPTH CAMPLE ALLINDED WELL CONSTRUCTION P	0 1		
TYPE RECOV. RESIST. (FEET) BLOWS6' SAMPLE NUMBER WELL CONSTRUCTION P.	D / ST LITHOLOGY USCS LOG	SAMPLE DESCRIPTION AND DRILLING REMARKS	
5- - - - - - - - - - - - - - - - - - -	o/NS - round	with sand 1 5/10Y, Fine to medium sand, trace rounded fine l/coarse sand, greenish gray, soft, low plasticity, wet, g petroleum hydrocarbon-like odor and moderate	
SS 1 7 9 -	Gley 1	y graded SAND 1 5/5GY, Fine to medium sand, traces of silt, ish gray, soft, wet, strong petroleum carbon-like odor and sheen	
SS 1.5 38 50 10 11 11 11 11 11 11 11 11 11 11 11 11		y SILT with gravel 1 5/10Y, Very dense silt, sand, and gravel, gray, dry, or, no sheen	

- NOTES

 1. ppm = parts per million
 2. bgs = below ground surface
 3. ST = sheen test; PID = photoionization detector (readings in ppm)
 4. NS = no sheen, WS = weak sheen, MS = moderate sheen, SS = strong sheen
 5. Petroleum hydrocarbon-like odor and/or sheen observed in boring
 6. Added 14 bags Colorado Silica Sand to the annular

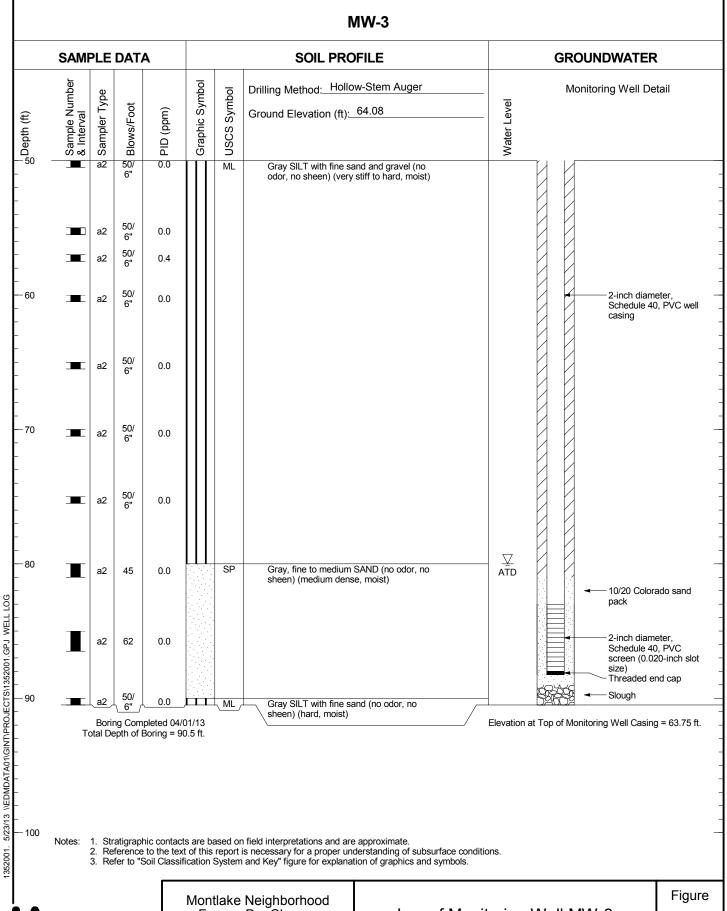

BORING														D14/ 0
										Well Name		RW-6		
Holt Services, Inc.									Joh	n Ben	nett	Project Name	E	Ecology Circle K
DRILLING METHOD(S) CME 85 Hollow Stem Auger									DRILL BIT(S) SIZE 11"OD / 6.26"ID			Project Number		1696010.00
ISOLATION CASING N/A									м N/A	TO	FT. N/A	MEAURING PT. ELEVA	TION	TOTAL DEPTH
BLANK CASING								FROI	М	ТО	FT.	DATE STARTED		21.5 ft. bgs DATE COMPLETED
4" Schedule 40 PVC SLOTTED CASING								FROI	<u>О</u> м	ТО	5 	2/10/17		2/10/17
Schedule 40 PVC - 20-Slot SIZE AND TYPE OF FILTER PACK									5		20	INITIAL WATER DEPTH 8.5	l (FT)	
				Silica Sand				FROI	FROM TO FT. 4 20		LOGGED BY J. Sawdey			
SEAL	3/8" F	-lvdra	ted Be	ntonite Chips	and	Pellets	3	FROM TO FT		SAMPLING METHODS	асу	WELL COMPLETION		
GROUT					<u> </u>			FROI		ТО	FT.	Split Spoon		■ SURFACE HOUSING
S	Conc	rete			\A/E.I.	CONSTRU	IOTION		0		1			☐ STAND PIPE FT.
	RECOV. (FEET)	PENETR. RESIST.	DEPTH (FEET)	SAMPLE NUMBER	WELL	CONSTRU	CTION	PID / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTIO	N AND	DRILLING REMARKS
		BLOVVO/0				. D	4				Air/Va	ac clearance to 5' bgs		
L														
										Sand	Sand with silt, traces of gravel, dry, no odor, no sheen			
-			_				<u></u>	0.0 / NS				_		
ŀ			5 -						l Sermin	.	<u></u>		- –	
-			_									y graded SAND with a 5/10GY, fine to med		and, up to 20% silt.
-			_								traces	s of fine gravel, wet, s carbon-like odor and	trong	petroleum
-			_		$\overline{}$						- Hydro	carbon-like odor and	SHECH	
-			_		¥						-			
-		5	10-				+	1,375 /		SP/ SM	-			
_ SS	1	5 9 10	-					SS			-			
-			-						:::		-			
-			-						:::		-			
ŀ			-								-			
-		5 9	15 -				3	47 / NS			Sand	y SILT with gravel		
_ SS	1.5	9 14	-						<u> </u>		Gley	1 5/10GY, fine to coar	se sa	nd (up to 10%), fine
}			-						$\ \ \ $		grave wet, s	i up to i in diameter, strong petroleum hydr	ocarbo	erately stiff, low plasticity, on-like odor, no sheen
}			-						$\ \ \ $	ML	-	•		
<u> </u>			-						$\ \ \ $		<u> </u>			
SS	1.5	10 14	20-				1:	2.1 / NS			Glove	1 4/10V Samo as ab	NO 0	xcept becoming more
		14 20							Ш		stiff,,	weak petroleum hydro	ocarbo	on-like odor, no sheen
	NOTES 1. npm = parts por million													

- 1. ppm = parts per million
 2. bgs = below ground surface
 3. ST = sheen test; PID = photoionization detector (readings in ppm)
 4. NS = no sheen, WS = weak sheen, MS = moderate sheen, SS = strong sheen
 5. Petroleum hydrocarbon-like odor and/or sheen observed in boring
 6. Added 14.5 bags Colorado Silica Sand to the annular

Borning at 11011 Cont	oti dotioii E	.09					110111100137				
BORING LOCATION Adjacent (to the So	outh) of MW-1	Well Name	RW-7								
DRILLING COMPANY Holt Services, Inc.			DRIL	DRILLER John Bennett			Project Name	Ecology Circle K			
DRILLING METHOD(S) CME 85 Hollow St			DRIL	DRILL BIT(S) SIZE 11"OD / 6.26"ID			Project Number	1696010.00			
ISOLATION CASING N/A			FRO	M N/A	ТО	N/A FT.	MEAURING PT. ELEVATION	TOTAL DEPTH			
BLANK CASING 4" Schedule 40 PV	/C		FRO	м 0	ТО	FT. 5	bgs DATE STARTED	21.5 ft. bgs DATE COMPLETED			
SLOTTED CASING Schedule 40 PVC			FRO		ТО	FT.	2/7/17 INITIAL WATER DEPTH (FT)	2/7/17			
SIZE AND TYPE OF FILTER PACK			FRO	М	ТО	FT.	11.0 LOGGED BY				
10/20 Colorado Sil			FRO	4 20 FROM TO FT.		20 FT.	J. Sawdey				
3/8" Hydrated Ben	tonite Chips		FRO	<u>1</u>	TO	4 FT.	SAMPLING METHODS	WELL COMPLETION ■ SURFACE HOUSING			
Concrete			IIIO	0	10	1'''	Split Spoon	☐ STAND PIPE FT.			
DEDTU	SAMPLE NUMBER	VELL CONSTRUCTION	PID / ST	LITHOLOGY	USCS LOG		SAMPLE DESCRIPTION AND	DRILLING REMARKS			
						Air/Va	ac clearance to 5' 6" bgs.				
			0.0 / NS				2, Silt with fine to medium s	and, light grayish brown,			
5-					L	ary, n	o odor, no sheen				
- - -						Gley fine a	with sand 1 4/10Y, Fine to medium sa ravel/coarse sand, pockets	of increased sand and			
						damp	el content, dark greenish gray, very firm, low plas o to wet, strong petroleum hydrocarbon-like odor o sheen				
SS 1 8 10			1,265 / WS	-	ML	-					
-						-					
						-					
SS 0.5 6 1			396 / NS			1	y graded SAND				
- 11 -						traces	2 5/10BG, Fine to medium with some coarse sand, sof silt, rounded to well rounded grains, soft, wet, g petroleum hydrocarbon-like odor, no sheen				
					SP		, , ,				
20-			0.7 / NS								
SS 1 1 6 20 1		_	υ. <i>ι /</i> NS	$\ \ \ $	ML	7.5YF	y SILT with gravel R 4/1, Color changes to brow	wn gray, very dense silt,			
	<u>'</u>	L				⊤∖ sand,	and gravel, very hard, dry,	no odor, no sheen			

- NOTES

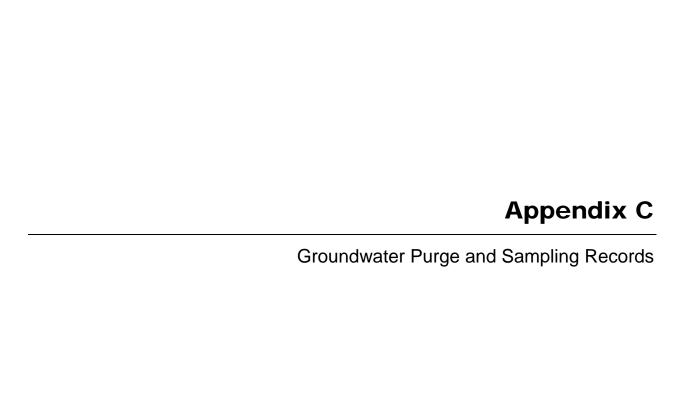
 1. ppm = parts per million
 2. bgs = below ground surface
 3. ST = sheen test; PID = photoionization detector (readings in ppm)
 4. NS = no sheen, WS = weak sheen, MS = moderate sheen, SS = strong sheen
 5. Petroleum hydrocarbon-like odor and/or sheen observed in boring
 6. Added 14 bags Colorado Silica Sand to the annular



Montlake Neighborhood Former Dry Cleaner Seattle, Washington

Log of Monitoring Well MW-3

A-10 (1 of 2)



LANDAU ASSOCIATES

Former Dry Cleaner Seattle, Washington

Log of Monitoring Well MW-3

A-10 (2 of 2)

			e Form (MI	inimal Drawd	lown)			enks Consultar
Date:	1/20	10	14	Well N	Number:		MW	-4
Project Name:	Ecolog	y Circle K 14	61	Monu	ment Type:	Stickup:	(ft P	VC) Flush:
Project Number:	169601			Well [Diameter (in):	2	-4.	H=
Sampling Personne		KIL		Well (Condition:			in Kalanya
Water Level Meter:		Geotech IFF		Total	Casing Depth	n (ft): 18.8	1179	Reference
Purging Equipment	20.0	Peristaltic			ned Interval		1	BGS
Sampling Equipme	nt:	Peristaltic		Depth	to Groundwa	ater (ft):	9	or
Sampling Time:	14	10			to LNAPL (fi			TOC
Purge Depth (ft):		Left			r Column (ft):	· · · · · · · · · · · · · · · · · · ·		
Total Discharge (L)	- 176			117			1/4.8	VE I
Water Disposal:		on drum	July 10 is	- - a 111				
Weather:	2011	75-81) S C			-		
							1 A 1 1 1 1 1 1 1	
Water Quality Meter Temp/pH/SC/ORP/		YSI 556		libration Date/		Туре	QA/QC Sampl	
Turbidity:	БО.	MicroTPI/		4/19/16 14		1ype	> Sample	e in lillie
Other:								
Sample		Samo	le Container	3)	Field	Turbidity/	Analysis	MS/MSD &
iD	No.	Туре	Pres.	Vol.	Filtered	Color	Requested	Comments
						Color	nequested	Comments
MW-4	3	- A	HCI	40 ml	'N			*
					N-15			
E TORY			i i		17.450			t in the man of the
1970				-	-			
150					N. C.	2		- V
					40 60	8		
			- 6	111111111111111111111111111111111111111				The state of
				7 -		4		
					74		10 12 27	
		3 =		1 1 V = 5			0.1	
					*			
7			12.13	io i				
The state of	_ ^_					te:		
1350	Time	1366	1400	1405	1410	1415		
Parameter (every 5		Smir				25 min	200 William	min r
	111111)	, IIIII	1 10				30 311111	The second secon
Flow Rate (LPM)			-	7				
		2	2.5	3.0	3.5	3.75		8 1
			two (C/	1. 77	1-61	1 5/2	V	W at 5
	ц.,	10.64	10.68		10.81	10.02		
Water Depth (ft)	us)	10.64		10.77		10.83		
Water Depth (ft) Temperature (Celsi	us)	10.64	14.61	14.54	14.38	14.34		
Water Depth (ft) Temperature (Celsion DH		4.82	6.32	6.29	6-29	6.30		71 11
Volume Purged (L) Water Depth (ft) Temperature (Celsion DH Sp. Conductance (u		4.82 6.47 0.210	6.32	14.54 10.29 0.762	14.38 6.29 0.263	6.30		
Water Depth (ft) Temperature (Celsin DH Sp. Conductance (u DO (mg/L)		14.82 1.47 0.210 1.65	14.61 6.32 0.259 1.25	14.54 6.29 0.762 109	14.38 6.29 0.263	14.34 6.30 0.266 1.11		
Water Depth (ft) Temperature (CelsinoH Sp. Conductance (u DO (mg/L) ORP (mV)		4.82 6.47 0.260 1.65	14.61 6.32 0.259 1.25 -92.3	14.54 6.29 0.762 1.09 -41.7	14.38 6.29 0.263 1.04 -41.8	0.30 0.266 1.11		
Water Depth (ft) Temperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Turbidity (NTU)		14.82 1.47 0.210 1.65	14.61 6.32 0.259 1.25	14.54 6.29 0.762 109	14.38 6.29 0.263	14.34 6.30 0.266 1.11		-
Water Depth (ft) Temperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Turbidity (NTU) Color	IS/cm)	14.82 1.47 0.210 1.105 46.2	14.61 6.32 0.259 1.25 -92.3	14.54 6.29 0.762 109 -41.7 66.03	14.38 6.29 0.263 1.04 -41.8 49.84	0.30 0.266 1.11		
Water Depth (ft) Temperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Turbidity (NTU) Color	IS/cm)	14.82 1.47 0.210 1.65 -46.2 104.8 Clear Igray	14.61 6.32 0.259 1.25 -42.3 104.8	14.54 6.29 0.762 109 -41.7 68.03 Cleary Hack of	14.38 6.29 0.263 1.04 -41.8 49.84	0.30 0.266 1.11		•
Water Depth (ft) Temperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Turbidity (NTU)	IS/cm)	14.82 1.47 0.210 1.105 46.2	14.61 6.32 0.259 1.25 -42.3 104.8	14.54 6.29 0.762 109 -41.7 66.03	14.38 6.29 0.263 1.04 -41.8 49.84	0.30 0.266 1.11		•
Water Depth (ft) Temperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Turbidity (NTU) Color	IS/cm)	14.82 1.47 0.210 1.65 -46.2 104.8 Clear Igray	14.61 6.32 0.259 1.25 -42.3 104.8	14.54 6.29 0.762 109 -41.7 68.03 Cleary Hack of	14.38 6.29 0.263 1.04 -41.8 49.84	0.30 0.266 1.11		
Water Depth (ft) Temperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Turbidity (NTU) Color Odor/Evidence of Li	S/cm)	14.82 Le. 47 O.210 L. 65 Mer 2 104.8 Clear I gray 55 Shows	14.61 6.32 0.259 1.25 -92.3 104.8	14.54 10.29 0.762 1.09 -41.7 108.03 Clear Hool of 55/50-	14.38 6.29 0.263 1.04 -41.8 49.84 whiles:	0.30 0.266 1.11 -40.1 42.35		
Water Depth (ft) Temperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Turbidity (NTU) Color	S/cm)	14.82 Le. 47 O.210 L. 65 Mer 2 104.8 Clear I gray 55 Shows	14.61 6.32 0.259 1.25 -92.3 104.8	14.54 10.29 0.762 1.09 -41.7 108.03 Clear Hool of 55/50-	14.38 6.29 0.263 1.04 -41.8 49.84 whiles:	0.30 0.266 1.11 -40.1 42.35	g purging/sampling	g, etc.)
Water Depth (ft) Temperature (CelsinoH Sp. Conductance (u DO (mg/L) ORP (mV) Turbidity (NTU) Color Odor/Evidence of Lt	NAPL _{N2} -	14.82 1.47 0.210 1.65 -46.2 104.8 Gray gray well dewaters	14.6 6.32 0.259 1.25 -92.3 Lock.8	14.54 16.29 0.762 1.09 -41.7 166.03 Clearwildack p	14.38 6.29 0.263 1.04 -41.8 49.84 articles:	0.30 0.266 1.11 -40.1 42.35	g purging/sampling	g, etc.)
Water Depth (ft) Temperature (CelsinoH Sp. Conductance (u DO (mg/L) ORP (mV) Turbidity (NTU) Color Odor/Evidence of Lt	NAPL _M	14.82 Le. 47 O.210 L. 65 Mer 2 Ioff. 8 Clear I gray well dewaters L purge	14.61 6.32, 0.259 1.25 -92.3 104.8	14.54 10.29 0.762 1.09 -41.7 108.03 Clear Hool of 55/50-	14.38 6.29 0.263 1.04 -41.8 49.84 whiles:	0.30 0.266 1.11 -40.1 42.35	purging/sampling	g, etc.)

189

py Circle K 14t 10*00 Geotech IFF Peristaltic		Monui Well C	Number: ment Type: Diameter (in):		X	MW-6 (ft PVC)	Flush: X	
10*00 Geotech IFF		Well [Diameter (in):	2		(ft PVC)	Flush: X	
Geotech IFF	,				240	1893	111111111111111111111111111111111111111	
	,	_ Well C	Well Condition: Oray - Bolts stripped.					
	,	T 4.1		- S4	1	rece.	Reference:	
Peristaltic		_	Casing Depth		120.3		BGS	
			ened Interval (17.140	51			
Peristaltic		-	to Groundwa	101 (11).	14-		or	
30 17 C /	loo N . c l	Depth	to LNAPL (ft)	i: <u>A</u>	(8)		TOC	
1+++ (baller de	Wolonon Water	Column (ft):	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		- (, ,	マラナナナ)			-19	
on drum		-					74	
TE		-				A COMM	180 - 11	
				// // // // // // // // // // // // //			#V_11 LB	
				Туре	S	ample ID	Time	
WHOICH W		Valla 144			\otimes	$ \bigcirc $		
C	e Container		Eigla	Tarabiata	Amada - 1		IS/MSD &	
T		1	To Land of	8/33	F-317		90	
				Color			comments	
A	HCI	40 mi	N		NW IPH-G/B	EIX	1038 march	
	*						Della millione	
		-		_10	7794		7777,834	
					- 1 - N		- V	
-								
	1 7				-/-		1 2 2	
							<u> </u>	
						Y.	190	
		in a sili	25/01/01/01	lu °u				
0990	0955	1000	1005	1010	1015	1020	1025	
5 min	ℓ0 min	(5 min	20 min	25 min	30 min	35 min		
3.5	4.0	45	4.75	5.0	5.25	56	الله الله	
		14.14	1521				16.38	
	14 17		13-80				13.97	
-	7.00	229	The state of the s				699	
				and the second s			0.471	
					1.04	. 111	1.48	
		-62.1		744			-833	
	1		Committee Committee	7100			70.71	
		1 6			04100	W (~ D L	15.71	
. 416	4	J CAGAL DOM	7	-			100	
ING BY	-			Sharen Maria				
	Mode YSI 556 M MicroTPI/ Sampl Type A 6 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8	Model Call YSI 556 MPS 4 MicroTPI/TPW 4	Model Calibration Date YSI 556 MPS	Model Calibration Date/Time YSI 556 MPS 4/19/16 14/30 MicroTPI/TPW 4/19/16 MicroTPI/TPW	Model Calibration Date/Time Type YSI 556 MPS 4/19/16 14/30 MicroTPI/TPW 4/19/16 14/40 Sample Containers Field Turbidity/ Color A HCl 40 ml N N	Model Calibration Date/Time YSI 556 MPS 4/14/16 14/35 MicroTPI/TPW 4/14/16 14/40	Model Calibration Date/Time YSI 558 MPS 4/14/16 14/30 MicroTPI/TPW 4/14/16 MicroTPI/T	

Groundwater P	urge a	nd Sample	Form (Min	imal Drawd	own)		Kenned	ly/Jenks C	onsultants
Date:		4/20/18	,	Well	Number:		T 7 .7	MW-7	
Project Name:	Ecolog	y Circle K 146	1	Monu	ment Type:	Stickup:		(ft PVC)	Flush: X
Project Number:	169601	10*00		Well E	Diameter (in):	2			
Sampling Personnel	:	JES			Condition:				
Water Level Meter:		Geotech IFP		Total	Casing Depth	(ft): 20.2			Reference:
Purging Equipment:		Peristaltic		Scree	ned Interval (ft): <u>5-20.2</u>			BGS
Sampling Equipmen	t:	Peristaltic		Depth	to Groundwa	ter (ft): 8.4	15		or
Sampling Time:		1435			to LNAPL (ft)				TOC
Purge Depth (ft):		~15		Water	Column (ft):		16.7		
Total Discharge (L):		ſ		1 2			4-11-11-11-11-11-11-11-11-11-11-11-11-11		7
Water Disposal:	55-galle	on drum							
Weather:	. 5	Ha Mil	10					1 38	gen"
Water Quality Mete	r(e)	Model	Cali	bration Date/	Time		OMOC	Samples	30.5
Temp/pH/SC/ORP/D		YSI 556 M	IPS L	1/19/16 143		Туре		ample ID	Time
Turbidity:		MicroTPI/T		1/19/16 140		XX	XX	XX	\times
Other:						$\times \times$	$\times \times$	$\times \times$	$\times \times$
Sample		Sample	Containers		Field	Turbidity/	Analysi	8 M	IS/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requeste	ed C	omments
MW-7	3	Α	HCI	40 ml	N		NWTPH-G/B	ETX	
							- 11	(62%)	
	7								
							11.5		
						X -			44.
1 / / /			4		1911			+ 2 =	
					=1/				
Ar n					16			0	
E.	40.2								
				(:: 5					
1350		1355	1400	1405		1415	1420	1425	1430
Parameter (every 5	min)	.5 min	/o min	/5 min	20 min	25 min	30 min	35 min	40 min
Flow Rate (LPM)	9	300	300	300	300	200	300	300	300
Volume Purged (L)							5	1111	
Water Depth (ft)	1	9.91	10-21	10-54	10.79	10.99	11.14	11.23	11.31
Temperature (Celsiu	s)	13.91	13.65	13.71	13.84	13.85	13.91	14.66	14.11
pH		6.32	6.11	6.06	6.07	6.08	6.09	6.09	6.11
Sp. Conductance (m	S/cm)	0.448		0.455	0.458	0.461	0.466	0.469	0.465
DO (mg/L)		4.87	0-446	4.69	4.54	4.37	4.22	4.51	4.46
ORP (mV)		79.4	91.5	98.5	100.9	102.7	104.7	104.0	104.2
Turbidity (NTU)		893.7	605.5	251.0	181.b	181.4	160.8	155.7	144.9
Color	_	t-brown							
Odor/Evidence of LN		100/s -							
		23 10 40							
							F		
Notes: (i.e. actions to	aken if v	well dewaters,	difficulties in	sampling thro	ugh LNAPL, _I	oroblems durir	ng purging/sar	npling, etc.)	
	[can	LON CAN	structed)					
TD=70-20	$-\infty$		· · · · · · · · · · · · · · · · · · ·						
TD=70-20 removed of	ball	Motino	nto who	Le veder	Menny	T			

O-Projecte/2016/1606010 00 WA DOE Circle K

HUA Salvas	
TE THE	•

0

Groundwater F	urge a	and Sample	Form (Min	imal Drawd	lown)		Kenned	dy/Jenks C	onsultar
Date:	4/	20/16		Well	Number:			MW-8	
Project Name:	Ecolog	y Circle K 146	31	Monu	ment Type:	Stickup:		(ft PVC)	Flush:
Project Number:	16960	10*00		Well	Diameter (in):	2	*		
Sampling Personne	el:	JES	the c	Well C	Condition:				
Water Level Meter:	ject Name: Ecology Circle K 144 ject Number: 1696010*00 Inpling Personnel: JES Iter Level Meter: Geotech IFF ging Equipment: Peristaltic Inpling Time: /245 ge Depth (ft): //54 Ial Discharge (L): Iter Disposal: 55-gallon drum Inter: Iter Quality Meter(s) Mode Inp/pH/SC/ORP/DO: YSI 556 Indity: MicroTPI/Indity: Mi		~	Total	Casing Depth	(ft): 20.3			Reference
Purging Equipment		Peristaltic		Scree	ned Interval (1	t): <u>5-20.3</u>	3		BGS
Sampling Equipme	n <u>t:</u>	Peristaltic		Depth	to Groundwa	ter (ft):	60 fc	0.01)	or
Sampling Time:	S. J.	1245		Depth	to LNAPL (ft)	: 9	sl.	sheen	TOC
Purge Depth (ft):	25	~1594		Water	Column (ft):		ų.		
Total Discharge (L)	1						a 12 1111		
Water Disposal:	55-gall	on drum				STEEL STATE			
Weather:			V						
Water Quality Met	er(e)	Model	Calil	bration Date/	Time		QA/QC	Samples	
		YSI 556 N		14/16 143	22.11.1	Туре		ample ID	Time
Turbidity:		MicroTPI/		1916 144)	\times	$\times \times$	\bowtie	$>\!<\!>$
Other:	- 4					$\times \times$	$\times \times$	\times	
Sample	Yana	Sample	e Containers	V. 1	Field	Turbidity/	Analysi	s N	IS/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Request	ed C	omments
MW-8	2	Α	HCI	40 ml	N		NWTPH-G/B	ETX	
IR.			17						
								-	
	9						//		
	N	1000	1						
5.05			1965						
74	Ž.						8		
		7.0						- A	
	29.	10 - 1							
	t:								
1200	Time	1205	1210	1215	1220	1225	1230	1235	1240
Parameter (every 5	min)			15 min	20 min	25 min			
Flow Rate (LPM)		200	200	200	250	250	250	250	250
Volume Purged (L)	1	Jan 10				1111	116		
Water Depth (ft)		10 80	10.81	10.91	11.00	11.03	11.08	11.14	11.15
Temperature (Celsi	us)		15.47	15/6	14.98	14.97	15.05	14.90	14.94
ЭН	0		6.61	6-530	6.52	6.52	6.52	6.54	6.54
Sp. Conductance (u	S/cm)	,	0.442	0440	6.439	0.440	0.445	0.447	044
DO (mg/L)			1-12	1.04	0.94	6.87	0.88	0-93	6.91
ORP (mV)			-64-5	-63-9	-65.4	-67.3	-66-1	-63./	
Furbidity (NTU)				549.1		217.1			-65.
Color			607.5	374-1	303.4	MI	192.1	142.4	123.8
	NAPI		740				M		
Saoi/Evidence of El	1/AI L	our -				2 140			L
		1		- 3	. 4				(8)
Notes: (i.e. actions	taken if	well dewaters	difficulties in	sampling thro	ugh LNAPL, p	oroblems duri	ng purging/sai	mpling, etc.)	38
					-1488				
TD= 19.40	hal.	المام مو	Imana - 1						

	urge	ind Sample	Form (Mi	nimal Drawo	down)		Kenned	dy/Jenks C	onsulta
Date:	4/2	Olle		Well	Number:			MW-9	
Project Name:	Ecolog	y Circle K 146	31	Monu	ment Type:	Stickup	X	(ft PVC)	Flush:
Project Number:	169601	10*00		Well	Diameter (in):	2	III SA G	2	
Sampling Personne	el:	RR		Well	Condition:	Allmine	m Lid-d	ifficult to	open. B
Water Level Meter	-	Geotech IFF		- Total	Casing Depth		120.23		Referen
Purging Equipment				Scree	ened Interval	(ft): 5-21 2			BGS
Sampling Equipme				- Denth	to Groundwa	ater (ft): ${\sqrt{A}}$	ψZ		or
Sampling Time:				_ Denth	to I NAPI (ft	N/A	Stom	ndor.	TOC
Purge Depth (ft):	NK	3.ft		- Wate	r Column (ft):		1 110.		
Total Discharge (L)				_ wate	Column (it).				-
Water Disposal:	55-gallo								
Weather:		= #							
Water Quality Met		Mode		bration Date				Samples	
Temp/pH/SC/ORP/	DO:	YSI 556 M		19/16 1430		Туре	S	ample ID	Time
Turbidity: Other:		MicroTPI/	IFVV V	विशिष्ठ वि	10				\Leftrightarrow
Sample			e Containers		Field	Turbidity/	Analysi	s h	MS/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Request	ed C	omments
MW-9	3	Α	HCI	40 ml	N		NWTPH-G/B	ETX	
	12								
	11			100			_	100	
V2				1					
			F 4 S					55	
		P 0		G 8:	lt X			4.5	100
				C E	V			_ #	-
			4	rall prin	E X			3	E 0
			4		- X				
1700	Time	1005		72 ll 40 l					72
1200	Time			15 min		7 & min		20 min	72
Parameter (every 5		1205 5 min		\S min		723 min	ZO min	35 min	r
Parameter (every 5 Flow Rate (LPM)	i min)	S min		\S min	ZV mir				r
Parameter (every 5 low Rate (LPM) Volume Purged إليا	oral	S min		15 min	ZW min	45	, S.O	575	r
Parameter (every 5 low Rate (LPM) Volume Purged إليا	oral	S min		\S min	ZV mir	23 min			r
Parameter (every 5 Flow Rate (LPM) Volume Purged (LY) Vater Depth (ft)	gal.	5 min 3 [0.19	35 10.27	4.0	ZU mir	9,5 10.77	10.38 10.38	5.5	r
Parameter (every 5 Flow Rate (LPM) /olume Purged (LT) Vater Depth (ft) (Celsi	gal.	5 min 3 10.19 1582	35 10.27 15:44	4.0 1232 15.54	20 mir 4.5 10.36. 15.59	4.5 10.57 15.00	15.58 15.58	575	r
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) Vater Depth (ft) juic emperature (Celsi	gal. 208 us)	5 min 3 10.19 15.82	35 [0.27 15:44 6.50	4.0 632 15.54 6.55	20 mir 4.8 10.36. 15.59 6.55	4.5 10.57 15.60 6.54	15.0 10.38 15.58 6.55	575 10-38 15.48	
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) Vater Depth (ft) Femperature (Celsi OH Op. Conductance (u	gal. 208 us)	5 min 3 10.19 1582	35 10.27 15:44 16:50 0.543	4.0 10.32 15.54 6.55 6.540	20 min 4.6 10.36 15.59 6.55 0.539	4,5 10.57 15.60 6.54 0.538	15.58 15.58 15.53 15.537	575 10-38 15.48 0.534	
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) Vater Depth (ft) Femperature (Celsi H Sp. Conductance (u DO (mg/L)	gal. 208 us)	5 min 3 10.19 15.82	3.5 10.27 15:44 6.56 0.543	4.0 632 15.54 6.55 6.540	20 mir 4.8 10.36. 15.59 6.55	9,5 10.57 10.57 10.534 10.538	15.58 15.58 15.55 15.53 15.53 15.53	5.5 10.38 15.48 0.534	
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) Vater Depth (ft) (L) Temperature (Celsi OH OD (mg/L) DRP (mV)	gal. 208 us)	3 10.19 1582 1582 1584 1584	10 min 35 10.27 15:44 6.50 0.543 1.16 -81.5	4.0 10.32 15.54 16.55 6.540 1.11	20 mir 4.8- 10.36. 15.59 6.5-5 0.539 1.09	9,5 10.77 10.77 10.54 0.538 1,05 -79.5	15.58 15.58 15.55 1.55 1.05	5.5 10.38 15.48 0.534 1.09 -81.6	
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) Vater Depth (ft) Femperature (Celsi H Sp. Conductance (u DO (mg/L) DRP (mV) Turbidity (NTU)	is min)	5 min 3 10.19 10.19 10.51 10.5	3.5 10.27 15:44 6.56 0.543	4.0 632 15.54 6.55 6.540	20 min 4.5 10.36 15.59 6.55 0.539 1.09 -71.1 62.0	9,5 10.57 10.57 15,60 6.54 0.538 1,05 -79.5 58.6	15.58 15.58 15.53 1.537 1.05 -79.8 52.17	5.5 10.38 15.48 0.534	
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) /water Depth (ft) (L) femperature (Celsi bH Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU) Color	gal. 208 us) us/cm)	5 min 3 10.19 15.81 4.4 71.4 71.6 79.4	3.5 10.27 15:44 6.56 0.543 1.16 -81.5 184.9	4.0 10.32 15.54 16.55 6.540 1.11	20 mir 4.8- 10.36. 15.59 6.5-5 0.539 1.09	9,5 10.57 10.57 15,60 6.54 0.538 1,05 -79.5 58.6	15.58 15.58 15.55 1.55 1.05	5.5 10.38 15.48 0.534 1.09 -81.6	
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) /water Depth (ft) (L) femperature (Celsi bH Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU) Color	gal. 208 us) us/cm)	5 min 3 10.19 10.19 10.51 10.5	3.5 10.27 15:44 6.56 0.543 1.16 -81.5 184.9	4.0 10.32 15.54 16.55 6.540 1.11	20 min 4.5 10.36 15.59 6.55 0.539 1.09 -71.1 62.0	9,5 10.57 10.57 15,60 6.54 0.538 1,05 -79.5 58.6	15.58 15.58 15.53 1.537 1.05 -79.8 52.17	5.5 10.38 15.48 0.534 1.09 -81.6	
Parameter (every 5) Flow Rate (LPM) /olume Purged (LPM) /water Depth (ft) (LPM) Femperature (Celsic) OD (mg/L) DRP (mV) Turbidity (NTU) Color Odor/Evidence of Li	gal. 208 us) us/cm)	5 min 3 10.19 15.81 4.4 71.4 71.6 79.4	3.5 10.27 15:44 6.56 0.543 1.16 -81.5 184.9	4.0 10.32 15.54 16.55 6.540 1.11	20 min 4.5 10.36 15.59 6.55 0.539 1.09 -71.1 62.0	9,5 10.57 10.57 15,60 6.54 0.538 1,05 -79.5 58.6	15.58 15.58 15.53 1.537 1.05 -79.8 52.17	5.5 10.38 15.48 0.534 1.09 -81.6	
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) /vater Depth (ft) (L) femperature (Celsi bH Sp. Conductance (u DO (mg/L) DRP (mV) Turbidity (NTU) Color Odor/Evidence of Li	cloud	5 min 3 10.19 10.81 6.61 6.51 6.71 6.71 79.4 71.67 71.67 71.67 71.67 71.67 71.67 71.67 71.67	10.27 15.44 1.54 0.543 1.16 -81.5 184.9	4.0 10.32 15.54 6.55 6.540 1.11 -72.6	20 mir 4.8 10.36. 15.59 6.55 0.539 1.09 -77.1 8249 Claymite	4,5 10.57 10.57 15,60 6.54 0.538 1,05 -79.5 58.6	15.58 15.58 15.53 1.537 1.05 -79.8 52.17	5.5 10.38 15.48 0.534 1.09 -81.6	
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) /water Depth (ft) (L) femperature (Celsi bH Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU) Color	cloud	5 min 3 10.19 10.81 6.61 6.51 6.71 6.71 79.4 71.67 71.67 71.67 71.67 71.67 71.67 71.67 71.67	10.27 15.44 1.54 0.543 1.16 -81.5 184.9	4.0 10.32 15.54 6.55 6.540 1.11 -72.6	20 mir 4.8 10.36. 15.59 6.55 0.539 1.09 -77.1 8249 Claymite	4,5 10.57 10.57 15,60 6.54 0.538 1,05 -79.5 58.6	15.58 15.58 15.53 1.537 1.05 -79.8 52.17	5.5 10.38 15.48 0.534 1.09 -81.6	
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) /vater Depth (ft) (L) Femperature (Celsic) OH OD (mg/L) DRP (mV) Turbidity (NTU) Color Odor/Evidence of Li Iotes: (i.e. actions	cool. Cloud NAPL	5 min 3 10.19 10.81 6.61 6.51 6.71 6.71 79.4 71.67 71.67 71.67 71.67 71.67 71.67 71.67 71.67	10.27 15.44 1.54 0.543 1.16 -81.5 184.9	4.0 10.32 15.54 6.55 6.540 1.11 -72.6	20 mir 4.8 10.36. 15.59 6.55 0.539 1.09 -77.1 8249 Claymite	4,5 10.57 10.57 15,60 6.54 0.538 1,05 -79.5 58.6	15.58 15.58 15.53 1.537 1.05 -79.8 52.17	5.5 10.38 15.48 0.534 1.09 -81.6	
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) Vater Depth (ft) Emperature (Celsi OH OD (mg/L) DRP (mV) Furbidity (NTU) Color Odor/Evidence of Li Iotes: (i.e. actions	cloud	S min 3 10.19 15.81 1.36 1.36 1.36 216.4	10.27 15.44 1.54 0.543 1.16 -81.5 184.9	4.0 10.32 15.54 6.55 6.540 1.11 -72.6	20 mir 4.8 10.36. 15.59 6.55 0.539 1.09 -77.1 8249 Claymite	4,5 10.57 10.57 15,60 6.54 0.538 1,05 -79.5 58.6	15.58 15.58 15.53 1.537 1.05 -79.8 52.17	5.5 10.38 15.48 0.534 1.09 -81.6	

Water Level Meter: Geotech IFP Total Casing Purging Equipment: Peristaltic Screened Interpretability Screened Interpretabi	er (in): 2 en: Depth (ft): erval (ft): undwater (ft) PL (ft):	20.4 5-20.4 : 9 . (01		Reference: BGS or TOC
Well Condition Water Level Meter: Geotech IFP Total Casing Purging Equipment: Peristaltic Screened Inte Sampling Equipment: Peristaltic Depth to Ground Sampling Time: レラニ Depth to LNA Purge Depth (ft): イソー・カーリー Water Column Total Discharge (L): Water Disposal: 55-gallon drum Weather: Water Quality Meter(s) Model Calibration Date/Time	n: Depth (ft): erval (ft): undwater (ft) PL (ft):	20.4 5-20.4 : 9 . (01		Reference: BGS or
Sampling Personnel: Well Condition Water Level Meter: Geotech IFP Total Casing Purging Equipment: Peristaltic Screened Inte Sampling Equipment: Peristaltic Depth to Ground Sampling Time: Depth to LNA Purge Depth (ft): ~12 + 14 Water Column Total Discharge (L): Water Disposal: 55-gallon drum Weather: Water Quality Meter(s) Model Calibration Date/Time	n: Depth (ft): erval (ft): undwater (ft) PL (ft):	20.4 5-20.4 : 9 . (01		Reference: BGS or
Purging Equipment: Peristaltic Screened Interest Sampling Equipment: Peristaltic Depth to Ground Sampling Time: レラシー Depth to LNA Purge Depth (ft): マルフーカルリ Water Column Total Discharge (L): Water Disposal: 55-gallon drum Weather: Water Quality Meter(s) Model Calibration Date/Time	erval (ft): undwater (ft) .PL (ft):	5-20.4 : 9 . 6	21		BGS or
Sampling Equipment: Peristaltic Depth to Ground Sampling Time: いうこ Depth to LNA Purge Depth (ft): マルノーカル Water Column Total Discharge (L): Water Disposal: 55-gallon drum Weather: Water Quality Meter(s) Model Calibration Date/Time	undwater (ft) PL (ft):	9.4	01		or
Sampling Time: 」 かる Depth to LNA Purge Depth (ft): ~ 1 2 + 3) 4 Water Column Total Discharge (L): Water Disposal: 55-gallon drum Weather: Water Quality Meter(s) Model Calibration Date/Time	APL (ft):				TOTAL PROPERTY.
Purge Depth (ft): ~12 +3 \ 4 Water Column Total Discharge (L): Water Disposal: 55-gallon drum Weather: Water Quality Meter(s) Model Calibration Date/Time					TOC
Total Discharge (L): Water Disposal: 55-gallon drum Weather: Water Quality Meter(s) Model Calibration Date/Time	n (ft):				
Water Disposal: 55-gallon drum Weather: Water Quality Meter(s) Model Calibration Date/Time					A
Weather: Water Quality Meter(s) Model Calibration Date/Time		٠.			
Water Quality Meter(s) Model Calibration Date/Time					
		45			
	- X	y	QAVQC	Samples	y = 3 E
		Туре		ample ID	Time
Turbidity: MicroTPI/TPW นในใน เนนอ	\bowtie	\Rightarrow	$\Leftrightarrow \bowtie$		
			\sim		
Sample Sample Containers Fie		bidity/	Analysi		MS/MSD &
ID No. Type Pres. Vol. Filte	ered C	olor	Request		omments
MW-10 3 A HCI 40 ml N		2 - M	NWTPH-G/B	ETX	
	4 1				
		0	16		
	-	b 1			
	70		У	63	11 12/4
		dg			
				1	
			- 1		
0945 Time 6950 0955 1000 100	5 10	10	1021015	1020	1025
Parameter (every 5 min) 5 min 10 min 15 min 20	min 2	5 min	30 min	35 min	40 min
Flow Rate (LPM) 500 300 306 300	0 3	60	300	250	250
Volume Purged (L)			12.80		
Nater Depth (ft) 11.75 12.92 12.42 12	53 12	الولا	1454	12.91	1306
Temperature (Celsius) 14.65 14.64 14.56 14.		56	14.59	14.63	14-66
OH 6.37 6.46 6.59 6-1	63 6	.63	6-70	6.74	6.78
Sp. Conductance (#S/cm) 0.687 0.687 0.688 0.6	- 1	90	0-696	0.705	6.710
00 (mg/L) 2-64 2-47 1-58 1.1	0	16	0.83	0 -80	0.69
ORP (mV) 114.0 105.7 64.5 57	8 4	4-6	13-5	1.5	-11.4
Furbidity (NTU) 355.4 93.20 86.05 93.	16 65	5.71	106.4	64.09	57.47
Color It-brown H-brown			13		
Odor/Evidence of LNAPL No 0/5			. W		
	100	A Ver			
Notes: (i.e. actions taken if well dewaters orproblems during purging/samplir	ng, etc.)		- 154		
7D 20.22 (to TOC), purged to binless unle	using	Surgi	reaction	1.60	

Groundwater P	urge a	na Sampi	FOrm (Will	ilmai Drawo	own)		Kenneay	/Jenks Co	nsultan
Date:	4/20	116		Well	lumber:	Karia:	M	W-11	
Project Name:	Ecology	Circle K 14	51	- Monur	ment Type:	Stickup:	300	ft PVC)	Flush: X
Project Number:	169601				Diameter (in):			MI - L	
Sampling Personne		VR-	150.1	- F	Condition:	Good			2071.10
Water Level Meter:		Geotech IFF			Casing Depth		7		Reference
Purging Equipment:		Peristaltic			ned Interval (f		/	BGS	
Sampling Equipmen		Peristaltic		-	to Groundwat	5210 12			or
Sampling Equipments		36	No.	L. Yell J. W.		CH-94.3	() ₍₂	,,,=116	TOC
· ·		Bet	10.50 mg	7	to LNAPL (ft):	2 -1V	+		100
Purge Depth (ft):		TIT	9/3/11/2	_ water	Column (ft):	4	77.		
Total Discharge (L):			S 13-40	· j	400				
Water Disposal:	55-gallo					2	A112 - 172		
Weather:	NNWX	8408		197	Arged Control				
Water Quality Mete		Mode	l Cali	bration Date/	Time		QA/QC Sa	mples	
Temp/pH/SC/ORP/I	00:	YSI 556 N		9/16 1430		Туре	Sar	nple ID	Time
Turbidity: Other:		MicroTPI/	TPW 4//	1/16 1440	2	$\Leftrightarrow \Leftrightarrow$	\bowtie	>>>	$\Rightarrow \Rightarrow$
Other.			NEW YORK						
Sample		Sampl	e Containers		Field	Turbidity/	Analysis	MS	S/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requested	Co	mments
MW-11	3	A	HCI	40 ml	N		NWTPH-G/BE	ΓX	
,		20	75 - 7	,		٠	,		
			~			7			
, and i			1.						
			4 3						1
			6		74 and 75				
					. '	' d			
				1 2 8			- 30		
				3					
				15		-			
11.025		1628	2 (0	11.26		- 11			
14025	Time	PARTY	12	17434		13.03%	NAME OF TAXABLE PARTY.		
Parameter (every 5		2 min	(min	9 min	min	min	min	min	m
Flow Rate (LPM)	111111/	2 '''''		11181	11011		17117	11881	111
	-	, ~	2	05					
Volume Purged (L)	'	1.5		2.5			3/9"		
Water Depth (ft)	-	8.56	8.87	9.14		,			
Temperature (Celsiu	ıs)								
oH					- Marie Control		- 7		
Sp. Conductance (u	S/cm)					No	collect	ا ال	
OO (mg/L)									
ORP (mV)	,					1			
Furbidity (NTU)		61.83	46.04	3145	8	-	,		
Color		Elect	75	2 (3			4		
Odor/Evidence of LN	IAPL	No0/9.			6				,
,		100 -17.	W (22 3		5				
lotes: (i.e. actions t	aken if v	vell dewaters	orproblems d	uring purging/s	sampling, etc.)			
		us odo		5 5		-			
	411/11/0	el rocco	· ·						
k Sught Sc	100					R			7

-

			FOITH (WIII)	00.00			Kennedy/		onsultar
Date:	. /	/		_ Well N	Number:			N-13	
Project Name:		1.4.4-4	1 -	1	ment Type:		:(ft		Flush:
				_ Well [Diameter (in):	2			
Sampling Personne	act Name: Ecology Circle K 1461 act Number: 1696010°00 pling Personnel: #\$ ar Level Meter: Geotech IFP aring Equipment: Peristaltic pling Equipment: Peristaltic pling Time: #\$ are Depth (ft): No Is 1 broph/SC/ORP/DO: YSI 556 MPS are ID No. Type Presented ID No.		THE RESERVE	_ Well C	Condition:				
Water Level Meter:		Geotech IFP		_ Total (Casing Depth	(ft): <u>19.0</u>			Reference
Purging Equipment	: 101	Peristaltic		_	ned Interval (BGS
Sampling Equipmer	nt:	Peristaltic		Depth	to Groundwa	iter (ft):	0-21 (She	en)	or
Sampling Time:		105			to LNAPL (ft)			1/-	TOC
Purge Depth (ft):	~	164		Water	Column (ft):				
Total Discharge (L)									
Water Disposal:	55-gallo	on drum	1 E						
Weather:	1180	10 10 10 10 10 10 10 10 10 10 10 10 10 1				Table Wa	12200		
Water Quality Mete				bration Date/			QA/QC Sar		ew s
Temp/pH/SC/ORP/I Turbidity:	<u> </u>			114/16 1430		Туре	Sam	ple ID	Time
Other:		WIICHOTF I/ I	PW	419/17 140	16				\Longrightarrow
Kallis Creat in In				H (CD)				12	
					Field	Turbidity/	- 1	3 1	S/MSD &
			Pres.	Vol.	Filtered	Color	oidity/ Analysis		mments
MW-13	3	Α	HCI	40 ml	N		NWTPH-G/BE I	<u> </u>	SAL UNG
	Disposal: 55-gallon drum ler: Quality Meter(s) Model PH/SC/ORP/DO: YSI 556 MPS ity: MicroTPI/TPW Sample Sample Cont ID No. Type Pt 13 3 A HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HCI HC				V				
		(7)						2	
	ID No.							1 1	9-
1 78 1									
						West of the second			
=									
					- 59	80.			
1635	Time	1146	1645	1650	1655	16 1700	1705		
Parameter (every 5			The state of the s					min	n
low Rate (LPM)			200	200	200	200	W. Tarana		
/olume Purged (L)		10			1 JASE 1	120		- 4	
Water Depth (ft)	0	13.42	13.00	13.02	13.02	13.03	13.03	11 11	
Temperature (Celsiu	(st	, ,	15.80	15.76	15.41	15.41	1541	The state of the s	
		, ,	6.35	100	6.36	6.36	6-36		
)H	S/cm)		0.708	0-708	0.708	0.706	6.705	V	76
				1-36	1.09	August 1	1-02		
Sp. Conductance (u		14 17		-50·2	-48.1	1.05			-
Sp. Conductance (u DO (mg/L)		-174				56.68	55.13		
Sp. Conductance (u DO (mg/L) DRP (mV)		0.00000	-51.8		17	11-01-1 -	100 110		
Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU)		234.8	-51.8 153.4	86.96	70.62	70.00		37000	
Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU) Color	IAPI	234.8 A. brown		86.96	70.62	76.66		7 E.S.F	
DH Sp. Conductance (units) DO (mg/L) DRP (mV) Furbidity (NTU) Color Ddor/Evidence of LN	JAPL	234.8 1t. brown-			70.62	76.68		= ***X_	
Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU) Color	JAPL	234.8 Ar. brown Visible -	153.4	86.96	70.62	76.68	50		
Sp. Conductance (under the conductance (under		234.8 A. brown VISIBLE - Sheen od fr	153.4	86.96 odor -					X 2
Sp. Conductance (und DO (mg/L) DRP (mV) Furbidity (NTU) Color Ddor/Evidence of LN Notes: (i.e. actions to the color)	taken if v	234.8 A. brown- VISIBLE - Shien Short Well dewaters	153.4 orproblems do	odor	sampling, etc	2.)			
Sp. Conductance (under the conductance (under	taken if v	234.8 A. brown- VISIBLE - Shien Short Well dewaters	153.4 orproblems do	odor	sampling, etc	2.)			

Groundwater F			FOITH (IVIII			• 118:		nks Consultar
Date:	-	0/16		-	Number:		MW-	
Project Name:		y Circle K 146	61	_	ment Type:		(ft P\	
Project Number:	169601					2		
Sampling Personne				_ Well (Condition:			
Water Level Meter		Geotech IFP		Total	Casing Depth	(ft): <u>19.3</u>		Reference
Purging Equipment	:	Peristaltic			ned Interval (f			BGS
Sampling Equipme		Peristaltic		Depth	to Groundwat	ter (ft):	8	or
Sampling Time:		505		Depth	to LNAPL (ft):			TOC
Purge Depth (ft):	~12		2.2	Water	Column (ft):			
Total Discharge (L)	: "X	2.2						
Vater Disposal:	55-galle	on drum						
Veather:	THE						3 3 5 Value	
Vater Quality Met	or(o)	Mode	Call	- bration Date/	Time		QA/QC Samp	los
emp/pH/SC/ORP/		YSI 556 N		Mallh 14		Туре	Sample	
urbidity:		MicroTPI/		1419/6 14		\times		
Other:	ō					$\times\!\times$	\times	
Sample		Sampl	e Containers		Field	Turbidity/	Analysis	MS/MSD &
ID ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requested	Comments
MW-14	3	Α	HCI	40 ml	N	- 0	NWTPH-G/BETX	
					- 4			
							di .	
					*()			
				300	2, 1			38
					1/1			
	4				11 1			1 1 12 12 1
	16			E T	1.6	W		1.0
				,				9
1545	Time	1557	1555	1600	1605			
arameter (every 5		5 min				min	min	min n
low Rater(LPM)	111111/	150				***************************************		111111
olume Purged (L)		100	150	150	150			
		11:00						
/ater Depth (ft)		11-09	11-12	11.25		. 66		
emperature (Celsi	JS)	15-79	15.76	15.75	15.67	7 7 7		
H	111	7-15	6.46	6.62	6.58	500	×	TRIE TO SEE
p. Conductance (u	S/cm)	0.847	6.857	0.855	0.855			
O (mg/L)		4.02	2.02	1.42	1.2/			7)
RP (mV)	V	-60.0	-44.5	-426	-43.7			. 3
urbidity (NTU)		202.1	152-2	154.8	155,8	1 1		
olor		H. brown			× • · · · ·			
dor/Evidence of Li	VAPL	700/5 -			11 172			
	161	13						
- 4					sampling, etc.	•		
			1. A NOCICITA	no ctars	TIMO ML 1	RDAC	TICE : Nodir	ated tulmia
13-71 - Cremoved) had	sedim	ent on	it.	79211	2-11-5	· · · · · · ·	are resemble

Groundwater P			ie i Oilli (Wi				Kenne	ay/Jenks (Consultants
	4/20	**-		_ Well	Number:			MW-15	ILI U
		y Circle K 14	61	Monu	ument Type:	Stickup	:	_(ft PVC)	Flush: X
	169601			_ Well	Diameter (in)				
Sampling Personnel		<u>r</u>	New X	_ Well	Condition:	OK- 16	old fund	ula broke	en in morry
Water Level Meter:		Geotech IFI	P ggp2hti	_ Total	Casing Depti		110.64	7/16.75	Reference:
Purging Equipment:		Peristaltic	<u> </u>	_ Scree	ened Interval	(ft): <u>4-18.</u>	7		BGS
Sampling Equipment		Peristaltic	and the control of	_ Depti	n to Groundw	ater (ft):			or
Sampling Time:	1600		uplicate	Depti	n to LNAPL (f	i): <u>N</u> /	+; Sligh	t Shean.	TOC
	~ 164	4	704-	Toy wo Wate	r Column (ft):	11 11-38	THE STATE OF THE S		
Total Discharge (L):	- 1		nebys, n	-					
	55-gallo		NE PERSON	- 1			317		
Weather: Sun		30°F					10 10 10	4.	
Water Quality Meter Temp/pH/SC/ORP/D		YSI 556		ibration Date		Time 6		Samples	mmyalis i
Turbidity:		MicroTPI/		114/6 144		Туре		Sample ID	Time
Other:			. 1						
Sample		Samp	le Containers	3 10 10 10	Field	Turbidity/	Analys	is !	MS/MSD &
, iD	No.	Туре	Pres.	Vol.	Filtered	Color	Reques	ted (Comments
MW-15	3	Α	HCI	40 ml	N		NWTPH-G/E	BETX	
+ Duplicate (D	UP-1	-042016			70 - 11		6	288	
*					- 1	, ,			
		•	•		- 1777	ı			
		6							
					;		1		
				k-		•			
	1 1 1 1 1 1				• :				
1920	Time	1575	1530	1535	1540	1845	1550	558	1600
Parameter (every 5 n	nin)	5 min	10 min	15 min	20 min	25 min		35 min	77 - 7
Flow Rate (LPM)			Si	WIE -					- N - N - N
Volume Purged (L)		3.5	375	4.0	4.25	4.75	50	5.25	
Water Depth (ft)			10.88	11.03	11.67	11.15	11.27	11.32	
Temperature (Celsius)	15.17		14.80	14.78	14,77	14.86	14.80	
Н		3,49	5-49	5.52	5.49	5.48	5.46	5.45	
Sp. Conductance (uS/	/cm) (0.143	0.146	0.145	0.145	0.143	0.141		
OO (mg/L)		1.39	1.89		141	1.48	1.47	1.48	8 10
ORP (mV)		176.2	182.4	1981	200.3	197.1	203,0	2044	
Turbidity (NTU)		7841	227.10	120.8			83.12	79.12	
Color		thom	Claudy/Hbn		106.8	94.09		1111	, '
Odor/Evidence of LNA		s/s.n	55/50	NS/50-		Clear Cloud			
7-40		0 (21)	20/20	MOTOUL		***			
lotes: (i.e. actions tal	ken if u	ell dewaters	orproblems 4	uring purels - /	oomeline -	-			
							- 2	1:1	3
121	. 11 6	ALTOKOV.	~ 3 gall	cons.	1 Datter	Suze 1	6.75.		een obser
8 bailers &	A. F	- ()	. ()	ا مید	4 .1	<i>, ,</i>			
8 bailers for light brown,	Pfinc	silty so	. ()	nulated od	- bottom	(observed	on probe). Wester	Light brown
8 bailers &	Pfinc	silty so	. ()	nulated at	- bottom	(observed	on probe), Wester	Light brown

Groundwater Pu	ırge a	nd Sample	Form (Mill					Jenks Consul	tar
Date:	12	7/16		_ Well N	Number:		NW-2(L	evaail).	
Project Name:	Ecology	Circle K 146	1	Monu	ment Type:	Stickup:	(ft	PVC) Flush:	
	169601	A 1-20		_ Well [Diameter (in):	2	- 1		11
Sampling Personnel:	DKI	RIDI	+	Well (Condition:	Good	age - S		
Water Level Meter:		Geotech IFP		Total	Casing Depth	(ft):	2.5	Refer	rend
Purging Equipment:	A LINE OF	Peristaltic			ned Interval (f		.5 - 0.5	? ? BO	GS
Sampling Equipment		Peristaltic		Depth	to Groundwa			0	or
Sampling Time:	142	<u>p</u>		Depth	to LNAPL (ft)	: N	4	тс	oc
Purge Depth (ft):	~ 1	2.ft	w Table	Water	r Column (ft):				
Total Discharge (L):	715	•							
	55-gallo					· 10 mm	E a		
Weather: Sun	W.	347						_ = ===================================	
ATT STATE OF			Meriba					2 stylky	
Water Quality Meter	r(s)	Model		bration Date/	Time		QA/QC Sar		
Temp/pH/SC/ORP/D	0:]	YSI 550 N	APS 12/7	the the	ło	Туре	Sam	ple ID Tin	ne
Turbidity:		MicroTPI/T	rPW	- 1		$\times\!\times$			\geq
Other:					0.0	$\times\!\times$	$\times\!\!\times\!$	$<\!\!\times\!\!\times$	\geq
					6			1	
Sample		Sample	e Containers		Field	Turbidity/	Analysis	MS/MSD	&
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requested	Comment	ts
WHITE IN	3	HCI.	VOA	donl	No	dens	NWTP4-G	X/BTX	117
BICK			431	2		H Jeffer			
MW-2-16/24	7								
		V .			Murit	1811		N. T. T.	
					- 2				
					des			98	
		11 11	0			NA STATE		-V-169 A	
	uvi d	U-T-T-			1			B 1/ 1	形
								76.	
		10-							1
	211					CST .			10
1410	Time	1415	1420	1425	1430	And the second			
Parameter (every 5 r	min)	min	min	min	min	min	min	min	1
Flow Rate (LPM)		0.2	0.2	0.2	5.0			- Jan 19	T
Volume Purged (L)			2,	3	4				
Water Depth (ft)		10.49	10.60	10.85	10.91				ш
Temperature (Celsius	s)	13.5	143	13.6	13.2				a l
рН		6.56	650	6.46	6.43				JB,
Sp. Conductance (uS	3/cm)	0.264	0.270	0.270	0-26g		21 21 21 21 21 21 21 21 21 21 21 21 21 2		
DO (mg/L)		15/4	8 8	1.26	1.28		=4	Such Such	
ORP (mV)		209	204	203	204				4
Turbidity (NTU)	4	9	9	8.7	5.4	25		El-n-si ilgan	
Color		year			\rightarrow			A CONTRACTOR	
Odor/Evidence of LN	APL	No 0/3			-			341 - *	
			8 E # "						W
Materi (i o potiono tr	aken if v	vell dewaters	orproblems d	luring purging	/sampling, etc	.)			
Notes: (i.e. actions to									_
Notes: (i.e. actions to				N 8W					

11 /

Model YSI 556 M MicroTPI/	l Cali	Monu Well C Total Scree Depth Depth Water	Condition: Casing Depth ned Interval (f to Groundwat to LNAPL (ft): Column (ft):	(ft): 18 t): 4	9-18-8 8-53	ples le ID M Cc	Reference BGS or TOC
Geotech IFP Peristaltic Peristaltic Iboo N3 F1 Illon drum Mode YSI 556 N MicroTPI/I	I Cali MPS TPW e Containers Pres.	Well I Well I Total Scree Depth Depth Water	Diameter (in): Condition: Casing Depth ned Interval (f to Groundwat to LNAPL (ft): Column (ft): Time Field Filtered	(ft): 18 t): ter (ft): Type	QA/QC Samp Samp Analysis Requested	ples le ID M Cc	Reference BGS or TOC
Geotech IFP Peristaltic Peristaltic 1600 13 ft Illon drum Model YSI 556 M MicroTPI/I	d Cali	Well C Total Scree Depth Depth Water	Condition: Casing Depth ned Interval (f to Groundwat to LNAPL (ft): Column (ft): Time Field Filtered	(ft): 18 t): ter (ft): Type	QA/QC Samp Samp Analysis Requested	M Cc	BGS or TOC
Geotech IFP Peristaltic Peristaltic boo 13 f + llon drum Model YSI 556 N MicroTPI/I	d Cali	Total Scree Depth Depth Water	Casing Depth ned Interval (f to Groundwat to LNAPL (ft): Column (ft): Time Field Filtered	Type	QA/QC Samp Samp Analysis Requested	M Cc	BGS or TOC
Peristaltic Perist	d Cali	Scree Depth Depth Water	ned Interval (f to Groundwat to LNAPL (ft): Column (ft): Time Field Filtered	Type	QA/QC Samp Samp Analysis Requested	M Cc	BGS or TOC
Peristaltic 1600 ~ 13 f 1 Ilon drum Model YSI 556 N MicroTPI/I	I Cali	Depth Water	to LNAPL (ft): Column (ft): Time Field Filtered	Type	QA/QC Samp Samp Analysis Requested	M Cc	Time
Model YSI 556 M MicroTPI/T	I Call MPS TPW e Containers Pres.	Depth Water	to LNAPL (ft): Column (ft): Time Field Filtered	Type	QA/QC Samp Samp Analysis Requested	M Cc	Time
Model YSI 556 M MicroTPI/I	I Call MPS TPW e Containers Pres.	Depth Water	to LNAPL (ft): Column (ft): Time Field Filtered	Type	QA/QC Samp Samp Analysis Requested	M Cc	Time
Model YSI 556 M MicroTPI/I	I Call MPS TPW e Containers Pres.	Water	Time Field Filtered	Type	QA/QC Samp Samp Analysis Requested	M Cc	S/MSD &
Model YSI 556 M MicroTPI/I Sample Type	I Call MPS TPW e Containers Pres.	ibration Date/	Time Field Filtered	Type	QA/QC Samp Samp Analysis Requested	M Cc	S/MSD &
Model YSI 556 N MicroTPI/I Sample Type	MPS TPW e Containers Pres.	Vol.	Field Filtered	Turbidity/	Samp Analysis Requested	M Cc	S/MSD &
Model YSI 556 N MicroTPI/I Sample Type	MPS TPW e Containers Pres.	Vol.	Field Filtered	Turbidity/	Samp Analysis Requested	M Cc	S/MSD &
YSI 556 M MicroTPI/I Sample Type	MPS TPW e Containers Pres.	Vol.	Field Filtered	Turbidity/	Samp Analysis Requested	M Cc	S/MSD &
YSI 556 M MicroTPI/I Sample Type	MPS TPW e Containers Pres.	Vol.	Field Filtered	Turbidity/	Samp Analysis Requested	M Cc	S/MSD &
MicroTPI/T	e Containers	Vol.	Filtered	Turbidity/	Analysis Requested	M cc	S/MSD &
Sample	e Containers	Vol.	Filtered		Requested	Co	
Туре	Pres.	Vol.	Filtered		Requested	Co	
Туре	Pres.	Vol.	Filtered		Requested	Co	
Туре	Pres.	Vol.	Filtered		Requested	Co	
Туре	Pres.	Vol.	Filtered		Requested	Co	
		40 1111			TWITT GISETA		
				115 =			
					7	**	
				150			
			0				
				1.25			
ļ, l							
		3.0					
	int - Eq						
1530	1535	1540	1545	5771	1555		
5 min						min	
0.7						8	
1	2,	3	¥	.5	1-	76	
x 97							
		13.07					(42)
, ,			100				
		The second live and the second					
					0.65		
	, , , , , , ,	1					
	2.00	0-10	0.07	0.09	0.10		
N	•						
well dewaters	orproblems d	luring purging/	sampling, etc.)			
	5 min 0.7 1 8.92 13.04 (6.39 0.352 0.60 -74.8 6.60 clay pengum	5 min 10 min 0.7 1 2 8.72 8.75 13.04 13.06 6.39 6.38 0.352 0.350 0.60 0.51 -74.8 -75.8 6.60 2.00 clear perviews well dewaters or problems of	5 min 10 min 15 min 0.7 1 2 3 8.92 8.75 8.90 13.04 13.06 13.07 6.39 6.38 6.36 0.352 0.350 0.353 0.60 0.51 0.353 0.60 2.00 0.10 clear perviews well dewaters or problems during purging	5 min 10 min 15 min 20 min 0.7 1 2 3 4 8.92 8.95 8.90 8.95 13.04 13.06 13.07 12.99 (6.39 6.38 6.36 6.34 0.352 0.350 0.353 0.351 0.60 0.51 0.34 0.30 -74.8 -75.8 -78.6 -79.7 6.00 2.00 0.10 0.07 clear perviews well dewaters or problems during purging/sampling, etc.	5 min 10 min 15 min 20 min 25 min 0.7 1 2 3 4 5 8.92 8.95 8.90 8.95 9.00 13.04 13.06 13.07 12.99 13.04 (6.39 6.38 6.36 6.34 6.34 0.352 0.350 0.353 0.351 0.348 0.60 0.51 0.34 0.30 0.26 -74.8 -75.8 -78.6 -79.7 -80.3 0.60 2.00 0.10 0.07 0.09 clear perviews well dewaters or problems during purging/sampling, etc.)	5 min 10 min 15 min 20 min 25 min 30 min 0.7 1 2 3 4 5 6 8.92 8.95 8.90 8.95 9.00 9.01 13.04 13.06 13.07 12.99 12.04 13.01 6.39 6.38 6.36 6.34 6.34 6.34 0.352 0.350 0.353 0.351 0.348 0.347 0.60 0.51 0-34 0.30 0.26 6.25 -74.8 -75.8 -78.6 -79.7 -80.3 -80.8 6.60 2.00 0.10 0.07 0.09 0.10 clear perviture	5 min 10 min 15 min 20 min 25 min 30 min min 0.7 1 2 3 4 5 6 8.92 8.95 8.90 8.95 9.00 9.01 13.04 13.06 13.07 12.99 13.04 13.01 (a.39 b.38 b.36 b.36 b.37 b.37 b.39 0.352 0.350 b.353 0.351 0.348 0.347 0.60 0.51 0.34 0.30 0.26 6.25 -74.8 -75.8 -78.6 -79.7 -80.3 -80.8 0.60 2.00 0.10 0.07 0.09 0.10 Clay Pshalum Rel dewaters or problems during purging/sampling, etc.)

Date: Project Name:	101	W 111		14/011 /	I rame to proper		MW	/ C	
		7/16		-	Number:	0.11			
		y Circle K 146	i 1		ment Type:		(ft F	PVC) Flush:	
Project Number:	169601				Diameter (in):		4 1 1 1	1 1 1	
Sampling Personne		ES		•	Condition:		don't holo		
Water Level Meter		Geotech IFP		•	Casing Depth	`		Refer	
Purging Equipment	·	Peristaltic	N\$		ned Interval (f				GS
Sampling Equipme	n <u>t:</u>	Peristaltic		Depth	to Groundwa	ter (ft):	22 (of the latest the state of	r
Sampling Time:		1145			to LNAPL (ft)	:		10	oc
Purge Depth (ft):		N16 ft	98	- Water	Column (ft):				
Total Discharge (L)	:								
Water Disposal:	55-gallo	n drum							
Weather:							12 5		
Water Quality Met	er(s)	Mode	Cali	bration Date/	Time		QA/QC Sam	ples	
Temp/pH/SC/ORP/		YSI 556 N		16/16		Туре	Samp	le ID Ti	ne
Turbidity:	5	MicroTPI/	TPW /2	17/16	177	$\Leftrightarrow \Leftrightarrow$			\geq
Other:									
Sample		Sampl	e Containers		Field	Turbidity/	Analysis	MS/MSD	&
ID	No. Type		Pres.	Vol.	Filtered	Color	Requested	Commen	ts
MW-6	2	Α	HCI	40 ml	N		NWTPH-G/BETX		
								A	
luc	Time	1120	112.5	1120	1/25	1140	li 45°		
Narameter (every 5	Time.	1120 T min	1/25 Ip min	1130 15 min	1135 20 min	1140 2.5 min	1145 20 min	min	
P arameter (every 5		5 min			4.0			min	
Parameter (every 5 Flow Rate (LPM)			O min	[5 min	20 min	2.5 min	30 min	min	
Parameter (every 5 Flow Rate (LPM) Volume Purged (L)		5 min 200ml	o min	15 min	20 min	2,5 min	30 min	min	
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft)	5 min)	5 min 200ml· 1 /1.95	2 /2.08	3 /2.2/	20 min 4 12.34	25 min 5	30 min 6 12.49	min	
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsi	5 min)	5 min 200mL 1 /1.95 /3.39	2 /2.08 /3.2/	3 2.21 3.31	20 min 4 /2.34 /3.08	25 min 5 12.41 13.35	30 min 6 12.49 /3.32	min	
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsi	o min)	5 min 200ml· 1 11.95 13.39 7.15	2 /2.08 /3.2/ 7.16	3 2.21 3.31 7/6	20 min 4 12.34 13.08 7.16	25 min 5 12.41 13.35 7.15	30 min 6 12.49 /3.32 7.15	min	
Parameter (every 5) Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsion DH Sp. Conductance (r	o min)	5 min 200ml 1 11.95 13.39 7.15 0.781	2 /2.08 /3.2/ 7.16 0.733	3 2.21 3.31 7.16 0.732	20 min 4 12.34 13.08 7.16 0.729	2.5 min 5 12.41 13.35 7.15 0.725	30 min 6 12.49 13.32 7.15 0.724	min	
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsi bH Sp. Conductance (r DO (mg/L)	o min)	5 min 200ml· 1 11.95 13.39 7.15 0.731 0.60	2 /2.08 /3.2/ 7.16 0.733 0.35	3 2.21 3.31 7.16 0.732 0.31	20 min 4 12.34 13.08 7.16 0.729 0.25	25 min 5 12.41 13.35 7.15 0.725 0.23	30 min 6 12.49 13.32 7.15 0.724 0.24	min	
Parameter (every 5) Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsion DH Sp. Conductance (r DO (mg/L) DRP (mV)	o min)	5 min 200ml· 1 11.95 13.39 7.15 0.731 0.60 -61.2	2 /2.08 /3.2/ 7.16 0.733 0.35 -67.6	15 min 3	20 min 4 12.34 13.08 7.16 0.729 0.25 -75.9	2.5 min 5 12.41 13.35 7.15 0.725 0.23 -77.7	30 min 6 12.49 13.32 7.15 0.724 0.24 -78.5	min	
Parameter (every 5) Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsion DH Sp. Conductance (r DO (mg/L) DRP (mV) Turbidity (NTU)	us)	5 min 200ml· 1.95 13.39 7.15 0.731 0.60 -61.2 25.41	2 /2.08 /3.2/ 7.16 0.733 0.35	3 2.21 3.31 7.16 0.732 0.31	20 min 4 12.34 13.08 7.16 0.729 0.25	25 min 5 12.41 13.35 7.15 0.725 0.23	30 min 6 12.49 13.32 7.15 0.724 0.24	min	
Parameter (every 5) Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsion DH Sp. Conductance (r DO (mg/L) DRP (mV)	us)	5 min 200ml· 1 11.95 13.39 7.15 0.731 0.60 -61.2	2 /2.08 /3.2/ 7.16 0.733 0.35 -67.6	15 min 3	20 min 4 12.34 13.08 7.16 0.729 0.25 -75.9	2.5 min 5 12.41 13.35 7.15 0.725 0.23 -77.7	30 min 6 12.49 13.32 7.15 0.724 0.24 -78.5	min	r

OURSTEEN ON A PROCESS OF THE PORT CITAL & CITA ADDRESS OF THE PRIVATE BOTTON FORMS

de

Date: Project Name:			\\	imal Drawd	OWII)		Kennedy/J	CIIKS OC	
Project Name:	12/8	116	- X -	Well N	lumber:		MV	V-7	10
		y Circle K 146	i1	Monur	ment Type:	Stickup:	(ft F	PVC) F	Flush: X
Project Number:	169601	10*00		Well D	Diameter (in):	2	T.	T PI	
Sampling Personne	: 37	JES		- Well C	Condition:	apod	mrssing	Ibelt	
Water Level Meter:				- Total (Casing Depth		,	8	Referenc
Purging Equipment:					ned Interval (f	1.0	,		BGS
Sampling Equipmen									or
		0845		Depth to Groundwater (ft): 6-30 Depth to LNAPL (ft): A/A					
		1117 64		V =					
Purge Depth (ft):		1012 44		- water	Column (ft):				
Total Discharge (L):				-					
	55-gall	on drum	""	• 1					
Weather:									
Water Quality Mete	p/pH/SC/ORP/DO: YSI 556			bration Date/	Time	Terl'e no Gair	QA/QC Sam		- Lance
Temp/pH/SC/ORP/I	oidity: Micro		YSI 556 MPS 12/		155	Туре	Samp	le ID	Time
Turbidity: Other:	y: MicroTP		PW 12	19/16					\approx
Other.	- H-C								
Sample		Sample	e Containers		Field	Turbidity/	Analysis	MS	S/MSD &
ID	D No. Type		Pres.	Vol. Filtered	Color	Requested	Co	mments	
MW-7	2	Α	HCI	40 ml	N		NWTPH-G/BETX	(
				, -1					
8									
	Time	0022		1832	A \$ 7.9	as il b	06/12		
6818	Time	2 44 -	0828	0833 + 6 min	0 \$ 3 \$	0840	0843	min	
(ಿ ೮ 1 కో Parameter (every 5	min)	5 min	0828 10 min					min	r
() \$15° Parameter (every 5 Flow Rate (LPM)	min)	2 44 -	0828 10 min	15 min	70 min	7 min	25 min	min	r
トライダ Parameter (every 5 Flow Rate (LPM) Volume Purged (L)	min)	5 min	0828 s min 0-2-	15 min	20 min	72 min	25 min 5	min	r
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft)	min)	5 min 0.249 1 6.49	0828 10 min 0-2- 2	15 min 3 6-75	20 min 4 6-81	4.24 6.83	25 min 5 6-85	min	r
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsiu	min)	5 min 0.240 1 1-49	0828 10 min 0-2- 2 6.64 11.96	3 6-75 11.76	70 min 4 6-81 12-01	4.4 6.83 12.00	25 min 5 6-85 11-49	min	r
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsiu	us)	5 min 0.240 1 p.49 11.49 6.22	0828 10 min 0-2- 2 6-64 11-96 6-20	3 b-75 11.76 6-19	70 min 4 6-81 12-01 6-18	4.4 6.83 12.00 6.18	25 min 5 6-85 11.49 6.19	min	r
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsius) DH Sp. Conductance (m	us)	5 min 0.200 1 10.49 11.49 6.22 0.357	0828 10 min 0-2- 2 6-64 11-96 6-20 0-370	3 b-75 11.7b b-19 0.372	70 min 4 6.81 12.01 6.18 0.377	4.4 6.83 12.00 6.18 0.378	25 min 5 6-85 11.49 6.19 0.380	min	r
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsius) OH Sp. Conductance (m	us)	5 min 0.240 1 1.49 1.49 1.22 0.357 3.98	0828 10 min 0-2- 2 6.64 11.96 6.20 0-370 3.63	3 b-75 11.76 6-19	20 min 4 6.81 12.01 6.18 0.377 3.49	4.4 6.83 12.00 6.18 0.378 3.43	25 min 5 6-85 11.49 6.19	min	r
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsius) OH Sp. Conductance (m	us)	5 min 0.200 1 10.49 11.49 6.22 0.357	0828 10 min 0-2- 2 6-64 11-96 6-20 0-370	3 b-75 11.7b b-19 0.372	70 min 4 6.81 12.01 6.18 0.377	4.4 6.83 12.00 6.18 0.378	25 min 5 6-85 11.49 6.19 0.380	min	n
	us)	5 min 0.240 1 1.49 1.49 1.22 0.357 3.98	0828 10 min 0-2- 2 6-64 11-96 6-20 0-370 3-63 139-0	3 b-75 11.76 6-19 0.372 3.53	20 min 4 6.81 12.01 6.18 0.377 3.49	4.4 6.83 12.00 6.18 0.378 3.43	25 min 5 6-85 11.49 6.19 0.380 3.41	min	n
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsius) DH Sp. Conductance (mode) DO (mg/L) DRP (mV)	us)	5 min 0.200 1 9.49 11.49 6.22 0.357 3.98 135.4	0828 10 min 0-2- 2 6.64 11.96 6.20 0-370 3.63	3 b-75 11.7b b-19 0.372 3.53 141.b	20 min 4 6.81 12.01 6.18 0.377 3.49 144.3	4.4 6.83 12.00 6.18 0.378 3.43 145.1	25 min 5 6-85 11.49 6.19 0.380 3.41 146.4	min	n

Groundwater i	12/3	1110		<u> </u>		Number:		Kennedy/Je		
Date:	10-			- 2	-		0.1.1			
Project Name:		y Circle K 146	31			ment Type:		(ft P\	√C) Flusi	h: <u>×</u>
Project Number:	169601	4	11			Diameter (in):				
Sampling Personn			#	V	-	Condition:	Good		Det	
Water Level Meter		Geotech IFP		- 1		Casing Depth		1		erenc
Purging Equipmen		Peristaltic	20.0			ned Interval (ft				BGS
Sampling Equipme	A	Peristaltic	E H			to Groundwat				or
Sampling Time:	7	55	0		-	to LNAPL (ft):			V/60_V	тос
Purge Depth (ft):		M124			_ Water	r Column (ft):				
Total Discharge (L		50								
Water Disposal:	55-gallo	on drum			-					
Weather:		II vina	A .	1000	- A 112K I				0-1-1	
Water Quality Met		Mode		Cali	bration Date/	Time	E GJE W	QA/QC Samp		45
Temp/pH/SC/ORP	/DO:	-YSI-5561		Mu	1/16 1/4	٥	Туре	Sample	D 1	Time
Turbidity: Other:		MicroTPI/	TPW				\Longrightarrow		$\Rightarrow \Rightarrow \Rightarrow$	\divideontimes
				77					* * * * * * * * * * * * * * * * * * * *	<u> </u>
Sample			le Conta	_		Field	Turbidity/	Analysis	MS/MS	TIL
ID	No.	Туре	Pre	8.	Vol.	Filtered	Color	Requested	Comme	ents
MW-8	2	Α	HCI		40 ml	N		NWTPH-G/BETX		C/II
	+					163		= 8 _=		
i i i i i i i i i i i i i i i i i i i										
13							1.00			
	=1				T	100				
A 1111					0	ev de la		- 8	1 2	1
Mu. T. Lucia						1//4				
							*	(C)		
							14			
	1	* 1								42
3930	Time	0935	094	0	0145	0950				
Parameter (every 5	5 min)	min		min	min	ERSON DATE OF THE PARTY OF THE	min	min	min	r
Flow Rate (LPM)		02	0.2	The Contract	(Suit	1-15-00-0				-
Volume Purged (L)		01	2		3	4				
Water Depth (ft)		8.91	90	P	9.06	909	1 3.			
Temperature (Cels	ius)	13.4	131	1	137	13.7	11/			
H +0.1	300	4.40		1	6.40	642			1898	
Sp. Conductance (042		0416	0420	TUXII			
OO (mg/L)	337 C	100	0.1		0.18	0.22				
/ 10	1	-2	-8	7	-14	-24			- 87	
Furbidity (NTU)		122	20		0.78	3.17		100		
Color		clear_	-		0.15	2				
Odor/Evidence of L		A 1	1/5		14 She	h.	777			_
74017211401140 01 2		all ho	<u> </u>	2/1/4	111 5100					
				10.11						Ш
	taken if v	vell dewaters	, difficult	ies in	sampling thro	ough LNAPL, p	roblems durir	ng purging/sampling	g, etc.)	
Notes: (i.e. actions										
Notes: (i.e. actions								76		

^

Groundwater P	,		e FOIIII (IVI	minai Diaw	iowii)			nks Consulta
Date:		16		Well	Number:	-	MW-	9
Project Name:	Ecolog	y Circle K 14	61	Monu	ment Type:	Stickup:	(ft P\	/C) Flush:
Project Number:	169601			Well	Diameter (in):	2		
Sampling Personne	el: M	LIDA		Well	Condition:	Good		
Water Level Meter:		Geotech IFF		Total	Casing Depth	(ft): <u>21.2</u>		Referen
Purging Equipment		Peristaltic	4.8	Scree	ened Interval (fi): <u>5-21.2</u>		BGS
Sampling Equipmen	nt:	Peristaltic	6 KL B	Depth	to Groundwat	er (ft):	31	or
Sampling Time:		035		Depth	to LNAPL (ft):	8.2	51 (20.0) 6	m). TOC
Purge Depth (ft):	NID	SFL	6	Wate	r Column (ft):			
Total Discharge (L)	:			_				
Water Disposal:	55-gallo	on drum						
Weather:		Resident I	4 1 4				* 1	High way
Water Quality Met	ar(e)	Mode	l Co	ibration Date	/Time		QA/QC Samp	lee
Temp/pH/SC/ORP/	np/pH/SC/ORP/DO: VS bidity: Mic			ullo I'A		Туре	Sample	
Turbidity.	ity. Iviicio			20 nu		$\times \times$	\times	
Other:				Militia e		$\times \times$	$\times \times \times$	
Sample		Samp	le Container	8	Field	Turbidity/	Analysis	MS/MSD &
ID	No.	Туре	Pres.	Vol.	Fiftered	Color	Requested	Comments
MW-9	2	Α	НСІ	40 ml	N		NWTPH-G/BETX	
						- X	т. х н	
		1			2			
		1 1 X X				W		
	8			31				
							IV TO THE	
			, 1100					
								= =
A All I I I I			23					
1010	Time	1015	1020	1025	1030			
Parameter (every 5	min)	mir	miı	n min		min	min	min i
Flow Rate (LPM)		0.2-						
Volume Purged (L)		1	2	3	21			
Water Depth (ft)		859	3.67	872	3 31			
Temperature (Celsiu	(2)		121	15.0	150			1 1
оН	30,	14.6	4.50	4.50				
	C/a-m\			1 . 8.02.1	650	negative to		122
Sp. Conductance (u	S/cm)	0.503	0.493	F/	0.495			
OO (mg/L)		11.0	0.38	0.38	0.44			
ORP (mV)		-48	-58	-63	-76			
		4.13	6.86	450	3.56			
Γurbidity (NTU)		cles -						
						7.		
Γurbidity (NTU)			ht Shee	h			200	3/3/31
Furbidity (NTU) Color			thi Shee	h —			200	
Furbidity (NTU) Color Odor/Evidence of LN	NAPL	adur ith						
Furbidity (NTU) Color	NAPL	adur ith			/sampling, etc.)		
Furbidity (NTU) Color Odor/Evidence of LN	NAPL	adur ith			/sampling, etc.)		

Groundwater P			3 T OIIII (II					Jenks Consultar
Date: <u>1</u> 2		160			Number:	-		/-10
		y Circle K 146	81	_	ment Type:		(ft	PVC) Flush:
	169601	0*00			Diameter (in):			8 8 8
Sampling Personnel					Condition:	9000		
Water Level Meter:					Casing Depth			Reference
Purging Equipment:					ned Interval			BGS
Sampling Equipmen							8.81	or
	•	5			to LNAPL (ft		/ A	TOC
Purge Depth (ft):	~ 12			Water	Column (ft):		9	
Total Discharge (L):		~ 4						45°
Water Disposal:	55-gallo	on drum		_				
Weather: <u>ちゅん</u>	NY	Horiba						1999
Water Quality Mete	r(s)	Mode	I C	alibration Date/	Time		QA/QC San	npies
Temp/pH/SC/ORP/D		*YSI 556 I		Nº la	7 7	Туре		ole ID Time
Turbidity:		MicroTPI/	TPW	Sec. 1		$\otimes \otimes$		
Other:								
Sample		Sampl	e Containe	rs	Field	Turbidity/	Analysis	MS/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requested	Comments
MW-10	2	Α	HCI	40 ml	N	T AV	NWTPH-G/BET	<
	K 77					- 19		
						-in		
						=29p		
						IT 8 3		
				0 .		1		
9								
		1.8						
				_		34		
1110	Time	1						
Parameter (every 5		il\ 5 min	1170 m	in 1125 min	630 mir	135 min	AS & min	min r
low Rate (LPM)	,	0.1		O, i	0.1	1	6.1	
/olume Purged (L)		0.5	1.0	1.5		8.1	2.0	
Vater Depth (ft)				9.5	2.0	9.73	9 70	
emperature (Celsiu	0)	9.09	9.33		9.63			
	5)		13.8	13.7	13.9	13.9	13.9	
H		7.22	7.10	6 45	673	663	6.69	
Sp. Conductance (us	s/cm)	0.652	0.642	0.587	0,565	0.533	0.538	
OO (mg/L)		0.06	0.04	0.03	0.03	003	0.63	= =
ORP (mV)		-50	-34	17	37	55	59	
urbidity (NTU)		50.86	17.25	10.92	5	3	Z	
Color	2	Clear		1 ×				
dor/Evidence of LN	APL	Nools						
lotes: (i.e. actions ta	aken if v	vell dewaters	orproblems	during purging/	sampling, etc	c.)		
							•	

ماد

Date:	2/9	116		Well N	lumber:	311-1-1-1		MW-11	
,	,	y Circle K 146	21		ment Type:	Stickup		(ft PVC)	Flush:
	169601		1	7			-		riusii/
		10 00		-	Condition:				
Sampling Personnel:		Control IED	*	•		(4), 00.0			Reference
Water Level Meter:				-	Casing Depth				BGS
Purging Equipment:				-	ned Interval (- 18	100 90
Sampling Equipment		Peristaltic				ter (ft):	1-7-6		TOC
Sampling Time:		1455 MIH	9 1		to LNAPL (ft)				100
Purge Depth (ft):	-	1111		- Water	Column (ft):				
Total Discharge (L):		11 1 (E)	×						
Water Disposal:	55-galle	on drum		•					
Weather:		33 X 1118				100	89		
Water Quality Meter	(s)	Mode	l Cali	bration Date/	Time		QA/QC	Samples	L, all Lil
Temp/pH/SC/ORP/D		YSI 556 N			1775	Туре	S	ample ID	Time
Turbidity:		MicroTPI/	TPW	116				\approx	$\Rightarrow \Rightarrow$
Other:	- 1								
Sample	7	Sampl	e Containers	4.	Field	Turbidity/	Analysi	8 N	IS/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Request	ed C	omments
MW-11	2	Α	HCI	40 ml	N		NWTPH-G/B	ETX	
):			- 1 - 4				0
				1 h	7046				
				1 11 - 70					
			14	0.105	2 1487 1486				
-	-								1 -
		1							
				40	N X			7.5	
					10A:=				
				-					
	110		3		1				
1415	Time	1420	1425	1430	1435	MAKO	1445	1750	
Parameter (every 5 n		min	100		20 min	25 min	7-	35 min	r
Flow Rate (LPM)	,			,3		150 MU		73	
Volume Purged (L)		0.2-		3	4	(A)	5.5	1 25	
Water Depth (ft)			2			Ø 4.75		6-25	
		3.33	354	3.74	3.86	3.72	3.73	3.74	-
Temperature (Celsius)	13.32	13.40	13.44	13.48	13.18	12 73 m	13.01	
pH M		6.06	6.07	6.05	6.04	6.02	6.00	5.99	
Sp. Conductance (aS.	(cm)	0.170	0-169	0.171	0.175	0.178	0.18/	0.182	
DO (mg/L)		1.08	0.79	0.44	0.32	0.29	6.25	6.24	
ORP (mV)		105.7	102-2	91.7	81.1	70.7	62.9	61.4	
Turbidity (NTU)		35.97	34.23	33.09	35,32	29.67	29.42	29.01	
Color		dear -							
Odor/Evidence of LNA	APL	100/5-				=0			
						1.0			
					1				
					sampling, etc	1			

Date:	E 1	2/8/16		Well N	Number:		MW-1	13	TIN T
		y Circle K 146	1	-	ment Type:	Stickup:	(ft PV		Flush:
Project Number:	169601		0	-					
Sampling Personne					Condition:	-			
Water Level Meter:		Geotech IFP		- Total (Casing Depth	(ft): 19.0			Reference
Purging Equipment					ned Interval (fi)	_ 41	BGS
Sampling Equipme		Peristaltic		_	to Groundwat				or
Sampling Time:		1353			to LNAPL (ft):			= 22	TOC
Purge Depth (ft):	~	15			Column (ft):	_			
Total Discharge (L)	:						1 (4)		
Water Disposal: Weather:	55-galle	on drum							
Water Quality Met		Model		bration Date/	Time		QA/QC Sample		
Temp/pH/SC/ORP/ Turbidity:	DO:	YSI 556 M MicroTPI/T		w .		Туре	Sample	ID	Time
Other:		14110101111				\bigotimes		X	\Rightarrow
Sample		Sample	e Containers		Field	Turbidity/	Analysis	I MS	S/MSD &
Sample	No.	Туре	Pres.	Vol.	Filtered	Color	Requested		mments
MW-13	No. 2		HCI	40 ml	N	COIG	NWTPH-G/BETX		Ulmento
+ Dup-	1-161	208		20	(2 45)				
1320	Time	1325	1330	1335	1340	1345			V
/320 Parameter (every 5		/325 5 min	1330 10 min	1335 15 min	1340 20 min	1345 25 min	min	min	2 r
Parameter (every 5		5 min	/	/5 min			min	min	
Parameter (every 5 Flow Rate (LPM)			10 min	150 ml-	20 min	Z5 min	min	min	
Parameter (every 5 Flow Rate (LPM) Volume Purged (L)		5 min	/	/5 min	20 min	25 min	min	min	
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft)	i min)	5 min 0.2 - 1 10.61	10 min 2 10-81	150 mL- 3 10.92	20 min 3.75 10.81	25 min 4.5 10.78	min	min	
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsi	i min)	5 min 0.2 — 1 10.61 15.25	10 min 2 10-81 14.95	150 mL - 3 10.92 1499	3.75 10.81 14.46	25 min 4.5 10.78 14.42	min	min	
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsio	i min) us)	5 min 0.2 — 1 10.61 15.28 6.53	70 min 7 10-81 1495 6.53	150 mL- 3 10.92 1449 6.50	3.75 10.81 14.46 6.49	25 min 4.5 10.78 14.42 6.49	min	min	
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsion DH Sp. Conductance	i min) us)	5 min 0.2 — 1 10.61 15.25	70 min 7 10-81 14.95 6.53 0.760	150 mL- 3 10.92 1499 6.50 0.761	3.75 10.81 14.46 6.49 0.759	25 min 4.5 10.78 14.42 6.49 0752	min		
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsion DH Sp. Conductance	i min) us)	5 min 0.2 — 1 10.61 15.08 6.53 0.758 1.19	10 min 2 10-81 14.95 6.53 0.760 0.44	150 min 150 ml - 3 10.92 1499 6.50 0.761 0.33	3.75 10.81 14.46 6.49 0.759 0.32	25 min 4.5 10.78 14.42 6.49 0752 6.30			
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsian pH Sp. Conductance (Depth (mg/L) DORP (mV) Turbidity (NTU)	i min) us)	5 min 0.2 — 1 10.61 15.25 6.53 0.758 1.19 -88.5	70 min 7 10-81 14.95 6.53 0.760	150 ml 3 10.92 1499 6.50 0.761 0.33 -113.7	3.75 10.81 14.46 6.49 0.759 0.32 -115.8	25 min 4.5 10.78 14.42 6.49 6752 6.30 -115.7			
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsius pH Sp. Conductance	i min) us)	5 min 0.2 — 1 10.61 15.08 6.53 0.758 1.19	10 min 2 10-81 1495 6.53 0.760 0.44 -108.5	150 min 150 ml - 3 10.92 1499 6.50 0.761 0.33	3.75 10.81 14.46 6.49 0.759 0.32	25 min 4.5 10.78 14.42 6.49 0752 6.30			
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsion DH Sp. Conductance DO (mg/L) ORP (mV) Turbidity (NTU) Color	us)	5 min 0.2 - 1 10.61 15.25 6.53 0.758 1.19 -88.5 8.26 (lear -	10 min 2 10-81 1495 6.53 0.760 0.44 -108.5	150 ml 3 10.92 1499 6.50 0.761 0.33 -113.7	3.75 10.81 14.46 6.49 0.759 0.32 -115.8	25 min 4.5 10.78 14.42 6.49 6752 6.30 -115.7			
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (CelsiupH Sp. Conductance DO (mg/L) ORP (mV) Turbidity (NTU) Color	us)	5 min 0.2 - 1 10.61 15.28 6.53 0.758 1.19 -88.5 8.26	10 min 2 10-81 1495 6.53 0.760 0.44 -108.5	150 ml 3 10.92 1499 6.50 0.761 0.33 -113.7	3.75 10.81 14.46 6.49 0.759 0.32 -115.8	25 min 4.5 10.78 14.42 6.49 6752 6.30 -115.7			
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsic pH Sp. Conductance DO (mg/L) ORP (mV) Turbidity (NTU)	us) NAPL	5 min 0.2 - 1 10.61 15.25 6.53 0.758 1.19 -88.5 8.26 [lear - petnleun- cdov	10 min 2 10-81 14.95 6.53 0.760 0.44 -108.5 7.38	150 min 150 ml- 3 10.92 1499 6.50 0.761 0.33 -113.7 5.62	20 min 3.75 10.81 14.46 6.49 0.759 0.32 -115.8 5.33	25 min 4.5 10.78 14.42 6.49 6752 6.30 -115.7 4.39			

2.5

				nimal Drawd	lown)			y/Jenks C	onsultar
Date:		12/7/16		_ Well N	Number:		N	IW-14	F. II 5v v
Project Name:	Ecolog	y Circle K 146	31	Monus	ment Type:	Stickup	<u> </u>	(ft PVC)	Flush:
Project Number:	16960	10*00		_ Well [Diameter (in):	2		TRE DATE	
Sampling Personne	ıl: <u>J</u>	Es		Well C	Condition:	900	od	111	J. OHO.
Water Level Meter:		Geotech IFP		Total (Casing Depth		10 H 10 10 10 10 10 10 10 10 10 10 10 10 10		Reference
Purging Equipment:		Peristaltic		Scree	ned Interval (i	ft): 4-19.3	3		BGS
Sampling Equipmer	nt:	Peristaltic		Depth	to Groundwa	ter (ft):	5.45		or
Sampling Time:		1635			to LNAPL (ft)		n/q		тос
Purge Depth (ft):	THE S	N/2ft			Column (ft):		N H		
Total Discharge (L):	11.70			7-31					
		lon drum							
Weather:				-			70.72	11 83%	
Control of the contro	-/-\	Made	· Coll	- Detail			04/00 6	de la	
Water Quality Mete Temp/pH/SC/ORP/I		YSI 556 N		bration Date/	Time	Туре	QA/QC S	amples mple ID	Time
Turbidity:		MicroTPI/					XX		
Other:		No. of the last				\times	XX		
Sample		Sampl	e Containers		Field	Turbidity/	Analysis	I A	AS/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requeste	d C	omments
MW-14	2	A	HCI	40 ml	N		NWTPH-G/BE	TX	
				1.1/					
									161
1607	Time	1612	1617	1622	1627	1632			
/ 60 7-Parameter (every 5		16/2 5 min			1627 20 min		min	min	
/ 607-Parameter (every 5		INIO					min	min	r
		5 min	10 min				min	min	r
Flow Rate (LPM)		5 min 0.2-	10 min	15 min	20 min	25 min	min	min	r
Flow Rate (LPM) Volume Purged (L)	min)	5 min 0.2- 1 6-51	10 min 2 6.53	3 6.56	20 min 4 6.57	25 min 5 6.57	min	min	r
Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsiu	min)	5 min 0.2- 1 6.51 13.03	10 min 2 6.53 B.35	15 min 3 6.56 13.36	20 min 4 6.57 13.31	25 min 5 6.57 /3-28	min	min	r
Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsiu	min) us)	5 min 0.2- 1 6-51 13.03 6-70	10 min 2 6.53 13.35 6.67	3 6.56 13.36 6.64	20 min 4 6.57 13.31 6.64	25 min 5 6.57 13.28 6.64	min	min	
Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsiu bH Sp. Conductance (#	min) us)	5 min 0.2- 1 6.51 13.03 6.70 0.579	10 min 2 6.53 13.35 6.67 0.576	15 min 3 6.56 13.36 6.64 0.563	20 min 4 6.57 13.31 6.64 0.569	25 min 5 6.57 13.28 6.64 0.559	min	min	r
Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsiu DH Sp. Conductance (MR DO (mg/L)	min) us)	5 min 0.2- 1 6.51 13.03 6.70 0.579 0.32	10 min 2 6.53 13.35 6.67 0.576 0.33	15 min 3 6.56 13.36 6.64 0.563 0.31	20 min 4 6.57 13.31 6.64 0.569 0.29	25 min 5 6.57 /3.28 6.64 0.559 0.28	min	min	r
Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsiu bH Sp. Conductance (#8 DO (mg/L) DRP (mV)	min) us) S/cm)	5 min 0.2- 1 6.51 13.03 6.70 0.579 0.32 -91.4	10 min 2 6.53 13.35 6.67 6.67 6.33 -105.7	15 min 3 6.56 13.36 6.64 0.563 0.31 -110.5	20 min 4 6.57 13.31 6.64 0.569 0.29 -117.2	25 min 5 6.57 13.28 6.64 0.559 0.28 -117.3	min	min	r
Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsius) H Sp. Conductance (MR DO (mg/L) DRP (mV) Furbidity (NTU)	min) us) S/cm)	5 min 0.2- 1 6.51 13.03 6.70 0.579 0.32 -91.4 26.74	10 min 2 6.53 13.35 6.67 0.576 0.33	15 min 3 6.56 13.36 6.64 0.563 0.31	20 min 4 6.57 13.31 6.64 0.569 0.29	25 min 5 6.57 /3.28 6.64 0.559 0.28	min	min	r
Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsiu DH Sp. Conductance (MR DO (mg/L) DRP (mV) Furbidity (NTU)	min) us) S/cm)	5 min 0.2- 1 6.51 13.03 6.70 0.579 0.32 -91.4 26.74 Clear-	10 min 2 6.53 13.35 6.67 6.67 6.33 -105.7	15 min 3 6.56 13.36 6.64 0.563 0.31 -110.5	20 min 4 6.57 13.31 6.64 0.569 0.29 -117.2	25 min 5 6.57 13.28 6.64 0.559 0.28 -117.3	min	min	
Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsius) H Sp. Conductance (MR DO (mg/L) DRP (mV) Furbidity (NTU)	min) us) S/cm)	5 min 0.2- 1 6.51 13.03 6.70 0.579 0.32 -91.4 26.74 Clear- SI.sulfur-	10 min 2 6.53 B.35 6.67 0.33 -15.7 17.10	15 min 3 6.56 13.36 6.64 0.563 0.31 -110.5	20 min 4 6.57 13.31 6.64 0.569 0.29 -117.2	25 min 5 6.57 13.28 6.64 0.559 0.28 -117.3	min	min	r
Flow Rate (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsius) Flow Conductance (MR) Flow Conductance (MR) Furbidity (NTU) Color Codor/Evidence of LN	min) us) S/cm)	5 min 0.2- 1 6.51 13.03 6.70 0.579 0.32 -91.4 26.74 Clear- St.suifur- Back,	10 min 2 6.53 13.35 6.67 0.33 -105.7 17.10	15 min 3 6.56 13.36 6.64 0.563 0.31 -110.5 14.21	20 min 4 6.57 13.31 6.64 0.569 0.29 -117.2 14.30	25 min 5 6.57 /3.28 6.64 0.559 0.28 -//7.3 /2.16	min	min	
Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsiu DH Sp. Conductance (MR DO (mg/L) DRP (mV) Furbidity (NTU)	min) us) S/cm)	5 min 0.2- 1 6.51 13.03 6.70 0.579 0.32 -91.4 26.74 Clear- St.suifur- Back,	10 min 2 6.53 13.35 6.67 0.33 -105.7 17.10	15 min 3 6.56 13.36 6.64 0.563 0.31 -110.5 14.21	20 min 4 6.57 13.31 6.64 0.569 0.29 -117.2 14.30	25 min 5 6.57 /3.28 6.64 0.559 0.28 -//7.3 /2.16	min	min	r
Flow Rate (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsius) Flow Conductance (MR) Flow Conductance (MR) Furbidity (NTU) Color Codor/Evidence of LN	min) us) S/cm)	5 min 0.2- 1 6.51 13.03 6.70 0.579 0.32 -91.4 26.74 Clear- St.suifur- Back,	10 min 2 6.53 13.35 6.67 0.33 -105.7 17.10	15 min 3 6.56 13.36 6.64 0.563 0.31 -110.5 14.21	20 min 4 6.57 13.31 6.64 0.569 0.29 -117.2 14.30	25 min 5 6.57 /3.28 6.64 0.559 0.28 -//7.3 /2.16	min	min	

Parker.				nimal Drawd		450		enks Consultar
Date:			7/16	- Well N	Number:		MW	
Project Name:	Ecolog	y Circle K 146	31	Monur	ment Type:	Stickup	:(ft F	PVC) Flush:
Project Number:	169601			_ Well C	Diameter (in):			
Sampling Personne	el:	JES		Well C	Condition:	900	od	
Water Level Meter	2	Geotech IFP		Total (Casing Depth			Referen
Purging Equipment	t:	Peristaltic		Scree	ned Interval (1	ft): 4-18.	7	BGS
Sampling Equipme				-			3	.28 or
Sampling Time:		1546			to LNAPL (ft)			TOC
Purge Depth (ft):		210.5	William Name					evelill#
Total Discharge (L)):	District the second				N I see Y		r (Fo
Water Disposal:		on drum		51				
Weather:	00 ga	on didi.i		• ()				
100	/-)	Model	I Calii	bration Date/		The state of	QA/QC Sam	-l-a
Water Quality Met Temp/pH/SC/ORP/		YSI 556 M		Dration Date/	lime	Туре		
Turbidity:		MicroTPI/T			1115	XX		
Other:			TOTAL SET			\times		
Sample		Sample	e Containers		Field	Turbidity/	Analysis	MS/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requested	Comments
MW-15	2		НСІ	40 ml	N		NWTPH-G/BETX	
			- 2					
itip	Time	1-1,5-	1420	157	/520	1-2-	1-40	
IC/O	Time	A . 4	/520	1525 15 min	/530	/535	1540 20 min	min
Parameter (every 5		- min	/520 /O min					min s
Parameter (every 5 Flow Rate (LPM)	5 min)	7 min	¿O min	/5 min	20 min	Z5 min		min s
Parameter (every 5 Flow Rate (LPM) Volume Purged (L)	5 min)	7 min	10 min	15 min	20 min	25 min		min s
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft)	5 min)	5 min 0.2 - 1 3.42	10 min 2 3.58	15 min 3 3.71	20 min 4 3.78	25 min 5 3.81		min s
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsi	5 min)	7 min 0.2 - 1 3.42 11.32	10 min 2 3.58 11.49	15 min 3 3.71 11.48	20 min 4 3.78 11.55	25 min 5 3.81 11.52		min s
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsion	o min)	F min 0.2 - 1 3.42 11.32 5.26	10 min 2 3.58	15 min 3 3.71 11.48 5.28	20 min 4 3.78	25 min 5 3.81		min s
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsion	o min)	7 min 0.2 - 1 3.42 11.32	10 min 2 3.58 11.49	15 min 3 3.71 11.48 5.28 0.114	20 min 4 3.78 11.55 5.27 0.114	25 min 5 3.81 11.52		min s
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsi	o min)	F min 0.2 - 1 3.42 11.32 5.26	2 3.58 11.49 5.28	15 min 3 3.71 11.48 5.28	20 min 4 3.78 11. 55 5. 27	25 min 5 3.81 11.52 5.28 0.115		min s
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsion DH Sp. Conductance (u	o min)	5.42 11.32 5.26 0.115	2 3.58 11.49 5.28 0.115	15 min 3 3.71 11.48 5.28 0.114 0.39	20 min 4 3.78 11.55 5.27 0.114 0.36	25 min 5 3.81 11.52 5.28 0.115 0.36	30 min	min
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsion OH Sp. Conductance (u	o min)	5 min 0.2 - 1 3.42 11.32 5.26 0.115 1.19 183.8	2 3.58 11.49 5.28 0.115 0.65 183.2	15 min 3 3.71 11.48 5.28 0.114 0.39 185.0	20 min 4 3.78 11.55 5.27 0.114 0.36 186.1	25 min 5 3.81 11.52 5.28 0.115 0.36 186.7	30 min	min r
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsion H Sp. Conductance (u DO (mg/L) DRP (mV)	o min)	5.26 0.115 1.19 183.8 7.84	2 3.58 11.49 5.28 0.115	15 min 3 3.71 11.48 5.28 0.114 0.39	20 min 4 3.78 11.55 5.27 0.114 0.36	25 min 5 3.81 11.52 5.28 0.115 0.36	30 min	min s
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU) Color	ius)	5 min 0.2 - 1 3.42 11.32 5.26 0.115 1.19 183.8 7.84 Clear -	2 3.58 11.49 5.28 0.115 0.65 183.2	15 min 3 3.71 11.48 5.28 0.114 0.39 185.0	20 min 4 3.78 11.55 5.27 0.114 0.36 186.1	25 min 5 3.81 11.52 5.28 0.115 0.36 186.7	30 min	min s
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsion OH Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU)	ius)	5.26 0.115 1.19 183.8 7.84	2 3.58 11.49 5.28 0.115 0.65 183.2	15 min 3 3.71 11.48 5.28 0.114 0.39 185.0	20 min 4 3.78 11.55 5.27 0.114 0.36 186.1	25 min 5 3.81 11.52 5.28 0.115 0.36 186.7	30 min	min
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU) Color Odor/Evidence of Li	ius) uS/cm)	5 min 0:2 - 1 3:42 11.32 5:26 0:115 1:19 183.8 7.84 Clear - 100/5 -	10 min 2 3.58 11.49 5.28 0.115 0.65 183.2 6.98	15 min 3 3.71 11.48 5.28 0.114 0.39 185.0 5.67	20 min 4 3.78 11.55 5.27 0.114 0.36 186.1 5.41	25 min 5 3.81 11.52 5.28 0.115 0.36 186.7 5.32	30 min	min
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU) Color	ius) uS/cm)	5 min 0:2 - 1 3:42 11.32 5:26 0:115 1:19 183.8 7.84 Clear - 100/5 -	10 min 2 3.58 11.49 5.28 0.115 0.65 183.2 6.98	15 min 3 3.71 11.48 5.28 0.114 0.39 185.0 5.67	20 min 4 3.78 11.55 5.27 0.114 0.36 186.1 5.41	25 min 5 3.81 11.52 5.28 0.115 0.36 186.7 5.32	30 min	min
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU) Color Odor/Evidence of Li	ius) uS/cm)	5 min 0:2 - 1 3:42 11.32 5:26 0:115 1:19 183.8 7.84 Clear - 100/5 -	10 min 2 3.58 11.49 5.28 0.115 0.65 183.2 6.98	15 min 3 3.71 11.48 5.28 0.114 0.39 185.0 5.67	20 min 4 3.78 11.55 5.27 0.114 0.36 186.1 5.41	25 min 5 3.81 11.52 5.28 0.115 0.36 186.7 5.32	30 min	min
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsion DH Sp. Conductance (u DO (mg/L) DRP (mV) Furbidity (NTU) Color Odor/Evidence of Li	ius) uS/cm)	5 min 0:2 - 1 3:42 11.32 5:26 0:115 1:19 183.8 7.84 Clear - 100/5 -	10 min 2 3.58 11.49 5.28 0.115 0.65 183.2 6.98	15 min 3 3.71 11.48 5.28 0.114 0.39 185.0 5.67	20 min 4 3.78 11.55 5.27 0.114 0.36 186.1 5.41	25 min 5 3.81 11.52 5.28 0.115 0.36 186.7 5.32	30 min	min

Date: 12	17116	6		Well N	lumber:			WW-16	
	1	y Circle K 146	1	•	nent Type:	Stickup		(ft PVC)	Flush: X
	169601				Diameter (in):		W = X	(111 10)	1 Id311X
Sampling Personnel					Condition:		li as Live	nobott	sworking
Water Level Meter:		Geotech IFP		•	Casing Depth		1 6	21	Reference:
Purging Equipment:					ned Interval (f			1 /	BGS
						ter (ft): 4-19.2		- 1	or
Sampling Equipmen		Peristaltic	ad				V		тос
Sampling Time:		12 ft	94		to LNAPL (ft)			8	100
Purge Depth (ft):		12 14		- water	Column (ft):				
Total Discharge (L):			<u>-</u>	•					
	55-gallo	on drum	10 45	- 6					
Weather:	M H	Arrest I							
Water Quality Mete		Model		bration Date/	Time		QA/QC		Cherry of
Temp/pH/SC/ORP/D	00:	YSI 556 M MicroTPI/I		12/6/16	1111 A	Туре	Sa	ample ID	Time
Turbidity: Other:		IVIICIO I FI/ I	FVV	12/7/16		$\Leftrightarrow \Leftrightarrow$	$\Leftrightarrow \Leftrightarrow$	$\Leftrightarrow \Leftrightarrow$	
			0						
Sample			Containers		Field	Turbidity/	Analysis		IS/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requeste		omments
MW-16 -161207		HCI	40 ml	N		NWTPH-G/B	<u> </u>	50	
11 11-	red	richan	nt		100		POST	@	1038
MW-16-1612	77-47	787		91				(9942)	
	^ -						g 0 = 5x2 =	Ewi III	= 7.81
								The same	
	w. L. Li	VE							
28							7	1 4 6	F
			165		=				
									- 35
	, U		al.				- 2		
000	Time	0021	Agala	0921	1936	n achi	0-94	105 de	elomer
DG//	Time	0921 min	0926	0931	0936		0		10 min
Parameter (every 5		5 min	0926 10 min	0931 15 min	0936 20 min		0,946 30 min	5 min	1.00
Parameter (every 5 low Rate (LPM)		Ar min	10 min		20 min	z5 min	0		10 min
Parameter (every 5 Flow Rate (LPM) /olume Purged (L)		5 min	10 min	15 min	20 min	z min	30 min	200 -	10 min
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft)	min)	5 min 0.2 - 1 7.06	2 7.31	15 min 3 7.59	20 min 4 7.81	25 min 5-7-91	30 min	200 - / p.34	2 8.36
Parameter (every 5 person of the Flow Rate (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsium	min)	5 min 0.2- 1 7.06 12.15	10 min	15 min 3 7.59 12.07	20 min 4 7.81 12.73	25 min 5 7.91 12.63	30 min 6 ce 200 17.50	200 - 1 p.34 13.42	2 8.36 13.54
Parameter (every 5 for Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsius)	min)	5 min 0.2 - 1 7.06 12.15 6.12	2 7.31 11.96 6.11	15 min 3 7.59 12.07 6.0	20 min 4 7.8 12.73 6.08	7.91 12.63 6.08	30 min 6 coo 12.50 6.07	200 - 1 P.34 13.42 6.09	10 min 2 8.36 13.54 6.10
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsiun) DH Sp. Conductance (m.	min)	5 min 0.2 - 1 7.06 12.15 6.12 0.396	2 7.31 11.96 6.11 6.397	15 min 3 7.59 12.07 6.10 0.398	20 min 4 7.81 12.73 6.08 0.404	7.91 12.63 6.08 0.400	30 min 6 6 00 17.50 6.07 0.403	200 - 1 2.34 13.42 6.09 0.393	2 8.36 13.54
Parameter (every 5 parameter (every 5 parameter (LPM) Volume Purged (L) Vater Depth (ft) Femperature (Celsius) H Sp. Conductance (mark) DO (mg/L)	min)	5 min 0.2 - 1.06 12.15 6.12 0.396 2.23	2 7.31 11.96 6.11 6.397 1.72	15 min 3 7.59 12.07 6.10 0.398 1.27	20 min 4 7.8 12.73 6.08 0.404 0.86	7.91 12.63 6.08 0.400 0.94	30 min 6 800 17.50 6.07 0.403 0.86	200 - 1 2.34 13.42 6.09 0.393 8.1.12	10 min 2 8.36 13.54 6.10
Parameter (every 5 Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsium) OH Sp. Conductance (machor) OO (mg/L) DRP (mV)	min)	5 min 0.2 - 1.06 12.15 6.12 0.396 2.23 182.1	2 7.31 11.96 6.11 6.397 1.72 177.0	15 min 3 7.59 12.07 6.10 0.398	20 min 4 7.8 12.73 6.08 0.404 0.86 168.2	7.91 12.63 6.08 0.400 0.94 167.1	30 min 6 e e o o 17.50 6.07 0.403 0.86 165.8	200 - 1 2.34 13.42 6.09 0.393 8-1.12 187.3	2 8.36 13.54 6.10 0.392 0.94 164.2
Parameter (every 5 in Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Temperature (Celsius of Hosp. Conductance (mag/L) DRP (mV) Turbidity (NTU)	min)	5 min 0.2- 1.06 12.15 6.12 0.396 2.23 182.1 32.91	2 7.31 11.96 6.11 6.397 1.72	15 min 3 7.59 12.07 6.10 0.398 1.27	20 min 4 7.8 12.73 6.08 0.404 0.86	7.91 12.63 6.08 0.400 0.94	30 min 6 800 17.50 6.07 0.403 0.86	200 - 1 2.34 13.42 6.09 0.393 8.1.12	2 8.36 13.54 6.10 0.392 0.94
Parameter (every 5 parameter (every 5 parameter (every 5 parameter (LPM)) Foliume Purged (L) Water Depth (ft) Femperature (Celsium of the conductance (mark) DO (mg/L) DORP (mV) Furbidity (NTU) Color	min)	5 min 0.2- 7.06 12.15 6.12 0.396 2.23 182.1 32.91 clar-	2 7.31 11.96 6.11 6.397 1.72 177.0 28.93	15 min 3 7.59 12.07 6.10 0.398 1.27 172.3	20 min 4 7.8 12.73 6.08 0.404 0.86 168.2	7.91 12.63 6.08 0.400 0.94 167.1	30 min 6 e e o o 17.50 6.07 0.403 0.86 165.8	200 - 1 2.34 13.42 6.09 0.393 8-1.12 187.3	2 8.36 13.54 6.10 0.392 0.94 164.2
Parameter (every 5 parameter (every 5 parameter (every 5 parameter (LPM)) Foliume Purged (L) Water Depth (ft) Femperature (Celsium of the conductance (mark) DO (mg/L) DORP (mV) Furbidity (NTU) Color	min)	5 min 0.2- 1.06 12.15 6.12 0.396 2.23 182.1 32.91	2 7.31 11.96 6.11 6.397 1.72 177.0 28.93	15 min 3 7.59 12.07 6.10 0.398 1.27 172.3	20 min 4 7.8 12.73 6.08 0.404 0.86 168.2	7.91 12.63 6.08 0.400 0.94 167.1	30 min 6 e e o o 17.50 6.07 0.403 0.86 165.8	200 - 1 2.34 13.42 6.09 0.393 8-1.12 187.3	2 8.36 13.54 6.10 0.392 0.94 164.2
Parameter (every 5 Flow Rate (LPM) /olume Purged (L) /water Depth (ft) Femperature (Celsius) H Sp. Conductance (may 10) DRP (mV) Furbidity (NTU)	s) S/cm)	5 min 0.2- 1.06 12.15 6.12 0.396 2.23 182.1 32.91 clar- st.odov, A	10 min 2 7.31 11.96 6.11 6.397 1.72 177.0 28.93	15 min 3 7.59 12.07 6.10 0.398 1.27 172.3 22.64	20 min 4 7.8 12.73 6.08 0.404 0.86 168.2 13.50	7.91 12.63 6.08 0.400 0.94 167.1 9.44	30 min 6 e e o o 17.50 6.07 0.403 0.86 165.8	200 - 1 2.34 13.42 6.09 0.393 8-1.12 187.3	2 8.36 13.54 6.10 0.392 0.94 164.2
Parameter (every 5 per parameter) Flow Rate (LPM) Volume Purged (L) Water Depth (ft) Femperature (Celsius) DH Sp. Conductance (management) DO (mg/L) DRP (mV) Furbidity (NTU) Color	min)	5 min 0.2- 7.06 12.15 6.12 0.396 2.23 182.1 32.91 clar-	2 7.31 11.96 6.11 6.397 1.72 177.0 28.93	15 min 3 7.59 12.07 6.10 0.398 1.27 172.3	20 min 4 7.8 12.73 6.08 0.404 0.86 168.2	7.91 12.63 6.08 0.400 0.94 167.1	30 min 6 e e o o 17.50 6.07 0.403 0.86 165.8	200 - 1 2.34 13.42 6.09 0.393 8-1.12 187.3	2 8.36 13.54 6.10 0.392 0.94 164.2

Groundwater P			Form (MI	nimai Drawc	iown)		Kennedy/J		onsultan
Date:	12/7	116		_ Well I	Number:	<u> </u>	MW-	-17	
Project Name:	Ecolog	y Circle K 146	1	Monu	ment Type:	Stickup:	(ft P	VC)	Flush: >
Project Number:	169601	10*00	10	_ Well i	Diameter (in):	2		3	
Sampling Personne	l:			Well (Condition:				1
Water Level Meter:		Geotech IFP		Total	Casing Depth (ft): <u>20</u>	WIT I		Referenc
Purging Equipment	f E	Peristaltic		Scree	ned Interval (ft): <u>5-20</u>		2017	BGS
Sampling Equipmen	nt:	Peristaltic		_ Depth	to Groundwate	er (ft):		8T	or
Sampling Time:		610	1511	_ Depth	to LNAPL (ft):	Sia 4			TOC
Purge Depth (ft):		Y TO		Water	r Column (ft):	1 m			
Total Discharge (L)		731		_					
Water Disposal:	55-galle	on drum		<u></u>			11 Till 72		
Weather:	111								
		III gx		<u> 1912 - J. Se</u>					Ki, e i
Water Quality Met	er(s)	Mode	Cal	ibration Date	Time	, ii vij	QA/QC Sam	ples	. ال يراكيا
Temp/pH/SC/ORP/			1PS	78.45		Туре	Sampl	le ID	Time
Turbidity:		MicroTPI/1	PW			XX	$\times \times \times$		$\supset \supset$
Other:	1		n an Pily			XX			\times
	100	THE TWO							alija anti
Sample		Sample	e Containers	3	Field	Turbidity/	Analysis	M	S/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requested	Co	omments
MW-17	2	Α	HCI	40 ml	N	4100	NWTPH-G/BETX		
	1117		11 11 11 11			III III III	DESCRIPTION OF THE PERSON OF T		- 15 11
									200
								v -	
							1 KF 1		
							TO THE HOLL		5 L 5/10
									100
			HE WIT						
								2.0	
1545	Time	1.757	1-6-	1600	1607	1.6			
Parameter (every 5		(550 min	1555 mir		605 min	min	min	min	n
Flow Rate (LPM)	111111)	0.1			0-1	11111			- 1
			6.1	0.1	2.0				
Volume Purged (L)		0.5	1,0	1 5					12.0
Water Depth (ft)		10-20	10.23	10.24	10-25				
Temperature (Celsiu	JS)	13.0	13.2	13.9	1				11 11 11 11
oH W		6.49	639	6.37	6.36				
Sp. Conductance (u	S/cm)	0.097	0.096	0.096	0.096				114 2
DO (mg/L)			1-1	W.	20				
ORP (mV)		754	271	277	284	<u> </u>			
Turbidity (NTU)		15	12	9	8	178			
Color		clear		1 700	2 3 East		La constant	Julian -	
Odor/Evidence of LI	IAPL	no 0/3					. 6.		1.
	- 5		- Maria				1		
lotes: (i.e. actions	aken if	well dewaters	orproblems of	during purging	/sampling, etc.)				
				- 14		d _i	× //		

Groundwater P			Form (Mi	nimal Drawo	down)		Kennedy		onsultan
Date: [2/	7/	16		Well i	Number:		M'	W-18	
	Ecolog	y Circle K 146	61		ment Type:		(f		Flush:>
	16960					2			
Sampling Personnel					Condition:				T.
Water Level Meter:				_	Casing Depth				Reference
Purging Equipment:				_	ned Interval (1			× .	BGS
Sampling Equipmen									or
		1515	1 1		to LNAPL (ft)				тос
Purge Depth (ft):				_ Wate	r Column (ft):		_ 102-		
Total Discharge (L):				_					
Water Disposal:	55-gall	on drum		-					
Weather:			A	- /					
Water Ovality Mate	- (a)	Mode	Col	ibration Date	(Ilma		QA/QC Sa	malos	e I I I
Water Quality Mete		YSI 556 N		ibration Date	Time	Time		nple ID	Time
Temp/pH/SC/ORP/D		MicroTPI/				Туре	San	ible in	Time
Turbidity: Other:		WICTOTP1/	IFVV			\Leftrightarrow	\Leftrightarrow	$\Rightarrow \Leftrightarrow$	\bowtie
Other.								\sim	
Sample		Sampl	e Containers		Field	Turbidity/	Analysis		IS/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requested		omments
MW-18	2		HCI	40 ml	N	COIOI	NWTPH-G/BE1		Offinierits
14144-10			1101	40 1111	14		THE CABE	^	
								9	
								1.2	*E
			A						
								VIII -	New York
					1050 11 - 1			ME 10182	11 12
		1 =	# =			N		nw is	0 0
						201			10.5
1445	Time	1450	1455	1500	1505	1510		Tel 9 9 61	
Parameter (every 5		min		1		min	min	min	r
Flow Rate (LPM)	/	0.1	0.1	0.1	0.1	0.1			
Volume Purged (L)		0.5	10	1.5	2.6	2.5		TI,	ll 's
Water Depth (ft)		11.85	1208	12.28	12.39	1248			- 5
Temperature (Celsiu	s)	13.9	14.1	14.5	14,4	13.6			
оН		6.49	6.47	6.46	6.46	6.40			
Sp. Conductance (uS	S/cm)	0.445	0.447	0.447	0.447	0.453		26	+
DO (mg/L)	,	0 11-0 5		0,447	0.1.17	0.17	1041		
ORP (mV)		252	254	256	258	256			,
Furbidity (NTU)		4.2	3.5	5	4	47.0			
Color		Clear	2, 2			1			
Odor/Evidence of LN	APL	10 0/S				 		100	
3401/211401100 01 211	, <u> </u>	10 97				20. () — (ED.	
Notes: (i.e. actions to	aken if	well dewaters	orproblems of	durina puraina	sampling, etc.	.)			
Notes: (i.e. actions to	aken if	well dewaters	orproblems o	during purging	/sampling, etc	.)		3/6%	

Groundwater F	urge a	ind Sample	Form (Mir	nimal Drawd	lown)		Kennedy	/Jenks C	onsultan
Date:	12	18/16		Well	Number:		М	W-19	Y
Project Name:	Ecolog	y Circle K 146	31	Monu	ment Type:	Stickup:	(1	t PVC)	Flush: X
Project Number:	169601	10*00		Well [Diameter (in):	2			
Sampling Personne	el:				Condition:				
Water Level Meter:		Geotech IFF)	Total	Casing Depth				Reference
Purging Equipment		Peristaltic		Scree	ned Interval (f	ft): 5-20			BGS
Sampling Equipme	nt:	Peristaltic		– Depth	to Groundwa	ter (ft):			or
Sampling Time:		1215		– Depth	to LNAPL (ft)				тос
Purge Depth (ft):		~ 15.5		Water	Column (ft):				
Total Discharge (L)	3								
Water Disposal:	55-gall		T .						
Weather:	Į=į							1	
					2.				
Water Quality Met	er(s)	Mode	l Cal	ibration Date/	Time		QA/QC Sa	mples	
Temp/pH/SC/ORP/	DO:	YSI 556 N	MPS			Туре	San	nple ID	Time
Turbidity:		MicroTPI/	TPW			XX		\times	\times
Other:				17/2:	5 T.				
				TEL ALEX				The state of	- Sa 2
Sample		Sampl	e Containers		Field	Turbidity/	Analysis	N	IS/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requested	C	omments
MW-19		Α	HCI	40 ml	N		NWTPH-G/BE	ГХ	
			- Ya.V						
三 里山									
					THE STR				
				- 1					
	3 1						A	. 11	
									Ш
9			i nei					a I	П
5.1 K									
140	Time	1145	1150	1155	1200	1205	1210		
Parameter (every 5	min)	5 min					30 min	min	m
Flow Rate (LPM)	H	0.2 -			MITTER			-	
Volume Purged (L)	I., II =2	1	2	3	4	5	Ь		
Water Depth (ft)	ie, i	10.63	10.65	10.66	10.68	10.70	10.72		
Temperature (Celsi	us)	15.34	15.23	15.47	15.61	15.47	15.65		
рН		6.97	6.92	6.89	,	6.85	6.85		
Sp. Conductance	S/cm)	0.233	0.235	0.238	684	0.246	0.248		
DO (mg/L)	0,0,,,	0.61	0.65	0.31	0.241	0.23	0-22		N r
ORP (mV)			-80.8		- 89.4		-95.3		
Turbidity (NTU)		-68.4	8.31	-86.9	6-84	-92.8			-
Color		7.46	וניט	1.98	0-37	5,77	5.33		
Odor/Evidence of LI	MADI	clear -		W					
Oddi/Evidence of Li	VAPL	petrileum	2066240		6,		W samuel		
Oder, noth				luring purging	loompling sto				
otes: (i.e. actions taken if well dewaters orproblem									
Notes: (i.e. actions	taken ir	well dewaters	orproblems c	uring purging/	sampling, etc				

Groundwater Po		1.4	Form (Min	COMP.			Kennedy/Jo		onsultan
Date:	- /	18/12			Number:		MW-		
		gy Circle K 146	31	_	iment Type:		(ft P	VC)	Flush:>
	16960					4			
Sampling Personnel					Condition:		V 0 15		
Water Level Meter:				_ Total	Casing Depth	(ft): <u>5</u>		a pr	Referenc
Purging Equipment:	1	Peristaltic			ened Interval (f				BGS
Sampling Equipmen		Peristaltic		Depth	to Groundwa	ter (ft): 10	. 59		or
Sampling Time:	09	950			to LNAPL (ft)): <u>n</u>	10		TOC
Purge Depth (ft):	4	2 THE 2	6.3	Water	r Column (ft):	V-857-112 ^M			1.30-111
Total Discharge (L):					1 2		1 2		
Water Disposal:	55-gall	lon drum	e di	_			100		110
Weather:									The Control
		T Made					24/22 0	2	
Water Quality Mete		Mode		bration Date/	Time		QA/QC Samp		
Temp/pH/SC/ORP/D	0:	YSI 556 N	the mind	W 1 5		Туре	Sampl	e ID	Time
Turbidity:		MicroTPI/1	rPW			\times		$\langle X \rangle$	$\Rightarrow \Rightarrow$
Other:						XX	\times	\mathbb{Z}	$\geq \!$
A1		Co				I		42	
Sample			e Containers		Field	Turbidity/	Analysis		S/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requested		omments
MW-20	2	-	HCI	40 ml	N		NWTPH-G/BETX		
+ Fin	u ad	litives	# btw	lead			Marian Maria	12.3	Ç.
						4			
	177		B: 1				5-11-		
	11 - 29				3113		1		
			2						T Bu
			F 1 5						1 8
							100		
						=16 *	- 100	21	
D423	Time	0928	0933	0938	0943	0948		707	
Parameter (every 5 r	_	5 min					min	min	n
Flow Rate (LPM)		0, 20(5)	0.2 -		Maliell			110	
/olume Purged (L)		1	2	3	4	5			1
Water Depth (ft)		10.69	10.75		10.81	10.82		8	
Femperature (Celsius	۹)	15.25	15.34	16.79		102			
Н	<i>"</i>	6.55		6.55	15.34	15.29	J.		1.0
Sp. Conductance	(cm)	0.570	6.55	FI POST CONTROL CONTROL	6.55	656			
DO (mg/L)	/CIII)		0.573	0.573		0.573			
DRP (mV)	_	0.54	0.37	0.32	0.31	0.29			
	T-19-1	-63.9	0-31			-77.1	-		
urbidity (NTU)		3-61	0-21	0.40	0.58	0.23			
s	171	clear -							1
Color	AD: -	sl-petrole	MM-						
Color Odor/Evidence of LN	AFE								
Odor/Evidence of LN		odor	INC						
		odor	INC	uring purging/	sampling, etc.)14-			

Groundwater			e roim (M				Kennedy/J		misuitan
Date:	12/8/	16		Well	Number:	8	MW	-21	
Project Name:	Ecolog	y Circle K 14	61	Monu	ment Type:	Stickup:	(ft F	PVC)	Flush:
Project Number:	16960	10*00		_ Well	Diameter (in):	4			
Sampling Person	nel:			Well	Condition:				
Water Level Mete	er:	Geotech IFF		Total	Casing Depth	n (ft): <u>20</u>	46 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Referenc
Purging Equipme	nt:	Peristaltic			ned Interval	(BGS
Sampling Equipm		Peristaltic		Depth	to Groundwa	ater (ft):	10.38		or
Sampling Time:		1450		_ Depth	to LNAPL (ft):			TOC
Purge Depth (ft):	11	715		Wate	r Column (ft):				
Total Discharge (L):			_					
Water Disposal:	55-gall	on drum		_				H	
Weather:	A 1 A W						<u> </u>		# 1 THE
			La co	white is					
Water Quality Me		Mode	l Ca	libration Date	Time		QA/QC Sam	ples	VE TO
Temp/pH/SC/ORI	P/DO:	YSI 556 I	MPS			Туре	Samp	le ID	Time
Turbidity:		MicroTPI/	TPW			\times		∞	$\times\!$
Other:			N. S	13111-11		\times		∞	$\times\!$
		I I V I	mg 'i w						
Sample		Sampl	e Container	S	Field	Turbidity/	Analysis	M	S/MSD &
ID	No.	Туре	Pres.	Vol.	Filtered	Color	Requested	Co	mments
MW-21		Α	HCI	40 ml	N	TISM VIDE	NWTPH-G/BETX		
				1 10	III. E. PI	1 1 1		- E I	y
1.V						E Louis			18
									10
			T 24						
							niin — — I		
		31	U .						
									d
	= 3.1								
70									
7									3
1417	∠ Time	1417	1422	i427	1432	1437			
Parameter (every		5 min				7	min	min	m
Flow Rate (LPM)	3 11111)		10	// //	<i>w</i>	23 11111	181111		
/olume Purged (L	1	0.2-	7	3	100				
Volume Funged (L Water Depth (ft)	,	- /	2		4	5			
	-11	10.46	10-5/	10.57	10.59	10.60			
Temperature (Cels	sius)	14.84	15.16	1		15.14	- /		
oH	M	6.61	6.61	6-61	6-61	6.60		3 _ 11	
Sp. Conductance	M/S/cm)	0.979	1.008	1-008	1.009	1.010			V.
OO (mg/L)		0.75	0-48	0.31	0.31	0.30	0 0		
		-78.9	-84.5	-89.0	-89.8	-81.5	V.	_	
ORP (mV)		2.46	2.28	1.91	2-01	1.08			11
Furbidity (NTU)				1					
<u></u>	Y	cuav-							
Furbidity (NTU)	LNAPL	retrollym					La		×
Furbidity (NTU) Color Odor/Evidence of I		De av							1
Furbidity (NTU)	s taken if	well dewaters			/sampling, etc	c.)			

Appendix D

Analytical Laboratory Reports

11 May 2016

Julia Schwartz Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001

RE: Circle K

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

Associated SDG ID(s)

16D0063

IN/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

MOLD. Class

cert# 100006

PJLA Testing

Mark Harris, Project Manager

Chain of Custody Record & Laboratory Analysis Request

ts

F

Analytical Chemists and Consultants	Tukwila, WA 98168	www.arilabs.com	Notes/Comments													Received by (Signature)	Printed Name	Company	Date & Time
٥ ا	ice Present? \	Cooler C·O	Analysis Requested													Relinquished by (Signature)	Printed Name	Company	Date & Time
Page:	Date:	No. of Coolers:			8 V V V	<u> </u>											ad Name	();	16 820
Standard	723-835-6424	- Abar		rz/Diane Raud	Matrix No Containers	water 3										Received by (Signature)	Print	Com	0830 Date & Time
Turn-around Requested:	Phone:	Julia Schwart or Ty Scaremen		Samplers: Schwart/Diane	Date Time	4/20/16 1030	1035	1235	1245	1420	1435	1600	1605	1636	5041	Relinquished by (Signature)	Printed Name July S. Mww P	Company / Jank	Date & Time 4 1/11/16 0
ARI Assigned Number	ARI Client Company: Kennedy () tonks	Client Contact: Julia Schwa	Client Project Name:	Client Project #: 164 6 10 0 4	Sample ID	MW-6-642016	MW-10-04201h	MW-9-042016	MW-8 -042016	MW-4-042016	MW-7-042016	MW-15 -042016	MW-14 -042016	MW-11-042016	MW-13-042012	Comments/Special Instructions		1-	

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around Requested: Stan	sted: Standar	ard	Page:	2	7		Analytical Analytical	Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client Company: Genredy Jenks	Jenks Phone:	753-835-6424	1249-5	Date:	<u> </u>	lce Present?		4611 30util 134til F1 Tukwila, WA 98168 206-695-6200 206-	4811 30uii 134ui Fiace, Suite 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)
Client Contact: Julia Schwarz or Ty Schreiben	are or Tys	ichreiser		No. of Coolers:	104	Cooler Temps:		www.arilabs.com	55.Com
Client Project Name:						Analysis	Analysis Requested		Notes/Comments
Client Project #: 1646610.00	Samplers: Julia Schwarz/	warz/Diene	ne Pauch	X3. 19-H					
Sample ID	Date Time		No Containers	LA ·					
DOP-1-042016	91/02/4	Water	1 3	<i>^</i>					
Trip Blank							-		
				•					
Comments/Special Instructions	Relinquished by (Signature)		Received by. (Signature)		* No phosphotocomp (pp.).	Relinquished by (Signature)	l by	Received by (Signature)	
	Printed Name しょく	Julia Schoart	Printed Name	arr SE	<u>U</u>	Printed Name	θ	Printed Name	
	Company () ENES	57W2()	Company			Company		Company	
	Date & Time	08,80	Date & Time:	003 0		Date & Time		Date & Time	
		-				(ì

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client: Kinneder)	nts	Project Name:	, K		
COC No(s):	NA :			- 1 OII -	
Assigned ARI Job No.	1204 Flour	Delivered by: Fed-Ex UPS C		_	
Preliminary Examination Phase:		Tracking No:			→ NA)
Were intact, properly signed and	dated custody seals attached	to the outside of to cooler?		VEC	(10)
Were custody papers included wi				YES	(NO)
Were custody papers properly fill			•	YES	NO
Temperature of Cooler(s) (°C) (re Time:	ecommended 2.0-6.0 °C for ch	nemistry)	2	YES	NO
If cooler temperature is out of cor	npliance fill out form 00070F		Temp Gun II	#: DXXX	
Cooler Accepted by:	A	Date: 4/2//16 Tir	me: 830		
	Complete custody forms	s and attach all shipping document			
Log-In Phase:					
Was a temperature blank include	d in the sector				
Was a temperature blank included				YES	NO
Was sufficient ice used (if appropri		ap Wet loe Gel Packs Baggies Foa			
Were all bottles sealed in individu			NA	YES	NO
				YES	NO
			C	YES	NO
		nber of containers received?	`	YES	NO
		inder or containers received?		YES	NO
				YES	NO
		reservation sheet, excluding VOCs)		YES	NO
Were all VOC vials free of air bub				YES	NO
			NA	YES	NO
			314	YES)	NO
Was Sample Split by ARI : NA		Equipment:	NA		
7	A A	Equipment	1	Split by:	
Samples Logged by:	Dat Dat	e: 4-22-16 Time.	12/19		
	** Notify Project Manag	er of discrepancies or concerns **			
			· · · · · · · · · · · · · · · · · · ·		
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Samı	ole ID on CO	C
	、				
	1				
Additional Notes, Discrepancies	s, & Resolutions:				
	ar.				
Det.					
By: Date Small Air Bubbles Peaburbble		S11 \	····		
Small Air Bubbles Peabubble - 2mm 2-4 mm	I CALLOF MA CORRES I	Small → "sm" (<2 mm)			
	0 000	Peabubbles > "pb" (2 to < 4 mm)			
0 0		Large > "lg" (4 to < 6 mm)			
		Headspace → "hs" (>6 mm)			

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010-00
Federal Way WA, 98001
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-6-042016	16D0063-01	Water	20-Apr-2016 10:30	21-Apr-2016 08:30
MW-10-042016	16D0063-02	Water	20-Apr-2016 10:35	21-Apr-2016 08:30
MW-9-042016	16D0063-03	Water	20-Apr-2016 12:35	21-Apr-2016 08:30
MW-8-042016	16D0063-04	Water	20-Apr-2016 12:45	21-Apr-2016 08:30
MW-4-042016	16D0063-05	Water	20-Apr-2016 14:20	21-Apr-2016 08:30
MW-7-042016	16D0063-06	Water	20-Apr-2016 14:35	21-Apr-2016 08:30
MW-15-042016	16D0063-07	Water	20-Apr-2016 16:00	21-Apr-2016 08:30
MW-14-042016	16D0063-08	Water	20-Apr-2016 16:05	21-Apr-2016 08:30
MW-11-042016	16D0063-09	Water	20-Apr-2016 16:36	21-Apr-2016 08:30
MW-13-042016	16D0063-10	Water	20-Apr-2016 17:05	21-Apr-2016 08:30
DUP1-042016	16D0063-11	Water	20-Apr-2016 00:00	21-Apr-2016 08:30
Trip Blanks	16D0063-12	Water	14-Apr-2016 00:00	21-Apr-2016 08:30

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kennedy Jenks ConsultantsProject: Circle K32001 - 32nd Avenue South, Suite 100Project Number: 1696010-00Reported:Federal Way WA, 98001Project Manager: Julia Schwartz11-May-2016 12:17

The percent recoveries for the surrogate, d4-1,2-dichloroethane, were high following the analyses of samples MW-9-042016, MW-8-042016 and MW-4-042016. These samples were diluted and re-analyzed. The percent recoveries for all surrogates were within established QC limits for the dilutions. The results for both analyses have been submitted for these samples.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100

Project: Circle K

Federal Way WA, 98001

Project Number: 1696010-00 Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Analyzed: 26-Apr-2016 17:54

Analyzed: 26-Apr-2016 17:54

MW-6-042016 16D0063-01 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Sample Preparation:

Instrument: NT2

Preparation Batch: BED0103

Preparation Method: No Prep - Volatiles

Sample Size: 10 mL

Final Volume: 10 mL

Prepared: 26-Apr-2016	Final Volume:	10 mL					
Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	4.29	ug/L	
Toluene	108-88-3	1	0.04	0.20	0.40	ug/L	
Ethylbenzene	100-41-4	1	0.04	0.20	0.34	ug/L	
m,p-Xylene	179601-23-1	1	0.05	0.40	0.29	ug/L	J
o-Xylene	95-47-6	1	0.04	0.20	0.14	ug/L	J
Xylenes, total	1330-20-7	1	0.09	0.60	0.43	ug/L	J
Surrogate: 1,2-Dichloroethane-d4				80-129 %	98.1	%	
Surrogate: Toluene-d8				80-120 %	101	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	98.0	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	99.8	%	

Method: NWTPHg Instrument: NT2

Sample Preparation: Preparation Method: No Prep - Volatiles

> Preparation Batch: BED0103 Prepared: 26-Apr-2016

Sample Size: 10 mL Final Volume: 10 mL

Detection Reporting CAS Number Dilution Limit Limit Result Units Analyte Notes 9.06 Gasoline Range Organics (Tol-Nap) 100 ND U ug/L Surrogate: Toluene-d8 80-120 % 101 % Surrogate: 4-Bromofluorobenzene 80-120 % 98.0 %

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its

Kennedy Jenks Consultants

Project: Circle K

32001 - 32nd Avenue South, Suite 100 Federal Way WA, 98001 Project Number: 1696010-00 Project Manager: Julia Schwartz Reported: 11-May-2016 12:17

Analyzed: 26-Apr-2016 18:15

MW-10-042016 16D0063-02 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 26-Apr-2016 18:15

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0103 Prepared: 26-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

		Detection	Reporting			
CAS Number	Dilution	Limit	Limit	Result	Units	Notes
71-43-2	1	0.03	0.20	ND	ug/L	U
108-88-3	1	0.04	0.20	ND	ug/L	U
100-41-4	1	0.04	0.20	ND	ug/L	U
179601-23-1	1	0.05	0.40	ND	ug/L	U
95-47-6	1	0.04	0.20	ND	ug/L	U
1330-20-7	1	0.09	0.60	ND	ug/L	U
			80-129 %	101	' %	
			80-120 %	98.2	? %	
			80-120 %	96.4	! %	
			80-120 %	97.1	%	
	71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	71-43-2 1 108-88-3 1 100-41-4 1 179601-23-1 1 95-47-6 1	CAS Number Dilution Limit 71-43-2 1 0.03 108-88-3 1 0.04 100-41-4 1 0.04 179601-23-1 1 0.05 95-47-6 1 0.04	CAS Number Dilution Limit Limit 71-43-2 1 0.03 0.20 108-88-3 1 0.04 0.20 100-41-4 1 0.04 0.20 179601-23-1 1 0.05 0.40 95-47-6 1 0.04 0.20 1330-20-7 1 0.09 0.60	CAS Number Dilution Limit Limit Result 71-43-2 1 0.03 0.20 ND 108-88-3 1 0.04 0.20 ND 100-41-4 1 0.04 0.20 ND 179601-23-1 1 0.05 0.40 ND 95-47-6 1 0.04 0.20 ND 1330-20-7 1 0.09 0.60 ND 80-129 % 101 80-120 % 98.2 80-120 % 96.4	CAS Number Dilution Limit Limit Result Units 71-43-2 1 0.03 0.20 ND ug/L 108-88-3 1 0.04 0.20 ND ug/L 100-41-4 1 0.04 0.20 ND ug/L 179601-23-1 1 0.05 0.40 ND ug/L 95-47-6 1 0.04 0.20 ND ug/L 1330-20-7 1 0.09 0.60 ND ug/L 80-129 % 98.2 % 80-120 % 98.2 % 80-120 % 96.4 %

Method: NWTPHg Instrument: NT2

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BED0103

Sample Size: 10 mL Final Volume: 10 mL

Prepared: 26-Apr-2016	Final Volume:	10 mL					
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	9.06	100	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	98.2	2 %	
Surrogate: 4-Bromofluorobenzene				80-120 %	96 -	4 %	

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Kennedy Jenks Consultants

Federal Way WA, 98001

Project: Circle K

32001 - $32\mathrm{nd}$ Avenue South, Suite 100

Project Number: 1696010-00 Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

MW-9-042016 16D0063-03 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 26-Apr-2016 18:36

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0103 Prepared: 26-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	9.89	ug/L	
Toluene	108-88-3	1	0.04	0.20	37.1	ug/L	
Ethylbenzene	100-41-4	1	0.04	0.20	214	ug/L	E
m,p-Xylene	179601-23-1	1	0.05	0.40	226	ug/L	E
o-Xylene	95-47-6	1	0.04	0.20	55.6	ug/L	
Xylenes, total	1330-20-7	1	0.09	0.60	281	ug/L	E
Surrogate: 1,2-Dichloroethane-d4				80-129 %	174	%	*
Surrogate: Toluene-d8				80-120 %	102	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	105	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	103	%	

Method: NWTPHg Instrument: NT2

Analyzed: 26-Apr-2016 18:36

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0103 Prepared: 26-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	9.06	100	12400	ug/L	Е
Surrogate: Toluene-d8				80-120 %	102	? %	
Surrogate: 4-Bromofluorobenzene				80-120 %	105	5 %	

Analytical Resources, Inc.

Kennedy Jenks Consultants

Federal Way WA, 98001

32001 - 32nd Avenue South, Suite 100

Project: Circle K Project Number: 1696010-00

Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

MW-9-042016 16D0063-03RE1 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 27-Apr-2016 13:15

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016

Sample Size: 1 mL Final Volume: 10 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes 71-43-2 0.27 Benzene 2.00 11.3 ug/L Toluene 108-88-3 0.40 2.00 44.5 ug/L 100-41-4 0.37 2.00 Ethylbenzene 416 ug/L m,p-Xylene 179601-23-1 0.52 4.00 728 ug/L o-Xylene 95-47-6 1 0.35 2.00 61.2 ug/L Xylenes, total 1330-20-7 0.87 6.00 ug/L Surrogate: 1,2-Dichloroethane-d4 80-129 % 110 %

Method: NWTPHg Instrument: NT2

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: 1,2-Dichlorobenzene-d4

Analyzed: 27-Apr-2016 13:15

80-120 %

80-120 %

80-120 %

101

96.7

98.5

%

%

%

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016

Sample Size: 1 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	90.6	1000	13800	ug/L	
Surrogate: Toluene-d8				80-120 %	101	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	96.7	%	

Analytical Resources, Inc.

Kennedy Jenks Consultants

Federal Way WA, 98001

32001 - 32nd Avenue South, Suite 100

Project Number: 1696010-00 Project Manager: Julia Schwartz

Project: Circle K

Reported: 11-May-2016 12:17

Analyzed: 26-Apr-2016 18:57

MW-8-042016 16D0063-04 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 26-Apr-2016 18:57

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0103 Prepared: 26-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	9.22	ug/L	
Toluene	108-88-3	1	0.04	0.20	218	ug/L	E
Ethylbenzene	100-41-4	1	0.04	0.20	321	ug/L	E
m,p-Xylene	179601-23-1	1	0.05	0.40	440	ug/L	E
o-Xylene	95-47-6	1	0.04	0.20	302	ug/L	E
Xylenes, total	1330-20-7	1	0.09	0.60	742	ug/L	E
Surrogate: 1,2-Dichloroethane-d4				80-129 %	251	%	*
Surrogate: Toluene-d8				80-120 %	98.7	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	106	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	103	%	

Method: NWTPHg Instrument: NT2

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BED0103 Prepared: 26-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	9.06	100	20900	ug/L	Е
Surrogate: Toluene-d8				80-120 %	98.7	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	106	%	

Analytical Resources, Inc.

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100

Federal Way WA, 98001

Project: Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Analyzed: 27-Apr-2016 13:39

Analyzed: 27-Apr-2016 13:39

MW-8-042016 16D0063-04RE1 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2
Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107

Prepared: 27-Apr-2016

Sample Size: 0.4 mL

Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.68	5.00	10.8	ug/L	
Toluene	108-88-3	1	1.00	5.00	1240	ug/L	
Ethylbenzene	100-41-4	1	0.93	5.00	1780	ug/L	
m,p-Xylene	179601-23-1	1	1.30	10.0	4240	ug/L	E
o-Xylene	95-47-6	1	0.88	5.00	1910	ug/L	
Xylenes, total	1330-20-7	1	2.18	15.0	6150	ug/L	E
Surrogate: 1,2-Dichloroethane-d4				80-129 %	107	%	
Surrogate: Toluene-d8				80-120 %	102	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	97.4	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	100	%	

Method: NWTPHg Instrument: NT2

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 0.4 mL Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	227	2500	52100	ug/L	
Surrogate: Toluene-d8				80-120 %	10.	2 %	
Surrogate: 4-Bromofluorobenzene				80-120 %	97.	1 %	

Analytical Resources, Inc.

Kennedy Jenks Consultants

Project: Circle K 32001 - 32nd Avenue South, Suite 100 Project Number: 1696010-00 Federal Way WA, 98001 Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

MW-8-042016 16D0063-04RE2 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 28-Apr-2016 15:18

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0114 Prepared: 28-Apr-2016

Sample Size: 0.2 mL Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	1.35	10.0	9.59	ug/L	J
Toluene	108-88-3	1	2.00	10.0	1130	ug/L	
Ethylbenzene	100-41-4	1	1.85	10.0	1650	ug/L	
m,p-Xylene	179601-23-1	1	2.60	20.0	4580	ug/L	
o-Xylene	95-47-6	1	1.75	10.0	1790	ug/L	
Xylenes, total	1330-20-7	1	4.36	30.0	6370	ug/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	109	%	
Surrogate: Toluene-d8				80-120 %	99.6	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	94.6	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	101	%	

Analytical Resources, Inc.

Kennedy Jenks Consultants

Project: Circle K

32001 - 32nd Avenue South, Suite 100 Federal Way WA, 98001

Project Number: 1696010-00 Project Manager: Julia Schwartz **Reported:** 11-May-2016 12:17

MW-4-042016 16D0063-05 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 26-Apr-2016 19:18

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0103 Prepared: 26-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

Analysis	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Analyte	CAS Number	Dilution	Lillit	Lillit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	51.4	ug/L	
Toluene	108-88-3	1	0.04	0.20	47.5	ug/L	
Ethylbenzene	100-41-4	1	0.04	0.20	281	ug/L	E
m,p-Xylene	179601-23-1	1	0.05	0.40	407	ug/L	E
o-Xylene	95-47-6	1	0.04	0.20	234	ug/L	E
Xylenes, total	1330-20-7	1	0.09	0.60	641	ug/L	E
Surrogate: 1,2-Dichloroethane-d4				80-129 %	175	%	*
Surrogate: Toluene-d8				80-120 %	104	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	107	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	100	%	

Method: NWTPHg

Instrument: NT2 Analyzed: 26-Apr-2016 19:18

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0103 Prepared: 26-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	9.06	100	17100	ug/L	Е
Surrogate: Toluene-d8				80-120 %	104	4 %	
Surrogate: 4-Bromofluorobenzene				80-120 %	107	7 %	

Analytical Resources, Inc.

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100

Federal Way WA, 98001

Project: Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Analyzed: 27-Apr-2016 14:03

Analyzed: 27-Apr-2016 14:03

11 May 2010 12.17

MW-4-042016 16D0063-05RE1 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2
Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 0.4 mL

Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.68	5.00	64.4	ug/L	
Toluene	108-88-3	1	1.00	5.00	57.3	ug/L	
Ethylbenzene	100-41-4	1	0.93	5.00	1080	ug/L	
m,p-Xylene	179601-23-1	1	1.30	10.0	3750	ug/L	
o-Xylene	95-47-6	1	0.88	5.00	865	ug/L	
Xylenes, total	1330-20-7	1	2.18	15.0	4610	ug/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	108	%	
Surrogate: Toluene-d8				80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	99.8	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	99.6	%	

Method: NWTPHg Instrument: NT2

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 0.4 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	227	2500	38200	ug/L	
Surrogate: Toluene-d8				80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	99.8	%	

Analytical Resources, Inc.

Reported:

11-May-2016 12:17

Analyzed: 27-Apr-2016 12:51

Kennedy Jenks Consultants

Project: Circle K

32001 - 32nd Avenue South, Suite 100 Federal Way WA, 98001 Project Number: 1696010-00 Project Manager: Julia Schwartz

> MW-7-042016 16D0063-06 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 27-Apr-2016 12:51

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

			Reporting	Detection			
Notes	Units	Result	Limit	Limit	Dilution	CAS Number	Analyte
U	ug/L	ND	0.20	0.03	1	71-43-2	Benzene
U	ug/L	ND	0.20	0.04	1	108-88-3	Toluene
J	ug/L	0.04	0.20	0.04	1	100-41-4	Ethylbenzene
J	ug/L	0.15	0.40	0.05	1	179601-23-1	m,p-Xylene
J	ug/L	0.04	0.20	0.04	1	95-47-6	o-Xylene
J	ug/L	0.19	0.60	0.09	1	1330-20-7	Xylenes, total
	%	102	80-129 %				Surrogate: 1,2-Dichloroethane-d4
	%	96.5	80-120 %				Surrogate: Toluene-d8
	%	96.2	80-120 %				Surrogate: 4-Bromofluorobenzene
	%	99.9	80-120 %				Surrogate: 1,2-Dichlorobenzene-d4
							•

Method: NWTPHg Instrument: NT2

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	9.06	100	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	96.5	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	96.2	%	

Analytical Resources, Inc.

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100

Project: Circle K
Project Number: 1696010-00

Federal Way WA, 98001

Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

MW-15-042016 16D0063-07 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 27-Apr-2016 16:33

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes 71-43-2 0.03 Benzene 0.20 ND U ug/L Toluene 108-88-3 0.04 0.20 ND ug/L U 100-41-4 0.04 0.20 Ethylbenzene 0.06 ug/L 179601-23-1 m,p-Xylene 0.05 0.40 0.25 ug/L o-Xylene 95-47-6 1 0.04 0.20 0.04 ug/L Xylenes, total 1330-20-7 0.09 0.60 ug/L Surrogate: 1,2-Dichloroethane-d4 80-129 % 105 % Surrogate: Toluene-d8 % 80-120 % 99.5 Surrogate: 4-Bromofluorobenzene % 80-120 % 96.0 Surrogate: 1,2-Dichlorobenzene-d4 % 80-120 % 101

Method: NWTPHg Instrument: NT2

Analyzed: 27-Apr-2016 16:33

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	9.06	100	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	99.5	5 %	
Surrogate: 4-Bromofluorobenzene				80-120 %	96.0) %	

Analytical Resources, Inc.

Kennedy Jenks Consultants

Federal Way WA, 98001

Project: Circle K

32001 - 32nd Avenue South, Suite 100

Project Number: 1696010-00 Project Manager: Julia Schwartz Reported: 11-May-2016 12:17

MW-14-042016 16D0063-08 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 27-Apr-2016 16:54

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.04	0.20	0.05	ug/L	J
m,p-Xylene	179601-23-1	1	0.05	0.40	0.24	ug/L	J
o-Xylene	95-47-6	1	0.04	0.20	0.09	ug/L	J
Xylenes, total	1330-20-7	1	0.09	0.60	0.33	ug/L	J
Surrogate: 1,2-Dichloroethane-d4				80-129 %	105	%	
Surrogate: Toluene-d8				80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	95.5	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	99.3	%	

Method: NWTPHg

Instrument: NT2 Analyzed: 27-Apr-2016 16:54

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	9.06	100	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	95.5	%	

Analytical Resources, Inc.

Kennedy Jenks Consultants

Federal Way WA, 98001

Project: Circle K

32001 - 32nd Avenue South, Suite 100

Project Number: 1696010-00 Project Manager: Julia Schwartz Reported: 11-May-2016 12:17

MW-11-042016 16D0063-09 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 27-Apr-2016 17:15

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes 71-43-2 0.03 Benzene 0.20 ND U ug/L Toluene 108-88-3 0.04 0.20 0.06 ug/L 100-41-4 0.04 0.20 0.05 Ethylbenzene ug/L 179601-23-1 m,p-Xylene 0.05 0.40 0.18 ug/L o-Xylene 95-47-6 1 0.04 0.20 0.04 ug/L Xylenes, total 1330-20-7 0.09 0.60 ug/L Surrogate: 1,2-Dichloroethane-d4 80-129 % 106 % Surrogate: Toluene-d8 80-120 % 98.6 % Surrogate: 4-Bromofluorobenzene % 80-120 % 92.3 Surrogate: 1,2-Dichlorobenzene-d4 % 80-120 % 102

Method: NWTPHg Instrument: NT2

Analyzed: 27-Apr-2016 17:15

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	9.06	100	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	98.6	5 %	
Surrogate: 4-Bromofluorobenzene				80-120 %	92.3	3 %	

Analytical Resources, Inc.

Kennedy Jenks Consultants

Federal Way WA, 98001

Project: Circle K

32001 - 32 nd Avenue South, Suite $100\,$

Project Number: 1696010-00 Project Manager: Julia Schwartz Reported: 11-May-2016 12:17

Analyzed: 28-Apr-2016 15:42

MW-13-042016 16D0063-10 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 28-Apr-2016 15:42

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0114

Sample Size: 0.2 mL

Prepared: 28-Apr-2016 Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	1.35	10.0	1740	ug/L	
Toluene	108-88-3	1	2.00	10.0	3300	ug/L	
Ethylbenzene	100-41-4	1	1.85	10.0	1080	ug/L	
m,p-Xylene	179601-23-1	1	2.60	20.0	4730	ug/L	
o-Xylene	95-47-6	1	1.75	10.0	1910	ug/L	
Xylenes, total	1330-20-7	1	4.36	30.0	6630	ug/L	
Surrogate: 1,2-Dichloroethane-d4				80-129 %	105	%	
Surrogate: Toluene-d8				80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	94.9	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	100	%	

Method: NWTPHg Instrument: NT2

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0114 Prepared: 28-Apr-2016 Sample Size: 0.2 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)	Cris rumour	1	453	5000	57700	ug/L	11000
HC ID: GAS							
Surrogate: Toluene-d8				80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	94.9	%	

Analytical Resources, Inc.

Kennedy Jenks Consultants

Federal Way WA, 98001

Project: Circle K

32001 - 32 nd Avenue South, Suite $100\,$

Project Number: 1696010-00 Project Manager: Julia Schwartz Reported: 11-May-2016 12:17

Analyzed: 28-Apr-2016 09:12

DUP1-042016 16D0063-11 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 28-Apr-2016 09:12

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0114 Prepared: 28-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

			Detection	Reporting			-
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.04	0.20	0.06	ug/L	J
Ethylbenzene	100-41-4	1	0.04	0.20	0.04	ug/L	J
m,p-Xylene	179601-23-1	1	0.05	0.40	0.19	ug/L	J
o-Xylene	95-47-6	1	0.04	0.20	0.05	ug/L	J
Xylenes, total	1330-20-7	1	0.09	0.60	0.24	ug/L	J
Surrogate: 1,2-Dichloroethane-d4				80-129 %	102	%	
Surrogate: Toluene-d8				80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	98.9	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	101	%	

Method: NWTPHg Instrument: NT2

Sample Preparation: Preparation Method: No Prep - Volatiles

ration: Preparation Method: No Prep - Volatiles
Preparation Batch: BED0114

Prepared: 28-Apr-2016

Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	9.06	100	ND	ug/L	U
Surrogate: Toluene-d8				80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	98.9	%	

Analytical Resources, Inc.

Reported:

Analyzed: 27-Apr-2016 12:29

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Project: Circle K
Project Number: 1696010-00

Federal Way WA, 98001

Project Manager: Julia Schwartz 11-May-2016 12:17

Trip Blanks 16D0063-12 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 27-Apr-2016 12:29

Sample Preparation:

Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.03	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.04	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.04	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.05	0.40	0.13	ug/L	J
o-Xylene	95-47-6	1	0.04	0.20	ND	ug/L	U
Xylenes, total	1330-20-7	1	0.09	0.60	0.16	ug/L	J
Surrogate: 1,2-Dichloroethane-d4				80-129 %	101	' %	
Surrogate: Toluene-d8				80-120 %	98.7	7 %	
Surrogate: 4-Bromofluorobenzene				80-120 %	95.0	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	97.9	%	

Method: NWTPHg Instrument: NT2

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BED0107 Prepared: 27-Apr-2016 Sample Size: 10 mL Final Volume: 10 mL

Detection Reporting CAS Number Dilution Limit Limit Result Units Analyte Notes 9.06 Gasoline Range Organics (Tol-Nap) 100 ND U ug/L Surrogate: Toluene-d8 80-120 % 98.7 % Surrogate: 4-Bromofluorobenzene 80-120 % 95.0 %

Analytical Resources, Inc.

Reported:

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way WA, 98001 Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

11-May-2016 12:17

Volatile Organic Compounds - Quality Control

Batch BED0103 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Water Blank (BED0103-BLK1)				Prep	ared: 26-Apr	-2016 Ana	ılyzed: 26-	Apr-2016 11	:58		
Gasoline Range Organics (Tol-Nap)	ND		100	ug/L							U
Benzene	ND	0.03	0.20	ug/L							U
Toluene	0.05	0.04	0.20	ug/L							J
Ethylbenzene	ND	0.04	0.20	ug/L							U
m,p-Xylene	ND	0.05	0.40	ug/L							U
o-Xylene	ND	0.04	0.20	ug/L							U
Xylenes, total	ND	0.09	0.60	ug/L							U
Surrogate: Toluene-d8	4.89			ug/L	5.00		97.8	80-120			
Surrogate: 4-Bromofluorobenzene	4.75			ug/L	5.00		94.9	80-120			
Surrogate: 1,2-Dichloroethane-d4	4.94			ug/L	5.00		98.8	80-129			
Surrogate: Toluene-d8	4.89			ug/L	5.00		97.8	80-120			
Surrogate: 4-Bromofluorobenzene	4.75			ug/L	5.00		94.9	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	4.95			ug/L	5.00		99.0	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way WA, 98001 Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Volatile Organic Compounds - Quality Control

Batch BED0103 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
8260 WATER (BED0103-BS1)				Prep	ared: 26-Apr	-2016 Ana	alyzed: 26-	Apr-2016 10):32		
Benzene	10.1			ug/L	10.0		101	80-120			
Toluene	9.94			ug/L	10.0		99.4	80-120			
Ethylbenzene	10.2			ug/L	10.0		102	78-122			
m,p-Xylene	21.4			ug/L	20.0		107	78-126			
o-Xylene	10.4			ug/L	10.0		104	76-127			
Xylenes, total	31.8			ug/L	30.0		106	76-127			
Surrogate: 1,2-Dichloroethane-d4	4.95			ug/L	5.00		99.1	80-129			
Surrogate: Toluene-d8	5.01			ug/L	5.00		100	80-120			
Surrogate: 4-Bromofluorobenzene	5.06			ug/L	5.00		101	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.01			ug/L	5.00		100	80-120			

Analytical Resources, Inc.

Reported:

11-May-2016 12:17

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way WA, 98001 Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Volatile Organic Compounds - Quality Control

Batch BED0103 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
GAS WATER (BED0103-BS2)				Prepa	ared: 26-Apr	-2016 Ana	alyzed: 26-A	Apr-2016 11	:15		
Gasoline Range Organics (Tol-Nap)	914			ug/L	1000		91.4	80-120			
Benzene	6.76			ug/L	7.33		92.3	80-120			
Toluene	46.9			ug/L	53.1		88.4	80-120			
Ethylbenzene	12.9			ug/L	13.6		94.7	78-122			
m,p-Xylene	42.3			ug/L	43.4		97.5	78-126			
o-Xylene	16.8			ug/L	16.9		99.7	76-127			
Surrogate: Toluene-d8	4.86			ug/L	5.00		97.3	80-120			
Surrogate: 4-Bromofluorobenzene	4.99			ug/L	5.00		99.7	80-120			
Surrogate: 1,2-Dichloroethane-d4	5.37			ug/L	5.00		107	80-129			
Surrogate: Toluene-d8	4.86			ug/L	5.00		97.3	80-120			
Surrogate: 4-Bromofluorobenzene	4.99			ug/L	5.00		99.7	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.01			ug/L	5.00		100	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way WA, 98001

Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Volatile Organic Compounds - Quality Control

Batch BED0103 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
8260 WATER (BED0103-BSD1)				Prep	ared: 26-Apr	-2016 Ana	alyzed: 26-	Apr-2016 10):53		
Benzene	10.2			ug/L	10.0		102	80-120	1.16	30	
Toluene	9.97			ug/L	10.0		99.7	80-120	0.33	30	
Ethylbenzene	9.91			ug/L	10.0		99.1	78-122	2.87	30	
m,p-Xylene	20.8			ug/L	20.0		104	78-126	3.09	30	
o-Xylene	10.2			ug/L	10.0		102	76-127	1.50	30	
Xylenes, total	31.0			ug/L	30.0		103	76-127	2.57	30	
Surrogate: 1,2-Dichloroethane-d4	5.05			ug/L	5.00		101	80-129			
Surrogate: Toluene-d8	5.08			ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene	5.04			ug/L	5.00		101	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.11			ug/L	5.00		102	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way WA, 98001

Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Volatile Organic Compounds - Quality Control

Batch BED0103 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
GAS WATER (BED0103-BSD2)				Prepa	red: 26-Apr	-2016 Ana	lyzed: 26-A	Apr-2016 11	:36		
Gasoline Range Organics (Tol-Nap)	955			ug/L	1000		95.5	80-120	4.35	30	
Benzene	7.59			ug/L	7.33		104	80-120	11.50	30	
Toluene	52.1			ug/L	53.1		98.1	80-120	10.50	30	
Ethylbenzene	13.9			ug/L	13.6		102	78-122	7.70	30	
m,p-Xylene	45.2			ug/L	43.4		104	78-126	6.56	30	
o-Xylene	18.0			ug/L	16.9		107	76-127	6.68	30	
Surrogate: Toluene-d8	5.03			ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene	4.95			ug/L	5.00		98.9	80-120			
Surrogate: 1,2-Dichloroethane-d4	5.22			ug/L	5.00		104	80-129			
Surrogate: Toluene-d8	5.03			ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene	4.95			ug/L	5.00		98.9	80-120			
Surrogate: 1,2-Dichlorobenzene-d4	5.08			ug/L	5.00		102	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way WA, 98001 Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Batch BED0107 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BED0107-BLK1)				Prep	ared: 27-Apı	:-2016 Ana	alyzed: 27-	Apr-2016 12	2:08		
Gasoline Range Organics (Tol-Nap)	ND		100	ug/L							U
Benzene	ND	0.03	0.20	ug/L							U
Toluene	ND	0.04	0.20	ug/L							U
Ethylbenzene	0.04	0.04	0.20	ug/L							J
m,p-Xylene	0.15	0.05	0.40	ug/L							J
o-Xylene	ND	0.04	0.20	ug/L							U
Xylenes, total	0.18	0.09	0.60	ug/L							J
Surrogate: Toluene-d8	4.90			ug/L	5.00		98.0	80-120			
Surrogate: 4-Bromofluorobenzene	4.84			ug/L	5.00		96.8	80-120			
Surrogate: 1,2-Dichloroethane-d4	4.98			ug/L	5.00		99.5	81-118			
Surrogate: Toluene-d8	4.90			ug/L	5.00		98.0	89-112			
Surrogate: 4-Bromofluorobenzene	4.84			ug/L	5.00		96.8	85-114			
Surrogate: 1,2-Dichlorobenzene-d4	5.03			ug/L	5.00		101	80-120			

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way WA, 98001 Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Volatile Organic Compounds - Quality Control

Batch BED0107 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (BED0107-BS1)				Prep	ared: 27-Apr	-2016 Ana	alyzed: 27-A	Apr-2016 10):43		
Gasoline Range Organics (Tol-Nap)	1030			ug/L	1000		103	80-120			
Benzene	8.26			ug/L	7.33		113	80-120			
Toluene	56.2			ug/L	53.1		106	80-120			
Ethylbenzene	15.1			ug/L	13.6		111	79-121			
m,p-Xylene	48.6			ug/L	43.4		112	80-120			
o-Xylene	19.5			ug/L	16.9		115	80-120			
Surrogate: Toluene-d8	5.05			ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene	4.90			ug/L	5.00		98.1	80-120			
Surrogate: 1,2-Dichloroethane-d4	5.26			ug/L	5.00		105	81-118			
Surrogate: Toluene-d8	5.05			ug/L	5.00		101	89-112			
Surrogate: 4-Bromofluorobenzene	4.90			ug/L	5.00		98.1	85-114			
Surrogate: 1,2-Dichlorobenzene-d4	4.91			ug/L	5.00		98.2	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way WA, 98001

Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Volatile Organic Compounds - Quality Control

Batch BED0107 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BED0107-BSD1)				Prep	ared: 27-Apr	-2016 Ana	ılyzed: 27-	Apr-2016 11	:04		
Gasoline Range Organics (Tol-Nap)	990			ug/L	1000		99.0	80-120	4.35	30	
Benzene	8.21			ug/L	7.33		112	80-120	0.66	20	
Toluene	55.9			ug/L	53.1		105	80-120	0.58	20	
Ethylbenzene	14.9			ug/L	13.6		109	79-121	1.47	20	
m,p-Xylene	48.4			ug/L	43.4		112	80-120	0.40	20	
o-Xylene	19.4			ug/L	16.9		115	80-120	0.40	20	
Surrogate: Toluene-d8	5.12			ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene	4.87			ug/L	5.00		97.4	80-120			
Surrogate: 1,2-Dichloroethane-d4	5.21			ug/L	5.00		104	81-118			
Surrogate: Toluene-d8	5.12			ug/L	5.00		102	89-112			
Surrogate: 4-Bromofluorobenzene	4.87			ug/L	5.00		97.4	85-114			
Surrogate: 1,2-Dichlorobenzene-d4	5.02			ug/L	5.00		100	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way WA, 98001 Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Batch BED0114 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BED0114-BLK1)				Prepa	ared: 28-Apı	-2016 Ana	alyzed: 28-	Apr-2016 08	3:29		
Gasoline Range Organics (Tol-Nap)	ND		100	ug/L							U
Benzene	ND	0.03	0.20	ug/L							U
Toluene	0.10	0.04	0.20	ug/L							J
Ethylbenzene	0.04	0.04	0.20	ug/L							J
m,p-Xylene	0.18	0.05	0.40	ug/L							J
o-Xylene	0.05	0.04	0.20	ug/L							J
Xylenes, total	0.24	0.09	0.60	ug/L							J
Surrogate: Toluene-d8	5.00			ug/L	5.00		99.9	50-150			
Surrogate: 4-Bromofluorobenzene	4.79			ug/L	5.00		95.8	50-150			
Surrogate: 1,2-Dichloroethane-d4	5.05			ug/L	5.00		101	81-118			
Surrogate: Toluene-d8	5.00			ug/L	5.00		99.9	89-112			
Surrogate: 4-Bromofluorobenzene	4.79			ug/L	5.00		95.8	85-114			
Surrogate: 1,2-Dichlorobenzene-d4	5.05			ug/L	5.00		101	80-120			

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way WA, 98001

Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Volatile Organic Compounds - Quality Control

Batch BED0114 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS (BED0114-BS1)				Prepa	red: 28-Apr	-2016 Ana	lyzed: 28-A	Apr-2016 07	':46		
Gasoline Range Organics (Tol-Nap)	960			ug/L	1000		96.0	80-120			
Benzene	8.02			ug/L	7.33		110	79-120			
Toluene	55.3			ug/L	53.1		104	80-121			
Ethylbenzene	14.6			ug/L	13.6		107	79-121			
m,p-Xylene	47.6			ug/L	43.4		110	80-120			
o-Xylene	18.9			ug/L	16.9		112	80-120			
Surrogate: Toluene-d8	5.09			ug/L	5.00		102	50-150			
Surrogate: 4-Bromofluorobenzene	4.94			ug/L	5.00		98.9	50-150			
Surrogate: 1,2-Dichloroethane-d4	5.42			ug/L	5.00		108	81-118			
Surrogate: Toluene-d8	5.09			ug/L	5.00		102	89-112			
Surrogate: 4-Bromofluorobenzene	4.94			ug/L	5.00		98.9	85-114			
Surrogate: 1,2-Dichlorobenzene-d4	4.97			ug/L	5.00		99.5	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way WA, 98001

Project Circle K
Project Number: 1696010-00
Project Manager: Julia Schwartz

Reported: 11-May-2016 12:17

Volatile Organic Compounds - Quality Control

Batch BED0114 - No Prep - Volatiles

Instrument: NT2

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BED0114-BSD1)				Prep	ared: 28-Apr	-2016 Ana	ılyzed: 28-A	Apr-2016 08	3:07		
Gasoline Range Organics (Tol-Nap)	981			ug/L	1000		98.1	80-120	2.25	30	
Benzene	8.16			ug/L	7.33		111	79-120	1.64	20	
Toluene	56.3			ug/L	53.1		106	80-121	1.69	20	
Ethylbenzene	14.8			ug/L	13.6		109	79-121	1.60	20	
m,p-Xylene	48.2			ug/L	43.4		111	80-120	1.17	20	
o-Xylene	19.3			ug/L	16.9		114	80-120	1.90	20	
Surrogate: Toluene-d8	5.08			ug/L	5.00		102	50-150			
Surrogate: 4-Bromofluorobenzene	4.89			ug/L	5.00		97.7	50-150			
Surrogate: 1,2-Dichloroethane-d4	5.49			ug/L	5.00		110	81-118			
Surrogate: Toluene-d8	5.08			ug/L	5.00		102	89-112			
Surrogate: 4-Bromofluorobenzene	4.89			ug/L	5.00		97.7	85-114			
Surrogate: 1,2-Dichlorobenzene-d4	5.10			ug/L	5.00		102	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants Project: Circle K
32001 - 32nd Avenue South, Suite 100 Project Number: 1696010-00

32001 - 32nd Avenue South, Suite 100 Project Number: 1696010-00 Reported:
Federal Way WA, 98001 Project Manager: Julia Schwartz 11-May-2016 12:17

Certified Analyses included in this Report

Analyte Certifications

EPA 826	OC in	Water
---------	-------	-------

Chloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Vinyl Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromomethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Trichlorofluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Acrolein	DoD-ELAP,NELAP,CALAP,WADOE
1,1,2-Trichloro-1,2,2-Trifluoroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Acetone	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,1-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromoethane	DoD-ELAP,NELAP,CALAP,WADOE
lodomethane	DoD-ELAP,NELAP,CALAP,WADOE
Methylene Chloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Acrylonitrile	DoD-ELAP,NELAP,CALAP,WADOE
Carbon Disulfide	DoD-ELAP,NELAP,CALAP,WADOE
trans-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Vinyl Acetate	DoD-ELAP,NELAP,CALAP,WADOE
1,1-Dichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
2-Butanone	DoD-ELAP,NELAP,CALAP,WADOE
2,2-Dichloropropane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
cis-1,2-Dichloroethene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Chloroform	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Bromochloromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,1,1-Trichloroethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,1-Dichloropropene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Carbon tetrachloride	DoD-ELAP,ADEC,NELAP,CALAP,WADOE

Toluene

1,2-Dichloroethane

1,2-Dichloropropane

Dibromomethane 2-Chloroethyl vinyl ether

Bromodichloromethane

4-Methyl-2-Pentanone

cis-1,3-Dichloropropene

Benzene Trichloroethene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

DoD-ELAP,ADEC,NELAP,CALAP,WADOE DoD-ELAP,ADEC,NELAP,CALAP,WADOE

DoD-ELAP,ADEC,NELAP,CALAP,WADOE

DoD-ELAP, ADEC, NELAP, CALAP, WADOE

DoD-ELAP,ADEC,NELAP,CALAP,WADOE DoD-ELAP,ADEC,NELAP,CALAP,WADOE

DoD-ELAP,ADEC,NELAP,CALAP,WADOE

DoD-ELAP, ADEC, NELAP, CALAP, WADOE

DoD-ELAP,ADEC,NELAP,CALAP,WADOE

DoD-ELAP, NELAP, CALAP, WADOE

Kennedy Jenks ConsultantsProject: Circle K32001 - 32nd Avenue South, Suite 100Project Number: 1696010-00Reported:Federal Way WA, 98001Project Manager: Julia Schwartz11-May-2016 12:17

trans-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 2-Hexanone DoD-ELAP, NELAP, CALAP, WADOE 1,1,2-Trichloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,3-Dichloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Tetrachloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Dibromochloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1.2-Dibromoethane DoD-ELAP, NELAP, CALAP, WADOE Chlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Ethylbenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,1,2-Tetrachloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE m,p-Xylene DoD-ELAP, ADEC, NELAP, CALAP, WADOE o-Xylene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Styrene DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE Bromoform 1,1,2,2-Tetrachloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2,3-Trichloropropane trans-1,4-Dichloro 2-Butene DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE n-Propylbenzene Bromobenzene DoD-ELAP, NELAP, CALAP, WADOE Isopropyl Benzene DoD-ELAP, NELAP, CALAP, WADOE 2-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE t-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,3,5-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,2,4-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE s-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE 4-Isopropyl Toluene 1,3-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,4-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE n-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1.2.4-Trichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Hexachloro-1,3-Butadiene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Naphthalene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1.2.3-Trichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Dichlorodifluoromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Methyl tert-butyl Ether DoD-ELAP,ADEC,NELAP,CALAP,WADOE n-Hexane **WADOE**

Analytical Resources, Inc.

Kennedy Jenks Consultants	Project: Circle K	
32001 - 32nd Avenue South, Suite 100	Project Number: 1696010-00	Reported:
Federal Way WA, 98001	Project Manager: Julia Schwartz	11-May-2016 12:17

2-Pentanone WADOE

NWTPHg in Water

Gasoline Range Organics (Tol-Nap)

Gasoline Range Organics (2MP-TMB)

Gasoline Range Organics (Tol-C12)

Gasoline Range Organics (Tol-C12)

WADOE,DoD-ELAP

WADOE,DoD-ELAP

WADOE,ADEC,DoD-ELAP

Gasoline Range Organics (C5-C12)

WADOE,DoD-ELAP

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	05/06/2016
CALAP	California Department of Public Health CAELAP	2748	02/28/2016
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	03/30/2017
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2017
WADOE	WA Dept of Ecology	C558	06/30/2016
WA-DW	Ecology - Drinking Water	C558	06/30/2016

Kennedy Jenks Consultants
Project: Circle K

32001 - 32nd Avenue South, Suite 100
Project Number: 1696010-00
Reported:
Federal Way WA, 98001
Project Manager: Julia Schwartz
11-May-2016 12:17

Notes and Definitions

U	This analyte is not detected above the applicable reporting or detection limit.
C	inis analyte is not detected above the applicable reporting of detection inint.

J The compound was detected below the reporting limit but above the detection limit.

E The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

* Flagged value is not within established control limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

14 October 2016

Julia Schwarz Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001

RE: Circle K

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)
Associated SDG ID(s)
N/A

1010307

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Matthew Bates For Mark Harris, Project Manager

PJLA Testing ccreditation # 66169

Chain of Custody Record & Laboratory Analysis Request

	0.0342.83				decision of the last of the la														
Analytical Recources Incornorated	Analytical Chemists and Consultants	Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)	www.arilabs.com	Notes/Comments												Received by: (Signature)	Printed Name:	Company:	Date & Time:
		ant? Yes	S: 4,0	Analysis Requested												Relinquished by: (Signature)	Printed Name:	Company:	Date & Time:
	Page: ∫ of	Date: 9/23/16 Present? Ye	No. of Coolers: Temps:			Kalq Kalq	X									J. S.	TENTEN		1, 1, 25
	ndard	1835-6424	Wellier		wart	Matrix No. Containers	9 1:05									Received by: (Signature)	Printed Name:	Company	Date & Time:
	i-around Requested:	-258-52-835-	or Ty Sch		Samplers: Julia Schwart	Date Time	9/23/16 DG17	1460	258/	1410	0891	007-1				Relinquished by:	Printed Name: Schwarz	Company:	Date & Time:
	ARI Assigned Number: (1038) Turn-around Requested:	ARI Client Company: Phon Cusul Harts Phon	Client Contact: In 11 as churar 2 or Ty Schweiner	Client Project Name:	Client Project #: 1696 016.00 Sam		MW-19-10 91:	6	MW-20-16	MW-20-20	01-12-11	5. 61-12-MW	7.8	_		Comments/Special Instructions Relinc	Printe	Comp	Date

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client: Hennedy Sents	Project Name: CTYCX	U X	•	
COC No(s): NA	Delivered by: Fed-Ex UPS Courie	or Mand Dalin	Strong Oth and	
Assigned ARI Job No: 1610389		land Deliv	ered Other	
Preliminary Examination Phase:	Tracking No:			NA
Were intact, properly signed and dated custody seals attached	to the outside of to cooler?		YES	NO
Were custody papers included with the cooler?			YES	NO
Were custody papers properly filled out (ink, signed, etc.)			YES	0.04 (0.000,000)
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for cl	hemistry) 4,0		169	NO
If cooler temperature is out of compliance fill out form 00070F		Temp Gun IDa	#:3000	1492
Cooler Accepted by: Xelly Sotten	Date: 926/16 Time:	4:35		
Complete custody form	s and attach all shipping documents			
Log-In Phase:		The second secon		9
Was a temperature blank included in the cooler?			YES	NO
What kind of packing material was used? Bubble Wi		lock Paper C		
Was sufficient ice used (if appropriate)?		NA NA	YES	NO
Were all bottles sealed in individual plastic bags?			YES	CNO.
Did all bottles arrive in good condition (unbroken)?			YES	NO
Were all bottle labels complete and legible?			VES!	NO
Did the number of containers listed on COC match with the num			YES	NO
Did all bottle labels and tags agree with custody papers?			YES	NO
Were all bottles used correct for the requested analyses?			YES	NO
Do any of the analyses (bottles) require preservation? (attach p		CNA	YES	NO
Were all VOC vials free of air bubbles?		NA	YES	NO
Was sufficient amount of sample sent in each bottle?			YES	NO
Date VOC Trip Blank was made at ARI		NA		-16
Was Sample Split by ARI : NA YES Date/Time:	Equipment:		Split by:	
Samples Logged by:	2 2 1 1 1	1028		3
	ger of discrepancies or concerns **	[-	
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Comp	le ID on CO	<u> </u>
	eample is on some	Samp	ie iD on CO	
1			•	
			-800 PAGE	
E				
Additional Notes, Discrepancies, & Resolutions:				
×1		8		
	·-	Company of the control of		0.000
By: Date:				
Small Air Bubbles Peabubbles' LARGE Air Bubbles	Small → "sm" (<2 mm)			
2mm 2-4 mm > 4 mm	Peabubbles \rightarrow "pb" (2 to < 4 mm)			130
	Large > "lg" (4 to < 6 mm)			
	Headspace → "hs" (>6 mm)			

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-19-10	16I0389-01	Solid	23-Sep-2016 09:17	26-Sep-2016 06:35
MW-19-19	16I0389-02	Solid	23-Sep-2016 09:47	26-Sep-2016 06:35
MW-20-10	16I0389-03	Solid	23-Sep-2016 13:50	26-Sep-2016 06:35
MW-20-20	16I0389-04	Solid	23-Sep-2016 14:10	26-Sep-2016 06:35
MW-21-10	16I0389-05	Solid	23-Sep-2016 16:30	26-Sep-2016 06:35
MW-21-19.5	16I0389-06	Solid	23-Sep-2016 17:00	26-Sep-2016 06:35
Trip Blank	16I0389-07	Water	23-Sep-2016 00:00	26-Sep-2016 06:35

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100

Project Number: 1696010.00 Federal Way, WA 98001 Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

Case Narrative

Project: Circle K

CASE NARRATIVE

Client: Kennedy Jenks Consultants

Project: Circle K Workorder: 16l0389

Sample receipt

7 samples were received 26-Sep-2016 06:35 under ARI workorder 16I0389. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Gasoline by NWTPH-G (GC/MS)

These samples were prepared and analyzed within the recommended holding time.

All initial and continuing calibrations were within method requirements.

The percent recoveries for all surrogates were within acceptable QC limits.

No target compounds were detected in the method blank above the LOQs.

The percent recoveries and RPD were within acceptable QC limits for hte LCS/LCSD.

Volatiles - EPA Method SW8260C

These samples were prepared and analyzed within the recommended holding time.

All initial and continuing calibrations were within method requirements.

The areas for all internal standard were withi acceptable QC limits.

The percent recoveries for all surrogates were within acceptable QC limits.

No target compounds were detected in the method blank above the LOQs.

The percent recoveries and RPD were within acceptable QC limits for hte LCS/LCSD.

Kennedy Jenks Consultants

Project: Circle K
32001 - 32nd Avenue South, Suite 100

Project Number: 1696010.00

Federal Way, WA 98001

Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-19-10 16I0389-01 (Solid)

Volatile Organic Compounds

Method: EPA 8260C (Medium Level)

Instrument: NT15 Analyzed: 04-Oct-2016 17:37

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BEJ0307 Sample Size: 5.212 g (wet) Dry Weight: 4.46 g
Prepared: 04-Oct-2016 Final Volume: 5 mL % Solids: 85.49

	Tiepared. 0.1 Get 2010			70 Solids. 05.15					
		GAGN. 1	D.1:	Detection	Reporting	D 1:	** **	NT .	
Analyte		CAS Number	Dilution	Limit	Limit	Result	Units	Notes	
Benzene		71-43-2	2500	530	3230	30800	ug/kg		
Toluene		108-88-3	2500	556	3230	230000	ug/kg		
Ethylbenzene		100-41-4	2500	878	3230	81000	ug/kg		
m,p-Xylene		179601-23-1	2500	1800	3230	353000	ug/kg		
o-Xylene		95-47-6	2500	736	3230	140000	ug/kg		
Surrogate: 1,2-Dichloroethan	ne-d4				80-124 %	112	%		
Surrogate: Toluene-d8					80-120 %	101	%		
Surrogate: 4-Bromofluoroben	nzene				80-120 %	108	%		
Surrogate: 1,2-Dichlorobenze	ene-d4				80-120 %	103	%		

Kennedy Jenks Consultants

Project: Circle K
32001 - 32nd Avenue South, Suite 100

Project Number: 1696010.00

Federal Way, WA 98001

Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-19-10 16I0389-01 (Solid)

Volatile Organic Compounds

Method: NWTPHg
Instrument: NT2
Analyzed: 04-Oct-2016 13:47

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BEJ0088 Sample Size: 5.351 g (wet) Dry Weight:4.57 g
Prepared: 04-Oct-2016 Final Volume: 5 mL % Solids: 85.39

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		5000	633000	12600000	ug/kg	
HC ID: GAS						
Surrogate: Toluene-d8			80-120 %	103	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	100	%	

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-19-19 16I0389-02 (Solid)

Volatile Organic Compounds

Method: EPA 8260C							
Instrument: NT15					Anal	yzed: 04-0	ct-2016 18:02
Sample Preparation:	Preparation Method: No Prep - Volatiles Preparation Batch: BEJ0080 Prepared: 04-Oct-2016	Sample Size: 6 Final Volume:	O ()	•	Weight:5.71 Solids: 88.16	g	
				Reporting			
Analyte		CAS Number	Dilution	Limit	Result	Units	Notes
Benzene		71-43-2	1	0.88	7.21	ug/kg	
Toluene		108-88-3	1	0.88	17.1	ug/kg	
Ethylbenzene		100-41-4	1	0.88	2.82	ug/kg	
m,p-Xylene		179601-23-1	1	0.88	11.4	ug/kg	
o-Xylene		95-47-6	1	0.88	5.26	ug/kg	
Surrogate: 1,2-Dichloroetho	nne-d4			80-149 %	119	%	
Surrogate: Toluene-d8				77-120 %	99.7	%	
Surrogate: 4-Bromofluorobe	enzene			80-120 %	105	%	
Surrogate: 1,2-Dichloroben	zene-d4			80-120 %	105	%	

Analytical Resources, Inc.

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100Project Number: 1696010.00Federal Way, WA 98001Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-19-19 16I0389-02 (Solid)

Project: Circle K

Volatile Organic Compounds

Method: NWTPHg
Instrument: NT2
Analyzed: 04-Oct-2016 14:07

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BEJ0088 Sample Size: 6.303 g (wet) Dry Weight: 5.52 g
Prepared: 04-Oct-2016 Final Volume: 5 mL % Solids: 87.51

Reporting CAS Number Limit Dilution Result Units Notes Analyte 50 Gasoline Range Organics (Tol-Nap) 5250 ND ug/kg U Surrogate: Toluene-d8 80-120 % 103 Surrogate: 4-Bromofluorobenzene 78-123 % 106 %

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-20-10 16I0389-03 (Solid)

Volatile Organic Compounds

Method: EPA 8260C (Medium Level)

Instrument: NT2 Analyzed: 04-Oct-2016 14:28

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BEJ0329 Sample Size: 5.592 g (wet) Dry Weight:4.89 g
Prepared: 04-Oct-2016 Final Volume: 5 mL % Solids: 87.37

Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	500	95.8	584	117	ug/kg	J
Toluene	108-88-3	500	100	584	ND	ug/kg	U
Ethylbenzene	100-41-4	500	159	584	2380	ug/kg	
m,p-Xylene	179601-23-1	500	326	584	8800	ug/kg	
o-Xylene	95-47-6	500	133	584	2670	ug/kg	
Surrogate: Dibromofluoromethane				30-160 %	92.5	%	
Surrogate: 1,2-Dichloroethane-d4				80-124 %	108	%	
Surrogate: Toluene-d8				80-120 %	104	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	101	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	100	%	

Kennedy Jenks Consultants

Project: Circle K
32001 - 32nd Avenue South, Suite 100

Project Number: 1696010.00

Federal Way, WA 98001

Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-20-10 16I0389-03 (Solid)

Volatile Organic Compounds

Method: NWTPHg
Instrument: NT2
Analyzed: 04-Oct-2016 14:28

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BEJ0088 Sample Size: 5.592 g (wet) Dry Weight:4.89 g
Prepared: 04-Oct-2016 Final Volume: 5 mL % Solids: 87.37

Reporting CAS Number Limit Dilution Result Units Notes Analyte Gasoline Range Organics (Tol-Nap) 500 58400 630000 ug/kg HC ID: GAS Surrogate: Toluene-d8 80-120 % 104 Surrogate: 4-Bromofluorobenzene 78-123 % 101 %

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-20-20 16I0389-04 (Solid)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT15
Sample Preparation: Preparation Method: No Prep - Volatiles

_	_	Preparation Batch: BEJ0080	Sample Size: 4.43 g (wet)	Dry Weight:3.89 g
		Prepared: 04-Oct-2016	Final Volume: 5 g	% Solids: 87.77

1 Tepared: 04-0ct-2010	i mai voiume.	i mai voidine. 5 g			70 Solids. 67.77				
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes			
Benzene	71-43-2	1	1.29	31.1	ug/kg				
Toluene	108-88-3	1	1.29	45.1	ug/kg				
Ethylbenzene	100-41-4	1	1.29	21.1	ug/kg				
m,p-Xylene	179601-23-1	1	1.29	81.4	ug/kg				
o-Xylene	95-47-6	1	1.29	28.8	ug/kg				
Surrogate: 1,2-Dichloroethane-d4			80-149 %	122	? %				
Surrogate: Toluene-d8			77-120 %	101	%				
Surrogate: 4-Bromofluorobenzene			80-120 %	102	? %				
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	105	5 %				

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-20-20 16I0389-04 (Solid)

Volatile Organic Compounds

Method: NWTPHg
Instrument: NT2
Analyzed: 04-Oct-2016 14:48

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BEJ0088 Sample Size: 5.341 g (wet) Dry Weight:4.80 g
Prepared: 04-Oct-2016 Final Volume: 5 mL % Solids: 89.78

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		50	5780	ND	ug/kg	U
Surrogate: Toluene-d8			80-120 %	103	%	
Surrogate: 4-Bromofluorobenzene			78-123 %	106	%	

Kennedy Jenks Consultants

Project: Circle K 32001 - 32nd Avenue South, Suite 100 Project Number: 1696010.00 Federal Way, WA 98001 Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-21-10 16I0389-05 (Solid)

Volatile Organic Compounds

Method: EPA 8260C (Medium Level)

Instrument: NT15 Analyzed: 04-Oct-2016 19:15

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BEJ0307 Sample Size: 5.797 g (wet) Dry Weight:5.15 g Final Volume: 5 mL Prepared: 04-Oct-2016 % Solids: 88.83

Trepared. 04 Get 2010	CAS Number Dilution Limit Lim 71-43-2 50 8.99 54 108-88-3 50 9.43 54 tene 100-41-4 50 14.9 54							
			Detection	Reporting				
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes	
Benzene	71-43-2	50	8.99	54.8	1060	ug/kg		
Toluene	108-88-3	50	9.43	54.8	2770	ug/kg		
Ethylbenzene	100-41-4	50	14.9	54.8	1380	ug/kg		
m,p-Xylene	179601-23-1	50	30.6	54.8	6670	ug/kg		
o-Xylene	95-47-6	50	12.5	54.8	2850	ug/kg		
Surrogate: 1,2-Dichloroethane-d4				80-124 %	109	%		
Surrogate: Toluene-d8				80-120 %	101	%		
Surrogate: 4-Bromofluorobenzene				80-120 %	110	%		
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	101	%		

Kennedy Jenks Consultants

Project: Circle K
32001 - 32nd Avenue South, Suite 100

Project Number: 1696010.00

32001 - 32nd Avenue South, Suite 100Project Number: 1696010.00Reported:Federal Way, WA 98001Project Manager: Julia Schwarz14-Oct-2016 16:21

MW-21-10 16I0389-05 (Solid)

Volatile Organic Compounds

Method: NWTPHg
Instrument: NT2
Analyzed: 04-Oct-2016 15:09

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BEJ0088 Sample Size: 4.576 g (wet) Dry Weight: 4.06 g
Prepared: 04-Oct-2016 Final Volume: 5 mL % Solids: 88.78

Reporting CAS Number Limit Dilution Result Units Notes Analyte Gasoline Range Organics (Tol-Nap) 500 67900 198000 ug/kg HC ID: GAS Surrogate: Toluene-d8 80-120 % 102 Surrogate: 4-Bromofluorobenzene 78-123 % 99.7 %

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-21-19.5 16I0389-06 (Solid)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT15 Analyzed: 04-Oct-2016 19:39

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BEJ0080 Sample Size: 5.96 g (wet) Dry Weight: 5.17 g
Prepared: 04-Oct-2016 Final Volume: 5 g % Solids: 86.79

1		8				
Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.97	209	ug/kg	Е
Toluene	108-88-3	1	0.97	62.4	ug/kg	
Ethylbenzene	100-41-4	1	0.97	11.5	ug/kg	
m,p-Xylene	179601-23-1	1	0.97	44.3	ug/kg	
o-Xylene	95-47-6	1	0.97	21.1	ug/kg	
Surrogate: 1,2-Dichloroethane-d4			80-149 %	118	%	
Surrogate: Toluene-d8			77-120 %	101	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	106	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	104	%	

Instrument: NT2 Analyzed: 04-Oct-2016 15:30

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BEJ0329Sample Size: 6.372 g (wet)Dry Weight:5.53 gPrepared: 04-Oct-2016Final Volume: 5 mL% Solids: 86.79

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Benzene	71-43-2	50	8.66	52.8	710	ug/kg	
Toluene	108-88-3	50	9.08	52.8	263	ug/kg	
Ethylbenzene	100-41-4	50	14.4	52.8	62.5	ug/kg	
m,p-Xylene	179601-23-1	50	29.5	52.8	274	ug/kg	
o-Xylene	95-47-6	50	12.0	52.8	101	ug/kg	
Surrogate: Dibromofluoromethane				30-160 %	84.4	%	
Surrogate: 1,2-Dichloroethane-d4				80-124 %	103	%	
Surrogate: Toluene-d8				80-120 %	104	%	
Surrogate: 4-Bromofluorobenzene				80-120 %	106	%	
Surrogate: 1,2-Dichlorobenzene-d4				80-120 %	99.1	%	

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

MW-21-19.5 16I0389-06 (Solid)

Volatile Organic Compounds

Federal Way, WA 98001

Method: NWTPHg
Instrument: NT2
Analyzed: 04-Oct-2016 15:30

Sample Preparation: Preparation Method: EPA 5035 (Methanol Extraction)

Preparation Batch: BEJ0088 Sample Size: 6.372 g (wet) Dry Weight: 5.64 g
Prepared: 04-Oct-2016 Final Volume: 5 mL % Solids: 88.47

Reporting CAS Number Limit Dilution Result Units Notes Analyte Gasoline Range Organics (Tol-Nap) 50 5090 6410 ug/kg HC ID: GAS Surrogate: Toluene-d8 80-120 % 104 Surrogate: 4-Bromofluorobenzene 78-123 % 106 %

Kennedy Jenks Consultants Project: Circle K 32001 - 32nd Avenue South, Suite 100 Project Number: 1696010.00

Reported: Federal Way, WA 98001 Project Manager: Julia Schwarz 14-Oct-2016 16:21

Trip Blank 16I0389-07 (Water)

Volatile Organic Compounds

Method: EPA 8260C

Instrument: NT2 Analyzed: 04-Oct-2016 13:26

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEJ0079

Sample Size: 10 mL Prepared: 04-Oct-2016 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	105	%	
Surrogate: Toluene-d8			80-120 %	104	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	98.7	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	101	%	

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Project: Circle K Project Number: 1696010.00

Federal Way, WA 98001

Reported: Project Manager: Julia Schwarz 14-Oct-2016 16:21

Trip Blank 16I0389-07 (Water)

Volatile Organic Compounds

Method: NWTPHg

Instrument: NT2 Analyzed: 04-Oct-2016 13:26

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEJ0079

Sample Size: 10 mL

Prepared: 04-Oct-2016 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	ND	ug/L	U
Surrogate: Toluene-d8			80-120 %	104	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	98.7	%	

32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

Volatile Organic Compounds - Quality Control

Batch BEJ0079 - EPA 5030 (Purge and Trap)

Instrument: NT2

	ъ. т	Report	_	Spike	Source	0/855	%REC	D	RPD	37
QC Sample/Analyte	Result	Liı	nit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BEJ0079-BLK1)			Pre	pared: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 11	:02		
Gasoline Range Organics (Tol-Nap)	ND	1	00 ug/L							U
Surrogate: Toluene-d8		5.10	ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene		4.77	ug/L	5.00		95.5	80-120			
Blank (BEJ0079-BLK2)			Pre	pared: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 11	:02		
Benzene	ND	0	.20 ug/L							U
Toluene	ND	0	.20 ug/L							U
Ethylbenzene	ND	0	.20 ug/L							U
m,p-Xylene	ND	0	.40 ug/L							U
o-Xylene	ND	0	.20 ug/L							U
Surrogate: 1,2-Dichloroethane-d4		5.33	ug/L	5.00		107	80-129			
Surrogate: Toluene-d8		5.10	ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene		4.77	ug/L	5.00		95.5	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		5.09	ug/L	5.00		102	80-120			
LCS (BEJ0079-BS1)			Pre	pared: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 09	9:40		
Gasoline Range Organics (Tol-Nap)	1070	1	00 ug/L	1000		107	80-120			
Surrogate: Toluene-d8		5.11	ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene		4.90	ug/L	5.00		98.0	80-120			
LCS (BEJ0079-BS2)			Pre	pared: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 10):21		
Benzene	9.97	0	.20 ug/L	10.0		99.7	80-120			
Toluene	9.60	0	.20 ug/L	10.0		96.0	80-120			
Ethylbenzene	9.71	0	.20 ug/L	10.0		97.1	80-120			
m,p-Xylene	19.9	0	.40 ug/L	20.0		99.5	80-121			
o-Xylene	10.0	0	.20 ug/L	10.0		100	80-121			
Surrogate: 1,2-Dichloroethane-d4		5.20	ug/L	5.00		104	80-129			
Surrogate: Toluene-d8		5.13	ug/L	5.00		103	80-120			
Surrogate: 4-Bromofluorobenzene		4.99	ug/L	5.00		99.9	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		5.04	ug/L	5.00		101	80-120			
LCS Dup (BEJ0079-BSD1)			Pre	pared: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 10	0:00		
Gasoline Range Organics (Tol-Nap)	1090	1	00 ug/L	1000		109	80-120	1.74	30	

Analytical Resources, Inc.

Federal Way, WA 98001

32001 - 32 nd Avenue South, Suite $100\,$

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

Volatile Organic Compounds - Quality Control

Batch BEJ0079 - EPA 5030 (Purge and Trap)

Instrument: NT2

		F	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS Dup (BEJ0079-BSD1)				Prepa	red: 04-Oct	-2016 Ana	lyzed: 04-0	Oct-2016 10	:00		
Surrogate: Toluene-d8		5.20		ug/L	5.00		104	80-120			
Surrogate: 4-Bromofluorobenzene		4.95		ug/L	5.00		99.0	80-120			
LCS Dup (BEJ0079-BSD2)				Prepa	red: 04-Oct	-2016 Ana	lyzed: 04-0	Oct-2016 10	:41		
Benzene	10.2		0.20	ug/L	10.0		102	80-120	2.20	30	
Toluene	9.79		0.20	ug/L	10.0		97.9	80-120	2.00	30	
Ethylbenzene	9.75		0.20	ug/L	10.0		97.5	80-120	0.42	30	
m,p-Xylene	20.2		0.40	ug/L	20.0		101	80-121	1.25	30	
o-Xylene	10.1		0.20	ug/L	10.0		101	80-121	1.00	30	
Surrogate: 1,2-Dichloroethane-d4		5.09		ug/L	5.00		102	80-129			
Surrogate: Toluene-d8		5.10		ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene		4.96		ug/L	5.00		99.3	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		4.93		ug/L	5.00		98.6	80-120			

32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

Volatile Organic Compounds - Quality Control

Batch BEJ0080 - No Prep - Volatiles

Instrument: NT15

		Reporting		Spike	Source	0/775	%REC		RPD	
QC Sample/Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BEJ0080-BLK1)			Prepa	red: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 11	:56		
Benzene	ND	1.00	ug/kg							U
Toluene	ND	1.00	ug/kg							U
Ethylbenzene	ND	1.00	ug/kg							U
m,p-Xylene	ND	1.00	ug/kg							U
o-Xylene	ND	1.00	ug/kg							U
Surrogate: 1,2-Dichloroethane-d4		50.4	ug/kg	50.0		101	80-149			
Surrogate: Toluene-d8		49.1	ug/kg	50.0		98.2	77-120			
Surrogate: 4-Bromofluorobenzene		50.6	ug/kg	50.0		101	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		50.4	ug/kg	50.0		101	80-120			
LCS (BEJ0080-BS1)			Prepa	red: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 10	:36		
Benzene	50.0		ug/kg	50.0		99.9	80-120			
Toluene	49.8		ug/kg	50.0		99.6	75-120			
Ethylbenzene	52.8		ug/kg	50.0		106	80-125			
m,p-Xylene	107		ug/kg	100		107	76-121			
o-Xylene	56.1		ug/kg	50.0		112	67-132			
Surrogate: 1,2-Dichloroethane-d4		48.6	ug/kg	50.0		97.1	80-149			
Surrogate: Toluene-d8		49.3	ug/kg	50.0		98.6	77-120			
Surrogate: 4-Bromofluorobenzene		50.9	ug/kg	50.0		102	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		50.1	ug/kg	50.0		100	80-120			
LCS Dup (BEJ0080-BSD1)			Prepa	red: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 11	:32		
Benzene	52.1		ug/kg	50.0		104	80-120	4.10	30	
Toluene	52.2		ug/kg	50.0		104	75-120	4.67	30	
Ethylbenzene	53.9		ug/kg	50.0		108	80-125	2.12	30	
m,p-Xylene	111		ug/kg	100		111	76-121	3.70	30	
o-Xylene	57.9		ug/kg	50.0		116	67-132	3.17	30	
Surrogate: 1,2-Dichloroethane-d4		48.9	ug/kg	50.0		97.8	80-149			
Surrogate: Toluene-d8		50.0	ug/kg	50.0		100	77-120			
Surrogate: 4-Bromofluorobenzene		49.9	ug/kg	50.0		99.8	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		49.8	ug/kg	50.0		99.6	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

Volatile Organic Compounds - Quality Control

Batch BEJ0088 - EPA 5035 (Methanol Extraction)

Instrument: NT2

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BEJ0088-BLK1)			Prep	ared: 04-Oct-	2016 Ana	alyzed: 04-0	Oct-2016 11	:02		
Gasoline Range Organics (Tol-Nap)	ND	5000	ug/kg							U
Surrogate: Toluene-d8		5.10	ug/kg	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene		4.77	ug/kg	5.00		95.5	78-123			
LCS (BEJ0088-BS1)			Prep	ared: 04-Oct-	2016 Ana	alyzed: 04-0	Oct-2016 09	:40		
Gasoline Range Organics (Tol-Nap)	53700		ug/kg	50000		107	70-121			
Surrogate: Toluene-d8		5.11	ug/kg	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene		4.90	ug/kg	5.00		98.0	78-123			
LCS Dup (BEJ0088-BSD1)			Prep	ared: 04-Oct-	2016 Ana	alyzed: 04-0	Oct-2016 10	:00		
Gasoline Range Organics (Tol-Nap)	54600		ug/kg	50000		109	70-121	1.74	30	
Surrogate: Toluene-d8		5.20	ug/kg	5.00		104	80-120			
Surrogate: 4-Bromofluorobenzene		4.95	ug/kg	5.00		99.0	78-123			

32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

Volatile Organic Compounds - Quality Control

Batch BEJ0307 - EPA 5035 (Methanol Extraction)

Instrument: NT15

OC Samula/A nalista	Result	Detection Limit	Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note-
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BEJ0307-BLK1)				Prepa	ared: 04-Oct	-2016 An	alyzed: 04-0	Oct-2016 11	:56		
Benzene	ND	8.20	50.0	ug/kg							U
Toluene	ND	8.60	50.0	ug/kg							U
Ethylbenzene	ND	13.6	50.0	ug/kg							U
m,p-Xylene	ND	27.9	50.0	ug/kg							U
o-Xylene	ND	11.4	50.0	ug/kg							U
Surrogate: Dibromofluoromethane		50.9		ug/kg	50.0		102	30-160			
Surrogate: 1,2-Dichloroethane-d4		50.4		ug/kg	50.0		101	80-124			
Surrogate: Toluene-d8		49.1		ug/kg	50.0		98.2	80-120			
Surrogate: 4-Bromofluorobenzene		50.6		ug/kg	50.0		101	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		50.4		ug/kg	50.0		101	80-120			
LCS (BEJ0307-BS1)				Prepa	ared: 04-Oct	:-2016 An	alyzed: 04-0	Oct-2016 10	:36		
Benzene	2500			ug/kg	2500		99.9	80-120			
Toluene	2490			ug/kg	2500		99.6	77-120			
Ethylbenzene	2640			ug/kg	2500		106	79-122			
m,p-Xylene	5340			ug/kg	5000		107	81-122			
o-Xylene	2810			ug/kg	2500		112	79-120			
Surrogate: Dibromofluoromethane		49.7		ug/kg	50.0		99.4	30-160			
Surrogate: 1,2-Dichloroethane-d4		48.6		ug/kg	50.0		97.1	80-124			
Surrogate: Toluene-d8		49.3		ug/kg	50.0		98.6	80-120			
Surrogate: 4-Bromofluorobenzene		50.9		ug/kg	50.0		102	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		50.1		ug/kg	50.0		100	80-120			
LCS Dup (BEJ0307-BSD1)				Prepa	ared: 04-Oct	:-2016 An	alyzed: 04-0	Oct-2016 11	:32		
Benzene	2600			ug/kg	2500		104	80-120	4.10	30	
Toluene	2610			ug/kg	2500		104	77-120	4.67	30	
Ethylbenzene	2700			ug/kg	2500		108	79-122	2.12	30	
m,p-Xylene	5540			ug/kg	5000		111	81-122	3.70	30	
o-Xylene	2900			ug/kg	2500		116	79-120	3.17	30	
Surrogate: Dibromofluoromethane		49.9		ug/kg	50.0		99.8	30-160			
Surrogate: 1,2-Dichloroethane-d4		48.9		ug/kg	50.0		97.8	80-124			
Surrogate: Toluene-d8		50.0		ug/kg	50.0		100	80-120			
Surrogate: 4-Bromofluorobenzene		49.9		ug/kg	50.0		99.8	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants

Federal Way, WA 98001

32001 - 32nd Avenue South, Suite 100

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

Volatile Organic Compounds - Quality Control

Batch BEJ0307 - EPA 5035 (Methanol Extraction)

Instrument: NT15

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BEJ0307-BSD1)				Prepa	ared: 04-Oct-	-2016 Ana	lyzed: 04-0	Oct-2016 11	:32		
Surrogate: 1,2-Dichlorobenzene-d4		49.8		ug/kg	50.0		99.6	80-120			

32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

Volatile Organic Compounds - Quality Control

Batch BEJ0329 - EPA 5035 (Methanol Extraction)

Instrument: NT2

Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 11:02			Detection	Reporting		Spike	Source		%REC		RPD	
Benzene ND 8.20 50.0 ug/kg	QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Toluene	Blank (BEJ0329-BLK1)				Prepa	ared: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 11	:02		
Ethylbenzene ND 13.6 50.0 ug/kg	Benzene	ND	8.20	50.0	ug/kg							U
mg-Xylene ND 27.9 50.0 wg/kg o-Xylene ND 11.4 50.0 wg/kg Surrogate: Dibromofluoromethane 4.77 wg/kg 5.00 95.4 30-160 Surrogate: 1.2-Dichloroethane-d4 5.33 wg/kg 5.00 107 80-124 Surrogate: 1.2-Dichloroethane-d4 5.00 wg/kg 5.00 107 80-124 Surrogate: 1.2-Dichloroethane-d4 5.00 wg/kg 5.00 107 80-124 Surrogate: 1.2-Dichloroethane-d4 5.00 wg/kg 5.00 102 80-120 Surrogate: 1.2-Dichloroethane-d4 5.09 wg/kg 5.00 95.5 80-120 Surrogate: 1.2-Dichloroethane-d4 5.09 wg/kg 5.00 99.7 80-120 ECS (BEJ0329-BS1) Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10:21 Enzene 499 wg/kg 500 99.7 80-120 Elhylbenzene 488 wg/kg 500 99.7 80-120 Surrogate: 1.2-Dichloroethane 99.5 wg/kg 1000 99.5 81-122 o-Xylene 99.5 wg/kg 1000 99.5 81-122 o-Xylene 502 wg/kg 500 100 79-120 Surrogate: 2-Dichloroethane-d4 5.00 wg/kg 5.00 100 79-120 Surrogate: 2-Dichloroethane-d4 5.00 wg/kg 5.00 104 80-124 Surrogate: 1-Dichloroethane-d4 5.13 wg/kg 5.00 104 80-124 Surrogate: 1-Dichloroethane-d4 5.00 wg/kg 5.00 104 80-124 Surrogate: 1-Dichloroethane-d4 5.00 wg/kg 5.00 101 80-120 ECS Du (BEJ0329-BSD1) Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10-11 ECS Du (BEJ0329-BSD1) wg/kg 5.00 102 80-120 2.0 30 Toluene 50 wg/kg 500 102 79-120 5.97 30 Elhylbenzne 487 wg/kg 500 97.5 79-120 0.42 30 mg-Xylene 1010 wg/kg 500 101 81-122 1.25 30 o-Xylene 507 wg/kg 500 101 80-122 1.25 30 o-Xylene 507 wg/kg 500 101 79-120 1.00 30	Toluene	ND	8.60	50.0	ug/kg							U
Surrogate: Dibromofluoromethane	Ethylbenzene	ND	13.6	50.0	ug/kg							U
Surrogate: Dibromofluoromethane	m,p-Xylene	ND	27.9	50.0	ug/kg							U
Surrogate: 1,2-Dichloroethane-d4	o-Xylene	ND	11.4	50.0	ug/kg							U
Surrogate: Toluene-d8	Surrogate: Dibromofluoromethane		4.77		ug/kg	5.00		95.4	30-160			
Surrogate: 4-Bromofluorobenzene	Surrogate: 1,2-Dichloroethane-d4		5.33		ug/kg	5.00		107	80-124			
Surrogate: 1,2-Dichlorobenzene-d4 5.09 ug/kg 5.00 102 80-120	Surrogate: Toluene-d8		5.10		ug/kg	5.00		102	80-120			
Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10:21	Surrogate: 4-Bromofluorobenzene		4.77		ug/kg	5.00		95.5	80-120			
Benzene	Surrogate: 1,2-Dichlorobenzene-d4		5.09		ug/kg	5.00		102	80-120			
Toluene 480 ug/kg 500 96.0 77-120 Ethylbenzene 485 ug/kg 500 97.1 79-122 m,p-Xylene 995 ug/kg 1000 99.5 81-122 o-Xylene 502 ug/kg 500 100 79-120 Surrogate: Dibromofluoromethane 5.09 ug/kg 5.00 100 79-120 Surrogate: 1,2-Dichloroethane-d4 5.20 ug/kg 5.00 104 80-124 Surrogate: 4-Bromofluorobenzene 4.99 ug/kg 5.00 103 80-120 Surrogate: 1,2-Dichlorobenzene-d4 5.04 ug/kg 5.00 101 80-120 Surrogate: 1,2-Dichlorobenzene-d4 5.04 ug/kg 5.00 101 80-120 Surrogate: 1,2-Dichlorobenzene-d4 5.04 ug/kg 5.00 101 80-120 ECS Dup (BEJ0329-BSD1) Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10:41 Benzene 510 ug/kg 500 97.9 77-120 2.00 30 Toluene 490 ug/kg 500 97.9 77-120 2.00 30 Dibromochloromethane 508 ug/kg 500 97.5 79-122 0.42 30 m,p-Xylene 1010 ug/kg 1000 101 81-122 1.25 30 o-Xylene 507 ug/kg 500 99.6 30-160 Surrogate: 1,2-Dichloroethane-d4 5.09 ug/kg 5.00 99.6 30-160 Surrogate: 1,2-Dichloroethane-d4 5.09 ug/kg 5.00 99.6 30-160 Surrogate: 1,2-Dichloroethane-d4 5.09 ug/kg 5.00 99.6 30-160	LCS (BEJ0329-BS1)				Prepa	ared: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 10	:21		
Ethylbenzene 485 ug/kg 500 97.1 79-122 m.p-Xylene 995 ug/kg 1000 99.5 81-122 o-Xylene 502 ug/kg 500 100 79-120 Surrogate: Dibromofluoromethane 5.09 ug/kg 5.00 102 30-160 Surrogate: 1,2-Dichloroethane-d4 5.20 ug/kg 5.00 104 80-124 Surrogate: Toluene-d8 5.13 ug/kg 5.00 103 80-120 Surrogate: 4-Bromofluorobenzene 4.99 ug/kg 5.00 101 80-120 Surrogate: 1,2-Dichlorobenzene-d4 5.04 ug/kg 5.00 101 80-120 Ethylbenzene 510 ug/kg 5.00 101 80-120 Ethylbenzene 490 ug/kg 500 97.9 77-120 2.00 30 Dibromochloromethane 508 ug/kg 500 97.5 79-122 0.42 30 ethylbenzene 487 ug/kg 500	Benzene	499			ug/kg	500		99.7	80-120			
m.p-Xylene 995 ug/kg 1000 99.5 81-122 o-Xylene 502 ug/kg 500 100 79-120 Surrogate: Dibromofluoromethane 5.09 ug/kg 5.00 102 30-160 Surrogate: 1,2-Dichloroethane-d4 5.20 ug/kg 5.00 104 80-124 Surrogate: Toluene-d8 5.13 ug/kg 5.00 103 80-120 Surrogate: 4-Bromofluorobenzene 4.99 ug/kg 5.00 101 80-120 Surrogate: 1,2-Dichlorobenzene-d4 5.04 ug/kg 5.00 101 80-120 LCS Dup (BEJ0329-BSD1) Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10:41 Benzene 510 ug/kg 500 102 80-120 2.20 30 Toluene 490 ug/kg 500 97.9 77-120 2.00 30 Dibromochloromethane 508 ug/kg 500 102 79-120 5.97 30 Ethylbenzene 487 ug/kg 500 97.5 79-122 0.42 30 m.p-Xylene 1010 ug/kg 1000 101 81-122 1.25 30 o-Xylene 507 ug/kg 500 99.6 30-160 Surrogate: 1,2-Dichloromethane 4.98 ug/kg 5.00 99.6 30-160 Surrogate: 1,2-Dichloromethane-d4 5.09 ug/kg 5.00 102 80-124	Toluene	480			ug/kg	500		96.0	77-120			
o-Xylene 502 ug/kg 500 100 79-120 Surrogate: Dibromofluoromethane 5.09 ug/kg 5.00 102 30-160 Surrogate: 1,2-Dichloroethane-d4 5.20 ug/kg 5.00 104 80-124 Surrogate: Toluene-d8 5.13 ug/kg 5.00 103 80-120 Surrogate: 4-Bromofluorobenzene 4.99 ug/kg 5.00 99.9 80-120 Surrogate: 1,2-Dichlorobenzene-d4 5.04 ug/kg 5.00 101 80-120 LCS Dup (BEJ0329-BSD1) Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10:41 Benzene 510 ug/kg 500 102 80-120 2.20 30 Toluene 490 ug/kg 500 97.9 77-120 2.00 30 Dibromochloromethane 508 ug/kg 500 97.5 79-120 5.97 30 Ethylbenzene 487 ug/kg 500 97.5 79-122 0.42 30 m,p-Xylene <t< td=""><td>Ethylbenzene</td><td>485</td><td></td><td></td><td>ug/kg</td><td>500</td><td></td><td>97.1</td><td>79-122</td><td></td><td></td><td></td></t<>	Ethylbenzene	485			ug/kg	500		97.1	79-122			
Surrogate: Dibromofluoromethane 5.09 ug/kg 5.00 102 30-160	m,p-Xylene	995			ug/kg	1000		99.5	81-122			
Surrogate: 1,2-Dichloroethane-d4 5.20 ug/kg 5.00 104 80-124	o-Xylene	502			ug/kg	500		100	79-120			
Surrogate: Toluene-d8 5.13 ug/kg 5.00 103 80-120 Surrogate: 4-Bromofluorobenzene 4.99 ug/kg 5.00 99.9 80-120 Eurrogate: 1,2-Dichlorobenzene-d4 Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10:41 EUCS Dup (BEJ0329-BSD1) Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10:41 Benzene 510 ug/kg 500 102 80-120 2.20 30 Toluene 490 ug/kg 500 97.9 77-120 2.00 30 Dibromochloromethane 508 ug/kg 500 97.9 77-120 5.97 30 Ethylbenzene 487 ug/kg 500 97.5 79-122 0.42 30 m.p-Xylene 1010 ug/kg 500 101 81-122 1.25 30 o-Xylene 507 ug/kg 500 99.6 30-160 Surrogate: Dibromofluoromethane 4.98 ug/kg 5.00 99.6 <th< td=""><td>Surrogate: Dibromofluoromethane</td><td></td><td>5.09</td><td></td><td>ug/kg</td><td>5.00</td><td></td><td>102</td><td>30-160</td><td></td><td></td><td></td></th<>	Surrogate: Dibromofluoromethane		5.09		ug/kg	5.00		102	30-160			
Surrogate: 4-Bromofluorobenzene 4.99 ug/kg 5.00 99.9 80-120 Surrogate: 1,2-Dichlorobenzene-d4 Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10:41 LCS Dup (BEJ0329-BSD1) Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10:41 Benzene 510 ug/kg 500 102 80-120 2.20 30 Toluene 490 ug/kg 500 97.9 77-120 2.00 30 Dibromochloromethane 508 ug/kg 500 97.9 77-120 5.97 30 Ethylbenzene 487 ug/kg 500 97.5 79-122 0.42 30 m.p-Xylene 1010 ug/kg 1000 101 81-122 1.25 30 o-Xylene 507 ug/kg 500 99.6 30-160 Surrogate: Dibromofluoromethane 4.98 ug/kg 5.00 99.6 30-160 Surrogate: 1,2-Dichloroethane-d4 5.09 ug/kg 5.00 102 80-124	Surrogate: 1,2-Dichloroethane-d4		5.20		ug/kg	5.00		104	80-124			
Surrogate: 1,2-Dichlorobenzene-d4 5.04 ug/kg 5.00 101 80-120	Surrogate: Toluene-d8		5.13		ug/kg	5.00		103	80-120			
Description Prepared: 04-Oct-2016 Analyzed: 04-Oct-2016 10:41	Surrogate: 4-Bromofluorobenzene		4.99		ug/kg	5.00		99.9	80-120			
Benzene S10	Surrogate: 1,2-Dichlorobenzene-d4		5.04		ug/kg	5.00		101	80-120			
Benzene 510 ug/kg 500 102 80-120 2.20 30 Toluene 490 ug/kg 500 97.9 77-120 2.00 30 Dibromochloromethane 508 ug/kg 500 102 79-120 5.97 30 Ethylbenzene 487 ug/kg 500 97.5 79-122 0.42 30 m,p-Xylene 1010 ug/kg 1000 101 81-122 1.25 30 o-Xylene 507 ug/kg 500 101 79-120 1.00 30 Surrogate: Dibromofluoromethane 4.98 ug/kg 5.00 99.6 30-160 Surrogate: 1,2-Dichloroethane-d4 5.09 ug/kg 5.00 102 80-124	LCS Dup (BEJ0329-BSD1)				Prepa	ared: 04-Oct	t-2016 Ana	alyzed: 04-0	Oct-2016 10	:41		
Dibromochloromethane 508 ug/kg 500 102 79-120 5.97 30 Ethylbenzene 487 ug/kg 500 97.5 79-122 0.42 30 m,p-Xylene 1010 ug/kg 1000 101 81-122 1.25 30 o-Xylene 507 ug/kg 500 101 79-120 1.00 30 Surrogate: Dibromofluoromethane 4.98 ug/kg 5.00 99.6 30-160 Surrogate: 1,2-Dichloroethane-d4 5.09 ug/kg 5.00 102 80-124	Benzene	510			ug/kg	500		102	80-120	2.20	30	
Ethylbenzene 487 ug/kg 500 97.5 79-122 0.42 30 m,p-Xylene 1010 ug/kg 1000 101 81-122 1.25 30 o-Xylene 507 ug/kg 500 101 79-120 1.00 30 Surrogate: Dibromofluoromethane 4.98 ug/kg 5.00 99.6 30-160 Surrogate: 1,2-Dichloroethane-d4 5.09 ug/kg 5.00 102 80-124	Toluene	490			ug/kg	500		97.9	77-120	2.00	30	
m,p-Xylene 1010 ug/kg 1000 101 81-122 1.25 30 o-Xylene 507 ug/kg 500 101 79-120 1.00 30 Surrogate: Dibromofluoromethane 4.98 ug/kg 5.00 99.6 30-160 Surrogate: 1,2-Dichloroethane-44 5.09 ug/kg 5.00 102 80-124	Dibromochloromethane	508			ug/kg	500		102	79-120	5.97	30	
o-Xylene 507 ug/kg 500 101 79-120 1.00 30 Surrogate: Dibromofluoromethane 4.98 ug/kg 5.00 99.6 30-160 Surrogate: 1,2-Dichloroethane-d4 5.09 ug/kg 5.00 102 80-124	Ethylbenzene	487			ug/kg	500		97.5	79-122	0.42	30	
Surrogate: Dibromofluoromethane 4.98 ug/kg 5.00 99.6 30-160 Surrogate: 1,2-Dichloroethane-d4 5.09 ug/kg 5.00 102 80-124	m,p-Xylene	1010			ug/kg	1000		101	81-122	1.25	30	
Surrogate: 1,2-Dichloroethane-d4 5.09 ug/kg 5.00 102 80-124	o-Xylene	507			ug/kg	500		101	79-120	1.00	30	
	Surrogate: Dibromofluoromethane		4.98		ug/kg	5.00		99.6	30-160			
Surrogate: Toluene-d8 5.10 ug/kg 5.00 102 80-120	Surrogate: 1,2-Dichloroethane-d4		5.09		ug/kg	5.00		102	80-124			
	Surrogate: Toluene-d8		5.10		ug/kg	5.00		102	80-120			

Analytical Resources, Inc.

32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 14-Oct-2016 16:21

Volatile Organic Compounds - Quality Control

Batch BEJ0329 - EPA 5035 (Methanol Extraction)

Instrument: NT2

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BEJ0329-BSD1)				Prep	ared: 04-Oct	-2016 Ana	lyzed: 04-0	Oct-2016 10	:41		
Surrogate: 4-Bromofluorobenzene		4.96		ug/kg	5.00		99.3	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		4.93		ug/kg	5.00		98.6	80-120			

Kennedy Jenks Consultants

Project: Circle K
32001 - 32nd Avenue South, Suite 100

Project Number: 1696010.00

32001 - 32nd Avenue South, Suite 100Project Number: 1696010.00Reported:Federal Way, WA 98001Project Manager: Julia Schwarz14-Oct-2016 16:21

Certified Analyses included in this Report

Analyte Certifications

WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP
WADOE,DoD-ELAP,NELAP,CALAP
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE, DoD-ELAP, NELAP, CALAP, ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE, DoD-ELAP, NELAP, CALAP, ADEC
WADOE, DoD-ELAP, NELAP, CALAP, ADEC
WADOE, DoD-ELAP, NELAP, CALAP, ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC
WADOE,DoD-ELAP,NELAP,CALAP
WADOE, DoD-ELAP, NELAP, CALAP, ADEC
WADOE, DoD-ELAP, NELAP, CALAP, ADEC
WADOE,DoD-ELAP,NELAP,CALAP,ADEC

Analytical Resources, Inc.

2-Hexanone WADOE, DoD-ELAP, NELAP, CALAP 1,1,2-Trichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,3-Dichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Tetrachloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dibromochloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1.2-Dibromoethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Ethylbenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,1,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC m,p-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC o-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Styrene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromoform WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,2,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2,3-Trichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC trans-1,4-Dichloro 2-Butene WADOE n-Propylbenzene WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Isopropyl Benzene 2-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP 4-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP t-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,3,5-Trimethylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,2,4-Trimethylbenzene WADOE, DoD-ELAP, NELAP, CALAP s-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP 4-Isopropyl Toluene WADOE, DoD-ELAP, NELAP, CALAP 1,3-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP 1,4-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP n-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2,4-Trichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Hexachloro-1,3-Butadiene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Naphthalene WADOE, DoD-ELAP, NELAP, CALAP 1.2.3-Trichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dichlorodifluoromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Methyl tert-butyl Ether WADOE, DoD-ELAP, NELAP, CALAP n-Hexane **WADOE** 2-Pentanone **WADOE**

Analytical Resources, Inc.

Chloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Vinyl Chloride WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromomethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Trichlorofluoromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Acrolein WADOE, DoD-ELAP, NELAP, CALAP 1,1,2-Trichloro-1,2,2-Trifluoroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Acetone WADOE, DoD-ELAP, NELAP, CALAP 1,1-Dichloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromoethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Iodomethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Methylene Chloride WADOE, DoD-ELAP, NELAP, CALAP, ADEC Acrylonitrile WADOE, DoD-ELAP, NELAP, CALAP Carbon Disulfide WADOE, DoD-ELAP, NELAP, CALAP, ADEC trans-1,2-Dichloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP Vinyl Acetate 1,1-Dichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP 2-Butanone 2,2-Dichloropropane WADOE, DoD-ELAP, NELAP, CALAP cis-1,2-Dichloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chloroform WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromochloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,1-Trichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1-Dichloropropene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Carbon tetrachloride WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1.2-Dichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Benzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Trichloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2-Dichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromodichloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dibromomethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 4-Methyl-2-Pentanone WADOE, DoD-ELAP, NELAP, CALAP cis-1,3-Dichloropropene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Toluene WADOE, DoD-ELAP, NELAP, CALAP, ADEC trans-1,3-Dichloropropene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Hexanone WADOE, DoD-ELAP, NELAP, CALAP 1.1.2-Trichloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,3-Dichloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Tetrachloroethene WADOE, DoD-ELAP, NELAP, CALAP, ADEC

Analytical Resources, Inc.

Dibromochloromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2-Dibromoethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Chlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Ethylbenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,1,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC m,p-Xylene WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC o-Xylene Styrene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Bromoform WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,1,2,2-Tetrachloroethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2,3-Trichloropropane trans-1,4-Dichloro 2-Butene **WADOE** n-Propylbenzene WADOE, DoD-ELAP, NELAP, CALAP Bromobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Isopropyl Benzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC 2-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP 4-Chlorotoluene WADOE, DoD-ELAP, NELAP, CALAP WADOE, DoD-ELAP, NELAP, CALAP t-Butylbenzene 1,3,5-Trimethylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,2,4-Trimethylbenzene WADOE, DoD-ELAP, NELAP, CALAP s-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP 4-Isopropyl Toluene WADOE, DoD-ELAP, NELAP, CALAP 1,3-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP 1,4-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP n-Butylbenzene WADOE, DoD-ELAP, NELAP, CALAP 1,2-Dichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP 1,2-Dibromo-3-Chloropropane WADOE, DoD-ELAP, NELAP, CALAP, ADEC 1,2,4-Trichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Hexachloro-1,3-Butadiene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Naphthalene WADOE, DoD-ELAP, NELAP, CALAP 1,2,3-Trichlorobenzene WADOE, DoD-ELAP, NELAP, CALAP, ADEC Dichlorodifluoromethane WADOE, DoD-ELAP, NELAP, CALAP, ADEC Methyl tert-butyl Ether WADOE, DoD-ELAP, NELAP, CALAP n-Hexane **WADOE**

EPA 8260C in Water

Chloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Vinyl Chloride DoD-ELAP, ADEC, NELAP, CALAP, WADOE Bromomethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Chloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE

Analytical Resources, Inc.

Trichlorofluoromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Acrolein DoD-ELAP, NELAP, CALAP, WADOE 1,1,2-Trichloro-1,2,2-Trifluoroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Acetone DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1.1-Dichloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Bromoethane DoD-ELAP, NELAP, CALAP, WADOE Iodomethane DoD-ELAP, NELAP, CALAP, WADOE Methylene Chloride DoD-ELAP, ADEC, NELAP, CALAP, WADOE Acrylonitrile DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE Carbon Disulfide trans-1,2-Dichloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Vinyl Acetate DoD-ELAP, NELAP, CALAP, WADOE 1,1-Dichloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 2-Butanone DoD-ELAP, NELAP, CALAP, WADOE 2,2-Dichloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE cis-1,2-Dichloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Chloroform DoD-ELAP, ADEC, NELAP, CALAP, WADOE Bromochloromethane DoD-ELAP,ADEC,NELAP,CALAP,WADOE 1,1,1-Trichloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Carbon tetrachloride DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dichloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Benzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Trichloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dichloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Bromodichloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Dibromomethane DoD-ELAP,ADEC,NELAP,CALAP,WADOE 2-Chloroethyl vinyl ether DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Methyl-2-Pentanone DoD-ELAP, NELAP, CALAP, WADOE cis-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Toluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE trans-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 2-Hexanone DoD-ELAP, NELAP, CALAP, WADOE 1,1,2-Trichloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,3-Dichloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Tetrachloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Dibromochloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1.2-Dibromoethane DoD-ELAP, NELAP, CALAP, WADOE Chlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE

Analytical Resources, Inc.

DoD-ELAP, ADEC, NELAP, CALAP, WADOE

Ethylbenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,1,2-Tetrachloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE m,p-Xylene DoD-ELAP, ADEC, NELAP, CALAP, WADOE o-Xylene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Styrene DoD-ELAP, NELAP, CALAP, WADOE Bromoform DoD-ELAP, NELAP, CALAP, WADOE 1,1,2,2-Tetrachloroethane DoD-ELAP,ADEC,NELAP,CALAP,WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2,3-Trichloropropane trans-1,4-Dichloro 2-Butene

n-Propylbenzene DoD-ELAP, NELAP, CALAP, WADOE Bromobenzene DoD-ELAP, NELAP, CALAP, WADOE Isopropyl Benzene DoD-ELAP, NELAP, CALAP, WADOE

2-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE t-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE

1,3,5-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,2,4-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE s-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE 4-Isopropyl Toluene

1,3-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1.4-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE n-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE

1,2-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dibromo-3-chloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2,4-Trichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Hexachloro-1,3-Butadiene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Naphthalene DoD-ELAP,ADEC,NELAP,CALAP,WADOE 1,2,3-Trichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE

Dichlorodifluoromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Methyl tert-butyl Ether DoD-ELAP, ADEC, NELAP, CALAP, WADOE

n-Hexane **WADOE** 2-Pentanone **WADOE**

NWTPHg in Water

Gasoline Range Organics (Tol-Nap) WADOE, DoD-ELAP Gasoline Range Organics (2MP-TMB) WADOE.DoD-ELAP Gasoline Range Organics (Tol-C12) WADOE, DoD-ELAP Gasoline Range Organics (C6-C10) WADOE, ADEC, DoD-ELAP Gasoline Range Organics (C5-C12) WADOE, DoD-ELAP

Analytical Resources, Inc.

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	05/06/2017
CALAP	California Department of Public Health CAELAP	2748	02/28/2018
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	03/30/2017
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2017
WADOE	WA Dept of Ecology	C558	06/30/2017
WA-DW	Ecology - Drinking Water	C558	06/30/2017

Kennedy Jenks Consultants Project: Circle K
32001 - 32nd Avenue South, Suite 100 Project Number: 1696010.00

32001 - 32nd Avenue South, Suite 100Project Number: 1696010.00Reported:Federal Way, WA 98001Project Manager: Julia Schwarz14-Oct-2016 16:21

Notes and Definitions

U This analyte is not detected above the applicable reporting or detection limit.

M Estimated value for a GC/MS analyte detected and confirmed by an analyst but with low spectral match parameters.

J Estimated concentration value detected below the reporting limit.

E The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

28 December 2016

Julia Schwarz Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001

RE: Circle K

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

Associated SDG ID(s)

16L0126

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amanda Volgardsen For Mark Harris, Project Manager

PJLA Testing Accreditation # 66169

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around Requested:	Requested:	Standar	pre	Page:	o	7			Analytical Resources, Incorporated Analytical Chemists and Consultants	Consultants
ARI Client Company: Lemedy / Jen Ks	Zent	Phone: \mathcal{Z}	Phone: 253-835-4424	4424	Date: 48/16	116 Present?	nt? Yes			4611 South 134th Place, Suite 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)	Suite 100 5201 (fax)
Client Contact: Julia Sch ware	warz				No. of Coolers:	Cooler Temps:	s: '0.0'	8.0%		www.arilabs.com	(200)
Client Project Name:	7.)) //	Analysis Requested	ednested		Notes/Comments	nents
Client Project #: Samy 1,9460/0.60	Samplers:		D. Rauch, T. Hashn	T. Hashn		25/4/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	Sini.	J.V.			
Sample ID	Date	Time	Matrix	No. Containers	497d 737d 87M	PHINS PHINS	m414	rutzw			
£02191-2-MW	11/4/21	1430	Mater	3	\times						
MW-4-161208	11/8/11										
MW-6-161207	11/3/16	SHII									
MW-7-161208	148/116	5480						е.			
MW-8-161207	3//+/71	5560									
F02191-6-MW		1035	_								
MW-10-161207		1145									
MW-11-161207		1455									
MW-13-161208	11/8/21	1355		_					=		
F02191-41-MM	11/4/21	1635		9/		×	×	—			
Comments/Special Instructions	Relinquished by: (Signature)	4	\	Received by: (Signature)	The state of the s	Vh	Relinquished by (Signature)	y:		Received by: (Signature)	
MW-4, MN-8, IMWA	Printed Name:	ed Name:	13 1916	Printed Name:	15/6 x	tes h	Printed Name:			Printed Name:	
4 Marchigh Conc-	Company:	Mpany: Kennedy Jenks	Z	Company:	ALT		Company:			Сотрапу:	92
entrators of Ogsoline # BICK	Date & Time:	Time:	75Z4	Date & Time:	8-16 @ 1725	1725	Date & Time:			Date & Time:	

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program signed agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Record & Laboratory Analysis Request

2 of 2 Uselle Present? Yes 2 Cooler 0.0 0.8 Temps: 0.0 0.8 Analysis Requested	Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 Tukwila, WA 98168 206-695-6201 (fax) www.arilabs.com
Jelle Present? Yes Cooler O.O. O.8 Temps: O.O. O.8 Analysis Requested	MA 98168 6200 206-695-6201 (fax) abs.com Notes/Comments
Cooler C.O.O. O. 8 Temps: O.O. O. 8 Temps: O.O. O. 8	abs.com Notes/Comments
Analysis Requested	Notes/Comments
67 U	
1/2 p	
HOW HOLD OF HINS TO SHINS TO S	
$\times \times \times \times $	
X X X X X .	
×	
\times \times \times \times	
ed by:	
Printed Name:	
Company: Company:	
9-(6 - 1725 Date & Time: Date & Time:	
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed amount for said services by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-[なんのうろうのろうの MW・バントラ WW・イン デルリートリント MW ディン MW ディン MW ディン MW ディン MW Jerrance Program. This program Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

Printed: 12/9/2016 11:43:55AM

WORK ORDER

16L0126

Client: Kennedy Jenks Consultants Project Manager: Mark Harris

Project: Circle K Project Number: 1696010.00

Preservation Confirmation

Container ID	Container Type	рН	
16L0126-01 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-01 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-01 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-02 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-02 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-02 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-03 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-03 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-03 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-04 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-04 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-04 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-05 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-05 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-05 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-06 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-06 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-06 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-07 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-07 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-07 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-08 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-08 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-08 C	VOA Vial, Clear, 40 mL, HCL		-
16L0126-09 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-09 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-09 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-09 D	VOA Vial, Clear, 40 mL, HCL		
16L0126-09 E	VOA Vial, Clear, 40 mL, HCL		
16L0126-09 F	VOA Vial, Clear, 40 mL, HCL		
16L0126-09 G	HDPE NM, 500 mL, 1:1 HNO3	<2 pass	

Reviewed By

Date

WORK ORDER

16L0126

Client: Kennedy Je	nks Consultants	Project Manager:	Mark Harris
Project: Circle K		Project Number:	1696010.00
16L0126-10 A	VOA Vial, Clear, 40 mL, HCL		Topologic Stephinistocking
16L0126-10 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-10 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-10 D	VOA Vial, Clear, 40 mL		
16L0126-10 E	VOA Vial, Clear, 40 mL		
16L0126-10 F	VOA Vial, Clear, 40 mL		
16L0126-10 G	Small OJ, 500 mL		
16L0126-10 H	Small OJ, 500 mL		
16L0126-10 I	Small OJ, 500 mL, ZnOAC	12-9-16 >	<9 Fail
16L0126-10 J	HDPE NM, 500 mL, 1:1 HNO3 (FF)	4	2 12455
16L0126-11 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-11 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-11 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-12 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-12 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-12 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-13 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-13 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-13 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-14 A	VOA Vial, Clear, 40 mL, HCL		-
16L0126-14 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-14 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-14 D	VOA Vial, Clear, 40 mL		
16L0126-14 E	VOA Vial, Clear, 40 mL		
16L0126-14 F	VOA Vial, Amber, 40 mL		
16L0126-14 G	Small OJ, 500 mL		
16L0126-14 H	Small OJ, 500 mL		
16L0126-14 I	Small OJ, 500 mL, ZnOAC	40	7 Fail
16L0126-14 J	HDPE NM, 500 mL, 1:1 HNO3 (FF)	15	2 Pass
16L0126-15 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-15 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-15 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-16 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-16 B	VOA Vial, Clear, 40 mL, HCL		
Water the Control of			

Reviewed By

Date

Page 8 of 10

WORK ORDER

16L0126

Client: Kennedy Jenks Consultants		Project Manager:	Mark Harris
Project: Circle K		Project Number:	1696010.00
16L0126-16 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-16 D	VOA Vial, Clear, 40 mL		
16L0126-16 E	VOA Vial, Clear, 40 mL		
16L0126-16 F	VOA Vial, Clear, 40 mL		
16L0126-16 G	Small OJ, 500 mL		
16L0126-16 H	Small OJ, 500 mL		
16L0126-16 I	Small OJ, 500 mL, ZnOAC	<9	tail
16L0126-16 J	HDPE NM, 500 mL, 1:1 HNO3 (FF)	12	PuSS
16L0126-17 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-17 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-17 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-17 D	VOA Vial, Clear, 40 mL, HCL		
16L0126-17 E	VOA Vial, Clear, 40 mL, HCL		
16L0126-17 F	VOA Vial, Clear, 40 mL, HCL		· · · · · · · · · · · · · · · · · · ·
16L0126-17 G	HDPE NM, 500 mL, 1:1 HNO3	12	mss
16L0126-18 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-18 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-18 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-18 D	VOA Vial, Clear, 40 mL, HCL		
16L0126-18 E	VOA Vial, Clear, 40 mL, HCL		
16L0126-18 F	VOA Vial, Clear, 40 mL, HCL		
16L0126-18 G	VOA Vial, Clear, 40 mL		
16L0126-18 H	VOA Vial, Clear, 40 mL		
16L0126-18 I	VOA Vial, Clear, 40 mL		
16L0126-18 J	Small OJ, 500 mL		
16L0126-18 K	Small OJ, 500 mL		
16L0126-18 L	Small OJ, 500 mL, ZnOAC	29	Fail
16L0126-18 M	HDPE NM, 500 mL, 1:1 HNO3	12	Pass
16L0126-19 A	VOA Vial, Clear, 40 mL, HCL		1
16L0126-19 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-19 C	VOA Vial, Clear, 40 mL, HCL		
16L0126-20 A	VOA Vial, Clear, 40 mL, HCL		
16L0126-20 B	VOA Vial, Clear, 40 mL, HCL		
16L0126-20 C	VOA Vial, Clear, 40 mL, HCL		

Date

Reviewed By

Printed: 12/9/2016 11:43:55AM

WORK ORDER

1 (T 010 (
161.0126	
101.111.70	

Client: Kennedy Jenks Consultants		Project Manager: Mark Harris	
Project: Circle K		Project Number: 1696010.00	
16L0126-20 D	VOA Vial, Clear, 40 mL, HCL		
16L0126-21 A	HDPE NM, 500 mL, 1:1 HNO3 (FF)	L2 TRSS	
Preservation Confirmed	I By	12-9-16 Date	

Reviewed By

Date

Cooler Receipt Form

ARI Client: Lernely Jenks	Project Name: Circle	i na
COC No(s): NA	rioject Name.	2
Assigned ARI Job No: 16L0126	Delivered by: Fed-Ex UPS Courier Hand De	÷ i
Preliminary Examination Phase:	Tracking No:	NA
	31.4	
Were intact, properly signed and dated custody seals attached		YES NO
Were custody papers included with the cooler?		YES NO
Were custody papers properly filled out (ink, signed, etc.) Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for Time:	chemistry) O.O.O.8	YES NO
If cooler temperature is out of compliance fill out form 00070	Temp Gun	ID#: D005276
Cooler Accepted by:	Date: 12-8-16 Time: 172	A CONTRACTOR OF
Complete custody for	ms and attach all shipping documents	
Log-In Phase:	, pp. g c c c c c c c c c c c c c c c c c c	
Was a temperature blank included in the analysis		
Was a temperature blank included in the cooler?		YES (NO)
What kind of packing material was used? Bubble V	900000	
Was sufficient ice used (if appropriate)?		YES NO
Did all bottles arrive in good condition (unbroken)?		YES NO
Were all bottle labels complete and legible?		YES NO
Did the number of containers listed on COC match with the n		YES NO
Did all bottle labels and tags agree with custody papers?		YES (NO)
Were all bottles used correct for the requested analyses?		YES NO
Do any of the analyses (bottles) require preservation? (attach	Pr All A A A A A A A A A A A A A A A A A	YES NO
Were all VOC vials free of air bubbles?		YES NO
Was sufficient amount of sample sent in each bottle?		YES NO
Date VOC Trip Blank was made at ARI	5 PA	YES NO
AND	NA NA	Calla b
_		Split by:
Samples Logged by:	Date:	55
** Notify Project Man	ager of discrepancies or concerns **	9
		TO SECRETARION STATEMENT OF THE SECRETARION S
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle Sa	mple ID on COC
1 %		
	20	
Additional Notes, Discrepancies, & Resolutions:		Si .
1 -0 3 1 - 1 - 1 - 1	1W-16-161207-POST has	1 1-111-
coc si s there are 3	containers for MW-13- received (6x 40 ml HC)	e pb bubbles
L + T Cent wers were	containers for p(W=1)	161208
By: Date:	() / () / () / ()	VOA MAIS, and
Feell Air Public	X 500 mL H)	TOU
-2mm 2-4 mm > 4 mm	Peabubbles \rightarrow "pb" (2 to <4 mm)	TPH
	Large → "lg" (4 to < 6 mm)	BET
	Headspace -> "hs" (>6 mm)	- PP
His Top 21-10 a now!	wt listed on COC-	1,60
0016F	oler Depoint Econ	E)
3/2/10 No true then an C	OC for sample "MW-Y	Revision 014
100 -100 William 100 C		10100/10009
at label and sample	taken (a) 1600.	

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-2-161207	16L0126-01	Water	07-Dec-2016 14:30	08-Dec-2016 17:25
MW-4-161208	16L0126-02	Water	08-Dec-2016 16:00	08-Dec-2016 17:25
MW-6-161207	16L0126-03	Water	07-Dec-2016 11:45	08-Dec-2016 17:25
MW-7-161208	16L0126-04	Water	08-Dec-2016 08:45	08-Dec-2016 17:25
MW-8-161207	16L0126-05	Water	07-Dec-2016 09:55	08-Dec-2016 17:25
MW-9-161207	16L0126-06	Water	07-Dec-2016 10:35	08-Dec-2016 17:25
MW-10-161207	16L0126-07	Water	07-Dec-2016 11:45	08-Dec-2016 17:25
MW-11-161207	16L0126-08	Water	07-Dec-2016 14:55	08-Dec-2016 17:25
MW-13-161208	16L0126-09	Water	08-Dec-2016 13:55	08-Dec-2016 17:25
MW-14-161207	16L0126-10	Water	07-Dec-2016 16:35	08-Dec-2016 17:25
MW-15-161207	16L0126-11	Water	07-Dec-2016 15:40	08-Dec-2016 17:25
MW-16-161207-PRE	16L0126-12	Water	07-Dec-2016 09:50	08-Dec-2016 17:25
MW-16-161207-POST	16L0126-13	Water	07-Dec-2016 10:38	08-Dec-2016 17:25
MW-17-161207	16L0126-14	Water	07-Dec-2016 16:10	08-Dec-2016 17:25
MW-18-161207	16L0126-15	Water	07-Dec-2016 15:15	08-Dec-2016 17:25
MW-19-161208	16L0126-16	Water	08-Dec-2016 12:15	08-Dec-2016 17:25
MW-20-161208	16L0126-17	Water	08-Dec-2016 09:50	08-Dec-2016 17:25
MW-21-161208	16L0126-18	Water	08-Dec-2016 14:50	08-Dec-2016 17:25
Oup-1-161208	16L0126-19	Water	08-Dec-2016 00:00	08-Dec-2016 17:25
Trip Blanks	16L0126-20	Water	07-Dec-2016 00:00	08-Dec-2016 17:25
MW-21-161208	16L0126-21	Water	08-Dec-2016 14:50	08-Dec-2016 17:25

Analytical Resources, Inc.

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Case Narrative

CASE NARRATIVE

Client: Kennedy Jenks Consultants

Project: Circle K Workorder: 16L0126

Sample receipt

Twenty samples and trip blanks were received December 8, 2016 under ARI workorder 16L0126. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Gasoline by NWTPH-g (GC/MS)

The sample(s) were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The sample surrogate percent recovery for MW-19-161208 and MW-20-161208 was out of control high for Toluene-d8.

The method blank(s) were clean at the reporting limits.

The LCS/LCSD percent recoveries were within control limits.

Volatiles - EPA Method SW8260C

The sample(s) were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The sample surrogate percent recovery for MW-19-161208 and MW-20-161208 was out of control high for 1,2-Dichloroethane-d4, and out of control low for Toluene-d8. The samples were re-analyzed, no further actions were taken.

The method blank BEL0337 has Toluene contamination. All associated samples that contain this analye have been flagged with a "B" qualifier.

The LCS/LCSD percent recoveries and RPD were within control limits.

Methane - MEE by RSK175

Analytical Resources, Inc.

Reported:

28-Dec-2016 09:58

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

The sample(s) were run within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS/LCSD percent recoveries and RPD were within control limits.

Total and Dissolved Metals - EPA Method 6010C

The sample(s) were digested and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

The method blank BEL0303 has Iron contamination below ARI's reporting limits. The Iron has been flagged with a "J" qualifier on the blank.

The LCS percent recoveries were within control limits.

Wet Chemistry

The Sulfide samples were received outside of the seven day recommended holding time. The Sulfide analysis has been flagged with an "H" qualifier.

Initial and continuing calibrations were within method requirements.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

The matrix spike/matrix spike duplicate percent recoveries and RPD were within control limits.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-2-161207 16L0126-01 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 14:30

 Instrument: NT2
 Analyzed: 12/09/2016 16:22

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Prepared: 12/09/2016 11:07 Sample Size: 10 mL Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	106 %		
Surrogate: Toluene-d8			80-120 %	98.6 %		
Surrogate: 4-Bromofluorobenzene			80-120 %	97.2 %		
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	99.6 %		

Kennedy Jenks Consultants
32001 - 32nd Avenue South, Suite 100
Federal Way, WA 98001
F

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-2-161207 16L0126-01 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 14:30

 Instrument: NT2
 Analyzed: 12/09/2016 16:22

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Sample Size: 10 mL Prepared: 12/09/2016 11:07 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	t L	Jnits	Notes
Gasoline Range Organics (Tol-Nap)		1	100	ND) ι	ug/L	U
Surrogate: Toluene-d8			80-120 %	98.6	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	97.2	%		

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-4-161208 16L0126-02 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/08/2016 16:00

 Instrument: NT2
 Analyzed: 12/09/2016 16:45

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Prepared: 12/09/2016 11:07 Sample Size: 0.4 mL Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Benzene	71-43-2	1	5.00	17.6	ug/L	
Toluene	108-88-3	1	5.00	30.0	ug/L	
Ethylbenzene	100-41-4	1	5.00	606	ug/L	
m,p-Xylene	179601-23-1	1	10.0	2770	ug/L	
o-Xylene	95-47-6	1	5.00	664	ug/L	
Surrogate: 1,2-Dichloroethane-d4			80-129 %	111 %		
Surrogate: Toluene-d8			80-120 %	100 %		
Surrogate: 4-Bromofluorobenzene			80-120 %	96.3 %		
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	102 %		

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-4-161208 16L0126-02 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/08/2016 16:00

 Instrument: NT2
 Analyzed: 12/09/2016 16:45

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Sample Size: 0.4 mL Prepared: 12/09/2016 11:07 Final Volume: 10 mL

	Reporting								
Analyte	CAS Number	Dilution	Limit	Resu	lt	Units	Notes		
Gasoline Range Organics (Tol-Nap)		1	2500	2800	0	ug/L			
HC ID: GAS									
Surrogate: Toluene-d8			80-120 %	100	%				
Surrogate: 4-Bromofluorobenzene			80-120 %	96.3	%				

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-6-161207 16L0126-03 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 11:45

 Instrument: NT2
 Analyzed: 12/09/2016 17:06

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Prepared: 12/09/2016 11:07 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
,		Dilution				Notes
Benzene	71-43-2	1	0.20	16.5	ug/L	
Toluene	108-88-3	1	0.20	1.56	ug/L	
Ethylbenzene	100-41-4	1	0.20	1.64	ug/L	
m,p-Xylene	179601-23-1	1	0.40	1.88	ug/L	
o-Xylene	95-47-6	1	0.20	0.70	ug/L	
Surrogate: 1,2-Dichloroethane-d4			80-129 %	106 %		
Surrogate: Toluene-d8			80-120 %	99.1 %	ó	
Surrogate: 4-Bromofluorobenzene			80-120 %	94.5 %	ó	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	101 %	1	

Analytical Resources, Inc.

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-6-161207 16L0126-03 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 11:45

 Instrument: NT2
 Analyzed: 12/09/2016 17:06

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Sample Size: 10 mL Prepared: 12/09/2016 11:07 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	101	ug/L	
HC ID: GAS						
Surrogate: Toluene-d8			80-120 %	99.1	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	94.5	%	

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-7-161208 16L0126-04 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/08/2016 08:45

 Instrument: NT2
 Analyzed: 12/09/2016 17:26

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Sample Size: 10 mL Prepared: 12/09/2016 11:07 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND		U
Toluene	108-88-3	1	0.20	ND	U	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	107	%	
Surrogate: Toluene-d8			80-120 %	98.6	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	96.0	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	99.7	%	

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-7-161208 16L0126-04 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/08/2016 08:45

 Instrument: NT2
 Analyzed: 12/09/2016 17:26

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Sample Size: 10 mL Prepared: 12/09/2016 11:07 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result		Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	ND	1	ug/L	U
Surrogate: Toluene-d8			80-120 %	98.6	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	96.0	%		

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-8-161207 16L0126-05 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 09:55

 Instrument: NT2
 Analyzed: 12/09/2016 17:50

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Sample Size: 0.2 mL Prepared: 12/09/2016 11:07 Final Volume: 10 mL

	CAGN	Dil di	Reporting Limit	D 1	TT '	N
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Benzene	71-43-2	1	10.0	11.3	ug/L	
Toluene	108-88-3	1	10.0	1390	ug/L	
Ethylbenzene	100-41-4	1	10.0	1800	ug/L	
m,p-Xylene	179601-23-1	1	20.0	5590	ug/L	
o-Xylene	95-47-6	1	10.0	2360	ug/L	
Surrogate: 1,2-Dichloroethane-d4			80-129 %	117	%	
Surrogate: Toluene-d8			80-120 %	101	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	96.4	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	100	%	

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-8-161207 16L0126-05 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 09:55

 Instrument: NT2
 Analyzed: 12/09/2016 17:50

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Prepared: 12/09/2016 11:07 Sample Size: 0.2 mL Final Volume: 10 mL

	Reporting								
Analyte	CAS Number	Dilution	Limit	Resu	lt U	Jnits	Notes		
Gasoline Range Organics (Tol-Nap)		1	5000	6570	0 1	ug/L			
HC ID: GAS									
Surrogate: Toluene-d8			80-120 %	101	%				
Surrogate: 4-Bromofluorobenzene			80-120 %	96.4	%				

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-9-161207 16L0126-06 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 10:35

 Instrument: NT2
 Analyzed: 12/09/2016 18:13

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Sample Size: 1 mL Prepared: 12/09/2016 11:07 Final Volume: 10 mL

	CAGN	D'L d'	Reporting Limit	D 1	TT '4	N
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Benzene	71-43-2	1	2.00	2.05	ug/L	
Toluene	108-88-3	1	2.00	10.6	ug/L	
Ethylbenzene	100-41-4	1	2.00	125	ug/L	
m,p-Xylene	179601-23-1	1	4.00	203	ug/L	
o-Xylene	95-47-6	1	2.00	21.3	ug/L	
Surrogate: 1,2-Dichloroethane-d4			80-129 %	116	%	
Surrogate: Toluene-d8			80-120 %	101	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	95.4	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	101	%	

Analytical Resources, Inc.

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-9-161207 16L0126-06 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 10:35

 Instrument: NT2
 Analyzed: 12/09/2016 18:13

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0253 Sample Size: 1 mL Prepared: 12/09/2016 11:07 Final Volume: 10 mL

			Reporting				
Analyte	CAS Number	Dilution	Limit	Resu	lt (Units	Notes
Gasoline Range Organics (Tol-Nap)		1	1000	791	0	ug/L	
HC ID: GRO							
Surrogate: Toluene-d8			80-120 %	101	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	95.4	%		

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-10-161207 16L0126-07 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 11:45

 Instrument: NT2
 Analyzed: 12/12/2016 11:02

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Prepared: 12/12/2016 11:02 Sample Size: 10 mL Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	105 %		
Surrogate: Toluene-d8			80-120 %	97.8 %		
Surrogate: 4-Bromofluorobenzene			80-120 %	94.8 %		
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	101 %		

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-10-161207 16L0126-07 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 11:45

 Instrument: NT2
 Analyzed: 12/12/2016 11:02

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 11:02 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	t	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	ND)	ug/L	U
Surrogate: Toluene-d8			80-120 %	97.8	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	94.8	%		

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-11-161207 16L0126-08 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 14:55

 Instrument: NT2
 Analyzed: 12/12/2016 11:22

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 11:22 Final Volume: 10 mL

Andrea	CACNonlos	Dilatia.	Reporting Limit	D14	T I '4	NI-4
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	102	%	
Surrogate: Toluene-d8			80-120 %	98.3	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	97.6	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	97.7	%	

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-11-161207 16L0126-08 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 14:55

 Instrument: NT2
 Analyzed: 12/12/2016 11:22

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 11:22 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Resul	t 1	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	NE)	ug/L	U
Surrogate: Toluene-d8			80-120 %	98.3	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	97.6	%		

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-13-161208 16L0126-09 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/08/2016 13:55

 Instrument: NT2
 Analyzed: 12/12/2016 11:45

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Prepared: 12/12/2016 11:45 Sample Size: 0.2 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	10.0	1120	ug/L	
Toluene	108-88-3	1	10.0	949	ug/L	
Ethylbenzene	100-41-4	1	10.0	808	ug/L	
m,p-Xylene	179601-23-1	1	20.0	3290	ug/L	
o-Xylene	95-47-6	1	10.0	1060	ug/L	
Surrogate: 1,2-Dichloroethane-d4			80-129 %	109 %		
Surrogate: Toluene-d8			80-120 %	101 %		
Surrogate: 4-Bromofluorobenzene			80-120 %	98.4 %		
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	101 %		

Analytical Resources, Inc.

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-13-161208 16L0126-09 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/08/2016 13:55

 Instrument: NT2
 Analyzed: 12/12/2016 11:45

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 0.2 mL Prepared: 12/12/2016 11:45 Final Volume: 10 mL

			Reporting				
Analyte	CAS Number	Dilution	Limit	Resu	lt	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	5000	4000	0	ug/L	
HC ID: GAS							
Surrogate: Toluene-d8			80-120 %	101	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	98.4	%		

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-13-161208 16L0126-09 (Water)

Metals and Metallic Compounds

 Method: EPA 6010C
 Sampled: 12/08/2016 13:55

 Instrument: ICP2
 Analyzed: 12/13/2016 17:59

Sample Preparation:

Preparation Method: TWC EPA 3010A

Preparation Batch: BEL0301 Prepared: 12/12/2016 16:10 Sample Size: 25 mL Final Volume: 25 mL

Analyte CAS Number Dilution Limit Result Units Notes
Lead 7439-92-1 1 0.0200 ND mg/L U

Analytical Resources, Inc.

Kennedy Jenks Consultants

Project: Circle K
32001 - 32nd Avenue South, Suite 100

Project Number: 1696010.00

Federal Way, WA 98001

Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-14-161207 16L0126-10 (Water)

Wet Chemistry

 Method: SM 2320 B-97
 Sampled: 12/07/2016 16:35

 Instrument: Accumet AR60
 Analyzed: 12/09/2016 14:45

Sample Preparation:

Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0264 Prepared: 12/09/2016 14:15 Sample Size: 100 mL Final Volume: 100 mL

Analyte CAS Number Dilution Result Units Notes

Alkalinity, Total 1.00 173 mg/L CaCO3

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-14-161207 16L0126-10 (Water)

XX7 /		•	
Wet	(h	emist	PX/
1100	\sim	CHILD	

Method: SM 4500-NO3⁻ I-00 Sampled: 12/07/2016 16:35
Instrument: [CALC] Analyzed: 12/09/2016 13:58

Sample Preparation: Preparation Method: [CALC]

Preparation Batch: [CALC]

Prepared: 12/09/2016 10:50 Final Volume: 1

Analyte CAS Number Dilution Result Units Notes

Nitrate-N 14797-55-8 1 0.020 ND mg/L

Instrument: LACHAT2 Analyzed: 12/09/2016 13:58

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0250 Sample Size: 10 mL Prepared: 12/09/2016 10:50 Final Volume: 10 mL

 Analyte
 CAS Number
 Dilution
 Limit
 Result
 Units
 Notes

 Nitrite-N
 14797-65-0
 1
 0.010
 2.53
 mg/L

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-14-161207 16L0126-10 (Water)

Wet Chemistry

Method: SM 4500-S2 D-00 Sampled: 12/07/2016 16:35
Instrument: DX500 Analyzed: 12/15/2016 16:54

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0430 Sample Size: 5 mL Prepared: 12/15/2016 16:14 Final Volume: 5 mL

Analyte CAS Number Dilution Result Units Notes

Sulfide 18496-25-8 1 0.050 **0.511** mg/L H

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-14-161207 16L0126-10 (Water)

Wet Chemistry

Method: SM 4500-SO4 G-97 Sampled: 12/07/2016 16:35 Instrument: LACHAT1 Analyzed: 12/13/2016 10:50

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0315

Sample Size: 10 mL Prepared: 12/13/2016 07:23 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Sulfate	14808-79-8	1	2.00	14.8	mg/L	

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-14-161207 16L0126-10 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 16:35

 Instrument: NT2
 Analyzed: 12/12/2016 12:46

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Prepared: 12/12/2016 12:46 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	II
Toluene	108-88-3	1	0.20	ND	ug/L ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	106 %	ó	
Surrogate: Toluene-d8			80-120 %	101 9	6	
Surrogate: 4-Bromofluorobenzene			80-120 %	97.9	6	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	98.7	6	

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-14-161207 16L0126-10 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 16:35

 Instrument: NT2
 Analyzed: 12/12/2016 12:46

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 12:46 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Resu	lt	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	Nl)	ug/L	U
Surrogate: Toluene-d8			80-120 %	101	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	97.9	%		

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-14-161207 16L0126-10 (Water)

Dissolved Gases

 Method: EPA RSK-175
 Sampled: 12/07/2016 16:35

 Instrument: FID6
 Analyzed: 12/12/2016 10:44

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BEL0278 Sample Size: 10 mL Prepared: 12/12/2016 08:26 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane	74-82-8	1	0.65	725	ug/L	
Surrogate: Propane			72-122 %	83.6	6	

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-14-161207 16L0126-10 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6010C
 Sampled: 12/07/2016 16:35

 Instrument: ICP2
 Analyzed: 12/13/2016 18:40

Sample Preparation:

Preparation Method: WMN (No Prep)

Preparation Batch: BEL0303 Prepared: 12/12/2016 17:20 Sample Size: 50 mL Final Volume: 50 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Iron, Dissolved	7439-89-6	1	0.0013	0.0500	0.421	mg/L	
Manganese, Dissolved	7439-96-5	1		0.0010	0.0706	mg/L	

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-14-161207 16L0126-10RE1 (Water)

Wet Chemistry

Method: SM 4500-NO3¯ I-00 Sampled: 12/07/2016 16:35
Instrument: LACHAT2 Analyzed: 12/09/2016 14:23

Sample Preparation:

Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0250 Prepared: 12/09/2016 10:50 Sample Size: 10 mL Final Volume: 10 mL

	CAGN	D'L C	Reporting	D 1	TT '-	N
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Nitrate + Nitrite as N		5	0.050	2.57	mg/L	D

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-15-161207 16L0126-11 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 15:40

 Instrument: NT2
 Analyzed: 12/12/2016 13:07

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Prepared: 12/12/2016 13:07 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	104	/ 6	
Surrogate: Toluene-d8			80-120 %	97.6	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	94.4	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	102	%	

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-15-161207 16L0126-11 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 15:40

 Instrument: NT2
 Analyzed: 12/12/2016 13:07

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 13:07 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	: U	Jnits	Notes
Gasoline Range Organics (Tol-Nap)		1	100	ND	υ	ıg/L	U
Surrogate: Toluene-d8			80-120 %	97.6	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	94.4	%		

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-16-161207-PRE 16L0126-12 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 09:50

 Instrument: NT2
 Analyzed: 12/12/2016 13:27

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 13:27 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	105	%	
Surrogate: Toluene-d8			80-120 %	97.9	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	93.7	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	100	%	

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-16-161207-PRE 16L0126-12 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 09:50

 Instrument: NT2
 Analyzed: 12/12/2016 13:27

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 13:27 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	t i	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	ND)	ug/L	U
Surrogate: Toluene-d8			80-120 %	97.9	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	93.7	%		

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-16-161207-POST 16L0126-13 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 10:38

 Instrument: NT2
 Analyzed: 12/12/2016 13:48

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 13:48 Final Volume: 10 mL

	GAGN. 1	D'1 -:	Reporting	ъ. т		37.
Analyte	CAS Number	Dilution	Limit	Result	t Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	106	%	
Surrogate: Toluene-d8			80-120 %	96.1	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	94.3	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	99.4	%	

Kennedy Jenks Consultants
32001 - 32nd Avenue South, Suite 100 Pr
Federal Way, WA 98001 Pro

Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-16-161207-POST 16L0126-13 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 10:38

 Instrument: NT2
 Analyzed: 12/12/2016 13:48

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 13:48 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Uı	nits	Notes
Gasoline Range Organics (Tol-Nap)		1	100	ND	ug	g/L	U
Surrogate: Toluene-d8			80-120 %	96.1	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	94.3	%		

Analytical Resources, Inc.

Kennedy Jenks Consultants

Project: Circle K
32001 - 32nd Avenue South, Suite 100

Project Number: 1696010.00

Federal Way, WA 98001

Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-17-161207 16L0126-14 (Water)

Wet Chemistry

 Method: SM 2320 B-97
 Sampled: 12/07/2016 16:10

 Instrument: Accumet AR60
 Analyzed: 12/09/2016 14:15

Sample Preparation:

Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0264 Prepared: 12/09/2016 14:15 Sample Size: 100 mL Final Volume: 100 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Alkalinity, Total		1	1.00	37.7 1	ng/L CaCO3	

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-17-161207 16L0126-14 (Water)

XX 7 /		•	
M/At	<i>l</i> h	emis	T-17
****	\sim	CIIIIS	LI V

Method: SM 4500-NO3¯ I-00 Sampled: 12/07/2016 16:10
Instrument: [CALC] Analyzed: 12/09/2016 14:00

Sample Preparation:

Preparation Method: [CALC] Preparation Batch: [CALC]

Prepared: 12/09/2016 10:50

Final Volume: 1

Analyte CAS Number Dilution Result Units Notes

Nitrate-N 14797-55-8 1 0.020 ND mg/L

Instrument: LACHAT2 Analyzed: 12/09/2016 14:00

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0250 Sample Size: 10 mL Prepared: 12/09/2016 10:50 Final Volume: 10 mL

Analyte CAS Number Dilution Result Units Notes

Nitrate + Nitrite as N 1 0.010 0.469 mg/L

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Nitrite-N	14797-65-0	1	0.010	0.469	mg/L	

Analytical Resources, Inc.

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-17-161207 16L0126-14 (Water)

Wet Chemistry

Method: SM 4500-S2 D-00 Sampled: 12/07/2016 16:10 Instrument: DX500 Analyzed: 12/15/2016 16:56

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0430 Sample Size: 5 mL Prepared: 12/15/2016 16:14 Final Volume: 5 mL

Analyte CAS Number Dilution Result Units Notes

Sulfide 18496-25-8 1 0.050 ND mg/L H, U

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-17-161207 16L0126-14 (Water)

Project: Circle K

Wet Chemistry

 Method: SM 4500-SO4 G-97
 Sampled: 12/07/2016 16:10

 Instrument: LACHAT1
 Analyzed: 12/13/2016 10:54

Sample Preparation:

Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0315 Prepared: 12/13/2016 07:23 Sample Size: 10 mL Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Sulfate	14808-79-8	1	2.00	4.86	mg/L	

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-17-161207 16L0126-14 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 16:10

 Instrument: NT2
 Analyzed: 12/12/2016 14:08

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Prepared: 12/12/2016 14:08 Sample Size: 10 mL Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	104	%	
Surrogate: Toluene-d8			80-120 %	96.3	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	96.9	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	102	%	

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-17-161207 16L0126-14 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 16:10

 Instrument: NT2
 Analyzed: 12/12/2016 14:08

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 14:08 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Resul	t Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	1060	ug/L	
HC ID: GRO						
Surrogate: Toluene-d8			80-120 %	96.3	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	96.9	%	

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-17-161207 16L0126-14 (Water)

Dissolved Gases

 Method: EPA RSK-175
 Sampled: 12/07/2016 16:10

 Instrument: FID6
 Analyzed: 12/12/2016 10:58

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BEL0278 Sample Size: 10 mL Prepared: 12/12/2016 08:26 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane	74-82-8	1	0.65	ND	ug/L	U
Surrogate: Propane			72-122 %	84.4 %		

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-17-161207 16L0126-14 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6010C
 Sampled: 12/07/2016 16:10

 Instrument: ICP2
 Analyzed: 12/13/2016 18:44

Sample Preparation:

Preparation Method: WMN (No Prep)

Preparation Batch: BEL0303 Prepared: 12/12/2016 17:20 Sample Size: 50 mL Final Volume: 50 mL

Detection Reporting Analyte CAS Number Dilution Limit Limit Result Units Notes Iron, Dissolved 7439-89-6 0.0013 0.0500 0.0306 mg/\overline{L} Manganese, Dissolved 7439-96-5 0.0010 0.0376 mg/L

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-18-161207 16L0126-15 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 15:15

 Instrument: NT2
 Analyzed: 12/12/2016 14:28

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Prepared: 12/12/2016 14:28 Sample Size: 10 mL Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	107 9	6	
Surrogate: Toluene-d8			80-120 %	97.5	6	
Surrogate: 4-Bromofluorobenzene			80-120 %	96.2	6	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	102 9	6	

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-18-161207 16L0126-15 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 15:15

 Instrument: NT2
 Analyzed: 12/12/2016 14:28

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 14:28 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	t ¹	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	ND)	ug/L	U
Surrogate: Toluene-d8			80-120 %	97.5	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	96.2	%		

Kennedy Jenks Consultants

Project: Circle K
32001 - 32nd Avenue South, Suite 100

Project Number: 1696010.00

Federal Way, WA 98001

Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-19-161208 16L0126-16 (Water)

Wet Chemistry

 Method: SM 2320 B-97
 Sampled: 12/08/2016 12:15

 Instrument: Accumet AR60
 Analyzed: 12/09/2016 14:15

Sample Preparation:

Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0264 Prepared: 12/09/2016 14:15 Sample Size: 100 mL Final Volume: 100 mL

Analyte CAS Number Dilution Result Units Notes

Alkalinity, Total 1 1.00 106 mg/L CaCO3

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-19-161208 16L0126-16 (Water)

*** /		•	
Wet	(h	amic	tra
****	VIII.		u v

Method: SM 4500-NO3⁻ I-00 Sampled: 12/08/2016 12:15
Instrument: [CALC] Analyzed: 12/09/2016 14:01

Sample Preparation:

Preparation Method: [CALC] Preparation Batch: [CALC]

Prepared: 12/09/2016 10:50

Final Volume: 1

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Nitrate-N	14797-55-8	1	0.020	ND	mg/L	

Instrument: LACHAT2 Analyzed: 12/09/2016 14:01

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0250 Sample Size: 10 mL Prepared: 12/09/2016 10:50 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Nitrate + Nitrite as N		1	0.010	ND	mg/L	U

				Reporting			
A	Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
N	Vitrite-N	14797-65-0	1	0.010	ND	mg/L	U

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-19-161208 16L0126-16 (Water)

Wet Chemistry

 Method: SM 4500-S2 D-00
 Sampled: 12/08/2016 12:15

 Instrument: DX500
 Analyzed: 12/15/2016 16:56

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0430 Sample Size: 5 mL Prepared: 12/15/2016 16:14 Final Volume: 5 mL

Analyte CAS Number Dilution Result Units Notes
Sulfide 18496-25-8 1 0.050 0.068 mg/L

Analytical Resources, Inc.

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwar

Project Number: 1696010.00 Reported:
Project Manager: Julia Schwarz 28-Dec-2016 09:58

MW-19-161208 16L0126-16 (Water)

Wet Chemistry

 Method: SM 4500-SO4 G-97
 Sampled: 12/08/2016 12:15

 Instrument: LACHAT1
 Analyzed: 12/13/2016 10:55

Sample Preparation:

Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0315 Prepared: 12/13/2016 07:23 Sample Size: 10 mL Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Sulfate	14808-79-8	1	2.00	6.15	mg/L	

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-19-161208 16L0126-16 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/08/2016 12:15

 Instrument: NT2
 Analyzed: 12/12/2016 14:49

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Prepared: 12/12/2016 14:49 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	265	ug/L	Е
Toluene	108-88-3	1	0.20	515	ug/L	E
Ethylbenzene	100-41-4	1	0.20	350	ug/L	E
m,p-Xylene	179601-23-1	1	0.40	519	ug/L	E
o-Xylene	95-47-6	1	0.20	341	ug/L	E
Surrogate: 1,2-Dichloroethane-d4			80-129 %	271 %		*
Surrogate: Toluene-d8			80-120 %	69.3 %	;	*
Surrogate: 4-Bromofluorobenzene			80-120 %	98.7 %		
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	101 %		

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-19-161208 16L0126-16 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/08/2016 12:15

 Instrument: NT2
 Analyzed: 12/12/2016 14:49

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 14:49 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	15900	ug/L	Е
HC ID: GAS						
Surrogate: Toluene-d8			80-120 %	9.3	%	*
Surrogate: 4-Bromofluorobenzene			80-120 %	8.7	%	

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-19-161208 16L0126-16 (Water)

Dissolved Gases

 Method: EPA RSK-175
 Sampled: 12/08/2016 12:15

 Instrument: FID6
 Analyzed: 12/12/2016 11:12

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BEL0278 Sample Size: 10 mL Prepared: 12/12/2016 08:26 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane	74-82-8	1	0.65	29.6	ug/L	
Surrogate: Propane			72-122 %	89.2 %	5	

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-19-161208 16L0126-16 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6010C
 Sampled: 12/08/2016 12:15

 Instrument: ICP2
 Analyzed: 12/13/2016 18:48

Sample Preparation:

Preparation Method: WMN (No Prep)

Preparation Batch: BEL0303 Prepared: 12/12/2016 17:20 Sample Size: 50 mL Final Volume: 50 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Iron, Dissolved	7439-89-6	1	0.0013	0.0500	1.93	mg/L	
Manganese, Dissolved	7439-96-5	1		0.0010	0.926	mg/L	

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-19-161208 16L0126-16RE1 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/08/2016 12:15

 Instrument: NT2
 Analyzed: 12/13/2016 16:39

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0337 Prepared: 12/13/2016 12:44 Sample Size: 0.05 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	40.0	1930	ug/L	
Toluene	108-88-3	1	40.0	6350	ug/L	В
Ethylbenzene	100-41-4	1	40.0	1180	ug/L	
m,p-Xylene	179601-23-1	1	80.0	4210	ug/L	
o-Xylene	95-47-6	1	40.0	1510	ug/L	
Surrogate: 1,2-Dichloroethane-d4			80-129 %	109 %	;	
Surrogate: Toluene-d8			80-120 %	101 %		
Surrogate: 4-Bromofluorobenzene			80-120 %	94.7 %	ó	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	102 %		

Analytical Resources, Inc.

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-19-161208 16L0126-16RE1 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/08/2016 12:15

 Instrument: NT2
 Analyzed: 12/13/2016 16:39

Sample Preparation: Preparation Me

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0337 Sample Size: 0.05 mL Prepared: 12/13/2016 16:39 Final Volume: 10 mL

			Reporting				
Analyte	CAS Number	Dilution	Limit	Resu	ılt	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	20000	6820	00	ug/L	
HC ID: GAS							
Surrogate: Toluene-d8			80-120 %	101	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	94.7	%		

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-20-161208 16L0126-17 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/08/2016 09:50

 Instrument: NT2
 Analyzed: 12/12/2016 15:09

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 15:09 Final Volume: 10 mL

			Reporting		•	
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
1,2-Dichloroethane	107-06-2	1	0.20	2.33	ug/L	
Benzene	71-43-2	1	0.20	433	ug/L	E
Toluene	108-88-3	1	0.20	616	ug/L	E
1,2-Dibromoethane	106-93-4	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	393	ug/L	E
m,p-Xylene	179601-23-1	1	0.40	617	ug/L	E
o-Xylene	95-47-6	1	0.20	423	ug/L	E
Methyl tert-butyl Ether	1634-04-4	1	0.50	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	244 %		*
Surrogate: Toluene-d8			80-120 %	57.9 %		*
Surrogate: 4-Bromofluorobenzene			80-120 %	102 %		
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	99.4 %		

Analytical Resources, Inc.

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-20-161208 16L0126-17 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/08/2016 09:50

 Instrument: NT2
 Analyzed: 12/12/2016 15:09

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 15:09 Final Volume: 10 mL

	Reporting					
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	100	15300	ug/L	Е
HC ID: GAS						
Surrogate: Toluene-d8			80-120 %	57.9	%	*
Surrogate: 4-Bromofluorobenzene			80-120 %	102	%	

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-20-161208 16L0126-17 (Water)

Metals and Metallic Compounds

 Method: EPA 6010C
 Sampled: 12/08/2016 09:50

 Instrument: ICP2
 Analyzed: 12/13/2016 19:55

Sample Preparation:

Preparation Method: TWC EPA 3010A

Preparation Batch: BEL0301 Prepared: 12/12/2016 16:10 Sample Size: 25 mL Final Volume: 25 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Lead	7439-92-1	1	0.0200	ND	mg/L	U

Analytical Resources, Inc.

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-20-161208 16L0126-17RE1 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/08/2016 09:50

 Instrument: NT2
 Analyzed: 12/13/2016 16:59

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0337 Prepared: 12/13/2016 12:44 Sample Size: 0.05 mL Final Volume: 10 mL

			Reporting			•
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
1,2-Dichloroethane	107-06-2	1	40.0	ND	ug/L	U
Benzene	71-43-2	1	40.0	7010	ug/L	
Toluene	108-88-3	1	40.0	9220	ug/L	В
1,2-Dibromoethane	106-93-4	1	40.0	ND	ug/L	U
Ethylbenzene	100-41-4	1	40.0	1520	ug/L	
m,p-Xylene	179601-23-1	1	80.0	5730	ug/L	
o-Xylene	95-47-6	1	40.0	2450	ug/L	
Methyl tert-butyl Ether	1634-04-4	1	100	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	111 %		
Surrogate: Toluene-d8			80-120 %	100 %		
Surrogate: 4-Bromofluorobenzene			80-120 %	93.2 %		
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	103 %		

Analytical Resources, Inc.

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-20-161208 16L0126-17RE1 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/08/2016 09:50

 Instrument: NT2
 Analyzed: 12/13/2016 16:59

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0337 Sample Size: 0.05 mL Prepared: 12/13/2016 16:59 Final Volume: 10 mL

			Reporting				
Analyte	CAS Number	Dilution	Limit	Resul	lt	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	20000	8590	0	ug/L	
HC ID: GAS							
Surrogate: Toluene-d8			80-120 %	100	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	93.2	%		

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-21-161208 16L0126-18 (Water)

Wet Chemistry

Federal Way, WA 98001

 Method: SM 2320 B-97
 Sampled: 12/08/2016 14:50

 Instrument: Accumet AR60
 Analyzed: 12/09/2016 14:45

Sample Preparation:

Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0264 Prepared: 12/09/2016 14:15 Sample Size: 100 mL Final Volume: 100 mL

Applyto	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Analyte Alkalinity, Total	CAS Number	1	1.00		ng/L CaCO3	Notes

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-21-161208 16L0126-18 (Water)

XX7 /		•	
Wet	(h	emis	rv.
****	\sim	CHILD	

Method: SM 4500-NO3¯ I-00 Sampled: 12/08/2016 14:50
Instrument: [CALC] Analyzed: 12/09/2016 14:02

Sample Preparation:

Preparation Method: [CALC] Preparation Batch: [CALC]

Prepared: 12/09/2016 10:50

Final Volume: 1

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Nitrate-N	14797-55-8	1	0.020	ND	mg/L	

Instrument: LACHAT2 Analyzed: 12/09/2016 14:02

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0250 Sample Size: 10 mL Prepared: 12/09/2016 10:50 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Nitrate + Nitrite as N		1	0.010	ND	mg/L	U

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Nitrite-N	14797-65-0	1	0.010	0.014	mg/L	

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-21-161208 16L0126-18 (Water)

Wet Chemistry

Federal Way, WA 98001

Method: SM 4500-S2 D-00 Sampled: 12/08/2016 14:50 Instrument: DX500 Analyzed: 12/15/2016 16:57

Sample Preparation: Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0430 Sample Size: 5 mL Prepared: 12/15/2016 16:14 Final Volume: 5 mL

Analyte CAS Number Dilution Result Units Notes

Sulfide 18496-25-8 1 0.050 ND mg/L U

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-21-161208 16L0126-18 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/08/2016 14:50

 Instrument: NT2
 Analyzed: 12/13/2016 17:20

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0337 Sample Size: 0.02 mL Prepared: 12/13/2016 13:08 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
1,2-Dichloroethane	107-06-2	1	100	ND	ug/L	U
Benzene	71-43-2	1	100	21400	ug/L	
Toluene	108-88-3	1	100	21400	ug/L	В
1,2-Dibromoethane	106-93-4	1	100	ND	ug/L	U
Ethylbenzene	100-41-4	1	100	2280	ug/L	
m,p-Xylene	179601-23-1	1	200	9230	ug/L	
o-Xylene	95-47-6	1	100	4010	ug/L	
Methyl tert-butyl Ether	1634-04-4	1	250	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	114 %		
Surrogate: Toluene-d8			80-120 %	100 %		
Surrogate: 4-Bromofluorobenzene			80-120 %	94.7 %		
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	100 %		

Analytical Resources, Inc.

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-21-161208 16L0126-18 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/08/2016 14:50

 Instrument: NT2
 Analyzed: 12/13/2016 17:20

Sample Preparation: Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0337 Sample Size: 0.02 mL Prepared: 12/13/2016 17:20 Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Resul	t Units	Notes
Gasoline Range Organics (Tol-Nap)		1	50000	16300	0 ug/L	
HC ID: GAS						
Surrogate: Toluene-d8			80-120 %	100	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	94.7	%	

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-21-161208 16L0126-18 (Water)

Dissolved Gases

 Method: EPA RSK-175
 Sampled: 12/08/2016 14:50

 Instrument: FID6
 Analyzed: 12/12/2016 11:25

Sample Preparation: Preparation Method: No Prep - Volatiles

Preparation Batch: BEL0278 Sample Size: 10 mL Prepared: 12/12/2016 08:26 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Methane	74-82-8	1	0.65	726	ug/L	
Surrogate: Propane			72-122 %	79.8 %	5	

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-21-161208 16L0126-18 (Water)

Metals and Metallic Compounds

 Method: EPA 6010C
 Sampled: 12/08/2016 14:50

 Instrument: ICP2
 Analyzed: 12/13/2016 19:59

Sample Preparation:

Preparation Method: TWC EPA 3010A

Preparation Batch: BEL0301 Prepared: 12/12/2016 16:10 Sample Size: 25 mL Final Volume: 25 mL

 Analyte
 CAS Number
 Dilution
 Limit
 Result
 Units
 Notes

 Lead
 7439-92-1
 1
 0.0200
 ND
 mg/L
 U

Analytical Resources, Inc.

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-21-161208 16L0126-18RE1 (Water)

Wet Chemistry

 Method: SM 4500-SO4 G-97
 Sampled: 12/08/2016 14:50

 Instrument: LACHAT1
 Analyzed: 12/13/2016 11:09

Sample Preparation:

Preparation Method: No Prep Wet Chem

Preparation Batch: BEL0315 Prepared: 12/13/2016 07:23 Sample Size: 10 mL Final Volume: 10 mL

			Reporting			
Analyte	CAS Number	Dilution	Limit	Result	Units	Notes
Sulfate	14808-79-8	2	4.00	4.19	mg/L	D

Analytical Resources, Inc.

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Dup-1-161208 16L0126-19 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/08/2016 00:00

 Instrument: NT2
 Analyzed: 12/13/2016 17:40

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0337 Prepared: 12/13/2016 12:44 Sample Size: 0.2 mL Final Volume: 10 mL

Analysta	CAS Number	Reporting CAS Number Dilution Limit Result Units				
Analyte	CAS Number	Dilution	Liiiit	Result	Units	Notes
Benzene	71-43-2	1	10.0	1140	ug/L	
Toluene	108-88-3	1	10.0	1080	ug/L	В
Ethylbenzene	100-41-4	1	10.0	714	ug/L	
m,p-Xylene	179601-23-1	1	20.0	2970	ug/L	
o-Xylene	95-47-6	1	10.0	1020	ug/L	
Surrogate: 1,2-Dichloroethane-d4			80-129 %	107 %		
Surrogate: Toluene-d8			80-120 %	102 %		
Surrogate: 4-Bromofluorobenzene			80-120 %	95.7 %		
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	102 %		

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Dup-1-161208 16L0126-19 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/08/2016 00:00

 Instrument: NT2
 Analyzed: 12/13/2016 17:40

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0337 Sample Size: 0.2 mL Prepared: 12/13/2016 17:40 Final Volume: 10 mL

			Reporting				
Analyte	CAS Number	Dilution	Limit	Resu	lt	Units	Notes
Gasoline Range Organics (Tol-Nap)		1	5000	3860	0	ug/L	
HC ID: GAS							
Surrogate: Toluene-d8			80-120 %	102	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	95.7	%		

Analytical Resources, Inc.

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Trip Blanks 16L0126-20 (Water)

Volatile Organic Compounds

 Method: EPA 8260C
 Sampled: 12/07/2016 00:00

 Instrument: NT2
 Analyzed: 12/12/2016 10:42

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Prepared: 12/12/2016 10:42 Sample Size: 10 mL Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	Units	Notes
Benzene	71-43-2	1	0.20	ND	ug/L	U
Toluene	108-88-3	1	0.20	ND	ug/L	U
Ethylbenzene	100-41-4	1	0.20	ND	ug/L	U
m,p-Xylene	179601-23-1	1	0.40	ND	ug/L	U
o-Xylene	95-47-6	1	0.20	ND	ug/L	U
Surrogate: 1,2-Dichloroethane-d4			80-129 %	109	%	
Surrogate: Toluene-d8			80-120 %	98.3	%	
Surrogate: 4-Bromofluorobenzene			80-120 %	96.9	%	
Surrogate: 1,2-Dichlorobenzene-d4			80-120 %	99.2	%	

Analytical Report

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Trip Blanks 16L0126-20 (Water)

Volatile Organic Compounds

 Method: NWTPHg
 Sampled: 12/07/2016 00:00

 Instrument: NT2
 Analyzed: 12/12/2016 10:42

Sample Preparation:

Preparation Method: EPA 5030 (Purge and Trap)

Preparation Batch: BEL0281 Sample Size: 10 mL Prepared: 12/12/2016 10:42 Final Volume: 10 mL

Analyte	CAS Number	Dilution	Reporting Limit	Result	t U	Jnits	Notes
Gasoline Range Organics (Tol-Nap)		1	100	ND) 1	ug/L	U
Surrogate: Toluene-d8			80-120 %	98.3	%		
Surrogate: 4-Bromofluorobenzene			80-120 %	96.9	%		

Analytical Report

Kennedy Jenks Consultants
Project: Circle K
32001 - 32nd Avenue South, Suite 100
Project Number: 1696010.00
Federal Way, WA 98001
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

MW-21-161208 16L0126-21 (Water)

Metals and Metallic Compounds (dissolved)

 Method: EPA 6010C
 Sampled: 12/08/2016 14:50

 Instrument: ICP2
 Analyzed: 12/13/2016 18:52

Sample Preparation:

Preparation Method: WMN (No Prep)

Preparation Batch: BEL0303 Prepared: 12/12/2016 17:20 Sample Size: 50 mL Final Volume: 50 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Iron, Dissolved	7439-89-6	1	0.0013	0.0500	10.9	mg/L	
Manganese, Dissolved	7439-96-5	1		0.0010	5.06	mg/L	

Analytical Resources, Inc.

Reported:

Kennedy Jenks Consultants

Project: Circle K Project Number: 1696010.00

32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project Manager: Julia Schwarz 28-Dec-2016 09:58

Wet Chemistry - Quality Control

Batch BEL0250 - No Prep Wet Chem

Instrument: LACHAT2

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BEL0250-BLK1)			Prepa	ared: 09-Dec	-2016 An	alyzed: 09-	Dec-2016 13	3:38		
Nitrate + Nitrite as N	ND	0.010	mg/L							U
Nitrite-N	ND	0.010	mg/L							U
LCS (BEL0250-BS1)			Prepa	ared: 09-Dec	-2016 Ana	alyzed: 09-	Dec-2016 13	3:40		
Nitrate + Nitrite as N	0.497	0.010	mg/L	0.500		99.4	90-110			
LCS (BEL0250-BS2)			Prepa	ared: 09-Dec	-2016 Ana	alyzed: 09-	Dec-2016 13	3:41		
Nitrite-N	0.494	0.010	mg/L	0.500		98.8	75-125			

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Wet Chemistry - Quality Control

Batch BEL0264 - No Prep Wet Chem

Instrument: Accumet AR60

QC Sample/Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BEL0264-BLK1)		Prep	ared: 09-Dec	:-2016 Ana	alyzed: 09-	Dec-2016 1	4:15		
Alkalinity, Total	ND	1.00 mg/L CaCO3							U
Duplicate (BEL0264-DUP1)	Source: 1	6L0126-10 Prep	ared: 09-Dec	c-2016 Ana	alyzed: 09-	Dec-2016 1	4:45		
Alkalinity, Total	173	1.00 mg/L CaCO3		173			0.29	20	
Reference (BEL0264-SRM1)	SRM: E	002024 Prep	ared: 09-Dec	c-2016 Ana	alyzed: 09-	Dec-2016 1	4:45		
Alkalinity, Total	43.9	1.00 mg/L CaCO3	44.1		99.5	90-110			

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Wet Chemistry - Quality Control

Batch BEL0315 - No Prep Wet Chem

Instrument: LACHAT1

Federal Way, WA 98001

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
QC Sample/Analyte	Result	Liiiit	Ollits	LCVCI	Result	70KEC	Lillits	KI D	Lillit	Notes
Blank (BEL0315-BLK1)			Prepa	ared: 13-Dec	c-2016 Ana	ılyzed: 13-	Dec-2016 1	0:47		
Sulfate	ND	2.00	mg/L							U
LCS (BEL0315-BS1)			Prepa	ared: 13-Dec	c-2016 Ana	ılyzed: 13-	Dec-2016 1	0:49		
Sulfate	14.8	2.00	mg/L	15.0		98.7	90-110			
Duplicate (BEL0315-DUP1)	Source: 1	6L0126-10	Prepa	ared: 13-Dec	c-2016 Ana	ılyzed: 13-	Dec-2016 1	0:51		
Sulfate	15.1	2.00	mg/L		14.8			1.73	20	
Matrix Spike (BEL0315-MS1)	Source: 1	6L0126-10	Prepa	ared: 13-Dec	:-2016 Ana	alyzed: 13-	Dec-2016 1	0:53		
Sulfate	94.3	10.0	mg/L	75.0	14.8	106	75-125			D

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K

Project Number: 1696010.00 Project Manager: Julia Schwarz **Reported:** 28-Dec-2016 09:58

Wet Chemistry - Quality Control

Batch BEL0430 - No Prep Wet Chem

Instrument: DX500

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BEL0430-BLK1)			Prepa	ared: 15-Dec	c-2016 Ana	alyzed: 15-	Dec-2016 1	6:28		
Sulfide	ND	0.050	mg/L							U
LCS (BEL0430-BS1)			Prepa	ared: 15-Dec	e-2016 Ana	alyzed: 15-	Dec-2016 1	6:28		
Sulfide	0.477	0.050	mg/L	0.497		95.9	75-125			
Duplicate (BEL0430-DUP1)	Source:	16L0126-10	Prepa	ared: 15-Dec	c-2016 Ana	alyzed: 15-	Dec-2016 1	6:54		
Sulfide	0.481	0.050	mg/L		0.511			6.05	20	
Matrix Spike (BEL0430-MS1)	Source:	16L0126-10	Prepa	ared: 15-Dec	e-2016 Ana	alyzed: 15-	Dec-2016 1	6:55		
Sulfide	0.986	0.050	mg/L	0.497	0.511	95.5	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Kennedy Jenks Consultants

32001 - $32\mathrm{nd}$ Avenue South, Suite 100

Federal Way, WA 98001

Project: Circle K Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Volatile Organic Compounds - Quality Control

Batch BEL0253 - EPA 5030 (Purge and Trap)

Instrument: NT2

Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 11:13	QC Sample/Analyte	Result	Re	eporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Survegate: Flower-def		Result		Limit							Limit	110108
Surrogate: Toluene-d8						ared: 09-Dec	2-2016 An	nalyzed: 09-1	Dec-2016 1	1:13		
Surrogate: 4-Bromofluorobenzene	Gasoline Range Organics (Tol-Nap)	ND		100	ug/L							U
Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 11:13 U	Surrogate: Toluene-d8		4.86		ug/L	5.00		97.1	80-120			
1,2-Dichloroethane	Surrogate: 4-Bromofluorobenzene		4.72		ug/L	5.00		94.3	80-120			
Benzene ND 0.20 ug/L U U	Blank (BEL0253-BLK2)				Prepa	ared: 09-Dec	:-2016 An	ıalyzed: 09-l	Dec-2016 1	1:13		
Toluene ND 0.20 ug/L U2 1.2-Dibromoethane ND 0.20 ug/L U2 1.2-Dibromoethane-d ND 0.20 ug/L U2 1.2-Dibromoethane-d ND 0.20 ug/L U2 1.2-Dibromoethane-d Surrogate: 1,2-Dichloroethane-d Surrogate: 1,2-Dichloroethane-d Surrogate: 1,2-Dichloroethane-d Surrogate: 1,2-Dichloroethane-d Surrogate: 1,2-Dichlorobenzene-d Surrogate: 1,2-Dichlorobenzene-d Surrogate: 1,2-Dichlorobenzene-d Surrogate: 1,2-Dichlorobenzene-d Surrogate: 1,2-Dichloroethane-d Surrogate: 1,2-Dichlorobenzene-d Surrogate: 1,	1,2-Dichloroethane	ND		0.20	ug/L							U
1,2-Dibromoethane	Benzene	ND		0.20	ug/L							U
Ethylbenzene ND	Toluene	ND		0.20	ug/L							U
mp-Xylene ND 0.40 ug/L U o-Xylene ND 0.20 ug/L U Methyl tert-butyl Ether ND 0.50 ug/L U Surrogate: 1,2-Dichloroethane-d4 5.35 ug/L 5.00 107 80-129 Surrogate: 1,2-Dichloroethane-d8 4.86 ug/L 5.00 97.1 80-120 Surrogate: 4-Bromofluorobenzene 4.72 ug/L 5.00 97.1 80-120 Surrogate: 1,2-Dichloroethane-d4 4.93 ug/L 5.00 98.7 80-120 LCS (BEL0253-BS1) Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 09:29 Gasoline Range Organics (Tol-Nap) 1000 ug/L 1000 ug/L 5.00 98.7 80-120 Surrogate: 4-Bromofluorobenzene 4.76 ug/L 5.00 95.2 80-120 LCS (BEL0253-BS2) Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 10:10 LCS (BEL0253-BS2) Prepared: 09-Dec-2016 10:10 LCS (BEL0253-BS2) Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 10:10 LCS (BEL0253-BS2) Prepared: 09-Dec-2016 1	1,2-Dibromoethane	ND		0.20	ug/L							U
ND 0.50 ug/L U U	Ethylbenzene	ND		0.20	ug/L							U
Methyl tert-butyl Ether ND 0.50 ug/L 5.00 107 80-129 Surrogate: 1,2-Dichloroethane-d4 5.35 ug/L 5.00 97.1 80-120 Surrogate: Toluene-d8 4.86 ug/L 5.00 97.1 80-120 Surrogate: 1,2-Dichlorobenzene-d4 4.93 ug/L 5.00 98.7 80-120 LCS (BEL0253-BS1) Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 09:29 Gasoline Range Organics (Tol-Nap) 1000 ug/L 5.00 100 80-120 Surrogate: Toluene-d8 5.01 ug/L 5.00 100 80-120 LCS (BEL0253-BS2) Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 10:10 L2-Dichloroethane 10.5 0.20 ug/L 10.0 105 75-123	m,p-Xylene	ND		0.40	ug/L							U
Surrogate: 1,2-Dichloroethane-d4	o-Xylene	ND		0.20	ug/L							U
Surrogate: Toluene-d8	Methyl tert-butyl Ether	ND		0.50	ug/L							U
Surrogate: 4-Bromofluorobenzene 4.72 bug/L s.00 94.3 bol 20 80-120 Surrogate: 1,2-Dichlorobenzene-d4 4.93 bug/L s.00 98.7 bol 20 80-120 LCS (BEL0253-BS1) Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 09:29 Gasoline Range Organics (Tol-Nap) 1000 bug/L l000 bloom bloomed 1000 bloom bloomed 80-120 Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene 5.01 bug/L s.00 bloomed 5.00 bloomed 100 bloomed 80-120 LCS (BEL0253-BS2) Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 10:10 1,2-Dichloroethane 10.5 bloomed 0.20 bloomed 10.0 bloomed 10.5 bloomed 10.3 bloomed 0.20 bloomed 10.0 bloomed 10.3 bloomed 0.20 bloomed 10.0 bloomed 10.1 bloomed 10.1 bloomed 10.2 bloomed 10.1 bloomed 10.2 bloomed 10.0 bloomed 10.1 bloomed 80-120 bloomed 10.1 bloomed 10.1 bloomed 10.1 bloomed 10.1 bloomed 10.2 bloomed 10.2 bloomed 10.0 bloomed 10.1 bloomed 10.2 bloomed 10.2 bloomed 10.2 bloomed 10.0 bloomed 10.1 bloomed 10.1 bloomed 10.2 bloomed 10.2 bloomed <t< td=""><td>Surrogate: 1,2-Dichloroethane-d4</td><td></td><td>5.35</td><td></td><td>ug/L</td><td>5.00</td><td></td><td>107</td><td>80-129</td><td></td><td></td><td></td></t<>	Surrogate: 1,2-Dichloroethane-d4		5.35		ug/L	5.00		107	80-129			
Surrogate: 1,2-Dichlorobenzene-d4 4.93 ug/L 5.00 98.7 80-120	Surrogate: Toluene-d8		4.86		ug/L	5.00		97.1	80-120			
Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 O9-Dec-2016 O9-Dec-2	Surrogate: 4-Bromofluorobenzene		4.72		ug/L	5.00		94.3	80-120			
Casoline Range Organics (Tol-Nap) 1000 100 ug/L 1000 100 80-120	Surrogate: 1,2-Dichlorobenzene-d4		4.93		ug/L	5.00		98.7	80-120			
Surrogate: Toluene-d8 S.01 ug/L S.00 100 80-120	LCS (BEL0253-BS1)				Prepa	ared: 09-Dec	:-2016 An	ıalyzed: 09-1	Dec-2016 0	9:29		
Surrogate: 4-Bromofluorobenzene 4.76 ug/L 5.00 95.2 80-120	Gasoline Range Organics (Tol-Nap)	1000		100	ug/L	1000		100	80-120			
Prepared: 09-Dec-2016 Analyzed: 09-Dec-2016 10:10 1,2-Dichloroethane 10.5 0.20 ug/L 10.0 105 75-123 Benzene 10.4 0.20 ug/L 10.0 104 80-120 Toluene 10.3 0.20 ug/L 10.0 103 80-120 1,2-Dibromoethane 11.2 0.20 ug/L 10.0 112 80-121 Ethylbenzene 10.1 0.20 ug/L 10.0 101 80-120 m,p-Xylene 20.7 0.40 ug/L 20.0 103 80-121 o-Xylene 10.2 0.20 ug/L 10.0 102 80-121 Methyl tert-butyl Ether 10.4 0.50 ug/L 10.0 104 71-132 Surrogate: 1,2-Dichloroethane-d4 5.30 ug/L 5.00 106 80-129	Surrogate: Toluene-d8		5.01			5.00	_	100	80-120	_	_	
1,2-Dichloroethane 10.5 0.20 ug/L 10.0 105 75-123 Benzene 10.4 0.20 ug/L 10.0 104 80-120 Toluene 10.3 0.20 ug/L 10.0 103 80-120 1,2-Dibromoethane 11.2 0.20 ug/L 10.0 112 80-121 Ethylbenzene 10.1 0.20 ug/L 10.0 101 80-120 m,p-Xylene 20.7 0.40 ug/L 20.0 103 80-121 o-Xylene 10.2 0.20 ug/L 10.0 102 80-121 Methyl tert-butyl Ether 10.4 0.50 ug/L 10.0 104 71-132 Surrogate: 1,2-Dichloroethane-d4 5.30 ug/L 5.00 106 80-129	Surrogate: 4-Bromofluorobenzene		4.76		ug/L	5.00		95.2	80-120			
Benzene 10.4 0.20 ug/L 10.0 104 80-120 Toluene 10.3 0.20 ug/L 10.0 103 80-120 1,2-Dibromoethane 11.2 0.20 ug/L 10.0 112 80-121 Ethylbenzene 10.1 0.20 ug/L 10.0 101 80-120 m.p-Xylene 20.7 0.40 ug/L 20.0 103 80-121 o-Xylene 10.2 0.20 ug/L 10.0 102 80-121 Methyl tert-butyl Ether 10.4 0.50 ug/L 10.0 104 71-132 Surrogate: 1,2-Dichloroethane-d4 5.30 ug/L 5.00 106 80-129	LCS (BEL0253-BS2)				Prepa	ared: 09-Dec	:-2016 An	ıalyzed: 09-1	Dec-2016 1	0:10		
Toluene 10.3 0.20 ug/L 10.0 103 80-120 1,2-Dibromoethane 11.2 0.20 ug/L 10.0 112 80-121 Ethylbenzene 10.1 0.20 ug/L 10.0 101 80-120 m,p-Xylene 20.7 0.40 ug/L 20.0 103 80-121 o-Xylene 10.2 0.20 ug/L 10.0 102 80-121 Methyl tert-butyl Ether 10.4 0.50 ug/L 10.0 104 71-132 Surrogate: 1,2-Dichloroethane-d4 5.30 ug/L 5.00 106 80-129	1,2-Dichloroethane	10.5		0.20	_	10.0		105	75-123			
1,2-Dibromoethane 11.2 0.20 ug/L 10.0 112 80-121 Ethylbenzene 10.1 0.20 ug/L 10.0 101 80-120 m,p-Xylene 20.7 0.40 ug/L 20.0 103 80-121 o-Xylene 10.2 0.20 ug/L 10.0 102 80-121 Methyl tert-butyl Ether 10.4 0.50 ug/L 10.0 104 71-132 Surrogate: 1,2-Dichloroethane-d4 5.30 ug/L 5.00 106 80-129	Benzene	10.4		0.20	ug/L	10.0		104	80-120			
Ethylbenzene 10.1 0.20 ug/L 10.0 101 80-120 m,p-Xylene 20.7 0.40 ug/L 20.0 103 80-121 o-Xylene 10.2 0.20 ug/L 10.0 102 80-121 Methyl tert-butyl Ether 10.4 0.50 ug/L 10.0 104 71-132 Surrogate: 1,2-Dichloroethane-d4 5.30 ug/L 5.00 106 80-129	Toluene	10.3		0.20	ug/L	10.0		103	80-120			
m,p-Xylene 20.7 0.40 ug/L 20.0 103 80-121 0-Xylene 10.2 0.20 ug/L 10.0 102 80-121 Methyl tert-butyl Ether 10.4 0.50 ug/L 10.0 104 71-132 Surrogate: 1,2-Dichloroethane-d4 5.30 ug/L 5.00 106 80-129	1,2-Dibromoethane	11.2		0.20	ug/L	10.0		112	80-121			
o-Xylene 10.2 0.20 ug/L 10.0 102 80-121 Methyl tert-butyl Ether 10.4 0.50 ug/L 10.0 104 71-132 Surrogate: 1,2-Dichloroethane-d4 5.30 ug/L 5.00 106 80-129	Ethylbenzene	10.1		0.20	ug/L	10.0		101	80-120			
Methyl tert-butyl Ether 10.4 0.50 ug/L 10.0 104 71-132 Surrogate: 1,2-Dichloroethane-d4 5.30 ug/L 5.00 106 80-129	m,p-Xylene	20.7		0.40	ug/L	20.0		103	80-121			
Surrogate: 1,2-Dichloroethane-d4 5.30 ug/L 5.00 106 80-129	o-Xylene	10.2		0.20	ug/L	10.0		102	80-121			
	Methyl tert-butyl Ether	10.4		0.50	ug/L	10.0		104	71-132			
Surrogate: Toluene-d8 5.07 ug/L 5.00 101 80-120	Surrogate: 1,2-Dichloroethane-d4		5.30		ug/L	5.00		106	80-129			
	Surrogate: Toluene-d8		5.07		ug/L	5.00		101	80-120			

Analytical Resources, Inc.

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Volatile Organic Compounds - Quality Control

Batch BEL0253 - EPA 5030 (Purge and Trap)

Instrument: NT2

		R	eporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS (BEL0253-BS2)				Prepa	ared: 09-Dec	:-2016 Ana	alyzed: 09-	Dec-2016 10	0:10		
Surrogate: 4-Bromofluorobenzene		4.90		ug/L	5.00		97.9	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		5.04		ug/L	5.00		101	80-120			
LCS Dup (BEL0253-BSD1)				Prepa	ared: 09-Dec	:-2016 Ana	alyzed: 09-	Dec-2016 09	9:49		
Gasoline Range Organics (Tol-Nap)	1020		100	ug/L	1000		102	80-120	1.71	30	
Surrogate: Toluene-d8		5.06		ug/L	5.00	<u> </u>	101	80-120			
Surrogate: 4-Bromofluorobenzene		4.81		ug/L	5.00		96.1	80-120			
LCS Dup (BEL0253-BSD2)				Prepa	ared: 09-Dec	:-2016 Ana	alyzed: 09-	Dec-2016 10	0:30		
1,2-Dichloroethane	10.4		0.20	ug/L	10.0		104	75-123	1.61	30	
Benzene	10.2		0.20	ug/L	10.0		102	80-120	1.30	30	
Toluene	10.1		0.20	ug/L	10.0		101	80-120	2.25	30	
1,2-Dibromoethane	10.9		0.20	ug/L	10.0		109	80-121	3.32	30	
Ethylbenzene	9.87		0.20	ug/L	10.0		98.7	80-120	2.36	30	
m,p-Xylene	20.2		0.40	ug/L	20.0		101	80-121	2.26	30	
o-Xylene	9.99		0.20	ug/L	10.0		99.9	80-121	1.71	30	
Methyl tert-butyl Ether	10.3		0.50	ug/L	10.0		103	71-132	0.37	30	
Surrogate: 1,2-Dichloroethane-d4		4.94		ug/L	5.00		98.8	80-129			
Surrogate: Toluene-d8		5.04		ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene		4.83		ug/L	5.00		96.7	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		5.07		ug/L	5.00		101	80-120			

Analytical Resources, Inc.

Kennedy Jenks Consultants

32001 - 32 nd Avenue South, Suite $100\,$

Federal Way, WA 98001

Project: Circle K Project Number: 1696010.00 Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Volatile Organic Compounds - Quality Control

Batch BEL0281 - EPA 5030 (Purge and Trap)

Instrument: NT2

Prepared:	QC Sample/Analyte	Result	Re	eporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Casoline Range Organiss (Tol-Narp) ND 100 ug/L Ug/L 5.00 98.7 86-120		ACSUIT		Limit							Lillit	110108
Surrogate: Toluene-d8	Blank (BEL0281-BLK1)					ared: 12-Dec	:-2016 An	alyzed: 12-1	Dec-2016 1	0:21		
Surrogate: 4-Bromofluorobenzene	Gasoline Range Organics (Tol-Nap)	ND		100	ug/L							U
Prepared: 12-Dec-2016 Analyzed: 12-Dec-2016 10:21 U	Surrogate: Toluene-d8		4.94		ug/L	5.00		98.7	80-120			
1,2-Dichloroethane	Surrogate: 4-Bromofluorobenzene		4.82		ug/L	5.00		96.4	80-120			
Renzene	Blank (BEL0281-BLK2)				Prepa	ared: 12-Dec	-2016 An	alyzed: 12-l	Dec-2016 10	0:21		
Toluene ND 0.20 ug/L Ug/L UD 1,2-Dibromoethane ND 0.20 ug/L UU 2,2-Dibromoethane ND 0.20 ug/L 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	1,2-Dichloroethane	ND		0.20	ug/L							U
1,2-Dibromoethane	Benzene	ND		0.20	ug/L							U
Carbon C	Toluene	ND		0.20								U
ND	1,2-Dibromoethane	ND		0.20								U
ND 0.20 ug/L U U	Ethylbenzene	ND		0.20	ug/L							U
Methyl tert-butyl Ether ND 0.50 ug/L U 5.00 107 80-129 Surrogate: 1,2-Dichloroethane-d4 4.82 ug/L 5.00 98.7 80-120 Surrogate: 4-Bromofluorobenzene 4.82 ug/L 5.00 99.7 80-120 Surrogate: 1,2-Dichlorobenzene-d4 4.99 ug/L 5.00 99.7 80-120 LCS (BEL0281-BS1) Prepared: 12-Dec-2016 Analyzed: 12-Dec-2016 07:54 Gasoline Range Organics (Tol-Nap) 993 100 ug/L 1000 99.3 80-120 Surrogate: 4-Bromofluorobenzene 4.81 ug/L 5.00 99.0 80-120 LCS (BEL0281-BS2) Ug/L 5.00 99.0 80-120 Surrogate: 4-Bromofluorobenzene 4.81 ug/L 5.00 99.0 80-120 LCS (BEL0281-BS2) Prepared: 12-Dec-2016 Analyzed: 12-Dec-2016 08:55 1,2-Dichloroethane 9.66 0.20 ug/L 10.0 96.6 75-123 Benzene 9.76 0.20 ug/L 10.0 96.9 80-120 Toluene 9.69 0.20 ug/L 10.0 96.9 80-120 Toluene 9.69 0.20 ug/L 10.0 96.9 80-120 1,2-Dibromoethane 10.5 0.20 ug/L 10.0 96.9 80-120 1,2-Dibromoethane 9.53 0.20 ug/L 10.0 95.3 80-120 mp-Xylene 9.78 0.20 ug/L 10.0 95.3 80-121 mp-Xylene 9.78 0.20 ug/L 10.0 97.8 80-121 Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 97.8 80-121 Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 106 71-132	m,p-Xylene	ND		0.40	ug/L							U
Surrogate: 1,2-Dichloroethane-44 S.355 Surrogate: 7,2-Dichloroethane-48 4.94 4.94 4.99 4.90	o-Xylene	ND		0.20	ug/L							U
Surrogate: Toluene-d8	Methyl tert-butyl Ether	ND		0.50	ug/L							U
Surrogate: 4-Bromofluorobenzene 4.82 ug/L 5.00 96.4 80-120	Surrogate: 1,2-Dichloroethane-d4		5.35		ug/L	5.00		107	80-129			
Surrogate: 1,2-Dichlorobenzene-d4 4.99 ug/L 5.00 99.7 80-120	Surrogate: Toluene-d8		4.94		ug/L	5.00		98.7	80-120			
Prepared: 12-Dec-2016 Analyzed: 12-Dec-2016 O7:54	Surrogate: 4-Bromofluorobenzene		4.82		ug/L	5.00		96.4	80-120			
Surrogate: Toluene-d8	Surrogate: 1,2-Dichlorobenzene-d4		4.99		ug/L	5.00		99.7	80-120			
Surrogate: Toluene-d8	LCS (BEL0281-BS1)				Prepa	ared: 12-Dec	-2016 An	alyzed: 12-l	Dec-2016 0'	7:54		
A.81 ug/L 5.00 96.2 80-120	Gasoline Range Organics (Tol-Nap)	993		100	ug/L	1000		99.3	80-120			
Prepared: 12-Dec-2016 Analyzed: 12-Dec-2016 08:55 1,2-Dichloroethane 9.66 0.20 ug/L 10.0 96.6 75-123 Benzene 9.76 0.20 ug/L 10.0 97.6 80-120 Toluene 9.69 0.20 ug/L 10.0 96.9 80-120 1,2-Dibromoethane 10.5 0.20 ug/L 10.0 105 80-121 Ethylbenzene 9.53 0.20 ug/L 10.0 95.3 80-120 mp-Xylene 19.9 0.40 ug/L 20.0 99.5 80-121 o-Xylene 9.78 0.20 ug/L 10.0 97.8 80-121 Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 106 71-132 Surrogate: 1,2-Dichloroethane-d4 5.46 ug/L 5.00 109 80-129	Surrogate: Toluene-d8		4.95			5.00		99.0	80-120			
1,2-Dichloroethane 9.66 0.20 ug/L 10.0 96.6 75-123 Benzene 9.76 0.20 ug/L 10.0 97.6 80-120 Toluene 9.69 0.20 ug/L 10.0 96.9 80-120 1,2-Dibromoethane 10.5 0.20 ug/L 10.0 105 80-121 Ethylbenzene 9.53 0.20 ug/L 10.0 95.3 80-120 m,p-Xylene 19.9 0.40 ug/L 20.0 99.5 80-121 o-Xylene 9.78 0.20 ug/L 10.0 97.8 80-121 Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 106 71-132 Surrogate: 1,2-Dichloroethane-d4 5.46 ug/L 5.00 109 80-129	Surrogate: 4-Bromofluorobenzene		4.81		ug/L	5.00		96.2	80-120			
Benzene 9.76 0.20 ug/L 10.0 97.6 80-120 Toluene 9.69 0.20 ug/L 10.0 96.9 80-120 1,2-Dibromoethane 10.5 0.20 ug/L 10.0 105 80-121 Ethylbenzene 9.53 0.20 ug/L 10.0 95.3 80-120 m.p-Xylene 19.9 0.40 ug/L 20.0 99.5 80-121 o-Xylene 9.78 0.20 ug/L 10.0 97.8 80-121 Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 106 71-132 Surrogate: 1,2-Dichloroethane-d4 5.46 ug/L 5.00 109 80-129	LCS (BEL0281-BS2)				Prepa	ared: 12-Dec	:-2016 An	alyzed: 12-l	Dec-2016 0	8:55		
Toluene 9.69 0.20 ug/L 10.0 96.9 80-120 1,2-Dibromoethane 10.5 0.20 ug/L 10.0 105 80-121 Ethylbenzene 9.53 0.20 ug/L 10.0 95.3 80-120 m,p-Xylene 19.9 0.40 ug/L 20.0 99.5 80-121 o-Xylene 9.78 0.20 ug/L 10.0 97.8 80-121 Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 106 71-132 Surrogate: 1,2-Dichloroethane-d4 5.46 ug/L 5.00 109 80-129	1,2-Dichloroethane	9.66		0.20	_	10.0		96.6	75-123			
1,2-Dibromoethane 10.5 0.20 ug/L 10.0 105 80-121 Ethylbenzene 9.53 0.20 ug/L 10.0 95.3 80-120 m,p-Xylene 19.9 0.40 ug/L 20.0 99.5 80-121 o-Xylene 9.78 0.20 ug/L 10.0 97.8 80-121 Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 106 71-132 Surrogate: 1,2-Dichloroethane-d4 5.46 ug/L 5.00 109 80-129	Benzene	9.76		0.20	ug/L	10.0		97.6	80-120			
Ethylbenzene 9.53 0.20 ug/L 10.0 95.3 80-120 m,p-Xylene 19.9 0.40 ug/L 20.0 99.5 80-121 o-Xylene 9.78 0.20 ug/L 10.0 97.8 80-121 Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 106 71-132 Surrogate: 1,2-Dichloroethane-d4 5.46 ug/L 5.00 109 80-129	Toluene	9.69		0.20	ug/L	10.0		96.9	80-120			
m,p-Xylene 19.9 0.40 ug/L 20.0 99.5 80-121 0-Xylene 9.78 0.20 ug/L 10.0 97.8 80-121 Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 106 71-132 Surrogate: 1,2-Dichloroethane-d4 5.46 ug/L 5.00 109 80-129	1,2-Dibromoethane	10.5		0.20	ug/L	10.0		105	80-121			
o-Xylene 9.78 0.20 ug/L 10.0 97.8 80-121 Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 106 71-132 Surrogate: 1,2-Dichloroethane-d4 5.46 ug/L 5.00 109 80-129	Ethylbenzene	9.53		0.20	ug/L	10.0		95.3	80-120			
Methyl tert-butyl Ether 10.6 0.50 ug/L 10.0 106 71-132 Surrogate: 1,2-Dichloroethane-d4 5.46 ug/L 5.00 109 80-129	m,p-Xylene	19.9		0.40	ug/L	20.0		99.5	80-121			
Surrogate: 1,2-Dichloroethane-d4 5.46 ug/L 5.00 109 80-129	o-Xylene	9.78		0.20	ug/L	10.0		97.8	80-121			
	Methyl tert-butyl Ether	10.6		0.50	ug/L	10.0		106	71-132			
Surrogate: Toluene-d8 4.98 ug/L 5.00 99.6 80-120	Surrogate: 1,2-Dichloroethane-d4		5.46		ug/L	5.00		109	80-129			
	Surrogate: Toluene-d8		4.98		ug/L	5.00		99.6	80-120			

Analytical Resources, Inc.

Federal Way, WA 98001

Project: Circle K Project Number: 1696010.00

Reported: Project Manager: Julia Schwarz 28-Dec-2016 09:58

Volatile Organic Compounds - Quality Control

Batch BEL0281 - EPA 5030 (Purge and Trap)

Instrument: NT2

		F	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS (BEL0281-BS2)				Prepa	ared: 12-Dec	c-2016 An	alyzed: 12-	Dec-2016 0	8:55		
Surrogate: 4-Bromofluorobenzene		4.86		ug/L	5.00		97.2	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		5.13		ug/L	5.00		103	80-120			
LCS Dup (BEL0281-BSD1)				Prepa	ared: 12-Dec	c-2016 An	alyzed: 12-	Dec-2016 0	8:35		
Gasoline Range Organics (Tol-Nap)	955		100	ug/L	1000		95.5	80-120	3.94	30	
Surrogate: Toluene-d8		5.01		ug/L	5.00	<u> </u>	100	80-120		<u></u>	
Surrogate: 4-Bromofluorobenzene		4.93		ug/L	5.00		98.6	80-120			
LCS Dup (BEL0281-BSD2)				Prepa	ared: 12-Dec	c-2016 An	alyzed: 12-	Dec-2016 09	9:40		
1,2-Dichloroethane	9.69		0.20	ug/L	10.0		96.9	75-123	0.29	30	
Benzene	10.0		0.20	ug/L	10.0		100	80-120	2.68	30	
Toluene	9.95		0.20	ug/L	10.0		99.5	80-120	2.61	30	
1,2-Dibromoethane	10.0		0.20	ug/L	10.0		100	80-121	4.08	30	
Ethylbenzene	9.88		0.20	ug/L	10.0		98.8	80-120	3.61	30	
m,p-Xylene	20.7		0.40	ug/L	20.0		104	80-121	4.14	30	
o-Xylene	10.2		0.20	ug/L	10.0		102	80-121	3.80	30	
Methyl tert-butyl Ether	10.3		0.50	ug/L	10.0		103	71-132	3.57	30	
Surrogate: 1,2-Dichloroethane-d4		5.18		ug/L	5.00		104	80-129			
Surrogate: Toluene-d8		5.03		ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene		4.89		ug/L	5.00		97.7	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		5.01		ug/L	5.00		100	80-120			

Analytical Resources, Inc.

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Volatile Organic Compounds - Quality Control

Batch BEL0337 - EPA 5030 (Purge and Trap)

Instrument: NT2

QC Sample/Analyte	Result	Report Lii	-	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Kesuit	LII							Lillit	notes
Blank (BEL0337-BLK1)				epared: 13-De	c-2016 An	alyzed: 13-	Dec-2016 1	4:56		
Gasoline Range Organics (Tol-Nap)	ND	1	00 ug/L							U
Surrogate: Toluene-d8		4.93	ug/L	5.00		98.6	80-120			
Surrogate: 4-Bromofluorobenzene		4.83	ug/L	5.00		96.6	80-120			
Blank (BEL0337-BLK2)			Pro	epared: 13-De	c-2016 An	alyzed: 13-	Dec-2016 1	4:56		
1,2-Dichloroethane	ND	0	20 ug/L							U
Benzene	ND	0	20 ug/L							U
Toluene	ND	0	20 ug/L							U
1,2-Dibromoethane	ND	0	20 ug/L							U
Ethylbenzene	ND	0	20 ug/L							U
m,p-Xylene	ND	0	40 ug/L							U
o-Xylene	ND	0	20 ug/L							U
Methyl tert-butyl Ether	ND	0	50 ug/L							U
Surrogate: 1,2-Dichloroethane-d4		5.40	ug/L	5.00		108	80-129			
Surrogate: Toluene-d8		4.93	ug/L	5.00		98.6	80-120			
Surrogate: 4-Bromofluorobenzene		4.83	ug/L	5.00		96.6	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		4.94	ug/L	5.00		98.8	80-120			
Blank (BEL0337-BLK3)			Pro	epared: 13-De	c-2016 An	alyzed: 13-	Dec-2016 1	5:58		
1,2-Dichloroethane	ND	0	20 ug/L							U
Benzene	ND	0	20 ug/L							U
Toluene	0.20	0	20 ug/L							*
1,2-Dibromoethane	ND	0	20 ug/L							U
Ethylbenzene	ND	0	20 ug/L							U
m,p-Xylene	ND	0	40 ug/L							U
o-Xylene	ND	0	20 ug/L							U
Methyl tert-butyl Ether	ND	0	50 ug/L							U
Surrogate: 1,2-Dichloroethane-d4		5.11	ug/L	5.00		102	80-129			
Surrogate: Toluene-d8		4.97	ug/L	5.00		99.3	80-120			
Surrogate: 4-Bromofluorobenzene		4.78	ug/L	5.00		95.6	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		4.95	ug/L	5.00		99.1	80-120			
LCS (BEL0337-BS1)			Pro	epared: 13-De	c-2016 An	alyzed: 13-	Dec-2016 1	3:34		
Gasoline Range Organics (Tol-Nap)	1060	1	00 ug/L	1000		106	80-120			

Analytical Resources, Inc.

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Volatile Organic Compounds - Quality Control

Batch BEL0337 - EPA 5030 (Purge and Trap)

Instrument: NT2

		R	eporting		Spike	Source	0/775	%REC		RPD	27
QC Sample/Analyte	Result		Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
LCS (BEL0337-BS1)				Prep	ared: 13-Dec-	2016 An	alyzed: 13-	Dec-2016 1	3:34		
Surrogate: Toluene-d8		5.08		ug/L	5.00		102	80-120			
Surrogate: 4-Bromofluorobenzene		4.72		ug/L	5.00		94.5	80-120			
LCS (BEL0337-BS2)				Prep	ared: 13-Dec-	2016 An	alyzed: 13-	Dec-2016 1	4:15		
1,2-Dichloroethane	10.9		0.20	ug/L	10.0		109	75-123			
Benzene	10.7		0.20	ug/L	10.0		107	80-120			
Toluene	10.8		0.20	ug/L	10.0		108	80-120			В
1,2-Dibromoethane	11.5		0.20	ug/L	10.0		115	80-121			
Ethylbenzene	10.5		0.20	ug/L	10.0		105	80-120			
m,p-Xylene	21.6		0.40	ug/L	20.0		108	80-121			
o-Xylene	10.8		0.20	ug/L	10.0		108	80-121			
Methyl tert-butyl Ether	11.2		0.50	ug/L	10.0		112	71-132			
Surrogate: 1,2-Dichloroethane-d4		5.36		ug/L	5.00		107	80-129			
Surrogate: Toluene-d8		5.02		ug/L	5.00		100	80-120			
Surrogate: 4-Bromofluorobenzene		4.81		ug/L	5.00		96.3	80-120			
Surrogate: 1,2-Dichlorobenzene-d4		5.10		ug/L	5.00		102	80-120			
LCS Dup (BEL0337-BSD1)				Prep	ared: 13-Dec-	2016 An	alyzed: 13-	Dec-2016 1	3:55		
Gasoline Range Organics (Tol-Nap)	1080		100	ug/L	1000		108	80-120	1.90	30	
Surrogate: Toluene-d8		5.00		ug/L	5.00		100	80-120			
Surrogate: 4-Bromofluorobenzene		4.80		ug/L	5.00		96.0	80-120			
LCS Dup (BEL0337-BSD2)				Prep	ared: 13-Dec-	·2016 An	alyzed: 13-	Dec-2016 1	4:35		
1,2-Dichloroethane	11.0		0.20	ug/L	10.0		110	75-123	0.72	30	
Benzene	10.7		0.20	ug/L	10.0		107	80-120	0.67	30	
Toluene	10.6		0.20	ug/L	10.0		106	80-120	1.93	30	В
1,2-Dibromoethane	11.3		0.20	ug/L	10.0		113	80-121	1.52	30	
Ethylbenzene	10.6		0.20	ug/L	10.0		106	80-120	0.58	30	
m,p-Xylene	22.0		0.40	ug/L	20.0		110	80-121	1.96	30	
o-Xylene	10.9		0.20	ug/L	10.0		109	80-121	0.58	30	
Methyl tert-butyl Ether	11.7		0.50	ug/L	10.0		117	71-132	4.13	30	
Surrogate: 1,2-Dichloroethane-d4		5.60		ug/L	5.00		112	80-129			
Surrogate: Toluene-d8		5.06		ug/L	5.00		101	80-120			
Surrogate: 4-Bromofluorobenzene		4.99		ug/L	5.00		99.7	80-120			

Analytical Resources, Inc.

Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Volatile Organic Compounds - Quality Control

Batch BEL0337 - EPA 5030 (Purge and Trap)

Instrument: NT2

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
LCS Dup (BEL0337-BSD2)			Prepa	ared: 13-Dec	-2016 Ana	alyzed: 13-l	Dec-2016 14	4:35		
Surrogate: 1,2-Dichlorobenzene-d4		5.17	ug/L	5.00		103	80-120			

Kennedy Jenks Consultants 32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001 Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Dissolved Gases - Quality Control

Batch BEL0278 - No Prep - Volatiles

Instrument: FID6

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BEL0278-BLK1)			Prepa	ared: 12-Dec	:-2016 An	alyzed: 12-	Dec-2016 0	9:28		
Methane	ND	0.65	ug/L							U
Surrogate: Propane		1630	ug/L	1800		90.6	72-122			
LCS (BEL0278-BS1)			Prepa	ared: 12-Dec	:-2016 An	alyzed: 12-	Dec-2016 0	9:00		
Methane	668		ug/L	656		102	80-120			
Surrogate: Propane		1590	ug/L	1800		88.1	62-122			
LCS Dup (BEL0278-BSD1)			Prepa	ared: 12-Dec	:-2016 An	alyzed: 12-	Dec-2016 0	9:14		
Methane	687		ug/L	656		105	80-120	2.77	30	
Surrogate: Propane		1600	ug/L	1800		89.1	62-122			

Kennedy Jenks Consultants

32001 - 32nd Avenue South, Suite 100 Federal Way, WA 98001

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Metals and Metallic Compounds - Quality Control

Batch BEL0301 - TWC EPA 3010A

Instrument: ICP2

QC Sample/Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BEL0301-BLK1)			Prepa	ared: 12-Dec	:-2016 An	alyzed: 13-	Dec-2016 1	7:08		
Lead	ND	0.0200	mg/L							U
LCS (BEL0301-BS1)			Prepa	ared: 12-Dec	:-2016 An	alyzed: 13-	Dec-2016 1	7:12		
Lead	1.89	0.0200	mg/L	2.00		94.7	80-120			

Kennedy Jenks Consultants

Federal Way, WA 98001

32001 - 32nd Avenue South, Suite 100

Project: Circle K
Project Number: 1696010.00
Project Manager: Julia Schwarz

Reported: 28-Dec-2016 09:58

Metals and Metallic Compounds (dissolved) - Quality Control

Batch BEL0303 - WMN (No Prep)

Instrument: ICP2

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BEL0303-BLK1)				Prepa	ared: 12-Dec	:-2016 An	alyzed: 13-	Dec-2016 1:	5:20		
Iron	0.0080	0.0013	0.0500	mg/L							J
Manganese	ND		0.0010	mg/L							U
LCS (BEL0303-BS1)				Prepa	ared: 12-Dec	-2016 An	alyzed: 13-1	Dec-2016 1:	5:38		
Iron	1.95			mg/L	2.00		97.4	80-120			
Manganese	0.475			mg/L	0.500		94.9	80-120			

Kennedy Jenks Consultants Project: Circle K 32001 - 32nd Avenue South, Suite 100 Project Number: 1696010.00

Reported: Federal Way, WA 98001 Project Manager: Julia Schwarz 28-Dec-2016 09:58

Certified Analyses included in this Report

Analyte	Certifications	
ED4 00400 : 14/4		

FΡΔ	6010C	in Water	,

WADOE, NELAP, DoD-ELAP, ADEC Lead

Iron WADOE.NELAP Manganese WADOE, NELAP

EPA 8260C in Water Chloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Vinyl Chloride DoD-ELAP, ADEC, NELAP, CALAP, WADOE Bromomethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Chloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Trichlorofluoromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Acrolein DoD-ELAP, NELAP, CALAP, WADOE 1,1,2-Trichloro-1,2,2-Trifluoroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Acetone DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1-Dichloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Bromoethane DoD-ELAP, NELAP, CALAP, WADOE Iodomethane DoD-ELAP, NELAP, CALAP, WADOE Methylene Chloride DoD-ELAP, ADEC, NELAP, CALAP, WADOE Acrylonitrile DoD-ELAP, NELAP, CALAP, WADOE Carbon Disulfide DoD-ELAP, NELAP, CALAP, WADOE trans-1,2-Dichloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Vinyl Acetate DoD-ELAP, NELAP, CALAP, WADOE 1,1-Dichloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE 2-Butanone 2,2-Dichloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE cis-1,2-Dichloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Chloroform DoD-ELAP, ADEC, NELAP, CALAP, WADOE Bromochloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,1-Trichloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Carbon tetrachloride DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1.2-Dichloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Benzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Trichloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dichloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Bromodichloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE

Analytical Resources, Inc.

Kennedy Jenks ConsultantsProject: Circle K32001 - 32nd Avenue South, Suite 100Project Number: 1696010.00Reported:Federal Way, WA 98001Project Manager: Julia Schwarz28-Dec-2016 09:58

Dibromomethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 2-Chloroethyl vinyl ether DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Methyl-2-Pentanone DoD-ELAP, NELAP, CALAP, WADOE cis-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Toluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE trans-1,3-Dichloropropene DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE 2-Hexanone DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,2-Trichloroethane 1,3-Dichloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE Tetrachloroethene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Dibromochloromethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dibromoethane DoD-ELAP, NELAP, CALAP, WADOE Chlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE Ethylbenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,1,1,2-Tetrachloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE m,p-Xylene o-Xylene DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE Styrene Bromoform DoD-ELAP, NELAP, CALAP, WADOE 1,1,2,2-Tetrachloroethane DoD-ELAP, ADEC, NELAP, CALAP, WADOE DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2,3-Trichloropropane trans-1,4-Dichloro 2-Butene DoD-ELAP, ADEC, NELAP, CALAP, WADOE n-Propylbenzene DoD-ELAP, NELAP, CALAP, WADOE Bromobenzene DoD-ELAP, NELAP, CALAP, WADOE Isopropyl Benzene DoD-ELAP, NELAP, CALAP, WADOE 2-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 4-Chlorotoluene DoD-ELAP, ADEC, NELAP, CALAP, WADOE t-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,3,5-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,2,4-Trimethylbenzene DoD-ELAP, NELAP, CALAP, WADOE DoD-ELAP, NELAP, CALAP, WADOE s-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 4-Isopropyl Toluene 1,3-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,4-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE n-Butylbenzene DoD-ELAP, NELAP, CALAP, WADOE 1,2-Dichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2-Dibromo-3-chloropropane DoD-ELAP, ADEC, NELAP, CALAP, WADOE 1,2,4-Trichlorobenzene DoD-ELAP, ADEC, NELAP, CALAP, WADOE

Analytical Resources, Inc.

l	Kennedy Jenks Consultants	Project: Circle K	
l	32001 - 32nd Avenue South, Suite 100	Project Number: 1696010.00	Reported:
l	Federal Way, WA 98001	Project Manager: Julia Schwarz	28-Dec-2016 09:58

Hexachloro-1,3-Butadiene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Naphthalene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
1,2,3-Trichlorobenzene	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Dichlorodifluoromethane	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
Methyl tert-butyl Ether	DoD-ELAP,ADEC,NELAP,CALAP,WADOE
n-Hexane	WADOE

WADOE

EPA RSK-175 in Water

2-Pentanone

MethaneDoD-ELAP,NELAPEthaneDoD-ELAP,NELAPEtheneDoD-ELAP,NELAPAcetyleneDoD-ELAP,NELAP

NWTPHg in Water

Gasoline Range Organics (Tol-Nap)

Gasoline Range Organics (2MP-TMB)

Gasoline Range Organics (Tol-C12)

Gasoline Range Organics (Tol-C12)

WADOE,DoD-ELAP

WADOE,DoD-ELAP

WADOE,ADEC,DoD-ELAP

Gasoline Range Organics (C5-C12)

WADOE,DoD-ELAP

SM 2320 B-97 in Water

Alkalinity, Total DoD-ELAP, WADOE, WA-DW, NELAP

SM 4500-NO3 I-00 in Water

Nitrate + Nitrite as N DoD-ELAP,NELAP,WADOE
Nitrite-N WADOE,NELAP,DoD-ELAP

SM 4500-S2 D-00 in Water

Sulfide DoD-ELAP,WADOE,NELAP

SM 4500-SO4 G-97 in Water

Sulfate DoD-ELAP, WADOE

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	05/06/2017
CALAP	California Department of Public Health CAELAP	2748	02/28/2018
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	03/30/2017
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2017
WADOE	WA Dept of Ecology	C558	06/30/2017
WA-DW	Ecology - Drinking Water	C558	06/30/2017

Analytical Resources, Inc.

[2C]

Analytical Report

Kennedy Jenks ConsultantsProject:Circle K32001 - 32nd Avenue South, Suite 100Project Number:1696010.00Reported:Federal Way, WA 98001Project Manager:Julia Schwarz28-Dec-2016 09:58

Notes and Definitions

U	This analyte is not detected above the applicable reporting or detection limit.
J	Estimated concentration value detected below the reporting limit.
Н	Hold time violation - Hold time was exceeded.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL)
D	The reported value is from a dilution
В	This analyte was detected in the method blank.
*	Flagged value is not within established control limits.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Indicates this result was quantified on the second column on a dual column analysis.

12 August 2016

Julia Schwarz Kennedy Jenks Consulting 32001 32nd Avenue S. Suite 100 Federal Way, WA 98001

Client Project: Circle K, 1696010.00

ARI Job No.: BEE6

Dear Julia:

Please find enclosed the original Chain-of-Custody (COC) records and the final results for the samples from the project referenced above.

Analytical Resources, Inc. (ARI) received fifteen soil samples and one water sample were received on August 2, 2016. Three soil samples were placed on hold as specified. The remaining samples were analyzed for BETX and NWTPH-G as requested.

These analyses proceeded without incident of note.

An electronic copy of these reports and all raw data will be kept on file with ARI. Should you have any questions regarding these results, please feel free to call me at any time.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris
Project Manager
206/695-6210
markh@arilabs.com
www.arilabs.com

eFile: BEE6

Enclosures

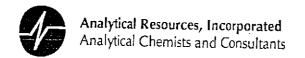
Page 1 of _______

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around	Turn-around Requested: STandard	Standar	4	Page:	of 2		Analytic Analytic	Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client Company: Lennedy / Jen Ks	Jan Za	Phone: 25	3-835	Phone: 253-835-6424	Date: // // //	Present? VOS	So	Tukwila,	4611 South 134th Place, Sulte 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (522)
Client Contact: Julin Schwarz or Ty Schneiner	Je zvo	14.2 h	seres.		Ö	Cooler C		www.ari	www.arilabs.com
Client Project Name: CNCC & K				•		Analysis	Analysis Requested		Notes/Comments
Client Project #: [6460/0.00	Samplers:	Julia Schularz	chulars	ds	19-1			· ·	
Sample ID	Date	Time	Matrix	No. Containers	MMTA XJT8				
KJR-14-7	1/02/1/8	0950	1105	5	×				
KTB-14-13		1005			X				
KJB-14-18		1020			×				
KJB-15-7.5		1115							How for potential
KJB-15-11	_	1,625			X				
KJB-15-19		1140			×				
KJB-16-7.5		074			×				
KTB-16-16		130			×				
MW-A-8	_	1410			×				
11-t1-MW		orhi							Horo topokufac
Comments/Special Instructions	Relinquished by	י יייין		Received by:	200		hed by:	Received by:	
	Printed Name:			Printed Name:		(Signature)	ine:	Printed Name:	
	Juli	2 Schw	1 to	7	Tyle Renkn				
	Company:	company:	1/48	Сотрапу:	ART			Сотрапу:	
	Date & Time: 8/2/16	16 0,	0833	Date & Time: $8-2$:	Date & Time: 8-2-16@ 0833	Date & Time:	те:	Date & Time:	

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for any services. The acceptance by the client of a proposal for services by ARI free any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-Linits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program is made standards for the industry. The total liability of ARI its officers, among employees or successors, arising out of or in connection with the requires, shall not expect the liability of ARI its officers, among employees or successors, arising out of or in connection with the requires, shall not expect the liability of ARI its officers. Ni signed agreement between ARI and the Client.

The last lang


Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analysis Request
& Laboratory
Sustody Record &
Chain of C

ARI Assigned Number:	Turn-around	Requested:	Turn-around Requested: Standard	A	Page:	2	7			Analytic Analytic	Analytical Resources, Incorporated Analytical Chemists and Consultants	ated tants
ARI Client Company: Kennedy Jen 1/4	1Jents	Phone: 2	47h 9-588-87Z	47h 9-	Date: 8/	S/1/16 Present?	sent? Ve S	~		4611 30 Tukwila 206-694	461 30uth 34th Flace, 3uile 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)	3 (8
Client Contact: JWLia Schward or Ty Shrelhu	no en	145 hz	alhur		No. of Coolers:) Ten	Cooler (www.ar	www.arilabs.com	Ŷ.
Client Project Name: CITLE							Analysis F	Analysis Requested	 		Notes/Comments	П
Client Project #16960/0.00	Samplers:	Min Sc	Samplers: Juin Schwarz		X- /9-H							
Sample ID	Date	Time	Matrix	No. Containers	9TW 3T8							
MW-17-19	9/1/8	1425	1,105	لم	×							
F-81-MW		1570	-								HOLD to potential	33
MW-18-12-5		1570			×							
MW-18-17		1575			×				•			
K18- Dup					×							
KJ8-15		2511	water	3	×							
												•
Comments/Special Instructions	Relinquished by (Signature)	\ \		Received by	12/1	V ?	Relinquished by: (Signature)	by:		Received by: (Signature)		
prof. b	Printed Name:	The School	the	Printed Name:	Tale Perlan	2, Cr Cx	Printed Name:	: :		Printed Name	6	
	Company	Company Curedy Tenks		Company:	A27		Company:			Сотрапу:		
) · (e)	Date & Time:	Time:	6833	Date & Time:	Date & Time: 8-2-16 0833	0833	Date & Time:			Date & Time:		
Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Involved amount for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or contract the Client.	all requested se total liability of client of a prop he Client.	ervices in acco ARI, its office osal for servic	ordance with a irs, agents, en es by ARI rele	ppropriate me iployees, or su iase ARI from	ethodology folior sccessors, arisi any liability in e	wing ARI Star. ing out of or in excess thereo	idard Operatii connection v f, not withstar	ng Procedure. vith the reque. Iding any prov	s and the ARI G sted services, s ision to the con	Quality Assura thall not exceverantery in any c	nnce Program. This progra ed the Invoiced amount for contract, purchase order or	60

signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Cooler Receipt Form

ARI Client: Kennedy Jenks	Project Name: Circle	K	
COC No(s): NA	Delivered by: Fed-Ex UPS Cour		Vacant than
Assigned ARI Job No: DEEC	Tracking No:		
Preliminary Examination Phase:	Tracking No.		
Were intact, properly signed and dated custody seals attached	to the outside of the poole of		
Were custody papers included with the cooler?			YES (N)
Were custody papers properly filled out (ink, signed, etc.)		((YES) NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for ch	nemistry)	(YES NO
If cooler temperature is out of compliance fill out form 00070F		Temp Gun IF	# (2005276
Cooler Accepted by:		_ O 8 3	
	s and attach all shipping documents		<u> </u>
Log-In Phase:	serve duach an suppling documents		
Was a temperature blank included in the cooler?	ap Wet Ice Gel Packs Baggies Foam I		YES NO
Were all bottles sealed in individual plastic bags?		NA	YES NO
Did all bottles arrive in good condition (unbroken)?			YES NO
Were all bottle labels complete and legible?	***************************************		VES NO
Did the number of containers listed on COC match with the num	Ther of containers received?		NO NO
Did all bottle labels and tags agree with custody papers?	ther of containers received?		YES (NO)
Were all bottles used correct for the requested analyses?			YES (NO
Do any of the analyses (bottles) require preservation? (attach preservation)	reconstion shoot evaluating VOC-)	(C.)	YES NO
Were all VOC vials free of air bubbles?	reservation strest, excitoting vocs)	(NA)	YES NO
Was sufficient amount of sample sent in each bottle?		NA	YES (NO)
Date VOC Trip Blank was made at ARI		N/A	(YES) NO 7-15-16
	Equipment:	NA	
•	e: 8-2-16 Time:	(313	Split by:
** Notify Project Manage	er of discrepancies or concerns **		
Correl 10 D W			
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle	Samp	ie ID on COC
	_		
		<u> </u>	
Additional Notes, Discrepancies, & Resolutions:			
2 - Tra Plants and 1	 		
2x Trip Blanks arrived + Lof 2 VOA vials for Tri	that aren't listed p Blanks have =	00 6	loc. Ubbles :
By: 762 Date: 8-2-16	•	(
Small Air Bubbles Peabubbles LARGE Air Bubbles	Small → "sm" (<2 mm)	 -	_
=2mm 2-4 mm > 4 mm	Peabubbles > "pb" (2 to < 4 mm)		
	Large → "lg" (4 to < 6 mm)		
	Headspace > "hs" (> 6 mm)		

0016F 3/2/10

Cooler Receipt Form

Revision 014

Sample ID Cross Reference Report



ARI Job No: BEE6
Client: Kennedy Jenks
Project Event: 1696010.00
Project Name: Circle K

		ARI	ARI			
	Sample ID	Lab ID	LIMS ID	Matrix	Sample Date/Time	VTSR
1.	KJB-14-7	BEE 6A	16-11526	Soil	08/01/16 09:50	08/02/16 08:33
2.	KJB-14-13	BEE 6B	16-11527	Soil	08/01/16 10:05	08/02/16 08:33
3.	KJB-14-18	BEE6C	16-11528	Soil	08/01/16 10:20	08/02/16 08:33
4	KJB-15-11	BEE6D	16-11529	Soil	08/01/16 11:25	08/02/16 08:33
5.	KJB-15-19	BEE6E	16-11530	Soil	08/01/16 11:40	08/02/16 08:33
6.	KJB-16-7.5	BEE6F	16-11531	Soil	08/01/16 12:10	08/02/16 08:33
7.	KJB-16-16	BEE6G	16-11532	Soil	08/01/16 12:30	08/02/16 08:33
8.	MW-17-8	BEE6H	16-11533	Soil	08/01/16 14:10	08/02/16 08:33
9.	MW-17-19	BEE6I	16-11534	Soil	08/01/16 14:25	08/02/16 08:33
10.	MW-18-12.5	BEE6J	16-11535	Soil	08/01/16 15:10	08/02/16 08:33
11.	MW-18-17	BEE6K	16-11536	Soil	08/01/16 15:15	08/02/16 08:33
12.	KJB-Dup	BEE6L	16-11537	Soil	08/01/16	08/02/16 08:33
13.	KJB-14-7	BEE6M	16-11538	Soil	08/01/16 09:50	08/02/16 08:33
14.	KJB-14-13	BEE6N	16-11539	Soil	08/01/16 10:05	08/02/16 08:33
15.	KJB-14-18	BEE60	16-11540	Soil	08/01/16 10:20	08/02/16 08:33
16.	KJB-15-11	BEE6P	16-11541	Soil	08/01/16 11:25	08/02/16 08:33
17.	KJB-15-19	BEE6Q	16-11542	Soil	08/01/16 11:40	08/02/16 08:33
18.	KJB-16-7.5	BEE6R	16-11543	Soil	08/01/16 12:10	08/02/16 08:33
19.	KJB-16-16	BEE6S	16-11544	Soil	08/01/16 12:30	08/02/16 08:33
	MW-17-8	BEE6T	16-11545	Soil	08/01/16 14:10	08/02/16 08:33
21.	MW-17-19	BEE6U	16-11546	Soil	08/01/16 14:25	08/02/16 08:33
22.	MW-18-12.5	BEE6V	16-11547	Soil	08/01/16 15:10	08/02/16 08:33
23.	MW-18-17	BEE6W	16-11548	Soil	08/01/16 15:15	08/02/16 08:33
24.	KJB-Dup	BEE6X	16-11549	Soil	08/01/16	08/02/16 08:33
25.	KJB-15-7.5	BEE6Y	16-11550	Soil	08/01/16 11:15	08/02/16 08:33
26.	MW-17-11	BEE6Z	16-11551	Soil	08/01/16 14:20	08/02/16 08:33
27.	MW-18-7	BEE6AA	16-11552	Soil	08/01/16 15:00	08/02/16 08:33
28.	KJB-15	BEE6AB	16-11553	Water	08/01/16 11:50	08/02/16 08:33
29.	Trip Blank	BEE6AC	16-11555	Water	08/01/16	08/02/16 08:33

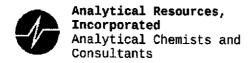
Printed 08/02/16 Page 1 of 1

Page 2 and 1 and 1

Data Reporting Qualifiers Effective 12/31/13

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but ≥ the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

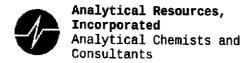

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

Laboratory Quality Assurance Plan

Page 1 of 3

Version 14-003 12/31/13



- Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).
- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Laboratory Quality Assurance Plan

Page 2 of 3

Version 14-003 12/31/13

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting

Laboratory Quality Assurance Plan

Page 3 of 3

Version 14-003 12/31/13

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: KJB-14-7
Page 1 of 1 SAMPLE

Lab Sample ID: BEE6M LIMS ID: 16-11538

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT2/LH
Date Analyzed: 08/10/16 12:52

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 195 mg-dry-wt

Purge Volume: 10.0 mL

Moisture: 11.7%

CAS Number	Analyte	ΓΟŌ	Result	Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	5.1	< 5.1	Ü	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

-1/-40	
d8-Toluene	97.4%
Bromofluorobenzene	106%

FORM I

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

returns recommend memory over the second of the second over th

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: KJB-14-13 Page 1 of 1 SAMPLE

Lab Sample ID: BEE6N LIMS ID: 16-11539

Matrix: Soil

Data Release Authorized: /

Reported: 08/11/16

Instrument/Analyst: NT2/LH
Date Analyzed: 08/10/16 13:13

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 163 mg-dry-wt

Purge Volume: 10.0 mL Moisture: 15.6%

CAS Number	Analyte	roð	Result	Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	6.1	< 6.1	U	
	Reported in mg/kg (ppm)				

Volatile Surrogate Recovery

d8-Toluene 96.2% Bromofluorobenzene 107%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

FORM I SEES: 00012

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: KJB-14-18

Page 1 of 1 SAMPLE

Lab Sample ID: BEE60 LIMS ID: 16-11540

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT2/LH
Date Analyzed: 08/10/16 13:33

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 140 mg-dry-wt

Purge Volume: 10.0 mL Moisture: 16.4%

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	7.2	< 7.2	U	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

d8-Toluene 97.0% Bromofluorobenzene 106%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

FORM I DEED: 00011

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: KJB-15-11 Page 1 of 1 SAMPLE

Lab Sample ID: BEE6P LIMS ID: 16-11541

Matrix: Soil

Data Release Authorized: #

Reported: 08/11/16

Instrument/Analyst: NT2/LH Date Analyzed: 08/10/16 13:54 QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 180 mg-dry-wt

Purge Volume: 10.0 mL

Moisture: 13.0%

CAS Number	Analyte	roð	Result	Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	5.5	< 5.5	U	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

7.8%
103%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

AMERICA MARKATA THORNESS ATTEMPTS AND ASSESSMENT AT AMERICAN ASSESSMENT AT AMERICAN ASSESSMENT AT AMERICAN ASSESSMENT ASS FORM I

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Sample ID: KJB-15-19 Page 1 of 1 SAMPLE

Lab Sample ID: BEE6Q LIMS ID: 16-11542

Matrix: Soil Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT2/LH Date Analyzed: 08/10/16 14:14 QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 165 mg-dry-wt Purge Volume: 10.0 mL Moisture: 10.6%

CAS Number	Analyte	ΓΟŌ	Result	Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	6.1	< 6.1	U	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

d8-Toluene	100%
Bromofluorobenzene	106%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Lab Sample ID: BEE6R LIMS ID: 16-11543

Matrix: Soil

Data Release Authorized: 49

Reported: 08/11/16

Instrument/Analyst: NT2/LH Date Analyzed: 08/10/16 14:35 QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Sample ID: KJB-16-7.5

SAMPLE

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 115 mg-dry-wt

Purge Volume: 10.0 mL

Moisture: 11.1%

CAS Number	Analyte	roð	Result	Q	TPHG ID
86290-81 - 5	Gasoline Range Hydrocarbons	8.7	< 8.7	U	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

d8-Toluene 96.6% Bromofluorobenzene 106%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

The second secon

FORM I

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: KJB-16-16 Page 1 of 1 SAMPLE

Lab Sample ID: BEE6S

LIMS ID: 16-11544 Matrix: Soil

Data Release Authorized: //

Reported: 08/11/16

Instrument/Analyst: NT2/LH Date Analyzed: 08/10/16 14:55

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 125 mg-dry-wt

Purge Volume: 10.0 mL Moisture: 18.8%

CAS Number	Analyte	TOÕ	Result	Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	8.0	< 8.0	U	~~~

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

d8-Toluene	96.4%
Bromofluorobenzene	107%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

Sense FORM I

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: MW-17-8 Page 1 of 1 SAMPLE

Lab Sample ID: BEE6T LIMS ID: 16-11545

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT2/LH

Date Analyzed: 08/10/16 15:16

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 161 mg-dry-wt

Purge Volume: 10.0 mL Moisture: 11.0%

CAS Number	Analyte	LOΩ		Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	6.2	< 6.2	U	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

d8-Toluene 96.8% Bromofluorobenzene 105%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: MW-17-19 Page 1 of 1 SAMPLE

Lab Sample ID: BEE6U LIMS ID: 16-11546

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT2/LH Date Analyzed: 08/10/16 15:36 QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 189 mg-dry-wt

Purge Volume: 10.0 mL

Moisture: 10.2%

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	5.3	< 5.3	U	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

97.8% Bromofluorobenzene 106%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

BEEB 44417 FORM I

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Lab Sample ID: BEE6V LIMS ID: 16-11547

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT2/LH
Date Analyzed: 08/10/16 15:57

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Sample ID: MW-18-12.5

SAMPLE

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 153 mg-dry-wt

Purge Volume: 10.0 mL

Moisture: 14.9%

CAS Number	Analyte	ΓΟŌ	Result	Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	6.5	< 6.5	U	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

d8-Toluene 96.8% Bromofluorobenzene 104%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

BEEG COULS

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: MW-18-17 Page 1 of 1 SAMPLE

Lab Sample ID: BEE6W LIMS ID: 16-11548

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT2/LH Date Analyzed: 08/10/16 16:17 QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 137 mg-dry-wt

Purge Volume: 10.0 mL

Moisture: 11.6%

CAS Number	Analyte	roō	Result Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	7.3	< 7.3 U	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

d8-Toluene 97.4% Bromofluorobenzene 106%

FORM I

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

The second secon

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Matrix: Soil

Lab Sample ID: BEE6X

Data Release Authorized:

LIMS ID: 16-11549

Reported: 08/11/16

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Sample ID: KJB-Dup

SAMPLE

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 152 mg-dry-wt

Purge Volume: 10.0 mL

Moisture: 12.3%

Instrument/Analyst: NT2/LH Date Analyzed: 08/10/16 16:38

CAS Number	Analyte	TOO	Result	Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	6.6	< 6.6	U	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

d8-Toluene 98.2% Bromofluorobenzene 105%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1

Lab Sample ID: MB-080416A

LIMS ID: 16-11538 Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT3/LH

Date Analyzed: 08/04/16 11:41

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Sample ID: MB-080416A

METHOD BLANK

Date Sampled: NA Date Received: NA

Sample Amount: 200 mg-dry-wt

Purge Volume: 10.0 mL

Moisture: NA

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
86290-81-5	Gasoline Range Hydrocarbons	5.0	< 5.0	Ü	

Reported in mg/kg (ppm)

Volatile Surrogate Recovery

d8-Toluene	101%
Bromofluorobenzene	101%

Principle of April Security Control of April 1997 (1997) FORM I

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: LCS-081016A

Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-081016A

LIMS ID: 16-11538 Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst LCS: NT2/LH

LCSD: NT2/LH

Date Analyzed LCS: 08/10/16 08:05

LCSD: 08/10/16 08:46

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: NA Date Received: NA

Sample Amount LCS: 200 mg-dry-wt

LCSD: 200 mg-dry-wt

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Gasoline Range Hydrocarbons	52.5	50.0	105%	50.5	50.0	101%	3.9%
	Report	ed in mg/k	g (ppm)				

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d8-Toluene	97.6%	97.0%
Bromofluorobenzene	100%	102%

FORM III SEEB WWGZZ

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: BEE6-Kennedy Jenks

Project: Circle K 1696010.00

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
	0110110 10	20.02					
MB-080416A	Method Blank	Med	NA	101%	101%	NA	0
LCS-081016A	Lab Control	Med	NΑ	97.6%	100%	NA	0
LCSD-081016A	Lab Control Dup	Med	NA	97.0%	102%	NA	0
BEE6M	KJB-14-7	Med	NΑ	97.4%	106%	NA	0
BEE6N	KJB-14-13	Med	NA	96.2%	107%	NА	0
BEE60	KJB-14-18	Med	NA	97.0%	106%	NА	0
BEE6P	KJB-15-11	Med	NA	97.8%	103%	NА	0
BEE6Q	KJB-15-19	Med	NA	100%	106%	NA	0
BEE6R	KJB-16-7.5	Med	NA	96.6%	106%	NA	0
BEE6S	KJB-16-16	Med	NA	96.4%	107%	NA	0
BEE6T	MW-17-8	Med	NA	96.8%	105%	NА	0
BEE6U	MW-17-19	Med	NA	97.8%	106%	NA	0
BEE6V	MW-18-12.5	Med	NA	96.8%	104%	NA	0
BEE6W	MW-18-17	Med	NA	97.4%	106%	NA	0
BEE6X	KJB-Dup	Med	NA	98.2%	105%	NA	0
		LCS/	MB LI	MITS		QC LIMI	TS
SW8260C		Low		Med	Low	,	Med
(DCE) = d4-1,	2-Dichloroethane	80-129		80-124	78-1	51	80-124
(TOL) = d8-To	luene	80-120		80-120	80-1	20	80-120
(BFB) = Bromo	fluorobenzene	80-120		80-120	75-1	24	80-120
(DCB) = d4-1,	2-Dichlorobenzene	80-120		80-120	80-1	20	80-120

Log Number Range: 16-11538 to 16-11549

FORM-II VOAPage 1 for BEE6

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: KJB-15
Page 1 of 1 SAMPLE

Lab Sample ID: BEE6AB

LIMS ID: 16-11553 Matrix: Water

Data Release Authorized: //

Instrument/Analyst: NT2/LH

Date Analyzed: 08/10/16 10:29

Reported: 08/11/16

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	U	
108-88-3	Toluene	0.20	< 0.20	Ū	
100-41-4	Ethylbenzene	0.20	< 0.20	U	
179601-23-1	m,p-Xylene	0.40	< 0.40	U	
95-47-6	o-Xylene	0.20	< 0.20	Ŭ	
	Reported in µg/L (ppb)				
86290 - 81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	95.6%
Bromofluorobenzene	101%

FORM I DEED WING 24

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: Trip Blank Page 1 of 1 SAMPLE

Lab Sample ID: BEE6AC

LIMS ID: 16-11555 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT2/LH

Date Analyzed: 08/10/16 10:08

Reported: 08/11/16

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2	Benzene	0.20	< 0.20	Ü	
108-88-3	Toluene	0.20	< 0.20	U	
100-41-4	Ethylbenzene	0.20	< 0.20	U	
179601-23-1	m,p-Xylene	0.40	< 0.40	U	
95-47-6	o-Xylene	0.20	< 0.20	U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	บ	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	96.8%
Bromofluorobenzene	103%

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Sample ID: MB-080416A Page 1 of 1 METHOD BLANK

Lab Sample ID: MB-080416A

LIMS ID: 16-11553 Matrix: Water

Data Release Authorized:

Instrument/Analyst: NT3/LH

Date Analyzed: 08/04/16 11:41

Reported: 08/11/16

Project: Circle K 1696010.00

Date Sampled: NA Date Received: NA

Sample Amount: 10.0 mL Purge Volume: 10.0 mL

QC Report No: BEE6-Kennedy Jenks

CAS Number	Analyte	LOQ	Result	Q	TPHG ID
71-43-2 108-88-3 100-41-4 179601-23-1	Benzene Toluene Ethylbenzene m,p-Xylene	0.20 0.20 0.20 0.40	< 0.20 < 0.20 < 0.20 < 0.40	U U U	
95-47-6	o-Xylene	0.20	< 0.20	U	
	Reported in µg/L (ppb)				
86290-81-5	Gasoline Range Hydrocarbons	0.10	< 0.10	U	

Reported in mg/L (ppm)

Volatile Surrogate Recovery

d8-Toluene	101%
Bromofluorobenzene	101%

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG Sample ID: LCS-080416A

Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-080416A

LIMS ID: 16-11553

Matrix: Water Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst LCS: NT3/LH

LCSD: NT3/LH

Date Analyzed LCS: 08/04/16 10:23

LCSD: 08/04/16 10:49

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	10.0	10.0	100%	9.78	10.0	97.8%	2.2%
Toluene	9.76	10.0	97.6%	9.55	10.0	95.5%	2,2%
Ethylbenzene	9.49	10.0	94.9%	9.58	10.0	95.8%	0.9%
m,p-Xylene	19,8	20.0	99.0%	20.1	20.0	100%	1.5%
o-Xylene	9.79	10.0	97.9%	9.86	10.0	98.6%	0.7%

Reported in µg/L (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d8-Toluene	103%	102%
Bromofluorobenzene	103%	104%

BEES 24027

FORM III

Volatiles by P&T GC/MS-Method SW8260C/NWTPHG

Page 1 of 1 LAB CONTROL SAMPLE

Lab Sample ID: LCS-081016A

LIMS ID: 16-11555 Matrix: Water

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst LCS: NT2/LH

LCSD: NT2/LH

Date Analyzed LCS: 08/10/16 08:05

LCSD: 08/10/16 08:46

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Sample ID: LCS-081016A

Purge Volume LCS: 10.0 mL

LCSD: 10.0 mL

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD	
Gasoline Range Hydrocarbons	1.05	1.00	105%	1.01	1.00	101%	3.9%	
	Repor	rted in mg/	'L (ppm)					
DDD coloulated wains comple			10.4.6					

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

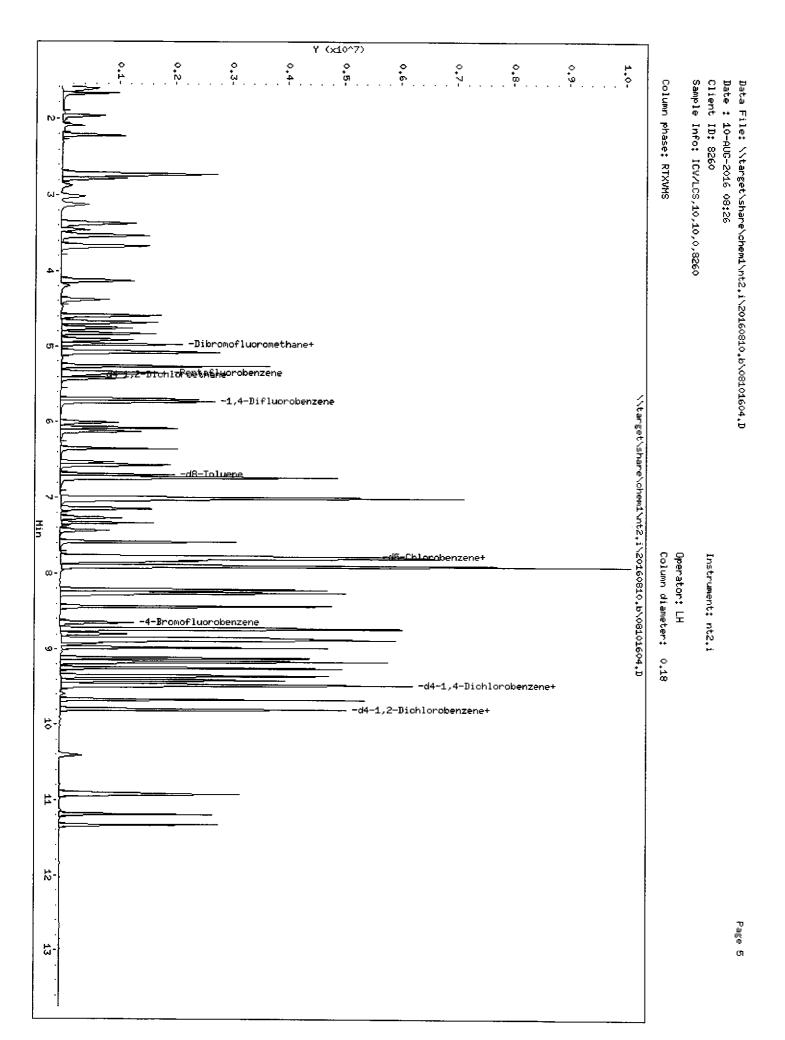
	LCS	LCSD
d8-Toluene	97.6%	97.0%
Bromofluorobenzene	100%	102%

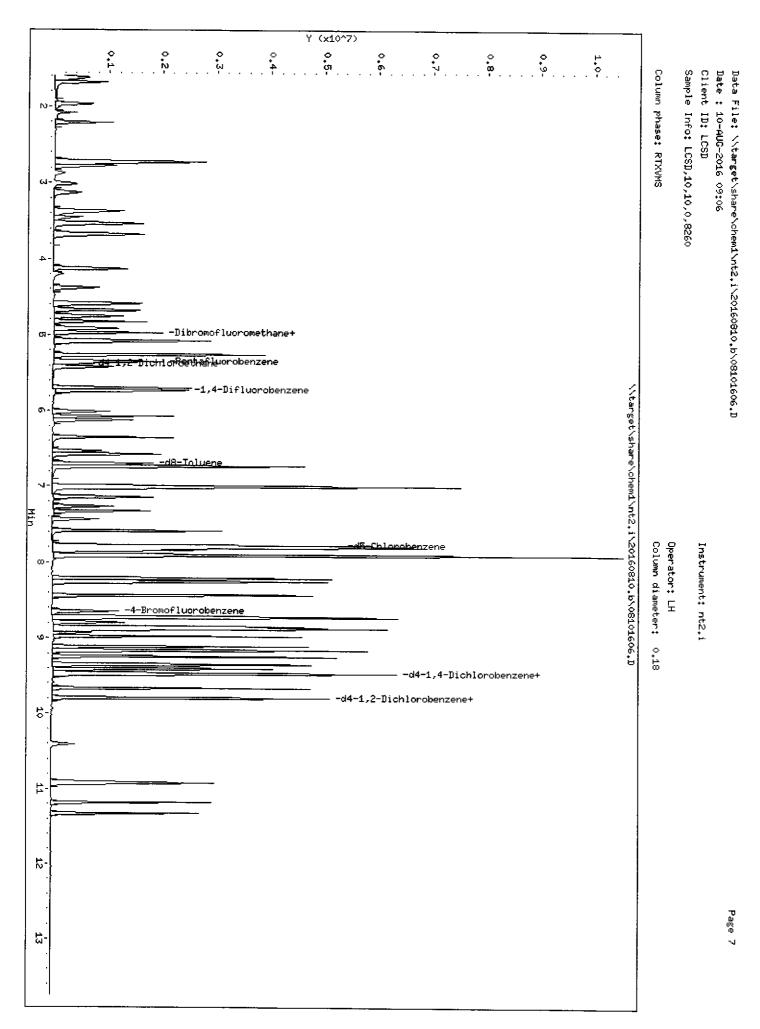
FORM III

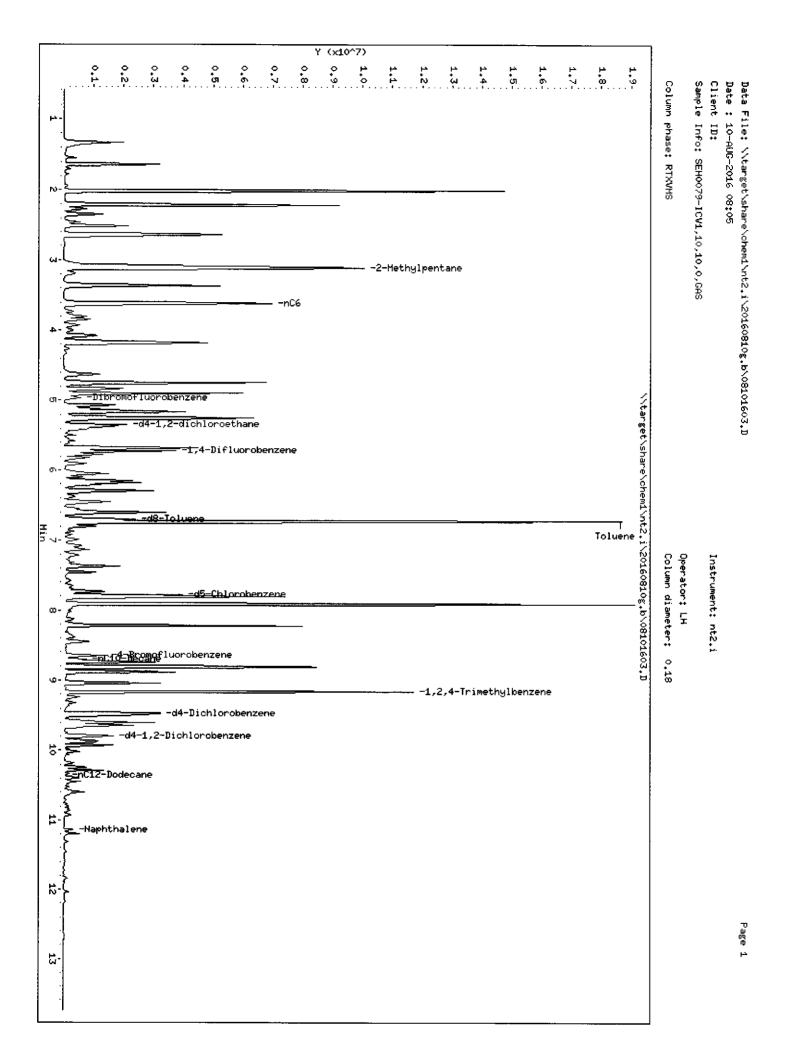
ANALYTICAL RESOURCES INCORPORATED

VOA SURROGATE RECOVERY SUMMARY

Matrix: Water QC Report No: BEE6-Kennedy Jenks


Project: Circle K 1696010.00


ARI ID	Client ID	PV	DCE	TOL	BFB	DCB	TOT OUT
MB-080416A LCS-080416A LCSD-080416A BEE6AB LCS-081016A LCSD-081016A BEE6AC	Method Blank Lab Control Lab Control Dup KJB-15 Lab Control Lab Control Trip Blank	10 10 10 10 10 10	NA NA NA NA NA NA	101% 103% 102% 95.6% 97.6% 97.0%	101% 103% 104% 101% 100% 102%	NA NA NA NA NA NA	0 0 0 0 0
SW8260C (DCE) = d4-1, (TOL) = d8-TC (BFB) = Brome	2-Dichloroethane	LCS	/MB LIM (80-129 (80-120 (80-120 (80-120))))	1034	QC LIMI (80-12 (80-12 (80-12 (80-12	9) 0) 0)


Prep Method: SW5030B

Log Number Range: 16-11553 to 16-11555

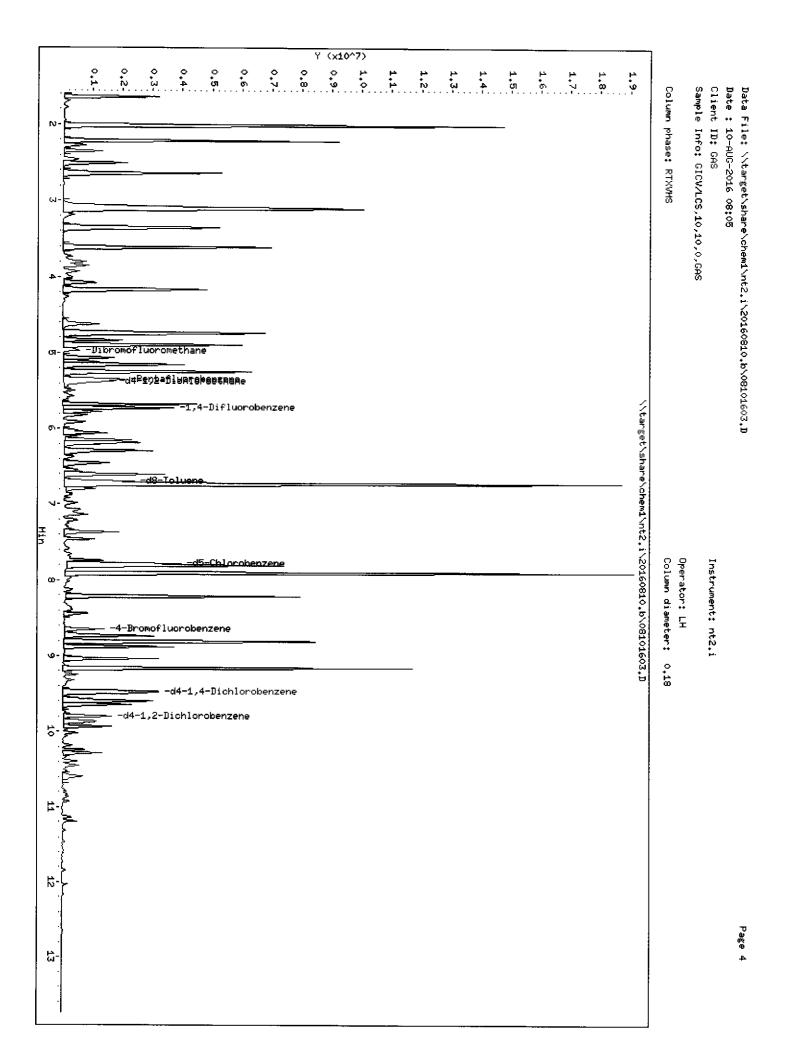
WHILE DESIGN STORY AND THE PROPERTY OF THE PRO

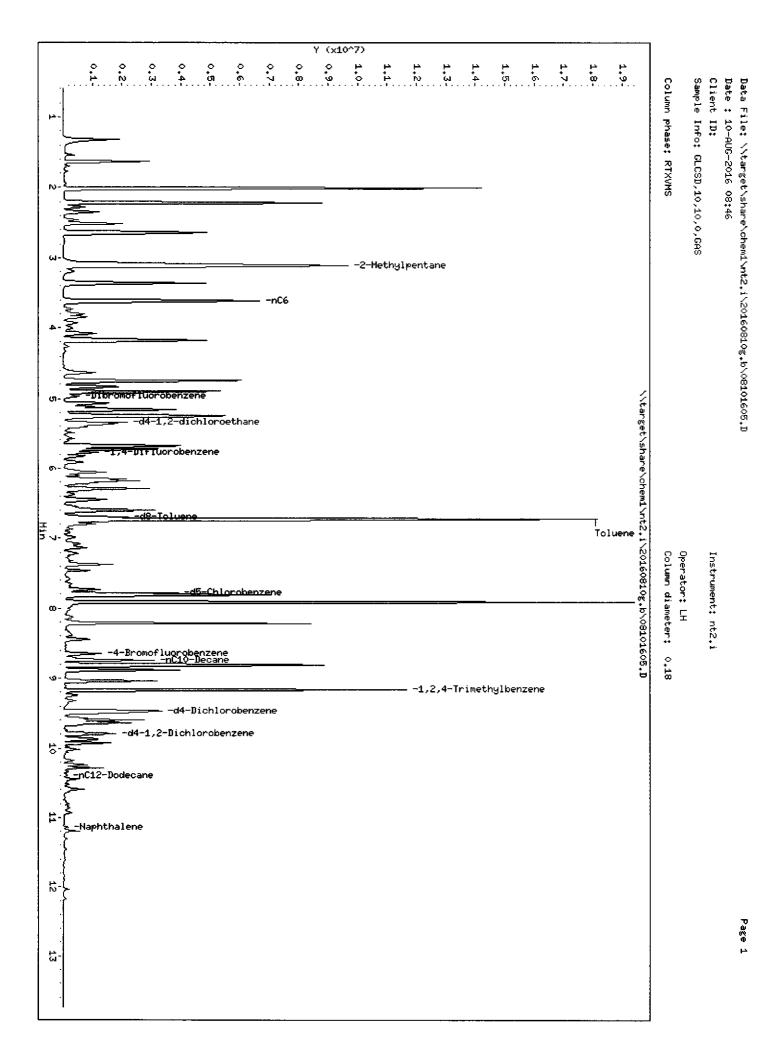
BEES: 00033

Lab

ID:SEH0079-ICV1

Datafile:


NT2,


20160810g.b/08101603.D

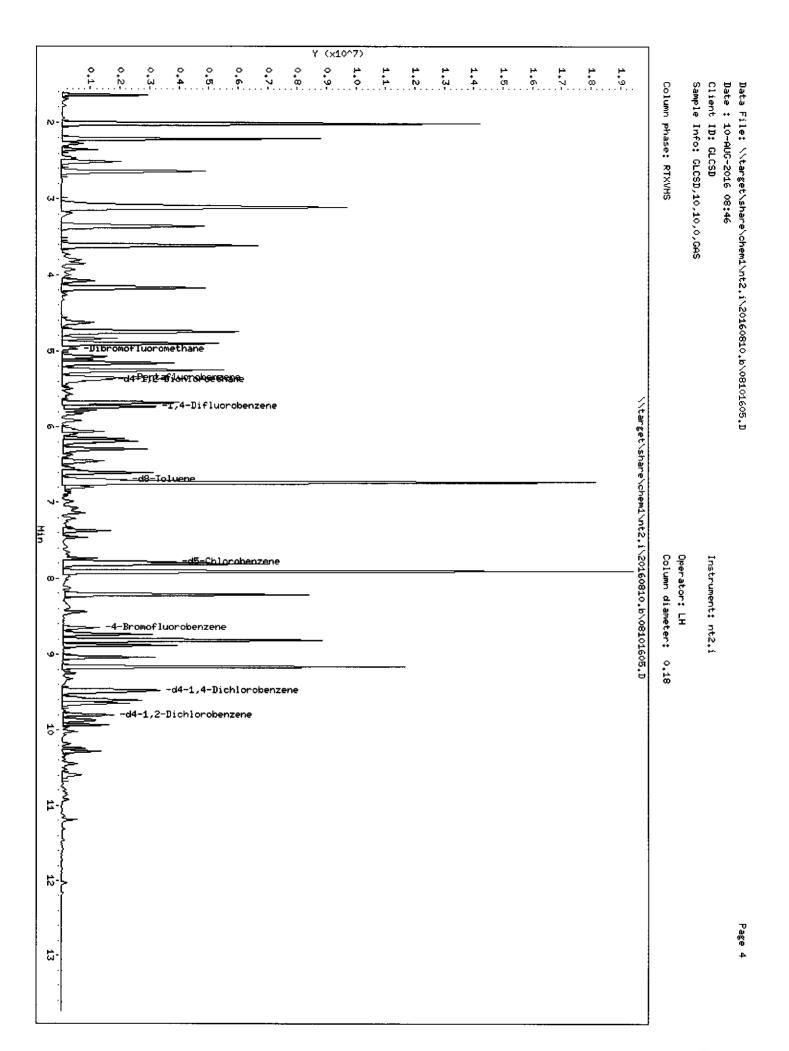
Manual

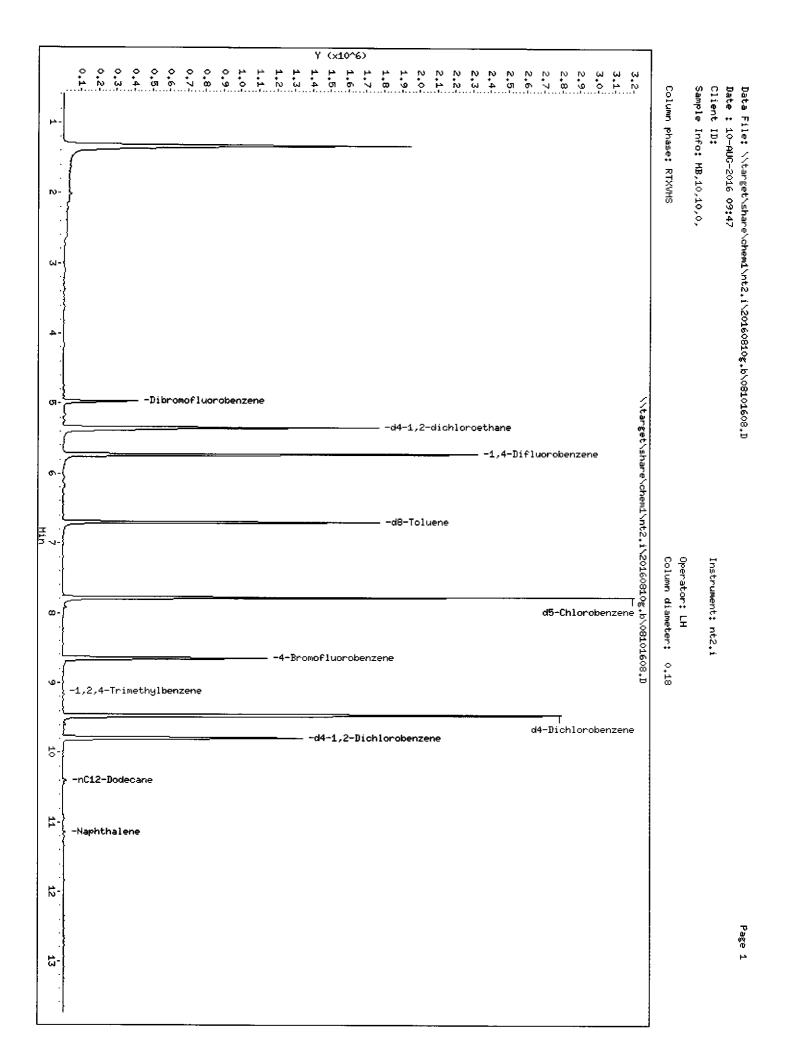
Integrations Report

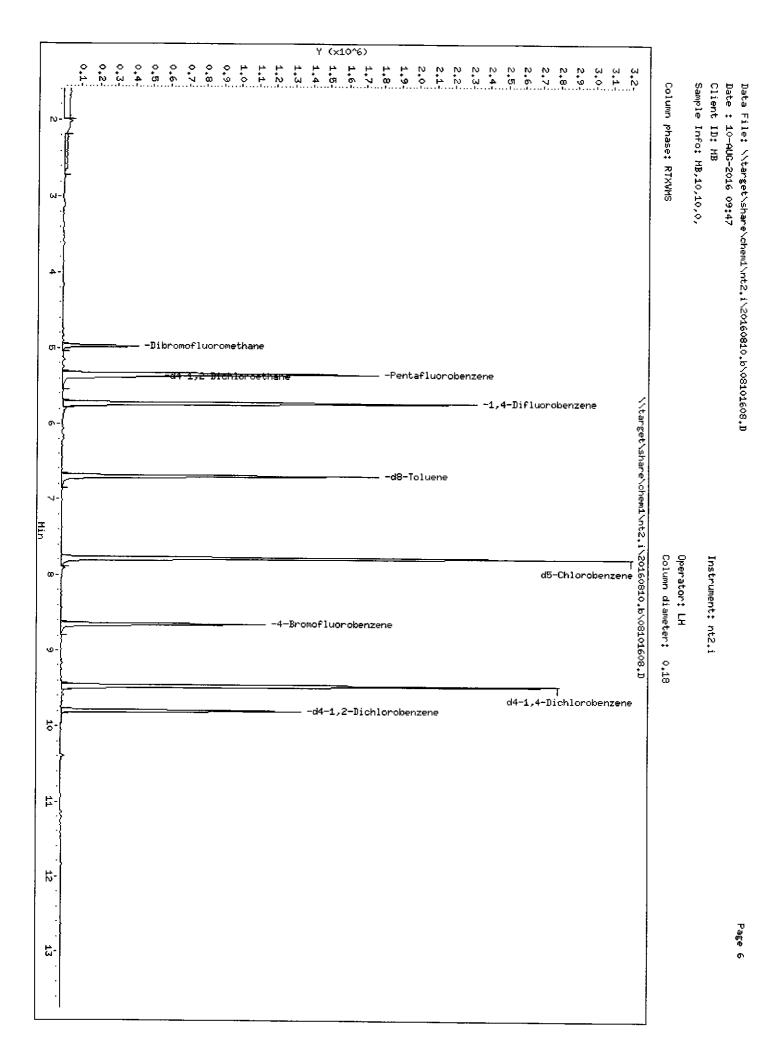
Injection: 10-AUG-2016

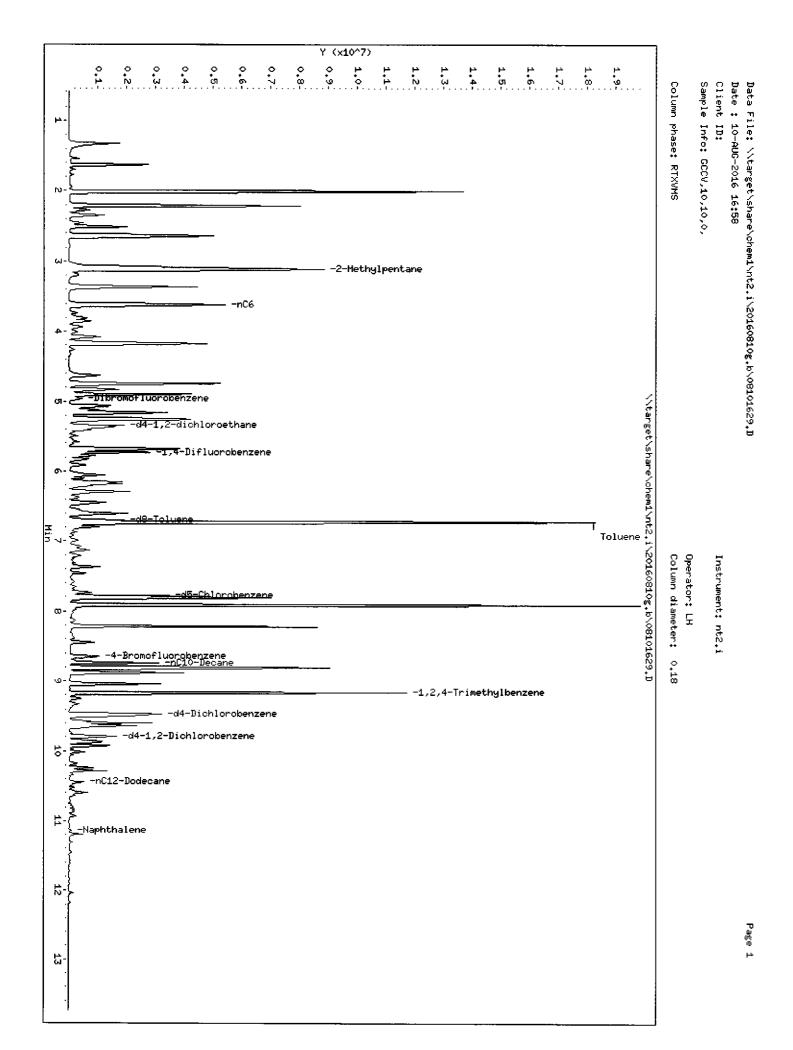
Lab

ID:GLCSD


Datafile:

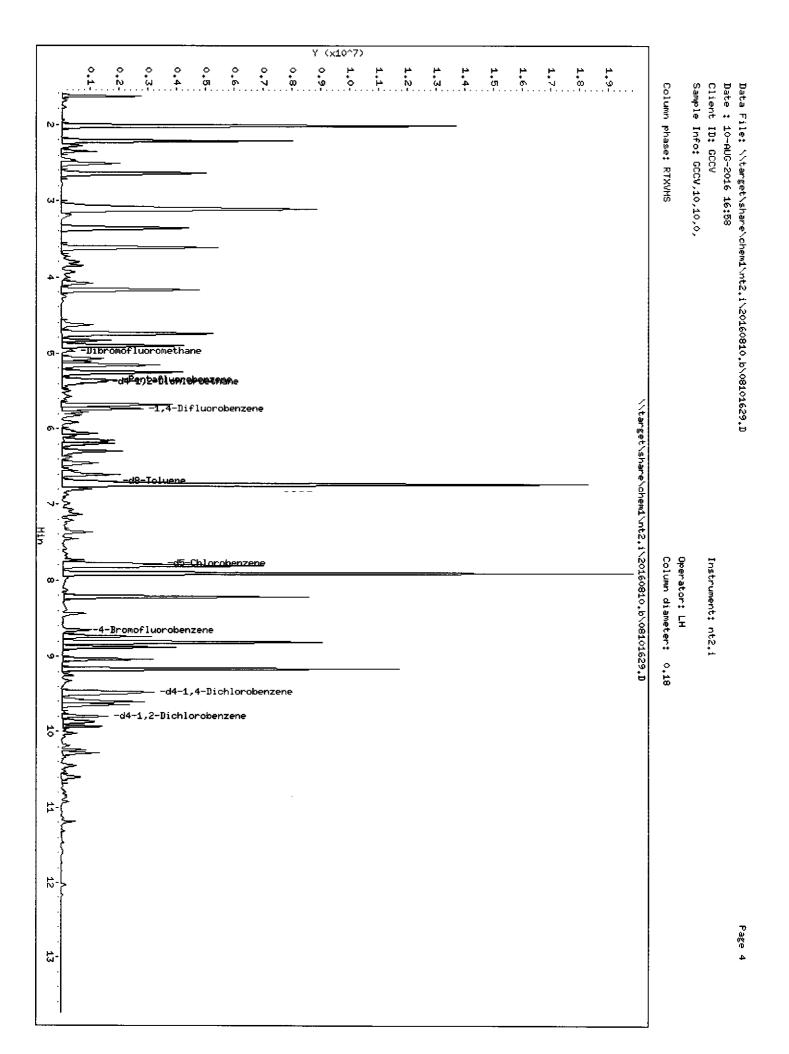

NT2,

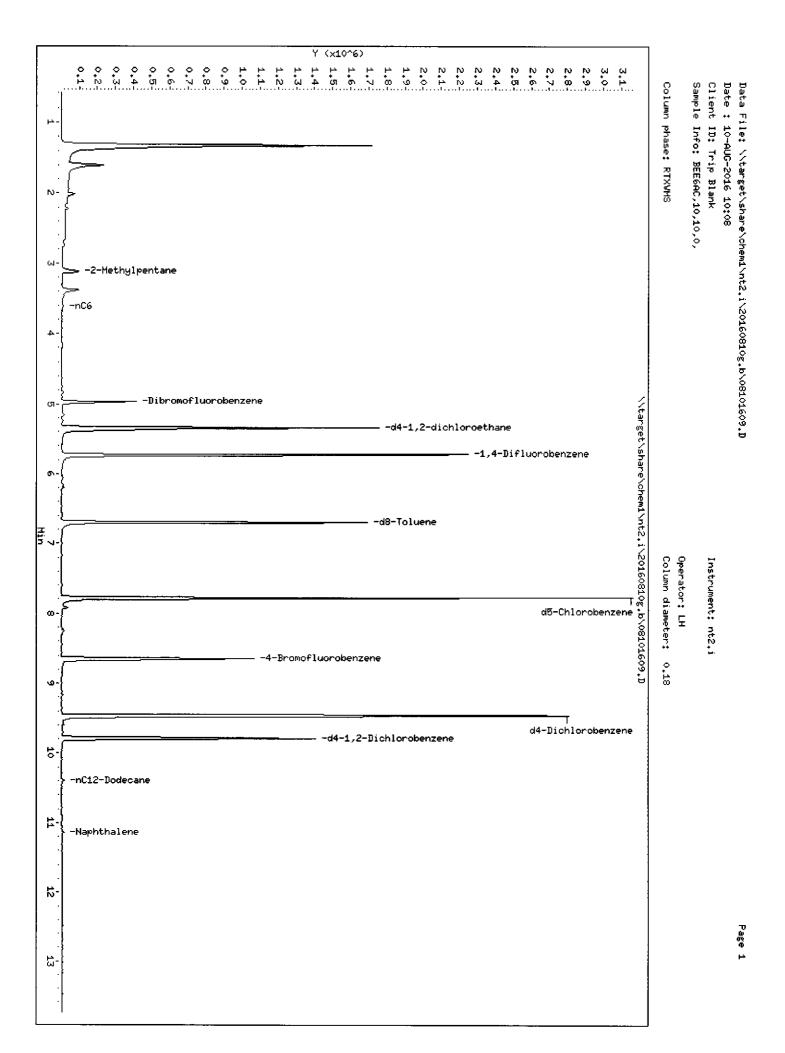

20160810g.b/08101605.D

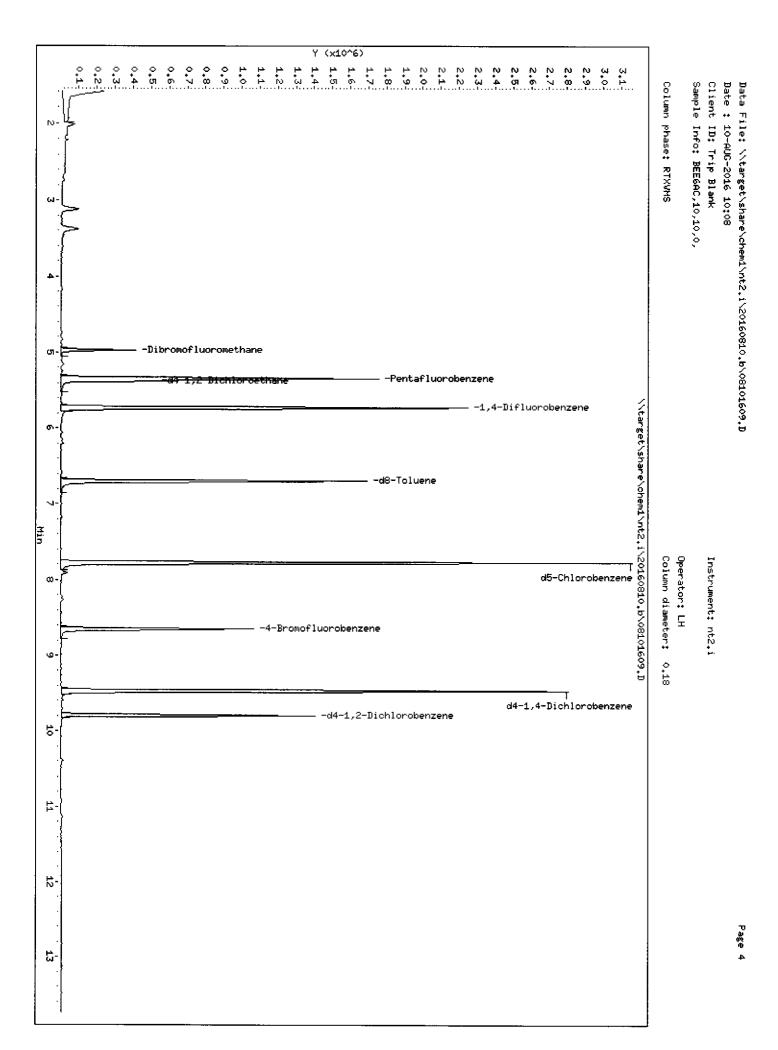

Integrations

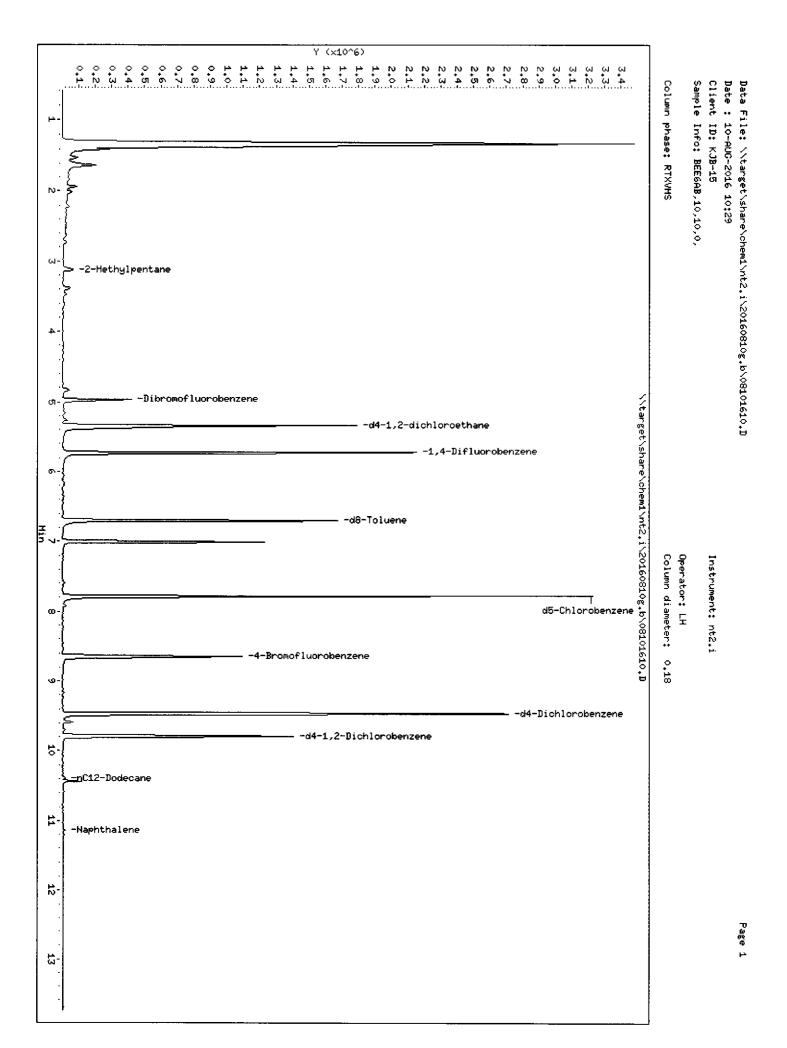
Injection: 10-AUG-2016

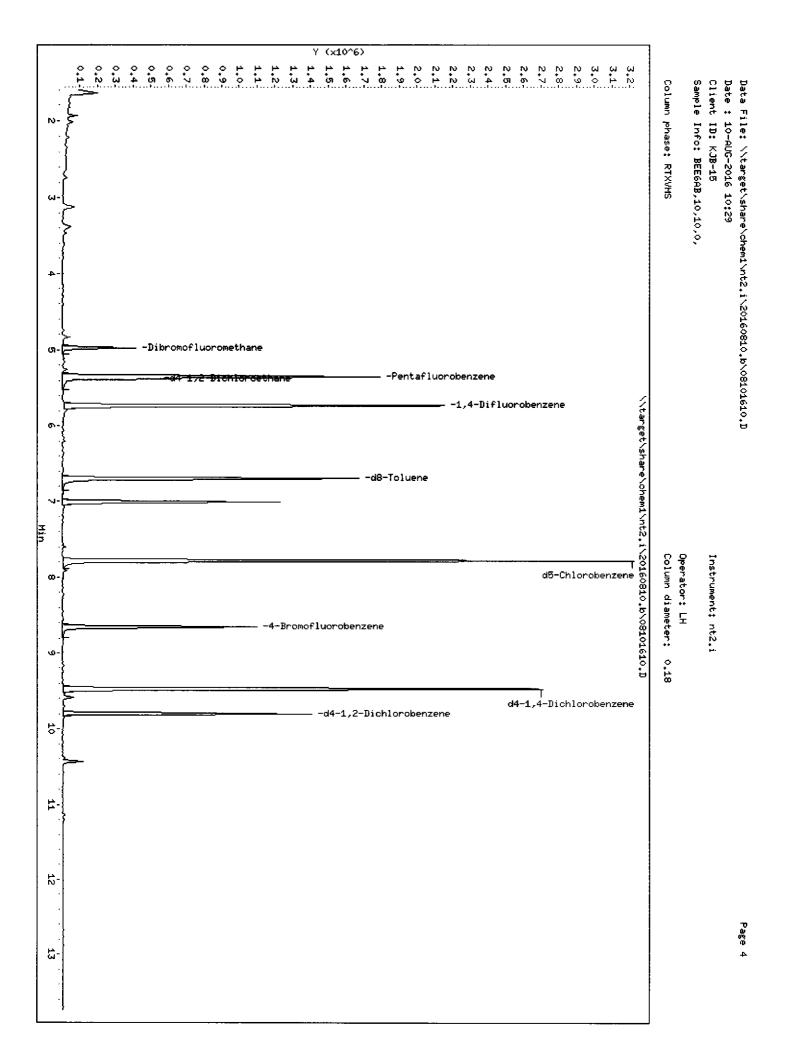
World, Stronger storett about. Joseph and the state of th

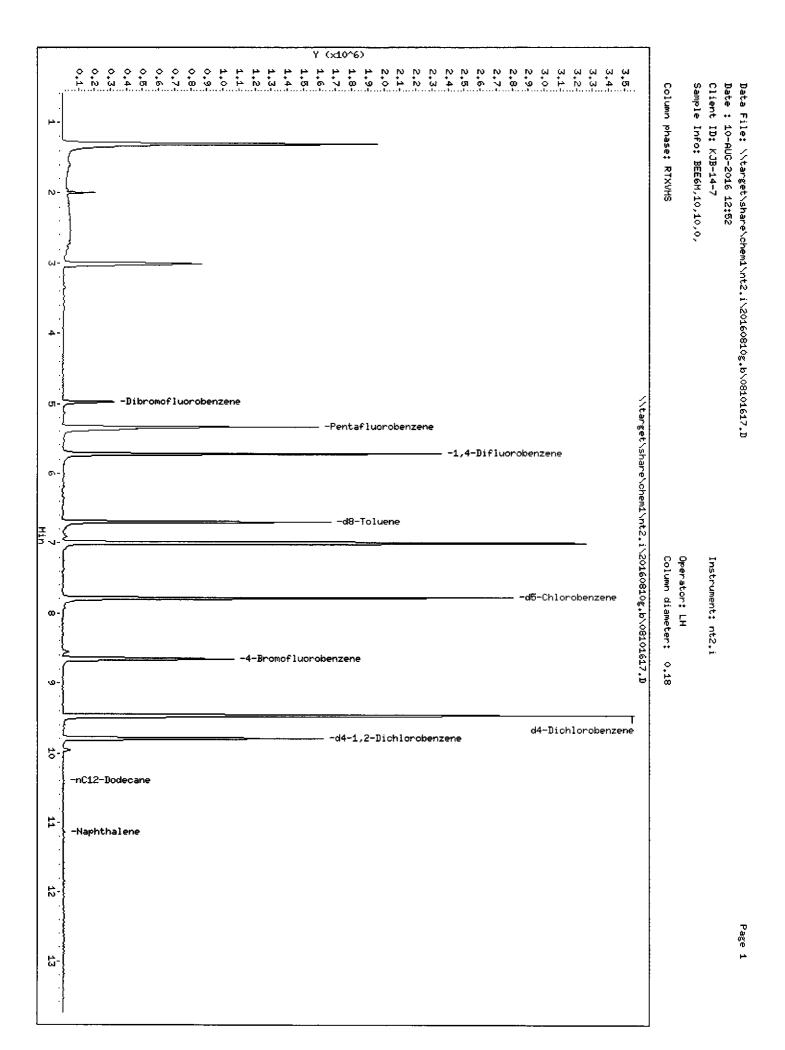

TPHG Manual Integrations Report NT2, 20160810g.b/08101629.D Injection: 10-AUG-2016

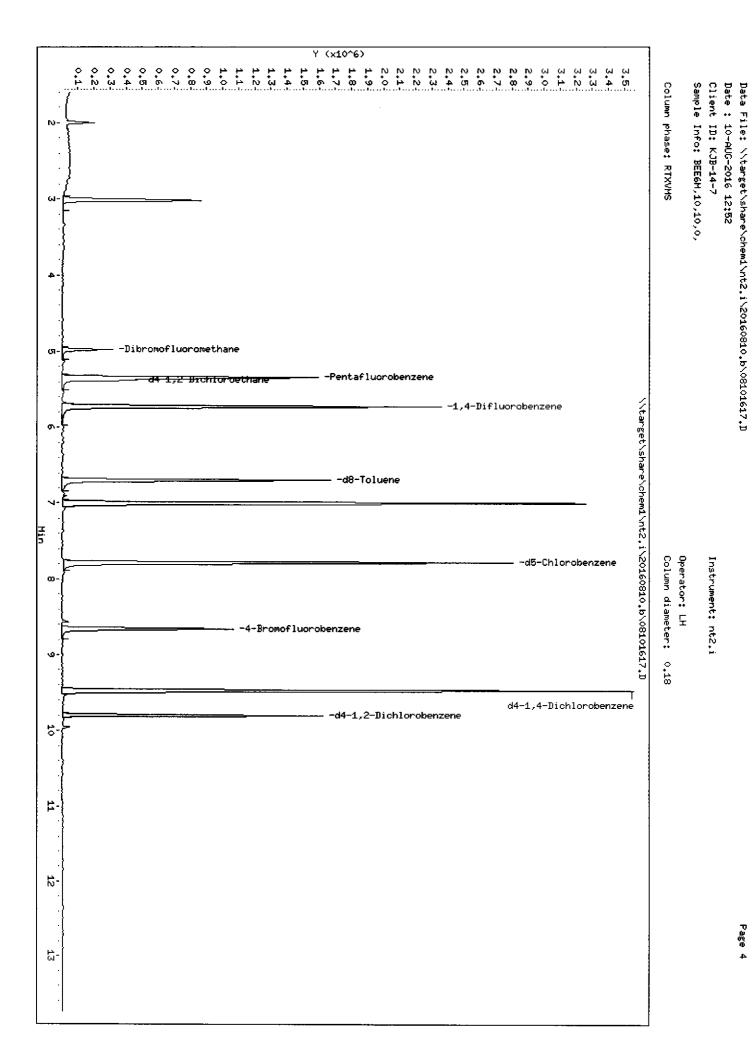

16:58

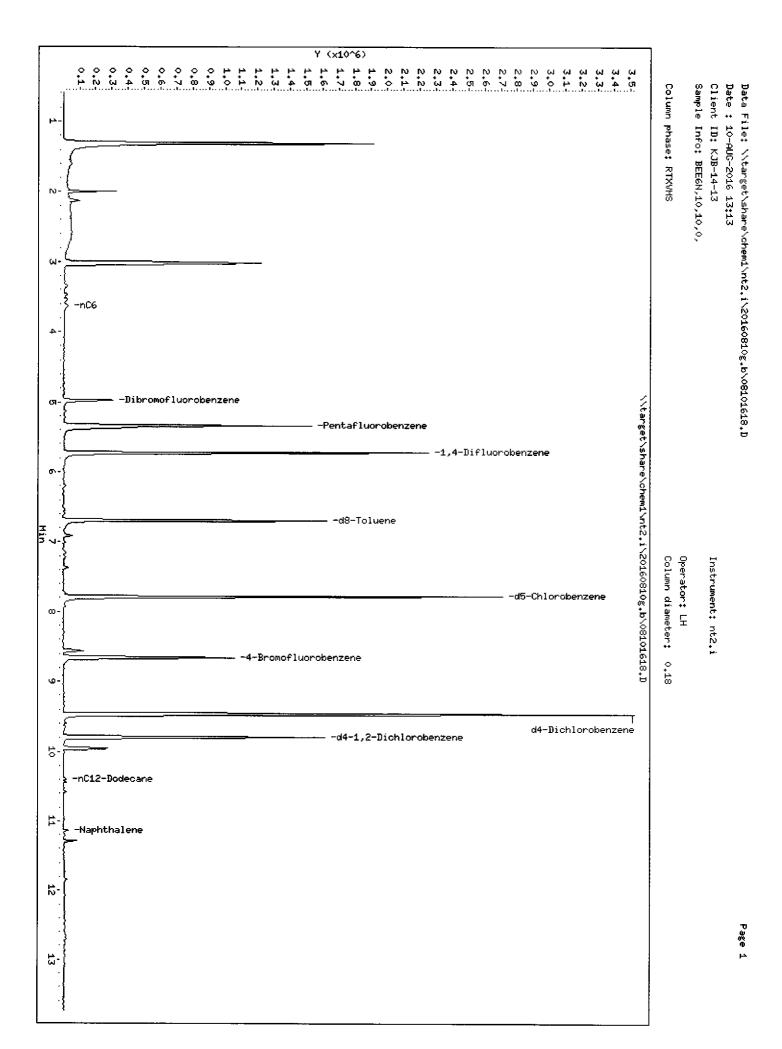

Lab

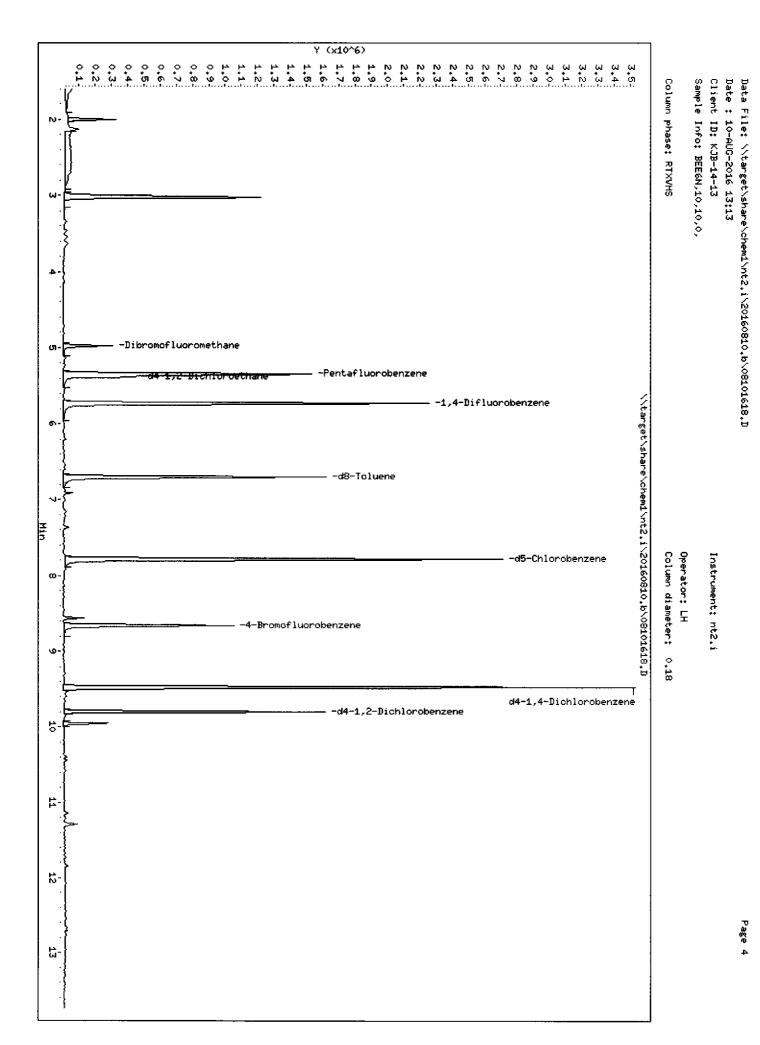

ID: GCCV

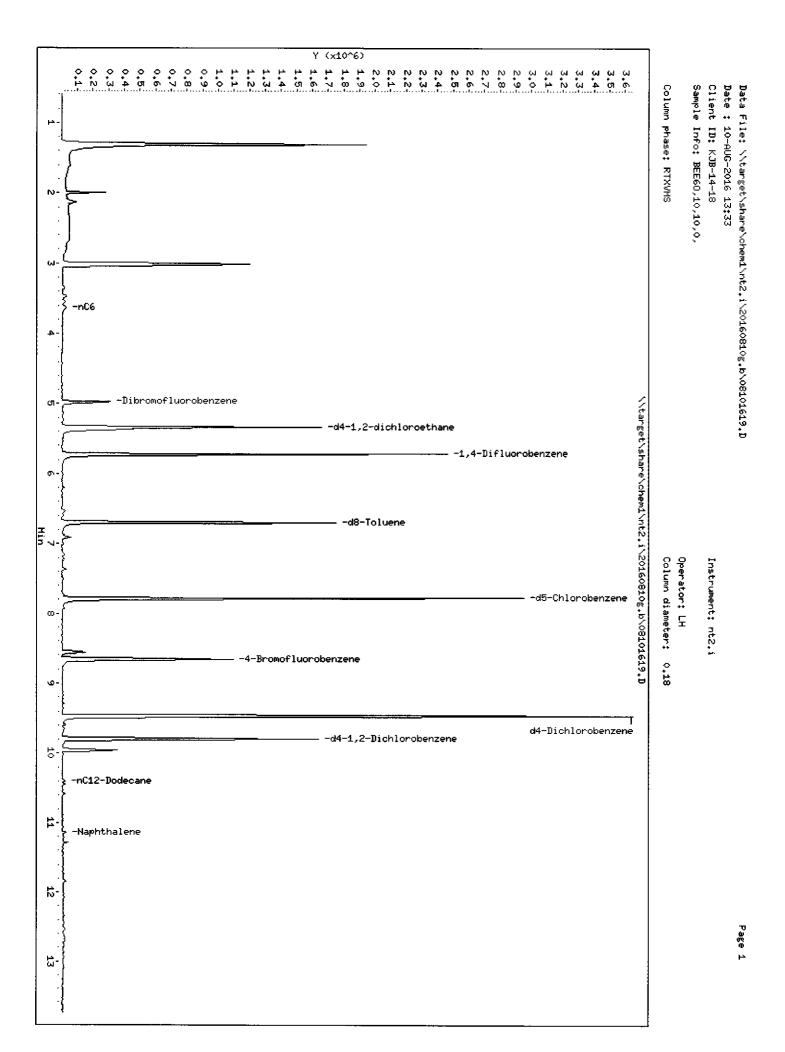

Datafile:

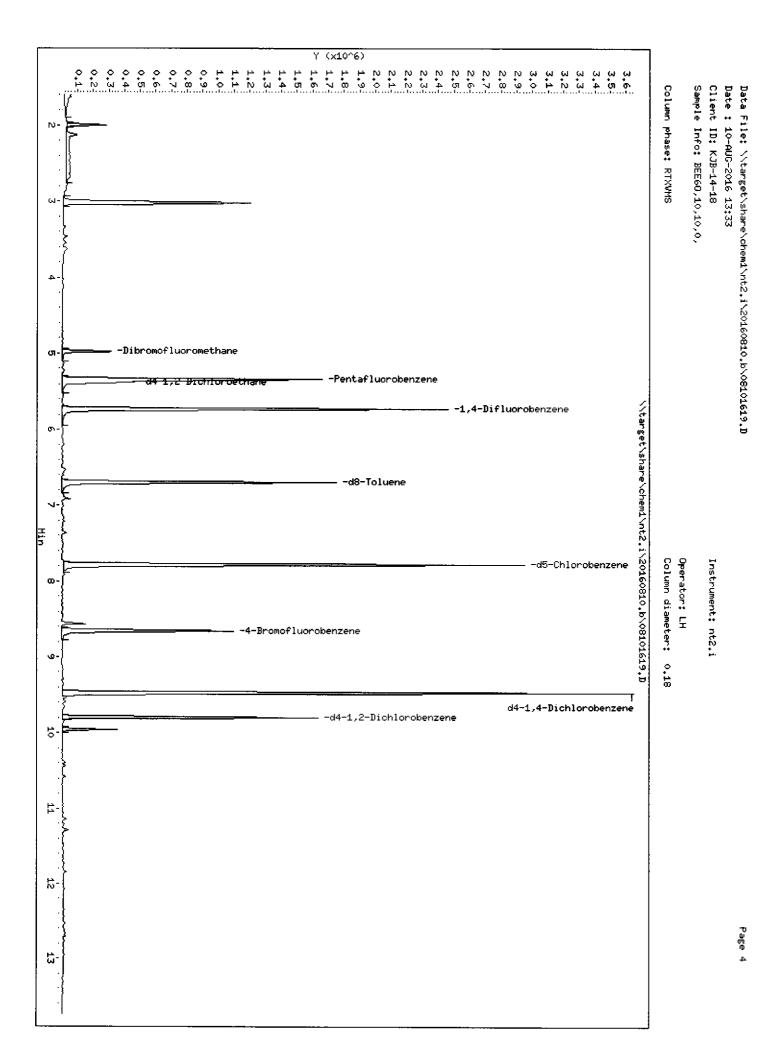


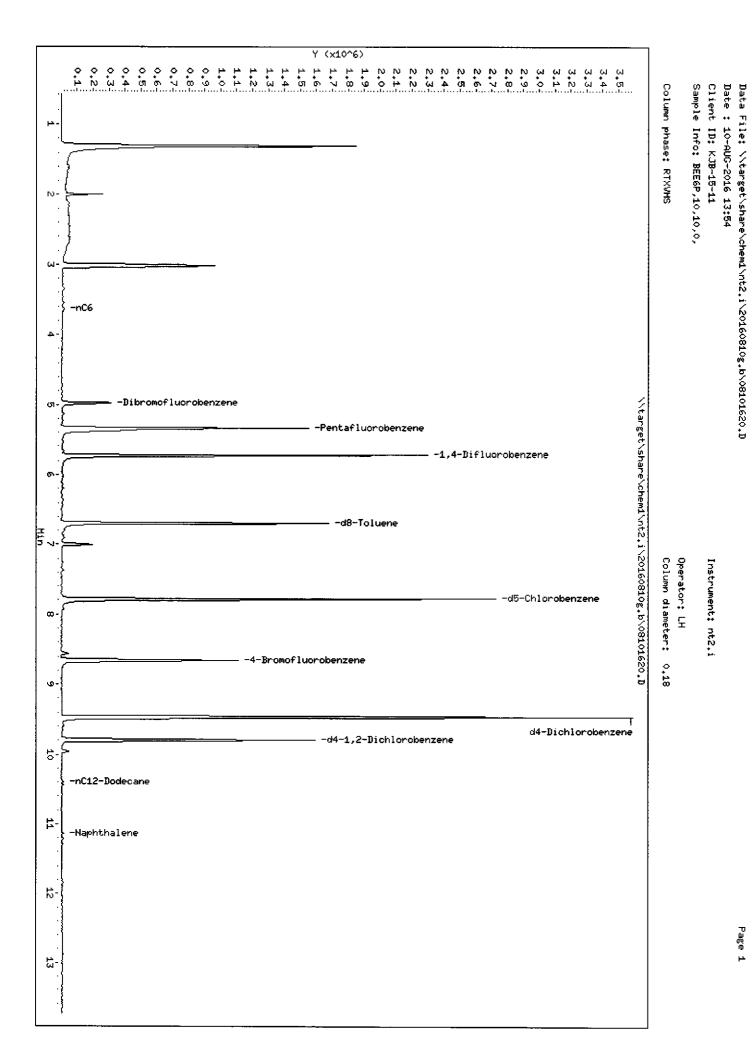


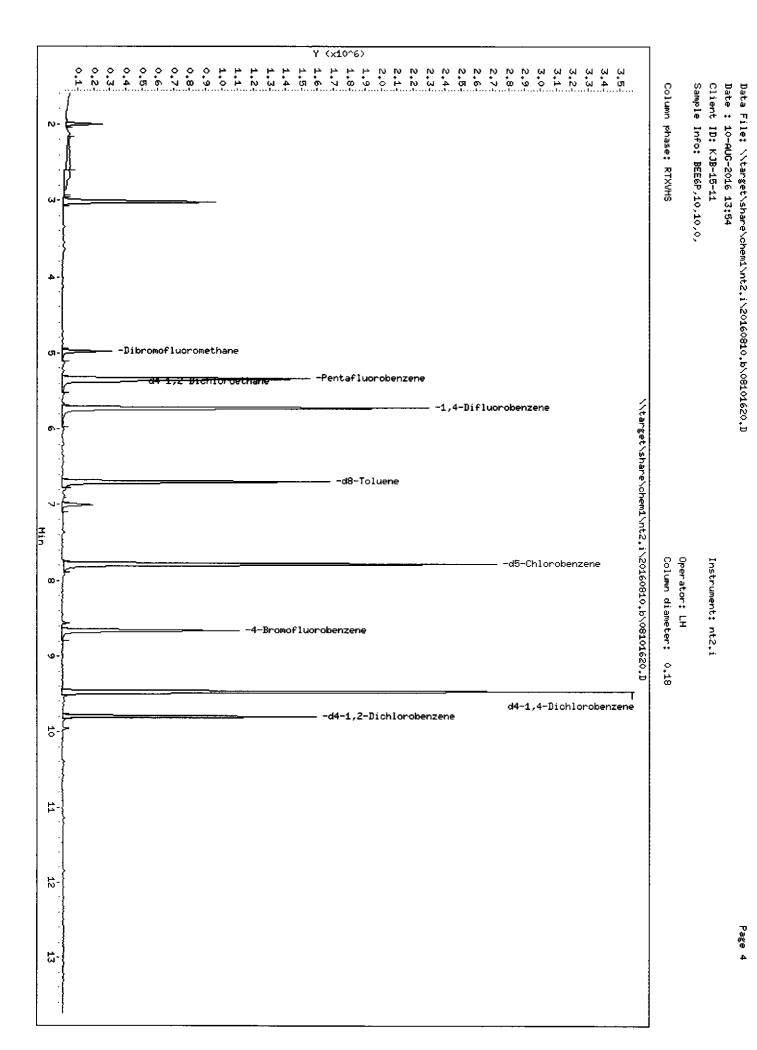


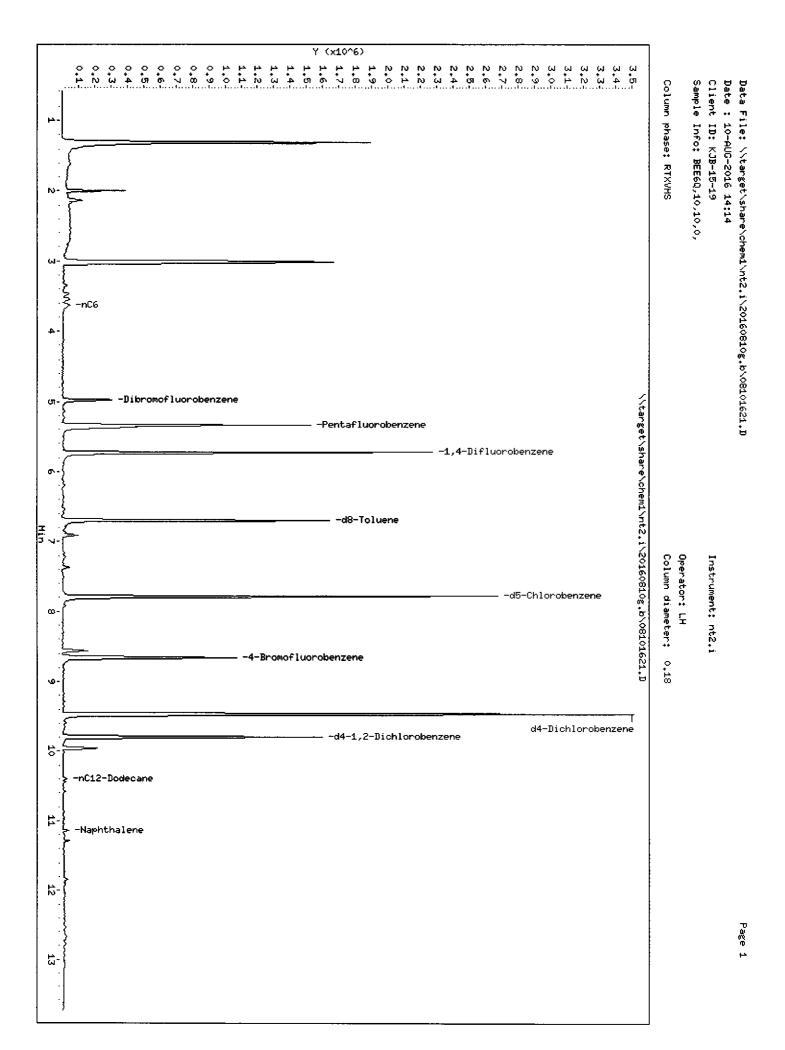


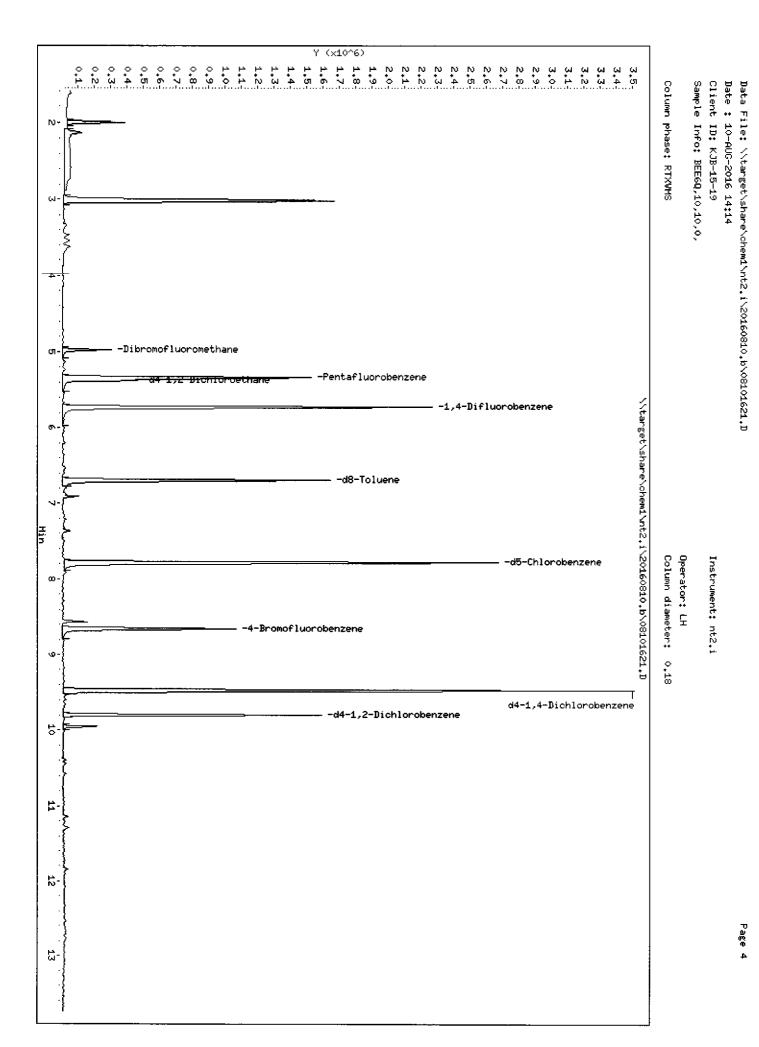


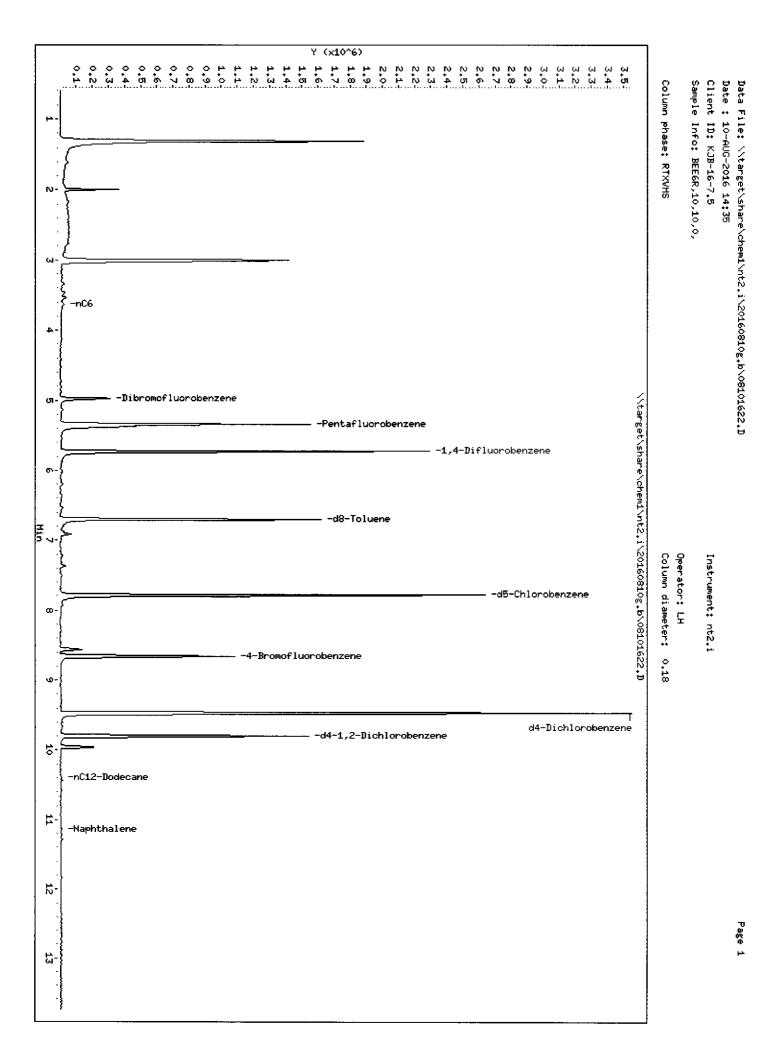


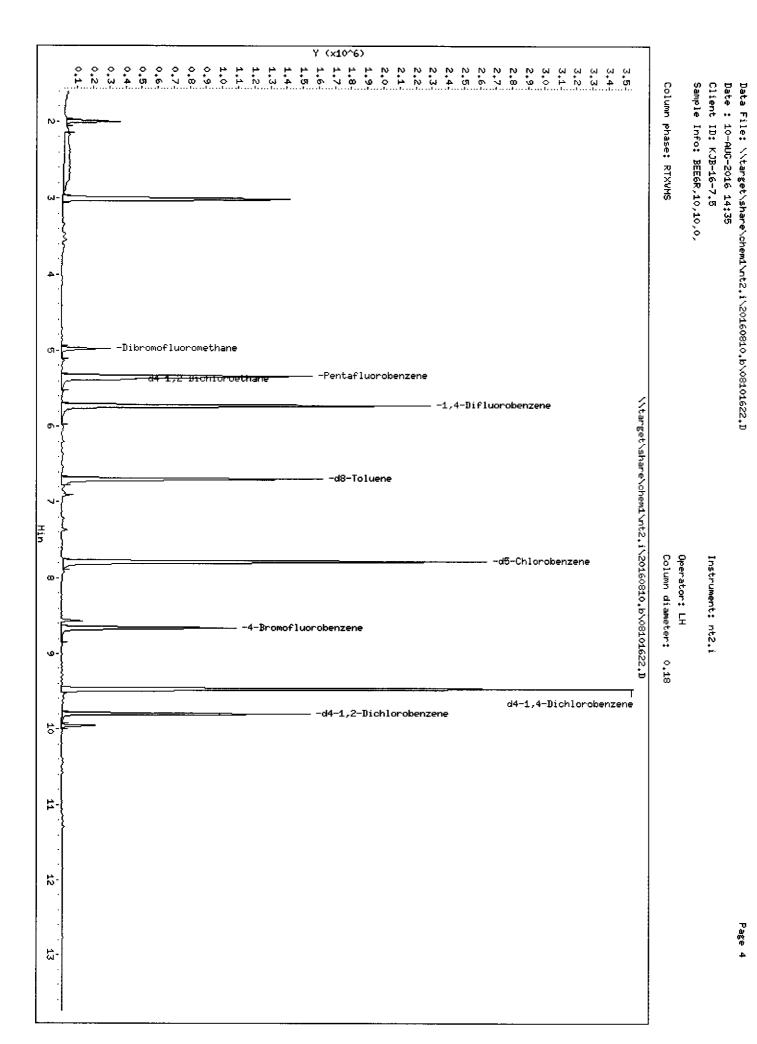


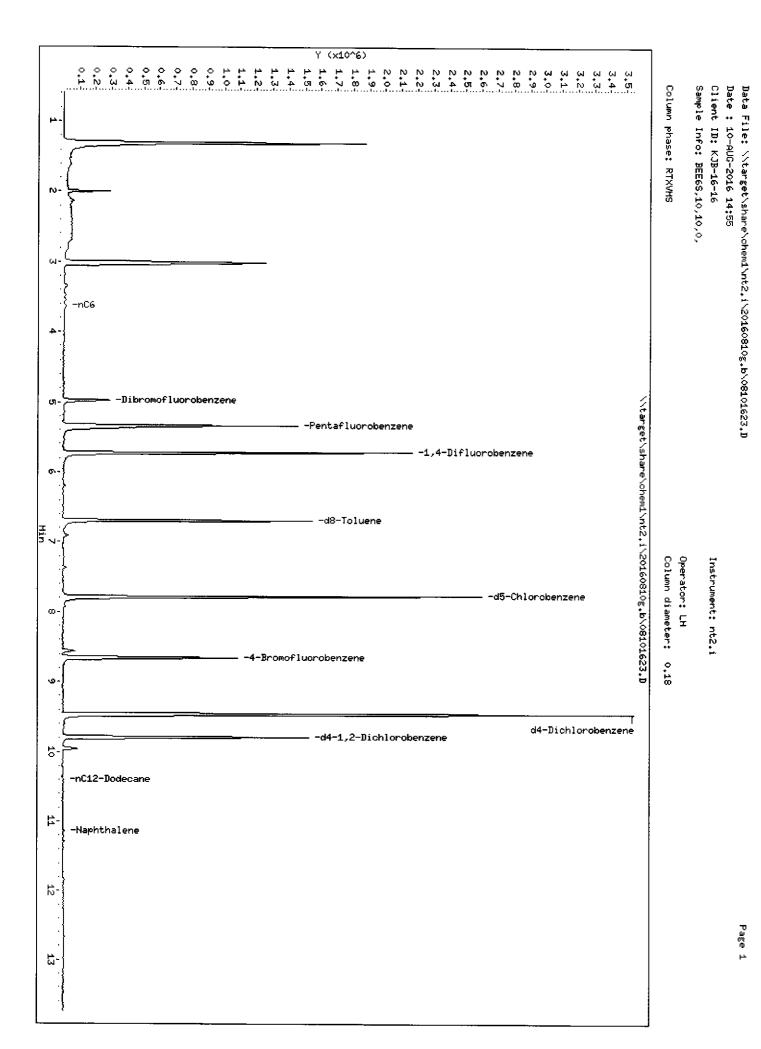


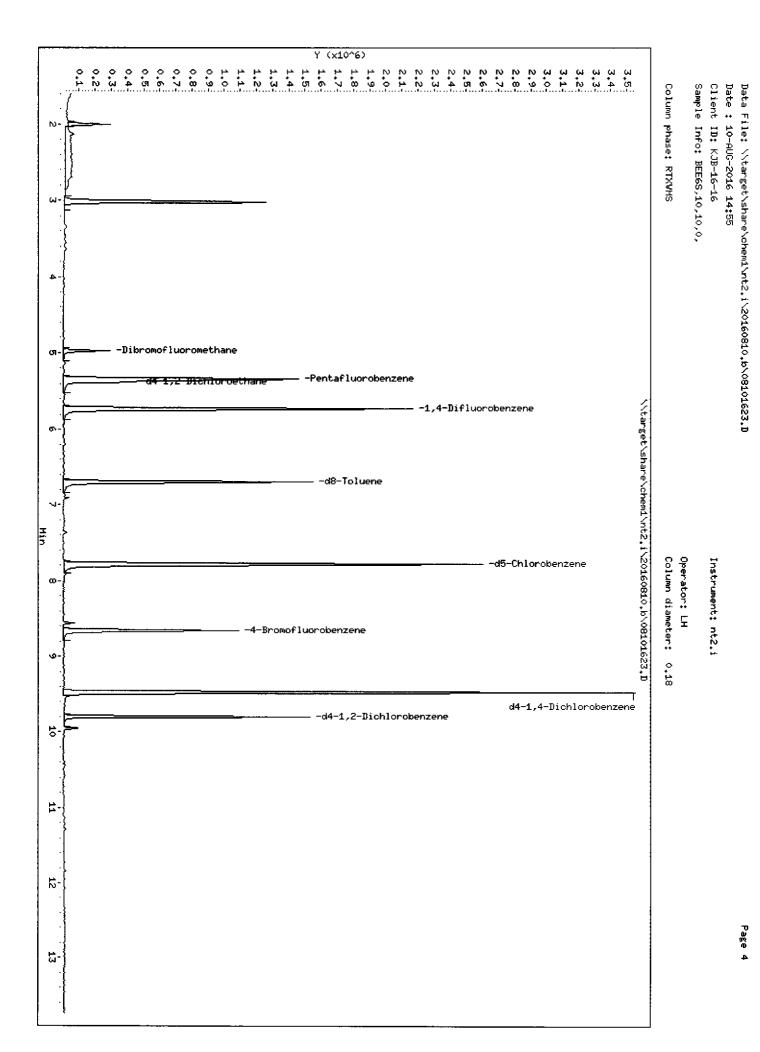


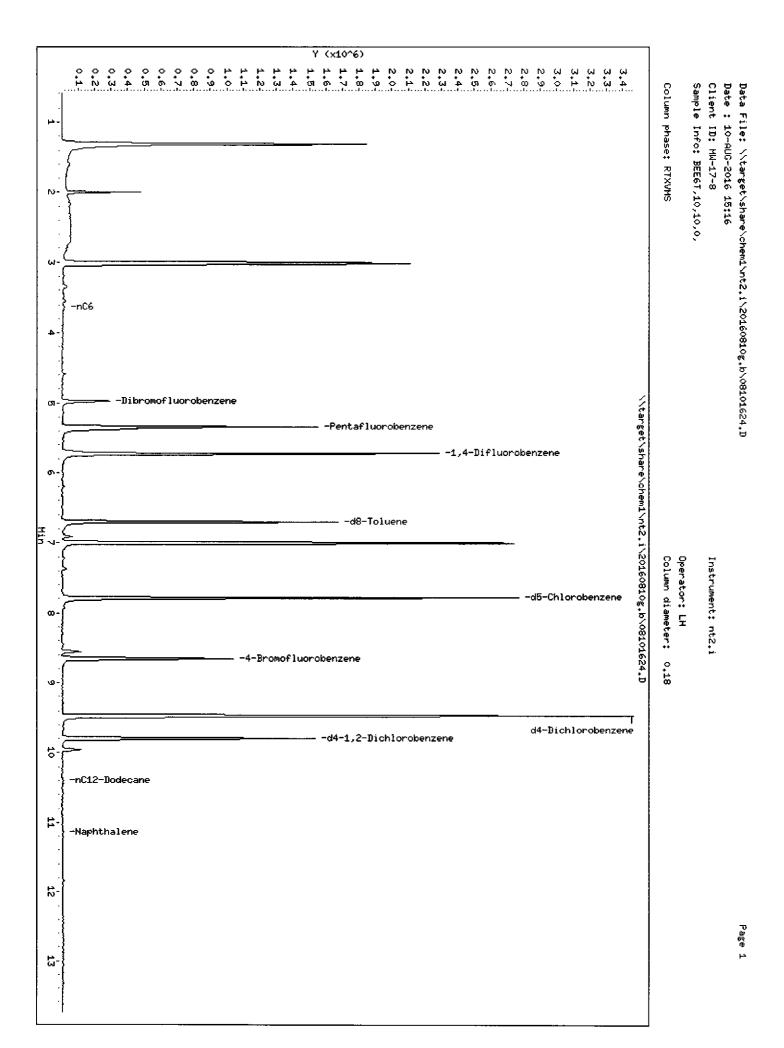


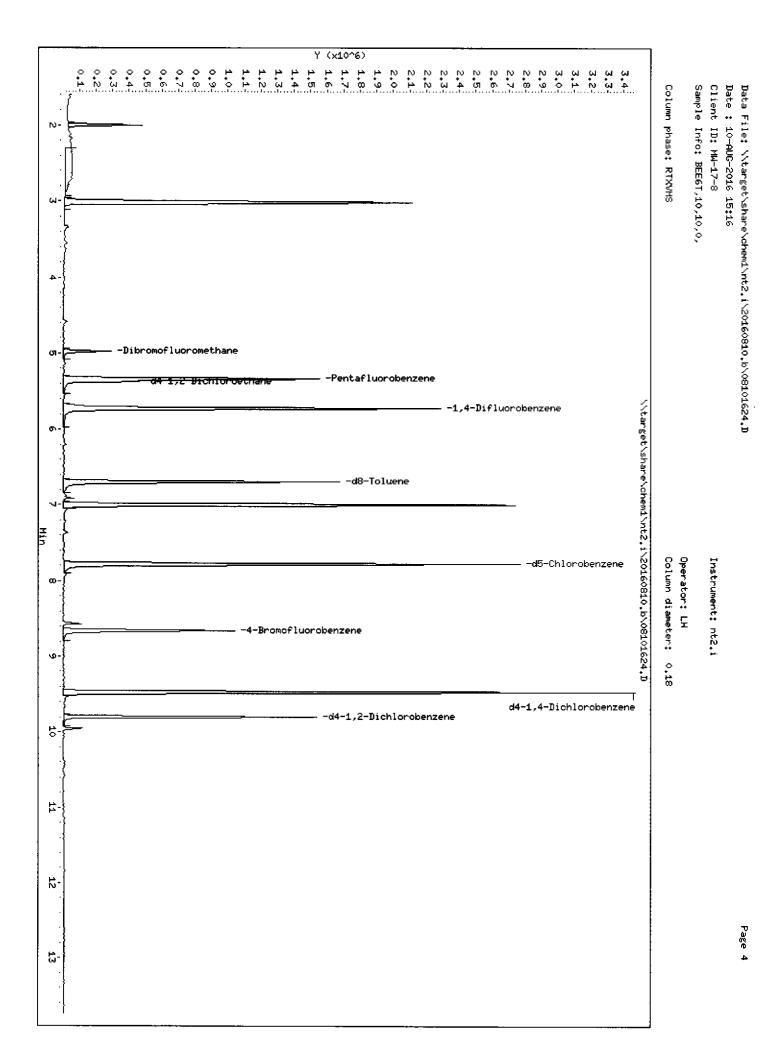


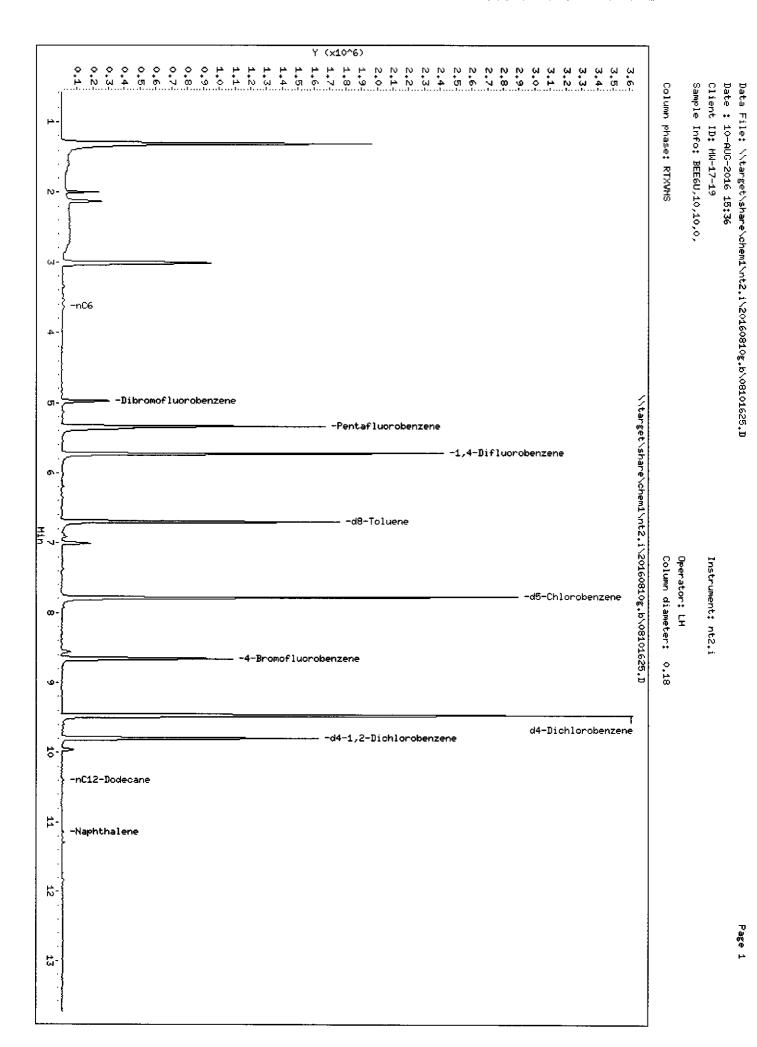


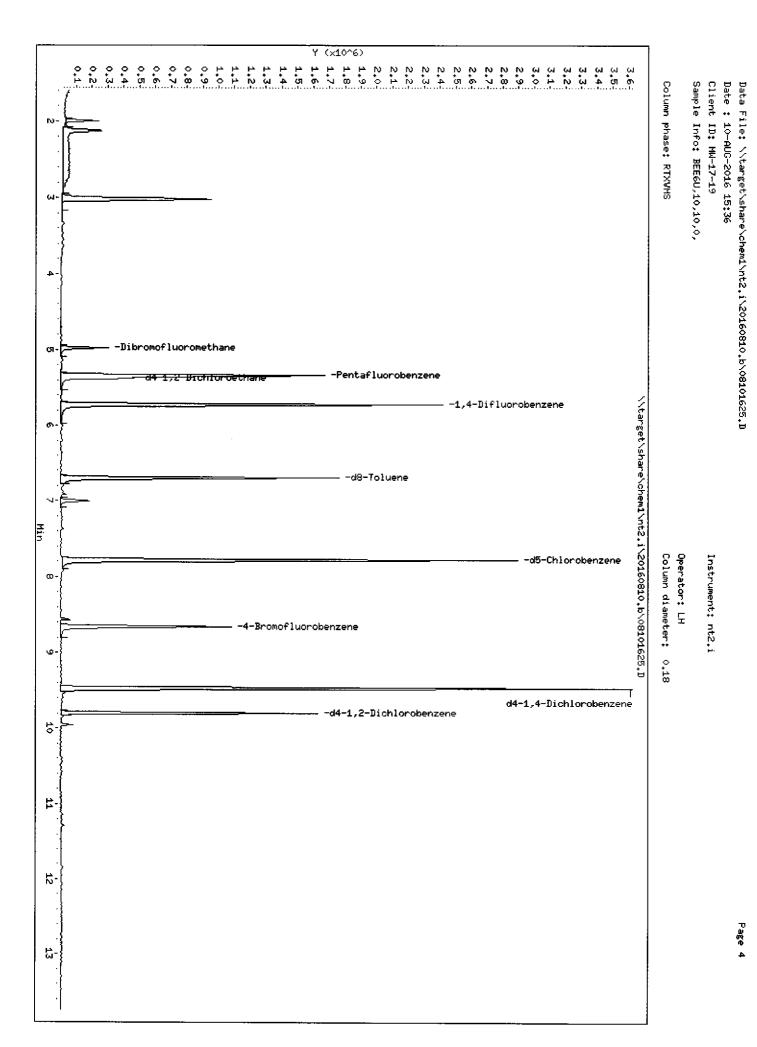


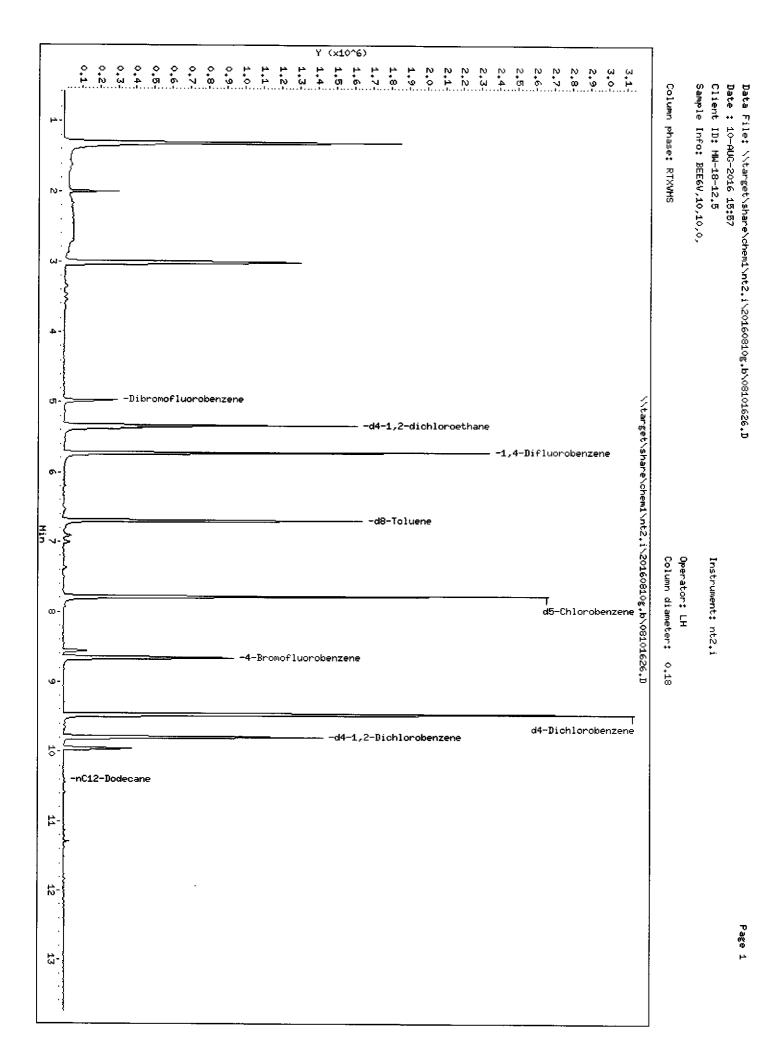


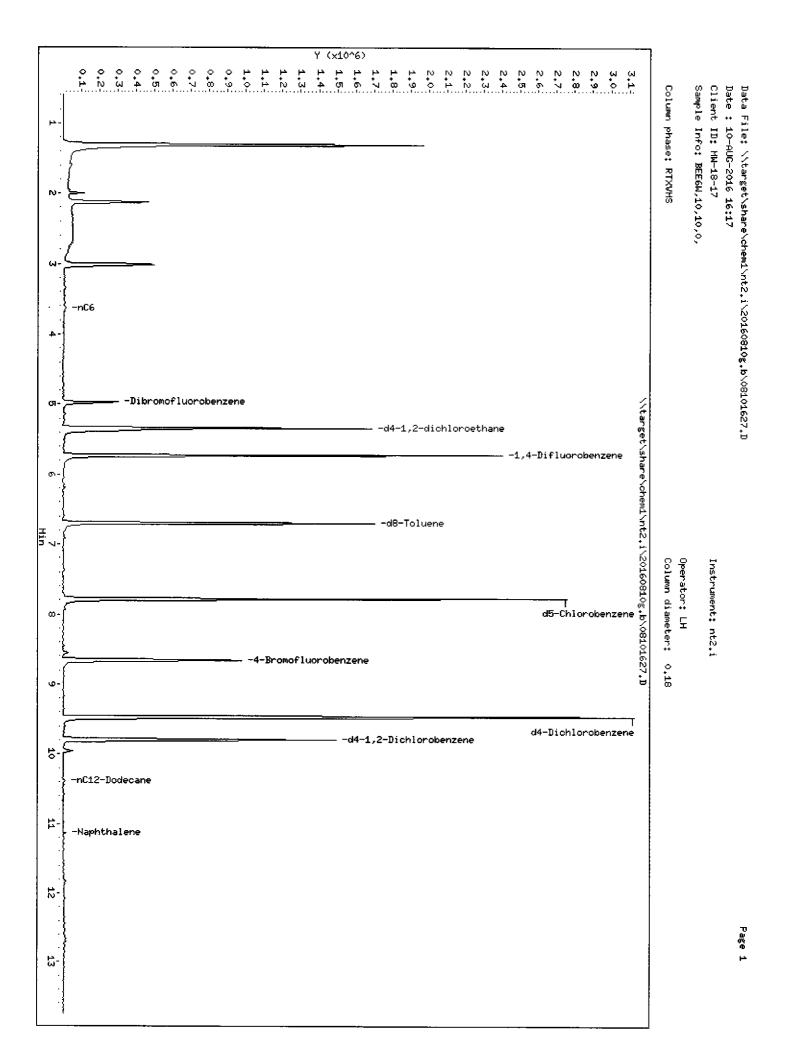


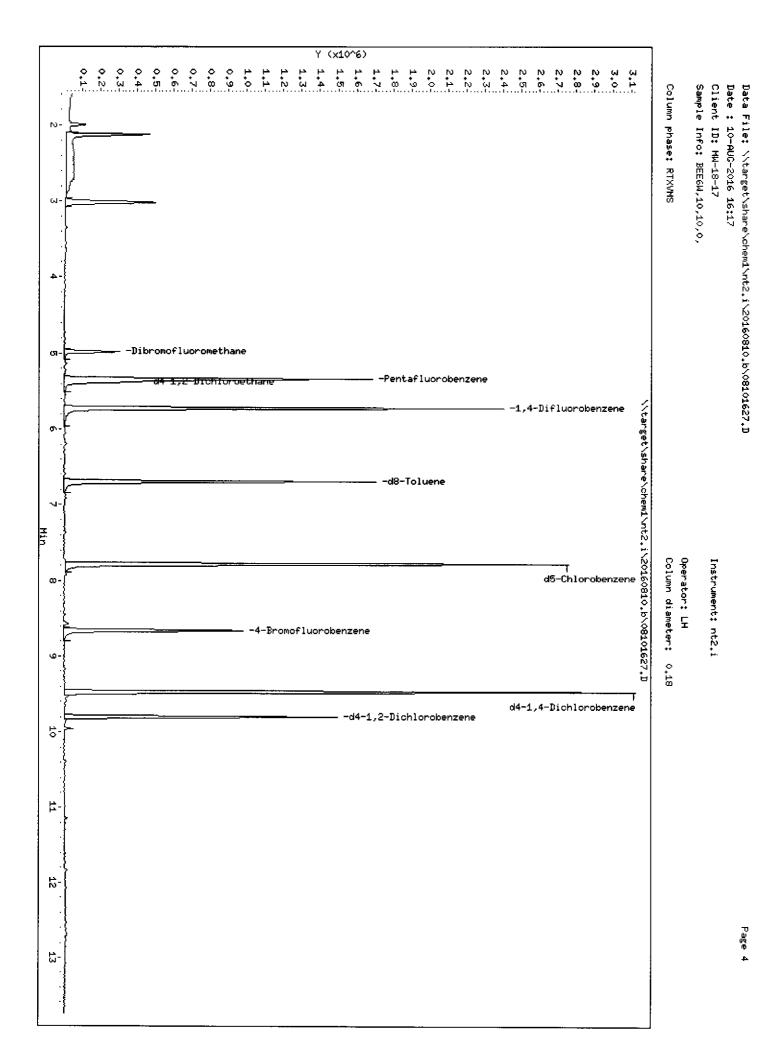


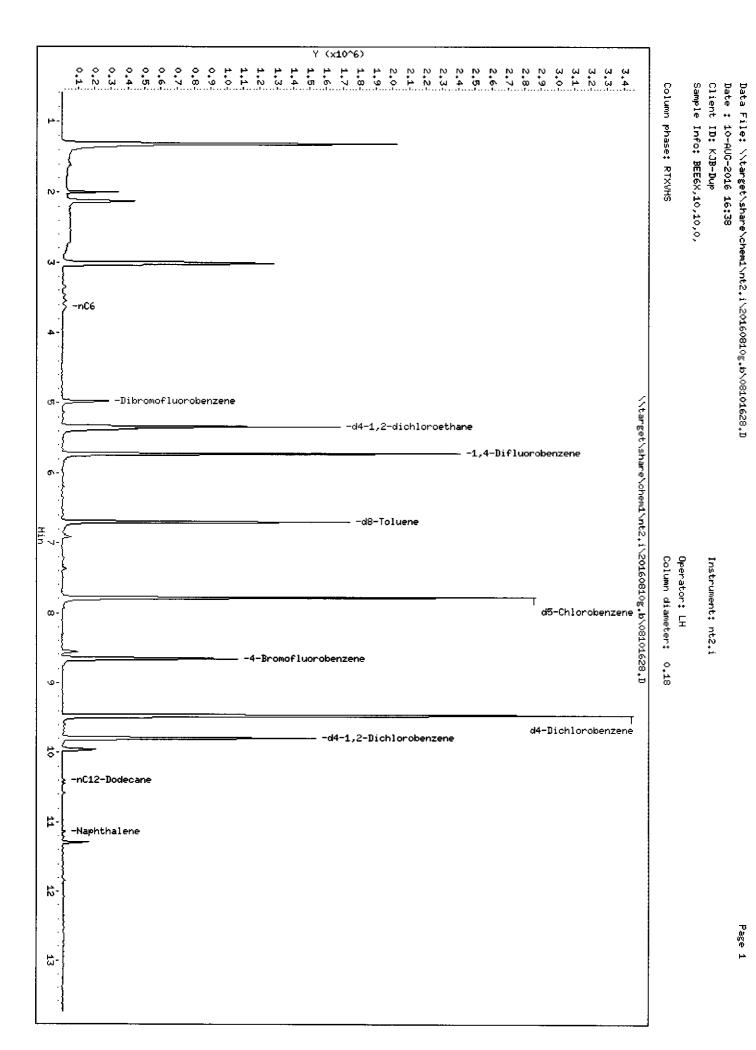


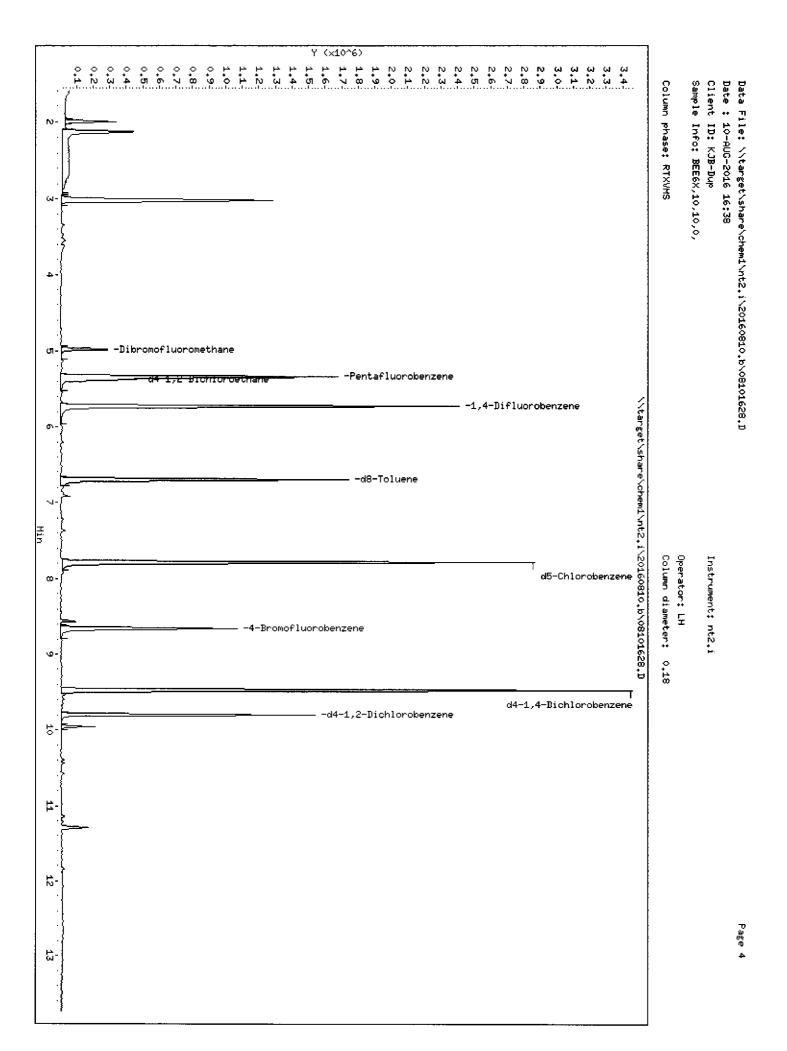












Page 1 of 1

Lab Sample ID: BEE6A LIMS ID: 16-11526

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT5/PAB

Date Analyzed: 08/03/16 16:54

Reported: 08/11/16

fly.

7

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Sample ID: KJB-14-7

SAMPLE

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 5.49 g-dry-wt

Purge Volume: 5.0 mL Moisture: 11.7%

CAS Number	Analyte	TOŌ	Result	Q
71-43-2	Benzene	0.9	< 0.9	U
108-88-3	Toluene	0.9	< 0.9	U
100-41-4	Ethylbenzene	0.9	< 0.9	Ū
179601-23-1	m,p-Xylene	0.9	< 0.9	U
95-47-6	o-Xylene	0.9	< 0.9	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	97.6%
Bromofluorobenzene	96.7%
d4-1,2-Dichlorobenzene	101%

FORM I

Pie s von 71

Page 1 of 1

Lab Sample ID: BEE6B LIMS ID: 16-11527

Matrix: Soil

Data Release Authorized: Reported: 08/11/16

Instrument/Analyst: NT5/PAB
Date Analyzed: 08/03/16 17:17

Sample ID: KJB-14-13 SAMPLE

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00 led: 08/01/16

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 3.60 g-dry-wt

Purge Volume: 5.0 mL Moisture: 15.6%

CAS Number	Analyte	LOÕ	Result	Q
71-43-2	Benzene	1.4	< 1.4	U
108-88-3	Toluene	1.4	< 1.4	U
100-41-4	Ethylbenzene	1.4	< 1.4	U
179601-23-1	m,p-Xylene	1.4	< 1.4	U
95-47-6	o-Xylene	1.4	< 1.4	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	97.7%
Bromofluorobenzene	90.6%
d4-1,2-Dichlorobenzene	101%

FORM I BEE5:00072

Page 1 of 1

Lab Sample ID: BEE6C LIMS ID: 16-11528

Matrix: Soil

Data Release Authorized: 4

Reported: 08/11/16

Instrument/Analyst: NT5/PAB
Date Analyzed: 08/03/16 17:40

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Sample ID: KJB-14-18

SAMPLE

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 4.49 g-dry-wt

Purge Volume: 5.0 mL Moisture: 16.4%

CAS Number	Analyte	roð	Result	Q
71-43-2	Benzene	1.1	< 1.1	U
108-88-3	Toluene	1.1	< 1.1	Ū
100-41-4	Ethylbenzene	1.1	< 1.1	U
179601-23-1	m,p-Xylene	1.1	< 1.1	U
95-47-6	o-Xylene	1.1	< 1.1	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	97.3%
Bromofluorobenzene	95.8%
d4-1,2-Dichlorobenzene	101%

FORM I BEES : OVO73

Page 1 of 1

Lab Sample ID: BEE6D LIMS ID: 16-11529

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT5/PAB

Date Analyzed: 08/03/16 18:02

Reported: 08/11/16

QC Report No: BEE6-Kennedy Jenks Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 4.64 g-dry-wt

Sample ID: KJB-15-11

SAMPLE

Purge Volume: 5.0 mL Moisture: 13.0%

CAS Number	Analyte	ΓΟŌ	Result	Q
71-43-2	Benzene	1.1	< 1.1	U
108-88-3	Toluene	1.1	< 1.1	Ū
100-41-4	Ethylbenzene	1.1	< 1.1	U
179601-23-1	m,p-Xylene	1.1	< 1.1	U
95-47 - 6	o-Xylene	1.1	< 1.1	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	97.9%
Bromofluorobenzene	96.6%
d4-1,2-Dichlorobenzene	101%

FORM I

Page 1 of 1

Lab Sample ID: BEE6E LIMS ID: 16-11530

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT5/PAB

Date Analyzed: 08/03/16 18:25

Reported: 08/11/16

QC Report No: BEE6-Kennedy Jenks Project: Circle K

1696010.00

Sample ID: KJB-15-19

SAMPLE

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 4.16 g-dry-wt

Purge Volume: 5.0 mL Moisture: 10.6%

CAS Number	Analyte	roō	Result	Q
71-43-2	Benzene	1.2	< 1.2	U
108-88-3	Toluene	1.2	< 1.2	U
100-41-4	Ethylbenzene	1.2	< 1.2	U
179601-23-1	m,p-Xylene	1.2	< 1.2	U
95-47-6	o-Xylene	1.2	< 1.2	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	96.4%
Bromofluorobenzene	92.0%
d4-1,2-Dichlorobenzene	102%

FORM I

Page 1 of 1

Lab Sample ID: BEE6F LIMS ID: 16-11531

Matrix: Soil

Data Release Authorized: /

Instrument/Analyst: NT5/PAB

Date Analyzed: 08/03/16 18:48

Reported: 08/11/16

Project: Circle K

1696010.00 Date Sampled: 08/01/16

Date Received: 08/02/16

Sample Amount: 4.44 g-dry-wt

QC Report No: BEE6-Kennedy Jenks

Sample ID: KJB-16-7.5

SAMPLE

Purge Volume: 5.0 mL Moisture: 11.1%

CAS Number	Analyte	ΓΟŌ	Result	Q
71-43-2	Benzene	1.1	< 1.1	U
108-88-3	Toluene	1.1	< 1.1	Ū
100-41-4	Ethylbenzene	1.1	< 1.1	U
179601-23-1	m,p-Xylene	1.1	< 1.1	U
95-47-6	o-Xvlene	1.1	< 1.1	Ü

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	97.9%
Bromofluorobenzene	96.6%
d4-1,2-Dichlorobenzene	101%

FORM I TEEE: 44975

Page 1 of 1

Lab Sample ID: BEE6G LIMS ID: 16-11532

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT5/PAB

Date Analyzed: 08/03/16 19:10

Sample ID: KJB-16-16 SAMPLE

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 3.97 g-dry-wt Purge Volume: 5.0 mL

Moisture: 18.8%

CAS Number	Analyte	LOQ	Result	Q
71-43-2	Benzene	1.3	< 1.3	U
108-88-3	Toluene	1.3	< 1.3	U
100-41-4	Ethylbenzene	1.3	< 1.3	Ü
179601-23-1	m,p-Xylene	1.3	< 1.3	Ü
95-47-6	o-Xylene	1.3	< 1.3	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	96.5%
Bromofluorobenzene	90.0%
d4-1,2-Dichlorobenzene	105%

FORM I

Sample ID: MW-17-8 Page 1 of 1 SAMPLE

Lab Sample ID: BEE6H LIMS ID: 16-11533

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT5/PAB

Date Analyzed: 08/03/16 19:33

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 4.12 g-dry-wt

Purge Volume: 5.0 mL Moisture: 11.0%

CAS Number	Analyte	TOŌ	Result	Q
71-43-2	Benzene	1.2	< 1.2	U
108-88-3	Toluene	1.2	< 1.2	U
100-41-4	Ethylbenzene	1.2	< 1.2	U
179601-23-1	m,p-Xylene	1.2	< 1.2	U
95-47-6	o-Xylene	1.2	< 1.2	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	98.1%
Bromofluorobenzene	97.5%
d4-1,2-Dichlorobenzene	102%

FORM I BEES: 00073

Page 1 of 1

Lab Sample ID: BEE61 LIMS ID: 16-11534

Matrix: Soil

Data Release Authorized:

Instrument/Analyst: NT5/PAB

Date Analyzed: 08/03/16 19:56

Reported: 08/11/16

Project: Circle K 1696010.0

1696010.00 Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 5.10 g-dry-wt

QC Report No: BEE6-Kennedy Jenks

Sample ID: MW-17-19

SAMPLE

Purge Volume: 5.0 mL Moisture: 10.2%

CAS Number	Analyte	TOŌ	Result	Q
71-43-2	Benzene	1.0	< 1.0	Ü
108-88-3	Toluene	1.0	< 1.0	Ū
100-41-4	Ethylbenzene	1.0	< 1.0	U
179601-23 - 1	m,p-Xylene	1.0	< 1.0	U
95-47-6	o-Xylene	1.0	< 1.0	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	98.0%
Bromofluorobenzene	95.2%
d4-1,2-Dichlorobenzene	102%

FORM I BEES: 20079

Sample ID: MW-18-12.5 Page 1 of 1

Lab Sample ID: BEE6J LIMS ID: 16-11535

Matrix: Soil

Data Release Authorized: //

Reported: 08/11/16

Instrument/Analyst: NT5/PAB

Date Analyzed: 08/03/16 20:18

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

SAMPLE

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 5.41 g-dry-wt

Purge Volume: 5.0 mL Moisture: 14.9%

CAS Number	Analyte	LOQ	Result	Q
71-43-2	Benzene	0.9	< 0.9	U
108-88-3	Toluene	0.9	< 0.9	U
100-41-4	Ethylbenzene	0.9	< 0.9	U
179601-23-1	m,p-Xylene	0.9	< 0.9	U
95-47-6	o-Xylene	0.9	< 0.9	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	98.3%
Bromofluorobenzene	98.3%
d4-1,2-Dichlorobenzene	102%

Page 1 of 1

Lab Sample ID: BEE6K LIMS ID: 16-11536

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT5/PAB Date Analyzed: 08/03/16 20:41

Sample ID: MW-18-17

SAMPLE

QC Report No: BEE6-Kennedy Jenks Project: Circle K

1696010.00

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 4.92 g-dry-wt

Purge Volume: 5.0 mL Moisture: 11.6%

CAS Number	Analyte	roð	Result	Q
71-43-2	Benzene	1.0	< 1.0	U
108-88-3	Toluene	1.0	< 1.0	U
100-41-4	Ethylbenzene	1.0	< 1.0	Ū
179601-23-1	m,p-Xylene	1.0	< 1.0	U
95-47-6	o~Xylene	1.0	< 1.0	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	96.7%
Bromofluorobenzene	95.9%
d4-1,2-Dichlorobenzene	102%

FORM I TEE VORE

Page 1 of 1

Lab Sample ID: BEE6L LIMS ID: 16-11537

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

Instrument/Analyst: NT5/PAB
Date Analyzed: 08/03/16 21:04

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Sample ID: KJB-Dup

SAMPLE

Date Sampled: 08/01/16 Date Received: 08/02/16

Sample Amount: 4.48 g-dry-wt

Purge Volume: 5.0 mL Moisture: 12.3%

CAS Number	Analyte	TOŌ	Result	Q
71-43-2	Benzene	1.1	< 1.1	U
108-88-3	Toluene	1.1	< 1.1	U
100-41-4	Ethylbenzene	1.1	< 1.1	U
179601-23-1	m,p-Xylene	1.1	< 1.1	U
95-47-6	o-Xylene	1.1	< 1.1	U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	97.4%
Bromofluorobenzene	96.1%
d4-1,2-Dichlorobenzene	101%

FORM I DEES 00082

Page 1 of 1

Lab Sample ID: MB-080316A

LIMS ID: 16-11526

Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

M

Instrument/Analyst: NT5/PAB
Date Analyzed: 08/03/16 15:51

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Sample ID: MB-080316A

METHOD BLANK

Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt

Purge Volume: 5.0 mL Moisture: NA

CAS Number	Analyte	roð	Result	Q
71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene	1.0 1.0 1.0 1.0	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0	U U U

Reported in µg/kg (ppb)

Volatile Surrogate Recovery

d8-Toluene	96,4%
Bromofluorobenzene	92.5%
d4-1,2-Dichlorobenzene	99.6%

Date Analyzed LCS: 08/03/16 14:48

LCSD: 08/03/16 15:28

Page 1 of 1

Sample ID: LCS-080316A

LAB CONTROL SAMPLE

Lab Sample ID: LCS-080316A

LIMS ID: 16-11526 Matrix: Soil

Data Release Authorized:

Reported: 08/11/16

QC Report No: BEE6-Kennedy Jenks

Project: Circle K

1696010.00

Date Sampled: NA Date Received: NA

Instrument/Analyst LCS: NT5/PAB Sample Amount LCS: 5.00 g-dry-wt LCSD: NT5/PAB

LCSD: 5.00 g-dry-wt

Purge Volume LCS: 5.0 mL

LCSD: 5.0 mL

Moisture: NA

Analyte	LCS	Spike Added-LC	LCS S Recovery	LCSD	Spike Added~LCSD	LCSD Recovery	RPD
Benzene	50.0	50.0	100%	50.9	50.0	102%	1.8%
Toluene	48.4	50.0	96.8%	49.3	50.0	98.6%	1.8%
Ethylbenzene	51.9	50.0	104%	53.6	50.0	107%	3.2%
m,p-Xylene	103	100	103%	107	100	107%	3.8%
o-Xylene	50.4	50.0	101%	52.4	50.0	105%	3.9%

Reported in µg/kg (ppb)

RPD calculated using sample concentrations per SW846.

Volatile Surrogate Recovery

	LCS	LCSD
d8-Toluene	97.3%	97.2%
Bromofluorobenzene	95.1%	95.5%
d4-1,2-Dichlorobenzene	99.38	98.9%

BEEB: 09984

VOA SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: BEE6-Kennedy Jenks

Project: Circle K 1696010.00

ARI ID	Client ID	Level	DCE	TOL	BFB	DCB	TOT OUT
MB-080316A	Method Blank	Torr	NA	96.4%	92.5%	99.6%	
LCS-080316A		Low					0
	Lab Control	Low	NA	97.3%	95.1%	99.3%	0
LCSD-080316A	Lab Control Dup	Low	NA	97.2%	95.5%	98.9%	0
BEE6A	KJB-14-7	Low	NA	97.6%	96.7%	101%	0
BEE6B	KJB-14-13	Low	NA	97.7%	90.6%	101%	0
BEE6C	KJB-14-18	Low	NA	97.3%	95.8%	101%	0
BEE6D	KJB-15-11	Low	NΑ	97.9%	96.6%	101%	0
BEE6E	KJB-15-19	Low	NА	96.4%	92.0%	102%	0
BEE6F	KJB-16-7.5	Low	NA	97.9%	96.6%	101%	0
BEE6G	KJB-16-16	Low	NA	96.5%	90.0%	105%	0
BEE6H	MW-17-8	Low	NA	98.1%	97.5%	102%	0
BEE6I	MW-17-19	Low	NA	98.0%	95.2%	102%	0
BEE6J	MW-18-12.5	Low	NA	98.3%	98.3%	102%	0
BEE6K	MW-18-17	Low	NA	96.7%	95.9%	102%	0
BEE6L	KJB-Dup	Low	NA	97.4%	96.1%	101%	0
		LCS/	MB LI	MITS		QC LIMI	TS
SW8260C		Low		Med	Lov	۸ -	Med
(DCE) = d4-1,	2-Dichloroethane	80-129	ļ	80-124	78-1	151	80-124
(TOL) = d8-To		80-120		80-120	80-1	120	80-120
	fluorobenzene	80-120		80-120	75-1	-	80-120
, ,	2-Dichlorobenzene	80-120		80-120	80-3		80-120

Log Number Range: 16-11526 to 16-11537

FORM-II VOAPage 1 for BEE6

Service Servic

Appendix E Laboratory Data Validation Documentation

DATA VALIDATION SUMMARY – 16D0063 APRIL 2016 SAMPLING EVENT Ecology Circle K

Laboratory Reports included in Data Validation	Report Date	Sample IDs
ARI 16D0063 Includes: NWTPH-GX and VOCs (BTEX)	11 May 2016	Aqueous Samples: MW-6-042016, MW-10-042016, MW-9-042016, MW-8-042016, MW-4-042016, MW-7-042016, MW-15-042016, MW-14-042016, MW-11-042016, MW-13-042016 Field Duplicate: DUP1-042016 (MW-15-042016) Trip Blank: Trip Blanks

Criteria	(Yes or No)	Comment
<u>Chain-of-Custody</u> – Chain-of-custody protocol followed?	Yes	
Temperature Blank – Sample temperature criteria met?	Yes	Samples arrived at a temperature of 0.2 degrees Celsius (°C), which was slightly below the recommended temperature of 4°C ± 2°C.
Holding times – Samples analyzed within specified holding time?	Yes	
<u>Laboratory method blank samples</u> – Analytes present in method blank samples?	Yes	See Note 1 below.
<u>Field/Equipment blank samples</u> – Analytes present in field/equipment blank samples?	Not applicable	No field/equipment blank samples were submitted with this batch of samples.
<u>Trip blank samples</u> – Analytes present in trip blank samples?	Yes	See Note 2 below.
Matrix spikes/matrix spike duplicate samples – Control limits met?	Not applicable	
Surrogate percent recoveries – Control limits met?	No	See Note 3 below.
<u>Laboratory control sample</u> – Control limits met?	Yes	
Laboratory duplicate samples (if applicable) – Control limits met?	Not applicable	No laboratory duplicate samples were analyzed with this batch of samples.
Field duplicate samples (if submitted) – Relative percent differences within control limits?	Not applicable	Detected concentrations in the primary and field duplicate were less than 5x the method reporting limits.

NOTES

1. Toluene (0.05J μg/L) was detected in the method blank sample for batch BED0103. Detected concentrations of toluene less than 5x the method reporting limit in associated field samples (MW-6-042016) should be considered estimated concentrations with a possible high bias and qualified with a J+; no action was taken if detected concentrations of toluene were greater than 5x the method reporting limit. Ethylbenzene (0.04J μg/L), m,p-xylene (0.15J μg/L), and total xylenes (0.18J μg/L) were detected in the method blank sample for batch BED0107. Detected concentrations of ethylbenzene, m,p-xylene, and total xylenes less than the method reporting limit in associated field samples (MW-7-042016, MW-15-042016, MW-11-042016, and Trip Blanks) should be reported as less than the method reporting limit and qualified as non-detect "U". Toluene (0.10J μg/L), ethylbenzene (0.04J μg/L), m,p-xylene (0.18J μg/L),

DATA VALIDATION SUMMARY – 16D0063 APRIL 2016 SAMPLING EVENT Ecology Circle K

o-xylene (0.05J μ g/L), and total xylenes (0.24J μ g/L) were detected in the method blank sample for batch BED0114. Detected concentrations of toluene, ethylbenzene, m,p-xylene, o-xylene, and total xylenes less than the method reporting limit in associated field samples (DUP1) should be reported as less than the method reporting limit and qualified as non-detect "U".

- 2. The following compounds were detected in the trip blank sample: m,p-xylene (0.13J µg/L) and total xylenes (0.16J µg/L). Detected concentrations of m,p-xylene and total xylenes less than the method reporting limit in samples MW-6-042016, MW-7-042016, MW-15-042016, MW-14-042016, MW-11-042016, DUP1-042016, and Trip Blanks should be reported as less than the method reporting limit and gualified as non-detect "U".
- 3. The percent recoveries for the surrogate, 1,2-dichloroethane-d4, were high following the analyses of samples MW-9-042016, MW-8-042016 and MW-4-042016. These samples were diluted and re-analyzed. The percent recoveries for all surrogates were within established QC limits for the dilutions. The results for both analyses have been submitted for these samples. The results from re-analyses with acceptable surrogate recoveries should be reported.

SUMMARY

Overall, the findings with respect to the quality assurance/quality control (QA/QC) data do not adversely affect the use of the analytical results.

Ecology Circle K 1696010.00

DATA VALIDATION SUMMARY – 1610389 SEPTEMBER 2016 SAMPLING EVENT Ecology Circle K

Laboratory Reports included in Data Validation	Report Date	Sample IDs
ARI 16I0389 Includes: NWTPH-GX and VOCs (BTEX)	14 October 2016	Solid Samples: MW-19-10, MW-19-19, MW-20-10, MW-20-20, MW-21-10, MW-21-19.5 Trip Blank: Trip Blank

Criteria	(Yes or No)	Comment
<u>Chain-of-Custody</u> – Chain-of-custody protocol followed?	Yes	
<u>Temperature Blank</u> – Sample temperature criteria met?	Yes	Samples arrived at a temperature of 4.0 degrees Celsius (°C), which was within the recommended temperature of 4°C ± 2°C.
Holding times – Samples analyzed within specified holding time?	Yes	
<u>Laboratory method blank samples</u> – Analytes present in method blank samples?	No	
<u>Field/Equipment blank samples</u> – Analytes present in field/equipment blank samples?	Not applicable	No field/equipment blank samples were submitted with this batch of samples.
<u>Trip blank samples</u> – Analytes present in trip blank samples?	No	
Matrix spikes/matrix spike duplicate samples – Control limits met?	Not applicable	
Surrogate percent recoveries – Control limits met?	Yes	
<u>Laboratory control sample</u> – Control limits met?	Yes	
Laboratory duplicate samples (if applicable) – Control limits met?	Not applicable	No laboratory duplicate samples were analyzed with this batch of samples.
Field duplicate samples (if submitted) – Relative percent differences within control limits?	Not applicable	No field duplicate samples were analyzed with this batch of samples.

SUMMARY

Overall, the findings with respect to the quality assurance/quality control (QA/QC) data do not adversely affect the use of the analytical results.

1696010.00

DATA VALIDATION SUMMARY – 16L0126 DECEMBER 2016 SAMPLING EVENT Ecology Circle K

Report Date	Sample IDs
28 December 2016	Aqueous Samples: MW-2-161207, MW-4-161208, MW-6-161207, MW-7-161208, MW-8-
	161207, MW-9-161207, MW-10-161207, MW-11-161207, MW-13-161208, MW-14- 161207, MW-15-161207, MW-16-161207-PRE, MW-16-161207-POST, MW-17-161207, MW-18-161207, MW-19-161208, MW-20- 161208, MW-21-161208
	Field Duplicate: DUP-1-161208 (MW-13) Trip Blank: Trip Blanks
	•

Criteria	(Yes or No)	Comment
<u>Chain-of-Custody</u> – Chain-of-custody protocol followed?	Yes	
<u>Temperature Blank</u> – Sample temperature criteria met?	Yes	Samples arrived at a temperature of 0.0 and 0.8 degrees Celsius (°C), which was slightly less than the recommended temperature of 4°C ± 2°C, but acceptable.
Holding times – Samples analyzed within specified holding time?	No	Sulfide analyses were conducted outside the recommended 7 day hold time and flagged with an "H" qualifier by the lab.
<u>Laboratory method blank samples</u> – Analytes present in method blank samples?	Yes	Toluene was detected in method blank BEL0337; all associated field samples have been flagged by the lab with a "B" qualifier. Iron was detected in method blank BEL0303; the result for MW-17 (0.0306 mg/L) was qualified as estimated with a "J" due to method blank contamination.
<u>Field/Equipment blank samples</u> – Analytes present in field/equipment blank samples?	Not applicable	No field/equipment blank samples were submitted with this batch of samples.
<u>Trip blank samples</u> – Analytes present in trip blank samples?	No	
Matrix spikes/matrix spike duplicate samples – Control limits met?	Not applicable	
Surrogate percent recoveries – Control limits met?	No	Percent recoveries were outside the laboratory control limits in samples MW-19 and MW-20. Samples were re-analyzed by the laboratory.
<u>Laboratory control sample</u> – Control limits met?	Yes	
Laboratory duplicate samples (if applicable) – Control limits met?	Yes	
Field duplicate samples (if submitted) – Relative percent differences within control limits?	Yes	A field duplicate (DUP-1) was submitted with a primary sample from MW-13. RPDs for BTEX and HCID were acceptable.

 $\label{lem:cology} \textbf{Circle K} \\ \textbf{W:\scale} \textbf{Circle K} \\ \textbf{Seattle\scale} \textbf{Report\scale} \textbf{Appendix E Data Validation Docs\scale} \textbf{16L0126_DataValidation_Dec2016.doc} \\ \textbf{Docs\scale} \textbf{Circle K} \\ \textbf{Docs\scale} \textbf{Circle K} \textbf{Docs\scale} \textbf{Docs\scal$ 1696010.00

DATA VALIDATION SUMMARY – 16L0126 DECEMBER 2016 SAMPLING EVENT Ecology Circle K

SUMMARY

Overall, the findings with respect to the quality assurance/quality control (QA/QC) data do not adversely affect the use of the analytical results.

DATA VALIDATION SUMMARY – BBA2, BBA4, BBA5 **MAY 2016 SAMPLING EVENT Ecology Circle K**

Laboratory Reports included in Data Validation	Report Date	Sample IDs
ARI BBA2, BBA4, BBA5 (combined)	27 May 2016	Solid Samples: KJB-1-7.5, KJB-1-19, KJB-2-8,
Includes: NWTPH-Dx, NWTPH-Gx, and VOCs (BTEX & Fuel Additives)		KJB-2-12, KJB-3-7.5, KJB-3-18.5, KJB-4-8.5, KJB-4-12, KJB-4-19, KJB-5-7, KJB-5-12, KJB-5-19.5, KJB-6-7, KJB-6-22, KJB-7-11, KJB-7-18.5, KJB-8-8, KJB-1-2.5, KJB-1-13, KJB-2-3, KJB-2-19, KJB-3-2, KJB-3-12.5, KJB-4-2.5, KJB-5-3.5, KJB-6-17.5, KJB-7-2, KJB-7-9.5, KJB-8-2.5, KJB-13-12, KJB-13-19, KJB-8-12, KJB-8-19, KJB-9-2, KJB-9-8.5, KJB-9-13, KJB-9-19, KJB-10-2, KJB-10-8, KJB-10-13, KJB-10-19.5, KJB-11-2, KJB-11-8, KJB-11-13, KJB-11-19, KJB-12-2, KJB-12-8, KJB-12-15, KJB-12-19, KJB-13-2, KJB-13-7
		Aqueous Samples: KJB-1, KJB-2, KJB-3, KJB-5, KJB-6, KJB-7, KJB-9, KJB-10, KJB-11, KJB-12, KJB-13, KJB-4, KJB-8
		Field Duplicate: 051916-Dup (duplicate of water sample KJB-11); 051916-SOIL (duplicate of KJB-13-19)
		Trip Blank: "TB"

Criteria	(Yes or No)	Comment
<u>Chain-of-Custody</u> – Chain-of-custody protocol followed?	Yes	
<u>Temperature Blank</u> – Sample temperature criteria met?	Yes	Samples arrived at a temperatures of 1.8, 3.6, and 4.2 degrees Celsius (°C), which were within the recommended temperature of 4°C ± 2°C.
Holding times – Samples analyzed within specified holding time?	Yes	
<u>Laboratory method blank samples</u> – Analytes present in method blank samples?	No	
<u>Field/Equipment blank samples</u> – Analytes present in field/equipment blank samples?	Not applicable	No field/equipment blank samples were submitted with this batch of samples.
<u>Trip blank samples</u> – Analytes present in trip blank samples?	No	
Matrix spikes/matrix spike duplicate samples – Control limits met?	Not applicable	
Surrogate percent recoveries – Control limits met?	No	See Note 1 below.
<u>Laboratory control sample</u> – Control limits met?	Yes	
<u>Laboratory duplicate samples (if applicable)</u> – Control limits met?	Not applicable	No laboratory duplicate samples were analyzed with this batch of samples.
Field duplicate samples (if submitted) — Relative percent differences within control limits?	Yes	

DATA VALIDATION SUMMARY – BBA2, BBA4, BBA5 MAY 2016 SAMPLING EVENT Ecology Circle K

NOTES

- 1. Percent recovery of surrogate compound bromofluorobenzene was outside the laboratory control limit for sample KJB-4-8.5. Upon reanalysis at dilution, bromofluorobenzene was within the laboratory control limit. No further action was taken.
- 2. The percent difference for MTBE was not within control limits for the continuing calibration that bracketed the 5/25/16 VOCs analyses. As there were no detections of MTBE in the associated field samples, no action was taken.

SUMMARY

Overall, the findings with respect to the quality assurance/quality control (QA/QC) data do not adversely affect the use of the analytical results.

Ecology Circle K 1696010.00

DATA VALIDATION SUMMARY - BEE6 AUGUST 2016 SAMPLING EVENT Ecology Circle K

Laboratory Reports included in Data Validation	Report Date	Sample IDs
ARI BEE6	12 August 2016	Solid Samples: KJB-14-7, KJB-14-13, KJB-14-
Includes: NWTPH-GX and VOCs (BTEX)		18, KJB-15-11, KJB-15-19, KJB-16-7.5, KJB- 16-16, MW-17-8, MW-17-19, MW-18-12.5, MW- 18-17, KJB-15-7.5, MW-17-11, MW-18-7
		Aqueous Sample: KJB-15
		Trip Blank: Trip Blank
		Field Duplicate: KJB-Dup (duplicate of KJB-18-17)

Criteria	(Yes or No)	Comment
<u>Chain-of-Custody</u> – Chain-of-custody protocol followed?	Yes	
<u>Temperature Blank</u> – Sample temperature criteria met?	Yes	Samples arrived at a temperature of 4.1 degrees Celsius (°C), which was within the recommended temperature of 4°C ± 2°C.
Holding times – Samples analyzed within specified holding time?	Yes	
<u>Laboratory method blank samples</u> – Analytes present in method blank samples?	No	
<u>Field/Equipment blank samples</u> – Analytes present in field/equipment blank samples?	Not applicable	No field/equipment blank samples were submitted with this batch of samples.
<u>Trip blank samples</u> – Analytes present in trip blank samples?	No	
Matrix spikes/matrix spike duplicate samples – Control limits met?	Not applicable	
Surrogate percent recoveries – Control limits met?	Yes	
<u>Laboratory control sample</u> – Control limits met?	Yes	
Laboratory duplicate samples (if applicable) – Control limits met?	Not applicable	No laboratory duplicate samples were analyzed with this batch of samples.
Field duplicate samples (if submitted) – Relative percent differences within control limits?	Not applicable	No analytes were detected at concentrations greater than 5x the method reporting limit in the primary or field duplicate sample.

SUMMARY

Overall, the findings with respect to the quality assurance/quality control (QA/QC) data do not adversely affect the use of the analytical results.

 $\label{lem:cology} \textbf{Circle K} \\ \text{W:\scalable No.} \\ \textbf{Circle K_Seattle Nrl_Report Appendix E Data Validation Docs\scalable E6_Data Validation_Aug2016.doc} \\ \textbf{Docs.} \\ \textbf{Do$ 1696010.00

Appendix F

ETEC Field Notes

PMB 133, 3307 Evergreen Way, Ste 707 Washougal, WA 98671 (971) 222-3616 • (971) 222-3903 Fax www.etecllc.com

FORMER CIRCLE K FIELD NOTES

Mr. Ty Schreiner **Greg Landers** Contact: From: Company: Kennedy Jenks Phone: 503-704-0491 Office: 971-222-3903 Fax: Mobile: Date: Pages: Proposal: 1017-013

RE:

Field Notes Summary for Surfactant Enhanced Biological Injection/Extraction at Former Circle K, in Seattle, WA, Week of March 12, 2017

DAY ONE (Sunday, March 12, 2017):

- 1. Greg Landers and Kevin Montgomery of ETEC arrived on site at 3:00 pm. Steve Misner of (Kennedy Jenks) was already at the site.
- 2. Steve held a tail gate safety meeting to discuss the possible hazards involved in the day's activities.
- **3.** Water level were measured in RW-2, RW-4 and RW-5. No free product was measured at any of the wells. See the table below for levels.
- **4.** ETEC staged their Trailer and one 1,250-gallon holding tank and a 500-gallon tank next to 24th avenue on the west side of the property. The equipment and tanks were barricaded using traffic barriers and caution tape.
- **5.** Low voltage extraction pumps were placed in the above wells for extraction overnight. Extraction commenced at 4:00 pm. See table below for overnight extraction volumes.
- **6.** The extraction pump control panel was set to pump for 5 minutes then off for 5 minutes to let the wells recharge. This program will run through the night.
- 7. A high level shut off float switch was mounted in the 1,200-gallon tank and connected to the extraction panel on ETEC's injection trailer.
- **8.** ETEC was off offsite at 5:30 pm.

DAY TWO (Monday, March 13, 2017):

- 1. Greg Landers and Kevin Montgomery of ETEC arrived on site at 7:00 am. Alexander Lesher of (Kennedy Jenks) was already at the site. (He was onsite all night keeping an eye on the extraction)
- 2. Ground water extraction volumes were recorded. See table below
- **3.** At 8:00 Steve held a tail gate safety meeting to discuss the possible hazards involved in the day's activities. The day's injection strategies were discussed and any possible problems associated with them.
- **4.** ETEC personal then mounted injection compression fittings in RW-2, MW-21, MW-20 and RW-7. RW-1 is located right in the middle of the entrance off 24th avenue and it was decided not to block that entrance for the pilot project.
- **5.** The injection header was connected to the above wells with garden hose.
- **6.** Extracted ground water was transferred from the 1,200-gallon holding tank, through a 90-pound high pressure carbon vessel into two 165-gallon mix tanks. Five gallons of PetroSolv

FIELD NOTES SUMMARY

- was added to each tank then mixed with a stainless-steel sump pump. This solution was the injected into the above wells.
- 7. The above step was repeated until 65 gallons of PetroSolv had been injected. See the table below for injection volumes.
- **8.** The extraction pump control panel was set to pump for 3 minutes then off for 3 minutes to let the wells recharge. This program will run through the night.
- **9.** Potable water was used as make up water during the injection event.
- 10. At 12:00 pm all injection wells were aggressively surged.
- 11. ETEC disconnected and stored all injection hoses and fittings and was offsite at 5:00 pm.
- 12. Alexander remained at the site until the next morning.

Extraction Volumes for 3/13/17							
Date Time RW-3 RW-4 RW-5							
3/13/17	8:00 am	269	185	174			
3/13/17	4:00 pm	196	137	138			

Extraction Total Overnight. 628 Gallons Extraction Total for Day Two. 471 Gallons

Injection Volumes for 3/13/17							
Date Time MW-21 RW-2 MW-20 RW-7							
3/13/17							

Injection Total for Day. 2,130 Gallons

VOLUMES FOR DAY 2:

Total Extracted Ground Water Volume 1,099 Gallons Total Injected Treated Ground Water Volume 1,099 Gallons Total Potable Water Volume Used 1,031 Gallons Total PetroSolv Used 65 Gallons

DAY THREE (Tuesday, March 14, 2017):

- 1. Greg Landers and Kevin Montgomery of ETEC arrived on site at 7:00 am. Alexander Lesher of (Kennedy Jenks) had unplugged the extraction panel at 4:00 am.
- 2. Ground water extraction volumes were recorded. See table below
- **3.** At 8:00 Steve held a tail gate safety meeting to discuss the possible hazards involved in the day's activities. The day's injection strategies were discussed and any possible problems associated with them.
- **4.** ETEC personal then reconnected the injection fittings in RW-2, MW-21, MW-20 and RW-7. Injection into these wells commenced at 8:15 am.
- **5.** Extracted ground water was transferred from the 1,200-gallon holding tank, through a 90-pound high pressure carbon vessel into two 165-gallon mix tanks. 2.5 gallons of PetroSolv was added to each tank then mixed with a stainless-steel sump pump. This solution was the injected into the above wells.
- **6.** At 9:30 am 80 gallons of PetroSolv was delivered to the site by YRC. This was off loaded and stored next to the injection trailer.
- 7. The extraction pump control panel was set to pump for 2 minutes then off for 3 minutes to let the wells recharge. This program will run through the night.

- **8.** The mix tanks were refilled and 5 gallons of PetroSolv was added to each mix tank then injected. Steps 5 and 7 were repeated until 70 gallons of PetroSolv had been injected.
- **9.** At 12:30 pm all injection wells were surged aggressively.
- **10.** At 1:00 pm injection into only RW-21 and RW-20 was performed to even the flow volume into each of the injection points.
- 11. At 2:00 pm an extraction pump was placed into MW-19 this was approved by Dale Myers (ecology). After 136 gallons of steady extraction the pump was shut off due to the injection well RW-7 being to close and probably short circuiting.
- 12. See the table below for injection/extraction volumes.
- 13. Potable water was used as make up water during the injection event.
- **14.** ETEC disconnected and stored all injection hoses and fittings and was offsite at 6:30 pm.
- **15.** Alexander remained at the site until the next morning to keep an eye on the extraction.

Extraction Volumes for 3/14/17					
Date Time RW-3 RW-4 RW-5 MW-19					
3/14/17	6:00 am	212	158	149	
3/14/17	4:00 pm	314	236	269	136

Extraction Total Overnight. 519 Gallons Extraction Total for Day. 859 Gallons

Injection Volumes for 3/14/17							
Date	Date Time MW-21 RW-2 MW-20 RW-7						
3/14/17							

Injection Total for Day Three. 2,390 Gallons

VOLUMES FOR DAY 3:

Total Extracted Ground Water Volume 1,378 Gallons Total Injected Treated Ground Water Volume 1,378 Gallons Total Potable Water Volume Used 1,012 Gallons Total PetroSolv Used 70 Gallons

DAY FOUR (Wednesday, March 15, 2017):

- 1. Greg Landers and Kevin Montgomery of ETEC arrived on site at 6:00 am. Alexander Lesher of (Kennedy Jenks) was already at the site. He had manned the extraction system overnight.
- 2. Ground water extraction volumes were recorded. See table below.
- **3.** At 9:00 Steve held a tail gate safety meeting to discuss the possible hazards involved in the day's activities.
- **4.** At 9:30 ETEC personal placed a low voltage extraction pump in MW-19 this well was extracted from until 11:30 am. The pump was then moved to MW-13 and extraction from that well commenced at 11:45 am.
- **5.** The vacuum truck showed up at 1:30 pm to remove and dispose of the extracted ground water in the holding tanks. Approximately 1,200 gallons of extracted ground water was removed from the tanks.

FIELD NOTES SUMMARY

- **6.** The time controller for RW-3, RW-4 and RW-5 was adjusted to run for 2 minutes and off for 3 minutes. The extraction pumps are extracting water for about one and a half minutes of the 2-minute run time.
- 7. MW-13 was moved to its own timer. This timer was set to be on for 2 minutes and off for 10 minutes. This setting allowed for more recharge time.
- **8.** ETEC personal turned the site over to Alexander at 6:00 pm.

Extraction Volumes for 3/15/17										
Date	Date Time RW-3 RW-4 RW-5 MW-19 MW-13									
3/14/17	6:00 am	236	178	154						
3/14/17	11:30 am				118					
3/14/17	5:30 pm	192	116	115		38				

Extraction Total Overnight. 568 Gallons Extraction Total for Day. 461 Gallons

VOLUMES FOR DAY 4:

Total Extracted Ground Water Volume 1,029 Gallons

DAY FIVE (Thursday, March 16, 2017):

- 1. Greg Landers and Kevin Montgomery of ETEC arrived on site at 6:00 am. Samantha Karpa of (Kennedy Jenks) was already at the site.
- 2. Ground water extraction volumes were recorded. See table below
- 3. Steve held a tail gate safety meeting to discuss the possible hazards involved in the day's activities.
- **4.** ETEC replaced extraction pumps in RW-4 and RW-5.
- **5.** At 2:00 pm breakthrough was observed at RW-4.
- **6.** At 3:00 pm the vacuum truck arrived to haul off approximately 1,100 gallons of extracted ground water.
- 7. Extraction flows were recorded at 3:30 pm. See table below.
- **8.** ETEC was offsite at 6:00 pm.

Extraction Volumes for 3/16/17							
Date Time RW-3 RW-4 RW-5 MW-19 MW-13							
3/16/17	6:00 am	204	122	109			
3/16/17	9:00 am					57	
3/16/17	3:00 pm	120	59	56	199		

Extraction Total for Day Three Overnight. 492 Gallons Extraction Total for Day. 491 Gallons

VOLUMES FOR DAY 5:

Total Extracted Ground Water Volume 983 Gallons

DAY SIX (Friday, March 17, 2017):

- 1. Greg Landers and Kevin Montgomery of ETEC arrived on site at 6:00 am. Steph of (Kennedy Jenks) had monitored the site overnight.
- 2. Ground water extraction volumes were recorded. See table below
- **3.** Steve held a tail gate safety meeting to discuss the possible hazards involved in the day's activities.
- **4.** The dwell timers for RW-4 and RW-5 were adjusted to 2 minutes on and 4 minutes off.
- **5.** Due to the low extraction volume, overnight it was decided that Kevin would monitor the extraction overnight. Kevin went to the motel room at 8:30 am.
- **6.** Extracted ground water was transferred from the 1,200-gallon holding tank to the 500-gallon tank. Water was also transferred through the 90-pound carbon vessel to fill the 165-gallon mix tanks. This transfer was conducted at 1:00 pm.
- 7. At 5:00 pm an extraction pump was placed in MW-19 and extraction from that well commenced.
- **8.** At 5:30 pm flow readings for the day were recorded. See table below.
- 9. Greg was offsite at 6:30 pm, Kevin stayed to oversee the extraction

Extraction Volumes for 3/17/17							
Date	Date Time RW-3 RW-4 RW-5						
3/17/17	6:00 am	224	113	112			
3/17/17	5:30 pm	162	77	80			

Extraction Total for Overnight. 449 Gallons Extraction Total for Day. 319 Gallons

VOLUMES FOR DAY 6:

Total Extracted Ground Water Volume 759 Gallons

DAY SEVEN (Saturday, March 18, 2017):

- **1.** Greg Landers of ETEC arrived on site at 6:00 am. Kevin Montgomery had unplugged the extraction panel at 3:00 am.
- 2. Ground water extraction volumes were recorded. See table below
- **3.** At 8:00 Steve held a tail gate safety meeting to discuss the possible hazards involved in the day's activities. The day's injection strategies were discussed and any possible problems associated with them.
- **4.** The injection fitting and associated hoses and pumps were reconnected the in RW-2, RW-21, RW-20 and RW-7.
- **5.** Fifty pounds of CBN (Custom Blend Nutrients) and one gallon of A2 (bacterial Consortium) was added to both full mix tanks then mixed with a stainless sump pump. This solution was then injected into the above injection wells.
- 6. The extracted ground water in the 1,200-gallon holding tank was then transferred through a 90-pound high pressure carbon vessel into both 165-gallon mix tanks. Fifty pounds of CBN and one gallon of A2 was added to each tank then mixed. This solution was the injected into

FIELD NOTES SUMMARY

the above wells. This step was repeated until 650 pounds of CBN and 10 gallons of A2 had been injected.

- **7.** Kevin arrived at site at 11:30 am to assist with the injection.
- **8.** Samantha arrived at the site at 6:00 pm and remained at the site until the 1:00 am. The extraction was shut off at that time.
- **9.** RW-5 showed breakthrough of surfactant at 6:30 pm.
- 10. ETEC disconnected and stored all injection hoses and fittings and was offsite at 6:30 pm.

Extraction Volumes for 3/18/17							
Date Time RW-3 RW-4 RW-5 MW-19							
3/18/17	6:00 am	219	128	122	351		
3/18/17	3:00 pm				234		
3/18/17	6:00 pm	246	150	153			

Extraction Total Overnight. 820 Gallons Extraction Total for Day. 783 Gallons

Injection Volumes for 3/18/17								
Date	Date Time MW-21 RW-2 MW-20 RW-7							
3/18/17								

Injection Total for Day Seven. 1,900 Gallons

VOLUMES FOR DAY 7:

Total Extracted Ground Water Volume 1,603 Gallons Total Injected Treated Ground Water Volume 1,603 Gallons Total CBN Used 650 Pounds Total A2 Used 10 Gallons

DAY EIGHT (Sunday, March 19, 2017):

- 1. Greg Landers of ETEC arrived on site at 6:00 am.
- 2. Ground water extraction volumes were recorded. See table below
- 3. Turned on extraction pumps EW-3, EW-4 and EW-5 at 7:00 am.
- **4.** At 8:00 Steve held a tail gate safety meeting to discuss the possible hazards involved in the day's activities. The day's injection strategies were discussed and any possible problems associated with them.
- **5.** The injection fitting and associated hoses and pumps were reconnected the in RW-2, RW-21, RW-20 and RW-7.
- **6.** Fifty pounds of CBN (Custom Blend Nutrients) and one gallon of A2 (bacterial Consortium) was added to both full mix tanks then mixed with a stainless sump pump. This solution was then injected into the above injection wells.
- 7. Turned off Extraction from RW-3 and RW-4 at 9:00 am.
- **8.** The extracted ground water in the 1,200-gallon holding tank was then transferred through a 90-pound high pressure carbon vessel into both 165-gallon mix tanks. Fifty pounds of CBN and one gallon of A2 was added to each tank then mixed. This solution was the injected into

- the above wells. This step was repeated until 350 pounds of CBN and 5 gallons of A2 had been injected.
- **9.** Turned off extraction from RW-5 at 1:00 pm. All extraction pumps and hoses were picked up and stowed in the injection/extraction trailer.
- **10.** After the biological injection was completed, two hundred gallons of treated ground water was injected into all of the injection wells to flush any residual nutrients out of the injection hoses.
- **11.** ETEC disconnected and loaded all injection hoses, fittings, and tanks. ETEC was offsite at 2:30 pm.

Extraction Volumes for 3/19/17							
Date Time RW-3 RW-4 RW-5 MW-19							
3/19/17	9:00 am	185	121				
3/19/17							

Extraction Total Overnight. 443 Gallons

Injection Volumes for 3/18/17							
Date Time MW-21 RW-2 MW-20 RW-7							
3/19/17	1:30 pm	200	200	120	770		

Injection Total for Day Three. 1,290 Gallons

VOLUMES FOR DAY 8:

Total Extracted Ground Water Volume 443 Gallons Total Injected Treated Ground Water Volume 1,290 Gallons Total CBN Used 350 Pounds Total A2 Used 5 Gallons

PROJECT TOTALS

TOTAL EXTRACTED GROUND WATER
TOTAL INJECTED GROUND WATER
TOTAL INJECTED POTABLE WATER
TOTAL PETROSOLV USED
TOTAL CBN USED
TOTAL A2 USED

7,294 Gallons
5,667 Gallons
135 Gallons
1,000 Pounds
15 Gallons