# APPENDIX A INDICATOR HAZARDOUS SUBSTANCES SCREENING PASCO LANDFILL NPL SITE

**Prepared for** 

Industrial Waste Area Generator Group III

**Prepared by** 

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

August 2017



720 Olive Way, Suite 1900 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131 www.anchorqea.com

#### MEMORANDUM

| То:   | Project File                             | Date:    | September 25, 2013 |
|-------|------------------------------------------|----------|--------------------|
| From: | Halah Voges, Anchor QEA, LLC             | Project: | 100722-01.01       |
| Re:   | Indicator Hazardous Substances Screening |          |                    |

Indicator Hazardous Substances (IHS) analysis is the process of identifying those site contaminants that pose the largest threat to human health and the environment. The process for selection of IHSs is discussed in Washington Administrative Code (WAC) 172-340-703. An IHS analysis was previously conducted by the Washington State Department of Ecology (Ecology) in 2007 and became the basis for development of the 2007 draft cleanup levels for the Pasco Sanitary Landfill National Priorities List (NPL) Site (Site).

The process was refined in discussions between the Site potentially liable persons and Ecology as presented by Ecology in the February 8, 2012 letter on general guidance on IHS selection and cleanup level development. The process was further refined in response to comments from Ecology on the December 2012 draft of the Pasco Landfill NPL Site Focused Feasibility Study Work Plan.

The analysis presented herein follows a similar multi-tier process developed by Ecology in 2007. The analysis includes the following:

- Identification of the frequency of detection of hazardous substances in Site ground water based on:
  - Data from the Site remedial investigations (RI) and monitoring through 2012 for compounds that may be affected by the landfill gas (LFG) control system at the Municipal Solid Waste Landfill or the soil vapor extraction (SVE) system at Zone A of the Industrial waste area
  - Data from the interim action (IA) performance evaluations from 2002 through
     2012 for those compounds considered to be not substantially affected by the LFG control and SVE systems

- Maximum concentration in each set of data
- Screening for maximum concentrations relative to ground water Method B formula
  values or maximum concentration levels in Ecology's Cleanup Levels and Risk
  Calculations (CLARC) database. Those compounds detected at monitoring well
  MW-54I were also screened against relevant surface water criteria in the CLARC
  database.

The results of the IHS analysis are presented in Table 1. The table contains compounds that have been detected in Site ground water in either the RI or IA monitoring periods and have maximum concentration levels or Model Toxics Control Act (MTCA) Method B values given in the CLARC database.

Compounds carried forward as IHSs had a frequency of detection of at least 5 percent and at least one exceedance of a screening level. Compounds with a frequency of detection between 2 and 5 percent were also examined.

### TABLE

 Table 1

 Screening for Ground Water Indicator Hazardous Substances

|      |                                                    | Screening Level <sup>1</sup> (µg/L) |                                     |                 |                |           |            |               |               |             |                |
|------|----------------------------------------------------|-------------------------------------|-------------------------------------|-----------------|----------------|-----------|------------|---------------|---------------|-------------|----------------|
| ical |                                                    |                                     | Ground Water                        |                 | Surface Water  | Number of | Number of  | Frequency of  | Maximum       | Number of   | Potential Chem |
| e    | Compound                                           | Level Criteria                      |                                     | Level           | Level Criteria |           | Detections | Detection (%) | Concentration | Exceedances | of Concern     |
|      | ffected by interim actions except for capping, the | refore screen                       |                                     | data from 2002  |                | Samples   | 20000000   | 20000000 (70) |               |             | 0.00.00        |
|      | Methylnaphthalene                                  | 1.5                                 |                                     |                 | ,              | 26        | 0          | 0.0           | 1             | 0           | No             |
|      | Methylnaphthalene                                  | 32                                  |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      |                                                    | 960                                 |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
| _    | cenaphthene                                        | 4800                                |                                     |                 |                | 228       | -          |               |               |             |                |
|      | nthracene                                          |                                     |                                     |                 |                |           | 0          | 0.0           | 0.054         | 0           | No             |
|      | enzo(a)anthracene                                  | 0.12                                |                                     |                 |                | 265       | 2          | 0.8           | 0.051         | 0           | No             |
|      | enzo(a)pyrene                                      | 0.012                               |                                     |                 |                | 269       | 1          | 0.4           | 0.044         | 1           | No             |
|      | enzo(b)fluoranthene                                | 0.12                                |                                     |                 |                | 150       | 1          | 0.7           | 0.046         | 0           | No             |
|      | enzo(k)fluoranthene                                | 1.2                                 |                                     |                 |                | 150       | 3          | 2.0           | 0.045         | 0           | No             |
|      | nrysene                                            | 12                                  |                                     |                 |                | 265       | 2          | 0.8           | 0.056         | 0           | No             |
| Di   | benzo(a,h)anthracene                               | 0.012                               |                                     |                 |                | 265       | 4          | 1.5           | 0.048         | 4           | No             |
| FI   | uoranthene                                         | 640                                 |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
| FI   | uorene                                             | 640                                 |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
| In   | deno(1,2,3-c,d)pyrene                              | 0.12                                |                                     |                 |                | 265       | 7          | 2.6           | 0.057         | 0           | No             |
| N    | aphthalene                                         | 160                                 |                                     |                 |                | 3813      | 61         | 1.6           | 36            | 0           | No             |
| Py   | /rene                                              | 480                                 |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
| (Not | affected by interim actions except for capping, th | erefore scree                       | ned against ground water monitoring | g data from 200 | 2-2012)        | •         |            |               | •             | •           | •              |
|      | 2,4-Trichlorobenzene                               | 1.5                                 |                                     |                 |                | 3813      | 23         | 0.6           | 6             | 19          | No             |
|      | 2-Dichlorobenzene                                  | 720                                 |                                     |                 |                | 3813      | 107        | 2.8           | 15            | 0           | No             |
|      | 2'-Oxybis (1-chloropropane)                        | 0.63                                |                                     |                 |                | 115       | 0          | 0.0           | 15            | 0           | No             |
|      | 3,4,6-Tetrachlorophenol                            | 480                                 |                                     |                 |                | 26        | 0          | 0.0           |               | 0           | No             |
|      | 4,5-Trichlorophenol                                | 800                                 |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | 4,6-Trichlorophenol                                | 4.0                                 |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | 4-Dichlorophenol                                   | 24                                  |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | 4-Dimethylphenol                                   | 160                                 |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | 4-Dinitrophenol                                    | 32                                  |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | 4-Dinitrotoluene                                   | 32                                  |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | 6-Dinitrotoluene                                   | 16                                  |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | Chloronaphthalene                                  | 640                                 |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | Chlorophenol                                       | 40                                  |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | Methylphenol (o-Cresol)                            | 40                                  |                                     |                 |                | 228       | 1          | 0.4           | 19            | 0           | No             |
|      | Nitroaniline                                       | 160                                 |                                     |                 |                | 228       | 0          | 0.0           | 15            | 0           | No             |
|      | 3'-Dichlorobenzidine                               | 0.19                                |                                     |                 |                | 202       | 0          | 0.0           |               | 0           | No             |
| L L  | Chloroaniline                                      | 0.19                                |                                     |                 |                | 202       | 0          | 0.0           |               | 0           | No             |
|      | niline                                             | 7.7                                 |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | zobenzene                                          | 0.80                                |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | enzoic acid                                        | 64000                               |                                     |                 |                | 228       | 2          | 0.9           | 30.5          | 0           | No             |
|      | enzyl alcohol                                      | 800                                 |                                     |                 |                | 228       | 1          | 0.4           | 12.2          | 0           | No             |
|      | s(2-Chloroethyl)ether                              | 0.040                               |                                     |                 |                | 254       | 0          | 0.0           | 12.2          | 0           | No             |
|      | s(2-ethylhexyl) phthalate                          | 6.3                                 |                                     |                 |                | 234       | 1          | 0.4           | 138           | 1           | No             |
|      | utylbenzyl phthalate                               | 46                                  |                                     |                 |                | 228       | 0          | 0.0           | 130           | 0           | No             |
|      | benzofuran                                         | 40                                  |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | ethyl phthalate                                    | 12800                               |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | -n-butyl phthalate                                 | 12800                               |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | NO             |
|      | exachlorobenzene                                   | 0.055                               |                                     |                 |                | 228       | 0          | 0.0           |               | 0           |                |
|      |                                                    | 48                                  |                                     |                 |                | 254       | 0          | 0.0           | +             | 0           | No<br>No       |
|      | exachlorocyclopentadiene<br>exachloroethane        | 48<br>3.1                           |                                     |                 |                | 228       | 0          | 0.0           |               | 0           |                |
|      |                                                    | 3.1<br>46                           |                                     |                 |                | 228       | 0          | 0.0           | +             | 0           | No             |
|      | ophorone                                           |                                     |                                     |                 |                |           | -          |               | +             |             | No             |
|      | itrobenzene                                        | 16                                  |                                     |                 |                | 228       | 0          | 0.0           |               | 0           | No             |
|      | -Nitrosodimethylamine                              | 0.00086                             |                                     |                 |                | 26        | 0          | 0.0           |               | 0           | No             |
|      | entachlorophenol                                   | 0.22                                |                                     |                 |                | 350       | 0          | 0.0           |               | 0           | No             |
|      | nenol                                              | 2400                                |                                     |                 |                | 228       | 0          | 0.0           | 1             | 0           | No             |

 Table 1

 Screening for Ground Water Indicator Hazardous Substances

|        |                                                  |                            | Screening | g Level <sup>1</sup> (μg/L) |                                |           |              |               |               |                           |            |
|--------|--------------------------------------------------|----------------------------|-----------|-----------------------------|--------------------------------|-----------|--------------|---------------|---------------|---------------------------|------------|
| nical  | Compound                                         | Ground Water Surface Water |           | Surface Water               | Number of                      | Number of | Frequency of | Maximum       | Number of     | <b>Potential Chemical</b> |            |
| ре     |                                                  | Level                      | Criteria  | Level                       | Criteria                       | Samples   | Detections   | Detection (%) | Concentration | Exceedances               | of Concern |
| (Scree | ened against RI data and ground water monitoring | g)                         |           |                             |                                |           |              |               |               |                           |            |
| :      | 1,1,1,2-Tetrachloroethane                        | 1.7                        |           |                             |                                | 4857      | 1            | 0.0           | 0.11          | 0                         | No         |
|        | 1,1,1-Trichloroethane                            | 200                        | MCL       |                             |                                | 4927      | 710          | 14.4          | 950           | 25                        | Yes        |
|        | 1,1,2,2-Tetrachloroethane                        | 0.22                       |           |                             |                                | 4945      | 5            | 0.1           | 0.251         | 1                         | No         |
|        | 1,1,2-Trichloroethane                            | 5.0                        | MCL       |                             |                                | 4901      | 169          | 3.4           | 9             | 4                         | Yes        |
|        | 1,1,2-Trichlorotrifluoroethane                   | 240000                     |           |                             |                                | 44        | 15           | 34.1          | 1440          | 0                         | No         |
|        | 1,1-Dichloroethane                               | 1600                       |           |                             |                                | 4930      | 1521         | 30.9          | 830           | 0                         | No         |
|        | 1,1-Dichloroethene                               |                            |           | 0.057                       | Human health - 40 CFR 131      | 6249      | 1065         | 17.0          | 250           | 845                       | Yes        |
| -      | 1,2,3-Trichloropropane                           | 0.0015                     |           |                             |                                | 4857      | 2            | 0.0           | 6.6           | 2                         | No         |
| -      | 1,2-Dibromo-3-chloropropane                      | 0.055                      |           |                             |                                | 4860      | 0            | 0.0           |               | 0                         | No         |
| -      | 1,2-Dibromoethane (Ethylene dibromide)           | 0.022                      |           |                             |                                | 4921      | 1            | 0.0           | 0.021         | 0                         | No         |
|        | 1,2-Dichloroethane                               |                            |           | 0.38                        | Human health - 40 CFR 131      | 5329      | 1493         | 28.0          | 460           | 1220                      | Yes        |
|        | 1,2-Dichloroethene                               | 72                         |           |                             |                                | 41        | 7            | 17.1          | 170           | 3                         | No         |
|        | 1,2-Dichloroethene, cis-                         | 16                         |           |                             |                                | 4887      | 2046         | 41.9          | 3200          | 648                       | Yes        |
|        | 1,2-Dichloroethene, trans-                       | 160                        |           |                             |                                | 4889      | 145          | 3.0           | 110           | 0                         | No         |
|        | 1,3,5-Trimethylbenzene (Mesitylene)              | 80                         |           |                             |                                | 4316      | 105          | 2.4           | 63            | 0                         | No         |
| -      | 1,4-Dioxane                                      | 0.44                       |           |                             |                                | 11        | 0            | 0.0           |               | 0                         | No         |
|        | 2-Butanone (MEK)                                 | 4800                       |           |                             |                                | 4915      | 52           | 1.1           | 38000         | 2                         | No         |
| -      | 2-Chlorotoluene                                  | 160                        |           |                             |                                | 4315      | 1            | 0.0           | 2             | 0                         | No         |
|        | Acetone                                          | 7200                       |           |                             |                                | 4901      | 118          | 2.4           | 20000         | 1                         | Yes        |
|        | Acrolein                                         | 4                          |           |                             |                                | 918       | 0            | 0.0           |               | 0                         | No         |
| -      | Acrylonitrile                                    | 0.081                      |           |                             |                                | 919       | 7            | 0.8           | 0.85          | 3                         | No         |
| -      | Benzene                                          | 5.0                        | MCL       |                             |                                | 5386      | 292          | 5.4           | 51            | 86                        | Yes        |
| -      | Bromodichloromethane                             | 0.71                       | -         |                             |                                | 4901      | 0            | 0.0           |               | 0                         | No         |
| H      | Bromoform (Tribromomethane)                      | 5.5                        |           |                             |                                | 4901      | 2            | 0.0           | 0.807         | 0                         | No         |
| H      | Bromomethane (Methyl Bromide)                    | 11.2                       |           |                             |                                | 4901      | 2            | 0.0           | 1.7           | 0                         | No         |
| -      | Carbon disulfide                                 | 800                        |           |                             |                                | 4901      | 67           | 1.4           | 22            | 0                         | No         |
| -      | Carbon tetrachloride                             | 0.63                       |           |                             |                                | 4945      | 34           | 0.7           | 83            | 15                        | No         |
| Ī      | Chlorobenzene                                    | 160                        |           |                             |                                | 4908      | 44           | 0.9           | 5             | 0                         | No         |
|        | Chloroform                                       | 80                         |           |                             |                                | 4901      | 460          | 9.4           | 86            | 1                         | Yes        |
| -      | Dibromochloromethane                             | 0.52                       |           |                             |                                | 4899      | 2            | 0.0           | 16            | 2                         | No         |
|        | Dibromomethane                                   | 80                         |           |                             |                                | 4858      | 1            | 0.0           | 13            | 0                         | No         |
| H      | Dichlorodifluoromethane                          | 1600                       |           |                             |                                | 1412      | 83           | 5.9           | 103           | 0                         | No         |
| _      | Methylene chloride                               | 5.0                        | MCL       |                             |                                | 4901      | 237          | 4.8           | 360           | 103                       | Yes        |
|        | Ethylbenzene                                     | 800                        |           |                             |                                | 4904      | 149          | 3.0           | 2070          | 1                         | Yes        |
|        | Hexachlorobutadiene                              | 0.56                       |           |                             |                                | 4811      | 2            | 0.0           | 1             | 1                         | No         |
| H      | Isopropylbenzene (Cumene)                        | 800                        |           |                             |                                | 4316      | 59           | 1.4           | 11            | 0                         | No         |
|        | m,p-Xylene                                       | 1600                       |           |                             |                                | 1447      | 20           | 1.4           | 880           | 0                         | No         |
|        | Methyl isobutyl ketone (MIBK)                    | 640                        |           |                             |                                | 4915      | 48           | 1.0           | 1300          | 2                         | No         |
|        | m-Xylene                                         | 1600                       |           |                             |                                | 47        | 1            | 2.1           | 8             | 0                         | No         |
|        | n-Propylbenzene                                  | 800                        |           |                             |                                | 4316      | 80           | 1.9           | 26            | 0                         | No         |
|        | o-Xylene                                         | 1600                       |           |                             |                                | 4877      | 203          | 4.2           | 540           | 0                         | No         |
|        | p-Xylene                                         | 1600                       |           |                             |                                | 44        | 1            | 2.3           | 4             | 0                         | No         |
| -      | Styrene                                          | 1600                       |           |                             |                                | 4901      | 19           | 0.4           | 46            | 0                         | No         |
|        | Tetrachloroethene (PCE)                          | 1000                       |           | 0.69                        | Human health - Clean Water Act | 5544      | 1743         | 31.4          | 74            | 969                       | Yes        |
| _      | Toluene                                          | 640                        |           | 0.05                        |                                | 4919      | 225          | 4.6           | 3400          | 38                        | Yes        |
| _      | Total xylenes                                    | 1600                       |           |                             |                                | 3424      | 141          | 4.6           | 1500          | 0                         | No         |
|        | Trichloroethene (TCE)                            | 1000                       |           | 2.5                         | Human health - Clean Water Act | 5520      | 2392         | 4.1           | 280           | 937                       | Yes        |
|        |                                                  | 2400                       |           | 2.5                         | numan nearth - Clean Water ACt |           |              |               |               |                           |            |
| -      | Trichlorofluoromethane                           | 2400                       |           |                             |                                | 4860      | 111          | 2.3           | 47            | 0                         | No         |
|        | Vinyl acetate                                    | 8000                       |           |                             |                                | 1534      | 1            | 0.1           | 0.054         | 0                         | No         |

Table 1 Screening for Ground Water Indicator Hazardous Substances

|             |                                                    |                    | Screening Level <sup>1</sup> (µg/L)   |           |                        |           |            |               |               |             |                           |
|-------------|----------------------------------------------------|--------------------|---------------------------------------|-----------|------------------------|-----------|------------|---------------|---------------|-------------|---------------------------|
| Chemical    |                                                    |                    | Ground Water                          |           | Surface Water          | Number of | Number of  | Frequency of  | Maximum       | Number of   | <b>Potential Chemical</b> |
| Туре        | Compound                                           | Level              | Criteria                              | Level     | Criteria               | Samples   | Detections | Detection (%) | Concentration | Exceedances | of Concern                |
| Pesticides, | /Herbicides (Not affected by interim actions excep | t for capping, the | erefore screened against ground water | monitorin | g data from 2002-2012) |           |            |               |               |             |                           |
|             | 2,2-Dichloropropionic acid (Dalapon)               | 240                |                                       |           |                        | 162       | 0          | 0.0           |               | 0           | No                        |
|             | 2,4-D (2,4-Dichlorophenoxyacetic acid)             | 160                |                                       |           |                        | 162       | 0          | 0.0           |               | 0           | No                        |
|             | 2,4-DB (2,4-D derivative)                          | 128                |                                       |           |                        | 162       | 0          | 0.0           |               | 0           | No                        |
|             | Dicamba                                            | 480                |                                       |           |                        | 162       | 0          | 0.0           |               | 0           | No                        |
|             | МСРА                                               | 8                  |                                       |           |                        | 162       | 0          | 0.0           |               | 0           | No                        |
|             | Mecoprop (MCPP)                                    | 16                 |                                       |           |                        | 166       | 0          | 0.0           |               | 0           | No                        |
| Chromium    | (Not affected by interim actions except for cappin | g, therefore scre  | ened against ground water monitoring  | data from | 2002-2012)             |           |            |               |               |             |                           |
|             | Chromium                                           | 100                |                                       |           |                        | 816       | 656        | 80.4          | 785           | 17          | Yes                       |
|             | Chromium VI                                        | 48                 |                                       |           |                        | 267       | 15         | 5.6           | 23            | 0           | No                        |

Notes: 1) MTCA Method B Standard Formula Values were used except as noted

MCL: Maximum Concentration Limit

Compounds with frequency of detection between 2 and 5 percent and at least one exceedance of the screening level 

Compounds with frequency of detection greater than 5 percent and at least one exceedance of the screening level 

# APPENDIX A, ATTACHMENT A ADDENDUM TO THE INDICATOR HAZARDOUS SUBSTANCES SCREENING



720 Olive Way, Suite 1900 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131 www.anchorqea.com

#### MEMORANDUM

| То:   | Project File                                | Date:       | August 2017  |
|-------|---------------------------------------------|-------------|--------------|
| From: | Michael Riley, Anchor QEA, LLC              | Project:    | 100722-01.07 |
| Re:   | Addendum to the Indicator Hazardous Substar | nces Screen | ing          |

An Indicator Hazardous Substances (IHS) analysis was conducted for the Draft Focused Feasibility Study (FFS) to identify the site contaminants that pose the largest threat to human health and the environment. In comments on the Draft FFS, the Washington State Department of Ecology (Ecology) requested that the IHS analysis include reporting limits of various data sets and analytes and identify the percentage of reported non-detect values that exceeded current Model Toxics Control Act (MTCA) Method B cleanup levels (Ecology Comment 124, last sentence, and Comment 125). This addendum to the IHS analysis has been prepared in response to those comments.

As is well known in the environmental field, laboratory methods have improved substantially over the years, achieving lower detection limits and higher accuracy over time. Similarly, MTCA Method B levels have changed over time, with many levels substantially lower than those in place during initial U.S. Environmental Protection Agency (EPA) ground water investigations in the 1980s and the site remedial investigations in the 1990s.

In 2008, to provide a more robust and defensible determination of ground water quality relative to MTCA Method B levels, the potentially liable persons (PLPs) in cooperation with Ecology implemented analytical methods with detection limits lower than MTCA Method B values for the site chemicals of concern. The laboratory methods and reporting limits were further refined in 2012 and 2017.

To address Ecology's comments regarding the IHS analysis and detection limits, ground water monitoring laboratory detection limits in use since 2008 are tabulated in Table 1 and show that for the greater majority of compounds, reporting limits are below MTCA Method B ground water cleanup levels as well as the draft cleanup levels presented in the FFS. This provides the public with information on current ground water monitoring and

analytical methods and assurance that these methods can identify exceedances of MTCA Method B levels and therefore are protective of human health and the environment.

### TABLE

## Table 4Analytical Methods, Analytes, and Reporting Limits

| Analyte                                  | R    | eporting Lim<br>(µg/L) | nit   | MTCA Method B or dCUL |
|------------------------------------------|------|------------------------|-------|-----------------------|
|                                          | 2008 | 2012                   | 2017  | - (μg/L)              |
| VOCs - EPA Method 8260 SIM               |      |                        |       |                       |
| 1,1-Dichloroethene                       | 0.05 | 0.020                  | 0.020 | 0.057                 |
| 1,1,2,2-Tetrachloroethane <sup>1</sup>   | 1.0  | 0.220                  | 0.200 | 0.219                 |
| 1,2-Dibromo 3-chloropropane <sup>1</sup> | 5.0  | 0.100                  | 0.100 | 0.055                 |
| 1,2-Dibromoethane <sup>1</sup>           | 1.0  | 0.024                  | 0.020 | 0.022                 |
| 1,2-Dichloroethane                       | 0.02 | 0.014                  | 0.020 | 0.38                  |
| 1,2,3-Trichloropropane <sup>1</sup>      | 1.0  | 0.020                  | 0.020 | 0.001                 |
| Benzene                                  | 0.02 | 0.028                  | 0.028 | 0.79                  |
| Tetrachloroethylene                      | 0.02 | 0.050                  | 0.200 | 0.69                  |
| Trichloroethene                          | 0.02 | 0.053                  | 0.053 | 2.5                   |
| Vinyl Chloride                           | 0.02 | 0.032                  | 0.032 | 0.069                 |
| VOCs - EPA Method 8260                   |      |                        |       |                       |
| 1,1-Dichloroethane                       | 1.0  | 2.0                    | 2.0   | 7.675                 |
| 1,1,1-Trichloroethane                    | 1.0  | 2.0                    | 2.0   | 200                   |
| 1,1,1,2-Tetrachloroethane                | 1.0  | 1.68                   | 1.68  | 1.683                 |
| 1,1,2-Trichloroethane                    | 1.0  | 0.77                   | 0.77  | 0.77                  |
| 1,2-Dichlorobenzene                      | 1.0  | 2.0                    | 2.0   | 720                   |
| 1,2-Dichloropropane                      | 1.0  | 0.64                   | 0.64  | 1.215                 |
| 1,2,4-Trichlorobenzene                   | 1.0  | 2.0                    | 2.0   | 1.509                 |
| 1,3,5-Trimethylbenzene                   | 1.0  | 2.0                    | 2.0   | 80                    |
| 1,4-Dichlorobenzene                      | 1.0  | 1.82                   | 1.82  | 8.102                 |
| Acetone                                  | 10   | 25                     | 25    | 7200                  |
| Acrylonitrile                            | 1.0  | 10                     | 10    | 0.08                  |
| Bromodichloromethane                     | 1.0  | 0.71                   | 0.71  | 0.71                  |
| Bromoform                                | 1.0  | 2.0                    | 2.0   | 5.54                  |
| Bromomethane                             | 2.0  | 2.0                    | 2.0   | 11.20                 |
| Carbon Disulfide                         | 1.0  | 2.0                    | 2.0   | 800                   |
| Carbon Tetrachloride                     | 1.0  | 0.34                   | 0.34  | 0.63                  |
| Chlorobenzene                            | 1.0  | 2.0                    | 2.0   | 160                   |
| Chloroform                               | 1.0  | 2.0                    | 2.0   | 1.41                  |
| cis-1,2-Dichloroethene                   | 1.0  | 2.0                    | 2.0   | 16                    |
| Dibromochloromethane                     | 1.0  | 0.52                   | 0.52  | 0.52                  |
| Dichlorodifluoromethane (CFC-12)         | 1.0  | 2.0                    | 2.0   | 1600                  |
| Ethylbenzene                             | 1.0  | 2.0                    | 2.0   | 800                   |
| Hexachlorobutadiene                      | 1.0  | 0.56                   | 0.56  | 0.56                  |
| Isopropylbenzene (cumene)                | 1.0  | 2.0                    | 2.0   | 800                   |
| m,p-Xylene                               | 2.0  | 4.0                    | 4.0   | 1600                  |
| Methyl T-Butyl Ether                     | 1.0  | 2.0                    | 2.0   | 24.31                 |
| Methylene Chloride                       | 5.0  | 5.0                    | 5.0   | 5.0                   |

## Table 4Analytical Methods, Analytes, and Reporting Limits

| Analyte                                  | F    | eporting Lim<br>(μg/L) | nit    | MTCA Method B or dCUL<br>(μg/L) |
|------------------------------------------|------|------------------------|--------|---------------------------------|
|                                          | 2008 | 2012                   | 2017   | (µg/ ⊑)                         |
| n-Butylbenzene                           | 1.0  | 2.0                    | 2.0    | 400                             |
| n-Propyl Benzene                         | 1.0  | 2.0                    | 2.0    | 800                             |
| Naphthalene                              | 1.0  | 2.0                    | 2.0    | 160                             |
| o-Xylene                                 | 1.0  | 2.0                    | 2.0    | 1600                            |
| s-Butyl Benzene                          | 1.0  | 2.0                    | 2.0    | 800                             |
| Styrene                                  | 1.0  | 1.46                   | 1.46   | 1600                            |
| T-Butyl Benzene                          | 1.0  | 2.0                    | 2.0    | 800                             |
| Toluene                                  | 1.0  | 2.0                    | 2.0    | 615                             |
| Trichlorofluoromethane (CFC-11)          | 1.0  | 2.0                    | 2.0    | 2400                            |
| SVOCs - EPA Method 8270 SIM <sup>2</sup> |      |                        | •      | •                               |
| Benzo[A]Anthracene                       | 10   | 0.02                   | 0.02   | 0.12                            |
| Benzo[A]Pyrene                           | 10   | 0.0288                 | 0.0288 | 0.01                            |
| Benzo[B]Fluoranthene                     | 10   | 0.03                   | 0.03   | 0.12                            |
| Benzo[K]Fluoranthene                     | 10   | 0.0212                 | 0.0212 | 1.20                            |
| Bis(2-Chloroethyl)Ether                  | 10   | 0.04                   | 0.04   | 0.04                            |
| Chrysene                                 | 10   | 0.02                   | 0.02   | 11.99                           |
| Dibenz[A,H]Anthracene                    | 10   | 0.02                   | 0.02   | 0.01                            |
| Hexachlorobenzene                        | 10   | 0.05                   | 0.05   | 0.05                            |
| Hexachlorobutadiene                      | 10   | 0.56                   | 0.56   | 0.56                            |
| Indeno[1,2,3-Cd]Pyrene                   | 10   | 0.02                   | 0.02   | 0.12                            |
| Pentachlorophenol                        | 10   | 0.5                    | 0.5    | 0.22                            |
| SVOCs - EPA Method 8270                  |      |                        |        |                                 |
| 1-Methylnaphthalene                      | 10   | 2.0                    | 0.02   | 1.51                            |
| 1,2-Dichlorobenzene                      | 10   | 2.0                    | 2.0    | 720                             |
| 1,2,4-Trichlorobenzene                   | 10   | 2.0                    | 2.0    | 1.51                            |
| 1,4-Dichlorobenzene                      | 10   | 1.82                   | 1.82   | 8.10                            |
| 2-Chlorophenol                           | 10   | 2.0                    | 2.0    | 40                              |
| 2-Methylnaphthalene                      | 10   | 2.0                    | 2.0    | 32                              |
| 2-Nitroaniline                           | 10   | 2.0                    | 2.0    | 160                             |
| 2,3,4,6-Tetrachlorophenol                | 10   | 2.0                    | 2.0    | 480                             |
| 2,4-Dichlorophenol                       | 10   | 2.0                    | 2.0    | 24                              |
| 2,4-Dimethylphenol                       | 10   | 2.0                    | 2.0    | 160                             |
| 2,4-Dinitrophenol                        | 20   | 10                     | 10     | 32                              |
| 2,4-Dinitrotoluene                       | 10   | 2.0                    | 2.0    | 0.28                            |
| 2,4,5-Trichlorophenol                    | 10   | 2.0                    | 2.0    | 800                             |
| 2,4,6-Trichlorophenol                    | 10   | 2.0                    | 2.0    | 3.98                            |
| 2,6-Dinitrotoluene                       | 10   | 2.0                    | 2.0    | 0.06                            |
| Acenaphthene                             | 10   | 2.0                    | 2.0    | 960                             |
| Aniline                                  | 10   | 5.0                    | 5.0    | 7.68                            |
| Anthracene                               | 10   | 2.0                    | 2.0    | 4800                            |

### Table 4Analytical Methods, Analytes, and Reporting Limits

|                                     | F    | Reporting Lin | nit  | MTCA Method B or dCUL |
|-------------------------------------|------|---------------|------|-----------------------|
| Analyte                             |      | (µg/L)        | I    | (μg/L)                |
|                                     | 2008 | 2012          | 2017 | (1-19)                |
| Azobenzene                          | 10   | 2.0           | 2.0  | 0.80                  |
| Benzoic Acid                        | 20   | 10            | 10   | 64000                 |
| Benzyl Alcohol                      | 10   | 2.0           | 2.0  | 800                   |
| Bis(2-Ethylhexyl)Phthalate          | 50   | 2.0           | 2.0  | 6.25                  |
| Butylbenzylphthalate                | 10   | 2.0           | 2.0  | 46.05                 |
| Di-N-Octylphthalate                 | 10   | 2.0           | 2.0  | 160                   |
| Dibenzofuran                        | 10   | 2.0           | 2.0  | 16                    |
| Diethylphthalate                    | 10   | 2.0           | 2.0  | 12800                 |
| Fluoranthene                        | 10   | 2.0           | 2.0  | 640                   |
| Fluorene                            | 10   | 2.0           | 2.0  | 640                   |
| Hexachlorocyclopentadiene           | 10   | 5.0           | 5.0  | 48                    |
| Hexachloroethane                    | 10   | 2.0           | 2.0  | 1.09                  |
| Isophorone                          | 10   | 2.0           | 2.0  | 46.05                 |
| N-Nitroso-Di-N-Propylamine          | 10   | 5.0           | 5.0  | 0.01                  |
| N-Nitrosodimethylamine              | 10   | 2.0           | 2.0  | 0.0009                |
| N-Nitrosodiphenylamine              | 10   | 2.0           | 2.0  | 17.86                 |
| Naphthalene                         | 10   | 2.0           | 2.0  | 160                   |
| Nitrobenzene                        | 10   | 2.0           | 2.0  | 16                    |
| Phenol                              | 10   | 2.0           | 2.0  | 2400                  |
| Pyrene                              | 10   | 2.0           | 2.0  | 480                   |
| Pyridine                            | 10   | 5.0           | 5.0  | 8                     |
| Herbicides - EPA Method 8151A       |      |               |      | <u>.</u>              |
| 4-(2,4-Dichlorophenoxy)butyric acid | 1.0  | 0.04          | 0.04 | 128                   |
| Dicamba                             | 0.10 | 0.04          | 0.04 | 480                   |
| Dinoseb                             | 0.05 | 0.04          | 0.04 | 16                    |
| Pentachlorophenol <sup>2</sup>      | 10   | 0.04          | 0.08 | 0.219                 |
| Metals - EPA Method 6020 (ICP-MS)   |      |               |      |                       |
| Total Chromium (Cr)                 | 0.3  | 0.59          | 2.0  | 100                   |
| Chromium - EPA Method 7196          |      |               |      |                       |
| Hexavalent Chromium                 | 3.0  | 10            | 10   | 48                    |

Notes:

1. Chemical analyzed by EPA Method 8260 prior to 2012.

2. Chemical analyzed by EPA Method 8270 prior to 2012.

 $\mu$ g/L = micrograms per liter

dCUL = Draft Cleanup Levels

EPA = U.S. Environmental Protection Agency

MTCA = Model Toxics Control Act

# APPENDIX B SITE WORKER DIRECT CONTACT RISK EVALUATION PASCO LANDFILL NPL SITE

**Prepared for** 

Industrial Waste Area Generator Group III

**Prepared by** 

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

August 2017



720 Olive Way, Suite 1900 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131 www.anchorqea.com

#### MEMORANDUM

| То:   | Project File                                                                                      | Date:    | August 26, 2013     |
|-------|---------------------------------------------------------------------------------------------------|----------|---------------------|
| From: | Dan Hennessey, Anchor QEA                                                                         | Project: | 100722-01.03        |
| Re:   | MTCA Evaluation of Potential Risks to Industria<br>Soil Exposure at Non-capped Areas of the Pasco |          | from Direct Contact |

Potential risk to industrial maintenance workers exposed to non-cap soil at the Pasco Landfill site were evaluated for the following chemicals of concern (COCs), which were previously established as the primary risk drivers:

- 1,1,1-Trichloroethane
- 1,1-Dichloroethene
- 1,2-Dichloroethane
- cis-1,2-Dichloroethene
- Benzene
- Dichloromethane (methylene chloride)
- Tetrachloroethene (PCE)
- Toluene
- Trichloroethene (TCE)
- Vinyl chloride

Soil sample data were obtained from the project database maintained by Environmental Partners, Inc. (EPI). Samples were identified for locations outside of established cap areas to assess potential exposure to site-workers via direct contact with soil outside of engineered caps. The Model Toxics Control Act (MTCA) soil point of compliance for industrial exposure scenarios is 15 feet below ground surface (bgs) (Washington Administrative Code [WAC] 173-34-745). Therefore, the database was queried to select samples identified as having been collected from intervals between 0 and 15 feet bgs. The maximum soil concentrations of the COCs were selected to represent the potential worst-case exposure scenario. The maximum soil concentrations compared to MTCA Method C soil direct contact cleanup levels (WAC 173-340-745) queried from the Washington State Department of Ecology's (Ecology's) Cleanup Levels and Risk Calculation (CLARC) database (https://fortress.wa.gov/ecy/clarc/). Input parameters for the MTCA Method C soil direct contact cleanup levels are as follows:

- 70 kilograms (kg) average body weight (MTCA default value)
- 20 years' exposure duration (MTCA industrial exposure default value)
- 75 years' carcinogenic averaging time (MTCA default value)
- 20 years' non-carcinogenic averaging time (MTCA industrial exposure default value)
- 50 grams per day soil ingestion rate (MTCA industrial exposure default value)

The cancer potency factors and reference doses used were MTCA default values as reported by CLARC. The cleanup levels for the carcinogenic compounds, 1,2-dichloroethane, benzene, methylene chloride, PCE, and TCE, were based on a risk level of 1 in 1,000,000 (1x10<sup>-6</sup>) excess lifetime cancer risk (ELCR). The non-carcinogenic cleanup levels were based on a hazard quotient (HQ) of 1. The site-specific ECLR or HQ associated with the maximum COC concentrations in site soils were calculated by applying the proportion of the MTCA Method C soil direct cleanup level and the maximum concentration to the MTCA risk levels. The corresponding site-specific ECLR and HQs are presented in Table 1.

Comparison of MTCA Method C soil direct contact cleanup levels to the maximum concentrations in the non-cap soil samples found that potential risk to industrial workers from this pathway is insignificant (Table 1). For all COCs, ECLRs were more than four orders of magnitude below the 1x10<sup>-6</sup> risk threshold and the HQs were more than six orders of magnitude below the risk threshold of one. Therefore, direct contact exposure to site soils outside of the cap areas is unlikely to contribute any significant risk to site workers.

# Table 1Summary of Risk Screening Results for Soil Direct Contact Exposure to Industrial Workers atNon-capped Areas of the Pasco Landfill Site

| Chemical of<br>Concern (µg/kg)             | Soil Method C<br>Carcinogen<br>Direct Contact<br>Cleanup Level | Soil Method C<br>Non-<br>carcinogen<br>Direct Contact<br>Cleanup Level | Maximum<br>Concentration<br>or Detection<br>Limit in Soil<br>Samples 0 to<br>15 feet bgs | Excess<br>Lifetime<br>Cancer Risk<br>(ELCR) | Non-<br>Carcinogen<br>Hazard<br>Quotient (HQ) |
|--------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|
| 1,1,1-<br>Trichloroethane                  |                                                                | 7,000,000,000                                                          | 10                                                                                       | NA                                          | 1E-09                                         |
| 1,1-<br>Dichloroethene                     |                                                                | 175,000,000                                                            | 10                                                                                       | NA                                          | 6E-08                                         |
| 1,2-<br>Dichloroethane                     | 1,442,308                                                      | 70,000,000                                                             | 10                                                                                       | 6.93E-12                                    | 1E-07                                         |
| 1,2-<br>Dichloroethene,<br>cis-            |                                                                | 7,000,000                                                              | 10                                                                                       | NA                                          | 1E-06                                         |
| Benzene                                    | 2,386,364                                                      | 14,000,000                                                             | 10                                                                                       | 4.19E-12                                    | 7E-07                                         |
| Dichloromethane<br>(methylene<br>chloride) | 17,500,000                                                     | 210,000,000                                                            | 110                                                                                      | 6.29E-12                                    | 5E-07                                         |
| Tetrachloroethene<br>(PCE)                 | 62,500,000                                                     | 21,000,000                                                             | 10                                                                                       | 1.60E-13                                    | 5E-07                                         |
| Toluene                                    |                                                                | 280,000,000                                                            | 10                                                                                       | NA                                          | 4E-08                                         |
| Trichloroethene<br>(TCE)                   | 2,800,000                                                      | 1,750,000                                                              | 10                                                                                       | 3.57E-12                                    | 6E-06                                         |
| Vinyl chloride                             |                                                                | 10,500,000                                                             | 11                                                                                       | NA                                          | 1E-06                                         |

Notes:

μg/kg = microgram per kilogram bgs = below ground surface

# APPENDIX C THREE-PHASE PARTITIONING ANALYSIS OF SITE SOILS PASCO LANDFILL NPL SITE

**Prepared for** 

Industrial Waste Area Generator Group III

**Prepared by** 

Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, Washington 98101

August 2017



720 Olive Way, Suite 1900 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131 www.anchorgea.com

#### MEMORANDUM

| То:   | Halah Voges and Michael Riley<br>Anchor QEA, LLC       | Date:    | August 31, 2017                          |
|-------|--------------------------------------------------------|----------|------------------------------------------|
| From: | Sylian Rodriguez and Casey Janisch,<br>Anchor QEA, LLC | Project: | Pasco Landfill NPL<br>Site, 100722-01.07 |
| Re:   | Three-phase Partitioning Analysis of Site Soils        |          |                                          |

#### **INTRODUCTION**

This appendix presents an analysis of contaminant migration in vadose zone soils at the Pasco Landfill Site (Site). The analysis is based on Washington Administrative Code (WAC) 17-340-747, Deriving Soil Concentrations for Groundwater Protection, to develop soil cleanup levels that are protective of ground water. The analysis uses the variable parameter three-phase partitioning model (WAC 173-340-747(5)). The approach is a soil to ground water partitioning analysis and transport due to infiltration based on local precipitation. As an infiltration-based model, this analysis applies to all areas of the Site that are not currently under lined covers. The variable parameter model is used to represent some Site-specific conditions, consistent with the Model Toxics Control Act (MTCA) as described below.

#### VARIABLE PARAMETER THREE-PHASE PARTITIONING MODEL

The general equation for this analysis is equation 747-1<sup>1</sup>:

$$C_{s} = C_{w} (UCF)DF \left(K_{d} + \frac{\theta_{w} + \theta_{a}H_{cc}}{\rho_{b}}\right)$$
(1)

Where:

Cs = is the concentration of a compound in soil (micrograms per kilogram [µg/kg])

Cw

[µg/kg]) is the concentration of the compound in water (micrograms per liter

<sup>[</sup>µg/L])

<sup>&</sup>lt;sup>1</sup> Units are given in WAC 173-340-747(5). However, other units can be used as long as the units are internally consistent in an equation. For instance, equations that yield a dimensionless number can be in either English or SI units as long as the result is dimensionless.

| UCF                 | = | is a conversion factor (1 in the present case as Cs and Cw have the same |
|---------------------|---|--------------------------------------------------------------------------|
|                     |   | units for mass)                                                          |
| DF                  | = | is a dilution factor that is computed by Equation 747-3                  |
| Kd                  | = | is the soil-water partitioning partition coefficient, computed from      |
|                     |   | Equation 747-2 (liters per kilogram [L/kg])                              |
| $\theta \mathbf{w}$ | = | is the water-filled porosity of the soil                                 |
| θa                  | = | is the air-filled porosity of the soil                                   |
| Hcc                 | = | is the Henry's law constant                                              |
| Rb                  | = | is the soil dry bulk density (kg/L)                                      |

The soil-water partitioning coefficient (K<sub>d</sub>) is computed from Equation 747-2 for hydrophobic organic compounds using Site-specific data for organic carbon ( $f_{oc}$ ) in undisturbed Site soils:

$$K_d = K_{oc} * f_{oc} \tag{2}$$

Where:

Koc = is the organic carbon-water partitioning coefficient and is taken from Ecology's Cleanup Levels and Risk Calculations (CLARC) database. If no value was provided in CLARC, literature values were used in the computation (Mackay et al. 2000)

foc is the soil fraction of organic carbon from background testing, as a percentage

The dilution factor (DF) is computed from Equation 747-3:

$$DF = \left(Q_p + Q_a\right)/Q_p \tag{3}$$

Where:

Qp=is the flow rate of infiltrating waterQa=is the flow rate of ground water flow

Parameters for the DF equation are provided by Equations 747-4 and 747-5.

$$Q_a = K * A * I \tag{4}$$

and

$$Q_p = L * W * Inf \tag{5}$$

Where:

| Κ   | = | is the hydraulic conductivity of the underlying aquifer                |
|-----|---|------------------------------------------------------------------------|
| А   | = | is the aquifer mixing zone                                             |
| Ι   | = | is the ground water gradient under the source area                     |
| L   | = | is the length of the source area in the direction of ground water flow |
| W   | = | is the width of the source area                                        |
| Inf | = | is the annual infiltration rate                                        |

The hydraulic conductivity, the ground water gradient, and length of the source area are taken from Site-specific information. The aquifer mixing zone, width of the source area, and infiltration rate are prescribed in WAC 173-340-747(5). The aquifer mixing zone is stipulated to not exceed 5 meters. The width of the source zone is taken as 1 unit of length, which is a conservative assumption as it does not allow for dispersion along the edges of the aquifer mixing zone. The default infiltration rate for Eastern Washington is set at 25 percent of the average annual precipitation. This assumes no cap over the source area, which is consistent with the stipulation that the analysis should not consider surface caps, but it is not applicable to any areas where lined caps currently exist and are expected to remain in place with long-term cover replacement, as stipulated by Ecology.

Table 1 summarizes input parameter values and data sources for use in Equations 747-1 through 747-5.

#### **ANALYSIS AND RESULT**

Equation 747-1 is used to predict the concentration of a contaminant in soil that is protective of cleanup levels in ground water. In the present case, MTCA Method B formula values in CLARC for ground water were used to predict a corresponding concentration in soil. The soil concentrations were then compared to data from historical Site investigations and the results were expressed as an exceedance ratio. Values greater than 1 indicate Site soil concentrations that exceed soil concentrations predicted to be protective of ground water.

The analysis compares the maximum and average concentrations found in soils beneath the Site during the past investigations (EPI 2008, EPI 2011, AMEC 2012, etc.) to the soil concentrations predicted to be protective of ground water. Using the maximum value would predict a conservatively high concentration in ground water as the analysis assumes the concentration is found throughout the footprint of the Site.

The present analysis includes metals, volatile organic compounds (VOCs), pesticides, herbicides, polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and dioxins and furans. In addition, the analysis focused on compounds that had a frequency of detection of at least 5 percent. This resulted in 12 metals, 4 VOCs, 4 herbicides, 3 SVOCs, and 1 equivalent dioxin being included in the analysis. The equivalent dioxin is the summation of all dioxin and furan concentrations using Toxicity Equivalency Factors per MTCA regulation for mixtures of dioxins and furans (WAC 173-340-708(8)(d)). The input parameters and results of this analysis are presented in Tables 2a, 2b, and 2c.

The analysis showed that three compounds are expected to affect ground water at the average soil concentrations measured in the Site investigations. Using the maximum concentration as a conservative indicator of potential ground water impacts, one metal and two VOCs had exceedance ratios greater than 1. The highest exceedance ratio was calculated for arsenic using its maximum concentration. Methylene chloride and cis-1,2-dichloroethene (1,2-DCE) also had exceedance ratios greater than 1 when using their maximum concentrations, but much lower than for arsenic. However, the maximum concentration was approximately seven times greater for methylene chloride, three times greater for 1,2-DCE, and two times greater for arsenic than the average concentration for these compounds, indicating that using the maximum concentration is overly conservative. When using the average concentration, only arsenic and methylene chloride had an exceedance ratio greater than 1.

#### CONCLUSIONS

The three-phase partitioning analysis indicates that pesticides, herbicides, PAHs, PCBs, SVOCs, and dioxins and furans in soils beneath the Site are not likely to adversely affect ground water under uncapped conditions. Based on Site investigations, one metal and two VOCs resulted to have an exceedance ratio greater than 1 if the maximum concentration is

used, and only two compounds resulted in having exceedance ratios greater than 1 at the average concentrations. Based on this analysis, arsenic and methylene chloride could be included in the list of chemicals of concern (COC) for the Draft Final Focused Feasibility Study (FFS). However, as presented in the Draft Final FFS, methylene chloride is already a COC based on detected concentrations in ground water. Arsenic has not been identified with a defined waste source at the Site and the mean concentration of 7.3 mg/kg is below the natural background for eastern Washington (Ecology 1994); based on these conditions, it should not be included among Site COCs. Consequently, arsenic should not be considered a Site COC based on protection of ground water.

#### REFERENCES

- AMEC, 2012. Soil Sampling Technical Memorandum, Additional Soil Sampling at Zone B of the Pasco Sanitary Landfill Site. Pasco, Washington. August 16, 2012.
- Ecology, 1994. Natural Background Soil Metals Concentrations in Washington State. By Charles San Juan, Toxics Cleanup Program, Ecology publication No. 94-115.
- EPI, 2008. Revised Final Work Plan for Additional Interim Actions Phase I. Prepared for IWAG Group II. Submitted to the Washington State Department of Ecology. May 2008.
- EPI, 2011. Phase II Additional Interim Actions Sub-Zone A Investigation and Downgradient Well Installation Report. Volume 1 of 2. September 30, 2011.
- Mackay, D., S. Wan-Ying, and M. Kuo-Ching, 2000. Physical-Chemical Properties and Environmental Fate Handbook. Chapman & Hall/CRCnetBASE.

### TABLES

# Table 1Summary of Input Parameters for the Three-phase Partitioning Model

| Parameter         | Description                                      | Value Used | Units         | Basis for Value Used                                                                                                                  |  |  |  |
|-------------------|--------------------------------------------------|------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Cs                | Concentration in soil                            | Varies     | μg/kg         | Maximum and average concentrations from Site investigations                                                                           |  |  |  |
| UCF               | Unit conversion factor                           | 1          | dimensionless | Concentration data for soil and water are both in micrograms                                                                          |  |  |  |
| DF                | Dilution factor                                  | Computed   | dimensionless | See parameters listed below for dilution factor calculation                                                                           |  |  |  |
| K <sub>d</sub>    | Soil-water partitioning coefficient              | Computed   | L/kg          | $K_d = K_{oc} * f_{oc}$                                                                                                               |  |  |  |
| K <sub>oc</sub>   | Organic carbon-water<br>partitioning coefficient | Varies     | L/kg          | Compound specific. Default values from the database or literature values if not in CLARC                                              |  |  |  |
| $\mathbf{f}_{oc}$ | Soil fraction of organic carbon                  | 0.011      | dimensionless | Average of organic carbon data from Site background boring GB-1 for organic carbon measure at 440°C                                   |  |  |  |
| $\theta_w$        | Water-filled porosity                            | 0.30       | dimensionless | Default value for unsaturated soils                                                                                                   |  |  |  |
| $\theta_{a}$      | Air-filled porosity                              | 0.13       | dimensionless | Default value for unsaturated soils                                                                                                   |  |  |  |
| H <sub>cc</sub>   | Henry's law constant                             |            | dimensionless | Compound specific. Default values from the CLARC database or zero if not provided                                                     |  |  |  |
| ρ <sub>b</sub>    | Soil dry bulk density                            | 1.5        | kg/L          | Default value                                                                                                                         |  |  |  |
| Dilution Fac      | tor Parameters                                   |            |               | •                                                                                                                                     |  |  |  |
| К                 | Hydraulic conductivity                           | 1,200      | feet/day      | Phase II RI, Table 3.1                                                                                                                |  |  |  |
| А                 | Aquifer mixing zone                              | 16         | feet          | Default value of 5 meters                                                                                                             |  |  |  |
| I                 | Ground water gradient                            | 0.005      | dimensionless | Average gradient across Site from water level contours in quarterly reports                                                           |  |  |  |
| L                 | Length of source area                            | 5,600      | feet          | Longest distance across Site in the direction of ground water flow                                                                    |  |  |  |
| W                 | Width of source area                             | 1          | foot          | Default value                                                                                                                         |  |  |  |
| Inf               | Annual average infiltration rate                 | 0.16       | feet/year     | Default value based on infiltration as 25 percent of annual precipitation.<br>Annual precipitation of 7.5 inches from the Phase II RI |  |  |  |

Notes:

µg/kg = micrograms per kilogram

CLARC = Cleanup Levels and Risk Calculations

kg/L = kilograms per liter

L/kg = liters per kilogram

RI = Remedial Investigation

### Table 2aInput Coefficients for Three-phase Partitioning Analysis

|                 |                                            |          |                  | Ecology CLARC Database Parameters                     |                                                                                      |                |                                                                             |  |
|-----------------|--------------------------------------------|----------|------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------|--|
| Analyte<br>Type | Chemical                                   | Ka       | Henry's Law Term | Henrys Law<br>Constant, H <sub>cc</sub><br>(unitless) | K <sub>oc</sub> (Soil Organic<br>Carbon-Water<br>Partitioning<br>Coefficient) (L/kg) |                | Ground Water, Method B,<br>Non-carcinogen, Standard<br>Formula Value (μg/L) |  |
| MET             | Antimony                                   | 45       | -                | 0                                                     | -                                                                                    | Not Researched | 6.4                                                                         |  |
| MET             | Arsenic                                    | 29       | -                | 0                                                     | -                                                                                    | 5.83E-02       | 4.8                                                                         |  |
| MET             | Barium                                     | 41       | -                | 0                                                     | -                                                                                    | Not Researched | 3200                                                                        |  |
| MET             | Beryllium                                  | 790      | -                | 0                                                     | -                                                                                    | Not Researched | 32                                                                          |  |
| MET             | Cadmium                                    | 67       | -                | 0                                                     | -                                                                                    | Not Researched | 8                                                                           |  |
| MET             | Chromium                                   | 19       | -                | 0                                                     | -                                                                                    | Not Researched | 50                                                                          |  |
| MET             | Copper                                     | 22       | -                | 0                                                     | -                                                                                    | Not Researched | 640                                                                         |  |
| MET             | Lead                                       | 10000    | -                | 0                                                     | -                                                                                    | Not Researched | 15                                                                          |  |
| MET             | Mercury                                    | 52       | -                | 4.70E-01                                              | -                                                                                    | Not Researched | 2                                                                           |  |
| MET             | Nickel                                     | 65       | -                | 0                                                     | -                                                                                    | Not Researched | 320                                                                         |  |
| MET             | Silver                                     | 8        | -                | 0                                                     | -                                                                                    | Not Researched | 80                                                                          |  |
| MET             | Zinc                                       | 62       | -                | 0                                                     | -                                                                                    | Not Researched | 4800                                                                        |  |
| VOC             | 1,2-Dichloroethene, cis-                   | 0.39     | 0.2167           | 1.67E-01                                              | 3.55E+01                                                                             | Not Researched | 16                                                                          |  |
| VOC             | Acetone                                    | 0.01     | 0.200159         | 1.59E-03                                              | 5.75E-01                                                                             | Not Researched | 7200                                                                        |  |
| VOC             | Dichloromethane (Methylene chloride)       | 0.11     | 0.20898          | 8.98E-02                                              | 1.00E+01                                                                             | 2.19E+01       | 48                                                                          |  |
| VOC             | Toluene                                    | 1.54     | 0.2272           | 2.72E-01                                              | 1.40E+02                                                                             | Not Researched | 640                                                                         |  |
| HERB            | Mephanac (MCPA)                            | 1.80     | 0.200027533      | 2.75E-04                                              | 1.64E+02                                                                             | Not Researched | 8                                                                           |  |
| HERB            | 2,4-D (2,4-Dichlorophenoxyacetic acid)     | 0.46     | 0.200051154      | 5.12E-04                                              | 4.17E+01                                                                             | Not Researched | 160                                                                         |  |
| HERB            | 2,4-DB (2,4-D derivative)                  | 1.83     | -                | 0                                                     | 1.66E+02                                                                             | Not Researched | 160                                                                         |  |
| HERB            | Dichloroprop                               | 1.07     | 0.2000269        | 2.69E-04                                              | 9.74E+01                                                                             | Not Researched | 160                                                                         |  |
| SVOC            | Bis(2-ethylhexyl) phthalate                | 1222.35  | 0.200000418      | 4.18E-06                                              | 1.11E+05                                                                             | 6.25           | 320                                                                         |  |
| SVOC            | Di-n-butyl phthalate                       | 17.24    | 0.20000004       | 3.85E-08                                              | 1.57E+03                                                                             | Not Researched | 1600                                                                        |  |
| SVOC            | Butylbenzyl phthalate                      | 151.21   | 0.20000517       | 5.17E-05                                              | 1.37E+04                                                                             | 46.1           | 3200                                                                        |  |
| DIOX            | 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) | 13932.84 | 0.469146364      | 2.69E+00                                              | 1.27E+06                                                                             | 6.73077E-07    | 0.0000112                                                                   |  |

Notes:

Green-highlighted cells indicate that the MTCA Method A value was used as no Method B value was available in the CLARC database.

Blue-highlighted cells indicate no value was available in the Ecology CLARC database. Values were derived instead from averaged value in Mackay et al. (2000).

1. Kd computed using site-specific total organic carbon of 1.1% from data at background boring location GB-1.

2. Dichloroprop Method B value based on CLARC value for 2,4-D and 2,4-DB. No value was available in the Ecology CLARC database.

3. All Dioxins and Furans were considered a single hazardous substance as TCDD per MTCA 173-340-708(8)(d)

| μg/L = micrograms per liter                          | K <sub>oc</sub> = organic carbon-water partitioning coefficient |
|------------------------------------------------------|-----------------------------------------------------------------|
| CLARC = Cleanup Levels and Risk Calculations         | L/kg = liters per kilogram                                      |
| DIOX = dioxin                                        | MET = metals                                                    |
| H <sub>cc</sub> = Henry's Law constant               | MTCA = Model Toxics Control Act                                 |
| HERB = herbicide                                     | SVOC = semivolatile organic compound                            |
| K <sub>d</sub> = soil-water partitioning coefficient | VOC = volatile organic compound                                 |

#### Table 2b **Dilution Factor Calculation for Three-phase Partitioning Analysis**

| Using Eq. 747-3:                         |             |                           |           |                            |                                                                                                                   |  |  |
|------------------------------------------|-------------|---------------------------|-----------|----------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| DF = (Qp + Qa)/Qp =                      | 42          | Maximum Dilution Factor   | r         |                            |                                                                                                                   |  |  |
| Jsing Eq. 747-5:                         |             |                           |           |                            |                                                                                                                   |  |  |
| Qp= Volume of infiltrating groundwater = | L x W x Inf |                           |           | 875 ft <sup>3</sup> /yr    |                                                                                                                   |  |  |
|                                          | L=          | Length of source area     |           | 5,600 ft                   | Longest distance across Site in direction of ground water flow                                                    |  |  |
|                                          | W=          | Unit width                |           | 1 ft                       |                                                                                                                   |  |  |
|                                          | Inf=        | 0.25 x average annual pre | ecip      | 0.16 ft                    | MTCA default: 25% of average annual precipitation (7.5 inches per year, Phase II RI report, converted to ft/year) |  |  |
| Using Eq. 747-4:                         |             |                           |           |                            |                                                                                                                   |  |  |
| Qa= Ambient Groundwater Flow =           | K x A x I = |                           |           | 35,837 ft <sup>3</sup> /yr | Maximum Ground Water Flow                                                                                         |  |  |
|                                          | K=          | Hydraulic Conductivity    | 1200 ft/d | 438,000 ft/yr              | Phase II RI, Table 3.1                                                                                            |  |  |
|                                          | A=          | 5m =                      | 16 ft     |                            | Maximum MTCA mixing zone                                                                                          |  |  |
|                                          | I=          | Groundwater gradient      | 0.005     |                            | Jan 2010: distance of 400 ft from 354.5 to 352.5 contours                                                         |  |  |
|                                          |             |                           | 0.0054054 |                            | Apr 2010: 370 ft from 356 to 354 contours                                                                         |  |  |
|                                          |             |                           | 0.005     |                            | Jul 2010: 400 ft from 355.5 to 353.5 contours                                                                     |  |  |
|                                          |             |                           | 0.0045455 |                            | Oct 2010: 330 ft from 354 to 352.5 contours                                                                       |  |  |
|                                          |             |                           |           | 0.004987715 average        | 87715 average                                                                                                     |  |  |

ft = foot

ft/yr = feet per year

 $ft^3/yr = cubic feet per year$ MTCA = Model Toxics Control Act

Qp = flow rate of infiltrating water

Qa = flow rate of ground water flow

RI = Remedial Investigation

WAC = Washington Administrative Code

### Table 2cThree-phase Partitioning Analysis Results

|                 |                                            |                                                 |                                                 |                    |                            | Site-specific Dilution Factor (DF=42)                  |                             |                             |  |
|-----------------|--------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------|----------------------------|--------------------------------------------------------|-----------------------------|-----------------------------|--|
| Analyte<br>Type | Chemical                                   | Maximum<br>Detected<br>Concentration<br>(µg/kg) | Average<br>Detected<br>Concentration<br>(μg/kg) | Detection<br>Ratio | MTCA<br>Method B<br>(µg/L) | Soil Conc Protective of<br>Groundwater [Cs]<br>(μg/kg) | Maximum<br>Exceedance Ratio | Average<br>Exceedance Ratio |  |
| MET             | Antimony                                   | 6,000                                           | 2,210                                           | 0.26               | 6.4                        | 12,100                                                 | 0.50                        | 0.18                        |  |
| MET             | Arsenic                                    | 12,600                                          | 7,300                                           | 0.80               | 0.0583                     | 71.0                                                   | 177                         | 103                         |  |
| MET             | Barium                                     | 53,400                                          | 52,200                                          | 1.00               | 3200                       | 5,530,000                                              | 0.010                       | 0.01                        |  |
| MET             | Beryllium                                  | 210                                             | 136                                             | 0.08               | 32                         | 1,060,000                                              | 0.00020                     | 0.00                        |  |
| MET             | Cadmium                                    | 3,800                                           | 2,040                                           | 0.97               | 8                          | 22,600                                                 | 0.17                        | 0.09                        |  |
| MET             | Chromium                                   | 21,900                                          | 6,130                                           | 1.00               | 50                         | 40,300                                                 | 0.54                        | 0.15                        |  |
| MET             | Copper                                     | 30,900                                          | 13,600                                          | 1.00               | 640                        | 596,000                                                | 0.052                       | 0.023                       |  |
| MET             | Lead                                       | 15,000                                          | 7,870                                           | 0.95               | 15                         | 6,290,000                                              | 0.0024                      | 0.0013                      |  |
| MET             | Mercury                                    | 960                                             | 463                                             | 0.06               | 2                          | 4,380                                                  | 0.22                        | 0.11                        |  |
| MET             | Nickel                                     | 15,100                                          | 9,230                                           | 1.00               | 320                        | 875,000                                                | 0.017                       | 0.011                       |  |
| MET             | Silver                                     | 2,500                                           | 1,290                                           | 0.95               | 80                         | 28,500                                                 | 0.088                       | 0.045                       |  |
| MET             | Zinc                                       | 79,200                                          | 39,600                                          | 1.00               | 4800                       | 12,500,000                                             | 0.0063                      | 0.0032                      |  |
| VOC             | 1,2-Dichloroethene, cis-                   | 660                                             | 203                                             | 0.08               | 16                         | 408                                                    | 1.6                         | 0.50                        |  |
| VOC             | Acetone                                    | 2,300                                           | 738                                             | 0.24               | 7200                       | 62,400                                                 | 0.037                       | 0.012                       |  |
| VOC             | Dichloromethane (Methylene chloride)       | 2,300                                           | 338                                             | 0.25               | 21.9                       | 293                                                    | 7.8                         | 1.2                         |  |
| VOC             | Toluene                                    | 1,400                                           | 96.7                                            | 0.22               | 640                        | 47,500                                                 | 0.029                       | 0.0020                      |  |
| HERB            | Mephanac (MCPA)                            | 11                                              | 6.42                                            | 0.12               | 8                          | 671                                                    | 0.016                       | 0.010                       |  |
| HERB            | 2,4-D (2,4-Dichlorophenoxyacetic acid)     | 17                                              | 6.37                                            | 0.06               | 160                        | 4,430                                                  | 0.0038                      | 0.0014                      |  |
| HERB            | 2,4-DB (2,4-D derivative)                  | 22                                              | 10.3                                            | 0.07               | 160                        | 13,600                                                 | 0.0016                      | 0.00076                     |  |
| HERB            | Dichloroprop                               | 7                                               | 4.4                                             | 0.06               | 160                        | 8,540                                                  | 0.0008                      | 0.00052                     |  |
| SVOC            | Bis(2-ethylhexyl) phthalate                | 520                                             | 173                                             | 0.13               | 6.25                       | 321,000                                                | 0.0016                      | 0.00054                     |  |
| SVOC            | Di-n-butyl phthalate                       | 3,000                                           | 938                                             | 0.92               | 1600                       | 1,170,000                                              | 0.0026                      | 0.00080                     |  |
| SVOC            | Butylbenzyl phthalate                      | 930                                             | 458                                             | 0.10               | 46.1                       | 293,000                                                | 0.0032                      | 0.0016                      |  |
| DIOX            | 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) | 0.165*                                          | 0.0394*                                         | 0.46**             | 6.73E-07                   | 0.393                                                  | 0.42                        | 0.10                        |  |

Notes:

Yellow-highlighted cells indicate an exceedance ratio greater than 1.

\* Maximum and average concentrations are the sum of all dioxin and furan concentrations multiplied by Toxicity Equivalency Factors per WAC 173-340-900 Table 708-1

\*\* Detection Ratio based on average number of detections for all dioxins and furans.

µg/kg = micrograms per kilogram

μg/L = micrograms per liter MTCA

Cs = concentration of a compound in soil

DIOX = dioxin HERB = herbicide MTCA = Model Toxics Control Act SVOC = semivolatile organic compound VOC = volatile organic compound WAC = Washington Administrative Code

MET = metal