

Memorandum

Plaza 600 Buildin	g, 600 Stewart Street, Suite 1700 Seattle, Washington 98101 P: 206.278.2674 www.geoengineers	.com
То:	Andy Kallus and Peter Adolphson – Washington State Department of Ecology	
From:	lain H. Wingard and John M. Herzog	
CC:	Port of Everett – Erik Gerking Weyerhaeuser – Carol Wiseman Washington Department of Natural Resources – Erika Shaffer Floyd Snider – Lynn Grochala and Jessie Massingale	
Date:	July 12, 2018	
File:	0676-020-06	
Subject:	Work Plan Addendum No. 3 for Additional Groundwater Sampling from Selected Wells and Analysis Using Reductive Precipitation Method at the Former Mill A Site, Everett, Washington	

This memorandum has been prepared as an addendum to the Weyerhaeuser Mill A Former Remedial Investigation/Feasibility Study (RI/FS) Work Plan (GeoEngineers 2014a) and Upland Area Sampling and Analysis Plan (SAP) for the Weyerhaeuser Mill A Former Site (Site) (GeoEngineers 2014b). This addendum is being provided on behalf of the Port of Everett and describes additional groundwater sampling from selected wells at the Site for analysis using the Reductive Precipitation Method (RPM). This addendum has been prepared to supplement and meet the RI requirements specified in the Work Plan.

The sampling and analysis described in this addendum is being performed as follow-up to the groundwater sampling and analysis performed in September 2016 (dry season) and in March 2017 (wet season). The additional sampling and analysis is based on the results of previous RI groundwater sampling and analysis and communication and coordination with the Washington State Department of Ecology (Ecology). The primary communications related to this work include the following:

- Upland Area Remedial Investigation Data Report Technical Memorandum Weyerhaeuser Mill A Former, Everett Washington dated March 19, 2018 (GeoEngineers 2018a).
- A meeting between representatives of Ecology, Port of Everett, Weyerhaeuser Company and Washington State Department of Natural Resources held on June 26, 2018.
- Email presenting the Proposal for Additional Groundwater Sampling and Analysis dated July 3, 2018.

The groundwater sampling and analysis described in this addendum includes:

- Additional dry season groundwater sampling at selected monitoring wells at the Former Mill A Site where marine water influence has affected the analytical results.
- Analysis for selected metals (i.e., copper, nickel and thallium) using the reductive precipitation (RPM) preparation method prior to analysis.

Work Plan Addendum No. 3 for Additional Groundwater Sampling and Analysis July 12, 2018 Page 2

BACKGROUND

In accordance with the RI/FS Work Plan Upland Area SAP, dry season analyses for metals were performed using universal cell technology (UCT). The results from the dry season groundwater analyses performed in September 2016 using UCT for copper, nickel, silver and thallium had elevated reporting limits and/or concentrations greater than the preliminary screening levels (PSLs). The 2016 groundwater data were analyzed for both total and dissolved analysis. Samples analyzed for dissolved concentrations were filtered in the field to reduce influence from suspended solids. The elevated reporting limits and/or concentrations were identified to be likely associated with marine water (i.e., salinity) influence.

Based on communications with Ecology, wet season analyses for all metals were performed in March 2017 using UCT as well as RPM for copper, nickel, silver and thallium. Again, samples were submitted for both total and dissolved metals analysis. Locations selected for the use of RPM had groundwater with a specific conductance greater than 1,000 uS/cm. RPM was used to minimize marine water influence on these metals. RPM analyses resulted in reporting limits less than the PSLs and detections of these metals below the PSLs at multiple monitoring locations. The results for all previous metals analyses are presented in attached Tables 1 through 4. The attached Figure 1 provides a summary of the salinity measured in groundwater at wells at the Site.

The results for silver (Table 3) from analyses using RPM during the 2017 wet season sampling event show that silver is not present in groundwater at concentrations greater than the PSL. Results using RPM in 2017 show that the reporting limits and detected concentrations of silver were one to two orders of magnitude less than the PSL. Therefore, because all of the wells using RPM show silver at concentrations below the PSL, in addition to the fact that further inland wells not influenced by salinity had silver below the PSL, additional groundwater sampling and analysis for silver is not needed and not proposed.

The results for thallium (Table 4) from analyses using RPM during the 2017 wet season sampling event show that thallium is not present in groundwater at concentrations greater than the PSL. Results using RPM in 2017 show that the reporting limits and detected concentrations of thallium were one to two orders of magnitude less than the PSL except for dissolved thallium using UCT at EST09 during the wet season monitoring event (Table 4). However, total and dissolved thallium at EST09 were detected at concentrations less than the PSL during the wet season monitoring event using RPM.

The wet season results using RPM for copper and nickel resolved elevated reporting limits at all of the locations where it was performed (Tables 1 and 2). The detected concentrations of nickel using RPM were less than the PSLs at all but one location, EST19 (Table 2). Out of 11 locations, the detected concentrations of copper exceeded the PSL at three (Table 1).

ADDITIONAL GROUNDWATER SAMPLING AND ANALYSIS

Based on the results of previous groundwater sampling and analysis, additional dry season sampling is being performed for analysis using RPM to provide additional data to complete the characterization of metals in groundwater and support completion of the RI. Additional groundwater sampling and analysis is to be performed at the following locations using RPM:

Work Plan Addendum No. 3 for Additional Groundwater Sampling and Analysis July 12, 2018 Page 3

- EST08 copper
- EST09 copper, nickel and thallium
- EST10 copper and nickel
- EST10D nickel
- EST13 copper and nickel
- MW01 copper
- MW02 copper

Additional sampling and analysis is not being performed at EST14, EST18 or EST19 as these wells were decommissioned to support the South Terminal Wharf Upgrades Project. Notification of decommissioning of these wells was provided to Ecology in the memorandum titled Notification of Well Decommissioning at Mill A Cleanup Site dated February 14, 2018 (GeoEngineers 2018b).

Sampling for total and dissolved thallium, nickel and/or copper will be performed from the locations identified above in accordance with the Upland Area SAP approved by Ecology prepared as part of the RI/FS Work Plan. Sample analyses will be performed by ALS Environmental laboratory in Kelso, Washington using EPA Method 1640 (reductive precipitation) followed by EPA Method 200.8. ALS Environmental laboratory in Kelso previously performed these analyses on the wet season groundwater samples for the Mill A Site.

SCHEDULE

The additional groundwater sampling and analysis described in this addendum will be performed following approval for this Work Plan addendum. Additional groundwater sampling is anticipated to be performed the week of July 24, 2018.

REFERENCES

- GeoEngineers 2018a. Upland Area Remedial Investigation Data Report Technical Memorandum Weyerhaeuser Mill A Former, Everett, Washington. Prepared for Washington State Department of Ecology on behalf of the Port of Everett. March 19, 2018.
- GeoEngineers 2018b. Notification of Well Decommissioning at Mill A Cleanup Site. Prepared for Washington State Department of Ecology on behalf of the Port of Everett. February 14, 2018.
- GeoEngineers 2014a. Remedial Investigation and Feasibility Study Work Plan. Weyerhaeuser Former Mill A Site, Everett, WA. Prepared for the Washington Department of Ecology on behalf of the Port of Everett, Weyerhaeuser Company, and Washington State Department of Natural Resources. October 16, 2014.
- GeoEngineers 2014b. Upland Area Remedial Investigation Sampling and Analysis Plan. Weyerhaeuser Former Mill A Site, Everett, WA. Prepared for the Washington Department of Ecology on behalf of

the Port of Everett, Weyerhaeuser Company, and Washington State Department of Natural Resources. October 16, 2014.

IHW:JMH:tt:ch

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Attachments:

Table 1. Remedial Investigation Groundwater Monitoring Results - Copper

Table 2. Remedial Investigation Groundwater Monitoring Results - Nickel

Table 3. Remedial Investigation Groundwater Monitoring Results - Silver

Table 4. Remedial Investigation Groundwater Monitoring Results - Thallium

Figure 1. Upland Groundwater Investigation Salinity Results

Remedial Investigation Groundwater Monitoring Results - Copper

Port of Everett Mill A Former

Everett, Washington

Sample Location		ES'	T01	ES.	r02	ES	r03	ES	T04	EST	105	ES.	Г06	ES	T07
Sample Identification	Preliminary Groundwater	EST01_ 092916	EST01_ 03272017	EST02_ 092916	EST02_ 03272017	EST03_ 092816	EST03_ 03242017	EST04_ 092816	EST04_ 03282017	EST05_ 093016	EST05_ 03242017	EST06_ 092616	EST06_ 03292017	EST07_ 092616	EST07_ 03292017
Date Sampled	Screening	09/29/16	03/27/17	09/29/16	03/27/17	09/28/16	03/24/17	09/28/16	03/28/17	09/30/16	03/24/17	09/28/16	03/29/17	09/26/16	03/29/17
Well Location	Level	Upland	Upland												
Copper Analysis Using UCT ¹ (µg/L)															
Total Copper	3.1	1.35	0.467 J	0.86	1.45	1.11	0.842	64.6	30.8 J	0.935	1.6	0.500 U	2.98	1.15	0.452 J
Dissolved Copper	3.1	0.500 U	0.500 U	0.500 U	0.500 U	0.500 U	0.411 J	38.8	22.5 J	0.577	0.500 U	0.500 U	0.474 J	0.500 U	1.14
Copper Analysis Using RPM ² (µg/L)															
Total Copper	3.1							-				-			
Dissolved Copper	3.1			-					-			_			-

Sample Location			EST08		EST	08D	EST	r09	ES	T10	EST	10D	ES	T11	ES	5T11D
Comple Identification	Preliminary	EST08_	EST08_	DUP01_	EST08D_	EST08D_	EST09_	EST09_	EST10_	EST10_	EST10D_	EST10D_	EST11_	EST11_	EST11D_	EST11D_
Sample identification	Groundwater	092616	03302017	03302017	092616	03302017	092816	03282017	092916	03282017	101016	03282017	101016	03292017	102116	03292017
Date Sampled	Screening	09/26/16	03/31/17	03/24/17	09/26/16	03/31/17	09/29/16	03/28/17	09/29/16	03/28/17	10/10/16	03/28/17	10/10/16	03/29/17	10/21/16	03/29/17
Well Location	Level	Shoreline	Shoreline	Upland	Shoreline	Upland	Upland	Upland	Upland							
Copper Analysis Using UCT ¹ (µg/L)																
Total Copper	3.1	11.7	6.64 J		1.62	1.00 UJ	7.28 J	10.0 UJ	10.0 U	2.50 UJ	2.35	0.724 J	0.500 U	0.829	0.626	0.457 J
Dissolved Copper	3.1	10.0 U	2.69		0.500 U	0.500 U	10.0 U	10.0 U	10.0 U	2.50 U	2.83	1.00 U	0.500 U	1.00 U	0.500 U	0.722
Copper Analysis Using RPM ² (µg/L)																
Total Copper	3.1		5.44	5.25				0.17		0.43		0.49				
Dissolved Copper	3.1		3.27	3.1			-	0.15		0.14		0.31				

Sample Location			EST	12		EST	13	EST	ſ14		EST	[15		EST	16
Sample Identification	Preliminary	EST12_	DUP01_	EST12_	DUP01_	EST13_	EST13_	EST14_	EST14_	EST15_	DUP02_	EST15_	DUP02_	EST16_	EST16_
Sample Identification	Groundwater	092816	092816	03302017	03302017	092716	04032017	093016	03302017	092816	092816	03242017	03242017	092716	04032017
Date Sampled	Screening	09/28/2016	09/28/2016	03/24/17	03/24/17	09/27/2016	04/03/17	09/30/2016	03/30/17	09/28/2016	09/28/2016	03/24/17	03/24/17	09/27/2016	04/03/17
Well Location	Level	Upland	Upland	Upland	Upland	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Upland	Upland	Upland	Upland
Copper Analysis Using UCT ¹ (µg/L)															
Total Copper	3.1	2.50 U	0.500 U	0.55 J	2.06	10.0 U	10.0 U	10.0 U	10.0 U	0.500 U	0.500 U	0.500 U	0.596	0.458 J	2.78
Dissolved Copper	3.1	0.500 U	0.5 U	1.00 U	2.50 U	10.0 U	10.0 U	10.0 U	10.0 U	0.500 U	0.5 U	0.489 J	0.500 U	0.500 U	1.00 U
Copper Analysis Using RPM ² (µg/L)															
Total Copper	3.1						0.05 J		1.5				-	-	
Dissolved Copper	3.1						0.06 J		1.43				-		

Sample Location		EST	18	EST	19	ES.	F2 0	MW	/01	MW	-02	sv	V01	SW	/02
Comple Identification	Preliminary	EST18_	EST18_	EST19_	EST19_	EST20_	EST20_	MW01_	MW01_	MW02_	MW02_	SW01_	SW01_	SW02_	SW02_
Sample Identification	Groundwater	092916	03302017	101016	03302017	092716	03242017	093016	03272107	093016	03272107	093016	03302017	093016	03302017
Date Sampled	Screening	09/29/2016	03/31/17	10/10/2016	03/30/17	09/27/2016	03/24/17	09/30/2016	03/27/17	09/30/2016	03/27/17	09/30/2016	03/30/17	09/30/2016	03/30/17
Well Location	Level	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Shoreline	Shoreline	Shoreline	Shoreline	Surface Water	Surface Water	Surface Water	Surface Water
Copper Analysis Using UCT ¹ (µg/L)															
Total Copper	3.1	10.0 U	3.1 J	7.64 J	10.0 U	1.01	0.427 J	10.0 U	4.87	10.0 U	4.96				
Dissolved Copper	3.1	10.0 U	5.00 U	7.24	10.0 U	0.500 U	0.422 J	7.42	4.74	10.0 U	5.00 U		-		
Copper Analysis Using RPM ² (µg/L)															
Total Copper	3.1		2.97		4.29				3.84		3.39				
Dissolved Copper	3.1	-	1.28		4.64				3.74		1.05				

Notes:

¹ Samples were analyzed on an NexION 300D instrument using Universal Cell Technology (UCT) to reduce interferences and potential false positives due to saline water. One or more samples were diluted to achieve laboratory quality control limit standard due to matrix interferences resulting in elevated reporting limits.

² Samples were prepared using reductive precipitation method (RPM) prior to analysis.

µg/L = micrograms per liter

U = The analyte was not detected at a concentration greater than the value identified.

Yellow shading indicates exceedance of the preliminary groundwater screening level. Bold font type indicates the analyte was detected at the reported concentration. -- = analysis not performed

J = The analyte was detected and the detected concentration is considered an estimate.

Blue shading indicated non-detect result exceedance of the preliminary groundwater screening level. \\

GeoEngineers 💋

n/a = not applicable

Remedial Investigation Groundwater Monitoring Results - Nickel

Port of Everett Mill A Former

Everett, Washington

Sample Location		ES	T01	ES	T02	ES	T03	EST	04	ES	T05	ES	F06	ES	T07
Sample Identification	Preliminary	EST01_	EST01_	EST02_	EST02_	EST03_	EST03_	EST04_	EST04_	EST05_	EST05_	EST06_	EST06_	EST07_	EST07_
Sample identification	Groundwater	092916	03272017	092916	03272017	092816	03242017	092816	03282017	093016	03242017	092616	03292017	092616	03292017
Date Sampled	Screening	09/29/16	03/27/17	09/29/16	03/27/17	09/28/16	03/24/17	09/28/16	03/28/17	09/30/16	03/24/17	09/28/16	03/29/17	09/26/16	03/29/17
Well Location	Level	Upland													
Nickel Analysis Using UCT ¹ (µg/L)															
Total Nickel	8.2	1.39	0.399 J	1.6	0.808	1.92	0.862	33.7	27.1	1.37	0.896	0.491 J	1.52 J	1.32	0.7 J
Dissolved Nickel	8.2	0.524	0.323 J	0.299 J	0.456 J	0.456 J	0.213 J	28.3	22.4	0.612	0.489 J	0.428 J	0.508	0.506	0.47
Nickel Analysis Using RPM ² (µg/L)															
Total Nickel	8.2							-							
Dissolved Nickel	8.2									-					

Sample Location			EST08		EST	08D	EST	09	ES	ST10	EST	10D	ES	T11	EST1	1D
Sample Identification	Preliminary	EST08_	EST08_	DUP01_	EST08D_	EST08D_	EST09_	EST09_	EST10_	EST10_	EST10D_	EST10D_	EST11_	EST11_	EST11D_	EST11D_
Sample identification	Groundwater	092616	03302017	03302017	092616	03302017	092816	03282017	092916	03282017	101016	03282017	101016	03292017	102116	03292017
Date Sampled	Screening	09/26/16	03/31/17	03/24/17	09/26/16	03/31/17	09/29/16	03/28/17	09/29/16	03/28/17	10/10/16	03/28/17	10/10/16	03/29/17	10/21/16	03/29/17
Well Location	Level	Shoreline	Shoreline	Upland	Shoreline	Upland	Upland	Upland	Upland							
Nickel Analysis Using UCT ¹ (µg/L)																
Total Nickel	8.2	2.05	3.12		0.712	0.542	10.0 U	10.0 U	10.0 U	1.04	12.8	4.11	0.9	0.656 J	4.72	3.71 J
Dissolved Nickel	8.2	2.08	2.62		0.236 J	0.264 J	10.0 U	3.78	10.0 U	0.71	16.2	3.92	0.264 J	0.412	3.86	4.23
Nickel Analysis Using RPM ² (µg/L)																
Total Nickel	8.2		2.87	2.99			-	0.58		1.19		3.18				
Dissolved Nickel	8.2		2.9	2.95				0.5		0.72		3.38				

Sample Location			ES	ST12		EST	13	EST	14		ES	T15		ES	Г16
Sample Identification	Preliminary	EST12_	DUP01_	EST12_	DUP01_	EST13_	EST13_	EST14_	EST14_	EST15_	DUP02_	EST15_	DUP02_	EST16_	EST16_
Sample identification	Groundwater	092816	092816	03302017	03302017	092716	04032017	093016	03302017	092816	092816	03242017	03242017	092716	04032017
Date Sampled	Screening	09/28/2016	09/28/2016	03/24/17	03/24/17	09/27/2016	04/03/17	09/30/2016	03/30/17	09/28/2016	09/28/2016	03/24/17	03/24/17	09/27/2016	04/03/17
Well Location	Level	Upland	Upland	Upland	Upland	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Upland	Upland	Upland	Upland
Nickel Analysis Using UCT ¹ (µg/L)															
Total Nickel	8.2	2.50 U	0.371 J	0.469 J	0.991	23	10.0 U	7.74 J	7.94	0.646	0.595	0.657	0.882	0.342 J	1.2
Dissolved Nickel	8.2	0.303 J	0.262 J	0.474	0.505	18.2	1.04	8.3	7.04	0.476 J	0.489 J	0.662	0.498 J	0.214 J	0.288
Nickel Analysis Using RPM ² (µg/L)															
Total Nickel	8.2						0.43		6.11						
Dissolved Nickel	8.2						0.93	-	6.41						

Sample Location		EST	F18	EST	[19	EST	20	MW	01	MM	/-02	SW	/01	SM	/02
Sampla Identification	Preliminary	EST18_	EST18_	EST19_	EST19_	EST20_	EST20_	MW01_	MW01_	MW02_	MW02_	SW01_	SW01_	SW02_	SW02_
Sample Identification	Groundwater	092916	03302017	101016	03302017	092716	03242017	093016	03272107	093016	03272107	093016	03302017	093016	03302017
Date Sampled	Screening	09/29/2016	03/31/17	10/10/2016	03/30/17	09/27/2016	03/24/17	09/30/2016	03/27/17	09/30/2016	03/27/17	09/30/2016	03/30/17	09/30/2016	03/30/17
Well Location	Level	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Shoreline	Shoreline	Shoreline	Shoreline	Surface Water	Surface Water	Surface Water	Surface Water
Nickel Analysis Using UCT ¹ (µg/L)															
Total Nickel	8.2	7.26	3.15	29.9	16.7	0.628	0.616								
Dissolved Nickel	8.2	7.08	2.1	25.7	16.5	0.459 J	0.477 J	-							-
Nickel Analysis Using RPM ² (µg/L)															
Total Nickel	8.2		2.95		15.1			-	0.44		0.35				
Dissolved Nickel	8.2		2.39		14.6				0.42	-	0.27				

Notes:

¹ Samples were analyzed on an NexION 300D instrument using Universal Cell Technology (UCT) to reduce interferences and potential false positives due to saline water. One or more samples were diluted to achieve laboratory quality control limit standard due to matrix interferences resulting in elevated reporting limits.

 $^{2}\ {\rm Samples}\ {\rm were}\ {\rm prepared}\ {\rm using}\ {\rm reductive}\ {\rm precipitation}\ {\rm method}\ ({\rm RPM})\ {\rm prior}\ {\rm to}\ {\rm analysis}.$

µg/L = micrograms per liter

U = The analyte was not detected at a concentration greater than the value identified. Yellow shading indicates exceedance of the preliminary groundwater screening level. Bold font type indicates the analyte was detected at the reported concentration. – = analysis not performed

J = The analyte was detected and the detected concentration is considered an estimate.

Blue shading indicated non-detect result exceedance of the preliminary groundwater screening level.

Remedial Investigation Groundwater Monitoring Results - Silver

Port of Everett Mill A Former

Everett, Washington

Sample Location		EST	01	EST	02	EST	03	EST	04	ES	T05	ES	F06	EST	r07
Sample Identification	Preliminary Groundwater	EST01_ 092916	EST01_ 03272017	EST02_ 092916	EST02_ 03272017	EST03_ 092816	EST03_ 03242017	EST04_ 092816	EST04_ 03282017	EST05_ 093016	EST05_ 03242017	EST06_ 092616	EST06_ 03292017	EST07_ 092616	EST07_ 03292017
Date Sampled	Screening	09/29/16	03/27/17	09/29/16	03/27/17	09/28/16	03/24/17	09/28/16	03/28/17	09/30/16	03/24/17	09/28/16	03/29/17	09/26/16	03/29/17
Well Location	Level	Upland	Upland												
Silver Analysis Using UCT ¹ (µg/L)															
Total Silver	1.9	0.200 U	0.200 U	0.200 U	0.400 U	0.200 U	0.200 U	0.232	0.11 J	0.0210 J	0.200 U	0.400 U	0.200 U	1.00 U	0.200 U
Dissolved Silver	1.9	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.158 J	0.112	0.200 U	0.200 U	0.200 U	0.200 UJ	0.200 U	0.400 UJ
Silver Analysis Using RPM ² (µg/L)															
Total Silver	1.9	-													
Dissolved Silver	1.9	-						-			-		-	-	

Sample Location			EST08		ES	T08D	ES	5T09	ES	ST10	EST	10D	ES.	[11	EST1	1D
Sample Identification	Preliminary	EST08_	EST08_	DUP01_	EST08D_	EST08D_	EST09_	EST09_	EST10_	EST10_	EST10D_	EST10D_	EST11_	EST11_	EST11D_	EST11D_
Sample identification	Groundwater	092616	03302017	03302017	092616	03302017	092816	03282017	092916	03282017	101016	03282017	101016	03292017	102116	03292017
Date Sampled	Screening	09/26/16	03/31/17	03/24/17	09/26/16	03/31/17	09/29/16	03/28/17	09/29/16	03/28/17	10/10/16	03/28/17	10/10/16	03/29/17	10/21/16	03/29/17
Well Location	Level	Shoreline	Shoreline	Upland	Shoreline	Upland	Upland	Upland	Upland							
Nickel Analysis Using UCT ¹ (µg/L)																
Total Silver	1.9	2.00 U	2.00 U		0.200 U	0.400 U	4.00 U	4.00 UJ	4.00 U	1.00 UJ	0.107 J	0.400 UJ	0.0590 J	0.200 U	0.200 U	0.200 U
Dissolved Silver	1.9	4.00 U	0.200 U		0.200 U	0.200 U	4.00 U	4.00 U	4.00 U	1.00 U	0.400 U	0.400 U	0.200 U	0.400 UJ	0.200 U	0.400 UJ
Nickel Analysis Using RPM ² (µg/L)																
Total Silver	1.9		0.013 J	0.008 J				0.02 U		0.02 U		0.02 U		-		
Dissolved Silver	1.9		0.004 J	0.004 J				0.02 U		0.02 U		0.02 U				

Sample Location			EST1	2		EST	13	EST	14		ES	T15		EST	16
Sample Identification	Preliminary	EST12_	DUP01_	EST12_	DUP01_	EST13_	EST13_	EST14_	EST14_	EST15_	DUP02_	EST15_	DUP02_	EST16_	EST16_
Sample identification	Groundwater	092816	092816	03302017	03302017	092716	04032017	093016	03302017	092816	092816	03242017	03242017	092716	04032017
Date Sampled	Screening	09/28/2016	09/28/2016	03/24/17	03/24/17	09/27/2016	04/03/17	09/30/2016	03/30/17	09/28/2016	09/28/2016	03/24/17	03/24/17	09/27/2016	04/03/17
Well Location	Level	Upland	Upland	Upland	Upland	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Upland	Upland	Upland	Upland
Nickel Analysis Using UCT ¹ (µg/L)															
Total Silver	1.9	0.200 U	0.200 U	0.200 U	0.200 U	4.00 U	4.00 U	4.00 U	4.00 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.400 U
Dissolved Silver	1.9	0.200 U	0.2 U	0.400 U	1.00 U	4.00 U	4.00 U	4.00 U	4.00 U	0.200 U	0.2 U	0.200 U	0.200 U	0.200 U	0.400 U
Nickel Analysis Using RPM ² (µg/L)															
Total Silver	1.9						0.02 U		0.015 J						
Dissolved Silver	1.9						0.02 U		0.015 J						

Sample Location		EST18		EST19		EST20		MW01		MW-02		SW01		SW02	
Sample Identification	Preliminary	EST18_	EST18_	EST19_	EST19_	EST20_	EST20_	MW01_	MW01_	MW02_	MW02_	SW01_	SW01_	SW02_	SW02_
Sample Identification	Groundwater	092916	03302017	101016	03302017	092716	03242017	093016	03272107	093016	03272107	093016	03302017	093016	03302017
Date Sampled	Screening	09/29/2016	03/31/17	10/10/2016	03/30/17	09/27/2016	03/24/17	09/30/2016	03/27/17	09/30/2016	03/27/17	09/30/2016	03/30/17	09/30/2016	03/30/17
Well Location	Level	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Shoreline	Shoreline	Shoreline	Shoreline	Surface Water	Surface Water	Surface Water	Surface Water
Nickel Analysis Using UCT ¹ (µg/L)															
Total Silver	1.9	4.00 U	0.200 U	4.00 U	4.00 U	0.200 U	0.200 U	4.00 U	2.00 U	4.00 U	2.00 U				
Dissolved Silver	1.9	4.00 U	2.00 U	4.00 U	4.00 U	0.200 U	0.200 U	4.00 U	2.00 U	4.00 U	2.00 U				-
Nickel Analysis Using RPM ² (µg/L)															
Total Silver	1.9		0.077		0.014 J				0.034		0.01 J				
Dissolved Silver	1.9		0.008 J		0.014 J				0.032		0.02 U				

Notes:

¹ Samples were analyzed on an NexION 300D instrument using Universal Cell Technology (UCT) to reduce interferences and potential false positives due to saline water. One or more samples were diluted to achieve laboratory quality control limit standard due to matrix interferences resulting in elevated reporting limits.

² Samples were prepared using reductive precipitation method (RPM) prior to analysis.

 μ g/L = micrograms per liter

U = The analyte was not detected at a concentration greater than the value identified.
Yellow shading indicates exceedance of the preliminary groundwater screening level.
Bold font type indicates the analyte was detected at the reported concentration.

-- = analysis not performed

n/a = not applicable

J = The analyte was detected and the detected concentration is considered an estimate. Blue shading indicated non-detect result exceedance of the preliminary groundwater screening level.

GEOENGINEERS

Remedial Investigation Groundwater Monitoring Results - Thallium

Port of Everett Mill A Former

Everett, Washington

Sample Location		ES	T01	ES	T02	ES	F 03	ES	T04	ES	r05	ES	т06	ES	T07
Sample Identification	Preliminary	EST01_	EST01_	EST02_	EST02_	EST03_	EST03_	EST04_	EST04_	EST05_	EST05_	EST06_	EST06_	EST07_	EST07_
	Groundwater	092916	03272017	092916	03272017	092816	03242017	092816	03282017	093016	03242017	092616	03292017	092616	03292017
Date Sampled	Screening	09/29/16	03/27/17	09/29/16	03/27/17	09/28/16	03/24/17	09/28/16	03/28/17	09/30/16	03/24/17	09/28/16	03/29/17	09/26/16	03/29/17
Well Location	Level	Upland	Upland	Upland	Upland	Upland	Upland	Upland	Upland	Upland	Upland	Upland	Upland	Upland	Upland
Thallium Analysis Using UCT ¹ (µg/L)															
Total Thallium	0.22	0.200 U	0.200 U	0.200 U	0.400 U	0.200 U	0.200 U	0.0260 J	0.400 U	0.0130 J	0.200 U	0.400 U	0.200 U	1.00 U	0.200 U
Dissolved Thallium	0.22	0.200 U	0.0110 J	0.200 U	0.200 U	0.200 U	0.200 U	0.0170 J	0.400 U	0.200 U	0.400 U				
Thallium Analysis Using RPM ² (µg/L)															
Total Thallium	0.22														
Dissolved Thallium	0.22														

Sample Location		EST08			EST08D		EST09		EST10		EST10D		EST11		EST11D	
Sample Identification	Preliminary	EST08_	EST08_	DUP01_	EST08D_	EST08D_	EST09_	EST09_	EST10_	EST10_	EST10D_	EST10D_	EST11_	EST11_	EST11D_	EST11D_
Sample identification	Groundwater	092616	03302017	03302017	092616	03302017	092816	03282017	092916	03282017	101016	03282017	101016	03292017	102116	03292017
Date Sampled	Screening	09/26/16	03/31/17	03/24/17	09/26/16	03/31/17	09/29/16	03/28/17	09/29/16	03/28/17	10/10/16	03/28/17	10/10/16	03/29/17	10/21/16	03/29/17
Well Location	Level	Shoreline	Shoreline	Upland	Shoreline	Upland	Upland	Upland	Upland							
Thallium Analysis Using UCT ¹ (µg/L)																
Total Thallium	0.22	2.00 U	2.00 U	0.200 U	0.200 U	0.400 U	4.00 U	4.00 U	4.00 U	1.00 U	0.200 U	0.400 U	0.200 U	0.200 U	0.200 U	0.200 U
Dissolved Thallium	0.22	4.00 U	0.200 U	1.00 U	0.200 U	0.200 U	4.00 U	0.24	4.00 U	1.00 U	0.200 U	0.400 U	0.0130 J	0.400 U	0.200 U	0.400 U
Thallium Analysis Using RPM ² (µg/L)																
Total Thallium	0.22		0.007 J	0.02 U				0.02 U		0.02 U		0.02 U				
Dissolved Thallium	0.22	-	0.02 U	0.02 U				0.02 U		0.02 U		0.02 U				

Sample Location			EST	[12		EST	EST13 EST14				ES	EST16			
Sample Identification	Preliminary	EST12_	DUP01_	EST12_	DUP01_	EST13_	EST13_	EST14_	EST14_	EST15_	DUP02_	EST15_	DUP02_	EST16_	EST16_
Sample identification	Groundwater	092816	092816	03302017	03302017	092716	04032017	093016	03302017	092816	092816	03242017	03242017	092716	04032017
Date Sampled	Screening	09/28/2016	09/28/2016	03/24/17	03/24/17	09/27/2016	04/03/17	09/30/2016	03/30/17	09/28/2016	09/28/2016	03/24/17	03/24/17	09/27/2016	04/03/17
Well Location	Level	Upland	Upland	Upland	Upland	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Upland	Upland	Upland	Upland
Thallium Analysis Using UCT ¹ (µg/L)															
Total Thallium	0.22	0.200 U	0.200 U	0.200 U	0.200 U	4.00 U	4.00 U	4.00 U	4.00 U	0.200 U	0.200 U	0.0100 J	0.200 U	0.200 U	0.400 U
Dissolved Thallium	0.22	0.200 U	0.2 U	0.400 U	1.00 U	4.00 U	4.00 U	4.00 U	4.00 U	0.200 U	0.2 U	0.200 U	0.0180 J	0.200 U	0.400 U
Thallium Analysis Using RPM ² (µg/L)															
Total Thallium	0.22		-		0.02 U		0.02 U		0.02 U						
Dissolved Thallium	0.22				0.02 U		0.02 U		0.02 U						

Sample Location		EST18		EST19		EST20		MW01		MW-02		SW01		SW02	
Sample Identification	Preliminary	EST18_	EST18_	EST19_	EST19_	EST20_	EST20_	MW01_	MW01_	MW02_	MW02_	SW01_	SW01_	SW02_	SW02_
Sample Identification	Groundwater	092916	03302017	101016	03302017	092716	03242017	093016	03272107	093016	03272107	093016	03302017	093016	03302017
Date Sampled	Screening	09/29/2016	03/31/17	10/10/2016	03/30/17	09/27/2016	03/24/17	09/30/2016	03/27/17	09/30/2016	03/27/17	09/30/2016	03/30/17	09/30/2016	03/30/17
Well Location	Level	Shoreline	Shoreline	Shoreline	Shoreline	Upland	Upland	Shoreline	Shoreline	Shoreline	Shoreline	Surface Water	Surface Water	Surface Water	Surface Water
Thallium Analysis Using UCT ¹ (µg/L)															
Total Thallium	0.22	4.00 U	0.200 U	4.00 U	4.00 U	0.200 U	0.200 U								
Dissolved Thallium	0.22	4.00 U	2.00 U	4.00 U	4.00 U	0.200 U	0.200 U						-		-
Thallium Analysis Using RPM ² (µg/L)															
Total Thallium	0.22		0.006 J		0.01 J				0.006 J		0.02 U				
Dissolved Thallium	0.22		0.005 J		0.01 J				0.006 J		0.02 U				

Notes:

¹ Samples were analyzed on an NexION 300D instrument using Universal Cell Technology (UCT) to reduce interferences and potential false positives due to saline water. One or more samples were diluted to achieve laboratory quality control limit standard due to matrix interferences resulting in elevated reporting limits.

-- = analysis not performed

 2 Samples were prepared using reductive precipitation method (RPM) prior to analysis.

µg/L = micrograms per liter

U = The analyte was not detected at a concentration greater than the value identified.

Yellow shading indicates exceedance of the preliminary groundwater screening level.

Bold font type indicates the analyte was detected at the reported concentration.

n/a = not applicable

 $\mathsf{J}=\mathsf{The}$ analyte was detected and the detected concentration is considered an estimate.

Blue shading indicated non-detect result exceedance of the preliminary groundwater screening level. \\

