

March 19, 2018

Mr. Jay Johnson, Senior Environmental Manager PRS Group, Inc. 3003 Taylor Way Tacoma, Washington 98421-4309 jay@prsplant.net

RE: Annual Groundwater Compliance Monitoring Data Summary Report PRS Services Facility 3003 Taylor Way Tacoma, Washington 98421-4309 Ecology Facility/Site ID: 1245

Dear Mr. Johnson:

Associated Environmental Group, LLC (AEG) has prepared the enclosed *Annual Groundwater Compliance Monitoring Data Summary Report* in accordance with Washington State Department of Ecology (Ecology) Agreed Order DE 11357, and the approved Groundwater Compliance Monitoring Plan, dated May 20, 2015. Groundwater monitoring is currently being conducted annually, in June, and water level measurements are being performed semi-annually, in June and December. Activities performed in 2017, and planned for 2018, are as follows:

WORK PERFORMED [June 13, 2017]:

- Inspected the condition of each monitoring well, and documented any abnormalities with the well monuments or casing.
- Measured the headspace of each well for volatiles using a photoionization detector (PID) upon opening each well.
- Measured depth to groundwater data in nine monitoring wells (SO-2A, MW-3A, MW-2A, CO-3B, CO-3A, MW-1A, MW-1B, SO-4B, and SO-4A).
- Sampled groundwater from monitoring wells; SO-2A, MW-3A, MW-2A, CO-3B, CO-3A, MW-1A, MW-1B, SO-4B, and SO-4A.
- Submitted samples to Spectra Laboratories in Tacoma for analysis.

WORK PERFORMED [December 14, 2017]:

- Inspected the condition of each monitoring well, and documented any abnormalities with the well monuments or casing.
- Measured the headspace of each well for volatiles using a PID upon opening each well.

• Measured depth to groundwater data in nine monitoring wells (SO-2A, MW-3A, MW-2A, CO-3B, CO-3A, MW-1A, MW-1B, SO-4B, and SO-4A).

WORK PLANNED FOR NEXT YEAR [June and December 2018]:

June 2018:

- Inspect the condition of each monitoring well, and document any abnormalities with the well monuments or casing.
- Measure the headspace of each well for volatiles using a photoionization detector (PID) upon opening each well.
- Measure depth to groundwater data in nine monitoring wells (SO-2A, MW-3A, MW-2A, CO-3B, CO-3A, MW-1A, MW-1B, SO-4B, and SO-4A).
- Sample groundwater from monitoring wells; SO-2A, MW-3A, MW-2A, CO-3B, CO-3A, MW-1A, MW-1B, SO-4B, and SO-4A.
- Submit samples to Spectra Laboratories in Tacoma for analysis.

December 2018:

- Inspect the condition of each monitoring well, and document any abnormalities with the well monuments or casing.
- Measure the headspace of each well for volatiles using a PID upon opening each well.
- Measure depth to groundwater data in nine monitoring wells (SO-2A, MW-3A, MW-2A, CO-3B, CO-3A, MW-1A, MW-1B, SO-4B, and SO-4A).

Sampling Event:	June Shallow 2017	June Deep 2017	December Shallow 2017	December Deep 2017	Values
Range of Depths to	2.97 to	5.79 to	1.95 to	5.75 to	Feet below top of well casing
Groundwater:	4.45	7.08	3.59	7.08	
Range of Groundwater	9.84 to	7.12 to	11.13 to	7.12 to	Feet above
Elevations:	11.20	7.20	12.22	7.21	Mean Sea Level
Groundwater Gradient:	SE/	E/	SE/	E/	Feet per foot
(Direction / Magnitude)	0.001735	0.000958	0.020658	0.000483	(ft/ft)
Measureable NAPL Detected:	No	No	No	No	N/A
Measureable NAPL Thickness:	N/A	N/A	N/A	N/A	N/A

GROUNDWATER MONITORING SUMMARY:

A complete summary of the depth-to-water measurements and corresponding elevations is presented in Table 1, *Summary of Groundwater Elevations*.

The groundwater gradient for the shallow aquifer for June and December 2017 sampling events is primarily towards the southeast with an average gradient of 0.014158 ft/ft. Shallow aquifer gradients are illustrated on Figure 2, *June 2017 Shallow Groundwater Contour Map*, and Figure 4, *December 2017 Shallow Groundwater Contour Map*.

The groundwater gradient for the deep aquifer for June and December 2017 sampling events is primarily towards the east with an average gradient of 0.0007205 ft/ft. Deep aquifer gradients are illustrated on Figure 3, *June 2017 Deep Groundwater Contour Map*, and Figure 5, *December 2017 Deep Groundwater Contour Map*.

During both the June and December 2017 events, all monitoring wells appeared to be in good condition. The field data sheets summarizing monitoring and inspection activities are provided in Appendix B, *Field Data Sheets*.

GROUNDWATER SAMPLING AND ANALYTICAL RESULTS:

The groundwater samples were submitted to Spectra Laboratories, Inc. in Tacoma, Washington for analysis for the following parameters:

- Diesel- and oil-range petroleum hydrocarbons (TPH) using Northwest Method NWPTH-D/Dx.
- Gasoline-range TPH using Northwest Method NWTPH-Gx.
- Volatile organic compounds (VOCs) using EPA Method 8260C.
- Polychlorinated biphenyls (PCBs) using EPA Method 8082A.
- Total metals using EPA Method 6020A.
- Nitrate using Method SM4500-NO3 F.
- Sulfate using Method SM4500-SO4 E.

Constituents of concern were detected above Model Toxics Control Act (MTCA) Method A cleanup levels in monitoring wells CO-3A, MW-1A, MW-2A, MW-3A, SO-2A, SO-4A, MW-1B, CO-3B, and SO-4B. Analytical results for this sampling event, and historical analytical results, are presented in Table 2, *Summary of Groundwater Analytical Results*. An overview of the results is as follows:

VOCs

No VOCs were detected above their respective MTCA Method A or B cleanup levels in any of the wells.

Three VOCs were detected below their respective MTCA Method A or B cleanup levels. Chlorobenzene and cis-1,2-dichloroethylene were detected in SO-4A at 10.8 micrograms per liter (μ g/L) and 1.3 μ g/L, respectively. In addition, methyl tert-butyl ether (MTBE) was detected in MW-1A at 3.8 μ g/L.

Metals

Arsenic was detected in eight of nine wells above the MTCA Method A cleanup level of 5 μ g/L, which is consistent with previous sampling events. Arsenic concentrations ranged from 3 μ g/L in MW-1B to 555 μ g/L in SO-4A.

Chromium was detected in all wells below MTCA Method A cleanup levels, which is consistent with previous sampling events.

Lead was not detected in any of the wells above laboratory reporting limits.

Petroleum Hydrocarbons

Diesel- and oil-range TPH were detected above their respective MTCA Method A cleanup levels in MW-1A at 3,200 μ g/L and 1,300 μ g/L, respectively. Oil-range TPH was also detected above the MTCA Method A cleanup level in MW-1B at 620 μ g/L.

Diesel-range TPH was detected below the MTCA Method A cleanup level in SO-4B at 470 μ g/L. All other TPH results were non-detect.

PCBs

No PCBs were detected in any of the wells above laboratory reporting limits.

DATA QUALITY VALIDATION SUMMARY

Data validation was completed for this set of compliance groundwater monitoring data as summarized in the Data Validation Report presented in Appendix C. The laboratory followed the specified analytical methods based on the data validation. Accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample (LCS), and matrix spike/matrix spike duplicate (MS/MSD) percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD and laboratory/field duplicate relative percent deviation (RPD) values. The data are acceptable for the intended use.

DISCUSSION:

Arsenic in Shallow and Deep Groundwater

Arsenic was detected in both the shallow and deep aquifers above the MTCA Method A cleanup level of 5 μ g/L, which is consistent with previous sampling events. Arsenic concentrations averaged about 13.6 in the deep aquifer. Arsenic concentrations averaged about 117 μ g/L in the shallow aquifer; however, the average concentration decreases to about 29.5 μ g/L if you remove the detection of 555 μ g/L in SO-4A. Monitoring well SO-4A has fairly consistently had the highest detected concentrations of arsenic at the Site. This well is located adjacent to Taylor Way.

According to previous monitoring reports for this Site, it has been noted that arsenic is a common soil constituent in the Puget Sound region (Ecology, 1994), and that the concentrations found in groundwater may be representative of area-wide background (GeoEngineers, 2016). In addition, the adjacent Arkema Mound site, as well as other nearby sites, is known to have used slag high in arsenic from the former ASARCO smelter as ballast material for logyard operations (DOF, 2015). It has also been speculated that the City of Tacoma has historically used ASARCO slag as roadbed material throughout the tide flats, which may also account for the presence of arsenic in groundwater throughout the area, as well as the elevated concentrations in SO-4A adjacent to Taylor Way.

There are no known sources of arsenic at the PRS facility.

Petroleum Hydrocarbons

Diesel- and/or oil-range TPH were detected above their respective MTCA Method A cleanup levels in MW-1A and MW-1B. Previous recent monitoring of these wells has not detected these constituents. The source of the TPH in these wells in unknown. It's possible they may be a results of surface runoff penetrating the well lid; however, AEG inspected all wells in June and December, and did not identify any abnormalities.

RECOMMENDATIONS:

Groundwater monitoring performed at the Site dating back to at least 2008 has not detected any constituents above MTCA cleanup levels other than arsenic in the majority of the wells at the Site. As such, AEG recommends proposing to Ecology a reduction in the number of wells to be monitored to MW-1A and SO-4A only for the current suite of contaminants. In addition, due to the exceedance of oil-range TPH in MW-1B, this well should continue to be monitored for diesel-and oil-range TPH only.

2017 Annual Groundwater Compliance Monitoring Data Summary Report PRS Services Tacoma, Washington AEG Project No. 16-123 March 19, 2018

CLOSING:

Thank you for the opportunity to provide you with environmental consulting services. Should you have questions or require additional information, please contact our office at 360-352-9835.

Sincerely,

Associated Environmental Group, LLC

Shawn Lombardini LG Project Geologist

Scott Rose, L.H.G. Senior Hydrogeologist

Attachments: Figure 1 – Vicinity Map Figure 2 – June 2017 Shallow Groundwater Contour Map Figure 3 – June 2017 Deep Groundwater Contour Map Figure 4 – December 2017 Shallow Groundwater Contour Map Figure 5 – December 2017 Deep Groundwater Contour Map Table 1 – Summary of Groundwater Elevations Table 2 – Summary of Groundwater Analytical Results Table 3 – Summary of Field Parameters
Appendix A – Laboratory Datasheets Appendix B – Field Datasheets Appendix C – Data Validation Report

> 605 11th Ave. SE, Suite 201 • Olympia, WA • 98501-2363 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

REFERENCES

- Dalton, Olmstead & Fuglevand, Inc. 2015. *Remedial Investigation, Former Arkema Mound Site, 3009 Taylor Way, Tacoma, Washington.* September.
- Environmental Engineering and Consulting, Inc. 1992. *Phase 1 Report, Soil & Groundwater Investigation of Petroleum Reclaiming Services, Inc., 3003 Taylor Way, Tacoma, Washington.* February 6, 1992.
- Environmental Engineering and Consulting, Inc. 1993. *Phase 2 Report, Soil and Groundwater Investigation of Petroleum Reclaiming Services, Inc., 3003 Taylor Way, Tacoma, Washington.* March 19, 1993.
- GeoEngineers. 2010. *Groundwater Compliance Monitoring Data Summary Report* May 2010, 318 State Avenue NE, Olympia, Washington, July 16, 2010.
- GeoEngineers. 2016. *Groundwater Compliance Monitoring Data Summary Report* May 2016, 318 State Avenue NE, Olympia, Washington, May 2, 2016.
- PRS Group, Inc. 2015. Groundwater Monitoring Plan, PRS Group, Inc., May 20, 2015.
- SECOR International Incorporated. 1996. *Remedial Investigation Report, Petroleum Reclaiming Services, Inc., 3003 Taylor Way, Tacoma, Washington.* October 2, 1996.
- Washington State Department of Ecology. 1994. *Natural Background Soil Metals Concentrations in Washington State*. Publication No. 94-115. October 1994.
- Washington State Department of Ecology. 2015a. Letter to Tom Smith of PRS Group, Inc., Re: Notice of Potential Liability under the Model Toxics Control Act for the Release of Hazardous Substances. March 5, 2015.
- Washington State Department of Ecology. 2015b. Agreed Order DE 112357. Dated September 23, 2015. Executed on October 27, 2015.

FIGURES

605 11th Ave. SE, Suite 201 • Olympia, WA • 98501 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

TABLES

605 11th Ave. SE, Suite 201 • Olympia, WA • 98501 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

Table 1 - Summary of Groundwater Elevations

Petroleum Reclaiming Services Inc. 3003 Taylor Way, Tacoma, Washington

Well No./ TOC Elevation	Date	Depth to Water	Total Depth	Depth to Free Product	Free Product Thickness	Actual Groundwater Elevation	Change in Elevation
			SHA	LLOW AQUIF	ER		
CO3A	6/11/2015	3.49				9.61	
13.10	9/8/2015	3.92				9.18	-0.43
	12/10/2015	0.92				12.18	3.00
	3/8/2016	1.26				11.84	-0.34
	6/13/2017	2.97	9.58			10.13	-1.71
	12/14/2017	1.95	9.59			11.15	1.02
SO2A	6/11/2015	3.55				10.66	
14.21	9/8/2015	4.01				10.20	-0.46
	12/10/2015	0.93				13.28	3.08
	3/8/2016	1.30				12.91	-0.37
	6/13/2017	3.01	11.44			11.20	-1.71
	12/14/2017	1.99	11.39			12.22	1.02
SO4A	6/11/2015	4.84				9.77	
14.61	9/8/2015	4.80				9.81	0.04
	12/10/2015	2.12				12.49	2.68
	3/8/2016	2.58				12.03	-0.46
	6/13/2017	4.34	11.87			10.27	-1.76
	12/14/2017	3.39	11.87			11.22	0.95
MW-1A	6/11/2015	4.88				9.33	
14.21	9/8/2015	5.05				9.16	-0.17
	12/10/2015	2.74				11.47	2.31
	3/8/2016	2.73				11.48	0.01
	6/13/2017	4.37	9.85			9.84	-1.64
	12/14/2017	2.54	9.85			11.67	1.83
MW-2A	6/11/2015	5.03				9.69	
14.72	9/8/2015	5.39				9.33	-0.36
	12/10/2015	2.61				12.11	2.78
	3/8/2016	2.74				11.98	-0.13
	6/13/2017	4.45	9.84			10.27	-1.71
	12/14/2017	3.59	9.84			11.13	0.86
MW-3A	6/11/2015	4.18				9.73	
13.91	9/8/2015	4.60				9.31	-0.42
	12/10/2015	1.72				12.19	2.88
	3/8/2016	1.84				12.07	-0.12
	6/13/2017	3.61	9.82			10.30	-1.77
	12/14/2017	2.61	9.81			11.30	1.00

Table 1 - Summary of Groundwater Elevations

Petroleum Reclaiming Services Inc. 3003 Taylor Way, Tacoma, Washington

Well No./ TOC Elevation	Date	Depth to Water	Total Depth	Depth to Free Product	Free Product Thickness	Actual Groundwater Elevation	Change in Elevation
			Ι	DEEP AQUIFER			
CO3B	6/11/2015	6.57				6.35	
12.92	9/8/2015	6.47				6.45	0.10
	12/10/2015	4.19				8.73	2.28
	3/8/2016	4.92				8.00	-0.73
	6/13/2017	5.79	24.67			7.13	-0.87
	12/14/2017	5.75	24.69			7.17	0.04
SO4B	6/11/2015	7.58				6.52	
14.10	9/8/2015	7.78				6.32	-0.20
	12/10/2015	5.44				8.66	2.34
	3/8/2016	6.17				7.93	-0.73
	6/13/2017	6.90	28.56			7.20	-0.73
	12/14/2017	6.89	28.55			7.21	0.01
MW1B	6/11/2015	7.80				6.40	
14.20	9/8/2015	8.11				6.09	-0.31
	12/10/2015	5.74				8.46	2.37
	3/8/2016	6.33				7.87	-0.59
	6/13/2017	7.08	28.56			7.12	-0.75
	12/14/2017	7.08	28.55			7.12	0.00

Notes:

TOC = Top of casing elevation relative to assigned benchmark.

-- = Not measured, not available, or not applicable

* = Ceased groundwater monitoring/sampling activities at this well

Petroleum Reclaiming Services, Inc. Tacoma, Washington

Monitoring	Monitoring Total Petroleum Hydrocarbons						Volatile	Organic	Compou	nds				Metals		
Well	Sample Date	Gasoline	Diesel	Lube Oil	Benzene	Toluene	Chloro- benzene	MTBE	PCE	TCE	cis-1,2- DCE	Vinyl Chloride	Arsenic	Chromium	Lead	PCBs
						Sha	allow Aquif	er Wells								
	4/16/2008	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	16	<7.0	<1.0	< 0.1
	1/26/2010	<100	<200	<400	4.9	1.8	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	38	<5.0	< 5.0	< 0.1
	8/5/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	19.8	<5.0	< 5.0	
	6/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	14.6	1.6	< 0.5	< 0.1
C03A	9/9/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	13.3	0.7	< 0.5	< 0.1
	12/10/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	13.1	2.3	< 0.5	< 0.1
	3/8/2016	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	10	0.8	< 0.5	< 0.1
	6/13/2017	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	11	1.2	< 0.2	< 0.1
	4/16/2008	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	68	14	<1.0	< 0.1
	1/26/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	20	6.9	<5.0	< 0.1
	8/5/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	34	10.7	<5.0	
	6/11/2015	<50	<100	<500	0.88	<1.0	<1.0	2.24	<1.0	<1.0	<1.0	< 0.2	46.2	3	< 0.5	< 0.1
MW1A	9/8/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	54.3	4.3	< 0.5	< 0.1
	12/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	61.1	5	< 0.5	< 0.1
	3/9/2016	55	<100	<500	9.3	<1.0	<1.0	16.7	<1.0	<1.0	<1.0	< 0.2	67.1	3.1	< 0.5	< 0.1
	6/13/2017	<50	3,200	1,300	<1.0	<1.0	<1.0	3.8	<1.0	<1.0	<1.0	< 0.2	46	3.6	< 0.2	< 0.1
	4/16/2008	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	79	<7.0	<1.0	< 0.1
	1/26/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	<5.0	<5.0	<5.0	< 0.1
	8/5/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	10.3	<5.0	<5.0	
	6/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	26.6	1.6	< 0.5	< 0.1
MW2A	9/8/2015	<50	<100	<500	<1.0	2.3	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	39	1.1	< 0.5	< 0.1
	12/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	20.6	1.5	< 0.5	< 0.1
	3/9/2016	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	26	0.7	< 0.5	< 0.1
	6/13/2017	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	43	1.1	< 0.2	< 0.1

Petroleum Reclaiming Services, Inc. Tacoma, Washington

Monitoring		Total Petr	oleum Hyc	irocarbons			Volatile	e Organic	Compou	nds				Metals		
Well	Sample Date	Gasoline	Diesel	Lube Oil	Benzene	Toluene	Chloro- benzene	MTBE	PCE	TCE	cis-1,2- DCE	Vinyl Chloride	Arsenic	Chromium	Lead	PCBs
	4/16/2008	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	74	<7.0	<1.0	< 0.1
	1/26/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	51	<5.0	< 5.0	< 0.1
	8/5/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	59.4	13.4	< 5.0	
	6/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	38.2	1.4	< 0.5	< 0.1
MW3A	9/9/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	57.2	1.6	< 0.5	< 0.1
	12/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	47.1	4	0.8	< 0.1
	3/9/2016	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	35.2	1.1	< 0.5	< 0.1
	6/13/2017	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	42	2.2	< 0.2	< 0.1
	4/16/2008	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	6	<7.0	<1.0	< 0.1
	1/26/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	7.4	<5.0	< 5.0	< 0.1
	8/5/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	<5.0	<5.0	< 5.0	
	6/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	9.9	1.1	< 0.5	< 0.1
S02A	9/9/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	3.4	0.7	< 0.5	< 0.1
	12/10/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	5.9	2	< 0.5	< 0.1
	3/8/2016	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	5.8	0.6	< 0.5	< 0.1
	6/13/2017	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	5.3	1	< 0.2	< 0.1
	4/16/2008	74	<100	<500	<1.0	<1.0	<1.0	<1.0	5	12	28	5	1,300	<7.0	<1.0	< 0.1
	1/26/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	6.8	6.2	8.8	< 0.2	217	<5.0	<5.0	< 0.1
	8/5/2010	143	<200	<400	5.4	<1.0	36.5	<1.0	<1.0	<1.0	1.0	0.48	38	<5.0	<5.0	
	6/11/2015	50	<100	<500	1.39	<1.0	14.7	<1.0	<1.0	<1.0	2.7	0.9	273	1.2	< 0.5	< 0.1
	6/11/2015*	52	<100	<500	1.47	<1.0	15.6	<1.0	<1.0	<1.0	2.86	0.8	280	1.3	< 0.5	< 0.1
S04A	9/8/2015	55	<100	<500	1.5	<1.0	15.9	<1.0	<1.0	<1.0	1.9	1.2	46.9	< 0.5	< 0.5	< 0.1
	12/10/2015	<50	<100	<500	<1.0	<1.0	1.9	<1.0	8.4	<1.0	<1.0	< 0.2	197	0.8	< 0.5	< 0.1
	12/10/2015*	<50	<100	<500	<1.0	<1.0	2	<1.0	8.9	<1.0	<1.0	< 0.2	202	0.8	< 0.5	< 0.1
	3/8/2016	76	<100	<500	<1.0	<1.0	1.5	<1.0	6.1	1.2	<1.0	< 0.2	519	< 0.5	< 0.5	< 0.1
	6/13/2017	<50	<100	<500	<1.0	<1.0	10.8	<1.0	<1.0	<1.0	1.3	< 0.2	555	1.1	< 0.2	< 0.1

Petroleum Reclaiming Services, Inc. Tacoma, Washington

Monitoring	Monitoring Total Petroleum Hydrocarbons			lrocarbons			Volatile	Organic	Compour	nds			Metals			
Well	Sample Date	Gasoline	Diesel	Lube Oil	Benzene	Toluene	Chloro- benzene	MTBE	PCE	TCE	cis-1,2- DCE	Vinyl Chloride	Arsenic	Chromium	Lead	PCBs
						D	eep Aquifer	Wells								
	1/26/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	<5.0	16.5	<5.0	< 0.1
	8/5/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	38	<5.0	<5.0	
	12/14/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	<5.0	16.0	<5.0	
	6/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	2.3	12.9	< 0.5	< 0.1
MW1B	9/8/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	2.3	14	< 0.5	< 0.1
	12/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	3.4	24.9	< 0.5	< 0.1
	3/9/2016	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	<1.0	20.2	< 0.5	< 0.1
	6/13/2017	<50	<100	620	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	3	19	< 0.2	< 0.1
	4/16/2008	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2	33	3	< 0.1
	1/26/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	6.1	<5.0	<5.0	< 0.1
	8/5/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	38	<5.0	<5.0	
	12/14/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	8.4	4.3	<5.0	
	6/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	14.1	5.3	< 0.5	< 0.1
C03B	9/9/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	12.7	3.9	< 0.5	< 0.1
	12/10/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	19.8	8.9	< 0.5	< 0.1
	3/8/2016	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	13.6	3.9	< 0.5	< 0.1
	3/8/2016*	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	14.1	4.1	< 0.5	< 0.1
	6/13/2017	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	12	5.6	< 0.2	< 0.1
	1/26/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	5.8	<5.0	<5.0	< 0.1
	8/5/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	38	<5.0	<5.0	
	12/14/2010	<100	<200	<400	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	10	8.5	<5.0	
	6/11/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	16.5	8.4	< 0.5	< 0.1
S04B	9/8/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	18.3	8.2	< 0.5	< 0.1
	12/10/2015	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	31.1	16.9	< 0.5	< 0.1
	3/8/2016	<50	<100	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	27.8	10.8	< 0.5	< 0.1
	6/13/2017	<50	470	<500	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.2	26	12	< 0.2	< 0.1
P	QL	50/100	100/200	400/500	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0/0.2	1.0/5.0	5.0	5.0/0.5	0.1
MTCA Meth Le	od A Cleanup vels	1,000/800	500	500	5	1,000	160**	20	5	5	16**	0.2	5	50	15	0.1

Petroleum Reclaiming Services, Inc.

Tacoma, Washington

Monitoring		Total Petroleum Hydrocarbons			Volatile Organic Compounds								Metals			
Well	Sample Date	Gasoline	Diesel	Lube Oil	Benzene	Toluene	Chloro- benzene	MTBE	PCE	TCE	cis-1,2- DCE	Vinyl Chloride	Arsenic	Chromium	Lead	PCBs

Notes:

All values are presented in micrograms per liter (μ g/L)

*Field duplicate.

**MTCA Method B cleanup level; no Method A cleanup level has been established.

PQL = Practical Quantification Limit (laboratory detection limit)

< = Not detected above laboratory limits

-- = Not analyzed for this constituent

Red Bold indicates the detected concentration exceeds Ecology MTCA Method A cleanup level **Bold** indicates the detected concentration is below Ecology MTCA Method A cleanup levels

MTBE = Methyl Tert-Butyl Ether

PCE = Tetrachloroethylene

TCE = Trichloroethylene

DCE = Dichloroethylene

PCBs = Polychlorinated biphenyls

Table 3 - Summary of Field Parameters

Petroleum Reclaiming Services Inc. 3003 Taylor Way, Tacoma, Washington

6112015 16.8 1.45 5.9 0.30 6.83 -104.5 2.5 CO.3A 382016 10.9 0.90 3.3 0.27 6.62 -146.4 12102015 13.2 0.90 5.8 0.27 6.62 -147.0 2.0 6112017 15.6 1.09 0.67 0.71 7.81 -175.0 1.5 6112015 15.8 1.33 1.27 1.0 0.03 6.63 -141.1 2.5 121112015 15.8 1.33 1.2 0.24 6.73 -176.0 2.0 392016 13.1 1.70 3.8 0.33 7.11 -152.0 1.5 6132017 14.1 1.60 1.03 0.61 7.06 -145.0 1.5 982015 17.5 0.84 2.0 0.14 7.18 -133.0 1.2 982015	Well Number	Date	Temperature (°C)	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	Dissolved Oxygen (mg/L)	pН	ORP (millivolts)	Ferrous Iron (mg/L)
99/2015 20.3 1.53 2.1 0.08 6.76 -146.4 G0.3A 12/10715 1.52 0.90 5.8 0.33 7.18 1.750 1.5 382016 10.9 0.99 5.8 0.33 7.18 1.750 1.5 6112015 15.3 1.57 1.0 0.20 6.62 -47.00 2.0 98/2015 19.3 1.43 1.8 0.13 6.63 -141.5 121172015 15.8 1.33 1.2 0.24 6.75 -17.00 2.0 39/2016 13.1 1.70 3.8 0.33 7.11 +152.0 1.5 6/132017 14.1 1.60 - 1.03 0.61 7.06 1.46 4.50 1.6 1.0 1.6 1.16 1.15 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		6/11/2015	16.8	1.45	5.9		0.30	6.83	-104.5	2.5
CO:3A I2102015 I3.2 0.90 IS.8 0.27 6.62 -177.0 2.0 6/132017 I5.6 1.09 0.67 0.71 7.61 -177.0 1.2 6/112015 I5.3 1.57 1.0 0.67 0.71 7.61 -202.0 6/112015 I5.8 1.33 1.2 0.20 6.62 -45.1 2.2 392016 13.1 1.70 3.8 0.33 7.11 -182.0 1.5 313017 14.1 1.60 1.03 0.61 7.18 -173.0 1.5 912015 13.0 0.67 2.5 0.14 7.18 -130.0 1.1 -1 1.20 1.5 1.5 1.2 0.40 6.79 -160.0 1.00 1.20 1.2 1.2 1.2		9/9/2015	20.3	1.53	2.1		0.08	6.76	-146.4	
3x2016 10.9 0.99 5.8 0.33 7.18 -175.0 1.5 6112015 15.3 1.57 1.0 0.67 0.71 7.61 -20.20 98x2015 19.3 1.43 1.8 0.13 6.62 -14.5 98x2015 15.8 1.33 1.2 0.24 6.63 -141.5 99x2015 15.8 1.33 1.2 0.24 6.75 -176.0 2.0 6/12017 14.1 1.60 1.03 0.61 7.06 2.0 6/12015 13.0 0.67 2.5 0.13 6.95 -141.0 121/12015 8.9 0.63 2.0 0.04 6.79 -105.0 1.0 6/132017 12.1 0.58 0.03 6.70 -102.0 6.70 -102.0 1.15 -12.0 0.16.0	CO-3A	12/10/2015	13.2	0.90	3.3		0.27	6.62	-177.0	2.0
6/13/2017 1.5.6 1.09 0.6/7 0.1/1 7.61 -202.0 MW-IA 6 11/2015 15.3 1.5.7 1.0 0.03 6.63 -141.5 MW-IA 121/12015 15.8 1.33 1.2 0.24 6.675 -176.0 2.0 392016 13.1 1.70 3.8 0.33 7.11 -15.0 1.5 6/13/2017 14.1 1.60 1.03 0.61 7.06 -1.43.0 1.2 MW-2A 6/12/015 13.0 0.67 2.2 0.14 7.18 -13.3 1.12 MW-2A 6/12/015 8.9 0.63 2.0 0.13 6.63 -141.0 MW-3A 6/12/015 1.10 0.58 0.38 2.26 6.39 -163.0 1.10 9/92/015 0.21 0.11 7.26 -10.20 6.61		3/8/2016	10.9	0.99	5.8		0.33	7.18	-175.0	1.5
Kill Kill <th< td=""><td></td><td>6/13/2017</td><td>15.6</td><td>1.09</td><td></td><td>0.67</td><td>0.71</td><td>7.61</td><td>-202.0</td><td></td></th<>		6/13/2017	15.6	1.09		0.67	0.71	7.61	-202.0	
NW-1A 01/2015 15.3 1.57 1.00 0.20 6.62 44.1 2.5 MW-1A 1211/2015 15.8 1.33 1.2 0.24 6.75 -17.60 2.00 392016 13.1 1.70 3.8 0.33 7.11 -15.50 1.5 6(132017 14.1 1.60 1.03 0.61 7.06 -145.5 1211/2015 1.30 0.67 2.5 0.14 7.18 133.7 1.5 1211/2015 1.89 0.63 2.0 0.13 6.95 -141.0 1211/2015 1.8 0.90 0.9 0.26 6.54 -130.0 1.00 -0 6/132017 1.12.1 0.58 - 0.28 6.20 -0 - - - - 0.20 6.76 -10.20 6.76 -10.20 6.76 -10.20 6.36 -15.0		6/11/2015	15.0	1.57	1.0		0.00	6.62	45.1	0.5
98/2015 19.3 1.43 1.8 0.13 6.63 1.41.5 - MW-1A 11/2015 15.8 1.33 1.2 0.24 6.75 1.76.0 2.0 6/13/2017 14.1 1.60 0.13 0.61 7.06 -145.5 6/12/2015 13.0 0.67 2.5 0.14 7.18 -133.7 1.5 MW-2A 10/2015 13.0 0.67 2.5 0.14 7.18 -133.0 1.0 6/12/2015 15.8 0.63 2.0 0.13 6.53 -141.0 6/13/2017 12.1 0.58 0.26 6.34 -133.0 1.0 6/13/2017 12.1 0.58 0.20 6.76 -102.9 2.5 99/2015 2.0 1.19 3.5 - 0.02 6.76 -102.9 2.5 99/2015 16.8 0.90<		6/11/2015	15.3	1.57	1.0		0.20	6.62	-45.1	2.5
NW-1A 12/11/2015 15.8 1.31 1.70 3.8 0.24 6.75 -17.60 2.0 6/13/2017 14.1 1.60 1.03 0.61 7.06 -145.5 MW-2A 6/12/2015 17.5 0.84 2.0 0.14 7.18 -133.7 1.5 9/8/2015 17.5 0.84 2.0 0.14 7.18 -133.7 1.5 39/2016 9.2 0.63 2.0 0.26 6.34 -133.0 1.2 39/2016 9.2 0.76 3.9 0.20 6.76 -102.9 2.5 6/13/2017 12.1 0.58 0.20 6.76 -102.9 2.5 12/12/15 13.0 0.69 2.6 0.29 6.46 -155.0 2.0 12/11/2015 13.0 0.69 2.7 - 0.29 6.63 +120.0 1.5 39/		9/8/2015	19.3	1.43	1.8		0.13	6.63	-141.5	
	MW 1A	12/11/2015	15.8	1.33	1.2		0.24	6.75	-176.0	2.0
	IVI VV - 174	3/9/2016	13.1	1.70	3.8		0.33	7.11	-152.0	1.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6/13/2017	14.1	1.60		1.03	0.61	7.06	-145.5	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
MW-2A 0.82015 17.5 0.84 2.0 0.13 6.95 1.10.7 1.10 MW-2A 1211/2015 8.9 0.63 2.0 0.26 6.34 1.13.0 1.2 MW-3A 1011/2015 12.0 0.76 3.9 0.40 6.79 105.0 1.0 MW-3A 611/2015 16.8 0.90 0.9 0.20 6.76 -102.9 2.5 99/2015 20.9 1.19 3.5 - 0.08 6.70 -130.9 6/11/2017 14.5 0.72 - 0.44 1.99 7.26 -187.3 6/13/2017 14.5 0.72 - 0.44 1.99 7.26 -187.3 50-2A 6/11/2015 17.4 1.11 2.4 - 0.11 7.03 100.3 1.5 9/2015 21.3 1.28 1.1 - 0.12 6.63 -182.0 </td <td></td> <td>6/12/2015</td> <td>13.0</td> <td>0.67</td> <td>2.5</td> <td></td> <td>0.14</td> <td>7 18</td> <td>-133.7</td> <td>15</td>		6/12/2015	13.0	0.67	2.5		0.14	7 18	-133.7	15
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9/8/2015	17.5	0.84	2.0		0.13	6.95	-141.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12/11/2015	8.9	0.63	2.0		0.26	6.34	-133.0	1.2
	MW-2A	3/9/2016	9.2	0.76	3.9		0.40	6.79	-105.0	1.0
Image: Second		6/13/2017	12.1	0.58		0.38	2.26	6.90	-164.0	
$ MW-3A = \begin{bmatrix} 6112015 & 16.8 & 0.90 & 0.9 & - & 0.20 & 6.76 & -102.9 & 2.5 \\ 99/2015 & 20.9 & 1.19 & 3.5 & - & 0.08 & 6.70 & -130.9 & - \\ 20.9 & 0.19 & 2.6 & - & 0.29 & 6.46 & -155.0 & 2.0 \\ \hline 39/2016 & 10.6 & 0.78 & 4.9 & - & 0.31 & 7.06 & -136.0 & 1.5 \\ \hline 613/2017 & 14.5 & 0.72 & - & 0.44 & 1.99 & 7.26 & -187.3 & - \\ \hline & & & & & & & & & & & & & & & & & &$										
MW-3A 99/2015 20.9 1.19 3.5 0.08 6.70 -130.9 12/11/2015 13.0 0.69 2.6 0.29 6.44 -155.0 2.0 6/13/2017 14.5 0.72 0.44 1.99 7.26 -187.3 6/11/2015 17.4 1.11 2.4 0.11 7.03 -100.3 1.5 9/9/2015 21.3 1.28 1.1 0.12 6.84 -111.7 12/10/2015 13.8 0.90 2.7 0.29 6.63 -182.0 1.0 3/8/2016 11.3 0.99 2.3 0.31 7.45 1.76.0 1.0 6/13/2017 15.2 0.90 0.55 1.37 7.27 -200.1 80-4A 11/2015 15.3 0.82 1.6 0.20 6.62 106.0 1.5 3/8/		6/11/2015	16.8	0.90	0.9		0.20	6.76	-102.9	2.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		9/9/2015	20.9	1.19	3.5		0.08	6.70	-130.9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	101/24	12/11/2015	13.0	0.69	2.6		0.29	6.46	-155.0	2.0
6/13/2017 14.5 0.72 0.44 1.99 7.26 -187.3 SO-2A 6/11/2015 17.4 1.11 2.4 0.11 7.03 -100.3 1.5 9/9/2015 21.3 1.28 1.1 0.12 6.84 -111.7 3/8/2016 11.3 0.99 2.3 0.31 7.45 -176.0 1.0 6/13/2017 15.2 0.90 0.55 1.37 7.27 -200.1 6/11/2015 15.3 0.82 1.6 0.29 6.63 -103.1 9/8/2016 18.7 1.03 2.0 0.08 6.51 -130.1 12/10/2015 12.6 0.47 1.2 0.27 6.10 -86.0 1.5 3/8/2016 11.2 0.49 3.4 0.29 6.63 -102.0 1.5 6/11/2015	MW-3A	3/9/2016	10.6	0.78	4.9		0.31	7.06	-136.0	1.5
Image: Note of the second se		6/13/2017	14.5	0.72		0.44	1.99	7.26	-187.3	
$ {\rm SO-2A} \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
99/2015 21.3 1.28 1.1 0.12 6.84 -111.7 S0-2A 12/10/2015 13.8 0.90 2.7 0.29 6.63 -182.0 1.0 3/8/2016 11.3 0.99 2.3 0.31 7.45 -176.0 1.0 6/13/2017 15.2 0.90 0.55 1.37 7.27 -200.1 9/8/2015 18.7 1.03 2.0 0.20 6.62 -106.3 2.0 9/8/2015 18.7 1.03 2.0 0.027 6.10 -86.0 1.5 3/8/2016 11.2 0.49 3.4 0.29 6.63 -102.0 1.5 6/11/2015 14.6 11.18 1.4 0.10 7.15 -140.3 4.5 12/10/2015 14.2 16.40 2.7 0.26 7.03 -193.0 4.0 3/8/2016 <		6/11/2015	17.4	1.11	2.4		0.11	7.03	-100.3	1.5
$ SO-2A \\ SO-2A \\ \hline 12/10/2015 \\ 13.8 \\ 1.3 \\ 3/8/2016 \\ 11.3 \\ 0.99 \\ 2.3 \\ - \\ 0.31 \\$		9/9/2015	21.3	1.28	1.1		0.12	6.84	-111.7	
	50.24	12/10/2015	13.8	0.90	2.7		0.29	6.63	-182.0	1.0
$ MW-1B \begin{bmatrix} 6/13/2017 & 15.2 & 0.90 & & 0.55 & 1.37 & 7.27 & -200.1 & \\ \hline & & & & & & & & & & & & & & & & & &$	30-2A	3/8/2016	11.3	0.99	2.3		0.31	7.45	-176.0	1.0
SO-4A 6/11/2015 15.3 0.82 1.6 0.20 6.62 -106.3 2.0 SO-4A 9/8/2015 18.7 1.03 2.0 0.08 6.51 -130.1 12/10/2015 12.6 0.47 1.2 0.27 6.10 -86.0 1.5 3/8/2016 11.2 0.49 3.4 0.29 6.63 -102.0 1.5 6/13/2017 13.0 1.01 0.666 2.40 6.75 -161.0 6/11/2015 14.6 11.18 1.4 0.10 7.15 -140.3 4.5 9/9/2015 14.6 11.58 1.4 0.15 7.02 -154.5 12/10/2015 14.2 16.40 2.7 0.26 7.03 -193.0 4.0 3/8/2016 13.9 18.10 3.2 0.28 7.86 -206.0 3.5 <		6/13/2017	15.2	0.90		0.55	1.37	7.27	-200.1	
$\mathrm{S0-4A} \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$ SO-4A \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6/11/2015	15.3	0.82	1.6		0.20	6.62	-106.3	2.0
$ {\rm SO-4A} \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		9/8/2015	18.7	1.03	2.0		0.08	6.51	-130.1	
$ {\rm MW-18} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SO-4A	12/10/2015	12.6	0.47	1.2		0.27	6.10	-86.0	1.5
$ MW-1B \begin{bmatrix} 6/13/2017 & 13.0 & 1.01 & & 0.66 & 2.40 & 6.75 & -161.0 & \\ \hline & & & & & & & & & & & & & & & & & &$	50	3/8/2016	11.2	0.49	3.4		0.29	6.63	-102.0	1.5
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		6/13/2017	13.0	1.01		0.66	2.40	6.75	-161.0	
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
$ \text{CO-3B} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6/11/2015	14.6	11.18	1.4		0.10	7.15	-140.3	4.5
$ \begin{array}{c} \text{CO-3B} \\ \text{SO-3B} \\ \hline 12/10/2015 & 14.2 \\ 3/8/2016 & 13.9 \\ 6/13/2017 & 13.4 \\ \hline 13.4 \\ \hline 10.86 $		9/9/2015	14.6	11.58	1.4		0.15	7.02	-154.5	
SO-2010 = 13.9 = 18.10 = 5.2 = = 0.28 = 7.86 = -206.0 = 3.5 = -206.0 = 3.5 = -206.0 = 3.5 = -206.0 = 3.5 = -206.0 = 3.5 = -206.0 = 3.5 = -206.0 = 3.5 = -206.0 = 3.5 = -206.0 = 3.5 = -206.0 = -206	CO-3B	2/8/2016	14.2	16.40	2.7		0.26	7.03	-193.0	4.0
SO-4B 6/11/2015 15.2 9.49 2.3 6.54 1.161 7.83 -210.7 SO-4B 6/13/2017 14.8 10.80 0.11 6.79 -108.8 3.0 MW-1B 9/8/2015 15.8 6.73 4.9 0.11 6.79 -108.8 12/11/2015 15.8 8.82 1.3 0.25 6.86 -141.0 2.0 3/9/2016 14.8 10.60 4.8 0.29 7.53 -156.0 1.5 6/13/2017 14.3 6.74 4.77 0.62 7.40 0.14 6.99 -134.1 3.5 9/8/2015 15.4 9.87 1.1 0.13 6.87 -147.8 12/10/2015 12.6 14.20 1.2 0.30 8.09 -222.0 3.0		5/8/2010	13.9	18.10	3.2		0.28	7.80	-206.0	3.5
MW-1B 6/11/2015 14.8 6.68 0.6 0.15 6.94 17.2 3.0 9/8/2015 15.8 6.73 4.9 0.11 6.79 -108.8 12/11/2015 15.8 8.82 1.3 0.25 6.86 -141.0 2.0 3/9/2016 14.8 10.60 4.8 0.29 7.53 -156.0 1.5 6/13/2017 14.3 6.74 4.77 0.62 7.40 -163.6 6/11/2015 15.2 9.49 2.3 0.14 6.99 -134.1 3.5 9/8/2015 15.4 9.87 1.1 0.13 6.87 -147.8 80-4B 9/8/2015 15.4 9.87 1.1 0.13 6.87 -147.8 12/10/2015 12.6 14.20 1.2 0.30 8.09 -222.0 3.0		0/15/2017	15.4	10.80		0.11	1.01	7.85	-210.7	
$ \text{MW-1B} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6/11/2015	14.9	6.69	0.6		0.15	6.04	17.2	2.0
$ \text{MW-1B} \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0/8/2015	14.8	6.08	0.0		0.15	6.94	-1/.2	5.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9/8/2013	15.0	0.75	4.9		0.11	6.79	-108.8	
$SO-4B \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MW-1B	2/0/2016	13.8	0.02	1.5		0.23	7.52	-141.0	2.0
$SO-4B \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6/13/2017	14.0	6.74	4.0		0.29	7.55	-130.0	1.5
SO-4B 6/11/2015 15.2 9.49 2.3 0.14 6.99 -134.1 3.5 9/8/2015 15.4 9.87 1.1 0.13 6.87 -147.8 12/10/2015 12.6 14.20 1.2 0.17 6.36 -223.0 3.0 3/8/2016 14.9 15.20 1.2 0.30 8.09 -222.0 3.0 6/13/2017 14.0 9.02 6.54 1.18 7.45 -222.2		0/13/2017	14.3	0.74		7.//	0.02	7.40	-103.0	
$SO-4B \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6/11/2015	15.2	9 4 9	2.3		0.14	6 99	-134 1	35
SO-4B 12/10/2015 12.6 14.20 1.2 0.17 6.36 -223.0 3.0 3/8/2016 14.9 15.20 1.2 0.30 8.09 -222.0 3.0 6/13/2017 14.0 9.02 6.54 1.18 7.45 -222.2		9/8/2015	15.4	9.87	1.1		0.13	6.87	-147.8	
SO-4B 3/8/2016 14.9 15.20 1.2 0.30 8.09 -222.0 3.0 6/13/2017 14.0 9.02 6.54 1.18 7.45 -222.2		12/10/2015	12.6	14.20	1.2		0.17	6.36	-223.0	3.0
6/13/2017 14.0 9.02 6.54 1.18 7.45 -222.2	SO-4B	3/8/2016	14.9	15.20	1.2		0.30	8.09	-222.0	3.0
		6/13/2017	14.0	9.02		6.54	1.18	7.45	-222.2	

Notes:

-- = Not Measured

 $mS/cm = milli \; Siemens \; per \; centimeter$

ORP = Oxidation reduction potential

NTU = Nephelometric Turbidity Unit

°C = Degrees Celsius

mg/l = milligrams per liter

APPENDIX A

LABORATORY DATASHEETS

605 11th Ave. SE, Suite 201 • Olympia, WA • 98501 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 25, 2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

CASE NARRATIVE

Client Project ID: PRS Number of Samples: 16 Spectra Project #2017060394 Received Date: 6/14/2017 Sample Identification Summary:

Client Identification	Spectra Laboratory Number
MW-2A	1
MW-3A	2
SO-2A	3
CO-3B	4
CO-3A	5
SO-4B	6
SO-4A	7
MW-1A	8
MW-1B	9
SO-4A	10
Field Blank	11
Trip Blank #1	12
Trip Blank #2	13
Trip Blank #3	14
Trip Blank #5	15
Trip Blank #6	16

Sample Receipt:

Samples were received from the field staff outside of recommended temperature limits for some of the requested analytical methods at 9.6 °C. All samples were packaged in coolers with ice upon receipt. Otherwise, all samples were received intact, within specified holding times, and collected in the correct sampling bottles containing preservative for specified methods.

Sample Analysis:

Samples were prepared and analyzed by the following EPA, State of Washington and Standard methods. Total arsenic, chromium, and lead by EPA 3010B/6020B. Volatile organics by EPA 5030B/8260C. Polychlorinated biphenyls by EPA 3520C/8082B Gasoline and diesel were prepared and analyzed by State of Washington method NWTPH. Sulfate was prepared and analyzed by Standard Method 4500-SO4 E. Nitrate was analyzed by Standard Method 4500-NO3 F.

Prior to analysis samples were stored at <5°C. Due to the amount of time between sample receipt and preparation no additional preservation steps were performed by the laboratory.

Any special notes or deviations to the analytical methods are noted below.

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

Analytical Comments for EPA method 8260C:

Vinyl chloride has been reported between the laboratories determined method detection limit (MDL) and practical quantitation limit (PQL). All results for vinyl chloride have been "J" flagged in the report.

Analytical Comments for Standard Methods 4500-NO3 F:

Nitrite analysis was performed at Spectra Laboratories-Tacoma prior to the samples being preserved with sulfuric acid and subcontracted to Spectra Laboratories-Kitsap for Nitrate/Nitrite combined analysis. Nitrate has been reported as the difference between the measured nitrate/nitrite and the nitrite results. Nitrite results were performed on 6/15/2017.

Laboratory Quality Control:

Unless otherwise noted all quality control samples were within laboratory limits.

Method 8260C:

Please note that methylene chloride, 1,2,3-trichlorobenzene, and 1,2,4-trichlorobenzene were all above the reporting limit in the laboratory blank associated with analysis date 6/27/2017. The cause of the failure has been investigated and appears to be isolated to the method blank only. Sample data associated with this blank is not affected since all compounds detected in the blank were below the reporting limit.

Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:MW-2ASample Matrix:WaterDate Sampled:06/13/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:1

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Diesel	<100	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	<500	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	<0.01 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	<2.0	mg/L	SM 4500-SO4 ⁻ E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	0.043	mg/L	SW846 6020B	1,3-Dichlorobenzene	<1	μg/L	SW846 8260C
Chromium	0.0011	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	<1	μg/L	SW846 8260C
PCB	< 0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	µg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Recovery	Method
90	NWTPH-D
139	NWTPH-G
113	NWTPH-G
88	SW846 8082A
	90 139 113 88

Surrogate	Recovery	Method
Dibromofluoromethane	75	SW846 8260C
1,2-Dichloroethane-d4	88	SW846 8260C
Toluene-d8	134	SW846 8260C
4-Bromofluorobenzene	121	SW846 8260C

SPECTRA LABORATORIES

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

PRS
MW-2A
Water
06/13/2017
06/14/2017
2017060394
:1

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Bromobenzene	<1	µg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	<1	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	90	NWTPH-D
Toluene-d8	139	NWTPH-G
4-Bromofluorobenzene	113	NWTPH-G
Decachlorobiphenyl	88	SW846 8082A
SPECTRA LABOR	ATORIES	

Surrogate	Recovery	Method
Dibromofluoromethane	75	SW846 8260C
1,2-Dichloroethane-d4	88	SW846 8260C
Toluene-d8	134	SW846 8260C
4-Bromofluorobenzene	121	SW846 8260C

Liney Cooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:MW-3ASample Matrix:WaterDate Sampled:06/13/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:2

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Diesel	<100	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	<500	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	<0.01 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	6.0	mg/L	SM 4500-SO4 ⁻ E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	0.042	mg/L	SW846 6020B	1,3-Dichlorobenzene	<1	μg/L	SW846 8260C
Chromium	0.0022	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	<1	μg/L	SW846 8260C
PCB	< 0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method	Surrogate	Recover
o-Terphenyl	84	NWTPH-D	Dibromofluoromethane	71
Foluene-d8	156	NWTPH-G	1,2-Dichloroethane-d4	87
4-Bromofluorobenzene	119	NWTPH-G	Toluene-d8	151
Decachlorobiphenyl	92	SW846 8082A	4-Bromofluorobenzene	125

Cooper, Laboratory Manager a14/jac

Method \$W846 8260C \$W846 8260C \$W846 8260C \$W846 8260C

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	MW-3A
Sample Matrix:	Water
Date Sampled:	06/13/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:2

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Bromobenzene	<1	μg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	<1	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	84	NWTPH-D
Toluene-d8	156	NWTPH-G
4-Bromofluorobenzene	119	NWTPH-G
Decachlorobiphenyl	92	SW846 8082A
SPECTRA LABORA	TORIES	

Surrogate	Recovery	Method
Dibromofluoromethane	71	SW846 8260C
1,2-Dichloroethane-d4	87	SW846 8260C
Toluene-d8	151	SW846 8260C
4-Bromofluorobenzene	125	SW846 8260C

Jenney Cooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:SO-2ASample Matrix:WaterDate Sampled:06/13/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:3

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Diesel	<100	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	<500	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	3.43 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	<2.0	mg/L	SM 4500-SO4 ⁻ E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	0.0053	mg/L	SW846 6020B	1,3-Dichlorobenzene	<1	μg/L	SW846 8260C
Chromium	0.001	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	<1	μg/L	SW846 8260C
PCB	< 0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method	Surrogate	Recovery	Method
p-Terphenyl	146	NWTPH-D	Dibromofluoromethane	71	SW846 8260C
Toluene-d8	161	NWTPH-G	1,2-Dichloroethane-d4	87	SW846 8260C
4-Bromofluorobenzene	121	NWTPH-G	Toluene-d8	155	SW846 8260C
Decachlorobiphenyl	91	SW846 8082A	4-Bromofluorobenzene	129	SW846 8260C
SPECTRA LABOR	ATORIES				

al4/jac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	SO-2A
Sample Matrix:	Water
Date Sampled:	06/13/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:3

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Bromobenzene	<1	μg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	<1	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method					
p-Terphenyl	146	NWTPH-D					
Toluene-d8	161	NWTPH-G					
4-Bromofluorobenzene	121	NWTPH-G					
Decachlorobiphenyl	91	SW846 8082A					
SPECTRA LABORATORIES							

Surrogate	Recovery	Method
Dibromofluoromethane	71	SW846 8260C
1,2-Dichloroethane-d4	87	SW846 8260C
Toluene-d8	155	SW846 8260C
4-Bromofluorobenzene	129	SW846 8260C

re cooper, Laboratory Manager a14/jac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:CO-3BSample Matrix:WaterDate Sampled:06/13/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:4

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Diesel	<100	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	<500	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	0.13 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	12.7	mg/L	SM 4500-SO4 ⁻ E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	0.012	mg/L	SW846 6020B	1,3-Dichlorobenzene	<1	μg/L	SW846 8260C
Chromium	0.0056	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	<1	μg/L	SW846 8260C
РСВ	< 0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method	Surrogate	Recovery	Method
p-Terphenyl	105	NWTPH-D	Dibromofluoromethane	72	SW846 8260C
Toluene-d8	161	NWTPH-G	1,2-Dichloroethane-d4	92	SW846 8260C
4-Bromofluorobenzene	129	NWTPH-G	Toluene-d8	156	SW846 8260C
Decachlorobiphenyl	100	SW846 8082A	4-Bromofluorobenzene	137	SW846 8260C
SPECTRA LABORA	ATORIES				

at4/jac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	CO-3B
Sample Matrix:	Water
Date Sampled:	06/13/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:4

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Bromobenzene	<1	μg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	<1	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	105	NWTPH-D
Toluene-d8	161	NWTPH-G
4-Bromofluorobenzene	129	NWTPH-G
Decachlorobiphenyl	100	SW846 8082A
SPECTRA LABOR	ATORIES	

Surrogate	Recovery	Method
Dibromofluoromethane	72	SW846 8260C
1,2-Dichloroethane-d4	92	SW846 8260C
Toluene-d8	156	SW846 8260C
4-Bromofluorobenzene	137	SW846 8260C

Jettrey Cooper, Laboratory Manager

a14/jac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:CO-3ASample Matrix:WaterDate Sampled:06/13/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:5

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Diesel	<100	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	<500	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	<0.01 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	2.0	mg/L	SM 4500-SO4 ⁻ E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	0.011	mg/L	SW846 6020B	1,3-Dichlorobenzene	<1	μg/L	SW846 8260C
Chromium	0.0012	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	<1	μg/L	SW846 8260C
PCB	<0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	89	NWTPH-D
Toluene-d8	160	NWTPH-G
4-Bromofluorobenzene	122	NWTPH-G
Decachlorobiphenyl	94	SW846 8082A
SPECTRA LABOR	ATORIES	

Surrogate	Recovery	Method
Dibromofluoromethane	73	SW846 8260C
1,2-Dichloroethane-d4	94	SW846 8260C
Toluene-d8	154	SW846 8260C
4-Bromofluorobenzene	131	SW846 8260C

al4/jac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:CO-3ASample Matrix:WaterDate Sampled:06/13/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:5

Analyte	Result	<u>Units</u>	Method	Analyte	Result	Units	Method
Bromobenzene	<1	μg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	<1	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

/ Method
NWTPH-D
NWTPH-G
NWTPH-G
SW846 8082A

Surrogate	Recovery	Method
Dibromofluoromethane	73	SW846 8260C
1,2-Dichloroethane-d4	94	SW846 8260C
Toluene-d8	154	SW846 8260C
4-Bromofluorobenzene	131	SW846 8260C

Johney Cooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:SO-4BSample Matrix:WaterDate Sampled:06/13/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:6

Analyte_	Result	Units	Method	Analyte	Result	Units	Method
Diesel	470	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	<500	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	<0.01 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	4.8	mg/L	SM 4500-SO4 ⁻ E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	0.026	mg/L	SW846 6020B	1,3-Dichlorobenzene	<1	μg/L	SW846 8260C
Chromium	0.012	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	<1	μg/L	SW846 8260C
PCB	< 0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	95	NWTPH-D
Toluene-d8	156	NWTPH-G
4-Bromofluorobenzene	122	NWTPH-G
Decachlorobiphenyl	94	SW846 8082A
SPECTRA LABOR	ATORIES	

Surrogate	Recovery	Method SW846 8260C		
Dibromofluoromethane	73			
1,2-Dichloroethane-d4	91	SW846 8260C		
Toluene-d8	151	SW846 8260C		
4-Bromofluorobenzene	131	SW846 8260C		

Jeffrey Cooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	SO-4B
Sample Matrix:	Water
Date Sampled:	06/13/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:6

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Bromobenzene	<1	μg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	<1	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	95	NWTPH-D
Toluene-d8	156	NWTPH-G
4-Bromofluorobenzene	122	NWTPH-G
Decachlorobiphenyl	94	SW846 8082A
SPECTRA LABOR	ATORIES	

Surrogate	Recovery	Method
Dibromofluoromethane	73	SW846 8260C
1,2-Dichloroethane-d4	91	SW846 8260C
Toluene-d8	151	SW846 8260C
4-Bromofluorobenzene	131	SW846 8260C

Therey Cooper, Laboratory Manager
2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:SO-4ASample Matrix:WaterDate Sampled:06/13/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:7

Analyte	Result	<u>Units</u>	Method	Analyte	Result	Units	Method
Diesel	<100	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	<500	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	<0.01 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	22.9	mg/L	SM 4500-SO4 ⁻ E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	0.555	mg/L	SW846 6020B	1,3-Dichlorobenzene	1.3	μg/L	SW846 8260C
Chromium	0.0011	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	1.6	μg/L	SW846 8260C
PCB	< 0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	100	NWTPH-D
Toluene-d8	156	NWTPH-G
4-Bromofluorobenzene	118	NWTPH-G
Decachlorobiphenyl	92	SW846 8082A
SPECTRA LABOR	ATORIES	

Surrogate	Recovery	Method
Dibromofluoromethane	71	SW846 8260C
1,2-Dichloroethane-d4	88	SW846 8260C
Toluene-d8	151	SW846 8260C
4-Bromofluorobenzene	125	SW846 8260C

Cooper, Laboratory Manager a14/jac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	SO-4A
Sample Matrix:	Water
Date Sampled:	06/13/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:7

Analyte	Result	Units	Method	<u>Analyte</u>	Result	Units	Method
Bromobenzene	<1	μg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	10.8	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	1.3	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	100	NWTPH-D
Toluene-d8	156	NWTPH-G
4-Bromofluorobenzene	118	NWTPH-G
Decachlorobiphenyl	92	SW846 8082A
SPECTRA LABOR	ATORIES	

Surrogate	Recovery	Method
Dibromofluoromethane	71	SW846 8260C
1,2-Dichloroethane-d4	88	SW846 8260C
Toluene-d8	151	SW846 8260C
4-Bromofluorobenzene	125	SW846 8260C

Lettrev Cooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:MW-1ASample Matrix:WaterDate Sampled:06/13/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:8

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Diesel	3200	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	1300	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	0.06 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	58.8	mg/L	SM 4500-SO4 ⁻ E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	0.046	mg/L	SW846 6020B	1,3-Dichlorobenzene	<1	μg/L	SW846 8260C
Chromium	0.0036	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	<1	μg/L	SW846 8260C
РСВ	< 0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method					
p-Terphenyl	86	NWTPH-D					
Toluene-d8	158	NWTPH-G					
4-Bromofluorobenzene	121	NWTPH-G					
Decachlorobiphenyl	97	SW846 8082A					
SPECTRA LABORATORIES							

Cooper, Laboratory Manager

12

al4/jac

Surrogate	Recovery	Method		
Dibromofluoromethane	72	SW846 8260C		
1,2-Dichloroethane-d4	88	SW846 8260C		
Toluene-d8	153	SW846 8260C		
4-Bromofluorobenzene	127	SW846 8260C		

Page 15 of 32

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	MW-1A
Sample Matrix:	Water
Date Sampled:	06/13/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:8

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Bromobenzene	<1	μg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	<1	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	3.8	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	86	NWTPH-D
Toluene-d8	158	NWTPH-G
4-Bromofluorobenzene	121	NWTPH-G
Decachlorobiphenyl	97	SW846 8082A
SPECTRA LABOR	ATORIES	

Surrogate	Recovery	Method
Dibromofluoromethane	72	SW846 8260C
1,2-Dichloroethane-d4	88	SW846 8260C
Toluene-d8	153	SW846 8260C
4-Bromofluorobenzene	127	SW846 8260C

Cooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:MW-1BSample Matrix:WaterDate Sampled:06/13/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:9

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Diesel	<100	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	620	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	0.02 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	<2.0	mg/L	SM 4500-SO4 [–] E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	0.003	mg/L	SW846 6020B	1,3-Dichlorobenzene	<1	μg/L	SW846 8260C
Chromium	0.019	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	<1	μg/L	SW846 8260C
РСВ	<0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	89	NWTPH-D
Toluene-d8	159	NWTPH-G
4-Bromofluorobenzene	120	NWTPH-G
Decachlorobiphenyl	92	SW846 8082A
SPECTRA LABOR	ATORIES	

Surrogate	Recovery	Method		
Dibromofluoromethane	70	SW846 8260C		
1,2-Dichloroethane-d4	87	SW846 8260C		
Toluene-d8	153	SW846 8260C		
4-Bromofluorobenzene	127	SW846 8260C		

Lettrey Cooper, Laboratory Manager

al fiac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	MW-1B
Sample Matrix:	Water
Date Sampled:	06/13/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:9

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Bromobenzene	<1	μg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	<1	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	89	NWTPH-D
Toluene-d8	159	NWTPH-G
4-Bromofluorobenzene	120	NWTPH-G
Decachlorobiphenyl	92	SW846 8082A
SPECTRA LABOR	ATORIES	

Surrogate	Recovery	Method
Dibromofluoromethane	70	SW846 8260C
1,2-Dichloroethane-d4	87	SW846 8260C
Toluene-d8	153	SW846 8260C
4-Bromofluorobenzene	127	SW846 8260C

Termey Cooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:SO4ASample Matrix:WaterDate Sampled:06/14/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:10

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Diesel	290	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	760	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	0.01 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	28.3	mg/L	SM 4500-SO4 ⁻ E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	0.487	mg/L	SW846 6020B	1,3-Dichlorobenzene	1.4	μg/L	SW846 8260C
Chromium	0.0012	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	1.7	μg/L	SW846 8260C
РСВ	< 0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

82	NWTPH-D
158	NWTPH-G
115	NWTPH-G
89	SW846 8082A
	82 158 115 89

Surrogate	Recovery	Method
Dibromofluoromethane	71	SW846 8260C
1,2-Dichloroethane-d4	89	SW846 8260C
Toluene-d8	152	SW846 8260C
4-Bromofluorobenzene	124	SW846 8260C

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	SO4A
Sample Matrix:	Water
Date Sampled:	06/14/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:10

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Bromobenzene	<1	μg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	11.3	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	82	NWTPH-D
Toluene-d8	158	NWTPH-G
4-Bromofluorobenzene	115	NWTPH-G
Decachlorobiphenyl	89	SW846 8082A
SPECTRA LABORA	ATORIES	

Surrogate	Recovery	Method	
Dibromofluoromethane	71	SW846 8260C	
1,2-Dichloroethane-d4	89	SW846 8260C	
Toluene-d8	152	SW846 8260C	
4-Bromofluorobenzene	124	SW846 8260C	

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:Field BlankSample Matrix:WaterDate Sampled:06/14/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:11

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Diesel	<100	μg/L	NWTPH-D	1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C
Oil	<500	μg/L	NWTPH-D	1,2-Dichlorobenzene	<1	μg/L	SW846 8260C
Gasoline	<50	μg/L	NWTPH-G	1,2-Dichloroethane	<1	μg/L	SW846 8260C
Nitrate	0.01 *	mg/L-N	SM 4500-NO3 F	1,2-Dichloropropane	<1	μg/L	SW846 8260C
Sulfate	<2.0	mg/L	SM 4500-SO4 ⁻ E	1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C
Arsenic	< 0.0002	mg/L	SW846 6020B	1,3-Dichlorobenzene	<1	μg/L	SW846 8260C
Chromium	< 0.0005	mg/L	SW846 6020B	1,3-Dichloropropane	<1	μg/L	SW846 8260C
Lead	< 0.0002	mg/L	SW846 6020B	1,4-Dichlorobenzene	<1	μg/L	SW846 8260C
PCB	< 0.1	μg/L	SW846 8082A	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Surrogate	Recovery	Method
p-Terphenyl	104	NWTPH-D
Toluene-d8	158	NWTPH-G
4-Bromofluorobenzene	117	NWTPH-G
Decachlorobiphenyl	98	SW846 8082A
COR CER L L D C D		

Surrogate	Recovery	Method
Dibromofluoromethane	72	SW846 8260C
1,2-Dichloroethane-d4	89	SW846 8260C
Toluene-d8	152	SW846 8260C
4-Bromofluorobenzene	125	SW846 8260C

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:Field BlankSample Matrix:WaterDate Sampled:06/14/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:11

<u>Analyte</u>	Result	Units	Method	Analyte	Result	Units	Method
Bromobenzene	<1	μg/L	SW846 8260C	Styrene	<1	μg/L	SW846 8260C
Bromochloromethane	<1	μg/L	SW846 8260C	Tetrachloroethene	<1	μg/L	SW846 8260C
Bromodichloromethane	<1	μg/L	SW846 8260C	Toluene	<1	μg/L	SW846 8260C
Bromoform	<1	μg/L	SW846 8260C	Total Xylenes	<1	μg/L	SW846 8260C
Bromomethane	<1	μg/L	SW846 8260C	Trichloroethene	<1	μg/L	SW846 8260C
Carbon Disulfide	<10	μg/L	SW846 8260C	Trichlorofluoromethane	<1	μg/L	SW846 8260C
Carbon Tetrachloride	<1	μg/L	SW846 8260C	Vinyl Acetate	<10	μg/L	SW846 8260C
Chlorobenzene	<1	μg/L	SW846 8260C	Vinyl chloride	<0.2 J	μg/L	SW846 8260C
Chlorodibromomethane	<1	μg/L	SW846 8260C	cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C	cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C	n-Butylbenzene	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C	n-Propylbenzene	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C	sec-Butylbenzene	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C	tert-Butylbenzene	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C	trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C	trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C				
Isopropylbenzene	<1	μg/L	SW846 8260C				
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C				
Methylene chloride	<5	μg/L	SW846 8260C				
Naphthalene	<1	μg/L	SW846 8260C				

*Nitrate analysis was subcontracted to Spectra Laboratories-Kitsap.

Recovery	Method
104	NWTPH-D
158	NWTPH-G
117	NWTPH-G
98	SW846 8082A
	104 158 117 98

Surrogate	Recovery	Method	
Dibromofluoromethane	72	SW846 8260C	
1,2-Dichloroethane-d4	89	SW846 8260C	
Toluene-d8	152	SW846 8260C	
4-Bromofluorobenzene	125	SW846 8260C	

Cooper, Laboratory Manager a14/jac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:Trip Blank #1Sample Matrix:WaterDate Sampled:06/14/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:12

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Gasoline	<50	μg/L	NWTPH-G	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C
1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C	Bromobenzene	<1	μg/L	SW846 8260C
1,2-Dichlorobenzene	<1	μg/L	SW846 8260C	Bromochloromethane	<1	μg/L	SW846 8260C
1,2-Dichloroethane	<1	μg/L	SW846 8260C	Bromodichloromethane	<1	μg/L	SW846 8260C
1,2-Dichloropropane	<1	μg/L	SW846 8260C	Bromoform	<1	μg/L	SW846 8260C
1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C	Bromomethane	<1	μg/L	SW846 8260C
1,3-Dichlorobenzene	<1	μg/L	SW846 8260C	Carbon Disulfide	<10	μg/L	SW846 8260C
1,3-Dichloropropane	<1	μg/L	SW846 8260C	Carbon Tetrachloride	<1	μg/L	SW846 8260C
1,4-Dichlorobenzene	<1	μg/L	SW846 8260C	Chlorobenzene	<1	μg/L	SW846 8260C

Surrogate	Recovery	Method						
Toluene-d8	159	NWTPH-G						
4-Bromofluorobenzene	121	NWTPH-G						
Dibromofluoromethane	72	SW846 8260C						
1,2-Dichloroethane-d4	88	SW846 8260C						
SPECTRA LABORATORIES								

Surrogate	Recovery	Method	
Toluene-d8	153	SW846 8260C	
4-Bromofluorobenzene	130	SW846 8260C	

Cooper, Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	Trip Blank #1
Sample Matrix:	Water
Date Sampled:	06/14/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:12

Analyte	Result	Units	Method
Chlorodibromomethane	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C
Isopropylbenzene	<1	μg/L	SW846 8260C
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C
Methylene chloride	<5	μg/L	SW846 8260C
Naphthalene	<1	μg/L	SW846 8260C
Styrene	<1	μg/L	SW846 8260C
Tetrachloroethene	<1	μg/L	SW846 8260C
Toluene	<1	μg/L	SW846 8260C
Total Xylenes	<1	μg/L	SW846 8260C
Trichloroethene	<1	μg/L	SW846 8260C
Trichlorofluoromethane	<1	μg/L	SW846 8260C
Vinyl Acetate	<10	μg/L	SW846 8260C
Vinyl chloride	<0.2 J	μg/L	SW846 8260C

Analyte	Result	Units	Method
cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
n-Butylbenzene	<1	μg/L	SW846 8260C
n-Propylbenzene	<1	μg/L	SW846 8260C
sec-Butylbenzene	<1	μg/L	SW846 8260C
tert-Butylbenzene	<1	μg/L	SW846 8260C
trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C

Surrogate	Recovery	Method	-
Toluene-d8	159	NWTPH-G	Т
4-Bromofluorobenzene	121	NWTPH-G	4-
Dibromofluoromethane	72	SW846 8260C	
1,2-Dichloroethane-d4	88	SW846 8260C	

SurrogateRecoveryMethodToluene-d8153\$W846 8260C4-Bromofluorobenzene130\$W846 8260C

SPECTRA LABORATORIES

al4/jac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:Trip Blank #2Sample Matrix:WaterDate Sampled:06/14/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:13

Result	Units	Method	Analyte	Result	Units	Method
<50	μg/L	NWTPH-G	2,2-Dichloropropane	<1	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Bromobenzene	<1	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Bromochloromethane	<1	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Bromodichloromethane	<1	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Bromoform	<1	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Bromomethane	<1	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Carbon Disulfide	<10	μg/L	SW846 8260C
<1	μg/L	SW846 8260C	Carbon Tetrachloride	<1	µg/L	SW846 8260C
<1	μg/L	SW846 8260C	Chlorobenzene	<1	μg/L	SW846 8260C
	Result <50	Result Units <50 $\mu g/L$ <1 $\mu g/L$	ResultUnitsMethod <50 $\mu g/L$ NWTPH-G <1 $\mu g/L$ SW846 8260C <1 <td>ResultUnitsMethodAnalyte$<50$$\mu g/L$NWTPH-G2,2-Dichloropropane$<1$$\mu g/L$SW846 8260C2-Butanone (MEK)$<1$$\mu g/L$SW846 8260C2-Chloroethylvinyl Ether$<1$$\mu g/L$SW846 8260C2-Chlorotoluene$<1$$\mu g/L$SW846 8260C2-Hexanone (MBK)$<1$$\mu g/L$SW846 8260C4-Chlorotoluene$<1$$\mu g/L$SW846 8260C4-Isopropyltoluene$<1$$\mu g/L$SW846 8260C4-methyl-2-pentanone$<1$$\mu g/L$SW846 8260CAcetone$<1$$\mu g/L$SW846 8260CAcetonitrile$<1$$\mu g/L$SW846 8260CAcetonitrile$<1$$\mu g/L$SW846 8260CBenzene$<1$$\mu g/L$SW846 8260CBenzene$<1$$\mu g/L$SW846 8260CBromobenzene$<1$$\mu g/L$SW846 8260CBromothoromethane$<1$$\mu g/L$SW846 8260CCarbon Disulfide$<1$$\mu g/L$SW846 8260CCarbon Tetrachloride$<1$$\mu g/L$SW846 8260CChlorobenzene</td> <td>ResultUnitsMcthodAnalyteResult$<50$$\mu g/L$NWTPH-G2,2-Dichloropropane$<1$$<1$$\mu g/L$SW846 8260C2-Butanone (MEK)$<10$$<1$$\mu g/L$SW846 8260C2-Chloroethylvinyl Ether$<10$$<1$$\mu g/L$SW846 8260C2-Chlorotoluene$<1$$<1$$\mu g/L$SW846 8260C2-Hexanone (MBK)$<10$$<1$$\mu g/L$SW846 8260C4-Chlorotoluene$<1$$<1$$\mu g/L$SW846 8260C4-Chlorotoluene$<1$$<1$$\mu g/L$SW846 8260C4-Isopropyltoluene$<1$$<1$$\mu g/L$SW846 8260CAcetone$<10$$<1$$\mu g/L$SW846 8260CAcetonitrile$<10$$<1$$\mu g/L$SW846 8260CAccolein$<10$$<1$$\mu g/L$SW846 8260CAcrolein$<10$$<1$$\mu g/L$SW846 8260CBenzene$<1$$<10$$\mu g/L$SW846 8260CBromobenzene$<1$$<1$$\mu g/L$SW846 8260CBromochloromethane$<1$$<1$$\mu g/L$SW846 8260CBromodichloromethane$<1$$<1$$\mu g/L$SW846 8260CBromodichloromethane$<1$$<1$$\mu g/L$SW846 8260CBromodichloromethane$<1$$<1$$\mu g/L$SW846 8260CBromodichloromethane$<1$$<1$$\mu g/L$SW846 8260CBromodichloromethane$<1$$<1$$\mu g/L$S</td> <td>ResultUnitsMethodAnalyteResultUnits$<50$$\mu g/L$NWTPH-G2,2-Dichloropropane$<1$$\mu g/L$$<1$$\mu g/L$SW846 8260C2-Butanone (MEK)$<10$$\mu g/L$$<1$$\mu g/L$SW846 8260C2-Chloroethylvinyl Ether$<10$$\mu g/L$$<1$$\mu g/L$SW846 8260C2-Chlorotoluene$<1$$\mu g/L$$<1$$\mu g/L$SW846 8260C2-Chlorotoluene$<1$$\mu g/L$$<1$$\mu g/L$SW846 8260C2-Hexanone (MBK)$<10$$\mu g/L$$<1$$\mu g/L$SW846 8260C4-Chlorotoluene$<1$$\mu g/L$$<1$$\mu g/L$SW846 8260C4-Chlorotoluene$<1$$\mu g/L$$<1$$\mu g/L$SW846 8260C4-tenthyl-2-pentanone$<10$$\mu g/L$$<1$$\mu g/L$SW846 8260CAcetone$<10$$\mu g/L$$<1$$\mu g/L$SW846 8260CAcetonitrile$<10$$\mu g/L$$<1$$\mu g/L$SW846 8260CAcetonitrile$<10$$\mu g/L$$<1$$\mu g/L$SW846 8260CBenzene$<1$$\mu g/L$$<1$$\mu g/L$SW846 8260CBromochloromethane$<1$$\mu g/L$$<1$$\mu g/L$SW846 8260CBromochloromethane$<1$$\mu g/L$$<1$$\mu g/L$SW846 8260CBromochloromethane$<1$$\mu g/L$$<1$$\mu g/L$SW846 8260CBromochloromethane$<1$$\mu g/L$$<1$$\mu g/L$</td>	ResultUnitsMethodAnalyte <50 $\mu g/L$ NWTPH-G2,2-Dichloropropane <1 $\mu g/L$ SW846 8260C2-Butanone (MEK) <1 $\mu g/L$ SW846 8260C2-Chloroethylvinyl Ether <1 $\mu g/L$ SW846 8260C2-Chlorotoluene <1 $\mu g/L$ SW846 8260C2-Hexanone (MBK) <1 $\mu g/L$ SW846 8260C4-Chlorotoluene <1 $\mu g/L$ SW846 8260C4-Isopropyltoluene <1 $\mu g/L$ SW846 8260C4-methyl-2-pentanone <1 $\mu g/L$ SW846 8260CAcetone <1 $\mu g/L$ SW846 8260CAcetonitrile <1 $\mu g/L$ SW846 8260CAcetonitrile <1 $\mu g/L$ SW846 8260CBenzene <1 $\mu g/L$ SW846 8260CBenzene <1 $\mu g/L$ SW846 8260CBromobenzene <1 $\mu g/L$ SW846 8260CBromothoromethane <1 $\mu g/L$ SW846 8260CCarbon Disulfide <1 $\mu g/L$ SW846 8260CCarbon Tetrachloride <1 $\mu g/L$ SW846 8260CChlorobenzene	ResultUnitsMcthodAnalyteResult <50 $\mu g/L$ NWTPH-G2,2-Dichloropropane <1 <1 $\mu g/L$ SW846 8260C2-Butanone (MEK) <10 <1 $\mu g/L$ SW846 8260C2-Chloroethylvinyl Ether <10 <1 $\mu g/L$ SW846 8260C2-Chlorotoluene <1 <1 $\mu g/L$ SW846 8260C2-Hexanone (MBK) <10 <1 $\mu g/L$ SW846 8260C4-Chlorotoluene <1 <1 $\mu g/L$ SW846 8260C4-Chlorotoluene <1 <1 $\mu g/L$ SW846 8260C4-Isopropyltoluene <1 <1 $\mu g/L$ SW846 8260CAcetone <10 <1 $\mu g/L$ SW846 8260CAcetonitrile <10 <1 $\mu g/L$ SW846 8260CAccolein <10 <1 $\mu g/L$ SW846 8260CAcrolein <10 <1 $\mu g/L$ SW846 8260CBenzene <1 <10 $\mu g/L$ SW846 8260CBromobenzene <1 <1 $\mu g/L$ SW846 8260CBromochloromethane <1 <1 $\mu g/L$ SW846 8260CBromodichloromethane <1 <1 $\mu g/L$ S	ResultUnitsMethodAnalyteResultUnits <50 $\mu g/L$ NWTPH-G2,2-Dichloropropane <1 $\mu g/L$ <1 $\mu g/L$ SW846 8260C2-Butanone (MEK) <10 $\mu g/L$ <1 $\mu g/L$ SW846 8260C2-Chloroethylvinyl Ether <10 $\mu g/L$ <1 $\mu g/L$ SW846 8260C2-Chlorotoluene <1 $\mu g/L$ <1 $\mu g/L$ SW846 8260C2-Chlorotoluene <1 $\mu g/L$ <1 $\mu g/L$ SW846 8260C2-Hexanone (MBK) <10 $\mu g/L$ <1 $\mu g/L$ SW846 8260C4-Chlorotoluene <1 $\mu g/L$ <1 $\mu g/L$ SW846 8260C4-Chlorotoluene <1 $\mu g/L$ <1 $\mu g/L$ SW846 8260C4-tenthyl-2-pentanone <10 $\mu g/L$ <1 $\mu g/L$ SW846 8260CAcetone <10 $\mu g/L$ <1 $\mu g/L$ SW846 8260CAcetonitrile <10 $\mu g/L$ <1 $\mu g/L$ SW846 8260CAcetonitrile <10 $\mu g/L$ <1 $\mu g/L$ SW846 8260CBenzene <1 $\mu g/L$ <1 $\mu g/L$ SW846 8260CBromochloromethane <1 $\mu g/L$ <1 $\mu g/L$

Surrogate	Recovery	Method
Toluene-d8	157	NWTPH-G
4-Bromofluorobenzene	117	NWTPH-G
Dibromofluoromethane	71	SW846 8260C
1,2-Dichloroethane-d4	88	SW846 8260C
SPECTRA LABORA	FORIES	

Surrogate	Recovery	Methoa
Toluene-d8	151	SW846 8260C
4-Bromofluorobenzene	124	SW846 8260C

Cooper, Laboratory Manager al jac

SPECTRA Laboratories ...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	Trip Blank #2
Sample Matrix:	Water
Date Sampled:	06/14/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:13

Analyte	Result	Units	Method
Chlorodibromomethane	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C
Isopropylbenzene	<1	μg/L	SW846 8260C
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C
Methylene chloride	<5	μg/L	SW846 8260C
Naphthalene	<1	μg/L	SW846 8260C
Styrene	<1	μg/L	SW846 8260C
Tetrachloroethene	<1	μg/L	SW846 8260C
Toluene	<1	μg/L	SW846 8260C
Total Xylenes	<1	μg/L	SW846 8260C
Trichloroethene	<1	μg/L	SW846 8260C
Trichlorofluoromethane	<1	μg/L	SW846 8260C
Vinyl Acetate	<10	μg/L	SW846 8260C
Vinyl chloride	<0.2 J	μg/L	SW846 8260C

Analyte	Result	Units	Method
cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
n-Butylbenzene	<1	μg/L	SW846 8260C
n-Propylbenzene	<1	μg/L	SW846 8260C
sec-Butylbenzene	<1	μg/L	SW846 8260C
tert-Butylbenzene	<1	μg/L	SW846 8260C
trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C

Surrogate	Recovery	Method
Toluene-d8	157	NWTPH-G
4-Bromofluorobenzene	117	NWTPH-G
Dibromofluoromethane	71	SW846 8260C
1,2-Dichloroethane-d4	88	SW846 8260C
SPECTRA LABORA	TORIES	

Surrogate	Recovery	Method
Toluene-d8	151	SW846 8260C
4-Bromofluorobenzene	124	SW846 8260C

Cooper, Laboratory Manager

a14/jac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	Trip Blank #3
Sample Matrix:	Water
Date Sampled:	06/14/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:14

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Gasoline	<50	μg/L	NWTPH-G	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C
1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C	Bromobenzene	<1	μg/L	SW846 8260C
1,2-Dichlorobenzene	<1	μg/L	SW846 8260C	Bromochloromethane	<1	μg/L	SW846 8260C
1,2-Dichloroethane	<1	μg/L	SW846 8260C	Bromodichloromethane	<1	μg/L	SW846 8260C
1,2-Dichloropropane	<1	μg/L	SW846 8260C	Bromoform	<1	μg/L	SW846 8260C
1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C	Bromomethane	<1	μg/L	SW846 8260C
1,3-Dichlorobenzene	<1	μg/L	SW846 8260C	Carbon Disulfide	<10	μg/L	SW846 8260C
1,3-Dichloropropane	<1	μg/L	SW846 8260C	Carbon Tetrachloride	<1	μg/L	SW846 8260C
1,4-Dichlorobenzene	<1	μg/L	SW846 8260C	Chlorobenzene	<1	μg/L	SW846 8260C

Surrogate	Recovery	Method	Surrogate
Toluene-d8	113	NWTPH-G	Toluene-d8
4-Bromofluorobenzene	106	NWTPH-G	4-Bromofluorobe
Dibromofluoromethane	81	SW846 8260C	
1,2-Dichloroethane-d4	95	SW846 8260C	
SPECTRA LABOR	ATORIES		

Surrogate	Recovery	Method
Toluene-d8	117	SW846 8260C
4-Bromofluorobenzene	123	SW846 8260C

SPECTRA LaboratoriesWhere experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	Trip Blank #3
Sample Matrix:	Water
Date Sampled:	06/14/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:14

Analyte	Result	Units	Method
Chlorodibromomethane	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C
Isopropylbenzene	<1	μg/L	SW846 8260C
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C
Methylene chloride	<5	μg/L	SW846 8260C
Naphthalene	<1	μg/L	SW846 8260C
Styrene	<1	μg/L	SW846 8260C
Tetrachloroethene	<1	μg/L	SW846 8260C
Toluene	<1	μg/L	SW846 8260C
Total Xylenes	<1	μg/L	SW846 8260C
Trichloroethene	<1	μg/L	SW846 8260C
Trichlorofluoromethane	<1	μg/L	SW846 8260C
Vinyl Acetate	<10	μg/L	SW846 8260C
Vinyl chloride	<0.2 J	μg/L	SW846 8260C

Analyte	<u>Result</u>	<u>Units</u>	Method
cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
n-Butylbenzene	<1	μg/L	SW846 8260C
n-Propylbenzene	<1	μg/L	SW846 8260C
sec-Butylbenzene	<1	μg/L	SW846 8260C
tert-Butylbenzene	<1	μg/L	SW846 8260C
trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C

Surrogate	Recovery	Method	-
Toluene-d8	113	NWTPH-G	Т
4-Bromofluorobenzene	106	NWTPH-G	4-
Dibromofluoromethane	81	SW846 8260C	
1,2-Dichloroethane-d4	95	SW846 8260C	

Surrogate	Recovery	Method		
Toluene-d8	117	SW846 8260C		
4-Bromofluorobenzene	123	SW846 8260C		

effrey Cooper, Laboratory Manager a14/jac

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:Trip Blank #4Sample Matrix:WaterDate Sampled:06/14/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:15

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Gasoline	<50	μg/L	NWTPH-G	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	μg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C
1,2-Dibromoethane (EDB)	<1	µg/L	SW846 8260C	Bromobenzene	<1	μg/L	SW846 8260C
1,2-Dichlorobenzene	<1	μg/L	SW846 8260C	Bromochloromethane	<1	μg/L	SW846 8260C
1,2-Dichloroethane	<1	μg/L	SW846 8260C	Bromodichloromethane	<1	μg/L	SW846 8260C
1,2-Dichloropropane	<1	μg/L	SW846 8260C	Bromoform	<1	μg/L	SW846 8260C
1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C	Bromomethane	<1	μg/L	SW846 8260C
1,3-Dichlorobenzene	<1	μg/L	SW846 8260C	Carbon Disulfide	<10	μg/L	SW846 8260C
1,3-Dichloropropane	<1	μg/L	SW846 8260C	Carbon Tetrachloride	<1	μg/L	SW846 8260C
1,4-Dichlorobenzene	<1	μg/L	SW846 8260C	Chlorobenzene	<1	μg/L	SW846 8260C

Surrogate	Recovery	Method
Toluene-d8	112	NWTPH-G
4-Bromofluorobenzene	104	NWTPH-G
Dibromofluoromethane	82	SW846 8260C
1,2-Dichloroethane-d4	87	SW846 8260C
OPPORT A TAPOPA	TODITO	

Surrogate	Recovery	Method	
Toluene-d8	116	SW846 8260C	
4-Bromofluorobenzene	121	SW846 8260C	

SPECTRA LaboratoriesWhere experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	Trip Blank #4
Sample Matrix:	Water
Date Sampled:	06/14/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:15

Analyte	Result	Units	Method
Chlorodibromomethane	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C
Isopropylbenzene	<1	μg/L	SW846 8260C
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C
Methylene chloride	<5	μg/L	SW846 8260C
Naphthalene	<1	μg/L	SW846 8260C
Styrene	<1	μg/L	SW846 8260C
Tetrachloroethene	<1	μg/L	SW846 8260C
Toluene	<1	μg/L	SW846 8260C
Total Xylenes	<1	μg/L	SW846 8260C
Trichloroethene	<1	μg/L	SW846 8260C
Trichlorofluoromethane	<1	μg/L	SW846 8260C
Vinyl Acetate	<10	μg/L	SW846 8260C
Vinyl chloride	<0.2 J	μg/L	SW846 8260C

Analyte	Result	Units	Method
cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
n-Butylbenzene	<1	μg/L	SW846 8260C
n-Propylbenzene	<1	μg/L	SW846 8260C
sec-Butylbenzene	<1	μg/L	SW846 8260C
tert-Butylbenzene	<1	μg/L	SW846 8260C
trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C

Surrogate	Recovery	Method	
Toluene-d8	112	NWTPH-G	
4-Bromofluorobenzene	104	NWTPH-G	
Dibromofluoromethane	82	SW846 8260C	
1,2-Dichloroethane-d4	87	SW846 8260C	
SPECTRA LABORATO	ORIES		

Surrogate	Recovery	Method	
Toluene-d8	116	SW846 8260C	
4-Bromofluorobenzene	121	SW846 8260C	

Cooper, Laboratory Manager al4/inc

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Project:PRSClient ID:Trip Blank #5Sample Matrix:WaterDate Sampled:06/14/2017Date Received:06/14/2017Spectra Project:2017060394Spectra Number:16

Analyte	Result	Units	Method	Analyte	Result	Units	Method
Gasoline	<50	μg/L	NWTPH-G	2,2-Dichloropropane	<1	μg/L	SW846 8260C
1,1,1,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Butanone (MEK)	<10	μg/L	SW846 8260C
1,1,1-Trichloroethane	<1	μg/L	SW846 8260C	2-Chloroethylvinyl Ether	<10	μg/L	SW846 8260C
1,1,2,2-Tetrachloroethane	<1	μg/L	SW846 8260C	2-Chlorotoluene	<1	μg/L	SW846 8260C
1,1,2-Trichloroethane	<1	μg/L	SW846 8260C	2-Hexanone (MBK)	<10	μg/L	SW846 8260C
1,1-Dichloroethane	<1	µg/L	SW846 8260C	4-Chlorotoluene	<1	μg/L	SW846 8260C
1,1-Dichloroethene	<1	μg/L	SW846 8260C	4-Isopropyltoluene	<1	μg/L	SW846 8260C
1,1-Dichloropropene	<1	μg/L	SW846 8260C	4-methyl-2-pentanone	<10	μg/L	SW846 8260C
1,2,3-Trichlorobenzene	<1	μg/L	SW846 8260C	Acetone	<10	μg/L	SW846 8260C
1,2,3-Trichloropropane	<1	μg/L	SW846 8260C	Acetonitrile	<10	μg/L	SW846 8260C
1,2,4-Trichlorobenzene	<1	μg/L	SW846 8260C	Acrolein	<10	μg/L	SW846 8260C
1,2,4-Trimethylbenzene	<1	μg/L	SW846 8260C	Acrylonitrile	<10	μg/L	SW846 8260C
1,2-Dibromo3Chloropropane	<10	μg/L	SW846 8260C	Benzene	<1	μg/L	SW846 8260C
1,2-Dibromoethane (EDB)	<1	μg/L	SW846 8260C	Bromobenzene	<1	μg/L	SW846 8260C
1,2-Dichlorobenzene	<1	μg/L	SW846 8260C	Bromochloromethane	<1	μg/L	SW846 8260C
1,2-Dichloroethane	<1	μg/L	SW846 8260C	Bromodichloromethane	<1	μg/L	SW846 8260C
1,2-Dichloropropane	<1	μg/L	SW846 8260C	Bromoform	<1	μg/L	SW846 8260C
1,3,5-Trimethylbenzene	<1	μg/L	SW846 8260C	Bromomethane	<1	μg/L	SW846 8260C
1,3-Dichlorobenzene	<1	μg/L	SW846 8260C	Carbon Disulfide	<10	μg/L	SW846 8260C
1,3-Dichloropropane	<1	μg/L	SW846 8260C	Carbon Tetrachloride	<1	μg/L	SW846 8260C
1,4-Dichlorobenzene	<1	μg/L	SW846 8260C	Chlorobenzene	<1	μg/L	SW846 8260C

0......

Surrogate	Recovery	Method	
Toluene-d8	112	NWTPH-G	
4-Bromofluorobenzene	108	NWTPH-G	
Dibromofluoromethane	82	SW846 8260C	
1,2-Dichloroethane-d4	97	SW846 8260C	
SPECTRA LABORATORIES			

Surrogate	Recovery	Method	
Toluene-d8	116	SW846 8260C	
4-Bromofluorobenzene	124	SW846 8260C	

SPECTRA LaboratoriesWhere experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Project:	PRS
Client ID:	Trip Blank #5
Sample Matrix:	Water
Date Sampled:	06/14/2017
Date Received:	06/14/2017
Spectra Project:	2017060394
Spectra Number	:16

Analyte	Result	Units	Method
Chlorodibromomethane	<1	μg/L	SW846 8260C
Chloroethane	<1	μg/L	SW846 8260C
Chloroform	<1	μg/L	SW846 8260C
Chloromethane	<1	μg/L	SW846 8260C
Dibromomethane	<1	μg/L	SW846 8260C
Dichlorodifluoromethane	<1	μg/L	SW846 8260C
Ethylbenzene	<1	μg/L	SW846 8260C
Hexachlorobutadiene	<1	μg/L	SW846 8260C
Iodomethane	<10	μg/L	SW846 8260C
Isopropylbenzene	<1	μg/L	SW846 8260C
Methyl-tert-Butyl Ether	<1	μg/L	SW846 8260C
Methylene chloride	<5	μg/L	SW846 8260C
Naphthalene	<1	μg/L	SW846 8260C
Styrene	<1	μg/L	SW846 8260C
Tetrachloroethene	<1	μg/L	SW846 8260C
Toluene	<1	μg/L	SW846 8260C
Total Xylenes	<1	μg/L	SW846 8260C
Trichloroethene	<1	μg/L	SW846 8260C
Trichlorofluoromethane	<1	μg/L	SW846 8260C
Vinyl Acetate	<10	μg/L	SW846 8260C
Vinyl chloride	<0.2 J	ug/L	SW846 8260C

Analyte	<u>Result</u>	<u>Units</u>	Method
cis-1,2-Dichloroethene	<1	μg/L	SW846 8260C
cis-1,3-Dichloropropene	<1	μg/L	SW846 8260C
n-Butylbenzene	<1	μg/L	SW846 8260C
n-Propylbenzene	<1	μg/L	SW846 8260C
sec-Butylbenzene	<1	μg/L	SW846 8260C
tert-Butylbenzene	<1	μg/L	SW846 8260C
trans-1,2-Dichloroethene	<1	μg/L	SW846 8260C
trans-1,3-Dichloropropene	<1	μg/L	SW846 8260C

Surrogate	Recovery	Method				
Toluene-d8	112	NWTPH-G				
4-Bromofluorobenzene	108	NWTPH-G				
Dibromofluoromethane	82	SW846 8260C				
1,2-Dichloroethane-d4	97	SW846 8260C				

Surrogate	Recovery	Method
Toluene-d8	116	SW846 8260C
4-Bromofluorobenzene	124	SW846 8260C

SPECTRA Laboratories - Kitsap

26276 Twelve Trees Lane, Suite C • Poulsbo, WA 98370 • (360) 779-5141 • Fax (360) 779-5150 • www.spectra-lab.com

...Where experience matters

Certificate of Analysis

Spectra Laboratories LLC 2221 Ross Way Tacoma, WA 98421

Date Received: 6/20/2017 Date Reported: 7/25/2017

Project: 2017060394

Sample No.	Sampled	Sample ID	Result	Units	Method	Date Tested	Initials
Nitrate + Nitrit	ie-N						
169224-01	6/13/2017	060394-1	<0.01	mg/L	SM 4500-NO3 F	6/21/2017	EC
169224-02	6/13/2017	060394-2	<0.01	mg/L	SM 4500-NO3 F	6/21/2017	EC
169224-03	6/13/2017	060394-3	3.43	mg/L	SM 4500-NO3 F	6/21/2017	EC
169224-04	6/13/2017	060394-4	0.13	mg/L	SM 4500-NO3 F	6/21/2017	EC
169224-05	6/13/2017	060394-5	<0.01	mg/L	SM 4500-NO3 F	6/21/2017	EC
169224-06	6/13/2017	060394-6	<0.01	mg/L	SM 4500-NO3 F	6/21/2017	EĊ
169224-07	6/13/2017	060394-7	<0.01	mg/L	SM 4500-NO3 F	6/21/2017	EC
1 69224-08	6/13/2017	060394-8	0.06	mg/L	SM 4500-NO3 F	6/21/2017	EC
1 69224-09	6/13/2017	060394-9	0.02	mg/L	SM 4500-NO3 F	6/21/2017	EC
169224-10	6/14/2017	060394-10	0.01	mg/L	SM 4500-NO3 F	6/21/2017	EC
1 69224-1 1	6/14/2017	060394-11	0.01	mg/L	SM 4500-NO3 F	6/21/2017	EC

Approved For Release

Nancy Patrott, Laboratory Supervisor

SPECI KA Laboratories - Kitsap, LLC

26276 Twelve Trees Lane, Suite C Poulsbo, WA 98370 (360) 779-5141

FAX (360) 779-5150 www.twisslabs.com

	11 ^e Cillen infor	mation		20.48	0		al a	Test	acam	etara	a sur 1	14.5			and the second
Company/Client:Spectra					ន										
Address:2221 Ross Way					Q P	Ŋ		Ĥ		phate-F					
City:Tacoma		Zin (18421		8 8 2 2	N IN		jease	2	- Hotel					
	Project Infor	mation			2 F 5 g	M P		80	22	₹			5	ä	
Project Manager/Report To:	Marie Holt			g	8 8	E.	8	0	8	Ę			2	B B	
Project Name: 20170Le	03574	Sampled by:				Å	ठ			norie			MPN	<u> </u>	
Telephone No:253-272-4850		Fax No. 253-572	2.0838	l de l	e de la companya de l	80	$\frac{5}{2}$ 8	5	// 품	Amr	N-ei		Ë	ard	
Email address:marieh@spe	ctra-lab.com			er of	As B	:sBa	ନ୍ତ୍ରି ଅ	l x		13	看日		Colifo	표	
					SP Total	503 R				Atrate	tel 1	0		8 Soi	
Sample ID-	Date Time	Matrix Hazard	Lab ID	CI	cie the	ionire	d para	netero.	above	Manu	miple	lests are fi	sted an	the same	Time .
2 1 -2	Le-13-11	HIO	169224-01	111	_				1	2	X	1			
3 -3		1	-03		-	\vdash				11	++				_
4			-04	tit			+	\vdash	+		++	+++		$ \vdash \vdash \vdash$	-
5 -5	++		-05	1						Ħt	11-				
7			-06	1						П					
8 - 8			-01			\vdash	+	+ +							
9 - 9			-09	tit	-		+-		+	+++	++-			+ + - +	-
	6-14.1700	7+29-17	1-10	1							1				-
2	0-1-110		<u> </u>	11	_					2					
	CRoutine Disposal	D Hazar	dous sample disposal	Special	Instruction		_				WK				
	Return to Client	(Cost of d	isposal will be billed to client)	m	ST	m M	50	61	n	∇d	600	No. +	HIN	DIP	420
Sample Receipt: Total # of containers			Signatures	Name,C	Somploy	Date.	Time)		- Annaly	IA.	4 11 6	in i	<u>riv</u>	TIC	MJC.
COC seals present? intact?	Relinquished by:	nDrave	n Sho	C	000000	S	ecto	74	Tan	2.		. 2 .) .	2	152	50
Temp at receipt? C		(print)	(Signature)		ompany_	P		-	010		Date_	1-W-1	Tim	B_[[]	
Samples intact?	Received by:	Farver	n AF	C	ompany	4	the	tha		-	Data	.20.1	17-	. 115	D D
Received Via:	57 F	(print)	(Signature)				7							<u>, H.X</u>	<u> </u>
Standard (10 Business down)	Bellesidebed by	HE	Str			4	ć.	أحرم	20	_	1	2.	1	lir	_
Rush (specify data needed)+		711		C	ompany_		20	en	ro		Date	2.40	Time	. 1/2	>
MOther (anglish to 7 St. 17)		(print)	(Signature)				6	1				11	1.	; (~	_
additional champa may and	Received by:	- TIK		C	ompany_	٤	Sha	CN	u		Date	6/20	<u>//</u>	. 115	
It auulumai charges may apply	4	(print)	(Signature)									₩. A			

Samples received after 12 noon will be considered as received the following business day

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 25, 2017

		Date Analyzed:	6/27/2017
Petroleum Reclaiming Services, Inc.	Sample matrix: Water	Dilution:	1
3003 Taylor Way		< = less than	
Tacoma WA 98421	Spectra Project:	2017060394	
	Spectra #	Method Blank	
	Applies to Samples	#1_12	
	Applies to Samples	#1-12	
VOLATILE ORGANIC ANALYSIS			METHOD 624/8260
Compound	ug/L	Compound	ug/L
Acetone	< 10.00	1,2-Dichloropropane	< 1.00
Acrolein	< 10.00	1,3-Dichloropropane	< 1.00
Acrylonitrile	< 10.00	cis-1,3-Dichloropropene	< 1.00
Benzene	< 1.00	trans-1,3-Dichloropropene	< 1.00
Bromobenzene	< 1.00	2,2-Dichloropropane	< 1.00
Bromochloromethane	< 1.00	1,1-Dichloropropene	< 1.00
Bromodichloromethane	< 1.00	Ethylbenzene	< 1.00
Bromoform	< 1.00	2-Hexanone (MBK)	< 10.00
Bromomethane	< 1.00	Hexachlorobutadiene	< 1.00
2-Butanone (MEK)	< 10.00	lodomethane	< 10.00
n-Butylbenzene	< 1.00	Isopropylbenzene	< 1.00
sec-Butylbenzene	< 1.00	p-isopropyltoluene	< 1.00
tert-Butylbenzene	< 1.00	*Methylene chloride	6.40
Carbon Disulfide	< 10.00	4-Methyl-2-pentanone (MIBK)	< 10.00
Carbon tetrachloride	< 1.00	MTBE	< 1.00
Chlorobenzene	< 1.00	Naphthalene	< 1.00
Chlorodibromomethane	< 1.00	n-Propylbenzene	< 1.00
Chloroethane	< 1.00	Styrene	< 1.00
2-Chloroethyl Vinyl ether	< 10.00	1,1,1,2-Tetrachloroethane	< 1.00
Chloroform	< 1.00	1,1,2,2-Tetrachloroethane	< 1.00
Chloromethane	< 1.00	Tetrachloroethene	< 1.00
2-Chlorotoluene	< 1.00	Toluene	< 1.00
4-Chlorotoluene	< 1.00	Total Xylenes	< 2.00
1,2-Dibromo-3-Chloropropane (DBCP)	< 10.00	*1,2,3-Trichlorobenzene	1.91
1,2-Dibromoethane (EDB)	< 1.00	*1,2,4-Trichlorobenzene	1.13
Dibromomethane	< 1.00	1,1,1-Trichloroethane	< 1.00
1,2-Dichlorobenzene	< 1.00	1,1,2-Trichloroethane	< 1.00
1,3-Dichlorobenzene	< 1.00	Trichloroethene	< 1.00
1,4-Dichlorobenzene	< 1.00	Trichlorofluoromethane	< 1.00
Dichlorodifluoromethane	< 1.00	1,2,3-Trichloropropane	< 1.00
1,1-Dichloroethane	< 1.00	1,2,4-Trimethylbenzene	< 1.00
1,2-Dichloroethane	< 1.00	1,3,5-Trimethylbenzene	< 1.00
1,1-Dichloroethene	< 1.00	Vinyl Acetate	< 10.00
cis-1,2-Dichloroethene	< 1.00	Vinyl chloride	< 1.00
trans-1,2,-Dichloroethene	< 1.00		

SURROGATE RECOVERIES

Dibromofluoromethane	101	%
1,2-Dichloroethane-d4	13	%
Toluene-d8	97	%
4-Bromofluorobenzene	106	%

Manager

*Methylene Chloride, 1,2,3-Trichlorobenzene, and 1,2,4-Trichlorobenzene were detected in the method blank. Associated samples were non-detect and not affected.

SPECTRA LaboratoriesWhere experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 25, 2017

Petroleum Reclaiming Services, Inc. Sample matrix: Water Dilution: 1 3003 Taylor Way - < = less than Tacoma, WA 98421 Spectra Project: Spectra # Spectra # Method Blank Applies to Samples #13-16 METHOD 624/8260 Compound up/L Compound (up/L) Acetone < 10.00 1,3-Dichloropropane < 1.00 Acrolein < 10.00 1,3-Dichloropropane < 1.00 Acrolein < 10.00 1,3-Dichloropropane < 1.00 Berzene < 1.00 1,2-Dichloropropane < 1.00 Bromoberzene < 1.00 1,2-Dichloropropane < 1.00 Bromothromethane < 1.00 1,2-Dichloropropane < 1.00 Bromothromethane < 1.00 1,0-Dichloropropane < 1.00 Bromothromethane < 1.00 1,0-Dichloropropane < 1.00 Bromothromethane < 1.00 Up/L < 1.00 Bromothromethane < 1.00 1,0-Dichloropropane < 1.00 Bromothromethane < 1.00 Up/L < 1.00 Bromothromethane < 1.00 Up/L < 1.00 Bromothromethane < 1.00 Up/L < 1.00<
3003 Taylor Way < = less than
Tacoma, WA 98421 Spectra Project: 2017000394 Spectra # Method Blank Applies to Samples #13-16 METHOD 624/8260 Compound ug/L Compound ug/L Compound ug/L Acetolen < 10.00
International Construction Spectra # Applies to Samples Method Blank #13-16 VOLATILE ORGANIC ANALYSIS Method Blank Applies to Samples Method Blank #13-16 VOLATILE ORGANIC ANALYSIS Method Blank Applies to Samples Method Blank #13-16 VOLATILE ORGANIC ANALYSIS Method Blank applies to Samples Method Blank #13-16 Volatile Organic ug/L Compound ug/L Acetone < 10.00 1,2-Dichloropropane < 1.00 Acrolein < 10.00 cis-1,3-Dichloropropane < 1.00 Bromobenzene < 1.00 2.2-Dichloropropane < 1.00 Bromochloromethane < 1.00 1.1-Dichloropropane < 1.00 Bromochloromethane < 1.00 Ethysenzene < 1.00 Bromochloromethane < 1.00 Hexachlorobutadiene < 1.00 2-Butanone (MEK) < 10.00 Isopropylotenzene < 1.00 Ses-Butybenzene < 1.00 Pisopropylotenzene < 1.00 Carbon Disulfide < 1.00 Method Blank < 1.00 Carbon Disulfide < 1.00 Method Blank < 1.00 Carbon Disulfide < 1.00 Method Blank </td
Applies to Samples #13-16 METHOD 624/8260 Compound ug/L Compound ug/L Acetolen < 10.00
VOLATILE ORGANIC ANALYSIS METHOD 624/8260 Compound ug/L Compound ug/L Acetorie < 10.00
VOLATILE ORGANIC ANALYSIS METHOD 624/8260 Compound ug/L Compound ug/L Acetone < 10.00
Compound ug/L Compound ug/L Acetolen < 10.00
Actoles < 10.00
Acrolein < 10.00
Acrylonitrile < 10.00
Benzene < 1.00
Bromobenzene < 1.00
Bromochloromethane < 1.00
Bromodichloromethane < 1.00
Bromoform < 1.00
Bromomethane < 1.00 Hexachlorobutadiene < 1.00 2-Butanone (MEK) < 10.00
2-Butanone (MEK) < 10.00
n-Butylbenzene < 1.00
sec-Butylbenzene < 1.00
tert-Butylbenzene < 1.00
Carbon Disulfide < 10.00
Carbon tetrachloride < 1.00 MTBE < 1.00 Chlorobenzene < 1.00
Chlorobenzene < 1.00 Naphthalene < 1.00 Chlorodibromomethane < 1.00
Chlorodibromomethane < 1.00 n-Propylbenzene < 1.00 Chloroethane < 1.00
Chloroethane < 1.00 Styrene < 1.00 2-Chloroethyl Vinyl ether < 10.00
2-Chloroothyl Vinyl ether < 10.00
Chloroform< 1.001,1,2,2-Tetrachloroethane< 1.00Chloromethane< 1.00
Chloromethane < 1.00
2-Chlorotoluene < 1.00
4-Chlorotoluene < 1.00 Total Xylenes < 2.00
1,2-Dipromo-3-Unioroperopane (DBCP) < 10.00 1,2,3-Linchlorobenzene < 1.00
1,2-Dibromoethane (EDB) < 1.00 1,2,4-Trichlorobenzene < 1.00
Dibromomethane < 1.00 1,1,1-Trichloroethane < 1.00
1,2-Dichlorobenzene < 1.00 1,1,2-Trichloroethane < 1.00
1,3-Dichlorobenzene < 1.00 Trichloroethene < 1.00
1,4-Dichlorobenzene < 1.00 Trichlorofluoromethane < 1.00
Dichlorodifluoromethane < 1.00 1,2,3-Trichloropropane < 1.00
1,1-Dichloroethane < 1.00 1,2,4-Trimethylbenzene < 1.00
1,2-Dichloroethane < 1.00 1,3,5-Trimethylbenzene < 1.00
1,1-Dichloroethene < 1.00 Vinyl Acetate < 10.00
cis-1,2-Dichloroethene < 1.00 Vinyl chloride < 1.00
trans-1,2,-Dichloroethene < 1.00

SURROGATE RECOVERIES

Dibromofluoromethane	100	%
1,2-Dichloroethane-d4	101	%
Toluene-d8	98	%
4-Bromofluorobenzene	96	%

tor ator Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 25, 2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Sample Matrix: Water EPA Method: 624/ 8260C Spectra Project: 2017060394 Date Analyzed: 6/27/2017 Units: ug/L Applies to Spectra #'s: #1-16

GCMS VOLATILE ORGANIC ANALYSIS Laboratory Control Sample (LCS) Results

COMPOUND	SAMPLE	SPIKE	SPIKE	LCS
	RESULT	AMOUNT	RESULT	%REC
1,1-Dichloroethene	<1	10.00	11.0	110
Benzene	<1	10.00	8.9	89
Trichloroethene	<1	10.00	8.3	83
Toluene	<1	10.00	9.9	99
Chlorobenzene	<1	10.00	9.4	94

Surrogate Recoveries (%)	LCS
Dibromofluoromethane	94
1,2-Dichloroethane-d4	98
Toluene-d8	104
4-Bromofluorobenzene	109

Laboratory Manager

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 25, 2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Sample Matrix: Water EPA Method: 624/8260C Spectra Project: 2017060394 Date Analyzed: 6/28/2017 Units: ug/L Applies to Spectra #'s: #1-16 Spiked Sample 2017060394-10

GCMS VOLATILE ORGANIC ANALYSIS Matrix Spike/ Matrix Spike Duplicate Results

COMPOUND	SAMPLE	SPIKE	MS	MS	MSD	MSD	
	RESULT	AMOUNT	RESULT	%REC	RESULT	%REC	RPD
1 1-Dichloroethene	<1	10.0	10.3	103	0.8	08	5.0
Represe	<1	10.0	10.3	120	9.0	90	3.0
		10.0	12.9	129	12.4	124	4.0
l richloroethene	<1	10.0	10.6	106	10.1	101	4.8
Toluene	<1	10.0	10.2	102	10.0	100	2.0
Chlorobenzene	11.30	10.0	24.1	128	23.6	123	4.0
(Results after dilution)							

Surrogates		MS	MSD
	Dibromofluoromethane	98	100
	1,2-Dichloroethane-d4	104	104
	Toluene-d8	97	97
	4-Bromofluorobenzene	92	91

per ratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 25, 2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Method:NWTPH-GSample Matrix:WaterUnits:ug/LSpectra Project:2017060394Applies to Spectra # 1-12

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS

METHOD BLANK

Date Analyzed: 6/27/2017

WTPH-G <50

Surrogate Recoveries:

Toluene-d8 BFB 100% 99%

Cooper, Laboratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 25, 2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Method:NWTPH-GSample Matrix:WaterUnits:ug/LSpectra Project:2017060394Applies to Spectra # 13-16

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS METHOD BLANK

113%

104%

Date Analyzed: 6/28/2017

WTPH-G <50

Surrogate Recoveries:

Toluene-d8 BFB

ooper, Laboratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Spectra Project: 2017060394 Applies to Spectra Samples: 1-12

QUALITY CONTROL RESULTS NWTPH-Gx

	Initial Calibration Verification							
Date Analyzed:	6/27/2017							
Units: ug/L	Standard							
_	Analyte	Analyte Value Conc. %Rec QC Li						
	Gasoline	228	250	91.2%	85-115%			
	Conti	nuing Calibration V	/erificatior	1				
Date Analyzed:	6/27/2017	C C						
Units: ug/L		Standard						
-	Analyte	Value	Conc.	%Rec	QC Limit			
	Gasoline	240	250	96.0%	85-115%			

Spectra Laboratories

then firey Cooper

Laboratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Spectra Project: 2017060394 Applies to Spectra Samples: 13-16

QUALITY CONTROL RESULTS NWTPH-Gx

Initial Calibration Verification							
Date Analyzed:	6/28/2017						
Units: ug/L	Standard						
-	Analyte	Value	Conc.	%Rec	QC Limit		
-	Gasoline	280	250	112.0%	85-115%		
	Contin	uing Calibration V	Verification	ı			
Date Analyzed:	6/28/2017						
Units: ug/L		Standard					
_	Analyte	Value	Conc.	%Rec	QC Limit		
	Gasoline	247	250	98.8%	85-115%		

Spectra Laboratories

frey Cooper

Laboratory Manager

CLPBFB

Data Path : C:\msdchem\1\DATA\2017 data\06 2017\20170627\ Data File : BFB2.D Acq On : 27 Jun 2017 3:31 pm Operator : Sample : Misc : septum purge on ALS Vial : 1 Sample Multiplier: 1

Integration File: rteint.p

Method : C:\msdchem\1\METHODS\5975_quantmethods\VW062617contcal.M Title : VOA in Water 5ml Sparge 6/21/13 Last Update : Mon Jul 24 13:35:39 2017

Spectrum Information: Average of 4.538 to 4.551 min.

50 95 15 40 20.2 1995 PASS 75 95 30 60 50.6 4986 PASS 95 95 100 100 100.0 9860 PASS 96 95 5 9 8.4 830 PASS 173 174 0.00 2 0.0 0 PASS 174 95 50 100 82.5 8133 PASS 174 95 50 100 82.5 8133 PASS 175 174 5 9 6.9 563 PASS 175 174 5 9 6.9 563 PASS 176 174 95 101 98.4 8007 PASS 177 176 5 9 6.7 536 PASS

Data Path : C:\msdchem\1\DATA\2017 data\06 2017\20170628\ Data File : BFB1.D Acq On : 28 Jun 2017 11:50 am Operator : Sample : Misc : septum purge on ALS Vial : 16 Sample Multiplier: 1

Integration File: rteint.p

Method : C:\msdchem\1\METHODS\5975_quantmethods\VW062617contcal.M Title : VOA in Water 5ml Sparge 6/21/13 Last Update : Mon Jul 24 13:35:39 2017

Spectrum Information: Scan 304

|Target | Rel. to | Lower | Upper | Rel. | Raw | Result | Mass | Mass | Limit% | Limit% | Abn% | Abn | Pass/Fail | 50 15 I 40 | 19.1 | 2215 | PASS 95 1 75 60 | 51.0 | 95 30 | 5898 | PASS 95 95 100 | 100 | 100.0 | 11569 | PASS 95 | 96 5 | 9 | 7.3 | 850 | PASS 173 174 | 0.00 | 2 0.0 0 | PASS 50 | 100 | 88.9 | 10280 | PASS 174 95 175 174 5 | 9 | 7.8 | 797 | PASS 101 | 100.9 | 10375 | PASS 176 174 95 | 5 | 681 | PASS 177 176 ł 9 | 6.6 |

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 25, 2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Method:	NWTPH-Dx
Sample Matrix:	Water
Spectra Project:	2017060394
Applies to Spectra #:	8-11

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS METHOD BLANK

		10121110		112			
Date Extracted: Units:	6/25/2017 ug/L			Date Analyz	ed:	7/1/2017	
Diesel	<100						
Heavy Oil	<500						
Surrogate Recoveries:	p-terphenyl	84%					
			LCS				
Spiked Sample:	DI Water			Date Extract	ed:	6/25/2017	
Units:	ug/L			Date Analyz	ed:	6/30/2017	
		Spike	Spike				
		Amount	Amount	Percent			
Compound		Added	Found	Recovery			
Diesel		2500	3330	133			
Surrogate: p-Terphenyl	l			109			
		M	S/MSD				
Spiked Sample:	2017060394-10)		Date Extract	ed:	6/25/2017	
Units:	ug/L			Date Analyz	ed:	7/1/2017	
	e			•	Dup.		
		Spike	Spike		Spike		
	Sample	Amount	Amount	Percent	Amount	Percent	%
Compound	<u>Result</u>	Added	<u>Found</u>	Recovery	Found	Recovery	<u>RPD</u>
Diesel	295	5000	4055	81.1	4158	83.2	2.5
Surrogate: p-Terphenyl — 78 — 91							

frey Cooper, Laboratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 25, 2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Method:NWTPH-DxSample Matrix:WaterSpectra Project:2017060394Applies to Spectra #:1-7

HYDROCARBON ANALYSIS QUALITY CONTROL RESULTS METHOD BLANK						
Date Extracted: Units:	6/22/2017 ug/L			Date Analyzed:	7/1/2017	
Diesel	<100					
Heavy Oil	<500					
Surrogate Recoveries:	p-terphenyl	84%	0			
Spiked Sample: Units:	DI Water ug/L	Spike	Spike	Date Extracted: Date Analyzed:	6/22/2017 7/1/2017	
Compound		Added	Found	Recovery		
Diesel Surrogate: p-Terpheny	1	5000	4430	88.6 96		

Cooper, Laboratory Manager

...Where experience matters

7/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Spectra Project: 2017060394 Applies to Spectra Samples: 1-12

QUALITY CONTROL RESULTS NWTPH-Dx

	Initial Calibration Verification					
Date Analyzed:	6/30/2017					
Units: ug/L		Standard				
-	Analyte	Value	Conc.	%Rec	QC Limit	
7	Diesel	2800	2500	112.0%	85-115%	
	Oil	5510	5000	110.2%	85-115%	
	Co	ontinuing Calibration V	erificatior	n 1		
Date Analyzed:	6/30/2017					
Units: ug/L		Standard				
_	Analyte	Value	Conc.	%Rec	QC Limit	
	Diesel	2700	2500	108.0%	85-115%	
	Oil	5750	5000	115.0%	85-115%	
	Co	ontinuing Calibration V	verification	n 2		
Date Analyzed:	7/1/2017	C				
Units: ug/L		Standard				
-	Analyte	Value	Conc.	%Rec	QC Limit	
	Diesel	2810	2500	112.4%	85-115%	
	Oil	5500	5000	110.0%	85-115%	
	Co	ontinuing Calibration V	erification	13		
Date Analyzed:	7/1/2017	C C				
Units: ug/L		Standard				
_	Analyte	Value	Conc.	%Rec	QC Limit	
	Diesel	2670	2500	106.8%	85-115%	
	Oil	5550	5000	111.0%	85-115%	
Spectra Laboratories						

eveloper Laboratory Manager

...Where experience matters

July 25, 2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Method:8082ASample Matrix:WaterSpectra Project:2017060394Applies to Spectra #:1-5

PCB ANALYSIS QUALITY CONTROL RESULTS

METHOD BLANK							
Date Extracted:	7/2/2017			Date Analyzed:	7/12/2017		
PCB's	<0.1						
Surrogate Recovery: Decachlorobiphenyl	97%						
		L	CS				
Spiked Sample:	DI Water			Date Extracted:	7/2/2017		
Compound	Sample Result	Spike Amount Added	Spike Amount Found	Date Analyzed: Percent Recovery	7/12/2017		
<u>Compound</u>			<u>1 0 mile</u>	<u>11000(01)</u>			
AR1260	<0.1	0.50	0.482	96.4%			
Surrogate: Decachlorobiphenyl				99%			

firey Cooper, Laboratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 25, 2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Method:8082ASample Matrix:WaterSpectra Project:2017060394Applies to Spectra #:6-11

METHOD BLANK Date Extracted: 7/11/2017 Date Analyzed: 7/12/2017 PCB's < 0.1 Surrogate Recovery: 100% Decachlorobiphenyl LCS Spiked Sample: DI Water Date Extracted: 7/11/2017 Date Analyzed: 7/12/2017 Spike Spike Amount Amount Sample Percent Compound Result Added Found Recovery AR1260 < 0.1 0.50 0.414 82.8% Surrogate: Decachlorobiphenyl 93% MS/MSD 2017060394-10 Spiked Sample: Date Extracted: 7/11/2017 Units: ug/L Date Analyzed: 7/13/2017 Dup. Spike Spike Spike Sample Amount Amount Percent Amount Percent % Compound Result Added Found Recovery Found Recovery RPD AR 1260 0.00 0.5 0.474 94.8% 0.466 93.2% 1.7 Surrogate: Decachlorobiphenyl 99% 99%

PCB ANALYSIS QUALITY CONTROL RESULTS

SPECTRA LABORATORIES

er, Laboratory Manager

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

07/25/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421 Spectra Project: 2016060394 Applies to Spectra Samples: #1-12

QUALITY CONTROL RESULTS Polychlorinated Biphenyls (PCBs) - EPA Method SW846-8082A

		Initial Calibration V	erification		
Date Analyzed:	7/12/2017				
Units: ng/mL		Standard			
	Analyte	Value	Conc.	%Rec	QC Limit
Arc	ochlor 1016	111	100	111.0%	80-120%
Arc	ochlor 1260	109	100	109.0%	80-120%
Date Analyzed:	Co 7/12/2017	ontinuing Calibration	Verificatior	n 1	
Units: ng/mL		Standard			
_	Analyte	Value	Conc.	%Rec	QC Limit
Arc	ochlor 1016	114	100	114.0%	80-120%
Arc	ochlor 1260	120	100	120.0%	80-120%

Continuing Calibration Verification 2

Date Analyzed:	7/13/2017				
Units: ng/mL		Standard			
_	Analyte	Value	Conc.	%Rec	QC Limit
Arc	ochlor 1016	113	100	113.0%	80-120%
Arc	ochlor 1260	118	100	118.0%	80-120%

Spectra Laboratories

ober oratory Manager

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

6/28/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421					Units: Spectra P Applies to	roject: Spectra #'s	u 2017 1	ng/L 060394 -11 SCI		
							L.			
		QU	ALITY		L RESUL	TS				
<u></u>		ICP-IV	IS Meta	IS - SW840	Blank (LD	water B)				
Date Directed	6/28/2017	La	DUTATOL	y Keagent	Date Ana	byzed:	6/28/2017			
Date Digested.	0/20/2017				Date Alla	lyzcu.	0/20/2017			
		Element		CAS #		Result				
		Arsenic		7440-38-2	2	< 0.2	-			
		Chromium	L	7440-47-3	3	< 0.5				
		Lead		7439-92-1	L	< 0.2				
	Laboratory Fortified Blank (LFB)									
Date Digested:	6/28/2017				Date Ana	lyzed:	6/28/2017			
				Spike	LCS	LCS				
		Element		Added	Conc.	%Rec				
		Arsenic		100.0	89.06	89.1	<u>-</u> 2			
		Chromium	L	100.0	97.03	97.0				
		Lead		100.0	101.50	101.5				
LCS Recovery 1	imits 85-11:	5%								
		Matrix Sp	ike/Mat	rix Spike D	uplicate (MS/MSD)				
Date Digested:	6/28/2017	-		-	Date Ana	lyzed:	6/28/2017			
Sample Spiked:	201706072	25-1								
		Sample	Spike	MS	MS	MSD	MSD			
Element		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD		
Arsenic	-	18.06	100.0	112.80	94.7	116.00	97.9	3.3		
Chromium		3.17	100.0	96.27	93.1	100.60	97.4	4.5		
Lead		0.79	100.0	97.46	96.7	103.20	102.4	5.8		

Recovery Limits 70-130% RPD Limit 20

SPECTRA LABORATORIES

SPECTRA Laboratories

...Where experience matters

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

6/28/2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Units:	ug/L
Spectra Project:	2017060394
Applies to Spectra #'s	1-11
Analyst:	SCJ

QUALITY CONTROL RESULTS ICP-MS Metals - SW846 6020B - Water

Initial Quality Control Standard/Calibration Blank Results

Date Analyzed: 6/28/2017

	Standard				
Element	Value	Conc.	%Rec	QC Limit	Blank Result
Arsenic	100	98.70	98.7	90-110%	< 0.5
Chromium	100	101.50	101.5	90-110%	< 0.5
Lead	100	104.80	104.8	90-110%	< 0.5

Instrument Performance Check/Continuing Calibration Blank Results

Date Analyzed: 6/28/2017

	Standard				
Element	Value	Conc.	%Rec	QC Limit	Blank Result
Arsenic	100	96.50	96.5	90-110%	< 0.5
Chromium	100	94.77	94.8	90-110%	< 0.5
Lead	100	97.21	97.2	90-110%	< 0.5

Spectra Laboratories

Cooper

Laboratory Manager

Tune	File	:	nogas.u
Comme	ent	:	6-28-17

Page: 1

Generated : Jun 28, 2017 09:20:09 Printed : Jun 28, 2017 09:20:11

Tune	File	:	nogas.u
Comme	nt	:	6-28-17

Tuning Paramet	ters									
===Plasma Condi	tion			===Ion Lenses===				===Q-Pole Parameters===		
RF Power	:	1550	W	Extract 1	. :	0	V	AMU Gair	1 :	125
RF Matching	:	1.72	V	Extract 2	2 :	-179	V	AMU Offset	: :	124
Smpl Depth	:	8	mm	Omega Bias-ce	e :	-26	V	Axis Gair	1 :	0.9999
Torch-H	:	-0.1	mm	Omega Lens-ce	: :	1.2	V	Axis Offset	: :	-0.05
Torch-V	:	-0.2	mm	Cell Entrance	: :	-34	V	QP Bias	3 :	-6
Carrier Gas	:	0.8	L/min	QP Focus	s :	3	V			
Makeup Gas	:	0.2	L/min	Cell Exit	: :	-36	V	===Detector Pa	ıram	eters==
Optional Gas	:		olo					Discriminato	: :	8
Nebulizer Pump	:	0.1	rps	===Octopole Pa	aram	eters==		Analog HV	7 :	1950
Sample Pump	:		rps	OctP RE	: :	180	V	Pulse HV	7 :	1130
S/C Temp	:	6	degC	OctP Bias	5 :	-9	V			
===Reaction Cel	l===									
Reaction Mode	:	OFF								
H2 Gas	:		mL/min	He Gas	s :	3	mL/min	Optional Gas	3 :	

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

July 24, 2017

Petroleum Reclaiming Services, Inc. 3003 Taylor Way Tacoma, WA 98421

Units:	mg/L
Spectra Project:	2017060394
Applies to Samples:	1-11

QUALITY CONTROL RESULTS Sulfate Method AASHTO T290/375.4/SM 4500E

		Μ	ethod Bla	nk				
					Date Anal	yzed:	6/20/17	
					Result	_		
		Sulfate			<2.0	mg/L		
		Blan	ık Spike (l	LCS)				
					Date Anal	lyzed:	6/20/17	
				Que il en	T CO	I CO		
				Spike	LCS	LCS		
				Added	Conc.	%Rec	-	
		Sulfate		25.0	29.6	118.4		
	Matrix S	pike/Matri	ix Spike D	uplicate (MS/MSD)			
		-	-	-	Date Anal	vzed:	6/20/17	
Sample Spiked:	20170603	94-10						
		Sample	Spike	MS	MS	MSD	MSD	
		Conc.	Conc.	Conc.	%Rec	Conc	%Rec	RPD
Sulfate		28.3	25	49.8	86.0	48.8	82.0	4.8

SPECTRA LABORATORIES

cooper Laboratory Manager

SPECTRA Laboratories - Kitsap

...Where experience matters

26276 Twelve Trees Lane, Suite C • Poulsbo, WA 98370 • (360) 779-5141 • Fax (360) 779-5150 • www.spectra-lab.com

June 23, 2017

Marie Holt Spectra Laboratories 2221 Ross Way Tacoma, WA 98421

Project: 2017060394 Sample Date: 6/13/17 Lab Work Order #: 169224 Sample Received: 6/20/17 1315

Quality Control Report

Blank

Parameter	Blank mg/L	Date Analyzed	Method
Nitrate Nitrogen	< 0.01	6/21/17	SM 4500-NO3 F

Laboratory Check Standard

		True Value	Result	%	Date	
Test Parameter	QC Sample ID	mg/L	mg/L	Recovery	Analyzed	Method
Nitrate Nitrogen	P232-505	9.70	9.61	99.1	6/21/17	SM 4500-NO ₃ F

	Ν	Aatrix Spike		
Test Parameter	Sample ID	Spike Amt. mg/L	Amt. Recovered mg/L	% Recovery
Nitrate+Nitrite Nitrogen	169224-10	1.00	1.03	103

Spike Duplicate Results

	Spike Duplicate	Sample Result	Duplicate Result	
Test Parameter	Sample ID	mg/L	mg/L	% RPD
Nitrate+Nitrite Nitrogen	169224-10	1.04	1.04	0.0

Approved for Release,

langt Pourott

Nancy Parrott Laboratory Supervisor

WDOE Accreditation #C594

This report is issued solely for the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis according to industry accepted practice. Spectra Laboratories - Kitsap LLC or its employees are not responsible for consequential damages in any kind or in any amount.

Spectra Laboratories Sample Receiving Checklist

~

Client PPS	Spectra Project # 2017
Project Name PRS	
Date Received: 14/17 Time Received:	10:15AMBy (AR
Shipped via: Client Courier UPS USPS FED	EX Other
Tracking Number	
Papers/Coolers:	
Type of shipping container: Cooler Box None	e Other
Were custody seals on the shipping container/cooler?	Yes No N/A
Were custody seals intact?	Yes No N/A
Container/cooler custody seal info (date/name/l	abel)
Were custody seals on the outside of samples/containers	s?Yes No N/A
Were custody seals intact?	Yes No N/A
Sample custody seal info (date/name/label)	
26	06
Cooler Temperature <u> </u>	mple Temperature <u> </u>
If temperature was out of range list the reason w	vhy
Were contained in the last	
Were custody papers included?	No No No
Were all complex on sheir of sistedy accounted for?	Yan Na
Were Papers/Pottle labels locible?	Voc No N/A
Did all hottle labels and tags agree with custody papers?	Ves No N/A
Were all samples received within hold time?	Ves No
Were all of the samples containers received intact?	Vet No N/A
If No to any of the above list specifics: NOTE:	brought Rimpting
bottles back - (15)A	mber Liters (2)
Amber preserved 5	WOAS 3250 preserved
(3)250 non	
	A
Are samples to be tested for microbiological tests?	Yes No
What test? Check all that apply:	
MPN MF HPC	
E. coll Fecal Collform 1 ota	
Did micro samples arrive within hold time?	Yes No (N/A)
Checklist completed by Dat	te 6/14/17 Time 10:15m

A	SPECIAL INSTRUCTIONS/COMMENTS:	
SPECTRA Laboratories		CHAIN OF CUSTODY
2221 Ross Way, Tacoma, WA 98421 (252) 272 4850 Err (252) 572 0828		SPECTRA PROJECT #
(253) 272-4850 Fax (253) 572-9838 www.spectra-lab.com info@spectra-lab.com	Deturn Complex, V. N. Dans, V. et 7	
MET DO	Return Samples: r N Page 01	ADDRESS
CLIENT: TO TS	ADDRESS:	
PROJECT: TAS	HYDROCARBONS ORGANICS METALS	OTHER
CONTACT: JHAWN /UMBOROLIT	9	~ ~
SAMPLED BY: 1 653:334.4782		
PHONE: 360 352 1835FAX:		
e-MAIL: SLOMBAROINT CAESWA CORE-MAIL	PH-G PH-G PH-G PH-G PH-G PH-G SB ALS R C B ALS R C C B A S S B A S S B A C C C C C C C C C C C C C C C C C C	
PURCHASE ORDER #	NINUTI NUNTI NUNTI NH-ICX SGTH-IDX SGTH-IDX SGTH-IDX SGTH-IDX NH-ICX NETA META META	META MALETA
SAMPLE ID DATE TIME SAMPLED MAT	NUME NUME NUME NUME NUME NUMTF NUMTF NUMTF NUMTF NUMTF NUMTF NUMTF NUMTF NUMTF NUMTF NUMTF NUMTF NUMTF NUME NUME NUME NUME NUMTF NUM	PH 90 PH 90
1 MW-ZA 6.2317 0810 V		\times \times \times
2 MW-3A 1 08-10 V	16 XX X X X	××'
3 SO-2A 0930 h		XX
4 CO-3B /020 w	6 X X X X X	XX
5 CO-3A //110 w	16 XY X X X	XX
6 SO-4B 1150 m		XX
7 50-4A 750 W	16 X X X X	××
8 MW-1A 1305 h	IGXXXXX	X
9 MW-1B 1345 h		XX
10 SOHA 614,17 0830 U	1000 \times \times \times \times \times	
LAB USE ONLY	PRINTED NAME	COMPANY SL PATE SL TIME
RELINQUISHED B	ANT DANEN (DYALBARDANS	ARD DITT IGOIND
HEGEIVED BY	Maren Nolt MARIE HOLT	Spectra 6-14-17 10:15
RELINQUISHED B		
RECEIVED BY		
Payment Terms: N attorney's fees and	all other costs of collection regardless of whether suit is filed in Pierce Co., WA venu	es to pay all costs of collection including reasonable e. Spectra Laboratories, LLC

	SPI	ECIA	LINS	STRU	JCTIC	ONS/(COMI	MEN	TS:																				
SPECTRA Laboratories																		C	H	A	N		DF	= (Cl	JS	5 T(Y
2221 Ross Way, Tacoma, WA 98421																			0		~	SPE	CTR	APR	OJEC	ст,#			
(253) 272-4850 Fax (253) 572-9838															~		L		U	0	1	01	e)~	91	4			_
www.spectra-lab.com info@spectra-lab.com	R	etur	'n S	am	ples	: Y	N	1		Pa	ge	2	-	of_	2			ST	'Al	1D	A	RD		X	>	R	JSI	4	
CLIENT: PRS	ADI	ORE	SS:																								ADE CH	RESS	
PROJECT: PPS		F	IYD	RO	CAF	BO	NS		C	RG	iAN	ICS		1	ME	TAL	s	_			~		0	THE	R				
CONTACT: SHAWN / OMBARDINE								10																	3, 3	5.4			
SAMPLED BY: 11	ERS							ž						1	A	_	6								35	3			
PHONE 360-352-9835 FAX:	NTAIN					Hd		3	VENTS	X			CRA 8	PECIF	Ø	RA 8	PECIFY							0	R R	P.A			
e-MAIL: SLOMBARDINE CAEGUA COM		e		PH-G	2	HEM (T	FOG)	N N N	R SOL	EMI VO	AN	B	ALS R	ALS (S	a	ILS R	VLS (SI		45	×		L		ECIF)	10	4			
PURCHASE ORDER #	BER	H-H		TWN	SH-G	SGT-H	HEM	624 V(СНГО	625 S	PAH/F	608 P	MFT	MET	C/	META	META		40/90	X/EO	IDITY	H POI		SS (SF	ADA	E.			
SAMPLE ID DATE TIME MAT		T WN	BTEX	BTEX	TWN	1664	1664	8260/	8260	8270-	8270		TOTA	TOTA	R	TCLP	TCLP		PH 90	TX/TC	TURB	FLASI	BOD	SOLIE	Ž	SE			
FEED BUNK 6,14,17 09:30 1	J 7				X	X		4				×		2	1										X	X			\Box
TROP BLANK #1 6.14.17 - 1	v i			^	X			×																					
TREP BLANK #2 6.14.17 - 1	~ \				X			X																					
TRSP BLANK #3 6.14.17 -	1.				X			×																					
TESP BLOME # 4 6,14,17 - 1	~ `				X			×																					
TREP BLANK #5 G.H.I - 1	\mathcal{I}_{χ}				X			4																					
																											1		
																											1		
LAB USE ONLY	-	2	11	sign		RE				_	Р	RINTE	ED N	AME		1		C	юм	PAN	Y			DA	TE	-		TIME	5
RELINQUISHED B	2	72	A		X	-		1	LIA	wn	Im	MR	ner	TAL			N	乙					6	14.			101	0	
RECEIVED BY	4	T	L	N	X	No	l	t	r	nA	Ä	IE		+0	SĽ	Т		SI	P	c	Zn	0	, 1	0-1	4-1	17	10	5110	50
RELINQUISHED B		T	(J										1.0				1			- (
RECEIVED BY	1.																												
Payment Terms: N attorney's fees and	et 30 day all other	ys. Pa costs	ist di s of c	ue ac collec	coun tion re	ts sub egard	oject t less c	to 1 1 of whe	/2% ether	per r suit i	nont is file	h inte ed in I	rest. Pierc	Cust e Co.	tome , W/	ər agı A ven	ees : ue.	to pa Spec	y all ctra I	cost abo	s of orato	colle ries,	ection	n incl	uding	g rea	sonat	le	

APPENDIX B

FIELD DATA SHEETS

605 11th Ave. SE, Suite 201 • Olympia, WA • 98501 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com

•	WELL MONITORIN FIELD DATA	G/SAMPLING SHEET
	Job Name: PRS	Job #
b lation	Address:	Date: 6.14.17
Jo nforn	city: TACOMA	Collector:
}(Weather Conditions: 55°F WERE	
	Well # SOHA (DUPLEARE)	Well Condition:
ation	Well Diameter (inches):	-
uform:	Depth to Water (feet): 4.38	Time: $D747$
Vell In	Depth to Product (feet):	Notes on Product
4	Total Depth (ft):	Notes on bottom: HOKD
n	Purge Volume = $x VF() 3 =gal.$	Volume Factor (VF) 1"= 0.04 $2"= 0.17$ $3"= 0.38$ $4"= 0.66$ $6"= 1.5$
Samp matio	Start Time: 0750	Purged Volume: <u>~4</u>
'urge/ Inforn	Purge Flow Rate:	Did Well Dewater Y - N Time:
<u>р</u> , , , ,	Sample Time:	Water Color/Odor
		Cumulative

Time	Temp (°C)	Cond. (mS/cm)	TDS (g/L)	Salinity (%)	DO (mg/L)	pH	ORP (Millivolts)	Cumulative Volume Purged,
M76D	1755	1944	, 804	162	4,48	6.77	-126,1	Ø
0900	1205	1865	.730	56	3,08	6.68	-154,0	/7/8
12 81D	17:92	943	,797	,62	2,67	6,70	-16418	1 5/8
0,420	1100	1.003	, 8496	,66	2,34	675	-161,2	2.318
0926	17:45	1002	1850	166	2.37	6.76	-160,1	318
8820	12.96	1.005	1847	166	2,40	6,75	-161,0	. 4
-V-0-X							•	
•				7				
				•				

and the second second

Water quality instrument used (i.e. YSI model and #) Purge / sampling equipment: Laboratory:

NOTES:

· 1	WELL MONITORIN FIELD DATA	G / SAMPLING SHEET						
	Job Name: PPS	Job #						
ob matio1	Address:	Date: <u>6/3/7</u>						
J Infori	City: TACOMIA	Collector: SHAM						
	Weather Conditions: SD F MOX C							
uo	Well # $MW - 2A$ Well Diameter (inches): $3/4'$	Well Condition: 6006						
nformati	Depth to Water (feet): $4,45$							
Vell I	Depth to Product (feet):	Notes on Product						
Q	Total Depth (ft): $\mathcal{T}_{l}\mathcal{S}^{\mathcal{U}}$	Notes on bottom:						
le a	Purge Volume = $x VF() 3 = gal.$	Volume Factor (VF) 1"=0.04 $2"=0.17$ $3"=0.38$ $4"=0.66$ $6"=1.5$						
Samp matio	Start Time: C730	Purged Volume: ~ 4,56						
burge/ Inforn	Purge Flow Rate: 2500	Did Well Dewater Y - D Time:						
μ	Sample Time: <u>BS16</u>	Water Color/Odor CLENR/NONE						

Time	Temp (°C)	Cond. (mS/cm)	TDS (g/L)	Salinity (%)	DO (mg/L)	pH	ORP (Millivolts)	Cumulative Volume Purged
(1780	12,19	1570	,498	.38	5:81	6.97	15.4	ð
0740	12:09	.510	1500	138	3.41	7.01	-124:6	7/8
0750	2:41	7587	1501	138	2:33	6,90	-164,00	15/8
(04(0D	1211	1583.	-501	138	2,27	6,92	-165.0	23/9
0905	Mill	1587	1901		2,25	.6,91	-16510	319
ORID	12011	1580	1501	138	2.26	6,90	-164.0	. 4
	· · ·		U					
•				1				
				•				. •

	· · ·	WELL MON FIEL	ITORING / SAMPL D DATA SHEET	LING						
	Job Name:	HPS .	Job #							
ob mation	Address:		Date:	6.13.17						
J Infor	City:	TACOMA.	Collec	ctor: SHAW						
	Weather Condi	tions: Sp°F OVE	RC.							
ч	Well # [M/	-3A	Well (Condition: 600D						
atio	Well Diameter	(inches): <u>34</u>		1700.						
nform	Depth to Water	(feet): <u>3.6</u>	Time: L	0.1.40						
Vell I	Depth to Produ	ct (feet):	Notes on I	Notes on Product						
Δ	Total Depth (ft)	1.82	Notes on I	bottom: /-/MRO						
le n	Purge Volume	₩ x VF (04) 3 = 7	$\int gal. \qquad Volume Factorial 1''= 0.04 2$	ctor (VF) 2" = 0.17 $3" = 0.38$ $4" = 0.66$ $6" = 1.5$						
/Samp matio	Start Time:	6910	Purgeo	d Volume: ~ Z5G						
Purge Infor	Purge Flow Rat	e: <u>[500</u>	Did W	Vell Dewater Y N Time:						
	Sample Time:	0840	. Water C	Color/Odor						

Time	Temp (°C)	Cond. (mS/cm)	TDS (g/L)	Salinity (%)	DO (mg/L)	pH	ORP (Millivolts)	Cumulative Volume Purged
0820	M148	,720	,96	,45	20	7.21	-180,8	\mathcal{O}^{*}
0830	MBZ	,718	1583	:44	1,98	7.24	-186,3	7/8
684D	14.52	JI8	1584	144	1.99	7.26	-187.5	15/8
								0
······································								
	•							
		•						
				1				
				•				
				·				•

	WELL MONITORING / SAMPLING FIELD DATA SHEET											
	Job Name: PP2S	Job#										
ob matio	Address:	Date: 6.1/3.17										
J Infor	City: TRCOMA	Collector: Starten										
	Weather Conditions: 50 F DV BACK	251										
	Well # 50-24 211	Well Condition: 6007										
tio	Well Diameter (inches):	- -										
nforma	Depth to Water (feet): 3.01	Time: 0742										
Vell I	Depth to Product (feet):	Notes on Product										
	Total Depth (ft):	Notes on bottom: HARD										
le u	Purge Volume = $1 \times VF(1/7) =gal.$	Volume Factor (VF) 1"= 0.04 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5										
'Samp mation	Start Time: <u>6790</u>	Purged Volume: MGR (
Purge/ Infori	Purge Flow Rate: 6500	Did Well Dewater Y - N Time:										
	Sample Time:	. Water Color/Odor										

Time	Temp (°C)	Cond. (mS/cm)	TDS (g/L)	Salinity (%)	DO (mg/L)	pH	ORP (Millivolts)	Cumulative Volume Purged
0850	1395	1.67.3	817	.67	<u> </u>	1.33	-174.3	0
1790D	15,07	, 894	117	155	1.36	7.30	- 72,1	718
D910	15,19	1897	718	155	1,34	7.32	-190,9	1519
09/20	15.	1896	:717	,55	1.34	7,30	-197,8	7.38
092S	15,20	295 -	,717	155	1136	7.19	-700	31/8
0920	15/20	397	1718	155	1,37	7.27	- 200,1	. AV
0-			()	1.00	,			
		1		1				
				•				
				•				

and the second s

	WELL MONITORIN FIELD DATA	IG / SAMPLING I SHEET				
	Job Name:	Job #				
lob mation	Address:	Date: 6,13,17				
. J Infor	City: 1/2 COMP	Collector: YINV				
- · ·	Weather Conditions: 55° MARCAST	·				
	Well # $CO3B$	Well Condition: 6000				
ttion	Well Diameter (inches): 2	-				
nforma	Depth to Water (feet): 5.7	Time: 0745				
Vell I	Depth to Product (feet):	Notes on Product				
M	Total Depth (ft): 24,67	Notes on bottom: HANCO				
ole n	Purge Volume = $\sqrt[3]{x}$ VF (,) $3 = 1.67$ gal.	Volume Factor (VF) 1"= 0.04 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5				
Sam _l natio	Start Time: 0940	Purged Volume:				
Purge/ Inforn	Purge Flow Rate: 1990	Did Well Dewater Y - N Time:				
	Sample Time: <u>//////</u>	Water Color/Odor				
Time	Temp Cond. TDS Salinity	DO nH ORP Cumulative				

Time	Temp (°C)	Cond. (mS/cm)	TDS (g/L)	Salinity (%)	DO (mg/L)	pH	ORP (Millivolts)	Volume Purged
1291410	13,39	10.77	8,91	8,03	1,02	7,42	-202,5	Ð
8950	13,31	10,79	9,077	8,00	1.15	7.70	-711;8	7/8 2
IUÓD	13.41	10,82	9,028	8,07	1.48	7.77	-211,0	1 8/8 1
1010	13,37	10,82	9,065	808	1.49	7.79	-211.1	2317
1015	13.37	10.84	9,066	1.09	1.36	7.80	-210,9	31/8
1020	13:36	10,86	7,076	8.11	- 1,61	7,83	-210,7	.4
		-	· .		•	v		/
				1				
				•				
				•			· .	

- معالم المراجع

Ì

	A	ASSOC	IATED]	ENVIRC)NMENT.	AL GRC	OUP, LLC.					
	,		WEL	L MONITO FIELD L	ORING/SAM DATA SHEET	TPLING						
	Job Nam	ne: <u>A</u>	23		Job	,#		• · ·				
b Lation	Address	•		r	Dat	te:	6,13,17					
Jo	City:	TK	COMA .		Col	llector:	SHAWN					
	Weather	Conditions:										
	Well#	Well # <u>03A</u> Well Condition:										
latior	Well Dia	ameter (inch	es): <u>V</u>	<u></u>								
aform	Depth to	Water (feet):		Time:							
Vell In	Depth to	Product (fee	et):		Notes c	n Product	j j.					
$\mathbf{A}_{\mathbf{r}}$	Total De	pth (ft):	,		Notes o	Notes on bottom:						
					Volume	Factor (VF) $2^{\circ} = 0.17$	2" - 0.29					
nple ion	Purge Vo	slume = x	x VF () 3	$s = g_{s}$	al. $1 - 0.04$	2 -0.17	5 - 0.38 4 - 0	.00 0.1 = 1.5				
e/San rmat	Start Tin	ne:	-		Purg	Purged Volume:						
Purg Info	Purge Flo	ow Rate:	r		Did	Did Well Dewater Y - N Time:						
	Sample T	Time: \int	110		Wate	r Color/Odo	Dr					
Time	Temp (°C)	Cond. (mS/cm)	TDS (g/L)	Salinity (%)	DO (mg/L)	pH	ORP (Millivolts)	Cumulative Volume Purged				
1030	14,98	1.121	1907	,70	189	7.95	- 188,6	D D				
1050	15.20	1,088	1887	,68	,75	7.71	-195;2	16/8				
$100 \\ 105$	15.54	1.086	1062	101	, 7,	7.61	-201.0	23/8 31/8				
1110	• •	•						. 4				
				·								

	ASSOCIATED ENVIRONMENTAL GROUP, LLC.
her.	WELL MONITORING / SAMPLING FIELD DATA SHEET
ح	Job Name: TV Job #
ob matio	Address: Date: 6.13.17
Jufor	City: TRCOMIA Collector: SHINWA Weather Conditions: 607 OUR CLAST Collector: SHINWA
u	Well # SOHB Well Condition: 6000
Informatic	Well Diameter (inches): $5/9$ Depth to Water (feet): $6,90$ Time: 5748
Well	Depth to Product (feet): Notes on Product
	Total Depth (ft): 10,00 Total Depth (ft): 1000 On Contonin. HARD
ole n	Purge Volume = 1.5 Volume Factor (VF) $i^{2}=0.04$ $2^{2}=0.17$ $3^{2}=0.38$ $4^{2}=0.66$ $6^{2}=1.5$
/Saml matio	Start Time: <u>//20</u> Purged Volume: -2,5
Purge Infor	Purge Flow Rate: Did Well Dewater Y - N Time:
	Sample Time: <u>1150</u> Water Color/Odor

Time	Temp (°C)	Cond. (mS/cm)	TDS (g/L)	Salinity (%)	DO (mg/L)	pH	ORP (Millivolts)	Cumulative Volume Purged
1/20	1400	9,059	7.433	654	0.72	7.6	-223,0	-6-
1130	13.99	9,014	7.419	6,53	.75	7.50	-222.0	718
1140	14,00	9,035	7,437	10.55	, 87	7,48	-222;4	13/8
1150	13,98	7,020	7,425	6,54	1,78	7,45	-222,2	23/8
	•							
		•						
		· · · · · · · · · · · · · · · · · · ·			-9 <u>.</u>			
	•							
				•				÷

ومريد والمحالية فروادي

	A	ASSOC	IATED	ENVIRC	NMENT	AL GRC	OUP, LLC.	
		\bigcap	WEI 70	LL MONITO FIELD D	RING/SAM ATA SHEET	IPLING F		,
្តដ	Job Nam	e: 110			Joł	»#		an a star a far a fa
ob matic	Address:	1. 			Da	te: 6	<u>13, n</u>	```
Jufor	Çity:	TAI	'OMB		<u> </u>	llector: 🔶	FIRINA	Ng Land (1947) 1411 (1974)
	Weather	Conditions:			·····	<u> </u>		
uo	Well #	SOUR	-	112	We	ll Condition	n: (6900)	
formati	Depth to	Water (feet):	s): <u>г</u>	24	Time: (67.50		
Vell In:	Depth to	Product (feet	:):		Notes of	on Product		
Δ	Total Dep	oth (ft):	11.8	7	Notes of	on bottom:	HARD	
le 1	Purge Vo	lume = x	VF()	3 = ga	Volume 1. 1"= 0.04	Factor (VF) 2" = 0.17	3"=0.38 4"=0	.66 6"=1.5
/Samp mation	Start Tim	e: <u>1200</u>	•		Pur	ged Volume	: <u>146</u>	ri.
Purge Infor	Purge Flo	w Rate: L	500		· Did	Well Dewa	ter Y N Tim	 e:
	Sample T	ime: <u>12</u>	1094D		. Wate	r Color/Odo	or NoNE	
Гime	Temp (°C)	Cond. (mS/cm)	TDS (g/L)	Salinity (%)	DO (mg/L)	pH	ORP (Millivolts)	Cumulative Volume Purged
00 01	1332	,606	,506	38	×64	7.67	-116,6	D TH
20	13,70	4.64 U						
-92_								
			.)		4	a autoria anti anti anti anti anti anti anti an		-
	í			. 6				[

k

5

	ASSOCIATED ENV	RONMENTAL GROUP, LLC.
		ITORING / SAMPLING
	Job Name:	Job #
ob nation	Address:	Date: 6.13,17
J. Inforr	City: Theorem	Collector: <u>SIM</u> , WN
tion	Weather Conditions: $MMMMM$ Well # MNM Well Diameter (inches): $3/4^{11}$	Well Condition:
nforma	Depth to Water (feet): 437	Time: 02/4
Well I	Depth to Product (feet):	Notes on Product
· ·	Total Depth (ft): 7,75	Notes on bottom: μM
le a	Purge Volume $= \int_{1}^{1} \int_{1}^{1} x VF(t, \vartheta^{H}) 3 = \int_{1}^{1} \int_{1}^{1} \frac{1}{2} $	Volume Factor (VF) $1"=0.04$ $2"=0.17$ $3"=0.38$ $4"=0.66$ $6"=1.5$
/Samp matio	Start Time:	Purged Volume:6
Purge Infor	Purge Flow Rate: 1500	Did Well Dewater Y Time:
	Sample Time: / 305	Water Color/Odor
Time	Temp (°C)Cond. (mS/cm)TDS (g/L)Salir (%	ity DO pH ORP Cumulative Volume (Millivolts) Purged
1240	14.01 1.597 1.314 1.0 13.68 1.595 1.313 1.02	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1365	1396 1594 1.312 1.09	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
W Pr	ater quality instrument used (i.e. YSI 1	nodel and #)

The second states and the

Laboratory:

NOTES:

ř.

	WELL MONITORIN FIELD DATA	NG/SAMPLING A SHEET				
	Job Name: PPS :	Job #				
ob nation	Address:	Date: 61317				
J	City: TRCOMA	Collector:				
ation	Well # $MW - B$ Well Diameter (inches): $3/4''$	Well Condition: 6200				
uform:	Depth to Water (feet):					
Vell L	Depth to Product (feet):	_ Notes on Product				
	Total Depth (ft): 24,56	Notes on bottom: HARD				
le a	Purge Volume = $1 \times VF() = \frac{1}{2} \int gal.$	Volume Factor (VF) 1"= 0.04 $2"= 0.17$ $3"= 0.38$ $4"= 0.66$ $6"= 1.5$				
/Samp matio	Start Time: 1315	Purged Volume: 736				
Purge. Infor	Purge Flow Rate: 500	Did Well Dewater Y - N Time:				
	Sample Time: 1345	Water Color/Odor				

Time	Temp (°C)	Cond. (mS/cm)	TDS (g/L)	Salinity (%)	DO (mg/L)	pH	ORP (Millivolts)	Cumulative Volume Purged
1315	14,36	6740	5,499	1469,75	,46	7,57	-176,0	- EZ
13:25	14,28	6,774	5,417	4,73	,47	7,40	-169,8	7198 G
1335	14,28	6,730	5,498	4,74	_148	7,40	-167.0	15/8/
1340	14,27	6,738	5,001	4,74	,50	7,41	-165,2	23/8
1245	14.77	6743	5,500	4,77	162	740	-163,6	315
	•							
		•						
,								
				· ·				
				·				

و مهند وزر دو

Water Level Field Form

PRS Facility

Field Event: 1911 LEVEL+SAMPLE Field Geologist(s): HAWN / UMBREDENE

Date (mm/dd/yyyy):

6.13,17

Organization: 4

Sec. 1					· · · · · · · · · · · · · · · · · · ·	•
	Well	Venting	Liquid- Level	Measurement		
Well ID	Time	Headspace PID Reading	Time	Depth to Water	Total Well Depth	Comments
	(24-h Clock)	(ppm)	(24-h clock)	(Feet)	(Feet)	
V. MIN-IA	0640	0,2	0714	4.37	9.95	
VmW-12	0642	03	0717	7:08	58.56	
MUSI	2 0646	0.5	0738	4,45	9.84	
MW-31	10650	D.L	0,740	3,61	9.82	
C03B	0652	0.6	0.745	5,09	2467	
<u>U3A</u>	0654	0.110	0746	~Z.97	9.58	
D027	0700	0.3	0742	3.07	[1,44	
V DOHB	1006	0.2	6748	6,90	28,56	
/ 1 <u>204</u> 7	10708	0.1	6750	4.34	1,87	

					SPI	ECIA	LIN	STRU	стіс	DNS/C	OMN	/ENT	rs:																		
	SPECTRA I	Labor	atorie	2S																	C		Δ	IN			: (<u> </u>		ТС	۱D)
	2221 Ross Way, Ta (253) 272-4850 Fa www.spectra-lab.com	acoma, W ax (253) 5 info@spe	A 98421 572-9838 cctra-lab.co	om												ż			1						SPE		PRC	JECT	.		
Γ	Martin Tom	.			R	etur	'n S	amp	les	: Y	N			Pag	je _	,	0	f	- Coloren		ST	A	٧D	AF	RD	2		F	308	SH	
-	CLIENT: XEO MA	>			AD	DRE	SS:					1				*****	1													CHAN	IGE
	PROJECT: TRO	- 4	······			F	IYD	ROC	AR	BON	IS		0	RG	ANIC	cs	ļ	M	IETA	LS					r1	от	HEF	3		T	
	CONTACT: HAMMY /UM	MBAROI	M	······································								107																~~~~			
	SAMPLED BY:	<u>26333</u>	4.4782	<u>~</u>	NERS							82	S					۲) ۲		5							Ę	122	101		
	PHONE: 360 352 983	FAX:	· · · · · · · · · · · · · · · · · · ·		NTAI					Ĥ		귕	VENT	A			CRA 8	PECII		ECIF								PA S	EA.		
(e-MAIL: SLOMBAR DINJ (CAEGW*	Prefer FA	× □ - ⊠	DF CC	Q		D-H-		EM (T	(90 1	N N	3 SOL		¥ m	2 ·	ALS R	VLS (S		S (SF		5			F		ECIFY	م است. ذا د	مد د د		
	PURCHASE ORDER #				SER C	H-HC		NWTF		H-TDS	HEM (F	24 VC	HLOF	25 SE			META	META	O V.	METAL		10/904	<td>DITΥ</td> <td>POIN</td> <td></td> <td>S (SPI</td> <td></td> <td></td> <td>NN.</td> <td></td>	DITΥ	POIN		S (SPI			NN.	
	SAMPLE ID	DATE SAMPLED	TIME SAMPLED	MATRIX	NUME	NWTP	BTEX	BTEX/		1664 S	1664 +	8260/6	8260 0	8270-6	8082/6		TOTAL	TOTAL	C OL	TOLP		PH 904	TX/T0)	TURBI	FLASH	BOD	SOLID		A BA		
	MW-ZA	0120	0810	W	0				1	<		Х			<u> </u>			X										z }	·大		
	MW-3A	•	0840	W	6				$\langle \rangle$	<u> </u>		X			×			$\overline{\times}$									-	К х	17		
	<u>So-24</u>	· .	0930	\mathbb{W}	6			ÿ	$\langle \forall$	1		\sim			X	-		X										< ,	2		
4	<u>2038</u>		/020	\mathbb{W}	6				< 1×	/		X			X	v.		X										x 74	4		
	(0·3A	í.	110	\mathbb{W}	6				$\langle \rangle$	1		X			X	ς.		Х									-	বন			
4	<u>-0-48</u>	-	150	~~	6			1	< \ \	/		\mathbf{X}			X			Х									-	$\langle \vee$	<		
	50-4/A-	21 31 4	也的	\sim	6			×	(7	!		×			X			X									-	\times			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MW-IA	1	1305	W	6			>	$\langle \rangle$	1		$\times$			X	/		X										$\times$			
• • • • • •	MKI-IR	ř.,	1345	W	6	~		)	$\langle \rangle$	6		X.			×	r		$\times$								-	1	$\langle \times \rangle$	-		
	AHO	6.14.17	0830	[八]	M	$\mathbb{P}$		×	X			<			X	5-		$\times$										47		X	
-	LAB USE ONLY			r			(	SIGNA	TUR	E					PRI	NTED	NAM	1E		1	C	OMF	PANY	/		47	DAT/				IE
			RELINQUISH	ED BY						~		~	×.	. a. N. [	<u>C</u> vie	ERR()	Ter I			X	FG.						- ini-	2	16	)C9	10/2
			RECEIVED B	γ (	1	$\overline{\gamma}_{0}$	34 6	e L		¢ (	£		and devilop	$\gamma 1 \downarrow$	111	Æ		-10	IT		Ser	đ	- - ``	<u>(</u> ,		(o -	14-	.17	1	0:1	$\overline{\langle}$
			RELINQUISH	ED BY												H6	é.				1			<u></u>				1	1	<u>~</u>	<u></u>
			RECEIVED B	Y																								i	+		
			Payment Terr	ns: Net 3	0 day	s. Pa	st du	e acco	ounts	s subje	ect to	1 1/2	2% p	er mo	onth ii	nteres	st. C	ustor	ner aç	 prees	to pay	all	costs	s of c	ollec	tion i	incluc	ding re	) Jasor	able	

	S	PEC	IAL	INS'	TRU	CTIC	ONS/0	CON	ИМΕ	NTS	;																					
SPECTRA Laboratories																			(	Cł	-	41	N	C	DF	= (	CI	US.	31	10	)D	Y
2221 Ross Way, Tacoma, WA 98421 (253) 272 4850 Fax (253) 572-9838																								SPE	CTR	A PR	OJE	CT #				
www.spectra-lab.com info@spectra-lab.com	L	Ret	turr	ו Sa	amp	les	: Y	' I	N			Pag	e	2	(	of	Z.		(	ST		ID,	AF	۱D		A	مع	R	บร	зH		
CLIENT:	A	DDF	RES	SS:	-							-													<u> </u>				AI (	) DRE CHAN		
PROJECT:			H	YDF	ROC	AF:	RBO	NS			OF	RGA	٩NI	cs		ſ	ЛЕТ		5						ОТ	HE	R	,				
CONTACT: HAWN / DMEARDINE									S.	æ.																		11.11				
SAMPLED BY:									19 19 19 19 19 19 19 19 19 19 19 19 19 1	S ,						<u>ر</u> (۲			۲)								8	67				
PHONE: 360-367-9835 FAX:		NIAIN					Ĩ		- 	VENTO		¥			CBA 8	PECIF		RA 8	ECIF							0	n Kanala Kanala Kanala	N. C. A.				
Prefer FAX. e-MAIL: SLOMFARDINI CAE GLUA of MAIL		3	Q		D-H	,	EM (T						AN C	n	ALS R	ALS (S		LS RC	TS (SI		45	~		Ę		ECIFY	in the	ندي ا				
PURCHASE ORDER #			OH-H		NWTF	Ч-С×	ND-H	N WEF						008 P(	MET	MET		META	META		40/90	0X/EO	IDITY	H POI		SS (SP	A.C.	FW3				1
SAMPLE ID DATE TIME SAMPLED M.	ATRIX		NWTF	BTEX	BTEX	MMTF	NWTF	16641	1 4001 8 260/	0900	00100	-0/20	10/28	8082/	TOTAI	TOTAI	Z.	TCLP	TCLP		PH 90	TXTC	TURB	FLAS	BOD	SOLIE	1.9.1					
FERD FLUNK 61417 3930	W	7				X	×		7	2			>	L		2											X	¥.				
TREP SWARK #1 6.14.17	· .	÷				X				×.																	-					
TELE ELANNE #2 G. Mitz -	: 				×	<			~	ζ																	<u> </u>					******
	1				~	$\langle  $				<																						
TREE RUDAL = 4 6.41.17 -	Varde	×				<u> </u>				8.7																						
TREP LANK #5 ( 4.1		<u>\</u>				$\leq$				<							-															
																-																
																															_	
				05	SIGN.	ATU	RE				<u> </u>		PF	RINTE	ED N	AME		<u> </u>	<u> </u>		OM	PAN	Y	L	<u> </u>	L D	ATE	1	1		ME	
RELINQUISHED	в	8	4	$\Delta$	1	~	 24			and the second sec	IAV	w	ltv	NR)	Q21	DŪ			Kit	5					(a)	μų	7	7	10	10	)	
RECEIVED BY	4	-10	In		Xe	<u>``</u>	1.).	2(	t	4	$\left  \right\rangle$	7.F	re'	IE.	-	Hc	0			5.4		c.(	2	â	(	07	$\mu$	-17		10	.15	-
RELINQUISHED	ЭBY	V	]	1																ł												
RECEIVED BY																																
Payment Terms	s: Net 30 and all of	days her d	s. Pa	st du	ue aci	cour	nts su reaard	ibjec dless	ct to s of v	1 1/2 whet	% p her s	er m	nonth s file	h inte ed in l	erest. Pierc	Cus e Co	tome WA	r agr veni	ees ue.	to pa Spec	y all	cost Labo	s of	colle	ectio	n ind 2	cludi	ng re	easor	nable	:	

SPECTRA Labo	SPECTRA Laboratorio 2221 Ross Way, Tacoma, WA 98421 (253) 272-4850 Fax (253) 572-9838							s/co らう う	MMEI By G PRO	NTS: DOZ	ю eT	re -				a en el Linna, el com		CF	IA へ	S S 0 (=	SPEC	of ctr/ ภร	<b>C</b> A PF	NOJE F	S CT #	<b>T(</b> #	DC	Y
(253) 272-4850 Fax (253) www.spectra-lab.com info@:	3) 572-9838 spectra-lab.	com	Ret		Sam	s Z- ples	<i>ө</i> с : Ү	<b>2-</b> 0	N X	Opa	ige		l'atta	of		2	S	ST/	٩N	DA	R	D	Ř	0	RI	US	нΓ	
CLIENT: @ PKS GROU	P -		ADC	RES	S:				Ē				4			arraga De series No		÷	ষ <i>হতু</i> ্					•			ADDRES	SS C
PROJECT: GROWDWATER MC	NITORI	06			HYD	ROC	CAR	BO	NS		O	RG/	ANIC	CS		MI	ETA	LS					(	отн	ER			
CONTACT: JAY / JICK @ GEO. SAMPLED BY: 253-383-4175/ PHONE: 253-383-4175FAX: JAY @ PRS PLANT: NET e-MAIL: JK OMR BACH @ GEOGLAN PURCHASE ORDER #: SAMPLE ID DATE	EJGINE BRIAN AN Prefer FAX MERCI O MAIL • COM		UMBER OF CONTAINERS	VTPH-HCID	EX	ИТРН-С Ж	VTPH-Dx	64 SGT-HEM (TPH)	64 HEM (FOG)	801624 VOA VOC 9210 R	60 CHLOR SOLVENTS	70/625 SEMI VOA	70 PAH/PNA	82808 PCB	DTAL METALS RCRA 8	TAL METALS (SPECIFY)	LP METALS RCRA 8	LP METALS (SPECIFY)		TOX 9076	RBIDITY	ASH POINT		ALIDS (SPECIFY)	JITRATE " 435 5.3	1'me	3-/WS.D VOLUNE	
SAMPLED	SAMPLED		ž	Ž		ÌŻ	12 R	<b>9</b>	<u>ě</u>	83 00	3	82	83		12	12	12	2		<u> </u> 	15			<u>%</u>	<u> </u>	<u>ิน</u>		$\frac{1}{1}$
MW-1A-121115 12-11-15	1023	W	4		94. YA	X	1			E	<u>}</u>			21		7									¥2	X	凶	
MW 10-12-113 12-11-15	1475	W	4		_	7	17		-	<u>IX</u>	<u> </u>			2	_	Ľ				er in Cole	-		$\square$	-	Ϋ́́	<u>//</u>		-
	1900	W	-	-2 <b>3</b> _		14	Ľ				_				-	K				1.10	_		$\square$		217			_
MW-31 12115 12-10-15	0000	W	싞		103	<u> </u>	Ľ			N	$\vdash$			5		K				in the second							++	+
	1500	W	4			14	Y			7				<u>N</u> -		1					-		$\vdash$	-	<u>/</u>			10
SQ-24-12/015 12-10-15	1300		4	$\vdash$		1 V	R				-			5		<u>7</u> N			-		-		Η	_		<u> </u>		
So-44-121015 121045	1300	W	4	÷		17	F			N/	-			5		17					-		Η	+		7 ^		
CO-4B-171015 12-10-15	1050	w	긬	$\vdash$		K	B			X				5		6					+		Н	_		<u>/</u>		
RIA) SATE RIA. 1/ 1411 512-1-15	1133	w	4		-	K	R		2					$\overline{\mathbf{S}}$		Ę	$\left  \right $				-		$\vdash$	$-\langle$		7	$\mathbf{H}$	
	1250	w			<u></u>	<u>1</u>			Q.E.	ſ					A AFE	[[						and the			ГЦ	7		
US Mail UPS Fed Fy Courier Client	LAB USE ONLY Shipped Via: IS Moil LUBS Ford Fig. Or I RELINQUISHE				Ž	2		T	1		D	Ż		<u>7</u> 1	(me	1	-	$\mathbf{r}$	EAL	- L		-10	13		<u>-</u> -) <	1		
Shipping Container:	RECEIVED	DBY	ſ	The second	5	1			+		<u></u> /	<u>r</u>	· L	<u>erc</u> Li.	<u>ارت م</u>	 [		<u>ی م</u> ک	SHATLA IN				<u> </u>		2.7			
Cooler Box Envelope None	RELINQUISH	IED BY		166		644	444	4	Le la	1	-1		19		<u> </u>	10		≯		4/						- -	1.10	ك
Tracking #	ЭВҮ								+								<b>-</b>					<u> </u>			+			
Custody Seals: YN Intact: Y N Cooler Temp. 1.4 Sample Temp. 4.8	ns: Net 3 s and all o	0 day othe	ys. Pa r costa	ist due s of co	e acci ellecti	ounts on re	s subj gardi	ect to ess of	1 1/2 whe	2 % p ther :	er m suit i	ionth s file	Intere d in P	st. C erce (	usto Co.,	mer a WA v	agree /enue	s to p . Spe	ay al ectra l	l cos Anal	sts of <i>ytical</i>	colle , <i>inc</i> .	ction	inclu	l ding r	easona	able	

SPECTRA Labo	SPECTRA Laboratori										IENT PV (	is:	20	3						3	-17	4	N	PEC		C A PF		JS ECT	<b>)</b> *#	0	٥	1
2221 Ross Way, Tacoma, V (253) 272-4850 Fax (253)	WA 98421	8	<i>?</i> ₽ Rei	6	150 019 150	nev Hj mol	82	NC 2-0 7	- <i>El</i>	25 2-2 N	Pros So N	න Par	<b>E0</b>	r# 9		đ	5	)	Ĺ	T.	ΑΡ	10 VD	15 )A	<u>וז</u> RI	27 D	5	Ψ J	R		SH		
CLIENT: PRS GROUP	pectra-rab.	.com	ADE	RE	SS:						Ě					<u>.</u>										ť				ADD CH	RESS	
PROJECT: GROUND WATER MO	NITARY	ę			HY	DR	oc	AR	BO	NS			OR	GAI	NICS	\$	No. of Concession, Name	ME	ETA	LS						(	OTF	IER				
CONTACT: JAY NICK Q GEOR SAMPLED BY: BRIAN ANDE PHONE: 253-383-4175FAX: SAYO MIS PLANT NET e-MAIL: NON REACT Q LEOGNOW	Prefer FAX	<u>к</u>	OF CONTAINERS	٥		9-He	\$		EM (TPH)	-OG)		A VOCS SZOR	SOLVENTS	MI VOA	A R		ALS RCRA 8	ALS (BPECIFY) SEE	LS RCRA 8	LS (SPECIFY)		5	8		11		ECIFY)	ATE थ्रि. ही दे	JE BY EDY 875.4			
PURCHASE ORDER #: DATE   SAMPLE ID DATE   SAMPLE ID SAMPLED	TIME	MATRIX	NUMBER (	NWTPH-HCI	втех	BTEX/NWTF	O-HALIMN	XQ-H4LWN	1664 SGT-H	1664 HEM (F		8260/624 VO	8260 CHLOF	B270/625 SE	8270 PAHPI 8082)808 PC		TOTAL MET	TOTAL MET	TCLP META	TCLP META		PH 9040/904	TX/TOX 0070	TURBIDITY	FLASH POIN	BOD	SOLIDS (SP	AUTR	SULFA	-		
FIELD BLANK#1-121115 12-11-15	1245	W	7				9	R	J. Sold			স			19			8										X	R	1		
TRIP BLANK#1-121115 12-11-15		δ	1			h	R					Ŷ																				
TRIP REANK# 2-12115 12-21-15	-	W	1				9					Ý																				
TRIPBLANK#3-121115 12-11-15	-	W	1				A					-2																				
TRIP BLANK #4-12115 12-11-15		W	)				Ż					P																				
TRIP BLANK#5-12115 12-11-15	-	W				·	Я	)		2		$\mathcal{P}$																				
50-4A-9-121015 12-10-15	1100	Ŵ	Z				M	Ý				X			X	ŀ		$\lambda$						L				$\lambda$	X			
3																																
,																																
)			Ŀ																													
LAB USE ONLY Shipped Via:			0	1	sign	UTA	RE	7		1		2	PF	RINTE	DNA	ME	1	a de la como		( 1444) 1444)	COM	PAN	Y			DA	TE	7		TIME		
US Mail UPS Fed Ex Courier Generations	RECEIVE	D BY	2	n -	e i k	So Mu	<u>k</u>		<u>so</u> he	¢/		<u>1</u> 1	<u>»-</u> »(-)	4	1) 41.	ni mi	04 14	í n		3		en A	FLA FLA	0E :	A Ļ		<u> </u>	1-1	<u>&gt;</u> জা	3.	·21	<u>्र</u> ७
Box Envelope None	Hope None RELINQUISH												· · ·	f				مگرين ا		2	<del>ү</del> зе	**							Ť		fannar de la 2 de la 2	
Tracking #	D BY																		t –							<u></u>		$\uparrow$				
Custody Seals: Y.N Intact: Y N Cooler Temp. 4-9 Sample Temp. 4-9	ms: Net ( as and all	30 da othe	lys. F r cos	Past of	due a colle	acco ectio	unts n re	s sub gard	ject lless	to 1 of w	1/2 ⁽ /heth	% pe Ier si	r mo uit is	nth in filed i	nteres In Pie	st.C erce (	usto Co.,	mer WA	agre vent	est .e. S	o pa Spec	iy all tra A	cos Analy	ts of <i>ytica</i>	colic I, Inc	əctio:	n inc	udin	g rea	sonat	le	

-. 2

# **SPECTRA** Laboratories

	Petroleum	Peclaiming		r	NATE.		·
NAME:	C/O GeoEn	aineers. Inc	·	PRO	IECT.	Groundwater Monitorin	
			<u> </u>	CONT		law Johnson / Jacob L at	<u>9</u>
	3003 Ta	wor Way			AUT.	253-292-4475	
	Tacoma \	M/A Q8421		FI	ONE.	203-303-4170	
ADDRESS:		11A 30721			JELL.		
				E	MAIL:	jay@prsplant.net	
						MIN 1997 1 1997 1 1997 1 1997 1 1997 1 1997 1 1997 1 1997 1 1997 1 1997 1 1997 1 1997 1 1997 1 1997 1 1997 1 1	
		C DATE:	·		FEE:		
W/C		DATE:	:			-	
	5 <b>2</b>						
COOLER	BLUE ICE	coc 🚺 (	CUSTODY	SEAL		SAMPLING INSTRUCTIONS	
	Bottle quantities below c	cover 9 Sampl	les, 1 - Fiel	ld Duplica	ate, 1 -	Field Blank, 2 - MS/MSMSD, 1	
NOTES:	Rinsate, 1 - Extra set in	case, 2 - Trip	Blanks (VC	JA)			
QUANTITY	BOTTLE TYPE	QUANTITY	BOT	TLE TYP	E	QUANTITY BOTTLE TY	PE
30 *	L Amber	15 **	250ml Poly	V		4oz Glass Jar	
15 °``	L Amber Pres HCL	15	250ml Poly	y Pres HN	03 ′	8oz Glass Jar	
	L Amber Pres H2SO4		250ml Poly	y Pres H28	SO4 [']	Bacteria Bottle	
	16oz Amber		500ml Poly	J	•	Nitrate Bottle	
	16oz Amber Pres HCL		500ml Poly	, √ Pres NA(	он	P-Cup	
	Amber WM		liter Poly	r -	-	P-Cup Pres	
	L Amber WM Pres HCL		= Fuel Bottle	<b>`</b>	· · ·	VOA (2) Pres HCL	_
				1		1 TRIP BLANKS	
* Spectra wil	ll provide one extra unr	preserved liter	r for PCB (	and Dx b	ackur		
** One 250m	I non preserved poly is	sufficient for	r hoth the	Nitrate a	nd Su	'' Ifate analyses	
<u> </u>	AMPI ING SUPPLIE	is				TEST REQUIREMENT	'S
							<u> </u>
	ITEM		-		2	NWTPH-DY	·
QUANTIT	Panneha nH test strips	\$ 43.80	4		-	NWTPH-G	
	Vamnire Pump	32.79	-			Total Metals (As, Cr. Pb)	
	Coring Handle	18.59			ź	PCB's	
	Disp. Coring Syringe	2.19	1			Nitrate	
		1	1			Sulfate	
Spectra	Laboratories will provid	e sample bottl	es. coolers	and ice	at no c	charge, provided that samples a	ire
returned for	r analysis. Clients will b	e charged for	coolers an	d bottles	not re	turned, bottles returned unused	l, and
		for the co	st of shipp	ing totle	2S.		
		'n	NY	LV			
	Client Signature	har	Ut		Rafwana (	Date: 1/0/201	7

 $\bar{\nu}$ 

ASSOCIATED ENVIRONMENTAL GROUP, LLC DAILY FIE	ELD REPORT
Project Name: <u>PUS GROW</u> Site Address: <u>359 F</u> Site Conditions: <u>359 F</u>	Project No: $16 - 123$ Date: $12,14,17$ AEG Staff: $54,400$ Arive Time: $0830$ Leave Time: $1400$
Our Activities:	
-ARD DASITE D' MERSURE DE	PTCI TO DATER !!
INTEL MONTADELLO MORE DEF	TH, MARKLYTZEAR,
- ALL WELLS KILLESSED.	
1 (1997)	
- MW-13 POSSIBLE REPLACEMENT	OF UPL FLUG/CAP
FELCOMMOND. LEANED (A!	
Sub Activities:	
	·
·	

# **PRS Facility**

Field Event: 1214,1 Field Geologist(s): HAWN

Water Level Field Form

M.

2.14.17 Date (mm/dd/yyyy): AES Organization:

	Well	Venting	Liquid- Level	Measurement		
Weli ID	Time	Headspace PID Reading	Time	Depth to Water	Total Well Depth	Comments
C	(24-h Clock)	(ppm)	(24-h clock)	(Feet)	(Feet)	
DOZA	0900	0,5	1316	1.99	11.39	
MW-3A	0905	0.2	1.315	2.61	9.81	
MW-ZR	0910	DE-	1317	3,59	9.84	
0-38	0915	2.0	1339	5,75	24,69	
CO-3A	0920	0,9	1337	1,96	9,59	
MW-IK	6925	[16	1322	3.54	9.85	
mw-IB	0930	30.3	1226	7,08	28,55	CLANNER 19
JOHB	1300	0.2	1347	6.89	1855	CLENNED VALL (M
504R	1305	0,6	1346	3.39	11:87.	

# **PRS Facility**

# Monitoring Well Inspection Form

HAWA PRS Inspector

Date: 12,14,17

1								1 Contraction of the local division of the l	
Well I	ls well D labeled?	Surrounding Impacts?	Well/pump condition	Internal condition (is cap secured)	Monument Condition	Well Accessible?	Recent construction in area that may have caused changes?	Other problems	Maintenance
<u>60-2</u>	A Y55	NONE	6000	YES	600	YES	'NO	NA	NA
Muie	W YEZ	NONE	Good	YES	6002	YES	NO	N/A	NIn
W.7	A YES	NONE	6000	YES	60007	YES	ND	NA	NIM
<u>(15)</u>	YES	Nové	6000	Yes	FLOYON	ŚŃ,	NO	NA	Alla
031	a Viz	Marke	6000	YES	Blocen TABS	YES	NB	N/A.	Rila
WW1	A VES	NINE	Gasp	Yes	6000	YE	5 Civi	AVA	A 1/A
MW	F YEL	Mone	600	YES	6220	YES	ND	CLEANED	CLEARED
504	5 455	rpr	6000	its	G600	YES	120	NUM	A.V.a
50H	a 185	MAYE	6000	YES	600)	YES.	ND	NA	L <u>TA</u> ANIA
				•					



# **APPENDIX C**

DATA VALIDATION REPORT

605 11th Ave. SE, Suite 201 • Olympia, WA • 98501 Phone: 360-352-9835 • Fax: 360-352-8164 • Email: admin@aegwa.com



# Data Validation Report Data Validation Review Report-EPA Stage 2B

# Subject:PRS Hazardous Waste Disposal Facility Groundwater Monitoring<br/>Second Quarter (June) 2017 Groundwater Samples

This validation report summarizes the review of analytical results for five trip blanks, one field blank, and 10 water samples collected June 13-14, 2017. The samples were collected by Associated Environmental Group, LLC (AEG), and submitted to Spectra Laboratories, Inc. (Spectra), located in Tacoma, Washington, and partially subcontracted Spectra Analytical - Kitsap located in Poulsbo, Washington. Spectra sample data group (SDG) number 2017060394 was reviewed in this report. Qualifications made during the data validation process can be found in the Spectra reports included in Appendix A.

## CHEMICAL ANALYSES PERFORMED

Spectra performed laboratory analyses on the groundwater samples using the following methods:

- Petroleum Hydrocarbons by Method NWTPH-Dx
- Gasoline-Range Hydrocarbons by Method NWTPH-Gx
- Volatile Organic Compounds (VOCs) by Method SW8260C
- Polychlorinated biphenyls (PCBs) by Method SW8082A
- Total Metals by Method EPA 6020B
- Nitrate + Nitrogen by SM4500-NO3 F
- Sulfate by Method SM4500-SO4 E

## DATA VALIDATION AND QUALIFICATIONS

The following comments refer to the laboratory's performance in meeting the quality assurance/quality control (QA/QC) criteria outlined in Appendix B of the Quality Assurance Project Plan.

## FIELD DOCUMENTATION

Field documentation was checked for completeness and accuracy. The chain-of-custody forms were signed by AEG and Spectra at the time of sample receipt; the samples were received cold and in good condition. The sample cooler temperature recorded at the laboratory was 9.6 degrees Celsius. The samples collected on June 13, 2017 were preserved on ice during sample collection and then stored in the AEG sample refrigerator overnight. After sample collection was completed on the morning of June 14, 2017, samples were placed in the sample cooler, on ice, and delivered promptly to the laboratory. It was determined through professional judgment that since the samples collected on June 13, 2017 were properly cooled and the



samples collected on June 14, 2017 were received by the laboratory the same day they were collected, this temperature should not affect the sample analytical results.

## HOLDING TIMES AND SAMPLE PRESERVATION

Samples were appropriately preserved and analyzed within holding times.

## FIELD QUALITY CONTROL

#### Trip Blanks

Five trip blanks were collected and analyzed for NWTPH-Gx and VOCs in association with these sample sets. All trip blanks were non-detect for all target compounds. No data were qualified based on the trip blank result.

## Field Blanks

Field blanks are analyzed to indicate whether any cross contamination may have occurred from sampling equipment or ambient conditions. Field blanks should be collected at a frequency of 1 per 20 samples. One field blank was collected during this sampling event, thus satisfying the criteria.

#### LABORATORY QUALITY CONTROL

#### Method Blanks

Method blanks are analyzed to ensure that laboratory procedures and reagents do not introduce measurable concentrations of the analytes of interest. A method blank was analyzed with each batch of samples, at a frequency of 1 per 20 samples. For the sample batches, method blanks were analyzed at the required frequency. Methylene Chloride, 1,2,3-trichlorobenzene, and 1,2,4-trichlorobenzene were detected above the reporting limits in the method blank analyzed on 6-27-17 associated with the SDG 2017060394. Since these compounds were all non-detect in the associated samples, no qualification is needed in the associated data.

#### Surrogate Recoveries

Surrogate compounds are added to samples, QC samples, and all blanks to monitor the performance of the analytical method. Surrogates are utilized in organic analysis. Surrogates are specifically chosen to be chemically similar to target compounds but unlikely to be found in environmental samples. While all of the surrogate percent recoveries for field samples were within the control limits specified on Table B-2 in the QAPP, several surrogates' percentages were above Spectra's in-house recovery limits found in Table 1 below.



The samples affected are MW-2A, MW-3A, SO-2A, CO-3B, CO-3A, SO-4B, SO-4A, MW-1A, MW-1B, SO-4A Dup, Field Blank, Trip Blank #1, and Trip Blank #2 for VOC and Gx analyses. Samples SO-4A and SO-4A Duplicate had concentrations above the reporting limits for VOCs.

Samples SO-2A, CO-3B, CO-3A, SO-4B had surrogates above Spectra's in-house recovery limits for Dx analyses. All four of these samples were non-detect for diesel- and oil-range hydrocarbons.

The recoveries mentioned are above the specified range of acceptance and a possibility of false positives exists. Non-detect results are considered accurate. And since all recoveries are within the Project Quality Objectives listed in Table B-2 of the QAPP, no data were qualified based on the surrogate recoveries.

## Laboratory Control Samples

A laboratory control sample (LCS) is a sample that is not expected to cause analytical interference which is spiked with a known amount of analyte. The percent recovery control limits for LCS analyses can be found in Table 1 below. One LCS analysis should be performed at a minimum of once per batch of up to 20 samples of similar matrix. Laboratory control samples were analyzed at adequate frequency and recovered within specified limits, with the following exception:

• SDGs 2017060394: The percent recovery for Diesel analyzed on 7-1-17 was greater than the control limits in Table B-2 of the QAPP. Field samples MW-1A and MW-1B were analyzed with this analytical batch and had positive results for this target analyte. The concentration values for these two samples may be biased high based on the LCS recovery.

## Laboratory Duplicates/Field Duplicates

Internal laboratory duplicate analyses are performed to monitor the precision of the analyses. Two separate aliquots of a sample are analyzed as distinct samples in the laboratory and the relative percent difference (RPD) between the two results is calculated. Duplicate analyses should be performed once per analytical batch. If one or more of the samples used has a concentration less than five times the reporting limit for that sample, the absolute difference is used instead of the RPD. This was the case for Diesel & Oil and cis-1,2-Dichloroethene, which were non-detect in one of the samples, and detected at less than five times the reporting limit. The RPD control limits are specified in Table B-2 of the QAPP. Laboratory duplicates were analyzed at the proper frequency and the specified acceptance criteria were met with the exception of Sulfate with an RPD of 21%. The sample used as a duplicate was collected as a field duplicate and satisfies both requirements.


## Instrument Tuning

Instrument tuning for analyses by gas chromatography/mass spectrometry (GC/MS) are performed to ensure that mass resolution, identification, and sensitivity of the analyses are within specification of the analytical method. Instrument tuning is performed at the beginning of each 12-hour period during which samples or standards are analyzed. The frequency and specified acceptance criteria were met for the VOC method.

# **Continuing Calibrations**

The continuing calibrations were performed at proper interval as dictated by the laboratory methods and consisted of the appropriate number of standards. For inorganic analyses, the percent recoveries were within the control limits of 90 and 110 percent. For organic analyses, the percent difference (%D) and relative response factor (RRF) values were within the control limits.

## **Reporting Limits**

The contract required quantitation limits (CRQL) were met by the laboratory for each target analyte throughout this sampling event as specified in Table B-3 of the QAPP.

Table 1 below lists the current recovery limits and RPDs obtained from Spectra on December 28, 2017.

	Analytical	LCS %	MS %	Surrogate	MS/MSD	Duplicate
	Method	Recovery	Recovery	Recovery	RPD	RPD
Total Metals	EPA 6020A	85-115	70-130		20	20
TPH-Diesel	NWTPH-Dx	70-130	50-150	70-130	20	20
TPH-Gasoline	NWTPH-Gx	85-115	70-130	70-130	20	20
PCBs	EPA 8082A	70-130	70-130	70-130	20	20
VOCs	SW8260C	85-115	70-130		20	20
1,1-Dichlorethene	SW8260C	85-115	70-130		20	20
Benzene	SW8260C	85-115	70-130		20	20
TCE	SW8260C	85-115	70-130		20	20
Toluene	SW8260C	85-115	70-130		20	20
Chlorobenzene	SW8260C	85-115	70-130		20	20
Dibromofluoromethane (surr)	SW8260C			70-130		
1,4-Difluorobenzene (surr)	SW8260C			70-130		
Toluene-d8 )surr)	SW8260C			70-130		
4-Bromofluorobenzene (surr)	SW8260C			70-130		
Nitrate + Nitrogen	SM4500E	80-120	70-130		20	20
Sulfate	SM4500F	80-120	70-130		20	20

# TABLE 1. CURRENT RECOVERY LIMITS AND RPDS



## Miscellaneous

The requested analysis methods in Table 1 of the Groundwater Monitoring Plan (PRS 2015) for nitrate and sulfate were Methods EPA 353.3 and 375.4, respectively, are no longer in use at Spectra. Spectra currently uses the SM4500-NO3 F for nitrate analysis and the Method SM4500-SO4 E for sulfate. These methods supersede the requested analysis methods.

# **OVERALL ASSESSMENT**

As was determined by this data validation, the laboratory followed the specified analytical methods. Accuracy was acceptable, as demonstrated by the surrogate, LCS, and MS/MSD percent recovery values, with the exceptions noted above. Precision was acceptable, as demonstrated by the MS/MSD and laboratory/field duplicate RPD values, with the exceptions noted above. The data are acceptable for the intended use.