Water Supply Wells Within a 1-Mile Radius BSB Property, Kent, Washington

Well				Report	ed				In	
Number	Listed	Year		Locati	on	Drilled	Open		DOH	
on Map	Owner	Installed	Т	R	S	Depth	Interval	Use	Databases	Notes
Wells t	hat likely no lo	onger exi	st							
1	Liesinger	1914	23	5	31N	220	NA	D, Irr?	Yes	Flowed at 25 gpm
2	Liesinger	1916	22	5	6D	196	NA	D, Irr?	Yes	Flowed at 15 gpm
3	Liesinger	1921	22	4	1A	260	255 - 260	S, Irr	No	Flowed at 55 gpm
4	Wilson	1955	22	5	6N	212	202	D, Irr?	Yes	Flowed, yielded 1730 gpm, may be well referenced in a 1986 abandonment log
5	Komoto	1956	22	4	12H	321	313 - 321	D, Irr?	Yes	Flowed at 75 gpm
6	Brewer	NA	22	5	6M	300	NA	D	Yes	Well not found in field search
7	Bridges	NA	22	5	6E	200	NA	D	Yes	Well not found in field search
8	Carrll	NA	23	5	31M	60	NA	D	Yes	
9	Dickison	NA	23	5	31M	385	NA	D	Yes	
10	Hickson	NA	23	5	31M	116	NA	D	Yes	
11	Ikuta	NA	23	4	36R	370	NA	D	Yes	
12	Nash	NA	22	5	7E	92	NA	D	Yes	
13	Nowotny	NA	22	5	6N	210	NA	D	Yes	
14	Tanaka	NA	22	4	12D	20	NA	D	Yes	
15	Wilson	NA	22	5	6N	155	NA	D	Yes	
Wells t	hat are likely t	o exist o	r are k	nown	to exis	st				
16	Krohn	1980	22	5	6B	49	49	D	Yes	Yields 20 gpm; reported address = 9235 South 192nd Street
17	City of Kent	1982	22	5	7F	367	336 - 367	Μ	Yes	Located SE of 212th and Hwy 167, flows at 450 gpm, "Well #1"; unused per DOH
18	City of Kent	1983	22	5	6P	395	184 - 221	Μ	Yes	S 208th Street well, flows at 450 gpm; public supply per DOH
19	City of Kent	1983	22	5	7F	463	331 - 356	М	Yes	Located at 212th and Hwy 167, flows at 550 gpm, "Well #2"; public supply per DOH
20	Koopmans	1984	22	5	7C	55	50 - 55	D	No	Yields 16 gpm
21	City of Kent	1998	22	4	1P	100	85 - 95	Т	No	Located at 72nd Ave S next to fire station, not currently in use
22	City of Kent	2001	22	5	7F	522	290 - 480	Μ	Yes	Located at SE corner of 212th and Hwy 167, flows > 200 gpm, "Well #3"
23	Jolly	NA	22	5	6K	NA	NA	D, S	Yes	Reported address = 9455 South 202nd Street
24	K-T Supply	NA	22	5	6G	NA	NA	NA	Yes	Reported address = 19903 92nd Avenue South
25	Sloan	NA	22	5	6K	NA	NA	D	Yes	Reported address = 9206 South 200th Street
26	Anderson	NA	22	5	6K	100	NA	D	Yes	
27	Bunkowski	NA	22	5	6Q	90	NA	D	Yes	
28	Canyon Home	NA	22	5	6G	200	NA	D	Yes	

Water Supply Wells Within a 1-Mile Radius BSB Property, Kent, Washington

Well				Report	ted				In	
Number	Listed	Year		Locati	on	Drilled	Open		DOH	
on Map	Owner	Installed	Т	R	S	Depth	Interval	Use	Databases	Notes
29	DeWitt	NA	22	5	6K	161	NA	D	Yes	
30	Engle	NA	22	5	6P	150	NA	D	Yes	
31	McComb	NA	22	5	6Q	45	NA	Irr	Yes	
32	Minshall	NA	22	5	6L	178	NA	D	Yes	
33	Upper	NA	22	5	6C	30	NA	D	Yes	
34	Wagner Jacob	NA	22	5	6L	196	NA	D	Yes	
35	Warehime	NA	22							
36	Wieser NA 22 4 1H 209 NA Ind Yes Conflicting information in DOH database; we								Conflicting information in DOH database; well existence and/or location questionable	
Notes:	1. Well location	is shown of	n Figu	re 4.						
	2. Well logs pro	ovided in A	ppend	ix A.						
	3. Location abb	reviations:	T = tc	ownshi	p (north)), $R = rat$	nge (east),	S = sec	tion and sul	bsection identifier.
	4. Information a	about wells	1 thro	ugh 5	and 16 tl	nrough 2	2 from the	Washin	ngton State	Department of Ecology's well log database.
	5. Information a	about wells	6 thro	ugh 15	5 and 23	through	36 from th	e Wash	ington State	e Department of Health's (DOH's) databases.
	6. Drilled depth	s and open	interv	al dept	ths in fee	t below	grade.			
	7. $NA = not available.$									
	8. Well uses:	D = domes	stic suj	oply	M = mu	nicipal s	upply			
		Irr = irriga	tion su	upply	S = stoc	k wateri	ng			
		Ind = indu	strial s	upply	T = test	well				

Parcel G and South 200th Street Well Completion Data BSB Property, Kent, Washington

				Monitoring	Surface						Filter	
	Date			Point	Casing Rim				Boring	Screen	Pack	
Well	Installed	Northing	Easting	Elevation	Elevation	Well Type	Monument	Log	Depth	Depth	Depth	Seal Depth
Shallow	Aquifer Z	one Monito	oring Wells									
Ls	07/15/87	157,158.27	1,294,518.78	24.02	25.18	2" SS, 0.010"-slot size	Above	С	18	5 - 15	4 - 19	0 - 4
HY-1s	06/25/82	157,370.32	1,294,202.23	24.19	24.33	2" PVC	Above	В	20.5	14 - 19	10 - 20.5*	0 - 10
HYCP-2	12/03/84	157,370.41	1,294,617.54	20.47	21.57	2" Sch 80 PVC, 0.010" slots	Above	В	28	8 - 28	6 - 28	0 - 6
HYCP-3s	12/04/84	157,190.45	1,294,417.09	24.03	24.47	2" Sch 80 PVC, 0.010" slots	Above	С	13	8 - 13	7 - 13	0 - 7
HYCP-4	12/03/84	157,188.39	1,294,297.21	23.90	24.36	2" Sch 80 PVC, 0.010" slots	Flush	В	33	11 - 33	7 - 33	0 - 7
HYCP-5	03/15/89	157,331.49	1,294,674.50	22.31	23.01	2" SS, 0.010"-slot size	Above	В	31.5	10 - 30	7 - 31.5	0 - 7
HYCP-6	03/14/89	157,247.92	1,294,672.18	23.52	23.69	2" SS, 0.010"-slot size	Above	В	31.5	10 - 30	7 - 31.5	0 - 7
HYO-2	11/29/84	157,368.19	1,294,678.22	20.27	20.62	2" Sch 80 PVC, 0.010" slots	Flush	С	18.5	8.5 - 18.5	7 - 18.5	0 - 7
Intermed	liate Aqui	fer Zone M	onitoring We	lls								
HY-1i	12/13/85	157,364.56	1,294,202.34	24.89	25.15	2" Sch 80 PVC, 0.010" slots	Above	С	80	30 - 40	28 - 42	0 - 28, 42 - 52^
HYCP-1i	12/03/04	157,367.28	1,294,673.31	21.33	21.35	2" Sch 80 PVC, 0.010" slots	Above	С	73	16 - 36	14 - 45	0 - 14
HYCP-3i	12/01/84	157,190.43	1,294,408.33	23.45	24.25	2" Sch 80 PVC, 0.010" slots	Above	С	33	22 - 32	20 - 33	0 - 20
Deep Aq	uifer Zon	e Monitorin	g Wells and	Piezometers	S							
Ι	07/13/87	157,361.79	1,294,379.27	24.14	24.36	2" Sch 80 PVC, 0.010" slot size	Above	В	86	74 - 84	66 - 84	0 - 66
Ld	07/15/87	157,154.91	1,294,506.20	24.19	24.45	2" SS, 0.010"-slot size	Above	В	82.5	69 - 79	67 - 82.5	0 - 67
HY-1d	12/18/85	157,352.31	1,294,202.00	25.60	21.35	2" Sch 80 PVC, 0.010" slot size	Above	С	96	84 - 94	81 - 96	0 - 81
HYCP-1d	12/03/84	157,367.28	1,294,673.31	21.27	21.35	2" Sch 80 PVC, 0.010" slot size	Above	С	73	53 - 73	14 - 45, 47 - 49.5,	0 - 14, 45 - 47,
HVO 1	11/20/84	157 266 94	1 204 679 29	21.12	21.20	2" Sah 80 BVC 0.020" slat size	Abovo	D	915	525 825	52 - 75 15 - 94 5*	49.5 - 52
Extraction	n Wells	137,300.84	1,294,078.28	21.13	21.20	5 Sell 80 I VC, 0.020 Slot Size	Above	Б	04.3	55.5 - 85.5	15 - 64.5	0-15
HYR-1	03/28/89	157.345.31	1.294.623.18	18.69	20.89	6" SS. 0.010" slot size	Above	В	35	10 - 30	8 - 35	0 - 8
HYR-2	02/27/90	157.355.66	1.294.386.77	19.49	22.74	6" SS, 0.010/0.015" slot sizes ^{&}	Flush	В	35	9 - 29	7 - 35	0 - 7
Abandor	ned Monit	oring Wells	and Piezom	eters							,	
HTP-1	01/24/81	_	—	—	_	2" stainless steel well point	Above	В	10.5	7 - 10.5	None	0 - 6
HTP-2	01/24/81	_	_	_	_	2" stainless steel well point	Above	В	10.5	7 - 10.5	None	0 - 6
HTP-3	01/24/81	_	_	_	_	2" stainless steel well point	Above	В	10.5	7 - 10.5	None	0 - 6
HTP-4	01/24/81	_	_	_	_	2" stainless steel well point	Above	В	10.5	7 - 10.5	None	0 - 6
HTP-5	01/24/81	_	_	_	_	2" stainless steel well point	Above	В	10.5	7 - 10.5	None	0 - 6
HTP-6	01/24/81	_	_	_	_	2" stainless steel well point	Above	В	10.5	7 - 10.5	None	0 - 6
HYCP-1s	11/29/84	_	_	_	_	2" PVC, 0.010" slots	Flush	С	13	8 - 13	6 - 13	0 - 6

Parcel G and South 200th Street Well Completion Data BSB Property, Kent, Washington

				Monitoring	Surface						Filter		
	Date			Point	Casing Rim				Boring	Screen	Pack		
Well	Installed	Northing	Easting	Elevation	Elevation	Well Type	Monument	Log	Depth	Depth	Depth	Seal Depth	
HYCP-3d	12/01/84	_	—	—	-	2" Sch 80 PVC, 0.010" slot size	Above	С	79	59 - 79	56 - 79	33 - 56	
HYO-3	11/30/84	_	_	_	_	3" Sch 80 PVC, 0.020" slot size	Above	В	91	47 - 77	35 - 78	0 - 35, 78 - 91	
HYO-4	11/30/84	_	_	_	_	2" PVC, 0.010" slots	Flush	С	18	8 - 18	7 - 18	0 - 7	
Notes:	Northing/Eas	ting in feet relat	ive to the WA Stat	e Plane System I	North Zone (NAI	D 83).		HYCI	-1i and HY	CP-1d complete	d in the same borehole.		
	Monitoring p	oint (top of well	casing) in feet rela	ative to the Natio	onal Geodetic Ve	rtical Datum (NGVD 29).		HTP p	oiezometers	(completions ap	proximate) abandoned du	uring 1987	
	All depths sh	own in feet belo	w ground surface.					and 1	988 closure	activities.			
	SS = stainless	s steel.	Above = above-gr	ade completion.		Below = below grade completion.		HYCP-1s and HYO-4 abandoned sometime after June 1988.					
	B = boring lo	g with well com	pletion shown.			C = well completion figure.			HYO-3 abandoned sometime after January 1986 due to grout intrusion				
	* = lower por	rtion of filter pac	ck includes native i	naterial.		$^{\circ}$ = boring wall caved in 52 - 80 feet bgs.		into t	he filter pac	:k.			
	& = 0.010" sl	lot size, 8.85 - 1	8.85'; 0.015" slot s	ize, 18.85 - 28.85	5'.								

Off-Site Well Completion Data BSB Property, Kent, Washington

	Date				Boring	Screen	Filter Pack		
Well	Installed	Well Type	Monument	Log	Depth	Depth	Depth	Seal Depth	Comments
Shallow	Aquifer 2	Zone Monitoring Wells and Pie	zometers						
Bs	06/19/87	2" SS, 0.010" slot size	Above	С	17	4 - 14	3 - 17	0 - 3	
Cs	06/11/87	2" SS, 0.010" slot size	Above	С	17	4 - 14	3 - 17	0 - 3	
Gs	07/09/87	2" SS, 0.010" slot size	Above	С	17.5	5.5 - 15.5	3.5 - 15.5	0 - 3.5	
Hs	07/06/87	2" SS, 0.010" slot size	Flush	С	18	5 - 15	3 - 18	0 - 3	
Ks	07/29/87	2" SS, 0.010" slot size	Flush	С	19	5 - 15	4 - 18	0 - 4	
HY-2	06/25/82	2" PVC	Above	В	20	9 - 14	5 - 20	0 - 5	Heave from 14 to 20 feet
HY-3	06/25/82	2" PVC	Above	В	20	10 - 15	5 - 20	0 - 5	Heave from 13 to 20 feet
HY-4	06/25/82	2" PVC	Above	В	20	9.5 - 14.5	5 - 20	0 - 5	Heave from 15 to 20 feet
HY-5	10/05/83	2" PVC	Flush	В	23.5	13.5 - 23.5	12.5 - 23.5	0 - 12.5	Formation sand used as filter pack
HY-6	10/05/83	2" PVC	Flush	В	26	16 - 26	10 - 26	0 - 10	Formation sand and silt used as filter pack
HY-7s	10/06/83	2" PVC	Flush	В	30.5	12.5 - 22.5	11.5 - 30.5	0 - 11.5	Formation sand used as filter pack
HY-7ss	12/30/85	2" SS, 0.010" slot size	Flush	С	25	12.5 - 22.5	11.5 - 25	0 - 11.5	Completion from 1/7/86 well completion sketch
HY-9	09/05/84	2" PVC	Flush	В	25.5	12 - 22	8 - 25.5	0 - 8	Heave from 20 to 25.5 feet
HY-11s	12/20/85	2" PVC, 0.010" slots	Flush	С	18	8 - 18	6 - 18	0 - 6	Completion from 1/7/86 well completion sketch
HY-12s	07/11/03	2" Sch 40 PVC, 0.010" slots	Flush	В	30	20 - 30	17 - 30	0 - 17	
HY-13s	07/11/03	2" Sch 40 PVC, 0.010" slots	Flush	В	30	20 - 30	17 - 30	0 - 17	
HYHT-1 [^]	Sep-84	2" stainless steel well point	Above	NA	15	13 - 15	None	NA	
HYHT-4 [^]	Dec-85	2" stainless steel well point	Above	С	15	13 - 15	None	NA	
Intermed	diate Aqu	ifer Zone Monitoring Wells an	d Piezomet	ters					
D	07/01/87	2" Sch 80 PVC, 0.010" slots	Flush	В	100	43 - 53	40 - 57.5	0 - 40, 57.5 - 76	
Gi	07/09/87	2" SS, 0.010" slot size	Above	С	41	28 - 38	25 - 41	0 - 25	
Hi	07/06/87	2" SS, 0.010" slot size	Flush	С	40	28 - 38	25 - 40	0 - 25	
Ki	07/29/87	2" SS, 0.010" slot size	Flush	С	39	23 - 33	22 - 38	0 - 22	
HY-7i	12/30/85	2" Sch 80 PVC, 0.010" slot size	Flush	С	50.5	40.5 - 50.5	35 - 50.5*	0 - 35	Completion from 1/7/86 well completion sketch
HY-8i	01/26/84	2" Sch 80 PVC	Flush	В	78.5	35 - 45	32 - 47	0 - 32, 47 - 49	Completed in same boring as HY-8d
HY-11i	12/20/85	2" Sch 80 PVC, 0.010" slot size	Flush	С	38	26 - 36	24 - 38	0 - 24	Completion from 1/7/86 well completion sketch
Deep Ac	uifer Zon	e Monitoring Wells and Piezo	meters	-					
Α	07/23/87	2" Sch 80 PVC, 0.010" slot size	Flush	В	60	45 - 55	43 - 55	0 - 43	
Bd	06/19/87	2" SS, 0.010" slot size	Above	В	65	47 - 57	45 - 59	0 - 45	
Cd	06/11/87	2" SS, 0.010" slot size	Above	В	71	57 - 67	55 - 71	0 - 55	
E	07/17/87	2" Sch 80 PVC, 0.010" slot size	Flush	В	81	68 - 78	65 - 81	0 - 65	
F	06/16/87	2" Sch 80 PVC, 0.010" slot size	Above	В	96	80 - 90	77 - 96	0 - 77	

Off-Site Well Completion Data BSB Property, Kent, Washington

	Date				Boring	Screen	Filter Pack					
Well	Installed	Well Type	Monument	Log	Depth	Depth	Depth	Seal Depth	Comments			
Gd	07/09/87	2" SS, 0.010" slot size	Above	В	73.5	56 - 66	53 - 70	0 - 53				
Hd	07/06/87	2" SS, 0.010" slot size	Flush	В	71	57 - 67	53 - 71	0 - 53				
J	07/23/87	2" Sch 80 PVC, 0.010" slot size	Above	В	100	89 - 99	66 - 100	0 - 66				
Kd	07/29/87	2" SS, 0.010" slot size	Flush	В	81	65 - 75	59 - 78	0 - 59				
HY-7d	12/24/85	2" Sch 80 PVC, 0.010" slot size	Flush	С	81	69 - 79	66 - 81	0 - 66	Completion from 1/7/86 well completion sketch			
HY-8d	01/26/84	4" Sch 40 PVC	Flush	В	78.5	50 - 60	49 - 65	47 - 49, 65 - 78.5	Completed in same boring as HY-8i			
HY-11d	12/20/85	2" Sch 80 PVC, 0.010" slot size	Flush	С	94.5	82 - 92	80 - 94.5	0 - 80 Completion from 1/7/86 well completion sketc				
Recover	y Wells											
CG-1	04/19/89	6" SS, 0.015" slot size	Above	В	36	15 - 30	12 - 30	0 - 12, 30 - 36				
CG-2	04/19/89	6" SS, 0.010" and 0.015" slot size	Above	В	36	15 - 30	12 - 30	0 - 12, 30 - 36				
CG-3	04/18/89	6" SS, 0.010" and 0.020" slot size	Above	В	36	15 - 30	12 - 30	0 - 12, 30 - 36				
CG-4	04/13/89	6" SS, 0.010" and 0.020" slot size	Above	В	36	15 - 30	12 - 30	0 - 12, 30 - 36				
Observa	tion Well	S										
OW-2A	03/20/89	2" Sch 40 PVC, 0.010" slot size	Above	В	31.5	10 - 30	7 - 31.5	0 - 7				
OW-2B	03/20/89	2" Sch 40 PVC, 0.010" slot size	Flush	В	31.5	10 - 30	7 - 31.5	0 - 7				
OW-2C	03/21/89	2" Sch 40 PVC, 0.010" slot size	Above	В	31.5	10 - 30	5 - 31.5	0 - 5				
OW-3	03/17/89	2" Sch 40 PVC, 0.010" slot size	Above	В	31.5	10 - 30	7 - 31.5	0 - 7				
OW-4	03/16/89	2" Sch 40 PVC, 0.010" slot size	Above	В	31.5	10 - 30	7 - 31.5	0 - 7				
Abando	ned Moni	toring Wells and Piezometers										
HY-10	09/06/84	2" PVC	Flush	В	25.5	14 - 24	10 - 25.5	0 - 10	Well destroyed during sidewalk construction in 5/00			
HYHT-2 [^]	Sep-84	2" stainless steel well point	Above	NA	15	13 - 15	None	NA	Piezometer abandoned sometime after December 1987			
HYHT-3 [^]	Sep-84	2" stainless steel well point	Above	NA	15	13 - 15	None	NA	Piezometer abandoned sometime after December 1987			
HYHT-5 [^]	Dec-85	2" stainless steel well point	Above	С	15	13 - 15	None	NA	Piezometer abandoned sometime after December 1987			
	Note:	All depths shown in feet below ground surf	face.	B = bc	oring log w	ith well compl	etion shown.	TOC elev = top of ca	asing elevation in feet above mean sea level.			
		SS = stainless steel.		C = w	ell complet	ion figure.		NA = not available.				
		Above = above-grade completion.		#=bo	ring wall c	aved in 52 - 80) feet bgs.	^ = incomplete completion logs available; information estimated based on other				
		Below = below grade completion.		* = na	tive materi	al in lower por	tion of filter pack.	groundwater leve monitoring completions installed in the mid-1980's.				

Summary of Soil Physical Properties BSB Property, Kent, Washington

	Sample Laver Unified Soil Percent Percent Conductivity Moisture Bulk Dry												
						Hydraulic		Bulk	Dry				
	Sample	Layer	Unified Soil	Percent	Percent	Conductivity	Moisture	Density	Density				
Location	Depth (ft)	Sampled	Classification	Sand	Silt	(cm/sec)	Content (%)	(pcf)	(pcf)				
Direct-Pu	sh Boring	S	•										
GP-1	16	В	ML	36.4	63.6	_	40	_	_				
GP-1	38	С	ML	8.9	91.1	_	39	_	_				
GP-2	16	В	ML	12.4	87.6	_	44	_	_				
GP-2	38	В	SM	63.0	37.0	_	35	_	_				
GP-2	40	С	SM	62.3	37.7	_	37	_	_				
GP-3	20	В	ML	49.4	50.6	_	60	_	_				
GP-3	44	D	SM	58.4	41.4	_	31	_	_				
GP-4	18	В	ML	19.6	80.4	_	44	_	_				
GP-5	16	В	SM	86.3	13.7	_	35	_	_				
GP-5	20	В	ML	4.0	96.0	_	51	_	_				
GP-5b	31	С	ML	_	_	2.6E-07	43	_	77.3				
GP-6	26	В	SP	95.2	4.8	_	23	_	_				
GP-7b	18	В	ML	_	_	6.9E-07	45	_	75.0				
GP-7b	41	С	ML	_	_	2.1E-07	38	_	80.5				
GP-8	30	В	SP	95.7	4.3	_	29	_	_				
GP-9	36	С	ML	33.3	66.7	_	37	_	_				
GP-9	38	D	SM	56.9	43.1	_	34	_	_				
GP-10	17	В	SM	_	_	3.5E-06	44	_	73.6				
GP-11	44	С	ML	22.0	78.0	_	48	_	_				
GP-11	46	С	SM	68.0	32.0	_	28	_	_				
GP-12	40	С	ML	14.2	85.8	_	34	_	_				
GP-13	17	В	ML	29.6	70.4	_	48	_	_				
GP-14	17	В	ML	41.4	58.6	_	48	_	_				
SP-3	39	С	ML	_	_	1.6E-07	42	123.1	86.6				
SP-4	42	С	CL	_	_	1.3E-07	47	109.7	74.9				
SP-21	39	С	CL	_	_	1.3E-07	41	111.6	79.4				
SP-35	34	С	CL	_	_	2.3E-07	45	104.6	72.4				
Piezomet	ers												
Ι	40 - 41	С	ML	28.5	71.5	_	_	_	_				
L	29.5 - 31	В	SM	77.0	23.0	_	-	_	_				
L	49 - 51	D	SP	89.2	10.8	_	_	_	_				
Monitorir	ng Wells												
HYCP-6	5	A	ML	25.7	74.3	_	—	_	_				
HYCP-6	10	В	SM	83.1	16.2	—	—	-	-				
HYCP-6	15	В	ML	2.3	97.7	—	—	-	-				
HYCP-6	20	В	ML	20.1	77.3	—	—	-	-				
HYCP-6	25	В	ML	1.5	88.5			—	-				
Notes:	1. Depths in	feet below	ground surface.										
	2. NP = non	plastic.											
	3. $pcf = pounds per cubic foot.$												
	4. The HYC	P-6 sample	at 25 feet also	contained	10 percer	nt clay.							

Well			Ground	Depth to	Top of	Layer C	Plotted
or			Surface	Top of	Layer C	Thickness	Layer C
Boring	Northing	Easting	Elevation (ft)	Layer C (ft)	Elevation (ft)	(ft)	Thickness (ft)
GP-1	157,359.0	1,294,502.0	20.50	38.0	-17.5	> 6.0	>6.0
GP-2	157,343.0	1,294,670.0	20.60	40.0	-19.4	1.5	1.5
GP-3	157,357.0	1,294,573.0	20.50	38.0	-17.5	2.0	2.0
GP-4	157,228.0	1,294,670.0	21.70	30.0	-8.3	> 6.0	>6.0
GP-5	157,181.4	1,294,597.7	22.00	30.5	-8.5	> 5.5	>5.5
GP-6	157,360.0	1,294,401.0	22.70	38.5	-15.8	> 5.5	>5.5
GP-7	157,361.0	1,294,302.0	22.70	39.8	-17.1	> 6.3	>6.3
GP-8	157,352.0	1,294,540.0	20.50	38.0	-17.5	1.5	1.5
GP-9	157,294.0	1,294,670.0	21.20	30.0	-8.8	6.0	6.0
GP-10	157,356.0	1,294,646.0	20.60	40.0	-19.4	3.5	3.5
GP-11	157,361.0	1,294,452.0	22.50	39.5	-17.0	8.3	8.3
GP-12	157,360.0	1,294,354.0	22.70	39.1	-16.4	> 8.9	>8.9
GP-13	157,324.0	1,294,588.0	20.90	42.0	-21.1	2.0	2.0
GP-14	157,207.4	1,294,633.7	21.70	28.9	-7.2	> 6.1	>6.1
GP-15	157,269.4	1,294,553.7	21.20	42.0	-20.8	4.0	4.0
SP-1	157,297.6	1,294,329.5	23.24	40.0	-16.8	> 3.0	>3.0
SP-2	157,293.4	1,294,430.5	22.72	40.5	-17.8	> 0.5	>0.5
SP-3	157,299.8	1,294,533.6	20.88	37.5	-16.6	> 3.5	>0.5
SP-4	157,246.0	1,294,378.7	23.13	40.7	-17.6	3.8	3.8
SP-5	157,239.8	1,294,470.0	22.77	41.3	-18.5	> 1.5	>1.5
SP-6	157,211.4	1,294,588.7	21.71	35.0	-13.3	> 3.0	>3.0
SP-7	157,197.5	1,294,328.3	23.69	43.0	-19.3	> 2.0	>2.0
SP-8	157,195.0	1,294,378.5	23.33	43.5	-20.2	4.5	4.5
SP-9	157,198.8	1,294,427.4	23.09	27.2	-4.1	> 10.8	>10.8
SP-10	157,197.0	1,294,531.5	21.69	32.5	-10.8	> 3.5	>3.5
SP-11	157,145.2	1,294,380.5	24.75	34.5	-9.8	> 0.5	>0.5
SP-12	157,141.4	1,294,480.1	24.00	32.0	-8.0	> 9.0	>9.0
SP-13	157,135.5	1,294,578.2	24.89	32.2	-7.3	> 1.8	>1.8
SP-14	157,305.7	1,294,633.0	21.22	38.0	-16.8	> 1.0	>1.0
SP-15	157,301.3	1,294,238.8	23.61	39.0	-15.4	> 2.0	>2.0
SP-16	157,323.7	1,294,293.5	23.09	40.5	-17.4	> 2.5	>2.5
SP-17	157,249.9	1,294,223.4	23.93	39.8	-15.9	> 1.2	>1.2
SP-18	157,177.7	1,294,259.7	24.39	43.0	-18.6	> 1.0	>1.0
SP-19	157,160.9	1,294,306.3	24.54	32.7	-8.2	2.8	2.8
SP-20	157,145.9	1,294,360.9	24.75	33.0	-8.3	> 1.0	> 1.0
SP-21	157,117.8	1,294,215.7	25.64	32.0	-6.4	> 10.0	>10.0
SP-22	157,118.6	1,294,405.5	25.20	33.9	-8.7	> 0.1	>0.1
SP-23	157,116.6	1,294,454.7	24.65	32.5	-7.9	> 2.5	>2.5
SP-24	157,114.4	1,294,503.0	24.41	32.0	-7.6	> 4.0	>4.0
SP-25	157,110.6	1,294,566.5	25.11	40.0	-14.9	0.8	0.8
SP-26	157,047.2	1,294,583.8	26.36	44.0	-17.6	1.7	1.7
SP-27	156,976.4	1,294,210.5	27.16	41.0	-13.8	> 3.0	>3.0
SP-28	156,968.2	1,294,371.7	27.02	36.0	-9.0	> 3.0	>3.0
SP-29	156,969.1	1,294,579.2	27.03	34.9	-7.9	> 6.1	>6.1
SP-30	157,122.3	1,294,369.0	25.14	33.5	-8.4	> 1.5	>1.5
SP-31	157,233.0	1,294,435.8	22.84	40.2	-17.4	> 3.8	>3.8
SP-32	157,193.7	1,294,472.6	23.04	29.0	-6.0	> 3.0	>3.0

Parcel G Layer C Elevations and Thicknesses BSB Property, Kent, Washington

Well			Ground	Depth to	Top of	Layer C	Plotted							
or			Surface	Top of	Layer C	Thickness	Layer C							
Boring	Northing	Easting	Elevation (ft)	Layer C (ft)	Elevation (ft)	(ft)	Thickness (ft)							
SP-33	157,247.7	1,294,588.2	21.63	29.0	-7.4	> 7.0	>7.0							
SP-34	157,249.4	1,294,537.7	21.32	39.0	-17.7	> 3.0	>3.0							
SP-35	157,143.9	1,294,429.8	24.22	33.0	-8.8	> 4.0	>4.0							
SP-36	157,279.1	1,294,471.6	22.68	39.8	-17.1	2.4	2.4							
SP-37	157,168.6	1,294,409.6	23.65	32.0	-8.4	> 3.0	>3.0							
SP-38	157,078.4	1,294,471.5	24.97	32.9	-7.9	> 4.1	>4.1							
HYCP-3d	157,190.4	1,294,408.3	23.45	33.0	-9.5	> 6.5	>6.5							
Ι	157,361.8 1,294,379.3 24.14 40.0 -15.9 7.0 7 157,154.9 1,294,506.2 24.20 33.0 -8.8 15.0 15													
Ld	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
HY-1d	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
HYCP-1d	157,367.3	1,294,673.3	Layer C not i	dentified; onl	y sampled at 5-	ft intervals	-							
HYR-1	157,345.31	1,294,623.18	Layer C r	not identified;	well not deep	enough	-							
HYR-2	157,355.66	1,294,386.77	Layer C r	not identified;	well not deep	enough	—							
				Aritl	nmetic Mean:	3.9								
				Geo	metric Mean:	2.9								
					Median:	3.0								
Notes:	Northing/Easti	ng in feet relative	to the WA State I	lane System No	rth Zone (NAD 83)).								
	Monitoring point (top of well casing) in feet relative to the National Geodetic Vertical Datum (NGVD 29).													
	All depths shown in feet below ground surface.													
	HYCP-3d, I, Ld, HY-1d, and HYCP-1d ground surface elevations approximate.													
	Mean and med	lian thickness cald	culated including p	artially penetrate	ed thickness values									

Parcel G Layer C Elevations and Thicknesses BSB Property, Kent, Washington

Summary of Parcel G Groundwater Elevations BSB Property, Kent, Washington

	LayerScreenMaximumMinimumMaximumMinimumWellScreenedDepthDepthDepth to WaterDepth to WaterGroundwater ElevationGroundwater Elevation													
Well	Screened	Depth	Depth to Water	Depth to Water	Groundwater Elevation	Groundwater Elevation								
Shallow I	Parcel G L	ocations.												
HYCP-2	A/B	8 - 28	8.64	2.33	18.14	11.83								
HYCP-3s	A/B	8 - 13	10.86	3.21	20.82	13.17								
HYO-2	A/B	8.5 - 18.5	8.93	2.57	17.70	11.34								
Ls	A/B	5 - 15	11.02	4.71	19.31	13.00								
HY-1s	В	14 - 19	11.23	3.79	20.40	12.96								
HYCP-4	В	11 - 33	11.13	3.78	20.12	12.77								
HYCP-5	В	10 - 30	11.00	4.60	17.71	11.31								
HYCP-6	В	10 - 30	11.52	5.78	17.74	12.00								
Intermed	nediate Parcel G Locations													
HY-1i	В	30 - 40	12.22	5.38	19.51	12.67								
HYCP-1i	В	16 - 36	9.85	3.57	17.76	11.48								
HYCP-3i	В	22 - 32	11.16	4.42	19.03	12.29								
Deep Par	cel G Loc	ations												
HYCP-1d	D/E	53 - 73	7.69	2.82	18.45	13.58								
HYO-1	D/E	53.5 - 83.5	7.42	2.70	18.43	13.71								
Ι	D/E	74 - 84	10.02	4.07	20.07	14.12								
HY-1d	Е	84 - 94	11.27	6.62	18.98	14.33								
Ld	E	69 - 79	9.83	3.16	21.03	14.36								
Upgradie	nt Off-site	Elecation	IS			-								
HY-11s	A/B	8 - 18	11.25	2.97	22.20	13.92								
HY-11i	В	26 - 36	10.71	3.38	21.70	14.37								
HY-11d	D/E	82 - 92	11.14	5.04	19.99	13.89								
J	D/E	89 - 99	12.39	5.16	21.90	14.67								
Nearby D	owngradi	ent Off-si	te Locations											
Gs	A/B	5.5 - 15.5	9.31	3.48	17.47	11.64								
Gi	B/C	28 - 38	9.71	3.81	17.52	11.62								
Gd	D	56 - 66	8.11	2.63	18.16	12.68								
Hs	A/B	5 - 15	7.42	2.32	17.67	12.57								
Hi	Hi B/C 28-38 7.29 2.41 17.68 12.80													
Hd	D/E	57 - 67	5.93	1.92	19.35	14.22								
Notes:	1. Data coll	ected betwee	n July 1992 and De	cember 2004.										
	2. All depth	s shown in f	eet below ground su	rface.										
	3. MP elevation = monitoring point elevation (top of PVC casing).													
	4. All eleva	tions in feet	relative to the Natio	nal Geodetic Vertica	al Datum (NGVD 29).									

Parcel G Hydraulic Conductivities BSB Property, Kent, Washington

	Date	Layer	Testing	Q	Analytical	K	K	Т	Т		
Well	Tested	Screened	Method	(gpm)	Method	(cm/sec)	(ft/day)	(gpd/ft)	(ft^2/day)	S	Comments
Parcel G	Location	S									
HYO-2	01/14/85	A/B	Observation Well	_	Jacob	5.99E-02	170	12,700	1,698	0.065	K calculated from drawdown data; HYCP-1i pumping
HYO-2	01/14/85	A/B	Observation Well	_	Theis	6.15E-02	174	13,000	1,738	-	K calculated from drawdown data; HYCP-1i pumping
HYO-2	04/24/89	A/B	Observation Well	_	Theis	1.6E-02	45	10,170	1,360	_	K calculated from drawdown data; HYR-1 pumping
HYO-4	01/14/85	A/B	Pumping Well	20	Jacob	3.37E-02	96	14,300	1,912	_	K calculated from recovery data
HYCP-1s	01/14/85	A/B	Observation Well	_	Theis	1.5E-01	425	16,000	2,139	0.64	K calculated from recovery data; HYCP-1i pumping
HYCP-1s	01/14/85	A/B	Observation Well	_	Jacob	1.3E-01	369	13,800	1,845	0.44	K calculated from recovery data; HYCP-1i pumping
HYCP-1s	01/15/85	A/B	Pumping Well	1.46	Jacob	5.2E-03	15	551	74	_	K calculated from recovery data
HYCP-2	01/15/85	A/B	Pumping Well	16.6	Jacob	2.1E-02	60	8,980	1,200	-	K calculated from recovery data
HYCP-3s	01/14/85	A/B	Observation Well	_	Theis	3.6E-01	1,020	37,800	5,053	_	K calculated from recovery data; HY-04 pumping
HYCP-3s	01/14/85	A/B	Observation Well	_	Jacob	2.8E-01	794	29,300	3,917	0.37	K calculated from drawdown data; HY-04 pumping
HYCP-3s	01/16/85	A/B	Pumping Well	0.15	Jacob	5.3E-04	1.5	56.6	7.6	_	K calculated from drawdown data
HY-1s	09/02/83	В	Slug Test	_	Cedergren	7.3E-04	2.1	-	_	-	H _o derived from slug volume calculations
HYCP-4	01/15/85	В	Pumping Well	18.8	Jacob	6.5E-02	184	27,500	3,676	-	K calculated from recovery data
HYCP-5	04/24/89	В	Observation Well	_	Jacob	1.5E-02	42	9,500	1,270	-	K calculated from drawdown data; HYR-1 pumping
HYCP-6	04/24/89	В	Observation Well	_	Theis	1.7E-02	48	10,850	1,450	-	K calculated from recovery data; HYR-1 pumping
HYCP-6	04/24/89	В	Observation Well	_	Jacob	1.8E-02	51	11,370	1,520	3.0E-04	K calculated from drawdown data; HYR-1 pumping
GP-1c	04/14/99	В	Pumping Well	0.2	Jacob	1.0E-04	0.3	15.3	2.0	-	K calculated from drawdown/recovery data
GP-1d	04/14/99	В	Pumping Well	1.7	Jacob	3.1E-03	8.8	991	132	_	K calculated from recovery data
GP-2b	04/06/99	В	Pumping Well	1.7	Thiem	3.2E-03	9.1	1,024	137	_	K calculated from drawdown data
HYCP-1i	01/14/85	В	Pumping Well	12.5	Jacob	1.95E-02	55	8,250	1,103	-	K calculated from recovery data
HYCP-1i	04/24/89	В	Observation Well	_	Jacob	1.58E-02	45	10,020	1,339	_	K calculated from drawdown data; HYR-1 pumping
HYR-1	04/05/89	В	Pumping Well	5/10/20	Sp. Capacity	1.96E-02	56	12,492	1,670	2.5E-04	K calculated from the first step specific capacity
HYR-1	04/24/89	В	Pumping Well	20.8	Jacob	1.58E-02	45	10,020	1,339	-	K calculated from drawdown data
HYR-1	04/24/89	В	Pumping Well	20.8	Theis	1.51E-02	43	9,570	1,279	_	K calculated from recovery data
Upgradie	ent Off-site	e Locatior	ก								
HY-11s	10/09/84	A/B	Pumping Well	0.21	Jacob	4.1E-04	1.2	80 - 163	10.7 - 21.8	-	
Notes:	1. K = horizo	ntal hydraulic	conductivity, shown in a	centimeters r	per second and fee	et per day.					
	2. T = transm	issivity, show	n in gallons per day per	foot and squ	are feet per day.						
	3. $S = storage$	e coefficient.									
	4. $gpm = gal$	ons per minut	ie.								
	5. Analytical	methods discy	ussed in Kruseman and d	leRidder (19	90).						

Summary Statistics for Groundwater VOCs BSB Property, Kent, Washington

				trans-1,2-	cis-1,2-	1,1-Di-	1,1-Di-	1,2-Di-	1,1,1-Tri-	Tri-	Tetra-						
		Vinyl	Methylene	Dichloro-	Dichloro-	chloro-	chloro-	chloro-	chloro-	chloro-	chloro-		Ethyl-	Total		Dissolved	Total
Site	Date	Chloride	Chloride	ethene	ethene	ethene	ethane	ethane	ethane	ethene	ethene	Toluene	benzene	Xylenes	Benzene	Arsenic	Cyanide
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L
HY-1s	04/22/99	65	5 U	6.8	350	2.5	5.6	0.8	0.5 U	5.7	0.5 U	1 U	1 U	1 U	0.5 U	0.009	0.01 U
HY-1s	10/05/99	75	5 U	8.4	480	3.2	6.5	0.8	0.5 U	6.5	0.5 U	1 U	1 U	1 U	0.5 U	0.01	0.01 U
HY-1s	04/14/00	48	5 U	5.8	320	2	4.6	0.5 U	0.5 U	4.6	0.5 U	1 U	1 U	1	0.5 U	0.01	0.01 U
HY-1s	10/10/00	76	1 U	15	430	3	6.9	0.71	0.5 U	5.3	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.012	0.01
HY-1s	04/25/01	70	1 U	6.8	340	2	5.9	0.78	0.5 U	6.2	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.0155	0.01
HY-1s	10/25/01	53	7.3	6	310	2.5 U	5.1	2.5 U	2.5 U	7.9	2.5 U	2.5 U	2.5 U	5 U	2.5 U	0.0086	0.01 U
HY-1s	04/23/02	50	2 U	5.5	240	1.3	4.9	1 U	0.5 U	4.7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.01	0.02
HY-1s	10/16/02	23	2 U	3.1	150	0.86	3.2	0.66	0.5 U	2.8	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.0097	0.01 U
HY-1s	04/09/03	22	0.2 U	2.6	78	0.54	1.2	0.28 J	0.12 U	1.4	0.11 U	0.14 J	0.13 U	0.299 U	0.11 U	0.01	0.01
HY-1s	10/21/03	36 J	2 UJ	5.4 J	250 J	1.3 J	4.4 J	0.63 J	0.5 UJ	2.7 J	0.5 UJ	0.5 UJ	0.5 UJ	1 UJ	0.5 UJ	0.0101	0.01
HY-li	04/22/99	22	<u>5</u> U	0.8	65	0.5 U	1.2	0.5 U	0.5 U	0.5 U	0.5 U	<u> </u>	<u> </u>	1 U	0.5 U	0.005 U	0.01 U
HY-li	10/05/99	6.2	<u> </u>	0.7	41	0.5 U	0.8	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	0.5 U	0.005 U	0.01 U
HY-li	04/14/00	10	<u> </u>	0.5 U	29	0.5 U	0.7	0.5 U	0.5 U	0.5 U	0.5 U	<u> </u>		1 U	0.5 U	0.005 U	0.01 U
	10/10/00	0.1	<u> </u>	0.57	22	0.5 U	0.65	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	<u> </u>	0.5 U	0.005 U	0.01 U
	10/25/01	6.5	1 U		39	0.5 U	0.9	0.3 U	0.3 U	0.3 0	0.3 U	0.5 U	0.5 U	1 U	0.3 U	0.005 U	0.01 U
HV 1i	04/23/02	0.3	1 U	1.5 0.5 U	33	0.5 U	0.59	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.005 U	0.01 0
HV-1i	10/16/02	14	2 11	0.5 0	31	0.5 U	0.59	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.005 U	0.01 U
HV-1i	04/09/03	13	0.2 U	0.30	22	0.5 U	0.00	0.3 U	0.3 U	0.3 U	0.11 U	0.3 U	0.3 U	0.299 U	0.1 U	0.005 U	0.01 U
HY-1i	10/21/03	10	0.2 U	0.41 J	22	0.10 J	0.42 3	0.12 U	0.12 U	0.12 U	0.11 U	0.15 J	0.15 U	0.2)) U	0.11 U	0.005 U	0.01 U
HY-1d	04/22/99	05 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	0.5 U	0.005 U	0.01 U
HY-1d	10/05/99	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	0.5 U	0.005 U	0.01 U
HY-1d	04/14/00	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	0.5 U	0.007	0.01 U
HY-1d	10/10/00	0.5 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.008	0.01 U
HY-1d	04/26/01	0.5 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.01 U	0.01 U
HY-1d	10/25/01	0.5 U	1 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.01 U	0.01 U
HY-1d	04/24/02	0.5 U	2 U	0.5 U	1.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.01 U	0.01 U
HY-1d	10/16/02	0.5 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.0052	0.01 U
HY-1d	04/09/03	0.22 U	0.2 U	0.14 U	0.12 U	0.12 U	0.091 U	0.12 U	0.12 U	0.12 U	0.11 U	0.14 J	0.13 U	0.299 U	0.11 U	0.0053	0.01 U
HY-1d	10/21/03	0.5 U	2 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.0089	0.01 U
HYCP-1i	04/23/99	650	5 U	8.1	380	1.4	15	0.5 U	0.5 U	1.2	0.5 U	1 U	1 U	1	0.5 U	0.005 U	0.01 U
HYCP-1i	10/05/99	600	12 U	61	1600	1 U	2	1 U	1 U	2	1 U	2 U	2 U	2 U	1 U	0.005 U	0.01 U
HYCP-1i	04/17/00	560	5 U	72	1600	6	2	0.5 U	0.5 U	35	0.5 U	1 U	1 U	1 U	0.5 U	0.005 U	0.01 U
HYCP-1i	10/10/00	1300	1 U	180	4500	14	1.6	0.5 U	0.5 U	74	0.5 U	1.7	0.5 U	0.5 U	0.5 U	0.005 U	0.01 U
HYCP-1i	04/26/01	860	6	78	2500	10	11	2.5 U	2.5 U	270	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	0.005 U	0.01 U
HYCP-11	10/24/01	1000	27	190	6100	22	13 U	13 U	13 U	21	13 U	<u>13 U</u>	13 U	13 U	13 U	0.005 U	0.01 U
HYCP-I1	04/24/02	1000	40 U	150	5000	10 U	10 U	10 U	10 U	160	10 U	10 U	10 U	10 U	10 U	0.01 U	0.01 U
HYCP-li	10/18/02	580	10 U	37	1300	6.3	5	2.5 U	2.5 U	2.7	2.5 U	2.5 U	2.5 U	5 U	2.5 U	0.005 U	0.01 U
HYCP-I1	04/10/03	590	2 U	63	2200	<u> </u>	3.7 J	1.2 U	1.2 U	30	1.1 U	0.98 U	1.3 U	2.99 U	1.1 U	0.005 U	0.01 U
HYCP-I1	10/21/03	920	10 U	56	1700	5.8	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	5 U	2.5 U	0.005 U	0.01 U
HYCP-10	10/05/00	8	<u> </u>	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		1 U	1 U	0.5 U	0.005 U	0.01 U
HYCP-Id UVCD 14	10/05/99	5/	<u> </u>	0.5 U	0.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	<u>I U</u>	1 U	1 U	0.5 U	0.005 U	0.01 U
	10/10/00	52 80	<u> </u>	0.5 U	<u>l</u>	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	<u> </u>		1 U 1 II	0.5 U	0.000	0.01 U
	04/26/01	δU 21	1 U 1 I	0.5 U	1.9	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	1		1 U 1 II		0.005	
IIICF-IU	04/20/01	Δ1	IU	0.5 U	2.0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 U	0.5 U	1	0.5 0	ΙU	0.5 U	0.01 0	0.01 U

Summary Statistics for Groundwater VOCs BSB Property, Kent, Washington

				trans-1,2-	cis-1,2-	1,1-Di-	1,1-Di-	1,2-Di-	1,1,1-Tri-	Tri-	Tetra-						
		Vinyl	Methylene	Dichloro-	Dichloro-	chloro-	chloro-	chloro-	chloro-	chloro-	chloro-		Ethyl-	Total		Dissolved	Total
Site	Date	Chloride	Chloride	ethene	ethene	ethene	ethane	ethane	ethane	ethene	ethene	Toluene	benzene	Xylenes	Benzene	Arsenic	Cyanide
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L
HYCP-1d	10/24/01	47	1 U	0.5 U	2.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1	0.5 U	1 U	0.5 U	0.01 U	0.01 U
HYCP-1d	04/24/02	74	1 U	0.5 U	4.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1	0.5 U	1 U	0.5 U	0.01 U	0.01 U
HYCP-1d	10/18/02	55	2 U	0.5 U	6.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.01 U	0.01 U
HYCP-1d	04/15/03	65	2 U	0.5 U	11	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.0105	0.01 U
HYCP-1d	10/21/03	76	2 U	0.5 U	9.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.005 U	0.01 U
HYCP-2	04/22/99	42 J	1 U	0.5 U	33	0.5 U	7.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.014	0.01 U
HYCP-2	10/05/99	74	1 U	1	62 J	0.6	6.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.027	0.01 U
HYCP-2	04/17/00	8	5 U	0.5 U	23	0.5 U	2	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	0.5 U	0.024	0.01 U
HYCP-2	10/10/00	220	1 U	2.5	240	1.3	11	0.5 U	0.5 U	0.5 U	0.5 U	0.78	0.5 U	1 U	0.5 U	0.02	0.01 U
HYCP-2	04/26/01	0.84		0.5 U	<u>5 U</u>	0.5 U	0.5 U	<u>0.5 U</u>	0.5 U		0.5 U	0.027	0.01 U				
HYCP-2	10/24/01	1.4		0.5 U	<u> </u>	0.5 U	0.84	$\frac{0.5 \text{ U}}{0.5 \text{ U}}$	0.5 U	I U	0.5 U	0.023	0.01 U				
HYCP-2	04/25/02	14	<u> </u>	0.5 U	0.87	0.5 U	1 1 1	$\frac{0.5 \text{ U}}{0.5 \text{ U}}$	0.5 U	1 U	0.5 U	0.021/	0.01 U				
HVCP 2	10/24/02	10		0.3 U	3.2 0.27 I	0.3 U	1.1 0.40 I	$\frac{0.3 \text{ U}}{0.12 \text{ U}}$	0.3 U	0.200 U	0.3 U	0.0170	0.01 U				
HYCP-2	10/21/03	20	0.2 U	0.14 U 0.5 U	0.27 J 0.5 U	0.12 U 0.5 U	0.49 J	0.12 U 0.5 U	0.12 U 0.5 U	0.12 U 0.5 U	0.11 U 0.5 U	0.12 J 0.5 U	0.13 U 0.5 U	0.299 U 1 U	0.11 U 0.5 U	0.0207	0.01 U
HYCP-3s	04/22/99	8.9	5 U	0.5 U	67	0.5 U	1.3	0.5 U	0.5 U	6.8	0.5 U	1 U	1 U	1 U	0.5 U	0.005 U	0.01 U
HYCP-3s	10/05/99	510 J	5 U	1	59	0.5 U	24	0.5 U	1.5	0.5 U	0.5 U	9 B	2	5	0.5 U	0.005 U	0.01 U
HYCP-3s	04/14/00	7	5 U	0.5 U	49	0.5 U	1	0.5 U	0.5 U	5	0.5 U	1 U	1 U	1 U	0.5 U	0.005 U	0.01 U
HYCP-3s	10/10/00	150	10 U	5 U	5 U	5 U	26	5 U	5 U	5 U	5 U	6.6	5 U	5 U	5 U	0.005 U	0.01 U
HYCP-3s	04/26/01	1.6	1 U	0.5 U	46	5 U	0.85	0.5 U	0.5 U	6.2	0.5 U	0.5 U	0.5 U	5 U	5 U	0.005 U	0.01 U
HYCP-3s	10/25/01	1100	26	13 U	1900	13 U	67	13 U	13 U	13	13 U	19	13 U	14	13 U	0.005 U	0.01 U
HYCP-3s	04/23/02	4.1	2 U	0.5 U	49	0.5 U	0.5 U	0.5 U	0.5 U	5.1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.01 U	0.01 U
HYCP-3s	10/16/02	4900	200 U	72	26000	80	270	50 U	78	710	50 U	69	50 U	97	50 U	0.005 U	0.01 U
HYCP-3s	04/09/03	1.7	0.2 U	0.14 U	6.5	0.12 U	0.18 J	0.12 U	0.12 U	1.6	0.11 U	0.13 J	0.13 U	0.299 U	0.11 U	0.005 U	0.01 U
HYCP-3s	10/22/03	580	4 U	2.4	390	1.7	9.3	1 U	1 U	4.5	1 U	2.6 B	1.3	2.9	1 U	0.0067	0.01 U
HYCP-3i	04/22/99	4700	500 U	170	33000	50 U	50 U	50 U	50 U	75000	50 U	180	100 U	100 U	50 U	0.011	0.04
НҮСР-Зі	10/05/99	5100	500 U	180	32000	52	50 U	50 U	50 U	63000	50 U	100 U	100 U	100 U	50 U	0.01	0.02
HYCP-3i	04/14/00	3600	5000 U	500 U	30000	500 U	500 U	500 U	500 U	67000	500 U	1000 U	1000 U	1000 U	500 U	0.012	0.02
НҮСР-Зі	10/10/00	8200	1 U	200 U	41000	46	32	1.1	0.5 U	72000	3.8	500 U	55	130	1.6	0.012	0.04
HYCP-3i	04/26/01	730	20 U	10 U	760	10 U	11	10 U	10 U	960	10 U	22	18	19	10 U	0.015	0.02
HYCP-31	10/25/01	630	110	50 U	3000	50 U	50 U	50 U	50 U	4100	50 U	50 U	50 U	50 U	50 U	0.011	0.03
HYCP-31	04/24/02	3700	400 U	130	32000	100 U	100 U	100 U	100 U	76000	100 U	140	100 U	100 U	100 U	0.0103	0.02
HYCP-31	10/16/02	/500	500 U	190	42000	130 U	130 U	130 U	130 U	59000	130 U	170	130 U	260 U	130 U	0.0107	0.04
HYCP-31	04/09/03	1400	9.7 U	24 0	5500	II J	10 J	<u>5.7 U</u>	5.7 U	8500	5.5 U	45	43	53	5.3 U	0.0122	0.01
HYCP-31	10/22/03	240	2 U	2	200	0.5 U	3.1	0.5 U	0.5 U	110	0.5 U	/.8	/	31	0.5 U	0.014/	0.04
HYCP-5	04/23/99	280	1 U	26	1300	8.4	3	0.5 U	0.5 U	12	0.5 U		0.5 U	I U	0.5 U	0.005 U	0.01 U
HYCP-5	10/05/99	/80	25 U	40 25 U	3600	10	<u> </u>	<u>2 U</u>	2 U 25 U	2 U 25 U	2 U 25 U	5 U	5 U	5 U	2 U	0.005 U	0.01 U
	04/1//00	570	230 U	25 U	2400	23 U	25 U	23 U	25 U	25 U	23 U 25 U	<u> </u>	<u> </u>	50 U	25 U	0.008	0.01 U
HICP-3	10/10/00	000	<u> </u>	20	2100	25 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U		25 U	0.005 U	0.01 U
	10/22/01	/0	1 U 1 U	<u> </u>	150	0.32	0.73	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.005 U	0.01 U
	10/25/01	490	1 U 10 U	19	1300	<u> </u>	2 U	0.5 U		0.5 U 4 2				0.5 U	0.5 U	0.005 U	
HVCD 5	10/16/02	110		5.2	220	5.1 1.2	2.3 U	2.5 U	2.3 U	4.5	2.3 U	2.3 U		2.3 U	$2.3 \cup$	0.003 U	
HVCP 5	04/00/02	110		5.5 5.7	380	1.5	1.1 0.9 T	0.3 U		$0.3 \ 0$					$0.3 \ 0$	0.01 0	
HYCP-5	10/21/03	<u> </u>	0.39 U 2 II	0.5 U	2.0	0.5 U	0.0 J	0.25 U	0.25 U	0.24 0	0.22 0	0.2 J	0.20 0		0.21 0	0.0051	0.01 U
HVCD 6	0//22/00	0.4 17	<u> </u>	17	2.7	0.5 U	0.5 U	0.5 U		0.5 UJ	0.5 UJ	0.5 UJ 1 IT	0.5 UJ 1 II	1 UJ 1 IT	0.5 U	0.005 11	0.01 0
11105-0	04/23/99	42	5 0	1./	00	0.5 0	0.5 U	0.5 0	0.5 0	0.5 0	0.3 U	1 U	1 U	ΙU	0.5 U	0.005 0	0.02

Summary Statistics for Groundwater VOCs BSB Property, Kent, Washington

				trans-1,2-	cis-1,2-	1,1-Di-	1,1-Di-	1,2-Di-	1,1,1-Tri-	Tri-	Tetra-						
		Vinyl	Methylene	Dichloro-	Dichloro-	chloro-	chloro-	chloro-	chloro-	chloro-	chloro-		Ethyl-	Total		Dissolved	Total
Site	Date	Chloride	Chloride	ethene	ethene	ethene	ethane	ethane	ethane	ethene	ethene	Toluene	benzene	Xylenes	Benzene	Arsenic	Cyanide
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L
HYCP-6	10/05/99	80	5 U	2	63	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	0.5 U	0.005 U	0.01
HYCP-6	04/17/00	63	5 U	2	81	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	0.5 U	0.006 U	0.01
HYCP-6	10/10/00	75	1 U	1.9	54	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2	0.5 U	1.18	0.5 U	0.005 U	0.03
HYCP-6	04/26/01	68	1 U	1.1	35	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.005 U	0.01 U
HYCP-6	10/23/01	48	1 U	0.69	14	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.005 U	0.01 U
HYCP-6	04/25/02	36	1 U	0.72	20	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.01 U	0.01 U
HYCP-6	10/16/02	26	2 U	0.5 U	2.3	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.53	0.5 U	1 U	0.5 U	0.005 U	0.01 U
HYCP-6	04/09/03	29	0.2 U	0.67	22	0.19 J	0.15 J	0.12 U	0.12 U	0.12 U	0.11 U	0.28 J	0.13 U	0.3 U	0.11 U	0.005 U	0.01 U
HYCP-6	10/21/03	11	2 U	0.5 U	11	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.0078	0.01 U
HYR-1	04/05/99	1100	50 U	50	5 U	27	20	5 U	5 U	4200	5 U	NA	NA	NA	NA	NA	NA
HYR-1	04/04/00	870	1000 U	100 U	7300	100 U	100 U	100 U	100 U	5100	100 U	NA	NA	NA	NA	NA	NA
HYR-1	11/08/01	1100	200 U	100 U	8400	100 U	100 U	100 U	100 U	5300	100 U	100 U	100 U	200 U	100 U	NA	NA
HYR-1	07/02/02	690	50 U	43	7900	19	13 U	13 U	13 U	6900	13 U	NA	NA	NA	NA	NA	NA
HYR-1	05/01/03	850	50 U	42	8200	25 U	25 U	25 U	25 U	5300	25 U	NA	NA	NA	NA	NA	NA
HYR-1	08/11/03	580	100 U	36	6400	25 U	25 U	25 U	25 U	4000	25 U	NA	NA	NA	NA	NA	NA
HYR-1	11/11/03	370	40 U	51	6500	17	10 U	10 U	10 U	4400	10 U	NA	NA	NA	NA	NA	NA
HYR-2	04/02/99	47	5 U	0.8	75	0.6	4.1	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA
HYR-2	04/04/00	27	5 U	1.1	44	0.5 U	1.8	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA
HYR-2	11/08/01	34	1 U	0.62	42	0.5 U	1.9	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	NA	NA
HYR-2	07/02/02	21	2 U	0.5 U	25	0.5 U	1.3	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA
HYR-2	05/01/03	22	2 U	0.5 U	19	0.5 U	0.85	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA
HYR-2	08/11/03	19	2 U	0.5 U	20	0.5 U	0.89	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA
HYR-2	11/11/03	19	2 U	0.5 U	18	0.5 U	0.83	0.5 U	0.5 U	0.5 U	0.5 U	NA	NA	NA	NA	NA	NA
Ls	04/22/99	80	5 U	0.7	23	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	2	0.5 U	0.02	0.01 U
Ls	10/05/99	6.2	5 U	0.5 U	1.2	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	1 U	0.5 U	0.014	0.01 U
Ls	04/17/00	2.4	5 U	0.5 U	0.6	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	1 U	1	0.5 U	0.019	0.01 U
Ls	10/10/00	6.3	1 U	0.5 U	0.85	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1	0.5 U	1 U	0.5 U	0.014	0.01 U
Ls	04/26/01	1.6	<u>1 U</u>	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.75	1.7	0.5 U	0.016	0.01 U
Ls	10/25/01	3.7	1 U	0.5 U	0.53 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	1 U	0.5 U	0.015	0.01 U
Ls	04/23/02	2.2	<u> </u>	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	1 U	0.5 U	0.0139	0.01 U
Ls	10/16/02	4.9	2 U	0.5 U	0.75	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U		0.5 U	0.014	0.01 U
Ls	04/09/03	1.6	0.2 U	0.14 J	0.41 J	0.12 U	0.091 U	0.12 U	0.12 U	0.12 U	0.11 U	0.21 J	0.24 J	0.75 U	0.11 U	0.0163	0.01 U
Ls T + 1.0	10/22/03	21	2 0	0.5 U	29	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1 U	0.5 U	0.0175	0.01 U
Total Sa	amples Analyzed	124	124	124	124	124	124	124	124	124	124	112	112	112	112	110	110
	Non-Detections	10	119	62	18	88	61	116	122	11	123	83	104	98	111	57	90
Qua	lifted Detections	3	0	3	4	4	8	2	0		0	10		0	0	0	
Unqua	lifted Detections	111	5	59	102	32	55	6	2	46		19	7	14		53	20
Freque	ency of Detection	92%	4.0%	50%	85%	29%	51%	6.5%	1.6%	38%	0.8%	26%	7.1%	13%	0.9%	48%	18%
	Maximum	8,200	110	190	42,000	80	270	1.1	78	76,000	3.8	180	55	130	1.6	0.0274	0.04
	Minimum	0.84	6	0.14 J	0.6	0.18 J	0.18 J	0.66	1.5	1.2	3.8	0.12 J	0.24 J	1	1.6	0.0051	0.01

Table 9 Potentially Applicable Groundwater Cleanup Levels and Standards BSB Property, Kent, Washington

			I					~ ~ .						,
					Potentially Applicable Cleanup Levels and Standards									
					Surface Water Clea	anup Levels	s and Standards (µg	/L)						
				Prot	ection of Human Hea	alth	Protection of Aqu	uatic Organisms						
					EPA Recommended Criteria			State Surface Water Quality		Groundwater Cleanup Levels and Drinking Water				1 11100
					(National Toxic	s Rule)	Standards		Maximum Contaminant Levels (µg/L)				Retained as IHS?	
CAS		Frequency of	Maximum Detected	Method B		Organism	_	Freshwater						
Number	Chemical of Potential Concern	Detection (%)	Concentration (µg/L)	Surface	Water + Organism	Only	Freshwater Acute	Chronic	Method A	Method B	State MCL	Federal MCL	Human Health	Aquatic Organisms
57-12-5	Cyanide	18	40	51,900	140	140	22.0 ^b	5.2 ^b	-	320	200	200	No	No ^c
75-34-3	1,1-Dichloroethane (1,1-DCA)	51	270	_	-	_	—	-	-	800	_	_	No	No
75-35-4	1,1-Dichloroethene (1,1-DCE)	29	80	1.93	330	7,100	-	-	_	400	7^{a}	7	No	No
107-06-2	1,2-Dichloroethane (1,2-DCA or EDC)	6.5	1.1	59.4	0.38	37	-	—	5	0.481	5 ^a	5	No	No
156-59-2	cis-1,2-Dichloroethene (cis-1,2-DCE)	85	42,000	_	_	_	-	—	_	80	70^{a}	70	Yes	No
156-60-5	trans-1,2-Dichloroethene (trans-1,2-DCE)	50	190	32,800	140	10,000	_		_	160	100 ^a	100	No	No
100-41-4	Ethylbenzene	7.1	55	6,910	530	2,100	-	-	700	800	700^{a}	700	No	No
79-01-6	Trichloroethene (TCE)	38	76,000	55.6	2.5	30	_	_	5	0.11	5 ^a	5	Yes	No
108-88-3	Toluene	26	180	48,500	1,300	15,000	_	_	1,000	1,600	1,000 ^a	1,000	No	No
1330-20-7	Total Xylenes	13	130	_	_	_	_	_	1,000	1,600	10,000 ^a	10,000	No	No
75-01-4	Vinyl Chloride	92	8,200	3.69	0.025	2.4	-	—	0.2	0.0291	2 ^a	2	Yes	No
Notes:	1. $CUL = cleanup level, -= not available.$													

2. Method A groundwater cleanup levels from WAC 173-340-900, Table 720-1.

3. Method B groundwater and surface water cleanup levels from Ecology's on-line Cleanup Levels and Risk Calculations under the Model Toxics Control Act Cleanup Regulation (CLARC) tool, (https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx).

4. State MCL = Washington State maximum contaminant level (from WAC 246-290-310).

5. Federal MCL = Federal maximum contaminant level (from http://www.epa.gov/safewater/mcl.html#mcls; last accessed 5/26/05).

6. Washington State surface water quality standards from WAC 173-201A-040.

7. EPA National Recommended Water Quality Criteria from http://www.epa.gov/waterscience/criteria/wqcriteria.html; last accessed 5/26/05.

^a Federal MCLs adopted by reference.

^b Surface water standards are for free cyanide; test results represent total cyanide.

^c See Section 7.4.1 for rationale regarding not including cyanide as an IHS.

Table 10 Final Indicator Hazardous Substances BSB Property, Kent, Washington

Final IHS	Cleanup Level (µg/L)
cis-1,2-Dichloroethene (cis-1,2-DCE)	70^{a}
Trichloroethene (TCE)	30 ^b
Vinyl Chloride	2.4 ^b
Notes:	
^a Cleanup level based on state and federal MCLs	3.
^b Cleanup level based on National Toxics Rule (40 CFR Part 131).

Preliminary Cleanup Action Technologies BSB Property, Kent, Washington

General Response Action	Preliminary Technology
Groundwater Containment	Groundwater Pumping
	Vertical Barriers (Containment Walls)
	Permeable Reactive Barriers
Ex Situ Groundwater Treatment/Discharge	King County Sanitary Sewer ¹
In Situ Groundwater Source Treatment	
Biological Treatment	Natural Attenuation
	Enhanced Aerobic Biodegradation
	Enhanced Anaerobic Biodegradation
Chemical/Physical Treatment	Air Sparging
	Steam Stripping
	In Situ Thermal Treatment
	Dual-Phase Extraction
	Surfactant/Co-Solvent Flushing
	Reactive Metal Injection
	<i>In situ</i> Oxidation
Engineering Controls (Soil and Groundwater)	Surface Cap ²
	Subsurface Vapor Barrier ²
Institutional Controls (Soil and Groundwater)	Water- and Land-Use Restrictions ²
	Worker Protection Measures ²
	Access Restrictions ²
Notes –	

1 – Presumed method of managing extracted groundwater (see Section 9.1 for discussion)

2 – Technologies included in presumed response actions to address (1) trench worker exposure pathway and (2)

potential future groundwater/soil to indoor air exposure pathway.

			Commen	ts Specific to BSB Site		
Technology	Description	General Applicability/Limitations	Effectiveness ^a	Implementability ^b	Relative Cost ^c	Retained?
		Groundw	vater Containment			
Groundwater Extraction	Groundwater is pumped to extract contaminants and generate hydraulic gradients that contain the contaminant plume. Extracted groundwater is treated above ground.	 Applicability. Groundwater pumping is currently in use at the site to achieve hydraulic control and is a common technology for achieving hydraulic control and recovering contaminant mass. Extracted groundwater would be treated on-site as necessary to meet pretreatment standards and then discharged to the King County treatment works. Limitations. The potential limitations of groundwater pumping include site hydrogeology and sorption processes, biofouling and precipitation of inorganics (e.g., iron), and high operational costs. These factors are well understood at the BSB site based on operation of the current CMS. 	Medium to High Concepts and performance of groundwater pumping are well understood at the site. Groundwater extraction provides reliable containment and removal of groundwater contamination. Can effectively reduce contaminant migration and remove some contaminant mass, although potential presence of NAPL in source area may require very long-term operation.	Easy to Moderate Lack of aboveground structures and underground utilities make construction relatively easy. Requirement for long- term operations and maintenance increases difficulty of implementation.	 Capital: Low to Moderate O&M: High Overall: Moderate to High 	Yes
Vertical Barriers (Containment Walls)	Subsurface barriers, such as slurry walls or sheet piles, are installed to contain impacted groundwater.	 Applicability. Containment barriers are proven technologies that can contain or divert contaminated groundwater or can be used to isolate portions of a plume undergoing different types of treatment. Limitations. Typically requires heavy construction techniques to install. Technology contains contaminants and provides no treatment. Generally higher capital costs than groundwater pumping system, but often have lower long-term O&M costs. 	High Barriers could control groundwater movement and contaminant migration. Use of physical barriers can reduce some uncertainties relative to groundwater pumping systems.	Moderate Significant subsurface construction required for installation, although methods are well established and equipment and materials readily available. Lack of aboveground structures and underground utilities increases constructability.	Capital: Moderate O&M: Low Overall: Moderate	Yes
Permeable Reactive Barrier	Permeable reactive barriers treat contaminants as groundwater passes through the barrier and contacts reactive material. Barriers designed for treatment of CVOCs typically constructed of zero-valent iron (ZVI).	 Applicability. PRBs constructed using ZVI are well documented for treatment of CVOCs. Effectiveness of ZVI for treating CVOCs present at site is well documented. Limitations. Typically requires significant subsurface construction. Hydrogeology must be compatible with application. Barriers may lose hydraulic or reactive capacity over long-term. 	Medium to High Reactive media (e.g., ZVI) apply to contaminants present at site. High iron content in groundwater could result in fouling of permeable walls over time. Technology can be used alone (i.e., permeable reactive barrier) or in conjunction with barrier wall technologies (i.e., funnel and gate).	Moderate Significant subsurface construction required for installation, although methods are well established and equipment and materials readily available. Lack of aboveground structures and underground utilities increases constructability.	Capital: Low to High (application dependent) O&M: Low Overall: Low to High (application dependent)	Yes
		Ex Situ Groundw	ater Treatment/Discharge			
On-Site Groundwater Treatment (Air Stripping)	Extracted groundwater would be treated, if necessary, to meet the King County pretreatment standards. Air stripping would be the primary treatment technology for VOC removal.	 Applicability. Air stripping used previously for treatment of CMS groundwater and would be effective at reducing VOC concentrations to below King County pretreatment standards. VOCs in vapor discharge from air stripper would be removed using vapor-phase granular activated carbon adsorption. Limitations. High dissolved iron content in groundwater will increase O&M requirements. Potential concentrations of TCE in vapor discharge from air stripper will likely require treatment prior to discharge. 	Medium to High Air stripping effective at reducing VOC concentrations in groundwater to below pretreatment standards, and activated carbon adsorption effective at removing TCE from vapor stream.	Moderate Construction methods for treatment system are well established and equipment and materials readily available. Permitting requirements with King County and Puget Sound Clean Air Agency straightforward.	Capital: Moderate O&M: Moderate to High Overall: Moderate to High	Yes

			Commer	its Specific to BSB Site		
Technology	Description	General Applicability/Limitations	Effectiveness ^a	Implementability ^b	Relative Cost ^c	Retained?
King County Sanitary Sewer	Groundwater is discharged to King County Sanitary Sewer system (either with or without pretreatment, depending on application) for treatment.	 Applicability. This is the current treatment and discharge approach for the existing CMS and would be used for future groundwater discharges. Depending on the nature of the groundwater extraction system, on-site pretreatment may be required to meet discharge standards. Limitations. Primary limitation is concentration of VOCs in discharged water. If concentrations exceed occupational health-based threshold values established by King County, pretreatment may be required to lower VOC levels. Current concentrations in groundwater extracted from Parcel G are well below threshold values. 	High Provides effective water treatment and disposal for the concentrations of VOCs currently present in extracted groundwater from downgradient boundary of Parcel G. Pretreatment may be required in alternative extraction scenarios (e.g., extraction from within slurry wall containment cell).	High Current method for water treatment and disposal.	Capital: Low O&M: Moderate to High Overall: Moderate	Yes
		In Situ Grou	undwater Treatment			
Biological Treatm	ient					
Natural Attenuation	Natural processes—such as dilution, volatilization, biodegradation, adsorption, and chemical reactions—are used to reduce contaminant concentrations, potentially to acceptable levels.	 Applicability. Natural attenuation is potentially applicable to the VOCs present at the site. Can potentially be applied in combination with other technologies to address residual contamination. Limitations. Process can be slow and many site conditions can limit or modify effectiveness of biodegradation. Significant data needed to document performance. Degradation products can be mobile and toxic. Typically applied after residual sources of contamination or NAPL have been controlled or removed. Requires adequate space downgradient of source area for attenuation processes to reduce contamination concentrations. 	Low Site data suggest ongoing anaerobic biodegradation of VOCs, although concentrations exceed cleanup levels at downgradient property boundary. Specific factors affecting long-term performance are uncertain and would require evaluation and monitoring. Technology very unlikely to achieve low cleanup levels at downgradient property boundary.	Moderately Difficult Substantial work including monitoring and modeling would be required to document natural attenuation at the site. Natural attenuation components of remedy do not require expensive and disruptive construction.	Capital: Low to Moderate O&M: Moderate Overall: Moderate	No
Enhanced <i>In situ</i> Aerobic Biodegradation	Adding oxygen, nutrients, or other co-factors to the groundwater increases the rate of biodegradation.	 Applicability. Aerobic bioremediation is applicable to petroleum hydrocarbons, some solvents, and other organic chemicals. Effective for remediating low level residual contamination in conjunction with source removal. Limitations. Applies only to particular classes of compounds that can be degraded aerobically. Contaminant, oxygen, and contaminant-degrading microorganisms must be in contact. Fouling can result from biomass accumulation. Hydrogeologic conditions, nutrient limitations, toxic conditions (heavy metals or adverse pH) can limit effectiveness. Groundwater extraction and treatment might be required for plume control. 	Low Key site contaminants (e.g., TCE) are not amenable to aerobic biodegradation without a suitable co-substrate. Current site conditions are highly reducing and anaerobic, and would make creating and maintaining aerobic conditions difficult.	Difficult Effective implementation requires mechanisms to provide uniform delivery of oxygen, nutrients, and inoculum. Substantial study required to document potential for biodegradation and to develop design.	Capital: Moderate O&M: Moderate Overall: Moderate	No

	,		Commer	its Specific to BSB Site		
Technology	Description	General Applicability/Limitations	Effectiveness ^a	Implementability ^b	Relative Cost ^c	Retained?
Enhanced <i>In situ</i> Anaerobic Biodegradation	Adding electron acceptors or electron donors, nutrients, or co- factors to the groundwater increases or sustains the rate of biodegradation.	 Applicability. Site contaminants are known to degrade under anaerobic conditions. Limitations. Anaerobic biodegradation rates are typically slower than aerobic biodegradation rates. Microorganisms are typically strict anaerobes that are sensitive to even low oxygen concentrations. Delivery of co-factors is often restricted by site hydrogeologic conditions. Groundwater extraction and treatment might be required for plume control and to enhance electron donor and nutrient delivery. 	Medium Anaerobic biodegradation appears to be occurring at site. Effectiveness of anaerobic degradation is typically limited by degradation kinetics. Important consideration is ensuring that degradation products (e.g., vinyl chloride) are themselves degraded. Technology very unlikely to achieve low cleanup levels at downgradient property boundary.	Moderately Difficult to Difficult Effective enhancement requires mechanisms to uniformly deliver co- factors and amendments. Subsurface geology could limit effectiveness of delivery systems.	Capital: Low to Moderate O&M: Moderate Overall: Moderate	No
Chemical/Physica	al Treatment					
Air Sparging	Air is injected into groundwater to volatilize contaminants. Contaminants sparged from groundwater are typically recovered in vadose zone by soil vapor extraction (SVE). Groundwater containment is almost always required around the sparged area to minimize migration of contaminants	 Applicability. Target contaminants for sparging include VOCs. Removal mechanisms can include stripping and enhanced bioremediation. Methane can be used as an amendment to sparged air to enhance cometabolism of chlorinated organics. Sparging wells could be used as injection points to enhance cometabolic bioremediation. Limitations. Effectiveness requires uniform flow of air through saturated soil. Heterogeneous soils can result in non-uniform treatment and uncontrolled movement of potentially dangerous vapors. High contaminant solubility limits transfer to gas phase. Oxygen could cause oxidation and precipitation of iron and stop anaerobic biological systems. SVE typically required to recover sparged contaminants. 	Low Site contaminants are generally volatile and amenable to air sparging. High solubility can limit transfer to vapor phase. Presence of interbedded low permeability layers, including the intermediate silt layer present throughout much of Parcel G, could significantly limit effectiveness in lower portion of shallow aquifer.	Moderately Difficult Sparge wells and aboveground conveyance can be installed in most areas. Low permeability layers in subsurface will complicate SVE system design and installation.	Capital: Moderate O&M: High Overall: Moderate to High	No
Steam Stripping	Steam is forced into groundwater to vaporize contaminants. Vaporized components rise to unsaturated zone and are removed by vacuum extraction. Groundwater containment is almost always required around the area being treat to minimize the potential migration of contaminants	 Applicability. Steam stripping typically applies to oily wastes and semi-volatile hydrocarbons. VOCs also can be treated, but other processes are generally more cost-effective. Can be used to enhance recovery of NAPL. Limitations. Soil type, contaminant characteristics and concentrations, geology, and hydrogeology impact process effectiveness. 	Low to Medium Although no NAPL has been observed at site, it may be present in a residual state. Contaminants are generally volatile. Could increase vaporization of highly soluble contaminants. Presence of interbedded low permeability layers, including the intermediate silt layer present throughout much of Parcel G, could significantly limit effectiveness in lower portion of shallow aquifer.	Moderately Difficult to Difficult Installation of injection and extraction points can be installed in most areas. May be difficult to uniformly deliver steam to impacted areas. Steam equipment can increase complexity of design, construction, and operation.	Capital: High O&M: High Overall: High	No
In Situ Thermal Treatment	Hot air or other heat source (e.g., electrical heating) are used to enhance desorption, volatilization, and mobility of contaminants. Groundwater containment is almost always required around the area being treat to minimize the potential migration of contaminants	 Applicability. Thermal processes typically apply to NAPL or dissolved contaminants where heating would improve partitioning to vapor phase and recovery. Can improve recovery of VOCs. Limitations. Effectiveness requires uniform heating of saturated soil. Heterogeneous soils can result in non-uniform treatment. 	Low to Medium Although no NAPL has been observed at site, it may be present in a residual state. Contaminants are generally amenable to conventional removal methods without thermal enhancement.	Moderately Difficult to Difficult Soil heating techniques are not routinely applied, and additional technology development could be required. May be difficult to uniformly heat soils in impacted area. Companion technologies, such as air sparging would likely be implemented. Heating equipment would increase implementation complexity.	Capital: High O&M: High Overall: High	No

			Commen	ts Specific to BSB Site		
Technology	Description	General Applicability/Limitations	Effectiveness ^a	Implementability ^b	Relative Cost ^c	Retained?
Dual-Phase Extraction	A vacuum is applied to an extraction well to simultaneously extract groundwater, NAPL, and vapors.	 Applicability. Dual-phase extraction applies to VOCs and LNAPLs in soil and groundwater. Dual-phase extraction is more effective than SVE in heterogeneous soils. Can increase groundwater recovery rates Limitations. Can leave isolated lenses of undissolved product in low-permeability soils. Effectiveness depends on lithology and contaminant characteristics/distribution. Requires both water treatment and vapor treatment. 	Low to Medium Although groundwater extraction is effective and applicable at the site, the effectiveness of SVE is significantly limited by subsurface heterogeneities including the intermediate silt layer. Although no NAPL has been observed at site, it is likely present in a residual state in the form of blobs and ganglia. Would require significant drawdown of water table to be more effective than standard SVE and groundwater extraction; this would require relatively high groundwater extraction rates.	Moderately Difficult Significant requirements for vacuum and groundwater conveyance. May be difficult to achieve desired water table drawdown at reasonable groundwater extraction rates	Capital: Moderate to High O&M: High Overall: High	No
Surfactant/Co- Solvent Flushing	Chemicals are injected and subsequently extracted into source area to solubilize and/or mobilize DANPL constituents. Chemicals typically used can include co- solvents (including alcohols), aqueous surfactants, or electrolytes that enhance solubilization.	 Applicability. CVOCs present at the site are suitable for co-solvent application. Residual contaminant levels remaining after surfactant/co-solvent flushing would likely require follow-up treatment in order to achieve cleanup levels. Limitations. This technology has limited full-scale application data available at this time. Accurate identification of all areas with residual DNAPL required and then uniform delivery of surfactant/co-solvent chemicals required for effective treatment. Potential for mobilization of contaminants would likely require significant hydraulic controls to be in place before application. 	Low Although the technology has the potential to treat site contaminations, it is most often used where significant DANPL sources (i.e., pooled DANPL) are present and source areas are well defined. Technology very unlikely to achieve low cleanup levels at downgradient property boundary without substantial follow-up treatment using a different technology.	Moderately Difficult Effective treatment requires uniform application surfactant/co-solvent chemicals that may be difficult due to subsurface heterogeneities and nature of residual DNAPL sources. Implementation of hydraulic controls around application area increases overall operational complexity of technology.	 Capital: Moderate to High O&M: Moderate to High Overall: Moderate to High 	No
Reactive Metal Particle Injection	Very small particles (micro- or nano-scale) of zero-valent iron are injected into the DNAPL source zone where chemical reduction reactions degrade chlorinated solvents. Can be used in conjunction with pneumatic fracturing technologies to enhance delivery of ZVI particles.	 Applicability. ZVI has been shown effective at treating CVOCs in general, and at the bench and pilot scale with micro- or nanoscale particle injection technology. Applicability of injection/ZVI delivery technologies at this site is uncertain. Limitations. This technology has not been demonstrated in full-scale applications at this time and bench-scale performance data is limited. Accurate identification of all areas with residual DNAPL required and then uniform delivery of ZVI particles required for effective treatment. 	Low to Medium Although the technology has the potential to treat site contaminations, there are many uncertainties regarding this technology due to its lack of full-scale implementation data. It is likely that multiple applications would be required and it is very unlikely to achieve low cleanup levels at downgradient property boundary.	Moderately Difficult Effective treatment requires uniform application of ZVI particles that may be difficult due to subsurface heterogeneities and nature of residual DNAPL sources.	Capital: Moderate to High O&M: Low to Moderate Overall: Moderate to High	No
<i>In situ</i> Chemical Oxidation (e.g., Permanganate, Fenton's Reagent)	Strong oxidizer is injected into subsurface to oxidize and destroy organic contaminants.	 Applicability. Chemical oxidation commonly applied to inorganics, although use for halogenated and nonhalogenated VOCs, SVOCs, fuel hydrocarbons has increased in recent years. Limitations. Incomplete oxidation results in intermediate contaminants. Process may not be cost-effective for high contaminant concentrations because large amounts of oxidizing agent required. Some oxidizers in some environments can be explosive. Uniform application of oxidants required for effective treatment. High COD reduces effectiveness (e.g., high iron in groundwater). 	Medium Significant amount of VOCs could be oxidized. Oxidized and precipitated iron could result in aquifer fouling. High contaminant concentrations and high COD would require large amount of oxidizer. Ability to deliver oxidizer(s) to contaminants in heterogeneous subsurface could limit effectiveness. Technology very unlikely to achieve low cleanup levels at downgradient property boundary.	Moderately Difficult Effective treatment requires uniform application of oxidizing agent that may be difficult due to subsurface heterogeneities and nature of residual DNAPL sources. Limited long-term operation required an advantage. Handling large quantities of strong oxidizers presents significant health and safety concerns.	 Capital: Moderate to High O&M: Low to Moderate Overall: Moderate to High 	No

Ţ	, ,		Comments Specific to BSB Site					
Technology	Description	General Applicability/Limitations	Effectiveness ^a	Implementability ^b	Relative Cost ^c	Retained?		
		Engine	eering Controls					
Surface Cap or Barrier	Low permeability cover (e.g., asphalt paving) is placed over contaminated soils and groundwater to prevent direct contact and limit infiltration of precipitation.	 Applicability. Capping is a well established technology that is currently in use for portions of Parcel G site. Limitations. Currently no impediments that would limit capping. Capping design must accommodate potential future traffic and/or site development structural requirements. Cap must be sloped or graded to promote effective runoff of precipitation. 	High Capping would be very effective at controlling direct contact with potentially contaminated soils, limit exposures to VOCs in soil gas emanating from soil or groundwater, and prevent infiltration of precipitation. Maintenance activities are straightforward and effective.	Easy No aboveground obstructions and adequate working pace would make construction relatively easy. Flat topography of northern portion of site may require importing soil to achieve adequate grades for surface drainage.	Capital: Moderate O&M: Low to Moderate Overall: Moderate	Yes		
Subsurface Vapor Barriers	Low permeability barriers and/or subsurface ventilation structures placed beneath buildings to limit intrusion of VOC-containing vapors.	Applicability. Commonly used and well-established technology for controlling vapor migration beneath and around buildings.Limitations. None.	High Not currently used at the site, as there are no aboveground structures. If future site development includes construction of buildings, subsurface vapor barriers would be very effective at controlling this potential exposure pathway.	Easy Since there are no existing structures on site, there is no need for somewhat difficult retrofitting of barrier systems. Any potential new construction can have subsurface vapor barriers incorporated into the design and construction.	Capital: Low to Moderate O&M: Low to Moderate Overall: Low to Moderate	Yes		
		Institu	tional Controls					
Water- and Land- Use Restrictions	Restrict use of groundwater for domestic or industrial purposes where contaminant concentrations are above regulatory limits. Define requirements to limit exposure if land use changes.	Applicability. Common controls to reduce exposure.Limitations. Can be difficult to implement for off-site locations.	Medium to High Can effectively prevent human exposure to VOC- containing groundwater on-site.	Easy Easy to implement on site.	Capital: Low O&M: Low Overall: Low	Yes		
Worker Protection Measures	Health and safety techniques such as personal protective equipment, monitoring, and planning are implemented to protect workers involved subsurface activities.	Applicability. Common controls to reduce exposure. Limitations. None.	Medium to High Can prevent exposure.	Easy Easy to implement on site.	Capital: Low O&M: Low Overall: Low	Yes		
Access Restrictions	Restrict access by unauthorized personnel to site.	Applicability. Common controls to reduce potential exposure or interference/damage of other remediation systems.Limitations. None.	Medium Can prevent exposure.	Easy Easy to implement on site.	Capital: Low O&M: Low Overall: Low	Yes		
NOTE: ^a Preliminary effectivenes ^b Implementability rating ^c Relative costs for capitz	ss ratings of high, medium, and low reflect estim of easy, moderately difficult, and difficult refle-	nated relative effectiveness of the technology to treat the site contaminants and meet C ₁ ct estimated relative complexity of implementing the technology.	AOs.					

Summary of Retained Technologies BSB Property, Kent, Washington

	Technologi	es
Treatment Category	Retained	Screened Out
Containment	Groundwater Pumping	Continuous Permeable Reactive Barrier
	Vertical Barriers (Containment Walls)	
	Permeable Reactive Barriers (limited application)	
Ex Situ Groundwater	On Site Groundwater Treatment (Air Stripping)	None
Treatment/Discharge	King County Sanitary Sewer ¹	
In Situ Groundwater Source Treatment		
Biological Treatment	None	Natural Attenuation
		Enhanced Aerobic Biodegradation
		Enhanced Anaerobic Biodegradation
Chemical/Physical Treatment	None	Air Sparging
		Steam Stripping
		In Situ Thermal Treatment
		Dual-Phase Extraction
		Surfactant/Co-Solvent Flushing
		Reactive Metal Injection
		In situ Oxidation
Engineering Controls (Soil and	Surface Cap ²	None
Groundwater)	Subsurface Vapor Barrier ³	
Institutional Controls (Soil and	Water- and Land-Use Restrictions ²	None
Groundwater)	Worker Protection Measures ²	
	Access Restrictions ²	

Notes -

1 – Presumed method of discharging extracted groundwater (see Section 9.1 for discussion); pretreatment may be required depending on application.

2 - Technologies included in presumptive general response actions to address subsurface construction worker exposure pathway

3 – Use of subsurface vapor barriers will be evaluated in the event of future Parcel G development to address the potential groundwater/soil to indoor air exposure pathway.

Table 14Construction and Operation and Maintenance CostsAlternative 1 - Enhanced Groundwater Extraction System

	Construction Costs										
ITEM	UNIT	COST	UNITS	QUAN	ITITY		C	OST			
	low	high		low	high		low	high			
Construction Costs											
1. Extraction Wells/Vaults	\$ 70,000	\$ 80,000	LS	1	1	\$	70,000	\$ 80,000			
2. Piping, Electrical, Controls	\$ 115,000	\$ 125,000	LS	1	1	\$	115,000	\$ 125,000			
3. Piezometers/Monitoring Wells	\$ 1,200	\$ 1,400	EA	14	14	\$	16,800	\$ 19,600			
Mechanical Checkout/Startup	\$ 10,000	\$ 15,000	LS	1	1	\$	10,000	\$ 15,000			
5. Construction and O&M Reports	\$ 12,000	\$ 15,000	LS	1	1	\$	12,000	\$ 15,000			
6. Aquifer Tests and Model Calibration	\$ 40,000	\$ 50,000	LS	1	1	\$	40,000	\$ 50,000			
7. Contingency Plat	\$ 15,000	\$ 25,000	LS	1	1	\$	15,000	\$ 25,000			
						\$	-	\$ -			
					Subtotal	\$	278,800	\$ 329,600			
Sales Tax on Materials (8.8%) \$ 17,800 \$ 19,800											
System Engineering and Permitting (10% \$ 21,200 \$ 24,000											
		Co	nstruction (Cost Conting	ency (15 %	\$	41,800	\$ 49,400			
					•			·			
Total Estimated Capital Costs\$ 360,000\$ 420,000											
Average Capital Cost \$ 390,000											
Operation and Maintenance Costs											
Estimated Annual Cost										PW ¹	
Activity							low	high	(30 Years)	
1. Baseline Extraction System O&M ar	nd Reporting					\$	180,000	\$ 200,000	\$	2,921,000	
2. Initial CAPMIP Performance Sample	ing, Modeling	g, and Repor	ting (year			\$	80,000	\$ 105,000	\$	88,000	
3. Additional Performance Sampling an	nd Reporting	(years 2-30				\$	25,000	\$ 40,000	\$	469,000	
4. Baseline EMP Groundwater Monitor	ring					\$	19,000	\$ 19,000	\$	292,000	
								Subtotal	\$	3,770,000	
							O&M Cos	st Contingency (10 %)	\$	377,000	
							Total Es	timated O&M Costs	\$	4,150,000	
TOTAL ESTIMATED PRESENT WO	DRTH COST	ſ							\$	4,540,000	
¹ PW = present worth, calculated assuming a 5% discount rate using the average annual cost and years o operation indicated in the following formula $PW = A \frac{(1+i)^n - 1}{i}$ where $A = average annual cost$ i = discount rate											
$PW = A \frac{(1+i)^{n}}{i(1+i)^{n}}$ All total costs are in 2006 dollars and rounded to nearest \$10,000											

Table 15Construction and Operation and Maintenance CostsAlternative 2 - Slurry Wall around Parcel G with Zero Valent Iron Reactor Vessels

Construction Costs													
ITEM	UNIT COST		UNITS	QUA	NTITY		COST		T				
	low]	high		low	high		low		high		
Construction Costs													
1. Barrier Wall Installation	\$	200	\$	350	LF	1,820	1,820	\$	364,000	\$	637,000		
2. Mobilization/Demobilization	\$ 70,	000	\$	80,000	LS	1	1	\$	70,000	\$	80,000		
3. Reactor Vessel inc. infiltration gallery	\$ 160,	000	\$ 3	320,000	LS	1	1	\$	160,000	\$	320,000		
4. Granular ZVI Material	\$1,	000	\$	1,200	ton	140	210	\$	140,000	\$	252,000		
5. EnviroMetal Licensing Fee (15%)								\$	36,000	\$	64,000		
6. Cap Repair/Repaving	\$ 2	.00	\$	2.25	SF	130,000	145,000	\$	260,000	\$	326,250		
7. Drainage Improvements	\$ 15,	000	\$	25,000	LS	1	1	\$	15,000	\$	25,000		
8. Soil/Debris Disposal (Off-site as SW)	\$	35	\$	40	ton	2100	2,800	\$	73,500	\$	112,000		
9. Performance Monitoring Piezometers	\$1,	200	\$	1,500	EA	8	8	\$	9,600	\$	12,000		
10. Utility Realignment	\$ 10,	000	\$	20,000	LS	1	1	\$	10,000	\$	20,000		
11. Wall Alignment Investigation	\$ 15,	000	\$	25,000	LS	1	1	\$	15,000	\$	25,000		
							Subtotal	\$	1,153,100	\$	1,873,250		
					Sal	es Tax on M	aterials (8.8%)	\$	101,500	\$	164,800		
					Engine	ering and Pe	rmitting (10%)	\$	115,300	\$	187,300		
					Constructio	on Cost Cont	ingency (20%)	\$	230,600	\$	374,700		
Total Estimated Capital Costs								\$	1,600,000	\$	2,600,000		
						Averag	e Capital Cost	\$	2,100,000				
		(Jper	ration ar	nd Mainten	ance Costs						E	Baseline O&M Case
									Estimated	Annı	ial Cost		PW^1
Activity									low		high		(30 Years)
1. Startup Performance Sampling and Rep	orting (i	n add	ition	n to routir	ne monitorii	ng; years 1-3)	\$	10,000	\$	20,000	\$	41,000
2. Additional Performance Sampling and Reporting (years 4-30)							\$	5,000	\$	10,000	\$	95,000	
3. Baseline EMP Groundwater Monitoring							\$	24,000	\$	24,000	\$	369,000	
4. Cap Maintenance							\$	10,000	\$	20,000	\$	231,000	
5. ZVI Reactor Vessel Maintenance (assumes \$50,000 per "refresh" event)											\$	12,000	
											Subtotal	\$	748,000
								O&M Co	st Con	tingency (10 %)	\$	74,800	
								Total Es	stimat	ed O&M Costs	\$	820,000	
TOTAL ESTIMATED PRESENT WORT	TH COS	Γ	_									\$	2,920,000

¹ PW = present worth, calculated assuming a 5% discount rate

using the average annual cost and years of

operation indicated in the following formula:

$$PW = A \frac{(1+i)^{n} - 1}{i(1+i)^{n}}$$

where A = average annual costi = discount raten = number of years of operation

All total costs are in 2006 dollars and rounded to nearest \$10,000.

Table 16Construction and Operation and Maintenance CostsAlternative 3 - Slurry Wall around Parcel G with Limited Pumping for Gradient Control

Construction Costs													
ITEM		UNIT	CO	ST	UNITS	QUAI	NTITY		С	OST			
	1	low		high		low	high		low		high		
Construction Costs													
1. Barrier Wall Installation	\$	175	\$	350	LF	1,780	1,780	\$	311,500	\$	623,000		
2. Mobilization/Demobilization	\$ 3	50,000	\$	75,000	LS	1	1	\$	50,000	\$	75,000		
3. Gradient Control Wells/vault	\$ 1	10,000	\$	12,000	EA	3	5	\$	30,000	\$	60,000		
4. Piping, Electrical, Site Preparation	\$ (60,000	\$	75,000	LS	1	1	\$	60,000	\$	75,000		
5. GW Treatment System	\$ 3	50,000	\$	70,000	LS	1	1	\$	50,000	\$	70,000		
6 Cap Repair/Repaving	\$	2.00	\$	2.25	SF	130,000	145,000	\$	260,000	\$	326,250		
7. Drainage Improvements	\$ 1	15,000	\$	25,000	LS	1	1	\$	15,000	\$	25,000		
8. Soil/Debris Disposal (Offsite as S	\$	35	\$	40	ton	2,100	2,800	\$	73,500	\$	112,000		
9 Performance Monitoring Wel	\$	1,200	\$	1,500	EA	12	12	\$	14,400	\$	18,000		
10. Utility Realignmen	\$ 1	10,000	\$	20,000	LS	1	1	\$	10,000	\$	20,000		
11. Wall Alignment Investigatio	\$ 1	15,000	\$	25,000	LS	1	1	\$	15,000	\$	25,000		
							Subtotal	\$	889,400	\$	1,429,250		
					Sales	Fax on Mate	erials (8.8%)	\$	78,300	\$	125,800		
					Engineeri	ng and Pern	nitting (10%	\$	88,900	\$	142,900		
				Со	nstruction	Cost Contin	gency (20%	\$	177,900	\$	285,900		
					Total E	stimated Ca	apital Costs	\$	1,230,000	\$	1,980,000		
						Average C	Capital Cost	: \$	1,610,000				
		(Ope	ration an	nd Mainter	ance Costs]	Baseline O&M Case
Estimated Annual Cost								4					
									Estimated	Ann	ual Cost		PW
Activity									Estimated low	Ann	ual Cost high		PW ¹ (30 Years)
Activity 1. Baseline Gradient Control System	<u>1 0&I</u>	M and R	Lepc	rtin				\$	Estimated low 60,000	Ann \$	ual Cost high 100,000	\$	PW ¹ (30 Years) 1,230,000
Activity 1. Baseline Gradient Control System 2. Baseline Groundwater Treatment	ı O&l Syster	M and R m O&N	lepc	vrtin				\$ \$	Estimated low 60,000 30,000	Anno \$ \$	ual Cost high 100,000 50,000	\$ \$	PW ¹ (30 Years) 1,230,000 615,000
Activity 1. Baseline Gradient Control System 2. Baseline Groundwater Treatment 3. Startup Performance Sampling and	1 O&1 Syster 1 Rep	M and R m O&N porting (lepc in a	ortin ddition to	o routine m	onitoring; ve	ears 1-	\$ \$ \$	Estimated low 60,000 30,000 10,000	Ann \$ \$ \$	ual Cost high 100,000 50,000 20,000	\$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000
Activity Baseline Gradient Control System Baseline Groundwater Treatment Startup Performance Sampling and Additional Performance Sampling 	1 O&l Syster 1 Rep and I	M and R m O&N porting (Reportin	tepc	ortin ddition to years 6-30	o routine me	onitoring; ye	ears 1-	\$ \$ \$	Estimated low 60,000 30,000 10,000 5,000	Ann \$ \$ \$ \$	ual Cost high 100,000 50,000 20,000 10,000	\$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000
Activity Baseline Gradient Control System Baseline Groundwater Treatment Startup Performance Sampling and Additional Performance Sampling Baseline EMP Groundwater Moni 	1 O&l Syster 1 Rep and I torin	M and R m O&N porting (Reportin	tepc (in a ng (y	ortin Iddition to Vears 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000	Ann \$ \$ \$ \$ \$ \$	ual Cost high 100,000 50,000 20,000 10,000 24,000	\$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 369,000
Activity Baseline Gradient Control System Baseline Groundwater Treatment Startup Performance Sampling and Additional Performance Sampling Baseline EMP Groundwater Moni Cap Maintenance 	1 O&l Syster 1 Rep 1 and I torinį	M and R m O&N oorting (Reportin	tepc (in ang (y	ortin Iddition to years 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000	Ann \$ \$ \$ \$ \$ \$ \$ \$ \$	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 369,000 231,000
Activity Baseline Gradient Control System Baseline Groundwater Treatment Startup Performance Sampling and Additional Performance Sampling Baseline EMP Groundwater Moni Cap Maintenance 	1 O&l Syster 1 Rep and I torinį	M and R m O&N porting (Reportin	tepc (in a ng (y	ortin addition to years 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000	Ann \$ \$ \$ \$ \$ \$ \$	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal	\$ \$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 369,000 231,000 2,593,000
Activity Baseline Gradient Control System Baseline Groundwater Treatment Startup Performance Sampling and Additional Performance Sampling Baseline EMP Groundwater Moni Cap Maintenance 	1 O&l Syster d Rep and I toring	M and R m O&N porting (Reportin	tepc (in ang (y	ortin addition to years 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos	Ann \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal tingency (10 %)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 231,000 2,593,000 259,300
Activity Baseline Gradient Control System Baseline Groundwater Treatment Startup Performance Sampling and Additional Performance Sampling Baseline EMP Groundwater Moni Cap Maintenance 	1 O&l Syster d Rep and I toring	M and R m O&N oorting (Reportin	tepo (in a ng (y	ortin uddition to years 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos Total Est	Annu \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal tingency (10 % ed O&M Costs	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 231,000 2,593,000 259,300 2,593,000 2,593,000
Activity Baseline Gradient Control System Baseline Groundwater Treatment Startup Performance Sampling and Additional Performance Sampling Baseline EMP Groundwater Moni Cap Maintenance TOTAL ESTIMATED PRESENT Weight the second	1 O&l Syster d Rep and I torins	M and R m O&N oorting (Reportin	tepc (in a ng (y	ortin uddition to years 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos Total Est	Annu \$ \$ \$ \$ \$ <u>t Con</u>	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal tingency (10 % ed O&M Costs	% % % % % % % % %	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 231,000 2,593,000 259,300 2,593,000 2,593,000 4,460,000
Activity 1. Baseline Gradient Control System 2. Baseline Groundwater Treatment 3. Startup Performance Sampling and 4. Additional Performance Sampling 5. Baseline EMP Groundwater Moni 6. Cap Maintenance	1 O&l Syster d Rep and I toring	M and R m O&N oorting (Reportin <u>H COS</u> T	tepc (in a ng (y	ortin uddition to years 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos Total Est	Annu \$ \$ \$ \$ \$ t Coni timate	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal tingency (10 %) ed O&M Costs	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 231,000 2,593,000 259,300 2,593,000 2,593,000 4,460,000
Activity 1. Baseline Gradient Control System 2. Baseline Groundwater Treatment 3. 3. Startup Performance Sampling and 4. Additional Performance Sampling 5. Baseline EMP Groundwater Moni 6. Cap Maintenance TOTAL ESTIMATED PRESENT Weight 1 1 PW = present worth. calculated assurements	n O&l Syster d Rep and I toring	M and R m O&N oorting (Reportin H COST	tepo (in a ng (y F	ortin uddition to years 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos Total Est	Annu \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal tingency (10 %) ed O&M Costs	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 231,000 2,593,000 259,300 2,593,000 2,593,000 4,460,000
Activity 1. Baseline Gradient Control System 2. Baseline Groundwater Treatment 3. 3. Startup Performance Sampling and 4. Additional Performance Sampling 5. Baseline EMP Groundwater Moni 6. Cap Maintenance TOTAL ESTIMATED PRESENT Works and the second seco	n O&l Syster d Rep and I toring	M and R m O&N oorting (Reportin <u>H COS</u> T a 5% dis	tepc (in a lig (y <u>r</u> scou	ortin uddition to years 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos Total Est	Annu \$ \$ \$ \$ \$ \$ t Cont timate	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal tingency (10 %) ed O&M Costs	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 231,000 2,593,000 259,300 2,593,000 2,593,000 4,460,000
Activity 1. Baseline Gradient Control System 2. Baseline Groundwater Treatment 3. Startup Performance Sampling and 4. Additional Performance Sampling 5. Baseline EMP Groundwater Moni 6. Cap Maintenance TOTAL ESTIMATED PRESENT We average annual cost and years operation indicated in the following formation of the second se	n O&l Systen d Rep ; and I toring ORTI ning : o nuli	M and R m O&N oorting (Reportin <u>H COS</u> a 5% dis	tepc (in a ng (y F	ortin uddition to years 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos Total Est	Annu \$ \$ \$ \$ \$ \$ t Cont timate	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal tingency (10 %) ed O&M Costs	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 231,000 2,593,000 259,300 2,593,000 2,593,000 4,460,000
Activity 1. Baseline Gradient Control System 2. Baseline Groundwater Treatment 3. Startup Performance Sampling and 4. Additional Performance Sampling 5. Baseline EMP Groundwater Moni 6. Cap Maintenance TOTAL ESTIMATED PRESENT We ¹ PW = present worth, calculated assurusing the average annual cost and years operation indicated in the following form	n O&l Systen d Rep ; and I torinş ORTI ning : o nula	M and R m O&N oorting (Reportin <u>H COS</u> a 5% dis	tepc (in a ng (y F	ortin iddition to years 6-3(o routine me	onitoring; ye	ears 1-	\$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos Total Est	Anno \$ \$ \$ \$ \$ t Cont timate	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal tingency (10 %) ed O&M Costs	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 83,000 231,000 2,593,000 259,300 2,593,000 2,593,000 4,460,000
Activity 1. Baseline Gradient Control System 2. Baseline Groundwater Treatment 3 3. Startup Performance Sampling and 4. Additional Performance Sampling 5. Baseline EMP Groundwater Moni 6. Cap Maintenance TOTAL ESTIMATED PRESENT We ¹ PW = present worth, calculated assur- using the average annual cost and years operation indicated in the following forr $(1 + i)^n - 1$	n O&l System d Rep and I torinş DRTI	M and R m O&N oorting (Reportin <u>H COS</u> a 5% dis	tepc (in a ng (y r scor	ortin uddition to years 6-3(A = averag	onitoring; ye	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos Total Est	Annu S S S S S S t Cont timate	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal tingency (10 %) ed O&M Costs	\$\$ \$\$ \$\$ \$\$ \$\$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 65,000 83,000 231,000 2,593,000 259,300 2,593,000 2,593,000 4,460,000
Activity 1. Baseline Gradient Control System 2. Baseline Groundwater Treatment 3 3. Startup Performance Sampling and 4. Additional Performance Sampling 5. Baseline EMP Groundwater Moni 6. Cap Maintenance TOTAL ESTIMATED PRESENT We ¹ PW = present worth, calculated assur- using the average annual cost and years operation indicated in the following forr $PW = A \frac{(1+i)^n - 1}{i(1+i)^n}$	n O&l Syste d Rep torinț torinț DRTI ming o nul	M and R m O&N oorting (Reportin <u>H COS</u> a 5% dis	tepo (in a ng (y F	ortin uddition to years 6-3(A = averag i = discour	onitoring; ye	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos Total Est	Anno S S S S S t Con timate	ual Cost high 100,000 50,000 20,000 10,000 24,000 20,000 Subtotal tingency (10 %) ed O&M Costs	\$\$\$\$\$\$\$\$\$\$	PW ¹ (30 Years) 1,230,000 615,000 83,000 231,000 2,593,000 259,300 2,593,000 4,460,000
Activity 1. Baseline Gradient Control System 2. Baseline Groundwater Treatment 13 3. Startup Performance Sampling and 4. Additional Performance Sampling 5. Baseline EMP Groundwater Moni 6. Cap Maintenance TOTAL ESTIMATED PRESENT We ¹ PW = present worth, calculated assur- using the average annual cost and years operation indicated in the following forr $PW = A \frac{(1+i)^n - 1}{i(1+i)^n}$	n O&l Syste d Rep torinț torinț DRTI ming o nul	M and R m O&N oorting (Reportin <u>H COS</u> a 5% dis	T T Scou	ortin uddition to years 6-3(A = averag i = discour n = numbe	onitoring; ye ge annual co tt rate r of years of	ears 1-	\$ \$ \$ \$ \$	Estimated low 60,000 30,000 10,000 5,000 24,000 10,000 O&M Cos Total Est	Anno S S S S S t Con timate	ual Cost high 100,000 50,000 20,000 24,000 20,000 Subtotal tingency (10 %) ed O&M Costs	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PW ¹ (30 Years) 1,230,000 615,000 83,000 231,000 2,593,000 259,300 2,593,000 4,460,000

Evaluation of Use of Permanent Solutions to Maximum Extent Practicable BSB Property, Kent, Washington

Evaluation Criteria	Alternative 1 – Enhanced Groundwater Extraction System	Alternative 2 – Slurry Wall Containment and Gradient Control Using ZVI Gate	Alternative 3 – Slurry Wall Containment and Gradient Control Using Groundwater Extraction	
Protectiveness	 Potential downgradient receptors at surface water will be protected by preventing migration of VOCs from Parcel G. Containment will be achieved far upgradient of the potential exposure point. Potential future onsite receptors (potential future site and/or office workers) will be protected through maintenance of the existing surface cap, implementation of engineering controls to prevent inhalation of VOCs in indoor air if a building is constructed in the future (if determined to be necessary), and institutional controls requiring worker protection measures (e.g., personal protective equipment) during subsurface construction or maintenance activities. 	See Alternative 1 discussion.	See Alternative 1 discussion.	Although t alternative both the sh it relies les
Permanence	The components of the enhanced groundwater extraction system (e.g., wells, pumps, control systems) will require significant ongoing O&M, including periodic replacement of system components, until cleanup standards are met in order to maintain the effectiveness of the alternative. Also, long-term performance monitoring and modeling will be required to document the alternative's effectiveness.	The components of the slurry wall, ZVI gate, and surface cap containment system in Alternative 2 are permanent engineered systems that require very little long-term O&M. The slurry wall requires no maintenance, while the ZVI gate may require periodic "refreshing" (assumed to be every 30 years) to maintain its hydraulic properties or augment the reactive iron. The surface cap will require routine inspection and maintenance typical of all paving systems. Performance monitoring will consist of relatively straightforward water quality and water level monitoring.	The components of the slurry wall and surface cap containment system in Alternative 3 are permanent engineered systems that require modest long-term O&M. The slurry wall requires no maintenance, while the surface cap will require routine inspection and maintenance typical of all paving systems. The groundwater extraction and treatment systems will require significant ongoing O&M, including periodic replacement of system components. Performance monitoring will consist of relatively straightforward water quality and water level monitoring.	The perma on the perf O&M inte ongoing O The extrac require sig will have t Alternative its effectiv passively, require per these perio performan
Cost	Capital: \$390,000 O&M (30-yr NPV): \$4,150,000 Overall Cost: \$4,540,000	Capital: \$2,050,000 O&M (30-yr NPV): \$950,000 Overall Cost: \$3,000,000	Capital: \$1,610,000 O&M (30-yr NPV): \$2,850,000 Overall Cost: \$4,460,000	Although i costs make Alternative period. Th and 3 will
Long-Term Effectiveness	 The enhanced groundwater extraction system has been shown through modeling to effectively contain VOCs and prevent their migration downgradient of Parcel G. Refer to the PES 2004b report for the detailed description of the effectiveness of this alternative in achieving containment. If implemented, the effectiveness would continue to be demonstrated through performance monitoring and modeling activities. 	The function and effectiveness of this alternative is described in Section 10.3.1 and Appendices G and H. The slurry wall encircling Parcel G in this alternative will be extremely effective in preventing migration of VOCs, and will maintain this effectiveness over the very-long term. The ZVI gate technology has been shown to be effective in treating the VOCs present at the site to levels below the applicable cleanup levels, and the available information indicates that it will maintain its effectiveness over the long term. The long-term performance of the ZVI gate can be readily monitored, and maintenance activities implemented when required to preserve its hydraulic and treatment effectiveness.	The function and effectiveness of this alternative is described in Section 10.4.1 and Appendices G and H. The slurry wall encircling Parcel G in this alternative will be extremely effective in preventing migration of VOCs, and will maintain this effectiveness over the very-long term. The groundwater extraction system used to maintain hydraulic control inside the slurry wall is somewhat less effective than the ZVI gate in Alternative 2 because Alt 3 requires more O&M.	All three a VOCs from implement Alternative the presend certain that that does n

Comparative Evaluation

the approach to achieving containment varies between the three es, they are all protective of human health and the environment in nort and long term. Alternative 2 is the most protective because ss on long term O&M.

anence of the three alternatives is, to varying degrees, dependent formance of long-term O&M activities. Alternative 1 is the most nsive (i.e., least permanent) as it would require considerable 0&M and performance monitoring.

tion and treatment system components of Alternative 3 also gnificant O&M, but less than Alternative 1 because fewer wells to be operated, maintained and periodically replaced.

e 2 is the least dependent on ongoing O&M actions to maintain eness (i.e., the most permanent). The ZVI gate functions and based on existing information on this technology, may only riodic "refreshing" every several decades, if at all. The need for odic gate maintenance events will be readily determined based on ce monitoring results.

it has the highest capital cost, the much lower long-term O&M e Alternative 2 the least costly over the 30-year period evaluated. es 1 and 3 have essentially the same overall cost over the 30-year ne difference in costs between Alternative 2 and Alternatives 1 increase with longer implementation time frames.

Iternatives will be similarly effective at preventing migration of m Parcel G over the long term as long as O&M activities are ted. The degree of certainty of success associated with es 2 and 3 is somewhat higher compared to Alternative 1 due to ce of the slurry wall encircling Parcel G. Alternative 2 is more in Alternative 3 because Alternative 2 relies on a passive system not require regular O&M.

Evaluation of Use of Permanent Solutions to Maximum Extent Practicable BSB Property, Kent, Washington

Evaluation Criteria	Alternative 1 – Enhanced Groundwater Extraction System	Alternative 2 – Slurry Wall Containment and Gradient Control Using ZVI Gate	Alternative 3 – Slurry Wall Containment and Gradient Control Using Groundwater Extraction	
Management of Short-Term Risks	There are limited short-term risks associated with this alternative. There are no current or short-term risks to human health that need to be addressed.	There are limited short-term risks associated with this alternative. `There are no current or short-term risks to human health that need to be addressed.	There are limited short-term risks associated with this alternative. There are no current or short-term risks to human health that need to be addressed.	All three with then application
	The potential risks associated with implementation of this alternative are limited to construction activities (e.g., drilling, trenching) and potential exposure to subsurface contaminants during construction or management of contaminated materials. These risks can be easily mitigated through development and implementation of a site-specific health and safety plan, including appropriate use of engineering controls and personal protective equipment.	Implementation risks associated with this alternative are related to the heavy construction activities involved with placement of the slurry wall, ZVI gate, and surface cap. Potential volatilization of subsurface VOCs should be minimized by the nature of one pass trencher operations and because trenching activities are limited to the site perimeter where VOC concentrations are much lower compared to the source area. With appropriate engineering design and careful implementation of health and safety procedures typical for this type of activity, these risks can be minimized to the extent practicable.	Implementation risks associated with this alternative are related to the heavy construction activities involved with placement of the slurry wall and surface cap. Potential volatilization of subsurface VOCs should be minimized by the nature of one pass trencher operations and because trenching activities are limited to the site perimeter where VOC concentrations are much lower compared to the source area. With appropriate engineering design and careful implementation of health and safety procedures typical for this type of activity, these risks can be minimized to the extent practicable. Potential risks associated with air emissions of VOCs from the groundwater treatment system will be mitigated with the archever advertise	
Technical and Administrative Implementability	Technical – All of the components are in common use and readily available, and there are no significant technical implementability issues for this alternative. Administrative – The primary permit required for implementation of this alternative is a King County Industrial Wastewater Discharge permit. Since the existing CMS already has such a permit, implementing Alternative 1 would only require modification (and periodic renewal) of the existing permit.	Technical – All of the components used in the slurry wall/ZVI gate system have been demonstrated at full- scale at dozens of other sites and the materials are readily available. The one-pass trencher technology used to place the slurry wall and gate has been demonstrated at the anticipated depths and used many times in similar applications. There are no significant technical implementability issues for this alternative. Administrative – There are no major permits required to implement this alternative as it is constructed entirely on-site. Excavated soils and other waste would need to be characterized and disposed of consistent with state and federal solid and dangerous/hazardous waste regulations.	 with the carbon adsorption system. Technical – All of the components are in common use and readily available. The one-pass trencher technology used to emplace the slurry wall has been demonstrated at the anticipated depths and used many times in similar applications. There are no significant technical implementability issues for this alternative. Administrative – The primary permit required for implementation of this alternative is a King County Industrial Wastewater Discharge permit. The substantive requirements for an air discharge authorization from the Puget Sound Clean Air Agency (PSCAA) will also have to be met. Since the existing ICM already has a King County permit, implementing Alternative 1 would only require modification (and periodic renewal) of the existing permit. The PSCAA substantive requirements for the air stripper will be met through installation of carbon adsorption. The only other permits required to implement this alternative are construction-related permits. Excavated 	Technical complicat wells, the significan Administ alternativ obstacles easiest to Alternativ requires c
			alternative are construction-related permits. Excavated soils and other waste would need to be characterized and disposed of consistent with state and federal solid and dangerous/hazardous waste regulations.	
Consideration of Public Concerns	Public concerns associated with the possible implementation of this alternative will be addressed during the public review and comment process for this FFS.	Public concerns associated with the possible implementation of this alternative will be addressed during the public review and comment period for this FFS.	Public concerns associated with the possible implementation of this alternative will be addressed during the public review and comment process for this FFS.	Public co alternativ

Comparative Evaluation

alternatives have relatively little implementation risk associated n, and what risks are present can be readily managed through on of standard construction health and safety procedures.

I – Although the slurry wall and ZVI gate systems require more ted construction techniques compared to installation of extraction ese techniques are well demonstrated at similar sites. There are no nt technical implementations issues with any of the alternatives.

trative – The permits required for implementing all three ves are readily obtainable and there are no major administrative s to implementing any of the alternatives. Alternative 2 is the o administratively implement as it requires no permits. ves 1 and 3 each require a discharge permit and Alternative 3 also compliance with PSCAA regulations.

oncerns will be addressed in the same fashion for all three ves.