

Washington Issaquah | Bellingham | Seattle Oregon

Portland | Bend | Baker Čity California

Oakland | Folsom | Irvine

CLEANUP ACTION CLOSURE REPORT

6050 EAST MARGINAL WAY SOUTH SEATTLE, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 1071-010

Prepared For: Prologis, Inc.

July 25, 2018

Prepared by:

ance

Donald Lance, L.G., L.H.G. Senior Geologist

Scott Allin, R.E.P.A. Principal

lydrogeologi 273 Sed Geo Donald M. Lance, Jr.

25W

Reviewed by: 21AM

Peter Jewett, L.G., L.E.G. Principal

TABLE OF CONTENTS

1.0	INTR	ODUCTION		
	1.1	PURPOSE		
	1.2	ORGANIZATION		
2.0	BACKGROUND			
	2.1	PROPERTY DESCRIPTION AND HISTORY		
	2.2	GEOLOGY		
	2.3	HYDROLOGY		
	2.4	PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS		
		2.4.1 1988 Contamination Investigation—Blymyer Engineers, Inc 2-2		
		2.4.2 1988 – 1989 Groundwater Monitoring Results—Blymyer		
		Engineers, Inc		
		2.4.3 1997 Site Investigation—Shannon & Wilson, Inc2-4		
		2.4.4 1998 Site Investigation and Risk Assessment—		
		Golder Associates Inc		
		2.4.5 1998 Permanent UST Decommissioning and Closure—		
		Fluor Daniel GTI, Inc		
		2.4.6 2000 Groundwater Investigation and Groundwater		
		Monitoring Work Plan—Golder Associates Inc2-6		
		2.4.7 2001 Results from Additional Groundwater and Soil		
		Investigations—Golder Associates Inc2-7		
		2.4.8 2004 Phase II Investigation—Golder Associates Inc		
		2.4.9 2015 Environmental Due Diligence Assessment—		
		Farallon Consulting, L.L.C		
		2.4.10 2016 UST Decommissioning—Farallon Consulting, L.L.C 2-16		
		2.4.11 2017 Pre-Excavation Contaminant Delineation—		
		Farallon Consulting, L.L.C		
3.0	CLEA	ANUP ACTION TECHNICAL ELEMENTS		
	3.1	APPLICABLE OR RELEVANT AND APPROPRIATE		
		REQUIREMENTS		
	3.2	CLEANUP ACTION OBJECTIVES		
	3.3	CONSTITUENTS AND MEDIA OF CONCERN		
	3.4	MEDIA OF CONCERN		
	3.5	CLEANUP STANDARDS		
		3.5.1 Soil Cleanup Levels		
		3.5.2 Groundwater Cleanup Levels		
		3.5.3 Points of Compliance		
	3.6	TERRESTRIAL ECOLOGICAL EVALUATION		
4.0	CLEA	ANUP ACTION		
	4.1	PRE-EXCAVATION PREPARATION		

	4.2	EXCAVATION PERMITTING	
	4.3	SOURCE REMOVAL	
		4.3.1 First Phase Soil Excavation	
		4.3.2 Second Phase Soil Excavation	4-7
5.0	CLEANUP ACTION RESULTS		
	5.1	CONFIRMATIONAL SOIL SAMPLING	
	5.2	SOIL TRANSPORT AND DISPOSAL	
	5.3	GROUNDWATER CLEANUP	5-1
6.0	CON	ICLUSIONS AND REQUEST FOR PARTIAL SUFFICIENC	Y
OPI	NION		
7.0	BIBI	LIOGRAPHY	7-1
8.0	LIMITATIONS		
	8.1	GENERAL LIMITATIONS	
	8.2	LIMITATION ON RELIANCE BY THIRD PARTIES	

FIGURES

Figure 1	Property Vicinity Map
Figure 2	Former Property and Vicinity Features
Figure 3A	Soil Sample Locations Proximate to Excavations 1 and 5
Figure 3B	Soil Sample Locations Proximate to Excavations 2 and 3
Figure 3C	Soil Sample Locations Proximate to Former Northwest UST Area and Excavation 4
Figure 4A	RI, Test Pit, and Historical Performance Soil Analytical Results for Petroleum Hydrocarbons Proximate to Excavations 1 and 5
Figure 4B	<i>RI and Test Pit Soil Analytical Results for Petroleum Hydrocarbons Proximate to Excavations 2 and 3</i>
Figure 4C	RI and Test Pit Soil Analytical Results for Petroleum Hydrocarbons Proximate to Former Northwest UST Area and Excavation 4
Figure 5A	<i>Excavations 1 and 5 Final Limits of Excavation and Confirmational Soil Analytical</i> <i>Results for Petroleum Hydrocarbons</i>
Figure 5B	<i>Excavations 2 and 3 Final Limits of Excavation and Confirmational Soil Analytical</i> <i>Results for Petroleum Hydrocarbons</i>
Figure 5C	<i>Excavation 4 Final Limits of Excavation and Confirmational Soil Analytical Results for Petroleum Hydrocarbons</i>
Figure 6	Groundwater Analytical Results for August 17 and 18, 1999
Figure 7	Groundwater Elevation Contour Map and Groundwater Analytical Results for January 17, 2001

- Figure 8 Groundwater Elevation Contour Map and Groundwater Analytical Results for December 2, 2003
- Figure 9 Groundwater Analytical Results for August 12 and September 23, 2014
- Figure 10 Approximate Location of Post-Redevelopment Compliance Groundwater Monitoring Wells Relative to Historical Property Features

TABLES

- Table 1Summary of Groundwater Elevation Data
- Table 2Summary of RI and Performance Soil Analytical Results for TPH and BTEX
- Table 3a Summary of RI and Performance Soil Analytical Results for VOCs
- Table 3b
 Summary of RI and Performance Soil Analytical Results for Other VOCs
- Table 4Summary of RI Analytical Results for PCBs
- Table 5Summary of RI and Performance Soil Analytical Results for PAHs
- Table 6
 Summary of RI and Performance Soil Analytical Results for Metals
- Table 7Summary of RI Soil Analytical Results for Volatile and Extractable Petroleum
Hydrocarbons
- Table 8
 Summary of RI Groundwater Analytical Results for TPH and BTEX
- Table 9a Summary of RI Groundwater Analytical Results for VOCs
- Table 9b
 Summary of RI Groundwater Analytical Results for Other VOCs
- Table 10
 Summary of RI Groundwater Analytical Results for PAHs
- Table 11
 Summary of RI Groundwater Analytical Results for Metals
- Table 12
 Summary of Confirmational Soil Analytical Results for TPH and BTEX
- Table 13
 Summary of Confirmational Soil Analytical Results for Halogenated VOCs
- Table 14
 Summary of Confirmational Soil Analytical Results for cPAHs
- Table 15
 Summary of Confirmational Soil Analytical Results for Metals

APPENDICES

iii

- Appendix A Boring Logs
- Appendix B Laboratory Analytical Reports
- Appendix C Terrestrial Ecological Evaluation Form
- Appendix D Environmental Media Management Plan Figures
- Appendix E Underground Storage Tank Decommissioning Documents
- Appendix F Groundwater Monitoring Well Decommissioning Documents
- Appendix G Soil Disposal Documentation

ABBREVIATIONS AND ACRONYMS

ARARs	applicable or relevant and appropriate requirements
bgs	below ground surface
Barghausen	Barghausen Consulting Engineers, Inc.
Blymyer	Blymyer Engineers, Inc.
BTEX	benzene, ethylbenzene, toluene, and xylenes
Closure Report	Cleanup Action Closure Report, 6050 East Marginal Way Property, Seattle, Washington dated July 25, 2018, prepared by Farallon Consulting, L.L.C. (this report)
Consolidated Freightways	Consolidated Freightways Inc.
COCs	constituents of concern
cPAHs	carcinogenic polycyclic aromatic hydrocarbons
DRO	total petroleum hydrocarbons as diesel-range organics
Duwamish Reload Facility	Waste Management, Inc. Duwamish Reload Facility at 7400 8 th Avenue South in Seattle, Washington
Ecology	Washington State Department of Ecology
Ecology Guidance	<i>Guidance for Remediation of Petroleum Contaminated Sites</i> dated June 2016, prepared by the Washington State Department of Ecology
EMMP	<i>Environmental Media Management Plan, 6050 East Marginal</i> <i>Way South Property, Seattle, Washington</i> dated February 11, 2016 prepared by Farallon Consulting, L.L.C.
EPH/VPH	extractable petroleum hydrocarbons/volatile petroleum hydrocarbons
Farallon	Farallon Consulting, L.L.C.
Fluor Daniel	Fluor Daniel GTI, Inc.
Golder	Golder Associates, Inc.
GRO	total petroleum hydrocarbons as gasoline-range organics
GTI	Groundwater Technology, Inc.
Hos	Hos Bros. Construction, Inc.
KCIWP	King County Industrial Waste Program
μg/l	micrograms per liter
mg/kg	milligrams per kilogram
MTCA	Washington State Model Toxics Control Act Cleanup Regulation

naphthalenes	combined concentrations of naphthalene, 2-methylnaphthalene, and 1-methylnaphthalene
ORO	total petroleum hydrocarbons as oil-range organics
PAHs	polycyclic aromatic hydrocarbons
PCBs	polychlorinated biphenyls
PQLs	practical quantitation limits
Prologis	Prologis, Inc.
Property	the property at 6050 East Marginal Way South in Seattle, Washington
RCW	Revised Code of Washington
RI/FFS/CAP Report	Remedial Investigation, Focused Feasibility Study, and Cleanup Action Plan, 6050 East Marginal Way South Property, Seattle, Washington dated February 11, 2016 prepared by Farallon Consulting, L.L.C.
Sierra	Sierra Construction Company, Inc.
Site	the area where constituents of concern have come to be located at concentrations exceeding applicable cleanup levels
TEE	terrestrial ecological evaluation
ТРН	combined concentrations of total petroleum hydrocarbons as diesel-range organics, as oil-range organics, and as gasoline- range organics
UST	underground storage tank
UST Database	Washington State Department of Ecology Toxics Cleanup Program Web Reporting Underground Storage Tank System Database
VCP	Voluntary Cleanup Program
VOCs	volatile organic compounds
WAC	Washington Administrative Code
Wyser	Wyser Construction, Inc.

2003 Phase I ESA	Phase I Environmental Site Assessment for Consolidated
	Freightways, 6050 East Marginal Way South, Seattle,
	Washington 98108 dated January 2003, prepared by Phase One Inc.
3 rd and Lander Transfer Station	Republic Services, Inc. 3 rd and Lander Transfer Station at 2733 3 rd Avenue South in Seattle, Washington

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Cleanup Action Closure Report (Closure Report) on behalf of Prologis, Inc. (Prologis) to document the cleanup action completed in conjunction with redevelopment of the property at 6050 East Marginal Way South in Seattle, Washington (herein referred to as the Property) (Figure 1). Previous subsurface investigations conducted on the Property by Farallon and others delineated the nature and extent of total petroleum hydrocarbons (TPH) as gasoline-range organics (GRO), diesel-range organics (DRO), and oil-range organics (ORO); and benzene, toluene, ethylbenzene, and xylenes (BTEX) (collectively referred to herein as the constituents of concern [COCs]) present at concentrations exceeding the Washington State Department of Ecology (Ecology) Model Toxics Control Act Cleanup Regulation (MTCA) Method A cleanup levels in soil and groundwater on the Property.

COCs on the Property were the result of releases of petroleum products to the ground surface and releases of petroleum products from underground storage tank (UST) systems used by former tenant Consolidated Freightways Inc. (Consolidated Freightways) during truck transport and motor freight operations conducted on the Property from approximately 1960 to 2003 (Farallon 2015).

The total extent or area where concentrations of COCs in soil and groundwater exceeded MTCA cleanup levels is referred to as the Site, as defined under MTCA. The Site as it pertains to the cleanup action on the Property is fully contained within the boundaries of the Property. The approximate limits of the Site are shown on Figure 2.

The cleanup action was conducted as an independent remedial action under the Voluntary Cleanup Program (VCP) administered by Ecology. The Property was enrolled in the VCP in January 2017 under the name Consolidated Freightways Seattle and was assigned VCP Site Identification No. NW3050. Other Ecology identification numbers applicable to the Property include Facility/Site No. 54757868 and Cleanup Site No. 6262. Mr. Grant Yang was designated as the Ecology Site Manager.

The cleanup action was completed in accordance with:

- MTCA and its associated Cleanup Regulations, Chapter 173-340 of the Washington Administrative Code (WAC);
- Remedial Investigation, Focused Feasibility Study, and Cleanup Action Plan, 6050 East Marginal Way South Property, Seattle, Washington dated February 11, 2016, prepared by Farallon (2016b) (RI/FFS/CAP Report); and
- Environmental Media Management Plan, 6050 East Marginal Way South Property, Seattle, Washington dated February 11, 2016, prepared by Farallon (2016a) (EMMP).

Ecology (2017) reviewed the RI/FFS/CAP Report and EMMP and provided an advisory opinion approving the planned approach for the cleanup action.

1-1

Active cleanup of soil and groundwater on the Site is complete. Cleanup of soil has reduced concentrations of COCs to less than MTCA Method A cleanup levels throughout the Site. Residual DRO and ORO have been detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from a limited part of the western portion of the Site. Concentrations of DRO and ORO in groundwater are expected to diminish over time as a consequence of the removal of the COC sources in soil during the cleanup action on the Site. Therefore, the cleanup action constitutes the final, permanent remedy for soil and meets the requirements for Ecology to issue a Partial Sufficiency opinion as an interim determination for the Site.

1.1 PURPOSE

The purpose of the cleanup action was to remediate and reduce COC concentrations to less than MTCA Method A cleanup levels in soil and groundwater at the Site. The cleanup action has been completed to the extent practicable. Requirements for substantial equivalence under WAC 173-340-545(2) have been met for soil and will be met for groundwater. The near-term objective of the cleanup action is to meet the requirements for obtaining a Site-wide Partial Sufficiency determination from Ecology for the cleanup of soil and the ultimate objective of the cleanup action is to obtain a Site-wide No Further Action determination from Ecology for the cleanup of soil and groundwater.

1.2 ORGANIZATION

This Closure Report is organized as follows:

- Section 2, Background, provides a description of the Property and a summary of the historical uses of the Property, a description of the local geology and hydrogeology, and summaries of the previous environmental investigations and remedial actions conducted on the Property;
- Section 3, Cleanup Action Technical Elements, presents the technical elements of the cleanup action, including the applicable or relevant and appropriate requirements (ARARs), cleanup action objectives, COCs and media of concern, cleanup standards, and terrestrial ecological evaluation (TEE);
- Section 4, Cleanup Action, describes the cleanup action completed for the Site and includes discussion of the pre-excavation preparation, excavation permitting, and source removal;
- Section 5, Cleanup Action Results, presents the cleanup action results, including confirmational soil sampling, soil transport and disposal off the Site, and groundwater cleanup;
- Section 6, Conclusions and Request for Partial Sufficiency Opinion, presents the conclusions and a request that Ecology issue a Partial Sufficiency Opinion for the Site;

1 - 2

- Section 7, Bibliography, provides a list of the documents used in preparing this Closure Report; and
- Section 8, Limitations, provides Farallon's standard limitations.

Information supporting this Closure Report is provided in Figures 1 through 10, Tables 1 through 15, and Appendices A through G.

2.0 BACKGROUND

This section provides a description of the Property, a summary of historical uses of the Property, and a description of local geology and hydrology.

2.1 PROPERTY DESCRIPTION AND HISTORY

The Property consists of 13.58 acres of land at 6050 East Marginal Way South in Seattle, King County, Washington, on King County Tax Parcel No. 536720-4646 at approximate Latitude North 47.547044 and Longitude West 122.33185 (Figure 1). The Property and surrounding vicinity are zoned Industrial General 2 Unlimited 85, which includes heavy and general manufacturing, and commercial, transportation, utility, salvage, and recycling services.

The Property was developed as part of a military barracks–type facility in 1943, which was no longer present on the Property by 1956 (Farallon 2015). Two structures referred to as the Transfer Dock Building and the Shop Building were present on the Property by 1958, and were used by Consolidated Freightways as a trucking terminal from at least 1960 until sometime prior to 2003. The buildings were demolished in 2005/2006. Locations of the former buildings and other features are depicted on Figure 2. During Consolidated Freightways operations, the portions of the Property not covered by buildings were covered entirely by asphaltic pavement and concrete surfaces.

Redevelopment of the Property began in June 2017 for construction of a three-floor industrial warehouse with a total of approximately 590,000 square feet of space, and associated ramps, driveways, loading/unloading areas, and parking. Completion of construction is scheduled for 2018.

2.2 GEOLOGY

The Puget Sound region is underlain by Quaternary sediments deposited by a number of glacial advances and retreats that created the existing subsurface conditions. Regional sediments consist primarily of interlayered and/or sequential deposits of alluvial clays, silts, and sands that typically are situated over deposits of glacial till consisting of silty sand to sandy silt with gravel. Outwash sediments consisting of sands, silts, clays, and gravels were deposited by rivers, streams, and post-glacial lakes during the glacial retreats. With the exception of the most-recent recessional deposits, the outwash sediments have been over-consolidated by the overriding ice sheets (Galster and Laprade 1991).

Subsurface stratigraphy encountered in borings advanced on the Property consists generally of silty sand and gravel fill 2 to 3 feet thick overlying loose to compact sand to silty sand, including an intermittent/discontinuous clayey to sandy silt unit 1 foot to 6 feet thick, to depths of 24 feet below ground surface (bgs), the maximum depth explored. Boring logs are provided in Appendix A.

2.3 HYDROLOGY

Depth to groundwater as measured in groundwater monitoring wells on the Property has varied between 6.25 and 9.44 feet bgs (Table 1). Daily groundwater level fluctuations up to 0.5 foot due to tidal cycle influences have been observed at the Property (Blymyer Engineers, Inc. [Blymyer] 1988b). Inferred groundwater flow direction in the unconfined aquifer is toward the west to southwest based on groundwater monitoring conducted between 1988 and 2003.

The nearest surface water body is the Lower Duwamish Waterway. Slip 1 of the Lower Duwamish Waterway is approximately 350 feet west of the Property, and the main channel of the Lower Duwamish Waterway is approximately 1,000 feet to the west (Figure 1). Historically, stormwater runoff collected in a network of catch basins and conveyance piping on the Property, and discharged to the combined sewer outfall beneath South Michigan Street to the south, where stormwater from the Property combined with stormwater from other properties in the area (Farallon 2015). After redevelopment, stormwater will be retained in an underground detention vault, then treated and discharged to the City of Seattle combined stormwater and sanitary sewer system.

2.4 PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

Subsurface investigations have been conducted periodically at the Property beginning in 1988. The investigations included advancing a large number of borings and collecting and analyzing soil and reconnaissance groundwater samples, installing groundwater monitoring wells and collecting and analyzing groundwater samples, and collecting groundwater monitoring data. Interim remedial actions completed on the Site included decommissioning of USTs and associated piping and dispensers, and excavation and treatment and/or disposal of contaminated soil. A summary of the subsurface investigations and interim remedial actions is provided in the following sections.

2.4.1 1988 Contamination Investigation—Blymyer Engineers, Inc.

Five USTs were decommissioned by removal under the direction of Blymyer (1988b) during two phases of excavation conducted in April and June 1988. An 8,000- and a 10,000-gallon diesel fuel UST and a 5,000-gallon motor oil UST were decommissioned in April 1988; and two 3,000-gallon waste oil USTs were decommissioned in June 1988. All five USTs were removed from the same tank hold adjacent to the western side of the Shop Building (Figure 2). Approximately 185 cubic yards of contaminated soil was removed from the excavation for ex-situ treatment on the Site. DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in confirmational soil samples collected from the western and southern portions of the excavation (Figure 4A; Table 2). This soil was left in-place, and the excavation was backfilled with clean imported soil.

Confirmational soil samples collected proximate to the waste oil USTs (i.e., in the southern portion of the UST hold) were analyzed additionally for purgeable halocarbons and Resource Conservation and Recovery Act metals (Tables 3b and 6). Halocarbons were not detected at concentrations exceeding laboratory detection limits. Metals either were not detected at

P:\1071 Prologis\1071010 6050 East Marginal Way South\Reports\Cleanup Action Closure Rpt\2018 CA Closure Report.docx

concentrations exceeding the laboratory detection limits or were detected at concentrations less than MTCA Method A cleanup levels.

Monitoring wells MW-1 and MW-2A through MW-5 were installed around the tank excavation area in late June 1988 to collect groundwater samples for analysis for DRO and ORO (Figure 3A). Based on groundwater levels measured in July 1988, the inferred groundwater flow directions were west to southwest, with a distinct tidal influence. The results from groundwater sampling and analyses are discussed in Section 2.4.2, 1988 – 1989 Groundwater Monitoring Results. Well installation logs are provided in Appendix A.

Although not discussed in the Blymyer (1988b) report, Blymyer (1988a) communications with Ecology in April 1988 indicated that a 10,000-gallon gasoline UST northwest of the former Office Building on the Site was decommissioned by removal concurrently with removal of the diesel fuel and motor oil USTs. GRO was detected at a concentration exceeding the MTCA Method A cleanup level in confirmational soil sample T-9, collected from the gasoline UST excavation (Figure 4C; Table 2). BTEX compounds were not detected at concentrations exceeding either the laboratory detection limits or the MTCA Method A cleanup level in the confirmational soil samples. Approximately 60 to 100 cubic yards of GRO-contaminated soil from the gasoline UST hold was combined with DRO- and ORO-contaminated soil removed from the diesel fuel/motor oil/waste oil UST excavation for treatment using aboveground enhanced biodegradation.

Groundwater Technology, Inc. (GTI) (1989a), under contract to Blymyer, constructed soil treatment piles in November 1988, with interior perforated piping and a vacuum blower to provide air flow. Nutrients were applied to the soil, and the soil piles were covered with plastic sheeting. The treatment piles were reconstructed in June 1989 to improve circulation. Periodic performance samples were collected through at least June 1989 (see Soil Treatment Mound sample results in Table 2). DRO, GRO, and BTEX either were not detected at concentrations exceeding MTCA Method A cleanup levels or were not detected at concentrations exceeding the laboratory reporting limits in soil samples collected from the treatment piles between March and June 1989. The final disposition and disposal of this soil is not known.

Laboratory reports for the soil and groundwater sample analyses discussed in this section are provided in Appendix B.

2.4.2 1988 – 1989 Groundwater Monitoring Results—Blymyer Engineers, Inc.

Five groundwater sampling and monitoring events were conducted by GTI on behalf of Blymyer (1988c, 1989a, 1989b, 1989c, 1989d) from October 1988 to December 1989. The groundwater samples were analyzed for DRO only, with the exception of the groundwater samples collected on October 6, 1988, which were analyzed also for chromium and lead. DRO was not detected at concentrations exceeding the laboratory detection limits in any of the groundwater samples analyzed (Table 8), although the laboratory detected at a concentration exceeding the MTCA Method A cleanup level for all analyses. Lead was detected at a concentration exceeding the MTCA Method A cleanup level in one groundwater sample collected from monitoring well MW-2A. Chromium or lead was not detected at a concentration exceeding laboratory detection limits in the

2 - 3

other groundwater samples (Table 11), although the laboratory detection limits were greater than the MTCA Method A cleanup levels, as for the DRO results. The laboratory reports for the groundwater sample analyses are provided in Appendix B.

Based on the groundwater sampling results, Ecology provided authorization to decommission the monitoring wells. GTI (1990) decommissioned the monitoring wells in-place on January 10, 1990.

2.4.3 1997 Site Investigation—Shannon & Wilson, Inc.

During UST product line integrity testing conducted in March 1997, a leak was detected in the pressurized product line that ran from the two 20,000-gallon diesel fuel USTs to the Shop Building (Figure 3B). The piping was exposed and partially replaced with new single-walled steel pipe. A second line test indicated another leak in the pressurized product line. After the second leak was repaired, the piping was re-tested and determined to be tight.

In August 1997, soil borings P-1 through P-10 were advanced using a direct-push rig under the oversight of Shannon & Wilson, Inc. (1997) to evaluate the product line release (Figure 3B). Two soil samples and one reconnaissance groundwater sample were collected from each boring for analysis for DRO. The soil and groundwater analytical results are provided in Tables 2 and 8, respectively; soil analytical results are shown on Figure 4B.

DRO was detected at concentrations exceeding MTCA Method A cleanup levels in soil and reconnaissance groundwater samples collected from boring P-2, near the product line DRO release adjacent to the northern end of the Shop Building, and from boring P-4, adjacent to the diesel fuel UST hold northwest of the Shop Building. During sample collection, hydrocarbon odors and sheen were noted in soil samples collected from borings P-2, P-4, P-5, and P-7. A slight sheen was observed on the groundwater sample collected from boring P-2.

During the investigation, groundwater was encountered at a depth of approximately 7.5 feet bgs. Four temporary piezometers were installed to evaluate the direction of groundwater flow, which was inferred to be west to northwest (Shannon & Wilson, Inc. 1997).

2.4.4 1998 Site Investigation and Risk Assessment—Golder Associates Inc.

Petroleum-impacted soil encountered in the area of the diesel fuel product line release proximate to boring P-2 was excavated and stockpiled on the Site in March 1998 during installation of one new 20,000-gallon diesel UST in a previously unused location immediately north of the Shop Building (Figures 2 and 3B). The new diesel UST replaced the function of the two 20,000-gallon diesel USTs located northwest of the Shop Building. The impacted soil was removed from the Site in November 1998 for treatment by thermal desorption at the facilities of TPS Technologies Inc. in Tacoma, Washington. Soil disposal documentation is provided in Appendix G.

In April 1998, Golder Associates Inc. (Golder) (1998a) conducted a site investigation and risk assessment for the Site. The site investigation included soil sampling along the diesel fuel product line trench, installation of groundwater monitoring wells MW-1 through MW-3 and product

recovery wells RW-1 and RW-2 (Figure 3B), and analysis of collected soil and groundwater samples for DRO, ORO, GRO, BTEX, and polycyclic aromatic hydrocarbons (PAHs). Selected soil samples were analyzed also for extractable petroleum hydrocarbons/volatile petroleum hydrocarbons (EPH/VPH).

According to Golder (1998a), the highest concentrations of DRO, BTEX, PAHs, and EPH/VPH in soil were detected in the vicinity of well RW-2 and in trench sample CF-T1 (Figure 4B; Tables 2, 5, and 7). These areas were near the former UST hold northwest of the Shop Building and the diesel fuel release from the product line, respectively. PAH compounds were detected at concentrations less than MTCA cleanup levels in some soil samples collected from wells MW-2, RW-1, and RW-2 (Table 5); naphthalene was detected at concentrations exceeding the MTCA Method A cleanup level in soil samples collected from wells RW-1 and RW-2.

Petroleum hydrocarbons were not detected at concentrations exceeding MTCA Method A cleanup levels in soil samples collected at a depth less than approximately 2 feet bgs in the diesel fuel product line trench, with exception of sample CF-T1, collected in the area with visible petroleum staining and with an elevated EPH/VPH concentration (Table 7). No groundwater samples were collected in the product line trench area.

DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from monitoring wells MW-2, MW-3, and well RW-2. DRO was detected at a concentration exceeding the MTCA Method A cleanup level in the groundwater sample collected from monitoring well RW-1. Benzene was detected at a concentration exceeding the MTCA Method A cleanup level in the groundwater sample collected from well RW-2. The only PAH detected at a concentration exceeding the MTCA Method A or B cleanup level was 2-methylnaphthalene, detected in the groundwater sample collected from well RW-2. Petroleum hydrocarbons were not detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from up-gradient monitoring well MW-1. The petroleum hydrocarbon and PAH analytical results for groundwater are provided in Tables 8 and 10, respectively.

The well installation logs for monitoring wells MW-1 through MW-5 and wells RW-1 and RW-2 are provided in Appendix A. The laboratory reports for the groundwater sample analyses discussed above are provided in Appendix B.

Golder (1998a) conducted a risk assessment to determine whether petroleum hydrocarbons in soil and/or groundwater at the Site posed a risk to human health. The results from the risk assessment were used to develop Site-specific risk-based cleanup levels for petroleum hydrocarbons in soil. Golder concluded that petroleum hydrocarbons in soil at the Site did not exceed the risk-based screening levels calculated in accordance with the Ecology TPH Interim Interpretive Policy. However, concentrations of DRO and ORO exceeded MTCA Method A cleanup levels in groundwater, and benzene was detected at a concentration exceeding the MTCA Method A cleanup level in the groundwater sample collected from well RW-2. Golder suggested additional groundwater investigation was warranted to define the extent of groundwater impacts at the Site.

2-5

2.4.5 1998 Permanent UST Decommissioning and Closure—Fluor Daniel GTI, Inc.

In July 1998, the two 20,000-gallon diesel fuel USTs northwest of the Shop Building were decommissioned by removal by Joe Hall Construction. Fluor Daniel was contracted by Joe Hall Construction to provide environmental oversight and site assessment sampling during removal of the two USTs.

Fluor Daniel (1998) observed pitting along the bottoms and western ends of the steel USTs. Concentrations of DRO were detected in soil and groundwater in the UST excavation, and contaminated soil subsequently was removed from the UST excavation. However, DRO was detected at concentrations exceeding the MTCA Method A cleanup level in the confirmational soil samples collected from the edges of the excavation along the northern and eastern sidewalls. Recovery well RW-1 was damaged and removed.

Contaminated soil excavated during removal of the USTs was stockpiled with contaminated soil excavated during preparations for the installation of the new 20,000-gallon diesel fuel UST north of the Shop Building. Approximately 800 tons of stockpiled soil was transported to TPS Technologies Inc. in Tacoma, Washington in November 1998 for treatment by thermal desorption (Golder 1998b). Disposal documentation is provided in Appendix G.

Following decommissioning of the two 20,000-gallon diesel fuel USTs, residual contaminated soil remained proximate to the former UST hold. The primary data gap noted by Fluor Daniel was the down-gradient extent of the petroleum hydrocarbon plume in groundwater.

2.4.6 2000 Groundwater Investigation and Groundwater Monitoring Work Plan—Golder Associates Inc.

On August 17 and 18, 1999, Golder (2000a) conducted a groundwater investigation at the Site that included collection of groundwater samples from the existing on-Site monitoring wells and collection of reconnaissance groundwater samples from borings GP-1 through GP-13, down-gradient of the TPH source areas, using direct-push sampling techniques (Figure 6). The objectives of the groundwater investigation were to:

- Define the approximate extent of the TPH plume identified during previous groundwater sampling events at the Site;
- Evaluate the TPH plume flow path to support installation of additional down-gradient monitoring wells; and
- Determine whether the TPH plume was migrating off the Property.

Groundwater samples collected from the four monitoring wells were analyzed for DRO, ORO, and BTEX. Reconnaissance groundwater samples collected from borings GP-1 through GP-13 were analyzed for DRO and ORO. The groundwater analytical results are presented in Table 8 and shown on Figure 6. The laboratory reports for the groundwater sample analyses are provided in Appendix B. Figure 6 shows the estimated extent of the TPH groundwater plume where DRO

and/or ORO were detected at concentrations exceeding MTCA Method A cleanup levels during the August 1999 sampling event.

The results of the groundwater investigation are summarized as follows:

- Leaking USTs and piping, considered the source of TPH, were removed, and contaminated soil was excavated and disposed of;
- TPH at concentrations exceeding MTCA Method A cleanup levels remained in soil and groundwater within the Property boundaries;
- DRO was the primary TPH contaminant in groundwater;
- The highest concentration of DRO in groundwater was detected proximate to the former 20,000-gallon diesel fuel USTs;
- Benzene was detected at a concentration exceeding the MTCA Method A cleanup level in groundwater proximate to well RW-2;
- The TPH plume extended from the former UST and product line source areas toward the west and southwest; and
- The area in which DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in groundwater did not extend beyond the western Property boundary.

2.4.7 2001 Results from Additional Groundwater and Soil Investigations—Golder Associates Inc.

Golder (2000b) prepared a strategy to provide additional data requested during a meeting with Ecology in August 2000 for consideration of a No Further Action determination for the Site. The strategy included installation of three additional groundwater monitoring wells, soil sampling in selected portions of the Site to further delineate areas of residual soil contamination, assessment of relevant exposure pathways associated with the residual soil contamination, and addition of analyses for volatile organic compounds (VOCs) for samples collected from the groundwater monitoring wells.

Golder (2001) initiated the data acquisition strategy in January 2001 by installing monitoring wells MW-4, MW-5, and MW-6 along the down-gradient Property boundary to assess the westward limit of the TPH plume on the Property (Figure 7). Logs for the monitoring wells are provided in Appendix A. On January 17, 2001, approximately 1 week following installation of the monitoring wells, groundwater samples were collected from monitoring wells MW-1 through MW-6 for analysis for DRO, ORO, VOCs, and PAHs.

The analytical results for the groundwater samples collected from the monitoring wells are summarized in Tables 8 through 10. The laboratory analytical reports are provided in Appendix B.

The DRO and ORO analytical results for the groundwater samples are shown on Figure 7 and summarized below:

- DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in monitoring wells MW-2 and MW-3, which was consistent with analytical results from sampling events conducted in 1998 and 1999 (Table 8).
- Analytical results for groundwater samples collected from monitoring wells MW-4 through MW-6 confirmed that DRO and ORO were not migrating off the Property at concentrations exceeding MTCA Method A cleanup levels (Figure 7).
- Several PAH compounds were detected at concentrations less than MTCA Method A cleanup levels in the groundwater sample collected from monitoring well MW-2. Carcinogenic PAHs (cPAHs) were not detected at concentrations exceeding laboratory reporting limits in any of the groundwater samples. These results were consistent with those from the groundwater sampling event conducted in 1998 (Golder 1998a) (Table 10).
- Various VOCs were detected at concentrations less than MTCA cleanup levels (Tables 9a and 9b) in groundwater samples. Vinyl chloride was detected at concentrations slightly exceeding the MTCA Method A cleanup level in groundwater samples collected from monitoring wells MW-4 and MW-6 (Table 9a).

Additional soil data were obtained to delineate the nature and extent of contamination in soil and to assess whether the contamination in soil posed a risk via relevant exposure pathways. Golder conducted a soil investigation focused on the three areas where releases occurred in the past and where contamination had been detected. These three investigation areas are shown on Figures 2, 3A, and 3B and include:

- The UST excavation area west of the Shop Building where five USTs were removed in 1988;
- The product line release area adjoining the northern end of the Shop Building; and
- The UST excavation area northwest of the Shop Building where two 20,000-gallon diesel fuel USTs were removed in 1998.

Soil samples were collected from borings SP-1 through SP-13 using a direct-push rig. At each boring location, soil samples were collected from depth intervals of 2 to 5, 5 to 8, and 8 to 11 feet bgs. Selected soil samples were analyzed for DRO and ORO, and six additional samples (i.e., at least one sample from each of the three investigation areas) were analyzed for BTEX, PAHs, and EPH/VPH to assess exposure pathways. The soil analytical results are presented in Tables 2, 5, and 7; laboratory analytical reports are provided in Appendix B.

Golder concluded that the nature and extent of TPH in soil on the Site were defined and bound on all sides. The distribution of TPH in soil is consistent with sources of releases at the two UST excavation areas and in the product line release area. DRO and ORO were the only constituents frequently detected in soil samples collected at the Site.

Benzene and xylenes were detected at concentrations exceeding MTCA Method A cleanup levels in soil samples collected from borings SP-8 and SP-9 within approximately 10 to 15 feet of the area of the former product line release (Table 2; Figure 3B). These results were consistent with those for aromatic hydrocarbons detected in soil and groundwater at nearby well RW-2 (Golder 1998a and 2000a).

PAHs and cPAHs were detected in soil samples at concentrations less than MTCA Method A cleanup levels, with the exception of naphthalene, which was detected at concentrations exceeding the MTCA Method A cleanup level in samples collected from borings SP-6 and SP-8 near the product line release area. These results were consistent with PAH and cPAH analytical data previously reported by Golder (1998a).

The laboratory reports for the groundwater and soil sample analyses discussed above are provided in Appendix B.

2.4.8 2004 Phase II Investigation—Golder Associates Inc.

In December 2003, Golder (2004) conducted a Phase II investigation to evaluate the environmental concerns presented in the *Phase I Environmental Site Assessment for Consolidated Freightways*, 6050 East Marginal Way South, Seattle, Washington dated January 2003 prepared by Phase One Inc. (2003) (2003 Phase I ESA). The environmental concerns identified in the 2003 Phase I ESA and the investigations conducted by Golder (2004) are discussed in the following sections.

2.4.8.1 Groundwater Monitoring

The 2003 Phase I ESA identified groundwater contamination as an environmental issue and recommended further groundwater monitoring using the existing monitoring wells until Ecology issues a No Further Action determination.

In December 2003, Golder (2004) conducted groundwater monitoring and sampling at monitoring wells MW-1 through MW-6 and well RW-2. Groundwater samples were analyzed for DRO, ORO, GRO, and VOCs.

DRO and ORO were not detected at concentrations exceeding laboratory reporting limits in groundwater samples collected from any of the monitoring wells. GRO was detected at a concentration exceeding the laboratory detection limit in the groundwater sample collected from well RW-2, but at a concentration less than the MTCA Method A cleanup level. GRO was not detected at a concentration exceeding the laboratory reporting limit in groundwater samples collected from any of the other monitoring wells.

Benzene was detected at a concentration exceeding the MTCA Method A cleanup level in the groundwater sample collected from well RW-2. Several petroleum-related VOCs were detected at concentrations exceeding laboratory detection limits in the groundwater sample collected from well RW-2, but at concentrations less than MTCA cleanup levels. No other

VOCs were detected at concentrations exceeding laboratory detection limits in the groundwater samples collected from other monitoring wells on the Site.

Vinyl chloride was detected at concentrations exceeding the MTCA Method A cleanup level in groundwater samples collected from monitoring wells MW-4 and MW-6 during groundwater sampling events conducted in January and June 2001. However, the laboratory detection limits for vinyl chloride were elevated for groundwater samples collected during the December 2003 sampling event, and detections of vinyl chloride may have been masked.

Groundwater flow direction was toward the west-southwest during the December 2003 groundwater monitoring event. The groundwater flow direction was consistent with that determined during prior groundwater monitoring events. Groundwater elevation data for this sampling period and sampling events in January and June 2001 are presented in Table 1. Groundwater analytical results are presented in Tables 8, 9a, and 9b. TPH results and groundwater elevation contours are shown on Figures 7 and 8. Analytical reports are provided in Appendix B.

2.4.8.2 Subsurface Investigation

An oil-water separator known as the grease trap adjacent to the northern end of the Shop Building, and an oil-water separator known as the sand trap and a drainage trench associated with the former wash rack that adjoined the eastern side of the Shop Building were identified as potential sources of releases. The 2003 Phase I ESA recommended investigating subsurface conditions at the oil-water separators and drainage trench.

Because previous subsurface investigations evaluated soil and groundwater conditions in the area surrounding the grease trap, Golder (2004) did not conduct additional investigation in that area. Borings GP-6 through GP-8 were advanced on the eastern side of the Shop Building at the sand trap and drainage trench area. Soil and reconnaissance groundwater samples were collected for analysis for DRO, ORO, GRO, and VOCs.

Neither DRO, GRO, nor BTEX was detected at concentrations exceeding laboratory reporting limits in the soil samples collected during the December 2003 monitoring event from borings GP-6 through GP-8. ORO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring GP-6. ORO was not detected at concentrations exceeding the laboratory reporting limit in the soil samples collected from borings GP-7 or GP-8. One or more VOCs were detected at concentrations exceeding laboratory detection limits but not exceeding MTCA Method A or B cleanup levels in the soil samples collected from each boring.

Neither DRO, ORO, GRO, nor BTEX was detected at concentrations exceeding the laboratory reporting limits in the reconnaissance groundwater samples collected from borings GP-6 through GP-8. One or more VOCs were detected at concentrations less than MTCA Method A or B cleanup levels in the reconnaissance groundwater samples collected

2 - 10

from borings GP-7 and GP-8. No other VOCs were detected at concentrations exceeding laboratory detection limits.

Soil analytical results are presented in Tables 2, 3a, and 3b. TPH results are shown on Figure 4B. Groundwater analytical results are presented in Tables 8, 9a, and 9b. Analytical reports are provided in Appendix B.

2.4.8.3 UST Location Assessment

Two USTs with capacities of 500 and 5,000 gallons identified in historical documents for the Property were not accounted for and were suspected of remaining in-place on the Property. The 2003 Phase I ESA recommended conducting a geophysical survey and/or subsurface investigation to evaluate the potential presence of the USTs.

In its December 2003 investigation, Golder (2004) identified a 10,000-gallon gasoline and a 5,000-gallon lube oil UST in the area north of the Office Building from 1958 building plans (Figures 2 and 3C). This area had not been previously investigated. Golder (2004) therefore conducted the following activities:

- Performed a geophysical survey over the former UST area using magnetometer and ground-penetrating radar methods;
- Advanced borings GP-1 through GP-5 by direct-push methods at the former UST area; and
- Collected soil and reconnaissance groundwater samples from borings GP-1 through GP-5 for analyses for DRO, ORO, GRO, and VOCs.

The geophysical investigation conducted north of the Office Building did not identify evidence of the presence of USTs in this area.

Borings GP-1 through GP-5 were advanced at the locations where USTs were indicated on the 1958 building plans. DRO, GRO, and BTEX were not detected at concentrations exceeding laboratory reporting limits in the soil samples collected from borings GP-1 through GP-5. ORO was detected at a concentration less than the MTCA Method A cleanup level in the soil sample collected from boring GP-4 at a depth of 2 to 4 feet bgs. VOCs were detected at concentrations less than MTCA Method A or B cleanup levels in one or more of the soil samples collected from each boring.

Neither DRO, ORO, GRO, BTEX, nor other VOCs was detected at concentrations exceeding laboratory reporting limits in the reconnaissance groundwater samples collected from borings GP-1 through GP-5.

Soil analytical results are presented in Tables 2, 3a, and 3b. Groundwater analytical results are presented in Tables 8, 9a, and 9b. Soil analytical results for TPH are shown on Figure 4C. Analytical reports are provided in Appendix B.

2.4.9 2015 Environmental Due Diligence Assessment—Farallon Consulting, L.L.C.

Farallon (2015) conducted a combined Phase I Environmental Site Assessment, which identified recognized environmental conditions for the Property, and a Phase II subsurface investigation to evaluate those recognized environmental conditions. The recognized environmental conditions identified by Farallon (2015) were:

- The known release of hazardous substances on the Property from historical fuel and wasteoil USTs; and
- The potential migration of hazardous substances to the Property from current and historical operations on properties adjacent and proximate to the Property.

The purposes of the Phase II subsurface investigation conducted by Farallon (2015) were to:

- Conduct a survey to assess the status of three diesel-fuel USTs (with capacities of 500, 1,000, and 20,000 gallons) identified in the 2015 Phase Due Diligence Report as a data gap; and
- Conduct a subsurface soil and groundwater investigation to determine the extent of known or suspected releases of hazardous substances beneath the Property, and screen other portions of the Property for potential releases associated with historical activities both on and off the Property.

Activities conducted during the UST survey and the subsurface soil and groundwater investigation are discussed in the following sections.

2.4.9.1 Underground Storage Tank Survey

The scope of work for the UST survey consisted of using ground-penetrating radar proximate to the suspected UST locations. The UST survey did not identify evidence of USTs present at the suspected location of the potential 500-gallon diesel fuel UST near the former wash rack on the eastern side of the former Shop Building, or at the suspected location of the former diesel fuel/heating oil UST southeast of the former Office Building (Figure 2).

The location of the 20,000-gallon diesel fuel UST was confirmed north of the former Shop Building (Figure 2). Insufficient information was available to justify investigation of the potential in-place abandonment of a 10,000-gallon UST on the Property. No evidence of the 10,000-gallon UST was identified during the ground-penetrating radar survey for other USTs or during the field work conducted for the subsurface soil and groundwater investigation.

UST information from historical research and the findings of the UST survey at the Property are summarized below by area.

USTs formerly west of the former Shop Building (Figure 2) included:

- A 10,000-gallon diesel fuel UST installed in 1958 and removed in 1988;
- An 8,000-gallon diesel UST installed in 1958 and removed in 1988;
- A 5,000-gallon lube oil UST installed in 1958 and removed in 1988; and
- Two 3,000-gallon waste oil USTs installed in 1958 and removed in 1988.

USTs formerly northwest of the former Shop Building (Figure 2) included:

• Two 20,000-gallon diesel fuel USTs installed in 1981 and removed in 1998.

USTs in the former northwest UST area (Figure 2) included:

- A 10,000-gallon gasoline UST installed prior to 1958, removal date unknown, but assumed to be 1988 based on a Blymyer (1988a) memorandum; and
- A 5,000-gallon lube oil UST installed prior to 1958, removal date unknown, but assumed to have been removed concurrent with removal of the 10,000-gallon gasoline UST.

Other former USTs (Figure 2) included:

- A 1,000-gallon heating oil UST southeast of the former Office Building, installation and removal dates unknown; and
- A 500-gallon diesel fuel UST east of former Shop Building, near the northern end of the former wash rack area, installation and removal date unknown.

UST north of former Shop Building (Figure 2):

• A 20,000-gallon diesel fuel UST installed in 1998, which remained present on the Property at the time of Farallon's 2015 subsurface investigations.

2.4.9.2 Subsurface Soil and Groundwater Investigation

Sufficient information was collected during Farallon's 2015 investigations to address the data gap identified during Farallon's Phase I Environmental Site Assessment and investigate the areas of suspected contamination that had not been assessed in previous investigations. The analytical results for soil and groundwater samples were compared to MTCA Method A cleanup levels, or to MTCA Method B cleanup levels if there were no Method A cleanup levels.

During previous subsurface investigations conducted at the Site, DRO had been detected at concentrations exceeding the MTCA Method A cleanup level in soil and groundwater samples collected at the former UST areas and the former product line release area near the former Shop Building. Based on Farallon's review, additional assessment of DRO in soil proximate to the former UST areas was not deemed warranted because of the significant

set of existing analytical data from prior assessments in these areas. Soil samples collected by Farallon from this area were analyzed for polychlorinated biphenyl compounds (PCBs). The former product line release area was further assessed to the south. Contamination in soil or groundwater was not detected in the former northwest UST area (Figure 2) during previous investigations; therefore, further assessment was not warranted.

Farallon collected two soil samples and reconnaissance groundwater samples each from borings F-1 through F-8, and groundwater samples from existing wells RW-2, MW-2, MW-3, and MW-4 for laboratory analysis. After review of the analytical results for these samples, additional soil and reconnaissance groundwater samples were collected from borings F-9 through F-18, and additional groundwater samples were collected from existing monitoring wells MW-5 and MW-6 for laboratory analysis to further characterize areas of known or potential releases.

Soil borings were advanced using a direct-push rig; soil, groundwater, and reconnaissance groundwater samples were collected using industry-standard methodologies. Soil and reconnaissance groundwater samples were selectively analyzed for DRO, GRO, ORO, VOCs, PCBs, and PAHs. Soil sample depths were selected based on field observations for potential contamination. Groundwater was encountered during the investigation at depths of between approximately 7 and 10 feet bgs. Soil boring and monitoring well locations are shown on Figures 3A, 3B, 3C, and 9.

Analytical results are summarized in Tables 2, 3a, 4, 8, 9, and 10, and below by area:

Proximate to the Former Heating Oil UST:

- GRO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring F-5 at a depth of 6.7 feet bgs (Figure 4C; Table 2). GRO was not detected at a concentration exceeding the laboratory reporting limit in the reconnaissance groundwater sample collected from boring F-5 (Table 8).
- DRO was detected at a concentration exceeding the laboratory reporting limit but less than the MTCA Method A cleanup level in both the soil and reconnaissance groundwater samples collected from boring F-5.
- Neither GRO nor DRO was detected in soil or reconnaissance groundwater samples collected from borings F-9 through F-12, which surround boring F-5, indicating that residual GRO impact in the former heating oil UST area was bounded on all sides, and therefore very limited in extent.

Proximate to the 20,000-Gallon Diesel Fuel UST (North of the Former Shop Building):

 GRO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring F-8 at a depth of 5 feet bgs (Figure 4B; Table 2) proximate to the western end of the current 20,000-gallon diesel fuel UST.

- DRO and ORO were detected in the reconnaissance groundwater sample collected from boring F-8 (Table 8) at concentrations exceeding the MTCA Method A cleanup level.
- Neither GRO nor ORO was detected at concentrations exceeding laboratory detection limits in soil samples collected from soil borings F-15 through F-17, advanced proximate to the other three sides of the UST.
- DRO was detected at a concentration less than the MTCA Method A cleanup level in the soil sample collected from boring F-17.
- The cumulative analytical results suggest that petroleum impact in this area was related to the known release from the nearby product line, and not a release from the UST.

Proximate to the Former Product Line Release Area:

- DRO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring F-14 (Figure 4B; Table 2), proximate to the former product line release area.
- DRO was not detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring F-13, advanced west of boring F-14.

Proximate to the Former Shop Building UST Areas:

- PCBs were not detected at a concentration exceeding the laboratory reporting limit in the soil sample collected from boring F-18, within the area of residual impact from the former UST hold that contained five USTs for storage of diesel fuel, motor oil, and waste oil.
- DRO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil sample collected from boring F-18, which was consistent with historical data.
- DRO and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from wells MW-2, MW-3, and RW-2, proximate to the former Shop Building UST areas (Table 8).
- The PAH compound 2-methylnaphthalene was detected at a concentration exceeding the MTCA Method B cleanup level in the groundwater sample collected from well RW-2 (Table 10).
- The groundwater analytical results for wells MW-4 through MW-6 suggested that petroleum constituents at concentrations exceeding MTCA Method A or Method B cleanup levels were not migrating off the Property.

Potential Migration of Chemicals from Off-Property Sources onto the Property:

• Vinyl chloride was detected at concentrations of 0.23 and 0.3 micrograms per liter $(\mu g/l)$ in groundwater samples collected from monitoring wells MW-2 and MW-4 (Table 9a), respectively, which exceeded the MTCA Method A cleanup level of 0.2 $\mu g/l$ and was less than the Ecology screening level of 0.35 $\mu g/l$ for vapor intrusion.

Potential Presence of PCBs in Soil:

• PCBs were not detected at concentrations exceeding laboratory reporting limits in soil samples screened for PCBs.

The laboratory reports for the soil and groundwater sample analyses discussed above are provided in Appendix B.

Petroleum hydrocarbons were detected at concentrations exceeding MTCA Method A and/or Method B cleanup levels in soil and groundwater proximate to one or more of the following: the former heating oil UST; the former Shop Building UST areas; and the former product line release area.

The petroleum hydrocarbons detected in soil west of the 20,000-gallon diesel fuel UST appeared related to the former product line release area. The petroleum hydrocarbons detected in soil and groundwater proximate to the former heating oil UST were bound, and appeared very limited in extent. Groundwater sample analytical data suggested that petroleum constituents at concentrations exceeding MTCA Method A and/or Method B cleanup levels were not migrating off the Property.

The regional VOC plume associated with releases at the Capital Industries, Inc. property at 5801 3rd Avenue South (located directly north of the Property) was present in the Property vicinity. The presence of vinyl chloride detected in groundwater samples collected from wells MW-4 and MW-6 on the Property was associated with the regional VOC plume.

No other compounds were detected at concentrations exceeding MTCA cleanup levels during the 2015 subsurface soil and groundwater analysis conducted by Farallon.

2.4.10 2016 UST Decommissioning—Farallon Consulting, L.L.C.

Decommissioning and site assessment activities for the 20,000-gallon diesel fuel UST north of the former Shop Building were conducted by Farallon on September 6 through 9, 2016 (Figure 2). The UST was registered in the Ecology Toxics Cleanup Program Web Reporting Underground Storage Tanks, UST Site/Tank Data Summary (UST Database) as UST No. 11012.

Consolidated Freightways installed the diesel fuel UST in 1998 for use in refueling haul trucks. The UST and associated product supply lines were constructed of double-walled reinforced fiberglass, and included the most-current leak-detection, spill-prevention, and overfill-prevention features available at the time of installation. The UST Database identified the UST as temporarily

closed in 2003, which coincided with the time of cessation of Consolidated Freightways operations on the Property. The diesel dispenser for the UST, at the northern end of the former Shop Building, was decommissioned by others during demolition of the Shop Building in 2003. The approximate location of the former diesel dispenser is shown on Figure 3B.

The UST decommissioning services were provided by Wyser Construction Company, Inc. of Snohomish, Washington (Wyser). The decommissioning process included the following activities:

- Flushing the product lines to transfer any residual diesel fuel in the lines back into the UST;
- Breaking and removing the concrete pad and surrounding asphaltic pavement overlying the UST and transporting the material off the Property for recycling;
- Cleaning and triple-rinsing the UST interior and transporting the wash water off the Property for disposal;
- Obtaining a Decommissioning Permit from the Seattle Fire Department and arranging for Seattle Fire Department inspection to authorize removal of the UST;
- Testing the internal atmosphere of the UST by a Marine Chemist in preparation for removal;
- Uncovering the UST and excavating around the sides of the UST, removing all connections and hold-down straps, and lifting the UST from the excavation for inspection;
- Collecting site assessment soil samples from the four sidewalls of the UST excavation at a depth of 6.5 feet bgs, and from the bottom of the excavation at a depth of 13 feet bgs;
- Breaking up the UST into pieces of manageable size and disposing of the materials off the Property as solid waste; and
- Backfilling the excavation with the UST pea-gravel fill supplemented with imported structural fill material.

The site assessment soil samples were submitted for laboratory analysis for DRO, ORO, BTEX, cPAHs, and total naphthalenes. The analytical results for DRO, ORO, BTEX, and total naphthalenes are summarized in Table 2, and the analytical results for cPAHs are summarized in Table 5. The laboratory analytical report is provided in Attachment B.

DRO, BTEX, and cPAHs were not detected at concentrations exceeding laboratory practical quantitation limits (PQLs) in the soil samples analyzed. ORO was detected at a concentration exceeding the laboratory PQL, but less than the MTCA Method A cleanup level, in the sample collected from the west sidewall of the excavation. ORO was not detected at a concentration exceeding the laboratory PQL in the other soil samples collected from the excavation. Both 1-methynaphthalene and 2-methylnaphthalene were detected at concentrations exceeding the laboratory PQLs, but less than the MTCA Method A cleanup level for total naphthalenes, in the sample collected from the north sidewall of the excavation. Naphthalenes were not detected at concentrations exceeding laboratory PQLs in the other soil samples collected from the excavation.

Groundwater in the UST excavation stabilized at a level of 6.5 feet bgs. No petroleum-like sheen was observed on groundwater. Groundwater samples were not collected during the decommissioning of the UST because previous groundwater investigations identified the nature and extent of petroleum hydrocarbons in groundwater on the Site, as discussed above.

Documentation for the UST decommissioning process was submitted to Ecology and documented in the technical memorandum regarding Site Assessment for UST Decommissioning, 6050 East Marginal Way South, Seattle, Washington dated October 20, 2016, prepared by Farallon. The complete technical memorandum is presented in Appendix E.

2.4.11 2017 Pre-Excavation Contaminant Delineation—Farallon Consulting, L.L.C.

A total of 10 pre-excavation test pits were excavated on February 20 and 21, 2017 by Farallon to collect soil samples for analysis from the following areas to confirm the limits of soil contamination and/or refine the extent of soil planned for removal during the cleanup action on the Site (Figures 3A, 3B, and 3C):

- Test pits TP-1 and TP-2 were excavated north and south of the UST hold north of the former Office Building where a gasoline UST and a lube oil UST were decommissioned in 1988. Samples were analyzed for DRO, ORO, GRO, and BTEX.
- Test pit TP-3 was excavated northwest of the UST hold for the two 20,000-gallon diesel fuel USTs decommissioned in 1998. Samples were analyzed for DRO, ORO, GRO, and BTEX.
- Test pits TP-4 and TP-5 were excavated proximate to the southeastern portion of the UST hold west of the former Shop Building where five USTs were decommissioned in 1988. Samples were analyzed for DRO, ORO, GRO, BTEX, VOCs, PAHs, and metals.
- Test pits TP-6 and TP-7 were excavated south and east of boring F-14 near the northern end of the former Shop Building. Samples were analyzed for DRO, ORO, GRO, and BTEX.
- Test pits TP-8 through TP-10 were excavated north, east, and west of boring GP-6 near the former sand trap oil-water separator. Samples were analyzed for DRO, ORO, GRO, and VOCs.

DRO was detected at a concentration exceeding the MTCA Method A cleanup level in the soil samples collected from test pit TP-5 at a depth of 11 feet bgs and test pit TP-7 at a depth of 7 feet bgs. All other analytes either were not detected at concentrations exceeding their respective laboratory PQLs or were detected at concentrations less than applicable MTCA Method A cleanup levels in soil samples collected from the test pits.

The analytical results for DRO, ORO, and BTEX are summarized in Table 2; analytical results for VOCs are summarized in Table 3; analytical results for PAHs are summarized in Table 5; and analytical results for metals are summarized in Table 6. The DRO, ORO, and benzene results are shown on Figures 4A, 4B, and 4C. The laboratory analytical report is provided in Attachment B.

3.0 CLEANUP ACTION TECHNICAL ELEMENTS

This section summarizes the technical elements applicable to the cleanup action completed at the Site.

3.1 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

Primary ARARs and guidance documents related to the cleanup action included:

- Model Toxics Control Act, Chapter 70.105D of the Revised Code of Washington (RCW 70.105);
- MTCA, WAC 173-340;
- Dangerous Waste Regulations, WAC 173-303; and
- *Guidance for Remediation of* Petroleum *Contaminated Sites* dated June 2016, prepared by Ecology (2016) (Ecology Guidance).

These primary ARARs are applicable to the cleanup action because they provide the framework for the cleanup action, including applicable and relevant regulatory guidelines, cleanup standards, waste disposal criteria, references for additional ARARs, and standards for documentation of the cleanup action.

Other applicable ARARs and guidance documents related to the cleanup action completed for the Site included:

- *Guidance for Site Checks and Site Assessments for Underground Storage Tanks* (Ecology 1991);
- Minimum Standards for Construction and Maintenance of Wells, Standards for Decommissioning a Well, WAC 173-160-381;
- The Occupational Safety and Health Act, Part 1910 of Title 29 of the Code of Federal Regulations;
- Safety Standards for Construction Work, WAC 296-155;
- Washington State Solid Waste Management Laws and Regulations, RCW 70.95 and WAC 173-351 and 173-304;
- Draft *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action* (Ecology 2009); and

3-1

• Accreditation of Environmental Laboratories, WAC 173-50.

3.2 CLEANUP ACTION OBJECTIVES

The cleanup action objectives were to:

- Protect human health and the environment by eliminating the risks posed by the COCs detected in soil at the Site;
- Meet applicable MTCA cleanup levels established for soil and groundwater at the points of compliance;
- Comply with all state and federal laws applicable to the cleanup action; and
- Obtain a No Further Action determination for the Site.

3.3 CONSTITUENTS AND MEDIA OF CONCERN

The COCs for the Site are defined as the compounds that have been detected in soil and groundwater samples collected at the Site at concentrations that exceed applicable MTCA Method A cleanup levels.

The COCs for soil were:

- DRO;
- ORO;
- GRO; and
- BTEX.

The COCs for groundwater were:

- DRO;
- ORO;
- GRO;
- Benzene;
- Naphthalenes; and
- Vinyl chloride.

3.4 MEDIA OF CONCERN

Soil and groundwater were confirmed as the affected media of concern at the Site based on results from the remedial investigation. DRO, ORO, GRO, and BTEX were detected in soil; and DRO, ORO, GRO, benzene, naphthalenes, and vinyl chloride were detected in groundwater at concentrations exceeding MTCA Method A cleanup levels.

Soil vapor was identified as a suspected medium of concern at the Site based on historical concentrations of GRO and BTEX in soil; and of GRO, benzene, naphthalenes, and vinyl chloride in groundwater. Concentrations of benzene and/or other volatile COCs detected in samples collected during the most recent groundwater monitoring event conducted at the Site by Farallon (2015) in 2014 do not exceed the 2015 groundwater screening levels protective of indoor air (Ecology 2009, 2015 update to Table B-1). The potential for vapor intrusion at the Site was mitigated by the excavation and removal of contaminated soil and the dewatering and disposal of contaminated groundwater from the Site.

3.5 CLEANUP STANDARDS

As defined in WAC 173-340-700, cleanup standards consist of cleanup levels and the points of compliance at which the cleanup levels are to be attained. The cleanup standards for the Site have been established in accordance with WAC 173-340-700 through 173-340-760 to be protective of human health and the environment.

3.5.1 Soil Cleanup Levels

The selected cleanup levels for COCs in soil at the Site were MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses (Table 740-1 in WAC 173-340-900), as follows:

- GRO: 100 milligrams per kilogram (mg/kg) (due to the general absence of benzene);
- DRO: 2,000 mg/kg;
- ORO: 2,000 mg/kg;
- Benzene: 0.03 mg/kg;
- Toluene: 7 mg/kg;
- Ethylbenzene: 6 mg/kg; and
- Xylenes: 9 mg/kg.

3.5.2 Groundwater Cleanup Levels

The selected cleanup levels for COCs in groundwater at the Site were MTCA Method A Cleanup Levels for Ground Water (Table 720-1 in WAC 173-340-900), as follows:

- GRO: 1,000 μ g/l (due to the general absence of benzene);
- DRO: 500 µg/l;
- ORO: 500 µg/l;
- Benzene: 5 μ g/l;
- Total naphthalenes: $160 \mu g/l$; and

• Vinyl chloride: 0.2 µg/l.¹

3.5.3 Points of Compliance

Points of compliance are the locations at which cleanup levels for the COCs must be attained to meet the requirements of MTCA. In accordance with WAC 173-340-740(6), the points of compliance for soil were defined as all soil at the Site where COCs have been detected at concentrations exceeding applicable MTCA soil cleanup levels. In accordance with WAC 173-340-720(8), the points of compliance for groundwater were defined as the uppermost level of the saturated zone extending vertically to the lowest depth at the Site that potentially could be impacted by COCs.

Groundwater samples collected from down-gradient monitoring wells MW-4, MW-5, and MW-6 indicated that groundwater meets the cleanup standards for petroleum-related COCs at these locations, and confirmed that COCs at concentrations exceeding MTCA Method A cleanup levels are contained on the Site within the Property boundaries (Figure 9). The points of compliance for groundwater will be new groundwater monitoring wells that will replace and be proximate to former monitoring wells MW-4 through MW-6 following completion of redevelopment construction.

3.6 TERRESTRIAL ECOLOGICAL EVALUATION

A TEE is required by WAC 173-340-7490 where there has been a release of hazardous substances to soil. Based on the criteria for TEE exclusion in WAC 173-340-7491(1)(c)(i), the Site was excluded from a TEE because there were less than 1.5 acres of contiguous undeveloped land on the Site or within 500 feet of any area of the Site, and the Site was not contaminated with any of the hazardous substances listed in WAC 173-340-7491(1)(c)(ii). In addition, following redevelopment construction, the entire Property will be covered with buildings and pavement, with the exception of minor landscaped areas. A TEE Form for the Site and a figure showing the 500-foot buffer around the Site is provided in Appendix C. No further consideration of ecological impacts is required under MTCA.

¹ Vinyl chloride detected in groundwater at the Property is part of a large regional VOC plume associated with releases from an up-gradient source off the Property identified as the Capital Industries, Inc. property at 5801 3rd Avenue South. Active cleanup of vinyl chloride was not practicable during the cleanup action for the Property. The presence of vinyl chloride from the regional VOC plume does not represent a human health or vapor intrusion risk to the Property.

4.0 CLEANUP ACTION

The cleanup action at the Site included source removal soil excavation and groundwater extraction and treatment completed in two phases. The first phase was conducted from March 13 through April 5, 2017 in accordance with the RI/FFS/CAP Report and the EMMP (Farallon 2016a, 2016b). The second phase was conducted from April 13 through May 3, 2017 as a part of a soil management response to clean up petroleum-contaminated soil not previously identified on the Site that was encountered during redevelopment grading. Soil with concentrations of COCs exceeding MTCA Method A cleanup levels and/or exhibiting other evidence of contamination such as visible staining, petroleum-like odors, or measurable volatile organic vapors was segregated from clean soil and transported off the Property for disposal at a regional landfill. Groundwater pumped from the open excavations during dewatering was treated and discharged to the sanitary sewer system under a Major Discharge Authorization from the King County Industrial Waste Program (KCIWP).

Implementation of the cleanup action and the field activities completed are summarized in the following sections.

4.1 PRE-EXCAVATION PREPARATION

Pre-excavation activities included decommissioning of the 20,000-gallon diesel fuel groundwater and conducting additional contaminant delineation. These activities are discussed in Sections 2.4.10, 2016 UST Decommissioning—Farallon Consulting, L.L.C., and 2.4.11, 2017 Pre-Excavation Contaminant Delineation—Farallon Consulting, L.L.C. Groundwater monitoring wells MW-1 through MW-6 and RW-2 (Figure 9) were decommissioned on September 6, 2016 by drilling contractor ESN Northwest, Inc. of Olympia, Washington. The monitoring wells were decommissioned in accordance with Minimum Standards for Construction and Maintenance of Wells (WAC 173-160). Specifically, according to WAC 173-160-381, the monitoring wells were decommissioned in-place by backfilling the total depth of each well casing with bentonite chips and hydrating the chips to seal the casings. Documentation for decommissioning of the monitoring wells, provided in Appendix F, includes a Notice of Intent to Decommission a Well and a Resource Protection Well Report for each well.

4.2 EXCAVATION PERMITTING

Development permits for the Property were applied for by Barghausen Consulting Engineers, Inc. of Kent, Washington (Barghausen) and obtained from the City of Seattle Department of Construction and Inspections. The department issued Site Work Permit No. 6556259 on February 28, 2017 and a Grading Season Extension on March 7, 2017, which provided authorization to proceed with grading of the Property, including the remedial excavation activities.

Dewatering was required to lower groundwater levels for soil removal during the remedial excavations. Extracted groundwater was treated and then discharged to the combined stormwater/sanitary sewer system in accordance with the requirements of the KCIWP. KCIWP

4 - 1

issued Major Discharge Authorization No. 4408-01 on February 22, 2017 to authorize discharge of wastewater generated during construction dewatering operations.

4.3 SOURCE REMOVAL

Soil sample analytical results from the subsurface investigations and interim remedial actions conducted on the Site were used to develop estimates of the expected distribution of COCs in soil in source areas requiring excavation, transport, and disposal at a permitted disposal facility. The test pit soil sample analytical results discussed in Section 2.4.11, 2017 Pre-Excavation Contaminant Delineation—Farallon Consulting, L.L.C., further defined the extent of the source areas.

The approximate initial extent of COCs was divided into four separate source areas, as shown on EMMP Figures 9 through 14, provided in Appendix D. During the remedial excavations on the Site, the four source areas subsequently were designated as Excavations 1 through 4. The final configurations of Excavations 1 through 4 are shown on Figures 3A, 3B, and 3C. A fifth source area, designated Excavation 5, which was encountered unexpectedly during redevelopment grading, is shown on Figure 3A.

Excavated soil containing COCs at concentrations exceeding MTCA Method A cleanup levels and/or exhibiting other evidence of contamination such as visible staining, petroleum-like odors, or elevated volatile organic vapors was classified for disposal based on the Ecology Guidance and the disposal criteria for the selected disposal facilities. Based on Category (i.e., Category 2 through 4), contaminated soil was managed as nonhazardous waste and transported to facilities permitted to receive the soil for disposal. The criteria for soil categorization and disposal are provided in Tables 12.1 and 12.2 of the Ecology Guidance and are summarized below:

- <u>Category 1 soil</u> has no detectable petroleum hydrocarbons, no odor, and no visual or other evidence of contamination (e.g., staining, sheen, elevated VOC measurements using a photoionization detector). Category 1 soil is not a threat to human health or the environment as indicated by the Ecology Guidance, and can be placed at any location where allowed under other regulations.
- <u>Category 2 soil</u> contains residual petroleum hydrocarbons at concentrations within the ranges referenced in Table 12.1 of the Ecology Guidance; or may not contain detectable concentrations of petroleum hydrocarbons, but has a petroleum-like odor or visual or other evidence of contamination; and meets the disposal criteria for direct disposal at a permitted disposal facility.
- <u>Category 3 and 4 soil</u> contains petroleum hydrocarbons at concentrations exceeding the ranges referenced in the Ecology Guidance, and requires treatment and/or disposal off the Property.

Category 1 soil, including clean overburden generated during excavation activities, was segregated and used for backfilling the excavations on the Site.

Most Category 2 soil and all Category 3 and 4 soil generated during source area excavations was loaded into trucks and transported off the Property to two disposal facilities: the Columbia Ridge Landfill in Arlington, Oregon operated by Waste Management, Inc., and the Roosevelt Regional Landfill in rural Klickitat County, Washington operated by Republic Services, Inc.

The source area soil excavations were conducted under two phases of work as discussed in the following sections.

4.3.1 First Phase Soil Excavation

First phase soil excavation activities were conducted from March 13 through April 5, 2017 and consisted of the removal of soil from source areas at Excavations 1 through 3 proximate to the former Shop Building (Figures 3A and 3B), and at Excavation 4 proximate to the former Office Building (Figure 3C). The excavations were conducted to remove the following sources of residual COCs:

- Excavation 1 Residual COCs related to releases from the former UST area west of the former Shop Building where five USTs were decommissioned by removal in 1988, and residual COCs related to releases from the former UST area northwest of the former Shop Building where two 20,000-gallon diesel fuel USTs were decommissioned by removal in 1998;
- Excavation 2 Residual COCs related to a release from the former diesel UST product line that adjoined the northern end of the former Shop Building;
- Excavation 3 Residual COCs related to former operation of the sand trap oil-water separator north of the former wash rack at the eastern side of the former the Shop Building; and
- Excavation 4 Residual COCs related to releases from the former heating oil UST adjacent to the southeastern corner of the former Office Building.

Wyser conducted the first phase soil excavation activities and provided transportation services. Cleanup actions conducted during the first phase soil excavation included:

- Completing a subsurface utility line location survey to identify and mark utility lines and substructures within the excavation areas.
- Removing concrete slabs and asphaltic pavement overlying the excavation areas.
- Excavating and stockpiling on the Site the clean overburden soil removed from shallow depths overlying soil containing residual COCs.
- Excavating, loading into haul trucks, and transporting soil containing residual COCs to two local waste intermodal facilities for disposal:
 - Waste Management, Inc. Duwamish Reload Facility at 7400 8th Avenue South in Seattle, Washington (Duwamish Reload Facility); and

- Republic Services, Inc. 3rd and Lander Transfer Station at 2733 3rd Avenue South in Seattle, Washington (3rd and Lander Transfer Station).
- Conducting dewatering operations to lower groundwater levels to facilitate soil removal at Excavations 1 and 2.
- Decommissioning by removal one orphan heating oil UST encountered during soil removal at Excavation 3.
- Collecting confirmational soil samples from the sidewalls and bottoms of the excavations for laboratory analysis to confirm that soil containing COCs at concentrations exceeding MTCA Method A cleanup levels was removed from the excavations.
- Spreading oxygen release compound across the bottoms of Excavations 1 and 2 below the groundwater table prior to backfilling, to enhance the biodegradation of COCs in groundwater down-gradient of Excavations 1 and 2.
- Backfilling the excavations with imported structural fill and stockpiled overburden soil, and compacting the fill to meet project soil-density requirements.

Each of these cleanup action activities is discussed below.

4.3.1.1 Subsurface Utility Line Survey

Subsurface utility lines within and proximate to the excavation areas were identified on February 16, 2017 by APS, Inc. of North Bend, Washington. Several identified stormwater lines were intersected and temporarily removed during the soil excavation activities. Unused lines were capped and other lines repaired or replaced prior to backfilling of the excavations.

4.3.1.2 Removal of Concrete Slabs and Asphaltic Pavement

The delineated excavation areas approximately represented on the EMMP lift maps (Appendix D, Figures 10 through 14) were identified and marked with spray paint for removal of concrete and asphalt surfaces. These hard surfaces were broken and removed in stages prior to the start of soil excavation at each excavation area. The broken materials were stockpiled on the Property for crushing and reuse as fill during Property redevelopment.

4.3.1.3 Soil Excavation and Removal

Soil excavation and removal was conducted between approximately March 14 and 31, 2017, and was based on the results from previous subsurface investigations, pre-excavation test pit sampling, and soil field-screening during excavation (Table 2). A trackhoe excavator removed up to 4 feet of uncontaminated overburden soil overlying soil containing residual COCs within the excavation areas. The excavated overburden soil was arranged in covered stockpiles west of Excavation 1 for use as excavation backfill. The trackhoe excavator directly loaded contaminated soil into haul trucks for transport to the

4-4

Duwamish Reload Facility and the 3rd and Lander Transfer Station for disposal. On days when the disposal facilities were unable to accept additional volumes of solid waste, the excavated soil was temporarily stockpiled on plastic sheeting and later loaded and transported off the Property for disposal.

Approximately 2,995 tons of soil was removed from the excavation areas for disposal. The approximate tonnages by excavation area were as follows:

- Excavation 1 1,535 tons;
- Excavation 2 1,310 tons;
- \circ Excavation 3 85 tons; and
- \circ Excavation 4 65 tons.

4.3.1.4 Excavation Dewatering

Groundwater was encountered in the excavation areas at depths between approximately 8 and 9 feet bgs. Dewatering was required to reach maximum excavation depths up to 13 feet bgs in Excavation 1 and 9 feet bgs in Excavation 2. Dewatering was accomplished by pumping directly from the open excavations to a water treatment system provided by Baker Corporation, Inc. of Seal Beach, California. Water treatment consisted of the following sequential steps:

- Pumping untreated water into a 20,000-gallon weir tank to remove settleable solids (i.e., particulates);
- Filtering the water using a 20-micron bag filter system to remove fine suspended solids;
- Using activated carbon media to remove organic COCs; and
- Temporarily storing the treated water in two 20,000-gallon holding tanks prior to discharge.

The treated water was metered and discharged to the local combined stormwater/sanitary sewer system authorized under KCIWP Discharge Authorization No. 4408-01 for construction dewatering operations, as discussed in Section 4.2, Excavation Permitting. Approximately 305,000 gallons of treated water was discharged to the combined stormwater/sanitary sewer system during excavation dewatering conducted in March 2017.

4.3.1.5 Heating Oil UST Decommissioning

A 500-gallon heating oil UST was encountered on March 23, 2017 during soil removal at Excavation 3. The UST decommissioning activities were conducted on March 27, 2017 and consisted of the following activities:

• Wyser obtained a Decommissioning Permit from the Seattle Fire Department.

- A Marine Chemist from Sound Testing, Inc. of Seattle, Washington evaluated the UST atmosphere and determined the UST was safe for removal and opening. An inspector from the Seattle Fire Department authorized removal of the UST.
- Wyser removed and inspected the UST, finding several small corrosion holes, and opened the UST for cleaning.
- Marine Vacuum Service, Inc. of Seattle, Washington washed the UST interior and disposed of the rinsate water.
- The UST was loaded on a truck and transported to Schnitzer Steel Industries in Woodinville, Washington for metal recycling.
- Soil adjacent to the UST showed staining and other evidence of a release of heating oil. The affected soil was removed in conjunction with the Excavation 3 soil excavation activities. Documentation for the UST decommissioning is provided in Appendix E.

4.3.1.6 Confirmational Monitoring

Confirmational soil samples were collected from the excavation areas to confirm that applicable cleanup levels were attained at the points of compliance. Confirmational monitoring consisted of collecting and analyzing in-situ soil samples from the limits of the completed excavation areas, and included the analytical results for soil samples from the RI, as reported in the RI/FFS/CAP; pre-excavation test pits, as discussed in Section 2.4.11, 2017 Pre-Excavation Contaminant Delineation—Farallon Consulting, L.L.C.; and other subsurface investigations where the analytical results confirmed that MTCA cleanup levels were attained.

The confirmational soil samples collected from Excavations 1, 2, and 3 were tracked using a grid system based on 20-foot by 20-foot grid areas. Each excavation grid was assigned a unique alphanumeric identifier based on columns ranging from A to L, and rows ranging from 1 to 11 (Figures 5A and 5B). A grid number was assigned to each confirmational soil sample collected within that grid. A mobile laboratory operated on the Property by Libby Environmental, Inc. of Olympia, Washington provided same-day analytical turnaround times for analysis of soil samples for DRO, ORO, GRO, and BTEX. Soil samples requiring analysis for other analytes were submitted for analysis to OnSite Environmental, Inc. of Redmond, Washington. Confirmational soil samples collected proximate to the former waste oil USTs in Excavation 1 and the former sand trap oil-water separator in Excavation 3 were analyzed for halogenated volatile organic compounds, cPAHs, and MTCA metals, as summarized in Tables 13 through 15, to assess the potential release of these contaminants during historical operations on the Property.

COCs were not detected at concentrations exceeding MTCA Method A cleanup levels in the confirmational soil samples collected from the limits of the excavation areas. Figures 5A, 5B, and 5C depict the locations and COC analytical results for the confirmational soil

samples. Analytical results for the confirmational soil samples also are summarized in Tables 12 through 15. The laboratory analytical reports are provided in Appendix B.

4.3.1.7 Oxygen Release Compound Application

Prior to backfilling, approximately 2,500 pounds of oxygen release compound were spread across the completed bottoms of Excavations 1 and 2 below the water table to promote insitu aerobic biodegradation of residual petroleum hydrocarbon COCs in groundwater. The oxygen release compound is expected to provide controlled release of oxygen to the groundwater for up to 12 months following application.

4.3.1.8 Excavation Backfilling

As approved by the project geotechnical engineer, GeoEngineers Inc. of Redmond, Washington, Excavations 1 and 2, the only excavations with soil removal below the water table, were backfilled by Wyser to approximately one foot above the water table with imported City of Seattle Type 17 soil and covered with imported recycled crushed concrete. Overburden soil was placed over the crushed concrete up to the subgrade elevation. Excavations 3 and 4 were backfilled by Wyser with imported recycled crushed concrete and covered with overburden soil to the subgrade elevation. The backfill materials were placed in lifts of approximately 24 inches and mechanically compacted to a minimum of 95 percent maximum dry density.

4.3.2 Second Phase Soil Excavation

Second phase soil excavation activities were conducted from April 17 through May 3, 2017 as a part of a soil management response during redevelopment grading. Petroleum-stained soil was observed west of the former Shop Building and southwest of Excavation 1 during pavement removal on April 13, 2017 (Figure 3A). The stained soil, initially visible over a limited area of approximately 10 feet by 30 feet directly underlying the pavement, suggested a release to the ground surface during historical trucking operations on the Property. A grab sample of the stained soil collected for petroleum hydrocarbon identification analysis by Northwest Method TPH-HCID confirmed the presence of petroleum hydrocarbons within the range of DRO, ORO, and GRO.

Sierra Construction Company, Inc. of Woodinville, Washington (Sierra) was retained by Prologis as the General Contractor for redevelopment of the Property. Sierra retained Hos Bros. Construction, Inc. of Woodinville, Washington (Hos) to conduct the earthworks activities for the redevelopment.

Excavation and removal of the stained soil was initiated by Hos on April 17, 2017. The excavation was designated as Excavation 5. Similar to the previous excavation activities, a trackhoe excavator was used to excavate and load the contaminated soil directly into haul trucks for transport to the Duwamish Reload Facility and the 3rd and Lander Transfer Station for disposal. Soil was temporarily stockpiled on days when haul trucks were not available. Excavation 5 expanded laterally with depth. Excavation dewatering was implemented to reach excavation depths up to 14 feet bgs. The dewatering and water treatment processes were essentially the same as that employed

during dewatering of Excavations 1 and 2, as described in Section 4.3.1.4, Excavation Dewatering. Approximately 15,600 gallons of treated water was discharged to the combined stormwater/sanitary sewer system during Excavation 5 dewatering conducted in April 2017.

A total of 28 confirmational soil samples were collected from the bottom and sidewalls of Excavation 5 and analyzed to demonstrate that the cleanup levels for the soil COCs were attained at the excavation limits. COCs were not detected at concentrations exceeding MTCA Method A cleanup levels in the confirmational soil samples collected from the limits of the excavation area. The analytical results for the confirmational soil samples are summarized in Table 12; the laboratory analytical reports are provided in Appendix B. The confirmational sample locations and summary analytical results are shown on Figure 5A.

Approximately 3,485 tons of soil was removed from Excavation 5 and transported off the Site for disposal at the Duwamish Reload Facility and 3rd and Lander Transfer Station. Summary disposal documentation is provided in Appendix G.

5.0 CLEANUP ACTION RESULTS

The results of the cleanup action are summarized below for the confirmational soil sampling, soil transport and disposal, and groundwater cleanup activities.

5.1 CONFIRMATIONAL SOIL SAMPLING

The laboratory analytical results for confirmational soil samples collected from the limits of the soil excavations confirm that the contaminant source areas have been removed and the applicable MTCA soil cleanup levels established for the Site have been met at the points of compliance (Tables 12 through 15). The final limits of Excavations 1 through 5, distribution of confirmational soil samples, and summary of soil sample analytical results for selected COCs are provided on Figures 5A through 5C.

5.2 SOIL TRANSPORT AND DISPOSAL

During the cleanup action activities conducted between March 13 and May 3, 2017, a total of approximately 6,480 tons of petroleum-contaminated soil was excavated and removed from Excavations 1 through 5 and transported by truck off the Property for disposal. Approximately 3,400 tons of soil was transported to the Duwamish Reload Facility and approximately 3,080 tons of soil was transported to the 3rd and Lander Transfer Station.

Summaries providing the transport dates, trucking company identification, disposal facility identification, and disposal tonnage for each load of soil are presented in Appendix G.

5.3 GROUNDWATER CLEANUP

Approximately 320,000 gallons of groundwater was extracted, treated, and disposed of during the cleanup action, which provided effective removal of the highest concentrations of contaminated groundwater surrounding and within the main COC source areas. The complete removal and disposal of soil from Excavations 1, 2, and 5 eliminated the sources of COCs that previously provided continuous diffusion of COCs into groundwater. In addition, the application of oxygen release compound to groundwater at the base of Excavations 1 and 2 will enhance the aerobic degradation of residual COCs in groundwater down-gradient of these former source areas.

Following completion of redevelopment construction, new groundwater monitoring wells will be installed up-gradient, approximately within, and down-gradient of the original groundwater plume for implementation of groundwater monitoring to determine compliance with MTCA Method A cleanup levels (Figure 10).

6.0 CONCLUSIONS AND REQUEST FOR PARTIAL SUFFICIENCY OPINION

This Closure Report documents the cleanup action implemented for the Site. The cleanup action was conducted as an independent remedial action under the VCP in accordance with MTCA, the RI/FFS/CAP, and the EMMP. The results from the remedial investigation conducted by Farallon and others were consistent with the confirmed source areas related to releases during former Consolidated Freightways operations on the Property. The laboratory analytical results for confirmational soil samples collected from the final limits of the excavations demonstrate that soil containing COCs at concentrations exceeding MTCA Method A cleanup levels has been excavated and removed from the Site for landfill disposal. Therefore, the cleanup action meets the substantive requirements of MTCA for characterizing and mitigating COCs in soil, resulting in the permanent reduction of COCs in soil to concentrations less than MTCA Method A cleanup levels. No further remedial action is necessary for soil on the Site.

During the cleanup action, approximately 6,480 tons of petroleum-contaminated soil was removed from Excavations 1 through 5 and transported from the Site to the Duwamish Reload Facility and the 3rd and Lander Transfer Station for disposal at the Columbia Ridge Landfill and Roosevelt Regional Landfill, respectively.

Dewatering operations required for completing Excavations 1, 2, and 5 generated approximately 320,000 gallons of groundwater, which was treated and discharged to the local combined sewer system. The dewatering removed groundwater containing the highest COC concentrations from within and proximate to the former primary source areas on the Site. Oxygen release compound applied as a groundwater amendment to the bottoms of Excavations 1 and 2 will promote the biological degradation of residual COCs in groundwater down-gradient of the former primary source areas. Compliance groundwater monitoring implemented following completion of redevelopment is expected to confirm decreases in groundwater COCs until MTCA Method A and B cleanup levels are achieved.

The cleanup action included permanent decommissioning by removal of one 20,000-gallon diesel UST north of the former Shop Building and one 500-gallon heating oil UST proximate to the eastern side of the former Shop Building. The USTs were decommissioned in accordance with Ecology Underground Storage Tank Regulations, as established in WAC 173-360, and the Ecology Guidance for Site Checks and Site Assessments for Underground Storage Tanks. No impacted soil associated with the 20,000-gallon diesel UST was encountered. Impacted soil proximate to the heating oil UST was removed during the Excavation 3 cleanup.

No additional remedial action is necessary for soil on the Site. Groundwater monitoring will be implemented to assess compliance with applicable groundwater cleanup levels on the Site. Based on the results of the cleanup action, Farallon requests that Ecology issue a Partial Sufficiency Opinion for the Site. A request for a No Further Action determination for the Site will be submitted to Ecology following confirmation that groundwater cleanup levels have been attained.

7.0 **BIBLIOGRAPHY**

- Blymyer Engineers, Inc. (Blymyer). 1988a. Memorandum Regarding Summary of Sample Analysis Results, Consolidated Freightways, Seattle, Washington. From Mike Lewis. To Lynn Cashion, Washington State Department of Ecology. April 25.
 - —. 1988b. Phase I Contamination Investigation for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. Prepared for Consolidated Freightways. August 3.
 - ——. 1988c. Letter Regarding Initial Sampling at Consolidated Freightways, 6050 E. Marginal Way South, Seattle, Washington. From Michael Lewis. To Lynn Cashion, Washington State Department of Ecology. October 25.
 - ———. 1989a. Letter Regarding First Quarterly Groundwater Sampling Report for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Michael Lewis. To Lynn Coleman, Washington State Department of Ecology. March 1.
 - ——. 1989b. Letter Regarding Second Quarterly Groundwater Sampling Report for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Michael Lewis. To Lynn Coleman, Washington State Department of Ecology. May 17.
- . 1989c. Letter Regarding Third Quarterly Groundwater Sampling Report for Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. From Michael Lewis. To Lynn Coleman, Washington State Department of Ecology. August 23.
- Farallon Consulting, L.L.C. (Farallon). 2015. Environmental Due Diligence Report, 6050 East Marginal Way South, Seattle, Washington. Prepared for Prologis, Inc. May 29.
 - ——. 2016a. Environmental Media Management Plan, 6050 East Marginal Way South Property, Seattle, Washington. Prepared for Prologis, Inc. February 11.
 - ——. 2016b. Remedial Investigation, Focused Feasibility Study, and Cleanup Action Plan, 6050 East Marginal Way South Property, Seattle, Washington. Prepared for Prologis, Inc. February 11.
- 2016c. Technical Memorandum Regarding Site Assessment for UST Decommissioning, 6050 East Marginal Way South, Seattle, Washington. Prepared for Georgetown Crossroads, LLC. October 20.

- Fluor Daniel GTI, Inc. 1998. Report of Permanent UST Decommissioning and Closure at Consolidated Freightways Facility, 6050 East Marginal Way, Seattle, Washington. Prepared for Blymyer Engineers, Inc. September 22.
- Galster, Richard W. and William T. Laprade. 1991. "Geology of Seattle, Washington, United States of America." *Bulletin of the Association of Engineering Geologists*. 28 (no. 3): 35-302.
- Golder Associates Inc. (Golder). 1998a. Site Investigation/Risk Assessment for the Consolidated Freightways Site, Seattle, WA. Prepared for Blymyer Engineers, Inc. June.
- . 1998b. Letter Regarding Disposal of Petroleum Contaminated Soils and Investigative Derived Waste at the Consolidated Freightways Site, Seattle, Washington. From Gary Zimmerman and Robert Long. To Jeanna Hudson, Consolidated Freightways. December 7.

- ———. 2001. Draft Results of Additional Groundwater and Soil Investigations, Consolidated *Freightways Site*, 6050 East Marginal Way South, Seattle, Washington. Prepared for Blymyer Engineers, Inc. March 8.
- ———. 2004. Report on Phase II Investigation, Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington. Prepared for Consolidated Freightways. January 27.
- Groundwater Technology, Inc. (GTI). 1989a. Letter Regarding Soil Treatment, Consolidated Freightways, Seattle, Washington, 6050 East Marginal Way South, Seattle, Washington. From Mark Winters. To Mike Lewis, Blymyer Engineers, Inc. January 6.
 - . 1989b. Letter Regarding Soil Treatment, Consolidated Freightways, Seattle, Washington, 6050 East Marginal Way South, Seattle, Washington. From Mark Winters. To Mike Lewis, Blymyer Engineers, Inc. March 8.
 - —. 1989c. Letter Regarding Soil Treatment, Consolidated Freightways, Seattle, Washington, 6050 East Marginal Way South, Seattle, Washington. From Mark Winters. To Mike Lewis, Blymyer Engineers, Inc. April 24.

- —. 1989d. Letter Regarding Soil Treatment, Consolidated Freightways, Seattle, Washington, 6050 East Marginal Way South, Seattle, Washington. From Mark Winters and JoAnne Deschenes. To Mike Lewis, Blymyer Engineers, Inc. June 26.
- ———. 1990. Letter Regarding Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington from Mark B. Winters. To Michael S. Lewis of Blymyer Engineers, Inc. February 15.
- Phase One Inc. 2003. *Phase I Environmental Site Assessment for Consolidated Freightways*, 6050 *East Marginal Way South, Seattle, Washington 98108.* Prepared for Consolidated Freightways. January.
- Shannon & Wilson, Inc. 1997. Results of Initial Site Investigation, 6050 East Marginal Way South, Seattle, Washington. Prepared for Consolidated Freightways Corporation. October.
- U.S. Environmental Protection Agency. 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. EPA/540/S-95/504. April.
- U.S. Environmental Protection Agency Region II. 1997. U.S. Environmental Protection Agency, Region II, Groundwater Sampling Procedure Low Stress Purging and Sampling. Draft Final. October 1.
- U.S. Geological Survey. 1983. U.S. Geological Survey Topographic Map, Quadrangle Seattle South, Washington, 7.5-Minute Series.
 - . 2005. The Geologic Map of Seattle—A Progress Report. Open-File Report 2005-1252.
- Washington State Department of Ecology (Ecology). 1991. *Guidance for Site Checks and Site* Assessments for Underground Storage Tanks. Publication No. 90-52. Revised April 2003. February.
- ———. 2000. Letter Regarding Request for Review and Opinion Letter, Consolidated Freightways, 6050 East Marginal Way South, Seattle, Washington 98108. VCP I.D. #NW0410. From Nnamdi Madakor. To Robert Long, Golder Associates Inc. April 3.
- ———. 2009. Draft *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action*. Publication No. 09-09-047. Review Draft Revised February 2016. October.
- ———. 2016a. *Guidance for Remediation of Petroleum Contaminated Sites*. Publication No. 10-09-057. June.
- ———. 2016b. Toxics Cleanup Program Web Reporting Underground Storage Tank Database Search. <<u>https://fortress.wa.gov/ecy/tcpwebreporting/report.aspx</u>>. (August 2016.)

7 - 3

—. 2017. Letter Regarding Opinion on Proposed Remedial Action, Consolidated Freightways Seattle, 6050 East Marginal Way, Seattle, WA 98108. Facility/Site ID No. 54757868. Cleanup Site ID No. 6262. VCP Project No. NW3050. From Grant Yang. To Janet Frentzel, Georgetown Crossroads, LLC. March 10.

8.0 LIMITATIONS

8.1 GENERAL LIMITATIONS

The conclusions contained in this Closure Report are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained in this Closure Report are subject to the following limitations:

• Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this Closure Report from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.

Farallon cannot and does not warrant or guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of this Closure Report.

This Closure Report has been prepared in accordance with the contract for services between Farallon and Prologis, Inc., and currently accepted industry standards. No other warranties, representations, or certifications are made.

8.2 LIMITATION ON RELIANCE BY THIRD PARTIES

Reliance by third parties is prohibited. This Closure Report has been prepared for the exclusive use of Prologis, Inc. in accordance with a contract for services between Farallon and Prologis, Inc., and generally accepted environmental practices for the subject matter at the time this Closure Report was prepared. No party other than Prologis, Inc. and its investors, lenders, successors, and assigns may rely on this Closure Report unless Farallon agrees in advance to such reliance in writing. Any use, interpretation, or reliance upon this Closure Report by anyone other than Prologis, Inc. or the aforementioned parties, is at the sole risk of that party, and Farallon will have no liability for such unauthorized use, interpretation, or reliance.

Do not rely on this Closure Report if:

- It was not prepared for you;
- It was not prepared for your project;
- It was not prepared for your specific site; or
- It was not prepared under an approved scope of work for which you are under contract with Farallon.

8-1

FIGURES

CLEANUP ACTION CLOSURE REPORT 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

PROPERTY BOUNDARY

- FORMER BUILDING FOOTPRINT
- LIMIT OF EXCAVATION TOP OF SLOPE
- FORMER UNDERGROUND STORAGE TANK AREA
- MW-4
 MONITORING WELL (BLYMER ENGINEERS 1988)
- MW-1 🔶 MONITORING WELL (GOLDER ASSOCIATES 1998)
- EX5-B1-A- EXCAVATION SOIL SAMPLE (FARALLON 2017)
 - TP3 **TEST PIT (FARALLON 2017)**
 - F-13 🖲 BORING (FARALLON 2014)
 - SP2 🔶 BORING (SHANNON & WILSON 1997)
 - T-3 TRENCH SAMPLING LOCATION (GOLDER ASSOCIATES 1998)
 - CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH
- SW-3
 DECOMMISSIONING OF THE DIESEL USTs (FLUOR DANIEL GTI 1998)
 - CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH DECOMMISSIONING OF DIESEL, MOTOR OIL, AND
- CF-T-4 DECOMMISSIONING OF DIESEL, MOTOR OIL, AND WASTE OIL USTs (BLYMER ENGINEERS 1988)
- P-3 🕺 BORING (GOLDER ASSOCIATES 2001)
- GP-13
 BORING (GOLDER ASSOCIATES 2003)

— EXCAVATION SIDEWALL SLOPE

>

SOIL SAMPLE LOCATIONS PROXIMATE TO EXCAVATIONS 1 AND 5 FORMER SHOP BUILDING UST AREA 6050 EAST MARGINAL WAY SOUTH SEATTLE, WASHINGTON FARALLON PN: 1071-010

Disk Reference: 1071-010_T03H

Drawn By: JJ Checked By: DML/DEW Date: 8/30/17

Washington

Oregon

California

Issaquah | Bellingham | Seattle

FARALLON

Quality Service for Environm

CONSULTING

Portland | Bend | Baker City

Oakland | Sacramento | Irvine

ental Solutions | farallonconsulting.com

LEGEND

_ _

- PROPERTY BOUNDARY
- ----- FORMER BUILDING FOOTPRINT
- ____ LIMIT OF EXCAVATION TOP OF SLOPE
- EX5-B1- EXCAVATION SOIL SAMPLE (FARALLON 2017)
 - TP3 TEST PIT (FARALLON 2017)
 - F-13 💿 BORING (FARALLON 2014)
 - GP-2 X BORING (GOLDER ASSOCIATES 2004)
 - T-8 CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH DECOMMISSIONING OF DIESEL, MOTOR OIL, AND WASTE OIL USTs (BLYMER ENGINEERS 1988)
 - UST = UNDERGROUND STORAGE TANK

		Washington Issaquah Bellingham Seattle	FIGURE 3C				
н	FARALLON CONSULTING Quality Service for Environment	Oregon Portland Bend Baker City California	SOIL SAMPLE LOCATIONS PROXIMATE TO FORMER NORTHWEST UST AREA AND EXCAVATION FORMER NORTHWEST UST AND HEATING OIL UST ARE				
		tal Solutions farallonconsulting.com	6050 EA SE FARA	ATTLE, WASHINGTON ALLON PN: 1071-010			
	Drawn Bv: JJ	Checked By: DML/DEV	V Date: 8/30/17	Disk Reference: 1071-010 T03H			

T-3 🔶 TRENCH SAMPLING LOCATION (GOLDER ASSOCIATES 1998) CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH SW-3

 DECOMMISSIONING OF THE DIESEL USTs (FLUOR DANIEL GTI 1998) CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH CF-T-4 DECOMMISSIONING OF DIESEL, MOTOR OIL, AND WASTE OIL USTs (BLYMER ENGINEERS 1988) BORING (GOLDER ASSOCIATES 2001) P-3 🕅 BORING (GOLDER ASSOCIATES 2004) GP-6 🔺 EXCAVATION SIDEWALL SLOPE >RI = REMEDIAL INVESTIGATION [7'/<38/<76/<9.8/<0.020] = DEPTH / DRO / ORO / GRO / BENZENE SOIL SAMPLE ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM SAMPLE DEPTH IN FEET BELOW GROUND SURFACE DRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL RANGE ORGANICS ORO = TPH AS OIL-RANGE ORGANICS GRO = TPH AS GASOLINE RANGE ORGANICS **BOLD = INDICATES CONCENTRATIONS EXCEEDING** WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION METHOD A CLEANUP LEVELS ANALYTE NOT DETECTED AT OR FARALLON < EXCEEDING LABORATORY REPORTING LIMIT Quality Service for Environ -- = SAMPLE NOT ANALYZED * = SAMPLE DEPTH UNKNOWN

- TP3 E TEST PIT (FARALLON 2017)
- F-13 BORING (FARALLON 2014)
- P-3 X BORING (GOLDER ASSOCIATES 2001)

CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH DECOMMISSIONING OF DIESEL, MOTOR OIL, AND

- WASTE OIL USTs (BLYMER ENGINEERS 1988)
- [7'/<38/<76/<9.8/<0.020] = DEPTH / DRO / ORO / GRO / BENZENE

SOIL SAMPLE ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM

SAMPLE DEPTH IN FEET BELOW GROUND SURFACE

- DRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL RANGE ORGANICS
- ORO = TPH AS OIL-RANGE ORGANICS
- GRO = TPH AS GASOLINE RANGE ORGANICS
- BOLD = INDICATES CONCENTRATIONS EXCEEDING WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION METHOD A CLEANUP LEVELS
 - < = ANALYTE NOT DETECTED AT OR EXCEEDING LABORATORY REPORTING LIMIT
 - -- = SAMPLE NOT ANALYZED
 - ND = ANALYTE NOT DETECTED AT OR EXCEEDING LABORATORY REPORTING LIMIT
 - * = SAMPLE DEPTH UNKNOWN
 - RI = REMEDIAL INVESTIGATION
- UST = UNDERGROUND STORAGE TANK

30 SCALE IN FEET

Washington FIGURE 4C Issaquah | Bellingham | Seattle RI AND TEST PIT SOIL ANALYTICAL RESULTS FOR PETROLEUM HYDROCARBONS PROXIMATE TO Oregon Portland | Bend | Baker Čity California FORMER NORTHWEST UST AREA AND EXCAVATION 4 FARALLON Oakland | Sacramento | Irvine 6050 EAST MARGINAL WAY SOUTH CONSULTING SEATTLE, WASHINGTON Quality Service for Environmental Solutions | farallonconsulting.com FARALLON PN: 1071-010 Drawn By: JJ Checked By: DML/DEW Date: 08/30/17 Disk Reference: 1071-010_T03H

LEGEND

[7'/<38/<76/<9.8/<0.020] = DEPTH / DRO / ORO / GRO / BENZENE SOIL SAMPLE ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM SAMPLE DEPTH IN FEET BELOW GROUND SURFACE DRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE ORGANICS ORO = TPH AS OIL-RANGE ORGANICS GRO = TPH AS GASOLINE-RANGE ORGANICS < = ANALYTE NOT DETECTED AT OR EXCEEDING LABORATORY REPORTING LIMIT UST = UNDERGROUND STORAGE TANK

FIGURE 5A Washingtor Issaquah | Bellingham | Seattle **EXCAVATIONS 1 AND 5** FINAL LIMITS OF EXCAVATION AND CONFIRMATIONAL SOIL Oregon Portland | Bend | Baker City ANALYTICAL RESULTS FOR PETROLEUM HYDROCARBONS FORMER SHOP BUILDING UST AREA California FARALLON Oakland | Sacramento | Irvine 6050 EAST MARGINAL WAY SOUTH CONSULTING SEATTLE, WASHINGTON Quality Service for Environmental Solutions | farallonconsulting.com FARALLON PN: 1071-010 Drawn By: JJ Checked By: DML/DEW Date: 08/30/17 Disk Reference: 1071-010_T03H

FORMER SHOP BUILDING

20

SCALE IN FEET

LEGEND

---- FORMER BUILDING FOOTPRINT

____ LIMIT OF EXCAVATION - TOP OF SLOPE

EX5-B1-EXCAVATION CONFIRMATIONAL SOIL SAMPLE

[7'/<38/<76/<9.8/<0.020] = DEPTH / DRO / ORO / GRO / BENZENE

SOIL SAMPLE ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM SAMPLE DEPTH IN FEET BELOW GROUND SURFACE DRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL RANGE ORGANICS ORO = TPH AS OIL-RANGE ORGANICS

GRO = TPH AS GASOLINE-RANGE ORGANICS

< = ANALYTE NOT DETECTED AT OR EXCEEDING LABORATORY REPORTING LIMIT

UST = UNDERGROUND STORAGE TANK

	Washington Issaquah Bellingham Seattle		FIGURE 5C
	Oregon Portland Bend Baker City	FINAL LIMITS OF EXC ANALYTICAL RESULT	AVATION AND CONFIRMATIONAL SOIL S FOR PETROLEUM HYDROCARBONS
FARALLON	California Oakland Sacramento Irvine	FORMER 6050 EAS	R HEATING OIL UST AREA
Quality Service for Environment	ntal Solutions farallonconsulting.com	SEA	
		FARA	LLON PN. 1071-010
Drawn By: JJ	Checked By: DML/DEV	V Date: 08/30/17	Disk Reference: 1071-010_T03H

LEG	END
	PROPERTY BOUNDARY
	FORMER BUILDING FOOTPRINT
	PUBLIC ROAD RIGHT-OF-WAY
r	ESTIMATED EXTENT OF TOTAL PETROLEUM HYDROCARBONS (TPH) IN SOIL EXCEEDING THE MTCA METHOD A CLEANUP LEVELS, DASHED WHERE INFERRED
MW-1 🔶	MONITORING WELL (GOLDER ASSOCIATES 1998 AND 2001)
GP-1 🌘	RECONNAISSANCE GROUNDWATER SAMPLE (GOLDER ASSOCIATES 2000)
	CONCRETE SURFACES
*****	FORMER FUEL LINE LEAK AREA
/300//	GROUNDWATER SAMPLE ANALYTICAL RESULTS IN MICROGRAMS PER LITER FOR [DRO/ORO/GRO/BENZENE]
GRO = ORO =	TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS TPH AS OIL-RANGE ORGANICS
DRO =	TPH AS DIESEL-RANGE ORGANICS
BOLD =	INDICATES CONCENTRATIONS EXCEEDING WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION METHOD A CLEANUP LEVELS
< =	INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE STATED LABORATORY PRACTICAL QUANTITATION LIMIT
=	NOT ANALYZED ALL LOCATIONS ARE APPROXIMATE
	0 50
Washii Bellingham S	FIGURE 6
OI d Bend Baka	GROUNDWATER ANALYTICAL RESULTS FOR
Calif	formia AUGUST 17 AND 18, 1999 6050 EAST MARGINAL WAY SOUTH
Sacramento	Irvine SEATTLE, WASHINGTON
farallonconsulting.co	FARALLON PN: 1071-010
ed By: DM	L/DEW Date: 8/30/2017 Disk Reference: 1071-010 T03G 6-9.DWG

LEG	SEND
	PROPERTY BOUNDARY
	FORMER BUILDING FOOTPRINT
	PUBLIC ROAD RIGHT-OF-WAY
	APPROXIMATE DIRECTION OF GROUNDWATER FLOW
MW-1 🔶	MONITORING WELL (GOLDER ASSOCIATES 1998 AND 2001)
(3.07)	GROUNDWATER LEVEL ELEVATION
	GROUNDWATER SURFACE ELEVATION CONTOUR (DASHED WHERE INFERRED)
	CONCRETE SURFACES
*****	FORMER FUEL LINE LEAK AREA
300//0.3	GROUNDWATER SAMPLE ANALYTICAL RESULTS IN MICROGRAMS PER LITER FOR [DRO/ORO/GRO/BENZENE]
GRO =	TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS
ORO =	TPH AS OIL-RANGE ORGANICS
DRO =	TPH AS DIESEL-RANGE ORGANICS
BOLD =	INDICATES CONCENTRATIONS EXCEEDING
	CONTROL ACT CLEANUP REGULATION
	METHOD A CLEANUP LEVELS
< =	INDICATES CONCENTRATIONS NOT
	LABORATORY PRACTICAL QUANTITATION LIMIT
=	NOT ANALYZED
	ALL LOCATIONS ARE APPROXIMATE
	-

FIGURE 7 GROUNDWATER ELEVATION CONTOUR MAP AND GROUNDWATER ANALYTICAL RESULTS FOR

JANUARY 17, 2001

6050 EAST MARGINAL WAY SOUTH

SEATTLE, WASHINGTON

Oregon Portland | Bend | Baker City

FARALLON PN: 1071-010 DML/DEW Date: 8/30/2017 Disk Reference: 1071-010 T03G 6-9.DWG

LEG	<u>SEND</u>
	PROPERTY BOUNDARY
	FORMER BUILDING FOOTPRINT
	PUBLIC ROAD RIGHT-OF-WAY
	APPROXIMATE DIRECTION OF GROUNDWATER FLOW
MW-1 🔶	MONITORING WELL (GOLDER ASSOCIATES 1998 AND 2001)
(3.51)	GROUNDWATER LEVEL ELEVATION
	GROUNDWATER SURFACE ELEVATION CONTOUR (DASHED WHERE INFERRED)
\sim	CONCRETE SURFACES
*****	FORMER FUEL LINE LEAK AREA
/<100/<1.0	GROUNDWATER SAMPLE ANALYTICAL RESULTS IN MICROGRAMS PER LITER FOR [DRO/ORO/GRO/BENZENE]
GRO =	TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS
ORO =	TPH AS OIL-RANGE ORGANICS
DRO =	TPH AS DIESEL-RANGE ORGANICS
BOLD =	INDICATES CONCENTRATIONS EXCEEDING
	CONTROL ACT CLEANUP REGULATION
	METHOD A CLEANUP LEVELS
< =	INDICATES CONCENTRATIONS NOT
	LABORATORY PRACTICAL QUANTITATION LIMIT
	ALL LOCATIONS ARE APPROXIMATE
	_

	0 50 Scale in feet					
Washington Bellingham Seattle	FIGURE 8					
Oregon d Bend Baker City	GROUNDWATER ELEVATION CONTOUR MAP AND GROUNDWATER ANALYTICAL RESULTS FOR DECEMBER 2, 2003 6050 EAST MARGINAL WAY SOUTH SEATTLE WASHINGTON					
California Sacramento Irvine						
farallonconsulting.com	FARALLON PN: 1071-010					
ed By: DML/DEW	V Date: 8/30/2017 Disk Reference: 1071-010 T03G 6-9.DWG					

LEG	END
	PROPERTY BOUNDARY
	FORMER BUILDING FOOTPRINT
	PUBLIC ROAD RIGHT-OF-WAY
/W-1 🔶	MONITORING WELL (GOLDER ASSOCIATES 1998 AND 2001)
\sim	CONCRETE SURFACES
*****	FORMER FUEL LINE LEAK AREA
/<100/<2.0	GROUNDWATER SAMPLE ANALYTICAL RESULTS IN MICROGRAMS PER LITER FOR [DRO/ORO/GRO/BENZENE]
GRO =	TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS
ORO =	TPH AS OIL-RANGE ORGANICS
DRO =	TPH AS DIESEL-RANGE ORGANICS
BOLD =	INDICATES CONCENTRATIONS EXCEEDING
	CONTROL ACT CLEANUP REGULATION
	METHOD A CLEANUP LEVELS
< =	INDICATES CONCENTRATIONS NOT
	LABORATORY PRACTICAL QUANTITATION LIMIT
=	NOT ANALYZED
	ALL LOCATIONS ARE APPROXIMATE
	7

	0 50 Scale in feet					
Washington Issaquah Bellingham Seattle	FIGURE 9					
Oregon Portland Bend Baker City	GROUNDWATER ANALYTICAL RESULTS FOR AUGUST 12 AND SEPTEMBER 23, 2014					
California Oakland Sacramento Irvine	6050 EAST MARGINAL WAY SOUTH SEATTLE, WASHINGTON					
al Solutions farallonconsulting.com	FARALLON PN: 1071-010					
Checked By: DML/DEV	N Date: 8/30/2017 Disk Reference: 1071-010_T03G_6-9.DWG					

TABLES

CLEANUP ACTION CLOSURE REPORT 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

Table 1Summary of Groundwater Elevation Data6050 East Marginal Way SouthSeattle, WashingtonFarallon PN: 1071-010

		Top of Casing		Groundwater		
Monitoring Well		Elevation	Depth to Water	Elevation		
Location	Date Measured	(feet) ^{1,2}	(feet) ³	(feet) ⁴		
	7/7/1988		7.78	91.45		
	7/12/1988		8.02	91.21		
	7/13/1988		7.79	91.44		
MW-1 88	7/14/1988		8.39	90.84		
(Decommissioned	10/6/1988	99.23	8.41	90.82		
1/10/1990)	2/8/1989		7.58	91.65		
,	5/3/1989		7.23	92.00		
	8/3/1989		7.51	91.72		
	11/1/1989		7.54	91.69		
	7/7/1988		7.64	91.32		
	7/12/1988		7.92	91.04		
	7/13/1988		7.62	91.34		
MW-2A 88	7/14/1988		8.32	90.64		
(Decommissioned	10/6/1988	98.96	8.31	90.65		
1/10/1990)	2/8/1989		7.44	91.52		
,	5/3/1989		7.12	91.84		
	8/3/1989		7.36	91.60		
	11/1/1989		7.35	91.61		
	7/7/1988		6.98	91.44		
	7/12/1988		7.32	91.10		
	7/13/1988		6.95	91.47		
MW-3 88	7/14/1988		7.65	90.77		
(Decommissioned	10/6/1988	98.42	7.64	90.78		
1/10/1990)	2/8/1989		6.79	91.63		
,	5/3/1989		6.52	91.90		
	8/3/1989		6.75	91.67		
	11/1/1989		6.73	91.69		
	7/7/1988		6.93	91.38		
	7/12/1988		7.28	91.03		
	7/13/1988		2 (feet) ³ (fee 3.02 7.78 91. 8.02 91. 7.79 91. 8.39 90. 8.41 90. 7.58 91. 7.58 91. 7.51 91. 7.52 92. 7.51 91. 7.64 91. 7.62 91. 7.62 91. 7.36 91. 7.36 91. 7.36 91. 7.35 91. 7.35 91. 7.35 91. 7.65 90. 7.64 90. 6.75 91. 6.75 91. 6.62 91. 6.73 91. 6.73 91. 6.73 91. 6.73 91. 6.73 91. 6.73 91. 6.68 91. 7.64 <td>89.64</td>	89.64		
MW-4_88	7/14/1988		7.64	90.67		
(Decommissioned	10/6/1988	98.31	7.63	90.68		
1/10/1990)	2/8/1989		6.90	91.41		
,	5/3/1989		6.40	91.91		
	8/3/1989		6.71	91.60		
	11/1/1989		6.68	91.63		
	7/7/1988		7.31	91.42		
	7/12/1988		7.66	91.07		
	7/13/1988		7.25	91.48		
MW-5_88	7/14/1988		8.01	90.72		
(Decommissioned	10/6/1988	98.73	7.98	90.75		
1/10/1990)	2/8/1989		7.14	91.59		
	5/3/1989		6.82	91.91		
	8/3/1989		7.10	91.63		
	11/1/1989		7.08	91.65		

Table 1Summary of Groundwater Elevation Data6050 East Marginal Way SouthSeattle, WashingtonFarallon PN: 1071-010

		Top of Casing		Groundwater
Monitoring Well		Elevation	Depth to Water	Elevation
Location	Date Measured	(feet) ^{1,2}	(feet) ³	(feet) ⁴
MW_1	8/17/1999		6.63	3.13
(Decommissioned	1/17/2001	0.76	6.69	3.07
	6/7/2001	5.70	6.39	3.37
9/0/2010)	12/3/2003		6.25	3.51
	8/17/1999		7.46	2.82
MW-2	1/17/2001		7.34	2.94
(Decommissioned	6/7/2001	10.28	7.01	3.27
9/6/2016)	12/3/2003		7.05	3.23
	8/12/2014		6.58	3.7
	8/17/1999		7.60	2.76
MW-3	1/17/2001		7.46	2.90
(Decommissioned	6/7/2001	10.36	7.18	3.18
9/6/2016)	12/3/2003		7.25	3.11
	8/12/2014		6.65	3.71
MW A	1/17/2001		8.29	2.68
(Decommissioned	6/7/2001	10.07	7.84	3.13
	12/3/2003	10.97	7.93	3.04
9/0/2010)	8/12/2014		7.39	3.58
MW 5	1/17/2001		9.44	2.68
(Decommissioned	6/7/2001	12.12	9.02	3.10
	12/3/2003	12.12	9.15	2.97
9/0/2010)	9/23/2014		8.65	3.47
MW-6	1/17/2001		8.99	2.69
(Decommissioned	6/7/2001	11.69	8.62	3.06
	12/3/2003	11.00	8.80	2.88
9/0/2010)	9/23/2014		8.17	3.51
	8/17/1999		8.11	3.05
RW-2	1/17/2001		8.09	3.07
(Decommissioned	6/7/2001	11.16	7.85	3.31
9/6/2016)	12/3/2003	1	7.75	3.41
	8/12/2014		7.49	3.67

NOTES:

* Reported measurement appears to be inaccurate.

¹Elevation relative to an elevation datum of 100.00 feet for MW-1_88, MW-2A_88, MW-3_88, MW-4_88, and MW-5_88.

²Elevations based on National Geodetic Vertical Datum of 1929 for MW-1 through MW-6 and RW-2.

³In feet below top of well casing.

⁴Groundwater elevation = top of casing elevation - depth to water.

	Sample							Analytical Ro	esults (milligram	s per kilogram)			
Location	Identification	Sample Depth (feet) ¹	Sample Date	Sampled By	DRO ³	ORO ³	GRO ²	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴	m,p-Xylene	o-Xylene
					RI Investigatio	o n					-		
T-1	T-1	Soil Pile Composite	04/25/1988	Blymyer	41,294 ^a								
T-2	T-2	Diesel Tank Excavation	04/25/1988	Blymyer	438 ^a								
T-3	T-3	Diesel Tank Excavation	04/25/1988	Blymyer	43,602 ^a								
T-4	T-4	Diesel Tank Excavation	04/25/1988	Blymyer	27,812 ^a								
T-5	T-5	Diesel Tank Excavation	04/25/1988	Blymyer	238 ª								
T-6	T-6	Soil Pile Composite	04/25/1988	Blymyer			80 ª	N/D ^b	0.42 ^b	0.07 ^b	0.5 ^b	0.5 ^b	N/D ^b
T-7	T-7	Soil Pile Composite	04/25/1988	Blymyer			731 ^a	N/D ^b	0.64 ^b	1.8 ^b	12.72 ^b	8.67 ^b	4.05 ^b
T-8	T-8	Gas Tank Excavation	04/25/1988	Blymyer			50 ª	N/D ^b	0.18 ^b	N/D ^b	N/D ^b	N/D ^b	N/D ^b
T-9	T-9	Gas Tank Excavation	04/25/1988	Blymyer			319 ^a	N/D ^b	0.08 ^b	0.09 ^b	1.02 ^b	0.5 ^b	0.52 ^b
T-10	T-10	Diesel Tank Excavation	04/25/1988	Blymyer	4,446 ^a	2,045 °							
T-11	T-11	Diesel Tank Excavation	04/25/1988	Blymyer	12,643 ^a	11,970 °							
S-1V	S-1V	Waste Oil Tank Excavation	06/29/1988	Blymyer	3,389 ^a	4,274 °							
S-1F	S-1F	Waste Oil Tank Excavation	06/29/1988	Blymyer	2,939 ^a	3,383 °							
S-2F	S-2F	Waste Oil Tank Excavation	06/29/1988	Blymyer	3,187 ^a	4,072 °							
S-2V	S-2V	Waste Oil Tank Excavation	06/29/1988	Blymyer	98 ^a	193 °							
	MW-1A	4 - 4.5	06/27/1988	Blymyer	12 ^a								
MW-1_88	MW-1B	9 - 9.5	06/27/1988	Blymyer	<10 ^a								
	MW-1C	14 - 14.5	06/27/1988	Blymyer	11 ^a								
	MW-2A	4 - 4.5	06/27/1988	Blymyer	13 ^a								
MW-2A_88	MW-2B	9 - 9.5	06/27/1988	Blymyer	<10 ^a								
	MW-2C	13.5 - 14	06/27/1988	Blymyer	<10 ^a								
	MW-3A	4 - 4.5	06/27/1988	Blymyer	<10 ^a								
MW-3_88	MW-3B	9 - 9.5	06/27/1988	Blymyer	160 ^a								
	MW-3C	14 - 14.5	06/27/1988	Blymyer	<10 ^a								
	MW-4A	5	06/28/1988	Blymyer	<10 ^a								
MW-4_88	MW-4B	10	06/28/1988	Blymyer	<10 ^a								
	MW-4C	15	06/28/1988	Blymyer	102 ^a								
	MW-5A	5	06/28/1988	Blymyer	4,797 ^a								
MW-5_88	MW-5B	10	06/28/1988	Blymyer	15 ^a								
	MW-5C	15	06/28/1988	Blymyer	<10 ^a								
Soil Treatment Mound	MW-1122-A	Soil Pile	11/22/1988	GTI	500 ^a		170 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW-1122-B	Soil Pile	11/22/1988	GTI	350 ^a		88 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW-1122-C	Soil Pile	11/22/1988	GTI	150 ^a		46 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW-1122-D	Soil Pile	11/22/1988	GTI	120 ^a		78 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW-1122-E	Soil Pile	11/22/1988	GTI	<10 ª		11 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW-1122-F	Soil Pile	11/22/1988	GTI	82 ^a		58 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW23A	Soil Pile	2/3/1989	GTI	170 ^a		52 ^a	<0.025 ^b	<1.0 ^b	<1.0 ^b	<1.0 ^b		
Soil Treatment Mound	MW23B	Soil Pile	2/3/1989	GTI	260 ^a		78 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW23C	Soil Pile	2/3/1989	GTI	79 ^a		18 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW23D	Soil Pile	2/3/1989	GTI	<10 ^a		18 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW23E	Soil Pile	2/3/1989	GTI	120 ^a		110 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW23F	Soil Pile	2/3/1989	GTI	330 ^a		41 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
			MTCA Method A	A Cleanup Levels ⁵	2,000	2,000	30/100 ⁶	0.03	7	6	9	NE	NE

	Sample					Analytical Results (milligrams per kilogram)							
Location	Identification	Sample Depth (feet) ¹	Sample Date	Sampled By	DRO ³	ORO ³	GRO ²	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴	m,p-Xylene	o-Xylene
Soil Treatment Mound	MW-36A	Soil Pile	3/6/1989	GTI	320 ^a		<1 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW-36B	Soil Pile	3/6/1989	GTI	280 ^a		<1 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW-36C	Soil Pile	3/6/1989	GTI	430 ^a		<1 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW-36D	Soil Pile	3/6/1989	GTI	210 ^a		<1 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW-36E	Soil Pile	3/6/1989	GTI	190 ^a		<1 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	MW-36F	Soil Pile	3/6/1989	GTI	150 ^a		<1 ^a	<0.025 ^b	<0.5 ^b	<0.5 ^b	<0.5 ^b		
Soil Treatment Mound	DH52A	Soil Pile	5/2/1989	GTI	170 ^a								
Soil Treatment Mound	DH52C	Soil Pile	5/2/1989	GTI	630 ^a								
Soil Treatment Mound	DH52E	Soil Pile	5/2/1989	GTI	100 ^a								
Soil Treatment Mound	JD681/JD2	"Clean" Soil Pile Composite	6/8/1989	GTI	21 ^a								
Soil Treatment Mound	JD683/JD4	"Clean" Soil Pile Composite	6/8/1989	GTI	520 ^a								
Soil Treatment Mound	JD685/JD6	"Clean" Soil Pile Composite	6/8/1989	GTI	<10 ^a								
D 1	1764-P1-S-4	6 - 7	8/8/1997	S&W	<20 ^d								
P-1	1764-P1-S-7	7 - 10	8/8/1997	S&W	<20 ^d								
p 2	1764-P2-S-2	3.5 - 5	8/8/1997	S&W	<20 ^d								
Г-2	1764-P2-S-5	5 - 8	8/8/1997	S&W	19,000 ^d								
D 2	1764-P3-S-2	3.5 - 5	8/8/1997	S&W	<20 ^d								
P-3	1764-P3-S-5	5 - 8	8/8/1997	S&W	<20 ^d								
D 4	1764-P4-S-2	3.5 - 5	8/8/1997	S&W	<20 ^d								
1-4	1764-P4-S-5	5 - 8	8/8/1997	S&W	3,500 ^d								
P-5	1764-P5-S-6	6 - 7.5	8/8/1997	S&W	<20 ^d								
	1764-P5-S-7.5	7.5 - 9	8/8/1997	S&W	180 ^d								
P-6	1764-P6-S-6	6 - 7.5	8/8/1997	S&W	96 ^d								
1-0	1764-P6-S-7.5	7.5 - 9	8/8/1997	S&W	<20 ^d								
P. 7	1764-P7-S-6	6 - 7.5	8/8/1997	S&W	<20 ^d								
1-/	1764-P7-S-7.5	7.5 - 9	8/8/1997	S&W	90 ^d								
P. 8	1764-P8-S-6	6 - 7.5	8/8/1997	S&W	<20 ^d								
1-0	1764-P8-S-7.5	7.5 - 9	8/8/1997	S&W	<20 ^d								
P. 0	1764-P9-S-5	5 - 6.5	8/8/1997	S&W	<20 ^d								
1-9	1764-P9-S-6.5	6.5 - 8	8/8/1997	S&W	<20 ^d								
P.10	1764-P10-S-6	6 - 7.5	8/8/1997	S&W	<10 ^d								
1-10	1764-P10-S-7.5	7.5 - 9	8/8/1997	S&W	<10 ^d								
Product PipingTrench	CF-T1	2.2 - 2.7	4/7/1998	Golder				<0.43 ^b	<0.43 ^b	<0.43 ^b	<1.29 ^b	<0.86 ^b	<0.43 ^b
Product PipingTrench	CF-T2	2.2 - 2.7	4/7/1998	Golder	<13 ^d	<26 ^d							
Product PipingTrench	CF-T3	2.0 - 2.5	4/7/1998	Golder	20 ^d	53 ^d							
MW 1	MW1-5.5	5.5 - 7.0	4/7/1998	Golder	<18 ^d	<35 ^d							
101 00 - 1	MW1-7.0	7.0 - 8.5	4/7/1998	Golder	<17 ^d	<35 ^d							
MW-2	MW2-2.0	1.5 - 2.0	4/7/1998	Golder				<0.48 ^b	<0.48 ^b	<0.48 ^b	<1.43 ^b	<0.95 ^b	<0.48 ^b
1 v1 vv - 2	MW2-5.5	5.5 - 7.0	4/7/1998	Golder	18 ^d	<34 ^d							
MW-3	MW3-5.0	5 - 6.5	4/7/1998	Golder	<17 ^d	32 ^d							
141 W - 5	MW3-6.5	6.5 - 8.0	4/7/1998	Golder	<19 ^d	48 ^d							
	MTCA Method A	A Cleanup Levels ⁵	2,000	2,000	30/100 ⁶	0.03	7	6	9	NE	NE		

	Sample				Analytical Results (milligrams per kilogram)										
Location	Identification	Sample Depth (feet) ¹	Sample Date	Sampled By	DRO ³	ORO ³	GRO ²	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴	m,p-Xylene	o-Xylene		
	RW1-7.0	7.0 - 8.5	4/7/1998	Golder	13,000 ^d	520 ^d		<0.54 ^b	<0.54 ^b	<0.54 ^b	<1.64 ^b	<1.1 ^b	<0.54 ^b		
RW-1	RW1-7.0D	7.0 - 8.5	4/7/1998	Golder	8,800 ^d	<400 ^d									
	RW1-13	13 - 14.5	4/7/1998	Golder	18 ^d	<31 ^d									
DW 2	RW2-4.0	4.0 - 5.5	4/8/1998	Golder	12,000 ^d	<530 ^d		<0.4 ^b	4.4 ^b	7.4 ^b	48 ^b	30 ^b	18 ^b		
Rw-2	RW2-7.0	7.0 - 8.5	4/8/1998	Golder				<0.53 ^b	<0.53 ^b	4.4 ^b	55 ^b	29 ^b	26 ^b		
Diesel Tank Excavation North Sidewall	SW-1	8 - 10	7/27/1998	Fluor Daniel	28,700 ^d										
Diesel Tank Excavation South Sidewall	SW-2	8 - 10	7/27/1998	Fluor Daniel	<10 ^d										
Diesel Tank Excavation East Sidewall	SW-3	8 - 10	7/27/1998	Fluor Daniel	<10 ^d										
Diesel Tank Excavation West Sidewall	SW-4	8 - 10	7/27/1998	Fluor Daniel	2,700 ^d										
Diesel Tank Excavation Base - NE Corner	TPB-1	13	7/27/1998	Fluor Daniel	72.1 ^d										
Diesel Tank Excavation Base - SE Corner	TPB-3	13	7/27/1998	Fluor Daniel	<10 ^d										
East End of Product Lines	PL-1	3	7/29/1998	Fluor Daniel	20.5 ^d										
Center of Product Lines	PL-2	3	7/29/1998	Fluor Daniel	4,780 ^d										
West End of Product Lines	PL-3	3	7/29/1998	Fluor Daniel	<10 ^d										
SD 1	SP1-(5-8')	5 - 8	1/11/2001	Golder	2,300	350									
51-1	SP1-(8-11')	8-11	1/11/2001	Golder	2,700	82		< 0.023	0.094	0.22	0.82	0.39	0.43		
SP-2	SP2-(5-8')	5-8	1/11/2001	Golder	45	45									
SP-3	SP3-(5-8')	5 - 8	1/11/2001	Golder	1,800	190									
SP-4	SP4-(5-8')	5 - 8	1/11/2001	Golder	<35	<70									
SP-5	SP5-(5-8')	5 - 8	1/11/2001	Golder	7,300	500		< 0.019	0.25	2.9	6.1	3.8	2.3		
	SP5-(8-11')	8 - 11	1/11/2001	Golder	1,000	240									
SP-6	SP6-(5-8')	5 - 8	1/11/2001	Golder	1,500	85		< 0.027	0.09	0.76	1.98	1.1	0.88		
SP-7	SP7-(8-11')	8 - 11	1/11/2001	Golder	820	220									
CD 9	SP8-(5-8')	5 - 8	1/11/2001	Golder	23,000	460		0.16	1.5	18	43	24	19		
51-0	SP8-(8-11')	8 - 11	1/11/2001	Golder	5,300	160									
SD 0	SP9-(5-8')	5 - 8	1/11/2001	Golder	8,200	210		0.073	0.44	5.8	9.7	8.1	1.6		
31-9	SP9-(8-11')	8 - 11	1/11/2001	Golder	1,600	49									
SP-10	SP10-(5-8')	5 - 8	1/11/2001	Golder	19	120									
SP-11	SP11-(5-8')	5 - 8	1/11/2001	Golder	1,100	66		< 0.025	< 0.05	< 0.05	0.28	0.17	0.11		
SP-12	SP12-(10-12')	10-12	1/11/2001	Golder	560	45									
SP-13	SP13-(5-8')	5 - 8	1/11/2001	Golder	<33	<65									
GR 1	GP-1 (6-8')	6 - 8	12/2/2003	Golder	<36	<71	<7.1	< 0.0014	0.0020	< 0.0014	< 0.0043	< 0.0029	< 0.0014		
GP-1	GP-1 (10-12')	10 - 12	12/2/2003	Golder	<34	<68	<6.8	< 0.0014	< 0.0014	< 0.0014	< 0.0041	< 0.0027	< 0.0014		
CP 2	GP-2 (6-8')	6 - 8	12/2/2003	Golder	<28	<57	<5.7	< 0.0011	< 0.0011	< 0.0011	< 0.0034	< 0.0023	< 0.0011		
GP-2	GP-2 (10-12')	10 - 12	12/2/2003	Golder	<35	<70	<7.0	< 0.0014	< 0.0014	< 0.0014	< 0.0042	< 0.0028	< 0.0014		
CP 2	GP-3 (6-8')	6 - 8	12/2/2003	Golder	<26	<53	<5.3	< 0.0011	< 0.0011	< 0.0011	< 0.0032	< 0.0021	< 0.0011		
ur-s	GP-3 (10-12')	10 - 12	12/2/2003	Golder	<35	<70	<7.0	< 0.0014	< 0.0014	< 0.0014	< 0.0042	< 0.0028	< 0.0014		
	GP-4 (2-4')	2 - 4	12/2/2003	Golder	<130	1,300	<5.4	< 0.0011	< 0.0011	< 0.0011	< 0.0033	< 0.0022	< 0.0011		
GP 4	GP-44 (2-4')	2 - 4 (duplicate)	12/2/2003	Golder	<130	800	<5.4	< 0.0011	0.0011	< 0.0011	< 0.0033	< 0.0022	< 0.0011		
Ur-4	GP-4 (6-8')	6 - 8	12/2/2003	Golder	<28	<55	<5.5	< 0.0011	< 0.0011	< 0.0011	< 0.0033	< 0.0022	< 0.0011		
	GP-4 (10-12')	10 - 12	12/2/2003	Golder	<35	<70	<7.0	< 0.0014	< 0.0014	< 0.0014	< 0.0042	< 0.0028	< 0.0014		
			MTCA Method	A Cleanup Levels ⁵	2,000	2,000	30/100⁶	0.03	7	6	9	NE	NE		

	Sample Analytical Results (milligrams per kilogram)												
Location	Identification	Sample Depth (feet) ¹	Sample Date	Sampled By	DRO ³	ORO ³	GRO ²	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴	m,p-Xylene	o-Xylene
CD 5	GP-5 (6-8')	6 - 8	12/2/2003	Golder	<28	<55	<5.5	< 0.0011	< 0.0011	< 0.0011	< 0.0033	< 0.0022	< 0.0011
GP-3	GP-5 (10-12')	10 - 12	12/2/2003	Golder	<36	<71	<7.1	< 0.0014	< 0.0014	< 0.0014	< 0.0042	< 0.0028	< 0.0014
GP-6	GP-6 (0-2.5')	0 - 2.5	12/2/2003	Golder	<270	4,000	<5.3	< 0.0011	< 0.0011	< 0.0011	< 0.0032	< 0.0021	< 0.0011
CD 7	GP-7 (6-8')	6 - 8	12/2/2003	Golder	<33	<67	<6.7	< 0.0013	< 0.0013	< 0.0013	< 0.0040	< 0.0027	< 0.0013
GP-/	GP-7 (10-12')	10 - 12	12/2/2003	Golder	<35	<70	<7.0	< 0.0014	< 0.0014	< 0.0014	< 0.0043	< 0.0029	< 0.0014
	GP-8 (6-8')	6 - 8	12/2/2003	Golder	<36	<72	<7.2	< 0.0014	0.0016	< 0.0014	< 0.0043	< 0.0029	< 0.0014
GF-8	GP-8 (10-12')	10 - 12	12/2/2003	Golder	<33	<66	<6.6	< 0.0013	< 0.0013	< 0.0013	< 0.0039	< 0.0026	< 0.0013
F-5	F5-6.7-081314	6.7	08/13/2014	Farallon	590	< 73	130	< 0.0011	< 0.0056	0.010	0.0069		
F-8	F8-5.0-081314	5	08/13/2014	Farallon	1,000	< 64	190	< 0.0011	< 0.0054	0.0039	0.014	0.014	< 0.0011
F-9	F9-9.0-092214	9	09/22/2014	Farallon	<120	1,400	<4.7						
F-10	F10-12.0-092214	12	09/22/2014	Farallon	<40	<81	<9.4						
F-11	F11-12.0-092214	12	09/22/2014	Farallon	<38	<77	<8.6						
F-12	F12-7.0-092214	7	09/22/2014	Farallon	<27	<55	<4.5						
F-13	F13-6.7-092214	6.7	09/22/2014	Farallon	440	<54							
F-14	F14-7.0-092214	7	09/22/2014	Farallon	5,700	<270							
F-15	F15-7.4-092214	7.4	09/22/2014	Farallon	<38	<77	<7.9						
F-16	F16-7.0-092214	7	09/22/2014	Farallon	<40	<80	<10						
F-17	F17-8.0-092214	8	09/22/2014	Farallon	380	<59	<3.1						
F-18	F18-8.0-092214	8	09/22/2014	Farallon	9,700	<580							
2017 Test Pit Investigation													
TP-1	TP1-7.0-022217	7	2/22/2017	Farallon	<38	<76	<9.8	< 0.020	<0.098	< 0.098	< 0.196	< 0.098	< 0.098
	TP1-11.0-022217	11	2/22/2017	Farallon	<37	<74	<9.7	< 0.020	< 0.097	< 0.097	< 0.194	< 0.097	< 0.097
TP-2	TP2-7.0-022217	7	2/22/2017	Farallon	<35	<69	<8.7	< 0.020	< 0.087	< 0.087	< 0.174	< 0.087	< 0.087
	TP2-11.0-022217	11	2/22/2017	Farallon	<35	<69	<9.2	< 0.020	< 0.092	< 0.092	< 0.184	< 0.092	< 0.092
TP-3	TP3-7.0-022217	7	2/22/2017	Farallon	<35	<70	<9.7	< 0.020	< 0.097	< 0.097	< 0.194	< 0.097	< 0.097
	TP3-11.0-022217	11	2/22/2017	Farallon	<33	<66	<7.2	< 0.020	< 0.072	< 0.072	<0.144	< 0.072	< 0.072
TP-4	TP4-7.0-022217	7	2/22/2017	Farallon	1,100	<70	<8.9	< 0.0014	0.012	< 0.0014	< 0.0043	< 0.0029	< 0.0014
	TP4-11.0-022217	11	2/22/2017	Farallon	<34	98	<9.4	< 0.0012	0.011	< 0.0012	< 0.0036	< 0.0024	< 0.0012
TP-5	TP5-7.0-022117	7	2/21/2017	Farallon	1,100	540 N	<14	< 0.0010	0.011	< 0.0010	< 0.003	< 0.0020	< 0.0010
	TP5-11.0-022117	11	2/21/2017	Farallon	6,800	1,300 N	<13	< 0.065	< 0.32	< 0.065	< 0.195	< 0.13	< 0.065
TP-6	TP6-7.0-022117	7	2/21/2017	Farallon	63	360	<9.6	< 0.020	< 0.096	< 0.096	< 0.192	< 0.096	< 0.096
	TP6-11.0-022117	11	2/21/2017	Farallon	<32	<64	<6.7	< 0.020	< 0.067	< 0.067	< 0.134	< 0.067	< 0.067
TP-7	TP7-7.0-022117	7	2/21/2017	Farallon	2,300	160 N	<8.8	< 0.020	<0.088	0.18	0.13	0.13	< 0.088
	TP7-11.0-022117	11	2/21/2017	Farallon	<35	88	<7.8	< 0.020	< 0.078	< 0.078	< 0.156	< 0.078	< 0.078
TP-8	TP8-7.0-022117	7	2/21/2017	Farallon	<36	<71	<7.7	< 0.0011	0.0061	< 0.0011	< 0.0033	<0.0022	< 0.0011
	TP8-11.0-022117		2/21/2017	Farallon	<34	<68	<7.5	< 0.0011	< 0.0055	<0.0011	< 0.0033	<0.0022	< 0.0011
TP-9	TP9-7.0-022117	7	2/21/2017	Farallon	<36	<71	<7.9	<0.0012	0.0086	<0.0012	< 0.0035	<0.0023	< 0.0012
	TP9-11.0-022117	11	2/21/2017	Farallon	<37	<74	<13	<0.0018	0.018	<0.0018	< 0.0055	<0.0037	< 0.0018
TP-10	TP10-7.0-022117	7	2/21/2017	Farallon	<28	<57	<5.8	<0.0010	0.0065	<0.0010	< 0.0031	< 0.0021	<0.0010
	TP10-11.0-022117		2/21/2017	Farallon	<39	84	<10	<0.0015	0.014	<0.0015	< 0.0044	<0.0029	< 0.0015
TP-11	TP11-7.0-030817	7	3/8/2017	Farallon	<35	<70	<8.9	<0.020	<0.089	<0.089	<0.178	<0.089	<0.089
	TP11-11.0-030817	- 11	3/8/2017	Farallon	<33	<67	<9.3	< 0.020	< 0.093	< 0.093	<0.186	< 0.093	< 0.093
TP-12	TP12-7.0-030817	7	3/8/2017	Farallon	<34	<67	<8.8	< 0.020	<0.088	<0.088	<0.176	<0.088	< 0.088
	TP12-11.0-030817	11	3/8/2017	Farallon	<36	<71	<8.9	< 0.020	<0.089	<0.089	<0.178	<0.089	<0.089
TP-13	TP13-7.0-030817	7	3/8/2017	Farallon	330	<72	<8.7	<0.020	<0.087	0.17	<0.174	< 0.087	< 0.087
	TP13-11.0-030817	11	3/8/2017	Farallon	<37	<73	< 9.8	<0.020	<0.098	<0.098	<0.196	<0.098	< 0.098
MTCA Method A Cleanup Levels" 2,000							30/100°	0.03	7	6	9	NE	NE

	Sample				Analytical Results (milligrams per kilogram)								
Location	Identification	Sample Depth (feet) ¹	Sample Date	Sampled By	DRO ³	ORO ³	GRO ²	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes ⁴	m,p-Xylene	o-Xylene
2017 Excavation Performance Samples													
Excavation 2													
Sidewall H2-NW	H2-NW-8.0-SW	8	3/24/2017	Farallon	5,600 E	<250	49	< 0.02	< 0.10	< 0.05	< 0.15		
Bottom H4-S	H4-S-12.0-B	12	3/24/2017	Farallon	6,350 E	<250	130	< 0.02	< 0.10	< 0.05	< 0.15		
Excavation 3													
Bottom UST-2-B	UST2-6.0-B	6	3/27/2017	Farallon	9,220 E	<250	27	< 0.02	0.35	0.39	5.03		
East Sidewall UST-2-E	UST2-E-5.0-SW	5	3/27/2017	Farallon	9,540 E	<250	77	< 0.02	0.78	1.04	12.9		
West Sidewall UST-2-W	UST2-W-5.0-SW	5	3/27/2017	Farallon	7,380 E	<250	104	0.063	1.89	1.27	14.7		
Excavation 5													
West Sidewall EX5-W2-SW	W2-SW-042117-9.0	9	4/21/2017	Farallon	1,700	2,800	<6.3	< 0.0012	< 0.0058	< 0.0012	< 0.0035	< 0.0023	< 0.0012
MTCA Method A Cleanup Levels ⁵				2,000	2,000	30/100 ¹¹	0.03	7	6	9	NE	NE	

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

--- denotes sample not analyzed.

¹Depth in feet below ground surface. ²Analyzed by Northwest Method NWTPH-Gx, unless otherwise noted. ³Analyzed by Northwest Method NWTPH-Dx, unless otherwise noted.

⁴Analyzed by U.S. Environmental Protection Agency (EPA) Methods 8260B or 8260C, unless otherwise noted.

⁵MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013. ⁶Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected. ^aAnalyzed by EPA Method 8015 Modified.

^bAnalyzed by EPA Method 8020.

^cAnalyzed by EPA Method 418.1.

^dAnalyzed by Washington Total Petroleum Hydrocarbons as Diesel (WTPH-D) Method

Blymer = Blymyer Engineers, Inc.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics E = analyte concentration exceeds the calibration range of the instrument Farallon = Farallon. L.L.C. Fluor Daniel = Fluor Daniel GTI, Inc. Golder = Golder Associates Inc. GRO = TPH as gasoline-range organics GTI = Groundwater Technology, Inc. N = hydrocarbons in the diesel-range are impacting the oil-range results N/D = not detected and historical reporting limit is unknown ORO = TPH as oil-range organics RI = remedial investigation S&W = Shannon & Wilson, Inc.

P:\1071 Prologis\1071010 6050 East Marginal Way South\Reports\Cleanup Action Closure Rpt\Tables\Cleanup Action Tables
Table 3a Summary of RI and Performance Soil Analytical Results for VOCs 6050 East Marginal Way South Seattle, Washington Farallon PN: 1071-010

														Analytical	Results ^{1,2} (n	nilligrams pe	r kilogram)						
Sample Location	Sample Identification	Sample Depth (feet) ³	Sample Date	Sampled By	1,2,3-Trichlorobenzene	1,2,4-Trimethylbenzene	1,3,5-T rimethylbenzene	2-Butanone (Methyl ethyl ketone)	Acetone	Carbon Disulfide	cis-1,2-Dichloroethene	Isopropylbenzene	Methyl tertiary butyl ether	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	Sec-Butylbenzene	Tert-Butylbenzene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl Chloride
											RI Investig	ation											
S-1V	S-1V ^a	Waste Oil Tank Excavation	06/29/1988	Blymyer																< 1	< 1	< 1	
S-1F	S-1F ^a	Waste Oil Tank Excavation	06/29/1988	Blymyer																< 1	< 1	< 1	
Product PipingTrench	CF-T1 ^b	2.2 - 2.7	4/7/1998	Golder									< 0.43										
MW-2	MW2-2.0 ^b	1.5 - 2.0	4/7/1998	Golder									< 0.48										
RW-1	RW1-7.0 ^b	7.0 - 8.5	4/7/1998	Golder									< 0.54										
RW-2	RW2-4.0 ^b	4.0 - 5.5	4/8/1998	Golder									<0.4										
KW 2	RW2-7.0 ^b	7.0 - 8.5	4/8/1998	Golder									< 0.53										
SP-1	SP1-(8-11')	8 - 11	1/11/2001	Golder									< 0.23										
SP-5	SP5-(5-8')	5 - 8	1/11/2001	Golder									<0.19										
SP-8	SP8-(5-8')	5-8	1/11/2001	Golder									<0.27										
SP-9	SP9-(5-8')	5 - 8	1/11/2001	Golder									<0.22										
SP-11	SP11-(5-8')	5 - 8	1/11/2001	Golder									< 0.25										
GP-1	GP-1 (6-8')	6 - 8	12/2/2003	Golder		< 0.0014	< 0.0014	< 0.0071	< 0.0071	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
	GP-1 (10-12')	10 - 12	12/2/2003	Golder		<0.0014	<0.0014	0.0084	0.036	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	< 0.0014	<0.0014	<0.0014	<0.0014	< 0.0014	<0.0014
GP-2	GP-2 (0-8) GP-2 (10-12')	10 - 12	12/2/2003	Golder		<0.0011	<0.0011	<0.0037	0.0037	0.0026	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011
CD 2	GP-3 (6-8')	6 - 8	12/2/2003	Golder		< 0.0011	< 0.0011	< 0.0053	< 0.0053	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
GP-5	GP-3 (10-12')	10 - 12	12/2/2003	Golder		< 0.0014	< 0.0014	0.034	0.15	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
	GP-4 (2-4')	2 - 4	12/2/2003	Golder		< 0.0011	< 0.0011	< 0.0054	< 0.0054	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
GP-4	GP-44 (2-4')	2 - 4 (duplicate)	12/2/2003	Golder		<0.0011	<0.0011	< 0.0054	<0.0054	<0.0011	<0.0011	<0.0011	<0.0011	0.0013	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011
	GP-4 (10-12')	10 - 12	12/2/2003	Golder		<0.0011	<0.0011	0.0033	0.0033	0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011
CD 5	GP-5 (6-8')	6 - 8	12/2/2003	Golder		< 0.0011	< 0.0011	< 0.0055	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	<0.0011
GP-3	GP-5 (10-12')	10 - 12	12/2/2003	Golder		< 0.0014	< 0.0014	0.048	0.23	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-6	GP-6 (0-2.5')	0 - 2.5	12/2/2003	Golder		0.0012	< 0.0011	< 0.0053	< 0.0053	< 0.0011	< 0.0011	< 0.0011	< 0.0011	0.0015	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	0.0052	< 0.0011	< 0.0011	< 0.0011
GP-7	GP-7 (6-8')	6 - 8	12/2/2003	Golder		<0.0013	<0.0013	<0.0067	0.012	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013	< 0.0013	<0.0013	<0.0013	<0.0013	<0.0013	<0.0013
	GP-8 (6-8')	6 - 8	12/2/2003	Golder		<0.0014	<0.0014	<0.013	<0.070	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	<0.0014	0.0014	<0.0014	<0.0014	<0.0014
GP-8	GP-8 (10-12')	10 - 12	12/2/2003	Golder		< 0.0013	< 0.0011	0.011	0.040	< 0.0013	< 0.0013	< 0.0013	< 0.0011	< 0.0011	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0011	< 0.0013	<0.0013	< 0.0013	<0.0011
F-5	F5-6.7-081314	6.7	08/13/2014	Farallon	< 0.0011	0.027	< 0.0011	0.026	0.077	0.0021	< 0.0011	0.016	< 0.0011	0.12	0.19	0.049	0.052	0.062	0.0020	< 0.0011	< 0.0011	< 0.0011	< 0.0011
F-8	F8-5.0-081314	5	08/13/2014	Farallon	< 0.0011	0.026	0.0082	0.0096	0.029	< 0.0011	< 0.0011	0.011	< 0.0011	0.017	0.032	0.013	0.0066	0.042	0.0017	< 0.0011	< 0.0011	< 0.0011	< 0.0011
										20	17 Test Pit In	vestigation											
TD /	TP4-7.0-022217	7	2/22/2017	Farallon	< 0.091	< 0.091	< 0.091	0.071	0.32	0.008	< 0.0014	0.034	< 0.0014	< 0.091	0.22	0.17	< 0.091	< 0.091	< 0.091	< 0.0014	< 0.0014	< 0.0014	< 0.0014
11-4	TP4-11.0-022217	11	2/22/2017	Farallon	< 0.0012	< 0.0012	< 0.0012	0.022	0.12	< 0.0015	< 0.0012	0.076	< 0.0012	< 0.0012	0.095	0.16	0.0023	0.11	0.0028	< 0.0012	< 0.0012	< 0.0012	< 0.0012
TP-5	TP5-7.0-022117	7	2/21/2017	Farallon	< 0.069	< 0.069	< 0.069	0.0051	0.05	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.069	< 0.069	< 0.069	< 0.069	< 0.069	< 0.069	0.012	< 0.0010	< 0.0010	<0.0010
	TPS-11.0-022117	11	2/21/2017	Farallon	0.28	<0.065	<0.065	<0.32	< 0.32	<0.065	<0.065	<0.065	<0.065	<0.065	<0.065	<0.065	<0.065	<0.065	<0.065	<0.065	<0.065	<0.065	<0.065
TP-8	TP8-11.0-022117	11	2/21/2017	Farallon	<0.0011	<0.0011	<0.0011	0.031	0.18	0.003	<0.0011	<0.0011	<0.0011	< 0.0011	< 0.0011	< 0.0011	<0.0011	< 0.0011	< 0.0011	<0.0011	<0.0011	<0.0011	<0.0011
TD 0	TP9-7.0-022117	7	2/21/2017	Farallon	< 0.0012	< 0.0012	< 0.0012	0.07	0.4	0.0018	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	<0.0012
112-9	TP9-11.0-022117	11	2/21/2017	Farallon	< 0.0018	< 0.0018	< 0.0018	0.075	0.4	0.0025	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	<0.0018	< 0.0018	< 0.0018	< 0.0018
TP-10	TP10-7.0-022117	7	2/21/2017	Farallon	< 0.0010	< 0.0010	< 0.0010	< 0.0052	0.008	< 0.0010	< 0.0010	< 0.0010	<0.0010	<0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010	< 0.0010	<0.0010	<0.0010
	TP10-11.0-022117	11	2/21/2017	Farallon	<0.0015	< 0.0015	< 0.0015	0.038	0.22	0.0047	<0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015	<0.0015
TP-11	TP11-11.0-030817	11	3/8/2017	Farallon	<0.0012						<0.0012									< 0.0012	<0.0012	<0.0012	<0.0012
			MTCA Method A	Cleanup Levels ⁴	NE	NE	NE	NE	NE	NE	NE	NE	0.1	5	NE	NE	NE	NE	NE	0.05	NE	0.03	NE
	MTCA Meth	od B Cleanun Levels (Direc	t Contact and Ing	estion Pathway) ⁵	NE	NE	800	48,000	72.000	8,000	720	8,000	556	1.600	4,000	8.000	NE	8.000	8.000	476	1.600	12	0.67
МТС	A Method B Cleanup	Levels (Protection of Groun	dwater, Vadose/S	aturated Zones) ⁵	NE	NE	NE	NE	28.9/2.07	NE	NE	NE	0.103/0.00723	5	NE	NE	NE	NE	NE	0.0499/0.00276	0.543/0.0325	0.0252/0.00152	0.00167/0.0000885

Table 3a Summary of RI and Performance Soil Analytical Results for VOCs 6050 East Marginal Way South Seattle, Washington Farallon PN: 1071-010

														Analytical	l Results ^{1,2} (n	nilligrams p	er kilogram)						
Sample Location	Sample Identification	Sample Depth (feet) ³	Sample Date	Sampled By	l,2,3-Trichlorobenzene	1,2,4-T rimethylbenzene	1,3,5-T rimethylbenzene	2-Butanone (Methyl ethyl ketone)	Acetone	Carbon Disulfide	cis-1,2-Dichloroethene	lsopropylbenzene	Methyl tertiary butyl ether	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	Sec-Butylbenzene	Tert-Butylbenzene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl Chloride
TD 12	TP12-7.0-030817	7	3/8/2017	Farallon	< 0.0014						< 0.0014									< 0.0014	< 0.0014	< 0.0014	< 0.0014
1P-12	TP12-11.0-030817	11	3/8/2017	Farallon	< 0.0015						< 0.0015									< 0.0015	< 0.0015	< 0.0015	< 0.0015
TD 13	TP13-7.0-030817	7	3/8/2017	Farallon	< 0.0014						< 0.0014									< 0.0014	< 0.0014	< 0.0014	< 0.0014
11-15	TP13-11.0-030817	11	3/8/2017	Farallon	< 0.0014						< 0.0014									< 0.0014	< 0.0014	< 0.0014	< 0.0014
			MTCA Method A	Cleanup Levels	s ³ NE	NE	NE	NE	NE	NE	NE	NE	0.1	5	NE	NE	NE	NE	NE	0.05	NE	0.03	NE
	MTCA Metho	d B Cleanup Levels (Dire	ect Contact and Ing	estion Pathway) ⁴ NE	NE	800	48,000	72,000	8,000	720	8,000	556	1,600	4,000	8,000	NE	8,000	8,000	476	1,600	12	0.67
МТО	CA Method B Cleanup L	evels (Protection of Grou	indwater, Vadose/Sa	aturated Zones) ⁴ NE	NE	NE	NE	28.9/2.07	NE	NE	NE	0.103/0.00723	5	NE	NE	NE	NE	NE	0.0499/0.00276	0.543/0.0325	0.0252/0.00152	0.00167/0.0000885
NOTES:					•				•	-	•		•		-	-	•		-	•			
Results in bold denote concentr	ations exceed applicable Washin	gton State Model Toxics Control A	Action Cleanup Regulation	(MTCA) Method A	or B cleanup leve	s.			Blymeyer = Blyn	nyer Engineers, In	c.												
< denotes analyte not detected a	t or exceeding the reporting limit	listed.							Farallon = Farall	on Consulting, L.I	L.C.												
denotes sample not analyzed		Internet and a start limit and the							Golder = Golder	Associates Inc.													
² Analyzed by U.S. Environmen	al Protection Agency (EPA) Ma	thed 8260C unless otherwise note	vn. d						NE = cleanup lev	el not established													
³ Depth in feet below ground sur	face	and 02000, unless onler wise note	u.						VOCs = volatile	organic compound	le .												
⁴ MTCA Method A Soil Cleanu	Levels for Unrestricted Land U	ses.Table 740-1 of Section 900 of	Chapter 173-340 of the W	ashington Administr	ative Code, as rev	ised 2013.			vocs volatile	organic compound	15												
5Washington State Cleanup Lev	els and Risk Calculations under	MTCA, Standard Method B Form	ula Values for Soil from	0	<i>,</i>																		
CLARC Master spreadsheet do	wnloaded on 9/24/2015 from http	os://fortress.wa.gov/ecy/clarc/CLA	RCDataTables.aspx																				
^a Analyzed by EPA Method 601																							
^b Analyzed by EPA Method 802	0.																						

Table 3b Summary of RI and Performance Soil Analytical Results for Other VOCs 6050 East Marginal Way South Seattle, Washington Farallon PN: 1071-010

				,	L						Ana	lytical Results ¹ (m	illigrams per kilog	ram)						
Sample Location	Sample Identification	Sample Depth (feet) ²	Sample Date	Sampled By	Methylene Chloride	1, 1-Dichloroethene	1,2-Dichloroethane	Chloroform	Freen	1,1,1-Trichloroethane	Bromodichloromethane	Carbon Tetrachloride	1,2-Dichloropropane	trans-1,3-dichloropropene	cis-1,3-Dichloropropene	1,1,2-Trichloroethane	Chlorodibromomethane	Bromoform	1, 1, 2, 2-Tetrachloroethane	Chlorobenzene
									RI In	vestigation		•	•			•	•			
S-1V	S-1V ^a	Waste Oil Tank Excavation	06/29/1988	Blymyer	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
S-1F	S-1F ^a	Waste Oil Tank Excavation	06/29/1988	Blymyer	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
CD 1	GP-1 (6-8')	6 - 8	12/2/2003	Golder	< 0.0071	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GF-1	GP-1 (10-12')	10 - 12	12/2/2003	Golder	< 0.0068	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP 2	GP-2 (6-8')	6 - 8	12/2/2003	Golder	< 0.0057	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
GF-2	GP-2 (10-12')	10 - 12	12/2/2003	Golder	< 0.0070	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-3	GP-3 (6-8')	6 - 8	12/2/2003	Golder	< 0.0053	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
01-5	GP-3 (10-12')	10 - 12	12/2/2003	Golder	< 0.0070	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
	GP-4 (2-4')	2 - 4	12/2/2003	Golder	< 0.0054	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
GP-4	GP-44 (2-4')	2 - 4 (duplicate)	12/2/2003	Golder	< 0.0054	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
01 1	GP-4 (6-8')	6 - 8	12/2/2003	Golder	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
	GP-4 (10-12')	10 - 12	12/2/2003	Golder	< 0.0070	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-5	GP-5 (6-8')	6 - 8	12/2/2003	Golder	< 0.0055	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
01 0	GP-5 (10-12')	10 - 12	12/2/2003	Golder	< 0.0071	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-6	GP-6 (0-2.5')	0 - 2.5	12/2/2003	Golder	< 0.0053	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
GP-7	GP-7 (6-8')	6 - 8	12/2/2003	Golder	< 0.0067	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013
,	GP-7 (10-12')	10 - 12	12/2/2003	Golder	< 0.0070	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
GP-8	GP-8 (6-8')	6 - 8	12/2/2003	Golder	< 0.0072	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
	GP-8 (10-12')	10 - 12	12/2/2003	Golder	< 0.0066	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013
									2017 Test l	Pit Investigatio	on									
TD 4	TP4-7.0-022217	7	42788.34028	Farallon	< 0.0072	< 0.0014	< 0.0014	< 0.0014		< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.091	< 0.0014
112-4	TP4-11.0-022217	11	42788.35764	Farallon	< 0.0059	< 0.0012	< 0.0012	< 0.0012		< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012
TD 5	TP5-7.0-022117	7	42787.60069	Farallon	< 0.0050	< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.069	< 0.0010
11-5	TP5-11.0-022117	11	42787.61111	Farallon	< 0.32	< 0.065	< 0.065	< 0.065		< 0.065	< 0.065	< 0.065	< 0.065	< 0.065	< 0.065	< 0.065	< 0.065	< 0.065	< 0.065	< 0.065
TP-8	TP8-7.0-022117	7	42787.51042	Farallon	< 0.0056	< 0.0011	< 0.0011	< 0.0011		< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
11-0	TP8-11.0-022117	11	42787.52431	Farallon	< 0.0055	< 0.0011	< 0.0011	< 0.0011		< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
TP-9	TP9-7.0-022117	7	42787.46875	Farallon	< 0.0058	< 0.0012	< 0.0012	< 0.0012		< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012
,	TP9-11.0-022117	11	42787.47917	Farallon	< 0.0092	< 0.0018	< 0.0018	< 0.0018		< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018
TP-10	TP10-7.0-022117	7	42787.54514	Farallon	< 0.0052	< 0.0010	< 0.0010	< 0.0010		< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
	TP10-11.0-022117	11	42787.55903	Farallon	< 0.0073	< 0.0015	< 0.0015	< 0.0015		< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015
TP-11	TP11-7.0-030817	7	42802.36806	Farallon	< 0.0062	< 0.0012	< 0.0012	< 0.0012		< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012
	TP11-11.0-030817		42802.38194	Farallon	< 0.0066	< 0.0013	< 0.0013	< 0.0013		< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013
TP-12	TP12-7.0-030817	7	42802.43403	Farallon	<0.0068	< 0.0014	< 0.0014	< 0.0014		< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	<0.0014
	TP12-11.0-030817	11	42802.45139	Farallon	< 0.0074	< 0.0015	< 0.0015	< 0.0015		< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0015	<0.0015
TP-13	TP13-7.0-030817	7	42802.47917	Farallon	<0.0068	<0.0014	<0.0014	< 0.0014		< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	<0.0014	< 0.0014	< 0.0014	<0.0014	<0.0014
	1P13-11.0-030817	11	42802.49653	Farallon	<0.0070	< 0.0014	< 0.0014	< 0.0014		< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014	<0.0014	< 0.0014	< 0.0014	< 0.0014	<0.0014
		MT	CA Method A (Cleanup Levels	0.02	NE	NE	NE	NE	2	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	MTCA Method B	Cleanup Levels (Direct Co	ontact and Inge	stion Pathway) ⁴	500	4,000	11	32.3	NE	160,000	16.1	14.3	27.8	NE	NE	17.5	11.9	127	5	1,600
MTCA M	ethod B Cleanup Leve	ls (Protection of Groundwa	ater, Vadose/Sa	turated Zones) ⁴	0.0215/0.00148	0.0457/0.00246	0.0231/0.00156	0.0736/0.00479	NE	1.49/0.0843	0.0392/0.0026	0.0416/0.00219	0.0253/0.00167	NE	NE	0.0277/0.00181	0.0276/0.00182	0.362/0.0229	0.00122/0.00008	0.862/0.0511

NOTES: Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels.

--- denotes sample not analyzed. ^aAnalyzed by U.S. Environmental Protection Agency (EPA) Method 601.

¹Analyzed by EPA Method 8260B, unless otherwise noted.

²Depth in feet below ground surface, if known.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses,

Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

Blymyer = Blymyer Engineers, Inc. Farallon = Farallon Consulting, L.L.C. Golder = Golder Associates Inc. NE = cleanup level not established RI = remedial investigation VOCs = volatile organic compounds

Table 4 Summary of RI Soil Analytical Results for PCBs 6050 East Marginal Way South Seattle, Washington Farallon PN: 1071-010

Sample	Sample	Sample Depth					Analytical Re	sults ² (milligrams	per kilogram)		
Location	Identification	(feet) ¹	Sample Date	Sampled By	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
					RI I	nvestigation					
F-5	F5-6.7-081314	6.7	08/13/2014	Farallon	< 0.069	< 0.069	< 0.069	< 0.069	< 0.069	< 0.069	< 0.069
F-8	F8-5.0-081314	5.0	08/13/2014	Farallon	< 0.064	< 0.064	< 0.064	< 0.064	< 0.064	< 0.064	< 0.064
F-13	F13-6.7-092214	6.7	09/22/2014	Farallon	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054	< 0.054
F-18	F18-8.0-092214	8.0	09/22/2014	Farallon	< 0.056	< 0.056	< 0.056	< 0.056	< 0.056	< 0.056	< 0.056

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed. ¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8082A.

Farallon = Farallon Consulting, L.L.C. PCBs = polychlorinated biphenyl compounds RI = remedial investigation

Table 5 Summary of RI and Performance Soil Analytical Results for PAHs 6050 East Marginal Way South Seattle, Washington Farallon PN: 1071-010

													Analytical	Results ^{1,2} (m	illigrams p	er kilogram)								
									Polycyc	lic Aromatic	Hydrocarbon	s (PAHs)						Carcinogen	ic Polycyclic	Aromatic Hy	drocarbons	(cPAHs)		
Sample Location	Sample Identification	Sample Depth (feet) ³	Sample Date	Sampled By	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Total Naphthalenes ⁴	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthen e	Benzo(k)fluoranthen e	Benzo(a)pyrene	Indeno(1,2,3- cd)pyrene	Dibenz(a,h)anthrace ne	Total cPAHs TTEC
	-	-	-		-					1	RI Investigatio	n		-						-				
Product Piping Trench	CF-T1	2.2 - 2.7	4/7/1998	Golder	< 0.015		< 0.013	< 0.028	0.21	< 0.014	< 0.012	< 0.0092	0.21	0.21	< 0.01	0.68	0.052	0.097	< 0.0077	< 0.012	< 0.0061	< 0.012	< 0.0083	0.01122
MW-2	MW2-2.0	1.5 - 2.0	4/7/1998	Golder	0.049		0.14	0.189	0.071	< 0.015	0.12	0.033	0.18	0.15	0.22	0.19	0.06	0.17	0.063	0.047	0.049	< 0.012	< 0.0088	0.06874
RW-1	RW1-7.0	7.0 - 8.5	4/7/1998	Golder	6.2		34	40.2	1.8	< 0.017	2.2	< 0.011	< 0.011	2.5	7	0.62	0.094	< 0.0098	< 0.0094	< 0.015	< 0.0074	< 0.014	< 0.01	0.015569
RW-2	RW2-4.0	4.0 - 5.5	4/8/1998	Golder	8.1		16	24.1	1.1	< 0.014	< 0.012	< 0.011	< 0.0085	1.9	4.9	0.7	< 0.0065	< 0.0079	< 0.0076	< 0.012	< 0.006	< 0.012	< 0.0082	0.0053545
	RW2-7.0	7.0 - 8.5	4/8/1998	Golder	6.5		11	17.5	0.93	< 0.017	< 0.015	< 0.011	< 0.011	2	3.6	0.63	< 0.008	< 0.0098	< 0.0094	< 0.015	< 0.0074	< 0.014	< 0.01	0.006569
SP-1	SP1-(8-11')	8 - 11	1/11/2001	Golder	0.23		6.5	6.73	0.41	0.51	< 0.022	< 0.022	< 0.022	0.87	1.3	0.07	< 0.022	0.037	< 0.022	< 0.022	< 0.022	< 0.022	< 0.022	0.00697
SP-5	SP5-(5-8')	5 - 8	1/11/2001	Golder	3.7		3.7	7.4	0.69	0.48	< 0.018	< 0.018	< 0.018	1.3	2.6	0.78	0.11	0.097	< 0.018	< 0.018	< 0.018	< 0.018	< 0.018	0.02457
SP-6	SP6-(5-8')	5 - 8	1/11/2001	Golder	1.7		4.1	5.8	0.26	< 0.027	< 0.027	< 0.027	< 0.027	0.55	0.92	0.16	< 0.027	< 0.027	< 0.027	< 0.027	< 0.027	< 0.027	< 0.027	0.020385
SP-8	SP8-(5-8')	5 - 8	1/11/2001	Golder	19		50	69	5.7	1.3	< 0.1	< 0.1	< 0.1	6	10	2.3	< 0.1	0.22	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.0772
SP-9	SP9-(5-8')	5 - 8	1/11/2001	Golder	7.4		23	30.4	3.8	< 0.1	< 0.1	< 0.1	< 0.1	4.1	4.7	0.94	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.0755
SP-11	SP11-(5-8')	5 - 8	1/11/2001	Golder	0.97		3	3.97	< 0.023	0.29	< 0.023	< 0.023	0.054	0.39	0.67	0.035	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	< 0.023	0.017365
			•							2017	Fest Pit Invest	igation												
TP-4	TP4-7.0-022217	7	2/22/2017	Farallon	0.23	0.66	0.95	1.84									< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	0.0067
	TP4-11.0-022217	11	2/22/2017	Farallon	0.037	0.14	0.064	0.241									< 0.0090	< 0.0090	<0.0090	< 0.0090	< 0.0090	< 0.0090	< 0.0090	0.0068
TP-5	TP5-7.0-022117	11	2/21/2017	Farallon	<0.0088	<0.0088	<0.0088	<0.0264									<0.0088	<0.0088	<0.0088	<0.0088	<0.0088	<0.0088	<0.0088	0.0066
	11 3-11.0-022117	11 MT4		Faranon	<0.0003	~0.031	~0.030	<0.0093	NE	NF	NF	NF	NE	NF	NF	NF	0.012	0.012	~0.0003	<0.0083	~0.0085	~0.0063	~0.0085	0.0073
MTCAM	athad B Cleanur I	avals (Direct Co	ntaat and Loach	ing Pothway)6	1.600	5 NE NE </td <td>2 400</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.137</td>									2 400								0.137	
TCA Method B Cleanu	MTCA Method B Cleanup Levels (Direct Contact and Leaching Pathway)° 1,600 34.5 A Method B Cleanup Levels (Protection of Groundwater, Vadose/Saturated Zones) ⁶ 4.45/0.236 NE								97.9/4.98	NE	2.270/114	NE	631/31.6	101/5.12	NE	655/32.8								2.33/0.116
NOTES:	r	or our diffe	,								,						11							

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels. < denotes analyte not detected at or exceeding the reporting limit listed.

--- denotes sample not analyzed.

¹Only select analytes and analytes with detections exceeding the laboratory reporting limit are shown. ²Analyzed by U.S. Environmental Protection Agency Method 8270 unless otherwise noted.

³Depth in feet below ground surface.

⁴Sum of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene.

⁵MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses,

Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.
 ⁶Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

Farallon = Farallon Consulting, L.L.C. Golder = Golder Associates Inc. NE = cleanup level not established RI = remedial investigation TTEC = total toxicity equivalent concentration

Table 6Summary of RI and Performance Soil Analytical Results for Metals6050 East Marginal Way SouthSeattle, WashingtonFarallon PN: 1071-010

								Anal	ytical Results	1			
	Sample		Depth					(milligra	ms per kilogr	am) [*]			
Sample Location	Identification	Sample Date	(feet bgs) ¹	Sampled By	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
					RI Inves	tigation							
S-1V	S-1V	06/29/1988	Waste Oil Tank Excavation	Blymyer	< 0.1	<2	< 0.1	9.1		14.2	< 0.05	< 0.1	< 0.1
S-1F	S-1F	06/29/1988	Waste Oil Tank Excavation	Blymyer	< 0.1	<2	< 0.1	7.2		9.9	< 0.05	< 0.1	< 0.1
S-2F	S-2F	06/29/1988	Waste Oil Tank Excavation	Blymyer	< 0.1	<2	< 0.1	9.9		11.0	< 0.05	< 0.1	< 0.1
S-2V	S-2V	06/29/1988	Waste Oil Tank Excavation	Blymyer	< 0.1	<2	< 0.1	11.3		8.6	< 0.05	< 0.1	< 0.1
				:	2017 Test Pit	Investigation							
TD 4	TP4-7.0-022217	2/22/2017	7	Farallon	<13		< 0.67	18	22	< 6.7	< 0.33		
11-4	TP4-11.0-022217	2/22/2017	11	Farallon	<13		< 0.67	16	17	< 6.7	< 0.34		
TD 5	TP5-7.0-022117	2/21/2017	7	Farallon	<13		< 0.66	7.0	6.3	< 6.6	< 0.33		
11-5	TP5-11.0-022117	2/21/2017	11	Farallon	<13		< 0.63	7.9	7.2	< 6.3	< 0.32		
	MTC	A Method A So	oil Cleanup Levels, Unrestri	cted Land Use ³	20	NE	2	2,000	NE	250	2	NE	NE
	MTCA Method B	Cleanup Level	ls (Direct Contact and Leac	hing Pathway) ⁴	0.0667	16,000	80	120,000	3,200	NE	NE	400	400
MTCA Me	thod B Cleanup Leve	ls (Protection o	of Groundwater, Vadose/Sa	turated Zones) ⁴	2.92/0.146	1,650/82.6	0.69/0.0349	480,000/24,000	284/14.3	3,000/150	2.09/0.105	5.2/0.264	13.6/0.687

NOTES:

Results in **bold** denote concentrations exceed regulatory screening level.

< denotes analyte not detected at or exceeding the reporting limit listed.

--- denotes sample not analyzed.

¹Depth in feet below ground surface (bgs) or general location, if unknown.

²Analysis method unknown.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses,

Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

Blymyer = Blymyer Engineers, Inc. Farallon = Farallon Consulting, L.L.C. NE = cleanup level not established RI = remedial investigation

Table 7 Summary of RI Soil Analytical Results for Volatile and Extractable Petroleum Hydrocarbons 6050 East Marginal Way South Seattle, Washington Farallon PN: 1071-010

					Analytical Results (milligrams per kilogram) ¹												
					Vola	tile Petro	leum Hydro	ocarbons (VPH)			Ext	ractable Pe	troleum Hy	drocarbons	(EPH)		
					Aliphatic Fractions Aromatic Fracti					Al	iphatic Fra	ctions			Aromatic	Fractions	
	Sample	Sample	Sample Depth			EC 5-6 EC >6-8 EC >8-10											
Sample Location	Identification	Date	(feet) ²	Sampled By	EC 5-6	EC >6-8	EC >8-10	EC >8-10	C8-C10	C10-C12	C12-C16	C16-C21	C21-C34	C10-C12	C12-C16	C16-C21	C21-C34
Product Piping Trench	CF-T1	4/7/1998	2.2 - 2.7	Golder	<1.3	<1.7	3.2	7.4	10	130	1,000	1,100	110	25	270	630	48
MW-2	MW2-2.0	4/7/1998	1.5 - 2.0	Golder	<1.4	<1.9	<2.9	<2.4	6	32	270	310	410	2.7	22	120	120
RW-1	RW1-7.0	4/7/1998	7.0 - 8.5	Golder	<1.6	<2.2	20	16	180	1,200	5,600	4,200	750	110	980	2,200	350
DW 2	RW2-4.0	4/8/1998	4.0 - 5.5	Golder	<1.2	34	<48	630	330	840	2,400	2,100	250	250	920	1,200	100
K W -2	RW2-7.0	4/8/1998	7.0 - 8.5	Golder	<1.6	61	<64	490	280	670	1,900	1,700	240	180	680	1,000	88
SP-1	SP1-(8-11')	1/11/2001	8 - 11	Golder	< 0.7	1.6	17	15	76	380	940	320	37	46	250	200	22
SP-5	SP5-(5-8')	1/11/2001	5 - 8	Golder	< 0.58	5.2	98	98	200	660	2,000	1,700	300	180	710	750	120
SP-6	SP6-(5-8')	1/11/2001	5 - 8	Golder	< 0.82	3.9	18	19	<6.6	30	98	87	27	10	38	48	20
SP-8	SP8-(5-8')	1/11/2001	5 - 8	Golder	0.86	44	310	350	830	2,400	8,700	6,500	730	110	530	870	100
SP-9	SP9-(5-8')	1/11/2001	5 - 8	Golder	0.83	12	190	190	220	670	3,200	2,700	210	260	970	1,100	96
SP-11	SP11-(5-8')	1/11/2001	5 - 8	Golder	< 0.75	< 0.5	3.8	4.4	<5.9	30	170	130	40	<5.9	18	35	10

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹ Samples collected in 1998 analyzed by Washington TPH Interim Policy Method VPH/EPH. Samples collected in 2001

analyzed by Washington State Department of Ecology Method for Determination of VPH/EPH Modified.

²Depth in feet below ground surface.

Golder = Golder Associates, Inc.

RI = remedial investigation

							Analytical Res	ults ¹ (microgra	ams per <u>liter)</u>			
Sample Location	Sample Identification	Sample Date	Sampled By	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³	m,p-Xylene	o-Xylene
Diesel Tank Excavation	W-1	04/1988	Blymyer	2,538,000 ^a								
Gas Tank Excavation	W-2	04/1988	Blymyer			158,000 ^a	13 ^b	9 ^b	317 ^b	2,054 ^b	1,790 ^b	264 ^b
Oil Tank Excavation	W-1	6/29/1988	Blymyer	2,862,000 ^a	3,812,000 °							
	MW-1	07/12/1988	Blymyer	< 1,000 ^a								
	MW-1	10/6/1988	Blymyer	< 1,000 ^a								
MW 1 88	MW-1	2/8/1989	Blymyer	< 10,000 ^a								
WW-1_00	MW-1	5/2/1989	Blymyer	< 10,000 ^a								
	MW1	8/3/1989	Blymyer	< 10,000 ^a								
	MW1	11/1/1989	Blymyer	< 10,000 ^a								
	MW-2A	06/29/1988	Blymyer	< 1,000 ^a								
	MW-2A	10/6/1988	Blymyer	< 1,000 ^a								
MW 24 88	MW-2A	2/8/1989	Blymyer	< 10,000 ^a								
WIW-2A_00	MW-2A	5/2/1989	Blymyer	< 10,000 ^a								
	MW2A	8/3/1989	Blymyer	< 10,000 ^a								
	MW2A	11/1/1989	Blymyer	< 10,000 ^a								
	MW-3	06/29/1988	Blymyer	< 1,000 ^a								
	MW-3	10/6/1988	Blymyer	< 1,000 ^a								
MW 2 99	MW-3	2/8/1989	Blymyer	< 10,000 ^a								
Mw-5_88	MW-3	5/2/1989	Blymyer	< 10,000 ^a								
	MW3	8/3/1989	Blymyer	< 10,000 ^a								
	MW3	11/1/1989	Blymyer	< 10,000 ^a								
	MW-4	06/29/1988	Blymyer	< 1,000 ^a								
	MW-4	10/6/1988	Blymyer	< 1,000 ^a								
	MW-4	2/8/1989	Blymyer	< 10,000 ^a								
Mw-4_88	MW-4	5/2/1989	Blymyer	< 10,000 ^a								
	MW4	8/3/1989	Blymyer	< 10,000 ^a								
	MW4	11/1/1989	Blymyer	< 10,000 ^a								
	MW-5	06/29/1988	Blymyer	< 1,000 ^a								
	MW-5	10/6/1988	Blymyer	< 1,000 ^a								
MW 5 99	MW-5	2/8/1989	Blymyer	< 10,000 ^a								
Mw-5_88	MW-5	5/2/1989	Blymyer	< 10,000 ^a								
	MW5	8/3/1989	Blymyer	< 10,000 ^a								
	MW5	11/1/1989	Blymyer	< 10,000 ^a								
P-1	1764-P1-W	8/8/1997	S&W	< 200 ^d								
P-2	1764-P2-W	8/8/1997	S&W	2,200,000 d								
P-3	1764-P3-W	8/8/1997	S&W	< 200 ^d								
P-4	1764-P4-W	8/8/1997	S&W	1,700 ^d								
	•	MTCA Method A	Cleanup Levels ⁴	500	500	1,000	5	1,000	700	1,000	NE	NE

							Analytical Res	ults ¹ (microgra	ams per liter)			
Sample Location	Sample Identification	Sample Date	Sampled By	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³	m,p-Xylene	o-Xylene
P-5	1764-P5-W	8/8/1997	S&W	< 200 ^d								
Р-6	1764-P6-W	8/8/1997	S&W	< 200 ^d								
P-7	1764-P7-W	8/8/1997	S&W	400 ^d								
P-8	1764-P8-W	8/8/1997	S&W	< 200 ^d								
Р-9	1764-P9-W	8/8/1997	S&W	< 200 ^d								
P-10	1764-P10-W	8/8/1997	S&W	< 100 ^d								
	MW-1	4/8/1998	Golder	< 240 ^d	<470 ^d		< 1 ^b	< 1 ^b	< 1 b		< 2 ^b	<1 ^b
	MW-1D	4/8/1998	Golder				< 1 b	< 1 ^b	< 1 b		< 2 ^b	<1 ^b
	MW-1	8/17/1999	Golder	160	250		< 1 e	< 1 e	< 1 e	< 2 ^e		
MW-1	MW-1	1/17/2001	Golder	110	290		<0.4 ^f	<0.4 ^f	<0.4 ^f	<1.2 ^f	<0.8 ^f	<0.4 ^f
	MW-1	6/7/2001	Golder	120	360		ND					
	MW-1	12/3/2003	Golder	<250	<400	<100	<1.0	<1.0	<1.0	<1.0		
	MW-2	4/8/1998	Golder	2,200 ^d	660 ^d		< 1 b	< 1 ^b	< 1 ^b		< 2 ^b	<1 ^b
	MW-2	8/17/1999	Golder	1,900	580		< 1 e	< 1 e	< 1 e	< 2 ^e		
	MW-2	1/17/2001	Golder	1,500	640		<0.4 ^f	<0.4 ^f	<0.4 ^f	0.069 ^f	<0.8 ^f	0.069 ^f
M w -2	MW-2	6/7/2001	Golder	1,100	670		ND					
	MW-2	12/3/2003	Golder	<250	<400	<100	<1.0	<1.0	<1.0	<1.0		
	MW-2-081214	08/12/2014	Farallon	2,700	< 490	280	< 0.20	< 1.0	< 0.20	< 0.60		
	MW-3	4/8/1998	Golder	1,000 ^d	1,100 ^d		< 1 ^b	< 1 ^b	< 1 b		< 2 ^b	<1 ^b
	MW-3	8/17/1999	Golder	1,500	1,800		< 1 ^e	< 1 ^e	< 1 ^e	< 2 ^e		
MAN 2	MW-3	1/17/2001	Golder	1,800	1,800		0.24 ^f	<0.4 ^f	<0.4 ^f	0.048 ^f	<0.8 ^f	0.048 ^f
IVI W -5	MW-3	6/7/2001	Golder	1,400	1,600		0.2					
	MW-3	12/3/2003	Golder	<250	<400	<100	<1.0	<1.0	<1.0	<1.0		
	MW-3-081214	08/12/2014	Farallon	510	620	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
RW-1	RW-1	4/8/1998	Golder	1,400 ^d	<470 ^d		< 1 ^b	< 1 ^b	< 1 ^b		< 2 ^b	<1 ^b
	RW-2	4/8/1998	Golder	5,400 ^d	680 ^d		210 ^b	13 ^b	100 ^b		220 ^b	88 ^b
PW 2	RW-2	8/17/1999	Golder	1,500	450		83 ^e	< 1 ^e	20 ^e	45 ^e		
KW-2	RW-2	12/3/2003	Golder	<250	<400	450	5.31	<1.0	<1.0	<1.0		
	RW-2-081214	08/12/2014	Farallon	3,700	< 640	800	< 0.20	< 1.0	< 0.20	< 0.60		
Bottom of Diesel Tank Excavation	TP-1	7/27/1998	GTI	138,000 ^d								
GP-1	GP-1	8/18/1999	Golder	1,200	690							
GP-2	GP-2	8/18/1999	Golder	400	280							
GP-3	GP-3	8/18/1999	Golder	260	590							
GP-4	GP-4	8/18/1999	Golder	800	490							
GP-5	GP-5	8/18/1999	Golder	980	< 470							
GP-6	GP-6	8/18/1999	Golder	1,400	1,800							
GP-7	GP-7	8/18/1999	Golder	720	360							
		MTCA Method A	Cleanup Levels ⁴	500	500	1,000	5	1,000	700	1,000	NE	NE

							Analytical Res	ults ¹ (microgra	ams per liter)			
Sample Location	Sample Identification	Sample Date	Sampled By	DRO ¹	ORO ¹	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	Total Xylenes ³	m,p-Xylene	o-Xylene
GP-8	GP-8	8/18/1999	Golder	260	300							
GP-9	GP-9	8/18/1999	Golder	1,200	280							
GP-10	GP-10	8/18/1999	Golder	29,000	2,100							
GP-10	GP-14 (duplicate of GP-10)	8/18/1999	Golder	34,000	2,500							
GP-11	GP-11	8/18/1999	Golder	2,500	860							
GP-12	GP-12	8/18/1999	Golder	160	390							
GP-13	GP-13	8/18/1999	Golder	580	330							
	MW-4	1/17/2001	Golder	160	330		<0.4 ^f	<0.4 ^f	<0.4 ^f	<1.2 ^f	<0.8 ^f	<0.4 ^f
M337.4	MW-4	6/7/2001	Golder	140	330		ND					
1 v1 vv - 4	MW-4	12/3/2003	Golder	<250	<400	<100	<1.0	<1.0	<1.0	<1.0		
	MW-4-081214	08/12/2014	Farallon	<260	<410	<100	< 0.20	<1.0	<0.20	<0.60		
	MW-5	1/17/2001	Golder	330	360		<0.4 ^f	<0.4 ^f	<0.4 ^f	<1.2 ^f	<0.8 ^f	<0.4 ^f
M32/ 5	MW-5	6/7/2001	Golder	200	250		ND					
IVI W -3	MW-5	12/3/2003	Golder	<250	<400	<100	<1.0	<1.0	<1.0	<1.0		
	MW-5-092314	09/23/2014	Farallon	430	<410							
	MW-6	1/17/2001	Golder	230	380		0.3 ^f	<0.4 ^f	<0.4 ^f	<1.2 ^f	<0.8 ^f	<0.4 ^f
MW-6	MW-6	6/7/2001	Golder	180	320		0.32					
WIW-0	MW-6	12/3/2003	Golder	<260	<410	<100	<1.0	<1.0	<1.0	<1.0		
	MW-6-092314	09/23/2014	Farallon	<260	<420							
GP-1A	GP-1	12/2/2003	Golder	<250	<400	<100	<1 ^f	<1 ^f	<1 ^f	<3 ^f	<2 ^f	<1 ^f
GP-2A	GP-2	12/2/2003	Golder	<260	<410	<100	<1 ^f	<1 ^f	<1 ^f	<3 ^f	<2 ^f	<1 ^f
GP-3A	GP-3	12/2/2003	Golder	<260	<420	<100	<1 ^f	<1 ^f	<1 ^f	<3 ^f	<2 ^f	<1 ^f
GP-4A	GP-4	12/2/2003	Golder	<260	<420	<100	<1 ^f	<1 ^f	<1 ^f	<3 ^f	<2 ^f	<1 ^f
GP-5A	GP-5	12/2/2003	Golder	<260	<410	<100	<1 ^f	<1 ^f	<1 ^f	<3 ^f	<2 ^f	<1 ^f
GP-7A	GP-7	12/2/2003	Golder	<280	<440	<100	<1 ^f	<1 ^f	<1 ^f	<3 ^f	<2 ^f	<1 ^f
GP-8A	GP-8	12/2/2003	Golder	<250	<400	<100	<1 ^f	<1 ^f	<1 ^f	<3 ^f	<2 ^f	<1 ^f
F-1	F1-GW-081314	08/13/2014	Farallon	340	< 420	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
F-2	F2-GW-081314	08/13/2014	Farallon	< 290	< 460	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
F-3	F3-GW-081314	08/13/2014	Farallon	< 260	< 420	< 100	< 0.20	3.9	< 0.20	< 0.60		
F-4	F4-GW-081314	08/13/2014	Farallon	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
F-5	F5-GW-081314	08/13/2014	Farallon	340	< 460	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
F-6	F6-GW-081314	08/13/2014	Farallon	< 270	< 440	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
F-7	F7-GW-081314	08/13/2014	Farallon	< 260	< 410	< 100	< 0.20	< 1.0	< 0.20	< 0.60		
		MTCA Method A	Cleanup Levels ⁴	500	500	1,000	5	1,000	700	1,000		

				Analytical Results ¹ (micrograms per liter)										
Sample Location	Sample Identification	Sample Date	Sampled By	upled By DRO ¹ ORO ¹ GRO ² Benzene ³ Toluene ³ Ethylbenzene ³ Total Xylenes ³ m,p-Xylene o-Xylene										
F-8	F8-GW-081314	08/13/2014	Farallon	5,700	< 790	790	< 0.20	< 1.0	0.30	< 0.60				
F-10	F10-GW-092214	09/22/14	Farallon	<250	<400	<100								
F-11	F11-GW-092214	09/22/14	Farallon	<260	<420	<100								
		MTCA Method A	Cleanup Levels ⁴	500	500	1,000	5	1,000	700	1,000	NE	NE		

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A cleanup levels. < denotes analyte not detected at or exceeding the reporting limit listed.

--- Denotes sample not analyzed.

¹Analyzed by Northwest Method NWTPH-Dx, unless otherwise noted.

²Analyzed by Northwest Method NWTPH-Gx, unless otherwise noted.

³Analyzed by U.S. Environmental Protection Agency (EPA) Method 8260C, unless otherwise noted.

⁴MTCA Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013. ^aAnalyzed by EPA Method 8015.

^bAnalyzed by EPA Method 8020.

^c Analyzed by EPA Method 418.1.

^dAnalyzed by Washington Total Petroleum Hydrocarbons as Diesel (WTPH-D) Method.

^eAnalyzed by EPA Method 8021B/5030B Modified.

^fAnalyzed by EPA Method 8260B.

BTEX = benzene, toluene, ethylbenzene, and xylenes Blymer = Bymer Engineers, Inc. Farallon = Farallon Consulting, L.L.C. DRO = total petroleum hydrocarbons (TPH) as diesel-range organics Golder = Golder Associates Inc. GRO = TPH as gasoline-range organics GTI = Fluor Daniel GTI, Inc. ND = not detected and reporting limit is unknown NE = cleanup level not established ORO = TPH as oil-range organics RI = remedial investigation S&W = Shannon & Wilson, Inc.

rimethylbenzene bichloroethene ylbenzene ylbenzene ylbenzene ylbenzene ylbenzene binzene ylbenzene ylbenzene ylbenzene ylbenzene ylbenzene ylbenzene ylbenzene opyltoluene opyltoluene utylbenzene utylbenzene	
Samble aphth '', '', '', '', '', '', '', '', '', '',	inyl Chloride
Location Sample Identification Sample Date Sample By \vec{r} r	>
w-1 waste Oil Tank Excavation $6/29/1988$ Blymyer	
$\frac{1}{1} \frac{1}{1} \frac{1}{2001} = \frac{1}{1} \frac{1}{2001} = \frac{1}{1} \frac{1}{2001} = \frac{1}{1} \frac{1}{2001} = \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} $	<0.4
$\frac{MW-1}{MW-1} = \frac{MW-1}{0/72001} = \frac{0/72001}{000000} = \frac{1}{10} = \frac{MD}{ND} = \frac{1}{ND} = \frac{1}{10} = \frac{1}{10$	<u>ND</u>
$\frac{1}{12/3/2003} \frac{1}{12/3/2003} \frac{1}{12/3/$	<u> </u>
$\frac{1}{1} \frac{1}{2} \frac{1}$	0.030
$\frac{MW-2}{MW-2} = \frac{12/2}{2000} = \frac{12}{2000} = \frac{1}{100} = \frac{1}{1$	
1000000000000000000000000000000000000	0.22
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.25
$\frac{1}{1112001} \frac{1}{1112001} \frac{1}{1112001$	ND
$MW-3 \qquad MW-3 \qquad 0//2001 \qquad Oolder \qquad \qquad ND \qquad 0.11 \qquad ND \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	ND <1
1000000000000000000000000000000000000	$\frac{1}{< 0.20}$
$\frac{1}{10000000000000000000000000000000000$	<u>< 0.20</u>
$\frac{1}{1} \frac{1}{2001} = \frac{1}{1} \frac{1}{2001} = \frac{1}{1} \frac{1}{2001} = \frac{1}{1} \frac{1}{1} \frac{1}{2001} = \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{1} $	0.40
MW-4 0//2001 Golder IND 0.15 IND	0.24
$\frac{1}{12/3/2005} = \frac{1}{12/3/2005} = \frac{1}{12} = \frac{1}{1$	<u> </u>
$\frac{1}{10000000000000000000000000000000000$	0.30
$\frac{1}{1112001} \frac{1}{1112001} \frac{1}{1112001$	<0.4
$\frac{MW-5}{MW-5} = \frac{MW-5}{0/72001} = \frac{0}{000er} = \frac{1}{10} = \frac{MD}{ND} = \frac{1}{10} = 1$	ND
$\frac{1}{10000000000000000000000000000000000$	0.29
$\frac{1}{1112001} \frac{1}{1112001} \frac{1}{1112001$	0.38
$\frac{1}{10000000000000000000000000000000000$	<u> </u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<1
$RW-2 = \frac{RW-2}{12/3/2005} = \frac{12/3/2005}{0010er} = \frac{100}{1000} = \frac{100}{100} =$	$\frac{1}{< 0.20}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1}{< 0.20}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{>0.20}{<0.20}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>< 0.20</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>< 0.20</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u>< 0.20</u>
$\frac{10}{1000} = 1000000000000000000000000000000000000$	<u>< 0.20</u>
$\frac{1}{100} = \frac{1}{100} = \frac{1}$	2.4

					Analytical Results ^{1,2} (micrograms per liter)													
Sample Location	Sample Identification	Sample Date	Sampled By	1,2,4-T rimethylbenzene	1,3,5-T rimethylbenzene	cis-1,2-Dichloroethene	lsopropylbenzene	Methyl tertiary butyl ether	Naphthalene	n-Butylbenzene	n-Propylbenzene	p-Isopropyltoluene	Sec-Butylbenzene	Tert-Butylbenzene	Tetrachloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl Chloride
F7	F7-GW-081314	08/13/2014	Farallon	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
F8	F8-GW-081314	08/13/2014	Farallon	0.80	< 0.20	< 0.20	15	< 0.20	2.8	4.6	19	0.23	6.8	0.29	< 0.20	< 0.20	< 0.20	< 0.20
		od A Cleanup Levels ³	NE	NE	NE	NE	20	160	NE	NE	NE	NE	NE	5	NE	5	0.2	
		MTCA Meth	od B Cleanup Levels ⁴	NE	80	16	800	24.3	160	400	800	NE	800	800	20.8	160	0.54	24

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Only select analytes and analytes with detections exceeding the laboratory reporting limit are shown. ²Analyzed by U.S. Environmental Protection Agency (EPA) Method 8260 B or 8260C, unless otherwise noted.

³MTCA Method A Groundwater Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.
⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

^aAnalyzed by EPA Method 601.

Blymyer = Blymyer Engineers, Inc. Farallon = Farallon Consulting, L.L.C. Golder = Golder Associates Inc. ND = not detected and reporting limit is unknown NE = cleanup level not established RI = remedial investigation VOCs = volatile organic compounds

				Analytical Results ^{1,2} (micrograms per liter)																		
Sample Location	Sample Identification	Sample Date	Sampled By	Methylene Chloride	1,1-Dichlorocthane	1,1-Dichloroethene	1,2-Dichloroethane	trans-1,2-Dichloroethene	Chloroform	Chloromethane	Freon	1,1,1-Trichloroethane	Bromodichloromethane	Carbon Tetrachloride	1,2-Dichloropropane	trans-1,3-dichloropropene	cis-1,3-Dichloropropene	1,1,2-T richloroethane	Chlorodibromomethane	Bromoform	1,1,2,2-Tetrachloroethane	Chlorobenzene
W-1	Waste Oil Tank Excavation ^a	6/29/1988	Blymyer	<1,000		<1,000	<1,000	<1,000	<1,000		<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000
	MW-1	1/17/2001	Golder	0.065	0.062	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<0.4	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	< 0.4	< 0.4	<0.4	<0.4
MW-1	MW-1	6/7/2001	Golder	ND	ND		ND		ND	ND												
	MW-1	12/3/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	MW-2	1/17/2001	Golder	0.089	0.11	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	< 0.4	< 0.4	< 0.4
MW-2	MW-2	6/7/2001	Golder	ND	ND		ND		ND	ND												
	MW-2	12/3/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	MW-3	1/17/2001	Golder	0.064	<0.4	<0.4	0.053	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	< 0.4	< 0.4	< 0.4
MW-3	MW-3	6/7/2001	Golder	ND	ND		ND		ND	ND												
	MW-3	12/3/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	MW-4	1/17/2001	Golder	0.087	0.12	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<0.4	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	<0.4	< 0.4	<0.4	< 0.4
MW-4	MW-4	6/7/2001	Golder	ND	0.13		ND		ND	ND												
	MW-4	12/3/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	MW-5	1/17/2001	Golder	0.08	0.23	<0.4	< 0.4	< 0.4	0.088	0.096	< 0.4	<0.4	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	< 0.4	<0.4	< 0.4
MW-5	MW-5	6/7/2001	Golder	ND	0.25		ND		ND	ND												
	MW-5	12/3/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	MW-6	1/17/2001	Golder	0.1	0.097	<0.4	< 0.4	< 0.4	< 0.4	0.055	<0.4	<0.4	<0.4	< 0.4	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	< 0.4	<0.4	< 0.4
MW-6	MW-6	6/7/2001	Golder	ND	0.078		ND		ND	ND												i
	MW-6	12/3/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
RW-2	RW-2	12/3/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-1A	GP-1	12/2/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-2A	GP-2	12/2/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-3A	GP-3	12/2/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-4A	GP-4	12/2/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-5A	GP-5	12/2/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-7A	GP-7	12/2/2003	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
GP-8A	GP-8	Golder	<2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
		od A Cleanup Levels ³	5	NE	NE	5	NE	NE	NE	NE	200	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
		MTCA Metho	od B Cleanup Levels ⁴	21.9	7.68	400	0.481	160	1.41	NE	NE	16,000	0.706	0.625	1.22	NE	NE	0.768	0.521	5.54	0.219	160

NOTES:

Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels. -- denotes sample not reported.

< denotes analyte not detected at or exceeding the reporting limit listed. ¹Only select analytes and analytes with detections exceeding the laboratory reporting limit are shown.

⁶Analyzed by U.S. Environmental Protection Secceeding une laboratory reporting initia esthown.
 ²Analyzed by U.S. Environmental Protection Agency (EPA) Method 8260C, unless otherwise noted.
 ³MTCA Method A Groundwater Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.
 ⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Groundwater from CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx
 ^aAnalyzed by EPA Method 601.

Blymyer = Blymyer Engineers, Inc. Golder = Golder Associates Inc. ND = not detected and reporting limit is unknown NE = cleanup level not established RI = remedial investigation VOCs = volatile organic compounds

				Analytical Results ^{1,2} (micrograms per liter)																				
]	Polycyclic Aron	natic Hydrocarb	ons		·						Carcinogenic Po	lycyclic Aroma	tic Hydrocarbo	ons		
Sample Location	Sample Identification	Sample Date	Sampled By	1-Methylnaphthalene	2-Chloronaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene	Benzo(a)anthracene	Benzo(a)Pyrene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Benzo(k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TTEC
MW-1	MW-1 ^a	4/8/1998	Golder		< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.094	< 0.0	4 < 0.094	< 0.094		< 0.094	< 0.094	< 0.094	< 0.094	0.07
	MW-1	1/17/2001	Golder		< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.0	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
	MW-2 ^a	4/8/1998	Golder		< 0.1	0.18	0.84	< 0.1	< 0.1	< 0.1	< 0.1	0.8	< 0.1	0.72	< 0.1	< 0.	< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	< 0.1	0.08
MW-2	MW-2	1/17/2001	Golder		< 0.08	< 0.08	0.32	< 0.08	< 0.08	< 0.08	< 0.08	0.32	0.22	0.47	< 0.08	< 0.0	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
	MW-2-081214	08/12/2014	Farallon	0.60		< 0.094	0.33	< 0.094	< 0.094	< 0.0094	< 0.094	0.18	0.17	< 0.094	< 0.094	< 0.00	4 < 0.0094	< 0.0094	< 0.0094		< 0.0094	< 0.0094	< 0.0094	0.01
MW-3	MW-3 ^a	4/8/1998	Golder		< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.96	< 0.9	< 0.96	< 0.96		< 0.96	< 0.96	< 0.96	< 0.96	0.72
_	MW-3	1/17/2001	Golder		< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.0	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
MW-4	MW-4	1/17/2001	Golder		< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.0	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
MW-5	MW-5	1/17/2001	Golder		< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.0	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
	MW-5-092314	09/23/14	Farallon	< 0.095		< 0.095	< 0.095	< 0.095	< 0.095	< 0.0095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.095	< 0.00	5 < 0.0095	< 0.0095	< 0.0095		< 0.0095	< 0.0095	< 0.0095	0.01
MW-6	MW-6	1/17/2001	Golder		< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.0	< 0.08	< 0.08		< 0.08	< 0.08	< 0.08	< 0.08	0.06
WI W -0	MW-6-092315	09/23/14	Farallon	< 0.096		< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	0.01	< 0.0096	< 0.0096	< 0.0096		< 0.0096	< 0.0096	< 0.0096	0.01
RW-1	RW-1 ^a	4/8/1998	Golder		< 0.093	26	1.1	< 0.093	0.15	< 0.093	< 0.093	2.9	11	2.5	< 0.093	< 0.09	< 0.093	< 0.093		< 0.093	< 0.093	< 0.093	< 0.093	0.07
RW-2	RW-2 ^a	4/8/1998	Golder		< 0.098	39	1.3	< 0.098	< 0.098	< 0.098	< 0.098	2.1	43	2.3	0.27	< 0.09	< 0.098	< 0.098		< 0.098	< 0.098	< 0.098	< 0.098	0.07
	RW-2-081214	08/12/2014	Farallon	39		38	1.2	0.17	0.14	< 0.0094	< 0.094	3.9	1.3	1.5	< 0.094	< 0.00	4 < 0.0094	< 0.0094	< 0.0094		< 0.0094	< 0.0094	< 0.0094	0.01
F-7	F7-GW-081314	08/13/2014	Farallon	< 0.099		< 0.099	< 0.099	< 0.099	< 0.099	< 0.0099	< 0.099	< 0.099	< 0.099	< 0.099	< 0.099	< 0.00	9 < 0.0099	< 0.0099	< 0.0099		< 0.0099	< 0.0099	< 0.0099	0.01
	MTCA Method A Cleanup Levels NE										NE									0.1				
	MTCA Method B Cleanup Levels ⁴ 1.51 NE 32 960 NE 4,800 NE 640 640 160 NE									480									0.012					

NOTES: Results in **bold** denote concentrations exceed applicable Washington State Model Toxics Control Action Cleanup Regulation (MTCA) Method A or B cleanup levels.

-- denotes sample not reported. < denotes analyte not detected at or exceeding the reporting limit listed.

< denotes analyte not detected at or exceeding the reporting limit listed.</p>
¹Only select analytes and advections exceeding the laboratory reporting limit are shown.
²Analyzed by U.S. Environmental Protection Agency (EPA) Method 8270 or 8270D.
³MTCA Method A Groundwater Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.
⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Groundwater from CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ccy/clare/CLARCDataTables.aspx
^aAnalyzed by EPA Method 8270.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons (PAHs) Farallon = Farallon Consulting, LL.C. Golder = Golder Associates Inc. NE = cleanup level not established RI = remedial investigation TTEC = total toxicity equivalent concentration

				Analytical Results ¹								
							(microgram	s per liter)				
Sample Location	Sample Identification	Sample Date	Sampled By	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	
Oil Tank Excavation	W-1	6/29/1988	Blymyer	<100	<2,000	<100	800	1,900	<50	<100	<100	
MW-1_88	MW-1	10/6/1988	Blymyer				<100	<100				
MW-2A_88	MW-2A	10/6/1988	Blymyer				<100	100				
MW-3_88	MW-3	10/6/1988	Blymyer				<100	<100				
MW-4_88	MW-4	10/6/1988	Blymyer				<100	<100				
MW-5_88	MW-5	10/6/1988	Blymyer				<100	<100				
		MTCA Method A	Cleanup Levels ²	5	NE	5	50	15	2	NE	NE	
		MTCA Method B	Cleanup Levels ³	0.0583	3,200	8	NE	NE	NE	80	80	

NOTES:

-- denotes sample not reported.

< denotes analyte not detected at or exceeding the reporting limit listed.

Results in **bold** denote concentrations exceed regulatory screening level.

¹Method of analysis unknown.

²Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Groundwater Cleanup Levels,

Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

³Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Groundwater from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

Blymyer = Blymyer Engineers, Inc. NE = cleanup level not established RI = remedial investigation

							Analytical Results (milligrams per kilogram)							
			Excavation	Sample Depth										
Grid	Sample Location	Sample Identification	Sample Type	(feet) ¹	Sample Date	Sampled By	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴	
						2017	7 Excavations							
		I	1	I		E	xcavation 1		I					
В3	B3-SE-SW	B3-SE-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
	B3-SE-B	B3-SE-13.0-B	Bottom	13.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
C3	C3-NE	C3-NE-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
C4	C4-NE	C4-NE-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
	C4-SE	C4-SE-8.0-SW	Sidewall	8.0	3/21/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
C5	C5-NW	C5-NW-8.0-SW	Sidewall	8.0	3/21/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
C5/D5	C5/D5-SW	C5/D5-SW-8.0-B	Bottom	8.0	3/21/2017	Farallon	< 50	1,530	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
C6	C6-NW	C6-NW-13.0-SW	Sidewall	13.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
	C6-SE	C6-SE-13.0-B	Bottom	13.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
C7	C7-NW	C7-NW-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
C7/D7	C7/D7-SE	C7/D7-SE-14.0-B	Bottom	14.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
68	C8-NE	C8-NE-10.0-B	Bottom	10.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
C0	C8-NW	C8-NW-9-SW	Sidewall	9.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
С9	C9-NE	C9-NE-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
D3	D3-SE	D3-SE-9.0-SW	Sidewall	9.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
D4	D4-NE	D4-NE-9.0-B	Bottom	9.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
D5/E5	D5/E5-SE	D5/E5-SE-8.0-B	Bottom	8.0	3/21/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
D6/E6	D6/E6-SE	D6/E6-SE-11.0-B	Bottom	11.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
D7/E7	D7/E7-SE	D7/E7-SE-13.0-B	Bottom	13.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
D8/E8 SW	D8/E8-SW	D8/E8-SW-10.0-B	Bottom	10.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
D0/L0-3 W	D8/E8-SW	D8/E8-SW-11-B	Bottom	11.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
D9/E9	D9/E9-SW	D9/E9-SW-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
E4	E4-SW	E4-SW-8.0-B	Bottom	8.0	3/21/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
E5	E5-SW	E5-SW-8.0-SW	Sidewall	8.0	3/21/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
E6	E6-SE	E6-SE-10.0-SW	Sidewall	10.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
E7	E7-SE	E7-SE-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15	
MTCA Met	od A Cleanup Lev	els for Soil ⁵					2,000	2,000	30/100 ⁶	0.03	7	6	9	

							Analytical Results (milligrams per kilogram)								
			Excavation	Sample Depth											
Grid	Sample Location	Sample Identification	Sample Type	(feet) ¹	Sample Date	Sampled By	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴		
E9	E9-SE	E9-SE-8.0-SW	Sidewall	8.0	3/23/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
F8	F8-NE	F8-NE-8.0-SW	Sidewall	8.0	3/23/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
F8/E8	F8/E8-SW	F8/E8-SW-11-B	Bottom	11.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
F9/E9	F9/E9-SW	F9/E9-SW-11.0-B	Bottom	11.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
F9	F9-SE	F9-SE-8.0-SW	Sidewall	8.0	3/23/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
G8	G8-NE	G8-NE-9-SW	Sidewall	9.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
G8/F8	G8/F8-SE	G8/F8-SE-11-B	Bottom	11.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
G9	G9-SE	G9-SE-9-SW	Sidewall	9.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
G9/F9	G9/F9-SW	G9/F9-SW-11-B	Bottom	11.0	3/20/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
						E	xcavation 2								
G2	G2-S	G2-S-8.0-SW	Sidewall	8.0	3/24/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
G3	G3-SW	G3-SW-8.0-SW	Sidewall	8.0	3/23/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
G4	G4-NW	G4-NW-8.0-SW	Sidewall	8.0	3/23/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
04	G4-SW	G4-SW-9.0-B	Bottom	9.0	3/23/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
G4/G5	G4/G5-NW	G4/G5-NW-9.0-B	Bottom	9.0	3/23/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
65	G5-NW	G5-NW-8.0-SW	Sidewall	8.0	3/23/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
05	G5-SE	G5-SE-9.0-B	Bottom	9.0	3/23/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
G6	G6-N	G6-N-9.0-B	Bottom	9.0	3/16/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	0.15		
G7	G7-N	G7-N-9.0-B	Bottom	9.0	3/16/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	0.094	0.38		
н2	H2-NE	H2-NE-8.0-SW	Sidewall	8.0	3/28/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
112	H2-S	H2-S-12.0-B	Bottom	12.0	3/24/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
H3	H3-S	H3-S-12.5-B	Bottom	12.5	3/24/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
	H4-S	Н4-5-13.0-В	Bottom	13.0	3/28/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
H5	H5-SE	H5-SE-9.0-B	Bottom	9.0	3/23/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15		
H6	H6-SW	H6-SW-9.0-B	Bottom	9.0	3/16/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	0.091	0.38		
MTCA Met	Method A Cleanup Levels for Soil ⁵						2,000	2,000	30/100 ⁶	0.03	7	6	9		

						Analytical Results (milligrams per kilogram)							
			Excavation	Sample Depth									
Grid	Sample Location	Sample Identification	Sample Type	(feet) ¹	Sample Date	Sampled By	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
H7	H7-S	H7-S-8.0-SW	Sidewall	8.0	3/16/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	H7-SW	H7-SW-9.0-B	Bottom	9.0	3/16/2017	Farallon	< 50	< 250	14	< 0.02	< 0.10	0.081	0.37
13	I3-NE	I3-NE-8.0-SW	Sidewall	8.0	3/24/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	I3-SW	I3-SW-10.0-B	Bottom	10.0	3/24/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
14	I4-NE	I4-NE-8.0-SW	Sidewall	8.0	3/24/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
11	I4-SW	I4-SW-10.0-B	Bottom	10.0	3/24/2017	Farallon	711	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
15	I5-NE	I5-NE-8.0-SW	Sidewall	8.0	3/24/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
15	I5-SE	I5-SE-8.0-SW	Sidewall	8.0	3/24/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
16	I6-SW-SW	I6-SW-8.0-SW	Sidewall	8.0	3/16/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
10	I6-SW-B	I6-SW-9.0-B	Bottom	9.0	3/16/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
17	I7-S	17-S-8.0-SW	Sidewall	8.0	3/16/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
1,	I7-SW	I7-SW-9.0-B	Bottom	9.0	3/16/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
17	J7-SE	J7-SE-8.0-SW	Sidewall	8.0	3/16/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
37	J7-SW	J7-SW-9.0-B	Bottom	9.0	3/16/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
						E	xcavation 3						
J9	J9-NE	J9-NE-9.0-B	Bottom	9.0	3/27/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
К9	K9-NE	K9-NE-10.0-B	Bottom	10.0	3/27/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
MTCA Meth	od A Cleanup Leve	els for Soil ⁵					2,000	2,000	30/100 ⁶	0.03	7	6	9
						E	xcavation 4						
EX4 North	EX4-N	EX4-N-10.0-SW	Sidewall	10.0	3/29/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
EX4 East	EX4-E-SW	EX4-E-10.0-SW	Sidewall	10.0	3/29/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
LAT Last	EX4-E-B	EX4-E-11.0-B	Bottom	11.0	3/29/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
EX4 South	EX4-S	EX4-S-10.0-SW	Sidewall	10.0	3/29/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
EX4 West	EX4-W-SW	EX4-W-10.0-SW	Sidewall	10.0	3/29/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
EA4 west	EX4-W-B	EX4-W-11.0-B	Bottom	11.0	3/29/2017	Farallon	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
MTCA Meth	od A Cleanup Leve	els for Soil ⁵					2,000	2,000	30/100 ⁶	0.03	7	6	9

									Analytical R	esults (milligrams p	er kilogram)		
			Excevation	Sample Depth									
Grid	Sample Location	Sample Identification	Sample Type	(feet) ¹	Sample Date	Sampled By	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
						E	xcavation 5						
	EX5-B1	B1-042717	Bottom	9.0	4/27/2017	Farallon	< 35	< 70	< 7.7	< 0.0011	< 0.0054	< 0.0011	< 0.0032
	EX5-B2	B2-042717	Bottom	9.0	4/27/2017	Farallon	< 35	< 70	< 7.9	< 0.0011	< 0.0055	< 0.0011	< 0.0033
	EX5-B3	B3-042717	Bottom	9.0	4/27/2017	Farallon	< 33	< 66	< 6.8	< 0.0011	< 0.0055	< 0.0011	< 0.0033
	EX5-B4	B4-042717	Bottom	9.0	4/27/2017	Farallon	< 34	< 68	< 8.1	< 0.0011	< 0.0055	< 0.0011	< 0.0033
	EX5-B5	B5-042817-12.0	Bottom	12.0	4/28/2017	Farallon	< 34	< 68	< 8.1	0.0013	< 0.0061	< 0.0012	< 0.0037
EX5 Bottom	EX5-B6	B6-042817-12.0	Bottom	12.0	4/28/2017	Farallon	< 34	< 68	< 8.2	< 0.0013	< 0.0064	< 0.0013	< 0.0039
	EX5-B7	B7-050117-11.5	Bottom	11.5	5/1/2017	Farallon	100 N	500	< 7.0	< 0.0010	< 0.0052	0.0011	0.0072
	EX5-B8	B8-050117-12.0	Bottom	12.0	5/1/2017	Farallon	110	110	< 7.6	< 0.0013	< 0.0067	< 0.0013	< 0.0040
	EX5-B9	B9-050117-11.5	Bottom	11.5	5/1/2017	Farallon	< 35	< 69	< 8.8	< 0.0014	< 0.0068	< 0.0014	< 0.0041
	EX5-B10	B10-050117-13.0	Bottom	13.0	5/1/2017	Farallon	< 36	130	< 9.4	< 0.0014	< 0.0070	< 0.0014	< 0.0042
	EX5-NEB	NEB-050317-12.0	Bottom	12.0	5/3/2017	Farallon	< 30	< 60	< 6.6	< 0.0011	< 0.0056	< 0.0011	< 0.0033
	EX5-N1-SW	N1-SW-042117-8.0	Sidewall	8.0	4/21/2017	Farallon	< 33	< 66	< 8.1	< 0.0013	< 0.0066	< 0.0013	< 0.0039
	EX5-N2-SW	N2-SW-042117-8.0	Sidewall	8.0	4/21/2017	Farallon	< 36	< 72	< 9.7	< 0.0018	< 0.0089	< 0.0018	< 0.0054
	EX5-NE	NE-050317-9.5	Sidewall	9.5	5/3/2017	Farallon	< 29	< 58	< 6.2	< 0.0010	< 0.0051	< 0.0010	< 0.003
	EX5-NE-SW	NE-SW-8.0	Sidewall	8.0	4/20/2017	Farallon	< 28	130	< 5.1	< 0.00087	< 0.0044	< 0.00087	< 0.00257
EX 5 North Sidewall	EX5-NNW	NNW-050317-8.5	Sidewall	8.5	5/3/2017	Farallon	< 33	< 66	< 7.4	< 0.0011	< 0.0056	< 0.0011	< 0.0034
	EX5-N-SW	N-SW-8.0	Sidewall	8.0	4/20/2017	Farallon	< 29	< 58	< 6.0	< 0.0010	< 0.0052	< 0.0010	< 0.0031
	EX5-NW	NW-050317-9.0	Sidewall	9.0	5/3/2017	Farallon	< 32	< 64	< 7.5	< 0.0013	< 0.0064	< 0.0013	< 0.0038
	EX5-NW-SW	NW-SW-042117-8.0	Sidewall	8.0	4/21/2017	Farallon	< 37	100	< 9.4	< 0.0018	< 0.0092	< 0.0018	< 0.0055
	EX5-NWW	NWW-050317-8.5	Sidewall	8.5	5/3/2017	Farallon	< 39	< 77	< 9.3	< 0.0017	< 0.0085	< 0.0017	< 0.0051
EX5 East	EX5-E1-SW	E1-SW-042717	Sidewall	8.0	4/27/2017	Farallon	< 34	< 68	< 7.3	< 0.0012	< 0.0058	< 0.0012	< 0.0035
Sidewall	EX5-E-SW	E-SW-8.0	Sidewall	8.0	4/20/2017	Farallon	< 27	< 53	< 5.1	< 0.00092	< 0.0046	< 0.00092	< 0.00272
MTCA Meth	Method A Cleanup Levels for Soil ⁵						2,000	2,000	30/100 ⁶	0.03	7	6	9

									er kilogram)				
Grid	Sample Location	Sample Identification	Excavation Sample Type	Sample Depth (feet) ¹	Sample Date	Sampled By	DRO ²	ORO ²	GRO ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Xylenes ⁴
EW a d	EX5-SE1-SW	SE1-SW-042717	Sidewall	8.0	4/27/2017	Farallon	< 34	< 68	< 7.8	< 0.0011	< 0.0057	< 0.0011	< 0.0034
EX5 South Sidewall	EX5-SE-SW	SE-SW-042117-8.0	Sidewall	8.0	4/21/2017	Farallon	< 29	< 58	< 5.9	< 0.0012	< 0.0059	< 0.0012	< 0.0036
	EX5-SW1-SW	SW1-SW-042717	Sidewall	8.0	4/27/2017	Farallon	< 39	< 77	< 10	< 0.0013	< 0.0067	< 0.0013	< 0.0040
	EX5-W1-SW	W1-SW-042117-9.0	Sidewall	9.0	4/21/2017	Farallon	< 33	< 66	< 7.3	< 0.0013	< 0.0064	< 0.0013	< 0.0038
EX5 West Sidewall	EX5-W3-SW	W3-SW-042717	Sidewall	8.0	4/27/2017	Farallon	< 31	< 62	< 5.8	< 0.0010	< 0.0052	< 0.0010	< 0.0031
	EX5-W4-SW	W4-SW-042717	Sidewall	8.0	4/27/2017	Farallon	< 36	< 71	< 7.9	< 0.0012	< 0.0060	< 0.0012	< 0.0036
				MTCA M	Aethod A Cleanu	• Levels for Soil ⁵	2,000	2,000	30/100 ⁶	0.03	7	6	9

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8021B.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁶Cleanup level is 30 milligrams per kilogram if benzene is detected and 100 milligrams per kilogram if benzene is not detected.

BTEX = benzene, toluene, ethylbenzene and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics Farallon = Farallon Consulting, L.L.C. GRO = TPH as gasoline-range organics N = hydrocarbons in the oil-range are impacting the diesel-range result ORO = TPH as oil-range organics

P:\1071 Prologis\1071010 6050 East Marginal Way South\Reports\Cleanup Action Closure Rpt\Tables\Cleanup Action Tables

							Analytical Results (milligrams per kilogram) ²						
Grid	Sample Location	Sample Identification	Excavation Sample Type	Sample Depth (feet) ¹	Sample Date	Sampled By	РСЕ	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride		
					RI Investiga	tion							
NA	S-1V	S-1V ^a	Waste Oil Tank Excavation	NA	06/29/1988	Blymyer	< 1	< 1		< 1			
NA	S-1F	S-1F ^a	Waste Oil Tank Excavation	NA	06/29/1988	Blymyer	< 1	< 1		< 1			
NA	CP 1	GP-1 (6-8')	NA	6 - 8	12/2/2003	Golder	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014		
INA	01-1	GP-1 (10-12')	NA	10 - 12	12/2/2003	Golder	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014		
NA	CP 2	GP-2 (6-8')	NA	6 - 8	12/2/2003	Golder	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
NA	GP-2	GP-2 (10-12')	NA	10 - 12	12/2/2003	Golder	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014		
NIA	CD 2	GP-3 (6-8')	NA	6 - 8	12/2/2003	Golder	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
NA	GP-3	GP-3 (10-12')	NA	10 - 12	12/2/2003	Golder	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014		
		GP-4 (2-4')	NA	2 - 4	12/2/2003	Golder	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
NIA	CD 4	GP-44 (2-4')	NA	2 - 4 (duplicate)	12/2/2003	Golder	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
NA	GP-4	GP-4 (6-8')	NA	6 - 8	12/2/2003	Golder	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
		GP-4 (10-12')	NA	10 - 12	12/2/2003	Golder	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014		
NIA	CD 5	GP-5 (6-8')	NA	6 - 8	12/2/2003	Golder	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
NA	GP-5	GP-5 (10-12')	NA	10 - 12	12/2/2003	Golder	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014		
NA	GP-6	GP-6 (0-2.5')	NA	0 - 2.5	12/2/2003	Golder	0.0052	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
NIA	CD 7	GP-7 (6-8')	NA	6 - 8	12/2/2003	Golder	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013		
NA	GP-/	GP-7 (10-12')	NA	10 - 12	12/2/2003	Golder	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014		
NIA	CD 9	GP-8 (6-8')	NA	6 - 8	12/2/2003	Golder	0.0096	< 0.0014	< 0.0014	< 0.0014	< 0.0014		
NA	GP-8	GP-8 (10-12')	NA	10 - 12	12/2/2003	Golder	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013		
NA	F-5	F5-6.7-081314	NA	6.7	08/13/2014	Farallon	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
NA	F-8	F8-5.0-081314	NA	5	08/13/2014	Farallon	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
				20	17 Test Pit Invo	estigation							
	TD 4	TP4-7.0-022217	NA	7	2/22/2017	Farallon	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014		
NA	IP-4	TP4-11.0-022217	NA	11	2/22/2017	Farallon	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012		
		TP5-7.0-022117	NA	7	2/21/2017	Farallon	0.012	< 0.0010	< 0.0010	< 0.0010	< 0.0010		
NA	TP-5	TP5-11.0-022117	NA	11	2/21/2017	Farallon	< 0.065	< 0.065	< 0.065	< 0.065	< 0.065		
		TP8-7.0-022117	NA	7	2/21/2017	Farallon	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
NA	TP-8	TP8-11.0-022117	NA	11	2/21/2017	Farallon	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011		
		TP9-7.0-022117	NA	7	2/21/2017	Farallon	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012		
NA	TP-9	TP9-11.0-022117	NA	11	2/21/2017	Farallon	< 0.0018	< 0.0018	< 0.0018	< 0.0018	< 0.0018		
	TD 10	TP10-7.0-022117	NA	7	2/21/2017	Farallon	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010		
NA	TP-10	TP10-11.0-022117	NA	11	2/21/2017	Farallon	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015		
	TD 11	TP11-7.0-030817	NA	7	3/8/2017	Farallon	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012		
NA	1P-11	TP11-11.0-030817	NA	11	3/8/2017	Farallon	< 0.0013	< 0.0013	< 0.0013	< 0.0013	< 0.0013		

								Analytical	Results (milligra	ns per kilogram)	2
Grid	Sample Location	Sample Identification	Excavation Sample Type	Sample Depth (feet) ¹	Sample Date	Sampled By	РСЕ	ТСЕ	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride
NIA	TD 12	TP12-7.0-030817	NA	7	3/8/2017	Farallon	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
NA	1P-12	TP12-11.0-030817	NA	11	3/8/2017	Farallon	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015
NIA	TD 12	TP13-7.0-030817	NA	7	3/8/2017	Farallon	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
NA	1P-13	TP13-11.0-030817	NA	11	3/8/2017	Farallon	< 0.0014	< 0.0014	< 0.0014	< 0.0014	< 0.0014
		•			2017 Excavat	tions				•	
					Excavation	n 1					
C7	C7-NW	C7-NW-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015
C7/D7	C7/D7-SE	C7/D7-SE-14.0-B	Bottom	14.0	3/22/2017	Farallon	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011
C°	C8-NE	C8-NE-10.0-B	Bottom	10.0	3/20/2017	Farallon	0.0018	< 0.0015	< 0.0015	< 0.0015	< 0.0015
Co	C8-NW	C8-NW-9.0-SW	Sidewall	9.0	3/20/2017	Farallon	0.0095	< 0.0020	< 0.0020	< 0.0020	< 0.0020
C0	C9-NE	C9-NE-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	0.020	< 0.0023	< 0.0023	< 0.0023	< 0.0023
09	C9-NW	C9-NW-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017
D7/E7	D7/E7-SE	D7/E7-SE-13.0-B	Bottom	13.0	3/22/2017	Farallon	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012
D8/E8	D8/E8-SW	D8/E8-SW-11.0-B	Bottom	11.0	3/20/2017	Farallon	0.0092	< 0.0028	< 0.0028	< 0.0028	< 0.0028
D9/E9	D9/E9-SW	D9/E9-SW-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	0.0075	< 0.0022	< 0.0022	< 0.0022	< 0.0022
E7	E7-SE	E7-SE-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017
F8/E8	F8/E8-SW	F8/E8-SW-11.0-B	Bottom	11.0	3/20/2017	Farallon	< 0.0035	< 0.0035	< 0.0035	< 0.0035	< 0.0035
F9/E9	F9/E9-SW	F9/E9-SW-11.0-B	Bottom	11.0	3/20/2017	Farallon	< 0.0036	< 0.0036	< 0.0036	< 0.0036	< 0.0036
					Excavation	3					
J9	J9-NE	J9-NE-9.0-B	Bottom	9.0	3/27/2017	Farallon	< 0.0017	< 0.0017	< 0.0017	< 0.0017	< 0.0017
K9	K9-NE	K9-NE-10.0-B	Bottom	Farallon	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015		
	MTCA Method A Cleanup Levels for S							0.03	NE	NE	NE
	MTCA Method B Cleanup Levels (Direct Contact and Ingestion Pathw						476	12	160	1,600	0.67
	MTCA Method B Cleanup Levels (Protection of Groundwater, Vadose/Saturated Zon							0.0264/0.00152	0.0781/0.00515	0.518/0.0325	0.00167/0.0000885

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8260C.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁴Washington State Cleanup Levels and Risk Calculations under the Washington State Model Toxics Control Act Cleanup Regulation, Standard Method B Formula Values for Soil (Unrestricted Land Use) - Direct Contact (Ingestion Only) and Leaching Pathway, https://fortress.wa.gov/ecy/clarc/Reporting/ChemicalQuery.aspx

^aAnalyzed by EPA Method 8270.

Blymer = Blymyer Engineers, Inc. Farallon = Farallon Consulting, L.L.C. Golder = Golder Associates Inc. NA = not applicable NE = cleanup level not established PCE = tetrachloroethene TCE = trichloroethene VOCs = volatile organic compounds

								Analyt	ical Result	s (milligra	ms per kil	ogram) ²		
Grid	Sample Location	Sample Identification	Excavation Sample Type	Sample Depth (feet) ¹	Sample Date	Sampled By	Benzo(a)pyrene	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(j,k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
		~	~	()	RI Investi	gation		_				_		
NA	Product Piping Trench	CF-T1	NA	2.2 - 2.7	4/7/1998	Golder	< 0.0061	0.052	< 0.0077	< 0.012	0.097	< 0.0083	< 0.012	0.011
NA	MW-2	MW2-2.0	NA	1.5 - 2.0	4/7/1998	Golder	0.049	0.06	0.063	0.047	0.17	< 0.0088	< 0.012	0.069
NA	RW-1	RW1-7.0	NA	7.0 - 8.5	4/7/1998	Golder	< 0.0074	0.094	< 0.0094	< 0.015	< 0.0098	< 0.01	< 0.014	0.016
NA	RW-2	RW2-4.0	NA	4.0 - 5.5	4/8/1998	Golder	< 0.006	< 0.0065	< 0.0076	< 0.012	< 0.0079	< 0.0082	< 0.012	0.005
		RW2-7.0	NA	7.0 - 8.5	4/8/1998	Golder	< 0.0074	< 0.008	< 0.0094	< 0.015	< 0.0098	< 0.01	< 0.014	0.007
NA	SP-1	SP1-(8-11')	NA	8 - 11	1/11/2001	Golder	< 0.022	< 0.022	< 0.022	< 0.022	0.037	< 0.022	< 0.022	0.007
NA	SP-5	SP5-(5-8')	NA NA	5 8	1/11/2001	Golder	<0.018	0.11	<0.018	< 0.018	0.097	<0.018	<0.018	0.025
NA	SP 8	SP8 (5.8')	NA	5.8	1/11/2001	Golder	< 0.027	< 0.027	< 0.027	<0.027	< 0.027	< 0.027	< 0.027	0.020
NA	SP-9	SP9-(5-8')	NA	5-8	1/11/2001	Golder	<0.1	<0.1	<0.1	<0.1	<0.22	<0.1	<0.1	0.08
NA	SP-11	SP11-(5-8')	NA	5-8	1/11/2001	Golder	< 0.023	< 0.023	< 0.023	<0.023	<0.023	<0.023	< 0.023	0.017
		(***)			2017 Test Pit In	nvestigation				0.020				
NIA	TD 4	TP4-7.0-022217	NA	7	2/22/2017	Farallon	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	0.0067
INA	11-4	TP4-11.0-022217	NA	11	2/22/2017	Farallon	< 0.0090	< 0.0090	< 0.0090	< 0.0090	< 0.0090	< 0.0090	< 0.0090	0.0068
NA	TP-5	TP5-7.0-022117	NA	7	2/21/2017	Farallon	< 0.0088	< 0.0088	< 0.0088	< 0.0088	< 0.0088	< 0.0088	< 0.0088	0.0066
		TP5-11.0-022117	NA	11	2/21/2017	Farallon	< 0.0085	0.012	< 0.0085	< 0.0085	0.012	< 0.0085	< 0.0085	0.0073
					2017 Exca	vations								
	T	1	1	1	Excavat	ion I	1	1	1	1	1	1	1	
C7	C7-NW	C7-NW-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	< 0.0091	0.0069
C7/D7	C7/D7-SE	C7/D7-SE-14.0-B	Bottom	14.0	3/22/2017	Farallon	< 0.0085	< 0.0085	< 0.0085	< 0.0085	< 0.0085	< 0.0085	< 0.0085	0.0064
C8	C8-NE	C8-NE-10.0-B	Bottom	10.0	3/20/2017	Farallon	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	0.0067
	C8-NW	C8-NW-9.0-SW	Sidewall	9.0	3/20/2017	Farallon	< 0.0092	< 0.0092	< 0.0092	< 0.0092	< 0.0092	< 0.0092	< 0.0092	0.0069
C9	C9-NE	C9-NE-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	0.0072
	C9-NW	C9-NW-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	< 0.0092	< 0.0092	< 0.0092	< 0.0092	< 0.0092	< 0.0092	< 0.0092	0.0069
D7/E7	D7/E7	D7/E7-SE-13.0-B	Bottom	13.0	3/22/2017	Farallon	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	0.0067
D8/E8	D8/E8	D8/E8-SW-11.0-B	Bottom	11.0	3/20/2017	Farallon	< 0.0098	< 0.0098	< 0.0098	< 0.0098	< 0.0098	< 0.0098	< 0.0098	0.0074
D9/E9	D9/E9	D9/E9-SW-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	0.0075
E7	E7	E7-SE-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 0.0095	< 0.0095	0.015	< 0.0095	0.015	< 0.0095	< 0.0095	0.0083
F8/E8	F8/E8	F8/E8-SW-11.0-B	Bottom	11.0	3/20/2017	Farallon	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	0.010
F9/E9	F9/E9	F9/E9-SW-11.0-B	Bottom	11.0	3/20/2017	Farallon	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	< 0.014	0.011
					Excavat	ion 3								
J9	J9-NE	J9-NE-9.0-B	Bottom	9.0	3/27/2017	Farallon	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	0.0075
K9	K9-NE	K9-NE-10.0-B	Bottom	10.0	3/27/2017	Farallon	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	0.0073
MTCA Meth	od A Cleanup Level	for Soil ⁵												0.1

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM.

³Total cPAHs derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁴For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons Farallon = Farallon Consulting, L.L.C. Golder = Golder Associates Inc. NA = not applicable TEC = toxic equivalent concentration

Sample Depth						A	Analytical Results	s (milligrams	per kilogram)	2					
Grid	Sample Location	Sample Identification	Excavation Sample Type	(feet) ¹	Sample Date	Sampled By	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver
						RI Invest	tigation								
NA	S-1V	S-1V	Waste Oil Tank Excavation	NA	06/29/1988	Blymyer	<0.1	<2	<0.1	9.1		14.2	< 0.05	<0.1	<0.1
NA	S-1F	S-1F	Waste Oil Tank Excavation	NA	06/29/1988	Blymyer	<0.1	<2	<0.1	7.2		9.9	< 0.05	< 0.1	< 0.1
NA	S-2F	S-2F	Waste Oil Tank Excavation	NA	06/29/1988	Blymyer	<0.1	<2	<0.1	9.9		11.0	< 0.05	< 0.1	< 0.1
NA	S-2V	S-2V	Waste Oil Tank Excavation	NA	06/29/1988	Blymyer	< 0.1	<2	< 0.1	11.3		8.6	< 0.05	<0.1	<0.1
						2017 Test Pit I	nvestigation								
NΔ	TP-4	TP4-7.0-022217	NA	7.0	2/22/2017	Farallon	<13		< 0.67	18	22	< 6.7	< 0.33		
INA	11-4	TP4-11.0-022217	NA	11.0	2/22/2017	Farallon	<13		< 0.67	16	17	< 6.7	< 0.34		
NΔ	TP-5	TP5-7.0-022117	NA	7.0	2/21/2017	Farallon	<13		<0.66	7.0	6.3	< 6.6	< 0.33		
INA	11-5	TP5-11.0-022117	NA	11.0	2/21/2017	Farallon	<13		< 0.63	7.9	7.2	< 6.3	< 0.32		
	2017														
						Excavat	tion 1								
C7	C7-NW	C7-NW-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 14		< 0.68	17		< 6.8	< 0.34		
C7/D7	C7/D7-SE	C7/D7-SE-14.0-B	Bottom	14.0	3/22/2017	Farallon	< 13		< 0.64	16		< 6.4	< 0.32		
C8	C8-NE	C8-NE-10.0-B	Bottom	10.0	3/20/2017	Farallon	< 13		< 0.67	11		< 6.7	< 0.33		
	C8-NW	C8-NW-9.0-SW	Sidewall	9.0	3/20/2017	Farallon	< 14		< 0.69	13		< 6.9	< 0.34		
С9	C9-NE	C9-NE-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	< 14		< 0.72	16		< 7.2	< 0.36		
	C9-NW	C9-NW-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	< 14		< 0.69	15		< 6.9	< 0.35		
D7/E7	D7/E7-SE	D7/E7-SE-13.0-B	Bottom	13.0	3/22/2017	Farallon	< 13		< 0.66	18		< 6.6	< 0.33		
D8/E8	D8/E8-SW	D8/E8-SW-11.0-B	Bottom	11.0	3/20/2017	Farallon	< 15		< 0.73	14		< 7.3	< 0.37		
D9/E9	D9/E9-SW	D9/E9-SW-8.0-SW	Sidewall	8.0	3/20/2017	Farallon	< 15		< 0.75	20		< 7.5	< 0.37		
E7	E7-SE	E7-SE-12.0-SW	Sidewall	12.0	3/22/2017	Farallon	< 14		< 0.71	17		< 7.1	< 0.36		
F8/E8	F8/E8-SW	F8/E8-SW-11.0-B	Bottom	11.0	3/20/2017	Farallon	12		< 1.0	22		12	< 0.51		
F9/E9	F9/E9-SW	F9/E9-SW-11.0-B	Bottom	11.0	3/20/2017	Farallon	14		< 1.1	23		20	< 0.53		
						Excava	tion 3								
J9	J9-NE	J9-NE-9.0-B	Bottom	9.0	3/27/2017	Farallon	< 15		< 0.75	21		< 7.5	< 0.37		
K9	K9-NE	K9-NE-10.0-B	Bottom	10.0	3/27/2017	Farallon	< 14		< 0.72	22		< 7.2	< 0.36		
			MTCA Method	l A Soil Cleanup	Levels, Unrestri	icted Land Use ³	20	NE	2	2,000	NE	250	2	NE	NE
			MTCA Method B Cleanup	Levels (Direct C	ontact and Leac	hing Pathway) ⁴	0.0667	16,000	80	120,000	3,200	NE	NE	400	400
		MTCA Meth	od B Cleanup Levels (Protec	tion of Groundw	ater, Vadose/Sa	turated Zones) ⁴	2.92/0.146	1,650/82.6	0.69/0.0349	480,000/24,000	284/14.3	3,000/150	2.09/0.105	5.2/0.264	13.6/0.687

NOTES:

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

--- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Methods 6010C/7471B.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as amended 2013, unless otherwise noted.

⁴Washington State Cleanup Levels and Risk Calculations under MTCA, Standard Method B Formula Values for Soil from

CLARC Master spreadsheet downloaded on 9/24/2015 from https://fortress.wa.gov/ecy/clarc/CLARCDataTables.aspx

Blymer = Blymyer Engineers, Inc. Farallon = Farallon Consulting, L.L.C. NA = not applicable

NE = not established

APPENDIX A BORING LOGS

CLEANUP ACTION CLOSURE REPORT 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

USCS Classification and Graphic Legend

 $V : \mathcal{Q} := \mathcal{D} : \mathcal{Q}$

Claimed Solutions Integration Starger Inten No. size) Claimes ACC Appreciable amount of fraction present fraction passed of manopulation an 50% of the No. size) Claimes ACC Appreciable Appr	Coarse-	GRAVEL	CLEAN GRAVEL (Little		GW	Well graded GRAVEL, well graded GRAVEL with sand
of material biarper praction size) that 50% of oarse fraction no. 4 size) GAVEL WITH FINES (Appreciable amount of fines) GP-GM Poorly graded GRAVEL - GRAVEL with sand and sit SAND Solution size) SAND No. 4 size) CLEAN SAND (Little or fines) GGC Clayey GRAVEL SAND SOLUK/or fraction passed of coarse fraction passed of than 50% CLEAN SAND (Little or fines) SW Well graded SAND SAND SOLUK/or fraction passed of than 50% CLEAN SAND (Little or fines) SW Well graded SAND SAND SOLUK/or fraction passed of than 50% CLEAN SAND (Little or fines) SW SPS SAND SOLUK/or fraction passed (Appreciable amount of fines) SN SILT Sittly SAND SOLUCATION CLAY (Little or fraction passed (Appreciable amount of fines) SM-ML SILT - Sittly SAND SOLUCATION CLAY (Little or fraction passed (Appreciable amount of fines) ML SILT - Sittly SAND SOLUCATION CLAY (Little or fraction passed of material solution SILT AND CLAY (Little or fraction fines) ML SILT - Sittle SAND SOLUCATION CLAY (Little or fraction size) SILT AND CLAY (Little or fraction fines) MH Inorganic SILT SOLUCATION CLAY (Little or fraction fines) Highly Organic Solut Image: Size fraction fines) MH Inorganic CLAY SOLUC	Soil (More	GRAVELLY	or no nnes)		GP	Poorly graded GRAVEL, GRAVEL with sand
Traction 200 size) Traction relained on No. 4 size) CPUP Decade almonit on fines) R a s GM Silty GRAVEL SAND AND SANDY SANDY ADUY SANDY ADUY SAND VITH FINES fraction passed through No. 4 size) CLEAN SAND (Little or no fines) SW Well graded SAND SAND AND SANDY SAND WITH FINES fraction passed through No. 4 size) CLEAN SAND (Little or fines) SP Poorty graded SAND SILT AND Grained Sand More than S0% of material is smaller than S0% SLT AND CLAY (Liquid init greater than S0) SLT AND CLAY (Liquid init greater than S0) ML SILT - Silty SAND SULT AND CLAY (Liquid init greater than S0% SLT AND CLAY (Liquid init greater than S0) ML SILT - Silty SAND SULT AND CLAY (Liquid init greater than S0% SLT AND CLAY (Liquid init greater than S0) ML SILT OCL CLAY CTHER MATERIALS Highly Organic Soil MH Inorganic SLT Inorganic CLAY COTHER MATERIALS Highly Organic Soil I PT Peat COTHER MATERIALS OTHER Highly Organic Soil I AC Asphalt concrete WD WOD WOD WOD WOD WOD WOD WOD	of material	than 50% of	GRAVEL WITH FINES		GP-GM	Poorly graded GRAVEL - GRAVEL with sand and silt
size) No. 4 sieve) CLEAN SAND (Little or fhan 50% of coarse fraction passed through No. CLEAN SAND (Little or fines) SW Well graded SAND SAND AND SAND Y than 50% of coarse fraction passed through No. CLEAN SAND (Little or fines) SP Poorly graded SAND SILT AND Grained Solf (More than 50% of material is smaller than 50% of material size) SLT AND CLAY (Liquid than 50) SLT AND CLAY (Liquid than 50) ML SILT - Silty SAND SILT AND CLAY (Liquid than 50) SLT AND CLAY (Liquid than 50) ML SILT CLAY SULT AND CLAY (Liquid than 50) ML SILT CLAY SILT CLAY SULT AND CLAY (Liquid than 50) MH Inorganic SILT SULT AND CLAY (Liquid than 50) MH Inorganic CLAY SULT AND CLAY (Liquid than 50) MH Inorganic SILT SULT AND CL	than No. 200 sieve	fraction retained on	fines)		GM	Silty GRAVEL
SAND AND SANDY SOLI, (More than 50% of coarse fraction a sire) CLEAN SAND (Little or no fines) SW Well graded SAND SOLI, (More through No. 4 sire) SAND WITH FINES (Appreciable amount of fines) SP-SM Poorly graded SAND - silty SAND Fine- Grained Soli (More than 50) SULT AND CLAY (Liquid is smaller than 50) SM-ML Silty SAND Fine- Grained Soli (More than 50) SULT AND CLAY (Liquid imit greater than 50) ML SILT - Silty SAND SULT AND CLAY (Liquid is smaller than 50) SULT AND CLAY (Liquid imit greater than 50) MH SILT AUD (CLAY (Liquid imit greater than 50) MH SULT AND CLAY (Liquid imit greater than 50) Highly Organic Soil MH Inorganic CLAY OTHER MATERIALS Highly Organic Soil MH PT Peat OTHER MATERIALS PAVEMENT AC Asphalt concrete OTHER MATERIALS OTHER DB Debris (Miscellaneous) DB Debris (Miscellaneous) PC Portiand cement	size)	No. 4 sieve)			GC	Clayey GRAVEL
SOIL (More than 50% of coarse fraction passed through No. 4 sieve) SND WITH FINES (Appreciable amount of frees) SP- SM Poorly graded SAND Fine- Grained Soil (More than 50) SILT AND CLAY (Liquid limit less than 50) SILT AND CLAY (Liquid limit greater than 50) ML SILT - Silty SAND Fine- Sorained Soil (More than 50) SILT AND CLAY (Liquid limit greater than 50) ML SILT - CL CLAY Subscription ML SILT - CL OLAY Subscription MH Inorganic SILT Size) SILT AND CLAY (Liquid limit greater than 50) MH Inorganic CLAY Subscription MH Inorganic CLAY OTHER MATERIALS Highly Organic Soil Image: Size Protection AC OTHER MATERIALS OTHER AC Asphalt concrete OTHER OTHER AC Asphalt concrete WATERIALS OTHER AC Asphalt concrete WD Wood Debris MD WD Wood Debris MD WO PC Portland cement		SAND AND	CLEAN SAND (Little or		SW	Well graded SAND
Fine- Grained Soli (More than SO) SAND WITH FINES (Appreciable amount of fines) SP-SM Poorly graded SAND - silty SAND Fine- Grained Soli (More than SO) SILT AND CLAY (Liquid limit less than SO) SILT AND CLAY (Liquid limit grateriant smaller than SO) ML SILT - Silty SAND SILT AND CLAY (Liquid limit grateriant size) SILT AND CLAY (Liquid limit grateriant impreciable amount of than SO) ML SILT - CLAY SILT AND CLAY (Liquid limit grateriant impreciable amount of than SO) ML SILT - CLAY SILT AND CLAY (Liquid limit grateriant impreciable amount of than SO) MH Inorganic SILT SILT AND CLAY (Liquid limit grateriant impreciable amount of than SO) MH Inorganic CLAY OTHER MATERIALS Highly Organic Soll Impreciable amount of than SO MH OTHER MATERIALS Highly Organic Soll Impreciable amount of than SO CH OTHER PAVEMENT AC Asphalt concrete OTHER OTHER RK Bedrock MD WD Wood Debris MD DB Debris (Miscellaneous) PC Portland cement		SOIL (More than 50% of			SP	Poorly graded SAND
Fine- Grained Soli (More than 50) SILT AND CLAY (Liquid limit less than 50) SILT AND CLAY (Liquid limit grained Soli (More than 50) ML SILT - Silty SAND Silt AND ML SILT - Silty SAND Soli (More than 50) ML SILT - Silty SAND Silt AND Unable of than 50) ML SILT - Silty SAND Silt AND CLAY (Liquid limit grained size) ML SILT Silt AND CLAY (Liquid limit grained size) MH Inorganic SILT Silt AND CLAY (Liquid limit grained size) MH Inorganic CLAY Other than 50) Highly Organic Soil MH Inorganic CLAY OTHER MATERIALS PAVEMENT Highly Organic Soil PT Peat OTHER MATERIALS OTHER OTHER AC Asphalt concrete WD Wood Debris S MD Wood Debris S MD DB Debris (Miscellaneous) PC Portland cement		coarse	SAND WITH FINES	/./. <u>.</u> /.	SP-SM	Poorly graded SAND - silty SAND
4 sieve) SC Clayey SAND Fine-Grained Soil (More than 50% of material is smaller than 50) SILT AND CLAY (Liquid limit less than 50) ML SILT SILT AND CLAY (Liquid limit greater than 50) SILT AND CLAY (Liquid limit greater than 50) MH Inorganic SILT SILT AND CLAY (Liquid limit greater than 50) SILT AND CLAY (Liquid limit greater than 50) MH Inorganic SILT OTHER MATERIALS PAVEMENT Highly Organic Soll I PT Peat OTHER MATERIALS PAVEMENT AC Asphalt concrete AC Asphalt concrete OTHER OTHER OTHER AC Asphalt concrete CO Concrete OTHER OTHER PAVEMENT AC Asphalt concrete CO Concrete OTHER OTHER PC Portland cement DB Debris (Miscellaneous)		passed through No.	fines)		SM	Silty SAND
Fine-Grained Soil (More than 50) SILT AND CLAY (Liquid imit less than 50) ML SILT CLAY Stanler than 50) ML SILT CLAY CLAY Silt T AND CLAY (Liquid imit less than 50) ML OL Organic SILT Silt T AND CLAY (Liquid imit greater than 50) MH Inorganic SILT MH Silt T AND CLAY (Liquid imit greater than 50) MH Inorganic CLAY Vinit greater than 50) MH Inorganic CLAY OTHER Highly Organic Soil I PT OTHER PAVEMENT AC Asphalt concrete OTHER OTHER MD WOD Wood Debris VOD WD Wood Debris MD MD VOD PC Portland cement PC Portland cement		4 sieve)			SC	Clayey SAND
Fine- Grained Soil (More Imm less) SILT AND CLAY (Liquid limit less) ML SILT Is smaller than No. 200 sieve size) SILT AND CLAY (Liquid limit greater than 50) MH Inorganic SILT SILT AND CLAY (Liquid limit greater than 50) SILT AND CLAY (Liquid limit greater than 50) MH Inorganic CLAY OTHER Highly Organic Soil Image: Silt Silt Silt Silt Silt Silt Silt Silt					SM-ML	SILT - Silty SAND
Soli (More than 50% of material is smaller than No. 200 sieve size) SILT AND CLAY (Liquid limit greater than S0) OL Organic SILT Sile (More than 50) SILT AND CLAY (Liquid limit greater than S0) MH Inorganic CLAY VIEW Size) Highly Organic Soil MH Inorganic CLAY VIEW Size) Highly Organic Soil MH Inorganic CLAY VIEW Size) Highly Organic Soil MH Organic CLAY VIEW Size) Highly Organic Soil MH Organic CLAY OTHER MATERIALS PAVEMENT AC Asphalt concrete OTHER OTHER OTHER CO Concrete OTHER OTHER PT Peat OTHER PT PEat CO OTHER PC Portand cement PC	Fine- Grained	SILT AND			ML	SILT
of material is smaller than No. 200 sive size) SILT AND CLAY (Liquid limit greater than 50) OL Organic SILT Image: Sile of the state of the st	Soil (More than 50%	limit less		1777	CL	CLAY
than No. SILT AND CLAY (Liquid limit greater than 50) MH Inorganic SILT CH Inorganic CLAY OH Organic CLAY OTHER Highly Organic Soil III PT Peat OTHER PAVEMENT AC Asphalt concrete OTHER OTHER OTHER OTHER RK Bedrock OTHER OTHER PC Portland cement PC	of material is smaller				OL	Organic SILT
size) binit greater than 50) CH Inorganic CLAY OH Organic CLAY OH Organic CLAY Inorganic CLAY OH Organic CLAY OH Organic CLAY OTHER AC Asphalt concrete CO CO Concrete CO CONCRETE CO CO CONCRETE CO CO CONCRETE CO CONCRETE CO CO CONCRETE CO CONCR	than No. 200 sieve	SILT AND			MH	Inorganic SILT
Image: Constraint of y Image: Constraint of y OH Organic CLAY OTHER Highly Organic Soil Image: Constraint of y PT Peat OTHER PAVEMENT AC Asphalt concrete OTHER OTHER OTHER CO Concrete OTHER OTHER KK Bedrock Image: OTHER Image: Other of the period of the perio	size)	limit greater			СН	Inorganic CLAY
OTHER MATERIALS PAVEMENT Highly Organic Soil Image: PT Peat OTHER MATERIALS PAVEMENT AC Asphalt concrete OTHER OTHER CO Concrete OTHER OTHER RK Bedrock VD Wood Debris VD DB Debris (Miscellaneous) PC Portland cement				$\sim\sim$	ОН	Organic CLAY
OTHER MATERIALS PAVEMENT AC Asphalt concrete OTHER CO Concrete OTHER RK Bedrock WD Wood Debris DB Debris (Miscellaneous) PC Portland cement			Highly Organic Soil		PT	Peat
OTHER CO Concrete WD Wood Debris DB Debris (Miscellaneous) PC Portland cement	OTHER MATERIALS	PAVEMENT			AC	Asphalt concrete
OTHER RK Bedrock WD Wood Debris DB Debris (Miscellaneous) PC Portland cement					СО	Concrete
WD Wood Debris DB Debris (Miscellaneous) PC Portland cement		OTHER			RK	Bedrock
DB Debris (Miscellaneous) PC Portland cement					WD	Wood Debris
PC Portland cement				<u> </u>	DB	Debris (Miscellaneous)
					PC	Portland cement

E:\Forms\Boilerplates\LogPlot\Lithology\Coverpage

GROUNDWATER
TECHNOLOGY
Division of OII Recovery Systems, Inc.

MONITORING VELL Sketch Map Project Blymyer/Seattle Owner Conosolidated Freightways Sketch Map Location Seattle MONITORING VELL Sketch Map Date Drilled 6/22/288 Total Depth of Hole 24_ft Diameter 7.5in		_ 1	Drilling Log
LocationSeattle_WAProject Number 201-729-5012 Date Drilledf/27/BBTotal Depth of Hole _24_ft_ Diameter7.5in Surface ElevationWater Level Initial _9_ft24-hra Casing Diaintength20_ftStorePVC Drilling CompanySoil_Sampling_ Drilling Mathod Hallow_Stem_AugerNoise DrillerCKetwirtiatog byMWinters DrillerCKetwirtiatog byMWinters DrillerCKetwirtiatog byMWinters DrillerCKetwirtiatog byMWinters Description/Soil Classification (Color, Texture, Structures) Asphalt ± 2 inches over base coarse, ±4 inch Brown fine to medium sand with some gravel (medium dense, moist, no hydrocarbon odor) (grades, dark gray-brown, no gravel) 10- 10- 10- 10- 112- 10- 10- 112- 10- 112- 10- 112- 10- 112- 10- 112- 10- 112- 10- 112- 10- 114- 10- 114- 10- 114- 10- 10- 114- 10- 10- 10- 10- 10- 10- 10- 10	Project <u>Blymyer/Seattle</u>	MONITORING WELL Owner Conosolidated Freightway	Skelch Map
Date Drilled 6/27/88 Total Depth of Hole 24_ft_Diameter	Location	Project Number 201-799-5012	
Surface Elevation	Date Drilled 6/27/88 Total D	Depth of Hole	
Screen: Dia 2.inLength 20 frStol Size O20_in Casing: Dia 4 inLength 4 ftType NV Drilling Company Soil Sampling Drilling Method Hollow Stem_Auger Noies Drilling Company Soil Sampling Drilling Method Hollow Stem_Auger Noies Drilling Company Soil Sampling Drilling Method Hollow Stem_Auger Noies Drilling Company Soil Sampling Drilling Method Hollow Stem_Auger Noies Drilling Company Soil Sampling Drilling Method Hollow Stem_Auger Noies Drilling Company Soil Sampling Drilling Method Hollow Stem_Auger Noies Drilling Company Soil Sampling Drilling Method Hollow Stem_Auger Noies Drilling Company Soil Sampling Drilling Method Hollow Stem_Auger Noies 0 Soil SamplingSoil Sampling Mapplication (Color, Texture, Structures) Noies	Surface Elevation Water I	Level, Initial 24-hrs	
Casing: Dia 4 inLength 4 ftType PVCNotes Drilling Company _Soil_Sampling_Drilling Method Hallow_Stem_Auger Notes Drilling Company _Soil_Sampling_Drilling Method Mallow_Stem_Auger Description/Soil Classification (Color, Texture, Structures) Park _Soil_Sampling_Drilling Method Mallow_Stem_Auger Notes Park _Soil_Sampling_Drilling Method Mallow_Stem_Auger Notes Park	Screen: Dia Length		
Drilling Company	Casing: Dia Length	4 ft. Type PVC	
Driller C. Letyirtis Log by M. Winters 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0	Drilling CompanySoil_Sampli	ng_ Drilling Method Hollow_Stem_Auger.	Notes
Sp Sp <th< td=""><td>Driller Ketvirtis</td><td> Log byM Winters</td><td></td></th<>	Driller Ketvirtis	Log byM Winters	
Asphalt ± 2 inches over base coarse, ±4 inch Asphalt ± 2 inches over base coarse, ±4 inch Brown fine to medium sand with some gravel (medium dense, moist, no hydrocarbon odor) (grades, dark gray-brown, no gravel) Dark gray-brown, clayey silt with some fine sand (soft, moist to wet, no hydrocarbon odor) Encountered water 6/27/88 (0945 hr.) (grades more sand, wet) Dark gray-brown fine to medium sand (medium dense, wet, no hydrocarbon odor)	Depth (Feet) Well Construction Notes Sample	J J Description J J Description (Color, Tex S	Soll Classification ture, Structures)
$\begin{bmatrix} 10 \\ -10$	$ \begin{array}{c} $	Asphalt ± 2 inches Brown fine to medi (medium dense, m (grades, dark gr SP Dark gray-brown, c sand (soft, mois odor) Encountered water (grades more san Dark gray-brown fi (medium dense, w SP SP SP SP Dark gray-brown fi (medium dense, w Dark gray-brown fi (medium dense, w	<pre>over base coarse, ±4 inches um sand with some gravel oist, no hydrocarbon odor) ay-brown, no gravel) layey silt with some fine t to wet, no hydrocarbon 6/27/88 (0945 hr.) d, wet) ne to medium sand et, no hydrocarbon odor) , installed monitoring well</pre>

2 **Drilling Log** MONITORING WELL Consolidated Freightwys Project Blymyer/Seattle Sketch Map ___ Owner .__ Seattle, WA _____ Project Number 201-799-5012 Location .__ Date Drilled 6/27/88 ____ Total Depth of Hole 14.5ft Diameter 7.5 in. Surface Elevation _____ Water Level, Initial 8.5 ft 24-hrs Screen: Dia. _____ Length _____ Slot Size _____ Casing: Dia _____ Length _____ Type _____ Drilling Company Soil Sampling ____ Drilling Method Hollow Stem Auger Notes Driller _____C. Kervirtis _____Log by M. Winters Well Construction Depth (Feet) 2 Notes Sample Number Graphic **Description/Soil Classification** (Color, Texture, Structures) Asphalt \pm 2 inches over base coarse, \pm 4 inches 0 Brown fine to medium sand with some gravel (medium dense, moist, no hydrocarbon odor) 2 12 10 (grades no gravel) 8 6 R **K** 8 _Encountered water 6/27/88 (1145 hr.) 2 2 3 Dark gray-brown fine sandy silt with some clay 10 (soft, wet, no hydrocarbon odor) 12 С 2 2 Dark gray-brown fine to medium sand 14 28 (medium dense, wet, no hydrocarbon odor) Drilled to 14.5 feet, rig refusal on wood, backfilled boring with bentonite and concrete 16 18 20 22 74

AA4AA444

	GROUI TECHN		ATE GY	R		
	Division of Oil F	lecovery Sy		2A	Drilling Lo	g
Project <u>Blymy</u> Location <u>Seatt</u> Date Drilled <u>6/2</u> Surface Elevation	er/Seattle le, WA 7 <u>/88</u> To w	MO	NITORI Owner . Project N of Hole . Initial . ⁸	NG WELL Consolidated Freigh umber 201-799-5012 24 ft Diameter 75 i 5 ft 24 hrs	Ways Skelch Map	
Screen: Dia 2	in	anoth 20) ft.	Siot Size .020	in	
Casing: Dia 2	in. 1	ength	4 ft.	Type PVC		
Drilling Company Driller <u>C. Ke</u>	Soil Samp tvirtis	ling	Drilling N	Hollow Stem Au M. Winters	ger Notes	
Depth (Feet) Well Construction	Notes	Sample Number	Graphic Log	Desc (Cc	ription/Soil Classification lor, Texture, Structures)	
				Asphalt ± 2 inches Brown fine to medi (medium dense, m (grades no grave Encountered wa Dark gray-brown fi (soft, wet, no h Dark gray-brown fi (medium dense, w Drilled to 24 feet	over base coarse, ± 4 inches um sand with some gravel bist, no hydrocarbon odor) 1) ter 6/27/88 (1215 hr.) ne sandy silt with some clay ydrocarbon odor) ne to medium sand et, no hydrocarbon odor)	

Project Blymyer/Seattle Location Seattle, WA	Owner Project	Consolidated Freightways.	Skeich Map
Location Seattle, WA	Project	201_709_5012	
6/27/88		Number 201-799-3012	
Date Drilled	oth of Hole	24ft. Diameter 7.5in.	
Surface Elevation Water Le	vel, Initial	9 ft. 24.hrs	
Screen: Dia Length	20 ft.	Slot Size .020 in.	
Casing: Dia Length	<u>4_ft</u>	Туре	
Drilling Company Soil Sampling	Drilling I	Method Hollow Stem Auger	Notes
Driller <u>C. Ketvirtis</u>	Log by	M. Winters	
Depth (Feet) Well Construction Notes Sample Number	Graphic Log	Description/Sc (Color, Textu	oil Classification re, Structures)
$ \begin{array}{c} $		Asphalt ± 2 inches over 1 Gray-green fine to medium (medium dense, moist, n (grades darker, less gr Brown silty clay (soft, n Encountered water 6 Dark green-brown clayey f (loose, wet, moderate f Dark green-gray fine to me (medium dense, wet, no (grades coarser) Drilled to 24 feet, insta	base coarse, ± 4inches n sand with some gravel no hydrocarbon odor) cavel) moist, no hydrocarbon odor) 5/27/88 (1420 hr.) fine sand hydrocarbon odor) edium sand product odor)

Division of Oil Re	acovery System	e Inc	. 4	Drilling Log
Project Blymyer/Seattle	MONIT	ORING WELL - Consolidated E	reightways Skelch Map	
Location Seattle, WA	Proje	ct Number		
Date Drilled 6/28/88To	tal Depth of Ho	ie 24ft. Diameter	<u>.5 in.</u>	
Surface Elevation Wa	ter Level, Initia	1 <u>9 ft.</u> 24.hrs		
Screen: Dia <u>2 in</u> Le	ngth <u>20 ft</u> .	Slot Size	<u>.020 in.</u>	
Casing: Dia <u>2 in</u> Le	ngth <u>4 ft</u> .	Туре	PVC	
Drilling Company Soil Sampl	ing Drilli	ng Method Hollow Sc		
Driller <u>C. Ketvirtis</u>	Log	by M. Winters		·
Depth (Feet) Well Construction Notes	Sample Number Graphic Log		Description/Soll Classificatio (Color, Texture, Structures)	n
	A 7 4 4 5 5 7 4 4 5 7 4 4 5 7 4 4 5 7 4 4 5 7 4 4 5 7 4 4 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1	Asphalt ± 2 i (slight hy Brown fine to (medium de (grades da (slight hy Encountere Dark gray-brown f (soft, we Gray-brown f	nches over base, coan drocarbon odor) medium sand with som nse, moist, no product rk gray-brown, finer drocarbon odor) ed water 6/28/88 (084 own clayey silt with t, no product odor) ine to medium sand et, no product odor)	rse, ± 4 inches me gravel ct odor) , no gravel) 0 hr.) sand
		Drilled to 2	4 feet, installed mo	nitoring well

				ONTROD	TNO 1001	Drilling Log
Project	Blymye	er/Seatt1	.e	OWLIUK.	ING WELL Consolidated Freightwa	Ketch Map
Location	Seatt	le, WA		. Project i	Number 201-799-5012	
Date Dril	led .6/2	8/881	fotal Depth	ol Hole	.24_ft_ Diameter _10_5_in_	
Surface	Elevation		Nater Level	, Initial	9 ft. 24-hrs	
Screen: (Dia _4_	in (ength2	20_£t	Slot Size	
Casing: D)ia <u>4</u> 1	<u>in</u> ι	ength	<u>3_ft_</u>	ТуреРУС	
Drilling C	ompany	Soil Samp	ling	Drilling N	Method Hollow Stem Auger	Notes
Driller _	<u>C. Ket</u>	virtis		Log by	M. Winters	
Depth (Feet)	Well Construction	Notes	Sample Number	Graphic Log	Descriptio (Color, 1	n/Soil Classification exture, Structures)
-0 - -2 - -4 - -6 - -8 - -10 - -12 - -14 - -16 - -14 - -16 - -18 - -16 - -18 - -16 - -18 - -20 - -22 - -24 -		P.M.	$\begin{bmatrix} A \\ 4 \\ 4 \\ 4 \\ \end{bmatrix}$ $\begin{bmatrix} B \\ 2 \\ 1 \\ 2 \\ \end{bmatrix}$ $\begin{bmatrix} C \\ 2 \\ 1 \\ 2 \\ \end{bmatrix}$		Asphalt ± 2 inches over Gray-green fine to mea (medium dense, moist (grades darker, no odor, visible free Dark gray-brown claye (soft, moist to wet Contered water (grades wet, no provided (grades wet, no provided for a stand) Dark gray-brown fine (loose, wet, no provided for a stand) Dark gray-brown fine (loose, wet, no provided for a stand)	er base coarse, ± 4 inches lium sand with some gravel , moderate hydrocarbon odor) gravel, strong hydrocarbon product) y silt with sand moderate hydrocarbon odor) 6/28/88 (0950 hr.) duct odor) to medium sand duct odor)

		EN	VIF	RON	ME	NTA	LF	IELD DE	RILLING LOG	
Project Name:	Conso	lidate	d Fi	reighti	Nays	Project Number:	T-	1768-01	Well Number: P1	
Logged By:	7	ι. T	irao	\		Surface Elevation	n:		Well 24 N 4E Location: Twnshp Range	20-29 Section 1/4, 1/4
Drilling Method:	Strat	oprol	oe	Hole Diameter:	2"	Casing Size/Typ	e:		Depth ~ 7 to Water: 7.46	Encountered Static
Date Sta	irted:	8/8/	97	Drilling Co	ompany:	TE	4		Methods of Decontamination Pl	rior to Drilling:
Date Co	mpleted	:				Ioda				·
n Feet	g No.	Depthrai	e	ntration	Count	overy th / %	S		Soil Description	
)epth i	Sarr Type	ample Inter	- H	Concei	Blow (Reco	SN			
		<i>w</i>							Ground Surface	
р - т										ŀ
- 2										
-								-	· · · · · · · · · · · · · · · · · · ·	
- 3									1	-
- 4		4'-7'	0835	5 0		67	GM	Gray, silt	x, fine to medium :	andy, fine _
-5						-	-,	GRAVEL	; dry.	
- 6		-					SP	Black and SAND;	tan, tues to me moist to wet.	attum _
								Black V	The Investigant SA	ND
		7-10	084:			୪୬	SP/	grading	to brown and gray	, outy, -
5							- 311 	ture to	medium SAND ; W	et; stratifies
- 9								wood p	niece at 9 feet.	-
-10				-				Вот	OM OF PROBE	ID FEET -
- 11										× -
- 12										-
- 13									• •	-
-										
-										-
·····	······································	L		J	1	No	maci			Data
SHAN		V & V ENVI		SON, ental se	INC.	Loca	ation of	f Job		Job No.
			SEATT	LE, WASHI (206) 6	NGTON 32-8020			LOG OF	BORING	FIG. NO.

. •

Project Name: Logged By:	Cons A	olidat , Ti	ed F Trao	Freigh	tways	Project Number Surface Elevatio	. T-1		Well P2 Number: P2 Well 24 N Location: Twnshp	20129 Section 1/4,
Drilling Method: Date Sta Date Co	Hra: arted: mpleted	topro 8/8/	0e 10 97 [Hole Diarneter: Drilling Co Driller:	2" ompany:	Casing Size/Typ To	ne: TEG dd		Methods of Decontamination	Encountered Stat Prior to Drilling: 2r VINS
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil Description	
- 1 - 2 - 3 - 4		2'-5'	0910	0		100	GNY SP-SM SP	Grasy and be and slight dry to m Brown, fi moist	nown, oilty, saudy, fi ntly silty, fine to r oist. ne to medium SA	ne GRAVEL nedium SAN ND;
- 5		5'-8'	0915	232		83	ML/ SP	Gray, slig Fine to strong on soil	phily clayey SILT medium SAND; me hydrocarben odur	and brown not to wit and cheen
8 9 - 10								BOTTON	N OF PROBE	9 TEET
-										
HAN	INOI	1 & V	VILS	SON,	INC.	Na	me of a	Job Job		Date Job N

·• · ·

-	ENVIRONMENTAL FIELD DRILLING LOG											
	Project Name: Consolidated Freightmays							Τ-	1768-01	Well P3		
	Logged By: A. Tirao						Surface Elevation:			Well 24N 4E Location: Twnshp Range	20 - 29 Section 1/4, 1/4	
	Drilling Stratoprobe Hole Diameter: 2"						Casing Size/Type:			Depth <u>~6,5</u> to Water:	Encountered Static	
	Date Started: 8/8/97 Drilling Company:					ompany:	TEG			Methods of Decontamination Pr	rior to Drilling:	
	Date Co		: 	<u> </u>	Driller:		1000			AICONOX, WAR		
	Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs	Soil Description			
-	- \ - \ - 7										-	
	- 3 - 4		2'-5' 09 5'-8' 09	0947	47 0		100	GМ	Gray, silty GRAVE	, fine to medium, so il; dry,	vay, time	
								SP	Brown, fi to mois	ine to medium SA st.	ND; dry _ -	
	- 5			0951				SP	Brown, fine	to nuedium SAND;	moist.	
	- 6 - - 7							ML	Gray 1sh 'k moist	orown, slightly clay- to wet.	cy 51LT; -	
	- g							SP	Dark gray BOTTON	fine to medium SAN 1 OF PROBE B	ID; Wet, TEET	
	- 9									•	• -	
	- 10 -											
	-										· -	
	-										-	
	-										-	
	-						-				-	
SHANNON & WILSON, INC. Name of Job												
ENVIRONMENTAL SERVICES SEATTLE, WASHINGTON (206) 632-8020								LOG OF BORING			FIG. NO.	
		EN	VIF	RON	MEN	ATA	LF	IELD DE	RILLING LOG			
---------------------	----------------------	---------------------------------------	------	----------------------------------	----------------------------	------------------------	-----------	---	---	---	--	--
Project Name:	Consol	idated	l Fr	reightw	ays 1	Project Number:	T-1	763-01	Well Number: P4			
Logged By:	Å	Ti	rao		1	Surface Elevation			Well 24N 4E Location: Twnshp Range	20 - 29 Section 1/4, 1/4		
Drilling Method:	Stra	toprabi	c	Hole Diameter:	2"	Casing Size/Typ	e:		Depth <u>~ 8</u> to Water:	Encountered Static		
Date Sta	arted:	8/8/	97	Drilling Co	mpany:		TEG	, ,	Methods of Decontamination Pr Acrosovy Water	ior to Drilling:		
Date Co	mpleted	· · · · · · · · · · · · · · · · · · ·	l		T	1000	<u></u>					
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil Description			
										- - -		
- 2 - 3		2'-5'	1033	3 0		83	GN/ SP	Gray, silly GRAVEL SAND;	1, fine to medium, car . and tan, fine to dry.	rdy, fine medium		
- 4							SP/ML	Brown fine dry to	, to micdium SAND o moist.	and SILT; _		
		5-8	1040	17.6		50	GM/ ML	Brown and sandy, SILT, o moist t slight s	- gray, silty, five fune GRAVEL, slu indi five to michium to wit; hydrocarbo sheen on soil.	b medium ghtly clayey- i SAND; m alor,		
- 9 - 9								BOTTOM (OF PROEE 3 FEE	л - - - -		
- 10 - -										· -		
- - -										۳ ۲ ۲		
<u>спур</u>		121	<	SON		Na	me of	of Job Date				
		ENVI		ENTAL SE LE, WASHI (206) 6	RVICES NGTON 32-8020	Loca	ation of	BORING	Job No. FIG. NO.			

· · · · ·

	roject Iame: Consolidated Freight ways Project T-1768-01 Well Number: T-1768-01 Number: P5													
Project	Consol	idated	Fre	eight wa	ys	Project Number	T-1	168-01	Well P5					
Logged By:	Ą	Ti	rao			Surface Elevation	n:		Well 24-N 4E Location: Twnshp Range	20†29 Section 1/4, 1/4				
Drilling Method:	Strat	oprob	e	Hole Diameter:	. 2"	Casing Size/Typ	e:		Depth ~ 7.5 to Water: 9.05	Encountered Static				
Date Sta Date Co	arted: mpleted	8/8/4	17	Drilling Co Driller:	ompany:	Tod	rEG d		Methods of Decontamination P Alconox, Wat	rior to Drilling:				
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil Description					
-		0'-3'	1123	0		100	GM	Gray, pil	ty, fire to medium	sandy, .				
- 1							5P -	Dark brown	slightly silly, fine	to meetium				
- 2							SP	Tax, fine	tomedium SAND;	ary to _				
- 3 -		3'-6'	1129	0		83	SP	Dark bron	ND; dry					
4								40 mole						
- 6 - 7 - 8				7.3			ML	gray, slightly fine SILT; moist to n on other, sheen.	-sardy to					
- 1								BUTTOM	OF PROBE 9 F	EET				
- 10 -														
-														
-														
SHAN		N & N ENVI		SON,	INC.	Na Loca	me of ation of		Date Job No.					
			SEATT	LE, WASH (206) 6	INGTON 32-8020			BORING	FIG. NO.					

алан сайна. Алан сайна сайн

		EN	VIF	RON	ME	NTA	LF	IELD DRILLING LOG
Project Name:	Conso	lidate	& FI	reightu	Nays	Project Number	· T-1	168 - 01 Well P6
Logged By:		A -	Tira	>		Surface Elevation	n:	Well 24-N 4E 20-129 Location: Twnshp Range Section 1/4, 1/4
Drilling Method:	Stro	topro	be	Hole Diameter	. 2"	Casing Size/Typ	e:	to Water: 7.89 Encountered
Date Sta	arted:	8/8	197	Drilling C	ompany:	Tł	Ę	
Date Co	mpleted	:	<u> </u>	Driller:		100	a	Alconox, Water Physe
epth in Feet	Sample Type & No.	ample Depth Interval	Time	oncentration	Blow Count	Recovery Length / %	nscs	Soil Description
	·	ů	 					Ground Surface
+								
F \								
- 2								. –
- 3								
- 4								
-								
-5								
- 6		6'9'	1225	10,3		100	SP	Dark brown, fine to medium SAND; dry.
- 8			1230	0.4			ML	Dark gray, slightly clausy SILT; moist to wet.
- 4				- -	***** <u>*</u> ****			POTTOM OF PROBE 9 FEET
- 10								-
F			- - - -					ε.
-								
-								
<u> </u>								
SHAN	INOI	V & V	VILS	SON,	INC.	Na	me of ation of	Job Date f Job Lab Ma
	IJ	ENVI	RONME	NTAL SE E, WASHI (206) 6	RVICES NGTON 32-8020		LOG OF BORING FIG. NO.	

. .

Project Name: Consolidated Freightways Project Number: T-1768-01 Well Number: P7 Logged By: A. Tirao Surface Elevation: Well 24-N 4E 20 / 29 Drilling Method: Stratoprobe Hole Diameter: 2" Casing Size/Type: Depth to Water: ~ 7.5 Too Encour to Water: ~ 7.5 Too Encour Too Date Started: $\partial B 91$ Drilling Company: Driller: TEG Methods of Decontamination Prior to Drilling Alconox , Water riv Vulue edite of a started: $\partial B 91$ Drilling Company: Driller: TEG Methods of Decontamination Prior to Drilling Alconox , Water riv Vulue edite of a started: $\partial B 91$ $Drilling Company:Driller: TodA Soil Description Vulue edite of a started:Soil O S 100000000000000000000000000000000$	Project Name: Consolidated Freightways Project Number: T-1768-01 Well Number: P7												
Image Logged Logged By: A. Tirao Surface Elevation: Well Location: 24 N 4E 20 29 By: A. Tirao Elevation: Image Section Twnshp Range Section Drilling Stratoprobe Hole Diameter: 2" Casing Stratoprobe Depth Townshp Range Section Date Started: $6/8/91$ Drilling Company: TEG Methods of Decontamination Prior to Drilling Company: Date Completed: Drilling Company: TEG Methods of Decontamination Prior to Drilling Company: Date Completed: 0 Image Section Al whore, water rive Image Section Image Section Image Section Image Section Image Section Image Section Date Started: $6/8/91$ Drilling Company: TEG Driller: Todd Sold Sold Image Section Image Section Sold Sold Image Section Image Section Sold Sold Image Section Image Section Image Section Sold Image Section Image Secti													
By: Hole 2" Casing Depth ~7.5 Encour Method: Stratoprobe Diameter: 2" Casing Depth ~7.5 Encour Date Started: $6/8/91$ Drilling Company: TEG Methods of Decontamination Prior to Drill Date Completed: Drilling Company: TEG Methods of Decontamination Prior to Drill Date Completed: Driller: Toda Al conox , Water riv Image: Strateging of the strateging	1/4, 1/4												
Method: Image: Company: TEG Methods of Decontamination Prior to Drill Date Started: $\beta \beta 91$ Drilling Company: TEG Methods of Decontamination Prior to Drill Date Completed: Driller: Todd Alconox, Wader riv Image: Started: $\beta \beta 91$ Driller: Todd Alconox, Wader riv Image: Started: Image: Started: Image: Started: Sold Sold Image: Started: Image: Started: Image: Started: Image: Started: Started: Sold Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: Image: Started: <td>ntered Static</td>	ntered Static												
Date Completed: Driller: Toda Alconox Waster min Image: Second Sec	ng:												
Concentration Depth in Feet 1 1 2 1 1 1 <													
	-												
	 -												
	F												
	4												
	-												
	- 												
	-												
6 6'9' 1305 0 100 GM/ Brown and gray, silty, sandy -KAVE	٤٤, ـ												
F7 ML slightly daycy SILT, and fine	- ⁽¹⁾ -												
- 0 1312 0 slight hydrocarbon der (7.6	5 feet)												
	• []												
BOTTOM OF PICUBE 4 FEE	· –												
	, - , -												
	-												
	_												
	-												
	-												
]												
SHANNON & WILSON INC Name of Job													
ENVIRONMENTAL SERVICES SEATTLE, WASHINGTON (206) 632-8020 LOG OF BORING FIC	Date												

÷ *

		EN	VIR	ON	ME	NTA	LF	IELD DF	RILLING LOG	
Project	Consi	lidat	ed F	Freigh	tways	Project Number:	T-1	168-01	Well Number: P8	
Logged	Å	Tir	2 12			Surface Elevation	 r:		Well 24N 4E Location: Twnshp Range	20-29 Section 1/4, 1/4
Drilling	- Strat	porobe			2"	Casing Size/Typ			Depth <u>~ 7.2</u> to Water:	Encountered Static
Date St	arted:	8/8/	97 0	Drilling Co	ompany:	T	ĒG		Methods of Decontamination P	ior to Drilling:
Date C	ompleted	:		Driller:		Todd)		Alconox, water	rinse
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil Description	
										4
<u></u>										
- 2								•		-
- 3										-
<u> </u> 4										-
F									*•	-
1−5 1-										-
- 6		6'-9'	1345	0		100	SP/	Tan and	avay, fine to me	Lium CAND,-
7							/ML	SILT,	and fine canaly	SILT;
			1352	0				ary to	wet.	
Ę									•	•
								BEIDM	of problem	
										· -
Ł										· -
-										-
										4
F										
F										-
SHA	NNO	N& N ENVI		SON, NTAL SE	INC.	Na Loca	me of ation of	Job I Job		Date Job No.
			SEATTL	E, WASH (206) 6	INGTON 32-8020			BORING	FIG. NO.	

· · · ·

Project Name: (Logged By: Drilling Method: Date Sta Date Co	Strat arted:	daled Timoprob 8/8/0	Fra rao e b 17 b 0	ole Diameter: Drilling Co Driller:	C"	Project Number: Surface Elevation Casing Size/Typ TE Tod d	T- 1: e: EG	1768-01	Well Number: Well Location: Depth to Water: Methods of Alc	P9 24N 4E Twnshp Ran ~7 Decontamination	ge	20 - 29 Section 1/4, Encountered Stati or to Drilling: rinse
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs		Soil	Descriptio	n	
		5'-6'	1415	0		100		Brown and Slightly medium EOTTOM	gray, clayey SAND OF TH	SILT, SILT, ; dry tov	بری ارب 2	GRAVEL fine to
SHAI	HANNON & WILSON, INC ENVIRONMENTAL SERVICES SEATTLE, WASHINGTON (206) 632-8020						C. Name of Job Location of Job ES ON D20 LOG OF BORING					

• '

		EN	VIF	RON	ME	NTA	LF	IELD DRILLING LOG				
Project Name:	Conso	lidat	ed F	Freight	tways	Project Number:	T-	1768-01 Well Number: P10				
Logged	A	. Tiv	ao			Surface Elevation	 n: •	Well 24-N 4E Location: Twnshp Range	20 - 29 Section 1/4, 1/4			
Drilling	Stra	toprol	e	Hole Diameter	.2"	Casing Size/Typ	e:	Depth ~7'	Encountered Static			
Date Sta	arted: E	3/81	77	Drilling Co	ompany:		EG	Methods of Decontamination Prive	or to Drilling:			
Date Co	mpleted	:	<u> </u>	Driller:		Toda	R	Alconox, rinse	Water			
Depth in Feet	Sample Type & No.	Sample Depth Interval	Time	Concentration	Blow Count	Recovery Length / %	nscs	Soil Description				
· ·		<u> </u>		1				Ground Surface				
- 1									-			
- 2									-			
								-				
									-			
- 4								ו				
-5									-			
- 6		6'9'	1509	0	••••	100	SP	Brown, fare to medium SAND	finoist.			
- 7 - 9			1515	0			ML	Grayish brown, slightly claused moist to wet.	SILT; _			
- 9						.•	SP	Dark gray, fine to redium SAN BOTTOM OF PROBE 9	D; WEA.			
- 10									. –			
-									-			
-									-			
								· ·				
									-			
-									-			
SHAN	INOI	181	NILS	SON,	INC.	Na	me of .	Job	Date			
	IJ	ENVI	RONME	NTAL SE E, WASH (206) 6	RVICES INGTON 32-8020		LOG OF BORING	FIG. NO.				

۰ · ·

PROJECT: CF/Risk Assessment/WA RECORD OF BOREHOLE MW-1

SHEET 1 OF 1

PROJECT NUMBER: 983 1065

BORING LOCATION:

BORING DATE: 4/7/98

	8	SOIL PROFILE				[SAMPLES			PENETRA	TION RESI <u>S</u> TAN	CE MONITORING
EET	METH			0	ELEV						I ВL р 1,0 2,0	.OWS/FT. 📕	
TH F	BING	DESCRIPTION	ي بر	APHIC		ABER	ų	BLOWS / 6 IN.	N	PID	WATER CO	NTENT,PERCE	NT WATER
DEI	ß		nsc	щõ	DEPTH	Ź	ž	30 inch drop	ļ		Wp	 	WI LEVEL
- 0		Moderate brown, silty fine to coarse SAND and	SP	0-0					<u> </u>	0.6			Well Cap
-		fine GRAVEL, dry (FILL)		202 Ω						0.0			Monument cemented in place
			L	00									Medium
-		Loose, moderate brown and olive gray, silty fine to coarse SAND, becoming wet below ~6 ft bgs,	SM			<u> </u>							Chips -
		trace wood pieces at ~8.0 ft bgs				1	SS	6-10-7	17	0.7			
- 5													Monterey
Ĵ	ger					2	ss	11-20-12	32	0.7			
	em Au												ATD
	low St					2	99	6-9-10	10				-B-inch -
	D. Ho					Ŭ				E.E			
ŀ	inch I.		·						<u> </u>				2-inch I.D.
- 10	4	Compact, olive gray, silty fine to medium SAND, wet	SM- SP			4	ss	9-19-20	39	1.8			PVC 0.01-inch Slotted
-													Screen
-													
-													· · · · · · · · · · · · · · · · · · ·
-						5	SS	?	?	2.0			
- 15													《長秋日
-		Total depth 15.5 ft bgs											KAM
-													
								i					-
													-
- 20													-
-													-
-													-
-													_
-													-
- 25													-
-												1	
-													
-													
- 30													
DRIL	L RIG:	CME 75			1	LOGG	ED: G	. Zimmerman				Â	
DRIL	LING C	CONTRACTOR: Cascade Drilling			i	CHEC	KED:	-				Ð	Golder
UKIL						DATE	4/17/	98				<u> </u>	manage

PROJECT: CF/Risk Assessment/WA RECORD OF BOREHOLE MW-2

SHEET 1 OF 1

PROJECT NUMBER: 983 1065

BORING LOCATION:

BORING DATE: 4/7/98

-		r				<u> </u>		······			-			<u></u>	
_	臣	SOIL PROFILE	·····			 		SAMPLES	·	·	PENET	RATION RE	ESISTANCI	=	
HFEET	NG ME	DESCRIPTION		PHIC	ELEV.	ER		BLOWS / 6 IN.	N	PID		20 30	, 40		GRAPHIC
DEP1	BORI	DESCRIPTION	nsce	GRA LOG	DEPTH	N N	түрЕ	140 lb. hammer 30 inch drop			Wp		W	n	LEVEL
- 0				C 4774-3	· · ·									Lockin Well Cr	g ap
_		SAND and fine GRAVEL, petroleum odor (FILL)	l	00						35				Flush	ent N
				200										in plac	
-				°G [®]										Mediur Benton	m
-		Loose, olive gray, fine to medium sandy SILT,	SM	00										Criips	80-
-		trace stratified layers clayey SILT, wet below 6.0 ft, petroleum odor				1	SS	7-7-10	17	4.6					AA.
- 5														Monter #2/12 Sand	ey –
•	ger					2	ss	6-7-8	15	4.3					
-	m Au													7	
-	w Ste				:			·····						-8-inc	ŗ_\ E)
-	Holic					3	SS	4-7-8	15	2.1					
-	Q. LA														
- 10	4- Iŭ	Compact, dark gray, unstratified, silty fine to	SM-											Sch. 4 PVC	
		medium SAND, wel, no odor	55			4	SS	10-13-16	29	2.4				Slotte	
		Increase in grain size of sand to fine to													
-		coarse SAND				5	SS	4-7-8	15	1.3					
- 15															
-		Total depth 15.5 ft bgs													
															-
•															-
- 20															-
															-
															1
- 25															-
															1
															-
- 30															-
DRIL	L RIG:	CME 75				LOGG	ED: G	. Zimmerman	I		I	•			
DRIL	LING C	CONTRACTOR: Cascade Drilling				CHEC	KED:					(Gold	ler
DRIL	LER:	B. Gose				DATE	4/17/9	98						5500	riates

PROJECT: CF/Risk Assessment/WA RECORD OF BOREHOLE MW-3

SHEET <u>1</u> OF <u>1</u>

PROJECT NUMBER: 983 1065

BORING LOCATION:

BORING DATE: 4/7/98

	Đ	SOIL PROFILE					SAMPLES			PENETRATION			CE	MONITORING	
fet	METI			U	ELEV	_		BLOWS (6 IN			1 Q 10	BLOWS/ 20 :	′FT. ■ 30 4(ן ס 5	WELL GRAPHIC
EPTH	ORING	DESCRIPTION	scs	RAPHI	DEPTH	JMBEF	ЪЕ	140 lb. hammer	N	PID	WATER		IT,PERCE	NT	WATER
	<u>ñ</u>		l S	03	DEFIN	ž		30 inch drop	<u> </u>	<u> </u>	Wpr	 		WI Lockir	Ng
0		Gray, silty fine to coarse SAND and fine GRAVEL, dry (FILL)		800					1	3.3				Well C Flust	
[8 Q.										cement in plac	
ŀ				°C [®]										Mediu Bentor	m - 1 -
-		Compact, dark gray, silty fine to medium SAND,	SM	00			\vdash	·	<u> </u>						. 88-
-		stratified layers of clayey silt, trace wood pieces, becoming wet below 6.5 ft				1	SS	14-13-16	29	1.0					
- 5														#2/1 Sand	
-	Auger					2	SS	10-12-12	24	1.1				ļ	
	Stem													ľ	
-	Hollow					3	SS	8-15-20	35	1.3				Boreho	
-	С. Г ч					<u> </u>									
- 10	4-inc		 			 								2-inch i Sch. 4 PVC	
		Compact, dark gray, unstratified, silty fine to medium SAND, wet	SM- SP			4	SS	8-14-21	36	1.1				0.01-in Slotte Scree	
_															
								1							
						5	ss	2	2	12					
- 15		Total denth 15.5 ft bos								1.2					
-															-
-															-
-															-
-															-
- 20															4
-															
-															-
-															-
-															
- 25															
-															
_												1]
															1
															4
															1
- 30															_
DRIL	L RIG:	CME 75			1	LOGG	ED: G	. Zimmerman					Â		
DRIL		ONTRACTOR: Cascade Drilling				CHEC	KED:						(\mathbf{A})	Gold	ler
DRIL	LER:	B. GOSE				DATE:	4/17/	98						ISSOC	lates

PROJECT: CF/Risk Assessment/WA RECORD OF BOREHOLE RW-1

SHEET <u>1</u> OF <u>1</u>

PROJECT NUMBER: 983 1065

BORING LOCATION:

BORING DATE: 4/7/98

	ЦОН	SOIL PROFILE		-				SAMPLES			PENETRAT		
FEET	3 MET			₽ 2	ELEV.	æ		BLOWS / 6 IN.			1 BL(0 10 20	>WS/FT. ■ 3040	50 GRAPHIC
DEPTH	BORING	DESCRIPTION	nscs	GRAPH LOG	DEPTH	NUMBE	TYPE	140 lb. hammer 30 inch drop	N	PID	WATER CO		IT WATER LEVEL
- 0		Moderate yellowish brown, silty fine to medium SAND, some fine gravel, day (50 t)				<u> </u>			<u> </u>	0.6			Locking - Well Cap - Flush
		Shire ine graver, ury (rill)											Monument cemented in place
													Medium Bentonite Chins
-		Compact, moderate yellowish brown and medium	SM							32			T BB
									21	52			Monterey -
- 5	Jer					2	SS	6-5-7	12	120			Sand
	em Auç												
-	llow St					3	ss	7-5-7	12	125			-10.5-inch-Borehole
	I.D. Hc	Loose, olive gray, clayey SILT, some wood pieces, little fine to medium sand, wet	SM- ML			-							
- 10	6-inch	Potential free product observed in sample											4-inch I.D. Sch. 40 PVC
		Compact, dark gray, silty fine to medium SAND, wet	SM- SP			4	SS	7-9-12	21	28			0.01-inch Slotted Screen
-													
-													
-						5	SS	7-15-22	37	17			
- 15													
-		Total depth 15.5 ft bgs						······					
-													-
-								:					
-													-
- 20													-
-													
													-
													-
-													
- 25													-
												2	-
- 30													
DRILI	L RIG: LING C	CME 75 ONTRACTOR: Cascade Drilling			1	LOGG	ED: G KED:	. Zimmerman				Â	Colder
DRILI	LER:	B. Gose				DATE:	4/17/9	98					Golder ssociates

DATUM: **BORING LOCATION: PROJECT NUMBER: 983 1065** BORING DATE: 4/7/98 PENETRATION RESISTANCE BLOWS/FT. BORING METHOD MONITORING WELL GRAPHIC SOIL PROFILE SAMPLES DEPTH FEET 10 30 40 50 20 GRAPHIC LOG ELEV. BLOWS / 6 IN. NUMBER N PID WATER WATER CONTENT, PERCENT DESCRIPTION JSCS TYPE 140 lb. hammer LEVEL Ж. DEPTH WI Wot 30 inch drop Locking Well Cap 0 Flush Monument cemented in place -Moderate yellowish brown, silty fine to coarse 404 $\overline{\cdot}$ SAND and fine GRAVEL, dry, petroleum odor É (FILL) Med S. S. Compact, olive gray, silty fine to coarse SAND, SM unstratified, strong petroleum odor, becoming wet 1 SS 40-32-50 82 512 below ~6 ft 5 2 SS 17-15-14 29 450 6-inch 1.D. Hollow Stem Auger -10.5-incl Borehole 3 SS 6-10-15 25 412 Olive gray, clayey SILT Loose to compact, dark gray, silty fine to medium SM-SAND, wet, petroleum odor in sample SP 4-inct Sch 40 PVC minim 10 0.01-inch Slotted Screen SS 4 10-8-8 16 368 5 SS 5-10-15 25 189 minin 15 Total depth 15.5 ft bgs 20 25 30 DRILL RIG: CME 75 LOGGED: G. Zimmerman DRILLING CONTRACTOR: Cascade Drilling CHECKED: Golder Associates DRILLER: B. Gose DATE: 4/17/98

PROJECT: CF/Risk Assessment/WA

RECORD OF BOREHOLE RW-2

SHEET 1 OF 1

PRO	OJECT:	CF-Seattle DRILLINC NUMBER: 983-1065.810 DRILLINC		OR 10D: 4 : 01/10	O OF " HSA 0/2001	BC	RE		MN MSL N/A ATES	/-6	surveyed	SHEET ELEVAT INCLINA	1 of 1 ION: TION: -90
		SOIL PROFILE	J. CIVII	<u> </u>				SAMPLES		. 1101 3	PENETRA		
DEPTH (ft)	BORING METH	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	10 WATER CO W, I	20 30 40 DNTENT (PERCENT)	NOTES WATER LEVELS GRAPHIC
-0 -		0.0 - 3.0 Fine to medium SAND and Gravel (CLEAN FILL)			- 20								Well cap and flush mount
	drop hammer	3.0 - 8.5 Compact, dusky yellowish brown, non-stratified silty fine sand, moist to wet (ALLUVIUM)	SM		3.0	1	мс	9-9-9	18	<u>1.5</u> 1.5			Filter pack
	jer wolh 140lb	8.5 - 10.0			8.5	2	мс	3-3-3	6,	<u>`1,5</u> 1.5`			
- 10	w Stem Aug	Loose, olive gray, weakly stralified, fine sandy SILT, wet (ALLUVIUM) 10.0 - 17.0 Loose, dark gray, non-stratified, silly fine SAND wet (ALLI VII IM)	ML — —		10.0	3	мс	3:43-4	8	<u>1.5</u> 1.5			2" PVC .01"Slotted
-	4" ID Hollo					4	мс	4-5-17	; 22	1.5			
- 15		Becoming compact	SM					· · · · · · · · · · · · · · · · · · ·					
-		Boring completed at 17.0 ft.			17.0								bottom of
- 20 - - -						/							
- 25 - -													
- 30													-
								t .					
- 35													
200 	to 5 f	L				LC	GGE	D: GLZ					_
DR DR	ILLING	GCONTRACTOR: Cascade : Cody				Cł D/	HECK	ED:					Golder

100 C 100 C

1

÷

i

and the second

1. 1. 1. 1.

PROJEC ⁻ PROJEC ⁻ LOCATIC	F: Consolidated Freightways DRILLING F NUMBER: 033-1000.000 DRILLING N: Seattle, WA DRILL RI	REC S METH S DATE G:	CORI 10D: Di 5: 12-02	D OF rect Pus -03	- B(ORE	DATUM: AZIMUTH: COORDIN	GP N/A ATES	- 1	surveye	ed		SHEET 1 ELEVATI INCLINAT	of 1 ON: FION: -90
(ft) (ft) BORING METHOD	SOIL PROFILE DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	SAMPLES BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	PENE 10 WATE W, I	R CON	ON RE WS / fl 30 ITENT	SISTANCE 40 (PERCENT)	NOTES WATER LEVELS
0	0.0 - 2.0 Fill material, concrete, asphalt, gravel, brown and light gray, loose, dry			20										
	SW-Sandy with some silt, Brown, Loose, Dry	sw		2.0										
2 Direct Push	5.0 - 9.1 Ci-Low Plasticity Clay, Light Brown, Medium Firm, Moist	CL		5.0	GP-1	GRAB								Sample GP-1(6'-8') collected at 0850 Water sample GP-1 collected at 0910
10	9.1 - 12.0 SC-Clayey Sand, Dark Gray to Brown, Loose, Wet	SC		9.1	GP-1	GRAB								Sample GP-1(10'-12') collected at 0900
I in to 2	Continued as cored hole. See Drillhole log report. ft G CONTRACTOR: Cascade Drilling	<u> </u>			LO CH	GGE IECK	D: JK ED:	<u> </u>	1	1				Golder

Golder Associates

Golder Associates

PR	OJECT:	Consolidated Freightways DRILLING	REC METH		D OF	BC	ORE	HOLE DATUM:	GP	-3		SHEET 1 ELEVATI	of 1 ON:
PR LO	OJECT	NUMBER: 033-1000.000 DRILLING	G DATE G:	: 12-02	2-03			AZIMUTH: COORDIN	N/A ATES	not	surveyed		TION: -90
DEPTH (ft)	BORING METHOD	SOIL PROFILE	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	PENETRATION BLOW 10 20 WATER CONTE	I RESISTANCE S / ft ■ 30 40 ENT (PERCENT)	NOTES WATER LEVELS
-0 -		0.0 - 1.6 Fill material, concrete, asphalt, gravel, brown and light gray, loose, dry											
	Direct Push	1.6 - 8.0 SW-Sandy with some silt, brown, loose, dry 8.0 - 12.0 SC-Clayey sand, dark gray to brown, loose, (wet at 8.4)	sw		8.0	GP-3	GRAB						Sample GP-3(6'-8') collected at 1050
	to 2 ft ILLING	Continued as cored hole. See Drillhole log report. CONTRACTOR: Cascade Drilling Cascade Drilling	<u>I</u>	<u>, </u>	1	LO CH DA	I GGE IECK IECK	D: JK ED:	L		· · · · · · · · · · · · · · · · · · ·		Golder

Golder Associates

	PRO	JECT:	Consolidated Freightways DRILLING	REC	OR		F BC	DRE	EHOLE DATUM:	GP	-4				SHI	EET 1 EVATIO	of 1 DN:	
	PRO	JECT I	NUMBER: 033-1000.000 DRILLING Seattle, WA DRILL RIC	DATE	: 12-02	2-03		-	AZIMUTH: COORDIN	N/A ATES:	not	surveye	ed		INC		ION: -90	
		D H O H	SOIL PROFILE	;	1				SAMPLES		· · ·	PENE	ETRATI BLC	ON RE WS / f	ESIST/	NCE		
DEPTH	(¥)	BORING MET	DESCRIPTION	USCS	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	TYPE	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	u WATE w, ⊢	D 20) 3 ITENT	0 4 (PERC	0 CENT) 1 W,	NOTES WATER LEVELS	
-			0.0 - 1.2 Fill material, concrete, asphalt, loose gravel, light to dark brown, loose, dry															
			1.2 - 4.0 SW-Sandy with some silt, brown, Loose, dry	SW		1.2											-	
_ 5		Direct Push	4.0 - 8.7 CI-Low Plasticity clay, light brown, medium firm, moist	CL		4.0	GP-2	GRAB									Sample GP-1(6'-8') collected at 1050	
	0		8.7 - 12.0 SC-Clayey sand, dark gray to brown, loose, wet	sc		8.7											Water sample GP-4 collected at 1100	1 Mater 1
RECORD GP4.GPJ GLDR WA.			Continued as cored hole. See Drillhole log				GP-2	GRAB									Sample GP-1(10'-12') collected at 1055	
	in (DRIL DRIL	to 2 ft .LING .LER:	report. CONTRACTOR: Cascade Drilling Cascade Drilling				LO C⊢ DA	GGE IECK TE:	D: JK ED:							(Golder	

Golder Associates

PR	OJECT: OJECT	Consolidated Freightways DRILLING NUMBER: 033-1000.000 DRILLING	REC G METH G DATE	HOD: [D OF Direct Pus 2-03	BC	ORE	EHOLE DATUM: AZIMUTH: COORDIN	GP N/A	2-5	survey	ed	SI El IN	LEET 1 LEVATIO	of 1 DN: ION: -90	
DEPTH (ft)	RING METHOD	SOIL PROFILE	nscs	SRAPHIC LOG	ELEV. DEPTH	NUMBER	түрЕ	SAMPLES BLOWS per 6 in	N	EC / ATT		ETRATIO BLOV 0 20 ER CONT	N RESIS VS / ft ■ 30 ENT (PEF	40 RCENT)	NOTES WATER LEVELS	
_ 0 _	BC	0.0 - 1.6 Fill material, concrete, asphalt, gravel, brown and light gray, loose, dry			(ft)	-		30 inch drop								
	Direct Push	1.6 - 8.9 SW-Sandy with some silt, Brown, Loose, Dry 8.9 - 12.0 SC-Clayey Sand, Dark Gray to Brown, Loose, Wet	sw		8.9	GP-2	GRAB								Sample GP-1(6'-8') collected at 1200	L L Mater Level
															Sample GP-5(10'-12') collected at 1205	-
	to 2 ft LLING LLER:	report. CONTRACTOR: Cascade Drilling Cascade Drilling	<u> </u>	I	1	LO CH DA	GGEI ECKI	D: JK ED:	1		I	ł-	I	(Golder	

.

Golder Associates

_

	PRO	OJECT:	Consolidated Freightways DRILLING				F B(ORE		GP N/A	-6			S E	HEET 1 LEVATI	of 1 ON: FION: -90
╞			Source So	G:					COORDIN SAMPLES	ATES	not		TRATIO	N RESIS	TANCE	
	DEPTH (ft)	BORING METHO	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	түре	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	u WATE W, ⊢	BLOW 20 R CONT	/S / ft ■ 30 ENT (PE O ^W	40 RCENT)	NOTES WATER LEVELS
-	- 0 -	Direct Push	0.0 - 2.5 Fill material, concrete, asphalt, gravel, brown and light gray, loose, dry. Concrete hit at the end of boring (2.5')				GP-2	GRAB								Sample GP-6(0'-2.5") collected at 1310. Refusal at 2.5' below ground surface. –
-	-					2.5										-
	- 5															-
	-															-
/04	_															-
J GLDR_WA.GDT 1/21	- 10															-
OLE RECORD GP6.GF	- 1 in	to 2 ft	Continued as cored hole. See Drillhole log					GGE	D: JK							
30REh	DRI	LLER	Cascade Drilling				DA	TE:								DAssociates

Golder Associates

	DJECT: DJECT CATION	Consolidated Freightways DRILLING NUMBER: 033-1000.000 DRILLING I: Seattle WA DRILL RIC		OD: D 10D: D 12-02	D OF Direct Pus 2-03	- B(ORE	EHOLE DATUM: AZIMUTH: COORDIN		2-7	surveyed	SHEET 1 ELEVATI INCLINAT	of 1 DN: TON: -90
DEPTH (ft)	BORING METHOD	SOIL PROFILE	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	SAMPLES BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	PENETRATION BLOWS 10 20 WATER CONTER W,	RESISTANCE / ft ■ 30 40 NT (PERCENT) V W,	NOTES WATER LEVELS
- 0 -		0.0 - 0.5 Concrete 0.5 - 4.0 No recovery, rock blocked discrete sampler			0.5								-
- 5	Direct Push	4.0 - 8.1 SW-5ilty Sand , Brown, light to dark brown, loose to medium, Dry	SM		4.0	GP-7	GRAB						Sample GP-1(6'-8') collected at 1435
		8.1 - 12.0 SC- Clayey sand , dark gray, loose to medium, wet	sc		8.1	GP-7	GRAB						Water sample colle d at 1455 Sample GP-1(10'-12') collected at 1440
1 in DRI	to 2 ft LLING	Continued as cored hole. See Drillhole log report. CONTRACTOR: Cascade Drilling Cascade Drilling					GGE IECK	D: JK ED:					Golder

Golder Associates

PRO	DJECT:	Consolidated Freightways DRILLING NUMBER: 033-1000.000 DRILLING	REC 3 METH 3 DATE	COR HOD: D :: 12-02	D OF irect Pus 2-03	BC	ORE	HOLE DATUM: AZIMUTH:	GP N/A	-8	SURVEY	he		SHEET 1 ELEVATIO INCLINAT	of 1 DN: TON: -90	
DEPTH	RING METHOD	DESCRIPTION	nscs	BRAPHIC LOG	ELEV. DEPTH	NUMBER	TYPE	SAMPLES BLOWS per 6 in	N	REC / ATT		ETRATIC BLO 0 20 R CON	ON RESI NS / ft 30 FENT (P	40 ERCENT)	NOTES WATER LEVELS	
-0 -	BC	0.0 - 0.5 Concrete			(ft)			30 inch drop		-	, , , , , , , , , , , , , , , , , , ,					_
	Direct Push	0.5 - 7.8 SM-Silty sand, light to dark brown, medium stiff, dry 7.8 - 12.0 SC-Clayey Sand, Dark Gray to Brown, Loose, Wet	SM		7.8	GP-2	GRAB								Sample GP-8(6-8*) collected at 1350 Water sample GP-8 collected at 1410	
						GP-2	GRAB					-			Sample GP-8(10'-12') collected at 1355	
	to 2 ft LLING LLER:	Continued as cored hole. See Drillhole log report. CONTRACTOR: Cascade Drilling Cascade Drilling	1		1	LO CH DA	GGE IECKI TE:	D: JK ED:	<u>I. </u>		1		I		Golder	

Golder Associates

APPENDIX B LABORATORY ANALYTICAL REPORTS

CLEANUP ACTION CLOSURE REPORT 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

July 1988 to October 2014 – Historical Laboratory Reports

Laboratory Analytical Reports 1988-1989

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST. SUITE B-14 • TACOMA, WASHINGTON 98424 • TELEPHONE (206) 922 2010

Report	To:	Blymyer	Engineers
--------	-----	---------	-----------

Report On: Analysis of Soil & Water Lab No.: A 3593

Date: July 14. 1988

IDENTIFICATION:

CF/Puget Sound project no. 8818. Samples submitted on 6-27 & 6-29-88.

ANALYSIS:

Soil Samples:

Lab No.	Client <u>Identi</u>	fication	Total Petroleum <u>Fuel Hydrocarbons (mg/kg</u>))
1	MW-1A	4 - 4.5'	12	
2	MW-1B	9 - 9.5'	< 10	
3	MW-1C	14 - 14.5'	11	
4	MW-2A	4 - 4.5'	13	
5	MW-2B	9 - 9.5'	< 10	
6	MW-2C	13.5 - 14'	< 10	
7	МШ-ЗА	4 - 4.5'	< 10	
8	MW-3B	9 - 9.5'	160	
9	MW-3C	14 - 14.5'	< 10	
10	MW-4A	5'	< 10	
11	MW-4B	10'	< 10	
12	MW-4C	15'	102	
13	MW-5A	5 '	4,797	
14	MW-5B	10'	15	
15	MW-5C	15'	< 10	

Blymyer Engineers Lab No: A 3593 Page 2 July 14. 1988

Water Samples:

Lab No.	Client <u>Identification</u>	Total Petroleum Fuel Hydrocarbons (mg/l)
16	MW-1 1:35	Bottle broken, no sample
17	MW-2A 1:40	< 1
18	MW-3 1:45	< 1
19	MW-4 1:50	< 1
20	MW-5 1:55	< 1

Lab No.	Client <u>Identification</u>	Total Petroleum Fuel Hydrocarbons (mg/kg)	Oil & Grease (mg/kg)
21	S-1V Soil	3,389	4,274
22	S-1F Soil	2,939	3.383
23	W-1 Water	2,862*	3.812*
24	S-2F Soil	3,187	4,072
25	S-2V Soil	98	193

* - Units are mg/l for water samples.

Blymyer Engineers Lab No: A 3593 Page 3 July 14, 1988

Purgeable Halocarbons per Method 601, 40 CFR, Part 136

<u>Contaminant</u>

Concentration (mg/kg) (ppm)

Lab Sample No.	21	22	23	
Client ID	S-1V	S-1F	W-1**	
Methylene chloride 1.1-dichloroethylene 1.2-dichloroethane 1.2-transdichloroethylene Chloroform	$\begin{array}{cccc} < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \end{array}$	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	
1,2-dichloroethane*	< 1	< 1	< 1	
Freon	< 1	< 1	< 1	
1,1,1-trichloroethane	< 1	< 1	< 1	
Bromodichloromethane	< 1	< 1	< 1	
Carbon Tetrachloride	< 1	< 1	< 1	
1,2-dichloropropane	< 1	< 1	< 1	
Trans-1,3-dichloropropene	< 1	< 1	< 1	
Trichlorethylene	< 1	< 1	< 1	
Cis-1,3-dichloropropene*	< 1	< 1	< 1	
1,1.2-trichloroethane	< 1	< 1	< 1	
Chlorodibromomethane Bromoform Tetrachloroethylene 1,1,2,2-tetrachloroethane Chlorobenzene	$ \begin{array}{cccc} < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \end{array} $	$ \begin{array}{c c} < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \end{array} $	$ \begin{array}{cccccc} < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \end{array} $	

* - These halocarbons coelute

** - Units are mg/l for water samples.

Blymyer Engineers Lab No: A 3593 Page 4 July 14, 1988

Purgeable Halocarbons per Method 601, 40 CFR, Part 136

<u>Contaminant</u>

Concentration (mg/kg) (ppm)

Lab Sample No.	24	25	
Client ID	S-2F	S-2V	
Methylene chloride 1.1-dichloroethylene 1.2-dichloroethane 1.2-transdichloroethylene Chloroform	< 1 < 1 < 1 < 1 < 1 < 1	< 1 < 1 < 1 < 1 < 1 < 1	
1.2-dichloroethane*	< 1	< 1	
Freon	< 1	< 1	
1,1,1-trichloroethane	< 1	< 1	
Bromodichloromethane	< 1	< 1	
Carbon Tetrachloride	< 1	< 1	
1,2-dichloropropane	< 1	< 1	
Trans-1,3-dichloropropene	< 1	< 1	
Trichlorethylene	< 1	< 1	
Cis-1,3-dichloropropene*	< 1	< 1	
1,1,2-trichloroethane	< 1	< 1	
Chlorodibromomethane Bromoform Tetrachloroethylene 1,1,2.2-tetrachloroethane Chlorobenzene	< 1 < 1 < 1 < 1 < 1 < 1 < 1	$\begin{array}{ccc} < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \\ < & 1 \end{array}$	

* - These halocarbons coelute

Blymyer Engineers Lab No: A 3593 Page 5 July 14, 1988

Total Metals:

Contaminant	Conce	entratio	on (mg/)	<u>(a)</u>	
Lab Sample No. Client ID	21 S-1V	22 S-1F	23 W-1*	24 S-2F	25 S-2V
Arsenic	<0.1	<0.1	<0.1	<0.1	<0.1
Barium	< 2	< 2	< 2	< 2	<2
Cadmium	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium	9.1	7.2	0.8	9.9	11.3
Lead	14.2	9.9	1.9	11.0	8.6
Mercury	<0.05	<0.05	<0.05	<0.05	<0.05
Selenium	<0.1	<0.1	<0.1	<0.1	<0.1
Silver	<0.1	<0.1	<0.1	<0.1	<0.1

* - Units are mg/l for water samples.

SOUND ANALYTICAL SERVICES

Brent A / BRENT HEPNER

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS

4630 PACIFIC HIGHWAY EAST, SUITE 8-14 • TACOMA, WASHINGTON 98424 • TELEPHONE (206) 922 2010

Report To: Blymyer Engineers Date: July 18, 1988 Report On: Analysis of Water Lab No: A 3679 IDENTIFICATION: Samples submitted on 7-12-88 Project No. 8818

ANALYSIS:

Total Petroleum Hydrocarbons, mg/1

CF/Puget Sound, WA Sample ID: MW-1

< 1.0

Note: Detection limit is 1.0 mg/l.

SOUND ANALYTICAL SERVICES

ver

BRENT HEPNER

ENVIRONMENTAL PROTECTION AGENCY

.

Office of Enforcement	CHAIN OF CUST

	0		•••••	•			CHAIN	OF CUST	ODY	RE	COR	D		\sim	
PRUJN	0. P	ADJECT	NA	ME	+ 50	ind	ШA				1		$\langle \rangle$	Ň	
<u>i 01</u>	v	UF-		ugi		x a	wr	NO.			6.3	1.	1.9	ふ?	
SAMPLER	<u>s</u> : isjono cl-ac		l. X	les -				DF CON		14	X	Y1	Ya		REMARKS
STA. NO.	DATE	TIME	e e	GRAB		STATION	LOCATION	TAINERS		Y		S.	Z	5	/
	i/24/	11:40		X	5-	V	(50il)		\underline{X}	X	X	×	\times	-	
.2		11:40		X	<u> </u>	IF	_(scil)	1	×	X	X	$\frac{\times}{\times}$	X		1 al 2 do al Vod a la
3		11.45	1	$ \times $		L	(water)	3	$ \frac{\times}{1} $		\times	$\frac{X}{V}$	$\frac{X}{2}$		Ar. 2 - John Ven Ch
	· · ·	12:05		\times	5-2	F	<u> (50il) </u>		\geq		×	$\frac{\mathbf{x}}{\mathbf{x}}$	$\frac{\times}{\vee}$		
5	Y	12:05		X	5-2	<u>v</u>	(501)	<u> </u>	\mathbf{X}	X	\times	$\overset{\times}{-}$	Δ		Invoices + reports 10
															Consolidated Freichler
										<u> </u>					clo Blumer Evenue
			 					-				ļ			1829 Clement Are
	 											¦			Alameda, CA 14501
										1	1	:			
							<u></u>		1	1		!		:	
							aynn 427 yw 127 aw 128 aw 199 a thail yw 127 a 127 a 127 a 129 a 129 a		1		1	1		!	
									1			† 			
			1-				<u>waanaa waxaa wa</u>	1	1	- !	1			1	
Relinquis	hed by:		1 1 /1	┶┯╸	/ Date /	Time	Received by: ISignature	•)	Rel	inqui	hed b	y: /S	protect	el	Date / Time Received by: (Signature)
1711	il.	\mathcal{I}	ž	6	29/81	300 FM	Brent / Les	m				•			
Relinquis	hed by:	15-prenun	•/	$\exists '$	Date	Time	Received by: ISignature	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Rel	inqui	hed b	γ: (\$,	gnslu!	ei	Date / Time Received by: (Signature)
									ŀ	-					
Relinquished by: (Signature) Date / Time Received for Laborat (Signature)						Received for Laborato ISignatures	ory by:		Da	1e / T	me	۹ 	lemar	rhs	
		~					nement; Capy 10 Coord-n	eser field fit	 ••				\neg		

3-0605

٠

٠

CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

PRO	J. NO.	PROJ	ECT	NAI	ME/D	6 5.		-1				(t i	ANAL	YSI	S TYPE RE	EQUESTED		
00/ SAMF	V PLERS	: (Sign	ature	T e) T	<u>I Fuge</u> 3. iVin	te se	100, ur		4 AINERO			3] }			Γ	\square			
I.D. NO.	DATE	TIME	COMP	GRAB	STATION	& LOCAT	ION	2 4 (K	Y S	."					REMARK	ŚŚ	
MW-1A	·/://	9:3		Х	Mandar We	ü? 1 (7	-451	۱.	Ň	X	X								
My		19:45		\times	Monitaria	2011/9	7-95)									1			
My	Y	9:55		\times	11 11 1	1 (14-	14.51	i			\downarrow			1					J M M
MK.		11:25		8	~~~~~														
Alhi- ZA		11:40		X	Monitor W	<u>ell 2 (</u>	4-4,5	1											
Min - 2B		11:30	 	X	11 11	<u> </u>	- 9.5 .	<u> </u>						_	ļ	· · · · · · · · · · · · · · · · · · ·			
MIL	$ \Psi $	12:00	ļ	X	и !!	" (13.9	5-14·)										<u> </u>		
MªA-	ļ	2:10	<u> </u>	$ \times $	Monita- hi	<u>ell 3 (4</u> .	- <u>4.5.)</u>	1								,			
MW-	ļ	2.20	ļ	$ \times$	11 11	" (9-	9.51)	1						_					
Min-	ļ	2:30	ļ	$ \times$	the treat	<u> (14 -</u>	14.51)	1	\`	$\underline{\mathbb{A}}$	1		_			<u>bill</u>	+0:		4
			<u> </u>					ļ							ļ	Cen	solidation	Freightway	5
	ļ			ļ				ļ							<u> </u>	5/2 1	Blyinger	Confineers	
			<u> </u>													1829	10 Come	of Avenue	
<u> </u>																Alun	reda, C	A 94501	Nest 4080 (415) Outs
																			tern -C P: 1685 14: (805
																			Regi :Ke L :785; :A: (8
														<u> </u>					2 n., C
Relini	uished	B.l.	Hill	; 6	Date Time	Received t	sy:		Relin	quisl	hed t	уу :		ę	Date	55	Received by: Brent	- Neprez	oncord, CA 122 123-7143
Relin	quished	by:			Date Time	Received b	ıy:	<u>e a provincio de la cons</u>	Relin	quis	hed t	by:			Date	e Time	Received by:		,94520
Relini	quished	by:		- 1. - 4	Date Time	Received t	by laborato	ry:	Da	te	T	ime	Rem	arks ((Shipţ	oing Related)			

GT Envi	EL ronmental	41 C 4	080- Conc 15-6	-C Pl cord	ike , C/ 7852	Lane 4 94	520	. **	, 800 800)-544)-423	1-342 3-7 14	22 (I 13 (0	in CA) Outside	CA)		CHAIN-OF-CUSTODY RECORD AND ANALYSIS RE										RE(QUEST												
Project Manager:		-					Pho	one	ə #:							ANALYSIS REQUEST OTHER										- 	SI HA			۱L ۱G									
Address:					FAX #:)15)				1	1)																		MENTS					
Project Number:	818	Project Name: CF/Ruget Sound, WA							Project Name: / Ruget Sound, W					Name: Sound, WA							200S (418.								etals							E (24 hr)	2-4 days)	IMITS /SE	REQUIRE
Project Location:	bosc East beattle, h	Ma	11.3	uke.	V	1)	Sa (::	mp (/	oler :	Sign	atur ((e:	mte	<u>د</u>		asoline (60	015 or 82.	3015 or 82	se (413.1)	se (413.2)	Hydrocart			ocBs Only			S	als	ollutant M	1/239.2)	٥					E SERVIC	ERVICE		ORTING F
Sample	Lab #	AINERS	'Amount	T	Ma	atri	X		N Pro	leth ese	iod rve	d	Sam	oling	602/8020)	TPH as Gé	Diesel (8	S Jetfuel (5	Dil & Great	Dil & Grea:	etroleum	01/8010	08/8080	08/8080-F	24/8240	25/8270	- 17 Metal	X - 8 Met	Priority P	(7420/742	ANIC LEA					RITY ON	EDITED S	BALS/FAX	CIAL DE 1
ID	(Lab use only	# CONT	Volume/	WATER	SOIL	AIR	OTHER			ICE ICE	NONE	OTHEF	DATE	TIME	BTEX (BTEX	TPH as	TPH as	Total C	Total C	Total F		EPA 6	EPA 6	EPA 6	EPA 6	CAM -	EPTO	EPA -	LEAD	ORG/					PRIO	EXPE		ч SPE(
MW-4A MW-4R) 			×					X			1727/80 1	5.50 3,40	^ /		X X																						_
MIL'-4C	1 - 1	1			X					X			+	3:50	; 		X X				_	_	_		+														
Mur-5A Mur-5B		1			1 7,									1:50	·		X														-								
Hil: - 5C		1			X					- <u>-</u>			·V	w.cc	<u></u>		X												-										
		-																																					
		99 (1996) - C. 1996) - C.	+																																				
Relinquished	by:	, C7		Date	d	Tim	e e	. /.	R	ecei 7	ved	i by	: :(1						R	em	ark	S:		r x'	¢,	- 	1.	. • <i>j</i>	r ^{ite}	115	+1	L:	i i				
Relinquished	by	,	/ , C	Date	, ' , '	Tim	e	1	Received by: Brent Kepn						1			- Present dutant to any to the second							90	8													
Relinquished	by		C	Date) 	Tim	е		Received by Laboratory:						er 1300-141			-					\ ;	λí I	с 1 1 28-са		+ + .+ ;	1		4	τŅ	14	-5 (<u>(</u> .)					

ENVIRONMENTAL PR	IOTECT	TION A	GENCY
------------------	--------	--------	-------

ENVIRON	Office o	PROTE of Enforc	CTI emer	DN AI	GENCY	n., ura	CHAI	N OF CUS	rod'	Y RE	COF	nal		
PROJ N 891	10. 8	CF		me Pl	iget	9 500	und, WA	NO.			K	t)	7	
SAMPLER	S: (Signa /	Me	<i>r</i> (1	bi	<u>B. U</u>	unt	tis	OF CON-		$\left \right $	Ŷ			REMARKS
STA. NO.	DATE	TIME	COMP.	GRAB		STATIO		TAINERS	//	Ŷ				
Mart	121/00	1:35		X		Wat	er-	1	X				1	
Mhi-ZA	1	1:40		X		Wat	e~	1	X					
11m3 -3		1:45		Х		Wat	er		X					
NW 4		1:50		X		Wat	er		X	ļ 				
11.1.5	\vee	1:55		Х		Wa	ter		X					
							• •		ľ	 	ļ		 	Invoices & Reports to
														Consclidated Freightways Clo Blymyer Engineers 1829 Clement Are Alameda CA 94501
	F A									<u> </u>	 •			
									!	: 	; !		i	
Aelinquist Miru	hB.	Signa rura	De	NG V	Dono 129/88	17.me 2:15 PM	Received by: 15-pnown	"J. fes	Reh	nquis	ned b	v: 15.p	4	el Date / Time Received by: (Signature)
Relinquist	Ne logi	Second	Lo	161	29 88	171me 1300 PM	Received by: 15. process	ner	Rela	nquisi	hed b	y: (Sign	aivro)	a) Date / Time Received by: (Signature)
Reimquist	ned by: I	Signature	,		Date	/Time	Received for Laborato (Signature)	ory by:		Dat	• / T.	me	Ae	emarks
L		Deal				1 E	I	ator Field File					4	

.

-

 \sim
Env Lab	ironmental oratories 🕑		Cor 415	nco 5-68	rd, 5-78	CA 9	945:	20	80 80)0-5)0-4; 	44-3 23-7	422 143	(In CA) (Outside	CA)		(4 I N	I-C)F-	CU	ST		Y	RE	.CC	DRI	A C	NI	D /			YS	IS I	RE	QU	ES	т 	
Project Manager:	ike Le	- 1	1.7	, e)			Pho	ne #: 5	(2	14-7 -) 377	3				A	NA	LY	'SIS	S R	EQ	UE	ST							0	TH	ER		S H/			NG
Address: BA	clenten	3	jin. F	e ve 9 v.	rs e	, Ji	<u>n</u> t	FAX	#: 86	74 5		5) 2 (594	¢ ~		15)																						Nu c	1
Project Number:	818				C	F	1	Proj PU	ect N	lam	0:): ,	5a	ncl.	μA		/8020/80	6	6			ns (418.1								S							24 hr)	days)		
Project Location:	altle,	st W	<i>N</i> ₀ A	o e z	ý 21.¥	r the	43	Ģan	pler	Sig	nati	ire:	*			oline (602	5 or 827(15 or 827	(413.1)	(413.2)	drocarbo			Bs Only					Itant Meta	(39.2)						ERVICE (/ICE (2-4		
Sample	Lab #	INERS	mount		N	latı	ix		⊘ N Pr	let ese	ho erv	d ed	Sam	pling	2/8020)	H as Gas	iesel (801	etfuel (80	Grease	Grease	oleum H) 8010	8020	8080	8080-PC	8240	8270	Metals	8 Metals		20/7421/2	CIEAD					V ONE SI	ED SER	NETECT	
ID	(Lab use) only	# CONTA	Volume/A	WATER	SOIL	AIR	SLUDGE	OTHER	HCI	ICE	NONE	OTHER	DATE	TIME	BTEX (60	BTEX/TPI	TPH as D	TPH as J	Total Oil	Total Oil	EPA 601/	EPA 602/	EPA 608/	EPA 608/	EPA 624/	EPA 625/	CAM - 17			LEAU(74	ORGANIC					PRIORIT	EXPEDIT	VERBAL:	
p1117-1		1		X						$\overline{\Sigma}$			7/12/00				X															1							+
		-	-		-				_					, ,,,						╀						_	+	_					+-	+					+
																			5																				
		-	-	-	-						-				-			_		_	_	+					_		-								_		+
																																		<u> </u>					
								_			_				-					+	_	-		-			-			_				-					-
				-																																			
Relinquished b	X deck.	2	D 2/	Date		Tim /~	е ://)	Re	cei	ved	by:									Rei	na	rks	:															
Relinquished b	y		D)ate	, . 	Tim	e		Re	cei	ved	by:																									,P		
Relinquished b	y		D	Date		Tim	e		Re	cei	ved	by	Labora	tory:		- 7	r		13		3													y Soly					

GT	EL		408 Cor 415	0-C nco	Pik vd. 5-76	e Lo CA (62	ne 45;	20	in të Vite	800 800	-54 -42	4-34 3-71	22 (43 ((In CA) Outsid	• CA)			CH	All	N-0	OF	-Cl	JS	τοι	DΥ	R	EC	OF	٩D	AI	ND	A	NA	LY	sı	SI	RE	QU	E	ST		
Project Manager:	e Leu	Ji	5					Pho	me	* : 5	<u>_</u> ス	Ċ4 -	47 <u>2</u> 	5) 37	73				1	٨N	AL'	YSI	SI	REC	U	EŞ,	rÌ	\$ \$						от	HE	R		S H	SPE AN		AL	à
Address: 84/19 1829 Cl Abunedo Project Number: 881	Binger Engl	¥.	eeeee	s, še	2 1 2	ne C	: .F	FA) Pro	(#) joci 72	C I Na	36 me	6 5	41; 5	5) • 25 (nd ,	:94 u/A		2/8020/8015)	0	0)		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ons (418.1)					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			als se								(24 hr)	4 days)		ATS (SPECIFY)	CUIHEMENIS
Project Location:	500 E.M Sea Hle	kr; , U	sii V	irai 4	(a	4	2	San	npi	ər S	ign	atu		la deserva-			oline (60)	15 or 827	15 or 827	(413.1)	(413.2)	ydrocarto	1 2 1 2		Re Only		F			utant Mei	239.2)							SERVICE	WICE (2-		TION LIN	SNIL
Sample	Lab #	INERS	mount		N	<i>l</i> atı	ix		F	M Pre	eth se	od	d	Sam	npling	2/8020)	H as Gas	iesel (80	ettuel (80	& Grease	å Grease	roleum H	/8010	/8020 /8080	/RORD-PC	8240	8270	7 Metals	8 Metals	iority Pol	120/7421/	C LEAD				- q -		XONE S	ILED OFF	S/FAX	L DETEC	L REFC
ID	(Lab use only)	# CONTA	Volume/A	WATER	SOIL	AIR	SLUDGE	OTHER	HCI	HN03	ICE	NONE	OTHER	DATE	TIME	BTEX (60	BTEXTP	TPH as D	TPH as J	Total Oil	Total Oil	Total Pet	EPA 601	EPA 602 EPA 608	EPA 608	EPA 624	EPA 625	CAM - 1	EPTOX	EPA - Pr	LEAD(74	ORGANI						PRIORIT	EXPEDI	VERBAL	SPECIAI	SPECIAI
MW-1	approximity front reaction and a second	1	11	X							X				8			X					1							ir traigen												
MW-2A		1		X	ĺ						X			4		_		Ķ					_			_	. 64 1 F				-	+-		-	<u> </u>	-				_	_	
MW-3		1	Į.	X	1				<u> </u>	 	X						-	₿					-	_			-			-	-			╂	-		┨──					-
<u>MW-4</u>		μ.	┃,	<u>k</u>	_				_	-	X						\vdash	Ю			-	$\left - \right $	-		-	+	+	+	╀	-	╀		-			$\left - \right $	┢──			_	+	
MW-5	an a	1	ľ	X	+				-	_	X			INTI			-	┢	-				-+	_	+		+		╉	+	┢	┼─		+	-	┢	-			-		-
			-	-	+				-	┢				146	·]		-	+					+		+-	+	-	+	┥	-	1			\uparrow	\vdash		-					
		+	┼─	+	+					-							1-	+					1		+-				1		1	1	T				1					
		+	+	+	+	1				\uparrow						1	Ť															1										
	<u></u>	1							T																											 						_
																																										-
Relinquished b	y:		C	Date	e I	Tim	e			Rec	eiv	ed	by:									R	em	ark	s:																	
Relinquished b	У		C	Date	 e 	Tim	e			Rec	eiv	ed	by:																													
Relinquished b	У	1.	C	Date	e I	Tim	e	· <i>M</i> , 1		Rec	eiv	ed	by	Labor	atory:																											

	SOUND A	NALYTICAL	SERVIC	ES, MC.	
	SI	PECIALIZING IN INDUSTRIAL & TO	DXIC WASTE ANALYSIS	5 RYL	
4830 PAC	FIC HIGHWAY EAST.	SUITE B-14 • TACOMA, WAS	5HINGTON 98424 •	TELERINE (206)	AE 2 2340 N
Report To:	Blymyer En	gineers	Date: Oc	stober 295	1988 1988 1988
Report On:	Analysis o	f Liquids	Lab No:	A 4221	

IDENTIFICATION:

Project Name: CF/Puget Sound, WA Project Number: 8818

Samples submitted on 10-12-88

.

ANALYSIS:

Laboratory Sample No.	Client <u>Identification</u>	Total Petroleum Hydrocarbons, mg/l	Chromium, ppm	Lead, ppm
1	MW-1	< 1	< 0.1	< 0.1
2	MW-2A	< 1	< 0.1	0.1
3	MW-3	< 1	< 0.1	< 0.1
4	MW-4	< 1	< 0.1	< 0.1
5	MW-5	< 1	< 0.1	< 0.1

SOUND ANALYTICAL SERVICES

Brent Kipnon

BRENT HEPNER

.

Western Region 4080-C Pike Lane, Conco (415) 685-7852 (800) 544-3422 from inside (800) 423-7143 from outside	12/08/88 ord, CA 94520 California le California	JP WORK ORD#: CLIENT: PROJECT#: LOCATION:	Page 1 of 2 8811286 Mark Winters Groundwater 213 S.W. 419 Renton, WA 201-710-8000 Seattle, WA	s Technology st Street 98055 0-2	/, Inc.	
TEST RESUL	rs	SAMPLED: RECEIVED: ANALYZED: MATRIX: UNITS:	11/22/88 11/23/88 11/28/88 Soil mp/kg (ppm)	BY: M. BY: E. BY: R.	Winters Larsen Condit	
				070 I	040 I	050 I
	MDL ILHB # I.D.#	IMW-1122-A	MW-1122-BIM	W-1122-CIM	W-1122-DIM	V-1122-EI
Benzene	0.025	(0.025	(0.025	(0.025	(0.025	(0.025
Toluene	0.5	(0.5	(0.5	(0.5	(0.5	(0.5
Ethylbenzene	0.5	(0.5	(0.5	(0.5	(0.5	(0.5
Xylenes	0.5	(0.5	(0.5	(0.5	(0.5	(0.5
Total BTEX	0.5	(0.5	(0.5	(0.5	(0.5	(0.5
Misc. Hydrocarbons (C4-C12)	1	170	88	46	78	11
Total Petroleum Hydrocarbons as Gasoline	1	170*	88*	46 *	78 *	11*

MDL = Method Detection Limit; compound below this level would not be detected.

Results rounded to two significant figures.

.

METHOD:

Modified EPA Method 5030/8020/8015 *Hydrocarbon pattern indicates the presence of diesel fuel.

Page 2 of 2

Western Region

4080-C Pike Lane, Concord, CA 94520	WORK ORD#	8811286
(415) 685-7852	CLIENT:	Mark Winters
(800) 544-3422 from inside California	PROJECT#:	201-710-8000-2
(800) 423-7143 from outside California	LOCATION:	Seattle, WA

TEST RESI	JLTS	MATRIX: Soil UNITS: mg/kg (ppm)
COMPOUNDS	I MDL ILAB # I II.D.#	I 06A I IMW-1122-FI
Benzene	0.025	(0.025
Toluene	0.5	(0.5
Ethylbenzene	0.5	(0.5
Xylenes	0.5	(0.5
Total BTEX	0.5	(0.5
Misc. Hydrocarbons (C4-C12)	1	58
Total Petroleum Hydrocarbons as Gasoline	1	58*

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA Method 5030/8020/8015 *Hydrocarbon pattern indicates the presence of diesel fuel.

nina P. Poper

EMMA P. POPEK, Director

Total Petroleum Hydrocarbons	10	500	350	150	120	(10
as Diesel						

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA Method 8015

Page 2 of 2

Western Region

4080-C Pike Lane, Concord, CA 94520	WORK ORD#:	:8811287
(415) 685-7852	CLIENT:	Mark Winters
(800) 544-3422 from inside California	PROJECT#:	201-710-8000-3
(800) 423-7143 from outside California	LOCATION:	Seattle, WA

TE	EST	RESULT	S			Ma Un	TRIX: ITS:	Soil mg/kg	(ppm)	
COMPOUNDS		l	MDL.	ILAB	# . #	I I MW	06A -1122	 :-F	<u></u>	
					~					

Total Petrole	2um
Hydrocarbons	10
as Diesel	

82

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA Method 8015

Comma P. Popen

EMMA P. POPEK, Director

											ALC: NO.	tanin Gara			ayan taka taka taka taka taka taka taka ta	ilia: e ^{ra} dino:	165Pbenderm	eedan adama	n da manana da sa	e k Slove po kali i v -	15 " 1819 - 481	3 5 1836.04	igat malinin and	2 00 75-08-53	an a	internation di co	Rakstowielium	ter meterica	er an er er	201 m a 4200	Martin & S via	etatus, reștatu a	an kanfast	i hengyig 2, an an an	وتعاكر الارزاف	langutsin ikir i	ar ac Maar	as an air air	sr., within a
GT Env	EL ironmental oratories 🛛	44 C 4	080 Con 15-0	-C P cord 685-1	ike L I, CA 7852	ane 94	520	,	800- 800-	544- 423-:	3422 7143	(in (Oi	CA) utside	9 CA)		i	CH	IAI	N-(OF	-CI	US	то	DY	' RI	EC	08	D	AN	Ð	AN	IAL	YSI	S F	1E(ענ	EST	ſ	
Project Manager:	KO LO	11)); <	5			Pho	วทอ	#:	73 21	45	フィ	77	73				1	AN.	AL	YS	IS I	RE	QU	ES	r						0	THE	R		S HA	PEC	JAI LIN	G
Address: Byw 1929 Alame	yer Engin Clemeny	nee f	A	5, V2 4	In 50	C.	FA	X #:	<u>~</u>	(4)	15	了 2	59	î4		015)					1																	ECIFY)	MENTS
Project Number:	0010					r	Pro	ject	Na	ne:	A	5.		1). za		020/8(5				(418															Ξ	lays)	S (SP	UIREI
	8010 500 FI	Jar	c.	ind	14		Sar		TU ar Si	ge onat	<u>X</u> ure:			r um		602/8	270	22		1	tons			4	5				Vetals							с) СЕ	2.4		RO
	attle 1	24	У. У.			,		M	ar	k	- l	1 X	m	tes) enilo	Dor 8	5 or	(413.	(413.	droca								I trant	239.2)						S	ACK ACK	TION	SNIT
Sample	Lab #	INERS	mount		Ма	trix		F	Me Pres	serv	od ved	\$	Sam	pling	02/8020)	H as Gas	DieselV801	Jettuel (80	& Grease	& Grease	troleum H	1/8010	2/8020	3/8080	a/6000000	5/8270	7 Metals	- 8 Metals	riority Poll	420/7421/	IIC LEAD		n serie a quint de la serie			TY ONE S	I SVEAX	NL DETEC	AL RT Y
D	(Lab use only	# CONTA	Volume/A	WATER	SOIL	SLUDGE	OTHER	НСІ	HNO3	ICE	OTHER		DATE	TIME	BTEX (6(BTEXTP	TPH as [TPH as	Total Oil	Total Oil	Total Pe	EPA 601	EPA 602	EPA 606	EPA 62	EPA 62	CAM-1	EPTOX	EPA - P	LEAD(7	ORGAN					PRIORI		SPECIA	SPECI
MW-1		2		X						X		3	6/27	7			X										-					_				-	_	_	
MW-2A		2		X						<u>X</u>			<u> </u>	<u> </u>			X	×—	<u> </u>	1			-	_								_				-+		╀	
MW-3		2		X			<u> </u>			X			<u> </u>				X	×					-				_					_	_				+	+	+1
MW-4		2		X		_	<u> </u>	<u> </u>		X		\downarrow	\checkmark	<u> </u>			-Ľ	+	-				-+	-	_			\vdash				-+		$\left\{ -\right\}$			_	+	
MW-5		2		λ				┨		4	_	+				+	4	┥	-	+	\vdash		-+	-+-		+						-+	╋	┼─┤		$-\dagger$		+	
		$\left - \right $	_					-		+		╉				╀	_		$\left - \right $				\rightarrow			+	┢		$\left - \right $			-	+				-+-	-	
		$\left - \right $	-					┢		-+		-		+	+			+	-	+						+	1	1	-	†								T	
			\neg			+	+					╋				1-			1													·						-	
		┼╌┦		6			1																			<u> </u>				ļ			_					_	
																																							Ц
Relinquished t	W Juffer	Эſ	/D 9]	ate H	Ti I 7	me 5,0	0	ſ	Rec	eive	d by	/ :									R	em	narl	ks: UC	di	;f	ie	cl)		Ē	X	-						
Relinquished t			Da	ate	Ti Ti	me		ſ	Rec	eive	d by	<i>ı</i> :											6		Ċ	/	M	01	41	2	ļ	- (1. SC	F.	1 1 1	, + Ìk	:A	?
Relinquished b	by C	2	D) 19		Ti	me Ø;'a	25		Ree	eive	d by	/ La	abora M	atory.)							-			45						te star i 19								

-

••••

Sound	ANALYTICAL	SERVICES,	A
-------	------------	-----------	---

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSI

4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-1240 - FAX (206)922-5047-

Report	To:	Blymer	Engineers
--------	-----	--------	-----------

Report On: Analysis of Water

Lab No.: A 5204

1989

Date: Februar

<u>IDENTIFICATION:</u> Samples Received on 2-9-89 Project Name: CF/Puget Sound, WA Project Number: 8818

ANALYSIS:

Contaminant

Concentration, mg/1

Lab Sample No.	1	2	3	4	5
Client ID	MW-1 #4	MW-2A #2	MW-3 #2	MW-4 #2	MW-5 #2
Total Petroleum Hydrocarbons	< 10	< 10	< 10	< 10	< 10

Analysis Procedures: TPH by SW-846 Method 8015.

SOUND ANALYTICAL SERVICES STAN P. PALMQUIST

110

18

Western Region 4080-C Pike Lane, Conco (415) 685-7852 (800) 423-7143 from outsio	ord, CA 9 California	02/13/84 4520	9 JF 6 6	D PA NORK ORD#: CLIENT: PROJECT#: _OCATION:	age 1 of 2 8902112 MARK WINTERS GROUNDWATER 19226-66TH 4 KENT, WA 98 201-710-8000 SEATTLE, WA	G TECHNOLOG Ave.s. Suit 3032 3-4	/, INC. Te L-109	
(800) 423-7 143 11611 681316		-		SAMPLED: RECEIVED: ANALYZED: MATRIX: UNITS:	02/03/89 02/06/89 02/07/89 Soil mg/Kg (ppm)	BY: M BY: P	. WINTERS . HANNERS	
PARAMETER I	MDL	ISAMPLE	# 1	01 Mw23a	02 MW23B	03 MW23C	04 I Mw23D I	05 MW23E
Benzene	0.025			(0.02	5 (0.0 25	<0.025	(0.025	<0 .02
Toluene	0.5			<1.0	(0.5	(0.5	(0.5	(0. 5
Ethylbenzene	0.5			(1.0	(0.5	(0.5	(0.5	(0. 5
Xylenes	0.5			<1.0	(0.5	(0.5	(0.5	(0.5
Total BTEX	0.5			(0.5	(0.5	(0.5	(0.5	(0.5
at the state of the second second				52	78	18	18	110

52

52

78

18

.

Misc. Hydrocarbons 1 (C4-C12)

Total Petroleum Hydrocarbons as Gasoline

.

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 5030/8020/8015

:

1

Page 2 of 2

Western Region 4080-C Pike Lane, Concord, CA 94520 (415) 685-7852

2

(800) 544-3422 from inside California (800) 423-7143 from outside California

WORK ORD#: 8902112

CLIENT:	MARK WINTERS
PROJECT#:	201 -710- 8000-4
LOCATION:	SEATTL E, WA
MATRIX:	Soil
UNITS:	mg/Kg (ppm)

PARAMETER	I MDL	ISAMPLE # II.D.	1 06 1 MW23F		 	 	 	
Benzene	0.025		(0.(ð25				
Toluene	0.5		(0.)	5				
Ethylbenzene	0.5		<0.	5				
Xylenes	0.5		<0.	5				
Total BTEX	0.5		(0.	5				
Misc. Hydrocarbons (C4-C12)	5 1		4	+1				
Total Petroleum Hydrocarbons as Gasoline	1		4	+1				

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 5030/8020/8015

1

EMMA P. POPEK, Laboratory Director

prin,	GT	EL
	ENVIRON LABORATOR	MENTAL RIES, INC.

. .

هی هی بخت چی اینے جو میں جو این جو بہت کے اور این این جو میں میں جو جو ای

PARAMETER		MDL	ISAMPLE	#	 	01 MW23A	1	02 MW23	B		03 MW23C	 	04 MW23D	 	05 MW23E	ן ו
					ma Un	TRIX: ITS:	S: m	oil g/Kg	(pp	(m						
					sai Rei An	MPLED: CEIVED: ALYZED:	02 02 02 02	2/03/0 2/06/0 2/06/0	89 89 89		BY: BY:	м. С.	WINTE MANUE	ERS		
Western Region 4080-C Pike Lane (415) 685-7852 (800) 544-3422 fro (800) 423-7143 fro	o, Conc om inside om outsi	ord, CA e Califor de Califo	A 94520 nia ornia		PRI	UENT: DJECT#: CATION:	MF GF 19 KE 20 50	RK WI ROUNDU 226-6 ENT, U 21-710 EATTLU	(NTI 56TI 56TI 56TI 56TI 56TI 56TI 56TI 56	ERS ER H A 98 000 WA	TECHNOL ∨E.S. S 032 -5	.OGY SUIT	7, INC. Έ L-10	99		
EN VIRONMENTAL LABORATORIES, INC			02/08/8	9M'	T WOF	RK ORD#	Pag :89	e 1 c 02113	ofi 3	2	۶EI	81	8 REC I	[i		

Total Petroleum	:	10	170	260	79	(10	120
Hydrocarbons as Diesel							

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 8015

t

:

	ī	MDL	ISAMPLE	M U # I	ATRIX: NITS: 06	Soil mg/Kg	(ppm) 	1	
				CL PRI LO	IENT: DJECT#: CATION:	MARK 201-71 SEATTL	WINTERS 10-8000-5 LE, WA		
4080-C Pike Lan (415) 685-7852 (800) 544-3422 fi (800) 423-7143 fi	e, Conc rom insic rom outs	cord, Cl le Califoi ide Califo	A 94520 mia ornia	WOI	RK ORD#:	890211	13		
Western Region			04520	Pa	age 2 of	2			

Total Petroleum 10 Hydrocarbons as Diesel 330

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 8015

:

Conna P. Popen

EMMA P. POPEK, Laboratory Director

Western Region 4080-C Pike Lane, Co (415) 685-7852 (800) 544-3422 from in (800) 423-7143 from ou	ncord, C side Califo itside Calif	03/16/89 A 94520 rnia fornia	JP F WORK ORD# CLIENT: PROJECT#: LOCATION: SAMPLED: RECEIVED: ANALYZED: MATRIX:	Dage 1 of 2 C903113 MARK WINTER GROUNDWATER 19226-66TH KENT, WA S 201-710-800 6050 E. MAI 03/06/89 03/07/89 03/08/89 Soil	RS AVE.S. SL 98032 20-6 RGINAL WAY BY: BY:	DGY, INC. JITE L-109 7, SEATTLE M. WINTERS P.HANNERS	
	MDL	ISAMPLE #	01 MW-36A	02 MW-36B	03 MW-36C	1 04 1 1 MW-36D 1	05 I MW-36E I
					 (0 025	 (0, 025	(0.025
Benzene	0.5		(0.25	10.023	10.000		
Toluene	0.5		(0.5	(0.5	(0.5	(0.5	(0.5
Ethylbenzene	0.5		(0.5	<0.5	(0.5	(0.5	(0.5
Xylenes	0.5		(0.5	(0.5	(0.5	(0.5	(0.5
Total BTEX	0.5		(0.5	(0.5	(0.5	(0.5	(0.5
Misc. Hydrocarbons (C4-C12)	1		<1	(1	<1	<1	<1
Total Detroleum	1		(1	(1	<1	<1	<1

Total Petroleum 1 Hydrocarbons as Gasoline

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

. •

METHOD: Modified EPA 5030/8020/8015

:

Page 2 of 2

Western Region 4080-C Pike Lane, C (415) 685-7852		Page 2 of	2							
(800) 544-3422 from (800) 423-7143 from	W	ORK ORD#:	C90311	3						
	1		C P L	LIENT: ROJECT#: OCATION:	Mark k 201–71 6050 e	IINTERS 0-8000. . Margin	AL WAY,	SEATTLE		
				MATRIX: UNITS:	Soil mg/Kg	(ppm)				
PARAMETER	I MDL	ISAMPLE	# 	06 MW-36F	 	 	 		 	
Benzene	0.025			(0.025						
Toluene	0.5			(0.5						
Ethylbenzene	0.5			(0.5						
Xylenes	0.5			(0.5						
Total BTEX	0.5			(0.5						
Misc. Hydrocarbon (C4-C12)	5 1			(1						
Total Petroleum Hydrocarbons as Gasoline	1			(1						

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

.'

METHOD: Modified EPA 5030/8020/8015

5

EMMA P. POPEK, Laboratory Director

CTEI						ſ	TAB 2 2 DE	
			Ø3/16/89M		Page 1 of 2 C903114			н у
LABORATORIES, INC.				CLIENT:	MARK WINTER	S TECHNOLOG	SY. INC.	
Western Region 4080-C Pike Lane	, Conc	ord, C	A 94520		19226-66TH	AVE.S. SUI 8032	TE L-109	
(415) 685-7852 (800) 544-3422 fro	om insic	le Califo ide Cali	rnia Iornia	PROJECT#: LOCATION:	201-710-800 6050 E. MAR	0-7 GINAL WAY,	SEATTLE	
(800) 423-7143 170	nn ouis	100 Can	Unita	SAMPLED:	03/06/89	BY: N	M. WINTERS	
		ł		ANALYZED:	03/14/89	BY: (C. MANUEL	
				MATRIX: UNITS:	Soil mg/Kg (ppm)			
PARAMETER		MDL	ISAMPLE # II.D.	01 MW-36A	02 MW-36B	03 MW-36C	04 MW-36D	05 MW-36E
						:		•
Total Petroleum Hydrocarbons as Diesel		10		320	280	430	210	190

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

METHOD: Modified EPA 8015

7

•

.

1400

Western Region 4080-C Pike Lane, Concord, CA 94520 (415) 685-7852 (800) 544-3422 from inside California	Page 2 of WORK ORD#:	2 C903114			
(800) 423-7143 from outside Camornia	CLIENT: PROJECT#: LOCATION:	MARK WINTERS 201-710-8000-7 6050 E. MARGINAL	WAY, SE	EATTLE	
	MATRIX: UNITS:	Soil mg/Kg (ppm)			
I MDL ISAMPLE PARAMETER I II.D.	# 06 MW-36F				

Total Petroleum 10 Hydrocarbons as Diesel 150

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

. •

METHOD: Modified EPA 8015

ţ

EMMA P. POPEK, Laboratory Director

Western Region

(415) 685-7852

Page 1 of 1 12/06/88mt Mark Winters CLIENT: Groundwater Technology, Inc. 213 SW 41st Street 4080-C Pike Lane, Concord, CA 94520 Renton, WA 98055 PRDJECT#: 201-710-8000-1 LOCATION: Seattle, WA BY:J. Deschenes SAMPLED: 11/08/88 BY:K. Fillinger RECEIVED: 11/09/88 ANALYZED: 11/22,28,29/88 BY:T. Alusi MATRIX: Soil

TEST RESULTS

(800) 544-3422 from inside California (800) 423-7143 from outside California

PARAMETER		I MDL I	LAB # I.D.#	34786 SPB-2	 	34787 SPB-3		
Ammonium	mg/Kg	0.02		6.3		1.4		
Nitrate	mg/Kg	1		4		1		
Nitrite	mg/Kg	1		<1		(1 ·		
Phosphate	mg/Kg	1		(1		<1		
рН				7.5		4.8		

MDL = Method Detection Limit; compound below this level would not be detected. Results rounded to two significant figures.

.*

METHOD: Ammonia by SM417E Nitrate by SM429 Nitrite by SM429 Phosphate by SM429 pH by EPA 9045

a P. Roper

EMMA P. POPEK, Director

Western Region 4080-C Pike Land (415) 685-7852 (800) 544-3422 fi (800) 423-7143 fi	e, Concord, C rom inside Calif rom outside Cal rom outside Cal	04/10/89 CA 94520 ornia itornia	JP W(CL P L S R A M	DRK ORD#: _IENT: ROJECT#: OCATION: AMPLED: ECEIVED: NALYZED: ATRIX:	PAGE 1 OF 2 C903615 MARK WINTERS GROUNDWATER 19226-66TH 0 KENT, WA 9 201-710-8000 6050 MARGIN SEATTLE, WA 03/06/89 03/07/89* 04/06/89 SOIL	S TECHNOLOG AVE.S. STE 8032 0-8 AL WAY S. BY: M BY: E BY: M	Y, INC. .L-109 . WINTERS . LARSEN I. LY	
PARAMETER		ISAMPLE # II.D.	1	01A MW 36A	1 02A 1 1 MW 36B 1	03A Mw 36C	04A MW 36D	05A Mw 36E
рH				7.1	7.4	6.6	6.1	7.5
	:	· .		:				

* PR 1 2 RECU

METHOD: EPA 9045

* This additional test was requested by the client on 03/27/89.

PAGE 2 OF 2

			LOCATION	6050 MA	RGINAL W	AY S.	
TES	T RESULTS		MATRIX:	SOIL			
PARAMETER		ISAMPLE # II.D.	I 06A I MW 36F	 			
	ģ						
рH			7.2				
en e							
- 							
		.:					
METHOD: EPA	9045		ی این این این می این این این این این این این این این ای				
* This addi the clie	tional test nt on 03/27	was request /89.	ed by				

•

G En La	TEL vironmental boratories 🖻		4080 Cor 415-	0-C 1cor -685	Pike d, C. -785:	Lar A 9. 2	пө 4520)	80 80	00-5)0-4;	44-3 23-7	422	2 (In C.) (Outs	A) ilde (CA)		(СН	IAI	N-(OF	-C	us	то	DY	' R	EC	OF	RD	A	ND		NA	LYS	SIS	RE	QI	JE	ST		2 A
Project Manager	r: •						Ρ	hon	ne #:	4	15					T				AN/	AL	YS	IS	RE	ດບ	ES'	Т						(отн	ER		5	SPE	ECI	AL.	
Mile	(p Lou	<u> </u>	5					53	21		37	22	<u> </u>			<u> </u>	T	T	т- Т					Т			• —	1			Т						H		DL	ING	1
Address: ハリノタ しらよ	9 Elemen	12	19 14	3	0		יד י ר	AX	#: 4	41	5		~																											واع	^
Project Number:	queeday.	<u>C</u>	4				<u>_</u> Pi	<u>Yı</u> roje	S ⁻	am	<u>2.5</u> A.		14			$\left\{ \right.$	8015					<u> </u>																			Z I
es.	818				\mathcal{C}	F	: /	P.	20.00	-+	ר		ad	u	10		3020/					\$ (418															Ĩ	ays)			in the second se
Project Location:	SOGO EAS	: t 1	ne	n's	ind	20	18	amp	oler	<u> </u>	naty	yre:		<u> </u>	<u></u>	1	602/	270)	8270)	,	ର	й Ф			2					letals							E (24	240			ž
	Societto,	,w	a.	·		6		e.	Ŵ	X	. Le	rl	ene	li			line	5 or 6	5 or	413.	(413.	droca								ant N	(2.6	·					N N N	UE (2
Sample	Lab #	AINERS	Amount		Ma	tri	×		M Pre	leti ese	hoo	d ed	Sa	mp	ling	12/8020)	H as Gase	iesel (801	etfuel (801	& Grease	& Grease	oleum Hy	8010	8020	BORD-PCF	8240	8270	Metais	8 Metals	ority Pollul	20/7421/20	C LEAD					Y ONE SE	ED SERV	S/FAX		
ID	(Lab use only	# CONT/	Volume//	WATER	SOIL		OTHER		- NO	Ы	NONE	OTHER	DATE		TIME	BTEX (60	BTEX/TP	TPH as D	TPH as J	Total Oil	Total Oil	Total Pet	EPA 601/	EPA 602/	EPA 608	EPA 624/	EPA 625/	CAM - 17	EPTOX -	EPA - Pri	LEAD(74:	ORGANIC					PRIORIT	EXPEDIT	VERBALS	SPECIAL	コビンロレン
MNI		1		X			1	T	1	X			5/2	1	115			X					1		1	1	1						1		$\uparrow \uparrow$			Ť	1		~
MWZA		1		X						ΪX			512	/	1/25			X														Π						Ì	1	Î	er væred
MW3		l		X						X			5/2	/	135			X														Π						I			Landard Co.
MW4		1		X						X			5/2	//	45			X																							The state of the s
MW5				X						ľΧ	1		5/2		155			Х																							
			$ \rightarrow $	_							ļ									-		_				-													_		_
										 															-	 							$-\downarrow$		\downarrow		_				1111
		┨	_							ļ										_	-			_		 						┞╴╿	_		_↓	-		_			ĺ
	,		-+	-+		+														-+	-			+						-			-+		╁╌┼	-	_	_			
······		-	_	_				-		-										_	_				+					-			_		$\left - \right $	-	-			-	
						1_															_			Ļ	1																
Relinquished b	y: abouter	5/	Da イス	ite	Tir	ne			Rec	eiv	ed	by:										Re	ma	arks	5:																
Relinquished b	у		Da	te	Tin	ne	*		Rec	eiv	ed	by:																													
Relinquished b	у		Da	te	Tin	ne			Rec J	eiv	ed I	by I	Labor	rator	ry: -/~	15	 9	 },	<u></u>	30		ιw	2																		

ŷ.

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922- 5047

Report To: Blymer Engineers, Inc.	Date: May 8, 1989	
Report On: Analysis of Water	Lab No.: A 6109	
<u>IDENTIFICATION:</u> Samples Received on 5-3-89 Project: 8818 CF/Puget Sound, WA		

ANALYSIS:

Laboratory Sample No.	1	2	3
Client Identification	MW 1	MW 2A	MW 3
Total Petroleum Hydrocarbons, mg/l	< 10	< 10	< 10

Laboratory Sample No.	4	5	
Client Identification	MW 4	MW 5	
Total Petroleum Hydrocarbons, mg/l	< 10	< 10	

Analysis Procedures: TPH by EPA Modified Method 8015

SOUND ANALYTICAL SERVICES PALMOUISI STAN P.

2

PARAME	I MDL TER I	AMPLE #	1 01 I DH52A	02 DH52C	03 DH52E			
			MATRIX: UNITS:	SOIL mg/Kg (ppm)				
			RECEIVED: ANALYZED:	05/03/89 05/08/89	BY:	D.	,: VLAHOGIANI	
	Outside CA: (800) 423-7143		SAMPLED:	05/02/89	BY:	D.	HRABORSKY	
	In CA: (800) 544-3422		LOCATION:	6050 E. MAR	GINAL W	Y. S	EATTLE	
	Western Region 4080-C Pike Ln., Concord, CA 94. (415) 695 7952	520	PROJECT#:	KENT, WA 9 201-710-800	18032 10-9		103	
	ENVIRONMENTA LABORATORIES, IN	L C.	CLIENT:	MARK WINTER GROUNDWATER 19226-66TH	R TECHNO AVE S. 1	LOGY	, INC. E 1 - 109	
			WORK ORD#	:C905093				
· · ·		ð5/10/89	JP	PAGE 1 OF 1				

Total Petroleum	10	170	630	100
Hydroc arbons				
as Diesel				

MDL = Method Detection Limit: compound below this level would not be detected. Results rounded to two signiticant figures.

. .

METHOD: Modified EPA 8015

mna P. Popen

EMMA P. POPEK, Laboratory Director

	ENVIRONMENTAL LABORATORIES, INC. Northwest Region 4080 Pike Lane Concord. CA 94520 (415) 685-7852 (800) 544-3422 from inside California (800) 423-7143 from outside California	<pre>) JP Page 1 of 1 WORK ORD#:C906188 CLIENT: MARK WINTERS GROUNDWGTER TECHNOLOGY, INC. 19226-661H AVE.S. SUITE L-109 KENT, WA 98032 PROJECT#: 201-710-10000-10 LOCATION: SEATTLE, WA SAMPLED: 06/08/89 BY: J. DESCHENES RECEIVED: 06/09/89 ONDLVIED: 06/09/89 ONDLVIED: 06/14/89 BY: D. VL0HOGIONI</pre>	
UNITS: mg/Kg (ppm)		MOTOLY, Sail	

Total Petroleum1021520(10Hydrocarbonsas Diesel

MDL = Method Detection Limit; compound below this leve) buld not be detected. Results rounded to two significant figures.

,

METHOD: Modified EPA 8015

.

• '

Comma P. Pop

_ ~ ~ ~ ~ ~ ~ ~ ~ ~

EMMA P. POPEK, Lat matory Director

4080-C Pike Lane Concord, CA 94520 415-685-7852 800-544-3422 (In CA) 800-423-7143 (Outside CA)					CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST																																					
Project Manager:	lanie						ć	Pho	one	#:	41 37	'5" 77	2							٩N	AL	YS	IS	RE	QL	JES	ST							0	TH	ίΕI	R		SI HA	PE		
Address: Blyn 1820 Alg	A clement	er. + Ki -14	1.0	ŗ	, t,	ve		FAX	२ २ १	: 4 65	11	55	59	4			15)					(
Project Number:						_		Pro	jec	t Na	ıme	:					20/8(418.																1	<u> </u>	(s)		EME C
88	3/8					<u>_</u>	E	4	Pa	çe	<u>+</u>	501	MC	Lui	<u>a</u>		2/80	lô	ĝ) suo									als									t day	0 L	
Project Location:	soco I Ma	いい Na	γ _ρ ι •	æf	ΓCL E	lors	6	Sar	npl) z~-	er S		atur 2	e:	haze	Q.		line (60	5 or 827	5 or 82	413.1)	413.2)	Irocarb				s Only					ant Met	9.2)										NG RE
Sample	Lah #	NERS	nount		M	latr	ix		F	M Pre	eth sei	od	d	Sam	pling	(8020)	as Gaso	sel (8015	fuel (801)	Grease (Grease (leum Hyc	010	020	080	080-PCB	240	5/0	Werais	Metals	rity Pollut:	0/7421/23	LEAD									REPORTII
ID	(Lab use only	# CONTAI	Volume/Ar	WATER	SOIL	AIR	SLUDGE	OTHER	нсі	HNO ₃	ICE	NONE	OTHER	DATE	TIME	BTEX (602	втех/трн	TPH as Die	TPH as Jet	Total Oil &	Total Oil &	Total Petro	EPA 601/8	EPA 602/8	EPA 608/8	EPA 608/8	EPA 624/8	EFA 625/8		EP IOX - 8	EPA - Prio	LEAD(742(ORGANIC									SPECIAL F
:11:1		1		X							χ			8/3	12:40			X																	╈			┢				-
MU 219		1		Ϋ́							X			9/3	12.25			X											T	1					1	T						
1.1W3		1		X							Ý			8/3	12:55	·		X								·												1				
M/hr +		1		χ							χ			8/3	12:45			X																				1				
MW=5		1		X							Х			<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	12:00			X																							_	
				•																																+					-	_
															ļ																		\downarrow				_					
Relinquished b	y: reborsly	B	D	ate 7	ר 	im	Э		F	Rec	eive	ed t	oy:									R	em	ark	s:																	
Relinquished b	y 🧀		Da	ate	т 	ime	9		F	Rec	eive	ed b	y:																													
Relinquished b	у		Da	ate	T	ime	;		F	lec	eive	ed b	by L	abora	tory:																											

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922- 5047

Report To: Consolidated Freightways Date: August 8, 1989 % Blymer Engineers Report On: Analysis of Liquid Lab No.: A 7127 <u>IDENTIFICATION:</u> Samples Received on 8-4-89 Project: 8818, CF/Puget Sound, WA 5060 E. Marginal Way

Seattle, WA

ANALYSIS:

Lab <u>Sample No.</u>	<u>Client ID</u>	Total Petroleum <u>Hydrocarbons, mg/l</u>	As Gasoline <u>or Diesel</u>
1	MW1	< 10	
2	MW2A	< 10	
3	MW3	< 10	
4	MW4	< 10	
5	MW5	< 10	

SOUND ANALYTICAL SERVICES C. LARRY ZURAW

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

GTEL Environmental Laboratories4080-C Pike Lane Concord, CA 94520 415-685-7852800-544-3422 (In CA) 800-423-7143 (Outside CA)) de CA)	CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST																																
Project Manager	•						Pł	non	e #:	4	15	~						Δ	NZ	11	(519	S R	FO		ST							0	гнг	=8		S	PE	CIA	۱L
Mike L	ewis						5	21	-	<u> </u>	77	Ø	53				, 			·····					,											Η/	HANDLING		
Address: Bly	nyer Engl	Ą¢,			5		FÆ	λX #	¥: 5	115	-																												
AI	Amed A. C.	2		· ,			8	65	 	25	-9	4				15)																						۲ ۲	NTS
Project Number:	_						Pr	ojec	ct Na	ame	:		1			0/80					18.1															-			ENE C
88'	18					Ċ	F	-1	15	20	1	t/	<u>e</u>			2/802		6			ns (A								s							54 P	days	10	
Project Location:	5060 E.M.	IRG	si a	14	w	AL	Sa	imp	ler S	Sign	atu	re:	7 🗸	1 1		(602	827(827	Ξ	<u>(</u>	arbo			۲I					Meta							U U	5-4	I IVVI.	L L L L L L L L L L L L L L L L L L L
	Southly U	<u>v</u> A	2				(Ļ	<u>)a</u>	n		2	hat	out	Ļ	oline	15 or	15 01	(413	[]	dro			Bs O					Itant	2.65						N N	빙	Ž	
Sample	Lab #	INERS	mount		Ma	atrix	K		M Pre	leth	ioc rve	l ed	San	npling	2/8020)	H as Gas	iesel (80	stfuel (80	k Grease	Grease	oleum H)	8020	8080	8080-PC	8240	8270	Metals	8 Metals	ority Pollu	20/7421/2	LEAD					ONE SI	ED SER	NETECT	REP
ID	(Lab use only	# CONTA	Volume/A	WATER	SOIL	AIR	OTHER	ICH	HN03	ICE	NONE	OTHER	DATE	TIME	BTEX (60	BTEX/TPI	TPH as Di	TPH as Je	Total Oil 8	Total Oil 8	FPA 601/	EPA 602/	EPA 608/	EPA 608/	EPA 624/	EPA 625/1	CAM - 17	EPTOX -	EPA - Pric	LEAD(742	ORGANIC					PRIORITY	EXPEDIT	SPECIAL	SPECIAL
MMII		T		X	-	+	+	╋	+	X			11/				X	-	-	╈		1-					-			\neg	-		+				+		+-
MW2A		1		Ń	-	+	+	+	+	ý			$\frac{1}{1}$				χ			\uparrow								\neg				_	┢			+	+	+	+-
MW 3		1		χ			\uparrow	1	1	ý			1.1.				Ϋ́																+						+
MW4		$\overline{1}$		X		1	1	1	1	X			11/1				X											\uparrow					1						+
MNS		1		Ύ			1	1		y			11/1				Ń			\top	1												T			1			
· · · · · · · · · · · · · · · · · · ·							1	1	\uparrow				////					1				Τ	\uparrow					1			1		1		-				
							\uparrow	+	-										+			1-				-		-			-		+				+		+
					+		-	+	+									-		+	+-					-	-	-+		-			+	$\left - \right $		\neg			+ `
					+	-	+	+	+-	++		┝╌┨							-+		+	-	-				-	-		-			┢	+					+
						-		+	+				·								+	+				-+	-+	-+	+	-	-		+	$\left - \right $			+		+
						+	-	+		+										+	+	+-	┼──			-		-	-	╉	-	_	┢			+		_	+
Relinquished b	יער.				 	 :	_	+		لسل		L.	I	. l			LI	I		+								I		I.			1						
		1	ם קיי	ate 1	11 1 C	ime ネッ:ク	n		C		7	ру.									ne	IIId	142	•															
Lando	Maborely		11		[7	<u>`</u> ^	hm	┶	\mathcal{L}	5£	1	<u>)/(</u>	ar	1 A																									
Relinquished b	by		D	ate	Ti 	me			Rec	ceiv	ed	by:	(/)																									
Relinquished b	у		Da	ate	⊥ Ті 	me			Rec	:eiv	ed	by I	Labor	atory:																									

SPECIALIZING IN INDUSTRIAL & TOXIC WASTE ANALYSIS 4630 PACIFIC HIGHWAY EAST, SUITE B-14, TACOMA, WASHINGTON 98424 - TELEPHONE (206)922-2310 - FAX (206)922- 5047

Report To: Consolidated Freightways Date: November 6, 1989 % Blymer Engineers

Report On: Analysis of Water

Lab No.: 8359

<u>IDENTIFICATION:</u> Samples Received on 11-02-89 Project: 8818 CF/Seattle, 5060 E. Marginal Way, Seattle, WA

مر میشد.

ANALYSIS:

um Fuel , mg/kg

(TPH by EPA SW-846 Modified Method 8015)

SOUND ANALYTICAL SERVICES

BRENT HEPNER

This report is issued solely for the use of the person or company to whom it is addressed. This laboratory accepts responsibility only for the due performance of analysis in accordance with industry acceptable practice. In no event shall Sound Analytical Services, Inc. or its employees be responsible for consequential or special damages in any kind or in any amount.

Laboratory Analytical Reports 1998-2003

Sound Analytical Services, Inc.

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: SoundL@aol.com

TRANSMITTAL MEMORANDUM

DATE: April 23, 1998

TO: Rob Long Golder Associates 4104 - 148th Avenue N.E. Redmond, WA 98052

PROJECT: CF/Risk Assessment

REPORT NUMBER: 71921

Enclosed are the test results for twenty-one samples received at Sound Analytical Services on April 9, 1998.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Analytical Narrative: The percent recovery for aromatics (C8-C10) in the VPH blank spike analysis associated with this sample batch exceeded advisory limits. No action was taken based on this outlier. The percent recovery for aliphatics (nC21 - nC34) in the EPH blank spike and matrix spike analyses associated with this sample batch were outside QC limits. The relative percent difference value for aromatics (nC21 - nC34) in the duplicate analysis for sample 71784-1 (batch QC) exceeded QC limits. These outliers may have caused by a baseline anomaly which is inherent to the method. The percent recovery for diesel range organics in the WTPH-D Ext. blank spike analysis was slightly above QC limits. No action was taken based on the acceptable matrix spike and matrix spike duplicate recoveries for this sample set.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely,

Tom Watson Project Manager

SOUND ANALYTICAL EPH/VPH

VOLATILE PETROLEUM HYDROCARBONS

ALIPHATIC AND AROMATIC FRACTIONS TARGET INDICATOR COMPOUNDS

Client Name	Golder Associates
Client ID:	CF-T1
Lab ID:	71921-01
Date Received:	4/9/98
Date Prepared:	4/20/98
Date Analyzed:	4/20/98
% Solids	89.02

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	95		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.3	5
EC >6-8 Aliphatics	ND	1.7	
EC >8-10 Aliphatics	3.2	2.6	
EC >8-10 Aromatics	7.4	2.1	
MTBE	ND	0.43	
Benzene	ND	0.43	
Toluene	ND	0.43	
Ethylbenzene	ND	0.43	
m- & p-Xylene	ND	0.86	
o-Xylene	ND	0.43	

Client Name	Golder Associates
Client ID:	MW2-2.0
Lab ID:	71921-06
Date Received:	4/9/98
Date Prepared:	4/20/98
Date Analyzed:	4/21/98
% Solids	81.3

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	68		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.4	
EC >6-8 Aliphatics	ND	1.9	
EC >8-10 Aliphatics	ND	2.9	
EC >8-10 Aromatics	ND	2.4	
MTBE	ND	0.48	
Benzene	ND	0.48	
Toluene	ND	0.48	
Ethylbenzene	ND	0.48	
m- & p-Xylene	ND	0.95	
o-Xylene	ND	0.48	

Client Name	Golder Associates
Client ID:	RW1-7.0
Lab ID:	71921-08
Date Received:	4/9/98
Date Prepared:	4/20/98
Date Analyzed:	4/21/98
% Solids	73.03

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	68		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.6	0
EC >6-8 Aliphatics	ND	2.2	
EC >8-10 Aliphatics	20	3.2	
EC >8-10 Aromatics	16	2.7	
MTBE	ND	0.54	
Benzene	ND	0.54	
Toluene	ND	0.54	
Ethylbenzene	ND	0.54	
m- & p-Xylene	ND	1.1	
o-Xylene	ND	0.54	

Client Name	Golder Associates
Client ID:	RW2-4.0
Lab ID:	71921-13
Date Received:	4/9/98
Date Prepared:	4/20/98
Date Analyzed:	4/21/98
% Solids	93.5

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	Recovery Limits	
Surrogate	% Recovery	Flags	Low	High	
a.a.aTrifluorotoluene	118		60	140	

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.2	-
EC >6-8 Aliphatics	34	1.6	
EC >8-10 Aliphatics	ND	48	D
EC >8-10 Aromatics	630	40	D
МТВЕ	ND	0.4	
Benzene	ND	0.4	
Toluene	4.4	0.4	
Ethylbenzene	7.4	0.4	
m- & p-Xylene	30	16	D
o-Xylene	18	8	D

Client Name	Golder Associates
Client ID:	RW2-7.0
Lab ID:	71921-14
Date Received:	4/9/98
Date Prepared:	4/20/98
Date Analyzed:	4/21/98
% Solids	72.43

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	126		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.6	-
EC >6-8 Aliphatics	61	2.1	
EC >8-10 Aliphatics	ND	64	D
EC >8-10 Aromatics	490	53	D
MTBE	ND	0.53	
Benzene	ND	0.53	
Toluene	ND	0.53	
Ethylbenzene	4.4	0.53	
m- & p-Xylene	29	21	D
o-Xylene	26	11	D
Lab ID:	Method Blank - GB1412		
----------------	-----------------------		
Date Received:	-		
Date Prepared:	4/20/98		
Date Analyzed:	4/20/98		
% Solids			

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
a.a.aTrifluorotoluene	78		60	140

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
EC 5-6 Aliphatics	ND	1.2	
EC >6-8 Aliphatics	ND	1.6	
EC >8-10 Aliphatics	ND	2.4	
EC >8-10 Aromatics	ND	2	
MTBE	ND	0.4	
Benzene	ND	0.4	
Toluene	ND	0.4	
Ethylbenzene	ND	0.4	
m- & p-Xylene	ND	0.8	
o-Xylene	ND	0.4	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID:

MW2-2.0 71921-06 4/20/98 4/21/98 GB1412

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
EC 5-6 Aliphatics	0	0	NC	-
EC >6-8 Aliphatics	0	0	NC	
EC >8-10 Aliphatics	0	0	NC	
EC >8-10 Aromatics	0	0	NC	
MTBE	0	0	NC	
Benzene	0	0	NC	
Toluene	0	0	NC	
Ethylbenzene	0	0	NC	
m- & p-Xylene	0	0	NC	
o-Xylene	0	0	NC	

Matrix Spike Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: MW2-2.0 71921-06 4/20/98 4/20/98 GB1412

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
EC 5-6 Aliphatics	0	9.4	7.5	79	Ŭ
EC >6-8 Aliphatics	0	4.7	3.9	84	
EC >8-10 Aromatics	0	4.7	6	128	
MTBE	0	4.7	4.7	100	
Benzene	0	4.7	4.7	100	
Toluene	0	4.7	5.2	111	
Ethylbenzene	0	4.7	5.2	110	
m- & p-Xylene	0	9.4	10	109	
o-Xylene	0	4.7	4.6	97	

Blank Spike Report

Lab ID:	GB1412
Date Prepared:	4/20/98
Date Analyzed:	4/20/98
QC Batch ID:	GB1412

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Blank Result	Spike Amount	BS Result	BS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
EC 5-6 Aliphatics	0	8	8.1	102	-
EC >6-8 Aliphatics	0	4	5.2	130	
EC >8-10 Aromatics	0	4	5.5	137	Ν
MTBE	0	4	3.9	97	
Benzene	0	4	4.3	107	
Toluene	0	4	4.4	109	
Ethylbenzene	0	4	4.5	113	
m- & p-Xylene	0	8	8.9	111	
o-Xylene	0	4	3.9	98	

27

SOUND ANALYTICAL EPH / VPH EXTRACTABLE PETROLEUM HYDROCARBONS ALIPHATIC AND AROMATIC FRACTIONS

Client Name	Golder Associates
Client ID:	CF-T1
Lab ID:	71921-01
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	89.02

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	66		60	140
Ortho-terphenyl	· 77		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
C8-C10 Aliphatics	10	1.9	-
C10-C12 Aliphatics	130	1.9	
C12-C16 Aliphatics	1000	1.9	
C16-C21 Aliphatics	1100	1.9	
C21-C34 Aliphatics	110	3.7	
C10-C12 Aromatics	25	1.9	
C12-C16 Aromatics	270	1.9	
C16-C21 Aromatics	630	3.7	
C21-C34 Aromatics	48	3.7	

Client Name	Golder Associates
Client ID:	MW2-2.0
Lab ID:	71921-06
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	81.3

Extractable Petroleum Hydrocarbons (EPH)

Surrogate			Recove	ery Limits
	% Recovery	Flags	Low	High
Chloro-octadecane	67		60	140
Ortho-terphenyl	83		60	140

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
C8-C10 Aliphatics	6.3	2	-
C10-C12 Aliphatics	32	2	
C12-C16 Aliphatics	270	2	
C16-C21 Aliphatics	310	2	
C21-C34 Aliphatics	410	3.9	
C10-C12 Aromatics	2.7	2	
C12-C16 Aromatics	22	2	
C16-C21 Aromatics	120	3.9	
C21-C34 Aromatics	120	3.9	

,

Client Name	Golder Associates
Client ID:	RW1-7.0
Lab ID:	71921-08
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	73.03

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	65		60	140
Ortho-terphenyl	75		60	140

Result		
(mg/kg)	PQL	Flags
180	2.3	•
1200	2.3	
5600	2.3	
4200	2.3	
750	4.5	
110	2.3	
980	2.3	
2200	4.5	
350	4.5	
	Result (mg/kg) 180 1200 5600 4200 750 110 980 2200 350	Result(mg/kg)PQL1802.312002.356002.342002.37504.51102.39802.322004.53504.5

Client Name	Golder Associates
Client ID:	RW2-4.0
Lab ID:	71921-13
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	93.5

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	61		60	140
Ortho-terphenyl	62		60	140

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
C8-C10 Aliphatics	330	1.8	-
C10-C12 Aliphatics	840	1.8	
C12-C16 Aliphatics	2400	1.8	
C16-C21 Aliphatics	2100	1.8	
C21-C34 Aliphatics	250	3.7	
C10-C12 Aromatics	250	1.8	
C12-C16 Aromatics	920	1.8	
C16-C21 Aromatics	1200	3.7	
C21-C34 Aromatics	100	3.7	

r -

Client Name	Golder Associates
Client ID:	RW2-7.0
Lab ID:	71921-14
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	72.43

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	67		60	140
Ortho-terphenyl	69		60	140

	Result		
Analyte	(mg/kg)	PQL	Flags
C8-C10 Aliphatics	280	2.3	_
C10-C12 Aliphatics	670	2.3	
C12-C16 Aliphatics	1900	2.3	
C16-C21 Aliphatics	1700	2.3	
C21-C34 Aliphatics	240	4.5	
C10-C12 Aromatics	180	2.3	
C12-C16 Aromatics	680	2.3	
C16-C21 Aromatics	1000	4.5	
C21-C34 Aromatics	88	4.5	

Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Method Blank - EP044

4/14/98 4/21/98

Extractable Petroleum Hydrocarbons (EPH)

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Chloro-octadecane	79		60	140
Ortho-terphenyl	101		60	140

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
C8-C10 Aliphatics	ND	2.5	-
C10-C12 Aliphatics	ND	2.5	
C12-C16 Aliphatics	ND	2.5	
C16-C21 Aliphatics	ND	2.5	
C21-C34 Aliphatics	ND	5	
C10-C12 Aromatics	ND	2.5	
C12-C16 Aromatics	ND	2.5	
C16-C21 Aromatics	ND	5	
C21-C34 Aromatics	ND	5	

Blank Spike Report

Lab ID:	EP044
Date Prepared:	4/14/98
Date Analyzed:	4/21/98
QC Batch ID:	EP044

Extractable Petroleum Hydrocarbons (EPH)

	Blank Result	Spike Amount	BS Result	BS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
C8-C10 Aliphatics	0	20	22	111	-
C10-C12 Aliphatics	0	20	21	105	
C12-C16 Aliphatics	0	20	22	112	
C16-C21 Aliphatics	0	20	26	130	
C21-C34 Aliphatics	0	20	42	209	Ν
C10-C12 Aromatics	0	20	21	104	
C12-C16 Aromatics	0	20	21	106	
C16-C21 Aromatics	0	20	21	105	
C21-C34 Aromatics	0	20	17	87	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: C7-1 71784-01 4/14/98 4/20/98 EP044

Extractable Petroleum Hydrocarbons (EPH)

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
C8-C10 Aliphatics	16	15	6.5	
C10-C12 Aliphatics	41	50	20.0	
C12-C16 Aliphatics	170	210	21.0	
C16-C21 Aliphatics	190	240	23.0	
C21-C34 Aliphatics	42	54	25.0	
C10-C12 Aromatics	7	7.5	6.9	
C12-C16 Aromatics	51	56	9.3	
C16-C21 Aromatics	150	190	24.0	
C21-C34 Aromatics	17	32	61.0	Ν

Matrix Spike Report

C7-1
71784-01
4/14/98
4/20/98
EP044M

Extractable Petroleum Hydrocarbons (EPH)

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
C8-C10 Aliphatics	16	20	32	79	-
C10-C12 Aliphatics	41	20	58	83	
C12-C16 Aliphatics	170	20	190	90	
C16-C21 Aliphatics	190	20	220	142	X7a
C21-C34 Aliphatics	42	20	85	212	Ν
C10-C12 Aromatics	7	20	24	85	
C12-C16 Aromatics	51	20	67	76	
C16-C21 Aromatics	150	20	180	150	X7a
C21-C34 Aromatics	17	20	68	251	X7

SOUND ANALYTICAL EPA 8270 MOD. EXTRACTABLE PETROLEUM HYDROCARBONS TARGET PAH COMPOUNDS

Client Name	Golder Associates
Client ID:	CF-T1
Lab ID:	71921-01
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	89.02
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	118		50	150	

		Result			
Analyte		(mg/kg)	PQL	MDL	Flags
Naphthalene	ND		0.021	0.015	
2-Methylnaphthalene	ND		0.02	0.013	
Acenaphthylene	ND		0.018	0.014	
Acenaphthene		0.21	0.015	0.013	
Fluorene		0.21	0.012	0.011	
Phenanthrene	ND		0.011	0.01	
Anthracene	ND		0.013	0.012	
Fluoranthene		0.21	0.01	0.0086	
Pyrene		0.68	0.0095	0.0082	
Benzo(a)anthracene		0.052	0.0073	0.0065	
Chrysene		0.097	0.0095	0.008	
Benzo(b)fluoranthene	ND		0.0092	0.0077	
Benzo(k)fluoranthene	ND		0.013	0.012	
Benzo(a)pyrene	ND		0.007	0.0061	
Indeno(1,2,3-cd)pyrene	ND		0.012	0.012	
Dibenz(a,h)anthracene	ND		0.0098	0.0083	
Benzo(g,h,i)perylene	ND		0.011	0.0092	

Client Name	Golder Associates
Client ID:	MW2-2.0
Lab ID:	71921-06
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	81.3
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	71		50	150	

	R	esult			
Analyte	(m	ıg/kg)	PQL	MDL	Flags
Naphthalene		0.049	0.022	0.016	-
2-Methylnaphthalene		0.14	0.021	0.014	
Acenaphthylene	ND		0.019	0.015	
Acenaphthene		0.071	0.016	0.014	
Fluorene		0.15	0.013	0.012	
Phenanthrene		0.22	0.012	0.011	
Anthracene		0.12	0.014	0.013	
Fluoranthene		0.18	0.011	0.0092	
Pyrene		0.19	0.01	0.0087	
Benzo(a)anthracene		0.06	0.0077	0.0069	
Chrysene		0.17	0.01	0.0085	
Benzo(b)fluoranthene		0.063	0.0098	0.0082	
Benzo(k)fluoranthene		0.047	0.014	0.013	
Benzo(a)pyrene		0.049	0.0074	0.0065	
Indeno(1,2,3-cd)pyrene	ND		0.013	0.012	
Dibenz(a,h)anthracene	ND		0.01	0.0088	
Benzo(g,h,i)perylene		0.033	0.011	0.0098	

Client Name	Golder Associates
Client ID:	RW1-7.0
Lab ID:	71921-08
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	73.03
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	113		50	150

	F	Result			
Analyte	(r	mg/kg)	PQL	MDL	Flags
Naphthalene		6.2	0.025	0.018	Ū.
2-Methylnaphthalene		34	0.12	0.016	D
Acenaphthylene	ND		0.022	0.017	
Acenaphthene		1.8	0.019	0.016	
Fluorene		2.5	0.015	0.013	
Phenanthrene		7	0.013	0.012	
Anthracene		2.2	0.016	0.015	
Fluoranthene	ND		0.012	0.011	
Pyrene		0.62	0.012	0.01	
Benzo(a)anthracene		0.094	0.0089	0.008	
Chrysene	ND		0.012	0.0098	
Benzo(b)fluoranthene	ND		0.011	0.0094	
Benzo(k)fluoranthene	ND		0.016	0.015	
Benzo(a)pyrene	ND		0.0085	0.0074	
Indeno(1,2,3-cd)pyrene	ND		0.015	0.014	
Dibenz(a,h)anthracene	ND		0.012	0.01	
Benzo(g,h,i)perylene	ND		0.013	0.011	

Client Name	Golder Associates
Client ID:	RW2-4.0
Lab ID:	71921-13
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	93.5
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	102	_	50	150

	Re	sult			
Analyte	(mg	ı/kg)	PQL	MDL	Flags
Naphthalene		8.1	0.021	0.015	-
2-Methylnaphthalene		16	0.098	0.013	
Acenaphthylene	ND		0.018	0.014	
Acenaphthene		1.1	0.015	0.013	
Fluorene		1.9	0.012	0.011	
Phenanthrene		4.9	0.011	0.01	
Anthracene	ND		0.013	0.012	
Fluoranthene	ND		0.0098	0.0085	
Pyrene		0.7	0.0094	0.0081	
Benzo(a)anthracene	ND		0.0072	0.0065	
Chrysene	ND		0.0094	0.0079	
Benzo(b)fluoranthene	ND		0.0091	0.0076	
Benzo(k)fluoranthene	ND		0.013	0.012	
Benzo(a)pyrene	ND		0.0069	0.006	
Indeno(1,2,3-cd)pyrene	ND		0.012	0.012	
Dibenz(a,h)anthracene	ND		0.0097	0.0082	
Benzo(g,h,i)perylene	ND		0.011	0.0091	

Client Name	Golder Associates
Client ID:	RW2-7.0
Lab ID:	71921-14
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	72.43
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	89		50	150

		Result			
Analyte		(mg/kg)	PQL	MDL	Flags
Naphthalene		6.5	0.025	0.018	
2-Methylnaphthalene		11	0.12	0.016	
Acenaphthylene	ND		0.022	0.017	
Acenaphthene		0.93	0.019	0.016	
Fluorene		2	0.015	0.013	
Phenanthrene		3.6	0.013	0.012	
Anthracene	ND		0.016	0.015	
Fluoranthene	ND		0.012	0.011	
Pyrene		0.63	0.012	0.01	
Benzo(a)anthracene	ND		0.0089	0.008	
Chrysene	ND		0.012	0.0098	
Benzo(b)fluoranthene	ND		0.011	0.0094	
Benzo(k)fluoranthene	ND		0.016	0.015	
Benzo(a)pyrene	ND		0.0085	0.0074	
Indeno(1,2,3-cd)pyrene	ND		0.015	0.014	
Dibenz(a,h)anthracene	ND		0.012	0.01	
Benzo(g,h,i)perylene	ND		0.013	0.011	

Lab ID:	Method Blank - EP044
Date Received:	-
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
% Solids	
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	68		50	150

Sample results are on an as received basis.

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
Naphthalene	ND	0.028	0.02	-
2-Methylnaphthalene	ND	0.027	0.018	
Acenaphthylene	ND	0.024	0.019	
Acenaphthene	ND	0.021	0.017	
Fluorene	ND	0.016	0.015	
Phenanthrene	ND	0.015	0.014	
Anthracene	ND	0.018	0.016	
Fluoranthene	ND	0.013	0.012	
Pyrene	ND	0.013	0.011	
Benzo(a)anthracene	ND	0.0098	0.0088	
Chrysene	ND	0.013	0.011	
Benzo(b)fluoranthene	ND	0.012	0.01	
Benzo(k)fluoranthene	ND	0.018	0.016	
Benzo(a)pyrene	ND	0.0094	0.0082	
Indeno(1,2,3-cd)pyrene	ND	0.016	0.016	
Dibenz(a,h)anthracene	ND	0.013	0.011	
Benzo(g,h,i)perylene	ND	0.014	0.012	

Blank Spike Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: EP044 4/14/98 4/15/98 EP044

Targeted PAH Analytes by Method 8270 Modified.

	Blank	Spike	BS		
	Result	Amount	Result	BS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Naphthalene	0	20	15	76	
Acenaphthene	0	20	21	103	
Pyrene	0	20	19	97	
Benzo(g,h,i)perylene	0	20	21	103	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: BATCH QC 71784-01 4/14/98 4/15/98 EP044

Targeted PAH Analytes by Method 8270 Modified.

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
Naphthalene	0	0	NC	
2-Methylnaphthalene	1	1.3	26.0	
Acenaphthylene	0	0	NC	
Acenaphthene	0	0	NC	
Fluorene	0.3	0.35	15.0	
Phenanthrene	0.67	1	40.0	
Anthracene	0	0	NC	
Fluoranthene	0	0	NC	
Pyrene	0.053	0.074	33.0	
Benzo(a)anthracene	0	0	NC	
Chrysene	0	. 0	NC	
Benzo(b)fluoranthene	0	0	NC	
Benzo(k)fluoranthene	0	0	NC	
Benzo(a)pyrene	0	0	NC	
Indeno(1,2,3-cd)pyrene	0	0	NC	
Dibenz(a,h)anthracene	0	0	NC	
Benzo(g,h,i)perylene	0	0	NC	

46

-

Matrix Spike Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: BATCH QC 71784-01 4/14/98 4/15/98 EP044

Targeted PAH Analytes by Method 8270 Modified.

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Naphthalene	0	20	14	69	-
Acenaphthene	0	20	17	85	
Pyrene	0.053	20	19	92	
Benzo(g,h,i)perylene	0	20	20	97	

Golder Associates
CF-T2
71921-02
4/9/98
4/16/98
4/19/98
94.17

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	122		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	ND	13	
Heavy Oil (>nC24-nC32)	ND	26	

Client Name	Golder Associates		
Client ID:	CF-T3		
Lab ID:	71921-03		
Date Received:	4/9/98		
Date Prepared:	4/16/98		
Date Analyzed:	4/19/98		
% Solids	90.39		

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	127		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	20	13	
Heavy Oil (>nC24-nC32)	53	27	

49

Client Name	Golder Associates
Client ID:	MW3-5.0
Lab ID:	71921-04
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/19/98
% Solids	72.51

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	99		50	150

	Result			
Analyte	(mg/kg)	PQL	Flags	
Diesel (>nC12-nC24)	ND	17		
Heavy Oil (>nC24-nC32)	32	34	J	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Golder Associates MW3-6.5 71921-05 4/9/98 4/16/98 4/19/98 64.55

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	78		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	ND	19	_
Heavy Oil (>nC24-nC32)	48	37	

Client Name	Golder Associates
Client ID:	MW2-5.5
Lab ID:	71921-07
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/19/98
% Solids	71.88

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	93		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	18	17	
Heavy Oil (>nC24-nC32)	ND	34	

Client Name	Golder Associates
Client ID:	RW1-7.0
Lab ID:	71921-08
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/20/98
% Solids	73.03

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	-	X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	13000	170	
Heavy Oil (>nC24-nC32)	520	340	

Client Name	Golder Associates
Client ID:	RW1-7.0D
Lab ID:	71921-09
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/20/98
% Solids	59.86

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	-	X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	8800	200	_
Heavy Oil (>nC24-nC32)	ND	400	

Client Name	Golder Associates
Client ID:	RW1-13
Lab ID:	71921-10
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/20/98
% Solids	77.5

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	105		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	18	15	
Heavy Oil (>nC24-nC32)	ND	31	

Solder Associates
MW1-5.5
71921-11
4/9/98
4/16/98
4/20/98
70.11

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	92		50	150

0 maluta	Result	501	
Analyte	(тд/кд)	PQL	Flags
Diesel (>nC12-nC24)	ND	18	
Heavy Oil (>nC24-nC32)	ND	35	

Client Name	Golder Associates
Client ID:	MW1-7.0
Lab ID:	71921-12
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/20/98
% Solids	71.17

Extended Diesel Range by WTPH-D Modified

			Recovery Limits		
Surrogate o-Terphenyl	% Recovery 88	Flags	Low 50	High 150	

Analyte	Result (mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	ND	17	-
Heavy Oil (>nC24-nC32)	ND	35	

Client Name	Golder Associates
Client ID:	RW2-4.0
Lab ID:	71921-13
Date Received:	4/9/98
Date Prepared:	4/16/98
Date Analyzed:	4/21/98
% Solids	93.5

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	-	X8	50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	12000	270	-
Heavy Oil (>nC24-nC32)	ND	530	

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	71921-15
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	-

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	96		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	1	0.25	X2
Heavy Oil (>nC24-nC32)	1.1	0.5	X2
Client Name	Golder Associates		
----------------	-------------------		
Client ID:	MW-2		
Lab ID:	71921-16		
Date Received:	4/9/98		
Date Prepared:	4/14/98		
Date Analyzed:	4/20/98		
% Solids	-		

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	90		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	2.2	0.26	X2
Heavy Oil (>nC24-nC32)	0.66	0.52	X2

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	71921-17
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	-

			Recove	ry Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	85		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	ND	0.24	-
Heavy Oil (>nC24-nC32)	ND	0.47	

Client Name	Golder Associates
Client ID:	RW-1
Lab ID:	71921-18
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/20/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	99		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	1.4	0.23	X2
Heavy Oil (>nC24-nC32)	ND	0.47	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Golder Associates RW-2 71921-19 4/9/98 4/14/98 4/20/98

				Recove	ery Limits
Surrogate		% Recovery	Flags	Low	High
o-Terphenyl		91		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	5.4	0.25	X2
Heavy Oil (>nC24-nC32)	0.68	0.5	

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	71921-15
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	101		57	153

Result	
(mg/L)	PQL Flags
ND	0.001
ND	0.001
ND	0.001
ND	0.002
ND	0.001
	Result (mg/L) ND ND ND ND ND

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	71921-16
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	90		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	ND	0.001	
Toluene	ND	0.001	
Ethylbenzene	ND	0.001	
m,p-Xylenes	ND	0.002	
o-Xylene	ND	0.001	

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	71921-17
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	103		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	ND	0.001	-
Toluene	ND	0.001	
Ethylbenzene	ND	0.001	
m,p-Xylenes	ND	0.002	
o-Xylene	ND	0.001	

Client Name	Golder Associates
Client ID:	RW-1
Lab ID:	71921-18
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	106		57	153

Result		
(mg/L)	PQL	Flags
ND	0.001	-
ND	0.001	
ND	0.001	
ND	0.002	
ND	0.001	
	Result (mg/L) ND ND ND ND ND	Result PQL ND 0.001 ND 0.002 ND 0.001

Client Name	Golder Associates
Client ID:	RW-2
Lab ID:	71921-19
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-

Volatile Aromatic Hydrocarbons by USEPA Method 8021 Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	109		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	0.21	0.01	D
Toluene	0.013	0.001	
Ethylbenzene	0.1	0.001	
m,p-Xylenes	0.22	0.02	D
o-Xylene	0.088	0.01	D

430-

Client Name	Golder Associates
Client ID:	MW-1D
Lab ID:	71921-20
Date Received:	4/9/98
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	104		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	ND	0.001	
Toluene	ND	0.001	
Ethylbenzene	ND	0.001	
m,p-Xylenes	ND	0.002	
o-Xylene	ND	0.001	

Client Name	
Client ID:	
Lab ID:	
Date Received:	
Date Prepared:	
Date Analyzed:	
% Solids	

Golder Associates TRIP BLANK 71921-21 4/9/98 4/15/98 4/15/98

			Recover	y Limits
Surrogate Trifluorotoluene	% Recovery 88	Flags	Low 57	High 153
				ц.
	Result			
Analyte	(mg/L)	PQL		Flags
Benzene	ND	0.001		
Toluene	ND	0.001		
Ethylbenzene	ND	0.001		
m,p-Xylenes	ND	0.002		
o-Xylene	ND	0.001		

Sound Analytical Services, Inc.

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	71921-15
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	-

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	82		35	114
2 - Fluorobiphenyl	88		43	116
p - Terphenyl - d14	115		33	141

	Result		
Analyte	(ug/L)	PQL	Flags
Naphthalene	ND	0.096	-
2-Methylnaphthalene	ND	0.096	
2-Chloronaphthalene	ND	0.096	
Acenaphthylene	ND	0.096	
Acenaphthene	ND	0.096	
Fluorene	ND	0.096	
Phenanthrene	ND	0.096	
Anthracene	ND	0.096	
Fluoranthene	ND	0.096	
Pyrene	ND	0.096	
Benzo(a)anthracene	ND	0.096	
Chrysene	ND	0.096	
Benzo(b)fluoranthene	ND	0.096	
Benzo(k)fluoranthene	ND	0.096	
Benzo(a)pyrene	ND	0.096	
Indeno(1,2,3-cd)pyrene	ND	0.096	
Dibenz(a,h)anthracene	ND	0.096	
Benzo(g,h,i)perylene	ND	0.096	

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	71921-16
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	-

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	110		35	114
2 - Fluorobiphenyl	97		43	116
p - Terphenyl - d14	115		33	141

Result				
Analyte	(ug/L)	PQL	Flags	
Naphthalene	ND	0.1		
2-Methylnaphthalene	0.18	0.1		
2-Chloronaphthalene	ND	0.1		
Acenaphthylene	ND	0.1		
Acenaphthene	0.84	0.1		
Fluorene	0.8	0.1		
Phenanthrene	0.72	0.1		
Anthracene	ND	0.1		
Fluoranthene	ND	0.1		
Pyrene	ND	0.1		
Benzo(a)anthracene	ND	0.1		
Chrysene	ND	0.1		
Benzo(b)fluoranthene	ND	0.1		
Benzo(k)fluoranthene	ND	0.1		
Benzo(a)pyrene	ND	0.1		
Indeno(1,2,3-cd)pyrene	ND	0.1		
Dibenz(a,h)anthracene	ND	0.1		
Benzo(g,h,i)perylene	ND ND	0.1		

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	71921-17
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	-

		Recovery Limits	
% Recovery	Flags	Low	High
100	-	35	114
94		43	116
102		33	141
	% Recovery 100 94 102	% Recovery Flags 100 94 102	Recovery Flags Low 100 35 94 43 102 33 33

	Result		
Analyte	(ug/L)	PQL	Flags
Naphthalene	ND	0.094	-
2-Methylnaphthalene	ND	0.094	
2-Chloronaphthalene	ND	0.094	
Acenaphthylene	ND	0.094	
Acenaphthene	ND	0.094	
Fluorene	ND	0.094	
Phenanthrene	ND	0.094	
Anthracene	ND	0.094	
Fluoranthene	ND	0.094	
Pyrene	ND	0.094	
Benzo(a)anthracene	ND	0.094	
Chrysene	ND	0.094	
Benzo(b)fluoranthene	ND	0.094	
Benzo(k)fluoranthene	ND	0.094	
Benzo(a)pyrene	ND	0.094	
Indeno(1,2,3-cd)pyrene	ND	0.094	
Dibenz(a,h)anthracene	ND	0.094	
Benzo(g,h,i)perylene	ND	0.094	

Client Name	Golder Associates
Client ID:	RW-1
Lab ID:	71921-18
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	•

		Recovery Limits		
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	129	X9	35	114
2 - Fluorobiphenyl	115		43	116
p - Terphenyl - d14	120		33	141

Result				
Analyte	(ug/L)	PQL	Flags	
Naphthalene	11	0.093		
2-Methylnaphthalene	26	0.47	D	
2-Chloronaphthalene	ND	0.093		
Acenaphthylene	ND	0.093		
Acenaphthene	1.1	0.093		
Fluorene	2.9	0.093		
Phenanthrene	2.5	0.093		
Anthracene	0.15	0.093		
Fluoranthene	ND	0.093		
Pyrene	ND	0.093		
Benzo(a)anthracene	ND	0.093		
Chrysene	ND	0.093		
Benzo(b)fluoranthene	ND	0.093		
Benzo(k)fluoranthene	ND	0.093		
Benzo(a)pyrene	ND	0.093		
Indeno(1,2,3-cd)pyrene	ND	0.093		
Dibenz(a,h)anthracene	ND	0.093		
Benzo(g,h,i)perylene	ND	0.093		

Client Name	Golder Associates
Client ID:	RW-2
Lab ID:	71921-19
Date Received:	4/9/98
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	-

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	96		35	114
2 - Fluorobiphenyl	39	X9	43	116
p - Terphenyl - d14	110		33	141

	Result		
Analyte	(ug/L)	PQL	Flags
Naphthalene	43	0.49	D
2-Methylnaphthalene	39	0.49	D
2-Chloronaphthalene	ND	0.098	
Acenaphthylene	ND	0.098	
Acenaphthene	1.3	0.098	
Fluorene	2.1	0.098	
Phenanthrene	2.3	0.098	
Anthracene	ND	0.098	
Fluoranthene	ND	0.098	
Pyrene	0.27	0.098	
Benzo(a)anthracene	ND	0.098	
Chrysene	ND	0.098	
Benzo(b)fluoranthene	ND	0.098	
Benzo(k)fluoranthene	ND	0.098	
Benzo(a)pyrene	ND	0.098	
Indeno(1,2,3-cd)pyrene	ND	0.098	
Dibenz(a,h)anthracene	ND	0.098	
Benzo(g,h,i)perylene	ND	0.098	

Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids

Method Blank - DI1521

4/16/98 4/19/98

Extended Diesel Range by WTPH-D Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	110		50	150

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
Diesel (>nC12-nC24)	ND	13	-
Heavy Oil (>nC24-nC32)	ND	25	

-
4/14/98
4/15/98
-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	84		50	150

	Result		
Analyte	(mg/L)	PQL	Flags
Diesel (>nC12-nC24)	ND	0.25	-
Heavy Oil (>nC24-nC32)	ND	0.5	

Blank Spike Report

Lab ID:	DI1521
Date Prepared:	4/16/98
Date Analyzed:	4/19/98
QC Batch ID:	DI1521

	Blank	Spike	BS		
	Result	Amount	Result	BS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
Diesel (>nC12-nC24)	0	250	320	129	N
Heavy Oil (>nC24-nC32)	0	250	280	111	

78

Blank Spike/Blank Spike Duplicate Report

Lab ID:	DI1518
Date Prepared:	4/14/98
Date Analyzed:	4/15/98
QC Batch ID:	DI1518

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
Diesel (>nC12-nC24)	0	5.01	4.97	99.3	4.43	88.5	12	•
Heavy Oil (>nC24-nC32)	0	5.01	4.7	93.9	4.21	84.1	11	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID:

RW1-13 71921-10 4/16/98 4/20/98 DI1521

	Sample	Duplicate	000	
Parameter Name	(mg/kg)	(mg/kg)	KPD %	Flag
Diesel (>nC12-nC24)	18	13	32.0	_
Heavy Oil (>nC24-nC32)	0	0	NC	

Matrix Spike/Matrix Spike Duplicate Report

RW1-13
71921-10
4/16/98
4/20/98
DI1521

	Sample	Spike	MS		MSD			
	Result	Amount	Result	MS	Result	MSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
Diesel (>nC12-nC24)	18	319	292	85.8	367	109	24	
Heavy Oil (>nC24-nC32)	0	319	256	80.3	301	94.3	16	

Lab ID:	Method Blank - GB1408
Date Received:	-
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
% Solids	-
Date Analyzed: % Solids	4/15/98 -

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Imuorotoluene	92		57	153

Result		
(mg/L)	PQL	Flags
ND	0.001	• ·
ND	0.001	
ND	0.001	
ND	0.002	
ND	0.001	
	Result (mg/L) ND ND ND ND ND	Result PQL ND 0.001 ND 0.001 ND 0.001 ND 0.001 ND 0.001 ND 0.001 ND 0.002 ND 0.001

Lab ID:	Method Blank - GB1413
Date Received:	-
Date Prepared:	4/20/98
Date Analyzed:	4/20/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	104		57	153

	Result		
Analyte	(mg/L)	PQL	Flags
Benzene	ND	0.001	•
Toluene	ND	0.001	
Ethylbenzene	ND	0.001	
m,p-Xylenes	ND	0.002	
o-Xylene	ND	0.001	

Blank Spike/Blank Spike Duplicate Report

Lab ID:	GB1408
Date Prepared:	4/15/98
Date Analyzed:	4/15/98
QC Batch ID:	GB1408

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
Benzene	0	0.025	0.0202	80.9	0.0206	82.3	1.7	
Toluene	0	0.025	0.0234	93.4	0.0271	109	15	
Ethylbenzene	0	0.025	0.026	104	0.0258	103	0.97	
m,p-Xylenes	0	0.05	0.0542	108	0.059	118	8.8	
o-Xylene	0	0.025	0.026	104	0.0274	110	5.6	

Blank Spike/Blank Spike Duplicate Report

GB1413
4/20/98
4/20/98
GB1413

Volatile Aromatic Hydrocarbons by USEPA Method 8021 Modified

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
Benzene	0	0.025	0.0229	91.6	0.0224	89.6	2.2	•
Toluene	0	0.025	0.0228	91.2	0.0222	88.8	2.7	
Ethylbenzene	0	0.025	0.0228	91.2	0.0222	88.8	2.7	
m,p-Xylenes	0	0.05	0.0432	86.4	0.0422	84.4	2.3	
o-Xylene	0	0.025	0.0224	89.6	0.0218	87.2	2.7	

85

Lab ID:	Method Blank - SV1905
Date Received:	-
Date Prepared:	4/14/98
Date Analyzed:	4/14/98
% Solids	-

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	94		35	114
2 - Fluorobiphenyl	89		43	116
p - Terphenyl - d14	97		33	141

	Result		
Analyte	(ug/L)	PQL	Flags
Naphthalene	ND	0.1	-
2-Methylnaphthalene	ND	0.1	
2-Chloronaphthalene	ND	0.1	
Acenaphthylene	ND	0.1	
Acenaphthene	ND	0.1	
Fluorene	ND	0.1	
Phenanthrene	ND	0.1	
Anthracene	ND	0.1	
Fluoranthene	ND	0.1	
Pyrene	ND	0.1	
Benzo(a)anthracene	ND	0.1	
Chrysene	ND	0.1	
Benzo(b)fluoranthene	ND	0.1	
Benzo(k)fluoranthene	ND	0.1	
Benzo(a)pyrene	ND	0.1	
Indeno(1,2,3-cd)pyrene	ND	0.1	
Dibenz(a,h)anthracene	ND	0.1	
Benzo(g,h,i)perylene	ND	0.1	

đ

Page

SOUND ANALYTICAL SERVICES, INC.

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE: (253) 922-2310 - FAX: (253) 922-5047

DATA QUALIFIERS AND ABBREVIATIONS

This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).

This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).

Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.

Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.

GC/MS confirmation was performed. The result derived from the original analysis was reported.

The reported result for this analyte was calculated based on a secondary dilution factor.

The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.

The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.

- : Maximum Contaminant Level
- .: Method Detection Limit

See analytical narrative.

Not Detected

.: Practical Quantitation Limit

Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______.

Contaminant does not appear to be "typical" product.

Identification and quantitation of the analyte or surrogate was complicated by matrix interference.

RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.

1: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.

Matrix spike recovery was not determined due to the required dilution.

Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.

- Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- Surrogate recovery was not determined due to the required dilution.
- Surrogate recovery outside advisory QC limits due to matrix interference.

88

13

	<i>IEQUEST FOR LABO</i>	βάτοβγ ΑΙ	NALYSIS
CLIENT: Golder ADSOCTATES ANALYSIS REQUESTED:	NUESTED:		
PROJECT NAME: CF Rick Activity as B	(sr (sr	TCLP Extraction	
	anics 40 (GC/ 85 70 (GC/A	Si	ר.
PHONE NO: 425 873-6575 PHONE NO: 425 875 PHONE NO: 425	1's cify beld 624/82 418.1 418.1 418.1 418.1 418.1	etals tiles i-volatile cides &	- H9 H9 H9
LAB # SAMPLE I.D. DATE TIME MATRIX * TH RE CHAR FR RE FR RE FR RE FR RE RE FR RE	HAA Vola Aq3 Aq3 EPA Aq3 Aq3 Aq3 Aq3 Aq3 Aq3 Aq3 Aq3 Aq3 Aq	8 M6 Volai Semi Pesti Pesti	N E M
1 CE-71 4-7-98 (0)18 Soil 1 1			
2 (F-72 1 0725 1 1 1 1 1			
3 CF-73 1 NHU 1 1			7
\rightarrow 1 1 1 2000 $\overline{0.3} - \overline{2.0}$			
5 MUI3-6.5 0986 1			×
C MWZ-2.0 1015 2			
7 Mu2-5.5 1021 1 1			
8 KU1-7.0 1207 2			
9 KW1-1.00 1 1 1 1 1 1 1 0 0.1 - 1 M X 6			
1 1 121 - 13 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1			
1/ mw1-5.5 1/15/8 1/			>
1 1 1 2 WW 1- T.O 1 1520 1 1			2
10 KWZ-4, 0 4.8.48 0131 2			
1 2 A (121) 8-8-8 (1-1-2 M) 4/2 A (121) 8-8-14 (1-1-2) A (121)			
A Signature Printed Name Firm Time / Date	Firm Time / Date	SPECIAL INSTRUCT	rions/comments:
Relinquished By WMM / ~ Gary Zimathman Golden 1200 4.4.4 Chec	0/200 1200 4. 4. 4. 4.	These samples - Check this box to	will be disposed of 45 days after receipt . to have samples returned
Received By Xam Lanan Sun H115en 5HS 1200 4/9/98	248 1200 4/9/95		
Relinquished By Low Zonden Sam HJU Son CHS 1100 4/9/90	778 1100 4/9/90	<u> </u>	
Received By NSIDMA KIANA STS IN 4665	E IN 466	<u>c</u> t	
Relinquished By		}	
Received By			

n y

dia -

÷

Расе

B,

•'

- - - - -

ANALYTICAL & ENVIRONMENTAL CHEMISTS

فت ز

11/0/ 50

Tacoma, Washington 98424 (253) 922-2310 • FAX (253) 922-5047

253) 922-23 اب/ل vol CHAIN OF CUSTODY / REQUEST FOR LABORATORY ANALYSIS

CLIEN	IT: (4 septor	7017	tatt	S		ANA	LYSIG	REQU	ESTE	D:		•							P';		510					- 6 -1	
PROJ	ECT	NAME: CF	Risk	Aur	som Int		iles		PCB's	H	(SW/	MS)					CLP E	xtracti	on]					1				
CONT	ACT	Rab	Lon	Ŋ		tiners	ed Volat 8010	/olatiles 020	d Pest., 080		ganics 240 (GC	iles 270 (GC/		se	ls elow)			<u>8</u>	~	10.								
PHON		D: 425 1	683	- רס־	רַר	of Conta	A 601/8	omatic V A 602/6	A 608/6	s,HV	latile Or A 624/8	mi-volat A625/82	H 418.1	& Grea	tal Meta becify be	Metals	latiles	mi-volati	sticides	TPH	L.							
	S,			TIME	MATRIX	*	Ϋü	Ϋ́μ	ご 版	à	Νщ	Ϋ́Ш	4 H	Ö	To (Sf	80	<u>ې</u>	Š	9 1	N	0			ļ				
-15-		W = 2	1-8.4	\$ 1305	Wo:191	12				*							-				V				 			
12	- IN	W - D		1000	<u>├-</u> - <u>/</u> -	5				*			 															
18	R	-		1525		1				*										7					-		-	
19	R	N - 2		11.25		5				· ·										1	1							
20	m	W-10		1440		3				NA.	4K	2									¥							
21	inT	o BLADK	¥		V	N															V							
		¥ • • •																										
				ļ																								
ļ	ļ		 																									- F .
	 		 														ļ								ļ			
																									i			
1.5								· · ·									· · · · · · · · · · · · · · · · · · ·				°u	°.	ļ		<u> </u>		<u> </u>	
									<u>.</u>	ir.														<u> </u>				
	L	Siona	ture		Printed	Na	ne	Ī	لـــــا F	irm		 T				S	PECIAL	INST	RUCTI	ONS/C	ОММЕ	INTS:]	I	I	L		
									· · · ·		•••••			(These	sam	ples v	will be	e disp	osed	of 45	i davs	s after	recei	pt.	
Relinquist	ned By	YNUL	\sim	-10	nny ci	111	016	wvc	<u>\ (</u>	j/ge	186	2	.00	A	1-9-1	18	Check	this	box t	o have	e san	nples	retur	ned].			
Received	Ву	Jan Ha	niem	- 52	in H	 Ди	Sei		5	<u>4s</u>		120	»0 [']	4	1/9/9	78								,				
Relinquist	ned By	Jan He	ansen	-5	Jun H	า โน	Sei	<u>م</u> ا.	SA	5		1:0	10	4	191	20	-											
Received	Ву	Said	na	$\overline{2}$	Siar	200			51	115	•	//	2	-4 9-	-9-	5	8									3		
Relinquist	ned By		\bigcup				•	, ,						<i>.</i>		٦٢	7											
Received	By	Â.											······															

13

nf

BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND = (503) 906-9200 = FAX 906-9210

or Daniel - GTI, Inc Renton	Project:	Consolidated Freightways	Sampled:	7/27/98 to 7/29/98
5 South Renton Village Place, Ste 700	Project Number:	101386	Received:	7/29/98
nton, WA 98055	Project Manager:	Stan Haskins	Reported:	8/5/98 15:01

ANALYTICAL REPORT FOR SAMPLES:

mple Description	Laboratory Sample Number	Sample Matrix	Date Sampled
-1	B807557-01	Soil	7/27/98
-2	B807557-02	Soil	7/27/98
-3	B807557-03	Soil	7/27/98
'B-1	B807557-04	Soil	7/27/98
'B-3	B807557-06	Soil	7/27/98
V-1	B807557-08	Soil	7/27/98
V-2	B807557-09	Soil	7/27/98
V-3	B807557-10	Soil	7/27/98
V-4	B807557-11	Soil	7/27/98
·-1	B807557-12	Water	7/27/98
<i>,</i> -1	B807557-13	Soil	7/29/98
2	B807557-14	Soil	7/29/98
3	B807557-15	Soil	7/29/98

orth Creek Analytical, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

or Daniel - GTI, Inc Renton	Project:	Consolidated Freightways	Sampled:	7/27/98 to 7/29/98
South Renton Village Place, Ste 700	Project Number:	101386	Received:	7/29/98
iton, WA 98055	Project Manager:	Stan Haskins	Reported:	8/5/98 15:01

Diesel Hydrocarbons (C12-C24) by WTPH-D North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
alyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
······································								
1			B8075	<u>57-01</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/31/98		410	7970	mg/kg dry	
rogate: Octacosane	"	"	"	50.0-150		89.8	%	1
-2			<u>B8075</u>	<u>57-02</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/31/98		210	3890	mg/kg dry	
rogate: Octacosane	"	"	"	50.0-150		7 9 .1	%	1
<u>-3</u>			B8075	<u>57-03</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/31/98		110	2000	mg/kg dry	
rogate: 2-FBP	"	"	11	50.0-150		139	%	
<u>B-1</u>			<u>B8075</u>	<u>57-04</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/30/98		10.0	72.1	mg/kg dry	
rogate: 2-FBP	"	"	"	50.0-150		72.3	%	
<u>B-3</u>			<u>B8075</u>	<u>57-06</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/30/98		10.0	ND	mg/kg dry	
rogate: 2-FBP	"	"	Ħ	50.0-150		90.3	%	
<u>/-1</u>			<u>B8075</u>	<u>57-08</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/31/98		1010	28700	mg/kg dry	
rogate: Octacosane	"	"	"	50.0-150		77.6	%	1
<u>/-2</u>			B8075	<u>57-09</u>			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	8/4/98	· · · ·	10.0	ND	mg/kg dry	,
rogate: 2-FBP	"	"	"	50.0-150		86.9	%	
<u>/-3</u>			<u>B8075</u>	57-10			<u>Soil</u>	
sel Range Hydrocarbons	0780938	7/30/98	7/30/98		10.0	ND	mg/kg dry	
rogate: 2-FBP	"	"	"	50.0-150		67.8	%	
/_4			<u>B8075</u>	57-11			Soil	
sel Range Hydrocarbons	0780938	7/30/98	7/31/98		110	2700	mg/kg dry	
rogate: 2-FBP	"	"	"	50.0-150		143	%	
-1			<u>B8075</u>	57-12			Water	
esel Range Hydrocarbons	0780990	7/31/98	8/4/98		10.3	138	mg/l	
rogate: Octacosane	"	"	"	50.0-150		75.5	%	1

rth Creek Analytical, Inc.

B Chang Manage bieč

*Refer to end of report for text of notes and definitions.

BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND = (503) 906-9200 = FAX 906-9210

			Sompled:	7/27/98 to 7/29/98	
Daniel GTI Inc - Renton	Project:	Consolidated Freightways	Sampico.	1121178 to 1127178	
Daniel - OTI, me Remen		101207	Received:	7/29/98	
South Renton Village Place, Ste 700	Project Number:	101386	Received		
114 00055	Project Manager	Stan Haskins	Reported:	8/5/98 15:01	
on, WA 98000	I TOJECT IVIAIIAGET.	Otan Mastins			

Diesel Hydrocarbons (C12-C24) by WTPH-D North Creek Analytical - Bothell

	Batch	Date	Date	Surrogate	Reporting			
lyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
			D9075	57 13			Soil	
1	0780038	7/30/98	<u>580/5</u> 7/30/98	<u> 57-15</u>	10.0	20.5	mg/kg dry	
ogate: 2-FBP	"	"	"	50.0-150		73.9	%	
2	0700029	7/20/08	<u>B8075</u> 7/31/98	<u>57-14</u>	210	4780	<u>Soil</u> mg/kg dry	
el Kange Hydrocarbons ogate: Octacosane	"	"	"	50.0-150		81.3	%	1
3 sel Range Hydrocarbons	0780938	7/30/98	<u>B8075</u> 7/30/98	57-15	10.0	ND	Soil mg/kg dry	
rogate: 2-FBP	"	"	n	50.0-150		81.3	%	

orth Creek Analytical, Inc.

Manage y B Chang, Project

*Refer to end of report for text of notes and definitions.

BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND = (503) 906-9200 = FAX 906-9210

or Daniel - GTI, Inc Renton	Project:	Consolidated Freightways	Sampled:	7/27/98 to 7/29/98
5 South Renton Village Place, Ste 700	Project Number:	101386	Received:	7/29/98
nton, WA 98055	Project Manager:	Stan Haskins	Reported:	8/5/98 15:01

Diesel Hydrocarbons (C12-C24) by WTPH-D/Quality Control North Creek Analytical - Bothell

	Date	Spike	Sample	QC	R	eporting Limit	Recov.	RPD	RPD	
alyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
tch: 0780938	Date Prepa	red: 7/3(<u>)/98</u>		Extractio	n Method: EP	<u>A 3550B</u>			
ank	<u>0780938-B</u>	LK1								
esel Range Hydrocarbons	7/30/98			ND	mg/kg dry	/ 10.0				
rrogate: 2-FBP	"	11.0		9.93	"	50.0-150	90.3			
S	<u>0780938-B</u>	<u>51</u>								
esel Range Hydrocarbons	7/30/98	66.7		62.2	mg/kg dry	60.0-140	93.3			
rrogate: 2-FBP	"	11.0	<u></u>	8.43	"	50.0-150	76.6			
<u>plicate</u>	<u>0780938-D</u>	UP1	<u> B807563-04</u>							
esel Range Hydrocarbons	7/30/98		ND	ND	mg/kg dry	1		50.0		
rrogate: 2-FBP	7/1/98	12.2	· · · · · · · · · · · · · · · · · · ·	10.4	"	50.0-150	85.2			
plicate	0780938-D	UP2	<u>B807563-01</u>							
esel Range Hydrocarbons	7/30/98		ND	ND	mg/kg dry	/		50.0		
rrogate: 2-FBP	11	11.7		8.69	"	50.0-150	7 4.3			
<u>tch: 0780990</u>	Date Prepa	red:_7/31	<u>1/98</u>		Extraction Method: EPA 3520C/600 Series					
ank	<u>0780990-B</u>	LK1								
esel Range Hydrocarbons	8/3/98			ND	mg/l	0.250				
rrogate: 2-FBP	**	0.330		0.233	"	50.0-150	70. 6			
25	<u>0780990-B</u>	51								
esel Range Hydrocarbons	8/3/98	2.00		1.88	mg/l	60.0-140	94.0			
rrogate: 2-FBP	17	0.330		0.229	"	50.0-150	69.4			
plicate	0780990-D	UP1	<u> B807583-07</u>							
esel Range Hydrocarbons	8/3/98		ND	ND	mg/l			44.0		
rrogate: 2-FBP	"	0.628	· · · · · · · · · · · · · · · · · · ·	0.370	"	50.0-150	58.9			

rth Creek Analytical, Inc.

*Refer to end of report for text of notes and definitions.

NORTH
CREEK
ANALYTICAL
Environmental Laboratory Services

BOTHELL = (425) 420-9200 = FAX 420-9210 SPOKANE = (509) 924-9200 = FAX 924-9290 PORTLAND = (503) 906-9200 = FAX 906-9210

or Daniel - GTI, Inc Renton	Project:	Consolidated Freightways	Sampled:	7/27/98 to 7/29/98
South Renton Village Place, Ste 700	Project Number:	101386	Received:	7/29/98
ton, WA 98055	Project Manager:	Stan Haskins	Reported:	8/5/98 15:01

Notes and Definitions

	Note
	Due to interference from coeluting organic compounds with the primary surrogate, results of the secondary surrogate have been used to control the analysis.
Γ	Analyte DETECTED
	Analyte NOT DETECTED at or above the reporting limit
	Not Reported
	Sample results reported on a dry weight basis
ov.	Recovery

) Relative Percent Difference

th Creek Analytical, Inc.

B Chang, Project Manager

18939 120th Avenue N.E., Suite 101, Bothell, WA 98011-9508 (205) 481-9200 FAX 485-2992
East 11115 Montgomery, Suite B, Spokane, WA 99206-4779 (509) 924-9200 FAX 924-9290
9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 (503) 643-9200 FAX 644-2202

CHAIN OF CUSTODY REPORT

1557 Work Order #

REPORT TO: Fluor Daniel GTI				INVOICE TO: CONNIE DOFFINAN										TURNAROUND REQUEST in Business Days *					
ATTENTION: 5 TAN HIASKINS				ATTENTION:										Organic & Inorganic Analyses					
ADDRESS: 555 5 Benton Village Place			ADDRESS:											10 7 5 4 3 2 1 Same					
Kenton WA 98055														Fuels & Hydrocarbon Analyses					
PHONE: 47.5 - 228-9645 FAX:			P.O. NUMBER: NCA QUOTE #:											J Juniari Ja-4 2 1 Same					
PROJECT NAME: Consolidated Freightways			Analysis																
PROJECT NUMBER: 101386													OTHER Sporify:						
SAMPLED BY: CN 5				Turnaround Requests te									ess than standard may incur Rush Charges.						
		NCA SAMPLE ID		/	\mathbf{V}	/		/		/	/			MATRIX W S A OL			сомм	IFNTS	
5°P-1	11:34	8807557-01		X		([·		5	<u>ي</u> با					
, 51-2	12:05	- 02												1					
<u>, SP-3</u>	3:5Ø	-03																	
· T/B-1	12:57	- 04																	
, TPB-2	1:04	- 05															Hold		
T(D-3	3:22	-04																	
, 780-4	ð;14	-07															Hold		
x 3W-1	12:56	-08	, 				ļ												
, JW-2	3:21	-09																	
in TW-3	,3:27	_10												<u> </u>					
RELINQUISHED BY (Symmetry) (I FIN / ITMON DATE: 7/9/18 RECEIVED BY (Symmetry) Kon Walf DATE: 7/09/9																			
PRINT NAME: CARIS / Sio	rex	FIRM: FDGTI	-	TIME	. [.]	Ø	PRINT	NAME:	Re	4		Way	0		FIRM:	Ċ	DELT	тме/3.30	
RELINQUISHED BY (Second Kon Waly DATE: 7/28/9) RECEIVED BY (Second Wall DATE: 7/28/9) RECEIVED BY (Second Wall DATE: 7/28/9)																			
FRINT NAME REW WOLL FIRM; COE				(TIME / 500 PRINT NAME: S. Widen										- FIRM: NCA, TIME: 3:00					
ADDITIONAL REMARKS:																			
																	10.2 PA	GE OF	
5 P. 1 199		·															-\ -		

East 11115 Montgomery, Suite B. Spokane, WA 99206-4779 (509) 924-9200 FAX 924-9290 9405 S.W. Nimbus Avenue, Beaverton, OR 97008-7132 (503) 643-9200 FAX 644-2202

CHAIN OF CUSTODY REPORT

Work	Order #	B	80	12
	UIUUI	1 1 2		

REPORT TO: Flugs Praiel Q	TI		INVOICE T	0:	Con	л,'е		en a					TUDN		NIEST IS BUS	lasa Dava t
TTENTION STAN Hartin	<i>j</i> .					Organic & Inorganic Analyses			aness trays							
ADDRESS 555 S. RPATA	n Villar	e Place				$\overline{7}$ $\overline{5}$ $\overline{4}$ $\overline{3}$ $\overline{2}$ 1 $\overline{3}$ $\overline{2}$			1 Same							
Renton, MA	48055												Stanlard	ـــــا لـــــا لـــــــــــــــــــــــ	Hydrocarbon A	nalyses
PHONE: 425-228-9645	FAX:		P.O. NUMBER	ł:				NCA Q	JOTE #:					X 3-4	<u> </u> 2 1	Same Day
PROJECT NAME: Consulidated	Freich	r	Analysis	/		7	7	7		/		7		Standard		
PROJECT NUMBER: 101396	- Ø		Request:		Y		/	/	/	/		/	OTHER	Specify:		
SAMPLED BY: CN 5] ,	$\langle \rangle$	/ /	/ /	· /	/ /	' /	· /	· /		* Turnaround	Requests less the	n standard may i	ncur Rush Charges.
CLIENT SAMPLE	SAMPLING	NCA SAMPLE ID] /.	۶×										# OF	,	COMMENTS
JUL-16	7/17/43.10	- 11		<u>/</u>	<u> </u>	((((Í		S. 1	1		
JWZY	3:76	- 11	+	<u>`</u>									20,1	<u> </u>		
				,┥──									1.7			[
$T \rho - 1$	0.40	- 12		\									Water	3		
PL-1	7/25/98	- 12												1		
6	10:42	- 14	ÍΧ											1		
61.3	12'0			<u>/</u>									······································	 		
PL-9	1 File	- 15	//~`	×										 		
													<u></u>			
0	0															
Chin III	Angel		DAT	F: 7/	29/99	RECEIV	ED BY		L.	_ L	Jog	•				DATE: 7-79-5
RELINQUISHED BY (Signam)	<u>k po zaje</u>	EN-TT	~	<u>- //</u> /·	1/2					<u> </u>	$\frac{1}{\sqrt{2}}$	F			0 4 /	1220
DRINT NAME: CARIS	joren	FIRM: / ////			<u> </u>	PRINT	NAME:	_ <u>/</u>	<u>E</u> (, , , , , , , , , , , , , , , , , , ,	$\frac{\omega}{2}$			FIRM: C	DEC	TIME: (3 30)
RELINQUISHED BY (Stendard Kon W			DAT	E//29	s/Íð	RECEN	ED BY	Signature 1:	\geq	<u>. l</u>	Uid	ll	n			DATE 299
PRINT NAME: KEN WO	iF	FIRM: C.DEC	TIA	1E/50	00	PRINT	NAME:		<u>S.</u>	h)ide	l	h	FIRM:	·	TIME: 3.00
ADDITIONAL REMARKS:															17/0	
															- D. 2	PAGE OF
															\ `	

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	83533-01
Date Received:	8/19/99
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

		Recove	ery Limits
% Recovery	Flags	Low	High
101		63	138
105		41	157
	% Recovery 101 105	% Recovery Flags 101 105	Recovery Flags Low 101 63 105 41

Result			
(mg/L)	PQL	MDL	Flags
	0.001	0.00064	
	0.001	0.00051	
	0.001	0.00037	
	0.002	0.00063	
	0.001	0.00063	
	Result (mg/L)	Result (mg/L) PQL 0.001 0.001 0.001 0.002 0.001	Result PQL MDL (mg/L) PQL 0.00064 0.001 0.00051 0.001 0.00037 0.002 0.00063 0.001 0.00063

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	83533-02
Date Received:	8/19/99
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	101		63	138
Bromofluorobenzene	103		41	157

Result			
(mg/L)	PQL	MDL	Flags
	0.001	0.00064	
	0.001	0.00051	
	0.001	0.00037	
1	0.002	0.00063	
)	0.001	0.00063	
	Result (mg/L)	Result PQL (mg/L) 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001	Result PQL MDL (mg/L) PQL 0.001 0.00064 0.001 0.00051 0.00051 0.001 0.00037 0.002 0.00063 0.001 0.00063 0.001 0.00063

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	83533-03
Date Received:	8/19/99
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	101		63	138
Bromofluorobenzene	104		41	157

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
Benzene	0.00086	0.001	0.00064	J
Toluene ND		0.001	0.00051	
Ethylbenzene ND		0.001	0.00037	
m&p-Xylene ND		0.002	0.00063	
o-Xylene ND		0.001	0.00063	

Client Name	Golder Associates
Client ID:	RW-2
Lab ID:	83533-04
Date Received:	8/19/99
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	112		63	138
Bromofluorobenzene	106		41	157

	Result		
Analyte	(mg/L)	PQL	MDL Flags
Benzene	0.083	0.001	0.00064
Toluene	ND	0.001	0.00051
Ethylbenzene	0.02	0.001	0.00037
m&p-Xylene	0.043	0.002	0.00063
o-Xylene	0.0024	0.001	0.00063

Client Name	Golder Associates
Client ID:	TRIP BLANK
Lab ID:	83533-05
Date Received:	8/19/99
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

Volatile Aromatic Hydrocarbons by USEPA Method 8021B/5030B Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	101		63	138
Bromofluorobenzene	104		41	157

	Result		
Analyte	(mg/L) PG	2L	MDL Flags
Benzene	ND	0.001	0.00064
Toluene	ND	0.001	0.00051
Ethylbenzene	ND	0.001	0.00037
m&p-Xylene f	ND	0.002	0.00063
o-Xylene	ND	0.001	0.00063

6

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	83533-01
Date Received:	8/19/99
Date Prepared:	8/23/99
Date Analyzed:	8/25/99
% Solids	-
Dilution Factor	5

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	92		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.16	0.24	0.12	J
Motor Oil	0.25	0.48	0.24	J

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	83533-02
Date Received:	8/19/99
Date Prepared:	8/23/99
Date Analyzed:	8/25/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	94.8		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	1.9	0.24	0.12	X1
Motor Oil	0.58	0.48	0.24	

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	83533-03
Date Received:	8/19/99
Date Prepared:	8/23/99
Date Analyzed:	8/25/99
% Solids	-
Dilution Factor	5

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	96.8		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	1.5	0.24	0.12	X2
Motor Oil	1.8	0.48	0.24	X2

Client Name	Golder Associates
Client ID:	RW-2
Lab ID:	83533-04
Date Received:	8/19/99
Date Prepared:	8/23/99
Date Analyzed:	8/25/99
% Solids	-
Dilution Factor	5

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	94.1		50	150

Analyte	Result (ma/L)	PQL	MDL	Flags
#2 Diesel	1.5	0.24	0.12	X2
Motor Oil	0.45	0.48	0.24	J

Lab ID:	Method Blank - GB1924
Date Received:	-
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
% Solids	-
Dilution Factor	1

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	98.3		63	138
Bromofluorobenzene	102		41	157

Result			
(mg/L)	PQL	MDL	Flags
	0.001	0.00064	-
	0.001	0.00051	
	0.001	0.00037	
	0.002	0.00063	
	0.001	0.00063	
	Result (mg/L)	Result (mg/L) PQL 0.001 0.001 0.001 0.002 0.001	Result MDL (mg/L) PQL MDL 0.001 0.00064 0.001 0.00051 0.001 0.00037 0.002 0.00063 0.001 0.00063

Blank Spike/Blank Spike Duplicate Report

Lab ID:	GB1924
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
QC Batch ID:	GB1924

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
Benzene	0	0.025	0.0247	98.7	0.0242	96.9	-1.8	5
Toluene	0	0.025	0.0247	98.6	0.0236	94.5	-4.2	
Ethylbenzene	0	0.025	0.0275	110	0.0264	105	-4.7	
m&p-Xylene	0	0.05	0.0533	107	0.0509	102	-4.8	
o-Xylene	0	0.025	0.0224	89.7	0.0212	84.9	-5.5	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: MW-1 83533-01 8/20/99 8/21/99 GB1924

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/L)	(mg/L)	%	Flag
Benzene	0	0	NC	
Toluene	0	0	NC	
Ethylbenzene	0	0	NC	
m&p-Xylene	0	0	NC	
o-Xylene	0	0	NC	

Matrix Spike/Matrix Spike Duplicate Report

Client Sample ID:	RW-2
Lab ID:	83533-04
Date Prepared:	8/20/99
Date Analyzed:	8/21/99
QC Batch ID:	GB1924

	Sample	Spike	MS		MSD			
	Result	Amount	Result	MS	Result	MSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
Benzene	0.083	0.025	0.114	126	0.114	122	-3.2	-
Toluene	0.00049	0.025	0.0247	96.9	0.0246	96.5	-0.41	
Ethylbenzene	0.02	0.025	0.0502	120	0.0542	136	13	
m&p-Xylene	0.043	0.05	0.102	119	0.103	121	1.7	
o-Xylene	0.0024	0.025	0.0243	87.7	0.0246	88.7	1.1	

d Blank - DI2252
-
8/23/99
8/25/99
-
5

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	94		50	150

	Result		
Analyte	(mg/L)	PQL	MDL Flags
#2 Diesel	ND	0.25	0.13
Motor Oil	ND	0.5	0.25

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: DI2252 8/23/99 8/25/99 DI2252

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
#2 Diesel	0	5.01	5.12	102	5.37	107	4.8	
Motor Oil	0	4.93	4.61	93.5	4.96	100	6.7	

ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE: (253) 922-2310 - FAX: (253) 922-5047

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______.
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

Sound Analytical Services, Inc.

SAS Lab No. <u>83533</u>

20 ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: sainc1@uswest.net

TURNAROUND REQUEST (business days) Standard (10 days) ______ RUSH: 24 hrs ____ 48 hrs ____ 5 day ____

CHAIN OF CUSTODY/REQUEST FOR LABORATORY ANALYSIS Analyses Requested

Client: Golder Associates		Analyse	s Requ	estec	1						 	
Project Name: CF INVISTIGATION WA 983-1065.650 Contact: GONY ZIMMONMA Phone No.: 425 883-0177 Fax No.: 425 882-5498 Email:	of Containers	BTEX	WTPA- Dx		÷							
Only Sample ID 1) JJ Date Time Matrix	#		N V						 		 	
111W- C MW-1 6-11-94 1010 W	4		V						 		 	
2 444-3-100.2 110° W	4		V						 		 	
> mw=1 mu=3 1224 W	4	V	Y						 		 	
X 1242 13101	1	V	V									
5 Trip BLANK Lub 203	2	V.						,			 	
		1.1.1										
						``					 	
	1.										 	
	1	1										
		1							 			
	1	1									 	
	1								 			
							-				 	

	Signature	Printed Name	Firm	Time/Date	Special Instructions
Relinquished		Gana Z: manna	a Galder	1050/8-10.99	Ketiglios iadi adi at 7 X
Received By	Toe Jalme X	JOP PALMO	r SAS	10:54 8-19	C. OWNT for
Relinquished By:	Dr. Palingt	Joe PALMONS	- 5AS	11:45 8-1	an an an an an a
Received By	Theorem	FJespelsen	SAS	8/19/99	11/2/11/20
Relinquished By:	'/ '	~			
Received By					1

COC No: 101 6-1

APPENDIX B

LABORATORY ANALYTICAL RESULTS

Client Name	Golder Associates
Client ID:	GP-1
Lab ID:	83534-01
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	84.6		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	1.2	0.24	0.12	X1
Motor Oil	0.69	0.48 、	0.24	

Client Name	Golder Associates
Client ID:	GP-2
Lab ID:	83534-02
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	Recovery Limits			
Surrogate	% Recovery	Flags	Low	High			
o-terphenyl	81.9		50	150			

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.4	0.24	0.12	X1
Motor Oil	0.28	0.48	0.24	J

Client Name	Golder Associates
Client ID:	GP-3
Lab ID:	83534-03
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	75.6		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.26	0.24	0.12	X1
Motor Oil	0.59	0.48	0.24	

Client Name	Golder Associates
Client ID:	GP-4
Lab ID:	83534-04
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	78.5		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.8	0.25	0.13	X1
Motor Oil	0.49	0.51	0.25	J

X1 - Chromatogram suggests this might be single component contamination

5

Client Name	Golder Associate		
Client ID:	GP-5		
Lab ID:	83534-05		
Date Received:	8/19/99		
Date Prepared:	8/25/99		
Date Analyzed:	8/27/99		
% Solids	-		
Dilution Factor	5		

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	82.7		50	150	

	Res	sult			
Analyte	(mg	g/L)	PQL	MDL	Flags
#2 Diesel		0.98	0.24	0.12	X1
Motor Oil	ND		0.47	0.24	

X1 - Chromatogram suggests this might be single component contamination

• •

Client Name	Golder Associate		
Client ID:	GP-6		
Lab ID:	83534-06		
Date Received:	8/19/99		
Date Prepared:	8/25/99		
Date Analyzed:	8/27/99		
% Solids	-		
Dilution Factor	5		

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	84.3		50	150	

	Result				
Analyte	(mg/L)	PQL	MDL	Flags	
#2 Diesel	1.4	0.24	0.12	X1	
Motor Oil	1.8	0.49	0.24		

Client Name	Golder Associates
Client ID:	GP-7
Lab ID:	83534-07
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limit		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	82.1		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.72	0.24	0.12	X1
Motor Oil	0.36	0.48	0.24	J

X1 - Chromatogram suggests this might be single component contamination

. .

Client Name	Golder Associate		
Client ID:	GP-8		
Lab ID:	83534-08		
Date Received:	8/19/99		
Date Prepared:	8/25/99		
Date Analyzed:	8/27/99		
% Solids	-		
Dilution Factor	5		

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	92.9		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.26	0.24	0.12	X1
Motor Oil	0.3	0.48	0.24	J

Client Name	Golder Associates
Client ID:	GP-9
Lab ID:	83534-09
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	81		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	1.2	0.24	0.12	X1
Motor Oil	0.28	0.48	0.24	J

Client Name	Golder Associate		
Client ID:	GP-10		
Lab ID:	83534-10		
Date Received:	8/19/99		
Date Prepared:	8/25/99		
Date Analyzed:	8/28/99		
% Solids	-		
Dilution Factor	25		

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	84.9		50	150	

0l	Result	DOI		Flago
Analyte	(mg/L)	PQL	MDL	riags
#2 Diesel	29	1.2	0.6	X1
Motor Oil	2.1	2.4	1.2	J

Client Name	Golder Associates
Client ID:	GP-11
Lab ID:	83534-11
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	81		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	2.5	0.24	0.12	X1
Motor Oil	0.86	0.48	0.24	

Client Name	Golder Associates
Client ID:	GP-11EB
Lab ID:	83534-12
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	89.4		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	3.3	0.24	0.12	X1
Motor Oil	0.76	0.48	0.24	

Client Name	Golder Associates
Client ID:	GP-12
Lab ID:	83534-13
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

			Recovery Li		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	87		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.16	0.24	0.12	J
Motor Oil	0.39	0.48	0.24	J

Client Name	Golder Associate		
Client ID:	GP-13		
Lab ID:	83534-14		
Date Received:	8/19/99		
Date Prepared:	8/25/99		
Date Analyzed:	8/27/99		
% Solids	-		
Dilution Factor	5		

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	83.3		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.58	0.24	0.12	X1
Motor Oil	0.33	0.48	0.24	J

Client Name	Golder Associates
Client ID:	GP-14
Lab ID:	83534-15
Date Received:	8/19/99
Date Prepared:	8/25/99
Date Analyzed:	8/28/99
% Solids	-
Dilution Factor	25

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	88.2		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	34	1.2	0.6	
Motor Oil	2.5	2.4	1.2	

Lab ID:	Method Blank - DI2257
Date Received:	-
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
% Solids	-
Dilution Factor	5

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	84.1		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	ND	0.25	0.13	
Motor Oil	ND	0.5	0.25	

Blank Spike/Blank Spike Duplicate Report

Lab ID:	DI2257
Date Prepared:	8/25/99
Date Analyzed:	8/27/99
QC Batch ID:	DI2257

Diesel and Motor Oil by NWTPH-Dx Modified

	Blank	Spike	BS	De	BSD	000		
Compound Name	(mg/L)	(mg/L)	(mg/L)	въ % Rec.	(mg/L)	85D % Rec.	RPD	Flag
#2 Diesel	0	5.01	4.34	86.8	4.57	91.3	5.1	-
Motor Oil	0	4.93	4.09	83	4.11	83.3	0.36	

·** 18
ANALYTICAL & ENVIRONMENTAL CHEMISTS

4813 PACIFIC HIGHWAY EAST, TACOMA, WASHINGTON 98424 - TELEPHONE: (253) 922-2310 - FAX: (253) 922-5047

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ______.
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

Sound Analytical Services, Inc. ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: sainc1@uswest.net

SAS Lab No. _8 3534

TURNAROUND REQUEST (business days) Standard (10 days) _____ RUSH: 24 hrs ____ 48 hrs ____ 5 day ____

CHAIN OF CUSTODY/REQUEST FOR LABORATORY ANALYSIS

Client: Golder Associ	2140	1		ľ	Analyse	s Requ	estec	ł								
Project Name: OF Invos	tigat	run IWI	A													
983	-1065	5.600)													
Contact: Gam Zim	meri	nan]	~											
Phone No.: 42'5 88	3-0	ררך		Jers												
Fax No.:		•) tair	T											
Email:				Š	Ë											
Use Only Sample ID	Date	Time	Matrix	# of	Ne											
GP-1	8-18-99	0615	¥	1	2											
2 GP-Z		0900		1	V	_				-						
3 GP-3		0690		1	V											
4 GP-4		1020		1												
5 GP-5		1047		1	V.											
6 GP-6 ~		1115			V											•
7 GP-7		1148		1	V.										····	
0 GP-8		1222		1												
9 GP-9		1305		1	1					-						
10 GP-10		1335		1							1					
11 GP-11		1425			V											
12 GP-ITEB		1430		1							<u> </u>			-		
13 GP-12		1458		1	V	· · ·					1					
14 GP-13	A	1527	V	T	2					-	1					
5 GP-14				ŀ												
				1												
											1		<u> </u>			
		4.	ing.	1								<u> </u>	<u> </u>			-
······································	·	4					l		l,		<u> </u>	I. ,	I	<u> </u>	I	l
Signature	F	rinted N	lame	F	Firm	Time	/pate	S	pecial In	structi	ons					

-	Signature	Printed Name	Firm	Time/Date	Special Instructions
Relinquished By:	Roundlin	GANZMMONMO	n Golder	1050 8-19	6 q
Received By	Tocholm	Joe Pacmais	- SAS	10:50 8-1	21
Relinquished -	To Polandia X	Top Par main	- CAR	11.15-8-	19
Received By	7 Japan	FJesperson	SAS	8/17/99	
Relinquished By:	11.				
Received By					

COC No. 6-2, 6-3

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East o Tacoma, WA 98424 (253) 922-2310 o FAX (253) 922-5047 e-mail: info@saslab.com

TRANSMITTAL MEMORANDUM

DATE: February 1, 2001

TO: Gary Zimmerman Golder Associates 18300 NE Union Hill Road, Suite 200 Redmond, WA 98052-3333

PROJECT: CF/GW Inv. 1WA 983-1065

REPORT NUMBER: 95495

Enclosed are the test results for seven samples received at Sound Analytical Services on January 18, 2001.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chainof-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely,

Nex

Tom Watson Project Manager

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	95495-01
Date Received:	1/18/01
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
% Solids	-
Dilution Factor	· 1

Volatile Organics by USEPA Method 5030\8260B Modified

		Recove	ery Limits
Surrogate	% Recovery Flags Low H 101 82.5 101 83.7 94.8 91.1	High	
Dibromofluoromethane	101	82.5	114
Fluorobenzene	101	83.7	114
Toluene-D8	94.8	91.1	107
Ethylbenzene-d10	90.2	86.6	108
Bromofluorobenzene	99	86.1	110

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	ND	0.4	0.031	
Vinyl chloride	ND	0.4	0.019	
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.065	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	0.062	0.4	0.036	J
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	ND	0.4	0.055	
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	ND ND	0.4	0.05	
Benzene	ND	0.4	0.032	
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

L

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-01 continued...

	Result	Result						
Analyte	(ug/L)	PQL	MDL					
1,1,2-Trichloroethane	ND	0.4	0.048					
Tetrachloroethene	ND	0.4	0.055					
1,3-Dichloropropane	ND	0.4	0.028					
Dibromochloromethane	ND	0.4	0.048					
1,2-Dibromoethane	ND	0.4	0.074					
Chlorobenzene	ND	0.4	0.047					
Ethylbenzene	ND	0.4	0.032					
1,1,1,2-Tetrachloroethane	ND	0.4	0.04					
m,p-Xylene	ND	0.8	0.087					
o-Xylene	ND	0.4	0.043					
Styrene	ND	0.4	0.037					
Bromoform	ND	0.4	0.046					
Isopropylbenzene	ND	0.4	0.047					
Bromobenzene	ND	0.4	0.045					
n-Propylbenzene	ND	0.4	0.067					
1,1,2,2-Tetrachloroethane	ND	0.4	. 0.07					
1,2,3-Trichloropropane	ND	0.4	0.079					
2-Chlorotoluene	ND	0.4	0.054					
1,3,5-Trimethylbenzene	ND	0.4	0.047					
4-Chlorotoluene	ND	0.4	0.064					
t-Butylbenzene	ND	0.4	0.077					
1,2,4-Trimethylbenzene	ND	0.4	0.052					
sec-Butylbenzene	ND	0.4	0.063					
1,3-Dichlorobenzene	ND	0.4	0.057					
4-Isopropyltoluene	ND	0.4	0.048					
1,4-Dichlorobenzene	ND	0.4	0.055					
n-Butylbenzene	ND	0.4	0.053					
1,2-Dichlorobenzene	ND	0.4	0.044					
1,2-Dibromo-3-chloropropane	ND	0.4	0.13					
1,2,4-Trichlorobenzene	ND	0.4	0.085					
Hexachlorobutadiene	ND	0.4	0.11					
Naphthalene	ND	0.4	0.091					
1,2,3-Trichlorobenzene	ND	0.4	0.096					

Client Name	Golder Associates
Client ID:	MW-6
Lab ID:	95495-02
Date Received:	1/18/01
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030\8260B Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Dibromofluoromethane	. 101		82.5	114	
Fluorobenzene	101		83.7	114	
Toluene-D8	96.8		91.1	107	
Ethylbenzene-d10	90.7		86.6	108	
Bromofluorobenzene	99.2		86.1	110	

		Result		
Analyte		(ug/L) PQL	_ MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	0.055	0.4	0.031	J
Vinyl chloride	0.38	0.4	0.019	J
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.1	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	0.097	0.4	0.036	J
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	ND	0.4	0.055	
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	ND	0.4	0.05	
Benzene	0.3	0.4	0.032	J
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

.m. u. 4

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-02 continued...

	Result		
Analyte	(ug/L)	PQL	MDL
1,1,2-Trichloroethane	ND	0.4	0.048
Tetrachloroethene	ND	0.4	0.055
1,3-Dichloropropane	ND	0.4	0.028
Dibromochloromethane	ND	0.4	0.048
1,2-Dibromoethane	ND	0.4	0.074
Chlorobenzene	ND	0.4	0.047
Ethylbenzene	ND	0.4	0.032
1,1,1,2-Tetrachloroethane	ND	0.4	0.04
m,p-Xylene	ND	0.8	0.087
o-Xylene	ND	0.4	0.043
Styrene	ND	0.4	0.037
Bromoform	ND	0.4	0.046
Isopropyibenzene	ND	0.4	0.047
Bromobenzene	ND	0.4	0.045
n-Propylbenzene	ND	0.4	0.067
1,1,2,2-Tetrachloroethane	ND	0.4	0.07
1,2,3-Trichloropropane	ND	0.4	0.079
2-Chlorotoluene	ND	0.4	0.054
1,3,5-Trimethylbenzene	ND	0.4	0.047
4-Chlorotoluene	ND	0.4	0.064
t-Butylbenzene	ND	0.4	0.077
1,2,4-Trimethylbenzene	ND	0.4	0.052
sec-Butylbenzene	ND	0.4	0.063
1,3-Dichlorobenzene	ND	0.4	0.057
4-Isopropyltoluene	ND	0.4	0.048
1,4-Dichlorobenzene	ND	0.4	0.055
n-Butylbenzene	ND	0.4	0.053
1,2-Dichlorobenzene	ND	0.4	0.044
1,2-Dibromo-3-chloropropane	ND	0.4	0.13
1,2,4-Trichlorobenzene	ND	0.4	0.085
Hexachlorobutadiene	ND	0.4	0.11
Naphthalene	ND	0.4	0.091
1,2,3-Trichlorobenzene	ND	0.4	0.096

5

- # L .

Client Name	Golder Associates
Client ID:	MW-5
Lab ID:	95495-0 3
Date Received:	1/18/01
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030\8260B Modified

			Recovery Limits		
Surrogate	% Recovery	% Recovery Flags Low 99.2 82.5 99.9 83.7 96.8 91.1 91.9 86.6	High		
Dibromofluoromethane	99.2		82.5	114	
Fluorobenzene	99.9		83.7	114	
Toluene-D8	96.8		91.1	107	
Ethylbenzene-d10	91.9		86.6	108	
Bromofluorobenzene	99.6		86.1	110	

	Res	ult		
Analyte	(ug	/L) PQL	MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	0.096	0.4	0.031	J
Vinyl chloride	ND	0.4	0.019	
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.08	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	0.23	0.4	0.036	J
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	ND	0.4	0.055	
Bromochloromethane	ND	0.4	0.044	
Chloroform	0.088	0.4	0.052	J
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	ND	0.4	0.05	
Benzene	ND	0.4	0.032	
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

6

.*_ i

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-03 continued...

Result				
Analyte	(ug/L)	PQL	MDL	
1,1,2-Trichloroethane	ND	0.4	0.048	
Tetrachloroethene	ND	0.4	0.055	
1,3-Dichloropropane	ND	0.4	0.028	
Dibromochloromethane	ND	0.4	0.048	
1,2-Dibromoethane	ND	0.4	0.074	
Chlorobenzene	ND	0.4	0.047	
Ethylbenzene	ND	0.4	0.032	
1,1,1,2-Tetrachloroethane	ND	0.4	0.04	
m,p-Xylene	ND	0.8	0.087	
o-Xylene	ND	0.4	0.043	
Styrene	ND	0.4	0.037	
Bromoform	ND	0.4	0.046	
Isopropyibenzene	ND	0.4	0.047	
Bromobenzene	ND	0.4	0.045	
n-Propylbenzene	· ND	0.4	0.067	
1,1,2,2-Tetrachloroethane	ND	0.4	0.07	
1,2,3-Trichloropropane	ND	0.4	0.079	
2-Chlorotoluene	ND	0.4	0.054	
1,3,5-Trimethylbenzene	ND	0.4	0.047	
4-Chlorotoluene	ND	0.4	0.064	
t-Butylbenzene	ND	0.4	0.077	
1,2,4-Trimethylbenzene	ND	0.4	0.052	
sec-Butylbenzene	ND	0.4	0.063	
1,3-Dichlorobenzene	ND	0.4	0.057	
4-Isopropyltoluene	ND	0.4	0.048	
1,4-Dichlorobenzene	ND	0.4	0.055	
n-Butylbenzene	ND	0.4	0.053	
1,2-Dichlorobenzene	ND	0.4	0.044	
1,2-Dibromo-3-chloropropane	ND	0.4	0.13	
1,2,4-Trichlorobenzene	ND	0.4	0.085	
Hexachlorobutadiene	ND	0.4	0.11	
Naphthalene	ND	0.4	0.091	
1,2,3-Trichlorobenzene	ND	0.4	0.096	

Client Name	Golder Associates		
Client ID:	MW-4		
Lab ID:	95495-04		
Date Received:	1/18/01		
Date Prepared:	1/30/01		
Date Analyzed:	1/30/01		
% Solids	-		
Dilution Factor	1		

Volatile Organics by USEPA Method 5030\8260B Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	100		82.5	114
Fluorobenzene	101		83.7	114
Toluene-D8	95.2		91.1	107
Ethylbenzene-d10	91.6		86.6	108
Bromofluorobenzene	102		86.1	110

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	ND	0.4	0.031	
Vinyl chloride	0.48	0.4	0.019	
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.087	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	0.12	0.4	0.036	J
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	0.13	0.4	0.055	J
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	ND	. 0.4	0.05	
Benzene	ND	0.4	0.032	
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

8

_P*__ -:

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-04 continued...

·	Result		
Analyte	(ug/L)	PQL	MDL
1,1,2-Trichloroethane	ND	0.4	0.048
Tetrachloroethene	ND	0.4	0.055
1,3-Dichloropropane	ND	0.4	0.028
Dibromochloromethane	ND	0.4	0.048
1,2-Dibromoethane	ND	0.4	0.074
Chlorobenzene	ND	0.4	0.047
Ethylbenzene	ND	0.4	0.032
1,1,1,2-Tetrachloroethane	ND	0.4	0.04
m,p-Xylene	ND	0.8	0.087
o-Xylene	ND	0.4	0.043
Styrene	ND	0.4	0.03 7
Bromoform	ND	0.4	0.046
Isopropylbenzene	ND	0.4	0.047
Bromobenzene	ND	0.4	0.045
n-Propylbenzene	ND	0.4	0.067
1,1,2,2-Tetrachloroethane	ND	0.4	0.07
1,2,3-Trichloropropane	ND	0.4	0.079
2-Chlorotoluene	ND	0.4	0.054
1,3,5-Trimethylbenzene	ND	0.4	0.047
4-Chlorotoluene	ND	0.4	0.064
t-Butylbenzene	ND	0.4	0.077
1,2,4-Trimethylbenzene	ND	0.4	0.052
sec-Butylbenzene	ND	0.4	0.063
1,3-Dichlorobenzene	ND	0.4	0.057
4-Isopropyltoluene	ND	0.4	0.048
1,4-Dichlorobenzene	ND	0.4	0.055
n-Butylbenzene	ND	0.4	0.053
1,2-Dichlorobenzene	ND	0.4	0.044
1,2-Dibromo-3-chloropropane	ND	0.4	0.13
1,2,4-Trichlorobenzene	ND	0.4	0.085
Hexachlorobutadiene	ND	0.4	0.11
Naphthalene	ND	0.4	0.091
1,2,3-Trichlorobenzene	ND	0.4	0.096

.

Client Name	Golder Associates
Client ID:	MW-13
Lab ID:	95495-05
Date Received:	1/18/01
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030\8260B Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	101		82.5	114
Fluorobenzene	100		83.7	114
Toluene-D8	97.3		91.1	107
Ethylbenzene-d10	93.2		86.6	108
Bromofluorobenzene	99.7		86.1	110

	Result			
Analyte	(ug/L)	PQL	MDL.	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	ND	0.4	0.031	
Vinyl chloride	0.069	0.4	0.019	J
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	ND	0.4	0.049	
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	ND	0.4	0.036	
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	0.084	0.4	0.055	J
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	ND	0.4	0.05	
Benzene	0.23	0.4	0.032	J
1,2-Dichloroethane	ND	0.4	0.032	
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

10

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-05 continued...

Result				
Analyte	(ug/L)	PQL	MDL	
1,1,2-Trichloroethane	ND	0.4	0.048	
Tetrachioroethene	ND	0.4	0.055	
1,3-Dichloropropane	ND	0.4	0.028	
Dibromochloromethane	ND	0.4	0.048	
1,2-Dibromoethane	ND	0.4	0.074	
Chlorobenzene	ND	0.4	0.047	
Ethylbenzene	ND	0.4	0.032	
1,1,1,2-Tetrachloroethane	ND	0.4	0.04	
m,p-Xylene	ND	0.8	0.087	
o-Xylene	0.053	0.4	0.043 J	
Styrene	ND	0.4	0.037	
Bromoform	ND	0.4	0.046	
Isopropylbenzene	0.058	0.4	0.047 J	
Bromobenzene	ND	0.4	0.045	
n-Propylbenzene	ND	0.4	0.067	
1,1,2,2-Tetrachloroethane	ND	0.4	0.07	
1,2,3-Trichloropropane	ND	0.4	0.079	
2-Chlorotoluene	ND	0.4	0.054	
1,3,5-Trimethylbenzene	0.058	0.4	0.04 7 J	
4-Chlorotoluene	ND	0.4	0.064	
t-Butylbenzene	ND	0.4	0.077	
1,2,4-Trimethylbenzene	ND	0.4	0.052	
sec-Butylbenzene	ND	0.4	0.063	
1,3-Dichlorobenzene	ND	0.4	0.057	
4-Isopropyltoluene	ND	0.4	0.048	
1,4-Dichlorobenzene	ND	0.4	0.055	
n-Butylbenzene	ND	0.4	0.053	
1,2-Dichlorobenzene	ND	0.4	0.044	
1,2-Dibromo-3-chloropropa ne	ND	0.4	0.13	
1,2,4-Trichlorobenzene	ND	0.4	0.085	
Hexachlorobutadiene	ND	0.4	0.11	
Naphthalene	ND	0.4	0.091	
1,2,3-Trichlorobenzene	ND	0.4	0.096	

Client Name	Golder Associate		
Client ID:	MW-3		
Lab ID:	95495-06		
Date Received:	1/18/01		
Date Prepared:	1/30/01		
Date Analyzed:	1/30/01		
% Solids	• · · ·		
Dilution Factor	· 1		

Volatile Organics by USEPA Method 5030\8260B Modified

			Recovery Limits	
Surrogate	% Recove ry	Flags	Low	High
Dibromofluoromethane	98.9		82.5	114
Fluorobenzene	99.2		83.7	114
Toluene-D8	97.2		91. 1	107
Ethylbenzene-d10	94.8		86.6	108
Bromofluorobenzene	101		86.1	110

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Dichlorodifluoromethane	ND	0.4	0.023	
Chloromethane	ND	0.4	0.031	
Vinyl chloride	0.084	0.4	0.019	J
Bromomethane	ND	0.4	0.05	
Chloroethane	ND	0.4	0.12	
Trichlorofluoromethane	ND	0.4	0.022	
1,1-Dichloroethene	ND	0.4	0.082	
Methylene chloride	0.064	0.4	0.049	J
trans-1,2-Dichloroethene	ND	0.4	0.052	
1,1-Dichloroethane	ND	0.4	0.036	
2,2-Dichloropropane	ND	0.4	0.075	
cis-1,2-Dichloroethene	0.085	0.4	0.055	J
Bromochloromethane	ND	0.4	0.044	
Chloroform	ND	0.4	0.052	
1,1,1-Trichloroethane	ND	0.4	0.076	
Carbon Tetrachloride	ND	0.4	0.053	
1,1-Dichloropropene	ND	0.4	0.05	
Benzene	0.24	0.4	0.032	J
1,2-Dichloroethane	0.053	0.4	0.032	J
Trichloroethene	ND	0.4	0.06	
1,2-Dichloropropane	ND	0.4	0.05	
Dibromomethane	ND	0.4	0.024	
Bromodichloromethane	ND	0.4	0.032	
cis-1,3-Dichloropropene	ND	0.4	0.037	
Toluene	ND	0.4	0.036	
trans-1,3-Dichloropropene	ND	0.4	0.031	

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-06 continued...

Result				
Analyte	(ug/L)	PQL	MDL	
1,1,2-Trichloroethane	ND	0.4	0.048	
Tetrachloroethene	ND	0.4	0.055	
1,3-Dichloropropane	ND	0.4	0.028	
Dibromochloromethane	ND	0.4	0.048	
1,2-Dibromoethane	ND	0.4	0.074	
Chlorobenzene	ND	0.4	0.047	
Ethylbenzene	ND	0.4	0.032	
1,1,1,2-Tetrachloroethane	ND	0.4	0.04	
m,p-Xylene	ND	0.8	0.087	
o-Xylene	0.048	0.4	0.043	
Styrene	ND	0.4	0.037	
Bromoform	ND	0.4	0.046	
Isopropylbenzene	0.064	0.4	0.047	
Bromobenzene	ND	0.4	0.045	
n-Propylbenzene	ND	0.4	0.067	
1,1,2,2-Tetrachloroethane	ND	0.4	0.07	
1,2,3-Trichloropropane	ND	0.4	0.079	
2-Chlorotoluene	ND	0.4	0.054	
1,3,5-Trimethylbenzene	0.064	0.4	0.047	
4-Chiorotoluene	ND	0.4	0.064	
t-Butylbenzene	ND	0.4	0.077	
1,2,4-Trimethylbenzene	ND	0.4	0.052	
sec-Butylbenzene	ND	0.4	0.063	
1,3-Dichlorobenzene	ND	0.4	0.057	
4-Isopropyltoluene	ND	0.4	0.048	
1,4-Dichlorobenzene	ND	0.4	0.055	
n-Butylbenzene	ND	0.4	0.053	
1,2-Dichlorobenzene	ND	0.4	0.044	
1,2-Dibromo-3-chloropropane	ND	0.4	0.13	
1,2,4-Trichlorobenzene	ND	0.4	0.085	
Hexachlorobutadiene	ND	0.4	0.11	
Naphthalene	ND	0.4	0.091	
1,2,3-Trichlorobenzene	ND	0.4	0.096	

13

»____

J

J

J

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	95495-07
Date Received:	1/18/01
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030\8260B Modified

		Recovery Limit	
% Recovery	Flags	Low	High
102		82.5	114
101		83.7	114
96.3	,	91.1	107
92.2		86.6	108
102		86.1	110
	% Recovery 102 101 96.3 92.2 102	% Recovery Flags 102 101 96.3 92.2 102 102	Recovery Flags Low 102 82.5 101 83.7 96.3 91.1 92.2 86.6 102 86.1

	Res	ult	
Analyte	(ug/	L) PQL	MDL Flags
Dichlorodifluoromethane	ND	0.4	0.023
Chloromethane	ND	0.4	0.031
Vinyl chloride	0.056	0.4	0.019 J
Bromomethane	ND	0.4	0.05
Chloroethane	ND	0.4	0.12
Trichlorofluoromethane	ND	0.4	0.022
1,1-Dichloroethene	ND	0.4	0.082
Methylene chloride	0.089	0.4	0.049 J
trans-1,2-Dichloroethene	ND	0.4	0.052
1,1-Dichloroethane	0.11	0.4	0.036 J
2,2-Dichloropropane	ND	0.4	0.075
cis-1,2-Dichloroethene	ND	0.4	0.055
Bromochloromethane	ND	0.4	0.044
Chloroform	ND	0.4	0.052
1,1,1-Trichloroethane	ND	0.4	0.076
Carbon Tetrachloride	ND	0.4	0.053
1,1-Dichloropropene	ND ND	0.4	0.05
Benzene	ND	0.4	0.032
1,2-Dichloroethane	ND	0.4	0.032
Trichloroethene	ND	0.4	. 0.06
1,2-Dichloropropane	ND	0.4	0.05
Dibromomethane	ND	0.4	0.024
Bromodichloromethane	ND	0.4	0.032
cis-1,3-Dichloropropene	ND	0.4	0.037
Toluene	ND	0.4	0.036
trans-1,3-Dichloropropene	ND	0.4	0.031

14

_^{ps}____

Volatile Organics by USEPA Method 5030\8260B Modified data for 95495-07 continued...

Result				
Analyte	(ug/L)	PQL	MDL	
1,1,2-Trichloroethane	ND	0.4	0.048	
Tetrachloroethene	ND	0.4	0.055	
1,3-Dichloropropane	ND	0.4	0.028	
Dibromochloromethane	ND	0.4	0.048	
1,2-Dibromoethane	ND	0.4	0.074	
Chlorobenzene	ND	0.4	0.047	
Ethylbenzene	ND	0.4	0.032	
1,1,1,2-Tetrachloroethane	ND	0.4	0.04	
m,p-Xylene	ND	0.8	0.087	
o-Xylene	0.069	0.4	0.043	
Styrene	ND	0.4	0.037	
Bromoform	ND	0.4	0.046	
Isopropylbenzene	ND	0.4	0.047	
Bromobenzene	ND	0.4	0.045	
n-Propylbenzene	ND	0.4	0.067	
1,1,2,2-Tetrachloroethane	ND	0.4	0.07	
1,2,3-Trichloropropane	ND	0.4	0.079	
2-Chlorotoluene	ND	0.4	0.054	
1,3,5-Trimethylbenzene	ND	0.4	0.047	
4-Chlorotoluene	ND	0.4	0.064	
t-Butylbenzene	ND	0.4	0.077	
1,2,4-Trimethylbenzene	ND	0.4	0.052	
sec-Butylbenzene	ND	0.4	0.063	
1,3-Dichlorobenzene	ND	0.4	0.057	
4-Isopropyltoluene	ND	0.4	0.048	
1,4-Dichlorobenzene	ND	0.4	0.055	
n-Butylbenzene	ND	0.4	0.053	
1,2-Dichlorobenzene	ND	0.4	0.044	
1,2-Dibromo-3-chloropropane	ND	0.4	0.13	
1,2,4-Trichlorobenzene	ND	0.4	0.085	
Hexachlorobutadiene	ND	0.4	0.11	
Naphthalene	ND	0.4	0.091	
1,2,3-Trichlorobenzene	ND	0.4	0.096	

J

Client Name	Golder Associates
Client ID:	MW-1
Lab ID:	95 <u>4</u> 95-01
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	-
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

				Recovery Limits		
Surrogate	% Recovery	Flags	Low	High		
Nitrobenzene - d5	93.5		52	149		
2 - Fluorobiphenyl	10 7		56	127		
p - Terphenyl - d14	88		43	145		

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Naphthalene	ND	0.08	0.062	
2-Methylnaphthalene	ND	0.08	0.039	
2-Chloronaphthalene	ND	0.08	0,012	
Acenaphthylene	ND	0.08	0.018	
Acenaphthene	ND	0.08	0.018	
Fluorene	ND	0.08	0.03	
Phenanthrene	ND	0.08	0.037	
Anthracene	ND	0.08	0.011	
Fluoranthene	ND	0.08	0.026	
Pyrene	ND	0.08	0.028	
Benzo(a)anthracene	ND	0.08	0.061	
Chrysene	ND	0.08	0.037	
Benzo(b)fluoranthene	ND	0.08	0.023	
Benzo(k)fluoranthene	ND	0.08	0.033	
Benzo(a)pyrene	ND	0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013	
Dibenz(a,h)anthracene	ND	0.08	0.03	
Benzo(g,h,i)perylene	ND	0.08	0.013	

Client Name	Golder Associate		
Client ID:	MW-6		
Lab ID:	95495-0 2		
Date Received:	1/18/01		
Date Prepared:	1/24/01		
Date Analyzed:	1/24/01		
% Solids	-		
Dilution Factor	1		

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits	
Surrogate	% Recovery	Flags	Low	High	
Nitrobenzene - d5	100		52	149	
2 - Fluorobiphenyl	96.2		56	127	
p - Terphenyl - d14	108		43	145	

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Naphthalene ND		0.08	0.062	
2-Methylnaphthalene ND		0.08	0.039	
2-Chloronaphthalene ND		0.08	0.012	
Acenaphthylene ND		0.08	0.018	
Acenaphthene ND		0.08	0.018	
Fluorene ND		0.08	0.03	
Phenanthrene ND		0.08	0.037	
Anthracene ND		0.08	0.011	
Fluoranthene ND		0.08	0.026	
Pyrene ND		0.08	0.028	
Benzo(a)anthracene ND		0.08	0.061	
Chrysene ND		0.08	0.037	
Benzo(b)fluoranthene ND		0.08	0.023	
Benzo(k)fluoranthene ND		0.08	0.033	
Benzo(a)pyrene ND		0.08	0.026	
Indeno(1,2,3-cd)pyrene ND		0.08	0.013	
Dibenz(a,h)anthracene ND		0.08	0.03	
Benzo(g,h,i)perylene ND		0.08	0.013	

Client Name	Golder Associates
Client ID:	MW-5
Lab ID:	95495-03
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	-
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

	· ·		Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	107		52	149
2 - Fluorobiphenyl	102		56	127
p - Terphenyl - d14	118		43	145

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Naphthalene	ND	0.08	0.062	
2-Methylnaphthalene	ND	0.08	0.039	
2-Chloronaphthalene	ND	0.08	0.012	
Acenaphthylene	ND	0.08	0.018	
Acenaphthene	ND	0.08	0.018	
Fluorene	ND	0.08	0.03	
Phenanthrene	ND	0.08	0.037	
Anthracene	ND	0.08	0.011	
Fluoranthene	ND	0.08	0.026	
Pyrene	ND	0.08	0.028	
Benzo(a)anthracene	ND	0.08	0.061	
Chrysene	ND	0.08	0.037	
Benzo(b)fluoranthene	ND	0.08	0.023	
Benzo(k)fluoranthene	ND	0.08	0.033	
Benzo(a)pyrene	ND	0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013	
Dibenz(a,h)anthracene	ND	0.08	0.03	
Benzo(g,h,i)perylene	ND	0.08	0.013	

Client Name	Golder Associates
Client ID:	MW-4
Lab ID:	95495-04
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	. –
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	102		52	149
2 - Fluorobiphenyl	110		56	127
p - Terphenyl - d14	66.1		43	145

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Naphthalene	ND	0.08	0.062	
2-Methylnaphthalene	ND	0.08	0.039	
2-Chloronaphthalene	ND	0.08	0.012	
Acenaphthylene	ND	0.08	0.018	
Acenaphthene	ND	0.08	0.018	
Fluorene	ND	0.08	0.03	
Phenanthrene	ND	0.08	0.037	
Anthracene	ND	0.08	0.011	
Fluoranthene	ND	0.08	0.026	
Pyrene	ND	0.08	0.028	
Benzo(a)anthracene	ND	0.08	0.061	
Chrysene	ND	0.08	0.037	
Benzo(b)fluoranthene	ND	0.08	0.023	
Benzo(k)fluoranthene	ND	0.08	0.033	
Benzo(a)pyrene	ND	0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013	
Dibenz(a,h)anthracene	ND	0.08	0.03	
Benzo(g,h,i)perylene	ND	0.08	0.013	

Client Name Client ID: Lab ID: Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor

,

Golder Associates MW-13 95495-05 1/18/01 1/24/01 -1/24/01 -

Semivolatile Organics by USEPA Method 8270

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	106		52	149
2 - Fluorobiphenyl	96.4		56	127
p - Terphenyl - d14	83.1		43	145

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Naphthalene	ND	0.08	0.062	
2-Methyinaphthalene	ND	0.08	0.039	
2-Chloronaphthalene	ND	0.08	0.012	
Acenaphthylene	ND	0.08	0.018	
Acenaphthene	ND	0.08	0.018	
Fluorene	ND	0.08	0.03	
Phenanthrene	ND	0.08	0.037	
Anthracene	ND	0.08	0.011	
Fluoranthene	ND	0.08	0.026	
Pyrene	ND	0.08	0.028	
Benzo(a)anthracene	ND	0.08	0.061	
Chrysene	ND	0.08	0.037	
Benzo(b)fluoranthene	ND	0.08	0.023	
Benzo(k)fluoranthene	ND	0.08	0.033	
Benzo(a)pyrene	ND	0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013	•
Dibenz(a,h)anthracene	ND	0.08	0.03	
Benzo(g,h,i)perylene	ND	0.08	0.013	

Client Name	Golder Associates		
Client ID:	MW-3		
Lab ID:	95495-06		
Date Received:	1/18/01		
Date Prepared:	1/24/01		
Date Analyzed:	1/24/01		
% Solids	-		
Dilution Factor	1		

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	91.8		52	149
2 - Fluorobiphenyl	84.5		56	127
p - Terphenyl - d14	68.9		43	145

	Result			
Analyte	(ug/L)	PQL	MDL	Flags
Naphthalene	ND	0.08	0.062	
2-Methylnaphthalene	ND	0.08	0.039	
2-Chloronaphthalene	ND	0.08	0.012	
Acenaphthylene	ND	0.08	0.018	
Acenaphthene	ND	0.08	0.018	
Fluorene	ND	0.08	0.03	
Phenanthrene	ND	0.08	0.037	
Anthracene	ND	0.08	0.011	
Fluoranthene	ND	0.08	0.026	
Pyrene	ND	0.08	0.028	
Benzo(a)anthracene	ND	0.08	0.061	
Chrysene	ND	0.08	0.037	
Benzo(b)fluoranthene	ND	0.08	0.023	
Benzo(k)fluoranthene	ND	0.08	0.033	
Benzo(a)pyrene	ND	0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013	
Dibenz(a,h)anthracene	ND	0.08	0.03	
Benzo(g,h,i)perylene	ND	0.08	0.013	

2î

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	95495-07
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	-
Dilution Factor	1

Semivolatile Organics by USEPA Method 8270

		Recovery Limits	
% Recovery	Flags	Low	High
88.5		52	149
89.5		56	127
90		43	145
	% Recovery 88.5 89.5 90	% Recovery Flags 88.5 89.5 90	Kecovery Flags Low 88.5 52 89.5 56 90 43

		Result				
Analvte		(ug/L)		PQL	MDL	Flags
Naphthalene			0.22	0.08	0.062	
2-Methylnaphthalene	ND			0.08	0.039	
2-Chloronaphthalene	ND			0.08	0.012	
Acenaphthylene	ND			0.08	0.018	
Acenaphthene			0.32	0.08	0.018	
Fluorene			0.32	0.08	0.03	
Phenanthrene			0.47	0.08	0.037	
Anthracene	ND			0.08	0.011	
Fluoranthene	ND			0.08	0.026	
Pyrene	ND			0.08	0.028	
Benzo(a)anthracene	ND			0.08	0.061	
Chrysene	ND		•	0.08	0.037	
Benzo(b)fluoranthene	ND			0.08	0.023	
Benzo(k)fluoranthene	ND			80.0	0.033	
Benzo(a)pyrene	ND			0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND			0.08	0.013	
Dibenz(a,h)anthracene	ND			0.08	0.03	
Benzo(g,h,i)perylene	ND			0.08	0.013	

ito

Client Name	Golder Associates
Client ID:	MW-6
Lab ID:	95495-02
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/25/01
% Solids	-
Dilution Factor	. 0.5

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	98.8	·	50	150	

Analyte	Result (mg/L)	PQL	MDL	Flags
#2 Diesel	0.23	0.2	0.1	
Motor Oil	0.38	0.4	0.2	ե

24

Client Name	Golder Associates
Client ID:	MW-5
Lab ID:	95495-03
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/25/01
% Solids	-
Dilution Factor	0.5

			Recovery	/ Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	90.1		50	150

Analyte	Result (mg/L)	PQL	MDL Fla	gs
#2 Diesel	0.33	0.2	0.1	
Motor Oil	0.36	0.4	0.2	J

25 ۱<u>...</u> ۲

Client Name	Golder Associates
Client ID:	MW-4
Lab ID:	95495-04
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/25/01
% Solids	-
Dilution Factor	0.5

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	97		50	150	

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	0.16	0.2	0.1	J
Motor Oil	0.33	0.4	0.2	J

26

Client Name	Golder Associates
Client ID:	MW-13
Lab ID:	95495-05
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/25/01
% Solids	-
Dilution Factor	0.5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recove ry	Flags	Low	High	
o-terphenyl	105		50	150	

Analyte	Result (mg/L)	PQL	MDL	Flags
#2 Diesel	1.6	0.2	0.1	X2
Motor Oil	1.6	0.4	0.2	X2

27

¥___〔

Client Name	Golder Associates
Client ID:	MW-3
Lab ID:	95495-06
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/25/01
% Solids	-
Dilution Factor	0.5

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	122		50	150

	Result			
Analyte	(mg/L)	PQL	MDL	Flags
#2 Diesel	1.8	0.2	0.1	X2
Motor Oil	1.8	0.4	0.2	X2

Client Name	Golder Associates
Client ID:	MW-2
Lab ID:	95495-07
Date Received:	1/18/01
Date Prepared:	1/24/01
Date Analyzed:	1/25/01
% Solids	-
Dilution Factor	0.5

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	91.1		50	150

Ŧ	Result			
Analyte (mg/L)	PQL	MDL	Flags
#2 Diesel	1.5	0.2	0.1	X1
Motor Oil	0.64	0.4	0.2	

X1 - Chromatogram suggests this might be aged or degraded diesel

Method Blank - HP0050
-
1/30/01
1/30/01
-
1

Volatile Organics by USEPA Method 5030\8260B Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	100		82.5	114
Fluorobenzene	101		83.7	114
Toluene-D8	98.3		91.1	107
Ethylbenzene-d10	96.4		86.6	108
Bromofluorobenzene	102		86.1	110

	Re	esult	
Analyte	(u	g/L) PQL	MDL Flags
Dichlorodifluoromethane	ND	0.4	0.023
Chloromethane	ND	0.4	0.031
Vinyl chloride	ND	0.4	0.019
Bromomethane	ND	0.4	0.05
Chloroethane	ND	0.4	0.12
Trichlorofluoromethane	ND	0.4	0.022
1,1-Dichloroethene	ND	0.4	0.082
Methylene chloride	ND	0.4	0.049
trans-1,2-Dichloroethene	ND	0.4	0.052
1,1-Dichloroethane	ND	0.4	0.036
2,2-Dichloropropane	ND	0.4	0.075
cis-1,2-Dichloroethene	ND	0.4	0.055
Bromochloromethane	ND	0.4	0.044
Chloroform	ND	0.4	0.052
1,1,1-Trichloroethane	ND	0.4	0.076
Carbon Tetrachloride	ND	0.4	0.053
1,1-Dichloropropene	ND	0.4	0.05
Benzene	ND	0.4	0.032
1,2-Dichloroethane	ND	0.4	0.032
Trichloroethene	ND	0.4	0.06
1,2-Dichloropropane	ND	0.4	0.05
Dibromomethane	ND	0.4	0.024
Bromodichloromethane	ND	0.4	0.032
cis-1,3-Dichloropropene	ND	0.4	0.037
Toluene	ND	0.4	0.036
trans-1,3-Dichloropropene	ND	0.4	0.031

30

Volatile Organics by USEPA Method 5030\8260B Modified data for HP0050 continued...

Result				
Analyte	(ug/L)	PQL	MDL	
1,1,2-Trichloroethane	ND	0.4	0.048	
Tetrachloroethene	ND	0.4	0.055	
1,3-Dichloropropane	ND	0.4	0.028	
Dibromochloromethane	ND	0.4	0.048	
1,2-Dibromoethane	ND	0.4	0.074	
Chlorobenzene	ND	0.4	0.047	
Ethylbenzene	ND	0.4	0.032	
1,1,1,2-Tetrachloroethane	ND	0.4	0.04	
m,p-Xylene	ND	0.8	0.087	
o-Xylene	ND	0.4	0.043	
Styrene	ND	0.4	0.037	
Bromoform	ND	0.4	0.046	
Isopropylbenzene	ND	0.4	0.047	
Bromobenzene	ND	0.4	0.045	
n-Propylbenzene	ND	0.4	0.067	
1,1,2,2-Tetrachloroethane	ND	0.4	0.07	
1,2,3-Trichloropropane	ND	0.4	0.079	
2-Chlorotoluene	ND	0.4	0.054	
1,3,5-Trimethylbenzene	ND	0.4	0.047	
4-Chlorotoluene	ND	0.4	0.064	
t-Butylbenzene	ND	0.4	0.077	
1,2,4-Trimethylbenzene	ND	0.4	0.052	
sec-Butylbenzene	ND	0.4	0.063	
1,3-Dichlorobenzene	ND	0.4	0.057	
4-Isopropyltoluene	ND	0.4	0.048	
1,4-Dichlorobenzene	ND	0.4	0.055	
n-Butylbenzene	ND	0.4	0.053	
1,2-Dichlorobenzene	ND	0.4	0.044	
1,2-Dibromo-3-chloropropane	ND	0.4	0.13	
1,2,4-Trichlorobenzene	ND	0.4	0.085	
Hexachlorobutadiene	ND	0.4	0.11	
Naphthalene	ND	0.4	0.091	
1,2,3-Trichlorobenzene	ND	0.4	0.096	

3î

Blank Spike/Blank Spike Duplicate Report

Lab ID:	HP0050
Date Prepared:	1/30/01
Date Analyzed:	1/30/01
QC Batch ID:	HP0050

Volatile Organics by USEPA Method 5030\8260B Modified

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD	·	
Compound Name	(ug/L)	(ug/L)	(ug/L)	% Rec.	(ug/L)	% Rec.	RPD	Flag
1,1-Dichloroethene	0	2	1.71	85.6	1.62	80.9	-5.6	
Benzene	0	2	1.94	97.2	1.9	95.1	-2.2	
Trichloroethene	0	2	1.94	97.1	1.92	96.1	-1	
Toluene	. 0	2	1.91	95.4	1.92	96.2	0.84	
Chlorobenzene	0	2	1.94	97.2	1.94	97.1	-0.1	

Lab ID:	Method Blank - SV3296
Date Received:	-
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
% Solids	-
Dilution Factor	1
Date Received: Date Prepared: Date Analyzed: % Solids Dilution Factor	1/24/01 1/24/01 - 1

Semivolatile Organics by USEPA Method 8270

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Nitrobenzene - d5	96.7		52	149
2 - Fluorobiphenyl	89.2		56	127
p - Terphenyl - d14	73.6		43	145

	Result			
Analyte	(ug/L)	PQL	MDL F	lags
Naphthalene	ND	0.08	0.062	
2-Methylnaphthalene	ND	0.08	0.039	
2-Chloronaphthalene	ND	0.08	0.012	
Acenaphthylene	ND	0.08	0.018	
Acenaphthene	ND	0.08	0.018	
Fluorene	ND	0.08	0.03	
Phenanthrene	ND	0.08	0.037	
Anthracene	ND	0.08	0.011	
Fluoranthene	ND	0.08	0.026	
Pyrene	ND	0.08	0.028	
Benzo(a)anthracene	ND	0.08	0.061	
Chrysene	ND	0.08	0.037	
Benzo(b)fluoranthene	ND	0.08	0.023	
Benzo(k)fluoranthene	ND	0.08	0.033	
Benzo(a)pyrene	ND	0.08	0.026	
Indeno(1,2,3-cd)pyrene	ND	0.08	0.013	
Dibenz(a,h)anthracene	ND	0.08	0.03	
Benzo(g,h,i)perylene	ND	0.08	0.013	

32

. 1

Blank Spike/Blank Spike Duplicate Report

Lab ID:		SV3296
Date Prepared:		1/24/01
Date Analyzed:		1/24/01
QC Batch ID:	•	SV3296

ž

12

Semivolatile Organics by USEPA Method 8270

	Blank	Spike	BS		BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(ug/L)	(ug/L)	(ug/L)	% Rec.	(ug/L)	% Rec.	RPD	Flag
Acenaphthene	0	8	6.83	85.4	8.15	102	18	-
Pyrene	0	8	5.93	74.1	7.2	90	19	

⊪[∟ 33

Diesel and Motor Oil by NWTPH-Dx Modified

•			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	97.9		50	150	

	Result		
Analyte	(mg/L)	PQL	MDL Flags
#2 Diesel	ND	0.2	0.1
Motor Oil	ND	0.4	0.2
Blank Spike/Blank Spike Duplicate Report

Lab ID:	DI2818
Date Prepared:	1/24/01
Date Analyzed:	1/24/01
QC Batch ID:	DI2818

Diesel and Motor Oil by NWTPH-Dx Modified

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(mg/L)	(mg/L)	(mg/L)	% Rec.	(mg/L)	% Rec.	RPD	Flag
#2 Diesei	U	4	3.98	99.5	4.48	112	12	
Motor Oil	0	4.01	3.41	85.2	3.56	88.9	4.3	

Sound Analytical Services, Inc.

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: info@saslab.com

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.
- M: GC/MS confirmation was performed. The result derived from the original analysis was reported.
- D: The reported result for this analyte was calculated based on a secondary dilution factor.
- E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.
- J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.
- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be ____
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- ³ X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

m .

	Sound A ANALYTICA 4813 Pacific Hwy (253) 922-2310 • email: info@sasla	naly L & El East • T FAX (25 b.com	tical S NVIRONI acoma, WA 3) 922-5047	ervic MENTAI 98424	es, L CH	Inc. iemist 2	s Tvo	l	, the second sec		SAS TURN Stand RUSH	Lab IARO ard (1 H: 24	No. UND 10 da 4 hrs	<u>9</u> REQ ys) <u>2</u>	549 UEST 48 hrs	(busin	ness d 5 day	ays) 1	
	CHA	IN OF	CUSTO	DDY/R	EQL	JEST	FORI	ABC	ORA		RY A	۱NA	LYS	SIS			-		-
Client:	02271 18610	otati	is Inc		<u> </u>	Analyse	es Req			, 							•		- ·
Project Na	me: CFIGW	TUN	HWL					0											
Contact:	483-	- 104				~	0	5											
Phone No.	425 883-	<u>777</u>	1		ers	0	50	60											-
Fax No.:	425 882-	540	8		tain	土	æ	2											
Email:] ភ្លី	En	Ł	7								1			
Lati Use Sa Onty	mple ID	'0\ Date	Time	Matrix	# of	N	10	Р											
) I	nW-1	1-17	1008	W	1	V	V	1											
2 1	nw-6		1215			V	V	Ľ								· .			
3 1	NW-5		1310		1	r	r	1.											
4 1	NW-4		1407		1	6	1	V											
G Y	$n_{W} - 13$		1509	0]	V	1	1		· .						: . 			
<u>۲</u>	<u>11W-3</u>		1510		T		V												_ ·
	NW-2	<u> </u>	1610	V	T		V)					3		
						ļ	ļ		7						ļ		1.000		-
					ļ		ļ										·	 	-
	·	ļ				· · · ·													- :
	<u> </u>					ļ								ļ	ļ		ļ		
				·	 	1												·	_ 、
				ļ	<u> </u>	ļ	1	Ì.				 						<u> </u>	
	· ·.				1.54.1 2	ļ. ·				<u> </u>	· ·				<u> </u>			ļ	_
							·	·			 			<u> </u>	 			 	- :
			<u> </u>		 	<u> </u>	<u> </u>			. 			<u> </u>	ļ	ļ			 	4 -
	· · · · · · · · · · · · · · · · · · ·				<u>.</u>	¹					· .			·	: :	· ·	۱. ۱.	:	4
			<u> </u>	<u> </u>	<u> </u>	<u> </u>				·			<u> </u>	<u> </u>					
	ISignature		Printed N	lame	F	Firm	Tim	e/Date	s	pecia	al Insi	tructi	ons						٦
Relinquished	Hand	6	ANN 7:mm	anna.	GA	120c	1030	1410	6	•									
Received By	A		Mur	ply	51	90	11:0	5-1	sbi	1	à		· · · ·	• ••			• .		

	Received By	AN	T. Murphy	SAS	11:05 1/18/01
	Relinquished By:	Ser	V	V	12:30 1/18/0
1.1	Received By	Astron	A Strom	SKS	1/18/01 1250
-	Relinquished By:				
	Received By	· · · ·			

Page 1 of 1

5

COC No.

SOUND ANALYTICAL EPH/VPH

VOLATILE PETROLEUM HYDROCARBONS

ALIPHATIC AND AROMATIC FRACTIONS TARGET INDICATOR COMPOUNDS

Client Name	Golder Associates
Client ID:	SP1-(8-11)
Lab ID:	95381-02
Date Received:	1/12/01
Date Prepared:	1/17/01
Date Analyzed:	1/25/01
% Solids	80.7
Dilution Factor	1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

Surrogate			Recove	ery Limits
	% Recovery	Flags	Low	High
Trifluorotoluene	105		60	140
Bromofluorobenzene	127		60	140

Sample results are on a dry weight basis.

	R	esult		
Analyte	(n	ng/kg)	PQL	Flags
MTBE	ND		0.23	
Benzene	ND		0.023	
Toluene		0.094	0.047	
Ethylbenzene		0.22	0.047	
m- & p-Xylene		0.39	0.094	
o-Xylene		0.43	0.047	
Total EC >8-10 Aromatics		15	1.2	
Total EC 5-6 Aliphatics	ND		0.7	
Total EC >6-8 Aliphatics		1.6	0.47	
Total EC >8-10 Aliphatics		17	1.4	

Client Name	Golder Associates
Client ID:	SP5 <u>-(</u> 5-8)
Lab ID:	95381-06
Date Received:	1/12/01
Date Prepared:	1/17/01
Date Analyzed:	1/19/01
% Solids	94.88
Dilution Factor	1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

Surrogate			Recovery Limits			
	% Recovery	Flags	Low	High		
Trifluorotoluene	112		60	140		
Bromofluorobenzene	119		60	140		

Sample results are on a dry weight basis.

Result		
(mg/kg)	PQL	Flags
	0.19	
	0.019	
0.25	0.039	
2.9	0.039	
3.8	0.07 8	
2.3	0.039	
98	0.97	D10
	0.58	
5.2	0.39	
98	1.2	D10
	Result (mg/kg) 0.25 2.9 3.8 2.3 98 5.2 98	Result (mg/kg) PQL 0.19 0.019 0.25 0.039 2.9 0.039 3.8 0.078 2.3 0.039 98 0.97 0.58 5.2 0.39 98 1.2

Client Name	Golder Associates
Client ID:	SP6-(5-8)
Lab ID:	95381-08
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/24/01
% Solids	67.48
Dilution Factor	1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recovery Limits			
Surrogate	% Recovery	Flags	Low	High		
Trifluorotoluene	83.6		60	140		
Bromofluorobenzene	87.9		60	140		

	Res	ult		
Analyte	(mg/	'kg)	PQL	Flags
MTBE	ND		0.27	
Benzene	ND		0.027	
Toluene		0.09	0.055	
Ethylbenzene		0.76	0.055	
m- & p-Xylene		1.1	0.11	
o-Xylene		0.88	0.055	
Total EC >8-10 Aromatics		19	1.4	
Total EC 5-6 Aliphatics	ND		0.82	
Total EC >6-8 Aliphatics		3.9	0.55	
Total EC >8-10 Aliphatics		18	1.6	

Client Name	Golder Associates		
Client ID:	SP8-(5-8)		
Lab ID:	95381-10		
Date Received:	1/12/01		
Date Prepared:	1/17/01		
Date Analyzed:	1/19/01		
% Solids	89.11		
Dilution Factor	. 1		

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
Trifluorotoluene	240	X9	60	140	
Bromofluorobenzene	105		60	140	

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
MTBE	ND	0.21	
Benzene	0.16	0.021	
Toluene	1.5	0.042	
Ethylbenzene	18	0.042	D10
m- & p-Xylene	24	0.083	D10
o-Xylene	19	0.042	D10
Total EC >8-10 Aromatics	350	1	D10
Total EC 5-6 Aliphatics	0.86	0.62	
Total EC >6-8 Aliphatics	44	0.42	D10
Total EC >8-10 Aliphatics	310	1.2	D10

25

Client Name	Golder Associates		
Client ID:	SP9-(5-8)		
Lab ID:	95381-12		
Date Received:	1/12/01		
Date Prepared:	1/17/01		
Date Analyzed:	1/19/01		
% Solids	83.55		
Dilution Factor	1		

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	143	X9	60	140
Bromofluorobenzene	114		60	140

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
MTBE	ND	0.22	
Benzene	0.073	0.022	
Toluene	0.44	0.044	
Ethylbenzene	5.8	0.044	
m- & p-Xylene	8.1	0.087	
o-Xylene	1.6	0.044	
Total EC >8-10 Aromatics	190	1.1	D10
Total EC 5-6 Aliphatics	0.83	0.65	
Total EC >6-8 Aliphatics	12	0.44	
Total EC >8-10 Aliphatics	190	1.3	D10

Client Name	Golder Associates
Client ID:	SP11-(5-8)
Lab ID:	95381-15
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/24/01
% Solids	71.4
Dilution Factor	1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	81.3		60	140
Bromofluorobenzene	89.9		60	140

Sample results are on a dry weight basis.

	Re	sult		
Analyte	(m	g/kg)	PQL	Flags
MTBE	ND		0.25	
Benzene	ND		0.025	
Toluene	ND		0.05	
Ethylbenzene	ND		0.05	
m- & p-Xylene		0.17	0.1	
o-Xylene		0.11	0.05	
Total EC >8-10 Aromatics		4.4	1.3	
Total EC 5-6 Aliphatics	ND		0.75	
Total EC >6-8 Aliphatics	ND		0.5	
Total EC >8-10 Aliphatics		3.8	1.5	

27

14.

Lab ID:	Method Blank - GB2569
Date Received:	
Date Prepared:	1/17/01
Date Analyzed:	1/18/01
% Solids	
Dilution Factor	. 1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	120		60	140
Bromofluorobenzene	112		60	140

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
MTBE	ND	0.2	
Benzene	ND	0.02	
Toluene	ND	0.04	
Ethylbenzene	ND	0.04	
m- & p-Xylene	ND	0.08	
o-Xylene	ND	0.04	
Total EC >8-10 Aromatics	ND	1	
Total EC 5-6 Aliphatics	ND	0.6	
Total EC >6-8 Aliphatics	ND	0.4	
Total EC >8-10 Aliphatics	ND	1.2	

Lab ID:	Method Blank - GB2572
Date Received:	. –
Date Prepared:	1/22/01
Date Analyzed:	1/24/01
% Solids	
Dilution Factor	1

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
Trifluorotoluene	90.7		60	140
Bromofluorobenzene	93.9		60	140

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
MTBE	ND	0.2	
Benzene	ND	0.02	
Toluene	ND	0.04	
Ethylbenzene	ND	0.04	
m- & p-Xylene	ND	0.08	
o-Xylene	ND	0.04	
Total EC >8-10 Aromatics	ND	1	
Total EC 5-6 Aliphatics	ND	0.6	
Total EC >6-8 Aliphatics	ND	0.4	
Total EC >8-10 Aliphatics	ND	1.2	

29

Blank Spike/Blank Spike Duplicate Report

Lab ID:	GB2569
Date Prepared:	1/18/01
Date Analyzed:	1/18/01
QC Batch ID:	GB2569

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
MTBE	0	2	2.66	133	2.51	126	-5.4	-
Benzene	0	2	2.11	106	2.1	105	-0.95	
Toluene	0	2	2.1	105	2.08	104	-0.96	
Ethylbenzene	0	2	2.07	103	2.03	102	-0.98	
m- & p-Xylene	0	4	4.31	108	4.4	110	1.8	
o-Xylene	0	2	2.03	101	2.04	102	0.99	
Total EC >8-10 Aromatics	0	10	10.4	104	10.5	105	0.96	
Total EC 5-6 Aliphatics	0	6	6.69	112	6.74	112	0	
Total EC >6-8 Aliphatics	0	4	4.46	111	4.49	112	0.9	
Total EC >8-10 Aliphatics	0	12	13	108	12.7	106	-1.9	

. ۲.

Blank Spike/Blank Spike Duplicate Report

Lab ID:		GB2572
Date Prepared:		1/22/01
Date Analyzed:		1/24/01
QC Batch ID:	•	GB2572

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Blank Result	Spike Amount	BS Result	BS	BSD Result	BSD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
MTBE	0	1	1.07	107	0.992	99.2	-7.6	-
Benzene	0	1	0.944	94.4	0.905	90.5	-4.2	
Toluene	0	1	0.915	91.5	0.883	88.3	-3.6	
Ethylbenzene	0	[`] 1	0.846	84.6	0.82	82	-3.1	
m- & p-Xylene	0	2	1.82	90.8	1.76	88.2	-2.9	
o-Xylene	0	1	0.962	96.2	0.934	93.4	-3	
Total EC >8-10 Aromatics	0	5	4.19	83.7	4.14	82.8	-1.1	
Total EC 5-6 Aliphatics	0	3	3.03	101	2.91	97	-4	
Total EC >6-8 Aliphatics	0	2	2.11	106	2.11	106	0	
Total EC >8-10 Aliphatics	0	6	5.3	88.3	5.21	86.8	-1.7	

31

Matrix Spike Report

Client Sample ID:	MW-8 (3.5')
Lab ID:	95216-09
Date Prepared:	1/18/0 1
Date Analyzed:	1/18/01
QC Batch ID:	GB2569

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
MTBE	0	2.2	2.74	124	
Benzene	0	2.2	1.95	· 88	
Toluene	0	2.2	2.1	95	
Ethylbenzene	0.233	2.2	2.11	85	
m- & p-Xylene	0	4.4	4.23	96	
o-Xylene	0.285	2.21	2.58	104	
Total EC >8-10 Aromatics	9.77	11	17.9	74	
Total EC 5-6 Aliphatics	0	6.6	4.91	74	
Total EC >6-8 Aliphatics	0.913	4.4	4.03	71	
Total EC >8-10 Aliphatics	9.12	13	18.5	71	

Matrix Spike Report

SP11-(5-8)
95381-15
1/22/01
1/24/01
GB2572

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
MTBE	0	2.5	2.33	93	
Benzene	0	2.5	1.77	71	
Toluene	0	2.5	1.87	75	
Ethylbenzene	0	2.5	1.94	77	
m- & p-Xylene	0.166	5	3.74	71	
o-Xvlene	0.108	2.51	2.5	96	
Total EC >8-10 Aromatics	4.38	13	13.1	70	
Total EC 5-6 Aliphatics	0	7.5	3.65	49	Ν
Total EC >6-8 Aliphatics	0	5	3.6	72	
Total EC >8-10 Aliphatics	3.75	15	13.7	66	Ν

.....

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: MW-8 (3.5') 95216-09 1/18/01 1/18/01 GB2569

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
MTBE	0	0	NC	
Benzene	0	0	NC	
Toluene	0	0	NC	
Ethylbenzene	0.233	0.245	-5.0	
m- & p-Xylene	0	0	NC	
o-Xylene	0.285	0.283	0.7	
Total EC >8-10 Aromatics	9.77	11.4	-15.0	
Total EC 5-6 Aliphatics	0	0.741	-200.0	X4a
Total EC >6-8 Aliphatics	0.913	0.839	8.4	
Total EC >8-10 Aliphatics	9.12	10.3	-12.0	

_.14.

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: SP6-(5-8) 95381-08 1/22/01 1/24/01 GB2572

35

· , ,

WSDOE Method for Determination of Volatile Petroleum Hydrocarbon Fractions Modified

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
MTBE	0	0	NC	
Benzene	0	0	NC	
Toluene	0.0897	0.137	-42.0	N
Ethylbenzene	0.759	1.18	-43.0	Ν
m- & p-Xylene	1.09	1.94	-56.0	N
o-Xylene	0.884	1.42	-47.0	N
Total EC >8-10 Aromatics	18.8	26.8	-35.0	N
Total EC 5-6 Aliphatics	0	0	NC	
Total EC >6-8 Aliphatics	3.91	5.26	-29.0	N
Total EC >8-10 Aliphatics	17.6	21.7	-21.0	

SOUND ANALYTICAL EPH / VPH EXTRACTABLE PETROLEUM HYDROCARBONS ALIPHATIC AND AROMATIC FRACTIONS

Client Name	Golder Associates
Client ID:	SP1-(8-11)
Lab ID:	95381-02
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
% Solids	80.7
Dilution Factor	10

Extractable Petroleum Hydrocarbons (EPH) Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	100		50	150
o-terphenyl	85.1		50	150

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic	76	5.4	
>nC10-nC12 Aliphatic	380	5.4	• •
>nC12-nC16 Aliphatic	940	5.4	
>nC16-nC21 Aliphatic	320	5.4	
>nC21-nC34 Aliphatic	37	5.4	
>nC10-nC12 Aromatic	46	5.4	
>nC12-nC16 Aromatic	250	5.4	
>nC16-nC21 Aromatic	200	5.4	
>nC21-nC34 Aromatic	22	5.4	

37

i-e

Sound Analytical Services, Inc.

Golder Associates
SP5-(5-8)
95381-06
1/12/01
1/22/01
1/22/01
94.88
10

Extractable Petroleum Hydrocarbons (EPH) Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	95.7	•	50	150
o-terphenyl	67.2		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic	200	4.5	
>nC10-nC12 Aliphatic	660	4.5	
>nC12-nC16 Aliphatic	2000	4.5	
>nC16-nC21 Aliphatic	1700	4.5	
>nC21-nC34 Aliphatic	300	4.5	
>nC10-nC12 Aromatic	180	4.5	
>nC12-nC16 Aromatic	710	4.5	
>nC16-nC21 Aromatic	750	4.5	
>nC21-nC34 Aromatic	120	4.5	

Client Name	Golder Associates
Client ID:	SP6-(5-8)
Lab ID:	95381-08
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
% Solids	67.48
Dilution Factor	10

'Extractable Petroleum Hydrocarbons (EPH) Modified

			Recove	ery Limits
Surrogate	% Recove ry	Flags	Low	High
1-chlorooctadecane	97.2		50	150
o-terphenyl	88.2		50	150

	Resu	lt		
Analyte	(mg/k	g)	PQL	Flags
>nC8-nC10 Aliphatic	ND		6.6	
>nC10-nC12 Aliphatic		30	6.6	
>nC12-nC16 Aliphatic		98	6.6	
>nC16-nC21 Aliphatic		87	6.6	
>nC21-nC34 Aliphatic		27	6.6	
>nC10-nC12 Aromatic		10	6.6	
>nC12-nC16 Aromatic		38	6.6	
>nC16-nC21 Aromatic		48	6.6	
>nC21-nC34 Aromatic		20	6.6	

Sound Analytical Services, Inc.

Client Name	Golder Associates
Client ID:	SP8-(5-8)
Lab ID:	95381-10
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
% Solids	89.11
Dilution Factor	10

'Extractable Petroleum Hydrocarbons (EPH) Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	93.2		50	150
o-terphenyl	69.3		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic	830	5	
>nC10-nC12 Aliphatic	2400	5	
>nC12-nC16 Aliphatic	8700	50	D 10
>nC16-nC21 Aliphatic	6500	50	D 10
>nC21-nC34 Aliphatic	730	5	
>nC10-nC12 Aromatic	110	5	
>nC12-nC16 Aromatic	530	5	
>nC16-nC21 Aromatic	870	5	
>nC21-nC34 Aromatic	100	5	

Client Name	Golder Associate		
Client ID:	SP9-(5-8)		
Lab ID:	95381-1 2		
Date Received:	1/12/01		
Date Prepared:	1/22/01		
Date Analyzed:	1/22/01		
% Solids	83.55		
Dilution Factor	10		

Extractable Petroleum Hydrocarbons (EPH) Modified

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	71.2		50	150
o-terphenyl	66.8		50	150

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic	220	5	
>nC10-nC12 Aliphatic	670	5	
>nC12-nC16 Aliphatic	3200	50	D 10
>nC16-nC21 Aliphatic	2700	50	D 10
>nC21-nC34 Aliphatic	210	5	
>nC10-nC12 Aromatic	260	5	
>nC12-nC16 Aromatic	970	5	
>nC16-nC21 Aromatic	1100	5	
>nC21-nC34 Aromatic	96	5	

ام.

Client Name	Golder Associate		
Client ID:	SP11-(5-8)		
Lab ID:	95381-15		
Date Received:	1/12/01		
Date Prepared:	1/22/01		
Date Analyzed:	1/22/01		
% Solids	71.4		
Dilution Factor	10		
Date Analyzed: % Solids Dilution Factor	1/22/01 71.4 10		

Extractable Petroleum Hydrocarbons (EPH) Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	91.2		50	150
o-terphenyl	86.7		50	150

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic ND		5.9	
>nC10-nC12 Aliphatic	30	5.9	
>nC12-nC16 Aliphatic	170	5.9	
>nC16-nC21 Aliphatic	130	5.9	
>nC21-nC34 Aliphatic	40	5.9	
>nC10-nC12 Aromatic ND		5.9	
>nC12-nC16 Aromatic	18	5.9	
>nC16-nC21 Aromatic	35	5.9	
>nC21-nC34 Aromatic	10	5.9	

Lab ID:	Method Blank - EP22		
Date Received:	-		
Date Prepared:	1/22/01		
Date Analyzed:	1/22/01		
% Solids			
Dilution Factor	10		

'Extractable Petroleum Hydrocarbons (EPH) Modified

	<u>_</u>		Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
1-chlorooctadecane	81		60	140
o-terphenyi	72.7		60	140

Sample results are on an as received basis.

	Result		
Analyte	(mg/kg)	PQL	Flags
>nC8-nC10 Aliphatic	ND	4.5	
>nC10-nC12 Aliphatic	ND	4.5	
>nC12-nC16 Aliphatic	ND	4.5	
>nC16-nC21 Aliphatic	ND	4.5	
>nC21-nC34 Aliphatic	ND	4.5	
>nC10-nC12 Aromatic	ND	4.5	
>nC12-nC16 Aromatic	ND	4.5	
>nC16-nC21 Aromatic	ND	4.5	
>nC21-nC34 Aromatic	ND	4.5	

Blank Spike Report

EP229

EP229

44

. ÷.

Lab ID: Date Prepared: 1/22/01 Date Analyzed: 1/22/01 QC Batch ID:

Extractable Petroleum Hydrocarbons (EPH) Modified

	Blank Result	Spike Amount	BS Result	BS	
Parameter Name	(mg/k g)	(mg/kg)	(mg/kg)	% Rec.	Flag
>nC8-nC10 Aliphatic	0	18	15.3	84	
>nC10-nC12 Aliphatic	0	18	16.3	90	
>nC12-nC16 Aliphatic	0	18	16.3	90	
>nC16-nC21 Aliphatic	0	18	16.7	92	
>nC21-nC34 Aliphatic	0	18	17.8	98	
>nC10-nC12 Aromatic	0	18.2	15.9	88	
>nC12-nC16 Aromatic	0	18	16.7	92	
>nC16-nC21 Aromatic	0	18	15.3	84	
>nC21-nC34 Aromatic	0	18	17.9	98	

Matrix Spike Report

Client Sample ID:	SP1-(8-11)
Lab ID:	95381-02
Date Prepared:	1/22/01
Date Analyzed:	1/22/01
QC Batch ID:	EP229
QU Dalun ID.	

Extractable Petroleum Hydrocarbons (EPH) Modified

	Sample Result	Spike Amount	MS Result	MS	
Parameter Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	Flag
>nC8-nC10 Aliphatic	76.3	21	95. 6	92	
>nC10-nC12 Aliphatic	380	21	381	4	X7
>nC12-nC16 Aliphatic	939	21	809	-618	X7
>nC16-nC21 Aliphatic	324	21	278	-222	X7
>nC21-nC34 Aliphatic	37.3	21	47.5	49	X7
>nC10-nC12 Aromatic	45.6	21	54.5	42	X7
>nC12-nC16 Aromatic	251	21	218	-157	X7
>nC16-nC21 Aromatic	201	21	169	-152	X7
>nC21-nC34 Aromatic	21.8	21	34.3	59	X7

45

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: SP1-(8-11) 95381-02 1/22/01 1/22/01 EP229

46

...^{µ4}.

Extractable Petroleum Hydrocarbons (EPH) Modified

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
>nC8-nC10 Aliphatic	76.3	96	-23.0	
>nC10-nC12 Aliphatic	380	440	-15.0	
>nC12-nC16 Aliphatic	939	951	-1.3	
>nC16-nC21 Aliphatic	324	309	4.7	
>nC21-nC34 Aliphatic	37.3	37.5	-0.5	
>nC10-nC12 Aromatic	45.6	48.3	-5.8	
>nC12-nC16 Aromatic	251	259	-3.1	
>nC16-nC21 Aromatic	201	205	-2.0	
>nC21-nC34 Aromatic	21.8	22.1	-1.4	

SOUND ANALYTICAL EPA 8270 MOD. EXTRACTABLE PETROLEUM HYDROCARBONS TARGET PAH COMPOUNDS

Client Name	Golder Associat		
Client ID:	SP1-(8-11)		
Lab ID:	95381-02		
Date Received:	1/12/01		
Date Prepared:	1/22/01		
Date Analyzed:	1/23/01		
% Solids	80.7		
Dilution Factor	20		
Dilution Factor	20		

Targeted PAH Analytes by Method 8270 Modified.

·			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	78.9		50	150	

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
Naphthalene	0.23	0.022	0.022	
2-Methylnaphthalene	6.5	0.022	0.019	
Acenaphthylene	0.51	0.022	0.021	
Acenaphthene	0.41	0.022	0.019	
Fluorene	0.87	0.022	0.016	
Phenanthrene	1.3	0.022	0.015	
Anthracene	ND	0.022	0.018	
Fluoranthene	ND	0.022	0.013	
Pyrene	0.07	0.022	0.012	
Benzo(a)anthracene	ND	0.022	0.0095	
Chrysene	0.037	0.022	0.012	
Benzo(b)fluoranthene	ND	0.022	0.011	
Benzo(k)fluoranthene	ND	0.022	0.017	
Benzo(a)pyrene	ND	0.022	0.0088	
Indeno(1,2,3-cd)pyrene	ND	0.022	0.017	
Dibenz(a,h)anthracene	ND	0.022	0.012	
Benzo(g,h,i)perylene	ND	0.022	0.013	

Golder Associates
SP5-(5-8)
95381-06
1/12/01
1/22/01
1/23/01
94.88
20

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	69.5		50	150	

,	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
Naphthalene	3.	7 0.09	0.09	
2-Methylnaphthalene	12	2 0.09	0.081	
Acenaphthylene	0.4	8 0.018	0.017	
Acenaphthene	0.6	9 0.018	0.015	
Fluorene	1.3	3 0.018	0.013	
Phenanthrene	2.0	6 0.01 8	0.012	
Anthracene	ND	0.018	0.015	
Fluoranthene	ND	0.018	0.01	
Pyrene	0.73	B 0.018	0.0099	
Benzo(a)anthracene	0.1	1 0.018	0.0079	
Chrysene	0.09	7 0.018	0.0097	
Benzo(b)fluoranthene	ND	0.018	0.0094	
Benzo(k)fluoranthene	ND	0.018	0.015	
Benzo(a)pyrene	ND	0.018	0.0074	
Indeno(1,2,3-cd)pyrene	ND	0.018	0.014	
Dibenz(a,h)anthracene	ND	0.018	0.01	
Benzo(g,h,i)perylene	ND	0.018	0.011	

Client Name	Golder Associat		
Client ID:	SP6-(5-8)		
Lab ID:	95381-08		
Date Received:	1/12/01		
Date Prepared:	1/22/01		
Date Analyzed:	1/23/01		
% Solids	67.48		
Dilution Factor	20		

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	88.9		50	150	

	Result				
Analyte	(mg/kg)	PC	2L	MDL	Flags
Naphthalene		1.7	0.027	0.027	
2-Methylnaphthalene		4.1	0.027	0.024	
Acenaphthylene	ND		0.027	0.026	
Acenaphthene		0.26	0.027	0.023	
Fluorene		0.55	0.027	0.019	
Phenanthrene	,	0.92	0.027	0.018	
Anthracene	ND		0.027	0.022	
Fluoranthene	ND		0.027	0.015	
Pyrene		0.16	0.027	0.015	
Benzo(a)anthracene	ND		0.027	0.012	
Chrysene	ND		0.027	0.014	
Benzo(b)fluoranthene	ND		0.027	0.014	
Benzo(k)fluoranthene	ND		0.027	0.022	
Benzo(a)pyrene	ND		0.027	0.011	
Indeno(1,2,3-cd)pyrene	ND		0.027	0.021	
Dibenz(a,h)anthracene	ND		0.027	0.015	
Benzo(g,h,i)per ylene	ND		0.027	0.016	

Sound Analytical Services, Inc.

Client Name	Golder Associates
Client ID:	SP8-(5-8)
Lab ID:	95381-10
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/23/01
% Solids	89.11
Dilution Factor	100

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-lerphenyl	90.3		50	150	

Sample results are on a dry weight basis.

		Result			
Analyte		(mg/kg)	PQL	MDL	Flags
Naphthalene		19	0.1	0.1	
2-Methylnaphthalene		50	0.1	0.09	
Acenaphthylene		1.3	0.1	0.096	
Acenaphthene		5.7	0.1	0.086	
Fluorene		6	0.1	0.073	
Phenanthrene		10	0.1	0.068	
Anthracene	ND		0.1	0.082	
Fluoranthene	ND		0.1	0.058	
Pyrene		2.3	0.1	0.055	
Benzo(a)anthracene	ND		0.1	0.044	
Chrysene		0.22	0.1	0.054	
Benzo(b)fluoranthene	ND		0.1	0.052	
Benzo(k)fluoranthene	ND		0.1	0.081	
Benzo(a)pyrene	ND		0.1	0.041	
Indeno(1,2,3-cd)pyrene	ND		0.1	0.079	
Dibenz(a,h)anthracene	ND		0.1	0.056	
Benzo(g,h,i)perylene	ND		0.1	0.062	

. inte

Client Name	Golder Associates
Client ID:	SP9-(5-8)
Lab ID:	95381-12
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/23/01
% Solids	83.55
Dilution Factor	100

Targeted PAH Analytes by Method 8270 Modified.

			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-Terphenyl	83.2		50	150

	Result				
Analyte	(mg/kg)	PQL	N	1DL	Flags
Naphthalene	7	.4	0.1	0.1	
2-Methylnaphthalene	2	23	0.1	0.09	
Acenaphthylene	ND		0.1	0.096	
Acenaphthene	3	.8	0.1	0.086	
Fluorene	4	.1	0.1	0.073	
Phenanthrene Phena	4	.7	0.1	0.068	
Anthracene	ND		0.1	0.082	
Fluoranthene	ND		0.1	0.058	
Pyrene	0.9	94	0.1	0.055	
Benzo(a)anthracene	ND		0.1	0.044	
Chrysene	ND		0.1	0.054	
Benzo(b)fluoranthene	ND		0.1	0.052	
Benzo(k)fluora nthene	ND		0.1	0.081	
Benzo(a)pyrene	ND		0.1	0.041	
Indeno(1,2,3-cd)pyrene	ND		0.1	0.079	
Dibenz(a,h)anthracene	ND		0.1	0.056	
Benzo(g,h,i)pe rylene	ND		0.1	0.062	

Client Name	Golder Associates
Client ID:	SP11-(5-8)
Lab ID:	95381-15
Date Received:	1/12/01
Date Prepared:	1/22/01
Date Analyzed:	1/23/01
% Solids	71.4
Dilution Factor	20

Targeted PAH Analytes by Method 8270 Modified.

•	Recovery Limits	
Surrogate% RecoveryFlagsLowHigo-Terphenyl89.15015	gh 50	

	Result				
Analyte	(mg/kg)		PQL	MDL	Flags
Naphthalene		0.97	0.023	0.023	
2-Methylnaphthalene		3	0.023	0.021	
Acenaphthylene		0.29	0.023	0.023	
Acenaphthene	ND		0.023	0.02	
Fluorene		0.39	0.023	0.017	
Phenanthrene		0.67	0.023	0.016	
Anthracene	ND		0.023	0.019	
Fluoranthene		0.054	0.023	0.014	
Pyrene		0.035	0.023	0.013	
Benzo(a)anthracene	ND		0.023	0.01	
Chrysene	ND		0.023	0.013	
Benzo(b)fluoranthene	ND		0.023	0.012	
Benzo(k)fluoranthene	ND		0.023	0.019	
Benzo(a)pyrene	ND		0.023	0.0096	
Indeno(1,2,3-cd)pyrene	ND		0.023	0.019	
Dibenz(a,h)anthracene	ND		0.023	0.013	
Benzo(g,h,i)perylene	ND		0.023	0.015	
Lab ID:	Method Blank - EP229				
-----------------	----------------------				
Date Received:	-				
Date Prepared:	1/22/01				
Date Analyzed:	1/23/01				
% Solids					
Dilution Factor	20				

Targeted PAH Analytes by Method 8270 Modified.

	,		Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-Terphenyl	90.8		50	150	

Sample results are on an as received basis.

٠

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
Naphthalene	ND	0.018	0.018	
2-Methylnaphthalene	ND	0.018	0.016	
Acenaphthylene	ND	0.018	0.017	•
Acenaphthene	ND	0.018	0.016	
Fluorene	ND	0.018	0.013	
Phenanthrene	ND	0.018	0.012	
Anthracene	ND	0.018	0.015	
Fluoranthene	ND	0.018	0.011	
Pyrene	ND	0.018	0.01	
Benzo(a)anthracene	ND	0.018	0.008	
Chrysene	ND	0.018	0.0098	
Benzo(b)fluoranthene	ND	0.018	0.0095	
Benzo(k)fluoranthene	ND	0.018	0.015	
Benzo(a)pyrene	ND	0.018	0.0075	
Indeno(1,2,3-cd)pyrene	ND	0.018	0.014	
Dibenz(a,h)anthracene	ND	0.018	0.01	
Benzo(g,h,i)perylene	ND	0.018	0.011	

Blank Spike Report

Lab ID:	EP229
Date Prepared:	1/22/01
Date Analyzed:	1/23/01
QC Batch ID:	EP229

Targeted PAH Analytes by Method 8270 Modified.

Parameter Name	Blank Result (mg/kg)	Spike Amount (ma/ka)	BS Result (ma/ka)	BS % Rec.	Flag
Nanhthalana	0	18	18	00	
Naphinalene	0	10	10	33	
Acenaphthene	0	18	18.2	100	
Pyrene	0	18	15.6	86	
Benzo(g,h,i)perylene	0	18	19.7	108	

Matrix Spike Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: SP1-(8-11) 95381-02 1/22/01 1/23/01 EP229

Targeted PAH Analytes by Method 8270 Modified.

Parameter Name	Sample Result (mg/kg)	Spike Amount (ma/ka)	MS Result (ma/ka)	MS % Rec.	Flag
Naphthalene	0.23	21	17.5	82	3
Acenaphthene	0.415	21	17.5	81	
Pyrene	0.0698	21	19.9	94	
Benzo(g,h,i)perylene	0	21	20.6	98	

Duplicate Report

Client Sample ID:	SP1-(8-11)
Lab ID:	95381-02
Date Prepared:	1/22/01
Date Analyzed:	1/23/01
QC Batch ID:	EP229

Targeted PAH Analytes by Method 8270 Modified.

	Sample	Duplicate		
	Result	Result	RPD	
Parameter Name	(mg/k g)	(mg/kg)	%	Flag
Naphthalene	0.23	0.251	-8.7	
2-Methylnaphthalene	6.48	7.06	-8.6	
Acenaphthylene	0.514	0.411	22.0	
Acenaphthene	0.415	0.303	31.0	Ν
Fluorene	0.873	0.628	33.0	N
Phenanthrene	1.3	1.39	-6.7	
Anthracene	0	0	NC	
Fluoranthene	0	0	NC	
Pyrene	0.06 98	0.078 3	-11.0	
Benzo(a)anthracene	0	0	NC	
Chrysene	0.0371	0.041	-10.0	
Benzo(b)fluoranthene	0	0	NC	
Benzo(k)fluoranthene	0	0	NC	
Benzo(a)pyrene	0	0	NC	
Indeno(1,2,3-cd)pyrene	0	0	NC	
Dibenz(a,h)anthracene	0	0	NC	
Benzo(g,h,i)perylene	0	0	NC	

Client Name	Golder Associates
Client ID:	SP1-(5-8)
Lab ID:	95381-01
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/17/01
% Solids	79.89
Dilution Factor	50

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	114		50	150

Sample results are on a dry weight basis.

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
#2 Diesel	2300	160	75	
Motor Oil	350	310	160	

58

. r.t

Client ID:	SP1-(8-11)
Lab ID:	95381-02
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	80.7
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ry Limits	
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	101		50	150	

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
#2 Diesel	2700	30	14	
Motor Oil	82	60	30	

Golder Associates
SP2-(5-8)
95381-03
1/12/01
1/16/01
1/18/01
90.08
10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limi		
Surrogate	· % Recovery	Flags	Low	High	
o-terphenyl	98.9		50	150	

	Result			
Analyte	(mg/kg)	PQL	MDL FI	ags
#2 Diesel	45	26	12	
Motor Oil	45	52	26	J

Client Name	Golder Associates
Client ID:	SP3-(5-8)
Lab ID:	95381-04
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	90.83
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	115		50	150

	Result			
Analyte	(m g/kg)	PQL	MDL F	lags
#2 Diesel	1800	25	12	
Motor Oil	190	51	25	

Client Name	Golder Associates
Client ID:	SP4-(5-8)
Lab ID:	95381-05
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/17/01
% Solids	70.47
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	very Limits	
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	98.7		50	150	

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	ND	35	17
Motor Oil	ND	70	35

Client Name	Golder Associates
Client ID:	SP5-(5-8)
Lab ID:	95381-06
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/17/01
% Solids	94.88
Dilution Factor	50

Diesel and Motor Oil by NWTPH-Dx Modified

Surrogate				Recove	ery Limits
		% Recovery	Flags	Low	High
o-terphenyl	,	84.7		50	150

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	7300	130	62
Motor Oil	500	260	130

Golder Associates
SP5-(8-11)
95381-07
1/12/01
1/16/01
1/18/01
68.21
10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	101		50	150

Sample results are on a dry weight basis.

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	1000	35	17 X1
Motor Oil	240	69	35 X2

X1 - Chromatogram suggests this might be aged or degraded diesel

64

	SP6-(5-8)
Client ID:	010-(0-0)
Lab ID:	95381-08
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	67.48
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	126		50	150

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	1500	34	16
Motor Oil	85	68	34

Client Name	Golder Associate		
Client ID:	SP7-(8-11)		
Lab ID:	95381-09		
Date Received:	1/12/01		
Date Prepared:	1/16/01		
Date Analyzed:	1/18/01		
% Solids	73.58		
Dilution Factor	10		

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	103		50	150

Sample results are on a dry weight basis.

	Result				
Analyte	(mg/kg)	PQL		MDL	Flags
#2 Diesel	8	B20	32	15	
Motor Oil	2	220	63	32	

....⁶⁴.

Client Name	Golder Associates
Client ID:	SP8-(5-8)
Lab ID:	95381-10
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/17/01
% Solids	89.11
Dilution Factor	50

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	98.1		50	150

	Result		
Analyte	(mg/kg)	PQL	MDL Flags
#2 Diesel	23000	130	62
Motor Oil	460	260	130

Client Name	Golder Associates
Client ID:	SP8-(8-11)
Lab ID:	95381-11
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	78.24
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recover	
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	89.8		50	150

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
#2 Diesel	5300	30	14	
Motor Oil	160	60	30	

68

Client Name	Golder Associates
Client ID:	SP9-(5-8)
Lab ID:	95381-12
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	83.55
Dilution Factor	20

Diesel and Motor Oil by NWTPH-Dx Modified

			Recov	ery Limits
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	92.6		50	150

Sample results are on a dry weight basis.

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
#2 Diesel	8200	59	28	
Motor Oil	210	120	59	

. ۲.

Client Name	Golder Associates
Client ID:	SP9-(8-11)
Lab ID:	95381-13
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	77.99
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

			Recove	overy Limits	
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	101		50	150	

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
#2 Diesel	1600	30	14	
Motor Oil	49	59	30	J

Client Name	Golder Associates
Client ID:	SP10-(5-8)
Lab ID:	95381-14
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	68.04
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

·			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
o-terphenyl	97.2		50	150

Analyte	Result (mg/kg)	PQL	MDL	Flags
#2 Diesel	19	34	16	J
Motor Oil	120	68	34	

Client Name	Golder Associates
Client ID:	SP11-(5-8)
Lab ID:	95381-15
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	71.4
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

·			Recove	Recovery Limits	
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	110		50	150	

Sample results are on a dry weight basis.

Analyte	Result (mg/kg)	PQL	MDL Flag	S
#2 Diesel	1100	32	15	
Motor Oil	66	64	32	

72

_H. .

Client Name	Golder Associates
Client ID:	SP12-(10-12)
Lab ID:	95381-16
Date Received:	1/12/01
Date Prepared:	1/16/01
Date Analyzed:	1/18/01
% Solids	81.38
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

·			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	98.8		50	150	

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
#2 Diesel	560	30	14	
Motor Oil	45	59	30	J

Client Name	Golder Associate		
Client ID:	SP13-(5-8)		
Lab ID:	95381-17		
Date Received:	1/12/01		
Date Prepared:	1/16/01		
Date Analyzed:	1/18/01		
% Solids	73.58		
Dilution Factor	10		

Diesel and Motor Oil by NWTPH-Dx Modified

			Recovery Limits		
Surrogate	% Recovery	Flags	Low	High	
o-terphenyl	93.8		50	150	

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
#2 Diesel	ND	33	16	
Motor Oil	ND	65	33	

Sound Analytical Services, Inc.

Lab ID:	Method Blank - DS0187
Date Received:	-
Date Prepared:	1/16/01
Date Analyzed:	1/17/01
% Solids	
Dilution Factor	10

Diesel and Motor Oil by NWTPH-Dx Modified

·			Recovery Limits			
Surrogate	% Recove ry	Flags	Low	High		
o-terphenyl	100		50	150		

Sample results are on an as received basis.

	Result			
Analyte	(mg/kg)	PQL	MDL	Flags
#2 Diesel	ND	25	12	
Motor Oil	ND	50	25	

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: DS0187 1/16/01 1/17/01 DS0187 [•]

Diesel and Motor Oil by NWTPH-Dx Modified

	Blank Becult	Spike	BS Bogwitt	PC	BSD Bocult	PCD		
Compound Name	(mg/kg)	(mg/kg)	(mg/kg)	% Rec.	(mg/kg)	% Rec.	RPD	Flag
#2 Diesel	0	500	583	117	599	120	2.5	
Motor Oil	0	501	456	91.1	463	92.5	1.5	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: 1-B 95410-03 1/16/01 1/17/01 DS0187

Diesel and Motor Oil by NWTPH-Dx Modified

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
#2 Diesel	0	0	NC	
Motor Oil	0	0	NC	

Duplicate Report

Client Sample ID: Lab ID: Date Prepared: Date Analyzed: QC Batch ID: SP9-(8-11) 95381-13 1/16/01 1/18/01 DS0187

Diesel and Motor Oil by NWTPH-Dx Modified

	Sample Result	Duplicate Result	RPD	
Parameter Name	(mg/kg)	(mg/kg)	%	Flag
#2 Diesel	1560	1620	-3.8	
Motor Oil	48.9	49.4	-1.0	

Sound Analytical Services, Inc.

ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 e-mail: info@saslab.com

DATA QUALIFIERS AND ABBREVIATIONS

- B1: This analyte was detected in the associated method blank. The analyte concentration was determined not to be significantly higher than the associated method blank (less than ten times the concentration reported in the blank).
- B2: This analyte was detected in the associated method blank. The analyte concentration in the sample was determined to be significantly higher than the method blank (greater than ten times the concentration reported in the blank).
- C1: Second column confirmation was performed. The relative percent difference value (RPD) between the results on the two columns was evaluated and determined to be $\leq 40\%$.
- C2: Second column confirmation was performed. The RPD between the results on the two columns was evaluated and determined to be > 40%. The higher result was reported unless anomalies were noted.

M: GC/MS confirmation was performed. The result derived from the original analysis was reported.

D: The reported result for this analyte was calculated based on a secondary dilution factor.

E: The concentration of this analyte exceeded the instrument calibration range and should be considered an estimated quantity.

J: The analyte was analyzed for and positively identified, but the associated numerical value is an estimated quantity.

- MCL: Maximum Contaminant Level
- MDL: Method Detection Limit
- N: See analytical narrative.
- ND: Not Detected
- PQL: Practical Quantitation Limit
- X1: Contaminant does not appear to be "typical" product. Elution pattern suggests it may be _____
- X2: Contaminant does not appear to be "typical" product.
- X3: Identification and quantitation of the analyte or surrogate was complicated by matrix interference.
- X4: RPD for duplicates was outside advisory QC limits. The sample was re-analyzed with similar results. The sample matrix may be nonhomogeneous.
- X4a: RPD for duplicates outside advisory QC limits due to analyte concentration near the method practical quantitation limit/detection limit.
- X5: Matrix spike recovery was not determined due to the required dilution.
- X6: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Sample was reanalyzed with similar results.
- X7: Recovery and/or RPD values for matrix spike(/matrix spike duplicate) outside advisory QC limits. Matrix interference may be indicated based on acceptable blank spike recovery and/or RPD.
- X7a: Recovery and/or RPD values for this spiked analyte outside advisory QC limits due to high concentration of the analyte in the original sample.
- X8: Surrogate recovery was not determined due to the required dilution.
- X9: Surrogate recovery outside advisory QC limits due to matrix interference.

SAS	Lab	No.	
		T	

Sound Analytical Services, Inc. ANALYTICAL & ENVIRONMENTAL CHEMISTS 4813 Pacific Hwy East • Tacoma, WA 98424 (253) 922-2310 • FAX (253) 922-5047 日月3号101 e-mail: sainc1@uswest.net

TURNAROUND REQUEST (business days)						
Standard	l (10 day	s)				
RUSH:	24 hrs _	48 hrs	_ 5 day			

CHAIN OF CUSTODY/REQUEST FOR LABORATORY ANALYSIS

Client: Golder Assocratis		Analyse	es Requ	lested								
Project Name: Consolidated Freightweis												
983-10(15.820		. ,	. Jo									
Phone No.: 425 883-1777		X	1									
			1									
Fax No.: 425 887-5498	tain	1	-									
Email:	5	2	4									
Lab	ð	3	0				1					
One Sample ID Date Time Matrix	#	Z	II.									
SP1- (5-8) HHOI 6850 Soil	1	V										
2 SPI-(8-11) 10900	2	V	V									
3 SPZ-(5-8) 0955		U										
SP3-(5-8) 1040	i	1							1			
SPH- (5-8) 1175	1	V							ą			
SP5 - (5- 8) 157	5		V						+			
	1				+				+	├		
									+			
	1		[<u> </u>					+-			{
	4									 	┝──-┣	
12 518- (5-8) 1355	2									ļ]		
<u> </u>		V	Ander								 	
25P9 - (5 - 8) 433	2											
SP9- (8-11)7 1437	2	V	4				* .					
14 5910- (5-8) 1515	1	V		5 37								
SP11- (5-8) \$547		V										
10 SP12-(10-12) 11632	Ĩ	1					•					
1 SO13- (5-8) V 1706 V	i	1								i		
					+				+			
	<u> </u>	N.					<u> </u>	· .	<u> </u>	<u> </u>	I	
Signature Printed Name	F	irm	Time	/Date S	Specia	ıl İnstr	uction	is v	\ <u>\</u>	Li	EGH	H9VI
By: GARY CIMANNA	Gal	116	HU	100 A06	<u>In c</u>	rggi	tion	to	400	, <u> </u>	Carl	· / · · ·
Received By	· N	$\hat{\mathbf{b}}$	1.	2-01 0	"vo/"	1212	60	QULL	119	, 01	02.	
Relinquished	<u>)(</u>	<u>D</u>	1.4	304	JO E	:6#/	V94	100	11	in al	Hor	
By: JAI and ALLAQUIST	5'k	Ŋ :	12	36P (100	2010	-70	th T	-49	0 >	>1m	20.0
A Strong	Sł	48	11210	1220			• ••• • •••	. طال	\mathbf{i}	1 . 3	17-11	U V HA
Relinquished By:				X'	700	u0 ,	11	TUR	N	100	/ 7 10/1	NIN
Received By		··· _·			אי <i>ט</i>	15 th	64	1.800	OTLI	9 <i>0</i> 4	100	5
					<u> </u>	9711	171	11 MYR	7001	8 Hr	<u></u>	100
COC No.			× ×	rOo DV	614(1	111 0	NV Z	Y7- (8	Page	١	of	L
			-	14 C	1.1	• •			. aye			1

December 29, 2003

Neil Gilham Golder Associates Inc. 18300 NE Union Hill Road Suite 200 Redmond, WA 98052-3333

Re: Analytical Data for Project 033-1000.000 Laboratory Reference No. 0312-046

Dear Neil:

Enclosed are the analytical results and associated quality control data for samples submitted on December 3, 2003.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on December 3, 2003, and received by the laboratory on December 3, 2003. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx/BTEX

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Client ID:	MW-4	MW-44
Lab ID:	12-046-01	12-046-02

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	89%			92%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

MW-2	MW-3
12-046-03	12-046-04
	MW-2 12-046-03

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND	-	1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	92%			93%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

4

NWTPH-Gx/BTEX

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Client ID:	RW-2	MW-1
Lab ID:	12-046-05	12-046-06

	Result Flags	PQL	Result	Flags	PQL
Benzene	5.4	1.0	ND		1.0
Toluene	ND	1.0	ND		1.0
Ethyl Benzene	ND	1.0	ND		1.0
m,p-Xylene	ND	1.0	ND		1.0
o-Xylene	ND	1.0	ND		1.0
TPH-Gas	450	100	ND		100
Surrogate Recovery: Fluorobenzene	93%		91%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Client ID:	MW-5	MW-6
Lab ID:	12-046-07	12-046-08

	Result	Flags	PQL	Result	Flags	PQL
Benzene	ND		1.0	ND		1.0
Toluene	ND		1.0	ND		1.0
Ethyl Benzene	ND		1.0	ND		1.0
m,p-Xylene	ND		1.0	ND		1.0
o-Xylene	ND		1.0	ND		1.0
TPH-Gas	ND		100	ND		100
Surrogate Recovery: Fluorobenzene	91%			89%		

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Lab ID:

Result Flags PQL 1.0 Benzene ND 1.0 Toluene ŇD 1.0 Ethyl Benzene ND 1.0 m,p-Xylene ND 1.0 o-Xylene ND **TPH-Gas** ND 100

MB1209W1

Surrogate Recovery: Fluorobenzene

93%

7

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Lab ID: MB1209W2

	Result	Flags	PQL
Benzene	ND		1.0
Toluene	ND		1.0
Ethyl Benzene	ND		1.0
m,p-Xylene	ND		1.0
o-Xylene	ND		1.0
TPH-Gas	ND		100
Surrogate Recovery: Fluorobenzene	92%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

8

NWTPH-Gx/BTEX DUPLICATE QUALITY CONTROL

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Lab ID:	12-046-06 Original	12-046-06 Duplicate	RPD	Flags
Benzene	ND	ND	NA	
Toluene	ND	ND	NA	
Ethyl Benzene	ND	ND	NA	
m,p-Xylene	ND	ND	NA	
o-Xylene	ND	ND	NA	
TPH-Gas	ND	ND	NA	
Surrogate Recovery:				
Fluorobenzene	91%	91%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
NWTPH-Gx/BTEX MS/MSD QUALITY CONTROL

Date Extracted:	12-9-03
Date Analyzed:	12-9-03

Matrix: Water Units: ug/L (ppb)

Spike Level: 50.0 ppb

Lab ID:	12-046-06 MS	Percent Recovery	12-046-06 MSD	Percent Recovery	RPD	Flags
Benzene	52.2	104	52.2	104	0	
Toluene	49.0	98	49.0	98	0	
Ethyl Benzene	50.1	100	50.1	100	0	
m,p-Xylene	49.5	99	49.5	99	0	
o-Xylene	49.8	100	49.6	99	0	

Fluorobenzene

97%

97%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Water
Units:	mg/L (ppm)

Client ID:	MW-4	MW-44	MW-2
Lab ID:	12-046-01	12-046-02	12-046-03
Diesel Range:	ND	ND	ND
PQL:	0.25	0.25	0.25
Identification:			
Lube Oil Range:	ND	ND	ND
PQL:	0.40	0.40	0.40
Identification:		· ·	
Surrogate Recovery		•	
o-Terphenyl:	105%	110%	114%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Water mg/L (ppm)

Matrix:	
Units:	

Flags:

Client ID:	MW-3	RW-2	MW-1
Lab ID:	12-046-04	12-046-05	12-046-06
			- - -
Diesel Range:	ND	ND	ND
PQL:	0.25	0.25	0.25
Identification:		 `	
Lube Oil Range:	ND	ND	ND
PQL:	0.40	0.40	0.40
Identification:			
Surrogate Recovery			
o-Terphenyi:	106%	104%	109%
Flags	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

	· · ·	
Date Extracted:		12-12-03
Date Analyzed:		12-14&15-03

Matrix:	Water
Units:	mg/L (ppm)

Client ID:	MW-5	MW-6
Lab ID:	12-046-07	12-046-08
Diesel Range:	ND	ND
PQL:	0.25	0.26
Identification:		· ·
Lube Oil Range:	ND	ND
PQL:	0.41	0.41
Identification:	·	
Surragata Dagayan		
	4450/	0.40/
o- i erpnenyi:	115%	94%
Flags:	Y	Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	12-12-03	
Date Analyzed:	12-14-03	

Matrix:	Water
Units:	mg/L (ppm)

Lab ID:	MB1212W1
Diesel Range:	ND
PQL:	0.25
Identification:	 ·
Lube Oil Range:	ND
PQL:	0.40
Identification:	

Surrogale Recovery	
o-Terphenyl:	115%

Y

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

12-046-01 DUP

ND 0.26

Date Extracted:	12-12-03
Date Analvzed:	12-14-03
	,
Matrix:	Water
Units:	mg/L (ppm)
Lab ID:	12-046-01
Lab ID.	12-040-01
Diesel Range:	ND
Dieber Hange.	0.05
PQL:	0.25
RD.	N/A
IN D.	1477
	· · · · ·

Flags:	Y	Y
o-Terphenyl:	105%	95%
Surrogate Recovery		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

G - Insufficient sample quantity for duplicate analysis.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons outside the defined gasoline range are present in the sample.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a silica gel cleanup procedure.

Y - Sample extract treated with an acid cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

TRANSMITTAL MEMORANDUM

DATE: December 19, 2003

TO: David Baumeister OnSite Environmental, Inc. 14648 N. E. 95th St. Redmond, WA 98052

PROJECT: 12-046

REPORT NUMBER: 118328

TOTAL NUMBER OF PAGES: \mathcal{M}^{1}

Enclosed are the test results for eight samples received at STL Seattle on December 12, 2003.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely,

Stan Palmquist Project Manager

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Sample Identification:

<u>Lab. No.</u>	<u>Client ID</u>	Date/Time Sampled	<u>Matrix</u>
118328-1	MW-4	12-03-03 *	Liquid
118328-2	MW-44	12-03-03 *	Liquid
118328-3	MW-2	12-03-03 *	Liquid
118328-4	MW-3	12-03-03 *	Liquid
118328-5	RW-2	12-03-03 *	Liquid
118328-6	MW-1	12-03-03 *	Liquid
118328-7	MW-5	12-03-03 *	Liquid
118328-8	MW-6	12-03-03 *	Liquid

* - Sampling time not specified for this sample

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

13

OnSite Environmental, Inc
MW-4
118328-01
12/12/2003
12/15/2003
12/15/2003
-
1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.2		80	120
Fluorobenzene	102		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	112		80	120
Bromofluorobenzene	108		80	120
Trifluorotoluene	106		80	120

	Res	ult	
Analyte	(ug/	/L) PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	. 0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

~

Volatile Organics by USEPA Method 5030/8260B data for 118328-01 continued...

Result			
Analyte	(ug	g/L) PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chiorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	• ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

4

Client Name	OnSite Environmental, Inc.
Client ID:	MW-44
Lab ID:	118328-02
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	94.5		80	120
Fluorobenzene	102		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	109		80	120
Bromofluorobenzene	105		80	120
Trifluorotoluene	104		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118328-02 continued...

Result			
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

.

6

Client Name	OnSite Environmental, Inc
Client ID:	MW-2
Lab ID:	118328-03
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.6		80	120
Fluorobenzene	102		80	120
Toluene-D8	106		80	120
Ethylbenzene-d10	112		80	120
Bromofluorobenzene	105		80	120
Trifluorotoluene	106		80	120

	Res	ult	
Analyte	(ug/	′L) PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

7

. . : : -

Volatile Organics by USEPA Method 5030/8260B data for 118328-03 continued...

Result			
Analyte	(u	g/L) PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	· 1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	. 1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

8

Client Name	OnSite Environmental, Inc
Client ID:	MW-3
Lab ID:	118328-04
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.7		80	120
Fluorobenzene	102		80	120
Toluene-D8	106		80	120
Ethylbenzene-d10	111		80	120
Bromofluorobenzene	106		80	120
Trifluorotoluene	105		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	· 1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

9

 $\mathcal{L}_{\mathcal{A}}$

Volatile Organics by USEPA Method 5030/8260B data for 118328-04 continued...

Result			
Analyte	(ug/	/L) PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	-1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

10

Client Name	OnSite Environmental, Inc.
Client ID:	RW-2
Lab ID:	118328-05
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.3		80	120
Fluorobenzene	101		80	120
Toluene-D8	106		80	120
Ethylbenzene-d10	109		80	120
Bromofluorobenzene	104		80	120
Trifluorotoluene	107		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichioropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	5.31	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118328-05 continued...

Result			
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ŅD	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	5.26	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	5.5	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	0.589	1	0.5
sec-Butylbenzene	3.29	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

J

Client Name	OnSite Environmental, Inc.
Client ID:	MW-1
Lab ID:	118328-06
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	90.1		80	120
Fluorobenzene	101		80	120
Toluene-D8	107		80	120
Ethylbenzene-d10	111		80	120
Bromofluorobenzene	107		80	120
Trifluorotoluene	104		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND .	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	· 1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118328-06 continued...

Result			
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1 -	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

Client Name	OnSite Environmental, Inc
Client ID:	MW-5
Lab ID:	118328-07
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

.

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.2		80	120
Fluorobenzene	100		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	109		80	120
Bromofluorobenzene	103		80	120
Trifluorotoluene	105		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118328-07 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

,

Client Name	OnSite Environmental, Inc
Client ID:	MW-6
Lab ID:	118328-08
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.3		80	120
Fluorobenzene	102		80	120
Toluene-D8	104		80	120
Ethylbenzene-d10	107		80	120
Bromofluorobenzene	103		80	120
Trifluorotoluene	104		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1 .
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	. 1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	. 1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	^{0.5}

Volatile Organics by USEPA Method 5030/8260B data for 118328-08 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	¹ 1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1 ·	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND ·	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

17

C ...

Lab ID:Method Blank - VOA595Date Received:-Date Prepared:12/15/2003Date Analyzed:12/15/2003% Solids-Dilution Factor1

Volatile Organics by USEPA Method 5030/8260B

.,
High
120
120
120
120
120
120

	Re	sult	
Analyte	(u	g/L) PQL	MRL Flags
Dichlorodifluoromethane	• ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	. 1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	· 1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	. 2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	. 1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	<u>`</u> 0.5

Volatile Organics by USEPA Method 5030/8260B data for VOA595 continued...

Result									
Analyte	(ug/L)	PQL	MRL						
1,1,2-Trichloroethane	ND	1	0.5						
Tetrachloroethene	ND	1	0.5						
1,3-Dichloropropane	ND	1.	0.5						
Dibromochloromethane	ND	1	0.5						
1,2-Dibromoethane	ND	1	0.5						
Chlorobenzene	ND	1	0.5						
Ethylbenzene	ND	1	0.5						
1,1,1,2-Tetrachloroethane	ND	1	0.5						
m,p-Xylene	ND	2	1						
o-Xylene	ND	1	0.5						
Styrene	ND	1	0.5						
Bromoform	ND	1	0.5						
Isopropylbenzene	ND	1	0.5						
Bromobenzene	ND	1	0.5						
n-Propylbenzene	ND	1	0.5						
1,1,2,2-Tetrachloroethane	ND	· 1	0.5						
1,2,3-Trichloropropane	ND	1	0.5						
2-Chlorotoluene	ND	1	0.5						
1,3,5-Trimethylbenzene	ND	1	0.5						
4-Chlorotoluene	ND	1	0.5						
t-Butylbenzene	ND	1	0.5						
1,2,4-Trimethylbenzene	ND	1	0.5						
sec-Butylbenzene	ND	1	0.5						
1,3-Dichlorobenzene	ND	1	0.5						
4-Isopropyltoluene	ND	1	0.5						
1,4-Dichlorobenzene	ND	1	0.5						
n-Butylbenzene	ND	1	0.5						
1,2-Dichlorobenzene	ND	1	0.5						
1,2-Dibromo-3-chloropropane	ND	1	0.5						
1,2,4-Trichlorobenzene	ND	1	0.5						
Hexachlorobutadiene	ND	1	0.5						
Naphthalene	ND	2	1						
1,2,3-Trichlorobenzene	ND	1	0.5						

19

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: VOA595 12/15/2003 12/15/2003 VOA595

20

Volatile Organics by USEPA Method 5030/8260B

	Biank Besult	Spike Amount	BS Besult	BS	BSD Besult	RSD		
Compound Name	(ug/L)	(ug/L)	(ug/L)	% Rec.	(ug/L)	% Rec.	RPD	Flag
1,1-Dichloroethene	0	5	4.59	91.8	4.51	90.1	-1.9	
Benzene	0	5	4.87	97.5	4.73	94.5	-3.1	
Trichloroethene	0	5	4.86	97.3	5	100	2.7	
Toluene	0	5	4.8	96	4.74	94.9	-1.2	
Chlorobenzene	0	5	5	100	5.03	101	1	

CHAIN OF CUSTODY RECORD

(FOR SUBCONTRACT LABORATORY)

Lab Reference Number: 12-046

14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

,

Project Manager: David Baumeister

Project Number: 033-1000.000

Project Name: Consolidated Freightway

dash Sample Number/Name	Date Sampled	Matrix	# Jars	Analysis Requested	Comments
MW-4	12/03/2003	W	3	Volatiles EPA 8260B	
MW-44	12/03/2003	W	3	Volatiles EPA 8260B	
MW-2	12/03/2003	w	3	Volatiles EPA 8260B	
MW-3	12/03/2003	W	3	Volatiles EPA 8260B	12/17
RW-2	12/03/2003	W	3	Volatiles EPA 8260B	(-/./
MW-1	12/03/2003	W	3	Volatiles EPA 8260B	
MW-5	12/03/2003	w	3	Volatiles EPA 8260B	
MW-6	12/03/2003	w	3	Volatiles EPA 8260B	
	-				
Submitted:	date: (12/0-	Received	by: C	Ziach dat	e: 12-12-03
Eim Ky to En	time: 1105-	Firm:	·51	کtim	e: /111
Submitted: Chack	date: 2-12-0	Beceived	by:	lop dat	e: 12/12/
Firm: GTL	time: \308	Firm:		SR tim	e: 1300

1000

Consite		CI	nain	of	Cu	S	100	ly											F	age _		of	÷.	·· .
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • Eav: (425) 885-4603		Turnaroun (in worki	d Reque ng days)	st	La	abo	rato	ory	Nur	nbe	er:	1	2	- (] 4	6		ÿ						
Company: Gelder		(Chec	k One)									Re	eque	este	d A	naly	sis							
Project Number: <u>633-1000,000</u> Project Name: <u>Consclictbled Energhtunge</u> Project Manager: <u>Neil Gilhom</u>	☐ Sa ☐ 2 1 → ⊠ 2 1	ame Day Day andard (7 w	vorking d	1 Day 3 Day ays)	Q	BTEX		3260B	Volatiles by 8260B	s by 8270C	'0C / SIM	22	/ 8081A	y 8151A	Metals (8)		4							
Lak 10 December 10 December 10 December 10	Date	(otl Time	her)	# of	ИТРН-НС	VTPH-Gx/	VTPH-Dx	atiles by {	logenated	mivolatiles	Hs by 827	Bs by 808	sticides by	rbicides b	al RCRA I	LP Metals	M by 166	T	T				Anisture	
M(a) - Y	Sampled	Sampled 935	Matrix	Cont. 7	N	≥ X	$\frac{\lambda}{\lambda}$	8 X	На	s S	PA	Q	Pe	He	Tot	<u>۲</u>	<u> </u>	P P	Ē			-+	%	\neg
2 mw-44		945	WAL	1		X	X.	X										-		 				_
3 MW-2		1035		7		X	X	X												-	-			-
4 : MW-3		1/20		7		X	×	\mathcal{X}									-							
5 RW-2		1205		7		7	r	x															-	
6 MW-1		1255		7		+	~	×															,	
7 MW-5		1405		7		r	×	\star														-+		<u>.</u>
0 MW-6	12-3-03	1450	whe	7		x	X	$\boldsymbol{\mathcal{X}}$												\rightarrow				
										-											-+	<u> </u>		
Signature		Company	· · · · · · · · · · · · · · · · · · ·			Date			Time			Com	nents	/Spec	ial In	struc	tions							
Relinquished by Kay Karl		Go	slder	• · .		12-]~0	3	4.	37	z												• <u> </u>	
Received by		Onsit	٩	•.		12-	3-0	の	4:	: 32	-													•
Received by							<u> </u>																	
Relinquished by										•														
Received by	*				-			14	-														s.	
Reviewed by/Date		Reviewed b	y/Date					<u> </u>				Chro	mate	ograi	ns v	vith fi	inal r	epor	t 🗆	,				-

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Golder Associates

December 29, 2003

Neil Gilham Golder Associates Inc. 18300 NE Union Hill Road Suite 200 Redmond, WA 98052-3333

Re: Analytical Data for Project 033-1000.000 Laboratory Reference No. 0312-045

Dear Neil:

Enclosed are the analytical results and associated quality control data for samples submitted on December 3, 2003.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on December 2, 2003, and received by the laboratory on December 3, 2003. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Dx Analysis

No surrogate data is available for sample GP-6 0-2.5 due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Volatiles EPA 8260B Analysis

The 12-065-18 Matrix Spike/Matrix Spike Duplicate RPD for Benzene is slightly outside control limits. The percent recoveries are within control limits and the associated Spike Blank data is within control limits. Please refer to the Spike Blank data associated with this MS/MSD (SB1212S2).

The 12-074-01 Matrix Spike/Matrix Spike Duplicate RPD for Trichloroethene is slightly outside control limits. The percent recoveries are within control limits and the associated Spike Blank data is within control limits. Please refer to the Spike Blank data associated with this MS/MSD (SB1213S1).

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-1 (6-8)	GP-1 (10-12)
Lab ID:	12-045-02	12-045-03

	Result	Flags	PQL	Result	Flags	PQL	
TPH-Gas	ND		7.1	ND		6.8	
Surrogate Recovery: Fluorobenzene	89%		· .	93%			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID: Lab ID:	GP-2 (6-8) 12-045-05			GP-2 (10-12) 12-045-06			
	Result	Flags	PQL	Result	Flags	PQL	
TPH-Gas	ND		5.7	ND		7.0	
Surrogate Recovery: Fluorobenzene	109%			92%			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-3 (6-8)	GP-3 (10-12)
Lab ID:	12-045-12	12-045-13

	. I	Result	I	Flags	PQL	Result	Flags	PQL
TPH-Gas		ND			5.3	ND		7.0
Surrogate Recove Fluorobenzene	ery:	112%				90%		

5

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx					
Date Extracted: Date Analyzed:	12-11-03 12-11-03				
Matrix: Soil Units: mg/kg (ppm)					
Client ID: Lab ID:	GP-4 (2-4) 12-045-14	GP-4 (6-8) 12-045-15			

	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		5.4	ND		5.5
Surrogate Recovery: Fluorobenzene	107%			103%	, , .	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

6
NWTPH-Gx

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-4 (10-12)	GP-5 (6-8)	•
Lab ID:	12-045-16	12-045-18	

	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		7.0	ND		5.5
Surrogate Recovery: Fluorobenzene	88%	÷ .		107%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

7

NWTPH-Gx

Date Extracted:		12-11-03
Date Analyzed:		12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-5 (10-12)	GP-6 0-2.5	
Lab ID:	12-045-19	12-045-21	
ι.			

	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND	· · ·	7.1	ND		5.3
Surrogate Recovery: Fluorobenzene	89%			111%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Date Extracted:		12-11-03
Date Analyzed:	•	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-8 (6-8')	GP-8 (10-12')
Lab ID:	12-045-24	12-045-25

· · · ·	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		7.2	ND		6.6
Surrogate Recovery: Fluorobenzene	88%			92%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Date Extracted:		12-11-03
Date Analyzed:		12-11-03

Matrix: Soil Units: mg/kg (ppm)

Client ID:	GP-7 (6-8')	GP-7 (10-12')
Lab ID:	12-045-26	12-045-27

	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND		6.7	ND		7.0
Surrogate Recovery: Fluorobenzene	93%		:	92%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

			NWTPH-C	ЭХ
Date Extracted: Date Analyzed:	•	12-11-03 12-11-03	· · ·	
Matrix: Soil Units: mg/kg (ppm)				
Client ID: Lab ID:	·	GP-44 (2-4') 12-045-29		
		Result	Flags	PQL
TPH-Gas		ND		5.4
Surrogate Recovery: Fluorobenzene		108%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

11

NWTPH-Gx METHOD BLANK QUALITY CONTROL

Date Extracted:	12-11-03
Date Analyzed:	12-11-03
Matrix: Soil Units: mg/kg (ppm)	
Lab ID:	MB1211S1
	· · · · ·

	Result	Flags	PQL	
TPH-Gas	ND		5.0	
Surrogate Recovery:				

Surrogate Recovery: Fluorobenzene 118%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx METHOD BLANK QUALITY CONTROL

PQL

Date Extracted:	12-11-03	
Date Analyzed:	12-11-03	
Matrix: Soil Units: mg/kg (ppm)		
Lab ID:	MB1211S2	
	· .	
	. •	
	Result	Flags
	Nesun	i iags

TPH-GasND5.0Surrogate Recovery:

120%

Fluorobenzene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx DUPLICATE QUALITY CONTROL

Date Extracted:	12-11-03
Date Analyzed:	12-11-03

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	12-045-02 Original	12-045-02 Duplicate	RPD	Flags
		· · ·		
TPH-Gas	ND	ND	NA	
Surrogate Recovery: Fluorobenzene	89%	87%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx DUPLICATE QUALITY CONTROL

Date Extracted:	12-11-03
Date Analyzed:	12-11 - 03

Matrix: Soil Units: mg/kg (ppm)

Lab ID:	12-045-12 Original	12-045-12 Duplicate	PPD	Flage
	Original	Duplicate		i lago
×				
TPH-Gas	ND	ND	NA	
Surrogate Recovery:				
Fluorobenzene	112%	110%		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

	•		PH-GX			
Date Extracted: Date Analyzed:	12-10-03 12-10-03	к				
Matrix: Water Units: ug/L (ppb)						
Client ID: Lab ID:	GP-1 12-045-07			GP-2 12-045-08	· . · .	
	Result	Flags	PQL	Result	Flags	PQL
TPH-Gas	ND	. *	100	ND		100

93%

Surrogate Recovery: Fluorobenzene

92%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

16

NWTPH-Gx

Date Extracted:	12-10-03
Date Analyzed:	12-10-03

Matrix: Water Units: ug/L (ppb)

GP-3			GP-4		
12-045-09			12-045-10		
Result	Flags	PQL	Result	Flags	PQL
ND		100	ND		100
	GP-3 12-045-09 Result ND	GP-3 12-045-09 Result Flags ND	GP-3 12-045-09 Result Flags PQL ND 100	GP-3 GP-4 12-045-09 12-045-10 Result Flags PQL Result ND 100 ND	GP-3 GP-4 12-045-09 12-045-10 Result Flags PQL Result Flags ND 100 ND Image: ND

93%

Surrogate Recovery: Fluorobenzene

91%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx 12-10-03 Date Extracted: 12-10-03 Date Analyzed: Matrix: Water Units: ug/L (ppb) GP-8 Client ID: GP-5 Lab ID: 12-045-20 12-045-22 Result Flags PQL Result Flags PQL **TPH-Gas** ND 100 100 ND Surrogate Recovery: Fluorobenzene 94% 93%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

18

NWTPH-Gx

Date Extracted:	12-10-03
Date Analyzed:	12-10-03

Matrix: Water Units: ug/L (ppb)

Client ID:	GP-7
Lab ID:	12-045-28

	Result	Flags	PQL	
TPH-Gas	ND		100	
Surrogate Recovery: Fluorobenzene	95%			

Fluorobenzene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx METHOD BLANK QUALITY CONTROL

Date Extracted:	12-10-03
Date Analyzed:	12-10-03

Matrix: Water Units: ug/L (ppb)

Lab ID:

MB1210W2

	Result	Flags	PQL
TPH-Gas	ND		100

Surrogate Recovery: Fluorobenzene 91%

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx DUPLICATE QUALITY CONTROL

Date Extracted:	12-10-03
Date Analyzed:	 12-10-03

Matrix: Water Units: ug/L (ppb)

Lab ID:	12-045-08 Original	12-045-08 Duplicate	RPD	
TPH-Gas	ND	ND	NA	
Surrogate Recovery:		· .		
Fluorobenzene	93%	89%	- 	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Flags

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	GP-1 (6-8)	GP-1 (10-12)	GP-2 (6-8)
Lab ID:	12-045-02	12-045-03	12-045-05
Diesel Range:	ND	ND	ND
PQL:	36	34	28
Identification:			
			· .
Lube Oil Range:	ND	ND	ND
PQL:	71	68	57
Identification:		·	· .
			<i>i</i>
Surrogate Recovery			
o-Terphenyl:	108%	121%	121%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:		12-12-03
Date Analyzed:	•	12-14-03

Matrix:	•	Soil
Units:		mg/kg (ppm)

Client ID:	GP-2 (10-12)	GP-3 (6-8)	GP-3 (10-12)
Lab ID:	12-045-06	12-045-12	12-045-13
· •			· .
·	•		
Diesel Range:	ND	ND	ND
PQL:	35	26	35
Identification:	· · · ·	·	
,			
		· · · · · · · · · · · · · · · · · · ·	· · · · ·
Lube Oil Range:	ND	ND	ND
PQL:	70	53	70
Identification:			
Surragata Basayany			
		10001	
o-Terphenyl:	105%	123%	115%
Flags:	Y	Y	Y

NWTPH-Dx

Date Extracted:	 12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	GP-4 (2-4)	GP-4 (6-8)	GP-4 (10-12)
Lab ID:	12-045-14	12-045-15	12-045-16
		· · · · · ·	
Diesel Range:	ND	ND	ND
PQL:	130	28	35
Identification:			
			· · · · · · · · · · · · · · · · · · ·
Lube Oil Range:	1300	ND	90
PQL:	270	55	70
Identification:	Lube Oil		Lube Oil
			и -
Surrogate Recovery		· · · · ·	
o-Terobenyl:	140%	131%	101%
	1-10/0	10170	10170
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	;	Soil	
Units:	·	mg/kg (ppm)	

Client ID:	GP-5 (6-8)	GP-5 (10-12)	GP-6 0-2.5
Lab ID:	12-045-18	12-045-19	12-045-21
· · · ·			
Diesel Range:	ND	ND	ND
PQL:	28	36	270
Identification:		· · · · · · · · · · · · · · · · · · ·	
	ND		1000
Lube Oli Range:	ND		4000
PQL:	55	71	530
Identification:	· · · · · ·	· · · ·	Lube Oil
Surrogate Recovery			
o Tombonyl:	1/60/	1200/	
o-reiphenyi.	140%	130 %	,
	Ň		
Flags:	Ŷ	Ŷ	Y,S

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	GP-8 (6-8')	GP-8 (10-12')	GP-7 (6-8')
Lab ID:	12-045-24	12-045-25	12-045-26
Diesel Range:	ND	ND	ND
PQL:	36	33	33
Identification:			·
- - -			
Lube Oil Range:	ND	ND	ND
PQL:	72	66	67
Identification:			·
Surrogate Recovery			
o-Terphenyl:	130%	130%	114%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Client ID:	GP-7 (10-12')	GP-44 (2-4')
Lab ID:	12-045-27	12-045-29
		· · ·
Diesel Range:	ND	ND
PQL:	35	130
Identification:		
		•
Lube Oil Range:	ND	800
PQL:	70	270
Identification:		Lube Oil
	. · ·	
Surrogate Recovery		
o-Terphenyl:	128%	139%

Y

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8 NE 95 Street, Reamona, WA 98052 (425) 883-3

Y

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	MB1212S2	
· · ·		
Diesel Range:	ND	
PQL:	25	
Identification:		

Lube Oil Range:	ND
PQL:	50
Identification:	

Surrogate Recovery		
o-Terphenyl:	1	33%

Flags:

Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	12-045-05	12-045-05 DUP
Diesel Range:	ND	ND
PQL:	25	25
RPD:	N/A	

121%	116%
Y	Y
	121% Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:

12-045-29

12-045-29 DUP

ND

130

Diesel Range:NDPQL:130

RPD:

N/A

Surrogate Recovery o-Terphenyl:

Flags:

Y

139%

117%

Υ

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted: Date Analyzed:	12-12-03 12-14&15-03		
·			
Matrix: Units:	Water mg/L (ppm)		:
			· · · · ·
Client ID:	GP-1	GP-2	GP-3
Lab ID:	12-045-07	12-045-08	12-045-09
· · · ·			
Diesel Range:	ND	ND	ND
PQL:	0.25	0.26	0.26
Identification:		<u></u>	·
	н П		· ·
Lube Oil Range:	ND	ND	ND
PQL:	0.40	0.41	0.42
Identification:	· · · · · · · · · · · · · · · · · · ·		·
		· .	•
Surrogate Recovery			
o-Terphenyl:	79%	105%	88%
Flaos:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Water
Units:	mg/L (ppm)

Client ID:	GP-4	GP-5	GP-8
Lab ID:	12-045-10	12-045-20	12-045-22
· .			ан сайтаан ал
Diesel Range:	ND	ND	ND
PQL:	0.26	0.26	0.25
Identification:			
	· · · · ·		
Lube Oil Range:	ND	ND	ND
PQL:	0.42	0.41	0.40
Identification:		,	
Surrogate Recovery			
o-Terphenyl:	116%	117%	117%
Flags:	Y	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Date Extracted:	12-12-03
Date Analyzed:	12-14-03
Motrix	Wator
Units:	mg/L (ppm)
Client ID:	GP-7
Lah ID:	12 045 28
	12-045-20
Diesel Range:	ND
PQL:	0.28
Identification:	
Lube Oil Range:	ND

PQL:	0.44
Identification:	

Surrogate Recovery		
o-Terphenyl:	102	2%

Y

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx METHOD BLANK QUALITY CONTROL

Date Extracted:	12-12-03	
Date Analyzed:	12-14-03	

Matrix:	Water
Units:	mg/L (ppm)

Lab ID:

MB1212W1

Diesel Range:	· · · ·	ND	
PQL:		0.25	
Identification:			

Lube Oil Range:	ND
PQL:	0.40
Identification:	

Surrogate Recovery	
o-Terphenyl:	115%

Flags:

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx DUPLICATE QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-14-03

Matrix:	Water
Units:	mg/L (ppm)

Lab ID:

12-046-01

12-046-01 DUP

Y

Diesel Range:	ND	ND
PQL:	0.25	0.26
RPD:	N/A	

Surrogate Recovery		
o-Terphenyl:	105%	95%
Flaos:	Y	Y

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed. 35

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-12-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)
	40.045.00

Lad ID:	12-045-02
Client ID:	GP-1 (6-8)

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND		0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	ND		0.0071
lodomethane	ND		0.0071
Carbon Disulfide	ND		0.0014
Methylene Chloride	ND		0.0071
(trans) 1,2-Dichloroethene	ND	, ÷	0.0014
Methyl t-Butyl Ether	ND		0.0014
1,1-Dichloroethane	ND	х.	0.0014
Vinyl Acetate	ND		0.0071
2,2-Dichloropropane	ND	*	0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	ND		0.0071
Bromochloromethane	ND		0.0014
Chloroform	. ND		0.0014
1,1,1-Trichloroethane	ND		0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0071
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0071
Toluene	0.0020		0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	12-045-02	. *		
Client ID:	GP-1 (6-8)			
		8. 1		· · · · ·
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		ND	•	0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone		ND		0.0071
Dibromochloromethane	· ·	ND	· .	0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0029
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
lsopropylbenzene		ND		0.0014
Bromobenzene		ND		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene	12.1	ND		0.0014
1,2,4-Trimethylbenzene		ND	· · ·	0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butyibenzene		ND		0.0014
1,2-Dibromo-3-chloropropa	ne	ND		0.0071
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0071
Naphthalene	ан (т. 1997) 1997 — Польбор (т. 1997) 1997 — Польбор (т. 1997)	ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	60-137
Toluene, d8	89	71-129
4-Bromofluorobenzene	83	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted: Date Analyzed:		12-12-03 12-13-03	
Matrix: Units:	· · · · ·	Soil mg/kg (ppm)	

12-045-03
GP-1 (10-12)

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	• •	0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND		0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND	ν.	0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	0.036		0.0068
lodomethane	ND		0.0068
Carbon Disulfide	ND		0.0014
Methylene Chloride	ND		0.0068
(trans) 1,2-Dichloroethene	ND		0.0014
Methyl t-Butyl Ether	ND		0.0014
1,1-Dichloroethane	ND		0.0014
Vinyl Acetate	ND		0.0068
2,2-Dichloropropane	ND		0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	0.0084	÷	0.0068
Bromochloromethane	ND		0.0014
Chloroform	ND		0.0014
1,1,1-Trichloroethane	ND		0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0068
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND	·	0.0068
Toluene	ND		0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-03 GP-1 (10-12)		、	
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene	н. Нас	ND		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone	· .	ND		0.0068
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene	× .	ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0027
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene	. · · ·	ND		0.0014
Bromobenzene	· · · ·	ND		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene	· · ·	ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane		ND		0.0068
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0068
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	90	60-137
Toluene, d8	88	71-129
4-Bromofluorobenzene	92	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted: Date Analyzed:	12-12-03 12-13-03			•
Matrix:	Soil			
Units:	mg/kg (ppm)			
Lab ID:	12-045-05			
Client ID:	GP-2 (6-8)			
Compound		Results	Flags	PQL
Dichlorodifluoromethane	· .	ND	-	0.0011
Chloromethane		ND		0.0011
Vinyl Chloride		ND		0.0011
Bromomethane		ND		0.0011
Chloroethane		ND		0.0011
Trichlorofluoromethane		ND		0.0011
1,1-Dichloroethene		ND		0.0011
Acetone		ND		0.0057
lodomethane		ND		0.0057
Carbon Disulfide		ND		0.0011
Methylene Chloride		ND		0.0057
(trans) 1,2-Dichloroethene	· · · · ·	ND		0.0011
Methyl t-Butyl Ether	<u>.</u>	ND	*	0.0011
1,1-Dichloroethane		ND	*	0.0011
Vinyl Acetate		ND		0.0057
2,2-Dichloropropane		ND		0.0011
(cis) 1,2-Dichloroethene		ND		0.0011
2-Butanone		ND		0.0057
Bromochloromethane		ND		0.0011
Chloroform		ŇD		0.0011
1,1,1-Trichloroethane		ND		0.0011
Carbon Tetrachloride		ND		0.0011
1,1-Dichloropropene		ND		0.0011
Benzene		ND		0.0011
1,2-Dichloroethane		ND		0.0011
Trichloroethene		ND		0.0011
1,2-Dichloropropane		ND		0.0011
Dibromomethane		ND		0.0011
Bromodichloromethane		ND		0.0011
2-Chloroethyl Vinyl Ether		ND		0.0057
(cis) 1,3-Dichloropropene	·	ND		0.0011
Methyl Isobutyl Ketone		ND		0.0057
Toluene		ND		0.0011
(trans) 1,3-Dichloropropene		ND		0.0011

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:		12-045-05
Client ID:	•	GP-2 (6-8)

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0011
Tetrachloroethene	ND		0.0011
1,3-Dichloropropane	ND		0.0011
2-Hexanone	ND		0.0057
Dibromochloromethane	ND		0.0011
1,2-Dibromoethane	ND		0.0011
Chlorobenzene	ND		0.0011
1,1,1,2-Tetrachloroethane	ND	· ·	0.0011
Ethylbenzene	ND		0.0011
m,p-Xylene	ND		0.0023
o-Xylene	ND		0.0011
Styrene	ND		0.0011
Bromoform	ND		0.0011
Isopropylbenzene	ND		0.0011
Bromobenzene	ND		0.0011
1,1,2,2-Tetrachloroethane	ND		0.0011
1,2,3-Trichloropropane	ND		0.0011
n-Propylbenzene	ND		0.0011
2-Chlorotoluene	ND		0.0011
4-Chlorotoluene	ND		0.0011
1,3,5-Trimethylbenzene	ND		0.0011
tert-Butylbenzene	ND		0.0011
1,2,4-Trimethylbenzene	ND		0.0011
sec-Butylbenzene	ND		0.0011
1,3-Dichlorobenzene	ND		0.0011
p-Isopropyltoluene	ND		0.0011
1,4-Dichlorobenzene	ND		0.0011
1,2-Dichlorobenzene	ND		0.0011
n-Butylbenzene	ND		0.0011
1,2-Dibromo-3-chloropropane	ND		0.0057
1,2,4-Trichlorobenzene	ND		0.0011
Hexachlorobutadiene	ND		0.0057
Naphthalene	ND		0.0011
1,2,3-Trichlorobenzene	ND		0.0011

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	88	60-137
Toluene, d8	94	71-129
4-Bromofluorobenzene	89	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

g (ppm)	
	a (hhiii)

10.00

Lab ID:	12-045-06
Client ID:	GP-2 (10-12)

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND		0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	0.094		0.0070
lodomethane	ND		0.0070
Carbon Disulfide	0.0026		0.0014
Methylene Chloride	ND	· .	0.0070
(trans) 1,2-Dichloroethene	ND		0.0014
Methyl t-Butyl Ether	ND		0.0014
1,1-Dichloroethane	ND		0.0014
Vinyl Acetate	ND		0.0070
2,2-Dichloropropane	ND	•	0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	ND		0.0070
Bromochloromethane	ND		0.0014
Chloroform	ND		0.0014
1,1,1-Trichloroethane	ND		0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND	•	0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	[×] ND		0.0070
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0070
Toluene	ND		0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
VOLATILES by EPA 8260B Page 2 of 2

~ ~

Lab ID.	12-045-06			
Client ID:	GP-2 (10-12)			· •
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND	U	0.0014
Tetrachloroethene		ND		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone	•	ND		0.0070
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0:0014
1,1,1,2-Tetrachloroethane		ND	· ·	0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0028
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene	•	ND		0.0014
Bromobenzene		ND		0.0014
1,1,2,2-Tetrachloroethane	. *	ND		0.0014
1,2,3-Trichloropropane	·	ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene	·	ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane		ND		0.0070
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0070
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	93	60-137
Toluene, d8	95	71-129
4-Bromofluorobenzene	82	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted: Date Analyzed:	12-12-03 12-13-03
Matrix: Units:	Soil mg/kg (ppm)

Lab ID:	12-045-12
Client ID:	GP-3 (6-8)

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0011
Chloromethane	ND		0.0011
Vinyl Chloride	ND		0.0011
Bromomethane	ND	· .	0.0011
Chloroethane	ND		0.0011
Trichlorofluoromethane	ND	· ·	0.0011
1,1-Dichloroethene	ND		0.0011
Acetone	ND		0.0053
lodomethane	ND		0.0053
Carbon Disulfide	ND		0.0011
Methylene Chloride	ND		0.0053
(trans) 1,2-Dichloroethene	ND		0.0011
Methyl t-Butyl Ether	ND		0.0011
1,1-Dichloroethane	ND		0.0011
Vinyl Acetate	ND		0.0053
2,2-Dichloropropane	ND		0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
2-Butanone	ND		0.0053
Bromochloromethane	ND		0.0011
Chloroform	ND		0.0011
1,1,1-Trichloroethane	ND		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND		0.0011
Benzene	ND		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0053
(cis) 1,3-Dichloropropene	ND		0.0011
Methyl Isobutyl Ketone	ND		0.0053
Toluene	ND		0.0011
(trans) 1,3-Dichloropropene	ND	·	0.0011

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-12 GP-3 (6-8)			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ŅD	· · · · ·	0.0011
Tetrachloroethene		ND		0.0011
1,3-Dichloropropane		ND		0.0011
2-Hexanone		ND		0.0053
Dibromochloromethane		ND		0.0011
1,2-Dibromoethane		ND		0.0011
Chlorobenzene		ND		0.0011
1,1,1,2-Tetrachloroethane		ND	·	0.0011
Ethylbenzene	·	ND		0.0011
m,p-Xylene		ND		0.0021
o-Xylene		ND		0.0011
Styrene		ND		0.0011
Bromoform		ND		0.0011
lsopropylbenzene		ND	•	0.0011
Bromobenzene		ND ND		0.0011
1,1,2,2-Tetrachloroethane		ND		0.0011
1,2,3-Trichloropropane		ND		0.0011
n-Propylbenzene		ND	•	0.0011
2-Chlorotoluene		ND		0.0011
4-Chlorotoluene		ND		0.0011
1,3,5-Trimethylbenzene		ND		0.0011
tert-Butylbenzene		ND		0.0011
1,2,4-Trimethylbenzene		ND		0.0011
sec-Butylbenzene		ND		0.0011
1,3-Dichlorobenzene		ND		0.0011
p-Isopropyltoluene		ND		0.0011
1,4-Dichlorobenzene		ND		0.0011
1,2-Dichlorobenzene		ND		0.0011
n-Butylbenzene		ND		0.0011
1,2-Dibromo-3-chloropropane		ND		0.0053
1,2,4-Trichlorobenzene		ND		0.0011
Hexachlorobutadiene		ND		0.0053
Naphthalene		ND		0.0011
1,2,3-Trichlorobenzene		ND		0.0011

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	88	60-137
Toluene, d8	87	71-129
4-Bromofluorobenzene	93	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-12-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 12-045-13 Client ID: GP-3 (10-12)

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND		0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	0.15		0.0070
lodomethane	ND		0.0070
Carbon Disulfide	ND		0.0014
Methylene Chloride	ND		0.0070
(trans) 1,2-Dichloroethene	ND		0.0014
Methyl t-Butyl Ether	ND		0.0014
1,1-Dichloroethane	ND		0.0014
Vinyl Acetate	ND		0.0070
2,2-Dichloropropane	ND		0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	0.034		0.0070
Bromochloromethane	ND		0.0014
Chloroform	ND		0.0014
1,1,1-Trichloroethane	ND		0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0070
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0070
Toluene	ND		0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:		12-045-13
Client ID:	,	GP-3 (10-12)

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND	-	0.0014
Tetrachloroethene	ND		0.0014
1,3-Dichloropropane	ND		0.0014
2-Hexanone	ND	· .	0.0070
Dibromochloromethane	ND		0.0014
1,2-Dibromoethane	ND		0.0014
Chlorobenzene	ND		0.0014
1,1,1,2-Tetrachloroethane	ND		0.0014
Ethylbenzene	ND		0.0014
m,p-Xylene	ND		0.0028
o-Xylene	ND		0.0014
Styrene	ND		0.0014
Bromoform	ND		0.0014
Isopropylbenzene	ND		0.0014
Bromobenzene	ND		0.0014
1,1,2,2-Tetrachloroethane	ND.		0.0014
1,2,3-Trichloropropane	ND		0.0014
n-Propylbenzene	ND		0.0014
2-Chlorotoluene	ND		0.0014
4-Chlorotoluene	ND		0.0014
1,3,5-Trimethylbenzene	ND		0.0014
tert-Butylbenzene	ND		0.0014
1,2,4-Trimethylbenzene	ND		0.0014
sec-Butylbenzene	ND		0.0014
1,3-Dichlorobenzene	ND		0.0014
p-IsopropyItoluene	ND		0.0014
1,4-Dichlorobenzene	ND		0.0014
1,2-Dichlorobenzene	ND		0.0014
n-Butylbenzene	ND		0.0014
1,2-Dibromo-3-chloropropane	ND		0.0070
1,2,4-Trichlorobenzene	ND		0.0014
Hexachlorobutadiene	ND		0.0070
Naphthalene	ND		0,0014
1,2,3-Trichlorobenzene	ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	91	60-137
Toluene, d8	86	71-129
4-Bromofluorobenzene	85	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

		Page 1 of 2		
Date Extracted:	12-12-03	· · · · .	ч	
Date Analyzed:	12-13-03			
Matrix:	Soil			
Units:	mg/kg (ppm)			
Lab ID:	12-045-14			
Client ID:	GP-4 (2-4)			
Compound		Results	Flags	PQL
Dichlorodifluoromethane		ND		0.0011
Chloromethane		ND		0.0011
Vinyl Chloride		ND		0.0011
Bromomethane		ND		0.0011
Chloroethane		ND		0.0011
Trichlorofluoromethane		ND		0.0011
1,1-Dichloroethene	i.	ND		0.0011
Acetone		ND		0.0054
lodomethane		ND		0.0054
Carbon Disulfide		ND		0.0011
Methylene Chloride	· · ·	ND		0.0054
(trans) 1,2-Dichloroethene		ND	·	0.0011
Methyl t-Butyl Ether		ND		0.0011
1,1-Dichloroethane		ND		0.0011
Vinyl Acetate		ND		0.0054
2,2-Dichloropropane		ND	-	0.0011
(cis) 1,2-Dichloroethene		ND		0.0011
2-Butanone		ND		0.0054
Bromochloromethane		ND	х. т	0.0011
Chloroform		ND		0.0011
1,1,1-Trichloroethane	· .	ND		0.0011
Carbon Tetrachloride		ND		0.0011
1,1-Dichloropropene		ND		0.0011
Benzene		ND		0.0011
1,2-Dichloroethane		ND		0.0011
Trichloroethene		ND		0.0011
1,2-Dichloropropane		ND		0.0011
Dibromomethane		ND		0.0011
Bromodichloromethane		ND		0.0011
2-Chloroethyl Vinyl Ether	i i	ND		0.0054
(cis) 1,3-Dichloropropene		ND	*	0.0011
Methyl Isobutyl Ketone		ND		0.0054
Toluene		ND		0.0011
(trans) 1,3-Dichloropropene		ND		0.0011

VOLATILES by EPA 8260B

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-14 GP-4 (2-4)			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0011
Tetrachloroethene		ND		0.0011
1,3-Dichloropropane		ND		0.0011
2-Hexanone	, ,	ND		0.0054
Dibromochloromethane		ND		0.0011
1,2-Dibromoethane		ND		0.0011
Chlorobenzene		ND		0.0011
1,1,1,2-Tetrachloroethane		ND		0.0011
Ethylbenzene		ND		0.0011
m,p-Xylene		ND		0.0022
o-X <u>y</u> lene		ND		0.0011
Styrene		ND		0.0011
Bromoform		ND		0.0011
Isopropylbenzene		ND		0.0011
Bromobenzene		ND		0.0011
1,1,2,2-Tetrachloroethane		ND		0.0011
1,2,3-Trichloropropane		ND		0.0011
n-Propylbenzene		ND		0.0011
2-Chlorotoluene		ND		0.0011
4-Chlorotoluene		ND		0.0011
1,3,5-Trimethylbenzene		ND -		0.0011
tert-Butylbenzene		ND		0.0011
1,2,4-Trimethylbenzene	, ·	ND		0.0011
sec-Butylbenzene		ND		0.0011
1,3-Dichlorobenzene		ND		0.0011
p-Isopropyltoluene		ND		0.0011
1,4-Dichlorobenzene		ND		0.0011
1,2-Dichlorobenzene		ND		0.0011
n-Butylbenzene		ND		0.0011
1,2-Dibromo-3-chloropropane		ND		0.0054
1,2,4-Trichlorobenzene		ND		0.0011
Hexachlorobutadiene		ND		0.0054
Naphthalene		ND		0.0011
1,2,3-Trichlorobenzene		ND		0.0011

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	88	60-137
Toluene, d8	86	71-129
4-Bromofluorobenzene	82	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

		Page 1 of 2		•
Date Extracted: Date Analyzed:	12-12-03 12-13-03			· · · ·
Matrix: Units:	Soil mg/kg (ppm)			
Lab ID: Client ID:	12-045-15 GP-4 (6-8)	с. ¹		
Compound		Results	Flags	PQL
Dichlorodifluoromethane		ND		0.0011
Chloromethane		ND		0.0011
Vinyl Chloride		ND		0.0011
Bromomethane		ND		0.0011
Chloroethane		ND		0.0011
Trichlorofluoromethane		ND		0.0011
1,1-Dichloroethene		ND		0.0011
Acetone		ND		0.0055
lodomethane		ND		0.0055
Carbon Disulfide		ND		0.0011
Methylene Chloride		ND		0.0055
(trans) 1,2-Dichloroethene		ND		0.0011
Methyl t-Butyl Ether		ND		0.0011
1,1-Dichloroethane		ND		0.0011
Vinyl Acetate		ND		0.0055
2,2-Dichloropropane		ND		0.0011
(cis) 1,2-Dichloroethene		ND		0.0011
2-Butanone		ND		0.0055
Bromochloromethane		ND		0.0011
Chloroform		ND		0.0011
1,1,1-Irichloroethane		ND		0.0011
Carbon letrachloride		ND		0.0011
1,1-Dichloropropene				0.0011
Benzene				0.0011
1,2-Dichloroethane	, ,	ND		0.0011
Irichloroethene		ND		0.0011
1,2-Dichloropropane				0.0011
Dipromomethane				0.0011
Bromodichioromethane				0.0011
				0.0000
				0.0011
	·			0.0000
I oluerie				0.0011
OFADSE 1.3-DICDIOFODIODEDE		עמו		0.0011

VOLATILES by EPA 8260B

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-15 GP-4 (6-8)			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane	•	ND		0.0011
Tetrachloroethene		' ND		0.0011
1,3-Dichloropropane		ND		0.0011
2-Hexanone		ND		0.0055
Dibromochloromethane	•	ND		0.0011
1,2-Dibromoethane		ND		0.0011
Chlorobenzene		ND		0.0011
1,1,1,2-Tetrachloroethane		ND		0.0011
Ethylbenzene		ND		0.0011
m,p-Xylene		ND		0.0022
o-Xylene		ND		0.0011
Styrene	•	ND		0.0011
Bromoform		ND		0.0011
Isopropylbenzene		ND		0.0011
Bromobenzene		ND		0.0011
1,1,2,2-Tetrachloroethane		ND		0.0011
1,2,3-Trichloropropane		ŇD		0.0011
n-Propylbenzene		ND		0.0011
2-Chlorotoluene		ND		0.0011
4-Chlorotoluene		ND		0.0011
1,3,5-Trimethylbenzene		ND		0.0011
tert-Butylbenzene	· · ·	ND		0.0011
1,2,4-Trimethylbenzene		ND		0.0011
sec-Butylbenzene		ND		0.0011
1,3-Dichlorobenzene		ND		0.0011
p-Isopropyltoluene		ND		0.0011
1,4-Dichlorobenzene		ND		0.0011
1,2-Dichlorobenzene		ND		0.0011
n-Butylbenzene		ND		0.0011
1,2-Dibromo-3-chloropropane		ND		0.0055
1,2,4-Trichlorobenzene		ND		0.0011
Hexachlorobutadiene		ND		0.0055
Naphthalene		ND	1. A.	0.0011
1,2,3-Trichlorobenzene		ND		0.0011
				'n

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	91	60-137
Toluene, d8	[′] 86	71-129
4-Bromofluorobenzene	86	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

12-12-03 12-13-03

mg/kg (ppm)

Soil

Date Extracted:		
Date Analyzed:		
Matrix:		

Units:

Lab ID:		12-045-16
Client ID:		GP-4 (10-12)

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND	· .	0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	0.090		0.0070
lodomethane	ND		0.0070
Carbon Disulfide	0.0027		0.0014
Methylene Chloride	ND		0.0070
(trans) 1,2-Dichloroethene	ND		0.0014
Methyi t-Butyi Ether	ND		0.0014
1,1-Dichloroethane	ND		0.0014
Vinyl Acetate	ND		0.0070
2,2-Dichloropropane	ND		0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	0.017		0.0070
Bromochloromethane	ND		0.0014
Chloroform	ND		0.0014
1,1,1-Trichloroethane	ND		0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0070
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0070
Toluene	ND	x	0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-16 GP-4 (10-12)			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		ND		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone	· · ·	ND		0.0070
Dibromochloromethane		ND	4	0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND .		0.0028
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene		ND		0.0014
Bromobenzene		ND ·		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene	•	ND	1	0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene	·	ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene	· ·	ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane		ND		0.0070
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0070
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	89	60-137
Toluene, d8	85	71-129
4-Bromofluorobenzene	84	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

		Page 1 of 2		
Date Extracted:	12-12-03	· .		•
Date Analyzed.	12-13-03			
Matrix:	Soil			·
Units:	mg/kg (ppm)	-		
Lab ID:	12-045-18			
Client ID:	GP-5 (6-8)			
Compound		Results	Flags	PQL
Dichlorodifluoromethane		ND		0.001
Chloromethane		ND		0.001
Vinvl Chloride		ND		0.001
Bromomethane		ND		0.0011
Chloroethane		ND	$\mathcal{L}_{\mathcal{A}} = \{ i \in \mathcal{A} : i \in \mathcal{A} \}$	0.001
Trichlorofluoromethane		ND		0.001
1.1-Dichloroethene		ND		0.001
Acetone		ND		0.0055
lodomethane		ND		0.005
Carbon Disulfide		ND		0.001
Methylene Chloride		ND		0.005
(trans) 1.2-Dichloroethene		ND		0.001
Methyl t-Butyl Ether		ND		0.0011
1.1-Dichloroethane	-	ND		0.0011
Vinvl Acetate		ND		0.005
2,2-Dichloropropane		ND		0.0011
(cis) 1.2-Dichloroethene		ND		0.0011
2-Butanone		ND		0.005
Bromochloromethane		ND		0.001
Chloroform		ND		0.001
1,1,1-Trichloroethane		ND		0.001
Carbon Tetrachloride		ND		0.001
1,1-Dichloropropene		ND		0.001
Benzene		ND		0.001
1,2-Dichloroethane		ND		0.001
Trichloroethene		ND		0.001
1,2-Dichloropropane		ND		0.001
Dibromomethane		ND		0.0011
Bromodichloromethane		ND		0.001
2-Chloroethyl Vinyl Ether		ND		0.005
(cis) 1,3-Dichloropropene		ND		0.001
Methyl Isobutyl Ketone		ND		0.005
Toluene		ND		0.001
(trans) 1.3-Dichloropropene		ND		0.001

VOLATILES by EPA 8260B

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	12-045-18
Client ID:	GP-5 (6-8)

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0011
Tetrachloroethene	ND		0.0011
1,3-Dichloropropane	ND		0.0011
2-Hexanone	ND		0.0055
Dibromochloromethane	ND		0.0011
1,2-Dibromoethane	ND		0.0011
Chiorobenzene	ND	-	0.0011
1,1,1,2-Tetrachloroethane	ND		0.0011
Ethylbenzene	ND ND		0.0011
m,p-Xylene	ND		0.0022
o-Xylene	ND		0.0011
Styrene	ND		0.0011
Bromoform	ND .		0.0011
Isopropylbenzene	ND		0.0011
Bromobenzene	ND		0.0011
1,1,2,2-Tetrachloroethane	ND.		0.0011
1,2,3-Trichloropropane	ND		0.0011
n-Propylbenzene	ND		0.0011
2-Chlorotoluene	ND		0.0011
4-Chlorotoluene	ND		0.0011
1,3,5-Trimethylbenzene	ND		0.0011
tert-Butylbenzene	ND		0.0011
1,2,4-Trimethylbenzene	ND		0.0011
sec-Butylbenzene	ND		0.0011
1,3-Dichlorobenzene	ND		0.0011
p-Isopropyltoluene	ND		0.0011
1,4-Dichlorobenzene	ND		0.0011
1,2-Dichlorobenzene	ND		0.0011
n-Butylbenzene	ND		0.0011
1,2-Dibromo-3-chloropropane	ND		0.0055
1,2,4-Trichlorobenzene	ND		0.0011
Hexachlorobutadiene	ND		0.0055
Naphthalene	ND		0.0011
1,2,3-Trichlorobenzene	ND		0.0011

	Percent	Control Limits	
Surrogate	Recovery		
Dibromofluoromethane	91	60-137	
Toluene, d8	89	71-129	
4-Bromofluorobenzene	90	60-149	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

12-12-03		
12-13-03		
Soil		
mg/kg (ppm)		

Client ID: GP-5 (10-12	2)

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	•	0.0014
Chloromethane	ND		0.0014
Vinyl Chloride	ND		0.0014
Bromomethane	ND		0.0014
Chloroethane	ND		0.0014
Trichlorofluoromethane	ND		0.0014
1,1-Dichloroethene	ND		0.0014
Acetone	0.23		0.0071
lodomethane	ND		0.0071
Carbon Disulfide	ND		0.0014
Methylene Chloride	ND	· · ·	0.0071
(trans) 1,2-Dichloroethene	ND		0.0014
Methyl t-Butyl Ether	ND		0.0014
1,1-Dichloroethane	ND		0.0014
Vinyl Acetate	ND		0.0071
2,2-Dichloropropane	ND		0.0014
(cis) 1,2-Dichloroethene	ND		0.0014
2-Butanone	0.048		0.0071
Bromochloromethane	ND		0.0014
Chloroform	ND		0.0014
1,1,1-Trichloroethane	ND	1994 - C. 1997 -	0.0014
Carbon Tetrachloride	ND		0.0014
1,1-Dichloropropene	ND		0.0014
Benzene	ND		0.0014
1,2-Dichloroethane	ND		0.0014
Trichloroethene	ND		0.0014
1,2-Dichloropropane	ND		0.0014
Dibromomethane	ND		0.0014
Bromodichloromethane	ND		0.0014
2-Chloroethyl Vinyl Ether	ND		0.0071
(cis) 1,3-Dichloropropene	ND		0.0014
Methyl Isobutyl Ketone	ND		0.0071
Toluene	ND		0.0014
(trans) 1,3-Dichloropropene	ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	12-045-19			
Client ID:	GP-5 (10-12)			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		ND		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone		ND		0.0071
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND	· ·	0.0029
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene		ND		0.0014
Bromobenzene		ND		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane		ND		0.0071
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0071
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

. -

	Percent	Control	
Surrogate	Recovery	Limits	
Dibromofluoromethane	89	60-137	
Toluene, d8	84	71-129	
4-Bromofluorobenzene	83	60-149	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-12-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID:	12-045-21
Client ID:	GP-6 0-2.5

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0011
Chloromethane	NĎ		0.0011
Vinyl Chloride	ND		0.0011
Bromomethane	ND		0.0011
Chloroethane	ND		0.0011
Trichlorofluoromethane	ND		0.0011
1,1-Dichloroethene	ND		0.0011
Acetone	ND		0.0053
lodomethane	. ND		0.0053
Carbon Disulfide	ND		0.0011
Methylene Chloride	ND		0.0053
(trans) 1,2-Dichloroethene	ND		0.0011
Methyl t-Butyl Ether	ND		0.0011
1,1-Dichloroethane	ND		0.0011
Vinyl Acetate	ND		0.0053
2,2-Dichloropropane	ND	•	0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
2-Butanone	ND		0.0053
Bromochloromethane	ND		0.0011
Chloroform	ND		0.0011
1,1,1-Trichloroethane	ND		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND		0.0011
Benzene	ND		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0053
(cis) 1,3-Dichloropropene	ND		0.0011
Methyl Isobutyl Ketone	ND		0.0053
Toluene	ND		0.0011
(trans) 1,3-Dichloropropene	ND		0.0011

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Client ID:		GP-6 0-2.5
Lab ID:		12-045-21

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ŇD	Ū	0.0011
Tetrachloroethene	0.0052		0.0011
1,3-Dichloropropane	ND		0.0011
2-Hexanone	ND		0.0053
Dibromochloromethane	ND		0.0011
1,2-Dibromoethane	ND		0.0011
Chlorobenzene	ND		0.0011
1,1,1,2-Tetrachioroethane	ND		0.0011
Ethylbenzene	ND		0.0011
m,p-Xylene	ND		0.0021
o-Xylene	ND		0.0011
Styrene	ND		0.0011
Bromoform	ND		0.0011
Isopropylbenzene	ND		0.0011
Bromobenzene	ND		0.0011
1,1,2,2-Tetrachloroethane	• ND		0.0011
1,2,3-Trichloropropane	ND		0.0011
n-Propylbenzene	ND		0.0011
2-Chlorotoluene	ND		0.0011
4-Chlorotoluene	ND		0.0011
1,3,5-Trimethylbenzene	ND		0.0011
tert-Butylbenzene	ND		0.0011
1,2,4-Trimethylbenzene	0.0012		0.0011
sec-Butylbenzene	ND		0.0011
1,3-Dichlorobenzene	ND		0.0011
p-Isopropyltoluene	ND		0.0011
1,4-Dichlorobenzene	ND		0.0011
1,2-Dichlorobenzene	ND		0.0011
n-Butylbenzene	ND		0.0011
1,2-Dibromo-3-chloropropane	ND		0.0053
1,2,4-Trichlorobenzene	ND		0.0011
Hexachlorobutadiene	ND		0.0053
Naphthalene	0.0015		0.0011
1,2,3-Trichlorobenzene	ND		0.0011

· ·	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	97	60-137
Toluene, d8	83	71-129
4-Bromofluorobenzene	78	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-12-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)
	12 045 24

Lad ID:		12-045-24
Client ID:		GP-8 (6-8')

Compound	Results Fla	igs PQL
Dichlorodifluoromethane	ND	0.0014
Chloromethane	ND	0.0014
Vinyl Chloride	ND	0.0014
Bromomethane	ND	0.0014
Chloroethane	ND	0.0014
Trichlorofluoromethane	ND	0.0014
1,1-Dichloroethene	ND	0.0014
Acetone	ND	0.0072
lodomethane	ND	0.0072
Carbon Disulfide	ND	0.0014
Methylene Chloride	ND	0.0072
(trans) 1,2-Dichloroethene	ND	0.0014
Methyl t-Butyl Ether	ND	0.0014
1,1-Dichloroethane	ND	0.0014
Vinyl Acetate	ND	0.0072
2,2-Dichloropropane	ND	0.0014
(cis) 1,2-Dichloroethene	ND	0.0014
2-Butanone	ND	0.0072
Bromochloromethane	ND	0.0014
Chloroform	ND	0.0014
1,1,1-Trichloroethane	ND	0.0014
Carbon Tetrachloride	ND	0.0014
1,1-Dichloropropene	ND	0.0014
Benzene	ND	0.0014
1,2-Dichloroethane	ND	0.0014
Trichloroethene	ND	0.0014
1,2-Dichloropropane	ND	0.0014
Dibromomethane	ND	0.0014
Bromodichloromethane	ND	0.0014
2-Chloroethyl Vinyl Ether	ND	0.0072
(cis) 1,3-Dichloropropene	ND	0.0014
Methyl Isobutyl Ketone	ND .	0.0072
Toluene	0.0016	0.0014
(trans) 1,3-Dichloropropene	ND	0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	12-045-24			
Client ID:	GP-8 (6-8')			
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		0.0096		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone		ND		0.0072
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND		0.0029
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene		ND		0.0014
Bromobenzene		ND		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND		0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chiorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-Isopropyltoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane		ND		0.0072
1,2,4-Trichlorobenzene		ND	•	0.0014
Hexachlorobutadiene		ND		0.0072
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	90	60-137
Toluene, d8	88	71-129
4-Bromofluorobenzene	82	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

- -

Date Extracted:	12-12-03		
Date Analyzed:	12-13-03		
Matrix: Units:	Soil mg/kg (ppm)		

Lab ID:	12-045-25
Client ID:	GP-8 (10-12')

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0013
Chloromethane	ND		0.0013
Vinyl Chloride	ND		0.0013
Bromomethane	ND		0.0013
Chloroethane	ND	•	0.0013
Trichlorofluoromethane	ND		0.0013
1,1-Dichloroethene	ND		0.0013
Acetone	0.040		0.0066
lodomethane	ND		0.0066
Carbon Disulfide	ND		0.0013
Methylene Chloride	ND		0.0066
(trans) 1,2-Dichloroethene	ND		0.0013
Methyl t-Butyl Ether	ND		0.0013
1,1-Dichloroethane	ND		0.0013
Vinyl Acetate	ND		0.0066
2,2-Dichloropropane	ND		0.0013
(cis) 1,2-Dichloroethene	ND		0.0013
2-Butanone	0.011		0.0066
Bromochloromethane	ND		0.0013
Chloroform	ND		0.0013
1,1,1-Trichloroethane	ND		0.0013
Carbon Tetrachloride	ND		0.0013
1,1-Dichloropropene	ND		0.0013
Benzene	ND		0.0013
1,2-Dichloroethane	ND		0.0013
Trichloroethene	ND		0.0013
1,2-Dichloropropane	ND		0.0013
Dibromomethane	ND		0.0013
Bromodichloromethane	ND		0.0013
2-Chloroethyl Vinyl Ether	ND		0.0066
(cis) 1,3-Dichloropropene	ND		0.0013
Methyl Isobutyl Ketone	ND		0.0066
Toluene	ND		0.0013
(trans) 1,3-Dichloropropene	ND		0.0013

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	12-045-25			
Client ID:	GP-8 (10-12')		•	
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND	•	0.0013
Tetrachloroethene		ND		0.0013
1,3-Dichloropropane		ND		0.0013
2-Hexanone		ND		0.0066
Dibromochloromethane		ND		0.0013
1,2-Dibromoethane		ND		0.0013
Chlorobenzene		ND		0.0013
1,1,1,2-Tetrachloroethane		ND		0.0013
Ethylbenzene		ND		0.0013
m,p-Xylene		ND		0.0026
o-Xylene		ND		0.0013
Styrene		ND		0.0013
Bromoform		ND	·	0.0013
Isopropylbenzene		ND		0.0013
Bromobenzene		ND		0.0013
1,1,2,2-Tetrachloroethane		ND		0.0013
1,2,3-Trichloropropane		ND		0.0013
n-Propylbenzene		ND		0.0013
2-Chlorotoluene		ND		0.0013
4-Chlorotoluene		ND		0.0013
1,3,5-Trimethylbenzene		ND		0.0013
tert-Butylbenzene		ND		0.0013
1,2,4-Trimethylbenzene		ND		0.0013
sec-Butylbenzene		ND		0.0013
1,3-Dichlorobenzene		ND		0.0013
p-Isopropyltoluene		ND		0.0013
1,4-Dichlorobenzene		ND		0.0013
1,2-Dichlorobenzene		ND		0.0013
n-Butylbenzene		ND		0.0013
1,2-Dibromo-3-chloropropane		ND		0.0066
1,2,4-Trichlorobenzene		ND		0.0013
Hexachlorobutadiene		ND		0.0066
Naphthalene		ND	<i></i>	0.0013
1,2,3-Trichlorobenzene		ND		0.0013

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	86	60-137
Toluene, d8	91	71-129
4-Bromofluorobenzene	84	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-13-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)
Lab ID:	12-045-26

	12-040-20
Client ID:	GP-7 (6-8')

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0013
Chloromethane	ND		0.0013
Vinyl Chloride	ND		0.0013
Bromomethane	ND		0.0013
Chloroethane	ND		0.0013
Trichlorofluoromethane	ND		0.0013
1,1-Dichloroethene	ND		0.0013
Acetone	0.012		0.0067
lodomethane	ND		0.0067
Carbon Disulfide	ND .		0.0013
Methylene Chloride	ND		0.0067
(trans) 1,2-Dichloroethene	ND		0.0013
Methyl t-Butyl Ether	ND		0.0013
1,1-Dichloroethane	ND		0.0013
Vinyl Acetate	ND	· · ·	0.0067
2,2-Dichloropropane	ND		0.0013
(cis) 1,2-Dichloroethene	ND		0.0013
2-Butanone	ND		0.0067
Bromochloromethane	ND		0.0013
Chloroform	ND		0.0013
1,1,1-Trichloroethane	ND		0.0013
Carbon Tetrachloride	ND		0.0013
1,1-Dichloropropene	ND		0.0013
Benzene	ND		0.0013
1,2-Dichloroethane	ND		0.0013
Trichloroethene	ND		0.0013
1,2-Dichloropropane	ND		0.0013
Dibromomethane	ND		0.0013
Bromodichloromethane	ND		0.0013
2-Chloroethyl Vinyl Ether	ND		0.0067
(cis) 1,3-Dichloropropene	ND		0.0013
Methyl Isobutyl Ketone	ND		0.0067
Toluene	ND		0.0013
(trans) 1,3-Dichloropropene	ND		0.0013

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-26 GP-7 (6-8')		۰.	
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0013
Tetrachloroethene		ND		0.0013
1,3-Dichloropropane		ND		0.0013
2-Hexanone		ND		0.0067
Dibromochloromethane		ND		0.0013
1,2-Dibromoethane		ND		0.0013
Chlorobenzene		ND		0.0013
1,1,1,2-Tetrachloroethane		ND		0.0013
Ethylbenzene		ND		0.0013
m,p-Xylene		NĎ		0.0027
o-Xylene		ND		0.0013
Styrene		ND		0.0013
Bromoform		ND		0.0013
Isopropylbenzene	1	ND		0.0013
Bromobenzene		ND	,	0.0013
1,1,2,2-Tetrachloroethane		ND		0.0013
1,2,3-Trichloropropane		ND		0.0013
n-Propylbenzene		ND		0.0013
2-Chlorotoluene		ND		0.0013
4-Chlorotoluene		ND		0.0013
1,3,5-Trimethylbenzene		ND		0.0013
tert-Butylbenzene		ND		0.0013
1,2,4-Trimethylbenzene	1	ND		0.0013
sec-Butylbenzene		ND		0.0013
1,3-Dichlorobenzene		ND		0.0013
p-Isopropyltoluene		ND		0.0013
1,4-Dichlorobenzene		ND		0.0013
1,2-Dichlorobenzene		ND		0.0013
n-Butylbenzene		ND		0.0013
1,2-Dibromo-3-chloropropane		ND		0.0067
1,2,4-Trichlorobenzene		ND		0.0013
Hexachlorobutadiene		ND		0.0067
Naphthalene		ND		0.0013
1,2,3-Trichlorobenzene		ND		0.0013

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	90	60-137
Toluene, d8	93	71-129
4-Bromofluorobenzene	85	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted: Date Analyzed:	12-13-03 12-13-03			
Matrix: Units:	Soil mg/kg (ppm)			
Lab ID: Client ID:	12-045-27 GP-7 (10-12')			
Compound Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Acetone Iodomethane Carbon Disulfide Methylene Chloride (trans) 1,2-Dichloroethene Methyl t-Butyl Ether 1,1-Dichloroethane Vinyl Acetate 2,2-Dichloropropane (cis) 1,2-Dichloroethene 2-Butanone Bromochloromethane Chloroform 1,1,1-Trichloroethane Carbon Tetrachloride 1,1-Dichloropropene Benzene 1,2-Dichloropropane Dibromomethane Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane 2-Chloroethyl Vinyl Ether (cis) 1,3-Dichloropropene Methyl Isobutyl Ketone Toluene		Results ND ND ND ND ND ND ND ND ND ND ND ND ND	Flags	PQL 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0070 0.0070 0.0014 0.0070 0.0014
(trans) 1,3-Dichloropropene		ND		0.0014

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

66

VOLATILES by EPA 8260B Page 2 of 2

Lab ID:	12-045-27		· ·	
Client ID:	GP-7 (10-12')			,
· · · · · · · · · · · · · · · · · · ·				
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0014
Tetrachloroethene		ND		0.0014
1,3-Dichloropropane		ND		0.0014
2-Hexanone		ND	•	0.0070
Dibromochloromethane		ND		0.0014
1,2-Dibromoethane		ND		0.0014
Chlorobenzene		ND		0.0014
1,1,1,2-Tetrachloroethane		ND		0.0014
Ethylbenzene		ND		0.0014
m,p-Xylene		ND	·	0.0028
o-Xylene		ND		0.0014
Styrene		ND		0.0014
Bromoform		ND		0.0014
Isopropylbenzene	· · · · · · · · · · · · · · · · · · ·	ND		0.0014
Bromobenzene		ND		0.0014
1,1,2,2-Tetrachloroethane		ND		0.0014
1,2,3-Trichloropropane		ND	· · ·	0.0014
n-Propylbenzene		ND		0.0014
2-Chlorotoluene		ND		0.0014
4-Chlorotoluene		ND		0.0014
1,3,5-Trimethylbenzene		ND		0.0014
tert-Butylbenzene		ND		0.0014
1,2,4-Trimethylbenzene		ND		0.0014
sec-Butylbenzene		ND		0.0014
1,3-Dichlorobenzene		ND		0.0014
p-IsopropyItoluene		ND		0.0014
1,4-Dichlorobenzene		ND		0.0014
1,2-Dichlorobenzene		ND		0.0014
n-Butylbenzene		ND		0.0014
1,2-Dibromo-3-chloropropane		ND		0.0070
1,2,4-Trichlorobenzene		ND		0.0014
Hexachlorobutadiene		ND		0.0070
Naphthalene		ND		0.0014
1,2,3-Trichlorobenzene		ND		0.0014

10 015 07

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	85	60-137
Toluene, d8	88	71-129
4-Bromofluorobenzene	83	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

-

VOLATILES by EPA 8260B Page 1 of 2

Date Extracted:	12-13-03
Date Analyzed:	12-13-03
Matrix:	Soil
Units:	mg/kg (ppm)

10 10 00

Lab ID:	12-045-29
Client ID:	GP-44 (2-4')

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0011
Chloromethane	ND		0.0011
Vinyl Chloride	ND		0.0011
Bromomethane	ND		0.0011
Chloroethane	ND		0.0011
Trichlorofluoromethane	ND		0.0011
1,1-Dichloroethene	ND		0.0011
Acetone	ND		0.0054
lodomethane	ND		0.0054
Carbon Disulfide	ND		0.0011
Methylene Chloride	ND	· · ·	0.0054
(trans) 1,2-Dichloroethene	ND		0.0011
Methyl t-Butyl Ether	ND		0.0011
1,1-Dichloroethane	ND		0.0011
Vinyl Acetate	ND		0.0054
2,2-Dichloropropane	ND		0.0011
(cis) 1,2-Dichloroethene	ND		0.0011
2-Butanone	ND		0.0054
Bromochloromethane	ND		0.0011
Chloroform	ND		0.0011
1,1,1-Trichloroethane	ND		0.0011
Carbon Tetrachloride	ND		0.0011
1,1-Dichloropropene	ND		0.0011
Benzene	ND		0.0011
1,2-Dichloroethane	ND		0.0011
Trichloroethene	ND		0.0011
1,2-Dichloropropane	ND		0.0011
Dibromomethane	ND		0.0011
Bromodichloromethane	ND		0.0011
2-Chloroethyl Vinyl Ether	ND		0.0054
(cis) 1,3-Dichloropropene	ND		0.0011
Methyi Isobutyl Ketone	ND		0.0054
Toluene	0.0011		0.0011
(trans) 1,3-Dichloropropene	ND		0.0011

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B Page 2 of 2

Lab ID: Client ID:	12-045-29 GP-44 (2-4')			•
Compound		Results	Flags	PQL
1,1,2-Trichloroethane		ND		0.0011
Tetrachloroethene		ND		0.0011
1,3-Dichloropropane		ND		0.0011
2-Hexanone		ND		0.0054
Dibromochloromethane		ND		0.0011
1,2-Dibromoethane		ND		0.0011
Chlorobenzene		ND		0.0011
1,1,1,2-Tetrachloroethan	е	ND		0.0011
Ethylbenzene		ND		0.0011
m,p-Xylene	1	ND		0.0022
o-Xylene		ND		0.0011
Styrene		ND		0.0011
Bromoform		ND		0.0011
Isopropylbenzene		ND		0.0011
Bromobenzene		ND		0.0011
1,1,2,2-Tetrachloroethan	е	ND		0.0011
1,2,3-Trichloropropane		ND		0.0011
n-Propylbenzene		ND		0.0011
2-Chlorotoluene		ND		0.0011
4-Chlorotoluene		ND		0.0011
1,3,5-Trimethylbenzene		ND		0.0011
tert-Butylbenzene		ND		0.0011
1,2,4-Trimethylbenzene		ND		0.0011
sec-Butylbenzene		ND		0.0011
1,3-Dichlorobenzene		ND		0.0011
p-Isopropyltoluene		ND		0.0011
1,4-Dichlorobenzene		ND		0.0011
1,2-Dichlorobenzene		ND		0.0011
n-Butylbenzene		ND		0.0011
1,2-Dibromo-3-chloropro	pane	ND		0.0054
1,2,4-Trichlorobenzene		ND		0.0011
Hexachlorobutadiene		ND		0.0054
Naphthalene		0.0013		0.0011
1,2,3-Trichlorobenzene		ND		0.0011

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	89	60-137
Toluene, d8	91	71-129
4-Bromofluorobenzene	81	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted:	12-12-03
Date Analyzed:	12-12-03
Motrix	Soil
	301
Units:	mg/kg (ppm)

Lab ID:

MB1212S2

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND		0.0010
Chloromethane	ND		0.0010
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Acetone	ND		0.0050
lodomethane	ND		0.0050
Carbon Disulfide	ND		0.0010
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
Methyl t-Butyl Ether	ND		0.0010
1,1-Dichloroethane	ND		0.0010
Vinyl Acetate	ND		0.0050
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
2-Butanone	ND		0.0050
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND	1	0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
Benzene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0050
Toluene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB1212S2

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND		0.0010
Tetrachloroethene	ND		0.0010
1,3-Dichloropropane	ND		0.0010
2-Hexanone	ND		0.0050
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND	÷.,	0.0010
Chlorobenzene	NĎ		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Ethylbenzene	ND		0.0010
m,p-Xylene	ND		0.0020
o-Xylene	ND		0.0010
Styrene	ND		0.0010
Bromoform	ND		0.0010
lsopropylbenzene	ND		0.0010
Bromobenzene	ND		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
n-Propylbenzene	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3,5-Trimethylbenzene	ND		0.0010
tert-Butylbenzene	ND		0.0010
1,2,4-Trimethylbenzene	ND		0.0010
sec-Butylbenzene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
p-Isopropyltoluene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
n-Butylbenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
Naphthalene	ND		0.0010
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	87	60-137
Toluene, d8	89	71-129
4-Bromofluorobenzene	83	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 1 of 2

Date Extracted:	12-13-03
Date Analyzed:	12-13-03
Matrix:	Soil

Units: mg/kg (ppm)

Lab ID:

MB1213S1

Compound	Results	Flags	PQL
Dichlorodifluoromethane	ND	•	0.0010
Chloromethane	ND		0.0010
Vinyl Chloride	ND		0.0010
Bromomethane	ND		0.0010
Chloroethane	ND		0.0010
Trichlorofluoromethane	ND		0.0010
1,1-Dichloroethene	ND		0.0010
Acetone	ND		0.0050
lodomethane	ND		0.0050
Carbon Disulfide	ND		0.0010
Methylene Chloride	ND		0.0050
(trans) 1,2-Dichloroethene	ND		0.0010
Methyl t-Butyl Ether	ND		0.0010
1,1-Dichloroethane	ND		0.0010
Vinyl Acetate	ND		0.0050
2,2-Dichloropropane	ND		0.0010
(cis) 1,2-Dichloroethene	ND		0.0010
2-Butanone	ND		0.0050
Bromochloromethane	ND		0.0010
Chloroform	ND		0.0010
1,1,1-Trichloroethane	ND		0.0010
Carbon Tetrachloride	ND		0.0010
1,1-Dichloropropene	ND		0.0010
Benzene	ND		0.0010
1,2-Dichloroethane	ND		0.0010
Trichloroethene	ND		0.0010
1,2-Dichloropropane	ND		0.0010
Dibromomethane	ND		0.0010
Bromodichloromethane	ND		0.0010
2-Chloroethyl Vinyl Ether	ND		0.0050
(cis) 1,3-Dichloropropene	ND		0.0010
Methyl Isobutyl Ketone	ND		0.0050
Toluene	ND		0.0010
(trans) 1,3-Dichloropropene	ND		0.0010

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

72

VOLATILES by EPA 8260B METHOD BLANK QUALITY CONTROL Page 2 of 2

Lab ID:

MB1213S1

Compound	Results	Flags	PQL
1,1,2-Trichloroethane	ND	- ,	0.0010
Tetrachloroethene	ND .		0.0010
1,3-Dichloropropane	ND		0.0010
2-Hexanone	ND		0.0050
Dibromochloromethane	ND		0.0010
1,2-Dibromoethane	ND		0.0010
Chlorobenzene	ND		0.0010
1,1,1,2-Tetrachloroethane	ND		0.0010
Ethylbenzene	ND		0.0010
m,p-Xylene	ND		0.0020
o-Xylene	ND		0.0010
Styrene	ND		0.0010
Bromoform	ND		0.0010
Isopropylbenzene	ND		0.0010
Bromobenzene	ND.		0.0010
1,1,2,2-Tetrachloroethane	ND		0.0010
1,2,3-Trichloropropane	ND		0.0010
n-Propylbenzene	ND		0.0010
2-Chlorotoluene	ND		0.0010
4-Chlorotoluene	ND		0.0010
1,3,5-Trimethylbenzene	ND		0.0010
tert-Butylbenzene	ND		0.0010
1,2,4-Trimethylbenzene	ND		0.0010
sec-Butylbenzene	ND		0.0010
1,3-Dichlorobenzene	ND		0.0010
p-Isopropyltoluene	ND		0.0010
1,4-Dichlorobenzene	ND		0.0010
1,2-Dichlorobenzene	ND		0.0010
n-Butylbenzene	ND		0.0010
1,2-Dibromo-3-chloropropane	ND		0.0050
1,2,4-Trichlorobenzene	ND		0.0010
Hexachlorobutadiene	ND		0.0050
Naphthalene	ND		0.0010
1,2,3-Trichlorobenzene	ND		0.0010

	Percent	Control
Surrogate	Recovery	Limits
Dibromofluoromethane	83	60-137
Toluene, d8	87	71-129
4-Bromofluorobenzene	88	60-149

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B MS/MSD QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-12-03

Matrix: Units:

Lab ID:

12-065-18

mg/kg (ppm)

Soil

	Sample	Spike		Percent		Percent	Recovery	-
Compound	Amount	Amount	MS	Recovery	MSD	Recovery	Limits	Flags
1,1-Dichloroethene	ND	0.0500	0.056	113	0.054	108	30-153	
Benzene	ND	0.0500	0.055	111	0.0553	99	58-140	
Trichloroethene	ND	0.0500	0.052	105	0.053	106	38-130	
Toluene	ND	0.0500	0.053	105	0.053	106	28-147	
Chlorobenzene	ND	0.0500	0.057	114	0.056	111	47-131	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	5	11	
Benzene	12	11	. L
Trichloroethene	1	11	
Toluene	1	10	
Chlorobenzene	3	11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B MS/MSD QUALITY CONTROL

Date Extracted:	12-13-03
Date Analyzed:	12-13-03

Matrix: Units:

mg/kg (ppm)

Soil

Lab ID:

12-074-01

	Sample	Spike	1.1.1	Percent	-	Percent	Recovery	
Compound	Amount	Amount	MS	Recovery	MSD	Recovery	Limits	Flags
1,1-Dichloroethene	ND	0.0500	0.0520	104	0.0551	110	30-153	
Benzene	NÐ	0.0500	0.0505	101	0.0536	107	58-140	
Trichloroethene	ND	0.0500	0.0435	87	0.0494	99	38-130	
Toluene	ND	0.0500	0.0488	98	0.0505	101	28-147	
Chlorobenzene	ND	0.0500	0.0514	103	0.0508	102	47-131	

	RPD		
	RPD	Limit	Flags
1,1-Dichloroethene	6	11	
Benzene	6	11	
Trichloroethene	13	11	L
Toluene	3	10	
Chlorobenzene	1	11	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260B SPIKE BLANK QUALITY CONTROL

Date Extracted:	12-12-03
Date Analyzed:	12-12-03
	,

Matrix: Units:

Lab ID:

SB1212S2

mg/kg (ppm)

Soil

Compound	Spike Amount	Spike Recovery	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	0.0500	0.0580	116	45-145	
Benzene	0.0500	0.0531	106	67-138	
Trichloroethene	0.0500	0.0521	104	49-136	
Toluene	0.0500	0.0522	104	72-121	
Chlorobenzene	0.0500	0.0568	114	66-137	

VOLATILES by EPA 8260B SPIKE BLANK QUALITY CONTROL

Date Extracted:	12-13-03
Date Analyzed:	12-13-03

Matrix:SoilUnits:mg/kg (ppm)

Lab ID:

SB1213S1

Compound	Spike Amount	Spike Recovery	Percent Recovery	Recovery Limits	Flags
1,1-Dichloroethene	0.0500	0.0534	107	45-145	
Benzene	0.0500	0.0519	104	67-138	
Trichloroethene	0.0500	0.0529	106	49-136	
Toluene	0.0500	0.0541	108	72-121	
Chlorobenzene	0.0500	0.0556	111	66-137	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed: 12-11	-03	
Client ID	Lab ID	% Moisture
GP-1 (6-8)	12-045-02	30
GP-1 (10-12)	12-045-03	27
GP-2 (6-8)	12-045-05	12
GP-2 (10-12)	12-045-06	29
GP-3 (6-8)	12-045-12	5
GP-3 (10-12)	12-045-13	29
GP-4 (2-4)	12-045-14	7
GP-4 (6-8)	12-045-15	9
GP-4 (10-12)	12-045-16	29
GP-5 (6-8)	12-045-18	9
GP-5 (10-12)	12-045-19	30
GP-6 0-2.5	12-045-21	6
GP-8 (6-8)	12-045-24	31
GP-8 (10-12)	12-045-25	24
GP-7 (6-8)	12-045-26	25
GP-7 (10-12)	12-045-27	29
GP-44 (2-4)	12-045-29	. 7

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

G - Insufficient sample quantity for duplicate analysis.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

O - Hydrocarbons outside the defined gasoline range are present in the sample.

P - The RPD of the detected concentrations between the two columns is greater than 40.

Q - Surrogate recovery is outside of the control limits.

S - Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical

U - The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

V - Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.

W - Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.

X - Sample extract treated with a silica gel cleanup procedure.

Y - Sample extract treated with an acid cleanup procedure.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

STL Seattle 5755 8th Street East Tacoma, WA 98424

Tel: 253 922 2310 Fax: 253 922 5047 www.stl-inc.com

TRANSMITTAL MEMORANDUM

DATE: December 19, 2003

TO: David Baumeister OnSite Environmental, Inc. 14648 N. E. 95th St. Redmond, WA 98052

PROJECT: 12-045

REPORT NUMBER: 118327

TOTAL NUMBER OF PAGES:

Enclosed are the test results for seven samples received at STL Seattle on December 12, 2003.

The report consists of this transmittal memo, analytical results, quality control reports, a copy of the chain-of-custody, a list of data qualifiers and analytical narrative when applicable, and a copy of any requested raw data.

Should there be any questions regarding this report, please contact me at (253) 922-2310.

Sincerely,

Stan Palmquist Project Manager

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Sample Identification:

Lab. No.	<u>Client ID</u>	Date/Time Sampled	<u>Matrix</u>
118327-1	GP-1	12-02-03 *	Liquid
118327-2	GP-2	12-02-03 *	Liquid
118327-3	GP-3	12-02-03 *	Liquid
118327-4	GP-4	12-02-03 *	Liquid
118327-5	GP-5	12-02-03 *	Liquid
118327-6	GP-8	12-02-03 *	Liquid
118327-7	GP-7	12-02-03 *	Liquid
* ~ "			

* - Sampling time not specified for this sample

STL Seattle is a part of Severn Trent Laboratories, Inc.

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized. If you have received this report in error, please notify the sender immediately at 253-922-2310 and destroy this report immediately.

Client Name	OnSite Environmental, Inc.
Client ID:	GP-1
Lab ID:	118327-01
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.4		80	120
Fluorobenzene	102		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	113		80	120
Bromofluorobenzene	110		80	120
Trifluorotoluene	103		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

9**1** 3 1

Volatile Organics by USEPA Method 5030/8260B data for 118327-01 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	. 1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1 .	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1,	0.5

Client Name	OnSite Environmental, Inc.	
Client ID:	GP-2	
Lab ID:	118327-02	
Date Received:	12/12/2003	
Date Prepared:	12/15/2003	
Date Analyzed:	12/15/2003	
% Solids	-	
Dilution Factor	1	

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recovery Limits	
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	90.8		80	120
Fluorobenzene	101		80	120
Toluene-D8	106		80	120
Ethylbenzene-d10	110		80	120
Bromofluorobenzene	106		80	120
Trifluorotoluene	107		80	120

	Result	t	
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	· 1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	· 1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118327-02 continued...

Result				
Analyte	(ug/L)	PQL	MRL	
1,1,2-Trichloroethane	ND	1	0.5	
Tetrachloroethene	ND	1	0.5	
1,3-Dichloropropane	ND	1	0.5	
Dibromochloromethane	ND	¹ 1	0.5	
1,2-Dibromoethane	ND	1	0.5	
Chlorobenzene	ND	1	0.5	
Ethylbenzene	ND	1	0.5	
1,1,1,2-Tetrachloroethane	ND	1	0.5	
m,p-Xylene	ND	2	1	
o-Xylene	ND	1	0.5	
Styrene	ND	1	0.5	
Bromoform	ND	1	0.5	
Isopropylbenzene	ND	1	0.5	
Bromobenzene	ND	1	0.5	
n-Propylbenzene	ND	1	0.5	
1,1,2,2-Tetrachloroethane	ND	1	0.5	
1,2,3-Trichloropropane	ND	1	0.5	
2-Chlorotoluene	ND	1	0.5	
1,3,5-Trimethylbenzene	ND	1	0.5	
4-Chiorotoluene	ND	1	0.5	
t-Butylbenzene	ND	1	0.5	
1,2,4-Trimethylbenzene	ND	1	0.5	
sec-Butylbenzene	ND	1	0.5	
1,3-Dichlorobenzene	ND	1	0.5	
4-Isopropyltoluene	ND	1	0.5	
1,4-Dichlorobenzene	ND	1	0.5	
n-Butylbenzene	ND	1	0.5	
1,2-Dichlorobenzene	ND	1	0.5	
1,2-Dibromo-3-chloropropane	ND	1	0.5	
1,2,4-Trichlorobenzene	ND	1	0.5	
Hexachlorobutadiene	ND	1	0.5	
Naphthalene	ND	2	1	
1,2,3-Trichlorobenzene	ND	. 1	0.5	

Client Name	OnSite Environmental, Inc
Client ID:	GP-3
Lab ID:	118327-03
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

	Recovery Limits	
ry Flags	Low	High
	80	120
	80	120
	80	120
	80	120
	80	120
	80	120
	ry Flags	Recove ry Flags Low 80 80 80 80 80 80 80 80

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

7

.

Volatile Organics by USEPA Method 5030/8260B data for 118327-03 continued...

Result				
Analyte	(ug/L)	PQL	MRL	
1,1,2-Trichloroethane	ND	1	0.5	
Tetrachloroethene	ND	1	0.5	
1,3-Dichloropropane	ND	1	0.5	
Dibromochloromethane	ND	1	0.5	
1,2-Dibromoethane	ND	1	0.5	
Chlorobenzene	ND	1	0.5	
Ethylbenzene	ND	1	0.5	
1,1,1,2-Tetrachloroethane	ND	1	0.5	
m,p-Xylene	ND	2	1	
o-Xylene	ND	1	0.5	
Styrene	ND	1	0.5	
Bromoform	ND	1	0.5	
Isopropylbenzene	ND	1	0.5	
Bromobenzene	ND	1	0.5	
n-Propylbenzene	ND	1	0.5	
1,1,2,2-Tetrachloroethane	ND	1	0.5	
1,2,3-Trichloropropane	ND	1	0.5	
2-Chlorotoluene	ND	1	0.5	
1,3,5-Trimethylbenzene	ND	1	0.5	
4-Chiorotoluene	ND	1	0.5	
t-Butylbenzene	ND	1	0.5	
1,2,4-Trimethylbenzene	ND	1	0.5	
sec-Butylbenzene	ND	1	0.5	
1,3-Dichlorobenzene	ND	1	0.5	
4-Isopropyltoluene	ND	1	0.5	
1,4-Dichlorobenzene	ND	1	0.5	
n-Butylbenzene	ND	1	0.5	
1,2-Dichlorobenzene	ND	1	0.5	
1,2-Dibromo-3-chloropropane	ND	1	0.5	
1,2,4-Trichlorobenzene	ND	1	0.5	
Hexachlorobutadiene	ND	1	0.5	
Naphthalene	ND	2	1	
1,2,3-Trichlorobenzene	ND	, 1	0.5	

Client Name	OnSite Environmental, Inc.
Client ID:	GP-4
Lab ID:	118327-04
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.5		80	120
Fluorobenzene	102		80	120
Toluene-D8	107		80	120
Ethylbenzene-d10	111		80	120
Bromofluorobenzene	109		80	120
Trifluorotoluene	106		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118327-04 continued...

Result				
Analyte	(u	g/L) PQL	MRL	
1,1,2-Trichloroethane	ND	1	0.5	
Tetrachloroethene	ND	1	0.5	
1,3-Dichloropropane	ND	1	0.5	
Dibromochloromethane	ND	1	0.5	
1,2-Dibromoethane	ND	1	0.5	
Chlorobenzene	ND	1	0.5	
Ethylbenzene	ND	1	0.5	
1,1,1,2-Tetrachloroethane	ND	1	0.5	
m,p-Xylene	ND	2	1	
o-Xylene	ND	1	0.5	
Styrene	ND	1	0.5	
Bromoform	ND	1	0.5	
lsopropylbenzene	ND	1	0.5	
Bromobenzene	ND	1	0.5	
n-Propylbenzene	ND	1	0.5	
1,1,2,2-Tetrachloroethane	ND	1	0.5	
1,2,3-Trichloropropane	ND	1	0.5	
2-Chlorotoluene	ND	1	0.5	
1,3,5-Trimethylbenzene	ND	1	0.5	
4-Chlorotoluene	ND	1	0.5	
t-Butylbenzene	ND	1	0.5	
1,2,4-Trimethylbenzene	ND	1	0.5	
sec-Butylbenzene	ND	1	0.5	
1,3-Dichlorobenzene	ND	1	0.5	
4-Isopropyltoluene	ND	1	0.5	
1,4-Dichlorobenzene	ND	1	0.5	
n-Butylbenzene	ND	1	0.5	
1,2-Dichlorobenzene	ND	1	0.5	
1,2-Dibromo-3-chloropropane	ND	1	0.5	
1,2,4-Trichlorobenzene	ND	1	0.5	
Hexachlorobutadiene	ND	1	0.5	
Naphthalene	NÐ	2	1	
1,2,3-Trichlorobenzene	ND	. 1	0.5	

Client Name	OnSite Environmental, Inc.
Client ID:	GP-5
Lab ID:	118327-05
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

Recovery Limits	
v High	
120	
120	
120	
) 120	
) 120	
) 120	

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ŇD	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	ND	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118327-05 continued...

Result				
Analyte	(ug/L)	PQL	MRL	
1,1,2-Trichloroethane	ND	1	0.5	
Tetrachloroethene	ND	1	0.5	
1,3-Dichloropropane	ND	1	0.5	
Dibromochloromethane	ND	1	0.5	
1,2-Dibromoethane	ND	1	0.5	
Chlorobenzene	ND	1	0.5	
Ethylbenzene	ND	1	0.5	
1,1,1,2-Tetrachloroethane	ND	1	0.5	
m,p-Xylene	ND	2	1	
o-Xylene	ND	1	0.5	
Styrene	ND	1	0.5	
Bromoform	ND	1	0.5	
Isopropylbenzene	ND	1	0.5	
Bromobenzene	ND	1	0.5	
n-Propylbenzene	ND	1	0.5	
1,1,2,2-Tetrachloroethane	ND	1	0.5	
1,2,3-Trichloropropane	ND	1	0.5	
2-Chiorotoluene	ND	1	0.5	
1,3,5-Trimethylbenzene	ND	1	0.5	
4-Chlorotoluene	ND	1	0.5	
t-Butylbenzene	ND	1	0.5	
1,2,4-Trimethylbenzene	ND	1	0.5	
sec-Butylbenzene	ND	1	0.5	
1,3-Dichlorobenzene	ND	. 1	0.5	
4-Isopropyltoluene	ND	1	0.5	
1,4-Dichlorobenzene	ND	1	0.5	
n-Butylbenzene	ND	1	0.5	
1,2-Dichlorobenzene	ND	1	0.5	
1,2-Dibromo-3-chloropropane	ND	1	0.5	
1,2,4-Trichlorobenzene	ND	1	0.5	
Hexachlorobutadiene	ND	1	0.5	
Naphthalene	ND	2	1	
1,2,3-Trichlorobenzene	ND	1	0.5	

Client Name	OnSite Environmental, Inc.
Client ID:	GP-8
Lab ID:	118327-06
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	91.5		80	120
Fluorobenzene	102		80	120
Toluene-D8	104		80	120
Ethylbenzene-d10	108		80	120
Bromofluorobenzene	107		80	120
Trifluorotoluene	101		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chioroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	1.69	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

_

Volatile Organics by USEPA Method 5030/8260B data for 118327-06 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	0.554	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

14

J

Client Name	OnSite Environmental, Inc.
Client ID:	GP-7
Lab ID:	118327-07
Date Received:	12/12/2003
Date Prepared:	12/15/2003
Date Analyzed:	12/15/2003
% Solids	-
Dilution Factor	1

Volatile Organics by USEPA Method 5030/8260B

SMC /			Recove	ery Limits
Surrogate	% Recovery	Flags	Low	High
Dibromofluoromethane	92.1		80	120
Fluorobenzene	101		80	120
Toluene-D8	105		80	120
Ethylbenzene-d10	112		80	120
Bromofluorobenzene	109		80	120
Trifluorotoluene	108		80	120

	Result		
Analyte	(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND	1	0.5
Chloromethane	ND	2	1
Vinyl chloride	ND	1	0.5
Bromomethane	ND	2.5	1.25
Chloroethane	ND	1	0.5
Trichlorofluoromethane	ND	1	0.5
1,1-Dichloroethene	ND	1	0.5
Methylene chloride	ND	2	1
trans-1,2-Dichloroethene	ND	1	0.5
1,1-Dichloroethane	ND	1	0.5
2,2-Dichloropropane	ND	1	0.5
cis-1,2-Dichloroethene	10.2	1	0.5
Bromochloromethane	ND	1	0.5
Chloroform	ND	1	0.5
1,1,1-Trichloroethane	ND	1	0.5
Carbon Tetrachloride	ND	1	0.5
1,1-Dichloropropene	ND	1	0.5
Benzene	ND	1	0.5
1,2-Dichloroethane	. ND	1	0.5
Trichloroethene	ND	1	0.5
1,2-Dichloropropane	ND	1	0.5
Dibromomethane	ND	1	0.5
Bromodichloromethane	ND	1	0.5
cis-1,3-Dichloropropene	ND	1	0.5
Toluene	ND	1	0.5
trans-1,3-Dichloropropene	ND	1	0.5

Volatile Organics by USEPA Method 5030/8260B data for 118327-07 continued...

	Result		
Analyte	(ug/L)	PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chlorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1.	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
Isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

Lab ID:Method Blank - VOA595Date Received:-Date Prepared:12/15/2003Date Analyzed:12/15/2003% Solids-Dilution Factor1

Volatile Organics by USEPA Method 5030/8260B

	High
Surrogate % Recovery Flags Low	-
Dibromofluoromethane 90.8 80	120
Fluorobenzene 101 80	120
Toluene-D8 106 80	120
Ethylbenzene-d10 114 80	120
Bromofluorobenzene 110 80	120
Trifluorotoluene 110 80	120

		Result		
Analyte		(ug/L)	PQL	MRL Flags
Dichlorodifluoromethane	ND		1	0.5
Chloromethane	ND		2	1
Vinyl chloride	ND		1	0.5
Bromomethane	ND		2.5	1.25
Chloroethane	ND		1	0.5
Trichlorofluoromethane	ND		1	0.5
1,1-Dichloroethene	ND		1	0.5
Methylene chloride	ND		2	1
trans-1,2-Dichloroethene	ND		1	0.5
1,1-Dichloroethane	ND		1	0.5
2,2-Dichloropropane	ND		1	0.5
cis-1,2-Dichloroethene	ND		1	0.5
Bromochloromethane	ND		1	0.5
Chloroform	ND		1	0.5
1,1,1-Trichloroethane	ND		1	0.5
Carbon Tetrachloride	ND		1	0.5
1,1-Dichloropropene	ND		1	0.5
Benzene	ND		. 1	0.5
1,2-Dichloroethane	ND		1	0.5
Trichloroethene	ND		1	0.5
1,2-Dichloropropane	ND		1	0.5
Dibromomethane	ND		1	0.5
Bromodichloromethane	ND		1	0.5
cis-1,3-Dichloropropene	ND		1	0.5
Toluene	ND		1	0.5
trans-1,3-Dichloropropene	ND		1	0.5

Volatile Organics by USEPA Method 5030/8260B data for VOA595 continued...

	Re	sult	
Analyte	(ug	J/L) PQL	MRL
1,1,2-Trichloroethane	ND	1	0.5
Tetrachloroethene	ND	1	0.5
1,3-Dichloropropane	ND	1	0.5
Dibromochloromethane	ND	1	0.5
1,2-Dibromoethane	ND	1	0.5
Chiorobenzene	ND	1	0.5
Ethylbenzene	ND	1	0.5
1,1,1,2-Tetrachloroethane	ND	1	0.5
m,p-Xylene	ND	2	1
o-Xylene	ND	1	0.5
Styrene	ND	1	0.5
Bromoform	ND	1	0.5
isopropylbenzene	ND	1	0.5
Bromobenzene	ND	1	0.5
n-Propylbenzene	ND	1	0.5
1,1,2,2-Tetrachloroethane	ND	· 1	0.5
1,2,3-Trichloropropane	ND	1	0.5
2-Chlorotoluene	ND	1	0.5
1,3,5-Trimethylbenzene	ND	1	0.5
4-Chlorotoluene	ND	1	0.5
t-Butylbenzene	ND	· 1	0.5
1,2,4-Trimethylbenzene	ND	1	0.5
sec-Butylbenzene	ND	1	0.5
1,3-Dichlorobenzene	ND	1	0.5
4-Isopropyltoluene	ND	1	0.5
1,4-Dichlorobenzene	ND	1	0.5
n-Butylbenzene	ND	1	0.5
1,2-Dichlorobenzene	ND	1	0.5
1,2-Dibromo-3-chloropropane	ND	1	0.5
1,2,4-Trichlorobenzene	ND	1	0.5
Hexachlorobutadiene	ND	1	0.5
Naphthalene	ND	2	1
1,2,3-Trichlorobenzene	ND	1	0.5

Blank Spike/Blank Spike Duplicate Report

Lab ID: Date Prepared: Date Analyzed: QC Batch ID: VOA595 12/15/2003 12/15/2003 VOA595

 $\Delta t_{\rm c}$

19

Volatile Organics by USEPA Method 5030/8260B

	Blank	Spike	BS	•	BSD			
	Result	Amount	Result	BS	Result	BSD		
Compound Name	(ug/L)	(ug/L)	(ug/L)	% Rec.	(ug/L)	% Rec.	RPD	Flag
1,1-Dichloroethene	0	5	4.59	91.8	4.51	90.1	-1.9	
Benzene	0	5	4.87	97.5	4.73	94.5	-3.1	
Trichloroethene	0	5	4.86	97.3	5	100	2.7	
Toluene	0	5	4.8	96	4.74	94.9	-1.2	
Chlorobenzene	0	5	5	100	5.03	101	1	

CHAIN OF CUSTODY RECORD

(FOR SUBCONTRACT LABORATORY)

DY RECORD 1054 DRATORY) Lab Reference Number: 12-045

OnSite **Environmental Inc.**

> Project Manager: **David Baumeister**

 $\hat{\mathbf{v}}$

1

14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

.

Project Number: 033-1000.000

Project Name: Consolidated Freightway

dash	Sample Number/Name	Date Sampled	Matrix	#Jars	Analysis Requested	Comments
and and a state of the state of	CB 1	12/02/2003	W	3	Volatiles EPA 8260B	
		12/02/2000		2	Volatiles EPA 8260B	
	GP-2	12/02/2003	VV	3	Volatiles EPA 8260B	
	GP-3	12/02/2003	W	3	Volatiles EPA 8260B	
	GP-4	12/02/2003	W	3		17/10
	CP_5	12/02/2003	w	3	Volatiles EPA 8260B	12/14
		12/02/2000			Volatiles EPA 8260B	
	GP-8	12/02/2003	VV	3	Volatiles EPA 8260B	-
	GP-7	12/02/2003	W	3		4
						_
	····					1
		· · · · · · · · · · · · · · · · · · ·				-
						_
Submi	itted Com	12-(12/03) date:	Received	by: C	Lach date:	12-12-03
Firm	Starty En	1105	Firm:	STL	time:	////
Submi	itted: Chach	date: 2-12-	Received	12/12/-s		
Firm:	STL	time: 300	Firm:	5	time:	14,80

OnSite		C	1 ain		Cu	S 1	0	ly											P	age _		of	3
Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaroun (in worki	d Reques ng days)	st	La	bo	rato	ory	Nu	mbe	ər:				1	2	-0) 4	5				
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Chec	k One)			•						R	eque	este	d A	naly	sis	· ·					
Project Number: 033-1000,000 Project Name: Project Manager: Neil Gillham	☐ San ☐ 2 D ☐ 2 X ☐ X Star	ne Day ay ndard (7 w	vorking da	1 Day 3 Day ays)	D	BIEY		3260B	Volatiles by 8260B	s by 8270C	OC / SIM	32	/ 8081A	y 8151A	Metals (8)		4	1		7a *			
Sampled by: J Kerrodu	Date	(otl Time	her)	# of	ИТРН-НС	VTPH-Gx/	VTPH-Dx	atiles by 8	logenated	mivolatile	Hs by 827	Bs by 808	sticides by	rbicides b	al RCRA	LP Metals	M by 166	ш	H		(<u>J</u>) (<u>J</u>)		Moisture
Lab ID Sample Identification $(-2)^{-1}$	Sampled	Sampled えいの	Matrix Soul	Cont.	Ň	×	X	§ ×	На	Sei	PA	2	Pe	원	Tot	2	<u><u> </u></u>	Ч Ч	Ш		<u> </u>		
2 GP-1 (6-8)	11	850	50:1	2		×	×	x															X
3 GP-1 (10-12)	<u>, v</u>	900	suil	Z		x	x	x															X
$\frac{4}{6} \frac{6}{6} \frac{2}{2} \frac{2}{4}$	11	930 940	soil	~ 7.		X	×	×									-				<u>×</u>		
6 + 2 (10 - 12)	<u>۱</u>	950	201	2		x	x x	×															
7 GP-1	"	910	water	7		x	x	×															
8 GP-2 **	11	1030	When	7		x	×	×													-+	-+	_
$\frac{9}{10} \frac{67-3}{67-4}$	2-2-03	1100	••	7		x x	x x	X X														+	
Signature Relinquished by		Company	les-		;	Date	3 -	2	Time	. 37	-	Com	ment	s/Spe	cial lı	nstruc	tions	:					
Received by		Onst	te_			12.	- <u>,-</u> <u>-</u>	<u>/</u> 03	<u>ب</u>	-/:3	<u>_</u>												
Relinquished by Received by		·	•																				
Relinquished by						<u>.</u>																	.,
Received by		~		· · · · · · · · · · · · · · · · · · ·												-				,			
Reviewed by/Date		Reviewed I	by/Date								1	Chr	omat	togra	ms v	with f	final	repo	rt 🗆			•	

Carly Carlow Service

್ಷಣ್ಣ

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

Chain	Of	Custod	y

Anti- and the star

A OnSite

Environmental Inc. 14648 NE 95th Street • Redmond, WA 98052		Turnaround (in working)	d Reques	st	La	bor	ato	ry I	Nu	mbe	*	2 -	U	4	Q							
Phone: (425) 883-3881 • Fax: (425) 885-4603 Company:		(Check	(One)									Re	que	ste	d A	naly	sis					
Project Number:			. e,	1 Day					m										× .			
033-(000,000		ine Day		1 Day					82601													
Consolicabled Freicht		Jay		3 Day					es by	700	Σ		-	A	(8)							
Project Manager:	Sta	andard (7 w	orking da	ays)		KH.		260B	Volatil	by 82	C / S		8081/	8151	letals							
Sampled by:	$\neg \Box$	(oth	ner)	··	-HCIE	Ex/	×Q-	5 by 8;	lated '	atiles	/ 8270	v 8082	es by	les by	SRA N	letals	1664			\cap		Inre
	Date	Time	Bastain	# of	NTPH	NTPH	MTPH	latiles	aloger	mivol	\Hs b)	CBs by	esticid	erbicid	tal RC	CLP M	EM by	Ŧ	н	10		Moist
	Sampieu	Sampled		7	Ż	ź	ź	<u>×</u>	Ï	ů.	2	ĕ	ď	Ĭ	<u>م</u>	Ĕ.	<u> </u>	5	<u>1</u>			<u> </u>
$\frac{11}{11}$ GP-5 (2-9)	12-2-03	1005	501)			^	×												$\overline{\mathbf{A}}$	_	
12 67-5 (6-3)	.,	1010		2		X	<u>x</u>	X			_						 ·					
13 GP-3 (10-12)		1015	4	2		X	×	X														X
14 60-4 (2-4)		1645	**	2		X	×	X											 	X	HELD	<u>x</u>
15 GP-4 (6-8)	**	1050	~ ``	2		X	X	\times														X
16 GP-4 (10-12)	N	1055	٠ <u>،</u>	2		x	×	\times										•		,		X
17 GP-5 (2-4)	11	1155	11	~		×	×	×												X		
18 GP-5 (G-8)	~	1200	15	2		X	×	X														X
19 GP-5 (10-12)	2-2-03	1205	ч	Z		X	×	X														X
20 GP-5	11	1230	wolor	* 76		x	x	x														
Signature		Company				Date	1		Time			Com	ments	s/Spe	cial lı	nstru	ctions					
Relinquished by	7	Gel	di			12-	3-7	3	4	: 3	2											
Received by	10-1 -1-1	Oris	te			12-	3.0	3	4	: 3z		·						· •				
Relinquished by				1																		
Received by																						
Relinquished by	· · · · ·												-									
Received by			· · ·	• 1																		
Reviewed by/Date		Reviewed I	by/Date									Chro	omat	ogra	ms	with	final	repo	rt 🗆			

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

CA. OnSite	Ch	ain of	Cu	S	iod	ly		 		λ					n di na di n	Page	3	of	3
14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • Fax: (425) 885-4603	Turnaround (in workir	l Request ng days)	La	abo	rato	ry Nu	umb	er:	1	2	-0	4	5						
Company: (Sciller	(Check	One)							Re	eque	stec	l An	alys 	sis	ĺ				
Project Number: 033-1000,000 Project Name: Project Manager: Neil Grilform Sampled by: Sampled by: Sampled by:	☐ Same Day ☐ 2 Day ☑ Standard (7 wo	☐ 1 Day ☐ 3 Day orking days) ner)	- DIDH-Hc	PH-Gx/BYEX	XD-Hc	les by 8260B enated Volatiles by 8260B	olatiles by 8270C	by 8270C / SIM	by 8082	ides by 8081A	cides by 8151A	RCRA Metals (8)	Metals	by 1664			rD		isture
Lab ID Sample Identification Sample Identification	Date Time ampled Sampled	# of Matrix Cont.	ITWN	ILMN	ILMN	Volati Halog	Semi	PAHs	PCBs	Pestic	Herbi	Total	TCLP	H H			POF		% Mo
21 GP-6 0-2.5 12	2-2-9 1310	Soil Z		x	X	\times													X
22 <u>-6P-66P-8</u>	1410	WALT 7		X	x -	+													
23 GP-8 (2-4')	1345	soil		r	4	r		_									X		
24 GP-8: (6-8')	1350		<u>.</u>	x	r	×						_							X
25 GP-8 (10-12)	1355	2		x	\times	×													X
GP-767 (2-4')		2		X	x,	×					_								
26 6P-7 (6-3')	1435	2		x	×	x												<u> </u>	X
27 GP-7 (10-12)	1440	seil z	-	<u> </u>	×	x													X
28 GP-7	1455	WALU 7		X	X	× [
29 GP-44 (2-4')	1045	5 2		X	X	X	,										·		$\left \right\rangle$
Relinquished by	Company	de		Date	-3-	7 Tin	ne 4: 3	3Z	Com	ments/	/Speci	ial Ins	structi	ions:					
Received by	On'sit.	Ø		12	- 3-0	73	4:3	2											
Relinquished by									-				-						
Relinquished by																			i I
Received by				. .	*				-										
Reviewed by/Date	Reviewed b	y/Date		L		<u> </u>			Chro	omato	ogran	ns w	ith fi	nal re	port		·		

Ð

- 14

DISTRIBUTION LEGEND: White - OnSite Copy Yellow - Report Copy Pink - Client Copy

. . . .

Laboratory Analytical Reports 2014

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 20, 2014

Emerald Erickson-Mulanax Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1408-079

Dear Emerald:

Enclosed are the analytical results and associated quality control data for samples submitted on August 12, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: August 20, 2014 Samples Submitted: August 12, 2014 Laboratory Reference: 1408-079 Project: 1071-007

Case Narrative

Samples were collected on August 11, 2014 and received by the laboratory on August 12, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PAHs EPA 8270D/SIM Analysis

Sample CB-IN-081114, OWS-1-INF-081114 and spike blank had one surrogate recovery out of control limits. This is within allowance of our standard operating procedure as long as the recovery is above 10%.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-IN-081114					
Laboratory ID:	08-079-01					
Naphthalene	0.077	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.20	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.13	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.030	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.025	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.066	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	0.35	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.090	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	0.44	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	0.44	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.11	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.22	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.15	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.046	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.075	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.053	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	ND	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.12	0.021	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	41	43 - 116				Q
Pyrene-d10	42	33 - 124				
Terphenvl-d14	42	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OWS-2-INF-081114					
Laboratory ID:	08-079-02					
Naphthalene	0.14	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.32	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.22	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.075	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.12	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.22	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	1.0	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.26	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	1.1	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	1.3	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.29	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.56	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.45	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.15	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.24	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.21	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.063	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.38	0.029	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	49	43 - 116				
Pyrene-d10	55	33 - 124				
Terphenyl-d14	56	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	OWS-1-INF-081114					
Laboratory ID:	08-079-03					
Naphthalene	0.098	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.29	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.19	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	ND	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.066	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.10	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	0.59	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.13	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	0.68	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	0.71	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.21	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.41	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.32	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.091	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.18	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.15	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.042	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.23	0.037	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	32	43 - 116				Q
Pyrene-d10	41	33 - 124				
Terphenyl-d14	40	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-5N-081114					
Laboratory ID:	08-079-04					
Naphthalene	0.16	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.16	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.10	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.064	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.29	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.47	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	1.5	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.36	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	1.7	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	1.3	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.37	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.67	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.44	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.13	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.21	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.15	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.058	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.23	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	43 - 116				
Pyrene-d10	65	33 - 124				
Terphenyl-d14	66	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-7N-081114					
Laboratory ID:	08-079-05					
Naphthalene	0.040	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.033	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	ND	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.030	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	ND	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.048	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	0.32	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.082	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	0.38	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	0.42	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.12	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.40	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.18	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.049	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.097	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.073	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.027	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.15	0.026	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	43 - 116				
Pyrene-d10	65	33 - 124				
Terphenyl-d14	66	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-10N-081114					
Laboratory ID:	08-079-06					
Naphthalene	0.068	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.062	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.028	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.047	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.027	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.045	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	0.34	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.088	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	0.51	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	0.53	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	0.15	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	0.38	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	0.29	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.092	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.15	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.14	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.044	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.24	0.025	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	52	43 - 116				
Pyrene-d10	65	33 - 124				
Terphenyl-d14	67	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-1S-081114					
Laboratory ID:	08-079-07					
Naphthalene	0.20	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
2-Methylnaphthalene	0.19	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
1-Methylnaphthalene	0.13	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthylene	0.10	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Acenaphthene	0.47	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Fluorene	0.81	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Phenanthrene	4.4	0.17	EPA 8270D/SIM	8-15-14	8-20-14	
Anthracene	0.95	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Fluoranthene	4.7	0.17	EPA 8270D/SIM	8-15-14	8-20-14	
Pyrene	3.7	0.17	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]anthracene	1.0	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Chrysene	1.4	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[b]fluoranthene	1.0	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo(j,k)fluoranthene	0.31	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[a]pyrene	0.77	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Indeno(1,2,3-c,d)pyrene	0.46	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Dibenz[a,h]anthracene	0.12	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Benzo[g,h,i]perylene	0.58	0.017	EPA 8270D/SIM	8-15-14	8-20-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	43 - 116				
Pyrene-d10	72	33 - 124				
Terphenyl-d14	71	38 - 125				

Date of Report: August 20, 2014 Samples Submitted: August 12, 2014 Laboratory Reference: 1408-079 Project: 1071-007

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0815S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Fluorene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Chrysene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	112	43 - 116				
Pyrene-d10	98	33 - 124				
Terphenyl-d14	94	38 - 125				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Analyte Result Spike Level Recovery Limits RPD Limit Fla	gs
SPIKE BLANKS	
Laboratory ID: SB0815S1	
SB SBD SB SBD SB SBD	
Naphthalene 0.0682 0.0650 0.0833 0.0833 82 78 45 - 109 5 29	
Acenaphthylene 0.0749 0.0707 0.0833 0.0833 90 85 54 - 118 6 18	
Acenaphthene 0.0704 0.0685 0.0833 0.0833 85 82 60 - 108 3 14	
Fluorene 0.0704 0.0715 0.0833 0.0833 85 86 61 - 113 2 13	
Phenanthrene 0.0650 0.0656 0.0833 0.0833 78 79 63 - 106 1 13	
Anthracene 0.102 0.103 0.0833 0.0833 122 124 55 - 135 1 13	
Fluoranthene 0.0727 0.0730 0.0833 0.0833 87 88 66 - 118 0 13	
Pyrene 0.0734 0.0725 0.0833 0.0833 88 87 69 - 112 1 12	
Benzo[a]anthracene 0.0767 0.0776 0.0833 0.0833 92 93 58 - 118 1 13	
Chrysene 0.0737 0.0719 0.0833 0.0833 88 86 64 - 114 2 11	
Benzo[b]fluoranthene 0.0733 0.0725 0.0833 0.0833 88 87 52 - 125 1 19	
Benzo(j,k)fluoranthene 0.0758 0.0753 0.0833 0.0833 91 90 50 - 126 1 22	
Benzo[a]pyrene 0.0863 0.0857 0.0833 0.0833 104 103 43 - 123 1 16	
Indeno(1,2,3-c,d)pyrene 0.0718 0.0696 0.0833 0.0833 86 84 55 - 118 3 16	
Dibenz[a,h]anthracene 0.0707 0.0696 0.0833 0.0833 85 84 57 - 120 2 15	
Benzo[g,h,i]perylene 0.0697 0.0689 0.0833 0.0833 84 83 58 - 113 1 18	
Surrogate:	
2-Fluorobiphenyl 119 116 43 - 116 C	Ç
Pyrene-d10 89 90 33 - 124	
Terphenyl-d14 85 85 38 - 125	
PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-IN-081114					
Laboratory ID:	08-079-01					
Aroclor 1016	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.16	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	112	51-138				
Client ID:	OWS-2-INF-081114					
Laboratory ID:	08-079-02					
Aroclor 1016	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.22	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	122	51-138				
Client ID:	OWS-1-INF-081114					
Laboratory ID:	08-079-03					
Aroclor 1016	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.27	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	114	51-138				

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-5N-081114					
Laboratory ID:	08-079-04					
Aroclor 1016	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	122	51-138				
Client ID:	CB-7N-081114					
Laboratory ID:	08-079-05					
Aroclor 1016	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	108	51-138				
Client ID:	CB-10N-081114					
Laboratory ID:	08-079-06					
Aroclor 1016	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	0.23	0.19	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	0.47	0.19	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	112	51-138				

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-1S-081114					
Laboratory ID:	08-079-07					
Aroclor 1016	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.13	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	107	51-138				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0813S1					
Aroclor 1016	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1221	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1232	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1242	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1248	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1254	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Aroclor 1260	ND	0.050	EPA 8082A	8-13-14	8-13-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	108	51-138				

Analyte	Re	sult	Spike	Level	Source Result	Pe Rec	rcent covery	Recovery Limits	RPD	RPD Limit	Flags
MATRIX SPIKES											
Laboratory ID:	08-0	77-05									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.444	0.411	0.500	0.500	ND	89	82	49-136	8	14	
Surrogate:											
DCB						99	98	51-138			

TOTAL METALS EPA 6010C

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	08-079-01					
Client ID:	CB-IN-081114					
Arsenic	ND	16	6010C	8-20-14	8-20-14	
Chromium	58	0.80	6010C	8-20-14	8-20-14	
Copper	150	1.6	6010C	8-20-14	8-20-14	
Lead	81	8.0	6010C	8-20-14	8-20-14	
Zinc	640	4.0	6010C	8-20-14	8-20-14	

Lab ID: Client ID:	08-079-02 OWS-2-INF-081114					
Arsenic	14	11	6010C	8-20-14	8-20-14	
Chromium	91	1.1	6010C	8-20-14	8-20-14	
Copper	290	2.2	6010C	8-20-14	8-20-14	
Lead	170	11	6010C	8-20-14	8-20-14	
Zinc	1200	5.5	6010C	8-20-14	8-20-14	

Lab ID:	08-079-03					
Client ID:	OWS-1-INF-081114					
Arsenic	ND	14	6010C	8-20-14	8-20-14	
Chromium	78	1.4	6010C	8-20-14	8-20-14	
Copper	250	2.7	6010C	8-20-14	8-20-14	
Lead	150	14	6010C	8-20-14	8-20-14	
Zinc	960	6.9	6010C	8-20-14	8-20-14	

TOTAL METALS EPA 6010C

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	08-079-04					
Client ID:	CB-5N-081114					
Arsenic	ND	19	6010C	8-20-14	8-20-14	
Chromium	86	0.96	6010C	8-20-14	8-20-14	
Copper	260	1.9	6010C	8-20-14	8-20-14	
Lead	150	9.6	6010C	8-20-14	8-20-14	
Zinc	790	4.8	6010C	8-20-14	8-20-14	

Lab ID:	08-079-05					
Client ID:	CB-7N-081114					
Arsenic	ND	19	6010C	8-20-14	8-20-14	
Chromium	54	0.97	6010C	8-20-14	8-20-14	
Copper	130	1.9	6010C	8-20-14	8-20-14	
Lead	79	9.7	6010C	8-20-14	8-20-14	
Zinc	480	4.9	6010C	8-20-14	8-20-14	

Lab ID:	08-079-06					
Client ID:	CB-10N-081114					
Arsenic	ND	19	6010C	8-20-14	8-20-14	
Chromium	89	0.95	6010C	8-20-14	8-20-14	
Copper	210	1.9	6010C	8-20-14	8-20-14	
Lead	150	9.5	6010C	8-20-14	8-20-14	
Zinc	1100	4.8	6010C	8-20-14	8-20-14	

17

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010C

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	08-079-07 CB-1S-081114					
Arsenic	ND	13	6010C	8-20-14	8-20-14	
Chromium	39	0.63	6010C	8-20-14	8-20-14	
Copper	63	1.3	6010C	8-20-14	8-20-14	
Lead	130	6.3	6010C	8-20-14	8-20-14	
Zinc	280	3.1	6010C	8-20-14	8-20-14	

TOTAL METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	8-20-14
Date Analyzed:	8-20-14
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0820SM1

Analyte	Method	Result	PQL
Arsenic	6010C	ND	5.0
Chromium	6010C	ND	0.50
Copper	6010C	ND	1.0
Lead	6010C	ND	5.0
Zinc	6010C	ND	2.5

TOTAL METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	8-20-14
Date Analyzed:	8-20-14

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 08-085-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	9.75	8.95	9	5.0	
Chromium	32.9	27.9	17	0.50	
Copper	14.1	13.9	1	1.0	
Lead	7.50	6.35	17	5.0	
Zinc	41.1	40.4	2	2.5	

TOTAL METALS EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted:	8-20-14
Date Analyzed:	8-20-14

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 08-085-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	102	92	99.9	90	2	
Chromium	100	123	90	123	90	0	
Copper	50.0	64.4	101	63.4	99	2	
Lead	250	270	105	243	94	10	
Zinc	100	137	96	133	92	2	

% MOISTURE

Date Analyzed: 8-13-14

Client ID	Lab ID	% Moisture
CB-IN-081114	08-079-01	37
OWS-2-INF-081114	08-079-02	54
OWS-1-INF-081114	08-079-03	64
CB-5N-081114	08-079-04	48
CB-7N-081114	08-079-05	49
CB-10N-081114	08-079-06	47
CB-1S-081114	08-079-07	20

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

		C 1																				i egi			
OnSite		Cha	in o	t (Ju	st	Dd	y											Pa	ge	1	_ of _:	1		-
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i	rnaround Requ in working day	iest vs)		La	bor	ato	ry l	Nun	nbe	er:						(80	} -	0	79)			
Phone: (425) 883-3881 • www.onsite-env.com Company:		(Check One)														T	3					-	-		
FARALLON Project Number:	. 🗌 Sam	ne Day	1 Day												WIS/O	A	E								
	2 Da	ays [3 Days										1	20218	s 82701	8151	٦٢			7					
54 DAWSON		ndard (7 Days) H analysis 5 Da	ys)	S					0000	82600	SIM	v-level		cides a	sticide	picides	153			1664/					
Project Manager:				Itaine		EX				olatiles	270D/; PAHs)	IM (Iov	1	Pestic	orus Pe	id Herl	etais	etals		(rease)					
Sampled by:		(other)		of Cor	HCID	Gx/BT	ğ	XQ	82600	ated V(atiles 8 /-level	70D/S	182A	hiorine	hospho	ted Ac	MI Net	CAM	etals	and g				ture	
Lak ID Sample Identification	Date	Time Sampled	Matrix	Number	IWTPH-	IWTPH-	HATW	HdTW	/olatiles	lalogen	Semivols with Iow	PAHs 82	CBS 8L	Jrganoc	Organop	Chlorina	lotal tre	lotal M	TCLP M	HEM (oi				% Mois	
	8/11/14	0905	S	2	2	2		2		<u></u>	02	D	D			(3			_				R	8
2 GWS-2-INF-08114	1	1105	1	1								D	B			(D							G	Ş
3 OWS-1-INF-081114		1350										Ð	D			4	X							(7)
4 CB-5N - 081114		1410										Ď	Ð			(Ø							Q	
5 CB-7N-081114		1455										B	Ø				R)						Q	
6 CB-10N-081114		1550										Ð	R				D							G	
7 68-15-081114		1648	+	+								D	Q			(B							X	P
DK																									
																							*		
Signature		Сотрапу				Date			Time	2.0	0	Com	ment	s/Spe	ecial I	nstru	ctions			1	ENA	604	int	Ð	
Relinquished	7	forall	on			වී	/12	14	00	12	6	EA	the	Sol	-	10)	1.7	SIS.	EIM	-	-4	7	
Received Van		5	por			-	1)		1	1)		/	5	1	0.01	-52	ed	8	ha	2/1	4.	DB	(S	TA)	
Relinquished			1/1			A	M	,	12	Ø	2	(<u>^</u>) / «	-9*		(((')	
Received		C &	É		3	81	21	14	12	H	υ														
Relinquished							_																		
Received																									_
Reviewed/Date		Reviewed/Da	ite									Chro	mato	gram	ns wit	h fina	l repo	ort 🗌]						

Data Package: Standard 🗌 Level III 🗌 Level IV 🗌 Electronic Data Deliverables (EDDs) 🗌 ____

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 18, 2014

Beth Padgett Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1408-083

Dear Beth:

Enclosed are the analytical results and associated quality control data for samples submitted on August 12, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 12, 2014 and received by the laboratory on August 12, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

0 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-2-081214					
Laboratory ID:	08-083-01					
Gasoline	800	100	NWTPH-Gx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	71-112				
Client ID:	MW-4-081214					
Laboratory ID:	08-083-02					
Gasoline	ND	100	NWTPH-Gx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	71-112				
Client ID:	MW-2-081214					
Laboratory ID:	08-083-03					
Gasoline	280	100	NWTPH-Gx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	76	71-112				
Client ID:	MW-3-081214					
Laboratory ID:	08-083-04					
Gasoline	ND	100	NWTPH-Gx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	71-112				

NWTPH-Gx QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0814W2					
Gasoline	ND	100	NWTPH-Gx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	71-112				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	08-08	33-04									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	А	NA	NA	30	
Surrogate:											
Fluorobenzene						77	77	71-112			

4

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

- J [*] (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-2-081214					
Laboratory ID:	08-083-01					
Diesel Range Organics	3.7	0.26	NWTPH-Dx	8-14-14	8-14-14	
Lube Oil Range Organics	ND	0.64	NWTPH-Dx	8-14-14	8-14-14	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	MW-4-081214					
Laboratory ID:	08-083-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	8-14-14	8-14-14	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				
Client ID:	MW-2-081214					
Laboratory ID:	08-083-03					
Diesel Range Organics	2.7	0.26	NWTPH-Dx	8-14-14	8-14-14	
Lube Oil Range Organics	ND	0.49	NWTPH-Dx	8-14-14	8-14-14	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				
Client ID:	MW-3-081214					
Laboratory ID:	08-083-04					
Diesel Range Organics	0.51	0.26	NWTPH-Dx	8-14-14	8-14-14	
Lube Oil Range Organics	0.62	0.41	NWTPH-Dx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits		0	0	
o-Terphenvl	75	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				•		
Laboratory ID:	MB0814W1					
Diesel Range Organics	ND	0.25	NWTPH-Dx	8-14-14	8-14-14	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	08-08	33-01								
	ORIG	DUP								
Diesel Range Organics	3.68	3.38	NA	NA		NA	NA	8	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	U1
Surrogate:										
o-Terphenyl						88 84	50-150			

VOLATILES EPA 8260C Page 1 of 2

·				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-2-081214					
Laboratory ID:	08-083-01					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloromethane	ND	1.3	EPA 8260C	8-14-14	8-14-14	
Vinyl Chloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromomethane	ND	0.56	EPA 8260C	8-14-14	8-14-14	
Chloroethane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Acetone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
lodomethane	ND	2.9	EPA 8260C	8-14-14	8-14-14	
Carbon Disulfide	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methylene Chloride	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Vinyl Acetate	ND	1.0	EPA 8260C	8-14-14	8-14-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
(cis) 1,2-Dichloroethene	0.21	0.20	EPA 8260C	8-14-14	8-14-14	
2-Butanone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Bromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloroform	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Benzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Trichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Dibromomethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromodichloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Toluene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	

VOLATILES EPA 8260C
Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-2-081214					
Laboratory ID:	08-083-01					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Tetrachloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Hexanone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Dibromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Ethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
m,p-Xylene	ND	0.40	EPA 8260C	8-14-14	8-14-14	
o-Xylene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Styrene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromoform	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Isopropylbenzene	13	0.20	EPA 8260C	8-14-14	8-14-14	
Bromobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Propylbenzene	19	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
tert-Butylbenzene	0.26	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
sec-Butylbenzene	7.6	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Butylbenzene	6.6	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Naphthalene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	62-122				
Toluene-d8	104	70-120				
4-Bromofluorobenzene	96	71-120				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES EPA 8260C Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-081214					
Laboratory ID:	08-083-02					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloromethane	ND	1.3	EPA 8260C	8-14-14	8-14-14	
Vinyl Chloride	0.30	0.20	EPA 8260C	8-14-14	8-14-14	
Bromomethane	ND	0.56	EPA 8260C	8-14-14	8-14-14	
Chloroethane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Acetone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
lodomethane	ND	2.9	EPA 8260C	8-14-14	8-14-14	
Carbon Disulfide	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methylene Chloride	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Vinyl Acetate	ND	1.0	EPA 8260C	8-14-14	8-14-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Butanone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Bromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloroform	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Benzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Trichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Dibromomethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromodichloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Toluene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	

VOLATILES EPA 8260C	
Page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-4-081214					
Laboratory ID:	08-083-02					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Tetrachloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Hexanone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Dibromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Ethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
m,p-Xylene	ND	0.40	EPA 8260C	8-14-14	8-14-14	
o-Xylene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Styrene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromoform	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Isopropylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Propylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
tert-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
p-lsopropyltoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1.2-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1.2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1.2.4-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Naphthalene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1.2.3-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Surrogate:	Percent Recoverv	Control Limits				
Dibromofluoromethane	116	62-122				
Toluene-d8	104	70-120				
4-Bromofluorobenzene	97	71-120				

VOLATILES EPA 8260C Page 1 of 2

Matrix: Water Units: ug/L

Analyte Result PQL Method Prepared Analyzed Flag Client ID: MW-2-081214 Flag Client ID: MW-2-081214	
Client ID: MW-2-081214 Laboratory ID: 08-083-03 Dichlorodifluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Chloromethane ND 1.3 EPA 8260C 8-14-14 8-14-14 Vinyl Chloride 0.23 0.20 EPA 8260C 8-14-14 8-14-14 Bromomethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Trichlorofluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 <t< th=""><th>5</th></t<>	5
Laboratory ID: 08-083-03 Dichlorodifluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Chloromethane ND 1.3 EPA 8260C 8-14-14 8-14-14 Vinyl Chloride 0.23 0.20 EPA 8260C 8-14-14 8-14-14 Bromomethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Trichlorofluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 1.0	
Dichlorodifluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Chloromethane ND 1.3 EPA 8260C 8-14-14 8-14-14 Vinyl Chloride 0.23 0.20 EPA 8260C 8-14-14 8-14-14 Bromomethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Trichlorofluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 1.0 EPA 8260C 8-14-14 8-14-14 <td></td>	
Chloromethane ND 1.3 EPA 8260C 8-14-14 8-14-14 Vinyl Chloride 0.23 0.20 EPA 8260C 8-14-14 8-14-14 Bromomethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Trichlorofluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 1.0 EPA 8260C 8-14-14 8-14-14	
Vinyl Chloride 0.23 0.20 EPA 8260C 8-14-14 8-14-14 Bromomethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Trichlorofluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 2.9 EPA 8260C 8-14-14 8-14-14	
Bromomethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Trichlorofluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 1.0 EPA 8260C 8-14-14 8-14-14	
Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Trichlorofluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 1.0 EPA 8260C 8-14-14 8-14-14	
Trichlorofluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 1.0 EPA 8260C 8-14-14 8-14-14	
1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 1.0 EPA 8260C 8-14-14 8-14-14	
Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 1.0 EPA 8260C 8-14-14 8-14-14	
Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 1.0 EPA 8260C 8-14-14 8-14-14	
Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 Methylene Chloride ND 1.0 EPA 8260C 8-14-14 8-14-14	
Methylene Chloride ND 1.0 EPA 8260C 8-14-14 8-14-14	
······································	
(trans) 1,2-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14	
Methyl t-Butyl Ether ND 0.20 EPA 8260C 8-14-14 8-14-14	
1,1-Dichloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Vinyl Acetate ND 1.0 EPA 8260C 8-14-14 8-14-14	
2,2-Dichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14	
(cis) 1,2-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14	
2-Butanone ND 5.0 EPA 8260C 8-14-14 8-14-14	
Bromochloromethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Chloroform ND 0.20 EPA 8260C 8-14-14 8-14-14	
1,1,1-Trichloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Carbon Tetrachloride ND 0.20 EPA 8260C 8-14-14 8-14-14	
1,1-Dichloropropene ND 0.20 EPA 8260C 8-14-14 8-14-14	
Benzene ND 0.20 EPA 8260C 8-14-14 8-14-14	
1,2-Dichloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Trichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14	
1,2-Dichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Dibromomethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Bromodichloromethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260C 8-14-14 8-14-14	
(cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 8-14-14 8-14-14	
Methyl Isobutyl Ketone ND 2.0 EPA 8260C 8-14-14 8-14-14	
Toluene ND 1.0 EPA 8260C 8-14-14 8-14-14	
(trans) 1,3-Dichloropropene ND 0.20 EPA 8260C 8-14-14 8-14-14	

VOLATILES EPA 8260C	
Page 2 of 2	

Analyte Result PQL Method Prepared Analyzed Flags Client ID: MW-2-081214		_			Date	Date	
Client ID: MW-2-081214 Laboratory ID: 08-083-03 1,1,2-Trichloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Tetrachloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,3-Dichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14 2-Hexanone ND 2.0 EPA 8260C 8-14-14 8-14-14 1,2-Dibromochloromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,2-Dibromochloromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1,2-Tetrachloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 thylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 cKylene ND 0.20 EPA 8260C 8-14-14 8-14-14 thylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-1	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID: 08-083-03 1,1,2-Trichloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Tetrachloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 1,3-Dichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14 2-Hexanone ND 2.0 EPA 8260C 8-14-14 8-14-14 2-Hexanone ND 0.20 EPA 8260C 8-14-14 8-14-14 Dibromochloromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,2-Dibromoethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,2-Dibromoethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1,2-Tetrachloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Ethylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 Styrene ND 0.20 EPA 8260C 8-14-14 8-14-14 Styrene ND 0.20	Client ID:	MW-2-081214					
1,1,2-Trichloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Tetrachloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 1,3-Dichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14 2-Hexanone ND 2.0 EPA 8260C 8-14-14 8-14-14 2-Hexanone ND 0.20 EPA 8260C 8-14-14 8-14-14 Dibromochloromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,2-Dibromoethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Ethylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 0-Xylene ND 0.20 EPA 8260C 8-14-14 8-14-14 Styrene ND 0.20 EPA 8260C 8-14-14 8-14-14 Bromoform ND 1.0 EPA 8260C 8-14-14 <td>Laboratory ID:</td> <td>08-083-03</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Laboratory ID:	08-083-03					
TetrachloroetheneND0.20EPA 8260C8-14-148-14-141,3-DichloropropaneND0.20EPA 8260C8-14-148-14-142-HexanoneND2.0EPA 8260C8-14-148-14-14DibromochloromethaneND0.20EPA 8260C8-14-148-14-141,2-DibromoethaneND0.20EPA 8260C8-14-148-14-141,2-DibromoethaneND0.20EPA 8260C8-14-148-14-141,1,1,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-141,1,1,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-14EthylbenzeneND0.20EPA 8260C8-14-148-14-14m,p-XyleneND0.20EPA 8260C8-14-148-14-14o-XyleneND0.20EPA 8260C8-14-148-14-14StyreneND0.20EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-	1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14 2-Hexanone ND 2.0 EPA 8260C 8-14-14 8-14-14 Dibromochloromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,2-Dibromoethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,2-Dibromoethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Chlorobenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 thylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 ethylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 m.p-Xylene ND 0.40 EPA 8260C 8-14-14 8-14-14 o-Xylene ND 0.20 EPA 8260C 8-14-14 8-14-14 Styrene ND 0.20 EPA 8260C 8-14-14 8-14-14 Isopropylbenzene 0.42 0.20 EPA 8260C 8-14-14 <td< td=""><td>Tetrachloroethene</td><td>ND</td><td>0.20</td><td>EPA 8260C</td><td>8-14-14</td><td>8-14-14</td><td></td></td<>	Tetrachloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Hexanone ND 2.0 EPA 8260C 8-14-14 8-14-14 Dibromochloromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,2-Dibromoethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,2-Dibromoethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1,1,2-Tetrachloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 thylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 ethylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 o-Xylene ND 0.20 EPA 8260C 8-14-14 8-14-14 o-Xylene ND 0.40 EPA 8260C 8-14-14 8-14-14 Styrene ND 0.20 EPA 8260C 8-14-14 8-14-14 Isopropylbenzene 0.42 0.20 EPA 8260C 8-14-14 8-14-14 Isopropylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14	1,3-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
DibromochloromethaneND0.20EPA 8260C8-14-148-14-141,2-DibromoethaneND0.20EPA 8260C8-14-148-14-14ChlorobenzeneND0.20EPA 8260C8-14-148-14-141,1,1,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-14EthylbenzeneND0.20EPA 8260C8-14-148-14-14m,p-XyleneND0.40EPA 8260C8-14-148-14-14o-XyleneND0.20EPA 8260C8-14-148-14-14StyreneND0.20EPA 8260C8-14-148-14-14BromoformND0.20EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14 <td< td=""><td>2-Hexanone</td><td>ND</td><td>2.0</td><td>EPA 8260C</td><td>8-14-14</td><td>8-14-14</td><td></td></td<>	2-Hexanone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
1,2-DibromoethaneND0.20EPA 8260C8-14-148-14-14ChlorobenzeneND0.20EPA 8260C8-14-148-14-141,1,1,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-14EthylbenzeneND0.20EPA 8260C8-14-148-14-14m,p-XyleneND0.40EPA 8260C8-14-148-14-14o-XyleneND0.20EPA 8260C8-14-148-14-14StyreneND0.20EPA 8260C8-14-148-14-14BromoformND0.20EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-14IsopropylbenzeneND0.20EPA 8260C8-14-148-14-141,1,2,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-141,2,3-TrichloropropaneND0.20EPA 8260C8-14-148-14-142-ChlorotolueneND0.20EPA 8260C8-14-148-14-14	Dibromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
ChlorobenzeneND0.20EPA 8260C8-14-148-14-141,1,1,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-14EthylbenzeneND0.20EPA 8260C8-14-148-14-14m,p-XyleneND0.40EPA 8260C8-14-148-14-14o-XyleneND0.20EPA 8260C8-14-148-14-14StyreneND0.20EPA 8260C8-14-148-14-14BromoformND0.20EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14BromobenzeneND0.20EPA 8260C8-14-148-14-141,1,2,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-141,2,3-TrichloropropaneND0.20EPA 8260C8-14-148-14-142-ChlorotolueneND0.20EPA 8260C8-14-148-14-14	1,2-Dibromoethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-14EthylbenzeneND0.20EPA 8260C8-14-148-14-14m,p-XyleneND0.40EPA 8260C8-14-148-14-14o-XyleneND0.20EPA 8260C8-14-148-14-14StyreneND0.20EPA 8260C8-14-148-14-14BromoformND1.0EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14BromobenzeneND0.20EPA 8260C8-14-148-14-141,1,2,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-141,2,3-TrichloropropaneND0.20EPA 8260C8-14-148-14-142-ChlorotolueneND0.20EPA 8260C8-14-148-14-14	Chlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
EthylbenzeneND0.20EPA 8260C8-14-148-14-14m,p-XyleneND0.40EPA 8260C8-14-148-14-14o-XyleneND0.20EPA 8260C8-14-148-14-14StyreneND0.20EPA 8260C8-14-148-14-14BromoformND1.0EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14BromobenzeneND0.20EPA 8260C8-14-148-14-141,1,2,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-141,2,3-TrichloropropaneND0.20EPA 8260C8-14-148-14-142-ChlorotolueneND0.20EPA 8260C8-14-148-14-14	1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
m,p-XyleneND0.40EPA 8260C8-14-148-14-14o-XyleneND0.20EPA 8260C8-14-148-14-14StyreneND0.20EPA 8260C8-14-148-14-14BromoformND1.0EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14BromobenzeneND0.20EPA 8260C8-14-148-14-141,1,2,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-141,2,3-TrichloropropaneND0.20EPA 8260C8-14-148-14-142-ChlorotolueneND0.20EPA 8260C8-14-148-14-14	Ethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
o-XyleneND0.20EPA 8260C8-14-148-14-14StyreneND0.20EPA 8260C8-14-148-14-14BromoformND1.0EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14BromobenzeneND0.20EPA 8260C8-14-148-14-141,1,2,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-141,2,3-TrichloropropaneND0.20EPA 8260C8-14-148-14-14n-PropylbenzeneND0.20EPA 8260C8-14-148-14-142-ChlorotolueneND0.20EPA 8260C8-14-148-14-14	m,p-Xylene	ND	0.40	EPA 8260C	8-14-14	8-14-14	
StyreneND0.20EPA 8260C8-14-148-14-14BromoformND1.0EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14BromobenzeneND0.20EPA 8260C8-14-148-14-141,1,2,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-141,2,3-TrichloropropaneND0.20EPA 8260C8-14-148-14-14n-PropylbenzeneND0.20EPA 8260C8-14-148-14-142-ChlorotolueneND0.20EPA 8260C8-14-148-14-14	o-Xylene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
BromoformND1.0EPA 8260C8-14-148-14-14Isopropylbenzene0.420.20EPA 8260C8-14-148-14-14BromobenzeneND0.20EPA 8260C8-14-148-14-141,1,2,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-141,2,3-TrichloropropaneND0.20EPA 8260C8-14-148-14-14n-PropylbenzeneND0.20EPA 8260C8-14-148-14-142-ChlorotolueneND0.20EPA 8260C8-14-148-14-14	Styrene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Isopropylbenzene 0.42 0.20 EPA 8260C 8-14-14 8-14-14 Bromobenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,2,3-Trichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14 n-Propylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 2-Chlorotoluene ND 0.20 EPA 8260C 8-14-14 8-14-14	Bromoform	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Bromobenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1,2,2-Tetrachloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,2,3-Trichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14 n-Propylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 2-Chlorotoluene ND 0.20 EPA 8260C 8-14-14 8-14-14	Isopropylbenzene	0.42	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,2,2-TetrachloroethaneND0.20EPA 8260C8-14-148-14-141,2,3-TrichloropropaneND0.20EPA 8260C8-14-148-14-14n-PropylbenzeneND0.20EPA 8260C8-14-148-14-142-ChlorotolueneND0.20EPA 8260C8-14-148-14-14	Bromobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,3-TrichloropropaneND0.20EPA 8260C8-14-148-14-14n-PropylbenzeneND0.20EPA 8260C8-14-148-14-142-ChlorotolueneND0.20EPA 8260C8-14-148-14-14	1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Propylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14 2-Chlorotoluene ND 0.20 EPA 8260C 8-14-14 8-14-14	1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chlorotoluene ND 0.20 EPA 8260C 8-14-14 8-14-14	n-Propylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
	2-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
4-Chlorotoluene ND 0.20 EPA 8260C 8-14-14 8-14-14	4-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3,5-Trimethylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14	1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
tert-Butylbenzene 0.30 0.20 EPA 8260C 8-14-14 8-14-14	tert-Butylbenzene	0.30	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trimethylbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14	1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
sec-Butylbenzene 0.28 0.20 EPA 8260C 8-14-14 8-14-14	sec-Butylbenzene	0.28	0.20	EPA 8260C	8-14-14	8-14-14	
1.3-Dichlorobenzene ND 0.20 EPA 8260C 8-14-14 8-14-14	1.3-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
p-lsopropyltoluene ND 0.20 EPA 8260C 8-14-14 8-14-14	p-lsopropyltoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1.4-Dichlorobenzene ND 0.20 EPA 8260C 8-14-14 8-14-14	1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1.2-Dichlorobenzene ND 0.20 EPA 8260C 8-14-14 8-14-14	1.2-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Butvlbenzene ND 0.20 EPA 8260C 8-14-14 8-14-14	n-Butvlbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1.2-Dibromo-3-chloropropane ND 1.0 EPA 8260C 8-14-14 8-14-14	1.2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1.2.4-Trichlorobenzene ND 0.20 EPA 8260C 8-14-14 8-14-14	1.2.4-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Hexachlorobutadiene ND 0.20 FPA 8260C 8-14-14 8-14-14	Hexachlorobutadiene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Naphthalene ND 1.0 FPA 8260C 8-14-14 8-14-14	Naphthalene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1.2.3-Trichlorobenzene ND 0.20 FPA 8260C 8-14-14 8-14-14	1.2.3-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limits			• · · · · ·	
Dibromofluoromethane 109 62-122	Dibromofluoromethane	109	62-122				
Toluene-d8 104 70-120	Toluene-d8	104	70-120				
4-Bromofluorobenzene 98 71-120	4-Bromofluorobenzene	98	71-120				

VOLATILES EPA 8260C Page 1 of 2

Matrix: Water Units: ug/L

AnalyteResultPQLMethodPreparedAnalyzedFlagsClient ID:MW-3-081214Laboratory ID:08-083-04DichlorodifluoromethaneND0.20EPA 8260C8-14-148-14-14ChloromethaneND1.3EPA 8260C8-14-148-14-14Vinyl ChlorideND0.20EPA 8260C8-14-148-14-14BromomethaneND0.56EPA 8260C8-14-148-14-14ChloroethaneND0.56EPA 8260C8-14-148-14-14TrichlorofluoromethaneND0.20EPA 8260C8-14-148-14-14AcetoneND0.20EPA 8260C8-14-148-14-141,1-DichloroetheneND0.20EPA 8260C8-14-148-14-14IodomethaneND0.20EPA 8260C8-14-148-14-14IcdomethaneND0.20EPA 8260C8-14-148-14-14IcdomethaneND0.20EPA 8260C8-14-148-14-14IcdomethaneND0.20EPA 8260C8-14-148-14-14IcdomethaneND0.20EPA 8260C8-14-148-14-14IcdomethaneND0.20EPA 8260C8-14-148-14-14IcdomethaneND0.20EPA 8260C8-14-148-14-14IcdomethaneND0.20EPA 8260C8-14-148-14-14IcdomethaneND0.20EPA 8260C8-14-148-14-14Methylene ChlorideND	
Client ID: MW-3-081214 Laboratory ID: 08-083-04 Dichlorodifluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Chloromethane ND 1.3 EPA 8260C 8-14-14 8-14-14 Vinyl Chloride ND 0.20 EPA 8260C 8-14-14 8-14-14 Bromomethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Ketylene Chl	\$
Laboratory ID: 08-083-04 Dichlorodifluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Chloromethane ND 1.3 EPA 8260C 8-14-14 8-14-14 Vinyl Chloride ND 0.20 EPA 8260C 8-14-14 8-14-14 Bromomethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Trichlorofluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20<	
Dichlorodifluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Chloromethane ND 1.3 EPA 8260C 8-14-14 8-14-14 Vinyl Chloride ND 0.20 EPA 8260C 8-14-14 8-14-14 Bromomethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1.10 EPA 8260C 8-14-14 8-14-14 8-14-14 1.10 EPA 8260C 8-14-14 8-14-14 Icdomethane ND 0.20 EPA 8260C 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 Methylene Chloride ND 0.20 EPA 8260C	
Chloromethane ND 1.3 EPA 8260C 8-14-14 8-14-14 Vinyl Chloride ND 0.20 EPA 8260C 8-14-14 8-14-14 Bromomethane ND 0.56 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Chloroethane ND 1.0 EPA 8260C 8-14-14 8-14-14 Trichlorofluoromethane ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Acetone ND 5.0 EPA 8260C 8-14-14 8-14-14 Iodomethane ND 2.9 EPA 8260C 8-14-14 8-14-14 Carbon Disulfide ND 0.20 EPA 8260C 8-14-14 8-14-14 (trans) 1,2-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14 Methyl t-Butyl Ether ND 0.20 EPA 8260C 8-14-14 8-14-14	
Vinyl ChlorideND0.20EPA 8260C8-14-148-14-14BromomethaneND0.56EPA 8260C8-14-148-14-14ChloroethaneND1.0EPA 8260C8-14-148-14-14TrichlorofluoromethaneND0.20EPA 8260C8-14-148-14-141,1-DichloroetheneND0.20EPA 8260C8-14-148-14-14AcetoneND5.0EPA 8260C8-14-148-14-14IodomethaneND2.9EPA 8260C8-14-148-14-14Carbon DisulfideND0.20EPA 8260C8-14-148-14-14Methylene ChlorideND1.0EPA 8260C8-14-148-14-14(trans) 1,2-DichloroetheneND0.20EPA 8260C8-14-148-14-14Methyl t-Butyl EtherND0.20EPA 8260C8-14-148-14-141,1-DichloroethaneND0.20EPA 8260C8-14-148-14-142,2-DichloroptopaneND0.20EPA 8260C8-14-148-14-14	
BromomethaneND0.56EPA 8260C8-14-148-14-14ChloroethaneND1.0EPA 8260C8-14-148-14-14TrichlorofluoromethaneND0.20EPA 8260C8-14-148-14-141,1-DichloroetheneND0.20EPA 8260C8-14-148-14-14AcetoneND5.0EPA 8260C8-14-148-14-14IodomethaneND2.9EPA 8260C8-14-148-14-14Carbon DisulfideND0.20EPA 8260C8-14-148-14-14Methylene ChlorideND1.0EPA 8260C8-14-148-14-14(trans) 1,2-DichloroetheneND0.20EPA 8260C8-14-148-14-14Methyl t-Butyl EtherND0.20EPA 8260C8-14-148-14-141,1-DichloroethaneND0.20EPA 8260C8-14-148-14-142,2-DichloroperpaneND0.20EPA 8260C8-14-148-14-14	
ChloroethaneND1.0EPA 8260C8-14-148-14-14TrichlorofluoromethaneND0.20EPA 8260C8-14-148-14-141,1-DichloroetheneND0.20EPA 8260C8-14-148-14-14AcetoneND5.0EPA 8260C8-14-148-14-14IodomethaneND2.9EPA 8260C8-14-148-14-14Carbon DisulfideND0.20EPA 8260C8-14-148-14-14Methylene ChlorideND1.0EPA 8260C8-14-148-14-14(trans) 1,2-DichloroetheneND0.20EPA 8260C8-14-148-14-14Methyl t-Butyl EtherND0.20EPA 8260C8-14-148-14-141,1-DichloroethaneND0.20EPA 8260C8-14-148-14-14Vinyl AcetateND1.0EPA 8260C8-14-148-14-142,2-DichloropropaneND0.20EPA 8260C8-14-148-14-14	
TrichlorofluoromethaneND0.20EPA 8260C8-14-148-14-141,1-DichloroetheneND0.20EPA 8260C8-14-148-14-14AcetoneND5.0EPA 8260C8-14-148-14-14IodomethaneND2.9EPA 8260C8-14-148-14-14Carbon DisulfideND0.20EPA 8260C8-14-148-14-14Methylene ChlorideND1.0EPA 8260C8-14-148-14-14(trans) 1,2-DichloroetheneND0.20EPA 8260C8-14-148-14-14Methyl t-Butyl EtherND0.20EPA 8260C8-14-148-14-141,1-DichloroethaneND0.20EPA 8260C8-14-148-14-14Vinyl AcetateND1.0EPA 8260C8-14-148-14-142,2-DichloropropaneND0.20EPA 8260C8-14-148-14-14	
1,1-DichloroetheneND0.20EPA 8260C8-14-148-14-14AcetoneND5.0EPA 8260C8-14-148-14-14IodomethaneND2.9EPA 8260C8-14-148-14-14Carbon DisulfideND0.20EPA 8260C8-14-148-14-14Methylene ChlorideND1.0EPA 8260C8-14-148-14-14(trans) 1,2-DichloroetheneND0.20EPA 8260C8-14-148-14-14Methyl t-Butyl EtherND0.20EPA 8260C8-14-148-14-141,1-DichloroethaneND0.20EPA 8260C8-14-148-14-14Vinyl AcetateND1.0EPA 8260C8-14-148-14-142,2-DichloropropaneND0.20EPA 8260C8-14-148-14-14	
AcetoneND5.0EPA 8260C8-14-148-14-14IodomethaneND2.9EPA 8260C8-14-148-14-14Carbon DisulfideND0.20EPA 8260C8-14-148-14-14Methylene ChlorideND1.0EPA 8260C8-14-148-14-14(trans) 1,2-DichloroetheneND0.20EPA 8260C8-14-148-14-14Methyl t-Butyl EtherND0.20EPA 8260C8-14-148-14-141,1-DichloroethaneND0.20EPA 8260C8-14-148-14-14Vinyl AcetateND1.0EPA 8260C8-14-148-14-142,2-DichloropropaneND0.20EPA 8260C8-14-148-14-14	
IodomethaneND2.9EPA 8260C8-14-148-14-14Carbon DisulfideND0.20EPA 8260C8-14-148-14-14Methylene ChlorideND1.0EPA 8260C8-14-148-14-14(trans) 1,2-DichloroetheneND0.20EPA 8260C8-14-148-14-14Methyl t-Butyl EtherND0.20EPA 8260C8-14-148-14-141,1-DichloroethaneND0.20EPA 8260C8-14-148-14-14Vinyl AcetateND1.0EPA 8260C8-14-148-14-142,2-DichloropropaneND0.20EPA 8260C8-14-148-14-14	
Carbon DisulfideND0.20EPA 8260C8-14-148-14-14Methylene ChlorideND1.0EPA 8260C8-14-148-14-14(trans) 1,2-DichloroetheneND0.20EPA 8260C8-14-148-14-14Methyl t-Butyl EtherND0.20EPA 8260C8-14-148-14-141,1-DichloroethaneND0.20EPA 8260C8-14-148-14-14Vinyl AcetateND1.0EPA 8260C8-14-148-14-142,2-DichloropropaneND0.20EPA 8260C8-14-148-14-14	
Methylene ChlorideND1.0EPA 8260C8-14-148-14-14(trans) 1,2-DichloroetheneND0.20EPA 8260C8-14-148-14-14Methyl t-Butyl EtherND0.20EPA 8260C8-14-148-14-141,1-DichloroethaneND0.20EPA 8260C8-14-148-14-14Vinyl AcetateND1.0EPA 8260C8-14-148-14-142,2-DichloropropaneND0.20EPA 8260C8-14-148-14-14	
(trans) 1,2-DichloroetheneND0.20EPA 8260C8-14-148-14-14Methyl t-Butyl EtherND0.20EPA 8260C8-14-148-14-141,1-DichloroethaneND0.20EPA 8260C8-14-148-14-14Vinyl AcetateND1.0EPA 8260C8-14-148-14-142,2-DichloropropaneND0.20EPA 8260C8-14-148-14-14	
Methyl t-Butyl Ether ND 0.20 EPA 8260C 8-14-14 8-14-14 1,1-Dichloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14 Vinyl Acetate ND 1.0 EPA 8260C 8-14-14 8-14-14 2,2-Dichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14	
1,1-DichloroethaneND0.20EPA 8260C8-14-148-14-14Vinyl AcetateND1.0EPA 8260C8-14-148-14-142,2-DichloropropaneND0.20EPA 8260C8-14-148-14-14	
Vinyl Acetate ND 1.0 EPA 8260C 8-14-14 8-14-14 2,2-Dichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14	
2,2-Dichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14	
(cis) 1,2-Dichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14	
2-Butanone ND 5.0 EPA 8260C 8-14-14 8-14-14	
Bromochloromethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Chloroform ND 0.20 EPA 8260C 8-14-14 8-14-14	
1,1,1-Trichloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Carbon Tetrachloride ND 0.20 EPA 8260C 8-14-14 8-14-14	
1,1-Dichloropropene ND 0.20 EPA 8260C 8-14-14 8-14-14	
Benzene ND 0.20 EPA 8260C 8-14-14 8-14-14	
1,2-Dichloroethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Trichloroethene ND 0.20 EPA 8260C 8-14-14 8-14-14	
1,2-Dichloropropane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Dibromomethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
Bromodichloromethane ND 0.20 EPA 8260C 8-14-14 8-14-14	
2-Chloroethyl Vinyl Ether ND 1.0 EPA 8260C 8-14-14 8-14-14	
(cis) 1,3-Dichloropropene ND 0.20 EPA 8260C 8-14-14 8-14-14	
Methyl Isobutyl Ketone ND 2.0 EPA 8260C 8-14-14 8-14-14	
Toluene ND 1.0 EPA 8260C 8-14-14 8-14-14	
(trans) 1,3-Dichloropropene ND 0.20 EPA 8260C 8-14-14 8-14-14	

VOLATILES EPA 8260C	
Page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-3-081214					
Laboratory ID:	08-083-04					
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Tetrachloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Hexanone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Dibromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Ethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
m,p-Xylene	ND	0.40	EPA 8260C	8-14-14	8-14-14	
o-Xylene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Styrene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromoform	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Isopropylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Propylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
4-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
tert-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
sec-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
n-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Hexachlorobutadiene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Naphthalene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	62-122				
Toluene-d8	103	70-120				
4-Bromofluorobenzene	96	71-120				

VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0814W1					
Dichlorodifluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloromethane	ND	1.3	EPA 8260C	8-14-14	8-14-14	
Vinyl Chloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromomethane	ND	0.56	EPA 8260C	8-14-14	8-14-14	
Chloroethane	ND	1.0	EPA 8260C	8-14-14	8-14-14	
Trichlorofluoromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Acetone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
lodomethane	ND	2.9	EPA 8260C	8-14-14	8-14-14	
Carbon Disulfide	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methylene Chloride	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl t-Butyl Ether	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Vinyl Acetate	ND	1.0	EPA 8260C	8-14-14	8-14-14	
2,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Butanone	ND	5.0	EPA 8260C	8-14-14	8-14-14	
Bromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Chloroform	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1,1-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Carbon Tetrachloride	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,1-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Benzene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Trichloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
1,2-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Dibromomethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Bromodichloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14	
2-Chloroethyl Vinyl Ether	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(cis) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	
Methyl Isobutyl Ketone	ND	2.0	EPA 8260C	8-14-14	8-14-14	
Toluene	ND	1.0	EPA 8260C	8-14-14	8-14-14	
(trans) 1,3-Dichloropropene	ND	0.20	EPA 8260C	8-14-14	8-14-14	

VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date		
Analyte	Result	PQL	PQL Method Pre		Analyzed	Flags	
Laboratory ID:	MB0814W1						
1,1,2-Trichloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14		
Tetrachloroethene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,3-Dichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14		
2-Hexanone	ND	2.0	EPA 8260C	8-14-14	8-14-14		
Dibromochloromethane	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,2-Dibromoethane	ND	0.20	EPA 8260C	8-14-14	8-14-14		
Chlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,1,1,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14		
Ethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
m,p-Xylene	ND	0.40	EPA 8260C	8-14-14	8-14-14		
o-Xylene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
Styrene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
Bromoform	ND	1.0	EPA 8260C	8-14-14	8-14-14		
Isopropylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
Bromobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,1,2,2-Tetrachloroethane	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,2,3-Trichloropropane	ND	0.20	EPA 8260C	8-14-14	8-14-14		
n-Propylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
2-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
4-Chlorotoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,3,5-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
tert-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,2,4-Trimethylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
sec-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,3-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
p-Isopropyltoluene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,4-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,2-Dichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
n-Butylbenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
1,2-Dibromo-3-chloropropane	ND	1.0	EPA 8260C	8-14-14	8-14-14		
1,2,4-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
Hexachlorobutadiene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
Naphthalene	ND	1.0	EPA 8260C	8-14-14	8-14-14		
1,2,3-Trichlorobenzene	ND	0.20	EPA 8260C	8-14-14	8-14-14		
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	107	62-122					
Toluene-d8	105	70-120					
4-Bromofluorobenzene	98	71-120					

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	14W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	9.71	9.49	10.0	10.0	97	95	63-142	2	17	
Benzene	10.0	9.50	10.0	10.0	100	95	78-125	5	15	
Trichloroethene	8.47	8.31	10.0	10.0	85	83	75-125	2	15	
Toluene	9.90	9.70	10.0	10.0	99	97	80-125	2	15	
Chlorobenzene	10.0	9.79	10.0	10.0	100	98	80-140	2	15	
Surrogate:										
Dibromofluoromethane					114	106	62-122			
Toluene-d8					104	105	70-120			
4-Bromofluorobenzene					98	97	71-120			

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	RW-2-081214					
Laboratory ID:	08-083-01					
Naphthalene	1.3	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
2-Methylnaphthalene	38	1.9	EPA 8270D/SIM	8-14-14	8-15-14	
1-Methylnaphthalene	39	1.9	EPA 8270D/SIM	8-14-14	8-15-14	
Acenaphthylene	0.17	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Acenaphthene	1.2	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Fluorene	3.9	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Phenanthrene	1.5	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Anthracene	0.14	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Fluoranthene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Pyrene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]anthracene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Chrysene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]pyrene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[g,h,i]perylene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	40 - 107				
Pyrene-d10	90	41 - 106				
Terphenyl-d14	87	44 - 124				

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-2-081214					
Laboratory ID:	08-083-03					
Naphthalene	0.17	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
2-Methylnaphthalene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
1-Methylnaphthalene	0.60	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Acenaphthylene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Acenaphthene	0.33	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Fluorene	0.18	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Phenanthrene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Anthracene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Fluoranthene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Pyrene	ND	0.094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]anthracene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Chrysene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[b]fluoranthene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo(j,k)fluoranthene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]pyrene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Dibenz[a,h]anthracene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[g,h,i]perylene	ND	0.0094	EPA 8270D/SIM	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	45	40 - 107				
Pyrene-d10	52	41 - 106				
Terphenyl-d14	69	44 - 124				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0814W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Acenaphthene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Fluorene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Phenanthrene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Anthracene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Fluoranthene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Pyrene	ND	0.10	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Chrysene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	8-14-14	8-14-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	40 - 107				
Pyrene-d10	82	41 - 106				
Terphenyl-d14	100	44 - 124				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

					P	ercent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Re	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB08	14W1								
	SB	SBD	SB	SBD	SE	B SBE)			
Naphthalene	0.376	0.392	0.500	0.500	75	78	31 - 110	4	46	
Acenaphthylene	0.391	0.421	0.500	0.500	78	84	40 - 118	7	43	
Acenaphthene	0.390	0.417	0.500	0.500	78	83	38 - 112	7	40	
Fluorene	0.438	0.451	0.500	0.500	88	90	45 - 114	3	41	
Phenanthrene	0.403	0.418	0.500	0.500	81	84	47 - 112	4	36	
Anthracene	0.570	0.605	0.500	0.500	11	4 121	46 - 135	6	37	
Fluoranthene	0.502	0.533	0.500	0.500	10	D 107	51 - 127	6	35	
Pyrene	0.512	0.543	0.500	0.500	10	2 109	50 - 125	6	37	
Benzo[a]anthracene	0.504	0.525	0.500	0.500	10	1 105	46 - 123	4	34	
Chrysene	0.526	0.560	0.500	0.500	10	5 112	49 - 120	6	34	
Benzo[b]fluoranthene	0.480	0.496	0.500	0.500	96	99	46 - 126	3	37	
Benzo(j,k)fluoranthene	0.411	0.435	0.500	0.500	82	87	43 - 125	6	39	
Benzo[a]pyrene	0.439	0.461	0.500	0.500	88	92	44 - 129	5	37	
Indeno(1,2,3-c,d)pyrene	0.431	0.443	0.500	0.500	86	89	40 - 124	3	42	
Dibenz[a,h]anthracene	0.422	0.439	0.500	0.500	84	88	35 - 122	4	44	
Benzo[g,h,i]perylene	0.486	0.492	0.500	0.500	97	98	37 - 122	1	45	
Surrogate:										
2-Fluorobiphenyl					76	5 79	40 - 107			
Pyrene-d10					88	93	41 - 106			
Terphenyl-d14					10	4 106	44 - 124			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental Inc. Analytical Laboratory Testing Services	Chain of Custody												Page of												
14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	(in working days)															00-003									
Company: Fazz Ila	1	(Check One)																							
Project Number:		e Day L	1 Day												D/SIM	A									
071-007 Project Name:	2 Day	/s	3 Days							0		_		3081B	s 8270	8151									
6050 Marginal Way	(TPH	dard (7 Days) analysis 5 Da	ays) DY	so						8260(MIS	/-level		sides 8	sticides	oicides				1664A					
Beth Padget	001	rond	ax	Containe	Q	/BTEX			30C	d Volatiles	s 8270D/9 /el PAHs)	NSIM (Iow	7	ine Pestic	ohorus Pes	Acid Herb	Metals	Metals	w	d grease)					
Ryan Ostran, Jared Kerr		(other)	ι	er of	OH-H	H-Gx	H-GX	XQ-H	es 82(enated	olatile ow-lev	8270[8082/	ochloi	Isoudc	nated	RCRA	MTCA	Metal	oil an					isture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numb	NWTP	NWTP	NWTF	NWTF	Volatil	Halog	Semiv (with lo	PAHs	PCBs	Organ	Organ	Chlori	Total F	Total P	TCLP	HEM					% Mo
1 Rw-z-081214	8/12/14	1042	W	9			Х	Х	Х			X													
2 MW-4-081214		1139		7			X	Х	Х											~					
3 MW-Z-081214		1228		9			X	X	X			X													
A MW-3-081214	\checkmark	1345	V	7			X	X	Х								~								
		D	n															-						-	
		- Co																							
																								-	
					-						-	-			_									+	
Signature	Co	ompany				Date			Time			Com	ment	s/Spe	cial	Instru	iction	IS							
Relinquished Kypon Matra	1	Facall				8	112	1121	17	51=	2														
Received WCLAL		OSE	E			8	12.1	4	15		5														
Relinquished						0.1	-	-																	
Received																									
Relinquished																									
Received																									
Reviewed/Date		Reviewed/Da	te			,						Chro	mato	gram	s wit	th fina	al rep	ort 🗌							
OnSite		Cha	ain o	f (Cu	st	od	ly											Pag	je	1	of	2		
--	-------------	--	-----------------	-------------------	---------	------------	--------	----------------	------------	-------------------	--------------------------------------	------------------	---------	-------------------	------------------	-------------------	--------	-------------	---------------	--------------------	--------------------	------------------	-----------	--------------------	----------------
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Turr (in	naround Requ working day	iest /s)		La	abor	rato	ory	Nun	nbe	er:					0	8	-1	0	2					
Company: FARALON Project Number: 1071-007 Project Name: 6050 MARGINAL WAY	Same	(Check One) Day [/s [lard (7 Days) analysis 5 Da	1 Day 3 Days	5	а.				00000	82600	M	-level)		Ides 8081B		Icides 8151A				1064A					
Project Manager: BETH PRODGETT Sampled by: DINCER KAYHAN		(other)		ber of Container:	PH-HCID	PH-Gx/BTEX	PH-Gx	PH-Dx	iles 8260C	genated volatiles	volatiles 8270D/S low-level PAHs)	s 8270D/SIM (low	W7000 0	nochlorine Pestic	nopnospnorus Pes	rinated Acid Herb		MICA Metals	P Metals	1 (oil and grease)				A – Cardio server,	loisture
Lab ID Sample Identification	Sampled	Sampled	Matrix	1 Num	LMN	TWN	IMN NO	IMN	Volat	Halo	Sem (with	PAH		Orga	Orga	Chlo	1013	Tota	1CL	HEZ				N 70	NI 02
FI-2.4-081314	8/13/14	0923		2			~	N N	V				MO		,					_				-	-
Z FI - C-W-081314		0935	S	6	-		X	X	X	_	_		_	-					-	-		_			\overline{X}
> F8-5.0-081314 4 FB- Gul-081314		1035	w	7			X	X	x	-											+				_
5 =2 - (0,0-091314		1055	S	5				/												1					
6 F2-6-W-081314		1100	w	7			x	×	×																
7 F3-512-081314		1125	5	5	-	_	R	N		P			-	He		> -					-	-	-		
8 F3 - 6w-081314		1138	S	7			X	×	X							_						_		_	_
9 FA-6,0-081314		1200	5	5										_			_				_			_	_
10 FA - GW -081314		1205	w	7		Data	×	×	×			Com	monte	c/Sno	cial I	netruc	tions								
Relinquished Received Relinquished		FAPA (uon 982	2		eli 8/1	3/1	4 14	14	5 0	00	He	UIL	> > 	C 72	SOI HL		Si Fi	or or -	NPL K STO	NES HNI - OE	5 724 3131	'515 4		
Received																	1	FS	6	0.7	-08	1314			
Received								_																	
Reviewed/Date		Reviewed/Da	ite									Chro	nato	gram	s wit	n fina	l repo	ort 🗌							_

Data Package: Standard 🗌 Level III 🗌 Level IV 🗌 🛛 Electronic Data Deliverables (EDDs) 🗌 ____

OnSite Environmental Inc.			Cha	nin o	f	Cu	IS	to	ły											Ρ	age _	2	_ of _	2	_	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		Turna (in v	round Requ working day	iest vs)		L	abo	orat	ory	Nu	mb	er:							i.	78	-	10	2			
Project Number: Project Number: Project Name: Description (425) 883-3881 • www.onsite-env.com Project Number: Project Name: WHY Project Manager:		(C Same E Days Standa IPH ar	Check One) Day [[urd (7 Davs) nalysis 5 Day] 1 Day] 3 Days ys) 30	ers						s 8260C	/SIM	w-level)		icides 8081B	esticides 8270D/SIM	rbicides 8151A) 1664A					
BETH PADGETT Sampled by: DINCER KAYHAN	Date	1	(other) Time		imber of Contain	VTPH-HCID	VTPH-Gx/BTEX	VTPH-Gx	VTPH-Dx	latiles 8260C	logenated Volatile	mivolatiles 8270D th low-level PAHs	Hs 8270D/SIM (lo	Bs 8082A	ganochlorine Pest	ganophosphorus P	lorinated Acid He	tal RCRA Metals	tal MTCA Metals	LP Metals	EM (oil and grease					Moisture
Lab ID Sample Identification	Sample	ed	Sampled	Matrix	NN	NN	NN	NN X	NN X	N	На	Sei (wi	PA	PO	Ōĩ	Ő	5	Tot	To	10	뽀				+	8
17 FS = 6, 1-081314)	1	1250	w	7	-		X	×	X									-					-	+	-
13 F6-53 -081314			1310	5	5	•																				
14 F6-GW-081314			1317	w	7			×	×	X																
15 F7-50-081314)	335	5	5	-																				
LG F7-GW-081314	\forall		1350	w	9			×	×	x			X													
DK																										
															1.10											
Relinquished		Con		thor	٤		9	113	IK	Time [(4	200	2	Con	nmen	its/Sp	ecial	Instr	uctio	ns							
Relinquished			0	40			81	15[17	16	30															
Received																										
Relinquished																										
Received																										
Reviewed/Date		R	leviewed/Dat	te									Chrc	omate	ogran	ns w	ith fin	al re	port [

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 18, 2014

Beth Padgett Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1408-102B

Dear Beth:

Enclosed are the analytical results and associated quality control data for samples submitted on August 13, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 13, 2014 and received by the laboratory on August 13, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F8-5.0-081314					
Laboratory ID:	08-102-03					
Aroclor 1016	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1221	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1232	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1242	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1248	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1254	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Aroclor 1260	ND	0.064	EPA 8082A	9-18-14	9-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	92	51-138				
Client ID:	F5-6.7-081314					
Laboratory ID:	08-102-11					
Aroclor 1016	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1221	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1232	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1242	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1248	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1254	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Aroclor 1260	ND	0.069	EPA 8082A	9-18-14	9-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	86	51-138				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0918S1					
Aroclor 1016	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1221	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1232	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1242	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1248	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1254	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Aroclor 1260	ND	0.050	EPA 8082A	9-18-14	9-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	109	51-138				

Analyte	Re	sult	Spike	Level	Source Result	Pei Rec	rcent overy	Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB09	918S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.529	0.461	0.500	0.500	N/A	106	92	66-120	14	14	
Surrogate:											
DCB						116	101	51-138			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite		Cha	ain o	f (Cu	st	00	ły											P	age _	1	of _	2	-	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turi (in	naround Requ I working day	Jest (s)		La	aboi	rato	ory	Nun	nbe	ər:					()8	-	1 ()2					
Company:		(Check One)	-										ŀ				Notes and							1	
Project Number:		e Day L	3 Davs											8	70D/SIM	51A									
	Stan	lard (7 Days)	Da						0000	2600	5	evei)		es 8081	cides 82	ides 81				64A					
Project Manager:	_ (TPH	analysis 5 Da	lys) *7	ainers		×				atiles 8	70D/SII	1-MOI) I/		Pesticid	us Pestic	I Herbic	als	als		sase) 16					
Sampled by:	□	(other)		of Cont	HCID	Gx/BTE	Š	DX	8260C	ated Vol	Itiles 82 -level P	10/00/		hlorine	nohqsor	ted Acic	RA Met	CA Met	etals	and gre					ure
Lab ID Sample Identification	Date	Time Sampled	Matrix	Number	IWTPH-	IWTPH-	IWTPH-	IWTPH-	/olatiles	lalogen	semivola with low	AHS 82		Drganoc	Organopl	Chlorinat	fotal RC	fotal MT	ICLP M	HEM (oil					% Moist
Early Sample Identification	8/13/14	0923	S	5	-	2	NO	Ê	> .	<u> </u>	021	- 1	te		> -	0	-					-	-	-	
2 FI - GW-081314	1	0935	w	7			X	×	X																
3 F8-5.0-081314		1025	S	5			×	X	x			G	Ì												X
4 FB- GW-081314		1035	w	7			×	×	x																
5 =2-6.0-081314		1055	S	5																					
6 F2-6-W-081314		1100	w	7			x	×	×																
7 F3-512-081314		1125	5	5	-	-	B	N		P		-	-	H	ol	D	_				_	_	-		
8 F3 - 6w-081314		1138	S	7			X	×	X			_											_		
9 F4-6,0-081314		1200	5	5									_									_	_		
10 F4 - GW -081314		1205	w	7		Data	×	×	×			Com	nont	e/Snc	icial	Inetri	letior	10							
Relinguished	• 60	TA RA	Lan)		BI	12/1	Å	inne	5 -7	20	Ho	none Li	>	Giai	So	1	S	in i	MP	VE.	s			
Received T		1111	087		<	di	31	14	10	» Ū	D	ų	JIL	2	C	AL	1	F	Tor	2	AN	AL	-Y 51	5	
Relinquished		3				DE	21					A	N	AL	42	E	-	F	3-	5.1	5-0	813	314		
Received							1						~				,	FS		6.7	-02	3131	4		
Relinquished						*						6	D	Ad	Jeo) 9	116	/14	1 - 1	080	ST	4)			
Received		D															75								
Reviewed/Date		Reviewed/Da	te						70 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -			Chron	nato	gram	s wi	th fin	al rep	oort 🗌							

Data Package: Standard 🗌 Level III 🗌 Level IV 🗌 🛛 Electronic Data Deliverables (EDDs) 🗌 _____

OnSite Environmental Inc.		Cha	ain o) f (Cu	Ist	00	ły											Ρ	age _	2	_ of	2		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tu	urnaround Req (in working da	uest ys)		L	abo	rate	ory	Nur	nb	er:)8	-	10	2			
Company:	Sar	(Check One)	1 Day												Σ										
Project Number:		ays	3 Days											81B	3270D/SI	3151A									
Project Name: (0350 MACL-INAL WAY Project Manager:	(TP	ndard (7 Davs) H analysis 5 Da	ays) DO	iners						iles 8260C	D/SIM Is)	(low-level)		esticides 80	Pesticides (Herbicides 8	S	S		se) 1664A					
BETH PADGET Sampled by: DINCER KAYHAN		(other)		er of Conta	H-HCID	H-Gx/BTEX	H-Gx	H-Dx	s 8260C	nated Volat	vatiles 8270 w-level PAI	3270D/SIM	3082A	chlorine Pe	phosphorus	ated Acid F	CRA Metal	ITCA Metal	Metals	oil and grea					sture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numb	NWTPI	NWTP	NWTP	NWTP!	Volatile	Haloge	Semivo (with lo	PAHs 8	PCBs {	Organo	Organo	Chlorin	Total R	Total N	TCLP1	HEM (% Moi
11 F5 - 6.7-081314	8/13/	4 1243	S	5	-		×	×	X			(X										-		Ø
[2 F5 - GW-081314		1250	w	Ŧ	•		×	×	×											_				_	
13 F6-53-081314		1310	5	5	·													_	-	_		_		_	
14 F6-GW-081314		1317	w	1	-		X	×	X							-		-		-		_		+	+-
15 F7-50-081314		1335	2) 0			×	0				1						-		-		_		-	
16 FI-GW-001314	V	1350	w				~	~	X			X						-		-		_	_	+	
					-																				
DK																									
Sinnature		Company				Date			Time			Con	nment	ts/Sp	ecial	Instru	uction	ns							
Relinquished		ENRE	HLOF	ک		8	13)	K	16	00)														
Received	F	C	286			81'	3	14	16	0	C														
Relinquished																									
Relinquished																									
Received	*																								
Reviewed/Date		Reviewed/Da	ite									Chrc	mato	ogram	ns wi	th fin	al rep	oort [

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

August 18, 2014

Beth Padgett Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1408-126

Dear Beth:

Enclosed are the analytical results and associated quality control data for samples submitted on August 15, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on August 15, 2014 and received by the laboratory on August 15, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Lift Station-081514					
Laboratory ID:	08-126-01					
Naphthalene	ND	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
2-Methylnaphthalene	2.1	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
1-Methylnaphthalene	1.1	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthylene	ND	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthene	0.39	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Fluorene	0.65	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Phenanthrene	1.2	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Anthracene	0.87	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Fluoranthene	0.90	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Pyrene	0.93	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]anthracene	0.46	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Chrysene	0.71	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[b]fluoranthene	0.56	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo(j,k)fluoranthene	0.25	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]pyrene	0.42	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Indeno(1,2,3-c,d)pyrene	0.28	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Dibenz[a,h]anthracene	ND	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[g,h,i]perylene	0.53	0.22	EPA 8270D/SIM	8-15-14	8-15-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	85	43 - 116				
Pyrene-d10	55	33 - 124				
Terphenyl-d14	63	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-2-081514					
Laboratory ID:	08-126-02					
Naphthalene	0.046	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
2-Methylnaphthalene	0.025	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
1-Methylnaphthalene	ND	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthylene	0.029	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthene	ND	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Fluorene	0.033	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Phenanthrene	0.22	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Anthracene	0.065	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Fluoranthene	0.36	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Pyrene	0.34	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]anthracene	0.23	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Chrysene	0.35	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[b]fluoranthene	0.29	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo(j,k)fluoranthene	0.13	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]pyrene	0.21	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Indeno(1,2,3-c,d)pyrene	0.12	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Dibenz[a,h]anthracene	0.058	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[g,h,i]perylene	0.25	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	43 - 116				
Pyrene-d10	66	33 - 124				
Terphenyl-d14	76	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-1-081514					
Laboratory ID:	08-126-03					
Naphthalene	0.040	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
2-Methylnaphthalene	0.031	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
1-Methylnaphthalene	ND	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthylene	ND	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthene	ND	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Fluorene	0.032	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Phenanthrene	0.22	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Anthracene	0.036	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Fluoranthene	0.23	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Pyrene	0.23	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]anthracene	0.11	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Chrysene	0.21	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[b]fluoranthene	0.16	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo(j,k)fluoranthene	0.070	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]pyrene	0.13	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Indeno(1,2,3-c,d)pyrene	0.072	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Dibenz[a,h]anthracene	0.032	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[g,h,i]perylene	0.17	0.022	EPA 8270D/SIM	8-15-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	43 - 116				
Pyrene-d10	72	33 - 124				
Terphenyl-d14	76	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-3-081514					
Laboratory ID:	08-126-04					
Naphthalene	0.033	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
2-Methylnaphthalene	0.028	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
1-Methylnaphthalene	ND	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthylene	0.028	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthene	ND	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Fluorene	0.037	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Phenanthrene	0.19	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Anthracene	0.066	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Fluoranthene	0.31	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Pyrene	0.40	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]anthracene	0.20	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Chrysene	0.40	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[b]fluoranthene	0.19	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo(j,k)fluoranthene	0.15	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]pyrene	0.24	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Indeno(1,2,3-c,d)pyrene	0.11	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Dibenz[a,h]anthracene	0.067	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[g,h,i]perylene	0.26	0.017	EPA 8270D/SIM	8-15-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	65	43 - 116				
Pyrene-d10	65	33 - 124				
Terphenyl-d14	67	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-4-081514					
Laboratory ID:	08-126-05					
Naphthalene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
2-Methylnaphthalene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
1-Methylnaphthalene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthylene	0.48	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Fluorene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Phenanthrene	1.3	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Anthracene	0.62	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Fluoranthene	1.0	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Pyrene	1.6	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]anthracene	1.0	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Chrysene	1.1	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[b]fluoranthene	0.54	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo(j,k)fluoranthene	0.45	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]pyrene	0.77	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Indeno(1,2,3-c,d)pyrene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Dibenz[a,h]anthracene	ND	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[g,h,i]perylene	0.44	0.34	EPA 8270D/SIM	8-15-14	8-15-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	84	43 - 116				
Pyrene-d10	70	33 - 124				
Terphenyl-d14	75	38 - 125				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-5-081514					
Laboratory ID:	08-126-06					
Naphthalene	0.058	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
2-Methylnaphthalene	0.032	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
1-Methylnaphthalene	ND	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthylene	0.044	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Acenaphthene	ND	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Fluorene	0.046	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Phenanthrene	0.29	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Anthracene	0.095	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Fluoranthene	0.42	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Pyrene	0.43	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]anthracene	0.25	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Chrysene	0.45	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[b]fluoranthene	0.30	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo(j,k)fluoranthene	0.17	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[a]pyrene	0.26	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Indeno(1,2,3-c,d)pyrene	0.16	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Dibenz[a,h]anthracene	0.081	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Benzo[g,h,i]perylene	0.28	0.019	EPA 8270D/SIM	8-15-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	57	43 - 116				
Pyrene-d10	67	33 - 124				
Terphenyl-d14	53	38 - 125				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0815S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthylene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Acenaphthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Fluorene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Phenanthrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Chrysene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Benzo[g,h,i]perylene	ND	0.0067	EPA 8270D/SIM	8-15-14	8-15-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	112	43 - 116				
Pyrene-d10	98	33 - 124				
Terphenyl-d14	94	38 - 125				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

						Pere	cent	Recovery		RPD	
Analyte	Result		Spike	Spike Level		Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB08	15S1									
	SB	SBD	SB	SBD	Ś	SB	SBD				
Naphthalene	0.0682	0.0650	0.0833	0.0833	1	82	78	45 - 109	5	29	
Acenaphthylene	0.0749	0.0707	0.0833	0.0833	9	90	85	54 - 118	6	18	
Acenaphthene	0.0704	0.0685	0.0833	0.0833	1	85	82	60 - 108	3	14	
Fluorene	0.0704	0.0715	0.0833	0.0833	1	85	86	61 - 113	2	13	
Phenanthrene	0.0650	0.0656	0.0833	0.0833		78	79	63 - 106	1	13	
Anthracene	0.102	0.103	0.0833	0.0833	1	22	124	55 - 135	1	13	
Fluoranthene	0.0727	0.0730	0.0833	0.0833	1	87	88	66 - 118	0	13	
Pyrene	0.0734	0.0725	0.0833	0.0833	1	88	87	69 - 112	1	12	
Benzo[a]anthracene	0.0767	0.0776	0.0833	0.0833	9	92	93	58 - 118	1	13	
Chrysene	0.0737	0.0719	0.0833	0.0833	1	88	86	64 - 114	2	11	
Benzo[b]fluoranthene	0.0733	0.0725	0.0833	0.0833	1	88	87	52 - 125	1	19	
Benzo(j,k)fluoranthene	0.0758	0.0753	0.0833	0.0833	9	91	90	50 - 126	1	22	
Benzo[a]pyrene	0.0863	0.0857	0.0833	0.0833	1	04	103	43 - 123	1	16	
Indeno(1,2,3-c,d)pyrene	0.0718	0.0696	0.0833	0.0833		86	84	55 - 118	3	16	
Dibenz[a,h]anthracene	0.0707	0.0696	0.0833	0.0833	1	85	84	57 - 120	2	15	
Benzo[g,h,i]perylene	0.0697	0.0689	0.0833	0.0833		84	83	58 - 113	1	18	
Surrogate:											
2-Fluorobiphenyl					1	19	116	43 - 116			Q
Pyrene-d10						89	90	33 - 124			
Terphenyl-d14						85	85	38 - 125			

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	Lift Station-081514						
Laboratory ID:	08-126-01						
Aroclor 1016	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1221	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1232	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1242	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1248	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1254	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1260	2.6	0.17	EPA 8082A	8-18-14	8-18-14		
Surrogate:	Percent Recovery	Control Limits					
DCB	128	51-138					
Client ID:	CB-2-081514						
Laboratory ID:	08-126-02						
Aroclor 1016	ND	0.13	EPA 8082A	8-18-14	8-18-14		
Aroclor 1221	ND	0.13	EPA 8082A	8-18-14	8-18-14		
Aroclor 1232	ND	0.13	EPA 8082A	8-18-14	8-18-14		
Aroclor 1242	ND	0.13	EPA 8082A	8-18-14	8-18-14		
Aroclor 1248	ND	0.13	EPA 8082A	8-18-14	8-18-14		
Aroclor 1254	ND	0.13	EPA 8082A	8-18-14	8-18-14		
Aroclor 1260	ND	0.13	EPA 8082A	8-18-14	8-18-14		
Surrogate:	Percent Recovery	Control Limits					
DCB	122	51-138					
Client ID:	CB-1-081514						
Laboratory ID:	08-126-03						
Aroclor 1016	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1221	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1232	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1242	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1248	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1254	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Aroclor 1260	ND	0.17	EPA 8082A	8-18-14	8-18-14		
Surrogate:	Percent Recovery	Control Limits					
DCB	115	51-138					

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-3-081514					
Laboratory ID:	08-126-04					
Aroclor 1016	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	ND	0.13	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	122	51-138				
Client ID:	CB-4-081514					
Laboratory ID:	08-126-05					
Aroclor 1016	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	ND	0.25	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	112	51-138				
Client ID:	CB-5-081514					
Laboratory ID:	08-126-06					
Aroclor 1016	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	ND	0.14	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	126	51-138				

12

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0818S1					
Aroclor 1016	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1221	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1232	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1242	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1248	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1254	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Aroclor 1260	ND	0.050	EPA 8082A	8-18-14	8-18-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	105	51-138				

Analyte	Re	sult	Spike	Level	Source Result	Peı Rec	rcent overy	Recovery Limits	RPD	RPD Limit	Flags
SPIKE BLANKS											
Laboratory ID:	SB08	318S1									
	SB	SBD	SB	SBD		SB	SBD				
Aroclor 1260	0.461	0.434	0.500	0.500	N/A	92	87	66-120	6	14	
Surrogate: DCB						110	105	51-138			

TOTAL METALS EPA 6010C

Matrix:	Soil
Units:	mg/kg (ppm)

Lead

Zinc

62

630

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	08-126-01 Lift Station-081514					
Arsenic	ND	17	6010C	8-18-14	8-18-14	
Chromium	75	0.83	6010C	8-18-14	8-18-14	
Copper	140	1.7	6010C	8-18-14	8-18-14	
Lead	170	8.3	6010C	8-18-14	8-18-14	
Zinc	1300	4.2	6010C	8-18-14	8-18-14	
Lab ID: Client ID:	08-126-02 CB-2-081514					
Arsenic	ND	13	6010C	8-18-14	8-18-14	
Chromium	49	0.64	6010C	8-18-14	8-18-14	
Copper	56	1.3	6010C	8-18-14	8-18-14	
Lead	65	6.4	6010C	8-18-14	8-18-14	
Zinc	710	3.2	6010C	8-18-14	8-18-14	
Lab ID: Client ID:	08-126-03 CB-1-081514					
Arsenic	ND	17	6010C	8-18-14	8-18-14	
Chromium	55	0.83	6010C	8-18-14	8-18-14	
Copper	75	1.7	6010C	8-18-14	8-18-14	

6010C

6010C

8.3

4.2

8-18-14

8-18-14

8-18-14

8-18-14

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

TOTAL METALS EPA 6010C

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	08-126-04 CB-3-081514					
Arsenic	ND	13	6010C	8-18-14	8-18-14	
Chromium	34	0.65	6010C	8-18-14	8-18-14	
Copper	65	1.3	6010C	8-18-14	8-18-14	
Lead	85	6.5	6010C	8-18-14	8-18-14	
Zinc	740	3.3	6010C	8-18-14	8-18-14	

Lab ID:	08-126-05					
Client ID:	CB-4-081514					
Arsenic	68	25	6010C	8-18-14	8-18-14	
Chromium	140	1.3	6010C	8-18-14	8-18-14	
Copper	1300	2.5	6010C	8-18-14	8-18-14	
Lead	370	13	6010C	8-18-14	8-18-14	
Zinc	1900	6.3	6010C	8-18-14	8-18-14	

Lab ID:	08-126-06					
Client ID:	CB-5-081514					
Arsenic	ND	14	6010C	8-18-14	8-18-14	
Chromium	48	0.71	6010C	8-18-14	8-18-14	
Copper	75	1.4	6010C	8-18-14	8-18-14	
Lead	110	7.1	6010C	8-18-14	8-18-14	
Zinc	1100	3.5	6010C	8-18-14	8-18-14	

TOTAL METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	8-18-14
Date Analyzed:	8-18-14
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0818SM1&MB0818SM2

Analyte	Method	Result	PQL
Arsenic	6010C	ND	10
Chromium	6010C	ND	0.50
Copper	6010C	ND	1.0
Lead	6010C	ND	5.0
Zinc	6010C	ND	2.5

TOTAL METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	8-18-14
Date Analyzed:	8-18-14

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 08-126-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Chromium	38.1	44.3	15	0.50	
Copper	43.9	43.4	1	1.0	
Lead	51.1	50.4	1	5.0	
Zinc	557	562	1	2.5	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted:	8-18-14
Date Analyzed:	8-18-14

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 08-126-02

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	93.5	94	93.3	93	0	
Chromium	100	134	96	135	97	1	
Copper	50.0	90.5	93	91.1	94	1	
Lead	250	307	102	301	100	2	
Zinc	100	669	112	656	99	2	

% MOISTURE

Date Analyzed: 8-15-14

Client ID	Lab ID	% Moisture
Lift Station-081514	08-126-01	40
CB-2-081514	08-126-02	22
CB-1-081514	08-126-03	40
CB-3-081514	08-126-04	23
CB-4-081514	08-126-05	61
CB-5-081514	08-126-06	29

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite		Cha	ain o	f	Cu	Ist	00	ly					ł						P	age _	1	of	1	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Turnaround Request (in working days) Laboratory Number: O									8	-	12	26				-							
Company: Farallon		(Oneck One)	🖉 1 Dav												5									
Project Number: 1071-007	2 Day	s I	3 Days											81B	3270D/SIN	3151A								
Project Name: 6050 Marginal Way	Stand (TPH	dard (7 Days) analysis 5 Da	ys)	SrS						s 8260C	/SIM	w-level)		icides 80	esticides 8	bicides 8	*) 1664A				
Sampled by:				Containe	9	/BTEX	Č.		60C	d Volatile	ss 8270D, vel PAHs)	ol) MIS/C	A	rine Pest	phorus Pe	Acid Her	Metals	Metals	S	d grease				
Dincer Kayhan, Ryan Ostron		(other)		ber of	PH-HG	PH-GX	PH-Gx	PH-DX	iles 82	genate	volatile low-le	\$ 8270	s 8082/	nochlo	soudou	rinated	HOH	MTCA	o Meta	(oil an				oisture
Lab ID Sample Identification	Date Sampled	Sampled	Matrix	Num	NWT	TWN	NWT	NWT	Volat	Halo	Semi (with	PAHS	PCB	Orga	Orgai	Chlor	Total	Total	TCLF	HEM				W %
1 LiFt-Station-081514	8/15/14	0842	S	2	-							Х	Х				X							X
2 (B-Z-081514		1302										\times	Х				X							X
3 CB-1-081514		1313										Х	X				X							X
4 CB-3-081514		1325										X	X				X							X
5 CB-4-081514		1335		T								X	X				X							×
(CB-5-081514		1355	V	J	/							X	X				X							X
	V			V																			1	
RQ							*																	
Signature	Co	ompany	and the second			Date		2.90	Time			Con	nmen	ts/Sp	ecial	Instru	uction	IS	-					
Relinquished Lyan Ostrow		Favalle	m			8/	15/	14	14	50	0	*A	nal	yze	2 -	for	. <i>J</i> .	los	enil	c, 1	ead,	Ch	omi	vm,
Received alex armantro	ut	OSE				8	15	14	14	5	0	C	PP	per	, ,	2:0	nc		6,	, E	EPA	N	lethe	ds
Relinquished												6	010	o c	1-	74	70	A	/					-
Received												~			,		10	- 11						
Relinquished																								
Received																								
Reviewed/Date		Reviewed/Da	te									Chro	omate	ograr	ns wi	th fin	al rep	ort []					

Data Package: Standard 🗌 Level III 🗌 Level IV 🗌 👘 Electronic Data Deliverables (EDDs) 🗌

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 30, 2014

Scott Allan Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1409-205

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on September 23, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 30, 2014 Samples Submitted: September 23, 2014 Laboratory Reference: 1409-205 Project: 1071-007

Case Narrative

Samples were collected on September 22, 2014 and received by the laboratory on September 23, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

2

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F9-9.0-092214					
Laboratory ID:	09-205-01					
Gasoline	ND	4.7	NWTPH-Gx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	71-121				
Client ID:	F10-12.0-092214					
Laboratory ID:	09-205-02					
Gasoline	ND	9.4	NWTPH-Gx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	71-121				
Client ID:	F11-12.0-092214					
Laboratory ID:	09-205-03					
Gasoline	ND	8.6	NWTPH-Gx	9-25-14	9-26-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	108	71-121				
Client ID:	F12-7.0-092214					
Laboratory ID:	09-205-04					
Gasoline	ND	4.5	NWTPH-Gx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	71-121				
Client ID:	F15-7.4-092214					
Laboratory ID:	09-205-07					
Gasoline	ND	7.9	NWTPH-Gx	9-25-14	9-29-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	71-121				
Client ID:	F16-7.0-092214					
Laboratory ID:	09-205-08					
Gasoline	ND	10	NWTPH-Gx	9-25-14	9-29-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	71-121				

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F17-8.0-092214					
Laboratory ID:	09-205-09					
Gasoline	ND	3.1	NWTPH-Gx	9-25-14	9-29-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	71-121				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0925S1					
Gasoline	ND	5.0	NWTPH-Gx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	71-121				

Analyte	Re	sult	Snike	l evel	Source Result	Perc	cent	Recovery Limits	RPD	RPD Limit	Flags
DUPLICATE	1101	Jun	opino	20101	Rooun	11000	, rory	Liinto		Liiiit	riago
Laboratory ID:	09-22	09-228-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		NA		NA	NA	30	
Surrogate: Fluorobenzene						101	103	71-121			

NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

5 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F10-GW-092214					
Laboratory ID:	09-205-11					
Gasoline	ND	100	NWTPH-Gx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	71-112				
Client ID:	F11-GW-092214					
Laboratory ID:	09-205-12					
Gasoline	ND	100	NWTPH-Gx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	71-112				
NWTPH-Gx

Matrix: Water Units: ug/L (ppb)

0 (11)						Date	Date		
Analyte		Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK									
Laboratory ID:		MB0924W1							
Gasoline		ND	100	NWT	ГРН-Gx	9-24-14	9-24-1	4	
Surrogate:	Per	cent Recover	Control Lim	its					
Fluorobenzene		91	71-112						
				Source	Percent	Recovery		RPD	
Analyte	Res	ult	Spike Level	Result	Recover	y Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-21	4-01							
	ORIG	DUP							
Gasoline	ND	ND	NA NA		NA	NA	NA	30	
Surrogate:									
Fluorobenzene					88 88	3 71-112			

7

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F9-9.0-092214					
Laboratory ID:	09-205-01					
Diesel Range Organics	ND	120	NWTPH-Dx	9-24-14	9-24-14	U1
Lube Oil	1400	55	NWTPH-Dx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	F10-12.0-092214					
Laboratory ID:	09-205-02					
Diesel Range Organics	ND	40	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	81	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	E44 40 0 000044					
	F11-12.0-092214					
	09-205-03	20		0.05.44	0.05.44	
Lube Oil Bange Organics		38		9-25-14	9-25-14	
Lube Oil Range Organics	ND Dereent Decevery	() Control Limito	NW IPH-DX	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
0-Terphenyi	07	50-750				
Client ID:	F12-7.0-092214					
Laboratory ID:	09-205-04					
Diesel Range Organics	ND	27	NWTPH-Dx	9-24-14	9-24-14	
Lube Oil Range Organics	ND	55	NWTPH-Dx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenvl	61	50-150				
	• ·					
Client ID:	F13-6.7-092214					
Laboratory ID:	09-205-05					
Diesel Range Organics	440	27	NWTPH-Dx	9-24-14	9-24-14	
Lube Oil Range Organics	ND	54	NWTPH-Dx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	80	50-150				
Client ID:	F14-7.0-092214					
Laboratory ID:	09-205-06					
Diesel Range Organics	5700	29	NWTPH-Dx	9-24-14	9-24-14	
Lube Oil Range Organics	ND	270	NWTPH-Dx	9-24-14	9-24-14	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	63	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

5° 5 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F15-7.4-092214					
Laboratory ID:	09-205-07					
Diesel Range Organics	ND	38	NWTPH-Dx	9-24-14	9-24-14	
Lube Oil Range Organics	ND	77	NWTPH-Dx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	58	50-150				
Client ID:	F16-7.0-092214					
Laboratory ID:	09-205-08					
Diesel Range Organics	ND	40	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	80	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	90	50-150				
Client ID:	F17-8.0-092214					
Laboratory ID:	09-205-09					
Diesel Fuel #2	380	28	NWTPH-Dx	9-24-14	9-24-14	
Lube Oil Range Organics	ND	59	NWTPH-Dx	9-24-14	9-24-14	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	68	50-150				
Client ID:	F18-8.0-092214					
Laboratory ID:	09-205-10					
Diesel Range Organics	9700	140	NWTPH-Dx	9-24-14	9-25-14	
Lube Oil Range Organics	ND	580	NWTPH-Dx	9-24-14	9-25-14	U1
Surrogate:	Percent Recoverv	Control Limits				
o-Terphenyl	83	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				-		
Laboratory ID:	MB0924S1					
Diesel Range Organics	ND	25	NWTPH-Dx	9-24-14	9-24-14	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				
Laboratory ID:	MB0925S2					
Diesel Range Organics	ND	25	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
		6		t Beesvor		~

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-18	36-03									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	4	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	4	NA	NA	NA	
Surrogate:											
o-Terphenyl						90	96	50-150			
Laboratory ID:	09-20	05-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	4	NA	NA	NA	U1
Lube Oil	1280	1170	NA	NA		NA	٩	NA	9	NA	
Surrogate:											
o-Terphenyl						84	77	50-150			

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

- U (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F10-GW-092214					
Laboratory ID:	09-205-11					
Diesel Range Organics	ND	0.25	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	0.40	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
Client ID:	F11-GW-092214					
Laboratory ID:	09-205-12					
Diesel Range Organics	ND	0.26	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				

Surrogate:Percent RecoveryControl Lino-Terphenyl8050-150

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Result	PQL	Method	Date Prepared	Date Analyzed	Flags
MB0925W1					
ND	0.25	NWTPH-Dx	9-25-14	9-25-14	
ND	0.40	NWTPH-Dx	9-25-14	9-25-14	
Percent Recovery	Control Limits				
94	50-150				
	Result MB0925W1 ND ND Percent Recovery 94	Result PQL MB0925W1 0.25 ND 0.25 ND 0.40 Percent Recovery Control Limits 94 50-150	Result PQL Method MB0925W1	Result PQL Method Date Prepared MB0925W1	Result PQL Method Date Prepared Date Analyzed MB0925W1

					Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-2	15-01								
	ORIG	DUP								
Diesel Range Organics	0.552	0.377	NA	NA		NA	NA	38	NA	
Lube Oil Range Organics	0.697	0.506	NA	NA		NA	NA	32	NA	
Surrogate:										
o-Terphenyl						77 77	50-150			

12

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F13-6.7-092214					
Laboratory ID:	09-205-05					
Aroclor 1016	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1221	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1232	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1242	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1248	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1254	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Aroclor 1260	ND	0.054	EPA 8082A	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	58	51-138				
Client ID:	F18-8.0-092214					
Laboratory ID:	09-205-10					
Aroclor 1016	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1221	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1232	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1242	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1248	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1254	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Aroclor 1260	ND	0.056	EPA 8082A	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	62	51-138				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0924S1					
Aroclor 1016	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1221	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1232	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1242	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1248	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1254	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Aroclor 1260	ND	0.050	EPA 8082A	9-24-14	9-24-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	83	51-138				

Analyte	Re	sult	Spike	Level	Source Result	Pe Rec	rcent covery	Recovery Limits	RPD	RPD Limit	Flags
MATRIX SPIKES							,				<u>v</u>
Laboratory ID:	09-2	05-05									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.322	0.334	0.500	0.500	ND	64	67	49-136	4	14	
Surrogate: DCB						56	59	51-138			

14

Date of Report: September 30, 2014 Samples Submitted: September 23, 2014 Laboratory Reference: 1409-205 Project: 1071-007

% MOISTURE

Date Analyzed: 9-24-14

Client ID	Lab ID	% Moisture
F9-9.0-092214	09-205-01	8
F10-12.0-092214	09-205-02	38
F11-12.0-092214	09-205-03	35
F12-7.0-092214	09-205-04	9
F13-6.7-092214	09-205-05	7
F14-7.0-092214	09-205-06	13
F15-7.4-092214	09-205-07	35
F16-7.0-092214	09-205-08	37
F17-8.0-092214	09-205-09	10
F18-8.0-092214	09-205-10	10

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite		Cha	ain o	f (Cu	Ist	00	y										Pa	age _	1	of	2	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite.env.com	Tur (i	rnaround Requ n working day	uest /s)		La	abo	rate	ory	Nun	nbe	er:								09	1-2	20	5	
Company: Facalon Project Number: Ioni-oon Project Name:	Sam	(Check One) le Day [lys [ldard (7 Days)] 1 Day] 3 Days							200	(ivel)		es 8081B	ides 8270D/SIM	des 8151A				34A				
BOSD EAST MARLEINAL WAY Project Manager: SCOTT ALLAN Sampled by: DINCER KATHAN	(TPH	l analysis 5 Da (other)	ıys)	ber of Containers	PH-HCID	PH-Gx/BTEX	PH-Gx	PH-Dx	lies 8260C		volatiles 8270D/SIN low-level PAHs) 8 8270D/SIM (low-le	s 8082A	nochlorine Pesticide	nophosphorus Pestic	inated Acid Herbici	RCRA Metals	MTCA Metals	^o Metals	(oil and grease) 16(oisture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Num	ITWN	NWTI	ITWN	IMM	Volat		Semi (with PAHs	PCBS	Orgai	Orgar	Chlor	Total	Total	TCLF	HEM		_		W %
F9-9.0-092214	9/22	0941	S	2	-		X	X		_		_	_		-						_		A
C P:F10-12.0-092214		1005			-		X	X		_		_											\parallel
3 F11-12.0-092214		1045					×	~							-						_		
4 F12-7.0-092214		1108					X	X		_											_		
5 F13-6.7-092214		1135						X				×											
6 F14-7.0-092214		1155						X															
7 FIS-7.4-092214		1209					X	X															
8 FHG-7.0-092214		1220		4			X	X															
9 FI7- 8.0-092214		1233		3			x	X															
10 F18-8.0-097214		1243	*	3				X				×											V
Signature	C	ompany				Date	,		Time		Co	mme	nts/Sp	ecial	Instr	uction	ıs						
Relinquished Received	9	5 Perce	non) /	45	9	91	22	119	93	0	2												
Relinquished		Spag	1	ţ		011	22	14	(00	11	4												Υ.
Received		a	Der.			96	231	14	1Ć	y	1												
Relinquished			000																				
Received																							
Reviewed/Date		Reviewed/Da	te								Ch	roma	tograr	ns w	ith <mark>f</mark> in	al rep	oort [

Data Package: Standard 🗌 Level III 🗌 Level IV 🗌 Electronic Data Deliverables (EDDs) 🗌 ____

OnSite		Cha	ain o	f (Cu	ISt	:00	dy											Pi	age _	2	_ of	2	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (ii	naround Requ n working day	uest ys)		La	abo	rate	ory	Nur	nb	er:							(09	- 1	20	15		
Phone: (425) 883-3881 • www.onsite-env.com	-	(Check One)				1		1									1	1	1	1				
FARALLON Brief Number	. 🗌 Samo	e Day [1 Day												SIM									
1071-007	2 Day	ys [3 Days											81B	270D/	151A								
Project Name: 6050 E MARCINAL WAT	H Stand	dard (7 Days) analysis 5 Da	ays)	Grs						s 8260C	/SIM	w-level)		icides 80	esticides 8	rbicides 8) 1664A				
Scott AUN Sampled by:		(athan)		Containe	QID	(/BTEX			60C	d Volatile	es 8270D vel PAHs	D/SIM (Io	A	orine Pest	sphorus Pe	I Acid He	A Metals	A Metals	s	nd grease				Φ
DINCER L		(other)		ber of	DH-Ho	H-G	DH-G	XQ-Hc	les 82	Jenate	volatile low-le	8270	8082	ochic	solidor	inated	RCRA	MTC/	Meta	(oil ar				oisture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Num	NWT	NWTF	NWTF	NWT	Volati	Halog	Semiv (with	PAHs	PCBs	Orgar	Orgar	Chlor	Total	Total	TCLF	HEM				W %
11 FIO-GW-0922134	9/22	1020	W	5			×	×																
12 FIL - GW-0922134"	1	1100	W	5			×	×																
DE																								
Signature	C	ompany				Date			Time			Con	nmen	ts/Spe	ecial	Instru	uctio	ns						
Relinquished		FARAL	LON			9/	22/	14	9	30	0													
Received CM		GP-c-	DYA	199		91	231	14	9:	30	>													
Relinquished		9 Pag	7			9/	PB	lit	10	И	9													
Received	_	Ó	RES			96	23	14	10)4	4													
Relinquished																								
Received																								
Reviewed/Date		Reviewed/Da	ate									Chro	mato	ogram	is wi	ith fin	al re	port []					

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 2, 2014

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1409-217

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on September 23, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 2, 2014 Samples Submitted: September 23, 2014 Laboratory Reference: 1409-217 Project: 1071-007

Case Narrative

Samples were collected on September 23, 2014 and received by the laboratory on September 23, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH-Dx

Matrix: Water Units: mg/L (ppm)

- J ⁻ J ⁻ (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-092314					
Laboratory ID:	09-217-01					
Diesel Range Organics	ND	0.26	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	74	50-150				
Client ID:	MW-5-092314					
Laboratory ID:	09-217-02					
Diesel Range Organics	0.43	0.26	NWTPH-Dx	9-25-14	9-25-14	
Lube Oil Range Organics	ND	0.41	NWTPH-Dx	9-25-14	9-25-14	
Surrogate:	Percent Recovery	Control Limits				

Surrogate:	Percent Recovery	Control Lin
o-Terphenyl	84	50-150

NWTPH-Dx QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Result	PQL	Method	Date Prepared	Date Analvzed	Flags
	-•				- J-
MB0925W1					
ND	0.25	NWTPH-Dx	9-25-14	9-25-14	
ND	0.40	NWTPH-Dx	9-25-14	9-25-14	
Percent Recovery	Control Limits				
94	50-150				
	Result MB0925W1 ND ND Percent Recovery 94	Result PQL MB0925W1 0.25 ND 0.25 ND 0.40 Percent Recovery Control Limits 94 50-150	Result PQL Method MB0925W1	ResultPQLMethodDate PreparedMB0925W1ND0.25NWTPH-Dx9-25-14ND0.40NWTPH-Dx9-25-14Percent RecoveryControl Limits 50-1509450-150	Result PQL Method Date Prepared Date Analyzed MB0925W1

					Source	Perce	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-2 ⁻	14-01									
	ORIG	DUP									
Diesel Range Organics	1.63	0.755	NA	NA		NA		NA	73	NA	
Lube Oil Range Organics	3.05	1.76	NA	NA		NA		NA	54	NA	
Surrogate:											
o-Terphenyl						60	76	50-150			

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-6-092314					
Laboratory ID:	09-217-01					
Naphthalene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
2-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
1-Methylnaphthalene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Acenaphthylene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Acenaphthene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Fluorene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Phenanthrene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Anthracene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Fluoranthene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Pyrene	ND	0.096	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[a]anthracene	0.010	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Chrysene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[g,h,i]perylene	ND	0.0096	EPA 8270D/SIM	9-28-14	9-29-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	40 - 107				
Pyrene-d10	65	41 - 106				
Terphenyl-d14	70	44 - 124				

PAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	MW-5-092314					
Laboratory ID:	09-217-02					
Naphthalene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
2-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
1-Methylnaphthalene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Acenaphthylene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Acenaphthene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Fluorene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Phenanthrene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Anthracene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Fluoranthene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Pyrene	ND	0.095	EPA 8270D/SIM	9-28-14	9-30-14	
Benzo[a]anthracene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Chrysene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Benzo[b]fluoranthene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Benzo[a]pyrene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Benzo[g,h,i]perylene	ND	0.0095	EPA 8270D/SIM	9-28-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	102	40 - 107				
Pyrene-d10	83	41 - 106				
Terphenyl-d14	101	44 - 124				

Date of Report: October 2, 2014 Samples Submitted: September 23, 2014 Laboratory Reference: 1409-217 Project: 1071-007

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0928W1					
Naphthalene	ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
2-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
1-Methylnaphthalene	ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
Acenaphthylene	ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
Acenaphthene	ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
Fluorene	ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
Phenanthrene	ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
Anthracene	ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
Fluoranthene	ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
Pyrene	ND	0.10	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[a]anthracene	ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
Chrysene	ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[b]fluoranthene	ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo(j,k)fluoranthene	ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[a]pyrene	ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
Indeno(1,2,3-c,d)pyrene	ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
Dibenz[a,h]anthracene	ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
Benzo[g,h,i]perylene	ND	0.010	EPA 8270D/SIM	9-28-14	9-29-14	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	64	40 - 107				
Pyrene-d10	80	41 - 106				
Terphenyl-d14	77	44 - 124				

Date of Report: October 2, 2014 Samples Submitted: September 23, 2014 Laboratory Reference: 1409-217 Project: 1071-007

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

					P	ercent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Re	covery	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	28W1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.386	0.359	0.500	0.500	77	72	31 - 110	7	46	
Acenaphthylene	0.338	0.352	0.500	0.500	68	70	40 - 118	4	43	
Acenaphthene	0.397	0.393	0.500	0.500	79	79	38 - 112	1	40	
Fluorene	0.400	0.428	0.500	0.500	80	86	45 - 114	7	41	
Phenanthrene	0.386	0.418	0.500	0.500	77	84	47 - 112	8	36	
Anthracene	0.399	0.422	0.500	0.500	80	84	46 - 135	6	37	
Fluoranthene	0.409	0.440	0.500	0.500	82	88	51 - 127	7	35	
Pyrene	0.408	0.429	0.500	0.500	82	86	50 - 125	5	37	
Benzo[a]anthracene	0.472	0.484	0.500	0.500	94	97	46 - 123	3	34	
Chrysene	0.427	0.432	0.500	0.500	85	86	49 - 120	1	34	
Benzo[b]fluoranthene	0.438	0.431	0.500	0.500	88	86	46 - 126	2	37	
Benzo(j,k)fluoranthene	0.445	0.472	0.500	0.500	89	94	43 - 125	6	39	
Benzo[a]pyrene	0.390	0.410	0.500	0.500	78	82	44 - 129	5	37	
Indeno(1,2,3-c,d)pyrene	0.435	0.450	0.500	0.500	87	90	40 - 124	3	42	
Dibenz[a,h]anthracene	0.448	0.457	0.500	0.500	90	91	35 - 122	2	44	
Benzo[g,h,i]perylene	0.435	0.448	0.500	0.500	87	90	37 - 122	3	45	
Surrogate:										
2-Fluorobiphenyl					84	71	40 - 107			
Pyrene-d10					87	90	41 - 106			
Terphenyl-d14					85	89	44 - 124			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite	Chain	of C	us	toc	ly									Pa	age	1	of _	
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		Labo	orate	ory N	umb	er:							0	9 -	-21	7	
Phone: (425) 883-3881 • www.onsite-env.com Company: FARALLON Project Number: 1071-007 Project Name: PROLOGIS Project Manager: Scott Allin Sampled by: Anna Sigel ab ID Sample Identification I MW-G-0923/4 2 MW-5-0923/4	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (TPH analysis 5 Days) (other) Date Time Sampled 9/23/14 81/0 9:10	Number of Containers	NWTPH-HGD NWTPH-Gx/BTEX	× × NWIPH-GX 339/24	Volatiles 8260C	Halogenated Volatiles 8260C	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHS 8270D/SIM (low-level)	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A		-	% Moisture
Signature	Company		Date		Tii	me		Comr	nents/S	specia	l Instr	uctio	ns					
Received Received Received Received Received Received	Speedy Mar D "" " OSE	N 1991	9- n 91	28-1	14 14 14	1016 N:B 131 31	0									•		
Reviewed/Date	Reviewed/Date							Chron	natogra	ams w	vith fir	nal rei	oort [

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 1, 2014

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1409-252

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on September 25, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 1, 2014 Samples Submitted: September 25, 2014 Laboratory Reference: 1409-252 Project: 1071-007

Case Narrative

Samples were collected on September 24, 2014 and received by the laboratory on September 25, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-6-092414					
Laboratory ID:	09-252-04					
Aroclor 1016	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.065	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	94	51-138				
Client ID:	CB-8-092414					
Laboratory ID:	09-252-05					
Aroclor 1016	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.062	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	110	51-138				
Client ID:	CB-10-092414					
Laboratory ID:	09-252-06					
Aroclor 1016	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.068	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	95	51-138				

PCBs EPA 8082A

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-12-092414					
Laboratory ID:	09-252-07					
Aroclor 1016	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	0.31	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.074	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	93	51-138				
Client ID:	CB-13-092414					
Laboratory ID:	09-252-08					
Aroclor 1016	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.063	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	95	51-138				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0930S1					
Aroclor 1016	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1221	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1232	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1242	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1248	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1254	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Aroclor 1260	ND	0.050	EPA 8082A	9-30-14	9-30-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	91	51-138				

Analyte	Re	sult	Spike	Level	Source Result	Pe Rec	rcent covery	Recovery Limits	RPD	RPD Limit	Flags
MATRIX SPIKES											
Laboratory ID:	09-2	72-08									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.441	0.462	0.500	0.500	ND	88	92	49-136	5	14	
Surrogate:											
DCB						94	112	51-138			

5

Date of Report: October 1, 2014 Samples Submitted: September 25, 2014 Laboratory Reference: 1409-252 Project: 1071-007

% MOISTURE

Date Analyzed: 9-30-14

Client ID	Lab ID	% Moisture
CB-6-092414	09-252-04	23
CB-8-092414	09-252-05	19
CB-10-092414	09-252-06	27
CB-12-092414	09-252-07	33
CB-13-092414	09-252-08	21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Consite Environmental Inc. Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Chain O Turnaround Request (in working days))f (Cu	ISt abo	O (dy ory	Num	nbei	r:							Pa	age _	 -2	of 2	
Company: Favallon Project Number: 1071-007 Project Name: 6050 E Marginal Way S Project Manager: Scott Allin Sampled by: Amber Bailey	(Check One) Same Day 1 Day 2 Days 3 Days Standard (7 Days) (TPH analysis 5 Days) X 5 day (other) Date Time	umber of Containers	WTPH-HCID	MTPH-Gx/BTEX	NTPH-Gx	NTPH-Dx	Mattiles 8260C	minolatiles 8270D/SIM	tith low-level PAHs) AHs 8270D/SIM (low-level)	2Bs 8082A	ganochlorine Pesticides 8081B	ganophosphorus Pesticides 8270D/SIM	nlorinated Acid Herbicides 8151A	otal RCRA Metals	otal MTCA Metals	CLP Metals	EM (oil and grease) 1664A	2032 8082	HOLD	Moisture
$\frac{1}{2} \frac{1}{1} \frac{1}$	Sampled Sampled Matrix 9/24/14 1047 5 1 1106 1 1155 1																	× × ×	X X X	
Signature Relinquished Received Relinquished Received Relinquished BULL Received	Company Favallon Spechy Spechy	3		Date 9 9: 9: 9:		55714	Time 100 100	000))) f		ess,	ecial	Instru	Letter Letter	JIS NG	1		\\\	- Co Di	
Relinquished Received Reviewed/Date	Reviewed/Date								Ch	romat	ograr	ns w	ith fin	al rep	port []				

Consite Environmental Inc. Analytical Laboratory Testing Services	Chain of Custody naround Request Laboratory Number:							$\frac{Page \ Q \ of \ Q}{09 - 252}$						_										
Phone: (425) 883-3881 • www.onsite-env.com	In	(Check One)	131																					
Company: Found 1000]	(Check One)	_																					
Project Number:	_ L Same	e Day	_ 1 Day											VOINT		-					1			
1071-007	2 Day	/s	3 Days											81B		11010					0			
Project Name: 6050 E Marginal Way S Project Manager:	Standard (7 Days) (TPH analysis 5 Days)		ers					00000	ss 8260C	N/SIM	w-level)		ticides 80		roicides				e) 1664A	808				
SCOH Allin	5	= 5 Jau				EX			olatile	olatile	270D PAHs	IM (Ic	e Pest	e Pesi	cid He		erais	etals		rease				
Sampled by: Amber Balley		(other)			H-HCID	H-Gx/B1	H-Gx	H-Dx	es 82600	enated V	olatiles 8 ow-level	8270D/S	8082A	ochlorine		nated Ac	TCHA ME	ATCA M	Metals	oil and g	50			isture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numb	NWTP	NWTP	NWTP	NWTP	Volatil	Haloge	Semiv (with Id	PAHs	PCBs	Organ			IOTAI F	Total N	TCLP	HEM (PC			% Mo
4 CB-6-092414	9/24/14	1030	5	1						•											X			b
5 (B-8-092414)	1	1122	1																		X			1
6 CB-10-092414 1141																					X			Π
7 CB-12-092414		1215										-									×			П
8 (B-13-092414		1230		N																	X			\square
													2											
Signature	Co	ompany			(Seve	Date			Time			Com	ment	s/Spec	ial Ir	Istruc	tions	S		102-200				2013
Relinquished		Faral	lon			9	- 0	ĽŚ	10		2													
Received half.		Select	s.			9	1-20	5	10	00														
Relinquished		Spel	de			10	23	0	9-	20	2													
Received	0	'O	8B			91/2	25/	14	10	3	0													
Relinquished																								
Received																								
Reviewed/Date		Reviewed/Da	te									Chro	mato	grams	with	n final	repo	ort 🗌]					

.

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 9, 2014

Scott Allin Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-007 Laboratory Reference No. 1410-031

Dear Scott:

Enclosed are the analytical results and associated quality control data for samples submitted on October 2, 2014.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: October 9, 2014 Samples Submitted: October 2, 2014 Laboratory Reference: 1410-031 Project: 1071-007

Case Narrative

Samples were collected on October 2, 2014 and received by the laboratory on October 2, 2014. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

PCBs EPA 8082A

Matrix: Sediment Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-14-100214					
Laboratory ID:	10-031-01					
Aroclor 1016	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Aroclor 1221	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Aroclor 1232	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Aroclor 1242	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Aroclor 1248	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Aroclor 1254	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Aroclor 1260	ND	0.34	EPA 8082A	10-7-14	10-7-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	122	51-138				
Client ID:	CB-15-100214					
Laboratory ID:	10-031-02					
Aroclor 1016	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Aroclor 1221	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Aroclor 1232	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Aroclor 1242	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Aroclor 1248	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Aroclor 1254	ND	0.068	EPA 8082A	10-4-14	10-6-14	
Aroclor 1260	1.8	0.068	EPA 8082A	10-4-14	10-6-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	53	51-138				
Client ID:	CB-16-100214					
Laboratory ID:	10-031-03					
Aroclor 1016	ND	0.11	EPA 8082A	10-4-14	10-6-14	
Aroclor 1221	ND	0.11	EPA 8082A	10-4-14	10-6-14	
Aroclor 1232	ND	0.11	EPA 8082A	10-4-14	10-6-14	
Aroclor 1242	ND	0.11	EPA 8082A	10-4-14	10-6-14	
Aroclor 1248	ND	0.11	EPA 8082A	10-4-14	10-6-14	
Aroclor 1254	ND	0.11	EPA 8082A	10-4-14	10-6-14	
Aroclor 1260	ND	0.11	EPA 8082A	10-4-14	10-6-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	76	51-138				

PCBs EPA 8082A

Matrix: Sediment Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	CB-20-100214					
Laboratory ID:	10-031-04					
Aroclor 1016	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1221	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1232	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1242	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1248	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1254	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Aroclor 1260	ND	0.066	EPA 8082A	10-4-14	10-6-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	69	51-138				

PCBs EPA 8082A QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1004S1					
Aroclor 1016	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1221	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1232	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1242	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1248	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1254	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Aroclor 1260	ND	0.050	EPA 8082A	10-4-14	10-6-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	102	51-138				
Laboratory ID:	MB1007S1					
Aroclor 1016	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1221	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1232	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1242	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1248	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1254	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Aroclor 1260	ND	0.050	EPA 8082A	10-7-14	10-7-14	
Surrogate:	Percent Recovery	Control Limits				
DCB	99	51-138				

					Source	Pei	rcent	Recovery		RPD	
Analyte	Re	esult Spike Level Result Recove		overy	Limits	RPD	Limit	Flags			
MATRIX SPIKES											
Laboratory ID:	09-3	15-02									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.392	0.387	0.500	0.500	ND	78	77	49-136	1	14	
Surrogate:											
DCB						78	81	51-138			
Laboratory ID:	09-2	78-04									
	MS	MSD	MS	MSD		MS	MSD				
Aroclor 1260	0.492	0.526	0.500	0.500	ND	98	105	49-136	7	14	
Surrogate:											
DCB						100	99	51-138			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
Date of Report: October 9, 2014 Samples Submitted: October 2, 2014 Laboratory Reference: 1410-031 Project: 1071-007

% MOISTURE

Date Analyzed: 10-3-14

Client ID	Lab ID	% Moisture
CB-14-100214	10-031-01	41
CB-15-100214	10-031-02	27
CB-16-100214	10-031-03	52
CB-20-100214	10-031-04	24

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite	Chain o	Chain of Custody											Page of									
Analytical Laboratory Testing Services	Turnaround Request (in working days)		L	abo	rato	ory	Nur	nbe	er:					1	0.	- (3	1	0	-0	27	QQ
Phone: (425) 883-3881 • www.onsite-env.com	(Check One)	-	-					-			-	r i	-	T	T	T	T	1	-			
FARALLON	Same Day 1 Day												M									
Project Number: 1071-007	2 Days 3 Days											18	270D/S	151A								
Project Name:	Standard (7 Days)							260C	5	evel)		es 808	ides 82	des 81				64A	82			
Project Manager:	(TPH analysis 5 Days)	liners						tiles 82	0D/SIN Hs)	(low-le		esticid	s Pestic	Herbic	<u>v</u>	S		lse) 16	8			
Sampled by	(other)	Conta	GD	(BTE)	~		60C	d Vola	es 827 vel PA	D/SIM	A	orine P.	sphorus	Acid	Meta	A Meta	s	id grea	2 4			
MNNA JIGEL	(other)	lber of	DH-Hd	DH-G	PH-G	PH-Dx	iles 82	genate	volatile low-le	s 8270	s 8082	nochlo	soudou	rinated	RCRA	MTCA	o Meta	(oil an	2B			oisture
Lab ID Sample Identification	Sampled Sampled Matrix	Num	NWT	NWT	NWT	TWN	Volat	Halo	Semi (with	PAHs	PCB	Orgai	Orgar	Chlor	Total	Total	TCLF	HEM	m.			W %
1 CB-14-100214	19/2/14 11:55 SEDIMUS	as 1																	X			X
2 CB-15-100Z14	1 12110	1																	1			4
3 (B-16 - 1002)4	17:20	1																				×
A (B-20 - 1202/4)	13:05															-						1
7 00 20 -100217								-				-							1			\rightarrow
							-					-			<u> </u>							
		2	4	1		-			7					-			-			_		
		1			_	5		2)													
		10				-				_												
											_											
Signature	Company			Date		_	Time			Con	nmen	ts/Sp	ecial	Instru	uctior	IS			1			
Relinquished	FARALLON	2		10	12/	¥	14	: 25	5													
Received ACLASS	OSE			10	.2.	14	2	:2	5													
Relinquished																						
Received **																						
Relinquished																						
Received																						
Reviewed/Date	Reviewed/Date									Chro	omate	ograr	ns wi	th fin	al rep	oort []					
Data Packade: S	Standard Level III Level IV		E	lectron	nic Dat	a Deli	iverabl	es (ED	DDs) []												

February and March 2017 – Test Pits Laboratory Reports

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 2, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1702-218

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on February 23, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on February 22, 2017 and received by the laboratory on February 23, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX and Volatiles EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7° C and -20° C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP4-7.0-022217					
Laboratory ID:	02-218-01					
Gasoline	ND	8.9	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	63-124				
Client ID:	TP4-11.0-022217					
Laboratory ID:	02-218-03					
Gasoline	ND	9.4	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	63-124				
Client ID:	TP3-7.0-022217					
Laboratory ID:	02-218-04					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.097	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.097	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.097	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.097	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	9.7	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	63-124				
Client ID:	TP3-11.0-022217					
Laboratory ID:	02-218-06					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.072	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.072	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.072	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.072	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	7.2	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	106	63-124				

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP2-7.0-022217					
Laboratory ID:	02-218-07					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.087	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.087	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.087	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.087	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	8.7	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	63-124				
Client ID:	TP2-11.0-022217					
Laboratory ID:	02-218-09					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.092	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.092	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.092	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.092	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	9.2	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	63-124				
Client ID:	TP1-7.0-022217					
Laboratory ID:	02-218-10					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.098	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.098	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.098	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.098	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	9.8	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	63-124				

4

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP1-11.0-022217					
Laboratory ID:	02-218-12					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.097	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.097	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.097	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.097	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	9.7	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	63-124				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

5 5 (T)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0224S1					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	5.0	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	63-124				

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-2	18-07									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		1	A	NA	NA	30	
Toluene	ND	ND	NA	NA		1	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		1	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		1	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		1	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		1	A	NA	NA	30	
Surrogate:											
Fluorobenzene						95	100	63-124			
SPIKE BLANKS											
Laboratory ID:	SB02	24S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.960	0.993	1.00	1.00		96	99	70-124	3	12	
Toluene	0.992	1.08	1.00	1.00		99	108	73-119	8	12	
Ethyl Benzene	1.02	1.10	1.00	1.00		102	110	74-117	8	12	
m,p-Xylene	1.03	1.07	1.00	1.00		103	107	75-117	4	13	
o-Xylene	1.01	1.10	1.00	1.00		101	110	75-116	9	12	
Surrogate:											
Fluorobenzene						102	101	63-124			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP4-7.0-022217					
Laboratory ID:	02-218-01					
Diesel Fuel #2	1100	34	NWTPH-Dx	3-1-17	3-1-17	
Lube Oil Range Organics	ND	70	NWTPH-Dx	3-1-17	3-1-17	U1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	117	50-150				
Client ID:	TP4-11.0-022217					
Laboratory ID:	02-218-03					
Diesel Range Organics	ND	34	NWTPH-Dx	3-1-17	3-1-17	
Lube Oil Range Organics	98	67	NWTPH-Dx	3-1-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				
Client ID:	TP3-7.0-022217					
Laboratory ID:	02-218-04					
Diesel Range Organics	ND	35	NWTPH-Dx	3-1-17	3-1-17	
Lube Oil Range Organics	ND	70	NWTPH-Dx	3-1-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				
	TD0 44 0 000047					
	1P3-11.0-022217					
	02-218-00			0 4 47	0.4.47	
Diesel Range Organics	ND	33		3-1-17	3-1-17	
Lube OII Range Organics		00	NWTPH-DX	3-1-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terpnenyi	101	50-150				
Client ID:	TP2-7 0-022217					
Laboratory ID:	02-218-07					
Diesel Range Organics	ND	35	NWTPH-Dx	3-1-17	3-1-17	
Lube Oil Range Organics	ND	69	NWTPH-Dx	3-1-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits		-	-	
o-Terphenyl	90	50-150				
• ••••••						
Client ID:	IP2-11.0-022217					
Laboratory ID:	02-218-09					
Diesel Range Organics	ND	35	NWTPH-Dx	3-1-17	3-1-17	
Lube Oil Range Organics	ND	69	NWTPH-Dx	3-1-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP1-7.0-022217					
Laboratory ID:	02-218-10					
Diesel Range Organics	ND	38	NWTPH-Dx	3-1-17	3-1-17	
Lube Oil Range Organics	ND	76	NWTPH-Dx	3-1-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	TP1-11.0-022217					
Laboratory ID:	02-218-12					
Diesel Range Organics	ND	37	NWTPH-Dx	3-1-17	3-1-17	
Lube Oil Range Organics	ND	74	NWTPH-Dx	3-1-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				

o-Terphenyl 82 50-150

8

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

······································				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0301S1					
Diesel Range Organics	ND	25	NWTPH-Dx	3-1-17	3-1-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	3-1-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	105	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	02-21	18-01								
	ORIG	DUP								
Diesel Fuel #2	784	517	NA	NA		NA	NA	41	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	U1
Surrogate:										
o-Terphenyl						117 98	50-150			

VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP4-7.0-022217					
Laboratory ID:	02-218-01					
Dichlorodifluoromethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Chloromethane	ND	0.010	EPA 8260C	2-24-17	2-24-17	
Vinyl Chloride	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Bromomethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Chloroethane	ND	0.0072	EPA 8260C	2-24-17	2-24-17	
Trichlorofluoromethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloroethene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Acetone	0.32	0.0072	EPA 8260C	2-24-17	2-24-17	
lodomethane	ND	0.0072	EPA 8260C	2-24-17	2-24-17	
Carbon Disulfide	0.0080	0.0019	EPA 8260C	2-24-17	2-24-17	
Methylene Chloride	ND	0.0072	EPA 8260C	2-24-17	2-24-17	
(trans) 1,2-Dichloroethene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Methyl t-Butyl Ether	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloroethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Vinyl Acetate	ND	0.0072	EPA 8260C	2-24-17	2-24-17	
2,2-Dichloropropane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
(cis) 1,2-Dichloroethene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
2-Butanone	0.071	0.0072	EPA 8260C	2-24-17	2-24-17	
Bromochloromethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Chloroform	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
1,1,1-Trichloroethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Carbon Tetrachloride	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloropropene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Benzene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
1,2-Dichloroethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Trichloroethene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
1,2-Dichloropropane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Dibromomethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Bromodichloromethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
2-Chloroethyl Vinyl Ether	ND	0.0072	EPA 8260C	2-24-17	2-24-17	
(cis) 1,3-Dichloropropene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Methyl Isobutyl Ketone	ND	0.0072	EPA 8260C	2-24-17	2-24-17	
Toluene	0.012	0.0072	EPA 8260C	2-24-17	2-24-17	
(trans) 1,3-Dichloropropene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	

VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP4-7.0-022217					
Laboratory ID:	02-218-01					
1,1,2-Trichloroethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Tetrachloroethene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
1,3-Dichloropropane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
2-Hexanone	ND	0.0072	EPA 8260C	2-24-17	2-24-17	
Dibromochloromethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
1,2-Dibromoethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Chlorobenzene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
1,1,1,2-Tetrachloroethane	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Ethylbenzene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
m,p-Xylene	ND	0.0029	EPA 8260C	2-24-17	2-24-17	
o-Xylene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Styrene	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Bromoform	ND	0.0014	EPA 8260C	2-24-17	2-24-17	
Isopropylbenzene	0.034	0.0014	EPA 8260C	2-24-17	2-24-17	
Bromobenzene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
1,1,2,2-Tetrachloroethane	ND	0.091	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichloropropane	ND	0.091	EPA 8260C	2-23-17	2-23-17	
n-Propylbenzene	0.17	0.091	EPA 8260C	2-23-17	2-23-17	
2-Chlorotoluene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
4-Chlorotoluene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
1,3,5-Trimethylbenzene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
tert-Butylbenzene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trimethylbenzene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
sec-Butylbenzene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
1,3-Dichlorobenzene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
p-Isopropyltoluene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
1,4-Dichlorobenzene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
1,2-Dichlorobenzene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
n-Butylbenzene	0.22	0.091	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromo-3-chloropropane	ND	0.45	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trichlorobenzene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
Hexachlorobutadiene	ND	0.45	EPA 8260C	2-23-17	2-23-17	
Naphthalene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichlorobenzene	ND	0.091	EPA 8260C	2-23-17	2-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	73-134				
Toluene-d8	100	81-124				
4-Bromofluorobenzene	83	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

11

VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP4-11.0-022217					
Laboratory ID:	02-218-03					
Dichlorodifluoromethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Chloromethane	ND	0.0084	EPA 8260C	2-24-17	2-24-17	
Vinyl Chloride	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Bromomethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Chloroethane	ND	0.0059	EPA 8260C	2-24-17	2-24-17	
Trichlorofluoromethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloroethene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Acetone	0.12	0.0059	EPA 8260C	2-24-17	2-24-17	
lodomethane	ND	0.0059	EPA 8260C	2-24-17	2-24-17	
Carbon Disulfide	ND	0.0015	EPA 8260C	2-24-17	2-24-17	
Methylene Chloride	ND	0.0059	EPA 8260C	2-24-17	2-24-17	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloroethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Vinyl Acetate	ND	0.0059	EPA 8260C	2-24-17	2-24-17	
2,2-Dichloropropane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
2-Butanone	0.022	0.0059	EPA 8260C	2-24-17	2-24-17	
Bromochloromethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Chloroform	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Carbon Tetrachloride	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloropropene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Benzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,2-Dichloroethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Trichloroethene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,2-Dichloropropane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Dibromomethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Bromodichloromethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
2-Chloroethyl Vinyl Ether	ND	0.0059	EPA 8260C	2-24-17	2-24-17	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Methyl Isobutyl Ketone	ND	0.0059	EPA 8260C	2-24-17	2-24-17	
Toluene	0.011	0.0059	EPA 8260C	2-24-17	2-24-17	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	

VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP4-11.0-022217					
Laboratory ID:	02-218-03					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Tetrachloroethene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,3-Dichloropropane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
2-Hexanone	ND	0.0059	EPA 8260C	2-24-17	2-24-17	
Dibromochloromethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,2-Dibromoethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Chlorobenzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Ethylbenzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
m,p-Xylene	ND	0.0024	EPA 8260C	2-24-17	2-24-17	
o-Xylene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Styrene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Bromoform	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Isopropylbenzene	0.076	0.0012	EPA 8260C	2-24-17	2-24-17	
Bromobenzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
n-Propylbenzene	0.16	0.0012	EPA 8260C	2-24-17	2-24-17	
2-Chlorotoluene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
4-Chlorotoluene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
tert-Butylbenzene	0.0028	0.0012	EPA 8260C	2-24-17	2-24-17	
1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
sec-Butylbenzene	0.11	0.0012	EPA 8260C	2-24-17	2-24-17	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
p-Isopropyltoluene	0.0023	0.0012	EPA 8260C	2-24-17	2-24-17	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
n-Butylbenzene	0.095	0.0012	EPA 8260C	2-24-17	2-24-17	
1,2-Dibromo-3-chloropropane	e ND	0.0059	EPA 8260C	2-24-17	2-24-17	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Hexachlorobutadiene	ND	0.0059	EPA 8260C	2-24-17	2-24-17	
Naphthalene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260C	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	73-134				
Toluene-d8	106	81-124				
4-Bromofluorobenzene	114	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0223S1					
Dichlorodifluoromethane	ND	0.0013	EPA 8260C	2-23-17	2-23-17	
Chloromethane	ND	0.0071	EPA 8260C	2-23-17	2-23-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromomethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Chloroethane	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Acetone	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
lodomethane	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Carbon Disulfide	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Methylene Chloride	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Vinyl Acetate	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Butanone	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Bromochloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Chloroform	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Benzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Trichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Dibromomethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Toluene	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0223S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Hexanone	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Chlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Ethylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
m,p-Xylene	ND	0.0020	EPA 8260C	2-23-17	2-23-17	
o-Xylene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Styrene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromoform	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Isopropylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
n-Propylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
tert-Butylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
sec-Butylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
p-Isopropyltoluene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
n-Butylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Naphthalene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	120	73-134				
Toluene-d8	106	81-124				
4-Bromofluorobenzene	104	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0224S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Chloromethane	ND	0.0071	EPA 8260C	2-24-17	2-24-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Bromomethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Chloroethane	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Acetone	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
lodomethane	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
Carbon Disulfide	ND	0.0013	EPA 8260C	2-24-17	2-24-17	
Methylene Chloride	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Vinyl Acetate	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
2-Butanone	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
Bromochloromethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Chloroform	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Benzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Trichloroethene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Dibromomethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
Toluene	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

Analyte Result PQL Method Prepared Analyzed Flag: Laboratory ID: MB0224S1					Date	Date																																																																																																																																																																																																	
Laboratory ID: MB0224S1 1,1,2-Trichloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 Tetrachloroethene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,3-Dichloropropane ND 0.0010 EPA 8260C 2-24-17 2-24-17 2-Hexanone ND 0.0050 EPA 8260C 2-24-17 2-24-17 2-Hexanone ND 0.0010 EPA 8260C 2-24-17 2-24-17 1.2-Dibromoethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1.1,1.2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene	Analyte	Result	PQL	Method	Prepared	Analyzed	Flags																																																																																																																																																																																																
Laboratory ID. MBD22451 1,1,2-Trichloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,3-Dichloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 2-Hexanone ND 0.0010 EPA 8260C 2-24-17 2-24-17 2-Hexanone ND 0.0010 EPA 8260C 2-24-17 2-24-17 2-Hexanone ND 0.0010 EPA 8260C 2-24-17 2-24-17 2-Dibromochlane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,1/2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,1/2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,1/2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 2-Sylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene	Laborator (ID)	MD000404																																																																																																																																																																																																					
I, I, 2-Includentate ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,3-Dichloroptropane ND 0.0010 EPA 8260C 2-24-17 2-24-17 2.Hexanone ND 0.0010 EPA 8260C 2-24-17 2-24-17 2.Hexanone ND 0.0010 EPA 8260C 2-24-17 2-24-17 2.Hexanone ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2-Dibromothane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,1,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 ethylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17			0.0010		2 24 47	2 24 47																																																																																																																																																																																																	
Tetrachlobenterie ND 0.0010 EPA 6260C 2-24-17 2-24-17 1,3-Dichloropropane ND 0.0010 EPA 8260C 2-24-17 2-24-17 2-Hexanone ND 0.0010 EPA 8260C 2-24-17 2-24-17 Dibromochloromethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1-2-Dibromoethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 Chlorobenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,1-2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 mp-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 o-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 <td></td> <td>ND</td> <td>0.0010</td> <td></td> <td>2-24-17</td> <td>2-24-17</td> <td></td>		ND	0.0010		2-24-17	2-24-17																																																																																																																																																																																																	
1,3-Lichloropropane ND 0.0010 EPA 8260C 2-24-17 2-24-17 2-Hexanone ND 0.0050 EPA 8260C 2-24-17 2-24-17 2-Dibromochloromethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2-Dibromoethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,1,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 Ethylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 mp-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 o-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Bromoform ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,2,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2		ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
2-Hearanne ND 0.0050 EPA 8260C 2-24-17 2-24-17 Dibromochloromethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2-Dibromoethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 Chlorobenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,1,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 Ethylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 o-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Bromoform ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17 2-	1,3-Dichloropropane	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
Dibfomochloromethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2-Dibromoethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 Chlorobenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Ethylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Ethylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 o-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 o-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,2,2-Tetracholoroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 </td <td>2-Hexanone</td> <td>ND</td> <td>0.0050</td> <td>EPA 8260C</td> <td>2-24-17</td> <td>2-24-17</td> <td></td>	2-Hexanone	ND	0.0050	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
1,2-Dibromoethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 Chlorobenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,1,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 ttylebnzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 m,p-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 o-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Bromoform ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,2,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2,3-Trichloropropane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,3,5-Trimethylbenzene ND 0.0010 EPA 82	Dibromochloromethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
Chlorobenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,1,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 Ethylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 m,p-Xylene ND 0.0020 EPA 8260C 2-24-17 2-24-17 o-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Styrene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Bromoform ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17	1,2-Dibromoethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
1,1,1,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 Ethylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 m,p-Xylene ND 0.0020 EPA 8260C 2-24-17 2-24-17 o-Xylene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Bromoform ND 0.0010 EPA 8260C 2-24-17 2-24-17 Bromoform ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 I,1,2,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,2,2-Tetrachloropthane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2,3-Trichloroptopane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,3,5-Trimethylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,3,5-Trimethylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,3,5-Trimethylbenzene ND 0.	Chlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
EthylbenzeneND0.0010EPA 8260C2-24-172-24-17m,p-XyleneND0.0020EPA 8260C2-24-172-24-17o-XyleneND0.0010EPA 8260C2-24-172-24-17StyreneND0.0010EPA 8260C2-24-172-24-17BromoformND0.0010EPA 8260C2-24-172-24-17IsopropylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,2-TetrachloroethaneND0.0010EPA 8260C2-24-172-24-171,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-17-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-17-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010<	1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
m,p-XyleneND0.0020EPA 8260C2-24-172-24-17o-XyleneND0.0010EPA 8260C2-24-172-24-17StyreneND0.0010EPA 8260C2-24-172-24-17BromoformND0.0010EPA 8260C2-24-172-24-17IsopropylbenzeneND0.0010EPA 8260C2-24-172-24-17BromobenzeneND0.0010EPA 8260C2-24-172-24-171,1,2,2-TetrachloroethaneND0.0010EPA 8260C2-24-172-24-171,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND	Ethylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
o-XyleneND0.0010EPA 8260C2-24-172-24-17StyreneND0.0010EPA 8260C2-24-172-24-17BromoformND0.0010EPA 8260C2-24-172-24-17IsopropylbenzeneND0.0010EPA 8260C2-24-172-24-17BromobenzeneND0.0010EPA 8260C2-24-172-24-171,1,2,2-TetrachloroethaneND0.0010EPA 8260C2-24-172-24-171,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneN	m,p-Xylene	ND	0.0020	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
StyreneND0.0010EPA 8260C2-24-172-24-17BromoformND0.0010EPA 8260C2-24-172-24-17IsopropylbenzeneND0.0010EPA 8260C2-24-172-24-17BromobenzeneND0.0010EPA 8260C2-24-172-24-171,1,2,2-TetrachloroethaneND0.0010EPA 8260C2-24-172-24-171,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-17-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dichlorobenzene <td>o-Xylene</td> <td>ND</td> <td>0.0010</td> <td>EPA 8260C</td> <td>2-24-17</td> <td>2-24-17</td> <td></td>	o-Xylene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
Bromoform ND 0.0010 EPA 8260C 2-24-17 2-24-17 Isopropylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 Bromobenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,1,2,2-Tetrachloroethane ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2,3-Trichloropropane ND 0.0010 EPA 8260C 2-24-17 2-24-17 2-Chlorotoluene ND 0.0010 EPA 8260C 2-24-17 2-24-17 4-Chlorotoluene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,3,5-Trimethylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2,4-Trimethylbenzene ND 0.0010 <td< td=""><td>Styrene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></td<>	Styrene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
IsopropylbenzeneND0.0010EPA 8260C2-24-172-24-17BromobenzeneND0.0010EPA 8260C2-24-172-24-171,1,2,2-TetrachloroethaneND0.0010EPA 8260C2-24-172-24-171,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-17n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17	Bromoform	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
BromobenzeneND0.0010EPA 8260C2-24-172-24-171,1,2,2-TetrachloroethaneND0.0010EPA 8260C2-24-172-24-171,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-17n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17 <tr t<="" td=""><td>Isopropylbenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>1,1,2,2-TetrachloroethaneND0.0010EPA 8260C2-24-172-24-171,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-17n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0010EPA 8260C2-24-172-24</td><td>Bromobenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>1,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-17n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17</td><td>1,1,2,2-Tetrachloroethane</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17</td><td>1,2,3-Trichloropropane</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>2-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0010EPA 8260C2-24-172-24-17</td><td>n-Propylbenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>4-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0010EPA 8260C2-24-172-24-17</td><td>2-Chlorotoluene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>1,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17</td><td>4-Chlorotoluene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17</td><td>1,3,5-Trimethylbenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>1,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17</td><td>tert-Butylbenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17</td><td>1.2.4-Trimethvlbenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>1,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17</td><td>sec-Butvlbenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17</td><td>1.3-Dichlorobenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>1,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17</td><td>p-lsopropyltoluene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>1,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17</td><td>1 4-Dichlorobenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>n-Butylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2-Dibromo-3-chloropropane ND 0.0050 EPA 8260C 2-24-17 2-24-17</td><td>1 2-Dichlorobenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>1,2-Dibromo-3-chloropropane ND 0.0050 EPA 8260C 2-24-17 2-24-17</td><td>n-Butylbenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td></td><td>1 2-Dibromo-3-chloropropage</td><td>ND</td><td>0.0050</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>1.2.4-Trichlorobenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17</td><td>1 2 4-Trichlorobenzene</td><td>ND</td><td>0.0010</td><td>EPA 8260C</td><td>2-24-17</td><td>2-24-17</td><td></td></tr> <tr><td>Heyachlorobutadiene ND 0.0050 EPA 8260C 2-24-17 2-24-17</td><td>Heyachlorobutadiene</td><td>ND</td><td>0.0050</td><td>EPA 8260C</td><td>2_24_17</td><td>2_24_17</td><td></td></tr> <tr><td>Nanhthalene ND 0.0010 EPA 8260C 2-24-17 2-24-17</td><td>Nanhthalene</td><td></td><td>0.0000</td><td></td><td>2_2-17</td><td>2_24_17</td><td></td></tr> <tr><td>12.3 Trichlorohenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17</td><td>1 2 3-Trichlorohenzene</td><td></td><td>0.0010</td><td></td><td>2_2-17</td><td>2_24_17</td><td></td></tr> <tr><td>Surrogate: Percent Recovery Control Limits</td><td>Surrogate:</td><td>Percent Recovery</td><td>Control Limite</td><td></td><td><u> </u></td><td><u> </u></td><td></td></tr> <tr><td>Dibromofluoromethane 110 72-134</td><td>Dibromofluoromethane</td><td>110</td><td>73_121</td><td></td><td></td><td></td><td></td></tr> <tr><td>Toluene_d8 100 81_124</td><td>Toluene-d8</td><td>100</td><td>81_124</td><td></td><td></td><td></td><td></td></tr> <tr><td>4-Bromofluorobenzene 00 80-131</td><td>4-Bromofluorohenzene</td><td>00</td><td>80-121</td><td></td><td></td><td></td><td></td></tr>	Isopropylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		1,1,2,2-TetrachloroethaneND0.0010EPA 8260C2-24-172-24-171,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-17n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0010EPA 8260C2-24-172-24	Bromobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		1,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-17n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17		n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	2-24-17	2-24-17		2-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0010EPA 8260C2-24-172-24-17	n-Propylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		4-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0010EPA 8260C2-24-172-24-17	2-Chlorotoluene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		1,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	4-Chlorotoluene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		1,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	tert-Butylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1.2.4-Trimethvlbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		1,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	sec-Butvlbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1.3-Dichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		1,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	p-lsopropyltoluene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		1,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1 4-Dichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		n-Butylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2-Dibromo-3-chloropropane ND 0.0050 EPA 8260C 2-24-17 2-24-17	1 2-Dichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		1,2-Dibromo-3-chloropropane ND 0.0050 EPA 8260C 2-24-17 2-24-17	n-Butylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17			1 2-Dibromo-3-chloropropage	ND	0.0050	EPA 8260C	2-24-17	2-24-17		1.2.4-Trichlorobenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17	1 2 4-Trichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17		Heyachlorobutadiene ND 0.0050 EPA 8260C 2-24-17 2-24-17	Heyachlorobutadiene	ND	0.0050	EPA 8260C	2_24_17	2_24_17		Nanhthalene ND 0.0010 EPA 8260C 2-24-17 2-24-17	Nanhthalene		0.0000		2_2-17	2_24_17		12.3 Trichlorohenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17	1 2 3-Trichlorohenzene		0.0010		2_2-17	2_24_17		Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limite		<u> </u>	<u> </u>		Dibromofluoromethane 110 72-134	Dibromofluoromethane	110	73_121					Toluene_d8 100 81_124	Toluene-d8	100	81_124					4-Bromofluorobenzene 00 80-131	4-Bromofluorohenzene	00	80-121				
Isopropylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																		
1,1,2,2-TetrachloroethaneND0.0010EPA 8260C2-24-172-24-171,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-17n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0010EPA 8260C2-24-172-24	Bromobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
1,2,3-TrichloropropaneND0.0010EPA 8260C2-24-172-24-17n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
n-PropylbenzeneND0.0010EPA 8260C2-24-172-24-172-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
2-ChlorotolueneND0.0010EPA 8260C2-24-172-24-174-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0010EPA 8260C2-24-172-24-17	n-Propylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
4-ChlorotolueneND0.0010EPA 8260C2-24-172-24-171,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0010EPA 8260C2-24-172-24-17	2-Chlorotoluene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
1,3,5-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	4-Chlorotoluene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
tert-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
1,2,4-TrimethylbenzeneND0.0010EPA 8260C2-24-172-24-17sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	tert-Butylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
sec-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1.2.4-Trimethvlbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
1,3-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	sec-Butvlbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
p-IsopropyltolueneND0.0010EPA 8260C2-24-172-24-171,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1.3-Dichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
1,4-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-171,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	p-lsopropyltoluene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
1,2-DichlorobenzeneND0.0010EPA 8260C2-24-172-24-17n-ButylbenzeneND0.0010EPA 8260C2-24-172-24-171,2-Dibromo-3-chloropropaneND0.0050EPA 8260C2-24-172-24-17	1 4-Dichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
n-Butylbenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17 1,2-Dibromo-3-chloropropane ND 0.0050 EPA 8260C 2-24-17 2-24-17	1 2-Dichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
1,2-Dibromo-3-chloropropane ND 0.0050 EPA 8260C 2-24-17 2-24-17	n-Butylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
	1 2-Dibromo-3-chloropropage	ND	0.0050	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
1.2.4-Trichlorobenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17	1 2 4-Trichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17																																																																																																																																																																																																	
Heyachlorobutadiene ND 0.0050 EPA 8260C 2-24-17 2-24-17	Heyachlorobutadiene	ND	0.0050	EPA 8260C	2_24_17	2_24_17																																																																																																																																																																																																	
Nanhthalene ND 0.0010 EPA 8260C 2-24-17 2-24-17	Nanhthalene		0.0000		2_2-17	2_24_17																																																																																																																																																																																																	
12.3 Trichlorohenzene ND 0.0010 EPA 8260C 2-24-17 2-24-17	1 2 3-Trichlorohenzene		0.0010		2_2-17	2_24_17																																																																																																																																																																																																	
Surrogate: Percent Recovery Control Limits	Surrogate:	Percent Recovery	Control Limite		<u> </u>	<u> </u>																																																																																																																																																																																																	
Dibromofluoromethane 110 72-134	Dibromofluoromethane	110	73_121																																																																																																																																																																																																				
Toluene_d8 100 81_124	Toluene-d8	100	81_124																																																																																																																																																																																																				
4-Bromofluorobenzene 00 80-131	4-Bromofluorohenzene	00	80-121																																																																																																																																																																																																				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

17

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Recovery		Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB02	23S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0514	0.0501	0.0500	0.0500	103	100	66-127	3	15	
Benzene	0.0481	0.0466	0.0500	0.0500	96	93	76-122	3	15	
Trichloroethene	0.0477	0.0475	0.0500	0.0500	95	95	78-120	0	15	
Toluene	0.0477	0.0479	0.0500	0.0500	95	96	83-120	0	15	
Chlorobenzene	0.0529	0.0522	0.0500	0.0500	106	104	81-120	1	15	
Surrogate:										
Dibromofluoromethane					111	107	73-134			
Toluene-d8					96	96	81-124			
4-Bromofluorobenzene					93	92	80-131			

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Pei	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB02	24S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0475	0.0491	0.0500	0.0500	95	98	66-127	3	15	
Benzene	0.0449	0.0465	0.0500	0.0500	90	93	76-122	4	15	
Trichloroethene	0.0465	0.0470	0.0500	0.0500	93	94	78-120	1	15	
Toluene	0.0455	0.0473	0.0500	0.0500	91	95	83-120	4	15	
Chlorobenzene	0.0515	0.0533	0.0500	0.0500	103	107	81-120	3	15	
Surrogate:										
Dibromofluoromethane					106	102	73-134			
Toluene-d8					93	91	81-124			
4-Bromofluorobenzene					87	87	80-131			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

cPAHs + NAPHTHALENES EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP4-7.0-022217					
Laboratory ID:	02-218-01					
Naphthalene	0.23	0.0089	EPA 8270D/SIM	2-27-17	2-28-17	
2-Methylnaphthalene	0.95	0.0089	EPA 8270D/SIM	2-27-17	2-28-17	
1-Methylnaphthalene	0.66	0.0089	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]anthracene	ND	0.0089	EPA 8270D/SIM	2-27-17	2-28-17	
Chrysene	ND	0.0089	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[b]fluoranthene	ND	0.0089	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo(j,k)fluoranthene	ND	0.0089	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]pyrene	ND	0.0089	EPA 8270D/SIM	2-27-17	2-28-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0089	EPA 8270D/SIM	2-27-17	2-28-17	
Dibenz[a,h]anthracene	ND	0.0089	EPA 8270D/SIM	2-27-17	2-28-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	32 - 122				
Pyrene-d10	71	33 - 125				
Terphenyl-d14	98	36 - 118				

cPAHs + NAPHTHALENES EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP4-11.0-022217					
Laboratory ID:	02-218-03					
Naphthalene	0.037	0.0090	EPA 8270D/SIM	2-27-17	2-28-17	
2-Methylnaphthalene	0.064	0.0090	EPA 8270D/SIM	2-27-17	2-28-17	
1-Methylnaphthalene	0.14	0.0090	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]anthracene	ND	0.0090	EPA 8270D/SIM	2-27-17	2-28-17	
Chrysene	ND	0.0090	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[b]fluoranthene	ND	0.0090	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo(j,k)fluoranthene	ND	0.0090	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]pyrene	ND	0.0090	EPA 8270D/SIM	2-27-17	2-28-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0090	EPA 8270D/SIM	2-27-17	2-28-17	
Dibenz[a,h]anthracene	ND	0.0090	EPA 8270D/SIM	2-27-17	2-28-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	71	32 - 122				
Pyrene-d10	81	33 - 125				
Terphenyl-d14	110	36 - 118				

21

cPAHs + NAPHTHALENES EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0227S2					
Naphthalene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Chrysene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	32 - 122				
Pyrene-d10	98	33 - 125				
Terphenyl-d14	99	36 - 118				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

cPAHs + NAPHTHALENES EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	02-20	04-16									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0688	0.0662	0.0833	0.0833	ND	83	79	39 - 112	4	27	
Benzo[a]anthracene	0.0713	0.0709	0.0833	0.0833	ND	86	85	30 - 143	1	31	
Chrysene	0.0689	0.0676	0.0833	0.0833	ND	83	81	32 - 129	2	33	
Benzo[b]fluoranthene	0.0682	0.0680	0.0833	0.0833	ND	82	82	23 - 140	0	29	
Benzo(j,k)fluoranthene	0.0679	0.0662	0.0833	0.0833	ND	82	79	32 - 119	3	30	
Benzo[a]pyrene	0.0696	0.0670	0.0833	0.0833	ND	84	80	31 - 131	4	32	
Indeno(1,2,3-c,d)pyrene	0.0826	0.0833	0.0833	0.0833	ND	99	100	31 - 130	1	28	
Dibenz[a,h]anthracene	0.0765	0.0732	0.0833	0.0833	ND	92	88	40 - 119	4	27	
Surrogate:											
2-Fluorobiphenyl						55	52	32 - 122			
Pyrene-d10						71	71	33 - 125			
Terphenyl-d14						110	110	36 - 118			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C/7471B

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	02-218-01 TP4-7.0-022217					
Arsenic	ND	13	6010C	2-24-17	2-24-17	
Cadmium	ND	0.67	6010C	2-24-17	2-24-17	
Chromium	18	0.67	6010C	2-24-17	2-24-17	
Copper	22	1.3	6010C	2-24-17	2-24-17	
Lead	ND	6.7	6010C	2-24-17	2-24-17	
Mercury	ND	0.33	7471B	2-27-17	2-27-17	

Lab ID:	02-218-03					
Client ID:	TP4-11.0-022217					
Arsenic	ND	13	6010C	2-24-17	2-24-17	
Cadmium	ND	0.67	6010C	2-24-17	2-24-17	
Chromium	16	0.67	6010C	2-24-17	2-24-17	
Copper	17	1.3	6010C	2-24-17	2-24-17	
Lead	ND	6.7	6010C	2-24-17	2-24-17	
Mercury	ND	0.34	7471B	2-27-17	2-27-17	

TOTAL METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	2-24-17
Date Analyzed:	2-24-17

Matrix: Soil Units: mg/kg (ppm)

Lab ID: MB0224SM2

Analyte	Method	Result	PQL
Arsenic	6010C	ND	10
Cadmium	6010C	ND	0.50
Chromium	6010C	ND	0.50
Copper	6010C	ND	1.0
Lead	6010C	ND	5.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MERCURY EPA 7471B METHOD BLANK QUALITY CONTROL

Date Extracted:	2-27-17
Date Analyzed:	2-27-17
Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0227S1

Analyte	Method	Result	PQL
Mercury	7471B	ND	0.25

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	2-24-17
Date Analyzed:	2-24-17

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 02-124-67

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	21.9	26.7	20	0.50	
Copper	38.1	34.3	10	1.0	
Lead	6.35	6.80	7	5.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MERCURY EPA 7471B DUPLICATE QUALITY CONTROL

Date Extracted:	2-27-17
Date Analyzed:	2-27-17

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 02-209-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.25	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted: 2-24-17 Date Analyzed: 2-24-17

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 02-124-67

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	100	100	97.7	98	3	
Cadmium	50.0	45.6	91	45.5	91	0	
Chromium	100	111	89	109	88	1	
Copper	50.0	89.2	102	89.8	103	1	
Lead	250	229	89	227	88	1	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MERCURY EPA 7471B MS/MSD QUALITY CONTROL

Date Extracted:2-27-17Date Analyzed:2-27-17

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 02-209-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.500	0.542	108	0.536	107	1	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed: 2-23&24-17

Client ID	Lab ID	% Moisture		
TP4-7.0-022217	02-218-01	25		
TP4-11.0-022217	02-218-03	26		
TP3-7.0-022217	02-218-04	28		
TP3-11.0-022217	02-218-06	25		
TP2-7.0-022217	02-218-07	27		
TP2-11.0-022217	02-218-09	28		
TP1-7.0-022217	02-218-10	34		
TP1-11.0-022217	02-218-12	32		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
Ĺ	OnSite	montal Inc		Cha	ain c	of (Cu	st	t o(dy											Pa	age _	1	of	2		
	Analytical Laborato 14648 NE 95th S	ry Testing Services Street • Redmond, WA 98052	Т	urnaround Rec (in working da	juest iys)		La	abo	rate	ory	Nur	nb	er:					02-218									
Compa	TARALLO t Number:	N	Sa	(Check One) me Day)					(dr								MIS/D07	A								
Projec Projec	1071-010 tName: SOUNDER tManager: DON LAN	Project NCC	Sta (TF	Days andard (7 Days) PH analysis 5 Da	🗌 3 Days ays)	intainers		TEX		Acid / SG Clean-	0	olatiles 8260C	(Waters Only)	3270D/SIM PAHs)	ilm (low-level)		e Pesticides 8081B	iorus Pesticides 82	id Herbicides 8151	etals	etals+0		rease) 1664A				
Sampl	ed by: Ken 9	not		(other)		ther of Co	ГРН-НСІ D	IPH-Gx/B	rph-gx]) XQ-H41	tiles 8260	genated V	EPA 801	ivolatiles a	s 82700/9	3s 8082A	anochlorin	anophosph	prinated Ac	I RCRA M	I MTCA M	P Metals	1 (oil and g			-1010	oisture
Lab ID	Sample	e Identification	Sample	d Sampled	Matrix	Nun	NM	MN	NN	NN	Vola	Halo	EDE	Serr (with	PAH HA	PCE	Org	Orge	Chlo	Tota	Tota	TCL	HEN			-	W %
1	TP4-7.0-	022217	2/2/1	7810	5	5			Х	X	X				X						X				_		X
Z	TP4-9.0-	- 022217		825	S	5				-	-									-					_	X	
3	TP4-11.0	-022217		935	6	5			X	X	Х				X						Х						X
4	TP3-7.0	-022217		930	5	2		X		X																	X
5	TP3-9.0	0-022217		940	5	2																				X	
4	TP3-11.0	0-022217		950	5	2		Х		X																	X
7	TP2-7.0	-022217		1030	5	2		X		X																	X
8	TP2-9.0	-022217		1040	5	2					-															X	
9	TP2-11.0	-022217		1050	5	2		X		×																	X
10	Tp1- 710	-022217	V	1205	S	2		X		X																	X
	Sig	nature	-	Company				Date			Time			Com	iment	ts/Spe	cial	Instru	uction	IS							
Relin	quished	ensist		PAR	ALLO	N	-	21:	22	17	15	30															
Rece	ived	> m	2q	E	He.	A	- 1	ZZ	3/1	7	122	20)														
Relin	quisned			a sana																							
Polin	quished																										
Rece	ived													D.I	D .		01			1		<u> </u>					_
Revie	Reviewed/Date Reviewed/Date		ate	_						able - /																	
1.5416					Chromatogram						atograms with final report 📋 Electronic Data Deliverables (EDDs)																

Received

Relinguished Data Package: Standard Level III Level IV Reviewed/Date Reviewed/Date Chromatograms with final report Electronic Data Deliverables (EDDs)

Moisture 5

%

X

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 2, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1702-204

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on February 22, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on February 21, 2017 and received by the laboratory on February 22, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Volatiles EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Some MTCA Method A cleanup levels are non-achievable for sample TP5-11.0-022117 due to the necessary dilution of the sample.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP6-7.0-022117					
Laboratory ID:	02-204-01					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.096	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.096	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.096	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.096	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	9.6	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	63-124				
Client ID:	TP6-11.0-022117					
Laboratory ID:	02-204-03					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.067	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.067	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.067	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.067	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	6.7	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	63-124				
Client ID:	TP7-7.0-022117					
Laboratory ID:	02-204-04					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.088	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	0.18	0.088	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	0.13	0.088	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.088	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	8.8	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	63-124				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP7-11.0-022117					
Laboratory ID:	02-204-06					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.078	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.078	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.078	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.078	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	7.8	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	91	63-124				
Client ID:	TP9-7.0-022117					
Laboratory ID:	02-204-07					
Gasoline	ND	7.9	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	63-124				
Client ID:	TP9-11.0-022117					
Laboratory ID:	02-204-09					
Gasoline	ND	13	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	93	63-124				
Client ID:	TP8-7.0-022117					
Laboratory ID:	02-204-10					
Gasoline	ND	7.7	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	63-124				
Client ID:	TP8-11.0-022117					
Laboratory ID:	02-204-12					
Gasoline	ND	7.5	NWTPH-Gx	2-24-17	2-27-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	63-124				
Client ID:	TP10-7.0-022117					
Laboratory ID:	02-204-13					
Gasoline	ND	5.8	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	63-124				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP10-11.0-022117					
Laboratory ID:	02-204-15					
Gasoline	ND	10	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	63-124				
Client ID:	TP5-7.0-022117					
Laboratory ID:	02-204-16					
Gasoline	ND	14	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	99	63-124				
Client ID:	TP5-11.0-022117					
Laboratory ID:	02-204-18					
Gasoline	ND	13	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	63-124				

NWTPH-Gx/BTEX METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0224S1					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	5.0	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	63-124				
Laboratory ID:	MB0224S2					
Benzene	ND	0.020	EPA 8021B	2-24-17	2-24-17	
Toluene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
Ethyl Benzene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
m,p-Xylene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
o-Xylene	ND	0.050	EPA 8021B	2-24-17	2-24-17	
Gasoline	ND	5.0	NWTPH-Gx	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	63-124				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Source	rce Percent		Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-20	04-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						94	93	63-124			
Laboratory ID:	02-2	18-07									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
Toluene	ND	ND	NA	NA		N	IA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		N	IA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		N	IA	NA	NA	30	
Gasoline	ND	ND	NA	NA		N	IA	NA	NA	30	
Surrogate:											
Fluorobenzene						95	100	63-124			
SPIKE BLANKS											
Laboratory ID:	SB02	24S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.960	0.993	1.00	1.00		96	99	70-124	3	12	
Toluene	0.992	1.08	1.00	1.00		99	108	73-119	8	12	
Ethyl Benzene	1.02	1.10	1.00	1.00		102	110	74-117	8	12	
m,p-Xylene	1.03	1.07	1.00	1.00		103	107	75-117	4	13	
o-Xylene	1.01	1.10	1.00	1.00		101	110	75-116	9	12	
Surrogate:											
Fluorobenzene						102	101	63-124			

7

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP6-7.0-022117					
Laboratory ID:	02-204-01					
Diesel Range Organics	63	40	NWTPH-Dx	2-27-17	3-1-17	
Lube Oil Range Organics	360	80	NWTPH-Dx	2-27-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				
Client ID:	TP6-11.0-022117					
Laboratory ID:	02-204-03					
Diesel Range Organics	ND	32	NWTPH-Dx	2-27-17	2-28-17	
Lube Oil Range Organics	ND	64	NWTPH-Dx	2-27-17	2-28-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	85	50-150				
Client ID:	TP7-7.0-022117					
Laboratory ID:	02-204-04					
Diesel Range Organics	2300	35	NWTPH-Dx	2-27-17	2-28-17	
Lube Oil	160	70	NWTPH-Dx	2-27-17	2-28-17	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				
Client ID:	TP7-11.0-022117					
Laboratory ID:	02-204-06					
Diesel Range Organics	ND	35	NWTPH-Dx	2-27-17	3-1-17	
Lube Oil Range Organics	88	71	NWTPH-Dx	2-27-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	65	50-150				
Client ID:	TP9-7.0-022117					
Laboratory ID:	02-204-07					
Diesel Range Organics	ND	36	NWTPH-Dx	2-27-17	3-1-17	
Lube Oil Range Organics	ND	71	NWTPH-Dx	2-27-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	83	50-150				
Client ID:	IP9-11.0-022117					
Laboratory ID:	02-204-09					
Diesel Range Organics	ND	37	NWTPH-Dx	2-27-17	3-1-17	
Lube Oil Range Organics	ND	74	NWTPH-Dx	2-27-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	61	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP8-7.0-022117					
Laboratory ID:	02-204-10					
Diesel Range Organics	ND	36	NWTPH-Dx	2-27-17	2-28-17	
Lube Oil Range Organics	ND	71	NWTPH-Dx	2-27-17	2-28-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				
Client ID:	TP8-11.0-022117					
Laboratory ID:	02-204-12					
Diesel Range Organics	ND	34	NWTPH-Dx	2-27-17	2-28-17	
Lube Oil Range Organics	ND	68	NWTPH-Dx	2-27-17	2-28-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID:	TD10 7 0 022117					
Laboratory ID:	02 204 12					
Discol Dange Organice	02-204-13	20		0.07.47	0.00.17	
Lubo Oil Pango Organics		20		2-27-17	2-20-17	
Lube Oll Range Organics	Boroont Booovony	Control Limito		2-27-17	2-20-17	
Surrogale.	Fercent Recovery	CONTROL LINING				
0-Terphenyi	09	50-750				
Client ID:	TP10-11.0-022117					
Laboratory ID:	02-204-15					
Diesel Range Organics	ND	39	NWTPH-Dx	2-27-17	3-1-17	
Lube Oil Range Organics	84	79	NWTPH-Dx	2-27-17	3-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	62	50-150				
, ,						
Client ID:	TP5-7.0-022117					
Laboratory ID:	02-204-16					
Diesel Range Organics	1100	33	NWTPH-Dx	2-27-17	2-28-17	
Lube Oil	540	66	NWTPH-Dx	2-27-17	2-28-17	N1
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	76	50-150				
	TD5 11 0 022117					
Laboratory ID.	02_204_18					
Diosol Bango Organico	6900	160		2 27 17	2 1 17	
	1200	320		2-21-11 2_27 17	3_1 17	N1
Surrogate:	Dercent Decovery	Control Limito		2-21-11	5-1-17	INI
o-Ternhenvl	65	50_150				
s i sipiloliyi	00	00 100				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				-		
Laboratory ID:	MB0227S2					
Diesel Range Organics	ND	25	NWTPH-Dx	2-27-17	2-28-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	2-27-17	2-28-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Spike Level		Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	02-12	24-69									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Lube Oil	125	71.5	NA	NA		N	A	NA	54	NA	
Surrogate:											
o-Terphenyl						75	93	50-150			
Laboratory ID:	02-20)4-13									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		Ν	A	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		N	A	NA	NA	NA	
Surrogate:											
o-Terphenyl						69	80	50-150			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP9-7.0-022117					
Laboratory ID:	02-204-07					
Dichlorodifluoromethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Chloromethane	ND	0.0082	EPA 8260C	2-23-17	2-23-17	
Vinyl Chloride	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Bromomethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Chloroethane	ND	0.0058	EPA 8260C	2-23-17	2-23-17	
Trichlorofluoromethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Acetone	0.40	0.0058	EPA 8260C	2-23-17	2-23-17	Y
lodomethane	ND	0.0058	EPA 8260C	2-23-17	2-23-17	
Carbon Disulfide	0.0018	0.0012	EPA 8260C	2-23-17	2-23-17	
Methylene Chloride	ND	0.0058	EPA 8260C	2-23-17	2-23-17	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Methyl t-Butyl Ether	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Vinyl Acetate	ND	0.0058	EPA 8260C	2-23-17	2-23-17	
2,2-Dichloropropane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
2-Butanone	0.070	0.0058	EPA 8260C	2-23-17	2-23-17	
Bromochloromethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Chloroform	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Carbon Tetrachloride	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloropropene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Benzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloroethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Trichloroethene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloropropane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Dibromomethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Bromodichloromethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
2-Chloroethyl Vinyl Ether	ND	0.0058	EPA 8260C	2-23-17	2-23-17	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Methyl Isobutyl Ketone	ND	0.0058	EPA 8260C	2-23-17	2-23-17	
Toluene	0.0086	0.0058	EPA 8260C	2-23-17	2-23-17	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	

VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP9-7.0-022117					
Laboratory ID:	02-204-07					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Tetrachloroethene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,3-Dichloropropane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
2-Hexanone	ND	0.0058	EPA 8260C	2-23-17	2-23-17	
Dibromochloromethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromoethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Chlorobenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Ethylbenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
m,p-Xylene	ND	0.0023	EPA 8260C	2-23-17	2-23-17	
o-Xylene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Styrene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Bromoform	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Isopropylbenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Bromobenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
n-Propylbenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
2-Chlorotoluene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
4-Chlorotoluene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,3,5-Trimethylbenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
tert-Butylbenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trimethylbenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
sec-Butylbenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
p-Isopropyltoluene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
n-Butylbenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromo-3-chloropropane	ND	0.0058	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Hexachlorobutadiene	ND	0.0058	EPA 8260C	2-23-17	2-23-17	
Naphthalene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260C	2-23-17	2-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	120	73-134				
Toluene-d8	100	81-124				
4-Bromofluorobenzene	93	80-131				

12

Matrix: Soil Units: mg/kg

				Date Date			
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	TP9-11.0-022117						
Laboratory ID:	02-204-09						
Dichlorodifluoromethane	ND	0.0024	EPA 8260C	2-23-17	2-23-17		
Chloromethane	ND	0.013	EPA 8260C	2-23-17	2-23-17		
Vinyl Chloride	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Bromomethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Chloroethane	ND	0.0092	EPA 8260C	2-23-17	2-23-17		
Trichlorofluoromethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloroethene	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Acetone	0.40	0.0092	EPA 8260C	2-23-17	2-23-17	Y	
lodomethane	ND	0.0092	EPA 8260C	2-23-17	2-23-17		
Carbon Disulfide	0.0025	0.0018	EPA 8260C	2-23-17	2-23-17		
Methylene Chloride	ND	0.0092	EPA 8260C	2-23-17	2-23-17		
(trans) 1,2-Dichloroethene	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Methyl t-Butyl Ether	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloroethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Vinyl Acetate	ND	0.0092	EPA 8260C	2-23-17	2-23-17		
2,2-Dichloropropane	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
(cis) 1,2-Dichloroethene	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
2-Butanone	0.075	0.0092	EPA 8260C	2-23-17	2-23-17		
Bromochloromethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Chloroform	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
1,1,1-Trichloroethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Carbon Tetrachloride	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloropropene	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Benzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
1,2-Dichloroethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Trichloroethene	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
1,2-Dichloropropane	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Dibromomethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Bromodichloromethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
2-Chloroethyl Vinyl Ether	ND	0.0092	EPA 8260C	2-23-17	2-23-17		
(cis) 1,3-Dichloropropene	ND	0.0018	EPA 8260C	2-23-17	2-23-17		
Methyl Isobutyl Ketone	ND	0.0092	EPA 8260C	2-23-17	2-23-17		
Toluene	0.018	0.0092	EPA 8260C	2-23-17	2-23-17		
(trans) 1,3-Dichloropropene	ND	0.0018	EPA 8260C	2-23-17	2-23-17		

VOLATILES EPA 8260C
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP9-11.0-022117					
Laboratory ID:	02-204-09					
1,1,2-Trichloroethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
Tetrachloroethene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,3-Dichloropropane	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
2-Hexanone	ND	0.0092	EPA 8260C	2-23-17	2-23-17	
Dibromochloromethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromoethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
Chlorobenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
Ethylbenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
m,p-Xylene	ND	0.0037	EPA 8260C	2-23-17	2-23-17	
o-Xylene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
Styrene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
Bromoform	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
Isopropylbenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
Bromobenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichloropropane	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
n-Propylbenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
2-Chlorotoluene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
4-Chlorotoluene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,3,5-Trimethylbenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
tert-Butylbenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trimethylbenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
sec-Butylbenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,3-Dichlorobenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
p-Isopropyltoluene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,4-Dichlorobenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,2-Dichlorobenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
n-Butylbenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromo-3-chloropropane	e ND	0.0092	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trichlorobenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
Hexachlorobutadiene	ND	0.0092	EPA 8260C	2-23-17	2-23-17	
Naphthalene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichlorobenzene	ND	0.0018	EPA 8260C	2-23-17	2-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	73-134				
Toluene-d8	95	81-124				
4-Bromofluorobenzene	83	80-131				

Matrix: Soil Units: mg/kg

				Date			
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	TP8-7.0-022117						
Laboratory ID:	02-204-10						
Dichlorodifluoromethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17		
Chloromethane	ND	0.0079	EPA 8260C	2-23-17	2-23-17		
Vinyl Chloride	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Bromomethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Chloroethane	ND	0.0056	EPA 8260C	2-23-17	2-23-17		
Trichlorofluoromethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloroethene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Acetone	0.18	0.0056	EPA 8260C	2-23-17	2-23-17	Y	
Iodomethane	ND	0.0056	EPA 8260C	2-23-17	2-23-17		
Carbon Disulfide	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Methylene Chloride	ND	0.0056	EPA 8260C	2-23-17	2-23-17		
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Methyl t-Butyl Ether	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Vinyl Acetate	ND	0.0056	EPA 8260C	2-23-17	2-23-17		
2,2-Dichloropropane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
2-Butanone	0.031	0.0056	EPA 8260C	2-23-17	2-23-17		
Bromochloromethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Chloroform	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,1,1-Trichloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Carbon Tetrachloride	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloropropene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Benzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,2-Dichloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Trichloroethene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,2-Dichloropropane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Dibromomethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Bromodichloromethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
2-Chloroethyl Vinyl Ether	ND	0.0056	EPA 8260C	2-23-17	2-23-17		
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Methyl Isobutyl Ketone	ND	0.0056	EPA 8260C	2-23-17	2-23-17		
Toluene	0.0061	0.0056	EPA 8260C	2-23-17	2-23-17		
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		

VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP8-7.0-022117					
Laboratory ID:	02-204-10					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Tetrachloroethene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,3-Dichloropropane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
2-Hexanone	ND	0.0056	EPA 8260C	2-23-17	2-23-17	
Dibromochloromethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromoethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Chlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Ethylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
m,p-Xylene	ND	0.0022	EPA 8260C	2-23-17	2-23-17	
o-Xylene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Styrene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Bromoform	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Isopropylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Bromobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
n-Propylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
2-Chlorotoluene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
4-Chlorotoluene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
tert-Butylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
sec-Butylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
p-Isopropyltoluene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
n-Butylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromo-3-chloropropane	ND	0.0056	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Hexachlorobutadiene	ND	0.0056	EPA 8260C	2-23-17	2-23-17	
Naphthalene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	119	73-134				
Toluene-d8	100	81-124				
4-Bromofluorobenzene	89	80-131				

16

Matrix: Soil Units: mg/kg

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	TP8-11.0-022117						
Laboratory ID:	02-204-12						
Dichlorodifluoromethane	ND	0.0014	EPA 8260C	2-23-17	2-23-17		
Chloromethane	ND	0.0078	EPA 8260C	2-23-17	2-23-17		
Vinyl Chloride	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Bromomethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Chloroethane	ND	0.0055	EPA 8260C	2-23-17	2-23-17		
Trichlorofluoromethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloroethene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Acetone	0.12	0.0055	EPA 8260C	2-23-17	2-23-17	Y	
lodomethane	ND	0.0055	EPA 8260C	2-23-17	2-23-17		
Carbon Disulfide	0.0030	0.0011	EPA 8260C	2-23-17	2-23-17		
Methylene Chloride	ND	0.0055	EPA 8260C	2-23-17	2-23-17		
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Methyl t-Butyl Ether	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Vinyl Acetate	ND	0.0055	EPA 8260C	2-23-17	2-23-17		
2,2-Dichloropropane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
2-Butanone	0.020	0.0055	EPA 8260C	2-23-17	2-23-17		
Bromochloromethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Chloroform	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,1,1-Trichloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Carbon Tetrachloride	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloropropene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Benzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,2-Dichloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Trichloroethene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
1,2-Dichloropropane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Dibromomethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Bromodichloromethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
2-Chloroethyl Vinyl Ether	ND	0.0055	EPA 8260C	2-23-17	2-23-17		
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		
Methyl Isobutyl Ketone	ND	0.0055	EPA 8260C	2-23-17	2-23-17		
Toluene	ND	0.0055	EPA 8260C	2-23-17	2-23-17		
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	2-23-17	2-23-17		

VOLATILES EPA 8260C
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP8-11.0-022117					
Laboratory ID:	02-204-12					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Tetrachloroethene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,3-Dichloropropane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
2-Hexanone	ND	0.0055	EPA 8260C	2-23-17	2-23-17	
Dibromochloromethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromoethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Chlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Ethylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
m,p-Xylene	ND	0.0022	EPA 8260C	2-23-17	2-23-17	
o-Xylene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Styrene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Bromoform	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Isopropylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Bromobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
n-Propylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
2-Chlorotoluene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
4-Chlorotoluene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,3,5-Trimethylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
tert-Butylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trimethylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
sec-Butylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
p-Isopropyltoluene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
n-Butylbenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromo-3-chloropropane	e ND	0.0055	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Hexachlorobutadiene	ND	0.0055	EPA 8260C	2-23-17	2-23-17	
Naphthalene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260C	2-23-17	2-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	73-134				
Toluene-d8	91	81-124				
4-Bromofluorobenzene	80	80-131				

Matrix: Soil Units: mg/kg

				Date Date			
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Client ID:	TP10-7.0-022117						
Laboratory ID:	02-204-13						
Dichlorodifluoromethane	ND	0.0014	EPA 8260C	2-23-17	2-23-17		
Chloromethane	ND	0.0074	EPA 8260C	2-23-17	2-23-17		
Vinyl Chloride	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Bromomethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Chloroethane	ND	0.0052	EPA 8260C	2-23-17	2-23-17		
Trichlorofluoromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Acetone	0.0080	0.0052	EPA 8260C	2-23-17	2-23-17	Y	
lodomethane	ND	0.0052	EPA 8260C	2-23-17	2-23-17		
Carbon Disulfide	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Methylene Chloride	ND	0.0052	EPA 8260C	2-23-17	2-23-17		
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Vinyl Acetate	ND	0.0052	EPA 8260C	2-23-17	2-23-17		
2,2-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
2-Butanone	ND	0.0052	EPA 8260C	2-23-17	2-23-17		
Bromochloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Chloroform	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Carbon Tetrachloride	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
1,1-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Benzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
1,2-Dichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Trichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
1,2-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Dibromomethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Bromodichloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
2-Chloroethyl Vinyl Ether	ND	0.0052	EPA 8260C	2-23-17	2-23-17		
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17		
Methyl Isobutyl Ketone	ND	0.0052	EPA 8260C	2-23-17	2-23-17		
Toluene	0.0065	0.0052	EPA 8260C	2-23-17	2-23-17		
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES EPA 8260C
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP10-7.0-022117					
Laboratory ID:	02-204-13					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Hexanone	ND	0.0052	EPA 8260C	2-23-17	2-23-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Chlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Ethylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
m,p-Xylene	ND	0.0021	EPA 8260C	2-23-17	2-23-17	
o-Xylene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Styrene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromoform	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Isopropylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
n-Propylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
tert-Butylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
sec-Butylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
p-Isopropyltoluene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
n-Butylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromo-3-chloropropane	e ND	0.0052	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Hexachlorobutadiene	ND	0.0052	EPA 8260C	2-23-17	2-23-17	
Naphthalene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	120	73-134				
Toluene-d8	104	81-124				
4-Bromofluorobenzene	98	80-131				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP10-11.0-022117					
Laboratory ID:	02-204-15					
Dichlorodifluoromethane	ND	0.0019	EPA 8260C	2-23-17	2-23-17	
Chloromethane	ND	0.010	EPA 8260C	2-23-17	2-23-17	
Vinyl Chloride	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Bromomethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Chloroethane	ND	0.0073	EPA 8260C	2-23-17	2-23-17	
Trichlorofluoromethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Acetone	0.22	0.0073	EPA 8260C	2-23-17	2-23-17	Y
lodomethane	ND	0.0073	EPA 8260C	2-23-17	2-23-17	
Carbon Disulfide	0.0047	0.0015	EPA 8260C	2-23-17	2-23-17	
Methylene Chloride	ND	0.0073	EPA 8260C	2-23-17	2-23-17	
(trans) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Methyl t-Butyl Ether	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Vinyl Acetate	ND	0.0073	EPA 8260C	2-23-17	2-23-17	
2,2-Dichloropropane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
(cis) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
2-Butanone	0.038	0.0073	EPA 8260C	2-23-17	2-23-17	
Bromochloromethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Chloroform	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Carbon Tetrachloride	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloropropene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Benzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloroethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Trichloroethene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloropropane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Dibromomethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Bromodichloromethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
2-Chloroethyl Vinyl Ether	ND	0.0073	EPA 8260C	2-23-17	2-23-17	
(cis) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Methyl Isobutyl Ketone	ND	0.0073	EPA 8260C	2-23-17	2-23-17	
Toluene	0.014	0.0073	EPA 8260C	2-23-17	2-23-17	
(trans) 1,3-Dichloropropene	e ND	0.0015	EPA 8260C	2-23-17	2-23-17	

VOLATILES EPA 8260C
page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP10-11.0-022117					
Laboratory ID:	02-204-15					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Tetrachloroethene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,3-Dichloropropane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
2-Hexanone	ND	0.0073	EPA 8260C	2-23-17	2-23-17	
Dibromochloromethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromoethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Chlorobenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Ethylbenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
m,p-Xylene	ND	0.0029	EPA 8260C	2-23-17	2-23-17	
o-Xylene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Styrene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Bromoform	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Isopropylbenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Bromobenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
n-Propylbenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
2-Chlorotoluene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
4-Chlorotoluene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,3,5-Trimethylbenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
tert-Butylbenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trimethylbenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
sec-Butylbenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
p-Isopropyltoluene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
n-Butylbenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromo-3-chloropropane	e ND	0.0073	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Hexachlorobutadiene	ND	0.0073	EPA 8260C	2-23-17	2-23-17	
Naphthalene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260C	2-23-17	2-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	119	73-134				
Toluene-d8	99	81-124				
4-Bromofluorobenzene	84	80-131				

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP5-7.0-022117					
Laboratory ID:	02-204-16					
Dichlorodifluoromethane	ND	0.0013	EPA 8260C	2-23-17	2-23-17	
Chloromethane	ND	0.0071	EPA 8260C	2-23-17	2-23-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromomethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Chloroethane	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Acetone	0.050	0.0050	EPA 8260C	2-23-17	2-23-17	Y
lodomethane	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Carbon Disulfide	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Methylene Chloride	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Vinyl Acetate	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Butanone	0.0051	0.0050	EPA 8260C	2-23-17	2-23-17	
Bromochloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Chloroform	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Benzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Trichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Dibromomethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Toluene	0.011	0.0050	EPA 8260C	2-23-17	2-23-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP5-7.0-022117					
Laboratory ID:	02-204-16					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Tetrachloroethene	0.012	0.0010	EPA 8260C	2-23-17	2-23-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Hexanone	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Chlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Ethylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
m,p-Xylene	ND	0.0020	EPA 8260C	2-23-17	2-23-17	
o-Xylene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Styrene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromoform	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Isopropylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromobenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
1,1,2,2-Tetrachloroethane	ND	0.069	EPA 8260C	2-24-17	2-24-17	
1,2,3-Trichloropropane	ND	0.069	EPA 8260C	2-24-17	2-24-17	
n-Propylbenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
2-Chlorotoluene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
4-Chlorotoluene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
1,3,5-Trimethylbenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
tert-Butylbenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
1,2,4-Trimethylbenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
sec-Butylbenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
1,3-Dichlorobenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
p-Isopropyltoluene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
1,4-Dichlorobenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
1,2-Dichlorobenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
n-Butylbenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
1,2-Dibromo-3-chloropropane	ND	0.35	EPA 8260C	2-24-17	2-24-17	
1,2,4-Trichlorobenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
Hexachlorobutadiene	ND	0.35	EPA 8260C	2-24-17	2-24-17	
Naphthalene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
1,2,3-Trichlorobenzene	ND	0.069	EPA 8260C	2-24-17	2-24-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	127	73-134				
Toluene-d8	93	81-124				

4-Bromofluorobenzene

80-131

88

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP5-11.0-022117					
Laboratory ID:	02-204-18					
Dichlorodifluoromethane	ND	0.084	EPA 8260C	2-23-17	2-23-17	
Chloromethane	ND	0.46	EPA 8260C	2-23-17	2-23-17	
Vinyl Chloride	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Bromomethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Chloroethane	ND	0.32	EPA 8260C	2-23-17	2-23-17	
Trichlorofluoromethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Acetone	ND	0.32	EPA 8260C	2-23-17	2-23-17	
lodomethane	ND	0.32	EPA 8260C	2-23-17	2-23-17	
Carbon Disulfide	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Methylene Chloride	ND	0.32	EPA 8260C	2-23-17	2-23-17	
(trans) 1,2-Dichloroethene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Methyl t-Butyl Ether	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Vinyl Acetate	ND	0.32	EPA 8260C	2-23-17	2-23-17	
2,2-Dichloropropane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
(cis) 1,2-Dichloroethene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
2-Butanone	ND	0.32	EPA 8260C	2-23-17	2-23-17	
Bromochloromethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Chloroform	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,1,1-Trichloroethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Carbon Tetrachloride	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloropropene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Benzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloroethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Trichloroethene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloropropane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Dibromomethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Bromodichloromethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
2-Chloroethyl Vinyl Ether	ND	0.32	EPA 8260C	2-23-17	2-23-17	
(cis) 1,3-Dichloropropene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Methyl Isobutyl Ketone	ND	0.32	EPA 8260C	2-23-17	2-23-17	
Toluene	ND	0.32	EPA 8260C	2-23-17	2-23-17	
(trans) 1,3-Dichloropropene	ND	0.065	EPA 8260C	2-23-17	2-23-17	

VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP5-11.0-022117					
Laboratory ID:	02-204-18					
1,1,2-Trichloroethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Tetrachloroethene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,3-Dichloropropane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
2-Hexanone	ND	0.32	EPA 8260C	2-23-17	2-23-17	
Dibromochloromethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromoethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Chlorobenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,1,1,2-Tetrachloroethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Ethylbenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
m,p-Xylene	ND	0.13	EPA 8260C	2-23-17	2-23-17	
o-Xylene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Styrene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Bromoform	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Isopropylbenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Bromobenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,1,2,2-Tetrachloroethane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichloropropane	ND	0.065	EPA 8260C	2-23-17	2-23-17	
n-Propylbenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
2-Chlorotoluene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
4-Chlorotoluene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,3,5-Trimethylbenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
tert-Butylbenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trimethylbenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
sec-Butylbenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,3-Dichlorobenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
p-Isopropyltoluene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,4-Dichlorobenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,2-Dichlorobenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
n-Butylbenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromo-3-chloropropane	e ND	0.32	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trichlorobenzene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
Hexachlorobutadiene	ND	0.32	EPA 8260C	2-23-17	2-23-17	
Naphthalene	ND	0.065	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichlorobenzene	0.28	0.065	EPA 8260C	2-23-17	2-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	73-134				
Toluene-d8	91	81-124				
4-Bromofluorobenzene	89	80-131				

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0223S1					
Dichlorodifluoromethane	ND	0.0013	EPA 8260C	2-23-17	2-23-17	
Chloromethane	ND	0.0071	EPA 8260C	2-23-17	2-23-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromomethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Chloroethane	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Acetone	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
lodomethane	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Carbon Disulfide	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Methylene Chloride	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Vinyl Acetate	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Butanone	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Bromochloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Chloroform	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Benzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Trichloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Dibromomethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Toluene	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0223S1	0.0010	FDA 00000	0.00.47	0.00.17	
1,1,2- I richloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
letrachloroethene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Hexanone	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Chlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Ethylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
m,p-Xylene	ND	0.0020	EPA 8260C	2-23-17	2-23-17	
o-Xylene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Styrene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromoform	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Isopropylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Bromobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
n-Propylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
tert-Butylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
sec-Butylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
p-Isopropyltoluene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
n-Butylbenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	2-23-17	2-23-17	
Naphthalene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
1.2.3-Trichlorobenzene	ND	0.0010	EPA 8260C	2-23-17	2-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	120	73-134				
Toluene-d8	106	81-124				
4-Bromofluorobenzene	104	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0224S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Chloromethane	ND	0.0071	EPA 8260C	2-24-17	2-24-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Bromomethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Chloroethane	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Acetone	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
lodomethane	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
Carbon Disulfide	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Methylene Chloride	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Methyl t-Butyl Ether	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Vinyl Acetate	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
2-Butanone	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
Bromochloromethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Chloroform	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Benzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Trichloroethene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Dibromomethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Methyl Isobutyl Ketone	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
Toluene	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0224S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
2-Hexanone	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Chlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Ethylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
m,p-Xylene	ND	0.0020	EPA 8260C	2-24-17	2-24-17	
o-Xylene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Styrene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Bromoform	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Isopropylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Bromobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
n-Propylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,3,5-Trimethylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
tert-Butylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,2,4-Trimethylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
sec-Butylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
p-Isopropyltoluene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
n-Butylbenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	2-24-17	2-24-17	
Naphthalene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	2-24-17	2-24-17	
Surrogate:	Percent Recoverv	Control Limits				
Dibromofluoromethane	119	73-134				
Toluene-d8	100	81-124				
4-Bromofluorobenzene	99	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

30

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB02	23S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0514	0.0501	0.0500	0.0500	103	100	66-127	3	15	
Benzene	0.0481	0.0466	0.0500	0.0500	96	93	76-122	3	15	
Trichloroethene	0.0477	0.0475	0.0500	0.0500	95	95	78-120	0	15	
Toluene	0.0477	0.0479	0.0500	0.0500	95	96	83-120	0	15	
Chlorobenzene	0.0529	0.0522	0.0500	0.0500	106	104	81-120	1	15	
Surrogate:										
Dibromofluoromethane					111	107	73-134			
Toluene-d8					96	96	81-124			
4-Bromofluorobenzene					93	92	80-131			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Result		Spike Level		Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB02	24S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0475	0.0491	0.0500	0.0500	95	98	66-127	3	15	
Benzene	0.0449	0.0465	0.0500	0.0500	90	93	76-122	4	15	
Trichloroethene	0.0465	0.0470	0.0500	0.0500	93	94	78-120	1	15	
Toluene	0.0455	0.0473	0.0500	0.0500	91	95	83-120	4	15	
Chlorobenzene	0.0515	0.0533	0.0500	0.0500	103	107	81-120	3	15	
Surrogate:										
Dibromofluoromethane					106	102	73-134			
Toluene-d8					93	91	81-124			
4-Bromofluorobenzene					87	87	80-131			

cPAHs + NAPHTHALENES EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP5-7.0-022117					
Laboratory ID:	02-204-16					
Naphthalene	ND	0.0088	EPA 8270D/SIM	2-27-17	2-28-17	
2-Methylnaphthalene	ND	0.0088	EPA 8270D/SIM	2-27-17	2-28-17	
1-Methylnaphthalene	ND	0.0088	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]anthracene	ND	0.0088	EPA 8270D/SIM	2-27-17	2-28-17	
Chrysene	ND	0.0088	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[b]fluoranthene	ND	0.0088	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo(j,k)fluoranthene	ND	0.0088	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]pyrene	ND	0.0088	EPA 8270D/SIM	2-27-17	2-28-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0088	EPA 8270D/SIM	2-27-17	2-28-17	
Dibenz[a,h]anthracene	ND	0.0088	EPA 8270D/SIM	2-27-17	2-28-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	55	32 - 122				
Pyrene-d10	62	33 - 125				
Terphenyl-d14	102	36 - 118				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

cPAHs + NAPHTHALENES EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP5-11.0-022117					
Laboratory ID:	02-204-18					
Naphthalene	ND	0.0085	EPA 8270D/SIM	2-27-17	2-28-17	
2-Methylnaphthalene	ND	0.030	EPA 8270D/SIM	2-27-17	2-28-17	U1
1-Methylnaphthalene	ND	0.031	EPA 8270D/SIM	2-27-17	2-28-17	U1
Benzo[a]anthracene	0.012	0.0085	EPA 8270D/SIM	2-27-17	2-28-17	
Chrysene	0.012	0.0085	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[b]fluoranthene	ND	0.0085	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo(j,k)fluoranthene	ND	0.0085	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]pyrene	ND	0.0085	EPA 8270D/SIM	2-27-17	2-28-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0085	EPA 8270D/SIM	2-27-17	2-28-17	
Dibenz[a,h]anthracene	ND	0.0085	EPA 8270D/SIM	2-27-17	2-28-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	59	32 - 122				
Pyrene-d10	62	33 - 125				
Terphenyl-d14	110	36 - 118				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
cPAHs + NAPHTHALENES EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0227S2					
Naphthalene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Chrysene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	2-27-17	2-28-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	32 - 122				
Pyrene-d10	98	33 - 125				
Terphenyl-d14	99	36 - 118				

cPAHs + NAPHTHALENES EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	02-20	04-16									
	MS	MSD	MS	MSD		MS	MSD				
Naphthalene	0.0688	0.0662	0.0833	0.0833	ND	83	79	39 - 112	4	27	
Benzo[a]anthracene	0.0713	0.0709	0.0833	0.0833	ND	86	85	30 - 143	1	31	
Chrysene	0.0689	0.0676	0.0833	0.0833	ND	83	81	32 - 129	2	33	
Benzo[b]fluoranthene	0.0682	0.0680	0.0833	0.0833	ND	82	82	23 - 140	0	29	
Benzo(j,k)fluoranthene	0.0679	0.0662	0.0833	0.0833	ND	82	79	32 - 119	3	30	
Benzo[a]pyrene	0.0696	0.0670	0.0833	0.0833	ND	84	80	31 - 131	4	32	
Indeno(1,2,3-c,d)pyrene	0.0826	0.0833	0.0833	0.0833	ND	99	100	31 - 130	1	28	
Dibenz[a,h]anthracene	0.0765	0.0732	0.0833	0.0833	ND	92	88	40 - 119	4	27	
Surrogate:											
2-Fluorobiphenyl						55	52	32 - 122			
Pyrene-d10						71	71	33 - 125			
Terphenyl-d14						110	110	36 - 118			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C/7471B

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	02-204-16 TP5-7.0-022117					
Arsenic	ND	13	6010C	2-24-17	2-24-17	
Cadmium	ND	0.66	6010C	2-24-17	2-24-17	
Chromium	7.0	0.66	6010C	2-24-17	2-24-17	
Copper	6.3	1.3	6010C	2-24-17	2-24-17	
Lead	ND	6.6	6010C	2-24-17	2-24-17	
Mercurv	ND	0.33	7471B	2-27-17	2-27-17	

Lab ID:	02-204-18					
Client ID:	TP5-11.0-022117					
Arsenic	ND	13	6010C	2-24-17	2-24-17	
Cadmium	ND	0.63	6010C	2-24-17	2-24-17	
Chromium	7.9	0.63	6010C	2-24-17	2-24-17	
Copper	7.2	1.3	6010C	2-24-17	2-24-17	
Lead	ND	6.3	6010C	2-24-17	2-24-17	
Mercury	ND	0.32	7471B	2-27-17	2-27-17	

37

TOTAL METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	2-24-17
Date Analyzed:	2-24-17

Matrix: Soil Units: mg/kg (ppm)

Lab ID: MB0224SM2

Analyte	Method	Result	PQL
Arsenic	6010C	ND	10
Cadmium	6010C	ND	0.50
Chromium	6010C	ND	0.50
Copper	6010C	ND	1.0
Lead	6010C	ND	5.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MERCURY EPA 7471B METHOD BLANK QUALITY CONTROL

2-27-17 2-27-17
Soil mg/kg (ppm)
MB0227S1

Analyte	Method	Result	PQL
Mercury	7471B	ND	0.25

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	2-24-17
Date Analyzed:	2-24-17

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 02-124-67

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	21.9	26.7	20	0.50	
Copper	38.1	34.3	10	1.0	
Lead	6.35	6.80	7	5.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MERCURY EPA 7471B DUPLICATE QUALITY CONTROL

Date Extracted:	2-27-17
Date Analyzed:	2-27-17

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 02-209-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.25	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted: 2-24-17 Date Analyzed: 2-24-17

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 02-124-67

	Spike				Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	100	100	97.7	98	3	
Cadmium	50.0	45.6	91	45.5	91	0	
Chromium	100	111	89	109	88	1	
Copper	50.0	89.2	102	89.8	103	1	
Lead	250	229	89	227	88	1	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MERCURY EPA 7471B MS/MSD QUALITY CONTROL

Date Extracted:2-27-17Date Analyzed:2-27-17

Matrix: Soil Units: mg/kg (ppm)

Lab ID: 02-209-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.500	0.542	108	0.536	107	1	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed: 2-23-17

Client ID	Lab ID	% Moisture
TDC 7.0.000447	02 204 04	20
1P6-7.0-022117	02-204-01	38
TP6-11.0-022117	02-204-03	22
TP7-7.0-022117	02-204-04	29
TP7-11.0-022117	02-204-06	29
TP9-7.0-022117	02-204-07	29
TP9-11.0-022117	02-204-09	33
TP8-7.0-022117	02-204-10	30
TP8-11.0-022117	02-204-12	26
TP10-7.0-022117	02-204-13	12
TP10-11.0-022117	02-204-15	36
TP5-7.0-022117	02-204-16	24
TP5-11.0-022117	02-204-18	21

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite		Ch	ain c	of (Cu	Ist	00	ły											P	age _	1	of	2		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tu (1	rnaround Re in working da	quest avs)		La	abo	rato	ory	Nu	mbo	er:						n	2	- 1	2 0	4				
Phone: (425) 883-3881 • www.onsite-env.com	-	(Check One	a)													5								T	-
Farallon Project Number:	Sam	e Day	1 Day					(dr								70D/SI	A								
Project Name:	2 Da	iys	3 Days					Clean-t		g	lly)		()		8081B	ides 82	es 8151				A				
Project Manager:	TTPH	idard (7 Days) I analysis 5 D) Jays)	lers				d / SG		es 826(ters On	s) MIS/C	ow-leve		sticides	Pestic	erbicide				e) 1664				
Don Lance				Contain	0	'BTEX		(Aci	30C	I Volatil	11 (Wa	s 8270I /el PAH	/SIM (Id	_	ine Pes	phorus	Acid He	Metals	Metals		d grease				
Ken Scott, Ryan Ostron		(other)		ber of	PH-HC	PH-Gx/	PH-Gx	PH-Dx	iles 826	genatec	EPA 80	volatile. Iow-lev	8270D	s 8082A	nochlor	soudou	inated .	RCRA	MTCA	Metals	(oil and			pla	oisture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Num	NWT	NWT	TWN	TWN	Volat	Halo	EDB	Semi (with	PAHs	PCB	Orga	Orgai	Chlor	Total	Total	TCLP	HEM			H	% Mo
1 TP6-7.0-022117	Z/2V1	0930	Soil	2		X		X																	X
2 TP6-9.0-022117		0935	1	2																				X	
3 TP6-11.0-022117		0950		2		X		X																	X
4 777-70-022117		1020		2		X		X																	X
5 197-9.0-022117		1035		2																				X	1
6 TP7-11.0-022117		1045		2		X		X																	X
7 +19-7.0-022-117		115		5		3K	X	X	X																X
8 TP9-9:0-022117		1120		5		10																		X	
9 TP9-11.0-022117		130		5		X	X	X	X																X
10 TP 8-7.0-022117	V	1245	V	5		×	X	X	X																X
Signature	C	ompany				Date			Time			Com	ment	s/Spe	cial I	Instru	ction	IS							
Relinquished Kingurt		FARE	The	N		21	21	17	16	53	0	Ple	a:	se	He	512	T	M	h):#	Cal	t-fo	int t	haty	15.3
Received Relinquished	2 - 4	E	yre.	the		ZZ	2[1	7	14	$(\alpha$	5											P	ML	Z/2	1/17
Received					_			_			_														
Relinquished				e e contratorio	_					· .															
Received					_							Data	Pack	ade.	Sta	ndar	4 🗆	L ev		Π	evel				
Reviewed/Date		Reviewed/Da	ate									Chror	nato	grams	s with	h fina	l rep	ort [] Ele	ctroni	c Data	1 Delive	rables (EDDs)	

Instruct Laboration Thing Barling Links Instructure Respective O 2 - 2 0 4 Company Company Company Company O 2 - 2 0 4 Company Company Company Company O 2 - 2 0 4 Company Company Company Company O 2 - 2 0 4 Company Company Company Company Company Company Project Manager Company	OnSite		Cha	ain o	f (Cu	st	od	у				Suly	~					Pa	age _	2	_ of _	2	_	
Prote: Company: Prote: Prot: Prot: Prote:<	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tui (i	rnaround Req in working da	uest ys)		La	abor	ato	ry N	umb	ber:		X	١				0	2	-2	2.0	4			
Image: Log II - 0 - 0 Image: Log II - 0	Company: FARALLON	Sam	(Check One) ie Day [] 1 Day									phthal			D/SIM									
Non-Son DD E R. Projects Market Supple Project Hanger Project Supple Doon L ANCE Project Manager Doon L ANCE Project Market Supple It T P S - 9.0 - 022417 1235 13 TP IO - 7.0 - 02417 1355 15 TP IO - 11.0 - 022417 1325 16 TP S - 9.0 - 022417 1325 17 TP S - 9.0 - 022417 1325 18 TP S - 11.0 - 022417 1325 19 TP IO - 11.0 - 022417 1325 19 TP IO - 11.0 - 022417 1325 19 TP S - 9.0 - 022417 1420 19 TP S - 9.0 - 022417 1430 <	1071-010 Broiget Name:	2 Da	iys [3 Days					ean-up)			Y	+N4		081B	es 8270	8151A								
Samplet Dir Common Samplet D	Project Manager: Project Manager:	Stan (TPH	idard (7 Days) I analysis 5 Da	ays)	ainers		33		cid / SG CI	atiles 82600	Vaters Only	MIS/DD/	(low-level)		esticides 8	us Pesticid	Herbicides	S	ls + Cu		ase) 1664A				
Lab ID Sample (strifted to mean string) Date Time Time Time Sample (strifted to mean string) Sample (string)	Sampled by: Ken SLOTH + RYAN OSTROM		(other)		ter of Cont	PH-HCID	H-Gx/	PH-Gx	PH-Dx (enated Vola	EPA 8011 (V	/olatiles 827 ow-level PP	8270D/SIM	8082A	lochlorine P	ophosphor	nated Acid	RCRA Meta	MTCA Meta	Metals	oil and grea			M	sture
II TP 8-9.0-022-117 1225 SULF X X X X IZ TP 8-9.0-022-117 1235 IS X X X X X I3 TP 10-2.0-022-117 1305 IS X X X X X X I4 TP 10-9.0-022-117 1305 IS II X X X X X X I5 TP 10-11.0-022-17 1325 IS X <	Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numt	NWTF	NWTF	NWTF	NWTF	Halog	EDB E	Semiv (with I	BAHS	PCBs	Orgar	Organ	Chlori	Total F	Total I	TCLP	HEM			H	% Moi
12 T08-11.0-022117 1235 9 X X X 13 T010-2.0-022117 1305 9 X X X X 14 T010-9.0-02217 1315 9 X X X X 15 T010-11.0-02217 1325 9 X X X X X 16 T05-9.0-02217 1425 9 X X X X X X 17 T75-9.0-02217 1430 9 X X X X X X 18 T05-02217 1430 9 X X X X X X 18 T05-02217 1440 9 X X X X X X 18 T05-02217 1440 9 X X X X X X Reinquinbed FMALLON 21217 1630 X X X X X X X X X X X X X <td< td=""><td>11 TP8-9.0-022117</td><td>2/21/17</td><td>1225</td><td>5012</td><td>F</td><td></td><td></td><td></td><td>_</td><td>1</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>X</td><td></td></td<>	11 TP8-9.0-022117	2/21/17	1225	5012	F				_	1	_													X	
13 TP 10 - 7.0 - 012117 1305 5 X X X X 14 TP 10 - 9.0 - 012117 1315 5 X X X X 15 TP 10 - 9.0 - 01217 1325 5 X X X X 16 TP 5 - 7.0 - 01217 1325 5 X X X X X 17 TP 5 - 9.0 - 01217 1425 5 X X X X X X 18 TP 5 - 11.0 - 0117 1430 5 - <td>12 TPB-11.0-022117</td> <td></td> <td>1235</td> <td></td> <td>3</td> <td></td> <td>X</td> <td></td> <td>$\langle \rangle$</td> <td></td> <td>-</td> <td></td> <td>X</td>	12 TPB-11.0-022117		1235		3		X		$\langle \rangle$		-														X
IN IP ID-9:00-000000000000000000000000000000000	13 TP10-7.0-012117		1305		5 5		X		$\langle \rangle$		-		_		_						_		_		X
10 TP 5 - 7.0 - 022117 1425 5 X <td>15 -010-010-01217</td> <td></td> <td>1225</td> <td>_</td> <td>3</td> <td>$\left \right$</td> <td>X</td> <td></td> <td>/ \</td> <td>/</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td>+</td> <td></td> <td></td>	15 -010-010-01217		1225	_	3	$\left \right $	X		/ \	/				_							_	-	+		
IT TPS-g.0-02.21/7 1430 5 I	16 705- 0-022117		1220	1	3	-	$\overline{\mathbf{x}}$						\mathbf{x}						X		_		+	+	
18 TP5-110-022117 1440 1	17 TP5-9.0-02217		1430		5																		-	X	
Signature Company Date Time Comments/Special Instructions Image: Comments/Special Instructions Relinquished Image: Company Date Time Comments/Special Instructions Image: Comments/Special Instructions Received Image: Company Date Time Comments/Special Instructions Image: Comments/Special Instructions Received Image: Company Date Time Comments/Special Instructions Image: Comments/Special Instructions Received Image: Company Date Image: Comments/Special Instructions Image: Comments/Special Instructions Received Image: Company Date Image: Comments/Special Instructions Image: Comments/Special Instructions Received Image: Company Image: Company Image: Company Image: Company Image: Company Received Image: Company Image: Company Image: Company Image: Company Image: Company Image: Company Received Image: Company Received Image: Company Image: Company Image: Company	18 TP5-11,0-022117		1440	V	T		X	>	$\langle \rangle$	<			X						X						X
Signature Company Date Time Comments/Special Instructions Relinquished Image: Company Date Time Comments/Special Instructions Image: Comments/Special Instructions Received Image: Company Date Time Comments/Special Instructions Image: Comments/Special Instructions Received Image: Company Date Time Comments/Special Instructions Image: Comments/Special Instructions Received Image: Company Date Time Comments/Special Instructions Image: Company Received Image: Company <								P	·)												_			
Signature Company Date Time Comments/Special Instructions Relinquished Image: Standard Structure Image: Standard Stand							4	-	2																
Received Catalofa Italin ILloc Relinquished Image: Standard I	Relinquished			1 0	N		Date	11	7 /	me 63	0	Com	imen	ts/Spe	cial	Instru	ICTION	IS	<u></u>						
Relinquished Image: Standard Level IV Received Image: Standard Level IV	Received) (àS	Hot	h		2/2	2/1	71	40	2	-													
Received Image: Standard Level IV Received Beviewed/Date Standard Level IV	Relinquished]													
Received Data Package: Standard Level IV Beviewed/Date Beviewed/Date	Received																								
Beviewed/Date	Received					_			_			Data	Dac	kaga	C+c	ndor	a 🗆	Lar	(ol 111						
Chromatograms with final report 🗌 Electronic Data Deliverables (EDDs)	Reviewed/Date		Reviewed/Dat	te								Chro	mato	gram	s wit	h fina	al rep	ort [] Elec	ctronic	c Data	Deliver	rables (F	EDDs)	

March 15, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1703-083

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on March 9, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on March 8, 2017 and received by the laboratory on March 9, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Halogenated Volatiles EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Surrogate Standards Toluene-d8 and 4-Bromofluorobenzene are outside control limits on the high end for sample TP13-7.0-030817 due to co-eluting non-target analytes.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP11-7.0-030817					
Laboratory ID:	03-083-01					
Benzene	ND	0.020	EPA 8021B	3-10-17	3-10-17	
Toluene	ND	0.089	EPA 8021B	3-10-17	3-10-17	
Ethyl Benzene	ND	0.089	EPA 8021B	3-10-17	3-10-17	
m,p-Xylene	ND	0.089	EPA 8021B	3-10-17	3-10-17	
o-Xylene	ND	0.089	EPA 8021B	3-10-17	3-10-17	
Gasoline	ND	8.9	NWTPH-Gx	3-10-17	3-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	63-124				
Client ID:	TP11-11.0-030817					
Laboratory ID:	03-083-03					
Benzene	ND	0.020	EPA 8021B	3-10-17	3-10-17	
Toluene	ND	0.093	EPA 8021B	3-10-17	3-10-17	
Ethyl Benzene	ND	0.093	EPA 8021B	3-10-17	3-10-17	
m,p-Xylene	ND	0.093	EPA 8021B	3-10-17	3-10-17	
o-Xylene	ND	0.093	EPA 8021B	3-10-17	3-10-17	
Gasoline	ND	9.3	NWTPH-Gx	3-10-17	3-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	63-124				
Client ID:	TP12-7.0-030817					
Laboratory ID:	03-083-04					
Benzene	ND	0.020	EPA 8021B	3-10-17	3-10-17	
Toluene	ND	0.088	EPA 8021B	3-10-17	3-10-17	
Ethyl Benzene	ND	0.088	EPA 8021B	3-10-17	3-10-17	
m,p-Xylene	ND	0.088	EPA 8021B	3-10-17	3-10-17	
o-Xylene	ND	0.088	EPA 8021B	3-10-17	3-10-17	
Gasoline	ND	8.8	NWTPH-Gx	3-10-17	3-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	86	63-124				

3

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP12-11.0-030817					
Laboratory ID:	03-083-06					
Benzene	ND	0.020	EPA 8021B	3-10-17	3-10-17	
Toluene	ND	0.089	EPA 8021B	3-10-17	3-10-17	
Ethyl Benzene	ND	0.089	EPA 8021B	3-10-17	3-10-17	
m,p-Xylene	ND	0.089	EPA 8021B	3-10-17	3-10-17	
o-Xylene	ND	0.089	EPA 8021B	3-10-17	3-10-17	
Gasoline	ND	8.9	NWTPH-Gx	3-10-17	3-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	63-124				
Client ID:	TP13-7.0-030817					
Laboratory ID:	03-083-07					
Benzene	ND	0.020	EPA 8021B	3-10-17	3-10-17	
Toluene	ND	0.087	EPA 8021B	3-10-17	3-10-17	
Ethyl Benzene	0.17	0.087	EPA 8021B	3-10-17	3-10-17	
m,p-Xylene	ND	0.087	EPA 8021B	3-10-17	3-10-17	
o-Xylene	ND	0.087	EPA 8021B	3-10-17	3-10-17	
Gasoline	ND	8.7	NWTPH-Gx	3-10-17	3-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	63-124				
Client ID:	TP13-11.0-030817					
Laboratory ID:	03-083-09					
Benzene	ND	0.020	EPA 8021B	3-10-17	3-10-17	
Toluene	ND	0.098	EPA 8021B	3-10-17	3-10-17	
Ethyl Benzene	ND	0.098	EPA 8021B	3-10-17	3-10-17	
m,p-Xylene	ND	0.098	EPA 8021B	3-10-17	3-10-17	
o-Xylene	ND	0.098	EPA 8021B	3-10-17	3-10-17	
Gasoline	ND	9.8	NWTPH-Gx	3-10-17	3-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	63-124				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

0 0 0 1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0310S2					
Benzene	ND	0.020	EPA 8021B	3-10-17	3-10-17	
Toluene	ND	0.050	EPA 8021B	3-10-17	3-10-17	
Ethyl Benzene	ND	0.050	EPA 8021B	3-10-17	3-10-17	
m,p-Xylene	ND	0.050	EPA 8021B	3-10-17	3-10-17	
o-Xylene	ND	0.050	EPA 8021B	3-10-17	3-10-17	
Gasoline	ND	5.0	NWTPH-Gx	3-10-17	3-10-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	63-124				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	03-08	33-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA			NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA			NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Gasoline	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						88	90	63-124			
SPIKE BLANKS											
Laboratory ID:	SB03	10S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.925	0.927	1.00	1.00		93	93	70-124	0	12	
Toluene	0.949	0.955	1.00	1.00		95	96	73-119	1	12	
Ethyl Benzene	0.949	0.953	1.00	1.00		95	95	74-117	0	12	
m,p-Xylene	0.956	0.959	1.00	1.00		96	96	75-117	0	13	
o-Xylene	0.961	0.960	1.00	1.00		96	96	75-116	0	12	
Surrogate:											
Fluorobenzene						88	86	63-124			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP11-7.0-030817					
Laboratory ID:	03-083-01					
Diesel Range Organics	ND	35	NWTPH-Dx	3-13-17	3-13-17	
Lube Oil Range Organics	ND	70	NWTPH-Dx	3-13-17	3-13-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	78	50-150				
Client ID:	TP11-11.0-030817					
Laboratory ID:	03-083-03					
Diesel Range Organics	ND	33	NWTPH-Dx	3-13-17	3-13-17	
Lube Oil Range Organics	ND	67	NWTPH-Dx	3-13-17	3-13-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
Client ID:	TP12-7.0-030817					
Laboratory ID:	03-083-04					
Diesel Range Organics	ND	34	NWTPH-Dx	3-13-17	3-13-17	
Lube Oil Range Organics	ND	67	NWTPH-Dx	3-13-17	3-13-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	70	50-150				
Client ID:	TP12-11.0-030817					
Laboratory ID:	03-083-06					
Diesel Range Organics	ND	36	NWTPH-Dx	3-13-17	3-13-17	
Lube Oil Range Organics	ND	71	NWTPH-Dx	3-13-17	3-13-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				
	TD40 7 0 000047					
	1P13-7.0-030817					
	03-063-07	20		0 40 47	0 40 47	
Luba Oil Danga Organiaa	330 ND	30		3-13-17	3-13-17	
Lube Oil Range Organics	Dereant Desevery	12 Control Limito		3-13-17	3-13-17	
Surrogale.						
0-Terphenyi	79	50-750				
Client ID:	TP13-11.0-030817					
Laboratory ID.	03-083-09					
Diesel Range Organice	<u></u>	37		3_12_17	3_13_17	
		73		3-13-17	3_13_17	
Surrogate	Percent Recovery	Control Limits		0-10-17	0-10-17	
o-Ternhenvl	78	50-150				
	, 0	00,000				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

6

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0313S1					
Diesel Range Organics	ND	25	NWTPH-Dx	3-13-17	3-13-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	3-13-17	3-13-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	87	50-150				

					Source	Perce	nt	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recove	ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	03-03	33-04									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						65	71	50-150			

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0.0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP11-7.0-030817					
Laboratory ID:	03-083-01					
Dichlorodifluoromethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Chloromethane	ND	0.0062	EPA 8260C	3-9-17	3-9-17	
Vinyl Chloride	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Bromomethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Chloroethane	ND	0.0062	EPA 8260C	3-9-17	3-9-17	
Trichlorofluoromethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
lodomethane	ND	0.0062	EPA 8260C	3-9-17	3-9-17	
Methylene Chloride	ND	0.0062	EPA 8260C	3-9-17	3-9-17	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
2,2-Dichloropropane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Bromochloromethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Chloroform	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Carbon Tetrachloride	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloropropene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloroethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Trichloroethene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloropropane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Dibromomethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Bromodichloromethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
2-Chloroethyl Vinyl Ether	ND	0.0062	EPA 8260C	3-9-17	3-9-17	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP11-7.0-030817					
Laboratory ID:	03-083-01					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Tetrachloroethene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,3-Dichloropropane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Dibromochloromethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromoethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Chlorobenzene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Bromoform	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Bromobenzene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
2-Chlorotoluene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
4-Chlorotoluene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromo-3-chloropropane	e ND	0.0062	EPA 8260C	3-9-17	3-9-17	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Hexachlorobutadiene	ND	0.0062	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260C	3-9-17	3-9-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	73-134				
Toluene-d8	105	81-124				
4-Bromofluorobenzene	104	80-131				

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP11-11.0-030817					
Laboratory ID:	03-083-03					
Dichlorodifluoromethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Chloromethane	ND	0.0066	EPA 8260C	3-9-17	3-9-17	
Vinyl Chloride	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Bromomethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Chloroethane	ND	0.0066	EPA 8260C	3-9-17	3-9-17	
Trichlorofluoromethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
lodomethane	ND	0.0066	EPA 8260C	3-9-17	3-9-17	
Methylene Chloride	ND	0.0066	EPA 8260C	3-9-17	3-9-17	
(trans) 1,2-Dichloroethene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
2,2-Dichloropropane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
(cis) 1,2-Dichloroethene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Bromochloromethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Chloroform	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Carbon Tetrachloride	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloropropene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloroethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Trichloroethene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloropropane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Dibromomethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Bromodichloromethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
2-Chloroethyl Vinyl Ether	ND	0.0066	EPA 8260C	3-9-17	3-9-17	
(cis) 1,3-Dichloropropene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
(trans) 1,3-Dichloropropene	e ND	0.0013	EPA 8260C	3-9-17	3-9-17	

HALOGENATED	VOLA	TILES	EPA	8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP11-11.0-030817					
Laboratory ID:	03-083-03					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Tetrachloroethene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,3-Dichloropropane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Dibromochloromethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromoethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Chlorobenzene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Bromoform	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Bromobenzene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
2-Chlorotoluene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
4-Chlorotoluene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromo-3-chloropropane	e ND	0.0066	EPA 8260C	3-9-17	3-9-17	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Hexachlorobutadiene	ND	0.0066	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260C	3-9-17	3-9-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	73-134				
Toluene-d8	101	81-124				
4-Bromofluorobenzene	93	80-131				

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0.0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP12-7.0-030817					
Laboratory ID:	03-083-04					
Dichlorodifluoromethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Chloromethane	ND	0.0068	EPA 8260C	3-9-17	3-9-17	
Vinyl Chloride	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Bromomethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Chloroethane	ND	0.0068	EPA 8260C	3-9-17	3-9-17	
Trichlorofluoromethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
lodomethane	ND	0.0068	EPA 8260C	3-9-17	3-9-17	
Methylene Chloride	ND	0.0068	EPA 8260C	3-9-17	3-9-17	
(trans) 1,2-Dichloroethene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
2,2-Dichloropropane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
(cis) 1,2-Dichloroethene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Bromochloromethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Chloroform	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1,1-Trichloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Carbon Tetrachloride	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloropropene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Trichloroethene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloropropane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Dibromomethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Bromodichloromethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
2-Chloroethyl Vinyl Ether	ND	0.0068	EPA 8260C	3-9-17	3-9-17	
(cis) 1,3-Dichloropropene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
(trans) 1,3-Dichloropropene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	

12

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP12-7.0-030817					
Laboratory ID:	03-083-04					
1,1,2-Trichloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Tetrachloroethene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,3-Dichloropropane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Dibromochloromethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromoethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Chlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1,1,2-Tetrachloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Bromoform	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Bromobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1,2,2-Tetrachloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichloropropane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
2-Chlorotoluene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
4-Chlorotoluene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,3-Dichlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,4-Dichlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2-Dichlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromo-3-chloropropane	e ND	0.0068	EPA 8260C	3-9-17	3-9-17	
1,2,4-Trichlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Hexachlorobutadiene	ND	0.0068	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	96	73-134				
Toluene-d8	99	81-124				
4-Bromofluorobenzene	98	80-131				

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0.0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP12-11.0-030817					
Laboratory ID:	03-083-06					
Dichlorodifluoromethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Chloromethane	ND	0.0074	EPA 8260C	3-9-17	3-9-17	
Vinyl Chloride	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Bromomethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Chloroethane	ND	0.0074	EPA 8260C	3-9-17	3-9-17	
Trichlorofluoromethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
lodomethane	ND	0.0074	EPA 8260C	3-9-17	3-9-17	
Methylene Chloride	ND	0.0074	EPA 8260C	3-9-17	3-9-17	
(trans) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
2,2-Dichloropropane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
(cis) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Bromochloromethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Chloroform	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Carbon Tetrachloride	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloropropene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloroethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Trichloroethene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloropropane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Dibromomethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Bromodichloromethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
2-Chloroethyl Vinyl Ether	ND	0.0074	EPA 8260C	3-9-17	3-9-17	
(cis) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
(trans) 1,3-Dichloropropene	e ND	0.0015	EPA 8260C	3-9-17	3-9-17	

14

HALOGENATED VC	LATILES	EPA 8260C
----------------	---------	-----------

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP12-11.0-030817					
Laboratory ID:	03-083-06					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Tetrachloroethene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,3-Dichloropropane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Dibromochloromethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromoethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Chlorobenzene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Bromoform	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Bromobenzene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
2-Chlorotoluene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
4-Chlorotoluene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromo-3-chloropropane	e ND	0.0074	EPA 8260C	3-9-17	3-9-17	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Hexachlorobutadiene	ND	0.0074	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260C	3-9-17	3-9-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	73-134				
Toluene-d8	102	81-124				
4-Bromofluorobenzene	90	80-131				

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0.0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP13-7.0-030817					
Laboratory ID:	03-083-07					
Dichlorodifluoromethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Chloromethane	ND	0.0068	EPA 8260C	3-10-17	3-10-17	
Vinyl Chloride	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Bromomethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Chloroethane	ND	0.0068	EPA 8260C	3-10-17	3-10-17	
Trichlorofluoromethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,1-Dichloroethene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
lodomethane	ND	0.0068	EPA 8260C	3-10-17	3-10-17	
Methylene Chloride	ND	0.0068	EPA 8260C	3-10-17	3-10-17	
(trans) 1,2-Dichloroethene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,1-Dichloroethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
2,2-Dichloropropane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
(cis) 1,2-Dichloroethene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Bromochloromethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Chloroform	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,1,1-Trichloroethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Carbon Tetrachloride	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,1-Dichloropropene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,2-Dichloroethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Trichloroethene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,2-Dichloropropane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Dibromomethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Bromodichloromethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
2-Chloroethyl Vinyl Ether	ND	0.0068	EPA 8260C	3-10-17	3-10-17	
(cis) 1,3-Dichloropropene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
(trans) 1,3-Dichloropropene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	

16

HALOGENATED VOLATILES EPA 82	260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP13-7.0-030817					
Laboratory ID:	03-083-07					
1,1,2-Trichloroethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Tetrachloroethene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,3-Dichloropropane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Dibromochloromethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,2-Dibromoethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Chlorobenzene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,1,1,2-Tetrachloroethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Bromoform	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Bromobenzene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,1,2,2-Tetrachloroethane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,2,3-Trichloropropane	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
2-Chlorotoluene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
4-Chlorotoluene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,3-Dichlorobenzene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,4-Dichlorobenzene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,2-Dichlorobenzene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
1,2-Dibromo-3-chloropropane	e ND	0.0068	EPA 8260C	3-10-17	3-10-17	
1,2,4-Trichlorobenzene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Hexachlorobutadiene	ND	0.0068	EPA 8260C	3-10-17	3-10-17	
1,2,3-Trichlorobenzene	ND	0.0014	EPA 8260C	3-10-17	3-10-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	73-134				
Toluene-d8	126	81-124				Q
4-Bromofluorobenzene	133	80-131				Q

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0.0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP13-11.0-030817					
Laboratory ID:	03-083-09					
Dichlorodifluoromethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Chloromethane	ND	0.0070	EPA 8260C	3-9-17	3-9-17	
Vinyl Chloride	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Bromomethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Chloroethane	ND	0.0070	EPA 8260C	3-9-17	3-9-17	
Trichlorofluoromethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
lodomethane	ND	0.0070	EPA 8260C	3-9-17	3-9-17	
Methylene Chloride	ND	0.0070	EPA 8260C	3-9-17	3-9-17	
(trans) 1,2-Dichloroethene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
2,2-Dichloropropane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
(cis) 1,2-Dichloroethene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Bromochloromethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Chloroform	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1,1-Trichloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Carbon Tetrachloride	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloropropene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Trichloroethene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloropropane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Dibromomethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Bromodichloromethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
2-Chloroethyl Vinyl Ether	ND	0.0070	EPA 8260C	3-9-17	3-9-17	
(cis) 1,3-Dichloropropene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
(trans) 1,3-Dichloropropene	e ND	0.0014	EPA 8260C	3-9-17	3-9-17	

18

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	TP13-11.0-030817					
Laboratory ID:	03-083-09					
1,1,2-Trichloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Tetrachloroethene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,3-Dichloropropane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Dibromochloromethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromoethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Chlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1,1,2-Tetrachloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Bromoform	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Bromobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,1,2,2-Tetrachloroethane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichloropropane	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
2-Chlorotoluene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
4-Chlorotoluene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,3-Dichlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,4-Dichlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2-Dichlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromo-3-chloropropane	e ND	0.0070	EPA 8260C	3-9-17	3-9-17	
1,2,4-Trichlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Hexachlorobutadiene	ND	0.0070	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichlorobenzene	ND	0.0014	EPA 8260C	3-9-17	3-9-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	73-134				
Toluene-d8	116	81-124				
4-Bromofluorobenzene	114	80-131				

19

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0309S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Chloromethane	ND	0.0050	EPA 8260C	3-9-17	3-9-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Bromomethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Chloroethane	ND	0.0050	EPA 8260C	3-9-17	3-9-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
lodomethane	ND	0.0050	EPA 8260C	3-9-17	3-9-17	
Methylene Chloride	ND	0.0050	EPA 8260C	3-9-17	3-9-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Bromochloromethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Chloroform	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Trichloroethene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Dibromomethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	3-9-17	3-9-17	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

th _

20

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0309S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Chlorobenzene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Bromoform	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Bromobenzene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	3-9-17	3-9-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	3-9-17	3-9-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	3-9-17	3-9-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	73-134				
Toluene-d8	100	81-124				
4-Bromofluorobenzene	94	80-131				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

21

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0310S1					
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Chloromethane	ND	0.0050	EPA 8260C	3-10-17	3-10-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Bromomethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Chloroethane	ND	0.0050	EPA 8260C	3-10-17	3-10-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
lodomethane	ND	0.0050	EPA 8260C	3-10-17	3-10-17	
Methylene Chloride	ND	0.0050	EPA 8260C	3-10-17	3-10-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Bromochloromethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Chloroform	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Trichloroethene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Dibromomethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	3-10-17	3-10-17	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

22

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0310S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Chlorobenzene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Bromoform	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Bromobenzene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	3-10-17	3-10-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	3-10-17	3-10-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	3-10-17	3-10-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	73-134				
Toluene-d8	110	81-124				
4-Bromofluorobenzene	115	80-131				

HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD		
Analyte	Res	ult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags	
SPIKE BLANKS											
Laboratory ID:	SB03	09S1									
	SB	SBD	SB	SBD	SB	SBD					
1,1-Dichloroethene	0.0388	0.0408	0.0500	0.0500	78	82	66-127	5	15		
Benzene	0.0406	0.0433	0.0500	0.0500	81	87	76-122	6	15		
Trichloroethene	0.0420	0.0448	0.0500	0.0500	84	90	78-120	6	15		
Toluene	0.0440	0.0457	0.0500	0.0500	88	91	83-120	4	15		
Chlorobenzene	0.0428	0.0419	0.0500	0.0500	86	84	81-120	2	15		
Surrogate:											
Dibromofluoromethane					105	101	73-134				
Toluene-d8					109	106	81-124				
4-Bromofluorobenzene					103	107	80-131				

HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery			
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	10S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0424	0.0435	0.0500	0.0500	85	87	66-127	3	15	
Benzene	0.0450	0.0456	0.0500	0.0500	90	91	76-122	1	15	
Trichloroethene	0.0461	0.0469	0.0500	0.0500	92	94	78-120	2	15	
Toluene	0.0468	0.0483	0.0500	0.0500	94	97	83-120	3	15	
Chlorobenzene	0.0471	0.0455	0.0500	0.0500	94	91	81-120	3	15	
Surrogate:										
Dibromofluoromethane					92	102	73-134			
Toluene-d8					93	102	81-124			
4-Bromofluorobenzene					92	96	80-131			

Date of Report: March 15, 2017 Samples Submitted: March 9, 2017 Laboratory Reference: 1703-083 Project: 1071-010

% MOISTURE

Date Analyzed: 3-9-17

Client ID	Lab ID	% Moisture
TP11-7.0-030817	03-083-01	28
TP11-11.0-030817	03-083-03	25
TP12-7.0-030817	03-083-04	26
TP12-11.0-030817	03-083-06	30
TP13-7.0-030817	03-083-07	31
TP13-11.0-030817	03-083-09	32

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

OnSite		Cha	ain o	f (Cu	ist	00	dy											P	age _	1	_ of _	1		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turi (ir	naround Req a working day	uest ys)		La	abo	rate	ory	Nu	mb	er:							03	3 -	· 0	83	3			
Company: FARALLON Project Number:	_ 🗌 Same	(Check One) Day	1 Day												D/SIM	A									
Project Name: SOUNDER Project	2 Day	/s dard (7 Days) analysis 5 Da	3 Days	STS						s 8260C	/SIM	w-level)		icides 8081B	esticides 8270	bicides 8151) 1664A					
Sampled by: Kenshoth		(other)	<u> </u>	er of Containe	1-HCID	H-Gx/BTEX	H-Gx	1-Dx	s 8260C	nated Volatile	v-level PAHs	270D/SIM (lo	3082A	ichlorine Pest	phosphorus Pe	ated Acid Her	CRA Metals	ITCA Metals	Metals	oil and grease	5/0				sture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPH	NWTPH	NWTPF	NWTPH	Volatile	Haloge	Semivo (with lo	PAHs 8	PCBs 8	Organo	Organo	Chlorin	Total R	Total N	TCLP N	HEM (c	14				% Moi
1 TP11-7.0-030817	3/8/17	850	5	5		X		X		X															X
Z TP11-9:0-030817		900	5	5						~ /			_					_			Х		_		_
3 TP11-11.0-030817		910	5	5		X		X		X				_			-	-					_	$\left \right $	X
4 TP12-7.0-030817		1025	5	5	-	X		Х		X							-				~/				×
5 TP12-9.0-030817		1035	5	5				1		~/			_		-		-				X		+	$\left \right $	
9 TP12-11.0-030817		1050	5	5	-	X		X		X			_					-							X
1 TP13-7.0-030817		1130	5	5	-	X		Х		Х								-		-	. 1		_		K
8 TP13-9.0-030817		1140	5	5						. /			_	_				-			Д	_		\vdash	
7 TP13-11.0-030817	V	1155	5	5		λ		X		Д								-	_						X
Pinnatura		ampany	-67			Date			Timo			Con	iment	s/Sne	cial	Instri	Ictio	ns							_
Relinquished	U		1) 0	,]		31	011	7	11	21	2	Con		or op o	- Cruit										
Received		HAN A	trat			BK	91	7	10	0	-														
Relinquished		$\sim \mu$	100	0			<i>t</i> (1	(. /		2														
Received																									
Relinquished																							2		
Received					·																				
Reviewed/Date		Reviewed/Da	ite									Chro	mato	gram	is wi	th fin	al rep	port [

Data Package: Standard 🗌 Level III 🗌 Level IV 🗌 🛛 Electronic Data Deliverables (EDDs) 🗌 _____

March 2017 – Excavations 1 through 4, Mobile Laboratory Reports

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

March 20, 2017

Don Lance Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Mr. Lance:

Please find enclosed the analytical data report for the Sounder Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Ch	ain d	of Cus	stody	Reco	orc					v	www.Libby	/Environm	ental.com
4139 Libby Road NE	Ph:	360-352-2	2110			-	21.	1						1		. 1	
Olympia, WA 98506	Fax:	360-352-4	154	112		Date:	3/16	oll <u>Z</u>		1		Paç	ge:	(of	
Client:	rarall	on	Consu	Iting		Project	Manage	er: 10	n	Lanc	e	1					
Address: 975	5"	· Ave	NW			Project	Name:	Dour	de	r t	roje	ct			1.0		
City: Issaguah		State: 6	DA Zip	<u>98027</u>		Locatio	n: 5	eattle	e	M		City	/, Stat	e: (NA		
Phone: 425 - 295-0	0840	Fax:				Collecto	or: Ka	L In	Sol	5		Dat	e of C	Collecti	on: 3/	16/17	Z
Client Project #						Email:				Dla	nce	@ Fal	alla	ncor	150/4/	ig icor	<u>,</u>
Sample Number	Depth	Time	Sample Type	Container Type	100 M	10 19H 67 9	SQ1 PHHIC	2 2 2 2 1 2 1 2 1 2 2 2 2 2	28 HA	10 10 10 11 55 11 2	6210 68210 68882	T Neids	Meials 2	TEX	Field	Notes	
176-5W-9.0-B	9.0	1240	Carab	1 Jar, 2 1003									1				
276-SW-8.0-SW	8,0	1250					X						-				
3J7-SW-9.0-B	9.0	1300					X										
4J7-SE-80-SW	8.0	1310					X					-X					
5I7-SW-9,0-B	9.0	1320					\mathbf{X}										
6I7-5-8.0-SW	8.0	1330					X										
7H7-SW-9,0-B	9,0	1340					X					X					
8H7-5-8,0-5W	8.0	1350					X					X					
9H6-SW-9.0-B	9.0	1400					\mathbf{X}										
10G7-N-9,0-B	9.0	1410					X										
166-N-9.0-B	9.0	1420					X					K					
12												×	1	\sum			
13													φ				
14																	
15																	
16																	
17																	
Relinquished by:	Date	/ Time		Received by:			D	Date / Time		Sar	nple	Receip	t	Rema	rks:		
Kinnat	3]	1617	Q(715	1	1				Good Con	dition?	Y	Ν		$\Delta \Delta \mu$		
Relinquished by:	Date	/ Time	0	Received by:	11	11		Date / Time	_	Temp.			°C				
ingern UStron	1 -	11/17	Ce 1	516 / 00	(Jh)	<u>e 3/1</u>	1/17	151	7	Seals Inta	ct?	Y N	N/A		. 1 -	-	
rkeninquisnea by:	Date	/ I Imé		Received by:	/		D	ate / Time		Total Num Contain	ber of ers			TAT:	24HR	48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170317-10

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	3/17/17	nd	nd	nd	nd	nd	98
LCS	3/17/17	123%	116%				96
I6-SW-9.0-B	3/17/17	nd	nd	nd	nd	nd	98
I6-SW-8.0-SW	3/17/17	nd	nd	nd	nd	nd	99
J7-SW-9.0-B	3/17/17	nd	nd	nd	nd	nd	99
J7-SE-8.0-SW	3/17/17	nd	nd	nd	nd	nd	96
I7-SW-9.0-В	3/17/17	nd	nd	nd	nd	nd	91
I7-SW-9.0-B Dup	3/17/17	nd	nd	nd	nd	nd	97
I7-S-8.0-SW	3/17/17	nd	nd	nd	nd	nd	96
H7-SW-9.0-B	3/17/17	nd	nd	0.081	0.37	14	97
H7-S-8.0-SW	3/17/17	nd	nd	nd	nd	nd	97
H6-SW-9.0-B	3/17/17	nd	nd	0.091	0.38	nd	98
G7-N-9.0-B	3/17/17	nd	nd	0.094	0.38	nd	98
G6-N-9.0-B	3/17/17	nd	nd	nd	0.15	nd	98
G6-N-9.0-B Dup	3/17/17	nd	nd	nd	0.16	nd	98
H7-SW-9.0-B MS	3/17/17	120%	118%				96
H7-SW-9.0-B MSD	3/17/17	122%	119%				97
Practical Quantitation Li	mit	0.02	0.10	0.05	0.15	10	
"nd" Indicates not detect	ed at the list	ted detection	on limits.				

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170317-10 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	3/17/17	100	nd	nd
I6-SW-9.0-B	3/17/17	99	nd	nd
I6-SW-8.0-SW	3/17/17	107	nd	nd
J7-SW-9.0-B	3/17/17	100	nd	nd
J7-SE-8.0-SW	3/17/17	101	nd	nd
I7-SW-9.0-B	3/17/17	100	nd	nd
I7-SW-9.0-B Dup	3/17/17	112	nd	nd
I7-S-8.0-SW	3/17/17	96	nd	nd
H7-SW-9.0-B	3/17/17	91	nd	nd
H7-S-8.0-SW	3/17/17	87	nd	nd
H6-SW-9.0-B	3/17/17	94	nd	nd
G7-N-9.0-B	3/17/17	80	nd	nd
G6-N-9.0-B	3/17/17	86	nd	nd
G6-N-9.0-B Dup	3/17/17	90	nd	nd
Practical Quantitation Limit			50	250
"nd" Indicates not detected at th	e listed dete	ection limits.		

Analyses of Diesel & Oil (NWTPH-Dx) in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

March 23, 2017

Don Lance Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Mr. Lance:

Please find enclosed the analytical data report for the Sounder Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

z I UM

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

	Libby Environme	Chain of Custody Record									www.LibbyEnvironmenta	al.com				
	4139 Libby Road NE	Ph:	360-352-2	110			_	- 1-	.1					1	. 1	
	Olympia, WA 98506	Fax:	360-352-4	154			Date	312	-011	7		_	Page		of	
	Client: Prologit	L BAT	RAL	LON			Proje	ect Mana	ger: 🖌)on	LANC	Ł				
	Address: 975 5-6	h Au	e N	N			Proje	ect Name	: 5	UNO	DER	Pro	ett	5		
	City: ISSAGUAL		State:	A Zip	:9902	2	Loca	tion: 🔇	est	He			City, S	State:	WA.	
	Phone: 425-295-0	800	Fax: 4	125-29	5-0850		Colle	ctor:	Lon	Sc	off		Date	of Co	llection: 3 John	
	Client Project # 107/	~010	0			Email: DLANES OF FORMAN CONSULTING ICOM										
	Sample Number	Depth	Time	Sample Type	Container Type	1008	ANT BT	+ 821 12	2 ¹⁰ ,0 ⁴	294-07407 294-07-07	10 010 10 ²	10 10 868 10 10 10 10 10 10 10 10 10 10 10 10 10	Netals Ne	10 ⁵⁰	Field Notes	
-	1 C9-NE- 810-5W	Bio	1125	6	1/4 m t2/100								\mathbf{X}			
-	209/89-50-80-50	8.0	1(30	G									X			
	3 CB-NE-10:0-B	1010	135	6				$\overline{\mathbf{X}}$					X			
-	408/E8-5W-1010B	5.61	1140	6									X			
-	5 F9/E9-5W-11.0-B	110	1155	G									X			
_	6 FB/FB-5W-11.0-B	11.2	1200	67									X			
-	769/69-5W-110-B	1110	1210	G									X		S. C.	
-	8 G8/EB-SE-11.0-B	140	125	6									X			
	969-58-910-SW	9,0	1220	G									X			
	10 6B-NE-9.0-5W	9.0	1230	G				X					X			
_	11CB-NW-910-5W	9.0	1430	6	-				1							
	12 DB/ESEW-11.0-B	11.0	1440	6				$\overline{\mathbf{x}}$					X			
	13												\uparrow			
	14											_				
	15							1×	51							
	16															
	17															
	Relinquished by:	Date	/ Time		Received by:	nI		1.	Date /	Time	Sam	ple Re	ceipt	R	Remarks:	
	Kn hut	8/2	4/12 (4) 840	S/ Manx	KA	8/2	21/17	ec	1845	Good Condi	tion?	YN	V	unsite	
	Relinquished by:	Date	/ Time		Received by:	1			Date /	Time	Temp.		0	С		
	Polinguished by:	Data	/ Time		Dessived hur				Det: /	Time	Seals Intact	? Y	NN	I/A	(Y)L	
	rxeiinquisneu by.	Date	/ Time		Received by:				Date /	ime	Total Numb Containe	er of rs		-	TAT: 24HR 48HR 5-1	DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

SOUNDER PROJECT

Farallon Consulting, LLC Seattle, Washington Libby Project # L170321-30 Client Project # 1071-010

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	3/21/17	nd	nd	nd	nd	nd	104
LCS	3/21/17	91%	94%				109
C9-NE-8.0-SW	3/21/17	nd	nd	nd	nd	nd	115
D9/E9-SW-8.0-SW	3/21/17	nd	nd	nd	nd	nd	120
С8-NE-10.0-В	3/21/17	nd	nd	nd	nd	nd	119
D8/E8-SW-10.0-B	3/21/17	nd	nd	nd	nd	nd	119
F9/E9-SW-11.0-B	3/21/17	nd	nd	nd	nd	nd	112
F9/E9-SW-11.0-B Dup	3/21/17	nd	nd	nd	nd	nd	113
F8/E8-SW-11.0-B	3/21/17	nd	nd	nd	nd	nd	119
G9/F9-SW-11.0-B	3/21/17	nd	nd	nd	nd	nd	117
G8/F8-SE-11.0-B	3/21/17	nd	nd	nd	nd	nd	110
G9-SE-9.0-SW	3/21/17	nd	nd	nd	nd	nd	121
G8-NE-9.0-SW	3/21/17	nd	nd	nd	nd	nd	120
C8-NW-9.0-SW	3/21/17	nd	nd	nd	nd	nd	123
D8/E8-SW-11.0-B	3/21/17	nd	nd	nd	nd	nd	117
D8/E8-SW-11.0-B Dup	3/21/17	nd	nd	nd	nd	nd	117
G8-NE-9.0-SW MS	3/21/17	92%	98%				113
G8-NE-9.0-SW MSD	3/21/17	94%	98%				114
Practical Quantitation Lin	nit	0.02	0.10	0.05	0.15	10	

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

'nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170321-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	3/21/17	79	nd	nd
C9-NE-8.0-SW	3/21/17	87	nd	nd
D9/E9-SW-8.0-SW	3/21/17	84	nd	nd
C8-NE-10.0-B	3/21/17	84	nd	nd
D8/E8-SW-10.0-B	3/21/17	85	nd	nd
F9/E9-SW-11.0-B	3/21/17	82	nd	nd
F9/E9-SW-11.0-B Dup	3/21/17	78	nd	nd
F8/E8-SW-11.0-B	3/21/17	85	nd	nd
G9/F9-SW-11.0-B	3/21/17	112	nd	nd
G8/F8-SE-11.0-B	3/21/17	102	nd	nd
G9-SE-9.0-SW	3/21/17	92	nd	nd
G8-NE-9.0-SW	3/21/17	84	nd	nd
C8-NW-9.0-SW	3/21/17	99	nd	nd
D8/E8-SW-11.0-B	3/21/17	83	nd	nd
D8/E8-SW-11.0-B Dup	3/21/17	90	nd	nd
Practical Quantitation Limit			50	250
"nd" Indicates not detected at t	he listed dete	ection limits	50	230

Analyses of Diesel & Oil (NWTPH-Dx) in Soil

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

March 28, 2017

Don Lance Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Mr. Lance:

Please find enclosed the analytical data report for the Sounder Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 MM

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environmental, Inc. Chain c	of Custody Record www.LibbyEnvironmental.com								
4139 Libby Road NE Ph: 360-352-2110 Olympia, WA 98506 Fax: 360-352-4154	Date: 3/21/17 & 3/22/17 Page: (of (
Client: FARALLON	Project Manager: DON LANCE								
Address: 975 5th Avenue NW	Project Name: SOUNDER Project								
City: Issanuah State: WA Zip: 98027	Location: 6050 EAST MARGINAL WAY City, State: Seattle, [1] A								
Phone: 425-295-0800 Fax: 425-295-0850	Collector: Ken Scatt Date of Collection: 3/21/17 3/22								
Client Project # $1071-010$	Email: DLANCE @ FARALONCON TULTING, rOM.								
Sample Number Depth Time Type Container	8 11 5 ⁺ 8 ² 11 11 21 11 21 10 10 10 10 10 10 10 10 10 10 10 10 10								
1 £ 5-5W-80-5W 810 1215 65 2/40ML	Collected 3/21								
2 E4-5W-8.0-B 8.0 1225 GS									
3C5/05-5W-B.O-B B.O 1235 GS									
4 C5-NW-8,0-SW 8.0 1245 65									
5 C4-5E-8.0-5W 8.0 1255 65									
6D5/E5-5E-80-B 8.0 1305 65 V									
7 BT-032217 NA 900 W 1150 MULLING	X 3/22/17								
8 D4-NE-910-B 9.0 1020 5 2/10 mi vols									
9 D3-5E-910-SW 910 1030 2									
10EG SE-10.0-5W (0.0 1050)									
11D6/E6-5E-11,0-1311,0 1100 5 V									
Relinguished by: Date / Time Received by A									
Ken moth 3/21/17 (2) 1450 had 40	3/24/11 1450 Good Condition? V N								
Relinquished by: Date / Time Received by:	Date / Time Temp. °C								
1/ 1 2000 3/22/17 @ 1620/halt	13/22/11 1620 Seals Intact? Y N N/A								
Refinquished by: Date / Time Received by:	Date / Time Total Number of								
LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reason	able attorney fees to be determined by a cout of law. Distribution: White - Lab, Yellow - File, Pink - Originator								

SOUNDER PROJECT

Farallon Consulting, LLC Seattle, Washington Libby Project # L170322-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate				
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)				
Method Blank	3/22/17	nd	nd	nd	nd	nd	97				
LCS	3/22/17	87%	103%				101				
E5-SW-8.0-SW	3/22/17	nd	nd	nd	nd	nd	98				
E4-SW-8.0-B	3/22/17	nd	nd	nd	nd	nd	102				
C5/D5-SW-8.0-B	3/22/17	nd	nd	nd	nd	nd	101				
C5-NW-8.0-SW	3/22/17	nd	nd	nd	nd	nd	104				
C4-SE-8.0-SW	3/22/17	nd	nd	nd	nd	nd	96				
C4-SE-8.0-SW Dup	3/22/17	nd	nd	nd	nd	nd	109				
D5/E5-SE-8.0-B	3/22/17	nd	nd	nd	nd	nd	111				
D4-NE-9.0-B	3/22/17	nd	nd	nd	nd	nd	110				
D3-SE-9.0-SW	3/22/17	nd	nd	nd	nd	nd	95				
E6-SE-10.0-SW	3/22/17	nd	nd	nd	nd	nd	83				
D6/E6-SE-11.0-B	3/22/17	nd	nd	nd	nd	nd	94				
C4-SE-8.0-SW MS	3/22/17	97%	109%				110				
Practical Quantitation Li	mit	0.02	0.10	0.05	0.15	10					
nd" Indicates not detected at the listed detection limits.											

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170322-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil				
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)				
Method Blank	3/22/17	106	nd	nd				
E5-SW-8.0-SW	3/22/17	110	nd	nd				
E4-SW-8.0-B	3/22/17	106	nd	nd				
C5/D5-SW-8.0-B	3/22/17	int	nd	1530				
C5-NW-8.0-SW	3/22/17	104	nd	nd				
C4-SE-8.0-SW	3/22/17	108	nd	nd				
C4-SE-8.0-SW Dup	3/22/17	108	nd	nd				
D5/E5-SE-8.0-B	3/22/17	108	nd	nd				
D4-NE-9.0-B	3/22/17	109	nd	nd				
D3-SE-9.0-SW	3/22/17	123	nd	nd				
E6-SE-10.0-SW	3/22/17	96	nd	nd				
D6/ES-SE-11.0-B	3/22/17	107	nd	nd				
Practical Quantitation Limit			50	250				
'nd" Indicates not detected at the listed detection limits.								
"int" Indicates that interference	nrevents de	termination						

Analyses of Diesel & Oil (NWTPH-Dx) in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170322-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Surrogate
Number	Analyzed	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	Recovery (%)
Method Blank	3/22/17	nd	nd	nd	nd	97
LCS	3/22/17	87%	103%			101
BT-032217	3/22/17	nd	nd	nd	nd	110
BT-032217 Dup	3/22/17	nd	nd	nd	nd	109
BT-032217 MS	3/22/17	89%	105%	nd	nd	97
BT-032217 MSD	3/22/17	83%	99%	nd	nd	99
Practical Quantitation Limit		1	2	1	3	
"nd" Indicates not detected at	the listed de	etection lim	its.			

Analyses of BTEX by EPA Method 8021B in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Triflourotoluene): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170322-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil					
Number	Analyzed	Recovery (%)	$(\mu g/l)$	(µg/l)					
Method Blank	3/22/17	106	nd	nd					
BT-032217	3/22/17	115	248	nd					
BT-032217 Dup	3/22/17	101	260	nd					
Practical Quantitation Limit 200 400									
'nd" Indicates not detected at the listed detection limits.									
"int" Indicates that interference	prevents de	termination.							

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

March 29, 2017

Don Lance Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Mr. Lance:

Please find enclosed the analytical data report for the Sounder Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	Ch	Chain of Custody Record										www.LibbyE	Environme	ntal.com			
4139 Libby Road NE	Ph:	360-352-2	110											,		r	
Olympia, WA 98506	Fax:	360-352-4	154			Date	: 3/2	-211/	/	1		Pag	je:		0	f	
Client: /-/ARALL			<u> </u>		Statement of the law	Proj	ect Mana	ger: D	50	LANC	Ł						
Address: 975 5-	th A	ver	1W			Project Name: SOUNDER Project											
City: ISSAgrah		State:	A Zip	: 98027		Loca	ation: 💋	SUMOS	gruf	why		City	, Stat	e:	Seattle	's wt	
Phone: 425-295-0900 Fax: 425-295-0850 Collector: Kn m								to		Date	e of C	Collect	ion: 3/2	212			
Client Project # 107/	-01	0				Ema	ail: D1	AVCE	CA	ABRICI	s cos	USULT	ing	. Lo	M		
Sample Number	Depth	Time	Sample Type	Container Type	100 8	LE PH	5 ⁺ 882	HCD D+	CPAH 82	10 10 10 AN 52 ¹⁰ 10	30 30 MIC	S Metals	uneials 219	Ø	Field	Notes	
106-NW-13,0-5W	13.0	1335	5	2/4UMLVUK								\square			Collect	feel 3/	22
2C6-SE-1310-B	13.0	1340	S	1		_										\perp	
3 C7-NW-1202-5W	12.0	1350	5														
427/07-5E-14,0-B	14.0	1400	5			_											
5 DJ/E7-SE-13,0-B	13.0	1425	5														
6 E7-5E-120-5W	12,0	1465	5									-X					
7 C3 NE-120-5W	12.0	1525	5														
8 B3-5E-13.0-B	13,0	1530	5														
9 C4-NE-12.0-5W	12.0	1540	5									\times					
10 B 3-5E-12.0-5W	12.0	1545	5									X			V	/	
11 E9-SE-8.0-5W	8,0	825	5												3/23/1	7	
12F8-NE-80-5W	8.0	835	5														
13 F9-5E-8.0-5W	8.0	845	S				\mid \mid \mid					\mathbf{X}					
14 BT-032317	NA	1240	W			X									V		
15		·				1											
16																	
17			-				/										
Relinquished by:	Date	/ Time		Received by:	11	11	- /	Date / Tin	ne	San	nple	Receipt	t	Rema	arks:		
Kn mill	31	2211	(a)	16se	y fh	nl	3/2	2/17/	1620	Good Cond	lition?	Y	Ν		Λ	1	
Relinquished by:	Date	/ Time	\bigcirc	Received by:	110	- / (1	Date / Tin	ne	Temp.			°C				
Relinquished by:	 	317	Ce /	Bacaivad hur	XPA	43	/23/	Date / Tin	50	Seals Intac	t?	Y N	N/A				
	Date	/ ming		riccelled by.	/				110	Containe	ers			TAT	: 24HR	48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

SOUNDER PROJECT

Farallon Consulting, LLC Seattle, Washington Libby Project # L170323-30 Client Project # 1071-010

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	3/23/17	nd	nd	nd	nd	nd	88
LCS	3/23/17	106%	112%				88
C6-NW-13.0-SW	3/23/17	nd	nd	nd	nd	nd	87
C6-SE-13.0-B	3/23/17	nd	nd	nd	nd	nd	86
C7-NW-12.0-SW	3/23/17	nd	nd	nd	nd	nd	89
C7/D7-SE-14.0-B	3/23/17	nd	nd	nd	nd	nd	89
D7/E7-SE-13.0-B	3/23/17	nd	nd	nd	nd	nd	87
D7/E7-SE-13.0-B Dup	3/23/17	nd	nd	nd	nd	nd	81
E7-SE-12.0-SW	3/23/17	nd	nd	nd	nd	nd	99
C3-NE-12.0-SW	3/23/17	nd	nd	nd	nd	nd	96
B3-SE-13.0-B	3/23/17	nd	nd	nd	nd	nd	99
C4-NE-12.0-SW	3/23/17	nd	nd	nd	nd	nd	95
B3-SE-12.0-SW	3/23/17	nd	nd	nd	nd	nd	95
B3-SE-12.0-SW Dup	3/23/17	nd	nd	nd	nd	nd	93
E9-SE-8.0-SW	3/23/17	nd	nd	nd	nd	nd	96
F8-NE-8.0-SW	3/23/17	nd	nd	nd	nd	nd	91
F9-SE-8.0-SW	3/23/17	nd	nd	nd	nd	nd	91
C4-NE-12.0-SW MS	3/23/17	112%	108%				97
C4-NE-12.0-SW MSD	3/23/17	104%	109%				92
Practical Quantitation Li	mit	0.02	0.10	0.05	0.15	10	

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

'nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170323-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	3/23/17	106	nd	nd
C6-NW-13.0-SW	3/23/17	99	nd	nd
С6-SE-13.0-В	3/23/17	110	nd	nd
C7-NW-12.0-SW	3/23/17	101	nd	nd
C7/D7-SE-14.0-B	3/23/17	106	nd	nd
D7/E7-SE-13.0-B	3/23/17	129	nd	nd
D7/E7-SE-13.0-B Dup	3/23/17	115	nd	nd
E7-SE-12.0-SW	3/23/17	97	nd	nd
C3-NE-12.0-SW	3/23/17	101	nd	nd
ВЗ-SE-13.0-В	3/23/17	93	nd	nd
C4-NE-12.0-SW	3/23/17	105	nd	nd
B3-SE-12.0-SW	3/23/17	93	nd	nd
B3-SE-12.0-SW Dup	3/23/17	100	nd	nd
E9-SE-8.0-SW	3/23/17	94	nd	nd
F8-NE-8.0-SW	3/23/17	106	nd	nd
F9-SE-8.0-SW	3/23/17	93	nd	nd
Practical Quantitation Limit			50	250
"nd" Indiantas not detacted at th	a listed data	ation limits	30	230

Analyses of Diesel & Oil (NWTPH-Dx) in Soil

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170323-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Surrogate
Number	Analyzed	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	Recovery (%)
Method Blank	3/23/17	nd	nd	nd	nd	88
LCS	3/23/17	106%	112%			88
BT-032317	3/23/17	nd	nd	nd	nd	88
BT-032317 Dup	3/23/17	nd	nd	nd	nd	88
BT-032317 MS	3/23/17	107%	104%			93
BT-032317 MSD	3/23/17	107%	107%			88
Practical Quantitation Limit		1	2	1	3	
"nd" Indicates not detected at	the listed de	etection lim	its.			
"int" Indicates that interference	e prevents c	leterminati	on.			

Analyses of BTEX by EPA Method 8021B in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Triflourotoluene): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170323-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Somple	Data	Sumogoto	Diagal	0:1					
Sample	Date	Sunogate	Diesei	Oli					
Number	Analyzed	Recovery (%)	(µg/l)	(µg/l)					
Method Blank	3/23/17	106	nd	nd					
BT-032317	3/23/17	int	2030	nd					
BT-032317 Dup	3/23/17	int	2320	nd					
Practical Quantitation Limit			200	400					
'nd" Indicates not detected at the listed detection limits.									
int" Indicates that interference prevents determination.									

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

March 29, 2017

Don Lance Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Mr. Lance:

Please find enclosed the analytical data report for the Sounder Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

z I UM

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		C	nair	l of	Cu	stod	y R	eco	rd						www.Lik	byEnvir	onmental.com
4139 Libby Road NE	Ph:	360-352-2	110			_		76	24	-				_		1			1
	Fax:	360-352-4	154				Date:	31.	231	1/				P	age:	(of	/
Client: FARALLO			h.)			F	Projec	t Mana	ger:	Dar		ANC	E	-	P				
Address: 715 Sta	Aver	we i	<u>vw</u>	2 - 0	~	F	Projec	t Name	: 5	OUL	JUE	=R F	ra	ei	ъ		- (1	1	Δ
City: 535Agran		State: U	A Zip	: 9802		L	ocati	on: Je	SH	et	W	T.		С	ity, St	ate: 5	estte	JW	A
Phone: 425-295-0	58025	Fax: 4	125-20	35-085	9	(Collec	tor:	In	S	na	X,		D	ate of	Colle	ection: 3	123	D. 4
Client Project # 1071-	010					E	Email:	DLA	Jcz	@ F	78 PRI	Dar	Col	st	eling	n CC	211		3/24/17
Sample Number	Depth	Time	Sample Type	Container Type	15	5 8280 5 8280	2 ^H , 5 ^H	8821 PH	S.C. C.	4 4 0 4 1 + 4 0 1 + 1 0 1 +	0+10 8210	5210 VOP	210 210 2882	5 Metal	P Neid	311	Fie	ollec Id Note	ted
165 NW- 8.0-5W	80	1410	5	2/400 VAS											\leq		3/	23/	17
264 NW 810-5W	8.0	1420	5												\leq			ľ.	
363-51080-5W	8.0	1430	5					$-\mathbf{X}$							\leq				
464-560-910 B	9.0	1440	5					$-\Sigma$							\leq				
564/63-200-9,0-B	9,0	1450	5					X							$\langle $				
675-5E-9,0-B	9.0	1500	5					\mathbf{X}											
765-5E90-B	9.0	1510	3															K.	
815-5E-8.0-5W	8.0	0955	5	210as, Jar				<u> </u>							Х́ —		3/2	4/17	7
975-NE-8.0-SW	8.0	0956	5												X			[
10 I 4-NE-8.0-SW	8.0	1005	5					X							X				
1187-032417	-	1120	W	Zwas, 1500mi Amber	-		\times		\times										
12																			
13																			
14																			
15																			
16																			
17						1	X												
Relinquished by:	Date	/ Time	\bigcirc	Received by:	11	D	/	/ /	Date /	Time		Sam	ple F	Rece	ipt	Rei	marks:		
Ken hul	31	23/17	61	57-5/	all	Kou l	3/	23/1	1	152	SG	ood Condi	tion?	Y	N		A -		
Relinguished by:	Date	/ Time		Received by		- 1	1	h.	Date /	Time	Te	emp.			°C		/Y) /	
Relinquished by:	3/2	24/17	/	Yand M	A	5/2	24/	17	Data	1.30	Se	eals Intact	?	YN	N/A	1	11		
i teled by.	Date	/ 111110		received by:					Date /	I IM)6		otal Numb Containe	er of			TA	AT: 24H	R 48H	HR 5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

SOUNDER PROJECT

Farallon Consulting, LLC Seattle, Washington Libby Project # L170324-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	3/24/17	nd	nd	nd	nd	nd	110
LCS	3/24/17	114%	114%				96
G5-NW-8.0-SW	3/24/17	nd	nd	nd	nd	nd	102
G4-NW-8.0-SW	3/24/17	nd	nd	nd	nd	nd	100
G3-SW-8.0-SW	3/24/17	nd	nd	nd	nd	nd	81
G4-SW-9.0-B	3/24/17	nd	nd	nd	nd	nd	88
G4/G5-NW-9.0-B	3/24/17	nd	nd	nd	nd	nd	97
G4/G5-NW-9.0-B Dup	3/24/17	nd	nd	nd	nd	nd	89
H5-SE-9.0-B	3/24/17	nd	nd	nd	nd	nd	92
G5-SE-9.0-B	3/24/17	nd	nd	nd	nd	nd	85
I5-SE-8.0-SW	3/24/17	nd	nd	nd	nd	nd	92
I5-NE-8.0-SW	3/24/17	nd	nd	nd	nd	nd	87
I4-NE-8.0-SW	3/24/17	nd	nd	nd	nd	nd	91
G5-SE-9.0-B MS	3/24/17	116%	120%				95
G5-SE-9.0-B MSD	3/24/17	114%	115%				86
Practical Quantitation Li	mit	0.02	0.10	0.05	0.15	10	
"nd" Indicates not detect	ed at the list	ted detection	on limits.				
"int" Indicates that interf	erence prev	ents detern	nination.				

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170324-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	3/24/17	101	nd	nd
G5-NW-8.0-SW	3/24/17	105	nd	nd
G4-NW-8.0-SW	3/24/17	105	nd	nd
G3-SW-8.0-SW	3/24/17	108	nd	nd
G4-SW-9.0-B	3/24/17	109	nd	nd
G4/G5-NW-9.0-B	3/24/17	105	nd	nd
G4/G5-NW-9.0-B Dup	3/24/17	109	nd	nd
H5-SE-9.0-B	3/24/17	101	nd	nd
G5-SE-9.0-B	3/24/17	116	nd	nd
I5-SE-8.0-SW	3/24/17	71	nd	nd
I5-NE-8.0-SW	3/24/17	89	nd	nd
I4-NE-8.0-SW	3/24/17	85	nd	nd
Practical Quantitation Limit			50	250
"nd" Indicates not detected at the	ne listed dete	ection limits.		
"int" Indicates that interference	nrevents de	termination		

Analyses of Diesel & Oil (NWTPH-Dx) in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170324-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Surrogate
Number	Analyzed	(µg/l)	(µg/l)	(µg/l)	(µg/l)	Recovery (%)
Method Blank	3/24/17	nd	nd	nd	nd	110
LCS	3/24/17	114%	114%			96
BT-032417	3/24/17	nd	nd	nd	nd	95
BT-032417 Dup	3/24/17	nd	nd	nd	nd	88
BT-032417 MS	3/24/17	107%	108%			94
BT-032417 MSD	3/24/17	107%	107%			92
Practical Quantitation Limit		1	2	1	3	
"nd" Indicates not detected at	the listed de	etection lin	nits.			
Windly To diaster that interformers		1				

Analyses of BTEX by EPA Method 8021B in Water

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Triflourotoluene): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170324-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil					
Number	Analyzed	Recovery (%)	$(\mu g/l)$	(µg/l)					
Method Blank	3/24/17	101	nd	nd					
BT-032417	3/24/17	119	432	nd					
BT-032417 Dup	3/24/17	int	444	nd					
Practical Quantitation Limit			200	400					
"nd" Indicates not detected at the listed detection limits.									
"int" Indicates that interference prevents determination.									

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

March 29, 2017

Don Lance Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Mr. Lance:

Please find enclosed the analytical data report for the Sounder Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

z I UM

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environmental, Inc. Chai				iain (n of Custody Record						www.LibbyEnvironmental.com	
4139 Libby Road NE	Ph:	360-352-2	2110				-					1
Olympia, WA 98506	Fax	360-352-4	154			Da	ate: 37	24/	17-	u	D-21-11 Page:	of
Client: Farallon						Pr	oject M	lanagei	: T	Don	Lance	
Address: 975 5th Ave NE					Pr	oject N	ame:	So	and	er Project		
City: Issand State: WA Zip: 98027				Lo	cation:	Se	H_{a}	e	City, Si	tate: WA		
Phone: Fax:				Сс	Collector: R. Ostrom Ken Scott Date of Collection: 3/24 83/27							
Client Project # 1071-0(0						En	nail:				/	
LIB BA			Sample	Container	au b	321B	24 88 8	OULA COULA	NH RT		2 10 10 55 55 55 10 10 10 10 10 10 10 10 10 10 10 10 10	
Sample Number	Depth	Time	Туре	Туре	4	10.	37 54				<u>1 28 2 7 5 / / / / / / / / / / / / / / / / / /</u>	Field Notes Offected
192-5-80-5W	8.0	1010	Doil	20005, 1 Jar	\mid	<u> </u>		$-\lambda$		X		3/24/17
3 T3-115-80-501	8.0	1015						-		X		
4 H4-5-19,0-B	12.0	1141			- X			-	-	\mathbf{k}		
5I4-5W-10.0-B	10.0	1142			X				2	\Diamond		
6 H3-5-128-B	125	1143			X			- 13	2	$\hat{\mathbf{x}}$		
7-3-5W-10.0-B	10.0	1144			Ń	2		Í		X		
8 H2-5-2.0-B	12.0	1145			5	1		X	(ÍÝ		
9 UST2-6.0-B	6.0	1215			X			Ń		\mathbf{X}		3/27/17
10 UST2-W-5.0-8W	5.0	1220				Č		5		\boxtimes		
11UST2-E-5.0-5W	510	1230						×	4	\times		
12												<i>i</i>
13	ļ											
14	ļ											
15												
16						,	_		_			
1/ Relinquiched by:	Data	/ Time		Dessigned by	$ \downarrow \downarrow$							
Mining Osla			250	Received of		3/	4/1	1 /	7 51	9 7	Sample Receipt:	Remarks:
Relinguished by:	Date	/ Time	705	Received by	yoy -	14	-1/1	Da	e / Tim	e		- M
Ka Trath	312	าเกล	1457/	Tan M	13	/2	1/1-	1 14	5	7	Good Condition?	
Relinquished by:	Date	/ Time	+	Received by:			/ / /	Dat	e / Tim	e	Seals Intact?	
			V								Total Number of Containers	TAT: 24HR 48HR 5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

SOUNDER PROJECT

Farallon Consulting, LLC Seattle, Washington Libby Project # L170327-10 Client Project # 1071-010

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate	
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)	
Method Blank	3/27/17	nd	nd	nd	nd	nd	98	
LCS	3/27/17	107%	102%				99	
G2-S-8.0-SW	3/27/17	nd	nd	nd	nd	nd	98	
H2-NW-8.0-SW	3/27/17	nd	nd	nd	nd	49	97	
I3-NE-8.0-SW	3/27/17	nd	nd	nd	nd	nd	98	
Н4-S-12.0-В	3/27/17	nd	nd	nd	nd	130	98	
I4-SW-10.0-B	3/27/17	nd	nd	nd	nd	nd	96	
I4-SW-10.0-B Dup	3/27/17	nd	nd	nd	nd	nd	99	
H3-S-12.5-B	3/27/17	nd	nd	nd	nd	nd	98	
I3-SW-10.0-B	3/27/17	nd	nd	nd	nd	nd	99	
Н2-S-12.0-В	3/27/17	nd	nd	nd	nd	nd	99	
H2-S-12.0-B Dup	3/27/17	nd	nd	nd	nd	nd	99	
UST2-6.0-B	3/27/17	nd	0.35	0.39	5.03	27	97	
UST2-W-5.0-SW	3/27/17	0.063	1.89	1.27	14.7	104	99	
UST2-E-5.0-SW	3/27/17	nd	0.78	1.04	12.9	77	98	
H2-S-12.0-B MS	3/27/17	109%	100%				97	
H2-S-12.0-B MSD	3/27/17	105%	102%				100	
Practical Quantitation Limit		0.02	0.10	0.05	0.15	10		
"nd" Indicates not detected at the listed detection limits.								
"int" Indicates that interference prevents determination								

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170327-10 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	3/27/17	100	nd	nd
G2-S-8.0-SW	3/27/17	96	nd	nd
H2-NW-8.0-SW	3/27/17	int	5600 E	nd
I3-NE-8.0-SW	3/27/17	79	nd	nd
Н4-S-12.0-В	3/27/17	int	6350 E	nd
I4-SW-10.0-B	3/27/17	int	711	nd
I4-SW-10.0-B Dup	3/27/17	int	676	nd
Н3-S-12.5-В	3/27/17	116	nd	nd
I3-SW-10.0-B	3/27/17	97	nd	nd
Н2-S-12.0-В	3/27/17	94	nd	nd
H2-S-12.0-B Dup	3/27/17	69	nd	nd
UST2-6.0-B	3/27/17	int	9220 E	nd
UST2-W-5.0-SW	3/27/17	int	7380 E	nd
UST2-E-5.0-SW	3/27/17	int	9540 E	nd
Practical Quantitation Limit			50	250

Analyses of Diesel (NWTPH-Dx) in Soil

"E" Indicates reported result is an estimate because it exceeds the calibration limit.

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

April 7, 2017

Don Lance Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Mr. Lance:

Please find enclosed the analytical data report for the Sounder Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environm	ental,	Inc.		Ch	ain	of	Cus	stod	y R	leco	ord							www.LibbyEnvironmen	tal.com
4139 Libby Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	2110 154			D	ate:	3/2-	7/1	7					Pag	e:	1	of	
Client: FARALLO	\mathcal{N}					F	roject	Manag	ger:	Dor)	LA	UCE	4					
Address: 975 54	h AUR	2 NU)			F	roject	Name	:-5	00	NY	DE	R. P.	-010	ea	K			
City: ISSAQUAN	0 11	State:	A Zip	: 9802	7	Location: City, State								e:	Sertto IDA				
Phone: 425-295-08	300	Fax: 2	+25-29	5-0850		Collector: Con Branch Date of C							Collec	tion: 3/27/17 3	68/-				
Client Project # 1074	010					Email: DLANCE @ FATALLON CONSUL-TING (OM													
Sample Number	Depth	Time	Sample Type	Container Type		8280 LUN	27,44	SQ1 PH	C.C.C.	St PHONE	07 07 182 182 192	0 10 8210 5810	10 10 10 10 10 10 10 10 10 10 10 10 10 1	24 / 54 / 54	100 00 00 00 00 00 00 00 00 00 00 00 00	Metals		Collected Field Notes	
1J9-NE-9.0-B	9.0	1305	5	2140 1410/2		\times	\triangleleft		X									3/21/11	
2 K9-NE-10.0-B	10.0	1400	5			\times	\prec		\geq									V	
3BT-032817	NAR	1010	W	B/4c nr VUAS			K		Х,									3126/17	
4 HZ-NEED-SWI	8.0	1150	5	,		$\times p$	\leq		Х										
544-5-13,0-B	13.0	1230	5			\times	4		X										
6				1										<u> </u>					
7							- 101												
8																			
9																			
10																			
11																			
12																			
13		· · · ·																	
14									÷										
15																			
16																			
17																			
Relinquished by:	Date	/ Time	,457,	Received by:		/	1		Date	/ Time		S	Sample	Rec	ceipt		Rem	arks:	
Son nut	312	1/170	2' 14	al Jack	3	127	11	145	1		(Good C	Condition	?	Y	Ν		M	
Relinquished by:	Date	/ Time	, //	Received by.	21	" "	57/	5	Date	/ Time	-	Temp.				°C			
Kin will	3(28	1715	62/ /	May D	nl	2/2	20/1	/	15	UL		Seals I	ntact?	Y	Ν	N/A		111	
	Date	/ Timé	V	Received by:					Date	/ I ime		Total N Con	lumber o tainers	f			TA	T: 24HR 48HR 5	-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

SOUNDER PROJECT

Farallon Consulting, LLC Seattle, Washington Libby Project # L170328-30 Client Project # 1071-010

4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate	
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)	
Method Blank	3/28/17	nd	nd	nd	nd	nd	91	
LCS	3/28/17	112%	108%				93	
J9-NE-9.0-B	3/28/17	nd	nd	nd	nd	nd	95	
K9-NE-10.0-B	3/28/17	nd	nd	nd	nd	nd	95	
K9-NE-10.0-B Dup	3/28/17	nd	nd	nd	nd	nd	92	
H2-NE-8.0-SW	3/28/17	nd	nd	nd	nd	nd	108	
Н4-5-13.0-В	3/28/17	nd	nd	nd	nd	nd	107	
K9-NE-10.0-B MS	3/28/17	88%	91%				105	
K9-NE-10.0-B MSD	3/28/17	102%	110%				83	
Practical Quantitation Limit 0.02 0.10 0.05 0.15 10								
"nd" Indicates not detect	"nd" Indicates not detected at the listed detection limits.							
"int" Indicates that interf		anta datam						

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

'int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170328-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil			
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)			
Method Blank	3/28/17	97	nd	nd			
J9-NE-9.0-B	3/28/17	98	nd	nd			
K9-NE-10.0-B	3/28/17	81	nd	nd			
K9-NE-10.0-B Dup	3/28/17	86	nd	nd			
H2-NE-8.0-SW	3/28/17	103	nd	nd			
Н4-5-13.0-В	3/28/17	90	nd	nd			
Practical Quantitation Limit 50 250							
"nd" Indicates not detected at the listed detection limits.							
"int" Indicates that interference prevents determination.							

Analyses of Diesel & Oil (NWTPH-Dx) in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170328-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Surrogate	
Number	Analyzed	(µg/l)	(µg/l)	(µg/l)	(µg/l)	Recovery (%)	
Method Blank	3/28/17	nd	nd	nd	nd	91	
LCS	3/28/17	112%	108%			93	
BT-032817	3/28/17	nd	nd	nd	nd	101	
BT-032817 Dup	3/28/17	nd	nd	nd	nd	96	
BT-032817 MS	3/28/17	116%	116%			93	
BT-032817 MSD	3/28/17	118%	108%			102	
Practical Quantitation Limit		1	2	1	3		
"nd" Indicates not detected at the listed detection limits.							
"int" Indicates that interference prevents determination.							

Analyses of BTEX by EPA Method 8021B in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Triflourotoluene): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170328-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil			
Number	Analyzed	Recovery (%)	(µg/l)	(µg/l)			
Method Blank	3/28/17	97	nd	nd			
BT-032817	3/28/17	85	nd	nd			
BT-032817 Dup	3/28/17	91	nd	nd			
Practical Quantitation Limit 200 400							
"nd" Indicates not detected at the listed detection limits.							
"int" Indicates that interference prevents determination.							

Analyses of Diesel & Oil (NWTPH-Dx/Dx Extended) in Water

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

Libby Environmental, Inc. 4139 Libby Road NE • Olympia, WA 98506-2518

April 7, 2017

Don Lance Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Mr. Lance:

Please find enclosed the analytical data report for the Sounder Project located in Seattle, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of in 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environme	ental,	Inc.		Ch	air	1 0	f Cı	ust	ody	y R	ec	orc	ł							www.LibbyEnvironmenta	al.com
4139 Libby Road NE	Ph:	360-352-2	110																	1	
Olympia, WA 98506	Fax:	360-352-4	154				Date: 3/29/17 Page: / of									of					
Client: FARALLON							Proje	ect M	anag	jer:	Do	J J	AA	SCE	5		Contractory without			·	
Address: 975 5th A	ve N	W					Proje	ect Na	ame:	50	N	DE	R	P	rai	ect					
City: 255Ayugh		State: 🕖	JA Zip	:9802	7		Location: 2050 ENSEMMENT WAY City, Sta								Stat	e: 5	estte, alt				
Phone: 425-295-0	809	Fax: 4	25-29	5-0850			Collector: Kin King Date of (of C	olled	tion: 3/29/17				
Client Project # 1071-	010					Email: DLANE FORONOUSULENGICON															
Sample Number	Depth	Time	Sample Type	Container Type	<u></u>	5 828 5 11	ALL AL	+ 00 + 10 00 11	HR IN	CIP CO	+ 11, 2	2 AH 82	10 10 21 8210 21 8210	Sunda C	210 210 8882	SA PC	2 ²⁰	le des		Field Notes	
1 EX4-W-11.0-B	11.0	1005	5	2/40 11-1045		X	\mathbf{X}			X											
2 EX4-5-10-0-SW	6.01	1010	5	1		X	X			X											
3 EX4-E-10.0-5W.	10.0	1015	5			X	X			\times											
4 EX4-E-11.0-B	11.0	1020	5			X	X			X											
5 EX4-W-10.0-5W	10.0	1025	5			X	X			$ \lambda $											
6 EX+N-1000-5W	10.0	1030	5	\vee		X	\mathbf{X}			XI											
7						-															
8																					
9																					
10																					
11																					
12																					
13																					
14																					
15																					
16																					
17																					
Relinquished by:	Date	/ Time	L	Received by:	5	1		1	1.	Date /	Time)		San	ple	Rec	eipt		Ren	harks:	
Kin moth 31:	29/17	@11	15 /	1011/5	lalk	2 -	3/2	-9/	17		[]]	5	Good	Cond	ition?		Y	Ν		\sim	
Relinquished by:	Date	/ Time	~ell/	Received by	1		1			Date /	Time	25	Temp).				°C			
Kr 7Ct 3/2	23/17	w 14	1/2/14	alpo	r	5	$\frac{1}{2}$	1/	17	1	7.	W	Seals	Intac	t?	Y	N	N/A		1.11	
Reinquisnea by:	Date	/ I ime	V	Receiver by:		í		6		Date /	Time	9	Total Co	Numt Intaine	per of ers				TA	T 24HR 48HR 5-	

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a cout of law.

Distribution: White - Lab, Yellow - File, Pink - Originator

SOUNDER PROJECT

Farallon Consulting, LLC Seattle, Washington Libby Project # L170329-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Benzene	Toluene	Ethylbenzene	Xylenes	Gasoline	Surrogate
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Recovery (%)
Method Blank	3/29/17	nd	nd	nd	nd	nd	101
LCS	3/29/17	94%	94%				119
EX4-W-11.0-B	3/29/17	nd	nd	nd	nd	nd	103
EX4-S-10.0-SW	3/29/17	nd	nd	nd	nd	nd	98
EX4-E-10.0-SW	3/29/17	nd	nd	nd	nd	nd	97
EX4-E-11.0-B	3/29/17	nd	nd	nd	nd	nd	93
EX4-W-10-SW	3/29/17	nd	nd	nd	nd	nd	108
EX4-W-10.0-SW Dup	3/29/17	nd	nd	nd	nd	nd	105
EX4-N-10.0-SW	3/29/17	nd	nd	nd	nd	nd	96
EX4-N-10.0-SW MS	3/29/17	90%	87%				115
EX4-N-10.0-SW MSD	3/29/17	101%	109%				94
Practical Quantitation Li	mit	0.02	0.10	0.05	0.15	10	

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260C) in Soil

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 65% TO 135%

SOUNDER PROJECT Farallon Consulting, LLC Seattle, Washington Libby Project # L170329-30 Client Project # 1071-010 4139 Libby Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@aol.com

Sample	Date	Surrogate	Diesel	Oil				
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)				
Method Blank	3/29/17	101	nd	nd				
EX4-W-11.0-B	3/29/17	93	nd	nd				
EX4-S-10.0-SW	3/29/17	90	nd	nd				
EX4-E-10.0-SW	3/29/17	93	nd	nd				
EX4-E-11.0-B	3/29/17	89	nd	nd				
EX4-W-10.0-SW	3/29/17	97	nd	nd				
EX4-W-10.0-SW Dup	3/29/17	87	nd	nd				
EX4-N-10.0-SW	3/29/17	95	nd	nd				
Practical Quantitation Limit 50 250								
"nd" Indicates not detected at the listed detection limits.								
"int" Indicates that interference prevents determination.								

Analyses of Diesel & Oil (NWTPH-Dx) in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

March 2017 – Excavations 1 through 4, Other Laboratory Reports

March 22, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1703-185

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on March 21, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: March 22, 2017 Samples Submitted: March 21, 2017 Laboratory Reference: 1703-185 Project: 1071-010

Case Narrative

Samples were collected on March 20, 2017 and received by the laboratory on March 21, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Halogenated Volatiles EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Surrogate Standard 4-Bromofluorobenzene is outside control limits for sample C9-NW-8.0-SW due to sample matrix effects. The sample was re-analyzed with similar results.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C9-NE-8.0-SW					
Laboratory ID:	03-185-01					
Dichlorodifluoromethane	ND	0.0037	EPA 8260C	3-21-17	3-21-17	
Chloromethane	ND	0.015	EPA 8260C	3-21-17	3-21-17	
Vinyl Chloride	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Bromomethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Chloroethane	ND	0.012	EPA 8260C	3-21-17	3-21-17	
Trichlorofluoromethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
lodomethane	ND	0.012	EPA 8260C	3-21-17	3-21-17	
Methylene Chloride	ND	0.012	EPA 8260C	3-21-17	3-21-17	
(trans) 1,2-Dichloroethene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
2,2-Dichloropropane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
(cis) 1,2-Dichloroethene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Bromochloromethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Chloroform	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,1,1-Trichloroethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Carbon Tetrachloride	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloropropene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloroethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Trichloroethene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloropropane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Dibromomethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Bromodichloromethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
2-Chloroethyl Vinyl Ether	ND	0.016	EPA 8260C	3-21-17	3-21-17	
(cis) 1,3-Dichloropropene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
(trans) 1,3-Dichloropropene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	

3

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C9-NE-8.0-SW					
Laboratory ID:	03-185-01					
1,1,2-Trichloroethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Tetrachloroethene	0.020	0.0023	EPA 8260C	3-21-17	3-21-17	
1,3-Dichloropropane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Dibromochloromethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromoethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Chlorobenzene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,1,1,2-Tetrachloroethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Bromoform	ND	0.012	EPA 8260C	3-21-17	3-21-17	
Bromobenzene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,1,2,2-Tetrachloroethane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichloropropane	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
2-Chlorotoluene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
4-Chlorotoluene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,3-Dichlorobenzene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,4-Dichlorobenzene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,2-Dichlorobenzene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromo-3-chloropropane	ND	0.012	EPA 8260C	3-21-17	3-21-17	
1,2,4-Trichlorobenzene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Hexachlorobutadiene	ND	0.012	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichlorobenzene	ND	0.0023	EPA 8260C	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	73-134				
Toluene-d8	106	81-124				
4-Bromofluorobenzene	96	80-131				

Date of Report: March 22, 2017 Samples Submitted: March 21, 2017 Laboratory Reference: 1703-185 Project: 1071-010

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D9/E9-SW-8.0-SW					
Laboratory ID:	03-185-02					
Dichlorodifluoromethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Chloromethane	ND	0.015	EPA 8260C	3-21-17	3-21-17	
Vinyl Chloride	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Bromomethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Chloroethane	ND	0.011	EPA 8260C	3-21-17	3-21-17	
Trichlorofluoromethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
lodomethane	ND	0.011	EPA 8260C	3-21-17	3-21-17	
Methylene Chloride	ND	0.011	EPA 8260C	3-21-17	3-21-17	
(trans) 1,2-Dichloroethene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
2,2-Dichloropropane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
(cis) 1,2-Dichloroethene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Bromochloromethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Chloroform	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,1,1-Trichloroethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Carbon Tetrachloride	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloropropene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloroethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Trichloroethene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloropropane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Dibromomethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Bromodichloromethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
2-Chloroethyl Vinyl Ether	ND	0.015	EPA 8260C	3-21-17	3-21-17	
(cis) 1,3-Dichloropropene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
(trans) 1,3-Dichloropropene	e ND	0.0022	EPA 8260C	3-21-17	3-21-17	

HALOGENATED VOLATILES EPA 8260C
name 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D9/E9-SW-8.0-SW					
Laboratory ID:	03-185-02					
1,1,2-Trichloroethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Tetrachloroethene	0.0075	0.0022	EPA 8260C	3-21-17	3-21-17	
1,3-Dichloropropane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Dibromochloromethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromoethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Chlorobenzene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,1,1,2-Tetrachloroethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Bromoform	ND	0.011	EPA 8260C	3-21-17	3-21-17	
Bromobenzene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,1,2,2-Tetrachloroethane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichloropropane	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
2-Chlorotoluene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
4-Chlorotoluene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,3-Dichlorobenzene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,4-Dichlorobenzene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,2-Dichlorobenzene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromo-3-chloropropane	e ND	0.011	EPA 8260C	3-21-17	3-21-17	
1,2,4-Trichlorobenzene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Hexachlorobutadiene	ND	0.011	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichlorobenzene	ND	0.0022	EPA 8260C	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	73-134				
Toluene-d8	99	81-124				
4-Bromofluorobenzene	92	80-131				

6

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C8-NE-10.0-B					
Laboratory ID:	03-185-03					
Dichlorodifluoromethane	ND	0.0025	EPA 8260C	3-21-17	3-21-17	
Chloromethane	ND	0.010	EPA 8260C	3-21-17	3-21-17	
Vinyl Chloride	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Bromomethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Chloroethane	ND	0.0077	EPA 8260C	3-21-17	3-21-17	
Trichlorofluoromethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
lodomethane	ND	0.0077	EPA 8260C	3-21-17	3-21-17	
Methylene Chloride	ND	0.0077	EPA 8260C	3-21-17	3-21-17	
(trans) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
2,2-Dichloropropane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
(cis) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Bromochloromethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Chloroform	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Carbon Tetrachloride	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloropropene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloroethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Trichloroethene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloropropane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Dibromomethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Bromodichloromethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
2-Chloroethyl Vinyl Ether	ND	0.010	EPA 8260C	3-21-17	3-21-17	
(cis) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
(trans) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	

HALOGENATED \	VOLAT	ILES	EPA	8260C	
	~ ~ ~	-			

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	С8-NE-10.0-В					
Laboratory ID:	03-185-03					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Tetrachloroethene	0.0018	0.0015	EPA 8260C	3-21-17	3-21-17	
1,3-Dichloropropane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Dibromochloromethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromoethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Chlorobenzene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Bromoform	ND	0.0077	EPA 8260C	3-21-17	3-21-17	
Bromobenzene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
2-Chlorotoluene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
4-Chlorotoluene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromo-3-chloropropane	ND	0.0077	EPA 8260C	3-21-17	3-21-17	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Hexachlorobutadiene	ND	0.0077	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260C	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	73-134				
Toluene-d8	103	81-124				
4-Bromofluorobenzene	100	80-131				

8

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0.0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C9-NW-8.0-SW					
Laboratory ID:	03-185-04					
Dichlorodifluoromethane	ND	0.0027	EPA 8260C	3-21-17	3-21-17	
Chloromethane	ND	0.011	EPA 8260C	3-21-17	3-21-17	
Vinyl Chloride	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Bromomethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Chloroethane	ND	0.0084	EPA 8260C	3-21-17	3-21-17	
Trichlorofluoromethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
lodomethane	ND	0.0084	EPA 8260C	3-21-17	3-21-17	
Methylene Chloride	ND	0.0084	EPA 8260C	3-21-17	3-21-17	
(trans) 1,2-Dichloroethene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
2,2-Dichloropropane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
(cis) 1,2-Dichloroethene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Bromochloromethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Chloroform	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,1,1-Trichloroethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Carbon Tetrachloride	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloropropene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloroethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Trichloroethene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloropropane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Dibromomethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Bromodichloromethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
2-Chloroethyl Vinyl Ether	ND	0.011	EPA 8260C	3-21-17	3-21-17	
(cis) 1,3-Dichloropropene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
(trans) 1,3-Dichloropropene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES EPA 82	60C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C9-NW-8.0-SW					
Laboratory ID:	03-185-04					
1,1,2-Trichloroethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Tetrachloroethene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,3-Dichloropropane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Dibromochloromethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromoethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Chlorobenzene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,1,1,2-Tetrachloroethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Bromoform	ND	0.0084	EPA 8260C	3-21-17	3-21-17	
Bromobenzene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,1,2,2-Tetrachloroethane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichloropropane	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
2-Chlorotoluene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
4-Chlorotoluene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,3-Dichlorobenzene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,4-Dichlorobenzene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,2-Dichlorobenzene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromo-3-chloropropane	ND	0.0084	EPA 8260C	3-21-17	3-21-17	
1,2,4-Trichlorobenzene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Hexachlorobutadiene	ND	0.0084	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichlorobenzene	ND	0.0017	EPA 8260C	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	84	73-134				
Toluene-d8	91	81-124				
4-Bromofluorobenzene	78	80-131				Q

Date of Report: March 22, 2017 Samples Submitted: March 21, 2017 Laboratory Reference: 1703-185 Project: 1071-010

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F9/E9-SW-11.0-B					
Laboratory ID:	03-185-05					
Dichlorodifluoromethane	ND	0.0058	EPA 8260C	3-21-17	3-21-17	
Chloromethane	ND	0.024	EPA 8260C	3-21-17	3-21-17	
Vinyl Chloride	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Bromomethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Chloroethane	ND	0.018	EPA 8260C	3-21-17	3-21-17	
Trichlorofluoromethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethene	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
lodomethane	ND	0.018	EPA 8260C	3-21-17	3-21-17	
Methylene Chloride	ND	0.018	EPA 8260C	3-21-17	3-21-17	
(trans) 1,2-Dichloroethene	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
2,2-Dichloropropane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
(cis) 1,2-Dichloroethene	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Bromochloromethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Chloroform	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
1,1,1-Trichloroethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Carbon Tetrachloride	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloropropene	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloroethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Trichloroethene	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloropropane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Dibromomethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Bromodichloromethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
2-Chloroethyl Vinyl Ether	ND	0.025	EPA 8260C	3-21-17	3-21-17	
(cis) 1,3-Dichloropropene	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
(trans) 1,3-Dichloropropene	ND	0.0036	EPA 8260C	3-21-17	3-21-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED V	OLATILES	EPA 8260C
---------------	----------	-----------

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F9/E9-SW-11.0-B					
Laboratory ID:	03-185-05					
1,1,2-Trichloroethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Tetrachloroethene	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
1,3-Dichloropropane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Dibromochloromethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromoethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Chlorobenzene	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
1,1,1,2-Tetrachloroethane	ND	0.0036	EPA 8260C	3-21-17	3-21-17	
Bromoform	ND	0.018	EPA 8260C	3-21-17	3-21-17	
Bromobenzene	ND	0.19	EPA 8260C	3-21-17	3-21-17	
1,1,2,2-Tetrachloroethane	ND	0.19	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichloropropane	ND	0.19	EPA 8260C	3-21-17	3-21-17	
2-Chlorotoluene	ND	0.19	EPA 8260C	3-21-17	3-21-17	
4-Chlorotoluene	ND	0.19	EPA 8260C	3-21-17	3-21-17	
1,3-Dichlorobenzene	ND	0.19	EPA 8260C	3-21-17	3-21-17	
1,4-Dichlorobenzene	ND	0.19	EPA 8260C	3-21-17	3-21-17	
1,2-Dichlorobenzene	ND	0.19	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromo-3-chloropropane	e ND	0.97	EPA 8260C	3-21-17	3-21-17	
1,2,4-Trichlorobenzene	ND	0.19	EPA 8260C	3-21-17	3-21-17	
Hexachlorobutadiene	ND	0.97	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichlorobenzene	ND	0.19	EPA 8260C	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	105	73-134				
Toluene-d8	102	81-124				
4-Bromofluorobenzene	83	80-131				

12

Date of Report: March 22, 2017 Samples Submitted: March 21, 2017 Laboratory Reference: 1703-185 Project: 1071-010

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F8/E8-SW-11.0-B					
Laboratory ID:	03-185-06					
Dichlorodifluoromethane	ND	0.0056	EPA 8260C	3-21-17	3-21-17	
Chloromethane	ND	0.023	EPA 8260C	3-21-17	3-21-17	
Vinyl Chloride	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Bromomethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Chloroethane	ND	0.017	EPA 8260C	3-21-17	3-21-17	
Trichlorofluoromethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
lodomethane	ND	0.017	EPA 8260C	3-21-17	3-21-17	
Methylene Chloride	ND	0.017	EPA 8260C	3-21-17	3-21-17	
(trans) 1,2-Dichloroethene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
2,2-Dichloropropane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
(cis) 1,2-Dichloroethene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Bromochloromethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Chloroform	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,1,1-Trichloroethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Carbon Tetrachloride	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloropropene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloroethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Trichloroethene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloropropane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Dibromomethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Bromodichloromethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
2-Chloroethyl Vinyl Ether	ND	0.024	EPA 8260C	3-21-17	3-21-17	
(cis) 1,3-Dichloropropene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
(trans) 1,3-Dichloropropene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

13

HALOGENATED VC	DLATILES EPA	A 8260C
----------------	--------------	---------

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F8/E8-SW-11.0-B					
Laboratory ID:	03-185-06					
1,1,2-Trichloroethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Tetrachloroethene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,3-Dichloropropane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Dibromochloromethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromoethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Chlorobenzene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,1,1,2-Tetrachloroethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Bromoform	ND	0.017	EPA 8260C	3-21-17	3-21-17	
Bromobenzene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,1,2,2-Tetrachloroethane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichloropropane	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
2-Chlorotoluene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
4-Chlorotoluene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,3-Dichlorobenzene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,4-Dichlorobenzene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,2-Dichlorobenzene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromo-3-chloropropane	e ND	0.017	EPA 8260C	3-21-17	3-21-17	
1,2,4-Trichlorobenzene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Hexachlorobutadiene	ND	0.017	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichlorobenzene	ND	0.0035	EPA 8260C	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	115	73-134				
Toluene-d8	118	81-124				
4-Bromofluorobenzene	102	80-131				

14

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0.0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C8-NW-9.0-SW					
Laboratory ID:	03-185-07					
Dichlorodifluoromethane	ND	0.0032	EPA 8260C	3-21-17	3-21-17	
Chloromethane	ND	0.013	EPA 8260C	3-21-17	3-21-17	
Vinyl Chloride	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Bromomethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Chloroethane	ND	0.010	EPA 8260C	3-21-17	3-21-17	
Trichlorofluoromethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
lodomethane	ND	0.010	EPA 8260C	3-21-17	3-21-17	
Methylene Chloride	ND	0.010	EPA 8260C	3-21-17	3-21-17	
(trans) 1,2-Dichloroethene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
2,2-Dichloropropane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
(cis) 1,2-Dichloroethene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Bromochloromethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Chloroform	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,1,1-Trichloroethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Carbon Tetrachloride	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloropropene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloroethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Trichloroethene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloropropane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Dibromomethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Bromodichloromethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
2-Chloroethyl Vinyl Ether	ND	0.014	EPA 8260C	3-21-17	3-21-17	
(cis) 1,3-Dichloropropene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
(trans) 1,3-Dichloropropene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

15

HALOGENATED	VOLATILES	EPA 8260C
-------------	-----------	-----------

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C8-NW-9.0-SW					
Laboratory ID:	03-185-07					
1,1,2-Trichloroethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Tetrachloroethene	0.0095	0.0020	EPA 8260C	3-21-17	3-21-17	
1,3-Dichloropropane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Dibromochloromethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromoethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Chlorobenzene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,1,1,2-Tetrachloroethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Bromoform	ND	0.010	EPA 8260C	3-21-17	3-21-17	
Bromobenzene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,1,2,2-Tetrachloroethane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichloropropane	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
2-Chlorotoluene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
4-Chlorotoluene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,3-Dichlorobenzene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,4-Dichlorobenzene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,2-Dichlorobenzene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromo-3-chloropropane	ND	0.010	EPA 8260C	3-21-17	3-21-17	
1,2,4-Trichlorobenzene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Hexachlorobutadiene	ND	0.010	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichlorobenzene	ND	0.0020	EPA 8260C	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	73-134				
Toluene-d8	103	81-124				
4-Bromofluorobenzene	92	80-131				

Date of Report: March 22, 2017 Samples Submitted: March 21, 2017 Laboratory Reference: 1703-185 Project: 1071-010

HALOGENATED VOLATILES EPA 8260C

page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D8/E8-SW-11.0-B					
Laboratory ID:	03-185-08					
Dichlorodifluoromethane	ND	0.0045	EPA 8260C	3-21-17	3-21-17	
Chloromethane	ND	0.019	EPA 8260C	3-21-17	3-21-17	
Vinyl Chloride	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Bromomethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Chloroethane	ND	0.014	EPA 8260C	3-21-17	3-21-17	
Trichlorofluoromethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
lodomethane	ND	0.014	EPA 8260C	3-21-17	3-21-17	
Methylene Chloride	ND	0.014	EPA 8260C	3-21-17	3-21-17	
(trans) 1,2-Dichloroethene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
2,2-Dichloropropane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
(cis) 1,2-Dichloroethene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Bromochloromethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Chloroform	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,1,1-Trichloroethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Carbon Tetrachloride	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloropropene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloroethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Trichloroethene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloropropane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Dibromomethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Bromodichloromethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
2-Chloroethyl Vinyl Ether	ND	0.019	EPA 8260C	3-21-17	3-21-17	
(cis) 1,3-Dichloropropene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
(trans) 1,3-Dichloropropene	e ND	0.0028	EPA 8260C	3-21-17	3-21-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED	VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D8/E8-SW-11.0-B					
Laboratory ID:	03-185-08					
1,1,2-Trichloroethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Tetrachloroethene	0.0092	0.0028	EPA 8260C	3-21-17	3-21-17	
1,3-Dichloropropane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Dibromochloromethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromoethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Chlorobenzene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,1,1,2-Tetrachloroethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Bromoform	ND	0.014	EPA 8260C	3-21-17	3-21-17	
Bromobenzene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,1,2,2-Tetrachloroethane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichloropropane	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
2-Chlorotoluene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
4-Chlorotoluene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,3-Dichlorobenzene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,4-Dichlorobenzene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,2-Dichlorobenzene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromo-3-chloropropane	e ND	0.014	EPA 8260C	3-21-17	3-21-17	
1,2,4-Trichlorobenzene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Hexachlorobutadiene	ND	0.014	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichlorobenzene	ND	0.0028	EPA 8260C	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	73-134				
Toluene-d8	103	81-124				
4-Bromofluorobenzene	98	80-131				

18

Date of Report: March 22, 2017 Samples Submitted: March 21, 2017 Laboratory Reference: 1703-185 Project: 1071-010

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratore ID.	MD000404					
Laboratory ID:	MB032151	0.0040	FDA 00000	0.04.47	0.04.47	
Dichlorodifluoromethane	ND	0.0016	EPA 8260C	3-21-17	3-21-17	
Chloromethane	ND	0.0067	EPA 8260C	3-21-17	3-21-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Bromomethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Chloroethane	ND	0.0050	EPA 8260C	3-21-17	3-21-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
lodomethane	ND	0.0050	EPA 8260C	3-21-17	3-21-17	
Methylene Chloride	ND	0.0050	EPA 8260C	3-21-17	3-21-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Bromochloromethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Chloroform	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Trichloroethene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Dibromomethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
2-Chloroethyl Vinyl Ether	ND	0.0068	EPA 8260C	3-21-17	3-21-17	
(cis) 1.3-Dichloropropene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: March 22, 2017 Samples Submitted: March 21, 2017 Laboratory Reference: 1703-185 Project: 1071-010

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0321S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Chlorobenzene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Bromoform	ND	0.0050	EPA 8260C	3-21-17	3-21-17	
Bromobenzene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	3-21-17	3-21-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	3-21-17	3-21-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	73-134				
Toluene-d8	112	81-124				
4-Bromofluorobenzene	103	80-131				

HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	21S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0360	0.0393	0.0500	0.0500	72	79	66-127	9	15	
Benzene	0.0418	0.0450	0.0500	0.0500	84	90	76-122	7	15	
Trichloroethene	0.0444	0.0470	0.0500	0.0500	89	94	78-120	6	15	
Toluene	0.0459	0.0484	0.0500	0.0500	92	97	83-120	5	15	
Chlorobenzene	0.0442	0.0460	0.0500	0.0500	88	92	81-120	4	15	
Surrogate:										
Dibromofluoromethane					88	103	73-134			
Toluene-d8					96	105	81-124			
4-Bromofluorobenzene					89	97	80-131			

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C9-NE-8.0-SW					
Laboratory ID:	03-185-01					
Benzo[a]anthracene	ND	0.0096	EPA 8270D/SIM	3-21-17	3-21-17	
Chrysene	ND	0.0096	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[b]fluoranthene	ND	0.0096	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo(j,k)fluoranthene	ND	0.0096	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[a]pyrene	ND	0.0096	EPA 8270D/SIM	3-21-17	3-21-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0096	EPA 8270D/SIM	3-21-17	3-21-17	
Dibenz[a,h]anthracene	ND	0.0096	EPA 8270D/SIM	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	75	32 - 122				
Pyrene-d10	79	33 - 125				
Terphenyl-d14	80	36 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D9/E9-SW-8.0-SW					
Laboratory ID:	03-185-02					
Benzo[a]anthracene	ND	0.0099	EPA 8270D/SIM	3-21-17	3-21-17	
Chrysene	ND	0.0099	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[b]fluoranthene	ND	0.0099	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo(j,k)fluoranthene	ND	0.0099	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[a]pyrene	ND	0.0099	EPA 8270D/SIM	3-21-17	3-21-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0099	EPA 8270D/SIM	3-21-17	3-21-17	
Dibenz[a,h]anthracene	ND	0.0099	EPA 8270D/SIM	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	32 - 122				
Pyrene-d10	71	33 - 125				
Terphenyl-d14	73	36 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C8-NE-10.0-B					
Laboratory ID:	03-185-03					
Benzo[a]anthracene	ND	0.0089	EPA 8270D/SIM	3-21-17	3-21-17	
Chrysene	ND	0.0089	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[b]fluoranthene	ND	0.0089	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo(j,k)fluoranthene	ND	0.0089	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[a]pyrene	ND	0.0089	EPA 8270D/SIM	3-21-17	3-21-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0089	EPA 8270D/SIM	3-21-17	3-21-17	
Dibenz[a,h]anthracene	ND	0.0089	EPA 8270D/SIM	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	74	32 - 122				
Pyrene-d10	74	33 - 125				
Terphenyl-d14	71	36 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C9-NW-8.0-SW					
Laboratory ID:	03-185-04					
Benzo[a]anthracene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Chrysene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[b]fluoranthene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo(j,k)fluoranthene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[a]pyrene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Dibenz[a,h]anthracene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	62	32 - 122				
Pyrene-d10	65	33 - 125				
Terphenyl-d14	62	36 - 118				

25
				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F9/E9-SW-11.0-B					
Laboratory ID:	03-185-05					
Benzo[a]anthracene	ND	0.014	EPA 8270D/SIM	3-21-17	3-21-17	
Chrysene	ND	0.014	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[b]fluoranthene	ND	0.014	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo(j,k)fluoranthene	ND	0.014	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[a]pyrene	ND	0.014	EPA 8270D/SIM	3-21-17	3-21-17	
Indeno(1,2,3-c,d)pyrene	ND	0.014	EPA 8270D/SIM	3-21-17	3-21-17	
Dibenz[a,h]anthracene	ND	0.014	EPA 8270D/SIM	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	32 - 122				
Pyrene-d10	75	33 - 125				
Terphenyl-d14	75	36 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	F8/E8-SW-11.0-B					
Laboratory ID:	03-185-06					
Benzo[a]anthracene	ND	0.013	EPA 8270D/SIM	3-21-17	3-21-17	
Chrysene	ND	0.013	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[b]fluoranthene	ND	0.013	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo(j,k)fluoranthene	ND	0.013	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[a]pyrene	ND	0.013	EPA 8270D/SIM	3-21-17	3-21-17	
Indeno(1,2,3-c,d)pyrene	ND	0.013	EPA 8270D/SIM	3-21-17	3-21-17	
Dibenz[a,h]anthracene	ND	0.013	EPA 8270D/SIM	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	32 - 122				
Pyrene-d10	61	33 - 125				
Terphenyl-d14	58	36 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C8-NW-9.0-SW					
Laboratory ID:	03-185-07					
Benzo[a]anthracene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Chrysene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[b]fluoranthene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo(j,k)fluoranthene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[a]pyrene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Dibenz[a,h]anthracene	ND	0.0092	EPA 8270D/SIM	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	32 - 122				
Pyrene-d10	75	33 - 125				
Terphenyl-d14	73	36 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D8/E8-SW-11.0-B					
Laboratory ID:	03-185-08					
Benzo[a]anthracene	ND	0.0098	EPA 8270D/SIM	3-21-17	3-21-17	
Chrysene	ND	0.0098	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[b]fluoranthene	ND	0.0098	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo(j,k)fluoranthene	ND	0.0098	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[a]pyrene	ND	0.0098	EPA 8270D/SIM	3-21-17	3-21-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0098	EPA 8270D/SIM	3-21-17	3-21-17	
Dibenz[a,h]anthracene	ND	0.0098	EPA 8270D/SIM	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	73	32 - 122				
Pyrene-d10	76	33 - 125				
Terphenyl-d14	72	36 - 118				

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0321S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	3-21-17	3-21-17	
Chrysene	ND	0.0067	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	3-21-17	3-21-17	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	3-21-17	3-21-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	3-21-17	3-21-17	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	3-21-17	3-21-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	86	32 - 122				
Pyrene-d10	92	33 - 125				
Terphenyl-d14	93	36 - 118				

cPAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	21S1								
	SB	SBD	SB	SBD	SB	SBD				
Benzo[a]anthracene	0.0863	0.0843	0.0833	0.0833	104	101	56 - 137	2	15	
Chrysene	0.0805	0.0804	0.0833	0.0833	97	97	59 - 122	0	15	
Benzo[b]fluoranthene	0.0808	0.0819	0.0833	0.0833	97	98	46 - 133	1	21	
Benzo(j,k)fluoranthene	0.0832	0.0810	0.0833	0.0833	100	97	47 - 129	3	21	
Benzo[a]pyrene	0.0835	0.0833	0.0833	0.0833	100	100	54 - 132	0	15	
Indeno(1,2,3-c,d)pyrene	0.0818	0.0808	0.0833	0.0833	98	97	54 - 129	1	15	
Dibenz[a,h]anthracene	0.0817	0.0812	0.0833	0.0833	98	97	59 - 122	1	15	
Surrogate:										
2-Fluorobiphenyl					84	82	32 - 122			
Pyrene-d10					93	91	33 - 125			
Terphenyl-d14					91	89	36 - 118			

TOTAL METALS EPA 6010C/7471B

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID: Client ID:	03-185-01 C9-NE-8.0-SW					
Arsenic	ND	14	6010C	3-22-17	3-22-17	
Cadmium	ND	0.72	6010C	3-22-17	3-22-17	
Chromium	16	0.72	6010C	3-22-17	3-22-17	
Lead	ND	7.2	6010C	3-22-17	3-22-17	
Mercury	ND	0.36	7471B	3-21-17	3-21-17	

Lab ID:	03-185-02					
Client ID:	D9/E9-SW-8.0-SW					
Arsenic	ND	15	6010C	3-22-17	3-22-17	
Cadmium	ND	0.75	6010C	3-22-17	3-22-17	
Chromium	20	0.75	6010C	3-22-17	3-22-17	
Lead	ND	7.5	6010C	3-22-17	3-22-17	
Mercury	ND	0.37	7471B	3-21-17	3-21-17	

Lab ID:	03-185-03						
Client ID:	C8-NE-10.0-B	i-10.0-В					
Arsenic	ND	13	6010C	3-22-17	3-22-17		
Cadmium	ND	0.67	6010C	3-22-17	3-22-17		
Chromium	11	0.67	6010C	3-22-17	3-22-17		
Lead	ND	6.7	6010C	3-22-17	3-22-17		
Mercurv	ND	0.33	7471B	3-21-17	3-21-17		

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C/7471B

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-185-04					
Client ID:	C9-NW-8.0-SW					
Arsenic	ND	14	6010C	3-22-17	3-22-17	
Cadmium	ND	0.69	6010C	3-22-17	3-22-17	
Chromium	15	0.69	6010C	3-22-17	3-22-17	
Lead	ND	6.9	6010C	3-22-17	3-22-17	
Mercury	ND	0.35	7471B	3-21-17	3-21-17	

Lab ID:	03-185-05					
Client ID:	F9/E9-SW-11.0-B					
Arsenic	14	11	6010C	3-22-17	3-22-17	
Cadmium	ND	1.1	6010C	3-22-17	3-22-17	
Chromium	23	1.1	6010C	3-22-17	3-22-17	
Lead	20	11	6010C	3-22-17	3-22-17	
Mercury	ND	0.53	7471B	3-21-17	3-21-17	

Lab ID:	03-185-06					
Client ID:	F8/E8-SW-11.0-B					
Arsenic	12	10	6010C	3-22-17	3-22-17	
Cadmium	ND	1.0	6010C	3-22-17	3-22-17	
Chromium	22	1.0	6010C	3-22-17	3-22-17	
Lead	12	10	6010C	3-22-17	3-22-17	
Mercury	ND	0.51	7471B	3-21-17	3-21-17	

33

TOTAL METALS EPA 6010C/7471B

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-185-07					
Client ID:	C8-NW-9.0-SW					
Arsenic	ND	14	6010C	3-22-17	3-22-17	
Cadmium	ND	0.69	6010C	3-22-17	3-22-17	
Chromium	13	0.69	6010C	3-22-17	3-22-17	
Lead	ND	6.9	6010C	3-22-17	3-22-17	
Mercury	ND	0.34	7471B	3-21-17	3-21-17	

Lab ID:	03-185-08					
Client ID:	D8/E8-SW-11.0-B					
Arsenic	ND	15	6010C	3-22-17	3-22-17	
Cadmium	ND	0.73	6010C	3-22-17	3-22-17	
Chromium	14	0.73	6010C	3-22-17	3-22-17	
Lead	ND	7.3	6010C	3-22-17	3-22-17	
Mercury	ND	0.37	7471B	3-21-17	3-21-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	3-22-17
Date Analyzed:	3-22-17

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0322SM1

Analyte	Method	Result	PQL
Arsenic	6010C	ND	5.0
Cadmium	6010C	ND	0.50
Chromium	6010C	ND	0.50
Lead	6010C	ND	5.0

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MERCURY EPA 7471B METHOD BLANK QUALITY CONTROL

Date Extracted:	3-21-17
Date Analyzed:	3-21-17

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0321S1

Analyte	Method	Result	PQL
Mercury	7471B	ND	0.25

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	3-22-17
Date Analyzed:	3-22-17

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 03-185-02

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	5.0	
Cadmium	ND	ND	NA	0.50	
Chromium	13.1	11.2	16	0.50	
Lead	ND	ND	NA	5.0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MERCURY EPA 7471B DUPLICATE QUALITY CONTROL

Date Extracted:	3-21-17
Date Analyzed:	3-21-17

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 03-150-12

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Mercury	ND	ND	NA	0.25	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C MS/MSD QUALITY CONTROL

- Date Extracted:3-22-17Date Analyzed:3-22-17
- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 03-185-02

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	94.8	95	93.8	94	1	
Cadmium	50.0	46.2	92	46.2	92	0	
Chromium	100	104	91	103	90	0	
Lead	250	222	89	222	89	0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL MERCURY EPA 7471B MS/MSD QUALITY CONTROL

Date Extracted:3-21-17Date Analyzed:3-21-17

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 03-150-12

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Mercury	0.500	0.538	108	0.537	107	0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed: 3-21-17

Client ID	Lab ID	% Moisture
C9-NE-8.0-SW	03-185-01	31
D9/E9-SW-8.0-SW	03-185-02	33
C8-NE-10.0-B	03-185-03	25
C9-NW-8.0-SW	03-185-04	28
F9/E9-SW-11.0-B	03-185-05	53
F8/E8-SW-11.0-B	03-185-06	51
C8-NW-9.0-SW	03-185-07	27
D8/E8-SW-11.0-B	03-185-08	32

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite Environmental Inc.	Chain c)f (Cu	ist	:00	dy											P	age _	l	of	(
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		L	abo	rate	ory	Nun	nbe	r:	0	3.	-1	8	5								
Phone: (425) 883-3881 • www.onsite-env.com Company: FARALLON Project Number: 1071-010 Project Name:	(Check One)							2		1	araua		82/00/SIM	s 8151A				A				
Project Manager: DON LANCE Sampled by: Kanholt	(TPH analysis 5 Days)	ber of Containers	PH-HCID	PH-Gx/BTEX	PH-GX	XD-Hc	les 8260C	enated volatiles 620	ow-level PAHs)		ouoch Anthorina Desticidae		iophosphorus Pesticid	nated Acid Herbicide	RCRA Metals	MTCA Metals	Metals	(oil and grease) 1664				bisture
Lab ID Sample Identification	Date Time Sampled Sampled Matrix	Numk	NWTF	NWTF	NWTF	NWTF	Volatil	Samiv	With L			0.00	Urgan	Chlori	Total	Total I	TCLP	HEM				% Mc
$ \begin{array}{c} 1 & C9-NE-8.0-5W \\ 2 & D9/E9-5W-8.0-5W \\ 3 & C8-NE-10.0-B \\ 4 & C9-NW-8.0-5W \\ 5 & F9/E9-5W-11.0-B \\ 6 & F8/E8-5W-11.0-B \\ 7 & C8-NW-9.0-5W \\ 8 & D8/E8-5W-11.0-B \\ \end{array} $	3bd1711255 11305 11355 113555 11405 11555 12005 14305 V 14405							XXXXXXX								XXXXXXX						
Signature Reliaguished	Company			Date	×		Time			Comr	nents	/Spei	cial l	nstru	uction	15						
Received Received	FARALLO	W C		3/2	<u> </u> 2//	77	0	950	<u>></u> フ													
Relinquished								-														
Received																						
Reviewed/Date	Reviewed/Date			_				(50)	C	Chron	natog	irams	s wit	h fina	al rep	oort [

Data Package: Standard 🗌 Level III 🗌 Level IV 🗌

Electronic Data Deliverables (EDDs)

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 24, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1703-212

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on March 23, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on March 22, 2017 and received by the laboratory on March 23, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES EPA 8260C page 1 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C7-NW-12.0-SW					
Laboratory ID:	03-212-01					
Dichlorodifluoromethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Chloromethane	ND	0.0075	EPA 8260C	3-23-17	3-23-17	
Vinyl Chloride	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Bromomethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Chloroethane	ND	0.0075	EPA 8260C	3-23-17	3-23-17	
Trichlorofluoromethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloroethene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
lodomethane	ND	0.0075	EPA 8260C	3-23-17	3-23-17	
Methylene Chloride	ND	0.0075	EPA 8260C	3-23-17	3-23-17	
(trans) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloroethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
2,2-Dichloropropane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
(cis) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Bromochloromethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Chloroform	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Carbon Tetrachloride	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloropropene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,2-Dichloroethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Trichloroethene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,2-Dichloropropane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Dibromomethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Bromodichloromethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
2-Chloroethyl Vinyl Ether	ND	0.0075	EPA 8260C	3-23-17	3-23-17	
(cis) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
(trans) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	

HALOGENATED VOLATILES EPA 8260C

page 2 of 2	
-------------	--

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C7-NW-12.0-SW					
Laboratory ID:	03-212-01					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Tetrachloroethene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,3-Dichloropropane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Dibromochloromethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,2-Dibromoethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Chlorobenzene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Bromoform	ND	0.0075	EPA 8260C	3-23-17	3-23-17	
Bromobenzene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
2-Chlorotoluene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
4-Chlorotoluene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
1,2-Dibromo-3-chloropropane	e ND	0.0075	EPA 8260C	3-23-17	3-23-17	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Hexachlorobutadiene	ND	0.0075	EPA 8260C	3-23-17	3-23-17	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260C	3-23-17	3-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	73-134				
Toluene-d8	108	81-124				
4-Bromofluorobenzene	94	80-131				

4

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C7/D7-SE-14.0-B					
Laboratory ID:	03-212-02					
Dichlorodifluoromethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Chloromethane	ND	0.0057	EPA 8260C	3-23-17	3-23-17	
Vinyl Chloride	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Bromomethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Chloroethane	ND	0.0057	EPA 8260C	3-23-17	3-23-17	
Trichlorofluoromethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloroethene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
lodomethane	ND	0.0057	EPA 8260C	3-23-17	3-23-17	
Methylene Chloride	ND	0.0057	EPA 8260C	3-23-17	3-23-17	
(trans) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloroethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
2,2-Dichloropropane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
(cis) 1,2-Dichloroethene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Bromochloromethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Chloroform	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,1,1-Trichloroethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Carbon Tetrachloride	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloropropene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,2-Dichloroethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Trichloroethene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,2-Dichloropropane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Dibromomethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Bromodichloromethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
2-Chloroethyl Vinyl Ether	ND	0.0057	EPA 8260C	3-23-17	3-23-17	
(cis) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
(trans) 1,3-Dichloropropene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C7/D7-SE-14.0-B					
Laboratory ID:	03-212-02					
1,1,2-Trichloroethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Tetrachloroethene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,3-Dichloropropane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Dibromochloromethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,2-Dibromoethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Chlorobenzene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Bromoform	ND	0.0057	EPA 8260C	3-23-17	3-23-17	
Bromobenzene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,2,3-Trichloropropane	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
2-Chlorotoluene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
4-Chlorotoluene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,3-Dichlorobenzene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,4-Dichlorobenzene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,2-Dichlorobenzene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
1,2-Dibromo-3-chloropropane	e ND	0.0057	EPA 8260C	3-23-17	3-23-17	
1,2,4-Trichlorobenzene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Hexachlorobutadiene	ND	0.0057	EPA 8260C	3-23-17	3-23-17	
1,2,3-Trichlorobenzene	ND	0.0011	EPA 8260C	3-23-17	3-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	90	73-134				
Toluene-d8	96	81-124				
4-Bromofluorobenzene	86	80-131				

6

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D7/E7-SE-13.0-B					
Laboratory ID:	03-212-03					
Dichlorodifluoromethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Chloromethane	ND	0.0062	EPA 8260C	3-23-17	3-23-17	
Vinyl Chloride	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Bromomethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Chloroethane	ND	0.0062	EPA 8260C	3-23-17	3-23-17	
Trichlorofluoromethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloroethene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
lodomethane	ND	0.0062	EPA 8260C	3-23-17	3-23-17	
Methylene Chloride	ND	0.0062	EPA 8260C	3-23-17	3-23-17	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloroethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
2,2-Dichloropropane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Bromochloromethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Chloroform	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Carbon Tetrachloride	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloropropene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,2-Dichloroethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Trichloroethene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,2-Dichloropropane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Dibromomethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Bromodichloromethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
2-Chloroethyl Vinyl Ether	ND	0.0062	EPA 8260C	3-23-17	3-23-17	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D7/E7-SE-13.0-B					
Laboratory ID:	03-212-03					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Tetrachloroethene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,3-Dichloropropane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Dibromochloromethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,2-Dibromoethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Chlorobenzene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Bromoform	ND	0.0062	EPA 8260C	3-23-17	3-23-17	
Bromobenzene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
2-Chlorotoluene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
4-Chlorotoluene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
1,2-Dibromo-3-chloropropane	e ND	0.0062	EPA 8260C	3-23-17	3-23-17	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Hexachlorobutadiene	ND	0.0062	EPA 8260C	3-23-17	3-23-17	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260C	3-23-17	3-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	73-134				
Toluene-d8	110	81-124				
4-Bromofluorobenzene	95	80-131				

8

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0.0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E7-SE-12.0-SW					
Laboratory ID:	03-212-04					
Dichlorodifluoromethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Chloromethane	ND	0.0084	EPA 8260C	3-23-17	3-23-17	
Vinyl Chloride	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Bromomethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Chloroethane	ND	0.0084	EPA 8260C	3-23-17	3-23-17	
Trichlorofluoromethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloroethene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
lodomethane	ND	0.0084	EPA 8260C	3-23-17	3-23-17	
Methylene Chloride	ND	0.0084	EPA 8260C	3-23-17	3-23-17	
(trans) 1,2-Dichloroethene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloroethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
2,2-Dichloropropane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
(cis) 1,2-Dichloroethene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Bromochloromethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Chloroform	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,1,1-Trichloroethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Carbon Tetrachloride	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloropropene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,2-Dichloroethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Trichloroethene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,2-Dichloropropane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Dibromomethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Bromodichloromethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
2-Chloroethyl Vinyl Ether	ND	0.0084	EPA 8260C	3-23-17	3-23-17	
(cis) 1,3-Dichloropropene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
(trans) 1,3-Dichloropropene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

9

HALOGENATED VOLATILES EPA 8260C page 2 of 2						
	Date					

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E7-SE-12.0-SW					
Laboratory ID:	03-212-04					
1,1,2-Trichloroethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Tetrachloroethene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,3-Dichloropropane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Dibromochloromethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,2-Dibromoethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Chlorobenzene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Bromoform	ND	0.0084	EPA 8260C	3-23-17	3-23-17	
Bromobenzene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,2,3-Trichloropropane	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
2-Chlorotoluene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
4-Chlorotoluene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,3-Dichlorobenzene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,4-Dichlorobenzene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,2-Dichlorobenzene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
1,2-Dibromo-3-chloropropane	ND	0.0084	EPA 8260C	3-23-17	3-23-17	
1,2,4-Trichlorobenzene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Hexachlorobutadiene	ND	0.0084	EPA 8260C	3-23-17	3-23-17	
1,2,3-Trichlorobenzene	ND	0.0017	EPA 8260C	3-23-17	3-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	94	73-134				
Toluene-d8	94	81-124				
4-Bromofluorobenzene	87	80-131				

10

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboraton (ID:	MD022261					
Diablaradifluoromathana		0.0010		2 22 17	2 22 17	
Chloromothana		0.0010		3-23-17	3-23-17	
Vipyl Chlorida		0.0050		3-23-17	3-23-17	
Promomothana		0.0010		3-23-17	3-23-17	
Bromometrane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
	ND	0.0050	EPA 8260C	3-23-17	3-23-17	
Irichlorofluoromethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
lodomethane	ND	0.0050	EPA 8260C	3-23-17	3-23-17	
Methylene Chloride	ND	0.0050	EPA 8260C	3-23-17	3-23-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Bromochloromethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Chloroform	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Trichloroethene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Dibromomethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	3-23-17	3-23-17	
(cis) 1.3-Dichloropropene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
(trans) 1.3-Dichloropropene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
· · · · · · · · · · · · · · · · · · ·						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0323S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Chlorobenzene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Bromoform	ND	0.0050	EPA 8260C	3-23-17	3-23-17	
Bromobenzene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	3-23-17	3-23-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	3-23-17	3-23-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	3-23-17	3-23-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	99	73-134				
Toluene-d8	98	81-124				
4-Bromofluorobenzene	96	80-131				

HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	23S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0480	0.0501	0.0500	0.0500	96	100	66-127	4	15	
Benzene	0.0478	0.0494	0.0500	0.0500	96	99	76-122	3	15	
Trichloroethene	0.0476	0.0497	0.0500	0.0500	95	99	78-120	4	15	
Toluene	0.0499	0.0511	0.0500	0.0500	100	102	83-120	2	15	
Chlorobenzene	0.0445	0.0466	0.0500	0.0500	89	93	81-120	5	15	
Surrogate:										
Dibromofluoromethane					92	89	73-134			
Toluene-d8					100	94	81-124			
4-Bromofluorobenzene					93	88	80-131			

13

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C7-NW-12.0-SW					
Laboratory ID:	03-212-01					
Benzo[a]anthracene	ND	0.0091	EPA 8270D/SIM	3-23-17	3-23-17	
Chrysene	ND	0.0091	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo[b]fluoranthene	ND	0.0091	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo(j,k)fluoranthene	ND	0.0091	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo[a]pyrene	ND	0.0091	EPA 8270D/SIM	3-23-17	3-23-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0091	EPA 8270D/SIM	3-23-17	3-23-17	
Dibenz[a,h]anthracene	ND	0.0091	EPA 8270D/SIM	3-23-17	3-23-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	61	32 - 122				
Pyrene-d10	64	33 - 125				
Terphenyl-d14	65	36 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	C7/D7-SE-14.0-B					
Laboratory ID:	03-212-02					
Benzo[a]anthracene	ND	0.0085	EPA 8270D/SIM	3-23-17	3-23-17	
Chrysene	ND	0.0085	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo[b]fluoranthene	ND	0.0085	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo(j,k)fluoranthene	ND	0.0085	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo[a]pyrene	ND	0.0085	EPA 8270D/SIM	3-23-17	3-23-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0085	EPA 8270D/SIM	3-23-17	3-23-17	
Dibenz[a,h]anthracene	ND	0.0085	EPA 8270D/SIM	3-23-17	3-23-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	66	32 - 122				
Pyrene-d10	70	33 - 125				
Terphenyl-d14	72	36 - 118				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	D7/E7-SE-13.0-B					
Laboratory ID:	03-212-03					
Benzo[a]anthracene	ND	0.0089	EPA 8270D/SIM	3-23-17	3-23-17	
Chrysene	ND	0.0089	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo[b]fluoranthene	ND	0.0089	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo(j,k)fluoranthene	ND	0.0089	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo[a]pyrene	ND	0.0089	EPA 8270D/SIM	3-23-17	3-23-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0089	EPA 8270D/SIM	3-23-17	3-23-17	
Dibenz[a,h]anthracene	ND	0.0089	EPA 8270D/SIM	3-23-17	3-23-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	69	32 - 122				
Pyrene-d10	72	33 - 125				
Terphenyl-d14	74	36 - 118				

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E7-SE-12.0-SW					
Laboratory ID:	03-212-04					
Benzo[a]anthracene	ND	0.0095	EPA 8270D/SIM	3-23-17	3-23-17	
Chrysene	0.015	0.0095	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo[b]fluoranthene	0.015	0.0095	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo(j,k)fluoranthene	ND	0.0095	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo[a]pyrene	ND	0.0095	EPA 8270D/SIM	3-23-17	3-23-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0095	EPA 8270D/SIM	3-23-17	3-23-17	
Dibenz[a,h]anthracene	ND	0.0095	EPA 8270D/SIM	3-23-17	3-23-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	52	32 - 122				
Pyrene-d10	63	33 - 125				
Terphenyl-d14	72	36 - 118				

17

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0323S1					
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	3-23-17	3-23-17	
Chrysene	ND	0.0067	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	3-23-17	3-23-17	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	3-23-17	3-23-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	3-23-17	3-23-17	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	3-23-17	3-23-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	94	32 - 122				
Pyrene-d10	96	33 - 125				
Terphenvl-d14	97	36 - 118				

cPAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	03-18	34-03									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0763	0.0812	0.0833	0.0833	ND	92	97	30 - 143	6	31	
Chrysene	0.0764	0.0806	0.0833	0.0833	ND	92	97	32 - 129	5	33	
Benzo[b]fluoranthene	0.0711	0.0771	0.0833	0.0833	ND	85	93	23 - 140	8	29	
Benzo(j,k)fluoranthene	0.0755	0.0789	0.0833	0.0833	ND	91	95	32 - 119	4	30	
Benzo[a]pyrene	0.0728	0.0770	0.0833	0.0833	ND	87	92	31 - 131	6	32	
Indeno(1,2,3-c,d)pyrene	0.0711	0.0750	0.0833	0.0833	ND	85	90	31 - 130	5	28	
Dibenz[a,h]anthracene	0.0728	0.0765	0.0833	0.0833	ND	87	92	40 - 119	5	27	
Surrogate:											
2-Fluorobiphenyl						90	99	32 - 122			
Pyrene-d10						82	92	33 - 125			
Terphenyl-d14						84	92	36 - 118			

TOTAL METALS EPA 6010C/7471B

Matrix:	Soil
Units:	mg/kg (ppm)

esult	PQL	EDA Mothod			
		EFAIWethou	Prepared	Analyzed	Flags
212-01 - 12.0-SW					
ND	14	6010C	3-24-17	3-24-17	
ND	0.68	6010C	3-24-17	3-24-17	
17	0.68	6010C	3-24-17	3-24-17	
ND	6.8	6010C	3-24-17	3-24-17	
ND	0.34	7471B	3-24-17	3-24-17	
	212-01 - 12.0-SW ND ND 17 ND ND	212-01 -12.0-SW ND 14 ND 0.68 17 0.68 ND 6.8 ND 0.34	212-01 -12.0-SW ND 14 6010C ND 0.68 6010C 17 0.68 6010C ND 6.8 6010C ND 0.34 7471B	212-01 -12.0-SW ND 14 6010C 3-24-17 ND 0.68 6010C 3-24-17 17 0.68 6010C 3-24-17 ND 6.8 6010C 3-24-17 ND 6.8 6010C 3-24-17 ND 0.34 7471B 3-24-17	212-01 -12.0-SW ND 14 6010C 3-24-17 3-24-17 ND 0.68 6010C 3-24-17 3-24-17 17 0.68 6010C 3-24-17 3-24-17 ND 6.8 6010C 3-24-17 3-24-17 ND 6.8 6010C 3-24-17 3-24-17 ND 0.34 7471B 3-24-17 3-24-17

Lab ID: Client ID:	03-212-02 C7/D7-SE-14.0-B					
Arsenic	ND	13	6010C	3-24-17	3-24-17	
Cadmium	ND	0.64	6010C	3-24-17	3-24-17	
Chromium	16	0.64	6010C	3-24-17	3-24-17	
Lead	ND	6.4	6010C	3-24-17	3-24-17	
Mercury	ND	0.32	7471B	3-24-17	3-24-17	

Lab ID:	03-212-03					
Client ID:	D7/E7-SE-13.0-B					
Arsenic	ND	13	6010C	3-24-17	3-24-17	
Cadmium	ND	0.66	6010C	3-24-17	3-24-17	
Chromium	18	0.66	6010C	3-24-17	3-24-17	
Lead	ND	6.6	6010C	3-24-17	3-24-17	
Mercurv	ND	0.33	7471B	3-24-17	3-24-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C/7471B

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-212-04					
Client ID:	E7-SE-12.0-SW					
Arsenic	ND	14	6010C	3-24-17	3-24-17	
Cadmium	ND	0.71	6010C	3-24-17	3-24-17	
Chromium	17	0.71	6010C	3-24-17	3-24-17	
Lead	ND	7.1	6010C	3-24-17	3-24-17	
Mercury	ND	0.36	7471B	3-24-17	3-24-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C/7471B METHOD BLANK QUALITY CONTROL

Date Extracted:	3-24-17
Date Analyzed:	3-24-17

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0324SM1&MB0324S1

Analyte	Method	Result	PQL
Arsenic	6010C	ND	10
Cadmium	6010C	ND	0.50
Chromium	6010C	ND	0.50
Lead	6010C	ND	5.0
Mercury	7471B	ND	0.25

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C/7471B DUPLICATE QUALITY CONTROL

Date Extracted:	3-24-17
Date Analyzed:	3-24-17

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 03-212-02

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	12.8	13.4	5	0.50	
Lead	ND	ND	NA	5.0	
Mercury	ND	ND	NA	0.25	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C/7471B MS/MSD QUALITY CONTROL

Date Extracted:	3-24-17
Date Analyzed:	3-24-17

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: 03-212-02

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	92.2	92	95.5	96	4	
Cadmium	50.0	46.1	92	46.0	92	0	
Chromium	100	105	93	106	93	0	
Lead	250	226	90	226	91	0	
Mercury	0.500	0.567	113	0.560	112	1	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed: 3-23-17

Client ID	Lab ID	% Moisture
C7-NW-12.0-SW	03-212-01	27
C7/D7-SE-14.0-B	03-212-02	22
D7/E7-SE-13.0-B	03-212-03	25
E7-SE-12.0-SW	03-212-04	30

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite Environmental Inc.	Chain c)f (Cu	st	od	у										Pa	age _	1	of				
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		La	abor	ator	уN	lumb	er:	0	3	-'	21	2					(,			
Phone: (425) 883-3881 · www.onsite-env.com Company: FARALLON Project Number: Project Name: SOUNDER Project Project Manager: DON LANCE	(Check One) Same Day 2 Days Standard (7 Days) (TPH analysis 5 Days)	tainers		X	Acid / CO Close	Acia / Se Clean-up)	latiles 8260C	Waters Only)	70D/SIM AHs)	A (low-level)		Pesticides 8081B	rus Pesticides 8270D/SIM	Herbicides 8151A	als	als		ase) 1664A					
Sampled by: Ken hold	(other)	mber of Con	TPH-HCID	TPH-Gx/BTE	TPH-Gx		ogenated Vo	3 EPA 8011 (nivolatiles 82 h Iow-level P	4s 8270D/SIN	Bs 8082A	anochlorine	anophospho	orinated Acic	al RCRA Meta	al MTCA Met	P Metals	A (oil and gre				loioti ira	OISTURE
$ \begin{array}{c} Iab ID \\ \hline Sample Identification \\ \hline I \\ C7-NV-12.0-54 2.0-54 2.07/D7-5E-14.0-13 3 D7/E7-5E-13.0-B 4 E7-5E-12.0-54 $	Sampled Sampled Matrix 3122/17 1353 5 1 1400 5 1405 5 1405 5 1405 5 1405 5	× 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		NZ										5	101		10	<u><u></u></u>					
Signature Relinquished Machandra Received Mathanary Received Relinquished Relinquished Received	Company PARYLLS AIPHU AIPHU ABE OSE)))		Date 17 9! 10 3/2	30 10 30 30 31	7 Tir	ne [0D	5	Comn Data F	Pack	s/Spe	Star	nstru		S			_evel					
Reviewed/Date	Reviewed/Date								Chrom	natog	grams	s with	n final	repo	ort 🗌	Elec	ctronic	Data	Delive	rables	(EDDs) 🗌	1

March 27, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1703-230

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on March 24, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on March 23, 2017 and received by the laboratory on March 24, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Halogenated Volatiles EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

HEM-Oil and Grease EPA 1664A Analysis

Samples with IDs BT-1st-032317, BT-2nd-032317 and BT-3rd-032317 were composited in the lab prior to extraction. The initial volume was brought to 1000mL with deionized water.

Please note that any other QA/QC issues associated with these extractions and analyses will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SP1-N-032317					
Laboratory ID:	03-230-05					
Dichlorodifluoromethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Chloromethane	ND	0.0063	EPA 8260C	3-24-17	3-24-17	
Vinyl Chloride	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Bromomethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Chloroethane	ND	0.0063	EPA 8260C	3-24-17	3-24-17	
Trichlorofluoromethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloroethene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
lodomethane	ND	0.0063	EPA 8260C	3-24-17	3-24-17	
Methylene Chloride	ND	0.0063	EPA 8260C	3-24-17	3-24-17	
(trans) 1,2-Dichloroethene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
2,2-Dichloropropane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
(cis) 1,2-Dichloroethene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Bromochloromethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Chloroform	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Carbon Tetrachloride	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloropropene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2-Dichloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Trichloroethene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2-Dichloropropane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Dibromomethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Bromodichloromethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
2-Chloroethyl Vinyl Ether	ND	0.0063	EPA 8260C	3-24-17	3-24-17	
(cis) 1,3-Dichloropropene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
(trans) 1,3-Dichloropropene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SP1-N-032317					
Laboratory ID:	03-230-05					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Tetrachloroethene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,3-Dichloropropane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Dibromochloromethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2-Dibromoethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Chlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Bromoform	ND	0.0063	EPA 8260C	3-24-17	3-24-17	
Bromobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
2-Chlorotoluene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
4-Chlorotoluene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2-Dibromo-3-chloropropane	ND	0.0063	EPA 8260C	3-24-17	3-24-17	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Hexachlorobutadiene	ND	0.0063	EPA 8260C	3-24-17	3-24-17	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	93	73-134				
Toluene-d8	96	81-124				
4-Bromofluorobenzene	87	80-131				

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SP1-C-032317					
Laboratory ID:	03-230-06					
Dichlorodifluoromethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Chloromethane	ND	0.010	EPA 8260C	3-24-17	3-24-17	
Vinyl Chloride	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Bromomethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Chloroethane	ND	0.010	EPA 8260C	3-24-17	3-24-17	
Trichlorofluoromethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloroethene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
lodomethane	ND	0.010	EPA 8260C	3-24-17	3-24-17	
Methylene Chloride	ND	0.010	EPA 8260C	3-24-17	3-24-17	
(trans) 1,2-Dichloroethene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloroethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
2,2-Dichloropropane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
(cis) 1,2-Dichloroethene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Bromochloromethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Chloroform	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,1,1-Trichloroethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Carbon Tetrachloride	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloropropene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,2-Dichloroethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Trichloroethene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,2-Dichloropropane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Dibromomethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Bromodichloromethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
2-Chloroethyl Vinyl Ether	ND	0.010	EPA 8260C	3-24-17	3-24-17	
(cis) 1,3-Dichloropropene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
(trans) 1,3-Dichloropropene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SP1-C-032317					
Laboratory ID:	03-230-06					
1,1,2-Trichloroethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Tetrachloroethene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,3-Dichloropropane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Dibromochloromethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,2-Dibromoethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Chlorobenzene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,1,1,2-Tetrachloroethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Bromoform	ND	0.010	EPA 8260C	3-24-17	3-24-17	
Bromobenzene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,1,2,2-Tetrachloroethane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,2,3-Trichloropropane	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
2-Chlorotoluene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
4-Chlorotoluene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,3-Dichlorobenzene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,4-Dichlorobenzene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,2-Dichlorobenzene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
1,2-Dibromo-3-chloropropane	ND	0.010	EPA 8260C	3-24-17	3-24-17	
1,2,4-Trichlorobenzene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Hexachlorobutadiene	ND	0.010	EPA 8260C	3-24-17	3-24-17	
1,2,3-Trichlorobenzene	ND	0.0021	EPA 8260C	3-24-17	3-24-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	106	73-134				
Toluene-d8	111	81-124				
4-Bromofluorobenzene	102	80-131				

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SP1-S-032317					
Laboratory ID:	03-230-07					
Dichlorodifluoromethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Chloromethane	ND	0.0060	EPA 8260C	3-24-17	3-24-17	
Vinyl Chloride	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Bromomethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Chloroethane	ND	0.0060	EPA 8260C	3-24-17	3-24-17	
Trichlorofluoromethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloroethene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
lodomethane	ND	0.0060	EPA 8260C	3-24-17	3-24-17	
Methylene Chloride	ND	0.0060	EPA 8260C	3-24-17	3-24-17	
(trans) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloroethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
2,2-Dichloropropane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
(cis) 1,2-Dichloroethene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Bromochloromethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Chloroform	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,1,1-Trichloroethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Carbon Tetrachloride	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloropropene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,2-Dichloroethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Trichloroethene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,2-Dichloropropane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Dibromomethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Bromodichloromethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
2-Chloroethyl Vinyl Ether	ND	0.0060	EPA 8260C	3-24-17	3-24-17	
(cis) 1,3-Dichloropropene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
(trans) 1,3-Dichloropropene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

7

HALOGENATED VOLATILES EPA 8260C

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SP1-S-032317					
Laboratory ID:	03-230-07					
1,1,2-Trichloroethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Tetrachloroethene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,3-Dichloropropane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Dibromochloromethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,2-Dibromoethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Chlorobenzene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,1,1,2-Tetrachloroethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Bromoform	ND	0.0060	EPA 8260C	3-24-17	3-24-17	
Bromobenzene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,1,2,2-Tetrachloroethane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,2,3-Trichloropropane	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
2-Chlorotoluene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
4-Chlorotoluene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,3-Dichlorobenzene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,4-Dichlorobenzene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,2-Dichlorobenzene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
1,2-Dibromo-3-chloropropane	ND	0.0060	EPA 8260C	3-24-17	3-24-17	
1,2,4-Trichlorobenzene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Hexachlorobutadiene	ND	0.0060	EPA 8260C	3-24-17	3-24-17	
1,2,3-Trichlorobenzene	ND	0.0012	EPA 8260C	3-24-17	3-24-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	73-134				
Toluene-d8	105	81-124				
4-Bromofluorobenzene	95	80-131				

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SP2-C-032317					
Laboratory ID:	03-230-08					
Dichlorodifluoromethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Chloromethane	ND	0.0065	EPA 8260C	3-24-17	3-24-17	
Vinyl Chloride	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Bromomethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Chloroethane	ND	0.0065	EPA 8260C	3-24-17	3-24-17	
Trichlorofluoromethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloroethene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
lodomethane	ND	0.0065	EPA 8260C	3-24-17	3-24-17	
Methylene Chloride	ND	0.0065	EPA 8260C	3-24-17	3-24-17	
(trans) 1,2-Dichloroethene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
2,2-Dichloropropane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
(cis) 1,2-Dichloroethene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Bromochloromethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Chloroform	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1,1-Trichloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Carbon Tetrachloride	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloropropene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2-Dichloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Trichloroethene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2-Dichloropropane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Dibromomethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Bromodichloromethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
2-Chloroethyl Vinyl Ether	ND	0.0065	EPA 8260C	3-24-17	3-24-17	
(cis) 1,3-Dichloropropene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
(trans) 1,3-Dichloropropene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

HALOGENATED VC	DLATILES EPA	A 8260C
----------------	--------------	---------

page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SP2-C-032317					
Laboratory ID:	03-230-08					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Tetrachloroethene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,3-Dichloropropane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Dibromochloromethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2-Dibromoethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Chlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1,1,2-Tetrachloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Bromoform	ND	0.0065	EPA 8260C	3-24-17	3-24-17	
Bromobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
2-Chlorotoluene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
4-Chlorotoluene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,3-Dichlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,4-Dichlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2-Dichlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
1,2-Dibromo-3-chloropropane	ND	0.0065	EPA 8260C	3-24-17	3-24-17	
1,2,4-Trichlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Hexachlorobutadiene	ND	0.0065	EPA 8260C	3-24-17	3-24-17	
1,2,3-Trichlorobenzene	ND	0.0013	EPA 8260C	3-24-17	3-24-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	73-134				
Toluene-d8	115	81-124				
4-Bromofluorobenzene	106	80-131				

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB032451	0.0040	FDA 00000	0.04.47	0.04.47	
Dichlorodifluoromethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Chloromethane	ND	0.0050	EPA 8260C	3-24-17	3-24-17	
Vinyl Chloride	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Bromomethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Chloroethane	ND	0.0050	EPA 8260C	3-24-17	3-24-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
lodomethane	ND	0.0050	EPA 8260C	3-24-17	3-24-17	
Methylene Chloride	ND	0.0050	EPA 8260C	3-24-17	3-24-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Bromochloromethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Chloroform	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Trichloroethene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Dibromomethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	3-24-17	3-24-17	
(cis) 1.3-Dichloropropene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0324S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Chlorobenzene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Bromoform	ND	0.0050	EPA 8260C	3-24-17	3-24-17	
Bromobenzene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	3-24-17	3-24-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	3-24-17	3-24-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	3-24-17	3-24-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	73-134				
Toluene-d8	104	81-124				
4-Bromofluorobenzene	93	80-131				

12

HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Result		Recovery		Limits	RPD	Limit	Flags		
SPIKE BLANKS										
Laboratory ID:	SB03	24S1								
	SB	SBD	SBD	SBD	SB	SBD				
1,1-Dichloroethene	0.0553	0.0566	0.0500	0.0500	111	113	66-127	2	15	
Benzene	0.0547	0.0568	0.0500	0.0500	109	114	76-122	4	15	
Trichloroethene	0.0537	0.0548	0.0500	0.0500	107	110	78-120	2	15	
Toluene	0.0553	0.0591	0.0500	0.0500	111	118	83-120	7	15	
Chlorobenzene	0.0488	0.0518	0.0500	0.0500	98	104	81-120	6	15	
Surrogate:										
Dibromofluoromethane					105	100	73-134			
Toluene-d8					106	108	81-124			
4-Bromofluorobenzene					100	101	80-131			

HEXANE EXTRACTABLE MATERIAL OIL AND GREASE EPA 1664A

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	BT-1st,2nd,3rd-032317 Comp.					
Laboratory ID:	03-230-01,02,03 Comp.					
Hexane Extractable Material	ND	7.0	EPA 1664A	3-24-17	3-27-17	

HEXANE EXTRACTABLE MATERIAL OIL AND GREASE EPA 1664A QUALITY CONTROL

Matrix: Water Units: mg/L (ppm)

Analyte	Result	POI	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK	Nesuit		Method	Trepared	Analyzeu	Tiago
Laboratory ID:	MB0324W1					
Hexane Extractable Material	ND	5.0	EPA 1664A	3-24-17	3-27-17	

					Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	24W1								
	SB	SBD	SB	SBD	SB	SBD				
HEM	34.7	34.2	40.0	40.0	87	86	81-109	1	11	

BTEX EPA 8021B

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	BT-032317					
Laboratory ID:	03-230-04					
Benzene	ND	1.0	EPA 8021B	3-24-17	3-24-17	
Toluene	ND	1.0	EPA 8021B	3-24-17	3-24-17	
Ethyl Benzene	ND	1.0	EPA 8021B	3-24-17	3-24-17	
m,p-Xylene	ND	1.0	EPA 8021B	3-24-17	3-24-17	
o-Xylene	ND	1.0	EPA 8021B	3-24-17	3-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	61-118				

BTEX EPA 8021B QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

• /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0324W1					
Benzene	ND	1.0	EPA 8021B	3-24-17	3-24-17	
Toluene	ND	1.0	EPA 8021B	3-24-17	3-24-17	
Ethyl Benzene	ND	1.0	EPA 8021B	3-24-17	3-24-17	
m,p-Xylene	ND	1.0	EPA 8021B	3-24-17	3-24-17	
o-Xylene	ND	1.0	EPA 8021B	3-24-17	3-24-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	61-118				

					Source	Pe	rcent	Recovery		RPD	
Analyte	Re	sult	Spike	Spike Level F		Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	03-2	13-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA			NA	NA	NA	30	
Toluene	ND	ND	NA	NA		I	NA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		I	NA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		I	NA	NA	NA	30	
o-Xylene	ND	ND	NA	NA			NA	NA	NA	30	
Surrogate:											
Fluorobenzene						86	91	61-118			
MATRIX SPIKES											
Laboratory ID:	03-2	13-01									
	MS	MSD	MS	MSD		MS	MSD				
Ponzono	50.9	52.2	50.0	50.0		102	106	00 100	5	12	

Benzene	50.8	53.2	50.0	50.0	ND	102	106	80-120	5	13	
Toluene	51.9	54.0	50.0	50.0	ND	104	108	81-115	4	14	
Ethyl Benzene	52.8	55.3	50.0	50.0	ND	106	111	81-114	5	12	
m,p-Xylene	52.7	54.8	50.0	50.0	ND	105	110	81-114	4	13	
o-Xylene	52.7	54.4	50.0	50.0	ND	105	109	81-113	3	11	
Surrogate:											
Fluorobenzene						105	106	61-118			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

4040 NE 90 Street, Reamona, WA 98052 (425) 883.

% MOISTURE

Date Analyzed: 3-24-17

Client ID	Lab ID	% Moisture
SP1-N-032317	03-230-05	9
SP1-C-032317	03-230-06	5
SP1-S-032317	03-230-07	9
SP2-C-032317	03-230-08	8

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Environmental Inc.		Cha	ain o)f (Cu	IS	00	ly											Pa	ige _	l	_ of	1		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turi (in	naround Req n working da	uest ys)		La	abo	rate	ory	Nu	mb	er:	0	3 -	-2	3	0									
Phone: (425) 883-3881 • www.onsite-env.com Company: FARALLON Project Number: 1071-010 Project Name: SUNDER Project Project Manager: DON LANCE Sampled by: Ken Swoth	2 Day	(Oheck One) Day [33 dard (7 Days) analysis 5 Da	3 Days	er of Containers	H-HCID	H-Gx/BTEX	4-Gx	H-Dx (🗌 Acid / SG Clean-up)	s 8260C	nated Volatiles 8260C	PA 8011 (Waters Only)	latiles 8270D/SIM w-level PAHs)	270D/SIM (low-level)	3082A	ochlorine Pesticides 8081B	phosphorus Pesticides 8270D/SIM	ated Acid Herbicides 8151A	CRA Metals	TCA Metals	Aetals	iil and grease) 1664A	POLAT FOG	EX 8021		ture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPI	NWTPI	NWTPI	NWTPI	Volatile	Haloge	EDB EI	Semivo (with Ic	PAHs 8	PCBs (Organo	Organo	Chlorin	Total R	Total N	TCLP N	HEM (c	Jub N	B		% Mois
BT-144-032317	3/23/17	205	W	2						1												X	1		1051
2 BT-2Nd-032317		1210	W	2						1												X		20	and the second s
3 BT-3rd-032317		1215	W	2																		X			
4 BT-0323/7		1220	W	4																			X		
5 SPI-N-032317		1325	5	4						X															N
6 SPI-C-032317		1330	5	4						X															1
7 5PI-5-032317		1335	5	4						X															
8 SP2-C-032317		1345	5	4						X															V
				1																					
Signature	Co	ompany				Date			Time			Cor	nmen	ts/Sp	ecial	Instru	ction	S			1.00				
Received Ren nut	7	ARA	LON	r.	_	32:	31	2	(7	30	5														
Relinquished		6	200	2		A.		//	10	ar -	,														
Received																									
Relinquished					_																				
Received		*										Data	a Pac	kage	Sta	ndaro	a 🗆	Lev	el III		Leve]		
Reviewed/Date		Reviewed/Da	te									Chro	omato	gram	is wit	h fina	l repo	ort 🗌	Elec	ctronic	c Data	a Deliv	erables	(EDDs	;) 🗌

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

March 29, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1703-272

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on March 28, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on March 27, 2017 and received by the laboratory on March 28, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Halogenated Volatiles EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	J9-NE-9.0-B					
Laboratory ID:	03-272-01					
Dichlorodifluoromethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Chloromethane	ND	0.0087	EPA 8260C	3-28-17	3-28-17	
Vinyl Chloride	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Bromomethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Chloroethane	ND	0.0087	EPA 8260C	3-28-17	3-28-17	
Trichlorofluoromethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,1-Dichloroethene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
lodomethane	ND	0.012	EPA 8260C	3-28-17	3-28-17	
Methylene Chloride	ND	0.0087	EPA 8260C	3-28-17	3-28-17	
(trans) 1,2-Dichloroethene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,1-Dichloroethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
2,2-Dichloropropane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
(cis) 1,2-Dichloroethene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Bromochloromethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Chloroform	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,1,1-Trichloroethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Carbon Tetrachloride	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,1-Dichloropropene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,2-Dichloroethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Trichloroethene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,2-Dichloropropane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Dibromomethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Bromodichloromethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
2-Chloroethyl Vinyl Ether	ND	0.0087	EPA 8260C	3-28-17	3-28-17	
(cis) 1,3-Dichloropropene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
(trans) 1,3-Dichloropropene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	

HALOGENATED VOLATILES EPA 8260C page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	J9-NE-9.0-B					
Laboratory ID:	03-272-01					
1,1,2-Trichloroethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Tetrachloroethene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,3-Dichloropropane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Dibromochloromethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,2-Dibromoethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Chlorobenzene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,1,1,2-Tetrachloroethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Bromoform	ND	0.0087	EPA 8260C	3-28-17	3-28-17	
Bromobenzene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,1,2,2-Tetrachloroethane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,2,3-Trichloropropane	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
2-Chlorotoluene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
4-Chlorotoluene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,3-Dichlorobenzene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,4-Dichlorobenzene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,2-Dichlorobenzene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
1,2-Dibromo-3-chloropropane	ND	0.0087	EPA 8260C	3-28-17	3-28-17	
1,2,4-Trichlorobenzene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Hexachlorobutadiene	ND	0.0087	EPA 8260C	3-28-17	3-28-17	
1,2,3-Trichlorobenzene	ND	0.0017	EPA 8260C	3-28-17	3-28-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	103	73-134				
Toluene-d8	113	81-124				
4-Bromofluorobenzene	107	80-131				

HALOGENATED VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	K9-NE-10.0-B					
Laboratory ID:	03-272-02					
Dichlorodifluoromethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Chloromethane	ND	0.0077	EPA 8260C	3-28-17	3-28-17	
Vinyl Chloride	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Bromomethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Chloroethane	ND	0.0077	EPA 8260C	3-28-17	3-28-17	
Trichlorofluoromethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,1-Dichloroethene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
lodomethane	ND	0.010	EPA 8260C	3-28-17	3-28-17	
Methylene Chloride	ND	0.0077	EPA 8260C	3-28-17	3-28-17	
(trans) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,1-Dichloroethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
2,2-Dichloropropane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
(cis) 1,2-Dichloroethene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Bromochloromethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Chloroform	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,1,1-Trichloroethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Carbon Tetrachloride	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,1-Dichloropropene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,2-Dichloroethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Trichloroethene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,2-Dichloropropane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Dibromomethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Bromodichloromethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
2-Chloroethyl Vinyl Ether	ND	0.0077	EPA 8260C	3-28-17	3-28-17	
(cis) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
(trans) 1,3-Dichloropropene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	K9-NE-10.0-B					
Laboratory ID:	03-272-02					
1,1,2-Trichloroethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Tetrachloroethene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,3-Dichloropropane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Dibromochloromethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,2-Dibromoethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Chlorobenzene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,1,1,2-Tetrachloroethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Bromoform	ND	0.0077	EPA 8260C	3-28-17	3-28-17	
Bromobenzene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,1,2,2-Tetrachloroethane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,2,3-Trichloropropane	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
2-Chlorotoluene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
4-Chlorotoluene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,3-Dichlorobenzene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,4-Dichlorobenzene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,2-Dichlorobenzene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
1,2-Dibromo-3-chloropropane	ND	0.0077	EPA 8260C	3-28-17	3-28-17	
1,2,4-Trichlorobenzene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Hexachlorobutadiene	ND	0.0077	EPA 8260C	3-28-17	3-28-17	
1,2,3-Trichlorobenzene	ND	0.0015	EPA 8260C	3-28-17	3-28-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	73-134				
Toluene-d8	109	81-124				
4-Bromofluorobenzene	107	80-131				

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboraton (ID)	MD022864					
Diablaradifluoromathana		0.0010		2 20 17	2 20 17	
Chloromothana		0.0010		2 20 17	2 20 17	
Vinul Chlorida		0.0050		3-20-17	3-20-17	
	ND	0.0010		3-20-17	3-20-17	
Bromometnane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Chloroethane	ND	0.0050	EPA 8260C	3-28-17	3-28-17	
Trichlorofluoromethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,1-Dichloroethene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
lodomethane	ND	0.0067	EPA 8260C	3-28-17	3-28-17	
Methylene Chloride	ND	0.0050	EPA 8260C	3-28-17	3-28-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Bromochloromethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Chloroform	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Trichloroethene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Dibromomethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	3-28-17	3-28-17	
(cis) 1.3-Dichloropropene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
· · · · · · · · · · · · · · ·						

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL Page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0328S1					
1,1,2-Trichloroethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Chlorobenzene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Bromoform	ND	0.0050	EPA 8260C	3-28-17	3-28-17	
Bromobenzene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,1,2,2-Tetrachloroethane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,2,3-Trichloropropane	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
1,2-Dibromo-3-chloropropane	ND	0.0050	EPA 8260C	3-28-17	3-28-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	3-28-17	3-28-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	3-28-17	3-28-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	73-134				
Toluene-d8	111	81-124				
4-Bromofluorobenzene	114	80-131				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

8

HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB03	28S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0546	0.0533	0.0500	0.0500	109	107	66-127	2	15	
Benzene	0.0554	0.0563	0.0500	0.0500	111	113	76-122	2	15	
Trichloroethene	0.0576	0.0559	0.0500	0.0500	115	112	78-120	3	15	
Toluene	0.0585	0.0583	0.0500	0.0500	117	117	83-120	0	15	
Chlorobenzene	0.0533	0.0526	0.0500	0.0500	107	105	81-120	1	15	
Surrogate:										
Dibromofluoromethane					94	98	73-134			
Toluene-d8					102	102	81-124			
4-Bromofluorobenzene					100	102	80-131			

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	J9-NE-9.0-B					
Laboratory ID:	03-272-01					
Benzo[a]anthracene	ND	0.0099	EPA 8270D/SIM	3-28-17	3-29-17	
Chrysene	ND	0.0099	EPA 8270D/SIM	3-28-17	3-29-17	
Benzo[b]fluoranthene	ND	0.0099	EPA 8270D/SIM	3-28-17	3-29-17	
Benzo(j,k)fluoranthene	ND	0.0099	EPA 8270D/SIM	3-28-17	3-29-17	
Benzo[a]pyrene	ND	0.0099	EPA 8270D/SIM	3-28-17	3-29-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0099	EPA 8270D/SIM	3-28-17	3-29-17	
Dibenz[a,h]anthracene	ND	0.0099	EPA 8270D/SIM	3-28-17	3-29-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	58	32 - 122				
Pyrene-d10	60	33 - 125				
Terphenyl-d14	61	36 - 118				

cPAHs EPA 8270D/SIM

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	K9-NE-10.0-B					
Laboratory ID:	03-272-02					
Benzo[a]anthracene	ND	0.0097	EPA 8270D/SIM	3-28-17	3-29-17	
Chrysene	ND	0.0097	EPA 8270D/SIM	3-28-17	3-29-17	
Benzo[b]fluoranthene	ND	0.0097	EPA 8270D/SIM	3-28-17	3-29-17	
Benzo(j,k)fluoranthene	ND	0.0097	EPA 8270D/SIM	3-28-17	3-29-17	
Benzo[a]pyrene	ND	0.0097	EPA 8270D/SIM	3-28-17	3-29-17	
Indeno(1,2,3-c,d)pyrene	ND	0.0097	EPA 8270D/SIM	3-28-17	3-29-17	
Dibenz[a,h]anthracene	ND	0.0097	EPA 8270D/SIM	3-28-17	3-29-17	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	60	32 - 122				
Pyrene-d10	60	33 - 125				
Terphenyl-d14	61	36 - 118				

cPAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date		
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags	
Laboratory ID:	MB0328S1						
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	3-28-17	3-28-17		
Chrysene	ND	0.0067	EPA 8270D/SIM	3-28-17	3-28-17		
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	3-28-17	3-28-17		
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	3-28-17	3-28-17		
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	3-28-17	3-28-17		
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	3-28-17	3-28-17		
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	3-28-17	3-28-17		
Surrogate:	Percent Recovery	Control Limits					
2-Fluorobiphenyl	88	32 - 122					
Pyrene-d10	90	33 - 125					
Terphenyl-d14	90	36 - 118					

cPAHs EPA 8270D/SIM MS/MSD QUALITY CONTROL

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
MATRIX SPIKES											
Laboratory ID:	03-2 ⁻	18-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzo[a]anthracene	0.0704	0.0695	0.0833	0.0833	ND	85	83	30 - 143	1	31	
Chrysene	0.0712	0.0675	0.0833	0.0833	ND	85	81	32 - 129	5	33	
Benzo[b]fluoranthene	0.0677	0.0667	0.0833	0.0833	ND	81	80	23 - 140	1	29	
Benzo(j,k)fluoranthene	0.0674	0.0636	0.0833	0.0833	ND	81	76	32 - 119	6	30	
Benzo[a]pyrene	0.0657	0.0628	0.0833	0.0833	ND	79	75	31 - 131	5	32	
Indeno(1,2,3-c,d)pyrene	0.0646	0.0628	0.0833	0.0833	ND	78	75	31 - 130	3	28	
Dibenz[a,h]anthracene	0.0651	0.0629	0.0833	0.0833	ND	78	76	40 - 119	3	27	
Surrogate:											
2-Fluorobiphenyl						70	67	32 - 122			
Pyrene-d10						76	73	33 - 125			
Terphenyl-d14						76	73	36 - 118			

TOTAL METALS EPA 6010C/7471B

Matrix:	Soil
Units:	mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	03-272-01					
Client ID:	J9-NE-9.0-B					
Arsenic	ND	15	6010C	2-1-29	2-1-29	
Cadmium	ND	0.75	6010C	2-1-29	2-1-29	
Chromium	21	0.75	6010C	2-1-29	2-1-29	
Lead	ND	7.5	6010C	2-1-29	2-1-29	
Mercury	ND	0.37	7471B	2-1-29	2-1-29	
	03 373 03					
Client ID:	K9-NE-10.0-B					
Arsenic	ND	14	6010C	2-1-29	2-1-29	
Cadmium	ND	0.72	6010C	2-1-29	2-1-29	

Arsenic	ND	14	6010C	2-1-29	2-1-29
Cadmium	ND	0.72	6010C	2-1-29	2-1-29
Chromium	22	0.72	6010C	2-1-29	2-1-29
Lead	ND	7.2	6010C	2-1-29	2-1-29
Mercury	ND	0.36	7471B	2-1-29	2-1-29

14

TOTAL METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted:	2-1-29
Date Analyzed:	2-1-29

Matrix:	Soil
Units:	mg/kg (ppm)

Lab ID: MB0329SM1&MB0329S1

Analyte	Method	Result	PQL
Arsenic	6010C	ND	10
Cadmium	6010C	ND	0.50
Chromium	6010C	ND	0.50
Lead	6010C	ND	5.0
Mercury	7471B	ND	0.25

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted:	2-1-29
Date Analyzed:	2-1-29

- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 03-272-01

Analyte	Sample Result	Duplicate Result	RPD	PQL	Flags
Arsenic	ND	ND	NA	10	
Cadmium	ND	ND	NA	0.50	
Chromium	14.2	14.5	2	0.50	
Lead	ND	ND	NA	5.0	
Mercury	ND	ND	NA	0.25	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

TOTAL METALS EPA 6010C MS/MSD QUALITY CONTROL

- Date Extracted: 2-1-29 Date Analyzed: 2-1-29
- Matrix: Soil Units: mg/kg (ppm)
- Lab ID: 03-272-01

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Arsenic	100	94.4	94	94.6	95	0	
Cadmium	50.0	47.8	96	47.8	96	0	
Chromium	100	108	94	108	94	0	
Lead	250	229	92	232	93	1	
Mercury	0.500	0.517	103	0.518	104	0	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

% MOISTURE

Date Analyzed: 3-28-17

Client ID	Lab ID	% Moisture
J9-NE-9.0-B	03-272-01	33
K9-NE-10.0-B	03-272-02	31

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite		Cha	in o	f (Cu	st	od	y											Pa	age _	L	_ of	(_		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i	naround Requ n working day	iest (s)		La	bor	ato	ry I	Nun	nbe	er:	0	3 -	-2	7	2										
Phone: (425) 883-3881 • www.onsite-env.com Company: FARALLON Project Number: 1071-010 Project Name: SOUNDER Project Project Manager: DOWLANCE Sampled by: Kan Shipt	Same	(Check One) e Day ys [dard (7 Days) analysis 5 Day (other)	✓1 Day 3 Days ys)	r of Containers	I-HCID	I-Gx/BTEX	I-GX	1-Dx (Acid / SG Clean-up)	s 8260C	nated Volatiles 8260C	PA 8011 (Waters Only)	latiles 8270D/SIM w-level PAHs)	270D/SIM (low-level)	082A	chlorine Pesticides 8081B	phosphorus Pesticides 8270D/SIM	ated Acid Herbicides 8151A	CRA Metals	TCA Metals 5	fletals	il and grease) 1664A				ture	
Lab ID Sample Identification $T = V F = 9, 6 = R$	Date Sampled	Time Sampled	Matrix	Numb	NWTPI	NWTPI	NWTPI	NWTPI	Volatile	X Haloge	EDB E	Semivo (with Ic	PAHS 8	PCBs	Organo	Organo	Chlorir	Total R	X Total N	TCLP1	HEM (0		_	_	X % Mois	
2 KO-NE-1010-B	V	1400	5	6						X		l	X						X					-	1	
					4	¥	1	2)		_	-	-													
	-				C							_														
Signature	C	ompany				Date			Time			Comi	nents	s/Spei	cial l	nstruc	tion	S								
Relinquished	-	FARI	E	N		3/2	710 811	7	16	30	5															
Received																										
Received								-			_	Data	Pack	age:	Star	ndard		Lev	vel III		Leve	IIV []			-
Reviewed/Date		Reviewed/Dat	e									Chror	natog	grams	with	n final	repo	ort 🗌	Ele	ctroni	c Data	a Deliv	erables	; (EDD:	s) 🗌	-

April and May 2017 – Excavation 5, Laboratory Reports

April 17, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1704-132

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on April 13, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: April 17, 2017 Samples Submitted: April 13, 2017 Laboratory Reference: 1704-132 Project: 1071-010

Case Narrative

Samples were collected on April 13, 2017 and received by the laboratory on April 13, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Volatiles EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Some MTCA Method A cleanup levels are non-achievable for sample GRAB-041317 due to the necessary dilution of the sample.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-HCID

Matrix: Soil Units: mg/Kg (ppm)

- 3° 3 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GRAB-041317					
Laboratory ID:	04-132-01					
Gasoline Range Organics	Detected	220	NWTPH-HCID	4-14-17	4-14-17	
Diesel Fuel #2	Detected	550	NWTPH-HCID	4-14-17	4-14-17	
Lube Oil	Detected	1100	NWTPH-HCID	4-14-17	4-14-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S

NWTPH-HCID QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

0 0 (11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0414S2					
Gasoline Range Organics	ND	20	NWTPH-HCID	4-14-17	4-17-17	
Diesel Range Organics	ND	50	NWTPH-HCID	4-14-17	4-17-17	
Lube Oil Range Organics	ND	100	NWTPH-HCID	4-14-17	4-17-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

VOLATILES EPA 8260C page 1 of 2

Matrix: Soil Units: mg/kg

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GRAB-041317					
Laboratory ID:	04-132-01					
Dichlorodifluoromethane	ND	0.085	EPA 8260C	4-14-17	4-14-17	
Chloromethane	ND	0.24	EPA 8260C	4-14-17	4-14-17	
Vinyl Chloride	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Bromomethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Chloroethane	ND	0.24	EPA 8260C	4-14-17	4-14-17	
Trichlorofluoromethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,1-Dichloroethene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
lodomethane	ND	0.24	EPA 8260C	4-14-17	4-14-17	
Methylene Chloride	ND	0.35	EPA 8260C	4-14-17	4-14-17	
(trans) 1,2-Dichloroethene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,1-Dichloroethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
2,2-Dichloropropane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
(cis) 1,2-Dichloroethene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Bromochloromethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Chloroform	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,1,1-Trichloroethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Carbon Tetrachloride	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,1-Dichloropropene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Benzene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,2-Dichloroethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Trichloroethene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,2-Dichloropropane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Dibromomethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Bromodichloromethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
2-Chloroethyl Vinyl Ether	ND	0.24	EPA 8260C	4-14-17	4-14-17	
(cis) 1,3-Dichloropropene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Toluene	ND	0.24	EPA 8260C	4-14-17	4-14-17	
(trans) 1,3-Dichloropropene	ND	0.047	EPA 8260C	4-14-17	4-14-17	

5

VOLATILES EPA 8260C	
page 2 of 2	

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	GRAB-041317					
Laboratory ID:	04-132-01					
1,1,2-Trichloroethane	ND	0.062	EPA 8260C	4-14-17	4-14-17	
Tetrachloroethene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,3-Dichloropropane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Dibromochloromethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,2-Dibromoethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Chlorobenzene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,1,1,2-Tetrachloroethane	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Ethylbenzene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
m,p-Xylene	ND	0.095	EPA 8260C	4-14-17	4-14-17	
o-Xylene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Bromoform	ND	0.24	EPA 8260C	4-14-17	4-14-17	
Bromobenzene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,1,2,2-Tetrachloroethane	ND	0.062	EPA 8260C	4-14-17	4-14-17	
1,2,3-Trichloropropane	ND	0.062	EPA 8260C	4-14-17	4-14-17	
2-Chlorotoluene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
4-Chlorotoluene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,3-Dichlorobenzene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,4-Dichlorobenzene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,2-Dichlorobenzene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
1,2-Dibromo-3-chloropropane	ND	0.32	EPA 8260C	4-14-17	4-14-17	
1,2,4-Trichlorobenzene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Hexachlorobutadiene	ND	0.24	EPA 8260C	4-14-17	4-14-17	
1,2,3-Trichlorobenzene	ND	0.047	EPA 8260C	4-14-17	4-14-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	88	73-134				
Toluene-d8	96	81-124				
4-Bromofluorobenzene	111	80-131				

6

Date of Report: April 17, 2017 Samples Submitted: April 13, 2017 Laboratory Reference: 1704-132 Project: 1071-010

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 1 of 2

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratony ID:	MP041481					
Diploredifluoremethene		0.0019		1 1 1 1 7	1 1 1 1 7	
Chloromothano		0.0018		4-14-17	4-14-17	
Vinyl Chlorido		0.0030		4-14-17	4-14-17	
Promomothana		0.0010		4-14-17	4-14-17	
Chloroothana		0.0010		4-14-17	4-14-17	
Trichlarafluaramathana		0.0050		4-14-17	4-14-17	
		0.0010		4-14-17	4-14-17	
	ND	0.0010		4-14-17	4-14-17	
Iodometnane	ND	0.0050	EPA 8260C	4-14-17	4-14-17	
Methylene Chloride	ND	0.0073	EPA 8260C	4-14-17	4-14-17	
(trans) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,1-Dichloroethane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
2,2-Dichloropropane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
(cis) 1,2-Dichloroethene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Bromochloromethane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Chloroform	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,1,1-Trichloroethane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Carbon Tetrachloride	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,1-Dichloropropene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Benzene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,2-Dichloroethane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Trichloroethene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,2-Dichloropropane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Dibromomethane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Bromodichloromethane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
2-Chloroethyl Vinyl Ether	ND	0.0050	EPA 8260C	4-14-17	4-14-17	
(cis) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Toluene	ND	0.0050	EPA 8260C	4-14-17	4-14-17	
(trans) 1,3-Dichloropropene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Date of Report: April 17, 2017 Samples Submitted: April 13, 2017 Laboratory Reference: 1704-132 Project: 1071-010

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL page 2 of 2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0414S1					
1,1,2-Trichloroethane	ND	0.0013	EPA 8260C	4-14-17	4-14-17	
Tetrachloroethene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,3-Dichloropropane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Dibromochloromethane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,2-Dibromoethane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Chlorobenzene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,1,1,2-Tetrachloroethane	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Ethylbenzene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
m,p-Xylene	ND	0.0020	EPA 8260C	4-14-17	4-14-17	
o-Xylene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Bromoform	ND	0.0050	EPA 8260C	4-14-17	4-14-17	
Bromobenzene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,1,2,2-Tetrachloroethane	ND	0.0013	EPA 8260C	4-14-17	4-14-17	
1,2,3-Trichloropropane	ND	0.0013	EPA 8260C	4-14-17	4-14-17	
2-Chlorotoluene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
4-Chlorotoluene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,3-Dichlorobenzene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,4-Dichlorobenzene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,2-Dichlorobenzene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
1,2-Dibromo-3-chloropropane	ND	0.0067	EPA 8260C	4-14-17	4-14-17	
1,2,4-Trichlorobenzene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Hexachlorobutadiene	ND	0.0050	EPA 8260C	4-14-17	4-14-17	
1,2,3-Trichlorobenzene	ND	0.0010	EPA 8260C	4-14-17	4-14-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	73-134				
Toluene-d8	104	81-124				
4-Bromofluorobenzene	118	80-131				

8

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

						cent	Recovery				
Analyte	Result Spike Level Recovery		overy	Limits	RPD	Limit	Flags				
SPIKE BLANKS											
Laboratory ID:	SB04	14S1									
	SB	SBD	SB	SBD	SB	SBD					
1,1-Dichloroethene	0.0470	0.0536	0.0500	0.0500	94	107	66-127	13	15		
Benzene	0.0470	0.0499	0.0500	0.0500	94	100	76-122	6	15		
Trichloroethene	0.0502	0.0521	0.0500	0.0500	100	104	78-120	4	15		
Toluene	0.0475	0.0506	0.0500	0.0500	95	101	83-120	6	15		
Chlorobenzene	0.0444	0.0477	0.0500	0.0500	89	95	81-120	7	15		
Surrogate:											
Dibromofluoromethane					87	91	73-134				
Toluene-d8					92	99	81-124				
4-Bromofluorobenzene					103	112	80-131				

Date of Report: April 17, 2017 Samples Submitted: April 13, 2017 Laboratory Reference: 1704-132 Project: 1071-010

% MOISTURE

Date Analyzed: 4-13-17

Client ID	Lab ID	% Moisture
GRAB-041317	04-132-01	9

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

	0.01	
MA	Unsite	
	Environmental	Inc

Chain of Custody

Page _____ of _____

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turi (in	naround Req working day	uest ys)		La	iboi	rato	ry N	lumb	er:	0	4 -	-1	32									
Phone: (425) 883-3881 · www.onsite-env.com Company: Farallon Cansulting Project Number: 1071-010 Project Name: Sounder Project Project Manager: Den Lance Sampled by: Kycin Ostrom Lab ID Sample Identification	Same	(Check One) Day [s [lard (7 Days) analysis 5 Da (other) Time Sampled	1 Day 3 Days ys)	Number of Containers	NWTPH-HCID ¥	NWTPH-Gx/BTEX	NWTPH-Gx	NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A				% Moisture
1 GRAB-041317	4/13/17	1300	5	5	X				X													X	0
													2										
AD					-			_												_			
Signature	Co	ompany		-		Date		1	Time	_	Com	iment	s/Spec	ial Inst	tructio	ns							
Relinquished Hyan Offician Received	1	Farallo	NE.			4/1	3/17 3/1	7 7	1405 140	5	4	Kp.	101	nde 9No	es	tin	m a a tie	te	d				
Relinquished											-												
Received																							
Relinquished						-																	_
Received		D 1 1/2									Data	Pack	kage:	Standa	ard 🗌	Lev	/el III		Level	IV 🗌			_
Reviewed/Date		Reviewed/Da	ite	_							Chro	mato	grams	with fi	nal rej	oort 🗌	Ele	ctroni	c Data	Delive	ables (E	EDDs) 🗌	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

April 24, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1704-205

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on April 21, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: April 24, 2017 Samples Submitted: April 21, 2017 Laboratory Reference: 1704-205 Project: 1071-010

Case Narrative

Samples were collected on April 20, 2017 and received by the laboratory on April 21, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N-SW-8.0					
Laboratory ID:	04-205-01					
Gasoline	ND	6.0	NWTPH-Gx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	63-124				
Client ID:	NE-SW-8.0					
Laboratory ID:	04-205-02					
Gasoline	ND	5.1	NWTPH-Gx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	63-124				
Client ID:	E-SW-8.0					
Laboratory ID:	04-205-03					
Gasoline	ND	5.1	NWTPH-Gx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	63-124				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Date	Date)	
Analyte	Result	PQL	Me	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK								
Laboratory ID:	MB0421S1							
Gasoline	ND	5.0	NWT	ГРН-Gx	4-21-17	4-21-1	7	
Surrogate:	Percent Recovery	Control Limi	ts					
Fluorobenzene	78	63-124						
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	04-208-01							
	ORIG DUP							

Surrogate:	
Fluorobenzene	

ND

ND

NA

NA

Gasoline

82 82 63-124

NA

NA

NA

30

BTEX EPA 8260C

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N-SW-8.0					
Laboratory ID:	04-205-01					
Benzene	ND	0.0010	EPA 8260C	4-21-17	4-21-17	
Toluene	ND	0.0052	EPA 8260C	4-21-17	4-21-17	
Ethylbenzene	ND	0.0010	EPA 8260C	4-21-17	4-21-17	
m,p-Xylene	ND	0.0021	EPA 8260C	4-21-17	4-21-17	
o-Xylene	ND	0.0010	EPA 8260C	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	73-134				
Toluene-d8	115	81-124				
4-Bromofluorobenzene	93	80-131				

BTEX EPA 8260C

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
NE-SW-8.0					
04-205-02					
ND	0.00087	EPA 8260C	4-21-17	4-21-17	
ND	0.0044	EPA 8260C	4-21-17	4-21-17	
ND	0.00087	EPA 8260C	4-21-17	4-21-17	
ND	0.0017	EPA 8260C	4-21-17	4-21-17	
ND	0.00087	EPA 8260C	4-21-17	4-21-17	
Percent Recovery	Control Limits				
97	73-134				
106	81-124				
91	80-131				
	Result NE-SW-8.0 04-205-02 ND ND ND ND Percent Recovery 97 106 91	Result PQL NE-SW-8.0	Result PQL Method NE-SW-8.0	Result PQL Method Prepared NE-SW-8.0 04-205-02 -	Result PQL Method Prepared Analyzed NE-SW-8.0 04-205-02

BTEX EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E-SW-8.0					
Laboratory ID:	04-205-03					
Benzene	ND	0.00092	EPA 8260C	4-21-17	4-21-17	
Toluene	ND	0.0046	EPA 8260C	4-21-17	4-21-17	
Ethylbenzene	ND	0.00092	EPA 8260C	4-21-17	4-21-17	
m,p-Xylene	ND	0.0018	EPA 8260C	4-21-17	4-21-17	
o-Xylene	ND	0.00092	EPA 8260C	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	73-134				
Toluene-d8	118	81-124				
4-Bromofluorobenzene	96	80-131				

BTEX EPA 8260C QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0421S1					
Benzene	ND	0.0010	EPA 8260C	4-21-17	4-21-17	
Toluene	ND	0.0050	EPA 8260C	4-21-17	4-21-17	
Ethylbenzene	ND	0.0010	EPA 8260C	4-21-17	4-21-17	
m,p-Xylene	ND	0.0020	EPA 8260C	4-21-17	4-21-17	
o-Xylene	ND	0.0010	EPA 8260C	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	123	73-134				
Toluene-d8	123	81-124				
4-Bromofluorobenzene	103	80-131				

					Per	cent	Recovery			
Analyte	Res	sult	Spike	Level	Rec	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB04	21S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0552	0.0564	0.0500	0.0500	110	113	66-127	2	15	
Benzene	0.0542	0.0538	0.0500	0.0500	108	108	76-122	1	15	
Trichloroethene	0.0500	0.0535	0.0500	0.0500	100	107	78-120	7	15	
Toluene	0.0504	0.0546	0.0500	0.0500	101	109	83-120	8	15	
Chlorobenzene	0.0437	0.0478	0.0500	0.0500	87	96	81-120	9	15	
Surrogate:										
Dibromofluoromethane					130	124	73-134			
Toluene-d8					114	119	81-124			
4-Bromofluorobenzene					86	87	80-131			

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

0 0 0 1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N-SW-8.0					
Laboratory ID:	04-205-01					
Diesel Range Organics	ND	29	NWTPH-Dx	4-21-17	4-21-17	
Lube Oil Range Organics	ND	58	NWTPH-Dx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	NE-SW-8.0					
Laboratory ID:	04-205-02					
Diesel Range Organics	ND	28	NWTPH-Dx	4-21-17	4-21-17	
Lube Oil Range Organics	130	56	NWTPH-Dx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	E-SW-8.0					
Laboratory ID:	04-205-03					
Diesel Range Organics	ND	27	NWTPH-Dx	4-21-17	4-21-17	
Lube Oil Range Organics	ND	53	NWTPH-Dx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analvzed	Flags
METHOD BLANK		-		•		0
Laboratory ID:	MB0421S1					
Diesel Range Organics	ND	25	NWTPH-Dx	4-21-17	4-21-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	101	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	04-204-02									
	ORIG	DUP								
Diesel Fuel #2	102	70.6	NA	NA		NA	NA	36	NA	X1
Lube Oil	501	503	NA	NA		NA	NA	0	NA	X1
Surrogate:										
o-Terphenyl						109 84	50-150			

Date of Report: April 24, 2017 Samples Submitted: April 21, 2017 Laboratory Reference: 1704-205 Project: 1071-010

% MOISTURE

Date Analyzed: 4-21-17

Client ID	Lab ID	% Moisture
N-SW-8.0	04-205-01	14
NE-SW-8.0	04-205-02	11
E-SW-8.0	04-205-03	6

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite Environmental Inc.

Chain of Custody

Page _____ of _____

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i	naround Req n working da	uest ys)		La	abo	rate	ory	Nu	mb	er:	0	4 .	-2	0	5									
Phone: (425) 883-3881 · www.onsite-env.com Company: Farallon Project Number: 1071-010 Project Name: Sounder Project Project Manager: Don Lence Sampled by: Kyan Ostroun	Same	(Check One) e Day ys [dard (7 Days) analysis 5 Da (other) Time	1 Day 3 Days iys)	umber of Containers	WTPH-HCID	WTPH-Gx/BTEX *	WTPH-Gx	WTPH-Dx (🗌 Acid / SG Clean-up)	olatiles 8260C	alogenated Volatiles 8260C	DB EPA 8011 (Waters Only)	emivolatiles 8270D/SIM /ith low-level PAHs)	AHs 8270D/SIM (low-level)	CBs 8082A	rganochlorine Pesticides 8081B	rganophosphorus Pesticides 8270D/SIM	hlorinated Acid Herbicides 8151A	otal RCRA Metals	otal MTCA Metals	CLP Metals	EM (oil and grease) 1664A				Moisture
Lab ID Sample Identification	Sampled 4/20/17	Sampled	Matrix	5	z	Z	z	Z	×	H		S S	9	ā.	0	0	0	P	4	Ţ	T				%
2 NE-SW-8.0		1018		T		X		X																	Ť
3 E-SW-8.0	V	1019	V	V		X		X			1	X													T
0.0																									
$\rightarrow h0$														_								_			
				-										_			-	_		_		_	_		_
				-											_	_	_		_			_	_	+	
Signature	C	ompany				Date			Time			Con	nmeni	ts/Spe	ecial	Instru	ction	S							
Relinquished Kyun Ostram	,	Favall	on			412	011	7	16	00)	*B	TE	X	by	M	lett	nod	8	260	Э,				
Received R14		ala	her			4	21	lin	16):/	5														
Relinquished		alph	4			41	21	12	11	:5	50														
Received		0	DE			4%	21	17	R	ST	>														
Relinquished																									
Reviewed/Date		Reviewed/Dat	te									Data	a Pac	kage:	Sta	ndaro		Lev	el III		Level				_
				-								Onic	malo	gram	3 WIL	ii iina	ritepi		Elec	Juonio	U Data	Delive	i abies (l		_

April 24, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1704-210

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on April 21, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: April 24, 2017 Samples Submitted: April 21, 2017 Laboratory Reference: 1704-210 Project: 1071-010

Case Narrative

Samples were collected on April 21, 2017 and received by the laboratory on April 21, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

0 0 1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N1-SW-042117-8.0					
Laboratory ID:	04-210-01					
Gasoline	ND	8.1	NWTPH-Gx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	63-124				
Client ID:	N2-SW-042117-8.0					
Laboratory ID:	04-210-02					
Gasoline	ND	9.7	NWTPH-Gx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	63-124				
Client ID:	NW-SW-042117-8.0					
Laboratory ID:	04-210-03					
Gasoline	ND	9.4	NWTPH-Gx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	63-124				
Client ID:	W1-SW-042117-9.0					
Laboratory ID:	04-210-04					
Gasoline	ND	7.3	NWTPH-Gx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	63-124				
Client ID:	SE-SW-042117-8.0					
Laboratory ID:	04-210-05					
Gasoline	ND	5.9	NWTPH-Gx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	63-124				
Client ID:	W2-SW-042117-9.0					
Laboratory ID:	04-210-06					
Gasoline	ND	6.3	NWTPH-Gx	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	79	63-124				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Date	Date		
Analyte	Result	PQL	Ме	thod	Prepared	Analyze	ed	Flags
METHOD BLANK								
Laboratory ID:	MB0421S2							
Gasoline	ND	5.0	NWT	PH-Gx	4-21-17	4-21-1	7	
Surrogate:	Percent Recovery	Control Limit	s					
Fluorobenzene	80	63-124						
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags

DUPLICATE										
Laboratory ID:	04-20)5-02								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA	N	А	NA	NA	30	
Surrogate:										
Fluorobenzene					79	80	63-124			

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N1-SW-042117-8.0					
Laboratory ID:	04-210-01					
Diesel Range Organics	ND	33	NWTPH-Dx	4-23-17	4-23-17	
Lube Oil Range Organics	ND	66	NWTPH-Dx	4-23-17	4-23-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				
Client ID:	N2-SW-042117-8.0					
Laboratory ID:	04-210-02					
Diesel Range Organics	ND	36	NWTPH-Dx	4-23-17	4-23-17	
Lube Oil Range Organics	ND	72	NWTPH-Dx	4-23-17	4-23-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	NW-SW-042117-8.0					
Laboratory ID:	04-210-03					
Diesel Range Organics	ND	37	NWTPH-Dx	4-23-17	4-23-17	
Lube Oil Range Organics	100	74	NWTPH-Dx	4-23-17	4-23-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				
Client ID:	W1-SW-042117-9.0					
Laboratory ID:	04-210-04					
Diesel Range Organics	ND	33	NWTPH-Dx	4-23-17	4-23-17	
Lube Oil Range Organics	ND	66	NWTPH-Dx	4-23-17	4-23-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	91	50-150				
Client ID:	SE-SW-042117-8.0					
Laboratory ID:	04-210-05					
Diesel Range Organics	ND	29	NWTPH-Dx	4-23-17	4-23-17	
Lube Oil Range Organics	ND	58	NWTPH-Dx	4-23-17	4-23-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	84	50-150				
Client ID:	w2-SW-042117-9.0					
Laboratory ID:	04-210-06					
Diesel Range Organics	1700	320	NWTPH-Dx	4-23-17	4-24-17	
Lube Oil Range Organics	2800	640	NWTPH-Dx	4-23-17	4-24-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				•		•
Laboratory ID:	MB0423S1					
Diesel Range Organics	ND	25	NWTPH-Dx	4-23-17	4-23-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	4-23-17	4-23-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	98	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	04-21	10-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						96 89	50-150			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N1-SW-042117-8.0					
Laboratory ID:	04-210-01					
Benzene	ND	0.0013	EPA 8260C	4-21-17	4-21-17	
Toluene	ND	0.0066	EPA 8260C	4-21-17	4-21-17	
Ethylbenzene	ND	0.0013	EPA 8260C	4-21-17	4-21-17	
m,p-Xylene	ND	0.0026	EPA 8260C	4-21-17	4-21-17	
o-Xylene	ND	0.0013	EPA 8260C	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	104	73-134				
Toluene-d8	105	81-124				
4-Bromofluorobenzene	114	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	N2-SW-042117-8.0					
Laboratory ID:	04-210-02					
Benzene	ND	0.0018	EPA 8260C	4-21-17	4-21-17	
Toluene	ND	0.0089	EPA 8260C	4-21-17	4-21-17	
Ethylbenzene	ND	0.0018	EPA 8260C	4-21-17	4-21-17	
m,p-Xylene	ND	0.0036	EPA 8260C	4-21-17	4-21-17	
o-Xylene	ND	0.0018	EPA 8260C	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	102	73-134				
Toluene-d8	106	81-124				
4-Bromofluorobenzene	108	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NW-SW-042117-8.0					
Laboratory ID:	04-210-03					
Benzene	ND	0.0018	EPA 8260C	4-21-17	4-21-17	
Toluene	ND	0.0092	EPA 8260C	4-21-17	4-21-17	
Ethylbenzene	ND	0.0018	EPA 8260C	4-21-17	4-21-17	
m,p-Xylene	ND	0.0037	EPA 8260C	4-21-17	4-21-17	
o-Xylene	ND	0.0018	EPA 8260C	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	100	73-134				
Toluene-d8	105	81-124				
4-Bromofluorobenzene	107	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	W1-SW-042117-9.0					
Laboratory ID:	04-210-04					
Benzene	ND	0.0013	EPA 8260C	4-21-17	4-21-17	
Toluene	ND	0.0064	EPA 8260C	4-21-17	4-21-17	
Ethylbenzene	ND	0.0013	EPA 8260C	4-21-17	4-21-17	
m,p-Xylene	ND	0.0025	EPA 8260C	4-21-17	4-21-17	
o-Xylene	ND	0.0013	EPA 8260C	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	101	73-134				
Toluene-d8	104	81-124				
4-Bromofluorobenzene	111	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SE-SW-042117-8.0					
Laboratory ID:	04-210-05					
Benzene	ND	0.0012	EPA 8260C	4-21-17	4-21-17	
Toluene	ND	0.0059	EPA 8260C	4-21-17	4-21-17	
Ethylbenzene	ND	0.0012	EPA 8260C	4-21-17	4-21-17	
m,p-Xylene	ND	0.0024	EPA 8260C	4-21-17	4-21-17	
o-Xylene	ND	0.0012	EPA 8260C	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	97	73-134				
Toluene-d8	108	81-124				
4-Bromofluorobenzene	108	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	W2-SW-042117-9.0					
Laboratory ID:	04-210-06					
Benzene	ND	0.0012	EPA 8260C	4-21-17	4-21-17	
Toluene	ND	0.0058	EPA 8260C	4-21-17	4-21-17	
Ethylbenzene	ND	0.0012	EPA 8260C	4-21-17	4-21-17	
m,p-Xylene	ND	0.0023	EPA 8260C	4-21-17	4-21-17	
o-Xylene	ND	0.0012	EPA 8260C	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	98	73-134				
Toluene-d8	108	81-124				
4-Bromofluorobenzene	109	80-131				

BTEX EPA 8260C METHOD BLANK QUALITY CONTROL

0 0				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0421S2					
Benzene	ND	0.0010	EPA 8260C	4-21-17	4-21-17	
Toluene	ND	0.0050	EPA 8260C	4-21-17	4-21-17	
Ethylbenzene	ND	0.0010	EPA 8260C	4-21-17	4-21-17	
m,p-Xylene	ND	0.0020	EPA 8260C	4-21-17	4-21-17	
o-Xylene	ND	0.0010	EPA 8260C	4-21-17	4-21-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	73-134				
Toluene-d8	112	81-124				
4-Bromofluorobenzene	116	80-131				

BTEX EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

0 0					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB042	21S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0491	0.0486	0.0500	0.0500	98	97	66-127	1	15	
Benzene	0.0505	0.0499	0.0500	0.0500	101	100	76-122	1	15	
Trichloroethene	0.0532	0.0510	0.0500	0.0500	106	102	78-120	4	15	
Toluene	0.0537	0.0523	0.0500	0.0500	107	105	83-120	3	15	
Chlorobenzene	0.0542	0.0507	0.0500	0.0500	108	101	81-120	7	15	
Surrogate:										
Dibromofluoromethane					94	94	73-134			
Toluene-d8					98	100	81-124			
4-Bromofluorobenzene					105	102	80-131			

Date of Report: April 24, 2017 Samples Submitted: April 21, 2017 Laboratory Reference: 1704-210 Project: 1071-010

% MOISTURE

Date Analyzed: 4-21-17

Client ID	Lab ID	% Moisture
N1-SW-042117-8.0	04-210-01	24
N2-SW-042117-8.0	04-210-02	31
NW-SW-042117-8.0	04-210-03	32
W1-SW-042117-9.0	04-210-04	24
SE-SW-042117-8.0	04-210-05	14
W2-SW-042117-9.0	04-210-06	22

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Chain of Custody

	/	1
Page	of	1

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tur (i	naround Req n working day	uest ys)		La	bor	ator	y Nu	umb	er:	n	Δ -	21	n									
Phone: (425) 883-3881 • www.onsite-env.com Company: Farallon Consulting Project Number: 1071-010 Project Name: 6050 E. Marghmal Way Project Manager: Sampled by: Russel (Lwiten	Same	(Check One) e Day ys [dard (7 Days) analysis 5 Da (other) Time	1 Day 3 Days ys)	mber of Containers	VTPH-HCID	VTPH-Gx/BTEX 8260	UTPH-Gx UTPH-Dv /□ Acid / SG Closs-tim)	latiles 8260C	logenated Volatiles 8260C 05115	IB EPA 8011 (Waters Only)	mivolatiles 8270D/SIM th low-level PAHs)	Hs 8270D/SIM (low-level)	BS 8082A	janophosphorus Pesticides 8270D/SIM	Iorinated Acid Herbicides 8151A	al RCRA Metals	al MTCA Metals	LP Metals	M (oil and grease) 1664A				Moisture
Lab ID Sample Identification	Sampled	Sampled	Matrix	ž 5	ź	v V	z z		<u> </u>		<u>8</u> 2	PA 1	Ă Ő	ō	Ö	9	P	TC	里 		+-	$\left - \right $	8
2-N2-50-042117-9.0	7/6	900	1	1								_	_	-								+	¥
3 NU-SU-042117-80		947		+-					-	-		_		-								\vdash	+
y 121 - 61 - 042117-9.0		1035	_											-						_		\vdash	+
5 55-5W -042117-80		ital			- /	$\overline{\mathbf{x}}$						-		-						-	-	\vdash	+
6 W2-5W-042117-9.0	V	1125	J.	V		X	×						-									1	t
					-440																		
						-	-	-				+	+	-					_		+	\vdash	_
Signature	et	ompany			D)ate	. ,	Tim	ie		Com	ments/	'Specia	l Instr	uction	15				2			
Relinquished		FALA	m	/		Yh	1/17	70	114														
Received Vave			5pd -		e	7/2	1/7	ó	2号	5											,		
Relinquished Van		2	dy		L	仍	1/17	15	25	_													
Relinquished		Q	XE.			4d	<u>Ul</u>	2//	52	5													
Received					_	-		-		_	Data	Packa	de: St	andar	rd 🗆	l ev				N D			_
Reviewed/Date		Reviewed/Dat	e								Chron	natogr	ams w	ith fina	al rep	ort [] Elec	ctronic	Data	Deliver	ables (E	DDs) [

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 1, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1704-280

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on April 28, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 1, 2017 Samples Submitted: April 28, 2017 Laboratory Reference: 1704-280 Project: 1071-010

Case Narrative

Samples were collected on April 28, 2017 and received by the laboratory on April 28, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B5-042817-12.0					
Laboratory ID:	04-280-01					
Gasoline	ND	8.1	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	63-124				
Client ID:	B6-042817-12.0					
Laboratory ID:	04-280-02					
Gasoline	ND	8.2	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	63-124				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0501S1					
Gasoline	ND	5.0	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	77	63-124				
		5	Source Percen	t Recovery	RP	D
A I . C.	D					

Analyte	Res	sult	Spike	Level	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-28	30-01									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	А	NA	NA	30	
Surrogate:											
Fluorobenzene						81	80	63-124			

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B5-042817-12.0					
Laboratory ID:	04-280-01					
Benzene	0.0013	0.0012	EPA 8260C	4-28-17	4-28-17	
Toluene	ND	0.0061	EPA 8260C	4-28-17	4-28-17	
Ethylbenzene	ND	0.0012	EPA 8260C	4-28-17	4-28-17	
m,p-Xylene	ND	0.0025	EPA 8260C	4-28-17	4-28-17	
o-Xylene	ND	0.0012	EPA 8260C	4-28-17	4-28-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	73-134				
Toluene-d8	104	81-124				
4-Bromofluorobenzene	98	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B6-042817-12.0					
Laboratory ID:	04-280-02					
Benzene	ND	0.0013	EPA 8260C	4-28-17	4-28-17	
Toluene	ND	0.0064	EPA 8260C	4-28-17	4-28-17	
Ethylbenzene	ND	0.0013	EPA 8260C	4-28-17	4-28-17	
m,p-Xylene	ND	0.0026	EPA 8260C	4-28-17	4-28-17	
o-Xylene	ND	0.0013	EPA 8260C	4-28-17	4-28-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	73-134				
Toluene-d8	108	81-124				
4-Bromofluorobenzene	99	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

BTEX EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0428S1					
Benzene	ND	0.0010	EPA 8260C	4-28-17	4-28-17	
Toluene	ND	0.0050	EPA 8260C	4-28-17	4-28-17	
Ethylbenzene	ND	0.0010	EPA 8260C	4-28-17	4-28-17	
m,p-Xylene	ND	0.0020	EPA 8260C	4-28-17	4-28-17	
o-Xylene	ND	0.0010	EPA 8260C	4-28-17	4-28-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	73-134				
Toluene-d8	111	81-124				
4-Bromofluorobenzene	109	80-131				

BTEX EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	Recovery		RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB04	28S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0529	0.0544	0.0500	0.0500	106	109	66-127	3	15	
Benzene	0.0511	0.0537	0.0500	0.0500	102	107	76-122	5	15	
Trichloroethene	0.0523	0.0528	0.0500	0.0500	105	106	78-120	1	15	
Toluene	0.0550	0.0545	0.0500	0.0500	110	109	83-120	1	15	
Chlorobenzene	0.0522	0.0525	0.0500	0.0500	104	105	81-120	1	15	
Surrogate:										
Dibromofluoromethane					97	108	73-134			
Toluene-d8					101	103	81-124			
4-Bromofluorobenzene					101	110	80-131			

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

5 5 (T)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B5-042817-12.0					
Laboratory ID:	04-280-01					
Diesel Range Organics	ND	34	NWTPH-Dx	4-28-17	4-28-17	
Lube Oil Range Organics	ND	68	NWTPH-Dx	4-28-17	4-28-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	79	50-150				
Client ID:	B6-042817-12.0					
Laboratory ID:	04-280-02					
Diesel Range Organics	ND	34	NWTPH-Dx	4-28-17	4-28-17	
Lube Oil Range Organics	ND	68	NWTPH-Dx	4-28-17	4-28-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	69	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

······································				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0428S2					
Diesel Range Organics	ND	25	NWTPH-Dx	4-28-17	4-28-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	4-28-17	4-28-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	99	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	04-27	74-01								
	ORIG	DUP								
Diesel Range Organics	80.2	25.3	NA	NA		NA	NA	104	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						80 93	50-150			

Date of Report: May 1, 2017 Samples Submitted: April 28, 2017 Laboratory Reference: 1704-280 Project: 1071-010

% MOISTURE

Date Analyzed: 4-28-17

Client ID	Lab ID	% Moisture
B5-042817-12.0	04-280-01	26
B6-042817-12.0	04-280-02	27

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite		Cha	ain o	of (Cu	st	00	ły											Pa	ige _	(_ of _	1		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)				La	abo	rato	ory	Nui	mbe	er:	0	4 -	-2	8	0				e.					
Project Name: Sampled by: Lab ID Sample Identification 1 055-042617-12.0	Same 2 Day Stand (TPH Date Sampled 4/28	(Check One) a Day /s [dard (7 Days) analysis 5 Da (other) Time Sampled 115 c	Day 3 Days 3 Days 100 100 100 100 100 100 100 100 100 10	S Number of Containers	NWTPH-HCID	X NWTPH-Gx/BTEX - 926	NWTPH-Gx	X NWTPH-Dx (Acid / SG Clean-up)	Volatiles 8260C	Halogenated Volatiles 8260C	EDB EPA 8011 (Waters Only)	Semivolatiles 8270D/SIM (with low-level PAHs)	PAHs 8270D/SIM (low-level)	PCBs 8082A	Organochlorine Pesticides 8081B	Organophosphorus Pesticides 8270D/SIM	Chlorinated Acid Herbicides 8151A	Total RCRA Metals	Total MTCA Metals	TCLP Metals	HEM (oil and grease) 1664A				X % Moisture
		125 +	5	5		2		~				>													
Signature Relinquished Received Received Received Received		mpany SALA COS	m E			Date	s/1 gh	7	Time 15 15	4 <u>k</u> 4.5	-	Com	ments	s/Spe	cial Ir	nstruc	tions	S	1						
Reviewed/Date		Reviewed/Dat	e						-		_	Data Chron	Pack	age: grams	Stan with	idard final	repo	Leve	Elec		_evel	IV 🗌 Deliver	rables	EDDs	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 2, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1704-289

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on April 29, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 2, 2017 Samples Submitted: April 29, 2017 Laboratory Reference: 1704-289 Project: 1071-010

Case Narrative

Samples were collected on April 27, 2017 and received by the laboratory on April 29, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1-SW-042717					
Laboratory ID:	04-289-01					
Gasoline	ND	10	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	63-124				
Client ID:	W3-SW-042717					
Laboratory ID:	04-289-02					
Gasoline	ND	5.8	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	63-124				
Client ID:	SE1-SW-042717					
Laboratory ID:	04-289-03					
Gasoline	ND	7.8	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	63-124				
Client ID:	E1-SW-042717					
Laboratory ID:	04-289-04					
Gasoline	ND	7.3	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	80	63-124				
Client ID:	W4-SW-042717					
Laboratory ID:	04-289-05					
Gasoline	ND	7.9	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	63-124				
Client ID:	B1-042717					
Laboratory ID:	04-289-06					
Gasoline	ND	7.7	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	63-124				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

3
NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B2-042717					
Laboratory ID:	04-289-07					
Gasoline	ND	7.9	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	63-124				
Client ID:	B3-042717					
Laboratory ID:	04-289-08					
Gasoline	ND	6.8	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	63-124				
Client ID:	B4-042717					
Laboratory ID:	04-289-09					
Gasoline	ND	8.1	NWTPH-Gx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	78	63-124				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0501S2					
Gasoline	ND	5.0	NWTPH-G	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits	3			
Fluorobenzene	81	63-124				
			Source Pe	rcent Recovery	F	RPD
Analyta	Pocult	Spika Laval	Posult Poc	ovorv Limite	ו חסס	imit Elage

Analyte	Res	Sult	Spike	Levei	Result	Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-28	39-03									
	ORIG	DUP									
Gasoline	ND	ND	NA	NA		N	A	NA	NA	30	
Surrogate:											
Fluorobenzene						78	78	63-124			

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1-SW-042717					
Laboratory ID:	04-289-01					
Benzene	ND	0.0013	EPA 8260C	5-1-17	5-1-17	
Toluene	ND	0.0067	EPA 8260C	5-1-17	5-1-17	
Ethylbenzene	ND	0.0013	EPA 8260C	5-1-17	5-1-17	
m,p-Xylene	ND	0.0027	EPA 8260C	5-1-17	5-1-17	
o-Xylene	ND	0.0013	EPA 8260C	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	118	73-134				
Toluene-d8	108	81-124				
4-Bromofluorobenzene	89	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	W3-SW-042717					
Laboratory ID:	04-289-02					
Benzene	ND	0.0010	EPA 8260C	5-1-17	5-1-17	
Toluene	ND	0.0052	EPA 8260C	5-1-17	5-1-17	
Ethylbenzene	ND	0.0010	EPA 8260C	5-1-17	5-1-17	
m,p-Xylene	ND	0.0021	EPA 8260C	5-1-17	5-1-17	
o-Xylene	ND	0.0010	EPA 8260C	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	119	73-134				
Toluene-d8	116	81-124				
4-Bromofluorobenzene	109	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SE1-SW-042717					
Laboratory ID:	04-289-03					
Benzene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
Toluene	ND	0.0057	EPA 8260C	5-1-17	5-1-17	
Ethylbenzene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
m,p-Xylene	ND	0.0023	EPA 8260C	5-1-17	5-1-17	
o-Xylene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	119	73-134				
Toluene-d8	111	81-124				
4-Bromofluorobenzene	105	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	E1-SW-042717					
Laboratory ID:	04-289-04					
Benzene	ND	0.0012	EPA 8260C	5-1-17	5-1-17	
Toluene	ND	0.0058	EPA 8260C	5-1-17	5-1-17	
Ethylbenzene	ND	0.0012	EPA 8260C	5-1-17	5-1-17	
m,p-Xylene	ND	0.0023	EPA 8260C	5-1-17	5-1-17	
o-Xylene	ND	0.0012	EPA 8260C	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	115	73-134				
Toluene-d8	111	81-124				
4-Bromofluorobenzene	102	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	W4-SW-042717					
Laboratory ID:	04-289-05					
Benzene	ND	0.0012	EPA 8260C	5-1-17	5-1-17	
Toluene	ND	0.0060	EPA 8260C	5-1-17	5-1-17	
Ethylbenzene	ND	0.0012	EPA 8260C	5-1-17	5-1-17	
m,p-Xylene	ND	0.0024	EPA 8260C	5-1-17	5-1-17	
o-Xylene	ND	0.0012	EPA 8260C	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	73-134				
Toluene-d8	107	81-124				
4-Bromofluorobenzene	95	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B1-042717					
Laboratory ID:	04-289-06					
Benzene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
Toluene	ND	0.0054	EPA 8260C	5-1-17	5-1-17	
Ethylbenzene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
m,p-Xylene	ND	0.0021	EPA 8260C	5-1-17	5-1-17	
o-Xylene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	73-134				
Toluene-d8	110	81-124				
4-Bromofluorobenzene	109	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B2-042717					
Laboratory ID:	04-289-07					
Benzene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
Toluene	ND	0.0055	EPA 8260C	5-1-17	5-1-17	
Ethylbenzene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
m,p-Xylene	ND	0.0022	EPA 8260C	5-1-17	5-1-17	
o-Xylene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	73-134				
Toluene-d8	113	81-124				
4-Bromofluorobenzene	111	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B3-042717					
Laboratory ID:	04-289-08					
Benzene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
Toluene	ND	0.0055	EPA 8260C	5-1-17	5-1-17	
Ethylbenzene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
m,p-Xylene	ND	0.0022	EPA 8260C	5-1-17	5-1-17	
o-Xylene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	120	73-134				
Toluene-d8	115	81-124				
4-Bromofluorobenzene	107	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B4-042717					
Laboratory ID:	04-289-09					
Benzene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
Toluene	ND	0.0055	EPA 8260C	5-1-17	5-1-17	
Ethylbenzene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
m,p-Xylene	ND	0.0022	EPA 8260C	5-1-17	5-1-17	
o-Xylene	ND	0.0011	EPA 8260C	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	119	73-134				
Toluene-d8	112	81-124				
4-Bromofluorobenzene	110	80-131				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

BTEX EPA 8260C METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/kg

Flore	Date	Date				
riags	Analyzed	Prepared	Method	PQL	Result	Analyte
					MB0501S2	Laboratory ID:
	5-1-17	5-1-17	EPA 8260C	0.0010	ND	Benzene
	5-1-17	5-1-17	EPA 8260C	0.0050	ND	Toluene
	5-1-17	5-1-17	EPA 8260C	0.0010	ND	Ethylbenzene
	5-1-17	5-1-17	EPA 8260C	0.0020	ND	m,p-Xylene
	5-1-17	5-1-17	EPA 8260C	0.0010	ND	o-Xylene
				Control Limits	Percent Recovery	Surrogate:
				73-134	119	Dibromofluoromethane
				81-124	117	Toluene-d8
				80-131	115	4-Bromofluorobenzene
	5-1-17	5-1-17	EPA 8260C	0.0010 Control Limits 73-134 81-124 80-131	ND Percent Recovery 119 117 115	<u>o-Xylene</u> Surrogate: Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene

15

BTEX EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	01S2								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0489	0.0524	0.0500	0.0500	98	105	66-127	7	15	
Benzene	0.0505	0.0526	0.0500	0.0500	101	105	76-122	4	15	
Trichloroethene	0.0512	0.0513	0.0500	0.0500	102	103	78-120	0	15	
Toluene	0.0540	0.0551	0.0500	0.0500	108	110	83-120	2	15	
Chlorobenzene	0.0523	0.0523	0.0500	0.0500	105	105	81-120	0	15	
Surrogate:										
Dibromofluoromethane					104	105	73-134			
Toluene-d8					107	105	81-124			
4-Bromofluorobenzene					107	102	80-131			

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	SW1-SW-042717					
Laboratory ID:	04-289-01					
Diesel Range Organics	ND	39	NWTPH-Dx	5-1-17	5-1-17	
Lube Oil Range Organics	ND	77	NWTPH-Dx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits		• • • •	••••	
o-Ternhenvl	64	50-150				
e reiphenyr	01	00 /00				
Client ID:	W3-SW-042717					
Laboratory ID:	04-289-02					
Diesel Range Organics	ND	31	NWTPH-Dx	5-1-17	5-1-17	
Lube Oil Range Organics	ND	62	NWTPH-Dx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				
e reipiicily:						
Client ID:	SE1-SW-042717					
Laboratory ID:	04-289-03					
Diesel Range Organics	ND	34	NWTPH-Dx	5-1-17	5-1-17	
Lube Oil Range Organics	ND	68	NWTPH-Dx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	61	50-150				
Client ID:	E1-SW-042717					
Laboratory ID:	04-289-04					
Diesel Range Organics	ND	34	NWTPH-Dx	5-1-17	5-1-17	
Lube Oil Range Organics	ND	68	NWTPH-Dx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	59	50-150				
Client ID:	W4-SW-042717					
Laboratory ID:	04-289-05					
Diesel Range Organics	ND	36	NWTPH-Dx	5-1-17	5-1-17	
Lube Oil Range Organics	ND	71	NWTPH-Dx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	63	50-150				
Client ID:	B1-042717					
Laboratory ID:	04-289-06					
Diesel Range Organics	ND	35	NWTPH-Dx	5-1-17	5-1-17	
Lube Oil Range Organics	ND	70	NWTPH-Dx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	81	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

17

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

0 0 0 1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B2-042717					
Laboratory ID:	04-289-07					
Diesel Range Organics	ND	35	NWTPH-Dx	5-1-17	5-1-17	
Lube Oil Range Organics	ND	70	NWTPH-Dx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	75	50-150				
Client ID:	B3-042717					
Laboratory ID:	04-289-08					
Diesel Range Organics	ND	33	NWTPH-Dx	5-1-17	5-1-17	
Lube Oil Range Organics	ND	66	NWTPH-Dx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				
Client ID:	B4-042717					
Laboratory ID:	04-289-09					
Diesel Range Organics	ND	34	NWTPH-Dx	5-1-17	5-1-17	
Lube Oil Range Organics	ND	68	NWTPH-Dx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	67	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK					-	
Laboratory ID:	MB0501S2					
Diesel Range Organics	ND	25	NWTPH-Dx	5-1-17	5-1-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-1-17	5-1-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				

					Source	Perce	nt	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recov	ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	04-28	39-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						64	71	50-150			

Date of Report: May 2, 2017 Samples Submitted: April 29, 2017 Laboratory Reference: 1704-289 Project: 1071-010

% MOISTURE

Date Analyzed: 5-1-17

Client ID	Lab ID	% Moisture
014/4 014/ 040747	04.000.04	25
5001-500-042717	04-289-01	35
W3-SW-042717	04-289-02	19
SE1-SW-042717	04-289-03	27
E1-SW-042717	04-289-04	26
W4-SW-042717	04-289-05	30
B1-042717	04-289-06	28
B2-042717	04-289-07	29
B3-042717	04-289-08	24
B4-042717	04-289-09	26

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite		Cha	ain o) f (Cu	IS	to	dy											Pa	age _	l	of	1		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tu (rnaround Req in working da	juest ys)		La	abo	orat	ory	Nu	mb	er:							0	4	-2	8	9			
Phone: (425) 883-3881 • www.onsite-env.com Company:	_	(Check One)				1															1				
Favallon	_ 🗌 Sam	e Day	🗙 1 Day													D/SIN									
1071-010	2 Da	iys	3 Days					(dn-ue							31B	8270	151A								
Project Name:	Star	idard (7 Days)				3		G Cle		260C	(full)	V	evel)		es 80(ticides	ides 8				64A				
Project Manager:	(TPF	l analysis 5 Da	ays)	iners		8		id / S(iles 82	aters (ID/SIN	low-le		sticid	s Pest	lerbici				se) 16(
Don Lance				Conta		BTEX		Ac	SC	Volat	11 (W	s 8270 el PAH	/SIM (ine Pe	phoru	Acid F	Metals	Metals		greas				
Rycun Ostrown		(other)		er of (H-HCI	H-Gx/	H-GX	H-Dx	s 826	inated	PA 80	olatiles w-lev	3270D	3082A	ochlor	Isoydd	lated /	CRA I	ITCA	Metals	oil and				sture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPI	NWTPI	NWTPI	NWTPI	Volatile	Haloge	EDB E	Semivo (with Ic	PAHs 8	PCBs {	Organo	Organo	Chlorin	Total R	Total N	TCLP N	HEM (0				% Mois
1 SW1-SW-042717	4/27/17	0815	50:1	5		X		X																	X
2 W3-SW-042717		0820				X		X																	X
3 SE1-SW-042717		0845				X		X																	X
4 E1-SW-042717		0850				X		X																	X
5 W4-5W-042717		1030				X		X	NO.																X
6 31-042717		1105				X		X														-			X
7 BZ-042717		1245				X		X																	X
8 B3-042717		1300		Π		X		X																	×
9 84-042717	1	1355		T		X		X																	x
Ro																									
Signature	C	ompany				Date			Time			Con	nmen	ts/Sp	ecial	Instru	ictior	15							
Relinquished		Faralle	m			41	27/	17	15	530	2														
Received	C	15	LE	Z	>	Ĥ:	79	100	11	53	1														
Relinquished																									
Received																									
Relinquished				3																					
Received												Data	a Pac	kage	: Sta	andar	d 🗌	Lev	/el III		Leve	IV 🗆			
Reviewed/Date		Reviewed/Da	ite									Chro	omato	ogram	ıs wit	th fina	al rep	ort 🗌	Ele	ctroni	c Data	a Deliv	erables (EDDs) [

May 3, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1705-024

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on May 2, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 3, 2017 Samples Submitted: May 2, 2017 Laboratory Reference: 1705-024 Project: 1071-010

Case Narrative

Samples were collected on May 1, 2017 and received by the laboratory on May 2, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

0 0 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B7-050117-11.5					
Laboratory ID:	05-024-01					
Gasoline	ND	7.0	NWTPH-Gx	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	85	63-124				
Client ID:	B8-050117-12.0					
Laboratory ID:	05-024-02					
Gasoline	ND	7.6	NWTPH-Gx	5-2-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	63-124				
Client ID:	B9-050117-11.5					
Laboratory ID:	05-024-03					
Gasoline	ND	8.8	NWTPH-Gx	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	63-124				
Client ID:	B10-050117-13.0					
Laboratory ID:	05-024-04					
Gasoline	ND	9.4	NWTPH-Gx	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	63-124				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Date	Date		
Analyte	Result	PQL	Ме	ethod	Prepared	Analyz	ed	Flags
METHOD BLANK								
Laboratory ID:	MB0502S1							
Gasoline	ND	5.0	NWT	「PH-Gx	5-2-17	5-2-1	7	
Surrogate:	Percent Recovery	Control Limit	s					
Fluorobenzene	79	63-124						
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags

Laboratory ID:	05-02	26-01								
	ORIG	DUP								
Gasoline	ND	ND	NA	NA	Ν	IA	NA	NA	30	
Surrogate:										
Fluorobenzene					83	82	63-124			

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B7-050117-11.5					
Laboratory ID:	05-024-01					
Benzene	ND	0.0010	EPA 8260C	5-2-17	5-2-17	
Toluene	ND	0.0052	EPA 8260C	5-2-17	5-2-17	
Ethylbenzene	0.0011	0.0010	EPA 8260C	5-2-17	5-2-17	
m,p-Xylene	0.0051	0.0021	EPA 8260C	5-2-17	5-2-17	
o-Xylene	0.0021	0.0010	EPA 8260C	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	115	73-134				
Toluene-d8	107	81-124				
4-Bromofluorobenzene	98	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B8-050117-12.0					
Laboratory ID:	05-024-02					
Benzene	ND	0.0013	EPA 8260C	5-2-17	5-2-17	
Toluene	ND	0.0067	EPA 8260C	5-2-17	5-2-17	
Ethylbenzene	ND	0.0013	EPA 8260C	5-2-17	5-2-17	
m,p-Xylene	ND	0.0027	EPA 8260C	5-2-17	5-2-17	
o-Xylene	ND	0.0013	EPA 8260C	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	73-134				
Toluene-d8	111	81-124				
4-Bromofluorobenzene	109	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B9-050117-11.5					
Laboratory ID:	05-024-03					
Benzene	ND	0.0014	EPA 8260C	5-2-17	5-2-17	
Toluene	ND	0.0068	EPA 8260C	5-2-17	5-2-17	
Ethylbenzene	ND	0.0014	EPA 8260C	5-2-17	5-2-17	
m,p-Xylene	ND	0.0027	EPA 8260C	5-2-17	5-2-17	
o-Xylene	ND	0.0014	EPA 8260C	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	73-134				
Toluene-d8	112	81-124				
4-Bromofluorobenzene	107	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B10-050117-13.0					
Laboratory ID:	05-024-04					
Benzene	ND	0.0014	EPA 8260C	5-2-17	5-2-17	
Toluene	ND	0.0070	EPA 8260C	5-2-17	5-2-17	
Ethylbenzene	ND	0.0014	EPA 8260C	5-2-17	5-2-17	
m,p-Xylene	ND	0.0028	EPA 8260C	5-2-17	5-2-17	
o-Xylene	ND	0.0014	EPA 8260C	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	73-134				
Toluene-d8	109	81-124				
4-Bromofluorobenzene	97	80-131				

BTEX EPA 8260C METHOD BLANK QUALITY CONTROL

Analyte Result PQL Method Prepared	Analyzed	Flags
Laboratory ID: MB0502S2		
Laboratory ID: MB0502S2		
Benzene ND 0.0010 EPA 8260C 5-2-17	5-2-17	
Toluene ND 0.0050 EPA 8260C 5-2-17	5-2-17	
Ethylbenzene ND 0.0010 EPA 8260C 5-2-17	5-2-17	
m,p-Xylene ND 0.0020 EPA 8260C 5-2-17	5-2-17	
o-Xylene ND 0.0010 EPA 8260C 5-2-17	5-2-17	
Surrogate: Percent Recovery Control Limits		
Dibromofluoromethane 120 73-134		
Toluene-d8 116 81-124		
4-Bromofluorobenzene 111 80-131		

BTEX EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD			
Analyte	Res	sult	Spike	Level	Reco	ecovery Limits		RPD	Limit	Flags		
SPIKE BLANKS												
Laboratory ID:	SB05	02S2										
	SB	SBD	SB	SBD	SB	SBD						
1,1-Dichloroethene	0.0511	0.0500	0.0500	0.0500	102	100	66-127	2	15			
Benzene	0.0523	0.0523	0.0500	0.0500	105	105	76-122	0	15			
Trichloroethene	0.0522	0.0520	0.0500	0.0500	104	104	78-120	0	15			
Toluene	0.0560	0.0566	0.0500	0.0500	112	113	83-120	1	15			
Chlorobenzene	0.0513	0.0505	0.0500	0.0500	103	101	81-120	2	15			
Surrogate:												
Dibromofluoromethane					104	102	73-134					
Toluene-d8					106	104	81-124					
4-Bromofluorobenzene					104	102	80-131					

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

5° 5 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	B7-050117-11.5					
Laboratory ID:	05-024-01					
Diesel Fuel #2	100	30	NWTPH-Dx	5-2-17	5-2-17	Ν
Lube Oil	500	60	NWTPH-Dx	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	B8-050117-12.0					
Laboratory ID:	05-024-02					
Diesel Fuel #2	110	34	NWTPH-Dx	5-2-17	5-2-17	
Lube Oil	110	68	NWTPH-Dx	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	89	50-150				
Client ID:	B9-050117-11.5					
Laboratory ID:	05-024-03					
Diesel Range Organics	ND	35	NWTPH-Dx	5-2-17	5-2-17	
Lube Oil Range Organics	ND	69	NWTPH-Dx	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	88	50-150				
Client ID:	B10-050117-13.0					
Laboratory ID:	05-024-04					
Diesel Range Organics	ND	36	NWTPH-Dx	5-2-17	5-2-17	
Lube Oil Range Organics	130	72	NWTPH-Dx	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	69	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

······				Date	Date	
Analyte	alyte Result PQL Method				Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0502S1					
Diesel Range Organics	ND	25	NWTPH-Dx	5-2-17	5-2-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-2-17	5-2-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				

					Source	Perce	nt	Recovery		RPD	
Analyte	alyte Result		Spike Level		Result	Recov	ery	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-01	4-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA		NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA		NA	NA	NA	
Surrogate:											
o-Terphenyl						81	76	50-150			

Date of Report: May 3, 2017 Samples Submitted: May 2, 2017 Laboratory Reference: 1705-024 Project: 1071-010

% MOISTURE

Date Analyzed: 5-2-17

Client ID	Lab ID	% Moisture
B7-050117-11.5	05-024-01	17
B8-050117-12.0	05-024-02	27
B9-050117-11.5	05-024-03	28
B10-050117-13.0	05-024-04	31

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

OnSite		Cha	ain o	of (Cu	st	00	ly											Pa	age _	7	 of	4	1	2)
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Tu (i	rnaround Req in working da	uest ys)		La	aboi	rato	ory	Nu	mbo	er:	0	5	-0	2	4									
Project Name: FALALION Project Number: SUNDIL PLOTHET Project Name: +071-010 Project Manager: DW LANCK Sampled by: RUSSEU LUTEN	Sam	(Check One) he Day I ays I dard (7 Days) f analysis 5 Da (other)	Day 3 Days ays)	ier of Containers	H-HCID	H-Gx/BTEX - 8260	H-Gx	H-Dx (Acid / SG Clean-up)	es 8260C	enated Volatiles 8260C	EPA 8011 (Waters Only)	olatiles 8270D/SIM ow-level PAHs)	8270D/SIM (low-level)	8082A	ochlorine Pesticides 8081B	ophosphorus Pesticides 8270D/SIM	nated Acid Herbicides 8151A	3CRA Metals	ATCA Metals	Metals	oil and grease) 1664A				sture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numl	NWTF	NWTF	NWTF	NWTF	Volati	Halog	EDB	Semiv (with	PAHs	PCBs	Orgar	Orgar	Chlor	Total	Total	TCLP	HEM				% Mo
1 37-050117-11.5	5/1/17	900	5	5		X		X																	Y
2 138-050117-12.0		1001		1		X		X																	
3 39-050117-11.5		1023				X		X																	
4 B10-050117-13.0	4	1153	Y	M		X		X																	V
							-	_	-																
							_															_			
								_	\square					_			_				_	_			_
				\vdash			1							_	_		_					_			_
				\vdash			(_				_	_		_					1			_
Signature	0	ompany				Date			Time			Con	ument	s/Sne	acial	Instru	etion	19							
Relinquished		FBADU	al			5/	11	2	15	2)	UUII	mem	of ope	Julai	monu	otion	10							
Received DZ II		alo	cha.			5/2	11	7	10	:7.0	2														
Relinquished Rule		alp	14			51	2/1	2	10	:5	0														
Received	>	2ª	PE			S	21	17	1	15	0														
Relinquished																									
Received												Data	Pac	kage:	Sta	ndaro	d 🗆	Lev	el III		Level	IV 🗆			
Reviewed/Date		Reviewed/Da	te									Chro	mato	gram	s wit	h fina	l rep	ort 🗌	Ele	ctronic	o Data	Delive	ables (E	DDs)	ן ב

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

May 5, 2017

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1705-049

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on May 3, 2017.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: May 5, 2017 Samples Submitted: May 3, 2017 Laboratory Reference: 1705-049 Project: 1071-010

Case Narrative

Samples were collected on May 3, 2017 and received by the laboratory on May 3, 2017. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX EPA 8260C Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NE-050317-9.5					
Laboratory ID:	05-049-04					
Gasoline	ND	6.2	NWTPH-Gx	5-3-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	81	63-124				

NWTPH-Gx

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NNW-050317-8.5					
Laboratory ID:	05-049-01					
Gasoline	ND	7.4	NWTPH-Gx	5-3-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	84	63-124				
Client ID:	NWW-050317-8.5					
Laboratory ID:	05-049-02					
Gasoline	ND	9.3	NWTPH-Gx	5-3-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	87	63-124				
Client ID:	NEB-050317-12.0					
Laboratory ID:	05-049-03					
Gasoline	ND	6.6	NWTPH-Gx	5-3-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	83	63-124				
Client ID:	NW-050317-9.0					
Laboratory ID:	05-049-05					
Gasoline	ND	7.5	NWTPH-Gx	5-3-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	82	63-124				

NWTPH-Gx QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

					Date	Date)	
Analyte	Result	PQL	Method		Prepared	Analyzed		Flags
METHOD BLANK								
Laboratory ID:	MB0503S1							
Gasoline	ND	5.0	NWT	ГРН-Gx	5-3-17	5-3-1	7	
Surrogate:	Percent Recovery	Control Limi	ts					
Fluorobenzene	79	63-124						
			Source	Percent	Recovery		RPD	
Analyte	Result	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	05-042-01							
	ORIG DUP							

Surrogate:
Fluorobenzene

ND

ND

NA

NA

Gasoline

82 82 63-124

NA

NA

30

NA

Matrix: Soil Units: mg/kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NE-050317-9.5					
Laboratory ID:	05-049-04					
Benzene	ND	0.0010	EPA 8260C	5-4-17	5-4-17	
Toluene	ND	0.0051	EPA 8260C	5-4-17	5-4-17	
Ethylbenzene	ND	0.0010	EPA 8260C	5-4-17	5-4-17	
m,p-Xylene	ND	0.0020	EPA 8260C	5-4-17	5-4-17	
o-Xylene	ND	0.0010	EPA 8260C	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	73-134				
Toluene-d8	109	81-124				
4-Bromofluorobenzene	101	80-131				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

6

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NNW-050317-8.5					
Laboratory ID:	05-049-01					
Benzene	ND	0.0011	EPA 8260C	5-4-17	5-4-17	
Toluene	ND	0.0056	EPA 8260C	5-4-17	5-4-17	
Ethylbenzene	ND	0.0011	EPA 8260C	5-4-17	5-4-17	
m,p-Xylene	ND	0.0023	EPA 8260C	5-4-17	5-4-17	
o-Xylene	ND	0.0011	EPA 8260C	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	73-134				
Toluene-d8	113	81-124				
4-Bromofluorobenzene	102	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NWW-050317-8.5					
Laboratory ID:	05-049-02					
Benzene	ND	0.0017	EPA 8260C	5-4-17	5-4-17	
Toluene	ND	0.0085	EPA 8260C	5-4-17	5-4-17	
Ethylbenzene	ND	0.0017	EPA 8260C	5-4-17	5-4-17	
m,p-Xylene	ND	0.0034	EPA 8260C	5-4-17	5-4-17	
o-Xylene	ND	0.0017	EPA 8260C	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	73-134				
Toluene-d8	110	81-124				
4-Bromofluorobenzene	95	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NEB-050317-12.0					
Laboratory ID:	05-049-03					
Benzene	ND	0.0011	EPA 8260C	5-4-17	5-4-17	
Toluene	ND	0.0056	EPA 8260C	5-4-17	5-4-17	
Ethylbenzene	ND	0.0011	EPA 8260C	5-4-17	5-4-17	
m,p-Xylene	ND	0.0022	EPA 8260C	5-4-17	5-4-17	
o-Xylene	ND	0.0011	EPA 8260C	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	73-134				
Toluene-d8	111	81-124				
4-Bromofluorobenzene	102	80-131				

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NW-050317-9.0					
Laboratory ID:	05-049-05					
Benzene	ND	0.0013	EPA 8260C	5-4-17	5-4-17	
Toluene	ND	0.0064	EPA 8260C	5-4-17	5-4-17	
Ethylbenzene	ND	0.0013	EPA 8260C	5-4-17	5-4-17	
m,p-Xylene	ND	0.0025	EPA 8260C	5-4-17	5-4-17	
o-Xylene	ND	0.0013	EPA 8260C	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	73-134				
Toluene-d8	112	81-124				
4-Bromofluorobenzene	106	80-131				
Toluene-d8 4-Bromofluorobenzene	112 106	81-124 80-131				

BTEX EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0504S1					
Benzene	ND	0.0010	EPA 8260C	5-4-17	5-4-17	
Toluene	ND	0.0050	EPA 8260C	5-4-17	5-4-17	
Ethylbenzene	ND	0.0010	EPA 8260C	5-4-17	5-4-17	
m,p-Xylene	ND	0.0020	EPA 8260C	5-4-17	5-4-17	
o-Xylene	ND	0.0010	EPA 8260C	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	114	73-134				
Toluene-d8	116	81-124				
4-Bromofluorobenzene	111	80-131				

Laboratory Reference: 1705-049 Project: 1071-010

BTEX EPA 8260C SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/kg

					Per	cent	Recovery		RPD	
Analyte	Res	ult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	04S1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	0.0478	0.0466	0.0500	0.0500	96	93	66-127	3	15	
Benzene	0.0505	0.0453	0.0500	0.0500	101	91	76-122	11	15	
Trichloroethene	0.0507	0.0502	0.0500	0.0500	101	100	78-120	1	15	
Toluene	0.0535	0.0543	0.0500	0.0500	107	109	83-120	1	15	
Chlorobenzene	0.0492	0.0495	0.0500	0.0500	98	99	81-120	1	15	
Surrogate:										
Dibromofluoromethane					106	106	73-134			
Toluene-d8					108	108	81-124			
4-Bromofluorobenzene					103	104	80-131			

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

0 0 11 /				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NE-050317-9.5					
Laboratory ID:	05-049-04					
Diesel Range Organics	ND	29	NWTPH-Dx	5-3-17	5-3-17	
Lube Oil Range Organics	ND	58	NWTPH-Dx	5-3-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	71	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0503S4					
Diesel Range Organics	ND	25	NWTPH-Dx	5-3-17	5-3-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-3-17	5-3-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	77	50-150				

					Source	Perc	ent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Reco	very	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	05-04	12-01									
	ORIG	DUP									
Diesel Range	ND	ND	NA	NA		NA	4	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	4	NA	NA	NA	
Surrogate:											
o-Terphenyl						87	77	50-150			

14

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

0 0 0 1 7				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	NNW-050317-8.5					
Laboratory ID:	05-049-01					
Diesel Range Organics	ND	33	NWTPH-Dx	5-4-17	5-4-17	
Lube Oil Range Organics	ND	66	NWTPH-Dx	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	92	50-150				
Client ID:	NWW-050317-8.5					
Laboratory ID:	05-049-02					
Diesel Range Organics	ND	39	NWTPH-Dx	5-4-17	5-4-17	
Lube Oil Range Organics	ND	77	NWTPH-Dx	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	140	50-150				
Client ID:	NEB-050317-12.0					
Laboratory ID:	05-049-03					
Diesel Range Organics	ND	30	NWTPH-Dx	5-4-17	5-4-17	
Lube Oil Range Organics	ND	60	NWTPH-Dx	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	95	50-150				
Client ID:	NW-050317-9.0					
Laboratory ID:	05-049-05					
Diesel Range Organics	ND	32	NWTPH-Dx	5-4-17	5-4-17	
Lube Oil Range Organics	ND	64	NWTPH-Dx	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	86	50-150				

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK				-		
Laboratory ID:	MB0504S1					
Diesel Range Organics	ND	25	NWTPH-Dx	5-4-17	5-4-17	
Lube Oil Range Organics	ND	50	NWTPH-Dx	5-4-17	5-4-17	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	94	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	05-04	49-05								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						86 79	50-150			

Date of Report: May 5, 2017 Samples Submitted: May 3, 2017 Laboratory Reference: 1705-049 Project: 1071-010

% MOISTURE

Date Analyzed: 5-3-17

Client ID	Lab ID	% Moisture
NNW-050317-8.5	05-049-01	25
NWW-050317-8.5	05-049-02	35
NEB-050317-12.0	05-049-03	17
NE-050317-9.5	05-049-04	14
NW-050317-9.0	05-049-05	22

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

A.	OnSite Environmental Inc.

Chain of Custody

Environmental Inc	Chain d	of C	usto	ody								Pa	age _	1	_ of		
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)		Labora	atory	Num	oer:	05	-0	49)							
Phone: (425) 883-3881 • www.onsite-env.com	(Check One)					1	1	TT	1	Τ	T	Τ		Т		TT	
FALALION	Same Day 🖂 1 Day								MS/W								
Project Number:	2 Davs 3 Days		Ð	(dn-u					8070F	151A							
Project Name: PREJCET SCUNNOM	Standard (7 Days)	LS	621	SG Clea	8260C	's Only)	SIM /-level)		cides 808	oicides 8				1664A			
Project Manager:		intaine	TEX] Acid /	Colatiles	(Water	3270D/(PAHs) iIM (low		e Pestic	cid Hert	etals	etals		Irease)	ANO		
Sampled by: RUSSEL LAPEN	(other)	er of Co	H-Gx/B	H-Gx	ss 82600	PA 8011	olatiles 8 ow-level 3270D/S	8082A	ochlorin	lated Ac	CRA M	ITCA M	Metals	oil and g	Same		sture
Lab ID Sample Identification	Date Time Sampled Sampled Matrix	NUMbe	HATWN .	NWTP	Volatile Haloge	EDB EI	Semivo (with lo PAHs 8	PCBs (Organo	Chlorin	Total R	Total N	TCLP N	HEM (0	24		% Mois
1 NNW-050317-8.5	5/3 0825 5	5	79	A													X
2 NWW-050317-85	0910	1	1	i													1
3 NEB -050317-12.0	1214																
> Y NE -05217 - 9.5	1346														X		
8 TUN - 050317- 9.0	5 1443 6	V	6	4													4
			+														
Signature	Gompany		Date		Time		Comme	nts/Spe	cial Ins	tructio	ons			-			
Relinquished	FARMUN	/	5/2	17	162	Ø	NE-	65									
Received	> ODE	ł	53	117	160	ю											
Relinquished																	
Received																	
Relinquished													15-20		pennel		
Received							Data Pa	ckage:	Stand	ard [Lev	vel III		Level	IV 🗌		
Reviewed/Date	Reviewed/Date						Chroma	togram	s with f	inal re	port 🗌	Ele	ectronic	o Data	Delivera	bles (ED	Ds) 🗌

APPENDIX C TERRESTRIAL ECOLOGICAL EVALUATION FORM

CLEANUP ACTION CLOSURE REPORT 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name:

Facility/Site Address:

Facility/Site	No.
i aomity/one	110.

VCP Project No.:

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name:				Title:
Organization:				
Mailing address:				
City:			te:	Zip code:
Phone:	Fax:		E-mail:	

Step 3: DOO	CUMENT EVALUATION TYPE AND RESULTS
A. Exclusion	n from further evaluation.
1. Does the	Site qualify for an exclusion from further evaluation?
	fes If you answered "YES," then answer Question 2.
Unki	No or If you answered " NO" or "UKNOWN," then skip to Step 3B of this form.
2. What is th	ne basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.
Point of C	ompliance: WAC 173-340-7491(1)(a)
	All soil contamination is, or will be,* at least 15 feet below the surface.
	All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
Barriers to	Exposure: WAC 173-340-7491(1)(b)
	All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
Undevelop	ped Land: WAC 173-340-7491(1)(c)
	There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.
	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.
Backgrour	nd Concentrations: WAC 173-340-7491(1)(d)
	Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.
* An exclusion acceptable to E [±] "Undevelope prevent wildlife # "Contiguous" highways, exte	based on future land use must have a completion date for future development that is Ecology. d land" is land that is not covered by building, roads, paved areas, or other barriers that would from feeding on plants, earthworms, insects, or other food in or on the soil. undeveloped land is an area of undeveloped land that is not divided into smaller areas of nsive paving, or similar structures that are likely to reduce the potential use of the overall area

в	. Simplified	implified evaluation.						
1.	. Does the Site qualify for a simplified evaluation?							
	□ Y	es If you answered "YES," then answer Question 2 below.						
	☐ N Unkn	o or own If you answered " NO " or " UNKNOWN ," then skip to Step 3C of this form.						
2.	Did you conduct a simplified evaluation?							
	□ Y	es If you answered "YES," then answer Question 3 below.						
	□ N	lo If you answered " NO ," then skip to Step 3C of this form.						
3.	Was furthe	er evaluation necessary?						
	□ Y	es If you answered "YES," then answer Question 4 below.						
	🗌 N	lo If you answered " NO ," then answer Question 5 below.						
4.	If further e	valuation was necessary, what did you do?						
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.						
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.						
5.	If no furthe to Step 4 o	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.						
	Exposure A	Analysis: WAC 173-340-7492(2)(a)						
		Area of soil contamination at the Site is not more than 350 square feet.						
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.						
	Pathway A	nalysis: WAC 173-340-7492(2)(b)						
		No potential exposure pathways from soil contamination to ecological receptors.						
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.						
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.						

C.	C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c).					
1.	. Was there a problem? See WAC 173-340-7493(2).					
	□ Y	Yes If you answered " YES ," then answer Question 2 below.				
	□ N	If you answered " NO ," then identify the reason here and then skip to Question 5 below:				
		No issues were identified during the problem formulation step.				
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.				
2.	2. What did you do to resolve the problem? See WAC 173-340-7493(3).					
		Used the concentrations listed in Table 749-3 as cleanup levels. If so, then skip to Question 5 below.				
		Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>				
3.	3. If you conducted further site-specific evaluations, what methods did you use? <i>Check all that apply. See</i> WAC 173-340-7493(3).					
		Literature surveys.				
		Soil bioassays.				
		Wildlife exposure model.				
		Biomarkers.				
		Site-specific field studies.				
		Weight of evidence.				
		Other methods approved by Ecology. If so, please specify:				
4.	4. What was the result of those evaluations?					
		Confirmed there was no problem.				
		Confirmed there was a problem and established site-specific cleanup levels.				
5.	5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?					
	Yes If so, please identify the Ecology staff who approved those steps:					
	□ No					

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region:	Central Region:
Attn: VCP Coordinator	Attn: VCP Coordinator
3190 160 th Ave. SE	1250 West Alder St.
Bellevue, WA 98008-5452	Union Gap, WA 98903-0009
Southwest Region:	Eastern Region:
Attn: VCP Coordinator	Attn: VCP Coordinator
P.O. Box 47775	N. 4601 Monroe
Olympia, WA 98504-7775	Spokane WA 99205-1295

ECY 090-300 (07/2015) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Toxic Cleanup Program 360-407-7170. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

APPENDIX D ENVIRONMENTAL MEDIA MANAGEMENT PLAN FIGURES

CLEANUP ACTION CLOSURE REPORT 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

LEG	END				
	PROPERTY BOUNDARY				
	FORMER BUILDING FOOTPRINT				
	LIMITS OF UNDERGROUND STORAGE TANK (UST) EXCAVATION				
	PUBLIC ROAD RIGHT-OF-WAY				
<u>K////</u>	EXISTING UST				
4W-1 -	MONITORING WELL (GOLDER ASSOCIATES 1998 AND 2001)				
	CONCRETE SURFACES				
SOURCE FORMER FUEL LINE LEAK AREA					
/<100/<2.0	GROUNDWATER SAMPLE ANALYTICAL RESULTS MICROGRAMS PER LITER FOR [DRO/ORO/GRO/BENZENE]				
GRO =	TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS				
ORO =	TPH AS OIL-RANGE ORGANICS				
DRO =	TPH AS DIESEL-RANGE ORGANICS				
BOLD =	WASHINGTON STATE MODEL TOXICS				
	CONTROL ACT CLEANUP REGULATION				
<i>2</i> -	INDICATES CONCENTRATIONS NOT				
. –	DETECTED AT OR EXCEEDING THE STATED				
	LABORATORY PRACTICAL QUANTITATION LIMIT				
=					
	r				
	·				
	9				
	\rightarrow				
	0 <u> 5</u> 0				
	Scale in feet				
\M/ach:					
Bellingham S	FIGURE 9				
0 Bend Bake	GROUNDWATER ANALYTICAL RESULTS FOR				
, , Dake	ifornia AUGUST 12 AND SEPTEMBER 23, 2014 6050 EAST MARGINAL WAY SOUTH				
Sacramento	Irvine SEATTLE, WASHINGTON				
farallonconsulting.co					
cked Bv. DI	M/DEW Date: 11/2/2015 Disk Reference: 10/1-010 01D DWG				
-,					

Washington Issaquah Bellingham Seattle	FIGURE 10	
Oregon Portland Bend Baker City California Oakland Sacramento Irvine Quality Service for Environmental Solutions farallonconsulting.com	SOIL ANALYTICAL RESULTS AND DISPOSAL CATEGORY 0-2' BGS FORMER SHOP BUILDING UST AREA 6050 EAST MARGINAL WAY SOUTH SEATTLE, WASHINGTON FARALLON PN: 1071-010	
Drawn By: DJR Checked By: DLM/DE	W Date: 11/2/2015 Disk Reference: 1071-010 01D.DWG	

ORO = TPH AS OIL-RANGE ORGANICS DRO = TPH AS DIESEL-RANGE ORGANICS

	Washington Issaquah Bellingham Seattle		FIGURE 11
FARALLON CONSULTING Quality Service for Environment	Oregon Portland Bend Baker City California Oakland Sacramento Irvine	SOIL AND DISF FORMER 6050 EAS SE/ EARA	ANALYTICAL RESULTS POSAL CATEGORY 2-4' BGS SHOP BUILDING UST AREA ST MARGINAL WAY SOUTH ATTLE, WASHINGTON
		17100	
Drawn By: DJR	Checked By: DLM/DE	W Date: 11/2/2015	Disk Reference: 1071-010_01D.DWG

APPROXIMATE EXTENT OF CATEGORY 3 SOIL

- MW-1 MONITORING WELL (GOLDER ASSOCIATES 1998)
- F-13 O BORING (FARALLON 2014)
- SP2 🔶 BORING (SHANNON & WILSON 1997)
- T-3 TRENCH SAMPLING LOCATION (GOLDER ASSOCIATES 1998)
- SW-3 CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH DECOMMISSIONING OF THE DIESEL USTs (FLUOR DANIEL GTI 1998)
- CF-T-4 CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH DECOMMISSIONING OF DIESEL, MOTOR OIL, AND WASTE OIL USTS (BLYMER ENGINEERS 1988)
 - P-3 🕺 BORING (GOLDER ASSOCIATES 2001)
- GP-6 A BORING (GOLDER ASSOCIATES 2004)
 - CONCRETE SURFACES
- FORMER FUEL LINE LEAK AREA
- LIMITS OF UNDERGROUND STORAGE TANK (UST) EXCAVATION
- EXISTING UST
- [7'/<27/<55/<4.5/ ---] SOIL SAMPLE ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM FOR [DEPTH/DRO/ORO/GRO/BENZENE]
 - DEPTH IN FEET BELOW ORIGINAL GRADE
 - GRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS
 - ORO = TPH AS OIL-RANGE ORGANICS
 - DRO = TPH AS DIESEL-RANGE ORGANICS

- BGS = BELOW GROUND SURFACE
- BOLD = INDICATES CONCENTRATIONS EXCEEDING WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION METHOD A CLEANUP LEVELS
 - < = INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE STATED LABORATORY PRACTICAL QUANTITATION LIMIT
 - -- = NOT ANALYZED
 - * = SAMPLE DEPTH UNKNOWN

ALL LOCATIONS ARE APPROXIMATE

Washingtor FIGURE 12 Issaquah | Bellingham | Seattle SOIL ANALYTICAL RESULTS Oregoi Portland | Bend | Baker City AND DISPOSAL CATEGORY 4-8' BGS FORMER SHOP BUILDING UST AREA California FARALLON Oakland | Sacramento | Irvine 6050 EAST MARGINAL WAY SOUTH CONSULTING SEATTLE, WASHINGTON Quality Service for Environ ental Solutions | farallonconsulting.cor FARALLON PN: 1071-010 Drawn By: DJR Checked By: DLM/DEW Date: 11/2/2015 Disk Reference: 1071-010 01D.DWG

- F-13 💿 BORING (FARALLON 2014)
- SP2 🔶 BORING (SHANNON & WILSON 1997)
- SW-3 CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH DECOMMISSIONING OF THE DIESEL USTs (FLUOR DANIEL GTI 1998)
- CF-T-4 CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH DECOMMISSIONING OF DIESEL, MOTOR OIL, AND WASTE OIL USTs (BLYMER ENGINEERS 1988)
 - P-3 🕺 BORING (GOLDER ASSOCIATES 2001)
- GP-6 A BORING (GOLDER ASSOCIATES 2004)
 - CONCRETE SURFACES
- FORMER FUEL LINE LEAK AREA
- LIMITS OF UNDERGROUND STORAGE TANK (UST) EXCAVATION
- EXISTING UST
- [7'/<27/<55/<4.5/ ---] SOIL SAMPLE ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM FOR [DEPTH/DRO/ORO/GRO/BENZENE] DEPTH IN FEET BELOW ORIGINAL GRADE
 - GRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS
 - ORO = TPH AS OIL-RANGE ORGANICS
 - DRO = TPH AS DIESEL-RANGE ORGANICS

- BGS = BELOW GROUND SURFACE
- BOLD = INDICATES CONCENTRATIONS EXCEEDING WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION METHOD A CLEANUP LEVELS
 - < = INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE STATED LABORATORY PRACTICAL QUANTITATION LIMIT
 - -- = NOT ANALYZED
 - * = SAMPLE DEPTH UNKNOWN
 - ALL LOCATIONS ARE APPROXIMATE

Washingtor FIGURE 13 Issaquah | Bellingham | Seattle SOIL ANALYTICAL RESULTS Oregoi Portland | Bend | Baker City AND DISPOSAL CATEGORY 8-12' BGS FORMER SHOP BUILDING UST AREA California FARALLON Oakland | Sacramento | Irvine 6050 EAST MARGINAL WAY SOUTH CONSULTING SEATTLE, WASHINGTON Quality Service for Enviror ental Solutions | farallonconsulting.con FARALLON PN: 1071-010 Drawn By: DJR Checked By: DLM/DEW Date: 11/2/2015 Disk Reference: 1071-010 01D.DWG

CONFIRMATIONAL SOIL SAMPLE ASSOCIATED WITH T-8 DECOMMISSIONING OF GASOLINE UST (BLYMER ENGINEERS 1988) CONCRETE SURFACES ALL SOIL ANALYTICAL RESULTS IN MILLIGRAMS [7'/<27/<55/<4.5/ ---] PER KILOGRAM [DEPTH/DRO/ORO/GRO/BENZENE] DEPTH IN FEET BELOW GROUND SURFACE GRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS **ORO = TPH AS OIL-RANGE ORGANICS** DRO = TPH AS DIESEL-RANGE ORGANICS **BOLD** = INDICATES CONCENTRATIONS EXCEEDING WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION METHOD A CLEANUP LEVELS < = INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE STATED LABORATORY PRACTICAL QUANTITATION LIMIT -- = NOT ANALYZED * = SAMPLE DEPTH UNKNOWN ND = NOT DETECTED AT OR EXCEEDING THE LABORATORY DETECTION LIMITS; ACTUAL DETECTION LIMITS ARE NOT KNOWN ALL LOCATIONS ARE APPROXIMATE

APPENDIX E UNDERGROUND STORAGE TANK DECOMMISSIONING DOCUMENTS

CLEANUP ACTION CLOSURE REPORT 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

September 2016 - Diesel UST Decommissioning

TECHNICAL MEMORANDUM

TO: Janet Frentzel – Georgetown Crossroads, LLC

FROM: Kenneth Scott, Project Scientist Donald Lance, L.G., L.H.G., Senior Geologist Scott Allin, R.E.P.A., Principal Environmental Scientist

DATE: October 20, 2016

RE: SITE ASSESSMENT FOR UST DECOMMISSIONING 6050 EAST MARGINAL WAY SOUTH SEATTLE, WASHINGTON FARALLON PN: 1071-010

Farallon Consulting, L.L.C. (Farallon) has prepared this Technical Memorandum to summarize the results from the underground storage tank (UST) decommissioning and site assessment activities conducted September 6 through 9, 2016 for a 20,000-gallon diesel fuel UST at the Georgetown Crossroads, LLC property at 6050 East Marginal Way South in Seattle, Washington (herein referred to as the Property) (Figure 1). The UST was registered in the Washington State Department of Ecology (Ecology) Regulated UST Database (UST Database)¹ as UST No. 11012. The Property has been identified by Ecology as Facility Site No. 54757868 and Cleanup Site No. 6262, and is known as the Former Consolidated Freightways Property.

BACKGROUND

The Property is east of the intersection of East Marginal Way and State Route 509 and consists of King County Tax Parcel No. 536720-4646, which totals 13.72 acres of land currently covered entirely by asphaltic pavement and concrete surfaces. No aboveground structures are present on the Property. The Property operated as a trucking terminal owned by Consolidated Freightways, Inc. (Consolidated Freightways) from approximately 1960 to 2003, and included an office and transfer dock building on the northern portion of the Property, and a shop building with maintenance support facilities on the southern portion of the Property. Properties in the general vicinity are zoned for industrial and commercial uses.

Consolidated Freightways installed the diesel fuel UST on the Property in 1998 for use in refueling haul trucks. The UST and associated product supply lines were constructed of double-walled reinforced fiberglass, and included the most-current leak-detection, spill prevention, and overfill-

G:\Projects\1071 Prologis\1071010 6050 East Marginal Way South\Reports\UST Site Assessment\1071-010 Site Assessment for UST Decomm.docx

¹Washington State Department of Ecology Toxics Cleanup Program Web Reporting, UST Site/Tank Data Summary: https://fortress.wa.gov/ecy/tcpwebreporting/report.aspx.

prevention features available at the time of installation. The most-recent status of the UST reported in the UST Database identified the tank as temporarily closed in 2003, which coincides with the time of cessation of Consolidated Freightways operations on the Property. The diesel dispenser for the UST was located at the northern end of the shop building, and was decommissioned by others during demolition of the shop building in 2003. The approximate location of the former diesel dispenser is depicted on Figure 2.

Several previous generations of USTs were used on the Property and subsequently decommissioned. Releases of petroleum hydrocarbons to soil and groundwater related to the use of these USTs have been reported. A summary of previous investigations and remedial actions conducted on the Property is provided in the *Remedial Investigation, Focused Feasibility Study, and Cleanup Action Plan, 6050 East Marginal Way South Property, Seattle, Washington* dated February 11, 2016, prepared by Farallon (RI/FFS/CAP). Additional remedial actions will be conducted during redevelopment of the Property in 2017.

UST DECOMMISSIONING

The UST decommissioning services were provided by Wyser Construction Company, Inc. of Snohomish, Washington (Wyser). Mr. Michael Redford of Wyser served as the Washington State UST Decommissioning Supervisor (Certification No. ICC00061806). The decommissioning activities were conducted in accordance with the UST regulations established in Chapter 173-360 of the Washington Administrative Code. Mr. Kenneth Scott of Farallon served as the Washington State UST Site Assessor (Certification No. 1042927). The site assessment was conducted in accordance with the Ecology *Guidance for Site Checks and Site Assessments for Underground Storage Tanks* dated February 1991, revised April 2003 (Ecology Guidance Document).

Farallon initiated the UST decommissioning process by submitting a 30-Day Notice for USTs (30-Day Notice) to Ecology on June 8, 2016 to provide notification of plans to decommission the UST. Wyser obtained a Commercial Tank Removal/Decommissioning permit (Decommissioning Permit) from the Fire Marshal's Office of the Seattle Fire Department on September 6, 2016. Copies of the 30-Day Notice and the Decommissioning Permit are provided in Attachment A.

The UST decommissioning field activities were conducted from September 6 through 9, 2016. The activities are summarized below by date. Select field photographs are provided in Attachment B.

SEPTEMBER 6, 2016

• Wyser mobilized to the Property and set up an exclusion zone around the excavation area (Photograph 1). Wyser initiated the excavation work by breaking up and removing the concrete pad and surrounding asphaltic pavement overlying the UST. The concrete pad measured approximately 19 feet in width, 46 feet in length, and 1.5 feet in thickness. The broken concrete and pavement were loaded into dump trucks and transported off the Property for recycling. Wyser applied air pressure to the product supply lines at the former diesel dispenser location to transfer any residual diesel fuel in the lines back into the UST.

G: Projects/1071 Prologis/1071010 6050 East Marginal Way South/Reports/UST Site Assessment/1071-010 Site Assessment for UST Decomm.docx

- Marine Vacuum Services, Inc. of Seattle, Washington (Mar-Vac) performed a triple-rinse cleaning of the UST interior, and removed approximately 100 gallons of wash water, which was transported off the Property for disposal. A copy of the Mar-Vac UST Pump and Rinse Certificate is provided in Attachment A.
- Sound Testing, Inc. of Seattle, Washington (Sound Testing) provided a certified Marine Chemist to assess the internal atmosphere of the UST in preparation for removal. Sound Testing issued Marine Chemist Certificate No. 46755 confirming that the UST was safe for excavation, transport, and demolition. A copy of the certificate is provided in Attachment A. Inerting of the UST atmosphere was not required. An inspector from the Seattle Fire Department was present to confirm that the requirements of the Decommissioning Permit were met, and provided authorization for the UST removal.
- Wyser completed the uncovering of and excavating around the UST, removed all connections and hold-down straps, and lifted the UST from the excavation for inspection and opening (Photographs 2 through 5). No evidence of damage to or deterioration of the UST was observed.
- Farallon conducted field-screening of soil during the excavation process. No evidence of soil staining, sheen, or petroleum-like odors was noted. Concentrations of volatile organic compounds exceeding background concentrations, as measured using a photoionization detector, were not detected. Following removal of the UST, groundwater was observed in the excavation at a depth of 6.5 feet below the surrounding pavement surface (bps). No petroleum-like sheen was observed on the groundwater.

SEPTEMBER 7, 2016

Farallon collected site assessment soil samples from the four sidewalls of the excavation at a depth of 6.5 feet bps, and from the bottom of the excavation at a depth of 13 feet bps. All soil samples were obtained from the excavation using the track hoe excavator; the samples for analysis were collected directly from the track hoe bucket. The soil sampling and analytical results are discussed below.

In-place soil observed in the excavation sidewalls beneath the concrete pad consisted of the following:

- Silty sand with gravel fill at depths of 1.5 to 2.5 feet bps;
- Silty sand at depths of 2.5 to 7.0 feet bps;
- Silt at depths of 7.0 to 8.0 feet bps; and
- Silty sand at depths of 8.0 to 13.0 feet bps.

Wyser used the track hoe to break the UST into pieces, (Photograph 6), which were loaded into a dump truck and transported off the Property for disposal as solid waste. Before backfilling, Wyser placed a lining of plastic sheeting along the western and southern sidewalls of the open excavation. The lining will provide a visual marker to define the boundaries of the former location of the UST during the remedial excavation that will be conducted in conjunction with Property redevelopment.

Wyser began backfilling by placing quarry spalls to a height of approximately 2 feet above the groundwater level, and then placed and compacted structural fill imported from the Seattle facility of aggregate supplier Glacier Northwest (Photograph 7). The original UST fill material, which consisted primarily of clean pea gravel removed during the UST uncovering, was returned to the excavation for use as structural fill.

SEPTEMBER 8 AND 9, 2016

Wyser completed the placement and compacting of structural backfill, placed and compacted 1.5 feet of crushed base-course gravel flush with the pavement surface (Photograph 8), and completed cleanup and demobilization activities.

SITE ASSESSMENT SOIL SAMPLING AND ANALYSIS

Discrete soil samples were collected from the UST excavation to meet the site assessment soil sampling requirements of the Ecology Guidance Document. Samples were collected from the north, east, south, and west sidewalls at a depth of 6.5 feet bps, and from the UST bottom at a depth of 13 feet bps. The locations are depicted on Figure 2.

Site assessment soil samples were not collected from beneath the former diesel dispenser or product supply lines (Figure 2). Those areas will be excavated and sampled during a remedial excavation that will be conducted in conjunction with redevelopment of the Property in 2017, discussed in the RI/FFS/CAP.

The site assessment soil samples were submitted to OnSite Environmental Inc. of Redmond, Washington for analysis for the analytes listed in Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Table 830-1 as requiring testing for diesel releases, as follows:

- Total petroleum hydrocarbons as diesel-range organics (DRO) and as oil-range organics (ORO) using Northwest Method NWTPH-Dx;
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by U.S. Environmental Protection Agency (EPA) Method 8021B; and
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and total naphthalenes by EPA Method 8270D/SIM.

The analytical results for DRO, ORO, BTEX, and total naphthalenes are summarized in Table 1. Analytical results for DRO, ORO, and benzene at each site assessment sample location are shown on Figure 2. The laboratory analytical report is provided in Attachment C.

DRO, BTEX, and cPAHs were not detected at concentrations exceeding laboratory practical quantitation limits (PQLs) in the soil samples analyzed. ORO was detected at a concentration exceeding the laboratory PQL, but less than the MTCA Method A cleanup level, in the sample collected from the west sidewall of the excavation. ORO was not detected at a concentration exceeding the laboratory PQL in the other soil samples collected from the excavation. Both

1-methynaphthalene and 2-methylnaphthalene were detected at concentrations exceeding the laboratory PQLs, but less than the MTCA Method A cleanup level for total naphthalenes, in the sample collected from the north sidewall of the excavation. Naphthalenes were not detected at concentrations exceeding laboratory PQLs in the other soil samples collected from the excavation.

Groundwater in the UST excavation stabilized at a level of 6.5 feet bps. Groundwater at the Property is tidally influenced and can vary throughout each day depending on the tidal cycle. No petroleum-like sheen was observed on groundwater. Groundwater samples were not collected during the decommissioning of the UST because previous groundwater investigations identified the nature and extent of petroleum hydrocarbons in groundwater from historical releases from former USTs on the Property, as discussed in the RI/FFS/CAP. Additional evaluation of groundwater will be conducted in conjunction with redevelopment of the Property in 2017.

UST CLOSURE DOCUMENTATION

The results from the UST decommissioning process described in this Technical Memorandum confirm that the 20,000-gallon diesel fuel UST has been permanently decommissioned by removal. No evidence of petroleum hydrocarbon contamination was noted during the field-screening of soil at the time of the UST excavation, or observed on groundwater in the excavation following removal of the UST. Results from the site assessment soil sampling and analysis indicate that diesel-related petroleum hydrocarbon constituents either were not detected at concentrations exceeding MTCA Method A cleanup levels, or were not detected at concentrations exceeding laboratory PQLs.

The following Ecology forms have been completed and signed by the applicable individuals to confirm completion of Ecology requirements for properly decommissioning the UST:

- Permanent Closure Notice for Underground Storage Tanks; and
- Site Check/Site Assessment Checklist for Underground Storage Tanks.

Copies of these forms are provided in Attachment A.

Farallon trusts that the information provided in this Technical Memorandum meets your and Ecology needs for UST decommissioning and site assessment reporting. Please contact Donald Lance at (425) 295-0800 if you have questions or require additional information.

Attachments: Figure 1, Property Vicinity Map Figure 2, UST Site Assessment Soil Analytical Results for Petroleum Hydrocarbons
Table 1, Summary of Soil Analytical Results for TPH, BTEX, and Total Naphthalenes
Attachment A, UST Decommissioning Documentation Attachment B, Photographs Attachment C, Laboratory Analytical Report

KS/DML/SA:bjj

FIGURES

SITE ASSESSMENT FOR UST DECOMMISSIONING 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

30

Scale in feet

LEGEND

PRODUCT LINE

- UST-N-6.5-090716 SITE ASSESMENT SOIL SAMPLE LOCATION
- [6.5/<32/<64/<0.020] SOIL ANALYTICAL RESULT [DEPTH/DRO/ORO/B] SOIL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg)

DEPTH IN FEET BELOW GROUND SURFACE

- DRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE ORGANICS
- ORO = TPH AS OIL-RANGE ORGANICS
 - B = BENZENE
 - < = INDICATES CONCENTRATIONS NOT DETECTED AT OR EXCEEDING THE STATED LABORATORY PRACTICAL QUANTITATION LIMIT

CONCRETE SURFACES

LIMITS OF UNDERGROUND STORAGE TANK (UST) EXCAVATION

FORMER UST 777777

ALL LOCATIONS ARE APPROXIMATE

TABLE

SITE ASSESSMENT FOR UST DECOMMISSIONING 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

Table 1 Summary of Soil Analytical Results for TPH, BTEX, and Total Naphthalenes 6050 East Marginal Way South Seattle, Washington **Farallon PN: 1071-010**

				Analytical Results (milligrams per kilogram)							
	Sample	Sample Depth								Total	Total
Location	Identification	(feet) ¹	Sample Date	DRO ²	ORO ²	GRO	Benzene ³	Toluene ³	Ethylbenzene ³	Xylenes ³	Naphthalenes ⁴
UST North Sidewall	UST-N-6.5-090716	6.5	09/07/2016	<32	<64		< 0.020	< 0.092	< 0.092	< 0.184	0.4487
UST West Sidewall	UST-W-6.5-090716	6.5	09/07/2016	<27	200		< 0.020	< 0.052	< 0.052	< 0.104	< 0.0107
UST South Sidewall	UST-S-6.5-090716	6.5	09/07/2016	<27	<55		< 0.020	< 0.050	< 0.050	< 0.100	< 0.0110
UST East Sidewall	UST-E-6.5-090716	6.5	09/07/2016	<28	<56		< 0.020	< 0.056	< 0.056	< 0.112	< 0.0113
UST Bottom	UST-B-13.0-090716	13.0	09/07/2016	<33	<66		< 0.020	< 0.079	< 0.079	< 0.158	< 0.0131
MTCA Method A Cleanup Levels ⁵ 2,000 2,000 100 0.03 7 6							9	5			

NOTES:

--- Denotes sample not analyzed.

¹Depth in feet below surrounding pavement surface.

²Analyzed by Northwest Method NWTPH-Dx.

³Analyzed by U.S. Environmental Protection Agency (EPA) Method 8021B.

⁴Analyzed by EPA Method 8270D/SIM.

⁵MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

MTCA = Washington State Model Toxics Control Act Cleanup Regulation ORO = TPH as oil-range organics

total naphthalenes = sum of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene

< denotes analyte not detected at or exceeding the reporting limit listed.

ATTACHMENT A UST DECOMMISSIONING DOCUMENTATION

SITE ASSESSMENT FOR UST DECOMMISSIONING 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

DEPARTMENT OF ECOLOGY State of Washington	This form pro	30-D FOR UNDERGR wides Ecology 30- cojects, as required Instructions are	AY NOTIC OUND STORAC -days' advance d by Chapter 1 found on the l	E GE TANKS ed notice for the follows 173-360 WAC. back page.	UST ID #: 1/0/2 County: <u>king</u>	-
Please ✓ the appro	priate box: 🗌 I	ntent to Install	Intent to	o Close 🗌 Change	e-in-Service	
l	SITE INFORMATIO	DN		II. OWNER/OPERAT	for Information	
Tag or UBI # (if appl	icable):		Owner/0	Operator Name: Geor	getown Crossroads, Hu	C
UST ID # (if applicat	ole): //0/2		Business		net Frentzel	
Site Name: Farme	r Consolida	ted Freighi	Hwang Mailing	Address: Piert, 1	Bay 1	
Site Address:	OEastMa	rginal day	S. City: S	an Francisco	State: 07 Zip: 94/1/	
City: South	He		Phone:	415-394-90	000	
Phone: None	e		Email:	jfrentzel@p	prologis.com	
	Check the a	III. CERTIFIE ppropriate boxes. If for this proje	D SERVICE PRO f more than one ect, fill out both	DVIDER(S) eservice provider is requi esections.	red	
	Note: Individuals another qu	performing UST s ualifying exam ap	services MUST oproved by the	be ICC-certified or have been been been been been been been be	ve passed gy.	
1) 🗌 Installer	Decommis	sioner 🗌 Site	Assessor			
Company Name: 6	yser Constru	xtion Co., I	nc. Certifica	tion Type: Tee US7	- Decommissioner	
Service Provider Na	me: Mike R	edford	Cert. No	:: ICC0006/806	Exp. Date: 3/14/20	7
Provider Phone:	425-742-0	0898	Provider	Email: darren 6	Dwyserdirt.com	
2) 🗌 Installer	Decommis	sioner 🛛 🕅 Site	Assessor			
Company Name: 🏼	Farallon Ca	nsulting LL	Certifica	tion Type: IC La	sh. Si t e Assessment	L
Service Provider Na	me: Ryan C	Strom	Cert. No	: ICC0024179	3 Exp. Date: 10/7/201	17
Provider Phone: 4	125-295-0	0800	Provider	Email: rostrom	@farallonconsulting	· Com
		IV. TA	NK INFORMAT	TION		
TANK ID	SUBSTANCE STORED	TANK DAT CAPACITY	RE PROJECT IS RECTED TO BEGIN	Co	OMMENTS	
	Diese/ Zo	2,000 gal 8/	15/2016			

	RECEIVED 9/6/16 1
Your Seattle	AUG 2 5 2018
Fire Department	PERMIT SECTION
APPLICATION	FOR TEMPORARY PERMIT
Code 7908 Commercial Tan	k Removal/Decommissioning
Permit Fee: \$218.00	Date Issued: <u>7-6-16</u>
TO BE COMPLETED BY PERMIT APPLICANT	and(s) must be removed from site on the same day as permit is issued!
FIRM NAME WYSER Construction Co., Inc.	
MAILING ADDRESS 19015 109th Avenue SE	SUITE
CITY Snohomish	STATE WA ZIP 98296
JOBSITE ADDRESS 6050 East Marginal Way South	
CONTACT PERSON Darren Ness MIKE	PHONE NUMBER (425) 742.0898 206-396-1185
Number of Tank(s): Tank Size(s): _20,0	000-gallon Aboveground tank
Product(s) Previously Contained	Underground tank
Removal (Marine Chemist inspection and certificate	required for all tanks regardless of size or contents)
Abandonment-in-Place (Marine Chemist certificate reand/or unknowns)	equired for tanks previously containing Class I flammable liquids
Hot work being conducted:	X Yes (If yes, a separate hot work permit is required)
Permit applications may be submitted in person weekda Seattle Fire Department Fire Marshal's Office – Permits 220 Third Ave S, 2 nd Floor Seattle, WA 98104-2608	ys from 8:00 a.m. to 4:30 p.m., or mailed to: o pay with a Visa or Master Card: Fax or email this application HEN CALL US TO CONFIRM RECEIPT AND MAKE PAYMENT el: (206) 386-1450 / Fax: (206) 386-1348 -mail: <u>permits@seattle.gov</u>
Call 386-1450, at least 24 hours prior to'r TANKS MAY BE REMOVED/DECOMMISSI NO HOT WORK IS ALLOWED ON A TANK SYSTEI	needed inspection time to arrange for an appointment. ONED ONLY AFTER FIRE DEPARTMENT INSPECTION M PRIOR TO ISSUANCE OF THIS FIRE DEPARTMENT PERMIT!
Permission is hereby granted to remove or decommissio conditions, all noted special conditions, and all appli- regulations. THIS PERMIT IS NULL AND VOID IF PI Special permit conditions: <u>Tenk removal/decommissioning mages</u>	n the tank(s) identified in this permit in accordance with the attached cable provisions of the Seattle Fire Code, federal, state and local ERMIT CONDITIONS ARE NOT ATTACHED ust be performed, or directly supervised, by an ICC certified individual (WAC 173-360-600)
FMO USE: APPRO Check No.: 7173082510 Inspector Receipt No.: 5-245349 Name of Date: Application ID#: 06338 Date:	DVED BY: or: \underline{S} MARCUS SFD ID# 1372 of Marine Chemist <u>SCHMID</u> Certificate # 711
01/16)	

:00

COMMERCIAL TANK REMOVAL/DECOMMISSIONING PERMIT CONDITIONS

- 1. Two (2) portable fire extinguishers each having a minimum rating of 40 BC shall be on site within 50 feet of the operation. Fire extinguishers shall be inspected, approved and certified annually.
- Rope or ribbon barricades located at least 10 feet from the tank shall surround every outdoor storage tank removal or decommissioning operation or the operation shall be enclosed in a fenced yard.
- 3. "No Smoking" signs shall be posted in readily visible locations.
- 4. No hot work is allowed on a tank system prior to issuance of this permit and the tank is certified "Safe for Hot Work" by a Certified Marine Chemist. Hot work means any activities involving riveting, welding, burning, brazing, soldering, heating, chopping, grinding, ripping, drilling, cutting with a chop saw or "Sawzall", abrasive blasting, use of powder-actuated tools or similar spark-producing operations, crushing or mechanically shearing to facilitate opening for cleaning, disposal, scrapping for recycling purposes.
- 5. A separate temporary Seattle Fire Department permit (Code 4913) or a validation number assigned in conjunction with an annual hot work permit (Code 4911 or 4912) is required prior to any hot work operations.
- 6. Permits may cover multiple tanks located at the same address. If additional tanks are to be removed or abandoned at later dates, separate permits shall be obtained. Each address location requires a separate permit application regardless of whether multiple address locations are physically next to one another.
- 7. Additional fees will be charged if inspectors are required to work other than normal business hours. (Normal business hours are Monday through Friday, 8:00 a.m. to 4:30 p.m.)
- 8. No excavation of an underground tank is permitted prior to inspection by the Seattle Fire Marshal's Office. Exception: Removal of the top layer of asphalt or concrete only with no removal of dirt, pea gravel or soil over the underground storage tank. Further excavation may be allowed by a Seattle Fire Department Special Hazards Unit Inspector prior to the initial inspection depending on conditions and if the tank has been inerted by a Marine Chemist who is present on site. The name of the inspector and the time permission was given shall be made available at time of inspection.
- Prior to inspection, to ensure tanks and connected piping are completely free of all flammable or combustible liquids, a
 receipt or certificate must be on site indicating the tanks have been pumped and rinsed by an approved company.
 Product and rinse water must be disposed of in an approved manner.
- 10. For tanks being decommissioned in place that previously contained Class I liquids, a Certified Marine Chemist certificate must be issued and available on site for inspection certifying that the tank has been properly inerted prior to filling.
- 11. No tank shall be filled prior to an inspection by the Seattle Fire Marshal's Office.
- 12. Tanks being decommissioned in place must be filled with a lean concrete mixture. Filling with foam is prohibited.
- 13. A Marine Chemist's certificate verifying the tank has been properly inerted or is otherwise certified "Safe for Hot Work" shall be issued and available on site for inspection for each underground and aboveground tank being removed regardless of the product previously contained.
- 14. If tanks are being removed, the tanks' atmosphere must be inert using one of the following approved methods:
 - Dry ice (pellets or chunks of solid CO₂). Minimum 40 lbs per 1000 gallons of tank capacity is recommended.
 - Compressed CO₂ gas in cylinders (Note: This method may only be performed by a Certified Marine Chemist).
 - Purging with air (gas-freeing) using Venturi tube apparatus, with proper bonding and grounding and after the tank has been pumped and rinsed by an approved company.
- 15. A maximum reading of less than 6% of oxygen must be obtained prior to the removal of the tanks if CO₂ or another inert gas, as approved by the Marine Chemist, is used to inert the tank or, a reading of 0% LEL must be obtained prior to removal of the tank if the air-purging (Venturi air moving devices) method is used.
- 16. All local, state and federal regulations for confined space entry shall be complied with prior to entering an underground storage tank.
- 17. Tanks with baffles to prevent movement of liquid must be certified gas-freed or inerted by a Certified Marine Chemist or a Petroleum Industry Safety Engineer regularly engaged in that business prior to removal.
- 18. Tanks being removed must be removed from the site and relocated to a remote, approved facility on the same day that the permit is issued.
- 19. During the hot work operations, digging, excavating, hauling or transport of petroleum storage tanks that have not been cleaned and gas-freed, tanks must be inerted to less than 6% oxygen. All openings are to be cap closed and secured except for one 1/8" hole drilled through a cap. These tanks are to be sprayed painted with "INERTED, DO NOT ENTER" or "INERTED WITH CO₂, NOT SAFE FOR WORKERS".

Marine Vacuum Service, Inc.

GENERAL CONTRACTOR CONTRACTORS LICENSE # MARINVS097JA P0. Box 24263 Seattle, Washington 98124 Telephone (206) 762-0240 FAX (206) 763-8084 1-800-540-7491

AST/UST STORAGE TANK PUMP & RINSE CERTIFICATE

Tank Size: _ 20,000 GAL Diestel
Last Contents Empty Diesel Tank
Tank Location: 6050 MAGINAL Way
Seattle u.A.

Marine Vacuum Service, Inc. certifies that the above mentioned tank(s) have been triple rinsed in accordance with the industry standard as outlined in 40 CFR PART 280.70, WAC 173-360-380(I), API 1604, API 2015 and that all residual product and rinsate has been disposed of in accordance with Federal, State and Local regulations. Tanks listed above are <u>NOT GAS FREE</u> or <u>NOT SAFE FOR HOT WORK</u>

Tank Owner:	
Contractor:	WYSER
M.V.S. Repres	entative:
Date:2	-6-2016

Notes:

DBE # D4M1302341

EPA # WAD980974521

A MINORITY BUSINESS ENTERPRISE ID # D4M1302341

This Men	norandu	is an acknowledgmer Bill of Lading, nor a co	nt that a Bill of Lading has bee opy or duplicate, covering the p	n issued and is not Or operty named herein, a	riginal and is	Shipper No.	02	24155
, C P/ F	MIK G			ntract M	5.362.7926	Carrier No.	4 12	26
Page	of	Marta	MERINE VOCUL	M, SEFEVICE,	MRE	Date	9.6	5-16
n Collect on Delivery sh	ipments, the letters "C	OD" must appear before consignee's name		f carrier)	(SCAC)			
ro: Consignee	ARANE V	ACANALGERNIC	Second as otherwise provided in item 430, Sec.1.	Shipper	SER M	971STRe	icko	7 4
treet (5)	16. GRA	Mala er n ct	10 worke	Street	000 E	ATT	arni	iluc
ity SEAT	tile	State /	The Corns	City Stat	U.C.	State U. A	Zip Code	
oute			Zip Code	24 hr. Emergency C	Contact Tel. No	800-640-74	101	т., Ж.
No. of Units	HM		BASIC DESCRIPTION			Vehicl Numb	e er	
& Container Type		UN or NA Number, Prop	er Shipping Name, Hazard Class	s, Packing Group	(Weight, Volume, Gallons, etc.)	(Subject to Correction)	RATE	(For Carrier Use Only)
			2					
ITT		DUMD.	lash zyur	Kine				
		Finist	1 Tuml	C.n.L				
		Salado L	Tallare Los		1	1.	$\left - \right $	-
36		Made M	jush volu-	- consideration and the second se	100	OAL		
				<i>r</i>				
						0		
			<i>й</i>				$\left \right $	
127								
			-	2	1			
-								
PLACA	RDS TENDI	ERED: YES 🖂 NO 🗖]	REMIT				
cifically in writing the ed or declared value of ot exceeding	agreed or declared of the property is here riff provisions	value of the property, as follows: "The eby specifically stated by the shipper to	I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name and are chargified peoplement.	ADDRESS			E.	
lease or a value dec carrier's liability or decl ided by such provisions	laration by the ship are a value, the carri s. See NMFC Item 17	a limitation of the carrier's liability absent per and the shipper does not release er's liability shall be limited to the extent 2.	marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable	Subject to Section 7 of the con	Amt: \$	PREPAID COLLECT		
t be so marked and pa 360, Bills of Lading, F Contract Terms and Co	special or additional ckaged as to ensure reight Bills and State orditions for a list of s	care or attention in handling or stowing safe transportation. See Section 2(e) of ements of Charges and Section 1(a) of uch articles.	regulations.	following statement: The carrier shall not make freight and all other lawful charge	the consignor, the consignor sha delivery of this shipment without p es.	Il sign the CHARGES	\$ HT CHARGE	S
RECE	EIVED, subject to the coperty described above	lassifications and tariffs in effect on the date e in apparent good order, except as noted	of the issue of this Bill of Lading, (contents and condition of con-	(Sig	nature of Consignor) arty at any time interested in all or	except when be right is checked	PAID Check bi	are to be collect
(the w posses nation, ally ao	ord carrier being und ssion of the property u , if on its route, otherw reed as to each carrie	nuarked, consigned, and destined as inc erstood throughout this contract as meanin nder the contract) agrees to carry to its usu- rise to deliver to another carrier on the rout tr of all or any of conditioner carrier.	ficated above which said carrier ng any person or corporation in al place of delivery at said desti- e to said destination. It is mutu-	ve performed hereunder sh sification on the date of s Shipper hereby cer governing classification a accepted for bimest	hall be subject to all the bill of lading te hipment. tifies that he is familiar with all the and the said terms and conditions a	rms and conditions in the go ne lading terms and condi- re hereby agreed to by the	itions in the	
		. So an or any or, sale property over all or a	any portion of said route to des-		niə assigns,			
R	<u> </u>		1		A MAIN	OCHVICE	, ING.	- <i>Д</i>
			1		<u> 111/11</u>	12		_ 4
nanent post-office	e address of shi	oper.		DATE	9-6-	16		
				STYLE F375-4 © 201	12 LABELMASTER® (800)	621-5808 www.labe	Imaster.com	4. 1

SOUND TESTING, INC. P.O. BOX 16204 SEATTLE, WA 98116 MARINE CHEMIST CERTIFICATE (206) 932-0206 FAX (206) 937-3848 WWW.SOUNDTESTINGINC.COM SERIAL Nº 46755er Const. 450 Survey Requested by Time Survey Completed C ×

In the event of changes adversely affecting conditions in the above spaces, or if in any doubt, immediately stop all work and contact the undersigned Marine Chemist.

Qualifications: Manipulation of valves or devices tending to alter conditions in pipe lines or tanks noted above, unless specifically approved in this certificate, will require re-inspection and a new Certificate for spaces so affected. All piping, heating coils, pumps and floating roof gaskets attached to or contained within spaces listed above shall be considered "NOT SAFE" unless otherwise specifically designated.

STANDARD SAFETY DESIGNATIONS

(These detail the minimum conditions for Safe Entry and Hot Work.) The Marine Chemist may request additional measures if workplace conditions so dictate.

ATMOSPHERE SAFE FOR WORKERS means that in a space (a) the oxygen content is between 19.5% and 22% by volume, and (b) combustible gas is less than 10% of the Lower Explosive Limit, and (c) airborne toxic materials are within permissible concentrations as listed in OSHA's Subpart Z or in ACGIH's current list of Threshold Limit Values.

SAFE FOR HOT WORK means that (a) oxygen within the space is less than 22% by volume; and (b) the combustible gas is less than 10% of the Lower Explosive Limit; and (c) cargo residues within the space will not combust during hot work; and (d) pipes that can deliver hazardous materials to the workspace have been separated, blanked, or locked out, and nearby

NOT SAFE FOR HOT WORK: In the compartment or space so designated, hot work is not permitted.

"The undersigned acknowledges receipt of this Certificate and understands conditions and limitations under which it was issued.

Name

Signed

This Certificate is based on conditions existing at the time the inspection herein set forth was completed

and is issued subject to compliance with all qualifications Signed Company Date

POSTING

PERMANENT CLOSURE NOTICE FOR UNDERGROUND STORAGE TANKS

UST ID #: 11012

County: King

This notice certifies that permanent closure activities were performed and conducted in accordance with Chapter 173-360 WAC. Instructions are found on the back page.

	I. UST FACILITY II. OWNER/OPERATOR INFORMATION					TION	
Facility Compliance T	'ag #:		Owner/Ope	Owner/Operator Name: Georgetown Crossroads, LLC			
UST ID #: 11012			Business Na	ame: c/o Janet Fr	entzel		
Site Name: Former Co	Address: Pi	er 1, Bay 1					
Site Address: 6050 Ea	ast Marginal Way Sout	th	City: San Fr	ancisco	State: CA	Zip: 94111	
City: Seattle			Phone: 41	5.394.9000			
Phone: N/A			Email: jfrer	tzel@prologis.co	m		
		III. CERTIFIED US	T Decommis	SIONER			
Company Name: Wy	'SER Construction Co.,	Inc.	Service Pro	vider Name: Mi	ke Redford		
Address: 19015 109th	n Avenue SE		Certificatio	n Type: ICC UST	Decommissioner		
City: Snohomish	State:	WA Zip: 98296	Cert. No.:	ICC00061806	Exp. Date: 3/	14/07	
Provider Phone: 425	Provider Phone: 425.742.0898 Provider Email: darren@wyserdirt.com						
Provider Signature:	Provider Signature: Mar la Carlorand Date: 9-13-16						
IV. TANK INFORMATION							
		IV. TANK	INFORMATION	I			
TANK ID	TANK CAPACITY	IV. TANK LAST SUBSTANCE STORED	INFORMATION	CLOSURE METHO closed-in-place	D change-in-service	CLOSURE DATE	
Талк ID 11012	TANK CAPACITY 20,000 gallon	IV. TANK LAST SUBSTANCE STORED diesel	INFORMATION removal	CLOSURE METHO closed-in-place	D change-in-service	CLOSURE DATE 9/7/16	
Танк ID 11012	TANK CAPACITY 20,000 gallon	IV. TANK LAST SUBSTANCE STORED diesel	INFORMATION removal	CLOSURE METHO closed-in-place	D change-in-service	CLOSURE DATE 9/7/16	
TANK ID 11012	TANK CAPACITY 20,000 gallon	IV. TANK LAST SUBSTANCE STORED diesel	INFORMATION removal	CLOSURE METHO closed-in-place	D change-in-service	CLOSURE DATE 9/7/16	
TANK ID 11012	20,000 gallon	IV. TANK LAST SUBSTANCE STORED diesel	INFORMATION removal	CLOSURE METHO closed-in-place	D change-in-service	CLOSURE DATE 9/7/16	
TANK ID 11012	20,000 gallon	IV. TANK LAST SUBSTANCE STORED diesel	INFORMATION removal	CLOSURE METHO closed-in-place	D change-in-service	CLOSURE DATE 9/7/16	
TANK ID 11012	20,000 gallon	IV. TANK LAST SUBSTANCE STORED diesel	INFORMATION removal	CLOSURE METHO closed-in-place	PD change-in-service	CLOSURE DATE 9/7/16	
TANK ID 11012	TANK CAPACITY 20,000 gallon	IV. TANK LAST SUBSTANCE STORED diesel V. REQUI	INFORMATION removal	CLOSURE METHO closed-in-place	PD change-in-service	CLOSURE DATE 9/7/16	

ECY 020-94 (October 2015)

PERMANENT CLOSURE NOTICE

FOR UNDERGROUND STORAGE TANKS

INSTRUCTIONS

This form must be completed and submitted within thirty days of completing permanent closure activities to the following address:

Dept. of Ecology UST Section PO Box 47655 Olympia, WA 98504-7655

- **I./II. UST Facility and Owner/Operator:** Fill out these sections completely. If you do not know your UST ID number, include the facility compliance tag number. If all tanks at the site are permanently closed, the facility compliance tag must be returned with this notice.
- **III. UST Decommissioner:** It is the responsibility of the ICC-certified Decommissioner to follow proper tank closure procedures in accordance with WAC 173-360-375. The Decommissioner signature certifies these procedures were followed.
- **IV. Tank Information:** Use the same Tank IDs that are listed on the facility's Business License. List the last substance stored in each tank, the tank sizes, the method by which the tank is being closed, and the date closure activities were conducted. All closure methods require a site assessment be conducted in accordance with Ecology's *Guidance for Site Checks and Site Assessments for Underground Storage Tanks*.
- V. Required Signature: The owner and/or operator's signature is required. Also, the owner and/or operator is responsible for reporting confirmed releases to Ecology within 24 hours.

All confirmed releases must be reported to Ecology by the owner immediately and by service providers within 72 hours of the discovery of the condition. If the owner or operator is not immediately available, the report should be made directly to Ecology.

Be sure to contact your local fire marshal and other local jurisdictions. They may have other codes and regulations that apply to a permanent tank closure.

Further questions? Please contact your regional office below and ask for a tank inspector to assist you.

Regional Office	Counties Served
Central (509) 575-2490	Benton, Chelan, Douglas, Kittitas, Klickitat, Okanogan, Yakima
Eastern (509) 329-3400	Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, Whitman
HQ (360) 407-7170	Federal facilities in Western Washington
Northwest (425) 649-7000	Island, King, Kitsap, San Juan, Skagit, Snohomish, Whatcom
Southwest (360) 407-6300	Clallam, Clark, Cowlitz, Grays Harbor, Jefferson, Lewis, Mason, Pacific, Pierce, Skamania, Thurston, Wahkiakum

or find a complete list of UST inspectors at:

www.ecy.wa.gov/programs/tcp/ust-lust/people.html

ECY 020-94 (October 2015)

UST ID #: _____

County:

SITE CHECK/SITE ASSESSMENT CHECKLIST

FOR UNDERGROUND STORAGE TANKS

This checklist certifies that site check or site assessment activities were performed in accordance with Chapter 173-360 WAC. Instructions are found on the last page.

I. UST I	FACILITY	II. OWNER/OPERATOR INFORMATION						
Facility Compliance Tag #: No	ot known	Owner/Operator Name: Georgetown Crossroads, LLC						
UST ID #: 11012		Business Name: c/o Ms. Janet Frentzel						
Site Name: Former Consolida	ited Freightways Seattle	Address: Pier 1, Bay 1						
Site Address: 6050 East Marg	inal Way South	City: San Francisco	State: CA	Zip: 94111				
City: Seattle		Phone: 415-394-9000						
Phone: None		Email: jfrentzel@prologis.cc	om					
	III. CERTIFIED SITE ASSESSOR							
Service Provider Name: Kenn	eth Scott	Company Name: Farallon Co	onsulting, L.L.C.					
Cell Phone: 425-765- Ema 1134 kscc	il: htt@farallonconsulting.com	Address: 975 5 th Avenue NW	J					
Certification #: 1042927	Exp. Date: 4/16/2018	City: Issaquah	State: WA	Zip: 98027				
	IV. TANK IN	FORMATION						
TANK ID	ΤΑΝΚ CAPACITY	LAST SUBSTANCE STORED	DATE SITE Assessment	CHECK OR				
11012	20,000 gallons	Diesel 9/7/2016						
V. Re	ASON FOR CONDUCTING SITE	CHECK/SITE ASSESSMENT (che	ck one)					
Release investigation fol	llowing permanent UST system	closure (i.e. tank removal or c	closure-in-place)					
Release investigation fol	llowing a failed tank and/or line	e tightness test.						
Release investigation fol	llowing discovery of contamina	ted soil and/or groundwater.						
Release investigation dir	rected by Ecology to determine	if the UST system is the sourc	e of offsite impa	icts.				
UST system is undergoin gasoline) to storing a no	ng a "change-in-service", which n-regulated substance (e.g. wa	is changing from storing a reg ter).	ulated substance	e (e.g.				
Directed by Ecology for U	UST system permanently closed	d or abandoned before 12/22/	' 1988.					
Other (describe): UST de	ecommissioning by removal in	conjunction with Property red	evelopment.					

D

E

The site assessor must check each of the following items and include it in the report. Sections referenced below can be found in the Ecology publication Guidance for Site Checks and Site Assessments for Underground Storage Tanks. NE NE 1. The location of the UST site is shown on a vicinity map. Image: Construction of the UST site is shown on a vicinity map. Image: Construction of Construction Sprovided (Section 3.2) Image: Construction Constructin Constructin Construction Construction Construction Construction		VI. CHECKLIST						
1. The location of the UST site is shown on a vicinity map. Image: Contemportal State is shown on a vicinity map. 2. A brief summary of information obtained during the site inspection is provided (Section 3.2) Image: Contemportal State		The site assessor must check each of the following items and include it in the report. Sections referenced below can be found in the Ecology publication Guidance for Site Checks and Site Assessments for Underground Storage Tanks.	VES	NO				
2. A brief summary of information obtained during the site inspection is provided (Section 3.2) Image: Contemp 1 3. A summary of UST system data is provided (Section 3.1) Image: Contemp 1 4. The soils characteristics at the UST site are described. (Section 5.2) Image: Contemp 1 5. Is there any apparent groundwater in the tank excavation? Image: Contemp 1 6. A brief description of the surrounding land use is provided. (Section 3.1) Image: Contemp 2 7. The name and address of the laboratory used to perform analyses is provided. The methods used to collect and analyze the samples, including the number and types of samples collected, are also documented in the report. The data from the laboratory is appended to the report. Image: Contemp 2 8. The following items are provided in one or more sketches: Image: Contemp 2 Image: Contemp 2 9. Location and ID number for all field samples collected Image: Contemp 2 Image: Contemp 2 9. Location of samples collected from stockpiled excavated soil Image: Contemp 2 Image: Contemp 2 9. Adjacent structures and streets Image: Contemp 2 Image: Contemp 2 Image: Contemp 2 9. If sampling procedures are different from those specified in the guidance, has justification for using these alternative sampling procedures been provided? (Section 3.4) Image: Contemp 2 Image: Contemp 2 10. A table is provided showing laboratory results for each sa	1.	The location of the UST site is shown on a vicinity map.						
3. A summary of UST system data is provided (Section 3.1) Image: Contemp of UST system data is provided (Section 3.1) Image: Contemp of UST system data is provided (Section 3.2) Image: Contemp of UST system data is provided (Section 3.2) Image: Contemp of UST system data is provided (Section 3.1) Image: Contemp of UST system data is provided (Section 3.1) Image: Contemp of UST system data is provided (Section 3.1) Image: Contemp of UST system data is provided (Section 3.1) Image: Contemp of UST system data is provided (Section 3.1) Image: Contemp of UST system data is provided (Section 3.1) Image: Contemp of UST system data is provided (Section 3.1) Image: Contemp of UST system data data system data data s	2.	A brief summary of information obtained during the site inspection is provided (Section 3.2)						
4. The soils characteristics at the UST site are described. (Section 5.2) Image: Contemportance of the sum o	3.	A summary of UST system data is provided (Section 3.1)						
5. Is there any apparent groundwater in the tank excavation? Image: Constraint of the surrounding land use is provided. (Section 3.1) Image: Constraint of the surrounding land use is provided. (Section 3.1) Image: Constraint of the surrounding land use is provided. (Section 3.1) Image: Constraint of the surrounding land use is provided. (Section 3.1) Image: Constraint of the surrounding land use is provided. (Section 3.1) Image: Constraint of the surrounding land use is provided. (Section 3.1) Image: Constraint of Constra Constraint of Constra Constraint of Constraint of Constraint of C	4.	The soils characteristics at the UST site are described. (Section 5.2)						
6. A brief description of the surrounding land use is provided. (Section 3.1) Image: Content of the surrounding land use is provided. Section 3.1) 7. The name and address of the laboratory used to perform analyses is provided. The methods used to collect and analyze the samples, including the number and types of samples collected, are also documented in the report. The data from the laboratory is appended to the report. Image: Collected of	5.	Is there any apparent groundwater in the tank excavation?						
7. The name and address of the laboratory used to perform analyses is provided. The methods used to collect and analyze the samples, including the number and types of samples collected, are also documented in the report. The data from the laboratory is appended to the report. Image: Collect and analyze the samples, including the number and types of samples collected, are also documented in the report. The data from the laboratory is appended to the report. Image: Collect and analyze the samples, including the number and types of samples collected, are also documented in the report. The data from the laboratory is appended to the report. Image: Collect and analyze the samples, including the number and types of samples collected, are also documented in the report. The data from the laboratory is appended to the report. 8. The following items are provided in one or more sketches: Image: Collected from stockpiled excavated soil Image: Collected from s	6.	A brief description of the surrounding land use is provided. (Section 3.1)						
 8. The following items are provided in one or more sketches: I. Location and ID number for all field samples collected If applicable, groundwater samples are distinguished from soil samples I. fapplicable, groundwater samples are distinguished from soil samples I. Location of samples collected from stockpiled excavated soil I. Location of samples collected from stockpiled excavated soil I. Tank and piping locations and limits of excavation pit Adjacent structures and streets Approximate locations of any on-site and nearby utilities I. Approximate locations of any on-site and nearby utilities I. If sampling procedures are different from those specified in the guidance, has justification for using these alternative sampling procedures been provided? (Section 3.4) I. Atable is provided showing laboratory results for each sample collected including; sample ID number, constituents analyzed for and corresponding concentration, analytical method, and detection limit for that method. Any sample exceeding MTCA Method A cleanup standards are highlighted or bolded. I. Any factors that may have compromised the quality of the data or validity of the results are describe. I. Any factors that may have compromised the quality of the data or validity of the results are describe. I. The results of this site check/site assessment indicate that a confirmed release of a regulated substance has occurred. The requirements for reporting confirmed releases can be found in WAC 173-360-372. I. Signature acknowledges the Site Check or Site Assessment complex with UST regulations WAC 173-360-372. I. Fequire acknowledges the Site Check or Site Assessment complex with UST regulations WAC 173-360-372. I. Fint or Type Name Signature of Certified Site Assessor 	7.	The name and address of the laboratory used to perform analyses is provided. The methods used to collect and analyze the samples, including the number and types of samples collected, are also documented in the report. The data from the laboratory is appended to the report.						
• Location and ID number for all field samples collectedI• If applicable, groundwater samples are distinguished from soil samplesI• Location of samples collected from stockpiled excavated soilI• Tank and piping locations and limits of excavation pitI• Adjacent structures and streetsI• Approximate locations of any on-site and nearby utilitiesI9. If sampling procedures are different from those specified in the guidance, has justification for using these alternative sampling procedures been provided? (Section 3.4)I10. A table is provided showing laboratory results for each sample collected including; sample ID numer, constituents analyzed for and corresponding concentration, analytical method, and detection limit for that method. Any sample exceeding MTCA Method A cleanup standards are highlighted or bolded.I11. Any factors that may have compromised the quality of the data or validity of the results are described.IISignature acknowledges the Site Check or Site Assessment complies with UST regulations WAC 173-360-372.IVII. REQUIRED SIGNATURESKenneth Scott9/16/20:Yint or Type Name9/16/20:	8.	The following items are provided in one or more sketches:						
If applicable, groundwater samples are distinguished from soil samples Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated soil Image: Construct of Samples collected from stockpiled excavated exclose from stockpiled excavated exclose from stockpiled excavated exclose from stockpiled exclose from and corresponding concentration, analytical		Location and ID number for all field samples collected						
• Location of samples collected from stockpiled excavated soil Image: Collected from stockpiled excavation pit Image: Collected from stockpiled excavating fro		If applicable, groundwater samples are distinguished from soil samples		\boxtimes				
• Tank and piping locations and limits of excavation pit Image: Comparison of the series of the		Location of samples collected from stockpiled excavated soil		\boxtimes				
• Adjacent structures and streets Image: Comparison of any on-site and nearby utilities Image: Comparison of any on-site analytical method, and detection limit for that method. Any sample exceeding MTCA Method A cleanup standards are highlighted or bolded. Image: Comparison of any on-site and nearby utilities Image: Comparison of any on-site and nearby utilities <td></td> <td>Tank and piping locations and limits of excavation pit</td> <td></td> <td></td>		Tank and piping locations and limits of excavation pit						
• Approximate locations of any on-site and nearby utilities □ 9. If sampling procedures are different from those specified in the guidance, has justification for using these alternative sampling procedures been provided? (Section 3.4) □ 10. A table is provided showing laboratory results for each sample collected including; sample ID numbr, constituents analyzed for and corresponding concentration, analytical method, and detection limit for that method. Any sample exceeding MTCA Method A cleanup standards are highlighted or bolded. □ 11. Any factors that may have compromised the quality of the data or validity of the results are described. As occurred. The requirements for reporting confirmed release of a regulated substance has occurred. The requirements for reporting confirmed releases can be found in WAC 173-360-372. □ VII. REQUIRED SIGNATURES Signature acknowledges the Site Check or Site Assessment complies with UST regulations WAC 173-360-360- Horough -350. Print or Type Name 9/16/2015		Adjacent structures and streets	\boxtimes					
9. If sampling procedures are different from those specified in the guidance, has justification for using these alternative sampling procedures been provided? (Section 3.4) □ 10. A table is provided showing laboratory results for each sample collected including; sample ID number, constituents analyzed for and corresponding concentration, analytical method, and detection limit for that method. Any sample exceeding MTCA Method A cleanup standards are highlighted or bolded. □ 11. Any factors that may have compromised the quality of the data or validity of the results are described. □ 12. The results of this site check/site assessment indicate that a confirmed release of a regulated substance has occurred. The requirements for reporting confirmed releases can be found in WAC 173-360-372. □ Signature acknowledges the Site Check or Site Assessment complies with UST regulations WAC 173-360-360 through -395. Kenneth Scott Print or Type Name Signature of Certified Site Assessor Date		Approximate locations of any on-site and nearby utilities	\boxtimes					
10. A table is provided showing laboratory results for each sample collected including; sample ID number, constituents analyzed for and corresponding concentration, analytical method, and detection limit for that method. Any sample exceeding MTCA Method A cleanup standards are highlighted or bolded. Image: Constitution of the text of this site check/site assessment indicate that a confirmed release of a regulated substance has occurred. The requirements for reporting confirmed releases can be found in WAC 173-360-372. Image: Constitution of the text of text of the text of text o	9.	If sampling procedures are different from those specified in the guidance, has justification for using these alternative sampling procedures been provided? (Section 3.4)						
11. Any factors that may have compromised the quality of the data or validity of the results are described. Image: Comparison of the section of the section of the results are described. Image: Comparison of the section of the section of the results are described. Image: Comparison of the section of the results are described. Image: Comparison of the section of the results are described. Image: Comparison of the section of the results are described. Image: Comparison of the section of the results are described. Image: Comparison of the section of the section of the results are described. Image: Comparison of the section of the s	10	. A table is provided showing laboratory results for each sample collected including; sample ID number, constituents analyzed for and corresponding concentration, analytical method, and detection limit for that method. Any sample exceeding MTCA Method A cleanup standards are highlighted or bolded.						
12. The results of this site check/site assessment indicate that a confirmed release of a regulated substance has occurred. The requirements for reporting confirmed releases can be found in WAC 173-360-372. VII. REQUIRED SIGNATURES Signature acknowledges the Site Check or Site Assessment complies with UST regulations WAC 173-360-360 through -395. Kenneth Scott Method Scott Method Scott Signature of Certified Site Assessor Date 	11	. Any factors that may have compromised the quality of the data or validity of the results are described.	\boxtimes					
VII. REQUIRED SIGNATURES Signature acknowledges the Site Check or Site Assessment complies with UST regulations WAC 173-360-360 through -395. Kenneth Scott Kenneth. Scott 9/16/2016 Print or Type Name Signature of Certified Site Assessor Date	12	. The results of this site check/site assessment indicate that a confirmed release of a regulated substance has occurred. The requirements for reporting confirmed releases can be found in WAC 173-360-372.		\boxtimes				
Signature acknowledges the Site Check or Site Assessment complies with UST regulations WAC 173-360-360 through -395. Kenneth Scott Kenneth. Scott 9/16/2016 Print or Type Name Signature of Certified Site Assessor Date		VII. REQUIRED SIGNATURES						
Kenneth ScottKenneth Scott9/16/2016Print or Type NameSignature of Certified Site AssessorDate		Signature acknowledges the Site Check or Site Assessment complies with UST regulations WAC 173-360-360 through	-395.					
Print or Type Name Signature of Certified Site Assessor Date	Ke	nneth Scott Kenneth A. Scott 9/16/20	16					
	Pri	nt or Type Name Signature of Certified Site Assessor Date						

SITE CHECK/SITE ASSESSMENT CHECKLIST FOR UNDERGROUND STORAGE TANKS

INSTRUCTIONS

This checklist must accompany the results of a Site Check Report, which is performed if a release of petroleum or other regulated substance is suspected. It is also required to accompany a Site Assessment Report, which is required following the permanent closure or "change-in-service" of an underground storage tank system. <u>This form is required to be filled out whether or not contamination is found</u>. This checklist is to be completed by the Site Assessor and submitted **within thirty days of completing** these activities to the following address:

Dept. of Ecology UST Section PO Box 47655 Olympia, WA 98504-7655

- I./II. UST Facility and Owner/Operator Information: Fill out these sections completely. If you do not know your UST ID number, include the facility compliance tag number.
- **III.** Service Provider Information: It is the responsibility of the ICC-certified Site Assessor to ensure that sampling and documentation procedures are completed in accordance with Ecology's *Guidance for Site Checks and Site Assessment for Underground Storage Tanks*.
- **IV. Tank Information:** Use the same Tank identification numbers listed on the facility's Business License which is based on the most recent UST Addendum on file with Ecology. List the last substance stored in each tank, the tank sizes and the date the site check or site assessment was completed.
- V. Required Signature: The Site Assessor signature certifies these procedures were followed.

All confirmed releases must be reported to Ecology by the owner within 24 hours and by service providers within 72 hours of discovery. A Site Characterization Report must be submitted to Ecology within 90 days after confirming a release.

Further questions? Please contact your regional office below and ask for a tank inspector to assist you.

Regional Office	Counties Served
Central (509) 575-2490	Benton, Chelan, Douglas, Kittitas, Klickitat, Okanogan, Yakima
Eastern (509) 329-3400	Adams, Asotin, Columbia, Ferry, Franklin, Garfield, Grant, Lincoln, Pend Oreille, Spokane, Stevens, Walla Walla, Whitman
HQ (360) 407-7170	Federal facilities in Western Washington
Northwest (425) 649-7000	Island, King, Kitsap, San Juan, Skagit, Snohomish, Whatcom
Southwest (360) 407-6300	Clallam, Clark, Cowlitz, Grays Harbor, Jefferson, Lewis, Mason, Pacific, Pierce, Skamania, Thurston, Wahkiakum

or find a complete list of UST inspectors at:

www.ecy.wa.gov/programs/tcp/ust-lust/people.html

ATTACHMENT B PHOTOGRAPHS

SITE ASSESSMENT FOR UST DECOMMISSIONING 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

California Oakland | Sacramento | Irvine

PHOTOGRAPHS Site Assessment for UST Decommissioning 6050 East Marginal Way South Seattle, Washington Farallon PN: 1071-010

- **Photograph 1**: Concrete pad overlying the underground storage tank (UST) prior to start of excavation, looking west.
- Photograph 2: Partial excavation of northern side of UST hold, looking west.
- **Photograph 3**: Uncovered UST floating on groundwater following removal of holddown straps, looking west.
- Photograph 4: Southern side of removed UST.
- Photograph 5: Bottom of removed UST.
- Photograph 6: Track hoe breaking up the UST for disposal.
- Photograph 7: Partially backfilled UST excavation, looking southwest.
- Photograph 8: Completed surface of backfilled and compacted UST excavation, looking south.

Photograph 1: Concrete pad overlying the underground storage tank (UST) prior to start of excavation, looking west.

Photograph 2: Partial excavation of northern side of UST hold, looking west.

Photograph 3: Uncovered UST floating on groundwater following removal of hold-down straps, looking west.

Photograph 4: Southern side of removed UST.

Photograph 5: Bottom of removed UST.

Photograph 6: Track hoe breaking up the UST for disposal.

Photograph 7: Partially backfilled UST excavation, looking southwest.

Photograph 8: Completed surface of backfilled and compacted UST excavation, looking south.

ATTACHMENT C LABORATORY ANALYTICAL REPORT

SITE ASSESSMENT FOR UST DECOMMISSIONING 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

September 13, 2016

Don Lance Farallon Consulting, LLC 975 5th Avenue NW Issaquah, WA 98027

Re: Analytical Data for Project 1071-010 Laboratory Reference No. 1609-080

Dear Don:

Enclosed are the analytical results and associated quality control data for samples submitted on September 8, 2016.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Date of Report: September 13, 2016 Samples Submitted: September 8, 2016 Laboratory Reference: 1609-080 Project: 1071-010

Case Narrative

Samples were collected on September 7, 2016 and received by the laboratory on September 8, 2016. They were maintained at the laboratory at a temperature of 2° C to 6° C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

BTEX by EPA 8021B Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

BTEX EPA 8021B

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	UST-N-6.5-090716					
Laboratory ID:	09-080-01					
Benzene	ND	0.020	EPA 8021B	9-9-16	9-9-16	
Toluene	ND	0.092	EPA 8021B	9-9-16	9-9-16	
Ethyl Benzene	ND	0.092	EPA 8021B	9-9-16	9-9-16	
m,p-Xylene	ND	0.092	EPA 8021B	9-9-16	9-9-16	
o-Xylene	ND	0.092	EPA 8021B	9-9-16	9-9-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	103	68-129				
Client ID:	UST-W-6.5-090716					
Laboratory ID:	09-080-02					
Benzene	ND	0.020	EPA 8021B	9-9-16	9-12-16	
Toluene	ND	0.052	EPA 8021B	9-9-16	9-12-16	
Ethyl Benzene	ND	0.052	EPA 8021B	9-9-16	9-12-16	
m,p-Xylene	ND	0.052	EPA 8021B	9-9-16	9-12-16	
o-Xylene	ND	0.052	EPA 8021B	9-9-16	9-12-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	68-129				
Client ID:	UST-S-6.5-090716					
Laboratory ID:	09-080-03					
Benzene	ND	0.020	EPA 8021B	9-9-16	9-12-16	
Toluene	ND	0.050	EPA 8021B	9-9-16	9-12-16	
Ethyl Benzene	ND	0.050	EPA 8021B	9-9-16	9-12-16	
m,p-Xylene	ND	0.050	EPA 8021B	9-9-16	9-12-16	
o-Xylene	ND	0.050	EPA 8021B	9-9-16	9-12-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	102	68-129				
Client ID:	UST-E-6.5-090716					
Laboratory ID:	09-080-04					
Benzene	ND	0.020	EPA 8021B	9-9-16	9-12-16	
Toluene	ND	0.056	EPA 8021B	9-9-16	9-12-16	
Ethyl Benzene	ND	0.056	EPA 8021B	9-9-16	9-12-16	
m,p-Xylene	ND	0.056	EPA 8021B	9-9-16	9-12-16	
o-Xylene	ND	0.056	EPA 8021B	9-9-16	9-12-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	68-129				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

BTEX EPA 8021B

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	UST-B-13.0-090716					
Laboratory ID:	09-080-05					
Benzene	ND	0.020	EPA 8021B	9-9-16	9-12-16	
Toluene	ND	0.079	EPA 8021B	9-9-16	9-12-16	
Ethyl Benzene	ND	0.079	EPA 8021B	9-9-16	9-12-16	
m,p-Xylene	ND	0.079	EPA 8021B	9-9-16	9-12-16	
o-Xylene	ND	0.079	EPA 8021B	9-9-16	9-12-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	68-129				

BTEX EPA 8021B QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0909S1					
Benzene	ND	0.020	EPA 8021B	9-9-16	9-9-16	
Toluene	ND	0.050	EPA 8021B	9-9-16	9-9-16	
Ethyl Benzene	ND	0.050	EPA 8021B	9-9-16	9-9-16	
m,p-Xylene	ND	0.050	EPA 8021B	9-9-16	9-9-16	
o-Xylene	ND	0.050	EPA 8021B	9-9-16	9-9-16	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	68-129				

					Source	Per	rcent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-08	30-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	NA	NA	NA	30	
Toluene	ND	ND	NA	NA		١	٨٨	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	٨٨	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	٨٨	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	A	NA	NA	30	
Surrogate:											
Fluorobenzene						103	102	68-129			
SPIKE BLANKS											
Laboratory ID:	SB09	09S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.980	1.06	1.00	1.00		98	106	76-124	8	17	
Toluene	0.985	1.06	1.00	1.00		99	106	78-124	7	16	
Ethyl Benzene	1.03	1.08	1.00	1.00		103	108	77-123	5	17	
m,p-Xylene	0.966	1.03	1.00	1.00		97	103	78-124	6	17	
o-Xylene	0.990	1.07	1.00	1.00		99	107	76-123	8	18	

103

68-129

96

Surrogate:

Fluorobenzene

A.

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

Matrix: Soil Units: mg/Kg (ppm)

Analyto	Posult	POI	Mothod	Date Propared	Date Analyzod	Flage
Client ID:		FQL	Method	Flepaleu	Analyzeu	Tiags
Laboratory ID.	031-14-0.3-0307 10					
Diosol Pango Organico		30		0.0.16	0.0.16	
Lube Oil Bange Organics		52		9-9-10	9-9-10	
Surrogate:	Percent Recovery	Control Limits		3-3-10	3-3-10	
o-Ternhenvl	112	50-150				
o respicingi	112	00 100				
Client ID:	UST-W-6.5-090716					
Laboratory ID:	09-080-02					
Diesel Range Organics	ND	27	NWTPH-Dx	9-9-16	9-9-16	
Lube Oil	200	53	NWTPH-Dx	9-9-16	9-9-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	116	50-150				
Client ID:	UST-S-6.5-090716					
Laboratory ID:	09-080-03					
Diesel Range Organics	ND	27	NWTPH-Dx	9-9-16	9-9-16	
Lube Oil Range Organics	ND	55	NWTPH-Dx	9-9-16	9-9-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	100	50-150				
Client ID:	UST-E-6 5-090716					
Laboratory ID.	09-080-04					
Diesel Range Organics		28		9-9-16	9-9-16	
Lube Oil Range Organics	ND	56	NWTPH-Dx	9-9-16	9-9-16	
Surrogate:	Percent Recovery	Control Limits		0010	0010	
o-Terphenvl	96	50-150				
Client ID:	UST-B-13.0-090716					
Laboratory ID:	09-080-05					
Diesel Range Organics	ND	33	NWTPH-Dx	9-9-16	9-9-16	
Lube Oil Range Organics	ND	66	NWTPH-Dx	9-9-16	9-9-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	107	50-150				

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

6

NWTPH-Dx QUALITY CONTROL

Matrix: Soil Units: mg/Kg (ppm)

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0909S1					
Diesel Range Organics	ND	25	NWTPH-Dx	9-9-16	9-9-16	
Lube Oil Range Organics	ND	50	NWTPH-Dx	9-9-16	9-9-16	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	128	50-150				

					Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE										
Laboratory ID:	09-08	30-01								
	ORIG	DUP								
Diesel Range	ND	ND	NA	NA		NA	NA	NA	NA	
Lube Oil Range	ND	ND	NA	NA		NA	NA	NA	NA	
Surrogate:										
o-Terphenyl						112 113	50-150			

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	UST-N-6.5-090716					
Laboratory ID:	09-080-01					
Naphthalene	ND	0.0086	EPA 8270D/SIM	9-9-16	9-10-16	
2-Methylnaphthalene	0.0093	0.0086	EPA 8270D/SIM	9-9-16	9-10-16	
1-Methylnaphthalene	0.0094	0.0086	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[a]anthracene	ND	0.0086	EPA 8270D/SIM	9-9-16	9-10-16	
Chrysene	ND	0.0086	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[b]fluoranthene	ND	0.0086	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo(j,k)fluoranthene	ND	0.0086	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[a]pyrene	ND	0.0086	EPA 8270D/SIM	9-9-16	9-10-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0086	EPA 8270D/SIM	9-9-16	9-10-16	
Dibenz[a,h]anthracene	ND	0.0086	EPA 8270D/SIM	9-9-16	9-10-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	70	32 - 115				
Pyrene-d10	74	30 - 124				
Terphenyl-d14	68	30 - 117				

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	UST-W-6.5-090716					
Laboratory ID:	09-080-02					
Naphthalene	ND	0.0071	EPA 8270D/SIM	9-9-16	9-10-16	
2-Methylnaphthalene	ND	0.0071	EPA 8270D/SIM	9-9-16	9-10-16	
1-Methylnaphthalene	ND	0.0071	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[a]anthracene	ND	0.0071	EPA 8270D/SIM	9-9-16	9-10-16	
Chrysene	ND	0.0071	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[b]fluoranthene	ND	0.0071	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo(j,k)fluoranthene	ND	0.0071	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[a]pyrene	ND	0.0071	EPA 8270D/SIM	9-9-16	9-10-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0071	EPA 8270D/SIM	9-9-16	9-10-16	
Dibenz[a,h]anthracene	ND	0.0071	EPA 8270D/SIM	9-9-16	9-10-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	40	32 - 115				
Pyrene-d10	43	30 - 124				
Terphenyl-d14	39	30 - 117				

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	UST-S-6.5-090716					
Laboratory ID:	09-080-03					
Naphthalene	ND	0.0073	EPA 8270D/SIM	9-9-16	9-10-16	
2-Methylnaphthalene	ND	0.0073	EPA 8270D/SIM	9-9-16	9-10-16	
1-Methylnaphthalene	ND	0.0073	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[a]anthracene	ND	0.0073	EPA 8270D/SIM	9-9-16	9-10-16	
Chrysene	ND	0.0073	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[b]fluoranthene	ND	0.0073	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo(j,k)fluoranthene	ND	0.0073	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[a]pyrene	ND	0.0073	EPA 8270D/SIM	9-9-16	9-10-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0073	EPA 8270D/SIM	9-9-16	9-10-16	
Dibenz[a,h]anthracene	ND	0.0073	EPA 8270D/SIM	9-9-16	9-10-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	86	32 - 115				
Pyrene-d10	85	30 - 124				
Terphenyl-d14	80	30 - 117				

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	UST-E-6.5-090716					
Laboratory ID:	09-080-04					
Naphthalene	ND	0.0075	EPA 8270D/SIM	9-9-16	9-10-16	
2-Methylnaphthalene	ND	0.0075	EPA 8270D/SIM	9-9-16	9-10-16	
1-Methylnaphthalene	ND	0.0075	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[a]anthracene	ND	0.0075	EPA 8270D/SIM	9-9-16	9-10-16	
Chrysene	ND	0.0075	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[b]fluoranthene	ND	0.0075	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo(j,k)fluoranthene	ND	0.0075	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[a]pyrene	ND	0.0075	EPA 8270D/SIM	9-9-16	9-10-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0075	EPA 8270D/SIM	9-9-16	9-10-16	
Dibenz[a,h]anthracene	ND	0.0075	EPA 8270D/SIM	9-9-16	9-10-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	86	32 - 115				
Pyrene-d10	82	30 - 124				
Terphenyl-d14	77	30 - 117				

PAHs EPA 8270D/SIM

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	UST-B-13.0-090716					
Laboratory ID:	09-080-05					
Naphthalene	ND	0.0087	EPA 8270D/SIM	9-9-16	9-10-16	
2-Methylnaphthalene	ND	0.0087	EPA 8270D/SIM	9-9-16	9-10-16	
1-Methylnaphthalene	ND	0.0087	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[a]anthracene	ND	0.0087	EPA 8270D/SIM	9-9-16	9-10-16	
Chrysene	ND	0.0087	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[b]fluoranthene	ND	0.0087	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo(j,k)fluoranthene	ND	0.0087	EPA 8270D/SIM	9-9-16	9-10-16	
Benzo[a]pyrene	ND	0.0087	EPA 8270D/SIM	9-9-16	9-10-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0087	EPA 8270D/SIM	9-9-16	9-10-16	
Dibenz[a,h]anthracene	ND	0.0087	EPA 8270D/SIM	9-9-16	9-10-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	87	32 - 115				
Pyrene-d10	92	30 - 124				
Terphenyl-d14	85	30 - 117				

PAHs EPA 8270D/SIM METHOD BLANK QUALITY CONTROL

Matrix: Soil Units: mg/Kg

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0909S1					
Naphthalene	ND	0.0067	EPA 8270D/SIM	9-9-16	9-9-16	
2-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	9-9-16	9-9-16	
1-Methylnaphthalene	ND	0.0067	EPA 8270D/SIM	9-9-16	9-9-16	
Benzo[a]anthracene	ND	0.0067	EPA 8270D/SIM	9-9-16	9-9-16	
Chrysene	ND	0.0067	EPA 8270D/SIM	9-9-16	9-9-16	
Benzo[b]fluoranthene	ND	0.0067	EPA 8270D/SIM	9-9-16	9-9-16	
Benzo(j,k)fluoranthene	ND	0.0067	EPA 8270D/SIM	9-9-16	9-9-16	
Benzo[a]pyrene	ND	0.0067	EPA 8270D/SIM	9-9-16	9-9-16	
Indeno(1,2,3-c,d)pyrene	ND	0.0067	EPA 8270D/SIM	9-9-16	9-9-16	
Dibenz[a,h]anthracene	ND	0.0067	EPA 8270D/SIM	9-9-16	9-9-16	
Surrogate:	Percent Recovery	Control Limits				
2-Fluorobiphenyl	90	32 - 115				
Pyrene-d10	93	30 - 124				
Terphenyl-d14	89	30 - 117				

PAHs EPA 8270D/SIM SB/SBD QUALITY CONTROL

Matrix: Soil Units: mg/Kg

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Reco	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB09	09S1								
	SB	SBD	SB	SBD	SB	SBD				
Naphthalene	0.0750	0.0782	0.0833	0.0833	90	94	61 - 112	4	15	
Benzo[a]anthracene	0.0893	0.0915	0.0833	0.0833	107	110	59 - 129	2	15	
Chrysene	0.0881	0.0931	0.0833	0.0833	106	112	60 - 122	6	15	
Benzo[b]fluoranthene	0.0840	0.0902	0.0833	0.0833	101	108	53 - 124	7	17	
Benzo(j,k)fluoranthene	0.0893	0.0894	0.0833	0.0833	107	107	58 - 124	0	16	
Benzo[a]pyrene	0.0903	0.0929	0.0833	0.0833	108	112	62 - 127	3	15	
Indeno(1,2,3-c,d)pyrene	0.0826	0.0845	0.0833	0.0833	99	101	60 - 120	2	15	
Dibenz[a,h]anthracene	0.0835	0.0873	0.0833	0.0833	100	105	60 - 117	4	15	
Surrogate:										
2-Fluorobiphenyl					88	88	32 - 115			
Pyrene-d10					95	96	30 - 124			
Terphenyl-d14					90	90	30 - 117			

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Date of Report: September 13, 2016 Samples Submitted: September 8, 2016 Laboratory Reference: 1609-080 Project: 1071-010

% MOISTURE

Date Analyzed: 9-9-16

Client ID	Lab ID	% Moisture
UST-N-6.5-090716	09-080-01	22
UST-W-6.5-090716	09-080-02	6
UST-S-6.5-090716	09-080-03	8
UST-E-6.5-090716	09-080-04	11
UST-B-13.0-090716	09-080-05	24

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

OnSite Environmental Inc.		Cha	nin o	f (Cu	isto	dy	i.			,						Ρ	age _	1	of	_[
Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com	Tur (i	rnaround Requ n working day	iest /s)		La	aborat	ory	Nun	nbe	er:	09	-	30	30								
Company: FARALLON Project Number: 1071-010 Project Name: SOUNDER Project Project Manager: DON LANCE Sampled by: Sampled by:	Sam	(Check One) le Day [lys [ldard (7 Days) l analysis 5 Da (other)] 1 Day] 3 Days ys)	of Containers	HCID	BAYBTEX ONIY BOSIB	XC	8260C	ted Volatiles 8260C	tiles 8270D/SIM level PAHs)	OD/SIM (IOW-level) +	Ilorine Pesticides 8081B	osphorus Pesticides 8270D/SIM	ed Acid Herbicides 8151A	3A Metals	CA Metals	tals	and grease) 1664A				
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number	-HdTWN	HILLINN	NWTPH-	Volatiles	Halogena	Semivola (with low-	PAHS 82	Organoch	Organoph	Chlorinat	Total RCI	Total MT(TCLP Me	HEM (oil				% Moistu
1 UST-N-6.5-090716	9/2/16	955	5	2		X	X				X											Ø
2 UST-W-6.5-090716		1005	5	2		X	X				\triangleleft											
3 UST-S-6.5-090716		1010	5	2		X	Д		_	-	X_											
4 UST-E-615-090716		1015	5	2		X.	Х		_		X_											
S UST-B-13.0-090716	V	1025	S	2		Χ,	Х		_	_	Χ,	-										Y
					Ę	120	27		-										_			
Relinquished Kin how to be a constrained of the constraint of the		FARA	RE	J		Date 9 /7 1 9 /8/	616	Time 16 11	45 37	5	Comme	nts/Sp	ecial	Instru	uction	IS						
Received					_																	
Relinquished																						
Received																						
Reviewed/Date		Reviewed/Da				lastrania Da		iverable			Chroma	tograr	ns wi	th fina	al rep	oort 🗌]					

March 2017 – Heating Oil UST Decommissioning

UNDERGROUND STORAGE TANK Site Check/Site Assessment Checklist

FOR OFFICE USE ONLY

Site #:____

Facility Site ID #:_

INSTRUCTIONS

When a release has not been confirmed and reported, this Site Check/Site Assessment Checklist must be completed and signed by a person certified by ICC or a Washington registered professional engineer who is competent, by means of examination, experience, or education, to perform site assessments. The results of the site check or site assessment must be included with this checklist. This form must be submitted to Ecology at the address shown below within 30 days after completion of the site check/site assessment.

SITE INFORMATION: Include the Ecology site ID number if the tanks are registered with Ecology. This number may be found on the tank owner's invoice or tank permit.

TANK INFORMATION: Please list all tanks for which the site check or site assessment is being conducted. Use the owner's tank ID numbers if available, and indicate tank capacity and substance stored.

REASON FOR CONDUCTING SITE CHECK/SITE ASSESSMENT: Please check the appropriate item.

<u>CHECKLIST</u>: Please initial each item in the appropriate box.

<u>SITE ASSESSOR INFORMATION</u>: This information must be signed by the registered site assessor who is responsible for conducting the site check/site assessment.

Underground Storage Tank Section Department of Ecology PO Box 47655 Olympia WA 98504-7655

SITE INFORMATION

Site ID Number (Available from Ecology if the tanks are registered):	
Site/Business Name: Former Consolidated Freightways	
Site Address: 6050 Marginal Way South	Telephone: (415) 394 - 9600
Seattle WASHINGTON, 98108	
City State	Zip Code

TANK	INFO	RMAT	FION	
				i.

Tank ID No. Ace Metal UST	Tank Capacity	Substance Stored
UST2#677332	500-gallons	HEA-FING-OIL
l	0	J

Check one: Investigate suspected release due to on-site environmental contamination Investigate suspected release due to off-site environmental contamination Extend temporary closure of UST system for more than 12 months UST system undergoing change-in-service UST system permanently closed with tank removed Abandoned tank containing product Required by Ecology or delegated agency for UST system closed before 12/22/88.	REASON FOR CONDUCTING SITE CHECK/SITE ASSESSMENT
 Investigate suspected release due to on-site environmental contamination. investigate suspected release due to off-site environmental contamination. Extend temporary closure of UST system for more than 12 months. UST system undergoing change-in-service. UST system permanently closed with tank removed. Abandoned tank containing product. Required by Ecology or delegated agency for UST system closed before 12/22/88. 	Check one:
Other (describe):	 Investigate suspected release due to on-site environmental contamination. Investigate suspected release due to off-site environmental contamination. Extend temporary closure of UST system for more than 12 months. UST system undergoing change-in-service. UST system permanently closed with tank removed. Abandoned tank containing product. Required by Ecology or delegated agency for UST system closed before 12/22/88. Other (describe):

CHECKLIST		
Each item of the following checklist shall be initialed by the person registered with the Department of Ecology whose signature appears below.	YES	NO
1. The location of the UST site is shown on a vicinity map.	KS	`
 A brief summary of information obtained during the site inspection is provided. (see Section 3.2 in site assessment guidance) 	K5	
3. A summary of UST system data is provided. (see Section 3.1.)	KS	
4. The soils characteristics at the UST site are described. (see Section 5.2)	KS	
5. Is there any apparent groundwater in the tank excavation?		KS
6. A brief description of the surrounding land use is provided. (see Section 3.1)	K5	
 Information has been provided indicating the number and types of samples collected, methods used to collect and analyze the samples, and the name and address of the laboratory used to perform the analyses. 	KS	
8. A sketch or sketches showing the following items is provided:		
- location and ID number for all field samples collected	KS	
- groundwater samples distinguished from soil samples (if applicable)	K5	NA
- samples collected from stockpiled excavated soil		KS
- tank and piping locations and limits of excavation pit	KS	
- adjacent structures and streets	K3	
- approximate locations of any on-site and nearby utilities	K5	
9. If sampling procedures different from those specified in the guidance were used, has justification for using these alternative sampling procedures been provided? (see Section 3.4)	KS	
10. A table is provided showing laboratory results for each sample collected including; sample ID number, constituents analyzed for and corresponding concentration, analytical method and detection limit for that method.	K-5	
11. Any factors that may have compromised the quality of the data or validity of the results are described.		KS
12. The results of this site check/site assessment indicate that a confirmed release of a regulated	K5	

substance has occurred.

•		
/		

SITE ASSESSOR INFORMATION	
Renneth Scott FARA	Firm Affiliated with
Business Address: 975 5th Avenue NW Teleph	ione: (425) 295-0800
ISSAQUAL, WAShington, 98	3.027
City	Zip Code
I hereby certify that I have been in responsible charge of performing the site check/site submitting false information are subject to penalties under Chapter 173.360 WAC.	assessment described above. Persons
3/27/17 Ken nott	
Date Signature of Person Registe	red with Ecology

If you need this publication in an alternate format, please contact Toxics Cleanup Program at (360) 407-7170. For persons with a speech or hearing impairment call 711 for relay service or 800-833-6388 for TTY.

	UNDERGROUND STORAGE TANK	FOR OFFICE USE ONLY
	Closure and Site Assessment Notice	Site ID #:
		Facility Site ID #:
	E C O L O G Y See back of form for instructions	с.
	Please ✓ the appropriate box(es)	
	Temporary Tank Closure Change-In-Service Permanent Tank Clos	sure D Site Check/Site Assessment
	Site Information Ow	ner Information
	Site ID Number UST Owner/Operator	George town crossroads. LLCI
	(Available from Ecology if the tanks are registered)	JANET Frentzel
	Street) Street
	Site Address 6050 Marginal Way south	P.O. Box
	City/State <u>Seattle</u> WAShington City/State SAN F	CANCISCO, CALIFORNIA
	Zip Code <u>99708</u> Telephone () Zip Code <u>9411</u>	Telephone (415) <u>394-900</u>
	Owners Signature	
	Tank Closure/Change-In-Service Comp	any
	Service Company Wyser Construction Co, INC.	
	Certified Supervisor Mike Redford Decommissioning C	ertification No. <u>ICC00061806</u>
	Supervisor's Signature	Date 3/27/17
	Address 19015 109th AVENUE SE	120 712
	SNOHOMISH, WAShing TON, 982.96	$\frac{445-742-0898}{1000000000000000000000000000000000000$
	City State Zip Code	
	Site Check/Site Assessor	
	Certified Site Assessor Ken Scott	
	Address 275 5th Avenue NW	
	Street P.O. Box	
	City State Zip Code	
		Contamination Present
	Tank Information	at the Time of Closure
F 1	Tank ID Closure Date Closure Method Tank Capacity Substance	e Stored 🛛 🗆 🗆
12	HOTISSZ SIZTILY LANK REMOVED 500-gallon HEATIN	Check unknown if no obvious
		and sample results have not
		yet been received from analytical lab.
		Yes No
		has the release been reported
	· · · · · · · · · · · · · · · · · · ·	o the appropriate regional office?

To receive this document in an alternat ive format, contact the Toxics Cleanup Program at 360-407-7170 (voice) or 1-800-833-6388 OR 711 (TTY)

ECY 020-94 (Rev. 2-06)

05

\square	2	a ,	i	-		11	20	11
)	K (] -	-	/	-1	4	4	5
	11.			1	e			-

Your Seattle Fire Department

APPLICATION FOR TEMPORARY PERMIT

Code 7908 Commercial T	ank Removal/Decommissioning
Permit Fee: \$255.00 TO BE COMPLETED BY PERMIT APPLICANT	Date Issued: $\frac{3/17/17}{Tank(s)}$ must be removed from site on the same day as permit is issued!
FIRM NAME WYSER Construction Co., Inc.	
MAILING ADDRESS 19015 109th Ave SE	SUITE
CITY Snohomish	STATE WA ZIP 98296
JOBSITE ADDRESS 6050 East Marginal Way South	
CONTACT PERSON Mike Redford	PHONE NUMBER (206) 396.1181
Number of Tank(s): 1 Tank Size(s):	500-g Aboveground tank
Product(s) Previously Contained:heating oil	Underground tank
Removal (Marine Chemist inspection and certified	cate required for all tanks regardless of size or contents)
 Abandonment-in-Place (Marine Chemist certificand/or unknowns) Hot work being conducted: No 	ate required for tanks previously containing Class I flammable liquids $\sqrt{a} # 19$ X Yes (If yes, a separate hot work permit is required)

Permit applications may be submitted in person weekdays from 8:00 a.m. to 4:30 p.m., or mailed to:

Seattle Fire Department Fire Marshal's Office – Permits 220 Third Ave S, 2nd Floor Seattle, WA 98104-2608 To pay with a Visa or Master Card: Fax or email this application **THEN CALL US TO CONFIRM RECEIPT AND MAKE PAYMENT** Tel: (206) 386-1450 / Fax: (206) 386-1348 E-mail: permits@seattle.gov

Mon 3/27/178

Call 386-1450, at least 24 hours prior to needed inspection time to arrange for an appointment. TANKS MAY BE REMOVED/DECOMMISSIONED ONLY AFTER FIRE DEPARTMENT INSPECTION NO HOT WORK IS ALLOWED ON A TANK SYSTEM PRIOR TO ISSUANCE OF THIS FIRE DEPARTMENT PERMIT!

Permission is hereby granted to remove or decommission the tank(s) identified in this permit in accordance with the attached conditions, all noted special conditions, and all applicable provisions of the Seattle Fire Code, federal, state and local regulations. THIS PERMIT IS NULL AND VOID IF PERMIT CONDITIONS ARE NOT ATTACHED

Special permit conditions: Tank removal/decommissioning must be performed, or directly supervised, by an ICC certified individual (WAC 173-360-600)

FMO USE:	APPROVED BY:	Randy Devitt	1.4.0.1
Check No.: 107022317	Inspector: <u>ALDevitt</u>		SFD ID# 1321
Receipt No.: 5-2/3/30	Name of Marine Chemist	Don Sly	Certificate # 46 855
Application ID#: 08385	Date:	•	

(01/17)

SOUND TESTING, INC.				
P.O. BOX 16204 SEATTLE, WA 98116	MADINE CHEM	UCT CEDTIEIC ATE		
(206) 932-0206 FAX (206) 937-3848		ISI CERIIFICAIE		
WWW.SOUNDTESTINGINC.COM	SE	CRIAL Nº 46855		
WYSER	WYSAZ	MARCH 27 201		
Survey Requested by	Vessel Owner or Agent	Date		
SEE BELOW 15000	GALSTEEL WNDERGROUND	16050 E-MARL		
HEATING FUEL	Oz LEL VISUAL	Specific Location of Versey		
Last Three (3) Loadings	Tests Performed	Time Survey Completed		
V500 AN- HEATAK	2 ELEI TRAIL - MALLA	E SAFEIN		
JOU CHE HEAMO	FUEL THINK THING O	c A INTOLY		
	<i>Б</i> х	CAUAIEU.		
	0,=21	4		
	LEL= B	ho		
10:40 Am - SAFE FO	R HOT WORK (INERT	~ 0, 46%)		
10:55 - HOT WORK	COMPLETE	1		
2				
	1			
		······		

In the event of changes adversely affecting conditions in the above spaces, or if in any doubt, immediately stop all work and contact the undersigned Marine Chemist.

Qualifications: Manipulation of valves or devices tending to alter conditions in pipe lines or tanks noted above, unless specifically approved in this certificate, will require re-inspection and a new Certificate for spaces so affected. All piping, heating coils, pumps and floating roof gaskets attached to or contained within spaces listed above shall be considered "NOT SAFE" unless otherwise specifically designated.

STANDARD SAFETY DESIGNATIONS

(These detail the minimum conditions for Safe Entry and Hot Work.) The Marine Chemist may request additional measures if workplace conditions so dictate.

ATMOSPHERE SAFE FOR WORKERS means that in a space (a) the oxygen content is between 19.5% and 22% by volume, and (b) combustible gas is less than 10% of the Lower Explosive Limit, and (c) airborne toxic materials are within permissible concentrations as listed in OSHA's Subpart Z or in ACGIH's current list of Threshold Limit Values.

SAFE FOR HOT WORK means that (a) oxygen within the space is less than 22% by volume; and (b) the combustible gas is less than 10% of the Lower Explosive Limit; and (c) cargo residues within the space will not combust during hot work; and (d) pipes that can deliver hazardous materials to the workspace have been separated, blanked, or locked out, and nearby hazardous spaces have been evaluated and noted on the certificate.

NOT SAFE FOR HOT WORK: In the compartment or space so designated, hot work is not permitted.

"The undersigned acknowledges receipt of this Certificate and understands conditions and limitations under which it was issued."

Name

Signed

This Certificate is based on conditions existing at the time the inspection herein set forth was completed and is issued subject to compliance with all qualifications and instructions.

Signed Marine Char

Date

Company POSTING

Marine Vacuum Service, Inc.

GENERAL CONTRACTOR CONTRACTORS LICENSE # MARINVS097JA P0. Box 24263 Seattle, Washington 98124 Telephone (206) 762-0240 FAX (206) 763-8084 1-800-540-7491

20-17-1495

AST/UST STORAGE TANK PUMP & RINSE CERTIFICATE

Tank Size: _	500 GALLONS	
Last Contents	HEATING VIL	
Tank Location:	6050 E MARGINAL WAY	5
	SERTRE, WA 98108	

Marine Vacuum Service, Inc. certifies that the above mentioned tank(s) have been triple rinsed in accordance with the industry standard as outlined in 40 CFR PART 280.70, WAC 173-360-380(I), API 1604, API 2015 and that all residual product and rinsate has been disposed of in accordance with Federal, State and Local regulations. Tanks listed above are <u>NOT GAS FREE</u> or <u>NOT SAFE FOR HOT WORK</u>

	e e e e e e e e e e e e e e e e e e e
Tank Owner:	pro logidos
	- 6050 E MABGINAL WAY S
	CATH 11 GOLO
	e, 11 0 1 w 10100
Contractor:	WASER CONSTRUCTION
	19011 109 HL AUR SE
	Suchanish WA 98296
	\bigcirc
M.V.S. Repres	sentative:
Date: 3-	-27-17
	and a second

Notes:

DBE # D4M1302341

EPA # WAD980974521

A MINORITY BUSINESS ENTERPRISE ID # D4M1302341

SCHNITZER STEEL INDUSTRIES, INC. 23711 62rd Ave SE, Woodinville, WA 98072 (425) 481-1828

Vendor # WYSE01					Check No: 190869
TICKET# SHP DATE COMMODITY TOSZKG 03/27/17 TIN/LIGHT :	IRON	GROSS TARE 11520 11120	NET 400	VEHICLE ID C91112C	PRICE UM FRT EXT TOTAL AMT 60.0000 NT 0.00
VENDOR WYSE01 TOTALS (Pound:	s):	·····	400	7	TOTAL DUE: \$
					-
r 1			Ŋ		
	χ.		J.		5
				ř.	
4	8. 1997 - 1			н нога	
			~		<i>4</i>
	d.				
5.	I.	1		L H	
u .			а 2 ²		
ĩ					° ľ
1				e k	4. 3
2	-		A.	X	

APPENDIX F GROUNDWATER MONITORING WELL DECOMMISSIONING DOCUMENTS

CLEANUP ACTION CLOSURE REPORT 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

Notice of Intent to **Decommission a Well**

Notification Number

This form and required fees **MUST BE RECEIVED** by the Department of Ecology 72 HOURS BEFORE you construct a well.

AE39164

ECOLOGY State of Washington Submit one completed form for each job site and required fee (check or money order only) to: Department of Ecology Cashiering Unit, P.O. Box 47611, Olympia, WA 98504-7611

NOTE: Please print. Pr	ocessing y	our Notice	of Intent	may be d	elayed	if all fi	elds are not	filled in c	ompletely.	
1. Property Owner Geo	rgetown Cr	ossroads LLC			Phone	e Numb	ber			
Mailing Address 60 State St Ste 1200			City	Boston			State	Zip G	ode 2109	
2. Agent (if different from	above)		Phone Num				ber			
Mailing Address	Mailing Address						State	Zip C	ode	
3. Well Location										
Tax Parcel Number, T	ownship,	Range, Sect	tion,¼, aı	nd ¼¼ ar	e Requ	ired. L	atitude and lo	ongitude (i	available).	
County Name King - 1	7									
Well Site Street Address				City	• + + -		State	Zip Co	de	
	60	50 E Marginal	Way S	2	eattle			9010	°	
Tax Parcel Number	Township	Range	Section	1/4 (within	160 acres	s) 1	¼ -¼ (within 40	acres)		
5367204646	24N	4E	20	SW			SW			
Latitude Degrees		Latitude Ti	me Hc				Iorizontal Collection Method			
			min		sec					
Longitude Degrees		Longitude	Time							
			min		sec					
4. Notice of Intent Number	of well		Un bei	ique Well ⁻ na decomi	Tag Nur ssioned	nber of I (if app	f well blicable)			
5 Well Type to Decommission	sion									
o. Weil Type to Decommis	51011						How Ma	iny?	7	
6. Estimated Decommissio	on Start Dat	e 9/6/2016	12:00:00	Project Na	^{me} Con	nsolidat	ted Freight			
7. Professional's License N	Number									
8. Well Drilling Company	Name _{ES}	IN NORTHWE	EST			Ph	one Number	None Sup	plied	
9. Well Driller Name RICHARD BATES							iller License N	Number 3174		
10. Send the entire form.									adodalijani in diga na	
Please copy the notifica this reference number w	tion numbe /hen comm	er (located in unicating wit	the uppe h the Dep	r and lowe partment o	r right c f Ecolog	orners Jy.) and keep in	a safe pla	ice. Use	

Water Well :	\$50.00	This notification number must be provided to your driller:
Soil Sampling, Dewatering,		A E 29164
All other wells:		AE39164
All other wells.	φ20.00 each	
Amount Enclosed \$	±U	

anisa@esnnw.com

Your Notice of Intent has been processed as of 9/7/2016. Your Cash Journal Validation Number is: 461T1736. This message being sent at (9/6/2016)

Vokay

P	ROJI	ECT: CF/Risk Assessment/WA	RE	со	RD C	F	во	REHOL	ΕF	RW	-2 SHEET <u>1</u> OF <u>1</u> DATUM:
P	ROJI	ECT NUMBER: 983 1065	BOR	ING	LOCATI	ON:					BORING DATE: 4/7/98
SOIL PROFILE							SAMPLES			PENETRATION RESISTANCE MONITORING BLOWS/FT.	
FEET	S METH			읒	ELEV.	Ë		BLOWS / 6 IN.	N	PID	10 20 30 40 50 GRAPHIC
рертн	BORING	DESCRIPTION	uscs	GRAP) LOG	DEPTH	IAMUN	TYPE	140 lb. hammer 30 inch drop		110	
- 0		Moderate yellowish brown, sitty tine to coarse SAND and tine GRAVEL, dry, petroleum odor (FILL)		200000 GB						404	Locang Well Cap Flush Monument comented in place J Medium Bentonte CNos
-		Compact, olive gray, silty fine to coarse SAND, unstratified, strong petroleum odor, becoming wet below -6 ft	SM	ढेरु		1	SS	40-32-50	82	512	
- 5	am Auger					2	SS	17-15-14	29	450	Monterey
-	Hollow Ste	Olive gray, clayey SILT				3	SS	6-10-15	25	412	Barehole
-	6-Inch I.D.	Loose to compact, dark gray, silly fine to medium SAND, wet, petroleum odor in sample	SM- SP								4-joch 1.D
- 10	-					4	SS	10-8-8	16	368	Solida So
						5	SS	5-10-15	25	189	
- 15		Total doub 15.5 () bas									
- 20											
- 25											
- 30											
DRIL	L RIG:	CME 75	<u></u>	J	L.,	LOGO	SED; (i 3. Zimmerman	1	<u>ا</u> ا	Â
DRIL		CONTRACTOR: Cascade Drilling				CHEC	KED:	/98			H Golder Associates

RESOURCE PROTECTION WELL REPORT START CARD NO. RZ8692 PROJECT NAME: CFW (CONSOLIDATED) R YE SEN AGB 453 Soc WELL IDENTIFICATION NO. _ ALET ABORESS OF WELL: ORILLING METHOD:___ HSA . Seattle 6050 E. Margunel Wey S G. Gose Brian DAILLEA: WATER LEVEL ELEVATION: Cascade Drilling. Inc. FIRM: GROUND SURFACE ELEVATION: N/A SIGNATURE:_ 98 INSTALLED: der 45500 CONSULTING FIRM: Yes G. Zimmerman DEVELOPED: R.L REPRESENTATIVE: ona 8146 FORMATION DESCRIPTION WELL DATA AS-BUILT WELL COVER silt + sand CONCRETE SURFACE SEAL DEPTH = 1/ftft. "x <u>5</u> PVC BLANK BACKFILL TYPE: ft. PVC SCREEN . 4 "x 10 " SLOT SIZE: 010 Π GRAVEL PACK MATERIAL: Scmo MAY I BBB Uthilu RO LOR Uthilu RO LOR 15. WELL DEPTH 85 OF. PAGE. SCALE: 1" -ECY 050-12 (Rev. 11/09)

and a survey of the second

All and

						1					PENE		RESISTANCE	
FEET	METHO	SOIL PROFILE		Q	ELEV.	E E		SAMPLES BLOWS / 6 IN.			2 10	BLOWS 20	FT. 1 30 40	'ا 50
рертн I	BORING	DESCRIPTION	nscs	GRAPH	DEPTH	NUMBE	түре	140 lb, hammer 30 inch drop	N	PID	WATE	R CONTEN	IT,PERCENT	nakia
- 0		Gray, silly fine to coarse SAND and fine GRAVEL, dry (FILL)		00000 00000 00000						3.3			l l l l l l l l l l l l l l l l l l l	/eli Ca Flush onume smento n placo Viediur viediur chips
		Compact, dark gray, silly fine to medium SAND, stratified layers of clayey silt, trace wood pleces, becoming wet below 6.5 ft	SM	0		1	ss	14-13-16	29	1.0				fonter
- 5	n Auger					2	SS	10-12-12	24	1,1				Sand
). Hollow Sten					3	SS	8-15-20	35	1.3				-8-incl oreho
- 10	4-inch 1.D	Compact, dark gray, unstratified, silty fine to	SM-			4	SS	8-14-21	36	1.1				-inch I Sch. 4 PVC 1.01-in Stotte
						5	55	2	7	10	•			
- 15		Tolal depth 15.5 ft bgs				5		4		1.2				
											-			
- 20														
- 25														
												1		

RESOURCE PROTECTION WELL REPORT START CARD NO. RZ8692 PROJECT NAME: CFW (CONSOLIDATED FREIGHT,) COUNTY: Ken TWD 24NR 4E ABB 454 SEN SEN WELL IDENTIFICATION NO. HSA DRESS OF WELL DRILLING METHOD:___ · Seattle E Margurel Way Brian G. Gosa DRILLER: Cascade Drilling, Inc. WATER LEVEL ELEVATION: FIRM: N/A GROUND SURFACE ELEVATION: SIONATURE:____ 4/7 58 INSTALLED: Solder ASSOC CONSULTING FIRM: Yes G. Zimmerman DEVELOPED: R . L REPRESENTATIVE:_ m a 81 FORMATION DESCRIPTION WELL DATA AS-BUILT *15* ft WELL COVER silt same black grey gravels CONCRETE SURFACE SEAL DEPTH = 1/ftft. 2 "x 5 ' ...PVC BLANK BACKFILL TYPE: ben ft. PVC SCREEN . 2 " V . SLOT SIZE: 010 GRAVEL PACK MATERIAL: 2/12 5/11/4 RECEIVED MAY I 1998 DEPT UF ECULUGY 110 WELL DEPTH 15. 11 PAGE_ OF_ SCALE: 1" -ECY 050-12 (Rev. 11/09)

The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report.

P	ROJ	ECT: CF/Risk Assessment/WA	RE	со	RD C)F	BC	REHOL	ΕI	ww	1-2 SHEET <u>1</u> OF <u>1</u>					
P	BO.	ECT NUMBER: 983 1065	BOR	ING	LOCATI	ON:										
<u> </u>						CAMPLES					PENETRATION RESISTANCE					
H FEET	NG METHO			PHIC	ELEV.	BER		BLOWS/6IN.	N	PID	BLOWS/FT. MUNITOHING WELL 10 20 30 40 50 GRAPHIC WATER CONTENTPERCENT					
DEPT	BORI	DESCRIPTION	nsce	GRA LOG	DEPTH	MUN	ТҮРЕ	140 lb, hammer 30 inch drop								
		Moderate brown and gray, silly medium to coarse SAND and fine GRAVEL, petroleum odor (FILL)		0000000						35	Wei Cap Wei Cap Flush Monument cemented in place Medium Bentonito					
-		Loose, olive gray, fine to medium sandy SILT, trace stratified layers clayey SILT, wel below 6.0 ft, petroleum odor	SM		•••	1	SS	7-7-10	17	4.6	Monterey -					
- 5	Stern Auger					2	SS	6-7-8	15	4.3	Sand H -					
	ich I.D. Hollow					3	SS	4-7-8	15	2.1	Borbolo Contraction					
- 10	4-ir	Compact, dark gray, unstratified, silty line to medium SAND, wet, no odor	SM- SP			4	SS	10-13-16	29	2.4	Skite Screen					
		Increase in grain size of sand to line to coarse SAND				5	SS	4-7-B	15	1.3						
- 15		Total depth 15.5 /l bgs														
- 20																
- 25																
- 30																
DRILL DRILL DRILL	. RIG; ING C ER;	CME 75 DNTRACTOR: Cascade Drilling B, Gose	1		l L C	.OGGI HECH	ED: G. (ED: 4/17/9	Zimmerman 8	1		Golder					

· • •

RESOURCE PROTECTION WELL REPORT START CARD NO. RZ8692 · PROJECT NAME: CFW (CONSOLIDATE A 46 SEN FN ABB WELL IDENTIFICATION NO. CEL ADDRESS OF WELL DRILLING METHOD:_ HSA 6050 E. Marmuel War Seattle G. Gose Brian DRILLER:__ WATER LEVEL ELEVATION: Cascade Drilling, Inc. FIRM: N/λ GROUND SURFACE ELEVATION: SIGNATURE: 158 477 INSTALLED: ASSOC Golder CONSULTING FIRM: 405 DEVELOPED: REPRESENTATIVE: R. L G 2 mmerman B 8141 FORMATION DESCRIPTION WELL DATA AS-BUILT 15 WELL COVER silf sund black /grey gru vels CONCRETE SURFACE SEAL DEPTH = 1/ftft. 2 "x 5 ' PVC BLANK BACKFILL TYPE: ben ft. PVC SCREEN 7 "x 10 SLOT SIZE: 010 GRAVEL PACK MATERIAL: 2/12 5/1+10 uŋ. RECEIVED MAY JI 1998 DEPT OF ECULUGY WELL DEPTH 15. 11 OF ____ PAGE, SCALE: 1" . ECY 060-12 (Roy, 11/09)

		'HOJ	ECT NUMBER: 983 1065	БОН		LUCAII		•				BOR	ING DATI	E: 4/7/98
	EET	METHOD	SOIL PROFILE		0	ELEV			SAMPLES	<u> </u>		PENETRATIC BLO 10 20	DN RESISTAN WS/FT. 4	CE MONI W GR/ 0 50
	DEPTH F	BORING	DESCRIPTION	USCS	GRAPHI LOG	DEPTH	NUMBEF	ТҮРЕ	140 lb. hammer 30 inch drop	N	PID	WATER CON	TENT,PERCE	NT WA
	- 0		Moderate brown, silty fine to coarse SAND and fine GRAVEL, dry (FILL)	SP	00000						0.6			Well Cap Flush Monument cemented in place
			Loose, moderate brown and olive gray, slity line to coarse SAND, becoming wet below ~6 ft bgs, trace wood pieces at ~8.0 ft bgs	SM			1	ss	6-10-7	17	0.7			Bantonite Chips
	- 5	m Auger					2	SS	11-20-12	32	0.7			ATD
		D. Hollow Ste					3	SS	6-9-10	19	2.2			-B-inch
	- 10	4-inch [.	Compact, olive gray, silty fine to medium SAND, wet	SM- SP			4	ss	9-19-20	39	1.8			2-inch I.D. Sch. 40 PVC 0.01-inch Slotted Screen
	-													
	-						5	SS	?	?	2.0			
	- 15		Total depth 15.5 ft bgs		<u>8848</u>					-				
	- 20													
	-													
	- 25													
													/	
ł	- 30													

RESOURCE PROTECTION WELL REPORT 24-4-19R START CARD NO. RZ8692 PROJECT NAME: CFW (CONSOLIDATED FREIGHT,) COUNTY: Kens R YE ABB 457 SEN SEN Soc Twn WELL IDENTIFICATION NO. DDRESS OF WELL DRILLING METHOD: HSA Seattle . Marmel Way IVI S Gosa G. Brian DRILLER:___ WATER LEVEL ELEVATION: Cascade Drilling, Inc. FIRM: N/N GROUND SURFACE ELEVATION: _ SIGNATURE:__ 4/7 158 INSTALLED: colder Assoc CONSULTING FIRM: Ves G. Zimmerman DEVELOPED: R . l REPRESENTATIVE: 8146 FORMATION DESCRIPTION WELL DATA AS-BUILT silf sund WELL COVER gravels CONCRETE SURFACE SEAL DEPTH = 1/ftft. 2"x 5' "PVC BLANK BACKFILL TYPE: ber ft. Juy No PVC SCREEN SLOT SIZE: 010 GRAVEL PACK MATERIAL: 2/12 RECEIVED MAY I I 1898 DEPT OF ECOLOGY 15 WELL DEPIH OF PAGE SCALE: 1" . ECY 050-12 (Rov. 11/89)

PR(PR(CF-Seattle DRILLIN NUMBER: 983-1065.810 DRILLIN	REC G MET G DATI	CORI HOD: 4 E: 01/10 1E-75	D OF " HSA)/2001	BC	JRE	HOLE DATUM: I AZIMUTH: COORDIN	NIVI NSL N/A ATES	V-0	surveyed		SHEET 1 ELEVATI INCLINA	of 1 ON: TION: -90
ертн (ft)	B METHOD	SOIL PROFILE	8	UH0 OH10	ELEV,	BER	J.	SAMPLES BLOWS	N	/ ATT	PENETR	ATION F BLOWS	RESISTANCE / ft 30 40 T (PERCENT)	NOTES WATER LEVELS
۵ - ۰	BORING	DESCRIPTION	nsi 	GRAI	DEPTH (ſl)	MUN	≿	140 lb hammer 30 inch drop		REC	w,)		/ w.	Well cap and
		0.0 - 3.0 Fina to medium SAND and Gravel (CLEAN FILL)								*				flush mount flush monument locked Bentonile
5	p hammer	3.0 - 8.5 Compact, dusky yellowish brown, non-stratified sitly fine sand, moist to wet (ALLUVIUM)	SM		3.0	1	мс	9-9-9	18	.1.5		M		Filter pack
	h 140lb dro								, i' i' -	1.5				
10	n Auger wo	8.5 - 10.0 Loose, olive gray, weakly stratified, line sandy SILT, wet (ALLUVIUM)	ML		8.5	2	MC	3-3-3	, 6, . , , , , , , , , , , , , , , , , , ,	1.5				
IQ.	Hollow Sten	10.0 - 17.0 Loose, dark gray, non-stratified, silly fine SAND, wet (ALLUVIUM)			10.0	3	мс	344-4,	8	<u>1.5</u> 1.5	Ť			2* PVC .01"Slotted -> E pipe
	-4 10	Becoming compact	SM			4	мс	4-5-17	22	<u>1.5</u> 1.5				
15						,	•	****	¢,					bottom of
		Boring completed at 17.0 ft.		1464.4	17,0			, , , , , , , , , , , , , , , , , , ,						
20														
				K	,									
25														
			$\left[\right)$											
		* **												
30														
								,						
35														
40														
1 in DRII	to 5 ft LLING	CONTRACTOR: Cascade)GGE ⊣ECK	D: GLZ ED:				•	(Golder

1.....

1

ġ.

RESOURCE PROTECTION WELL REPORT START CARD NO R 46309 PROJECT NAME Consolidated Freighturys COUNTY: King LOCATION SW 14 SW 14 SOC 20 TWN ZUN R 4E AGJ 986 WELL IDENTIFICATION NO The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report DRILLING METHOD _____ STREET ADDRESS OF WELL 6050 E. Marginal Wy So-Seattle DRILLER Cody D. Pulis FIRM Cascade Drilling, Inc. WATER LEVEL ELEVATION. GROUND SURFACE ELEVATION N/A SIGNATURE CONSULTING FIRM _ Golder Associates INSTALLED. _____ 10-00 REPRESENTATIVE Garny Zimmerman DEVELOPED ______ 1017 WELL DATA FORMATION DESCRIPTION AS-BUILT t 0 - 5 ft. WELL COVER CONCRETE SURFACE SEAL DEPTH = 1/ft5-17'ft. arth scand " Olganits PVC BLANK 2 "x 7" BACKFILL TYPE: ft. PVC SCREEN 2 "x /0" SLOT SIZE: _ 010 GRAVEL PACK // ft. MATERIAL: 212 lonstar RECEIVED WELL DEPTH /7. 11 JAN 31 2001 **DEPT. OF ECOLOGY** SCALE 1" . PAGE ____OF ECY 050 12 (Rov 11/09) 90477

PRC PRC LOC)JECT:)JECT ATION	CF-Seattle DRILLING NUMBER: 983-1065.810 DRILLING I: CF- Seattle DRILL, RI	G: CM	HOD: 4 :: 01/10 E-75	" HSA 0/2001			DATUM: N AZIMUTH: COORDIN	MSL N/A IATES	not s	urveye	d	ELEVAT	ION: TION: -90
(U)	BORING METHOD	Soil Profile	nscs	GRAPHIC LOG	ELEV. DEPTH ((t)	NUMBER	түре	SAMPLES BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	PENE 10 WATE W, I	TRATIO BLOW 20 R CONT	N RESISTANCE	NOTES WATER LEVELS GRAPHIC
5	o drop hammer	0.0 - 0.5 Asphalt 0.5 - 6.0 Loose, medium light gray, fine to corse SAND and gravel (FILL) 6.0 - 7.0	SM		0.5 6.0	1	мс	15-17-17	34	<u>1.5</u> 1.5				flush mount
0	Stern Auger woth 140	I to wet (ALLUVIUM) 7.0 - 13.0 Firm, Olive gray, nonstratified SILT, damp to wet (ALLUVIUM)	ML		7.0	2	мс	2-3-5 	8	<u>1.5</u> <u>1.5</u> <u>1.5</u>				2" PVC
r	4" ID Hallow ;	Increase in fine SAND 13.0 - 17.0 Compact, grayish black, nonstratfied, silly fine SAND, wet (ALLUVIUM)	SP-SM		13.0	4	MC	44-11	15	<u>1.3</u> <u>1.5</u>			R ²	pipe
2		Boring completed at 17.0 ft.			17.0	/**5	MC	10-18-17	35	<u>1.5</u> 1.5				bottom of
0														
5														
D														
5														
0														
40 1 in DRI	to 5 ft	CONTRACTOR: Cascade	1	.1	_ 	L LC CH	JGGE HECK	ED; GLZ ED;		_ <u>l</u>	1	ł_	i	Golder

i

ŝ

į.

1 1 1

RESOURCE PROTECTION WELL REPORT START CARONO. R 46309 NUI King 24.4E.2 PROJECTNAME Consolidated Freighturys COUNTY:_ LOCATION SW 4 SW 4 Soc 20 TWO 24/N A AG-J 987 WELL IDENTIFICATION NO STREET ADDRESS OF WELL The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report DRILLING METHOD HSA 6050 E. Marginal WV So-Seattle DRILLER Cody D. Pulis WATER LEVEL ELEVATION FIRM _____Cascade Drilling, Inc. GROUND SURFACE ELEVATION. N/A SIGNATURE INSTALLED ______ Colder Associates CONSULTING FIRM DEVELOPED _____ REPRESENTATIVE Garny Zimmerman 1017 FORMATION DESCRIPTION WELL DATA AS-BUILT ft. WELL COVER CONCRETE SURFACE SEAL DEPTH = 1/ft「--/フ ft. PVC BLANK 2 nacy sand i organics BACKFILL TYPE: ft. PVC SCREEN 2 "x 10" SLOT SIZE: NO GRAVEL PACK 12 ft. MATERIAL: 2.12 lonestor Т ěţ Ze WELL DEPTH /7 11 PAGE____OF__ SCALE 1" -ECY 050-12 (Rev. 11/09) 90478

RESOURCE PROTECTION WELL REPORT King 21. 4E. 20N PROJECTNAME Consolidated Freightuays COUNTY. LOCATION SW 14 SW 14 SOC 20 TWN 24/N R AGJ 988 WELL IDENTIFICATION NO STREET ADDRESS OF WELL DRILLING METHOD _____ 6050 E. Marginal Wy So-Seattle DRILLER Cody D. Pulis FIRM _____ Cascade DEFLYing) Inc. WATER LEVEL ELEVATION. GROUND SURFACE ELEVATION N/A SIGNATURE Golder Associates INSTALLED, 1-10-01 CONSULTING FIRM REPRESENTATIVE Garry Zimmerman DEVELOPED /-10-01 1017 WELL DATA FORMATION DESCRIPTION AS-BUILT I ft. WELL COVER CONCRETE SURFACE SEAL 1 DEPTH = 1/ft5-17'ft. PVC BLANK 2 "X 77 Black sand : organizs BACKFILL **學**9f TYPE: Bentomite Chips ft. -PVC SCREEN 2 "x 10 ' SLOT SIZE: ·010 GRAVEL PACK 12 ft. MATERIAL: 2-12 Constant WELL DEPTH 17 11 PAGE __OF_ SCALE 1" . ECY 050 12 (Roy, 11/09) 90479 ----

The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report

ESN Northwest Travel: Leave:_ Arrive:_____

_

DAILY WORK REPORT

Total Travel Time:_____ Leave:_____ Arrive:____

			Total Work T	ime:					 E,
MATERIALS USED:	START:	<u>Г. оО</u>	FINISH:	10:0	OT:) ()			JOB DAT	16/16
PVC:			Helper'		3rd:			Job#: ′	
PVC Screen:	Operator:	Reina	Helberr						
3/4" 1" 2"		BINGUL	1/					Drill Rig:	45
PVC Riser	CLIENT:	<u>Faral</u>	11014					Sup Truc	:k:
3/4" 1" 2"	JOB LOCA	HUN:	Soc #1	7	\sim			Trailer:	<u>yes</u>
Pre-Pack Screen		Augor	Geotech	LAR	(Other			Other:	/
3/4" 1" 2"	Probe	Auger	Wall Davelon	ment:		Reg C	oncrete Cores		
Pre-Pack Riser	WORK COM		Water Sample	s:	c	Geoprol	be 7800 Cores	:	
3/4" 1"	Holes Total:	9	Water Outlipie			Sub C	oring # & Size		
Slip Caps	Broken Tools/								
Thrd End Caps	Notes:								
J-Plugs									
Other:	RENTALS:								
Misc Well:		Litit blueber	1		Descrip	otion			Liners
8" Mon Reg: Steel:	Tag Number	Hole Number							
5" Mon	ļ ,	mul 1	2 "	dec	mmissico	2	1 Wel	15	
Stick-up				<u> </u>					
Bollards		MWZ	211		chip i	5	place		
General:			- 11	<u> </u>					
Med, Bent. (3)		MW 3	2"						
No. 8 Bent.			- 11						
Grout		mw 4	2						
Sand			2"						
Concrete		MWS	L						
Quickset	····		0 "						
		MW 6	Z						
other:			4						
Other:		RW/Z	47						
5 g-Drum	V								
tini Drūm									
lywood									
robe/Sampling:									
oly Tubing	·								
eflon Tubing									
C Liner 4'	-				· · · · · · · · · · · · · · · · · · ·				
Cliner 5'									
T liner d!									
I LINER D									
P Liner 2'									
ner End Caps									
allers									
ters									
dlar Bags									
OPts					<u> </u>				
od Pts									
sing Pts:2" 3"		<u> </u>							
sing Pts: 4"									
P. Pts	ter a l'Anna de la composition de la co								
sy Draws									
ner Containers									

Please RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER Y Construction/Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Inter K28692 Consulting Firm Unique Ecology Well IDTag No. AEB WELL CONSTRUCTION CERTIFICATIO accept responsibility for construction of this well, and Washington well construction standards. Materials us reported above are true to my best knowledge and belt Driller Bengineer Trainee Name (Print Last, First Name) Pickering, Cole Driller/Engineer /Trainee Signature	print, sign and return NUELL REPORT WELL INSTALLED) <i>Int Number</i> : 453 (<i>RW//2</i>) DN: I constructed and/or its compliance with all led and the information ef. 1 License Number: 8	to the Departm CURREN Property Owner (Site Address 6050 City Seattle Location SW1/4- EWM ⊠ or WW Lat/Long (s, t, r still REQUIRED) Tax Parcel No.53 Cased or Uncased Work/Decommiss Work/Decommiss	IT Notice of Intent No. AE39164 Type of Well ("x in box)
Construction Design		Data	Formation Description
	Well D MONUMENT TYPE 	Data E: ENT: TEMO	Formation Description FORMATION NOT OBSERVED – WELL WAS DECOMMISSIONED REMOVED MONUMENT: (ES) / NO WELL WAS CHIPPED/GROUTED IN PLACE ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP
	WELL DEPTH:	15' GE / OF 7	

Please RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER Construction/Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Inter KAS 692	print, sign and return N WELL REPORT WELL INSTALLED) nt Number:	to the Departm CURREN	IT Notice of Intent No. <u>AE39164</u> Type of Well ("x in box) Resource Protection Geotech Soil Boring Georgtown Crossroads LLC
Consulting Firm		City Spattle	County Vinc
Unique Ecology Well IDTag No	B 454 (MW-3)	Location SW1/4	County King
WELL CONSTRUCTION CERTIFICATION	ON: I constructed and/or	$FWM \boxtimes or WW$	$1/4 \frac{5 \text{ w}}{20} 1/4 3 \text{ sec} \frac{20}{20} 1 \text{ will} \frac{24}{24} \text{ K} \frac{04}{04}$
accept responsibility for construction of this well, and	its compliance with all		
reported above are true to my best knowledge and bel	ef.	still REQUIRED)	Lat Deg MinSec
🗖 Driller 🗆 Engineer 🖬 Trainee		Tax Parcel No.53	Long DegMinSec
Name (Print Last, First Name) Pickering, Cole	Pickering	Cased or Uncased	Diameter 2ⁿ Static Level
Driller or Trainee License No. <u>3216</u>)	Work/Decommiss	ion Start Date 0/6/16
If theings discovered duillants Simulations	1 T ! NT 1	Work/Decommiss	ion Completed Date 0/6/16
Minte Harnalin 250	<i>k</i> License Number:	w ork/Decommiss	ion Completed Date <u>9/6/16</u>
Construction Design	Well D	ata	Formation Description
	MONUMENT TYPE	:	
	Flush		FORMATION NOT OBSERVED – WELL
		_	WAS DECOMMISSIONED
	REMOVED MONUME	ENT: TP/NO	REMOVED MONUMENT: APS / NO
	PVC BLANK: SCREEN :		♥ WELL WAS CHIPPED/GROUTED IN PLACE ■ ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP
	WELL DEPTH:	<u>15´</u>	
	SCALE: 1"= PAGE	E 2 OF 7	

Please p RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER W Construction/Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Interna R & 8692	rint, sign and return WELL REPORT (ELL INSTALLED) t Number: 2	to the Departm CURREN	Type of Well ("x in box) ■ Resource Protection ■ Geotech Soil Boring Beorgtown Crossroads LLC D E Marginal Way S					
Consulting Firm		City Seattle	County King					
Unique Ecology Well IDTag No. 🛛 🕂 🗲	<u>B 452 (Mw-2)</u>	Location SW1/4-	1/4 SW1/4 Sec 20 Twn 24 R 04					
WELL CONSTRUCTION CERTIFICATION accept responsibility for construction of this well, and it Washington well construction standards. Materials used reported above are true to my best knowledge and belief Driller Engineer Trainee Name (Print Last, First Name) <u>Pickering, Cole</u>	N: I constructed and/or s compliance with all d and the information	EWM I or WWM I Lat/Long (s, t, r Lat Deg Min Sec still REQUIRED) Long Deg Min Sec Tax Parcel No.5367204646 State of the sec						
Driller or Trainee License No. <u>3216</u>		Work/Decommiss	ion Start Date 9/6/16					
If train as discussed dutilants Simulations and	T : NI I	Work/Decommiss	ion Completed Date 0/6/16					
Minter icensed armer's Signature and	License Number:	W OIN Decommiss	ion completed Date <u>9/6/16</u>					
Construction Design	Wall D	lata	Formation Demointing					
	wen D		Formation Description					
	REMOVED MONUME	3: ENT: (TE8 /NO	FORMATION NOT OBSERVED – WELL WAS DECOMMISSIONED REMOVED MONUMENT: PES / NO					
	PVC BLANK:		 ✓ WELL WAS CHIPPED/GROUTED IN PLACE □ ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP 					
	SCR EEN :							
	WELL DEPTH:	<u>15</u>						

Please p RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER W Construction/Decommission ("x" in box) Construction	rint, sign and return WELL REPORT /ELL INSTALLED) t Number:	to the Departm CURREN	Type of Well ("x in box) ■ Resource Protection Geotech Soil Boring Beorgtown Crossroads LLC D E Marginal Way S
Consulting Firm		City Seattle	County King
Unique Ecology Well IDTag NoAEB	451 (mw-1)	Location SW1/4-	1/4 SW1/4 Sec 20 Twn 24 R 04
WELL CONSTRUCTION CERTIFICATIO accept responsibility for construction of this well, and it Washington well construction standards. Materials use reported above are true to my best knowledge and belief	N: I constructed and/or is compliance with all d and the information f.	EWM 🖾 or WW Lat/Long (s, t, r still REQUIRED)	M Min Sec Long Deg Min Sec
□ Driller □ Engineer K Tranee Name (Print Last, First Name) <u>Pickering, Cole</u>	0.1.1.2.0	Tax Parcel No. <u>530</u>	5/204646
Driller/Engineer /Trainee Signature <u>Lole</u>	YICKEANNY	Cased or Uncased	Diameter Static Level
Driller or Trainee License No. <u>5210</u>		Work/Decommiss	ion Start Date <u>9/6/16</u>
If trainee, picensed driller's Signature and	License Number:	Work/Decommiss	ion Completed Date <u>9/6/16</u>
Minta Marndu 2508	, 	•	
Construction Design	Well D	Data	Formation Description
	MONUMENT TYPE <u><i>Flush</i></u> REMOVED MONUME	3: ENT: XE 3 /NO	FORMATION NOT OBSERVED – WELL WAS DECOMMISSIONED REMOVED MONUMENT: ES / NO
	PVC BLANK:		VELL WAS CHIPPED/GROUTED IN ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP
	SCR E EN :		
	WELL DEPTH:	<u>15</u> E 4 OF 7	

Ecology is an Equal Opportunity Employer
Please p RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER W Construction/Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Internet K46309	rint, sign and return f WELL REPORT ELL INSTALLED) * Number:	to the Department of Ecology CURRENT Notice of Intent No. <u>AE39164</u> Type of Well ("x in box) Resource Protection Geotech Soil Boring Property Owner <u>Georgtown Crossroads LLC</u> Site Address <u>6050 E Marginal Way S</u>			
Unique Ecology Well IDTag No.	T986 (MULD)	City <u>Seattle</u>	County King		
		Location <u>SW</u> 1/4-1	$/4 \frac{SW}{1/4}$ Sec 20 Twn 24 R 04		
WELL CONSTRUCTION CERTIFICATIO accept responsibility for construction of this well, and it Washington well construction standards. Materials user reported above are true to my best knowledge and belief Driller Engineer Trainee Name (Print Last, First Name) <u>Pickering, Cole</u> Driller/Engineer /Trainee Signature <u>Cute</u> Driller or Trainee License No. <u>3216</u>	N: I constructed and/or s compliance with all 1 and the information	EWM [X] or WWI Lat/Long (s, t, r still REQUIRED) Tax Parcel No. <u>536</u> Cased or Uncased Work/Decommissi	M [] Lat Deg MinSec Long DegMinSec 57204646 Diameter 2 "Static Level on Start Date <u>9/6/16</u>		
If trainee licensed driller's Signature and	License Number:	Work/Decommissi	on Completed Date <u>9/6/16</u>		
Muño Harnden 2508	,				
Construction Design	Well Da	ata	Formation Description		
	MONUMENT TYPE: <u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u></u>		FORMATION NOT OBSERVED – WELL WAS DECOMMISSIONED		
	PVC BLANK:		WELL WAS CHIPPED/GROUTED IN PLACE		
	SCR E E N :		BACKFILLED BOTTOM UP		
	WELL DEPTH:	17			
	SCALE: 1"= PAG	E_5_0F_7_			

Ecology is an Equal Opportunity Employer

Construction	Please p RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER W	orint, sign and return WELL REPORT	n to the Departm	nent of Ecology IT Notice of Intent No. <u>AE39164</u>		
ORIGINAL INSTALLATION Notice of Intent Number: Yester State Address 6050 P Marginal Way S Consulting Firm	Construction/Decommission ("x" in box) Construction Decommission			Type of Well ("x in box) Resource Protection Geotech Soil Boring		
K44309 Site Address 6050 E Marginal Way S Consulting Firm City Sentile County King Unique Ecology Well IDTag No. AGT-987 City Sentile County King WELL CONSTRUCTION CERTHICATION: I constructed inder incombine or more trapped allows as the to my beak incovdeg and held. Location SW14-1/4 SW14 Sec 201 Ym 24 R 04 Exponsibility for ensemble of this well, and is compliance with all incompliance with all incomplintered with all incomplinter with all incompli	ORIGINAL INSTALLATION Notice of Inten	nt Number:	Property Owner (Georgtown Crossroads LLC		
Consulting Firm City Seattle County King Unique Ecology Well IDTag No. AGT-987 City Seattle County King WFLL CONSTRUCTION CERTIFICATION: Logarinated and/or according the information control draw are the tony text knowledge and blic? EWM ⊠ = EWM ⊠ = □ Drifter D Inspect M Traine Statistic Scale Min			Site Address 605	0 E Marginal Way S		
Unique Ecology Well IDTag NoAGT-987 WELL DEPTH: Unique Ecology Well IDTag NoAGT-987 WELL DEPTH: Unique Ecology Well IDTag NoAGT-987 WELL DEPTH: Unique Ecology Well IDTag NoAGT-987 Unique Ecology Well IDTag No Construction Design Well Data Formation Description MONUMENT TYPE: FORMATION NOT OBSERVED - WELL WS DECOMMISSIONED REMOVED MONUMENT: V@NO REMOVED MONUMENT: V@NO REMOVED MONUMENT: V@NO Well WAS CHIPPED/GROUTED IN PLACE UNAS CHIPPED/GROUTED IN PLACE U ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP SCR EEN: WELL DEPTH: VULL DEPTH:	Consulting Firm		City Seattle	County King		
WELL CONSTRUCTION CERTIFICATION: Lonsinued and/or accept reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance with all were reparadulity for construction of fails well, and its compliance were well. If traincer, ficence is not be showed well were reparadulity for construction of fails well, and its compliance well. Well Deters fails well, fails well, fails were reparadulity for construction of fails well, fails were reparadulity for construction of the method were r	Unique Ecology Well IDTag No AG	J-987	Location SW1/4-	1/4 SW1/4 Sec 20 Twn 24 R 04		
reported above are tree on whost knowledge and belief. still REQUIRED Long DegMinStec □ Driller □ Brighter Manne Distribution. Stell REQUIRED Long DegMinStec □ Driller □ Brighter Manne Distribution. Stell REQUIRED Long DegMinStec □ Driller □ Brighter Manne Distribution. Stell REQUIRED Long DegMinStec □ Driller □ Brighter Manne Distribution. Stell REQUIRED Long DegMinStec □ Driller □ Brighter All Distribution. Stell Requires and License Number: Work/Decommission Start Date 9/6/16 □ Trainer License Number: Work/Decommission Completed Date 9/6/16 Work/Decommission Completed Date 9/6/16 □ Construction Design Well Data Formation Description □ MONUMENT TYPE:	WELL CONSTRUCTION CERTIFICATIO accept responsibility for construction of this well, and i Washington well construction standards. Materials use	N: I constructed and/or ts compliance with all ed and the information	EWM 🛛 or WW Lat/Long (s, t, r	$M \square$ Lat Deg Min Sec		
□ Ditc: □ Equipeer d' Trainee Tainee Tainee Tainee Tainee Tainee License No. 3267204646 Oralle ringingeer / Trainee License No. 3216 Tainee / License No. 3216 Cased or Uncased Diameter? * Static Level Driller or Trainee License No. 3216 Work/Decommission Start Date 9/6/16 Work/Decommission Start Date 9/6/16 If trainee / License No. 3216 Work/Decommission Completed Date 9/6/16 Formation Description Construction Design Woll Data Formation Description Construction Design MONUMENT TYPE: 	reported above are true to my best knowledge and belie	f.	still REQUIRED)	Long Deg Min Sec		
Name (Finit Lat, Field Kino) Cased or Uncased Diameter2 *Static Level	Driller Engineer Trainee		Tax Parcel No. <u>53</u>	<u>67204646</u>		
Driller of Tables A. Lives PNO: 3216 Driller of Tables of Tables 216 If trained Livense No: 3216 If	Name (Print Last, First Name) <u>Pickering, Cole</u>	Pickering	Cased or Uncased	Diameter 2 [*] Static Level		
With Decommission Start Date 20218 Work/Decommission Completed Date 20216 Work/Decommission Completed Date 20216 Construction Design Well Data Formation Description MONUMENT TYPE:	Driller or Trainee License No. <u>3216</u>		Work/Decommise	ion Start Data 0/2/12		
Work/Decommission Completed Date 9/6/16 Work/Decommission Completed Date 9/6/16 Construction Design Well Data Formation Description MONUMENT TYPE:			work/Decommiss	Ion Start Date <u>9/6/16</u>		
Construction Design Well Data Formation Description MONUMENT TYPE:	If trainee ficensed driller's Signature and	License Number:	Work/Decommiss	ion Completed Date <u>9/6/16</u>		
MONUMENT TYPE:	Construction Design	Well I	Data	Formation Description		
Image: Construction of the second		MONUMENT TYP	E:			
WAS DECOMMISSIONED REMOVED MONUMENT: YONO REMOVED MONUMENT: YONO REMOVED MONUMENT: YONO VELL WAS CHIPPED/GROUTED IN PLACE U ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP SCREEN: WELL DEPTH:		fluch		FORMATION NOT OBSERVED - WELL		
REMOVED MONUMENT: YONO REMOVED MONUMENT: YONO REMOVED MONUMENT: YONO WELL WAS CHIPPED/GROUTED IN PLACE D ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP SCREEN: WELL DEPTH:7				WAS DECOMMISSIONED		
REMOVED MONOMENT: YEAR ON REMOVED MONUMENT: YEAR ON THE ACCENT AND A CONTROL OF THE ACCENT.		DEMONED MONUM	ENT. VA			
PVC BLANK: Image: Constraint of the second seco		KEMOVED MONUM	ENI: YEYNO			
VC B LANK:				REMOVED MONUMENT: PEST NO		
V WELL WAS CHIPPED/GROUTED IN PVC BLANK:						
VELL WAS CHIPPED/GROUTED IN PVC BLANK: D ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP SCREEN: WELL DEPTH:						
PVC BLANK: PVC BLANK: ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP				WELL WAS CHIPPED/GROUTED IN		
PVC BLANK: D ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP SCREEN:				PLACE		
PVC BLANK: □ ALL CASING WAS REMOVED AND BACKFILLED BOTTOM UP SCREEN: BACKFILLED BOTTOM UP WELL DEPTH:? WELL DEPTH:?						
SCREEN:		PVC BLANK:				
SCREEN:						
SCREEN:						
WELL DEPTH:						
WELL DEPTH:		CODEEN.				
WELL DEPTH:		SCREEN:				
WELL DEPTH:						
WELL DEPTH:						
WELL DEPTH:						
WELL DEPTH:						
WELL DEPTH:						
WELL DEPTH:						
WELL DEPTH:						
WELL DEPTH:						
		TUTIT DESERT	1.51			
		WELL DEPTH:	<i>↓</i>			
		SCALE: 1"= PAC	E 6 0E 7			

Please p RESOURCE PROTECTION (SUBMIT ONE WELL REPORT PER V Construction/Decommission ("x" in box) Construction Decommission ORIGINAL INSTALLATION Notice of Inter R 46309	orint, sign and return (WELL REPORT VELL INSTALLED) <i>Int Number</i> :	to the Department of Ecology CURRENT Notice of Intent No. <u>AE39164</u> Type of Well ("x in box) Resource Protection Geotech Soil Boring Property Owner <u>Georgtown Crossroads LLC</u>			
Consulting Firm		City Souttle	County King		
Unique Ecology Well IDTag No	T-988 (MW-4)	Location SW1/4-1	County King		
WELL CONSTRUCTION CERTIFICATIO	N: I constructed and/or	EWM \boxtimes or WW	$M \square$		
accept responsibility for construction of this well, and	its compliance with all				
reported above are true to my best knowledge and belie	of.	still REQUIRED)	Lat Deg MinSec _		
Driller 🗆 Engineer 🖌 Trainee		Tax Parcel No.536	57204646		
Name (Print Last, First Name) <u>Pickering, Cole</u>	Pickering	Cased or Uncased	Diameter $2^{\prime\prime}$ Static Level		
Driller or Trainee License No. <u>3216</u>	1	Work/Decommissi	on Start Date 9/6/16		
If trained disensed driller's Signature and	Liconce Number	Work/Decommissi	on Completed Date 0/6/16		
More Harnden 250	License Number:	W OIK Decommissi	on Completed Date <u>9/0/10</u>		
Construction Design	Well Da	ata	Formation Description	1	
	MONUMENT TYPE	:			
	<u> </u>		WAS DECOMMISSIONED		
		0			
	REMOVED MONUME	NT: KESNO			
			REMOVED MONUMENT:	SVI NO	
				UTED IN	
			PLACE		
	PVC BLANK:				
			□ ALL CASING WAS REMOVED AND BACKELLED BOTTOM UP		
			BROKI IEEEB BOTTOM OF		
	SCREEN:				
	WELL DEPTH	17'			
		<u></u>			
	SCALE: 1"= PAGE	E_7_OF_7_			

APPENDIX G SOIL DISPOSAL DOCUMENTATION

CLEANUP ACTION CLOSURE REPORT 6050 East Marginal Way South Seattle, Washington

Farallon PN: 1071-010

November 1998 - Soil Disposal Documentation

۲	S TECHNO	DLOGIES INC	30. 0000 1		-
Tacoma,WA	Soil Data and C	ertification Sheet	Date: _		
GENERATOR: <u>Consolidated Freig</u> Mailing Address: <u>175 Linfield Drive</u> Menlo Park, CA 9	jhtways 04025	CONSULTANT:Gol Address:4104-148t Redmond,	der Associa ch Ave. N.I WA 98052	<u>ates. Inc.</u> E.	
Contact: Ms. Lynne Carlson		Contact: <u>Rob Long</u>	/ Gary Zim	nerman	han dawalan da ang ang ang ang ang ang ang ang ang an
Phone: (<u>650 326-)1700</u>		Phone: (425)	<u>883-0777</u> 382-5498	an a	
Fac (ghtways, Seatt	TRANSPORTER:	IPS Technol	ógies	
Street Address: 6050_East_Marginal Seattle, WA	1_Way_South	Address:	· <u>····································</u>		
Contact:		Contact:	·		
Phone ()		Phone: ()		<u></u>	
Fax: ()	<u> </u>	Fax: ()		دىر ئە كەمۇرىيە يالى يۇرىيىسىدىد. چىلى	
Type of contamination (gas, diesel, used on, How did soil contamination occur? Refer ip: Source of Contamination: IN UST AST Name of Testing Lab: Sound And How and where at site were samples taken? Pile. Plos 3 famoles (diff) Please check appropriate box below and atta discrete grab samples should be collected wi iess, seven samples for 1500 tons or less, ter I certify that the soil referenced herein is contaminated solely by virgin petroleum products from leaking under- ground storage tank(s).	SPILL	ERGENCY RESPONSE Contact: TOM WO MARKENCY RESPONSE Contact: TOM WO MARKENCY Called States Contact: TOM WO Called States Contact: Tom Called States Contac	TUCABE TUCABE DOTHER <u>150</u> P N 1.5 ft be <u>150 (0.0.4)</u> nethodologies us first 150 tons; f ul sample for eac te soil referenced hydrocarbon prod	<u>TANK AN</u> whone: 1-253 <u>JUW SUN</u> <u>JUW SUN</u> <u>JUW SUN</u> <u>ind. Unless other</u> five samples for hore in is used of herein is	-922-2310 toto of toto of totos or il tons. il or source other ing a Love-ground
(WTPH-G, WTPH-D, 418-1) 2. Benzene' toluene' ethylbenzene' xylene (Method 8020 BTEX for gasoline soils only) 3. Total lead (Method 6010, 7420, or 7421 for gasoline soils only) Total (Matals and 6010)	Halogenated Volatile O Pesticides and PCB's (Total metals concentrat	frganics (Method 8010, 8021 Method 8080) tion for (a) through (h): *	, or \$240) (a) arsenic (b) barium (c) cadmium are detected, addit	(d) chromium (e) lead (f) mercury tional analyses f	(g) selenium (h) silver ar TCLP beazene
<u>ALCO VON ON I UT MEDITA II a</u> No soils referenced herein may be det assigns a delivery date. If any soils delivery waste" pursuant to state regulations, Cli- acting as Client's agent, may arrange for This is a complete and accurate descri- known or suspected hazards have been defined by U.S. Environmental Protecti- concerning other TCLP constituents have required analysis reports are attached.	In terms in a second se	icate is received and appro- nd to be "hazardous waste" ponsible for their removal. renced herein; no deliberate rther hereby certify that the ate of Washington, or local rher certify that the soils re	ved by TPST, and pursuant to feder If Client fails to or willful omiss soil is not "haza regulations, and eferenced herein	d TPST issues in ral regulations is so remove such sions have been urdous" or "dan i that no other I contain no free <i>II/10/9/</i>	manifest(s) and or "dangerous a soils, TPST, made and all gerons" as cnowledge a liquids, All

required analysis reports are attached.	(L. law)	11/10/98
Generator/Owner Authorized Signature	ayon	Date:
Print Name HANR CARLSON	Titlo:	GC, CNV FTDGTGMD

Soil Master (c)

¥

Customer Job Report Gross & Tare Weight Codes: M=Manual; S=Scale; T=Trk File

TPS Technologies, Inc.

P 1 marcanet a marcanet second

Job Number Name		SiteAddress		SiteCity		ZipCode	
A03 020	91 CONSOLIDATE	D FREIGHT	6050 EAST MARGINAL WA	Y SOUTH	SEATTLE	WA	00000
Load #	Date & Time Out	Transporter #	Truck & Trailer Number	Gross	Tare	Net	Nct Wt
1	11/16/09 00-50	1000500		(lb)	(lb)	(lb)	(lons)
1	11/10/9808:58	1003608	MERLIN	114,920M	40,440M	74,480	37.24
1	11/16/9808:59	1003608	SCOTT	113,920M	38,160M	75,760	37,88
3	11/16/9808:59	1003608	SHANE	108,340M	38,560M	69,780	34.89
4	11/16/9809:00	1003608	JOHN	103,740M	46,700M	57,040	28.52
2	11/16/9809:00	1003608	MERLIN	110,120M	40,440M	69,680	34 84
6	11/16/9809.01	1003608	SCOTT	109,480M	38,160M	71.320	35.66
7	11/16/9809:01	1003608	SHANE	110,040M	38.560M	71,480	35.74
8	11/16/9809:01	1003608	JOHN	109.420M	46.700M	62 720	3136
9	11/16/9809:02	1003608	MERLIN	106.160M	40.440M	65 720	32.00
10	11/16/9809:02	1003608	SCOTT	110.480M	38 160M	72 320	36.16
11	11/16/9809:03	1003608	SHANE	110.180M	38 560M	71 620	36.10
12	11/16/9809:03	1003608	JOHN	110 260M	46 700 M	62 560	33.01
13	11/16/9809:03	1003608	MERLIN	114 320	40,700111	72 990	31.78
14	11/16/9809:03	1003608	SCOTT	111 360M	38 16034	72 200	30,94
15	11/16/9809:04	1003608	ALLEN	90 74034	37 68034	57 060	30,60
16	11/16/9809:04	1003608	SCOTT	100 360M	A1 000M	55,000	20.73
17	11/16/9809:04	1003608	IAY	104 58014	41,900101	58,460	29.23
18	11/16/9809:05	1003608	IR	107,060101	43,2401VI	61,340	30,67
19	11/16/9809:05	1003608	DUSTIN	107 23034	37,280IM	04,780	32.39
20	11/16/9809.06	1003608	SHANE	107,5201VI	41,400M	05,860	32,93
21	11/16/9809.07	1003608	IOUNI	102,920M	38,560M	64,360	32.18
22	11/16/98/09:07	1003608		93,040M	46,700M	46,340	23.17
23	11/16/98 00:00	1003608	DECCY	102,080M	38,000M	64,080	32,04
2.5 7.4	11/16/08 00-10	1003009	reuur	82,900M	33,680M	49,220	24,61
24	11/16/09 00-10	1003008	DAN	104,420M	41,400M	63,020	31,51
23	11/10/98/09:12	1003008	AL	115,500M	42,560M	72,940	36.47
()		18 · · · ·		· · · · · · · · · · · · · · · · · · ·			

33.30%	Manifests Received	Completed Weight 60.60%	Estimated Weight 1,350.00(tons)	TOTAL Net Wt: 818.01 (tons)
<u>-</u>		· · · · · ·	Call	
Post-It* Fax Note	7671 Date////	pague -	CORRECTED	
To GARY Limm	UPAIAN From LENCE	thelino	/1	
Co.Depilor	ASSR CO. TPS		LOPY	
Phone #	Phone # 25-3/5	84-84/30		
Fax # 125/582	-57/58 Fax #			
- ja optime		and and the state of the state		

[SM-RPT9]

11/17/98

March 14 to 31, 2017 - Soil Disposal Documentation

Waste Management

Customer Summary Report

Criteria: 03/01/2017 12:00 AM to 03/31/2017 11:59 PM

Business Unit Name: 8th Avenue Facility - S09681 (USA)

User: Imercer

Date: Mar 31 2017, 5:17:41 PM - Central Standard Time

Customer Name: WYSER CONSTRUCTION (GEORGETOWN CROSSROADS LLC)

Profile: 112159WAD

Ticket Date	Ticket ID	Customer	Generator	Profile	Truck	Tons
3/20/2017	2606	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	28.45
3/20/2017	2607	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	29.79
3/20/2017	2609	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	29.63
3/20/2017	2610	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	32.25
3/20/2017	2613	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	31.70
3/20/2017	2615	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	38.73
3/20/2017	2617	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	30.58
3/20/2017	2619	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	31.84
3/20/2017	2621	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	33.26
3/20/2017	2622	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	35.09
3/20/2017	2624	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	28.48
3/20/2017	2625	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	28.48
3/20/2017	2627	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	29.95
3/20/2017	2629	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	35.12
3/20/2017	2630	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	30.28
3/21/2017	2632	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	31.12
3/21/2017	2633	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	32.94
3/21/2017	2635	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	31.37
3/21/2017	2639	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	31.95
3/21/2017	2643	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	30.78
3/21/2017	2644	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	32.58
3/24/2017	2762	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	27.35
3/24/2017	2764	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	28.64
3/24/2017	2765	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	28.63
3/27/2017	2768	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	28.11
3/27/2017	2770	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	34.94
3/27/2017	2773	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	32.40
3/27/2017	2775	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	32.82
3/27/2017	2779	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	34.39
3/27/2017	2783	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	32.96
3/27/2017	2786	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	29.94
3/27/2017	2787	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	31.19
3/27/2017	2790	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	33.64
3/27/2017	2793	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	33.39
3/27/2017	2795	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	26.94
3/27/2017	2796	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	28.35

Waste Management

3/27/2017	2798	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	32.41
3/27/2017	2800	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	33.07
3/29/2017	2843	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	30.98
3/29/2017	2847	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	32.21
3/29/2017	2852	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	33.13
3/29/2017	2855	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	W30	27.17
3/29/2017	2858	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	31.41
3/30/2017	2861	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	31.76
3/30/2017	2862	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	32.84
3/30/2017	2864	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	32.60
3/30/2017	2867	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	32.85
3/30/2017	2869	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	33.89
3/30/2017	2871	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	29.65
3/30/2017	2873	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	31.81
3/30/2017	2875	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	28.22
3/30/2017	2880	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	33.25
3/30/2017	2881	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	31.36
3/31/2017	2899	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	30.83
3/31/2017	2900	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	ZS7	29.63
3/31/2017	2902	WYSER CONSTRUCTION	WA-GEORGETOWN CROSSROADS LLC	112159WAD	LL4	26.39
Material Total	56					1753.52

All Ticket Types

Republic Services/Regional Disposal

Specific Contract(s) : 'LW-17038'

History and Waiting

* - Confirmed Qty Applied to Billing

LW-17038

Ticket Date		Customer	Material	Billing Quantity	
03/14/2017	947176	012878 - Wyser Construction	SW-CONT SOIL W/FUE	25.61	TN
03/14/2017	947183	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	25.69	TN
03/14/2017	947184	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	24.79	TN
03/14/2017	947190	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	30.03	TN
03/14/2017	947192	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	31.80	TN
03/14/2017	947195	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	32.96	TN
03/14/2017	947198	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	27.26	TN
03/14/2017	947199	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	29.50	TN
03/14/2017	947203	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	29.87	TN
03/14/2017	947204	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	30.12	TN
03/14/2017	947208	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	30.60	TN
03/15/2017	947216	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	25.20	TN
03/15/2017	947217	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	23.80	TN
03/15/2017	947225	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	24.23	TN
03/15/2017	947228	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	21.65	TN
03/17/2017	947300	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	27.71	TN
03/17/2017	947301	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	28.18	TN
03/17/2017	947302	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	32.21	TN
03/17/2017	947304	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	35.22	TN
03/17/2017	947306	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	31.24	TN
03/17/2017	947307	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	30.56	TN
03/17/2017	947309	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	30.93	TN
03/17/2017	947311	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	29.67	TN
03/17/2017	947315	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	30.92	TN
03/17/2017	947317	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	33.05	TN
03/17/2017	947321	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	32.19	TN
03/17/2017	947323	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	30.67	TN
03/17/2017	947325	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	31.84	TN
03/17/2017	947333	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	29.43	TN
03/17/2017	947338	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	31.30	TN
03/17/2017	947340	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	29.26	TN
03/17/2017	947343	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	13.65	TN
03/17/2017	947344	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	32.49	TN
03/17/2017	947345	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	29.32	TN
03/17/2017	947346	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	14.93	TN

03/23/2017	947475	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	28.55	ΤN
03/23/2017	947476	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	31.17	ΤN
03/23/2017	947484	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	32.57	ΤN
03/23/2017	947487	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	29.80	ΤN
03/23/2017	947497	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	30.72	ΤN
03/23/2017	947507	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	31.02	ΤN
03/23/2017	947511	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	28.83	ΤN
03/23/2017	947513	012878 - Wyser Construction	SW-CONT SOIL W/FUEI	31.52	ΤN

Items Reported:

Material

Tickets

Weight Inbound Out

43

VH - SW-CONT SOIL W/FUEL

43

1,242.06

Republic Services/Regional Disposal

Prologis, Inc. PRO-17-1495 Georgetown Crossroads-Soil Cleanup

DATE: March 14, 2017

LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION		TYPE OF	TONNAGE	
NO.	COMPANY	#	TIME	QUANTITY		DATE	MATERIALS	SLIPS	
					The second se				
1	L & L Transport	4030/947183	9:37 AM	25.69 ton	Regional Disposal	3/14/2017	Class 3 Soil	25.69	
2	L & L Transport	4030/947192	11:22 AM	31.80 ton	Regional Disposal	3/14/2017	Class 3 Soil	31.80	
3	L & L Transport	4030/947198	12:29 PM	27.26 ton	Regional Disposal	3/14/2017	Class 3 Soil	27.26	
4	L & L Transport	4030/947203	1:07 PM	29.87 ton	Regional Disposal	3/14/2017	Class 3 Soil	29.87	1
5	L & L Transport	4030/947208	1:50 PM	30.60 ton	Regional Disposal	3/14/2017	Class 3 Soil	30.60	145.22
6	Z & S Trucking	1669/947176	8:12 AM	25.61 ton	Regional Disposal	3/14/2017	Class 3 Soil	25.61	
7	Z & S Trucking	1669/947184	9:42 AM	24.79 ton	Regional Disposal	3/14/2017	Class 3 Soil	24.79	
8	Z & S Trucking	1669/947190	11:06 AM	30.03 ton	Regional Disposal	3/14/2017	Class 3 Soil	30.03	
9	Z & S Trucking	1669/947195	11:46 AM	32.96 ton	Regional Disposal	3/14/2017	Class 3 Soil	32.96	
10	Z & S Trucking	1669/947199	12:37 PM	29.50 ton	Regional Disposal	3/14/2017	Class 3 Soil	29.50	
11	Z & S Trucking	1669/947204	1:23 PM	30.12 ton	Regional Disposal	3/14/2017	Class 3 Soil	30.12	173.01
12			te filiada da da da da						
13									
14									
15									
16									
17									
18									
19									
20					Class	3 Soil	Total Tons	318.23	
21				3					
22									
23									

Prologis, Inc. PRO-17-1495 Georgetown Crossroads-Soil Cleanup

DATE: March 15, 2017

LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION		TYPE OF	TONNAGE
NO.	COMPANY	#	TIME	QUANTITY		DATE	MATERIALS	SLIPS
					2			
1	L & L Transport	4031/947216	8:40 AM	25.20 ton	Regional Disposal	3/15/2017	Class 3 Soil	25.20
2	L & L Transport	4031/947225	11:59 AM	24.23 ton	Regional Disposal	3/15/2017	Class 3 Soil	24.23 4
3	Dave Owens Trucking	734434/947217	8:42 AM	23.80 ton	Regional Disposal	3/15/2017	Class 3 Soil	23.80
4	Dave Owens Trucking	734434/947228	12:02 PM	21.65 ton	Regional Disposal	3/15/2017	Class 3 Soil	21.65
5								
6								
7						*		
8								
9								
10								
11								
12					<u> </u>			
13								
14								
15	i .						1	
16)							
17	7 							
18					<u> </u>			
19)			<u></u>	01		Tatal Tana	04.99
20)				Class	3 501		94.00
21								
22							<u> </u>	
23								

.

Prologis, Inc. PRO-17-1495 Georgetown Crossroads-Soil Cleanup

DATE: March 17, 2017

LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION		TYPE OF	TONNAGE	
NO.	COMPANY	#	TIME	QUANTITY	1	DATE	MATERIALS	SLIPS	
1	Wyser Construction	3167/947343	2:47 PM	13.65 ton	Regional Disposal	3/17/2017	Class 3 Soil	13.65	
2	Wyser Construction	3167/947346	3:18 PM	14.93 ton	Regional Disposal	3/17/2017	Class 3 Soil	14.93	28.58
3	L & L Transport	4033/947301	7:51 AM	28.18 ton	Regional Disposal	3/17/2017	Class 3 Soil	28.18	2
4	L & L Transport	4033/947304	8:25 AM	35.22 ton	Regional Disposal	3/17/2017	Class 3 Soil	35.22	
5	L & L Transport	4033/947307	9:01 AM	30.56 ton	Regional Disposal	3/17/2017	Class 3 Soil	30.56	
6	L & L Transport	4033/947311	9:47 AM	29.67 ton	Regional Disposal	3/17/2017	Class 3 Soil	29.67	
7	L & L Transport	4033/947317	10:31 AM	33:05 ton	Regional Disposal	3/1,7/2017	Class 3 Soil	33.05	
8	L & L Transport	4033/947323	11:15 AM	30.67 ton	Regional Disposal	3/17/2017	Class 3 Soil	30.67	
9	L & L Transport	4033/947345	3:06 PM	29.32 ton	Regional Disposal	3/17/2017	Class 3 Soil	29.32	216.67
10	Z & S Trucking	1671/947300	7:44 AM	27.71 ton	Regional Disposal	3/17/2017	Class 3 Soil	27.71	
11	Z & S Trucking	1671/947302	8:15 AM	32.21 ton	Regional Disposal	3/17/2017	Class 3 Soil	32.21	
12	Z & S Trucking	1671/947306	8:55 AM	31.24 ton	Regional Disposal	3/17/2017	Class 3 Soil	31.24	
13	Z & S Trucking	1671/947309	9:41 AM	30.93 ton	Regional Disposal	3/17/2017	Class 3 Soil	30.93	
14	Z & S Trucking	1671/947315	10:22 AM	30.92 ton	Regional Disposal	3/17/2017	Class 3 Soil	30.92	
15	Z & S Trucking	1671/947321	11:00 AM	32.19 ton	Regional Disposal	3/17/2017	Class 3 Soil	32.19	
16	Z & S Trucking	1671/947325	11:42 AM	31.84 ton	Regional Disposal	3/17/2017	Class 3 Soil	31.84	
17	Z & S Trucking	1671/947333	12:42 PM	29.43 ton	Regional Disposal	3/17/2017	Class 3 Soil	29.43	
18	Z & S Trucking	1671/947338	1:15 PM	31.30 ton	Regional Disposal	3/17/2017	Class 3 Soil	31.30	
19	Z & S Trucking	1671/947340	2:00 PM	29.26 ton	Regional Disposal	3/17/2017	Class 3 Soil	29.26	
20	Z & S Trucking	1671/947344	2:51 PM	32.49 ton	Regional Disposal	3/17/2017	Class 3 Soil	32.49	339.52
21									
22									
23					Class	3 Soil	Total Tons	584.77	
24									

Prologis, Inc. PRO-17-1495 Georgetown Crossroads-Soil Cleanup

DATE: March 20, 2017

1		i		r i		ſ	ī.	1	
LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION		TYPE OF	TONNAGE	
NO.	COMPANY	#	TIME	QUANTITY		DATE	MATERIALS	SLIPS	
1	Wyser Construction	3168/2607	9:00 AM	29.79 ton	Waste Management	3/20/2017	Class 3 Soil	29.79	
2	Wyser Construction	3168/2610	9:47 AM	32.25 ton	Waste Management	3/20/2017	Class 3 Soil	32.25	
3	Wyser Construction	3168/2615	11:07 AM	38.73 ton	Waste Management	3/20/2017	Class 3 Soil	38.73	r.
4	Wyser Construction	3168/2619	12:14 PM	31.84 ton	Waste Management	3/20/2017	Class 3 Soil	31.84	
5	Wyser Construction	3168/2622	12:52 PM	35.09 ton	Waste Management	3/20/2017	Class 3 Soil	35.09	
6	Wyser Construction	3168/2625	1:28 PM	28.48 ton	Waste Management	3/20/2017	Class 3 Soil	28.48	
7	Wyser Construction	3168/2629	2:28 PM	35.12 ton	Waste Management	3/20/2017	Class 3 Soil	35.12	231.30
8	L & L Transport	4035/2606	8:58 AM	28.45 ton	Waste Management	3/20/2017	Class 3 Soil	28.45	÷
9	L & L Transport	4035/2609	9:41 AM	29.63 ton	Waste Management	3/20/2017	Class 3 Soil	29.63	
10	L & L Transport	4035/2613	10:51 AM	31.70 ton	Waste Management	3/20/2017	Class 3 Soil	31.70	
11	L & L Transport	4035/2617	11:45 AM	30.58 ton	Waste Management	3/20/2017	Class 3 Soil	30.58	
12	L & L Transport	4035/2621	12:36 PM	33.26 ton	Waste Management	3/20/2017	Class 3 Soil	33.26	
13	L & L Transport	4035/2624	1:21 PM	28.48 ton	Waste Management	3/20/2017	Class 3 Soil	28.48	
14	L & L Transport	4035/2627	2:03 PM	29.95 ton	Waste Management	3/20/2017	Class 3 Soil	29.95	
15	L & L Transport	4035/2630	2:45 PM	30.28 ton	Waste Management	3/20/2017	Class 3 Soil	30.28	242.33
16									
17									
18									
19									
20					Class	3 Soil	Total Tons	473.63	
21									
22									
23									

Prologis, Inc. PRO-17-1495 Georgetown Crossroads-Soil Cleanup

DATE: March 21, 2017

LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION		TYPE OF	TONNAGE	
NO.	COMPANY	#	TIME	QUANTITY	-	DATE	MATERIALS	SLIPS	
1	Wyser Construction	3169/2632	7:51 AM	31.12 ton	Waste Management	3/21/2017	Class 3 Soil	31.12	
2	Wyser Construction	3169/2633	8:24 AM	32.94 ton	Waste Management	3/21/2017	Class 3 Soil	32.94	
3	Wyser Construction	3169/2635	8:54 AM	31.37 ton	Waste Management	3/21/2017	Class 3 Soil	31.37	1
4	Wyser Construction	3169/2639	9:55 AM	31.95 ton	Waste Management	3/21/2017	Class 3 Soil	31.95	
.5	Wyser Construction	3169/2643	10:35 AM	30.78 ton	Waste Management	3/21/2017	Class 3 Soil	30.78	
6	Wyser Construction	3169/2644	11:13 AM	32.58 ton	Waste Management	3/21/2017	Class 3 Soil	32.58	190.74
7		Construction of the second sec							
8									
9									
10									
11									
12									
13									
14			-						
15									
16									
17									
18									
19									
20					Class	3 Soil	Total Tons	190.74	
21									
22									
23									

Prologis, Inc. PRO-17-1495 Georgetown Crossroads-Soil Cleanup

DATE: March 23, 2017

1 8	n i i i i i i i i i i i i i i i i i i i	0.000		1	12				
LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION		TYPE OF	TONNAGE	
NO.	COMPANY	#	TIME	QUANTITY	4	DATE	MATERIALS	SLIPS	
					setter				
1	Wyser Construction	3174/947476	8:57 AM	31.17 ton	Regional Disposal	3/23/2017	Class 3 Soil	31.17	
2	Wyser Construction	3174/947487	10:06 AM	29.80 ton	Regional Disposal	3/23/2017	Class 3 Soil	29.80	
3	Wyser Construction	3174/947507	11:41 AM	31.02 ton	Regional Disposal	3/23/2017	Class 3 Soil	31.02	
4	Wyser Construction	3174/947513	12:59 PM	31.52 ton	Regional Disposal	3/23/2017	Class 3 Soil	31.52	123.51
5	L & L Transport	4038/947475	8:13 AM	28.55 ton	Regional Disposal	3/23/2017	Class 3 Soil	28.55	
6	L & L Transport	4038/947484	9:54 AM	32.57 ton	Regional Disposal	,3/23/2017	Class 3 Soil	32.57	
7	L & L Transport	4038/947497	11:06 AM	30.72 ton	Regional Disposal	3/23/2017	Class 3 Soil	30.72	
8	L & L Transport	4038/947511	12:45 PM	28.83 ton	Regional Disposal	3/23/2017	Class 3 Soil	28.83	120.67
9									
10									
11									
12									
13									4
14									
15									
16									
17									
18									
19	4								
20					Class	3 Soil	Total Tons	244.18	
21									
22							<u> </u>		
23									

Prologis, Inc. PRO-17-1495 Georgetown Crossroads-Soil Cleanup

DATE: March 24, 2017

LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION		TYPE OF	TONNAGE
NO.	COMPANY	#	TIME	QUANTITY		DATE	MATERIALS	SLIPS
1	Wyser Construction	3177/2765	2:58 PM	28.63 ton	Waste Management	3/24/2017	Class 3 Soil	28.63
2	L & L Transport	4041/2762	2:33 PM	27.35 ton	Waste Management	3/24/2017	Class 3 Soil	27.35
3	Z & S Trucking	1678/2764	2:56 PM	28.64 ton	Waste Management	3/24/2017	Class 3 Soil	28.64
4	, and the second se							
5								
6						\$¢.		
7								
8								
9								
10								
11								
12								
13								
14			mentando como competencia					
15								
16								
17								
18								
19	•							
20					Class	3 Soil	Total Tons	84.62
21		-						
22								
23					10 - Maria Alexandra de Indera doctava albada Solda - Ka		a - nangan Generati - Antoni Ini Ada-Adda - A	

Prologis, Inc. PRO-17-1495 Georgetown Crossroads-Soil Cleanup

DATE: March 27, 2017

LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION		TYPE OF	TONNAGE	
NO.	COMPANY	#	TIME	QUANTITY		DATE	MATERIALS	SLIPS	
1	Wyser Construction	3178/2768	7:26 AM	28.11 ton	Waste Management	3/27/2017	Class 3 Soil	28.11	
2	Wyser Construction	3178/2770	7:58 AM	34.94 ton	Waste Management	3/27/2017	Class 3 Soil	34.94	
3	Wyser Construction	3178/2773	8:32 AM	32.40 ton	Waste Management	3/27/2017	Class 3 Soil	32.40	
4	Wyser Construction	3178/2775	9:05 AM	32.82 ton	Waste Management	3/27/2017	Class 3 Soil	32.82	
5	Wyser Construction	3178/2779	9:43 AM	34.39 ton	Waste Management	3/27/2017	Class 3 Soil	34.39	
6	Wyser Construction	3178/2783	11:03 AM	32.96 ton	Waste Management	\$/27/2017	Class 3 Soil	32.96	
7	Wyser Construction	3178/2786	12:08 PM	29.94 ton	Waste Management	3/27/2017	Class 3 Soil	29.94	
8	Wyser Construction	3178/2790	1:04 PM	33.64 ton	Waste Management	3/27/2017	Class 3 Soil	33.64	
9	Wyser Construction	3178/2795	1:45 PM	26.94 ton	Waste Management	3/27/2017	Class 3 Soil	26.94	
10	Wyser Construction	3178/2798	2:19 PM	32.41 ton	Waste Management	3/27/2017	Class 3 Soil	32.41	
11	Wyser Construction	3178/2800	3:00 PM	33.07 ton	Waste Management	3/27/2017	Class 3 Soil	33.07	351.62
12	Z & S Trucking	1680/2787	12:21 PM	31.19 ton	Waste Management	3/27/2017	Class 3 Soil	31.19	
13	Z & S Trucking	1680/2793	1:24 PM	33.39 ton	Waste Management	3/27/2017	Class 3 Soil	33.39	
14	Z & S Trucking	1680/2796	1:54 PM	28.35 ton	Waste Management	3/27/2017	Class 3 Soil	28.35	92.93
15									
16									
17									
18									
19					Class	3 Soil	Total Tons	444.55	
20									
21									
22									
23									

Prologis, Inc. PRO-17-1495 Georgetown Crossroads-Soil Cleanup

DATE: March 29, 2017

LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION		TYPE OF	TONNAGE	
NO.	COMPANY	#	TIME	QUANTITY	ب. ب	DATE	MATERIALS	SLIPS	
				•				a.	
1	Wyser Construction	3181/2855	1:55 PM	27.17 ton	Waste Mgmt.	3/29/2017	Class 3 Soil	27.17	27.17
2	Z & S Trucking	1683/2843	11:08 AM	30.98 ton	Waste Mgmt.	3/29/2017	Class 3 Soil	30.98	
3	Z & S Trucking	1683/2847	12:28 PM	32.21 ton	Waste Mgmt.	3/29/2017	Class 3 Soil	32.21	
4	Z & S Trucking	1683/2852	1:39 PM	33.13 ton	Waste Mgmt.	3/29/2017	Class 3 Soil	33.13	
5	Z & S Trucking	1683/2858	2:46 PM	31.41 ton	Waste Mgmt.	3/29/2017	Class 3 Soil	31.41	127.73
6	5								
7	7					4			
8									
9)								
10									
11									
12				1					
13									
14									
15									
16									
17	1								
18									
19									
20					Class	3 Soil	Total Tons	154.90	
21									
22									
23									

Prologis, Inc. PRO-17-1495 Georgetown Crossroads-Soil Cleanup

DATE: March 30, 2017

LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION		TYPE OF	TONNAGE	
NO.	COMPANY	#	TIME	QUANTITY		DATE	MATERIALS	SLIPS	
	-12		1	•	1				
1	L & L Transport	4046/2861	7:22 AM	31.76 ton	Waste Mgmt.	3/30/2017	Class 3 Soil	31.76	
2	L & L Transport	4046/2864	8:27 AM	32.60 ton	Waste Mgmt.	3/30/2017	Class 3 Soil	32.60	Í
3	L & L Transport	4046/2871	9:57 AM	29.65 ton	Waste Mgmt.	3/30/2017	Class 3 Soil	29.65	1
4	L & L Transport	4046/2875	11:05 AM	28.22 ton	Waste Mgmt.	3/30/2017	Class 3 Soil	28.22	
5	L & L Transport	4046/2880	1:10 PM	33.25 ton	Waste Mgmt.	3/30/2017	Class 3 Soil	33.25	155.48
6	Z & S Trucking	1684/2862	7:46 AM	32.84 ton	Waste Mgmt.	3/30/2017	Class 3 Soil	32.84	
7	Z & S Trucking	1684/2867	8:48 AM	32.85 ton	Waste Mgmt.	3/30/2017	Class 3 Soil	32.85	
8	Z & S Trucking	1684/2869	9:46 AM	33.89 ton	Waste Mgmt.	3/30/2017	Class 3 Soil	33.89	1
9	Z & S Trucking	1684/2873	10:49 AM	31.81 ton	Waste Mgmt.	3/30/2017	Class 3 Soil	31.81	
10	Z & S Trucking	1684/2881	1:17 PM	31.36 ton	Waste Mgmt.	3/30/2017	Class 3 Soil	31.36	162.75
11									1
12									Í.
13									
14									Í.
15									l l
16									l l
17									
18									
19									
20					Class	3 Soil	Total Tons	318.23	
21									
22									i l
23									í.

Prologis, Inc. PRO-17-1495

Georgetown Crossroads-Soil Cleanup

DATE: March 31, 2017

LOAD	TRUCKING	MANIFEST	DUMP	ESTIMATED	LOCATION	TYPE OF		TONNAGE
NO.	COMPANY	#	TIME	QUANTITY		DATE	MATERIALS	SLIPS
1	L<ransport v	4049/2899	1:56 PM	30.83 ton	Waste Mgmt.	3/31/2017	Class 3 Soil	30.83
2	L & L Transport	4049/2902	2:30 PM	26.39 ton	Waste Mgmt.	3/31/2017	Class 3 Soil	26.39 57
3	Z & S Trucking v	1687/2900	2:05 PM	29.63 ton	Waste Mgmt.	3/31/2017	Class 3 Soil	29.63
4							. 7	
5	5		3				*	
6	5							
7	7					,		
8	3							
Ş)							
10)							
11								
12								
13	3							
14								
15	5							
16)							
17								
18								
19								
20					Class	3 Soil	Total Tons	86.85
21								
22					······································			
23								

April 24 to May 3, 2017 - Soil Disposal Documentation

Waste Management

Customer Summary Report

1

Criteria: 04/17/2017 12:00 AM to 04/28/2017 11:59 PM

Business Unit Name: 8th Avenue Facility - S09681 (USA)

Customer Name: HOS BROS CONSTRUCTION INC (HØS BROS CONSTRUCTION INC)

Ticket ID	Cust Code	MAS Unique ID	Generator	Profile	Truck	Tons	Total
3624	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	28.86	¢1 215 44
3627	0000121	183478933002	WA-GEORGETOWN CROSSBOADS LLC	112260140	L1017	20.00	\$1,515.44
3657	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112200WAD	11017	31.1	\$1,417.54
3662	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	24.15	\$1,100.77
3664	0000121	183478933002	WA GEORGETOWN CROSSROADS LLC	112260WAD	H1817	27.89	\$1,271.24
2250	0000121	10047000002	WA-GEORGETOWN CRUSSROADS LLC	/ 112260WAD	H1817	29.68	\$1,352.81
3350	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	Profile	Fee	\$75.00
6						141.68	\$6,532.80
	Ticket ID 3624 3657 3662 3664 3356 6	Ticket ID Cust Code 3624 0000121 3627 0000121 3657 0000121 3662 0000121 3664 0000121 3356 0000121 6	Ticket ID Cust Code MAS Unique ID 3624 0000121 183478933002 3627 0000121 183478933002 3657 0000121 183478933002 3662 0000121 183478933002 3664 0000121 183478933002 3356 0000121 183478933002 3356 0000121 183478933002 6	Ticket ID Cust Code MAS Unique ID Generator 3624 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 3627 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 3657 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 3657 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 3662 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 3664 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 3356 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 6	Ticket ID Cust Code MAS Unique ID Generator Profile 3624 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD 3627 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD 3657 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD 3657 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD 3662 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD 3664 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD 3356 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD 3356 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD 6	Ticket ID Cust Code MAS Unique ID Generator Profile Truck 3624 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 3627 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 3657 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 3662 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 3664 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 33664 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 3356 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD Profile	Ticket ID Cust Code MAS Unique ID Generator Profile Truck Tons 3624 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 28.86 3627 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 31.1 3657 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 24.15 3662 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 27.89 3664 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 29.68 3356 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 29.68 3356 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD Profile Fee 6 Image: Colored Colo

Waste Management

Customer Summary Report

Criteria: 05/01/2017 12:00 AM to 05/12/2017 11:59 PM

Business Unit Name: 8th Avenue Facility - S09681 (USA)

Customer Name: HOS BROS CONSTRUCTION INC (HOS BROS CONSTRUCTION INC)

9/17017 9375 9000121 138/993002 WH-GENERTOWN COSSIGNAD-LIL 11220WAD Hist 91.21 92.3 91.3481 9/17017 1977 9000121 138/793002 WH-GENERTOWN COSSIGNAD-LIL 11220WAD Hist2 4.8.2 51.55.9.7 9/17017 1987 9000121 138/793002 WH-GENERTOWN COSSIGNAD-LIL 11220WAD Hist2 4.0.0 51.55.9.3 9/17017 3666 0000211 138/793002 WH-GENERTOWN COSSIGNAD-LIL 11220WAD Hist2 2.0.0 51.57.8.3 5/17017 3666 0000121 138/793002 WH-GENERTOWN COSSIGNAD-LIL 11220WAD Hist3 2.7.0 51.57.8.3 5/17027 3696 0000121 138/793002 WH-GENERTOWN COSSIGNAD-LIL 11220WAD Hist3 2.8.3 51.7.8.7 5/17027 3696 0000121 138/793002 WH-GENERTOWN COSSIGNAD-LIL 11220WAD Hist3 2.8.3 51.7.8.7 5/17021 3697 0000221 138/7983002 WH-GENERTOWN COSSIGNAD-LIL 11220WAD H	Ticket Date	Ticket ID	Cust Code	Cust ID	Generator	Profile	Truck	Tons	Total
9/1/2017 9676 0000212 1345/993302 WA-GLORETOWN CORSUMADLIC 112200VAD Hista 0.91 9/1/2017 9697 000021 1345/993302 WA-GLORETOWN CORSUMADLIC 112200VAD Hista 40.01 51,56.9.7 9/1/2017 9680 0000211 1847/983002 WA-GLORETOWN CORSUMADLIC 112200VAD Hista 20.12 51,57.27 5/1/2017 3646 0000111 1847/983002 WA-GLORETOWN CORSUMADLIC 112200VAD Hista 2.5.7.4 5/1/2017 3640 0000121 1847/983002 WA-GLORETOWN CORSUMADLIC 112200VAD Hista 2.5.7.4 5/1/2017 3690 0000212 1847/983002 WA-GLORETOWN CORSUMADLIC 112200VAD Hista 2.8.8 51,47-14 5/1/2017 3690 0000121 1847/983002 WA-GLORETOWN CORSUMADLIC 112200VAD Hista 2.8.8 51,47-3 5/1/2017 3760 0000121 1847/983002 WA-GLORETOWN CORSUMADLIC 112200VAD Hista 2.8.2 51,42-2 5/1/	5/1/2017	3675	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	27.3	\$1,244.33
9/1/2017 9879 9000121 198/993002 WA-GLORETOWIN COSSIDADLI LI 112260VAD HINJ 94.20 51,88.40 9/1/2017 588 0000221 198/793002 WA-GLORETOWIN COSSIDADLI LI 112260VAD H1327 24.00 51,88.40 9/1/2017 5886 0000221 198/793002 WA-GLORETOWIN COSSIDADSLI LI 112260VAD H1327 25.40 51,26.07 5/1/2017 3966 0000121 198/7933002 WA-GLORETOWIN CIOSSIDADSLI LI 122260VAD H1318 25.76 51,74.20 5/1/2017 3969 0000121 198/7933002 WA-GLORETOWIN CIOSSIDADSLI LI 122260VAD H1317 23.87 51,35.80 5/1/2017 3969 0000121 198/7933002 WA-GLORETOWIN CIOSSIDADSLI LI 112260VAD H1317 23.87 51,37.81 5/1/2017 3976 0000121 198/7983002 WA-GLORETOWIN CIOSSIDADSLI LI 112260VAD H1317 23.87 51,37.81 5/1/2017 3716 0000121 198/7983002 WA-GLORETOWIN CIOSSIDADSLI LI 112260VAD	5/1/2017	3676	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	29.5	\$1,344.61
Shiftoni Sea ODDI11 INFRRESS ODDI12 INFRRESS	5/1/2017	3679	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	34.22	\$1,559.75
5/1/2017 986 000211 1837893002 WA-GEORGETOWN CIOSSBOADS LIC 11220WAA 11327 23.00 5.158.80 5/1/2017 9866 0000211 18347893002 WA-GEORGETOWN CIOSSBOADS LIC 11220WAA 11827 22.766 5.1,267.81 5/1/2017 9860 0000211 18347893002 WA-GEORGETOWN CIOSSBOADS LIC 11220WAA 11828 80.88 5.1,127.84 5/1/2017 3660 0000211 183478933002 WA-GEORGETOWN CIOSSBOADS LIC 11220WAA 11837 23.858 5.1,127.84 5/1/2017 3696 0000211 183478933002 WA-GEORGETOWN CIOSSBOADS LIC 11220WAA 11837 23.28 5.1,37.58 5/1/2017 3701 0000121 183478933002 WA-GEORGETOWN CIOSSBOADS LIC 11220WAA 11837 23.27 5.1,37.55 5/1/2017 3705 0000121 183478933002 WA-GEORGETOWN CIOSSBOADS LIC 11220WAA 11828 23.27 5.1,37.55 5/1/2017 3718 0000121 183478933002 WA-GEORGETOWN CIOSSBOAD3LIC 11220WAA	5/1/2017	3680	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	40.91	\$1,864.69
5/1/0017 9846 000011 1337793300 W-ACERNETOWN CROSSRADELL 11220WMA H137 22.17 5/1/207 5/1/2017 3690 000011 13347933002 W-ACERNETOWN CROSSRADELLC 11220WMA H138 25.76 51,174.40 5/1/2017 3690 000011 13347933002 W-ACERNETOWN CROSSRADELLC 11220WMA H138 25.76 51,174.30 5/1/2017 3690 000011 13347933002 W-ACERNETOWN CROSSRADELLC 11220WMA H1387 30.80 51,472.73 5/1/2017 3791 0000121 13347933002 W-ACERNETOWN CROSSRADELLC 11220WMA H1387 30.25 51,172.85 5/1/2017 3701 0000121 13347933002 W-ACERNETOWN CROSSRADELLC 11220WMA H1387 30.25 51,173.85 5/1/2017 3706 0000121 13347933002 W-ACERNETOWN CROSSRADELC 11220WMA H138 27.27 51,232.85 5/1/2017 3716 0000121 13347933002 W-ACERNETOWN CROSSRADELC 11220WMA H138 27.	5/1/2017	3685	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	34.09	\$1,553.83
9/1/2017 3490 000011 138/7983502 VM-CEDRETOWN CR05SR0ADS LLC 112200MAD 11381 27.66 5/1/01.1 9/1/2017 3497 000011 138/7983502 VM-CEDRETOWN CR05SR0ADS LLC 112200MAD 11328 30.68 5/1/14.14 5/1/2017 3496 0000121 138/7983502 VM-CEDRETOWN CR05SR0ADS LLC 11220VMAD 11828 30.68 5/1.315.69 5/1/2017 3496 0000121 138/79833002 VM-CEDRETOWN CR05SR0ADS LLC 11220VMAD 11828 32.88 5/1.315.69 5/1/2017 3701 0000121 138/79833002 VM-CEDRETOWN CR05SR0ADS LLC 11220VMAD 11828 32.88 5/1.322.55 5/1/2017 3706 0000121 138/79833002 VM-CEDRETOWN CR05SR0ADS LLC 11220VMAD 11828 30.8 5/1.035.69 5/1/2017 3718 0000121 138/79833002 VM-CEDRETOWN CR05SR0ADS LLC 11220VMAD 11828 30.8 5/1.035.69 5/1/2017 3718 0000121 138/79833002 VM-CEDRETOWN CR05SR0ADS LLC 11220VMAD	5/1/2017	3686	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	25.17	\$1,147.26
9/1/2017 3980 0000121 183.478933002 WA-GEORETOWN CROSSROADS LC 11226WAD H1828 30.98 51,412.07 5/1/2017 3666 0000211 183.478933002 WA-GEORETOWN CROSSROADS LC 11226WAD H1828 30.98 51,412.07 5/1/2017 3666 0000211 183.478933002 WA-GEORETOWN CROSSROADS LC 11226WAD H1828 28.65 51,447.31 5/1/2017 3696 0000211 183.478933002 WA-GEORETOWN CROSSROADS LC 11226WAD H1818 28.66 51,32.25.5 5/1/2017 3705 0000211 133.478933002 WA-GEORETOWN CROSSROADS LC 11226WAD H1818 28.64 51.25.65 5/1/2017 3705 0000211 133.478933002 WA-GEORETOWN CROSSROADS LC 11226WAD H1818 28.64 51.26.77.95 51.27.75.7 5/1/2017 3715 0000211 133.478933002 WA-GEORETOWN CROSSROADS LC 11226WAD H1812 28.24 51.42.97.95 51.27.75.75 51.27.75.75 51.27.75 51.27.75.75 51.27.75.75 51.27.	5/1/2017	3689	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	27.66	\$1,260.74
9/1/2017 3990 0000212 183478938002 WA-GEORETEOWN CROSSRADS LLC 11220WAD H1821 23.87 51.13.00 5/1/2017 3966 0000121 183478933002 WA-GEORETEOWN CROSSRADS LLC 11220WAD H1821 28.87 51.13.00 5/1/2017 3969 0000121 183478933002 WA-GEORETEOWN CROSSRADS LLC 11220WAD H1821 28.25 51.13.49.99 5/1/2017 3705 0000121 183478933002 WA-GEORETEOWN CROSSRADS LLC 11220WAD H1821 28.46 51.26.25.5 5/1/2017 3706 0000121 183478933002 WA-GEORETEOWN CROSSRADS LLC 11220WAD H1821 28.46 51.26.25.5 5/1/2017 3716 0000211 183478933002 WA-GEORETEOWN CROSSRADS LLC 11220WAD H1818 27.59 51.27.75 5/1/2017 3718 0000211 183478933002 WA-GEORETEOWN CROSSRADS LLC 11226WAD H1818 25.36 51.27.75 5/1/2017 3718 0000211 183478933002 WA-GEORETEOWN CROSSRADS LLC 11226WAD	5/1/2017	3690	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	25.76	\$1,174.14
9/1/2017 3966 0000121 18347093902 WA-GEORETOWN CROSSROADS LLC 112280WAD H1828 28.26 51,13.90 5/1/2017 369 0000121 183470933002 WA-GEORETOWN CROSSROADS LLC 112280WAD H1888 78.45 51,31.89 5/1/2017 3701 0000121 183470933002 WA-GEORETOWN CROSSROADS LLC 112280WAD H1818 78.65 51,32.74 5/1/2017 3705 0000121 183470933002 WA-GEORETOWN CROSSROADS LLC 112280WAD H1818 72.65 51,23.55 5/1/2017 3706 0000121 183470933002 WA-GEORETOWN CROSSROADS LLC 112280WAD H1818 72.77 51,56.69 5/1/2017 3715 0000121 183470933002 WA-GEORETOWN CROSSROADS LLC 112280WAD H1818 72.78 51,72.75 5/1/2017 3728 0000121 183470933002 WA-GEORETOWN CROSSROADS LLC 112280WAD H1818 73.43 51,42.51 5/1/2017 3728 0000121 183470933002 WA-GEORETOWN CROSSROADS LLC 112280WAD	5/1/2017	3692	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	30.98	\$1,412.07
s/1/2017 3869 0000121 183470839002 WA-GEORETOW CROSSROADS LLC 112280WAD H1831 23.25 51,314.99 S/1/2017 3701 0000121 183470833002 WA-GEORETOW CROSSROADS LLC 112280WAD H1811 28.25 51,314.99 S/1/2017 3706 0000121 183470833002 WA-GEORETOW CROSSROADS LLC 112280WAD H1812 28.25 51,327.85 S/1/2017 3706 0000121 183470833002 WA-GEORETOW CROSSROADS LLC 112260WAD H1812 27.25 51,356.93 S/1/2017 3706 0000121 183470833002 WA-GEORETOW CROSSROADS LLC 112260WAD H1818 27.27 51,356.93 S/1/2017 3716 0000121 183470833002 WA-GEORETOW CROSSROADS LLC 11226WAD H1818 27.25 51,257.35 S/1/2017 3726 0000121 183470833002 WA-GEORETOW CROSSROADS LLC 11226WAD H1818 27.27 51,326.14 S/1/2017 3726 0000121 183470833002 WA-GEORETOW CROSSROADS LLC 11226WAD	5/1/2017	3696	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	28.87	\$1,315.90
5/1/2017 3969 000211 1384/8933002 WW-6EDRETOWN CROSSROADS LLC 112260WAD H1819 28.85 \$1,31.499 5/1/2017 3705 0000121 1384/78933002 WW-6EDRETOWN CROSSROADS LLC 112260WAD H1828 25.02 51,27.05 51,222.95 51,72.07 51,22.25 51,72.01 3706 0000121 1384/78933002 WW-6EDRETOWN CROSSROADS LLC 112260WAD H1828 25.46 51,36.69 5/1/2017 3705 0000121 1384/78933002 WW-6EDRETOWN CROSSROADS LLC 112260WAD H1828 2.02 51,27.73 5/1/2017 3721 0000121 1384/78933002 WW-6EDRETOWN CROSSROADS LLC 112260WAD H182 2.7 51,27.57 5/1/2017 3728 0000121 1384/78933002 WW-6EDRETOWN CROSSROADS LLC 112260WAD H183 2.5.74 51,128.1 5/1/2017 3728 0000121 1384/78933002 WW-6EDRETOWN CROSSROADS LLC 11226WAD H188 2.5.44 51,145.1 5/1/2017 3734 0000121 184/78933002 <	5/1/2017	3698	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	32.85	\$1,497.31
5/1/2017 3701 000211 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1817 30.22 \$1,377.43 5/1/2017 3765 000011 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 20.64 \$1,326.65 5/1/2017 3776 000011 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 20.64 \$1,426.65 5/1/2017 3715 000011 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 20.64 \$1,426.95 5/1/2017 3715 000011 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 20.25 \$1,377.35 5/1/2017 3725 000121 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 25.9 \$1,16.640 5/1/2017 3726 000121 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 25.54 \$1,316.40 5/1/2017 3734 000211 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD	5/1/2017	3699	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	28.85	\$1,314.99
\$/1/2017 3705 0000121 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H182 27.76 \$1,232.91 \$/1/2017 3706 0000121 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H182 28.46 \$1,266.45 \$/1/2017 3705 0000121 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 28.77 \$5,156.93 \$/1/2017 3718 0000121 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 27.77 \$5,172.51 \$/1/2017 3726 0000121 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 27.99 \$5,173.56 \$/1/2017 3726 0000121 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 25.74 \$1,18.81 \$/1/2017 3738 0000121 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD H1818 35.61 31.22.29 \$/1/2017 3736 0000121 184/78933002 WW-GEORETOWN CROSSROADS LLC 112260WAD<	5/1/2017	3701	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	30.22	\$1,377.43
5/1/2017 3706 000121 18347#833002 WA-GEORETOWN CROSSROADS LIC 112260WAD H1818 26.66 51,206.05 5/1/2017 3715 0000121 18347#833002 WA-GEORETOWN CROSSROADS LIC 112260WAD H1818 28.77 \$1,56.63 5/1/2017 3715 0000121 18347#833002 WA-GEORETOWN CROSSROADS LIC 112260WAD H1818 22.27 \$1,726.71 5/1/2017 3725 0000121 18347#833002 WA-GEORETOWN CROSSROADS LIC 112260WAD H1817 28.62 \$1,277.15 5/1/2017 3725 0000121 18347#833002 WA-GEORETOWN CROSSROADS LIC 112260WAD H1817 28.64 \$1,51,64.11 5/1/2017 3733 0000121 18347#833002 WA-GEORETOWN CROSSROADS LIC 112260WAD H1818 28.54 \$1,51,64.11 5/1/2017 3734 0000121 18347#833002 WA-GEORETOWN CROSSROADS LIC 112260WAD H1818 28.64 \$1,51.64.14 5/1/2017 3745 0000121 183478933002 WA-GEORETOWN CROSSROADS LIC 11	5/1/2017	3705	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	27.05	\$1,232.95
5/1/2017 3705 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD H1812 28.77 51,366.93 5/1/2017 3715 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD H1812 28.02 51,372.98 5/1/2017 3723 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD H1812 27.27 51,372.98 5/1/2017 3725 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD H1812 25.99 51,06.40 5/1/2017 3728 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD H1812 25.44 \$1,164.11 5/1/2017 3734 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD H1813 25.97 \$1,382.29 5/1/2017 3734 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD H1813 26.74 \$1,322.29 5/1/2017 3745 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260W	5/1/2017	3706	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	26.46	\$1,206.05
\$/1/2017 9715 0000121 188/7893002 WA-GEORETOWN CROSSROADS LLC 112260WAD H182 50.8 \$1,403.86 \$/1/2017 3718 0000121 188/7893002 WA-GEORETOWN CROSSROADS LLC 112260WAD H1818 27.27 \$1,242.88 \$/1/2017 3725 0000121 188/7893002 WA-GEORETOWN CROSSROADS LLC 112260WAD H1828 27.99 \$1,277.15 \$/1/2017 3725 0000121 188/7893302 WA-GEORETOWN CROSSROADS LLC 112260WAD H1828 25.59 \$1,166.40 \$/1/2017 3738 0000121 188/7893302 WA-GEORETOWN CROSSROADS LLC 112260WAD H1828 25.54 \$1,164.11 \$/1/2017 3734 0000121 188/7893302 WA-GEORETOWN CROSSROADS LLC 112260WAD H1828 31.87 \$1,452.64 \$/1/2017 3744 0000121 188/7893302 WA-GEORETOWN CROSSROADS LLC 112260WAD H1828 23.18 \$1,452.64 \$/1/2017 3744 0000121 188/7893302 WA-GEORETOWN CROSSROADS LLC 112260WAD	5/1/2017	3708	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	29.77	\$1,356.93
\$\lf\rdot17 \$\frac{3721}{3721} \$\frac{000121}{000121} 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD Hists \$\frac{7}{2775} \$\frac{5}{1}_2777_15 \$\frac{1}{27017} 3725 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD Hists 25.9 \$\frac{1}{2777_15} \$\frac{1}{27017} 3725 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD Hists 25.75 \$\frac{1}{27_277_15} \$\frac{1}{27_277_17_15} 3726 0000121 183478933002 WA-GEORETOWN CROSSROADS LLC 112260WAD Hists 25.75 \$\frac{1}{27_27_27_27_27_27_27_27_27_27_27_27_27_2	5/1/2017	3715	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	30.8	\$1,403.86
\$/L/2017 3721 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 28.02 \$1,277.15 \$/L/2017 3725 0000121 183/7893002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 25.59 \$1,166.40 \$/L/2017 3728 0000121 183/7893002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 26.74 \$1,218.31 \$/L/2017 3734 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.57 \$1,393.33 \$/L/2017 3734 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.57 \$1,393.33 \$/L/2017 3746 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 33.67 \$1,452.64 \$/L/2017 3746 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 33.68 \$1,367.47 \$/L/2017 3754 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC	5/1/2017	3718	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	27.27	\$1,242.98
\$/1/2017 3725 0.000121 183/78939002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.99 \$1,275.79 \$/1/2017 3728 0000111 183/78939002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 25.59 \$1,166.40 \$/1/2017 3733 0000121 183/78939002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.57 \$1,383.39 \$/1/2017 3734 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 25.01 \$1,322.29 \$/1/2017 3746 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 31.67 \$1,452.41 \$/1/2017 3746 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 33.16 \$1,513.43 \$/1/2017 3746 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 33.65 \$1,515.13 \$/1/2017 3754 0000121 183/78933002 WA-GEORGETOWN CROSSROADS LLC <	5/1/2017	3721	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	28.02	\$1,277.15
5/L/2017 3725 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 25.59 \$1,166.40 5/L/2017 3738 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 26.74 \$5,128.31 5/L/2017 3734 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.57 \$1,393.39 5/L/2017 3734 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 23.54 \$1,452.64 5/L/2017 3745 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 31.87 \$1,452.64 5/L/2017 3746 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 \$1,453.64 5/L/2017 3748 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 \$1,453.64 5/L/2017 3754 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC <t< td=""><td>5/1/2017</td><td>3725</td><td>0000121</td><td>183478933002</td><td>WA-GEORGETOWN CROSSROADS LLC</td><td>112260WAD</td><td>H1828</td><td>27.99</td><td>\$1,275.79</td></t<>	5/1/2017	3725	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	27.99	\$1,275.79
5/L/2017 3728 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 26.74 \$1,218.81 5/L/2017 3734 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 25.54 \$1,164.11 5/L/2017 3734 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.57 \$1,393.39 5/L/2017 3745 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 29.01 \$1,352.29 5/L/2017 3745 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 34.17 \$1,557.47 5/L/2017 3753 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 29.78 \$1,357.11.43 5/L/2017 3754 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 83.16 \$1,218.33 5/L/2017 3760 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC	5/1/2017	3726	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	25.59	\$1,166.40
5/1/2017 3733 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 25.54 51,164.11 5/1/2017 3734 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.57 \$1,323.22.29 5/1/2017 3745 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 23.18.7 \$5,142.64 5/1/2017 3745 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 33.18.7 \$5,157.47 5/1/2017 3746 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 33.16 \$1,511.43 5/1/2017 3754 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 20.65 \$1,386.13 5/1/2017 3756 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 20.65 \$1,281.43 5/1/2017 3761 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC	5/1/2017	3728	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	26.74	\$1,218.81
5/1/2017 3734 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.57 \$1,393.39 5/1/2017 3745 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 29.01 \$1,452.64 5/1/2017 3745 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 \$1,452.64 5/1/2017 3748 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 \$4.17 \$1,557.47 5/1/2017 3754 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 \$1,381.39 5/1/2017 3756 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 \$1,283.737 5/1/2017 3760 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.27 \$1,242.98 5/1/2017 3760 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD	5/1/2017	3733	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	25.54	\$1,164.11
5/1/2017 3736 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112280WAD H1817 29.01 51,122.79 5/1/2017 3745 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 31.87 51,452.64 5/1/2017 3746 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 32.33 51,473.61 5/1/2017 3753 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 \$1,511.43 5/1/2017 3754 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 \$1,396.13 5/1/2017 3761 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.27 \$1,242.98 5/1/2017 3767 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.83 \$1,268.50 5/1/2017 3879 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC <t< td=""><td>5/1/2017</td><td>3734</td><td>0000121</td><td>183478933002</td><td>WA-GEORGETOWN CROSSROADS LLC</td><td>112260WAD</td><td>H1818</td><td>30.57</td><td>\$1,393.39</td></t<>	5/1/2017	3734	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	30.57	\$1,393.39
5/1/2017 3745 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 31.87 51,452.64 5/1/2017 3746 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 32.33 \$1,473.61 5/1/2017 3754 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 33.16 \$1,511.43 5/1/2017 3757 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 30.63 \$1,396.13 5/1/2017 3757 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 28.16 \$1,283.53 5/1/2017 3760 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.28 \$1,229.85 5/1/2017 3767 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.04 \$1,228.48 5/1/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC <t< td=""><td>5/1/2017</td><td>3736</td><td>0000121</td><td>183478933002</td><td>WA-GEORGETOWN CROSSROADS LLC</td><td>112260WAD</td><td>H1817</td><td>29.01</td><td>\$1,322.29</td></t<>	5/1/2017	3736	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	29.01	\$1,322.29
5/1/2017 3746 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 32.33 \$1,473.61 5/1/2017 3748 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 34.17 \$1,557.47 5/1/2017 3753 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 \$1,396.13 5/1/2017 3757 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 \$1,396.13 5/1/2017 3760 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 28.16 \$1,283.53 5/1/2017 3761 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.27 \$1,242.98 5/1/2017 3767 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.44 \$1,065.74 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 24.04 \$1,055.74 5/3/2017	5/1/2017	3745	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	31.87	\$1,452.64
5/1/2017 3748 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 34.17 51,557.47 5/1/2017 3753 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 33.16 \$1,511.43 5/1/2017 3754 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 \$1,396.13 5/1/2017 3757 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 22.77 \$1,242.98 5/1/2017 3761 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.77 \$1,242.98 5/1/2017 3767 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.04 \$1,223.48 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.04 \$1,232.48 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 24.09 \$1,096.43 5/3/2017	5/1/2017	3746	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	32.33	\$1,473.61
5/1/2017 3753 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 33.16 51,511.43 5/1/2017 3754 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 \$1,396.13 5/1/2017 3757 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 29.78 \$1,357.37 5/1/2017 3760 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 28.16 \$1,283.53 5/1/2017 3767 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.04 \$1,282.98 5/1/2017 3879 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.04 \$1,282.48 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.04 \$1,282.48 5/3/2017 3881 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 26.49 \$1,097.42 \$1,307.42 \$1,307.42	5/1/2017	3748	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	34.17	\$1.557.47
5/1/2017 3754 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 30.63 51,396.13 5/1/2017 3757 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 29.78 51,357.37 5/1/2017 3760 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.27 51,428.98 5/1/2017 3761 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.83 51,223.48 5/1/2017 3879 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.83 51,232.48 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 24.04 51,095.74 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.09 51,095.74 5/3/2017 3887 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.09 51,026.35 5/3/2017	5/1/2017	3753	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	33.16	\$1.511.43
5/1/2017 3757 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1817 29.78 \$1,357.37 5/1/2017 3760 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 28.16 \$1,283.53 5/1/2017 3761 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.83 \$1,264.98 5/1/2017 3767 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.04 \$1,232.48 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.04 \$1,095.74 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.04 \$1,095.74 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.04 \$1,097.61 5/3/2017 3887 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 \$1,274.2 \$1,226.33 </td <td>5/1/2017</td> <td>3754</td> <td>0000121</td> <td>183478933002</td> <td>WA-GEORGETOWN CROSSROADS LLC</td> <td>112260WAD</td> <td>H1818</td> <td>30.63</td> <td>\$1,396.13</td>	5/1/2017	3754	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	30.63	\$1,396.13
5/1/2017 3760 000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 28.16 \$1,283.53 5/1/2017 3761 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.27 \$1,242.98 5/1/2017 3767 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.83 \$1,268.50 5/3/2017 3879 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.40 \$1,232.48 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 24.04 \$1,098.03 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.49 \$1,076.15 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 5/3/2017 3889 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 5/3/2017	5/1/2017	3757	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1817	29.78	\$1,357.37
5/1/2017 3761 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.27 51,242.98 5/1/2017 3767 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.83 \$1,268.50 5/3/2017 3879 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.04 \$1,232.48 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 24.04 \$1,095.74 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 23.61 \$1,076.15 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.49 \$1,207.42 5/3/2017 3897 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 5/3/2017	5/1/2017	3760	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	28.16	\$1,283.53
5/1/2017 3767 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1828 27.83 \$1,268.50 5/3/2017 3879 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.04 \$1,232.48 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 24.04 \$1,095.74 5/3/2017 3881 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.09 \$1,098.03 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1812 26.49 \$1,207.42 5/3/2017 3889 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1812 28.17 \$1,284.00 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1812 27.04 \$1,282.48 \$1,326.38 \$1,326.38<	5/1/2017	3761	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	27.27	\$1,242.98
5/3/2017 3879 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 27.04 51,232.48 5/3/2017 3880 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 24.04 51,095.74 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 23.61 \$1,098.03 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 23.61 \$1,076.15 5/3/2017 3887 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1812 27.32 \$1,245.25 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.17 \$1,264.38 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.17 \$1,284.00 5/3/2017 3924 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.17 \$1,284.00 5/3/2017	5/1/2017	3767	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1828	27.83	\$1,268.50
5/3/2017 3880 000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 24.04 51,095.74 5/3/2017 3881 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.09 51,095.74 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 23.61 51,076.15 5/3/2017 3887 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H182 26.49 51,207.42 5/3/2017 3889 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H182 29.1 51,326.38 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 27.04 51,284.00 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 27.04 51,284.00 5/3/2017 3924 000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.47 51,205.1 5/3/2017 <	5/3/2017	3879	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	27.04	\$1,232.48
5/3/2017 3881 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.09 \$1,098.03 5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 23.61 \$1,076.15 5/3/2017 3887 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.49 \$1,207.42 5/3/2017 3889 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 27.32 \$1,263.83 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 5/3/2017 3917 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 22.04 \$1,232.48 5/3/2017 3924 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 22.647 \$1,232.48 5/3/2017 3931 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1812 26.47 \$1,206.51 5/3/2017	5/3/2017	3880	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1821	24.04	\$1,095.74
5/3/2017 3886 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 23.61 \$1,076.15 5/3/2017 3887 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.49 \$1,207.42 5/3/2017 3889 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 27.32 \$1,245.25 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 5/3/2017 3917 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,232.48 5/3/2017 3924 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.47 \$1,206.31 5/3/2017 3931 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 25.95 \$1,182.81 5/3/2017 3931 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.47 \$1,206.51 5/3/2017	5/3/2017	3881	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1822	24.09	\$1,098.03
5/3/2017 3887 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.49 \$1,207.42 5/3/2017 3889 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 27.32 \$1,245.25 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 5/3/2017 3917 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.17 \$1,284.00 5/3/2017 3924 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 27.04 \$1,232.48 5/3/2017 3928 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 25.95 \$1,182.81 5/3/2017 3931 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 26.47 \$1,206.51 5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 22.68 \$1,303.75 5/3/2017	5/3/2017	3886	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	23.61	\$1.076.15
5/3/2017 3889 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 27.32 \$1,245.25 5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 5/3/2017 3917 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1812 29.1 \$1,326.38 5/3/2017 3924 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.17 \$1,284.00 5/3/2017 3924 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 25.95 \$1,182.81 5/3/2017 3931 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 26.47 \$1,206.51 5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.74 \$1,218.81 5/3/2017 3930 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.13 \$1,218.81 5/3/2017	5/3/2017	3887	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1821	26.49	\$1,207.42
5/3/2017 3914 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 29.1 \$1,326.38 5/3/2017 3917 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.17 \$1,284.00 5/3/2017 3924 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1812 27.04 \$1,232.48 5/3/2017 3928 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 27.04 \$1,232.48 5/3/2017 3931 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 25.95 \$1,182.81 5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 22.68 \$1,033.75 5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.74 \$1,218.81 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,289.47 5/3/2017	5/3/2017	3889	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1822	27.32	\$1,245,25
5/3/2017 3917 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.17 \$1,284.00 5/3/2017 3924 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 27.04 \$1,232.48 5/3/2017 3928 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 25.95 \$1,182.81 5/3/2017 3931 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 26.47 \$1,206.51 5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 26.47 \$1,206.51 5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.74 \$1,218.81 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,289.47 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.17 \$1,284.00 5/3/2017	5/3/2017	3914	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1822	29.1	\$1.326.38
5/3/2017 3924 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 27.04 \$1,232.48 5/3/2017 3928 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 25.95 \$1,182.81 5/3/2017 3931 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 25.95 \$1,182.81 5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 26.47 \$1,206.51 5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.63 \$1,033.75 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,289.47 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.13 \$1,191.02 5/3/2017 3941 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 28.17 \$1,284.00 5/3/2017	5/3/2017	3917	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	28.17	\$1,284.00
5/3/2017 3928 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 25.95 \$1,182.81 5/3/2017 3931 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1812 26.47 \$1,206.51 5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1812 22.68 \$1,033.75 5/3/2017 3936 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.74 \$1,218.81 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,288.47 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,289.47 5/3/2017 3941 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 28.17 \$1,284.00 5/3/2017 3947 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 31.49 \$1,435.32 5/3/2017	5/3/2017	3924	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1821	27.04	\$1,232,48
5/3/2017 3931 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 26.47 \$1,206.51 5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 22.68 \$1,033.75 5/3/2017 3936 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.74 \$1,218.81 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,289.47 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,289.47 5/3/2017 3941 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.13 \$1,191.02 5/3/2017 3947 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 28.17 \$1,284.00 5/3/2017 3951 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC <t< td=""><td>5/3/2017</td><td>3928</td><td>0000121</td><td>183478933002</td><td>WA-GEORGETOWN CROSSROADS LLC</td><td>112260WAD</td><td>H1822</td><td>25.95</td><td>\$1.182.81</td></t<>	5/3/2017	3928	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1822	25.95	\$1.182.81
5/3/2017 3933 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 22.68 \$1,033.75 5/3/2017 3936 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 22.68 \$1,218.81 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.74 \$1,289.47 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,289.47 5/3/2017 3941 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.13 \$1,191.02 5/3/2017 3947 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 28.17 \$1,284.00 5/3/2017 3951 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 31.49 \$1,435.32 5/3/2017 3958 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.91 \$1,135.41 5/3/2017	5/3/2017	3931	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	26.47	\$1.206.51
5/3/2017 3936 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.74 \$1,218.81 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 26.74 \$1,218.81 5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,289.47 5/3/2017 3941 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.13 \$1,191.02 5/3/2017 3947 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 28.17 \$1,284.00 5/3/2017 3951 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 31.49 \$1,435.32 5/3/2017 3958 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.91 \$1,135.41 5/3/2017 3958 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC <t< td=""><td>5/3/2017</td><td>3933</td><td>0000121</td><td>183478933002</td><td>WA-GEORGETOWN CROSSROADS LLC</td><td>112260WAD</td><td>H1821</td><td>22.68</td><td>\$1.033.75</td></t<>	5/3/2017	3933	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1821	22.68	\$1.033.75
5/3/2017 3940 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,289.47 5/3/2017 3941 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 28.29 \$1,289.47 5/3/2017 3941 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.13 \$1,191.02 5/3/2017 3947 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 28.17 \$1,284.00 5/3/2017 3951 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 31.49 \$1,435.32 5/3/2017 3958 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.91 \$1,135.41 5/3/2017 3959 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 24.16 \$1,101.21 5/3/2017 3959 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC <t< td=""><td>5/3/2017</td><td>3936</td><td>0000121</td><td>183478933002</td><td>WA-GEORGETOWN CROSSROADS LLC</td><td>112260WAD</td><td>H1822</td><td>26.74</td><td>\$1,218.81</td></t<>	5/3/2017	3936	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1822	26.74	\$1,218.81
5/3/2017 3941 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.13 \$1,191.02 5/3/2017 3947 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1821 26.13 \$1,284.00 5/3/2017 3951 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 28.17 \$1,284.00 5/3/2017 3951 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 31.49 \$1,435.32 5/3/2017 3958 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.91 \$1,135.41 5/3/2017 3959 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 24.16 \$1,101.21 5/3/2017 3959 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 24.16 \$1,101.21 Customer Total 53 50.74	5/3/2017	3940	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	28.29	\$1,289.47
5/3/2017 3947 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 28.17 \$1,284.00 5/3/2017 3951 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 28.17 \$1,435.32 5/3/2017 3958 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 31.49 \$1,435.32 5/3/2017 3958 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.91 \$1,135.41 5/3/2017 3959 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 24.16 \$1,101.21 Customer Total 53	5/3/2017	3941	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1821	26.13	\$1.191.02
5/3/2017 3951 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 31.49 \$1,435.32 5/3/2017 3958 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 31.49 \$1,435.32 5/3/2017 3959 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.91 \$1,135.41 5/3/2017 3959 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 24.16 \$1,101.21 Customer Total 53 <td< td=""><td>5/3/2017</td><td>3947</td><td>0000121</td><td>183478933002</td><td>WA-GEORGETOWN CROSSROADS LLC</td><td>112260WAD</td><td>H1822</td><td>28,17</td><td>\$1,284.00</td></td<>	5/3/2017	3947	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1822	28,17	\$1,284.00
5/3/2017 3958 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1822 24.91 \$1,135.41 5/3/2017 3959 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 24.16 \$1,101.21 Customer Total 53	5/3/2017	3951	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	31.49	\$1,435,32
5/3/2017 3959 0000121 183478933002 WA-GEORGETOWN CROSSROADS LLC 112260WAD H1818 24.16 \$1,101.21 Customer Total 53<	5/3/2017	3958	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1822	24,91	\$1.135.41
Customer Total 53	5/3/2017	3959	0000121	183478933002	WA-GEORGETOWN CROSSROADS LLC	112260WAD	H1818	24,16	\$1.101.21
1 ° 1 1 <u>4</u> 306.26 1 306.747.06	Customer Total	53				<i>r</i>		1508.28	\$68,747.66