# Third Quarter 2018 Groundwater Monitoring Report

JH Kelly 821 3<sup>rd</sup> Avenue Longview, Washington 98632 VCP Project Number SW1529

Prepared for:

Mr. Mark Fleischauer
JH Kelly Holdings, LLC
Seattle, Washington

August 30, 2018

Prepared by:



HydroCon, LLC 314 W 15<sup>th</sup> Street, Suite 300, Vancouver, Washington 98660 Phone: (360) 703-6079 Fax: (360) 703-6086 www.hydroconllc.net



### **Table of Contents**

| 1.0 | INTRODUCTION                      | . 1 |
|-----|-----------------------------------|-----|
| 1.1 | Description of Property           | 1   |
| 1.2 | Site History                      | 1   |
| 1.3 | Regional Geology and Hydrogeology | 4   |
| 1.4 | Local Geology and Hydrogeology    | 5   |
| 2.0 | QUARTERLY GROUNDWATER MONITORING  | . 5 |
| 2.1 | Groundwater Conditions            | 5   |
| 2.2 | Groundwater Sampling              | 6   |
| 2.3 | Laboratory Analysis               | 6   |
| 2.4 | Analytical Results                | 6   |
| 3.0 | RECOMMENDATIONS                   | . 7 |
| 4.0 | QUALIFICATIONS                    | . 7 |

### **List of Figures**

Figure 1 – Site Location Map

Figure 2 – Site Features Map

Figure 3 – Groundwater Contour Map and Analytical Results – 3<sup>rd</sup> Quarter 2018

### **List of Tables**

Table 1 – JH Kelly Groundwater Analytical Data

### **Appendices**

Appendix A – Field Forms

Appendix B – Laboratory Report and Chain-of-Custody Documentation



### 1.0 INTRODUCTION

HydroCon Environmental, LLC (HydroCon) is pleased to present this summary of activities performed at the JH Kelly Inc. facility, located in Longview, Washington, shown on Figure 1. This report documents the guarterly groundwater monitoring event conducted at the site in August 2018.

### 1.1 Description of Property

The J.H. Kelly, Inc. (J.H. Kelly) site is located at 821 3<sup>rd</sup> Avenue in Longview, Washington. The site is located in a mixed use area and is surrounded by industrial, commercial, residential, and recreational properties (Figure 1). The Cowlitz River is located approximately 1,060 feet east of the site and Cowlitz County Diking District Drainage Ditch Number Five is located along the western property boundary of the site. The site is made up of several large buildings and is mostly paved with asphalt. The site is used for fabrication of pipe and storage of finished and stock materials.

A fueling system for J.H. Kelly vehicles was formerly located near the center of the site. The fueling system consisted of two underground storage tanks (USTs), one 10,000 gallon gasoline UST, and one 4,000 gallon diesel UST. The fuel dispensers were located on the western edge of the UST nest. The UST system was removed in 1989 and is discussed in more detail in the following sections. Figure 2 shows the current site layout and approximate location of the former UST system.

### 1.2 Site History

#### Pre-Tank Removal (July & September 1989)

On July 15, 1989, JH Kelly had a pressure test conducted on the USTs and both tanks passed the tightness test. A subsurface investigation was conducted by SRH Environmental Management on August 23, 1989. The test pit was located north of the fuel dispenser island and excavated to a depth of 18 feet below ground surface (bgs). Two soil samples were taken from the test pit and were composited by the lab into one sample for analysis. Benzene, toluene, ethylbenzene, and total xylenes (BTEX) and total petroleum hydrocarbons (TPH) were analyzed by EPA Method 418.1. BTEX constituents were not detected above the laboratory method reporting limits (MRLs). A total TPH of 58 milligrams per kilogram (mg/kg) was reported. However, benzene had a MRL greater than the current State of Washington Department of Ecology (Ecology) cleanup level (CUL). The detection limit for benzene was 0.04 mg/kg, compared to the current CUL of 0.03 mg/kg. Reportedly, the excavation location was chosen based on a soil gas survey; however the soil gas survey was not provided to HydroCon for review.

### **UST Removal (November 1991)**

The USTs were decommissioned in November of 1991 by Pacific Northern Environmental (PNE). Fuel dispensers, USTs, and ancillary equipment were removed. Field screening with a photoionization



detector (PID) indicated petroleum contaminated soil (PCS) below the dispensers. PCS was also noted around each of the USTs as they were removed. A water sample was taken from the excavation pit and had MTCA Method A CUL exceedances for TPH in the diesel range (DRPH), TPH in the gasoline range (GRPH), and BTEX with concentrations detected at 24,000 micrograms per liter ( $\mu$ g/L), 130,000  $\mu$ g/L, 4,100  $\mu$ g/L, 18,000  $\mu$ g/L, 5,300  $\mu$ g/L, and 32,000  $\mu$ g/L, respectively.

Four soil samples (one sample from each end of each UST) were collected from the soil/groundwater interface and analyzed for TPH by EPA Method 3550/8015 Modified. One of the samples (JHK-SS3-12.5') detected TPH in the oil range (ORPH) at a concentration of 480 mg/kg which exceeded the CUL at the time of 200 mg/kg. Two of the four samples were analyzed for BTEX. One of the samples (JHK-SS5-12.5') had a detected concentration of benzene of 1.10 mg/kg which exceeded the CUL. A remedial excavation was performed in the areas where ORPH (west end of the UST) and benzene (east end of the USTs) had exceeded their respective CULs. Following remedial excavation activities confirmation samples were collected from the area with the ORPH exceedance (JHK-SS5-12.5'). The confirmation sample had a DRPH concentration of 120 mg/kg and an ORPH concentration of 120 mg/kg. The confirmation sample taken from the area with the benzene exceedance was below the laboratory detection limit for all BTEX constituents. It should be noted that the laboratory MRL for the benzene analysis was 0.1 mg/kg, which is greater than the current CUL of 0.03 mg/kg. Therefore, it is unknown whether the remedial excavation was successful at reducing benzene concentrations below the MTCA Method A CUL.

### **Groundwater Monitoring (December 1991 to 2006)**

Prior to backfilling the remedial excavation, a monitoring well (JHK-MW) was installed in the UST excavation during the week of November 22, 1991. The monitoring well was constructed using a 30-inch diameter steel pipe to a depth of 10 feet bgs with a 24-inch slotted PVC casing inserted inside the steel casing from 9 to 12 feet bgs. The monitoring well location is shown on Figure 2. It should be noted that this well construction does not comply with current Ecology specifications.

The initial sampling results from December 1991 showed exceedances of GRPH (1,010  $\mu$ g/L), ORPH (3,340  $\mu$ g/L), and benzene (30  $\mu$ g/L) above their respective CULs. Follow up sampling in May 1992 showed no detectible TPH in the well, but showed an exceedance for benzene (11.1  $\mu$ g/L). The next sampling event was completed in June of 1993 and detected an exceedance of DRPH (270,000  $\mu$ g/L) and a quantity of TPH designated as "Other" at 6,000  $\mu$ g/L. The DRPH concentration was reported to be flagged as not matching the typical diesel fingerprint chromatogram. "Other" is not defined in the laboratory report. There was also no oil range results reported for TPH. It is not clear from the report if ORPH was not detected or not analyzed. None of the BTEX constituents exceeded the respective CULs.

The sampling event in April 1996 indicated that TPH was below laboratory their respective detection limits except for something designated as "Other." The "Other" result (279 µg/L) is flagged as not being



in the diesel range and also not matching the typical diesel fingerprint chromatogram. All BTEX constituents were below the laboratory detection limits.

The sampling event in April 2006 included samples collected from JHK-MW and the ditch behind the site. Analytical results indicated that both samples were below their respective laboratory MRLs.

The well was sampled twice in 2016 (April and July). Analytical results indicated that all samples were below their respective laboratory MRLs.

#### 2017 Phase II ESA

A Phase II Environmental Site Assessment (ESA) was completed based on correspondence from Ecology dated October 31, 2016, in response to a request by the property owner for a determination of No Further Action (NFA) for the site. On September 26, 2017, the Ecology Project Manager for the site, Mr. Aaren Fiedler, was contacted to discuss a proposed scope of work for the site that could result in a NFA determination. The scope of work for the Phase II ESA was approved by Ecology and would be sufficient to justify a NFA determination if all conditions were achieved.

On October 11, 2017, HydroCon conducted a subsurface investigation which included a total of five direct push borings (HC01 through HC05) advanced to a maximum depth of 15 feet bgs to evaluate soil and groundwater conditions in the vicinity of the former UST excavation. Analytical results indicated that only a low concentration of ORPH was detected in the soil samples collected at 10 feet bgs at HC01 and HC02. The location of these samples were centrally located and along the eastern boundary of the former UST excavation. It is assumed that the likely source of the ORPH in the HC01-10 and HC02-10 samples was from the imported fill material used at the site and not from the release of the former UST system. Boring locations are shown on Figure 2.

DRPH was detected above the MTCA Method A CUL in the groundwater samples collected from HC01, HC02, and HC04. In addition, methyl tert butyl ether (MTBE) was detected above the MTCA Method A CUL in HC04. Groundwater results are summarized on Table 1.

It should be noted that water samples collected from temporary borings are screening level quality only and should not be solely relied upon for site characterization purposes. The drilling and sampling method used (direct push) produces disturbed (turbid) samples and may not represent actual groundwater conditions. Groundwater samples collected from properly constructed and developed monitoring wells produce relatively non-turbid samples.

Based on historic data and data collected during the Phase II ESA, HydroCon concluded the remaining groundwater contamination has decreased significantly over time and would likely naturally attenuate to concentrations below the MTCA Method A CUL.



### **December 2017 Monitoring Well Installation**

On December 12 and 13, 2017, HydroCon supervised the installation on monitoring wells MW01 through MW04. Soil samples were collected at the soil/groundwater interface and analyzed for TPH and related constituents. The results indicated that none of the samples had detections above the MTCA Method A CULs. The monitoring wells were constructed using 2-inch diameter PVC casing and a 15-foot length of 0.010-inch slotted well screen placed from approximately 5 to 20 feet bgs. Well construction details are documented on the boring logs<sup>1</sup>.

The monitoring wells were sampled on December 18, 2017 with the following results:

- MW01 DRPH (851 µg/L) was detected in the sample.
- MW02 DRPH (375 μg/L), GRPH (117 μg/L) and MTBE (3.21 μg/L) were detected in the sample.
- MW03 DRPH (416 μg/L) was detected in the sample.
- MW04 ORPH (179 μg/L) was detected in the sample.

The results indicated that the sample collected from MW01 had a detection of DRPH above the MTCA Method A CUL (500  $\mu$ g/L). Groundwater sampling result are presented in Table 1.

### **Groundwater Monitoring (March & May 2018)**

Monitoring wells MW01 through MW04 were sampled by HydroCon personnel in March 2018, and again in May 2018 as part of a quarterly sampling plan. During the March 2018 sampling event, every groundwater sample was below the respective laboratory detection limits (MRLs). In May 2018, small amounts of DRPH were detected in MW01 through MW04 ranging from 75.9  $\mu$ g/L to 239  $\mu$ g/L. However, each detected concentration was below the MTCA Method A CUL (500  $\mu$ g/L). In addition, MTBE was detected in the sample collected from MW02 at a concentration of 3.34  $\mu$ g/L. This detected concentration is also below the MTCA Method A CUL (20  $\mu$ g/L).

Analytical results of the previous 2018 sampling events are detailed in Table 1, and also presented on Figure 3.

### 1.3 Regional Geology and Hydrogeology

The geology of southwestern Cowlitz County is characterized by sedimentary and volcanic deposits laid down or extruded during the Tertiary and Quaternary periods (Livingston, 1966). The oldest formations (Cowlitz Formation and Goble Volcanics) include Eocene basaltic andesite and volcanoclastic deposits which were deposited 45 to 32 million years ago (Phillips, 1987). Lava flows of the Columbia River Basalt Group overlie the older formations. The next youngest rocks exposed in the area are the Upper

<sup>&</sup>lt;sup>1</sup>HydroCon, *Monitoring Well Installation and Sampling Report* (February 14, 2018)



Miocene to Lower Pleistocene sand, silt, gravel, and conglomerate of the Troutdale Formation. The valley fill material represents deposits of the ancestral Columbia River. The dissected upland that bound the Columbia River valley is composed of these older Formations. The youngest material exposed in the region is the outburst deposits of glacial Lake Missoula, landslide deposits, and recent alluvium.

Regional hydrogeology in the vicinity of the site is characterized by recharge to bedrock in the upland areas and discharge into the Columbia River. Groundwater flows from the regional bedrock through the thick alluvial sequence in the river valley before discharging into the rivers (Meyers, 1970). Precipitation also infiltrates the surface of the alluvium, recharging local flow systems in the river's floodplain.

### 1.4 Local Geology and Hydrogeology

Locally the geology consists of fill material down to approximately 9 to 10 feet bgs. The fill consisted of chunks of wood, asphalt, concrete, rebar, and bricks in a matrix of silt, sand, and gravel<sup>2</sup>. Below the fill material is native sands and silts. A layer of grass and reeds was observed at the top of the native soils indicating the area had once been ground surface. Groundwater flow direction calculated during the October 2017 Phase II ESA was to the southwest towards Ditch Number Five. Flow direction was estimated using water levels collected on October 11, 2017 from temporary borings in relation to a ground surface elevation survey conducted upon completion of drilling activities. The well lid of the existing monitoring well (JHK-MW) was used as the site datum. The datum was assigned an elevation of 100 feet.

### 2.0 QUARTERLY GROUNDWATER MONITORING

On August 9, 2018 HydroCon collected groundwater samples from monitoring wells MW01 through MW04. The locations of the monitoring wells are shown on Figure 2. A discussion of the sampling methodology, groundwater conditions, and laboratory analytical results is provided below.

### 2.1 Groundwater Conditions

Prior to sampling, the well caps of the monitoring wells were removed and the water level was allowed to equilibrate prior to measuring the depth to water (DTW). The DTW in each well was measured using a clean electronic water level indicator. Water levels were measured at the scribed reference mark (north end of the top of the PVC casing) at each well. The static water levels in the monitoring wells varied between 8.26 feet and 9.46 feet below the top of the well casing (BTOC) during the August 9, 2018 sampling event. An apparent groundwater mound is present near MW04. The groundwater elevation calculated for MW04 was approximately 0.3 to 0.4 feet higher than monitoring wells MW01 through MW03. This is consistent with past sampling events, although the mounding is not as pronounced as previous sampling events.

<sup>&</sup>lt;sup>2</sup> SRH Environmental Management, *Report on Soil Sampling and Analysis* (September 1, 1989)



A groundwater elevation contour map was generated from depth to water data collected on August 9, 2018. The groundwater flow direction south of the former UST excavation is towards the north and northwest. The groundwater gradient calculated in the southern portion of the site between MW04 and MW03 is approximately 0.013 feet/foot. The groundwater flow between MW01 and MW03, which ignores the mounding observed at MW04, is towards the south west at a calculated gradient of 0.00115 feet/foot. The groundwater elevations and groundwater contours are shown on Figure 3. Depth to groundwater measurements and groundwater elevations are summarized on Table 1.

### 2.2 Groundwater Sampling

Each monitoring well was purged, prior to sampling, with a low flow peristaltic pump equipped with new length of LDPE tubing attached to a new length of silicon tubing. Groundwater quality parameters (pH, temperature, specific conductivity, dissolved oxygen, ORP, & turbidity) were measured and recorded on a Groundwater Sample Collection field form along with the DTW measurements (Appendix A). Purging was completed when the field parameters had stabilized within the prescribed limits.

Upon stabilization of the groundwater quality parameters, the groundwater samples were collected and placed in laboratory-prepared sampling containers. The samples were placed in an iced cooler along with the chain-of-custody documentation and transported APEX Laboratory, in Tigard, Oregon for analysis.

Groundwater generated during this monitoring event was placed in a labeled 55-gallon drum. The drum is being temporarily stored at the northwest corner of the building south of the investigation area.

### 2.3 Laboratory Analysis

A total of four groundwater samples were collected for laboratory analysis. Each sample was analyzed for the following set of parameters:

- GPRH by Northwest Method NWTPH-Gx.
- DPRH and ORPH by Northwest Method NWTPH-Dx.
- BTEX, MTBE, and EDB/EDC by EPA Method 8260C.
- Total Lead (Pb) by EPA 200.8 (ICPMS)

### 2.4 Analytical Results

The groundwater analytical results are reported in micrograms per liter (µg/L) (parts per billion) and are summarized below and on Table 1 and Figure 3. Copies of the laboratory reports and chain-of-custody documents are included in Appendix B.



Groundwater analytical results indicate that DRPH was only detected in MW02 at a concentration of 83.3  $\mu$ g/L, which is below the MTCA Method A CUL of 500 $\mu$ g/L. DRPH was not detected in any of the remaining wells at the site. ORPH was not detected in any of the wells.

GRPH, BTEX, EDB and EDC were not detected in any of the wells above the respective laboratory Method Reporting Limits (MRLs).

MTBE was only detected in monitoring well MW02. The detected concentration was 22.0  $\mu$ g/L, which is above the MTCA Method A CUL of 20  $\mu$ g/L. MTBE results have historically have been either below the MRL or an order of magnitude lower than the CUL. HydroCon resampled monitoring well MW02 on August 21, 2018 for MTBE using low flow sampling methods. The MTBE result from the August 21, 2018 sampling event was 2.4  $\mu$ g/L and is consistent with past results from this well.

Lead was detected in monitoring well MW02 at a concentration of 0.745  $\mu$ g/L and in MW04 at a concentration of 3.54  $\mu$ g/L. These detections are below the MTCA Method A CUL of 15  $\mu$ g/L. Lead was not detected at or above the MRL for wells MW01 and MW03.

### 3.0 RECOMMENDATIONS

Based on the results of the groundwater sampling, HydroCon makes the following recommendations:

- Perform the final (fourth consecutive) quarterly groundwater monitoring event in the 4<sup>th</sup> quarter of 2018.
- Since monitoring wells MW03 and MW04 have had four consecutive quarters below the Method A CUL, groundwater samples will only be collected from monitoring wells MW01 and MW02.
- In the event that all contaminants of concern at all site monitoring wells remain below their respective MTCA Method A CULs, HydroCon recommends submitting a formal request to Ecology to review site reports and issue an NFA determination for the site.

### 4.0 QUALIFICATIONS

HydroCon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. HydroCon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that HydroCon does not warrant the work of laboratories, regulatory agencies, or other third parties supplying information used in the preparation of the report.

Findings and conclusions resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, nondetectable or not present during these services, and we cannot represent that the site contains no hazardous substances, toxic

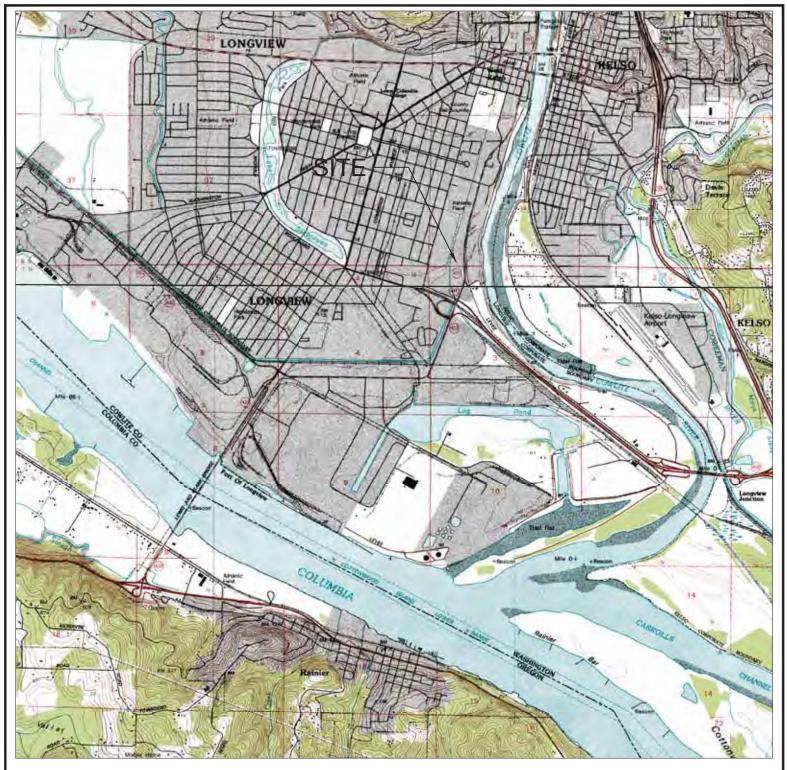


materials, petroleum products, or other latent conditions beyond those identified during this monitoring. Subsurface conditions may vary from those encountered at specific sampling locations or during other surveys, tests, assessments, investigations, or exploratory services; the data, interpretations and findings are based solely upon data obtained at the time and within the scope of these services.

This report is intended for the sole use of **JH Kelly**. This report may not be used or relied upon by any other party without the written consent of HydroCon. The scope of services performed in execution of this evaluation may not be appropriate to satisfy the needs of other users, and use or re-use of this document or the findings, conclusions, or recommendations is at the risk of said user.

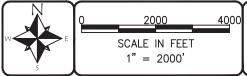
The conclusions presented in this report are, in part, based upon subsurface sampling performed at selected locations and depths. There may be conditions between borings or samples that differ significantly from those presented in this report and which cannot be predicted by this study.

### Signature:


Report Prepared By:

Chris Daschel, GIT Staff Geologist

Jonathan Horowitz, PE

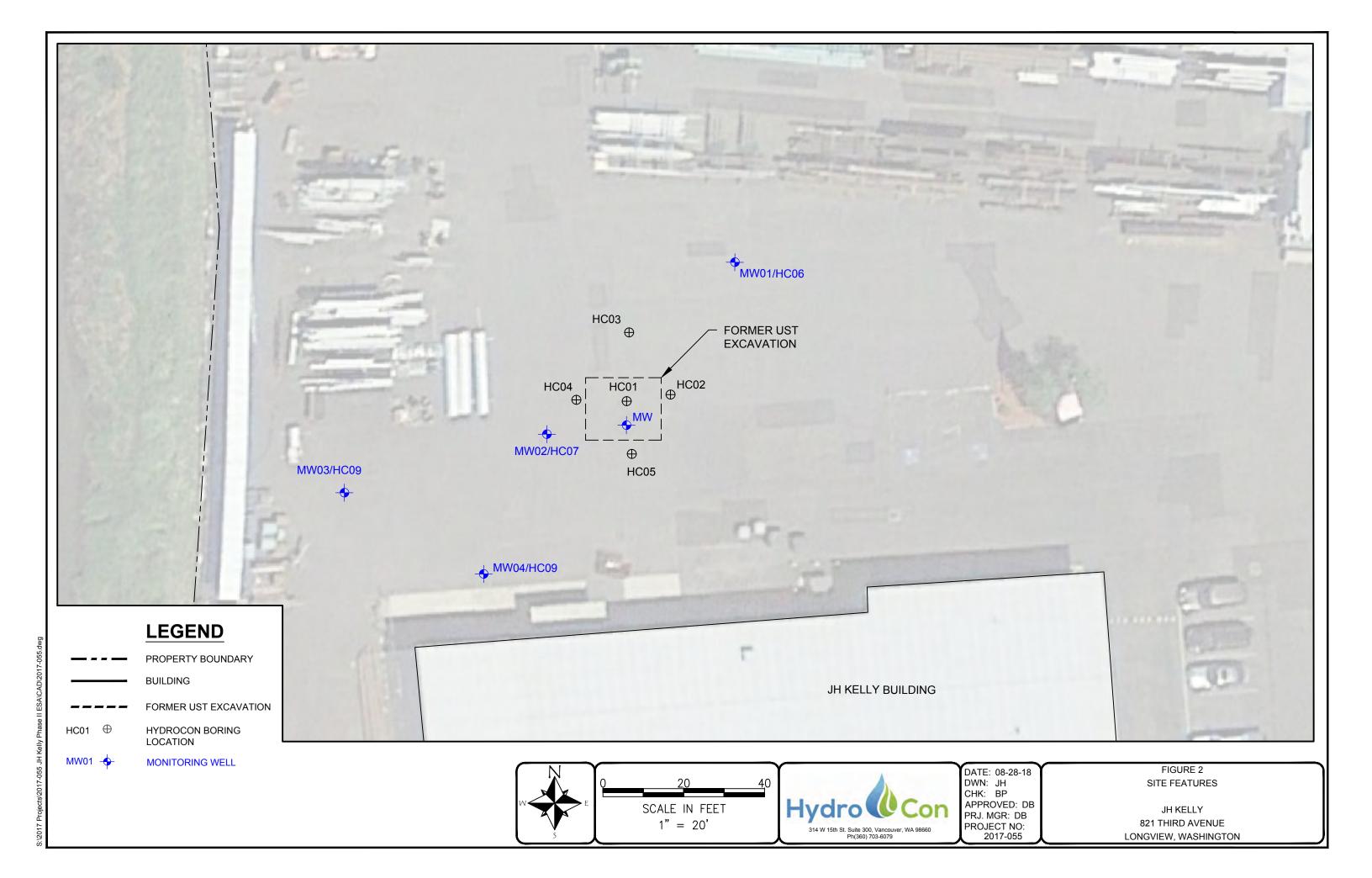

Report Reviewed By:

Project Engineer



### NOTE(S):

1. USGS, RAINIER, OREGON AND KELSO, WASHINGTON QUADRANGLES 7.5 MINUTE SERIES (TOPOGRAPHIC)






DATE:08-28-18 DWN: JH CHK: BP APPROVED:BP PRJ. MGR: DB PROJECT NO: 2017-055

FIGURE 1 SITE LOCATION MAP

JH KELLY 821 THIRD AVENUE LONGVIEW, WASHINGTON



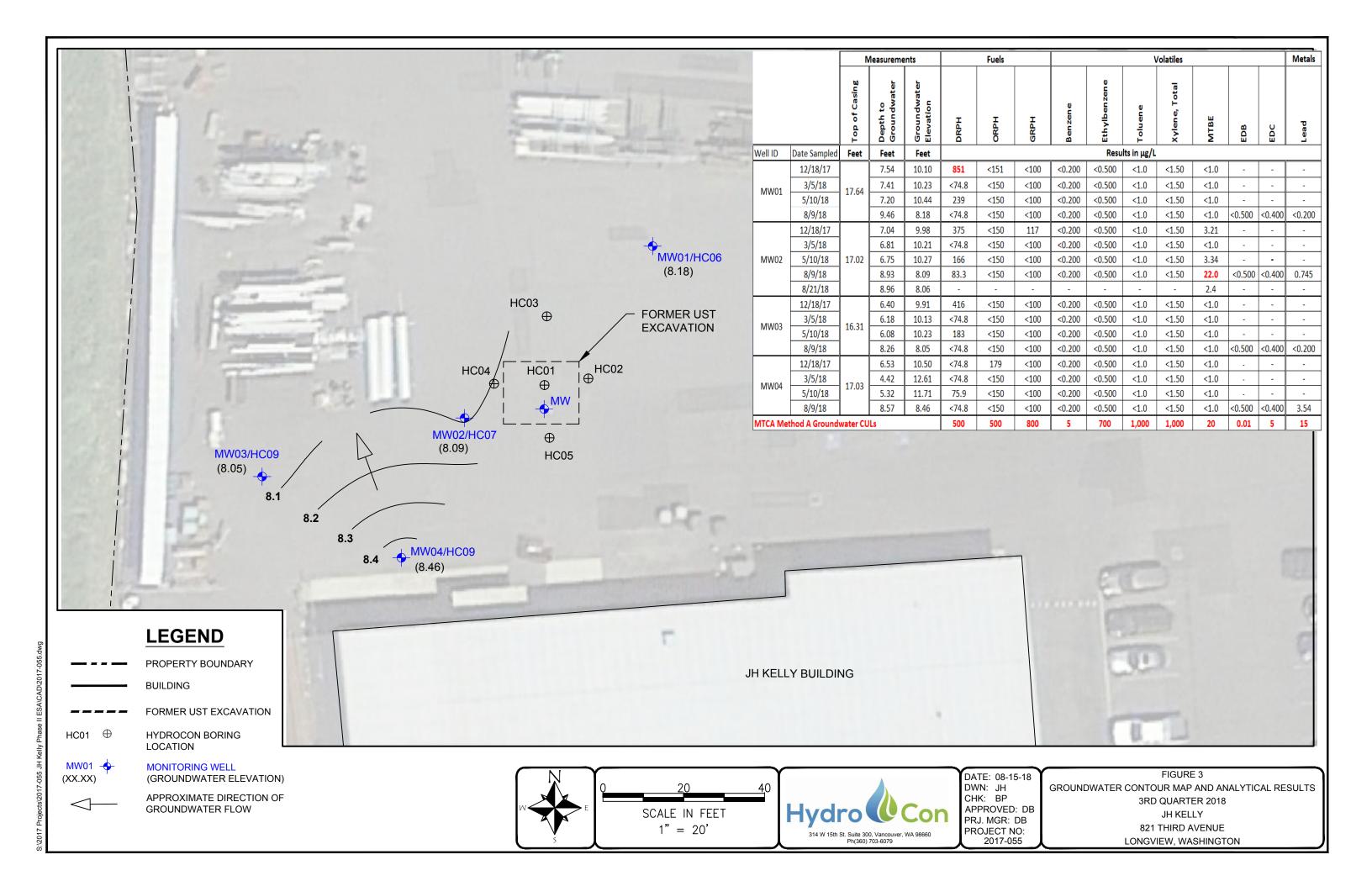



Table 1

JH Kelly Groundwater Analytical Results
821 3rd Aveneue, Longview, WA

|          |                | N             | 1easureme               | nts                             |       | Fuels |      |         |              | 1           | /olatiles     |      |        |         | Metals |
|----------|----------------|---------------|-------------------------|---------------------------------|-------|-------|------|---------|--------------|-------------|---------------|------|--------|---------|--------|
|          |                | Top of Casing | Depth to<br>Groundwater | <b>Groundwater</b><br>Elevation | ОКРН  | ОRРН  | GRРH | Benzene | Ethylbenzene | Toluene     | Xylene, Total | MTBE | EDB    | EDC     | Lead   |
| Well ID  | Date Sampled   | Feet          | Feet                    | Feet                            |       |       |      |         | Resu         | lts in μg/L |               |      |        |         |        |
|          | 12/18/17       |               | 7.54                    | 10.10                           | 851   | <151  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | -      | -       | -      |
| MW01     | 3/5/18         | 17.64         | 7.41                    | 10.23                           | <74.8 | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | -      | -       | -      |
| IVIVVOI  | 5/10/18        | 17.04         | 7.20                    | 10.44                           | 239   | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | -      | -       | -      |
|          | 8/9/18         |               | 9.46                    | 8.18                            | <74.8 | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | <0.500 | <0.400  | <0.200 |
|          | 12/18/17       |               | 7.04                    | 9.98                            | 375   | <150  | 117  | <0.200  | <0.500       | <1.0        | <1.50         | 3.21 | -      | -       | -      |
|          | 3/5/18         |               | 6.81                    | 10.21                           | <74.8 | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | -      | -       | -      |
| MW02     | 5/10/18        | 17.02         | 6.75                    | 10.27                           | 166   | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | 3.34 | -      | -       | -      |
|          | 8/9/18         |               | 8.93                    | 8.09                            | 83.3  | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | 22.0 | <0.500 | < 0.400 | 0.745  |
|          | 8/21/18        |               | 8.96                    | 8.06                            | -     | 1     | -    | -       | -            | -           | -             | 2.4  | -      | -       | -      |
|          | 12/18/17       |               | 6.40                    | 9.91                            | 416   | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | -      | -       | -      |
| MW03     | 3/5/18         | 16.31         | 6.18                    | 10.13                           | <74.8 | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | -      | -       | -      |
| IVIVVUS  | 5/10/18        | 10.51         | 6.08                    | 10.23                           | 183   | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | -      | -       | -      |
|          | 8/9/18         |               | 8.26                    | 8.05                            | <74.8 | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | <0.500 | < 0.400 | <0.200 |
|          | 12/18/17       |               | 6.53                    | 10.50                           | <74.8 | 179   | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | -      | -       | -      |
| MW04     | 3/5/18         | 17.03         | 4.42                    | 12.61                           | <74.8 | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | -      | -       | -      |
| 1010004  | 5/10/18        | 17.03         | 5.32                    | 11.71                           | 75.9  | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | -      | -       | -      |
|          | 8/9/18         |               | 8.57                    | 8.46                            | <74.8 | <150  | <100 | <0.200  | <0.500       | <1.0        | <1.50         | <1.0 | <0.500 | <0.400  | 3.54   |
| MTCA Met | thod A Groundw | ater CUL      | s                       |                                 | 500   | 500   | 800  | 5       | 700          | 1,000       | 1,000         | 20   | 0.01   | 5       | 15     |

#### Notes

Red denotes concentration exceeds MTCA Method A cleanup level.

MTCA Method A Cleanup Levels, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised November 2007.

GRPH analyzed by Method NWTPH-Gx.

DRPH and ORPH analyzed by Method NWTPH-Dx.

Volatiles analyzed by EPA 8260B, 8260C or 8021B.

Lead Analysis by EPA Method 6020

- = not measured/not analyzed

< = not detected at a concentration exceeding the laboratory reporting limit

μg/L = micrograms per liter

DRPH = Diesel Range Petroleum Hydrocarbons

ORPH = Oil Range Petroleum Hydrocarbons

GRPH = Gasoline Range Petroleum Hydrocarbons

MTBE = methyl tertiary-butyl ether

EDB= 1,2-Dibromoethane

EDC= 1,2-Dichloroethane

## APPENDIX A FIELD FORMS

| Project Name:   Date: 8/9/18   360.703.6079/Fax 360.703.6086   Client:   Page:   Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | DAILY FIELD REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hydrocon Job Number: |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 360.703.6079/Fax 360.703.6086  S10 Allen Street, Suite B; Kelso, WA 98626  Prepared By:  Chris Dasdel  Morring classifications sun, 60-26 F Departure: 1200  Purpose:  Weather:  Weather:  Permit:  O200 CN - Stric after slapping for supplies at Vancover affice.  O310 All four well caps spend; old paly tubing removed.  13 lack film an tubing near water lavel; New tubing placed.  O320 Calibrate 75t Fro plas  O840 Collect DTW measurements  Well ID  MWO2 - 8.93  MWO3 - 9.46  MWO4 - 8.57  Obso Firish YSI calibration  O103 Gagin purging MWO2  1150 Finish sampling MWO4 | Hydro Con                     | - Care and C |                      |
| 510 Allen Street, Suite B; Kelso, WA 98626  Prepared By:  Chris Dasdrel Morring clarks; afteron sun, 60-85 Peparture: 1200  Purpose:  Weather:  Weather:  O800 ON - STITE after stapping for supplies (a) Vancover affect  13 acts film on taking year water lavel New tubing placed is  O800 Calibrate 75t Fro place  O800 Calibrate 75t Fro place  O800 Calibrate 75t Fro place  Well ID 8000 iff DTW  MWO2 - 9.46  MWO3 - 9.46  MWO4 - 8.57  Ob50 Finish YSI calibration  O103 Gagin purging MWO2  II50 Finish Sumpling MWO4                                                        | 360.703.6079/Fax 360.703.6086 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 014110               |
| Prepared By:  Chris Dasdel  Morring clouds; afternoon sun, 60.25 Peparture: 1200  Purpose:  Weather:  Weather:  Weather:  O800  ON-Stric after stopping for supplies (a) Vancover affect  O810  All four well caps spend; ald paly tubing removed  13 buck from an tubing near water level; New tubing placed;  O820  Calibrate 75t Fro plus  O840  Collect DTW measurements  Well ID  MWO2  - 8.93  MWO3  - 8.93  MWO4  O850  Finish TSI calibration  O103  Gegin purging MWO2  ISO  IFINISH Sumpling MWO4                                                                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page: ( Of (         |
| GW Monitoring  O800 ON-STEE after stopping for supplies (a) Vancover affect  O810 All four well caps spend; old paly tubing removed  13 leach film an tubing near water level; New tubing pleased is  O820 Calibrate 75t Fro plans  O840 Collect DTW measurements  Well ID 8000 jtp DTW  MWO3 - 9.46  MWO3 - 9.46  MWO3 - 8.93  MWO3 - 8.57  O850 Finish YSI calibration  O103 Gegin purging MWO2  1150 Finish sampling MWO4                                                                                                                                                           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arrival: 0300        |
| GW Monitoring  O800 ON-STEE after stopping for supplies (a) Vancover affect  O810 All four well caps spend; old paly tubing removed  13 leach film an tubing near water level; New tubing pleased is  O820 Calibrate 75t Fro plans  O840 Collect DTW measurements  Well ID 8000 jtp DTW  MWO3 - 9.46  MWO3 - 9.46  MWO3 - 8.93  MWO3 - 8.57  O850 Finish YSI calibration  O103 Gegin purging MWO2  1150 Finish sampling MWO4                                                                                                                                                           |                               | Morning claus & afternoon sun, 60.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P Departure: 1200    |
| 0800 ON-STITE after stopping for supplies (a) Vancover affect 0810 All four well caps spend; ald paly tubing removal 13 lack film an tubing near water level; New tubing pleased; 0820 Calibrate 75t Tro plant 0840 Collect DTW measurements Well ID 888 JTP DTW  MWO1 - 946  MWO2 - 8.93  MWO3 - 8.26  MWO4 - 8.57  0850 Firish 75t calibration 0903 Gogin purging MWO2  1150 Firish sampling MWO4                                                                                                                                                                                    |                               | Weather:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Permit:              |
| 13 Lente from on tubing near water level; New tubing placed is 0820 Calibrate 75t Fro place 0840 Collect DTW measurements Well ID 800 istp DTW  MWO2 - 8.93  MWO3 - 8.57  Obso Finish 75t calibration 0903 Gegin purging MWO2  150 Finish sampling MWO4                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 13lack Film on tuling near water lavel; New tuling placed is 0820 Callibrate 75t Fro place 0840 Collect DTW measurements Well ID 888 17TP DTW  MWO1 - 9.46  MWO2 - 8.93  MWO3 - 8.26  MWO4 - 8.57  Obso Finish YSI calibration 0903 Gagin purging MWO2  1150 Finish sampling MWO4                                                                                                                                                                                                                                                                                                      | 1800 ON-SITE after            | stopping for supplies (a) Vanc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | over office          |
| OSO Calibrate 75t Fro plas  OSHO Collect DTW measurements  Well ID SON DTP DTW  MWOI - 9.46  MWOZ - 8.93  MWO3 - 8.26  MWO4 - 8.57  OSO Firish TSI calibration  O103 Gagin purging MWOZ  IITO Finish sampling MWO4                                                                                                                                                                                                                                                                                                                                                                     | 810 All four well             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                    |
| OB40 Collect DTW measurements  Well ID BOT DTP DTW  MWOZ - 9.46  MWOZ - 8.93  MWOZ - 8.57  MWOY - 8.57  OB50 Finish YSI calibration  Oto3 Gegin purging MWOZ  II50 Finish sampling MWOY                                                                                                                                                                                                                                                                                                                                                                                                | Black Film on                 | tubing near water level; Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of tubing placed in  |
| MWOI - 9.46  MWOZ - 8.93  MWO3 - 8.26  MWOY - 8.57  OBSO Firish YSI calibration  Oto3 Gegin purging MWOZ  1150 Finish sampling MWOY                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 800 Calibrate 751             | Tro plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| MWOZ - 8.93  MWO3 - 8.26  MWOY - 8.57  OBSO Firish YSI calibration  Oto3 Gegin purging MWOZ  1150 Finish sampling MWOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1840 Collect DTW              | measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| Mwoz - 8.93  Mwoy - 8.26  Mwoy - 8.57  Obso Finish YSI calibration  Oto3 Gegin purging Mwoz  1150 Finish sampling MWOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Well ID SORT IT               | POTW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| MW04 - 8.57  Obso Finish YSI calibration  Oto3 Gogin purging MW02  1150 Finish sampling MW04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MWOI -                        | 9.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| MWOY - 8.57  0850 Finish YSI calibration  0103 Begin purging MWOZ  1150 Finish sampling MWOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mwoz -                        | 8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| MWOY - 8.57  0850 Finish YSI calibration  0903 Begin purging MWOZ  1150 Finish sampling MWOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MW03 -                        | 8.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| 1150 Finish sampling MWOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MWOY -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150 Finish sumpling           | MWOY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | afternoon            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |



| Hydroco                                                                                      | ame:<br>n Project # <u>:</u><br>2                                               | 2017-0                                            | 55                                                       |                                                                                                                                     | Field Dupli                                                                  | icate I.D                                                          | 101-W                                                                | I.D. Number:<br>Time: 10.26<br>Time:           |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|
| Monume<br>Well cap<br>Headspa<br>Well diar                                                   | condition:<br>ce reading:                                                       | Good Good Not me                                  | Replayered                                               | s repair_<br>aced                                                                                                                   | eplacement                                                                   | Odor                                                               | Water in Well                                                        |                                                |
| Fotal well<br>Depth to p<br>Depth to v<br>Casing vo                                          | oroduct                                                                         | 9.71 ft<br>- ft<br>.46 ft<br>.25 ft(              | Intake [                                                 | ☐ Hard ☐ Soft Depth (BTOC) ☐ gal/ft /ft 1"=0.04 gal/ft                                                                              | 12' Be                                                                       | gin Purging We                                                     | 911 0947<br>11.92 ga                                                 | al.                                            |
| oump typ<br>Bailer typ                                                                       |                                                                                 | v                                                 | trifugal                                                 | ☐ Dedicated Bla<br>oosal::☑ Drumme                                                                                                  | dder □ Nor<br>d □ Remed                                                      | iation System                                                      | adder Other_<br>Other                                                |                                                |
| Time                                                                                         | Water<br>Level<br>(BTOC)                                                        | Purge Rate<br>(L/min)                             | Ten                                                      |                                                                                                                                     | Oxygen<br>(±10% or<br>≤1.00 ±0.2)                                            | pH<br>(SU)<br>(±0.1)                                               | ORP<br>(mV)                                                          | Turbidity (NTU) (± 10% or ≤10)                 |
| 5949                                                                                         | 9.46                                                                            |                                                   | 16.1                                                     |                                                                                                                                     | 1.08                                                                         | 6.85                                                               | 23.7                                                                 | 4.21                                           |
| 57PC                                                                                         | 9.46                                                                            | 1                                                 | 16.                                                      |                                                                                                                                     | 0.56                                                                         | 6.77                                                               | -8.9                                                                 | 2.52                                           |
|                                                                                              | 9.46                                                                            | 1.0                                               | 15-                                                      |                                                                                                                                     | 0.42                                                                         | 6-72                                                               | -15,9                                                                | 2.32                                           |
|                                                                                              |                                                                                 |                                                   | 15.                                                      |                                                                                                                                     | 0.56                                                                         | 6.69                                                               | -20,2                                                                | 1.89                                           |
| 0955                                                                                         | 9,46                                                                            |                                                   | 15.                                                      |                                                                                                                                     | 0.3t                                                                         | 6.70                                                               | -23.8                                                                | 1.49                                           |
| 5995<br>5995                                                                                 | 9,47                                                                            | 0.145                                             |                                                          |                                                                                                                                     |                                                                              |                                                                    |                                                                      | a second                                       |
| 0955<br>0953<br>1001                                                                         | 9,47                                                                            | O'HE                                              | 15.                                                      |                                                                                                                                     | 0.28                                                                         | 6.71                                                               | -25.6                                                                | 1,98                                           |
| 955<br>953<br>001<br>1004                                                                    | 9,47                                                                            | 0.145                                             | 15.                                                      | 3 .467                                                                                                                              | 85.0                                                                         | 6.71                                                               | -25.6                                                                | 1.37                                           |
| 0955<br>0953<br>001<br>1004<br>1007                                                          | 9,47                                                                            | 0.145                                             | 15.                                                      | 2 ,467<br>3 ,469<br>3 ,445                                                                                                          | 0.28<br>0.26<br>0.24                                                         | 6.71                                                               | -26.1                                                                | 1.37                                           |
| 0955                                                                                         | 9,47<br>9,46<br>9,46<br>9,46                                                    | 0.145                                             | 15.<br>15.<br>15.                                        | 2 ,467<br>3 ,459<br>3 ,445<br>3 ,438                                                                                                | 0.28<br>0.26<br>0.24<br>0.24                                                 | 6.71                                                               | -26.1<br>-27.0<br>-27.0                                              | 1.37                                           |
| 0955<br>0955<br>001<br>1004<br>007<br>007                                                    | 9,47                                                                            | 0.145                                             | 15.                                                      | 2 ,467<br>3 ,459<br>3 ,445<br>3 ,438                                                                                                | 0.28<br>0.26<br>0.24                                                         | 6.71                                                               | -26.1                                                                | 1.37                                           |
| 0955<br>0953<br>001<br>1004<br>007<br>007                                                    | 9,47<br>9,46<br>9,46<br>9,46                                                    | 0.145                                             | 15.                                                      | 2 .467<br>3 .469<br>3 .445<br>3 .438<br>2 <del>437</del>                                                                            | 0.28<br>0.26<br>0.24<br>0.24                                                 | 6.71                                                               | -26.1<br>-27.0<br>-27.0                                              | 1.37                                           |
| 0955<br>0958<br>1004<br>1004<br>1007<br>610<br>013<br>016                                    | 9,47<br>9,46<br>9,46<br>9,46<br>1,46                                            | aree successive                                   | 15.<br>15.<br>15.                                        | 2 .467<br>3 .459<br>3 .445<br>3 .438<br>2 -437                                                                                      | 0.28<br>0.24<br>0.24<br>0.28<br>0.23                                         | 6.71                                                               | -26.1<br>-27.0<br>-27.0<br>-27.9                                     | 1.37<br>1.40<br>1.27<br>1.56                   |
| 0955<br>0958<br>1004<br>1004<br>1003<br>1016<br>tabilization                                 | 9,47<br>9,46<br>9,46<br>9,46<br>1,46                                            | ree successive                                    | 15.                                                      | 2 .467 3 .459 3 .438 3 .437  Cumple ents for pH, Conductive measurements should                                                     | O. 28<br>O. 24<br>O. 24<br>O. 23<br>O. 23<br>ity and Turbidi<br>be recorded. | 6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>7.70<br>ty or Dissolved On | -26.1<br>-27.0<br>-27.0<br>-27.9                                     | 1.37<br>1.40<br>1.27<br>1.56                   |
| OPSS<br>OPSS<br>OPSS<br>OPS<br>OPS<br>OPS<br>OPS<br>Cabilization<br>erspective<br>Purging Co | 9,47<br>9,46<br>9,46<br>9,46<br>1,46<br>achieved if the stabilization comments: | rree successive<br>riteria. A minin<br>Parge sold | 15.                                                      | 2 .467<br>3 .459<br>3 .445<br>3 .438<br>2 -437                                                                                      | O. 28<br>O. 24<br>O. 24<br>O. 23<br>O. 23<br>ity and Turbidi<br>be recorded. | 6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>7.70<br>ty or Dissolved On | -26.1<br>-27.0<br>-27.0<br>-27.9                                     | 1.37<br>1.40<br>1.27<br>1.56                   |
| ones                                                                                         | 9,47<br>9,46<br>9,46<br>9,46<br>1,46                                            | rree successive<br>riteria. A minin<br>Parge sold | 15.                                                      | 2 .467 3 .459 3 .445 3 .438 2 -437  Down of pents for pH, Conductive measurements should                                            | O. 28<br>O. 24<br>O. 24<br>O. 23<br>O. 23<br>ity and Turbidi<br>be recorded. | 6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>7.70<br>ty or Dissolved On | -26.1<br>-27.0<br>-27.0<br>-27.9                                     | 1.37<br>1.40<br>1.27<br>1.56                   |
| OPSS<br>OPSS<br>OPSS<br>OPS<br>OPS<br>OPS<br>tabilization<br>erspective<br>rurging Co        | 9,47<br>9,46<br>9,46<br>9,46<br>1,46<br>achieved if the stabilization comments: | rree successive riteria. A minin                  | 15.<br>15.<br>15.<br>15.<br>15.<br>neasuremenum of six i | 2 .467 3 .459 3 .445 3 .438 2 -437  Down of pents for pH, Conductive measurements should                                            | O. 28<br>O. 24<br>O. 24<br>O. 23<br>O. 23<br>ity and Turbidi<br>be recorded. | 6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>7.70<br>ty or Dissolved On | -26.1<br>-27.0<br>-27.0<br>-27.9<br>-27.9<br>xygen are recorded      | 1.37<br>1.40<br>1.27<br>1.56                   |
| ontain                                                                                       | 9,47<br>9,46<br>9,46<br>9,46<br>1,46<br>stabilization comments:                 | riteria. A minin                                  | 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.                  | 2 .467 3 .467 3 .445 3 .438 2 -437  Down of Pents for pH, Conductive measurements should be minuted.                                | O. 28 O. 24 O. 24 O. 23 O. 23 O. 23 O. 23 O. 23 O. 24 O. 24 O. 24 O. 24      | 6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71       | -26.1<br>-27.0<br>-27.0<br>-27.9<br>xygen are recorded               | 1.37<br>1.40<br>1.27<br>1.56<br>d within their |
| OPSS OPSS OPSS OPSS OPSS OPSS OPSS OPSS                                                      | 9,47<br>9,46<br>9,46<br>9,46<br>9,46<br>1,46<br>INFORMA                         | riteria. A minin                                  | 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.                  | 2 .467 3 .467 3 .467 3 .467 3 .438 2 .437 2 .437 2 .437 Ents for pH, Conductive measurements should 17                              | O. 28<br>O. 24<br>O. 24<br>O. 23<br>O. 23<br>ity and Turbidi<br>be recorded. | 6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71       | -26.1<br>-27.0<br>-27.0<br>-27.9<br>-27.9<br>xygen are recorded      | 1.37<br>1.40<br>1.27<br>1.56<br>d within their |
| OPSS OPSS OPSS OPSS OPSS OPSS OPSS OPSS                                                      | 9,47<br>9,46<br>9,46<br>9,46<br>9,46<br>1,46<br>INFORMA                         | TION  Bottle Count 3 14                           | 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.                  | 2 .467 3 .459 3 .445 3 .438 2 437 ents for pH, Conductive measurements should 17 minutes Field Filtered?  10 0.45 0.10 10 0.45 0.10 | O. 28 O. 24 O. 24 O. 23 O. 23 O. 23 O. 23 O. 23 O. 24 O. 24 O. 24 O. 24      | 6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71       | -26.1<br>-27.0<br>-27.0<br>-27.9<br>xygen are recorded               | 1.37<br>1.40<br>1.27<br>1.56<br>d within their |
| o955 o953 o01 loo4 loo4 sio o16 tabilization erspective urging Co AMPLE Contain              | 9,47<br>9,46<br>9,46<br>9,46<br>9,46<br>1,46<br>Instabilization comments:f      | TION  Bottle Count 3 14                           | 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.                  | 2 .467 3 .467 3 .467 3 .467 3 .438 2 .437 2 .437 2 .437 Ents for pH, Conductive measurements should 17                              | O. 28 O. 24 O. 24 O. 23 O. 23 O. 23 O. 23 O. 23 O. 24 O. 24 O. 24 O. 24      | 6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71<br>6.71       | -26.1<br>-27.0<br>-27.0<br>-27.9<br>xygen are recorded<br>what stubi | 1.37<br>1.40<br>1.27<br>1.56<br>d within their |



Well I.D. Number: MW02 Project Name: Ji+ Kelly Sample I.D. MWoz- W Time: 0930 Hydrocon Project #: 2017-055 Field Duplicate I.D. Time: -Date 8/9/18 Personnel: WELL INFORMATION Monument condition: ☐ Good ☐ Needs repair ☐ Water in Monument Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Headspace reading: Not measured \_\_\_\_ppm Well diameter: ≥ 2-inch 4-inch Other Comments PURGING INFORMATION Total well depth 19.63 ft Bottom: ☐ Hard ☐ Soft ☑ Not measured Screen Interval(s): 5-20 Depth to product\_\_\_\_\_ Depth to product

The product of the Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type ☑ Peristaltic ☐ Centrifugal ☐ Dedicated Bladder ☐ Non-Dedicated Bladder Other\_ Water Disposal∷⊠ Drummed ☐ Remediation System ☐ Other Bailer type: FIELD PARAMETERS Odor and/or Sheen: punchy Ofgante odor Dissolved Time Water Purge Rate Temp. Sp. Cond. Oxygen Turbidity pH ORP (±10% or Level (L/min) (°C) (mS/cm) (NTU) (SU) (mV) ≤1.00 ±0.2) (±3%) (± 10% or ≤10) (BTOC) 8.99 0905 59.0 5.48 1.14 7.80 18-1 65-5 8090 8.99 0.32 17.1 1.11 5:23 31.6 5.32 8.99 11 90 0.11 16.6 1.10 0.28 4,96 36.0 3.14 09 14 16.5 0.31 4.71 44.2 1.10 2.81 8 99 41 90 53.2 16.1 1.04 0.31 4.50 1.69 0970 8.99 0.99 15.9 0.28 4.33 61.5 3.03 9,99 15.9 0923 0.95 4.24 65.2 0.27 1.56 8.11 0926 0.93 4.27 0.31 (.82 2.03 430 Jamole Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Dxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: Slight yellowish have to page water YSI; restort; ph = 7.03 SAMPLE INFORMATION Bottle Preservative Field Filtered? Container Type Analysis Count GX, BTEX, MTBE, EDB/EDC No. 0.45 0.10 40ml VOA 3 146.1 No 0.45 0.10 1 L amber 1 1+01 Total PL 250ml poly HNUZ NO 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:



| Hydrocoi<br>Date                                               | ame:<br>n Project # <u>:</u><br>&/                              |                                  | Kelly<br>1017-055                                                 | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                | Sample I.D.<br>Field Duplica<br>Personnel:                                     | te I.D                                | _                                | Time: <u>1100</u><br>Time: <u>–</u>    |
|----------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------|
| Monume<br>Well cap<br>Headspac<br>Well dian                    | condition:<br>ce reading:                                       | i: 🗵 G                           | ood Nood Rood Root measure                                        | eplaced<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ☐ Needs re                                                     | eplacement Od                                                                  |                                       | ater in Well                     |                                        |
| Total wel<br>Depth to p<br>Depth to v<br>Casing vo<br>Volume C | oroductvater1 lume1 conversion                                  | 9.62<br>3.26<br>1.36<br>Factors: | ft Botto<br>ft<br>ft Intal<br>ft (H <sub>2</sub> O)<br>:3/4"=0.02 | ce Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (BTOC) t                                                       | Not measure  Not measure  Begin  1 8 2  2"=0.16 gal/f                          | Purging Well                          | 1039<br>5.46 ga                  | al.                                    |
|                                                                |                                                                 | taltic [                         | Centrifug                                                         | al D<br>Disposal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | edicated Bla                                                   | dder □ Non-I<br>d □ Remediat                                                   | Dedicated Bla<br>ion System           | dder Other_<br>Other             |                                        |
| FIELD P                                                        | ARAMETI                                                         | ERS                              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                | Odor and/or                           | Sheen: Nov                       | e                                      |
| Time                                                           | Water<br>Level<br>(BTOC)                                        |                                  | ge Rate<br>/min)                                                  | Γemp.<br>(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sp. Cond.<br>(mS/cm)<br>(±3%)                                  | Oxygen<br>(±10% or<br>≤1.00 ±0.2)                                              | pH<br>(SU)<br>(±0,1)                  | ORP<br>(mV)                      | Turbidity<br>(NTU)<br>(± 10% or ≤10)   |
| l'ara                                                          | 8.26                                                            |                                  |                                                                   | 5,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104                                                            | 2.31                                                                           | 7.31                                  | -35.3                            | 3.22                                   |
|                                                                |                                                                 |                                  | . 0                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.04                                                           | 0.60                                                                           | 7.40                                  | -69.9                            | 2.11                                   |
| 044                                                            | 8.26                                                            | -                                |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                                                                                |                                       |                                  | 1                                      |
| 044                                                            | 9.26                                                            | 0.                               | 12 15                                                             | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.04                                                           | 0.42                                                                           | 7.42                                  | -80.5                            | 1.71                                   |
| 1044                                                           | 9.26                                                            | 0.                               | 12 15                                                             | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.04                                                           | 0.42                                                                           | 7.43                                  | -80.5                            | 1.58                                   |
| 1044                                                           | 9.26                                                            | 0.                               | 12 15<br>19                                                       | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.04                                                           | 0.42                                                                           |                                       | -80.5                            |                                        |
| 1044                                                           | 9.26                                                            | 0.                               | 12 15<br>19                                                       | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.04                                                           | 0.33                                                                           | 7.43                                  | -80.5<br>-85.6<br>-38.3          | 1.62                                   |
| 1044                                                           | 9.26                                                            | 0.                               | 12 15                                                             | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.04                                                           | 0.33                                                                           | 7.43                                  | -80.5<br>-85.6<br>-38.3          | 1.62                                   |
| 6 tabilization                                                 | 9.26<br>9.26<br>9.26<br>9.26<br>9.24                            | hree succ                        | 12 15                                                             | ements fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.04<br>1.04<br>1.04<br>1.04                                   | 0.47<br>0.33<br>0.29<br>0.29                                                   | 7.43<br>7.45<br>4.45                  | -80.5<br>-85.6<br>-28.3<br>-39.6 | 1.58                                   |
| tabilization erspective Curging Co                             | 9.26<br>9.26<br>8.26<br>8.26<br>8.24                            | hree succ<br>criteria.           | 12. 15                                                            | ements fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.04<br>1.04<br>1.04<br>1.04                                   | 0.47<br>0.33<br>0.29<br>0.29                                                   | 7.43<br>7.45<br>4.45                  | -80.5<br>-85.6<br>-28,3<br>-89-6 | 1.58                                   |
| and tabilization erspective urging Co                          | 9.26<br>9.26<br>8.26<br>8.26<br>8.26                            | TION  Bottle Count               | 12 15                                                             | ements for six measu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.04 1.04 1.04 1.04 1.04 1.04 Filtered?                        | O. 47<br>O. 33<br>O. 29<br>O. 29<br>O. 29<br>ity and Turbidity of be recorded. | 7.43<br>7.45<br>7.45<br>7.45<br>Analy | -80.5<br>-85.6<br>-28,3<br>-89-6 | 1.58<br>1.62<br>1.41<br>d within their |
| abilization erspective urging Co                               | 9.26<br>9.26<br>8.26<br>8.26<br>8.24<br>INFORMA                 | hree succ<br>criteria. /         | essive measur<br>Aminimum of                                      | ements for six measu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r pH, Conductive rements should                                | O. 47<br>O. 33<br>O. 29<br>O. 29<br>O. 29<br>ity and Turbidity of be recorded. | 7.43<br>7.45<br>7.45<br>7.45<br>Analy | -80.5<br>-85.6<br>-28,3<br>-89-6 | 1.58<br>1.62<br>1.41<br>d within their |
| abilization erspective urging Co                               | achieved if the stabilization omments:  INFORMA  The Type  Vo A | TION  Bottle Count               | essive measur<br>minimum of                                       | ements for six measure of the two | r pH, Conductive rements should  Filtered?  .45 0.10  .45 0.10 | O. 47<br>O. 33<br>O. 29<br>O. 29<br>O. 29<br>ity and Turbidity of be recorded. | 7.43 7.45 7.45 Analys                 | -80.5<br>-85.6<br>-28,3<br>-89-6 | 1.58<br>1.62<br>1.41<br>d within their |
| tabilization erspective furging Co                             | achieved if the stabilization omments:  INFORMA  The Type  Vo A | TION  Bottle Count               | essive measur<br>Aminimum of                                      | ements for six measure of the two of two of the two of | r pH, Conductive rements should                                | O. 47<br>O. 33<br>O. 29<br>O. 29<br>O. 29<br>ity and Turbidity of be recorded. | 7.43<br>7.45<br>7.45<br>7.45<br>Analy | -80.5<br>-85.6<br>-28,3<br>-89-6 | 1.58<br>1.62<br>1.41<br>d within their |



Sampling Comments:

### GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MV04 Project Name: TH Kelly Sample I.D. Mwo4 - W Time: U40 Hydrocon Project #: , 2017-05 Field Duplicate I.D.\_\_\_\_\_ Time: -Date\_ 2/9/18 CD Personnel: WELL INFORMATION Monument condition: X Good Needs repair Water in Monument Well cap condition: 

☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well ✓ Not measured Odor Headspace reading: ppm 2-inch 4-inch 6-inch Well diameter: Other Comments PURGING INFORMATION Total well depth 19.60 ft Bottom: ☐ Hard ☐ Soft 🗵 Not measured Screen Interval(s): 5-20 Depth to product — ft
Depth to water 8.57 ft Intake Depth (BTOC) 12 Begin Purging Well: 1/17
Casing volume 1/.03 ft (H<sub>2</sub>O) X 0.16 gal/ft = 1.76 gal. X 3 = 5.78 gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type 🛛 Peristaltic 🗌 Centrifugal 🔲 Dedicated Bladder 🔲 Non-Dedicated Bladder Other\_\_\_\_\_ Water Disposal: Drummed Remediation System Other Bailer type: Odor and/or Sheen: faint organic offer FIELD PARAMETERS Dissolved Water **Purge Rate** Temp. Turbidity Time Sp. Cond. Oxygen pH ORP Level (L/min) (°C) (mS/cm) (±10% or (NTU) (SU) (mV) ≤1.00 ±0.2) (±3%) (± 10% or ≤10) (BTOC)  $(\pm 0.1)$ 10.9 7.24 9.44 ,529 1.93 64.2 1119 20.5 0.48 7.00 8.4 10.9 9.13 19.8 .508 1122 6.95 09.9 051.0 1125 9.15 19.5 1505 0.38 -3.3 5.41 6.93 -4-5 8.77 9.14 0.32 1128 .503 18.9 9.14 6,92 7,72 -50Z 0.29 1131 -13.7 18.9 9.14 7.94 1134 .500 0.30 6.92 -16-7 ) cm Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type** Analysis Count No 0.45 0.10 HOMI VOA OX, BTEX MYBE, EDG/EDG 3 HLL NO 0.45 0.10 1 L symber 1 1401 No 0.45 0.10 Total Pb 250 ml poly 1 41/03 No 0.45 0.10 No 0.45 0.10

# Hydro

### WATER QUALITY METER

### **CALIBRATION**

| Site Name and (Number): 51+ Kelly       | Calibration Date: 8/9/(8                      |
|-----------------------------------------|-----------------------------------------------|
| Hydrocon Site Number: 2017- 055         | Calibration Time: 0820                        |
| Weather: Murning Clouds Te              | mperature: 62 F Barometric Pressure: 767-5 Hg |
| Personnel: Chris Duschel                | Water Quality Meter: YSI Professional Plus    |
| Calibration Location: Site Office Other | (                                             |

| Parameter                   | 1 <sup>st</sup><br>Standard | Initial<br>Reading | Final<br>Reading | 2 <sup>nd</sup><br>Standard | Initial<br>Reading | Final<br>Reading |
|-----------------------------|-----------------------------|--------------------|------------------|-----------------------------|--------------------|------------------|
| Temperature (°C)            | Sees.                       | 22.9               |                  |                             | 12                 | -                |
| Sp. Conductivity (mS/cm)    | 1.41                        | 1.41               | 1.41             | 4.49                        | -                  |                  |
| Dissolved Oxygen [(mg/L)/%] | Septemb 1                   |                    | 4-17-            |                             | 170/107.4 %        | 9.10 /10/1       |
| pH (su)                     | 7.00                        | 6.33               | 6,99             | 4.00                        | 4.25               | 4.00             |
| ORP (mV)                    |                             |                    |                  | 220                         | 221.2              | 24.9             |
| Turbidity (NTU)             | 40.0                        | 4                  |                  | 0.0                         | -                  | -                |

Notes: 1. Quanta meters are calibrated beginning with a Level Two solution followed by the Auto-Cal solution.

- 2. Be sure to check the dissolved oxygen probe calibration procedure (each meter is different).
- 3. Temperature extremes will alter the calibration standards chemistry and the meter's results.

| Calibration Comments: | Turbelity calibrated on seperate meter (Hach) Passed cal |
|-----------------------|----------------------------------------------------------|
| plt calibrated        | w/ 10.0 solution                                         |
| Initial: 9.69         | Final: 10.00                                             |



Well I.D. Number: MW02

| Project N<br>Hydroco<br>Date                  | ame:<br>n Project #<br>& Z                    | 1 18<br>: 5<br>2#      | Kelly<br>017 - 05       | 5                                                         |                                                 | Field Duplica                                | MW0Z-<br>ate I.D                                                   | 111                           | ne:                            |
|-----------------------------------------------|-----------------------------------------------|------------------------|-------------------------|-----------------------------------------------------------|-------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|-------------------------------|--------------------------------|
| Monume<br>Well cap<br>Headspac                | condition<br>ce reading                       | on: XX                 | Good [                  | ıred                                                      | ☐ Needs re<br>ppm<br>☐ 6-ir                     | eplacement<br>00<br>ach 00                   | □ Water in M<br>□ Surface Wa<br>dor<br>ther                        |                               |                                |
| Total wel<br>Depth to p<br>Depth to v         | G INFORI I depth product vater lume onversion | <del>-</del><br>9.96   | ft B<br>ft lr           | ottom: H<br>ntake Depth<br>D) X <u>O.V</u><br>02 gal/ft 1 | ard Soft<br>(BTOC)<br>(Sgal/ft<br>'=0.04 gal/ft | Not measu Beg = 2"=0.16 gal,                 | red Screen In<br>in Purging Well:<br>gal. X 3 =_<br>ft 4"=0.65 gal | o 8 26<br>gal./ft 6"= 1.47 ga | 1/ft                           |
| Pump typ<br>Bailer typ                        | e:                                            | staltic                | Control                 | fugal   D  Disposal::                                     | edicated Bla<br>Drumme                          | dder □ Non<br>d □ Remedi                     | -Dedicated Bla<br>ation System [<br>Odor and/or                    |                               | organic ofur                   |
| Time                                          | Water<br>Level                                | Pur<br>(L              | ge Rate<br>/min)        | Temp.                                                     | <b>Sp. Cond.</b> (mS/cm) (±3%)                  | <b>Dissolved Oxygen</b> (±10% or ≤1.00 ±0.2) | <b>pH</b> (SU) (±0.1)                                              | ORP<br>(mV)                   | Turbidity (NTU) (± 10% or ≤10) |
| 0828                                          | (BTOC)<br>8.97<br>3.97                        |                        |                         | 17.7                                                      | .295                                            | 0.90                                         | 6.70<br>6.69<br>6.67                                               | 388.7<br>331.1<br>283.7       | 19.9<br>16.4<br>13.8           |
| 08 34<br>0837<br>0840                         | 8.97                                          |                        | .130                    | 16.7<br>16.7<br>16.2<br>16.0                              | ,283<br>-282<br>-281<br>.281                    | 0.41<br>0.36<br>0.32<br>0.28                 | 6.64<br>6.74<br>6.80                                               | 250.4<br>219.0                | 12.1                           |
| 0843<br>0846<br>0849                          | 2.98<br>2.98<br>2.98                          |                        |                         | 15.8                                                      | .280                                            | 0.26                                         | 6.86                                                               | 171.4                         | 9.33                           |
|                                               |                                               |                        |                         | own                                                       |                                                 |                                              | 250                                                                |                               | -                              |
| Stabilization<br>perspective s<br>Purging Con | tabilization                                  | hree succ<br>criteria. | essive mea<br>A minimum | surements fo<br>of six measu                              | r pH, Conducti<br>rements shoul                 | vity and Turbidi<br>d be recorded.           | ty or Dissolved O                                                  | xygen are record              | ed within their                |
| SAMPLE I                                      | NFORMA                                        | TION                   |                         |                                                           |                                                 |                                              |                                                                    |                               |                                |
| Containe                                      |                                               | Bottle<br>Count        | Preservat               | (No) 0                                                    | Filtered?                                       |                                              | Anal                                                               | ysis                          |                                |
|                                               |                                               |                        |                         | No 0                                                      | .45 0.10<br>.45 0.10<br>.45 0.10                |                                              |                                                                    |                               |                                |
| Sampling Cor                                  | mments.                                       |                        | <u> </u>                | 110 0                                                     | . <del></del> 0.10 [                            |                                              |                                                                    |                               |                                |

# APPENDIX B LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION





Thursday, August 16, 2018

Brian Pletcher HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

RE: A8H0329 - JH Kelly - 2017-055

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A8H0329, which was received by the laboratory on 8/11/2018 at 10:25:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:ldomenighini@apex-labs.com">ldomenighini@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Smerighini



Vancouver, WA 98660

### **Apex Laboratories, LLC**

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055

Report ID: A8H0329 - 08 16 18 1439

### ANALYTICAL REPORT FOR SAMPLES

Project Manager: Brian Pletcher

|                  | SAMPLE INFORMA | ATION  |                | -              |
|------------------|----------------|--------|----------------|----------------|
| Client Sample ID | Laboratory ID  | Matrix | Date Sampled   | Date Received  |
| MW01-W           | А8Н0329-01     | Water  | 08/09/18 10:20 | 08/11/18 10:25 |
| MW02-W           | А8Н0329-02     | Water  | 08/09/18 09:30 | 08/11/18 10:25 |
| MW03-W           | А8Н0329-03     | Water  | 08/09/18 11:00 | 08/11/18 10:25 |
| MW04-W           | А8Н0329-04     | Water  | 08/09/18 11:40 | 08/11/18 10:25 |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project Number: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

### ANALYTICAL SAMPLE RESULTS

| Diesel and/or Oil Hydrocarbons by NWTPH-Dx |                  |                    |                    |                  |          |                  |              |       |  |  |  |
|--------------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|--------------|-------|--|--|--|
| Analyte                                    | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.  | Notes |  |  |  |
| MW01-W (A8H0329-01)                        |                  |                    |                    | Matrix: Wate     | er       | Ba               | tch: 8080724 |       |  |  |  |
| Diesel                                     | ND               |                    | 74.8               | ug/L             | 1        | 08/15/18         | NWTPH-Dx     |       |  |  |  |
| Oil                                        | ND               |                    | 150                | ug/L             | 1        | 08/15/18         | NWTPH-Dx     |       |  |  |  |
| Surrogate: o-Terphenyl (Surr)              |                  | Recov              | ery: 75 %          | Limits: 50-150 % | 1        | 08/15/18         | NWTPH-Dx     |       |  |  |  |
| MW02-W (A8H0329-02)                        |                  |                    |                    | Matrix: Wate     | er       | Ba               |              |       |  |  |  |
| Diesel                                     | 83.3             |                    | 74.8               | ug/L             | 1        | 08/14/18         | NWTPH-Dx     | F-20  |  |  |  |
| Oil                                        | ND               |                    | 150                | ug/L             | 1        | 08/14/18         | NWTPH-Dx     |       |  |  |  |
| Surrogate: o-Terphenyl (Surr)              |                  | Recov              | ery: 72 %          | Limits: 50-150 % | 1        | 08/14/18         | NWTPH-Dx     |       |  |  |  |
| WW03-W (A8H0329-03)                        |                  |                    |                    | Matrix: Wate     | er       | Ba               | tch: 8080724 |       |  |  |  |
| Diesel                                     | ND               |                    | 74.8               | ug/L             | 1        | 08/14/18         | NWTPH-Dx     |       |  |  |  |
| Oil                                        | ND               |                    | 150                | ug/L             | 1        | 08/14/18         | NWTPH-Dx     |       |  |  |  |
| Surrogate: o-Terphenyl (Surr)              |                  | Recov              | ery: 73 %          | Limits: 50-150 % | 1        | 08/14/18         | NWTPH-Dx     |       |  |  |  |
| MW04-W (A8H0329-04)                        |                  |                    |                    | Matrix: Wate     | er       | Ba               | tch: 8080724 |       |  |  |  |
| Diesel                                     | ND               |                    | 74.8               | ug/L             | 1        | 08/14/18         | NWTPH-Dx     |       |  |  |  |
| Oil                                        | ND               |                    | 150                | ug/L             | 1        | 08/14/18         | NWTPH-Dx     |       |  |  |  |
| Surrogate: o-Terphenyl (Surr)              |                  | Recov              | ery: 79 %          | Limits: 50-150 % | 1        | 08/14/18         | NWTPH-Dx     |       |  |  |  |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

#### ANALYTICAL SAMPLE RESULTS

| Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |                  |                    |                    |                  |          |                  |               |       |  |  |
|-----------------------------------------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|--|--|
| Analyte                                                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes |  |  |
| WW01-W (A8H0329-01)                                                   |                  |                    |                    | Matrix: Wate     | er       | Ва               | atch: 8080684 |       |  |  |
| Gasoline Range Organics                                               | ND               |                    | 100                | ug/L             | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| Surrogate: 4-Bromofluorobenzene (Sur)                                 |                  | Recovery           | v: 103 %           | Limits: 50-150 % | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| 1,4-Difluorobenzene (Sur)                                             |                  |                    | 101 %              | 50-150 %         | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| MW02-W (A8H0329-02)                                                   |                  |                    |                    | Matrix: Wate     | er       | Ва               | atch: 8080684 |       |  |  |
| Gasoline Range Organics                                               | ND               |                    | 100                | ug/L             | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| Surrogate: 4-Bromofluorobenzene (Sur)                                 |                  | Recovery           | : 105 %            | Limits: 50-150 % | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| 1,4-Difluorobenzene (Sur)                                             |                  |                    | 100 %              | 50-150 %         | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| WW03-W (A8H0329-03)                                                   |                  |                    |                    | Matrix: Wate     | er       | Ва               | atch: 8080684 |       |  |  |
| Gasoline Range Organics                                               | ND               |                    | 100                | ug/L             | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| Surrogate: 4-Bromofluorobenzene (Sur)                                 |                  | Recovery           | : 104 %            | Limits: 50-150 % | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| 1,4-Difluorobenzene (Sur)                                             |                  |                    | 101 %              | 50-150 %         | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| MW04-W (A8H0329-04)                                                   |                  |                    |                    | Matrix: Wate     | er       | Ва               | atch: 8080684 |       |  |  |
| Gasoline Range Organics                                               | ND               |                    | 100                | ug/L             | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| Surrogate: 4-Bromofluorobenzene (Sur)                                 |                  | Recovery           | v: 106 %           | Limits: 50-150 % | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |
| 1,4-Difluorobenzene (Sur)                                             |                  |                    | 101 %              | 50-150 %         | 1        | 08/13/18         | NWTPH-Gx (MS) |       |  |  |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie





**HydroCon LLC** Project: 314 W 15th Street Suite 300 Project Number: 2017-055 Vancouver, WA 98660 Project Manager: Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

### ANALYTICAL SAMPLE RESULTS

JH Kelly

|                                       |        | BTEX Co   | mpounds b  | y EPA 8260C      |          |          |              |       |
|---------------------------------------|--------|-----------|------------|------------------|----------|----------|--------------|-------|
| A 14                                  | Sample | Detection | Reporting  | TT '             | Dil e    | Date     | M.d. ID.C    |       |
| Analyte                               | Result | Limit     | Limit      | Units            | Dilution | Analyzed | Method Ref.  | Notes |
| MW01-W (A8H0329-01)                   |        |           |            | Matrix: Wate     | r        | Ва       | tch: 8080684 |       |
| Benzene                               | ND     |           | 0.200      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene                               | ND     |           | 1.00       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Ethylbenzene                          | ND     |           | 0.500      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Xylenes, total                        | ND     |           | 1.50       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recove    | ery: 105 % | Limits: 80-120 % | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene-d8 (Surr)                     |        |           | 103 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 103 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| -<br>ИW02-W (A8H0329-02)              |        |           |            | Matrix: Wate     | r        | Ва       | tch: 8080684 |       |
| Benzene                               | ND     |           | 0.200      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene                               | ND     |           | 1.00       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Ethylbenzene                          | ND     |           | 0.500      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Xylenes, total                        | ND     |           | 1.50       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recove    | ery: 103 % | Limits: 80-120 % | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene-d8 (Surr)                     |        |           | 103 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 101 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| MW03-W (A8H0329-03)                   |        |           |            | Matrix: Wate     | r        | Ва       | tch: 8080684 |       |
| Benzene                               | ND     |           | 0.200      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene                               | ND     |           | 1.00       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Ethylbenzene                          | ND     |           | 0.500      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Xylenes, total                        | ND     |           | 1.50       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recove    | ery: 105 % | Limits: 80-120 % | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene-d8 (Surr)                     |        |           | 104 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 103 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| лW04-W (A8H0329-04)                   |        |           |            | Matrix: Wate     | r        | Ва       | tch: 8080684 |       |
| Benzene                               | ND     |           | 0.200      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene                               | ND     |           | 1.00       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Ethylbenzene                          | ND     |           | 0.500      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Xylenes, total                        | ND     |           | 1.50       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recove    | ery: 104%  | Limits: 80-120 % | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene-d8 (Surr)                     |        |           | 103 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 102 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.





HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

#### ANALYTICAL SAMPLE RESULTS

|                                       | Select | ted Volatile O | rganic Com | pounds by EPA    | A 8260C  |          |              |       |
|---------------------------------------|--------|----------------|------------|------------------|----------|----------|--------------|-------|
|                                       | Sample | Detection      | Reporting  |                  |          | Date     |              |       |
| Analyte                               | Result | Limit          | Limit      | Units            | Dilution | Analyzed | Method Ref.  | Notes |
| MW01-W (A8H0329-01)                   |        |                |            | Matrix: Wate     | er       | Ba       | tch: 8080684 |       |
| 1,2-Dibromoethane (EDB)               | ND     |                | 0.500      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| 1,2-Dichloroethane (EDC)              | ND     |                | 0.400      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Methyl tert-butyl ether (MTBE)        | ND     |                | 1.00       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recover        | ry: 105 %  | Limits: 80-120 % | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene-d8 (Surr)                     |        |                | 103 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| 4-Bromofluorobenzene (Surr)           |        |                | 103 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| MW02-W (A8H0329-02)                   |        |                |            | Matrix: Wate     | er       | Ba       | tch: 8080684 |       |
| 1,2-Dibromoethane (EDB)               | ND     |                | 0.500      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| 1,2-Dichloroethane (EDC)              | ND     |                | 0.400      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Methyl tert-butyl ether (MTBE)        | 22.0   |                | 1.00       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recover        | ry: 103 %  | Limits: 80-120 % | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene-d8 (Surr)                     |        |                | 103 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| 4-Bromofluorobenzene (Surr)           |        |                | 101 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| MW03-W (A8H0329-03)                   |        |                |            | Matrix: Wate     | er       | Ba       | tch: 8080684 |       |
| 1,2-Dibromoethane (EDB)               | ND     |                | 0.500      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| 1,2-Dichloroethane (EDC)              | ND     |                | 0.400      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Methyl tert-butyl ether (MTBE)        | ND     |                | 1.00       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recover        | ry: 105 %  | Limits: 80-120 % | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene-d8 (Surr)                     |        |                | 104 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| 4-Bromofluorobenzene (Surr)           |        |                | 103 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| MW04-W (A8H0329-04)                   |        |                |            | Matrix: Wate     | er       | Ba       | tch: 8080684 |       |
| 1,2-Dibromoethane (EDB)               | ND     |                | 0.500      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| 1,2-Dichloroethane (EDC)              | ND     |                | 0.400      | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Methyl tert-butyl ether (MTBE)        | ND     |                | 1.00       | ug/L             | 1        | 08/13/18 | EPA 8260C    |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recover        | ry: 104 %  | Limits: 80-120 % | 1        | 08/13/18 | EPA 8260C    |       |
| Toluene-d8 (Surr)                     |        |                | 103 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |
| 4-Bromofluorobenzene (Surr)           |        |                | 102 %      | 80-120 %         | 1        | 08/13/18 | EPA 8260C    |       |

Apex Laboratories

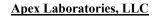
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie





<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher


Report ID: A8H0329 - 08 16 18 1439

#### ANALYTICAL SAMPLE RESULTS

|                     |                  | Total Met          | als by EPA 6       | 020 (ICPMS) |          |                  |             |       |
|---------------------|------------------|--------------------|--------------------|-------------|----------|------------------|-------------|-------|
| Analyte             | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units       | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| MW01-W (A8H0329-01) |                  |                    |                    | Matrix: W   | ater     |                  |             |       |
| Batch: 8080738      |                  |                    |                    |             |          |                  |             |       |
| Lead                | ND               |                    | 0.200              | ug/L        | 1        | 08/15/18         | EPA 6020A   |       |
| MW02-W (A8H0329-02) |                  |                    |                    | Matrix: W   | ater     |                  |             |       |
| Batch: 8080738      |                  |                    |                    |             |          |                  |             |       |
| Lead                | 0.745            |                    | 0.200              | ug/L        | 1        | 08/15/18         | EPA 6020A   |       |
| MW03-W (A8H0329-03) |                  |                    |                    | Matrix: W   | ater     |                  |             |       |
| Batch: 8080738      |                  |                    |                    |             |          |                  |             |       |
| Lead                | ND               |                    | 0.200              | ug/L        | 1        | 08/15/18         | EPA 6020A   |       |
| MW04-W (A8H0329-04) |                  |                    |                    | Matrix: W   | ater     |                  |             |       |
| Batch: 8080738      |                  |                    |                    |             |          |                  |             |       |
| Lead                | 3.54             |                    | 0.200              | ug/L        | 1        | 08/15/18         | EPA 6020A   |       |

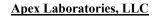
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher


Report ID: A8H0329 - 08 16 18 1439

### QUALITY CONTROL (QC) SAMPLE RESULTS

|                           |             | D                  | iesel and/o        | r Oil Hyd  | Irocarbor    | s by NW         | ΓPH-Dx           |       |                 |     |              |       |
|---------------------------|-------------|--------------------|--------------------|------------|--------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                   | Result      | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution     | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 8080724 - EPA 3510C | (Fuels/Acid | Ext.)              |                    |            |              |                 | Wat              | er    |                 |     |              |       |
| Blank (8080724-BLK1)      |             | Prepared           | : 08/14/18 07:     | 08 Analyz  | ed: 08/14/1  | 8 20:40         |                  |       |                 |     |              |       |
| NWTPH-Dx                  |             |                    |                    |            |              |                 |                  |       |                 |     |              |       |
| Diesel                    | ND          |                    | 72.7               | ug/L       | 1            |                 |                  |       |                 |     |              |       |
| Oil                       | ND          |                    | 145                | ug/L       | 1            |                 |                  |       |                 |     |              |       |
| Surr: o-Terphenyl (Surr)  |             | Rec                | overy: 98 %        | Limits: 50 | 0-150 %      | Dilı            | ution: 1x        |       |                 |     |              |       |
| LCS (8080724-BS1)         |             | Prepared           | : 08/14/18 07:     | 08 Analyz  | ed: 08/14/1  | 8 21:00         |                  |       |                 |     |              |       |
| NWTPH-Dx                  |             |                    |                    |            |              |                 |                  |       |                 |     |              |       |
| Diesel                    | 378         |                    | 80.0               | ug/L       | 1            | 500             |                  | 76    | 52-120%         |     |              |       |
| Surr: o-Terphenyl (Surr)  |             | Reco               | overy: 78 %        | Limits: 50 | 0-150 %      | Dila            | ution: 1x        |       |                 |     |              |       |
| LCS Dup (8080724-BSD1)    |             | Prepared           | : 08/14/18 07:     | 08 Analyz  | red: 08/14/1 | 8 21:21         |                  |       |                 |     |              | Q-1   |
| NWTPH-Dx                  |             | •                  |                    |            |              |                 |                  |       |                 |     |              |       |
| Diesel                    | 443         |                    | 80.0               | ug/L       | 1            | 500             |                  | 89    | 52-120%         | 16  | 20%          |       |
| Surr: o-Terphenyl (Surr)  |             | Rec                | overy: 85 %        | Limits: 50 | 0-150 %      | Dili            | ution: 1x        |       |                 |     |              |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

### QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  | Gasolii    | ne Range F         | lydrocarbo         | ns (Ben   | zene thro    | igh Naph        | thalene)         | by NWTP | H-Gx            |     |              |       |
|----------------------------------|------------|--------------------|--------------------|-----------|--------------|-----------------|------------------|---------|-----------------|-----|--------------|-------|
| Analyte                          | Result     | Detection<br>Limit | Reporting<br>Limit | Units     | Dilution     | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 8080684 - EPA 5030B        |            |                    |                    |           |              |                 | Wat              | er      |                 |     |              |       |
| Blank (8080684-BLK1)             |            | Prepared           | 08/13/18 08:       | 30 Analy  | zed: 08/13/1 | 3 13:25         |                  |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |            |                    |                    |           |              |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | ND         |                    | 100                | ug/L      | 1            |                 |                  |         |                 |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) |            | Recov              | very: 104 %        | Limits: 5 | 0-150 %      | Dilı            | tion: 1x         |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |            |                    | 99 %               | 5         | 0-150 %      |                 | "                |         |                 |     |              |       |
| LCS (8080684-BS6)                |            | Prepared:          | 08/13/18 08:       | 30 Analy  | zed: 08/13/1 | 3 12:57         |                  |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |            |                    |                    |           |              |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | 456        |                    | 100                | ug/L      | 1            | 500             |                  | 91      | 80-120%         |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) |            | Recov              | very: 103 %        | Limits: 5 | 0-150 %      | Dilı            | tion: 1x         |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |            |                    | 98 %               | 5         | 0-150 %      |                 | "                |         |                 |     |              |       |
| Duplicate (8080684-DUP1)         |            | Prepared           | 08/13/18 14:       | 18 Analy  | zed: 08/13/1 | 3 16:45         |                  |         |                 |     |              |       |
| QC Source Sample: MW02-W (A      | 8H0329-02) |                    |                    |           |              |                 |                  |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |            |                    |                    |           |              |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | ND         |                    | 100                | ug/L      | 1            |                 | 70.0             |         |                 | *** | 30%          |       |
| Surr: 4-Bromofluorobenzene (Sur) |            | Recor              | very: 103 %        | Limits: 5 | 0-150 %      | Dilı            | tion: 1x         |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |            |                    | 102 %              | 5         | 0-150 %      |                 | "                |         |                 |     |              |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





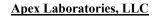
HydroCon LLC
314 W 15th Street Suite 300
Vancouver, WA 98660

Project: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

### QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |            |                    | BTEX               | Compou     | nds by E     | PA 8260C        | ;                |       |                 |     |              |       |
|----------------------------------|------------|--------------------|--------------------|------------|--------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution     | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 8080684 - EPA 5030B        |            |                    |                    |            |              |                 | Wat              | er    |                 |     |              |       |
| Blank (8080684-BLK1)             |            | Prepared           | 08/13/18 08:       | 30 Analyz  | ed: 08/13/18 | 8 13:25         |                  |       |                 |     |              |       |
| EPA 8260C                        |            |                    |                    |            |              |                 |                  |       |                 |     |              |       |
| Benzene                          | ND         |                    | 0.200              | ug/L       | 1            |                 |                  |       |                 |     |              |       |
| Toluene                          | ND         |                    | 1.00               | ug/L       | 1            |                 |                  |       |                 |     |              |       |
| Ethylbenzene                     | ND         |                    | 0.500              | ug/L       | 1            |                 |                  |       |                 |     |              |       |
| Xylenes, total                   | ND         |                    | 1.50               | ug/L       | 1            |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |            | Recor              | very: 103 %        | Limits: 80 | -120 %       | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |            |                    | 103 %              | 80         | -120 %       |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |            |                    | 104 %              | 80         | -120 %       |                 | "                |       |                 |     |              |       |
| LCS (8080684-BS5)                |            | Prepared:          | : 08/13/18 08:     | 30 Analyz  | ed: 08/13/13 | 8 12:29         |                  |       |                 |     |              |       |
| EPA 8260C                        |            |                    |                    |            |              |                 |                  |       |                 |     |              |       |
| Benzene                          | 19.7       |                    | 0.200              | ug/L       | 1            | 20.0            |                  | 98    | 80-120%         |     |              |       |
| Toluene                          | 18.5       |                    | 1.00               | ug/L       | 1            | 20.0            |                  | 92    | 80-120%         |     |              |       |
| Ethylbenzene                     | 19.7       |                    | 0.500              | ug/L       | 1            | 20.0            |                  | 98    | 80-120%         |     |              |       |
| Xylenes, total                   | 57.3       |                    | 1.50               | ug/L       | 1            | 60.0            |                  | 96    | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |            | Recov              | very: 100 %        | Limits: 80 | -120 %       | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |            |                    | 101 %              | 80         | -120 %       |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |            |                    | 103 %              | 80         | -120 %       |                 | "                |       |                 |     |              |       |
| Duplicate (8080684-DUP1)         |            | Prepared           | : 08/13/18 14:     | 18 Analyz  | ed: 08/13/18 | 8 16:45         |                  |       |                 |     |              |       |
| QC Source Sample: MW02-W (A8     | 3H0329-02) |                    |                    |            |              |                 |                  |       |                 |     |              |       |
| EPA 8260C                        |            |                    |                    |            |              |                 |                  |       |                 |     |              |       |
| Benzene                          | ND         |                    | 0.200              | ug/L       | 1            |                 | 0.176            |       |                 | *** | 30%          |       |
| Toluene                          | ND         |                    | 1.00               | ug/L       | 1            |                 | ND               |       |                 |     | 30%          |       |
| Ethylbenzene                     | ND         |                    | 0.500              | ug/L       | 1            |                 | ND               |       |                 |     | 30%          |       |
| Xylenes, total                   | ND         |                    | 1.50               | ug/L       | 1            |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |            | Recov              | very: 105 %        | Limits: 80 | -120 %       | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |            |                    | 102 %              | 80         | -120 %       |                 | "                |       |                 |     |              |       |
|                                  |            |                    | 101 %              | 0.0        | -120 %       |                 | "                |       |                 |     |              |       |


QC Source Sample: MW04-W (A8H0329-04)

EPA 8260C

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini





HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project Number: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

### QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  | BTEX Compounds by EPA 8260C |                    |                    |            |             |                 |                  |       |                 |     |              |       |  |  |
|----------------------------------|-----------------------------|--------------------|--------------------|------------|-------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|--|--|
| Analyte                          | Result                      | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution    | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |  |  |
| Batch 8080684 - EPA 5030B        |                             |                    |                    |            |             |                 | Wat              | er    |                 |     |              |       |  |  |
| Matrix Spike (8080684-MS1)       |                             | Prepared           | : 08/13/18 14:     | 18 Analyz  | ed: 08/13/1 | 8 18:10         |                  |       |                 |     |              |       |  |  |
| QC Source Sample: MW04-W (A      | 3H0329-04)                  |                    |                    |            |             |                 |                  |       |                 |     |              |       |  |  |
| Benzene                          | 20.9                        |                    | 0.200              | ug/L       | 1           | 20.0            | ND               | 105   | 79-120%         |     |              |       |  |  |
| Toluene                          | 19.7                        |                    | 1.00               | ug/L       | 1           | 20.0            | ND               | 98    | 80-121%         |     |              |       |  |  |
| Ethylbenzene                     | 21.1                        |                    | 0.500              | ug/L       | 1           | 20.0            | ND               | 106   | 79-121%         |     |              |       |  |  |
| Xylenes, total                   | 61.0                        |                    | 1.50               | ug/L       | 1           | 60.0            | ND               | 102   | 79-121%         |     |              |       |  |  |
| Surr: 1,4-Difluorobenzene (Surr) |                             | Reco               | very: 101 %        | Limits: 80 | )-120 %     | Dilı            | tion: 1x         |       |                 |     |              |       |  |  |
| Toluene-d8 (Surr)                |                             |                    | 100 %              | 80         | -120 %      |                 | "                |       |                 |     |              |       |  |  |
| 4-Bromofluorobenzene (Surr)      |                             |                    | 99 %               | 80         | -120 %      |                 | "                |       |                 |     |              |       |  |  |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

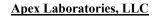




<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

F

Project: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher


Report ID: A8H0329 - 08 16 18 1439

### QUALITY CONTROL (QC) SAMPLE RESULTS

|                                       |            | Sele               | cted Volatil       | e Organi   | c Compo     | unds by E       | PA 8260          | <u> </u> |                 |     |              |       |
|---------------------------------------|------------|--------------------|--------------------|------------|-------------|-----------------|------------------|----------|-----------------|-----|--------------|-------|
| Analyte                               | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution    | Spike<br>Amount | Source<br>Result | % REC    | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 8080684 - EPA 5030B             |            |                    |                    |            |             |                 | Wat              | er       |                 |     |              |       |
| Blank (8080684-BLK1)                  |            | Prepared           | : 08/13/18 08:3    | 30 Analyz  | ed: 08/13/1 | 8 13:25         |                  |          |                 |     |              |       |
| EPA 8260C                             |            |                    |                    |            |             |                 |                  |          |                 |     |              |       |
| 1,2-Dibromoethane (EDB)               | ND         |                    | 0.500              | ug/L       | 1           |                 |                  |          |                 |     |              |       |
| 1,2-Dichloroethane (EDC)              | ND         |                    | 0.400              | ug/L       | 1           |                 |                  |          |                 |     |              |       |
| Methyl tert-butyl ether (MTBE)        | ND         |                    | 1.00               | ug/L       | 1           |                 |                  |          |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr)      |            | Reco               | very: 103 %        | Limits: 80 | 0-120 %     | Dili            | ution: 1x        |          |                 |     |              |       |
| Toluene-d8 (Surr)                     |            |                    | 103 %              | 80         | -120 %      |                 | "                |          |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)           |            |                    | 104 %              | 80         | -120 %      |                 | "                |          |                 |     |              |       |
| LCS (8080684-BS5)                     |            | Prepared           | : 08/13/18 08:3    | 30 Analyz  | ed: 08/13/1 | 8 12:29         |                  |          |                 |     |              |       |
| EPA 8260C                             |            |                    |                    |            |             |                 |                  |          |                 |     |              |       |
| 1,2-Dibromoethane (EDB)               | 20.6       |                    | 0.500              | ug/L       | 1           | 20.0            |                  | 103      | 80-120%         |     |              |       |
| 1,2-Dichloroethane (EDC)              | 18.6       |                    | 0.400              | ug/L       | 1           | 20.0            |                  | 93       | 80-120%         |     |              |       |
| Methyl tert-butyl ether (MTBE)        | 22.3       |                    | 1.00               | ug/L       | 1           | 20.0            |                  | 111      | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr)      |            | Reco               | very: 100 %        | Limits: 80 | )-120 %     | Dilt            | ution: 1x        |          |                 |     |              |       |
| Toluene-d8 (Surr)                     |            |                    | 101 %              | 80         | -120 %      |                 | "                |          |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)           |            |                    | 103 %              | 80         | -120 %      |                 | "                |          |                 |     |              |       |
| <b>Duplicate (8080684-DUP1)</b>       |            | Prepared           | : 08/13/18 14:     | 18 Analyz  | ed: 08/13/1 | 8 16:45         |                  |          |                 |     |              |       |
| QC Source Sample: MW02-W (A           | 8H0329-02) |                    |                    |            |             |                 |                  |          |                 | -   |              |       |
| EPA 8260C                             |            |                    |                    |            |             |                 |                  |          |                 |     |              |       |
| 1,2-Dibromoethane (EDB)               | ND         |                    | 0.500              | ug/L       | 1           |                 | ND               |          |                 |     | 30%          |       |
| 1,2-Dichloroethane (EDC)              | ND         |                    | 0.400              | ug/L       | 1           |                 | ND               |          |                 |     | 30%          |       |
| Methyl tert-butyl ether (MTBE)        | 22.9       |                    | 1.00               | ug/L       | 1           |                 | 22.0             |          |                 | 4   | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr)      |            | Reco               | very: 105 %        | Limits: 80 | 0-120 %     | Dili            | ution: 1x        |          |                 |     |              |       |
| Toluene-d8 (Surr)                     |            |                    | 102 %              | 80         | -120 %      |                 | "                |          |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)           |            |                    | 101 %              | 80         | -120 %      |                 | "                |          |                 |     |              |       |
| Matrix Spike (8080684-MS1)            |            | Prepared           | : 08/13/18 14:     | 18 Analyz  | ed: 08/13/1 | 8 18:10         |                  |          |                 |     |              |       |
| QC Source Sample: MW04-W (ASEPA 8260C | 8H0329-04) |                    |                    |            |             |                 |                  |          |                 |     |              |       |
| 1,2-Dibromoethane (EDB)               | 21.0       |                    | 0.500              | ug/L       | 1           | 20.0            | ND               | 105      | 77-121%         |     |              |       |

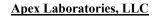
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher


Report ID: A8H0329 - 08 16 18 1439

### QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |            | Sele               | cted Volatil       | e Organi   | c Compo     | unds by E       | PA 8260          |       |                 |     |              |       |
|----------------------------------|------------|--------------------|--------------------|------------|-------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution    | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 8080684 - EPA 5030B        |            |                    |                    |            |             |                 | Wat              | er    |                 |     |              |       |
| Matrix Spike (8080684-MS1)       |            | Prepared           | : 08/13/18 14:     | 18 Analyz  | ed: 08/13/1 | 8 18:10         |                  |       |                 |     |              |       |
| QC Source Sample: MW04-W (A      | 3H0329-04) |                    |                    |            |             |                 |                  |       |                 |     |              |       |
| 1,2-Dichloroethane (EDC)         | 19.4       |                    | 0.400              | ug/L       | 1           | 20.0            | ND               | 97    | 73-128%         |     |              |       |
| Methyl tert-butyl ether (MTBE)   | 22.5       |                    | 1.00               | ug/L       | 1           | 20.0            | ND               | 112   | 71-124%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |            | Reco               | very: 101 %        | Limits: 80 | 0-120 %     | Dilı            | tion: 1x         |       |                 |     |              |       |
| Toluene-d8 (Surr)                |            |                    | 100 %              | 80         | -120 %      |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |            |                    | 99 %               | 80         | -120 %      |                 | "                |       |                 |     |              |       |

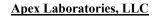
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project Number: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher


Report ID: A8H0329 - 08 16 18 1439

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                          |            |                    | Total N            | letals by | / EPA 602    | 0 (ICPMS)       | )                |       |                 |     |              |       |
|------------------------------------------|------------|--------------------|--------------------|-----------|--------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                  | Result     | Detection<br>Limit | Reporting<br>Limit | Units     | Dilution     | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 8080738 - EPA 3015A                |            |                    |                    |           |              |                 | Wat              | er    |                 |     |              |       |
| Blank (8080738-BLK1)                     |            | Prepared           | : 08/14/18 09:5    | 8 Analyz  | zed: 08/15/1 | 3 11:02         |                  |       |                 |     |              |       |
| EPA 6020A<br>Lead                        | ND         |                    | 0.200              | ug/L      | 1            |                 |                  |       |                 |     |              |       |
| LCS (8080738-BS1)                        |            | Prepared           | : 08/14/18 09:5    | 8 Analyz  | zed: 08/15/1 | 3 11:04         |                  |       |                 |     |              |       |
| EPA 6020A<br>Lead                        | 59.5       |                    | 0.200              | ug/L      | 1            | 55.6            |                  | 107   | 80-120%         |     |              |       |
| <b>Duplicate (8080738-DUP1)</b>          |            | Prepared           | : 08/14/18 09:5    | 8 Analyz  | zed: 08/15/1 | 3 11:13         |                  |       |                 |     |              |       |
| QC Source Sample: MW04-W (A<br>EPA 6020A | 8H0329-04) |                    |                    |           |              |                 |                  |       |                 |     |              |       |
| Lead                                     | 3.93       |                    | 0.200              | ug/L      | 1            |                 | 3.54             |       |                 | 11  | 20%          |       |
| Matrix Spike (8080738-MS1)               |            | Prepared           | : 08/14/18 09:5    | 8 Analyz  | zed: 08/15/1 | 3 11:15         |                  |       |                 |     |              |       |
| QC Source Sample: MW04-W (A<br>EPA 6020A | 8H0329-04) |                    |                    |           |              |                 |                  |       |                 |     |              |       |
| Lead                                     | 60.4       |                    | 0.200              | ug/L      | 1            | 55.6            | 3.54             | 102   | 75-125%         |     |              |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

## SAMPLE PREPARATION INFORMATION

|                    |                | Diesel and             | d/or Oil Hydrocarbor | is by NWTPH-DX     |               |               |        |
|--------------------|----------------|------------------------|----------------------|--------------------|---------------|---------------|--------|
| Prep: EPA 3510C (F | uels/Acid Ext. | )                      |                      |                    | Sample        | Default       | RL Pre |
| Lab Number         | Matrix         | Method                 | Sampled              | Prepared           | Initial/Final | Initial/Final | Factor |
| Batch: 8080724     |                |                        | <del>-</del>         |                    |               |               |        |
| A8H0329-01         | Water          | NWTPH-Dx               | 08/09/18 10:20       | 08/14/18 07:08     | 1070mL/2mL    | 1000mL/2mL    | 0.94   |
| A8H0329-02         | Water          | NWTPH-Dx               | 08/09/18 09:30       | 08/14/18 07:08     | 1070 mL/2 mL  | 1000mL/2mL    | 0.94   |
| A8H0329-03         | Water          | NWTPH-Dx               | 08/09/18 11:00       | 08/14/18 07:08     | 1070 mL/2 mL  | 1000 mL/2 mL  | 0.94   |
| A8H0329-04         | Water          | NWTPH-Dx               | 08/09/18 11:40       | 08/14/18 09:49     | 1070mL/2mL    | 1000mL/2mL    | 0.94   |
|                    | Gas            | soline Range Hydrocart | oons (Benzene thro   | ugh Naphthalene) b | y NWTPH-Gx    |               |        |
| Prep: EPA 5030B    |                |                        |                      |                    | Sample        | Default       | RL Pre |
| Lab Number         | Matrix         | Method                 | Sampled              | Prepared           | Initial/Final | Initial/Final | Factor |
| Batch: 8080684     |                |                        | ~h.va                | Larea              |               |               |        |
| A8H0329-01         | Water          | NWTPH-Gx (MS)          | 08/09/18 10:20       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
| A8H0329-02         | Water          | NWTPH-Gx (MS)          | 08/09/18 09:30       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
| A8H0329-03         | Water          | NWTPH-Gx (MS)          | 08/09/18 11:00       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
| А8Н0329-04         | Water          | NWTPH-Gx (MS)          | 08/09/18 11:40       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
|                    |                | ВТЕ                    | EX Compounds by E    | EPA 8260C          |               |               |        |
| Prep: EPA 5030B    |                |                        |                      |                    | Sample        | Default       | RL Pre |
| Lab Number         | Matrix         | Method                 | Sampled              | Prepared           | Initial/Final | Initial/Final | Factor |
| Batch: 8080684     |                |                        | <del>-</del>         | <u>-</u>           |               |               |        |
| A8H0329-01         | Water          | EPA 8260C              | 08/09/18 10:20       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
| A8H0329-02         | Water          | EPA 8260C              | 08/09/18 09:30       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
| A8H0329-03         | Water          | EPA 8260C              | 08/09/18 11:00       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
| А8Н0329-04         | Water          | EPA 8260C              | 08/09/18 11:40       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
|                    |                | Selected Vola          | atile Organic Compo  | unds by EPA 82600  | ;             |               |        |
| Prep: EPA 5030B    |                |                        |                      |                    | Sample        | Default       | RL Pre |
| Lab Number         | Matrix         | Method                 | Sampled              | Prepared           | Initial/Final | Initial/Final | Factor |
| Batch: 8080684     |                |                        |                      |                    |               |               |        |
| A8H0329-01         | Water          | EPA 8260C              | 08/09/18 10:20       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
| A8H0329-02         | Water          | EPA 8260C              | 08/09/18 09:30       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
| A8H0329-03         | Water          | EPA 8260C              | 08/09/18 11:00       | 08/13/18 14:18     | 5mL/5mL       | 5mL/5mL       | 1.00   |
| A0110329-03        |                |                        |                      |                    |               |               |        |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

# SAMPLE PREPARATION INFORMATION

|                 |        | Tot       | al Metals by EPA 602 | 20 (ICPMS)     |               |               |         |
|-----------------|--------|-----------|----------------------|----------------|---------------|---------------|---------|
| Prep: EPA 3015A |        |           |                      |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled              | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 8080738  |        |           |                      |                |               |               |         |
| A8H0329-01      | Water  | EPA 6020A | 08/09/18 10:20       | 08/14/18 09:58 | 45mL/50mL     | 45 mL/50 mL   | 1.00    |
| A8H0329-02      | Water  | EPA 6020A | 08/09/18 09:30       | 08/14/18 09:58 | 45mL/50mL     | 45 mL/50 mL   | 1.00    |
| A8H0329-03      | Water  | EPA 6020A | 08/09/18 11:00       | 08/14/18 09:58 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A8H0329-04      | Water  | EPA 6020A | 08/09/18 11:40       | 08/14/18 09:58 | 45mL/50mL     | 45mL/50mL     | 1.00    |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

# **QUALIFIER DEFINITIONS**

# Client Sample and Quality Control (QC) Sample Qualifier Definitions:

## **Apex Laboratories**

**F-20** Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.

Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





 HydroCon LLC
 Project:
 JH Kelly

 314 W 15th Street Suite 300
 Project Number:
 2017-055
 Report ID:

 Vancouver, WA 98660
 Project Manager:
 Brian Pletcher
 A8H0329 - 08 16 18 1439

## **REPORTING NOTES AND CONVENTIONS:**

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported
RPD Relative Percent Difference

# **<u>Detection Limits:</u>** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"\_\_" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

# **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

## **Miscellaneous Notes:**

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

\*\*\* Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

## Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gesa A Zmenighini



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

 HydroCon LLC
 Project:
 JH Kelly

 314 W 15th Street Suite 300
 Project Number:
 2017-055
 Report ID:

 Vancouver, WA 98660
 Project Manager:
 Brian Pletcher
 A8H0329 - 08 16 18 1439

# **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the blank results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

## **Preparation Notes:**

# Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

# **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

## LABORATORY ACCREDITATION INFORMATION

# TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

# **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

# **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

# **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

# Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somenighinic





**HydroCon LLC** Project: 314 W 15th Street Suite 300 Project Number: 2017-055 Vancouver, WA 98660 Project Manager: Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

| 12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax. 503-718-0333 |                                                 |                 |              |                                         | S          | M                  | 0                  | CHAIN OF CUSTODY           | Sn                | Ī                              | DY           |          |                  | Lab#           | H81,                                                                                                         | Z                       | 12         | A)                | COC 1 of 1        | <u>-</u> |
|------------------------------------------------------------------------------|-------------------------------------------------|-----------------|--------------|-----------------------------------------|------------|--------------------|--------------------|----------------------------|-------------------|--------------------------------|--------------|----------|------------------|----------------|--------------------------------------------------------------------------------------------------------------|-------------------------|------------|-------------------|-------------------|----------|
|                                                                              | 23 Ph:                                          | 503-718         | -2323 F      | 'ax: 50:                                | -718-      | 1333               |                    |                            |                   |                                |              |          |                  |                |                                                                                                              |                         | PO#        |                   |                   |          |
| Company: HylroCon                                                            |                                                 | Projec          | t Mgr:       | Project Mgr. (3-17-20)                  |            | Piet               | Pietcher           | _                          | Pro               | Project Name:                  | me:          | さら       | l                | Kells          | <u> </u>                                                                                                     |                         | Project #  | # 2017            | 7-055             | 10       |
| Address: 314 W 15th Street                                                   | Swife                                           | 300             | ,<br>V       | Vancouver, WA 9660 Phone (360) 703-6019 | VEF, W     | A 936              | Phon               | (3)                        | 5.                | 3-60                           |              | Fax:     | 1                | ,              | Email:                                                                                                       |                         | L. Jak. A. |                   | to all a solution | 1        |
| Sampled by: Charles                                                          | - 97                                            |                 |              |                                         |            |                    |                    |                            |                   |                                |              | 1        | ANALYSIS REQUEST | SRE            | 12000                                                                                                        | †ೌರ                     | asche      | 200               | 12 F 13 W         | 2        |
| Sile Location: OR WA Other:                                                  | 3TAC                                            | JME             | XIATAN       | OF CONTAINERS                           | MTPH-HCID  | xO-H9TW<br>xD-H9TW | 700 AOCs Enli Fist | 260 RBDM VOCs              | 790 BLEX AOC?     | OOAS 047                       | shaq mis 07g | 982 PCBs | CRA Metals (8)   | CLP Metals (8) | Sb, As, Ba, Be, Cd,<br>, Cr, Co, Cu, Pe, (Pb,<br>, Mg, Mn, Mo, Mi, K,<br>Ag, Na, Tl, V, Zn<br>PTAL DISS TCLP | 90° COFS                | Z-00       | ≅87M<br>∑03 \ 80: |                   |          |
|                                                                              |                                                 | T 5.            |              |                                         |            | +-                 |                    |                            |                   |                                |              |          |                  |                | Al,<br>Ca,<br>Hg,<br>Se,<br>TO                                                                               |                         |            |                   |                   | 1        |
| W - 10M/W                                                                    | 31/9                                            |                 | Q1 .         | n .                                     |            | <                  |                    | -                          | ×                 |                                |              | -        | -                |                | 12 Pe                                                                                                        |                         | <u>×</u>   | ×                 |                   | $\neg$   |
| M. 103                                                                       |                                                 | norge           |              | +                                       |            |                    |                    |                            | +                 |                                |              |          | _                |                |                                                                                                              |                         | 干          | +                 |                   |          |
| M - CM)                                                                      | $\downarrow$                                    | 1100            |              |                                         |            | $\pm$              |                    |                            | +                 | 1                              |              | -        |                  |                |                                                                                                              |                         |            |                   |                   |          |
| M = 10M)                                                                     |                                                 | 9               | 4            | >                                       |            | A .                |                    |                            |                   |                                |              |          |                  |                | >                                                                                                            |                         | <b>₽</b>   | Ð                 |                   |          |
|                                                                              |                                                 |                 |              | -                                       |            |                    |                    | -                          | -                 |                                |              | +        |                  |                |                                                                                                              |                         |            |                   |                   | +        |
|                                                                              |                                                 |                 | -            |                                         |            |                    |                    |                            | -                 |                                |              | -        | -                |                |                                                                                                              |                         |            |                   |                   | +-       |
|                                                                              |                                                 |                 |              |                                         |            |                    |                    |                            |                   |                                |              |          |                  |                |                                                                                                              |                         |            |                   |                   |          |
| Normal Turn Around Time (TAT) = 10 Business Days                             | lys                                             |                 | YES          | _                                       | 92         | -                  |                    | 20                         | PECIAI            | SPECIAL INSTRUCTIONS:          |              | ONS      | _                |                |                                                                                                              |                         | -          | _                 |                   | 1        |
| 1 Day TAT Requested (circle)                                                 | 2.                                              | 2 Day           | ) _          | 3 Day                                   |            |                    | ē.                 |                            |                   |                                |              |          |                  |                |                                                                                                              |                         |            |                   |                   |          |
| 4 DAY                                                                        | X                                               | 5 DAY           | ۸.           | Other:                                  |            |                    | -                  |                            |                   |                                |              |          |                  |                |                                                                                                              |                         |            |                   |                   |          |
| SAMPLES ARE HELD FOR 30 DAYS                                                 | E HELD                                          | FOR 30          | DAYS         |                                         |            |                    |                    | Т                          |                   |                                |              |          |                  |                |                                                                                                              |                         |            |                   |                   |          |
| RELINQUISHED BY: Signature: ("He Date:                                       | RECEIVED BY: Date: Z/4/12 Signature Brown       | RECEI Signatury | RECEIVED BY: | M                                       | 1.1        | Date               | Date: 8/           | RELINQU<br>(1/1/Signature: | LINQU<br>gnature: | RELINQUISHED BY:<br>Signature: | BY:          |          |                  | Date:          | RECEIV<br>Signature:                                                                                         | RECEIVED BY: Signature: | ێ          |                   | Date;             |          |
| Printed Name: Clarif Carelog Time.                                           | Time: 1025 Princed Name: Charles Jefferme: 1025 | Printed ?       | dame: C      | 2 maree                                 | 主          | Ş                  | (0)                | 2                          | Printed Name:     | De:                            |              |          |                  | Time:          | Printed Name:                                                                                                | Name:                   |            |                   | Time:             |          |
| Company: 14 Jes Con                                                          |                                                 | Company:        | _            | Apax Lubs                               | <i>L</i> . | 8                  |                    | <u> </u>                   | Company           |                                |              |          |                  |                | Comments                                                                                                     |                         |            |                   |                   |          |

JH Kelly

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLC
314 W 15th Street Suite 300
Vancouver, WA 98660

Project: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher

Report ID: A8H0329 - 08 16 18 1439

APEX LABS COOLER RECEIPT FORM Hydro(on Element WO#: A8 H) Project/Project #: 517 Kelly 2027 **Delivery info:** Chain of Custody Included? Yes X No \_\_\_ Custody Seals? Yes \_X No \_\_\_ Signed/Dated by Client? Signed/Dated by Apex? Yes X No \_\_\_ Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (deg. C) Received on Ice? (Y)N) Temp. Blanks? (Y(N)) Ice Type: (Gel/Rea)/Other) Cooler out of temp? (Y/N) Possible reason why:\_\_ All Samples Intact? Yes No Comments: Bottle Labels/COCs agree? Yes No \_\_\_ Comments: \_\_\_\_ Containers/Volumes Received Appropriate for Analysis? Yes \( \) No Comments: Do VOA Vials have Visible Headspace? Yes \_\_\_ No NA Comments Water Samples: pH Checked and Appropriate (except VOAs): Yes No\_NA Comments: Additional Information: Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





Thursday, August 23, 2018

Brian Pletcher HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

RE: A8H0623 - JH Kelly - 2017-055

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A8H0623, which was received by the laboratory on 8/22/2018 at 10:30:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:ldomenighini@apex-labs.com">ldomenighini@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of final reporting, unless prior arrangements have been made.

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039** 

**HydroCon LLC** Project: 314 W 15th Street Suite 300 Project Number: 2017-055 Vancouver, WA 98660

Project Manager: Brian Pletcher

JH Kelly

Report ID: A8H0623 - 08 23 18 1550

# ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFORMA | ATION  |                |                |
|------------------|----------------|--------|----------------|----------------|
| Client Sample ID | Laboratory ID  | Matrix | Date Sampled   | Date Received  |
| MW02-W           | A8H0623-01     | Water  | 08/21/18 08:50 | 08/22/18 10:30 |

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.





HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0623 - 08 23 18 1550

# ANALYTICAL SAMPLE RESULTS

|                                       | Select           | ed Volatile Or     | ganic Com          | pounds by EP     | A 8260C  |                  |              |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|--------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.  | Notes |
| MW02-W (A8H0623-01)                   |                  |                    |                    | Matrix: Wate     | ər       | Bat              | tch: 8081003 |       |
| Methyl tert-butyl ether (MTBE)        | 2.40             |                    | 1.00               | ug/L             | 1        | 08/22/18         | EPA 8260C    |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recover            | y: 100 %           | Limits: 80-120 % | 6 1      | 08/22/18         | EPA 8260C    |       |
| Toluene-d8 (Surr)                     |                  |                    | 98 %               | 80-120 %         | 6 1      | 08/22/18         | EPA 8260C    |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 102 %              | 80-120 %         | 6 1      | 08/22/18         | EPA 8260C    |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher

Report ID: A8H0623 - 08 23 18 1550

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |            | Selec              | ted Volati         | le Organi  | c Compo      | unds by E       | PA 8260          | <u>C</u> |                 |     |              |      |
|----------------------------------|------------|--------------------|--------------------|------------|--------------|-----------------|------------------|----------|-----------------|-----|--------------|------|
| Analyte                          | Result     | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution     | Spike<br>Amount | Source<br>Result | % REC    | % REC<br>Limits | RPD | RPD<br>Limit | Note |
| Batch 8081003 - EPA 5030B        |            |                    |                    |            |              |                 | Wat              | er       |                 |     |              |      |
| Blank (8081003-BLK1)             |            | Prepared:          | 08/22/18 12        | :09 Analyz | ed: 08/22/1  | 8 14:23         |                  |          |                 |     |              |      |
| EPA 8260C                        |            |                    |                    |            |              |                 |                  |          |                 |     |              |      |
| Methyl tert-butyl ether (MTBE)   | ND         |                    | 1.00               | ug/L       | 1            |                 |                  |          |                 |     |              |      |
| Surr: 1,4-Difluorobenzene (Surr) |            | Recove             | ery: 101 %         | Limits: 80 | 0-120 %      | Dilı            | ution: 1x        |          |                 |     |              |      |
| Toluene-d8 (Surr)                |            |                    | 100 %              | 80         | -120 %       |                 | "                |          |                 |     |              |      |
| 4-Bromofluorobenzene (Surr)      |            |                    | 100 %              | 80         | -120 %       |                 | "                |          |                 |     |              |      |
| LCS (8081003-BS3)                |            | Prepared:          | 08/22/18 12        | :09 Analyz | ed: 08/22/1  | 8 13:29         |                  |          |                 |     |              |      |
| EPA 8260C                        |            |                    |                    |            |              |                 |                  |          |                 |     |              |      |
| Methyl tert-butyl ether (MTBE)   | 21.1       |                    | 1.00               | ug/L       | 1            | 20.0            |                  | 106      | 80-120%         |     |              |      |
| Surr: 1,4-Difluorobenzene (Surr) |            | Recove             | ery: 102 %         | Limits: 80 | -120 %       | Dilı            | ution: 1x        |          |                 |     |              |      |
| Toluene-d8 (Surr)                |            |                    | 99 %               | 80         | -120 %       |                 | "                |          |                 |     |              |      |
| 4-Bromofluorobenzene (Surr)      |            |                    | 99 %               | 80         | -120 %       |                 | "                |          |                 |     |              |      |
| Matrix Spike (8081003-MS1)       |            | Prepared:          | 08/22/18 13        | :45 Analyz | ted: 08/22/1 | 8 16:11         |                  |          |                 |     |              |      |
| QC Source Sample: MW02-W (AS     | 8H0623-01) |                    |                    |            |              |                 |                  |          |                 |     |              |      |
| EPA 8260C                        |            |                    |                    |            |              |                 |                  |          |                 |     |              |      |
| Methyl tert-butyl ether (MTBE)   | 23.4       |                    | 1.00               | ug/L       | 1            | 20.0            | 2.40             | 105      | 71-124%         |     |              |      |
| Surr: 1,4-Difluorobenzene (Surr) |            | Recove             | ery: 100 %         | Limits: 80 | 0-120 %      | Dilı            | ution: 1x        |          |                 |     |              |      |
| Toluene-d8 (Surr)                |            |                    | 99 %               | 80         | -120 %       |                 | "                |          |                 |     |              |      |
| 4-Bromofluorobenzene (Surr)      |            |                    | 100 %              | 80         | -120 %       |                 | "                |          |                 |     |              |      |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0623 - 08 23 18 1550

# SAMPLE PREPARATION INFORMATION

|                 |        | Selected Vol | latile Organic Compo | unds by EPA 82600 | ;             |               |         |
|-----------------|--------|--------------|----------------------|-------------------|---------------|---------------|---------|
| Prep: EPA 5030B |        |              |                      |                   | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method       | Sampled              | Prepared          | Initial/Final | Initial/Final | Factor  |
| Batch: 8081003  |        |              |                      |                   |               |               |         |
| A8H0623-01      | Water  | EPA 8260C    | 08/21/18 08:50       | 08/22/18 13:45    | 5mL/5mL       | 5mL/5mL       | 1.00    |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0623 - 08 23 18 1550

# **QUALIFIER DEFINITIONS**

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

There are No Qualifiers on Sample or QC Data for this report

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0623 - 08 23 18 1550

## **REPORTING NOTES AND CONVENTIONS:**

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported
RPD Relative Percent Difference

# **<u>Detection Limits:</u>** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

## Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

## **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"\_\_\_" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

# **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

## **Miscellaneous Notes:**

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

## Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gesa A Zmenighini



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Report ID:

A8H0623 - 08 23 18 1550

HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

#### Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the blank results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

**REPORTING NOTES AND CONVENTIONS (Cont.):** 

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

## **Preparation Notes:**

# Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

# **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

HydroCon LLCProject:JH Kelly314 W 15th Street Suite 300Project Number:2017-055Vancouver, WA 98660Project Manager:Brian Pletcher

Report ID: A8H0623 - 08 23 18 1550

## LABORATORY ACCREDITATION INFORMATION

# TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

# **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

## **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

## **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

# **Field Testing Parameters**

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.





**HydroCon LLC** Project: 314 W 15th Street Suite 300 Project Number: 2017-055 Vancouver, WA 98660 Project Manager: Brian Pletcher

Report ID: A8H0623 - 08 23 18 1550

| APEX LABS                                                                     |                                                               |         |                        |         |                 | H<br>S     | A                  |                         | CHAIN OF CUSTODY        | Ď                     | ST             |               | >         |         |                 | Lab             | Lab # A8+100 65 coc 1 of 1                                                                                                 | 19        | 670               | 000 1 of      |
|-------------------------------------------------------------------------------|---------------------------------------------------------------|---------|------------------------|---------|-----------------|------------|--------------------|-------------------------|-------------------------|-----------------------|----------------|---------------|-----------|---------|-----------------|-----------------|----------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|---------------|
| 12232 S.W. Garden Place, Tigard, OR 97223 Phr. 503-718-2323 Fax: 503-718-0333 | OR 97223                                                      | Ph. 50. | 3-718-2.               | 323 Fax | c. 503-         | 718-0.     | 333                |                         |                         | l                     |                |               |           |         |                 |                 |                                                                                                                            | ď.        | PO#               |               |
| Company: HydroCon                                                             |                                                               |         | Project Mgr. Bridge    | Agr: C  | rida            |            | $\frac{\nabla}{2}$ | Pletcher                | ړ                       | 一                     | Project Name:  | t Name        | ,, l      | 片       |                 | Kelly           | 7                                                                                                                          | P.        | Project # 20      | 2017 -055     |
| Address:                                                                      |                                                               |         |                        |         |                 |            |                    | Pho                     | Phone (360) 703 - 60+19 | 0)7                   | 03-            | £09           | Fax:      | ×       | )               |                 | Email:                                                                                                                     | 100       | Email: bole tolor | L. decontonal |
| Sampled by: Chrois D                                                          | Jaschol                                                       |         |                        |         |                 |            |                    |                         |                         | all a                 |                |               |           | Ą.      | II KSI          | SRE             | ANALYSIS REQUEST (**)                                                                                                      | 13        | Joseph Joseph     |               |
| Site Location: OR (WA) Other: SAMPLE ID                                       | FAB ID #                                                      | DATE    | TIME                   | XISTAM  | # OF CONTAINERS | AWTPH-HCID | NWTPH-Dx           | 8700 AOCs Enll Fist     | 8760 RBDM VOCs          | 8760 HVOCs            | 8260 BTEX VOCs | SHV4 MIS 0478 | 8087 bCB2 | OTT 009 | RCRA Metals (8) | TCLP Metals (8) | Al. Sb, As, Ba, Be, Cd, Ca, Cb, Na, Na, Na, Na, Tl, V, Zn TOTAL BB, Cd, Cd, Fe, Pb, Na, Na, Na, Na, Na, Na, Na, Na, Na, Na | 1500-COFS | 38TM              |               |
| M-20MW                                                                        | to                                                            | 81/12/  | 72/2 0850              | 1,20    | 3               | -          |                    |                         |                         |                       |                |               |           |         |                 |                 |                                                                                                                            | -         | $\times$          |               |
|                                                                               |                                                               |         |                        |         |                 | -          |                    |                         |                         |                       |                |               |           |         |                 |                 |                                                                                                                            |           |                   |               |
|                                                                               |                                                               |         |                        |         |                 | -          |                    |                         |                         |                       |                |               |           |         |                 |                 |                                                                                                                            |           |                   |               |
|                                                                               |                                                               |         |                        |         | $\top$          |            |                    |                         |                         |                       |                | +             |           |         |                 |                 |                                                                                                                            |           |                   |               |
|                                                                               |                                                               |         |                        |         |                 |            |                    |                         |                         |                       |                | -             |           | _       |                 |                 |                                                                                                                            |           |                   |               |
|                                                                               |                                                               |         |                        |         |                 | +          |                    |                         |                         |                       | +-             | -             |           |         |                 |                 |                                                                                                                            |           |                   |               |
|                                                                               |                                                               |         |                        |         |                 |            |                    |                         |                         |                       |                |               |           |         |                 |                 |                                                                                                                            | -         |                   |               |
|                                                                               |                                                               |         |                        |         |                 |            |                    |                         |                         |                       | -              |               | _         |         |                 |                 |                                                                                                                            |           |                   |               |
| Normal Turn Around Time (TAT) = 10 Business Days                              | iness Days                                                    |         |                        | VES     | \ Z             | NO         | -                  |                         |                         | SPECIAL INSTRUCTIONS: | AL IN          | STRU          |           | -Ş.     |                 |                 |                                                                                                                            | _         |                   |               |
| TAT Remested (circle)                                                         | 1 Day                                                         |         | 2 Day                  | \ ~     | 3 Day           |            |                    |                         |                         |                       |                |               |           |         |                 |                 |                                                                                                                            |           |                   |               |
| (arana) pagarbas                                                              | 4 DAY                                                         |         | 5 DAY                  |         | Other:          |            |                    | 1                       |                         |                       |                |               |           |         |                 |                 |                                                                                                                            |           |                   |               |
|                                                                               | SAMPLES ARE HELD FOR 30 DAYS                                  | ELD F   | OR 30 D                | AYS     |                 |            |                    |                         |                         |                       |                |               |           |         |                 |                 |                                                                                                                            |           |                   |               |
| RELINQUISHED BY:<br>Signature:                                                | RECEIVE  Date: \$\frac{2}{2}\limit \limits \text{ Signature:} | 2/18 8  | RECEIVED BY Signature: | Na o    | 1               | A.         | Date               | 1/2                     | 7                       | RELINQUISHED BY       | QUISH<br>re:   | ED BY         |           |         |                 | Date:           | RECEIVED BY:                                                                                                               | SD BY:    |                   | Date          |
| Printed Name: Clar? 1) as Log Times (1936) Printed Name /                     | O Time 10                                                     | 2       | rinted Nan             | 12      | 13              | attasso    |                    | Time: 105 Schuted Name: | 23                      | Emted 1               | Name:          |               |           |         |                 | Time:           | Printed Name:                                                                                                              | me:       | -                 | Time:         |
| Company:                                                                      |                                                               |         |                        |         | 8               | ر :        |                    |                         |                         |                       |                |               |           |         |                 |                 |                                                                                                                            |           |                   |               |

JH Kelly

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project Number: JH Kelly
Project Number: 2017-055
Project Manager: Brian Pletcher

Report ID: A8H0623 - 08 23 18 1550

| 11000                                                                                                                  | loa                                                                                   | Element WO#: A8_               | H0622           |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|-----------------|
| ,                                                                                                                      | TH W. 01                                                                              |                                |                 |
| Delivery info:                                                                                                         |                                                                                       | 14                             |                 |
| Date/Time Received:                                                                                                    | 0:30 @ 8/22/18 By                                                                     | y:                             |                 |
|                                                                                                                        | ClientESSFedEx                                                                        | _UPSSwiftSenvoySD              | S_Other         |
| Cooler Inspection                                                                                                      | Inspected by: Mr                                                                      | 1 : <u>10:30 @</u>             | 8/22/18         |
| Chain of Custody Include                                                                                               | ed? Yes V No                                                                          | Custody Seals? Yes             | No_X            |
| Signed/Dated by Client?                                                                                                | Yes No                                                                                |                                |                 |
| Signed/Dated by Apex?                                                                                                  | Yes No                                                                                |                                |                 |
|                                                                                                                        | Cooler #1 Cooler #2 Coo                                                               | oler #3 Cooler #4 Cooler #5 Co | oler#6 Cooler#  |
| Temperature (deg. C)                                                                                                   | 2-8                                                                                   |                                |                 |
| Received on Ice? (Y/N)                                                                                                 | 4                                                                                     |                                |                 |
| Temp. Blanks? (Y/N)                                                                                                    | $\mathcal{N}$                                                                         |                                |                 |
| Ice Type: (Gel/Real/Othe                                                                                               | s 6.1                                                                                 |                                |                 |
| Condition:                                                                                                             | / /                                                                                   |                                |                 |
|                                                                                                                        |                                                                                       |                                |                 |
| Bottle Labels/COCs agree                                                                                               | ?? Yes No Commen                                                                      | ts:                            |                 |
|                                                                                                                        |                                                                                       | ts:                            |                 |
|                                                                                                                        |                                                                                       | ts: Comments:                  |                 |
| Containers/Volumes Rece                                                                                                |                                                                                       | ts: Comments:                  |                 |
| Containers/Volumes Rece                                                                                                | eived Appropriate for Analysis?                                                       | ts: Comments:                  |                 |
| Containers/Volumes Rece  Do VOA Vials have Visib                                                                       | eived Appropriate for Analysis?                                                       | ts: Comments:                  |                 |
| Containers/Volumes Rece  Do VOA Vials have Visib  Comments  Water Samples: pH Chec                                     | eived Appropriate for Analysis?                                                       | ts:                            |                 |
| Containers/Volumes Rece  Do VOA Vials have Visib  Comments  Water Samples: pH Chec                                     | eived Appropriate for Analysis?  Die Headspace? Yes No                                | ts:                            |                 |
| Containers/Volumes Rece  Do VOA Vials have Visib  Comments  Water Samples: pH Chec                                     | ble Headspace? Yes No                                                                 | ts:                            |                 |
| Containers/Volumes Rece  Do VOA Vials have Visib Comments Water Samples: pH Chec Comments: Additional Information:     | eived Appropriate for Analysis?  Die Headspace? Yes No  ked and Appropriate (except V | ts:                            |                 |
| Containers/Volumes Rece  Do VOA Vials have Visib  Comments  Water Samples: pH Chec  Comments:  Additional Information: | eived Appropriate for Analysis?  Die Headspace? Yes No  ked and Appropriate (except V | ts:                            | Contact Form: Y |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini