Memo

5205 Corporate Ctr. Ct. SE, Ste. A Olympia, WA 98503-5901 Phone: 360.570.1700 Fax: 360.570.1777

Fax: 360.570.177

To: Steve Teel, LHG (Department of Ecology)

From: Shella Swain & Chris Waldron

Cc: Kip Summers, P.E. (City of Olympia)

Date: February 2, 2015

Subject: November 2014 Supplemental Sediment Sampling Results for the Solid Wood Incorporated Site

This technical memorandum presents the results of additional supplemental sediment sampling that was performed in November 2014 at the Solid Wood Incorporated Site (Site) located in Olympia, Washington (Figure 1). This sampling event was conducted on behalf of the City of Olympia (City) under the Site's existing Agreed Order (No. DE-08-TCPSR-5415), in accordance with *Addendum No.9 to the Work Plan for the RI/FS and IA for the Solid Wood Incorporated Site* (PIONEER Technologies Corporation [PIONEER] 2014a). The purpose of this sampling event was to finalize the delineation of the Site Focus Area¹ by evaluating bioassay results using Sediment Management Standards (SMS) criteria and comparing surficial sediment concentrations to the Ecology-derived total petroleum hydrocarbons (TPH) screening level of 100 milligrams per kilogram (mg/kg).

Background

Previous sediment investigations were conducted as part of the Remedial Investigation/Feasibility Study (RI/FS) and Interim Actions (IAs) to characterize concentrations of: (1) SMS constituents,² and (2) TPH in the diesel range (TPH-D)/heavy oil range (TPH-HO) in beach sediment adjacent to the upland area of the Site (Parametrix 2010, 2011a, 2011b).

Additionally, the following three SMS bioassay tests were performed during previous Site sediment investigations:

- 1. 10-Day amphipod solid phase survival test using Eohaustorius estuarius,
- 2. Sediment larval test using Mytilus galloprovincialis, and
- 3. 20-Day polychaete solid phase survival and growth test using *Neanthes arenaceodentata*.

Results of previous investigations indicated that constituent concentrations were below applicable SMS chemical criteria (i.e., WAC 173-204-320 or WAC 173-204-520); however, concentrations TPH-D/TPH-HO exceeded the Ecology-derived Total TPH screening level. Additionally, one of the three bioassay tests failed at one sample location (SD-30/SD-33). Previous TPH and bioassay results are presented in Figure 2.

A supplemental sampling event was conducted at the Site in February 2014 to further characterize TPH concentrations in sediment. TPH-D was not detected in any supplemental sample and TPH-HO concentrations were primarily limited to the southern portion of the Focus Area (PIONEER 2014b). Based on the supplemental sampling results, a TPH-HO delineation boundary was identified and additional characterization (via sediment chemistry and bioassays) of the southern portion of the Focus Area was recommended (PIONEER 2014b).

¹ All sample locations located outside of the Focus Area were appropriately characterized. No further characterization is required in these areas.

² Washington Administrative Code [WAC] 173-204-320 – Table 1

Supplemental Sediment Investigation

Sediment Collection

Four sediment and bioassay samples were collected and analyzed in accordance with the Addendum No.9 to the Work Plan for the RI/FS and IA for the Solid Wood Incorporated Site. The samples were collected from four locations within the TPH-HO delineation boundary (see Figure 3). Sampling was conducted during low tide on November 1, 2014, to ensure that the proposed sample locations were not under water. Prior to sampling, surficial gravel was removed from the sampling locations. Sediment samples were collected with a decontaminated shovel, to a depth of half a foot below ground surface (bgs), and homogenized in a sediment bag that was placed in a five-gallon bucket. Approximately two gallons of sediment were distributed between two sediment bags for bioassays and additional sediment was placed into sample jars for analytical chemistry analyses. After each sample was collected, the shovels were decontaminated (i.e., they were scrubbed with a brush and a phosphate-free detergent [Alconox], and then rinsed with deionized water). Field quality control guidelines were followed in accordance with Addendum No.9 to the Work Plan for the RI/FS and IA for the Solid Wood Incorporated Site (PIONEER 2014a). All samples were placed in a cooler and held at approximately four degrees Celsius until they were received by the project laboratories.

In addition to the Site sediment samples, two reference sediment samples were collected from reference sediment stations located in Carr Inlet. Carr Inlet is considered a suitable reference area in the Puget Sound under SMS and PSEP standards (PTI 1991). The samples were collected on November 11, 2014 by Environ Global.

Sediment sampling field notes are provided in Attachment 1 and sediment sampling photos are provided in Attachment 2.3

Sediment Sample Test Results

Chemical Testing

Sediment samples were shipped overnight to Amtest Laboratories in Kirkland, Washington for rush analysis of TPH-D and TPH-HO via NWTPH-HCID. No constituents were detected in the NWTPH-HCID analysis. Per Ecology's request and based on historical Site data, the samples were also analyzed via NWTPH-DX with a silica gel cleanup⁴. TPH-D and TPH-HO are presented as separate products based on laboratory chromatograms (Ecology 2004). TPH results are presented in Figure 3. TPH-D was only detected in one of the four samples (66 mg/kg at SD-59). All sample locations had TPH-HO concentrations that exceeded the Ecology-derived screening level (100 mg/kg) and their concentrations ranged from 110 to 210 mg/kg.

The samples were also analyzed for TPH-G, total organic carbon, total solids, total volatile solids, total sulfides, ammonia, and grain size. All supplemental sediment sampling results are presented in Table 1. The analytical laboratory reports are included in Attachment 3.

³ The number of photos taken during the sampling event was limited by daylight hours and the incoming tide. No photos were taken while the samples at SD-59 and SD-57 were collected due to a lack of daylight.

⁴ The project laboratory was not able to achieve the intended practical quantitation limit (PQL) of 50 mg/kg for TPH-HO due to a high amount of moisture in the sediment samples.

Biological Testing

Sediment samples were shipped overnight to Environ Global in Port Gamble, WA for bioassay testing. Biological tests consisted of a 10-day amphipod solid phase survival test using *Eohaustorius estuarius*, a 20-day polychaete solid phase survival and growth test using *Neanthes arenaceodentata*, and a sediment larval test using *Mytilus galloprovincialis* conducted according to Puget Sound Estuary Program Guidelines (PTI 1995).

The results of the biological testing are presented in the Environ Global report provided in Figure 4 and Attachment 4. Site sediment sampling results were compared to the reference sediment sampling results with similar percent fines content (see Environ Global report Table 2-1). The four Site sediment samples and two reference samples passed the sediment quality standards (SQS) and cleanup screening levels (CSL) performance criteria for the three bioassay tests (Figure 3).

Discussion and Conclusion

Although all of the sediment sample concentrations collected from the Focus Area exceeded the Ecology-derived Total TPH screening level of 100 mg/kg, all of the bioassay tests performed at the same sample locations passed SMS bioassay test criteria for SQS and CSL. Based on the bioassay results, sediment in the Focus Area is considered characterized and no further sediment characterization is recommended.

Note: This memo focused solely on the supplemental sampling collected per *Addendum No.9 to the Work Plan for the RI/FS and IA for the Solid Wood Incorporated Site* (PIONEER 2014a). An upcoming report will document the results of all sediment samples that have been collected at the Site.

References

Ecology 2004. Determining Compliance with Method A Cleanup Levels for Diesel and Heavy Oil, Implementation Memorandum #4, June 17.

Parametrix. 2010. Solid Wood Incorporated Site Interim Action Report. Olympia, Washington. September.

Parametrix. 2011a. Solid Wood Incorporated Site RI/FS and IA Work Plan Addendum No. 4 – Supplemental Post Piling Removal Sediment Sampling and Analysis Plan. Olympia, Washington. March.

Parametrix. 2011b. Results of Supplemental Post Piling Removal Sediment Sampling. Olympia, Washington. August.

PIONEER. 2014a. Addendum No. 9 to the Work Plan for the RI/FS and IA for the Solid Wood Incorporated Site. October.

PIONEER. 2014b. Supplemental Sediment Sampling Results for the Solid Wood Incorporated Site. August 21.

PTI. 1991. Reference Area Performance Standards for Puget Sound. Prepared for USEPA, Office of Coastal Waters, Seattle, WA.

PTI. 1995. Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments. Prepared for PSEP, United States Environmental Protection Agency, Office of Puget Sound, Seattle, WA.

Enclosures

Table 1 Supplemental Sediment Sampling Results

Figure 1 Site Location

Figure 2 Previous TPH and Bioassay Results

Figure 3 November 2014 TPH and Bioassay Sample Locations and Results

Figure 4 Bioassay and TPH Comparisons

Attachment 1 Sampling Field Notes
Attachment 2 Sampling Photo Log

Attachment 3 Chemical Testing Laboratory Reports
Attachment 4 Biological Testing Laboratory Reports

Tables

This page has been left bla double-side	ank intentionally to allow fo ed printing.	r

Table 1: Supplemental Sediment Sampling Results

		Total Petro	oleum Hyd	rocarbons	Conventional Analyses		Nutrient Analyses			Grain Size (%)				
Sample	Depth (ft bgs)	TPH-D (mg/kg)	TPH-HO (mg/kg)	Total TPH (mg/kg)	Total Solids (%)	Percent Moisture	Total Volatile Solids (%)	Total Organic Carbon (%)	Ammonia (ug/g)	Sulfide (ug/g)	Gravel	Sand	Silt	Clay
SD-56	0 - 0.5	25 U	110	110	57	43	8.9	3.1	8.7 U	28	28	60	6.8	5.6
SD-57	0 - 0.5	25 U	110	110	67	33	6.6	2.8	7.5 U	43	21	56	16	6.7
SD-58	0 - 0.5	25 U	130	130	74	26	4.4	2.4	44	31	54	32	8.3	6.0
SD-59	0 - 0.5	66	210	276	45	55	16	3.8	148	67	11	51	26	12

Notes:

U: Non-detect

Shaded cells indicate that the concentration in the shallow sample (0-0.5 ft bgs) exceeded Ecology's Total TPH screening level of 100 mg/kg.

TPH-D and TPH-HO were analyzed using the NWTPH-Dx method preceded by a silica gel cleanup.

This page has been left blank intentionally to allow for double-sided printing.

Figures

This page has been left bla double-side	ank intentionally to allow fo ed printing.	r

Site Location

November 2014 Supplemental Sediment Sampling Results for the Solid Wood Incorporated Site

Olympia, Washington

Figure 1

This page has been left blank intentionally to allow for double-sided printing.

Previous TPH and Bioassay Results
November 2014 Supplemental Sediment Sampling Results for the
Solid Wood Incorporated Site
Olympia, Washington

Figure 2

This page has been left blank intentionally to allow for double-sided printing.

Olympia, Washington

TECHNOLOGIES CORPORATION

This page has been left blank intentionally to allow for double-sided printing.

Attachment 1

This page has been left bla double-side	ank intentionally to allow fo ed printing.	r

PIONEER TECHNOLOGIES CORPORATION (PIONEER) FIELD CHECKLIST

Project/Task Name: West Bay Sediment Sampling				
Requested By / Date: October 15-16, 2014		Work Deadline:	The second secon	
SERVICES REQUESTED	<u> </u>			COMPLETED
Office/field prep tasks: (a) ensure all applicable pre-m conduct tailgate & document, (d) communicate decon & GPS	ob HASP forms site control expe	are completed, (b) gat ectations, (e) load sam	her tide info, (c) ple coordinates into	YES NO
Collect four sediment samples				☑YES □ NO
3. Complete daily field notes, and note any deviations fi		ØYES □NO		
4. Use PIONEER Sample ID nomenclature for all samp	les per Work Pla	n		☑ YES □ NO
5. Ship bioassay samples to Environ				YES NO
6. Ship analytical samples to AmTest				☑ YES ☐ NO
				☐ YES ☐ NO
				☐ YES ☐ NO
				☐ YES ☐ NO
				☐YES ☐ NO
	Ĭ			☐ YES ☐ NO
				☐ YES ☐ NO
ADDITIONAL STANDARD INSTRUCTIONS	COMPLETE	D		COMPLETED
	YES D		ety Meetina	YES NO
Review Docs: FSAP, HASP	☐ YES ☐ N		•	☐ YES ☐ NO
☐ Agency NOI / Utility Locate / Concrete Coring			ap	
Coordinate Access:	☑YES □			
☐ Coordinate Sub / Equip:	YES D	_	irge Water Characterizat	
☑ Purchase / Rent Equip: <u>U-Haul</u>	¥YES □		HW	
☐ Client/Agency Coordination:	☐ YES ☐ I			
☐ Calibrate Equipment:	☐ YES ☐!	NO 🔲 Backgrou	ınd	☐ YES ☐ NO
				444-44-44
SAMPLING REQUIREMENTS				
Field Testing:				
			Laboratory: Environ	
Lab Testing: Four analytical sediment samples			Laboratory: AmTest	
			Laboratory:	
LI Lab Testing:				
FIELD SUPPLIES NEEDED			t . (Laterife en Donke	
Site Map 🗷 Camera 🗵 Survey Equip / GPS 🗓			tor / Interface Probe	Foot Kits
Std Field Equip (keys, forms, SAP, HASP, PPE, de		_	er ☐ Field 1	
☐ Drilling Equip (PID, references, knife, baggies, tape	•,	•	er / COC / Ice	
Soil Equip (SS bowls, spoon/shovel, hand auger, p			s × 5-gal b	
GWM (pump, tubing, gen., compres., bailers, rope,	.)	<u></u>		
Pump / Slug Test Equip (GWM Equip, slug, stopwa	atch)	Other:		

PIONEER DAILY FIELD REPORT

Date: 1112014 Sit	e Locatio	n: West BAY		Site Arrival Time	6-45	Site Depart	ture Time : <u>l </u>
•	Clears	,					
WEATHER	To 32	un Overca		Drizzle 50-70	Rain		Snow
TEMPERATURE	calm	Med.		Strong	70-85 Sever		85 Up
WIND]		
PEOPLE PRESENT ON-	SITE	NAME		ASSOCIATIO	NC	TIME OF	N-SITE AND OFF-SITE
		SHELLA SWAIN		972			-10:15
		DANIEL BRITTA	MIN P	72		6:45	- 10:15
	1			,	*****		
				· · · · · · · · · · · · · · · · · · ·			
				· · · · · · · · · · · · · · · · · · ·			
OTES ON WORK COMP	LETED			:			
2:45 ANVIV	D 01	n site -> 9	cafela	يم ل بيد	ale. 1	ceo (ivus).
/ - T-	t ov	13(10)	3661 € 70	1 a co	00,0	3 C C +	$\frac{1}{2}$
E'DO CILIA	nat	10000	1 . 1: 1	1 01	10 -	** ***	
:00 SUN	1107	nsen, to	de stri	1 UDD	se st	1-45°	1 :
2.15			· · · · · · · · · · · · · · · · · · ·				
1:15 Enou	<u>igh</u>	ught to.	sampl	le Ma	rk L	cate	ons.
		· · · · · · · · · · · · · · · · · · ·					
7:20 Begi	n 1	diagina:	50-56	7 .			
,	- 014			VISUAL	е,		
	- h.i			fines,		18410	2 .
	- h 1 a	ч .	int of		nent,		2
·	- 11. y	,	1		rocks		10/00/0
		gh amoun	06	snells,	10CLS	, Ur p	uologica
7:30 collec	- M	ATTCI	(0) (1) - D =	-n *			
7.50 Conec	$T \rightarrow L$)-WB-56-11	0114-0	0.3			
7							
7:30 Begi	n α	loging Si	<u>D-57</u>				
	- higi	h amount	Of SE	DODAYS	and	dark	grey
	-hiar	amount	of shi	eus (la	rge å	unta	ct),
	ar	2d 1-2 un	ch re	CK	9		
	- sm	au chunk		lark, or	raani	, sed	ment
3:00 collec		1-WB-57-1	10114-0	2-0.5	<u> </u>	2000	<u> </u>
		<u> </u>	,,,,,	2 013			
7:50 beain	1.1	7/11/1 - 5/	~ 50	 			7000
7:50 begin	-MC	iging 5D	5-58			,	
	<u>~ /117</u>	in amount	+ Of La	arge (3-4 mc	h) ro	cks.
- <u> </u>	-49	ght grey s	and	 			i
	<u>- hi</u>	gh amoun	t of bu	<u>o logica</u>	1 act	very a	earthwor
8:30 colle	<u>'C+ </u>	30-WB-58.	-110114	-0-05			
Siao beau	ndi	agyna si)-56				
-h	ligh	amound a		n shew	ALCOOL	er d .	1 large.
	1500	Sand:	0 · JURE	11 SHOVE	usper.	JUL U	i iaigo
	ALC:		1 1	100 h	15.30.00	27 . 1	2015
- <i>V</i>	NIGH	amount of	& Dra	lear ina	Charact	LATIUE	vivis, (dam
GNATURE:	000	- presum	,	БИ	INUCLE	5,1.1	11
	~		······································		DATE	: 4/1/	
		_				, ,	

Attachment 2

This page has been left bla double-side	ank intentionally to allow fo ed printing.	r

Photographic Log

Table of Contents

Photo No. 1: SD-58 Sample Location	. 2
Photo No. 2: SD-56 Sample Location	. 2
Photo No. 3: SD-56 Sample Location	. 3

Photographic Log

Photo No. 1: SD-58 Sample Location

Date: 11/1/2014

Direction Photo Taken: NA

Description:

SD-58 had a high amount of rocks and coarse grey sand. High amounts of biological activity (earthworms) were noted.

Photo No. 2: SD-56 Sample Location

Date: 11/1/2014

Direction Photo Taken: NA

Description:

SD-56 had large rocks and a high amount of shells. High amounts of biological activity (earthworms, flatworms, clams, and barnacles) were noted.

Photographic Log

Photo No. 3: SD-56 Sample Location

Date: 11/1/2014

Direction Photo Taken: NA

Description:

SD-56 sample location prior to sample collection.

This page has been left bla double-side	ank intentionally to allow fo ed printing.	r

Attachment 3

This page has been left bla double-side	ank intentionally to allow fo ed printing.	r

Am Test Inc. 13600 NE 126TH PL Suite C Kirkland, WA 98034 (425) 885-1664 Professional Analytical Services

Nov 5 2014 Pioneer Technologies Corp. 5205 Corporate Center Court SE Suite A Olympia, WA 98503 Attention: Sheila Swain

Dear Sheila Swain:

Enclosed please find the analytical data for your West Bay project.

The following is a cross correlation of client and laboratory identifications for your convenience.

CLIENT ID	MATRIX	AMTEST ID	TEST
SD-WB-56-110114-0-0.5	Soil	14-A017448	NWTPH-Dx, HCID, DEM, NUT, CONV, Moisture,
			TVS-s, H2S-S EPA, Grain Size
SD-WB-57-110114-0-0.5	Soil	14-A017449	NWTPH-Dx, HCID, DEM, NUT, CONV, Moisture,
			TVS-s, H2S-S EPA, Grain Size
SD-WB-58-110114-0-0.5	Soil	14-A017450	NWTPH-Dx, HCID, DEM, NUT, CONV, Moisture,
			TVS-s, H2S-S EPA, Grain Size
SD-WB-59-110114-0-0.5	Soil	14-A017451	NWTPH-Dx, HCID, DEM, NUT, CONV, Moisture,
			TVS-s, H2S-S EPA, Grain Size

Your samples were received on Tuesday, November 4, 2014. At the time of receipt, the samples were logged in and properly maintained prior to the subsequent analysis.

The analytical procedures used at AmTest are well documented and are typically derived from the protocols of the EPA, USDA, FDA or the Army Corps of Engineers.

Following the analytical data you will find the Quality Control (QC) results.

Please note that the detection limits that are listed in the body of the report refer to the Practical Quantitation Limits (PQL's), as opposed to the Method Detection Limits (MDL's).

If you should have any questions pertaining to the data package, please feel free to conact me.

Sincerely,

Aaron W. Young Laboratory Manager

BACT = Bacteriological CONV = Conventionals

MET = Metals ORG = Organics NUT=Nutrients DEM=Demand MIN=Minerals

Professional Analytical Services

ANALYSIS REPORT

Pioneer Technologies Corp. 5205 Corporate Center Court SE

Olympia, WA 98503 Attention: Sheila Swain Project Name: West Bay

All results reported on a dry weight basis.

Date Received: 11/04/14 Date Reported: 11/5/14

AMTEST Identification Number

Client Identification Sampling Date 14-A017448 SD-WB-56-110114-0-0.5

11/01/14, 08:50

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	57.3	%		0.1	SM 2540G	BP	11/04/14
% Moisture	42.7	%		0.1	Std Mthds. 2540 G	BP	11/04/14
Total Volatile Solids	8.86	%		0.1	SM 2540-G	BP	11/04/14

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	3.1	%		0.05	SW 846 9060	MR	11/05/14

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ammonia	< 8.7	ug/g		8.7	SM 4500NH3B&E	BP	11/04/14

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
-2.25	4.75	18.1 %	GRAVEL	28.1	ASTM D422	AY	11/04/14
- 2	4.00	1.70 %			ASTM D422	AY	11/04/14
-1	2.00	8.30 %			ASTM D422	AY	11/04/14
0	1.00	8.40 %	SAND	59.5	ASTM D422	AY	11/04/14
+1	0.50	11.6 %			ASTM D422	AY	11/04/14
+ 2	0.25	21.6 %			ASTM D422	AY	11/04/14
+ 3	0.125	12.3 %			ASTM D422	AY	11/04/14
+ 4	0.063	5.60 %			ASTM D422	AY	11/04/14
+ 5	0.032	< 0.1 %	SILT	6.80	ASTM D422	AY	11/04/14
+ 6	0.016	4.00 %			ASTM D422	AY	11/04/14
+ 7	0.008	1.40 %			ASTM D422	AY	11/04/14
+ 8	0.004	1.40 %			ASTM D422	AY	11/04/14
+ 9	0.002	0.30 %	CLAY	5.60	ASTM D422	AY	11/04/14
+ 10	0.001	< 0.1 %			ASTM D422	AY	11/04/14
> + 10	< 0.001	5.30 %			ASTM D422	AY	11/04/14

Pioneer Technologies Corp. Project Name: West Bay AmTest ID: 14-A017448

NWTPH-HCID (Soil)

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Fuel Type	None				NWTPH-Dx	ED	11/04/14
Gasoline	< 20	mg/Kg		20.	NWTPH-HCID	ED	11/04/14
Diesel	< 25	mg/Kg		25.	NWTPH-HCID	ED	11/04/14
Heavy Oil	< 50	mg/Kg		50.	NWTPH-HCID	ED	11/04/14

Surrogates

ANALYTE	% RECOVERY	LIMITS
Bromofluorobenzene	67.0 %	50.0 - 150.

NWTPH-Dx (Soil)

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Diesel	< 25	mg/kg		25.	NWTPH-Dx	ED	11/04/14
Heavy Oil	110	mg/kg		50.	NWTPH-Dx	ED	11/04/14

Surrogates

ANALYTE	% RECOVERY	LIMITS
Bromofluorobenzene	125. %	50.0 - 150.

Miscellaneous

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE
Sulfide	27.9	ug/g		10	EPA 9030B	MR	11/05/14

Aaron W. Young Laboratory Manager

Professional Analytical Services

ANALYSIS REPORT

Pioneer Technologies Corp. 5205 Corporate Center Court SE

Olympia, WA 98503 Attention: Sheila Swain Project Name: West Bay

All results reported on a dry weight basis.

Date Received: 11/04/14 Date Reported: 11/5/14

AMTEST Identification Number

Client Identification Sampling Date 14-A017449

SD-WB-57-110114-0-0.5 11/01/14, 08:00

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	66.6	%		0.1	SM 2540G	BP	11/04/14
% Moisture	33.4	%		0.1	Std Mthds. 2540 G	BP	11/04/14
Total Volatile Solids	6.58	%		0.1	SM 2540-G	BP	11/04/14

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	2.8	%		0.05	SW 846 9060	MR	11/05/14

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ammonia	< 7.5	ug/g		7.5	SM 4500NH3B&E	BP	11/04/14

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
-2.25	4.75	9.20 %	GRAVEL	20.8	ASTM D422	AY	11/04/14
- 2	4.00	2.20 %			ASTM D422	AY	11/04/14
-1	2.00	9.40 %			ASTM D422	AY	11/04/14
0	1.00	8.40 %	SAND	56.4	ASTM D422	AY	11/04/14
+1	0.50	12.0 %			ASTM D422	AY	11/04/14
+ 2	0.25	21.2 %			ASTM D422	AY	11/04/14
+ 3	0.125	10.8 %			ASTM D422	AY	11/04/14
+ 4	0.063	4.00 %			ASTM D422	AY	11/04/14
+ 5	0.032	11.5 %	SILT	16.2	ASTM D422	AY	11/04/14
+ 6	0.016	3.40 %			ASTM D422	AY	11/04/14
+ 7	0.008	1.30 %			ASTM D422	AY	11/04/14
+ 8	0.004	< 0.1 %			ASTM D422	AY	11/04/14
+ 9	0.002	0.90 %	CLAY	6.70	ASTM D422	AY	11/04/14
+ 10	0.001	0.70 %			ASTM D422	AY	11/04/14
> + 10	< 0.001	5.10 %			ASTM D422	AY	11/04/14

Pioneer Technologies Corp. Project Name: West Bay AmTest ID: 14-A017449

NWTPH-HCID (Soil)

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Fuel Type	None				NWTPH-Dx	ED	11/04/14
Gasoline	< 20	mg/Kg		20.	NWTPH-HCID	ED	11/04/14
Diesel	< 25	mg/Kg		25.	NWTPH-HCID	ED	11/04/14
Heavy Oil	< 50	mg/Kg		50.	NWTPH-HCID	ED	11/04/14

Surrogates

ANALYTE	% RECOVERY	LIMITS
Bromofluorobenzene	102. %	50.0 - 150.

NWTPH-Dx (Soil)

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Diesel	< 25	mg/kg		25.	NWTPH-Dx	ED	11/04/14
Heavy Oil	110	mg/kg		50.	NWTPH-Dx	ED	11/04/14

Surrogates

ANALYTE	% RECOVERY	LIMITS
Bromofluorobenzene	128. %	50.0 - 150.

Miscellaneous

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE
Sulfide	43.0	ug/g		10	EPA 9030B	MR	11/05/14

Aaron W. Young Laboratory Manager

Professional Analytical Services

ANALYSIS REPORT

Pioneer Technologies Corp. 5205 Corporate Center Court SE

Olympia, WA 98503 Attention: Sheila Swain Project Name: West Bay

All results reported on a dry weight basis.

Date Received: 11/04/14 Date Reported: 11/5/14

AMTEST Identification Number

Client Identification Sampling Date

14-A017450

SD-WB-58-110114-0-0.5 11/01/14, 08:30

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	74.2	%		0.1	SM 2540G	BP	11/04/14
% Moisture	25.8	%		0.1	Std Mthds. 2540 G	BP	11/04/14
Total Volatile Solids	4.39	%		0.1	SM 2540-G	BP	11/04/14

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	2.4	%		0.05	SW 846 9060	MR	11/05/14

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ammonia	44.1	ug/g		6.7	SM 4500NH3B&E	BP	11/04/14

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
-2.25	4.75	36.3 %	GRAVEL	53.7	ASTM D422	AY	11/04/14
- 2	4.00	4.60 %			ASTM D422	AY	11/04/14
-1	2.00	12.8 %			ASTM D422	AY	11/04/14
0	1.00	7.20 %	SAND	31.8	ASTM D422	AY	11/04/14
+1	0.50	6.40 %			ASTM D422	AY	11/04/14
+ 2	0.25	9.50 %			ASTM D422	AY	11/04/14
+ 3	0.125	6.00 %			ASTM D422	AY	11/04/14
+ 4	0.063	2.70 %			ASTM D422	AY	11/04/14
+ 5	0.032	4.60 %	SILT	8.30	ASTM D422	AY	11/04/14
+ 6	0.016	2.60 %			ASTM D422	AY	11/04/14
+ 7	0.008	0.80 %			ASTM D422	AY	11/04/14
+ 8	0.004	0.30 %			ASTM D422	AY	11/04/14
+ 9	0.002	0.80 %	CLAY	6.00	ASTM D422	AY	11/04/14
+ 10	0.001	0.60 %			ASTM D422	AY	11/04/14
> + 10	< 0.001	4.60 %			ASTM D422	AY	11/04/14

Pioneer Technologies Corp. Project Name: West Bay AmTest ID: 14-A017450

NWTPH-HCID (Soil)

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Fuel Type	None				NWTPH-Dx	ED	11/04/14
Gasoline	< 20	mg/Kg		20.	NWTPH-HCID	ED	11/04/14
Diesel	< 25	mg/Kg		25.	NWTPH-HCID	ED	11/04/14
Heavy Oil	< 50	mg/Kg		50.	NWTPH-HCID	ED	11/04/14

Surrogates

ANALYTE	% RECOVERY	LIMITS
Bromofluorobenzene	102. %	50.0 - 150.

NWTPH-Dx (Soil)

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Diesel	< 25	mg/kg		25.	NWTPH-Dx	ED	11/04/14
Heavy Oil	130	mg/kg		50.	NWTPH-Dx	ED	11/04/14

Surrogates

ANALYTE	% RECOVERY	LIMITS		
Bromofluorobenzene	125. %	50.0 - 150.		

Miscellaneous

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE
Sulfide	30.6	ug/g		10	EPA 9030B	MR	11/05/14

Aaron W. Young Laboratory Manager

Professional Analytical Services

ANALYSIS REPORT

Pioneer Technologies Corp. 5205 Corporate Center Court SE

Olympia, WA 98503 Attention: Sheila Swain Project Name: West Bay

All results reported on a dry weight basis.

Date Received: 11/04/14 Date Reported: 11/5/14

AMTEST Identification Number

Client Identification Sampling Date 14-A017451

SD-WB-59-110114-0-0.5

11/01/14, 07:30

Conventionals

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Solids	45.2	%		0.1	SM 2540G	BP	11/04/14
% Moisture	54.8	%		0.1	Std Mthds. 2540 G	BP	11/04/14
Total Volatile Solids	15.6	%		0.1	SM 2540-G	BP	11/04/14

Demand

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Total Organic Carbon	3.8	%		0.05	SW 846 9060	MR	11/05/14

Nutrients

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Ammonia	148.	ug/g		11.	SM 4500NH3B&E	BP	11/04/14

Grain Size Distribution

PHI	OPENING (mm)	% RETENTION	FRACTION	PERCENT	METHOD	ANALYST	DATE
-2.25	4.75	7.00 %	GRAVEL	11.2	ASTM D422	AY	11/04/14
- 2	4.00	0.80 %			ASTM D422	AY	11/04/14
-1	2.00	3.40 %			ASTM D422	AY	11/04/14
0	1.00	3.40 %	SAND	51.0	ASTM D422	AY	11/04/14
+1	0.50	4.20 %			ASTM D422	AY	11/04/14
+ 2	0.25	6.80 %			ASTM D422	AY	11/04/14
+ 3	0.125	16.7 %			ASTM D422	AY	11/04/14
+ 4	0.063	19.9 %			ASTM D422	AY	11/04/14
+ 5	0.032	3.30 %	SILT	25.6	ASTM D422	AY	11/04/14
+ 6	0.016	14.0 %			ASTM D422	AY	11/04/14
+ 7	0.008	6.20 %			ASTM D422	AY	11/04/14
+ 8	0.004	2.10 %			ASTM D422	AY	11/04/14
+ 9	0.002	1.80 %	CLAY	12.4	ASTM D422	AY	11/04/14
+ 10	0.001	1.00 %			ASTM D422	AY	11/04/14
> + 10	< 0.001	9.60 %			ASTM D422	AY	11/04/14

Pioneer Technologies Corp. Project Name: West Bay AmTest ID: 14-A017451

NWTPH-HCID (Soil)

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Fuel Type	None				NWTPH-Dx	ED	11/04/14
Gasoline	< 20	mg/Kg		20.	NWTPH-HCID	ED	11/04/14
Diesel	< 25	mg/Kg		25.	NWTPH-HCID	ED	11/04/14
Heavy Oil	< 50	mg/Kg		50.	NWTPH-HCID	ED	11/04/14

Surrogates

ANALYTE	% RECOVERY	LIMITS
Bromofluorobenzene	97.4 %	50.0 - 150.

NWTPH-Dx (Soil)

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANALYST	DATE
Diesel	66.	mg/kg		25.	NWTPH-Dx	ED	11/04/14
Heavy Oil	210	mg/kg		50.	NWTPH-Dx	ED	11/04/14

Surrogates

ANALYTE	% RECOVERY	LIMITS
Bromofluorobenzene	127. %	50.0 - 150.

Miscellaneous

PARAMETER	RESULT	UNITS	Q	D.L.	METHOD	ANLST	DATE
Sulfide	67.2	ug/g		10	EPA 9030B	MR	11/05/14

Aaron W. Young Laboratory Manager Am Test Inc. 13600 NE 126th PL Suite C Kirkland, WA, 98034 (425) 885-1664 www.amtestlab.com

QC Summary for sample numbers: 14-A017448 to 14-A017451

DUPLICATES

DOI LIGATI					
SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	DUP VALUE	RPD
14-A017448	Total Organic Carbon	%	3.1	3.6	15.
14-A016458	Ammonia	ug/g	1610	1630	1.2
14-A016875	Ammonia	ug/g	1580	1580	0.00
14-A017451	Total Solids	%	45.2	43.4	4.1
14-A017451	Total Volatile Solids	%	15.6	17.0	8.6
14-A017448	Sulfide	ug/g	27.9	35.6	24.
14-A017450	-2.25	%	36.3	31.2	15.
14-A017450	-2.25	%	36.3	33.8	7.1
14-A017450	- 2	%	4.60	4.50	2.2
14-A017450	- 2	%	4.60	3.90	16.
14-A017450	-1	%	12.8	13.2	3.1
14-A017450	-1	%	12.8	13.4	4.6
14-A017450	0	%	7.20	7.60	5.4
14-A017450	0	%	7.20	7.50	4.1
14-A017450	+1	%	6.40	6.90	7.5
14-A017450	+1	%	6.40	6.50	1.6
14-A017450	+ 2	%	9.50	10.4	9.0
14-A017450	+ 2	%	9.50	9.20	3.2
14-A017450	+ 3	%	6.00	7.60	24.
14-A017450	+ 3	%	6.00	7.50	22.
14-A017450	+ 4	%	2.70	2.30	16.
14-A017450	+ 4	%	2.70	3.40	23.
14-A017450	+ 5	%	4.60	6.60	36.
14-A017450	+ 5	%	4.60	5.20	12.
14-A017450	+ 6	%	2.60	2.20	17.
14-A017450	+ 6	%	2.60	2.20	17.
14-A017450	+ 7	%	0.80	0.70	13.
14-A017450	+ 7	%	0.80	0.70	13.
14-A017450	+ 8	%	0.30	0.80	91.
14-A017450	+ 8	%	0.30	0.80	91.
14-A017450	+ 9	%	0.80	0.90	12.
14-A017450	+ 9	%	0.80	0.90	12.
14-A017450	+ 10	%	0.60	0.60	0.00
14-A017450	+ 10	%	0.60	0.60	0.00
14-A017450	> + 10	%	4.60	4.60	0.00
14-A017450	> + 10	%	4.60	4.60	0.00

MATRIX SPIKES

SAMPLE #	ANALYTE	UNITS	SAMPLE VALUE	SMPL+ SPK	SPK AMT	RECOVERY
14-A017448	Sulfide	ug/g	27.9	95.4	61.1	110.48 %

STANDARD REFERENCE MATERIALS

ANALYTE	UNITS	TRUE VALUE	MEASURED VALUE	RECOVERY
Total Organic Carbon	%	0.80	0.83	104. %
Ammonia	ug/g	851.	859.	101. %
Sulfide	ug/g	50.0	45.0	90.0 %
Gasoline	mg/Kg	250	250	100. %
Diesel	mg/Kg	400	420	105. %
Heavy Oil	mg/Kg	400	430	108. %
Diesel	mg/kg	400	430	108. %
Diesel	mg/kg	400	420	105. %
Heavy Oil	mg/kg	400	460	115. %
Heavy Oil	mg/kg	400	430	108. %

BLANKS

ANALYTE	UNITS	RESULT
Total Organic Carbon	%	< 0.05
Ammonia	ug/g	< 5
Total Solids	%	< 0.1
Total Volatile Solids	%	< 0.1
Sulfide	ug/g	< 10
Gasoline	mg/Kg	< 20
Diesel	mg/Kg	< 25
Heavy Oil	mg/Kg	< 50
Diesel	mg/kg	< 25
Heavy Oil	mg/kg	< 50
Bromofluorobenzene	%	130.

AmTest Chain of Custody Record 13600 NE 126th PL, Suite C, Kirkland, WA 98034 Ph (425) 885-1664 Fx (425) 820-0245

www.amtestlab.com

99970

Chain of Custody No. 44013																
Client Nam	e & Address: ER Technoli Corporate CE OIA, WA 985	SE	Invoic) E 1	ER	4200								
Dlymy	01a, WA 985	0.3	Swt	c A												
Contact Person: SHEUA SWAIN Invoice Contact: SHEUA							A	S	WX	 キノ <i>!</i>	J					
Phone No:	360-570-1				PO Nur				***************************************			-				
Fax No:	360-570-1	777			Invoice	•										
E-mail:	nains@ vs,				Invoice											
Report Delive Mail /	ry: (Choose all that ap Fax / Email	1, 1,	ed Online		Data po Web Lo			line a	ccoui	nt: `	YES /	NO NO				
Special Instru	- Congression of the Congression	·	repo					- E	ille	54) /	crfe	» V	a	1	
Requested TA Standa	∖ T: (Rush must be pre-a		y lab)	R /24						,	ot: 4			1042	i ·	
Project Name		,ay	oay / Horn	7 - 2 - 1		ပု			,	4naly	sis Re	eques	sted	RIP		
Project Numb	per:		Sampled	pəldu	×	tainer	1	۵			Ŋ	sofun	7	33	j)	
	Client ID		Date San	Time Sampled	Matrix	No. of containers	NOTATION O	NWIPH-#CI	SOLIDS	TOTAL SOLIDS	MALPIDE	AMMONIA	1	25.52	morphie	ပ
AmTest ID	(35 characters ma	x)	Ď	Ē		No.	Tas	SEP	15 TO TO 15 SC	15/18	1011A	Ama	Tatal S	1 E 7 E 7 E 7 E 7 E 7 E 7 E 7 E 7 E 7 E	10° m	QA/QC
17448	SD-WB-56-1101	14-0-0.5	11/1/14	8:50	SD	2	X	χ	X	X	X	X	X	\times	X	
17449	SD-WB-57-110114	-0-0.5	, ,	8:00	SD	2	X	X	X	7	X	X	X	X	X	
I was a same it	SD-WB-58-110114-		11/1/14	8:30		2	X	×	X	X	X	X	X	X	X	
7	SD-WB-59-110114-	0-0.5	11/1/14	7:30	SD	2			Х	X	×	X	X	X		
						***************************************		wa								
															:	
				-A												
	4_344_444444444444444444444444444444444			!												
Collected/Relin	· ·	Date	Time	Received		~	1					Date	٤		Tim	ie
Shella Relinquished B	11:00	0000	ccol	Bett	2						4/14		10:0			
Relinquished B	y:	Date	Time	Received	d By:							Date	3		Tim	ie
Relinquished B	Time	Received	vived By: Date							Tim	ie					

COMMENTS:

Page 1

Attachment 4

This page has been left bla double-side	ank intentionally to allow fo ed printing.	r

BIOLOGICAL TESTING OF SEDIMENT FOR WEST BAY PARK

OLYMPIA, WASHINGTON

JANUARY 2, 2015

PREPARED FOR:
PIONEER TECHNOLOGIES
5205 CORPORATE CENTER CT. SE
OLYMPIA, WA 98503

PREPARED BY:
JULIA LEVENGOOD
BILL GARDINER

ENVIRON PO Box 216 4770 NE VIEW DRIVE PORT GAMBLE, WA 98364 360-297-6040

Contents

1.0	INTRODUCTION	4
2.0	METHODS	
2.1	Sample and Animal Receipt	
2.2	Sample Grain Size and Reference Comparison	
2.3	10-day Amphipod Bioassay	5
2.4	20-day Juvenile Polychaete Bioassay	6
2.5	Larval Developmental Bioassay	7
2.6	Data Analysis and QA/QC	8
3.0	RESULTS	8
3.1	10-day Amphipod Bioassay	
3.2	20-day Juvenile Polychaete Bioassay	13
3.3	Larval Development Bioassay	17
4.0	DISCUSSION	
4.1	Amphipod Test Suitability Determination	21
4.2	Juvenile Polychaete Test Suitability Determination	21
4.3	Larval Test Suitability Determination	22
5.0	SUMMARY	23
6.0	REFERENCES	24

Tables

Table 2-1. Sample and Reference Grain Size Comparison	5
Table 3-1. Test Results for Eohaustorius estuarius.	10
Table 3-2. Water Quality Summary for Eohaustorius estuarius	11
Table 3-3. Ammonia and Sulfide Summary for Eohaustorius estuarius	11
Table 3-4 Test Condition Summary for Eohaustorius estuarius.	12
Table 3-5. Test Results for Neanthes arenaceodentata	14
Table 3-6. Water Quality Summary for Neanthes arenaceodentata	15
Table 3-7. Ammonia and Sulfide Summary for Neanthes arenaceodentata	15
Table 3-8. Test Condition Summary for Neanthes arenaceodentata.	16
Table 3-9. Test Results for Mytilus galloprovincialis.	18
Table 3-10. Water Quality Summary for Mytilus galloprovincialis	19
Table 3-11. Ammonia and Sulfide Summary for Mytilus galloprovincialis	19
Table 3-12. Test Condition Summary for Mytilus galloprovincialis.	
Table 4-1. SMS Comparison for Echaustorius estuarius	21
Table 4-2. SMS Comparison for Neanthes arenaceodentata	22
Table 4-3. SMS Comparison for Mytilus galloprovincialis	23
Table 5-1. Summary of West Bay SMS Evaluation.	23

1.0 Introduction

ENVIRON conducted biological toxicity testing with sediment samples collected by Pioneer Technologies as part of a sediment investigation being performed at West Bay Park in Olympia, Washington. Sediments were evaluated for biological effects as indicated in the project specific work plan and following guidance provided by the Washington State Department of Ecology (WDOE) Sediment Management Standards (SMS) under the Washington Administrative Code (WAC) 173-204-315. This report presents the results of the toxicity testing portion of the West Bay Park site sediment investigation.

All testing was performed consistent with our laboratory's quality assurance program. All results are intended to be considered in their entirety, and ENVIRON is not responsible for use of less than the complete report. Results apply only to the samples tested.

2.0 METHODS

This section summarizes the test methods followed for this biological characterization. Test methods followed guidance provided by the Puget Sound Estuary Program (PSEP 1995), the WDOE Sediment Sampling and Analysis Plan Appendix (SSAPA; Ecology 2008), and the various updates presented during the Annual Sediment Management Review meetings (SMARM). Sediment toxicity was evaluated using three standard PSEP bioassays; the 10-day amphipod test, the juvenile polychaete survival and growth test, and the benthic larval development test.

2.1 SAMPLE AND ANIMAL RECEIPT

Four test sediments were collected on November 1, 2014 and were received at ENVIRON on November 4, 2014. Reference sediments from two stations within Carr Inlet were collected by ENVIRON personnel on November 11, 2014 and received the same day. Sediment samples were stored in a walk-in cold room at $4 \pm 2^{\circ}$ C in the dark. Test sediments were sieved through a 2 mm wire mesh sieve prior to testing in order to prevent potential spikes in ammonia that might be caused by the presence of tissues of organisms in the originally collected samples that perished during sediment holding. All tests were conducted within the eight week holding time.

Amphipods (*Eohaustorius estuarius*) were supplied by Northwestern Aquatic Sciences in Newport, Oregon. Animals were held in native sediment at 15°C prior to test initiation. Juvenile polychaete worms (*Neanthes arenaceodentata*) were obtained from Aquatic Toxicology Support in Bremerton, Washington. Juvenile polychaetes were held in seawater at 20°C (*Neanthes* were cultured in water-only and were not held in sediment prior to testing). *Mytilus galloprovincialis* (mussel) broodstock were provided by Taylor Shellfish in Shelton, Washington. Broodstock were held in unfiltered seawater at 16°C prior to spawning.

Native *Eohaustorius* sediment from Yaquina Bay, Oregon was also provided by Northwest Aquatic Sciences for use as control sediment treatments for the amphipod and juvenile polychaete tests.

2.2 SAMPLE GRAIN SIZE AND REFERENCE COMPARISON

Sediment grain size is one of the characteristics used in selecting the appropriate reference sediment(s) to compare the chemical and biological responses of project sediments. The percent fines value is defined as the amount of sediment that passes through a 62.5-µm sieve, expressed as a percentage of the total sample analyzed. This is also the sum of the silt and clay fraction of sediment. Wet-sieve grain size results for the project sediments were conducted in the ENVIRON laboratory upon sample receipt. Wet-sieve grain size results for the Carr Inlet reference sediments were conducted in the field (at the time of collection) by ENVIRON personnel. The percent-fines determination of the project sediments are summarized in Table 2-1.

ENVIRON 4 OF 24

Table 2	2-1.	Samp	le and	Reference	Grain	Size	Comparison.

Treatment	Percent Fines	Treatment Compared To:		
Ref_Carr Reference	2			
Carr 20 Reference	40			
SD-WB-56	0	Ref_Carr		
SD-WB-57	0	Ref_Carr		
SD-WB-58	0	Ref_Carr		
SD-WB-59	30	Carr 20		

Samples SD-WB-56, SD-WB-57, and SD-WB-58 were compared to the Ref_Carr reference and sample SD-WB-59 was compared to the Carr 20 reference for the purposes of evaluating the sediment under the sediment management standards.

2.3 10-DAY AMPHIPOD BIOASSAY

The 10-day acute toxicity test with *E. estuarius* was initiated on November 14, 2014. To prepare the test exposures, approximately 175 mL of sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45-µm filtered seawater at 28 ppt. The control and reference sediments were tested concurrently with the test treatments. Seven replicate chambers were prepared for each test treatment. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure porewater and overlying ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as porewater and overlying ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a 15°C water bath and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured in the surrogate chamber for each treatment. Dissolved oxygen (DO), temperature, pH, and salinity were then monitored in the surrogate chambers daily until test termination. Target test parameters were:

Dissolved Oxygen: \geq 4.6 mg/L pH: 7 - 9 units Temperature: 15 \pm 1°C Salinity: 28 \pm 1ppt

The tests were initiated by randomly allocating 20 *E. estuarius* into each test chamber, ensuring that each of the amphipods successfully buried into the sediment. Amphipods that did not bury within approximately one hour were replaced with healthy amphipods. The 10-day amphipod bioassay was conducted as a static test with no feeding during the exposure period. At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered amphipods transferred into a Petri dish. The number of surviving and dead amphipods was then determined under a dissecting microscope.

ENVIRON 5 OF 24

A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to any ammonia concentrations that might be present in the sediments.

2.4 20-DAY JUVENILE POLYCHAETE BIOASSAY

The 20-day chronic toxicity test with *N. arenaceodentata* was initiated on November 14, 2014. Test exposures were prepared with approximately 175 mL of sediment placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled with 775 mL of 0.45-µm filtered seawater at 28 ppt. The control and reference sediments were tested concurrently with the test treatments. Seven replicate chambers were prepared for each test treatment. Five replicates were used to evaluate sediment toxicity while the remaining two replicates were designated as sacrificial surrogate chambers. One surrogate chamber was sacrificed at test initiation to measure overlying and interstitial ammonia and sulfides. The remaining surrogate chamber was used for measuring daily water quality throughout the test, as well as overlying and interstitial ammonia and sulfides at test termination. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S²⁻ were monitored using a HACH DR/2800 Spectrophotometer.

Test chambers were placed in randomly assigned positions in a water bath at 20°C and allowed to equilibrate overnight. Trickle-flow aeration was provided to prevent dissolved oxygen concentrations from dropping below acceptable levels.

Immediately prior to test initiation, water quality parameters were measured. Dissolved oxygen, temperature, pH, and salinity were then monitored in the surrogates daily until test termination. Target test parameters were:

Dissolved Oxygen: \geq 4.6 mg/L pH: 7 - 9 units Temperature: 20 ± 1°C Salinity: 28 ± 2 ppt

The juvenile polychaete test was initiated by randomly allocating five N. arenaceodentata into each test chamber, and observing whether each of the worms successfully buried into the sediment. Worms that did not bury within approximately one hour were replaced with healthy worms. The 20-day test was conducted as a static-renewal test, with exchanges of 300 mL of water occurring every third day. N. arenaceodentata were fed every other day with 40 mg of TetraMin® (approximately 8 mg dry weight per worm). At test termination, sediment from each test chamber was sieved through a 0.5-mm screen and all recovered worms transferred into a Petri dish. The number of surviving and dead worms was determined. All surviving worms were then transferred to pre-weighed, aluminum foil weigh-boats, and dried in a drying oven at 105°C for a minimum of 6 hours. Each weigh-boat was removed, cooled in a desiccator, and then weighed on a microbalance to 0.01 mg. Each of the weigh boats was then heated to 550°C for 2 hours in order to determine the ashed weight. Ash-free dry weights (AFDW) were calculated to correct for the influence of sediment grain size differences between treatments. The ashed boats were weighed to 0.01 mg and the ashed weight was subtracted from the dry weight to calculate the AFDW. Both dry weight and AFDW were used to determine individual worm weight and growth rates.

ENVIRON 6 OF 24

A water-only, 4-day reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to any ammonia concentrations that might be present in the sediments.

2.5 LARVAL DEVELOPMENTAL BIOASSAY

Test sediments were evaluated using the larval benthic toxicity test with the mussel, $M.\ galloprovincialis$. The mussel larval test was initiated on November 19, 2014. Control seawater was tested concurrent with each test batch. To prepare the test exposures, 18 g (± 1 g) of test sediment was placed in clean, acid and solvent-rinsed 1-L glass jars, which were then filled to 900 mL with 0.45- μ m filtered seawater. Six replicate chambers were prepared for the test treatments, reference sediments, and the native sediment control treatment. Five of the replicates were used to evaluate the test; the sixth replicate was used as a water quality surrogate. Each chamber was shaken for 10 seconds and then placed in predetermined randomly-assigned positions in a water bath at 16°C.

To collect gametes for each test, mussels were placed in clean seawater and acclimated at 16°C for approximately 20 minutes. The water bath temperature was then increased over a period of 15 minutes to 20°C. Mussels were held at 20°C and monitored for spawning individuals. Spawning females and males were removed from the water bath and placed in individual containers with seawater. These individuals were allowed to spawn until sufficient gametes were available to initiate the test. After the spawning period, eggs are transferred to fresh seawater and filtered through a 0.5 mm Nitex® mesh screen to remove large debris, feces, and excess gonadal matter. A composite was made of the sperm and diluted with fresh seawater. The fertilization process was initiated by adding sperm to the isolated egg containers. Egg-sperm solutions were periodically homogenized with a perforated plunger during the fertilization process and subsamples observed under the microscope for egg and sperm viability. Approximately one to one and a half hours after fertilization, embryo solutions were checked for fertilization rate. Only those embryo stocks with >90% fertilization were used to initiate the tests. Embryo solutions were rinsed free of excess sperm and then combined to create one embryo stock solution. Density of the embryo stock solution was determined by counting the number of embryos in a subsample of homogenized stock solution. This was used to determine the volume of embryo stock solution to deliver approximately 27,000 embryos to each test chamber.

Dissolved oxygen, temperature, pH, and salinity were monitored in water quality surrogates to prevent loss or transfer of larvae by adhesion to water-quality probes. Ammonia and sulfides in the overlying water were measured on Day 0 and Day 2. Total ammonia as nitrogen was monitored using an Orion meter fitted with an ammonia ion-specific probe. Total sulfides as S-2 were monitored using a HACH DR/2800V Spectrophotometer. Target test parameters were as follows:

Dissolved Oxygen: $\geq 5.0 \text{ mg/L}$ pH: 7 - 9 units Temperature: $16 \pm 1^{\circ}\text{C}$ Salinity: $28 \pm 1 \text{ppt}$

ENVIRON 7 OF 24

The development test was conducted as a static test without aeration. The protocol calls for test termination when 95% of the embryos in the control have reached the prodissoconch I stage (approximately 48-60 hours). At approximately 40 hours, the controls were checked for development indicating that greater than 90% of the larvae present had developed into the normal D-cell stage. At 48 hours from test initiation, the larval test was terminated following resuspension protocols recently developed by USACE and Ecology to address the potential entrainment of larvae in very fine sediments or sediments with a high wood-debris component (Kendall et al. 2012). The test was terminated by resuspending the sediment and water in the test chamber at approximately 40 hours and allowing the contents to settle. To terminate the test, the overlying seawater was decanted into a clean 1-L jar and mixed with a perforated plunger. From this container, a 10 mL subsample was transferred to a scintillation vial and preserved in 5% buffered formalin. Larvae were subsequently stained with a dilute solution of Rose Bengal in 70% alcohol to help visualization of larvae. The number of normal and abnormal larvae was enumerated on an inverted microscope. Normal larvae included all D-shaped prodissoconch I stage larvae. Abnormal larvae included abnormally shaped prodissoconch I larvae and all early stage larvae

A water-only reference-toxicant test was conducted concurrently with the sediment tests using ammonium chloride. The ammonium chloride reference-toxicant test was used to ensure animals used in the test were healthy and of similar sensitivity to prior tests. This test also provided information on the sensitivity to ammonia concentrations that would possibly be present in the sediments.

2.6 DATA ANALYSIS AND QA/QC

All water quality and endpoint data were entered into Excel spreadsheets. Water quality parameters were summarized by calculating the mean, minimum, and maximum values for each test treatment. Endpoint data were calculated for each replicate and the mean values and standard deviations were determined for each test treatment.

All hand-entered data was reviewed for data entry errors, which were corrected prior to summary calculations. A minimum of 10% of all calculations and data sorting were reviewed for errors. Review counts were conducted on any apparent outliers.

For the larval test, the normalized combined mortality and abnormality endpoint was used to evaluate the test sediment. This was based on the number of normal larvae in each treatment and reference sample divided by the mean number of normal larvae in the control replicates, as defined in Ecology (2005).

For SMS suitability determinations, comparisons were made according to SAPA and Fox et al. (1998). Data reported as percent mortality or survival were transformed using an arcsine square root transformation prior to statistical analysis. All data were tested for normality using the Wilk-Shapiro test and equality of variance using Levene's test. Determinations of statistical significance were based on one-tailed Student's t-tests with an alpha of 0.05. A comparison of the larval endpoint relative to the reference was made using an alpha level of 0.10. For samples failing to meet assumptions of normality, a Mann-Whitney test was conducted to determine significance. For those samples failing to meet the assumptions of normality and equality of variance, a t-test on rankits was used.

3.0 RESULTS

The results of the sediment testing, including a summary of test results and water quality observations are presented in this section. Data for each of the replicates, as well as laboratory bench sheets are provided Appendix A and statistical analyses are provided in Appendix B.

ENVIRON 8 OF 24

3.1 10-DAY AMPHIPOD BIOASSAY

The bioassay test with *E. estuarius* was validated with 0% mortality in the native sediment control, which met the SMS performance criteria of ≤10% mortality. This result indicates that the test conditions were suitable for adequate amphipod survival. Mean mortality in the reference sediments were 5% in Ref_Carr and 4% in Carr 20, which met the SMS performance criteria (<25% mortality) and indicated that the reference sediments were acceptable for suitability determination. Mean mortality in the project sediments ranged from 5 - 9%. All endpoint results are summarized in Table 3-1. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-2, Table 3-3, and Table 3-4.

All water quality parameters were within the acceptable limits throughout the duration of the test, with the exception of minor deviations in salinity. Although salinity was recorded at 26 ppt in the water quality surrogate for sample SD-WB-56 on day 10, this salinity is within the tolerance range for this estuarine species.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC₅₀ value was well within control chart limits (±2 standard deviations from the laboratory historical mean). This result indicates that the test organisms used in this study were of similar sensitivity to those previously tested at ENVIRON.

Ammonia concentrations observed in the *E. estuarius* test were well below the no observed effect concentration (NOEC) value derived from the concurrent ammonia reference-toxicant test (Table 3-3; compare to NOEC of 114 mg/L). Values were also below the published threshold concentration of 15 mg/L total ammonia (Barton 2002), with the exception of an initial interstitial ammonia value of 20.6 mg/L in reference sediment Ref_Carr. Initial sulfide concentrations in interstitial water were not expected to contribute to toxicity as adequate oxygen levels in overlying water were maintained throughout the duration of the test (USACE/USEPA 1998).

ENVIRON 9 OF 24

Table 3-1. Test Results for Eohaustorius estuarius.

Treatment		Number	Percentage	Mean Pe	rcentage	SD
rreatment	Rep	Surviving	Survival	Survival	Mortality	טפ
	1	20	100			
	2	20	100			
Control	3	20	100	100	0	0.0
	4	20	100			
	5	20	100			
	1	16	80			
	2	20	100			
Ref_Carr	3	19	95	95	5	8.7
	4	20	100			
	5	20	100			
	1	19	95			
	2	20	100		4	
Carr 20	3	19	95	96		4.2
	4	18	90			
	5	20	100			
	1	18	90			
	2	19	95			
SD-WB-56	3	19	95	95	5	3.5
	4	20	100			
	5	19	95			
	1	18	90			
	2	19	95			
SD-WB-57	3	19	95	95	5	3.5
	4	20	100			
	5	19	95			
	1	16	80			
	2	20	100			
SD-WB-58	3	18	90	91	9	7.4
	4	18	90			
	5	19	95			
	1	19	95			
	2	17	85			
SD-WB-59	3	19	95	92	8	6.7
	4	17	85			
	5	20	100			

ENVIRON 10 OF 24

Table 3-2. Water Quality Summary for Echaustorius estuarius.

Treatment	Disso	lved Ox (mg/L)	kygen	Temp	Temperature (°C)		Sa	linity (p	pt)	pH (units)		
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	8.3	8.1	8.6	15.7	15.4	16.0	28	28	28	8.0	7.8	8.1
Ref_Carr	8.4	8.2	8.6	15.7	15.3	16.0	29	28	29	8.0	7.9	8.1
Carr 20	8.3	8.1	8.6	15.8	15.6	16.0	28	27	29	8.0	7.8	8.2
SD-WB-56	8.2	8.0	8.5	15.8	15.6	16.0	27	26	28	8.0	7.9	8.1
SD-WB-57	7.9	7.4	8.2	15.9	15.6	16.0	28	27	28	8.0	7.8	8.1
SD-WB-58	8.2	7.9	8.5	15.7	15.3	16.0	28	27	28	8.0	7.7	8.2
SD-WB-59	8.2	8.1	8.5	15.7	15.4	16.0	28	27	28	8.0	7.8	8.2

Table 3-3. Ammonia and Sulfide Summary for Echaustorius estuarius.

Treatment	Overlying Ammonia (mg/L Total)		Amn	stitial nonia Total)		g Sulfides Total)	Interstitial Sulfides (mg/L Total)		
	Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	Day 0	Day 10	
Control	<0.001	<0.001	<0.001	0.082	<0.001	<0.001	ND	0.100	
Ref_Carr	<0.001	<0.001	20.6	<0.001	<0.001	0.001	0.090	0.338	
Carr 20	<0.001	<0.001	1.54	0.374	<0.001	<0.001	0.497	0.402	
SD-WB-56	<0.001	<0.001	5.28	2.86	0.001	0.006	0.015	1.05	
SD-WB-57	2.47	0.781	2.01	2.31	0.001	0.003	0.128	0.255	
SD-WB-58	0.126	<0.001	8.25	2.75	0.015	0.009	0.059	0.315	
SD-WB-59	<0.001	<0.001	0.563	0.818	0.016	0.005	0.037	0.305	

ND – no data; insufficient volume for analysis. NOEC (concurrent reference-toxicant test derived) = 114 mg/L

ENVIRON 11 of 24 Table 3-4 Test Condition Summary for *Eohaustorius* estuarius.

able 3-4 Test Condition Summary for <i>Eohaustorius</i> es <i>tuarius</i> . Test Conditions: PSEP <i>E. estuarius</i>										
		20, SD-WB-56, SD-WB-57,								
Sample Identification		3, SD-WB-59								
Date sampled	November 1, 2014 (Test Sediments)									
Date Sampled	November 11, 2014 (Reference Sediments)									
Date received	November 4, 2014 (Test Sediments)									
		(Reference Sediments)								
Test dates		14 – 24, 2014								
Sample storage conditions		, dark								
Days of holding	,	est Sediments)								
Recommended: ≤8 weeks (56 days)		ence Sediments)								
Source of control sediment	·	a Bay, OR								
Test Species		tuarius								
Supplier	·	Sciences, Newport, OR								
Date acquired		er 14, 2014								
Age class		lt, 3-5 mm								
Test Procedures		SMARM revisions								
Test location		Gamble Laboratory								
Test type/duration	10-Day static									
Control water		a water, 0.45μm filtered								
Test dissolved oxygen	Recommended: ≥ 4.6 mg/L	Achieved: 7.4 – 8.6 mg/L								
Test temperature	Recommended: 15 ± 1 °C	Achieved: 15.3 – 16.0 °C								
Test Salinity	Recommended: 28 ± 1 ppt	Achieved: 26 - 29 ppt								
Test pH	Recommended: 7 - 9	Achieved: 7.7 – 8.2								
SMS and DMMP Control	Recommended:	Achieved: 0%; Pass								
Performance Standard	Control ≤ 10% mortality	·								
SMS Reference Performance	Recommended:	Achieved: Ref_Carr: 5%,								
Standard	Reference mortality < 25%	Carr 20: 4%; Pass								
Reference Toxicant LC ₅₀ (total ammonia)	$LC_{50} = 168 \text{ mg}$	/L total ammonia								
Mean; Acceptable Range (total ammonia)	141.4; 30.2 – 252.7	⁷ mg/L total ammonia								
NOEC (total ammonia)		otal ammonia								
NOEC (unionized ammonia)	0.881 r	ng/L UIA								
Test Lighting		inuous								
Test chamber		ss Chamber								
Replicates/treatment		r WQ measurements throughout test)								
Organisms/replicate		20								
Exposure volume	175 mL sedime	ent/ 775 mL water								
Feeding	N	one								
Water renewal	None									
Deviations from Test Protocol	Minor deviat	ions in salinity								

ENVIRON 12 OF 24

3.2 20-DAY JUVENILE POLYCHAETE BIOASSAY

No mortality was observed in the *N. arenaceodentata* control sediment and mean individual growth (MIG) was 0.984 mg/ind/day (dry weight) and 0.509 mg/ind/day (AFDW). These values fall within the test acceptability criteria of ≤10% mean mortality and ≥0.38 mg/ind/day mean individual growth (Kendall 1996), indicating that the test conditions were suitable for adequate polychaete survival and growth. A summary of the test results for all samples is shown in Table 3-5. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in Table 3-6, Table 3-7, and Table 3-8.

Mortality observed in the reference treatments was 0% and 8% (Ref-Carr and Carr 20, respectively), meeting the reference performance standard of ≥80% the control survival (Ecology 2008). Mean individual growth rates were 0.975 and 0.857 mg/ind/day (dry weight) and 0.503 and 0.500 mg/ind/day (AFDW), respectively.

Mean individual growth (dry weight and AFDW) for the reference treatments compared to the control was greater than 80% of the control response and mortality was less than 20% in all reference treatments. These results indicate that the reference sediments were acceptable for suitability determination.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC₅₀ value was well within control chart limits (±2 standard deviations from the laboratory historical mean). This result indicates that the test organisms used in this study were of similar sensitivity to those previously tested at ENVIRON.

All water quality parameters were within the acceptable limits throughout the duration of the test. Ammonia concentrations observed in the *N. arenaceodentata* test were below the NOEC value derived from the concurrent ammonia reference-toxicant test (Table 3-7; compare to NOEC of 142 mg/L). This indicates that ammonia concentrations within the sediment samples should not have been a contributor to any adverse biological effects observed in the test treatments. Sulfide concentrations in interstitial water were below the NOEC (3.47 mg/L; Kendall and Barton 2004) for all samples.

ENVIRON 13 OF 24

Table 3-5. Test Results for Neanthes arenaceodentata.

			Mean		Individu	ıal Grow	th (mg/ind/o	day)	
Treatment	Rep	Survivors	Mortality (%)	Dry Weight	Mean	SD	AFDW	Mean	SD
	1	5		1.114			0.511		
	2	5		0.975			0.505		
Control	3	5	0	0.951	0.984	0.1	0.498	0.509	0.021
	4	5		0.861			0.487		
	5	5		1.017			0.543		
	1	5		1.014			0.534		
	2	5		1.032		0.1	0.500		
Ref_Carr	3	5	0	0.882	0.975		0.454	0.503	0.075
	4	5		0.797			0.416		
	5	5		1.148			0.611		
	1	5		0.809			0.447		0.072
	2	5		0.828	0.857		0.529		
Carr 20	3	5	8	0.739		0.1	0.424	0.500	
	4	5		0.918			0.494		
	5	3		0.989			0.606		
	1	5	0	0.797			0.528		
	2	5		0.559			0.427		0.049
SD-WB-56	3	5		0.666	0.686	0.1	0.479	0.493	
	4	5		0.775			0.552		
	5	5		0.634			0.479		
	1	5		0.766			0.519		0.040
	2	5		0.670			0.490		
SD-WB-57	3	5	0	0.759	0.775	0.1	0.541	0.537	
	4	5		0.888			0.598		
	5	5		0.794			0.538		
	1	5		0.760			0.562		
	2	5		0.682			0.499		
SD-WB-58	3	5	0	0.687	0.685	0.1	0.517	0.507	0.039
	4	5		0.575			0.454		
	5	5		0.723			0.502	1	
	1	5	0	0.665			0.462		0.031
	2	5		0.628			0.463	0.469	
SD-WB-59	3	5		0.634	0.652	0.0	0.488		
	4	5		0.617			0.426		
	5	5		0.717			0.509		

ENVIRON 14 OF 24

Table 3-6. Water Quality Summary for Neanthes arenaceodentata.

Treatment	Dissolved Oxygen (mg/L)		Temp	Temperature (°C)		Salinity (ppt)			pH (units)			
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.6	7.3	8.1	20.1	19.6	20.4	28	28	29	8.0	7.8	8.1
Ref_Carr	7.7	7.3	8.3	20.1	19.7	20.4	28	28	29	8.0	7.9	8.1
Carr 20	7.6	7.0	8.3	20.1	19.6	20.4	28	28	29	8.0	7.9	8.2
SD-WB-56	7.6	7.1	7.9	20.2	19.9	20.4	28	27	29	8.1	7.9	8.3
SD-WB-57	7.5	7.0	7.8	20.1	19.8	20.4	29	28	29	8.1	7.9	8.3
SD-WB-58	7.6	7.2	7.8	20.1	19.8	20.4	28	27	29	8.1	8.0	8.2
SD-WB-59	7.3	6.9	7.7	20.2	19.9	20.4	28	27	28	8.0	7.7	8.2

Table 3-7. Ammonia and Sulfide Summary for Neanthes arenaceodentata.

Treatment	Overlying Ammonia (mg/L Total)		Interstitial Ammonia (mg/L Total)		Overlying (mg/L	sulfides Total)	Interstitial Sulfides (mg/L Total)	
	Day 0	Day 20	Day 0	Day 20	Day 0	Day 20	Day 0	Day 20
Control	<0.001	<0.001	<0.001	0.411	<0.001	0.002	0.040	0.120
Ref_Carr	<0.001	<0.001	8.25	0.051	0.016	0.005	0.210	0.248
Carr 20	<0.001	<0.001	0.228	0.275	0.041	0.005	ND	0.340
SD-WB-56	<0.001	<0.001	8.02	<0.001	0.500	0.005	0.590	0.098
SD-WB-57	0.228	<0.001	7.23	<0.001	0.011	0.011	0.094	0.140
SD-WB-58	0.036	<0.001	14.6	<0.001	0.035	0.008	0.081	0.130
SD-WB-59	<0.001	<0.001	3.68	0.118	0.027	0.015	0.090	0.118

ND – no data; insufficient volume for analysis.

NOEC (concurrent reference-toxicant test derived) = 142 mg/L

ENVIRON 15 OF 24

Table 3-8. Test Condition Summary for Neanthes arenaceodentata.

Table 3-8. Test Condition Summary for Test Condi	tions: PSEP N. arenaceodenta	ta			
	Control, Ref_Carr, Carr 20				
Sample Identification	SD-WB-58,				
Date sampled	November 1, 2014 (Test Sediments) November 11, 2014 (Reference Sediments)				
	November 4, 2014				
Date received	November 11, 2014 (F	•			
Test dates	November 14 – D				
Sample storage conditions	4°C,				
Days of holding	10 Days (Tes				
Recommended: ≤8 weeks (56 days)	3 Days (Referen	· · · · · · · · · · · · · · · · · · ·			
Source of control sediment	Yaquina	,			
Test Species	N. arenac				
Supplier	Aquatic Toxico				
Date acquired	November				
Age class	Juvenile; 16-21 Day	•			
Test Procedures	PSEP 1995 with S				
Test location	ENVIRON Port G				
Test type/duration	20-Day sta				
Control water	North Hood Canal sea				
Test dissolved oxygen	Recommended: ≥ 4.6 mg/L	Achieved: 6.9 – 8.3 mg/L			
Test temperature	Recommended: 20 ± 1 °C	Achieved: 19.6 - 20.4 °C			
Test Salinity	Recommended: 28 ± 2 ppt	Achieved: 27 - 29 ppt			
Test pH	Recommended: 7 - 9	Achieved: 7.7 – 8.3			
Initial biomass	Recommended: 0.5 - 1.0 mg Minimum: 0.25 mg	0.735 mg; Acceptable			
SMS and DMMP Control Performance Standard	Recommended: Control < 10% mortality	Achieved: 0% Pass			
otandard	Recommended: ≥ 0.72 mg/ind/d Minimum: ≥ 0.38 mg/ind/day dw	Achieved: 0.984 mg/ind/day; Pass			
SMS Reference Performance Standard	Recommended: MIG _{Reference} /MIG _{Control} ≥ 80%	MIG Achieved: Ref_Carr: 99% (Pass), Carr 20: 87% (Pass)			
Reference Toxicant LC ₅₀	$LC_{50} = 203.3 \text{ mg/}$	/L total ammonia			
(total ammonia)					
Mean; Acceptable Range	141.8; 46.1 – 237.6	mg/L total ammonia			
(total ammonia)	·				
NOEC (total ammonia)	142 mg/L tot				
NOEC (unionized ammonia)	1.39 mg	-			
Test Lighting	Continuous				
Test chamber	1-Liter Glass Chamber				
Replicates/treatment	5 + 2 surrogates				
Organisms/replicate	5				
Exposure volume		175 mL sediment/ 775 mL water			
Feeding	40 mg/jar every other day				
Water renewal	Water renewed every third o				
Deviations from Test Protocol	No	ne			

ENVIRON 16 OF 24

3.3 LARVAL DEVELOPMENT BIOASSAY

The larval development test with M. galloprovincialis was validated by 88% normalized combined normal survivorship, defined as the mean number of normal larvae within the control divided by the stocking density. This value was within the SMS acceptability criteria of \geq 70%. A summary of the test results for all samples is shown in Table 3-9. Summaries of water quality measurements, ammonia and sulfide concentrations, and test conditions are presented in

Table 3-10, Table 3-11, and Table 3-12.

Mean control-normalized normal survivals were 95.9%, and 96.5% in the Ref_Carr and Carr 20 reference sediments, respectively, and ranged from 84.0 - 97.8% in the project samples. The test mean chamber stocking density (measured at test initiation) was 38.5 embryos/mL.

A reference-toxicant test (positive control) was performed on the batch of test organisms utilized for this study. The LC₅₀ value was well within control chart limits (±2 standard deviations from the laboratory historical mean). Therefore the test organisms used in this study were of similar sensitivity to those previously tested at ENVIRON.

All water quality parameters were within the acceptable limits throughout the duration of the test, with the exception of minor deviations in temperature. Although temperatures reach 17.2 °C in water quality surrogates on day 1, this minor deviation is not suspected of influencing test results.

Ammonia concentrations observed in the *M. galloprovincialis* test were below the NOEC value derived from the concurrent ammonia reference-toxicant test (Table 3-11; compare to NOEC of 1.3 mg/L). This indicates that ammonia concentrations within the sediment samples should not have been a contributor to any adverse biological effects observed in the test treatments.

ENVIRON 17 OF 24

Table 3-9. Test Results for Mytilus galloprovincialis.

1 4016 3-3. 16	or ivesuit	S TOT INIYUIUS	galloprovinc	ialis.			
Treatment	Rep	Number Normal	Number Abnormal	Mean Number Normal	Normalized Combined Normal Survivorship (%) ^{1, 2}	Mean Combined Normal Survivorship (%)	SD
	1	303	8		79		
	2	364	19		95		
Control	3	364	16	339	95	88.0	7.1
	4	319	16		83		
	5	345	13		90		
	1	348	12		100		
	2	287	13		85		
Ref_Carr	3	354	12	334	100	95.9	6.7
	4	359	11		100		
	5	322	7		95		
	1	324	14		96		
	2	323	9		95	96.5	
Carr 20	3	374	6	334	100		3.5
	4	340	12		100		
	5	311	6		92		
	1	320	8		94		
	2	250	9		74	84.0	
SD-WB-56	3	270	8	285	80		8.1
	4	303	8		89		
	5	281	13		83		
	1	347	7		100		
	2	298	26		88		
SD-WB-57	3	357	14	332	100	96.3	5.3
	4	337	14		99		
	5	320	6		94		
	1	325	6		96		
	2	331	5		98		
SD-WB-58	3	349	6	333	100	97.8	1.8
	4	336	4		99		
	5	326	7		96		
	1	343	4		100		
	2	334	12		99		
SD-WB-59	3	302	24	322	89	94.9	4.6
	4	322	13		95		
1.0	5	311	16		92		

ENVIRON 18 of 24

Control normality normalized to stocking density (385.2).
 Reference and treatment normal survivorship are normalized to the mean Control normality (339).

Table 3-10. Water Quality Summary for Mytilus galloprovincialis.

Treatment	Dissolved Oxygen (mg/L)		Temperature (°C)		Salinity (ppt)			pH (units)				
	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Control	7.7	7.5	7.9	16.3	16.0	16.6	28	28	28	7.8	7.8	7.8
Ref_Carr	7.7	7.5	7.8	16.8	16.5	17.2	28	28	28	7.8	7.7	7.8
Carr 20	7.1	6.7	7.9	16.4	16.3	16.6	28	28	28	7.7	7.7	7.8
SD-WB-56	7.0	6.4	7.6	16.9	16.5	17.1	28	28	28	7.7	7.7	7.7
SD-WB-57	6.7	6.1	7.4	16.8	16.4	17.1	28	28	28	7.7	7.6	7.7
SD-WB-58	6.5	5.9	7.7	16.6	16.4	16.9	28	28	28	7.7	7.6	7.8
SD-WB-59	6.9	6.5	7.6	16.6	16.3	17.0	28	28	28	7.7	7.6	7.7

Table 3-11. Ammonia and Sulfide Summary for Mytilus galloprovincialis.

Treatment	Overlying (mg/L	Ammonia Total)	Overlying Sulfides (mg/L Total)			
	Day 0	Day 2	Day 0	Day 2		
Control	<0.001	<0.001	<0.001	0.005		
Ref_Carr	<0.001	<0.001	0.019	0.001		
Carr 20	<0.001	<0.001	0.055	0.012		
SD-WB-56	<0.001	<0.001	0.114	0.016		
SD-WB-57	<0.001	<0.001	0.082	0.010		
SD-WB-58	<0.001	<0.001	0.111	0.008		
SD-WB-59	<0.001	<0.001	0.098	0.008		

NOEC (concurrent reference-toxicant test derived) = 1.3 mg/L

ENVIRON 19 OF 24

Table 3-12. Test Condition Summary for						
Test Cond	itions: PSEP M. galloprovincia					
Sample Identification		0, SD-WB-56, SD-WB-57,				
oumple identification		SD-WB-59				
Date sampled		November 1, 2014 (Test Sediments) November 11, 2014 (Reference Sediments)				
Date received		(Test Sediments)				
Total data	,	Reference Sediments)				
Test dates		9 - 21, 2014				
Sample storage conditions	1	dark				
Holding time	• `	st Sediments)				
Recommended: < 8 weeks (56 days)	8 Days (Refere	<u> </u>				
Test Species		rovincialis				
Supplier	,	h, Shelton, WA				
Date acquired		r 19, 2014				
Age class		embryos				
Test Procedures		SMARM revisions				
Test location		amble Laboratory				
Test type/duration		st (Actual: 48 hours)				
Control water		water, 0.45µm filtered				
Test dissolved oxygen	Recommended: > 5.0 mg/L	Achieved: 5.9 – 7.9 mg/L				
Test temperature	Recommended: 16 ± 1 °C	Achieved: 16.0 – 17.2 °C				
Test Salinity	Recommended: 28 ± 1 ppt	Achieved: 28 ppt				
Test pH	Recommended: 7 - 9	Achieved: 7.6 – 7.8				
Stocking Density	Recommended: 20 – 40 embryos/mL	Achieved: 38.5 embryos/mL				
SMS and DMMP Control performance standard	Recommended: Control normal survival ≥ 70%	Achieved: 88%, Pass				
SMS Reference Performance Standard	None	None				
	Recommended:					
DMMP Reference Performance	Reference normal survival /	Achieved: Ref_Carr: 95.9%,				
Standard	Control normal survival	Carr 20: 96.5%; Pass				
	≥ 65%					
Reference Toxicant LC ₅₀	LC ₅₀ = 1.9 mg/L	total ammonia				
(total ammonia)						
Mean; Acceptable Range	5.4; 1.3 – 9.6 mg	/L total ammonia				
(total ammonia)						
NOEC (total ammonia)		al ammonia				
NOEC (unionized ammonia)		g/L UIA				
Test Lighting Test chamber		/ 10hr Dark ss Chamber				
i est citatibet		measurements throughout the				
Replicates/treatment	te	st)				
Exposure volume		900 mL water				
Feeding		one				
Water renewal		ne				
Deviations from Test Protocol	Minor deviations	s in temperature				

ENVIRON 20 of 24

4.0 DISCUSSION

Sediments were evaluated based on Sediment Management Standards (SMS) criteria. The biological criteria are based on both statistical significance (a statistical comparison) and the degree of biological response (a numerical comparison). The SMS criteria are derived from the Washington Department of Ecology Sampling and Analysis Plan Appendix (WDOE 2008). Comparisons were made for each treatment against the corresponding reference sample. Two numerical comparisons were made under SMS, the Sediment Quality Standards (SQS) and the Cleanup Standards Limit (CSL).

4.1 AMPHIPOD TEST SUITABILITY DETERMINATION

Under the SMS program, a treatment will fail SQS if mean mortality in the test sediment is >25% more than the mean mortality in the appropriate reference sediment and the difference is statistically significant ($p \le 0.05$). Treatments fail the CSL if mean mortality in the test treatment >30% relative to the reference sediment and the difference is statistically significant.

Samples SD-WB-56, SD-WB-57, SD-WB-58, and SD-WB-59 do not fail the SQS and CSL criteria for the amphipod test as shown in Table 4-1.

Table 4-1. SMS Comparison for Echaustorius estuarius.

Treatment	Mean Mortality (%)	Comparison To:	Statistically More than Reference?	Mortality Comparison to Reference MT-MR (%)	Fails SQS? ¹ > 25 %	Fails CSL? ² > 30 %
Control	0					
Ref_Carr	5					
Carr 20	4					
SD-WB-56	5	Ref_Carr	No	0	No	No
SD-WB-57	5	Ref_Carr	No	0	No	No
SD-WB-58	9	Ref_Carr	No	4	No	No
SD-WB-59	8	Carr 20	No	4	No	No

¹SQS: Statistical Significance and MT-MR >25%

 M_T = Treatment Mortality M_R = Reference Mortality

4.2 JUVENILE POLYCHAETE TEST SUITABILITY DETERMINATION

Suitability determinations for the juvenile polychaete test were based on mean individual growth (MIG). A test treatment fails SQS criteria if MIG is statistically lower in the test treatment, relative to the reference, and MIG in the test treatment is <70% that of the reference. The treatments will fail CSL criteria if MIG is significantly lower than the reference treatment and is <50% that of the treatment.

Based on AFDW, all samples passed both SQS and CSL criteria.

ENVIRON 21 OF 24

² CSL: Statistical Significance and MT-MR >30%

Table 4-2. SMS Comparison for Neanthes arenaceodentata.

Treatment	MIG (mg/ind/day)	Comparison To:	Statistically Less than Reference?	MIG Relative to Reference MIGT/MIGR (%)	Fails SQS? ¹ < 70%	Fails CSL? ² < 50%			
	Ash-Free Dry Weight								
Control	0.509								
Ref_Carr	0.503								
Carr 20	0.500								
SD-WB-56	0.493	Ref_Carr	No	98	No	No			
SD-WB-57	0.537	Ref_Carr	No	107	No	No			
SD-WB-58	0.507	Ref_Carr	No	101	No	No			
SD-WB-59	0.469	Carr 20	No	94	No	No			

¹SQS: Statistical Significance and MIG_T/MIG_R <70%

MIG_R = Reference Mean Individual Growth

4.3 LARVAL TEST SUITABILITY DETERMINATION

Larval test treatments fail SQS criteria if the percentage of normal larvae in the test treatment is significantly lower than that of the reference and if the normal larval development in the test treatment is less than 85% of the normal development in the reference. Treatments fail CSL criteria if the percentage of normal larvae in the test treatment is significantly lower than that of the reference and if the normal larval development in the test treatment is less than 70% of the normal development in the reference.

All samples pass the SQS and CSL criteria for larval development (Table 4-3).

ENVIRON 22 OF 24

²CSL: Statistical Significance and MIG_T/MIG_R <50%

 MIG_T = Treatment Mean Individual Growth

Table 4-3. SMS Comparison for Mytilus galloprovincialis.

Treatment	Mean Normal Survival (%)	Comparison To:	Statistically Less than Reference?	Normal Survival Comparison to Reference NT/NR (%)	Fails SQS? ¹ < 85%	Fails CSL? ² < 70%
Control	88.0					
Ref_Carr	95.9					
Carr 20	96.5					
SD-WB-56	84.0	Ref_Carr	Yes	88	No	No
SD-WB-57	96.3	Ref_Carr	No	100	No	No
SD-WB-58	97.8	Ref_Carr	No	102	No	No
SD-WB-59	94.9	Carr 20	No	98	No	No

¹SQS: Statistical Significance and N_T/N_R<85%

²CSL: Statistical Significance and N_T/N_R <70%

N_T =Treatment Normal Survivorship (Control Normalized)

N_R =Reference Normal Survivorship (Control Normalized)

5.0 SUMMARY

Samples SD-WB-56, SD-WB-57, SD-WB-58, and SD-WB-59 pass both SQS and CSL criteria established under the Sediment Management Standards (SMS). Table 5-1 summarizes the interpretive results of the biological tests conducted on the West Bay sediments.

Table 5-1. Summary of West Bay SMS Evaluation.

Treatment	Sedimer	nt Quality Sta	ndards	Cleanu	Overall			
		Polychaete	Larval	Amphipod	Polychaete	Larval	Determination	
SD-WB-56	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
SD-WB-57	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
SD-WB-58	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
SD-WB-59	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

ENVIRON 23 OF 24

6.0 REFERENCES

- Barton, J, 2002. DMMP/SMS Clarification Paper: Ammonia and Amphipod Toxicity Testing. Presented at the 14th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Ecology 2005. DMMP/SMS Clarification Paper: Interpreting Sediment Toxicity Tests: Consistency between Regulatory Programs. Presented at the 17th Annual Sediment Management Annual Review Meeting by Tom Gries, Toxics Cleanup Program/Sediment Management Unit, Washington Department of Ecology, Olympia, Washington.
- Ecology 2008. Sediment Sampling and Analysis Plan Appendix: Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards (Chapter 173-204 WAC), Sediment Management Unit, Department of Ecology, Bellevue, Washington. Revised February 2008.
- Fox, D, DA Gustafson, and TC Shaw. 1998. Biostat Software for the Analysis of DMP/SMS. Presented at the 10th Annual Sediment Management Annual Review Meeting.
- Kendall, D, 1996. DMMP/SMS Clarification Paper: Neanthes 20-Day Growth Bioassay Further Clarification on Negative Control Growth Standard, Initial Size and Feeding Protocol. Presented at the 9th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Kendall, D, and Barton, J, 2004. DMMP/SMS Clarification Paper: Ammonia and Sulfide Guidance Relative to Neanthes Growth Bioassay. Presented at the 16th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- Kendall D, R McMillan, and B Gardiner. 2012. Draft DMMP/SMS Clarification Paper: Bioassay Endpoint Refinements: Bivalve Larvae and Neanthes Growth Bioassay. Presented at the 24th Annual Sediment Management Annual Review Meeting for USACE Seattle, Washington.
- PSEP 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Puget Sound Water Quality Authority, Olympia, Washington.
- PSEP. 1995. Puget Sound Protocols and Guidelines. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- PSEP 1997. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Puget Sound Estuary Program. Puget Sound Water Quality Action Team, Olympia, Washington.
- USACE 2008. Dredeged Material Evaluation and Disposal Procedures (Users' Manual), Dredged Material Management Program (DMMP). US Army Corps of Engineers-Seattle District; US Environmental Protection Agency (Region 10); Washington State Department of Ecology, and Washington State Department of Natural Resources. 105 pp.
- USEPA/USACE. 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S: Testing Manual. EPA 823-B-98-004. February 1998.

ENVIRON 24 OF 24

APPENDICES

- A. LABORATORY DOCUMENTS
- **B. STATISTICAL COMPARISONS**
- C. CHAIN-OF-CUSTODY FORMS

APPENDIX A

LABORATORY DOCUMENTS

Eohaustorius estuarius Amphipod Bioassay:

Laboratory Data Sheets... A.1.1

Reference Toxicant Test... A.1.2

Neanthes arenaceodentata Juvenile Polychaete Bioassay:

Laboratory Data Sheets... A.2.1

Reference Toxicant Test... A.2.2

Mytilus galloprovincialis Benthic Larval Bioassay:

Laboratory Data Sheets... A.3.1

Reference Toxicant Test... A.3.2

APPENDIX A.1.1

Eohaustorius estuarius Amphipod Bioassay Laboratory Data Sheets

CLIENT	PROJECT	
Pioneer Technologies	West Bay	
JOB NUMBER	PROJECT MANAGER	
	Bill Gardiner	

SPECIES		LABORATORY Port Gamble	PROTOCOL PSEP 1995
Eohaustorius estuarius TEST START DATE	TIME	TEST END DATE	TIME & DAZ
14-Nov-14	1425	24-Nov-14	13 0936

									WATER QUALITY	/ DATA			
		Tes	t Conditions	DO (mg/L) >4.6 mg/L		Temperature (°C) 15±1			Salinity (ppt) 28±1		pH 7 - 9	Tech	Date
Sample ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	14/4	1
SD-WB-57	0	WQ	7	8	8.1	8	16.0	8	28	8	7.9	a	11/14/14
SD-WB-56	0	WQ	24		8.2	1	16.0		28		7.9	-	-
SD-WB-59	0	WQ	26		8.3		16.0		28		7.9		
Control	0	WQ	27		8.1		16.0		28		7.8		
Carr 20	0	WQ	30		8.1		16.0		27		7.8		
Ref Carr	0	WQ	35		8.2		16.0		28		7.9	-	1
SD-WB-58	0	WQ	37	V	7.9	V	16.0	V	28	V	7.7		-
SD-WB-57	1	WQ	7	8	9.1	8	15.7	8	28	8	7.9	UL	11/12
SD-WB-56	1	WQ	24		8.2		15.8		27		7.9	_	
SD-WB-59	1	WQ	26		8.3		15.7		28		7-9		
Control	1	WQ	27		8.4		15.8		28		8.0		
Carr 20	1	WQ	30		8.5		15290		28		8.0		
Ref Carr	1	WQ	35		8.5		15.7		28		8.0		
SD-WB-58	1	WQ	37		8.4	15	15.7		28		8.0	9	1 6

15.9°C. JC 1/15.

CLIENT	PROJECT	
Pioneer Technologies	West Bay	
JOB NUMBER	PROJECT MANAGER	
0	Bill Gardiner	

SPECIES Eohaustorius estuarius		LABORATORY Port Gamble	PROTOCOL PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME 0936
14-Nov-14	1425	24-Nov-14	0930

			7						WATER QUALITY	DATA			_
		Tes	t Conditions	DO (mg/L) >4.6 mg/L		Tem	perature (°C) 15±1		Salinity (ppt) 28±1		pH 7 - 9	Tech	Date
Sample ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		1
SD-WB-57	2	wQ	7	8	8.2	8	15.9	8	28	8	7.9	Ju	11/16/18
SD-WB-56	2	wq	24		8.4		15.9		27		8.0		
SD-WB-59	2	WQ	26		8.4		15.7	Ш	28		7.9		
Control	2	wq	27		8.6		15.8		28		8.0		
Carr 20	2	wQ	30		8.6	1	15.8		28		8.0		
Ref Carr	2	wQ	35		8.6		12.3		28		3.0		
SD-WB-58	2	wq	37	1	8.5	1	15.8	ال	28)	8.0	L	6
SD-WB-57	3	WQ	7	8	7.9	8	16.0	8	0 2928	8	7.8	KMB	11/17/19
SD-WB-56	3	WQ	24		8.2		15.8		28 27		7.9	-	1
SD-WB-59	3	WQ	26		8.2		15.7		2928		7.8		
Control	3	wq	27		8.3		18.9		38 28		7.9		1
Carr 20	3	WQ	30		8.3		16.0		30 28		7.9		
Ref Carr	3	WQ	35		8.3		15.8		₹ 29	-	8.0		1
SD-WB-58	3	WQ	37	9	8.2	9	15,8	4	₩ 80 28	4	8.0	1	A

@ MR. Meter recal due to suspected deviation. KNB 1417/14

CLIENT	PROJECT	
Pioneer Technologies	West Bay	
JOB NUMBER	PROJECT MANAGER	
0	Bill Gardiner	

SPECIES		LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME DAZO
14-Nov-14	1425	24-Nov-14	1 0980

									WATER QUALI	TY DATA			
		Tes	t Conditions		DO (mg/L) >4.6 mg/L		mperature (°C) 15±1		Salinity (ppt) 28±1		pH 7 - 9	Tech	Date
Sample ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	10/4	1/11/20 134
SD-WB-57	4	WQ	7	8	7.9	8	16.0	8	78	8	7.9	H	11/18/14
SD-WB-56	4	WQ	24	8	8.2	4	16.0	8	27	8	8.0		
SD-WB-59	4	WQ	26	8	8.2	8	15.9	8	28	8	8.0		
Control	4	WQ	27	8	8,9	8	15.8	8	28	8	8.0		
Carr 20	4	wQ	30	8	8.3	8	16.0	8	29	8	8.0		
Ref Carr	4	wq	35	8	8.4	8	15.8	8	79	8	8.1		1
SD-WB-58	4	WQ	37	9	8.2	8	16.0	8	78	8	8.0	U	
SD-WB-57	5	WQ	7	8	7.4	8	16.0	8	28	8	7.9	KMB	11/19/14
SD-WB-56	5	WQ	24		8.1		16.0		27		7.9		
SD-WB-59	5	wq	26		8.1		16.0		28		7.9		
Control	5	wq	27		8.1		16.0		28		9.0		
Carr 20	-5	WQ	30		8.1		16.0		28		8.0		
Ref Carr	5	wQ	35		8.2		(6.0		29		7.9		
SD-WB-58	5	wq	37	d	8.1	9	16.0	1	28	19	8.0	V	1

CLIENT	PROJECT	
Pioneer Technologies	West Bay	
JOB NUMBER	PROJECT MANAGER	
0	Bill Gardiner	

SPECIES		LABORATORY	PROTOCOL
Eohaustorius estuarius		Port Gamble	PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME
14-Nov-14	1425	24-Nov-14	0900

					***************************************				WATER QUALIT	Y DATA			
		Tes	st Conditions		O (mg/L) -4.6 mg/L	Ter	nperature (°C) 15±1	Sa	alinity (ppt) 28±1		pH 7 - 9	Tech	Date
Sample ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD-WB-57	6	WQ	7	8	8,0	8	15.8	8	28	8	8.1	Ju	11/20
SD-WB-56	6	WQ	24	1	8.2		15.9		27	1	8.1		
SD-WB-59	6	WQ	26		8.(15.8		28		8.1		
Control	6	WQ	27		8.4		15.8		28		8.1		
Carr 20	6	WQ	30		8.3		15.9		28		8,1		
Ref Carr	6	WQ	35		8.4		15.7		29		8.1		
SD-WB-58	6	WQ	37	1	8.2	9	15.8	4	28	9	રુ.1	J.	L
SD-WB-57	7	WQ	7	8	7.8	8	15.9	8	28	8	8.0	KB	11/21/14
SD-WB-56	7	WQ	24	1	8.1		15.9		27		8.0	1	, ,
SD-WB-59	7	WQ	26		8.1		15.6		28		8.0		
Control	7	WQ	27		8.3		15.5		28		8.0		
Carr 20	7	WQ	30		8.3		15.6		28		8.0		
Ref Carr	7	WQ	35	1	8.3		15.6		29		8.0		
SD-WB-58	7	WQ	37	0	8.2	7	15.5	9	28	d	8.0	J	1

CLIENT Pioneer Technologies	PROJECT West Bay
JOB NUMBER	PROJECT MANAGER
0	Bill Gardiner

SPECIES Eohaustorius estuarius		LABORATORY Port Gamble	PROTOCOL PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME SG 2 D
14-Nov-14	1425	24-Nov-14	1 0980

					1-1-1-1				WATER QUALITY	Y DATA			
-	Test Condition				DO (mg/L) >4.6 mg/L		Temperature (°C) 15±1		Salinity (ppt) 28±1		pH 7 - 9 unit	Tech	Date
Sample ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit	Al.	-
SD-WB-57	8	wq	7	8	7.8	8	15.8	8	27	8	8.1	#	11/22
SD-WB-56	8	WQ	24		8.0		15.4	1	27	-	8.1	_	++
SD-WB-59	8	WQ	26		8.1		15.4		28		8.1		11
Control	8	WQ	27		8.2		15,5		28		8.1		
Carr 20	8	WQ	30		8.2		15.8		28		8.]	-	-
Ref Carr	8	WQ	35		8.3		15.3		0 29 29		8.0		1
SD-WB-58	8	WQ	37		8.1	1	15.5	1	28	V	8.1	V	V
SD-WB-57	9	WQ	7	8	7.6	8	15.6	8	28	8	8.1	リレ	11/23
SD-WB-56	9	WQ	24		8.3		15.7		27		9. (
SD-WB-59	9	wQ	26		8.4		15.5		28		8.2		
Control	9	wQ	27		8.4		15.4		28		8.1		$\perp \perp$
Carr 20	9	WQ	30		8.5		15.6		28		8.2		
Ref Carr	9	WQ	35		8.5		15.5		29		8.1		
SD-WB-58	9	WQ	37		8.4	3	15.5	1	28	1	8.2	¥	1

OND HE 11122

CLIENT	PROJECT	
Pioneer Technologies	West Bay	
JOB NUMBER	PROJECT MANAGER	
0	Bill Gardiner	

SPECIES Eohaustorius estuarius		LABORATORY Port Gamble	PROTOCOL PSEP 1995
TEST START DATE	TIME	TEST END DATE	TIME DOST
14-Nov-14	1425	24-Nov-14	0,00

									WATER QUALIT	Y DATA			
Test Cond		st Conditions		OO (mg/L) >4.6 mg/L	Ten	nperature (°C) 15±1	Salinity (ppt) 28±1			pH 7 - 9	Tech	Date	
Sample ID	Day	Rep	Jar#	meter	mg/L	meter	deg C	meter	ppt	meter	unit		
SD-WB-57	10	wo	7	8	8.0	8	15.9	8	27	8	8.1	KHY	11/29/14
SD-WB-56	10	WQ	24		8.5		15.6		26	1	8.0		1
SD-WB-59	10	WQ	26		8.5		15.4		27		8-(
Control	10	WQ	27		8.5		15.4		8-6		7.9		
Carr 20	10	WQ	30		8-6		15.6		2-8		8.1		
Ref Carr	10	WQ	35		8.6		15.4		86		7.9		
SD-WB-58	10	WQ	37	1	8.5	9	15.3	al	27	J	8-1	9	9

10-DAY SOLID PHASE TEST OBSERVATION DATA

CLIENT Pioneer Technologies		2.	PROJECT West Bay			SPECIES Eohaustor	ius estuarius		ENVIRON Port Gamb	LABORATO	RY	PROTOCOL PSEP 1995		
ENVIRON JOB NUMBE	R		PROJECT N Bill Gardiner			TEST STAF 14-Nov-14			TEST END 24-Nov-14	DATE		1000		
l = Normal E = Emergence	Initial #					ENDPOINT D	ATA AND O	BSERVATIO	NS					
M = Mortality or Molts = Growth	Organi	sms	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10		
fungal, bacterial, or algal) = No Air Flow (DO?) = Floating on Surface C = Too Cloudy		20	Date II(15	Date il/16	Date	Date IIII	Date 11 19 14	Date 11/20	Date II\VI	Date	11 23	Date 11 24	Number Alive	Number Dead Recovered (if any) / Comments
CLIENT/ENVIRON ID	Rep	Jar#	Tech. しく	Tech.	Tech.	Tech	Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	Numbe	Number Dead any) / Co
	1	6	۲.	12	'n	N	N	N	1 2	N	12	N	20	
	2	19				1				1			20	
Control	3	39											20	
	4	42											20	
	5	10						1	4	V		V	20	
	1	3						6	G	9	6	6	16	
	2	2					1	Ň	N	1	1		20	
Ref Carr	3	31					6	9	G				19	
	4	2					N	N	N	V			20	
	5	11					4	6	G		1	V	20	
	1	9					6	9	G	9	5	6	19	
	2	38					B	1	1			1	20	
Carr 20	3	21					N						19	
	4	20					G	1			film		18	
	5	1					O XFG	V	4	<i>U</i>	6	9	20	
	1	12	U				N	N	Ŋ	N	17	N	18	
	2	29	15						R	1	L	1	19	
SD-WB-56	3	16	14		V				IF		IF	IF	19	
	4	4	7		IF	1		V	N		N	25	20	
	5	17	6	7	IK		V	F	4			N	19	

OWC. KMB. 11/19/14

10-DAY SOLID PHASE TEST OBSERVATION DATA

CLIENT Pioneer Technologies ENVIRON JOB NUMBE			PROJECT West Bay PROJECT N Bill Gardiner			SPECIES Eohaustor TEST STAI 14-Nov-14	ius estuarius RT DATE		Port Gamb TEST END 24-Nov-14		RY	PROTOCOL PSEP 1995		
I = Normal	Initial #	of				ENDPOINT I	DATA AND O	BSERVATIO	NS		_			
E = Emergence M = Mortality or Molts i = Growth iungal, bacterial, or algal) = No Air Flow (DO?) = Floating on Surface	Organis	sms 20	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6 Date	Day 7 Date	Day 8 Date	Day 9 Date	Day 10 Date	Alive	covered (if
C = Too Čloudy CLIENT/ENVIRON ID	Rep	Jar#	Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	Tech.	Number Alive	Number Dead Recovered (if any) / Comments
CLIENTIENVIRON ID	1	14	N	l,	Ņ	N	N	N	N	N	12	N	18	
	2	22					1		1				19	
SD-WB-57	3	25						1		-	-	+	20	
	4	18			1	-		++	++-	+			19	
	5	40	1	25	-	+-	2F	++	++-	++			16	
	1	5	4F	2F	IF			1	+				20	
	2	28		1	+ 1	1	-N-	1.4		\Box		1	18	
SD-WB-58	3	33		+		25		N				IF	18	
	5	36				N						2	19	1
	1	15		6		N		7					۱۹	
	2	13		2		1		14		11			17	
SD-WB-59	3	34				1		N		+			17	
	4	23			\ \\	1	++-	1	V	1	++		20	
	5	8	V	9	IF	W	V		(F		y	V	00	

Ammonia and Sulfide Analysis Record

Client/Project: Proncer / West Bay	Organism:	Test Duration (days):
PRETEST / INITIAL /	FINAL / OTHER (circle one) REWATER (PW) (circle one) / Comments:	DAY of TEST:
Calibrat	ion Standards Temperature	Sample temperature should be within ±1°C of
Date:	Temperature:	standards temperature at time and date of analysis.

	11	114/14					21.60							
	1.1	19/17												-
ample ID or Description	Conc. or Rep	Sampl	ling and	Ammonia Value (mg/L)	Temp °C	Readi	ing and	Sample Preserved (Y/N)	рН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Sulf. (mg/L)
Ø	OV	1114/14	KUB	0.00	220	11/14/	14 KMB	N			10ml	0.0	1	0.0 mg/
	1	T. I.	1		22.3		1					0.0	1	0.0 mg
				0.00	22.5							0.0		0.0 mg
		1	7	0.00	22.5									0.001
		1		2.47	22.5							100.0		0.00100
				0.126	22.2									0.815
" 59	J	J	į.	0.00	22.2	4		9			4	0.016	4	0.016
~	Dul	nlulu	111/	0.00	22.6	uljeli	u kus	N	7.7	27	Insuff.	pw amt.		-
	I	111111111	MA		22.2			1	7.5	28	3nl	0.027	3.33	0.09 mg
				1	22.1				7.7	28	3mL	0.149	3.33	0.497 m
					21.9				7.6	22	10ml	0.015		0.015W
		1		2.01	21.2				7,5	29		0.128	1	0.128 n
					21.1				7.6	28		0.059		0.059
" 59	1	4	le —	0.563	21.5		y	1	7.4	27	1	0.037	1	0.037
)	Description Bef Carr Carr 20 WB S6 S7 S8 S9 Ref Carr Carr 20 WB S S5 S9	mple ID or Conc. Description or Rep	mple ID or Conc. or Rep Init o	mple ID or Conc. or Rep Sampling and Initials	Date of Sampling and Value (mg/L)	Date of Sampling and Initials Temp of Sampling and Initials Temp of Sampling and Initials Temp of Sampling and Initials Sampling and Initials Sampling and Initials Sampling and Sam	Date of Sampling and Temp Conc. Sampling and Initials Conc. Initials Conc. Conc.	Date of Sampling and Value (mg/L) Temp Conc. Or Rep Sampling and Initials Initials Conc. Or Rep Initials Or Rep Or Initials Or Rep Or Initials Or Rep Or Or Initials Or Or Or Or Or Or Or O	Date of Sampling and Temp Conc. Sampling and Initials Temp Conc. Sampling and Initials Conc. Sampling and Initials Conc. Conc.	Date of Sample Date of Sample Preserved PH	Date of Sample Date of Sample Preserved Ph Sal (ppt)	Date of Sample Dor Conc. Sampling and Initials Name N	Date of Sampling and Initials Conc. or Rep Date of Reading and Initials Conc. or Rep Date of Reading and Initials Conc. or Rep Date of Reading and Initials Date of Constitution Date of Reading and Initials Date of Reading and Initials Date of Constitution Date of Co	Measured Multiplier

DIE.KB. 11/14/14

Ammonia and Sulfide Analysis Record

Client/Project:	Organism:	Test Duration (days):
Pioneer / West Bay	Eoh e.	104.
PRETEST / INITIAL / PINAL) /		DAY of TEST: 10
OVERLYING (OV) / POREWATER	(PW) (circle one) / Comments:	

Calibration Sta	Calibration Standards Temperature						
Date:	Temperature:	Sample temperature should be within ±1°C of standards temperature at time and date of analysis.					
11/24/14	21.8°C	standards temperature at time and date of analysis.					

	Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
	Ø	OV	11/24/14 MK	0.00	21.0	11/24/14 MK	N			Duck	0.0	1	0.0 mg/
1	REF-CARR	1		0.00	21.1		1			10 ml	0.001	1	D. 001 mgl
	CARR 20			0.00	22.0					low	0.0	(0.0 might
	SD . WB . 56			0.00	21.9					10ml	0.006	1	0.006 mg
	" 57			0.781	21.0					lone	0.003	1	0.003 mg
	" 58			0.00	21.0					10mL	0.009	1	0.009 mg
1	" s 9	4	4	0,00	21.1	V	J			10mL	0.005	(0.005 R
1	ø	PW	11/24/14 MK	0.082	21.0	11/24/14 MK to	5 N	7.6	30	Inc	0.010	/0	0.10 mg
-	LEF - LAYER	- 1	, ,	0.00	21.0		1	7.4	30	Sml	0.169	2	0.338 mg/
1	CARR-20			0.374	21.0			7.4	30	5mL	0.201	2	0.402 %
	SD. WB. 56			2.86	21.2			7.5	30	ZmL	0.209	S	1.045 mg
	. 57			2.31	21.1			7.4	30	2ml	0.051	5	0.255 mg
	82. "			2.75	21.4			7.4	30	2 ml	0:063	2	0.315 mg
1	59	4	1	0.818	20.9	4	1	7.2	30	2ml	0.061	5	0.305 mg
F													

ORGANISM RECEIPT LOG

Date:			Time:		4	Batch No.	
11/14	114		19	40)	NAS	8492
Organism / F	Project: Wash	Bay	L		Source: Northw	extern A	quatic Sci
Address:	File						ce Attached
	File				Contact:	File	J01345-1
No. Ordered			No. Rece		1	Source Ba	
Condition of					Approximate 3-S n	e Size or Age:	
Larra Control Control	ed Ex	=13			8043	king No.) 2993	8492
Condition of	Container:				Received By	70	
Container	D.O. (mg/L)		emp. (°C)	5	luctivity or alinity ude Units)	pH (Units)	Technician (Initials)
* -	~	4	.4		*-	->	MMB
Notes:	: recie	red u	o) very	j li	tu ov	water; r	OWO
			- A				

Northwestern Aquatic Sciences

3814 Yaquina Bay Rd., P.O. Box 1437, Newport, OR 97365 Tel: 541-265-7225, Fax: 541-265-2799, www.nwaquatic.com

	tion Data Sheet (shipping	ng)	
SOLD TO: Environ 4729 NE View P.O. Box 216 Port Gamble W FedEx# 5507-1	A 98364		Brian Hester/Collin Ray 360.297.6044 Mary Bacon 360.297.6058
DATE OF SHIPMENT: 1	1-13-14		
	ANIN	MAL HISTORY	
Species		Age/Size	Number Shipped
Eohaustorius estuarius		3-5mm	1200 + 10%
	WATER QUALIT	Y AT TIME OF SHIPMENT	
Temperature (°C): 1'3	pH: 8.1	Salinity (ppt): 19.0	D.O. (mg/L): 9./
Other:			
PACKAGED BY: Laur	en Brady	DATE: //	-13-14
Collected 11-12-14 from Ya Interstitial WQ: Temp: 3.0° Held at 15°C in aerated wat	aquina Bay, OR. °C, Salinity 12.0 ppt.; sali	nity adjusted up ~5ppt.	
ADDITIONAL COMME	NTS		

PLEASE RETURN ALL SHIPPING MATERIALS

If you have any questions, Please call Gary Buhler or Gerald Irissarri at (541) 265-7225. Thank You.

APPENDIX A.1.2

Eohaustorius estuarius
Amphipod Bioassay
Reference Toxicant Test

Report Date:

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Organism: Eohaustorius estuarius (Amphipod) Material: Total Ammonia Test Type: Survival

Source: Reference Toxicant-REF Protocol: EPA/600/R-94/025 (1994) Endpoint: Proportion Survived

Reference Toxicant 96-h Acute Survival Test

+2s Action Limit: 252.7 39.30% +1s Warning Limit: Sigma: 55.63 CV:

Qualit	y Con	trol Data	a									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2010	Jul	9	15:20	265.9	124.5	2.239	(+)	(+)	02-9263-1875	13-7083-7088	NewFields
2			27	14:50	165.5	24.12	0.4336			16-3262-6250	12-1070-3879	NewFields
3		Aug	17	16:00	182.5	41.14	0.7396			00-5947-2918	13-7468-5586	NewFields
4	2011	Apr	22	16:45	159.7	18.26	0.3283			12-3251-7366	15-6923-8618	NewFields
5		May	4	14:20	96.78	-44.62	-0.802			15-9053-5291	03-3498-4458	NewFields
6		Aug	5	14:35	144.9	3.459	0.06218			05-3970-3796	17-5474-7748	NewFields
7	2012	Apr	10	15:10	34.72	-106.7	-1.918	(-)		02-5902-8958	20-3951-0452	NewFields
8		May	8	14:30	61.87	-79.53	-1.43	(-)		20-1853-8108	14-9890-9529	NewFields
9		Jun	8	15:30	166.5	25.09	0.4509			03-4756-9479	07-8270-3224	NewFields
10	2013	Feb	22	11:40	152.2	10.82	0.1945			09-9358-3146	14-0757-4516	NewFields
11		May	10	14:20	130.8	-10.64	-0.1913			01-9831-6628	02-4493-3987	NewFields
12		Jul	23	15:10	167.1	25.74	0.4627			15-9850-7427	05-2897-2730	NewFields
13		Aug	27	12:10	140.4	-1.007	-0.0181			20-8540-9997	05-1258-2331	NewFields
14		Nov	1	13:30	215	73.61	1.323	(+)		15-9765-5224	08-6656-9431	NewFields
15			12	13:45	91.52	-49.88	-0.8967			12-4327-2465	06-0504-8497	NewFields
16	2014	Apr	4	19:15	173.9	32.45	0.5833			13-5617-0473	14-6315-5154	NewFields
17			25	13:00	65.78	-75.62	-1.359	(-)		11-2394-9115	16-6351-0798	NewFields
18		May	30	15:30	193.9	52.52	0.9441			11-1744-7543	02-6036-0984	ENVIRON
19		Aug	26	15:45	113.3	-28.08	-0.5047			15-5557-5937	00-0529-4993	ENVIRON
20		Sep	15	15:10	106.3	-35.06	-0.6301			07-1282-2061	01-5984-9612	ENVIRON
21		Nov	14	14:25	168	26.6	0.4781			09-0717-5355	19-7840-9499	ENVIRON

Report Date:

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Test Type: Survival

Protocol: EPA/600/R-94/025 (1994)

Organism: Eohaustorius estuarius (Amphipod)

Endpoint: Proportion Survived

Material:

Source:

Total Ammonia

Reference Toxicant-REF

Reference Toxicant 96-h Acute Survival Test

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2010	Jul	9	15:20	174	98.2	2.465	(+)	(+)	02-9263-1875	21-0926-0699	NewFields
2	70.27		27	14:50	64.7	-11.1	-0.2786	1,10		16-3262-6250	07-8105-4494	NewFields
3		Aug	17	16:00	91.6	15.8	0.3966			00-5947-2918	19-8213-9681	NewFields
4	2011	Apr	22	16:45	69.8	-6	-0.1506			12-3251-7366	16-4565-4919	NewFields
5		May	4	14:20	39.8	-36	-0.9036			15-9053-5291	14-1177-0441	NewFields
6		Aug	5	14:35	49.6	-26.2	-0.6576			05-3970-3796	20-5970-4725	NewFields
7	2012	Apr	10	15:10	13	-62.8	-1.576	(-)		02-5902-8958	03-7154-8292	NewFields
8		May	8	14:30	42.6	-33.2	-0.8333			20-1853-8108	20-5519-2940	NewFields
9		Jun	8	15:30	66.4	-9.4	-0.2359			03-4756-9479	03-6674-9041	NewFields
10	2013	Feb	22	11:40	85.6	9.8	0.246			09-9358-3146	06-2817-6220	NewFields
11		May	10	14:20	88	12.2	0.3062			01-9831-6628	03-9560-5903	NewFields
12		Jul	23	15:10	68.3	-7.5	-0.1883			15-9850-7427	18-8212-0119	NewFields
13		Aug	27	12:10	86.4	10.6	0.2661			20-8540-9997	03-1133-2124	NewFields
14		Nov	1	13:30	96.4	20.6	0.5171			15-9765-5224	03-3609-7670	NewFields
15			12	13:45	39.3	-36.5	-0.9162			12-4327-2465	09-6874-0351	NewFields
16	2014	Apr	4	19:15	147	71.2	1.787	(+)		13-5617-0473	16-0396-5073	NewFields
17			25	13:00	27	-48.8	-1.225	(-)		11-2394-9115	19-2434-9439	NewFields
18		May	30	15:30	126	50.2	1.26	(+)		11-1744-7543	06-3985-7474	ENVIRON
19		Aug	26	15:45	90.1	14.3	0.3589			15-5557-5937	08-3094-4388	ENVIRON
20		Sep	15	15:10	50.5	-25.3	-0.635			07-1282-2061	16-3885-0935	ENVIRON
21		Nov	14	14:25	114	38.2	0.9588			09-0717-5355	07-0500-8008	ENVIRON

Report Date:

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Test Type: Survival

Organism: Echaustorius estuarius (Amphipod)

Material:

Unionized Ammonia

EPA/600/R-94/025 (1994) Protocol:

Endpoint: Proportion Survived

Source:

Reference Toxicant-REF

Reference Toxicant 96-h Acute Survival Test

-1s Warning Limit: 0.6763 1.127 Count: 20 Mean: +2s Action Limit: 2.029 CV: 40.00% +1s Warning Limit: 0.4508 Sigma:

Qualit	y Con	trol Data	a									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2010	Jul	27	14:50	1.608	0.4814	1.068	(+)		00-7007-0295	03-9110-2709	NewFields
2		Aug	17	16:00	1.854	0.7273	1.613	(+)		04-9660-1658	10-4250-3896	NewFields
3	2011	Apr	22	16:45	1.017	-0.1096	-0.2431			03-6965-3395	14-3447-2473	NewFields
4		May	4	14:20	1.081	-0.04576	-0.1015			18-8723-9922	17-9305-2155	NewFields
5		Aug	5	14:35	1.76	0.6332	1.405	(+)		17-9542-0646	06-2792-7024	NewFields
6	2012	7	10	15:10	0.4636	-0.6634	-1.472	(-)		18-7283-5013	07-7471-6807	NewFields
7			17	15:45	0.5982	-0.5288	-1.173	(-)		18-5229-3668	10-4921-5938	NewFields
8		May	8	14:30	0.5509	-0.5761	-1.278	(-)		15-4565-2403	06-1396-7211	NewFields
9		Jun	8	15:30	1.024	-0.1027	-0.2279			03-7901-3036	07-6844-7156	NewFields
10	2013	Feb	22	11:40	1.364	0.2372	0.5261			10-3861-9695	21-2507-0831	NewFields
11		May	10	14:20	1.578	0.4508	1	(+)		05-8857-3753	18-2954-4563	NewFields
12		Jul	23	15:10	1.126	-0.00111	-0.00247			08-8059-3744	12-6137-6954	NewFields
13		Aug	27	12:10	1.689	0.5623	1.247	(+)		18-3860-3992	18-0374-3993	NewFields
14		Nov	1	13:30	1.339	0.2116	0.4693			01-7225-6737	09-1642-9045	NewFields
15			12	13:45	0.4715	-0.6555	-1.454	(-)		15-7445-3893	06-3812-4989	NewFields
16	2014	Apr	4	19:15	1.072	-0.05535	-0.1228			02-4910-1045	07-9486-3041	NewFields
17			25	13:00	0.6871	-0.4399	-0.9758			05-3931-3196	11-2528-6540	NewFields
18		May	30	15:30	1.517	0.3896	0.8642			03-2348-8477	19-6287-3473	ENVIRON
19		Aug	26	15:45	1.087	-0.03996	-0.08864			16-9917-4183	13-7453-5343	ENVIRON
20		Sep	15	15:10	0.6543	-0.4727	-1.049	(-)		04-2286-3837	03-1229-8693	ENVIRON
21		Nov	14	14:25	1.119	-0.00787	-0.01746	, ,		07-5753-6828	00-1415-6148	ENVIRON

Reference Toxicant 96-h Acute Survival Test

Sigma:

0.3429

All Matching Labs

Test Type: Survival Organism:
Protocol: EPA/600/R-94/025 (1994) Endpoint:

CV:

43.60%

Organism: Echaustorius estuarius (Amphipod)
Endpoint: Proportion Survived

Material: U Source: R

Unionized Ammonia Reference Toxicant-REF

+2s Action Limit: 1.473

Reference Toxicant 96-h Acute Survival Test

+1s Warning Limit:

Point	Vear	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2010	Jul	27	14:50	0.9	0.1129	0.3293	A STATE OF THE STA		00-7007-0295	13-8034-1240	NewFields
2	2010	Aug	17	16:00	1.096	0.3089	0.9008			04-9660-1658	04-8886-1755	NewFields
3	2011	Apr	22	16:45	0.644	-0.1431	-0.4173			03-6965-3395	08-9559-0930	NewFields
4		May	4	14:20	0.71	-0.0771	-0.2248			18-8723-9922	06-9505-1415	NewFields
5		Aug	5	14:35	1.152	0.3649	1.064	(+)		17-9542-0646	01-3764-6854	NewFields
6	2012	777	10	15:10	0.249	-0.5381	-1.569	(-)		18-7283-5013	17-8032-8770	NewFields
7			17	15:45	0.36	-0.4271	-1.246	(-)		18-5229-3668	21-3980-0168	NewFields
8		May	8	14:30	0.393	-0.3941	-1.149	(-)		15-4565-2403	07-1675-0393	NewFields
9		Jun	8	15:30	0.56	-0.2271	-0.6623			03-7901-3036	09-3097-7160	NewFields
10	2013	Feb	22	11:40	0.935	0.1479	0.4313			10-3861-9695	14-6175-2687	NewFields
11		May	10	14:20	1.38	0.5929	1.729	(+)		05-8857-3753	12-0577-0060	NewFields
12		Jul	23	15:10	0.839	0.0519	0.1514	3.2		08-8059-3744	14-8468-9199	NewFields
13		Aug	27	12:10	1.242	0.4549	1.327	(+)		18-3860-3992	13-4279-2307	NewFields
14		Nov	1	13:30	0.882	0.0949	0.2768	2.5		01-7225-6737	17-4499-2761	NewFields
15		7,27	12	13:45	0.302	-0.4851	-1.415	(-)		15-7445-3893	14-8429-9092	NewFields
16	2014	Apr	4	19:15	1.05	0.2629	0.7667			02-4910-1045	18-6624-7464	NewFields
17			25	13:00	0.409	-0.3781	-1.103	(-)		05-3931-3196	00-2785-8568	NewFields
18		May	30	15:30	1.105	0.3179	0.9271	1.6		03-2348-8477	17-7984-3461	ENVIRON
19		Aug	26	15:45	1.037	0.2499	0.7288			16-9917-4183	01-4278-7622	ENVIRON
20		Sep	15	15:10	0.497	-0.2901	-0.846			04-2286-3837	01-4675-9354	ENVIRON
21		Nov	14	14:25	0.881	0.0939	0.2738			07-5753-6828	01-5478-5022	ENVIRON

CETIS Summary Report

Report Date: Test Code: 30 Nov-14 17:37 (p 1 of 1) 361265BB | 09-0717-5355

								est coue.	•	001	ZOODD OC	0111 000
Reference Tox	cicant 96-h Acut	e Survi	val Test									ENVIRON
Batch ID:	20-1735-0446		Test Type:	Survival				Analyst:				
Start Date:	14 Nov-14 14:2	5	Protocol:	EPA/600/F	-94/025 (1994	1)		Diluent:	Labo	oratory Seav	vater	
Ending Date:	18 Nov-14 13:1	5	Species:	Eohaustori	us estuarius			Brine:	Not.	Applicable		
Duration:	95h		Source:	Northwest	ern Aquatic Sc	ience, OR	1	Age:				
Sample ID:	17-3862-3396		Code:	67A149A4			- 3	Client:	Inter	rnal Lab		
Sample Date:	05 May-14		Material:	Total Amm	ionia			Project:	Refe	erence Toxic	ant	
Receive Date:	05 May-14		Source:	Reference	Toxicant							
Sample Age:	193d 14h		Station:	P140505.4	3							
Comparison S	Summary											
Analysis ID	Endpoint		NOE	LOE	TOEL	PMSD	TU	Met	hod			
07-0500-8008	Proportion Surv	vived	114	207	153.6	NA		Fish	ner Exa	act Test		
Point Estimat	e Summary											
Analysis ID	Endpoint		Leve	l mg/L	95% LC	CL 95% UCL	. TU	Met	hod			
19-7840-9499	Proportion Surv	vived	EC50		152.3	185.3		Trin	nmed	Spearman-l	Kärber	
Proportion Su	urvived Summar	ry										
C-mg/L	Control Type	Coun	t Mear	95%	LCL 95% U	CL Min	Max	Std	Err	Std Dev	CV%	%Effec
0	Dilution Water	3	1	1	1	1	1	0		0	0.0%	0.0%
10.2		3	1	1	1	1	1	0		0	0.0%	0.0%
24.3		3	1	1	1	1	1	0		0	0.0%	0.0%
49.6		3	1	1	1	1	1	0		0	0.0%	0.0%
114		3	0.933			0.9	1		3333	0.05774	6.19%	6.67%
207		3	0.266	67 0	0.6461	0.1	0.4	0.0	8819	0.1528	57.28%	73.33%
Proportion S	urvived Detail											
C-mg/L	Control Type	Rep	1 Rep	2 Rep	3							
0	Dilution Water	1	1	1								
10.2		1	1	1								
24.3		1	1	1								
49.6		1	1	1								
114		0.9	0.9	1								
		0.3	0.4	0.1								
207												
	urvived Binomia	als										
	Control Type	Rep										
Proportion S		Rep	0 10/1	0 10/1	0		-					
Proportion S C-mg/L	Control Type	10/10 10/10	0 10/1 0 10/1	0 10/1 0 10/1	0							
Proportion S C-mg/L	Control Type	Rep	0 10/1 0 10/1	0 10/1 0 10/1	0							
Proportion S C-mg/L 0 10.2	Control Type	10/10 10/10	0 10/1 0 10/1 0 10/1	0 10/1 0 10/1 0 10/1	0 0 0							
Proportion S C-mg/L 0 10.2 24.3	Control Type	10/10 10/10 10/10	0 10/1 0 10/1 0 10/1 0 10/1	0 10/1 0 10/1 0 10/1 0 10/1	0 0 0 0							

CETIS Test Data Worksheet

Report Date: Test Code: 30 Nov-14 17:37 (p 1 of 1) 09-0717-5355/361265BB

Reference 1	oxican	t 96-h	Acut	e Survival T	est				ENVIRON
Start Date: End Date: Sample Dat	181	Nov-14	4 14:2 4 13:1 4		ol: EPA/600/	rius estuarius R-94/025 (1994) nonia	Sample Code: Sample Source: Sample Station:	67A149A4 Reference Toxicant P140505.43	
C-mg/L	Code	Rep	Pos	# Exposed	# Survived		Notes		
0	D	1	6	10	10				
0	D	2	4	10	10				
0	D	3	9	10	10				
10.2		1	10	10	10				
10.2		2	3	10	10				
10.2		3	17	10	10				
24.3		1	11	10	10				
24.3		2	18	10	10				
24.3		3	7	10	10				
49.6		1	14	10	10				
49.6	1	2	15	10	10				
49.6		3	12	10	10				
114		1	2	10	9				
114		2	5	10	9				
114		3	13	10	10				
207		1	8	10	3				
207		2	1	10	4				
207		3	16	10	1				

CETIS	Summary	Report
--------------	---------	--------

Report Date: Test Code: 30 Nov-14 17:50 (p 1 of 1) 2D27183C | 07-5753-6828

								rest Code:	6	202	11030 101	-3733-002
Reference Tox	icant 96-h Acut	e Surv	ival Test									ENVIRON
Batch ID: Start Date: Ending Date: Duration:	12-6920-2864 14 Nov-14 14:29 18 Nov-14 13:19 95h		Test Type: Protocol: Species: Source:	EPA/600/R- Eohaustoriu	94/025 (1994 is estuarius rn Aquatic Sc			Analyst: Diluent: Brine: Age:		atory Wate	er	
Sample ID: Sample Date: Receive Date:			Code: Material: Source:	57431572 Unionized A	STATE OF THE STATE			Client: Project:	Interna	al Lab ence Toxic	cant	
Sample Age:	193d 14h		Station:	P140505.43	3							
Comparison S	Summary											
Analysis ID	Endpoint		NOE	LOEL	TOEL	PMSD	TU	Met	hod			
	Proportion Surv	vived	0.881	1.273	1.059	NA		Fish	er Exac	t Test		
Point Estimate	e Summary											
Analysis ID	Endpoint		Leve	l mg/L	95% LC	L 95% UC	L TU	Met	hod			
	Proportion Sun	vived	EC50		1.053	1.189		Trin	nmed Sp	earman-l	Kärber	
Proportion Su	ırvived Summaı	rv	11									
C-mg/L	Control Type	Cou	nt Mear	n 95% l	CL 95% UC	CL Min	Max	Std	Err	Std Dev	CV%	%Effect
0	Dilution Water	3	1	1	1	1	1	0		0	0.0%	0.0%
0.157		3	1	1	1	1	1	0		o	0.0%	0.0%
0.375		3	1	1	1	1	1	0		0	0.0%	0.0%
0.609		3	1	1	1	1	1	0		0	0.0%	0.0%
0.881		3	0.933	33 0.789	9 1	0.9	1	0.0		0.05774	6.19%	6.67%
1.273		3	0.266	67 0	0.6461	0.1	0.4	0.0	8819	0.1528	57.28%	73.33%
Proportion St	urvived Detail											
C-mg/L	Control Type	Rep	1 Rep	2 Rep	3							
0	Dilution Water	1	1	1								
0.157		1	1	1								
0.375		1	1	1								
0.609		1	1	1								
0.881		0.9	0.9	1								
1.273		0.3	0.4	0.1								
Proportion S	urvived Binomi	als										
C-mg/L	Control Type	Rep										
0	Dilution Water	10/1										
0.157		10/1										
0.375		10/1	10 10/1	0 10/10)							
0.609		10/1	10 10/1	0 10/10)							
		0140	040	10111								
0.881		9/10	9/10	10/10)							

CETIS Test Data Worksheet

0.881

1.273

1.273

1.273

3

1

2

3

11

13

16

15

10

10

10

10

10

3

4

Report Date: Test Code: 30 Nov-14 17:50 (p 1 of 1) 07-5753-6828/2D27183C

Reference To	xican	t 96-h	Acut	e Survival T	est				ENVIRON
Start Date: End Date: Sample Date	181	Nov-14	4 14:2 4 13:1 4	200	ol: EPA/600	orius estuarius /R-94/025 (1994) d Ammonia	Sample Code: Sample Source: Sample Station:	57431572 Reference Toxicant P140505.43	
C-mg/L	Code	Rep	Pos	#Exposed	# Survived		Notes		
0	D	1	9	10	10				
0	D	2	4	10	10				
0	D	3	10	10	10				
0.157		1	8	10	10				
0.157		2	18	10	10				
0.157		3	17	10	10				
0.375		1	14	10	10				
0.375		2	6	10	10				
0.375		3	12	10	10				
0.609		1	7	10	10				
0.609		2	3	10	10				
0.609		3	2	10	10				
0.881		1	5	10	9				
0.881		2	1	10	9				

CLIENT:	Pioneer Technologies	Date of Test:	14-Nov-14	
PROJECT:	West Bay	Test Type:	Eoh RT	
COMMENTS:				

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

Intege	r: I-factor
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
8	9.34
9.35	y=10007+1001C+12
9.34	N* = 0.9934
9.33	9
9.32	4
9.31	/
9.30	1
9.29	1
9.28	
9.27	
9.26	
9.25	

Sample	Mod		salinity (ppt)	pН	temp (C)	temp (K)	i-factor	Mod NH3U (mg/
Target / Sample Name		Actual	22.9	8.0	24.1	297.26	9.3053	#VALUE!
Example 3.5		2.000	10.0	7.5	5.0	278.16	9.2750	0.008
								0.457
15		10.2	28	7.8	16.0	289.16	9.3187	0.157
30	-	24.3	28	7.8	16.0	289.16	9.3187	0.375
60	_	49,6	28	7.7	16.0	289.16	9.3187	0.609
120	_	114	28	7.5	15.9	289.06	9.3187	0.881
240		207	28	7.4	15.9	289.06	9.3187	1.273
19,								
-								
1 1								
	-							
					-			-
1-1	-					_		0
				-				
0 0								

Ammonia Reference Toxicant Test Water Quality Data Sheet

Pioneer Technologies	PROJECT West Bay	SPECIES Eohaustorius e		Port Gamble	PSEP 1995		
JOB NUMBER	PROJECT MANAGER Bill Gardiner	TEST START DATE	1 425	TEST END DATE 18Nov14	1315		
P140505, 43	LOT#:						

WATER QUALITY DATA

DILTIN.WAT.BATC	Н	TE	MP RE	C#		REFE	ERENCE 1	OX. MATE	RIAL		RE	FERENCE	ETOXXICA	NT				
FSW111314.01			NA				ammon	ia - TAN			ammonium chloride							
			6 77		DO (mg/L)	TEN	IP(C)	SAL	(ppt)	pH		TECHNICIAN		AMMONIA		į.	
TEST	CONDIT	IONS			> 4.6		15 ± 1		28 ± 1		7.8 ± 0.5							
	CONCEN	ITRATION			D	.0.	TE	MP.	SAL	INITY		pΗ	wo	TECH	AMMO	DNIA	Tec	
CLIENT/ NEWFIELDS ID	LIENT/ NEWFIELDS ID value units		DAY	REP	meter	mg/L	meter	°c	meter	ppt	meter unit		WQTECH		METER	mg/L		
			0	Stock	8	8.1	8	15.9	8	28	8	7.8	1///4	H				
Ref.Tox	0	mg/L	4	1	8	7.7	8	16.00	8	28	8	7.9	11118	H				
		0	Stock	8	8.1	8	16.0	4	28	8	7.8	11/14	14					
Ref.Tox	15	mg/L	4	1	8	7.7	8	15.5	8	29	8	7.9	11118	H.				
20.4			mg/l	0	Stock	8	8.2	8	16.0	8	28	8	7.8	////4	H			
Ref.Tox	30	mg/L	4	1	8	1.8	8	15.4	8	29	8	7.9	11/18	U				
	1	,	0	Stock	8	8.2	8	16.0	8	28	8	7.1	11114	144				
Ref.Tox	60	mg/L	4	(8	1.8	8	15.3	8	29	8	7.9	11118	1º				
	400		0	Stock	8	8.2	8	15.9	8	28	8	7.5	11/14	H				
Ref.Tox	120	mg/L	4	1	8	7.9	8	15.3	8	29	8	7.9	1118	34				
D. (T.	240		0	Stock	8	8.2	8	15.9	8	28	8	7.4	11/14	#				
Ref.Tox 240	mg/L	4	1	8	7.8	8	15.3	8	29	8	7.8	11/18	B					

One the currect: 15.6

SENVIRON - Ammonia Reference Toxicant Test Survival Data Sheet

SPECIES Eohaustorius estuarius PROJECT MANAGER LABORATORY PROTOCOL PROJECT JOB NO. CLIENT Port Gamble **PSEP 1995** Bill Gardiner Pioneer Technologies West Bay SURVIVAL & BEHAVIOR DATA N = Normal 11/17/14 11/15/14 14/16/14 Q = Quiescent F = Floating on Surface D = Discolored INITIAL # OF ORGANISMS TECHNICIAN TECHNICIAN TECHNICIAN 10 Ju MK INITIAL CONC. REP CLIENT/ NEWFIELDS ID #ALIVE : #DEAD : #ALIVE : #DEAD : #ALIVE : #DEAD : OBS OBS NUMBER #ALIVE : #DEAD : OBS 0 N B 10 1 1 IF 10 10 10 Ø Ref.Tox.- ammonia IF 10 0 2 0 10 10 0 0 2F 16 lo 0 mg/L TAN 10 0 24 10 10 0 0 N 3 W N 10 18 Ø ZF 10 1 10 0 0 V 0 Ref.Tox.- ammonia Ø 10 Ø 10 2 10 Ø 16 15 mg/L 25 10 TAN Ø Ø 0 10 10 3 10 N Ø N 0 N 10 Ø N 1 10 N N 10 10 Ø 0 Ø Ref.Tox.- ammonia 0 10 Ø 10 10 24 30 mg/L 2 0 25 10 0 TAN 0 10 Ø (0) 0 N 10 N 3 P 10 0 10 Ø N 1 14 IF 0 N 0 10 0 10 10 Ref. Tox. - ammonia 0 10 60 mg/L 2 0 2 10 Ø 2F 10 0 10 TAN 0 10 10 10 Ø 3 10 0 0 10 N N 1 1 24 9 Ø 9 9 0 D Ref.Tox.- ammonia IF 2F 9 0 1 2 Ø Ø Ø 120 mg/L 10 10 W TAN 10 10 Ø Ø W Ø 10 3 N 10 7 2 3 0 0 1 10 9 0 Ref.Tox.- ammonia 4 10 3 2 9 0 240 mg/L 0 TAN (0 0 2 3 0 6

Assumptions in Model

Stock ammonia concentration is 10,000 mg/L = 10 mg/mL.

Actual Reading 9327

Tes	st Solutions		Volume of stock to	reach desired				
Measured Concentration	Desired Concentration	Volume	concentration					
mg/L	mg/L	mL	mL stock to i	ncrease				
		100	是了事经验是"机械"。	SALT WATER				
207	240	750		28.948				
//4	120	750		14.474				
49.6	60	750		7.237				
24.3	30	750		3.619				
10.2	15	750		1.809				
0.0	0	750		0.000				
				0.000				
			可提供解析的原则可以可	0.000				

KUB WHILL UII

APPENDIX A.2.1

Neanthes arenaceodentata

Juvenile Polychaete Bioassay

Laboratory Data Sheets

CLIENT	PROJECT	START TIME/ END TIME	DILUTION WATER BATCH	PROTOCOL	TEST START DATE
Pioneer Technologies	West Bay	1030 1 1000	FSW111414.01	PSEP 1995	14-Nov-2014
JOB NUMBER	PROJECT MANAGER	LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE
0	Bill Gardiner	Port Gamble	NA	Neanthes arenaceodentata	4-Dec-2014
		WATER QUALITY DATA		_1	

TEST CONDITIONS					DO (mg/L)	1	TEMP (C)	3	SALINITY (ppt)		pН			
	7				> 4.6 D.O.		20 ± 1 TEMP		28 ± 2 SALINITY		8.0±1.0	WATER	-	
CLIENT/ENVIRON ID	DAY	REP	JAR	meter	mg/L	meter	°C	meter	ppt	meter	pH unit	RENEWAL	Feeding	TECH/DATE
Control /	0	Surr	8	8	7.7	8	20.0	8	28	8	8.1		JL	UL 11/14/14
Control /	1	Surr	8	8	7.8	8	20.2	8	28	8	7.8			JU 11/15
Control /	2	Surr	8	OD	7.8	8	20.1	8	28	ર	8.0		UL	Je 11/16
Control /	3	Surr	8	8	7.6	8	20.0	8	3 30 29	8	7.9	see ans		ship life
Control /	4	Surr	8	8	7.7	a	20.1	8	28	8	38.18.1		KHB	# 1//18
Control /	5	Surr	8	8	7.5	8	19.6	8	28	8	7.9			Kub 4/19/11
Control /	6	Surr	8	8	7.6	8	20.3	G	29	8	8.0	HE	HE	de 11/20
Control /	7	Surr	8	8	7.5	8	20.2	8	28	8	8.0			KB 11/21
Control /	8	Surr	8	4	7.3	8	20.2	8	29	8	8.0		#	H 11/22
Control /	9	Surr	8	8	7.6	8	20.2	8	29	8	8.1	JL		Je 11/28
Control /	10	Surr	8	9	7.8	8	20.1	8	28	8	7.9	A	190	KB 11)24
Control /	11	Surr	8	3	7.5	8	20.4	8	28	8	7.9			MK 11/25
Control /	12	Surr	8	8	7.6	8	20.4	8	28	8	8.0	He	H	-MK 1126
Control /	13	Surr	8	8	7.6	9	20.4	8	28	8	8.0			# 1/12-
Control /	14	Surr	8	8	7.5	8	20.2	8	28	8	8.0		UL	JL 11/28
Control /	15	Surr	8	8	7.6	8	19.8	8	28	8	3.0	UL		Jr 11/20
Control /	16	Surr	8	8	7.8	8	20.0	8	28	8	8.0		Ju	Je 11/30
Control /	17	Surr	8	8	7.6	8	20.1	8	28	8	8.0			MK 12/1
Control /	18	Surr	8	8	7.6	8	20.1	8		8	8.0	#	12	He 12/2
Control /	19	Surr	8	8	7.6	8	20.2	8	28	3	7.9	1.1	10	Jr 12/03
Control /	20	Surr	8	9	8.1	8	19.6	8	28	8	7.9			MK 12/4

Willegible. Je 11/16/14. Dilkgible. Kr. 4/17/14
Meter 8

3 See note O, pg. 5 KMB, 11/17/14 (3) ME HE 11/19

Page 1

LIENT	PROJECT	START TIME/ END TIME	DILUTION WATER BATCH	PROTOCOL	TEST START DATE	
Pioneer Technologies	West Bay	1030 1 1000	FSW111414.01	PSEP 1995	14-Nov-2014	
OB NUMBER	PROJECT MANAGER	LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE	
0	Bill Gardiner	Port Gamble	NA	Neanthes arenaceodentata	4-Dec-2014	

TEST CONDITIONS	S		1	9	DO (mg/L)		TEMP (C)		SALINITY (ppt)		рН			
					> 4.6		20 ± 1		28 ± 2		8.0±1.0			
CLIENT/ENVIRON ID	DAT	REP	JAR		D.O.		TEMP		SALINITY		pH	WATER	-	
	-	-	-	meter	mg/L	meter	°C	meter		mete		RENEWAL	Feeding	TECH/DATE
Ref Carr /	0	Surr	11	8	7.7	8	20.0	8	28	8	8.0		U	UL 1/14/1
Ref Carr /	1	Surr	11	8	7.8	8	20.2	8	28	8	7.9	V		JL 1415
Ref Carr /	2	Surr	11	8	7.9	8	20.1	8	29	8	8.1		U	JL 1/16
Ref Carr /	3	Surr	11	2	7.5	8	20.0	8,	D 3029	8	7.9	1320 KIMB		KUB 11/17
Ref Carr /	4	Surr	11	8	7.7	4	20.2	8	29	8	8.1	MIVIE	ica Air	X 11/18
Ref Carr /	5	Surr	11	8	7.5	8	19.7	8	29	8	7.9		kng	Kaus 11/19/
Ref Carr /	6	Surr	11	3	7.6	3	20.3	જ	29	8	8.1	HE	HE	U 1/20
Ref Carr /	7	Surr	11	9	7.5	8	20.3	В	29	8	8.0	110	110	
Ref Carr /	8	Surr	11	8	7.3	8	70.1	8	79	8	8.0		长	KB 11/22
Ref Carr /	9	Surr	11	8	7.6	8	20.2	8	2928 0		8.1	Jr	N	UL 11/2
Ref Carr /	10	Surr	11	8	7.7	8	20.1	9	28	8		OC	Hz.	KB 11/24
Ref Carr /	11	Surr	11	8	7.6	8	20.4	8	28	8	7.9		142	
Ref Carr /	12	Surr	11	8	7.6	8	20.4	8	28	8	8.1	YK	胜	
Ref Carr /	13	Surr	11	8	7.6	8	20.4	9	28	8	8.1	MC	ME	MK 4/26
Ref Carr /	14	Surr	11	8	76	8	20.2	8	28	8	8.1		h	UL 11/2
Ref Carr /	15	Surr	11	8	7.7	8	19.8	8	28	8	8.(ch	dr	UL 11/29
Ref Carr /	16	Surr	11	8	7,8	8	20.0	8	28	8	8.0	00	JL	JL 11/30
Ref Carr /	17	Surr	11	8	7.7	8		8	28	8	8.0		JC	
Ref Carr /	18	Surr	11	9	7.7	\$		8	28	8	8.0	He	He	MK 12/1
Ref Carr /	19	Surr	11	8	7.7	3	20.2	9	28	8	8.0	K12	INE	181 - 11 / E
Ref Carr /	20	Surr	11	8	8.3	8		8	28	8	7.9		4	DL 12/03

€ Seenote O. pg 5. KMB. 11/17/14 @ 16 JL 11/23/14.

2 ME. Kg. 11/24/14

(9) wrong date the 1212

CLIENT	PROJECT	START TIME/ END TIME	DILUTION WATER BATCH	PROTOCOL	TEST START DATE
Pioneer Technologies	West Bay	1030 1 (000	FSW111414.01	PSEP 1995	14-Nov-2014
JOB NUMBER	PROJECT MANAGER	LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE
0	Bill Gardiner	Port Gamble	NA NA	Neanthes arenaceodentata	4-Dec-2014
		WATER QUALITY DATA			

							WATER QUA	ALITY	DATA					
TEST CONDITIONS			100		DO (mg/L)		TEMP (C)		SALINITY (ppt)		pH			
TEST CONDITIONS				1	> 4.6		20 ± 1	1	28 ± 2		8.0±1.0			
CLIENT/ENVIRON ID	DAY	REP	JAR		D.O.		TEMP		SALINITY		pH	WATER	Feeding	TECH/DATE
CHENTIENVIRONID	UNI	REF	JAN	meter	mg/L	meter	°C	meter	ppt	meter	unit	RENEWAL	reeding	TECHIDATE
Carr 20 /	0	Surr	20	3	7.6	8	20.1	B	28	ક	8.0		U	U 11/14/14
Carr 20 /	1	Surr	20	8	7.6	В	20.2	8	28	3	7.9			Je ulis
Carr 20 /	2	Surr	20	8	7.7	8	20.2	8	28	8	8-1		JL	JL 1416
Carr 20 /	3	Surr	20	8	7.5	8	20.1	8	0 3029	8	7.9	KUB		Kang 11/17
Carr 20 /	4	Surr	20	8	7.6	6	20.2	B	18	8	8.1		KMB	# 11/19
Carr 20 /	5	Surr	20	8	7.4	8	20.1	8	28	8	7.9			KMB 11/19/14
Carr 20 /	6	Surr	20	8	2.5	8	2012	8	28	8	8.1	7/2	142	Ju 11(20
Carr 20 /	7	Surr	20	8	7.3	8	20.2	8	28	8	8.0	12		KB 11/21
Carr 20 /	8	Surr	20	8	7.0	8	20.2	8	D 2928	4	4.0		A	# 1/122
Carr 20 /	9	Surr	20	8	7,5	8	20.2	8	28	8	8.2	JL		UL 11/23
Carr 20 /	10	Surr	20	8	7.6	В	20.2	8	28	B	8.0		#	K8 4/24
Carr 20 /	11	Surr	20	8	7,4	8	20.4	8	28	8	8.0			MK 4/25
Carr 20 /	12	Surr	20	8	7.5	8	20.4	8	28	8	8.1	He	the	MK 11/26
Carr 20 /	13	Surr	20	8	7.5	8	20.4	8	78	8	8.0			# 1/127
Carr 20 /	14	Surr	20	8	7.4	8	20.2	8	28	8	9.1		UL	UL 11/28
Carr 20 /	15	Surr	20	8	2.6	8	19.8	छ	28	8	8.(UL		JL 11/29
Carr 20 /	16	Surr	20	8	7.7	8	20,0	8	28	8	8,0		OL	JC 1430
Carr 20 /	17	Surr	20	8	7.6	8	20.0	8	28	8	8.0			MK 12/1
Carr 20 /	18	Surr	20	6	7.7	\$	20.0	8	28	8	8.0	M	*	14 12/2
Carr 20 /	19	Surr	20	8	7,6	8	20.2	8	28	૭	7.9			JL 12/03
Carr 20 /	20	Surr	20	8	8.3	8	19.6	8	28	8	7,9		FILE	MK 12/4

OME see note O, pg 5. KB alizher OMP HUR de

CLIENT	PROJECT	START TIME/ END TIME	DILUTION WATER BATCH	PROTOCOL	TEST START DATE
Pioneer Technologies	West Bay	1030 1 1000	FSW111414.01	PSEP 1995	14-Nov-2014
JOB NUMBER	PROJECT MANAGER	LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE
0	Bill Gardiner	Port Gamble	NA NA	Neanthes arenaceodentata	4-Dec-2014

2						distance of the same of the sa		WATER QUA							
	TEST CONDITIONS					DO (mg/L)		TEMP (C)	1 3	SALINITY (ppt)		pH			
1000	TEOT CONDITIONS					> 4.6		20 ± 1		28 ± 2		8.0±1.0			
	CLIENT/ENVIRON ID	DAY	REP	JAR		D.O.		TEMP		SALINITY		pH	WATER	F	TEQUIP.175
		Uni	- KL	- SMIC	meter	mg/L	meter	°C	meter	ppt	meter	unit	RENEWAL	Feeding	TECH/DATE
	SD-WB-56 /	0	Surr	16	8	7.7	8	20.1	8	27	8	8.0		UL	JU 1/14/14
1	SD-WB-56 /	1	Surr	16	8	7.7	8	20.2	8	27	8	7.9			J 11/15
	SD-WB-56 /	2	Surr	16	ઝ	7.8	8	20.0	8	27	9	8.1		JL	UL 1/16
	SD-WB-56 /	3	Surr	16	8	7,5	8	20.1	8	0 29 28	8	7.9	1320 KMB		KUB 11/17
	SD-WB-56 /	4	Surr	16	8	7.6	8	20.3	8	28	8	8.1		KMB	H 11110
	SD-WB-56 /	5	Surr	16	8	7.4	8	19.9	8	28	8	7,9			KMB 11/19/19
	SD-WB-56 /	6	Surr	16	8	7.6	8			28	8	8,1	HE	75	UL #120
	SD-WB-56 /	7	Surr	16	8	7.4	8	20.3	8	28	ව	9.0			KB 11/51
	SD-WB-56 /	8	Surr	16	8	7.1	Ć	20.3	8		8	8.0		佐	# 11/22
	SD-WB-56 /	9	Surr	16	ઝ	76	В	20.3	8	29	8	8.2	UL		Jr 11/23
	SD-WB-56 /	10	Surr	16	8	7.7	В	20.2	8	28	9	8.0		#	KB 11/24
	SD-WB-56 /	11	Surr	16	8	7.5	8	20.4	8	23	8	8.0			MK 4/25
1	SD-WB-56 /	12	Surr	16	8	7.6	ő	20.4	8	23	8	8.1	He	K	MK u/26
	SD-WB-56 /	13	Surr	16	8	1.6	8	20.4	8	28	8	8.1			# 1/177
	SD-WB-56 /	14	Surr	16	8	7,6	8	20,2	8	28	8	8.2		U	JL 11/28
	SD-WB-56 /	15	Surr	16	9	7.7	3	19.9	8	28	B	9.2	JL		UL 11/29
	SD-WB-56 /	16	Surr	16	8	7.8	g	20.1	8	28	8	8.2		Ju	01 11/30
	SD-WB-56 /	17	Surr	16	8	7.7	8	200	8	28	8	8.2			MK 12/1
	SD-WB-56 /	18	Surr	16	8	7.9	8	70.1	8	28	8	8.3	TAN .	梅	H2 1212
	SD-WB-56 /	19	Surr	16	9	7.7	8	20.2	R	28	8	8.1			or 12/03
	SD-WB-56 /	20	Surr	16	8	7.5	8	20.1	8	28	8	8.2			MK 12/4

CLIENT Pioneer Technologies	PROJECT West Bay	1030 1 0900 @	DILUTION WATER BATCH FSW111414.01	PROTOCOL PSEP 1995	TEST START DATE 14-Nov-2014
JOB NUMBER	PROJECT MANAGER	LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE
0	Bill Gardiner	Port Gamble	NA	Neanthes arenaceodentata	4-Dec-2014

WATER QUALITY DATA TEMP (C) SALINITY (ppt) рН DO (mg/L) **TEST CONDITIONS** > 4.6 20 ± 1 28 ± 2 8.0±1.0 TEMP SALINITY WATER D.O. pH Feeding DAY TECH/DATE CLIENT/ENVIRON ID REP unit RENEWAL meter mg/L meter meter ppt meter 8,0 8 7.5 8 28 SD-WB-57 / Surr 201 22 3 20.1 28 8 de Surr 7.9 SD-WB-57 / 1 22 7.6 8 8 8.1 8 28 1//16 7.8 20,2 SD-WB-57 / 2 Surr Ju 1320 KMB \$ 30 29 8 0 8 11/14/14 7.9 SD-WB-57 / Surr 22 8 7.5 20.1 KUB 8 8 20.0 8 8 8. SD-WB-57 / 4 Surr 7.6 79 22 KMB 8 8 7.9 KB 11/19/14 SD-WB-57 / Surr 8 ô 29 22 7.4 20.2 HE JL 11/20 8.2 8 8 29 HE 7.5 SD-WB-57 / Surr 8 20.2 22 KB W/21 8 8.0 3 SD-WB-57 / Surr 22 7.2 29 8 20.1 79 W 8 8.1 7.0 11/22 SD-WB-57 / 8 Surr 22 8 8 20.1 8 8.3 8 JL 11/23 25 JL 20.2 SD-WB-57 / 9 Surr 8 22 28 He 8 8 0 8. 0 SD-WB-57 / 10 Surr @97.6 22 8 11/24 KB 20.2 00 8 8 8 11 Surr 7.5 MK 11 25 SD-WB-57 / 22 20.4 28 8.2 AN 3 8.2 8 8 8 14 7.4 20.4 29 MK 4/26 SD-WB-57 / 12 Surr 22 8 82 11127 70.4 SD-WB-57 / 13 Surr 22 8 8 28 1/28 7.4 8 28 8 8.3 JL 20,2 SD-WB-57 / 14 Surr 8 22 11/29 8 19.8 0 8 UL de 7.6 28 SD-WB-57 / 15 Surr 22 8.2 3 8 Ju 30 700 SD-WB-57 / 16 Surr 20:0 28 22 8.3 8 8 8 7.4 29 MK (2/1 17 Surr 8 SD-WB-57 / 22 20.0 HOLDIN 1212 20.0 8 29 8.3 * 8 8 He 8 SD-WB-57 / 18 Surr 22 छ 8 8 8.1 8 28 12/03 7.5 SD-WB-57 / 19 Surr 20.2 J 22 8 8.2 8 8 MK 12/4 20 Surr 8 7.3 20. 29 SD-WB-57 / 22

1) MR. Meter recal due to suspected deviation. KUB 11/17/14

2 MOC- KB 11/24/14

(3) Ille ible the #1212

Page 5

CLIENT	PROJECT	START TIME/ END TIME	DILUTION WATER BATCH	PROTOCOL	TEST START DATE
Pioneer Technologies	West Bay	1030 1 1000	FSW111414.01	PSEP 1995	14-Nov-2014
JOB NUMBER	PROJECT MANAGER	LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE
0	Bill Gardiner	Port Gamble	NA	Neanthes arenaceodentata	4-Dec-2014
		WATER QUALITY DATA			

TEST CONDITION	s				DO (mg/L)		TEMP (C)		SALINITY (ppt)		pH			
TEST SORBITION	•				> 4.6		20 ± 1	4	28 ± 2		8.0±1.0			
CLIENT/ENVIRON ID	DAY	REP	JAR		D.O.		TEMP	1	SALINITY		pH	WATER	Feeding	TECH/DATE
SD-WB-58 /	0	Surr	5	meter	mg/L 7.7	meter S	°c 20.0	meter	7.8	meter	G.O	RENEWAL	JU	il With
	- 1						-						00	JU 1/15
SD-WB-58 /	1	Surr	5	8	7.7	8	20.1	8	28	8	8.0			
SD-WB-58 /	2	Surr	5	8	7.8	8	20.2	8	20	8	8.1		UL	Je 1/16
SD-WB-58 /	3	Surr	5	8	7.5	8	20.1	8	@ 3029	4	8.0	KINB		KUB 11/17
SD-WB-58 /	4	Surr	5	8	7.7	8	20.0	8	29	8	8.1		KMB	# 1118
SD-WB-58 /	5	Surr	5	8	7.4	8	200	8	29	g	8.0			Kaus (1/19/14
SD-WB-58 /	6	Surr	5	8	7.6	8	20.2	8	29	8	8.2	7/2	45	UL 11/20
SD-WB-58 /	7	Surr	5	0 +17		8	20,2	8	29	8	8.1			KB 11/21
SD-WB-58 /	8	Surr	5	8	7.3	8	10.2	8	27	8	8.1		the	# 11/22
SD-WB-58 /	9	Surr	5	8	7.6	8	20.2	8	29	8	8.2	JL		1 1/23
SD-WB-58 /	10	Surr	5	3	7.7	-8	20.2	8	28	8	8,0		憷	KB 4/24
SD-WB-58 /	11	Surr	5	8	7.6	8	20.4	8	28	8	8.1			MK 425
SD-WB-58 /	12	Surr	5	8	7.6	8	20.4	8	29	8	8.2	He	76	MK 4/26
SD-WB-58 /	13	Surr	5	8	7.5	8	20.4	8	28	8	3.1		Į.	# 11127
SD-WB-58 /	14	Surr	5	8	7.5	8	20.1	8	28	8	8.2		L	JL 11/28
SD-WB-58 /	15	Surr	5	8	7.7	8	19.8	8	28	8	8,2	た		U 11/29
SD-WB-58 /	16	Surr	5	8	7,7	8	20,0	8	28	8	8.(JL	Je 11/30
SD-WB-58 /	17	Surr	5	8	7.6	8	20.0	8	28	පි	8.2			MKILLI
SD-WB-58 /	18	Surr	5	8	1.1	\$	20.0	4	28	8	4.1	柜	H	A9 1212
SD-WB-58 /	19	Surr	5	8	75	8	20,1	8	28	8	8.0	10		Jr 12/03
SD-WB-58 /						00	20.1	8	28	8	8.1			MK 12/4

CLIENT	PROJECT	START TIME/ END TIME	DILUTION WATER BATCH	PROTOCOL	TEST START DATE
Pioneer Technologies	West Bay	1030 1 1000	FSW111414.01	PSEP 1995	14-Nov-2014
JOB NUMBER	PROJECT MANAGER	LABORATORY	TEMP. RECDR./HOBO#	TEST SPECIES	TEST END DATE
0	Bill Gardiner	Port Gamble	NA	Neanthes arenaceodentata	4-Dec-2014

WATER QUALITY DATA SALINITY (ppt) рН DO (mg/L) TEMP (C) **TEST CONDITIONS** 28 ± 2 SALINITY > 4.6 20 ± 1 8.0±1.0 WATER D.O. TEMP DAY Feeding TECH/DATE CLIENT/ENVIRON ID REP RENEWAL meter meter meter meter unit mg/L 7.5 7.9 8 3 8 28 SD-WB-59 / Surr 20.1 15 7.7 7.9 27 2 1415 20.2 8 8 SD-WB-59 / 1 Surr B 11/16 7.9 7.7 8 28 JL Ju SD-WB-59 / 2 20.2 Surr 10 KUB VMB 11/17 7.7 30 28 SD-WB-59 / 3 Surr 15 8 8 20.0 7.1 8 6 8 28 8.0 SD-WB-59 / 8 20.7 Surr KIUB 8 SD-WB-59 / 5 Surr KB 11/19/14 15 20.1 28 7.8 7.1 B 8 The 8.1 11/20 20.2 HE UL 7.4 SD-WB-59 / 6 28 Surr 15 28 SD-WB-59 / 7 Surr 15 8 20.2 8 KB 11/21 8.0 28 8.0 #2 8 20.2 \$ SD-WB-59 / 8 Surr 15 JL 7.4 8 20.3 3 8.2 8 28 11/23/16 SD-WB-59 / 9 Surr 15 8 8 8 SD-WB-59 / 10 Surr 7.4 8 15 20.2 28 8.0 11/24 (48 8 7.0 8 20.4 8 8.0 SD-WB-59 / 11 Surr 28 15 11/25 MK 8 8 7.3 8 4 16 8.1 11/26 MK SD-WB-59 / 12 Surr 20.4 15 28 8 8 8.0 9 8 27 11127 SD-WB-59 / 13 Surr 20.4 15 11/28 7.0 8 27 8.2 JL SD-WB-59 / 14 Surr 8 8 8 15 20.2 8 199 8 27 8,2 Ju 7,7 SD-WB-59 / 15 Surr 15 11/30 8 27 8 00 20.1 00 8.1 UL SD-WB-59 / 16 Surr 15 8 8 28 8 8.1 MK 12/1 8 SD-WB-59 / 17 Surr 7.4 15 20.1 8.2 4 # \$ \$ H 1212 28 SD-WB-59 / 18 20.1 Surr 15 12/03 27 8.0 8 19 Surr 20,2 SD-WB-59 / 15 8 8 00 8 8.2 7.2 20.1 28 MK SD-WB-59 / 20 Surr 12/4 15

20-DAY SOLID PHASE BIOASSAY **OBSERVATION DATASHEET**

LIENT				PROJE	СТ				JOB N				PROJE	CT MAN				LABOR	ATORY			PROTO					PECIES	
Pioneer 1	Technolog	ies				West B	ay			13	0		ENT		Bill Gardin	BSERVA	TIONS		Port G	Samble		PSEP	1995			Neanthes a	arenaceodentata	
= Normal E = Emergence M = Mortality = Growth ungal, bacterial, or = No Air Flow (DO? = Floating on Surfa C = Too Cloudy =Excess food	?)	BATTAR #0 ORCANISM 5	Š	Date and Initials	11/1270	1/16 Jc	ula cilu	0		34 MI	11/21 KB	172 of	375	(1)24 KB	1/25 MK	M		1/28 01	11/29/11	11/30 36	12/1 MK	winh	1403 OL	12/0476	NUMBER REMAINING	FARE WEIGHT (mg)	TOTAL WEIGHT (mg)	АВНЕD WEIGHT (mg)
CLIENT: ENVIRO	04.00	REP	JAR	INITIAL # (if differs)	-	23	6	4	ю	9		60	6	9	5	12	13	4	15	91	17	18	19	50	Z	-	F	*
*		1	6		v	V	u	1	N U	N	N	N	2	N	h	N	G	N	N	N	IE	N	N	2	5	198.87	313.98	259.46
		2	19					1	1	1		1		G	G	6	1	16	1		N		16		5	207.45	308.62	254.61
Control	17	3	39				Ц				V			N	N	N		7	E	1	N		2	1	5	3 187.64	286,40	233.2
		4	42					1		1	V			G	9	6	1/	1E	h	1	E		L	E	5	4 183.11	272.93	220.8
		5	10		Ц		Ц	1		1	N	V		6	1	V	- Ga	16	16	l	15	V	18	h	5	5 181.61	287.03 286.8	229.3
		1	27			1		1	A		N	N		7	N	IE	12	2	N	E	N	N	7	N	5	197.03	302.07	245.2
		2	3			1	П	1	381	4	1	1	1	G	G	G	9		1	7	IÉ	12	1		5	7 179.84	286.74	233.3
Ref Car	m/	3	32					1	10	1				N	6	6	9		1	1	h	N	1		S	8 169.23	261.06	212.2
		4	31				Ш		u					1	N	7	18		1	le	25		16		5	9 169.20	252.62	207.4
1		5	2			1	Ц	1	V	V	A	V	b	4	N	3E	4		16	7	N	C/	7	V	5	10 175.66	294.18	229.6
1)		1	35					1	G	4	G	9	9	G	6	6			1		6	9		2	5	173.70	258.28	210.14
* *		2	26				П	1	G	1	1	1		1	IE	6				1	6	1	7	V	5	13,023	-	215.4
Carr 20	0 /	3	9					1	G	V	1	1			G	6	1		4	1	H		10	18	5	196.31		224.1.
		4	38				П	C		9		1	1		1	V	-		18	16	6	V	7	2	5	14 229,27	324.79	271.9
		5	21		J	Weight	V	N	1	\\£	Commi	V	a)	A	V	9	1		7	Į,	1	12)	16	3	179.96	241.53	203-1
	Rep	-	1		(1	ng)	-	Weight	(r	ng)		IV	to	fen far	182	120	4 (اره	057	1	070	C	,					
Initial Biomass	2	-	2	7			55					-5	, ,,				2.1	. 60	ار	1400	1 10	15	U					
	3			9		.12			6 51. 8 51.																			
		1	L	-1	5	1-1-	*		0 51.	_		-	1	141	w	_	_				1 - 1 - 1	_						

Oxilegible He IIIIg 3 wrong Lake the III27 DWC. KMB. 11/19/14

@MR.KB. 12/5/14

(9) Illegible He

20-DAY SOLID PHASE BIOASSAY **OBSERVATION DATASHEET**

CLIENT			PROJECT West Bay					JOB N				PROJE	ECT MA	NAGER			LABO	RATORY			PROTO	COL			5	SPECIES		
Pioneer Technolo	ogies				West	Bay					0				Bill Gardi				Port G	Samble		PSE	P 1995	1		Neanthes	arenaceodentata	
I= Normal E = Emergence M = Mortality := Growth ungal, bacterial, or algal) = No Air Flow (D0?) = Floating on Surface C = Too Cloudy =Excess food	DITTAL ORGAN		Date and Initials	14157	1/16/1		JW 1/17	1118 2/	11/19 AME	1120 CK	11/21 KB	Pu.	_	11/24 KJ	18	MK	TIONS 127	11/28 1	11/29 JL	11(30 75	12/1 MK	100	268 JL	12/20	NUMBER REMAINING	FARE WEIGHT (mg)	AL WEIGHT (mg)	HED WEIGHT (mg)
CUENT SAVRON D	REP	JAR	INITIAL #	+	N		6	4	2	9		89	6	10	‡	42	5,	41	15	16	11	8	19	20	NON	ĀĀ	TOTAL	ASHE
	1	1		u	V	1	٨	N	u	N	N	N	12	N	N	N	N	7	N	1)	N	N	16	N	5	16 194.85	278.24	222.0
	2	23							1	1	1	7	7	7	N	(G	9	L		6	5	6	N	6	5	17 191.19	250.72	204.6
SD-WB-56 /	3	30									V	6	IE	16	IE	ري	1	E	7	N	1E,	18	16	IE	5	1821452	284.75	233.4
	4	12						1	1		G	4,12	6	15	6	6		6	9	6	更	4	7	6	5	199.52	280,70	222.1
	5	29			1	Ц	1			Ш	G	4	G/1E	6	V	JE,	0	6	6,1E	6	5	12	6	G	5	20190.43	257.49	206.
	1	4							1		N	N	9	G	G	G	9	6	6,1E	h	6	9	N	6	5	21 200.40	280.67	225.39
	2	17			1			Ш	1		1	1		1	6	6	1	9	a	6	6	1	6		5	181.39	252.10	199.6
SD-WB-57 /	3	24						П			G	9	T.	4	1	15		6	6	6	5		2		5	23 179.77	259.33	201.8
	4	341				1			1		N	N	7	N	N	7		1	6	N	1			J	5	24 199.02	291.47	228.2
	5	14							1		Ą	J	6	G	6	6	V	6	6,16	6	6	Ü	ſ	N	5	25199.91	283.00	225.7
	1	25							1		N	N	2	N	N	N	FIE	, 12	4	6	6	4	6	6	5	26 216 68	D296.55	236.90
	2	18					Ш		1		1	1	L	1		1			N	N	N	N	h	V	5	27 183.73	255.62	202.21
SD-WB-58 /	3	40			1			0	x		1		E		V	\downarrow			IE		6	4	6	4	560		249.52	194.49
	4	7		4	-			0	08				2		2E	2			2	1	7	N	N		5	29 177.42	238.62	189.7
	5	13		V	7	1	1	0	V	V	V	A	6	V	6	6	76	1	7	7	G	4	F	V	5	167.63	243.59	190.01

Dar renewed, not refilled. Refilled during observations. 11/18/14 KNB & wrong date

Swrong cell 11/77/4

(E) L 12/03/14, 216.90 mg.

SWL. JL 12/04/14.

20-DAY SOLID PHASE BIOASSAY **OBSERVATION DATASHEET**

CLIENT			PROJ	ECT				JOB N	10.			PROJE	CT MAN	AGER			LABOR	ATORY			PROTO	COL			S	PECIES	
Pioneer Technolo	gies				West B	ay				0			Е	illi Gardir	ner			Port 0	Samble		PSE	P 1995			Neanthes	arenaceodentata	
				_					_			ENE	POINT	ATA & O	BSERVA	TIONS			_								
N = Normal #E = Emergence #M = Mortality G = Growth (fungal, boxterial, or algal) D = No Air Flow (DO?) F = Floating on Surface TC = Too Cloudy U-Excess food		Date and Initials	20/12	11/16/1	11/17 MK	0	1	Mon!	1/21 1446	113. A	1/23 JL	W/24 KB	11/25 MR	"VEG MK	W. All	1/28 dc	11/29 1	IZ/ MZ	1210	1400 25	12/04/L	7	ABER REMAINING	RE WEIGHT (mg)	FAL WEIGHT (mg)	IED WEIGHT (mg)	
CUENTI ENVIRON D	859	JAR	INITIAL #	-	N	6	4	10	9	7	80	6	9	11	2	13	41	15	16	17	18	19	20	NO.	₹	ρ	Aŝ
	1	28		w	V	2	N	u	N	N	4	6	G	5	G	9	7	2	5	G	h	ņ		5	31 195.52	265.74	216.17
	2	41					1	1	1	1	1		1		1,6	l	iE		V	1		l		50	32180.24	246.69	197.02
SD-WB-59 /	3	33								1					6	12,	P		5			6		5	33 191.11	258.15	205.90
	4	36								1						9		J				4		5	34 180,11	245.44	199.43
	5	37		1	1	7	1	1	V	6	V	1	1	V	1	L	7	6	V	V	7	L	8	5	35 201.77	277.15	222.87

1 worm much smaller than other 4. MK 12/4.

(2) Observations not recorded on Day 16 (12/3/1/30), Subsequent Days Shifted one cell to the right.

JL 12/04/4.

Ammonia and Sulfide Analysis Record

of
01

Test Duration (days):
20
(circle one) DAY of TEST: Ø

Calibration Sta	ndards Temperature	
Date:	Temperature:	Sample temperature should be within ±1°C of
11/14/14	21.6°C	standards temperature at time and date of analysis.

Sample ID or Description	Conc. or Rep	Samp	ate of oling and nitials	Ammonia Value (mg/L)	Temp °C	Read	ate of ling and itials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sample Volume (mL)		Multi- plier	Calc- ulated Sulf. (mg/L)
ø	Ov	11/14	14 KMB	0.0	22.5	11/14	14 KMB	2		1	10	0.0	ı	0.0
Ref Carr				0,0	22.1							0.016	1	0.016
Carr 20				0.0	22.0							0.041		0.041
SD-WB-56				0.0	22.0							0.50		0.50
5D-WB-57				0.228	21.9				/			0.01		0.011
SD-WB- 58					07425							0.035		0.035
SD-WB 59	1	,	V	0.0	21.5	,	V	1	/		1	0.027	J	0.027
Ø	PW	11/14	14 ブレ	0.0	22.1	11/14/	14 KMB	N	7.8	28	1	0.064	10	0.04
Ref Carr		1 '	1	8.25	22.3		1		7.3	29	1	0.021	10	0.21
Carr 20				0.228	22.1				7.9	Insuff.	amb			
SD-WB-56				8.02	22.6				7.7	24	2	0.117	5	0.59
50-WB-57				7.23	22.1				7.6	29	10	0.094	1	0.094
50-WB-58				14.6	22.1				7.8	28	1	0.081	,	0.081
50-WB-59	J	,	1	3.68	21.6		*	V	7.6	28	V	0.09	V	0.09
											,			
														- 1

Ammonia and Sulfide Analysis Record

Client/Project: Pioneer / West Bay	Organism: Neamthed	Test Duration (days): 20
PRETEST / INITIAL / FINA OVERLYING (OV) / POREWA		DAY of TEST: 20
Calibration Sta	ndards Temperature	
		Sample temperature should be within ±1°C of

	nple ID or	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
OV.	0	Surv.	12/04/14 12	0,00	20.0	12/04/14 JC	7	1		10	0.002		
1	Ref. Carr			0.00	1	1		1			0.005		
	Carr-20			0.00				1			0.005	1	
	56			0.00							0.005	,	
1	57			0.00					1		0.011		1
1	58			0.00					1		0.009		1
V	59	L	1	0.00	V	7	V		(L	0.015		,
ρw.	Ø	Surv.	12/04/14 JL	0,411	20.3	12/04/14 h	N	7.4	28	5	0.060	2	0.120
1	Ref. Carv		1	0.0514	1	1		7,4	28	5	0.124	2	0.248
1	Carv. 20			0.275				6.9	28	5	0.170	2	0.340
	56			0.00				7.4	29	5	0.049	2	0.098
	57			0.00				7.3	29	5	0.070	2	0.140
	So	1		0.00				7.6	- 29	5	0.065	2	0.130
L	59			0 118	1	V	- 1	7.0	28	5	0.059	2	0.118

ORGANISM RECEIPT LOG

Date:			Time:	***************************************	Batch No.					
11/14	4/14			1020	ATSIL	1414				
Organism / I	Project:				Source:					
Nean	mes / W	iest Ba	4		The state of the s	CTOX. SUPP	port			
Address:			1				e Attached			
	on file					Yes	No			
Phone:	on Fil	le			Contact:	h tile				
No. Ordered	600)	No. Rec		F 10%	Source Ba	10/22-10/27			
Condition of	Organisms	Good		31.00		Approximate Size or Age: 16 - 21 days				
Shipper:	Cour	riev	4.	· ·	B of L (Track	ing No.) NA				
Condition of	Container:	Good			Received By:	UL	1000			
Container	D.O. (mg/L)		emp. (°C)	S	uctivity or alinity ude Units)	pH (Units)	Technician (Initials)			
1	12.0	12	t.3	30	ppt	7.2	UL			
Notes:										
					701 230					

Aquatic Toxicology Support 1849 Charleston Beach Road West Bremerton, Washington 98312 (360) 813-1202

Order Summary

Species: Neanthes arenaceodentata*	Emerge Date: 22-27 Oct '14
Number Ordered: 600	Number Shipped: 600 + 10 %.
Date Shipped: 14 Nov '14	Salinity (ppt): 30

^{*}Smith 1964. CSU Long Beach strain. Feed upon arrival.

APPENDIX A.2.2

Neanthes arenaceodentata

Juvenile Polychaete Bioassay

Reference Toxicant Test

19 Nov-14 11:16 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Test Type: Survival
Protocol: All Protocols

Organism: Neanthes arenaceodentata (Polycha

Endpoint: Proportion Survived

Material: Source:

Total Ammonia

Source: Reference Toxicant-REF

Point		Month		200	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
	2013	Mar	1	14:40	183.7	41.91	0.8754			16-0938-7761	05-5518-0938	NewFields
2		Apr	5	10:40	145.7	3.864	0.08072			12-4084-6308	11-0088-3368	NewFields
3		May	7	13:00	79.7	-62.1	-1.297	(-)		03-6682-4675	04-2369-0564	NewFields
4			24	11:30	94.89	-46.91	-0.9799			19-1651-0673	18-8601-2491	
5		Jun	25	14:13	75.13	-66.67	-1.393	(-)		08-9049-5052	01-8172-0753	NewFields
5		Jul	12	13:20	141.9	0.1331	0.00278			14-1288-0905		NewFields
7			26	12:00	209.7	67.91	1.419	(+)		21-1882-7830	06-4191-8012	NewFields
3		Aug	20	15:45	168.6	26.85	0.5608	()		00-0072-4465	07-5315-7472	NewFields
)			29	13:40	229.1	87.33	1.824	(+)		00-4506-4349	03-0193-2385	NewFields
0		Oct	18	15:35	106.3	-35.49	-0.7415	1.7		21-0368-6339	11-1553-1817	NewFields
1		Nov	15	15:30	137.4	-4.37	-0.09129				03-0733-6178	NewFields
2		Dec	20	14:00	152.2	10.37	0.2166			16-5727-5696	09-2903-6118	NewFields
3	2014	Jan	24	13:20	174.5	32.72	0.6836			08-9922-1254	05-5343-6267	NewFields
4		Apr	4	15:40	202.9	61.08	1.276	(+)		20-9603-7883	05-6245-5381	NewFields
5		May	30	16:25	69.43	-72.37	-1.512			09-1443-8374	04-8864-2138	ENVIRON
6		Jun	6	14:00	120.6	-21.23	-0.4435	(-)		18-4751-2702	06-4812-5268	ENVIRON
7			20	13:20	201.3	59.55	1.244	(+)		02-4901-6395	02-6665-3375	ENVIRON
8		Jul	9	15:30	112	-29.78	-0.622	(+)		04-8899-1061	18-6388-8462	ENVIRON
9				12:30	3,03	-7.933	-0.022			00-3047-6484	19-8550-4064	ENVIRON
0		100		15:00		-43.93	-0.1657			19-3698-7324		ENVIRON
1		2.3	700	11:11		61.48				04-0379-7898	08-6657-8417	ENVIRON
		1075	L-1.	. 344.6	200.0	01.40	1.284	(+)		09-0815-7159	21-3147-5839	ENVIRON

CETIS QC Plot Report Date: 29 Dec-14 11:24 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Test Type: Survival Organism: Neanthes arenaceodentata (Polycha Material: Total Ammonia

Protocol: PSEP (1995) Endpoint: Proportion Survived Source: Reference Toxicant-REF

Reference Toxicant 96-h Acute Survival Test

 Mean:
 90.04
 Count:
 20
 -1s Warning Limit:
 53.09
 -2s Action Limit:
 16.14

 Sigma:
 36.95
 CV:
 41.00%
 +1s Warning Limit:
 127
 +2s Action Limit:
 163.9

Quali	ty Con	trol Data	а									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2013	Mar	1	14:40	143	52.96	1.433	(+)		16-0938-7761	07-7870-4978	NewFields
2		Apr	5	10:40	103	12.96	0.3507			12-4084-6308	12-0348-0416	NewFields
3		May	7	13:00	57.6	-32.44	-0.8779			03-6682-4675	13-3264-9963	NewFields
4			24	11:30	66.7	-23.34	-0.6317			19-1651-0673	19-7443-7088	NewFields
5		Jun	25	14:13	50.4	-39.64	-1.073	(-)		08-9049-5052	06-0503-5931	NewFields
6		Jul	12	13:20	95.6	5.56	0.1505			14-1288-0905	07-0996-7321	NewFields
7			26	12:00	137	46.96	1.271	(+)		21-1882-7830	14-5107-6466	NewFields
8		Aug	20	15:45	124	33.96	0.9191			00-0072-4465	04-2226-9652	NewFields
9			29	13:40	105	14.96	0.4049			00-4506-4349	03-1605-8937	NewFields
10		Oct	18	15:35	76	-14.04	-0.38			21-0368-6339	09-9293-9888	NewFields
11		Nov	15	15:30	101	10.96	0.2966			16-5727-5696	19-4124-7251	NewFields
12		Dec	20	14:00	58.3	-31.74	-0.859			08-9922-1254	11-2068-6689	NewFields
13	2014	Jan	24	13:20	117	26.96	0.7296			20-9603-7883	15-6685-9407	NewFields
14		Apr	4	15:40	147	56.96	1.542	(+)		09-1443-8374	10-8829-6450	ENVIRON
15		May	30	16:25	25.7	-64.34	-1.741	(-)		18-4751-2702	12-3702-5556	ENVIRON
16		Jun	6	14:00	82.6	-7.44	-0.2014			02-4901-6395	20-5404-5146	ENVIRON
17			20	13:20	145	54.96	1.487	(+)		04-8899-1061	10-6019-5810	ENVIRON
18		Jul	9	15:30	49.5	-40.54	-1.097	(-)		00-3047-6484	08-3152-1432	ENVIRON
19		Aug	22	12:30	58.1	-31.94	-0.8644			19-3698-7324	16-9806-3196	ENVIRON
20		Sep	9	15:00	58.3	-31.74	-0.859			04-0379-7898	19-3535-3112	ENVIRON
21		Nov	14	11:11	142	51.96	1.406	(+)		09-0815-7159	10-8173-5203	ENVIRON

19 Nov-14 11:25 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Test Type: Survival Protocol: All Protocols

Organism: Neanthes arenaceodentata (Polycha

Endpoint: Proportion Survived

Material: Source:

Unionized Ammonia

Reference Toxicant-REF

Mean: 1.218 Sigma: 0.4693 Count: 20 CV: 38.50%

-1s Warning Limit: 0.7488 +1s Warning Limit:

1.687

-2s Action Limit: 0.2795 +2s Action Limit: 2.157

Quality	Control	Data
---------	---------	------

Point		Month			QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
2	2013	Mar	1	14:40	1.573	0.3554	0.7573			18-8051-2966	06-9085-4102	
		Apr	5	10:40	0.9122	-0.3058	-0.6516			03-5469-7681	20-0412-7755	
3		May	7	13:00	0.794	-0.424	-0.9034			11-4883-5754	10-2519-8358	
4		40.	24	11:30	0.9143	-0.3037	-0.6472			03-1268-0321	17-3627-5339	
5		Jun	25	14:30	0.6782	-0.5398	-1.15	(-)		07-6412-1006	01-8270-7142	
6		Jul	12	13:20	1.207	-0.01081	-0.02303			06-2793-5359	03-5477-0692	
7			26	12:00	1.324	0.1057	0.2253			08-3568-6719		Salva Salva Gental
8		Aug	20	15:45	1.065	-0.1526	-0.3251			11-8125-8700	13-1071-7473	NewFields
9			29	13:40	1.779	0.5609	1.195	(+)		06-4372-6299	06-3963-9074	
10		Oct	18	15:35	0.5812	-0.6368	-1.357	(-)		21-1191-9888	20-5863-7836	NewFields
11		Nov	15	15:30	0.746	-0.472	-1.006	(-)		09-2209-5330	03-5569-7261	NewFields
12		Dec	20	14:00	1.916	0.6976	1.487	(+)		01-5055-0133	09-1007-2814	NewFields
	2014	Jan	24	13:20	0.8517	-0.3663	-0.7805	1.1		09-1104-1497	16-3961-8899	NewFields
14		Apr	4	15:40	1.94	0.7217	1.538	(+)			12-8333-6553	NewFields
15		May	30	16:25	1.055	-0.1632	-0.3478	(-)		00-6512-2526	06-9520-2408	NewFields
16		Jun	6	14:00	1.228	0.009563	0.02038			04-6747-6619		ENVIRON
7			20	13:20	2.113	0.8955	1.908	(+)		19-7971-8908		ENVIRON
8		Jul	9	15:30	1.322	0.1043	0.2222	(,)		01-9511-3585		ENVIRON
19		Aug	22	12:30	1.65	0.4318	0.9201			09-1500-8488		ENVIRON
20		Sep	9	15:00	The Court of the C	-0.5055	-1.077	11		18-5611-8800		ENVIRON
1		Nov	14	11:11	1.998	0.7804	1.663	(-)		18-5349-8839		ENVIRON
					7.900	J., 004	1.003	(+)		17-3054-3443	08-9007-7058	ENVIRON

CETIS QC Plot Report Date: 29 Dec-14 11:32 (1 of 1)

Reference Toxicant 96-h Acute Survival Test

All Matching Labs

Test Type:SurvivalOrganism:Neanthes arenaceodentata (PolychaMaterial:Unionized AmmoniaProtocol:PSEP (1995)Endpoint:Proportion SurvivedSource:Reference Toxicant-REF

Reference Toxicant 96-h Acute Survival Test

 Mean:
 0.9726
 Count:
 20
 -1s Warning Limit:
 0.5717
 -2s Action Limit:
 0.1708

 Sigma:
 0.4009
 CV:
 41.20%
 +1s Warning Limit:
 1.374
 +2s Action Limit:
 1.774

Quali	ty Con	trol Data	а									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2013	Mar	1	14:40	1.373	0.4004	0.9988			18-8051-2966	09-6023-4535	NewFields
2		Apr	5	10:40	0.811	-0.1616	-0.4031			03-5469-7681	20-7653-9268	NewFields
3		May	7	13:00	0.71	-0.2626	-0.655			11-4883-5754	20-7240-7121	NewFields
4			24	11:30	0.81	-0.1626	-0.4056			03-1268-0321	20-4684-2719	NewFields
5		Jun	25	14:30	0.51	-0.4626	-1.154	(-)		07-6412-1006	18-2969-6397	NewFields
6		Jul	12	13:20	0.943	-0.0296	-0.07383			06-2793-5359	18-9450-4090	NewFields
7			26	12:00	1.087	0.1144	0.2854			08-3568-6719	20-5296-6252	NewFields
8		Aug	20	15:45	0.97	-0.0026	-0.00649			11-8125-8700	00-8450-2616	NewFields
9			29	13:40	1.301	0.3284	0.8192			06-4372-6299	17-0691-0612	NewFields
10		Oct	18	15:35	0.459	-0.5136	-1.281	(-)		21-1191-9888	08-6606-1702	NewFields
11		Nov	15	15:30	0.615	-0.3576	-0.892			09-2209-5330	09-5248-1072	NewFields
12		Dec	20	14:00	1.228	0.2554	0.6371			01-5055-0133	05-3710-3857	NewFields
13	2014	Jan	24	13:20	0.75	-0.2226	-0.5553			09-1104-1497	11-9980-1624	NewFields
14		Apr	4	15:40	1.759	0.7864	1.962	(+)		00-6512-2526	16-4646-7758	NewFields
15		May	30	16:25	0.494	-0.4786	-1.194	(-)		04-6747-6619	20-5692-2184	ENVIRON
16		Jun	6	14:00	1.056	0.0834	0.208			19-7971-8908	15-9945-9119	ENVIRON
17			20	13:20	1.898	0.9254	2.308	(+)	(+)	01-9511-3585	21-4292-7262	ENVIRON
18		Jul	9	15:30	0.853	-0.1196	-0.2983			09-1500-8488	15-2291-7760	ENVIRON
19		Aug	22	12:30	1.227	0.2544	0.6346			18-5611-8800	02-5634-5468	ENVIRON
20		Sep	9	15:00	0.599	-0.3736	-0.9319			18-5349-8839	09-1071-5088	ENVIRON
21		Nov	14	11:11	1.391	0.4184	1.044	(+)		17-3054-3443	03-6925-5177	ENVIRON

Report Date:

0.0%

0.0%

0.0%

0.0%

100.0%

19 Nov-14 10:16 (p 1 of 2)

Reference	Toxicant 96-h A	outo C	d1 = 1				Tes	t Code:	3	62160E7	09-0815-7159
AND REPORTS OF A			/ival lest								ENVIRON
Analysis ID Analyzed:	21-3147-583 19 Nov-14 1		Endpoint: Analysis:	Proportion S Binomial Me				TIS Version		1.8.7	
Batch ID: Start Date: Ending Dat Duration:	03-6338-536 14 Nov-14 1 e: 18 Nov-14 09 94h	1:11	Test Type: Protocol: Species: Source:	Survival PSEP (1995 Neanthes are Aquatic Toxic	enaceodeni		Ana	ilyst: ient: Lab ne: Not	oratory Se Applicable		
Sample ID: Sample Dat Receive Dat Sample Age	te:		Code: Material: Source: Station:	49A8EB48 Total Ammor Reference To P140505.42			Clie	nt: Inte	rnal Lab erence Tox	icant	
Binomial/G	raphical Estimat	es		7 July 2 27 827							
Threshold C	Option	Threshol	d Trim	Mu	Sigma		EC50	95% LCL	95% UCI		
Control Thre		0	0.00%	2.308	0		203.3	142	291	-	
Proportion (Survived Summ	ary			Cal	culated Varia	eto/A/P)	0,111			
C-mg/L	Control Type	Count	Mean	Min	Max	To the plants of		2000	Jakobar La		
0	Dilution Water	3	1	1	1	Std Err	Std Dev	CV%	%Effect	Α	В
20		3	1	1	1	300	0	0.0%	0.0%	30	30
37.1		3	1	1	1	0	0	0.0%	0.0%	30	30
70.9		3	4		1	0	0	0.0%	0.0%	30	30

Proportion	Survived	Detail
------------	----------	--------

····	ii oui viveu Detail				
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3	
0	Dilution Water	1	1	1	
20		1	1	1	
37.1		1	1	1	
70.9		1	1	1	
142		1	1	1	
291				1	
		U	0	0	
_	The state of the s				

Proportion Survived Binomials

C-mg/L	Control Type	Rep 1	Rep 2	Rep 3
0	Dilution Water	10/10	10/10	10/10
20		10/10	10/10	
37.1		10/10		10/10
70.9		3000	10/10	10/10
142		10/10	10/10	10/10
291		10/10	10/10	10/10
201		0/10	0/10	0/10

Analyst: CR QA:__

Report Date:

19 Nov-14 10:16 (p 2 of 2)

Reference Toxicant 96-h Acute Survival Test

Test Code:

362160E7 | 09-0815-7159

ENVIRON

Analysis ID: Analyzed:

21-3147-5839 19 Nov-14 10:16

Analysis:

Endpoint: Proportion Survived **Binomial Method**

CETIS Version:

CETISv1.8.7

Official Results: Yes

Graphics

Report Date: Test Code:

19 Nov-14 10:16 (p 1 of 2)

Reference To	vicant OC b A			-					Test C	ode:		362160E7	09-0815-715
	xicant 96-h A		vival Test										ENVIRON
Analysis ID: Analyzed:	10-8173-520 19 Nov-14 10		Endpoint: Analysis:		oportion Sungle 2x2 Co	rvived intingency T	able			Version: Results		Sv1.8.7	
Batch ID: Start Date:	03-6338-536		Test Type:	Su	rvival				Analys		. 165		
	14 Nov-14 11		Protocol:		EP (1995)				Diluent		oratory S	eawater	•
Ending Date:	18 Nov-14 09	9:40	Species:	Ne	anthes arer	naceodentat	ta		Brine:		Applicab		
Duration:	94h		Source:	Aq	uatic Toxico	ology Suppo	ort		Age:	1,00	hhiloan	10	
Sample ID:	12-3580-7048	3	Code:	49/	A8EB48				Client:	Inter	rnal Lab		
Sample Date:	14 Nov-14		Material:	Tot	al Ammonia	а			Project		erence To	ovicent	
Receive Date:			Source:	Ref	ference Tox	cicant					orence 11	DAICAIL	
Sample Age:	11h		Station:	P14	40505.42								
Data Transform		Zeta	Alt H	ур	Trials	Seed			N	IOEL	LOEL	TOEL	TIL
Untransformed			C > T		NA	NA				42	291	203.3	TU
Fisher Exact T	est											200.0	
	vs C-mg/L		Test S	Stat	P-Value	P-Type	Decision	o/a.E9/)					
Dilution Water	20		1		1.0000	Exact	Non-Sigi						
	37.1		1		1.0000	Exact	Non-Sign						
	70.9		1		1.0000	Exact	Non-Sign						
	142		1		1.0000	Exact	Non-Sign						
Data Summary											-		
	Control Type	NR	R		NR+R	Prop NR	Prop R	%Eff					
	Dilution Water	30	0		30	1	0	0.0%					
20		30	0		30	1	0	0.0%					
37.1		30	0		30	1	0	0.0%					
70.9		30	0		30	1	0	0.0%					
142		30	0		30	1	0	0.0%					
291		0	30		30	0	1	100.0					
Proportion Sur	vived Detail							1244					
	Control Type	Rep 1	Rep 2		Rep 3								
	Dilution Water	1	1		1			-					
20		1	1		1								
37.1		1	1		1								
0.9		1	1		1								
42		1	1		1								
91		0	0		0								
roportion Surv	vived Binomia	ls											
	ontrol Type	Rep 1	Rep 2		Rep 3								
	ilution Water	10/10	10/10		10/10								
0	1.000	10/10	10/10										
7.1		10/10	10/10		10/10								
0.9		10/10	10/10		10/10								
42		10/10			10/10								
91			10/10		10/10								
276		0/10	0/10	(0/10								

Analyst:_____ QA:_____

Report Date: Test Code:

19 Nov-14 10:16 (p 2 of 2)

ENVIRON

Reference Toxicant 96-h Acute Survival Test

362160E7 | 09-0815-7159

Analysis ID: Analyzed:

10-8173-5203 19 Nov-14 10:15

Endpoint: Proportion Survived Analysis:

Single 2x2 Contingency Table

CETIS Version:

CETISv1.8.7

Official Results: Yes

Graphics

CETIS Test Data Worksheet

Report Date:

19 Nov-14 10:16 (p 1 of 1)

Test Code:

09-0815-7159/362160E7

Reference 1	Covion	-+ 00	L A			Test Code:	09-0815-7159/362160E7
ALL THE STATE OF T							ENVIRON
Start Date: End Date: Sample Dat	18	Nov-1	4 11:1 4 09:4 4		ol: PSEP (1	Sample Code: 4 Sample Source: F Sample Station: F	
C-mg/L	Code	Rep	Pos	# Exposed	# Survived	Notes	11000.12
0	D	1	18	10	10	Hotes	
0	D	2	6	40	- 10		

C-mg/L	Code	Rep	Pos	# Exposed	# Survived	Notes
0	D	1	18	10	10	Notes
0	D	2	6	10	10	
0	D	3	7	10	10	
20		1	11	10	10	
20		2	5	10	10	
20		3	8	10	10	
37.1		1	9	10	10	
37.1		2	17	10	10	
37.1		3	3	10	10	
70.9		1	14	10	10	
70.9		2	16	10	10	
70.9		3	2	10	10	
142		1	12	10	10	
142		2	4	10	10	
142		3	1	10	10	
291		1	10	10	0	
291		2	15	10	0	
291	1 1/	3	13	10	0	

Report Date:

19 Nov-14 11:23 (p 1 of 2)

	- 17 - 1 - 19 - 1 - 1	-74					Tes	t Code:	6	725FF53	17-3054-3443
	e Toxicant 96-h A		al Test								ENVIRON
Analysis Analyzed			indpoint: nalysis:	Proportion St				TIS Version		1.8.7	
Batch ID:	2. 3. 3. 3. 3. 3. 3. 3. 3. 3.			Binomial Met	noa		Offi	icial Results	: Yes		
Start Date	0000 000		est Type:				Ana	lyst:			
Ending D			rotocol:	PSEP (1995)			Dilu	ient: Lab	oratory Sea	awater	
Duration:			pecies:	Neanthes are			Brin		Applicable		
Durauon.	9411	S	ource:	Aquatic Toxic	ology Sup	port	Age				
Sample II		'5 C	ode:	3DC952AB			Clie	més lata	and the total		
	ate: 14 Nov-14	M	aterial:	Unionized Am	monia				rnal Lab		
Receive D	ate:	S	ource:	Reference To			Pro	ject: Ref	erence Tox	icant	
Sample A	ge: 11h	S	tation:	P140505.42	All Garit						
Binomial/	Graphical Estima	tes									
Threshold		Threshold	Trim	Mu	Sigma		EC50	050/ 1.01			
Control Th	reshold	0	0.00%		0		1.998	95% LCL 1.391			
Proportion	n Survived Summ	nary			Cal	Landar IVI I	12000	1.591	2.871		
C-mg/L	Control Type	Count	Mean	Min	2.00	culated Varia					
0	Dilution Water	3	1	1	Max	Std Err	Std Dev	CV%	%Effect	Α	В
0.384		3	1	1	1	0	0	0.0%	0.0%	30	30
0.568		3	1	4	1	0	0	0.0%	0.0%	30	30
0.866		3	1	1	1	0	0	0.0%	0.0%	30	30
1.391		3	1	1		0	0	0.0%	0.0%	30	30
2.871		3	o	0	1	0	0	0.0%	0.0%	30	30
Proportion	Survived Detail					-	-		100.0%	0	30
C-mg/L	Control Type	Rep 1	Don 2	4							
0	Dilution Water	1	Rep 2	Rep 3	-						
0.384	- mation valor	1	1	1							
0.568		1		1							
0.866		1	1	1							
1.391		1	1	1							
2.871		1	1	1							
		0	0	0							
	Survived Binomi	als									
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3							
)	Dilution Water	10/10	10/10	10/10							
0.384		10/10	10/10	10/10							
.568		10/10	10/10	10/10							
.866		10/10	10/10	10/10							
.391		10/10	10/10	0.000							
		10/10	10/10	10/10							

2.871

0/10

0/10

0/10

Report Date: Test Code:

19 Nov-14 11:23 (p 2 of 2) 6725FF53 | 17-3054-3443

Reference Toxicant 96-h Acute Survival Test

ENVIRON

Analysis ID: Analyzed:

08-9007-7058 19 Nov-14 11:23

Analysis:

Endpoint: Proportion Survived **Binomial Method**

CETIS Version:

CETISv1.8.7

Official Results: Yes

Graphics

Report Date:

19 Nov-14 11:23 (p 1 of 2)

Poforones Te		9 12							Test Co	de:	6	725FF53	17-3054-3443
GT E TOWN	xicant 96-h Ac												ENVIRON
Analysis ID: Analyzed:	03-6925-517 19 Nov-14 11		Endpoint: Analysis:		ortion Su le 2x2 Co	rvived ntingency T	able		CETIS V		CETIS	v1.8.7	
Batch ID: Start Date: Ending Date: Duration:	03-6338-5360 14 Nov-14 11 18 Nov-14 09 94h	:11	Test Type: Protocol: Species: Source:	PSE Near	P (1995) othes arer	naceodentat			Analyst: Diluent: Brine: Age:	Labo	ratory Se		
Sample ID: Sample Date: Receive Date: Sample Age:			Code: Material: Source: Station:	Unio	952AB nized Am rence Tox 1505.42				Client: Project:		nal Lab rence Tox	ricant	
Data Transfor		Zeta	Alt Hy	ур	Trials	Seed			NC	EL	LOFI	TOF	
Untransformed			C > T		NA	NA			1.3		2.871	TOEL	TU
Fisher Exact	Test								- 1.6	.01	2.071	1.998	
Control	vs C-mg/L		Test S	Stat	P-Value	P-Type	Decision	n(a:5%)					
Dilution Water	0.384 0.568		1		1.0000	Exact	Non-Sign		Effect				
	0.866		1		1.0000	Exact	Non-Sign						
	1.391		1		1.0000	Exact	Non-Sign						
Data Summary			1		1.0000	Exact	Non-Sign	nificant E	Effect				
	Control Type	NR	R		NR + R	D ND		2000					
	Dilution Water	30	0	_	30	Prop NR	Prop R	%Eff					
0.384		30	0		30	1	0	0.0%					
0.568		30	0		30	1	0	0.0%					
0.866		30	0		0	1	0	0.0%					
1.391		30	0		0	1	0	0.0%					
2.871		0	30	3	0	0	1	100.0	%				
Proportion Sur	rvived Detail							275785					
	Control Type	Rep 1	Rep 2	R	lep 3								
	Dilution Water	1	1	1		-		-					
0.384		1	1	1									
0.568		1	1	1									
0.866		1	1	1									
1.391		1	1	1									
2.871		0	0	0									
Proportion Sur	vived Binomia	ls											
	Control Type	Rep 1	Rep 2	R	ер 3								
	Dilution Water	10/10	10/10		0/10								
.384		10/10	10/10		0/10								
.568		10/10	10/10		0/10								
.866		10/10	10/10)/10								
.391		10/10	10/10		/10								

2.871

0/10

0/10

0/10

Report Date:

19 Nov-14 11:23 (p 2 of 2)

Test Code:

6725FF53 | 17-3054-3443

Reference Toxicant 96-h Acute Survival Test

ENVIRON

Analysis ID: Analyzed:

03-6925-5177 19 Nov-14 11:22

Endpoint: Analysis:

Proportion Survived

Single 2x2 Contingency Table

CETIS Version:

CETISv1.8.7

Official Results: Yes

CLIENT:	Pioneer Technologies	Date of Test:	14-Nov-14
PROJECT:	West Bay		
COMMENTS:		Test Type:	Neathes RT

Integ	er: I-factor
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
8	9.34
9.35	7 * 0 000 hr * 5 000 hr * 5 20
9.34	W+34534
0.33	4
9.32	4
9.31	
9.30	A
9.29	6
9.28	
9.27	
9.26	
9.25	

Sample	Mod	NH3T (mg/L)	salinity (ppt)	pH	temp (C)	temp (K)	i-factor	Mad MUSII (man/I
Target / Sample Name		Actual	22.9	8.0	24.1	297.26	9.3053	Mod NH3U (mg/L
Example 3.5		2.000	10.0	7.5	5.0	278.16	9.3053	#VALUE! 0.008
					0.0	270.10	9.2750	0.008
15								
30		20	28	7.8	19.0	292.16	9.3187	0.384
60		37.1 70.9	28	7.7	19.0	292.16	9.3187	0.568
120			28	7.6	19.0	292.16	9.3187	0.866
240		142 291	28	7.5	19.1	292.26	9.3187	1.391
2.70		291	28	7.5	19.2	292.36	9.3187	2.871
	_							
			-					
	_							
	_							
				-		-		
							-	
				-	-			
					-			

96-HOUR REFERENCE TOXICANT TEST WATER QUALITY DATASHEET

CLIENT	PROJECT	SPECIES	LABORATORY		PROTOCOL
Pioneer Technologies	West Bay	Neanthes arenaceodentata		Port Gamble	PSEP 1995
JOB NUMBER	PROJECT MANAGER	TEST START DATE:	TIME	TEST END DATE	TIME
0	Bill Gardiner	14Nov14	1111	18Nov14	0940
Test ID 1140505, 42	LOT#: 33, 44C535				

WATER QUALITY DATA

DILTIN.WA	T.BATCH		TEMP	REC#				REFER	RENCE TOX. MATER	IAL			REFERENCE 1	TOXICANT
FSW111	414.01							am	monium chloride				ammonia	- TAN
	TEST	ONDITIO	ONS				DO (mg/L)		TEMP(C)		SAL (ppt)		рН	
	TEOT	ONDITIO	JIVO				> 4.6		20 <u>+</u> 1	1	28 <u>+</u> 2		7 - 9	TECHNICIAN
CLIENT/ EN	IVIRON ID	CONCEN	TRATION	DAY	REP		D.O.		TEMP.		SALINITY		pH	
	VIIIONID	value	units	DAI	KEF	meter	mg/L	meter	°C	meter	ppt	meter	unit	WQ TECH
Ref.Tox ammonia -	Target:	0	mg/L	0	Stock	8	7.8	8	19.0	8	28	8	7.8	He 11114
TAN	Actual:		IIIg/L	4	Rep3	8	7.4	8	19.9	8	29	8	7.9	11118 1
Ref.Tox ammonia -	Target:	15	mg/L	0	Stock	8	8.0	8	19.0	8	78	8	7.8	11/4 2/
TAN	Actual:	20.0	mg/L	4	Rep 3	8	7.3	8	20.1	8	29	8	7.9	118
Ref.Tox ammonia -	Target:	30	mg/L	0	Stock	8	8.1	8	19.0	8	28	8	7.7	11/1/34
TAN	Actual:	37.1	mg/L	4	Rep 3	8	7.2	8	20.1	8	29	8	7.9	1118
Ref.Tox ammonia -	Target:	60	mg/L	0	Stock	8	8.1	8	19.0	8	28	8	7.6	11/14 74
TAN	Actual:	70.9	mg/L	4	Rep 5	8	7.0	8	76.1	8	29	8	7.8	11/18 14
Ref.Tox ammonia -	Target:	120	mg/L	0	Stock	8	8.1	8	19.1	8	28	8	7.5	11/14 7
TAN	Actual:	142	mg/L	4	Rep ³	8	7.0	8	20.1	9	29	8	7.8	11/18
Ref.Tox ammonia -	Target:	240	mg/L	0	Stock	8	8.1	8	19.2	8	28	8	7.5	11/484
TAN	Actual:	291	mg/L	4	Rep	-			-					

ENVIRON -- HOUR REFERENCE TOXICAN FEST **OBSERVATION DATASHEET**

SPECIES CLIENT Neanthes arenaceodentata PROJECT JOB NUMBER PROJECT MANAGER LABORATORY Pioneer Technologies PROTOCOL West Bay Bill Gardiner Port Gamble **PSEP 1995** SURVIVAL & BEHAVIOR DATA **OBSERVATIONS KEY** DAY 1 DAY 2 N = normal Q = quiescent D = Discolored DAY 3 INITIAL # OF ORGANISMS DAY 4 11/15/14 11/16/14 DATE 11/17 18/14 F = Floating on surface TECHNICIAN TECHNICIAN TECHNICIAN TECHNICIAN CONC INITIAL # CLIENT/ ENVIRON ID REP MK value units if differs #ALIVE : #DEAD ! OBS #ALIVE : #DEAD : OBS #ALIVE : #DEAD : OBS #ALIVE | #DEAD | OBS N Ref.Tox.-mg/L ammonia - TAN Ø Ø Ø N N Ref.Tox.-mg/L ammonia - TAN Ø W Ø N Ref.Tox.-mg/L ammonia - TAN Ø Ø N N Ø Q Ref.Tox.-mg/L ammonia - TAN Ø Ø V D Ø Q Ø Ref.Tox.-mg/L ammonia - TAN Ø Ø V Ø Ref.Tox.-mg/L ammonia - TAN F

Neanthes NH₃ RT

Assumptions in Model Stock ammonia concentration is 10,000 mg/L = 10 mg/mL

Actual Reading reading from

Tes	st Solutions		W.Y.
Measured Concentration	Desired Concentration	Volume	Volume of stock to reach desired concentration
mg/L	mg/L	mL	mL stock to increase
		院	SALT WATER (mL)
291	240	750	28.948
142	120	750	14.474
70.9	60	750	7.237
37.1	30	750	3.619
20.0	15	750	1.809
0	0		
			以 自己的一种

APPENDIX A.3.1

Mytilus galloprovincialis
Benthic Larval Bioassay
Laboratory Data Sheets

TEST INITIATION DATA SHEET

CLIENT	PROJECT	JOB NUMBER	PROJECT MANAGER	LABORATORY	PROTOCOL
Pioneer Technologies	West Bay		Bill Gardiner	Port Gamble .	PSEP (1995)

TEST ORGANISM SPAWNING DATA

SPECIES Mytilu	us galloprov	incialis	
SUPPLIER	ylor Sl	nellAsh	TS 4821
NI P	1114	TIME RECEIVED	11/19/14
	1308 Shock	1426	FINAL SPAWNING TIME
10	FEMALES	Good	Good
BEGIN FER	25	TS 1740	Good

SAMPLE STORAGE
4 Degrees Celsius - dark
SEDIMENT TREATMENT
none
TEST CHAMBERS
1 L Mason Jars
EXPOSURE VOLUME
900mL seawater / 18g Sediment
TIME OF SHAKE
1045
TIME OF INITIATION
1740

SPECIAL CONDITIONS

UV LIGHT EXPOSURE (YES/NO)	AERATION FROM TEST INITIATION (YES/NO)
No	No
SCREEN TUBE TEST (YES/NO)	OTHER (EXPLAIN)
No	

EMBRYO DENSITY CALCULATIONS
655 STOCK

78.100 = 7800 ess/aL

27,000 (Deliver 3.5 mL/5.

Make Ad; stock

PST | 2700 = 0.35 .40

Dille- 14 al ess stock

Deliver

O.100ml

LARVAL DEVELOPMENT TEST ENDPOINT DATA

			SPECIES	tilus gallopro	vincialis	
Pioneer Technologies	West Bay	JOB NUMBER	2 20 0000	T MANAGER I Gardiner	Port Gamble	PROTOCOL PSEP (1995)
TS4821		TEST START DATE:	4	TIME 1740	TEST END DATE: T	1700

Alle Manual Manual Control	7	NUMBER	OBSERVATION D	DATA		
CLIENT/ ID	REP	NORMAL		DATE	TECHNICIAN	COMMENTS
	1	MA	379	11/25/14	JW	
STOCKING DENSITY	2		354			
	3		410			
	4		402			
	5	Ψ	381			
	1	303	8			
	2	364	19			
Control /	3	364	16			
	4	319	16			
	5	345	13			
	1	348	12			
	2	287	13			
Ref Carr /	3	354	12			
	4	359	1/			
	5	322	7			
	1	324	14			
	2	323	9			
Carr 20 /	3	374	4			
	4	340	17			
	5	311	4			
	1	320	8			
	2	250	9			
SD-WB-56 /	3	270	8			
	4	303	8			
	5	281	13		1	

LARVAL DEVELOPMENT TEST ENDPOINT DATA

			Mytilus gallopro	vincialis	
Pioneer Technologies	West Bay	JOB NUMBER	PROJECT MANAGER Bill Gardiner	Port Gamble / .	PROTOCOL PSEP (1995)
ORGANISM BATCH TS 482	1	19 NOV 14	1740	21 NOV 14	1700

No.		A CONTRACTOR OF THE PARTY OF TH	OBSERVATION	DATA		
CLIENT/ ID	REP	NUMBER NORMAL	NUMBER	DATE	TECHNICIAN	COMMENTS
	1	347	7	11/25/14	WU	
	2	298	26			
SD-WB-57 /	3	357	14			
	4	337	14			
1100	5	320	4			
	1	325	6			
	2	331	5			
SD-WB-58 /	3	349	4			
	4	336	4			
erature approximately	5	326	7			
	1	343	4			
	2	334	12			
SD-WB-59 /	3	302	24			
	4	322	13			
	5	311	16		1	

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

CLIENT	PROJECT	SPECIES		LAB / LOCATION	PROTOCOL
Pioneer Technologies	West Bay	Mytilus gallop	rovincialis	Port Gamble / .	PSEP (1995)
JOB NUMBER	PROJECT MANAGER	TEST START DATE	TIME	TEST END DATE	TIME
	Bill Gardiner	19Nov14	1740	21 NOV 14	1700

(TEST			DO	0 (mg/L) >5.0	7	emp (°C) 16±1		Sal (ppt) 26 ± 1		pH 7-9	A	MA.		Sulfide NA	ГЕСН	E E
CLIENTI ID	DAY	Random #	REP	meter	D.O. mg/L	meter	TEMP.	moter	ALINITY	moter	pH unit	A Techn.	mg/L (total)	Techn.	mg/L (Total)	TE	DATE
Control /	0	8	WQ Surr	8	7.9	8	16.2	8	28	8	7.8	#6	0.00	LUUS		KB	11/19/14
Control /	1	1	WQ Sun	В	2.5	8	16.6	8	28	8	7.8					JL	11/20
Control /	2		WQ Surr	8	33.7	8	٥٠٠٥	8	28	8	27.8	146	0.00	HE	0.005	KB	11/21
Control /	3		WQ Surr														
Control /	4	V	WQ Surr														
Ref Carr /	0	11	WQ Surr	8	7.7	9	10.5	8	28	8	2.7	#6	0.00	mal	0.019	KB	11/19/14
Ref Carr /	1)	WQ Surr	8	7.5	8	17.2	8	28	8	7,8					Ju	11/20
Ref Carr /	2		WQ Surr	8	2.8	8	(6.7	8	28	8	7.0	196	0.00	HE	0.001	KB	11/21
Ref Carr /	3		WQ Surr														
Ref Carr /	4	V	WQ Surr														
Carr 20 /	0	20	WQ Surr	8	4.9	ъ	16.4	8	28	8	7.7	HE	0.00	HATE	0.055	KB	19/19/14
Carr 20 /	1	1	WQ Surr	8	6.7	8	16.6	8	28	8	7.8					JU	11/20
Carr 20 /	2		WQ Surr	8	6.8	8	16.3	8	ኃፄ	8	7,7	KK	0.00	HE	0.012	148	લાય
Carr 20 /	3		WQ Surr												1		
Carr 20 /	4	J	WQ Surr												T . 9		

De Bath temp. decreased by 0.50c. Je 11/20 Dwc. KB. 1/21/14

WATER QUALITY DATA

EINVIRO		-	IPROJECT				WATER						LAB/LOCAT	TON		To	ROTOCOL
Pioneer Tech	nologies			Nest I	Bav	51	PECIES	Mytil	us gallop	rovinc	ialis		1	ort Gan	nble / .		SEP (199
DB NUMBER	3		PROJECT MANA			TE	ST START DA				TIME	-	TEST END DA	TE		TI	ME
	_		Bi	II Gard	diner			19No	v14		174	6	21 NOV 14 1700				1700
* Day 384 observátions needed o	only if developms	ent endpoint not m	et by day 2		-	VVA	TER QU	ALIT	Y DATA							-	
c	TEST	-		D	O (mg/L) >5.0	1	Temp (°C) Sal (ppt) 16±1 28±1		1	рН 7-9		Ammo nia NA	Sulfide NA				
	T				D.O.		TEMP.		SALINITY		pl∛	1	AMONIA	s	ULFIDE	TECH	DATE
CLIENT/ ID	DAY	Random 8	REP	meter	mg/l.	meler	°C	mater	ppt	meter	unii	Techn.	mg/L (total)	Techn.	mg/L (Total)		
SD-WB-56 /	0	16	WQ Surr	В	7.0	8	16.5	8	28	8	7.7	HE	0.00	щь	0.114	KB	11-14-1
SD-WB-56 /	i	1	WQ Surr	8	6,4	8	1210	8	28	8	7.7					U	11/20
SD-WB-56/	2		WQ Surr	8	7.0	8	17.0	В	20	8	7.7	198	0.00	H8	0.016	(48	11/21
SD-WB-56 /	3		WQ Surr							COLUMN CO				Total Control			
SD-WB-56 /	4	W	WQ Surr														
SD-WB-57 /	0	22	WQ Surr	8	7.4	8	16.4	40	20	8	7.7	34	0.06	MME	0.082	148	11-19-14
SD-WB-57 /	1		WQ Surr	8	6.6	8	17,1	8	28	8	7,7					JL	11/20
SD-WB-57 /	2		WQ Surr	8	6.1	8	168	ક	28	8	7.6	KB	0.00	HE	0. 016	KB	115/11
SD-WB-57 /	3		WQ Surr														
SD-WB-57 /	4	V	WQ Surr														
SD-WB-58 /	0	5	WQ Surr	8	7.7	8	164	8	28	8	7.8	稅	0.00	MMR	0.111	kg.	11.19.14
SD-WB-58 /	1	1	WQ Surr	8	5.9	8	4.4	8	28	8	7.7					JL	11/20
SD-WB-58 /	2		WQ Surr	8	6.0	8	16.9	8	28	285	7.6	KB	6+0D	¥2	0.008	Kg	11/21
SD-WB-58 /	3		WQ Surr														
SD-WB-58 /	4	V	WQ Surr														

1) Bath temp. tracreased by 0.5°C. In 11/20. decreased in

LARVAL DEVELOPMENT TEST WATER QUALITY DATA

LIENT	-	-	IPROJECT			Isi	PECIES			-	-		LAB/LOCATION			ĪÞ	[PROTOCOL]	
Pioneer Tecl	nnologies		-	Nest E	Bay		LOILO	Mytil	us gallopi	rovinc	ialis		A Transport		nble / .		PSEP (1995)	
NUMBER PROJECT MANAGER Bill Gardiner					diner	TEST START DATE 19Nov14 TIME 1740				0	TEST END DATE 2 NOV 4			T	1700			
* Day 554 observations needed	only if developme	nt endpoint not m	ret by day 2			WA	TER QU	ALIT	Y DATA									
TEST CONDITIONS				DO (ing/L) >5.0		1	Temp (°C) 16 ± 1		Sal (ppt) 28 ± 1		pH 7-9		MA.	Sulfide NA		ТВСН	DATE	
CLIENT/ ID	DAY	Random #	REP		D.O.		TEMP.	meter	ALINITY	meter	pH noit	Toolen.	MINONIA	-	ULFIDE	P	PO	
and the same time	-	-	1	moter	mg/L	meter		diesos	ppt	luncies	nda	TOUTH.	mg/L (total)	Techn.	mg/L (Tota!)	-	-	
SD-WB-59 /	0	15	WQ Surr	8	7.6	9	16.3	8	28	8	7.7	#2	0.00	MMG	0.098	KB	11-19-14	
SD-WB-59 /	1		WQ Surr	8	65	8	120	8	28	3	7,7					JL	11/20	
SD-WB-59 /	2		WQ Surr	ष्ठ	b.5	8	16.5	8	28	8	7.6	YUG	E. 00	HE	0.008	13	4/21	
SD-WB-59 /	3		WQ Surr							-								
SD-WB-59 /	4	y	WQ Surr															

Ammonia and Sulfide Analysis Record

lient/Project: Pioneer/Wust Bar	y Mytilus Spp. land	Test Duration (days):
PRETEST / UNITION OVER	AL FINAL / OTHER (circ	
Comments:	*	
	Standards Temperature	Sample temperature should be within
	Standards Temperature Temperature:	Sample temperature should be within ±1°C of standards temperature at time and date of analysis.

Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sulf. mg/L
Swar.	1419/14 MM		21.5		N		/	0.00
				1	1			0.019
							/	0.055
		0.00					*	0.114
		0.00				1		0.082
		0.00				/		0.111
y	9	0.00	V	V	,	/		0.098
					-			
			-					
			-					
	or Rep	or Rep Sampling and Initials Swar. 141914 MM5	Sampling and Value (mg/L) Swin.	Sampling and Initials Value (mg/L) Swin 1419 14 Mms 0.00 21.5	Sampling and Initials Value (mg/L) Reading and Initials	Conc. or Rep Sampling and Initials Value (mg/L) C Reading and Initials Preserved (Y/N)	Conc. or Rep Sampling and Initials Value (mg/L) Reading and Initials Preserved (Y/N) PH Swan 11/19/14 MMS 0.00 21.5	Sampling and Initials (mg/L) Swar. 141914 MMS 0.00 21.5 Reading and Initials (ppt) 0.00 0.00 0.00 0.00 0.00

Ammonia and Sulfide Analysis Record

Client/Project: PIONEER WEST BAY	Organism:	Test Duration (days):
	AL / FINAL / OTHER (circ YING (OV) / POREWATER	le one) DAY of TEST: 2 (PW) (circle one)
Calibration S	Standards Temperature	Sample temperature should be within
Date:	Temperature:	\pm 1°C of standards temperature at time and date of analysis.
uladas	21.1.0	and date of analysis.

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sulf. mg/L
P	swer.	11/21/14 Kang	0.00	20.6	11/21/14 MEKB	N			0.005
REF-CARR			0.00	20.1					0.001
CAMER 20			0.00	20.1					0.012
50. WB - 66			0.00	20:1			,		0.016
" 57			0.00	20.1					0.010
" sg			0.00	201					0.00%
" 59	7	J	0.00	20-1	1			\	0.008

ORGANISM RECEIPT LOG

Date:			Time:		M	Batch No.	
11/19	(14		09	35		TS4	158.
Organism /	Project;	+8	4 Fun		Source:	S 001	d
Madages.	us / was	1 Day	4 500	mar 1	Taylar		
On	File					Yes	e Attached
Phone:	File				Contact:	Tile	
No. Ordered	d:		No. Rece	eived:	L	Source Ba	itch:
Condition o	f Organisms				Approximate Adult		
Shipper: OPS		·	***************************************		B of L (Track	ing No.)	1004821
Condition o	f Container:		0	1000000	Received By:		300000000000000000000000000000000000000
Container	D.O. (mg/L)		Temp. (°C)	5	luctivity or Salinity ude Units)	pH (Units)	Technician (Initials)
1	* -			(3	MMS
						NP)	
Notes:	; receive	d du	y 0	7.3°	C		
			0				

APPENDIX A.3.2

Mytilus galloprovincialis
Benthic Larval Bioassay
Reference Toxicant Test

29 Dec-14 10:17 (1 of 1)

Mussel Shell Development Test

All Matching Labs

Protocol: EPA/600/R-95/136 (1995)

Test Type: Development-Survival

Organism: Mytilus galloprovincialis (Bay Mussel

Endpoint: Combined Proportion Normal

Material: Source:

Total Ammonia Reference Toxicant-REF

-1s Warning Limit: 3.387 -2s Action Limit: 1.329 2.058 Sigma: CV: 37.80% +1s Warning Limit: 7.503 +2s Action Limit: 9.561

Qual	ity	Control	Data
------	-----	---------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2013	Mar	26	18:15	5.579	0.1341	0.06518			03-8532-3895	00-6308-0782	NewFields
2		Apr	3	0:00	6.805	1.36	0.661			10-3604-5723	04-8356-0800	The state of the s
3		May	9	17:15	4.927	-0.5183	-0.2518			00-6360-9095	16-4147-0802	NewFields
4		Jul	1	19:00	2.895	-2.55	-1.239	(-)		19-5961-2730	13-0986-6895	NewFields
5			17	17:55	4.313	-1.132	-0.5499	3.4		18-2536-1347	00-8750-2223	NewFields
6		Aug	7	19:00	4.051	-1.394	-0.6774			04-7788-4843	09-8595-7999	NewFields
7			28	16:55	5.063	-0.3823	-0.1857			19-6611-9162	04-7207-2891	NewFields
В		Sep	6	18:55	7.413	1.968	0.9563			15-9826-4846	08-5407-1877	NewFields
9		Oct	16	20:15	7.813	2.368	1.15	(+)		06-1596-0976	02-5933-8680	NewFields
10		Nov	23	17:25	6.092	0.6465	0.3141			16-7309-8662	15-4529-5520	NewFields
11	2014	Jan	8	18:22	2.527	-2.918	-1.418	(-)		17-8058-8048	06-8566-9958	NewFields
12			15	18:45	6.625	1.18	0.5732	1.6		13-6807-1804	14-8094-6245	NewFields
13			22	18:47	5.072	-0.3729	-0.1812			13-2808-9359	13-2338-2483	NewFields
14			25	20:20	9.018	3.573	1.736	(+)		14-2680-8854	01-2301-1257	NewFields
15		Feb	14	15:45	6.063	0.618	0.3003	. ,		00-9581-0604	10-3047-2486	NewFields
16		Mar	5	19:35	4.03	-1.415	-0.6876			00-1473-4954	06-0848-4308	NewFields
17		Apr	4	19:30	3.594	-1.851	-0.8993			00-0374-9463	01-3815-4471	NewFields
18		Jun	6	18:15	2.465	-2.98	-1.448	(-)		06-9491-1560	12-3152-8677	ENVIRON
19		Aug	20	18:55	4.595	-0.8497	-0.4129	17		03-3666-4351	12-9663-9075	ENVIRON
20			25	19:45	9.954	4.509	2.191	(+)	(+)	18-5120-4553	05-8275-9550	
21		Nov	19	17:40	1.863	-3.582	-1.741	(-)	(.)	16-6497-0143	19-4546-4847	ENVIRON ENVIRON

29 Dec-14 10:17 (1 of 1)

Mussel Shell Development Test

All Matching Labs

Test Type: Development-Survival

Protocol: EPA/600/R-95/136 (1995)

31.90%

Organism: Mytilus galloprovincialis (Bay Mussel

Endpoint: Combined Proportion Normal

Material: Source:

Total Ammonia Reference Toxicant-REF

+2s Action Limit: 4.975

+1s Warning Limit: 4.006

Qual	lity	Contro	Data
Qua	ILV	COLLING	Data

Sigma:

0.969

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2013	Mar	26	18:15	3.62	0.583	0.6017			03-8532-3895	01-1639-1779	NewFields
2		Apr	3	0:00	3.85	0.813	0.839			10-3604-5723	13-5448-8759	NewFields
3		May	9	17:15	2.85	-0.187	-0.193			00-6360-9095	00-7540-8630	NewFields
4		Jul	1	19:00	1.46	-1.577	-1.627	(-)		19-5961-2730	20-9160-8614	NewFields
5			17	17:55	3.05	0.013	0.01342			18-2536-1347	04-3468-0815	NewFields
6		Aug	7	19:00	2.79	-0.247	-0.2549			04-7788-4843	18-8631-2521	NewFields
7			28	16:55	2.39	-0.647	-0.6677			19-6611-9162	06-3129-4473	NewFields
8		Sep	6	18:55	3.68	0.643	0.6636			15-9826-4846	11-1511-0674	Charles and the second
9		Oct	16	20:15	4.445	1.408	1.453	(+)		06-1596-0976	11-9282-8356	NewFields
10		Nov	23	17:25	3.64	0.603	0.6223			16-7309-8662	17-7125-0481	NewFields
11	2014	Jan	8	18:22	1.48	-1.557	-1.607	(-)		17-8058-8048	14-0659-1138	NewFields
12			15	18:45	2.32	-0.717	-0.7399	2.0		13-6807-1804	20-8888-7287	NewFields
13			22	18:47	4.16	1.123	1.159	(+)		13-2808-9359	09-9457-8825	NewFields
14			25	20:20	4.99	1.953	2.015	(+)	(+)	14-2680-8854	19-4144-0794	NewFields
15		Feb	14	15:45	3.5	0.463	0.4778			00-9581-0604	14-2175-7836	NewFields
16		Mar	5	19:35	2.27	-0.767	-0.7915			00-1473-4954	06-9188-5839	NewFields
17		Apr	4	19:30	2.22	-0.817	-0.8431			00-0374-9463	13-5593-8276	NewFields
18		Jun	6	18:15	1.93	-1.107	-1.142	(-)		06-9491-1560	15-1591-7876	ENVIRON
19		Aug	20	18:55	2.62	-0.417	-0.4303	. /		03-3666-4351	02-5771-3266	ENVIRON
20			25	19:45	3.48	0.443	0.4572			18-5120-4553	02-0328-1110	ENVIRON
21		Nov	19	17:40	1.3	-1.737	-1.793	(-)		16-6497-0143	01-0463-0999	ENVIRON

29 Dec-14 10:19 (1 of 1)

Mussel Shell Development Test

All Matching Labs

Test Type: Development-Survival **Protocol:** EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel Endpoint: Combined Proportion Normal

Material: Source:

Unionized Ammonia Reference Toxicant-REF

 Mean:
 0.07694
 Count:
 20
 -1s Warning Limit:
 0.03938
 -2s Action Limit:
 0.00182

 Sigma:
 0.03756
 CV:
 48.80%
 +1s Warning Limit:
 0.1145
 +2s Action Limit:
 0.1521

Quality	Control	Data
---------	---------	------

Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
	2013	Mar	26	18:15	0.1079	0.03094	0.8238			10-2444-9875	09-9596-0674	NewFields
		Apr	3	0:00	0.1168	0.03991	1.062	(+)		20-6076-9735	05-3848-1619	NewFields
3		May	9	17:15	0.1144	0.03746	0.9973			14-3450-0734	06-3515-6667	NewFields
1		Jul	1	19:00	0.07187	-0.00507	-0.1349			10-8846-7294	05-7595-2849	NewFields
5			17	17:55	0.0548	-0.02214	-0.5895			10-3414-5102	08-1738-2772	Control of the Asien
6		Aug	7	19:00	0.06027	-0.01667	-0.4438			10-7217-0339	06-7338-0554	NewFields
7			28	16:55	0.07491	-0.00204	-0.05418			19-6745-0030	16-9398-7287	NewFields
3		Sep	6	18:55	0.08923	0.01229	0.3272			20-4996-9287	13-4360-8251	NewFields
)		Oct	16	20:15	0.0914	0.01446	0.3849			08-6327-9927	19-9515-4386	NewFields
0		Nov	23	17:25	0.04496	-0.03198	-0.8514			13-8738-6674	02-5355-5019	NewFields
1	2014	Jan	8	18:22	0.01919	-0.05775	-1.538	(-)		02-3576-5336	17-1917-6754	NewFields
2			15	18:45	0.0814	0.004458	0.1187			06-9099-5939	00-9901-2590	NewFields
3			22	18:47	0.04434	-0.0326	-0.868			15-7285-0453	02-5494-3481	NewFields
4			25	20:20	0.08179	0.004845	0.129			04-0859-3739	09-7301-2928	NewFields
5		Feb	14	15:45	0.0653	-0.01164	-0.3099			15-0233-5150	16-5673-1462	NewFields
6		Mar	5	19:35	0.03552	-0.04142	-1.103	(-)		02-2074-6026	13-5083-6151	NewFields
7		Apr	4	19:30	0.06967	-0.00727	-0.1935			08-9987-7352	06-2075-5011	NewFields
8		Jun	6	18:15	0.03982	-0.03712	-0.9882			20-1079-3686	12-0135-9289	ENVIRON
9		Aug	20	18:55	0.08475	0.007807	0.2078			14-9751-1227	04-1532-7472	ENVIRON
20			25	19:45	0.1905	0.1136	3.023	(+)	(+)	00-8792-7550	08-9753-5531	ENVIRON
1		Nov	19	17:40	0.0203	-0.05664	-1.508	(-)		06-3984-9090	13-7269-9515	ENVIRON

Report Date:

29 Dec-14 10:19 (1 of 1)

Mussel Shell Development Test

All Matching Labs

Test Type: Development-Survival **Protocol:** EPA/600/R-95/136 (1995)

Organism: Mytilus galloprovincialis (Bay Mussel

Material:

Unionized Ammonia

Endpoint: Combined Proportion Normal

Source:

Reference Toxicant-REF

Qualit	y Con	trol Data	а									
Point	Year	Month	Day	Time	QC Data	Delta	Sigma	Warning	Action	Test ID	Analysis ID	Laboratory
1	2013	Mar	26	18:15	0.07	0.02645	1.556	(+)		10-2444-9875	00-8976-6127	NewFields
2		Apr	3	0:00	0.076	0.03245	1.909	(+)		20-6076-9735	14-2423-4592	NewFields
3		May	9	17:15	0.071	0.02745	1.615	(+)		14-3450-0734	19-5425-3899	NewFields
4		Jul	1	19:00	0.036	-0.00755	-0.4441			10-8846-7294	11-2659-9719	NewFields
5			17	17:55	0.039	-0.00455	-0.2676			10-3414-5102	05-6701-2859	NewFields
6		Aug	7	19:00	0.042	-0.00155	-0.09118			10-7217-0339	15-9321-6181	NewFields
7			28	16:55	0.036	-0.00755	-0.4441			19-6745-0030	11-4907-1298	NewFields
8		Sep	6	18:55	0.044	0.00045	0.02647			20-4996-9287	08-7464-1360	NewFields
9		Oct	16	20:15	0.052	0.00845	0.4971			08-6327-9927	20-4743-8794	NewFields
10		Nov	23	17:25	0.027	-0.01655	-0.9735			13-8738-6674	05-6624-9800	NewFields
11	2014	Jan	8	18:22	0.011	-0.03255	-1.915	(-)		02-3576-5336	15-3876-8049	NewFields
12			15	18:45	0.035	-0.00855	-0.5029	1.0		06-9099-5939	01-3042-8920	NewFields
13			22	18:47	0.037	-0.00655	-0.3853			15-7285-0453	12-0010-0113	NewFields
14			25	20:20	0.045	0.00145	0.08529			04-0859-3739	20-3446-9116	NewFields
15		Feb	14	15:45	0.037	-0.00655	-0.3853			15-0233-5150	19-2470-0896	NewFields
16		Mar	5	19:35	0.02	-0.02355	-1.385	(-)		02-2074-6026	10-8335-1484	NewFields
17		Apr	4	19:30	0.043	-0.00055	-0.03235	9.0		08-9987-7352	01-2582-7818	NewFields
18		Jun	6	18:15	0.031	-0.01255	-0.7382			20-1079-3686	02-2339-8824	ENVIRON
19		Aug	20	18:55	0.054	0.01045	0.6147			14-9751-1227	13-4768-2245	ENVIRON
20			25	19:45	0.065	0.02145	1.262	(+)		00-8792-7550	14-4895-9621	ENVIRON
21		Nov	19	17:40	0.014	-0.02955	-1.738	(-)		06-3984-9090	04-2355-4660	ENVIRON

CETIS Summary Report

Report Date: Test Code: 29 Dec-14 10:07 (p 1 of 2) 633D6D9F | 16-6497-0143

									est	coae:	633	יון דפטטטפר	0-0497-014
Mussel Shell	Development Te	est											ENVIRON
Batch ID:	02-7927-0323	Test	Type:	Developm	ent-S	Survival		ļ	Analy	st:			
Start Date:	19 Nov-14 17:4	0 Prot	ocol:	EPA/600/I	R-95/	136 (1995)			Diluer	nt: La	aboratory Sea	water	
Ending Date:	21 Nov-14 17:0	0 Spec	cies:	Mytilus ga	llopro	ovincialis		Е	3rine:	: No	ot Applicable		
Duration:	47h	Soul	ce:	Taylor She	ellfish	1		A	Age:				
Sample ID:	09-2254-4068	Code	e:	36FCE7C	4			(Client	:: In	ternal Lab		
Sample Date:	05 May-14	Mate	rial:	Total Amn	nonia			F	Projec	ct: Re	eference Toxi	cant	
Receive Date:	05 May-14	Soul	ce:	Reference	Toxi	cant							
Sample Age:	198d 18h	Stati	on:	p140505.5	57								
Comparison S	Summary												
Analysis ID	Endpoint		NOEL		L	TOEL	PMSD	TU		Method			
01-0463-0999	Combined Prop			2.63		1.849	10.7%				Multiple Com	•	
12-3890-7500	Proportion Surv	vived	20.1	>20.1	l	NA	28.3%			Dunnett	Multiple Com	parison Te	st
Point Estimat	e Summary												
Analysis ID	Endpoint		Level	mg/L		95% LCL		TU		Method			
19-4546-4847	Combined Prop			1.863		1.855	1.871			-	an-Kärber		
17-7898-0696	Proportion Surv	/ived	EC5	>20.1		N/A	N/A			Linear II	nterpolation (I	CPIN)	
			EC10	>20.1		N/A	N/A						
			EC15	>20.1		N/A	N/A						
			EC20	>20.1		N/A	N/A						
			EC25	>20.1		N/A	N/A						
			EC40 EC50	>20.1 >20.1		N/A N/A	N/A N/A						
Test Acceptak	oility												
Analysis ID	Endpoint		Attrib	ute		Test Stat	TAC Limi	its		Overlap	Decision		
12-3890-7500	Proportion Surv	/ived	Contro	ol Resp		0.8511	0.5 - NL			Yes	Passes A	cceptability	Criteria
17-7898-0696	Proportion Surv	/ived	Contro	ol Resp		0.8511	0.5 - NL			Yes	Passes A	cceptability	Criteria
01-0463-0999	Combined Prop	ortion Norm	PMSD)		0.107	NL - 0.25			No	Passes A	cceptability	Criteria
Combined Pro	portion Norma	I Summary											
C-mg/L	Control Type	Count	Mean	95%			Min	Max		Std Err	Std Dev	CV%	%Effect
0	Dilution Water	3	0.8139			0.9655	0.7532	0.875		0.03524		7.5%	0.0%
0.573		3	0.8312			0.9685	0.7714	0.880		0.03192		6.65%	-2.13%
1.3		3	0.858	0.792	27	0.9233	0.8416	0.888		0.01517		3.06%	-5.43%
2.63		3	0.002			0.00905	0	0.005		0.0015	0.002597	100.0%	99.68%
5.36		3	0.0060			0.01351	0.002597	0.007	792	0.00173		49.49%	99.26%
11.1		3	0	0		0	0	0		0	0		100.0%
20.1		3	0	0		0	0	0		0	0		100.0%
-	ırvived Summaı	-											
C-mg/L	Control Type	Count	Mean	95%			Min	Max	0	Std Err		CV%	%Effect
0 572	Dilution Water	3	0.851			1	0.7844	0.916		0.03824		7.78%	0.0%
0.573		3	0.870			1	0.8	0.932		0.03844		7.65%	-2.24%
1.3		3	0.9082			0.9661	0.8935	0.935		0.01344		2.56%	-6.71%
2.63		3	0.884	0.705		1	0.8234	0.963	U	0.04159		8.15%	-3.87%
5.36		3	0.9004			1	0.7506	1 037	7	0.07623		14.66% 10.6%	-5.8% 3.26%
11.1		3	0.8788			1	0.7714	0.937		0.05376		10.6%	-3.26%
20.1		3	0.8684	4 0.664	+ I	1	0.774	0.924	,	0.04748	0.08223	9.47%	-2.04%

CETIS Summary Report

Report Date: Test Code: 29 Dec-14 10:07 (p 2 of 2) 633D6D9F | 16-6497-0143

					rest code.	03300091 10-0497-0143
Mussel Sh	ell Development To	est				ENVIRON
Combined	Proportion Norma	l Detail				
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3		
0	Dilution Water	0.813	0.7532	0.8753		
0.573		0.7714	0.8805	0.8416		
1.3		0.8416	0.8442	0.8883		
2.63		0	0.002597	0.005195		
5.36		0.007792	0.002597	0.007792		
11.1		0	0	0		
20.1		0	0	0		
Proportion	Survived Detail					
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3		
0	Dilution Water	0.8519	0.7844	0.9169		
0.573		8.0	0.9325	0.8779		
1.3		0.8961	0.8935	0.9351		
2.63		0.8649	0.8234	0.9636		
5.36		0.9506	0.7506	1		
11.1		0.9273	0.7714	0.9377		
20.1		0.9247	0.774	0.9065		
20.1						
	Proportion Norma					
Combined	Proportion Norma		Rep 2	Rep 3		
Combined C-mg/L	_	l Binomials		Rep 3 337/385		
Combined C-mg/L	Control Type	I Binomials Rep 1	Rep 2			
Combined C-mg/L 0 0.573	Control Type	Rep 1 313/385	Rep 2 290/385	337/385		
Combined C-mg/L 0 0.573 1.3	Control Type	Rep 1 313/385 297/385	Rep 2 290/385 339/385	337/385 324/385		
Combined C-mg/L 0 0.573 1.3 2.63	Control Type	Rep 1 313/385 297/385 324/385	Rep 2 290/385 339/385 325/385	337/385 324/385 342/385		
Combined C-mg/L 0 0.573 1.3 2.63 5.36	Control Type	Rep 1 313/385 297/385 324/385 0/385	Rep 2 290/385 339/385 325/385 1/385	337/385 324/385 342/385 2/385		
Combined C-mg/L 0 0.573 1.3 2.63 5.36	Control Type	Rep 1 313/385 297/385 324/385 0/385 3/385	Rep 2 290/385 339/385 325/385 1/385 1/385	337/385 324/385 342/385 2/385 3/385		
Combined C-mg/L 0 0.573 1.3 2.63 5.36 11.1 20.1	Control Type	Rep 1 313/385 297/385 324/385 0/385 3/385 0/385 0/385	Rep 2 290/385 339/385 325/385 1/385 1/385 0/385	337/385 324/385 342/385 2/385 3/385 0/385		
Combined C-mg/L 0 0.573 1.3 2.63 5.36 11.1 20.1	Control Type Dilution Water	Rep 1 313/385 297/385 324/385 0/385 3/385 0/385 0/385	Rep 2 290/385 339/385 325/385 1/385 1/385 0/385	337/385 324/385 342/385 2/385 3/385 0/385		
Combined C-mg/L 0 0.573 1.3 2.63 5.36 11.1 20.1 Proportion	Control Type Dilution Water Survived Binomia	Rep 1 313/385 297/385 324/385 0/385 3/385 0/385 0/385	Rep 2 290/385 339/385 325/385 1/385 1/385 0/385 0/385	337/385 324/385 342/385 2/385 3/385 0/385 0/385		
Combined C-mg/L 0 0.573 1.3 2.63 5.36 11.1 20.1 Proportion C-mg/L	Control Type Dilution Water Survived Binomia Control Type	Rep 1 313/385 297/385 324/385 0/385 3/385 0/385 0/385 Rep 1	Rep 2 290/385 339/385 325/385 1/385 0/385 0/385 Rep 2	337/385 324/385 342/385 2/385 3/385 0/385 0/385		
Combined C-mg/L 0 0.573 1.3 2.63 5.36 11.1 20.1 Proportion C-mg/L 0 0.573	Control Type Dilution Water Survived Binomia Control Type	Rep 1 313/385 297/385 324/385 0/385 3/385 0/385 0/385 Rep 1 328/385	Rep 2 290/385 339/385 325/385 1/385 1/385 0/385 0/385 Rep 2 302/385	337/385 324/385 342/385 2/385 3/385 0/385 0/385 Rep 3 353/385		
Combined C-mg/L 0 0.573 1.3 2.63 5.36 11.1 20.1 Proportion C-mg/L 0 0.573 1.3	Control Type Dilution Water Survived Binomia Control Type	Rep 1 313/385 297/385 324/385 0/385 3/385 0/385 0/385 81s Rep 1 328/385 308/385	Rep 2 290/385 339/385 325/385 1/385 1/385 0/385 0/385 Rep 2 302/385 359/385	337/385 324/385 342/385 2/385 3/385 0/385 0/385 Rep 3 353/385 338/385		
Combined C-mg/L 0 0.573 1.3 2.63 5.36 11.1 20.1 Proportion C-mg/L 0	Control Type Dilution Water Survived Binomia Control Type	Rep 1 313/385 297/385 324/385 0/385 0/385 0/385 0/385 Nass Rep 1 328/385 308/385 345/385	Rep 2 290/385 339/385 325/385 1/385 0/385 0/385 Rep 2 302/385 359/385 344/385	337/385 324/385 342/385 2/385 3/385 0/385 0/385 Rep 3 353/385 338/385 360/385		
Combined C-mg/L 0 0.573 1.3 2.63 5.36 11.1 20.1 Proportion C-mg/L 0 0.573 1.3 2.63	Control Type Dilution Water Survived Binomia Control Type	Rep 1 313/385 297/385 324/385 0/385 3/385 0/385 0/385 Nass Rep 1 328/385 308/385 345/385 333/385	Rep 2 290/385 339/385 325/385 1/385 1/385 0/385 0/385 Rep 2 302/385 359/385 344/385 317/385	337/385 324/385 342/385 2/385 3/385 0/385 0/385 Rep 3 353/385 338/385 360/385 371/385		

CETIS Test Data Worksheet

Report Date: Test Code: 29 Dec-14 10:02 (p 1 of 1) 16-6497-0143/633D6D9F

Mussel Shel	I Deve	lopm	ent Tes	st						ENVIRON
Start Date: End Date: Sample Date	21 N	Nov-1	4 17:40 4 17:00 4		Mytilus galloprovi EPA/600/R-95/13 Total Ammonia			Sample Code: Sample Source: Sample Station:	36FCE7C4 Reference Toxicant p140505.57	
C-mg/L	Code	Rep	Pos	Initial Density	Final Density	# Counted	# Normal		Notes	
0	D	1	21	385	328	328	313			
0	D	2	18	385	302	302	290			
0	D	3	5	385	353	353	337			
0.573		1	8	385	308	308	297			
0.573		2	9	385	359	359	339			
0.573		3	4	385	338	338	324			
1.3		1	2	385	345	345	324			
1.3		2	12	385	344	344	325			
1.3		3	15	385	360	360	342			
2.63		1	11	385	333	333	0			
2.63		2	14	385	317	317	1			
2.63		3	1	385	371	371	2			
5.36		1	7	385	366	366	3			
5.36		2	10	385	289	289	1			
5.36		3	3	385	404	404	3			
11.1		1	13	385	357	357	0			
11.1		2	20	385	297	297	0			
11.1		3	19	385	361	361	0			
20.1		1	17	385	356	356	0			
20.1		2	16	385	298	298	0			
20.1		3	6	385	349	349	0			

CETIS Summary Report

Report Date: Test Code: 29 Dec-14 10:16 (p 1 of 2) 26235282 | 06-3984-9090

									1631	coue.		202	200202 00	J-000 4 -000
Mussel Shell	Development Te	est												ENVIRON
Batch ID: Start Date: Ending Date: Duration:	06-7743-6136 19 Nov-14 17:4 21 Nov-14 17:0 47h	0 Prot	ocol: cies:	EPA Mytil	elopment-S /600/R-95/ us gallopro or Shellfish	136 (1995) vincialis			Analy Dilue Brine Age:	nt: L	Laboratory Seawater Not Applicable		vater	
Sample ID:	16-4767-5590	Code	e:	6235	588C6				Clien	t: Ir	nternal	Lab		
Sample Date:	05 May-14	Mate	erial:	Unio	nized Amm	nonia			Proje	ct: R	: Reference Toxicant			
Receive Date:	: 05 May-14	Soul	rce:	Refe	rence Toxi	cant								
Sample Age:	198d 18h	Stati	on:	p140	505.57									
Comparison	Summary													
Analysis ID	Endpoint		NOEL		LOEL	TOEL	PMSD	TU		Method				
04-2355-4660					0.029	0.02015	10.7%						parison Tes	
06-0313-6726	Proportion Surv	vived	0.222		>0.222	NA	28.3%			Dunnet	tt Multip	ole Comp	parison Tes	st
Point Estimat	te Summary													
Analysis ID	Endpoint		Level		mg/L	95% LCL	95% UCL	TU		Method				
13-7269-9515					0.0203	0.02021	0.02039			Spearn				
02-7795-6681	Proportion Surv	rived	EC5		>0.222	N/A	N/A			Linear	Interpo	lation (IC	CPIN)	
			EC10		>0.222	N/A	N/A							
			EC15		>0.222	N/A	N/A							
			EC20 EC25		>0.222	N/A	N/A							
			EC25		>0.222 >0.222	N/A N/A	N/A N/A							
			EC50		>0.222	N/A	N/A							
Test Acceptal	hility				V									
Analysis ID	Endpoint		Attrib	ute		Test Stat	TAC Limi	its		Overla	p De	ecision		
02-7795-6681	Proportion Surv	vived	Contro	ol Res	sp	0.8511	0.5 - NL			Yes	Pa	asses Ac	ceptability	Criteria
06-0313-6726	Proportion Surv	vived	Contro	ol Res	sp	0.8511	0.5 - NL			Yes	Pa	asses Ac	ceptability	Criteria
04-2355-4660	Combined Prop	ortion Norm	PMSE)		0.107	NL - 0.25			No	Pa	asses Ac	ceptability	Criteria
Combined Pr	oportion Norma	Summary												
C-mg/L	Control Type	Count	Mean		95% LCL	95% UCL	Min	Max		Std Err	r St	d Dev	CV%	%Effect
0	Dilution Water	3	0.813		0.6622	0.9655	0.7532	0.875		0.0352		06104	7.5%	0.0%
0.006		3	0.831	2	0.6938	0.9685	0.7714	0.880		0.0319		05528	6.65%	-2.13%
0.014		3	0.858		0.7927	0.9233	0.8416	0.888		0.0151		02628	3.06%	-5.43%
0.029		3	0.002		0	0.00905	0			0.0015			100.0%	99.68%
0.059		3	0.0060	061		0.01351	0.002597		792	0.0017		002999	49.49%	99.26%
0.121 0.222		3	0 0		0	0 0	0	0 0		0 0	0			100.0% 100.0%
			0					0		0	- 0			100.076
•	urvived Summar	•									_			
C-mg/L	Control Type Dilution Water	Count	Mean		95% LCL	95% UCL	Min	Max	20	Std Eri		d Dev	CV%	%Effect
0.006	טווענוטוז water	3	0.851 0.870		0.6865 0.7047	1	0.7844 0.8	0.916		0.0382		06624 06658	7.78% 7.65%	0.0%
0.006		3	0.870		0.7047	1 0.9661	0.8 0.8935	0.932		0.0384		02328	7.65% 2.56%	-2.24% -6.71%
0.014		3	0.884		0.705	1	0.8234	0.963		0.0134		02326	8.15%	-3.87%
0.059		3	0.9004		0.703	1	0.7506	1	,,	0.0762		132	14.66%	-5.8%
0.121		3	0.878		0.6475	1	0.7714	0.937	77	0.0702		09312	10.6%	-3.26%
0.222		3	0.8684		0.6641	1	0.774	0.924		0.0474		08223	9.47%	-2.04%

CETIS Summary Report

Report Date: Test Code: 29 Dec-14 10:16 (p 2 of 2) 26235282 | 06-3984-9090

					ENVIDO
Mussel Sh	ell Development To	est			ENVIRO
Combined	Proportion Norma	l Detail			
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3	
0	Dilution Water	0.813	0.7532	0.8753	
0.006		0.7714	0.8805	0.8416	
0.014		0.8416	0.8442	0.8883	
0.029		0	0.002597	0.005195	
0.059		0.007792	0.002597	0.007792	
0.121		0	0	0	
0.222		0	0	0	
Proportion	Survived Detail				
C-mg/L	Control Type	Rep 1	Rep 2	Rep 3	
0	Dilution Water	0.8519	0.7844	0.9169	
0.006		0.8	0.9325	0.8779	
0.014		0.8961	0.8935	0.9351	
0.029		0.8649	0.8234	0.9636	
0.059		0.9506	0.7506	1	
		0.0070	0.7714	0.9377	
0.121		0.9273	0.7714	0.5511	
0.121 0.222		0.9273	0.774	0.9065	
0.222	Proportion Norma	0.9247	0.774		
0.222 Combined	Proportion Norma	0.9247	0.774		
0.222 Combined C-mg/L	•	0.9247	0.774	0.9065	
0.222 Combined C-mg/L	Control Type	0.9247 I Binomials Rep 1	0.774 Rep 2	0.9065 Rep 3	
0.222 Combined C-mg/L 0 0.006	Control Type	0.9247 I Binomials Rep 1 313/385	0.774 Rep 2 290/385	0.9065 Rep 3 337/385	
0.222 Combined C-mg/L 0 0.006 0.014	Control Type	0.9247 I Binomials Rep 1 313/385 297/385	0.774 Rep 2 290/385 339/385	0.9065 Rep 3 337/385 324/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029	Control Type	0.9247 I Binomials Rep 1 313/385 297/385 324/385	0.774 Rep 2 290/385 339/385 325/385	0.9065 Rep 3 337/385 324/385 342/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029 0.059	Control Type	0.9247 I Binomials Rep 1 313/385 297/385 324/385 0/385	0.774 Rep 2 290/385 339/385 325/385 1/385	0.9065 Rep 3 337/385 324/385 342/385 2/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029 0.059 0.121	Control Type	0.9247 I Binomials Rep 1 313/385 297/385 324/385 0/385 3/385	0.774 Rep 2 290/385 339/385 325/385 1/385 1/385	0.9065 Rep 3 337/385 324/385 342/385 2/385 3/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029 0.059 0.121 0.222	Control Type	0.9247 I Binomials Rep 1 313/385 297/385 324/385 0/385 3/385 0/385 0/385	0.774 Rep 2 290/385 339/385 325/385 1/385 1/385 0/385	0.9065 Rep 3 337/385 324/385 342/385 2/385 3/385 0/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029 0.059 0.121 0.222 Proportion	Control Type Dilution Water	0.9247 I Binomials Rep 1 313/385 297/385 324/385 0/385 3/385 0/385 0/385	0.774 Rep 2 290/385 339/385 325/385 1/385 1/385 0/385	0.9065 Rep 3 337/385 324/385 342/385 2/385 3/385 0/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029 0.059 0.121 0.222 Proportion C-mg/L 0	Control Type Dilution Water Survived Binomia	0.9247 I Binomials Rep 1 313/385 297/385 324/385 0/385 0/385 0/385 0/385 Rep 1 328/385	0.774 Rep 2 290/385 339/385 325/385 1/385 0/385 0/385 Rep 2 302/385	0.9065 Rep 3 337/385 324/385 342/385 2/385 2/385 0/385 0/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029 0.059 0.121 0.222 Proportion C-mg/L 0	Control Type Dilution Water Survived Binomia Control Type	0.9247 I Binomials Rep 1 313/385 297/385 324/385 0/385 3/385 0/385 0/385 Rep 1	0.774 Rep 2 290/385 339/385 325/385 1/385 0/385 0/385 Rep 2	0.9065 Rep 3 337/385 324/385 342/385 2/385 3/385 0/385 0/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029 0.059 0.121 0.222 Proportion C-mg/L 0 0.006	Control Type Dilution Water Survived Binomia Control Type	0.9247 I Binomials Rep 1 313/385 297/385 324/385 0/385 0/385 0/385 0/385 Rep 1 328/385	0.774 Rep 2 290/385 339/385 325/385 1/385 0/385 0/385 Rep 2 302/385	0.9065 Rep 3 337/385 324/385 342/385 2/385 3/385 0/385 0/385 Rep 3 353/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029 0.059 0.121 0.222 Proportion C-mg/L 0 0.006 0.014	Control Type Dilution Water Survived Binomia Control Type	0.9247 I Binomials Rep 1 313/385 297/385 324/385 0/385 0/385 0/385 0/385 Ils Rep 1 328/385 308/385	0.774 Rep 2 290/385 339/385 325/385 1/385 0/385 0/385 Rep 2 302/385 359/385	0.9065 Rep 3 337/385 324/385 342/385 2/385 3/385 0/385 0/385 Rep 3 353/385 338/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029 0.059 0.121 0.222 Proportion C-mg/L 0 0.006 0.014 0.029	Control Type Dilution Water Survived Binomia Control Type	0.9247 I Binomials Rep 1 313/385 297/385 324/385 0/385 0/385 0/385 0/385 Ils Rep 1 328/385 308/385 345/385	0.774 Rep 2 290/385 339/385 325/385 1/385 0/385 0/385 Rep 2 302/385 359/385 344/385	0.9065 Rep 3 337/385 324/385 342/385 2/385 0/385 0/385 0/385 Rep 3 353/385 338/385 338/385 360/385	
0.222 Combined C-mg/L 0 0.006 0.014 0.029 0.059 0.121 0.222	Control Type Dilution Water Survived Binomia Control Type	0.9247 I Binomials Rep 1 313/385 297/385 324/385 0/385 0/385 0/385 0/385 NIS Rep 1 328/385 308/385 345/385 333/385	0.774 Rep 2 290/385 339/385 325/385 1/385 1/385 0/385 0/385 Rep 2 302/385 359/385 344/385 317/385	0.9065 Rep 3 337/385 324/385 342/385 2/385 3/385 0/385 0/385 Rep 3 353/385 338/385 360/385 371/385	

CETIS Test Data Worksheet

Report Date: Test Code: 29 Dec-14 10:15 (p 1 of 1) 06-3984-9090/26235282

Mussel Shell Development Test ENVIRON Start Date: 19 Nov-14 17:40 Species: Mytilus galloprovincialis Sample Code: 623588C6 21 Nov-14 17:00 **Protocol:** EPA/600/R-95/136 (1995) End Date: Sample Source: Reference Toxicant Sample Date: 05 May-14 Material: Unionized Ammonia Sample Station: p140505.57 Rep Initial Density Final Density C-mg/L Code Pos # Counted # Normal D D D 0.006 0.006 0.006 0.014 0.014 0.014 0.029 0.029 0.029 0.059 0.059 0.059 0.121 0.121 0.121 0.222 0.222 0.222

CLIENT:	Pioneer Tech.	Date of Test:	19-Nov-14
PROJECT:	West Bay	Test Type:	Mytilus RT
COMMENTS:			

To convert Total Ammonia (mg/L) to Free (un-ionized) Ammonia (mg/L) enter the corresponding total ammonia, salinity, temperature, and pH.

Intege	r: I-factor
1	9.26
2	9.27
3	9.28
4	9.29
5	9.30
6	9.32
7	9.33
8	9.34

Sample	Mod	NH3T (mg/L)	salinity (ppt)	рН	temp (C)	temp (K)	i-factor	Mod NH3U (mg/L)
Target / Sample Name		Actual	22.9	8.0	24.1	297.26	9.3053	#VALUE!
Example 3.5		2.000	10.0	7.5	5.0	278.16	9.2750	0.008
2								
0.75		0.573	30	7.7	14.5	287.66	9.3242	0.006
1.5		1.3	30	7.7	14.5	287.66	9.3242	0.014
3		2.63	30	7.7	14.6	287.76	9.3242	0.029
6		5.36	30	7.7	14.6	287.76	9.3242	0.059
12		11.1	30	7.7	14.5	287.66	9.3242	0.121
18		20	30	7.7	14.7	287.86	9.3242	0.222
9								
)								
2								
3								
1								
5								
6								
7								
3								
)								
2								
3								
1								
5								
5								
7								
3								
9								
)	<u> </u>							
	<u> </u>							
2	<u> </u>							
3	<u> </u>							
1	<u> </u>							
<u> </u>	<u> </u>							
5	<u> </u>							ļ
<u></u>	<u> </u>							ļ
3	<u> </u>							ļ
9	<u> </u>							
)	<u> </u>							ļ
	<u> </u>							
2	 							
3	<u> </u>							ļ
1	<u> </u>							ļ
<u> </u>	<u> </u>							
6	1			l			i	1

LARVAL DEVELOPMENT TEST AMMONIA REF TOX WQ

CLIENT Pioneer Technologies	PROJECT West Bay	SPECIES Mytilus galloprovincialis	LAB / LOCATIO	mble / Incubator	PROTOCOL PSEP (1995)	
JOB NUMBER	PROJECT MANAGER Bill Gardiner	TEST START DATE: 19Nov14	TIME TEST END DATE		TIME 1700	
VILOSOS 53	21.44CC2C			1		

WATER QUALITY DATA

DILTIN.WAT.BA	АТСН		ORG	ANISM E	BATCH	REFERE	ENCE TOX. MATE	RIAL		REFERE	NCE TOXICAN	T	
FSW111914.	01						Ammoni	um chlorid	e		Ammonia - TAN		
W. The second					DO (mg/L) -	T	TEMP(C)	S	SAL (ppt)		рН		
the second		10			>5.0		16 <u>+</u> 1		28 ± 1		7 - 9	TECH.	DATE
CLIENT/ ID	CONCENTRATION	DAY	REP		D.O.	_	TEMP.	S	ALINITY		рН	Ĭ,	DA
	value units			meter	mg/L	meter	°C	meter	ppt	meter	unit		
	Target:	0	Stock	8	7.8	8	14.9	8	29	8	7.7	GR	11/19
Def Tax America	0 mg/L	1	Stock	8	8.3	8	16.3	8	30	8	8.0	JL	11/21
Ref.ToxAmmonia - TAN	Actual:	2	Stock	8	7.8	8	16.3	8	29	8	7.9	KR	11/21
		3	Stock										
		4	Stock										
	Target:	0	Stock	8	8.0	8	14.5	8	30	8	77	CR	11/19
	0.75 mg/L	1	Stock	8	8.2	9	16.3	8	30	8	7.9	JL	11/20
Ref.ToxAmmonia - TAN	Actual:	2	Stock	8	8.1	8	16.1	8	30	8	7.9	KB	
11.114		3	Stock				10				() 1	1-0	
		4	Stock					1				1	
	Target:	0	Stock	8	8.0	8	14.5	8	30	8	7.7	CR	11/19
	1.5 mg/L	1	Stock	B	8.2	8	16.3	8	30	8	7.9	JL	4/20
Ref.ToxAmmonia -	Actual:	2	Stock	8	8.1	8	16.1	8		8	7.9		
TAN		3	Stock	-	0.1	-	(8.1	0	30	10	7.7	KB	1721
		4	Stock	-	-	-				+ +			
	Target:	0	Stock	8	0 1	0	14.6	C	30	10	27	10	11/10
	3 mg/L	1	Stock	8	8.1	8		8	30	8	1.1	CR	11/19
Ref.ToxAmmonia -	Actual:	2	Stock	8		1	16.3	1		8	7.9	UL	up
TAN		3	Stock	8	8.1	8	16.2	8	90	8	7.9	KB	11/2
		4				-		-		+		-	
	Target:		Stock	0	10	-	1/1 /	-		10		100	1.1.
		0	Stock	0	8.2	8	14.6	8	30	8	1.7	CR	1119
Ref.ToxAmmonia -	6 mg/L	1	Stock	8	8.2	8	16.3	8	30	8	7.9	U	4/20
TAN	Actual:	2	Stock	8	8.1	8	16.2	8	30	8	7.9	56	4(21
		3	Stock			1						-	
	Tarret	4	Stock	-	-	-						-	
	Target:	0	Stock	8	8.2	8	14.5	8	30	8	7.7	CR	11/19
Ref.ToxAmmonia -	12 mg/L	1	Stock	8	8.2	8	16.3	8	30	8	7.9	0	11/20
TAN	Actual:	2	Stock	8	8.1	8	16.2	8	30	8	7.9	KB	ulze
		3 Stock											
		4	Stock										
	Target:	0	Stock	0	8.2	8	14.7	8	30	8	7.7	CR	11/19
6.76% 20000	18 mg/L	1	Stock	8	812	18	16.3	8	30	8	7.9	Ui	11/20
Ref.ToxAmmonia - TAN	Actual:	2	Stock	-	8.1	8	16.3	8	30	8	7.9	KB	1424
	1	3	Stock		7							1	-
		4	Stock										

LARVAL DEVELOPMENT TEST AMMONIA REF TOX OBSERVATION SHEET

			SPECIES Myti	ilus galloprovin	cialis	
CLIENT Pioneer Technologies	PROJECT West Bay	JOB NUMBER	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	MANAGER Gardiner	LAB / LOCATION Port Gamble / Incuba	PROTOCOL ator PSEP (1995)
P140505,57	organism batch TS4821	TEST START DATE:		1740	TEST END DATE:	1700

LARVAL OBSERVATION DATA

CLIENT/ ID	management and other states	NC. units	VIAL NUMBER	REP	NUMBER NORMAL	NUMBER ABNORMAL	DATE	TECHNICIAN	COMMENTS
CANCELLE STATE OF THE CANCELLE STATE OF THE		de la constitución de la constit		i	313	15	11/25/14	JW	
Ref.Tox Ammonia - TAN	0	mg/		2	296	12			
				3	337	16			
		mg/ L		1	297	1/			
Ref.Tox Ammonia - TAN	0.75			2	339	20			
				3	324	14			
Ref.Tox Ammonia - TAN		mg/ L		1	324	21			
	1.5			2	325	19			
			Carried States	3	342	18			TV.
Ref.Tox Ammonia - TAN	3	mg/		1	6	333			
				2	1	316			
				3	2	369			
	6	mg/ L		4	3	363			
Ref.Tox Ammonia - TAN				2	1	288			
				3	3	401			
				1	0	357			
Ref.Tox Ammonia - TAN	12	mg/		2	0	297			
	Catholic III			3	0	361			
				1	0	356			
Ref.Tox Ammonia - TAN	18	mg/		2	0	298			
				3	D	349	J		

	1	379	 4	402
STOCKING DENSITY	2	354	 5	38
	3	410	_	

Biv NH₃ RT

Assumptions in Model

Stock ammonia concentration is 9,000 mg/L = 9 mg/mL

Actual Reading

9327

Test	Solutions	Volume of stock to reach desired		
Measured Desired Concentration Concentration		Volume	concentration	
mg/L	mg/L	mL	mL stock to increase	
			SALT WATE	
0.573	0.75	250	0.030	
1.3	1.5	250	0.060	
2.63	3	250	0.121	
5 36.	6	250	0.241	
11.1 +2.70	12	250	0.482	
20.1	18	250	0.724	
	i de		HARRIE AL AND	
			A LIP AND SEASON AND A	

OMR DE 11119

APPENDIX B STATISTICAL COMPARISONS

Project Name: V	Vest Bay Eohs
-----------------	---------------

Samp ID: SD-WB-56 Alias: Replicates: 5 Mean: 95	Ref ID: Ref Carr Alias: Replicates: 5
Replicates: 5	Replicates: 5
•	•
Mean: 95	
	Mean: 95
SD: 3.536	SD: 8.66
Tr Mean: 83.479	Tr Mean: 96.858
Trans SD: 17.556	Trans SD: 24.758

Shapiro-Wilk Results: Levene's Results: Test Results:

Residual Mean:		0	Test Residual Mean:	12.445	Statistic:	Student's t
Residual SD:	13.92	26	Test Residual SD:	10.705	Balanced Design:	Yes
SS:	3684.55	57	Ref. Residual Mean:	21.281	Transformation:	ArcSin
K:		5	Ref. Residual SD:	6.845		
b:	58.68	34	Deg. of Freedom:	8		
						Experimental Hypothesis
Alpha Level:	0.0)5	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.934	17	Calculated Value:	1.5548	Alternate:	x1 < x2
Critical Value:	<= 0.842		Critical Value:	>= 1.860		

Normally Variances Degrees of Freedom: 8
Distributed: Yes Homogeneous: Yes Experimental Alpha Level: 0.05

Override Option: N/A

Experimental Alpha Level: 0.05
Calculated Value: 0.9857
Critical Value: >= 1.860
Accept Null Hypothesis: Yes

Power:

Replicate	Test	Trans.	Reference	Trans. Reference		Levene's Test	Levene's Reference	Mann- Whitney		Shipiro- Wilk
Number	Data	Test Data	Data	Data		Residuals	Residuals	Ranks	Rankits	Residuals
	1	90	71.565	80	63.435	11.914	ļ	33.423		-33.423
	2	95	77.079	100	114.592	6.4	ļ	17.734		-19.779
	3	95	77.079	95	77.079	6.4	ļ	19.779		-11.914
	4	100	114.592	100	114.592	31.113	3	17.734		-6.4
	5	95	77.079	100	114.592	6.4	ļ	17.734		-6.4
	6									-6.4
	7									17.734
	8									17.734
	9									17.734
	10									31.113

Project Name:	West Bay Eohs
---------------	---------------

Override Option: N/A

	Sample: Samp ID: Alias: Replicates: Mean: SD: Tr Mean: Trans SD:	x1 SD-WB-57 5 95 3.536 83.479 17.556				Ref Samp: Ref ID: Alias: Replicates: Mean: SD: Tr Mean: Trans SD:	x2 Ref Carr 95 8.66 96.858 24.758	5 5 3	
Shapiro-Wilk Results:			Levene's Results:			Test Results:			
	Residual Mean: Residual SD: SS: K: b: Alpha Level: Calculated Value: Critical Value:	0 13.926 3684.557 5 58.684 0.05 0.9347 <= 0.842		Test Residual Mean: Test Residual SD: Ref. Residual Mean: Ref. Residual SD: Deg. of Freedom: Alpha Level: Calculated Value: Critical Value:	12.445 10.705 21.283 6.845 8 0.3 1.5548 >= 1.860	5 1 5 3	Statistic: Balanced Design: Transformation: Null: Alternate:	Student's t Yes ArcSin Experimental Hypothesis x1 >= x2 x1 < x2	
	Normally Distributed:	Yes		Variances Homogeneous:	Yes			Degrees of Freedom: Experimental Alpha Level: Calculated Value:	8 0.05 0.9857

Power:

Critical Value:

Min. Difference for Power:

Accept Null Hypothesis:

>= 1.860

Yes

Replicate	Test	Trans.	Reference	Trans. Reference		Levene's Test	Levene's Reference	Mann- Whitney		Shipiro- Wilk
Number	Data	Test Data	Data	Data			Residuals	Ranks	Rankits	Residuals
	1	90	71.565	80	63.435	11.914	1	33.423		-33.423
	2	95	77.079	100	114.592	6.4	1	17.734		-19.779
	3	95	77.079	95	77.079	6.4	1	19.779		-11.914
	4	100	114.592	100	114.592	31.113	3	17.734		-6.4
	5	95	77.079	100	114.592	6.4	1	17.734		-6.4
	6									-6.4
	7									17.734
	8									17.734
	9									17.734
	10									31.113

Project Name:	West Bay Eohs
---------------	---------------

Sample:	x1	Ref Samp:	x2
Samp ID:	SD-WB-58	Ref ID:	Ref Carr
Alias:		Alias:	
Replicates:	5	Replicates:	5
Mean:	91	Mean:	95
SD:	7.416	SD:	8.66
Tr Mean:	79.647	Tr Mean:	96.858
Trans SD:	20.132	Trans SD:	24.758

Shapiro-Wilk Results: Levene's Results: Test Results:

0	Test Residual Mean:	13.978	Statistic:	Student's t
14.641	Test Residual SD:	12.691	Balanced Design:	Yes
4072.928	Ref. Residual Mean:	21.281	Transformation:	ArcSin
5	Ref. Residual SD:	6.845		
62.229	Deg. of Freedom:	8		
				Experimental Hypothesis
0.05	Alpha Level:	0.1	Null:	x1 >= x2
0.9508	Calculated Value:	1.1324	Alternate:	x1 < x2
= 0.842	Critical Value:	>= 1.860		
	14.641 4072.928 5 62.229 0.05 0.9508	14.641 Test Residual SD: 4072.928 Ref. Residual Mean: 5 Ref. Residual SD: 62.229 Deg. of Freedom: 0.05 Alpha Level: 0.9508 Calculated Value:	14.641 Test Residual SD: 12.691 4072.928 Ref. Residual Mean: 21.281 5 Ref. Residual SD: 6.845 62.229 Deg. of Freedom: 8 0.05 Alpha Level: 0.1 0.9508 Calculated Value: 1.1324	14.641 Test Residual SD: 12.691 Balanced Design: 4072.928 Ref. Residual Mean: 21.281 Transformation: 5 Ref. Residual SD: 6.845 62.229 Deg. of Freedom: 8 0.05 Alpha Level: 0.1 Null: 0.9508 Calculated Value: 1.1324 Alternate:

Degrees of Freedom: 8 Normally Variances Distributed: Yes Homogeneous: Yes Experimental Alpha Level: 0.05

Calculated Value: 1.206 Override Option: N/A Critical Value: >= 1.860

Accept Null Hypothesis: Yes

Power:

Replicate	Test	Trans.	Reference	Trans. Reference		Levene's Test	Levene's Reference	Man Whi	nn- itney		Shipiro- Wilk
Number	Data	Test Data	Data	Data		Residuals	Residuals	Ranl	ks	Rankits	Residuals
	1	80	63.435	80	63.435	16.212	!	33.423			-33.423
	2	100	114.592	100	114.592	34.944	ļ	17.734			-19.779
	3	90	71.565	95	77.079	8.082	!	19.779			-16.212
	4	90	71.565	100	114.592	8.082	!	17.734			-8.082
	5	95	77.079	100	114.592	2.568	3	17.734			-8.082
	6										-2.568
	7										17.734
	8										17.734
	9										17.734
	10										34.944

Project Name: West Bay Eohs

Sample:	x1	Ref Samp:	x2
Samp ID:	SD-WB-59	Ref ID:	Carr 20

Alias: Alias:

Replicates: 5 5 Replicates: 92 96 Mean: Mean: 6.708 SD: 4.183 SD:

Tr Mean: N/A Tr Mean: N/A Trans SD: N/A Trans SD: N/A

Shapiro-Wilk Results: Levene's Results: Test Results:

Residual Mean:	0	Test Residual Mean:	13.582	Statistic:	Mann-Whitney
Residual SD:	13.411	Test Residual SD:	12.412	Balanced Design:	Yes
SS:	3417.036	Ref. Residual Mean:	18.888	Transformation:	rank-order
K:	5	Ref. Residual SD:	4.863		
b:	52.608	Deg. of Freedom:	8		
					Experimental Hypothesis

Alpha Level: Alpha Level: 0.1 Null: x1 >= x2 0.05 Calculated Value: 0.81 Calculated Value: 0.89 Alternate: x1 < x2

Critical Value: <= 0.842 Critical Value: >= 1.860 Mann-Whitney N1:

Mann-Whitney N2: Normally Variances Degrees of Freedom:

Distributed: No Homogeneous: Yes Experimental Alpha Level: 0.05 Calculated Value: 17

Override Option: Not Invoked Critical Value: >= 21.000

5

5

Accept Null Hypothesis: Yes

Power:

		_		Trans.			Levene's	Mann-	Shipiro-
Replicate	Test	Trans.	Reference	Reference		Test	Reference	Whitney	Wilk
Number	Data	Test Data	Data	Data		Residuals	Residuals	Ranks Ran	kits Residuals
	1	95	5.5	95	5.5	3.556	13.902	1.5	-19.416
	2	85	1.5	100	9	13.422	23.61	. 1.5	-13.902
	3	95	5.5	95	5.5	3.556	13.902	3	-13.902
	4	85	1.5	90	3	13.422	19.416	5.5	-13.422
	5	100	9	100	9	33.956	23.61	5.5	-13.422
	6							5.5	-3.556
	7							5.5	-3.556
	8							9	23.61
	9							9	23.61
	10							9	33.956

Sample:	x1	Ref Samp:	x2
Samp ID:	SD-WB-56	Ref ID:	Ref Carr
Alias:		Alias:	
Replicates:	5	Replicates:	5
Mean:	0.493	Mean:	0.503
SD:	0.049	SD:	0.075
Tr Mean:	0.493	Tr Mean:	0.503
Trans SD:	0.049	Trans SD:	0.075

Shapiro-Wilk Results: Levene's Results: Test Results:

Residual Mean:	0	Test Residual Mean:	0.038	Statistic:	Student's t
Residual SD:	0.041	Test Residual SD:	0.024	Balanced Design:	Yes
SS:	0.032	Ref. Residual Mean:	0.056	Transformation:	No Transformation
K:	5	Ref. Residual SD:	0.042		
b:	0.177	Deg. of Freedom:	8		
					Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.977	Calculated Value:	0.8245	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		

Normally Variances Degrees of Freedom: 8
Distributed: Yes Homogeneous: Yes Experimental Alpha Level: 0.05

Override Option: N/A

Homogeneous: Yes

Experimental Alpha Level: 0.05
Calculated Value: 0.2498
Critical Value: >= 1.860
Accept Null Hypothesis: Yes

Power:

Replicate	Test	Trans.	Reference	Trans. Reference	2	Levene's Test	Levene's Reference	Mann- Whitney		Shipiro- Wilk
Number	Data	Test Data	Data	Data		Residuals	Residuals	Ranks	Rankits	Residuals
	1	0.528	0.528	0.534	0.534	0.035	;	0.031		-0.087
	2	0.427	0.427	0.5	0.5	0.066	;	0.003		-0.066
	3	0.479	0.479	0.454	0.454	0.014	ļ.	0.049		-0.049
	4	0.552	0.552	0.416	0.416	0.059)	0.087		-0.014
	5	0.479	0.479	0.611	0.611	0.014	ļ.	0.108		-0.014
	6									-0.003
	7									0.031
	8									0.035
	9									0.059
	10									0.108

	Project Name:	West Bay Neanthes
--	---------------	-------------------

Sample:	x1	Ref Samp:	x2
Samp ID:	SD-WB-57	Ref ID:	Ref Carr
Alias:		Alias:	
Replicates:	5	Replicates:	5
Mean:	0.537	Mean:	0.503
SD:	0.04	SD:	0.075
Tr Mean:	0.537	Tr Mean:	0.503
Trans SD:	0.04	Trans SD:	0.075

Shapiro-Wilk Results: Levene's Results: Test Results:

Residual Mean:	0	Test Residual Mean:	0.026	Statistic:	Student's t
Residual SD:	0.039	Test Residual SD:	0.027	Balanced Design:	Yes
SS:	0.029	Ref. Residual Mean:	0.056	Transformation:	No Transformation
K:	5	Ref. Residual SD:	0.042		
b:	0.168	Deg. of Freedom:	8		
					Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.9732	Calculated Value:	1.3168	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		

Normally Variances Degrees of Freedom: 8
Distributed: Yes Homogeneous: Yes Experimental Alpha Level: 0.05

Override Option: N/A

Experimental Alpha Level: 0.05
Calculated Value: -0.9001
Critical Value: >= 1.860
Accept Null Hypothesis: Yes

Power:

				Tr	ans.	Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Refere	ence Re	eference	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Da	ata	Residuals	Residuals	Ranks	Rankits	Residuals
	1	0.519	0.519	0.534	0.534	0.018	3	0.031		-0.087
	2	0.49	0.49	0.5	0.5	0.047	,	0.003		-0.049
	3	0.541	0.541	0.454	0.454	0.004	ļ	0.049		-0.047
	4	0.598	0.598	0.416	0.416	0.061		0.087		-0.018
	5	0.538	0.538	0.611	0.611	0.001		0.108		-0.003
	6									0.001
	7									0.004
	8									0.031
	9									0.061
	10									0.108

Sample:	x1	Ref Samp:	x2
Samp ID:	SD-WB-58	Ref ID:	Ref Carr
Alias:		Alias:	
Replicates:	5	Replicates:	5
Mean:	0.507	Mean:	0.503
SD:	0.039	SD:	0.075
Tr Mean:	0.507	Tr Mean:	0.503
Trans SD:	0.039	Trans SD:	0.075

Shapiro-Wilk Results: Levene's Results: Test Results:

Residual Mean:		0	Test Residual Mean:	0.026	Statistic:	Student's t
Residual SD:	0.0	39	Test Residual SD:	0.026	Balanced Design:	Yes
SS:	0.0	29	Ref. Residual Mean:	0.056	Transformation:	No Transformation
K:		5	Ref. Residual SD:	0.042		
b:	0.1	67	Deg. of Freedom:	8		
						Experimental Hypothesis
Alpha Level:	0.	05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.97	26	Calculated Value:	1.3335	Alternate:	x1 < x2
Critical Value:	<= 0.842		Critical Value:	>= 1.860		

Normally		Variances		Degrees of Freedom:	8
Distributed:	Voc	Homogonoous	Voc	Exporimental Alpha Lovel:	0.05

Distributed.	163	nomogeneous.	163	Experimental Alpha Level.	0.05
				Calculated Value:	-0.1004
Override Option:	N/A			Critical Value:	>= 1.860
				Accept Null Hypothesis:	Yes

	·	diculated value.	0.1004
ride Option:	N/A	Critical Value:	>= 1.860
	A	Accept Null Hypothesis:	Yes

Power:
Min. Difference for Power:

				Trans.		Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	ce Referenc	ce	Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data		Residuals	Residuals	Ranks	Rankits	Residuals
	1	0.562	0.562	0.534	0.534	0.055	0.0	31		-0.087
	2	0.499	0.499	0.5	0.5	0.008	0.0	03		-0.053
	3	0.517	0.517	0.454	0.454	0.01	0.0	49		-0.049
	4	0.454	0.454	0.416	0.416	0.053	0.0	87		-0.008
	5	0.502	0.502	0.611	0.611	0.005	0.1	08		-0.005
	6									-0.003
	7									0.01
	8									0.031
	9									0.055
	10									0.108

riojectivanie. West bay incantines	Project Name:	West Bay Neanthes
------------------------------------	---------------	-------------------

Sample:	x1	Ref Samp:	x2
Samp ID:	SD-WB-59	Ref ID:	Carr 20
Alias:		Alias:	
Replicates:	5	Replicates:	5
Mean:	0.47	Mean:	0.5
SD:	0.031	SD:	0.072
Tr Mean:	0.47	Tr Mean:	0.5
Trans SD:	0.031	Trans SD:	0.072

Test Results: Shapiro-Wilk Results: Levene's Results:

Residual Mean:	C	Test Residual Mean	: 0.023	Statistic:	Student's t
Residual SD:	0.036	Test Residual SD:	0.017	Balanced Design:	Yes
SS:	0.025	Ref. Residual Mean:	: 0.054	Transformation:	No Transformation
K:	5	Ref. Residual SD:	0.039		
b:	0.154	Deg. of Freedom:	8		
					Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.9595	Calculated Value:	1.6121	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		

Normally Variances Degrees of Freedom: 8 Distributed: Yes Homogeneous: Yes Experimental Alpha Level: 0.05

0.867 Calculated Value: Override Option: N/A Critical Value: >= 1.860

Accept Null Hypothesis: Yes

Min. Difference for Power:

Power:

Trans. Levene's Levene's Mann-Shipiro-Wilk Replicate Test Trans. Reference Reference Test Reference Whitney Number Data Test Data Data Data Residuals Residuals Ranks Rankits Residuals 0.462 0.462 0.447 0.447 0.008 0.053 -0.076 1 2 0.463 0.463 0.529 0.529 0.007 0.029 -0.053 3 0.488 0.488 0.424 0.424 0.018 0.076 -0.044

0.006 -0.008 4 0.426 0.426 0.494 0.494 0.044 5 0.509 0.509 0.106 -0.007 0.606 0.606 0.039 6 -0.006 7 0.018 8 0.029 9 0.039 10 0.106

Project Name:	West Bay Mytilus
---------------	------------------

Sample:	x1	Ref Samp:	x2
Samp ID:	SD-WB-56	Ref ID:	Ref Carr
Alias:		Alias:	
Replicates:	5	Replicates:	5
Mean:	84	Mean:	95.94
SD:	8.124	SD:	6.646
Tr Mean:	67.036	Tr Mean:	97.566
Trans SD:	6.731	Trans SD:	23.586

Levene's Results: Shapiro-Wilk Results: Test Results:

Residual Mean:	0	Test Residual Mean:	5.295	Statistic:	Approximate t
Residual SD:	11.254	Test Residual SD:	3.202	Balanced Design:	Yes
SS:	2406.429	Ref. Residual Mean:	20.431	Transformation:	ArcSin
K:	5	Ref. Residual SD:	5.874		
b:	46.835	Deg. of Freedom:	8		
					Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.9115	Calculated Value:	5.0588	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		

Normally Variances Degrees of Freedom: 5 Distributed: Yes Homogeneous: No Experimental Alpha Level: 0.1

2.7832 Calculated Value: Override Option: N/A Critical Value: >= 1.476

Accept Null Hypothesis: No

Min. Difference for Power:

Power:

Trans. Levene's Levene's Mann-Shipiro-Replicate Test Trans. Reference Reference Test Reference Whitney Wilk Number Data Test Data Data Data Residuals Residuals Ranks Rankits Residuals 94.4 76.311 100 114.592 9.275 17.026 -30.592 1

2 73.7 59.147 84.7 66.974 7.889 30.592 -20.486 3 79.6 63.15 100 3.887 17.026 -7.889 114.592 4 89.4 70.999 100 114.592 3.963 17.026 -3.887 5 82.9 95 65.574 77.079 1.463 20.486 -1.463 6 3.963 7 9.275 8 17.026 9 17.026 10 17.026 Project Name: West Bay Mytilus

Sample: x1 Ref Samp: x2 SD-WB-57 Ref ID: Ref Carr Samp ID: Alias: Alias:

5

Replicates: Replicates: 5 Mean: 96.34 Mean: 95.94 SD: 6.646 SD: 5.271

Tr Mean: N/A Tr Mean: N/A Trans SD: N/A Trans SD: N/A

Levene's Results: Shapiro-Wilk Results: Test Results:

Residual Mean:	0	Test Residual Mean:	17.962	Statistic:	Mann-Whitney
Residual SD:	14.57	Test Residual SD:	6.981	Balanced Design:	Yes
SS:	4033.29	Ref. Residual Mean:	20.431	Transformation:	rank-order
K •	5	Ref Recidual SD:	5.87/		

Ref. Residual SD: 5.874 b: 58.229 Deg. of Freedom: 8

Experimental Hypothesis Alpha Level: Null: x1 >= x2 0.05 Alpha Level: 0.1 Calculated Value: 0.8407 Calculated Value: 0.6052 Alternate: x1 < x2

Critical Value: <= 0.842 Critical Value: >= 1.860 Mann-Whitney N1: Mann-Whitney N2:

Normally Variances Degrees of Freedom:

Distributed: No Homogeneous: Yes Experimental Alpha Level: 0.1

Calculated Value: 14 Override Option: Not Invoked Critical Value: >= 20.000

5

5

Accept Null Hypothesis: Yes

Power:

				Trans.	l	_evene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference	٦	Γest	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data	F	Residuals	Residuals	Ranks	Rankits	Residuals
	1	100	8	100	8	22.452	!	17.026	1	-30.592
	2	87.9	2	84.7	1	22.495	;	30.592	2	-22.495
	3	100	8	100	8	22.452	!	17.026	3	-20.486
	4	99.4	5	100	8	6.582	!	17.026	4	-15.828
	5	94.4	3	95	4	15.828	3	20.486	5	-6.582
	6								8	17.026
	7								8	17.026
	8								8	17.026
	9								8	22.452
	10								8	22.452

	Project Name:	West Bay Mytilus
--	---------------	------------------

Sample:	x1	Ref Samp:	x2
Samp ID:	SD-WB-58	Ref ID:	Ref Carr
Alias:		Alias:	
Replicates:	5	Replicates:	5
Mean:	97.76	Mean:	95.94
SD:	1.784	SD:	6.646
Tr Mean:	87.462	Tr Mean:	97.566
Trans SD:	15.366	Trans SD:	23.586

Shapiro-Wilk Results: Levene's Results: Test Results: Test Results:

Residual Mean:	C	Test Residual Mean:	10.852	Statistic:	Approximate t
Residual SD:	12.916	Test Residual SD:	9.429	Balanced Design:	Yes
SS:	3169.653	Ref. Residual Mean:	20.431	Transformation:	ArcSin
K:	5	Ref. Residual SD:	5.874		
b:	54.362	Deg. of Freedom:	8		
					Experimental Hypothesis
Alpha Level:	0.05	Alpha Level:	0.1	Null:	x1 >= x2
Calculated Value:	0.9324	Calculated Value:	1.9282	Alternate:	x1 < x2
Critical Value:	<= 0.842	Critical Value:	>= 1.860		

Normally Variances Degrees of Freedom: 7
Distributed: Yes Homogeneous: No Experimental Alpha Level: 0.1

Override Option: N/A

Calculated Value: 0.8025
Critical Value: >= 1.415
Accept Null Hypothesis: Yes

Power:

				Trans.		Levene's	Levene's	Mann-		Shipiro-
Replicate	Test	Trans.	Reference	Reference		Test	Reference	Whitney		Wilk
Number	Data	Test Data	Data	Data		Residuals	Residuals	Ranks	Rankits	Residuals
	1	95.9	78.318	100	114.592	9.145	5	17.026		-30.592
	2	97.6	81.088	84.7	66.974	6.375	5	30.592		-20.486
	3	100	114.592	100	114.592	27.129)	17.026		-9.145
	4	99.1	84.556	100	114.592	2.906	5	17.026		-8.703
	5	96.2	78.759	95	77.079	8.703	3	20.486		-6.375
	6									-2.906
	7									17.026
	8									17.026
	9									17.026
	10									27.129

Project Name: West Bay Mytilus

 Sample:
 x1
 Ref Samp:
 x2

 Samp ID:
 SD-WB-59
 Ref ID:
 Carr 20

Alias: Alias:

 Replicates:
 5
 Replicates:
 5

 Mean:
 94.86
 Mean:
 96.52

 SD:
 4.551
 SD:
 3.528

 Tr Mean:
 N/A
 Tr Mean:
 N/A

 Trans SD:
 N/A
 Trans SD:
 N/A

Shapiro-Wilk Results: Levene's Results: Test Results:

Residual Mean:	0	Test Residual Mean:	12.348	Statistic:	Mann-Whitney
Residual SD:	12.685	Test Residual SD:	11.334	Balanced Design:	Yes
SS:	3057.209	Ref. Residual Mean:	18.424	Transformation:	rank-order

K: 5 Ref. Residual SD: 4.579 b: 49.944 Deg. of Freedom: 8

Alpha Level: 0.05 Alpha Level: 0.1 Null: x1 >= x2 Calculated Value: 0.8159 Calculated Value: 1.1114 Alternate: x1 < x2

Critical Value: <= 0.842 Critical Value: >= 1.860

Mann-Whitney N2: 5

Mann-Whitney N1:

5

Normally Variances Degrees of Freedom:
Distributed: No Homogeneous: Yes Experimental Alpha Le

Distributed: No Homogeneous: Yes Experimental Alpha Level: 0.1
Calculated Value: 16.5
Override Option: Not Invoked Critical Value: >= 20.000

Accept Null Hypothesis: Yes

Power:

				Trans.		Levene's	Levene's	Mann-	Shipiro-
Replicate	Test	Trans.	Reference	Reference		Test	Reference	Whitney	Wilk
Number	Data	Test Data	Data	Data		Residuals	Residuals	Ranks	Rankits Residuals
	1	100	9	95.6	6	30.869	13.67	1	-18.306
	2	98.5	7	95.3	5	0.758	14.083	2.5	-14.083
	3	89.1	1	100	9	13.003	23.03	2.5	-13.67
	4	95	4	100	9	6.644	23.03	4	-13.001
	5	91.7	2.5	91.7	2.5	10.467	18.306	5	-10.467
	6							6	-6.644
	7							7	-0.758
	8							9	23.03
	9							9	23.03
	10							9	30.869

APPENDIX C CHAIN-OF-CUSTODY FORMS

CHAIN JF CUSTODY

Shipping: 4770 NE View Dr. Mail.

Port Gamble, WA. 98364 Tel: (360) 297-6045, Fax: (360)297-6901

Destination: ENVIRON Sample Originator (Organization):

PIONEER TECHNOLOGIES

PERSON WHO COLLECTED SAMPLE:

SHELLA SWAIN

Address:

5205 LORPORATE CENTER CRISE SHELLA SWAIN Destination Contact: BRIAM HESTER 360-570-1700 360-570-1777 Swain Cuspioneer. Lam OLYMPIA, WA 98503 Project Name: Phone: 360-570-1700 WESTBAY Analyses: 360-5700+777 torval develop. 510assay comments or Special Instructions:
Please want for sulfide &
amonomia test: I-DAY TAT from
analytical lab. Contract/PO: Swain & Uspioneerion No. Volume & Type Sample ID Date & Time Sample Temp of Container Preservation LAB ID **Upon Receipt** 150-608-56-110114-0-0.5 2ga/bag 11/114. 8:50 SED P141104.01 250-WB-57-110114-0-0.5 2ga/bags 11/1/14: 8:06 P141104.0Z 3 SD-WB-58 -110114 - D-0.5 ~Zga/bags 11/1/14; 8:30 P141104.03 50-108-59-110114-0-0.5 Maalbags 11/114: 7:30 X P141104-04 10 11 12 13 14 15 16 17 18 19 Relinquished by: Recieved by: Relinquished by: Print Name: SHELLA SWAIN Recieved by: Matrix Codes Print Name: Print Name: W = Fresh Water Signature: Signature: Affiliation: Affiliation: SB = Salt & Brackish Water Affiliation: Date/Time: SS = Soil & Sediment Date/Time: 1300 Date/Time:

Ammonia and Sulfide Analysis Record

Client/Project: Westbay	Organism:	Test Duration (days):
	ITIAL / FINAL / OTHER (circl	e one) DAY of TEST: NA
Comments:	ERLYING (OV) / FOREWATER ((PW) (circle one)
Comments:	ion Standards Temperature	Sample temperature should be within
Comments:		

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sulf. mg/L
SD-WB-56	/	11/7/14 MX/H	€ 1.23	19.9	11/1/14 MK	7.	7.9	10	/
5D-WB-57	/		9.65	19.8			7.9	22	/
SD-WB-58	/		11.6	19.8			7.5	25	/
SD-WB-59	1	V	1.50	19.9	1	1	7.3	24	/
					0				
							F		

Ammonia and ulfide Analysis Record

D	0
Page	Of
1 450	- 01
-	

Client/Project:	Organism:	Test Duration (days):				
Pioneer Technologies	Nearthes	20 Days				
	AL / OTHER (circle one) ATER (PW) (circle one) / Comments:	DAY of TEST: pre-fee				
Calibration S	tandards Temperature	Sample temperature should be within ±1°C of				

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	рН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
SD-NB-56	Bulk sed.	11/13/14 KMB	MA	19.0	11/13/14 KMB	N	8.0	10	InL	0.060 mg/L	10	0.60 mg/L
SD-WB-57				1	1	1	7.6	24	ImL	0.078 mg/L	10	0.78 mg/
8D-NB-58							2.5	26	10mL	0.051 mg/L	1	0.051 mg/c
SD-WB-59	4	4	1	V	4	1	7.2	25	lome	0.038 mgll	1	0.038mg/L
+												

Ammonia and ılfide Analysis Record

D	·······································
Page	OI
0	

Client/Project: Pioneer Technologies	Organism:	Test Duration (days):				
	AL / OTHER (circle one) ATER (PW) (circle one) / Comments:	DAY of TEST: pre-test				
	Calibration Standards Temperature					
Calibration St	andards Temperature	Sample temperature should be within ±1°C of				

Sample ID or Description	Conc. or Rep	Date of Sampling and Initials	Ammonia Value (mg/L)	Temp °C	Date of Reading and Initials	Sample Preserved (Y/N)	pН	Sal (ppt)	Sample Volume (mL)	Measured Sulf. (mg/L)	Multi- plier	Calc- ulated Sulf. (mg/L)
SD-WB-56	Bulk set.	11/13/14 KUS	ÁЛА	19.0	11/13/14 KUB	N	8.0	10	ImL	0.060 mgl	10	0.60 mg/L
SD-WB-57	1		,	-	,	1	7.6	24	lmL	0.078 mg/L	10	0.78 mg/L
50-WB -58							7.5	26	IOML		1	0.051 mg/L
SD-W6-59	1	1	1	4	1	1	7.2	25	10mL	D.OSI mglL 0.038 mglL	. 1	0.038mg/L