

CLOSURE REQUEST REPORT

Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Agreed Order DE 10470

FSID: 1436 CSID: 4240

May 2, 2018

Ross LaGrandeur Technical Associate

Rebecca Andresen, L.G.

Vice President

2588 Geologia

Rebecca K. Andresen

Christopher Dotson Project Manager

CLOSURE REQUEST REPORT

Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Agreed Order DE 10470 F/S ID: 1436 Cleanup Site ID: 4240

Prepared for:

BP West Coast Products, LLC

Prepared by:

Arcadis U.S., Inc.

1100 Olive Way, Suite 800

Seattle, Washington 98101

Tel 206 325 5254

Fax 206 325 8218

Our Ref.:

GP09BPNA.WA60

Date:

May 2, 2018

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Ac	ronyms and	Abbreviations	i
1	Introductio	on	3
2	Backgrour	nd	4
	2.1 Site [Description and History	4
	2.1.1	Site Description	4
	2.1.2	Site History	4
	2.1.3	Regulatory History	5
	2.2 Regio	onal and Site-Specific Settings	6
	2.2.1	Geology and Hydrogeology	6
	2.2.2	Land and Water Use	6
3	Environme	ental Activities History	8
	3.1 Know	vn Historical Releases	8
	3.2 Inves	stigation Summary	8
	3.2.1	Pre-2012 Investigation	8
	3.2.2	Post-2012 Investigation	10
	3.3 Soil E	Excavation Cleanup Action	10
	3.4 Grou	ndwater Monitoring Program	11
4	2016 and	2017 Environmental Activities	12
5	Cleanup S	Standards	15
	5.1 Clear	nup Levels and Point of Compliance	15
	5.2 Appli	icable Relevant and Appropriate Requirements	15
6	Nature and	d Extent of Contamination	17
	6.1 Envir	ronmental Data Summary	17
	6.2 Histo	orical Impacts	20
	6.2.1	Historical Soil Quality	20
	6.2.2	Historical Groundwater Quality	21
	6.3 Rema	aining Impacts	22
	6.3.1	Current Soil Quality	22
	6.3.2	Current Groundwater Quality	22

CLOSURE REQUEST REPORT

7	Conceptual Site Model	24
	7.1 Human Health Conceptual Site Model	24
	7.2 Exposures to Ecological Receptors	25
8	Conclusion	26
9	References	27

TABLES

Table 1	Groundwater Gauging Data and Select Analytical Results
Table 2	Groundwater Polycyclic Aromatic Hydrocarbons Analytical Results
Table 3	Groundwater DRO and HO Silica Gel Treatment Analytical Results
Table 4	Historic Groundwater Analytical Results
Table 5	Soil Analytical Results - August 23-25, 2010
Table 6	Pre-Excavation Cleanup Action Plan Soil Analytical Results
Table 7	Historic Soil Analytical Results

TABLES (IN TEXT)

Table 5-1. Soil and Groundwater Cleanup Levels

Table 6-1. Groundwater Data Summary

Table 6-2. Soil Data Summary

Table 6-3. Soil Historical Data Summary

Table 6-4. Groundwater Historical Data SummaryTable 6-5. Groundwater Recent Data Summary

FIGURES

Site Location Map
Site Plan
Pre-Excavation Soil Sample Locations and Analytical Results – Shallow Interval Depth
Pre-Excavation Soil Sample Locations and Analytical Results – Middle Interval Depth
Pre-Excavation Soil Sample Locations and Analytical Results – Deep Interval Depth
Fourth Quarter 2016 Groundwater Analytical Data
First Quarter 2017 Groundwater Analytical Data
Second Quarter 2017 Groundwater Analytical Data
Conceptual Site Model Human Exposure Pathways

APPENDICES

Appendix A	Ecology Letter Approval of the Cleanup Action Completion Report
Appendix B	
Appendix C	Groundwater Monitoing Field Data Sheets
Appendix D	Laboratory Report and Chain-of-Custody Documentation
Appendix E	Terrestrial Ecological Evaluation Exclusion

iv

ACRONYMS AND ABBREVIATIONS

AO Agreed Order

Arcadis U.S., Inc

ARCO Atlantic Richfield Company

AST above-ground storage tank

bgs below ground surface

BNSF Burlington Northern Santa Fe Railroad

BP West Coast Products, LLC

BTEX Benzene, toluene, ethylbenzene, and total xylenes

btoc below top of casing

CAP Cleanup Action Plan

COC constituent of concern

cPAH carcinogenic polycyclic aromatic hydrocarbon

CSM conceptual site model

CSID Cleanup Site Identification Number

DRO diesel range organics

DU decision units

East Portion the portion of the former IPD property on the east side of West Bay Drive

EDB Ethylene dibromide

EDC 1,2-Dichloroethane

Ecology Washington State Department of Ecology

EIMS Environmental Information Management System

EPA Environmental Protection Agency

former IPD property former Industrial Petroleum Distributors property located at 1120 West Bay Drive

Northwest in Olympia, Washington

FSID Facility Site Identification Number

GRO gasoline range organics

CLOSURE REQUEST REPORT

HO heavy oil range organics

IPD Industrial Petroleum Distributors

Integral Consulting, Inc.

Method A Soil Cleanup Levels for Unrestricted Land Uses as presented in Table

Soil CULs 740-1 of Chapter 173-340 WAC

Method A Method A Cleanup Levels for Ground Water as presented in Table 720-1 of

Groundwater CULs Chapter 173-340 WAC

MTBE methyl tert-butyl ether

MTCA Model Toxics Control Act

Naphthalenes Naphthalene, 1-methylnapthalene, 2-mehtylnapthalene

NAVD 88 North American Vertical Datum of 1988

NFA No Further Action

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

Port of Olympia

RI Report 2012 Remedial Investigation report

SGT silica gel treatment

TPH total petroleum hydrocarbons

WAC Washington Administrative Code

West Portion the portion of the former IPD property on the west side of West Bay Drive

μg/kg micrograms per kilogram

μg/L micrograms per liter

arcadis.com ii

1 INTRODUCTION

On behalf of BP West Coast Products, LLC (BP), Arcadis U.S., Inc. (Arcadis) has prepared this Closure Request Report (closure request) for the former Industrial Petroleum Distributors (IPD) property located at 1120 West Bay Drive Northwest in Olympia, Washington (former IPD property). A former IPD property site location map is presented on Figure 1.

The former IPD property is under the Washington State Department of Ecology (Ecology) Agreed Order (AO) No. DE 10470 (Ecology 2014) including a cleanup action plan (CAP) and effective since October 24, 2014. AO No. DE 10470 requires Atlantic Richfield Company (ARCO) to implement the requirements of the CAP. In AO No. DE 10470, the former IPD property consists of two areas: the portion on the west side of West Bay Drive (West Portion) and the portion on the east side of West Bay Drive (East Portion). This closure request focused on the East Portion, the West Portion having been issued a No Further Action (NFA) letter by Ecology on June 25, 2003.

This closure request follows the submission of the Cleanup Action Completion Report (Arcadis 2017) summarizing the cleanup action implemented at the East Portion according to the CAP. The final Cleanup Action Completion Report was submitted to Ecology on September 20, 2017 with Ecology approval issued by letter on January 3, 2018 (Appendix A). This closure request presents post-cleanup action groundwater characterization data as required per the CAP as well as two additional groundwater events implemented upon Ecology request. This closure request will demonstrate that ARCO has met the requirements of the CAP as determined by the AO No. DE 10470, (Ecology 2014) and that an NFA determination is the appropriate action for the entirety of the former IPD property.

The former IPD property is formally known as Industrial Petroleum Distributors in Ecology's database. Identifiers are:

- Facility Site Identification Number (FSID): 1436
- Cleanup Site Identification Number (CSID): 4240

Previous studies, including historical investigations and remedial actions that have been conducted at the former IPD property, are summarized in the AO No. DE 10470 and the Cleanup Action Completion Report, which are both accessible on Ecology's website for the former IPD property is available at: https://fortress.wa.gov/ecy/gsp/Sitepage.aspx?csid=4240. The full file can be reviewed at Ecology's Southwest Regional Office Regional Office in Lacey (phone (360)407-6365). Data collected during investigations of the former IPD property are available in Ecology's Environmental Information Management System (EIMS) database under the EIMS Study ID AODE1628.

2 BACKGROUND

This section describes the former IPD property and summarizes its historical activities.

2.1 Site Description and History

2.1.1 Site Description

The former IPD property includes two upland parcels of land (parcel Nos. 0903-000-5000 and 0903-000-3000) on the west side of West Bay Drive and is referred to as the West Portion, and one lowland area (parcel No. 0903-000-1000) located east of West Bay Drive and is referred to as the East Portion. The former IPD property is adjacent to the Budd Inlet in the City of Olympia, Washington (See Section 2.2.1).

The West Portion was issued a NFA letter by Ecology on June 25, 2003 and the remedial investigation reports are available as public record through the Ecology website mentioned above. Fourth Street Commercial LLC has owned the 1.36-acre developed parcel No 0903-000-3000 since 2005 and used it for professional services according to the Thurston County Website

(http://tcproperty.co.thurston.wa.us/propsql/land.asp?fe=PS&pn=09030003000). The Olympia Coalition for Ecosystems Preservation has owned the 0.92-acre undeveloped parcel No 0903-000-5000 since 2017 according to the Thurston County Website

(http://tcproperty.co.thurston.wa.us/propsql/land.asp?fe=PS&pn=09030005000). The East Portion is the focus of this closure request. The Port of Olympia (Port) owns the 1.28-acre undeveloped parcel No 0903-000-1000 and Burlington Northern Santa Fe Railroad (BNSF) has a right of way of approximately 0.02-acre located on the west side of the East Portion. The East Portion is currently undeveloped vacant land. An East Portion site plan is presented on Figure 2.

2.1.2 Site History

As discussed in the AO No. DE 10470 Section - Findings of Fact, the former IPD property was in active use from the 1950s to the late 1980s and inactive but used as storage from 1989 to 1999. During its active period, the former IPD property was used as a bulk petroleum storage and distribution facility by ARCO and IPD. IPD provided infrastructure for a bulk petroleum storage facility (bulk plant) operated on the West Portion. A pipeline on the north side of the East Portion was used to transfer petroleum products (gasoline and oil) from barges into eight above-ground storage tanks (ASTs) located at the bulk plant. The pipeline surfaced above-ground on the East Portion and ran across a pier that extended approximately 400 feet into Budd Inlet. The pipeline on the East Portion was removed sometime between 1999 and 2000, likely when the bulk plant infrastructure was removed; however, an exact date could not be found after reviewing known historic documents. From 1999 to present, the former IPD property has undergone multiple phases of work intended to remove past infrastructure, assess, and remediate the environmental impacts associated with its former use. After the West Portion received a NFA in 2003, the environmental activities have been focused on the East Portion of the former IPD property. The pier was removed by the Washington State Department of Natural Resources in 2013 as part of a Budd Inlet creosote piling removal project.

A summary timeline of the former IPD property use follows:

- Early 1950s ARCO owned and developed a bulk fuel storage and distribution facility including an
 office, eight ASTs, a pier into Budd Inlet, and above and below ground product piping.
- September 1977 ARCO sold their four parcels (known as 0903-000-5000 and 0903-000-3000 on the west side and as 9101-290-0000 and 0903-000-1000 on the east side) to Darron Cole and Chester and Wilma Chaloupka (husband and wife) which subsequently leased them to IPD.
- 1979 The parcels on the east side of West Bay Drive (East Portion) were sold to the Port.
- Late 1980s to 1990s The facility was used by IPD to store waste oil.
- 1987 The parcels on the west side of West Bay Drive (West Portion) were sold to IPD.
- 1989 to 1999, the bulk plant on the West Portion was inactive but continued to store approximately 160,000 gallons of potentially contaminated waste materials.
- 1997, John J. O'Connell obtained title and, following his death, the Estate of John J. O'Connell transferred ownership of the West Portion (0903-000-5000 and 0903-000-3000) to the Trust.
- 1999, the Trust demolished the ASTs, associated piping, and pumping rack under AO No. DE 98HW-S271.

After 1999, activities were conducted to characterize and remediate the impacts from historical uses at the former IPD property (See Section 3).

2.1.3 Regulatory History

The former IPD property has been under Ecology oversight since 1994:

- 1994: the former IPD property was placed on the Washington State Confirmed and Suspected Sites
 List in 1994 after an Ecology inspection observed corrosion around the base of several ASTs and soil
 staining in several areas.
- AO No. DE 98HW-S271: in 1998, Ecology issued AO No. DE 98HW-S271 requiring waste stored onsite to be removed (West Portion).
- AO No. DE 00TCPSR-1628: in 2000, Ecology issued AO No. DE 00TCPSR-1628, requiring the preparation of a final Remedial Investigation/Feasibility Study (RI/FS) report (West and East Portions).
- Voluntary Cleanup Program (VCP) No. SW0401: implementation of the CAP written under AO DE 00TCPSR-1628 occurred through Ecology's VCP SW0401 (West Portion) in 2002/2003.
- NFA: on June 25, 2003, Ecology issued a VCP opinion letter stating that no further remedial action
 was needed for the West Portion but that further investigation under AO will take place for the East
 Portion.
- AO No. DE 8953: in 2012, Ecology issued AO No. DE 8953 fully superseding and replacing the
 previous AODE 00TCPSR-1628, included all of the tasks of the previous AO plus the preparation of a
 draft CAP for the East Portion.

 AO No. DE 10470: in 2014, Ecology issued AO No. DE 10470 including the final CAP prepared under AO No. DE 8953 requiring ARCO to implement the final CAP.

2.2 Regional and Site-Specific Settings

This section describes the local and regional hydrogeologic setting and focuses on the East Portion.

2.2.1 Geology and Hydrogeology

The East Portion is situated on West Bay, located on the southern end of Budd Inlet in Puget Sound. Puget Sound is located in the Puget Trough, which is bordered by the Cascade Range to the east and the Coast Range to the west. The East Portion elevation is approximately mean sea level, and the topography of the immediate area is generally flat, with a slope towards West Bay. The former IPD property is located in a geographic area known as the Puget Sound lowlands, on an area of Pleistoceneage glacial recessional outwash. The recessional outwash forms a layer ranging from a few feet to 150 feet thick and is characterized as poorly sorted, discontinuously bedded loose gravel with some sand, silt, and clay (Washington State Department of Water Resources 1970).

Subsurface material observed during the East Portion investigation activities generally consisted of silty clays and sandy silt to approximately 6 feet below ground surface (bgs) and fine to medium sand and fine gravel between 6 and 13 feet bgs. Large amounts of intermixed wood debris and bark dust were observed between 3 and 15 feet bgs. Observed subsurface conditions are consistent with the location of the East Portion adjacent to West Bay and are indicative of historical glacial deposition. Boring logs with lithological descriptions are included as Appendix B.

Historical groundwater elevations, tidal stages during sampling events, and groundwater electrical conductivity readings have been evaluated to determine if brackish bay water is intruding into groundwater on the East Portion. Arcadis presented a detailed evaluation of tidal influence on the hydrogeology of the East Portion in the 2012 Remedial Investigation report (RI Report) (Arcadis 2012). Groundwater gradient at the East Portion is generally toward the southeast towards West Bay at a hydraulic gradient of approximately 0.033 and 0.031 foot/foot at high and low tides, respectively. Groundwater elevation data from 2010 to 2017 are presented in Table 1. Groundwater in wells MW-7, MW-8, and MW-9 are likely experiencing influence from brackish bay water based on an evaluation of electrical conductivity and their proximity to the bay (Arcadis 2012).

2.2.2 Land and Water Use

The East Portion is zoned as urban waterfront, according to the Thurston County Geodata Center and is located within a mixed commercial/industrial and residential district of Olympia, Washington. Adjacent properties include West Bay Drive and a residential and commercial condominium complex to the west, commercial/ industrial properties to the north, and West Bay to the south and east. Based on information provided by Ecology, the city of Olympia may redevelop the East Portion for use as a public park in the future. Based on the allowable uses included for areas designated as urban waterfront in the city of Olympia's Comprehensive Plan, Arcadis conservatively estimates unrestricted future land use at the Site is foreseeable.

CLOSURE REQUEST REPORT

The East Portion is located within the city of Olympia water service area. No drinking water wells are located on the East Portion. Groundwater at the East Portion is not currently used for potable purposes and, based on the location of the East Portion within the city of Olympia water service area; future use of groundwater for potable purposes is unlikely. However, the future installation of a drinking water well on the East Portion would not be prohibited by the city of Olympia. Thus, as a conservative estimate, it is assumed that groundwater use may include drinking water beneficial uses in the future.

3 ENVIRONMENTAL ACTIVITIES HISTORY

Environmental activities at the former IPD property have been conducted since 1998 leading to the different AOs listed on Section 2.1.3. The following sections summarize the environmental activities conducted at the former IPD property based on AO No. DE 10470 (Ecology 2014) and the several independent consultants' reports. Sections 3.1.2 to 3.1.4 focus on the East Portion.

3.1 Known Historical Releases

Former IPD property activities have had several recorded incidents leading to the release of petroleum hydrocarbons:

- May 16, 1972, and November 28, 1973, Ecology Bulk Oil Handling Facility inspection logs noted that spilled petroleum products ("oil") was observed on the ground. The logs also note that the products stored included "volatile oil," "diesel oil," and "stove, heat oil."
- 1974 (approximately), two employees of the local fire department reported that a gasoline overflow spill occurred at the former IPD property during off-loading into an AST on the West Portion.
- 1984, an oil spill of an estimated 600 gallons occurred from the overfilling of one of the West Portion ASTs. Attempts were made to clean up the spill with sawdust; however, an unknown amount of oil discharged into a storm drain which discharged into Budd Inlet. Contaminated soil and sawdust were excavated and left onsite until at least the rest of that year.

In 1999, former IPD property infrastructure including ASTs and product piping were removed, concluding the former IPD property's use as a petroleum products facility. No known releases occurred beyond this date.

3.2 Investigation Summary

3.2.1 Pre-2012 Investigation

Although visits by Ecology and a Site Hazard Assessment were conducted at the former IPD property in the 1990s (See Section 2.1.3.) little information is available for the East Portion before 2000.

Following the AO No. DE 00TCPSR-1628 issued by Ecology in 2000 requiring the preparation of a RI/FS report (West and East Portions), several subsurface investigations were conducted between 2000 and 2010.

From 2000 to 2004, the investigation focused on the north side of the East Portion near the underground pipeline formerly used to transfer petroleum products:

A total of 15 soil samples (IPD-1 through IPD-6, S-1 through S-6, WBTP-01 through WBTP-03, and MW-IP [MW-6]) were collected from 16 locations at depths ranging from 2.5 to 9 feet bgs. Grab groundwater samples were collected from 10 of these locations (IPD-1 through IPD-5, W-1 [S-1] and W-2 [S-2], and WBTP-01, WBTP-02, and MW-6) (SECOR, 2001). Analytical results are summarized in Table 4 for groundwater, and Table 7 for soil.

- Selected soil samples were analyzed for: Volatile Organic Compounds (VOCs) (benzene, naphthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and total xylenes), total petroleum hydrocarbons (TPH) (gasoline range organics [GRO], diesel range organics [DRO], and heavy oil range organics [HO]), polychlorinated biphenyls (PCBs) (PCB-1016, 1221, 1232, 1242, 1248, 1254, 1260, and PCB mixture), metals (antimony, arsenic, barium, cadmium, chromium, copper, total lead, mercury, nickel, selenium, silver, thallium, and zinc), and carcinogenic polyaromatic hydrocarbons (cPAHs).
- Selected groundwater samples were analyzed for: VOCs, TPH, Metals, and cPAHs.
- The results of the historic investigations detected petroleum constituents including DRO and HO, cPAHs, metals and VOCs in both soil and groundwater samples. GRO was not detected above laboratory method reporting limits in any of the soil samples submitted for analysis but was detected in the grab groundwater samples collected from the borings. Only DRO, lead, and cPAHs were detected at concentrations exceeding applicable Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses as presented in Table 740-1 of Chapter 173-340 WAC (Method A Soil CULs) in the soil samples collected. GRO, DRO, HO, arsenic and lead were detected in the grab groundwater samples at concentrations exceeding MTCA Method A Cleanup Levels for Groundwater as presented in Table 720-1 of Chapter 173-340 WAC (Method A Groundwater CULs). Details of these investigations and analytical data are presented in the CAP (Arcadis 2014).

At the request of Ecology in their October 24, 2005 and July 31, 2006 letters, and pursuant to AO No. DE 00TCPSR-1628, additional investigations were conducted on the East Portion. Investigations consisted of soil and groundwater sampling on the East Portion and sediment sampling below the former pier in West Bay.

- In August 2009, Integral Consulting, Inc. (Integral), under subcontract to Delta Environmental Consultants, investigated marine sediments bordering the East Portion. The objective of the sediment sampling was to screen intertidal sediments for petroleum hydrocarbon impacts. The investigation included the collection of sediment samples at four locations along the abandoned pier at sampling locations and depths specified by Ecology. The samples were analyzed for TPH by Hydrocarbon Identification Method. The analytes were not detected above the laboratory reporting limits. A detailed summary of the sampling methodology is presented the Integral Sediment Screening and Sampling Report, dated December 17, 2009 (Integral 2009).
- In August and October 2010, Arcadis installed 16 soil borings to characterize the extent of petroleum hydrocarbons in soil. Seven of the borings were completed as groundwater monitoring wells (MW-6-R and MW-7 to MW-12) and sampled to evaluate potential constituents of concern (COCs) in groundwater. Soil analytical results from the 16 borings were compared to the MTCA Method A Soil CULs. Naphthalenes, cPAHs, GRO, and DRO were detected above the applicable MTCA Method A Soil CULs in soil samples collected from several locations in the northwest corner of the East Portion. Groundwater analytical results for the East Portion were compared to the MTCA Method A Groundwater CULs. Groundwater samples did not exhibit concentrations of analyzed chemicals in exceedance of the MTCA Method A Groundwater CULs. Results of groundwater sample analyses for October 2010 through 2017 are summarized in Tables 1, 2, and 3. Results of soil analyses are

presented in Tables 4 and 5. The East Portion investigation are summarized in the RI Report (Arcadis, 2012)

3.2.2 Post-2012 Investigation

Following the completion of the RI Report, Ecology issued AO No. DE 8953 fully superseding and replacing the previous AODE 00TCPSR-1628, including the tasks of the previous AO plus the preparation of a draft CAP for the East Portion. The CAP was completed in August of 2014 by Arcadis (Arcadis 2014) and proposed pre-excavation soil sampling data to be collected to determine the horizontal and vertical excavation extents. AO No. DE 10470 (Ecology 2014) was entered between ARCO and Ecology, which covered the execution of the CAP and included all prior actions.

Arcadis conducted the pre-excavation soil sampling on the East Portion in 2015 in accordance with the CAP. From August 17 to September 2, 2015, Arcadis oversaw the advancement of 71 boring locations, centered in 10-foot by 10-foot decision units (DU) with analytical samples taken from surface to 5-, 5 to 10-, and 10 to 15-foot depth intervals. This was done to thoroughly characterize the soil lithology and petroleum impacts prior to excavation of the East Portion, as detailed in the CAP and captured in the AO No. DE 10470. The pre-excavation soil sampling and a detailed plan for the execution of the CAP, were included in the Construction Plans and Specifications Summary Report (Arcadis 2016).

Analytical results from these DUs were used to define the excavation limits. Soils containing COCs with concentrations above the MTCA Method A CULs were designated to be removed, while intervals with analytical results below the MTCA Method A CUL did not need to be excavated. Boring locations and analytical results are reported in the Construction Plans and Specifications Summary Report (Arcadis, 2016). Boring logs for soil borings and existing wells are included in Appendix B. Pre-excavation soil sample locations and analytical results maps for the three sampling intervals are included as Figures 3 through 5.

Following the soil excavation cleanup action carried out in September and October of 2016, a new groundwater monitoring well (MW-13) was completed on the East Portion in December 2016 (See Section 4.).

3.3 Soil Excavation Cleanup Action

Arcadis oversaw remedial excavation activities on the East Portion between September 29, and October 24, 2016, in accordance with the CAP included in the AO No. DE 10470. Impacted soils were removed from the East Portion and disposed of at an approved landfill. Approximately 944 tons of impacted material were removed. Approximately 1,972 tons of backfill and ground surface cover was imported to the East Portion. Imported material consisted of one and one quarter inch minus crushed angular rock. The Cleanup Action Completion Report (Arcadis 2017) summarizes the cleanup action implemented at the East Portion. The final report was approved by Ecology in a letter dated January 3, 2018 (Appendix A).

3.4 Groundwater Monitoring Program

Groundwater monitoring at the East Portion has occurred with variable frequency since site investigation and remedial activities began. Data collected from 2010 to 2014 from monitoring wells MW-6R, and MW-7 through MW-12 were used along with other data to develop the CAP. In accordance with the Construction Plans and Specifications Summary Report (Arcadis, 2016), wells located within the excavation extents (MW-6R, MW-10, MW-11, MW-12 and historic well MW-6) were decommissioned. Since the 2016 soil excavation cleanup action, monitoring wells MW-7, MW-8, MW-9, and MW-13 account for the monitoring well network on the East Portion and are used to monitor groundwater conditions.

4 2016 AND 2017 ENVIRONMENTAL ACTIVITIES

This closure request follows the submission of the Cleanup Action Completion Report (Arcadis 2017) summarizing the cleanup action implemented at the East Portion according to the CAP and approved by Ecology in a letter dated January 3, 2018 (Appendix A). This closure request presents the 2016 and 2017 environmental activities post cleanup action, which included the groundwater characterization data post cleanup action as required per the CAP as well as two additional groundwater events implemented upon Ecology request.

Arcadis conducted three quarterly groundwater monitoring events after the excavation cleanup action. These monitoring events were conducted on December 15, 2016, March 9, 2017, and May 8, 2017. During the first event in December 2016, wells MW-7, MW-8, and MW-9 were gauged while MW-13 was installed by Holt Services. MW-13 was gauged and all four wells were sampled upon completion of MW-13. During the following two events in March and May 2017, wells MW-7, MW-8, MW-9, and MW-13 were gauged and sampled. Each well was sampled for the same constituents. Samples were collected via a low flow purge method with a peristaltic pump and polyethylene tubing. Field data sheets are included as Appendix C. Groundwater samples were collected in laboratory-provided bottles and placed in a cooler with ice. Samples were then submitted under standard chain-of-custody protocols. The laboratory analytical reports and chain-of-custody documents are included as Appendix D.

Groundwater samples from the December 2016 event were analyzed for the following COCs and submitted to Eurofins Lancaster Laboratories:

- TPH as GRO by Ecology Northwest Method NWTPH-Gx;
- TPH as DRO and as HO by Ecology Northwest Method NWTPH-Dx. A secondary analysis was run
 for DRO and HO after the addition of a silica gel treatment (SGT) due to the geology observed at the
 East Portion;
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX, collectively) by Environmental Protection Agency (EPA) Method 8260B;
- Methyl tert-butyl ether (MTBE) by EPA Method 8260B;
- 1,2-Dichloroethane (EDC) by EPA Method 8260B;
- Ethylene dibromide (EDB) by EPA Method 8011;
- Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene (collectively known as cPAHs) by EPA Method 8270C-SIM;
- Naphthalene, 1-methylnapthalene, 2-mehtylnapthalene (Naphthalenes, collectively) by EPA Method 8270D-SIM; and
- Total lead by EPA Method 6010C.

Groundwater samples from March and May were analyzed for the same COCs as above, however the laboratory was changed to Environmental Science Corporation. With the change of laboratory, one

method was updated: BTEX, MTBE and EDC were analyzed by EPA Method 8260C rather than EPA Method 8260B. Additionally, dissolved lead was analyzed in addition to total lead.

Observed range of depths to groundwater, in feet below top of casing (btoc), during each sampling event are as follows:

- 12/15/2016 2.02 (MW-8) to 2.89 (MW-9)
- 03/09/2017 2.33 (MW-13) to 2.66 (MW-8)
- 05/08/2017 2.52 (MW-13) to 4.22 (MW-7)

Observed range of groundwater elevations, in feet above mean sea level by North American Vertical Datum of 1988 (NAVD88) was not calculated for well MW-13 because the top of casing elevation was not surveyed. During each sampling event the range of elevations between wells MW-7 to MW-9 are as follows:

- 12/15/2016 11.79 (MW-9) to 11.98 (MW-7)
- 03/09/2017 11.32 (MW-8) to 12.06 (MW-9)
- 05/08/2017 10.32 (MW-7) to 11.37 (MW-8)

Analytical results for groundwater samples collected during these events indicate that the concentration of the following COCs are greater than its MTCA Method A Groundwater CULs:

12/15/2016

- DRO without SGT was detected at a concentration exceeding its MTCA Method A Groundwater CUL of 500 micrograms per liter (μg/L) in the sample collected from MW-8 (810 μg/L), however the same sample with SGT was below the MTCA Method A Groundwater CUL (210 μg/L).
- Remaining COCs detected above laboratory method detection limits (MDLs) did not exceed
 MTCA Method A CULs in any of the remaining samples.

03/09/2017

COCs detected above laboratory MDLs did not exceed MTCA Method A Groundwater CULs.

05/08/2017

- DRO without SGT was detected at a concentration slightly exceeding its MTCA Method A
 Groundwater CUL in the sample from MW-8 (524 μg/L), however the same sample with SGT was
 below the MTCA Method A Groundwater CUL (68.8 μg/L).
- HO without SGT was detected at a concentration exceeding its MTCA Method A Groundwater CUL of 500 μg/L in the samples from MW-8 and MW-9 (874 μg/L and 544 μg/L, respectively), however the same samples with SGT was below the laboratory MDLs (below 82.5 μg/L each).
- Remaining COCs detected above laboratory MDLs did not exceed MTCA Method A Groundwater CULs.

CLOSURE REQUEST REPORT

During the three events, results for the DRO and HO samples prepared with SGT that correspond to the untreated samples that exceeded MTCA Method A Groundwater CULs were either non-detectable above the laboratory MDL or were detected below the MTCA Method A Groundwater CULs (Table 3).

The geology observed during the pre-cleanup characterization and the excavation showed that the majority of the East Portion geology consisted of organic material/woody debris interbedded with clays and silts. Additionally, as described in the Cleanup Action Report (Arcadis, 2017), a portion of the East Portion was built out into Budd Inlet, which explains the large quantity of woody debris and organic materials in the subsurface. The breakdown of organic materials, especially in large quantities as found at the East Portion, can produce compounds that show up in the same ranges as DRO and HO petroleum constituents. This causes interference with the detection and quantification of petroleum hydrocarbons. To mitigate this interference, SGT is used to help remove these interfering compounds. Therefore, although several DRO and HO water concentrations exceeded their MTCA Method A Groundwater CULs, the DRO and HO analyses prepared with SGT from the same sample bottles were well below the applicable MTCA Method A Groundwater CULs. This demonstrates that the detections without SGT were elevated due to organic material interference and not from petroleum COCs.

Groundwater gauging data and select analytical results are summarized in Tables 1 through 3. Quarterly groundwater analytical data, including well locations, calculated groundwater elevations, and analytical results for these sampling events are depicted on Figures 6 through 8. Field data sheets from the groundwater monitoring events are included as Appendix C and the laboratory analytical reports, including DRO and HO chromatograms, are included as Appendix D.

5 CLEANUP STANDARDS

A cleanup standard consists of the following three elements [WAC 173-340-700(3)]:

- Cleanup level the concentration that must be met to protect human health and the environment.
- Point of Compliance (POC) the location where the cleanup level must be achieved.
- Other regulatory requirements commonly referred to as applicable or relevant and appropriate requirements (ARARs) that apply to a site because of the type of action or the location of the site.

Cleanup standards presented in this report are based on MTCA Method A.

5.1 Cleanup Levels and Point of Compliance

The CAP included in the AO No. DE 10470, defined the COCs as listed in the Table below and selected the MTCA Method A Soil and Groundwater CULs as the cleanup levels to be met throughout the East Portion. Additionally, the CAP defined the POC as throughout the East Portion for groundwater, i.e. throughout the monitoring well network onsite. The POCs for soil are throughout the East Portion and shall be met within the standard soil POC, which is within 15 feet of the ground surface.

Table 5-1. Soil and Groundwater Cleanup Levels

Constituents of Concern	Cleanup Levels Groundwater (µg/L)	Cleanup Levels Soil (mg/kg)
GRO ¹	800/1,000	30/100
DRO	500	2000
НО	500	2000
Benzene	5	0.03
Toluene	1,000	7
Ethylbenzene	700	6
Total Xylenes	1,000	9
MTBE	20	0.1
EDB	0.01	0.005
EDC	5	Not Applicable
n-Hexane	Not Applicable	Not Applicable
cPAHs	0.1	0.1
Naphthalenes	160	5.0
PCB mixtures	0.1	1.0
Lead	15	250

¹. MTCA Method A CULs for GRO are determined based on the presence of benzene

5.2 Applicable Relevant and Appropriate Requirements

According to WAC 173-340-360(2), all cleanup actions under MTCA must comply with applicable state and federal laws. Such laws are defined under MTCA as including ARARs. The ARARs for the East Portion include:

Federal

- Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901-6992, 40 CFR Part 260-268) –IDW
 and any other waste produced during activities at the site will be handled per RCRA regulations, and
 implemented according to WAC 173-303.
- OSHA (29 CFR 1910) Site activities will be conducted in a manner compliant with OSHA standards and regulations.
- Rules for Transport of Hazardous Waste (49 CFR 107, 171) Hazardous waste generated at the site
 will be appropriately characterized to determine package, transportation and transportation
 requirements.

State

- Source water protection (WAC 246-290-135) All new and existing drinking water wells will establish
 a wellhead protection program that includes an inventory of potential groundwater contamination
 sources and be appropriately delineated from all potential contamination sources.
- Model Toxics Control Act (WAC 173-340) Site activities will occur in accordance with MTCA Statutes and Regulations.
- Dangerous Waste Regulations (WAC 173-303) IDW and any other waste produced during activities at the site will be handled per RCRA regulations and implemented according to WAC 173-303.
- Minimum Standards for Construction and Maintenance of Wells, Regulation and Licensing of Well Contractors and Operators (RCW 18.104, WAC 173-160, 162)
 - Resource protection wells will be constructed and maintained according to the appropriate regulations.
 - Private water wells will be constructed considering certain setback requirements from known or potential sources of contamination.
- Washington Industrial Safety and Health Act, Chapter 296-62 WAC Site activities will be conducted in a manner compliant with Washington Industrial Safety and Health Act standards and regulations.
- Maximum Environmental Noise Levels (WAC 173-60) Site activities will be conducted at appropriate noise levels, according to WAC 173-60.

6 NATURE AND EXTENT OF CONTAMINATION

This section describes the type of COCs from the East Portion (nature) and the distribution of these COCs vertically and horizontally across the East Portion (extent). The nature and extent of contamination were identified based on data collected during environmental activities described in Sections 3 and 4. The East Portion environmental data were compared to the CULs described in Section 5 to determine the nature and extent of contamination.

6.1 Environmental Data Summary

The nature and extent for each preliminary COC in soil and groundwater is summarized in the following Tables 6-1 and 6-2.

Table 6-1. Groundwater Data Summary

Constituent	Cleanup Level ¹ (µg/L)	Groundwater Data Summary
GRO	800/1,000²	Groundwater samples collected by Arcadis from past on-site wells (MW-6R, MW-7 through MW-12) and current on-site wells (MW-7, MW-8, MW-9, and MW-13) have indicated concentrations less than the MTCA Method A Groundwater CUL from October 2010 through May 2017.
DRO	Groundwater samples with SGT collected by Arcadis from past wells (MW-6R, MW-7 through MW-12) and current on-site wells MW-8, MW-9, and MW-13) have indicated concentrations less MTCA Method A Groundwater CUL from October 2010 through 2017. Use of SGT is appropriate due to the large quantity of wo debris and organic materials in the subsurface.	
HO 500 Groundwater samples with SGT collected wells (MW-6R, MW-7 through MW-12) a MW-8, MW-9, and MW-13) have indicated MTCA Method A Groundwater CUL from 2017. Use of SGT is appropriate due to		Groundwater samples with SGT collected by Arcadis from past on-site wells (MW-6R, MW-7 through MW-12) and current on-site wells (MW-7, MW-8, MW-9, and MW-13) have indicated concentrations less than the MTCA Method A Groundwater CUL from October 2010 through May 2017. Use of SGT is appropriate due to the large quantity of woody debris and organic materials in the subsurface.
EDB 0.01 Full suite EPA Method 8260B analy groundwater samples in 2001 (sam EDB. EDB was not reported to have samples collected from the East Po		Full suite EPA Method 8260B analysis was performed on grab groundwater samples in 2001 (samples IPD-1 through IPD-6), including EDB. EDB was not reported to have been detected in grab groundwater samples collected from the East Portion ⁶ . This constituent was analyzed in groundwater prior to and after the excavation cleanup action with no detections.
EDC	5	Full suite EPA Method 8260B analysis was performed on grab groundwater samples in 2001 (samples IPD-1 through IPD-6), including EDC. EDC was not reported to have been detected in grab groundwater samples collected from the East Portion ⁶ . This constituent was analyzed in groundwater prior to and after the excavation cleanup action with no detections.

Benzene 5		Groundwater samples collected by Arcadis from past on-site wells (MW-6R, MW-7 through MW-12) and current on-site wells (MW-7, MW-8, MW-9, and MW-13) have indicated concentrations less than the MTCA Method A Groundwater CUL from October 2010 through May 2017.
Toluene	1,000	Groundwater samples collected by Arcadis from past on-site wells (MW-6R, MW-7 through MW-12) and current on-site wells (MW-7, MW-8, MW-9, and MW-13) have indicated concentrations less than the MTCA Method A Groundwater CUL from October 2010 through May 2017.
Ethylbenzene	700	Groundwater samples collected by Arcadis from past on-site wells (MW-6R, MW-7 through MW-12) and current on-site wells (MW-7, MW-8, MW-9, and MW-13) have indicated concentrations less than the MTCA Method A Groundwater CUL from October 2010 through May 2017.
Total xylenes	1,000	Groundwater samples collected by Arcadis from past on-site wells (MW-6R, MW-7 through MW-12) and current on-site wells (MW-7, MW-8, MW-9, and MW-13) have indicated concentrations less than the MTCA Method A Groundwater CUL from October 2010 through May 2017.
MTBE	20	Full suite EPA Method 8260B analysis was performed on groundwater samples in 2001 (samples IPD-1 through IPD-6), including MTBE. MTBE was not reported to have been detected in grab groundwater samples collected from the East Portion ⁶ . This constituent was analyzed in groundwater prior to and after the excavation cleanup action with no detections.
n-Hexane	6	Full suite EPA Method 8260B analysis was performed on groundwater samples in 2001 (samples IPD-1 through IPD-6), including n-Hexane. N-hexane, was not reported to have been detected in grab groundwater samples collected from the East Portion ⁶ . Further sampling of this constituent was discontinued since no groundwater detections were observed.
cPAHs	0.1 ³	Groundwater samples collected by Arcadis from past on-site wells (MW-6R, MW-7 through MW-12) and current on-site wells (MW-7, MW-8, MW-9, and MW-13) have indicated concentrations less than the MTCA Method A Groundwater CUL from October 2010 through May 2017.
Naphthalenes	160 ⁴	Groundwater samples collected by Arcadis from past on-site wells (MW-6R, MW-7 through MW-12) and current on-site wells (MW-7, MW-8, MW-9, and MW-13) have indicated concentrations less than the MTCA Method A Groundwater CUL from October 2010 through May 2017.
PCBs	0.1 ⁵	PCBs were analyzed in groundwater from the East Portion in 2004 and were not detected ⁷ .
Lead	15	Groundwater samples collected by Arcadis from past on-site wells (MW-6R, MW-7 through MW-12) and current on-site wells (MW-7, MW-8, MW-9, and MW-13) have indicated concentrations less than the MTCA Method A Groundwater CUL from October 2010 through May 2017.

μg/L = micrograms per liter

¹Cleanup levels from Ecology's MTCA Method A Cleanup Levels for Ground Water (WAC 173-340-900, Table 720-1)
² MTCA Method A CULs for GRO are determined based on the presence of benzene
³ Based on benzo(a)pyrene equivalencies (WAC 173-340-900, Table 740-1).
⁴ Calculated using procedures in WAC 173-340-747(4).
⁵ Total value for all PCBs (mixtures)

⁶ SECOR 2001. Final Remedial Investigation and Feasibility Study, Former Industrial Petroleum Distributors, 1117 West Bay Drive, Olympia, Washington. October 30.

Parametrix 2004. West Bay Phase II Environmental Site Assessment, Prepared for City of Olympia Parks, Arts, and Recreation

Department. June.

Table 6-2. Soil Data Summary

Constituent	Cleanup Level ¹ (mg/kg)	Soil Data Summary
remedial investigation and pre-excavation soil sar GRO that exceeded MTCA Method A Soil CUL w		Arcadis analyzed soil for GRO in 2010 and again in 2015 during the remedial investigation and pre-excavation soil sampling. Concentrations of GRO that exceeded MTCA Method A Soil CUL were removed during the completion of the excavation cleanup action in 2016.
DRO	2000	Arcadis analyzed soil for DRO in 2010 and again in 2015 during the remedial investigation and pre-excavation soil sampling. Concentrations of DRO that exceeded MTCA Method A Soil CUL were removed during the completion of the excavation cleanup action in 2016.
investigation and pre-excavation soil sampling. Concentrations exceeded MTCA Method A Soil CUL in several locations only in		Arcadis analyzed soil for HO in 2010 and again in 2015 during the remedial investigation and pre-excavation soil sampling. Concentrations of HO exceeded MTCA Method A Soil CUL in several locations only in 2015. These areas were removed during the completion of the excavation cleanup action in 2016.
EDB	0.005	Full suite EPA Method 8260B analysis was performed on soil samples in 2001 (samples IPD-1 through IPD-6), including EDB. EDB was not reported to have been detected in soil collected from the East Portion ⁶ .
2001 (samples IPD-1 through IPI		Full suite EPA Method 8260B analysis was performed on soil samples in 2001 (samples IPD-1 through IPD-6), including EDC. EDC was not reported to have been detected in soil samples collected from the East Portion ⁶ .
investigation. Concentrations detected in		Arcadis analyzed soil samples for benzene in 2010 during the remedial investigation. Concentrations detected in soil were less than MTCA Method A Soil CUL at all boring locations.
investigation. Concentrations detected in soi		Arcadis analyzed soil samples for toluene in 2010 during the remedial investigation. Concentrations detected in soil were less than MTCA Method A Soil CUL at all boring locations.
investigation. Concentrations detected i		Arcadis analyzed soil samples for ethylbenzene in 2010 during the remedial investigation. Concentrations detected in soil were less than MTCA Method A Soil CUL at all boring locations.
Total xylenes 9 Arcadis analyzed soil sa investigation. Concentra		Arcadis analyzed soil samples for total xylenes in 2010 during the remedial investigation. Concentrations detected in soil were less than MTCA Method A Soil CUL at all boring locations.
2001 (samples IPD-1 through IPD-6), includ		
2001 (samples IPD-1 through IPD-6), including n-hexane		
cPAHs	0.13	Arcadis analyzed soil for cPAHs in 2010 and again in 2015 during the remedial investigation and pre-excavation soil sampling. Concentrations of cPAHs that exceeded MTCA Method A Soil CUL were removed during the completion of the excavation cleanup action in 2016.

Naphthalenes	5 ⁴	Arcadis analyzed soil for naphthalenes in 2010 and again in 2015 during the remedial investigation and pre-excavation soil sampling. Concentrations of naphthalenes that exceeded MTCA Method A Soil CUL were removed during the completion of the excavation cleanup action in 2016.
PCBs 15 PCBs were analyzed in soil from the detected ⁷ .		PCBs were analyzed in soil from the East Portion in 2004 and were not detected ⁷ .
		Arcadis analyzed soil samples for lead in 2010 during the remedial investigation. Concentrations detected in soil were less than MTCA Method A Soil CUL at all boring locations.

mg/kg = milligrams per kilogram

6.2 Historical Impacts

Historical impacts are presented on Tables 1, 2, 3, and 4 for groundwater and Tables 5, 6, and 7 for soil.

6.2.1 Historical Soil Quality

Soil sampling activities were completed in locations across the East Portion from 2000 to 2015. Soil has been analyzed for the COCs listed in Section 5.1. as defined in the CAP. Table 6-3 summarizes the maximum soil concentrations observed onsite.

Table 6-3. Soil Historical Data Summary

	Constituents detected above MDLs	Historical maximum concentration ever observed	Date of historical maximum concentration ever observed	Constituents historically detected above MTCA Method A CUL
GRO	Yes	2,400 mg/kg	2015	Yes
DRO	Yes	14,000 mg/kg	2000	Yes
НО	Yes	64,000	2015	Yes
Benzene	No			No
Toluene	Yes	0.0342 mg/kg	2010	No
Ethylbenzene	No			No
Total Xylenes	Yes	23.9 mg/kg	2000	Yes - Once

¹Cleanup levels from Ecology's MTCA Method A Cleanup Levels for Soil (WAC 173-340-900, Table 740-1)

²MTCA Method A CULs for GRO are determined based on the presence of benzene

³ Based on benzo(a)pyrene equivalencies (WAC 173-340-900, Table 740-1).

⁴ Calculated using procedures in WAC 173-340-747(4).

⁵ Total value for all PCBs (mixtures)

⁶ SECOR 2001. Final Remedial Investigation and Feasibility Study, Former Industrial Petroleum Distributors, 1117 West Bay Drive, Olympia, Washington. October 30.

⁷Parametrix 2004. West Bay Phase II Environmental Site Assessment, Prepared for City of Olympia Parks, Arts, and Recreation Department. June.

MTBE	No			No
n-Hexane	No			No
EDB	No			No
EDC	No	_		No
Naphthalenes	Yes	87 mg/kg	2015	Yes
cPAHs	Yes	22.757 mg/kg	2015	Yes
Lead	Yes	724 mg/kg	2004	Yes - Once

6.2.2 Historical Groundwater Quality

Groundwater monitoring at the East Portion has been ongoing from 2000 to 2017 from temporary wells via grab samples as well as from the monitoring well network including wells MW-6R, and MW-6 through MW-13. Groundwater has been analyzed for the COCs listed in Section 5.1. as defined in the CAP. Table 6-4 summarizes the maximum groundwater concentrations observed onsite.

Table 6-4. Groundwater Historical Data Summary

	Constituents detected above MDLs	Historical maximum concentration ever observed	Date of historical maximum concentration ever observed	Constituents historically detected above MTCA Method A CUL			
GRO	Yes	1,930 µg/L	2001	Yes - Once			
DRO	Yes	280,000 μg/L	2000	Yes			
DRO with SGT	Yes	210 μg/L	2016	No			
НО	Yes	1,000 µg/L	2015	Yes			
HO with SGT	No*						
Benzene	Yes	1.64 μg/L	2001	No			
Toluene	Yes	39 µg/L	2016	No			
Ethylbenzene	No						
Total Xylenes	Yes	170 μg/L	2000	No			
MTBE	No						
n-Hexane	No						
EDB	No						
EDC	No						

Naphthalenes	Yes	61.05 μg/L	2004	No
cPAHs	Yes	0.0831 μg/L	2011	No
Lead	Yes	49.9 μg/L	2001	Yes - Once
Dissolved Lead	Yes	0.15 μg/L	2015	No

^{*}One sample was flagged since the constituent was found in the associated blank and is therefore considered erroneous.

6.3 Remaining Impacts

Excavation cleanup action has been conducted at the East Portion, as described in Section 3.3. As the result of the excavation activities, impacted soil encountered through the investigations conducted between 2000 and 2015, were excavated and removed from the East Portion.

6.3.1 Current Soil Quality

In accordance with the AO No. DE 10470 and the CAP, East Portion soil impacts were assessed during the pre-excavation soil sampling (See Section 3.2.3) and analytical results were reported in the Construction Plans and Specifications Summary Report (Arcadis 2016), along with the excavation plans to remove impacted soils throughout the East Portion. After completion of the soil removal cleanup action, no soil impacts remain throughout the East Portion. The Cleanup Action Completion Report (Arcadis 2017) showed that compliance with the CAP and AO had been met through the cleanup action.

6.3.2 Current Groundwater Quality

As described in Section 4, concentrations of groundwater constituents meet their respective MTCA Method A CULs thorough the East Portion. Table 6-5 below summarizes the maximum groundwater concentration observed since the completion of the excavation cleanup in 2016.

Table 6-5. Groundwater Recent Data Summary

	Constituents detected above MDLs	Remaining maximum concentration observed	Date of remaining maximum concentration observed	Constituents still detected above MTCA Method A CUL
GRO	Yes	540 μg/L	12/15/2016	No
DRO with SGT	Yes	210 μg/L	12/15/2016	No
		810 μg/L	12/15/2016	No, with SGT. See
DRO	Yes	(with SGT 210 μg/L) *		Section 4.
HO with SGT	No			No

CLOSURE REQUEST REPORT

НО	Yes	874 μg/L (ND<82.5 μg/L)*	5/8/2017	No, with SGT. See Section 4.
Benzene	No			No
Toluene	Yes	39 μg/L	12/15/2016	No
Ethylbenzene	No			No
Total Xylenes	No			No
MTBE	No			No
Lead	Yes	3.48 μg/L	3/9/2017	No
Dissolved Lead	Yes			No
EDB	No			No
EDC	No			No

^{() *}concentration with SGT.

7 CONCEPTUAL SITE MODEL

7.1 Human Health Conceptual Site Model

The conceptual site model (CSM) was developed during the preparation of the CAP included in the AO No. DE 10470. The CSM was developed in accordance with the methods and procedures described in MTCA (WAC 173-340-708). The source of contamination was identified as the former bulk plant operations, including the storage of gasoline, diesel and/or oil. Based on current and future land use, which may include the use of the East Portion as a public park, potential future receptors may include onsite residents, children, recreational users, commercial workers, industrial workers and construction workers. The CSM with potential pathways are presented on Figure 9 and summarized below.

Potential on-site receptors may be exposed to constituents in surface and subsurface soils by direct contact. Routes of exposure by direct contact include incidental ingestion of soil and/or dermal contact with soil. The East Portion is not currently developed; thus, no current on-site human receptors have been identified. However, it is assumed that the East Portion may be redeveloped in the future to industrial, commercial, residential, or public park land use. Thus, potential future receptors that may be directly exposed to constituents in surface and/or subsurface soil from the East Portion may include on-site residents, children, recreational users, commercial workers, industrial workers, and construction workers. Since there are no known constituents in soil exceeding the MTCA Method A Soil CULs, this is not considered a complete exposure pathway.

Constituents may leach from soil to groundwater beneath the East Portion by infiltration, resulting in potential direct contact exposures to constituents in groundwater.

- Routes of exposure by direct contact with groundwater include ingestion of tap water, dermal contact
 with tap water, and inhalation of volatile constituents released from tap water if groundwater is used as
 drinking water. However, there are no constituents in groundwater that exceed the MTCA Method A
 Groundwater CULs protective of groundwater as a drinking water source from the East Portion.
 Therefore, tap water ingestion, dermal contact with tap water, and inhalation of volatile constituents in
 tap water are not complete exposure pathways for current on-site and off-site receptors.
- Groundwater from the East Portion is generally encountered at depths ranging from approximately 3 to 5 feet bgs. In the future, it is possible that the East Portion or properties adjacent to the East Portion may be redeveloped, and construction workers may encounter groundwater at shallow depths. Thus, direct contact (e.g., incidental ingestion and dermal contact) with groundwater may occur; however, since groundwater COCs don't exceed the MTCA Method A Groundwater CULs, this is not considered a complete exposure pathway for construction workers.

Another potential transport mechanism on the East Portion may include volatilization of constituents in soil and/or groundwater to outdoor air and/or the indoor air of future on-site or off-site buildings, or air within a trench used by future on-site or off-site construction workers. Since there are not soil or groundwater constituents exceeding applicable MTCA Method A CULs, no human receptors can be affected by volatilization under the current or any future East Portion use. Therefore, volatilization is not a complete pathway.

Potential on-site receptors may be exposed to surface water and sediments by direct contact. Routes of exposure by direct contact include incidental ingestion of and/or dermal contact with surface water and/or sediments. The East Portion is not currently developed; thus, residents, children and recreational users are not likely to have direct contact with surface water or sediment. However, assuming hypothetical future development of the East Portion for residential purposes, residents, children, and recreational users could have direct contact with surface water and/or sediments in the future. Benthic organisms and fish may have direct contact with surface water and/or sediments based on current site use. However, there are no soil or groundwater constituents exceeding applicable CULs, and this is not a complete pathway.

7.2 Exposures to Ecological Receptors

A terrestrial ecological evaluation was conducted in accordance with WAC 173-340-7492. The purpose of the terrestrial ecological evaluation includes determining whether a release to soil threatens the terrestrial environment, to characterize potential threats to terrestrial plants and animals, and to establish site-specific cleanup standards for the protection of terrestrial plants and animals. Per subsection 7492(2) of Chapter 173-340 WAC, the East Portion qualifies for a simplified terrestrial ecological evaluation based on two factors:

- The area of soil contamination at the site is less than 350 square feet, since petroleum impacted soil and fill were fully excavated during the 2016 remedial excavation.
- Known historical site use and laboratory analytical results indicate priority contaminants of concern for sites that qualify for the simplified ecological evaluation procedure found in Table 749-2 are below the thresholds for industrial and commercial sites in the upper 15 feet of soil. Documentation of exclusion is included as Appendix E.

8 CONCLUSION

ARCO and Ecology entered AO No. DE 8953 in 2012, and AO No. DE 10470 in 2014, with a combined goal of removing constituents of concern from the East Portion. Through the RI Report, CAP, and the final cleanup action summarized in the cleanup Action Completion Report, COCs were characterized, extents defined and removed from the East Portion in both soil and groundwater, meeting MTCA Method A CULs and therefore the requirements of both AOs No. DE 8953 and AO No. DE 10470. As the terms of the AOs have been met, Arcadis request a No Further Action determination to be completed for the East Portion.

9 REFERENCES

Arcadis U.S., Inc. (Arcadis) 2012. Remedial Investigation Report, Former ARCO Olympia Bulk Terminal, Industrial Petroleum Distributors Site (Facility Identification No. 1436), 1120 West Bay Drive, Olympia, Washington. January 30.

Arcadis U.S., Inc. (Arcadis) 2014. Cleanup Action Plan, Former ARCO Olympia Bulk Terminal, Industrial Petroleum Distributors Site (Facility Identification No. 1436), 1120 West Bay Drive, Olympia, Washington. October 24.

Arcadis U.S., Inc. (Arcadis) 2016. Construction Plans and Specifications Summary Report, Industrial Petroleum Distributors Site, 1120 West Bay Drive NW, Olympia, Washington, (Facility Identification No. 1436). October 3.

Arcadis U.S., Inc. (Arcadis) 2017. Cleanup Action Completion Report, Industrial Petroleum Distributors Site, 1120 West Bay Drive NW, Olympia, Washington, (Facility Identification No. 1436). September 20.

Integral Consulting, Inc. (Integral) 2009. Sediment Screening and Sampling Report, Former Industrial Petroleum Distributors. December 17.

SECOR 2001. Final Remedial Investigation and Feasibility Study, Former Industrial Petroleum Distributors, 1117 West Bay Drive, Olympia, Washington. October 30.

Washington State Department of Ecology, Toxics Cleanup Program. 2013. Model Toxics Control Act Cleanup Regulation, Chapter 173-340 WAC.

Washington State Department of Ecology (Ecology). 2014. Agreed Order No. DE 10470, October 24, 2014

Washington State Department of Water Resources. 1970. Geology and Related Groundwater Occurrence, Southeastern Mason County, Washington.

TABLES

Table 1 GROUNDWATER GAUGING DATA AND SELECT ANALYTICAL RESULTS

Closure Request Report

Former Industrial Petroleum Distributors Site 1120 West Bay Drive Northwest, Olympia, WA

All analytical results are presented in micrograms per liter (µg/L)

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO ¹	HO ¹	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (MT	CA) Method A Cle	eanup Levels	(CULs) in µg/			800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	15
MW-6R	10/1/2010	(LFP)	14.34	2.42	0.0	11.92	<50	<120	<240	<1.0	<1.0	<1.0	<2.0				<2.0(^)	<2.0(^)
MW-6R	12/29/2010		14.34	2.00	0.0	12.34												
MW-6R	12/30/2010	(LFP)	14.34				<50.0	<76	<380	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-6R	12/30/2010	(Dup)(LFP)	14.34				<50.0	<76	<380	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-6R	3/17/2011	(LFP)	14.34	1.80	0.0	12.54	<50	<120	<240(^)	<1.0	<1.0	<1.0	<2.0				5.4	<2.0
MW-6R	4/19/2011		14.34	1.96	0.0	12.38												
MW-6R	6/11/2011	(LFP)	14.34	2.02	0.0	12.32	<50.0	<85	<430	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-6R	9/22/2011	(LFP)	14.34	2.35	0.0	11.99	<50.0	<75	<380	<0.20	<1.0	<1.0	<3.0	<1.0			<10.0	<10.0
MW-6R	12/22/2011	(LFP)	14.34	2.24	0.0	12.10	<50.0	<91	<450	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-6R	12/22/2011	(Dup)(LFP)	14.34 14.34	2.24	0.0	12.10	<50.0	<84 <46	<420 <100	<0.20 <0.50	<1.0 <0.50	<1.0	<3.0 <0.50	 <0.50	<0.0094	<0.50	<10.0	<10.0
MW-6R MW-6R	9/2/2015 9/20/2016	(LFP)	14.34	1.92	0.0	12.42	<50	<40		Abandoned Prior		<0.50	<0.50	<0.50	<0.0094	<0.50	0.72(J)	<0.13
IVIVV-OR	9/20/2010									Abandoned Pho	i lo Excavalion					_		
MW-7	10/1/2010	(LFP)	14.54	4.80	0.0	9.74	<50	150(Y)	<250	<1.0	<1.0	<1.0	<2.0				<2.0(^)	<2.0(^)
MW-7	12/29/2010	(LFP)	14.54	2.21	0.0	12.33	<50.0	<77	<380	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-7	3/17/2011	(LFP)	14.54	2.24	0.0	12.30	<50	<120	<240(^)	<1.0	<1.0	<1.0	<2.0				<2.0	<2.0
MW-7	4/19/2011		14.54	3.61	0.0	10.93												
MW-7	6/11/2011	(LFP)	14.54	5.07	0.0	9.47	<50.0	<87	<430	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-7	6/11/2011	(Dup)(LFP)	14.54	5.07	0.0	9.47	<50.0	<86	<430	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-7	9/22/2011	(LFP)	14.54	7.21	0.0	7.33	<50.0	<75	<380	<0.20	<1.0	<1.0	<3.0	<1.0			<10.0	<10.0
MW-7	12/22/2011	(LFP)	14.54	4.79 5.60	0.0	9.75	<50.0	<75 130	<380	<0.20	<1.0	<1.0	<3.0	 <0.50	<0.0096	 <0.50	<10.0	<10.0
MW-7 MW-7	9/2/2015 9/2/2015	(Dup)(LFP)	14.54 14.54	5.60	0.0	8.94 8.94	<50 <50	110	<100 <100	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.0096	<0.50 <0.50	<0.13 <0.13	<0.13 <0.13
MW-7	12/15/2016	(LFP)	14.54	2.56	0.0	11.98	<50 <50	<29	<67	<0.50	<0.50	<0.50	<0.50	<0.50	<0.0094	<0.50	0.094(J)	<0.13
MW-7	3/9/2017	(LFP)	14.54	2.51	0.0	12.03	<31.6	<82.5	<165	<0.331	<0.412	<0.384	<1.06	<0.367	<0.0033	<0.361	3.48(J)	<1.90
MW-7	5/8/2017	(LFP)	14.54	4.22	0.0	10.32	<31.6	233	292	<0.331	<0.412	<0.384	<1.06	<0.367	<0.00240	<0.361	2.06(J)	<1.90
		, ,					<50		<240				<2.0		0.00200		` '	
MW-8 MW-8	10/1/2010 12/29/2010	(LFP)	13.98 13.98	3.93 2.25	0.0	10.05 11.73	<50.0	200(Y) <77	<240 <380	<1.0 0.21	<1.0 <1.0	<1.0 <1.0	<3.0				<2.0(^) <10.0	<2.0(^) <10.0
MW-8	3/17/2011	(LFP)	13.98	2.25	0.0	11.73	<50.0 <50	<120	<240(^)	<1.0	<1.0	<1.0	<2.0				<2.0	<2.0
MW-8	3/17/2011	(Dup)(LFP)	13.98	2.19	0.0	11.79	<50 <50	<120	<240(*)	<1.0	<1.0	<1.0	<2.0				<2.0	<2.0
MW-8	4/19/2011	(Bup)(EIT)	13.98	2.68	0.0	11.30												-2.0
MW-8	6/11/2011	(LFP)	13.98	3.85	0.0	10.13	<50.0	<83	<420	0.26	<1.0	<1.0	<3.0				<10.0	<10.0
MW-8	9/22/2011	(LFP)	13.98	6.43	0.0	7.55	<50.0	<75	<380	0.35	<1.0	<1.0	<3.0	<1.0			<10.0	<10.0
MW-8	12/22/2011	(LFP)	13.98	3.89	0.0	10.09	<50.0	<87	<430	0.23	<1.0	<1.0	<3.0				<10.0	<10.0
MW-8	9/2/2015	(LFP)	13.98	4.96	0.0	9.02	<50	670	1,000	<0.50	<0.50	<0.50	<0.50	<0.50	<0.0095	<0.50	<0.13	<0.13
MW-8	12/15/2016	(LFP)	13.98	2.02	0.0	11.96	540(J)	210	420	<0.50	39	<0.50	<0.50	<0.50	<0.0095	<0.50	2.2	<0.090
MW-8	3/9/2017	(LFP)	13.98	2.66	0.0	11.32	<31.6	390	419(J)	<0.331	6.00	<0.384	<1.06	<0.367	<0.00240	<0.361	<1.90	<1.90
MW-8	5/8/2017	(LFP)	13.98	2.61	0.0	11.37	<31.6	524	874	<0.331	5.02	<0.384	<1.06	<0.367	<0.00238	<0.361	<1.90	<1.90
MW-9	10/1/2010	(LFP)	14.62	3.21	0.0	11.41	110	160(Y)	<250	<1.0	<1.0	<1.0	<2.0				<2.0(^)	<2.0(^)
MW-9	12/29/2010	(LFP)	14.62	2.50	0.0	12.12	56.5	<76	<380	0.21	<1.0	<1.0	<3.0				<10.0	<10.0
MW-9	3/17/2011	(LFP)	14.62	2.28	0.0	12.34	<50	<120	<240(^)	<1.0	<1.0	<1.0	<2.0				<2.0	<2.0
MW-9	4/19/2011	(·)	14.62	3.21	0.0	11.41												
MW-9	6/11/2011	(LFP)	14.62	3.78	0.0	10.84	84.4	<88	<440	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-9	9/22/2011	(LFP)	14.62	3.81	0.0	10.81	241	<75	<380	0.37	<1.0	<1.0	<3.0	<1.0			<10.0	<10.0

Table 1 GROUNDWATER GAUGING DATA AND SELECT ANALYTICAL RESULTS

Closure Request Report

Former Industrial Petroleum Distributors Site 1120 West Bay Drive Northwest, Olympia, WA

All analytical results are presented in micrograms per liter (µg/L)

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO ¹	HO ¹	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxics	Control Act (MT	CA) Method A Cle	eanup Levels	(CULs) in µg/	L		800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	15
MW-9	12/22/2011	(LFP)	14.62	3.10	0.0	11.52	222	<76	<380	0.30	<1.0	<1.0	<3.0				<10.0	<10.0
MW-9	9/2/2015	(LFP)	14.62	4.45	0.0	10.17	67(J)	<45	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.0096	<0.50	0.30(J)	<0.13
MW-9	12/15/2016	(LFP)	14.62	2.89	0.0	11.73	130(J)	88(J)	97(J)	<0.50	5.4	<0.50	<0.50	<0.50	<0.0095	<0.50	0.53(J)	<0.090
MW-9	3/9/2017	(LFP)	14.62	2.56	0.0	12.06	<31.6	347	376(J)	<0.331	3.42	<0.384	<1.06	<0.367	<0.00240	<0.361	2.72(J)	<1.90
MW-9	5/8/2017	(LFP)	14.62	3.29	0.0	11.33	<31.6	330	544	<0.331	1.55	<0.384	<1.06	<0.367	<0.00238	<0.361	2.72(J)	<1.90
MW-10	10/1/2010	(LFP)	15.03	3.56	0.0	11.47	<50	<120	<240	<1.0	<1.0	<1.0	<2.0				<2.0(^)	<2.0(^)
MW-10	10/1/2010	(Dup)(LFP)	15.03	3.56	0.0	11.47	<50	<120	<240	<1.0	<1.0	<1.0	<2.0				<2.0(^)	<2.0(^)
MW-10	12/29/2010	(LFP)	15.03	2.70	0.0	12.33	<50.0	<77	<380	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-10	3/17/2011	(LFP)	15.03	2.92	0.0	12.11	<50	<120	<240(^)	<1.0	<1.0	<1.0	<2.0				<2.0	<2.0
MW-10	4/19/2011		15.03	3.08	0.0	11.95												
MW-10	6/11/2011	(LFP)	15.03	3.10	0.0	11.93	<50.0	<86	<430	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-10	9/22/2011	(LFP)	15.03	3.31	0.0	11.72	<50.0	<75	<380	<0.20	<1.0	<1.0	<3.0	<1.0			<10.0	<10.0
MW-10	12/22/2011	(LFP)	15.03	3.21	0.0	11.82	<50.0	<75	<380	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-10	9/2/2015	(LFP)	15.03	3.90	0.0	11.13	<50	<45	<100	<0.50	<0.50	<0.50	<0.50	<0.50	<0.0094	<0.50	2.1	0.15(J)
MW-10	9/20/2016								Well A	Abandoned Prior	to Excavation							
MW-11	10/1/2010	(LFP)	15.75	2.75	0.0	13.00	<50	<120	<240	<1.0	<1.0	<1.0	<2.0				<2.0(^)	<2.0(^)
MW-11	12/29/2010		15.75	2.10	0.0	13.65												
MW-11	12/30/2010	(LFP)	15.75				<50.0	110	<380	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-11	3/17/2011	(LFP)	15.75	1.74	0.0	14.01	<50	<120	<240(^)	<1.0	<1.0	<1.0	<2.0				<2.0	<2.0
MW-11	4/19/2011		15.75	1.94	0.0	13.81												
MW-11	6/11/2011	(LFP)	15.75	2.09	0.0	13.66	<50.0	<84	<420	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-11	9/22/2011	(LFP)	15.75	2.82	0.0	12.93	<50.0	<75	<380	<0.20	<1.0	<1.0	<3.0	<1.0			<10.0	<10.0
MW-11	12/22/2011	(LFP)	15.75	2.49	0.0	13.26	<50.0	<86	<430	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-11	9/2/2015	(LFP)	15.75	2.42	0.0	13.33	<50	<48	<110	<0.50	<0.50	<0.50	<0.50	<0.50	<0.0096	<0.50	0.87(J)	<0.13
MW-11	9/20/2016								Well A	Abandoned Prior	to Excavation							
MW-12	10/1/2010	(LFP)	15.60	2.63	0.0	12.97	<50	<120	<240	<1.0	<1.0	<1.0	<2.0				<2.0(^)	<2.0(^)
MW-12	12/29/2010		15.60	1.95	0.0	13.65												
MW-12	12/30/2010	(LFP)	15.60				<50.0	89	<380	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-12	3/17/2011	(LFP)	15.60	1.56	0.0	14.04	<50	<120	<240(^)	<1.0	<1.0	<1.0	<2.0				<2.0	<2.0
MW-12	4/19/2011		15.60	1.86	0.0	13.74												
MW-12	6/11/2011	(LFP)	15.60	1.97	0.0	13.63	<50.0	<82	<410	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-12	9/22/2011	(LFP)	15.60	2.51	0.0	13.09	<50.0	<75	<380	<0.20	<1.0	<1.0	<3.0	<1.0			<10.0	<10.0
MW-12	12/22/2011	(LFP)	15.60	2.38	0.0	13.22	<50.0	<85	<430	<0.20	<1.0	<1.0	<3.0				<10.0	<10.0
MW-12	9/2/2015	(LFP)	15.60	2.18	0.0	13.42	<50	<48	<110	<0.50	<0.50	<0.50	<0.50	<0.50	<0.0096	<0.50	<0.13	<0.13
MW-12	9/20/2016								Well A	Abandoned Prior	to Excavation							
MW-13	12/15/2016	(LFP)		2.36	0.0		58(J)	<28	<66	<0.50	<0.50	<0.50	<0.50	<0.50	<0.0095	<0.50	0.21(J)	<0.090
MW-13	12/15/2016	(Dup)(LFP)		2.36	0.0		57(J)	65(J)	470	<0.50	<0.50	<0.50	<0.50	<0.50				
MW-13	3/9/2017	(LFP)		2.33	0.0		<31.6	<82.5	<165	<0.331	<0.412	<0.384	<1.06	<0.367	<0.00240	<0.361	2.14(J)	<1.90
MW-13	3/9/2017	(Dup)(LFP)		2.33	0.0		<31.6	<82.5	<165	<0.331	<0.412	<0.384	<1.06	<0.367		<0.361		
MW-13	5/8/2017	(LFP)		2.52	0.0		<31.6	<66.0	132(J)	<0.331	0.569(J)	<0.384	<1.06	<0.367	<0.00238	<0.361	2.41(J)	<1.90
MW-13	5/8/2017	(Dup)(LFP)		2.52	0.0		<31.6	<66.0	102(J)	<0.331	0.515(J)	<0.384	<1.06	< 0.367		<0.361	<1.90	

Table 1 GROUNDWATER GAUGING DATA AND SELECT ANALYTICAL RESULTS

Closure Request Report

Former Industrial Petroleum Distributors Site 1120 West Bay Drive Northwest, Olympia, WA

All analytical results are presented in micrograms per liter (µg/L)

Well	Date	Notes	тос	DTW	NAPL	GWE	GRO	DRO ¹	HO ¹	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	EDB	EDC	Total Lead	Dissolved Lead
Model Toxic	Model Toxics Control Act (MTCA) Method A Cleanup Levels (CULs) in μg/L					800/1,000	500	500	5	1,000	700	1,000	20	0.01	5	15	15	

TOC = Top of casing in feet North American Vertical Datum of 1988 (NAVD 88)

DTW = Depth to water in feet below TOC

NAPL = Non-aqueous phase liquid thickness in feet

GWE = Groundwater elevation in feet NAVD 88

GRO = Total petroleum hydrocarbons - gasoline range organics

DRO = Total petroleum hydrocarbons - diesel range organics

HO = Total petroleum hydrocarbons - heavy oil range organics

¹ = DRO/HO analytical results reported were analyzed without silica gel treatment. Table 3 reports DRO/HO analytical results with and without silica gel treatment.

MTBE = Methyl tertiary butyl ether

EDB = Ethylene dibromide

EDC = 1,2-Dichloroethane

800/1,000 = GRO MTCA Method A CUL with benzene present is 800 μg/L and without is 1,000 μg/L

LF/LFP = Low flow (purge) sample

< = Analytical result is less than reporting limit shown

-- = Not analyzed/not applicable

^ = Instrument related QC exceeds the control limits

DUP = Duplicate sample

Y = Laboratory qualifier: Results in the diesel organics range are primarily due to overlap from a gasoline range product.

Wells were resurveyed in 2010 and are referenced to vertical datum NAVD 88 and horizontal datum NAD 83/98

If NAPL is present, the GWE is corrected according to the following formula (TOC elevation - depth to water) + (0.8 x NAPL thickness)

Data collected prior to 2010 have been provided by previous consultants and are included as historical reference only

GRO, DRO, HO analyzed by Ecology Northwest Methods; Benzene, toluene, ethylbenzene, and total xylenes (BTEX), MTBE, and EDB by 8260B; Lead by U.S. Environmental Protection Agency (EPA)

BOLD constituent detected above MTCA Cleanup Levels

Table 2 GROUNDWATER POLYCYCLIC AROMATIC HYDROCARBONS ANALYTICAL RESULTS

Closure Request Report
Former Industrial Petroleum Distributors Site
1120 West Bay Drive Northwest, Olympia, WA

All analytical results are presented in micrograms per liter (µg/L)

Well ID	Date	Notes	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Total Naphthalenes	Total cPAHs
	evels (CULs) in µg	/lethod A Cleanup		0.1									160	0.1
			<0.0007	0.010	0.017	<0.0007	0.011	<0.0007	0.011	<0.0007	-0.042	0.010	0.031	0.0004
MW-6R MW-6R	10/1/2010 12/30/2010	(LFP) (LFP)	<0.0097 <0.095	0.019 <0.095	0.017 <0.095	<0.0097 <0.095	0.011 <0.095	<0.0097 <0.095	0.011 <0.095	<0.0097 <0.095	<0.013 <0.095	0.010 <0.095	<0.1425	0.0234 <0.0717
MW-6R	3/17/2011	(LFP)	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.1425	<0.0717
MW-6R	6/11/2011	(LFP)	<0.11	<0.094	<0.11	<0.11	<0.001	<0.094	<0.094	<0.14	<0.094	<0.47	<0.332	<0.0710
MW-6R	9/22/2011	(LFP)	<0.11	<0.11	<0.094	<0.11	<0.11	<0.094	<0.094	<0.094	<0.11	<0.094	<0.103	<0.0023
MW-6R	12/22/2011	(LFP)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.15	<0.0715
MW-7	10/1/2010	(LFP)	0.017	0.019	<0.0097	<0.0097	<0.0097	<0.0097	<0.0097	0.23	0.16	0.086	0.722	0.0227
MW-7	12/29/2010	(LFP)	<0.017	<0.019	<0.0097	<0.0097	<0.0097	<0.0097	<0.0097	<0.096	<0.096	<0.096	<0.144	<0.0725
MW-7	3/17/2011	(LFP)	<0.090	<0.090	<0.094	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090	<0.090	<0.352	<0.0723
MW-7	6/11/2011	(LFP)	<0.11	<0.034	<0.094	<0.11	<0.034	<0.094	<0.034	<0.14	<0.11	<0.47	<0.332	<0.0831
MW-7	9/22/2011	(LFP)	<0.094	<0.094	<0.094	<0.11	<0.094	<0.094	<0.094	0.16	0.13	<0.094	0.467	<0.0710
MW-7	12/22/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	0.11	<0.094	<0.094	0.204	<0.0710
MW-7	12/15/2016	(LFP)	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.021 J	0.017 J	<0.030	0.053	<0.00755
MW-7	3/9/2017	(LFP)	<0.0041	<0.0116	<0.00212	<0.0136	<0.0108	<0.00396	<0.0148	0.0245 J	0.0359 J	0.120 J B	0.180	<0.007783
MW-7	5/8/2017	(LFP)	<0.0041	<0.0116	<0.00212	<0.0136	<0.0108	<0.00396	<0.0148	0.0895 J	0.0555 J	0.109 J	0.254	<0.007783
MW-8	10/1/2010	(LFP)	<0.0097	<0.019	<0.0097	<0.0097	0.053	<0.0097	<0.0097	0.11	0.038	0.085	0.356	0.0125
MW-8	12/29/2010	(LFP)	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.144	<0.0725
MW-8	3/17/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.061	<0.094	<0.094	<0.14	<0.094	<0.47	<0.352	<0.0708
MW-8	6/11/2011	(LFP)	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.144	<0.0725
MW-8	9/22/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	0.13	<0.094	0.12	0.417	<0.0710
MW-8	12/22/2011	(LFP)	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.165	<0.0831
MW-8	12/15/2016	(LFP)	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.020 J	0.015 J	0.066	0.101	<0.00755
MW-8	3/9/2017	(LFP)	<0.0041	<0.0116	<0.00212	<0.0136	<0.0108	<0.00396	<0.0148	0.0269 J	0.0134 J	0.0608 J B	0.101	<0.007783
MW-8	5/8/2017	(LFP)	<0.0082	<0.0232	<0.00424	<0.0272	<0.0216	<0.00792	<0.0296	0.0314 J	<0.0180	0.0706 J	0.111	<0.015566
MW-9	10/1/2010	(LFP)	<0.0094	<0.019	<0.0094	<0.0094	<0.0094	<0.0094	<0.0094	0.019	0.013	0.400	0.432	<0.0119
MW-9	12/29/2010	(LFP)	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	0.59	0.685	<0.0717
MW-9	3/17/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.061	<0.094	<0.094	<0.14	<0.094	<0.47	< 0.352	<0.0708
MW-9	6/11/2011	(LFP)	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	0.36	0.830	<0.0831

Table 2 GROUNDWATER POLYCYCLIC AROMATIC HYDROCARBONS ANALYTICAL RESULTS

Closure Request Report
Former Industrial Petroleum Distributors Site
1120 West Bay Drive Northwest, Olympia, WA

All analytical results are presented in micrograms per liter (µg/L)

Well ID	Date	Notes	(a)anthracene	enzo(a)pyrene	enzo(b)fluoranthene	(k)fluoranthene	9.	Dibenz(a,h)anthracene	1,2,3-cd)pyrene	-Methylnaphthalene	2-Methylnaphthalene	ilene	phthalenes	сРАНѕ
			Benzo(a	Benzo(a	Benzo(k	Benzo(k	Chrysene	Dibenz(Indeno(1	1-Methy	2-Methy	Naphthal	Total Na _l	Total cP/
	ntrol Act (MTCA) N evels (CULs) in µg	Method A Cleanup /L	-	0.1									160	0.1
MW-9	9/22/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.141	<0.0710
MW-9	12/22/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	0.17	<0.094	2.6	5.417	<0.0710
MW-9	12/15/2016	(LFP)	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.077	0.044 J	0.73	0.851	<0.00755
MW-9	3/9/2017	(LFP)	<0.0041	<0.0116	<0.00212	<0.0136	<0.0108	<0.00396	<0.0148	0.105 J	0.0488 J	1.07	1.224	<0.007783
MW-9	5/8/2017	(LFP)	<0.0041	0.0126 J	<0.00212	<0.0136	<0.0108	<0.00396	<0.0148	0.0942 J	0.0921 J	0.915	1.1013	0.014583
MW-10	10/1/2010	(LFP)	<0.0094	<0.019	<0.0094	<0.0094	<0.0094	<0.0094	<0.0094	<0.012	<0.0094	<0.0094	<0.015	<0.0119
MW-10	12/29/2010	(LFP)	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.144	<0.0725
MW-10	3/17/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.061	<0.094	<0.094	<0.14	<0.094	<0.47	< 0.352	<0.0717
MW-10	6/11/2011	(LFP)	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.165	<0.0831
MW-10	9/22/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.141	<0.0710
MW-10	12/22/2011	(LFP)	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.1425	<0.0717
MW-11	10/1/2010	(LFP)	<0.0098	<0.020	<0.0098	<0.0098	<0.0098	<0.0098	<0.0098	<0.0098	<0.013	0.012	0.035	<0.0125
MW-11	12/30/2010	(LFP)	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.095	<0.143	<0.0717
MW-11	3/17/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.061	<0.094	<0.094	<0.14	<0.094	<0.47	< 0.352	<0.0708
MW-11	6/11/2011	(LFP)	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.165	<0.0831
MW-11	9/22/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.141	<0.0710
MW-11	12/22/2011	(LFP)	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.165	<0.0831
MW-12	10/1/2010	(LFP)	<0.0097	<0.019	<0.0097	<0.0097	<0.0097	<0.0097	<0.0097	<0.0097	<0.013	0.019	0.030	<0.0120
MW-12	12/30/2010	(LFP)	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.096	<0.144	<0.0725
MW-12	3/17/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.061	<0.094	<0.094	<0.14	<0.094	<0.47	<0.352	<0.0708
MW-12	6/11/2011	(LFP)	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.165	<0.0831
MW-12	9/22/2011	(LFP)	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.094	<0.141	<0.0710
MW-12	12/22/2011	(LFP)	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.11	<0.165	<0.0831
MW-13	12/15/2016	(LFP)	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	0.062	0.031 J	0.30	0.393	<0.00755
MW-13	12/15/2016	(DUP)(LFP)												
MW-13	3/9/2017	(LFP)	<0.0041	<0.0116	<0.00212	<0.0136	<0.0108	<0.00396	<0.0148	0.0100 J	<0.00902	0.0482 J B	0.06271	<0.007783
MW-13	3/9/2017	(DUP)(LFP)												
MW-13	5/8/2017	(LFP)	<0.0041	<0.0116	<0.00212	<0.0136	<0.0108	<0.00396	<0.0148	0.0142 J	0.0127 J	0.0460 J	0.0729	<0.007783
MW-13	5/8/2017	(DUP)(LFP)												

Table 2 GROUNDWATER POLYCYCLIC AROMATIC HYDROCARBONS ANALYTICAL RESULTS

Closure Request Report

Former Industrial Petroleum Distributors Site 1120 West Bay Drive Northwest, Olympia, WA

All analytical results are presented in micrograms per liter (µg/L)

	Well ID	Date	Notes	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Total Naphthalenes	Total cPAHs
M	odel Toxics Co L	ntrol Act (MTCA) N evels (CULs) in µg	Method A Cleanup /L		0.1									160	0.1

Notes:

-- = Not analyzed/not applicable

LFP = Low Flow purge sample

DUP = Duplicate Sample

< = Analytical result is less than reporting limit shown

J = estimated value – The result is greater than or equal to the Method Detection Limit (MDL) and less than the Limit of Quantitation (LOQ)

B = Target analyte found in associated blank

cPAHs = Carcinogenic Polycyclic Aromatic Hydrocarbons

cPAHs and Naphthalenes analyzed by U.S. Environmental Protection Agency (EPA) 8270C SIM

cPAHs adjusted for toxicity according to Washington State Administrative Code 173-340-708(8). If one or more adjusted cPAH constituents were reported as Non-Detect, half of the reporting limit was used in calculations.

Naphthalenes is a sum total of 1-methyl-naphthalene, 2-methyl-naphthalene, and naphthalene. If one or more constituents were reported as Non-Detect, half of the reporting limit was used in calculations.

BOLD concentration greater than the MTCA Method A cleanup level

Table 3 GROUNDWATER DRO AND HO SILICA GEL TREATMENT ANALYTICAL RESULTS

Closure Request Report

Former Industrial Petroleum Distributors Site 1120 West Bay Drive Northwest, Olympia, WA

All analytical results are presented in micrograms per liter (µg/L)

Well ID	Date	Notes	DRO w/ SGT	DRO w/out SGT	HO w/ SGT	HO w/out SGT
Model Toxics Con	trol Act (MTCA) Method (CULs) in µg/L	d A Cleanup Levels	500	500	500	500
MW-7	12/15/2016	(LFP)	<29	<29	<67	<67
MW-7	3/9/2017	(LFP)	<82.5	<82.5	<165	<165
MW-7	5/8/2017	(LFP)	81.4 J	233	<82.5	292
MW-8	12/15/2016	(LFP)	210	810	<68	420
MW-8	3/9/2017	(LFP)	87.6 J	390	<165	419 J
MW-8	5/8/2017	(LFP)	68.8 J	524	<82.5	874
MW-9	12/15/2016	(LFP)	88 J	260	<66	97 J
MW-9	3/9/2017	(LFP)	<82.5	347	<165	376 J
MW-9	5/8/2017	(LFP)	<66.0	330	<82.5	544
MW-13	12/15/2016	(LFP)	<28	<28	<66	<66
MW-13	12/15/2016	(DUP)(LFP)	<46 B	65 J B	470 B	450 B
MW-13	3/9/2017	(LFP)	<82.5	<82.5	<165	<165
MW-13	3/9/2017	(DUP)(LFP)	<82.5	<82.5	<165	<165
MW-13	5/8/2017	(LFP)	<66.0	<66.0	<82.5	132 J
MW-13	5/8/2017	(DUP)(LFP)	<66.0	<66.0	<82.5	102 J

Notes:

DRO = Diesel Range Organics

HO = Heavy Oil Range Organics

SGT = Silica Gel Treatment

LFP = Low Flow purge sample

DUP = Duplicate Sample

< = Analytical result is less than reporting limit shown

J = estimated value – The result is greater than or equal to the Method Detection Limit (MDL) and less than the Limit of Quantitation (LOQ)

B = The same analyte is found in the associated blank

BOLD concentration greater than the MTCA Method A cleanup level

Table 4 HISTORICAL GROUNDWATER ANALYTICAL RESULTS

Closure Request Report
Former Industrial Petroleum Distributors Site
1120 West Bay Drive Northwest, Olympia, WA

All analytical results are presended in micrograms per liter (µg/L)

Analysis	MTCA Method A						Sample L Date	mple ID Location T Collected					
Amaryolo	Cleanup	W-1	W-2	IPD-1	IPD-2	IPD-3	IPD-4	IPD-5		WBTP-02	MW-6	MW-6	MW-6
	Levels	9/20/2000	9/20/2000	TP 2001	TP 2001	TP 2001	TP 2001	TP 2001	TP 3/9/2004	TP 3/9/2004	MW 8/26/2004	MW 11/12/2004	MW 1/10/2005
Volatile Organic Compounds													
Benzene	5	<1	<1	<1.00	<1.00	<1.00	1.64	<1.00			1		
Ethylbenzene	700	<1	<1	<1.00	<1.00	<1.00	<1.00	<1.00					
Toluene	1,000	<1	<1	<1.00	<1.00	4.38	<1.00	<1.00			-		
Total Xylenes	1,000	<1	170	<2.00	<2.00	<2.00	31.1	6.9			-		
TPH - HCID													
Gasoline Range Organics				ND		ND	ND	ND			<250	<250	<250
Diesel Range Organics				ND	DET	DET	ND	ND			<500	<500	<500
Heavy Oil Range Organics				ND	ND	DET	ND	ND			<500	<500	<500
TPH-NWTPH													
Gasoline Range Organics	800	<100	<100	<80		1,930	149	254					
Diesel Range Organics	500	35,000	280,000	<333	1,020	14,100	<250	<250	<200**	<400**			
Heavy Oil Range Organics	500	<400	<400	<240	<500	590	<500	<500	<200	<400	-		
Metals													
Antimony	NE			1.10	<1.00	<1.00	<1.00	<1.00	<2.5	<2.5			
Arsenic	5			21.9	<1.00	2.01	1.32	<1.00	2.74	0.865			
Barium	NE			112	18.6	72.2	31.40	27.9					
Beryllium	NE			<1.00	<1.00	<1.00	<1.00	<1.00	<0.5	< 0.5			
Cadmium	5			<1.00	<1.00	<1.00	<1.00	<1.00	<0.5	< 0.5			
Chromium	50			24.0	4.92	20.7	7.76	6.33	3.57	6.05			
Copper	NE			44.5	5.22	20.4	8.34	6.12	<0.5	< 0.5	 NID 4		
Lead (Total)	15	<1		49.9	2.64	5.15	1.78	1.40	0.535	<0.5	ND^		
Lead (Dissolved)	15										ND^		
Mercury	2				4.75		0.77		<0.2	<0.2			
Nickel	NE			28.0	4.75	20.3	8.77	6.13	2.44	3.85			
Selenium	NE NE			1.15	<1.00	<1.00	<1.00	<1.00	<1 <0.5	<1			
Silver	NE NE								<0.5 <0.5	<0.5 <0.5			
Thallium Zinc	NE NE			85.7	18.3	35.6	21.5	11.7	7.89	8.58			
c-Polyaromatic Hydrocarbons	INE			65.7	10.5	35.0	21.5	11.7	7.09	0.50			
Naphthalene	(a)	T		<1.33	10.6	6.30	<1.00	5.73	<0.1	<0.1		l	
1-Methylnaphthalene	(a)								3.4	28			
2-Methylnaphthalene	(a)								11	33			
Naphthalenes	160			0.67	10.6	6.30	0.50	5.73					
Acenaphthene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			-
Acenaphthylene	NE NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Anthracene	NE (S)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Benzo (a) anthracene	(b)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Benzo (a) pyrene	0.1			<1.33*	<1.00*	<1.00*	<1.00*	<1.00*	<0.1	<0.1			
Benzo (b) fluoranthene	(b)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1	-		

Table 4 HISTORICAL GROUNDWATER ANALYTICAL RESULTS

Closure Request Report Former Industrial Petroleum Distributors Site 1120 West Bay Drive Northwest, Olympia, WA

All analytical results are presended in micrograms per liter (µg/L)

Analysis	MTCA Method A						Sample L	mple ID -ocation T Collected						
Allalysis	Cleanup	W-1	W-2 IPD-1 IPD-2 IPD-3 IPD-4 IPD-5 WBTP-01 WBTP-02 MW-6 MW-6											
	Levels	9/20/2000	9/20/2000	TP 2001	TP 2001	TP 2001	TP 2001	TP 2001	TP 3/9/2004	TP 3/9/2004	MW 8/26/2004	MW 11/12/2004	MW 1/10/2005	
Benzo (g,h,i) perylene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1				
Benzo (k) fluoranthene	(b)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1	ı			
Chrysene	(b)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1				
Dibenzo (a,h) anthracene	(b)			<2.67	<2.00	<2.00	<2.00	<2.00	<0.1	<0.1	-			
Fluoranthene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1	-			
Fluorene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1	-			
Indeno (1,2,3-cd) pyrene	(b)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1				
Phenanthrene	NE			<1.33	<1.00	2.28	<1.00	<1.00	<0.1	<0.1	-			
Pyrene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1				
cPAH B(a)P Equivalents	0.1			1.88	0.86	0.81	0.81	0.81						

Notes:

Concentrations compared to the Model Toxics Control Act (MTCA) Method A groundwater cleanup levels presented in Table 720-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 1000-µg/kg without benzene and 800-µg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 800-µg/kg was utilized.

TP = test pit

MW = monitoring well

 μ g/L = micrograms per kilogram

NE = Cleanup level not established under MTCA

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

ND = Not Detected (Hydrocarbon Identification Method)

ND[^] = Reported by previous consultant as "Not Detected". Reporting and/or detection limit was not specified.

- ** Laboratory report in Appendix B of Parametrix's 2004 West Bay Phase II ESA indicated these constituents were ND. Table 2 of Delta's 2008 Remedial Investigation Work Plan reported TPH-D concentrations as 10,000 and 59,000 μg/L (WBTP-01 and WBTP-02, respectively). The 2008 RIWP did not provide a laboratory report.
- -- = not applicable or analyzed
- < = Chemical not detected above the laboratory reporting limit, method detection limit, or practical quantitation limit</p>

Italics = Value calculated for comparison to MTCA cleanup level

ND' = Laboratory practical quantitation limit is elevated above the MTCA Method A cleanup level, but chemical was not observed above the laboratory reporting limit

Bolded and highlighted font indicates results above the MTCA Method A cleanup level

- (a) = See MTCA cleanup level for naphthalene. This is a total value for naphthalene, 1-methylnaphthalene and 2-methylnaphthalene
- (b) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8)

Closure Request Report

				Sample ID (Depti	h below ground s	surface in feet)		
	MTCA Method A				Date Collected	·		
Analysis	Cleanup Levels	GP-1 (2-2.5)	GP-1 (4-4.5)	GP-1 (6-6.5)	GP-2 (2-2.5)	GP-2 (4-4.5)	GP-3 (2-2.5)	GP-3 (4-4.5)
		8/25/2010	8/25/2010	8/25/2010	8/25/2010	8/25/2010	8/24/2010	8/24/2010
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	0.03	<0.0047	<0.019		<0.0042	<0.0086	< 0.0034	<0.0038
Ethylbenzene	6	< 0.0047	<0.019		<0.0042	<0.0086	<0.0034	<0.0038
Toluene	7	< 0.0047	0.0342		<0.0042	<0.0086	<0.0034	<0.0038
Total Xylenes	9	< 0.014	< 0.0567		<0.0126	<0.0259	<0.0101	<0.0113
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Range Hydrocarbons	30	<8.6	<47*		<9.8	264	<6.2	<8.6
Diesel Range Organics	2,000	30.4	60.9		732	3,120	<21.8	31.1
Residual Range/Heavy Oil Organics	· · · · · · · · · · · · · · · · · · ·	198	481		<124	296	<87.1	<103
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	20	<12.3	<4.8		<13.3	<4.4	<10.9	<12.4
Barium	NE	80.6	52.7		53.6	50.0	107	101
Cadmium	2	<6.2*	<2.4*		<6.6*	<2.2*	<5.5*	<6.2*
Chromium (total)	(a)	26.7	10.4		24.6	17.5	34.5	40.4
Lead	250	4.7	5.2		4.1	4.9	5.2	4.0
Mercury	2	<0.12	<0.27		<0.15	<0.24	<0.11	<0.12
Selenium	NE	<6.2	<2.4		<6.6	<2.2	<5.5	<6.2
Silver	NE	<6.2	<2.4		<6.6	<2.2	<5.5	<6.2
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Naphthalene	(b)	0.0087	<0.0178	<0.0451	< 0.0104	0.192	< 0.0075	<0.0087
1-Methylnaphthalene	(b)	<0.0087	<0.0178	<0.0451	0.0217	0.449	<0.0075	0.0143
2-Methylnaphthalene	(b)	0.0111	<0.0178	<0.0451	0.0228	0.463	<0.0075	0.0199
Naphthalenes	5	0.0242	0.0267	0.0677	0.0497	1.10	0.011	0.039
Acenaphthene	NE	<0.0087	<0.0178	<0.0451	<0.0104	0.0896	<0.0075	<0.0087
Acenaphthylene	NE	<0.0087	<0.0178	<0.0451	0.0107	0.0688	<0.0075	<0.0087
Anthracene	NE	<0.0087	<0.0178	<0.0451	<0.0104	0.194	<0.0075	<0.0087
Benzo (a) anthracene Benzo (a) pyrene	(c) 0.1	<0.0087 <0.0087	<0.0178 <0.0178	<0.0451 <0.0451	<0.0104 <0.0104	0.315	<0.0075 <0.0075	<0.0087 <0.0087
Benzo (b) fluoranthene	(c)	<0.0087	<0.0178	<0.0451	<0.0104	0.233 0.165	<0.0075	<0.0087
Benzo (g,h,i) perylene	NE	<0.0087	<0.0178	<0.0451	<0.0104	0.0429	<0.0075	<0.0087
Benzo (k) fluoranthene	(c)	<0.0087	<0.0178	<0.0451	<0.0104	0.205	<0.0075	<0.0087
Chrysene	(c)	<0.0087	<0.0178	<0.0451	<0.0104	0.338	<0.0075	<0.0087
Dibenzo (a,h) anthracene	(c)	<0.0087	<0.0178	<0.0451	<0.0104	0.0498	<0.0075	<0.0087
Fluoranthene	NE	<0.0087	0.0237	0.0540	<0.0104	0.488	<0.0075	<0.0087
Fluorene	NE	<0.0087	<0.0178	<0.0451	0.0136	0.294	< 0.0075	<0.0087
Indeno (1,2,3-cd) pyrene	(c)	<0.0087	<0.0178	<0.0451	<0.0104	0.0550	<0.0075	<0.0087
Phenanthrene	NE	0.0114	0.0302	<0.0451	0.0383	0.999	<0.0075	0.0103
Pyrene	NE	<0.0087	<0.0178	0.0625	<0.0104	0.522	<0.0075	<0.0087
cPAH B(a)P Equivalents	0.1	0.0044	0.0089	0.0226	0.00785	0.315	0.0038	0.0044

Closure Request Report

				Sample ID (Depti	_	surface in feet)		
Analysis	MTCA Method A				Date Collected			
7 inalyolo	Cleanup Levels	GP-4 (2-2.5)	GP-4 (4-4.5)	GP-5 (2-2.5)	GP-5 (4-4.5)	GP-5 (6-6.5)	GP-6 (2-2.5)	GP-6 (4-4.5)
		8/23/2010	8/23/2010	8/23/2010	8/23/2010	8/23/2010	8/25/2010	8/25/2010
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	0.03	<0.0033	<0.0033	<0.0034	<0.0095		<0.0031	<0.0029
Ethylbenzene	6	<0.0033	<0.0033	<0.0034	<0.0095		<0.0031	<0.0029
Toluene	7	<0.0033	<0.0033	<0.0034	<0.0095		<0.0031	<0.0029
Total Xylenes	9	<0.0099	<0.0099	<0.0102	0.107		<0.0094	<0.0087
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Range Hydrocarbons	30	<7.6	<7.4	<7.2	875		<6.6	486
Diesel Range Organics	2,000	<24.7	<26.2	31.8	3,780		<23.3	899
Residual Range/Heavy Oil Organics	2,000	<98.6	<105	<98.8	1,040		<93.1	<98.7
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	20	<13.1	<12.6	<12.4	<21.0*		<11.5	<12.1
Barium	NE	120	115	107	130		127	139
Cadmium	2	<6.5*	<6.3*	<6.2*	<10.5*		<5.7*	<6.1*
Chromium (total)	(a)	48.1	48.3	35.1	40.7		41.5	42.4
Lead	250	4.6	7.1	8.6	31.0		6.4	6.3
Mercury	2	<0.13	<0.13	<0.11	<0.17		<0.093	<0.11
Selenium	NE	<6.5	<6.3	<6.2	<10.5		<5.7	<6.1
Silver	NE	<6.5	<6.3	<6.2	<10.5		<5.7	<6.1
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Naphthalene	(b)	<0.0086	<0.0089	0.0556	4.090	0.988	<0.0079	0.141
1-Methylnaphthalene	(b)	<0.0086	<0.0089	0.0397	9.56	2.580	<0.0079	0.532
2-Methylnaphthalene	(b)	<0.0086	<0.0089	0.0771	12.300	2.840	<0.0079	0.627
Naphthalenes	5	0.013	0.013	0.172	25.95	6.408	0.019	1.30
Acenaphthene	NE	<0.0086	<0.0089	<0.0083	0.205	0.0646	< 0.0079	0.0331
Acenaphthylene	NE	<0.0086	<0.0089	0.0105	0.155	0.0524	< 0.0079	0.0323
Anthracene	NE	<0.0086	<0.0089	0.0214	0.0802	<0.0288	< 0.0079	0.0113
Benzo (a) anthracene	(c)	<0.0086	<0.0089	0.0227	0.0231	<0.0288	< 0.0079	0.0177
Benzo (a) pyrene	0.1	<0.0086	<0.0089	0.0216	<0.0147	<0.0288	<0.0079	0.0124
Benzo (b) fluoranthene	(c)	<0.0086	<0.0089	0.0269	0.0152	<0.0288	<0.0079	0.0081
Benzo (g,h,i) perylene	ŇÉ	<0.0086	<0.0089	0.0185	<0.0147	<0.0288	<0.0079	<0.0077
Benzo (k) fluoranthene	(c)	<0.0086	<0.0089	0.0219	<0.0147	<0.0288	<0.0079	0.0120
Chrysene	(c)	<0.0086	<0.0089	0.0312	0.0352	<0.0288	<0.0079	0.0202
Dibenzo (a,h) anthracene	(c)	<0.0086	<0.0089	<0.0083	<0.0147	<0.0288	<0.0079	<0.0077
Fluoranthene	ŇÉ	<0.0086	<0.0089	0.0645	0.0864	0.0517	0.0140	0.0359
Fluorene	NE	<0.0086	<0.0089	<0.0083	0.856	0.262	<0.0079	0.113
Indeno (1,2,3-cd) pyrene	(c)	<0.0086	<0.0089	0.0164	<0.0147	<0.0288	<0.0079	<0.0077
Phenanthrene	NE	<0.0086	<0.0089	0.0594	1.460	0.289	0.0109	0.152
Pyrene	NE	<0.0086	<0.0089	0.0530	0.125	0.048	0.0100	0.0426
cPAH B(a)P Equivalents	0.1	0.0043	0.0045	0.0307	0.0123	0.022	0.0056	0.016

Closure Request Report

				Sample ID (Dept	h below ground	surface in feet)		
Analysis	MTCA Method A				Date Collected			
Allalysis	Cleanup Levels	GP-6 (6-6.5)	GP-7 (2-2.5)	GP-7 (6-6.5)	GP-8 (2-2.5)	GP-8 (4-4.5)	GP-8 (6-6.5)	GP-9 (2-2.5)
		8/25/2010	8/24/2010	8/24/2010	8/25/2010	8/25/2010	8/25/2010	8/24/2010
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	0.03	<0.0038	<0.0041	<0.0031	<0.003		<0.0031	<0.0031
Ethylbenzene	6	<0.0038	<0.0041	<0.0031	<0.003		<0.0031	<0.0031
Toluene	7	<0.0038	<0.0041	<0.0031	<0.003		<0.0031	<0.0031
Total Xylenes	9	<0.0114	<0.0122	<0.0093	<0.009		<0.0093	<0.0092
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Range Hydrocarbons	30	94.4	<7.3	<7.2	<6.2		<6.6	<7.2
Diesel Range Organics	2,000	57.1	<23	<24.5	<19.3		<22.3	<24.9
Residual Range/Heavy Oil Organics	2,000	<108	<92.1	<98.2	<77.1		<89.3	<99.6
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	20	<13.9	<11.5	<12.7	<10.3		<11.8	12.4
Barium	NE	112	154	113	51		71.8	129
Cadmium	2	<7.0*	<5.8*	<6.3*	<5.2*		<5.9*	<6.2*
Chromium (total)	(a)	44.2	45	39.9	26.7		32.8	42.7
Lead	250	7.1	6.8	4.3	8.8		10.1	7.3
Mercury	2	<0.11	<0.11	<0.12	<0.096		<0.10	<0.12
Selenium	NE	<7.0	<5.8	<6.3	<5.2		<5.9	<6.2
Silver	NE	<7.0	<5.8	<6.3	<5.2		<5.9	<6.2
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Naphthalene	(b)	0.0135	<0.0081	<0.0085	0.0092	0.0089	0.0112	0.0181
1-Methylnaphthalene	(b)	0.0218	<0.0081	<0.0085	0.0090	0.0075	0.0102	0.0162
2-Methylnaphthalene	(b)	0.0217	<0.0081	<0.0085	0.0125	0.0109	0.0148	0.0248
Naphthalenes	5	0.0570	0.012	0.013	0.031	0.027	0.0362	0.0591
Acenaphthene	NE	<0.0097	<0.0081	<0.0085	<0.0070	<0.0071	<0.0077	<0.0084
Acenaphthylene	NE	<0.0097	<0.0081	<0.0085	<0.0070	<0.0071	< 0.0077	<0.0084
Anthracene	NE	<0.0097	<0.0081	<0.0085	<0.0070	<0.0071	<0.0077	0.0126
Benzo (a) anthracene	(c)	<0.0097	<0.0081	<0.0085	<0.0070	<0.0071	< 0.0077	0.0162
Benzo (a) pyrene	0.1	<0.0097	<0.0081	<0.0085	<0.0070	<0.0071	< 0.0077	0.0147
Benzo (b) fluoranthene	(c)	<0.0097	<0.0081	<0.0085	0.0105	0.0085	0.0089	0.0239
Benzo (g,h,i) perylene	NE	<0.0097	<0.0081	<0.0085	<0.0070	<0.0071	<0.0077	0.0113
Benzo (k) fluoranthene	(c)	<0.0097	<0.0081	<0.0085	0.0078	<0.0071	<0.0077	0.0139
Chrysene	(c)	<0.0097	<0.0081	<0.0085	0.0111	0.0089	0.0092	0.0220
Dibenzo (a,h) anthracene	(c)	<0.0097	<0.0081	<0.0085	<0.0070	<0.0071	<0.0077	<0.0084
Fluoranthene	ŇÉ	<0.0097	<0.0081	<0.0085	0.0158	0.0143	0.0142	0.0424
Fluorene	NE	<0.0097	<0.0081	<0.0085	<0.0070	<0.0071	<0.0077	<0.0084
Indeno (1,2,3-cd) pyrene	(c)	<0.0097	<0.0081	<0.0085	<0.0070	<0.0071	<0.0077	0.0112
Phenanthrene	ŇÉ	<0.0097	<0.0081	<0.0085	0.0127	0.0122	0.0134	0.0323
Pyrene	NE	<0.0097	<0.0081	<0.0085	0.0124	0.0120	0.0110	0.0290
cPAH B(a)P Equivalents	0.1	0.0064	0.0041	0.0043	0.0054	0.0048	0.0052	0.0214

Closure Request Report

				Sample ID (Dept	——————————————————————————————————————	surface in feet)		
Analysis	MTCA Method A				Date Collected			
7a.y 5.15	Cleanup Levels	GP-9 (4-4.5)	GP-9 (5.5-6)	MW-6R (2-2.5)	MW-6R (4-4.5)	MW-6R (6-6.5)	MW-7 (2-2.5)	MW-7 (6-6.5)
		8/24/2010	8/24/2010	8/23/2010	8/23/2010	8/23/2010	8/24/2010	8/24/2010
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	0.03		<0.0031	<0.0031	<0.0215		<0.0030	<0.0031
Ethylbenzene	6		<0.0031	<0.0031	<0.0215		<0.0030	<0.0031
Toluene	7		<0.0031	<0.0031	<0.0215		<0.0030	<0.0031
Total Xylenes	9		<0.0092	<0.0094	<0.0644		<0.0090	<0.0094
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Range Hydrocarbons	30	-	13.8	<6.5	665		<4.9	<6.8
Diesel Range Organics	2,000		<25.0	<22.5	7,060		<20.3	<24.3
Residual Range/Heavy Oil Organics	2,000	-	<100	<89.9	1,360		<81.0	<97.4
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	20		<13.0	<12.0	<10.0		<10.5	<12.5
Barium	NE		102	110	<100		84.1	123
Cadmium	2		<6.5*	<6.0*	<5.0*		<5.2*	<6.2*
Chromium (total)	(a)		36.5	39.4	5.0		22.8	34.4
Lead	250		10.7	4.3	12.6		6.6	10.7
Mercury	2		<0.11	<0.11	<0.43		<0.11	<0.12
Selenium	NE		<6.5	<6.0	<5.0		<5.2	<6.2
Silver	NE		<6.5	<6.0	<5.0		<5.2	<6.2
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Naphthalene	(b)	0.0110	0.0184	<0.0080	2.4800	0.0177	<0.0072	0.0092
1-Methylnaphthalene	(b)	<0.0089	0.0108	<0.0080	13.0000	0.0623	<0.0072	<0.0085
2-Methylnaphthalene	(b)	0.0123	0.018	<0.0080	16.7000	0.0568	<0.0072	<0.0085
Naphthalenes	5	0.028	0.047	0.012	32.18	0.137	0.0108	0.0170
Acenaphthene	NE	<0.0089	<0.0086	<0.0080	0.4860	<0.0101	<0.0072	<0.0085
Acenaphthylene	NE	<0.0089	0.0086	<0.0080	0.3300	<0.0101	<0.0072	<0.0085
Anthracene	NE	<0.0089	0.0205	<0.0080	0.1190	<0.0101	<0.0072	<0.0085
Benzo (a) anthracene	(c)	0.0143	0.0339	<0.0080	<0.0358	<0.0101	<0.0072	<0.0085
Benzo (a) pyrene	0.1	0.0142	0.0317	<0.0080	<0.0358	<0.0101	<0.0072	<0.0085
Benzo (b) fluoranthene	(c)	0.0163	0.0277	<0.0080	<0.0358	<0.0101	<0.0072	<0.0085
Benzo (g,h,i) perylene	ŇÉ	<0.0089	0.0177	<0.0080	<0.0358	<0.0101	< 0.0072	<0.0085
Benzo (k) fluoranthene	(c)	0.0148	0.029	<0.0080	<0.0358	<0.0101	< 0.0072	<0.0085
Chrysene	(c)	0.0184	0.0334	<0.0080	0.0395	<0.0101	< 0.0072	<0.0085
Dibenzo (a,h) anthracene	(c)	<0.0089	<0.0086	<0.0080	<0.0358	<0.0101	< 0.0072	<0.0085
Fluoranthene	ŇÉ	0.0405	0.0932	<0.0080	0.0544	<0.0101	< 0.0072	<0.0085
Fluorene	NE	<0.0089	0.0167	<0.0080	1.6900	<0.0101	<0.0072	<0.0085
Indeno (1,2,3-cd) pyrene	(c)	0.0093	0.0172	<0.0080	<0.0358	<0.0101	<0.0072	<0.0085
Phenanthrene	NE	0.0253	0.0877	<0.0080	2.9000	<0.0101	<0.0072	<0.0085
Pyrene	NE	0.0290	0.0652	<0.0080	0.2120	<0.0101	<0.0072	<0.0085
cPAH B(a)P Equivalents	0.1	0.0199	0.0428	0.0040	0.0183	0.00510	0.0036	0.0043

Closure Request Report

				Sample ID (Depti	——————————————————————————————————————	surface in feet)		
Analysis	MTCA Method A				Date Collected			
7 inalyolo	Cleanup Levels	MW-8 (2-2.5)	MW-8 (6-6.5)	MW-9 (2-2.5)	MW-9 (6-6.5)	MW-10 (2-2.5)	MW-10 (4-4.5)	MW-11 (2-2.5)
		8/24/2010	8/24/2010	8/24/2010	8/24/2010	8/24/2010	8/24/2010	8/25/2010
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	0.03	<0.0036	<0.0036	<0.0042	<0.0032	<0.0039	<0.0033	<0.0033
Ethylbenzene	6	<0.0036	<0.0036	<0.0042	<0.0032	<0.0039	<0.0033	<0.0033
Toluene	7	<0.0036	<0.0036	<0.0042	<0.0032	<0.0039	<0.0033	<0.0033
Total Xylenes	9	<0.011	<0.0109	<0.013	<0.0097	<0.0116	<0.010	<0.010
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Range Hydrocarbons	30	<7.0	<7.9	<9.0	<8.36	<8.1	<7.8	<7.0
Diesel Range Organics	2,000	<21.6	<25.4	<24.7	<25.6	<23.4	<26.9	72.3
Residual Range/Heavy Oil Organics	2,000	<86.3	<102	<98.7	<102	<93.4	<107	176
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	20	<10.9	<13.1	<10.0	<11.1	<12.4	<13.2	<11.2
Barium	NE	131	140	156	126	118	126	131
Cadmium	2	<5.5*	<6.6*	<5.0*	<5.6*	<6.2*	<6.6*	<5.6*
Chromium (total)	(a)	41.7	41.9	49.0	46.0	45.8	42.0	28
Lead	250	5	4.1	7.7	6.1	4.9	14.0	58.3
Mercury	2	<0.11	<0.12	<0.13	<0.11	<0.12	<0.14	0.12
Selenium	NE	<5.5	<6.6	<5.0	<5.6	<6.2	<6.6	<5.6
Silver	NE	<5.5	<6.6	<5.0	<5.6	<6.2	<6.6	<5.6
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Naphthalene	(b)	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.106
1-Methylnaphthalene	(b)	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.146
2-Methylnaphthalene	(b)	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.180
Naphthalenes	5	0.011	0.014	0.013	0.014	0.012	0.014	0.432
Acenaphthene	NE	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	<0.0076
Acenaphthylene	NE	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0147
Anthracene	NE	< 0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0277
Benzo (a) anthracene	(c)	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0461
Benzo (a) pyrene	0.1	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0460
Benzo (b) fluoranthene	(c)	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0566
Benzo (g,h,i) perylene	ŇÉ	< 0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0231
Benzo (k) fluoranthene	(c)	< 0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0356
Chrysene	(c)	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0701
Dibenzo (a,h) anthracene	(c)	< 0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0087
Fluoranthene	ŇÉ	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0943
Fluorene	NE	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0120
Indeno (1,2,3-cd) pyrene	(c)	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0210
Phenanthrene	NE	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.125
Pyrene	NE	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0860
cPAH B(a)P Equivalents	0.1	0.0037	0.0045	0.0044	0.0045	0.0041	0.0045	0.0635

Closure Request Report

			Sample ID (Dept	th below ground	surface in feet)	
Analysis	MTCA Method A			Date Collected	I	
, ,	Cleanup Levels	MW-11 (4-4.5)	MW-11 (6-6.5)	MW-12 (2-2.5)	MW-12 (4-4.5)	MW-12 (6-6.5)
		8/25/2010	8/25/2010	8/25/2010	8/25/2010	8/25/2010
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	0.03	<0.0036		<0.0034	<0.0035	
Ethylbenzene	6	<0.0036		<0.0034	<0.0035	
Toluene	7	<0.0036		<0.0034	<0.0035	
Total Xylenes	9	<0.0108		<0.010	<0.011	
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Range Hydrocarbons	30	<7.4		<6.9	<7.2	
Diesel Range Organics	2,000	52.9		75.7	43.1	
Residual Range/Heavy Oil Organics	2,000	142		153	154	
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	20	<11.5		<12.3	<11.4	
Barium	NE	132		146	103	
Cadmium	2	<5.8*		<6.2*	<5.7*	
Chromium (total)	(a)	31.6		39.9	27.9	
Lead	250	55.2		17.0	49.7	-
Mercury	2	0.2		<0.12	<0.11	
Selenium	NE	<5.8		<6.2	<5.7	
Silver	NE	<5.8		<6.2	<5.7	
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Naphthalene	(b)	0.0585	0.0891	0.147	0.101	0.0785
1-Methylnaphthalene	(b)	0.0814	0.105	0.141	0.110	0.0282
2-Methylnaphthalene	(b)	0.101	0.134	0.194	0.149	0.0458
Naphthalenes	5	0.241	0.3281	0.482	0.360	0.153
Acenaphthene	NE	<0.0078	0.0726	0.0186	0.0093	<0.0117
Acenaphthylene	NE	0.0105	0.0210	0.0205	0.0232	<0.0117
Anthracene	NE	0.0209	0.112	0.0517	0.0561	0.0225
Benzo (a) anthracene	(c)	0.0314	0.154	0.0871	0.0849	0.108
Benzo (a) pyrene	0.1	0.0328	0.168	0.0941	0.0861	0.114
Benzo (b) fluoranthene	(c)	0.0445	0.181	0.118	0.136	0.106
Benzo (g,h,i) perylene	NÉ	0.0181	0.0745	0.0504	0.0472	0.0548
Benzo (k) fluoranthene	(c)	0.0352	0.120	0.0866	0.0877	0.0882
Chrysene	(c)	0.0477	0.171	0.146	0.134	0.116
Dibenzo (a,h) anthracene	(c)	<0.0078	0.0270	0.0198	0.0174	0.0231
Fluoranthene	NE	0.0690	0.415	0.292	0.219	0.244
Fluorene	NE	<0.0078	0.0367	0.0206	0.0136	0.0126
Indeno (1,2,3-cd) pyrene	(c)	0.0173	0.0708	0.0480	0.0492	0.0532
Phenanthrene	NE	0.0733	0.426	0.257	0.143	0.0945
Pyrene	NE	0.0564	0.358	0.228	0.165	0.195
cPAH B(a)P Equivalents	0.1	0.0465	0.225	0.132	0.125	0.153

Closure Request Report

Former Industrial Petroleum Distributors Bulk Terminal 1120 West Bay Drive Northwest, Olympia, Washington

Notes:

Concentrations compared to the Model Toxics Control Act (MTCA) Method A soil cleanup levels for unrestricted land uses presented in Table 740-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 100-mg/kg without benzene and 30-mg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 30-mg/kg was utilized.

ft = Feet

bgs = Below ground surface mg/kg = milligram per kilogram

NE = Cleanup level not established under MTCA

-- = not applicable or analyzed

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

- < = Chemical not detected above the laboratory reporting limit
- * = Laboratory practical quantitation limit is elevated above the MTCA Method A cleanup level, but chemical was not observed above the laboratory method detection limit

Italics = Value calculated for comparison to MTCA cleanup level

Bold = Chemical detected at a concentration above the laboratory reporting limit

Bolded and highlighted font indicates results above the MTCA Method A cleanup level

- (a) = Analysis is for total chromium. No MTCA cleanup level has been established for total chromium.
- (b) = MTCA cleanup level is 5-mg/kg for total concentration of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene
- (c) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8)

Lab QA/QC surrogate recovery was outside control limits due to matrix interference for samples GP1-4-4.5, GP1-6-6.5, GP2-4-4.5, GP5-4-4.5, GP6-4-4.5, GP6-6-6.5

Table 6 PRE-EXCAVATION CLEANUP ACTION PLAN SOIL ANALYTICAL RESULTS Closure Request Report Former Industrial Petroleum Distributors Site

1120 West Bay Drive Northwest, Olympia, Washington

All analytical results are presented in milligrams per kilogram (mg/kg)

Sample Location	Sample ID	Sample Depth (feet bgs)	Depth range (feet bgs)	Date	NWTPH-GX SOII C7-C12	Diesel Range Organics C12- C24	Heavy Range Organics C24-C40	DRO C12-C24 w/Si Gel	HRO C24-C40 w/Si Gel	Benzo(a)anthracene	Benzo(a)pyrene	Berzo(b)fluoranthene	Benzo(k/iluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-c.d)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Naphthalenes ¹	Total Adjusted cPAHs ²
AUS-SB01	Act (MTCA) Method A Clear AUS-SB-1A(4.5-5)		(0-5)	08/17/2015	30/100 ND 1.5	2000	2000	2,000 9.2	2,000 64	0.0012	 J 0.0014 J	0.0035	0.0014	0.0028	ND 0.00085	ND 0.00085	0.0029	0.0049	0.0037	0.0115	0.1
AUS-SB01	SB-1A-12.5	12.5	(10-5)	08/28/2015	ND 1.5	-	-	ND 3.6	ND 12	ND 0.00080	ND 0.00080	ND 0.00080	ND 0.00080	ND 0.00040	ND 0.00080	ND 0.00080	ND 0.00080	ND 0.00080	ND 0.00080	0.0012	0.002
AUS-SB01	SB-1A-7.5	7.5	(5-10)	08/28/2015	ND 80	-	-	1,300	680	0.044	0.045	0.060	0.020	0.048	0.0036 J	0.012	0.013	0.019	0.046	0.078	0.059
AUS-SB02	AUS-SB-2(2-2.5)	(2-2.5)	(0-5)	08/17/2015	ND 1.3	·	-	5.7 J	49	ND 0.00083	ND 0.00083	0.0012 J	ND 0.00083	0.0012	ND 0.00083	ND 0.00083	ND 0.00083	0.0011 J	0.0024	0.003915	0.001
AUS-SB02	SB-2-9.5	9.5	(5-10)	08/28/2015	ND 10	-	-	ND 3.4	ND 11	0.0079	0.0082	0.012	0.0040	0.0086	ND 0.00076	0.0017	J 0.00076 J	0.0019 J	0.0020	0.00466	0.011
AUS-SB03 AUS-SB03	AUS-SB-3(2-2.5) SB-3-7.5	(2-2.5) 7.5	(0-5) (5-10)	08/17/2015 08/31/2015	ND 1.5 ND 57	-	-	8.7 170	68 1.500	0.0056 ND 0.0021	0.0062 ND 0.0021	0.013 0.0030 J	0.0052 ND 0.0021	0.01 0.0050	0.00084 J J ND 0.0021	0.0028 ND 0.0021	0.001 J 0.12	0.002 J 0.054	0.0045	0.0075 0.215	0.009
AUS-SB03	AUS-SB-4A(2-2.5)		(0-5)	08/20/2015	ND 16	-	-	ND 3.6	ND 12	0.0036	0.0030	0.0096	0.0021	0.011	ND 0.00081	0.0018	J 0.0012 J	0.0022	0.0019	0.0053	0.005
AUS-SB04	SB-4A-7.5	7.5	(5-10)	08/28/2015	ND 11	-	-	ND 3.4	ND 11	ND 0.00075	ND 0.00075	0.0012 J	ND 0.00075	0.00073	ND 0.00075	ND 0.00075	ND 0.00075	ND 0.00075	ND 0.00075	0.001125	0.001
AUS-SB05	AUS-SB-5A(4.5-5)	(4.5-5)	(0-5)	08/17/2015	ND 1.3		-	ND 3.8	ND 13	0.0029	0.0031	0.006	0.002	0.0043	ND 0.00083	0.0012	J 0.0053	0.012	0.0074	0.0247	0.004
AUS-SB05 AUS-SB05	SB-5A-12.5 SB-5A-7.5	12.5 7.5	(10-15) (5-10)	08/28/2015	ND 1.0	-	-	ND 3.4 850	ND 11 580	ND 0.0010 0.0049	ND 0.0010 0.0057 J	ND 0.0010 0.010	ND 0.0010 0.0037	ND 0.00051 J 0.0057	ND 0.0010 J ND 0.0030	ND 0.0010 ND 0.0030	ND 0.0010	ND 0.0010 0.093	ND 0.0010 0.018	0.0015 0.176	0.001
AUS-SB05	DUP-5	12.5	(10-15)	08/28/2015 08/28/2015	ND 73 ND 1.0	-	-	ND 3.5	ND 12	ND 0.00077	ND 0.00077	ND 0.00077	ND 0.00077	ND 0.00039	ND 0.0030 ND 0.00077	ND 0.0030	0.065 0.011	0.093	0.0057	0.0287	0.008
AUS-SB06	AUS-SB-6(2-2.5)	(2-2.5)	(0-5)	08/17/2015	2.4 J	-	-	13	120	0.00095	ND 0.00091	0.0034	0.00095	J 0.0022	J ND 0.00091	ND 0.00091	0.001 J	0.0011 J	0.007	0.0091	0.001
AUS-SB06	SB-6-7.5	7.5	(5-10)	08/31/2015	ND 69	•	-	290	1,100	ND 0.013	ND 0.013	ND 0.013	ND 0.013	0.010		ND 0.013 U	IJ 1.4 J	1.9 J	0.056	3.356	0.010
AUS-SB06	DUP-7	7.5	(5-10)	08/31/2015	77 J	-	-	440	1,500	ND 0.025	ND 0.025	ND 0.025	ND 0.025	ND 0.012	ND 0.025	ND 0.025	7.9 J	12 J	0.25	20.15	0.019
AUS-SB07 AUS-SB07	AUS-SB-7(2-2.5) SB-7-7.5	(2-2.5) 7.5	(0-5) (5-10)	08/17/2015 08/31/2015	ND 1.4 ND 65	-	-	5.9 J 290	22 J 1,700	0.0017	0.002 J ND 0.0024	0.0051 0.0061	0.0016 UND 0.0024	0.004 0.0076	ND 0.00086 ND 0.0024	0.001 ND 0.0024	J ND 0.00086 0.96	0.0011 J 0.62	0.0022	0.00373 1.81	0.003
AUS-SB08	AUS-SB-8(2-2.5)	(2-2.5)	(0-5)	08/17/2015	ND 1.5	-	-	ND 3.6	ND 12	0.0026	0.0024 0.0013 J	0.0049	0.0013	0.0039	ND 0.0008	ND 0.0008	0.0018 J	0.0025	0.0075	0.0118	0.002
AUS-SB08	SB-8-7.5	7.5	(5-10)	09/01/2015	ND 54		-	310	1,800	ND 0.011	ND 0.011	ND 0.011	ND 0.011	0.0062	ND 0.011	ND 0.011	0.22	0.091	0.083	0.394	0.008
AUS-SB09	AUS-SB-9(2-2.5)	(2-2.5)	(0-5)	08/17/2015	1.0 J	ı	-	20	110	0.035	0.040	0.13	0.032	0.080	0.0070	0.020	0.026	0.042	0.038	0.106	0.063
AUS-SB09	SB-9-7.5	7.5	(5-10)	08/28/2015	ND 13	-	-	ND 3.8 ND 3.6	ND 13 ND 12	0.0043 0.033	0.0053 0.035	0.012 0.095	0.0034 0.041	0.0070 0.079	ND 0.00085 0.0050	0.0016 0.017	J 0.0013 J 0.0067	0.0028 0.0099	0.0040	0.0081	0.008 0.055
AUS-SB10 AUS-SB10	AUS-SB-10A(2-2.5) SB-10-7.5	(2-2.5) 7.5	(0-5) (5-10)	08/17/2015 08/28/2015	ND 1.4 ND 11	-	-	ND 3.6 ND 3.6	12 21 J	0.033	0.033	0.093	0.095	0.079	0.0030	0.032	0.0067	0.0099	0.043	0.0290	0.033
AUS-SB11	AUS-SB-11(2-2.5)	(2-2.5)	(0-5)	08/17/2015	ND 1.3	-	-	ND 3.8	ND 13	0.0030	0.0040	0.010	0.0033	0.0076	ND 0.00083	0.0021	0.0023	0.0028	0.0048	0.0099	0.006
AUS-SB11	SB-11-12.5	12.5	(10-15)	08/31/2015	ND 11	-	-	ND 3.4	ND 11	0.13	0.13	0.18	0.073	0.14	0.012	0.039	0.027	0.031	0.026	0.084	0.175
AUS-SB11	SB-11-7.5	7.5	(5-10)	08/31/2015	ND 63	-	-	310	1,300	ND 0.012	ND 0.012	0.016 J	ND 0.012	0.0098	ND 0.012	ND 0.012	0.57	0.75	0.093	1.413	0.010
AUS-SB12 AUS-SB12	AUS-SB-12(2-2.5) SB-12-7.5	(2-2.5) 7.5	(0-5) (5-10)	08/18/2015 08/31/2015	2.4 J ND 69	-	-	3.6 J 580	16 J 1.900	ND 0.00080 ND 0.0026 U.	ND 0.00080 ND 0.0026 UJ	0.00084 J 0.0035 J	ND 0.00080 ND 0.0026 U.	0.0011 0.0029	J ND 0.00080 J ND 0.0026 UJ	ND 0.00080 ND 0.0026 U	0.0034 IJ 0.12 J	0.0060 0.044 J	0.0081	0.0175 0.181	0.001
AUS-SB12	DUP-2		(0-5)	08/18/2015	1.7 J	-	-	ND 3.5	25 J	ND 0.00079	ND 0.00079	0.00093 J	ND 0.00079	0.00071	ND 0.00079	ND 0.00079	0.0017 J	0.0032	0.0043	0.0092	0.001
AUS-SB13	AUS-SB-13(2-2.5)	(2-2.5)	(0-5)	08/18/2015	1.6 J		-	ND 3.5	ND 12	0.00097	J 0.0010 J	0.0026	ND 0.00078	0.0028	ND 0.00078	0.00088	J ND 0.00078	0.0010 J	0.0041	0.00549	0.002
AUS-SB13	SB-13-7.5	7.5	(5-10)	09/01/2015	ND 260	·	-	340	1,900	ND 0.011	ND 0.011	ND 0.011	ND 0.011	0.0056	ND 0.011	ND 0.011	0.48	0.22	0.21	0.91	0.008
AUS-SB14	AUS-SB-14(2-2.5)		(0-5)	08/18/2015	2.4 J	-	-	5.9 J 210	18 J 1,200	ND 0.00080 ND 0.0096	ND 0.00080 ND 0.0096	0.0013 J ND 0.0096	ND 0.00080 ND 0.0096	0.0014	J ND 0.00080 J ND 0.0096	ND 0.00080 ND 0.0096	0.00084 J 0.030	0.0016 J 0.020 J	0.011	0.01344	0.001
AUS-SB14 AUS-SB15	SB-14-7.5 SB-15-7.5	7.5 7.5	(5-10) (5-10)	09/01/2015 08/27/2015	ND 47 ND 0.94	-	-	ND 3.3	ND 11	ND 0.0096 ND 0.00074	ND 0.0096 ND 0.00074	ND 0.0096	ND 0.0096 ND 0.00074	ND 0.00037	ND 0.0096 ND 0.00074	ND 0.0096 ND 0.00074	ND 0.00074	-	ND 0.00074	0.00111	0.007
AUS-SB16	SB-16-7.5	7.5	(5-10)	08/27/2015	ND 0.84	-	-	4.0 J	24 J	1.4	1.8	2.1	0.86	1.5	0.10	0.27	0.019	0.052	0.13	0.201	2.288
AUS-SB17	AUS-SB-17(2-2.5)	(2-2.5)	(0-5)	08/18/2015	ND 1.5	-	-	ND 3.8	ND 13	0.012	0.011	0.046	0.018	0.043	0.0016 J	0.0063	0.0085	0.015	0.014	0.0375	0.020
AUS-SB17	SB-17-7.5		(5-10)	08/31/2015	ND 0.99	-		ND 3.4	ND 11	0.018	0.019	0.023	0.011	0.019	0.0017 J	0.0055	0.0021	0.0027	0.0045	0.0093	0.025
AUS-SB18 AUS-SB18	AUS-SB-18(2-2.5) SB-18-7.5	(2-2.5) 7.5	(0-5) (5-10)	08/18/2015 08/31/2015	ND 1.4 55 J	-	-	ND 3.4 4,500 J	26 J 10.000 J	0.0020	0.0023 J 16 J	0.0054 J 39 J	0.0020 ND 0.34 U.	0.0046 J 26	ND 0.00075 J 2.4 J	0.0011 4.4	J ND 0.00075 J 16 J	0.0013 J 19 J	0.00094	0.002615 J 54	0.003 22.757
AUS-SB18A	SB-18A-12.5	12.5	(10-15)	08/31/2015	2.0 J	-	-	ND 3.2	ND 11	0.0011	0.00096 J	0.0011 J	ND 0.00072	0.00095	J ND 0.00072	ND 0.00072	0.00083 ,		ND 0.00072	0.00259	0.001
AUS-SB19	AUS-SB-19(2-2.5)	(2-2.5)	(0-5)	08/18/2015	ND 1.3	-	-	ND 3.4	ND 11	ND 0.00075	ND 0.00075	0.0012 J	ND 0.00075	0.0013	ND 0.00075	ND 0.00075	ND 0.00075	ND 0.00075	0.00075	0.0015	0.001
AUS-SB19	SB-19-14.5	14.5	(10-15)	08/31/2015	28 J	-	-	580	2,300	7.7	J 6.7 J	J 6.7 J	3.1	7.7	J 0.69 J	1.9	J 14 J	23 J	50 ,	87	8.786
AUS-SB19	SB-19-7.5	7.5	(5-10)	08/31/2015	ND 58	-	-	9,600 J	64,000 J ND 12	7.7 C	7.0 J 0.0015 J	J 16 J 0.0036	ND 0.11 Us 0.0011	11 0	J 0.87 J	1.7 0.0013	J 2.1 J J ND 0.00078	2.0 J 0.00088 J	0.0016	J 7.4 J 0.00287	9.743 0.002
AUS-SB20 AUS-SB20	AUS-SB-20(2-2.5) SB-20-12.5		(0-5) (10-15)	08/18/2015 08/31/2015	ND 1.2 ND 73	-	-	ND 3.5 170	ND 12 630	ND 0.0027	ND 0.0027	0.0056	ND 0.0027	0.0036	ND 0.00078 J ND 0.0027	0.0013	J ND 0.00078 J 0.10	0.00088 J	0.0016	0.00287	0.002
AUS-SB20	SB-20-7.5		(5-10)	08/31/2015	160 J	-	-	150	810	ND 0.0023	ND 0.0023	0.0047 J	ND 0.0023	0.0020	ND 0.0023	ND 0.0023	0.41	0.42	0.057	0.887	0.002
AUS-SB21	AUS-SB-21(2-2.5)	(2-2.5)	(0-5)	08/18/2015	ND 1.3	-	-	ND 3.5	ND 12	ND 0.00078	ND 0.00078	0.0015 J	ND 0.00078	0.0015	ND 0.00078	ND 0.00078	ND 0.00078	ND 0.00078	0.0022	0.00298	0.001
AUS-SB21	SB-21-7.5	7.5	(5-10)	08/28/2015	ND 69	-	-	340	1,800	ND 0.0025	ND 0.0025	0.0035 J	ND 0.0025	0.0048	ND 0.0025	ND 0.0025	0.36	0.14	0.052	0.552	0.002
AUS-SB22 AUS-SB22	AUS-SB-22(2-2.5) SB-22-7.5		(0-5) (5-10)	08/20/2015 08/27/2015	ND 18 ND 0.97	-			ND 12 ND 11	0.0082 ND 0.00073	0.0074 J ND 0.00073	0.018 0.00079 J	0.0051 J ND 0.00073	0.016 ND 0.00037	J 0.0015 J ND 0.00073 UJ	0.0052	J 0.011 J IJ ND 0.00073	0.015 J ND 0.00073	0.016 , ND 0.00073	0.042 0.001095	0.011
AUS-SB23-A	SB-23-A-7.5	7.5	(5-10)	08/27/2015	ND 1.1	-			ND 11	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00037	ND 0.00074	ND 0.00074	ND 0.00074		ND 0.00074	0.001033	0.001
AUS-SB24	SB-24-7.5	7.5	(5-10)	08/31/2015	ND 0.83	-			ND 11	ND 0.00072	ND 0.00072	ND 0.00072	ND 0.00072	ND 0.00036	ND 0.00072	ND 0.00072	ND 0.00072		ND 0.00072	0.00108	0.001
AUS-SB25	AUS-SB-25A(2-2.5)	(2-2.5)	(0-5)	08/20/2015	ND 13	-	-	5.8 J	55	0.0036	0.0049	0.012	0.0045 J	0.0079	0.00098 J	0.0036	0.0017 J	0.0032	0.0046	0.0095	0.007
AUS-SB25	SB-25A-12.5		(10-15)	08/28/2015	ND 1.1	-		ND 3.6	ND 12	ND 0.00080	ND 0.00080	ND 0.00080	ND 0.00080	ND 0.00040	ND 0.00080	ND 0.00080	ND 0.00080		ND 0.00080	0.0012	0.001
AUS-SB25 AUS-SB26	SB-25A-7.5 AUS-SB-26A(2-2.5)	7.5 (2-2.5)	(5-10) (0-5)	08/28/2015 08/20/2015	ND 1,000 ND 23	-	-	500 76	2,000 900	0.0053 ND 0.0047	ND 0.0025 ND 0.0047	0.0065 0.0049 J	ND 0.0025 ND 0.0047	0.0065 0.0042	ND 0.0025 J ND 0.0047	ND 0.0025 ND 0.0047	0.012 ND 0.0047	0.011 ND 0.0047	0.021	0.044	0.003
AUS-SB26	SB-26A-12.5	12.5	(10-5)	09/01/2015	ND 67	-	-	300	1,200	0.026	0.030	0.049	0.021	0.0042	J ND 0.012	ND 0.012	0.029 J	0.021 J	0.062	0.112	0.040
AUS-SB26	SB-26A-7.5		(5-10)	09/01/2015	240 J	-	-	1,700	2,000	ND 0.012	ND 0.012	0.012 J	ND 0.012	0.014	J ND 0.012	ND 0.012	1.5	1.5	0.23	3.23	0.010
AUS-SB27	AUS-SB-27(2-2.5)	(2-2.5)	(0-5)	08/20/2015		-	-	52	500	0.0021	0.026 J	0.031 J	ND 0.00084 UJ	0.0053	ND 0.00084 UJ		J 0.0022	0.0045	0.0077	0.0144	0.030
AUS-SB27 AUS-SB28	SB-27-7.5 AUS-SB-28(2-2.5)	7.5 (2-2.5)	(5-10) (0-5)	08/28/2015 08/18/2015	140 J 8.1 J	-	-	220 61	1,400 410	ND 0.0030 0.0011	ND 0.0030 0.0016 J	0.0059 J 0.0044	0.0032 0.0010	J 0.0048 J 0.0029	ND 0.0030 ND 0.00082	ND 0.0030 ND 0.00082	0.64 0.0038	0.21 0.0063	0.066	0.916 0.017	0.003
AUS-SB28	AUS-SB-28(2-2.5) SB-28-7.5		(5-10)	08/18/2015	8.1 J ND 73	-	-	220	1,600	ND 0.0027	0.0016 J	0.0044	ND 0.0027	0.0029	J ND 0.00082	ND 0.00082 ND 0.0027	0.0038	0.0063	0.0069	1.08	0.002
AUS-SB29	AUS-SB-29(2-2.5)		(0-5)	08/18/2015	3.8 J	-	-		ND 12	0.0076	0.0079	0.028	0.011	0.034	0.0014 J	0.0053	0.0038	0.0044	0.0088	0.017	0.014

Table 6 PRE-EXCAVATION CLEANUP ACTION PLAN SOIL ANALYTICAL RESULTS Closure Request Report Former Industrial Petroleum Distributors Site

1120 West Bay Drive Northwest, Olympia, Washington

All analytical results are presented in milligrams per kilogram (mg/kg)

Sample Location	Sample ID	Sample Depth (feet bgs)	Depth range (feet bgs)	Date	NWTPH-GX Soil C7-C12	Diesel Range Organics C12- C24	Heavy Range Organics C24- C40	DRO C12-C24 w/Si Gel	HRO C24-C40 w/SI Gel	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k/fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methyinaphthalene	Naphthalene	Naphthalenes ¹	Total Adjusted cPAHs ²
	Act (MTCA) Method A Cleanup		(5.40)	00/00/0045	30/100	2000	2000	2,000	2,000	ND 0.000	- 0.0022	0.0024		0.0025	 I ND 0.000	 ND 0.000		-		5	0.1
AUS-SB29 AUS-SB30	SB-29-7.5 AUS-SB-30(2-2.5)	7.5 (2-2.5)	(/	08/28/2015 08/18/2015	80 J 24 J	-	-	420 430 J	1,300 700	ND 0.0023 J 0.0074	ND 0.0023 0.0076	0.0034 0.029	J ND 0.0023 0.0079	0.0035 J 0.022	0.0023 0.0015 J	ND 0.0023 0.0049	2.0 0.073	2.3 0.23	0.38	4.68 0.394	0.002
AUS-SB30	SB-30-7.5	7.5	(5-10)	08/28/2015	160	-	-	280	1,500	ND 0.025	ND 0.025	ND 0.025	ND 0.025	ND 0.013	ND 0.025	ND 0.025	2.9	3.8	1.2	7.9	0.019
AUS-SB31	AUS-SB-31(2-2.5)	(2-2.5)	` /	08/20/2015	ND 28	-	-	53	170	0.0092	0.013 J	0.037	J 0.0086	J 0.017	ND 0.0013 UJ	0.0045 J	0.016	0.020	0.030	0.066	0.019
AUS-SB31	SB-31-7.5	7.5	,	08/27/2015	ND 0.98	-		ND 3.4	ND 11	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00037	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00074	0.00111	0.001
AUS-SB32 AUS-SB32	AUS-SB-32(2-2.5) SB-32-7.5	(2-2.5) 7.5	` '	08/20/2015 08/27/2015	ND 14 ND 1.3	-	-	ND 3.8	ND 13 2,200	0.0014 J	0.0021 0.015	0.0046 0.016	0.0012 0.0079	J 0.0036 0.013	ND 0.00084 0.0025	0.00090 J 0.0091	0.0028	0.0055 J 0.0022	0.0053 0.0053	0.0136 0.0088	0.003
AUS-SB33	SB-33-7.5	7.5	(/	08/31/2015	ND 20	-		ND 3.3	ND 11	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00037	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00074	0.00111	0.001
AUS-SB34	AUS-SB-34(4.5-5)	(4.5-5)	,	08/19/2015	180	-	-	420	51 .	J 0.0056	0.047 J	0.073	J ND 0.0012 U.	J 0.012	0.0015 J	0.0029 J	1.3	1.7	0.38	3.38	0.055
AUS-SB34	SB-34-7.5	7.5	,	08/31/2015	ND 55	-	-	130	210	0.019	0.016 J	0.044	0.014	J 0.025 J	ND 0.011	ND 0.011	1.3	1.4	0.42	3.12	0.025
AUS-SB35	AUS-SB-35(2-2.5)	(2-2.5)	(/	08/19/2015	ND 15	-	-	200	1,900	0.029	0.055 J	0.21	J ND 0.0078 U	J 0.072	ND 0.0078 UJ	0.014 J	0.013	J 0.025	0.026	0.064	0.082
AUS-SB35 AUS-SB36	SB-35-7.5 AUS-SB-36(2-2.5)	7.5 (2-2.5)	(/	09/01/2015 08/19/2015	ND 51 ND 15	-	-	130	1,000 240	ND 0.010 0.014	ND 0.010 0.013 J	ND 0.010 0.036	ND 0.010 J 0.012	0.0055 J J 0.024	J ND 0.010 0.0021 J	ND 0.010 0.0048 J	1.2 0.0022	0.41	0.17 0.0043	1.78 0.0101	0.008
AUS-SB36	SB-36-12.5	12.5	(/	08/31/2015	ND 14	-	-	11	33	J 0.0043	0.0053	0.0062	0.0037	0.0052	ND 0.00092	0.0018 J	0.022	0.026	0.014	0.069	0.007
AUS-SB36	SB-36-7.5	7.5	` '	08/31/2015	71 J	-	-	710 J	1,200	J 0.0027 J	0.0025 J	0.0061	J ND 0.0023 U	J 0.0065 J	J ND 0.0023 UJ		0.37	J 0.35 J	0.050 J	0.77	0.004
AUS-SB36	DUP-6	7.5	(5-10)	08/31/2015	1,100 J	-	-	8,900 J	44,000	J 5.3 J	4.0 J	6.0	J 2.3	J 5.5 J	J 0.27 J	0.67 J	3.4	J 3.4 J	6.0 J	12.8	5.509
AUS-SB37	AUS-SB-37(2-2.5)	(2-2.5)	,	08/20/2015	ND 15	-	•	10	68	0.00083	0.0014 J	0.0047	0.00095	J 0.0031	ND 0.00074	ND 0.00074	ND 0.00074	ND 0.00074	0.00080 J	0.00154	0.002
AUS-SB37 AUS-SB37	SB-37-12.5 SB-37-7.5	12.5 7.5	(/	09/01/2015 09/01/2015	ND 69 ND 63	-	-	260 740	720 1,700	ND 0.013 ND 0.011	ND 0.013 ND 0.011	ND 0.013 ND 0.011	ND 0.013 ND 0.011	0.0077 J 0.0066 J	ND 0.013 ND 0.011	ND 0.013 ND 0.011	0.041	0.041	0.084	0.166	0.010
AUS-SB38	AUS-SB-38(2-2.5)	(2-2.5)	,	08/18/2015	17 J	-	-	470	1,700	0.011	0.010 J	0.029	J 0.012	J 0.025 J	ND 0.0016 UJ	0.0033 J	0.0094	J 0.0081 J	0.0034 J	0.0209	0.016
AUS-SB38	SB-38-7.5	7.5	` '	08/28/2015	ND 77	-	-	350	1,400	ND 0.0028	ND 0.0028	0.0046	J ND 0.0028	0.0030 J	ND 0.0028	ND 0.0028	0.068	0.035	0.028	0.131	0.002
AUS-SB39	AUS-SB-39(2-2.5)	(2-2.5)	(0-5)	08/18/2015	ND 52	-	-	190	1,300	0.0018	0.0013 J	0.0044	J ND 0.00094 U	J 0.0047	ND 0.00094 UJ	0.0017 J	0.011	0.016	0.0082	0.0352	0.002
AUS-SB39	SB-39-7.5	7.5	` /	08/28/2015	68 J	-	-	330	1,400	0.020	0.0099	0.029	0.0083	0.036	ND 0.0023	0.0038 J	1.9	1.9	1.0	4.8	0.016
AUS-SB40 AUS-SB40	AUS-SB-40(2-2.5) SB-40-7.5	(2-2.5) 7.5	(/	08/18/2015	7.7 J	-	-	9.7 J	71	0.0016 J	0.0023	0.0090	0.0022	0.0075	ND 0.00081 UJ I ND 0.023	0.0018 J	0.010	0.029	0.014 0.87	0.053 4.77	0.004
AUS-SB40 AUS-SB41	AUS-SB-41(2-2.5)	(2-2.5)	(/	08/28/2015 08/17/2015	ND 62 27 J	-	-	400 28	1,200 82	ND 0.023 0.0035	ND 0.023 0.0035 J	0.031 0.012	J ND 0.023 J 0.0026	0.040 J J 0.012 J	J ND 0.023 J 0.0013 J	ND 0.023 0.003 J	1.8 0.024	J 0.055	0.87 0.087 J	0.166	0.020
AUS-SB41	SB-41-7.5	7.5	` '	08/28/2015	81 J	-	-	250	750	ND 0.0030	ND 0.0030	0.0039	J 0.0067	J 0.0030 J	ND 0.0030	ND 0.0030	4.3	5.5	0.76	10.56	0.003
AUS-SB41	DUP-9	(2-2.5)	(0-5)	08/17/2015	6.4 J	-	-	7.9 J	43	0.20 J	0.23 J	0.36	J 0.12	J 0.24 J	J 0.030 J	0.093 J	0.018	J 0.043 J	0.060 J	0.121	0.313
AUS-SB41-A	AUS-SB-41-Offset(2-2.5)	(2-2.5)	` '	08/20/2015	55	30 I	ND 12	44 J	ND 11 L	JJ 0.00091 J	ND 0.00077	0.0015	J ND 0.00077	0.0027	ND 0.00077	ND 0.00077	0.036	0.099	0.063	0.198	0.001
AUS-SB41-A AUS-SB41-A	SB-41-Offset-12.5 SB-41-Offset-7.5	12.5 7.5	, ,	09/01/2015	ND 71		-	250 1,200	840 2,400	ND 0.0026 ND 0.0094	ND 0.0026 ND 0.0094	ND 0.0026 ND 0.0094	ND 0.0026 ND 0.0094		J ND 0.0026 J ND 0.0094	ND 0.0026 ND 0.0094	0.23 8.7	0.24	0.49 24	0.96 45.7	0.002
AUS-SB41-A AUS-SB41-B	SB-41-B-12.5	12.5	(10-15)	09/01/2015 09/02/2015	1,700	-	-	920	2,400	ND 0.0094 ND 0.021	ND 0.0094 ND 0.021	0.022	J ND 0.0094	0.0084 J	J ND 0.0094 J ND 0.021	ND 0.0094 ND 0.021	1.3	2.0	0.88	4.18	0.007
AUS-SB41-B	SB-41-B-2.5	2.5	(0-5)	09/02/2015	150	-	-	340 J	1,600	ND 0.0069	ND 0.0069	ND 0.0069	ND 0.0069	0.0065 J	ND 0.0069	ND 0.0069	0.012	J 0.017 J	0.36	0.389	0.005
AUS-SB41-B	SB-41-B-7.5	7.5	(5-10)	09/02/2015	870 J	-	-	920	1,400	0.029 J	0.016 J	0.036	ND 0.012	0.051	ND 0.012	ND 0.012	14	25	17	56	0.025
AUS-SB41-C	SB-41-C-12.5	12.5	(/	09/01/2015	63 J	-	-	780	2,200					J ND 0.0055		ND 0.011 UJ	1.5	J 1.9 J	0.87 J	4.27	0.008
AUS-SB41-C AUS-SB41-C	SB-41-C-2.5 SB-41-C-7.5	2.5 7.5	(0-5) (5-10)	09/01/2015 09/01/2015	ND 14 ND 570	-	-	ND 3.9 4,400	ND 13 8,200	ND 0.00086 ND 0.011 UJ	ND 0.00086 ND 0.011 UJ	0.0015 ND 0.011 I	J ND 0.00086 UJ ND 0.011 U		J ND 0.00086 J ND 0.011 UJ	ND 0.00086 ND 0.011 UJ	0.0011	J 0.0015 J J 0.94 J	0.0097 2.7 J	0.0123 4.49	0.001
AUS-SB41-D	SB-41-D-12.5	12.5	(/	09/01/2015	ND 49	-	-	2,500	2.000							ND 0.0096 UJ	0.33	J 0.36 J	0.79 J	1.48	0.007
AUS-SB41-D	SB-41-D-2.5	2.5	(/	09/01/2015	ND 2.0	-	-	ND 3.9	ND 13	ND 0.00086	ND 0.00086	0.0014	J ND 0.00086		ND 0.00086	ND 0.00086	0.0028	0.0047	0.0048	0.0123	0.001
AUS-SB41-D	SB-41-D-7.5	7.5	(5-10)	09/01/2015	270	-	-	980	2,100	ND 0.0083	ND 0.0083	0.021	J ND 0.0083	0.021	ND 0.0083	ND 0.0083	0.055	0.050	0.76	0.865	0.008
AUS-SB41-E	SB-41-E-12.5	12.5	(10-15)	09/01/2015	ND 230	-	-	400	920	ND 0.0082	ND 0.0082	ND 0.0082	ND 0.0082	0.0095 J	ND 0.0082	ND 0.0082	0.17	0.19	0.27	0.63	0.006
AUS-SB41-E AUS-SB41-E	SB-41-E-2.5 SB-41-E-7.5	2.5 7.5	(0-5) (5-10)	09/01/2015 09/01/2015	ND 14 390 J	-	-	ND 3.8 1,400	ND 13 2,300	ND 0.00085 ND 0.025	ND 0.00085 ND 0.025	ND 0.00085 ND 0.025	ND 0.00085 ND 0.025	0.00048 J 0.017 J	J ND 0.00085 J ND 0.025	ND 0.00085 ND 0.025	0.026 1.3	0.063	0.040 4.2	0.129 7.1	0.001
AUS-SB42	AUS-SB-42(2-2.5)	(2-2.5)	()	08/20/2015	ND 13	-	-	ND 3.3	13	J 0.028	0.023	0.051	0.018	J 0.046	ND 0.0036	0.011	0.028	0.037	0.032	0.097	0.019
AUS-SB42	SB-42-7.5			08/27/2015	ND 1.1	-	-		ND 11	ND 0.00075		ND 0.00075	ND 0.00075	ND 0.00037	ND 0.00075	ND 0.00075	ND 0.00075	ND 0.00075	ND 0.00075	0.001125	0.001
AUS-SB43-A	AUS-SB-43A(2-2.5)	(2-2.5)	(0-5)	08/20/2015	ND 17	-	-	10	77	0.066	0.059	0.13	0.053	J 0.11	0.0082 J	0.027	0.013	0.025	0.052	0.09	0.089
AUS-SB43-A	SB-43-A-7.5	7.5		08/27/2015	ND 1.3	-	-	100	520	0.0046	0.0057	0.0092	0.0031	0.0057	ND 0.00078	0.0016 J	0.0023	0.0034	0.010	0.0157	0.008
AUS-SB44 AUS-SB44	AUS-SB-44(4.5-5) SB-44-7.5	(4.5-5) 7.5	` '	08/20/2015 08/31/2015	1900 ND 8.7 R	-	-	820 ND 3.4	34 ND 11	J ND 0.027 R 0.0052	ND 0.027 R 0.0069	ND 0.027 0.010	R ND 0.027 0.0045	0.028 J 0.0055	ND 0.0074	ND 0.027 R 0.0019	2.6 0.0015	J 2.3 J J 0.0015 J	0.71 J 0.0043	5.61 0.0073	0.021
AUS-SB44	DUP-4		(/	08/20/2015	990 J	-	-		ND 98	0.026	0.028 J	0.032	J ND 0.013	0.038	ND 0.013	ND 0.013	2.5	2.5	0.55	5.55	0.036
AUS-SB45	AUS-SB-45(2-2.5)	` '	` '	08/19/2015	ND 19	-	-	48	130	0.016	0.040 J	0.069	J 0.014	J 0.031	0.0027 J	0.0073 J	0.034	0.079	0.060	0.173	0.051
	SB-45-7.5		,	08/31/2015	ND 65	-	-	86 J	350	J 0.0052 J	0.0054 J	0.015	J 0.0047		ND 0.0036 UJ	0.0043 J	0.015	J 0.015 J	0.038 J	0.068	0.009
AUS-SB45	DUP-8		,	08/31/2015	ND 64 UJ	-	•	290 J	740	J 0.0046 J	0.0057 J	0.019	0.0065	0.012	ND 0.0024	0.0034 J	0.020	0.015	0.037	0.072	0.009
AUS-SB46 AUS-SB46	AUS-SB-46(2-2.5) SB-46-12.5	(2-2.5) 12.5	,	08/19/2015 08/31/2015	ND 18 ND 0.96	-	-	110 ND 3.5	170 ND 12	0.0055 ND 0.00077	0.0061 ND 0.00077	0.013 0.00078	J 0.0042 J ND 0.00077	0.011 J ND 0.00038	ND 0.00081 ND 0.00077	0.0025 ND 0.00077	0.013 ND 0.00077	J 0.022 J ND 0.00077	0.019 0.0018 J	0.054 0.00257	0.009
AUS-SB46 AUS-SB46	SB-46-7.5	7.5	` '	08/31/2015	ND 60	-	-	240	710	0.14	0.00077	0.18	0.00077	0.14	ND 0.00077	0.024 J	2.0	1.6	0.99	4.59	0.001
AUS-SB46	DUP-3		` /	08/19/2015	ND 18	-	-	150	270	0.0013 J	0.0014 J	0.0042	J 0.0017		J ND 0.00081 UJ	0.00085 J	0.0019	J 0.0031 J	0.0038 J	0.0088	0.002
AUS-SB47	AUS-SB-47(2-2.5)		,	08/19/2015	ND 14	-	-	370	210	0.0021	0.0030	0.0085	0.0022	0.0082	ND 0.00078	0.0015 J	0.0028	0.0048	0.0038	0.0114	0.005
AUS-SB47	SB-47-12.5	12.5	` '	09/01/2015	ND 53	-	-	120	690	0.020 J	0.024 J	0.034	0.015	J 0.026	ND 0.010	ND 0.010	0.048	0.046	0.051	0.145	0.032
AUS-SB47 AUS-SB48	SB-47-7.5 AUS-SB-48(2-2.5)	7.5 (2-2.5)	` /	09/01/2015 08/19/2015	ND 14	-	-	1,500 20	1,000 ND 12	ND 0.013 ND 0.00080	ND 0.013 0.0011 J	ND 0.013 0.0031	ND 0.003 ND 0.00080	0.0080 J 0.0024	ND 0.0080	ND 0.003 ND 0.00080	2.6 0.0055	1.7 0.0043	0.38 0.0079	4.68 0.0177	0.010 0.002
AUS-SB48	SB-48-7.5	7.5	` '	08/31/2015	ND 72	-	-	530	1,300	ND 0.0027	ND 0.0027	0.0051	J ND 0.0027		J ND 0.00080	ND 0.0027	0.70	0.26	0.080	1.04	0.002
AUS-SB49	SB-49-7.5	7.5	` /	08/28/2015	65 J	-	-	820	1,700	0.0027 J	0.0025 J	0.0075	J 0.0057		J ND 0.0024	0.0024 J	0.97	0.31	0.11	1.39	0.004
AUS-SB50	AUS-SB-50(2-2.5)	(2-2.5)	(0-5)	08/17/2015	ND 1.3	-	-	10	18	J ND 0.00075	0.0011 J	0.0041	0.0012	J 0.0031	ND 0.00075	0.00077 J	0.0025	0.0062	0.0036	0.0123	0.002

Table 6 PRE-EXCAVATION CLEANUP ACTION PLAN SOIL ANALYTICAL RESULTS Closure Request Report Former Industrial Petroleum Distributors Site

1120 West Bay Drive Northwest, Olympia, Washington

All analytical results are presented in milligrams per kilogram (mg/kg)

Sample Location	Sample ID	Sample Depth (feet bgs)	Depth range (feet bgs)	Date	NWTPH-GX Soil C7-C12	Diesel Range Organics C12- C24	Heavy Range Organics C24- C40	DRO C12-C24 w/Si Gel	HRO C24-C40 w/Si Gel	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k/Huoranthene	Chrysene	Dibenz(a.h)anthracene	Indeno(1,2,3-cd)pyrene	1-Methyinaphthalene	2-Methylnaphthalene	Naphthalene	Naphthalenes ¹	Total Adjusted cPAHs ²
	Act (MTCA) Method A Cleanup			•	30/100	2000	2000	2,000	2,00		-	-	-	-	-	-	-	-	-		0.1
AUS-SB50	SB-50-7.5		(/	08/28/2015	38	J -	-	350	2,10		J ND 0.0040	0.0099	J ND 0.0040	0.015	ND 0.0040	0.0051	J 2.7	2.9	0.76		0.005
AUS-SB51	AUS-SB-51(2-2.5)	(2-2.5)	, ,	08/17/2015	ND 1.7	-	-	24	15		J 0.0016 J	0.0079	0.002	J 0.0064	ND 0.00087	0.0013	J 0.014	0.022	0.021		0.003
AUS-SB51 AUS-SB52	SB-51-7.5	7.5	(5-10)	08/28/2015	ND 84	-	-	220	1,30		ND 0.030 I	ND 0.030 0.014	ND 0.030	ND 0.015	ND 0.030	ND 0.030 ND 0.0084	3.5	3.8	0.87		0.023
AUS-SB52 AUS-SB52	AUS-SB-52(2-2.5) SB-52-7.5	(2-2.5)	(0-5) (5-10)	08/17/2015 08/28/2015	2,400	J -	-	1,300	J ND 130		ND 0.0084	0.0088	J ND 0.0084 0.0049	0.015	J ND 0.0084 ND 0.0026	ND 0.0084 ND 0.0026	4.6 6.6	8.9	1.9 1.3		0.007
AUS-SB52 AUS-SB52	DUP-1	(2-2.5)	(0-5)	08/28/2015	110 1,200	.1 -	<u> </u>	3,800	J 1,10		ND 0.0089 UJ	0.0092	J ND 0.0089 U	J 0.0090	J ND 0.0026	I ND 0.0026	J 7.8	J 12	2.9		0.007
AUS-SB52-A	AUS-SB-52-Offset(2-2.5)	(2-2.5)	()	08/20/2015	ND 1,2	5.7 J	20	J ND 3,6 L	J ND 12		ND 0.00082	0.0020	J ND 0.0089 0	0.0025	ND 0.00082	ND 0.00082	0.0014	J 0.0030	0.014		0.001
AUS-SB52-A	SB-52-Offset-12.5	12.5	(10-15)	09/01/2015	ND 72		-	1,000	1,30		J 0.0062 J	0.018	ND 0.0026	0.014	ND 0.0026	0.0032	J 0.68	0.72	0.95		0.009
AUS-SB52-A	SB-52-Offset-7.5	7.5	(5-10)	09/01/2015	160	J -	-	740	980		ND 0.0099	ND 0.0099	ND 0.0099	0.0084	J ND 0.0099	ND 0.0099	3.9	5.8	2.8		0.008
AUS-SB52-B	SB-52-B-2.5	2.5	(0-5)	09/02/2015	ND 12	-	-	210	340		ND 0.0040	0.0095	J ND 0.0040	ND 0.0020	ND 0.0040	ND 0.0040	ND 0.0040	ND 0.0040	0.0051	0.0091	0.004
AUS-SB52-B	SB-52-B-7.5	7.5	(5-10)	09/02/2015	ND 14	-	-	12	20	J ND 0.00088	ND 0.00088	0.0018	J ND 0.00088	0.0016	J ND 0.00088	ND 0.00088	0.0027	0.0047	0.013	0.0204	0.001
AUS-SB53	SB-53-7.5	7.5	(5-10)	08/27/2015	ND 1.0	-	-	ND 3.4	ND 11	ND 0.00075	ND 0.00075 I	ND 0.00075	ND 0.00075	ND 0.00037	ND 0.00075	ND 0.00075	ND 0.00075	ND 0.00075	ND 0.00075	0.001125	0.001
AUS-SB54	AUS-SB-54(2-2.5)	(2-2.5)	(0-5)	08/20/2015	ND 14	-	-	23	140	0.040	0.036	0.092	0.025	J 0.075	0.0075 J	0.025	0.033	0.054	0.053	0.14	0.056
AUS-SB54	SB-54-7.5	7.5	(5-10)	08/27/2015	ND 1.0	-	-	ND 3.4	ND 11	ND 0.00076	ND 0.00076	ND 0.00076	ND 0.00076	ND 0.00038	ND 0.00076	ND 0.00076	0.00092	J 0.0021	0.0018 J	0.00482	0.001
AUS-SB55	AUS-SB-55(4.5-5)	(4.5-5)	(0-5)	08/19/2015	ND 17	-	-	ND 4.2	ND 14	ND 0.00094	0.0011 J	0.0019	J ND 0.00094	0.0011	J ND 0.00094	ND 0.00094	0.0011 ,	J 0.0017 .	0.0074		0.001
AUS-SB55	SB-55-9.5	9.5	(5-10)	08/27/2015	ND 27	-	-	57	260		4.7	5.5	2.1	5.0	0.59	2.4	0.72	0.90	2.3		6.279
AUS-SB56	AUS-SB-56(4.5-5)	(4.5-5)	(/	08/19/2015	ND 16	-	-	23	81		J 0.0025	0.0070	0.0017	J 0.0046	ND 0.00088	0.0013	J 0.0084	0.015	0.028		0.004
AUS-SB56	SB-56-7.5	7.5	(/	08/31/2015	ND 15	-	-	9.9	23		J 0.0014 J	0.0046	0.0013	J 0.0031	ND 0.00093	ND 0.00093	0.0088	0.013	0.034		0.002
AUS-SB57	AUS-SB-57(2-2.5)	(2-2.5)	` '	08/19/2015	ND 1.2	-	-	4.1	J 25		J 0.0018 J	0.0052	J 0.00094	J 0.0035	0.00070 00		J 0.0012 ,	J 0.0018	0.0030		0.003
AUS-SB57	SB-57-7.5	7.5		08/31/2015	ND 14	-	-	ND 4.0	14	0.0021	0.0025	0.0067	0.0022	J 0.0060	ND 0.00090	0.00093	J 0.013	0.028	0.042		0.004
AUS-SB58 AUS-SB58	AUS-SB-58(2-2.5) SB-58-7.5	(2-2.5) 7.5	(0-5) (5-10)	08/19/2015 08/28/2015	ND 14 57	-		ND 3.4 30	12 29	-	J 0.0012 J ND 0.00085	0.0045 ND 0.00085	0.0011 ND 0.00085	J 0.0042 ND 0.00043	ND 0.00075 ND 0.00085	0.00097 ND 0.00085	J ND 0.00075 ND 0.00085	0.0012 ND 0.00085	0.0034 ND 0.00085		0.002
AUS-SB59	AUS-SB-59(4.5-5)	(4.5-5)	(0-5)	08/19/2015	ND 16	 		10	69		0.0048	0.0081	0.0031	0.0070	ND 0.00088	0.0029	0.0072	0.013	0.040		0.007
AUS-SB59	SB-59-7.5	7.5	()	09/01/2015	ND 15	_		5.1	J ND 14	******	ND 0.00091	0.0021	J ND 0.00091	0.0013	J ND 0.00091	ND 0.00091	0.013	0.0092	0.045		0.001
AUS-SB60	AUS-SB-60(2-2.5)	(2-2.5)	(0-5)	08/19/2015	ND 17	_		ND 3.6	ND 12		J 0.0017 J	0.0051	0.0014	0.0048	ND 0.00080	0.00031	J 0.00093	J 0.0017	0.0092		0.003
AUS-SB60	SB-60-7.5	7.5	(5-10)	09/01/2015	ND 17	_	-	ND 4.1	ND 14		ND 0.00091	0.0020	J ND 0.00091	0.0015	J ND 0.00091	ND 0.00091	0.027	0.025	0.10		0.001
AUS-SB61	AUS-SB-61(2-2.5)	(2-2.5)	(/	08/17/2015	ND 1.3	-	-	ND 3.5	12		0.00085 J	0.0038	0.00094	J 0.003	ND 0.00079	ND 0.00079	0.0050	0.010	0.0073		0.001
AUS-SB61	SB-61-7.5	7.5	(5-10)	08/28/2015	40	J -	-	260	1,40		J 0.0048 J	0.011	0.0049	J 0.013	ND 0.0034	ND 0.0034	0.11	0.10	0.79		0.007
AUS-SB62	AUS-SB-62(2-2.5)	(2-2.5)	(0-5)	08/17/2015	ND 2	-	-	6.6	J 49	ND 0.00082	0.00098 J	0.0049	0.00095	J 0.0043	ND 0.00082	0.00091	J 0.0011 ,	J 0.0019 ,	0.014	0.017	0.002
AUS-SB62	SB-62-7.5	7.5	(5-10)	08/28/2015	52	J -	-	190	1,10	0 ND 0.030	ND 0.030	0.052	J ND 0.030	0.065	J ND 0.030	ND 0.030	0.64	0.60	2.5	3.74	0.027
AUS-SB62-A	AUS-SB-62-Offset(4.5-5)	(4.5-5)	(0-5)	08/20/2015	33	29 J	58	11	J ND 13	UJ ND 0.00084	ND 0.00084	0.0026	ND 0.00084	0.0026	ND 0.00084	0.0010	J 0.0034	0.0044	0.025	0.0328	0.001
AUS-SB62-A	SB-62-Offset-7.5	7.5	(5-10)	09/01/2015	ND 25	-	-	11	ND 14	ND 0.00097	0.0018 J	0.0059	0.0013	J 0.0027	ND 0.00097	0.0012	J 0.0043	0.0045	0.042		0.003
AUS-SB63	AUS-SB-63(2-2.5)	(2-2.5)	(0-5)	08/20/2015	ND 12	-	-	6.4	J 61	0.0062	J 0.0050 J	0.018	0.0069	J 0.0097	ND 0.0035	0.0052	J ND 0.0035	0.0038	0.0056 J		0.009
AUS-SB63	SB-63-7.5	7.5		08/27/2015	ND 13	-	-	ND 3.6	ND 12		ND 0.00079	0.0013	J ND 0.00079	0.0011	J ND 0.00079	ND 0.00079	ND 0.00079	ND 0.00079	0.00088 J		0.001
MS	AUS-SB-22(2-2.5)MS	(2-2.5)	(0-5)	08/20/2015	18	J -	-	140	ND 13	0.000	0.056	0.079	0.058	0.074	0.032	0.037	0.064	0.072	0.063		0.083
MS	AUS-SB-40(2-2.5)-MS	(2-2.5)	, ,	08/18/2015	31	-	-	110	82		0.038	0.050	0.043	0.043	0.027	0.027	0.045	0.064	0.049		0.057
MS	AUS-SB-41(2-2.5)-MS	(2-2.5)	, ,	08/17/2015	97	-	-	210	110		0.042	0.053	0.042	0.053	0.038	0.038	0.06	0.09	0.12		0.064
MS MS	AUS-SB-57(2-2.5)MS SB-1A-12.5 MS	(2-2.5)	()	08/19/2015	9.7	-	-	110 140	ND 12		0.035 0.043	0.052 0.052	0.042 0.041	0.037 0.045	0.023	0.021	0.038	0.041	0.042		0.052
MS		12.5 7.5	(/	08/28/2015	250		-	870			+	0.052	-	0.045		0.042	0.040	0.62	0.20		0.066
MS MS	SB-36-7.5 MS SB-36-7.5 MSD	7.5	(/	08/31/2015 08/31/2015	250	J -	<u> </u>	870	860		0.10 0.10	0.13	0.13 0.13	0.085	0.060	0.058	0.71	0.62	0.20		0.147
MS	SB-45-7.5 MS	7.5	(/	08/31/2015	130	.1 -	-	440	400		0.18	0.25	0.19	0.18	0.10	0.099	0.18	0.20	0.20		0.264
MS	SB-6-7.5 MS	7.5	(5-10)	08/31/2015	170	J -	-	880	1,90		0.12	0.16	0.19	0.12	0.057	0.056	3.5	4.8	0.24		0.176
MSD	AUS-SB-22(2-2.5)MSD	(2-2.5)	(/	08/20/2015	19	J -	-	110	ND 13		0.066	0.096	0.066	0.082	0.037	0.038	0.069	0.076	0.070		0.097
MSD	AUS-SB-40(2-2.5)-MSD	(2-2.5)	, ,	08/18/2015	32	-	-	100	89		0.038	0.050	0.048	0.039	0.025	0.024	0.043	0.057	0.046		0.056
MSD	AUS-SB-41(2-2.5)-MSD	(2-2.5)	, ,	08/17/2015	45	-	-	170	71	0.041	0.041	0.05	0.045	0.051	0.031	0.03	0.075	0.12	0.17		0.061
MSD	AUS-SB-57(2-2.5)MSD	(2-2.5)	(0-5)	08/19/2015	17		-	120	26	J 0.034	0.034	0.050	0.040	0.038	0.021	0.020	0.034	0.036	0.037	0.107	0.051
MSD	SB-1A-12.5 MSD	12.5	(10-15)	08/28/2015	8.7	-	-	150	ND 12	0.047	0.045	0.054	0.044	0.047	0.046	0.045	0.043	0.044	0.043	0.13	0.069
MSD	SB-36-7.5 MSD	7.5	(/	8/31/2015	180	-	-	850	1,00		0.091	0.12	0.11	0.080	0.054	0.052	0.36	0.34	0.16		0.134
MSD	SB-45-7.5 MSD	7.5		08/31/2015	ND 63	-	-	420	450		0.17	0.22	0.20	0.16	0.095	0.092	0.18	0.19	0.20		0.248
MSD	SB-6-7.5 MSD	7.5	(5-10)	08/31/2015	140	J -	-	810	1,40	0 0.13	0.13	0.19	0.14	0.13	0.061	0.057	2.4	2.8	0.23	5.43	0.189

Table 6 PRE-EXCAVATION CLEANUP ACTION PLAN SOIL ANALYTICAL RESULTS

Closure Request Report
Former Industrial Petroleum Distributors Site
1120 West Bay Drive Northwest, Olympia, Washington

All analytical results are presented in milligrams per kilogram (mg/kg)

Sample Location	Sample ID	Sample Depth (feet bgs)	Depth range (feet bgs)	Date	NWTPH-GX Soil C7-C12	Diesel Range Organics C12- C24	Heavy Range Organics C24- C40	DRO C12-C24 w/Si Gel	HRO C24-C40 w/Si Gel	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Naphthalenes¹	Total Adjusted cPAHs ²
Model Toxics Control	Act (MTCA) Method A Cleanup	Levels			30/100	2000	2000	2,000	2,000		-			-	-	-		-		5	0.1

4 of 4

Notes

All samples labeled "offset" in this table and analytical reports have been replaced with -A in the figure.

Samples labeled SB1A, SB4A, SB5A, SB23A, SB25A, and SB26A in the table and analytical reports are labeled without the "A" in the figure.

Concentrations compared to the Model Toxics Control Act (MTCA) Method A soil cleanup levels for unrestricted land uses presented in Table 740-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 100-mg/kg without benzene and 30-mg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 30-mg/kg was utilized.

bgs = Below ground surface

mg/kg = milligram per kilogram

- = not applicable or analyzed

cPAH = Carcinogenic polyaromatic hydrocarbons

J = estimated value – The result is greater than or equal to the Method Detection Limit (MDL) and less than the Limit of Quantitation (LOQ)

ND = Chemical not detected above the laboratory reporting limit

Bolded and highlighted font indicates results above the MTCA Method A cleanup level

(1) = MTCA cleanup level is 5-mg/kg for total concentration of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene

(2) = Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8)

Lab QA/QC surrogate recovery was outside control limits due to matrix interference for samples GP1-4-4.5, GP1-6-6.5, GP2-4-4.5, GP5-4-4.5, GP6-6-6.5

TABLE 7

HISTORICAL SOIL ANALYTICAL RESULTS

Closure Request Report Former Industrial Petroleum Distributors Bulk Terminal

1120 West Bay Drive Olympia, Washington

									Oly	mpia, Washir											
												ple ID h (bgs)									
	MTCA Method A											ollected									
Analysis	Soil Cleanup	S-1	S-2	S-3	S-4	S-5	S-6	IPD-1-3	IPD-2-4	IPD-3-2.5	IPD-4-4.5	IPD-5-4.5	IPD-6-5	WBTP-01	WBTP-02	WBTP-03	MW-IP-1	MW-IP-3	MW-IP-5	MW-IP-7	MW-IP-9
	Levels																(MW-6)	(MW-6)	(MW-6)	(MW-6)	(MW-6)
		5' 9/20/2000	7' 9/20/2000	6.5' 9/20/2000	5' 9/20/2000	5.5' 9/20/2000	5.5' 9/20/2000	3' 11/1/2001	4' 11/1/2001	2.5' 11/1/2001	4.5' 11/1/2001	4.5' 11/1/2001	5' 11/1/2001	NS 3/9/2004	NS 3/9/2004	NS 3/9/2004	1' 8/10/2004	3' 8/10/2004	5' 8/10/2004	7' 8/10/2004	9' 8/10/2004
Volatile Organic	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Compounds																					
Benzene	0.03	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.100				-									
Naphthalene	5 NE							<0.200 <0.100				-									
1,2,4-Trimethylbenzene	NE NE							<0.100				-									
1,3,5-Trimethylbenzene	9	<0.05	<0.05	<0.05	<0.05	<0.05	23.9	<0.100													
Total Xylenes	9	<0.05	<0.05	<0.05	<0.05	<0.05	23.9	<0.200													
TPH - HCID	NE		T	T .	T			ND	ND	ND		ND	ND	T	T	T	T		T	Π	
Gasoline Range Organics	NE NE							ND ND	ND ND	ND ND	ND	ND	ND ND	 DET	 ND	 ND					
Diesel Range Organics	NE NE							DET	ND ND	ND ND	ND	ND	ND	DET	ND	ND					
Heavy Oil Range Organics											ND ma/Ka			ND ma/Ka							
TPH-NWTPH	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Gasoline Range Organics	30 2,000	<10 330	 <20	 <20	 <20	<20	<10 14,000	 <25						 570	1,100		<20 <50	<20 <50	<20 <50	<20 <50	<20 <50
Diesel Range Organics	2,000	<40	<40	<40	<40	<40	<40	296									<100	<100	<100	<100	<100
Heavy Oil Range Organics			-		-		-														
PCBs	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
PCB-1016	(d)											-		<0.05							
PCB-1221	(d)											-		<0.05							
PCB-1232	(d)											-		<0.05							
PCB-1242	(d)											-		<0.05							
PCB-1248	(d)											-		<0.05							
PCB-1254	(d)											-		<0.05 <0.05							
PCB-1260	(d)													0.175							
PCB Mixtures	mg/Kg	mg/Kg	mg/Kg	mg/Kg			mg/Kg	mg/Kg	ma/Ka	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	ma/Ka		mg/Kg	mg/Kg	mg/Kg	ma/Ka	ma/Ka
Metals	NE				mg/Kg 	mg/Kg 			mg/Kg 					ND^	mg/Kg ND^	mg/Kg ND^				mg/Kg 	mg/Kg
Antimony	20							2.35		 				ND^	ND^	ND^					
Arsenic	NE							64.5						ND^	ND^	ND^	<u>-</u>				
Barium Cadmium	2													ND^	ND^	ND^					
Chromium	(a)							17.6						ND^	10	ND^					
	NE							25.1						ND^	ND^	ND^					
Copper Lead (Total)	250	11					30	27.4						8	ND^	ND^	50.3	51	724	8.28	2.46
Mercury	2													ND^	ND^	ND^					
Nickel	NE							23.0						ND^	ND^	16					
Selenium	NE													ND^	ND^	ND^					
Silver	NE NE													ND^	ND^	ND^					
Thallium	NE													ND^	ND^	ND^					
Zinc	NE							39.5						ND^	ND^	ND^					
c-Polyaromatic		malKa	ma/Ka	ma/Ka	malKa	malKa	mg/Kg		malKa	ma/Ka	ma/Ka	ma/Ka	ma/Ka				malKa	malKa	malKa	malKa	malKa
Hydrocarbons	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	Ilig/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Naphthalene	(b)							<0.134													
1-Methylnaphthalene	(b)							<0.134													
2-Methylnaphthalene	(b)							<0.134													
Naphthalenes	5							0.201													
Acenaphthene	NE							<0.134													
Acenaphthylene	NE NE							<0.134													
Anthracene	NE							<0.134				-									
Benzo (a) anthracene	(c)							<0.134													

TABLE 7

HISTORICAL SOIL ANALYTICAL RESULTS

Closure Request Report Former Industrial Petroleum Distributors Bulk Terminal

1120 West Bay Drive

									Oly	mpia, wasiii											
	MTCA Method A										Depth	ole ID n (bgs) ollected									
Analysis	Soil Cleanup Levels	S-1	S-2	S-3	S-4	S-5	S-6	IPD-1-3	IPD-2-4	IPD-3-2.5	IPD-4-4.5	IPD-5-4.5	IPD-6-5	WBTP-01	WBTP-02	WBTP-03	MW-IP-1 (MW-6)	MW-IP-3 (MW-6)	MW-IP-5 (MW-6)	MW-IP-7 (MW-6)	MW-IP-9 (MW-6)
		5' 9/20/2000	7' 9/20/2000	6.5' 9/20/2000	5' 9/20/2000	5.5' 9/20/2000	5.5' 9/20/2000	3' 11/1/2001	4' 11/1/2001	2.5' 11/1/2001	4.5' 11/1/2001	4.5' 11/1/2001	5' 11/1/2001	NS 3/9/2004	NS 3/9/2004	NS 3/9/2004	1' 8/10/2004	3' 8/10/2004	5' 8/10/2004	7' 8/10/2004	9' 8/10/2004
Benzo (a) pyrene	0.1							<0.134*													
Benzo (b) fluoranthene	(c)							0.188													
Benzo (g,h,i) perylene	NE							<0.134													
Benzo (k) fluoranthene	(c)							<0.134													
Chrysene	(c)							0.185													
Dibenzo (a,h) anthracene	(c)							<0.134													
Fluoranthene	NE							<0.134													
Fluorene	NE							0.312													
Indeno (1,2,3-cd) pyrene	(c)							<0.134													
Phenanthrene	NE							0.212													
Pyrene	NE							0.235													
cPAH B(a)P Equivalents	0.1							0.11													

Notes:

Concentrations compared to the Model Toxics Control Act (MTCA) Method A soil cleanup levels for unrestricted land uses

presented in Table 740-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA Method A cleanup level for gasoline range total petroleum hydrocarbons is 100-mg/kg without benzene and 30-mg/kg with benzene present. Benzene

was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 30-mg/kg was utilized.

ft = feet

bgs = below ground surface

mg/kg = milligram per kilogram

NS = Depth not specified. Previous consultant stated that test pit soil samples were collected above the highest apparent water level. Water level was not specified.

NE = Cleanup level not evaluated under MTCA

ND = Not Detected (Hydrocarbon Identification Method)

ND^ = Reported by previous consultant as "Not Detected". Reporting and/or detection limit was not specified.

-- not analyzed

TPH = Total Petroleum Hydrocarbons

HCID = Laboratory analysis by Hydrocarbon Identification

NWTPH = Laboratory analysis by Northwest Method Total Petroleum Hydrocarbons

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

< = Not detected above the laboratory reporting limit (RL) and/or method detection limit

Bold = Chemical detected at a concentration above the laboratory reporting limit

Bolded and highlighted font indicates results above the MTCA Method A cleanup level

- (a) = Analysis is for total chromium. No MTCA cleanup level has been established for total chromium.
- (b) = MTCA cleanup level is 5-mg/kg for total concentration of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene. Total concentration conservatively assumed

to be the sum any detected concentration and/or of half of the value of each RL if not detected

- (c) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8)
- (d) = See MTCA cleanup level for PCB Mixtures. Per MTCA, cleanup level based on applicable federal law (40 CFR 761.61). This is a total value for all PCBs, conservatively assumed to be the sum any detected concentration and/or of half of the value of each RL if not detected.

NA = Not applicable

* = Laboratory practical quantitation limit is elevated above the MTCA Method A cleanup level, but chemical was not observed above the laboratory method detection limit

FIGURES

E = This route is a source of exposure

- I = This route is an insignificant source of exposure
- = There is no exposure by this route
- **P** = This route is a potential source of exposure

BP WEST COAST PRODUCTS LLC

FORMER INDUSTRIAL DISTRIBUTORS BULK TERMINAL 1120 WEST BAY DRIVE, OLYMPIA, WASHINGTON

CLOSURE REQUEST REPORT

CONCEPTUAL SITE MODEL HUMAN EXPOSURE PATHWAYS

FIGURE

9

APPENDIX A Ecology Letter Approval of the *Cleanup Action Completion Report*

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

January 3, 2018

Mr. Chris Dotson Project Manager ARCADIS 111 SW Columbia Street, STE 670 Portland, OR 97201

Re: Ecology Approval of the *Cleanup Action Completion Report*, prepared by ARCADIS, dated September 20, 2017.

- Site Name: Industrial Petroleum Distributors
- Site Address: 1120 West Bay Drive, Olympia, WA
- Draft Agreed Order DE 10470
- Facility/Site No. 1436
- Cleanup Site ID No. 4240

Dear Mr. Dotson:

Thank you for submitting the above-referenced revised report for our review in response to our redline comments submitted via e-mail on June 30, 2017. As previously communicated via e-mail on January 2, Ecology has no further comments. Therefore, please consider the report as approved by Ecology.

Please submit one additional paper copy of the report. This will be needed for the eventual public comment period when the Site is delisted.

If you have any questions, please contact me at (360) 407-6247 or at steve.teel@ecy.wa.gov.

Sincerely,

SSTEEL

Steve Teel, LHG Cleanup Project Manager/Hydrogeologist Toxics Cleanup Program Southwest Regional Office Mr. Chris Dotson January 3, 2018 Page 2

By Certified Mail: [91 7199 9991 7037 7471 8675]

Cc: Mr. Ross LaGrandeur, AFS Project Manager 3/Certified Project Manager,

ARCADIS

Nick Acklam, Department of Ecology

Megan MacClellan, Department of Ecology Ivy Anderson, Office of the Attorney General

APPENDIX B

Site Boring Logs

Date Start/Finish: August 25, 2010

Drilling Company: Cascade
Driller's Name: --

Drilling Method: HA Sampling Method: HA Rig Type: HA Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 6.5'

Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: GP-1

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
-0	0				-	-		Gravel packed soil surface.	
							\leq	Grey sandy SILT mixed with bark dust and gravel, moist, fine sand, no odor or	
-	-	GP-1- 2-2.5	2-2.5		4.1	ML		staining. Wet at 3.5' bgs.	Bentonite backfilled to surface.
	1	GP-1-	4-4.5		0.2			Brown WOOD debris, trace silt, wet, no odor or staining.	
- 5	-5 -	4-4.5 GP-1- 6-6.5	6-6.5		0.0			Boring terminated at 6.5' bgs.	
-	-								
-10	-10 -								
-			RC			ilding	s	Remarks: bgs: below ground surface HA: Hand Auger	

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7

Data File:GP-1

Date: 11/3/2010 Barb Schnurr

Page: 1 of 1

Date Start/Finish: August 25, 2010

Drilling Company: Cascade
Driller's Name: --

Drilling Method: HA Sampling Method: HA Rig Type: HA

Northing: --

Easting: --Casing Elevation: --

Borehole Depth: 6.5' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: GP-2

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
-0	0						200		
								Gravel packed soil surface. Brown SILT with sand and wood debris (20%), no odor or staining.	
-		GP-2- 2-2.5	2-2.5		9.1			WOOD debris with some silt, faint odor, wet at 3.5' bgs.	Bentonite
- 5	- -5 -	GP-2- 4-4.5	4-4.5		17.5	ML			backfilled to surface.
-	_				4.6			WOOD debris and bark dust and water, trace silt in water. Boring terminated at 6.5' bgs.	
-10	10 -								
	ARCADIS Infrastructure, environment, buildings							Remarks: bgs: below ground surface HA: Hand Auger	

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7

Data File:GP-2

Date: 11/3/2010 Barb Schnurr

Page: 1 of 1

Date Start/Finish: August 24, 2010

Drilling Company: Cascade
Driller's Name: --

Drilling Method: HA Sampling Method: HA Rig Type: HA

Northing: --Easting: --Casing Elevation: --

Borehole Depth: 5' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: GP-3

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

	200110	THE OWNER OF THE PARTY.	OF STREET		V. LEAV	-		
DEPTH	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
-0								
) to all and				Gravel packed soil surface.	
-	GP-3- 2-2.5	2-2.5		1.1	ML		Orange brown sandy SILT, trace gravel, fine sand, subrounded fine gravel, occasional organics, dry, no odor or staining.	Bentonite backfilled to surface.
	GP-3- 4-4.5	4-4.5		4.7			Brown sandy SILT, fine sand, wood debris, moist, no odor or staining. Boring terminated at 5' bgs (refusal).	
- 10 -10 -								
							Remarks: bgs: below ground surface HA: Hand Auger	
	A astructu				ilding	S		

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7

Data File:GP-3

Date: 11/3/2010 Barb Schnurr

Page: 1 of 1

Date Start/Finish: August 23, 2010

Drilling Company: Cascade Driller's Name: --

Drilling Method: HA Sampling Method: HA Rig Type: HA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 5' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: GP-4

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive

Olympia, Washington

			1207 DE 2		California		
DEРТН	ELEVATION Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Well/Boring Stratigraphic Description Construction
0							
-	GP-4- 2-2.5	2-2.5		1.2		\Diamond	Gravel packed soil surface. Brown SILT with clay, trace sand, low plasticity, very fine sand, some wood debris, moist, no odor or staining. Bentonite
	GP-4- 4-4.5	4-4.5		4.6			WOOD debris with some silt, trace sand, few cobbles, no odor or staining, wet at 3' bgs. Boring terminated at 5' bgs (refusal).
-							
- 10 <i>-10</i>							
- In	frastructo	ARC	AD	IS nt, bui	lding.	s	Remarks: bgs: below ground surface HA: Hand Auger

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7

Data File:GP-4

Date: 11/3/2010 Barb Schnurr

Date Start/Finish: August 23, 2010

Drilling Company: Cascade

Driller's Name: --Drilling Method: HA Sampling Method: HA

Rig Type: HA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 6.5' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: GP-5

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive

Olympia, Washington

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
-5	-5-	GP-5- 2-2.5 GP-5- 4-4.5	2-2.5 4-4.5 6-6.5		5.5 97.5	ML		Gravel packed soil surface. Brown SILT with clay and trace sand, non-plastic, very fine sand, moist, no odor or staining. Wet at 3' bgs. Bark and WOOD debris with some silt, moderate odor, wet. Brown SILT with clay, trace sand, lots of wood debris and bark, faint odor, wet.	Bentonite backfilled to surface.
-10 -									

Remarks: bgs: below ground surface HA: Hand Auger

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7

Data File:GP-5

Date: 11/3/2010 Barb Schnurr

Date Start/Finish: August 25, 2010 Drilling Company: Cascade

Driller's Name: --Drilling Method: HA Sampling Method: HA

Rig Type: HA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 6.5' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: GP-6

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

	A STATE OF THE PARTY.	a Million of						
DEРТН	ELEVATION Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
				at use it is				
-	GP-6- 2-2.5	2-2.5		1.0		\bigcirc	Gravel packed soil surface. Brown SILT with sand and gravel, non-plastic, fine sand, subrounded gravel, moist, no odor or staining, increasing wood debris.	
- 5 -	GP-6- 4-4.5	4-4.5		243	ML		Brown SILT with trace fine sand, faint odor, wet at 5' bgs.	Bentonite backfilled to surface.
	GP-6- 6-6.5	6-6.5		9.8			Boring terminated at 6.5' bgs.	
-10 -1	0 -							
-	-					1675	,	
lı	A P	RC	AD	IS ent, bui	ilding	S	Remarks: bgs: below ground surface HA: Hand Auger	

Data File:GP-6

Date: 11/3/2010 Barb Schnurr

Date Start/Finish: August 24, 2010 Drilling Company: Cascade

Driller's Name: --Drilling Method: HA Sampling Method: HA

Rig Type: HA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 6.5' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: GP-7

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

DEPTH	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
0								
-5 -5-	GP-7- 2-2.5 GP-7- 4-4.5	2-2.5 4-4.5		4.2	ML		Gravel packed soil surface. Light brown sandy SILT, trace gravel, non-plastic, fine sand, subangular fine gravel, dry, no odor or staining, occasional organics. Brown sandy SILT, non-plastic, little wood debris, moist, no odor or staining. Brown SILT with fine sand, trace clay, low plasticity, moist, no odor or staining. Brown gravel, non-plastic, little wood debris, moist, no odor or staining.	Bentonite backfilled to surface.
- 10 -10 -	6-6.5						Doring terminated at 6.5 bgs.	
ARCADIS Infrastructure, environment, buildings							Remarks: bgs: below ground surface HA: Hand Auger	

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7

Data File:GP-7

Date: 11/3/2010 Barb Schnurr

Date Start/Finish: August 25, 2010 Drilling Company: Cascade

Driller's Name: --Drilling Method: HA Sampling Method: HA

Rig Type: HA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 6.5' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: GP-8

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

DEPTH EI EVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction		
-	GP-8- 2-2.5	2-2.5		0.4	ML.		Gravel packed soil surface. Light brown sandy SILT, trace gravel, non-plastic, fine sand, subrounded fine gravel, moist, no odor or staining.	Bentonite backfilled to surface.		
- - 5 -5	GP-8- 4-4.5	4-4.5		0.2	SM		Brown SAND with trace silt and gravel, fine to medium sand, fine rounded gravel, moist, no odor or staining.	Surface.		
-10 -10	GP-8-6-6.5					10000				
	-									
Remarks: bgs: below ground surface HA: Hand Auger Infrastructure, environment, buildings										

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7

Data File:GP-8

Date: 11/3/2010 Barb Schnurr

Date Start/Finish: August 24, 2010 Drilling Company: Cascade

Driller's Name: --Drilling Method: HA

Sampling Method: HA Rig Type: HA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 6.2' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: GP-9

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

		100000				7.15			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	-	GP-9- 2-2.5	2-2.5		0.9			Gravel packed soil surface. Brown SILT with clay, trace sand, non-plastic, very fine sand, moist, no odor or staining, occasional organics.	
-	-	GP-9- 4-4.5	4-4.5		0.6			Brown silty CLAY, trace sand, moderate plasticity, very fine sand, moist, no odor or	Bentonite backfilled to surface.
- 5	-5 -	GP-9- 5.5-6	5.5-6		0.8	CL		Staining. Boring terminated at 6.2 bgs.	
	-								
-10	-10 -								
-	-				8				
ARCADIS Infrastructure, environment, buildings								Remarks: bgs: below ground surface HA: Hand Auger	

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7

Data File:GP-9

Date: 11/3/2010 Barb Schnurr

ARCAI	ARCADIS Consultancy (Producted and State S												
Soil Boring L							Sheet :	1 of	1				
Project Name:	BP Olyr	mpia Bulk Pl	lant	Date	Started:		Jason Little						
Project Number:	GP09BI	PNAWA60		Date Con			Ross LaGrand	leur					
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA		Weather Conditions:	NA						
Depth	Blows		Sample ID			Description			Completion		lisc.		
(feet)	per ft	(feet)	& Time	(ppm)	Class.	<u> </u>			Details	Desc	cription		
├ ं ─	† '												
	<u> </u> '	War	iter first enc	ountered	@ 5 ft								
2	. /	ER	1		- AI	OUT 1100 Have and makel	In the same of the same of						
	[]	HAND AUGER	1	0.0	ML	SILT with clay and pebble sand, small to medium pe							
3	\ \	AL				Sallu, siliali to medium pe	EDDIE SIZE, WEII	graueu					
\vdash , $-$	\'	₽											
4	'	\ \\ \{\}		l	<u> </u>								
	<u> </u>	Ţ	SB-	0.1	CL	CLAY, grey, trace silt, lov	w plasticity, mo	st/wet					
L	↓ '		AUS-SB- 1A(4.5-5)	0.3	ļ	Woody debris, wet			i				
6	ļ '		4 4	1					ပ်				
-	 	<u> </u>	 	 	1	+			Hydrated Bentonite Chips				
 7 	'	\							ou				
├ <u> </u>	<u>'</u>	$ \setminus / \mid \setminus / \mid$	SB-1-A -7.5						ent				
] '		4	0.3		Woody debris			ĕ				
9		/\ /\	SB						l be				
_	 	/ \ / \							<u> </u>				
 10 	}		\		<u> </u>				<u> ×</u>				
	ļ '	\											
11		\ / \ /											
	↓ '	$ \setminus / \setminus /$	ις										
12		$ \ \ \ \ \ \ \ \ \ $	- 15			SAND with gravel, brown	fine to coarse	grained sand					
<u> </u>	 		SB-1-A - 12.5	0.2	SW	small to large gravel, wel		glainea cana,					
13	∤ '	/\	SB.			,	· 9 · · · · ·						
├ ., —	† '	$ / \setminus / \setminus $	*										
14	'	/ \ / \	.										
<u> </u>	<u>'</u>	/ W \	1										
15						End of Borehole at 15	feet bgs						
16	<u> </u>		T '										
L	. '												
17	<u> </u>												
H —	 												
18	<u> </u>												
├ ₁₀ ─	'												
19	'												
20	<u> </u>												
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>							
Drilling Co.:		Cascade D				Sampling Method:		Sleeve					
Driller: Drilling Method:		Muddy Wat				Sampling Interval: Water First encountered:							
Drill Rig Type:		Geoprobe	seoprobe			Water Level Finish:							
Remarks:		Оеоргове				Converted to Well:] No					
bgs = below group	nd surfa	ce	HA= Hand	l Auger		Surface Elev:		•					
NA= Not Applicab	le/ Not /	Available		· ·		North Coor:	NA						
VAC= Vacuum						East Coor:	NA						

ARCA	ARCADIS Control Accordancy Control Accordancy Control Accordancy Control Accordance Control Accordance											
Soil Boring L						Sheet: 1 of	1					
Project Name:	BP Olyr	npia Bulk Pl	ant	Date 9	Started:		<u> </u>					
Project Number:	GP09B	PNAWA60		Date Con	npleted:	8/28/2015 Editor: Ross LaGrandeur						
Project Location:	1120 W	est Bay Driv	e NW, Olym	pia, WA		Weather Conditions: NA						
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Comple	etion	Mi	sc.		
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Detai	ls	Desc	ription		
<u> </u>												
1 <u></u>		Wat	ter first enco	untered @	9 5 ft							
	/	ER	ь В									
2		<u>5</u>	AUS-SB- 2 (2-2.5)	0.0	CL	CLAY, trace silt, grey, low plasticity, dry]	S				
3		HAND AUGER	AL (3					μi				
	\	9						S				
 4)	\ ₹						nije				
- 5				8.0		Woody debris		£				
								Ber				
6		/// /						Hydrated Bentonite Chips				
_		\ / \ /						ate				
7		$ \setminus / \setminus / $	10					χ				
_ 8			SB-2 -9.5	0.0				エ				
_		$ \wedge \wedge $	SB-2	0.0								
9 <u></u>		/ \ / \				CAND with arrayal fire to accuse anning decard arrall to	-					
_		/ \/ \			SW	SAND with gravel, fine to coarse grained sand, small to large gravel, well graded, wet						
10		, ,			I	End of Borehole at 10 feet bgs						
11												
12												
13												
												
14												
15												
16												
17												
— <u> </u>												
18												
19												
_												
20												
Drilling Co.:		Cascade Di	rilling L. P.		<u> </u>	Sampling Method: HA / Acetate Sleeve	1 1	<u> </u>	I			
Driller:		Kyle C	-			Sampling Interval:						
Drilling Method:		VAC, HA, C	Seoprobe			Water First encountered: 5 ft bgs						
Drill Rig Type: Remarks:		Geoprobe				Water Level Finish: NA Converted to Well: ☐ Yes ☑ No						
bgs = below grour	nd surfac	e	HA= Hand A	Auger		Surface Elev: NA		_				
NA= Not Applicab				. 3		North Coor: NA		-				
VAC= Vacuum						Fast Coor: NA		_				

ARCAI	DIS 🖁	esign & Consultancy r natural and uitt assets					Borin	g No.: AUS-SE	803			
Soil Boring L							Sheet :	1 of	f 1			
Project Name:	BP Olyr	mpia Bulk Pla	ant		Started:		Jason Little					
Project Number:			o NIM Ohm	Date Cor	npleted:		Ross LaGrande	eur				
Project Location:			e invv, Olym		-	Weather Conditions:	NA					
Depth	Blows		Sample ID	PID		Description				oletion		isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.				De	tails	Desc	ription
— , —	Ì											
1	Ī	Wat	ter first encou	untered @	4.5 ft							
2		H	-SB-	0.0	CI	CLAY trace silt array du			4			
		HAND AUGER	AUS-SB- 3 (2-2.5)	0.2	CL	CLAY, trace silt, grey, dry	У			sd		
3		₹								Hydrated Bentonite Chips		
4	Ţ	_								ite (
	ļ	<u> </u>								oni		
5	ļ	_								ent		
	İ									A B		
6	İ									Itec		
7 <u></u>		N /N /								dra		
<u> </u>	 	\ / \ /	2							Ну		
 	Ì	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	SB-3 -7.5	0.6		Woody debris						
	†	$ / \rangle / \rangle$	SB.									
_ "	Ţ	/ \ / \										
10		<u>/ </u>										
<u> </u>					1	End of Borehole at 10	teet bgs					
11	ļ											
<u> </u>	ļ											
12	ł											
<u> </u>	ļ											
13	ļ											
_												
14	<u> </u>											
15	<u> </u>											
16	ł											
17	†											
	Ţ											
18	<u> </u>											
<u> </u>	ļ											
19	İ											
20	Ĭ											
Drilling Co.: Driller:		Cascade Di Kyle C	rilling L. P.			Sampling Method: Sampling Interval:		eeve				
Drilling Method:		VAC, HA, G	Seoprobe			Water First encountered:						
Drill Rig Type:		Geoprobe	•			Water Level Finish:	NA					
Remarks:		_				Converted to Well:		No				
bgs = below grour NA= Not Applicab	na surtac Je/ Not /	Ce Available	HA= Hand A	uger		Surface Elev: North Coor:						
VAC= Vacuum	INUL F	wanabic				East Coor:						

ARCAI	DIS 🖁	esign & Consultancy r natural and uitt assets				Boring No.: AUS-SB	04		
Soil Boring L						Sheet: 1 of	1		
Project Name:	BP Olvr	mpia Bulk P	lant	Date	Started:				
Project Number:	GP09B	PNAWA60		Date Con					
Project Location:	1120 W	est Bay Driv	ve NW, Olyr	npia, WA		Weather Conditions: NA			
Depth	Blows	Recovery	Sample ID	PID	LISCS	Description	Completion	I.	isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Description	Details		ription
(100)	F 41.11	(1001)		(FF)					
_ ,	Ī	1 10/0	tou finat an a		@ C F #				
L ' _	<u> </u>		ter first enco	ountered	@ 6.5 IT				
2		E	SB- SB-		01	0.14			
<u> </u>		HAND AUGER	AUS-SB- 4A (2-2.5)	0.5	CL	Silty CLAY, grey / brown, poorly graded, dry	sd		
3		₽	4				Hydrated Bentonite Chips		
⊢ , −	\	₽					0		
4 —		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					l it		
5	Ì	\ I					일		
_							Je J		
6		7					6		
⊢							ate		
7 <u></u>		N /N /					 		
<u> </u>	ł	\ / \ /	5.				£		
8 —		$I \lor I \lor$	A -7	0.2	SP	SAND with gravel, brown, medium to fine grained sand,			
⊢ . −		$ \land \land $	SB-4A -7.5	0.2	0.	fine to medium gravel, uniformly graded, wet			
9 —		/ \ / \	Ø						
	İ	/ V \							
10 —						End of Borehole at 10 feet bgs			
11									
<u> </u>	İ								
12									
⊢ –	Ì								
13									
14									
L ' —									
15									
13									
16	Ì								
10									
17									
L	ļ								
18									
<u> </u>	ļ								
19									
<u> </u>	ļ								
20									
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve	ļ	1	
Driller:		Kyle C				Sampling Interval:			
Drilling Method:		VAC, HA, C	Seoprobe			Water First encountered: 6.5 ft bgs			
Drill Rig Type:		Geoprobe				Water Level Finish: NA			
Remarks:	ad af-		المسالمة	Augs:		Converted to Well: Yes No			
bgs = below group NA= Not Applicab			HA= Hand	Auger		Surface Elev: NA North Coor: NA			
VAC- Vacuum	ne/ NOC /	rvaliable				Fast Coor: NA	 -		

ARCAI	ARCADIS Reign & Constitute of the Constitution of the Constituti											
Soil Boring L						Sheet: 1 of 1	ŀ					
Project Name:	BP Olyr	mpia Bulk P			Started:	: 8/17/2015 Logger: Jason Little						
Project Number: Project Location:				Date Con		: 8/28/2015 Editor: Ross LaGrandeur Weather Conditions: NA						
,		,		· I · · ·								
Depth (fact)	Blows		Sample ID				Misc.					
(feet)	per ft	(feet)	& Time	(ppm)	Class.	. Details De	scription					
├ _{─ 1} _─	† '	Wat	er first enco	<u>ount</u> ered	<u>@ 5</u> .5 ft							
	│		'			TT						
2	-	HAND AUGER		0.2	CL	CLAY, trace silt, grey, trace medium cobbles, poorly						
├ ৢ —	† \ '	Ď		0.2	OL.	graded, dry						
3] \			Í		<u> </u>						
4 ——	<u> </u>	A A		ĺ								
<u> </u>	-	\ I	- 20	0.1	CL	CLAY, trace silt, grey, trace medium cobbles, poorly						
5	- 1	\	AUS-SB- 5A(4.5-5)	0.1		graded, dry						
	<u> </u>		AU:	<u> </u>		janos, s,						
\sqsubseteq $-$] '		/ <u> </u>	<u> </u>		Woody debris Woody debris Hydrafed Bentonite Chips						
7 —	<u> </u>	\		ĺ		mg						
├ ् —	† '	$ \ \ \ $	SB-5A -7.5	1		#						
8 —	1 '	$ \lambda $	3-5A	1.5		Woody debris						
	∫ '	$ / \setminus / \setminus $	SE	l		pa						
L	↓ '	/ \/ \	, !	ĺ								
10	4		}	 	+	\ \ \						
<u> </u>	-	\ \\ \	/ !	ĺ								
11	-	\		l								
<u> </u>	-		5	ĺ								
12	- 1	$ \ \ \ \ \ \ $	۱-12 P-5	0.3	SW	SAND with gravel, grey, fine to coarse grained sand,						
13	† '	$ \lambda \Lambda$	SB-5A -12.5 DUP-5	0.5	500	fine to medium grained gravel, uniformly graded, wet						
13		$ / \setminus / \setminus $	Θ	l								
14	-	/ \ / \		ĺ								
<u> </u>	<u> </u> '	/ W /	\	ĺ								
15		<u> </u>				End of Borehole at 15 feet bgs						
⊢			, ,									
16	1 '			l								
17				l								
⊢ ¨ —	↓ '			l								
18	-			l								
⊢ −	† '			1								
19	1			l								
20	<u>]</u> '			l								
	<u> </u>	2 - 1- 5	<u> </u>	Щ	Ь							
Drilling Co.: Driller:		Cascade D Kyle C/ Mu				Sampling Method: HA / Acetate Sleeve Sampling Interval:						
Drilling Method:		VAC, HA, C		,		Water First encountered: 5.5 ft bgs						
Drill Rig Type:		Geoprobe				Water Level Finish: NA						
Remarks:						Converted to Well: Yes Vo						
bgs = below group NA= Not Applicab			HA= Hand	d Auger		Surface Elev: NA						
VAC= Vacuum)le/ Not A	Available				North Coor: NA East Coor: NA						

ARCAI	DIS 🖁	esign & Consultancy ir natural and uitt assets				Boring No.: AUS-SB	06			
Soil Boring L	.og					Sheet: 1 of	1			
Project Name:	BP Olyr	mpia Bulk Pl	lant		Started:					
Project Number:				Date Con						
Project Location:	1120 W	est Bay Driv	ve NW, Oly	/mpia, WA	<u> </u>	Weather Conditions: NA				
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Compl	letion	M	isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	·	Deta	ails	Desc	ription
	ļ '									
1		/ Wat	ter first en	countered	@ 4.5 f	it				
-	<u> </u>									
2	•	HAND AUGER	AUS-SB- 6(2-2.5)	0.5	CL	CLAY, grey, trace silt, trace small cobbles, poorly	1			
	† '	\	AU.			graded, dry		<u>ë</u>		
3] '	₹					1	Hydrated Bentonite Chips		
4		 ₽						ţe		
<u> </u>	. !	✓₹	-					oni		
5 <u></u>	•	_		İ				ž		
_	. !							B		
6	•							eq		
	† '	M /	/ 				1	rat		
] '	\ / \ /						<u>7</u>		
8		$ \setminus / \mid \setminus / \mid$	7.5					Ι.		
_	ļ '	X X	SB-6 -7.5 DUP 7	3.4		Woody debris				
9 <u></u>	ļ '	[/ \	S	İ						
-	<u> </u>	/ \/ \	.							
10			7			End of Borehole at 10 feet bgs	1			
-						Life of Boreliole at 10 leet bgs				
11										
_				İ						
12										
	ļ '									
40				İ						
13	1			İ						
-	† '									
14	•									
	† '			İ						
15				İ						
-										
16										
17	!									
18] '									
_ '0 _				İ						
19				İ						
	ļ '									
20	. '									
Drilling Co.:		Cascade D	rilling L P	<u> </u>	<u> </u>	Sampling Method: HA / Acetate Sleeve	 			
Driller:		Muddy Wat				Sampling Interval:				
Drilling Method:		HA, Geopro				Water First encountered: 4.5 ft bgs				
Drill Rig Type:		Geoprobe				Water Level Finish: NA				
Remarks:						Converted to Well: Yes Vo				
bgs = below group			HA= Hand	d Auger		Surface Elev: NA				
NA= Not Applicab VAC= Vacuum	ole/ Not A	Available				North Coor: NA East Coor: NA		_		
VAC= Vacuum						East Coor. INA				

ARCA	DIS 🖁	esign & Consultancy or natural and uitt assets			-	Boring No.: AUS-SBC	07	
Soil Boring L						Sheet: 1 of	1	
Project Name:	BP Olyn	mpia Bulk Pl	lant	Date '	Started:		<u> </u>	
Project Number:	GP09BF	PNAWA60		Date Con		8/31/2015 Editor: Ross LaGrandeur		
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA		Weather Conditions: NA		
Depth (feet)	Blows per ft	Recovery (feet)	Sample ID & Time	PID (ppm)	USCS Class.	Description	Completion Details	Misc. Description
(ICCI)	porit	(ICCI)	- C TILLE	(ppiii)	Oldoo.		Betans	Description
1 —	Wate	er first encou	untered @	6 ft			'	
] / !	R.	5) (3)	<u> </u>			'	'
L	↓ \'	HAND AUGER	AUS- SB-7(2-2.5)	0.5	CL	CLAY, grey, trace silt, trace small cobbles, poorly	, '	!
з	- I	\ A		1		graded, dry	, '	'
⊢ , —	∤ '	<u> </u>		1			, '	
	'	A		i			, '	'
_ 5	'	主		ĺ			, _ '	'
	ן י			i			Hydrated Bentonite Chips	'
6	<u> </u>		.	i			ji	'
L	↓ !	<u></u>		 	↓		, eg '	'
7 <u></u>	. I	N /\ /		i			jig	'
-	ļ !	[\ / [\ /	2	i			, 불 '	'
—— 8 ——	∮ !	$ \ \ \ \ \ \ \ $	SB-7-7.5	1.0		Woody debris	B	'
\vdash $_{1}$ $-$	† '	[/\	SB	1		l l l l l l l l l l l l l l l l l l l	g	'
- 9 - <u> </u>	'	[/ \ / \		ĺ			_ at(
10	!	<u> </u>	\	<u> </u>			<u> </u> ੈ ਹੈ	
		\bigcap	/ I	 [Γ		, £ '	
		1\ / \ /		ĺ			, '	
11	'	1\ / \ /		ĺ			, '	
⊢ ₁₂ −	ļ ,	$1 \setminus / \mid \setminus / \mid$		ĺ			, '	
12	<u> </u>	1 V X		0.2	SW	SAND with gravel, brown, coarse grained sand, small to	, '	
13	_	$ \wedge / \rangle$		ĺ		medium gravel, wet	, '	
<u> </u>	ļ !	1/\ /\		ĺ			, '	
14	. J	1/ \ / \		ĺ			, '	
<u> </u>	ļ !	/ \/ \	(I	i			, '	
 15 						End of Borehole at 15 feet bgs		
⊢ ,, −	—		1			End of Editional actions	· '	
<u> </u>	'			Í			, '	'
17	<u> </u>			ĺ			, '	
┌ " _	↓ '			ĺ			, '	'
18				ĺ			, '	'
<u> </u>	ļ !			ĺ			, '	
19	. J			i			, '	'
├ <u> </u> —	 			ĺ			, '	
20	!			i			, '	
Drilling Co.:	ш,	Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve		
Driller:		Kyle C.				Sampling Interval:		
Drilling Method:		HA, Geopro	obe			Water First encountered: 6 ft bgs		
Drill Rig Type:		Geoprobe				Water Level Finish: NA		
Remarks:	ad aurfa		UA Hon	d Auger		Converted to Well: Yes No Surface Elev: NA		
bgs = below group NA= Not Applicab			HA= Hand	Auger		North Coor: NA		
VAC= Vacuum	IIC/ INOU /	wallable				East Coor: NA		

ARCAI	DIS	esign & Consultancy or natural and uitt assets				Boring No.: AUS-SB0)8			
Soil Boring L						Sheet: 1 of	1			
Project Name:	BP Olyr	mpia Bulk Pl	lant	Date	Started:					
Project Number:	GP09B	PNAWA60		Date Con	npleted:	9/01/2015 Editor: Ross LaGrandeur				
Project Location:	1120 W	est Bay Driv	ve NW, Oly	/mpia, WA	•	Weather Conditions: NA				
Depth	Blows	Recovery	Sample ID	PID	Tuscs	Description	Comple	etion	М	isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Detai			ription
1	Wate	er first encou	untered @	6.5 ft ft						
<u> </u>	4	~			1					
2	 	ļ Ņ	AUS- SB-8(2-2.5)	0.0	CL	CLAY, grey, trace silt, trace small cobbles, trace coarse				
− , −	†) O	S S		 -	grained sand, poorly graded, dry		ips		
3	11	A		1				ပ်		
4	41	HAND AUGER	'	1				ite		
-	1	≰	'	1				g		
5 <u></u>	\	_	'	1				ent		
	† `		'	1				ă		
ь —	1 .			<u> </u>	<u> </u>			Hydrated Bentonite Chips		
7 <u></u>	Ţ	$\Gamma \wedge /$	Έ '		Γ			dra		
	4	[\ / \ /	1 ,0	1				Ŧ		
8 	4	$I \lor I \lor$	SB-8-7.5	0.5		Woody debris				
⊢ ຼ −	†	$ \wedge \wedge $	SB-{	0.0		Woody debits				
9	1	/ \ / \	' !	1						
10	<u> </u>	<u>/ </u>	<u> </u>	<u> </u>	<u> </u>					
						End of Borehole at 10 feet bgs				
11			'	1						
	<u> </u>		'	1						
12	_		'	1						
_	↓		'	1						
13	1		'	1						
<u> </u>	↓		'	1						
14	4		'	1						
⊢ –	+		'	1						ŀ
15	1		'	1						
<u> </u>	†		'	1						
16	1		'	1						ŀ
	†		'	1						
17	1		'	1						
18]		'	1						
<u> </u>	4		'	1						
19	-		'	1						
├ <u>.</u>	†		'	1						
20	†		'	1						
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve				
Driller:		Kyle C				Sampling Interval:				
Drilling Method:		HA, Geopro	აbe			Water First encountered: 6.5 ft bgs				
Drill Rig Type: Remarks:		Geoprobe				_ Water Level Finish: NA Converted to Well:				
bgs = below groun	nd surfac	ce	HA= Hand	d Auger		Surface Elev: NA		_		
NA= Not Applicab				ago.		North Coor: NA		_		
VAC= Vacuum						East Coor: NA		_		

ARCAI	OIS 🖁	sign & Consultancy restural and litt assets				Boring No.: AUS-SB0)9		
Soil Boring L	oq.					Sheet: 1 of	1		
Project Name:	BP Olyn	npia Bulk Pl	lant		Started:	8/17/2015 Logger: Jason Little			
Project Number:				Date Con					
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA		Weather Conditions: NA			
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Completion	M	lisc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	·	Details	Desc	cription
					_				
1	Wate	er first encou	untered @	3.5 ft ft					
- -	 	œ							
2	1	√ AUGER	AUS- SB-9(2-2.5)	0.0	SM	Silty SAND, light brown, trace rounded gravel, well			
		L	4 S -5			graded, dry	<u>ë</u>		
_	↓	▼ <					Hydrated Bentonite Chips		
4		HAND					ite		
	ļ	_					l e		
5	1	_					l u		
	t l						ĕ		
— 6 —	1						led l		
] [\					<u>ra</u>		
_ ′ _		\					≱		
8		$\cup \cup \cup \cup$	-7.5		0147	SAND with gravel, brown, fine to coarse grained sand,	-		
	 	$\bot \land \bot \land \bot$	SB-9-7.5	0.2	SW	fine to medium gravel, well graded, wet			
9 —		/ \ / \	S						
	t l	/ \/ \							
10						End of Borehole at 10 feet bgs			
_								\top	
11	1								
<u> </u>	 								
—— 12 ——	1								
-	† I								
13	1								
	ł								
—— 14 ——	1								
_	t l								
15	1								
	† l								
16	1								
17	†								
1/									
18									
19									
_	 								
20									
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve			
Driller:		Kyle C	<u>g =</u>			Sampling Interval:			
Drilling Method:	-	HA, Geopro	obe			Water First encountered: 3.5 ft bgs			
Drill Rig Type:		Geoprobe				Water Level Finish: NA			
Remarks:						Converted to Well: Yes No			
bgs = below grou NA= Not Applicab			HA= Hand	I Auger		Surface Elev: <u>NA</u> North Coor: NA			
VAC= Vacuum	ile/ INOL A	wallable				East Coor: NA			

ARCAI	DIS	esign & Consultancy or natural and uit assets				Boring No.: AUS-SB10	0	
Soil Boring L						Sheet: 1 of	1	
Project Name:		mpia Bulk Pla	ant	Date	Started:		1	
Project Number:	GP09BI	PNAWA60		Date Cor		8/28/2015 Editor: Ross LaGrandeur		
Project Location:	1120 W	est Bay Driv	e NW, Olymr	pia, WA		Weather Conditions: NA		
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	i i	Details	Description
	1							
1 —	Wate	r first encou	intered @ 3.5	ft				
⊢ ຼ —	\	~	. 4 @	t				
2	ן ן	SE	AUS- SB-10A (2-2.5)	0.0	SM	Silty SAND, light brown, trace gravel, poorly graded, dry,	v	
3 <i></i>] '	l⊥≱ '	, is ,	Γ	T	organic debris	hip	
	↓ !		1 '	1			O O	
 4	 	4 HAND AUGER	'	1			nite	
F 5 _	† '	Ì '	1	1			Jt	
。	‡ '	'	'	1		Organic wood debris from 4.5 to 6.5 feet bgs	Ber	
6	<u> </u>	'	'	1		organio nosa assis ilan ila sis sis sis sis	P	
<u> </u>	 		\vdash		+		Hydrated Bentonite Chips	
7 <u></u>	† '	1\ / \ /'	'	1			yd	
8	<u> </u>		-7.5	1		SAND with gravel, brown, fine to coarse grained sand,	=	
L	↓ !	X	SB-10-7.5	0.2	SW	fine to medium graded gravel, well graded, wet		
9 ——	-	1/ \ / \'	S	1				
├ <u> </u> —	 	/ \/ \'	'	1				
10 —						End of Borehole at 10 feet bgs		-
					T			
11	Ţ '	'	'	1				
12 —	<u> </u>	'	'	1				
	<u> </u>	'	'	1				
13	↓ '	'	'	1				
L _	↓ !	'	'	1				
14	-	'	'	1				
⊢ –	 	'	'	1				
15	 	'	'	1				
16	† '	'	'	1				
16	<u>†</u> '	'	'	1				
17] '	'	'	1				
⊢ –	- 1	'	'	1				
18	 	'	'	1				
	† '	'	'	1				
] '	'	'	1				
20	-	'	'	1				
Drilling Co.:	<u> </u>	Cascade Dr	rilling I P	<u> </u>		Sampling Method: HA / Acetate Sleeve		
Driller:		Kyle C	Illing L. i .			Sampling Interval:		
Drilling Method:		VAC, HA, G	eoprobe			Water First encountered: 3.5 ft bgs		
Drill Rig Type:		Geoprobe				Water Level Finish: NA		
Remarks: bgs = below groui	nd curfac	00	HA= Hand A	uger		Converted to Well: Yes No Surface Elev: NA		
NA= Not Applicab	ole/ Not A	,e \vailable	ΠΛ- Παπα Λ	uyei		North Coor: NA		
VAC= Vacuum						East Coor: NA		

ARCAL	DIS Design for no built:	in & Consultancy itural and assets				Boring No.: AUS-SB	11	
Soil Boring L	.og					Sheet: 1 of	1	
Project Name:		npia Bulk Pl	ant		Started:	1991		
Project Number:			- NIM Ob	Date Cor				
Project Location:	1120 W	est Bay Driv	e inw, Oly	•	١	Weather Conditions: NA		
Depth (feet)	Blows per ft	Recovery (feet)	Sample ID & Time	PID (ppm)	USCS Class.	Description	Completion Details	Misc. Description
1		/ Wa	ter first en	countere	d @ 4.5	ft		
-	_	/						
2 <u></u>		HAND AUGER	AUS- SB-11 (2-2.5)	0.0	ML	Clayey SILT, brown, poorly graded, low plasticity, dry,		
_ 3			8 S			trace organic debris		
_		A						
 		<u> </u>						
_	-	V ∢ I						
5 <u></u>						Organic wood debris	န	
							ਵ਼ੋਂ	
_		, ,					Hydrated Bentonite Chips	
7 <u></u>	_	\					ij	
		\ / \ /	5				월	
8		$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	SB-11-7.5	12.8		Woody debris	Ba	
		$ / \langle / \rangle $	SB-,				중	
		/ \ / \					rate	
10		<u> </u>					ᄛ	
		N /N /					=	
11		\						
<u> </u>								
12	_	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	SB-11-12.5			SAND with gravel, coarse grained sand, small to		
<u> </u>		X A	3-11-	0.1	SW	medium grained gravel, brown, well graded, wet		
13		/	SE					
		/ \ / \						
14		/ \ / \						
15		/ V \						
			1		T	End of Borehole at 15 feet bgs		
16								
⊢ <u>, </u>								
17								
18								
⊢								
19	_							
20								
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate sleeve		
Driller:		Kyle C				Sampling Interval:		
Drilling Method:		HA, Geopro	obe			Water First encountered: 4.5 ft bgs		
Drill Rig Type: Remarks:		Geoprobe				Water Level Finish: NA Converted to Well: Yes VNo		
bgs = below group	nd surfac	e	HA= Hand	d Auger		Surface Elev: NA	<u></u>	
NA= Not Applicab				3 -		North Coor: NA		
VAC=Vacuum						Fast Coor: NA		

ARCAL) S Design	gn & Consultancy atural and					Boring	No.: AUS-SB1	12		
Soil Boring L		assets					Sheet :	1 of	1		
Project Name:	BP Olvr	mpia Bulk Pla	ant	Date	Started:	08/18/2015 Logger:	Jason Little	1 01	- 1		
Project Number:	GP09BI	PNAWA60		Date Con		08/31/2015 Editor:	Ross LaGrande	ur			
Project Location:	1120 W	est Bay Driv	e NW, Olym	npia, WA		Weather Conditions:	NA				
Depth (feet)	Blows per ft	Recovery (feet)	Sample ID & Time	PID (ppm)	USCS Class.	Description			Compl		isc. cription
	. 1										
1	 	Wa	ater first enc	ountered	@ 4 ft						
	† !										
] !	GE GE	AUS- SB-12 (2-2.5) DUP-2	2.6	CL	CLAY, grey, trace silt, po	orly graded, low p	plasticity, dry		S	
3	 	AU								hip	
	† !	HAND AUGER								Hydrated Bentonite Chips	
_ 4]]	¥								onit	
5	ļ !	I								ınt	
	 									Be	
6	<u>†</u>									ited	
7	[$\wedge \wedge /$								dra	
_	 	\ / \ /	5:							Нy	
 	† !		SB-12-7.5	1.4		Woody debris					
9] !	/	SB-			,					
L	ļ !	/ \ / \									
 						End of Borehole at 10) feet has				
							o loot ago				
11	† !										
12 —	<u> </u>										
] !										
13	ļ !										
	ļ !										
14	 										
⊢ .₋ −	† !										
15	† !										
16	[ļ									
	 										
17	† !										
18] !										
	ļ !										
19	 										
	<u> </u>	ļ									
			<u></u>								
Drilling Co.: Driller:		Cascade Dr Muddy Wate				Sampling Method: Sampling Interval:		eve			
Drilling Method:		HA, Geopro				Water First encountered:					
Drill Rig Type:		Geoprobe				Water Level Finish:	NA				
Remarks:	nd curfor	20		Augor		Converted to Well: Surface Elev:		0			
bgs = below groun NA= Not Applicab			HA= Hand	-uyei		North Coor:					
VAC=Vacuum						East Coor:					

ARCAL) S Designation	ign & Consultancy natural and				Boring No.:	AUS-SB	13			
		assets									
Soil Boring L	.og	mpia Bulk Pl	last.		Ctantadi	Sheet: 1 8/18/2015 Logger: Jason Little	of	11			
Project Name: Project Number:	CD00B	TIPIA BUIK PI		Date Com	Started:	8/18/2015 Logger: Jason Little 9/01/2015 Editor: Ross LaGrandeur					
Project Number. Project Location:						Weather Conditions: NA					
Project Location.	1120 00	est bay Din	ve invv, Oly	IIIpia, WA							
Depth	Blows	Recovery	Sample ID	PID	USCS	escription		Comp	letion	M	isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.			Deta	ails	Desc	ription
_	ļ [!]							i			
1		Water firs	st encounte	ered @ 3.5	ft						
<u> </u>		- 4	<u> </u>					i			
2 		#	AUS-SB- 13 (2- 2.5)			000					
		ច	US- 3 (2 5)	2.4	CL	LAY, grey, trace Silt, low plasticity, dry			SC		
3		HAND AUGER	4 ∺ Vi	1					Hydrated Bentonite Chips		
<u> </u>	`		-	1					S		
4		Į		1					ij		
	 	₹		1					Ö		
5		_		1					Ĭ.		
_	. !			1				i	ă		
 6				1				i	eq		
		\ /\ /	H	$\overline{}$					rat		
 	1	I\		1					λ		
	† '	\	.5	1					Í		
— 8 ——	ļ	$I \times I \times$	SB-13-7.5	0.5		oody debris					
	1		ė	1		•					
y	ļ	/ \ / \	"	1							
		<i>Y</i>	, 1	1				i			
10						End of Borehole at 10 feet bgs	3				
	1										
11	1			1							
<u> </u>	ļ !			1							
12				1							
-	}			1						1	
13	1			1						1	
_	†			1							
—— 14 ——				1				i			
_	ļ			1				i			
15 				1							
_	†			1							
16				1							
— <u> </u>	† 			1							
17				1							
	1			1							
18	ļ			1							
				1							
19	ļ			1							
20				1				i			
	ļ			1				i			
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve					
Driller:	·•	Muddy Wat	ters / Kyle (С		Sampling Interval:					
Drilling Method:	•	HA, Geopro	obe			ater First encountered: 3.5 ft bgs					
Drill Rig Type:		Geoprobe				Water Level Finish: NA					
Remarks:						Converted to Well: Yes Vo					
bgs = below ground			HA= Hand	d Auger		Surface Elev: NA			_		
NA= Not Applicab	ole/ Not A	Available				North Coor: NA					
VAC= Vacuum						East Coor: NA					

ARCAE)IS Designation	gn & Consultancy atural and assets				Boring No.: AUS-SB14	
Soil Boring L	_og					Sheet: 1 of 1	
Project Name:	BP Olyn	mpia Bulk Pl	lant		Started:	d: 8/18/2015 Logger: Jason Little	
Project Number:				Date Con	npleted:		
Project Location:	1120 W	est Bay Driv	ve NW, Oly	/mpia, WA	<u> </u>	Weather Conditions: NA	
Depth	Blows	Recovery	Sample ID	PID	USCS	S Description Completion Mi	sc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.		ription
	ļ !	Wat	ter first end	countered	@ 3.5 f	ft	
1	l J						
_		~	ф				
2		HAND AUGER	AUS-SB- 14 (2- 2.5)	2.0	CL	CLAY, grey, trace silt, poorly graded, dry	
	j l		AU:			Hydrated Bentonite Chips	
] !	V				ပ်	
4	. !	Z				it	
	ļ !	≰				u o	
5	· !	_					
	 					m	
6						ted	
]	N /				<u> </u>	
_ ′	<u> </u>	\					
8	. !	$ \vee \vee $	77.5				
<u> </u>	ļ !	$ \lambda \lambda$	SB-14-7.5	0.9		Woody debris	
9 ——	- I	/ \	S				
	† !	/ \ / \					
10 		<u> </u>				End of Borehole at 10 feet bgs	
						End of Boronoic at 10 lost bgo	
11							
-	 						
12							
12	† !						
13	<u> </u>						
14							
<u> </u>	ļ !						
15	. !						
	ļ ļ						
 16 							
	† !						
17							
18							
_ " _	ļ !						
19							
_	ļ ļ						
20 <u></u>	†						
Drilling Co.:		Cascade D	rillina L. P.	 		Sampling Method: HA / Acetate Sleeve	
Driller:		Muddy Wat				Sampling Interval:	
Drilling Method:		HA, Geopro	obe			Water First encountered: 3.5 ft bgs	
Drill Rig Type:		Geoprobe				Water Level Finish: NA	
Remarks:			IIA IIaa.	al Aa.a.		Converted to Well: Yes VNo	
bgs = below group NA= Not Applicab			HA= Hand	a Auger		Surface Elev: <u>NA</u> North Coor: NA	
VAC= Vacuum	ne/ Not F	wallable				East Coor: NA	

ARCAL	DIS Gran	gn & Consultancy atural and assets				Boring No.: AUS-SB15		
Soil Boring L						Sheet: 1 of 1		
Project Name:		npia Bulk P	lant	Date :	Started:			
Project Number:			iant	Date Con				
Project Location:			ve NW, Oly			Weather Conditions: NA		
							1	
Depth	Blows		Sample ID	PID		Description Completion		lisc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Details	Desc	ription
_	ļ				- 4			
1		/ Water fir	rst encount	ered @ 6.	5 ft			
	/	Ω.						
2		HAND AUGER		0.0	MS	Sandy SILT, brown, with small and medium cobbles,		
	\	Š				well graded, dry		
		⋖				well graded, dry Mel graded dry Mel graded dry Mel graded dry Mel graded dry Mel graded dry Mel graded dry		
4	\	₽						
		\				ig		
5		\ =				#		
6		\						
_	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
7		\				5		
-			5					
8		$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	SB-15-7.5	0.0	SG	SAND with gravel, brown, coarse grained sand,		
	†	$ \wedge \wedge $	3B-1	0.0		medium, rounded gravel, gap graded, wet		
9 —		/ \ / \	0,					
40	İ	/ W \						
10		•				End of Borehole at 10 feet bgs	•	
11								
_	ł							
12								
	Ì							
13								
14	Ī							
14								
15								
16								
17								
_								
—— 18 ——								
-								
19 <u></u>								
	ł							
20								
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve		
Driller:		Frank Scot				Sampling Interval:		
Drilling Method:		HA, Geopro	obe			Water First encountered: 6.5 ft bgs		
Drill Rig Type:		Geoprobe				Water Level Finish: NA		
Remarks:						Converted to Well: Yes No		
bgs = below groun			HA= Hand	d Auger		Surface Elev: NA		
NA= Not Applicab	ie/ Not A	Available				North Coor: NA		
VAC= Vacuum						East Coor: NA		

<u>(6</u> Δ D C Δ Γ	NC 🌬	gn & Consultancy				Boring No.: AUS-SB16	
ARCAL		atura, and : assets					
Soil Boring L	.og					Sheet: 1 of 1	
Project Name: Project Number:	BP Olyr	mpia Bulk P	lant		Started:		
Project Number: Project Location:			vo NIM Ob	Date Con		8/27/2015 Editor: Ross LaGrandeur Weather Conditions: NA	
Project Location.	1120 VV	est bay Dir	ve ivv, Oiy	mpia, w <i>A</i>		Weather Conditions. INA	
Depth	Blows	Recovery	Sample ID	PID	USCS	Description Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Details D	escription
	l ı				C:		
1	/	Water firs	t encounte	red @ 6.5	ft		
_	/	-4					
2	/	HAND AUGER		0.4	N 41	SILT with small cobbles, brown, trace coarse grained	
<u> </u>	- (9		0.1	ML	sand, poorly graded, dry	
3	\	AL				sand, poorly graded, dry sand, poorly graded, dry id ig ig ig ig ig ig ig ig ig	
-	 \	۵				0	
4	\	Z				i <u></u>	
	† \	Ì				0	
5	1 \					E	
	1 \						
_ 0	١ ١					<u> </u>	
		\				l a	
_ ′ _		\ / \ /				\(\frac{\zeta}{2} \)	
8		$ \setminus / \mid \setminus / \mid$	SB-16-7.5			SAND with gravel, brown, coarse grained sand, medium	
	1	X X	-16	0.0	SP	grained gravel, gap graded	
9		/\ /\	S			gramma gramma, grap granda	
_	ļ	/ \ / \					
 10 		<u> </u>	\L				
_		l	1		ı	End of Borehole at 10 feet bgs	
11							
	1						
12							
	ļ						
13							
<u> </u>	ł						
<u> </u>							
-	ŀ						
15							
16							
17	Ī						
18							
_ " _	ļ						
19							
	1						
20							
	<u> </u>	Cascade D	rilling I D		<u> </u>	Compling Methods HA / Agetete Classes	
Drilling Co.: Driller:						Sampling Method: HA / Acetate Sleeve	
Drilling Method:		Muddy War				Sampling Interval: Water First encountered: 6.5 ft bgs	
Drill Rig Type:		Geoprobe	ODE			Water Level Finish: NA	
Remarks:		Occhione				Converted to Well: Yes No	
bgs = below group	nd surfac	ce	HA= Hand	d Auger		Surface Elev: NA	
NA= Not Applicab						North Coor: NA	
VAC= Vacuum						East Coor: NA	

ARCAL	DIS Design	gn & Consultancy atural and assets				Boring No.: AUS-SB	17	
Soil Boring L						Sheet: 1 of	1	
Project Name:	BP Olyn	npia Bulk P	lant	Date	Started:			
Project Number:	GP09BI	PNAWA60		Date Con				
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA	١	Weather Conditions: NA		
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Description	Details	Description
(1001)	po	The state of the s					Johano	2000
_ ,	İ	water	r first enco	untered @	2.5 It			
_ '								
2		<u>_</u>	SB- 2.5)					
		HAND AUGER	AUS-SB- 17(2-2.5)	0.1	CH	CLAY, grey, trace silt, trace small cobbles, medium plasticity, moist	sd	
3		ΑU	∢ ←			plasticity, moist	Hydrated Bentonite Chips	
	+	, O					6 0	
4		Z					niţ	
	ľ	Ĩ					fo	
o	1						Sen	
6							H	
_		Á					ate	
7 <u></u>		\					dra	
			2				₹	
8		$ \vee \vee $	SB-17-7.5	0.7	SW	SAND with gravel, brown, fine to coarse grained sand,		
_	+	$\land \land \land \land$	- 6	0.7	SVV	small to medium gravel, well graded, wet		
9 ——		/ \ / \	S					
	†	/ W \						
10		V				End of Borehole at 10 feet bgs		
11								
-	†							
12								
13	İ l							
13								
14								
_ ''								
15								
 16 								
_	+							
17								
	Ì							
18	1							
19								
20								
		Casas de D	million as 1		<u> </u>	Complian Matheda IIA / Accide Classes		
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve		
Driller: Drilling Method:		Kyle C HA, Geopre	aho.			Sampling Interval:		
Drill Rig Type:		Geoprobe	NG.			Water Level Finish: NA		
Remarks:		Coopione				Converted to Well: Yes Vo		
bgs = below grou	nd surfac	ce	HA= Hand	l Auger		Surface Elev: NA		
NA= Not Applicat				J -		North Coor: NA		
VAC= Vacuum						East Coor: NA		

(feet) per ft (feet) & Time (ppm) Class. Details De	Misc.
Project Name: BP Olympia Bulk Plant Date Started: 8/18/2015 Logger: Jason Little Project Number: Project Location: Date Completed: 8/31/2015 Editor: Ross LaGrandeur Weather Conditions: NA Depth (feet) Blows Recovery Sample ID PID USCS Description (ppm) Class. Completion Details De	
Project Number: GP09BPNAWA60 Date Completed: 8/31/2015 Editor: Ross LaGrandeur Project Location: User Bay Drive NW, Olympia, WA Weather Conditions: NA Depth (feet) Blows Recovery Sample ID PID (ppm) Class. Description Details De	
Project Location: 1120 West Bay Drive NW, Olympia, WA Weather Conditions: NA Depth (feet) Blows Recovery Sample ID PID (ppm) Class. Description Details De	
Depth (feet) Blows Recovery Sample ID PID USCS Description (ppm) Class. Completion Details De	
(feet) per ft (feet) & Time (ppm) Class. Details De	
	scription
1 — 1 Water first encountered @ 4.5 ft	
2 — A — A — A — A — A — A — A — A — A —	
graded, dry	
3 A 8 8 8	
├ , 	
L 7	
Noody debris, brown to black State	
L Woody debris, brown to black ■ L S S S S S S S S S S S S S S S S S S	
10 — 10 — 10	
Woody debris, black	
End of Borehole at 11 feet bgs	
Refusal at 11 feet bgs, boring AUS-SB18A advanced to	
15 feet bgs in an adjacent location, see separate boring	
13 log.	
14	
15 — 15 —	
	
	
20	
Drilling Co.: Cascade Drilling L. P. Sampling Method: HA / Acetate Sleeve	
Drilling Co.: Cascade Drilling L. P. Sampling Method: HA / Acetate Sleeve Sampling Interval:	
Drilling Co.: Cascade Drilling L. P. Sampling Method: HA / Acetate Sleeve Sampling Interval: Drilling Method: HA, Geoprobe Water First encountered: 4.5 ft bgs	
Drilling Co.: Cascade Drilling L. P. Sampling Method: HA / Acetate Sleeve Driller: Muddy Waters / Kyle C Sampling Interval: Drilling Method: HA, Geoprobe Water First encountered: Geoprobe Water Level Finish: NA	
Drilling Co.: Cascade Drilling L. P. Sampling Method: HA / Acetate Sleeve Sampling Interval: Drilling Method: HA, Geoprobe Water First encountered: 4.5 ft bgs Water Level Finish: Remarks: Converted to Well:	
Drilling Co.: Cascade Drilling L. P. Sampling Method: HA / Acetate Sleeve Driller: Muddy Waters / Kyle C Sampling Interval: Drilling Method: HA, Geoprobe Water First encountered: Geoprobe Water Level Finish: NA	

ARCAL	18A							
Soil Boring L	_og					Sheet: 1 of	1	!
Project Name:	BP Olyr	mpia Bulk P			Started:	: 8/18/2015 Logger: Jason Little		
Project Number:				Date Con				
Project Location:	1120 W	lest Bay Driv	ve NW, Oly	/mpia, WA	1	Weather Conditions: NA		
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	·	Details	Description
L 1	_ ՝	V	Water first e	encounter	ed @ 4.	5 ft		'
<u> </u>	՝		7			Total Control of the		'
2	-	AAND AUGER		0.1	NAI -	CILT brown troop and troop small publics poorly	4 1	'
- -	\'	୍ର ପ୍ର		0.1	ML	SILT, brown, trace sand, trace small cobbles, poorly graded, dry (from boring AUS-SB18)		'
3	- '	∖ ¥		İ		graded, dry (from borning AOO-OB 10)	1	'
⊢ , −	† '	\		İ				'
	1 '	→ ₹		1				'
	† '	Ì		1				'
- ° - <u></u>	1 '			1			sd	'
6] '			1			, iż	'
	1 '			<u> </u>			Hydrated Bentonite Chips	'
	_	$\Gamma \wedge /$	/[Γ	Γ		l jë	'
L ' _	_ ՝	\		1			<u> </u>	'
8	_ ՝	$ \cdot \cdot \cdot $					l len	'
└	ֈ ՝			28.5		Woody debris, brown to black (from boring AUS-SB18)	<u> </u>	'
9 —	-	[/\]/\		1			te	
<u> </u>	- 1	/ \ / \	, !	1			<u> </u>	
10	-	<u> </u>	4	 	↓		<u> ፮</u>	'
<u> </u>	_ ՝	N /\ /	/ !	1			±	
11] '	 \		1		Woody debris, black		
	'			1				
12	† '	$ \cdot \cdot \cdot $	SB-18A-12.5	1			1	'
12	1 '	V X	8A-1	0.2	CL	CLAY		'
13] '	I / /\	B-13	1				'
L '` _] '	$1/\setminus 1/\setminus$	Ō	1	Ţ			
14] '	I/ \ / \ \		1	sw	SAND with gravel, fine to coarse grained sand		
L " _	՝		, !	1	0	OAND With graver, fine to obares granisa sand		
15	<u> </u>	<u> </u>	<u>\</u>	<u> </u>	<u> </u>			
L ' _						End of Borehole at 15 feet bgs		
16	_ ՝			1				'
<u> </u>	՝			1				'
17	'			1				
<u> </u>	 			1				
18	- '			1				
⊢ –	† '			1				
19	'			1				
<u> </u>	† '			1				
20	1 '			1				
Drilling Co.:		Cascade D	Prilling L. P.			Sampling Method: HA / Acetate Sleeve		
Driller:		Muddy Wat			-	Sampling Interval:		
Drilling Method:		HA, Geopro				Water First encountered: 4.5 ft bgs		
Drill Rig Type:		Geoprobe		-		Water Level Finish: NA		
Remarks:						Converted to Well: Yes Vo		
bgs = below grou			HA= Hand	d Auger		Surface Elev: NA		
NA= Not Applicab	اد) le/ Not	Available				North Coor: NA		
VAC= Vacuum						East Coor: NA		

ARCAL	DIS Pesign for na built:	n & Consultancy tural and assets				Boring No.: AUS-SB	19			
Soil Boring L	oa					Sheet: 1 of	1			
Project Name:		npia Bulk P	lant	Date	Started:					
Project Number:	GP09B	PNAWA60		Date Con	npleted:	8/31/2015 Editor: Ross LaGrandeur				
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA		Weather Conditions: NA				
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Comr	oletion	М	isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Dodonpilon		tails		ription
		. ,		<u> </u>						
1										
2		~	-SB -2.5		CI	CLAY with silt, brown, trace small cobbles, dry	-			
<u> </u>	ł	Ш	AUS-SB- 19(2-2.5)		CL	CLAY With Siit, brown, trace small cobbles, dry	-			
— з —		၅	4 +							
	İ	HAND AUGER								
4		₽	Water	first enco	untere	d @ 7.5 ft				
_ 5		A ,								
L	ļ	ェ/						S		
6								hip		
								၁		
7 <u></u>								ite		
<u> </u>	5		/ . 				1	tor		
8 <u></u>	5 5		SB-19-	15.4		Woody debris		en		
	5		SB 7					B		
9 <u></u>]	Y	,					Hydrated Bentonite Chips		
10								dra		
10								ž		
_ ,, _								_		
11										
	İ									
12										
13										
	,									
14	40/0	\mathbb{N}/\mathbb{N}	<u>6</u> 2	40.0		Woody debris				
	40/6	X X	SB-19- 14.5	12.8		•	4			
15		/ V \			SW	SAND with gravel, black, fine to coarse grained sand, small to medium gravel, well graded, wet				
<u> </u>						End of Borehole at 15.5 feet bgs				
—— 16 ——						End of Borenoie at 10.0 feet bgs	1 1			
	t									
17										
18										
	ļ									
19										
20										
Drilling Co.:	l	Cascade D	rilling I P		<u> </u>	Sampling Method: Hand Auger, Split spoon samp	ler			
Driller:		Muddy Wat				Sampling Interval:				
Drilling Method:		VAC, HA, F				Water First encountered: 7.5 ft bgs				
Drill Rig Type:		NA				Water Level Finish: NA				
Remarks:						Converted to Well: Yes No				
bgs = below groun			HA= Hand	d Auger		Surface Elev: NA				
NA= Not Applicab	ie/ Not A	Available				North Coor: NA				
VAC= Vacuum						East Coor: NA				

ARCAL	Boring No.: AUS-SB20							
Soil Boring L						Sheet: 1 of 1		
Project Name:	BP Olyr	npia Bulk P	lant		Started:	8/18/2015 Logger: Jason Little		
Project Number:	GP09B	PNAWA60	···· NIM/ Ob	Date Con				
Project Location:		-	ve NW, Oiy			Weather Conditions: NA		
Depth	Blows	Recovery	Sample ID	PID		Description Completion		isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Details	Desc	ription
	}		Wate	er first end	ountere	ed @ 3.5 ft		
1			Wate	ir mot ene		5.5 11		
_ 2	Ì	/	3B-					
]	/ K	AUS-SB- 20(2-2.5)	0.2	CL	CLAY, brown, trace silt, trace very small cobbles, poorly		
3		HAND AUGER	2 AI			sorted, brown, dry		
_		V D						
4 <u></u>		o o						
	†	Z				sd		
_ 。		Ì						
6 								
	<u>.</u>					#		
7 <u></u>						t		
-	2 `		 			- I		
8	2	X X	SB-20- 7.5	16.1		Moody depuis Hydrated Bentonite Chips		
_ 。	2	$/ \vee /$	SE			ate ate		
]					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
10								
_ ` _	ļ							
11								
12								
	40	<u> </u>						
13	10 12		SB-20-	9.6		Woody debris		
	12		SB 1,	5.0		Woody dobits		
14		V	,			End of Borehole at 14 feet bgs		
15								
<u> </u>	ł							
—— 16 ——								
	Ì							
17								
18								
_ ` _								
19								
	}							
20								
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: Hand Auger, Split spoon sampler		
Driller:		Muddy Wat	ters / Kyle (3		Sampling Interval:		
Drilling Method:		HA, Hollow	Stem Aug	er		Water First encountered: 3.5 ft bgs		
Drill Rig Type:		NA				Water Level Finish: NA		
Remarks:	nd curfo	20	HA= Hand	1 Augor		Converted to Well: Yes No Surface Elev: NA		
bgs = below grou NA= Not Applicat			na= nanc	Auger		North Coor: NA		
VAC= Vacuum	7.0/ 1 4 0(/	wallable				East Coor: NA		

ARCAL	OIS Corni	gn & Consultancy actural and				Boring No.: AUS-SB21	
Soil Boring L		JSSets				Sheet: 1 of 1	
Project Name:		mpia Bulk P	lant	Date	Started:		
Project Number:				Date Con			
Project Location:						Weather Conditions: NA	
Depth	Blows	Doggvorv	Sample ID	PID	Liece	Description Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Description
(leet)	perit	(IEEI)	& Tille	(ррііі)	Class.	Details	Description
_ , _	† '			1			
— 1 —	1 '			1			
_ 2] '	ĸ.	3B-	<u></u>			
	↓ '	HAND AUGER	AUS-SB- 21(2-2.5)	1.0	CL	CLAY, grey, trace silt, low plasticity, dry	
з	-	2	Al 21	1			
	↓ '	7		1			
 4 	- '	Ž					
_	- I	₹ /	Water	first enco	unterec	ed @ 6.5 ft	
5 <u></u>	1 '			ĺ			
	† '			1		id	
—— 6 ——	1 '	$\overline{\bullet}$		1			
–	† †	\bigwedge \bigwedge	/	ĺ .	1	Lithology description not available Phydrated Bentonite Chips	
	1 '	1\ / \ /		i		0	
_ 。	† '	$ \setminus / \mid \setminus / \mid$	7.5	i		5	
] '		SB-21-7.5	2.0		Lithology description not available	
<u> </u>] '	$ / \setminus / \setminus $	SB	í			
_ ` _] '	/ \ / \		i			
10	_!	<u> </u>	\	L	_	¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬	
	'	I	/ !	i		=	
	Ţ '	1\ / \ /		i			
11	1 '	1\ / \ /		i			
⊢ −	† '	$ \cdot \cdot \cdot $		i			
12	1 '	1 V Y		0.2		Lithology description not available	
13	† '	1 / /		i 0			
13 —] '	$1/\backslash 1/\backslash$		i			
14	Ţ '	/ \ / \		í			
] '	/ \ / \	,	i			
15	<u> </u>	<u>/ </u>	\	L			
						End of Borehole at 15 feet bgs	
16	_			i			
L	'			i			
17	-			i			
<u> </u>	∤ '			i			
—— 18 ——	- '			í			
├	- I			i			
19	-			i			
_	 			i			
20	1 '			í			
Drilling Co.:	ш,	Cascade D	rilling L. P.		-	Sampling Method: HA / Acetate Sleeve	
Driller:		Muddy Wat				Sampling Interval:	
Drilling Method:		HA, Geopro				Water First encountered: 6.5 ft bgs	
Drill Rig Type:		Geoprobe				Water Level Finish: NA	
Remarks:						Converted to Well: Yes No	
bgs = below grou			HA= Hand	d Auger		Surface Elev: NA	
NA= Not Applicat	le/ Not <i>F</i>	√vailable				North Coor: NA	
VAC= Vacuum						East Coor: NA	

ARCAL	Boring No.: AUS-SB22						
Soil Boring L		issets				· · · · · · · · · · · · · · · · · · ·	
Project Name:		mpia Bulk P	llant	Doto	Started:	Sheet: 1 of 1 : 8/20/2015 Logger: Jason Little	
Project Number:				Date Con			
Project Location:						Weather Conditions: NA	
,							
Depth	Blows	Recovery	Sample ID		USCS		Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	. Details Des	scription
		1	ļ ,				
1		1	ļ ,				
<u> </u>]	1					
2		HAND AUGER	AUS-SB- 22(2-2.5)	4.0		Olaver Oll T. haven transported by the last transported	
	ļ !	<u> </u>	US.	1.2	ML	Clayey SILT, brown, trace small cobbles, trace coarse	
3 <u></u>		⊋	₹ %			grained sand, poorly graded, dry	
		0	ļ ,				
 4 		į Ž				grained sand, poorly graded, dry d @ 6.5 ft Advantage and the complex trace coarse so the coarse s	
<u> </u>		≰	Water	first enco	unterec	d @ 6.5 ft	
5 <u></u>	!		1				
<u> </u>	} !	/	ļ ,				
 6 		l 	ļ ,			 0	
-	-	<u> </u>	+	-	+	at	
7 <u></u>	!	1\ / \ /	ļ ,			5	
-	 	1\/ \/	2				
8 <u></u>	!	I V I V	SB-22-7.5	0.0	SP	SAND with gravel, brown, coarse grained sand, medium	
-	ł .	$\sqcup \wedge \sqcup \wedge$	B-2	0.0	SF	rounded gravel, gap graded, wet	
9 <u></u>		1/ \ / \	S				
	1	/ \/ \					
 10 						End of Povoholo at 10 feet has	
_						End of Borehole at 10 feet bgs	_
11		1	ļ ,				
		1	ļ ,				
12	Ĭ l	1	ļ ,				
12		1	ļ ,				
13	j l	1	ļ ,				
13		1	ļ ,				
	Ĭ l	1	ļ ,				
14]	1	ļ ,				
	1	1	ļ ,				
—— 15 ——	1	1	ļ ,				
	†	1	ļ ,				
16	1	1	ļ ,				
47	1	1	ļ ,				
17	1	1	ļ ,				
10	1	1	ļ ,				
18]	1	ļ ,				
10	ĵ	1	ļ ,				
19	1	1	ļ ,				
	†	1	ļ ,				
20	1	1	ļ ,				
Drilling Co.:		Cascade D	rilling L. P.		•	Sampling Method: HA / Acetate Sleeve	
Driller:		Frank Scot				Sampling Interval:	
Drilling Method:	•	HA, Geopro	obe			Water First encountered: 6.5 ft bgs	
Drill Rig Type:	•	Geoprobe				Water Level Finish: NA	
Remarks:						Converted to Well: Yes Vo	
bgs = below ground	nd surfac	ce	HA= Hand	d Auger		Surface Elev: NA	
NA= Not Applicab	ole/ Not A	√vailable				North Coor: NA	
VAC= Vacuum						East Coor: NA	

ARCAI	DIS 🖁	esign & Consultancy r natural and uitt assets				Boring No.: AL	JS-SB23-A	
Soil Boring L						Sheet: 1 of	1	
Project Name:		npia Bulk Pl	ant	Date :	Started:			
Project Number:				Date Con				
Project Location:			e NW, Oly	mpia, WA		Weather Conditions: NA		
Depth	Blows	Recovery	Sample ID	PID	LISCS	Description	Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Description	Details	Description
(1001)	_	Water first					Johano	2 333
		water mst	encountere	eu @ 0.5 i	L			
2	\	K.					1	
	\	HAND AUGER		11.1	ML	Sandy SILT with woody debris, brown, fine to	Sc	
з	\	2				coarse grained sand, poorly graded, dry	Hydrated Bentonite Chips	
<u> </u>	\	7					၂	
4 <u></u>	1	2					ije	
<u> </u>	1 \	₹					ţ	
5 <u></u>	1 '	_					eu	
		\					<u> </u>	
— 6 —		\rightarrow					tec	
	· ·	\					<u>ra</u>	
		\ / \ /	ιά				<u>\$</u>	
8		\/ \/	SB-23-A -7.5			SAND with gravel, brown, coarse grained sand,	-	
⊢			23-/	0.6	SP	medium rounded gravel, gap graded, wet		
9 <u></u>		/	SB-					
<u> </u>		// \ / \						
10	-	<u> </u>				End of Borehole at 10 feet bgs		
⊢ −						Zila di Boldicio al la localega		
11								
12								
12								
13								
<u> </u>								
<u> </u>								
<u> </u>	-							
15	-							
⊢ −								
16								
17								
18								
⊢								
19								
<u> </u>								
20	1							
Drilling Co.:	1	Cascade Di	rilling L. P			Sampling Method: HA / Acetate Sleeve	<u> </u>	L
Driller:		Kyle C	y L. 1 .			Sampling Interval:		
Drilling Method:		HA, Geopro	be			Water First encountered: 6.5 ft bgs		
Drill Rig Type:		Geoprobe				Water Level Finish: NA		
Remarks:						Converted to Well: Yes Vo		
bgs = below group						Surface Elev: NA		
NA= Not Applicab	le/ Not A	vailable				North Coor: NA		
HA= Hand Auger						East Coor: NA		

ARCAL	DIS Design for na built is	in & Consultancy atural and assets				Boring No.: AL	JS-SB24		
Soil Boring L						Sheet: 1 of	1		
Project Name:		npia Bulk Pl	ant	Date :	Started:				
Project Number:	GP09BI	PNAWA60		Date Con	npleted:	8/31/2015 Editor: Ross LaGrandeur			
		est Bay Driv				Weather Conditions: NA			
							Completion	Miss	
Depth (feet)	Blows per ft	Recovery (feet)	& Time	PID (ppm)	Class.	Description	Details	Misc Descrip	
(leet)	perit	(leet)	& HITTE	(ррпі)	Class.		Details	Descrip	JUOIT
_	1	Water fir	st encount	ered @ 6.	5 ft				
<u></u> 1 −−−									
		₩.							
2		뽔		0.4	ML	Clayey SILT, brown, poorly graded, dry	ဟ		
3] \	HAND AUGER					Hydrated Bentonite Chips		
L	\	₹					5		
4							<u>i.</u>		
<u> </u>	\	₹					l lo		
5	- '	<u> </u>					į		
<u> </u>	_	\					Be		
6	_	7					9		
<u> </u>	_	A 7					ate		
7 <u></u>		N /N /					ļ ģ		
_	_	\ / \ /	rύ			SAND with gravel, brown, fine to coarse grained	🖹		
— 8 ——		$\square \square \square \square$	SB-24-7.5	0.2	SP	sand, small to medium gravel, uniformly graded,			
<u> </u>		$I \land I \land$	B-2	0.2	31	wet			
9 —	_	/ \ / \	S			Wet			
<u> </u>	_	/ \/ \							
10 <u></u>		1 1				End of Borehole at 15 feet bgs			
F ,, -									
11 —									
12 —									
13									
L " _									
14									
L	_								
15									
⊢ —									
 16 									
<u> </u>	_								
17									
\vdash $-$	1								
18	_								
_									
19 <u></u>	_								
20	1								
Drilling Co.:	•	Cascade D	rilling L. P.		•	Sampling Method: HA / Acetate Sleeve		. I	
Driller:		Kyle C				Sampling Interval:			
Drilling Method:		HA, Geopro	be			Water First encountered: 6.5 ft bgs			
Drill Rig Type:		Geoprobe				Water Level Finish: NA			
Remarks:					-	Converted to Well: Yes Vo			
bgs = below grou	nd surfac	e				Surface Elev: NA			
NA= Not Applicab		vailable				North Coor: NA			
HA= Hand Auger						East Coor: NA			

ARCAI	ARCADIS Computation Boring No.: AUS-SB25										
Soil Boring L	_oq					Sheet: 1 of	1				
Project Name:		mpia Bulk P	lant	Date S	Started:						
Project Number:	GP09B	PNA WA 60) D	ate Con							
Project Location:	1120 W	est Bay Driv	e NW, Olyn			Weather Conditions: NA					
Depth (feet)	Blows per ft		Sample ID & Time	PID (ppm)		Description		pletion tails		lisc. cription	
(loot)								lano	Dosc	I	
_	Water	first encour	ntered @ 3 f	t	SG	SAND and gravel, dry, with organics					
2 3	- - - -	↑	AUS- SB-25A (2-2.5)	0.4	ML	Sandy SILT, light brown, with trace clay, stiff, dry					
5	- - - - -	HAND AUGER				Wet wood fragments		te Chips			
8 — 9 — 10	- - - - - -		SB-25A-7.5	0.0		Woody debris		Hydrated Bentonite Chips			
10 — 11 — 12 — 13 — 14 — 15	-		SB-25A-12.5	0.1	SW	SAND with gravel, brown, fine to coarse grained sand, small to medium gravel, well graded, wet		Ŧ			
15		<u> </u>				End of Borehole at 15 feet bgs					
16 — 17 — 18 — 19 — 20 —											
Drilling Co.:		Cascade D	rilling L.P.			Sampling Method: HA / Acetate Sleeve					
Driller:		Kyle C				Sampling Interval:					
Drilling Method:		HA, Geopro	obe			Water First Encountered: 3 ft bgs					
Drill Rig Type:		Geoprobe				Water Level Finish: NA					
Remarks:	-				-	Converted to Well: Yes Vo				-	
bgs = below grou						Surface Elev: NA					
NA = Not Applicable/Not Available						North Coor: NA					
HA = Hand Auger						East Coor: NA					

ARCA	DIS	Design & Consultancy or natural and outt assets				Boring No.: AU	S-SB26			
Soil Boring L	00					Ohanta dari				
		mania Dulle D	lant	Data	240.40.4.	Sheet: 1 of	1			
Project Name: Project Number:		mpia Bulk P		ate Com	Started:	8/20/2015 Logger: Jason Little 9/01/2015 Editor: Ross LaGrandeur				
Project Location:	1120 W	est Bay Driv	re NW. Olv	mpia. W	/A	Weather Conditions: NA				
Depth (feet)	Blows per ft	Recovery (feet)	& Time	PID (ppm)	Class.	Description		oletion tails		isc. cription
(leet)	<u> </u>	er first encou				SAND and gravel, medium dense, dry, with	De	lalis	Desc	приоп
	vvati	N This encou	Intered @	311	SG	organics				
1 -										
2		l K	5, 6A 5)							
		⊥ ଞ	AUS- SB-26A (2-2.5)		SM	Silty SAND, brown, with some clay and gravel,				
з	<u> </u>	HAND AUGER	' δ 🖰			loose, dry				
	1	7								
 	1	Į								
–	1	₹				Wood fragments, wet				
5 <u></u>	1					wood magments, wet		Hydrated Bentonite Chips		
	1							등		
 	Ī							ē		
		N /N /						Ē		
		\ / \ /	ıo					달		
8		$ \lor \lor $	SB-26A-7.5					Be		
<u> </u>	1	$I \land I \land$	-26,	25.4		Woody debris		<u>_</u>		
9 <u></u>	1	/ \ / \	SB					ate		
<u> </u>	1	/ \/ \						호		
10	1	\ \ \ \						£		
	i	\								
11		\ / \ /								
12		\	2.5							
		I	SB-26A-12.5	2.0	sw	SAND with gravel, fine to coarse grained sand, fine				
13	1	$ \land \land $	B-26	_		to medium grained gravel, well graded, wet				
_	1		S							
<u> </u>	1	/ \ / \								
L	1	// \/ \								
15		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				End of Borehole at 15.0 feet bgs				
16										
L 10 ——	1									
17										
	1									
18	1									
–	1									
19	1									
20	<u> </u>									
Drilling Co.:	·	Cascade Di	rilling L.P.	· · · ·		Sampling Method: HA / Acetate Sleeve				
Driller:		Kyle C				Sampling Interval:				
Drilling Method:		HA, Geopro	be			Water First Encountered: 3 ft bgs				
Drill Rig Type:		Geoprobe				Water Level Finish: NA				
Remarks: bgs = below grou	nd surfa	CO				Converted to Well: Yes No Surface Elev: NA				
NA = Not Applica						North Coor: NA				
HA = Hand Auger		anabio				East Coor: NA				

ARCAI	ARCADIS Design & Consultancy for patients and under the consultancy for patients and under the consultancy for patients and under the consultance of the consultanc										
Soil Boring L	-oa				Sheet: 1 of	1					
Project Name:	BP Olympia Bulk P	lant	Date S	Started:							
	GP09BPNA WA 60) Da	ate Com								
Project Location:	1120 West Bay Driv	e NW. Olvm			Weather Conditions: NA						
Depth (feet)		Sample ID & Time	PID (ppm)		Description	Comp			lisc. cription		
(IEEI)	<u> </u>			Class.		Det	alis	Desc	приоп		
1	Water first encou	untered @ 4	π	SG	SAND and gravel, fine to coarse grained, well graded, dense, dry, with some organics						
_ 2	JGER	AUS- SB-27 (2-2.5)	0.3	SM	Silty SAND, brown, with some clay, fine grained, medium dense, dry						
3 4 5 6	HAND AUGER				Wood fragments and organics, low to no recovery		te Chips				
8 — 9 — 10		SB-27-7.5	4.6		Woody debris		Hydrated Bentonite Chips				
10 — 11 — 12 — 13 — 14 — 15 — 15 — 15 — 1			6.1		Woody debris		<u> </u>				
	1				End of Borehole at 15 feet bgs						
16 17 18 19 20											
Drilling Co.:	Cascade D	rilling L.P.	· ·		Sampling Method: HA / Acetate Sleeve						
Driller:	Kyle C				Sampling Interval:						
Drilling Method:	HA, Geopro	obe			Water First Encountered: 4 ft bgs						
Drill Rig Type:	Geoprobe				Water Level Finish: NA						
Remarks:					Converted to Well: Yes Vo						
bgs = below grou					Surface Elev: NA						
NA = Not Applica					North Coor: NA						
HA = Hand Auge	r				East Coor: NA	-					

PARCADIS Pering & Consultancy trainful and under the property of the property of the pering No.: AUS-SB28											
Soil Boring I	Log					Sheet: 1	of	1			
Project Name:	BP Olyr	mpia Bulk Pl	lant	Date S	Started:	8/18/2015 Logger: Jason Little					
Project Number:	GP09BI	PNA WA 60) D	ate Con	npleted:	8/28/2015 Editor: Ross LaGrandeur					
Project Location:	1120 W	est Bay Driv	e NW, Olyr	npia, W	Ä	Weather Conditions: NA					
Depth	Blows	Recovery	Sample ID	PID	TUSCS	Description	_	Com	pletion		isc.
(feet)	per ft	(feet)	& Time	(ppm)		Description			etails		ription
()				 " ' '	J.E. 2		\dashv				19
├_ ╷	- VV	/ater first end	countered c).5 IL	4						'
] \		<u>'</u>]							'
2	\	<u>א</u> ו	.5)		<u> </u>						
L	_ I	.\ <u>3</u> 5	AUS- SB-28 (2-2.5)	0.6	CL	CLAY, brown, trace silt, dry, trace woody debris	_				
3	- I	ı∖⊋ '	<u> </u>	ļ							
	-	HAND AUGER	'								
4	⊣ !	💆	'								
	-	╷│⋛⋰	1 '								
5	1	i '	1 '						<u>.ĕ</u>		
	1	i '	1 '						Hydrated Bentonite Chips		
_ 。] ,								te te		
7	_	/\ /\ /'	1 '						n.		
	_		I 10						Ę		
8	_	$_{1}$ \vee $_{1}$ \vee $_{1}$	SB-28-7.5	0.0		Mandy debrie			Be		
	-	$_{1}$ \wedge $_{1}$ \wedge $_{1}$	B-28	0.0		Woody debris			þ		
9 —	-	i/ \ / \	ω						ate		
<u> </u>	-	/ V \!	1 '						ΡĘ		
10	7 1	/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			†		_		Ť		
11	1	i/ / / /!	1 '								
'''] ,	\ / \ /!	1 '								
12	_	: \	1 '								
	_	,	1 '	0.5		Woody debris					
13	4	/	'								
	-	i / \ / \	1 '								
 14 	-	1/ \ / \!	1 '								
	-	/	1 '								
15						End of Borehole at 15 feet bgs					
16		ĺ					\Box			I	
16		1	1 '								
17	_	1	'								
L	_	1	'								
18	_	1	'								
<u> </u>	-	1	'								
19	-	1	'								
-	-	1	'								l
	-	1	'								
Drilling Co.:		Cascade Dr	rilling L.P.			Sampling Method: HA/ Acetate Sleeve					
Driller:		Frank Scott				Sampling Interval:					
Drilling Method:	-	HA, Geopro	be			Water First Encountered: 6.5 ft bgs					-
Drill Rig Type:		Geoprobe				Water Level Finish: NA					
Remarks:						Converted to Well: Yes No					
bgs = below grou						Surface Elev: NA					
NA = Not Applica		Available				North Coor: NA East Coor: NA					
HA = Hand Auge	/I					East Cool. NA					

ARCADIS Design & Consultancy for induced and this seeds Design & Consultancy for induced and this seeds Design & Consultancy for induced and this seeds Design & Consultancy for induced and the seed Design & Consu										
Soil Boring L	-oa					Sheet: 1 of	1			
Project Name:		mpia Bulk P	lant	Date S	Started:		•			
Project Number:				ate Con		8/28/2015 Editor: Ross LaGrandeur				
Project Location:	1120 W	est Bay Driv	e NW, Oly	mpia, W	'A	Weather Conditions: NA				
Depth	Blows	Recovery	Sample ID	PID	USCS	Description		pletion		isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	·	De	tails	Desc	ription
1		Water first	encounter	red @ 6.	5 ft					
2	/	HAND AUGER	AUS- SB-29 (2-2.5)	1.4	CL	CLAY, grey, trace silt, low plasticity, dry, trace woody debris				
3 —		D AI				,				
_ 4		NA								
5	1							hips		
6	1	\						E C		
		Λ						oni		
<u> </u>		\ / \ /	rö					ent		
 	_		SB-29-7.5	2.2		Woody debris		Ď		
9		$ / \rangle / \rangle$	SB-			,		tec		
<u> </u>	1	$V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						Hydrated Bentonite Chips		
10	1	$\Lambda \Lambda$						I		
11		$ \setminus / \setminus / $								
12 —	1	$ \lor \lor $		0.2		Woody debris				
13		$ \land \land $		•						
14		/ \ / \								
⊢		/ \ / \								
15		<u>v V \</u>				End of Borehole at 15 feet bgs				
16										
16										
17	1									
18										
	1									
<u> </u>	-									
20	1									
Drilling Co.:	1	Cascade Di	rilling L.P.			Sampling Method: HA / Acetate Sleeve		·		
Driller:		Frank Scott				Sampling Interval:	•	•		
Drilling Method:		HA, Geopro	be			Water First Encountered: 6.5 ft bgs				
Drill Rig Type: Remarks:		Geoprobe				Water Level Finish: NA Converted to Well: Yes V No				
bgs = below grou	nd surfa	ice				Surface Elev: NA				
NA = Not Applica	ble/Not	Available				North Coor: NA				
HA = Hand Auger						East Coor: NA				

ARCADIS Consultary frontered and built souths											
Soil Boring L	OCI					Sheet: 1 of	1				
Project Name:		mpia Bulk P	lant	Date	Started:		<u>'</u>				
Project Number:				ate Con		8/28/2015 Editor: Ross LaGrandeur					
Project Location:						Weather Conditions: NA					
Depth (foot)	Blows	Recovery		PID (nnm)	USCS Class.	Description		oletion		isc. cription	
(feet)	per ft	(feet)	& Time	(ppm)		SAND and GRAVEL, light brown, medium to	De	tails	Desc	приоп	
_	Wate	r first encou	ntered @ 4	l ft	SG	coarse gravel, sub angular to sub rounded, well					
1						graded, loose, dry					
	\	<u>~</u>	. 0 0			g					
2		HAND AUGER	AUS- SB-30 (2-2.5)	4.4	SM	Silty SAND, light to dark brown, fine grained, some					
	1		A S! €			gravel (medium to coarse grained), loose, dry,					
3	Ī	_ ₹				trace organics, (2.5-3) - no recovery					
		V ♀									
		₹									
5		I				Wood fragments, wet, no recovery		Ø			
_						vvood magmento, wet, no recovery		Hydrated Bentonite Chips			
6								$\ddot{\circ}$			
	_	A 7						<u>i</u>			
7		\ /\ /						o			
_	_		ις.					į			
8	-	$I \lor I \lor$	SB-30-7.5	E 0		Moody dobrio		B			
_	-	$ \land \land $	3-3(5.8		Woody debris		Ď			
9 <u></u>	-	/ \ / \	S					ate			
<u> </u>	1	/ \/ \						ģ			
10	-	$\langle \rangle$						£			
_	1	\									
11	1	\ / \ /									
	1	\									
12		I V I V		0.4		Moody dobrio					
13 —		$\mid \land \mid \land \mid$		0.4		Woody debris					
13		/ \ / \									
14		/ \ / \									
_ ' -		/ \ / \									
15		/									
<u> </u>						End of Borehole at 15 feet bgs					
—— 16 ——	1										
<u> </u>	1										
17	4										
<u> </u>	1										
 18 	1										
-	1										
19	1										
	1										
20	1										
Drilling Co.:	•	Cascade D	rilling L.P.			Sampling Method: HA / Acetate Sleeve			•		
Driller:		Frank Scott				Sampling Interval:					
Drilling Method:		HA, Geopro	be			Water First Encountered: 4 ft bgs					
Drill Rig Type:		Geoprobe				Water Level Finish: NA					
Remarks:			<u></u>	-	-	Converted to Well: Yes VNo	-			-	
bgs = below grou						Surface Elev: NA					
NA = Not Applica		Available				North Coor: NA					
HA = Hand Auger	r					East Coor: NA					

ARCA	DIS	esign & Consultancy r natural and				Boring No.: AUS-SB31				
Soil Boring I		utt assets				Sheet: 1 of	1			
Project Name:		mpia Bulk P	lant	Date	Started:		'			
Project Number:					pleted:					
Project Location:						Weather Conditions: NA				
Depth (feet)	Blows per ft	Recovery (feet)	Sample ID & Time	PID (ppm)	USCS Class.	Description	Comple Detai			sc. ription
L , _	Wate	er first enco	untered @	4 ft	SG	SAND and gravel, with organics				
<u> </u>	_									
2	4	#	.5 33							
<u> </u>	- \	HAND AUGER	AUS- SB-31 (2-2.5)		SP	Fine to medium SAND, dark brown, with medium to		bs		
3	- \	\ A				coarse gravel and trace silt, medium dense, dry		<u> </u>		
<u> </u>	-	<u>~ ^</u>						0		
 	-	7						ij		
		 			SM	SAND, dark grey, with some silt and trace clay,		ᅙ		
5						loose, wet		eu		
_ 6 _								<u>ш</u>		
								Hydrated Bentonite Chips		
7		N /N /	1					dr		
	4	\	ις.					Ť		
8	4	$I \lor I \lor$	SB-31-7.5	0.0	SG	SAND with gravel, coarse grained sand, medium		_		
_	1	$I \wedge I \wedge$	8-3	0.0	00	graded gravel, rounded gravel, gap graded, wet				
9 —	-	/ \ / \	0)							
10	1	/ V \	\							
						End of Borehole at 10 feet bgs				
11										
_										
12										
<u> </u>	-									
13										
14										
15	_									
<u> </u>	-									
16	-									
<u> </u>	1									
17										
18										
L " —	_									
19	_									
_	-									
20										
Drilling Co.:	1	Cascade D	rilling L.P.		1	Sampling Method: HA / Acetate Sleeve				1
Driller:		Frank Scott	t e			Sampling Interval:				
Drilling Method:		HA, Geopro	obe			Water First Encountered: 4 ft bgs				
Drill Rig Type:		Geoprobe				Water Level Finish: NA				
Remarks: bgs = below grou	ind curts:	00				Converted to Well: Yes No Surface Elev: NA				
TOUS = DEIOW OFOU	mu suna(∪ U				Surface Elev. INA				
NA = Not Applica		Available				North Coor: NA				

ARCAI	DIS 🖁	esign & Consultancy r natural and ilt assets				Boring No.: AL	JS-SB32		
Soil Boring L	OCI					Sheet: 1 of	1		
Project Name:		mpia Bulk Pl	ont	Data	Started:	Sheet: 1 of 8/20/2015 Logger: Jason Little	11		
Project Number:		PNA WA 60			npleted:	8/27/2015 Editor: Ross LaGrandeur			
Project Number. Project Location:						Weather Conditions: NA			
						Weather Conditions. 14/4			
Depth (feet)	Blows per ft	(feet)	& Time	(ppm)	USCS Class.	Description	Compl Deta		sc. ription
L -	Water	first encoun	tered @ 6.	5 ft					
1 —	<u> </u>	ä	5)						
	_	AUG	AUS- SB-32 (2-2.5)		ML	Clayey SILT, brown, poorly graded, dry		ips	
4		HAND AUGER						Hydrated Bentonite Chips	
5 <u></u>		_ =						Bentol	
6 — -	-	Λ						Irated	
8 — 9 —			SB-32-7.5		SG	SAND with gravel, coarse grained sand, medium grained gravel, rounded gravel, gap graded, wet		Hyd	
		/ / /				End of Book do at 40 foot has			
					T	End of Borehole at 10 feet bgs	Г		
11									
⊢ −									
12	1								
42									
13									
14									
L '' _									
15									
<u> </u>	-								
 16 	4								
H -									
17	1								
⊢ 42 −	1								
18									
19]								
19									
20									
Drilling Co.:		Cascade Di				Sampling Method: HA/ Acetatae Sleeve			
Driller:		Frank Scott				Sampling Interval:			
Drilling Method:		HA, Geopro	be			Water First Encountered: 6.5 ft bgs			
Drill Rig Type:		Geoprobe				Water Level Finish: NA			
Remarks: bgs = below grou	nd curfo	00				Converted to Well: Yes No Surface Elev: NA			
NA = Not Applica						North Coor: NA			
HA = Hand Auge	r IDI O /NOL/	rvaliable				East Coor: NA			

ARCAL)IS Pesign for na built:	in & Consultancy stural and assets				Boring No.: AUS-SB	33		
Soil Boring L	_og					Sheet: 1 of	1		
Project Name:	BP Olyr	mpia Bulk P	lant	Date	Started:	8/31/2015 Logger: Jason Little			
Project Number:	GP09BI	PNAWA60		Date Con	npleted:				
Project Location:	1120 W	est Bay Dri	ve NW, Oly	mpia, WA		Weather Conditions: NA			
Depth (feet)	Blows per ft	Recovery (feet)	Sample ID & Time	PID (ppm)	USCS Class.	Description	Completion Details		isc. ription
(leet)	perit	(leet)	\(\alpha\) Time	(ррпп)	Class.		Details	Desc	приоп
	† !	Water fire	st encounte	arod @ 6 5	ft.				
		vvaterins	st encounte	.reu @ 0.5	1				
2	/	2					1		
	/	5		0.0	ML	Clayey SILT, light brown, trace sand, poorly graded,	SC		
3	/	HAND AUGER				organic debris, dry	Hydrated Bentonite Chips		
H , —	/	<u> </u>					0		
4		Z					nit l		
		Ì					일		
	\						Ser		
6		7					2		
<u> </u>	. !	Λ Λ	1			Woody dobrio	ate		
7 <u></u>	∤ !	N /N /				Woody debris	þ		
— <u> </u>	† !	$ \setminus / \setminus /$.5				£		
8 —	1 !		SB-33-7.5	0.4	SW	SAND with gravel, brown, fine to coarse grained sand,			
_ 。		/	SB			small to medium gravel, uniformly graded, wet			
		/ \ / \							
10		/ V \	1						
					ı	End of Borehole at 10 feet bgs	Г		
11									
	ļ !								
—— 12 ——	1								
	† !								
13									
14									
15									
—— 16 ——									
	1 !								
17									
18									
19 									
	∤ !								
20	1								
Drilling Co.:		Cascade D	rilling L. P.		<u>. </u>	Sampling Method: HA / Acetate Sleeve	 		
Driller:		Kyle C				Sampling Interval:			
Drilling Method:		HA, Geopre	obe			Water First encountered: 6.5 ft bgs			
Drill Rig Type:		Geoprobe				Water Level Finish: NA			
Remarks:			114 11			Converted to Well: Yes No	.		
bgs = below group NA= Not Applicab			HA= Hand	Auger		Surface Elev: NA North Coor: NA			
INA- INOLAPPIICAL	INUL F	valiable				East Coor: NA			

ARCAL	DIS Design for na bult:	in & Consultancy stural and assets				Boring No.: AUS-SB:	34	
Soil Boring L						Sheet: 1 of	1	
Project Name:	BP Olyn	npia Bulk Pl	lant	Date	Started:		<u> </u>	
Project Number:				Date Con				
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA		Weather Conditions: NA		
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Details	Description
<u> </u>	•							
1		Water	first encou	ntered @	6.5ft			
		<u> </u>						
]	HAND AUGER		0.5	ML	Clayey SILT, with small cobbles, trace coarse grained	ဖွ	
з	/	Ď				sand	high	
– . –	(2					၂ ၂ ၁	
4	\	Z					1	
_ 5	j }	ì	SB-	76.2	CL	CLAY, grey, poorly graded, moist, with woody debris	일	
_		\	AUS-SB- 34 (4.5- 5)				Be	
 6 		<u> </u>	₹ €				Hydrated Bentonite Chips	
	†		7				la t	
7		\ / \ /					<u> </u>	
8		\/ \/	SB-33-7.5				=	
<u> </u>		ĂΙĂ	3-33	4.8		Woody debris		
9 <u></u>		/ \ / \	S					
	†	/ W \						
						End of Borehole at 10 feet bgs		
11								
12								
13]							
14								
 15 								
16								
17								
<u> </u>								
18								
19								
20								
Drilling Co.:	<u> </u>	Cascade D	rilling L. P			Sampling Method: HA / Acetate Sleeve		<u> </u>
Driller:	•	Kyle C				Sampling Interval:		
Drilling Method:	-	HA, Geopro	obe			Water First encountered: 6.5 ft bgs		
Drill Rig Type:		Geoprobe				Water Level Finish: NA		
Remarks: bgs = below grou	nd surfec	`A	HA= Hand	l Διισεr		Converted to Well: Yes No Surface Elev: NA		
NA= Not Applicab			iin- i ialik	a raugei		North Coor: NA		
						East Coor: NA		

ARCAL	ARCADIS Compile Constitute from the constitution of the constituti										
Soil Boring L						Sheet: 1 of 1					
Project Name:	BP Olyr	mpia Bulk Pl	lant	Date	Started:						
Project Number:	GP09B	PNAWA60		Date Cor	npleted:	: 9/01/2015 Editor: Ross LaGrandeur					
Project Location:	1120 W	est Bay Driv	ve NW, Olyn	npia, WA		Weather Conditions: NA					
Depth	Blows	Recovery	Sample ID	PID	USCS	Description Completion Misc	.				
(feet)	per ft	(feet)	& Time	(ppm)	Class.						
1		Wa	ter first enco	ountered (@ 6.5 ft						
<u> </u>		~									
2	1	L.	ή	l I	ML	Clayey SILT, brown, trace small cobbles, poorly graded,					
	\	ng	S-SE 5 (2-		IVIL	dry					
3 —	\	¥	AUS-SB- 35 (2- 2.5)			, S 1					
4	\	HAND AUGER				Legisland Legisland					
<u> </u>	\	₹				0 0					
5	\	_				#					
<u> </u>		\				👸					
—— 6 ——		\				g					
		Λ /			İ	dry Hydrated Bentonite Chips Clayer Sillar copples, boorly graded,					
		$ \setminus / \setminus / $	10								
8		$ \ \ \ \ \ \ \ \ $	SB-35 -7.5								
⊢		ΙXXI	3-35	3.2		Woody debris					
9 <u></u>		/ \ / \	S								
–		/ \/ \									
10		V V				End of Borehole at 10 feet bgs					
\vdash											
11											
<u> </u>											
12 —											
<u> </u>											
13											
⊢ −											
14											
45											
15											
16 —											
17											
L " _											
18											
L ' _											
19											
L											
20											
		0	-: III 1 - B			On the Book of the Assets City					
Drilling Co.: Driller:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve					
Driller: Drilling Method:		Kyle C HA, Geopro	nhe			Sampling Interval: Water First encountered: 6.5 ft bgs					
Drill Rig Type:		Geoprobe	JDG			Water First encountered: 6.5 it bgs Water Level Finish: NA					
Remarks:		- 30p.000				Converted to Well: Yes No					
bgs = below grour			HA= Hand A	Auger		Surface Elev: NA					
NA= Not Applicab	le/ Not A	Available				North Coor: NA					
						East Coor: NA					

ARCAL	DIS Designation	on & Consultancy atural and assets				Boring No.: AUS-SB36				
Soil Boring L	-oa					Sheet: 1 o	f 1			
Project Name:		mpia Bulk Pl	ant	Date	Started:					
Project Number:	GP09B	PNAWA60		Date Con						
Project Location:	1120 W	est Bay Driv	e NW, Oly	mpia, WA	ı	Weather Conditions:				
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Comi	oletion	Mis	
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Description		tails	Descri	
(****)	F 4	(1001)		(FF)						<u> </u>
_ , _		Vater first ei	acountaro	1 @ 7 E ft						
_ '	I 🕂	vater mist er	l	1 W 7.5 IL						
2	1 \		AUS-SB- 36(2-2.5)							
	. \	HAND AUGER	JS-	0.3	ML	Clayey SILT, brown, poorly graded, dry				
3	۱ ۱	<u> </u>	8.8							
<u> </u>	1	\								
 	1	\								
_	+	l∖ ₹								
5	+	∖≰								
— —	1	\ —						တ္		
 	1	\						qir		
-	†	\						$\ddot{\circ}$		
 	†	\						ite		
– –	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 						ou		
 	2	$I \times I \times$	SB-36- 7.5 DUP- 6	61.3		Woody debris		nt		
	2		SB 7.5					Be		
9 —		<u> </u>					1	þ		
	Ī							ate		
10	3		1					Hydrated Bentonite Chips		
_	4			26.7		Woody debris, trace Sand		Ę		
11	4			20		Troody dozno, hado dana				
_	4	/ V \					-			
<u> </u>	1									
_							-			
13	50/6		SB-36- 12.5	9.7	SW	SAND with gravel, brown, fine to coarse grained sand,				
<u> </u>	30/0		SB.	5.1	300	small to large gravel, well graded, wet				
 14 							+			
├		<u> </u>	 				1			
 15 	47-50/6			1.1	SW	SAND with gravel, brown, fine to coarse grained sand,				
	47 30/0			1.1	344	small to large gravel, well graded, wet				
16		<u>/ </u>	<u>, </u>			End of Borehole at 16 feet bgs				
H										
17	t									
	Ť									
18	Ī									
10	Ī									
19	Ī									
	Ī									
20	<u></u>		<u> </u>		<u></u>			<u></u>		
Drilling Co.:	-	Cascade D	rilling L. P.			Sampling Method: HA / Split Spoon Sampler				
Driller:		Kyle C				Sampling Interval:				
Drilling Method:		HA, Hollow	Stem Aug	er		Water First encountered: 7.5 ft bgs				
Drill Rig Type:		Geoprobe				Water Level Finish: NA				
Remarks:						Converted to Well: Yes No				
bgs = below grou			HA= Hand	d Auger		Surface Elev: NA				
NA= Not Applicab	ole/ Not A	Available				North Coor: NA				
VAC= Vacuum						East Coor: NA				

ARCAL)IS Design	gn & Consultancy actural and t assets				Boring No.: AUS-SB	37			
Soil Boring L	_og					Sheet: 1 of	f 1			ŀ
Project Name:	BP Olyr	mpia Bulk Pl	lant		Started:	8/20/2015 Logger: Jason Little				
Project Number:				Date Con						
Project Location:	1120 W	est Bay Driv	ve NW, Oly	/mpia, WA	1	Weather Conditions: NA				
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Comp	letion	M	lisc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Deta			cription
									$_{I}$	
L 1	_ ՝	I	Water f	first encou	ntered (@ 4 ft		ļ	1 1	1 1
⊢ –	-	~\	<u> </u>	4				ļ	1 1	1 1
2	- '	HAND AUGER	AUS- SB-37 (2-2.5)	0.0	ML	Clayey SILT, brown, trace cobbles, poorly graded, dry	-	ļ	1 1	1 1
⊢ –	† '	_ ର /	AL SB (2-;	0.0	IVIL	Clayey SILT, brown, trace cobbles, poorly graded, dry	1	ļ	1 1	1 1
3	1 '	₹ \	 	1				ļ	1 1	1
⊢ , –	† '	₽ 💙						ļ	1 1	1 1
4	1 '	A	1					ļ	1 1	1 1
_ 5	† '	Ì						_	1 1	1 1
	1 '							bs	1 1	1 1
6	_							ij	1 1	1
_ ` _	_ ՝		<u> </u> '	↓	↓]	ا بو	1 1	1
7	-	Λ / Λ	1					ij	1 1	1
	-	\ / \ /	22					윧	1 1	1
8 	- '	$ \vee \vee $	7-7.	8.9		Woody debris		3er	1 1	1
⊢	† '	$ \land \land $	SB-37-7.5	0.5		Woody debtis		Hydrated Bentonite Chips	1 1	1 1
9 —	1 '	/ \ / \	S					ate	1 1	1
<u> </u>	† '	/ \/ \	,					ا ټز	1 1	1 '
10	† '	 	} 		 		1	ŽΙ	1 1	1
-	† '	\	/					_	1 1	1
11	- '	\						ļ	1 1	1
<u> </u>	՝		<u>ر</u>					ļ	1 1	1
12	-	\/ \/	12.5					ļ	1 1	1 1
<u> </u>	-	X X	SB-37-12.5	7.3		Woody debris		ļ	1 1	1 1
13	-	/\ /\	SB					ļ	1 1	1
├	-							ļ	1 1	1
14	- '	/ \ / \	.]					ļ	1 1	1
⊢ –	† '	\ \\ \\ \\ \	1					ļ	1 1	1
 15 		L V				End of Borehole at 15 feet bgs				
⊢ −										
16	1 '		1					ļ	1 1	1 1
17	† '		'					ļ	1 1	1 1
	1 '		1					ļ	1 1	1 1
18] '		1					ļ	1 1	1 1
_ ' _] '		'					ļ	1 1	1 1
19			1					ļ	1 1	1 1
_ ·] '		1					ļ	1 1	1 1
20	-		1					ļ	1 1	1
	<u> </u>			<u> </u>	<u> </u>	2 2 2 2 1 118 / 8 - 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	↓		لـــــا	<u> </u>
Drilling Co.:		Cascade D	rilling L. P.	<u> </u>		Sampling Method: HA / Acetate sleeve				
Driller:		Kyle C	Caaraha			Sampling Interval:				
Drilling Method:		VAC, HA, C	<u>3eoprobe</u>			Water First encountered: 4 ft bgs Water Level Finish: NA				
Drill Rig Type: Remarks:		Geoprobe				Converted to Well: Yes VNo				
bgs = below grou	ind surfa	20	HA= Hand	d Auger		Surface Elev: NA		_		
NA= Not Applicat			11/1-114	i / lugo.		North Coor: NA		_		
VAC= Vacuum	//0/ 1.51.	Wanac.c				East Coor: NA		_		

ARCAL	IC Desig	m & Consultancy				Boring No.: AUS-SB3	38		
Soil Boring L		zurat anu ussets					<u>_</u>		
Project Name:	RP Olyr	mpia Bulk Pl	lant	Date	Started:		1		
Project Number:				Date Con					
Project Location:						Weather Conditions: NA			
				-					
Depth	Blows		Sample ID			Description	Completion		lisc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	_	Details	Desc	cription
⊢ —	ļ !	İ	Water	first enco	untered	@ 3 ft]	, !
└ ── 1 ──	-	İ							, !
<u> </u>	ļ !	· ~ /	 	1					i i
2	-	i ii /	AUS- SB-38 (2-2.5)	1.0	+	Woody debris, trace silt, trace small cobbles, rounded.]	i I
-	 	ା ନ୍ଦି 🔷	SB (2-	1.0	†	moist			, !
3	1 1	_ ₹	 	1		most			, !
├ , -	† 1	HAND AUGER		1]	. !
4 —	1 1	I Z		1					i i
⊢	† 1	ì		1					i l
5	1	İ		1			bs]	. l
	† !	Í	ļ	1			📜		i į
о —	1!	i	J!	l	l		O]	i I
		/		i			Hydrated Bentonite Chips		i l
'] !	ı\ / \ /		1			Į į]	. l
8] !	i \/ \/ -	SB-38-7.5	1			e		i l
L	<u> </u>	ı X X	38	0.9		Woody debris	<u> </u>		i l
9 —]	i/\ /\	SB	1			<u>B</u>		i l
<u> </u>		i/ \ / \		1			<u> </u>		i l
10	<u> </u>	(<u> </u>		↓		<u>%</u>]	. l
L ' _	<u> </u>	1 /\ /	1	1			=		i į
11		1\ / \ /		1					i I
- 11 -	1 1	1\ / \ /		1					i i
⊢ −	† 1	$_{1}\setminus /\mid \setminus /\mid$		1					i i
12	1 1	: V X		3.0		Woody debris			i i
	† 1	i		1		Woody dobino			i i
13	1	i / \ / \		1]	1
	† I	i/ \ / \		1					i
14 —	1 1	i/ \ / \		1					i
15	† 1	/ V \	ļ !	1]	1
15						End of Borehole at 15 feet bgs			
16	<u> </u>								
] !	İ		1					, !
17]	İ		1]	1
└ ¨ _	<u> </u>	İ		1]	1
18	_ I	İ		1]	i
<u> </u>	↓ !	İ		1]	i
19	<u> </u>	İ		1]	i
<u> </u>	↓ !	İ		1					i
20	<u> </u>	İ		1					i
				ь	ــــــ	C. Fan Mathaul III / A satata Olassa		Ш	
Drilling Co.:		Cascade D				Sampling Method: HA / Acetate Sleeve			
Driller:		Frank Scott				Sampling Interval:			
Drilling Method:		HA, Geopro Geoprobe	be			Water First encountered: 3 ft bgs Water Level Finish: NA			
Drill Rig Type: Remarks:		Geoprobe				Converted to Well: Yes VNo			
bgs = below groun	nd surfac	00	HA= Hand	d Auger		Surface Elev: NA			
NA= Not Applicab			IIA- Hand	ı Augei		North Coor: NA			
VAC= Vacuum	710/ 1401 /	Wallable				East Coor: NA			

ARCAL	DIS Design form built	an & Consultancy atural and		•	-	Boring No.: AUS-SB3	39	
Soil Boring L		issets				Sheet: 1 of	1	!
Project Name:		mpia Bulk Pl	lant	Date	Started:			
Project Number:	GP09B	PNAWA60		Date Con				
Project Location:						Weather Conditions: NA		
Depth	Blows	Recovery	Sample ID	PID	TUSCS	Description	Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Description	Details	Description
(1001)	Por It	`			<u> </u>		Dotails	Description
⊢ , −	† '	Wate	er first enco	buntered	@3ft]	
¹	1 '	\ ~		1			1	
] '	造	, g G	<u></u>			, [
_ ′ _] '	AUGER	AUS- SB-39 (2-2.5)	0.6	ML	SILT with woody debris, brown, trace fine grained sand,]	
з	ן י	<u>▼</u> ₹	` ", "	i		trace cobbles, dry	1	
	↓ '	HAND		1			1	
<u> </u>	-	4		1			1	
├	- 	I		1			1	
5 <u></u>	-			1			ွှ	
-	 			1			l did	
 6 	- I	\ Λ /	/ 		+		Hydrated Bentonite Chips	
├ _् ─	† '	 \		1			ite	
7	1 '	[\ / [\ /	2	1			l e	
F , -	† '	$I \lor I \lor$	SB-39-7.5	20		NAZ	ju	
°	1 '	$ \wedge \wedge $	B-39	2.0		Woody debris	, ă	
] '	1/\ /\	Ö	l			pe	
_] '	/ \ / \	.	1			rat	
10] !	<u> </u>	\	<u> </u>			, l	
	'	\	/ !	1			, *	
	Ţ '	1\ / \ /		1			1	
11	1 '	1\ / \ /		1			1	
⊢ −	† '	$1 \setminus / \mid \setminus / \mid$		l			1	
12 <u></u>	1 '	1 V X		1.7		Woody debris	1	
13	† '	1 / /		1		11100dy d555	1	
13] '	1/\ /\		1			1	
14] '	1/ \ / \		1			1	
] '	// \// \	,	1			, [
15	<u> </u>	<u>/ </u>		<u></u>				
L ' _						End of Borehole at 15 feet bgs		
16 	_			1			1	
⊢ –	↓ '			1			1	
17	- '			1			1	
<u> </u>	 			1			1	
—— 18 ——	- !			1			, [
├	† '			1			1	
19	- I			1			1	
⊢	† '			1			1	
20	1 '			1]	
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve		
Driller:	•	Muddy Wat	iters			Sampling Interval:		
Drilling Method:		VAC, HA, G	Geoprobe			Water First encountered: 3 ft bgs		
Drill Rig Type:		Geoprobe				Water Level Finish: NA		
Remarks:	. ,					Converted to Well: Yes VNo		
bgs = below grou			HA= Hand	d Auger		Surface Elev: NA		
NA= Not Applicat VAC= Vacuum)le/ Not <i>F</i>	Available				North Coor: <u>NA</u> East Coor: N A		
VAC- Vacuum						Last Cool. IVA		

ARCAD	OIS Design form built	gn & Consultancy actural and cassets			-	Boring No.: AUS-SB	340			
Soil Boring L		03300				Sheet: 1 of	f 1			ļ
Project Name:	BP Olyr	mpia Bulk Pl	lant	Date	Started:	8/18/2015 Logger: Jason Little				
Project Number:	GP09BI	PNAWA60		Date Con	mpleted:	8/28/2015 Editor: Ross LaGrandeur				
Project Location:	1120 W	est Bay Dri	ve NW, Oly	ympia, WA	4	Weather Conditions: NA				
Depth	Blows	Recovery	Sample ID	PID	Tuscs	Description	Compl	letion	М	isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	I :	Deta			ription
(100.)		! ` ´ ´				SAND and GRAVEL, light brown, medium to coarse	 	1110		прис
	Wate	er first encou	untered @	3 ft	SG	grained sand, medium to coarse gravel, well graded,			. [. !
						rounded, loose, dry, with some organics			. [. !
		/ 🖳	7 Q G	<u> </u>	MS	Sandy SILT, grey, with trace clay and fine to medium]]		. [. !
L		7 3	AUS- SB-40 (2-2.5)	2.8	<u> </u>	gravel, medium dense, medium plasticity, dry			. [. !
L— з —— ˈ	-	HAND AUGER	7 07 0						, [. !
<u> </u>	↓ '	4							.]	. !
4 ——'	-	Z				We all fire was safe and			, [. !
⊢ —'	-	₹				Wood fragments, wet,			. [. !
5	-	_				low to no recovery		S	. [. !
├ -'	 							٠Ę	. [. !
—— 6 ——	-							Hydrated Bentonite Chips		. !
┢╴╶	† '	<u> </u>	+	 	+		1	<u>i</u> e	. [. !
— 7 —— ⁻	∮ '	\						oni	, [. !
├ ॒ ─	† '	$ \setminus / \setminus /$	5.					ž	, [. !
8 —	'	\	SB-40-7.5	1.8		Woody debris		Be	. [. !
\vdash $\stackrel{\frown}{}$ $\stackrel{\frown}{}$	† '	/\	SB.			1,000,000		Ď	. [. !
9	'	/ \ / \	0,					ate	. [. !
F ., -	<u> </u>	/ \/ \	\					Ď	. [
10	1	\	 		<u> </u>		1	£Ι	. [
\vdash $-$	† '	N /N /	1						.]	. !
11	-	I\							.]	.
├ —'	↓ '								, [
12	-	$ \ \ \ \ \ \ $, [. !
⊢ —'	↓ '			2.0		Woody debris			. [. !
13	-	/\							.]	. !
├ —'	 								.]	i.
14	-	/ \ / \	.] '						. [
├ —'	∤ '	/ \/ \	\						. [
15		l v	1		_	End of Borehole at 15 feet bgs		$\overline{}$		
├ —'										
16	-								. [
├ <u> </u>	† '								, [
17	'								. [
├ _.	† '								. [
18	'								. [
F	<u> </u>								. [
19	'								, [
	<u> </u>								. [
20	'								, [ı.
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve				
Driller:		Frank Scott	tt			Sampling Interval:				
Drilling Method:		HA, Geopro	obe			Water First encountered: 3 ft bgs				
Drill Rig Type:		Geoprobe				Water Level Finish:				
Remarks:						Converted to Well: Yes No		_		Į
bgs = below grour			HA= Hand	d Auger		Surface Elev: NA		_		Į
NA= Not Applicab	le/ Not /	Available				North Coor: NA		_		
VAC= Vacuum						East Coor: NA				ļ

ARCAD	OIS Design for in built	gn & Consultancy				Boring No.: AUS-SB41	
Soil Boring L		norts				Sheet: 1 of 1	
Project Name:	BP Olyr	mpia Bulk Pl	lant	Date	Started:		
Project Number:	GP09BI	PNAWA60		Date Con			
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA		Weather Conditions: NA	
Depth	Blows	Recovery	Sample ID	PID	Tuscs	Description Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Description
()	P 3		1				- Doccompany
┌ _ ╷		W	Vater first e	ncounter	ed @ 3 f	ft	
] !	I [
2	<u> </u>	꿈	S 6		'		
<u> </u>	ļ !	ı <u>ō</u> —	AUS-SB- 41(2- 2.5), DUP-9	6.1	CL	Silty CLAY, with some fine to coarse gravels, very low	
3		HAND AUGER	4400	i		plasticity, medium dense	
├ , ─		I <u>□</u>		i			
4 —		l A		i	1		
_ 5		Ì		i	1	Wood fragments, loose, wet, no recovery	
] !	1		i	1	sdi	
└── 6 ── <u></u>]	1		i			
	ļ !	<u></u>			<u> </u>	Wood fragments, loose, wet, no recovery	
7 <u></u>	4 !	1\ /\ /		i	1	Wood fragments, loose, wet, no recovery Woody debris ### Advantage Woody debris	
 	† !	$ \cdot / \cdot / $	2	i	1	14	
 8 		ı	SB-41-7.5	0.3	1	Woody debris	
F , -		$ / \rangle / \rangle$	SB-7	J	1	 	
9 —		1/ \ / \	, , , , , , , , , , , , , , , , , , ,	i	1	at	
10] /	<u> </u>	\	<u></u>		\$\displaystyle{\gamma} \displaystyle{\gamma} \$\displaystyle{\gamma} \displaystyle{\gamma} \$\ga	
]	N /		 		Ť Í	
11		1\ / \ /		i			
11		1\ / \ /		i	1		
		$_{1}\setminus /\mid \setminus /\mid$		i	1		
12	<u> </u>	1 V X		1.9	1	Woody debris	
13	<u> </u>	$\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge $		i	1	'	
	ļ !	1/\ /\		i	1		
14	. !	1/ \ / \		i	1		
<u> </u>	ļ !	/ \/ \	\	i	į.		
15			1			End of Borehole at 15 feet bgs	
<u> </u>						End of Borelloic at 10 leet bys	
16		1		i	į.		
17		1		i	'		
] !	1		i	1		
18	<u> </u>	1		i	'		
<u> </u>	ļ !	1		i	1		
19	4 !	1		i	1		
<u> </u>	†	1		i	1		
20		1		i	į.		
Drilling Co.:	<u> </u>	Cascade D	rilling L. P.		<u> </u>	Sampling Method: HA / Acetate Sleeve	
Driller:		Frank Scott				Sampling Interval:	
Drilling Method:	-	HA, Geopro	obe			Water First encountered: 3 ft bgs	
Drill Rig Type:		Geoprobe				Water Level Finish: NA	
Remarks:			114 11	-I. A		Converted to Well: Yes No	
bgs = below grour NA= Not Applicab			HA= Hand	1 Auger		Surface Elev: <u>NA</u> North Coor: NA	
VAC= Vacuum	IE/ INUL P	wallable				East Coor: NA	

ARCAL	DIS for	ign & Consultancy natural and It assets			-			Bor	ing No.: AUS	-SB4	41-A			
Soil Boring L								Sheet :	1	of	1			
Project Name:	BP Olyr	mpia Bulk Pl	lant	Date	Started:	8/20/2015	Logger:	Jason Little	<u> </u>	<u> </u>				
Project Number:	GP09B	PNAWA60		Date Con		9/01/2015		Ross LaGrand	deur					
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA	4	Weather Co	onditions:	NA						
Depth (feet)	Blows per ft	Recovery (feet)	Sample ID & Time	PID (ppm)	USCS Class.	Description						pletion		lisc. cription
(100.)	Po		st encounte							\neg		tano	- 500	приси
<u> </u>] \	Water mis	T CHOOLING	1100 @ 0.5) ICIC									.
<u> </u>	↓ \	~		4										, !
2	-\	Ш	3-41. et 5)	63	ML	Clayey SILT, lig	tht brown t	to arev trace s	sands noorly					,
├	1	Ŋ	AUS-SB-41- Offset (2-2.5)	00	IVIL	graded, dry	III DIOWI. C	.o grey, iracc c	salius, pooli,					,
3	\	₹ ₹	AUS,	ĺ		9 ,				\neg				.
_ 4] '	HAND AUGER		ĺ										, !
L · —	1	\ ₹		ĺ										, !
5	-	\ -		1								တ္က		, ,
⊢ . –	+			1								qiq		, P
6 —		\rightarrow		1								Hydrated Bentonite Chips		.
├ _{──} , _──	1	\	†	Ī	1		-					ite		.
	1	\	-7.5	1								to		,
8	4	$ \vee \vee $	SB-41-Offset-7.5	1								en		.
<u> </u>	4	$ \land \land $	1-Q	119.1		Woody debris						<u>В</u>		.
9 —	4	/ \ / \	B 4	1								ate		, l
├ <u>.</u>	†	/ \/ \	ω,	1								dr		, j
10	1) 		1					\neg		Ŧ		, l
├ <u>.</u> , ─	Ť	\		ĺ										, l
11	1	\	rċ.	1								ļ		.
⊢	†	$ \cdot \cdot \cdot $	at-12	1										, l
12	1	X X	Offise	3.2		Woody debris						ļ		, l
13]	/\	SB-41-Offset-12.5	1										, l
L	1	/ \ / \	SB.	1										, l
14	4	/ \ <i>/</i> \		ĺ										, l
<u> </u>	+	/	, I	ĺ										, l
15						End of Bore	hole at 15	feet bas						
⊢ −			1				nois as . s	1001 030						
16	1			1								ļ		.
17]			1								ļ		, l
L	1			1								ļ		, l
18	-			1								ļ		, l
<u> </u>	+			1								ļ		, l
19	1			1								ļ		i
20	†			1								ļ		, l
	<u> </u>			<u> </u>										İ
Drilling Co.:		Cascade D						HA / Acetate	Sleeve					
Driller:		Frank Scott					g Interval:	0.5 (1.1						
Drilling Method: Drill Rig Type:		HA, Geopro Geoprobe	obe			Water First enc								
Remarks:		Geoprobe				Converte			/ No					
bgs = below grou	nd surfa	ce	HA= Hand	d Auger			ace Elev:							
NA= Not Applicab				Ü		No	orth Coor:	NA				_		
VAC= Vacuum						E	ast Coor:	NA						

ARCAL	DIS Designation	gn & Consultancy intural and			-			Borii	ng No.: AUS	S-SB	41-B	_		
Soil Boring L		03.001.0						Sheet :	1	of	1			ļ
Project Name:	BP Oly	mpia Bulk Pl	lant	Date	Started:	9/2/2015	Logger:	Jason Little						
Project Number:	GP09B	PNAWA60		Date Com	npleted:	9/2/2015	Editor:	Ross LaGrand	eur					
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA	<u> </u>	Weather Co	onditions:	NA						
Depth	Blows	Recovery	Sample ID	PID	Tuscs	Description				—	Com	pletion	M	lisc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.							etails		cription
				Ī T										,
L 1	4	Wal	ter first end	countered	@ 6.5 f	+				l				, !
⊢ –	 			.ourreer ea.]	Ī				Į				, !
2	-	HAND AUGER	SB-41B- 2.5	1										, !
├ ू —	† \	ÜG	SB-	19.0	ML	Clayey SILT, gre	ev. dry				•			, !
3 — <u> </u>	\	₹		<u> </u>	1	Woody debris	<u></u>				•			, !
] \	9		1										, !
\square $^{\cdot}$ $-$] \	₹		1										, !
5	_ \			1								ا س		, !
⊢ –	1	\		1								ğ		, !
6 <u></u>	-	<u></u>		1						I		<u>ဂ</u>		, !
_	1	M /	/	 	┼						ł	<u>te</u>		, !
 	-	\		1								Hydrated Bentonite Chips		, !
├ , -	†	$ \setminus / \mid \setminus / \mid$	-7.5	1								ž		, !
в — в —	1		SB-41B-7.5	39.6		Woody debris				I		B		, !
	Ĵ	/\ /\	SB-7	1		-						eq		, !
]	/ \ / \	"	1						I		rat		1
10					↓	ļ						β		i - 1
L ' _		\ \\ /	/ I	1								エ		i - 1
11		\		1										i - 1
				1										i - 1
12	Ĵ	$ \cdot \cdot \cdot $	12.5	1										1
C ']		7 1 1 1 1 1 1 1 1 1 1	11.8		Woody debris								1
13	-	$ \land / \land $	SB-41B-12.5	1						I				1
⊢ —	1	$ / \setminus / \setminus $	0,	1										1
14	4	/ \ / \		1						I				i 1
<u> </u>	+	/ \/ \	1	1										i 1
 15 		L			_	End of Borel	nole at 15	feet has						
⊢ <u> </u>			1				1010 0.1	leat by						
16	1			1						I				, !
17	†			1										i - 1
'']			1						I				i 1
18	1			1										i - 1
L				1						I				i 1
19	4			1						ļ				ł
<u> </u>	4			1										i
20	4			1										i
Drilling Co.:		Cascade D	IIIIng L. P.	I		Sampling	Method:	HA / Acetate S	Sleeve		!	<u> </u>		
Driller:		Kyle C	y <u></u>			Sampling		TIM / Modiaic S	10040					
Drilling Method:		HA, Geopro	obe			Water First enco		6.5 ft bgs						-
Drill Rig Type:		Geoprobe				Water Leve								
Remarks:						Converted			No					
bgs = below grou			HA= Hand	d Auger			ace Elev:							
NA= Not Applicab	ole/ Not A	Available					orth Coor:							
VAC= Vacuum						E:	ast Coor:	NA						

ARCAL	OIS Design	gn & Consultancy satural and t assets		•				Boring N	No.: AUS	S-SB4	41-C			
Soil Boring L		03.501.3					Shee	ot ·	1	of	1			
Project Name:		mpia Bulk Pl	lant	Date	Started:	9/01/2015	Logger: Jason Li			- 01				
Project Number:	GP09B	PNAWA60		Date Com	mpleted:	9/01/2015	Editor: Ross La							
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA	•	Weather Co	onditions: NA							
Depth	Blows	Recovery	Sample ID	PID	Tuscs	Description					Com	pletion	M	lisc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.							etails		cription
				1										
L 1	_	Wa	iter first end	countered	L@ 651	÷								,
<u> </u>	ļ ,			Louinterea	1							ļ		, !
2	/	l iii	SB- 41C-2.5	1								ļ		, !
⊢	† \	ne	S 410	2.7	CL	Silty CLAY, grev	, poorly graded, di	rv						,
3 — <u> </u>	\	Ā		Ī				·	-			ļ		, !
<u> </u>] \	HAND AUGER		1										,
<u> </u>	ļ '	\ ₹		1										ļ
5 <u></u>	4	\ -		1		Woody debris						ဟွ		,
-	†			1		Woody debits				-		hip		,
6 —	†	\		1								Hydrated Bentonite Chips		, !
F ,	†	1 /	/ 									iţe		, !
]	\	υ ₀	1								to		.
8	1	$ \setminus \setminus \setminus $	SB-41C-7.5	1]						en		.
L	4	$ \ \ \ \ \ \ \ $	410	40.6		Woody debris						8		,
9 ——	-	$ / \setminus / \setminus $	SB	1								Itec		
-	†	/ \/ \	.	1								dra		
10	4		+		+	+				-		Ž		, l
<u> </u>	+	N /N /	/ !	1										, l
11	4	I\		1										ı İ
L –	1		rċ.	1										ı İ
12	4	$ \ \ \ \ \ \ $	2-12	1 25		NAT						ļ		, l
⊢ −	1	$ \chi \Lambda$	SB-41C-12.5	2.5		Woody debris								ı İ
13		/	SB	1										ı İ
<u> </u>	1	/ \ / \		1								ļ		, l
14	1	/ \ / \	,	1								ļ		, l
15	<u> </u>	<u>/ </u>	<u> </u>	<u></u>							<u> </u>			<u> </u>
_ '5 _						End of Borel	nole at 15 feet bgs	5						
16	4			i									İ	i l
<u> </u>	4			1										
17	-			1										
⊢ −	†			1										
18	1			1										
19	1			1										
	1			1										ı
20]			1								ļ		1
	<u> </u>	2 - 1- 5		<u> </u>	↓	2							Ш	
Drilling Co.: Driller:		Cascade D	rilling L. P.			Sampling_ Sampling	Method: HA / Ace	etate Siee	ve					
Drilling Method:		Kyle C HA, Geopro	ohe				ounterval: ountered: 6.5 ft bgs	•						
Drill Rig Type:		Geoprobe	DDE				el Finish: NA	5						
Remarks:						Converted		✓ No						
bgs = below group	nd surfa	ce	HA= Hand	d Auger			ace Elev: NA							
NA= Not Applicab	le/ Not /	Available					rth Coor: NA							
VAC= Vacuum						E	ast Coor: NA							

ARCAL	DIS Design	in & Consultancy stural and assets				Boring No.: AUS-SB	41-D			
Soil Boring L						Sheet: 1 of	1			
Project Name:		mpia Bulk Pl	ant	Date	Started:		•			
Project Number:	GP09B	PNAWA60		Date Con	npleted:	9/01/2015 Editor: Ross LaGrandeur				
Project Location:	1120 W	est Bay Driv	e NW, Oly	mpia, WA	١	Weather Conditions: NA				
	l s.	-	I	BIB	1,,,,,,,,,					
Depth (feet)	Blows per ft	Recovery (feet)	Sample ID		USCS Class.	Description		oletion ails		isc. ription
(reet)	perit	(leet)	& Time	(ppm)	Class.		Det	alis	Desc	приоп
-	†			Water f	irst encc	ountered @ 6.5 ft				
1										
	j		٠							
]	၂၂ ဗ	SB-41-D- 2.5							
3			S	1.4	CH	Silty CLAY, grey, trace woody debris, medium plasticity,				
	ļ	HAND AUGER				poorly graded, moist				
4		{								
<u> </u>	ł	I								
5 <u></u>						Woody debris		sdi		
								Si		
— 6 —								je (
	Ī	\						Ē		
_ ′ _		\ / \ /	5					ıtc		
8		$ \bigvee \bigvee $	SB-41-D-7.5					Be		
	ļ		+ +	38.4		Woody debris		g		
9 <u></u>		/ \ / \	SB					ate		
- -	ł	/ \/ \						Hydrated Bentonite Chips		
10	,	(X)						£		
	Ì	N /N /								
11		\ / \ /								
12		$ \setminus / \mid \setminus / \mid$	12.5							
	<u> </u>	V X	À	4.3		Woody debris				
13		$ \land \land $	SB-41-D-12.5			•				
<u> </u>	ł	/\ /\	<u>w</u>							
—— 14 ——		/ \ / \								
	†	/								
15		, ,	•		•	End of Borehole at 15 feet bgs				
16										
_	ļ									
17										
	}									
—— 18 ——										
	†									
19										
20	Ī									
	<u> </u>		<u> </u>							
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve				
Driller: Drilling Method:		Kyle C HA, Geopro	nho.			Sampling Interval:				
Drill Rig Type:		Geoprobe	nne -			Water First encountered: 6.5 ft bgs Water Level Finish: NA				
Remarks:		Coopione				Converted to Well: Yes Vo				
bgs = below grou	nd surfac	ce	HA= Hand	d Auger		Surface Elev: NA		_		
NA= Not Applicab				-		North Coor: NA				
VAC= Vacuum						East Coor: NA		_		

ARCAL)IS Designation	an & Consultancy atural and t assets				Boring No.: AUS-SE	341-E			
Soil Boring L	_og					Sheet: 1 o	of 1			ļ
Project Name:	BP Olyr	mpia Bulk Pl	lant	Date	Started:	9/01/2015 Logger: Jason Little	-			
Project Number:	GP09B	PNAWA60		Date Con	npleted:					
Project Location:	1120 W	est Bay Driv	ve NW, Oly	/mpia, WA	1	Weather Conditions: NA				
Danth	Blows	TRACOVORY	Sample ID	PID	USCS	T	Compl	lation		lisc.
Depth (feet)	per ft	(feet)	& Time	(ppm)	Class.	Description	Deta			ription
(lect)	per it	(IGGI)	O THITC	(PP111)	Olass.		+ 500	alio	D030	Прион
⊢ , −	†	Wa	iter first en	countered	d @ 6.5 f	it .		-	, 1	, !
	1							ļ	, 1	, !
2]	/ <u>K</u>	SB- 41-E-2.5	L	<u> </u>		」	ļ	, 1	, !
L	1	HAND AUGER	8 ÷	13.3	CL	Silty CLAY, grey, poorly graded, dry	↓	ļ	, 1	, !
з	-	\	4	4	'			ļ	, 1	, !
⊨ –	(/ 0	!	1	'			ļ	, 1	, !
	\	Ž	!	1	'			ļ	, 1	, !
H . —	 \	H	'	1	'				, ,	, !
5 <u></u>	1	_ '		İ	'			ips	, ,	, ,
	†	\	!	1	'			S	, 1	, !
b	1			<u> </u>				Hydrated Bentonite Chips	, ,	, !
]	/'					1	ji I	, 1	, !
L ' _	<u> </u>	\	ιċ	İ	'			월	, ,	, !
8	4	$ \bigvee \bigvee $	E -7	40.0	'			Bel	, ,	, !
	1		SB-41-E -7.5	13.8	'	Woody debris		- P	, 1	1
9 ——	-]/ \	SB	İ	'			ate	, ,	i
<u> </u>	+	\\ \\\ \\'		1	'			dr.	, 1	1
10	1 '	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	 	\vdash	+		-	£	, 1	1
├ <u>.</u>	†	\	!	1	'			ļ	, 1	1
11	1	\	'	1	'			-	, ,	, !
⊢ −	†	\ <i> </i> \ <i> </i>	2.5	1	'			-	, ,	, !
12	1		— — — — — — — — — — — — — — — — — — —	2.6	'	Woody debris		-	, ,	, !
13	j		SB-41-E - 12.5	2.0	'	Woody debits		ļ	, 1	1
13]		SB	1	'			ļ	, 1	1
14		/ \ / \'	'	1	'			-	, ,	, !
L · · —	1	/ \ / \ [']	. '	İ	'			-	,	i
15		<u>/ </u>	<u> </u>			End of Borehole at 15 feet bgs				
<u> </u>						End of potential at 15 feet bys	1			
16	-	ļ		İ	'			ļ	, ,	, !
├ <u>.</u> ,	†	!		1	'			ļ	, 1	i
17	1	!		1	'			ļ	, 1	i
18	Ĵ	,	'	1	'			-	, ,	, !
]	,	'	1	'			-	, ,	i
19	1	,	'	1	'			-	, ,	i
<u> </u>	1	,	'	1	'			-	, ,	i
20	4	,	'	1	'			-	, ,	i
		Cassada D	Silling L. D.	<u> </u>	<u> </u>	Compling Matheda HA / Apotate Closus	⊥			j
Drilling Co.: Driller:		Cascade Di Kyle C	filling L. P.			Sampling Method: HA / Acetate Sleeve Sampling Interval:				
Drilling Method:		HA, Geopro	ohe			Water First encountered: 6.5 ft bgs				
Drill Rig Type:		Geoprobe	,DC			Water Level Finish: NA				
Remarks:						Converted to Well: ☐ Yes ☑ No	-			
bgs = below group			HA= Hand	d Auger		Surface Elev: NA		_		!
NA= Not Applicab	/ le/ Not	Available				North Coor: NA		_		
						Fast Coor: NA				

ARCAD	OIS Design for na built a	in & Consultancy stural and assets				Boring No.: AUS-SB42	
Soil Boring L	.oa					Sheet: 1 of 1	
Project Name:		mpia Bulk Pl	ant	Date	Started:	08/20/2015 Logger: Jason Little	
Project Number:						08/27/2015 Editor: Ross LaGrandeur	
Project Location:	1120 W	est Bay Driv	e NW, Oly			Weather Conditions: NA	
Depth	Blows	Recovery	Sample ID	PID	USCS	Description Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Details	Description
L _					SG	SAND and gravel, with organics	
1		Water fir	st encount	torod @ 6	5 ft		
L				tereu @ 0	.J IL		
2		#	AUS-SB- 42 (2-2.5)	4.0	014	O'IL OAND 'II I II I I I	
\vdash \prec	ļ	ত	US- 42 2-2	1.6	SM	Silty SAND with clay, light brown, dry	
3		HAND AUGER	∢ -			hi hi	
⊢ –							
 		₹					
⊢ –		₹				ļ ģ	
5 <u></u>	\	_				en l	
–	ŀ					Hydrated Bentonite Chips	
—— 6 ——	ł	<u> </u>				P	
F -		<u> </u>					
— 7 —	i	I\				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		\	ż.				
— 8 ——	ŀ	$I \times I \times$	SB-42-7.5	0.0	GP	GRAVEL, brown, large gravel, trace coarse grained	
F . —	İ	/\	B.			sand, poorly graded, wet	
9 —		/ \ / \	0,				
	İ	/ V \					
10					•	End of Borehole at 10 feet bgs	•
11							
L '' _							
12							
L '							
13							
<u> </u>							
14							
⊢ –							
15							
<u> </u>	ł						
 16 	ļ						
⊢	ł						
17	ŀ						
<u> </u>							
18							
–	ŀ						
19	ł						
⊢	t						
20	ł						
Drilling Co.:	I	Cascade D	rilling I P			Sampling Method: HA / Acetate Sleeve	<u> </u>
Driller:		Frank Scott				Sampling Interval:	
Drilling Method:		HA, Geopro				Water First encountered: 6.5 ft bgs	
Drill Rig Type:		Geoprobe				Water Level Finish: NA	
Remarks:						Converted to Well: Yes VNo	
bgs = below groun	nd surfac	ce	HA= Hand	d Auger		Surface Elev: NA	
NA= Not Applicab				J		North Coor: NA	
VAC= Vacuum						East Coor: NA	

ARCAD)IS Design for ne built:	n & Consultancy rtural and assets				Boring No.: AUS-SB	43A		
Soil Boring L	.oa					Sheet: 1 of	1		
Project Name:		npia Bulk P	lant	Date	Started:	8/20/2015 Logger: Jason Little	.		
Project Number:	GP09B	PNAWA60		Date Con	npleted:				
Project Location:	1120 W	est Bay Dri	ve NW, Oly	mpia, WA	١	Weather Conditions: NA			
Depth	Blows	Recovery	Sample ID	PID	USCS		Completion	М	isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Description	Details		ription
,		er first enco		VII /	SG	SAND and gravel, light brown, with large cobbles, light			
_ ,	@ 6.5		untereu		36	brown, dry			
_ '	W 0	1				brown, dry			
2		HAND AUGER	AUS-SB- 43A(2- 2.5)						
	ļ	5	US- 43A 2.5	0.3	SM	Silty SAND, trace clay, dry	sc		
— з —			∢ .				Hydrated Bentonite Chips		
		Δ					0		
 		Z					l ji		
	İ	 					<u> </u>		
5							e l		
	İ								
0							l tec		
		\					l ar		
_ ′ _		\ / \ /	ιĊ						
8		\/ \/	A-7.				_		
_	ļ	ΙΛΙΛ	SB-43-A-7.5	0.0	SP	SAND, black, medium grained, uniformly graded, wet			
9			SB						
_	ļ	/ \ / \							
10			V			End of Borehole at 10 feet bgs			
11									
	İ								
12									
13	Ī								
14									
15									
<u> </u>	ł								
—— 16 ——									
	İ								
17									
18	Ì								
10									
19									
20									
		L	<u> </u>						
Drilling Co.:		Cascade D				Sampling Method: HA / Acetate Sleeve			
Driller:		Frank Scot				Sampling Interval:			
Drilling Method: Drill Rig Type:		HA, Geopro Geoprobe	one			Water First encountered: 6.5 ft bgs Water Level Finish: NA			
Remarks:		Geoplobe				Converted to Well: Yes VNo			
bgs = below groun	nd surfa	ce				Surface Elev: NA			
NA= Not Applicab	ole/ Not A	Available				North Coor: NA			
HA= Hand Auger						East Coor: NA			

ARCAL	DIS Designation of the state of	n & Consultancy rtural and assets				Boring No.: AUS-SB	14	
Soil Boring L	.oa					Sheet: 1 of	1	
Project Name:		npia Bulk P	lant	Date	Started:	8/20/2015 Logger: Jason Little	•	
Project Number:	GP09B	PNAWA60		Date Con		8/31/2015 Editor: Ross LaGrandeur		
Project Location:			ve NW, Oly			Weather Conditions: NA		
						-	Completion	Minn
Depth (feet)	Blows per ft	Recovery (feet)	Sample ID & Time	PID	USCS Class.	Description	Completion Details	Misc. Description
(leet)	perit	(leet)	& Time	(ppm)	SG	SAND and gravel, with organics	Details	Description
├ ₁	 					Critic and graver, with organics		
· -	/	Water first e	encountere	d @ 4 ft				
_ 2	/ -	~						
-		HAND AUGER		0.6	MS	Sandy SILT, light brown, with little clay, medium stiff, dry	ω	
3		ĭ				Sandy Sill i, light brown, with little clay, medium still, dry	ğ	
	`	_ ₹		25.5	CH	CLAY with trace silt, grey, medium plasticity, stiff, moist,	ပ်	
4		<u> </u>				odors	ite	
	ļ	₹					ou	
5			AUS-SB- 44(4.5-5) DUP-4	320.2	CL	Sandy silty CLAY, grey, wet	Hydrated Bentonite Chips	
	ļ		US- 4(4.			NA/ a a d fina coma a más	Be	
6			∢ 4 _			Wood fragments	₽	
	ł	\	<u> </u>				ate	
′		\ / \ /					l d	
— ₈ —			.5				£	
_			SB-44-7.5	0.2	SW	SAND with gravel, brown, fine to coarse grained sand,		
9	İ	$ / \rangle / \rangle$	3B-7			small to medium gravel, well graded, wet		
		/ \ / \	0,					
10	İ.	/						
						End of Borehole at 10 feet bgs		
11								
—	ļ							
12								
13								
14								
— ' ' —								
15								
	İ							
16								
	İ							
17								
10	Ī							
18								
19								
20								
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve		
Driller:		Kyle C				Sampling Interval:		
Drilling Method:		HA, Geopre	obe			Water First encountered: 4 ft bgs		
Drill Rig Type: Remarks:		Geoprobe				Water Level Finish: NA Converted to Well: ☐ Yes ☑ No		
	ad aurta	20	⊔∧_ ⊔о	4 Augas		Converted to Well: ☐ Yes ☑ No Surface Elev: NA		
bgs = below group NA= Not Applicab			HA= Hand	Auger		North Coor: NA		
VAC= Vacuum	ne/ INUL F	rvaliable				East Coor: NA		

ARCAD	DIS Design for no built	in & Consultancy atural and assets				Boring No.: AUS-SB4	5	
Soil Boring L						Sheet: 1 of	1	
Project Name:		mpia Bulk Pl	lant	Date	Started:	8/19/2015 Logger: Jason Little		•
Project Number:				Date Con				
Project Location:						Weather Conditions: NA		
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Description	Details	Description
	<u> </u>		Wate	e first one		10154		i
厂_ 1	Ţ !		wate	r first enc	ountere	d @ 4.5 ft		i
<u> </u>] '	1 		ı	1			i
] '	<u> </u>	3B-	L				í [
] ,	1\ ⊋	AUS-SB- 45(2-2.5)	1.1	ML	Clayey SILT, brown, poorly graded, moist		i
<u> </u>] '	1 2	AU 45	 j				í [
] '	HAND AUGER		i				í [
4] ,	ı⊥⊈		i				i
_ ¬] '			L				í [
	ı _ ا	Γ		0.4	CL	CLAY, trace sand, trace silt, trace angular cobbles,	ဖွ	í [
] ,	1		1		poorly graded, wet	ie	i
<u> </u>] '	1		i	'		Hydrated Bentonite Chips	i
] '	<u> </u>		L			ţ.	i
7 <u></u>] '			i			l ii	í [
] '	\	SB-45-7.5, DUP-8	i			날	í [
s] '	$ \cdot \cdot \cdot $	2	i			Se	í [
] '	1 X X	7.5,	0.4		Woody debris	=	í [
<u> </u>] '	[/\ /\	45-	i			<u>te</u>	i
] '	1/ \ / \) g	i			<u>-r</u>	i
10	ļ '	/ <u>V</u>	\	l	<u> </u>		<u>\$</u>	í [
] 1			Ī				í [
11] '	1\ / \ /		i				í [
·· -] ,	1\ / \ /		ı	1			i
12] ,	1\/ \/		ı	1			i
12] '	1 V Y		i		Woody debris		i
13] '	1 Å 1 /\		i		Woody debits		i
	'			i				í [
14	ļ '	1/ \ / \		i				i
	'	1/ \ / \	.	i				í [
15	İ'	/ <u>V</u>	\I	l	<u> </u>			ı <u>— </u>
						End of Borehole at 15 feet bgs		
16				Ī				
	'	1		i				í [
17	ļ ,	1		i				i
] '	1		i				i
18	ļ '	1		ı	1			i
10 —	1 1	1		ı	1			i
10	† '	1		i				í [
19	1 '	1		i				í [
20	† '	1		i				í [
20	1 '	1		i				i
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve	-	
Driller:		Kyle C				Sampling Interval:		
Drilling Method:	-	HA, Geopro	obe			Water First encountered: 4.5 ft bgs		
Drill Rig Type:	-	Geoprobe				Water Level Finish: NA		
Remarks:						Converted to Well: Yes Vo		
bgs = below group	nd surfac	ce	HA= Hand	d Auger		Surface Elev: NA		
NA= Not Applicab						North Coor: NA		
VAC= Vacuum						East Coor: NA		

ARCAI	DIS 🖁	esign & Consultancy r natural and alt assets				Boring No.: AUS-SB46	
Soil Boring L						Sheet: 1 of 1	
Project Name:		npia Bulk P	lant	Date	Started:		
Project Number:	GP09B	PNAWA60		Date Cor		: 8/31/2015 Editor: Ross LaGrandeur	
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA	١	Weather Conditions: NA	
	T		1		T		
Depth	Blows	Recovery		PID		Description Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	. Details	Description
–	/	Water fir	rst encount	ered @ 6	.5 ft		
1							
		œ	.5),				
		HAND AUGER	AUS-SB- 46(2-2.5), DUP-3	0.2	MS	Sandy SILT, brown, dry, organic debris	
з		Ž	Al 46				
<u> </u>		4					
 	\	Ž					
\vdash $-$	`	\ ₹					
5 <u></u>	†	_				sd.	
	t					$\frac{1}{6}$	
— 6 —	Ì					Woody debris Hydrated Bentonite Chips	
	Ī	\ \ \ /				l nig	
]	\ / \ /				2	
8		$ \setminus \setminus \setminus $	SB-46-7.5				
		$ \lambda \lambda$	3-46	7.2		Woody debris	
9 <u></u>	}	/	S			ate	
	}	/ \/ \					
10	,	\ \	}			 	
	†	\ /\ /	1				
11 —	Ì	\					
12]	$ \setminus / \mid \setminus / $	5.5				
L '			6-1;	0.2	sw	SAND with gravel, brown, fine to coarse grained sand,	
13		$ \land \land $	SB-46-12.5			small to medium gravel, well graded, wet	
<u> </u>	ł	/\ /\	0)				
14	ł	/ \ / \					
<u> </u>	1	/ \/ \	\				
15						End of Borehole at 15 feet bgs	
16							
_ ' _							
17	<u> </u>						
L –	}						
18	ł						
⊢ −	†						
19	1						
20	Ì						
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: HA / Acetate Sleeve	
Driller:		Kyle C				Sampling Interval:	
Drilling Method:		HA, Geopre	ope			Water First encountered: 6.5 ft bgs Water Level Finish: NA	
Drill Rig Type: Remarks:		Geoprobe				Converted to Well: Yes ✓ No	
bgs = below groun	nd surfac	ce.	HA= Hand	l Auger		Surface Elev: NA	
NA= Not Applicab			, 1 10110	ugo.		North Coor: NA	
VAC= Vacuum						East Coor: NA	

ARCAI	DIS	tesign & Consultancy or natural and xult assets				Boring No.: AUS-S	3B47			
Soil Boring L						Sheet: 1	of 1			
Project Name:	BP Olyr	mpia Bulk Pl	lant		Started:	8/19/2015 Logger: Jason Little				
Project Number:				Date Con						4
Project Location:	1120 W					Weather Conditions: NA				\exists
Depth	Blows		Sample ID			Description		ompletion	Misc.	
(feet)	per ft	(feet)	& Time	(ppm)	Class.			Details	Description	_
⊢ –	 	Water fir	rst encounte	ered @ 6.	5 ft					
1 —				1						
F_ 2	j '	<u>~</u>	, B	l						
	<u> </u>	GE	AUS-SB- 47 (2-2.5)	0.5	CL	CLAY, trace silt, brown, poorly graded, dry				
з	\ '	Ì	¥	1						
⊢ . –	\ '	HAND AUGER		t						
4 —	1 \	Z		1						
5	<u> </u>	Ì		1				ဖွ		
`	┇ '			t				did		
6	-	<u> </u>		ĺ				Hydrated Bentonite Chips		
⊢ –	-		 	 	+		\dashv	nite		
7 —	† '			ĺ				ţ		
8	† '	$ \cdot \cdot \cdot $	7.5	1				3en		
_ 。] '	X X	SB-47-7.5	24.3		Woody debris		d E		
9 ——	.	/\ /\	SB	1				ate		
⊢ –	 			1				dr.		
10	+ '	\ \	 	 	+		\dashv	f		
⊢	† '	$\Lambda / \Lambda /$		ĺ						
11	1 '	I\		1						
12	.	$ \cdot \cdot \cdot $	2.5	1						
⊢ –	-	Y X	SB-47-12.5	2.5		Woody debris				
13	<u> </u>	/\	SB.	İ						
14	† '	/ \		ĺ						
14	1 '	/ \ / \		ĺ						
15	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	7	<u> </u>			
_		1			T	End of Borehole at 15 feet bgs				4
16	1			ĺ						
	† '			1						
17	<u> </u>			1						-
18	∐ '			1						
⊢ –	-			1						
19	-			1						
<u> </u>	† '			1						
20	İ'		<u> </u>	l						
Drilling Co.:		Cascade Di	rilling L. P.			Sampling Method: HA / Acetate Sleeve				
Driller:		Kyle C				Sampling Interval:				_
Drilling Method: Drill Rig Type:		HA, Geopro Geoprobe	ope			Water First encountered: 6.5 ft bgs Water Level Finish: NA				_
Remarks:		Оеоргове				Converted to Well: Yes Vo				_
bgs = below groun	nd surfac	ce	HA= Hand	d Auger		Surface Elev: NA				
NA= Not Applicab	ole/ Not A	Available				North Coor: NA				
VAC= Vacuum						Fast Coor: NA				

	1	-				2 1 11 112	_			
ARCAL)IS Design for no built	un & Consultancy atural and assets				Boring No.: AUS-SB	48			l
Soil Boring L						Sheet: 1 of	1			ļ
Project Name:	BP Olyr	mpia Bulk Pl	lant		Started:	: 8/19/2015 Logger: Jason Little				
Project Number:			- N.W. OL	Date Con						
Project Location:	1120 W	lest Bay Driv	ve NW, Oil	mpia, WA	•	Weather Conditions: NA				
Depth	Blows	Recovery	Sample ID	PID	USCS	Description	Compl	letion		lisc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Deta			cription
	Wat	ter first enco	ountered @	ລ 6.5 ft	SG	SAND and Gravel, with some organics			Ţ	,
1	-					07 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W 2 W			, 1	1 1
⊢ –	 		γ ιο	1					, 1	1 1
2	1 '	€	AUS-SB- 48-2-2.5	3.2	SM	Silty SAND, brown, fine grained, little gravel, loose, dry,	1		, 1	1 1
├ _{─ ³} _─	1\'	Щ	AU:			organics			, 1	₁ 1
] \ '	HAND AUGER							, 1	1 1
4	- '	٥							, 1	1 1
⊢ –	-\	Ž							, 1	1 1
<u> </u>	- '	\ ₹						S	, 1	1 1
├ ॄ	† '	_						Hydrated Bentonite Chips	, 1	1 1
<u> </u>	1 '	<u> </u>	<u> </u>					S	, 1	1 1
_ ,] '							nite	, 1	1
└ ′ —	<u> </u>		, '		1]	ţ	, 1	₁ 1
<u> </u>	2		48 -	4.8	1	Woody debris		3en	, 1	1 1
⊢ –	3 4	A /A	SB-48 7.5					d E	, 1	1
9 ——	+	/ \// `		1				ate	, 1	1 1
⊢ 10	† '							dra	, 1	1 1
10	2] '		1		1	Ŧ	, 1	1 1
11	2	X X		2.5		Woody debris			, 1	1 1
⊢	4		<u> </u>	<u> </u>	4				, 1	l .
12	7	 	-	<u> </u>	+		-		, 1	l .
⊢ . –	9	$ \vee \vee $		1.3		Woody debris			, 1	l .
13 —	10					1700dy d525			, 1	l .
14					1]		, 1	í
<u> </u>	14]		Ţ				, 1	1
15	17	X X		0.3		Woody debris			, 1	1
⊢ –	20	$V \sim$			<u> </u>	End of Borehole at 15.5 feet bgs				
16						Life of Dorelloic at 10.0 feet bgo				
17	† '								, 1	1 1
] '								, 1	1 1
18	┧ ']	, 1	1
⊢ –	-		!]	, 1	i
19	-		!]	, 1	i
⊢ <u> </u>	† '								, 1	l .
20	1 '								, 1	í
Drilling Co.:		Cascade D		<u> </u>		Sampling Method: HA / Split Spoon Sampler				
Driller:		James Cab	le			Sampling Interval:				
Drilling Method:		HA, 'HSA				Water First encountered: 6.5 ft bgs				
Drill Rig Type:		Auger Rig				Water Level Finish: NA No				
Remarks: bgs = below grou	ınd surfa	-CQ	HA= Hand	d Auger		Converted to Well: ☐☐Yes ☐No ☐ ☐No ☐ ☐NO ☐NO ☐NO ☐NO ☐NO ☐NO ☐NO ☐NO ☐NO ☐		_		
NA= Not Applicat				llow Stem	Auger	North Coor: NA		_		
VAC= Vacuum	710,		1.0.		/ \~g	East Coor: NA		_		

ARCAI	DIS	esign & Consultancy or natural and uitt assets						Bori	ing No	o.: <u>AUS</u>	S-SB4	9			
Soil Boring L								Sheet :		1	of	1			
Project Name:	BP Olyr	mpia Bulk Pl	lant	Date	Started:	8/18/2015		Jason Little		•					
Project Number:				Date Con	npleted:			Ross LaGrand	deur						
Project Location:	1120 W	est Bay Driv	ve NW, Oly	/mpia, WA	1	Weather Co	onditions:	NA							
Danth	T Dlaws	Decovery	Torrala ID	םום ד	Tuece	Theresistion						Compl	ation		
Depth (feet)	Blows per ft		Sample ID & Time	PID (ppm)	Class.	Description						Compl Deta			lisc. cription
<u> </u>											+		الد		Присп
	er first en	ncountered (@6.5 ft	0.1	SM	SAND with silt,	brown, po	orly graded, di	ry					,	, !
1	1 '					1								,	, !
2] '	2		1										,	, !
<u> </u>	-	HAND AUGER		1										,	, !
з	- 1	l AU		1										,	1
\vdash \vdash \vdash	 	ا ا		1										,	, !
4		A		1										,	, !
5		Ì		1									S	,	, !
。				1									qic	,	, !
6				1									Ö	,	, !
<u> </u>	-		 		—								ite	,	, !
7 <u></u>		N /N /		1									ţo	,	, !
⊢ ੍ −	† 1	[\/ \/	7.5	1									en	,	, !
—— 8 ——	1 1	1 X X	SB-49 -7.5	3.3		Woody debris							B	,	, !
,	<u> </u>	[/\	SB.	1		-							tec	,	, !
。] '	/ \ / \	-	1									Hydrated Bentonite Chips	,	i I
10] !			 	—	 							ĚΙ	,	, 1
<u> </u>	-	\ \\ /		1									_	.	i I
<u> </u>	-	[\		1										,	į l
	† 1			1										,	i I
12	1	1 / 1 /		0.7		Woody debris								,	i I
13] '	$ \wedge \wedge $		0.7		Woody debits								,	i I
L	_	$1/\setminus 1/\setminus$		1										,	1
14	-	 		1										,	i I
├	-	/ W \	. !	1										,	, !
 15 						End of Bore	hole at 15	feet bas							
16															
16	1 '			1										,	, !
17] '			1										,	i I
<u> </u>	_			1										,	i
18	-			1										,	i I
- -	-			1										,	i
19	-			1										,	i
	† '			1										,	i
20	<u> </u>			<u> </u>											<u>i </u>
Drilling Co.:		Cascade D						HA / Acetate S	Sleeve	Э					
Driller:		Frank Scott					g Interval:								
Drilling Method:		HA, Geopro	obe			_Water First enc	ountered: /el Finish:								
Drill Rig Type: Remarks:		Geoprobe				_	d to Well:		/ No						
bgs = below grou	nd surfac	Ce	HA= Hand	d Auger			face Elev:		1110				_		
NA= Not Applicat				ago.			orth Coor:						_		
VAC= Vacuum							ast Coor:						_		

ARCAI	DIS 🖁	esign & Consultancy r natural and alt assets				Boring No.: AUS-SB5	50			
Soil Boring L						Sheet: 1 of	1			
Project Name:		npia Bulk Pl	ant	Date	Started:		•			
Project Number:				Date Cor						
Project Location:	1120 W	est Bay Driv	e NW, Oly	mpia, WA		Weather Conditions: NA				
		_	I			I=				
Depth	Blows	Recovery	Sample ID	PID		Description	Compl			SC.
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Deta	alis	Desc	ription
⊢ . −	Ì	1A/ot	or first one	ountored	ec o fi					
1			er first end	.ounterea	@6.0 IL					
_ , _		Ш	5.							
	\	၅	AUS-SB- 50 (2-2.5)	0.1	CL	CLAY with silt, brown, poorly graded, dry, woody organic				
3	\	₹	₹ ∪			layer encountered				
–	\	HAND AUGER								
 	İ	\ ₹								
	İ	\ +						တ		
,		7						iσ		
6	ļ ,							Hydrated Bentonite Chips		
<u> </u>	ļ	\						ite		
— 7 —		\	10					to		
⊢		$ \setminus \setminus \setminus $	SB-50 -7.5					en		
8 —		XXX	3-50			Woody debris		<u>в</u>		
_ , _		/	SS					ţe		
L	ļ	/ \/ \						dra		
10		/ <u> </u>						Ŧ		
\vdash $-$		\								
11 —		\								
12	İ	$ \setminus / \setminus / $								
		V Y				Woody debris				
13	ļ	$ \wedge \wedge $				1.000, 1000				
<u> </u>	ł	/\ /\								
14	ł	/ \ / \								
45	İ	/ W \								
15						End of Borehole at 15 feet bgs				
16	ļ									
<u> </u>	ļ									
17	ļ									
⊢ −										
18	İ									
19	Į.									
L " —	ļ									
20	ļ									
Drilling Co.:	l .	Cascade D	rilling I P		l	Sampling Method: HA / Acetate Sleeve				
Driller:		Frank Scott				Sampling Interval:				
Drilling Method:		HA, Geopro				Water First encountered: 6.0 ft bgs				
Drill Rig Type:		Geoprobe				Water Level Finish: NA				
Remarks:						Converted to Well: Yes Vo		_		
bgs = below groun			HA= Hand	l Auger		Surface Elev: NA		_		
NA= Not Applicab VAC= Vacuum	ie/ Not A	valiable				North Coor: NA East Coor: NA		_		
VAC- VACUUIII						Lasi Cuui. INA				

ARCA	DIS 🖁	esign & Consultancy r natural and ilt assets						Borii	ng No.: /	US-SB	51	=.		
Soil Boring L	oa							Sheet:	1	of	1			
Project Name:		npia Bulk Pl	ant	Date	Started:	8/17/2015	Logger:	Jason Little		- 01	•			
Project Number:				Date Con				Ross LaGrand	eur					
Project Location:	1120 W	est Bay Driv	ve NW, Oly	mpia, WA		Weather Co	nditions:	NA						
			1		1	1				-			1	
Depth	Blows		Sample ID	PID		Description						pletion		sc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.						De	tails	Desc	ription
⊢		/ Water f	irst encoun	tered @ 6	5 ft									
1	/													
		2	D B											
2	\	5	AUS-SB- 51(2-2.5)	0.1	CL	CLAY, grey, trac	e silt, pod	orly graded, mo	ist, some	woody				
_ 3	\	HAND AUGER	AU 51(debris								
,	\	Δ'												
4		\ Z												
⊢ –		\ `												
5 <u></u>												bs		
\vdash $-$		→										冥		
6		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1									Hydrated Bentonite Chips		
⊢ ₋ −		\										nit		
			Ω.									달		
_ o		$ \lor \lor$	SB-51-7.5	1.1		Woody debris						Ser .		
		$ \land \land $	B 5	1.1		Woody debits						d E		
9		/ \	Ø									ate		
		/ \ / \										dra		
10		<u> </u>)									È		
\vdash $-$		N /N /												
11		\												
⊢ . <u>.</u> −														
12 —		$ \lor \lor $		0.5		\\/ - - -								
13				0.5		Woody debris								
14		/ \ / \												
⊢ –		/												
15		<u> </u>	<u> </u>	_		End of Bore	holo at 1	5 foot has	_		_			
⊢ −						Lila of Bore	noic at i	o idei bys						
16														
17														
18														
19														
<u> </u>														
20														
Drilling Co.:		Cascade D	rillina L. P.		<u> </u>	Sampling	Method:	HA / Acetate S	leeve			I	l	<u> </u>
Driller:		Frank Scot				Sampling								
Drilling Method:		HA, Geopro				Water First enco		6 ft bgs						
Drill Rig Type:		Geoprobe				Water Leve		NA						
Remarks:			·			Converted			No	-				
bgs = below grour			HA= Hand	l Auger			ice Elev:							
NA= Not Applicab	ie / Not /	Available					th Coor:							
VAC= Vacuum						Ea	st Coor:	NA						

ARCA	ARCADIS Period Consultancy for reducted and provided and															
									She	et ·	1	of	1			
Project Name:		npia Bulk Pla	ant	Date	Started:	8/17/201	5	_oager:	Jason L	ittle	•	01	<u>'</u>			
Project Number:				Date Cor			5	Editor:	Ross La	Grandeu	r					
Project Location:	1120 W	est Bay Driv	e NW, Oly					ditions:	NA							
					1	ı										
Depth	Blows	Recovery	Sample ID			Description								oletion		SC.
(feet)	per ft	(feet)	& Time	(ppm)	Class.								De	tails I	Desc	ription
\vdash $-$			Water fir	st encour	itered @	9 4 ft										
1																
		<u>~</u>	4 <u>6</u> -													
2		从	AUS-SB- 52(2-2.5), DUP-1	169.7	CL	Silty CLAY,	dark b	orown, p	oorly gra	aded, low	plasticity	',				
_ 3) n	AU 52(DI			wood debri	S	· ·								
,		≺ HAND AUGER														
4		<u> </u>														
⊢ –		¥		NIN A		\\\ f=-==										
5		_		NM		Wood fragr	nents,	ioose, v	wet, no re	ecovery				bs		
\vdash $-$														Ĭ		
6				NM		Wood fragr	nents	loose v	wet no re	covery				Hydrated Bentonite Chips		
⊢ _ −		M /		14141		TTOOG Hagi	nonto,	10000, 1	1101, 110 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Ë		
		\ / \ /												얼		
8		$ \setminus / \mid \setminus / \mid$	SB-52-7.5											3er		
		X X	-52-	3.8		Woody deb	ris							d E		
9 —		/ \ / \	SB											ate		
		/ \ / \												dr		
10		/ 												Ŧ		
<u> </u>		N /N /I														
11		\ / \ /														
12 —		$ \lor \lor $		0.7		\\/ -										
13 —		$ \lambda \wedge $		0.7		Woody deb	ITIS									
		/														
14		/ \ / \														
⊢ –		/ \ / \														
15		/ V \				End of	Doroh	ala at 1	15 feet be	70						
\vdash $-$					I	Liiu oi	Doleii	ole at 1	io ieer ni	၂ ၁						
—— 16 ——																
17																
18																
_ "																
19																
<u> </u>																
20	l															
Drilling Co.:		Cascade Dr	rilling I P		<u> </u>	Sam	nlina N	/lethod:	HA / Acc	etate Slee	eve			<u> </u>		
Driller:		Frank Scott						nterval:			v					
Drilling Method:		HA, Geopro				Water First										
Drill Rig Type:		Geoprobe				Water	Level	Finish:	NA							
Remarks:								o Well:		s ☑ No						
bgs = below grour			HA= Hand					e Elev:								
NA= Not Applicab	ie/ Not A	vailable	NM=Not N	1easured				h Coor:								
VAC= Vacuum							Eas	t Coor:	NΑ							

ARCA		sign & Consultancy				Boring No.: AUS-SB52-A	
Soil Boring L		it assets				Sheet: 1 of 1	
Project Name:		mpia Bulk Pla	ant	Date :	Started:		
Project Number:	GP09BF	PNAWA60		Date Con		d: 9/01/2015 Editor: Ross LaGrandeur	
Project Location:	1120 W	est Bay Driv	re NW, Olym	ıpia, WA		Weather Conditions: NA	
Depth	Blows	Recovery	Sample ID	PID	USCS	S Description Completion Misc	
(feet)	per ft	(feet)	& Time	(ppm)	Class.		
		Water firs	t encountere	ed @ 6.5 ft			
1	 						
⊢ ຼ —	/	<u>~</u>	-5.	t			
		- B	SB-6				
з		HAND AUGER	AUS-SB-52- Offset(2-2.5)	1.6	ML	Clayey SILT, light brown, poorly graded, dry, organic debris	
⊢ . —	 \	<u> </u>	_ ∢∪	†		debris	
4 —	1	\ A					
	↓	\ =				8	
<u> </u>	 	\ '				ਮੁੱ	
 6 	†	ı 👉 '				S	
	ľ	$\sqrt{}$.,			Woody debris Woody debris	
	↓	,\ / \ /'	SB-52-Offset -7.5			ntc	
8	 	,	ffset	11.1		Woody debris	
⊢	†	$_{1} \wedge \wedge $	22-0	11.1		Woody debris	
9]	_i / \ / \'	SB-6			 	
10	↓	<u>/ </u>	ļ		ļ	H H H	
<u> </u>	 	\					
11		.\	5.5				
12	1	,\/ \/'	t - 12				
L '- —		,)ffse	1.3		Woody debris	
13	†	, // // '	SB-52-Offset - 12.5				
14		,/\ /\'	SB				
14	↓	,/ \ / \'					
15	\coprod					Find of Devokale at 45 feet has	
⊢ −						End of Borehole at 15 feet bgs	
16		, 					
17	↓	i '					
<u> </u>	 	i '					
18	†	, 					
		i '					
19	↓	, 					
20	 	, 					
Drilling Co.:	——	Cascade Dr	rilling I P	<u> </u>		Sampling Method: HA / Acetate Sleeve	
Driller:		Kyle C	illing L			Sampling Interval:	
Drilling Method:		HA, Geopro	be			Water First encountered: 6.5 ft bgs	
Drill Rig Type:		Geoprobe				Water Level Finish: NA	
Remarks: bgs = below grour	nd curfac	20	HA= Hand A	Augor		Converted to Well: Yes No Surface Elev: NA	
NA= Not Applicab			TIA-TIATIU A	augei		North Coor: NA	
VAC= Vacuum	10, 1101,1	· anabio				East Coor: NA	

ARCAI	DIS∤₿	esign & Consultancy or natural and wilt assets						Borin	ig No.: AUS	S-SB5	i2-B	=		I
Soil Boring L	Log							Sheet :	1	of	1			
Project Name:	BP Oly	mpia Bulk Pl	lant	Date	Started:	9/02/2015	Logger: Ja	ason Little						
Project Number:	GP09B	PNAWA60		Date Con		9/02/2015	Editor: R	Ross LaGrande	eur					
Project Location:	1120 W	est Bay Driv	ve NW, Oly				conditions: N							
						<u>-</u>								
Depth	Blows	,		1		Description						pletion		isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.						Det	tails	Desc	ription
⊢ –	4									1	I	'		1 1
1	4	Wat	iter first end	countered	L@ 6.5 f	ft					ļ	'		1 1
<u> </u>	 			1						1	I	'		ĺ
2	+ /	l ji	SB-52-B- 2.5							1	I	'		1
-	+ \	၂ ၅	3B.6	4.7	ML	Clayey SILT, gr	rev noorly a	raded dry		-	I	sdi		1
3	† \	¥		1	1412	Olayoy Ole., g.	cy, poon, g	radea, ary		\neg	I	ig.	'	1
\vdash , \lnot	† \	HAND AUGER	!							1	I	Hydrated Bentonite Chips		ĺ
4 —	†	\ \\									I	nit	'	1
	1	\ I	!							1	I	뒫		1
]		!								ļ	3er		1
6	<u>]</u>	<u>\</u>	!								ļ	d E		1
_ _	_]			ļ	<u> </u>							ı te		1
7 <u></u>	↓	$\Lambda /$	1							1	I	di di		ĺ
L _	↓	\ / \ /	ſά		ML	Clayey SILT, gr	rev. poorly g	raded, wet		1	I	Ť		1
8	4	$ \vee \vee $	SB-52-B-7.5	2.0			-5/1- 73	,		1	I			1 '
⊢ –	4	$I \land I \land$	-52-	2.0		<u> </u>					I	<u>'</u>	'	1 '
9 ——	4	 / \ / \	SB			Woody debris					I	'		1
<u> </u>	4	\ \ \ \	,			Woody debits				1	I	'		1 '
10			<u> </u>		_	End of Bor	ehole at 10	feet has					\vdash	
⊢ <i></i> −			T			Liid oi Boi	onoio at 10	loot bgo						
11 —	† '		,								ļ			1
12 —	1 '		1									1		1
12] '		1									1		1
13	↓ '		1									1		1
L	↓ '		1									1		1
14	-		'								ļ	1		1
⊢ –	-		1									1		1
15	-		!							1	I	'		ĺ
<u> </u>	+		!							1	I	'		1 '
 16 	†		!							1	I	<u>'</u>		ĺ
⊢ <u>.</u> −	†		!							1	I	<u>'</u>		ĺ
17	†		!							1	I	'		1 '
18	†		!								ļ	'		1
10 —]									1	ļ		'	1
19]									1	ļ		'	1
_ · · _]		!								ļ	'		ĺ
20	↓		!							1	I	<u>'</u>		ĺ
	<u> </u>	2		<u> </u>	Ь	0 1' -	** 45 at 11	:: / 4 (-)				<u> </u>	<u> </u>	
Drilling Co.:		Cascade Di	rilling L. P.					HA / Acetate SI	eeve					
Driller:		Kyle C HA, Geopro	<u></u>				g Interval:	F ft has						
Drilling Method: Drill Rig Type:		Geoprobe	obe			Water First end	ountered: <u>6</u> vel Finish: N	.5 II Dgs						
Remarks:		Geoprobe					ed to Well:	VA ☐ Yes	No					
bgs = below grou	nd surfa	Ce	HA= Hand	d Auger			face Elev: N		<u>40</u>					
NA= Not Applicat			11/1-110	17 lugoi			orth Coor: N					_		
VAC= Vacuum	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						East Coor: N					—		

6 A D C A E	NO I Desi	ion & Constituents				Daving No : AUC CD	EO		$\overline{}$
ARCAL		stural and assets				Boring No.: AUS-SB	53		
Soil Boring L	_og					Sheet: 1 of	1		
Project Name:		mpia Bulk Pl			Started:				
Project Number:				Date Con					
Project Location:		-				Weather Conditions: NA			
Depth	Blows		Sample ID			Description	Completion		isc.
(feet)	per ft	(feet)	& Time				Details	Desc	ription
	'ر ا	Water fi	irst encoun	tered @ 6	.5 ft				.
1 <u></u>	· /'		1	i					
_ 2	† <i>(</i> '	œ		i					
′] \ '	GE		0.0	ML	Clayey SILT, brown, trace sand, poorly graded, organic	၂ တွ		.
з	\ '	HAND AUGER		i		debris	hip		.
<u> </u>	\ '	0		i			၂ ၂ ၁		.
 4 	\'	Z		i			nit(.
- -	\'	Ì		i			<u> </u>		.
°] '	\setminus		i] Jac		
6	<u> </u>			i			Hydrated Bentonite Chips		.
<u> </u>	-	<u></u>	1		—		ate		.
7 <u></u>		N /N /		i			Mar		.
⊢	1	[\/ \/	7.5	i		CAND III blic become	£		.
8	1 '	1 X X	SB-53-7.5	0.0	SP	SAND with cobbles, brown, coarse grained sand, rounded coarse gravel, gap graded, wet			. !
<u> </u>	ַ '	$1/\backslash /\backslash$	Š	i		louilded coalse glavel, gap gladed, well			. !
<u> </u>	↓ '	[/ \]/ \	. !	i					
10		<u>/ </u>				End of Borehole at 10 feet bgs			
						Elia di Bolellole al 10 leel bys		T	
11	-			i					.
<u> </u>	-			i					.
<u> </u>	- 1			i					
13	† '			i					
13] '			i					.
14	ן '			i					.
<u> </u>	↓ '			i					.
 15 	- I			i					
⊢ <u> </u>	<u> </u>			i					
16	1			i					.
17	<u>]</u> '			i					
└ <u> </u>	_ ՝			i					.
18	<u> </u>			i					
<u> </u>	 			i					
19	┤ '			i					
	† '			i					,
20	1'		<u> </u>	<u> </u>					
Drilling Co.:		Cascade D				Sampling Method: HA / Acetate Sleeve			
Driller: Drilling Method:		Frank Scott				Sampling Interval:			
Drill Rig Type:		Geoprobe	JDE			Water Level Finish: NA			
Remarks:		•				Converted to Well: Yes V No			
bgs = below grou						Surface Elev: NA			ļ
NA= Not Applicat		Available				North Coor: NA			
HA= Hand Auger						East Coor: NA			

ARCAL	OIS Design	n & Consultancy itural and assets				Boring No.: AUS-SB	54		
Soil Boring L						Sheet: 1 of	1		
Project Name:	BP Olvr	npia Bulk Pl	lant	Date	Started:	8/20/2015 Logger: Jason Little	<u> </u>		
Project Number:				Date Con					
Project Location:			ve NW, Oly	mpia, WA		Weather Conditions: NA			
Depth	Blows	Recovery	Sample ID	PID	Hece	Description	Completion	N/	isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Description	Details		ription
(1001)	por it						Betane	5000	приоп
_ ,	Ī	water r	irst encour	itered @ 6	o.51t				
_ ' _	1 ,								
2	/	2	S- 54 (5:						
	/ /	<u> </u>	AUS- SB-54 (2-2.5)	0.6	ML	Clayey SILT, brown, trace fine grained sand, trace cobbles, poorly graded, dry	sd		
3	- \	HAND AUGER				cobbles, poorly graded, dry	Hydrated Bentonite Chips		
_ , _	† \	Ω) e		
4 <u></u>		Z					nit		
_ 5		\ I)to		
_]						3er		
6 <u></u>		7					Į į		
_	 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					ate		
7 <u></u>		\					/dr		
— <u> </u>	†		.5				£		
8 			SB-54-7.5	0.0	SG	SAND with gravel, brown, coarse grained sand, medium			
	1	/	SB			coarse gravel, gap graded, wet			
]	/ \ / \							
10		/ V \							
					ı	End of Borehole at 10 feet bgs			
11									
	<u> </u>								
12									
	1								
13									
<u> </u>	†								
14									
	1								
15 <u></u>									
16									
_ " _	<u> </u>								
17									
_	+								
18									
	†								
19									
20									
Drilling Co.:		Cascade D				Sampling Method: HA / Acetate Sleeve			
Driller:		Frank Scott				Sampling Interval: Water First encountered: 6.5 ft bgs			
Drilling Method: Drill Rig Type:		HA, Geopro Geoprobe	nue .			Water Level Finish: NA			
Remarks:		Scopione				Converted to Well: Yes Vo			
bgs = below grou	nd surfac	ce				Surface Elev: NA			
NA= Not Applicat	ole/ Not A					North Coor: NA			
HA= Hand Auger						East Coor: NA			

<u> </u>						5 · N	4110.0	D			
ARCAL	Design & Consultancy for natural and built assets					Boring No.: _	AUS-S	B55			
Soil Boring L	.oq					Sheet: 1	of	1			
Project Name:	BP Olympia Bulk		Date Star		8/19/2015 Logger:	Jason Little					
	GP09BPNAWA60		Date Com	npleted:		Ross LaGrandeur					
Project Location:	1120 West Bay D	rive NW, Oly	mpia, WA		Weather Conditions:	NA					
Depth		y Sample ID	PID		Description			Comple			isc.
(feet)	(feet)	& Time	(ppm)	Class.				Deta	ils	Desc	ription
_	Water first e	ncountered	@ 5 ft								
1 <u></u>	<u> </u>										
_	HAND AUGER		0.0	ML	Clayey SILT, brown, poo	rly graded, dry			Ø		
— з ——	\ ♀								Hydrated Bentonite Chips		
_									Ö		
4 —		AUS- SB-55 (4.5-5)							nite		
	\	₹ % 4.	0.8	CL	CLAY, grey, poorly grade	ed, wet			ᅙ		
_ 5	\ \ <u>\</u>	1							3er		
6	\ / \	/							ğ		
	<u> </u>	/							ate		
—— 7 ——	1 IV V	SB-55-9.5			Woody debris				ydı		
_ 。	$\Lambda \mid \Lambda \mid \Lambda$	3-55	0.2						I		
_ 。	I /\ /'	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
9	/ \ /	\									
	1 / V			SP	SAND, black, medium g	rained, poorly graded, we	et				
10 					End of Borehole at 1	O feet bas		_			
_					Zila di Bordilolo at 1	0 1001 290					
11											
12											
13											
14											
	 										
 15 											
16											
16	<u> </u>										
17											
_	 										
—— 18 ——											
19											
20											
	Occasion Dellinos				O a sea l'a se Marth a de	IIA / O					
Drilling Co.: Driller:	Cascade Drilling I Frank Scott	<u> P.</u>			Sampling Method: Sampling Interval:	HA / Geoprobe					
	HA, Geoprobe				Water First encountered	: 5 ft bas					
Drill Rig Type:	Geoprobe				Water Level Finish:	NA					
Remarks:					Converted to Well:	☐ Yes ☑ No			_		
bgs = below group					Surface Elev:	NA			_		
NA= Not Applicab HA= Hand Auger					North Coor: East Coor:	NA NA			_		

ARCAL		ultancy				Boring No.: AUS-SB	56		
Soil Boring L						Sheet: 1 of	1		
Project Name:	BP Olympia				Started:	8/19/2015 Logger: Jason Little			
Project Number:				Date Com					
Project Location:	1120 West I	Bay Driv	∕e NW, Oly	mpia, W	<u>A</u>	Weather Conditions: NA			
Depth	Blows Re	200Verv	Sample ID	PID	LISCS	Description	Completion	T N	∕lisc.
(feet)		(feet)	& Time	(ppm)	Class.		Details		cription
(1661)		,					Details		Jipuon
- -	- Wa	ter first	encounter	ed @ 5.5	ft	1			
 	1 / T			1					
-	1 (~		1		1	1		
<u> </u>	1 \	HAND AUGER		0.4	CL				
⊢ −	 	<u>ල</u>		0	<u> </u>	CLAY, brown, trace silt, poorly graded, low plasticity, dry	sd		
з	 	ا ا		1			Hydrated Bentonite Chips		
⊢ −	 	ο '		1			0		
4 <u></u>	- \	Z		1					
<u> </u>	- \	ا ک	<u> </u>	0.8	CL	CLAY, brown, trace silt, poorly graded, low plasticity, dry,	į į		
5 <u></u>	- -	<u> </u>	AUS- SB-56 (4.5-5)	0.8	UL		<u> </u>		
L _	↓		AUS SB- (4.5	1		trace woody debris	l B		
6	↓	ŀ		1			g		
<u> </u>	↓				↓		ate		
7 <u></u>	」	/\ /'		1					
L] [\ ,	/ \ / '		1			゠゠゚゠゙		
8] \/	\/ '	-7.5	1			-		
L	J X	X	SB-56 -7.5	0.5	СН	CLAY, grey, high plasticity, wet			
g] [/\	$\langle / \rangle $	SB.	1		1			
`] [/]	\ / \!		1					
10	1 <u> </u>	V _\'	!	1	l		l <u> </u>		
						End of Borehole at 10 feet bgs			
⊢ ₁₁								\top	
11 —	1	!		1		1			
	1	!		1		1			
12	1	ŀ		1					
F	1	!		1		1			
13 —	1	!		1					
⊢ −	1	!		1		1			
14	1	ŀ		1					
–	-	!		1		1			
—— 15 ——	┥	ŀ		1		!	1		
Drilling Co.:	l Cas	D above	rilling L. P.		Ь	Sampling Method: HA / Acetate Sleeve	11		L
Driller:	Kyle		IIIII L. i .			Sampling Interval:			
Drilling Method:		, Geopro	-ha			Water First encountered: 5.5 ft bgs			
		., Geopro oprobe	ibe			Water Level Finish: NA			
Drill Rig Type:	Geo	prope							
Remarks:						Converted to Well: Yes VNo			
bgs = below group						Surface Elev: NA			
NA= Not Applicab		able				North Coor: NA			
HA= Hand Auger						East Coor: NA			

ARCAD) S Design	on & Consultancy atural and				Boring No.: AUS-SB57
Soil Boring L		assets				
Project Name:		mpia Bulk Pl	lant	Data	Started:	Sheet: 1 of 1 I: 8/19/2015 Logger: Jason Little
Project Number:			iain	Date Con		
Project Location:			ve NW, Olyr			Weather Conditions: NA
Danth	Dlawa	Danassami	01- 10	DID	LICCC	Description Completion Miss
Depth (feet)	Blows per ft	Recovery (feet)	Sample ID & Time	PID (ppm)	Class.	Description Completion Misc. Details Description
(leet)	perit	(leet)	& Time	(ppm)	Class.	Details Description
– , –	\M/at	er first enco	untered @	6.5.ft		
1 <u></u>	VVat	er mist enco	untereu @	0.511		
2	/	2	5,00			
	/	35	AUS- SB-57 (2-2.5)	0.3	ML	Sandy SILT, brown, poorly graded, dry
3		HAND AUGER	- 0, 0			CLAY, grey, poorly graded, high plasticity, moist
		_				
4		Z		0.9	СН	CLAY, grey, poorly graded, high plasticity, moist
├ ₋ -		\ `		0.0	011	Q
5						
_						te l
7		N /N /				dra
		\ / \ /	10			
8		$ \lor \lor $	SB-57-7.5	0.2	СП	
<u> </u>		$ \land \land$	9-5	0.2	СН	CLAY, grey, poorly graded, high plasticity, wet
9 —		/ \ / \	Ø			
<u> </u>		/ \/ \				
10						End of Borehole at 10 feet bgs
_						
11						
⊢ −						
12						
13						
14						
_ `` _						
—— 15 ——						
<u> </u>						
—— 16 ——						
— <u> </u>						
17						
18						
16						
19						
20						
Drilling Co.:		Cascade D	rilling L P		L	Sampling Method: HA / Acetate Sleeve
Driller:		Kyle C	IIIIIII L. P.			Sampling Interval:
Drilling Method:		HA, Geopro	obe			Water First encountered: 6.5 ft bgs
Drill Rig Type:		Geoprobe	-			Water Level Finish: NA
Remarks:		•				Converted to Well: Yes Vo
bgs = below ground						Surface Elev: NA
NA= Not Applicab	le/ Not A	Available				North Coor: NA
HA= Hand Auger						East Coor: NA

ARCAD)IS Design	gn & Consultancy actural and					Borin	g No.: AUS-SB	58		
Soil Boring L		assets					Sheet :	1 of	- : 1		
Project Name:	BP Olvr	mpia Bulk Pl	lant	Date	Started:	8/19/2015 Logger:	Jason Little	1 of	f 1		
Project Number:			un	Date Con			Ross LaGrande	ur			
Project Location:			ve NW, Oly			Weather Conditions:					
Depth	Blows	Recovery	Sample ID	PID	LISCS	Description			Comr	oletion	 isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Description				tails	ription
\	F -	\. = - ·/		\FT /					1 1		
_ ₁	/ W	ater first en	countered	@ 6.5 ft							ļ
L · _	↓ /			ļ —							ļ
2 <u></u>	-	HAND AUGER	AUS- SB-58 (2-2.5)	0.6	CL	CLAY, brown, trace silt, p	noorly graded dr	W	-		
⊢ ຸ —	(၂ ၅	AL SB (2-:	0.0	CL	OLAT, DIOWII, HAGE SIII, P	Judiny graded, dr	у	-	ips	
3		¥		ţ						Hydrated Bentonite Chips	
] \ '	9								te	
_	\ \	₹	ļ							ni	
5	\		ļ							ntc	
<u> </u>	۱ ۱	\								Be	
 										ed	
—	+	\							1	rat	
/	1 '	\								lyd	
8		$ \setminus / \mid \setminus / \mid$	SB-58 -7.5							I	
_	ļ '	X X	-58	2.7	CL	CLAY, grey, uniformly gra	aded, wet				
9 <u></u>	-	[/	SB								
<u> </u>	 	/ \/ \									
 10 						End of Borehole at 10) feet bas				
_					П						
11											
_	+ '										
12	† !										
	† '										
13	† !										
-	†										
14	1										
15	ļ '										
15	1										
16											
] '										
17											
	ļ '										
 18 	-										
	†										
19	•										
20] '										
		<u> </u>	<u> </u>			<u> </u>					
Drilling Co.:		Cascade D	rilling L. P.			Sampling Method: Sampling Interval:		eeve			
Driller: Drilling Method:		Kyle C HA, Geopro	nhe .			Sampling interval: Water First encountered:					
Drill Rig Type:		Geoprobe	<i>,</i>			Water Level Finish:					
Remarks:		- C00p.000				Converted to Well:		No			
bgs = below ground						Surface Elev:					
NA= Not Applicab		4vailable				North Coor:					
HA= Hand Auger						East Coor:	NA				

	\ C Desig	gn & Consultancy				Boring No.: AUS-SB	59	
ARCAL		etural and assets				boiling No.: Noo ob	<u> </u>	
Soil Boring L	.og						1	
		mpia Bulk Pl	ant		Started:	8/19/2015 Logger: Jason Little		
Project Number: Project Location:	1120 W	ANAWA60	vo NIM. Ohr	Date Con	npietea:	9/01/2015 Editor: Ross LaGrandeur Weather Conditions: NA		
Depth	Blows	,		PID		Description	Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Details	Description
<u> </u>	Wate	er first enco	untered @ 4	4.5 ft	SG	SAND and gravel with some organics		
1							1	
	/	œ						
_ 2		HAND AUGER		1.4	ML	Sandy SILT with little gravel, grey, medium dense	ဖွ	
з		Ž					Hydrated Bentonite Chips	
	\ \	70					0	
4	1	₹					#	
	† †	Ĩ		1.5	СН	CLAY, grey, medium plasticity, very dense, moist	i j	
5	!		AUS- SB-59 (4.5-5)			7 9 77 1 97 7		
6	<u>"</u>		4 N 4			Wood fragments, wet	🖁	
L	. !	<u> </u>		ļ			je je	
7	. '	N /N /					25	
<u> </u>	<u> </u>	[\ / [\ /	5.			Woody debris, wet	-	
 	'	$I \lor I \lor$	SB-59-7.5	1.2		Woody debits, wet		
	† '	$ \wedge \wedge $	SB-6					
		/ \ / \				Woody debris		
10		$V \longrightarrow$		<u> </u>		,		
<u> </u>					T	End of Borehole at 10 feet bgs		
11	. '							
<u> </u>								
12								
<u> </u>								
13	<u> </u>							
	† '							
14	!							
15								
	ļ '							
16								
	. '							
 17 								
	† '							
18	'							
19								
20	. '							
Drilling Co.:		Cascade D	rilling I D	<u> </u>		Sampling Method: HA / Acetate Sleeve	<u> </u>	<u> </u>
Driller:		Kyle C	IIIIII L. F.			Sampling Interval:		
Drilling Method:		HA, Geopro	be			Water First encountered: 4.5 ft bgs		
Drill Rig Type:		Geoprobe				Water Level Finish: NA		
Remarks:						Converted to Well: Yes Vo		
bgs = below group						Surface Elev: NA		
NA= Not Applicable/ Not Available HA= Hand Auger						North Coor: NA East Coor: NA		
ı ı, ı— ı ıarıu Augel						Last Cool. IVA		

ARCAL	DIS Designation for near built a	n & Consultancy tural and ssets				Boring No.: AUS-SE	360			
Soil Boring L	oa					Sheet: 1 o	f 1			
Project Name:		npia Bulk Pl	ant	Date S	Started:		' '			
Project Number:			<u></u>	Date Con						
Project Location:			e NW. Olv			Weather Conditions: NA				
						I=				
Depth	Blows	Recovery		PID		Description	Comple			isc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Deta	IIS	Desc	ription
	Water	first encou	ntered @ 4	1 ft	SG	SAND and gravel with some organics				
1 <u></u>	_/						-			
-	/	~								
2		描	AUS- SB-60 (2-2.5)	0.8	ML	Sandy SILT with little gravel, grey, medium dense				
-		ഉ	AL SB (2-;	0.6	IVIL	Sandy SILT with little graver, grey, medium dense	+	bs		
3		HAND AUGER				Large cobble encountered at 3.5 feet bgs		돚		
_	+	<u> </u>				Large cobble encountered at 5.5 feet bgs		0		
 	1	z					-	Ĕ		
_	ł l	£						ğ		
 5 		_				Wood fragments, wet		e u		
-	ł l					Trood hagmonto, wot		ă		
 								Hydrated Bentonite Chips		
	 	\ <u> </u>					1	rat		
— 7 —		\ / \ /						δ		
	†	\ / \ /	.5		ML	Sandy SILT, grey, poorly graded, low plasticity, wet,		Ť.		
 		X I X	30-7	0.2		trace woody debris				
<u> </u>	1	$/\setminus /\setminus$	SB-60-7.5							
9 —		/ \ / \	0,			M/I	1			
10		<u>/ </u>				Woody debris				
_					1	End of Borehole at 10 feet bgs				
16										
_	•									
17										
<u> </u>										
18										
_	ł									
19										
_	†									
20										
Drilling Co.:	ı l	Cascade D	rilling L. P.		1	Sampling Method: HA / Acetate Sleeve		ı	ı	
Driller:		Kyle C	<u> </u>			Sampling Interval:				
Drilling Method:		HA, Geopro	be			Water First encountered: 4 ft bgs				
Drill Rig Type:		Geoprobe				Water Level Finish: NA				
Remarks:						Converted to Well: Yes No				
bgs = below groun	nd surfac	е				Surface Elev: NA		_		
NA= Not Applicab						North Coor: NA		_		
HA= Hand Auger						East Coor: NA		_		

ARCAL)IC Desi	ign & Consultancy				Boring No.: AUS-SB61
		assets				
Soil Boring L Project Name:	<u>-og</u>	mpia Bulk Pla	14	Doto	Started:	Sheet: 1 of 1 t: 08/17/2015 Logger: Jason Little
Project Name: Project Number:			ant	_		t: 08/17/2015
Project Number: Project Location:			Je NW. Olvn		Tipieteu.	Weather Conditions: NA
					111200	
Depth (fact)	Blows			PID		Description Completion Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Details Description
⊢	† ,	Water fi	irst encount	ered @ 5 :	ft	
1 —	† /					
	1 \	œ	7 2 6	l		
] \	9	AUS- SB-61 (2-2.5)	0.0	CL	CLAY, brown, trace silt, trace small cobbles, poorly
3] \	HAND AUGER	4 00 50		Ţ	graded, dry
∟ ˙ _	ļ '	\ \ \				
4 —	4	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
⊢ –	4			0.2	CL	CLAY, grey, trace silt, poorly graded, wet
5	+			0.2	+ CL	OLAT, gley, trace six, poorty graded, wet
⊢ ຸ −	†					
6	†					Moody depuis Moody depuis Chips
F , -	†	M /			1	ite
	1	\				to
	1	\/ \/	-7.5			
L			SB-61-7.5	0.3		Woody debris
9 —	1	 /\ /\'	SB			
<u> </u>	4	/ \ / \'				
10	4	\	 	 	+	<u> </u>
⊢ –	4	\ \\\\ /'				
11	1	1\ / \ /'				
L _	1	1\ / \ / '				
12	1	1\/ \/				
⊢ –	4	X X		0.6		Woody debris
13	1					
⊢ –	+					
14 _	†					
<u> </u>	1	V \	\			
15						End of Borehole at 15 feet bgs
F					T	
16	†					
47	†					
17 —	†					
18	1					
10]					
19	1					
	1					
20	1					
Drilling Co.		Cacando D	-:Ilina I D		Ь	Compling Mathed: LIA / Apotate Classes
Drilling Co.: Driller:		Cascade Dr Kyle C	Alling L. P.			Sampling Method: HA / Acetate Sleeve Sampling Interval:
Drilling Method:		HA, Geopro	nhe			Water First encountered: 5 ft bgs
Drill Rig Type:		Geoprobe	ine.			Water Level Finish: NA
Remarks:		- COOP				Converted to Well: Yes No
bgs = below group	nd surfa	ce				Surface Elev: NA
NA= Not Applicab						North Coor: NA
HA= Hand Auger						Fast Coor: NA

ARCAD)IS Design	gn & Consultancy actural and assets				Boring No.: AUS-SE	362			
Soil Boring L	.og					Sheet: 1 o	f 1			
Project Name:	BP Olyr	mpia Bulk Pl				08/17/2015 Logger: Jason Little				
Project Number:	GP09B	PNAWA60				08/28/2015 Editor: Ross LaGrandeur				
Project Location:	1120 W	est Bay Driv	ve NW, Olyr	npia, WA		Weather Conditions: NA				
Depth (feet)	Blows per ft		Sample ID & Time	PID (ppm)	USCS Class.	Description	Completion		Misc. Description	
		ter first enco								
_ ₁	/	ter mist ence	Junitered &	411	4					
<u> </u>	/ /	~				CUT to a decrease de companie	4			
2	/ /	AUGER	S- 62 5)	0.1	ML	Fine SILT, trace clay, medium dense, dry, organic debris				
<u> </u>		ଚ	AUS- SB-62 (2-2.5)	0.1			-			
3		∖			CL	CLAY with little silt	-			
<u> </u>	ł					Wood fragments, wet				
 4 	•			1		Wood Hagments, wet				
⊢ ₋ −	ł	HAN				Wood fragments, wet (no recovery)	- "			
5	ł						غِ. ا	<u> </u>		
	{						5	5		
_ 0	l			<u> </u>			q	בי		
_ 7	ĺ	Λ /					<u>ء</u> ا آ	5		
_ ′ _	l	\ / \ /		1			5	i		
8		\/ \/	SB-62-7.5				4	Ď		
<u> </u>	1	X X	3-62	1.2		Woody debris	5	2		
9 —		/ \ / \	SE				Hydrated Bentonite Chins	41		
<u> </u>	ł	/ \/ \					 	5		
10	·	$\langle \cdot \rangle$	 	 	+		- f	Ē		
–	ł	N /IN /								
11	ł	\ / \ /		1						
	1	$ \setminus / \mid \setminus / $		1						
12	ł	$I \lor I \lor$		1		Woody debris				
13	ĺ	$ \Lambda \Lambda$		1.3		Woody debris				
	l	/\ /\								
14		/ \ / \		1						
L	1	V \ / \								
15	<u> </u>									
⊢ –					_	End of Borehole at 15 feet bgs	<u> </u>			
16	ł									
<u> </u>	ł			1						
17	ł			1						
L	1			1						
18	ł									
	1			1						
19	l									
20	ĺ			1						
	l									
Drilling Co.:		Cascade D				Sampling Method: HA / Acetate Sleeve				
Driller:		Frank Scott				Sampling Interval:				
Drilling Method:		HA, Geopro	be			Water First encountered: 4 ft bgs				
Drill Rig Type:		Geoprobe				_ Water Level Finish: NA Converted to Well:				
Remarks: bgs = below grour	ad curfo	00				Converted to Well: ☐ Yes ☑ No Surface Elev: NA				
NA= Not Applicab						North Coor: NA				
HA= Hand Auger		available				Fast Coor: NA				

ARCAD	OIS Design	in & Consultancy itural and assets					Boring No.: AUS-SB	862-A	
Soil Boring L	.oa						Sheet: 1 of 1		
		npia Bulk Pl	ant	Date Star	ted:	8/20/2015 Logger:	Jason Little		
Project Number:	GP09BI	PNAWA60		Date Con	npleted:	9/01/2015 Editor:	Ross LaGrandeur		
Project Location:	1120 W	est Bay Driv	e NW, Olym	pia, WA		Weather Conditions:	NA		
Depth	Blows	Recovery	Sample ID	PID	USCS	Description		Completion	Misc.
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Doddingadii		Details	Description
(/									
_ ,	Wat	ter first enco	ountered @	6.5ft					
2	\	2						_	
<u> </u>	\	5		0.1	ML		race sand, poorly graded, low	S	
— з —	\	⊋				plasticity, dry		- <u>'</u>	
<u> </u>	\	70) o	
4	\	HAND AUGER						l lite	
-	١ ١	Ť	φ 4:	1.7	CL	Silty CLAY, low plasticity,	stiff moist	Hydrated Bentonite Chips	
5 <u></u>		\ _	AUS-SB- 62- Offset(4. 5-5)	1.0	- 02	enty entries placementy,	o,o.	e l	
	†		AUS Offis					<u> </u>	
— 6 —	Ì							l ec	
_ ,	İ İ	\						<u>I</u>	
_ ′		\	7.5						
8		\	set-		CL	Silty CLAY, low plasticity,	stiff moist	-	
∟		X X	5	0.8	0_		o,		
9 <u></u>		/\ /\	SB-62-Offset-7.5						
⊢ –		/ \ / \	SS			\\\\- = d\\\\ d = b \\\\		4	
10		<u>/ </u>			_	Woody debris			
⊢ –			T	T	т	End of Borehole at 10	feet bgs		
11	ļ								
L									
12									
13									
<u> </u>									
14									
15									
15	+								
Drilling Co.:	l	Cascade D	rilling I P	I	1	Sampling Method:	HA / Acetate Sleeve	1 1	
Driller:		Kyle C				Sampling Interval:	11/1/ / lociate Oleeve		
Drilling Method:	•	HA, Geopro	be			Water First encountered:	6.5 ft bgs		
Drill Rig Type:		Geoprobe	· - -			Water Level Finish:	NA		
Remarks:		<u> </u>				Converted to Well:	☐ Yes ☑ No		
bgs = below grour						Surface Elev:	NA		
NA= Not Applicab	le/ Not A	vailable				North Coor:	NA		
HA= Hand Auger						East Coor:	NA		

ARCAL)IS Design & for natural built as:	& Consultancy ural and isets				Boring No.: AUS-SB6	63		
Soil Boring L						Sheet: 1 of	1		
Project Name:		npia Bulk	Plant	Date §	Started:				
Project Number:				Date Com					
Project Location:						Weather Conditions: NA			
•						D	Commission		E a a
Depth (fact)			Sample ID	PID (nnm)		Description	Completion Details		Misc. scription
(feet)	per ft	(feet)	& Time	(ppm)	Class.		Details	Des	Сприон
├ -	-	Water fir	rst encounte	ered @ 6	.5 ft				
1 <u></u>	1 T	7							
├	1 /	~	<u> </u>	İ					
2	1 /	HAND AUGER	AUS-SB- 63 (2 -2.5)	0.0	SP	SAND, brown, fine grain size, poorly graded, dry			
-	1 /	ഉ	AUS (2)	0.0	 	07 (142), 0.0 m., g. g. a 0.120, p. 11 j. g. 11 j.	g		
3 —	1 (¥	,	†		1	<u>ا ج</u>		
├ . —	1	Ω				1	o		
4 —	1 \	Z				1	#		
├ <u> </u>	\	\ 主					일		
5 <u></u>	1						Hydrated Bentonite Chips		
F , —	1	\				1	<u> </u>		
о	1	*				1	ţ		
厂_ ,	1 [$\sqrt{\Lambda}$					2		
]	\ / \ /	'						
]	\/ \/	SB-63 -7.5			SAND with gravel, brown, coarse grained sand, medium			
L		XΙX	ဒု	0.0	SG	grained rounded gravel, gap graded			
9]	/\ /\	SB			graniou roundou gravor, gap g. assa			
L . –	↓ /	/ \ / \							
10		\	<u> </u>	<u> </u>	<u> </u>	To the Complete of 40 foot have			<u> </u>
└ —						End of Borehole at 10 feet bgs			ı
11	4								
⊢ –	4								
12	-					1			
⊢ –	-					1			
13	1								
 	1								
14	1								
⊢ _ −	1					1			
15	1								
Drilling Co.:		Cascade	Drilling L. P	!	السلل	Sampling Method: HA / Acetate Sleeve	ļ		
Driller:		Kyle C				Sampling Interval:			
Drilling Method:		HA, Geop	orobe			Water First encountered: 6.5 ft bgs			
Drill Rig Type:		Geoprobe				Water Level Finish: NA		-	
Remarks:			•			Converted to Well: Yes VNo			
bgs = below groun						Surface Elev: NA			
NA= Not Applicab		vailable				North Coor: NA			
HA= Hand Auger						East Coor: NA			

Date Start/Finish: August 23, 2010

Sampling Method: HA/HSA Rig Type: HA/HSA

Driller's Name: --Drilling Method: HA/HSA

Drilling Company: Cascade

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 12' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: MW-6R

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive

Olympia, Washington

Well/Boring
raphic Description Construction
XXXXX Flushmount well
Did lid
Well cap. Concrete.
2" PVC riser.
derate hydrocarbon-like odor, wet.
2/12 silica sand pack.
0.010 slot PVC screen.
ground surface by Stem Auger Auger

Data File:MW-6R

Page: 1 of 1

Date Start/Finish: August 24, 2010

Drilling Company: Cascade

Driller's Name: --

Drilling Method: HA/HSA Sampling Method: HA/HSA

Rig Type: HA/HSA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 13' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: MW-7

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

DЕРТН -	ELEVATION Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
-0	0							Flushmount well
							Gravel packed soil surface.	lid. Well cap.
-	- MW-7 2-2.5	2-2.5	100	1.7			Brown sandy SILT, trace fine subrounded and subangular gravel, fine sand, dry, occasional organics, no odor or staining.	lid. Well cap. Concrete. 2" PVC riser. Bentonite.
-	MW-7-4-4.5	4-4.5	100	0.4	ML		Brown SILT with fine sand, low plasticity, slightly moist, no odor or staining.	
-	MW-7- 6-6.5	6-6.5	100	1.4			Brown silty SAND, trace gravel, fine to medium sand, subrounded fine gravel, increasing silts, moist, no odor or staining.	
			100	0.3	SM			2/12 silica sand pack. 0.010 slot PVC screen.
- 10 -10	-		100	0.2		FFFFFF		
	-		100	-			Brown sandy SILT, fine sand, no odor or staining, wet at 11.5' bgs. Boring terminated at 13' bgs.	
							Remarks: bgs: below ground surface HSA: Hollow Stem Auger	

HA: Hand Auger

Page: 1 of 1

Infrastructure, environment, buildings

Date Start/Finish: August 24, 2010 Drilling Company: Cascade

Driller's Name: --

Drilling Method: HA/HSA Sampling Method: HA/HSA Rig Type: HA/HSA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 13' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: MW-8

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

			AND AND AND					4-41-41-4-31-4-31-43-31-31-31-31-31-31-31-31-31-31-31-31-31
DEPTH	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
								Flushmount well
							Gravel packed soil surface.	lid. Well cap.
-	MW-8- 2-2.5	2-2.5	100	2.9			Light brown sandy SILT with clay, trace fine subrounded gravel, fine sand, moist, occasional organics, no odor or staining.	lid. Well cap. Concrete. 2" PVC riser. Bentonite.
- 5 -5	MW-8- 4-4.5	4-4.5	100	1.1			Brown clayey SILT, trace very fine sand, wood debris, moderate plasticity, moist, no odor or staining.	
	MW-8- 6-6.5	6-6.5	100	2.4	ML		Brown SILT with clay, trace very fine sand, trace wood debris, increasing sand, low plasticity, moist, no odor or staining.	2/12 silica sand pack.
	-		100					0.010 slot PVC screen.
<u> </u>	-		100	-			Brown sandy SILT with trace gravel, fine sand, fine rounded gravel, no odor or staining, wet at 12' bgs.	
	-		100	-			Boring terminated at 13' bgs.	
1							Remarks: bgs: below ground surface	

Infrastructure, environment, buildings

Remarks: bgs: below ground surface HSA: Hollow Stem Auger

Date Start/Finish: August 24, 2010 Drilling Company: Cascade

Driller's Name: --Drilling Method: HA/HSA

Sampling Method: HA/Split Spoon

Rig Type: HA/HSA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 13' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: MW-9

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
-0									Flushmount well
		1.00			Y 23			Gravel packed soil surface.	lid. Well cap.
70	- '	MW-9- 2-2.5	2-2.5	100	1.3			Light brown sandy SILT with clay, trace fine rounded gravel, fine sand, non-plastic, moist, no odor or staining.	lid. Well cap. Concrete. Bentonite. 2" PVC riser.
- 5	-5 -	MW-9- 4-4.5	4-4.5	100	1.4				
		MW-9- 6-6.5	6-6.5	100	1.9	ML		Brown SILT with sand, very fine sand, some wood debris, increasing sand, low plasticity, moist, no odor or staining.	2/12 silica sand pack. 0.010 slot PVC screen.
- 10 -	10 -			100	-			Wet at 10' bgs.	
								Boring terminated at 13' bgs.	

Remarks: bgs: below ground surface HSA: Hollow Stem Auger

Date Start/Finish: August 24, 2010 Drilling Company: Cascade

Driller's Name: --Drilling Method: HA/HSA

Sampling Method: HA/Split Spoon

Rig Type: HA/HSA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 13' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: MW-10

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

DEPTH FI EVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
-0						201		Flushmount well
						\bigcirc	Gravel packed soil surface.	lid. Well cap.
- 5 -5	MW-10-2-2.5		100	2.7	ML .		Light brown SILT with sand and trace gravel, non-plastic, fine sand, subangular fine gravel, no odor or staining. Wet at 4' bgs. Brown SILT with sand, trace clay, low plasticity, very fine sand, no odor or staining, wet.	Well cap. Concrete. Bentonite. 2" PVC riser.
- 10 -10 ·	MW-10-6-6.5	6-6.5	100	5.4			Brown sandy SILT with wood debris (30%), fine sand, wet, no odor or staining.	2/12 silica sand pack. 0.010 slot PVC screen.
			0				No recovery. Boring terminated at 13' bgs.	

Infrastructure, environment, buildings

bgs: below ground surface HSA: Hollow Stem Auger

Date Start/Finish: August 25, 2010 Drilling Company: Cascade

Driller's Name: --

Drilling Method: HA/HSA

Sampling Method: HA/Split Spoon

Rig Type: HA/HSA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 13' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: MW-11

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

MW-11 2-2.5 100 2.1 2.1 2.2.5 100 2.1 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5 100 2.1 2.2.5	ОЕРТН	ELEVATION Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
MW-11 2-2.5 100 2.1	0	0							Flushmount well
MW-11- 2-2.5 100 2.1									Well cap.
4-4.5	-	MW-12-2.	1- 2-2.5 5	100				Light brown SILT with sand and gravel, non-plastic, fine sand, medium to coarse subrounded gravel, no odor or staining.	Bentonite.
2/12 silica sand pack. 0.010 slot PVC screen.	— 5	4-4.	5		2.0	ML			
No recovery.	-	6-6.	1- 6-6.5		1.4			odor or staining.	pack. 0.010 slot PVC
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 i	10 -		100				No recovery.	
	-			0		-		Boring terminated at 13' bgs.	

Infrastructure, environment, buildings

HSA: Hollow Stem Auger

Date Start/Finish: August 25, 2010 Drilling Company: Cascade

Driller's Name: --Drilling Method: HA/HSA

Sampling Method: HA/Split Spoon

Rig Type: HA/HSA

Northing: --Easting: --

Casing Elevation: --

Borehole Depth: 13' Surface Elevation: --

Descriptions By: Colleen Martin

Well/Boring ID: MW-12

Client: BP

Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
0									Flushmount well
		A. (1986-2100)						Gravel packed soil surface.	lid. Well cap.
-		ИW-12- 2-2.5	2-2.5	100	0.4			Brown SILT with sand, trace fine subrounded gravel, fine sand, non-plastic, moist, no odor or staining.	lid. Well cap. Concrete. 2" PVC riser. Bentonite.
- 5	-5 -	ИW-12- 4-4.5	4-4.5	100	0.6				
-	-	MW-12- 6-6.5	6-6.5	100	0.1	ML		Brown sandy SILT with gravel and wood debris, fine sand, fine rounded gravel, no odor or staining, wet at 6' bgs.	2/12 silica sand pack. 0.010 slot PVC screen.
-10 -	-10 -			100	T.			Boring terminated at 13' bgs.	
			<u> </u>				===	Remarks: bgs: below ground surface	

Infrastructure, environment, buildings

HSA: Hollow Stem Auger HA: Hand Auger

ARCA	DIS	esign & Consultancy r natural and uitt assets				Boring No.: MW-13	_
Soil Boring L	_og					Sheet: 1 of 1	
Project Name:	BP Olyr	npia			Started:		
Project Number: Project Location:			o Olympia	Date Cor	npleted:	12/15/16 Editor: Weather Conditions: Cloudy, 30-35° F	
-						· · · · · · · · · · · · · · · · · · ·	
Depth (fact)	Blows		Sample ID	PID		Description Comp	
(feet)	per ft	(feet)	& Time	(ppm)	Class.	Det	Concrete
– , –	1					2" diameter schedule 40 PVC riser	
1 —						2" diameter schedule 40 PVC riser	Bentonite Chips
]	ER				' dia	Be
⊢ +	HA	HAND AUGER		0.2	SP	0 - 3': Fine SAND, poorly sorted, light brown, dry, fairly	
3	ПА	¥	•	0.2	- 31	loose.	1
4]	S					
⊢	4	¥					
5	HA			0.9	CL	3 - 6.5': Medium plasticity SILT and CLAY, light brown,	
6						dense 5	
		Λ Λ	,	0.9	Wood	dense 6.5 - 7': Woody debris with little grey clay 7 - 9': Medium plasticity SILT and CLAY, grey, wet, some wood included 20 20 20 20 20 20 20 20 20 20 20 20 20	
7	-	\	•	0.9	vvoou	0.5 - 7 : Woody debris with little grey day	-
8 -		$ \vee \vee $		0.4	CL	7 - 9': Medium plasticity SILT and CLAY, grey, wet, some	Sand
	1	$ \wedge \times $				wood included $\frac{1}{2}$	0)
9	1			1.2	Wood	<u> </u>	
	1	<u> </u>	,	1.2	*******	e L	
10		\	1			dis -	
11		$ \setminus / \setminus /$				9 - 13': Woody debris with grey sand and clay	
L " _	1	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				groy cana and cay	
12	4	$ / \setminus / \setminus $					
⊢ −	1	/ \// \		0.8	Wood		
13		V				End of Boring @ 13 feet bgs	
14				0.2.25 (
	V	Vater first ei	ncountered	@ 2.35 ft	bgs		
15							
16]						
<u> </u>	4						
17	1						
18	1						
_ " _	4						
19	1						
20							
20							
Drilling Co.: Driller:		Holt Service Michael Ru				Sampling Method: HA / acetate sleeve Sampling Interval: 2.5' (0 - 6.5'); continuous (6.5 - 13')	
Drilling Method:			nning r / Direct Pu	sh		Water First encountered: 2.35' bgs	
Drill Rig Type:		Geoprobe				Water Level Finish: NA	
Remarks:			114 - 11 1	A		Converted to Well: Yes No	
bgs = below grou NA= Not Applicat			HA= Hand	Auger		Surface Elev: <u>NA</u> North Coor: N A	
Vac= Vacuum						East Coor: NA	

APPENDIX C Groundwater Monitoring Field Data Sheets

GROUND			PLING LOG									1
Project No.		OF Y	MPIA		Well ID	MW-	7			Date	Page <u>1</u> 12-15	
(5)			LY / 1120	wes				- - (//	1		35°F c	
			Screen		,			7 - 0 7	7	Well Mate		PVC
0: " 141 :			7			Casing Diameter (in.)		-			-	_ss
Static Water Level (ft-bmp)	2. 9	56'	Total Depth (ft-bm	p) 12.	37'	Water Colum Gallons in We	n/ ell 9. 8 I	/1.69	allons			
MP Elevation		j.	Pump Intake (ft-b		-	Purge Method				Sample Method	gral	5
	/	_	Volumes Purged		gallons		Submersib	perista	14.	mourou		
Sample Time:	Start	0915 0910 0925	Replicate/ Code No.					7		Sampled I	by RE	>
Time	Minutes Elapsed	Rate (gpm)	Depth to Water	Gallons Purged	рН	Cond.	Turbidity	Dissolved Oxygen	Temp.	Redox	Аррє	earance
0900	10	mL/min)	(ft) 3,28	0.5	7.46	(ms/cm) 614,5	(NTU)	(mg/L)	(°F)	(mV) 255.3	Color	Odor
0903	(3	1	3,28	0.65	7.47	544.6	/ (0.47	10.0	233.0	clear	10
0906	16	V	3,28	0.8	7.51	527.7)	0,31	9.9	187.4		
0908	18		3.28	0.0	7.52	522.9	, ,	0.28	9.9	186.2		
0910	10	1	3.28	W. ()	7.02	523.0		0,28	9.8	181.0		
										-		-
								5				
						* Test						
												-
					_							
Constituents	Sampled				Container VO A				Number 3		Preserva I-IC	tive
BTEX/N	TBE!	EDC			VOA	+			3		HCI	
EDIS	6)	1101			VO /	150	*		2	-	1101	
DRO/140) w/a	566			AMB	CER			2	-	HCC 1-1-1	
cPAH/Na	phih	alenes			AM	SER			2	_	non.	e
Total Le	ad	1			POL	<u>Y</u>				- , ,	HNO	
Vissolve	d Lea	d			ruc	7					n on .	٤
Well Casing V Gallons/Foot	1" = 0.04 1.25" = 0.0			2.5" = 0.26 3" = 0.37		5" = 0.50 = 0.65	6" = 1.47					
Well Informa Well Loca		()					\\/\all	Looked of	Arrival	Yes		No
18-30 1000-0-0	Well Location: Sedae of excave Condition of Well: Good					Well Locked at Arrival: Well Locked at Departure:			Yes	/	No	
Well Completion: Flush Mount / Stick Up					Up			Number ⁻	_			

GROUND	WATER S	AMP	PLING LOG								1	- 1
Project No.	GP09BP	NA	WAGO		Well ID	MW-	8			Date	Page 1	of 1
			14/1120					JA			35°F	cloudy
Measuring Pt. Description			Screen		54'	- (1			Well Mate		PVC SS
Static Water Level (ft-bmp)	2.02		Total Depth (ft-br			Water Colum Gallons in W	in/ 'ell / [,]	7/1.	8gellon	5"		_
			Pump Intake (ft-l			Purge Method		P		Sample Method	grab	
Pump On/Off	0847/10	140	Volumes Purgeo	d 0.9	Sol		Submersib	ble	4.1	Method		
Sample Time:	Start 101 End 100	12	Replicate/ Code No.			_	Other	perists	Itic	Sampled	by RB	
Time	Elapsed (g	Rate (pm) (L/min))	Depth to Water (ft)	Gallons Purged	1.0	Cond. (mMhos) (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)		Redox (mV)	Appea	earance
0957		.00	3.54	0.5	7.35	1521	-	0.46	10.2	44.3	sheen	no
1000	13	1	3,54	0.65	7.36	1555	-	0.39	10.2	41.0		
1003	16		3.54	0.8	7.36	1590	-	0.36	10.1	39.8	1	
1703	X X		J.) 7	10:-1	7.36	1) 7 7		0.77	10.1	39.2		10
	\vdash	-										
		-				-				 		-
		\top								 		
		-		+						\vdash		
Constituents S	3ampled				Container				Number ?		Preservati	ve
	BE/EDC				VOA			•	2		1-1C1 1-1C1	
EDB	20,000			-	VOA			r 10 1	2		HCI	
DRO/HD	w/SGC				AMBE	R		· · · · · ·	2		HCL	
DR0/140	w/0 5G1	<u>C</u>			AMBE			•	2	-	1401	
CAH /NG	aphthalenes	>			AMBE			ē i			none	<u> </u>
Dicayed	Load			-	POLY	,					14N03	<u>></u>
1213)01 ***					1001						n one	
	1" = 0.04 1.25" = 0.06		' = 0.09 = 0.16	2.5" = 0.26 3" = 0.37		.5" = 0.50 ' = 0.65	6" = 1.47					
Well Informat												
Well Locat		10	ef exau	ection				Locked at		Yes	/	NO
Well Completion: Flush Mount / Stick Up							Well Locked at Departure: Yes / / / / / /					

GROUND	WATER	SAME	PLING LOG									. 1
Project No.	6.80	9 BDN	AWAGO		Well ID	Mw-	à			Date	Page	_
Project Name	/Location	RPAI	4/1120	Wit	Tax)	Drive O	L mizis	\./A			35°F,	
Measuring Pt.	10411					Casing	211	, w , .		Well Mate		PVC
Description	top o	of casin	Screen (Setting (ft-bmp)		5	Diameter (in.)		- ,				ss
Static Water Level (ft-bmp)	2.8	9	Total Depth (ft-bi	mp) 13.	31'	Water Colum Gallons in W	n/ ell <i>10,4</i>	2/1.	7 gg 1			
MP Elevation			Pump Intake (ft-	1	3'	Purge Metho	d: <i>LF</i>	12		Sample Method	0 16	6
Pump On/Off	1100/	1143	Volumes Purge	d 0.7 g	allons		Centrifuga Submersit	ole		Method	-), <1	
Sample Time:		1115	Replicate/				Other	gerist	WHY	Sampled	PB	
		1123	Code No.			7				Sampled	by NT	
Time	Minutes	Rate	Depth to	Gallons	рН	Cond.	Turbidity	Dissolved	Temp.	Redox		
	Elapsed	(gpm) (mL/min)	Water (ft)	Purged		(mS/cm)	(NTU)	Oxygen (mg/L)	(°F)	(mV)	Color	Odor
1110	10	TOU	3.95	0,5	7.48	514.2	-	0.37	10.3	22.0		
1112	12		3.95	0.6	2.47	519.8	~	0.35	10.3	23.4		
1114	14		3.95	0.7	7.47	523.9	~	0.34	10.3	21.6		
	-							-		1		
				-						-		
	L					1				 		
				1						<u> </u>		
		,										
					100							
												<u> </u>
			THE LEAD									
	\vdash											
						1						
Constituents	Sampled				Containe	7			Number		Preservat	ive
9KU	TO-11	D/		_	VOH			-	7	-	HCI	
SIEX /M	TBE/E)(-	VOA	4.27/62		-	2	-	HC1 HC1	-
DROLLO	/ (66		-	1 MRI	C17		-	2	-	1+61	
D20/HO	W/S	5/2(- s	AMB	r.R		-	2	-	HCI	
PAH.	Nesht	halone	<u> </u>		AMBE	R			2	_	non	e
TotalL	eat	1 04 17 110			POL	1		-	1		HNO	7
Dissolved	Long			_	POLY	1				_	non	2
Well Casing \	/olumes											
Gallons/Foot	1" = 0.04 1.25" = 0.06		5" = 0.09 = 0.16	2.5" = 0.26 3" = 0.37		3.5" = 0.50 " = 0.65	6" = 1.47					
Well Informa	ation	100000								1		
Well Loca		s edg	e ex exce	vetuo	^		Well	Locked a	t Arrival:	Yes	1	Nò
Condition o	f Well:	900	No. of Concession, Name of	1				ked at De	_	Yes	1	Ne
MOU Comp	lotion.	-	luch Mount /	Stick	Hn		Kov	Number	To Mall.			

GROUND	WATE	R SAMI	PLING LOG								1	- 1
Decidat No.	GPAG	RPNIA	1.14(.0)		Wall ID	MW-1-	<			Doto	Page 1	
Project No.	" - sation	DDOI	WA60 Y/1120	t	VVeil 1D	Paul O		1.11			12-15 350F	cloudy
Measuring Pt		PIUL	Screen	West	bery		, ,	, wy		Well Mate		_PVC
Description	top of	- Casing	Setting (ft-bmp)		3	Casing Diameter (in.)	2"	-		VVEII IVIALE		_ss
Static Water Level (ft-bmp)	2.3	;6	Total Depth (ft-bn	np)	- Consequence	Water Colum Gallons in We	ell					
MP Elevation			Pump Intake (ft-b			Purge Method	d: Li- Centrifuga			Sample Method	gra	
Pump On/Off	1243	1350	Volumes Purged	1.55	gallons		Submersib	ble	115	Metriou	-3.	X 1/
Sample Time	Start	1315	Replicate/ Code No.			(GRO, BTE		perist BE, DRO/		Sampled b	by Ri	3
Time	Minutes	Rate	Depth to	Gallons	рН	Cond.	Turbidity	Dissolved		Redox	Арре	earance
	Elapsed	(gpm) (mL/min)		Purged		(mS/cm)	(NTU)	Oxygen (mg/L)	(°F)	(mV)	Color	Odor
12:50	6	200	2,40	0,3	7.64	340.5	-	0.80	9.8	107.4	dear	10
17:53	12	200	2.37	0.6	7.65	342.1	-	0.67	10.0 10.Z	63.0		
12:59	15	200	2.37	0.75	7.69	345.1	~	0.41	10,2	36.1		
13:08		200	2.35	1.25	7.64	346,0	~	0.21	10.2	-31.4		
13:11	28	7.00	2.35	1,4	7.64	346.3	~	0.21	10.2	-34.3		
13:14	31	200	2.35	1.55	7.64	346.1	~	0.22	10.3	-37.1	<i>y</i>	V
	+			++				<u> </u>				-
	+			+-+						 		
					-							
	\vdash			-				<u> </u>	<u> </u>	 	<u> </u>	
	-			+								+
Constituents GRO	Sampled				Container V()				Number 3 x 7	7	Preservat	tive
	TRE /E	FDC			1/0 A				3 × 2		14C1	0
EDB	100/-	V -			VOA	9			2	f .	HCI	
DRO/HO	w/	566			AME	3EP			2		HCI	
DRO/HO) w/o	56,1			11.10	BER			7	-	HCI	
PAH/A	Japhth	alphe			0	BER	1		-	-	none	
Total Le	<u>ad</u>				POL				1		HIYO	5
Vissolved	Lead				POL	<u> </u>			1		nune	
Well Casing V Gallons/Foot	1" = 0.04 1.25" = 0.06		.5" = 0.09 ' = 0.16	2.5" = 0.26 3" = 0.37		.5" = 0.50 " = 0.65	6" = 1.47					
Well Loca		5 edg	ie of ex	v. +	-25		Well	Locked at	Arrival:	Yes		No
Condition o	CONTRACTOR CONTRACTOR	new	, —	LVC	<i>/</i> /\			ked at De		Yes	1	No
Well Comp	letion:		Jush Mounts /	Stick	Un		Kev	Number T	To Well:			

Gauging Data

Date 03/09/2017 Sampler Eric Krueger

Well	Date/Time	Depth To Water (ft)	Well Depth (ft)	Depth to LNAPL (ft)	PID (ppmv)	Remarks
MW-13	03/09/2017 11:21	2.33	12.23		0.2	
MW-7	03/09/2017 10:45	2.51	12.37		0.3	
MW-8	03/09/2017 10:53	2.66	13.19		0.2	
MW-9	03/09/2017 11:15	2.56	13.31		0.3	
WA-BPOLY- Site	03/10/2017 08:27					

Sampler: Eric Krueger

Site: WA-BPOLY

MW-7

Date 03/09/2017 Weather Conditions Rain Depth to Water (ft 2.51 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 12.37 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 9.86 Low Flow - Peristaltic Pump Intake Depth (ft bmp) Purge Method Pump Gallons in Well 1.61 Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
12:13	600	6.0	6.44	310.7	144.7	1.84		2.53	
12:16	1200	6.7	6.42	304.2	136.3	1.64		2.56	
12:19	1800	6.8	6.42	305.5	130.3	1.57		2.59	
12:21	2200	6.9	6.39	305.7	125.6	1.52		2.63	

Sampling Summary

Sample Date	03/09/2017	Odor	No
Sample Time	12:25	Analysis	SW8260B,SW6010B,8011,NWTPH-
Sample ID	MW-7-Q117		Gx,NWTPH-Dx
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	3 - 40mL vial with NA2S2O3,1 - 250mL poly with HNO3,1 - 250mL Poly with HNO3,BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved
		Remarks	

Sampler: Eric Krueger

Well Integrity Checklist

Enkun

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		X		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

Site: WA-BPOLY

MW-8

Date 03/09/2017 Weather Conditions Rain Depth to Water (ft 2.66 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 13.19 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) 2 Water Column in Well 10.53 Low Flow - Peristaltic 7.00 Pump Intake Depth (ft bmp) Purge Method Pump Gallons in Well 1.72 Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
13:04	600	8.8	6.20	2204	15.6	1.25		2.68	
13:07	1200	8.4	6.20	2222	-12.9	0.80		2.70	
13:10	1800	8.5	6.21	2233	-26.9	0.52		2.72	
13:13	2400	8.4	6.20	2226	-31.1	0.46		2.73	
13:16	3000	8.4	6.21	2202	-35.6	0.43		2.75	

Sampling Summary

Sample Date	03/09/2017	Odor	No
Sample Time	13:20	Analysis	SW8260B,SW6010B,NWTPH-
Sample ID	MW-8-Q117		Gx,NWTPH-Dx
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved
		Remarks	

Sampler: Eric Krueger

Well Integrity Checklist

Enkun

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		X		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

Site: WA-BPOLY

MW-9

Date 03/09/2017 Weather Conditions Rain Depth to Water (ft 2.56 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 13.31 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 10.75 Low Flow - Peristaltic Pump Intake Depth (ft bmp) Purge Method Pump 1.75 Gallons in Well Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
13:40	600	7.9	5.92	537.6	5.9	0.91		2.59	
13:43	1200	7.8	5.90	536.4	2.0	0.67		2.62	
13:46	1800	7.8	5.89	526.0	-1.6	0.58		2.64	
13:48	2200	7.8	5.90	515.9	-3.8	0.55		2.69	

Sampling Summary

Sample Date	03/09/2017	Odor	No
Sample Time	13:50	Analysis	SW8260B,SW6010B,NWTPH-
Sample ID	MW-9-Q117		Gx,NWTPH-Dx
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,3 - 40mL vial with NA2S2O3,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved
		Remarks	

Sampler: Eric Krueger

Well Integrity Checklist

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	Х			
Water in the well box		Х		
Sleeve around the well box in good condition	Х			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

Mar 13, 2017, 8:20 PM

Enkun

Site: WA-BPOLY

MW-13

Date 03/09/2017 Weather Conditions Rain Depth to Water (ft 2.33 bmp) **Project Number** GP09BPNA.WA60 Water Quality Meter YSI 12.23 Measured Well Depth PVC Casing Material 1120 West Bay Drive, Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 9.9 Low Flow - Peristaltic Pump Intake Depth (ft bmp) Purge Method Pump Gallons in Well 1.61 Casing Volume to Remove Purge Volume Units ml 0.0 Total Volume to Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
14:18	600	8.4	6.53	246.4	10.5	0.93		2.36	
14:21	1200	8.2	6.50	243.7	7.4	0.64		2.39	
14:24	1800	8.1	6.48	237.7	2.4	0.46		2.41	
14:27	2400	8.1	6.49	235.5	0.1	0.43		2.44	
14:29	2800	8.0	6.47	234.8	0.0	0.40		2.46	

Sampling Summary

Sample Date 03/09/2017 Odor No Sample Time 14:35 Analysis SW8260B,SW6010B,NWTPH-Gx,NWTPH-Dx Sample ID MW-13-Q117 COC Duplicate Sample ID DUP-1 Bottles 3 - 40mL vial with NA2S2O3,BTEX 3x of Dup Sample Time 14:35 40 ml - HCL,Gx 3x 40 ml -HCL, Naphthalenes, cPAHs 2x 250 ml amber unpreserved, Dx- 2x 250 ml

amber glass HCL,Lead 1x 250 ml poly HNO3, Dissolved Lead 1x 250 ml poly unpreserved

Remarks

Sampler: Eric Krueger

Well Integrity Checklist

En Kun

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		Х		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

1 / 7 Powered by: Mar 13, 2017, 8:20 PM

Gauging Data

Date 05/08/2017 Sampler Eric Krueger

Well	Date/Time	Depth To Water (ft)	Well Depth (ft)	Depth to LNAPL (ft)	PID (ppmv)	Remarks
MW-13	05/08/2017 09:49	2.52	12.22		4.2	
MW-7	05/08/2017 09:36	4.22	12.37		4.7	
MW-8	05/08/2017 09:40	2.61	13.19		2.8	
MW-9	05/08/2017 09:44	3.29	13.31		3.3	

Sampler: Eric Krueger

Site: WA-BPOLY

MW-7

Date 05/08/2017 Weather Conditions Sunny Depth to Water (ft 4.22 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 12.37 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 8.15 Low Flow - Peristaltic Pump Intake Depth (ft bmp) 8.0 Purge Method Pump 1.33 Gallons in Well Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
10:21	600	11.4	6.19	1246	-107.2	1.93		4.25	
10:24	1200	11.4	6.16	1249	-103.6	1.09		4.30	
10:27	1800	11.2	6.19	1245	-100.8	0.65		4.33	
10:29	2200	11.2	6.18	1241	-99.1	0.58		4.36	
10:31	2600	11.2	6.19	1234	-97.8	0.53		4.37	

Sampling Summary

Sample Date	05/08/2017	Odor	No
Sample Time	10:35	Analysis	SW8260B,SW8270C-SIM,6020,NWTPH-
Sample ID	MW-7-Q217		Dx,NWTPH-Dx,8011
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved
		Remarks	

Sampler: Eric Krueger

Well Integrity Checklist

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		X		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

May 9, 2017, 5:01 PM

Entro

Site: WA-BPOLY

MW-8

Date 05/08/2017 Weather Conditions Sunny Depth to Water (ft 2.61 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 13.19 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 10.58 Low Flow - Peristaltic Pump Intake Depth (ft bmp) 8.0 Purge Method Pump Gallons in Well 1.73 Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
10:59	600	11.1	6.18	1733	-37.1	1.16		2.64	
11:02	1200	11.1	6.16	1737	-41.5	0.86		2.68	
11:05	1800	11.2	6.16	1748	-47.7	0.43		2.70	
11:08	2400	11.2	6.16	1745	-50.5	0.35		2.75	
11:10	2800	11.2	6.18	1748	-51.4	0.32		2.78	

Sampling Summary

Sample Date	05/08/2017	Odor	No
Sample Time	11:15	Analysis	NWTPH-Gx,NWTPH-
Sample ID	MW-8-Q217		Dx,SW8260B,SW8270C-SIM,6020,8011
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved

Remarks

Sampler: Eric Krueger

Well Integrity Checklist

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		X		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

Entho

Site: WA-BPOLY

MW-9

Date 05/08/2017 Weather Conditions Sunny Depth to Water (ft 3.29 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 13.31 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 10.02 Low Flow - Peristaltic Pump Intake Depth (ft bmp) 8.0 Purge Method Pump Gallons in Well 1.63 Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
11:35	600	10.6	5.88	573.7	-7.5	0.69		3.31	
11:38	1200	10.3	5.89	549.6	-13.0	0.52		3.33	
11:41	1800	10.7	5.87	546.6	-16.8	0.36		3.35	
11:44	2400	10.9	5.88	545.5	-19.2	0.31		3.37	
11:46	2800	10.9	5.98	545.0	-20.4	0.29		3.40	

Sampling Summary

Sample Date	05/08/2017	Odor	No
Sample Time	11:50	Analysis	NWTPH-Gx,NWTPH-
Sample ID	MW-9-Q217		Dx,SW8260B,SW8270C-SIM,8011,6020
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved

Remarks

Sampler: Eric Krueger

Well Integrity Checklist

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		X		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

Thomas

MW-13

Date	05/08/2017	Weather Conditions	Sunny	Depth to Water (ft	2.52
Project Number	GP09BPNA.WA60	Water Quality Meter	YSI	bmp)	
Address	1120 West Bay Drive,	Casing Material	PVC		12.22
Address	Olympia, WA98502	Casing Diameter (in)	2	(ft bmp)	0.7
Purge Method	Low Flow - Peristaltic	Pump Intake Depth (ft bmp)	7.0	Water Column in Well	9.7
i digo moniod	Pump	Casing Volume to Remove		Gallons in Well	1.58
Purge Volume Units	<u>ml</u>	Casing volume to Remove		 Total Volume to 	
Sampling Type	Low Flow			Remove	

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
12:13	600	11.8	6.57	269.8	-6.0	0.80		2.55	
12:16	1200	11.8	6.56	268.1	-20.9	0.49		2.58	
12:19	1800	11.9	6.53	267.8	-30.4	0.34		2.60	
12:22	2400	11.8	6.52	270.0	-40.3	0.26		2.62	
12:24	2800	11.8	6.52	271.9	-46.5	0.25		2.65	

Sampling Summary

Sample Date	05/08/2017	Odor	No
Sample Time	12:30	Analysis	NWTPH-Gx,NWTPH-
Sample ID	MW-13-Q217		Dx,SW8260B,SW8270C-SIM,6020,8011_
Duplicate Sample ID	DUP-1	COC	
Dup Sample Time	12:30	Bottles	
		Remarks	

Sampler: Eric Krueger

Well Integrity Checklist

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		Х		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

an two

Gauging Data

Date 03/09/2017 Sampler Eric Krueger

Well	Date/Time	Depth To Water (ft)	Well Depth (ft)	Depth to LNAPL (ft)	PID (ppmv)	Remarks
MW-13	03/09/2017 11:21	2.33	12.23		0.2	
MW-7	03/09/2017 10:45	2.51	12.37		0.3	
MW-8	03/09/2017 10:53	2.66	13.19		0.2	
MW-9	03/09/2017 11:15	2.56	13.31		0.3	
WA-BPOLY- Site	03/10/2017 08:27					

Sampler: Eric Krueger

Site: WA-BPOLY

MW-7

Date 03/09/2017 Weather Conditions Rain Depth to Water (ft 2.51 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 12.37 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 9.86 Low Flow - Peristaltic Pump Intake Depth (ft bmp) Purge Method Pump Gallons in Well 1.61 Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
12:13	600	6.0	6.44	310.7	144.7	1.84		2.53	
12:16	1200	6.7	6.42	304.2	136.3	1.64		2.56	
12:19	1800	6.8	6.42	305.5	130.3	1.57		2.59	
12:21	2200	6.9	6.39	305.7	125.6	1.52		2.63	

Sampling Summary

Sample Date	03/09/2017	Odor	No
Sample Time	12:25	Analysis	SW8260B,SW6010B,8011,NWTPH-
Sample ID	MW-7-Q117		Gx,NWTPH-Dx
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	3 - 40mL vial with NA2S2O3,1 - 250mL poly with HNO3,1 - 250mL Poly with HNO3,BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved
		Remarks	

Sampler: Eric Krueger

Well Integrity Checklist

Enkun

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		X		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

Site: WA-BPOLY

MW-8

Date 03/09/2017 Weather Conditions Rain Depth to Water (ft 2.66 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 13.19 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) 2 Water Column in Well 10.53 Low Flow - Peristaltic 7.00 Pump Intake Depth (ft bmp) Purge Method Pump Gallons in Well 1.72 Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
13:04	600	8.8	6.20	2204	15.6	1.25		2.68	
13:07	1200	8.4	6.20	2222	-12.9	0.80		2.70	
13:10	1800	8.5	6.21	2233	-26.9	0.52		2.72	
13:13	2400	8.4	6.20	2226	-31.1	0.46		2.73	
13:16	3000	8.4	6.21	2202	-35.6	0.43		2.75	

Sampling Summary

Sample Date	03/09/2017	Odor	No
Sample Time	13:20	Analysis	SW8260B,SW6010B,NWTPH-
Sample ID	MW-8-Q117		Gx,NWTPH-Dx
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved
		Remarks	

Sampler: Eric Krueger

Well Integrity Checklist

Enkun

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		Х		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

Site: WA-BPOLY

MW-9

Date 03/09/2017 Weather Conditions Rain Depth to Water (ft 2.56 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 13.31 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 10.75 Low Flow - Peristaltic Pump Intake Depth (ft bmp) Purge Method Pump 1.75 Gallons in Well Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
13:40	600	7.9	5.92	537.6	5.9	0.91		2.59	
13:43	1200	7.8	5.90	536.4	2.0	0.67		2.62	
13:46	1800	7.8	5.89	526.0	-1.6	0.58		2.64	
13:48	2200	7.8	5.90	515.9	-3.8	0.55		2.69	

Sampling Summary

Sample Date	03/09/2017	Odor	No
Sample Time	13:50	Analysis	SW8260B,SW6010B,NWTPH-
Sample ID	MW-9-Q117		Gx,NWTPH-Dx
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,3 - 40mL vial with NA2S2O3,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved
		Remarks	

Sampler: Eric Krueger

Well Integrity Checklist

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		Х		
Sleeve around the well box in good condition	Х			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

Mar 13, 2017, 8:20 PM

Enkun

Site: WA-BPOLY

MW-13

Date 03/09/2017 Weather Conditions Rain Depth to Water (ft 2.33 bmp) **Project Number** GP09BPNA.WA60 Water Quality Meter YSI 12.23 Measured Well Depth PVC Casing Material 1120 West Bay Drive, Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 9.9 Low Flow - Peristaltic Pump Intake Depth (ft bmp) Purge Method Pump Gallons in Well 1.61 Casing Volume to Remove Purge Volume Units ml 0.0 Total Volume to Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
14:18	600	8.4	6.53	246.4	10.5	0.93		2.36	
14:21	1200	8.2	6.50	243.7	7.4	0.64		2.39	
14:24	1800	8.1	6.48	237.7	2.4	0.46		2.41	
14:27	2400	8.1	6.49	235.5	0.1	0.43		2.44	
14:29	2800	8.0	6.47	234.8	0.0	0.40		2.46	

Sampling Summary

Sample Date 03/09/2017 Odor No Sample Time 14:35 Analysis SW8260B,SW6010B,NWTPH-Gx,NWTPH-Dx Sample ID MW-13-Q117 COC Duplicate Sample ID DUP-1 Bottles 3 - 40mL vial with NA2S2O3,BTEX 3x of Dup Sample Time 14:35 40 ml - HCL,Gx 3x 40 ml -HCL, Naphthalenes, cPAHs 2x 250 ml amber unpreserved, Dx- 2x 250 ml

amber glass HCL,Lead 1x 250 ml poly HNO3, Dissolved Lead 1x 250 ml poly unpreserved

Remarks

Sampler: Eric Krueger

Well Integrity Checklist

En Kun

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		Х		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

1 / 7 Powered by: Mar 13, 2017, 8:20 PM

Gauging Data

Date 05/08/2017 Sampler Eric Krueger

Well	Date/Time	Depth To Water (ft)	Well Depth (ft)	Depth to LNAPL (ft)	PID (ppmv)	Remarks
MW-13	05/08/2017 09:49	2.52	12.22		4.2	
MW-7	05/08/2017 09:36	4.22	12.37		4.7	
MW-8	05/08/2017 09:40	2.61	13.19		2.8	
MW-9	05/08/2017 09:44	3.29	13.31		3.3	

Sampler: Eric Krueger

Site: WA-BPOLY

MW-7

Date 05/08/2017 Weather Conditions Sunny Depth to Water (ft 4.22 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 12.37 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 8.15 Low Flow - Peristaltic Pump Intake Depth (ft bmp) 8.0 Purge Method Pump 1.33 Gallons in Well Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
10:21	600	11.4	6.19	1246	-107.2	1.93		4.25	
10:24	1200	11.4	6.16	1249	-103.6	1.09		4.30	
10:27	1800	11.2	6.19	1245	-100.8	0.65		4.33	
10:29	2200	11.2	6.18	1241	-99.1	0.58		4.36	
10:31	2600	11.2	6.19	1234	-97.8	0.53		4.37	

Sampling Summary

Sample Date	05/08/2017	Odor	No
Sample Time	10:35	Analysis	SW8260B,SW8270C-SIM,6020,NWTPH-
Sample ID	MW-7-Q217		Dx,NWTPH-Dx,8011
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved
		Remarks	

Sampler: Eric Krueger

Well Integrity Checklist

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		X		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

May 9, 2017, 5:01 PM

Entro

Groundwater Monitoring Field Data Form

Site: WA-BPOLY

MW-8

Date 05/08/2017 Weather Conditions Sunny Depth to Water (ft 2.61 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 13.19 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 10.58 Low Flow - Peristaltic Pump Intake Depth (ft bmp) 8.0 Purge Method Pump Gallons in Well 1.73 Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
10:59	600	11.1	6.18	1733	-37.1	1.16		2.64	
11:02	1200	11.1	6.16	1737	-41.5	0.86		2.68	
11:05	1800	11.2	6.16	1748	-47.7	0.43		2.70	
11:08	2400	11.2	6.16	1745	-50.5	0.35		2.75	
11:10	2800	11.2	6.18	1748	-51.4	0.32		2.78	

Sampling Summary

Sample Date	05/08/2017	Odor	No
Sample Time	11:15	Analysis	NWTPH-Gx,NWTPH-
Sample ID	MW-8-Q217		Dx,SW8260B,SW8270C-SIM,6020,8011
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved

Remarks

Sampler: Eric Krueger

Well Integrity Checklist

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		Х		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

Entho

Groundwater Monitoring Field Data Form

Site: WA-BPOLY

MW-9

Date 05/08/2017 Weather Conditions Sunny Depth to Water (ft 3.29 bmp) Project Number GP09BPNA.WA60 Water Quality Meter YSI Measured Well Depth 13.31 PVC 1120 West Bay Drive, Casing Material Address (ft bmp) Olympia, WA98502 Casing Diameter (in) Water Column in Well 10.02 Low Flow - Peristaltic Pump Intake Depth (ft bmp) 8.0 Purge Method Pump Gallons in Well 1.63 Casing Volume to Remove Purge Volume Units ml Total Volume to 0.0 Remove Low Flow Sampling Type

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
11:35	600	10.6	5.88	573.7	-7.5	0.69		3.31	
11:38	1200	10.3	5.89	549.6	-13.0	0.52		3.33	
11:41	1800	10.7	5.87	546.6	-16.8	0.36		3.35	
11:44	2400	10.9	5.88	545.5	-19.2	0.31		3.37	
11:46	2800	10.9	5.98	545.0	-20.4	0.29		3.40	

Sampling Summary

Sample Date	05/08/2017	Odor	No
Sample Time	11:50	Analysis	NWTPH-Gx,NWTPH-
Sample ID	MW-9-Q217		Dx,SW8260B,SW8270C-SIM,8011,6020
Duplicate Sample ID		COC	
Dup Sample Time		Bottles	BTEX 3x of 40 ml - HCL,Gx 3x 40 ml - HCL,Naphthalenes, cPAHs 2x 250 ml amber unpreserved,Dx- 2x 250 ml amber glass HCL,Lead 1x 250 ml poly HNO3,Dissolved Lead 1x 250 ml poly unpreserved

Remarks

Sampler: Eric Krueger

Well Integrity Checklist

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		Х		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

Thomas

Groundwater Monitoring Field Data Form Site: WA-BPOLY

MW-13

Date	05/08/2017	Weather Conditions	Sunny	Depth to Water (ft	2.52
Project Number	GP09BPNA.WA60	Water Quality Meter	YSI	bmp)	
Address	1120 West Bay Drive,	Casing Material	PVC		12.22
Address	Olympia, WA98502	Casing Diameter (in)	2	(ft bmp)	0.7
Purge Method	Low Flow - Peristaltic	Pump Intake Depth (ft bmp)	7.0	Water Column in Well	9.7
i digo moniod	Pump	Casing Volume to Remove		Gallons in Well	1.58
Purge Volume Units	<u>ml</u>	Casing volume to Remove		 Total Volume to 	
Sampling Type	Low Flow			Remove	

Field Parameters

Comments

Time	Cuml Vol Purged	Temp °C	рН	Conductivity (uS/cm)	ORP (mV)	DO (mg/L)	Turbidity (NTU)	DTW (ft)	Remarks
12:13	600	11.8	6.57	269.8	-6.0	0.80		2.55	
12:16	1200	11.8	6.56	268.1	-20.9	0.49		2.58	
12:19	1800	11.9	6.53	267.8	-30.4	0.34		2.60	
12:22	2400	11.8	6.52	270.0	-40.3	0.26		2.62	
12:24	2800	11.8	6.52	271.9	-46.5	0.25		2.65	

Sampling Summary

Sample Date	05/08/2017	Odor	No
Sample Time	12:30	Analysis	NWTPH-Gx,NWTPH-
Sample ID	MW-13-Q217		Dx,SW8260B,SW8270C-SIM,6020,8011_
Duplicate Sample ID	DUP-1	COC	
Dup Sample Time	12:30	Bottles	
		Remarks	

Sampler: Eric Krueger

Well Integrity Checklist

Item	Yes	No	NA	Notes
Type of well head				Round 12"
Well Secured on initial inspection	X			
Is Well ID Visible?	X			
Water in the well box		X		
Sleeve around the well box in good condition	X			
Any cleanup performed (explain)				
Any repairs/replacement (explain)				

Photos and Drawings

an two

APPENDIX D Laboratory Reports and Chain-of-Custody Documentation

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Atlantic Richfield c/o ARCADIS Suite 600 630 Plaza Drive Highlands Ranch CO 80129

Report Date: January 18, 2017

Project: Former Olympia Bulk Plant

Submittal Date: 12/17/2016 Group Number: 1746296 SDG: WAN02 PO Number: GP09BPNA.WA60 State of Sample Origin: WA

Lancaster Labs
<u>(LL) #</u>
8753059
8753060
8753061
8753062
8753063
8753064
8753065
8753066
8753067
8753068

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To	ARCADIS U.S., Inc.	Attn: Brian Marcum
Electronic Copy To	ARCADIS U.S., Inc.	Attn: Ross LaGrandeur
Electronic Copy To	ARCADIS U.S., Inc.	Attn: Ryan Brauchla

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Stacy L. Hess Project Manager

(717) 556-7236

Project Name: Former Olympia Bulk Plant LL Group #: 1746296

General Comments:

Through our technical processes and second person review of data, we have established that our data/deliverables are in compliance with the methods and project requirements unless otherwise noted or previously resolved with the client. The compliance signature is located on the cover page of the Analysis Reports.

See the Laboratory Sample Analysis Record section of the Analysis Report for the method references.

All QC met criteria unless otherwise noted in an Analysis Specific Comment below. Refer to the QC Summary for specific values and acceptance criteria.

Project specific QC samples are not included in this data set

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in an Analysis Specific Comment below.

The samples were received at the appropriate temperature and in accordance with the chain of custody unless otherwise noted.

Analysis Specific Comments:

SW-846 8270C SIM, GC/MS Semivolatiles

<u>Sample #s: 8753061, 8753063, 8753065</u>

Target analytes were detected in the method blank associated with the samples as noted on the QC Summary. The following corrective action was taken: The sample was re-extracted outside the method required holding time and the QC is compliant. All results are reported from the first trial. Similar results were obtained in both trials.

ECY 97-602 NWTPH-Gx, GC Volatiles

<u>Sample #s: 8753061</u>

Reporting limits were raised due to sample foaming.

ECY 97-602 NWTPH-Dx modified, GC Petroleum Hydrocarbons

Sample #s: 8753067

The stated QC limits are advisory only until sufficient data points can be obtained to calculate statistical limits.

Target analytes were detected in the method blank associated with the samples as noted on the QC Summary.

Batch #: 163570036A (Sample number(s): 8753067)

The recovery(ies) for the following analyte(s) in the LCS and/or LCSD were below the acceptance window: DX DRO C12-C24

ECY 97-602 NWTPH-Dx modified, GC Petroleum Hydrocarbons w/Si

<u>Sample #s: 8753067</u>

Target analytes were detected in the method blank associated with the samples as noted on the QC Summary.

<u>SW-846 6020, Metals</u>

<u>Batch #: 163636050002A (Sample number(s): 8753059-8753066 UNSPK: 8753065 BKG: 8753065)</u>

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Lead

SW-846 6020, Metals Dissolved

<u>Batch #: 163636050002A (sample number(s): 8753059-8753066 UNSPK: 8753065 BKG: 8753065)</u>

The duplicate RPD for the following analyte(s) exceeded the acceptance window: Lead

v 1.9.4

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-7 Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Group # 1746296 Account # 13255

LL Sample # WW 8753059

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 09:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Reported: 01/18/2017 07:53 Highlands Ranch CO 80129

OLY07 SDG#: WAN02-01

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10335	Benzene		71-43-2	N.D.	0.50	1.0	1
10335	1,2-Dichloroethane		107-06-2	N.D.	0.50	1.0	1
10335	Ethylbenzene		100-41-4	N.D.	0.50	1.0	1
10335	Methyl Tertiary But	yl Ether	1634-04-4	N.D.	0.50	1.0	1
10335	Toluene		108-88-3	N.D.	0.50	1.0	1
10335	Xylene (Total)		1330-20-7	N.D.	0.50	1.0	1
GC/MS	Semivolatiles	SW-846	8270C SIM	ug/l	ug/l	ug/l	
14243	Benzo(a)anthracene		56-55-3	N.D.	0.010	0.051	1
14243	Benzo(a)pyrene		50-32-8	N.D.	0.010	0.051	1
14243	Benzo(b) fluoranthen	е	205-99-2	N.D.	0.010	0.051	1
14243	Benzo(k) fluoranthen	е	207-08-9	N.D.	0.010	0.051	1
14243	Chrysene		218-01-9	N.D.	0.010	0.051	1
14243	Dibenz(a,h)anthrace	ne	53-70-3	N.D.	0.010	0.051	1
14243	Indeno(1,2,3-cd)pyr	ene	193-39-5	N.D.	0.010	0.051	1
14243	1-Methylnaphthalene		90-12-0	0.021 J	0.010	0.051	1
14243	2-Methylnaphthalene		91-57-6	0.017 J	0.010	0.051	1
14243	Naphthalene		91-20-3	N.D.	0.030	0.061	1
GC Vol	latiles	ECY 97-	602 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12	n.a.	N.D.	50	250	1
Volati Extra	iles by	SW-846	8011	ug/l	ug/l	ug/l	
10398	Ethylene dibromide		106-93-4	N.D.	0.0095	0.028	1
	croleum carbons	ECY 97- modifie	602 NWTPH-Dx	ug/l	ug/l	ug/l	
08271	Diesel Range Organi	cs C12-C24	n.a.	N.D.	29	96	1
08271	Heavy Range Organic	s C24-C40	n.a.	N.D.	67	240	1
	croleum carbons w/Si	ECY 97- modifie	602 NWTPH-Dx	ug/l	ug/l	ug/l	
02211	DRO C12-C24 w/Si Ge		n.a.	N.D.	29	96	1
02211	HRO C24-C40 w/Si Ge	1	n.a.	N.D.	67	240	1
Metals	3	SW-846	6020	ug/l	ug/l	ug/l	
06035	Lead		7439-92-1	0.094 J	0.090	1.0	1

Sample Comments

State of Washington Lab Certification No. ${\rm C457}$

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-7 Water

BP Olympia COC: R215984

SW-846 6020

SW-846 3010A modified

1120 West Bay Drive - Olympia, WA

LL Sample # WW 8753059 LL Group # 1746296 Account # 13255

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 09:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

630 Plaza Drive

Highlands Ranch CO 80129

1 163636050002A 12/29/2016 23:58 Sarah L Burt 1 163636050002 12/29/2016 06:32 James L Mertz

OLY07 SDG#: WAN02-01

06035 Lead

06050 ICPMS-Water, 3020A - U3

Submitted: 12/17/2016 11:10

Reported: 01/18/2017 07:53

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution				
No.					Date and Ti	me		Factor				
10335	BTEX, MTBE, EDC	SW-846 8260B	1	P163581AA	12/23/2016	19:21	Daniel H Heller	1				
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P163581AA	12/23/2016	19:21	Daniel H Heller	1				
14243	SIM SVOAs 8270C MINI	SW-846 8270C SIM	1	16356WAD026	12/22/2016	06:55	William H Saadeh	1				
10466	BNA Water Extraction SIM	SW-846 3510C	1	16356WAD026	12/21/2016	17:00	Kate E Lutte	1				
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	16356A20A	12/21/2016	12:58	Brett W Kenyon	1				
01146	GC VOA Water Prep	SW-846 5030B	1	16356A20A	12/21/2016	12:58	Brett W Kenyon	1				
10398	EDB in Wastewater	SW-846 8011	1	163590012A	12/30/2016	14:29	Heather M Miller	1				
07786	EDB Extraction (8011)	SW-846 8011	1	163590012A	12/27/2016	17:30	Shawn J McMullen	1				
08271	NWTPH-Dx water	ECY 97-602 NWTPH-Dx modified	1	163630023A	12/30/2016	07:36	Thomas C Wildermuth	1				
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH-Dx modified	1	163630024A	01/04/2017	05:15	Amy Lehr	1				
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	163630024A	12/29/2016	08:00	Kayla A Yuditsky	1				
11197	WA DRO NW DX Ext (Non SG)	ECY 97-602 NWTPH-Dx 06/97	1	163630023A	12/29/2016	08:00	Kayla A Yuditsky	1				

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-7 Filtered Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Sample # WW 8753060

LL Group # 1746296 Account # 13255

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 09:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Reported: 01/18/2017 07:53 Highlands Ranch CO 80129

OLY7F SDG#: WAN02-02

Method Limit of CAT Dilution Detection Limit* Quantitation Analysis Name CAS Number No. Result Factor ug/l ug/1 ug/1 SW-846 6020 Metals Dissolved 7439-92-1 06035 Lead N.D. 0.090 1.0

Sample Comments

State of Washington Lab Certification No. C457 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
06035	Lead	SW-846 6020	1	163636050002A	12/30/2016	00:00	Sarah L Burt	1
06050	ICPMS-Water, 3020A - U3	SW-846 3010A modified	1	163636050002	12/29/2016	06:32	James L Mertz	1

Analysis Report

LL Sample # WW 8753061 LL Group # 1746296 Account # 13255

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-8 Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 10:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Reported: 01/18/2017 07:53 Highlands Ranch CO 80129

OLY08 SDG#: WAN02-03

CAT No.	Analysis Name		CAS Number	Result		Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8	3260B	ug/l		ug/l	ug/l	
10335	Benzene		71-43-2	N.D.		0.50	1.0	1
10335	1,2-Dichloroethane		107-06-2	N.D.		0.50	1.0	1
10335	Ethylbenzene		100-41-4	N.D.		0.50	1.0	1
10335	Methyl Tertiary But	yl Ether	1634-04-4	N.D.		0.50	1.0	1
10335	Toluene		108-88-3	39		0.50	1.0	1
10335	Xylene (Total)		1330-20-7	N.D.		0.50	1.0	1
GC/MS	Semivolatiles	SW-846 8	3270C SIM	ug/l		ug/l	ug/l	
14243	Benzo(a)anthracene		56-55-3	N.D.		0.010	0.050	1
14243	Benzo(a)pyrene		50-32-8	N.D.		0.010	0.050	1
14243	Benzo(b)fluoranthen	е	205-99-2	N.D.		0.010	0.050	1
14243	Benzo(k)fluoranthen	е	207-08-9	N.D.		0.010	0.050	1
14243	Chrysene		218-01-9	N.D.		0.010	0.050	1
14243	Dibenz(a,h)anthrace	ne	53-70-3	N.D.		0.010	0.050	1
14243	Indeno(1,2,3-cd)pyr	ene	193-39-5	N.D.		0.010	0.050	1
14243	1-Methylnaphthalene		90-12-0	0.020	J	0.010	0.050	1
14243	2-Methylnaphthalene		91-57-6	0.015	J	0.010	0.050	1
14243	Naphthalene		91-20-3	0.066		0.030	0.060	1
time	sample was re-extract and the QC is compli t trial. Similar res	iant. All	results are repor	rted from				
GC Vo	latiles	ECY 97-6	02 NWTPH-Gx	ug/l		ug/l	ug/l	
	NWTPH-Gx water C7-C rting limits were ra		n.a. sample foaming.	540	J	500	2,500	10
Volat:	iles by	SW-846 8	3011	ug/l		ug/l	ug/l	
Extra	ction							
10398	Ethylene dibromide		106-93-4	N.D.		0.0095	0.029	1
GC Pet	troleum	ECY 97-6	02 NWTPH-Dx	ug/l		ug/l	ug/l	
Hydro	carbons	modified	i					
08271	Diesel Range Organi	cs C12-C24	n.a.	810		29	96	1
	Heavy Range Organic		n.a.	420		68	240	1
GC Pet	troleum	ECY 97-6	02 NWTPH-Dx	ug/l		ug/l	ug/l	
Hydro	carbons w/Si	modified	i					
02211	DRO C12-C24 w/Si Ge	1	n.a.	210		29	96	1
02211	HRO C24-C40 w/Si Ge	1	n.a.	N.D.		68	240	1
Metals	5	SW-846 6	5020	ug/l		ug/l	ug/l	
06035	-		7439-92-1	2.2		0.090	1.0	1
00000			,100 22 1	2.2				-

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-8 Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Group # 1746296 Account # 13255

LL Sample # WW 8753061

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 10:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

630 Plaza Drive

Highlands Ranch CO 80129

OLY08 SDG#: WAN02-03

Submitted: 12/17/2016 11:10

Reported: 01/18/2017 07:53

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
10335	BTEX, MTBE, EDC	SW-846 8260B	1	P163581AA	12/23/2016	19:42	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P163581AA	12/23/2016	19:42	Daniel H Heller	1
14243	SIM SVOAs 8270C MINI	SW-846 8270C SIM	1	16356WAD026	12/22/2016	07:23	William H Saadeh	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	16356WAD026	12/21/2016	17:00	Kate E Lutte	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	16357B20A	12/22/2016	19:50	Brett W Kenyon	10
01146	GC VOA Water Prep	SW-846 5030B	1	16357B20A	12/22/2016	19:50	Brett W Kenyon	10
10398	EDB in Wastewater	SW-846 8011	1	163590012A	12/30/2016	14:45	Heather M Miller	1
07786	EDB Extraction (8011)	SW-846 8011	1	163590012A	12/27/2016	17:30	Shawn J McMullen	1
08271	NWTPH-Dx water	ECY 97-602	1	163630023A	12/30/2016	08:40	Thomas C	1
		NWTPH-Dx modified					Wildermuth	
02211	NWTPH-Dx water w/Si Gel	ECY 97-602	1	163630024A	01/04/2017	05:37	Amy Lehr	1
		NWTPH-Dx modified						
02135	Extraction - DRO Water	ECY 97-602	1	163630024A	12/29/2016	08:00	Kayla A Yuditsky	1
	Special	NWTPH-Dx 06/97						
11197	WA DRO NW DX Ext (Non SG)	ECY 97-602	1	163630023A	12/29/2016	08:00	Kayla A Yuditsky	1
		NWTPH-Dx 06/97						
06035	Lead	SW-846 6020	1	163636050002A	12/30/2016	00:02	Sarah L Burt	1
06050	ICPMS-Water, 3020A - U3	SW-846 3010A modified	1	163636050002	12/29/2016	06:32	James L Mertz	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-8 Filtered Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Sample # WW 8753062

LL Group # 1746296 Account # 13255

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 10:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Reported: 01/18/2017 07:53 Highlands Ranch CO 80129

OLY8F SDG#: WAN02-04

Method Limit of CAT Dilution Detection Limit* Quantitation Analysis Name CAS Number No. Result Factor ug/l ug/1 ug/1 SW-846 6020 Metals Dissolved 7439-92-1 06035 Lead N.D. 0.090 1.0

Sample Comments

State of Washington Lab Certification No. C457 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
06035	Lead	SW-846 6020	1	163636050002A	12/30/2016	00:04	Sarah L Burt	1
06050	ICPMS-Water, 3020A - U3	SW-846 3010A modified	1	163636050002	12/29/2016	06:32	James L Mertz	1

Analysis Report

LL Sample # WW 8753063 LL Group # 1746296 Account # 13255

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-9 Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 11:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Reported: 01/18/2017 07:53 Highlands Ranch CO 80129

OLY09 SDG#: WAN02-05

CAT No.	Analysis Name		CAS Number	Result	:	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 82	60B	ug/l		ug/l	ug/l	
10335	Benzene		71-43-2	N.D.		0.50	1.0	1
10335	1,2-Dichloroethane		107-06-2	N.D.		0.50	1.0	1
10335	Ethylbenzene		100-41-4	N.D.		0.50	1.0	1
10335	Methyl Tertiary But	yl Ether	1634-04-4	N.D.		0.50	1.0	1
10335	Toluene	-	108-88-3	5.4		0.50	1.0	1
10335	Xylene (Total)		1330-20-7	N.D.		0.50	1.0	1
GC/MS	Semivolatiles	SW-846 82	70C SIM	ug/l		ug/l	ug/l	
14243	Benzo(a)anthracene		56-55-3	N.D.		0.010	0.051	1
14243	Benzo(a)pyrene		50-32-8	N.D.		0.010	0.051	1
14243		e	205-99-2	N.D.		0.010	0.051	1
14243	· ·		207-08-9	N.D.		0.010	0.051	1
14243			218-01-9	N.D.		0.010	0.051	1
14243	Dibenz(a,h)anthrace	ne	53-70-3	N.D.		0.010	0.051	1
14243			193-39-5	N.D.		0.010	0.051	1
	1-Methylnaphthalene		90-12-0	0.077		0.010	0.051	1
14243	2-Methylnaphthalene		91-57-6	0.044	J	0.010	0.051	1
	Naphthalene		91-20-3	0.73		0.031	0.061	1
time firs	sample was re-extract and the QC is complit t trial. Similar res	iant. All re sults were ob	sults are reportained in both	rted fro trials.		/1	/1	
	latiles		2 NWTPH-Gx	ug/l		ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12	n.a.	130	J	50	250	1
Volat:	iles by ction	SW-846 80	11	ug/l		ug/l	ug/l	
10398	Ethylene dibromide		106-93-4	N.D.		0.0095	0.029	1
	troleum		2 NWTPH-Dx	ug/l		ug/l	ug/l	
-	carbons	modified						
	Diesel Range Organi		n.a.	260	_	28	94	1
08271	Heavy Range Organic	s C24-C40	n.a.	97	J	66	240	1
	troleum		2 NWTPH-Dx	ug/l		ug/l	ug/l	
Hydro	carbons w/Si	${\tt modified}$						
02211	DRO C12-C24 w/Si Ge	1	n.a.	88	J	28	94	1
02211	HRO C24-C40 w/Si Ge	1	n.a.	N.D.		66	240	1
Metals SW-846 6020 ug/1						ug/l	ug/l	
Metal	-	SW-846 60		•	_	- .	<u>.</u>	
06035	Lead		7439-92-1	0.53	J	0.090	1.0	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-9 Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Group # 1746296 Account # 13255

LL Sample # WW 8753063

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 11:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

630 Plaza Drive

Highlands Ranch CO 80129

OLY09 SDG#: WAN02-05

Submitted: 12/17/2016 11:10

Reported: 01/18/2017 07:53

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	me	Analyst	Dilution Factor
10335	BTEX, MTBE, EDC	SW-846 8260B	1	P163581AA	12/23/2016	20:04	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P163581AA	12/23/2016	20:04	Daniel H Heller	1
14243	SIM SVOAs 8270C MINI	SW-846 8270C SIM	1	16356WAD026	12/22/2016	07:51	William H Saadeh	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	16356WAD026	12/21/2016	17:00	Kate E Lutte	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	16356A20A	12/21/2016	14:46	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	16356A20A	12/21/2016	14:46	Brett W Kenyon	1
10398	EDB in Wastewater	SW-846 8011	1	163590012A	12/30/2016	15:00	Heather M Miller	1
07786	EDB Extraction (8011)	SW-846 8011	1	163590012A	12/27/2016	17:30	Shawn J McMullen	1
08271	NWTPH-Dx water	ECY 97-602	1	163630023A	12/30/2016	07:58	Thomas C	1
		NWTPH-Dx modified					Wildermuth	
02211	NWTPH-Dx water w/Si Gel	ECY 97-602	1	163630024A	01/04/2017	05:59	Amy Lehr	1
		NWTPH-Dx modified						
02135	Extraction - DRO Water	ECY 97-602	1	163630024A	12/29/2016	08:00	Kayla A Yuditsky	1
	Special	NWTPH-Dx 06/97						
11197	WA DRO NW DX Ext (Non SG)	ECY 97-602	1	163630023A	12/29/2016	08:00	Kayla A Yuditsky	1
		NWTPH-Dx 06/97						
06035	Lead	SW-846 6020	1	163636050002A	12/30/2016	00:09	Sarah L Burt	1
06050	ICPMS-Water, 3020A - U3	SW-846 3010A modified	1	163636050002	12/29/2016	06:32	James L Mertz	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-9 Filtered Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Sample # WW 8753064

LL Group # 1746296 Account # 13255

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 11:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Reported: 01/18/2017 07:53 Highlands Ranch CO 80129

OLY9F SDG#: WAN02-06

Method Limit of CAT Dilution Detection Limit* Quantitation Analysis Name CAS Number No. Result Factor ug/l ug/1 ug/1 SW-846 6020 Metals Dissolved 7439-92-1 06035 Lead N.D. 0.090 1.0

Sample Comments

State of Washington Lab Certification No. C457 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
06035	Lead	SW-846 6020	1	163636050002A	12/30/2016	00:11	Sarah L Burt	1
06050	ICPMS-Water, 3020A - U3	SW-846 3010A modified	1	163636050002	12/29/2016	06:32	James L Mertz	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-13 Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Sample # WW 8753065

LL Group # 1746296 Account # 13255

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 13:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Reported: 01/18/2017 07:53 Highlands Ranch CO 80129

OLY13 SDG#: WAN02-07

CAT No.	Analysis Name		CAS Number	Result		Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 82	60B	ug/l		ug/l	ug/l	
10335	Benzene		71-43-2	N.D.		0.50	1.0	1
10335	1,2-Dichloroethane		107-06-2	N.D.		0.50	1.0	1
10335	Ethylbenzene		100-41-4	N.D.		0.50	1.0	1
10335	Methyl Tertiary But	yl Ether	1634-04-4	N.D.		0.50	1.0	1
10335	Toluene	_	108-88-3	N.D.		0.50	1.0	1
10335	Xylene (Total)		1330-20-7	N.D.		0.50	1.0	1
GC/MS	Semivolatiles	SW-846 82	70C SIM	ug/l		ug/l	ug/l	
14243	Benzo(a)anthracene		56-55-3	N.D.		0.010	0.050	1
14243	Benzo(a)pyrene		50-32-8	N.D.		0.010	0.050	1
14243	Benzo(b)fluoranthen	е	205-99-2	N.D.		0.010	0.050	1
14243	Benzo(k)fluoranthen	е	207-08-9	N.D.		0.010	0.050	1
14243	Chrysene		218-01-9	N.D.		0.010	0.050	1
14243	Dibenz(a,h)anthrace	ne	53-70-3	N.D.		0.010	0.050	1
14243	Indeno(1,2,3-cd)pyr	ene	193-39-5	N.D.		0.010	0.050	1
14243	1-Methylnaphthalene		90-12-0	0.062		0.010	0.050	1
14243	2-Methylnaphthalene		91-57-6	0.031	J	0.010	0.050	1
14243	Naphthalene		91-20-3	0.30		0.030	0.060	1
time firs	sample was re-extract and the QC is complit t trial. Similar res	iant. All results were of	esults are repo otained in both	rted from		ug/l	ug/l	
	latiles		2 NWTPH-Gx	•	_	<u>-</u> .		
08273	NWTPH-Gx water C7-C	12	n.a.	58	J	50	250	1
Volat:	iles by ction	SW-846 80)11	ug/l		ug/l	ug/l	
10398	Ethylene dibromide		106-93-4	N.D.		0.0095	0.029	1
GC Pet	troleum	ECY 97-60	2 NWTPH-Dx	ug/l		ug/l	ug/l	
Hydro	carbons	modified						
08271	Diesel Range Organi	cs C12-C24	n.a.	N.D.		28	94	1
08271	Heavy Range Organic	s C24-C40	n.a.	N.D.		66	240	1
	troleum	ECY 97-60	2 NWTPH-Dx	ug/l		ug/l	ug/l	
Hydro	carbons w/Si	modified						
02211	DRO C12-C24 w/Si Ge	1	n.a.	N.D.		28	94	1
02211	HRO C24-C40 w/Si Ge	1	n.a.	N.D.		66	240	1
						ng/1	ug/1	
Metal	-	SW-846 60		ug/l		ug/l	ug/l	
06035	Lead		7439-92-1	0.21	J	0.090	1.0	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-13 Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Sample # WW 8753065 LL Group # 1746296 Account # 13255

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 13:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Highlands Ranch CO 80129

OLY13 SDG#: WAN02-07

Reported: 01/18/2017 07:53

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	BTEX, MTBE, EDC	SW-846 8260B	1	P163631AA	12/28/2016	20:12	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P163631AA	12/28/2016	20:12	Daniel H Heller	1
14243	SIM SVOAs 8270C MINI	SW-846 8270C SIM	1	16356WAD026	12/22/2016	08:19	William H Saadeh	1
10466	BNA Water Extraction SIM	SW-846 3510C	1	16356WAD026	12/21/2016	17:00	Kate E Lutte	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	16356A20A	12/21/2016	15:40	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	16356A20A	12/21/2016	15:40	Brett W Kenyon	1
10398	EDB in Wastewater	SW-846 8011	1	163590012A	12/30/2016	15:16	Heather M Miller	1
07786	EDB Extraction (8011)	SW-846 8011	1	163590012A	12/27/2016	17:30	Shawn J McMullen	1
08271	NWTPH-Dx water	ECY 97-602	1	163630023A	12/30/2016	08:19	Thomas C	1
		NWTPH-Dx modified					Wildermuth	
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH-Dx modified	1	163630024A	01/04/2017	06:20	Amy Lehr	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH-Dx 06/97	1	163630024A	12/29/2016	08:00	Kayla A Yuditsky	1
11197	WA DRO NW DX Ext (Non SG)	ECY 97-602 NWTPH-Dx 06/97	1	163630023A	12/29/2016	08:00	Kayla A Yuditsky	1
06035	Lead	SW-846 6020	1	163636050002A	12/29/2016	23:29	Sarah L Burt	1
06050	ICPMS-Water, 3020A - U3	SW-846 3010A modified	1	163636050002	12/29/2016	06:32	James L Mertz	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-13 Filtered Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Sample # WW 8753066

LL Group # 1746296 Account # 13255

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 13:15 by RB Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Reported: 01/18/2017 07:53 Highlands Ranch CO 80129

OL13F SDG#: WAN02-08

Method Limit of CAT Dilution Detection Limit* Quantitation Analysis Name CAS Number No. Result Factor ug/1 ug/l ug/1 SW-846 6020 Metals Dissolved 7439-92-1 06035 Lead N.D. 0.090 1.0

Sample Comments

State of Washington Lab Certification No. C457 This sample was filtered in the lab for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
06035	Lead	SW-846 6020	1	163636050002A	12/30/2016	00:13	Sarah L Burt	1
06050	ICPMS-Water, 3020A - U3	SW-846 3010A modified	1	163636050002	12/29/2016	06:32	James L Mertz	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DUP-1 Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Group # 1746296 Account # 13255

LL Sample # WW 8753067

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 by RB Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Reported: 01/18/2017 07:53 Highlands Ranch CO 80129

OLYFD SDG#: WAN02-09FD

CAT No.	Analysis Name		CAS Number	Result		Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 826	0B	ug/l		ug/l	ug/l	
10335	Benzene		71-43-2	N.D.		0.50	1.0	1
10335	Ethylbenzene		100-41-4	N.D.		0.50	1.0	1
10335	Methyl Tertiary But	yl Ether	1634-04-4	N.D.		0.50	1.0	1
10335	Toluene		108-88-3	N.D.		0.50	1.0	1
10335	Xylene (Total)		1330-20-7	N.D.		0.50	1.0	1
GC Vol	latiles	ECY 97-602	NWTPH-Gx	ug/l		ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12	n.a.	57	J	50	250	1
GC Pet	croleum	ECY 97-602	NWTPH-Dx	ug/l		ug/l	ug/l	
Hydro	carbons	modified						
12899	DX DRO C12-C24		n.a.	65	J	46	100	1
12899	DX HRO C24-C40		n.a.	450		100	250	1
can l Targ	stated QC limits are be obtained to calcul et analytes were dete the samples as noted	late statistic ected in the m	al limits. ethod blank as		-			
GC Pet	roleum	ECY 97-602	NWTPH-Dx	ug/l		ug/l	ug/l	
Hydro	carbons w/Si	modified						
12908	DX DRO C12-C24 w/ S	iGel	n.a.	N.D.		46	100	1
12908	DX HRO C24-C40 w/ S	iGel	n.a.	470		100	250	1
	et analytes were dete the samples as noted			sociated				

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10335	VOCs 8260 BTEX/MTBE	SW-846 8260B	1	P163581AA	12/23/2016	13:32	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P163581AA	12/23/2016	13:32	Daniel H Heller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	16356A20A	12/21/2016	16:06	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	16356A20A	12/21/2016	16:06	Brett W Kenyon	1
12899	DRO/DX Mini-extraction Master	ECY 97-602 NWTPH-Dx modified	1	163570036A	01/07/2017	00:21	Amy Lehr	1
12908	DRO/DX Mini-Ext, Quick SiGel	ECY 97-602 NWTPH-Dx modified	1	163570039A	12/29/2016	02:38	Amy Lehr	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: DUP-1 Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Sample # WW 8753067 LL Group # 1746296

Account # 13255

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 by RB Atlantic Richfield c/o ARCADIS

Suite 600

630 Plaza Drive

Highlands Ranch CO 80129

OLYFD SDG#: WAN02-09FD

Submitted: 12/17/2016 11:10

Reported: 01/18/2017 07:53

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
12916	Mini-Ext. DRO DX, Quick SiGel	ECY 97-602 NWTPH-Dx 06/97	1	163570039A	12/23/2016 17:00	Ryan J Dowdy	1
12907	Mini-extraction DRO DX (water)	ECY 97-602 NWTPH-Dx 06/97	1	163570036A	12/23/2016 17:00	Ryan J Dowdy	1

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: Trip Blank Water

BP Olympia COC: R215984

1120 West Bay Drive - Olympia, WA

LL Sample # WW 8753068 LL Group # 1746296

Account # 13255

Project Name: Former Olympia Bulk Plant

Collected: 12/15/2016 Atlantic Richfield c/o ARCADIS

Suite 600

Submitted: 12/17/2016 11:10 630 Plaza Drive

Reported: 01/18/2017 07:53 Highlands Ranch CO 80129

OLYTB SDG#: WAN02-10TB

CAT No.	Analysis Name		CAS Number	Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/l	ug/l	ug/l	
10335	Benzene		71-43-2	N.D.	0.50	1.0	1
10335	Ethylbenzene		100-41-4	N.D.	0.50	1.0	1
10335	Methyl Tertiary	Butyl Ether	1634-04-4	N.D.	0.50	1.0	1
10335	Toluene		108-88-3	N.D.	0.50	1.0	1
10335	Xylene (Total)		1330-20-7	N.D.	0.50	1.0	1
GC Vol	latiles	ECY 97-	-602 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C	7-C12	n.a.	N.D.	50	250	1

Sample Comments

State of Washington Lab Certification No. C457

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10335	VOCs 8260 BTEX/MTBE	SW-846 8260B	1	P163581AA	12/23/2016 13:11	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	P163581AA	12/23/2016 13:11	Daniel H Heller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH-Gx	1	16356A20A	12/21/2016 11:37	Brett W Kenyon	1
01146	GC VOA Water Prep	SW-846 5030B	1	16356A20A	12/21/2016 11:37	Brett W Kenyon	1

^{*=}This limit was used in the evaluation of the final result

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Atlantic Richfield c/o ARCADIS Group Number: 1746296

Reported: 01/18/2017 07:53

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

Analysis Name	Result	MDL**	LOQ
	ug/l	ug/l	ug/l
Batch number: P163581AA	Sample number	r(s): 8753	059,8753061,8753063,8753067-8753068
Benzene	N.D.	0.50	1.0
1,2-Dichloroethane	N.D.	0.50	1.0
Ethylbenzene	N.D.	0.50	1.0
Methyl Tertiary Butyl Ether	N.D.	0.50	1.0
Toluene	N.D.	0.50	1.0
Xylene (Total)	N.D.	0.50	1.0
Batch number: P163631AA	Sample number	r(s): 8753	065
Benzene	N.D.	0.50	1.0
1,2-Dichloroethane	N.D.	0.50	1.0
Ethylbenzene	N.D.	0.50	1.0
Methyl Tertiary Butyl Ether	N.D.	0.50	1.0
Toluene	N.D.	0.50	1.0
Xylene (Total)	N.D.	0.50	1.0
Batch number: 16356WAD026	Sample number	r(s): 8753	059,8753061,8753063,8753065
Benzo(a)anthracene	N.D.	0.010	0.050
Benzo(a)pyrene	N.D.	0.010	0.050
Benzo(b)fluoranthene	N.D.	0.010	0.050
Benzo(k)fluoranthene	N.D.	0.010	0.050
Chrysene	N.D.	0.010	0.050
Dibenz(a,h)anthracene	N.D.	0.010	0.050
Indeno(1,2,3-cd)pyrene	N.D.	0.010	0.050
1-Methylnaphthalene	N.D.	0.010	0.050
2-Methylnaphthalene	N.D.	0.010	0.050
Naphthalene	0.044 J	0.030	0.060
Batch number: 16356A20A	Sample number	r(s): 8753	059,8753063,8753065,8753067-8753068
NWTPH-Gx water C7-C12	N.D.	50	250
Batch number: 16357B20A	Sample number	r(s): 8753	061
NWTPH-Gx water C7-C12	N.D.	50	250
Batch number: 163590012A	Sample number	r(s): 8753	059,8753061,8753063,8753065
Ethylene dibromide	N.D.	0.010	0.030
Batch number: 163570036A	Sample number	r(s): 8753	067
DX DRO C12-C24	130	45	100
DX HRO C24-C40	350	100	250
Batch number: 163630023A	Sample number	r(s): 8753	059,8753061,8753063,8753065
Diesel Range Organics C12-C24	N.D.	30	100
Heavy Range Organics C24-C40	N.D.	70	250
neavy hange organizes ez4-c40	14.10.	, 0	250

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Atlantic Richfield c/o ARCADIS Group Number: 1746296

Reported: 01/18/2017 07:53

Method Blank (continued)

Analysis Name	Result	MDL**	LOQ
	ug/l	ug/l	ug/l
Batch number: 163570039A	Sample number	(s): 875306	57
DX DRO C12-C24 w/ SiGel	95 J	45	100
DX HRO C24-C40 w/ SiGel	370	100	250
Batch number: 163630024A	Sample number	(s): 875305	59,8753061,8753063,8753065
DRO C12-C24 w/Si Gel	N.D.	30	100
HRO C24-C40 w/Si Gel	N.D.	70	250
Batch number: 163636050002A	Sample number	(s): 875305	59-8753066
Lead	N.D.	0.090	1.0

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: P163581AA	Sample numbe	r(s): 87530	59,8753061,87	53063,8753	3067-8753	068			
Benzene	20	18.97			95		78-120		
1,2-Dichloroethane	20	20.8			104		66-128		
Ethylbenzene	20	19.08			95		78-120		
Methyl Tertiary Butyl Ether	20	20.73			104		75-120		
Toluene	20	18.98			95		80-120		
Xylene (Total)	60	57.65			96		80-120		
Batch number: P163631AA	Sample numbe	r(s): 87530	065						
Benzene	20	19.56			98		78-120		
1,2-Dichloroethane	20	20.22			101		66-128		
Ethylbenzene	20	19.46			97		78-120		
Methyl Tertiary Butyl Ether	20	20.78			104		75-120		
Toluene	20	19.19			96		80-120		
Xylene (Total)	60	59.33			99		80-120		
	ug/l	ug/l	ug/l	ug/l					
Batch number: 16356WAD026	Sample numbe	r(s): 87530	59,8753061,87	53063,8753	3065				
Benzo(a)anthracene	1.00	0.965			96		75-119		
Benzo(a)pyrene	1.00	0.972			97		75-115		
Benzo(b) fluoranthene	1.00	1.02			102		75-120		
Benzo(k)fluoranthene	1.00	1.00			100		71-118		
Chrysene	1.00	0.934			93		73-111		
Dibenz(a,h)anthracene	1.00	0.991			99		52-129		
Indeno(1,2,3-cd)pyrene	1.00	0.962			96		52-127		
1-Methylnaphthalene	1.00	0.733			73		42-127		
2-Methylnaphthalene	1.00	0.748			75		43-121		
Naphthalene	1.00	0.758			76		44-113		
	ug/l	ug/l	ug/l	ug/l					

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Atlantic Richfield c/o ARCADIS Group Number: 1746296

Reported: 01/18/2017 07:53

LCS/LCSD (continued)

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 16356A20A NWTPH-Gx water C7-C12	Sample number	r(s): 87530 999.5	059,8753063,87	53065,8753	067-8753 91	068	79-120		
Batch number: 16357B20A NWTPH-Gx water C7-C12	Sample number	r(s): 87530 1004.94	061 1100	995.12	91	90	79-120	1	30
	ug/l	ug/l	ug/l	ug/l					
Batch number: 163590012A Ethylene dibromide	Sample number 0.128	r(s): 87530 0.132	059,8753061,87 0.128	53063,8753 0.127	065 103	99	60-140	4	20
	ug/l	ug/l	ug/l	ug/l					
Batch number: 163570036A DX DRO C12-C24	Sample number	r(s): 87530 349.77	067 600	322.26	58*	54*	70-130	8	20
Batch number: 163630023A	-		059,8753061,87	,					
Diesel Range Organics C12-C24	1600	1197.25	1600	1283.75	75	80	50-113	7	20
	ug/l	ug/l	ug/l	ug/l					
Batch number: 163570039A DX DRO C12-C24 w/ SiGel	Sample number	r(s): 87530 308.11	067 600	289.4	51	48	23-115	6	20
Batch number: 163630024A DRO C12-C24 w/Si Gel	Sample number	r(s): 87530 1335.72	059,8753061,87 1600	53063,8753 1347.81	065 83	84	32-117	1	20
	ug/l	ug/l	ug/l	ug/l					
Batch number: 163636050002A Lead	Sample number	r(s): 87530 15.29	059-8753066		102		80-120		

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: P163581AA	Sample numb	er(s): 8753	3059,8753	3061,8753063,	,8753067-	8753068	UNSPK:	P747177		
Benzene	N.D.	20	21.69	20	21.29	108	106	78-120	2	30
1,2-Dichloroethane	N.D.	20	23.07	20	23.85	115	119	66-128	3	30
Ethylbenzene	N.D.	20	21.95	20	21.35	110	107	78-120	3	30
Methyl Tertiary Butyl Ether	N.D.	20	23.37	20	22.61	117	113	75-120	3	30
Toluene	N.D.	20	21.62	20	21.35	108	107	80-120	1	30
Xylene (Total)	N.D.	60	66.12	60	64.73	110	108	80-120	2	30
Batch number: P163631AA	Sample numb	er(s): 8753	065 UNSI	PK: P754170						
Benzene	N.D.	20	21.71	20	21.09	109	105	78-120	3	30

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Atlantic Richfield c/o ARCADIS Group Number: 1746296

Reported: 01/18/2017 07:53

MS/MSD (continued)

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
1,2-Dichloroethane	N.D.	20	23.55	20	23.5	118	118	66-128	0	30
Ethylbenzene	N.D.	20	21.11	20	20.67	106	103	78-120	2	30
Methyl Tertiary Butyl Ether	N.D.	20	22.61	20	22.27	113	111	75-120	2	30
Toluene	N.D.	20	20.65	20	20.42	103	102	80-120	1	30
Xylene (Total)	N.D.	60	63.96	60	62.63	107	104	80-120	2	30
	ug/l	ug/l	ug/l	ug/l	ug/l					
Batch number: 16356WAD026	Sample numb	er(s): 8753	059,8753	061,8753063	,8753065 t	JNSPK: P	751733			
Benzo(a)anthracene	N.D.	1.01	0.905	1.02	0.958	89	94	75-119	6	30
Benzo(a)pyrene	N.D.	1.01	0.827	1.02	0.768	82	76	75-115	7	30
Benzo(b)fluoranthene	N.D.	1.01	0.957	1.02	0.932	95	92	75-120	3	30
Benzo(k)fluoranthene	N.D.	1.01	0.934	1.02	0.924	92	91	71-118	1	30
Chrysene	N.D.	1.01	0.898	1.02	0.887	89	87	73-111	1	30
Dibenz(a,h)anthracene	N.D.	1.01	0.844	1.02	0.798	83	78	52-129	6	30
Indeno(1,2,3-cd)pyrene	N.D.	1.01	0.840	1.02	0.797	83	78	52-127	5	30
1-Methylnaphthalene	N.D.	1.01	0.704	1.02	0.723	70	71	42-127	3	30
2-Methylnaphthalene	N.D.	1.01	0.709	1.02	0.733	70	72	43-121	3	30
Naphthalene	0.0364	1.01	0.729	1.02	0.752	68	70	44-113	3	30
	ug/l	ug/l	ug/l	ug/l	ug/l					
Batch number: 16356A20A	Sample numb	er(s): 8753	059,8753	063,8753065	,8753067-8	3753068 1	UNSPK: 8	753059		
NWTPH-Gx water C7-C12	N.D.	1100	1145.48	1100	1101.41	104	100	79-120	4	30
	ug/l	ug/l	ug/l	ug/l	ug/l					
Batch number: 163590012A	Sample numb	er(s): 8753	059,8753	061,8753063	,8753065 t	JNSPK: P'	750552			
Ethylene dibromide	N.D.	0.122	0.120			98		60-140		
	ug/l	ug/l	ug/l	ug/l	ug/l					
Batch number: 163636050002A	Sample numb	er(s): 8753	059-8753	066 UNSPK:	8753065					
Lead	0.212	15	15.29	15	15.75	100	104	75-125	3	20

Laboratory Duplicate

Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name BKG Cor		DUP Conc	DUP RPD	DUP RPD Max
	ug/l	ug/l		
Batch number: 163590012A Ethylene dibromide	<pre>Sample number(s): N.D.</pre>	8753059,8753061,8 N.D.	3753063,8753065 0 (1)	BKG: P750553
	ug/l	ug/l		

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Group Number: 1746296 Client Name: Atlantic Richfield c/o ARCADIS

Reported: 01/18/2017 07:53

Laboratory Duplicate (continued)

Background (BKG) = the sample used in conjunction with the duplicate

BKG Conc DUP RPD DUP RPD Max Analysis Name DUP Conc uq/1 ug/l Batch number: 163636050002A Sample number(s): 8753059-8753066 BKG: 8753065 Lead 0.212 0.134 45* (1)

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: BTEX, MTBE, EDC Batch number: P163581AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
8753059	107	109	110	111
8753061	106	108	108	111
8753063	108	110	109	111
8753067	107	107	108	109
8753068	107	107	109	109
Blank	108	104	109	110
LCS	108	108	102	103
MS	108	111	102	103
MSD	107	110	101	103
Limits:	80-116	77-113	80-113	78-113

Analysis Name: BTEX, MTBE, EDC

Batch number: P163631AA

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene					
8753065	108	108	107	111					
Blank	108	106	107	111					
LCS	110	108	101	104					
MS	110	110	100	104					
MSD	110	109	100	104					
Limits:	80-116	77-113	80-113	78-113					

Analysis Name: SIM SVOAs 8270C MINI

Batch number: 16356WAD026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
8753059	85	74	65
8753061	62	41	54
8753063	65	66	70
8753065	82	79	61
Blank	77	82	61
LCS	87	95	61
MS	80	81	62

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Atlantic Richfield c/o ARCADIS Group Number: 1746296

Reported: 01/18/2017 07:53

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: SIM SVOAs 8270C MINI

Batch number: 16356WAD026

	Fluoranthene-d10	Benzo(a)pyrene-d12	1-Methylnaphthalene-d10
MSD	83	78	62
Limits:	46-143	29-144	18-142

Analysis Name: NWTPH-Gx water C7-C12

Batch number: 16356A20A

	Trifluorotoluene-F
8753059	90
8753063	90
8753065	90
8753067	90
8753068	89
Blank	88
LCS	98
MS	99
MSD	98

Limits: 63-135

Analysis Name: NWTPH-Gx water C7-C12

Batch number: 16357B20A

	Trifluorotoluene-F							
8753061	90							
Blank	91							
LCS	98							
LCSD	98							
Limits:	63-135							

Analysis Name: EDB in Wastewater

Batch number: 163590012A

	1,1,2,2-Tetrachloroethane							
8753059	89							
8753061	90							
8753063	78							
8753065	84							
Blank	84							
DUP	89							
LCS	88							
LCSD	85							
MS	88	_						

46-136

Limits:

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analysis Report

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Atlantic Richfield c/o ARCADIS Group Number: 1746296

Reported: 01/18/2017 07:53

Surrogate Quality Control (continued)

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: DRO/DX Mini-extraction Master

Batch number: 163570036A

Batch number: 163570039A

	Orthoterphenyl	
8753067	78	
Blank	87	
LCS	88	
LCSD	83	
Limits:	50-150	

Analysis Name: DRO/DX Mini-Ext, Quick SiGel

 Orthoterphenyl

 8753067
 83

 Blank
 86

 LCS
 87

 LCSD
 84

Limits: 50-150

Analysis Name: NWTPH-Dx water Batch number: 163630023A

	Orthoterphenyl
8753059	91
8753061	62
8753063	92
8753065	57
Blank	91
LCS	95
LCSD	92
Timita.	E0 1E0

Limits: 50-150

Analysis Name: NWTPH-Dx water w/Si Gel

Batch number: 163630024A

	Orthoterphenyl
8753059	96
8753061	67
8753063	93
8753065	62
Blank	99
LCS	105
LCSD	100
Limits:	50-150

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

13255 1746296 8753059-68

Laboratory Management Program LaMP	Chain of Custody Record	R215984	Page/	of
BP Site Node Path:	Reg Due Date (mm/dd/vv):	SINGNITAT	Rush TAT: Yes	No X

											Lab Work Order Number:																
Lab Name: Eurofing Lancaster Laboratories Environmental						Facility Address: 1120 West Bay Drive City, State, ZIP Code: Olympia, WA Lead Regulatory Agency: Ecology										Consultant/Contractor: Arcadis											
Lab Address: 2426 New Holland Pike, Lancaster, PA 17601					City, State, ZIP Code: Olympy, Lall									Con	sultan	t/Cont	ractor	Proje	ct No:	GPO9BPN,	4 WA 60	5					
Lab Pi	1: Stacy Hess			Leac	d Re	gulato	ry A	gency	E.	col	2611	,							Add	ess:	1100	01	tive	W	en. Suite &	DO Seatt	. W4
Lab Pł	none: 717,556,7236			California Global ID No.:									Con	sultan	t/Cont	ractor	PM:	Bria	ny, Svite &C n Murcum	<u> </u>	" /						
	nipping Acent:			Enfos Proposal No:										Pho	ne: 🤄	71.2	35.	71	74	Email: brunn	was walked	radic cos					
Lab Bo	ottle Order No:			Acco	ounti	ng Mo	ode:		Pro	vision		00	C-BU		00	C-RM		_	Ema	il EDE	To:	Brian	1, Ro	ss, R	and to	ab.enfosdoc@	bp.com
Other	nfo:			Stag	je:				Α	ctivity:					***************************************				Invo	ice To	;		BP)	Contract	or X	
BP Pro	oject Manager (PM):				Ma	trix		No	. Co	ntain	ers /	Pres	ervat	ive			oissourement and	Requ	este	d An	alyse	s			Report T	ype & QC L	evel
BP PN	Phone:														$\overline{}$	(Signal)		E.	36	2		18			S	tandard 🛨	5 Privil
BP PN	Email:							ainer							Ş	<u>کر</u>		3	100	35	1.82	(602) (Lo			Full Data F	ackage	ser spein
Lab No.	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor	Is this location a well?	Total Number of Container	Unpreserved	H2SO4	HNO3	HCI	Methanol		GRO (NWTPH-GK	BTEX/MTBE/EDC		DRO/HO yel cleans	DROTHO without s.	27 TO C SI M	Total lead (6020	Ived L			Co Note: If sample no Sample" in comme and initial any prep	nts and single-s	trike out
	MW-7	12-15-16	0915		X		Ý	H	3		į	12			X	X	X	\times	\times	\mathbb{X}	X	X			Questions	- call	₹.
î Y	MW-8	12-15-16	1015		X		Y	14	3		-	12			X	\boxtimes	X	\boxtimes	\geq	\boxtimes	X	>			Brauhla		
,	MW-9	12-15-16			X		Y	14	3		-	12			X	\times	\boxtimes	\times	\boxtimes	\sum	X	X				-	
K	MW-13	12-15-16			\times		¥	Ĭ	3		1	12			\times	X	X	X	X	X	X	X					
,	DUP-1	12-15-16			X		>-	10				10			\times	NO EDC		X	\times								
	Trip Blank	ميده.	-		\angle		2	2				2				NDC EDC											
																						-					
													s a beautiful service of	and the same of th													
Sample	er's Name: Ryan Brauchl	a (RB)				R	elin	quist	ned l	By / A	ffiliat	ion		-	Da	ate	Ti	me		ß	Acc	epted	d By	/ Affil	liation	Date	Time
Sampler's Company: Arcadis			5	u	-/	ور ا	7 é	\angle	Av	کا از	dig	<u> </u>		12/10	116	115	50	9	1.	. , B	h	18	-W	<u> </u>	10/K/	11:50	
Shipment Method: Ship Date:								` <i>'</i>						Ĺ	,			1									
Shipm	ent Tracking No:										VI VINA III)																
Speci	al Instructions: Please pr	rovide cl	rromato	gra	ms	; f	94^	all	DR	0/1	0 0	nal	vses		ed to	o by	run	by	6020) (no	it 61	210	ces is	s pru	ntedon the b	offles)	
	THIS LINE - LAB USE ONLY: Custoo		ACTIVITIES OF STREET AND ACTIVITIES OF STREET	- Park Control of the	Гетр	Blan		s/No		C	ooler T	emp	on Re	ceipt:	0.5		J°F/C		Tri	Trip Blank: Yes / No MS/MSD Sample Submitted: Yes / No							
RL Re	P. Remediation Management COC - Effective Date: starting August 16, 2011. Use for Remediation Management COC - Effective Date: starting August 16, 2011.											ana <i>l</i> uk	proje	cts onl	V												

Sample Administration Receipt Documentation Log

Doc Log ID:

171164

Group Number(s): 1746296

Client: WA OFFICE

Delivery and Receipt Information

Delivery Method:

SeaTac

Arrival Timestamp:

12/17/2016 11:10

Number of Packages:

<u>3</u>

Number of Projects:

1

State/Province of Origin:

<u>WA</u>

Arrival Condition Summary

Shipping Container Sealed:

Yes

Sample IDs on COC match Containers:

Yes

Custody Seal Present:

Yes

Sample Date/Times match COC:

Yes

Custody Seal Intact:

Yes

VOA Vial Headspace ≥ 6mm:

No

Samples Chilled:

Yes

Total Trip Blank Qty:

2

Paperwork Enclosed:

Yes Yes Trip Blank Type:

HCI

Samples Intact: Missing Samples:

No

Extra Samples:

Discrepancy in Container Qty on COC:

No Νo Air Quality Samples Present:

No

Unpacked by Karen Diem (3060) at 11:56 on 12/17/2016

Samples Chilled Details

Thermometer Types:

DT = Digital (Temp. Bottle)

IR = Infrared (Surface Temp)

All Temperatures in °C.

Cooler#	Thermometer ID	Corrected Temp	Therm. Type	<u>lce Type</u>	ice Present?	Ice Container	Elevated Temp?
1	DT121	0.5	DT	Wet	Υ	Bagged	N
2	DT121	0.7	ĐT	Wet	Υ	Bagged	N
3	DT121	1.0	DT	Wet	Υ	Bagged	N

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL Below Minimum Quantitation Level mq milligram(s) degrees Celsius mĹ milliliter(s) cfu colony forming units MPN Most Probable Number **CP Units** cobalt-chloroplatinate units N.D. none detected F degrees Fahrenheit ng nanogram(s) nephelometric turbidity units gram(s) NTU g IÚ International Units pg/L picogram/liter kilogram(s) RL Reporting Limit kg **TNTC** liter(s) Too Numerous To Count lb. pound(s) microgram(s) μg μĹ microliter(s) m3 cubic meter(s) milliequivalents umhos/cm micromhos/cm meg

< less than

> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight Besults printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an

as-received basis.

Laboratory Data Qualifiers:

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

W - The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ANALYTICAL REPORT March 17, 2017

Arcadis - Seattle, WA

Sample Delivery Group: L895193

Samples Received: 03/10/2017

Project Number: GP09BPNA.WA60

Description: Olympia Bulk Plant

1120 WEST BAY DR, OLYMPIA, WA Site:

Report To: Ross LaGrandeur

1100 Olive Way

Suite 800

Seattle, WA 98101

Entire Report Reviewed By:

Buar Ford

Brian Ford

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

27

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-7 L895193-01	6
MW-8 L895193-02	8
MW-9 L895193-03	10
MW-13 L895193-04	12
DUP-1 L895193-05	14
TRIP BLANK L895193-06	15
Qc: Quality Control Summary	16
Metals (ICP) by Method 6010C	16
Volatile Organic Compounds (GC) by Method NWTPHGX	18
Volatile Organic Compounds (GC/MS) by Method 8260C	19
EDB / DBCP by Method 8011	21
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	22
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	23
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	24
GI: Glossary of Terms	25
Al: Accreditations & Locations	26

⁹Sc: Chain of Custody

SAMI

PLF SU	MMARY	ONE LAB. NATI	0

PLE SUMMARY ONE LAB. N	PLE SUMMARY	ONE LAB. NA
------------------------	-------------	-------------

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010C	WG960587	1	03/13/17 21:09	03/14/17 02:29	LTB
Metals (ICP) by Method 6010C	WG961400	1	03/15/17 23:03	03/16/17 04:01	CCE
Volatile Organic Compounds (GC) by Method NWTPHGX	WG960176	1	03/16/17 04:54	03/16/17 04:54	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG959917	1	03/13/17 06:54	03/13/17 06:54	BMB
EDB / DBCP by Method 8011	WG960326	1	03/13/17 07:39	03/14/17 07:17	HMH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG960019	1	03/11/17 00:06	03/11/17 18:30	TRF
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG961524	1	03/14/17 12:54	03/16/17 13:53	TRF
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG960332	1	03/14/17 05:43	03/14/17 12:18	FMB

DUP-1 L895193-05 GW			Collected by Eric Krueger	Collected date/time 03/09/17 00:00	Received date/time 03/10/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG960176	1	03/16/17 05:15	03/16/17 05:15	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG959917	1	03/13/17 07:15	03/13/17 07:15	BMB
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG960019	1	03/11/17 00:06	03/11/17 18:47	TRF
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG961524	1	03/14/17 12:54	03/16/17 14:09	TRF
			Collected by	Collected date/time	Received date/time
TRIP BLANK L895193-06 GW			Eric Krueger	03/09/17 00:00	03/10/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 8260C	WG959917	1	03/13/17 01:32	03/13/17 01:32	ВМВ

1 0-

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford

Technical Service Representative

Buar Ford

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 12:25

L895193

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	3.48	<u>J</u>	1.90	5.00	1	03/14/2017 02:21	WG960587
Lead, Dissolved	U		1.90	5.00	1	03/16/2017 03:47	WG961400

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	03/16/2017 03:51	WG960176
(S) a,a,a-Trifluorotoluene(FID)) 100			77.0-122		03/16/2017 03:51	WG960176

⁵Sr

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	03/13/2017 05:49	WG959917
Toluene	U		0.412	1.00	1	03/13/2017 05:49	WG959917
Ethylbenzene	U		0.384	1.00	1	03/13/2017 05:49	WG959917
Total Xylenes	U		1.06	3.00	1	03/13/2017 05:49	WG959917
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 05:49	WG959917
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 05:49	WG959917
(S) Toluene-d8	110			80.0-120		03/13/2017 05:49	WG959917
(S) Dibromofluoromethane	111			76.0-123		03/13/2017 05:49	WG959917
(S) a,a,a-Trifluorotoluene	105			80.0-120		03/13/2017 05:49	WG959917
(S) 4-Bromofluorobenzene	94.1			80.0-120		03/13/2017 05:49	WG959917

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00240	0.0100	1	03/14/2017 06:44	WG960326

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/11/2017 17:39	WG960019
Residual Range Organics (RRO)	U		165	500	1	03/11/2017 17:39	WG960019
(S) o-Terphenyl	94.3			52.0-156		03/11/2017 17:39	WG960019

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/16/2017 13:03	WG961524
Residual Range Organics (RRO)	U		165	500	1	03/16/2017 13:03	WG961524
(S) o-Terphenyl	121			52.0-156		03/16/2017 13:03	WG961524

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	03/14/2017 11:10	WG960332
Benzo(a)pyrene	U		0.0116	0.0500	1	03/14/2017 11:10	WG960332
Benzo(b)fluoranthene	U		0.00212	0.0500	1	03/14/2017 11:10	WG960332
Benzo(k)fluoranthene	U		0.0136	0.0500	1	03/14/2017 11:10	WG960332
Chrysene	U		0.0108	0.0500	1	03/14/2017 11:10	WG960332
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	03/14/2017 11:10	WG960332
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	03/14/2017 11:10	WG960332

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 12:25

L895193

Committee Cigo												
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch					
Analyte	ug/l		ug/l	ug/l		date / time						
Naphthalene	0.120	<u>B J</u>	0.0198	0.250	1	03/14/2017 11:10	WG960332					
1-Methylnaphthalene	0.0245	<u>J</u>	0.00821	0.250	1	03/14/2017 11:10	WG960332					
2-Methylnaphthalene	0.0359	<u>J</u>	0.00902	0.250	1	03/14/2017 11:10	WG960332					
(S) Nitrobenzene-d5	119			31.0-160		03/14/2017 11:10	WG960332					
(S) 2-Fluorobiphenyl	94.1			48.0-148		03/14/2017 11:10	WG960332					
(S) p-Terphenyl-d14	93.1			37.0-146		03/14/2017 11:10	WG960332					

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 13:20

L895193

Metals (ICP) by Method 6010C

, , ,							
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	U		1.90	5.00	1	03/14/2017 02:23	WG960587
Lead, Dissolved	U		1.90	5.00	1	03/16/2017 03:50	WG961400

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	03/16/2017 04:12	WG960176
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-122		03/16/2017 04:12	WG960176

⁵Sr

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	- r
Analyte	ug/l		ug/l	g/l ug/l		date / time		
Benzene	U		0.331	1.00	1	03/13/2017 06:11	WG959917	
Toluene	6.00		0.412	1.00	1	03/13/2017 06:11	WG959917	
Ethylbenzene	U		0.384	1.00	1	03/13/2017 06:11	WG959917	
Total Xylenes	U		1.06	3.00	1	03/13/2017 06:11	WG959917	ſ
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 06:11	WG959917	
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 06:11	WG959917	l
(S) Toluene-d8	108			80.0-120		03/13/2017 06:11	WG959917	
(S) Dibromofluoromethane	111			76.0-123		03/13/2017 06:11	WG959917	
(S) a,a,a-Trifluorotoluene	103			80.0-120		03/13/2017 06:11	WG959917	
(S) 4-Bromofluorobenzene	95.9			80.0-120		03/13/2017 06:11	WG959917	

⁹Sc

ΆΙ

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00240	0.0100	1	03/14/2017 06:55	WG960326

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	390		82.5	250	1	03/11/2017 17:56	WG960019
Residual Range Organics (RRO)	419	<u>J</u>	165	500	1	03/11/2017 17:56	WG960019
(S) o-Terphenyl	101			52.0-156		03/11/2017 17:56	WG960019

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	87.6	<u>J</u>	82.5	250	1	03/16/2017 13:20	WG961524
Residual Range Organics (RRO)	U		165	500	1	03/16/2017 13:20	WG961524
(S) o-Terphenyl	108			52.0-156		03/16/2017 13:20	WG961524

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	03/14/2017 11:32	WG960332
Benzo(a)pyrene	U		0.0116	0.0500	1	03/14/2017 11:32	WG960332
Benzo(b)fluoranthene	U		0.00212	0.0500	1	03/14/2017 11:32	WG960332
Benzo(k)fluoranthene	U		0.0136	0.0500	1	03/14/2017 11:32	WG960332
Chrysene	U		0.0108	0.0500	1	03/14/2017 11:32	WG960332
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	03/14/2017 11:32	WG960332
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	03/14/2017 11:32	WG960332

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 13:20

L895193

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Naphthalene	0.0608	<u>B J</u>	0.0198	0.250	1	03/14/2017 11:32	WG960332
1-Methylnaphthalene	0.0269	<u>J</u>	0.00821	0.250	1	03/14/2017 11:32	WG960332
2-Methylnaphthalene	0.0134	<u>J</u>	0.00902	0.250	1	03/14/2017 11:32	WG960332
(S) Nitrobenzene-d5	116			31.0-160		03/14/2017 11:32	WG960332
(S) 2-Fluorobiphenyl	90.2			48.0-148		03/14/2017 11:32	WG960332
(S) p-Terphenyl-d14	84.8			37.0-146		03/14/2017 11:32	WG960332

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 13:50

L895193

Metals (ICP) by Method 6010C

· · · · · · · · ·							
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	2.72	J	1.90	5.00	1	03/14/2017 02:26	WG960587
Lead, Dissolved	U		1.90	5.00	1	03/16/2017 03:53	WG961400

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	03/16/2017 04:33	WG960176
(S) a,a,a-Trifluorotoluene(FID)) 100			77.0-122		03/16/2017 04:33	WG960176

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	03/13/2017 06:32	WG959917	
Toluene	3.42		0.412	1.00	1	03/13/2017 06:32	WG959917	
Ethylbenzene	U		0.384	1.00	1	03/13/2017 06:32	WG959917	
Total Xylenes	U		1.06	3.00	1	03/13/2017 06:32	WG959917	
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 06:32	WG959917	
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 06:32	WG959917	
(S) Toluene-d8	108			80.0-120		03/13/2017 06:32	WG959917	
(S) Dibromofluoromethane	110			76.0-123		03/13/2017 06:32	WG959917	
(S) a,a,a-Trifluorotoluene	104			80.0-120		03/13/2017 06:32	WG959917	
(S) 4-Bromofluorobenzene	95.6			80.0-120		03/13/2017 06:32	WG959917	

Sc

Gl

[°]Qc

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00240	0.0100	1	03/14/2017 07:06	WG960326

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	347		82.5	250	1	03/11/2017 18:13	WG960019
Residual Range Organics (RRO)	376	<u>J</u>	165	500	1	03/11/2017 18:13	WG960019
(S) o-Terphenyl	104			52.0-156		03/11/2017 18:13	WG960019

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/16/2017 13:36	WG961524
Residual Range Organics (RRO)	U		165	500	1	03/16/2017 13:36	WG961524
(S) o-Terphenyl	109			52.0-156		03/16/2017 13:36	WG961524

	Result	<u>Qualifier</u>	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	03/14/2017 11:55	WG960332
Benzo(a)pyrene	U		0.0116	0.0500	1	03/14/2017 11:55	WG960332
Benzo(b)fluoranthene	U		0.00212	0.0500	1	03/14/2017 11:55	WG960332
Benzo(k)fluoranthene	U		0.0136	0.0500	1	03/14/2017 11:55	WG960332
Chrysene	U		0.0108	0.0500	1	03/14/2017 11:55	WG960332
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	03/14/2017 11:55	WG960332
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	03/14/2017 11:55	WG960332

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 13:50

L895193

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time					
Naphthalene	1.07		0.0198	0.250	1	03/14/2017 11:55	WG960332				
1-Methylnaphthalene	0.105	<u>J</u>	0.00821	0.250	1	03/14/2017 11:55	WG960332				
2-Methylnaphthalene	0.0488	<u>J</u>	0.00902	0.250	1	03/14/2017 11:55	WG960332				
(S) Nitrobenzene-d5	119			31.0-160		03/14/2017 11:55	WG960332				
(S) 2-Fluorobiphenyl	97.1			48.0-148		03/14/2017 11:55	WG960332				
(S) p-Terphenyl-d14	92.2			37.0-146		03/14/2017 11:55	WG960332				

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 14:35

L895193

Metals (ICP) by Method 6010C

esult	Qualifier	MDL	RDL	Dilution	Analysis	Batch
g/l		ug/l	ug/l		date / time	
14	J	1.90	5.00	1	03/14/2017 02:29	WG960587
J		1.90	5.00	1	03/16/2017 04:01	WG961400
(g/l 14	g/l	ug/l ug/l .14 <u>J</u> 1.90	ug/l ug/l ug/l 14 <u>J</u> 1.90 5.00	g/l ug/l ug/l .14 <u>J</u> 1.90 5.00 1	g/l ug/l ug/l date / time 14 <u>J</u> 1.90 5.00 1 03/14/2017 02:29

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	03/16/2017 04:54	WG960176
(S) a,a,a-Trifluorotoluene(FID)) 100			77.0-122		03/16/2017 04:54	WG960176

Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	03/13/2017 06:54	WG959917
Toluene	U		0.412	1.00	1	03/13/2017 06:54	WG959917
Ethylbenzene	U		0.384	1.00	1	03/13/2017 06:54	WG959917
Total Xylenes	U		1.06	3.00	1	03/13/2017 06:54	WG959917
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 06:54	WG959917
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 06:54	WG959917
(S) Toluene-d8	107			80.0-120		03/13/2017 06:54	WG959917
(S) Dibromofluoromethane	110			76.0-123		03/13/2017 06:54	WG959917
(S) a,a,a-Trifluorotoluene	104			80.0-120		03/13/2017 06:54	WG959917
(S) 4-Bromofluorobenzene	96.1			80.0-120		03/13/2017 06:54	WG959917

ΆΙ

Sc

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00240	0.0100	1	03/14/2017 07:17	WG960326

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/11/2017 18:30	WG960019
Residual Range Organics (RRO)	U		165	500	1	03/11/2017 18:30	WG960019
(S) o-Terphenyl	104			52.0-156		03/11/2017 18:30	WG960019

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/16/2017 13:53	WG961524
Residual Range Organics (RR	O) U		165	500	1	03/16/2017 13:53	WG961524
(S) o-Terphenyl	114			52.0-156		03/16/2017 13:53	WG961524

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	03/14/2017 12:18	WG960332
Benzo(a)pyrene	U		0.0116	0.0500	1	03/14/2017 12:18	WG960332
Benzo(b)fluoranthene	U		0.00212	0.0500	1	03/14/2017 12:18	WG960332
Benzo(k)fluoranthene	U		0.0136	0.0500	1	03/14/2017 12:18	WG960332
Chrysene	U		0.0108	0.0500	1	03/14/2017 12:18	WG960332
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	03/14/2017 12:18	WG960332
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	03/14/2017 12:18	WG960332

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 14:35

L895193

Committee Ciga		0000.0 (00	2, O ₁		02 0		
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Naphthalene	0.0482	<u>B J</u>	0.0198	0.250	1	03/14/2017 12:18	WG960332
1-Methylnaphthalene	0.0100	<u>J</u>	0.00821	0.250	1	03/14/2017 12:18	WG960332
2-Methylnaphthalene	U		0.00902	0.250	1	03/14/2017 12:18	WG960332
(S) Nitrobenzene-d5	120			31.0-160		03/14/2017 12:18	WG960332
(S) 2-Fluorobiphenyl	95.9			48.0-148		03/14/2017 12:18	WG960332
(S) p-Terphenyl-d14	91.2			37.0-146		03/14/2017 12:18	WG960332

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 00:00

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	03/16/2017 05:15	WG960176
(S) a,a,a-Trifluorotoluene(F	ID) 100			77.0-122		03/16/2017 05:15	WG960176

⁵ C ₂
21

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	03/13/2017 07:15	WG959917
Toluene	U		0.412	1.00	1	03/13/2017 07:15	WG959917
Ethylbenzene	U		0.384	1.00	1	03/13/2017 07:15	WG959917
Total Xylenes	U		1.06	3.00	1	03/13/2017 07:15	WG959917
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 07:15	WG959917
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 07:15	WG959917
(S) Toluene-d8	107			80.0-120		03/13/2017 07:15	WG959917
(S) Dibromofluoromethane	108			76.0-123		03/13/2017 07:15	WG959917
(S) a,a,a-Trifluorotoluene	104			80.0-120		03/13/2017 07:15	WG959917
(S) 4-Bromofluorobenzene	94.6			80.0-120		03/13/2017 07:15	WG959917

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/11/2017 18:47	WG960019
Residual Range Organics (RRO)	U		165	500	1	03/11/2017 18:47	WG960019
(S) o-Terphenyl	105			52.0-156		03/11/2017 18:47	WG960019

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/16/2017 14:09	WG961524
Residual Range Organics (RRO)	U		165	500	1	03/16/2017 14:09	WG961524
(S) o-Terphenyl	108			52.0-156		03/16/2017 14:09	WG961524

TRIP BLANK

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 00:00

L895193

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	03/13/2017 01:32	WG959917
Toluene	U		0.412	1.00	1	03/13/2017 01:32	WG959917
Ethylbenzene	U		0.384	1.00	1	03/13/2017 01:32	WG959917
Total Xylenes	U		1.06	3.00	1	03/13/2017 01:32	WG959917
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 01:32	WG959917
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 01:32	WG959917
(S) Toluene-d8	107			80.0-120		03/13/2017 01:32	WG959917
(S) Dibromofluoromethane	108			76.0-123		03/13/2017 01:32	WG959917
(S) a,a,a-Trifluorotoluene	104			80.0-120		03/13/2017 01:32	WG959917
(S) 4-Bromofluorobenzene	95.4			80.0-120		03/13/2017 01:32	WG959917

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010C

L895193-01,02,03,04

Method Blank (MB)

(MB) R3202970-1 03/14/17 01:49

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead	U		1.90	5.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3202970-2 03/14/17 01:51 • (LCSD) R3202970-3 03/14/17 01:54

(,	Spike Amount	•	LCSD Result		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Lead	1000	990	984	99	98	80-120			1	20

(OS) | 895608-03 03/14/17 01:57 • (MS) R3202970-5 03/14/17 02:02 • (MSD) R3202970-6 03/14/17 02:04

(,				(
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Lead	1000	5.58	994	997	99	99	1	75-125			0	20

Metals (ICP) by Method 6010C L895193-01,02,03,04

ONE LAB. NATIONWIDE.

Method Blank (MB)

(1112) 1102007101	MD D
(MB) R3203719-1	03/16/17 03:28

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead, Dissolved	U		1.90	5.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3203719-2 03/16/17 03:30 • (LCSD) R3203719-3 03/16/17 03:33

,	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Lead, Dissolved	1000	1020	1010	102	101	80-120			1	20

(OS) L895608-01 03/16/17 03:36 • (MS) R3203719-5 03/16/17 03:41 • (MSD) R3203719-6 03/16/17 03:44

(00) 2000000 0. 00	` '	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilutio	n Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%	Dilutio	%	M3 Qualifier	WOD Qualifier	%	%	
Lead, Dissolved	1000	ND	1000	1010	100	101	1	75-125			1	20	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method NWTPHGX

L895193-01,02,03,04,05

Method Blank (MB)

(MB) R3203738-3 03/15/1	(MB) R3203738-3 03/15/17 21:47									
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	ug/l		ug/l	ug/l						
Gasoline Range Organics-NWTPH	U		31.6	100						
(S) a,a,a-Trifluorotoluene(FIL	D) 101			77.0-122						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3203738-1 03/15/1	(LCS) R3203738-1 03/15/17 20:44 • (LCSD) R3203738-2 03/15/17 21:05											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Gasoline Range Organics-NWTPH	5500	6130	6590	111	120	72.0-134			7.24	20		
(S) a,a,a-Trifluorotoluene(FIL	0)			103	104	77.0-122						

L895193-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L895193-01 03/16/17 03:51 • (MS) R3203738-4 03/16/17 02:47 • (MSD) R3203738-5 03/16/17 03:09

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Gasoline Range Organics-NWTPH	5500	U	6610	6480	120	118	1	23.0-159			1.99	20
(S) a,a,a-Trifluorotoluene(FID))				103	103		77.0-122				

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L895193-01,02,03,04,05,06

Method Blank (MB)

(S) Toluene-d8

(S) Dibromofluoromethane

(S) a,a,a-Trifluorotoluene

(S) 4-Bromofluorobenzene

17 01:10			
MB Result	MB Qualifier	MB MDL	MB RDL
ug/l		ug/l	ug/l
U		0.331	1.00
U		0.361	1.00
U		0.384	1.00
U		0.367	1.00
U		0.412	1.00
U		1.06	3.00
	ug/l U U U U	MB Result ug/l U U U U U U U	MB Result ug/l MB Qualifier ug/l MB MDL ug/l U 0.331 0.361 U 0.384 0.367 U 0.412

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

80.0-120

76.0-123

80.0-120

80.0-120

(LCS) R3203135-1	03/13/1/00:06 •	(LCSD) R3203135-2	03/13/1/ 00:2/

109

111

103

95.0

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	25.0	27.2	28.4	109	114	69.0-123			4.23	20	
1,2-Dichloroethane	25.0	28.5	27.6	114	110	67.0-126			3.35	20	
Ethylbenzene	25.0	23.4	26.0	93.8	104	77.0-120			10.5	20	
Methyl tert-butyl ether	25.0	27.5	26.8	110	107	64.0-123			2.58	20	
Toluene	25.0	25.2	26.4	101	105	77.0-120			4.30	20	
Xylenes, Total	75.0	75.7	80.1	101	107	77.0-120			5.65	20	
(S) Toluene-d8				103	102	80.0-120					
(S) Dibromofluoromethane				109	110	76.0-123					
(S) a,a,a-Trifluorotoluene				98.8	97.8	80.0-120					
(S) 4-Bromofluorobenzene				96.8	99.8	80.0-120					

L895138-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS)	L895138-01	03/13/17 02:57 •	(MS) R3203135-4	03/13/17 01:53 •	(MSD) R3203135-5	03/13/17 02:14
-----	------------	------------------	-----------------	------------------	------------------	----------------

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Benzene	25.0	49.2	634	646	117	119	20	34.0-147			1.81	20
1,2-Dichloroethane	25.0	ND	581	598	116	120	20	47.0-141			2.94	20
Ethylbenzene	25.0	34.5	614	608	116	115	20	42.0-147			0.950	20
Methyl tert-butyl ether	25.0	ND	558	604	112	121	20	42.0-142			7.83	20
Toluene	25.0	113	680	691	113	116	20	42.0-141			1.57	20
Xylenes, Total	75.0	1420	3670	3550	150	142	20	41.0-148	<u>J5</u>		3.32	20
(S) Toluene-d8					103	104		80.0-120				

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L895193-01,02,03,04,05,06

L895138-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L895138-01 03/13/17 02:57 • (MS) R3203135-4 03/13/17 01:53 • (MSD) R3203135-5 03/13/17 02:14

(,	(- / -		(- /								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
(S) Dibromofluoromethane					104	110		76.0-123				
(S) a,a,a-Trifluorotoluene					99.9	97.6		80.0-120				
(S) 4-Bromofluorobenzene					104	104		80.0-120				

ONE LAB. NATIONWIDE.

EDB / DBCP by Method 8011

L895193-01,02,03,04

Method Blank (MB)

(MB) R3203299-1 03/14/17 05:06

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Ethylene Dibromide	U		0.00240	0.0100

²Tc

(0.0) 0.0 = 470 04	004447.05.50	(0110) 00000000	004447.05.00
(OS) L8954/0-01	03/14/1/ 05:50 •	(DUP) R3203299-3	03/14/1/ 05:39

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Ethylene Dibromide	ND	0.000	1	0.000		20

(LCS) R3203299-4 03/14/17 07:28 • (LCSD) R3203299-5 03/14/17 09:28

(===)=====	-,	-,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Ethylene Dibromide	0.250	0.275	0.252	110	101	60.0-140			8.51	20

L895470-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L895470-02 03/14/17 05:28 • (MS) R3203299-2 03/14/17 05:17

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Ethylene Dibromide	0.100	0.623	0.720	97.6	1	60.0-140	Ē

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L895193-01,02,03,04,05

Method Blank (MB)

(MB) R3202852-1 03/11/17	13:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		83.3	250
Residual Range Organics (RRO)	U		167	500
(S) o-Terphenyl	98.4			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3202852-2 03/11/17	/ 13:46 • (LCSD)) R3202852-3	03/11/1/ 14:02							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	869	912	116	122	50.0-150			4.86	20
Residual Range Organics (RRO)	750	669	701	89.1	93.5	50.0-150			4.76	20
(S) o-Terphenyl				102	105	52.0-156				

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

L895193-01,02,03,04,05

Method Blank (MB)

(MB) R3203861-1 03/16/17	12:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		83.3	250
Residual Range Organics (RRO)	U		167	500
(S) o-Terphenyl	119			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3203861-2 03/16/17	/ 12:30 • (LCSD	D) R3203861-3	03/16/1/ 12:4/							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	973	874	130	116	50.0-150			10.7	20
Residual Range Organics (RRO)	750	859	794	115	106	50.0-150			7.91	20
(S) o-Terphenyl				127	114	52.0-156				

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L895193-01,02,03,04

Method Blank (MB)

(MB) R3203231-3 03/14/	/17 10:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzo(a)anthracene	U		0.00410	0.0500
Benzo(a)pyrene	U		0.0116	0.0500
Benzo(b)fluoranthene	0.00233	<u>J</u>	0.00212	0.0500
Benzo(k)fluoranthene	U		0.0136	0.0500
Chrysene	U		0.0108	0.0500
Dibenz(a,h)anthracene	U		0.00396	0.0500
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500
Naphthalene	0.0496	<u>J</u>	0.0198	0.250
1-Methylnaphthalene	U		0.00821	0.250
2-Methylnaphthalene	U		0.00902	0.250
(S) Nitrobenzene-d5	144			31.0-160
(S) 2-Fluorobiphenyl	120			48.0-148
(S) p-Terphenyl-d14	126			37.0-146

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3203231-1 03/14/1	7 09:14 • (LCSD)	R3203231-2	03/14/17 09:37								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzo(a)anthracene	2.00	2.14	2.20	107	110	59.0-134			3.06	20	
Benzo(a)pyrene	2.00	2.08	2.17	104	109	61.0-145			4.43	20	
Benzo(b)fluoranthene	2.00	2.16	2.12	108	106	57.0-136			2.01	20	
Benzo(k)fluoranthene	2.00	1.92	2.16	96.0	108	57.0-141			11.6	20	
Chrysene	2.00	1.95	2.01	97.5	101	63.0-140			3.10	20	
Dibenz(a,h)anthracene	2.00	2.15	2.22	107	111	49.0-141			3.37	20	
Indeno(1,2,3-cd)pyrene	2.00	2.12	2.20	106	110	53.0-141			3.88	20	
Naphthalene	2.00	2.11	2.21	105	110	68.0-129			4.51	20	
1-Methylnaphthalene	2.00	2.05	2.14	103	107	68.0-137			4.16	20	
2-Methylnaphthalene	2.00	1.94	2.02	97.0	101	68.0-134			4.26	20	
(S) Nitrobenzene-d5				120	124	31.0-160					
(S) 2-Fluorobiphenyl				99.4	103	48.0-148					
(S) p-Terphenyl-d14				101	104	37.0-146					

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.

Qualifier	Description
В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERTO086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
FPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

	B-187.000	(2)	Billing Infor	mation:	nation:		15 4			A	nalysis /	sis / Container / Preserv			9		-	Chain of Castody	PageOI
Arcadis - Seattle, WA				ounts Pay			Pres Chk								27			数	SC
1100 Olive Way Suite 800 Seattle WA 98101			Highland	s Ranch,	08 00													RESTRICTED BY	OF CHASE
Report to:	- 3			oss.LaGrand chla@arcadi		arcadis.com;					ju.					*		12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-5858	
Ross LaGrandeur				City/State					5		CI-B	-			m	11-8		Phone: 800-767-5856 Fax: 615-758-5859	
Project Description: Olympia Bulk Plant				Collected:				P	HCI Pres	Pre	P-H(CI-B	- 4	3	NO	O-HC	á		1103
Phone: 509-438-9828	Client Project # GP09BPNA.WA60		ARCABP		BPOLY		40mlAmb-HCl	Diss Pb 6010C 250mlHDPE-NoPres	rhio	NWTPHDX (NO SGT) 40mlAmb-HCl-BT	NWTPHDX (SGT) 40mlAmb-HCl-BT	NWTPHGX 40mlAmb HCl	40mlAmb-NoPres-WT	250miHDPE-HNO3	BTEXM/EDC 40mlAmb-HCI-BIK		F164	5193	
Collected by (print): Fric Krueger (EK)	Site/Facility ID # 1120 WEST BAY DR, OLYMPIA,			P.O. #									Jr-NaThio	Amb-A	250mil	EDC 40		Template:T126	
Collected by (signature):	Rush? (La	ab MUST Be	Notified)	Quote #				8260C	0C 2	40mlCtr-	NO	SGT	10mp	10ml		XW/	d	Prelogin: P58	8878
Immediately Packed on Ice NY X	Same Da Next Day Two Day Three Da	5 Da	y (Rad Only) ay (Rad Only)	Date Results Needed			No. of	EXM/EDC	Pb 6010	8011	TPHDX (TPHDX (TPHGX 4	AH-SIMD 4	Total Pb 6010C	품		TSR: 110 - Brian PB: Shipped Via:	n Ford
Sample ID	Comp/Grab	Matrix *	Depth	Dat	Date		Cntrs	Cotrs X3 L8	Diss	EDB	3	N	N.	PAH	Tota	trip		Remarks	Sample # (lab uniy)
MW-7	1000	GW	- L	3/9	/13	1225	15	X	X	\times	X	X	X	\geq	X				-6)
MW-8	to Paris	GW	100			1320	15	\times	X	X	X	\times	X	X	X				02
MW-9	1	GW				1350	15	X	X	\geq	X	\times	X	X	X			3	03
MW-13	E 10-0	GW				1435	15	\times	$\mathbb{I} \times$	\times	X	X	X	X	\swarrow			2 - 19	64
Dup-1		GW		4	1	-	8	\times			X	X	X		X				66
Trip Blank		GW		-		-	2					- 320	100			X	1		06
The Course		GW		W		12.00		100		100				1	100				10 15 10 20
		GW		7157								1800							
THE STREET				18-60-50													Ent	mple Receipt C	necklat
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:										pi			mp		COC Bott	Seal Signe les a	Present/Intact ad/Accurate: arrive intact; bottles used:	TY N
WW - WasteWater DW - Drinking Water OT - Other	Samples retu	rned via: edEx G	ourier			Tracking #					Flow Other				Buff	lcien	it volume sent If Applica Headspace: ion Correct/C	blu y r	
Relinquished by : (Signature)	MERCHANICAL STREET	Date:		Time:		Received by: (Sign	nature)				Trip B	lank Red	eived:	W)	MeoH	L. F.	ME VAL	TOIL COLLEGE?	+ -
Relinquished by : (Signature)		3/9 Date:	117	1600 Time;		Received by: (Sig	nature)			5	100000000000000000000000000000000000000	Temp: °C Bottles			2	If pr	If preservation required by Login: Date		
			9	10							2.4° TAIL 6 8				Hole	Hold:		Condition:	
Relinquished by : (Signature) Date:			Time:	-	Received for lab by: (Signature)					3-10-17 0900							NCF / 8K		

Evaluated by:Andy Vann	Time (a.m.)
Date:03/10/17	
Client: ARCABPWA	
Login #:L895193	Non-Conformación

Sample Integrity	Chain of Custody Chaitication	
holdin	Charles of Custody Clarification	
time	X Login Clarification Naced at	
Improper		If Broken Container:
temperature	Chain of custody is incomment	
Improper container	and mounts of the contract of	Insufficient packing material around container
type	Please specify Metals requested.	Insufficient packing material inside
Improper preservation	Please specify TCLP remested	cooler
	manufacture to the second seco	Improper handling by carrier (RedEx / mps / c
Insufficient sample volume.	Received additional samples not listed on coc.	Sample was
Cample is bink	Sample ide on control	frozen
compre is orphiasic.	coc	4
Vials received with headsnace	Thin Blant	Container lid not intact
	The blank not received,	If no Chain of Contrast
Broken container	Client did not "X" analysis.	cham of custody:
Broken container:		Received by:
	Chain of Custody is missing	Date/Time:
Sufficient sample remains		town / new /
		Temp./Cont. Rec./pH:
		Carrier:
		Tracking#

Login Comments: Dup-1 marked for PBICP, but we did not receive the total metals container for that id,

	Time:1455	
ice Mail Date:02/10/10	@arcadis.com;	
Call Email x Vo	Client Contact: Ross.LaGrandeur@ Ryan.Brauchla@arcadis.com; Alexander.Pink@arcadis.com	The same of the sa
Client informed by:	TSR Initials:bjf	The second secon

Login Instructions:

Proceed with all other analyses.

ANALYTICAL REPORT

Arcadis - Seattle, WA

Sample Delivery Group: L908444

Samples Received: 05/10/2017

Project Number: GP09BPNA.WA60

Description: Olympia Bulk Plant

Site: 1120 WEST BAY DR, OLYMPIA, WA

Report To: Ross LaGrandeur

1100 Olive Way

Suite 800

Seattle, WA 98101

Entire Report Reviewed By:

Buar Ford

Brian Ford

Results relate only to the tens sested or calibrated are oppored as grounded values. This test report shall not be reproduced, except in full, without written approval of the albeatory. Where applicable, sampling conducted by SSC is performed per guidance provided in aboratory standard operating procedures' 06/302, 06/303, and 06/304.

1
2
3
5
6
6
8
10
12
14
15
16
16
18
19
20
21
22
23
24
25

Sc: Chain of Custody

26

ONE LAB. NAT

SAMPLE SUMMARY	MPLE SUM	1MARY
----------------	----------	-------

FIONWIDE.	
HONWIDE.	- 4

MW-7 L908444-01 GW			Collected by Eric Krueger	Collected date/time 05/08/17 10:35	Received date/time 05/10/17 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Metals (ICP) by Method 6010C	WG978898	1	05/12/17 11:27	05/12/17 16:19	ST
Metals (ICP) by Method 6010C	WG979889	1	05/16/17 17:59	05/16/17 19:05	ST
Volatile Organic Compounds (GC) by Method NWTPHGX	WG979070	1	05/13/17 06:54	05/13/17 06:54	ACG
Volatile Organic Compounds (GC/MS) by Method 8260C	WG979368	1	05/13/17 14:26	05/13/17 14:26	LRL
EDB / DBCP by Method 8011	WG979504	.992	05/14/17 08:37	05/15/17 21:44	НМН
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG979247	1	05/13/17 02:19	05/13/17 12:04	TH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG978857	1	05/12/17 09:18	05/13/17 12:55	TH
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978858	1	05/12/17 09:20	05/15/17 07:54	FMB
MW-8 L908444-02 GW			Collected by Eric Krueger	Collected date/time 05/08/17 11:15	Received date/time 05/10/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Maria (ICD) I Maria 100400	1110070000		date/time	date/time	
Metals (ICP) by Method 6010C	WG978898	1	05/12/17 11:27	05/12/17 16:22	ST
Metals (ICP) by Method 6010C	WG979889	1	05/16/17 17:59	05/16/17 19:08	ST
Volatile Organic Compounds (GC) by Method NWTPHGX	WG979070	1	05/13/17 07:16	05/13/17 07:16	ACG
Volatile Organic Compounds (GC/MS) by Method 8260C	WG979368	1	05/13/17 14:41	05/13/17 14:41	LRL
EDB / DBCP by Method 8011	WG979504	.992	05/14/17 08:37	05/15/17 21:54	НМН
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG979247	1	05/13/17 02:19	05/13/17 12:21	TH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978857 WG978858	1 2	05/12/17 09:18 05/12/17 09:20	05/13/17 13:11 05/15/17 08:19	TH FMB
MW-9 L908444-03 GW			Collected by Eric Krueger	Collected date/time 05/08/17 11:50	Received date/time 05/10/17 08:45
	Batch	Dilution	Eric Krueger Preparation		
Method			Eric Krueger Preparation date/time	05/08/17 11:50 Analysis date/time	05/10/17 08:45 Analyst
Method Metals (ICP) by Method 6010C	WG978898	1	Preparation date/time 05/12/17 11:27	05/08/17 11:50 Analysis date/time 05/12/17 16:25	05/10/17 08:45 Analyst ST
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C			Eric Krueger Preparation date/time	05/08/17 11:50 Analysis date/time	05/10/17 08:45 Analyst ST ST
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX	WG978898 WG979889	1 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11	05/10/17 08:45 Analyst ST
Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C	WG978898 WG979889 WG979070	1 1 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38	O5/10/17 08:45 Analyst ST ST ACG
Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011	WG978898 WG979889 WG979070 WG979368	1 1 1 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57	O5/10/17 08:45 Analyst ST ST ACG LRL
Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG978898 WG979889 WG979070 WG979368 WG979504	1 1 1 1 .994	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57 05/14/17 08:37	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04	O5/10/17 08:45 Analyst ST ST ACG LRL HMH
Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247	1 1 1 1 .994	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57 05/14/17 08:37 05/13/17 02:19	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37	O5/10/17 O8:45 Analyst ST ST ACG LRL HMH TH
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857	1 1 1 1 .994 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57 05/14/17 08:37 05/13/17 02:19 05/12/17 09:18	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/13/17 13:27	Analyst ST ST ACG LRL HMH TH TH
Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857	1 1 1 1 .994 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57 05/14/17 08:37 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis	Analyst ST ST ACG LRL HMH TH TH FMB Received date/times
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858	1 1 1 .994 1 1 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57 05/14/17 08:37 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time	O5/10/17 08:45 Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method Metals (ICP) by Method 6010C	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858	1 1 1 1 .994 1 1 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34	Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858	1 1 1 .994 1 1 1 Dilution	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27 05/16/17 17:59	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34 05/16/17 18:54	Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst ST ST
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858 Batch WG978898 WG979889 WG979070	1 1 1 .994 1 1 1 1 Dilution	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 08:00	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34 05/16/17 18:54 05/13/17 08:00	Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst ST ST ACG
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi-Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC/MS) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858 Batch WG978898 WG979889 WG979070 WG979368	1 1 1 .994 1 1 1 1 Dilution	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 08:00 05/13/17 15:12	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34 05/13/17 08:00 05/13/17 15:12	Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst ST ST ACG LRL HMH TH TH ACG LRL HMH TH ACG LRL COS/10/17 08:45
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi-Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011	WG978898 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858 Batch WG978898 WG979889 WG979070 WG979368 WG979368 WG979504	1 1 1 .994 1 1 1 1 Dilution	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 08:00 05/13/17 15:12 05/14/17 08:37	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34 05/13/17 08:00 05/13/17 15:12 05/15/17 22:14	O5/10/17 08:45 Analyst ST ST ACG LRL HMH TH FMB Received date/time 05/10/17 08:45 Analyst ST ST ACG LRL HMH HMH
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858 Batch WG978898 WG979889 WG979070 WG979368	1 1 1 .994 1 1 1 1 Dilution	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 08:00 05/13/17 15:12	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34 05/13/17 08:00 05/13/17 15:12	Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst ST ST ACG LRL HMH TH TH ACG LRL HMH TH ACG LRL COS/10/17 08:45

			Collected by	Collected date/time	Received date/time	
DUP-1 L908444-05 GW			Eric Krueger	05/08/17 00:00	05/10/17 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		
Metals (ICP) by Method 6010C	WG979889	1	05/16/17 17:59	05/16/17 19:19	ST	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG979070	1	05/13/17 08:23	05/13/17 08:23	ACG	
Volatile Organic Compounds (GC/MS) by Method 8260C	WG979368	1	05/13/17 15:28	05/13/17 15:28	LRL	
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG979247	1	05/13/17 02:19	05/13/17 13:11	TH	
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG978857	1	05/12/17 09:18	05/13/17 14:00	TH	
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978858	1	05/12/17 09:20	05/15/17 09:31	FMB	
			Collected by	Collected date/time	Received date/time	
TRIP BLANK L908444-06 GW			Eric Krueger	05/08/17 00:00	05/10/17 08:45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG979070	1	05/13/17 02:05	05/13/17 02:05	ACG	
Volatile Organic Compounds (GC/MS) by Method 8260C	WG979368	1	05/13/17 10:49	05/13/17 10:49	LRL	

²Tc

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford

Technical Service Representative

Buar Ford

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 10:35

Metals (ICP) by Method 6010C

. , , ,								
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead	2.06	<u>J</u>	1.90	5.00	1	05/16/2017 19:05	WG979889	
Lead, Dissolved	U		1.90	5.00	1	05/12/2017 16:19	WG978898	

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

Res	sult <u>Qua</u>	<u>llifier</u> M	1DL	RDL	Dilution	Analysis	Batch
Analyte ug/l	/I	u	g/l	ug/l		date / time	
Gasoline Range Organics-NWTPH		3′	1.6	100	1	05/13/2017 06:54	WG979070
(S) a,a,a-Trifluorotoluene(FID) 92.9	.9			77.0-122		05/13/2017 06:54	<u>WG979070</u>

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	05/13/2017 14:26	WG979368	
Toluene	U		0.412	1.00	1	05/13/2017 14:26	WG979368	
Ethylbenzene	U		0.384	1.00	1	05/13/2017 14:26	WG979368	
Total Xylenes	U		1.06	3.00	1	05/13/2017 14:26	WG979368	
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 14:26	WG979368	
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 14:26	WG979368	
(S) Toluene-d8	105			80.0-120		05/13/2017 14:26	WG979368	
(S) Dibromofluoromethane	101			76.0-123		05/13/2017 14:26	WG979368	
(S) a,a,a-Trifluorotoluene	105			80.0-120		05/13/2017 14:26	WG979368	
(S) 4-Bromofluorobenzene	108			80.0-120		05/13/2017 14:26	WG979368	

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00238	0.00992	.992	05/15/2017 21:44	WG979504

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	233		66.0	200	1	05/13/2017 12:04	WG979247
Residual Range Organics (RRO)	292		82.5	250	1	05/13/2017 12:04	WG979247
(S) o-Terphenyl	97.7			52.0-156		05/13/2017 12:04	WG979247

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	81.4	<u>J</u>	66.0	200	1	05/13/2017 12:55	WG978857
Residual Range Organics (RRO)	U		82.5	250	1	05/13/2017 12:55	WG978857
(S) o-Terphenyl	102			52.0-156		05/13/2017 12:55	WG978857

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	05/15/2017 07:54	WG978858
Benzo(a)pyrene	U		0.0116	0.0500	1	05/15/2017 07:54	WG978858
Benzo(b)fluoranthene	U		0.00212	0.0500	1	05/15/2017 07:54	WG978858
Benzo(k)fluoranthene	U		0.0136	0.0500	1	05/15/2017 07:54	WG978858
Chrysene	U		0.0108	0.0500	1	05/15/2017 07:54	WG978858
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	05/15/2017 07:54	WG978858
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	05/15/2017 07:54	WG978858

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 10:35

L908444

		(-/-/				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Naphthalene	0.109	<u>J</u>	0.0198	0.250	1	05/15/2017 07:54	WG978858
1-Methylnaphthalene	0.0895	<u>J</u>	0.00821	0.250	1	05/15/2017 07:54	WG978858
2-Methylnaphthalene	0.0555	<u>J</u>	0.00902	0.250	1	05/15/2017 07:54	WG978858
(S) Nitrobenzene-d5	126			31.0-160		05/15/2017 07:54	WG978858
(S) 2-Fluorobiphenyl	113			48.0-148		05/15/2017 07:54	WG978858
(S) p-Terphenyl-d14	104			37.0-146		05/15/2017 07:54	<u>WG978858</u>

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 11:15

Metals (ICP) by Method 6010C

Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
ug/l		ug/l	ug/l		date / time	
U		1.90	5.00	1	05/16/2017 19:08	WG979889
U		1.90	5.00	1	05/12/2017 16:22	WG978898
			ug/l ug/l U 1.90	ug/l ug/l ug/l U 1.90 5.00	ug/l ug/l ug/l U 1.90 5.00 1	ug/l ug/l ug/l date / time U 1.90 5.00 1 05/16/2017 19:08

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	05/13/2017 07:16	WG979070
(S) a,a,a-Trifluorotoluene(FID	94.7			77.0-122		05/13/2017 07:16	WG979070

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	05/13/2017 14:41	WG979368
Toluene	5.02		0.412	1.00	1	05/13/2017 14:41	WG979368
Ethylbenzene	U		0.384	1.00	1	05/13/2017 14:41	WG979368
Total Xylenes	U		1.06	3.00	1	05/13/2017 14:41	WG979368
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 14:41	WG979368
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 14:41	WG979368
(S) Toluene-d8	106			80.0-120		05/13/2017 14:41	WG979368
(S) Dibromofluoromethane	104			76.0-123		05/13/2017 14:41	WG979368
(S) a,a,a-Trifluorotoluene	107			80.0-120		05/13/2017 14:41	WG979368
(S) 4-Bromofluorobenzene	105			80.0-120		05/13/2017 14:41	WG979368

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00238	0.00992	.992	05/15/2017 21:54	WG979504

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	524		66.0	200	1	05/13/2017 12:21	WG979247
Residual Range Organics (RRO)	874		82.5	250	1	05/13/2017 12:21	WG979247
(S) o-Terphenyl	95.4			52.0-156		05/13/2017 12:21	WG979247

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	68.8	<u>J</u>	66.0	200	1	05/13/2017 13:11	WG978857
Residual Range Organics (RRO)	U		82.5	250	1	05/13/2017 13:11	WG978857
(S) o-Terphenyl	84.4			52.0-156		05/13/2017 13:11	WG978857

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00820	0.100	2	05/15/2017 08:19	WG978858
Benzo(a)pyrene	U		0.0232	0.100	2	05/15/2017 08:19	WG978858
Benzo(b)fluoranthene	U		0.00424	0.100	2	05/15/2017 08:19	<u>WG978858</u>
Benzo(k)fluoranthene	U		0.0272	0.100	2	05/15/2017 08:19	<u>WG978858</u>
Chrysene	U		0.0216	0.100	2	05/15/2017 08:19	<u>WG978858</u>
Dibenz(a,h)anthracene	U		0.00792	0.100	2	05/15/2017 08:19	WG978858
Indeno(1,2,3-cd)pyrene	U		0.0296	0.100	2	05/15/2017 08:19	WG978858

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 11:15

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

8270D-SIM L908444-02 WG978858: Cannot run at lower dilution due to viscosity of extract

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Naphthalene	0.0706	ī	0.0396	0.500	2	05/15/2017 08:19	WG978858
1-Methylnaphthalene	0.0314	<u>J</u>	0.0164	0.500	2	05/15/2017 08:19	WG978858
2-Methylnaphthalene	U		0.0180	0.500	2	05/15/2017 08:19	WG978858
(S) Nitrobenzene-d5	116			31.0-160		05/15/2017 08:19	WG978858
(S) 2-Fluorobiphenyl	113			48.0-148		05/15/2017 08:19	WG978858
(S) p-Terphenyl-d14	93.8			37.0-146		05/15/2017 08:19	WG978858

Sample Narrative:

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 11:50

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead	2.72	<u>J</u>	1.90	5.00	1	05/16/2017 19:11	WG979889	
Lead, Dissolved	U		1.90	5.00	1	05/12/2017 16:25	WG978898	

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

Res	sult <u>Qւ</u>	ualifier I	MDL	RDL	Dilution	Analysis	Batch
Analyte ug/l	/I	l	ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH		;	31.6	100	1	05/13/2017 07:38	WG979070
(S) a,a,a-Trifluorotoluene(FID) 93.	.3			77.0-122		05/13/2017 07:38	<u>WG979070</u>

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	·
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	05/13/2017 14:57	WG979368	
Toluene	1.55		0.412	1.00	1	05/13/2017 14:57	WG979368	
Ethylbenzene	U		0.384	1.00	1	05/13/2017 14:57	WG979368	
Total Xylenes	U		1.06	3.00	1	05/13/2017 14:57	WG979368	ı
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 14:57	WG979368	
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 14:57	WG979368	l
(S) Toluene-d8	106			80.0-120		05/13/2017 14:57	WG979368	
(S) Dibromofluoromethane	107			76.0-123		05/13/2017 14:57	WG979368	
(S) a,a,a-Trifluorotoluene	104			80.0-120		05/13/2017 14:57	WG979368	
(S) 4-Bromofluorobenzene	107			80.0-120		05/13/2017 14:57	WG979368	

ΆΙ

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00238	0.00994	.994	05/15/2017 22:04	WG979504

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	330		66.0	200	1	05/13/2017 12:37	WG979247
Residual Range Organics (RRO)	544		82.5	250	1	05/13/2017 12:37	WG979247
(S) o-Terphenyl	93.6			52.0-156		05/13/2017 12:37	WG979247

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.0	200	1	05/13/2017 13:27	WG978857
Residual Range Organics (RRO)	U		82.5	250	1	05/13/2017 13:27	WG978857
(S) o-Terphenyl	96.8			52.0-156		05/13/2017 13:27	WG978857

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	05/15/2017 08:43	WG978858
Benzo(a)pyrene	0.0126	<u>J</u>	0.0116	0.0500	1	05/15/2017 08:43	WG978858
Benzo(b)fluoranthene	U		0.00212	0.0500	1	05/15/2017 08:43	WG978858
Benzo(k)fluoranthene	U		0.0136	0.0500	1	05/15/2017 08:43	WG978858
Chrysene	U		0.0108	0.0500	1	05/15/2017 08:43	WG978858
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	05/15/2017 08:43	WG978858
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	05/15/2017 08:43	WG978858

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 11:50

L908444

	<u> </u>	`	, ,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Naphthalene	0.915		0.0198	0.250	1	05/15/2017 08:43	WG978858
1-Methylnaphthalene	0.0942	<u>J</u>	0.00821	0.250	1	05/15/2017 08:43	WG978858
2-Methylnaphthalene	0.0921	<u>J</u>	0.00902	0.250	1	05/15/2017 08:43	WG978858
(S) Nitrobenzene-d5	120			31.0-160		05/15/2017 08:43	WG978858
(S) 2-Fluorobiphenyl	108			48.0-148		05/15/2017 08:43	WG978858
(S) p-Terphenyl-d14	94.2			37.0-146		05/15/2017 08:43	WG978858

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 12:30

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch					
Analyte	ug/l		ug/l	ug/l		date / time						
Lead	2.41	<u>J</u>	1.90	5.00	1	05/16/2017 18:54	WG979889					
Lead, Dissolved	U		1.90	5.00	1	05/12/2017 16:34	WG978898					

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	05/13/2017 08:00	WG979070
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-122		05/13/2017 08:00	<u>WG979070</u>

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	05/13/2017 15:12	WG979368	
Toluene	0.569	<u>J</u>	0.412	1.00	1	05/13/2017 15:12	WG979368	
Ethylbenzene	U		0.384	1.00	1	05/13/2017 15:12	WG979368	
Total Xylenes	U		1.06	3.00	1	05/13/2017 15:12	WG979368	
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 15:12	WG979368	
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 15:12	WG979368	
(S) Toluene-d8	106			80.0-120		05/13/2017 15:12	WG979368	
(S) Dibromofluoromethane	103			76.0-123		05/13/2017 15:12	WG979368	
(S) a,a,a-Trifluorotoluene	101			80.0-120		05/13/2017 15:12	WG979368	
(S) 4-Bromofluorobenzene	106			80.0-120		05/13/2017 15:12	WG979368	

Sc

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00238	0.00994	.994	05/15/2017 22:14	WG979504

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.0	200	1	05/13/2017 12:54	WG979247
Residual Range Organics (RRO)	132	<u>J</u>	82.5	250	1	05/13/2017 12:54	WG979247
(S) o-Terphenyl	102			52.0-156		05/13/2017 12:54	WG979247

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.0	200	1	05/13/2017 13:44	WG978857
Residual Range Organics (RRO)	U		82.5	250	1	05/13/2017 13:44	WG978857
(S) o-Terphenyl	79.6			52.0-156		05/13/2017 13:44	WG978857

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	05/15/2017 09:07	WG978858
Benzo(a)pyrene	U		0.0116	0.0500	1	05/15/2017 09:07	WG978858
Benzo(b)fluoranthene	U		0.00212	0.0500	1	05/15/2017 09:07	WG978858
Benzo(k)fluoranthene	U		0.0136	0.0500	1	05/15/2017 09:07	WG978858
Chrysene	U		0.0108	0.0500	1	05/15/2017 09:07	WG978858
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	05/15/2017 09:07	WG978858
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	05/15/2017 09:07	WG978858

MW-13

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 12:30

L908444

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>			
Analyte	ug/l		ug/l	ug/l		date / time				
Naphthalene	0.0460	<u>J</u>	0.0198	0.250	1	05/15/2017 09:07	WG978858			
1-Methylnaphthalene	0.0142	<u>J</u>	0.00821	0.250	1	05/15/2017 09:07	WG978858			
2-Methylnaphthalene	0.0127	<u>J</u>	0.00902	0.250	1	05/15/2017 09:07	WG978858			
(S) Nitrobenzene-d5	118			31.0-160		05/15/2017 09:07	WG978858			
(S) 2-Fluorobiphenyl	117			48.0-148		05/15/2017 09:07	WG978858			
(S) p-Terphenyl-d14	107			37.0-146		05/15/2017 09:07	WG978858			

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 00:00

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	U		1.90	5.00	1	05/16/2017 19:19	WG979889

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	05/13/2017 08:23	WG979070
(S) a,a,a-Trifluorotoluene(FID)) 92.5			77.0-122		05/13/2017 08:23	WG979070

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	05/13/2017 15:28	WG979368
Toluene	0.515	<u>J</u>	0.412	1.00	1	05/13/2017 15:28	WG979368
Ethylbenzene	U		0.384	1.00	1	05/13/2017 15:28	WG979368
Total Xylenes	U		1.06	3.00	1	05/13/2017 15:28	WG979368
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 15:28	WG979368
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 15:28	WG979368
(S) Toluene-d8	106			80.0-120		05/13/2017 15:28	WG979368
(S) Dibromofluoromethane	103			76.0-123		05/13/2017 15:28	WG979368
(S) a,a,a-Trifluorotoluene	101			80.0-120		05/13/2017 15:28	WG979368
(S) 4-Bromofluorobenzene	105			80.0-120		05/13/2017 15:28	WG979368

[°]Qc

Gl

Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.0	200	1	05/13/2017 13:11	WG979247
Residual Range Organics (RRO)	102	<u>J</u>	82.5	250	1	05/13/2017 13:11	WG979247
(S) o-Terphenyl	99.2			52.0-156		05/13/2017 13:11	WG979247

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.0	200	1	05/13/2017 14:00	WG978857
Residual Range Organics (RRO)	U		82.5	250	1	05/13/2017 14:00	WG978857
(S) o-Terphenyl	83.7			52.0-156		05/13/2017 14:00	WG978857

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	05/15/2017 09:31	WG978858
Benzo(a)pyrene	U		0.0116	0.0500	1	05/15/2017 09:31	WG978858
Benzo(b)fluoranthene	U		0.00212	0.0500	1	05/15/2017 09:31	WG978858
Benzo(k)fluoranthene	U		0.0136	0.0500	1	05/15/2017 09:31	WG978858
Chrysene	U		0.0108	0.0500	1	05/15/2017 09:31	WG978858
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	05/15/2017 09:31	WG978858
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	05/15/2017 09:31	WG978858
Naphthalene	0.0439	<u>J</u>	0.0198	0.250	1	05/15/2017 09:31	WG978858
1-Methylnaphthalene	0.0173	<u>J</u>	0.00821	0.250	1	05/15/2017 09:31	WG978858
2-Methylnaphthalene	0.0133	<u>J</u>	0.00902	0.250	1	05/15/2017 09:31	WG978858
(S) Nitrobenzene-d5	117			31.0-160		05/15/2017 09:31	WG978858
(S) 2-Fluorobiphenyl	116			48.0-148		05/15/2017 09:31	WG978858
(S) p-Terphenyl-d14	103			37.0-146		05/15/2017 09:31	WG978858

TRIP BLANK

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 00:00

L908444

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	05/13/2017 02:05	WG979070
(S) a,a,a-Trifluorotoluene(F	ID) 92.5			77.0-122		05/13/2017 02:05	WG979070

Ср

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	05/13/2017 10:49	WG979368
Toluene	U		0.412	1.00	1	05/13/2017 10:49	WG979368
Ethylbenzene	U		0.384	1.00	1	05/13/2017 10:49	WG979368
Total Xylenes	U		1.06	3.00	1	05/13/2017 10:49	WG979368
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 10:49	WG979368
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 10:49	WG979368
(S) Toluene-d8	104			80.0-120		05/13/2017 10:49	WG979368
(S) Dibromofluoromethane	101			76.0-123		05/13/2017 10:49	WG979368
(S) a,a,a-Trifluorotoluene	103			80.0-120		05/13/2017 10:49	WG979368
(S) 4-Bromofluorobenzene	106			80.0-120		05/13/2017 10:49	WG979368

ONE LAB. NATIONWIDE.

L908444-01,02,03,04

Method Blank (MB)

(MB) R3217862-1 05/12/17 15:22

Metals (ICP) by Method 6010C

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
ead Dissolved	П		190	5.00

2
l I C

(LCS) R321786	62-2 05/12/17 15:27 • (LCSD) R3217862-3	3 05/12/17 15:29				
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Lead,Dissolved	1000	995	994	99	99	80-120			0	20

L908431-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(C	05) 1 908431-01	05/12/17 15:32 • (MS) R3217862-5	05/12/17 15:38 • ((MSD) R3217862-6	05/12/17 15:41
10		00/12/1/ 10.02 - (1410/110/21/00/2 0	03/12/1/ 13.30 - ((14130) 1321/002 0	03/12/1/13.71

(03) 2300431 01 03/	(63) 2300431 01 03/12/1/ 10:32 - (1113) 10:21/ 10:02 0 03/12/1/ 10:32 0 03/12/1/ 10:31											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Lead Dissolved	1000	П	1000	1010	100	101	1	75-125			1	20

ONE LAB. NATIONWIDE.

L908444-01,02,03,04,05

Martin and Diagram (MAD)

Metals (ICP) by Method 6010C

Method Blank (MB)

(LCS) R3218511-2	05/16/17 18:48 • (LCSD)	R3218511-3	05/16/1/ 18:51
	Spike Amount	LCS Result	LCSD Result

Analyte	ug/l	ug/l	ug/l	%	%	%
Lead	1000	1020	1020	102	102	80-120

LCS Rec.

LCSD Rec.

(OS) L908444-04 05/16/17 18:54 • (MS) R3218511-5 05/16/17 18:59 • (MSD) R3218511-6 05/16/17 19:02

(,		Original Result	•		MS Rec.		Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Lead	1000	2.41	1030	1030	103	103	1	75-125			0	20

Rec. Limits

LCS Qualifier

LCSD Qualifier

%

0

RPD Limits

%

20

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method NWTPHGX

L908444-01,02,03,04,05,06

Method Blank (MB)

(MB) R3218796-3 05/13/1	7 01:43					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Gasoline Range Organics-NWTPH	U		31.6	100		
(S) a,a,a-Trifluorotoluene(Fi	D) 93.3			77.0-122		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3218796-1 05/13/1	7 00:37 • (LCSD) R3218796-2	05/13/17 00:59)						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Gasoline Range Organics-NWTPH	5500	5810	5720	106	104	72.0-134			1.53	20
(S) a,a,a-Trifluorotoluene(FIL	0)			105	103	77.0-122				

L908431-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L908431-01 05/13/17 02:28 • (MS) R3218796-4 05/13/17 02:50 • (MSD) R3218796-5 05/13/17 03:12

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5500	U	3120	2890	56.7	52.5	1	23.0-159			7.71	20	ı
(S) a,a,a-Trifluorotoluene(FID)	1				94.1	93.1		77.0-122					

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L908444-01,02,03,04,05,06

Method Blank (MB)

(MB) R3218788-3 05/13/17	7 09:56				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzene	U		0.331	1.00	
1,2-Dichloroethane	U		0.361	1.00	
Ethylbenzene	U		0.384	1.00	
Methyl tert-butyl ether	U		0.367	1.00	
Toluene	U		0.412	1.00	
Xylenes, Total	U		1.06	3.00	
(S) Toluene-d8	104			80.0-120	
(S) Dibromofluoromethane	104			76.0-123	
(S) a,a,a-Trifluorotoluene	103			80.0-120	
(S) 4-Bromofluorobenzene	106			80.0-120	

(LCS) R3218788-1 05/13/17	7 09:08 • (LCSD) R3218788-2	05/13/17 09:24	4						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Benzene	25.0	23.5	23.3	94.2	93.1	69.0-123			1.19	20
1,2-Dichloroethane	25.0	22.4	22.3	89.7	89.2	67.0-126			0.480	20
Ethylbenzene	25.0	22.6	22.9	90.2	91.6	77.0-120			1.51	20
Methyl tert-butyl ether	25.0	22.8	22.7	91.0	91.0	64.0-123			0.0500	20
Toluene	25.0	21.4	21.6	85.4	86.5	77.0-120			1.25	20
Xylenes, Total	75.0	67.2	67.7	89.6	90.3	77.0-120			0.740	20
(S) Toluene-d8				102	102	80.0-120				
(S) Dibromofluoromethane				105	104	76.0-123				
(S) a,a,a-Trifluorotoluene				101	101	80.0-120				
(S) 4-Bromofluorobenzene				99.1	99.8	80.0-120				

ONE LAB. NATIONWIDE.

EDB / DBCP by Method 8011

L908444-01,02,03,04

Method Blank (MB)

(MB) R3218183-1	05/15/17 17:31
	MD

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Ethylene Dibromide	U		0.00240	0.0100

L908317-01 Original Sample (OS) • Duplicate (DUP)

-	(OS)	L908317-01	05/15/17 18:12 •	(DUP) R3218183-3	05/15/17 18:02

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Ethylene Dibromide	U	0.000	.994	0.000		20

(LCS) R3218183-4 05/15/17 18:53 • (LCSD) R3218183-5 05/15/17 19:03

(200) 110210100 1 007	10/17 10.00 (2002) NO210100 0	00/10/1/ 10:00							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Ethylene Dibromide	0.250	0.292	0.286	117	114	60.0-140			2.20	20

L908317-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L908317-02 05/15/17 17:52 • (MS) R3218183-2 05/15/17 17:42

(55) 25555.7 52 55/15/17	` '	Original Result		MS Rec.	Dilution	Rec. Limits
Analyte	ug/l	ug/l	ug/l	%		%
Ethylene Dibromide	0.100	U	0.122	122	.997	72.0-146

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L908444-01,02,03,04,05

Method Blank (MB)

(MB) R3218079-1 05/13/17	(MB) R3218079-1 05/13/17 11:14						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Diesel Range Organics (DRO)	U		66.7	200			
Residual Range Organics (RRO)	U		83.3	250			
(S) o-Terphenyl	64.5			52.0-156			

(LCS) R3218079-2 05/13/17 11:30 • (LCSD) R3218079-3 05/13/17 11:47										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	875	948	117	126	50.0-150			7.94	20
Residual Range Organics (RRO)	750	693	776	92.5	104	50.0-150			11.3	20
(S) o-Terphenyl				98.1	102	52.0-156				

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

L908444-01,02,03,04,05

Method Blank (MB)

(MB) R3218153-1 05/13/17 12:06							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Diesel Range Organics (DRO)	U		66.7	200			
Residual Range Organics (RRO)	U		83.3	250			
(S) o-Terphenyl	61.6			52.0-156			

CS) R3218153-2 05/13/17 12:22 • (LCSD) R3218153-3 05/13/17 12:38										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	963	985	128	131	50.0-150			2.27	20
Residual Range Organics (RRO)	750	700	693	93.3	92.4	50.0-150			0.990	20
(S) o-Terphenyl				105	102	52.0-156				

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L908444-01,02,03,04,05

Method Blank (MB)

MB) R3218469-3 05/15/17 07:06									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	ug/l		ug/l	ug/l					
Benzo(a)anthracene	U		0.00410	0.0500					
Benzo(a)pyrene	U		0.0116	0.0500					
Benzo(b)fluoranthene	U		0.00212	0.0500					
Benzo(k)fluoranthene	U		0.0136	0.0500					
Chrysene	U		0.0108	0.0500					
Dibenz(a,h)anthracene	U		0.00396	0.0500					
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500					
Naphthalene	U		0.0198	0.250					
1-Methylnaphthalene	U		0.00821	0.250					
2-Methylnaphthalene	U		0.00902	0.250					
(S) Nitrobenzene-d5	127			31.0-160					
(S) 2-Fluorobiphenyl	122			48.0-148					
(S) p-Terphenyl-d14	111			37.0-146					

(LCS) R3218469-1 05/15/	(LCS) R3218469-1 05/15/17 06:18 • (LCSD) R3218469-2 05/15/17 06:42											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
Benzo(a)anthracene	2.00	1.92	1.92	96.0	96.2	59.0-134			0.190	20		
Benzo(a)pyrene	2.00	1.96	1.90	97.9	95.1	61.0-145			2.86	20		
Benzo(b)fluoranthene	2.00	1.88	1.81	94.1	90.4	57.0-136			3.97	20		
Benzo(k)fluoranthene	2.00	2.05	2.01	102	101	57.0-141			1.89	20		
Chrysene	2.00	1.98	1.86	99.1	92.8	63.0-140			6.58	20		
Dibenz(a,h)anthracene	2.00	2.19	2.09	109	104	49.0-141			4.67	20		
Indeno(1,2,3-cd)pyrene	2.00	2.13	2.07	106	104	53.0-141			2.62	20		
Naphthalene	2.00	1.83	1.78	91.5	89.1	68.0-129			2.74	20		
1-Methylnaphthalene	2.00	2.03	1.97	101	98.4	68.0-137			2.89	20		
2-Methylnaphthalene	2.00	1.93	1.89	96.3	94.4	68.0-134			2.02	20		
(S) Nitrobenzene-d5				112	112	31.0-160						
(S) 2-Fluorobiphenyl				117	114	48.0-148						
(S) p-Terphenyl-d14				102	101	37.0-146						

GLOSSARY OF TERMS

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crvpto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

			Billing Infor	Billing Information:			Analysis / Container / Preservative Chain of Custody							Page of				
Arcadis - Seattle, WA	630 Plaza			counts Payable a Dr., Ste. 600 is Ranch, CO 80129										27			SE SO	SC
Seattle WA 98101			Email To B	il To: Ross.LaGrandeur@arcadis.com;													YOUR LAB	OF CHOICE
Ross LaGrandeur Ry			Ryan.Brauc	Brauchla@arcadis.com;						BT					3lk	1	Mount Juliet, TN 371 Phone: 615-758-585	455400000
roject Jescription: Olympia Bulk Plant				propia/W	A	HC	Pres		-HCI-	CI-BT		TW.	NO3	HCH	- 1	Phone: 800-767-585 Fax: 615-758-5859	3577	
hone: 509-438-9828 ax:	Client Project # GP09BPNA.WA60		Lab Project # ARCABPWA	-BPOLY		8260C 40mlAmb-HCl	250mlHDPE-NoPres	hio	NWTPHDX (NO SGT) 40mlAmb-HCl-BT	40mlAmb-HCI-BT	CI	AH-SIMD 40mlAmb-NoPres-WT	6010C 250mlHDPE-HN03	40mlAmb-HCI-BIK		F027		
ollected by (print): Eric Krueger (EK)	Site/Facility ID	ite/Facility ID #		P.O. # GP09BPNA	WA60		40	C 40	40mlClr-NaThio	T) 40	OmlA	H qu	N-qu	Omli		69	Acctnum; ARCABPWA	
Collected by (signature):		ab MUST Be		Quote#	The state of	COS .	5600	250	IC	0 SG	T) 4	nlar	nIAn	C 25	1/ED	- 1	Template:T120673	
when	Same Da	y Five	Day	Data Da	-	8 0 E			C (NC	((NO S	400	40	010	BTEXM/EDC		Prelogin: P598897 TSR: 110 - Brian Ford		
mmediately Packed on Ice N Y X			Date Ne	Date Results Needed			Pb 60	8011	PHD	NWTPHDX	NWTPHGX 40mlAmb HCl	SIMD	q	bik 8T		PB: 4-28		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEXM/EDC	Diss	EDB	WN	N	N	PAH	Total F	trip		Remarks	Sample # (lab only)
F-WM		GW		5/8/1	1 1035	15	X	X	X	X	X	X	\geq	X				-01
MW-8		GW	101		1115	1	X	X	\times	X	\times	X	\times	X				02
MW-9		GW	1-4	H C 17	1150	11	X	X	\times	X	\times	X	X	X			493	03
MW-13		GW		100	1230		X	X	\times	X	X	X	\times	X	1000		772	04
Dup-1	4	GW		\ \	~	V	\times			X	X	X	X	\times			A. 1197	05
Trip Blank		GW		-	-	12	X		100		1000	X			X		2 13	06
		GW	100	171	100		1				100		100		100		1.5	
		GW	-				1007	1.0			100	34	1000			8. 1		
			120			1		m (m)	210	210	7	18				Samo	le Receipt C	hecklist
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:	Quest	ions,	call E	call Eric Krues			303)	214.	- 9		Ten	Tall	The s	COC S: Bottle Corre	eal Pr igned/ es art et bot	esent/Intact Accurate: ive intact: itles used:	7. 3.
DW - Drinking Water OT - Other	Samples retu UPSF		ourier		Tracking #			To ye							46.5	If Applicable		
Relinquished by : (Signature) Date: 5/9 Relinquished by : (Signature) Date:		A STATE OF THE STA	Time: 1600	Received by: (Sign					Trip Bi	ank Rec	eived: (o MeoH	Prese	VOA 2ero Headspace: Preservation Correct/Checked: ZY			
			Time:	Received by: (Sign	-	FIL	-	1	Temp:	WT	°C Bo	75		If prese				
Relinquished by : (Signature) Date:		162/9	Time:	me: Received for lab by			1	Received for lab by: (Signature)			TI	844		Hold:			Condition:	

2425 New Holland Pike, Lancaster, PA 17601 | 717-656-2300 | Fax: 717-656-2681 | www.LancasterLabs.com

Type VI Data Package

Prepared for:

Atlantic Richfield c/o ARCADIS

Suite 600 630 Plaza Drive Highlands Ranch CO 80129

Project: Former Olympia Bulk Plant Water Samples Collected on 12/15/16

SDG# WAN02

GROUP	SAMPLE NUMBERS
1746296	8753059-8753068
	W 0.5 0.000

PA Cert. # 36-00037 NY Cert. # 10670 NJ Cert. # PA011 NC Cert. # 521

TX Cert. # T104704194-13-10

AZ Cert. # AZ0780

Through our technical processes and second person review of data, we have established that our data/deliverables are in compliance with the methods and project requirements unless otherwise noted or previously resolved with the client.

Authorized by: Kora m Xayfman, Date: 01/18/2017

Dana M. Kauffman Manager

Any questions or concerns you might have regarding this data package should be directed to your client representative, Stacy Hess at (717) 556-7236.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Reference List for SDG Number WAN02 with a Data Package Type of VI

13255 - Atlantic Richfield c/o ARCADIS

Project: Former Olympia Bulk Plant

Lab			
Sample			
Number	Client Sample ID	Collection Date	Date Received
8753059	MW-7	12/15/2016 09:15	12/17/2016 11:10
8753060	MW-7	12/15/2016 09:15	12/17/2016 11:10
8753061	MW-8	12/15/2016 10:15	12/17/2016 11:10
8753062	MW-8	12/15/2016 10:15	12/17/2016 11:10
8753063	MW-9	12/15/2016 11:15	12/17/2016 11:10
8753064	MW-9	12/15/2016 11:15	12/17/2016 11:10
8753065	MW-13	12/15/2016 13:15	12/17/2016 11:10
8753066	MW-13	12/15/2016 13:15	12/17/2016 11:10
8753067	DUP-1	12/15/2016 00:00	12/17/2016 11:10
8753068	Trip Blank	12/15/2016 00:00	12/17/2016 11:10

NWTPH-Dx by GC Data

Eurofins Lancaster Laboratories-Range Data Summary Sample ID: AA Batchnumber: 163630023A OLY07 Sample Name: 8753059 SDG:WAN02 State: WA Total Volume: 2 ml Analyst: 2027 Sample Amount: 1044. Analyses: 08271 Injection Summary Injected on : 12/30/2016 07:36:27 : CP18-18847B Instrument : D18364B.0045.RAW Result file Calibration files : 2DXI315A.CAL 2DXREPLOTI.MET Method files : 2DXI.MET : 2DXI315AW(V) Setting Surrogate Recoveries O-TERPHENYL[®] 91% (50-150) Conc.: 20.87725 <u>Units</u> Retention Times Amount LOQ MDL Flags Range Area <28.7356 ppb 4.64 - 12.57 1169997 27.5509 <95.7854 Diesel Range <239.4636 15.7703 <67.0498 dqq 12.57 - 16.29 355871 Heavy Range 10.12 (10.11 - 10.21) 548288 20.8773 ppb O-terphenyl ppb 6.44 (6.30 - 6.50) 3261 0.2650 Capric Acid Comments: I'm wildermah Minthe F. Wildening Verifled by:_ Reviewed by. Hautier E. Williams Senior Chemist Date: ___ Associate Chemist Date: CEC 3 0 2016 DEC 3 0 2016

Sample Number: 8753059

AAOLY07

T 163630023A

08271

SW-846 8015B

543559

D18364B.0045.RAW

Injected On: 12/30/2016 7:36:27 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column; HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1044

Dilution Factor: 2

NWTPH-DX

Injection Volume: 2

Analyst: 2027

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.069	0.00	5829
C-12	4.717	0.00	1255
Capric Acid	6.398	0.00	1106
C-14	6.547	0.00	4598
C-18	9.584	0.00	3493
O-terphenyl	10.118	0.02	543559
C-20	10,897	0.00	5315
	11.785	0.00	23890
C-24	12.433	0.00	28410
	13,006	0.00	30820
C-26	13.511	0.00	13378
C-28	13.976	0.00	7835
C-30	14.420	0.00	981
C-32	14.924	0.00	977
C-34	15,321	0.00	1248
C-36		0.00	1513
C-38	15,689	0.00	16053
C-40	16.095	0.00	,0000
Range	Start Time	Stop Time	Area
C17 = C24	4.64	12.57	1169998
>C24 - C40	12.57	16.29	355871
- OET - OHO		an ma	5/2550

RESULTS TABLE

10.11

DX C12 - C24 AREA = 1169998

Preliminary C12 - C24 Amount = 0.028 PPM

10.21

DX >C24 - C40 AREA = 355870.7

Preliminary >C24 - C40 Amount = 0.016 PPM

FILES:

Area File: D18364B.0045.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXLFMT

Area File Created On: 12/30/2016 8:15:46 AM File Reported On: 12/30/2016 at 8:17:07 AM

o-Terphenyl

Area File: D18364B.0045.RAW Method: 2DXREPLOTI.MET Calibration File: 2DXI315A.CAL Area File Created On: 12/30/2016 8:15:46 AM File Reported On: 12/30/2016 at 8:19:05 AM

Format: 2DXREPLOTI.FMT

Eurofins Lancaster Laboratories-Range Data Summary Batchnumber: 163630023A Sample ID: AA Sample Name: 8753061 OLY08 SDG: WAN02 State: WA 2. ml Analyst: 2027 Total Volume: Sample Amount: 1037. Analyses: 08271 Injection Summary Injected on : 12/30/2016 08:40:58 Instrument : CP18--18847B Result file : D18364B.0048.RAW Calibration files : 2DXI315A.CAL : 2DXI.MET 2DXREPLOTI.MET Method files Setting : 2DXI315AW(V) Surrogate Recoveries O-TERPHENYL 62% (50-150) Conc.: 14.41349 MDL Flags LOQ Retention Times Amount Range ppb 807.6989 96.432 28.9296 4.64 - 12.57 18480211 Diesel Range 241.08 67.5024 ppb 12.57 - 16.29 415.9068 9322366 Heavy Range 14.4135 ppb 10.12 (10.11 - 10.21) 375996 O-terphenyl 6.40 (6.30 - 6.50) 411130 33.6403 ppb Capric Acid Comments: Tom C. Wildermuth Associate Chemist Verified by: ___ Reviewed by:___ -qurai 4. saillease Date: Jamie L. Brillhad Date: JAN U 5 2017 JAN n 5 2017

Eurofins Lancaster Laboratories-Range Data Summary Batchnumber: 163630023A Sample ID: AA Sample Name: 8753061 OLY08 SDG:WAN02 State: WA 2. ml Analyst: 2027 Total Volume: Sample Amount: 1037. Analyses: 08271 Injection Summary : 12/30/2016 08:40:58 Injected on Instrument : CP18-18847B Result file : D18364B.0048.RAW : 2DXI315A.CAL Calibration files Method files : 2DXI.MET 2DXREPLOTI.MET : 2DXI315AW(V) Setting Surrogate Recoveries O-TERPHENYL Conc.: 14.41349 62% (50-150) LOQ MDL Flags Units Range Retention Times Area Amount 28.9296 96.432 4.64 - 12.57 18480211 807.6989 ppb Diesel Range 241.08 67.5024 12.57 - 16.29 415.9068 ppb Heavy Range 9322366 ppb 10.12 (10.11 - 10.21) 375996 14.4135 O-terphenyl ppb 6.40 (6.30 - 6.50) 411130 33.6403 Capric Acid Comments: -Pan wildermed Verified by: _ goodi 4-belloar Date: __ Tom C. Wildermuth Jamie L. Brillhart Date: JAN U 5 2017 JAN 05 2017

Sample Number: 8753061

AAOLY08

T 163630023A

08271

SW-846 8015B

D18364B.0048.RAW

Injected On: 12/30/2016 8:40:58 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1037 Dilution Factor: 2 Injection Volume: 2

NWTPH-DX

Analyst: 2027

Compound	RT	Amt PPM	Area
C-12	4.745	0.02	437973
	6.395	0.03	315106
Capric Acid	8.178	0.00	37787
C-16	9.607	0.00	18273
C-18	10,189	0.00	90443
O-terphenyl		0.00	46893
C-20	10.865	0.01	234414
C-22	11.813	0.01	110415
C-24	12.481		123557
C-26	13.027	0.01	59247
C-28	13.511	0.00	21720
C-30	14,011	0.00	,
C-32	14.424	0.00	8457
C-34	14.884	0.00	51176
C-36	15.294	0.00	16324
C-38	15.718	0.00	4834
C-40	16,066	0.00	67778

	Start Time -	Stop Time	Area
Range		12.57	9780939
C12 - C24	4.64	16.29	2236551
>C24 - C40	12.57		487376
o-Terphenyl	10.11	10.21	.0.0.0

RESULTS TABLE

DX C12 - C24 AREA = 9780939

Preliminary C12 - C24 Amount = 0.432 PPM

DX >C24 - C40 AREA = 2236551

Preliminary >C24 - C40 Amount = 0.100 PPM

Not Used
See Reintegration

FILES:

Area File: D18364B.0048.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXLFMT

Area File Created On: 12/30/2016 8:58:42 AM File Reported On: 12/30/2016 at 8:58:41 AM

Sample Number: 8753061

AAOLY08

163630023A

08271

SW-846 8015B

9322366^{4~}

871433

D18364B.0048.RAW

Injected On: 12/30/2016 8:40:58 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1037 Dilution Factor: 2

Injection Volume: 2

NWTPH-DX

Analyst: 2027

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.066	0.00	2426
C-12	4.745	0.02	540324
Capric Acid	6.395	0.04	466701
C-14	6.615	0.00	35090
C-16	8.137	0.00	63708
C-18	9.607	0.00	97140
O-terphenyl	10.189	0.01	251829
C-20	10.865	. 0.01	189611
C-22	11,813	0.02	487388
C-24	12.481	0.01	268752
C-26	13.027	0.02	355197
C-28	13.511	0.01	198685
C-30	13.975	0.01	147284
C-32	14.424	0.01	224080
C-34	14.884	0.01	210621
C-36	15.294 ^J	0.01	152824
C-38	15.718	0.00	71802
C-40	16.066	0.02	501118
Range	Start Time	Stop Time	Area
C12 - C24	4.64	12.57	184802107
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

RESULTS TABLE

12.57

10.11

DX C12 - C24 AREA = 1.848021E+07

DX >C24 - C40 AREA = 9322366

Preliminary C12 - C24 Amount = 0.813 PPM

16.29

10.21

Preliminary >C24 - C40 Amount = 0.416 PPM

FILES:

Area File: D18364B.0048.BND

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 12/30/2016 12:37:05 PM File Reported On: 12/30/2016 at 12:37:05 PM

>C24 - C40

o-Terphenyl

M = Manually Integrated

Analyst TW GOV N 30/14

Approved by (15 M3) 1-5-14

Circle Reason 1 1 = Missed Peak

2 = Improper Baseline

3 = AT Updato

4 = Other

Sample Number: 8753061 D18364B.0048.RAW

AAOLY08

163630023A

08271

SW-846 8015B

93223664~~

871433

NWTPH-DX

Injected On: 12/30/2016 8:40:58 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1037 Dilution Factor: 2

Injection Volume: 2

Analyst: 2027

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.066	0.00	2426
C-12	4.745	0.02	540324
Capric Acid	6.395	0.04	466701
C-14	6.615	0.00	35090
C-16	8.137	0.00	63708
C-18	9.607	0.00	97140
O-terphenyl	10.189	0.01	251829
C-20	10.865	. 0.01	189611
C-22	11.813	0.02	487388
C-24	12.481	0.01	268752
C-26	13.027	0.02	355197
C-28	13.511	0.01	198685
C-30	13.975	0.01	147284
C-32	14_424	0.01	224080
C-34	14.884	0.01	210621
C-36	15.294 ^J	0.01	152824
C-38	15.718	0.00	71802
C-40	16.066	0.02	501118
Range	Start Time	Stop Time	Area
C12 - C24	4.64	12.57	18480210 ^V
		t de la la la la la la la la la la la la la	annan an Bull

RESULTS TABLE

12.57

10.11

DX C12 - C24 AREA = 1.848021E+07

Preliminary C12 - C24 Amount = 0.813 PPM

DX >C24 - C40 AREA = 9322366

Preliminary >C24 - C40 Amount = 0.416 PPM

FILES:

Area File: D18364B.0048.BND

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 12/30/2016 12:37:05 PM File Reported On: 12/30/2016 at 12:37:05 PM

>C24 - C40

o-Terphenyl

M = Manually Integrated

16.29

10.21

Analyst N CON N

Approved by () (3 773) Circle Reason

1 = Missed Peak

2 = Improper Baseline

3 = RT Updato

4 = Other

Sample Number: 8753061

AAOLY08

163630023A

08271

SW-846 8015B

Injected On: 12/30/2016 8:40:58 AM Instrument ID: CP18-18847 Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1037 Dílution Factor: 2 Injection Volume: 2 Analyst: 2027

C	RT	Amount ppm	Area
Compound C11 C11 C11	0.066	0.0003	4922.811
#2 FUEL OIL (C12-C24	4.745	0.0104	235041.7
C-12	6.395	0.0336	411129.9
Capric Acid		0.0003	7314.255
C-14	6.615	0.0004	8727.858
C-16	8.137		45298.49
O-terphenyl	10.189	0.0017	19009.41
C-20	10.865	0.0008	172568.5
C-22	11.813	0.0077	
C-24	12.481	0.0012	25112.74
C-26	13.027	0.0007	. 14011.88
C-28	13.511	0.000	18686.23
C-30	13.975	0.0002	Not Uasos 66
C-32	14.424	0.0047	Reintermion
	14.884	0.0003	, L
C-34	15.294	0.0004	9789.759
C-36	15.718	0.0002	4600.16 5
_ C-38	16.066	0.0021	48306.91
C-40	16.000	0.502	,

1000 mL WW o-Terphenyl Recovery = 7.5 % -55.0 % o-Terphenyl CCV %Difference =

1000 ML CAPRIC ACID % RECOVERY = 3.7 %

Area File: D18364B.0048.RAW Method: 2DXREPLOTI.MET Calibration File: 2DXI315A.CAL Area File Created On: 12/30/2016 8:58:42 AM File Reported On: 12/30/2016 at 8:58:49 AM Format: 2DXREPLOTI.FMT .

Printed on 12/30/2016 8:58:50 AM

Response - MilliVolts (span=2757)

Page 1 of 1

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min GC Column: HP-5 30m x 0.32mm x 0.25um

Injection Volume: 2 Analyst: 2027

Compound	RT	Amount ppm	Area
#2 FUEL OIL (C12-C24	0.066	0.0003	4922.811
C-12	4:745	0.0104	235041.7
Capric Acid	6.395	0.0336	411129.9
C-14	6.615	0.0003	7314.255
C-16	8.137	0.0004	8727.858
O-terpheлyl	10,115	0.0144	375995.8
C-20	10.865	0.0008	19009.41
C-22	11.813	0.0077	172568.5
C-24	12.481	0.0012	25112.74
C-26	13.027	0.0007	14011.88
C-28	13.511	0.0009	18686.23
C-30	13.975	0.0002	4806.66
C-32	14.424	0.0047	101729.5
C-34	14.884	0.0005	12252:93
C-36	15.294	0.0004	9789.759
C-38	15.718	0.0002	4600.165
C-40	16.066	0.0021	48306.91

1000 mL WW o-Terphenyl Recovery = 62.3 % o-Terphenyl CCV %Difference = 273.7 % 1000 ML CAPRIC ACID % RECOVERY = 3.7 %

Area File: D18364B.0048.BND Method: 2DXREPLOTI.MET Calibration File: 2DXi315A.CAL Area File Created On: 1/3/2017 10:46:52 AM File Reported On: 1/3/2017 at 10:46:53 AM

Format: 2DXREPLOTI.FMT

Response - MilliVolts (span=2757)

7

,	Eurofins L	ancaster Laborat	ories-Ran	ge Data S	ummary	·	
Sample Name: 8 Sample Amount: Analyses: 08271	3753063 1060.	OLY09 Total Volume:	Sample II 2. ml Analy		hnumber: 1636 SDG:WAN02		
Injection Summa Injected on Instrument Result file Calibration files Method files Setting	: 12/30/2016 07:5 : CP18—18847B : D18364B.0046 : 2DXI315A.CAL : 2DXI.MET : 2DXI315AW(V)	RAW 2DXREPLOTI					
O-TERPHENYL Range Diesel Range Heavy Range O-terphenyl Capric Acid Comments:	92% (50	-150) Conc.: 20.77 Retention Times	<u>Area</u> 6535067 2213705	Amount 261.0496 96.6190 20.7755 3.0349	LOQ 94.3396 <235.8491	MDL Flac 28.3019 66.0377 J	s <u>Un</u> ppb ppb ppb
Reviewed by Date:	Jnl. wilderman ion C. vinlemouth Associate Chemist		Verlfled by: Date:	MADER E. William Senior Chemist	Alliania 2 EC 3 0 2016		

Sample Number: 8753063

AAOLY09

T 163630023A

08271

SW-846 8015B

D18364B.0046.RAW

Injected On: 12/30/2016 7:58:00 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1060 Dilution Factor: 2

Injection Volume: 2

NWTPH-DX

Analyst: 2027

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.060	0.00	5814
C-12	4,765	0.00	10143
Capric Acid	6.396	0.00	45842
C-14	6,612	0.00	2869
C-16	8.122	0.00	11223
O-terphenyl	10.184	0.00	13740
C-20	10.857	. 0.00	19577
C-20 C-22	11.807	0.01	135780
C-24	12.479	0.00	69983
C-26	13,048	0.00	- 28350
C-28	13.512	0.00	29351
C-30	14.036	0.00	3007
C-32	14.425	0.00	5745
C-34	14.891	0.00	8154
C-36	15.290	0.00	6653
C-38	15,749	0.00	9290
C-40	16.168	0.00	7339
730000	Start Time	Stop Time	Area
Range	4.64	12.57	5495265
C12 - C24	12.57	16.29	1341734
>C24 - C40	10.11	10.21	582332
o-Terphenyl	1 W- 1 1	, c, ,, t	

RESULTS TABLE

10.11

DX C12 - C24 AREA = 5495265

Preliminary C12 - C24 Amount = 0.239 PPM

DX >C24 - C40 AREA = 1341734

Preliminary >C24 - C40 Amount = 0.050 Tep Used

See Reintegration

FILES:

Area File: D18364B.0046.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 20XI.FMT

Area File Created On: 12/30/2016 8:15:46 AM File Reported On: 12/30/2016 at 8:17:13 AM

o-Terphenyl

Sample Number: 8753063

AAOLY09

T 163630023A

08271

SW-846 8015B

D18364B.0046.RAW

Injected On: 12/30/2016 7:58:00 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1060 Dilution Factor: 2

NWTPH-DX

Injection Volume: 2

Analyst: 2027

Compound	RT	Amt PPM .	Area
#2 FUEL OIL (C12-C24	0.060	0.00	5814
C-12	4.765	0.00	14419
Capric Acid	6.396	0.00	53553
C-14	6.612	0.00	5971
C-16	8.122	0.00	20273
O-terphenyl	10.184	0.00	20979
C-20	10.857	0.00	31135
C-22	11.807	0.01	158899
C-24	12.479	0.00	87315
C-26	13.048	0.00	38529
C-28	13.512	0.00	46917
C-30	14.036	0.00	14935
C-32	14.425	0.00	18984
C-34	14.891	0.00	16100
C-36	15,290	0.00	23232
C-38	15,749	0.00	30891
C-40	16.168	0.00	15701

Range	Start Time	Stop Time	Area
C12 - C24	4.64	12.57	6535088
>C24 - C40	12.57	16.29	2213705 ~
o-Terphenyl	10.11	10.21	614379

RESULTS TABLE

DX C12 - C24 AREA = 6535068

DX >C24 - C40 AREA = 2213705

Preliminary C12 - C24 Amount = 0.284 PPM

Preliminary >C24 - C40 Amount = 0.097 PPM

FILES:

Area File: D18364B.0046.BND

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 12/30/2016 12:34:54 PM File Reported On: 12/30/2016 at 12:34:55 PM

M = Manually Integrated
Analyst The Corp New

Approved by

Circle Reason 1 (2

1 = Missod Peak

2 = Improper Baseline

3 = AT Update

4 = Other ...

Format: 2DXREPLOTI.FMT

Eurofins Lancaster Laboratories-Range Data Summary Sample ID: AA Batchnumber: 163630023A Sample Name: 8753065 OLY13 2 ml Analyst: 2027 SDG:WAN02 State: WA Total Volume: Sample Amount: 1060. Analyses: 08271 Injection Summary Injected on : 12/30/2016 08:19:30 Instrument : CP18--18847B Result file : D18364B.0047;RAW Calibration files : 2DXI315A.CAL Method files : 2DXI.MET 2DXREPLOTI.MET : 2DXI315AW(V) Setting Surrogate Recoveries O-TERPHENYL 57% (50-150) Conc.: 12.84273 LOQ MDL Flags Range Retention Times <u>Amount</u> Area 14.2202 <28.3019 Diesel Range 4.64 - 12.57 668259 <94.3396 ppb Heavy Range 12.57 - 16.29 7.6608 <235.8491 <66.0377 175521 ppb 10.12 (10.11 - 10.21) 342451 12.8427 ppb O-terphenyl Capric Acid 6.31 (6.30 - 6.50) 1183 0.0947 ppb Comments: Inc. wilderman Risther E Ulliamo Tipm C. Wildermoth Verified by: _ Reviewed by: rtusther E. Willie Senior Chemist Date: Date: _ DEC 3 U 2016 DEC 3 0 2016

Sample Number: 8753065

AAOLY13

T 163630023A

08271

SW-846 8015B

D18364B.0047.RAW

Injected On: 12/30/2016 8:19:30 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1060

Dilution Factor: 2

NWTPH-DX

Injection Volume: 2

Analyst: 2027

Compound	RT	Amt PPM	Area
C-12	4.775	0.00	879
= ''"	6.400	0.00	920
Capric Acid	8.202	0.00	8769
C-16	9,643	0.00	7001
C-18	10.117	0.01	323843
O-terphenyl		0.00	2139
C-20	10.868	0.00	682
C-22	11.759	0.00	1995
C-24	12.490	0.00	7825
C-26	13.005		5260
C-28	13.511	0.00	2429
C-30	13.976	0.00	722
C-32	14.419	0.00	
C-34	14.928	00,0	1058
C-36	15.312	0.00	1302
C-38	15.684	0.00	3034
C-40	16.169	0.00	10249

	Start Time	Stop Time	Area
Range		12.57	634563
C12 - C24	4.64	16.29	139723
>C24 - C40	12.57	* **	323843
a-Terphenyl	10.11	10.21	920040

RESULTS TABLE

DX C12 - C24 AREA = 634563.1

Preliminary C12 - C24 Amount = 0.014 PPM

DX >C24 - C40 AREA = 139723

Preliminary >C24 - C40 Amount = 0.006 PPM

Not Used Ser Reintegration

FILES:

Area File: D18364B.0047.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXLFMT

Area File Created On: 12/30/2016 8:37:15 AM File Reported On: 12/30/2016 at 8:37:17 AM

Sample Number: 8753065

AAOLY13

163630023A

08271

SW-846 8015B

D18364B.0047.RAW

Injected On: 12/30/2016 8:19:30 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1060 Dilution Factor: 2

NWTPH-DX

Injection Volume: 2

Analyst: 2027

Compound	RT	Amt PPM	Area
C-12	4.775	0.00	5290
Capric Acid	6.386	0.00	1690
C-14	6.548	0.00	4970
C-18	9.582	0.00	1388
O-terphenyl	10.117	0.01	340892
C-20	10.889	0.00	1461
C-22	11.759	0.00	6116
C-24	12.490	0.00	3643
C-26	13.005	0.00	11013
C-28	13.511	0.00	6964
C-30	13.976	0.00	3805
C-32	14.419	0.00	950
C-34	14.928	0.00	1058
C-36	15.312	0.00	1302
C-38	15.684	0.00	3034
C-40	16.169	0.00	10249

Range	Start Time	Stop Time	Area
C12 - C24	4.64	12.57	668259**
>C24 - C40	12.57	16.29	1/5521 👣 .
o-Terphenyl	10,11	10.21	340892

RESULTS TABLE

DX C12 - C24 AREA = 668259

Preliminary C12 - C24 Amount = 0.014 PPM

DX >C24 - C40 AREA = 175521.2

Preliminary >C24 - C40 Amount = 0.008 PPM

FILES:

Area File: D18364B.0047.BND

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI:FMT

Area File Created On: 12/30/2016 12:36:11 PM File Reported On: 12/30/2016 at 12:36:11 PM

M = Manually Integrated

Approved by MYDE

Circle Reason 1 1 = Missed Peak

2 = Improper Baseline

3 = RT Update

4 = Other _

	Eurofins L	ancaster Laborat	ories-Rar	ige Data	Summary		
•	BLANKA 12/29/16	PBLK23363 Total Volume:	Sample 2 ml Anal		tchnumber: 163 SDG:	630023A ⁻ State:	
Sample Amount: Analyses: 08271		Total Volume.	Z. 1111 / 11101	g 36. 2. 02. 1	W 647 Car .	ourio.	
Injection Summa	<u>ery</u>						
Injected on Instrument Result file	: 12/30/2016 06: : CP1818847B : D18364B.0042	.RAW			*		
Calibration files Method files Setting	: 2DXI315A.CAL : 2DXI.MET : 2DXI315AW(V)	2DXREPLOTI	.MET				
Surrogate Recove	eries			•			
O-TERPHENYL	91% (50	0-150) Conc.: 21.97	391				
Range Diesel Range		Retention Times 4.64 - 12.57	<u>Area</u> 630155	<u>Amount</u> 3.5803	<u>LOQ</u> <100	MDL FI <30	lags <u>Units</u> ppb
Heavy Range		12.57 - 16.29	114305	5.2883	<250	<70	ppb
O-terphenyl		10.12 (10.11 - 10.21)		21.9739	war yell 1980 The Friend of the Committee of the		<u>ppb</u>
Capric Acid		6.31 (6.30 - 6.50)	1067	0.0905			ppb
Comments:						nd-variate errore and artistical education.	
Reviewed by	J.M. WIDERM		Verified by:	Mather Heather E. Wi	E Williams		
	iom L. Wildernson Associate Chemist	OPPARADAMENTAL SECURITARIO SEC			SI	MARKET TO THE PARTY OF THE PART	
Date:		3 0 70%	uate: _	PARTICULAR AND AND AND AND AND AND AND AND AND AND	DEC 3 0 2016	1721T00487044470F44004	

Sample Number: BLANKA 12/29/16 AAPBLK23363 BLK 163630023A

08271

SW-846 8015B

D18364B.0042.RAW

Injected On: 12/30/2016 6:31:53 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1000

Dilution Factor: 2

NWTPH-DX

Injection Volume: 2

Analyst: 2027

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.061	0.00	5069
C-12	4.714	0.00	1518
Capric Acid	6.488	0.00	. 654
C-14	6.551	0.00	4774
C-18	9.587	0.00	1832
O-terphenyl	10.117	0.02	561230
C-20	10.891	0.00	628
C-22	11.766	0.00	1047
C-24	12.440	0.00	2751
C-26	13.009	0.00	4774
C-28	13.517	0.00	3769 .
C-30	13.981	0.00	2531
C-32	14,421	0.00	1913
C-34	14.920	0.00	411
C-36	15.263	0.00	1474
C-38	15.676	0.00	5443
C-40	16.162	0.00	7067
C-40			
Range	Start Time	Stop Time	Area
C12 - C24	4 64.	12.57	630155
>C24 - C40	12.57	16.29	114305
o-Terphenyl	10.11	10.21	561230
0- i eibileităi			

RESULTS TABLE

DX C12 - C24 AREA = 630154.8

Preliminary C12 - C24 Amount = 0.003 PPM

DX >C24 - C40 AREA = 114305.2

Preliminary >C24 - C40 Amount = 0.005 PPM

FILES:

Area File: D18364B.0042.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 12/30/2016 8:15:46 AM File Reported On: 12/30/2016 at 8:16:49 AM

Printed on 12/30/2016 8:18:42 AM

	Eurofins La	ncaster Laborat	ories-Ran	ge Data Sur	nmary	- '
Sample Name: L Sample Amount: Analyses: 08271		LCS23363 fotal Volume:	Sample II 2. ml Analy	•	i umber: 163 DG:	630023A State:
Injection Summa	ry					
Injected on Instrument Result file Calibration files Method files Setting	: 12/30/2016 06:53 : CP1818847B : D18364B.0043.F : 2DXI315A.CAL : 2DXI.MET : 2DXI315AW(V)		.MET			
Surrogate Recove	eries .					
)-TERPHENYL	95% (50-	(50) Conc.: 22.70	186			
Range Diesel Range Heavy Range O-terphenyl Capric Acid	e	Retention Times 4.64 - 12.57 12.57 - 16.29 10.12 (10.11 - 10.21) 6.43 (6.30 - 6.50)	Area 26449384 390773 571079 106516	Amount 1197.2488 18.0789 22.7019 9.0380	LOQ 100 <250	MDL . Flags 30
Comments:						
Réviewed by.	Jul. wildermach Tom C. wilderman		Verified by:	Miather E Williams	ana	edadamanonum na sahadinim uma
Date:	Associate Chemist DEC 3-0	2016	Date:	Heather E. Williams Senior Chemist DEC	3 0 2016	

Sample Number: LCSA 12/29/16

AALCS23363

LCS 163630023A

08271

SW-846 8015B

Area

5899

353586

286987

753315

564350

485922

114858

479296

279355

101918

33979

10914

3137

1187

603

747

D18364B.0043.RAW

Injected On: 12/30/2016 6:53:34 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

C-28

C-30

C-32

C-34

C-36

NWTPH-DX

Sample Weight: 1000 Dilution Factor: 2

Injection Volume: 2

Analyst: 2027

Amt PPM RT Compound 0.062 0.00 #2 FUEL OIL (C12-C24 0.02 4.708 C-12 0.02 6.428 Capric Acid 0.03 6.547 C-14 0.03 8.140 C-16 0.02 9.624 C-18 0.00 10.175 O-terphenyl 0.02 10.848 C-20 0.01 11.760 C-22 0.01 12.439 C-24 0.00 13.009 C-26 0.00

13.513

13.978

14.421

14.920

15.323

C-36 C-38 C-40	15.323 15.681 16.086	0.00 0.00	4072 19430
Range	Start Time	Stop Time	Area
C12 - C24	4.64	12.57	26449380
	12 57	16.29	390773
>C24 - C40 o-Terphenyl	10.11	10.21	915976

RESULTS TABLE

DX C12 - C24 AREA = 2.644938E+07

Preliminary C12 - C24 Amount = 1.218 PPM

0.00

0.00

0.00

0.00

DX >C24 - C40 AREA = 390772.9

Preliminary >C24 - C40 Amount = 0.018 PPM

FILES:

Area File: D18364B.0043.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 12/30/2016 8:15:46 AM File Reported On: 12/30/2016 at 8:16:55 AM

Area File: D18364B.0043.RAW Method: 2DXREPLOTI.MET Calibration File: 2DXI315A.CAL Area File Created On: 12/30/2016 8:15:46 AM File Reported On: 12/30/2016 at 8:18:49 AM

Format: 2DXREPLOTI.FMT

Sample ID: AA Batchnumber: 163630023A Sample Name: LCSDA 12/29/16 LCSD23363 SDG: Total Volume: 2, ml Analyst: 2027 State: Sample Amount: 1000. Analyses: 08271 Injection Summary Injected on : 12/30/2016 07:15:03 Instrument : CP18--18847B Result file : D18364B.0044.RAW Calibration files : 2DXI315A.CAL Method files : 2DXI.MET 2DXREPLOTI.MET Setting : 2DXI315AW(V) Surrogate Recoveries O-TERPHENYL 92% (50-150) Conc.: 22.21243 LOQ MDL Flags Range Retention Times <u>Amount</u> Area 4.64 - 12.57 1283.7453 Diesel Range 28306678 100 ppb 12.57 - 16.29 18.9865 <250 ppb Heavy Range 410390 10.12 (10.11 - 10.21) 558767 22.2124 O-terphenyl ppb Capric Acid 6.43 (6.30 - 6.50) 108426 9.2001 ppb Comments: -Inc. wildermak Kinther E Williams Verified by: Heather E. Willem Senior Chemist Reviewed by: Tom C. Wildermuth Associate Chemist Date: Date:_ DEC 3 0 2016

DEC 3 0 2016

Eurofins Lancaster Laboratories-Range Data Summary

Sample Number: LCSDA 12/29/16 AALCSD23363 LCSD 163630023A 082

SW-846 8015B NWTPH-DX

D18364B.0044.RAW

Injected On: 12/30/2016 7:15:03 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1000 Dilution Factor: 2

Injection Volume: 2

Analyst: 2027

Compound	RT	Amt PPM	. Area
#2 FUEL OIL (C12-C24	0.072	0.00	5572
C-12	4.708	0.02	364579
Capric Acid	6.429	0.03	312919
C-14	6.547	0.04	773204
C-16	8.203	0.02	368492
C-18	9.625	0.02	524685
O-terphenyl	10.178	0.00	104677
C-20	10.846	0.02	422164
C-22	11.759	0.01	314066
C-24	12,435	0.01	126992
C-26	13.008	0.00	42374
C-28	13.513	0.00	13535
C-30	13.980	0.00	3939
C-32	14.424	0.00	1063
C-34	14.922	0.00	279
C-36	15.318	0.00	496
C-38	15.681	0.00	3776
C-40	16.083	0.00	19288

Range	Start Time	Stop Time	Area
C12 - C24	4.64	12.57	28306680
>C24 - C40	12.57	16.29	410390
	10.11	10.21	951926
o-Terphenyl	IV. F1	(W.Z.)	

RESULTS TABLE

DX C12 - C24 AREA = 2.830668E+07

Preliminary C12 - C24 Amount = 1.305 PPM

DX >C24 - C40 AREA = 410389.9

Preliminary >C24 - C40 Amount = 0.019 PPM

FILES:

Area File: D18364B.0044.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 12/30/2016 8:15:46 AM File Reported On: 12/30/2016 at 8:17:01 AM

Sample Number: LCSDA 12/29/16 AALCSD23363 LCSD 163630023A Injected On: 12/30/2016 7:15:03 AM Instrument ID: CP18-18847

GC Column: HP-5 30m x 0.32mm x 0.25um

Dilution Factor: 2 Injection Volume: 2 Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min Analyst: 2027 Amount pom Area

	Compound	R1	Amount ppm	Alea
-	#2 FUEL OIL (C12-C24	0.072	0.0003	5484.946
	C-12	4.708	บ.บาบิธั	255010.4
	Capric Acid	6.429	0.0092	108426.2
	C-14	6.547	0.0188	411677.7
	C-16	8.203	0.0016	36247.06
	C-18	9.625	0.0035	79314.65
	O-terphenyl	10,119	0.0222	558767.4
	C-20	10.846	0.0053	118797.4
	C-22	11.759	0.0026	57120.72
	C-24	12.435	0.0011	21503.9
	C-26	13.008	0.0004	8342.169
	C-28	13.513	0.0002	3944.843
	C-30	13.980	0.0001	1980.532
	C-32	14.424	0.0001	1063.04
	C-34	14.845	0.0001	1203.939
	C-34 C-36	15.270	0.0000	456.3398
		15.681	0.0001	1653.803
	C-38	16.083	0.0001	1242.791
	C-40	10.003	0.0001	12,12,101

1000 mL WW o-Terphenyl Recovery = 92.6 % o-Terphenyl CCV %Difference = 455.3 % 1000 ML CAPRIC ACID % RECOVERY = 0.9 %

Area File: D18364B.0044.RAW Method: 2DXREPLOTI.MET Calibration File: 2DXI315A.CAL Area File Created On: 12/30/2016 8:15:46 AM File Reported On: 12/30/2016 at 8:18:57 AM

Format: 2DXREPLOTI.FMT

Response - MilliVolts (span=646)

SW-846 8015B

Sample Weight: 1000

	Eurofins La	ncaster Laborate	ories-Ran	ge Data S	Summary		
Sample Name: 87 Sample Amount: Analyses: 02211		OLY07 Total Volume:	Sample II 2. ml Analy		chnumber: 163 SDG:WAN02		
injection Summary Injected on Instrument Result file Calibration files Method files Setting	2 : 1/4/2017 05:15:5 : CP1818847B : D18003B.0028.F : 2DXI315A.CAL : 2DXI.MET : 2DXI315AW(V)		MET				
Surrogate Recoveri	i <u>es</u> 96% (50-	(50) Conc.: 22.00	281				
Range Diesel Range Heavy Range O-terphenyl Capric Acid		Retention Times 4.64 - 12.57 12.57 - 16.29 10.12 (10.11 - 10.21) 6.45 (6.30 - 6.50)	<u>Area</u> 797240 114690 577848 1394	Amount 9.7223 5.0825 22.0028 0.1133	<u>LOQ</u> <95.7854 <239.4636	MDL <28.7356 <67.0498	Flags
Comments:						www.	
Reviewed by:	VELIO210 1/5/17		Verified by:	Janua Janua	th beillmader		

JAN 06 2017

Sample Number: 8753059S

ABOLY07

T 163630024A

02211

ECY 97-602 NWTPH-Dx modified

D18003B.0028.RAW

Injected On: 1/4/2017 5:15:56 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1044

Dilution Factor: 2

NWTPH-DX

Injection Volume: 2

Analyst: 10210

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.066	0.00	5411
	4.713	0.00	2169
C-12	6.398	0.00	1192
Capric Acid	0.547	0.00	5172
C-14	9.582	0.00 ~	1516
C-18	10.117	0.02	583131
O-terphenyl		0.00	10017
C-22	11.788	0.00	5242
C-24	12.437	0.00	5171
C-26	13.007	0.00	2909
C-28	13.515		2502
C-30	13.978	0.00	930
C-32	14.427	0.00	699
C-34	14.931	0.00	
C-36	15.324	0.00	1386
C-38	15.697	0.00	2716
C-40	16.175	0.00	8565
Range	Start Time	Stop Time	Area
	4.64	12.57	797240
C12 - C24	, 12.57	16.29	114690
>C24 - C40	10.11	10.21	583131
o-Terphenyl			 -

RESULTS TABLE

DX C12 - C24 AREA = 797240

Preliminary C12 - C24 Amount = 0.009 PPM

DX >C24 - C40 AREA = 114690.2

Preliminary >C24 - C40 Amount = 0.005 PPM

FILES:

Area File: D18003B.0028.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 1/4/2017 5:33:39 AM File Reported On: 1/4/2017 at 5:33:46 AM

Eurofins Lancaster Laboratories-Range Data Summary Sample ID: AB Batchnumber: 163630024A OLY08 Sample Name: 8753061S SDG:WAN02 State: WA Total Volume: 2. ml Analyst: 10210 Sample Amount: 1037. Analyses: 02211 Injection Summary : 1/4/2017 05:37:29 Injected on : CP18-18847B Instrument : D18003B.0029.RAW Result file : 2DXI315A.CAL Calibration files 2DXREPLOTI.MET Method files : 2DXI.MET Setting : 2DXI315AW(V) Surrogate Recoveries Conc.: 15.51119 O-TERPHENYL 67% (50-150) Units MDL Flags LOQ <u>Amount</u> Retention Times <u>Area</u> Range 96.432 28.9296 ppb 214.3571 4.64 - 12.57 5209350 Diesel Range <241.08 <67.5024 ppb 64.8402 12.57 - 16.29 1453365 Heavy Range ppb 15.5112 10.12 (10.11 - 10.21) 404631 O-terphenyl ppb 21.2938 260238 6.39 (6.30 - 6.50) Capric Acid Comments: Verified by: _ Reviewed by: gonie 4 dellerans Jamle L. Brillhart Senior Chemist

JAN 06 2017

Sample Number: 8753061S D18003B.0029.RAW ABOLY08

163630024A

02211

ECY 97-602 NWTPH-Dx modified

NWTPH-DX

Injected On: 1/4/2017 5:37:29 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1037 Dilution Factor: 2 Injection Volume: 2

Analyst: 10210

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.070	0.00	5753
C-12	4.769	0.00	6517
Capric Acid	6.394	0.02	263338
C-14	6.616	0.00	6005
C-16	8.133	. 0.00	9887
C-18	9.558	0.00	31523
O-terphenyl	10.191	0.00	95009
C-20	10.859	2 00 ₹	95009 OL U 22878
C-22	11.784	200 2 1 2	39253
C-24	12.437	0.00	einter 39253
C-26	13.006	0.00	5 031
C-28	13.507	0.00	28343
C-30	13.976	0.00	5748
C-32	14.423	0.00	9421
C-34	14.890	0.00	12325
C-36	15.295	0.00	18753
C-38	15.724	0.00	1320
C-40	16.181	0.00	4680
Range	Start Time	Stop Time	Агеа
C12 - C24	4.64	12.57	4516889
>C24 - C40	12.57	16.29	974194
		40.04	240099

RESULTS TABLE

10.11

DX C12 - C24 AREA = 4516889

Preliminary C12 - C24 Amount = 0.197 PPM

10.21

519988

DX >C24 - C40 AREA = 974194.4

Preliminary >C24 - C40 Amount = 0.043 PPM

FILES:

Area File: D18003B.0029.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 1/4/2017 5:55:13 AM File Reported On: 1/4/2017 at 8:39:10 PM

o-Terphenyl

Sample Number: 8753061S --

ABOLY08

163630024A

02211

ECY 97-602 NWTPH-Dx modified

D18003B.0029.RAW

Injected On: 1/4/2017 5:37:29 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1037 Dilution Factor: 2

NWTPH-DX

Injection Volume: 2

Analyst: 10210

	Compared	RT	Amt PPM	Area
	Compound #2 FUEL OIL (C12-C24	0,070	0.00	5753
	•	4,769	0.00	14355
	C-12	6.394	0.02	273857
	Capric Acid	6.616	0.00	10222
	C-14		0.00	13996
	C-16	8.133 =	0.00	36785
	C-18	9.558	0.00	103857
	O-terphenyl	10.191	0.00	29624
	C-20	10.859	0.00	55655
	C-22	11.784	0.00	17897
	C-24	12.437	0.00	10917
	C-26	13.006		40770
	C-28	13.507	0.00	10313
	C-30	13.976	0.00	36203
	C-32	14.423	0.00	17546
	C-34	14,890	0.00	
	C-36	15.295	0.00	36633
	C-38	15.724	0.00	5069
	C-40	16.181	0.00	10192
	<u></u>			Area
******		Start Time	Stop Time	Aica

	Start Time	Stop Time	Area
Range		12.57	5209350 MA
C12 - C24	4.64		1453366 W)
>C24 - C40	12.57	16.29	535912
o-Terohenyl	10.11	10.21	933912

RESULTS TABLE

DX C12 - C24 AREA = 5209350

Preliminary C12 - C24 Amount = 0.228 PPM

DX >C24 - C40 AREA = 1453366

Preliminary >C24 - C40 Amount = 0.065 PPM

FILES:

Area File: D18003B.0029.BND

Method: 2DXLMET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 1/4/2017 8:39:46 PM File Reported On: 1/4/2017 at 8:39:48 PM

M = Manually Integrated

Analyst ()

Approved by 411713

Circle Reason'

1 = Missed Peak

2 = Improper Baseline

3 = RT Update

4 = Other

Sample Number: 8753061S

ABOLY08

163630024A

02211

ECY 97-602 NWTPH-Dx modified

Sample Weight: 1037 Dilution Factor: 2 Injection Volume: 2 Analyst: 10210

Injected On: 1/4/2017 5:37:29 AM Instrument ID: CP18-18847 Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

~	RT	Amount ppm	Area
Compound	4.769	0.0003	7006.676
C-12	***	0.0213	260238.3
Capric Acid	6.394	0.0003	7470.071.
C-14	6.616	=	6374.91
C-16	8.133	0.0003	79581.41
O-terphenyl	10,191	0.0031	
C-20	10.859	0.0005	11236.98
C-22	11.784	0.0014	31316.94
C-24	12.437	0.0001	3012.411
	13.006	0.0002	5031.315
C-26	13.507	0,0014	28343.3
C-28	13.976	. 0.0003	5748.057
C-30	14.890	0.0003	7775.364
C-34		0.0004	8417.466
C-36	15.295	0.0000	651.5795
C-38	15.724	•	2833.444
C-40	16.078	0.0001	2000.11.

1000 mL WW o-Terphenyl Recovery = 13.2 % o-Terphenyl CCV %Difference = -20.9 %

1000 ML CAPRIC ACID % RECOVERY = 2.3 %

Area File: D18003B.0029.RAW Method: 2DXREPLOTI.MET Area File Created On: 1/4/2017 5:55:13 AM File Reported On: 1/4/2017 at 8:39:18 PM

Format: 2DXREPLOTI.FMT

Response - MilliVolts (span=2124)

	Eurofins La	ncaster Laborate	ories-Ra	ange Data Su	ımmary	
iample Name: 8 ample Amount: nalyses: 02211		OLY09 Total Volume:	•		inumber: 163 SDG:WAN02	
ijection Summar ijected on istrument esult file alibration files lethod files etting	Y : 1/4/2017 05:59:0 : CP1818847B : D18003B.0030.F : 2DXI315A.CAL : 2DXI.MET : 2DXI315AW(V)		.MET			
urrogate Recove TERPHENYL Range Diesel Range Heavy Range O-terphenyl Capric Acid Comments:	<u>ries</u> 93% (50-	Retention Times 4.64 - 12.57 12.57 - 16.29 10.12 (10.11 - 10.21) 6.40 (6.30 - 6.50)	007 Area 2568417 757059 560233 34986	Amount 87.6488 33.0425 21.0101 2.8006	<u>LOQ</u> <94.3396 <235.8491	MDL Flag 28.3019 J <66.0377
Reviewed by:(0210210 1/5/17		Verified by	banda i Brillhad	What	

JAN 06 2017

Sample Number: 8753063S

ABOLY09

T 163630024A

02211

ECY 97-602 NWTPH-Dx modified

D18003B,0030.RAW

Injected On: 1/4/2017 5:59:02 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column; HP-5 30m x 0.32mm x 0.25um

NWTPH-DX

Sample Weight: 1060

Dilution Factor: 2

Injection Volume: 2

Analyst: 10210

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.068	0.00	5466
C-12	4.711	. 0.00	1643
Capric Acid	6.397	0.00	38151
C 14	6.545	, იიი	7881
C-18	9.558	0.00	18093
O-terphenyl	10.190	0.00	5547
C-20	10.893	0.00	4878
C-24	12,434	0.00	5634
C-26	13.004	0.00 Not	6039
C-28	13.508	Segon	Use (5072
C-30	13.975	_0:00 = # THE	
C-32	14.420	0.00	0030
C-34	14.887	0.00	10074
C-36	15.276	0.00	10443
C-38	15.676	0.00	3210
C-40	16.165	0.00	9010
Range	Start Time	Stop Time	Area
1 Carriero	4.63	12.57	1896209

Dango	Start Time	Stop Time	Area
Range	4.64	12.57	1896209
C12 - C24		16.29	597804
>C24 - C40	12.57	10.21	579018
o-Terphenyl	10.11	10.21	Q10000

RESULTS TABLE

DX C12 - C24 AREA = 1896209

Preliminary C12 - C24 Amount = 0.083 PPM

DX >C24 - C40 AREA = 597804

Preliminary >C24 - C40 Amount = 0.026 PPM

FILES:

Area File: D18003B.0030.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 1/4/2017 6:16:43 AM File Reported On: 1/4/2017 at 6:16:48 AM

Sample Number: 8753063S

ABOLY09

163630024A -

02211 NWTPH-DX ECY 97-602 NWTPH-Dx mor

D18003b.0030.RAW

Injected On: 1/4/2017 5:59:02 AM Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1060 Dilution Factor: 2 Injection Volume: 2

Analyst: 10210

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.068	0.00	5466
C-12	4.711	0.00	4468
Capric Acid	6.397	0.00	51451
C-14	6.545	0,00 -	19272
C-18	9,558	0.00	26543
O-terpheny!	10.190	. 0.00	7795
C-20	10.893	0.00	11846
C-24	12,434	0.00	15020
C-26	13.004	0.00	10576
C-28	13.508	0.00	19850
C-30	13.975	0.00	7971
C-32	14,420	0.00	19099
C-34	14.887	0.00	11905
C-36	15.276	0.00	12836
C-38	15.676	0.00	4262
C-40	16.165	0.00	10158

Range .	Start Time	Stop Time	Area
	4.64	12.57	2568417 🗥
>C24 - C40	12.57	16.29	757059 * * *
o-Terphenvi	10.11	10.21	588118

RESULTS TABLE

DX C12 - C24 AREA = 2568417

DX >C24 - C40 AREA = 757058.8

Preliminary C12 - C24 Amount = 0.112 PPM

Preliminary >C24 - C40 Amount = 0.033 PPM

FILES:

Area File: D18003b.0030.BND

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 1/4/2017 8:13:44 PM File Reported On: 1/4/2017 at 8:13:46 PM

M = Manually Integrated

Approved by 9113 1/31

Circle Reason 1 = Missed Peak

2 = Improper Baseline

3 = RT Update

4 = Other

	Eurofins La	ancaster Laborate	ories-Ran	ge Data Si	ummary	
iample Name: 8 ample Amount: nalyses: 02211	3753065S 1060.	OLY13 Total Volume:	Sample II 2. ml Analy	, , , , , , , , , , , , , , , , , , , ,	nnumber: 1636 SDG:WAN02	
njection Summa			•			
njected on nstrument	: 1/4/2017 06:20:3 : CP1818847B	34				
Résult file	: D18003B.0031.	RAW				
Calibration files	: 2DXI315A.CAL					
Nethod files Setting	: 2DXI.MET : 2DXI315AW(V)	2DXREPLOTI	.IVi∟I			
urrogate Recove	<u>eries</u>					
TERPHENYL	62% (50-	-150) Conc.: 14.07	101			
Range Diesel Range Heavy Range O-terphenyl Capric Acid		Retention Times 4.64 - 12.57 12.57 - 16.29 10.12 (10.11 - 10.21) 6.43 (6.30 - 6.50)	Area 603569 102151 375203 864	Amount 9.9672 4.4585 14.0710 0.0692	<u>LOQ</u> <94.3396 <235.8491	MDL Flags <28.3019 <66.0377
Comments:						
						· ·
Reviewed by:	DES10210		Verified by:	Jamie L. Brillhart	(Ulediani	
Date:	1/5-/17		Date:	Sanior Chemist	g & S	
	('		•	Į.	AN 06 2017	

Sample Number: 8753065S-D18003B.0031.RAW ABOLY13

T 163630024A

02211

ECY 97-602 NWTPH-Dx modified

NWTPH-DX

Injected On: 1/4/2017 6:20:34 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1060

Dilution Factor: 2 Injection Volume: 2

Analyst: 10210

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.065	0.00	5450
C-12	4.710	0.00	2441
Capric Acid	6,382	0.00	1143
C-14	6.549	0.00	3733
C-18	9.585	0.00	1609
O-terphenyl	10,116	0.01	381457
C-20	10.885	0.00	1942
C-20	11.755	0.00	3981
C-24	12.435	0.00	2810
C-26	13.007	0.00	3899
C-28	13.514	0.00	3240
	13.978	0.00	2139
C-30	14.426	0.00	815
C-32	14.928	00.0	489
C-34	15.324	0.00	1308
C-36	15.691	0.00	3205
C-38		0.00	10834
C-40	16.183	0.00	10001
Range	Start Time	Stop Time	Area
C12 - C24	4.64	12.57	603569
>C24 - C40	12.57	16.29	102151
o-Terphenyl	10.11	10.21	381457

RESULTS TABLE

DX C12 - C24 AREA = 603569.4

Preliminary C12 - C24 Amount = 0.010 PPM

DX >C24 - C40 AREA = 102150.9

Preliminary >C24 - C40 Amount = 0.004 PPM

FILES:

Area File: D18003B.0031.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL.

Format: 2DXI.FMT

Area File Created On: 1/4/2017 6:38:19 AM File Reported On: 1/4/2017 at 6:38:20 AM

	Eurofins La	ncaster Laborato	ories-Rang	ge Data Sun	nmary	,	
Sample Name: E Sample Amount: Analyses: 02211	BLANKA 12/29/16 S 1000.	PBLK24363 Total Volume:	Sample II 2. ml Analy	. , ,,,,,,	umber: 163 DG:	630024A State:	
Injection Summa Injected on Instrument Result file Calibration files	EY : 1/4/2017 04:11:2 : CP1818847B : D18003B.0025.F : 2DXI315A.CAL						
Method files Setting	: 2DXI.MET : 2DXI315AW(V)	2DXREPLOTI	.MET				
Surrogate Recove O-TERPHENYL Range Diesel Range Heavy Range O-terphenyl Capric Acid	<u>99% (50-</u>	150) Conc.: 23.87 Retention Times 4.64 - 12.57 12.57 - 16.29 10.12 (10.11 - 10.21) 6.31 (6.30 - 6.50)	<u>Area</u> 671446 101393	Amount 3.2811 4.6909 23.8724 0.0794	LOQ <100 <250	MDL Flags <30 <70	D ppb ppb ppb
Comments:							
Reviewed by:	18/10010		Verified by:	Jamie L. Brithad Senter Chemist			
Date: _		and the shall program and the shall be	the Act of the Action	JAN	N D 6 2017		

Sample Number: BLANKA 12/29/16 S ABPBLK24363 BLK 163630024A

02211 NWTPH-DX ECY 97-602 NWTPH-I

D18003B.0025.RAW

Injected On: 1/4/2017 4:11:22 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1000 Dilution Factor: 2 Injection, Volume: 2

Analyst: 10210

Compound	RT	Amt PPM	Area
C-12	4.758	0.00	2030
Capric Acid	6.418	. 0.00	1814
O-terphenyl	10.117	0.02	580530
C-24	12.515	0.00	1846
C-28	13.516	0.00	334
C-30	14.038	0.00	1091
C-32	14,423	0.00	1817
C-34	14.925	Meet Use	308
C-36	15.316	64 4U.00	1102
C-38	15.678	See logintegr	2 fin 5526
C-40	16.084	0.00	25581

Range	Start Time	Stop Time	Area
C12 - C24	4.64	12.57	929603
>C24 - C40	12.57	16.29	100560
o-Terphenyl	10.11	. 10.21	580530

RESULTS TABLE

DX C12 - C24 AREA = 929602.7

Preliminary C12 - C24 Amount = 0.016 PPM

DX >C24 - C40 AREA = 100559.6

Preliminary >C24 - C40 Amount = 0.005 PPM

FILES:

Area File: D18003B.0025.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 1/4/2017 4:30:34 AM File Reported On: 1/4/2017 at 8:05:50 PM

Sample Number: BLANKA 12/29/16 S ABPBLK24363 BLK 163630024A

ECY 97-602 NWTPH-I

D18003b.0025.RAW

Injected On: 1/4/2017 4:11:22 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1000 Dilution Factor: 2

NWTPH-DX

Injection Volume: 2

Analyst: 10210

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.068	0.00	1891
C-12	4.715	0.00	613
Caprić Ačič	6.437	0.00	81
C-14	6.549	0.00	5002
C-18	9.587	0.00	2136
O-terphenyl	10.117	0.02	616434
C-20	10.886	0.00	1050
C-22	11.764	0.00	935
C-24	12.441	0.00	3029
C-26	13,009	0.00	4764
C-28	13,516	0,00	3566
C-30	13.980	0.00	3135
C-30 C-32	14.423	0.00	2351
C-34	14.925	0.00	308
C-36	15.316	0.00	1162
C-38	15.678	0.00	5526
C-40	16.084	0.00	25581
Range	Start Time	Stop Time	Area
C12 - C24	4.64	12.57	671446 M
>C24 - C40	12.57	16.29	101393 ' ՝
o-Terphenyl	10.11	10.21	616434

RESULTS TABLE

DX C12 - C24 AREA = 671446.1

Preliminary C12 - C24 Amount = 0.003 PPM

DX >C24 - C40 AREA = 101393

Preliminary >C24 - C40 Amount = 0.005 PPM

Area File: D18003b.0025.BND

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXLFMT

Area File Created On: 1/4/2017 8:12:15 PM File Reported On: 1/4/2017 at 8:12:18 PM

M = Manually Integrated

Approved by \\U

Circle Reason 1 = Missed Pesk

2 = Improper Baseline

3 = RT Update

4 = Other

Sample Number: BLANKA 12/29/16 S. ABPBLK24363 BLK 163630024A

ECY 97-602 NWTF

Injected On: 1/4/2017 4:11:22 AM

Instrument ID: CP18-18847 Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 1000 Dilution Factor: 2 Injection Volume: 2 Analyst: 10210

02211

Compound	RT	Amount ppm	Area
Capric Acid	6.308	0.0001	935.3076
C-14	6,549	0.0002	4435.006
C-18	9.587	0.0001	1990.505
O-terphenyl	10.117	0.0239	600526.1
C-22	11.764	0,000	934.9427
C-24	12.441	0.0001	2537,173
C-26	13.009	0.0002	4764.465
C-28	13.516	0.0002	3371.441
C-20	13.980	0.0002	3134.771
C-32	14.423	0.0001	2325,807
C-32	14.852	0.0001	2904.61
	15.268	0.0001	2373.237
C-36	15.678	0.0001	3142.649
C-38		0.0001	1872.861
C-40	16.084	0.0001	.0.2.001

1000 ML CAPRIC ACID % RECOVERY = 0.0 %

Area File: D18003B.0025.RAW Method: 2DXREPLOTI.MET Calibration File: 2DXI315A.CAL Area File Created On: 1/4/2017 4:30:34 AM File Reported On: 1/4/2017 at 8:06:38 PM

Format: 2DXREPLOTI.FMT

Response - MilliVolts (span=571)

	. Eurofins La	ncaster Laborato	ories-Rang	je Data Sum		
Sample Name: Lo Sample Amount: Analyses: 02211	CSA 12/29/16 S 1000.	LCS24363 Totai Volume:	Sample ID 2. ml Analys	,	mber: 16363002 G: Stat	
Injection Summan Injected on Instrument Result file Calibration files Method files Setting	: 1/4/2017 04:32:5 : CP1818847B. : D18003B.0026.I : 2DXI315A.CAL : 2DXI.MET : 2DXI315AW(V)		MET			
Surrogate Recover D-TERPHENYL Range Diesel Range Heavy Range O-terphenyl Capric Acid Comments:	<u>ries</u> 105% (50	P-150) Conc.: 25.15 Retention Times 4.64 - 12.57 12.57 - 16.29 10.12 (10.11 - 10.21) 6.43 (6.30 - 6.50)	Area 29504091 478145 632856 116904	Amount 1335.7154 22.1212 25.1577 9.9195	LOQ MD 100 <250	OL Flags Uni 30 ppb <70 ppb ppb ppb
Reviewed by:	DELIO210 1/5/17		Verified by: Date:	Source Chessel	Ubeto	

Sample Number: LCSA 12/29/16 S ABLCS24363 LCS 163630024A

02211

ECY 97-602 NWTPH-Dx modified

D18003B.0026.RAW

Injected On: 1/4/2017 4:32:53 AM

Instrument ID: CP18-18847

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m x 0.32mm x 0.25um

NWTPH-DX

Sample Weight: 1000 Dilution Factor: 2

Injection Volume: 2

Analyst: 10210

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.068	0,00	5119
•	4.709	0.02	395564
C-12	6,429	. 0.03	389879
Capric Acid	6.547	0.04	850932
C-14	8.200	0.02	399563
C-16	=	0.02	580333
C-18	9.623		143694
O-terphenyl	10.177	0.01	540166
C-20	10.846	0.02	
C-22	11.757	0.01	296915
C-24	12.436	0.01	112852
C-26	13.00 6	0.00	39858
C-28	13.513	0.00	10948
C-30	13,978	0.00	4782
C-32	14,422	0.00	1482
C-34	14.926	0.00	668
	15.315	0.00	1486
C-36	15.683	0.00	6054
C-38		- 0.00	6083
C-40	16.141	0.55	

Range	Start Time	Stop Time	Area
C12 - G24	4.64	12.57	29504090
>C24 - C40	12.57	16.29	478145
o-Terphenyl	10.11	10.21	1035972

RESULTS TABLE

DX C12 - C24 AREA = 2.950409E+07

Preliminary C12 - C24 Amount = 1.358 PPM

DX >C24 - C40 AREA = 478145 Print College by the

Preliminary >C24 - C40 Amount = 0.022 PPM

FILES:

Area File: D18003B.0026.RAW

Method: 2DXI.MET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 1/4/2017 4:50:38 AM File Reported On: 1/4/2017 at 4:50:40 AM

Area File: D18003B.0026.RAW Method: 2DXREPLOTI.MET Calibration File: 2DXI315A.CAL Area File Created On: 1/4/2017 4:50:38 AM File Reported On: 1/4/2017 at 4:50:50 AM

Format: 2DXREPLOTI.FMT

,		ᆫ	Ironns L	anca	Sier Laborar	OHG2-L	anger	Jala	7.217111	iary			
Sample	le Name: e Amount: es: 02211		12/29/16 S 1000.		SD24363 Volume:		ole ID: AB nalyst:10		chnum SDG	iber: 163	630024 <i>/</i> State:	4	
Injectio	on Summa	iry											
Injecte Instrur Result Calibra Metho Setting	nent file ation files d files	: CP : D18 : 2D2 : 2D2	/2017 04:54 1818847B 8003B.0027 XI315A.CAL XI.MET XI315AW(V)	RAW	2DXREPLOT	I.MET							
Surroga	ate Recovi	eries											
)-TERPI	HENYL		100% (50-150)	Conc.: 24.03	3862							
Hea O-te	ge el Range vý Range rphenyl ric Acid	,		1 10.1	tention Times 1.64 - 12.57 2.57 - 16.29 2 (10.11 - 10.21) 13 (6.30 - 6.50)	<u>Area</u> 2973746 481781 604706 114047	39 13 22 24	nount 47.8149 .2894 .0386 6770	- - -	LOQ 100 <250	MDL 30 <70		Units ppb ppb ppb
Com	ments:											. -	
Revie	ewed by: _ Date: _	QEA	(10a1c			Verified b	<i>y</i>	Jamie L.		ilitare p. to		-	-

JAN 06 2017

Sample Number: LCSDA 12/29/16 S ABLCSD24363 LCSD 163630024A

02211 NWTPH-DX ECY 97-602 NWTPH-Dx modified

Injected On: 1/4/2017 4:54:20 AM

Instrument ID: CP18-18847

D18003B.0027.RAW

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min

GC Column: HP-5 30m \times 0.32mm \times 0.25um

Sample Weight: 1000 Dilution Factor: 2

Injection Volume: 2

Analyst: 10210

Compound	RT	Amt PPM	Area
#2 FUEL OIL (C12-C24	0.067	0.00	5186
C-12	4.709	0.02	387151
Capric Acid	6.428	0.03	391396
C-14	6.547	0.04	822138
C-16	8.138	0.03	610385
C-18	9.622	0.02	527006
O-terphenyl	10,176	0.01	141084
C-20	10.845	0.02	455082
C-22	11.758	0.01	316166
C-24	12.434	0.01	138213
C-26	13.005	0.00	58332
C-28	13.512	0.00	14399
C-30	13.976	0.00	5574
C-32	14.425	0.00	1235
C-34	14,926	0.00	243
C-36	15.324	0.00	1265
	15.686	0.00	4739
C-38 ·	16.138	0.00	7779
· C-40	16,138	V.00	* * * * *

Range	Start Time	Stop Time	Area
C12 - C24	4.64	12.57	29737470
>C24 - C40	12.57	16.29	481781
o-Terphenyl	10.11	10.21	1003778
O- (CIDICITY)			

RESULTS TABLE

DX C12 - C24 AREA = 2.973747E+07

Preliminary C12 - C24 Amount = 1.369 PPM

DX >C24 - C40 AREA = 481780.6

Preliminary >C24 - C40 Amount = 0.022 PPM

FILES:

Area File: D18003B.0027.RAW

Method: 2DXLMET

Calibration File: 2DXI315A.CAL

Format: 2DXI.FMT

Area File Created On: 1/4/2017 5:12:04 AM File Reported On: 1/4/2017 at 5:12:10 AM

Sample Number: LCSDA 12/29/16 S ABLCSD24363 LCSD 163630024A

ECY 97-602 NWTPH-Dx mod

Injected On: 1/4/2017 4:54:20 AM Instrument ID: CP18-18847

Sample Weight: 1000 Dilution Factor: 2 Injection Volume: 2

Oven Parameters: 60C for 1.0min; 15C/min to 190C; 30C/min to 340C, hold 2min GC Column: HP-5 30m \times 0.32mm \times 0.25um

Analyst: 10210

02211

Compound	RT	Amount ppm	Area
C-12	4.709	0.0115	248862.5
Capric Acid	6.428	0.0097	114046.6
C-14	6.547	0.0203	444044.1
C-16	8.138	0.0141	312892.5
C-18	9.622	0.0039	86546.59
O-terphenyl	10.118	0.0240	604706.4
C-20	10.845	0.0062	139530.4
C-22	11.758	0.0033	72296.61
C-24	12.434	0,0013	26531.56
C-26	13.005	0.0005	9289.823
C-28	13.512	0.0002	3606.195
C-30	13.976	0.0001	3011.023
C-32	14,425	0.0001	1234.831
C-34	14.840	0.0001	2277.267
C-36	15.274	0.000	607.548
C-38	15.686	0.0001	2253.285
C-40	16.093	0.0001	1369.386

1000 ML CAPRIC ACID % RECOVERY = 1.0 %

Area File: D18003B.0027.RAW Method: 2DXREPLOTI.MET Calibration File: 2DXI315A.CAL Area File Created On: 1/4/2017 5:12:04 AM File Reported On: 1/4/2017 at 5:12:20 AM

Format: 2DXREPLOTI.FMT

Response - MilliVolts (span=722)

TPH-DRO by GC Data

common marining EU104195	ctemeaster-Laborato	ories-Ran	ge Data S	ummary	·	
Sample Name: 8753067 Sample Amount: 247.	OLYFD Total Volume:	Sample I 2. ml Analy		hnumber: 163 SDG:WAN02		
Analyses: 12899						
Injection Summary					ē	
Injected on : 1/7/2017 00:	:21:08		•			
Instrument : CP301950						
Result file : D30006B.00)22.RAW					
Calibration files : 4FUL30B35	4A.CAL					
Method files : 4FUEL30B.I	MET 4REPLOT30B	.MET				
Setting : 4FUL30B35	4A(V)					
Surrogate Recoveries	•		•			
	(50-150) Conc.: 18.95	675				
Range	Retention Times	Area	<u>Amount</u>	<u>LOQ</u>	MDL Fla	<u>ags Ur</u>
Total DRO C10-C28	2.09 - 13.77	5638075	547.2468	101.2146	45.5466	<u>ppb</u>
ORO >C28-C35	13.77 - 15.37	130818	13.2334	<101.2146	<45.5466	ppb
ORO >C28-C40	13.77 - 16.46	245930	24.8780	<101.2146	<45.5466	<u>ppb</u>
DRO C13-C22	4.95 - 12.03	852851	78.1429	<101.2146	45.5466	J bbp
WY DRO C10-C32	2.09 - 14.69	5719097	555.4429	101.2146	45.5466	ppb
DX DRO C12-C24	4.75 - 12.70	921251	64.9255	<101.2146	45.5466	J ppb
DX HRO C24-C40	12.70 - 16.46	4791672	448.9442	253.0364	101.2146	ppb
DX C12-C40	4.75 - 16.46	5712923	513.8697			<u>ppb</u> _
o-Terphenyl	10.36 (10.32 - 10.42)	228289	18.9568			ppb
Capric Acid	6.51 (6.39 - 6.59)	5460	512.0759			<u>ppb</u>

		100	AND AND AND AND AND AND AND AND AND AND
Reviewed by:	OE 10210	Verified by:	gatha the bottomas
D-4-:	1/9/17	Date:	Jamie L. Brilihart Senier Chemist

JAN 17 2017

<u>Units</u>

Comments:

Sample Number: 8753067

AAOLYFD

T 163570036A

12899

SW-846 8015B

Injected On: 1/7/2017 12:21:08 AM Instrument ID: CP30-19507

Oven Parameters: 60C for 2.0min; 15C/min to 190C; 30C/min to 340C, hold 3min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 247 Dilution Factor: 2 Injection Volume: 4ul Analyst: 10210

Compound	RT	Amt PPM	Area
C10	2.252	0.0001	1348
C12	4.836	0.000	157
Capric Acid	6.510	0.0041	4801
C14	6.750	0,0023	25473
C16	8.348	0.0019	20027
C18	9.822	0.0027	27852
O-Terphenyl	10.362	0.0188	226799
C20	11.061	0.0001	542
C22	11.927	0.0002	1884
C24	12.593	0.0010	10120
C26	13.159	0.0052	50591
C28	13.664	0.0010	1023401
C30	14,132	0.0009	See 9334 Used 7864 5948
C32	14.582	0.0011	406360
C34	15.019	0.0007	7864 - 191
C36	15.489	0.0006	5948
C38	15.865	0.0002	1952
C40	16.286	0.0002	2585

Range	Start Time	Stop Time	Area
Total DRO C10-C28	2.09	13.77	5506990
ORO >C28-C35	13.77	15.37	108185
ORO >C28-C40	13.77	16.46	151546
Total DRO C13-C22	4.95	12.03	781742
WY DRO C10-C32	2.09	14.69	5573088
Total DRO C12-C24	4.75	12.70	839179
HRO >C24-C40	12.70	16.46	4664929
	4.75	16.46	5504108
DX C12-C40 O-Terphenyl	10.32	10.42	226799

RESULTS TABLE

	Surrogate Adjusted Areas	Preliminary Amounts (w/ surrogate)
Total DRO C10-C28 AREA =	5280191	0.56 PPM
ORO>C28-C35 AREA =	108184.5	0.01 PPM
ORO>C28-C40 AREA =	151545.8	0.01 PPM
Total DRO C13-C22 AREA =	554942.6	0.10 PPM
C10-C25 AREA =	5346289	0.56 PPM
Total DRO C12-C24 AREA =	612379.6	0.08 PPM
HRO >C24-C40 AREA =	4664929	0.44 PPM
DX C12-C40 AREA =	5277309	0.52 PPM

Area File: D30006B.0022.RAW Method: 4FUEL30B.MET

Calibration File: 4FUL30B354A.CAL

Format: 4FUEL30B.FMT

Area File Created On: 1/7/2017 12:39:10 AM File Reported On: 1/7/2017 at 12:39:13 AM

Dx C12-C40 Level 3 %D = -98.901%

#2 Fuel Level 3 %D = -99.89%

Sample Number: 8753067

AAOLYFD

T 163570036A

12899

SW-846 8015B

Injected On: 1/7/2017 12:21:08 AM

Instrument ID: CP30-19507

Oven Parameters: 60C for 2.0min; 15C/min to 190C; 30C/min to 340C, hold 3min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 247 Dilution Factor: 2 Injection Volume: 4ul Analyst: 10210

Compound	RT	Amt PPM	Area
C10	2.252	0.0002	1916
C12	4.836	0.0001	997
Capric Acid	6.510	0.0041	5241
C14	6.750	0.0024	26644
C16	8.348	0.0022	23214
C18	9.822	0.0027	27902
O-Terphenyl	10.362	0.0189	227849
C20	11.061	0.0001	545
C22	11.927	0.0003	2572
C24	12.593	0.0012	11320
C26	13.159	0.0055	53440
C28	13.664	0.0013	12472
C30	14,132	0.0009	9384
C32	14,582	0.0011	11194
C34	15.019	0.0008	8615
C36	15.489	0.0007	7380
C38	15.865	0.0005	5265
C40	16.286	0.0009	9510

			A r.o.a	
Range	Start Time	Stop Time	Area	
Total DRO C10-C28	2.09	13.77	5638074	799- Back 19219
ORO >C28-C35	13.77	15.37	130818	7, 1,
ORO >C28-C40	13.77	16.46	245930	
Total DRO C13-C22	4.95	12,03	852851	
WY DRO C10-C32	2.09	14.69	5719097	
Total DRO C12-C24	4.75	12,70	921252	M
HRO >C24-C40	12.70	16.46	4791672	W
DX C12-C40	4.75	16.46	5712923	
O-Terphenyl	10.32	10.42	227849	

RESULTS TABLE

	Surrogate Adjusted Areas	Preliminary Amounts (w/ surrogate)
Total DRO C10-C28 AREA =	5410226	0.57 PPM .
ORO>C28-C35 AREA =	130817.9	0.01 PPM
ORO>C28-C40 AREA =	245930	0.02 PPM
Total DRO C13-C22 AREA =	625002.6	0.11 PPM
C10-C25 AREA =	5491248	0.58 PPM
Total DRO C12-C24 AREA =	693402.9	0,09 PPM
HRO >C24-C40 AREA =	4791672	0.45 PPM
DX C12-C40 AREA =	5485075	0.54 PPM

Dx C12-C40 Level 3 %D = -98.858%

#2 Fuel Level 3 %D = -99.89%

Area File: D30006B.0022.BND Method: 4FUEL30B.MET Calibration File: 4FUL30B354A.CAL

Format: 4FUEL30B.FMT

Area File Created On: 1/9/2017 5:35:24 PM File Reported On: 1/9/2017 at 5:35:26 PM

M = Manually Integrated
Analyst 06/10210 19/17
Approved by 18 1/31 1-17-17.
Circle Reason 1 (2) 3 4
1 = Missed Peak
2 = Improper Baseline
a ser Undate
4 = Cincr

Printed on 1/9/2017 5:35:27 PM

Page 2 of 2

Eurofins Lancaster Laboratories-Range Data Summary

Sample ID: AA Batchnumber: 163570036A Sample Name: BLANKA 12/23/16 PBLK36357 2. ml Analyst: 10210 SDG: State: Total Volume: Sample Amount: 250. Analyses: 12899 Injection Summary : 12/28/2016 10:47:58 Injected on Instrument : CP30--19507B Result file : D30363B.0005.RAW : 4FUL30B354A.CAL Calibration files 4REPLOT30B.MET Method files : 4FUEL30B.MET : 4FUL30B354A(V) Setting Surrogate Recoveries O-TERPHENYL Conc.: 20.89097 87% (50-150) Units LOQ MDL Flags **Retention Times** Range Area Amount 45 ppb 475.8442 100 2.09 - 13.77 5015708 Total DRO C10-C28 <100 <45 13.77 - 15.37 276480 27.6327 ppb ORO >C28-C35 <100 13.77 - 16.46 45 ppb 477949 47.7685 ORO >C28-C40 100 45 ppb 157.6929 4.95 - 12.03 1530317 DRO C13-C22 493.5642 100 45 ppb 2.09 - 14.69 5193006 WY DRO C10-C32 45 100 ppb 4.75 - 12.70 1667292 130,7670 DX DRO C12-C24 250 100 ppb 12.70 - 16.46 3752598 347.3715 DX HRO C24-C40 4.75 - 16.46 ppb 5419889 478.1386 DX C12-C40 ppb o-Terphenyl 10.37 (10.32 - 10.42) 254637 20.8910 6.51 (6.39 - 6.59) 7754 552.0485 ppb Capric Acid /()_{*} HUD! Comments: √\ The wildermak Kinther E Williams Tom C. Wildermuth Healher E. Williams Verified by: Reviewed by: Date: _ DEC J 0 2016 DEC 3 0 2016

Sample Number: BLANKA 12/23/16

AAPBLK36357 BLK 163570036A

12899

SW-846 8015B

Injected On: 12/28/2016 10:47:58 AM Instrument ID: CP30-19507

Oven Parameters: 60C for 2.0min; 15C/min to 190C; 30C/min to 340C, hold 3min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 250 Dilution Factor: 2 Injection Volume: 4ul Analyst: 10210

Compound	RT	Amt PPM	Area
C10	2.272	0.0001	1326
C12	4.816	0.0004	5000
Capric Acid	6.513	0.0048	10414
C14	6.752	0,0066	72673
C16	8,353	0.0047	50783
C18	9.826	0.0070	73426
O-Terphenyl	10.369	0.0208	253871
C20	11.064	0.0009	8980
C22	11.931	0.0008	8149
C24	12.597	0.0021	20215
· C26	13.163	0,0087	85202
C28	13.667	0.0028	27776
C30	14.138	0.0029	28517
C32	14.589	0.0028	28451
C34	15.028	0.0016	16498
C36	15.458	0.0007	7755
C38	15.877	0.0006	6403
C40	16.303	0.0007	7757

Range	Start Time	Stop Time	Area
Total DRO C10-C28	2.09	13.77	5015708
ORO >C28-C35	13.77	15.37	276480
ORO >C28-C40	13.77	16.46	477949
Total DRO C13-C22	4.95	12.03	1530317
WY DRO C10-C32	2.09	14.69	5193006
Total DRO C12-C24	4.75	12.70	1667292
HRO >C24-C40	12.70	16.46	3752597
DX C12-C40	4.75	16.46	5419889
O-Terphenyl	10.32	10.42	253871

RESULTS TABLE

	Surrogate Adjusted Areas	Preliminary Amounts (w/ surrogate)
Total DRO C10-C28 AREA =	4761837	0.50 PPM
ORO>C28-C35 AREA =	276479.8	0.03 PPM
ORO>C28-C40 AREA =	477948.7	0.04 PPM
Total DRO C13-C22 AREA =	1276446	0.19 PPM
C10-C25 AREA =	4939135	0.52 PPM
Total DRO C12-C24 AREA =	1413421	0.15 PPM
HRO >C24-C40 AREA =	3752597	0.35 PPM
DX C12-C40 AREA =	5166018	0.50 PPM
•		

Area File: D30363B.0005.RAW Method: 4FUEL30B.MET

Calibration File: 4FUL30B354A.CAL

Format: 4FUEL30B.FMT

Area File Created On: 12/28/2016 11:06:01 AM File Reported On: 12/28/2016 at 11:06:12 AM

Dx C12-C40 Level 3 %D = -98.937%

#2 Fuel Level 3 %D = -99.90%

Eurofins Lancaster Laboratories-Range Data Summary

Sample Name: LCSA 12/23/16 LCS36357 Sample ID: AA Batchnumber: 163570036A Total Volume: 2. ml Analyst: 10210 SDG: State: Sample Amount: 250. Analyses: 12899 Injection Summary Injected on : 12/28/2016 11:11:20 Instrument : CP30--19507B Result file : D30363B.0006.RAW Calibration files : 4FUL30B354A.CAL Method files : 4FUEL30B.MET 4REPLOT30B.MET Setting : 4FUL30B354A(V) Surrogate Recoveries O-TERPHENYL Conc.: 21.16457 88% (50-150) Retention Times LOQ MDL Flags Units Range **Amount** Area 2.09 - 13.77 Total DRO C10-C28 4611956 435.1579 100 45 ppb 13.77 - 15.37 <100 ORO > C28-C35 12668 1.2661 <45 ppb ORO >C28-C40 13.77 - 16.46 <100 <45 21247 2.1235 ppb 45 DRO C13-C22 4.95 - 12.03 3847511 443.7202 100 ppb WY DRO C10-C32 2.09 - 14.69 4620338 435,9957 100 45 ppb 4.75 - 12.70 100 DX DRO C12-C24 4036468 349.7689 45 ppb 12.70 - 16.46 <100 DX HRO C24-C40 79031 7.3158 <250 ppb 4.75 - 16.46 DX C12-C40 ppb 4115499 357.0847 o-Terphenyl 10.37 (10.32 - 10.42) 257972 ppb 21.1646 Capric Acid 6.49 (6.39 - 6.59) 6122 523.6231 ppb Comments: the wilderment Tom C. Wildermuth Associate Chemist

Verified by:

Heather F. Williams Senior Chemist Date: DEC 3 0 2016

Kiather E Williams

12/30/16 9:10

Reviewed by:

Date:

DEC 3 0 2016

Sample Number: LCSA 12/23/16 AALCS36357

Injected On: 12/28/2016 11:11:20 AM

Instrument ID: CP30-19507

Oven Parameters: 60C for 2.0min; 15C/min to 190C; 30C/min to 340C, hold 3min

GC Column: HP-5 30m x 0.32mm x 0.25um

LCS 163570036A 12899

Sample Weight: 250

Dilution Factor: 2 Injection Volume: 4ul Analyst: 10210 SW-846 8015B

Compound	RT	Amt PPM	Area
C10	2.213	0.0029	34350
C12	4.843	0.0053	60103
Capric Acid	6.487	0.0077	30974
C14	6.753	0,0106	116983
C16	8.365	0.0118	128116
C18	9.798	0.0071	74675
O-Terphenyl	10,368	0.0248	301945
C20	11.062	0.0065	66813
C22	11.930	0.0023	22699
C24	12.596	0.0010	9893
C26	13.162	0.0003	3229
C28	13.666	0.0003	2640
C30	14.138	0.0002	1883
C32	14.589	0.0001	1447
C34	15.027	0.0001	904
C36	15.456	0.0000	342
C38	15.880	0.0000	371
C40	16.309	0.0004	4667

Range	Start Time	Stop Time	Area
Total DRO C10-C28	2.09	13.77	4611956
ORO >C28-C35	13.77	15.37	12668
ORO > C28-C40	13.77	16,46	21247
Total DRO C13-C22	4.95	12.03	3847511
WY DRO C10-C32	2.09	14.69	4620338
Total DRO C12-C24	4.75	12.70	4036468
HRO >C24-C40	12.70	10,40	79031
DX C12-C40	4.75	16.46	4115499
O-Terphenyl	10.32	10.42	301945

RESULTS TABLE

**************************************	RESULTS TABLE	
	Surrogate Adjusted Areas	Preliminary Amounts (w/ surrogate)
Total DRO C10-C28 AREA =	4310011	0.46 PPM
ORO>C28-C35 AREA =	12668.2	0.00 PPM
ORO>C28-C40 AREA =	21246.97	0.00 PPM
Total DRO C13-C22 AREA =	3545566	0.48 PPM
C10-C25 AREA =	4318393	0.46 PPM
Total DRO C12-C24 AREA =	3734523	0.37 PPM
HRO >C24-C40 AREA =	79031.36	0.01 PPM
DX C12-C40 AREA =	3813554	0.38 PPM

Dx C12-C40 Level 3 %D = -99.216%

#2 Fuel Level 3 %D = :-99.91%

Area File: D30363B.0006.RAW Method: 4FUEL30B.MET

Calibration File: 4FUL308354A.CAL

Format: 4FUEL30B.FMT

Area File Created On: 12/28/2016 11:29:22 AM File Reported On: 12/28/2016 at 11:29:32 AM

Area File Created On: 12/28/2016 11:29:22 AM File Reported On: 12/28/2016 at 11:29:48 AM

Method: 4REPLOT30b.MET

Calibration File: 4FUL30B354A.CAL

Calibration File: 4FUL30B354A.CAL

File Reported On: 12/28/2016 at 11:29:48 AM

Eurofins Lancaster Laboratories-Range Data Summary

Sample Name: LCSDA 12/23/16 Sample ID: AA Batchnumber: 163570036A LCSD36357 Total Volume: 2 ml Analyst: 10210 SDG: State: Sample Amount: 250. Analyses: 12899 Injection Summary Injected on : 12/28/2016 11:34:56 Instrument : CP30--19507B Result file : D30363B.0007.RAW Calibration files : 4FUL30B354A.CAL Method files : 4FUEL30B.MET 4REPLOT30B.MET Setting : 4FUL30B354A(V) Surrogate Recoveries O-TERPHENYL Conc.: 19.95642 83% (50-150) LOQ MDL Flags Units Retention Times Range Area Amount ppb Total DRO C10-C28 2.09 - 13.77 4295106 404.9623 100 ORO >C28-C35 13.77 - 15.37 2.0556 <100 20567 <45 ppb ppb ORO >C28-C40 13.77 - 16.46 101934 10.1878 <100 <45 100 45 DRO C13-C22 4.95 - 12.03 3548307 408.5545 ppb 45 WY DRO C10-C32 2.09 - 14.69 4308638 406.3147 100 ppb 4.75 - 12.70 100 45 ppb DX DRO C12-C24 3724603 322.2633 DX HRO C24-C40 12.70 - 16.46 208928 19.3401 <250 <100 ppb 4.75 - 16.46 ppb DX C12-C40 3933532 341.6034 ppb o-Terphenyl 10.37 (10.32 - 10.42) 243246 19.9564 6.49 (6.39 - 6.59) Capric Acid 5691 516.1124 ppb Comments:

Reviewed by:

Date:

Inc. Wildermah

Associate Chemist

DEC 3 0 2016

Verified by:_

Minther E Williams
Health E. Williams
Senior Chemist

Senior Ch

DEC 3 0 2016

Sample Number: LCSDA 12/23/16 AALCSD36357 LCSD 163570036A

Injected On: 12/28/2016 11:34:56 AM

C38

C40

Instrument ID: CP30-19507

Oven Parameters: 60C for 2.0min; 15C/min to 190C; 30C/min to 340C, hold 3min

GC Column: HP-5 30m \times 0.32mm \times 0.25um

12899

Sample Weight: 250 Dilution Factor: 2 SW-846 8015B

Injection Volume: 4ul Analyst: 10210

334

2050

Compound	RT	Amt PPM	Area
C10	2,208	0.0026	31011
C12	4.842	0.0048	54631
Capric Acid	6.490	0.0072	27429
C14	6.753	0.0098	108522
C16	8.364	0.0086	94050
C18	9.798	0.0064	67109
O-Terphenyl	10.369	0.0233	283894
C20	11.062	0.0064	64917
· C22	11,931	0.0037	36581
C24	12.596	0.0010	9420
C26	13.161	0.0004	3557
C28	13.667	0.0003	3469
C30	14.138	0.0003	2896
C32	14.590	0.0002	2454
C34	15.031	0.0001	1473
C36	15.466	0.0027	28426

15.882

16.312

Range	Start Time	Stop Time	Area
Total DRO C10-C28	2.09	13.77	4295106
ORO >C28-C35	13.77	15.37	20567
ORO >C28-C40	13.77	16.46	101934
Total DRO C13-C22	4.95	12.03	3548307
WY DRO C10-C32	2.09	14.69	4308638
Total DRO C12-C24	4.75	12.70	3724604
HRO >C24-C40	12.70	16.46	208928
DX C12-C40	4.75	16.46	3933532
O-Terphenyl	10.32	10.42	283894

0.0000

0.0002

RESULTS TABLE

	Surrogate Adjusted Areas	Preliminary Amounts (w/ surrogate)
Total DRO C10-C28 AREA =	4011212	0.43 PPM
ORO>C28-C35 AREA =	20566.87	0.00 PPM
ORO>C28-C40 AREA =	101934.4	0.01 PPM
Total DRO C13-C22 AREA =	3264413	0.44 PPM
C10-C25 AREA =	4024744	0.43 PPM
Total DRO C12-C24 AREA =	3440710	0.34 PPM
HRO >C24-C40 AREA =	208928.2	0.02 PPM
DX C12-C40 AREA =	3649638	0.36 PPM

Dx C12-C40 Level 3 %D = -99.249%

#2 Fuel Level 3 %D = -99.91%

Area File: D30363B.0007.RAW Method: 4FUEL30B.MET

Calibration File: 4FUL30B354A.CAL

Format: 4FUEL308.FMT

Area File Created On: 12/28/2016 11:52:58 AM File Reported On: 12/28/2016 at 11:53:06 AM

10 10 10 10 10 10 10 10 10 10 10 10 10 1	Eurotins L	ancaster Laborate	ories-Kar	nge Data S	ummary			
Sample Name: 8 Sample Amount: Analyses: 12908	753067S 247.	OLYFD Total Volume:	Sample 2 ml Ana		hnumber: 163 SDG:WAN02			
Injection Summar Injected on Instrument Result file Calibration files Method files Setting	Y : 12/29/2016 02 : CP3019507E : D30363B.0045 : 4FUL30B354A : 4FUEL30B.ME : 4FUL30B354A	B 5.RAW A.CAL ET 4REPLOT30B	.MET					
Surrogate Recove	<u>ries</u> 83% (5	(0-150) Conc.: 20.20	94					
Range Total DRO C10	·	Retention Times 2.09 - 13.77	<u>Area</u> 5755014	<u>Amount</u> 557.5503	<u>LOQ</u> 101.2146	<u>MDL</u> 45.5466	Flags	<u>Units</u>
ORO >C28-C3	5	13.77 - 15.37	88109	8.9130	<101.2146	<45.5466		ppb
ORO >C28-C40)	13.77 - 16.46	146113	14.7806				ppb
DRO C13-C22		4.95 - 12.03	682011	54.8806	<101.2146	45.5466		ppb
WY DRO C10-		2.09 ~ 14.69	5810468	563.1599	101.2146	45.5466		ppb
DX DRO C12-C		4.75 - 12.70	723628	44.9963	<101.2146	<45.5466		ppb
DX HRO C24-0	240	12.70 - 16.46	5012046	469.5916	253.0364	101.2146		ppb
DX C12-C40		4.75 - 16.46	5735674	514.5879		***************************************		ppb
o-Terphenyl		10.37 (10.32 - 10.42)		20.2094				dqq
Capric Acid		6 .51 (6.39 - 6.59)	5253	508.4758	***************************************		-	<u>ppb</u>

JAN 18 2017

Verified by: <u>Şabaü եւ տեստարա</u>

Date: Jamle է, Արկիոր
Senior Chemist

Reviewed by: 06/02/0

Sample Number: 8753067S

ABOLYFD

163570039A

12908

SW-846 8015B

Injected On: 12/29/2016 2:38:45 AM

Instrument ID: CP30-19507

Oven Parameters: 60C for 2.0min; 15C/min to 190C; 30C/min to 340C, hold 3min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 247 Dilution Factor: 2 Injection Volume: 4ul Analyst: 10210

Compound	RT	Amt PPM	Area
C10	2,262	0.0002	1857
C12	4.844	0,000	514
Capric Acid	6.515	0.0042	5904
C14	6.753	0.0025	27600
C16	8.353	0.0018	19291
C18	9.827	0.0025	25860
O-Terphenyl	10.368	0.0201	241902
C20	11.064	0.0001	819
C22	11.932	0.0001	1233
C24	12.597	0.0010	9809
C26	13.164	0.0074	71343
C28	13,669	0.0008	8355
C30	14.139	0.0011	10966
C32	14,590	0.0011	10853
C34	15.029	0.0006	6431
C36	15,458	0.0003	3644
C38	15.876	0.0002	2318
C40	16.302	0.0004	4086

Range	Start Time	Stop Time	Area
Total DRO C10-C28	2.09	13.77	5755014
ORO >C28-C35	13.77	15.37	88109
ORO >C28-C40	13.77	16.46	146113
Total DRO C13-C22	4.95	12.03	682011
WY DRO C10-C32	2.09	14.69	5810468
Total DRO C10-C32	4.75	12.70	723628
HRO >C24-C40	12.70	16.46	5012046
	4.75	16.46	5735674
DX C12-C40 O-Terphenyl	10,32	10.42	241902

********	RESULTS TABLE	***********************************
Sı	urrogate Adjusted Areas	Preliminary Amounts (w/ surrogate)
Total DRO C10-C28 AREA =	5513112	0.58 PPM
ORO>C28-C35 AREA =	88109.43	0.01 PPM
ORO>C28-C40 AREA =	146113.4	0.01 PPM
Total DRO C13-C22 AREA =	440108.8	0.09 PPM
C10-C25 AREA =	5568566	0,59 PPM
Total DRO C12-C24 AREA =	481726.3	0.07 PPM
HRO >C24-C40 AREA =	5012046	0.47 PPM
DX C12-C40 AREA =	5493772	0.54 PPM
		•

Dx C12-C40 Level 3 %D = -98.856%

#2 Fuel Level 3 %D = -99.88%

Area File: D30363B.0045.RAW Method: 4FUEL30B.MET

Calibration File; 4FUL30B354A.CAL

Format: 4FUEL30B.FMT

Area File Created On: 12/29/2016 2:56:49 AM File Reported On: 12/29/2016 at 2:56:59 AM

Eurofins Lancaster Laboratories-Range Data Summary

Batchnumber: 163570039A Sample ID: AB Sample Name: BLANKA 12/23/16 S PBLK39357 SDG: State: 2. ml Analyst: 10210 Total Volume: Sample Amount: 250. Analyses: 12908 Injection Summary : 12/29/2016 01:28:28 Injected on : CP30--19507B Instrument : D30363B.0042.RAW Result file : 4FUL30B354A.CAL Calibration files : 4FUEL30B.MET 4REPLOT30B.MET Method files : 4FUL30B354A(V) Setting Surrogate Recoveries Conc.: 20.65731 O-TERPHENYL 86% (50-150) <u>Amount</u> LOQ MDL Flags Units Retention Times Area. Range 100 45 ppb 454.6640 2.09 - 13.77 4800942 Total DRO C10-C28 <100 ppb 13.77 - 15.37 256356 25.6215 ORO >C28-C35 ppb 48.9861 13.77 - 16.46 490132 ORO >C28-C40 111.8827 100 ppb 4.95 - 12.03 1156880 DRO C13-C22 45 471.9526 100 ppb 2.09 - 14.69 4973922 WY DRO C10-C32 45 <100 ppb 95.0705 4.75 - 12.70 1278820 DX DRO C12-C24 ppb 250 100 12.70 - 16.46 3948657 365.5205 DX HRO C24-C40 ppb 460.5910 4.75 - 16.46 5227478 DX C12-C40 ppb 10.37 (10.32 - 10.42) 251789 20.6573 o-Terphenyl ppb 7804 552.9084 6.51 (6.39 - 6.59) Capric Acid

Comments: GRALL TO BELLAND Reviewed by: 16/10210 Verified by: Jamie L. Brillhari Senior Chemist 1/17/17 Date:

JAN 18 2017

Sample Number: BLANKA 12/23/16 S ABPBLK39357 BLK 163570039A

12908

SW-846 8015B

Injected On: 12/29/2016 1:28:28 AM

Instrument ID: CP30-19507

Oven Parameters: 60C for 2.0min; 15C/min to 190C; 30C/min to 340C, hold 3min

GC Column: HP-5 30m x 0.32mm x 0.25um

Dilution Factor: 2 Injection Volume: 4ul Analyst: 10210

Sample Weight: 250

Compound	RT	Amt PPM	Area	
C10	2.266	0.0001	1369	
C12	4.841	0.0003	3119	
Capric Acid	6.514	0.0046	8771	
C14	6.753	0.0066	73421	
C16	8.353	0.0052	57117	
C18	9.828	0.0069	72191	
O-Terphenyl	10.368	0.0215	261903	
C20 `	11.062	0.0007	7330	
C22	11.933	0.0005	5289	
C24	12.597	0.0020	19845	
C26	13.163	. 0.0106	103813	
C28	13.669	0.0028	27941	
C30	14.140	0.0030	29576	
C32	14.590	0.0027	27487	
C34	15.029	0.0013	14218	
C36	15.455	0.0007	7044	
C38	15.878	0.0006	6332	
C40	16.302	0.0009	9982	
Range	Start Time	Stop Time		Area
Total DRO C10-C28	2.09	13.77		4800942
000 5000 000	49.77	4E 27		256256

Range	Start Time	Stop Time	Area
Total DRO C10-C28	2.09	13.77	4800942
ORO >C28-C35	13.77	15.37	256356
ORO >C28-C40	13.77	16.46	490132
Total DRO C13-C22	4.95	12.03	1156880
WY DRO C10-C32	2.09	14.69	4973923
Total DRO C12-C24	4.75	12.70	1278820
HRO >C24-C40	12.70	16.46	3948658
DX C12-C40	4.75	16.46	5227478
O-Terphenyl	10.32	10.42	261903

**********	RESULTS TABLE	*********

	NEGOLIG TABLE		
	Surrogate Adjusted Areas	Preliminary Amounts (w/ surrogate)	
Total DRO C10-C28 AREA =	4539039	0.48 PPM	
ORO>C28-C35 AREA =	256356.3	0.02 PPM	
ORO>C28-C40 AREA =	490131.5	0.05 PPM	
Total DRO C13-C22 AREA =	894977.4	0.14 PPM	
C10-C25 AREA =	4712020	0.50 PPM	
Total DRO C12-C24 AREA =	1016917	0.12 PPM	
HRO >C24-C40 AREA =	3948658	0.37 PPM	
DX C12-C40 AREA =	4965575	0.48 PPM	

Dx C12-C40 Level 3 %D = -98.979%

#2 Fuel Level 3 %D = -99.90%

Area File: D30363B.0042.RAW Method: 4FUEL30B.MET

Calibration File: 4FUL30B354A.CAL

Format: 4FUEL30B,FMT

Area File Created On: 1/17/2017 2:05:06 PM File Reported On: 1/17/2017 at 2:05:31 PM

Sample Number: BLANKA 12/23/16 S ABPBLK39357 BLK 163570039A

12908

SW-846 8015B

Injected On: 12/29/2016 1:28:28 AM Instrument ID: CP30-19507

Oven Parameters: 60C for 2.0min; 15C/min to 190C; 30C/min to 340C, hold 3min GC Column: HP-5 30m x 0.32mm x 0.25um

Dilution Factor: 2 Injection Volume: 4ul Analyst: 10210

Sample Weight: 250

. UOI	umn: MP-5 30M X 0.32MH	Allalyst. 10210		
	Compound	RT	Amt ppm	Area
_	C10	2.266	0.0001	1368.592
	C12	4.841	0.0002	2044.908
	Capric Acid	6.514	0.0044	7803.545
	C14	6.753	0.0063	69812.85
	C16	8.353	0.0049	53118.49
	C18	9.828	0.0062	64952.46
	O-Terphenyl	10.368	0.0207	251789.2
	C20	11.062	0.0004	4166.885
	C22	11.933	0.0008	7519.613
	C24	12.597	0.0017	16375.91
	C26	13.163	0.0037	35794.45
	C28	13.669	0.0027	26968.6
	C30	14.140	0.0030	29576.33
	C32	14.590	0,0027	27487.05
	C34	15.029	0.0013	13612.79
	C36	15.455	0.0004	3841.563
	C38	15.878	0,0004	4301.84
	C40	16.302	0.0005	5147.134

40 mL WW o-Terphenyl Recovery = 86.1 %

Area File: D30363B.0042.RAW Method: 4REPLOT30b.MET

Calibration File: 4FUL30B354A.CAL

Format: 4REPLOT30B.FMT

Area File Created On: 1/17/2017 2:05:06 PM File Reported On: 1/17/2017 at 2:05:58 PM

Response - MilliVolts (span=4224)

Eurofins Lancaster Laboratories-Range Data Summary

Sample Name: LCSA 12/23/16 S Sample Amount: 250. T Analyses: 12908	LCS39357 otal Volume:	Sample ID 2. ml Analys		mber: 1638 G:	570039A State:	
Injection Summary Injected on : 12/29/2016 01:57 Instrument : CP3019507B Result file : D30363B.0043.F Calibration files : 4FUL30B354A.C Method files : 4FUL30B.MET Setting : 4FUL30B354A(V	RAW BAL 4REPLOT30B	.MET				
Surrogate Recoveries						
O-TERPHENYL 87% (50-	(50) Conc.: 21.003	362	•			
Range	Retention Times	Area	Amount	LOQ	MDL Flags	<u>Units</u>
Total DRO C10-C28	2.09 - 13.77 13.77 - 15.37	4113041 11958	385.4901 1.1951	<u>100</u> -	<u>45</u>	ppb ppb
ORO >C28-C35	13.77 - 15.37	22755	2.2742			ppb
ORO >C28-C40	4.95 - 12.03	3435333	393.0114	100	45	ppb
DRO C13-C22	2.09 - 14.69	4121773	386.3627	100	45	ppb
WY DRO C10-C32 DX DRO C12-C24	4.75 - 12.70	3584474	308.1102	100	45	ppb
DX HRO C24-C40	12.70 - 16.46	68568	6.3472	<250	<100	ppb
DX C12-C40	4.75 - 16.46	3653042	314.4575			ppb
o-Terphenyl	10.37 (10.32 - 10.42)	256010	21.0036			ppb
Capric Acid	6.49 (6.39 - 6.59)	6431	528.9945			ppb
Comments:						
Reviewed by: <u>QCLIO210</u>		Verified by:	Jame L. Brilliari Senior Chemist	idile		

JAN 18 2017

Sample Number: LCSA 12/23/16 S ABLCS39357

LCS 163570039A

12908

SW-846 8015B

Injected On: 12/29/2016 1:51:59 AM

Instrument ID: CP30-19507

Oven Parameters: 60C for 2.0min; 15C/min to 190C; 30C/min to 340C, hold 3min

GC Column: HP-5 30m x 0.32mm x 0.25um

Sample Weight: 250 Dilution Factor: 2 Injection Volume: 4ul Analyst: 10210

Compound	RT	Amt PPM	Area
C10	2.208	0.0029	34667
C12	4.844	0.0052	58209
Capric Acid	6.488	0.0073	28618
C14	6.752	0.0103	113317
C16	8.365	0.0148	161526
C18	9.800	0.0067	70436
O-Terphenyl	10.370	0.0240	292665
G20	11.063	0.0060	60835
C22	11,931	0.0030	29524
C24	12,597	0.0007	6493
C26	13.163	0.0003	3204
C28	13.669	0.0003	2504
C30	14,139	0.0002	1959
C32	14.589	0.0001	1461
C34	15.024	0.0001	1211
C36	15.450	0.0000	438
C38	15.873	0.0001	689
C40	16.289	0.0003	3816

Range	Start Time	Stop Time	Area
Total DRO C10-C28	2.09	13.77	4113041
	13.77	15.37	11958
ORO > C28-C35	13.77	16.46	22755
ORO >C28-C40	4.95	12.03	3435333
Total DRO C13-C22	2.09	14.69	4121773
WY DRO C10-C32	4.75	12.70	3584474
Tetal DRO C12-C24	12.70	16.46	68568
HRO >C24-C40	4.75	16.46	3653042
DX C12-C40 O-Terphenyl	10.32	10.42	292665

RESULTS TABLE

	Surrogate Adjusted Areas	Preliminary Amounts (w/ surrogate)
Total DRO C10-C28 AREA =	3820376	0.41 PPM
ORO>C28-C35 AREA =	11957.92	0.00 PPM
ORO>C28-C40 AREA =	22754.72	0.00 PPM
Total DRO C13-C22 AREA =	3142668	0.42 PPM
C10-C25 AREA =	3829108	0.41 PPM
Total DRO C12-C24 AREA =	3291809	0.33 PPM
HRO >C24-C40 AREA =	68568.19	0.01 PPM
DX C12-C40 AREA =	3360377	0.34 PPM

Dx C12-C40 Level 3 %D = -99.309%

#2 Fuel Level 3 %D = -99.92% .

Area File: D30363B.0043.RAW Method: 4FUEL30B.MET

Calibration File: 4FUL30B354A.CAL

Format: 4FUEL30B.FMT

Area File Created On: 12/29/2016 2:10:20 AM File Reported On; 12/29/2016 at 2:10:27 AM

Eurofins Lancaster Laboratories-Range Data Summary

Sample Name: LCSDA 12/23/16 S LCSD39357 Sample Amount: 250. Total Volume: Analyses: 12908	•	ole ID: AB Bat nalyst: 10210	chnumber: 163: SDG:	570039A State:	
Injection Summary Injected on : 12/29/2016 02:15:30 Instrument : CP3019507B Result file : D30363B.0044.RAW Calibration files : 4FUL30B354A.CAL Method files : 4FUEL30B.MET 4REPLO Setting : 4FUL30B354A(V)	ТЗОВ.МЕТ				
Surrogate Recoveries 0-TERPHENYL 84% (50-150) Conc.:	20.10409				
Range Retention Time □ Total DRO C10-C28 2.09 - 13.77		<u>Amount</u> 4 367.3688	<u>LOQ</u> 100	MDL Flags	<u>Units</u>
ORO >C28-C35 13.77 - 15.37		2.1389	<100	<45	ppb
ORO >C28-C40 13.77 - 16.46		11.7811			ppb
DRO C13-C22 4.95 - 12.03	3232634		100	45	ppb
WY DRO C10-C32 2.09 - 14.69	3935982		100	45	ppb
DX DRO C12-C24 4.75 - 12.70	337142		100	45	ppb
DX HRO C24-C40 12.70 - 16.46		20.3972	<250	<100	ppb
DX C12-C40 4.75 - 16.46	359177	1 309.8006			ppb
o-Terphenyl 10.37 (10.32 - 10	0.42) 245046	20.1041			ppb
Gapric Acid 6.49 (6.39 - 6.5	59) 6307	526.8339			dqq
Comments:	· · · · · · · · · · · · · · · · · · ·				
Reviewed by: <u>QQ/Q</u>	Verified t	y: Janis L. B	th Baillitara	and the second second	
Date:	Dat	Senior Chr.			

JAN 18 2017

Sample Number: LCSDA 12/23/16 S ABLCSD39357 LCSD 163570039A

Injected On: 12/29/2016 2:15:30 AM

Instrument ID: CP30-19507

Oven Parameters: 60C for 2.0min; 15C/min to 190C; 30C/min to 340C, hold 3min

GC Column: HP-5 30m x 0.32mm x 0.25um

12908

Sample Weight: 250

SW-846 8015B

Injection Volume: 4ul

Dilution Factor: 2 Analyst: 10210

Compound	RT	Amt PPM	Area
C10	2.204	0.0027	32058
C12	4.843	0.0049	54816
Capric Acid	6.490	0.0071	26817
C14	6,752	0.0096	105913
C16	8.365	0.0102	110666
C18	9.799	0,0065	68284
O-Terphenyl	10.369	0.0229	278813
C20	11,061	0.0055	- 56385
C22	11.931	0.0028	27373
C24	12.596	0.0007	6497
C26	13,161	0.0004	3804
C28	13,667	0.0003	3269
C30	14.137	0.0003	3091
C32	14.589	0.0003	2770
C34	15.026	0.0002	1655
C36	15,455	0.0032	33824
C38	15.873	0.0000	277
C40	16.305	0.0004	4184

Range	Start Time	Stop Time	Area
Total DRO C10-C28	2.09	13,77	3920764
ORO >C28-C35	13.77	15.37	21401
ORO >C28-C40	13.77	16.46	117877
Total DRO C13-C22	4.95	12,03	3232635
WY DRO C10-C32	2 09	14.69	3935982
Total DRO C12-C24	4.75	12.70	3371423
	12.70	16.46	220348
HRO >C24-C40	4.75	16.46	3591771
DX C12-C40 O-Terphenyl	10.32	10.42	278813

RESU	LTS	TABL	E
------	-----	------	---

	Surrogate Adjusted Areas	Preliminary Amounts (w/ surrogate)
Total DRO C10-C28 AREA =	3641951	0.39 PPM
ORO>C28-C35 AREA =	21400.85	0.00 PPM
ORO>C28-C40 AREA =	117876.5	0.01 PPM
Total DRO C13-C22 AREA =	2953821	0.40 PPM
C10-C25 AREA =	3657169	0.39 PPM
Total DRO C12-C24 AREA =	3092610	0.31 PPM
HRO >C24-C40 AREA =	220347.8	0.02 PPM
DX C12-C40 AREA =	3312958	0.33 PPM

Dx C12-C40 Level 3 %D = -99.319%

#2 Fuel Level 3 %D = -99.92%

Area File: D30363B.0044.RAW Method: 4FUEL30B.MET

Calibration File: 4FUL30B354A.CAL

Format: 4FUEL30B.FMT

Area File Created On: 12/29/2016 2:33:31 AM File Reported On: 12/29/2016 at 2:33:41 AM

Data Path : C:\msdchem\1\data\031117\

Data File : 0311 26.d Signal(s) : FID1A.ch

: 11 Mar 2017 Acq On 5:39 pm

Operator : 614

Sample : L895193-01 1x WG960019 40-2

Misc : water
ALS Vial : 23 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e

Quant Time: Mar 13 15:03:58 2017

Quant Method: C:\msdchem\1\methods\EP31C08Q.M

Quant Title

QLast Update : Thu Mar 09 15:14:45 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info

Data Path : C:\msdchem\1\data\031117\

Data File : 0311 27.d Signal(s) : FID1A.ch

Acq On : 11 Mar 2017 5:56 pm

Operator : 614

Sample : L895193-02 1x WG960019 40-2

Misc : water

ALS Vial : 24 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e

Quant Time: Mar 13 15:04:30 2017

Quant Method: C:\msdchem\1\methods\EP31C08Q.M

Quant Title :

QLast Update : Thu Mar 09 15:14:45 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\031117\

Data File : 0311 28.d Signal(s) : FID1A.ch

Acq On : 11 Mar 2017 6:13 pm

Operator : 614

Sample : L895193-03 1x WG960019 40-2

Misc : water

ALS Vial : 25 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e

Quant Time: Mar 13 15:05:11 2017

Quant Method: C:\msdchem\1\methods\EP31C08Q.M

Quant Title :

QLast Update : Thu Mar 09 15:14:45 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\031117\

Data File : 0311 29.d Signal(s) : FID1A.ch

: 11 Mar 2017 Acq On 6:30 pm

Operator : 614

Sample : L895193-04 1x WG960019 40-2

Misc : water
ALS Vial : 26 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e

Quant Time: Mar 13 15:05:37 2017

Quant Method: C:\msdchem\1\methods\EP31C08Q.M

Quant Title

QLast Update : Thu Mar 09 15:14:45 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info

Data Path : C:\msdchem\1\data\031117\

Data File : 0311 30.d Signal(s) : FID1A.ch

: 11 Mar 2017 Acq On 6:47 pm

Operator : 614

Sample : L895193-05 1x WG960019 40-2

Misc : water
ALS Vial : 27 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e

Quant Time: Mar 13 15:08:56 2017

Quant Method: C:\msdchem\1\methods\EP31C08Q.M

Quant Title

QLast Update : Thu Mar 09 15:14:45 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info

Data Path : C:\msdchem\1\data\031617\

Data File : 0316 11.d Signal(s) : FID1A.ch

Acq On : 16 Mar 2017 1:03 pm

Operator: 765

Sample : L895193-01 1x WG961524 40-2

Misc : water

ALS Vial : 8 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e
Quant Time: Mar 16 13:42:24 2017

Quant Method: C:\msdchem\1\methods\EP27A25Q.M

Quant Title :

QLast Update : Wed Jan 25 13:17:51 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\031617\

Data File : 0316 12.d Signal(s) : FID1A.ch

Acq On : 16 Mar 2017 1:20 pm

Operator: 765

Sample : L895193-02 1x WG961524 40-2

Misc : water

ALS Vial : 9 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e

Quant Time: Mar 16 13:44:39 2017

Quant Method : C:\msdchem\1\methods\EP27A25Q.M

Quant Title

QLast Update : Wed Jan 25 13:17:51 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\031617\

Data File : 0316 13.d Signal(s) : FID1A.ch

Acq On : 16 Mar 2017 1:36 pm

Operator: 765

Sample : L895193-03 1x WG961524 40-2

Misc : water

ALS Vial : 10 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e

Quant Time: Mar 16 14:12:17 2017

Quant Method: C:\msdchem\1\methods\EP27A25Q.M

Quant Title

QLast Update : Wed Jan 25 13:17:51 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\031617\

Data File : 0316 14.d Signal(s) : FID1A.ch

: 16 Mar 2017 Acq On 1:53 pm

Operator: 765

: L895193-04 1x WG961524 40-2 Sample

Misc : water

: 11 Sample Multiplier: 0.05 ALS Vial

InstName : SVGC27

Integration File: events.e

Quant Time: Mar 16 14:12:59 2017

Quant Method : C:\msdchem\1\methods\EP27A25Q.M

Quant Title

QLast Update: Wed Jan 25 13:17:51 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info

Data Path : C:\msdchem\1\data\031617\

Data File : 0316 15.d Signal(s) : FID1A.ch

Acq On : 16 Mar 2017 2:09 pm

Operator : 765

Sample : L895193-05 1x WG961524 40-2

Misc : water

ALS Vial : 12 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e

Quant Time: Mar 16 14:31:00 2017

Quant Method : C:\msdchem\1\methods\EP27A25Q.M

Quant Title :

QLast Update : Wed Jan 25 13:17:51 2017

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 09.d Signal(s) : FID1A.ch

: 13 May 2017 12:04 pm Acq On

Operator : 614 Sample : L908444-01 1x WG979247 40-2

Misc : water ALS Vial

: 8 Sample Multiplier: 0.05 : SVGC31 InstName

Integration File: events.e
Quant Time: May 15 12:36:45 2017
Quant Method : C:\msdchem\1\methods\EP31D14Q.M

Quant Title :

QLast Update : Wed Apr 12 14:09:24 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 13.d Signal(s) : FID1A.ch

: 13 May 2017 12:55 pm Acq On

Operator : 784 : L908444-01 1x WG978857 40-2 Sample Misc : water ALS Vial : 34 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e Quant Time: May 15 15:04:31 2017 Quant Method : C:\msdchem\1\methods\EP27E08Q.M

Quant Title :

QLast Update : Mon May 08 12:31:08 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase :

Signal Info : DataAcq Meth:EPH27Z2.M

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 10.d Signal(s) : FID1A.ch

: 13 May 2017 12:21 pm Acq On

Operator : 614 Sample : L908444-02 1x WG979247 40-2 Misc : water

InstName : SVGC31

ALS Vial

Integration File: events.e
Quant Time: May 15 12:37:30 2017
Quant Method : C:\msdchem\1\methods\EP31D14Q.M

: 9 Sample Multiplier: 0.05

Quant Title :

QLast Update : Wed Apr 12 14:09:24 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 14.d Signal(s) : FID1A.ch

: 13 May 2017 1:11 pm Acq On Operator

: 784 : L908444-02 1x WG978857 40-2 Sample Misc : water ALS Vial : 35 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e Quant Time: May 15 15:05:03 2017 Quant Method: C:\msdchem\1\methods\EP27E08Q.M

Quant Title :

QLast Update : Mon May 08 12:31:08 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase :

Signal Info : DataAcq Meth:EPH27Z2.M

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 11.d Signal(s) : FID1A.ch

: 13 May 2017 12:37 pm Acq On Operator

: 614 Sample : L908444-03 1x WG979247 40-2 Misc : water ALS Vial : 10 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e
Quant Time: May 15 12:38:46 2017
Quant Method : C:\msdchem\1\methods\EP31D14Q.M Quant Title :

QLast Update : Wed Apr 12 14:09:24 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info : no SGT

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 15.d Signal(s) : FID1A.ch

: 13 May 2017 1:27 pm Acq On Operator

: 784 : L908444-03 1x WG978857 40-2 Sample Misc : water ALS Vial : 36 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e Quant Time: May 15 15:05:42 2017 Quant Method : C:\msdchem\1\methods\EP27E08Q.M Quant Title :

QLast Update : Mon May 08 12:31:08 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase :

Signal Info : DataAcq Meth:EPH27Z2.M

no SGT

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 12.d Signal(s) : FID1A.ch

: 13 May 2017 12:54 pm Acq On

Operator : 614 Sample : L908444-04 1x WG979247 40-2

Misc : water ALS Vial : 11

Sample Multiplier: 0.05 : SVGC31 InstName

Integration File: events.e
Quant Time: May 15 12:40:18 2017
Quant Method : C:\msdchem\1\methods\EP31D14Q.M

Quant Title :

QLast Update : Wed Apr 12 14:09:24 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. :

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 16.d Signal(s) : FID1A.ch

: 13 May 2017 1:44 pm Acq On Operator

: 784 : L908444-04 1x WG978857 40-2 Sample Misc : water ALS Vial : 37 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e Quant Time: May 15 15:17:21 2017 Quant Method: C:\msdchem\1\methods\EP27E08Q.M

Quant Title :

QLast Update : Mon May 08 12:31:08 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase :

Signal Info : DataAcq Meth:EPH27Z2.M

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 13.d Signal(s) : FID1A.ch

: 13 May 2017 1:11 pm Acq On

Operator : 614 Sample : L908444-05 1x WG979247 40-2 Misc : water

ALS Vial : 12

Sample Multiplier: 0.05 : SVGC31 InstName

Integration File: events.e
Quant Time: May 15 12:41:22 2017
Quant Method : C:\msdchem\1\methods\EP31D14Q.M

Quant Title :

QLast Update : Wed Apr 12 14:09:24 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. :

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 17.d Signal(s) : FID1A.ch

: 13 May 2017 2:00 pm Acq On Operator

: 784 : L908444-05 1x WG978857 40-2 Sample Misc : water

ALS Vial : 38 Sample Multiplier: 0.05 InstName : SVGC27

Integration File: events.e Quant Time: May 15 15:28:42 2017 Quant Method : C:\msdchem\1\methods\EP27E08Q.M

Quant Title :

QLast Update : Mon May 08 12:31:08 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase :

Signal Info : DataAcq Meth:EPH27Z2.M

ANALYTICAL REPORT March 17, 2017

Arcadis - Seattle, WA

Sample Delivery Group: L895193

Samples Received: 03/10/2017

Project Number: GP09BPNA.WA60

Description: Olympia Bulk Plant

1120 WEST BAY DR, OLYMPIA, WA Site:

Report To: Ross LaGrandeur

1100 Olive Way

Suite 800

Seattle, WA 98101

Entire Report Reviewed By:

Buar Ford

Brian Ford

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

27

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-7 L895193-01	6
MW-8 L895193-02	8
MW-9 L895193-03	10
MW-13 L895193-04	12
DUP-1 L895193-05	14
TRIP BLANK L895193-06	15
Qc: Quality Control Summary	16
Metals (ICP) by Method 6010C	16
Volatile Organic Compounds (GC) by Method NWTPHGX	18
Volatile Organic Compounds (GC/MS) by Method 8260C	19
EDB / DBCP by Method 8011	21
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	22
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	23
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	24
GI: Glossary of Terms	25
Al: Accreditations & Locations	26

⁹Sc: Chain of Custody

SAMPLE SUN

SUMMARY	ONE LAB.	NATIONWID
---------	----------	------------------

03/16/17 04:12

03/13/17 06:11

03/13/17 07:39

03/11/17 00:06

03/14/17 12:54

03/14/17 05:43

Collected by

Eric Krueger

1

1

1

1

ONE	ΙΛR	NATIONWIDE.
OINL	LAD.	NATIONVIDE.

LRL

BMB

HMH

TRF

TRF

 FMB

Received date/time

03/10/17 09:00

MW-7 L895193-01 GW			Collected by Eric Krueger	Collected date/time 03/09/17 12:25	Received date/time 03/10/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010C	WG960587	1	03/13/17 21:09	03/14/17 02:21	LTB
Metals (ICP) by Method 6010C	WG961400	1	03/15/17 23:03	03/16/17 03:47	CCE
Volatile Organic Compounds (GC) by Method NWTPHGX	WG960176	1	03/16/17 03:51	03/16/17 03:51	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG959917	1	03/13/17 05:49	03/13/17 05:49	BMB
EDB / DBCP by Method 8011	WG960326	1	03/13/17 07:39	03/14/17 06:44	НМН
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG960019	1	03/11/17 00:06	03/11/17 17:39	TRF
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG961524	1	03/14/17 12:54	03/16/17 13:03	TRF
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG960332	1	03/14/17 05:43	03/14/17 11:10	FMB
			Collected by	Collected date/time	Received date/time
MW-8 L895193-02 GW			Eric Krueger	03/09/17 13:20	03/10/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010C	WG960587	1	03/13/17 21:09	03/14/17 02:23	LTB
Metals (ICP) by Method 6010C	WG961400	1	03/15/17 23:03	03/16/17 03:50	CCE

WG960176

WG959917

WG960326

WG960019

WG961524

WG960332

⁸ Al

Cn

СQс

Gl

MW-9 L895193-03 GW

EDB / DBCP by Method 8011

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC/MS) by Method 8260C

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010C	WG960587	1	03/13/17 21:09	03/14/17 02:26	LTB
Metals (ICP) by Method 6010C	WG961400	1	03/15/17 23:03	03/16/17 03:53	CCE
Volatile Organic Compounds (GC) by Method NWTPHGX	WG960176	1	03/16/17 04:33	03/16/17 04:33	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG959917	1	03/13/17 06:32	03/13/17 06:32	BMB
EDB / DBCP by Method 8011	WG960326	1	03/13/17 07:39	03/14/17 07:06	HMH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG960019	1	03/11/17 00:06	03/11/17 18:13	TRF
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG961524	1	03/14/17 12:54	03/16/17 13:36	TRF
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG960332	1	03/14/17 05:43	03/14/17 11:55	FMB

Eric Krueger 03/09/17 14:35 03/10/17 09:00	Collected by	Collected date/time	Received date/time
	Eric Krueger	03/09/17 14:35	03/10/17 09:00

03/16/17 04:12

03/13/17 06:11

03/14/17 06:55

03/11/17 17:56

03/16/17 13:20

03/14/17 11:32

03/09/17 13:50

Collected date/time

MW-13 L895193-04 GW			Eric Krueger	03/09/17 14:35	03/10/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010C	WG960587	1	03/13/17 21:09	03/14/17 02:29	LTB
Metals (ICP) by Method 6010C	WG961400	1	03/15/17 23:03	03/16/17 04:01	CCE
Volatile Organic Compounds (GC) by Method NWTPHGX	WG960176	1	03/16/17 04:54	03/16/17 04:54	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG959917	1	03/13/17 06:54	03/13/17 06:54	BMB
EDB / DBCP by Method 8011	WG960326	1	03/13/17 07:39	03/14/17 07:17	НМН
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG960019	1	03/11/17 00:06	03/11/17 18:30	TRF
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG961524	1	03/14/17 12:54	03/16/17 13:53	TRF
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG960332	1	03/14/17 05:43	03/14/17 12:18	FMB

DUP-1 L895193-05 GW			Collected by Eric Krueger	Collected date/time 03/09/17 00:00	Received date/time 03/10/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG960176	1	03/16/17 05:15	03/16/17 05:15	LRL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG959917	1	03/13/17 07:15	03/13/17 07:15	BMB
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG960019	1	03/11/17 00:06	03/11/17 18:47	TRF
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG961524	1	03/14/17 12:54	03/16/17 14:09	TRF
			Collected by	Collected date/time	Received date/time
TRIP BLANK L895193-06 GW			Eric Krueger	03/09/17 00:00	03/10/17 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 8260C	WG959917	1	03/13/17 01:32	03/13/17 01:32	ВМВ

1 0-

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford

Technical Service Representative

Buar Ford

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 12:25

L895193

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	3.48	<u>J</u>	1.90	5.00	1	03/14/2017 02:21	WG960587
Lead, Dissolved	U		1.90	5.00	1	03/16/2017 03:47	WG961400

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	03/16/2017 03:51	WG960176
(S) a,a,a-Trifluorotoluene(FID)) 100			77.0-122		03/16/2017 03:51	WG960176

⁵Sr

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	03/13/2017 05:49	WG959917
Toluene	U		0.412	1.00	1	03/13/2017 05:49	WG959917
Ethylbenzene	U		0.384	1.00	1	03/13/2017 05:49	WG959917
Total Xylenes	U		1.06	3.00	1	03/13/2017 05:49	WG959917
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 05:49	WG959917
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 05:49	WG959917
(S) Toluene-d8	110			80.0-120		03/13/2017 05:49	WG959917
(S) Dibromofluoromethane	111			76.0-123		03/13/2017 05:49	WG959917
(S) a,a,a-Trifluorotoluene	105			80.0-120		03/13/2017 05:49	WG959917
(S) 4-Bromofluorobenzene	94.1			80.0-120		03/13/2017 05:49	WG959917

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00240	0.0100	1	03/14/2017 06:44	WG960326

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/11/2017 17:39	WG960019
Residual Range Organics (RRO)	U		165	500	1	03/11/2017 17:39	WG960019
(S) o-Terphenyl	94.3			52.0-156		03/11/2017 17:39	WG960019

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/16/2017 13:03	WG961524
Residual Range Organics (RRO)	U		165	500	1	03/16/2017 13:03	WG961524
(S) o-Terphenyl	121			52.0-156		03/16/2017 13:03	WG961524

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	03/14/2017 11:10	WG960332
Benzo(a)pyrene	U		0.0116	0.0500	1	03/14/2017 11:10	WG960332
Benzo(b)fluoranthene	U		0.00212	0.0500	1	03/14/2017 11:10	WG960332
Benzo(k)fluoranthene	U		0.0136	0.0500	1	03/14/2017 11:10	WG960332
Chrysene	U		0.0108	0.0500	1	03/14/2017 11:10	WG960332
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	03/14/2017 11:10	WG960332
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	03/14/2017 11:10	WG960332

MW-7

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 12:25

L895193

Committee Cigo		0000.0 (00	2, O ₁		02 0		
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Naphthalene	0.120	<u>B J</u>	0.0198	0.250	1	03/14/2017 11:10	WG960332
1-Methylnaphthalene	0.0245	<u>J</u>	0.00821	0.250	1	03/14/2017 11:10	WG960332
2-Methylnaphthalene	0.0359	<u>J</u>	0.00902	0.250	1	03/14/2017 11:10	WG960332
(S) Nitrobenzene-d5	119			31.0-160		03/14/2017 11:10	WG960332
(S) 2-Fluorobiphenyl	94.1			48.0-148		03/14/2017 11:10	WG960332
(S) p-Terphenyl-d14	93.1			37.0-146		03/14/2017 11:10	WG960332

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 13:20

L895193

Metals (ICP) by Method 6010C

, , ,							
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	U		1.90	5.00	1	03/14/2017 02:23	WG960587
Lead, Dissolved	U		1.90	5.00	1	03/16/2017 03:50	WG961400

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	03/16/2017 04:12	WG960176
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-122		03/16/2017 04:12	WG960176

⁵Sr

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	- r
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	03/13/2017 06:11	WG959917	
Toluene	6.00		0.412	1.00	1	03/13/2017 06:11	WG959917	
Ethylbenzene	U		0.384	1.00	1	03/13/2017 06:11	WG959917	
Total Xylenes	U		1.06	3.00	1	03/13/2017 06:11	WG959917	ſ
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 06:11	WG959917	
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 06:11	WG959917	l
(S) Toluene-d8	108			80.0-120		03/13/2017 06:11	WG959917	
(S) Dibromofluoromethane	111			76.0-123		03/13/2017 06:11	WG959917	
(S) a,a,a-Trifluorotoluene	103			80.0-120		03/13/2017 06:11	WG959917	
(S) 4-Bromofluorobenzene	95.9			80.0-120		03/13/2017 06:11	WG959917	

⁹Sc

ΆΙ

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00240	0.0100	1	03/14/2017 06:55	WG960326

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	390		82.5	250	1	03/11/2017 17:56	WG960019
Residual Range Organics (RRO)	419	<u>J</u>	165	500	1	03/11/2017 17:56	WG960019
(S) o-Terphenyl	101			52.0-156		03/11/2017 17:56	WG960019

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	87.6	<u>J</u>	82.5	250	1	03/16/2017 13:20	WG961524
Residual Range Organics (RRO)	U		165	500	1	03/16/2017 13:20	WG961524
(S) o-Terphenyl	108			52.0-156		03/16/2017 13:20	WG961524

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	03/14/2017 11:32	WG960332
Benzo(a)pyrene	U		0.0116	0.0500	1	03/14/2017 11:32	WG960332
Benzo(b)fluoranthene	U		0.00212	0.0500	1	03/14/2017 11:32	WG960332
Benzo(k)fluoranthene	U		0.0136	0.0500	1	03/14/2017 11:32	WG960332
Chrysene	U		0.0108	0.0500	1	03/14/2017 11:32	WG960332
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	03/14/2017 11:32	WG960332
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	03/14/2017 11:32	WG960332

MW-8

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 13:20

L895193

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Naphthalene	0.0608	<u>B J</u>	0.0198	0.250	1	03/14/2017 11:32	WG960332	
1-Methylnaphthalene	0.0269	<u>J</u>	0.00821	0.250	1	03/14/2017 11:32	WG960332	
2-Methylnaphthalene	0.0134	<u>J</u>	0.00902	0.250	1	03/14/2017 11:32	WG960332	
(S) Nitrobenzene-d5	116			31.0-160		03/14/2017 11:32	WG960332	
(S) 2-Fluorobiphenyl	90.2			48.0-148		03/14/2017 11:32	WG960332	
(S) p-Terphenyl-d14	84.8			37.0-146		03/14/2017 11:32	WG960332	

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 13:50

L895193

Metals (ICP) by Method 6010C

· · · · · · · ·							
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	2.72	J	1.90	5.00	1	03/14/2017 02:26	WG960587
Lead, Dissolved	U		1.90	5.00	1	03/16/2017 03:53	WG961400

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	03/16/2017 04:33	WG960176
(S) a,a,a-Trifluorotoluene(FID)) 100			77.0-122		03/16/2017 04:33	WG960176

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	03/13/2017 06:32	WG959917	
Toluene	3.42		0.412	1.00	1	03/13/2017 06:32	WG959917	
Ethylbenzene	U		0.384	1.00	1	03/13/2017 06:32	WG959917	
Total Xylenes	U		1.06	3.00	1	03/13/2017 06:32	WG959917	
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 06:32	WG959917	
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 06:32	WG959917	
(S) Toluene-d8	108			80.0-120		03/13/2017 06:32	WG959917	
(S) Dibromofluoromethane	110			76.0-123		03/13/2017 06:32	WG959917	
(S) a,a,a-Trifluorotoluene	104			80.0-120		03/13/2017 06:32	WG959917	
(S) 4-Bromofluorobenzene	95.6			80.0-120		03/13/2017 06:32	WG959917	

Sc

Gl

[°]Qc

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00240	0.0100	1	03/14/2017 07:06	WG960326

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	347		82.5	250	1	03/11/2017 18:13	WG960019
Residual Range Organics (RRO)	376	<u>J</u>	165	500	1	03/11/2017 18:13	WG960019
(S) o-Terphenyl	104			52.0-156		03/11/2017 18:13	WG960019

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/16/2017 13:36	WG961524
Residual Range Organics (RRO)	U		165	500	1	03/16/2017 13:36	WG961524
(S) o-Terphenyl	109			52.0-156		03/16/2017 13:36	WG961524

	Result	<u>Qualifier</u>	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	03/14/2017 11:55	WG960332
Benzo(a)pyrene	U		0.0116	0.0500	1	03/14/2017 11:55	WG960332
Benzo(b)fluoranthene	U		0.00212	0.0500	1	03/14/2017 11:55	WG960332
Benzo(k)fluoranthene	U		0.0136	0.0500	1	03/14/2017 11:55	WG960332
Chrysene	U		0.0108	0.0500	1	03/14/2017 11:55	WG960332
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	03/14/2017 11:55	WG960332
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	03/14/2017 11:55	WG960332

MW-9

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 13:50

L895193

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Naphthalene	1.07		0.0198	0.250	1	03/14/2017 11:55	WG960332	
1-Methylnaphthalene	0.105	<u>J</u>	0.00821	0.250	1	03/14/2017 11:55	WG960332	
2-Methylnaphthalene	0.0488	<u>J</u>	0.00902	0.250	1	03/14/2017 11:55	WG960332	
(S) Nitrobenzene-d5	119			31.0-160		03/14/2017 11:55	WG960332	
(S) 2-Fluorobiphenyl	97.1			48.0-148		03/14/2017 11:55	WG960332	
(S) p-Terphenyl-d14	92.2			37.0-146		03/14/2017 11:55	WG960332	

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 14:35

L895193

Metals (ICP) by Method 6010C

esult	Qualifier	MDL	RDL	Dilution	Analysis	Batch
g/l		ug/l	ug/l		date / time	
14	J	1.90	5.00	1	03/14/2017 02:29	WG960587
J		1.90	5.00	1	03/16/2017 04:01	WG961400
(g/l 14	g/l	ug/l ug/l .14 <u>J</u> 1.90	ug/l ug/l ug/l 14 <u>J</u> 1.90 5.00	g/l ug/l ug/l .14 <u>J</u> 1.90 5.00 1	g/l ug/l ug/l date / time 14 <u>J</u> 1.90 5.00 1 03/14/2017 02:29

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	03/16/2017 04:54	WG960176
(S) a,a,a-Trifluorotoluene(FID)) 100			77.0-122		03/16/2017 04:54	WG960176

Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	03/13/2017 06:54	WG959917
Toluene	U		0.412	1.00	1	03/13/2017 06:54	WG959917
Ethylbenzene	U		0.384	1.00	1	03/13/2017 06:54	WG959917
Total Xylenes	U		1.06	3.00	1	03/13/2017 06:54	WG959917
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 06:54	WG959917
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 06:54	WG959917
(S) Toluene-d8	107			80.0-120		03/13/2017 06:54	WG959917
(S) Dibromofluoromethane	110			76.0-123		03/13/2017 06:54	WG959917
(S) a,a,a-Trifluorotoluene	104			80.0-120		03/13/2017 06:54	WG959917
(S) 4-Bromofluorobenzene	96.1			80.0-120		03/13/2017 06:54	WG959917

ΆΙ

Sc

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00240	0.0100	1	03/14/2017 07:17	WG960326

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/11/2017 18:30	WG960019
Residual Range Organics (RRO)	U		165	500	1	03/11/2017 18:30	WG960019
(S) o-Terphenyl	104			52.0-156		03/11/2017 18:30	WG960019

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/16/2017 13:53	WG961524
Residual Range Organics (RR	O) U		165	500	1	03/16/2017 13:53	WG961524
(S) o-Terphenyl	114			52.0-156		03/16/2017 13:53	WG961524

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	03/14/2017 12:18	WG960332
Benzo(a)pyrene	U		0.0116	0.0500	1	03/14/2017 12:18	WG960332
Benzo(b)fluoranthene	U		0.00212	0.0500	1	03/14/2017 12:18	WG960332
Benzo(k)fluoranthene	U		0.0136	0.0500	1	03/14/2017 12:18	WG960332
Chrysene	U		0.0108	0.0500	1	03/14/2017 12:18	WG960332
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	03/14/2017 12:18	WG960332
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	03/14/2017 12:18	WG960332

MW-13

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 14:35

L895193

Committee Ciga											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time					
Naphthalene	0.0482	<u>B J</u>	0.0198	0.250	1	03/14/2017 12:18	WG960332				
1-Methylnaphthalene	0.0100	<u>J</u>	0.00821	0.250	1	03/14/2017 12:18	WG960332				
2-Methylnaphthalene	U		0.00902	0.250	1	03/14/2017 12:18	WG960332				
(S) Nitrobenzene-d5	120			31.0-160		03/14/2017 12:18	WG960332				
(S) 2-Fluorobiphenyl	95.9			48.0-148		03/14/2017 12:18	WG960332				
(S) p-Terphenyl-d14	91.2			37.0-146		03/14/2017 12:18	WG960332				

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 00:00

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	03/16/2017 05:15	WG960176
(S) a,a,a-Trifluorotoluene(F	ID) 100			77.0-122		03/16/2017 05:15	WG960176

⁵ C ₂
21

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	03/13/2017 07:15	WG959917
Toluene	U		0.412	1.00	1	03/13/2017 07:15	WG959917
Ethylbenzene	U		0.384	1.00	1	03/13/2017 07:15	WG959917
Total Xylenes	U		1.06	3.00	1	03/13/2017 07:15	WG959917
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 07:15	WG959917
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 07:15	WG959917
(S) Toluene-d8	107			80.0-120		03/13/2017 07:15	WG959917
(S) Dibromofluoromethane	108			76.0-123		03/13/2017 07:15	WG959917
(S) a,a,a-Trifluorotoluene	104			80.0-120		03/13/2017 07:15	WG959917
(S) 4-Bromofluorobenzene	94.6			80.0-120		03/13/2017 07:15	WG959917

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/11/2017 18:47	WG960019
Residual Range Organics (RRO)	U		165	500	1	03/11/2017 18:47	WG960019
(S) o-Terphenyl	105			52.0-156		03/11/2017 18:47	WG960019

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		82.5	250	1	03/16/2017 14:09	WG961524
Residual Range Organics (RRO)	U		165	500	1	03/16/2017 14:09	WG961524
(S) o-Terphenyl	108			52.0-156		03/16/2017 14:09	WG961524

TRIP BLANK

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 03/09/17 00:00

L895193

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	03/13/2017 01:32	WG959917
Toluene	U		0.412	1.00	1	03/13/2017 01:32	WG959917
Ethylbenzene	U		0.384	1.00	1	03/13/2017 01:32	WG959917
Total Xylenes	U		1.06	3.00	1	03/13/2017 01:32	WG959917
Methyl tert-butyl ether	U		0.367	1.00	1	03/13/2017 01:32	WG959917
1,2-Dichloroethane	U		0.361	1.00	1	03/13/2017 01:32	WG959917
(S) Toluene-d8	107			80.0-120		03/13/2017 01:32	WG959917
(S) Dibromofluoromethane	108			76.0-123		03/13/2017 01:32	WG959917
(S) a,a,a-Trifluorotoluene	104			80.0-120		03/13/2017 01:32	WG959917
(S) 4-Bromofluorobenzene	95.4			80.0-120		03/13/2017 01:32	WG959917

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010C

L895193-01,02,03,04

Method Blank (MB)

(MB) R3202970-1 03/14/17 01:49

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead	U		1.90	5.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3202970-2 03/14/17 01:51 • (LCSD) R3202970-3 03/14/17 01:54

(,	Spike Amount	•	LCSD Result		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Lead	1000	990	984	99	98	80-120			1	20

(OS) | 895608-03 03/14/17 01:57 • (MS) R3202970-5 03/14/17 02:02 • (MSD) R3202970-6 03/14/17 02:04

(,				(
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Lead	1000	5.58	994	997	99	99	1	75-125			0	20

Metals (ICP) by Method 6010C L895193-01,02,03,04

ONE LAB. NATIONWIDE.

Method Blank (MB)

(1112) 1102007101	MD D
(MB) R3203719-1	03/16/17 03:28

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead, Dissolved	U		1.90	5.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3203719-2 03/16/17 03:30 • (LCSD) R3203719-3 03/16/17 03:33

,	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Lead, Dissolved	1000	1020	1010	102	101	80-120			1	20

(OS) L895608-01 03/16/17 03:36 • (MS) R3203719-5 03/16/17 03:41 • (MSD) R3203719-6 03/16/17 03:44

(00) 2000000 0. 00	` '	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilutio	n Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%	Dilutio	%	M3 Qualifier	WOD Qualifier	%	%	
Lead, Dissolved	1000	ND	1000	1010	100	101	1	75-125			1	20	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method NWTPHGX

L895193-01,02,03,04,05

Method Blank (MB)

(MB) R3203738-3 03/15/1	7 21:47					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Gasoline Range Organics-NWTPH	U		31.6	100		
(S) a,a,a-Trifluorotoluene(FIL	D) 101			77.0-122		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3203738-1 03/15/1	7 20:44 • (LCSE	D) R3203738-2	2 03/15/17 21:0	5						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Gasoline Range Organics-NWTPH	5500	6130	6590	111	120	72.0-134			7.24	20
(S) a,a,a-Trifluorotoluene(FIL	0)			103	104	77.0-122				

L895193-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L895193-01 03/16/17 03:51 • (MS) R3203738-4 03/16/17 02:47 • (MSD) R3203738-5 03/16/17 03:09

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Gasoline Range Organics-NWTPH	5500	U	6610	6480	120	118	1	23.0-159			1.99	20
(S) a,a,a-Trifluorotoluene(FID))				103	103		77.0-122				

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L895193-01,02,03,04,05,06

Method Blank (MB)

(S) Toluene-d8

(S) Dibromofluoromethane

(S) a,a,a-Trifluorotoluene

(S) 4-Bromofluorobenzene

(MB) R3203135-3 03/13/17 01:10								
MB Result	MB Qualifier	MB MDL	MB RDL					
ug/l		ug/l	ug/l					
U		0.331	1.00					
U		0.361	1.00					
U		0.384	1.00					
U		0.367	1.00					
U		0.412	1.00					
U		1.06	3.00					
	MB Result ug/l U U U U U U	MB Result ug/l U U U U U U U	MB Result ug/l MB Qualifier ug/l MB MDL ug/l U 0.331 0.361 U 0.384 0.367 U 0.412					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

80.0-120

76.0-123

80.0-120

80.0-120

(LCS) R3203135-1	03/13/1/00:06 •	(LCSD) R3203135-2	03/13/1/ 00:2/

109

111

103

95.0

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzene	25.0	27.2	28.4	109	114	69.0-123			4.23	20	
1,2-Dichloroethane	25.0	28.5	27.6	114	110	67.0-126			3.35	20	
Ethylbenzene	25.0	23.4	26.0	93.8	104	77.0-120			10.5	20	
Methyl tert-butyl ether	25.0	27.5	26.8	110	107	64.0-123			2.58	20	
Toluene	25.0	25.2	26.4	101	105	77.0-120			4.30	20	
Xylenes, Total	75.0	75.7	80.1	101	107	77.0-120			5.65	20	
(S) Toluene-d8				103	102	80.0-120					
(S) Dibromofluoromethane				109	110	76.0-123					
(S) a,a,a-Trifluorotoluene				98.8	97.8	80.0-120					
(S) 4-Bromofluorobenzene				96.8	99.8	80.0-120					

L895138-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS)	L895138-01	03/13/17 02:57 •	(MS) R3203135-4	03/13/17 01:53 •	(MSD) R3203135-5	03/13/17 02:14
-----	------------	------------------	-----------------	------------------	------------------	----------------

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Benzene	25.0	49.2	634	646	117	119	20	34.0-147			1.81	20
1,2-Dichloroethane	25.0	ND	581	598	116	120	20	47.0-141			2.94	20
Ethylbenzene	25.0	34.5	614	608	116	115	20	42.0-147			0.950	20
Methyl tert-butyl ether	25.0	ND	558	604	112	121	20	42.0-142			7.83	20
Toluene	25.0	113	680	691	113	116	20	42.0-141			1.57	20
Xylenes, Total	75.0	1420	3670	3550	150	142	20	41.0-148	<u>J5</u>		3.32	20
(S) Toluene-d8					103	104		80.0-120				

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L895193-01,02,03,04,05,06

L895138-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L895138-01 03/13/17 02:57 • (MS) R3203135-4 03/13/17 01:53 • (MSD) R3203135-5 03/13/17 02:14

(,	(- / -		(- /								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
(S) Dibromofluoromethane					104	110		76.0-123				
(S) a,a,a-Trifluorotoluene					99.9	97.6		80.0-120				
(S) 4-Bromofluorobenzene					104	104		80.0-120				

ONE LAB. NATIONWIDE.

EDB / DBCP by Method 8011

L895193-01,02,03,04

Method Blank (MB)

(MB) R3203299-1 03/14/17 05:06

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Ethylene Dibromide	U		0.00240	0.0100

²Tc

(0.0) 0.0 = 470 04	004447.05.50	(0110) 00000000	004447.05.00
(OS) L8954/0-01	03/14/1/ 05:50 •	(DUP) R3203299-3	03/14/1/ 05:39

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Ethylene Dibromide	ND	0.000	1	0.000		20

(LCS) R3203299-4 03/14/17 07:28 • (LCSD) R3203299-5 03/14/17 09:28

(===)=====	-,	-,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Ethylene Dibromide	0.250	0.275	0.252	110	101	60.0-140			8.51	20

L895470-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L895470-02 03/14/17 05:28 • (MS) R3203299-2 03/14/17 05:17

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	ug/l	ug/l	ug/l	%		%	
Ethylene Dibromide	0.100	0.623	0.720	97.6	1	60.0-140	Ē

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L895193-01,02,03,04,05

Method Blank (MB)

(MB) R3202852-1 03/11/17	13:29			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		83.3	250
Residual Range Organics (RRO)	U		167	500
(S) o-Terphenyl	98.4			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3202852-2 03/11/17	/ 13:46 • (LCSD)) R3202852-3	03/11/1/ 14:02							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	869	912	116	122	50.0-150			4.86	20
Residual Range Organics (RRO)	750	669	701	89.1	93.5	50.0-150			4.76	20
(S) o-Terphenyl				102	105	52.0-156				

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

L895193-01,02,03,04,05

Method Blank (MB)

(MB) R3203861-1 03/16/17	12:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Diesel Range Organics (DRO)	U		83.3	250
Residual Range Organics (RRO)	U		167	500
(S) o-Terphenyl	119			52.0-156

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3203861-2 03/16/17	/ 12:30 • (LCSE	D) R3203861-3	03/16/1/ 12:4/							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	973	874	130	116	50.0-150			10.7	20
Residual Range Organics (RRO)	750	859	794	115	106	50.0-150			7.91	20
(S) o-Terphenyl				127	114	52.0-156				

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L895193-01,02,03,04

Method Blank (MB)

(MB) R3203231-3 03/14/	/17 10:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Benzo(a)anthracene	U		0.00410	0.0500
Benzo(a)pyrene	U		0.0116	0.0500
Benzo(b)fluoranthene	0.00233	<u>J</u>	0.00212	0.0500
Benzo(k)fluoranthene	U		0.0136	0.0500
Chrysene	U		0.0108	0.0500
Dibenz(a,h)anthracene	U		0.00396	0.0500
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500
Naphthalene	0.0496	<u>J</u>	0.0198	0.250
1-Methylnaphthalene	U		0.00821	0.250
2-Methylnaphthalene	U		0.00902	0.250
(S) Nitrobenzene-d5	144			31.0-160
(S) 2-Fluorobiphenyl	120			48.0-148
(S) p-Terphenyl-d14	126			37.0-146

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3203231-1 03/14/1	7 09:14 • (LCSD)	R3203231-2	03/14/17 09:37								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzo(a)anthracene	2.00	2.14	2.20	107	110	59.0-134			3.06	20	
Benzo(a)pyrene	2.00	2.08	2.17	104	109	61.0-145			4.43	20	
Benzo(b)fluoranthene	2.00	2.16	2.12	108	106	57.0-136			2.01	20	
Benzo(k)fluoranthene	2.00	1.92	2.16	96.0	108	57.0-141			11.6	20	
Chrysene	2.00	1.95	2.01	97.5	101	63.0-140			3.10	20	
Dibenz(a,h)anthracene	2.00	2.15	2.22	107	111	49.0-141			3.37	20	
Indeno(1,2,3-cd)pyrene	2.00	2.12	2.20	106	110	53.0-141			3.88	20	
Naphthalene	2.00	2.11	2.21	105	110	68.0-129			4.51	20	
1-Methylnaphthalene	2.00	2.05	2.14	103	107	68.0-137			4.16	20	
2-Methylnaphthalene	2.00	1.94	2.02	97.0	101	68.0-134			4.26	20	
(S) Nitrobenzene-d5				120	124	31.0-160					
(S) 2-Fluorobiphenyl				99.4	103	48.0-148					
(S) p-Terphenyl-d14				101	104	37.0-146					

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.

Qualifier	Description
В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERTO086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
FPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

	Billing Information:						15.4					Contain	er / Pre	servativ	9		-	Chain of Custody	Pageor		
Arcadis - Seattle, WA				ounts Pay			Pres Chk								27			*	SC		
1100 Olive Way Suite 800 Seattle WA 98101			630 Plaza Dr., Ste. 600 Highlands Ranch, CO 80129															RESPERSE	OF CHOICE		
Report to:				mail To: Ross.LaGrandeur@arcadis.com; yan.Brauchla@arcadis.com; City/State							ja.					×		12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-585			
Ross LaGrandeur								5	666	8-10	-			m	1-8	100	Phone: 800-767-585 Fax: 615-758-5859				
Project Description: Olympia Bulk Plant				Collected:		H	Pre)H-9	6-8		TW	NO	O-HC	á		1103				
Phone: 509-438-9828	GP09BPNA.			Lab Project # ARCABPWA-BPOLY		ARCABPWA-BPOLY		40mIAmb-HC	DPE-No	hio	OmlAm	Amb-H	101	40mlAmb-NoPres-WT	250miHDPE-HNO3	BTEXM/EDC.40mlAmb-HCI-BIK	P	F164	5193		
Collected by (print): Eric Krueger (EK)	Site/Facility ID 1120 WEST	# BAY DR,	DLYMPIA,		R, OLYMPIA,		YMPIA,				50mlH	Jr-NaThio	SGT) 4(40ml	Amp H	Amb-A	250mil	EDC 40		Template:T120673	
Collected by (signature):	Rush? (Lab MUST Be Notified) Same Day X Five Day			Quote #				8260C	30.2	40mlCtr-	ON	SGT	40m	10ml		XM		Prelogin: P58	8878		
Immediately Packed on Ice NY X	Next Day Two Day Three Da	5 Da	Day y (Rad Only) Date Results N y (Rad Only)		rad Only) Date Result		No.	EXM/EDC	Diss Pb 6010C 250mlHDPE-NoPres	8011	NWTPHDX (NO SGT) 40mlAmb-HCI-BT	NWTPHDX (SGT) 40mlAmb-HCI-BT	NWTPHGX 40mlAmb HCI	AH-SIMD	Total Pb 6010C	以		TSR: 110 - Bria PB: Shipped Via:	n Ford		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BTEX	Diss	EDB	N.N.	NN	N.	PAH	Tota	trip		Remarks	Sample # (lab univ)			
MW-7	1	GW	-	3/9	117	1225	15	X	X	X	X	X	X	\geq	X				-6)		
MW-8	in Fig.	GW	110			1320	15	×	X	X	X	\times	X	X	X				02		
MW-9	1	GW		1		1350	15	X	X	\geq	X	\times	X	X	X			3	03		
MW-13	E 6-0	GW				1435	15	\times	$\mathbb{I} \times$	\times	X	X	X	X	\swarrow			2 - 19	64		
Dup-1		GW		4	die.		8	X			X	X	X		X				06		
Trip Blank		GW		- 100			2					100	100			X			06		
The Course		GW		-		13.00				0.3				1	100	100			10 15 160 750		
		GW										800		100							
																		mple Receipt (nerviat		
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:	Remarks:						pncoccoccoccoc						Seal Signe les a	Present/Intac ad/Accurate: arrive intact:	TY TY					
WW - WasteWater DW - Drinking Water OT - Other	Samples returned via:UPSFedExCourier					Tracking #										Suff	Correct bottles used: Sufficient volume sent: If Applicable WCA Zero Headspace: Preservation Correct/Checked: Y				
Relinquished by : (Signature)	BALLED TO	Date:		Time:	1	Received by: (Sign	nature)				Trip B	lank Red	eived:	(AX)	MeaH	Pres	servat	Ion correct/c	t -		
Relinquished by : (Signature)		3/9 Date:	117	1600 Time;		Received by: (Sig	nature)			5	Temp		°C ^B	TBR Sottles Re	2	If pr	eservat	tion required by I	ogin: Date/Time		
		S COR		1							2.4° TAIL 68			17.0	0734		Condition:				
Relinquished by : (Signature)		Date:		Time:	1	Received for lab	y (Sign	sature)	h		3-10-17 0900				Hold			NCF / OK			

Evaluated by:Andy Vann	Time (a.m.)
Date:03/10/17	
Client: ARCABPWA	
Login #:L895193	Non-Conformación

Sample Integrity	Chain of Custody Clariffication	
holdin	Charles Classody Clarification	
time	X Login Clarification Needed	
Improper		If Broken Container:
temperature	Chain of custody is incomplete	
Improper container	analdinom er dageses	Insufficient packing material around container
type	Please specify Metals requested.	Insufficient packing material inside
Improper	Please specify TCI D required	cooler
	nesenta con con con con con con con con con con	Improper handling by came or Cr. 12.
Insufficient sample volume,	Received additional samples not listed on coc.	Sample was
Sample is binked	Sample ide on contrained	frozen
compacts orphasic,	COC	
Vials received with headspace.	Trin Blant men menting	Container lid not intact
	11 p plain not received,	If no Chain of Curtod.
Broken container	Client did not "X" analysis.	committee of custody;
Broken container:		Received by:
Configuration	Culain of Custody is missing	Date/Time:
sufficient sample remains		
		Temp./Cont. Rec./pH:
		Carrier:
		Trackine#

Login Comments: Dup-1 marked for PBICP, but we did not receive the total metals container for that id,

	Time:1455	
ice Mail Date:02/10/10	@arcadis.com;	
Call Email x Vo	Client Contact: Ross.LaGrandeur@ Ryan.Brauchla@arcadis.com; Alexander.Pink@arcadis.com	The same of the sa
Client informed by:	TSR Initials:bjf	The second secon

Login Instructions:

Proceed with all other analyses.

Data Path : C:\msdchem\1\data\031117\

Data File : 0311 26.d Signal(s) : FID1A.ch

: 11 Mar 2017 Acq On 5:39 pm

Operator : 614

Sample : L895193-01 1x WG960019 40-2

Misc : water
ALS Vial : 23 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e

Quant Time: Mar 13 15:03:58 2017

Quant Method: C:\msdchem\1\methods\EP31C08Q.M

Quant Title

QLast Update : Thu Mar 09 15:14:45 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info

no SGT

Data Path : C:\msdchem\1\data\031117\

Data File : 0311 27.d Signal(s) : FID1A.ch

Acq On : 11 Mar 2017 5:56 pm

Operator : 614

Sample : L895193-02 1x WG960019 40-2

Misc : water

ALS Vial : 24 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e

Quant Time: Mar 13 15:04:30 2017

Quant Method: C:\msdchem\1\methods\EP31C08Q.M

Quant Title :

QLast Update : Thu Mar 09 15:14:45 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

no SGT

Data Path : C:\msdchem\1\data\031117\

Data File : 0311 28.d Signal(s) : FID1A.ch

Acq On : 11 Mar 2017 6:13 pm

Operator : 614

Sample : L895193-03 1x WG960019 40-2

Misc : water

ALS Vial : 25 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e

Quant Time: Mar 13 15:05:11 2017

Quant Method: C:\msdchem\1\methods\EP31C08Q.M

Quant Title :

QLast Update : Thu Mar 09 15:14:45 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

no SGT

Data Path : C:\msdchem\1\data\031117\

Data File : 0311 29.d Signal(s) : FID1A.ch

: 11 Mar 2017 Acq On 6:30 pm

Operator : 614

Sample : L895193-04 1x WG960019 40-2

Misc : water
ALS Vial : 26 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e

Quant Time: Mar 13 15:05:37 2017

Quant Method: C:\msdchem\1\methods\EP31C08Q.M

Quant Title

QLast Update : Thu Mar 09 15:14:45 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info

no SGT

Data Path : C:\msdchem\1\data\031117\

Data File : 0311 30.d Signal(s) : FID1A.ch

: 11 Mar 2017 Acq On 6:47 pm

Operator : 614

Sample : L895193-05 1x WG960019 40-2

Misc : water
ALS Vial : 27 Sample Multiplier: 0.05

InstName : SVGC31

Integration File: events.e

Quant Time: Mar 13 15:08:56 2017

Quant Method: C:\msdchem\1\methods\EP31C08Q.M

Quant Title

QLast Update : Thu Mar 09 15:14:45 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info

Data Path : C:\msdchem\1\data\031617\

Data File : 0316 11.d Signal(s) : FID1A.ch

Acq On : 16 Mar 2017 1:03 pm

Operator: 765

Sample : L895193-01 1x WG961524 40-2

Misc : water

ALS Vial : 8 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e
Quant Time: Mar 16 13:42:24 2017

Quant Method: C:\msdchem\1\methods\EP27A25Q.M

Quant Title :

QLast Update : Wed Jan 25 13:17:51 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\031617\

Data File : 0316 12.d Signal(s) : FID1A.ch

Acq On : 16 Mar 2017 1:20 pm

Operator: 765

Sample : L895193-02 1x WG961524 40-2

Misc : water

ALS Vial : 9 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e

Quant Time: Mar 16 13:44:39 2017

Quant Method : C:\msdchem\1\methods\EP27A25Q.M

Quant Title

QLast Update : Wed Jan 25 13:17:51 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\031617\

Data File : 0316 13.d Signal(s) : FID1A.ch

Acq On : 16 Mar 2017 1:36 pm

Operator: 765

Sample : L895193-03 1x WG961524 40-2

Misc : water

ALS Vial : 10 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e

Quant Time: Mar 16 14:12:17 2017

Quant Method: C:\msdchem\1\methods\EP27A25Q.M

Quant Title

QLast Update : Wed Jan 25 13:17:51 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\031617\

Data File : 0316 14.d Signal(s) : FID1A.ch

Acq On : 16 Mar 2017 1:53 pm

Operator: 765

Sample : L895193-04 1x WG961524 40-2

Misc : water

ALS Vial : 11 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e

Quant Time: Mar 16 14:12:59 2017

Quant Method : C:\msdchem\1\methods\EP27A25Q.M

Quant Title

QLast Update : Wed Jan 25 13:17:51 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\031617\

Data File : 0316 15.d Signal(s) : FID1A.ch

Acq On : 16 Mar 2017 2:09 pm

Operator : 765

Sample : L895193-05 1x WG961524 40-2

Misc : water

ALS Vial : 12 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e

Quant Time: Mar 16 14:31:00 2017

Quant Method : C:\msdchem\1\methods\EP27A25Q.M

Quant Title :

QLast Update: Wed Jan 25 13:17:51 2017

Response via : Initial Calibration Integrator: ChemStation

Volume Inj. : Signal Phase :

Signal Phase : Signal Info :

ANALYTICAL REPORT May 22, 2017

Arcadis - Seattle, WA

Sample Delivery Group: L908444

Samples Received: 05/10/2017

Project Number: GP09BPNA.WA60

Description: Olympia Bulk Plant

1120 WEST BAY DR, OLYMPIA, WA Site:

Report To: Ross LaGrandeur

1100 Olive Way

Suite 800

Seattle, WA 98101

Entire Report Reviewed By:

Buar Ford

Brian Ford

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

1
2
3
5
6
6
8
10
12
14
15
16
16
18
19
20
21
22
23
24
25

Sc: Chain of Custody

26

ONE LAB. NAT

SAMPLE SUMMARY	MPLE SUM	1MARY
----------------	----------	-------

FIONWIDE.	
HONWIDE.	- 4

MW-7 L908444-01 GW			Collected by Eric Krueger	Collected date/time 05/08/17 10:35	Received date/time 05/10/17 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Metals (ICP) by Method 6010C	WG978898	1	05/12/17 11:27	05/12/17 16:19	ST
Metals (ICP) by Method 6010C	WG979889	1	05/16/17 17:59	05/16/17 19:05	ST
Volatile Organic Compounds (GC) by Method NWTPHGX	WG979070	1	05/13/17 06:54	05/13/17 06:54	ACG
Volatile Organic Compounds (GC/MS) by Method 8260C	WG979368	1	05/13/17 14:26	05/13/17 14:26	LRL
EDB / DBCP by Method 8011	WG979504	.992	05/14/17 08:37	05/15/17 21:44	НМН
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG979247	1	05/13/17 02:19	05/13/17 12:04	TH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG978857	1	05/12/17 09:18	05/13/17 12:55	TH
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978858	1	05/12/17 09:20	05/15/17 07:54	FMB
MW-8 L908444-02 GW			Collected by Eric Krueger	Collected date/time 05/08/17 11:15	Received date/time 05/10/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
Maria (ICD) I AM II I COMOC	1110070000		date/time	date/time	
Metals (ICP) by Method 6010C	WG978898	1	05/12/17 11:27	05/12/17 16:22	ST
Metals (ICP) by Method 6010C	WG979889	1	05/16/17 17:59	05/16/17 19:08	ST
Volatile Organic Compounds (GC) by Method NWTPHGX	WG979070	1	05/13/17 07:16	05/13/17 07:16	ACG
Volatile Organic Compounds (GC/MS) by Method 8260C	WG979368	1	05/13/17 14:41	05/13/17 14:41	LRL
EDB / DBCP by Method 8011	WG979504	.992	05/14/17 08:37	05/15/17 21:54	НМН
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG979247	1	05/13/17 02:19	05/13/17 12:21	TH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978857 WG978858	1 2	05/12/17 09:18 05/12/17 09:20	05/13/17 13:11 05/15/17 08:19	TH FMB
MW-9 L908444-03 GW			Collected by Eric Krueger	Collected date/time 05/08/17 11:50	Received date/time 05/10/17 08:45
	Batch	Dilution	Eric Krueger Preparation		
Method			Eric Krueger Preparation date/time	05/08/17 11:50 Analysis date/time	05/10/17 08:45 Analyst
Method Metals (ICP) by Method 6010C	WG978898	1	Preparation date/time 05/12/17 11:27	05/08/17 11:50 Analysis date/time 05/12/17 16:25	05/10/17 08:45 Analyst ST
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C			Eric Krueger Preparation date/time	05/08/17 11:50 Analysis date/time	05/10/17 08:45 Analyst ST ST
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX	WG978898 WG979889	1 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11	05/10/17 08:45 Analyst ST
Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C	WG978898 WG979889 WG979070	1 1 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38	O5/10/17 08:45 Analyst ST ST ACG
Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011	WG978898 WG979889 WG979070 WG979368	1 1 1 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57	O5/10/17 08:45 Analyst ST ST ACG LRL
Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG978898 WG979889 WG979070 WG979368 WG979504	1 1 1 1 .994	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57 05/14/17 08:37	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04	O5/10/17 08:45 Analyst ST ST ACG LRL HMH
Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247	1 1 1 1 .994	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57 05/14/17 08:37 05/13/17 02:19	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37	O5/10/17 O8:45 Analyst ST ST ACG LRL HMH TH
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857	1 1 1 1 .994 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57 05/14/17 08:37 05/13/17 02:19 05/12/17 09:18	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/13/17 13:27	Analyst ST ST ACG LRL HMH TH TH
Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857	1 1 1 1 .994 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57 05/14/17 08:37 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis	Analyst ST ST ACG LRL HMH TH TH FMB Received date/times
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858	1 1 1 .994 1 1 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 14:57 05/14/17 08:37 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time	O5/10/17 08:45 Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method Metals (ICP) by Method 6010C	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858	1 1 1 1 .994 1 1 1	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34	Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858	1 1 1 .994 1 1 1 Dilution	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27 05/16/17 17:59	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34 05/16/17 18:54	Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst ST ST
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858 Batch WG978898 WG979889 WG979070	1 1 1 .994 1 1 1 1 Dilution	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 08:00	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34 05/16/17 18:54 05/13/17 08:00	Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst ST ST ACG
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi-Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC/MS) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858 Batch WG978898 WG979889 WG979070 WG979368	1 1 1 .994 1 1 1 1 Dilution	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 08:00 05/13/17 15:12	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34 05/13/17 08:00 05/13/17 15:12	Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst ST ST ACG LRL HMH TH TH ACG LRL HMH TH ACG LRL COS/10/17 08:45
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi-Volatile Organic Compounds (GC/MS) by Method 8270D-SIM MW-13 L908444-04 GW Method Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011	WG978898 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858 Batch WG978898 WG979889 WG979070 WG979368 WG979368 WG979504	1 1 1 .994 1 1 1 1 Dilution	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 08:00 05/13/17 15:12 05/14/17 08:37	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/13/17 13:27 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34 05/13/17 08:00 05/13/17 15:12 05/15/17 22:14	O5/10/17 08:45 Analyst ST ST ACG LRL HMH TH FMB Received date/time 05/10/17 08:45 Analyst ST ST ACG LRL HMH HMH
Metals (ICP) by Method 6010C Metals (ICP) by Method 6010C Volatile Organic Compounds (GC) by Method NWTPHGX Volatile Organic Compounds (GC/MS) by Method 8260C EDB / DBCP by Method 8011 Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978898 WG979889 WG979070 WG979368 WG979504 WG979247 WG978857 WG978858 Batch WG978898 WG979889 WG979070 WG979368	1 1 1 .994 1 1 1 1 Dilution	Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 07:38 05/13/17 07:38 05/13/17 02:19 05/12/17 09:18 05/12/17 09:20 Collected by Eric Krueger Preparation date/time 05/12/17 11:27 05/16/17 17:59 05/13/17 08:00 05/13/17 15:12	05/08/17 11:50 Analysis date/time 05/12/17 16:25 05/16/17 19:11 05/13/17 07:38 05/13/17 14:57 05/15/17 22:04 05/13/17 12:37 05/15/17 08:43 Collected date/time 05/08/17 12:30 Analysis date/time 05/12/17 16:34 05/13/17 08:00 05/13/17 15:12	Analyst ST ST ACG LRL HMH TH TH FMB Received date/time 05/10/17 08:45 Analyst ST ST ACG LRL HMH TH TH ACG LRL HMH TH ACG LRL COS/10/17 08:45

			Collected by	Collected date/time	Received date/time
DUP-1 L908444-05 GW			Eric Krueger	05/08/17 00:00	05/10/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICP) by Method 6010C	WG979889	1	05/16/17 17:59	05/16/17 19:19	ST
Volatile Organic Compounds (GC) by Method NWTPHGX	WG979070	1	05/13/17 08:23	05/13/17 08:23	ACG
Volatile Organic Compounds (GC/MS) by Method 8260C	WG979368	1	05/13/17 15:28	05/13/17 15:28	LRL
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG979247	1	05/13/17 02:19	05/13/17 13:11	TH
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT	WG978857	1	05/12/17 09:18	05/13/17 14:00	TH
Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM	WG978858	1	05/12/17 09:20	05/15/17 09:31	FMB
			Collected by	Collected date/time	Received date/time
TRIP BLANK L908444-06 GW			Eric Krueger	05/08/17 00:00	05/10/17 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method NWTPHGX	WG979070	1	05/13/17 02:05	05/13/17 02:05	ACG
Volatile Organic Compounds (GC/MS) by Method 8260C	WG979368	1	05/13/17 10:49	05/13/17 10:49	LRL

1

²Tc

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Technical Service Representative

Buar Ford

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 10:35

Metals (ICP) by Method 6010C

. , , ,								
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead	2.06	<u>J</u>	1.90	5.00	1	05/16/2017 19:05	WG979889	
Lead, Dissolved	U		1.90	5.00	1	05/12/2017 16:19	WG978898	

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

Res	sult <u>Qua</u>	<u>llifier</u> M	1DL	RDL	Dilution	Analysis	Batch
Analyte ug/l	/I	u	g/l	ug/l		date / time	
Gasoline Range Organics-NWTPH		3′	1.6	100	1	05/13/2017 06:54	WG979070
(S) a,a,a-Trifluorotoluene(FID) 92.9	.9			77.0-122		05/13/2017 06:54	<u>WG979070</u>

[°]Qc

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	05/13/2017 14:26	WG979368	
Toluene	U		0.412	1.00	1	05/13/2017 14:26	WG979368	
Ethylbenzene	U		0.384	1.00	1	05/13/2017 14:26	WG979368	
Total Xylenes	U		1.06	3.00	1	05/13/2017 14:26	WG979368	
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 14:26	WG979368	
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 14:26	WG979368	
(S) Toluene-d8	105			80.0-120		05/13/2017 14:26	WG979368	
(S) Dibromofluoromethane	101			76.0-123		05/13/2017 14:26	WG979368	
(S) a,a,a-Trifluorotoluene	105			80.0-120		05/13/2017 14:26	WG979368	
(S) 4-Bromofluorobenzene	108			80.0-120		05/13/2017 14:26	WG979368	

Gl

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00238	0.00992	.992	05/15/2017 21:44	WG979504

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	233		66.0	200	1	05/13/2017 12:04	WG979247
Residual Range Organics (RRO)	292		82.5	250	1	05/13/2017 12:04	WG979247
(S) o-Terphenyl	97.7			52.0-156		05/13/2017 12:04	WG979247

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	81.4	<u>J</u>	66.0	200	1	05/13/2017 12:55	WG978857
Residual Range Organics (RRO)	U		82.5	250	1	05/13/2017 12:55	WG978857
(S) o-Terphenyl	102			52.0-156		05/13/2017 12:55	WG978857

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	05/15/2017 07:54	WG978858
Benzo(a)pyrene	U		0.0116	0.0500	1	05/15/2017 07:54	WG978858
Benzo(b)fluoranthene	U		0.00212	0.0500	1	05/15/2017 07:54	WG978858
Benzo(k)fluoranthene	U		0.0136	0.0500	1	05/15/2017 07:54	WG978858
Chrysene	U		0.0108	0.0500	1	05/15/2017 07:54	WG978858
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	05/15/2017 07:54	WG978858
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	05/15/2017 07:54	WG978858

MW-7

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 10:35

L908444

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>					
Analyte	ug/l		ug/l	ug/l		date / time						
Naphthalene	0.109	<u>J</u>	0.0198	0.250	1	05/15/2017 07:54	WG978858					
1-Methylnaphthalene	0.0895	<u>J</u>	0.00821	0.250	1	05/15/2017 07:54	WG978858					
2-Methylnaphthalene	0.0555	<u>J</u>	0.00902	0.250	1	05/15/2017 07:54	WG978858					
(S) Nitrobenzene-d5	126			31.0-160		05/15/2017 07:54	WG978858					
(S) 2-Fluorobiphenyl	113			48.0-148		05/15/2017 07:54	WG978858					
(S) p-Terphenyl-d14	104			37.0-146		05/15/2017 07:54	<u>WG978858</u>					

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 11:15

Metals (ICP) by Method 6010C

Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
ug/l		ug/l	ug/l		date / time	
U		1.90	5.00	1	05/16/2017 19:08	WG979889
U		1.90	5.00	1	05/12/2017 16:22	WG978898
			ug/l ug/l U 1.90	ug/l ug/l ug/l U 1.90 5.00	ug/l ug/l ug/l U 1.90 5.00 1	ug/l ug/l ug/l date / time U 1.90 5.00 1 05/16/2017 19:08

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	05/13/2017 07:16	WG979070
(S) a,a,a-Trifluorotoluene(FID	94.7			77.0-122		05/13/2017 07:16	WG979070

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	05/13/2017 14:41	WG979368
Toluene	5.02		0.412	1.00	1	05/13/2017 14:41	WG979368
Ethylbenzene	U		0.384	1.00	1	05/13/2017 14:41	WG979368
Total Xylenes	U		1.06	3.00	1	05/13/2017 14:41	WG979368
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 14:41	WG979368
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 14:41	WG979368
(S) Toluene-d8	106			80.0-120		05/13/2017 14:41	WG979368
(S) Dibromofluoromethane	104			76.0-123		05/13/2017 14:41	WG979368
(S) a,a,a-Trifluorotoluene	107			80.0-120		05/13/2017 14:41	WG979368
(S) 4-Bromofluorobenzene	105			80.0-120		05/13/2017 14:41	WG979368

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00238	0.00992	.992	05/15/2017 21:54	WG979504

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	524		66.0	200	1	05/13/2017 12:21	WG979247
Residual Range Organics (RRO)	874		82.5	250	1	05/13/2017 12:21	WG979247
(S) o-Terphenyl	95.4			52.0-156		05/13/2017 12:21	WG979247

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	68.8	<u>J</u>	66.0	200	1	05/13/2017 13:11	WG978857
Residual Range Organics (RRO)	U		82.5	250	1	05/13/2017 13:11	WG978857
(S) o-Terphenyl	84.4			52.0-156		05/13/2017 13:11	WG978857

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00820	0.100	2	05/15/2017 08:19	WG978858
Benzo(a)pyrene	U		0.0232	0.100	2	05/15/2017 08:19	WG978858
Benzo(b)fluoranthene	U		0.00424	0.100	2	05/15/2017 08:19	<u>WG978858</u>
Benzo(k)fluoranthene	U		0.0272	0.100	2	05/15/2017 08:19	<u>WG978858</u>
Chrysene	U		0.0216	0.100	2	05/15/2017 08:19	<u>WG978858</u>
Dibenz(a,h)anthracene	U		0.00792	0.100	2	05/15/2017 08:19	WG978858
Indeno(1,2,3-cd)pyrene	U		0.0296	0.100	2	05/15/2017 08:19	WG978858

MW-8

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 11:15

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

8270D-SIM L908444-02 WG978858: Cannot run at lower dilution due to viscosity of extract

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Naphthalene	0.0706	ī	0.0396	0.500	2	05/15/2017 08:19	WG978858
1-Methylnaphthalene	0.0314	<u>J</u>	0.0164	0.500	2	05/15/2017 08:19	WG978858
2-Methylnaphthalene	U		0.0180	0.500	2	05/15/2017 08:19	WG978858
(S) Nitrobenzene-d5	116			31.0-160		05/15/2017 08:19	WG978858
(S) 2-Fluorobiphenyl	113			48.0-148		05/15/2017 08:19	WG978858
(S) p-Terphenyl-d14	93.8			37.0-146		05/15/2017 08:19	WG978858

Sample Narrative:

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 11:50

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead	2.72	<u>J</u>	1.90	5.00	1	05/16/2017 19:11	WG979889	
Lead, Dissolved	U		1.90	5.00	1	05/12/2017 16:25	WG978898	

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

Res	sult <u>C</u>	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte ug/	/I		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH			31.6	100	1	05/13/2017 07:38	WG979070
(S) a,a,a-Trifluorotoluene(FID) 93.	2.3			77.0-122		05/13/2017 07:38	<u>WG979070</u>

[°]Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	·
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	05/13/2017 14:57	WG979368	
Toluene	1.55		0.412	1.00	1	05/13/2017 14:57	WG979368	
Ethylbenzene	U		0.384	1.00	1	05/13/2017 14:57	WG979368	
Total Xylenes	U		1.06	3.00	1	05/13/2017 14:57	WG979368	ı
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 14:57	WG979368	
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 14:57	WG979368	l
(S) Toluene-d8	106			80.0-120		05/13/2017 14:57	WG979368	
(S) Dibromofluoromethane	107			76.0-123		05/13/2017 14:57	WG979368	
(S) a,a,a-Trifluorotoluene	104			80.0-120		05/13/2017 14:57	WG979368	
(S) 4-Bromofluorobenzene	107			80.0-120		05/13/2017 14:57	WG979368	

ΆΙ

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00238	0.00994	.994	05/15/2017 22:04	WG979504

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	330		66.0	200	1	05/13/2017 12:37	WG979247
Residual Range Organics (RRO)	544		82.5	250	1	05/13/2017 12:37	WG979247
(S) o-Terphenyl	93.6			52.0-156		05/13/2017 12:37	WG979247

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.0	200	1	05/13/2017 13:27	WG978857
Residual Range Organics (RRO)	U		82.5	250	1	05/13/2017 13:27	WG978857
(S) o-Terphenyl	96.8			52.0-156		05/13/2017 13:27	WG978857

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	05/15/2017 08:43	WG978858
Benzo(a)pyrene	0.0126	<u>J</u>	0.0116	0.0500	1	05/15/2017 08:43	WG978858
Benzo(b)fluoranthene	U		0.00212	0.0500	1	05/15/2017 08:43	<u>WG978858</u>
Benzo(k)fluoranthene	U		0.0136	0.0500	1	05/15/2017 08:43	<u>WG978858</u>
Chrysene	U		0.0108	0.0500	1	05/15/2017 08:43	<u>WG978858</u>
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	05/15/2017 08:43	WG978858
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	05/15/2017 08:43	WG978858

MW-9

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 11:50

L908444

	<u> </u>	`	, ,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Naphthalene	0.915		0.0198	0.250	1	05/15/2017 08:43	WG978858
1-Methylnaphthalene	0.0942	<u>J</u>	0.00821	0.250	1	05/15/2017 08:43	WG978858
2-Methylnaphthalene	0.0921	<u>J</u>	0.00902	0.250	1	05/15/2017 08:43	WG978858
(S) Nitrobenzene-d5	120			31.0-160		05/15/2017 08:43	WG978858
(S) 2-Fluorobiphenyl	108			48.0-148		05/15/2017 08:43	WG978858
(S) p-Terphenyl-d14	94.2			37.0-146		05/15/2017 08:43	WG978858

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 12:30

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Lead	2.41	<u>J</u>	1.90	5.00	1	05/16/2017 18:54	WG979889	
Lead, Dissolved	U		1.90	5.00	1	05/12/2017 16:34	WG978898	

Ss

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	05/13/2017 08:00	WG979070
(S) a,a,a-Trifluorotoluene(FID)	92.5			77.0-122		05/13/2017 08:00	<u>WG979070</u>

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.331	1.00	1	05/13/2017 15:12	WG979368	
Toluene	0.569	<u>J</u>	0.412	1.00	1	05/13/2017 15:12	WG979368	
Ethylbenzene	U		0.384	1.00	1	05/13/2017 15:12	WG979368	
Total Xylenes	U		1.06	3.00	1	05/13/2017 15:12	WG979368	
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 15:12	WG979368	
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 15:12	WG979368	
(S) Toluene-d8	106			80.0-120		05/13/2017 15:12	WG979368	
(S) Dibromofluoromethane	103			76.0-123		05/13/2017 15:12	WG979368	
(S) a,a,a-Trifluorotoluene	101			80.0-120		05/13/2017 15:12	WG979368	
(S) 4-Bromofluorobenzene	106			80.0-120		05/13/2017 15:12	WG979368	

Sc

EDB / DBCP by Method 8011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Ethylene Dibromide	U		0.00238	0.00994	.994	05/15/2017 22:14	WG979504

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.0	200	1	05/13/2017 12:54	WG979247
Residual Range Organics (RRO)	132	<u>J</u>	82.5	250	1	05/13/2017 12:54	WG979247
(S) o-Terphenyl	102			52.0-156		05/13/2017 12:54	WG979247

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.0	200	1	05/13/2017 13:44	WG978857
Residual Range Organics (RRO)	U		82.5	250	1	05/13/2017 13:44	WG978857
(S) o-Terphenyl	79.6			52.0-156		05/13/2017 13:44	WG978857

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	05/15/2017 09:07	WG978858
Benzo(a)pyrene	U		0.0116	0.0500	1	05/15/2017 09:07	WG978858
Benzo(b)fluoranthene	U		0.00212	0.0500	1	05/15/2017 09:07	WG978858
Benzo(k)fluoranthene	U		0.0136	0.0500	1	05/15/2017 09:07	WG978858
Chrysene	U		0.0108	0.0500	1	05/15/2017 09:07	WG978858
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	05/15/2017 09:07	WG978858
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	05/15/2017 09:07	WG978858

MW-13

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 12:30

L908444

		()	-, , ,				
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Naphthalene	0.0460	<u>J</u>	0.0198	0.250	1	05/15/2017 09:07	WG978858
1-Methylnaphthalene	0.0142	<u>J</u>	0.00821	0.250	1	05/15/2017 09:07	WG978858
2-Methylnaphthalene	0.0127	<u>J</u>	0.00902	0.250	1	05/15/2017 09:07	WG978858
(S) Nitrobenzene-d5	118			31.0-160		05/15/2017 09:07	WG978858
(S) 2-Fluorobiphenyl	117			48.0-148		05/15/2017 09:07	WG978858
(S) p-Terphenyl-d14	107			37.0-146		05/15/2017 09:07	WG978858

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 00:00

L908444

Metals (ICP) by Method 6010C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Lead	U		1.90	5.00	1	05/16/2017 19:19	WG979889

²Tc

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	05/13/2017 08:23	WG979070
(S) a,a,a-Trifluorotoluene(FID)) 92.5			77.0-122		05/13/2017 08:23	WG979070

Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	05/13/2017 15:28	WG979368
Toluene	0.515	J	0.412	1.00	1	05/13/2017 15:28	WG979368
Ethylbenzene	U		0.384	1.00	1	05/13/2017 15:28	WG979368
Total Xylenes	U		1.06	3.00	1	05/13/2017 15:28	WG979368
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 15:28	WG979368
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 15:28	WG979368
(S) Toluene-d8	106			80.0-120		05/13/2017 15:28	WG979368
(S) Dibromofluoromethane	103			76.0-123		05/13/2017 15:28	WG979368
(S) a,a,a-Trifluorotoluene	101			80.0-120		05/13/2017 15:28	WG979368
(S) 4-Bromofluorobenzene	105			80.0-120		05/13/2017 15:28	WG979368

Gl

⁹Sc

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.0	200	1	05/13/2017 13:11	WG979247
Residual Range Organics (RRO)	102	<u>J</u>	82.5	250	1	05/13/2017 13:11	WG979247
(S) o-Terphenyl	99.2			52.0-156		05/13/2017 13:11	WG979247

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Diesel Range Organics (DRO)	U		66.0	200	1	05/13/2017 14:00	WG978857
Residual Range Organics (RRO)	U		82.5	250	1	05/13/2017 14:00	WG978857
(S) o-Terphenyl	83.7			52.0-156		05/13/2017 14:00	WG978857

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Benzo(a)anthracene	U		0.00410	0.0500	1	05/15/2017 09:31	WG978858
Benzo(a)pyrene	U		0.0116	0.0500	1	05/15/2017 09:31	WG978858
Benzo(b)fluoranthene	U		0.00212	0.0500	1	05/15/2017 09:31	WG978858
Benzo(k)fluoranthene	U		0.0136	0.0500	1	05/15/2017 09:31	WG978858
Chrysene	U		0.0108	0.0500	1	05/15/2017 09:31	WG978858
Dibenz(a,h)anthracene	U		0.00396	0.0500	1	05/15/2017 09:31	WG978858
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500	1	05/15/2017 09:31	WG978858
Naphthalene	0.0439	<u>J</u>	0.0198	0.250	1	05/15/2017 09:31	WG978858
1-Methylnaphthalene	0.0173	<u>J</u>	0.00821	0.250	1	05/15/2017 09:31	WG978858
2-Methylnaphthalene	0.0133	<u>J</u>	0.00902	0.250	1	05/15/2017 09:31	WG978858
(S) Nitrobenzene-d5	117			31.0-160		05/15/2017 09:31	WG978858
(S) 2-Fluorobiphenyl	116			48.0-148		05/15/2017 09:31	WG978858
(S) p-Terphenyl-d14	103			37.0-146		05/15/2017 09:31	<u>WG978858</u>

TRIP BLANK

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 05/08/17 00:00

L908444

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Gasoline Range Organics-NWTPH	U		31.6	100	1	05/13/2017 02:05	WG979070
(S) a,a,a-Trifluorotoluene(F	ID) 92.5			77.0-122		05/13/2017 02:05	WG979070

Ср

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.331	1.00	1	05/13/2017 10:49	WG979368
Toluene	U		0.412	1.00	1	05/13/2017 10:49	WG979368
Ethylbenzene	U		0.384	1.00	1	05/13/2017 10:49	WG979368
Total Xylenes	U		1.06	3.00	1	05/13/2017 10:49	WG979368
Methyl tert-butyl ether	U		0.367	1.00	1	05/13/2017 10:49	WG979368
1,2-Dichloroethane	U		0.361	1.00	1	05/13/2017 10:49	WG979368
(S) Toluene-d8	104			80.0-120		05/13/2017 10:49	WG979368
(S) Dibromofluoromethane	101			76.0-123		05/13/2017 10:49	WG979368
(S) a,a,a-Trifluorotoluene	103			80.0-120		05/13/2017 10:49	WG979368
(S) 4-Bromofluorobenzene	106			80.0-120		05/13/2017 10:49	WG979368

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010C

L908444-01,02,03,04

Method Blank (MB)

(MB) R3217862-1	05/12/17	15:22
		MR Po

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Lead, Dissolved	U		1.90	5.00

²Tc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Ī	// CC\ D22170C2 2	05/10/17 15:07	// CCD\ D22170C2 2	05/10/17 15:00
J	(LCS) R321/862-2	05/12/1/15:2/•	(LCSD) R3217862-3	05/12/1/ 15:29

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Lead, Dissolved	1000	995	994	99	99	80-120			0	20	

⁶Qc

L908431-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L908431-01 05/12/17 15:32 • (MS) R3217862-5 05/12/17 15:38 • (MSD) R3217862-6 05/12/17 15:41

(,	` '	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Lead, Dissolved	1000	U	1000	1010	100	101	1	75-125			1	20

ONE LAB. NATIONWIDE.

L908444-01,02,03,04,05

Martin and Diagram (MAD)

Metals (ICP) by Method 6010C

Method Blank (MB)

(LCS) R3218511-2	05/16/17 18:48 • (LCSD)	R3218511-3	05/16/1/ 18:51
	Spike Amount	LCS Result	LCSD Result

Analyte	ug/l	ug/l	ug/l	%	%	%
Lead	1000	1020	1020	102	102	80-120

LCS Rec.

LCSD Rec.

(OS) L908444-04 05/16/17 18:54 • (MS) R3218511-5 05/16/17 18:59 • (MSD) R3218511-6 05/16/17 19:02

(,		Original Result	•		MS Rec.		Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Lead	1000	2.41	1030	1030	103	103	1	75-125			0	20

Rec. Limits

LCS Qualifier

LCSD Qualifier

%

0

RPD Limits

%

20

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC) by Method NWTPHGX

L908444-01,02,03,04,05,06

Method Blank (MB)

(MB) R3218796-3 05/13/1	7 01:43					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Gasoline Range Organics-NWTPH	U		31.6	100		
(S) a,a,a-Trifluorotoluene(Fi	D) 93.3			77.0-122		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3218796-1 05/13/17 00:37 • (LCSD) R3218796-2 05/13/17 00:59											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Gasoline Range Organics-NWTPH	5500	5810	5720	106	104	72.0-134			1.53	20	
(S) a,a,a-Trifluorotoluene(FIL	0)			105	103	77.0-122					

L908431-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L908431-01 05/13/17 02:28 • (MS) R3218796-4 05/13/17 02:50 • (MSD) R3218796-5 05/13/17 03:12

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Gasoline Range Organics-NWTPH	5500	U	3120	2890	56.7	52.5	1	23.0-159			7.71	20	
(S) a,a,a-Trifluorotoluene(FID)	1				94.1	93.1		77.0-122					

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L908444-01,02,03,04,05,06

Method Blank (MB)

(MB) R3218788-3 05/13/17	7 09:56				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/l		ug/l	ug/l	
Benzene	U		0.331	1.00	
1,2-Dichloroethane	U		0.361	1.00	
Ethylbenzene	U		0.384	1.00	
Methyl tert-butyl ether	U		0.367	1.00	
Toluene	U		0.412	1.00	
Xylenes, Total	U		1.06	3.00	
(S) Toluene-d8	104			80.0-120	
(S) Dibromofluoromethane	104			76.0-123	
(S) a,a,a-Trifluorotoluene	103			80.0-120	
(S) 4-Bromofluorobenzene	106			80.0-120	

(LCS) R3218788-1 05/13/17 09:08 • (LCSD) R3218788-2 05/13/17 09:24										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Benzene	25.0	23.5	23.3	94.2	93.1	69.0-123			1.19	20
1,2-Dichloroethane	25.0	22.4	22.3	89.7	89.2	67.0-126			0.480	20
Ethylbenzene	25.0	22.6	22.9	90.2	91.6	77.0-120			1.51	20
Methyl tert-butyl ether	25.0	22.8	22.7	91.0	91.0	64.0-123			0.0500	20
Toluene	25.0	21.4	21.6	85.4	86.5	77.0-120			1.25	20
Xylenes, Total	75.0	67.2	67.7	89.6	90.3	77.0-120			0.740	20
(S) Toluene-d8				102	102	80.0-120				
(S) Dibromofluoromethane				105	104	76.0-123				
(S) a,a,a-Trifluorotoluene				101	101	80.0-120				
(S) 4-Bromofluorobenzene				99.1	99.8	80.0-120				

ONE LAB. NATIONWIDE.

EDB / DBCP by Method 8011

L908444-01,02,03,04

Method Blank (MB)

(MB) R3218183-1	05/15/17 17:31
	MD

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Ethylene Dibromide	U		0.00240	0.0100

²Tc

L908317-01 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Ethylene Dibromide	U	0.000	.994	0.000		20

(LCS) R3218183-4 05/15/17 18:53 • (LCSD) R3218183-5 05/15/17 19:03

(LCS) NS210105-4 03/13/1	7 10.55 • (LCSD)	113210103-3	03/13/1/ 13.03							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Ethylene Dibromide	0.250	0.292	0.286	117	114	60.0-140			2.20	20

⁹Sc

L908317-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L908317-02 05/15/17 17:52 • (MS) R3218183-2 05/15/17 17:42

(,		Original Result		MS Rec.	Dilution	Rec. Limits
Analyte	ug/l	ug/l	ug/l	%		%
Ethylene Dibromide	0.100	U	0.122	122	.997	72.0-146

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

L908444-01,02,03,04,05

Method Blank (MB)

(MB) R3218079-1 05/13/17	(MB) R3218079-1 05/13/17 11:14						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	ug/l		ug/l	ug/l			
Diesel Range Organics (DRO)	U		66.7	200			
Residual Range Organics (RRO)	U		83.3	250			
(S) o-Terphenyl	64.5			52.0-156			

(LCS) R3218079-2 05/13/17 11:30 • (LCSD) R3218079-3 05/13/17 11:47										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	875	948	117	126	50.0-150			7.94	20
Residual Range Organics (RRO)	750	693	776	92.5	104	50.0-150			11.3	20
(S) o-Terphenyl				98.1	102	52.0-156				

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-SGT

L908444-01,02,03,04,05

Method Blank (MB)

(MB) R3218153-1 05/13/17 12:06						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	ug/l		ug/l	ug/l		
Diesel Range Organics (DRO)	U		66.7	200		
Residual Range Organics (RRO)	U		83.3	250		
(S) o-Terphenyl	61.6			52.0-156		

_CS) R3218153-2 05/13/17 12:22 • (LCSD) R3218153-3 05/13/17 12:38										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Diesel Range Organics (DRO)	750	963	985	128	131	50.0-150			2.27	20
Residual Range Organics (RRO)	750	700	693	93.3	92.4	50.0-150			0.990	20
(S) o-Terphenyl				105	102	52.0-156				

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270D-SIM

L908444-01,02,03,04,05

Method Blank (MB)

MB) R3218469-3 05/15/17 07:06									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	ug/l		ug/l	ug/l					
Benzo(a)anthracene	U		0.00410	0.0500					
Benzo(a)pyrene	U		0.0116	0.0500					
Benzo(b)fluoranthene	U		0.00212	0.0500					
Benzo(k)fluoranthene	U		0.0136	0.0500					
Chrysene	U		0.0108	0.0500					
Dibenz(a,h)anthracene	U		0.00396	0.0500					
Indeno(1,2,3-cd)pyrene	U		0.0148	0.0500					
Naphthalene	U		0.0198	0.250					
1-Methylnaphthalene	U		0.00821	0.250					
2-Methylnaphthalene	U		0.00902	0.250					
(S) Nitrobenzene-d5	127			31.0-160					
(S) 2-Fluorobiphenyl	122			48.0-148					
(S) p-Terphenyl-d14	111			37.0-146					

(LCS) R3218469-1 05/15/17 06:18 • (LCSD) R3218469-2 05/15/17 06:42											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%	
Benzo(a)anthracene	2.00	1.92	1.92	96.0	96.2	59.0-134			0.190	20	
Benzo(a)pyrene	2.00	1.96	1.90	97.9	95.1	61.0-145			2.86	20	
Benzo(b)fluoranthene	2.00	1.88	1.81	94.1	90.4	57.0-136			3.97	20	
Benzo(k)fluoranthene	2.00	2.05	2.01	102	101	57.0-141			1.89	20	
Chrysene	2.00	1.98	1.86	99.1	92.8	63.0-140			6.58	20	
Dibenz(a,h)anthracene	2.00	2.19	2.09	109	104	49.0-141			4.67	20	
Indeno(1,2,3-cd)pyrene	2.00	2.13	2.07	106	104	53.0-141			2.62	20	
Naphthalene	2.00	1.83	1.78	91.5	89.1	68.0-129			2.74	20	
1-Methylnaphthalene	2.00	2.03	1.97	101	98.4	68.0-137			2.89	20	
2-Methylnaphthalene	2.00	1.93	1.89	96.3	94.4	68.0-134			2.02	20	
(S) Nitrobenzene-d5				112	112	31.0-160					
(S) 2-Fluorobiphenyl				117	114	48.0-148					
(S) p-Terphenyl-d14				102	101	37.0-146					

GLOSSARY OF TERMS

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crvpto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

100000000000000000000000000000000000000			Billing Infor	mation:	- P		2	W.	Ar	nalysis /	Contain	ner / Pre	servativ	/e	287		Chain of Custody	Page of
Arcadis - Seattle, WA 1100 Olive Way Suite 800			Attn: Accounts Payable 630 Plaza Dr., Ste. 600 Highlands Ranch, CO 80129			Pres Chk								27			*E	SC
Seattle WA 98101 Report to: Email To: Ryan.Bra			Email To: Ross.LaGrandeur@arcadis.com;							BT	ZI-BT		WT	NO3			YOUR LAB	OF CHOICE
			Ryan.Brauc	Brauchla@arcadis.com; City/State Collected: Ohwpra/WA											BIK		Mount Juliet, TN 37122 Phone: 615-758-858 Phone: 800-707-8859 Fax: 615-758-5859	
							HCI	Pres		HC					HC	_		
hone: 509-438-9828 ax:	Client Project # GP09BPNA.WA60			Lab Project # ARCABPWA-BPOLY			8260C 40mlAmb-HCl	250mlHDPE-NoPres	DPE-No hio	NWTPHDX (NO SGT) 40mlAmb-HCl-BT	40mlAmb-HCI-BT	CI	AH-SIMD 40mlAmb-NoPres-WT	6010C 250mlHDPE-HNO3	40mlAmb-HCI-BIK		F027	
ollected by (print): Eric Krueger (EK)	Site/Facility ID	BAY DR.	OLYMPIA,	P.O. # GP09BPNA	# 9BPNA.WA60		C 40r	HIE	10C 250mIHDPI 40mICIr-NaThio	T) 4(10m0	NWTPHGX 40mlAmb HCl	M-dm	Omli		2.105	Acctnum: ARCABPWA	
Collected by (signature): Rush? (Lab MUST Br				1.4		260	250	nicir	0 56	(SGT) 4	mIA	mIA	C 25	N/EE		Template:T120673		
when	Same Day Five Day Solay (Ri		Day v (Rad Only)	Date Re	Date Results Needed			6010C	40m	X (N	x (SC	X 40	0 40	5010	BTEXM/EDC	-	TSR: 110 - Brian	ogin: P598897 : 110 - Brian Ford
mmediately Packed on Ice N Y	Two Day 10 Day (Rad			nly)		No. of	M/E	Pb 6(8011	PHD	NWTPHDX	PHG	SIMI	q	bik 8		PB: 4-28-176— Shipped Via: FedEX Ground	
Sample ID	Comg/Grab	Matrix *	Depth	Date	ate Time		BTEXM/EDC	Diss	EDB	WN	N	NW	PAH-	Total F	trip	1.7	Remarks	Sample # (lab only)
F-WM	1	GW		5/8/1	1 1035	15	X	X	X	X	X	X	\times	X				-01
MW-8		GW	100		1115	1	X	X	\times	X	\times	X	\times	X			-	02
MW-9		GW	1-4	H 500 11	1150	11	X	X	\times	X	\times	X	X	X			190	03
MW-13		GW		100	1230		X	X	\times	X	X	X	\times	X	1000		772	04
Dup-1	4	GW		\ \	~	V	\times			X	X	X	X	\times			N. 17 1978	05
Trip Blank		GW		-	-	12	X		100		1000	\times			X		2 - 2	06
		GW	100	171	100		185				100		100				1.5	
		GW	1					1 2			100	34						
						1				210	1	18					le Receipt C	haski i se
Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Samples returned viat UPS _ FedEx _ Courier Tracking #					nesc	Flow Other Correct bottles									esent/Intact Accurate: ive intact: tles used:	7. 3.	
DW - Drinking Water OT - Other						ding#										Sufficient volume sent:		
Relinquished by : (Signature) Date: 5/9 Relinquished by : (Signature) Date:		A STATE OF THE STA	Time: Received by: (Sign							Trip Blank Received: (VES) No (15) / MeoH								
		7	Time:	nature)					Temp: W7 °C Bottles Received:				If presi	If preservation required by Login: Date/Time				
Relinquished by : (Signature) Date:		70/9	Time:	Received for lab by: (Signature)					Date: Time: 845					Hold:	Hold: Condition			

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 09.d Signal(s) : FID1A.ch

: 13 May 2017 12:04 pm Acq On

Operator : 614 Sample : L908444-01 1x WG979247 40-2

Misc : water ALS Vial

: 8 Sample Multiplier: 0.05 : SVGC31 InstName

Integration File: events.e
Quant Time: May 15 12:36:45 2017
Quant Method : C:\msdchem\1\methods\EP31D14Q.M

Quant Title

QLast Update : Wed Apr 12 14:09:24 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :

Quantitation Report (QT Reviewed)

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 13.d Signal(s) : FID1A.ch

: 13 May 2017 12:55 pm Acq On

Operator : 784 : L908444-01 1x WG978857 40-2 Sample Misc : water ALS Vial : 34 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e Quant Time: May 15 15:04:31 2017 Quant Method : C:\msdchem\1\methods\EP27E08Q.M

Quant Title :

QLast Update : Mon May 08 12:31:08 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase :

Signal Info : DataAcq Meth:EPH27Z2.M

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 10.d Signal(s) : FID1A.ch

: 13 May 2017 12:21 pm Acq On

Operator : 614 Sample : L908444-02 1x WG979247 40-2 Misc : water

InstName : SVGC31

ALS Vial

Integration File: events.e
Quant Time: May 15 12:37:30 2017
Quant Method : C:\msdchem\1\methods\EP31D14Q.M

: 9 Sample Multiplier: 0.05

Quant Title :

QLast Update : Wed Apr 12 14:09:24 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. :

Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 14.d Signal(s) : FID1A.ch

: 13 May 2017 1:11 pm Acq On Operator

: 784 : L908444-02 1x WG978857 40-2 Sample Misc : water ALS Vial : 35 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e Quant Time: May 15 15:05:03 2017 Quant Method : C:\msdchem\1\methods\EP27E08Q.M Quant Title :

QLast Update : Mon May 08 12:31:08 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase :

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 11.d Signal(s) : FID1A.ch

: 13 May 2017 12:37 pm Acq On

Operator : 614 Sample : L908444-03 1x WG979247 40-2 Misc : water

ALS Vial : 10 Sample Multiplier: 0.05 InstName : SVGC31

Integration File: events.e
Quant Time: May 15 12:38:46 2017
Quant Method : C:\msdchem\1\methods\EP31D14Q.M

Quant Title :

QLast Update : Wed Apr 12 14:09:24 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. :

Signal Phase : Signal Info :

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 15.d Signal(s) : FID1A.ch

: 13 May 2017 1:27 pm Acq On Operator

: 784 : L908444-03 1x WG978857 40-2 Sample Misc : water ALS Vial : 36 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e Quant Time: May 15 15:05:42 2017 Quant Method : C:\msdchem\1\methods\EP27E08Q.M Quant Title :

QLast Update : Mon May 08 12:31:08 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase :

no SGT

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 12.d Signal(s) : FID1A.ch

: 13 May 2017 12:54 pm Acq On

Operator : 614 Sample : L908444-04 1x WG979247 40-2

Misc : water ALS Vial : 11

Sample Multiplier: 0.05 : SVGC31 InstName

Integration File: events.e
Quant Time: May 15 12:40:18 2017
Quant Method : C:\msdchem\1\methods\EP31D14Q.M

Quant Title :

QLast Update : Wed Apr 12 14:09:24 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. :

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 16.d Signal(s) : FID1A.ch

: 13 May 2017 1:44 pm Acq On Operator

: 784 : L908444-04 1x WG978857 40-2 Sample Misc : water ALS Vial : 37 Sample Multiplier: 0.05

InstName : SVGC27

Integration File: events.e Quant Time: May 15 15:17:21 2017 Quant Method: C:\msdchem\1\methods\EP27E08Q.M

Quant Title :

QLast Update : Mon May 08 12:31:08 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase :

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 13.d Signal(s) : FID1A.ch

: 13 May 2017 1:11 pm Acq On

Operator : 614 Sample : L908444-05 1x WG979247 40-2 Misc : water

ALS Vial : 12

Sample Multiplier: 0.05 : SVGC31 InstName

Integration File: events.e
Quant Time: May 15 12:41:22 2017
Quant Method : C:\msdchem\1\methods\EP31D14Q.M

Quant Title :

QLast Update : Wed Apr 12 14:09:24 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. :

Data Path : C:\msdchem\1\data\051317\

Data File : 0513 17.d Signal(s) : FID1A.ch

: 13 May 2017 2:00 pm Acq On Operator

: 784 : L908444-05 1x WG978857 40-2 Sample Misc : water

ALS Vial : 38 Sample Multiplier: 0.05 InstName : SVGC27

Integration File: events.e Quant Time: May 15 15:28:42 2017 Quant Method : C:\msdchem\1\methods\EP27E08Q.M

Quant Title :

QLast Update : Mon May 08 12:31:08 2017 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal Phase :

APPENDIX E Terrestrial Ecological Evaluation Exclusion

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE		
Please identify below the hazardous waste site for which you are documenting an evaluation.		
Facility/Site Name: Industrial Petroleum Distributors		
Facility/Site Address: 1120 West Bay Drive Northwest, Olympia, Washington 98502		
Facility/Site No: 1436	VCP Project No.: Not applicable (N/A)	

Step 2: IDENTIFY EVALUATOR					
Please identify below the person who conducted the evaluation and their contact information.					
Name: Rory Henneck				Title: Staff Scientist	
Organization: Arcadis U.S., Inc.					
Mailing address: 1100 Olive Way, Suite 800					
City: Seattle		State: WA		Zip code: 98101	
Phone: 206-726-4732	Fax: 206-325-8218		E-mail: rory.henneck@arcadis.com		

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS A. Exclusion from further evaluation. 1. Does the Site qualify for an exclusion from further evaluation? ☐ Yes If you answered "YES," then answer Question 2. \bowtie No or If you answered "NO" or "UKNOWN," then skip to Step 3B of this form. Unknown 2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form. Point of Compliance: WAC 173-340-7491(1)(a) All soil contamination is, or will be,* at least 15 feet below the surface. All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination. Barriers to Exposure: WAC 173-340-7491(1)(b) All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination. Undeveloped Land: WAC 173-340-7491(1)(c) There is less than 0.25 acres of contiguous# undeveloped* land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene. For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous# undeveloped± land on or within 500 feet of any area of the Site. Background Concentrations: WAC 173-340-7491(1)(d) Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. [±] "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area

by wildlife.

В.	Simplified evaluation.				
1.	Does the S	Does the Site qualify for a simplified evaluation?			
	⊠ Ye	es If you answered "YES," then answer Question 2 below.			
	☐ N Unkno	o or own If you answered " NO " or " UNKNOWN, " then skip to Step 3C of this form.			
2.	Did you co	nduct a simplified evaluation?			
	⊠ Ye	es If you answered "YES," then answer Question 3 below.			
	□ N	o If you answered "NO," then skip to Step 3C of this form.			
3.	Was furthe	r evaluation necessary?			
		es If you answered "YES," then answer Question 4 below.			
	⊠ N	o If you answered "NO," then answer Question 5 below.			
4.	If further e	valuation was necessary, what did you do?			
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.			
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.			
5.	If no further evaluation was necessary, what was the reason? Check all that apply. Then skip to Step 4 of this form.				
	Exposure Analysis: WAC 173-340-7492(2)(a)				
	\boxtimes	Area of soil contamination at the Site is not more than 350 square feet.			
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.			
	Pathway A	nalysis: WAC 173-340-7492(2)(b)			
	No potential exposure pathways from soil contamination to ecological receptors.				
	Contaminant Analysis: WAC 173-340-7492(2)(c)				
	\boxtimes	No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.			
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.			
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.			
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.			

C.	C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c).							
1.	1. Was there a problem? See WAC 173-340-7493(2).							
	☐ Yes	If you ans	wered "YES," then answer Question 2 below.					
	☐ No	If you ans below:	wered "NO," then identify the reason here and then skip to Question 5					
			No issues were identified during the problem formulation step.					
			While issues were identified, those issues were addressed by the cleanup actions for protecting human health.					
2.	. What did you d	do to resolv	re the problem? See WAC 173-340-7493(3).					
		ed the conc lestion 5 be	entrations listed in Table 749-3 as cleanup levels. If so, then skip to elow.					
			nore of the methods listed in WAC 173-340-7493(3) to evaluate and entified problem. If so, then answer Questions 3 and 4 below.					
3.	3. If you conducted further site-specific evaluations, what methods did you use? Check all that apply. See WAC 173-340-7493(3).							
	Literature surveys.							
	Soil bioassays.							
	☐ Wildlife exposure model.							
	Biomarkers.							
	Site-specific field studies.							
	☐ Weight of evidence.							
	Oth	ner methods	s approved by Ecology. If so, please specify:					
4.	4. What was the result of those evaluations?							
	Со	nfirmed the	re was no problem.					
	Со	nfirmed the	re was a problem and established site-specific cleanup levels.					
5.	5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?							
	☐ Yes	If so, plea	se identify the Ecology staff who approved those steps:					
	□ No							

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region: Attn: VCP Coordinator 3190 160 th Ave. SE Bellevue, WA 98008-5452	Central Region: Attn: VCP Coordinator 1250 West Alder St. Union Gap, WA 98903-0009	
Southwest Region: Attn: VCP Coordinator P.O. Box 47775 Olympia, WA 98504-7775	Eastern Region: Attn: VCP Coordinator N. 4601 Monroe Spokane WA 99205-1295	

Arcadis U.S., Inc.

1100 Olive Way

Suite 800

Seattle, Washington 98101

Tel 206 325 5254

Fax 206 325 8218

www.arcadis.com