

Oregon Office

1176 West 7th Avenue Eugene, Oregon 97402 Ph: (541) 743-2600 Fax: (541) 743-2471 www.etgroupinc.com

September 21, 2018 Project 2004-004.002

Ms. Jing Song Washington Department of Ecology -Toxic Cleanup Program, NWRO 3190 160th Avenue Southeast Bellevue, Washington 98008

Re: Third Quarter 2018 Groundwater Monitoring Report, Former Provisioner's Express, Inc. Facility, 2102 West Valley Highway North, Auburn, Washington, Ecology Facility ID 91612121, Cleanup Site ID 6847, VCP Project No. 3206

Dear Ms. Song:

Environmental Technologies Group, Inc. (ETG), on behalf of Commerce Road Terminals, LLC (CRT), has prepared this groundwater monitoring report to provide the results of the third quarter 2018 groundwater monitoring completed at the former Provisioner's Express, Inc. (Provisioner's) facility (Site) located at 2102 West Valley Highway North in Auburn, Washington. This report presents the details and findings of the groundwater monitoring activities conducted at the Site on August 23, 2018.

SITE DESCRIPTION

The former Provisioner's facility is located at 2102 West Valley Highway North Auburn, Washington, east of the intersection of 22nd street Northwest and West Valley Highway North, northwest quarter of Section 12, Township 21 North, Range 4 East, Willamette Meridian in King County, Washington (Figure 1). The Tax Parcel No. for the property is 1221049034, and the zoning is designated M-1, Light Industrial.

The facility is currently operated by Estes Express Lines (Estes), a motor freight transportation company. Estes uses the Site primarily as a trucking terminal, and includes a maintenance garage.

The property is fully paved or covered by buildings and has a storm water conveyance system consisting of catch basins that are connected to an oil/water separator through underground piping with discharge to the municipal sewer system. Pavement is primarily asphalt with concrete pads surrounding the on-Site buildings and loading bays.

The topography of the property is relatively flat with an approximate elevation of 65 feet above mean sea level. Mill Creek and the White River Park Wetland System are the

Third Quarter Groundwater Report, final

nearest surface water bodies and are located approximate 200 feet to the southeast of the Site. A drainage ditch flowing to the White River Park Wetland System is present near the south property boundary, approximately 40 feet south of the Site. The property and the Site are separated from Mill Creek and the White River Park Wetland System by an adjoining property. The nearest major surface water body, the Green River, is located approximately 1.7 miles east of the Site.

The property contains a single Washington Department of Ecology (Ecology) Model Toxics Control Act (MTCA) site that is defined by the lateral and vertical extent of soil and groundwater impacted by diesel and oil range petroleum hydrocarbons (TPH-d and TPH-o) at concentrations greater than applicable MTCA Method A Cleanup Levels (CULs). Under the MTCA program, the Facility Site Identification No. is 91612121, Cleanup Site Identification No. is 6847, and in July 2018 the Voluntary Cleanup Program (VCP) number was change from NW2532, to VCP No. 3206 when CRT became responsible for the Site cleanup.

BACKGROUND

Soil and groundwater at the Site were impacted by petroleum hydrocarbon releases from conveyance piping related to a 550-gallon used oil underground storage tank (UST) located near the northwest corner of the truck maintenance building (Figure 2). The UST and approximately 350 cubic yards of petroleum-contaminated soil (PCS) were removed for disposal off-Site, and four monitoring wells, designated MW-1, MW-2, MW-3, and MW-4, were constructed in December 1998 (EMR, 1999).

In January 2000, Ecology issued a conditional No Further Action (NFA) determination for the Site. The NFA contained the condition that quarterly groundwater monitoring and reporting be continued until the *site demonstrates sustained, continuous compliance with Model Toxics Control Act (MTCA) Groundwater Cleanup Levels (CULs) for at least one year.* The NFA also stipulated that analytical results for groundwater compliance *shall include BTEX {benzene, toluene, ethylbenzene, and xylene), diesel, and heavy oils.*" Available records indicate that the monitoring wells were sampled approximately every quarter from December 1998 until October 2002.

In November 2002, the Site owner petitioned for a full NFA determination based on three (3) years of data demonstrating that benzene groundwater concentrations greater than MTCA Method A CULs was confined to the area on the north side of the maintenance building around MW-2. At that time, the sample collected from MW-2 had a gasoline range petroleum hydrocarbon (TPH-g) concentration of 180 micrograms per liter (μ g/L) and a benzene concentration of 12.0 μ g/L. The reported TPH-g concentration was less than the MTCA Method A CUL of 800 μ g/L. However, the benzene concentration exceeded the MTCA Method A CUL of 5 μ g/L. No other BTEX compounds, TPH-d, or TPH-o were reported in the sample collected from MW-2. Reported contaminant concentrations for the samples collected from the remaining monitoring wells were also below MTCA Method A CULs.

Ms. Jing Song September 21, 2018 Page 3

Groundwater sampling was discontinued in late 2002 and the Site did not receive a full NFA determination, due to the benzene concentration exceeding the MTCA Method A CUL in the samples from MW-2. Records indicate that the Site was subsequently dropped from Ecology's VCP due to inactivity.

The Site re-entered the VCP in August 2011 and was assigned VCP No. NW 2532. Quarterly groundwater sampling of the four on-Site wells was resumed in August 2011. On March 26, 2012, Ecology notified the Site owner that the January 2000 conditional NFA determination was rescinded because the benzene concentrations in groundwater samples collected from well MW-2 remained greater than the MTCA Method A CUL and the previous groundwater remedy (excavation of petroleum impacted soils followed by groundwater monitoring) did not achieve and maintain compliance with the applicable MTCA Method A CULs.

On November 28, 2012, a 12,000-gallon diesel fuel UST was removed south of the truck maintenance building (Figure 2). According to available information, the UST was emptied and removed from service in 1998 when the 550-gallon waste oil UST was decommissioned, and had not been operated between 1998 and 2012. EPI personnel oversaw the UST decommissioning activities and collected nine (9) soil samples and a water sample from the excavation. The diesel contaminated water in the excavation was reportedly rinsate from the UST that was spilled as it was removed from the excavation due to improper rigging and hoisting of the UST. EPI prepared the *Underground Storage Tank Site Assessment Report* (EPI, 2013a), dated January 4, 2013, for submittal to Ecology's Underground Storage Tank Division.

In an opinion letter dated April 22, 2013, Ecology requested installation of two additional monitoring wells designated MW-5 and MW-6. Well MW-5 was installed at the southwest corner of the truck maintenance building, near the on-Site oil/water separator (OWS), to monitor groundwater downgradient of MW-1. Well MW-6 was installed at the southeast corner of the former 12,000-gallon diesel UST excavation to evaluate groundwater quality based on the reported petroleum hydrocarbon concentrations in a water sample collected from the spilled rinsate water in the UST excavation (EPI, 2013b).

In October 2013, EPI performed a site investigation at Ecology's request. The investigation included advancing nine (9) direct-push soil borings DP-1 through DP-9 (Figure 2); five were located around MW-1 and four were located downgradient of MW-6. Laboratory analytical results indicated soil impacts around MW-1 were limited to location DP-3, which was immediately adjacent to the exterior wall of the northwest corner of the Truck Maintenance Building. This result was anticipated because a small quantity of impacted soil was left in place immediately under the truck maintenance building to maintain geotechnical stability during impacted soil excavation. None of the remaining soil samples had detections for petroleum hydrocarbons (EPI, 2013b).

On August 26, 2016, EPI directed the advancement of two soil borings, designated BH-1 and BH-2 for soil sample collection, and construction of two conditional point of compliance (POC) monitoring wells, designated MW-7 and MW-8. BH-1 and BH-2 were advanced east of the former 12,000-gallon diesel UST to evaluate subsurface conditions immediately downgradient of the former UST. Well MW-7 was installed southeast and downgradient of the former 12,000-gallon diesel UST and existing well MW-6. Well MW-8 was installed northeast of MW-7, also downgradient of the former 12,000-gallon diesel UST and existing well MW-6. The purpose of the POC monitoring wells was to monitor groundwater conditions downgradient of the former 12,000-gallon diesel UST, which is a source area for diesel impacts to groundwater at the Site (EPI, 2017a). The soil boring and monitoring wells locations are presented on Figure 2.

On August 11, 2017, monitoring well MW-9 was installed by Holt Services near the northwest corner of the truck maintenance building (Figure 2). The additional well was requested by CRT as part of their environmental due diligence prior to their purchase of the property. Historical direct-push sampling data from this location indicated TPH-d and TPH-o above MTCA Method A in a groundwater sample collected from the boring (EPI, 2017b).

On May 17, 2018, during collection of depth-to-water measurements, asphalt sealant was encountered in the monument for MW-8. After removal of the asphalt sealant, it was discovered that the locking expansion plug for the monitoring well was loose, and that asphalt sealant had seeped past the plug. Visible material was skimmed from the well surface and the monitoring well was purged of approximately 30 gallons of groundwater prior to sampling. TPH-d and TPH-o were reported above MTCA Method A cleanup levels in the groundwater sample collected on May 17, 2018.

On June 5, 2018, ETG cleaned the casing for monitoring well MW-8, using clean absorbent pads to wipe the well casing. Following cleaning, the well was developed by extracting water with a development pump beginning at the top of the groundwater surface and lowering the pump as groundwater dropped in elevation. This process was repeated approximately 15 times until the purge water no longer changed in color between purging events. A total of 25 gallons of groundwater was removed from the well. The well was resampled following cleaning and development. Though significant reduction in TPH-d and TPH-o concentrations were reported, laboratory analytical results still reported TPH-d and TPH-o above MTCA Method A cleanup levels in the groundwater sample.

Remedial System

In 2014, because groundwater data indicated that natural attenuation of the residual TPH-d and TPH-o impacts was not occurring at a rate that would result in a reasonable restoration timeframe, an active groundwater remediation system was designed, installed, and operated for the area around MW-1 as described in the following.

Ms. Jing Song September 21, 2018 Page 5

In May 2014, EPI installed three shallow air injection wells at locations upgradient of MW-1 (Figure 2) to add dissolved oxygen (DO) to the groundwater. The increased DO concentrations in groundwater would stimulate existing aerobic bacteria by providing the oxygen necessary for those bacteria to metabolize dissolved petroleum hydrocarbons in groundwater at a higher rate.

Each of the shallow air injection wells was equipped with a 1-foot section of Kerfoot Technologies C-Sparger® screen set in a sand filter pack and set below groundwater at approximately 14 to 15 feet bgs. Pressurized air pumped through the C-Sparger® screens forces air, containing oxygen, into groundwater as microbubbles, greatly increasing the surface area of the bubbles for more efficient oxygenation of the groundwater. The remaining well annulus was sealed using hydrated bentonite chips and the surface was completed in 8-inch diameter flush completion steel monuments set in concrete.

An appropriately-sized rotary vane air compressor was installed in the fenced area at the north end of the truck maintenance building to provide air to the shallow air injection wells. The shallow air injection wells are connected to the compressor using 1-inch diameter polyvinyl chloride (PVC) piping installed below grade into each of the well monuments. PVC air supply lines were installed in trenches that were appropriately backfilled and patched with asphalt at the surface to match the surrounding pavement grade.

The remediation system was started and tested on May 15, 2014 after quarterly groundwater monitoring was completed. An electrical issue with the compressor's motor caused the air injection remediation system to shut down in August 2014. Analytical results from the August 2014 monitoring event indicated that TPH-d and TPH-o concentrations were not reported, at or above laboratory method reporting limits (MRLs) in the sample from MW-1. Based on the favorable result, remediation system operation was suspended at MW-1 from August 2014 to April 2015 so that groundwater data could be collected to demonstrate that groundwater was remediated to concentrations below Ecology MTCA Method A Groundwater CULs, and to provide data intended to demonstrate that contaminant concentration rebound was not occurring.

The positive response to operation of the air injection remediation system at MW-1 demonstrated that expansion to remediate impacted groundwater at MW-6 was warranted. In January 2015, EPI installed three additional shallow air injection wells at locations upgradient of MW-6 (Figure 2). The three wells are constructed like the air injection wells at MW-1, equipped with 1-foot lengths of Kerfoot Technologies C-Sparger® screen set in a sand filter pack and set below groundwater at approximately 14 to 15 feet bgs.

Operation of the expanded air injection remediation system at MW-6 was initiated on April 3, 2015. The expanded system at MW-6 ran from April until June 2015 when an

Ms. Jing Song September 21, 2018 Page 6

electrical issue with the compressor's motor caused the air injection remediation system to shut down, requiring replacement.

Repairs to the air injection system were completed and the remediation system was restarted on February 3, 2016. However, the system was not operational during the June 21, 2016 groundwater sampling event and inspection revealed that the compressor motor was damaged due to overheating. EPI was informed that the system had been off for several weeks prior to the sampling event.

EPI evaluated the potential reasons for the compressor motor overheating and the likely cause was low voltage power throughout the area, which was measured at 208 volts at the air injection system panel. The actual voltage was lower than the design voltage of 220-230 volts. EPI concluded that although the compressor motor was rated to operate at 208 volts, voltage fluctuations below 208 volts caused high amperage on the motor, resulting in excessive heat that eventually burned-out the motor.

In November 2016, EPI installed a 1.5 horsepower, Republic Manufacturing, Model DRT-425 rotary vane compressor with a 208-volt-specific motor. The compressor was started up on November 16, 2016. The system was operational before and after the December 20, 2016 groundwater sampling event. Sometime between the December 20, 2016 monitoring event and a site visit by EPI personnel on March 20, 2017, the air injection system shut down. On March 20, 2017, EPI personnel inspected the compressor and determined that the rotary vanes were destroyed and required replacement. The compressor repair work was completed under warranty at the manufacturer's facility.

The repaired compressor was reconnected and returned to service on June 19, 2017. Both areas of the air injection system MW-1 and MW-6, were back in operation following the completion of groundwater monitoring on June 19, 2017.

Since installation in 2015, air injection well Al-6, located near monitoring well MW-6, consistently had little to no air flow. EPI tested, evaluated, and attempted to increase air flow through this point with no measurable improvement and determined that the well was plugged and unrepairable. On June 26, 2017, Holocene Drilling, under EPI direction, decommissioned Al-6 per Ecology requirements and replaced it with air injection well Al-6R.

The air injection system was inspected during a Site visit by EPI on December 14, 2017 and again during quarterly monitoring on December 20, 2017 and was operating as designed with no excessive heat or mechanical issues noted. EPI returned to the property on January 2, 2018 to re-sample wells MW-4, MW-6, and MW-6 and noted that the air compressor was not running. The compressor was replaced, and the air injection system re-started (EPI, 2018).

GROUNDWATER MONITORING

On August 23, 2018, ETG conducted a groundwater monitoring event which included collection of depth-to-water measurements from monitoring wells MW-1 through MW-9. As requested by Ecology, groundwater samples were collected from monitoring wells MW-1, MW-6, MW-8, and MW-9. Depth-to-water measurements and groundwater elevation data are provided in Table 1. On August 21, 2018, approximately 36-hours prior to the monitoring event, operation of the air injection system was suspended.

Monitoring Procedures

During the monitoring event, groundwater samples were collected utilizing "low-flow" sampling techniques in general accordance with the United States Environmental Protection Agency (USEPA) Low-Flow Groundwater Monitoring Procedures (USEPA, 1996). Prior to sampling, depth-to-water measurements were used to determine the static water level in each well. During purging, field parameters including: pH, conductivity, temperature, oxidation-reduction (Redox), and dissolved oxygen were measured utilizing a flow-through cell. Groundwater samples were collected after at least three sequential field parameter readings had stabilized to within the limits specified in the USEPA procedure and the water level was below the top of the screened interval. Field sampling data, including depth-to-water at the completion of sampling were recorded on field sampling data sheets (FSDSs). Copies of FSDSs are provided in Attachment A.

Groundwater samples were collected from disposable discharge tubing connected to the peristaltic pump and transferred directly to laboratory-supplied containers with as little agitation as possible. Groundwater samples were labeled with a unique blind code and delivered in an iced cooler using chain-of-custody (COC) procedure to Pace Analytical Services, LLC (PACE) in Minneapolis, Minnesota. All groundwater samples were analyzed for TPH-d and TPH-o by Ecology Method NWTPH-Dx. At the request of Ecology, the groundwater sample from MW-8 was also analyzed for: full list volatile organic compounds (VOCs) by USEPA Method 8260B, carcinogenic polynuclear aromatic hydrocarbons (cPAHs) by USEPA Method 8270D Selected Ion Monitoring (SIM), total lead by USEPA Method 6010D, and polychlorinated biphenyls (PCBs) by USEPA Method 8082A. For quality assurance/quality control (QA/QC) purposes, a duplicate groundwater sample was collected from monitoring well MW-9.

All purge water, development water, and decontamination water was stored on-Site in a United States Department of Transportation (USDOT) approved 55-gallon drum pending proper disposal.

Groundwater Elevation and Flow Direction

Based on the depth-to-water measurements collected on August 23, 2018 from the nine (9) shallow monitoring wells, a groundwater elevation contour map was generated for the Site (Figure 3) using field measurements and data from a well survey completed on

September 19, 2017. Groundwater elevation data indicated a predominantly easterly groundwater flow direction, consistent with prior monitoring events. The horizontal groundwater gradient was calculated to be less than 0.01 feet per foot (ft/ft) during the August 23, 2018 groundwater monitoring event.

Groundwater Analytical Results

A summary of select laboratory analytical results for groundwater samples collected from monitoring wells MW-1, MW-6, MW-8, and MW-9 on August 23, 2018 are provided in Table 2 along with Ecology MTCA Method A CULs for comparison. TPH-d and TPH-o analytical results are also presented on Figure 4. A copy of the laboratory analytical report is provided as Attachment B.

Analytical results for groundwater samples collected from monitoring wells MW-1, MW-6, MW-8, and MW-9 on August 23, 2018 indicated the following:

Diesel Range Hydrocarbons

• TPH-d was reported above the laboratory MRL in the groundwater samples collected from well MW-8, and the primary and duplicate samples collected from well MW-9 at concentrations ranging from 450 micrograms per liter (μg/L) in the groundwater sample collected from monitoring well MW-8 to 790 μg/L in the primary groundwater sample collected from monitoring well MW-9. The reported results for the primary and duplicate samples collected from MW-9 were above the Ecology MTCA Method A CUL (500 μg/L).

TPH-d was not reported at, or above, the laboratory MRL in the groundwater samples collected from monitoring wells MW-1 and MW-6.

Oil Range Hydrocarbons

• TPH-o was not reported at, or above, the laboratory MRL in the groundwater samples collected from monitoring wells MW-1, MW-6, MW-8 and MW-9.

Total Diesel and Oil Range Hydrocarbons

- Total TPH-d and TPH-o was reported above the Ecology MTCA Method A CUL (500 μg/L) in the primary and duplicate groundwater samples collected from well MW-9 at concentrations of 790 and 700 μg/L, respectively.
- Total TPH-d and TPH-o was reported above the laboratory MRL but below the Ecology MTCA Method A CUL in the groundwater sample collected from well MW-8 at a concentration of 450 μ g/L.
- Total TPH-d and TPH-o was reported below the laboratory MRL in the groundwater samples collected from monitoring wells MW-1 and MW-9.

VOCs

• VOCs were not reported at, or above, the laboratory MRL in the groundwater sample collected from well MW-8.

cPAHs

• cPAHs were not reported at, or above, the laboratory MRL in the groundwater sample collected from well MW-8.

PCBs

• PCBs were not reported at, or above, the laboratory MRL in the groundwater sample collected from well MW-8.

Total Lead

• Total lead was not reported at, or above, the laboratory MRL in the groundwater sample collected from wells MW-8.

REMEDIAL SYSTEM OPERATION

On August 9, 2018, the air sparging system was inspected, and flow and pressure operational data collected. On August 21, 2018 at 11:00 AM, operation of the air injection system was suspended for the August 23, 2018 groundwater monitoring event. Following completion of the monitoring event, a system maintenance event was completed. The external filter for the air sparging system blower was replaced and the internal air filters were cleaned. The air sparging system resumed operations after completion of the maintenance event. Copies of the air sparging treatment system data sheets (TSDS) are provided as Attachment C.

Dissolved oxygen data collected during the August 2018 monitoring event (Table 1) indicate lower concentrations in groundwater downgradient of the injection wells, indicative of microbial activity in the subsurface.

Based on the August 2018 monitoring results, air injection system operation will continue until a conditional NFA has been completed at the Site. Continued operation will provide subsurface oxygen to enhance the natural attenuation of residual petroleum hydrocarbons in soil and groundwater near MW-1, MW-4, MW-6, and MW-9.

SCHEDULED ACTIONS

The fourth quarter groundwater monitoring event is scheduled to occur in November 2018. Groundwater level measurements were be collected from monitoring wells MW-1 through MW-9. Groundwater samples will be collected from monitoring wells MW-1, MW-6, MW-8, and MW-9 and analyzed for TPH-d and TPH-o.

Ms. Jing Song September 21, 2018 Page 10

If there are any questions regarding this report please call.

Sincerely,

Environmental Technologies Group, Inc.

Daniel J. Landry Senior Project Manager

Attachments: References

Limitations
Tables 1 and 2

Figures 1, 2, 3, and 4 Attachment A, B, and C

cc: Ms. Angela Maidment, CRT

David M. Seaver, L.G. Senior Geologist

REFERENCES

- EMR. 1999. *Remedial Investigation/Feasibility Study*, Provisioners Express Auburn Facility, 2102 West Valley Highway, Auburn, Washington. Environmental Management Resources, Inc. March.
- EPI. 2013a. *Underground Storage Tank Site Assessment Report*, Estes Express Facility, 2102 West Valley Highway North, Auburn, Washington. Environmental Partners, Inc. January 4.
- EPI. 2013b. *Phase II Environmental Site Assessment Report*, Estes West Express Trucking Facility, 2102 West Valley Highway North, Auburn, Washington. Environmental Partners, Inc. December 9.
- EPI. 2017a. September and December 2016 Groundwater Sampling Report Twenty and Twenty-First Rounds, Estes West Express Trucking Facility, 2102 West Valley Highway North, Auburn, Washington. Environmental Partners, Inc. February 24.
- EPI. 2017b. September 2017 Groundwater Sampling Report Twenty-Fourth Round, Estes West Express Trucking Facility, 2102 West Valley Highway North, Auburn, Washington. Environmental Partners, Inc. October 3.
- EPI. 2018. December 2017 January 2018 Groundwater Sampling Report Twenty-Fifth Round, Estes West Express Trucking Facility, 2102 West Valley Highway North, Auburn, Washington. Environmental Partners, Inc. February 21.
- USEPA. 1996. Low-Flow Groundwater Monitoring Procedures, USEPA/540/S-95/504, United States Environmental Protection Agency. April.

LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

The purpose of a geologic/hydrogeologic study is to reasonably characterize existing site conditions based on the geology/hydrogeology of the area. In performing such a study, it is understood that a balance must be struck between a reasonable inquiry into the site conditions and an exhaustive analysis of each conceivable environmental characteristic. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation is thorough enough to describe all geologic/hydrogeologic conditions of interest at a given site. If conditions have not been identified during the study, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the services performed within the scope, limitations, and cost of the work performed.

We are unable to report on or accurately predict events that may change the site conditions after the described services are performed, whether occurring naturally or caused by external forces. We assume no responsibility for conditions we were not authorized to evaluate, or conditions not generally recognized as predictable when services were performed.

Geologic/hydrogeologic conditions may exist at the site that cannot be identified solely by visual observation. Where subsurface exploratory work was performed, our professional opinions are based in part on interpretation of data from discrete sampling locations that may not represent actual conditions at unsampled locations.

Table 1
Groundwater Elevation Summary

		D'1			
Well Number/	Date of	Dissolved Oxygen	DTW	SWL	Change in SWL
TOC Elevation	Measurement	(mg/L)	(feet)	(feet)	(feet)
MW-1		(g ,)			
60.77	08/12/11		6.12	54.65	
	11/11/11		5.42	55.35	0.70
	02/10/12		4.76	56.01	0.66
	05/17/12		5.35	55.42	-0.59
	08/28/12		6.28	54.49	-0.93
	11/15/12		4.99	55.78	1.29
	02/14/13		5.22	55.55	-0.23
	05/16/13		5.42	55.35	-0.20
	08/14/13	0.21	6.17	54.60	-0.75
	11/25/13	0.29	5.06	55.71	1.11
	02/20/14	0.25	3.62	57.15	1.44
	05/15/14	0.41	4.76	56.01	-1.14
	08/14/14	7.69	7.32	53.45	-2.56
	11/24/14	0.67	5.22	55.55	2.10
	03/31/15	0.45	4.99	55.78	0.23
	06/29/15	0.15	6.23	54.54	-1.24
	09/28/15	0.40	6.37	54.40	-0.14
	03/03/16	10.71	2.18	58.59	4.19
	06/21/16	4.82	5.82	54.95	-3.64
	09/16/16	0.16	5.99	54.78	-0.17
	12/20/16 03/24/17	7.69 1.99	4.92 3.33	55.85 57.44	1.07 1.59
	05/24/17	0.93	4.25	56.52	-0.92
	09/05/17	0.49	6.17	54.60	-1.92
	12/20/17	11.2	4.45	56.32	1.72
	05/17/18	5.90	5.50	55.27	-1.05
	08/23/18	3.37	6.54	54.23	-1.04
MW-2					
60.85	08/12/11		5.51	55.34	
00.03	11/11/11		5.13	55.72	0.38
	02/10/12		4.94	55.91	0.19
	05/17/12		5.42	55.43	-0.48
	08/28/12		6.40	54.45	-0.98
	11/15/12		5.12	55.73	1.28
	02/14/13		5.32	55.53	-0.20
	05/16/13		5.48	55.37	-0.16
	08/14/13	0.58	6.33	54.52	-0.85
	11/25/13	0.27	5.14	55.71	1.19
	02/20/14	3.08	2.23	58.62	2.91
	05/15/14	0.12	4.86	55.99	-2.63
	08/14/14	0.36	4.93	55.92	-0.07
	11/24/14	0.14	3.70	57.15	1.23
	03/31/15 06/29/15	2.12 0.28	5.02	55.83 54.49	-1.32 -1.34
	06/29/15	0.28	6.36 6.50	54.49 54.35	-1.34 -0.14
	03/03/16	1.34	2.64	58.21	3.86
	06/21/16	0.74	5.95	54.90	-3.31
	09/16/16	0.15	6.13	54.72	-0.18
	12/20/16	0.87	4.71	56.14	1.42
	03/24/17		3.09	57.76	1.62
	06/16/17	0.51	4.75	56.10	-1.66
	09/05/17	0.55	6.32	54.53	-1.57
	12/20/17	4.41	4.21	56.64	2.11
	05/17/18	0.56	5.60	55.25	-1.39
	08/23/18		6.68	54.17	-1.08

Table 1
Groundwater Elevation Summary

		Dissolved			
Well Number/ TOC Elevation	Date of Measurement	Oxygen	DTW (feet)	SWL (feet)	Change in SWL (feet)
	Wieasurement	(mg/L)	(leet)	(leet)	(leet)
MW-3	00/12/11		5.54	55.06	
60.80	08/12/11 11/11/11		5.54 8.90	55.26 51.90	 -3.36
	02/10/12		5.05	55.75	3.85
	05/17/12		5.60	55.20	-0.55
	08/28/12		6.40	54.40	-0.80
	11/15/12		5.25	55.55	1.15
	02/14/13		5.38	55.42	-0.13
	05/16/13		5.56	55.24	-0.18
	08/14/18	0.37	6.31	54.49	-0.75
	11/25/13	0.41	5.22	55.58	1.09
	02/20/14	0.26	4.34	56.46	0.88
	05/15/14	0.77	5.03	55.77	-0.69
	08/14/14	0.29	6.28	54.52	-1.25
	11/24/14	0.05	5.21	55.59	1.07
	03/31/15	1.24	5.15	55.65	0.06
	06/29/15	0.25	6.37	54.43	-1.22
	09/28/15	0.25	6.51	54.29	-0.14
	03/03/16	1.48	4.55	56.25	1.96
	06/21/16	0.90	5.93	54.87	-1.38
	09/16/16	0.11	6.09	54.71	-0.16
	12/20/16 03/24/17	1.94	5.38 4.57	55.42	0.71 0.81
	06/16/17	0.29	5.23	56.23 55.57	-0.66
	09/05/17	0.29	6.30	54.50	-0.00
	12/20/17	0.21	4.91	55.89	1.39
	05/17/18	0.71	5.63	55.17	-0.72
	08/23/18		6.63	54.17	-1.00
MW-4					
60.93	08/12/11		6.37	54.56	
	11/11/11		5.65	55.28	0.72
	02/10/12		5.20	55.73	0.45
	05/17/12		5.63	55.30	-0.43
	08/28/12		6.50	54.43	-0.87
	11/15/12		5.36	55.57	1.14
	02/14/13		5.50	55.43	-0.14
	05/16/13		5.67	55.26	-0.17
	08/14/13	0.18	6.42	54.51	-0.75
	11/25/13 02/20/14	0.37	5.31 4.45	55.62 56.48	1.11 0.86
	05/15/14	0.37	5.14	55.79	-0.69
	08/14/14	0.43	6.33	54.60	-1.19
	11/24/14	0.27	5.27	55.66	1.06
	03/31/15	0.98	5.27	55.66	0.00
	06/29/15	0.15	6.45	54.48	-1.18
	09/28/15	0.27	6.62	54.31	-0.17
	03/03/16	4.79	3.20	57.73	3.42
	06/21/16	0.49	6.11	54.82	-2.91
	09/16/16	0.64	6.40	54.53	-0.29
	12/20/16	0.75	6.32	54.61	0.08
	03/24/17	0.23	4.69	56.24	1.63
	06/16/17	0.24	5.36	55.57	-0.67
	09/05/17 12/20/17	0.58	6.39	54.54 55.03	-1.03 1.39
	01/02/18	0.75 1.52	5.00 5.00	55.93 55.93	0.00
	05/17/18	0.57	5.00 5.74	55.95 55.19	-0.74
	08/23/18	0.57	6.73	54.20	-0.74
	00/23/10		0.75	37.20	-0.77

Table 1
Groundwater Elevation Summary

		Dissolved			
Well Number/ TOC Elevation	Date of Measurement	Oxygen (mg/L)	DTW (feet)	SWL (feet)	Change in SWL (feet)
MW-5	00/14/12	0.21	6.21	54.50	
60.90	08/14/13	0.21	6.31	54.59	1.07
	11/25/13		5.24	55.66	1.07
	02/20/14		4.38	56.52	0.86
	05/15/14 08/14/14	0.29	5.06	55.84	-0.68
	11/24/14	0.08	6.31 5.24	54.59 55.66	-1.25 1.07
	03/31/15	1.09	5.24	55.73	0.07
	06/29/15	0.28	6.35	54.55	-1.18
	09/28/15	0.52	6.51	54.39	-0.16
	03/03/16	2.03	4.59	56.31	1.92
	06/21/16	0.40	5.96	54.94	-1.37
	09/16/16	0.10	6.11	54.79	-0.15
	12/20/16	1.09	5.16	55.74	0.95
	03/24/17		4.61	56.29	0.55
	06/16/17	0.30	5.27	55.63	-0.66
	09/05/17	0.51	6.27	54.63	-1.00
	12/20/17	0.93	4.92	55.98	1.35
	01/02/18	1.20	4.92	55.98	0.00
	05/17/18	0.95	5.65	55.25	-0.73
	08/23/18		6.58	54.32	-0.93
MW-6					
60.76	08/14/13	0.22	6.21	54.55	
	11/25/13		5.13	55.63	1.08
	02/20/14	0.29	4.27	56.49	0.86
	05/15/14	0.33	4.97	55.79	-0.70
	08/14/14	0.20	6.13	54.63	-1.16
	11/24/14	0.09	5.08	55.68	1.05
	03/31/15	0.09	5.10	55.66	-0.02
	06/29/15	0.17	6.27	54.49	-1.17
	09/28/15	0.37	6.42	54.34	-0.15
	03/03/16	0.67	4.53	56.23	1.89
	06/21/16	0.52	5.91	54.85	-1.38
	09/16/16	0.33	6.01	54.75	-0.10
	12/20/16 03/24/17	1.30 0.18	5.14 4.52	55.62	0.87 0.62
	06/16/17	0.18	5.18	56.24 55.58	-0.66
	09/05/17	0.23	6.23	54.53	-1.05
	12/20/17	0.01	4.80	55.96	1.43
	01/02/18	0.76	4.80	55.96	0.00
	05/17/18	0.35	5.57	55.19	-0.77
	08/23/18	0.48	6.51	54.25	-0.94
MW-7					
59.87	09/16/16	0.57	5.15	54.72	
37.07	12/20/16	0.72	5.27	54.60	-0.12
	03/24/17	0.23	3.68	56.19	1.59
	06/16/17	0.31	4.33	55.54	-0.65
	09/05/17	0.21	5.43	54.44	-1.10
	12/20/17	0.94	3.95	55.92	1.48
	05/17/18	0.53	4.71	55.16	-0.76
	08/23/18		5.67	54.20	-0.96
MW-8					
59.70	09/16/16	0.52	5.09	54.61	
	12/20/16	1.29	4.62	55.08	0.47
	03/24/17	0.33	3.67	56.03	0.95
	06/16/17	0.28	4.21	55.49	-0.54
	09/05/17	0.34	5.31	54.39	-1.10
	12/20/17	1.39	3.78	55.92	1.53

Table 1
Groundwater Elevation Summary

Well Number/ TOC Elevation	Date of Measurement	Dissolved Oxygen (mg/L)	DTW (feet)	SWL (feet)	Change in SWL (feet)
MW-8	05/17/18	0.62	4.66	55.04	-0.88
Continued	06/05/18	0.67	5.90	53.80	-1.24
	08/23/18	0.93	5.56	54.14	0.34
MW-9					
60.91	09/05/17	0.38	6.33	54.58	
	12/20/17	4.73	4.73	56.18	1.60
	05/17/18	0.67	5.64	55.27	-0.91
	08/23/18	1.03	6.69	54.22	-1.05

Notes:

TOC - Top of casing SWL - Static water level mg/L - Milligrams per liter NC - Not collected

DTW - Depth to water

-- - Not applicable/Not measured

Wells surveyed to the North American Vertical Datum of 1988 (NAVD 88) on September 19, 2017.

Table 2
Summary of Groundwater Analytical Results

			Ecology Method		cology Metho				ganic Compoun	
			NWTPH-Gx		NWTPH-Dx		U		thod 8021B/826	0B
		C-II4:	(μg/L)		(μg/L)	Total TPH		1	(μg/L)	T-4-1
Well ID	Sample ID	Collection Date	ТРН-д	TPH-d	ТРН-о	$(C_{12} - C_{36})$	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW-1	NA	8/12/2011	<100	<250	< 500	< 500	<1	<1	<1	<3
	NA	11/11/2011	<100	1,500	300	1,800	<1	<1	<1	<3
	NA	2/10/2012	<100	690	<250	690	<1	<1	<1	<3
	NA	5/17/2012	<100	1,100	480	1,580	<1	<1	<1	<3
	NA	8/28/2012	<100	1,200	820	2,020	<1	<1	<1	<3
	NA	11/15/2012	<100	2,700	1,200	3,900	<1	<1	<1	<3
	NA	2/14/2013	<100	1,600	510	2,110	<1	<1	<1	<3
	NA	5/16/2013	<100	1,500	340	1,840	<1	<1	<1	<3
	NA	8/14/2013	<100	1,100	290	1,390	<1	<1	<1	<3
	NA	11/25/2013		1,400	400	1,800				
	NA	2/20/2014		700	280	980				
	NA	5/15/2014		940	<250	940				
	NA	8/14/2014		< 50	<250	<250				
	NA	11/24/2014		220	<250	220				
	NA	3/31/2015		340	<250	340				
	NA	6/29/2015		240	<250	240				
	NA	9/28/2015		700	290	990				
	NA	3/3/2016		220	<250	220				
	NA	6/21/2016		160	<250	160				
	NA	9/16/2016		580	420	1,000				
	NA	12/20/2016		190	<250	190				
	NA	3/24/2017		53	<250	53				
	NA	6/19/2017		310	560	870				
	NA	9/5/2017		340	340	680				
	NA	12/20/2017		150	340	490				
	EW-051718-1	5/17/2018		<400	<400	<400				
	EW-082318-3	8/23/2018		<380	<380	<380				
MW-2	NA	8/12/2011	<100	<250	< 500	< 500	<1	<1	<1	<3
	NA	11/11/2011	<100	500	<250	500	<1	<1	<1	<3
	NA	2/10/2012	<100	< 50	<250	<250	<1	<1	<1	<3
	NA	5/17/2012	<100	< 50	<250	<250	<1	<1	<1	<3
	NA	8/28/2012	<100	470	730	1,200	<1	<1	<1	<3
	NA	11/15/2012	<100	140	<260	140	<1	<1	<1	<3
	NA	2/14/2013	<100	94	260	354	<1	<1	<1	<3
	NA	5/16/2013	<100	77	<250	77	<1	<1	<1	<3
	NA	8/14/2013	<100	280	<250	280	<1	<1	<1	<3
	NA	11/25/2013		53	<250	53				
	NA	2/20/2014		< 50	<250	<250				
	NA	5/15/2014		< 50	<250	<250				
	NA	8/14/2014		100	<250	100				
	NA	11/24/2014		< 50	<250	<250				
	NA	3/31/2015		57	<250	57				
	NA	6/29/2015		97	<250	97				
	NA	9/28/2015		150	<250	150				
	NA	3/3/2016		< 50	<250	<250				
	NA	6/21/2016		86	<250	86				
	NA	9/16/2016		95	<250	95				
	NA	12/20/2016		< 50	<250	<250				
	NA	6/19/2017		61	<250	61				
	NA	9/5/2017		100	<250	100				
	NA	12/20/2017		< 50	<250	<250				
	EW-051718-4	5/17/2018		<410	<410	<410				
	NS	8/23/2018								

Table 2
Summary of Groundwater Analytical Results

				Ecology Method NWTPH-Gx	E	cology Metho NWTPH-Dx	od	V		ganic Compounthod 8021B/826	
May				(µg/L)		(µg/L)				(μg/L)	
NA	Well ID	Sample ID		ТРН-д	TPH-d			Benzene			
NA 2902012 c100 100 c250 100 c1 c1 c1 c1 c1 c2 c3 c3 c3 c3 c4 c4 c4 c4	MW-3	NA	8/12/2011	<100	<250	< 500	< 500	<1	<1	<1	
NA		NA	11/11/2011	<100	65	<250	65	<1	<1	<1	
NA				<100		<250		<1	<1		
NA								<1	<1		
NA		NA	8/28/2012	<100	130	<250	130	<1	<1	<1	
NA		NA	11/15/2012	<100	120	<280	120	<1	<1	<1	
NA		NA	2/14/2013	<100	150	<250	150	<1	<1	<1	
NA					200	<250	200	<1	<1		
NA 2202014 160 -250 160		NA	8/14/2013	<100	140	<250	140	<1	<1	<1	<3
NA \$142014 120 -250 120		NA	11/25/2013		170	<250	170				
NA 814/2014 140 250 140		NA	2/20/2014		160	<250	160				
NA 11/24/2014 130 250 130		NA	5/15/2014		120	<250	120				
NA 3/31/2015 220 250 220		NA	8/14/2014		140	<250	140				
NA 629/2015 130 <250 130		NA	11/24/2014		130	<250	130				
NA 9/28/2015 110 <250 110		NA	3/31/2015		220	<250	220				
NA 3/3/2016 92 <250 92 NA 6/21/2016 85 <250 85 NA 9/16/2016 100 <250 100 NA 12/20/2016 99 <250 99 NA 6/19/2017 310 <250 310 NA 9/5/2017 210 <250 210 NA 12/20/2017 150 <250 150 NA 12/20/2017 150 <250 150 NA 12/20/2017 150 <250 150 NA 12/20/2018 EW-051718-9 5/17/2018 520 <400 520 NS 8/23/2018 NS 8/23/2018 NA 1/1/12011 <100 <250 <500 <500 <1 <1 <1 <3 NA 2/10/2012 <100 150 <250 150 <1 <1 <1 <3 NA 5/17/2012 <100 160 <250 150 <1 <1 <1 <3 NA 8/28/2012 <100 200 <250 200 <1 <1 <1 <3 NA 8/28/2012 <100 200 <250 200 <1 <1 <1 <3 NA 8/28/2013 <100 220 <250 220 <1 <1 <1 <3 NA 5/16/2013 <100 220 <250 220 <1 <1 <1 <3 NA 8/14/2013 <100 220 <250 220 <1 <1 <1 <3 NA 8/14/2014 140 <250 140 NA 8/14/2014 290 <250 290 NA 8/12/2015 220 <250 290 NA 8/12/2016 130 <250 320 NA 8/28/2015 240 <250 320 NA 8/28/2015 240 <250 340 NA 8/28/2016 130 <250 320 NA 8/28/2016 130 <250 50 50 NA 8/28/2015 240 <250 50 50 NA 8/28/2015 240 <250 50 50 NA 8/28/2015 240 <250 50 50 NA 8/28/2016 130 <250 130 NA 8/28/2016 130 <250 50 50 NA 8/2		NA	6/29/2015		130	<250	130				
NA 6/21/2016 85 <250 85		NA	9/28/2015		110	<250	110				
NA 9/16/2016 100 <250 100		NA	3/3/2016		92	<250	92				
NA 12/20/2016 99 250 99 NA 6/19/2017 210 250 210 NA 9/5/2017 210 250 210		NA	6/21/2016		85		85				
NA 6/19/2017 310 <250 310 NA 9/5/2017 210 <250 210 NA 1/2/202017 150 <250 150			9/16/2016		100		100				
NA 9/5/2017 210 <250 210 NA 1/2/0/2017 150 <250 150		NA	12/20/2016		99	<250	99				
NA 9/5/2017 210 <250 210 NA 1/2/0/2017 150 <250 150			6/19/2017		310		310				
NA 12/20/2017 150 <250 150											
NS 8/23/2018		NA	12/20/2017		150		150				
NS 8/23/2018		EW-051718-9	5/17/2018		520	<400	520				
NA		NS	8/23/2018								
NA 2/10/2012 <100 150 <250 150 <1 <1 <1 <3 <3 NA 5/17/2012 <100 160 <250 160 <1 <1 <1 <1 <3 <3 NA S/17/2012 <100 200 <250 200 <1 <1 <1 <1 <3 <3 NA NA S/28/2012 <100 200 <250 200 <1 <1 <1 <1 <3 <3 <4 NA NA 11/15/2012 <100 220 <250 220 <250 220 <1 <1 <1 <1 <3 <3 NA 2/14/2013 <100 220 <250 220 <1 <1 <1 <1 <3 <4 <4 <4 <4 <4 <4 <4	MW-4	NA	8/12/2011	<100	<250	< 500	< 500	<1	<1	<1	<3
NA 5/17/2012 <100 160 <250 160 <1 <1 <1 <3		NA	11/11/2011	<100	72	<250	72	<1	<1	<1	<3
NA 8/28/2012		NA	2/10/2012	<100	150	<250	150	<1	<1	<1	<3
NA		NA	5/17/2012	<100	160	<250	160	<1	<1	<1	<3
NA 2/14/2013 < 100		NA	8/28/2012	<100	200	<250	200	<1	<1	<1	<3
NA 5/16/2013 <100		NA	11/15/2012	<100	220	<250	220	<1	<1	<1	
NA 8/14/2013		NA	2/14/2013	<100	220	<250	220	<1	<1	<1	<3
NA 2/20/2014 140 <250		NA	5/16/2013	<100	210	<250	210	<1	<1	<1	<3
NA 5/15/2014 140 <250		NA	8/14/2013	<100	200	<250	200	<1	<1	<1	<3
NA 5/15/2014 140 <250						<250	140				
NA 8/14/2014 290 <250 290											
NA 11/24/2014 290 <250 290 NA 3/31/2015 320 <250 320											
NA 3/31/2015 320 <250 320 NA 6/29/2015 220 <250 220 NA 3/3/2016 130 <250 130 NA 6/21/2016 63 <250 63 NA 9/29/2016 68 <250 68 NA 12/20/2016 78 <250 78 NA 3/24/2017 <50 <250 <250 NA 6/19/2017 110 <250 110 NA 9/5/2017 150 <250 150											
NA 6/29/2015 240 <250 240 NA 9/28/2015 220 <250 220 NA 3/3/2016 130 <250 130 NA 6/21/2016 63 <250 63 NA 9/29/2016 68 <250 68 NA 12/20/2016 78 <250 78 NA 3/24/2017 <50 <250 <250 NA 6/19/2017 110 <250 110 NA 9/5/2017 150 <250 150 NA 1/2/2018 <50 <250 <250											
NA 9/28/2015 220 <250 220 NA 3/3/2016 130 <250 130 NA 6/21/2016 63 <250 63 NA 9/29/2016 68 <250 68 NA 12/20/2016 78 <250 78 NA 3/24/2017 <50 <250 <250 NA 6/19/2017 110 <250 110 NA 9/5/2017 150 <250 150 NA 1/2/2018 <50 <250 <250											
NA 3/3/2016 130 <250 130 NA 6/21/2016 63 <250 63 NA 9/29/2016 68 <250 68 NA 12/20/2016 78 <250 78 NA 3/24/2017 <50 <250 <250 NA 6/19/2017 110 <250 110 NA 9/5/2017 150 <250 150 NA 1/2/2018 <50 <250 <250 NA 1/2/2018 <400 <400 <400 EW-051718-8 5/17/2018 <400 <400 <400 NA											
NA 6/21/2016 63 <250 63											
NA 9/29/2016 68 <250 68 NA 12/20/2016 78 <250 78 NA 3/24/2017 <50 <250 <250 NA 9/5/2017 150 <250 110 NA 1/2/2018 <50 <250 <250											
NA 12/20/2016 78 <250 78 NA 3/24/2017 <50 <250 <250 NA 6/19/2017 110 <250 110 NA 1/2/2018 <50 <250 <250											
NA 3/24/2017 < 50											
NA 6/19/2017 110 <250 110 NA 9/5/2017 150 <250 150											
NA 9/5/2017 150 <250 150 EW-051718-8 5/17/2018 <400 <400 <400											
NA 1/2/2018 <50 <250 <250 EW-051718-8 5/17/2018 <400 <400 <400											
EW-051718-8 5/17/2018 <400 <400											
NS 8/23/2018		NS	8/23/2018								

Table 2
Summary of Groundwater Analytical Results

			Summary of					-1-47	:- C	3-
			Ecology Method NWTPH-Gx		cology Metho NWTPH-Dx				ganic Compoun thod 8021B/826	
			(μg/L)		(μg/L)		U		ιποα δυ21 5 /δ20 (μg/L)	UБ
		Collection	(µg/L)		(μg/L)	Total TPH		<u> </u>	(μg/L)	Total
Well ID	Sample ID	Date	TPH-g	TPH-d	TPH-o	$(C_{12} - C_{36})$	Benzene	Toluene	Ethylbenzene	Xylenes
MW-5	NA	6/5/2013	<100	160	<250	160	<1	<1	<1	<3
	NA	8/14/2013	<100	56	<250	56	<1	<1	<1	<3
	NA	11/24/2014	<100	<50	<250	<250				
	NA	3/31/2015		52	<250	52				
	NA	6/29/2015		<50	<250	<250				
	NA	9/28/2015		< 50	<250	<250				
	NA	3/3/2016		< 50	<250	<250				
	NA	6/21/2016		<50	<250	<250				
	NA	9/16/2016		<50	<250	<250				
	NA	12/20/2016		<50	<250	<250				
	NA	6/19/2017		55	<250	55				
	NA	9/5/2017		68	<250	68				
	NA	1/2/2018		<50	<250	<250				
	EW-051718-5	5/17/2018		<380	<380	<380				
	NS	8/23/2018								
3.577. 6										
MW-6	NA	6/5/2013	<100	680	<250	680	<1	<1	<1	<3
	NA	8/14/2013	<100	790	<250	790	<1	<1	<1	<3
	NA	2/20/2014		740	<250	740				
	NA	5/15/2014		950	<250	950				
	NA	8/14/2014		1,200	<250	1,200				
	NA	11/24/2014		680	<250	680				
	NA	3/31/2015		750	<250	750				
	NA	6/29/2015		750	<250	750				
	NA	9/28/2015		610	<250	610				
	NA	3/3/2016		1,100	390	1,490				
	NA	6/21/2016		650	<250	650				
	NA	9/16/2016		340	<250	340				
	NA	12/20/2016		640	<250	640				
	NA	3/24/2017		580	<250	580				
	NA	6/19/2017		970	280	1,250				
	NA	9/5/2017		320	<250	320				
	NA	1/2/2018		240	<250	240				
	EW-051718-6	5/17/2018		880	<400	880				
	EW-082318-4	8/23/2018		<400	<400	<400				
MW-7	NA	9/16/2016		140	<250	140				
	NA	12/20/2016		78	<250	78				
	NA	3/24/2017		<50	<250	<250				
	NA	6/19/2017		100	<250	100				
	NA	9/5/2017		59	<250	59				
	NA	12/20/2017		99	<250	99				
	EW-051718-7	5/17/2018		<380	<380	<380				
	NS	8/23/2018								
MW										
MW-8	NA	10/3/2016		290	<250	290				
	NA	12/20/2016		140	<250	140				
	NA	3/24/2017		<50	<250	<250				
	NA	6/26/2017		180	<250	180				
	NA	9/5/2017		160	<250	160			l	
	NA	12/20/2017		140	<250	140				
	EW-051718-10	5/17/2018		1,900	2,800	4,700				
	EW-060518-1	6/5/2018		850	770	1,620				
	EW-082318-5	8/23/2018		450	<380	450	<1.0	<1.0	<1.0	<3.0

Table 2
Summary of Groundwater Analytical Results

			Ecology Method NWTPH-Gx (µg/L)		cology Metho NWTPH-Dx (µg/L)			SEPA Met	ganic Compoun thod 8021B/826 (µg/L)	
Well ID	Sample ID	Collection Date	ТРН-д	TPH-d	ТРН-о	Total TPH (C ₁₂ - C ₃₆₎	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW-9	NA	9/5/2017		4,300	<250	4,300				
	NA	12/20/2017		360	<250	360				
	EW-051718-2	5/17/2018		450	< 400	450				
duplicate	EW-051718-3	5/17/2018		470	< 390	470				
	EW-082318-1	8/23/2018		790	< 400	790				
duplicate	EW-0823718-2	8/23/2018		700	<400	700				
MTCA Method A Cleanup Levels for Groundwater ^a		800/1,000 ^b	500	500	500	5	1,000	700	1,000	

Notes:

MTCA - Model Toxics Control Act

USEPA - United States Environmental Protection Agency

CCL - Contaminant Cleanup Level

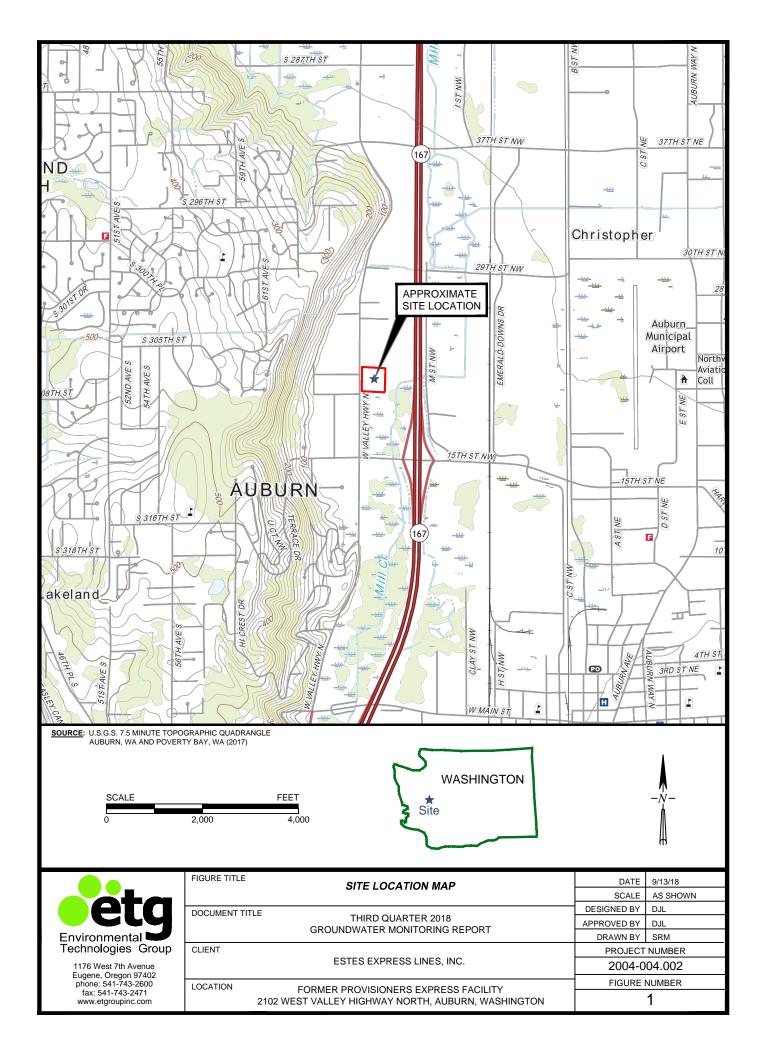
Bold - Value exceeds MTCA Method A cleanup level

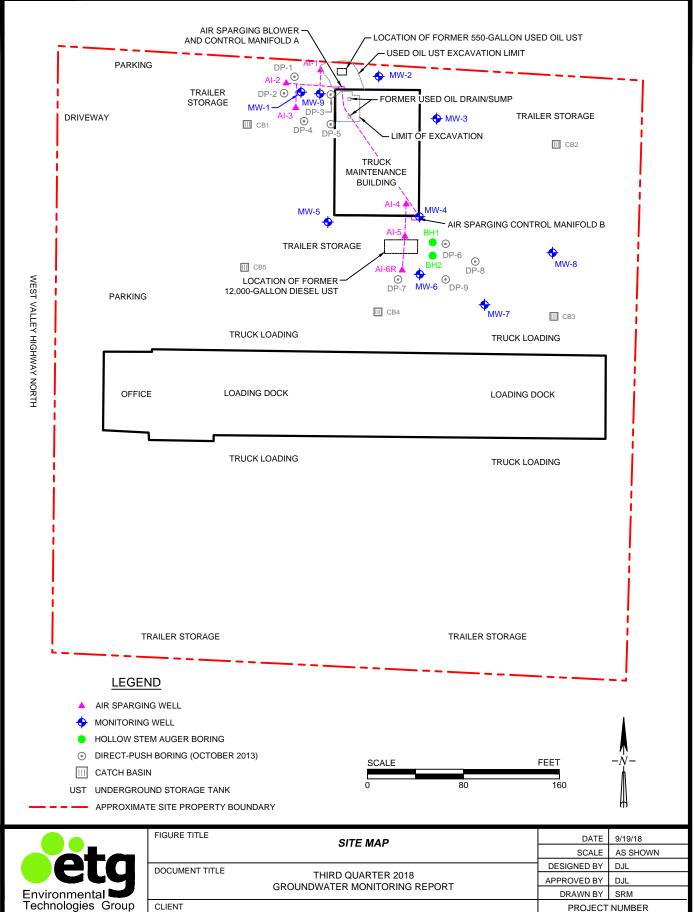
TPH-d - diesel range total petroleum hydrocarbons

TPH-g - gasoline range total petroleum hydrocarbons

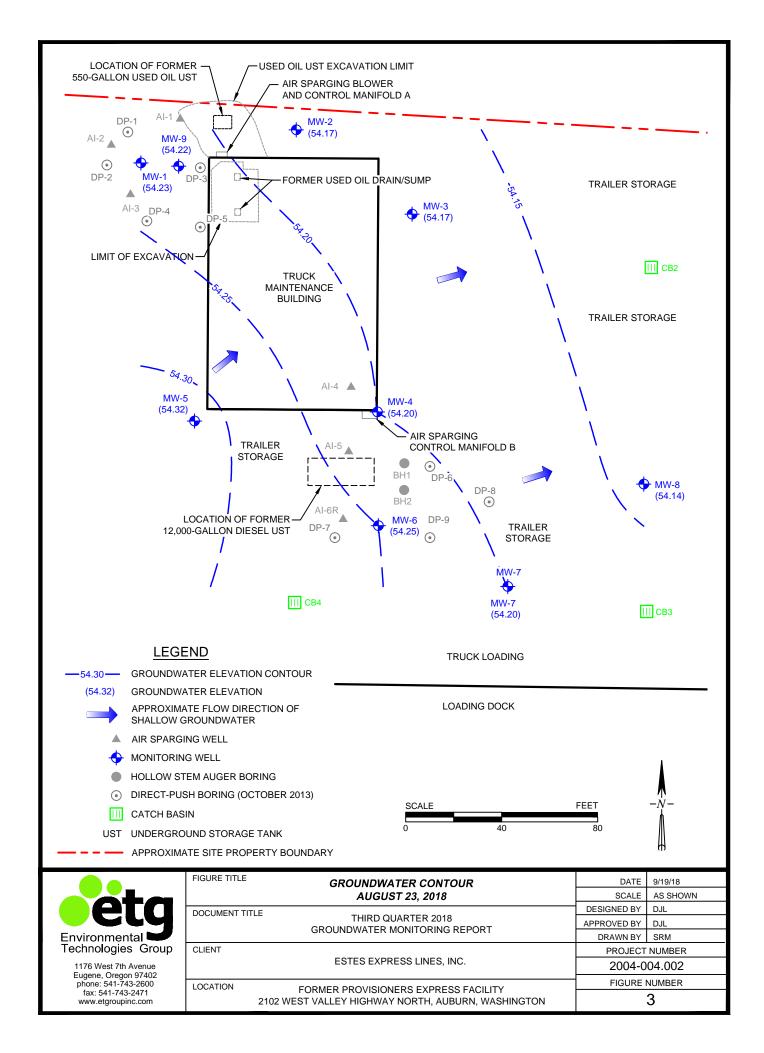
TPH-o - total petroleum hydrocarbons in the oil range

 $\mu \text{g}/L$ - micrograms per liter


-- - Not Analyzed


<1 - Not reported at, or above the indicated laboratory method reporting limit

NS - Not Sampled NA - Not Applicable


^a MTCA Method A Groundwater Cleanup Levels for Unrestricted Land Uses are referenced from the February 12, 2001.
Washington Department of Ecology Model Toxics Control Act Cleanup Regulation Chapter 173-340, Table 720-1.

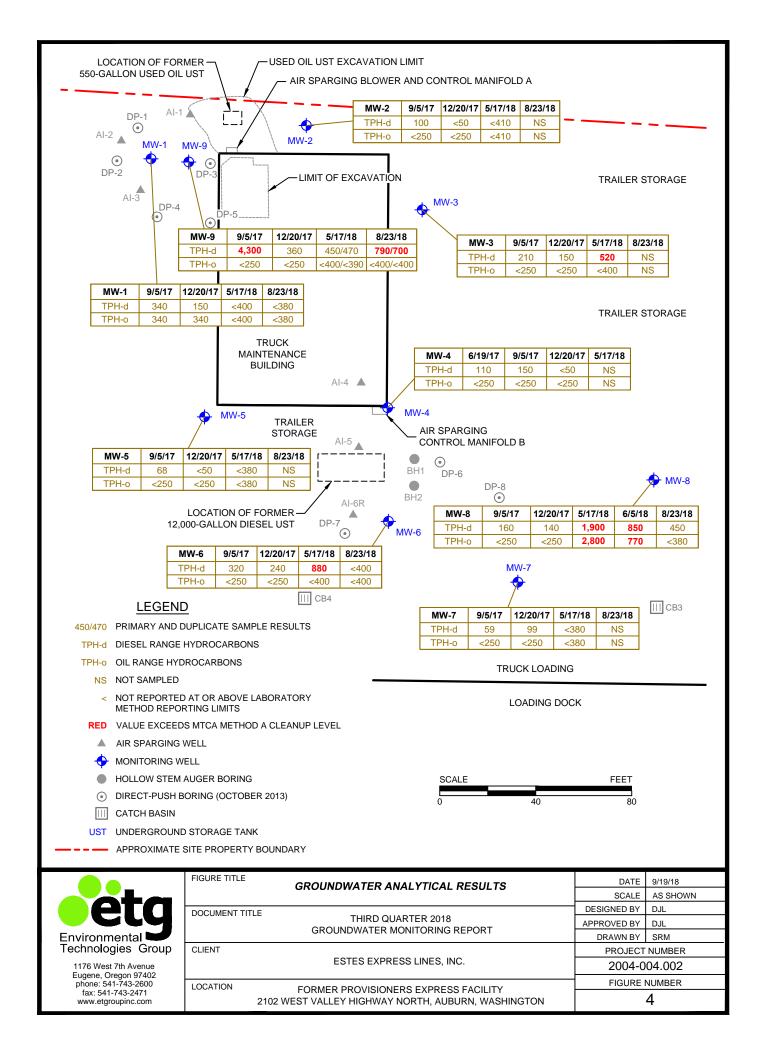

 $^{^{}b}$ 800 μ g/L if benzene has been detected in groundwater; 1,000 μ g/L if benzene has not been detected in groundwater.

	FIGURE IIILE	SITE MAP	DATE	9/19/18
		SITE WAI	SCALE	AS SHOWN
ета	DOCUMENT TITLE		DESIGNED BY	DJL
	DOCOMENT THEE	THIRD QUARTER 2018	APPROVED BY	DJL
Environmental		GROUNDWATER MONITORING REPORT	DRAWN BY	SRM
Technologies Group	CLIENT		PROJECT	NUMBER
1176 West 7th Avenue		ESTES EXPRESS LINES, INC.	2004-0	04.002
Eugene, Oregon 97402 phone: 541-743-2600	LOCATION	FORMER PROVISIONERS EXPRESS FACILITY	FIGURE I	NUMBER
fax: 541-743-2471 www.etgroupinc.com	210	PORMER PROVISIONERS EXPRESS FACILITY 2 WEST VALLEY HIGHWAY NORTH, AUBURN, WASHINGTON		2

ATTACHMENT A FIELD SAMPLING DATA SHEETS

W

NW

WELL ID: MW-9

Light

Temperature:

LABEL CODE: EW-08 23 18- (

DUPLICATE ID: 6W-082318-2

Medium

55°F

PROJECT NAME: ESTES West

NE

E

(Cloudy)

SE

S

SW

Rain

SITE ADDRESS: Auburn, WA

N

Sunny

Wind From

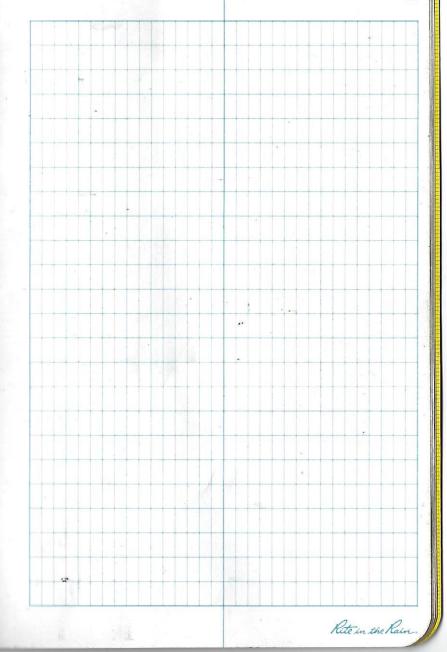
Weather

DUPLICATE

Heavy

°C

WELL DA Date	Time	Casin	g Diameter	DT-Product	DT-Water	Produc	ct Thickness
123/18	THIN	Cushi	7	DT TTOGGET	6.69	Trout	
PUMP/INT	TAKE DE	PTH (ft btoc	3):			327	*
WATER (*	
Time	Liters	PH	Temp		Spec. Cond.	Redox	Turbidity
0920	0.5	6.52	- 18.9	0.78	337	48/	CLEAR W/ YELL
0922	0.7	6.56		0.97	378	-18	1
0924	0.9	6.50		0,98	373	-8/	1
0926	1.1	6-48	William Park and the second second	1.01	373		W -
0928	1,3	6.49	19.1	1.03	37/	/\	Y
	W. Santana						
	/	SAMPLE DA					
Sample Da Sample Ti	ate: 8/2 me: 09	30	Dupe	CATE TO	The same state of the same sta		
Sample Da Sample Ti Bottle Type	ate: 8/2 me: 09	30	Dupe nt & Volume	Preservative	Filter		
Sample Da Sample Ti Bottle Type VOA Glass	me: 09	3/18 30 Amour	Dupe nt & Volume 40 ml	Preservative HCl	Filter No		
Sample Da Sample Ti Bottle Type VOA Glass Amber Glass	me: 09	30	Dupc nt & Volume 40 ml 250 ml	Preservative	Filter		
Sample Da Sample Ti Bottle Type VOA Glass Amber Glass	me: 09	3/18 30 Amour	Dupe nt & Volume 40 ml	Preservative HCl	Filter No		
Sample Da Sample Ti Bottle Type VOA Glass Amber Glass	me: 09	3/18 30 Amour	Dupc nt & Volume 40 ml 250 ml	Preservative HCl	Filter No		
Sample Da Sample Ti Bottle Type VOA Glass Amber Glass Poly	ate: 8/2 me: 09	3/18 30 Amour	nt & Volume 40 ml 250 ml 250 ml	Preservative HCl	Filter No		
Sample Da Sample Ti Bottle Type VOA Glass Amber Glass Poly	ate: 8/2 me: 09	3/18 30 Amour 2	Dupc nt & Volume 40 ml 250 ml 250 ml	Preservative HCl HCl	Filter No No		
Sample Da Sample Ti Bottle Type VOA Glass Amber Glass Poly	ate: 8/2 me: 09	3/18 30 Amour 2	Dupc nt & Volume 40 ml 250 ml 250 ml	Preservative HCl HCl	Filter No No		26.89
Sample Da Sample Ti Bottle Type VOA Glass Amber Glass Poly	ate: 8/2 me: 09	3/18 30 Amour 2	Dupc nt & Volume 40 ml 250 ml 250 ml	Preservative HCl HCl	Filter No No		26.89°
Sample Da Sample Ti Bottle Type VOA Glass Amber Glass Poly Total Bottles Notes:	pump ENT OUT	2 Amour 2 2 2 CATE 70 CALLO	Dupc nt & Volume 40 ml 250 ml 250 ml (x) 2 m / min 304 700 m + 0	Preservative HCl HCl	Filter No No No CALIBIA M	W HELD.	26.89°
Sample Da Sample Ti Bottle Type VOA Glass Amber Glass Poly Fotal Bottles Notes:	pump ENT OUT	2 Amour 2 2 2 CATE 70 CALLO	Dupc nt & Volume 40 ml 250 ml 250 ml (x) 2 m / min 304 700 m + 0	Preservative HCl HCl Wo Ob	Filter No No No Courses m	W HELD	
Sample Da Sample Ti Bottle Type VOA Glass Amber Glass Poly Total Bottles Notes: FORP WA DTB =	pump ENT OUT	2 Amour 2 2 2 CATE 70 CALLO	Dupcent & Volume 40 ml 250 ml 250 ml 250 ml (X) 2 Mining Brate M	Preservative HCl HCl Wo Ob	Filter No No No CALIBIA M	W HELD	


PROJECT	NAME: _	ESTES West			WELL ID:	1W-1		3
SITE ADD	RESS: Aul	ourn, WA		L	ABEL CODE:	EW-08	23 18-	3
	Es Harrison						:	
					1			
Wind From	N NE	E SE	SSW	W NV	V Light	t	Medium	Heavy
Weather	Sunny	Cloudy	Rain		? Temperat	ture:	60 °F	°C
		2 10						
WELL DA								2
B/z3/18	Time	Casing	Diameter	DT-Product	4 4		Product Thi	ckness
8/23/18					6.54			
PHMP/IN	TAKE DE	PTH (ft btoc):						
1 01/11/11/	TAKE DE	111 (11 010C).						
WATER (QUALITY	DATA						
Time	Liters	PH	Temp	DO	Spec. Cond.	Red	ox Ti	urbidity
0945	0.5	6.50	19.0	3,19	206	* _	- 0	EAR
0949	0.7	6.46	19.1	3,34	206			
094953	0.9	6.42	19.1	3.38	206	_	- 1	/
0957	1.1	6.45	19.1	3,37	205			V
		-						
		-						
		<u>'</u>						
GROUND	WATER S	SAMPLE DA	TA					
Sample Da	ate: <u>8/2</u>	3/18						
Sample Ti	/	000						
Bottle Type		N N	& Volume	Preservative	Filter			
VOA Glass	· 1	Amount	40 ml	HCl	No			
Amber Glass		2	250 ml	HCl	No			
Poly			250 ml	1101	1.0			
							V.	
40			2					
Total Bottles	3	2						
Notes:	Poor N	icovery	Pump @	Scowes.	T pump 1	ATR OF	= 50 M/	lmin
* ore "	DETER MA	LEUNCTION						
DTB=	14.49'					,		
Sampled B	By: Steve M	cCray	The second secon	Sig	gnature:	161	luja	

	NAME: _E	ESTES West		<u> </u>	WELL ID: M	W-6	
SITE ADD	RESS: Aubu	ırn, WA		L	ABEL CODE:_	EW-08 23	18- 4
					DUPLICA	ATE ID:	
		E OF	C CW	W) NV	V Light	Med	ium Heavy
Wind From	N NE	E SE	S SW				
Weather	Sunny	Cloudy	Rain		? Temperatu	ure: <u>60</u>	_°F°C
WELL DA	ATA	**	19 19		-	and the second	
Date,	Time	Casing	Diameter	DT-Product		Produ	ct Thickness
8/23/13			2		6.51		
PUMP/IN	TAKE DEP	TH (ft btoc)		82 			a log,
WATER (QUALITY I	DATA		100		8	8,
Time	Liters	PH	Temp	DO	Spec. Cond.	Redox	Turbidity
1044	/	6.41	20.5	0.52	440	* -	CLEAR W/
1046	2	6.34	19.9	0.43	447		BLIGHT YELLOWS
10/3	3	6.36	19.9	0.48	447		
050	4	6,34	19.8	0.43	449	*************	4
		VIII.					
GROUNI Sample D Sample T		/	TA				
	ime: 10	55					
Bottle Type			t & Volume	Preservative	e Filter		
			t & Volume 40 ml	Preservative HCl	e Filter		
VOA Glass	e \ \						
VOA Glass Amber Glas	e \ \	Amoun	40 ml	HCl	No		
VOA Glass Amber Glass Poly	e V	Amoun	40 ml 250 ml	HCl	No		
VOA Glass Amber Glass Poly Total Bottle	e V	Amoun	40 ml 250 ml 250 ml	HCl HCl	No No		
VOA Glass Amber Glass Poly Total Bottle	e V	Amoun	40 ml 250 ml 250 ml	HCl HCl	No No		
	s V DA	Amoun 2 Amoun 2 Amoun An Abac An	40 ml 250 ml 250 ml	HCl HCl	No No		
Notes:	s V DA	Amoun 2 Amoun 2 Amoun An Abac An	40 ml 250 ml 250 ml	HCl HCl	No No		

						200							
PROJECT	NAME	E: <u>E</u>	STES	West				W	ELL ID:_/	1W-	-8		No.
SITE ADDRESS: Auburn, WA						LA	LABEL CODE: EW-08 23 18- 5						
					Hōr.			351			E ID:		
						90							
Wind From	N	NE	Е	SE	S	SW	W NW Li			ght	M	edium	Heavy
Weather	Sun	ny	Clou	idy	Rain		?		Tempe	Temperature:		o °F	°C
								***			-		
WELL D	ATA												
Date, Time		ime	Casing Diameter			DT-Product		DT-Wa	DT-Water		duct Th	ickness	
8/23/18	3				2		-		5.5	5.56			
PUMP/IN	QUALI	TY D	ATA									4	
Time	Lite		PI		Tei		DO		Spec. Cond		Redox		urbidity
1104			6.3	Manuel Town		. 2	0.0		709	1	*		LEAR W/
1106	1-1		6.31			,2	0.93		710	_			1
1108	2.3		6.31 23.2		***************************************	0.94		710				1	
1110			6.3	51	23	. 2	0.0	75	710	-	-		¥
										-	-		
										+			
										-			
GROUNI Sample D Sample T	ate: 🗷	1	18	E DAT	ГА						-		
Bottle Type	e	$\sqrt{}$	An	nount d	& Volu	ıme	Preserv	vative	Filter				
VOA Glass			6		40 ml		HC1		No				
Amber Glass			2	-	250 ml		HC1		No				
Poly		V	1,		250 ml		HNO3		No				
AMBER	GLASS	GLASI V		4 16			NONE		No				
Total Bottle	ie.					9:			<u> </u>				
Total Doule	3												
				03	1 000	1					. 1		
Notes:	pump	RAG	12)	0	•	1000 1	112TI	ALAIB	NATI	20		
Notes:	PUMP MAS	m/	MACK	suc ri	FON	`	0201	MATI	EN CALIB	na Tr	٥.٠.		E
Notes:	PUMP MET	m/	nach	suc ri	100		01-1	NATI	EN CALIB	NATI	<i>∞.</i>		*

Sampled By: Steve McCray

40	ESTE	S WEST	r Gw S	gmass VICE	
8/23/1	8		•		
0645	ETG	ONS ITE	. Coll	ECT COC	ice from
	CHRIS	HARRA	1 50.5 CB	5785).	
					usuc.
0720	REPLAC	REXTA	ANAL BI	owkn e	iten
	y Bu	owar	lever	SINT	rnge
	FILT	ms. Bo	CTS (3/	16 ALLEI	WARNEH)
	var	1 TiGH	T.		
0840	File	OUT B	IN SPA	eba Ta	KATMENT
			TA SHEVE		
1979	No.	Syson	n Aquet	-BR ON	· LILL DO
			- SAMA		
	BELLIN	I WATE	e LEVAL	READIN	ic s
	wen	DTE		wen	
×	MW-1	6.54	*	MW-6	6.51
	MW-2	6.68		MW-7	5.67
	MW-3	6.63		MW-8	1
	mw-4		*	mw-9	6.69
	Mw-5	6.58	*=	Sampl	RD GW
				1	
1200	FINISH	Lu Sor	of priva	Done!	punea H20,
					954 SWIT
	AFA	er Tur.	VILL ON	545pm	7
1300	ETG	OFFSITH	5 70 5H	SP SAM	piks

ATTACHMENT B LABORATORY ANALYTICAL REPORTS

September 07, 2018

Dan Landry Environmental Technologies Group, Inc 1176 West 7th Avenue Eugene, OR 97402

RE: Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Dear Dan Landry:

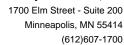
Enclosed are the analytical results for sample(s) received by the laboratory on August 24, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross

jennifer.gross@pacelabs.com


ENNI (TROSS

(206)957-2426 Project Manager

Enclosures

cc: Dave Seaver, Environmental Technologies Group, Inc.

CERTIFICATIONS

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Minnesota Certification IDs

1700 Elm Street SE, Minneapolis, MN 55414-2485

A2LA Certification #: 2926.01 Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003 Colorado Certification #: MN00064

Connecticut Certification #: PH-0256

EPA Region 8+Wyoming DW Certification #: via MN 027-

053-137

Florida Certification #: E87605 Georgia Certification #: 959

Guam EPA Certification #: MN00064
Hawaii Certification #: MN00064
Idaho Certification #: MN00064
Illinois Certification #: 200011
Indiana Certification #: C-MN-01
Iowa Certification #: 368
Kansas Certification #: E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062
Louisiana DEQ Certification #: 03086
Louisiana DW Certification #: MN00064

Maine Certification #: MN00064 Maryland Certification #: 322

Massachusetts Certification #: M-MN064

Michigan Certification #: 9909

Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Certification #: via MN 027-053-137

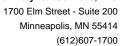

Minnesota Petrofund Certification #: 1240
Mississippi Certification #: MN00064
Montana Certification #: CERT0092
Nebraska Certification #: NE-OS-18-06
Nevada Certification #: MN00064
New Hampshire Certification #: 2081
New Jersey Certification #: MN002
New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507

Oregon NwTPH Certification #: MN300001
Oregon Secondary Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: MN00064
South Carolina Certification #:74003001
Tennessee Certification #: TN02818
Texas Certification #: T104704192
Utah Certification #: MN00064
Virginia Certification #: 460163
Washington Certification #: C486
West Virginia DW Certification #: 9952 C

West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

Wyoming UST Certification #: via A2LA 2926.01



SAMPLE SUMMARY

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10444920001	EW-082318-1	Water	08/23/18 09:30	08/24/18 10:00
10444920002	EW-082318-2	Water	08/23/18 09:10	08/24/18 10:00
10444920003	EW-082318-3	Water	08/23/18 10:00	08/24/18 10:00
10444920004	EW-082318-4	Water	08/23/18 10:55	08/24/18 10:00
10444920005	EW-082318-5	Water	08/23/18 11:20	08/24/18 10:00
10444920006	Trip Blank	Water	08/23/18 00:00	08/24/18 10:00

SAMPLE ANALYTE COUNT

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10444920001	EW-082318-1	NWTPH-Dx	JVM	4	PASI-M
10444920002	EW-082318-2	NWTPH-Dx	JVM	4	PASI-M
10444920003	EW-082318-3	NWTPH-Dx	JVM	4	PASI-M
10444920004	EW-082318-4	NWTPH-Dx	JVM	4	PASI-M
10444920005	EW-082318-5	EPA 8082A	RAG	9	PASI-M
		NWTPH-Dx	JVM	4	PASI-M
		NWTPH-Gx	AG1	2	PASI-M
		EPA 6010D	IP	1	PASI-M
		EPA 8270D by SIM	JLR	19	PASI-M
		EPA 8260B	DS2	69	PASI-M

(612)607-1700

ANALYTICAL RESULTS

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

Sample: EW-082318-1	Lab ID: 104	44920001	Collected: 08/23/1	18 09:30	Received: 08	3/24/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTP	H-Dx Preparation M	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	0.79	mg/L	0.40	1	08/29/18 13:35	09/01/18 18:17	7 68334-30-5	
Motor Oil Range Surrogates	ND	mg/L	0.40	1	08/29/18 13:35	09/01/18 18:17	7	
o-Terphenyl (S)	82	%.	50-150	1	08/29/18 13:35	09/01/18 18:17	7 84-15-1	
n-Triacontane (S)	76	%.	50-150	1	08/29/18 13:35	09/01/18 18:17	7 638-68-6	
Sample: EW-082318-2	Lab ID: 104	44920002	Collected: 08/23/1	18 09:10	Received: 08	3/24/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	0.70	mg/L	0.40	1	08/29/18 13:35	09/01/18 18:28	8 68334-30-5	
Motor Oil Range Surrogates	ND	mg/L	0.40	1	08/29/18 13:35	09/01/18 18:28	3	
o-Terphenyl (S)	82	%.	50-150	1	08/29/18 13:35	09/01/18 18:28	84-15-1	
n-Triacontane (S)	79	%.	50-150	1	08/29/18 13:35	09/01/18 18:28	3 638-68-6	
Sample: EW-082318-3	Lab ID: 104	44920003	Collected: 08/23/1	18 10:00	Received: 08	3/24/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	ND	mg/L	0.38	1	08/29/18 13:35	09/01/18 18:40	0 68334-30-5	
Motor Oil Range Surrogates	ND	mg/L	0.38	1	08/29/18 13:35	09/01/18 18:40)	
o-Terphenyl (S)	91	%.	50-150	1	08/29/18 13:35	09/01/18 18:40	0 84-15-1	
n-Triacontane (S)	90	%.	50-150	1	08/29/18 13:35	09/01/18 18:40	0 638-68-6	
Sample: EW-082318-4	Lab ID: 104	44920004	Collected: 08/23/1	18 10:55	Received: 08	3/24/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
			0.40	1	08/29/18 13:35	09/01/18 18:5	1 68334-30-5	
	ND	mg/L	0.40					
Diesel Fuel Range Motor Oil Range Surrogates	ND ND	mg/L mg/L	0.40	1	08/29/18 13:35	09/01/18 18:5	1	
Diesel Fuel Range Motor Oil Range		-		1 1 1	08/29/18 13:35	09/01/18 18:5° 09/01/18 18:5° 09/01/18 18:5°	1 84-15-1	

ANALYTICAL RESULTS

Project: 2004-004.002/3 Estes West Truc

Date: 09/07/2018 04:33 PM

Sample: EW-082318-5	Lab ID: 104	44920005	Collected: 08/23/1	8 11:20	Received: 08	8/24/18 10:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
082A GCS PCB	Analytical Meti	nod: EPA 80	082A Preparation Me	thod: EF	PA Mod. 3510C			
PCB-1016 (Aroclor 1016)	ND	ug/L	0.10	1	09/04/18 18:39	09/07/18 08:40	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.10	1	09/04/18 18:39	09/07/18 08:40	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.10	1	09/04/18 18:39	09/07/18 08:40	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.10	1	09/04/18 18:39	09/07/18 08:40	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.10	1	09/04/18 18:39	09/07/18 08:40	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.10	1	09/04/18 18:39	09/07/18 08:40	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/L	0.10	1	09/04/18 18:39	09/07/18 08:40	11096-82-5	
Surrogates		Ü						
etrachloro-m-xylene (S)	58	%.	30-125	1	09/04/18 18:39	09/07/18 08:40	877-09-8	
ecachlorobiphenyl (S)	71	%.	30-125	1	09/04/18 18:39	09/07/18 08:40	2051-24-3	
IWTPH-Dx GCS LV	Analytical Metl	nod: NWTP	H-Dx Preparation Me	ethod: El	PA Mod. 3510C			
Diesel Fuel Range	0.45	mg/L	0.38	1	08/29/18 13:35	09/01/18 19:03	68334-30-5	
Motor Oil Range	ND	mg/L	0.38	1		09/01/18 19:03		
Surrogates	2	9/ =	0.00	•	00/20/10 10:00	00/01/10 10100		
o-Terphenyl (S)	88	%.	50-150	1	08/29/18 13:35	09/01/18 19:03	84-15-1	
-Triacontane (S)	92	%.	50-150	1	08/29/18 13:35	09/01/18 19:03	638-68-6	
IWTPH-Gx GCV	Analytical Metl	nod: NWTP	H-Gx					
PH as Gas	ND	ug/L	100	1		08/30/18 22:49		
Surrogates		9-		•				
i,a,a-Trifluorotoluene (S)	87	%.	50-150	1		08/30/18 22:49	98-08-8	
010D MET ICP	Analytical Metl	nod: EPA 60	010D Preparation Me	thod: EF	PA 3010			
ead	ND	ug/L	10.0	1	08/29/18 09:50	08/30/18 13:58	7439-92-1	
3270D MSSV CPAH by SIM	Analytical Meth	nod: EPA 82	270D by SIM Prepara	ation Me	thod: EPA Mod.	3510C		
-Methylnaphthalene	ND	ug/L	0.042	1	08/28/18 10:29	08/29/18 16:23	90-12-0	
-Methylnaphthalene	ND	ug/L	0.042	1	08/28/18 10:29	08/29/18 16:23	91-57-6	
cenaphthene	ND	ug/L	0.042	1	08/28/18 10:29	08/29/18 16:23	83-32-9	
cenaphthylene	ND	ug/L	0.042	1	08/28/18 10:29	08/29/18 16:23	208-96-8	
Anthracene	ND	ug/L	0.042	1	08/28/18 10:29	08/29/18 16:23	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.042	1	08/28/18 10:29	08/29/18 16:23	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.042	1	08/28/18 10:29	08/29/18 16:23	50-32-8	
Benzo(g,h,i)perylene	ND	ug/L	0.042	1		08/29/18 16:23		
Chrysene	ND	ug/L	0.042	1	08/28/18 10:29	08/29/18 16:23	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.042	1		08/29/18 16:23		
Dibenzofuran	ND	ug/L	0.042	1		08/29/18 16:23		
luoranthene	ND	ug/L	0.042	1		08/29/18 16:23		
luorene	ND	ug/L	0.042	1		08/29/18 16:23		
ndeno(1,2,3-cd)pyrene	ND	ug/L	0.042	1		08/29/18 16:23		
laphthalene	ND	ug/L	0.042	1		08/29/18 16:23		
Phenanthrene	ND ND	ug/L ug/L	0.042	1		08/29/18 16:23		
Pyrene	ND ND	_	0.042	1		08/29/18 16:23		
Surrogates	IND	ug/L	0.042		00/20/10 10.29	00/23/10 10.23	123-00-0	
-Fluorobiphenyl (S)	72	%.	52-125	1	08/28/18 10:20	08/29/18 16:23	321-60-8	
					00/20/10 10.20		JE 1 00 0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

Sample: EW-082318-5	Lab ID: 104	44920005	Collected: 08/23/1	8 11:20	Received:	08/24/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260B VOC	Analytical Met	hod: EPA 82	260B					
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		08/28/18 16:3	9 630-20-6	
1,1,1-Trichloroethane	ND	ug/L	4.0	1		08/28/18 16:3	9 71-55-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		08/28/18 16:3	9 79-34-5	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		08/28/18 16:3	9 79-00-5	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1		08/28/18 16:3	9 76-13-1	
1,1-Dichloroethane	ND	ug/L	1.0	1		08/28/18 16:3	9 75-34-3	
1,1-Dichloroethene	ND	ug/L	1.0	1		08/28/18 16:3	9 75-35-4	
1,1-Dichloropropene	ND	ug/L	1.0	1		08/28/18 16:3	9 563-58-6	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		08/28/18 16:3	9 87-61-6	
1,2,3-Trichloropropane	ND	ug/L	4.0	1		08/28/18 16:3	9 96-18-4	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		08/28/18 16:3		
1,2,4-Trimethylbenzene	ND	ug/L	1.0	1		08/28/18 16:3		
1,2-Dibromo-3-chloropropane	ND	ug/L	10.0	1		08/28/18 16:3		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		08/28/18 16:3		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		08/28/18 16:3		
I.2-Dichloroethane	ND	ug/L	1.0	1		08/28/18 16:3		
,,2-Dichloroethane I,2-Dichloropropane	ND ND		4.0	1		08/28/18 16:3		
• •	ND ND	ug/L	1.0	1		08/28/18 16:3		
,3,5-Trimethylbenzene		ug/L		1				
,3-Dichlorobenzene	ND	ug/L	1.0			08/28/18 16:3		
,3-Dichloropropane	ND	ug/L	1.0	1		08/28/18 16:3		
,4-Dichlorobenzene	ND	ug/L	1.0	1		08/28/18 16:3		
2,2-Dichloropropane	ND	ug/L	4.0	1		08/28/18 16:3		
2-Butanone (MEK)	ND	ug/L	5.0	1		08/28/18 16:3		
2-Chlorotoluene	ND	ug/L	1.0	1		08/28/18 16:3		
1-Chlorotoluene	ND	ug/L	1.0	1		08/28/18 16:3		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		08/28/18 16:3		
Acetone	ND	ug/L	20.0	1		08/28/18 16:3		
Allyl chloride	ND	ug/L	4.0	1		08/28/18 16:3		
Benzene	ND	ug/L	1.0	1		08/28/18 16:3	9 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		08/28/18 16:3	9 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		08/28/18 16:3	9 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		08/28/18 16:3	9 75-27-4	
Bromoform	ND	ug/L	4.0	1		08/28/18 16:3	9 75-25-2	
Bromomethane	ND	ug/L	4.0	1		08/28/18 16:3	9 74-83-9	
Carbon tetrachloride	ND	ug/L	1.0	1		08/28/18 16:3	9 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		08/28/18 16:3	9 108-90-7	
Chloroethane	ND	ug/L	1.0	1		08/28/18 16:3	9 75-00-3	
Chloroform	ND	ug/L	1.0	1		08/28/18 16:3	9 67-66-3	
Chloromethane	ND	ug/L	4.0	1		08/28/18 16:3	9 74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		08/28/18 16:3		
Dibromomethane	ND	ug/L	4.0	1		08/28/18 16:3		
Dichlorodifluoromethane	ND	ug/L	1.0	1		08/28/18 16:3		
Diethyl ether (Ethyl ether)	ND	ug/L	4.0	1		08/28/18 16:3		
Ethylbenzene	ND	ug/L	1.0	1		08/28/18 16:3		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		08/28/18 16:3		
sopropylbenzene (Cumene)	ND ND	•	1.0	1		08/28/18 16:3		
sopropyinerizerie (Guillelle)	טא	ug/L	1.0	1		08/28/18 16:3		

ANALYTICAL RESULTS

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

Sample: EW-082318-5	Lab ID: 104	44920005	Collected: 08/23/1	8 11:20	Received: 08	3/24/18 10:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B VOC	Analytical Meth	nod: EPA 82	260B					
Methylene Chloride	ND	ug/L	4.0	1		08/28/18 16:39	75-09-2	
Naphthalene	ND	ug/L	4.0	1		08/28/18 16:39	91-20-3	
Styrene	ND	ug/L	1.0	1		08/28/18 16:39	100-42-5	
Tetrachloroethene	ND	ug/L	1.0	1		08/28/18 16:39	127-18-4	
Tetrahydrofuran	ND	ug/L	10.0	1		08/28/18 16:39	109-99-9	
Toluene	ND	ug/L	1.0	1		08/28/18 16:39	108-88-3	
Trichloroethene	ND	ug/L	0.40	1		08/28/18 16:39	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		08/28/18 16:39	75-69-4	
Vinyl chloride	ND	ug/L	0.20	1		08/28/18 16:39	75-01-4	
Xylene (Total)	ND	ug/L	3.0	1		08/28/18 16:39	1330-20-7	
cis-1,2-Dichloroethene	ND	ug/L	4.0	1		08/28/18 16:39	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	4.0	1		08/28/18 16:39	10061-01-5	
n-Butylbenzene	ND	ug/L	1.0	1		08/28/18 16:39	104-51-8	
n-Propylbenzene	ND	ug/L	1.0	1		08/28/18 16:39	103-65-1	
p-Isopropyltoluene	ND	ug/L	1.0	1		08/28/18 16:39	99-87-6	
sec-Butylbenzene	ND	ug/L	1.0	1		08/28/18 16:39	135-98-8	
tert-Butylbenzene	ND	ug/L	1.0	1		08/28/18 16:39	98-06-6	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		08/28/18 16:39	156-60-5	
trans-1,3-Dichloropropene	ND	ug/L	4.0	1		08/28/18 16:39	10061-02-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	101	%.	75-125	1		08/28/18 16:39		
Toluene-d8 (S)	98	%.	75-125	1		08/28/18 16:39	2037-26-5	
4-Bromofluorobenzene (S)	101	%.	75-125	1		08/28/18 16:39	460-00-4	

QUALITY CONTROL DATA

Project: 2004-004.002/3 Estes West Truc

Pace Project No.:

10444920

QC Batch: 560124 Analysis Method:

NWTPH-Gx

QC Batch Method: **NWTPH-Gx** Analysis Description:

NWTPH-Gx Water

Associated Lab Samples: 10444920005

METHOD BLANK: 3040718

Matrix: Water

Associated Lab Samples:

10444920005

Blank Reporting

Parameter Units Result Limit Qualifiers Analyzed TPH as Gas ND 08/30/18 18:29 ug/L 100 a,a,a-Trifluorotoluene (S) %. 90 50-150 08/30/18 18:29

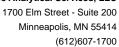
METHOD BLANK: 3040719

Matrix: Water

Associated Lab Samples:

Date: 09/07/2018 04:33 PM

10444920005


Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
TPH as Gas	ug/L	ND	100	08/30/18 18:47	
a,a,a-Trifluorotoluene (S)	%.	87	50-150	08/30/18 18:47	

LABORATORY CONTROL SAMPLE &	LCSD: 3040720		30)40721						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
TPH as Gas a,a,a-Trifluorotoluene (S)	ug/L %.	1000	991	1080	99 92	108 94	41-137 50-150	9	20	

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	ATE: 30407	79		3040780	•	•		•	•		
		10445211009	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
		_ -					701100					
TPH as Gas	ug/L	<19.6	1000	1000	1110	1080	111	108	30-145	3	30	
a,a,a-Trifluorotoluene (S)	%.						97	94	50-150			

SAMPLE DUPLICATE: 3041425						
Parameter	Units	10445211008 Result	Dup Result	RPD	Max RPD	Qualifiers
TPH as Gas	ug/L	<19.6	ND		30	
a,a,a-Trifluorotoluene (S)	%.	88	88	0		
SAMPLE DUPLICATE: 3041426						
		10445211010	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
TPH as Gas	ug/L	<19.6	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

SAMPLE DUPLICATE: 3041426

10445211010 Dup Max RPD Parameter Units Result Result **RPD**

Qualifiers a,a,a-Trifluorotoluene (S) 86 7 %. 92

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

EPA 6010D

6010D Water

Qualifiers

Analysis Method:

Analysis Description:

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

QC Batch: 559599 QC Batch Method: EPA 3010

Associated Lab Samples: 10444920005

METHOD BLANK: 3038099 Matrix: Water

Associated Lab Samples: 10444920005

Blank Reporting
Parameter Units Result Limit Analyzed

Lead ug/L ND 10.0 08/30/18 12:55

LABORATORY CONTROL SAMPLE: 3038100

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Lead ug/L 1000 983 98 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3038101 3038102

MS MSD 10445211002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 1000 75-125 20 Lead ug/L <2.0 1000 988 999 99 100

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

QC Batch: 559487 Analysis Method: EPA 8260B

QC Batch Method: EPA 8260B Analysis Description: 8260B MSV 465 W

Associated Lab Samples: 10444920005

METHOD BLANK: 3037234 Matrix: Water

Associated Lab Samples: 10444920005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND ND	1.0	08/28/18 14:01	
1,1,1-Trichloroethane	ug/L	ND	4.0	08/28/18 14:01	MN
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	08/28/18 14:01	
1,1,2-Trichloroethane	ug/L	ND	1.0	08/28/18 14:01	
1,1,2-Trichlorotrifluoroethane	ug/L	ND	1.0	08/28/18 14:01	
1,1-Dichloroethane	ug/L	ND	1.0	08/28/18 14:01	
1,1-Dichloroethene	ug/L	ND	1.0	08/28/18 14:01	
,1-Dichloropropene	ug/L	ND	1.0	08/28/18 14:01	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	08/28/18 14:01	
,2,3-Trichloropropane	ug/L	ND	4.0	08/28/18 14:01	
,2,4-Trichlorobenzene	ug/L	ND	1.0	08/28/18 14:01	
,2,4-Trimethylbenzene	ug/L	ND	1.0	08/28/18 14:01	
1,2-Dibromo-3-chloropropane	ug/L	ND	10.0	08/28/18 14:01	MN
,2-Dibromoethane (EDB)	ug/L	ND	1.0	08/28/18 14:01	
,2-Dichlorobenzene	ug/L	ND	1.0	08/28/18 14:01	
,2-Dichloroethane	ug/L	ND	1.0	08/28/18 14:01	
,2-Dichloropropane	ug/L	ND	4.0	08/28/18 14:01	
,3,5-Trimethylbenzene	ug/L	ND	1.0	08/28/18 14:01	
,3-Dichlorobenzene	ug/L	ND	1.0	08/28/18 14:01	
,3-Dichloropropane	ug/L	ND	1.0	08/28/18 14:01	
,4-Dichlorobenzene	ug/L	ND	1.0	08/28/18 14:01	
2,2-Dichloropropane	ug/L	ND	4.0	08/28/18 14:01	
2-Butanone (MEK)	ug/L	ND	5.0	08/28/18 14:01	
2-Chlorotoluene	ug/L	ND	1.0	08/28/18 14:01	
I-Chlorotoluene	ug/L	ND	1.0	08/28/18 14:01	
I-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	08/28/18 14:01	
Acetone	ug/L	ND	20.0	08/28/18 14:01	
Allyl chloride	ug/L	ND	4.0	08/28/18 14:01	
Benzene	ug/L	ND	1.0	08/28/18 14:01	
Bromobenzene	ug/L	ND	1.0	08/28/18 14:01	
Bromochloromethane	ug/L	ND	1.0	08/28/18 14:01	
Bromodichloromethane	ug/L	ND	1.0	08/28/18 14:01	
Bromoform	ug/L	ND	4.0	08/28/18 14:01	
Bromomethane	ug/L	ND	4.0	08/28/18 14:01	
Carbon tetrachloride	ug/L	ND	1.0	08/28/18 14:01	
Chlorobenzene	ug/L	ND	1.0	08/28/18 14:01	
Chloroethane	ug/L	ND	1.0	08/28/18 14:01	
Chloroform	ug/L	ND	1.0	08/28/18 14:01	
Chloromethane	ug/L	ND	4.0	08/28/18 14:01	
cis-1,2-Dichloroethene	ug/L	ND	4.0	08/28/18 14:01	MN
cis-1,3-Dichloropropene	ug/L	ND	4.0	08/28/18 14:01	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

METHOD BLANK: 3037234 Matrix: Water

Associated Lab Samples: 10444920005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromochloromethane	ug/L	ND	1.0	08/28/18 14:01	
Dibromomethane	ug/L	ND	4.0	08/28/18 14:01	
Dichlorodifluoromethane	ug/L	ND	1.0	08/28/18 14:01	
Diethyl ether (Ethyl ether)	ug/L	ND	4.0	08/28/18 14:01	
Ethylbenzene	ug/L	ND	1.0	08/28/18 14:01	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	08/28/18 14:01	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	08/28/18 14:01	
Methyl-tert-butyl ether	ug/L	ND	1.0	08/28/18 14:01	
Methylene Chloride	ug/L	ND	4.0	08/28/18 14:01	
n-Butylbenzene	ug/L	ND	1.0	08/28/18 14:01	
n-Propylbenzene	ug/L	ND	1.0	08/28/18 14:01	
Naphthalene	ug/L	ND	4.0	08/28/18 14:01	
p-Isopropyltoluene	ug/L	ND	1.0	08/28/18 14:01	
sec-Butylbenzene	ug/L	ND	1.0	08/28/18 14:01	
Styrene	ug/L	ND	1.0	08/28/18 14:01	
tert-Butylbenzene	ug/L	ND	1.0	08/28/18 14:01	
Tetrachloroethene	ug/L	ND	1.0	08/28/18 14:01	
Tetrahydrofuran	ug/L	ND	10.0	08/28/18 14:01	
Toluene	ug/L	ND	1.0	08/28/18 14:01	
trans-1,2-Dichloroethene	ug/L	ND	1.0	08/28/18 14:01	
trans-1,3-Dichloropropene	ug/L	ND	4.0	08/28/18 14:01	
Trichloroethene	ug/L	ND	0.40	08/28/18 14:01	
Trichlorofluoromethane	ug/L	ND	1.0	08/28/18 14:01	
Vinyl chloride	ug/L	ND	0.20	08/28/18 14:01	
Xylene (Total)	ug/L	ND	3.0	08/28/18 14:01	
1,2-Dichloroethane-d4 (S)	%.	98	75-125	08/28/18 14:01	
4-Bromofluorobenzene (S)	%.	99	75-125	08/28/18 14:01	
Toluene-d8 (S)	%.	97	75-125	08/28/18 14:01	

LABORATORY CONTROL SAMPLE:	3037235					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		21.3	107	75-125	
1,1,1-Trichloroethane	ug/L	20	21.3	107	75-125	
1,1,2,2-Tetrachloroethane	ug/L	20	21.5	107	75-129	
1,1,2-Trichloroethane	ug/L	20	21.7	109	75-125	
1,1,2-Trichlorotrifluoroethane	ug/L	20	20.2	101	74-125	
1,1-Dichloroethane	ug/L	20	21.8	109	75-127	
1,1-Dichloroethene	ug/L	20	20.5	103	73-125	
1,1-Dichloropropene	ug/L	20	20.3	102	75-125	
1,2,3-Trichlorobenzene	ug/L	20	19.8	99	74-126	
1,2,3-Trichloropropane	ug/L	20	21.3	106	75-125	
1,2,4-Trichlorobenzene	ug/L	20	19.3	97	75-125	
1,2,4-Trimethylbenzene	ug/L	20	21.8	109	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

LABORATORY CONTROL SAMPLE:	3037235	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
,2-Dibromo-3-chloropropane	ug/L		48.5	97	64-129	
,2-Dibromoethane (EDB)	ug/L	20	21.9	109	75-125	
,2-Dichlorobenzene	ug/L	20	20.5	103	75-125	
,2-Dichloroethane	ug/L	20	20.9	105	74-125	
I,2-Dichloropropane	ug/L	20	21.8	109	75-125	
1,3,5-Trimethylbenzene	ug/L	20	21.3	107	75-125	
,3-Dichlorobenzene	ug/L	20	21.6	108	75-125	
1,3-Dichloropropane	ug/L	20	21.3	107	75-125	
,4-Dichlorobenzene	ug/L	20	21.2	106	75-125	
2,2-Dichloropropane	ug/L	20	22.5	113	70-125	
2-Butanone (MEK)	ug/L	100	102	102	57-130	
-Chlorotoluene	ug/L	20	20.8	104	75-125	
I-Chlorotoluene	ug/L	20	21.4	107	75-125 75-125	
I-Methyl-2-pentanone (MIBK)	-	100	100	107	69-137	
Acetone	ug/L ug/L	100	100	100	32-150	
Allyl chloride	_	20	20.0	100	64-135	
•	ug/L					
Benzene	ug/L	20	21.8	109	75-126	
Bromobenzene	ug/L	20	21.7	109	75-125 75-426	
Bromochloromethane	ug/L	20	22.5	112	75-126 75-425	
Bromodichloromethane	ug/L	20	21.4	107	75-125	
Bromoform	ug/L	20	19.6	98	67-125	
Bromomethane	ug/L	20	16.4	82	30-150	
Carbon tetrachloride	ug/L	20	20.4	102	75-125	
Chlorobenzene	ug/L	20	20.8	104	75-125	
Chloroethane	ug/L	20	19.0	95	64-142	
Chloroform	ug/L	20	20.0	100	75-125	
Chloromethane	ug/L	20	16.6	83	40-150	
is-1,2-Dichloroethene	ug/L	20	21.3	107	75-125	
is-1,3-Dichloropropene	ug/L	20	22.2	111	75-125	
Dibromochloromethane	ug/L	20	19.9	100	75-125	
Dibromomethane	ug/L	20	20.3	102	75-125	
Dichlorodifluoromethane	ug/L	20	18.2	91	61-132	
Diethyl ether (Ethyl ether)	ug/L	20	19.2	96	74-125	
Ethylbenzene	ug/L	20	20.6	103	75-125	
lexachloro-1,3-butadiene	ug/L	20	21.0	105	75-125	
sopropylbenzene (Cumene)	ug/L	20	20.1	100	75-125	
Nethyl-tert-butyl ether	ug/L	20	20.7	104	73-129	
Nethylene Chloride	ug/L	20	18.0	90	72-125	
-Butylbenzene	ug/L	20	19.8	99	75-125	
-Propylbenzene	ug/L	20	20.1	100	75-125	
laphthalene	ug/L	20	18.6	93	65-126	
-Isopropyltoluene	ug/L	20	21.4	107	75-125	
sec-Butylbenzene	ug/L	20	20.0	100	75-125	
Styrene	ug/L	20	21.5	108	75-125	
ert-Butylbenzene	ug/L	20	21.6	108	75-125	
- Tetrachloroethene	ug/L	20	21.4	107	75-125	
- etrahydrofuran	ug/L	200	239	120	30-150	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

LABORATORY CONTROL SAMPLE:	3037235					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Toluene	ug/L		20.0	100	74-125	
ans-1,2-Dichloroethene	ug/L	20	20.1	100	70-126	
ans-1,3-Dichloropropene	ug/L	20	22.2	111	75-125	
chloroethene	ug/L	20	20.4	102	75-125	
chlorofluoromethane	ug/L	20	18.7	94	71-131	
yl chloride	ug/L	20	19.7	99	65-137	
ene (Total)	ug/L	60	66.4	111	75-125	
-Dichloroethane-d4 (S)	%.			100	75-125	
romofluorobenzene (S)	%.			101	75-125	
uene-d8 (S)	%.			100	75-125	

MATRIX SPIKE & MATRIX SPIR	KE DUPLICA	ATE: 30374	24		3037425							
			MS	MSD								
	1	0445150001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20	22.5	19.6	112	98	69-130	13	30	
1,1,1-Trichloroethane	ug/L	ND	20	20	21.9	20.1	110	101	72-133	9	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	21.7	19.0	108	95	60-137	13	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	22.0	20.0	110	100	70-128	10	30	
1,1,2-Trichlorotrifluoroethane	ug/L	ND	20	20	21.2	19.8	106	99	64-147	7	30	
1,1-Dichloroethane	ug/L	ND	20	20	22.3	20.1	111	100	64-136	10	30	
1,1-Dichloroethene	ug/L	ND	20	20	21.2	19.9	106	100	67-139	6	30	
1,1-Dichloropropene	ug/L	ND	20	20	21.4	19.5	107	98	69-131	9	30	
1,2,3-Trichlorobenzene	ug/L	ND	20	20	20.8	17.7	104	89	60-138	16	30	
1,2,3-Trichloropropane	ug/L	ND	20	20	21.8	19.7	109	98	67-129	10	30	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	20.4	17.7	102	89	71-125	14	30	
1,2,4-Trimethylbenzene	ug/L	ND	20	20	23.1	19.5	115	98	67-130	17	30	
1,2-Dibromo-3-	ug/L	ND	50	50	50.4	44.1	101	88	52-141	13	30	
chloropropane												
1,2-Dibromoethane (EDB)	ug/L	ND	20	20	22.4	20.3	112	102	66-130	10	30	
1,2-Dichlorobenzene	ug/L	ND	20	20	21.6	18.7	108	93	72-126	15	30	
1,2-Dichloroethane	ug/L	ND	20	20	20.7	19.0	104	95	64-125	8	30	
1,2-Dichloropropane	ug/L	ND	20	20	22.3	20.5	112	103	65-128	8	30	
1,3,5-Trimethylbenzene	ug/L	ND	20	20	22.4	19.3	112	97	63-139	15	30	
1,3-Dichlorobenzene	ug/L	ND	20	20	23.4	19.8	117	99	70-128	17	30	
1,3-Dichloropropane	ug/L	ND	20	20	21.5	19.8	108	99	70-131	8	30	
1,4-Dichlorobenzene	ug/L	ND	20	20	22.2	19.3	111	97	74-125	14	30	
2,2-Dichloropropane	ug/L	ND	20	20	24.3	21.2	122	106	58-137	13	30	
2-Butanone (MEK)	ug/L	ND	100	100	98.6	90.4	99	90	45-132	9	30	
2-Chlorotoluene	ug/L	ND	20	20	22.0	18.8	110	94	66-134	16	30	
4-Chlorotoluene	ug/L	ND	20	20	23.1	19.6	115	98	70-132	16	30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	100	100	97.9	91.0	98	91	54-143	7	30	
Acetone	ug/L	57.4	100	100	165	141	108	83	51-150	16	30	
Allyl chloride	ug/L	ND	20	20	20.1	18.3	101	92	52-150	9	30	
Benzene	ug/L	ND	20	20	21.7	20.2	108	101	62-140	7	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	TE: 30374		MOD	3037425							
	4	0445450004	MS	MSD	MC	MCD	MC	MCD	0/ D		N. 1 - 1 - 1	
Parameter	Units	0445150001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Bromobenzene	ug/L	ND	20	20	22.2	19.1	111	96	70-128	15	30	
Bromochloromethane	ug/L	ND	20	20	23.3	20.4	116	102	65-131	13	30	
Bromodichloromethane	ug/L	ND	20	20	22.4	20.3	112	101	74-127	10	30	
Bromoform	ug/L	ND	20	20	20.2	17.9	101	90	59-125	12	30	
Bromomethane	ug/L	ND	20	20	15.8	16.0	79	80	30-149	1	30	
Carbon tetrachloride	ug/L	ND	20	20	20.8	18.9	104	95	67-134	10	30	
Chlorobenzene	ug/L	ND	20	20	21.6	19.7	108	99	72-131	9	30	
Chloroethane	ug/L	ND	20	20	18.6	17.5	93	87	55-150	6	30	
Chloroform	ug/L	ND	20	20	20.6	18.9	103	95	67-125	9	30	
Chloromethane	ug/L	ND	20	20	16.8	15.7	84	78	43-148	7	30	
cis-1,2-Dichloroethene	ug/L	ND	20	20	21.6	19.7	108	99	62-132	9	30	
cis-1,3-Dichloropropene	ug/L	ND	20	20	23.1	20.9	116	105	63-129	10	30	
Dibromochloromethane	ug/L	ND	20	20	20.1	18.7	100	93	67-127	7	30	
Dibromomethane	ug/L	ND	20	20	21.6	19.3	108	97	68-132	11	30	
Dichlorodifluoromethane	ug/L	ND	20	20	18.5	16.8	93	84	59-144	10	30	
Diethyl ether (Ethyl ether)	ug/L	ND	20	20	19.1	17.6	96	88	52-139	8	30	
Ethylbenzene	ug/L	ND	20	20	21.5	19.7	108	99	75-131	9	30	
Hexachloro-1,3-butadiene	ug/L	ND	20	20	22.0	18.9	110	95	58-146	15	30	
sopropylbenzene (Cumene)	ug/L	ND	20	20	21.4	19.0	107	95	71-132	12	30	
Methyl-tert-butyl ether	ug/L	ND	20	20	20.9	19.3	104	97	65-130	8	30	
Methylene Chloride	ug/L	ND	20	20	18.6	16.7	93	84	66-125	10	30	
n-Butylbenzene	ug/L	ND	20	20	21.1	18.2	106	91	57-141	15	30	
n-Propylbenzene	ug/L	ND	20	20	21.4	18.7	107	93	70-131	14	30	
Naphthalene	ug/L	ND	20	20	20.0	17.5	100	88	48-134	13	30	
o-Isopropyltoluene	ug/L	ND	20	20	22.8	19.9	114	100	66-136	13	30	
sec-Butylbenzene	ug/L	ND	20	20	21.4	18.6	107	93	69-134	14	30	
Styrene	ug/L	ND	20	20	22.2	19.8	111	99	65-134	11	30	
ert-Butylbenzene	ug/L	ND	20	20	23.1	19.4	116	97	71-130	18	30	
Tetrachloroethene	ug/L	ND	20	20	22.6	20.2	113	101	69-135	12	30	
Tetrahydrofuran	ug/L	ND	200	200	257	217	129	109	48-150	17	30	
Toluene	ug/L	ND	20	20	21.1	19.0	105	95	68-132	10	30	
rans-1,2-Dichloroethene	ug/L	ND	20	20	20.6	19.0	103	95	61-134	8	30	
rans-1,3-Dichloropropene	ug/L	ND	20	20	22.4	20.4	112	102	66-125	9	30	
Trichloroethene	ug/L	ND	20	20	22.6	20.3	111	100	64-136	10	30	
Trichlorofluoromethane	ug/L	ND	20	20	19.3	17.4	97	87	65-146	10	30	
Vinyl chloride	ug/L	ND	20	20	19.8	18.3	99	91	51-150	8	30	
Kylene (Total)	ug/L	ND	60	60	69.7	62.1	116	104	69-135	12	30	
I,2-Dichloroethane-d4 (S)	%.						99	100	75-125			
1-Bromofluorobenzene (S)	%.						101	98	75-125			
Toluene-d8 (S)	%.						100	100	75-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

QC Batch: 560662 Analysis Method: EPA 8082A
QC Batch Method: EPA Mod. 3510C Analysis Description: 8082A GCS PCB

Associated Lab Samples: 10444920005

METHOD BLANK: 3043877 Matrix: Water

Associated Lab Samples: 10444920005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/L	ND	0.10	09/07/18 08:09	
PCB-1221 (Aroclor 1221)	ug/L	ND	0.10	09/07/18 08:09	
PCB-1232 (Aroclor 1232)	ug/L	ND	0.10	09/07/18 08:09	
PCB-1242 (Aroclor 1242)	ug/L	ND	0.10	09/07/18 08:09	
PCB-1248 (Aroclor 1248)	ug/L	ND	0.10	09/07/18 08:09	
PCB-1254 (Aroclor 1254)	ug/L	ND	0.10	09/07/18 08:09	
PCB-1260 (Aroclor 1260)	ug/L	ND	0.10	09/07/18 08:09	
Decachlorobiphenyl (S)	%.	83	30-125	09/07/18 08:09	
Tetrachloro-m-xylene (S)	%.	56	30-125	09/07/18 08:09	

LABORATORY CONTROL SAMPLE	E & LCSD: 3043878		30	043879						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
PCB-1016 (Aroclor 1016)	ug/L	2	1.5	1.4	74	72	47-125	3	20	
PCB-1260 (Aroclor 1260)	ug/L	2	1.5	1.5	75	73	54-125	3	20	
Decachlorobiphenyl (S)	%.				77	75	30-125			
Tetrachloro-m-xylene (S)	%.				66	61	30-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2004-004.002/3 Estes West Truc

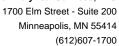
Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

QC Batch: 559362 Analysis Method: EPA 8270D by SIM

QC Batch Method: EPA Mod. 3510C Analysis Description: 8270D CPAH by SIM MSSV

Associated Lab Samples: 10444920005

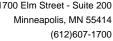

METHOD BLANK: 3036720 Matrix: Water

Associated Lab Samples: 10444920005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	ND	0.040	08/28/18 23:36	
2-Methylnaphthalene	ug/L	ND	0.040	08/28/18 23:36	
Acenaphthene	ug/L	ND	0.040	08/28/18 23:36	
Acenaphthylene	ug/L	ND	0.040	08/28/18 23:36	
Anthracene	ug/L	ND	0.040	08/28/18 23:36	
Benzo(a)anthracene	ug/L	ND	0.040	08/28/18 23:36	
Benzo(a)pyrene	ug/L	ND	0.040	08/28/18 23:36	
Benzo(g,h,i)perylene	ug/L	ND	0.040	08/28/18 23:36	
Chrysene	ug/L	ND	0.040	08/28/18 23:36	
Dibenz(a,h)anthracene	ug/L	ND	0.040	08/28/18 23:36	
Dibenzofuran	ug/L	ND	0.040	08/28/18 23:36	
Fluoranthene	ug/L	ND	0.040	08/28/18 23:36	
Fluorene	ug/L	ND	0.040	08/28/18 23:36	
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.040	08/28/18 23:36	
Naphthalene	ug/L	ND	0.040	08/28/18 23:36	
Phenanthrene	ug/L	ND	0.040	08/28/18 23:36	
Pyrene	ug/L	ND	0.040	08/28/18 23:36	
2-Fluorobiphenyl (S)	%.	64	52-125	08/28/18 23:36	
p-Terphenyl-d14 (S)	%.	77	63-125	08/28/18 23:36	

LABORATORY CONTROL SAMPLE &	LCSD: 3036721		30	36722						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1-Methylnaphthalene	ug/L	3	1.9	2.2	63	72	48-125	13	20	
2-Methylnaphthalene	ug/L	3	1.6	1.8	53	59	48-125	12	20	
Acenaphthene	ug/L	3	1.8	2.1	61	69	50-125	13	20	
Acenaphthylene	ug/L	3	1.7	1.9	55	64	40-125	14	20	
Anthracene	ug/L	3	2.0	2.1	68	70	42-125	3	20	
Benzo(a)anthracene	ug/L	3	2.2	2.2	74	74	64-125	0	20	
Benzo(a)pyrene	ug/L	3	2.3	2.3	77	77	64-125	0	20	
Benzo(g,h,i)perylene	ug/L	3	2.5	2.5	82	82	65-125	0	20	
Chrysene	ug/L	3	2.4	2.4	80	80	67-125	0	20	
Dibenz(a,h)anthracene	ug/L	3	2.5	2.5	84	84	68-125	0	20	
Dibenzofuran	ug/L	6	3.8	4.3	63	71	56-125	13	20	
Fluoranthene	ug/L	3	2.3	2.3	76	77	66-125	1	20	
Fluorene	ug/L	3	1.9	2.1	65	71	57-125	10	20	
Indeno(1,2,3-cd)pyrene	ug/L	3	2.5	2.5	82	82	66-125	0	20	
Naphthalene	ug/L	3	1.6	1.8	53	59	42-125	11	20	
Phenanthrene	ug/L	3	2.2	2.3	74	76	64-125	3	20	
Pyrene	ug/L	3	2.3	2.3	75	76	68-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

LABORATORY CONTROL SAMPLE &	LCSD: 3036721		3	036722						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
2-Fluorobiphenyl (S)	%.				- ——— 55	63	52-125			
p-Terphenyl-d14 (S)	%.				71	70	63-125			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

QC Batch: 559762 Analysis Method: NWTPH-Dx
QC Batch Method: EPA Mod. 3510C Analysis Description: NWTPH-Dx GCS LV

Associated Lab Samples: 10444920001, 10444920002, 10444920003, 10444920004, 10444920005

METHOD BLANK: 3038724 Matrix: Water

Associated Lab Samples: 10444920001, 10444920002, 10444920003, 10444920004, 10444920005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Diesel Fuel Range	mg/L	ND ND	0.40	09/01/18 17:31	
Motor Oil Range	mg/L	ND	0.40	09/01/18 17:31	
n-Triacontane (S)	%.	66	50-150	09/01/18 17:31	
o-Terphenyl (S)	%.	73	50-150	09/01/18 17:31	

LABORATORY CONTROL SAMPLE &	LCSD: 3038725		30	38726						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Fuel Range	mg/L	2	1.9	1.7	97	85	50-150	14	20	
Motor Oil Range	mg/L	2	1.9	1.7	96	84	50-150	14	20	
n-Triacontane (S)	%.				90	78	50-150			
o-Terphenyl (S)	%.				91	78	50-150			

SAMPLE DUPLICATE: 3038727

Date: 09/07/2018 04:33 PM

		10445164001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Diesel Fuel Range	mg/L	100	100	0	30	
Motor Oil Range	mg/L	5.6	6.3	12	30	
n-Triacontane (S)	%.	0	0			S4
o-Terphenyl (S)	%.	0	0			S4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

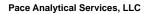
BATCH QUALIFIERS

Batch: 559571

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 561344

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.


ANALYTE QUALIFIERS

Date: 09/07/2018 04:33 PM

MN The reporting limit has been raised in accordance with Minnesota Statutes 4740.2100 Subpart 8. C, D. Reporting Limit

Evaluation Rule.

S4 Surrogate recovery not evaluated against control limits due to sample dilution.

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

METHOD CROSS REFERENCE TABLE

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

ParameterMatrixAnalytical MethodPreparation Method8260B VOCWaterSW-846 8260B/5030BN/A

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2004-004.002/3 Estes West Truc

Pace Project No.: 10444920

Date: 09/07/2018 04:33 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10444920005	EW-082318-5	EPA Mod. 3510C	560662	EPA 8082A	561344
10444920001	EW-082318-1	EPA Mod. 3510C	559762	NWTPH-Dx	560418
10444920002	EW-082318-2	EPA Mod. 3510C	559762	NWTPH-Dx	560418
10444920003	EW-082318-3	EPA Mod. 3510C	559762	NWTPH-Dx	560418
10444920004	EW-082318-4	EPA Mod. 3510C	559762	NWTPH-Dx	560418
10444920005	EW-082318-5	EPA Mod. 3510C	559762	NWTPH-Dx	560418
10444920005	EW-082318-5	NWTPH-Gx	560124		
10444920005	EW-082318-5	EPA 3010	559599	EPA 6010D	559724
10444920005	EW-082318-5	EPA Mod. 3510C	559362	EPA 8270D by SIM	559571
10444920005	EW-082318-5	EPA 8260B	559487		

Face Analytical "
www.pacelats.com

Matrix Comments ATT A DAY TO COMMENTS Matrix Comments And To Comments	Section A Remissed Clear Information	Section B		Section C	,		10444920			-	
10 10 10 10 10 10 10 10				Attention:	auon:			• .	\ \ \	(T	<u> </u>
### CONSTRUCT TOTAL CONSTR	5/1		,						ľ	를 부 기	9
1	300 ALC 5 0211	Copy 10;		Company Narr			REGULATORY AGEN	₹C⊀			
10 10 10 10 10 10 10 10	Excane on gryon			Address:		ANA	7	OUND WATE		DRINKING V	VATER
10 10 10 10 10 10 10 10	מנביטיטכי נפת	Purchase Order No.:		Pace Quote Reference:			<u> </u>	₽¥	L	OTHER	
D	эх:	- 152m	The King	Pace Project.	400	7507	L				
Sample Date France of Name Control of Name Con	TANOGED	20-1-06	12800.	Pace Profile #:	2	一件	.	42			
SAMPLE ID SAMPLE			J			1 -	Analysis Filtered (Y/N)	_			
SAMPLE ID	ient Information	es 200E eff	COLLECTED	<i>f</i>	Preservatives						
SAMPLE DI NOTE SIGNATURE CONNETTE CONNE		S 고 W Y Y W W W W W W W W W W W W W W W W				7-1517 7-X-17	X Lj	(N/A)			
### Control 19 19 19 19 19 19 19 1	SAMPLE ID (A-Z, 0-9/ ,-) Sample IDs MUST BE UNIQUE	X CODE (8		ONTAINER:	ε(517 766 71915 S - HOLL-)-41 OLL	eninoldO le			
1	# W311	зьме ВАТЕ	DA∕E	# OF Co	Methan Na ₂ S ₂ C NaOH HCI HNO ₃	UsnA W W OGV	€J\	Residus	Pace	roject No./	Lab I.D.
CG/70 Z X X X X X X X X X	818280-W3	lon G		7	×	×					IDC/
### CORD 2 X X X X X X X X X			a150)	7	×	×		·			200
C C C C C C C C C C	_		000/	\neg	×	X					OC
ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ADDITIONAL COMMENTS ADDITIONAL	>		V 1055		X	×					0%
EW0823/8-5 MTG. School K.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X.X	100 Stark		1 /6	,							,
ADDITIONAL COMMENTS RELIACUISHED BY AFFILIATION ADDITIONAL COMMENTS RELIACUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME AMPLET NAMPLET NAM	Ew -082318 -		20	X	×××	×	x				000
ADDITIONAL COMMENTS RELINGUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SOSIGNATURE SOSIGN	77.0 Sign			Μ			7				ਤੁ
ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION TO SAMPLE NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: AMANDRYCH TIME TIME TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION TO SAMPLE NAME AND SIGNATURE TIME TIME TIME TIME TIME TIME TIME TIM	∞										
ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION CAMPATTER AND SIGNATURE SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE SAMPLER SAMPLER: DATE TIME SAMPLER SAMPLER NAME AND SIGNATURE SAMPLER SAMPLER: DATE SIGNATURE SAMPLER SAMPLER: MANDODYN: MAN	10										
ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION ACCAPT ACCA	1										
FOR MICHAEL SAMPLER NAME AND SIGNATURE SAMPLER NAME OF SAMPLER: ORIGINAL SIGNATURE SIGNATURE OF SAMPLER: ORIGINAL SIGNATURE	_ ,	RELINOUISHED BY (AFE)		+	ACCEPTE	D BY AFEI IATION	+	† -	CAMPIE	MOLTIONO	
SAMPLER NAME AND SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE SIGNATURE OF SAMPLER: MANADOYYV: MANADOYYV: MANADOYYV: MANADOYYV: MANADOYYV:		Service 447, 22	1	3	4		21/1/	۲	-		
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: Cuestody Society (Y/Y) Cuestody Society (Y/Y) MRECEIVED (Y/Y) Cuestody Society (Y/Y) MRECEIVED (Y/Y) Cuestody Society (Y/Y) Cuestody Country	19706.14 PHS	שיו וציוב (מו בנואד		1	BOT	2	0} -	2	>		
SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Cuestody Sealed Cooler Cuestody Sealed Cooler (MMNDDYY):											
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: Cued on Cooler Cued of Cooler Couler Cou	Pa					-					
PRINT Name of SAMPLER: DATE Signed PRINT Name of SAMPLER: Consider C (Y Special C)	ge 2	SAN		rure				о.	(N	oojei	ntac
SiGNATURE of SAMPLER: (MM/DD/YY): は 日本			PRINT Name of SAMPL	ER:				uj du	(/X) ∈	og pe	(V/V)
	f 31		SIGNATURE of SAMPL	ER:		DATE Signed (MM/DD/YY):		төТ	100	Sesle	dweS

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.23 Document Revised: 02May2018

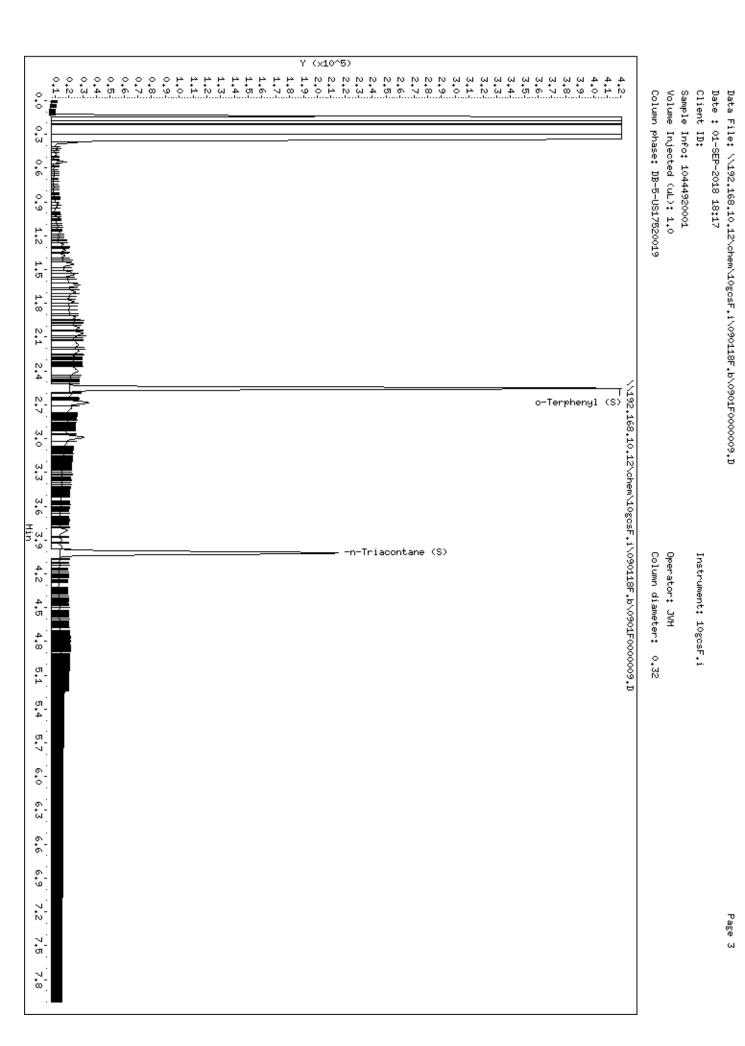
Page 1 of 2

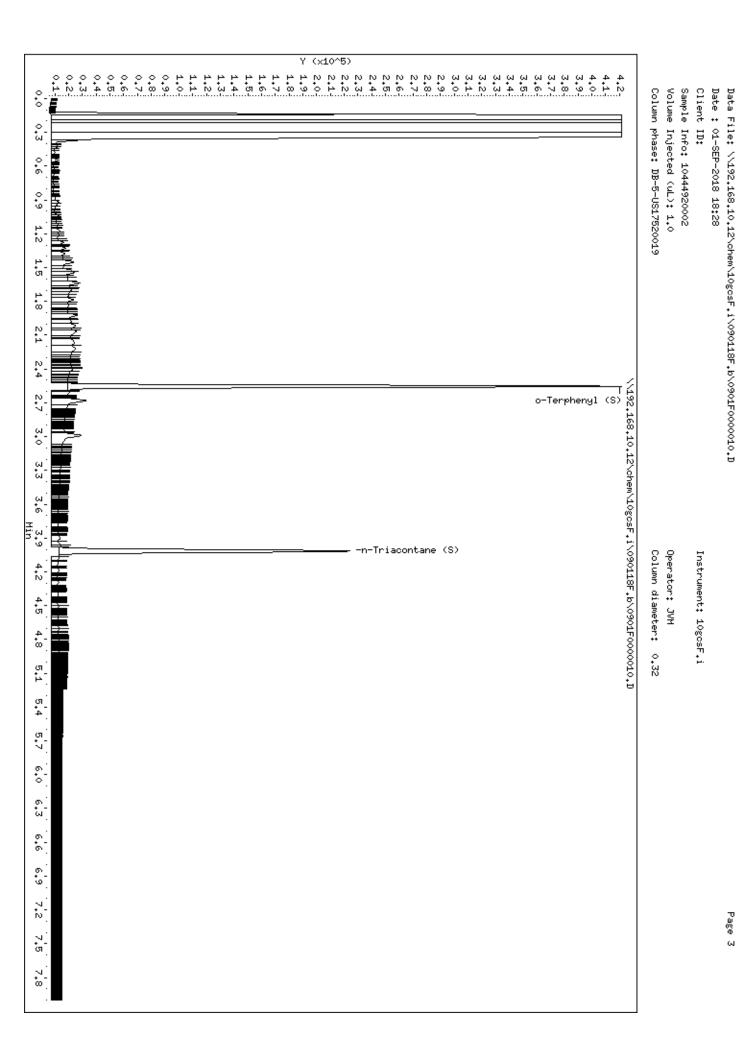
Issuing Authority: Pace Minnesota Quality Office

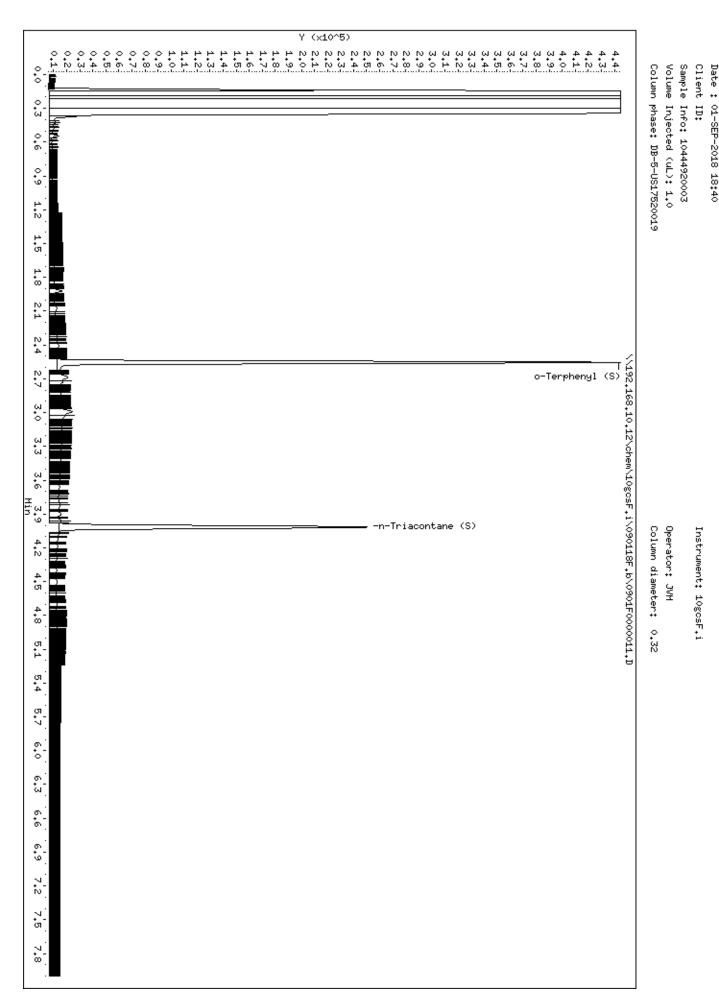
Sample Condition Upon Receipt Client Name:			Project	#: IOH · 4 0 4 4 4 0 0 0
E16				WO#:10444920
· · · · · · · · · · · · · · · · · · ·	JUSPS	□cl	lient	PM: JMG Due Date: 08/31/18
	Other:_			CLIENT: ET Group
Tracking Number: 7475 9394 7365				
Custody Seal on Cooler/Box Present? Yes No	S	eals Inta	act? 🖊	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	None	· 🗆	Other:	Temp Blank? Yes No
Thermometer	Туре	of Ice:	✓Wet	Blue None Dry Melted
Cooler Temp Read (°C): 3. Cooler Temp Corre			Ĭ	Biological Tissue Frozen? Yes No N/A
Temp should be above freezing to 6°C Correction Factor USDA Regulated Soil (N/A, water sample)	Tr	re	Date	e and Initials of Person Examining Contents: 8/24/10 5
Did samples originate in a quarantine zone within the United Sta	ates: AL, A	R, CA, FL,	GA, ID, L	A. MS, Did samples originate from a foreign source (internationally,
NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?		□ Y ₁	es 🗀	No including Hawaii and Puerto Rico)?
ir Yes to either question, fill out a Regu	iated Soil	unecklis	st (F-MN-	Q-338) and include with SCUR/COC paperwork. COMMENTS:
Chain of Custody Present?	1 7 f\~~	———		1.
Chain of Custody Filled Out?	ZYes ZYes	□No		2.
Chain of Custody Relinquished?	Z Yes ✓	□No		3.
Sampler Name and/or Signature on COC?	Yes	Z No	N/A	4.
Samples Arrived within Hold Time?	✓ Yes	□No	. <u> </u>	5.
Short Hold Time Analysis (<72 hr)?	☐Yes	No		6.
Rush Turn Around Time Requested?	Yes	_ano ZNo		7.
Sufficient Volume?	Z Yes	<u>jz</u> iNo ∐No		8.
Correct Containers Used?	Z Yes	□No		9.
-Pace Containers Used?	Z Yes	□No		
Containers Intact?	✓Ves	No		10.
Filtered Volume Received for Dissolved Tests?	Yes	□No	☑N/A	11. Note if sediment is visible in the dissolved container
Is sufficient information available to reconcile the samples to	Z Yes	□No	LE IVE	12.
the COC? Matrix: V+				
All containers needing acid/base preservation have been checked?	∕ZYes	□No	□n/a	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH Positive for Res. Chlorine? Y N
All containers needing preservation are found to be in compliance with EPA recommendation?				Sample # 5:1/
(HNO ₃ , H ₂ SO ₃ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyanide)	Yes	□No	□N/A	
Exceptions: (COA, Coliform, TOC/DOC Oil and Grease, DRO/8015 (water) and Dioxin/PFAS	Yes	□No	□N/A	Initial when Lot # of added completed: preservative:
Headspace in VOA Vials (>6mm)?	ZYes	□No	N/A	14. See except, 27 Sheet
Trip Blank Present?	Yes	□No	□N/A	15.
Trip Blank Custody Seals Present?	Yes	□No	□N/A	
Pace Trip Blank Lot # (if purchased): 16963			!	
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:	····	<u>.</u>		Date/Time:
Comments/Resolution:				
Project Manager Review:	\mathcal{C}			Date: 08/27/18
Note: Whenever there is a discrepancy affecting North hold, incorrect preservative, out of temp, incorrect con	(Dross	es, a c	opy of this	s form will be sent to the North Carolina DEHNR Certification Office (i.e. out of

Pace Analytical

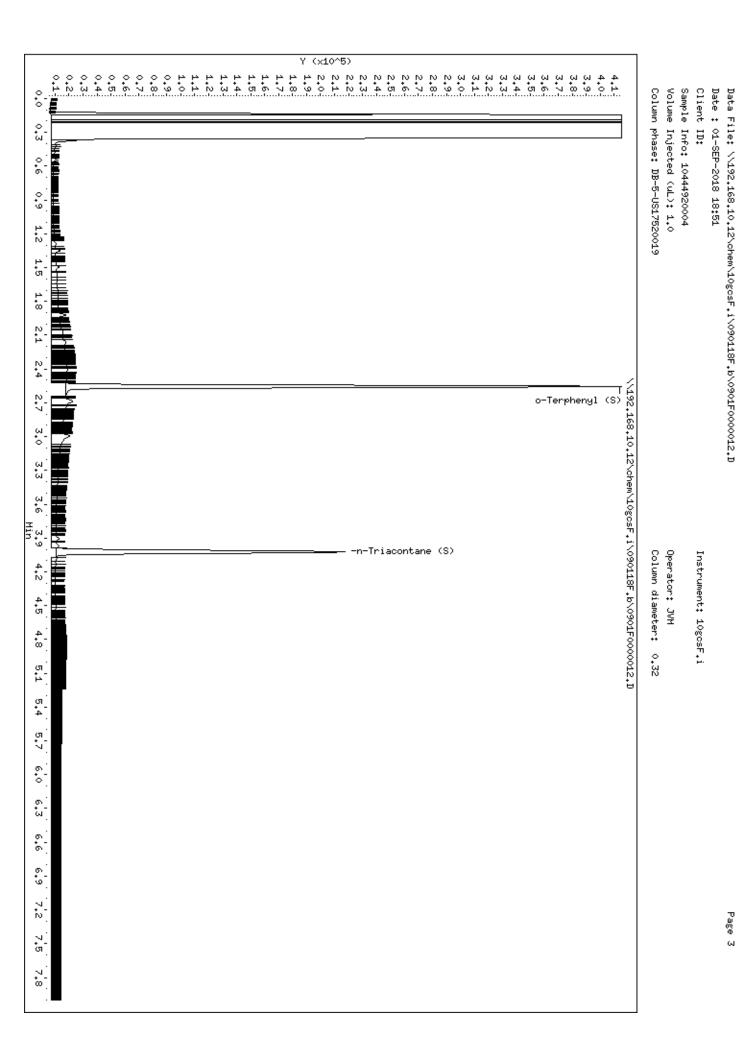
Document Name: Headspace Exception

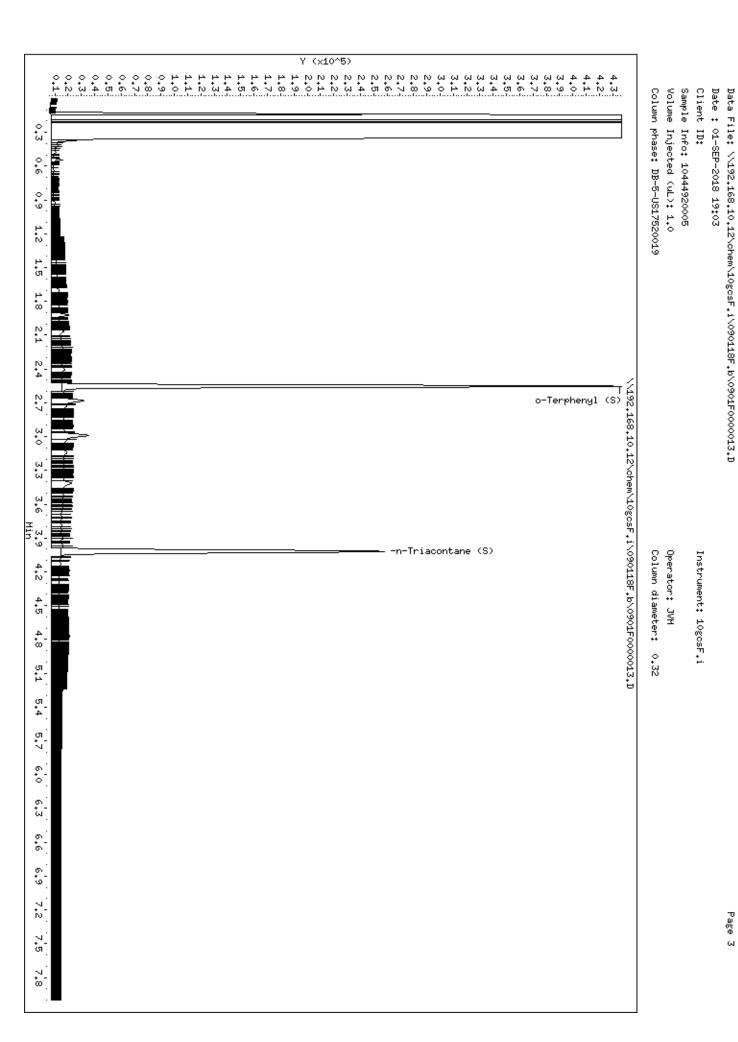

Document Revised: 06Nov2017 Page 1 of 1


Document No.:


F-MN-C-276-Rev.00

Issuing Authority: Pace Minnesota Quality Office


Sample ID	Headspace > 6mm	Headspace < 6mm	No Headspace	Total Vials
En-082318-5	0	6	0	6
En-082318-5 Trip Blank	Į	Ö	2	}
				·
		9 .	·	
				_
		7		
		3.0		



Data File: \\192.168.10.12\chem\10gcsF.i\090118F.b\0901F0000011.D

ATTACHMENT C TREATMENT SYSTEM DATA SHEETS

Air Sparging Treatment System Data Sheet Former Provisioners Express Facility Auburn, Washington

Date: 8-9-18	Time: //:35				
Operation Parameters:	AS Blower Pressure _	12 psi	Elaw Data		
Air Commine Waller	AS Well ID	Pressure (psi)	Flow Rate (cfm)		
Air Sparging Wells: Manifold A	AS WEILID	(psi)	<0,5		
Manifold A		8.5	1.5		
	AS-2	5,5			
	AS-3	<u> </u>	0.75		
Manifold B	AS-3	10.5	2_		
	AS-4	19	2		
	AS-5	15,75	1.5		
System Inspection Checks:	Condensate Drain Blow Down (Manifold A)XX Condensate Drain Blow Down (Manifold B)X Inspect AS Blower Filter/\(\textit{A}\) Inspect AS Blower Enclosure Cooling FanX				
Comments: Nead y	new blower	Eilter			

Air Sparging Treatment System Data Sheet Former Provisioners Express Facility Auburn, Washington

Date: 8/23/18	Time: <u>\$2840</u>) ?	200			
Operation Parameters:	AS Blower Pressure	12.2 psi	ar.		
Air Sparging Wells:	AS Well ID	Pressure (psi)	Flow Rate (cfm)		
Manifold A	AS-1 AS-2 AS-3	10.5	0.5	-	
Manifold B	AS-3 AS-4 AS-5		LZ LZ LZ		
System Inspection Checks:	Condensate Drain Blow Down (Manifold A)				
Comments: CHANGED THERE INTERNAL FOR	EXTERNAL BIOU	M FILTER	, CULANE	0 (BLZW O.T)	