

Oregon Office

1176 West 7th Avenue Eugene, Oregon 97402 Ph: (541) 743-2600 Fax: (541) 743-2471 www.etgroupinc.com

August 31, 2018 Project 2004-004.002

Ms. Jing Song Washington Department of Ecology -Toxic Cleanup Program, NWRO 3190 160th Avenue Southeast Bellevue, Washington 98008

Re: Second Quarter 2018 Groundwater Monitoring Report, Former Provisioner's Express, Inc. Facility, 2102 West Valley Highway North, Auburn, Washington, Ecology Facility ID 91612121, Cleanup Site ID 6847, VCP Project No. 3206

Dear Ms. Song:

Environmental Technologies Group, Inc. (ETG), on behalf of Commerce Road Terminals, LLC (CRT), has prepared this groundwater monitoring report to provide the results of the May 2018 groundwater monitoring completed at the former Provisioner's Express, Inc. (Provisioner's) facility (Site) located at 2102 West Valley Highway North in Auburn, Washington. This report presents the details and findings of the groundwater monitoring activities conducted at the Site on May 17, 2018, and the cleaning, development, and re-sampling of monitoring well MW-8 on June 5, 2018.

SITE DESCRIPTION

The former Provisioner's facility is located at 2102 West Valley Highway North Auburn, Washington, east of the intersection of 22nd street Northwest and West Valley Highway North (Figure 1). Northwest quarter of Section 12, Township 21 North, Range 4 East, Willamette meridian in King County, Washington. The Tax Parcel No. for the property is 1221049034, and the zoning is designated M-1, Light Industrial.

The facility is currently operated by Estes Express Lines (Estes), a motor freight transportation company. Estes uses the Site primarily for shipping/truck distribution and fleet maintenance.

The property is fully paved or covered by buildings and has a storm water conveyance system consisting of catch basins that are connected to an oil/water separator through underground piping with discharge to the municipal sewer system. Pavement is primarily asphalt with concrete pads surrounding the on-Site buildings and loading bays.

The topography of the property is relatively flat with an approximate elevation of 65 feet above mean sea level. Mill Creek and the White River Park Wetland System are the nearest surface water bodies and are located approximate 200 feet to the southeast of the Site. A drainage ditch flowing to the White River Park Wetland System is present near the south property boundary, approximately 40 feet south of the Site. The property and the Site are separated from Mill Creek and the White River Park Wetland System by an adjoining property. The nearest major surface water body, the Green River, is located approximately 1.7 miles east of the Site.

The property contains a single Washington Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Site that is defined by the lateral and vertical extent of soil and groundwater impacted by diesel and oil range petroleum hydrocarbons (TPH-d and TPH-o) at concentrations greater than applicable MTCA Method A Cleanup Levels (CULs). The location of the Site within the property is shown on Figure 2. Under the MTCA program, the Facility Site Identification No. is 91612121, Cleanup Site Identification No. is 6847, and in July 2018 the Voluntary Cleanup Program (VCP) number was change from NW2532, to VCP No. 3206 when CRT became responsible for the Site cleanup.

BACKGROUND

Soil and groundwater at the Site were impacted by petroleum hydrocarbon releases from conveyance piping related to a 550-gallon used oil underground storage tank (UST) located near the northwest corner of the truck maintenance building (Figure 2). The UST and approximately 350 cubic yards of petroleum-contaminated soil (PCS) were removed and four monitoring wells, designated MW-1, MW-2, MW-3, and MW-4, were constructed in December 1998 (EMR, 1999).

In January 2000, Ecology issued a conditional No Further Action (NFA) determination for the Site. The NFA contained the condition that quarterly groundwater monitoring and reporting be continued until the *site demonstrates sustained, continuous compliance with Model Toxics Control Act (MTCA) Groundwater Cleanup Levels (CULs) for at least one year.* The NFA also stipulated that analytical results for groundwater compliance *shall include BTEX {benzene, toluene, ethylbenzene, and xylene), diesel, and heavy oils.*" Available records indicate that the monitoring wells were sampled approximately every quarter from December 1998 until October 2002.

In November 2002, the Site owner petitioned for a full NFA determination based on three (3) years of data demonstrating that benzene groundwater concentrations greater than MTCA Method A CULs was confined to the area on the north side of the maintenance building around MW-2. At that time, the sample collected from MW-2 had a gasoline range petroleum hydrocarbon (TPH-g) concentration of 180 micrograms per liter (μ g/L) and a benzene concentration of 12.0 μ g/L. The reported TPH-g concentration was less than its MTCA Method A CUL of 800 μ g/L. However, the benzene concentration exceeded the MTCA Method A CUL of 5 μ g/L. No other

Ms. Jing Song August 31, 2018 Page 3

BTEX compounds, TPH-d, or TPH-o were reported in the sample collected from MW-2. Reported contaminant concentrations for the samples collected from the remaining monitoring wells also were below MTCA Method A CULs.

Groundwater sampling was discontinued in late 2002 and the Site did not receive a full NFA determination, due to the benzene concentration exceeding MTCA Method A CUL in the samples from MW-2. Records indicate that the Site was subsequently dropped from Ecology's VCP due to inactivity.

The Site re-entered the VCP in August 2011 and was assigned VCP No. NW 2532. Quarterly groundwater sampling of the four on-Site wells was resumed in August 2011. On March 26, 2012, Ecology notified the Site owner that the January 2000 conditional NFA determination was rescinded because the benzene concentrations in groundwater samples from well MW-2 remained greater than the MTCA Method A CUL and the previous groundwater remedy (excavation of petroleum impacted soils followed by groundwater monitoring) did not achieve and maintain compliance with the applicable MTCA Method A CULs.

On November 28, 2012, a 12,000-gallon diesel fuel UST was removed south of the truck maintenance building (Figure 2). According to available information, the UST was emptied and removed from service in 1998 when the 550-gallon waste oil UST was decommissioned, and had not been operated between 1998 and 2012. EPI personnel oversaw the UST decommissioning activities and collected nine (9) soil samples and a water sample from the excavation. The diesel contaminated water was reportedly rinsate from the UST that was spilled as it was removed from the excavation due to improper rigging and hoisting of the UST. EPI prepared the *Underground Storage Tank Site Assessment Report*, dated January 4, 2013 (EPI, 2013a), for submittal to Ecology's Underground Storage Tank Division.

In an opinion letter dated April 22, 2013, Ecology requested installation of two additional wells designated MW-5 and MW-6. Well MW-5 was installed at the southwest corner of the truck maintenance building, near the on-Site oil water separator (OWS), to monitor groundwater downgradient of MW-1. Well MW-6 was installed at the southeast corner of the former 12,000-gallon diesel UST excavation to evaluate groundwater quality based on the reported petroleum hydrocarbon concentrations in a water sample collected from the rinseate water in the UST excavation (EPI, 2013b).

In October 2013, EPI performed a site investigation at Ecology's request. The investigation included advancing nine (9) direct-push soil borings (Figure 2); five locations around MW-1 and four locations downgradient of MW-6. Laboratory analytical results indicated soil impacts around MW-1 were limited to location DP-3, which is immediately adjacent to the exterior wall of the northwest corner of the Truck Maintenance Building. This result was anticipated because a small quantity of impacted soil was left in place immediately under the truck maintenance building to

maintain geotechnical stability during impacted soil excavation. None of the remaining soil samples had detections for petroleum hydrocarbons (EPI, 2013b).

On August 26, 2016, EPI directed the drilling of two soil borings, designated BH-1 and BH-2 for soil sample collection, and construction of two conditional point of compliance (POC) monitoring wells, designated MW-7 and MW-8. BH-1 and BH-2 were advanced east of the former 12,000-gallon diesel UST to evaluate subsurface conditions immediately downgradient of the former UST. Well MW-7 was installed southeast and downgradient of the former 12,000-gallon diesel UST and existing well MW-6. Well MW-8 was installed northeast of MW-7, also downgradient of the former 12,000-gallon diesel UST and existing well MW-6. The purpose of the POC monitoring wells is to monitor groundwater conditions downgradient of the former 12,000-gallon diesel UST, which is a source area for diesel impacts to groundwater at the Site (EPI, 2017a). The soil boring and monitoring wells locations are presented on Figure 2.

On August 11, 2017, monitoring well MW-9 was installed by Holt Services near the northwest corner of the truck maintenance building (Figure 2). The additional well was requested by CRT as part of their environmental due diligence prior to their purchase of the property. Historical direct-push sampling data from this location indicated TPH-d and TPH-o above MTCA Method A in a groundwater sample collected from the boring (EPI, 2017b).

Remedial System

Because groundwater data indicated that natural attenuation of the residual TPH-d and TPH-o impacts was not occurring at a rate that would result in a reasonable restoration timeframe, an active groundwater remediation system was designed, installed, and operated for the area around MW-1 as described in the following.

In May 2014, EPI installed three shallow air injection wells at locations upgradient of MW-1 (Figure 2). The purpose of the air injection wells and compressor system was to add dissolved oxygen (DO) to the groundwater. The increased DO concentrations in groundwater would stimulate existing aerobic bacteria by providing the oxygen necessary for those bacteria to metabolize dissolved petroleum hydrocarbons in groundwater.

Each of the shallow air injection wells was equipped with a 1-foot section of Kerfoot Technologies C-Sparger® screen set in a sand filter pack and fully submerged in groundwater at approximately 14 to 15 feet bgs.

Pressurized air pumped through the C-Sparger® screens forces air, containing oxygen, into groundwater as microbubbles, greatly increasing the surface area of the bubbles for more efficient oxygenation of the groundwater. The remaining well annulus

was sealed using hydrated bentonite chips and the surface was completed in 8-inch diameter flush completion steel monuments set in concrete.

An appropriately-sized rotary vane air compressor was installed in the fenced area at the north end of the truck maintenance building to provide air to the shallow air injection wells. The shallow air injection wells are connected to the compressor using 1-inch diameter polyvinyl chloride (PVC) piping installed below grade into each of the well monuments. PVC air supply lines were installed in trenches that were appropriately backfilled and patched with asphalt at the surface to match the surrounding pavement grade.

The remediation system was started and tested on May 15, 2014 after quarterly groundwater monitoring was completed. An electrical issue with the compressor motor caused the air injection remediation system to shut down in August 2014. Analytical results from the August 2014 monitoring event indicated that TPH-d and TPH-o concentrations were not reported, at or above laboratory method reporting limits (MRLs) in the sample from MW-1. Based on the favorable result, remediation system operation was suspended at MW-1 from August 2014 to April 2015 so that groundwater data could be collected to demonstrate that groundwater was remediated to concentrations below Ecology MTCA Method A Groundwater CULs, and to provide data intended to demonstrate that contaminant concentration rebound was not occurring.

The positive response to operation of the air injection remediation system at MW-1 demonstrated that expansion to remediate impacted groundwater at MW-6 was warranted. In January 2015, EPI installed three additional shallow air injection wells at locations upgradient of MW-6 (Figure 2). The three wells are constructed like the air injection wells at MW-1 and are equipped with 1-foot lengths of Kerfoot Technologies C-Sparger® screen set in a sand filter pack and fully submerged in groundwater at approximately 14-to 15 feet bgs.

Operation of the expanded air injection remediation system at MW-6 was initiated on April 3, 2015. The expanded system at MW-6 ran from April 3, 2015 until June 2015 when an electrical issue with the compressor motor caused the air injection remediation system to shut down, requiring replacement.

Repairs to the air injection system were completed and the remediation system was restarted on February 3, 2016. However, the system was not operational during the June 21, 2016 groundwater sampling event and inspection revealed that the compressor motor was damaged beyond repair due to overheating. Upon questioning on-Site workers, EPI was informed that the system had been off for several weeks prior to the sampling event. EPI has instructed the on-Site workers to immediately inform EPI or the property owner in the event of a system shut down in the future should one occur.

EPI evaluated the potential reasons for the compressor motor overheating and the likely cause was low voltage power throughout the area, which was measured at 208 volts at

the air injection system panel. The actual voltage was lower than the design voltage of 220-230 volts. EPI concluded that although the compressor motor was rated to operate down to 208 volts, voltage fluctuations below 208 volts caused high amperage on the motor, resulting in excessive heat that eventually seized the motor.

In November 2016, EPI installed a 1.5 horsepower, Republic Manufacturing, Model DRT-425 rotary vane compressor with a 208-volt-specific motor. The compressor was started up on November 16, 2016. The system was operational before and after the December 20, 2016 groundwater sampling event. Sometime between the December 20, 2016 monitoring event and a site visit by EPI personnel on March 20, 2017, the air injection system shut down. On March 20, 2017, EPI personnel inspected the compressor and determined that the rotary vanes were destroyed and required replacement. The compressor repair work was completed under warranty at the manufacturer's facility.

The repaired compressor was reconnected and returned to service on June 19, 2017. Both areas of the air injection system MW-1 and MW-6, were back in operation following the completion of groundwater monitoring on June 19, 2017.

Since installation in 2015, air injection well Al-6, located near monitoring well MW-6, consistently had little to no air flow. EPI tested, evaluated, and attempted to increase air flow through this point with no measurable improvement and determined that the well was plugged and unrepairable. On June 26, 2017, Holocene Drilling, under EPI direction, decommissioned Al-6 per Ecology requirements and replaced it with air injection well Al-6R.

The air injection system was inspected during a site visit by EPI on December 14, 2017 and again during quarterly monitoring on December 20, 2017 and was operating as designed with no excessive heat or mechanical issues noted. EPI returned to the property on January 2, 2018 to re-sample wells MW-4, MW-6, and MW-6 (described in the next section) and noted that the air compressor was not running. The compressor was replaced, and the air injection system re-started (EPI, 2018).

GROUNDWATER MONITORING

On May 17, 2018, ETG conducted a groundwater monitoring event which included collection of depth-to-water measurements and groundwater samples from monitoring wells MW-1 through MW-9. Depth-to-water measurements and groundwater elevation data are provided in Table 1. On May 15, 2018, at least 36-hours prior to the monitoring event, operation of the air injection system was suspended.

During collection of depth-to-water measurements, asphalt sealant was encountered in the monument for MW-8. After removal of the asphalt sealant, it was discovered that the locking expansion plug for the monitoring well was loose, and that asphalt sealant had seeped past the plug. Visible material was skimmed from the well surface and monitoring well was purged of approximately 30 gallons of groundwater prior to sampling. During sampling, efforts were made to minimize drawdown in the well.

Monitoring Procedures

During the monitoring event, groundwater samples were collected utilizing "low-flow" sampling techniques in general accordance with the United States Environmental Protection Agency (USEPA) Low-Flow Groundwater Monitoring Procedures (USEPA, 1996). Prior to sampling, depth-to-water measurements were used to determine the static water level in each well. During purging, field parameters including: pH, conductivity, temperature, oxidation-reduction (Redox), and dissolved oxygen were measured utilizing a flow-through cell. Groundwater samples were collected after at least three sequential field parameter readings had stabilized to within the limits specified in the USEPA procedure and the water level was below the top of the screened interval. Field sampling data, including depth to water at the completion of sampling were recorded on field sampling data sheets (FSDSs). Copies of FSDSs are provided in Attachment A.

Groundwater samples were collected from disposable discharge tubing connected to the peristaltic pump and transferred directly to laboratory-supplied containers with as little agitation as possible. Groundwater samples were labeled with a unique blind code and delivered in an iced cooler using chain-of-custody (COC) procedure to Pace Analytical Services, LLC (PACE) in Minneapolis, Minnesota. All groundwater samples were analyzed for TPH-d and TPH-o by Ecology Method NWTPH-Dx. For quality assurance/quality control (QA/QC) purposes, a duplicate groundwater sample was collected from monitoring well MW-9.

All purge water, development water, and decontamination water was stored on-Site in a United States Deport of Transportation (USDOT)-approved 55-gallon drum pending proper disposal.

Groundwater Elevation and Flow Direction

Based on the depth-to-water measurements collected on May 17, 2018 from the nine (9) shallow monitoring wells, a groundwater elevation contour map was generated for the Site (Figure 3) using field measurements and data from a well survey completed on September 19, 2017. Groundwater elevation data indicated a predominantly easterly groundwater flow direction, consistent with prior monitoring events. The horizontal groundwater gradient was calculated to be less than 0.01 feet per foot (ft/ft) during the May 17, 2018 groundwater monitoring event.

Groundwater Analytical Results

A summary of laboratory analytical results for groundwater samples collected from monitoring wells MW-1 through MW-9 on May 17, 2018 are provided in Table 2 along with Ecology MTCA Method A CULs for comparison. Analytical results are also

presented on Figure 4. A copy of the laboratory analytical report is provided in Attachment B.

Analytical results for groundwater samples collected from monitoring wells MW-1 through MW-9 on May 17, 2018 indicated the following:

Diesel Range Hydrocarbons

• TPH-d was reported above the laboratory MRL in the groundwater samples collected from wells MW-3, MW-6, MW-8, and MW-9 at concentrations ranging from 470 micrograms per liter (μg/L) in the groundwater sample collected from monitoring well MW-9 to 1,900 μg/L in the groundwater sample collected from monitoring well MW-8. The reported results for the samples collected from monitoring wells MW-3, MW-6, and MW-8 were above the Ecology MTCA Method A CUL (500 μg/L).

TPH-d was not reported at, or above, the laboratory MRL in the groundwater samples collected from monitoring wells MW-1, MW-2, MW-4, MW-5 and MW-7.

Oil Range Hydrocarbons

• TPH-o was reported above the laboratory MRL and above the Ecology MTCA Method A CUL (500 μg/L) at a concentration of 2,800 μg/L in the groundwater sample collected from monitoring well MW-8.

TPH-o was not reported at, or above, the laboratory MRL in the groundwater samples collected from monitoring wells MW-1 through MW-7, and MW-9.

Total Diesel and Oil Range Hydrocarbons

Total TPH-d and TPH-o was reported above the Ecology MTCA Method A CUL (500 μg/L) in the groundwater samples collected from wells MW-3, MW-8, and MW-9 at concentrations ranging from 520 μg/L in the groundwater sample collected from monitoring well MW-3 to 4,700 μg/L in the groundwater sample collected from monitoring well MW-8.

Total TPH-d and TPH-o was as not reported above the Ecology MTCA Method A CUL (500 μ g/L) in the groundwater samples collected from monitoring wells MW-1, MW-2, MW-4, MW-5, MW-7, and MW-9.

MW-8 - CLEANING, DEVELOPMENT, AND RE-SAMPLING

On June 5, 2018, ETG returned to clean, develop, and re-sample MW-8 due to the asphalt sealer contamination encountered during the May 17, 2018 groundwater monitoring event. The following sections present the actions taken to clean the monitoring well, complete additional well development after cleaning, and to collect a groundwater

sample. Photographs of the well monument and casing, prior to and following field activities, are provided as Attachment C.

Cleaning Procedures

On June 5, 2018, ETG cleaned the casing for monitoring well MW-8, using clean absorbent pads to wipe the well casing. The cleaning was completed above the groundwater level to minimize transfer of asphalt sealant into the saturated portion of the well. Once the absorbent pads no longer indicate asphalt sealant, a final methanol treated absorbent pad was using for a final wipe of the casing above groundwater.

Development Procedures

Following cleaning of MW-8's casing and monument, monitoring MW-8 was developed by extracting water with a development beginning at the top of the groundwater surface and lowering the pump as groundwater dropped in elevation. This process was repeated approximately 15 times until the purge water no longer changed in color between purging events. A total of 25 gallons of groundwater was removed from the well and stored in a USDOT-approved 55-gallon drum on-Site pending proper disposal.

Monitoring Procedures

Following cleaning and well development, a groundwater sample was collected utilizing "low-flow" sampling techniques in general accordance with the USEPA *Low-Flow Groundwater Monitoring Procedures* (USEPA, 1996). Prior to sampling, a depth-to-water measurement was used to determine the static water level in the well. During purging, field parameters including: pH, conductivity, temperature, Redox, and dissolved oxygen were measured utilizing a flow-through cell. A groundwater sample was collected after at least three sequential field parameter readings had stabilized to within the limits specified in the USEPA procedure and the water level was below the top of the screened interval. Field sampling data, including depth to water at the completion of sampling was recorded on a FSDS. A copy of the FSDS is provided in Attachment A.

The groundwater sample was collected from disposable discharge tubing connected to the peristaltic pump and transferred directly to laboratory-supplied containers with as little agitation as possible. The groundwater sample was labeled with a unique blind code and delivered in an iced cooler using COC procedure to PACE in Minneapolis, Minnesota. The groundwater sample was analyzed for TPH-d and TPH-o by Ecology Method NWTPH-Dx.

Groundwater Analytical Results

Laboratory analytical results for the groundwater sample collected from monitoring well MW-8 on June 5, 2018 is provided in Table 2 along with Ecology MTCA Method A CULs for comparison. Analytical results are also presented on Figure 4. A copy of the laboratory analytical report is provided in Attachment B.

Second Quarter Groundwater Report, final

Analytical results for groundwater samples collected from monitoring well MW-8 on June 5, 2018 indicated the following:

Diesel Range Hydrocarbons

• TPH-d was reported above the laboratory MRL in the groundwater sample collected from well MW-8 at a concentration of 850 μ g/L, above the Ecology MTCA Method A CUL (500 μ g/L). However, the reported result was 55 percent (%) lower than the May 2018 sample.

Oil Range Hydrocarbons

• TPH-o was reported above the laboratory MRL in the groundwater sample collected from well MW-8 at a concentration of 770 μ g/L, above the Ecology MTCA Method A CUL (500 μ g/L). However, the reported result was 72.5 % lower than the May 2018 sample.

Total Diesel and Oil Range Hydrocarbons

• Total TPH-d and TPH-o was reported in the groundwater sample collected from well MW-8 at a concentration of 1,620 μ g/L, above the Ecology MTCA Method A CUL (500 μ g/L). However, the reported result was 65.5 % lower than the May 2018 sample.

REMEDIAL SYSTEM OPERATION

On May 15, 2018 at 13:30 PM, operation of the air injection system was suspended for the May 17, 2018 groundwater monitoring event. Following completion of the monitoring event, air injection system operation was resumed. On June 5, 2018, the system was inspected and was continuing to operate. Dissolved oxygen data collected during the May 2018 monitoring event (Table 1) indicate lower concentrations in groundwater downgradient of the injection wells, indicative of microbial activity in the subsurface.

Based on the May 2018 monitoring results, air injection system operation will continue until a conditional NFA has been completed at the Site. Continued operation will provide subsurface oxygen to enhance the natural attenuation of residual petroleum hydrocarbons in soil and groundwater near MW-1, MW-4, MW-6, and MW-9.

SCHEDULED ACTIONS

The third quarter groundwater monitoring event occurred on August 22, 2018. Groundwater level measurements were be collected from monitoring wells MW-1 through MW-9. Groundwater samples were collected from monitoring wells MW-1, MW-6, MW-8, and MW-9 and analyzed for TPH-d and TPH-o. The sample from MW-8 was also be analyzed for gasoline range petroleum hydrocarbons (TPH-g), full list

volatile organic compounds (VOCs), carcinogenic polynuclear aromatic hydrocarbons (cPAHs), total lead, and polychlorinated biphenyls (PCBs).

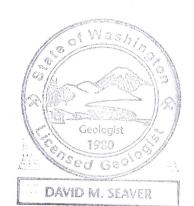
If there are any questions regarding this report please call.

Sincerely,

Environmental Technologies Group, Inc.

Daniel J. Landry

Senior Project Manager


Attachments: References

Limitations
Tables 1 and 2

Figures 1, 2, 3, and 4 Attachment A, B, and C

cc: Ms. Angela Maidment, CRT

David M. Seaver, L.G. Senior Geologist

REFERENCES

- EMR. 1999. *Remedial Investigation/Feasibility Study*, Provisioners Express Auburn Facility, 2102 West Valley Highway, Auburn, Washington. Environmental Management Resources, Inc. March.
- EPI. 2013a. *Underground Storage Tank Site Assessment Report*, Estes Express Facility, 2102 West Valley Highway North, Auburn, Washington. Environmental Partners, Inc. January 4.
- EPI. 2013b. *Phase II Environmental Site Assessment Report*, Estes West Express Trucking Facility, 2102 West Valley Highway North, Auburn, Washington. Environmental Partners, Inc. December 9.
- EPI. 2017a. September and December 2016 Groundwater Sampling Report Twenty and Twenty-First Rounds, Estes West Express Trucking Facility, 2102 West Valley Highway North, Auburn, Washington. Environmental Partners, Inc. February 24.
- EPI. 2017b. September 2017 Groundwater Sampling Report Twenty-Fourth Round, Estes West Express Trucking Facility, 2102 West Valley Highway North, Auburn, Washington. Environmental Partners, Inc. October 3.
- EPI. 2018. December 2017 January 2018 Groundwater Sampling Report Twenty-Fifth Round, Estes West Express Trucking Facility, 2102 West Valley Highway North, Auburn, Washington. Environmental Partners, Inc. February 21.
- USEPA. 1996. Low-Flow Groundwater Monitoring Procedures, USEPA/540/S-95/504, United States Environmental Protection Agency. April.

LIMITATIONS

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

The purpose of a geologic/hydrogeologic study is to reasonably characterize existing site conditions based on the geology/hydrogeology of the area. In performing such a study, it is understood that a balance must be struck between a reasonable inquiry into the site conditions and an exhaustive analysis of each conceivable environmental characteristic. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation is thorough enough to describe all geologic/hydrogeologic conditions of interest at a given site. If conditions have not been identified during the study, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the services performed within the scope, limitations, and cost of the work performed.

We are unable to report on or accurately predict events that may change the site conditions after the described services are performed, whether occurring naturally or caused by external forces. We assume no responsibility for conditions we were not authorized to evaluate, or conditions not generally recognized as predictable when services were performed.

Geologic/hydrogeologic conditions may exist at the site that cannot be identified solely by visual observation. Where subsurface exploratory work was performed, our professional opinions are based in part on interpretation of data from discrete sampling locations that may not represent actual conditions at unsampled locations.

Table 1
Groundwater Elevation Summary

		Dissolved			
		Oxygen	7.7		
	Measurement	(mg/L)	(Teet)	(leet)	(leet)
	09/12/11		6.10	E1 C5	
MW-1					
Well Number/ TOC Elevation Measurement Oxygen (mg/L) (feet) (feet) (feet) (feet) (feet)					
	11/15/12		4.99	55.78	1.29
	11/24/14	0.67	5.22	55.55	2.10
	06/16/17			56.52	-0.92
	03/17/18	3.90	3.30	33.21	-1.03
	09/12/11		5 5 1	55.24	
60.85					0.28
	08/28/12		6.40	54.45	-0.98
			4.71		
MW 2	35/17/10	0.50	2.00	55.25	1.57
	08/12/11		5.54	55.26	
00.00					-3.36
			5.05	55.75	3.85
	11/15/12 02/14/13		5.25 5.38	55.55 55.42	1.15 -0.13

Table 1
Groundwater Elevation Summary

		Dissolved			
Well Number/	Date of	Oxygen	DTW	SWL	Change in SWL
TOC Elevation	Measurement	(mg/L)	(feet)	(feet)	(feet)
MW-3	05/16/13		5.56	55.24	-0.18
continued	08/14/18	0.37	6.31	54.49	-0.75
	11/25/13	0.41	5.22	55.58	1.09
	02/20/14	0.26	4.34	56.46	0.88
	05/15/14	0.77	5.03	55.77	-0.69
	08/14/14	0.29 0.05	6.28 5.21	54.52 55.59	-1.25 1.07
	11/24/14 03/31/15	1.24	5.21	55.65	0.06
	06/29/15	0.25	6.37	54.43	-1.22
	09/28/15	0.25	6.51	54.29	-0.14
	03/03/16	1.48	4.55	56.25	1.96
	06/21/16	0.90	5.93	54.87	-1.38
	09/16/16	0.11	6.09	54.71	-0.16
	12/20/16	1.94	5.38	55.42	0.71
	03/24/17		4.57	56.23	0.81
	06/16/17	0.29	5.23	55.57	-0.66
	09/05/17	0.21	6.30	54.50	-1.07
	12/20/17	0.78	4.91	55.89	1.39
	05/17/18	0.71	5.63	55.17	-0.72
MW-4					
60.93	08/12/11		6.37	54.56	
00.55	11/11/11		5.65	55.28	0.72
	02/10/12		5.20	55.73	0.45
	05/17/12		5.63	55.30	-0.43
	08/28/12		6.50	54.43	-0.87
	11/15/12		5.36	55.57	1.14
	02/14/13		5.50	55.43	-0.14
	05/16/13		5.67	55.26	-0.17
	08/14/13	0.18	6.42	54.51	-0.75
	11/25/13		5.31	55.62	1.11
	02/20/14	0.37	4.45	56.48	0.86
	05/15/14	0.45	5.14	55.79	-0.69
	08/14/14	0.27	6.33	54.60	-1.19
	11/24/14	0.04	5.27	55.66	1.06
	03/31/15	0.98	5.27	55.66	0.00
	06/29/15	0.15	6.45	54.48	-1.18
	09/28/15	0.27 4.79	6.62	54.31	-0.17
	03/03/16 06/21/16	4.79 0.49	3.20 6.11	57.73 54.82	3.42 -2.91
	09/16/16	0.49	6.40	54.53	-0.29
	12/20/16	0.04	6.32	54.61	0.08
	03/24/17	0.73	4.69	56.24	1.63
	06/16/17	0.24	5.36	55.57	-0.67
	09/05/17	0.58	6.39	54.54	-1.03
	12/20/17	0.75	5.00	55.93	1.39
	01/02/18	1.52	5.00	55.93	0.00
	05/17/18	0.57	5.74	55.19	-0.74
MW-5					
60.90	08/14/13	0.21	6.31	54.59	
00.70	11/25/13		5.24	55.66	1.07
	02/20/14		4.38	56.52	0.86
	05/15/14	0.29	5.06	55.84	-0.68
	08/14/14		6.31	54.59	-1.25
	11/24/14	0.08	5.24	55.66	1.07
	03/31/15	1.09	5.17	55.73	0.07
	06/29/15	0.28	6.35	54.55	-1.18
	09/28/15	0.52	6.51	54.39	-0.16
	03/03/16	2.03	4.59	56.31	1.92
	06/21/16	0.40	5.96	54.94	-1.37
	09/16/16	0.10	6.11	54.79	-0.15
	12/20/16	1.09	5.16	55.74	0.95
	03/24/17		4.61	56.29	0.55

Table 1 **Groundwater Elevation Summary**

Well Number/ TOC Elevation	Date of Measurement	Dissolved Oxygen (mg/L)	DTW (feet)	SWL (feet)	Change in SWL (feet)
MW-5	06/16/17	0.30	5.27	55.63	-0.66
continued	09/05/17	0.51	6.27	54.63	-1.00
	12/20/17	0.93	4.92	55.98	1.35
	01/02/18	1.20	4.92	55.98	0.00
	05/17/18	0.95	5.65	55.25	-0.73
MW-6					
60.76	08/14/13	0.22	6.21	54.55	
	11/25/13		5.13	55.63	1.08
	02/20/14	0.29	4.27	56.49	0.86
	05/15/14	0.33	4.97	55.79	-0.70
	08/14/14	0.20	6.13	54.63	-1.16
	11/24/14	0.09	5.08	55.68	1.05
	03/31/15	0.09	5.10	55.66	-0.02
	06/29/15	0.17	6.27	54.49	-1.17
	09/28/15	0.37	6.42	54.34	-0.15
	03/03/16	0.67	4.53	56.23	1.89
	06/21/16	0.52	5.91	54.85	-1.38
	09/16/16	0.33	6.01	54.75	-0.10
	12/20/16	1.30	5.14	55.62	0.87
	03/24/17	0.18	4.52	56.24	0.62
	06/16/17	0.23	5.18	55.58	-0.66
	09/05/17	0.61	6.23	54.53	-1.05
	12/20/17	0.76	4.80	55.96	1.43
	01/02/18	0.86	4.80	55.96	0.00
	05/17/18	0.35	5.57	55.19	-0.77
MW-7	00/45/45	0.55		5.1.50	
59.87	09/16/16	0.57	5.15	54.72	
	12/20/16	0.72	5.27	54.60	-0.12
	03/24/17	0.23	3.68	56.19	1.59
	06/16/17	0.31	4.33	55.54	-0.65
	09/05/17	0.21	5.43	54.44	-1.10
	12/20/17	0.94	3.95	55.92	1.48
	05/17/18	0.53	4.71	55.16	-0.76
MW-8	00/16/16	0.52	5.00	5161	
59.70	09/16/16	0.52	5.09	54.61	
	12/20/16	1.29	4.62	55.08	0.47
	03/24/17	0.33	3.67	56.03	0.95
	06/16/17	0.28	4.21	55.49	-0.54
	09/05/17	0.34	5.31	54.39	-1.10
	12/20/17	1.39	3.78	55.92	1.53
	05/17/18 06/05/18	0.62 0.67	4.66 5.90	55.04 53.80	-0.88 -1.24
MANA	00/03/16	0.07	5.70	33.00	-1.24
MW-9	00/05/17	0.29	6 22	5150	
60.91	09/05/17 12/20/17	0.38 4.73	6.33 4.73	54.58 56.18	 1.60
	05/17/18	4.73 0.67	4.73 5.64	56.18 55.27	1.60 -0.91
	03/1//10	0.07	3.04	33.41	-0.91

SWL - Static water level

TOC - Top of casing
mg/L - Milligrams per liter
DTW - Depth to water

NC - Not collected

-- - Not applicable

Wells surveyed to the North American Vertical Datum of 1988 (NAVD 88) on September 19, 2017.

Table 2 Summary of Groundwater Analytical Results

			Ecology Method NWTPH-Gx (µg/L)		cology Metho NWTPH-Dx (µg/L)			SEPA Met	ganic Compoun thod 8021B/826 (µg/L)	
Well ID	Sample ID	Collection Date	ТРН-д	TPH-d	ТРН-о	Total TPH (C ₁₂ - C ₃₆₎	Benzene		Ethylbenzene	Total Xylenes
MW-1	NA	8/12/2011	<100	<250	< 500	< 500	<1	<1	<1	<3
	NA	11/11/2011	<100	1,500	300	1,800	<1	<1	<1	<3
	NA	2/10/2012	<100	690	<250	690	<1	<1	<1	<3
	NA	5/17/2012	<100	1,100	480	1,580	<1	<1	<1	<3
	NA	8/28/2012	<100	1,200	820	2,020	<1	<1	<1	<3
	NA	11/15/2012	<100	2,700	1,200	3,900	<1	<1	<1	<3
	NA	2/14/2013	<100	1,600	510	2,110	<1	<1	<1	<3
	NA	5/16/2013	<100	1,500	340	1,840	<1	<1	<1	<3
	NA	8/14/2013	<100	1,100	290	1,390	<1	<1	<1	<3
	NA	11/25/2013		1,400	400	1,800				
	NA	2/20/2014		700	280	980				
	NA	5/15/2014		940	<250	940				
	NA	8/14/2014		< 50	<250	<250				
	NA	11/24/2014		220	<250	220				
	NA	3/31/2015		340	<250	340				
	NA	6/29/2015		240	<250	240				
	NA	9/28/2015		700	290	990				
	NA	3/3/2016		220	<250	220				
	NA	6/21/2016		160	<250	160				
	NA	9/16/2016		580	420	1,000				
	NA	12/20/2016		190	<250	190				
	NA	3/24/2017		53	<250	53				
	NA	6/19/2017		310	560	870				
	NA	9/5/2017		340	340	680				
	NA	12/20/2017		150	340	490				
	EW-051718-1	5/17/2018		<400	<400	<400				
MW-2	NA	8/12/2011	<100	<250	< 500	< 500	<1	<1	<1	<3
	NA	11/11/2011	<100	500	<250	500	<1	<1	<1	<3
	NA	2/10/2012	<100	< 50	<250	<250	<1	<1	<1	<3
	NA	5/17/2012	<100	< 50	<250	<250	<1	<1	<1	<3
	NA	8/28/2012	<100	470	730	1,200	<1	<1	<1	<3
	NA	11/15/2012	<100	140	<260	140	<1	<1	<1	<3
	NA	2/14/2013	<100	94	260	354	<1	<1	<1	<3
	NA	5/16/2013	<100	77	<250	77	<1	<1	<1	<3
	NA	8/14/2013	<100	280	<250	280	<1	<1	<1	<3
	NA	11/25/2013		53	<250	53				
	NA	2/20/2014		< 50	<250	<250				
	NA	5/15/2014		< 50	<250	<250				
	NA	8/14/2014		100	<250	100				
	NA	11/24/2014		< 50	<250	<250				
	NA	3/31/2015		57	<250	57				
	NA	6/29/2015		97	<250	97				
	NA	9/28/2015		150	<250	150				
	NA	3/3/2016		< 50	<250	<250				
	NA	6/21/2016		86	<250	86				
	NA	9/16/2016		95	<250	95				
	NA	12/20/2016		< 50	<250	<250				
	NA	6/19/2017		61	<250	61				
	NA	9/5/2017		100	<250	100				
	NA EW 051719 4	12/20/2017		<50 <410	<250	<250				
	EW-051718-4	5/17/2018		<410	<410	<410				
MW-3	NA	8/12/2011	<100	<250	<500	<500	<1	<1	<1	<3
	NA NA	11/11/2011	<100	65	<250	65	<1	<1	<1	<3
	NA NA	2/10/2012	<100	100	<250	100	<1	<1	<1	<3
	NA	5/17/2012	<100	53	<250 <250	53 130	<1	<1	<1	<3 <3
	NA	8/28/2012	<100	130			<1	<1	<1	

Table 2
Summary of Groundwater Analytical Results

Well ID Sample ID Collection TPH-g TPH-d TPH-o Total TPH Benzene Toluene Ethylbenzene				Ecology Method NWTPH-Gx		cology Metho			SEPA Met	ganic Compounthod 8021B/826	
Continued NA	Well ID	Sample ID		(μg/L) TPH-g	TPH-d	(μg/L) TPH-o		Benzene		(µg/L) Ethylbenzene	Total Xylenes
NA	MW-3	NA	2/14/2013	<100	150	<250	150	<1	<1	<1	<3
NA	Continued	NA	5/16/2013	<100	200	<250	200	<1	<1	<1	<3
NA \$152014 160 -250 160		NA	8/14/2013	<100	140	<250	140	<1	<1	<1	<3
NA		NA	11/25/2013		170	<250	170				
NA		NA	2/20/2014		160	<250	160				
NA		NA	5/15/2014		120	<250	120				
NA		NA	8/14/2014		140	<250	140				
NA 9/28/2015 110 -250 130		NA	11/24/2014		130	<250	130				
NA 9/28/2015 110 250 1110		NA	3/31/2015		220	<250	220				
NA		NA	6/29/2015		130	<250	130				
NA 621/2016 85 250 85 NA 9/16/2016 100 250 100 NA 12/20/2016 99 250 99 NA 6/19/2017 310 250 310 NA 9/5/2017 210 250 210 NA 12/20/2016 950 250 150 NA 12/20/2017 150 250 150 EW-051718-9 5/17/2018 520 400 520 ONA 11/11/2011 <100 72 250 500 <500 <1 <1 <1 NA 11/11/2011 <100 72 250 150 NA 21/10/2012 <100 150 250 150 -1 <1 <1 NA 21/10/2012 <100 150 250 160 <1 <1 <1 NA 8/28/2012 <100 200 250 250 200 <1 <1 <1 NA 8/28/2012 <100 200 250 200 <1 <1 <1 NA 2/14/2013 <100 220 250 220 <1 <1 <1 NA 2/14/2013 <100 220 250 220 <1 <1 <1 NA 8/14/2013 <100 220 250 220 <1 <1 <1 NA 8/14/2013 <100 200 250 200 <1 <1 <1 NA 8/14/2014 140 250 140 NA 8/14/2014 140 250 140 NA 8/14/2014 290 250 290 NA 8/14/2014 290 250 290 NA 6/29/2015 240 250 250 250 NA 6/29/2016 63 250 68 NA 9/28/2015 220 250 250 NA 9/28/2016 68 250 68 NA 9/20/2016 68 250 56 61 <1 <1 NA 9/20/2016 60 250 250 ONA 9/20/2016 60 250 250 NA 9/20/2016 60 250 250 250 N		NA	9/28/2015		110	<250	110				
NA 9/16/2016 100 250 100		NA	3/3/2016		92	<250	92				
NA 12/20/2016 99 2.50 99 NA 6/19/2017 310 2.50 310 NA 9/5/2017 210 2.50 210 NA 12/20/2017 150 2.50 150 NA 11/11/2011 -100 72 2.50 72 -1 -1 -1 -1 -1 NA 11/11/2011 -100 72 -2.50 72 -1 -1 -1 -1 NA 2/10/2012 -100 160 -2.50 150 -1 -1 -1 -1 -1 NA 8/28/2012 -100 160 -2.50 160 -1 -1 -1 -1 -1 NA 8/28/2012 -100 200 -2.50 200 -1 -1 -1 -1 -1 NA 2/14/2013 -100 220 -2.50 220 -1 -1 -1 -1 NA 5/16/2013 -100 220 -2.50 220 -1 -1 -1 -1 NA 8/14/2013 -100 220 -2.50 220 -1 -1 -1 -1 NA 8/14/2013 -100 220 -2.50 200 -1 -1 -1 -1 NA 8/14/2013 -100 200 -2.50 200 -1 -1 -1 -1 -1 NA 8/14/2014 140 -2.50 140 NA 8/14/2014 2.90 -2.50 2.90 NA 8/14/2014 2.90 -2.50 2.90 NA 8/14/2014 2.90 -2.50 2.90 NA 6/29/2015 2.40 -2.50 2.40 NA 6/29/2015 2.40 -2.50 2.50 2.20 NA 6/29/2016 68 -2.50 68 NA 6/29/2016 68 -2.50 68 NA 6/29/2016 68 -2.50 NA 6/29/2016 68 -2.50 NA 6/29/2016 68 -2.50 NA 6/29/2016 68 -2.50 NA 6/29/2016 68 NA 6/29/2016 68 NA 6/29/2016 60 60 60 60 60		NA	6/21/2016		85	<250	85				
NA 12/20/2016 99 2.50 99 NA 6/19/2017 310 2.50 310 NA 9/5/2017 210 2.50 210 NA 12/20/2017 150 2.50 150 NA 11/11/2011 -100 72 2.50 72 -1 -1 -1 -1 -1 NA 11/11/2011 -100 72 -2.50 72 -1 -1 -1 -1 NA 2/10/2012 -100 160 -2.50 150 -1 -1 -1 -1 -1 NA 8/28/2012 -100 160 -2.50 160 -1 -1 -1 -1 -1 NA 8/28/2012 -100 200 -2.50 200 -1 -1 -1 -1 -1 NA 2/14/2013 -100 220 -2.50 220 -1 -1 -1 -1 NA 5/16/2013 -100 220 -2.50 220 -1 -1 -1 -1 NA 8/14/2013 -100 220 -2.50 220 -1 -1 -1 -1 NA 8/14/2013 -100 220 -2.50 200 -1 -1 -1 -1 NA 8/14/2013 -100 200 -2.50 200 -1 -1 -1 -1 -1 NA 8/14/2014 140 -2.50 140 NA 8/14/2014 2.90 -2.50 2.90 NA 8/14/2014 2.90 -2.50 2.90 NA 8/14/2014 2.90 -2.50 2.90 NA 6/29/2015 2.40 -2.50 2.40 NA 6/29/2015 2.40 -2.50 2.50 2.20 NA 6/29/2016 68 -2.50 68 NA 6/29/2016 68 -2.50 68 NA 6/29/2016 68 -2.50 NA 6/29/2016 68 -2.50 NA 6/29/2016 68 -2.50 NA 6/29/2016 68 -2.50 NA 6/29/2016 68 NA 6/29/2016 68 NA 6/29/2016 60 60 60 60 60		NA	9/16/2016		100	<250	100				
NA 6/19/2017 310 <250 210 NA 9/5/2017 210 <250 210 NA 12/20/2017 150 <250 150 NA 12/20/2017 150 <250 520		NA	12/20/2016		99		99				
NA 9/5/2017 210 <250 210					310		310				
NA 12/20/2017 150 <250 150											
EW-051718-9 5/17/2018 520 <400 520											
MW-4 NA NA NA NA NA NA NA NA NA N											
NA	MW 4			<100		< 500		~1	~1	<i>-</i> 1	<3
NA 2/10/2012 <100 150 <250 150 <1 <1 <1 <1 <1 <1 <1 <	IVI VV -4										<3
NA S/17/2012 <100 160 <250 160 <1 <1 <1 <1 <1 <1 <1 <											
NA 8/28/2012 <100 200 <250 200 <1 <1 <1 <1 <1 <1 <1											<3
NA											<3
NA 2/14/2013 <100 220 <250 220 <1 <1 <1 <1 <1 <1 <1 <											<3
NA 5/16/2013 <100 210 <250 210 <1 <1 <1 <1 <1 <1 <1											<3
NA											<3
NA 2/20/2014 140 <250											<3
NA 5/15/2014 140 <250									<1		<3
NA 8/14/2014 290											
NA 11/24/2014 290 <250 290											
NA 3/31/2015 320 <250 320											
NA 6/29/2015 240 <250 240											
NA 9/28/2015 220 <250 220											
NA 3/3/2016 130 <250 130 NA 6/21/2016 63 <250 63 NA 9/29/2016 68 <250 68 NA 12/20/2016 78 <250 78 NA 3/24/2017 <50 <250 <250 NA 6/19/2017 110 <250 110 NA 9/5/2017 150 <250 150 NA 1/2/2018 <50 <250 <250 NA 1/2/2018 <50 <250 <250 NA 8/14/2013 <100 160 <250 160 <1 <1 <1 NA 8/14/2014 <100 <50 <250 <250 NA 3/31/2015 <50 <250 <250 NA 6/29/2015 <50 <250 <250 NA 9/28/2015 <50 <250 <250 NA 3/3/2016 <50 <250 <250 NA 9/16/2016 <50 <250 <250 NA 9/16/2016 <-											
NA 6/21/2016 63 <250 63		NA	9/28/2015		220	<250	220				
NA 9/29/2016 68 < 250 68 NA 12/20/2016 78 < 250 78 NA 3/24/2017 < 50 250 250 NA 6/19/2017 110 250 110 NA 9/5/2017 150 250 150 NA 1/2/2018 250 250 250 NA 1/2/2018 250 250 250 NA 1/2/2018 2400 2400 2400		NA	3/3/2016		130	<250	130				
NA 12/20/2016 78 <50 <50 <50 <		NA	6/21/2016		63	<250	63				
NA 3/24/2017 <			9/29/2016		68	<250					
NA 6/19/2017 110 <250 110 NA 9/5/2017 150 <250 150					78	<250	78				
NA 9/5/2017 150 <250					< 50		<250				
NA		NA	6/19/2017		110	<250	110				
EW-051718-8 5/17/2018 <400 <400 <400 MW-5 NA 6/5/2013 <100		NA	9/5/2017		150	<250	150				
MW-5 NA 6/5/2013 <100 160 <250 160 <1 <1 <1 <1 NA 8/14/2013 <100 56 <250 56 <1 <1 <1 <1 NA NA 11/24/2014 <100 <50 <250 <250 52 NA 6/29/2015 <50 <250 <250 <250 NA 3/3/2016 <50 <250 <250 <250 NA 3/3/2016 <50 <250 <250 NA 9/28/2015 <50 <250 <250 NA 3/3/2016 <50 <250 <250 NA 9/28/2016 <50 <250 <250 NA 9/16/2016 <50 <250 <250		NA	1/2/2018		< 50	<250	<250				
NA 8/14/2013 <100 56 <250 56 <1 <1 <1 <1 NA NA 11/24/2014 <100 <50 <250 <250 NA 3/31/2015 52 <250 <250 <250		EW-051718-8	5/17/2018		<400	<400	<400				
NA 8/14/2013 <100 56 <250 56 <1 <1 <1 <1 NA NA 11/24/2014 <100 <50 <250 <250 NA 3/31/2015 52 <250 <250 <250	MW-5	NA	6/5/2013	<100	160	<250	160	<1	<1	<1	<3
NA 11/24/2014 <100 <50 <250 <250	1.11 3										<3
NA 3/31/2015 52 <250 52 NA 6/29/2015 <50 <250 <250 NA 9/28/2015 <50 <250 <250 NA 3/3/2016 <50 <250 <250 NA 6/21/2016 <50 <250 <250 NA 9/16/2016 <50 <250 <250 NA 9/16/2016 <50 <250 <250 NA 12/20/2016 <50 <250 <250											
NA 6/29/2015 < 50											
NA 9/28/2015 <50 <250 <250 NA 3/3/2016 <50 <250 <250 NA 6/21/2016 <50 <250 <250 NA 9/16/2016 <50 <250 <250 NA 12/20/2016 <50 <250 <250 NA 12/20/2016 <50 <250 <250											
NA 3/3/2016 < 50 <250 <250 NA 6/21/2016 <50 <250 <250 NA 9/16/2016 <50 <250 <250 NA 12/20/2016 <50 <250 <250											
NA 6/21/2016 <50 <250 <250 NA 9/16/2016 <50 <250 <250 NA 12/20/2016 <50 <250 <250				- -						<u></u>	
NA 9/16/2016 <50 <250 <250 <- NA 12/20/2016 <50 <250 <250											
NA 12/20/2016 <50 <250										1	
INA 0/19/2017 33 <230 33											
NA 9/5/2017 68 <250 68											

Table 2 **Summary of Groundwater Analytical Results**

			Ecology Method NWTPH-Gx (µg/L)		cology Metho NWTPH-Dx (µg/L)			SEPA Met	ganic Compoun thod 8021B/826 (µg/L)	
Well ID	Sample ID	Collection Date	ТРН-д	TPH-d	ТРН-о	Total TPH (C ₁₂ - C ₃₆₎	Benzene	Toluene	Ethylbenzene	Total Xylenes
MW-5	NA	1/2/2018		< 50	<250	<250				
Continued	EW-051718-5	5/17/2018		<380	<380	<380				
MW-6	NA	6/5/2013	<100	680	<250	680	<1	<1	<1	<3
	NA	8/14/2013	<100	790	<250	790	<1	<1	<1	<3
	NA	2/20/2014		740	<250	740				
	NA	5/15/2014		950	<250	950				
	NA	8/14/2014		1,200	<250	1,200				
	NA	11/24/2014		680	<250	680				
	NA	3/31/2015		750	<250	750				
	NA	6/29/2015		750	<250	750				
	NA	9/28/2015		610	<250	610				
	NA	3/3/2016		1,100	390	1,490				
	NA	6/21/2016		650	<250	650				
	NA	9/16/2016		340	<250	340				
	NA	12/20/2016		640	<250	640				
	NA	3/24/2017		580	<250	580				
	NA	6/19/2017		970	280	1,250				
	NA	9/5/2017		320	<250	320				
	NA	1/2/2018		240	<250	240				
	EW-051718-6	5/17/2018		880	<400	880				
MW-7	NA	9/16/2016		140	<250	140				
	NA	12/20/2016		78	<250	78				
	NA	3/24/2017		< 50	<250	<250				
	NA	6/19/2017		100	<250	100				
	NA	9/5/2017		59	<250	59				
	NA	12/20/2017		99	<250	99				
	EW-051718-7	5/17/2018		<380	<380	<380				
MW-8	NA	10/3/2016		290	<250	290				
	NA	12/20/2016		140	<250	140				
	NA	3/24/2017		< 50	<250	<250				
	NA	6/26/2017		180	<250	180				
	NA	9/5/2017		160	<250	160				
	NA	12/20/2017		140	<250	140				
	EW-051718-10	5/17/2018		1,900	2,800	4,700				
	EW-060518-1	6/5/2018		850	770	1,620				
MW-9	NA	9/5/2017		4,300	<250	4,300				
	NA	12/20/2017		360	<250	360				
	EW-051718-2	5/17/2018		450	<400	450				
duplicate	EW-051718-3	5/17/2018		470	<390	470				
MTCA M	lethod A Cleanuj Groundwater ^a		800/1,000 ^b	500	500	500	5	1,000	700	1,000

Notes:

MTCA - Model Toxics Control Act

USEPA - United States Environmental Protection Agency

CCL - Contaminant Cleanup Level

Bold - Value exceeds MTCA Method A cleanup level

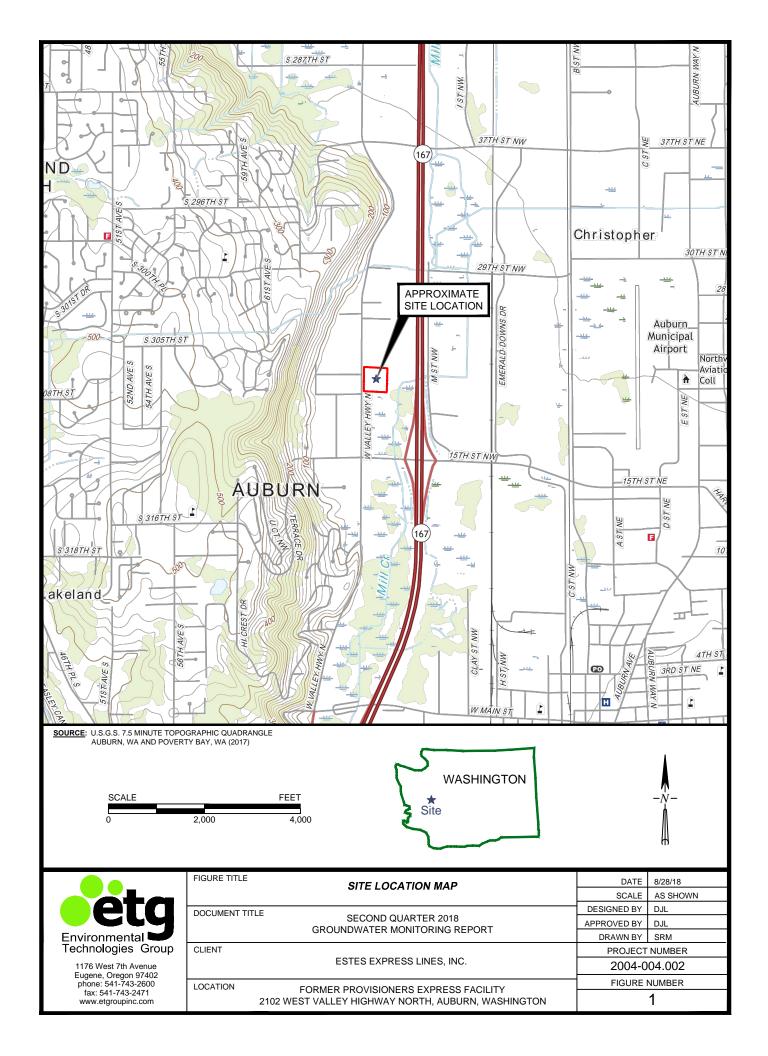
TPH-d - diesel range total petroleum hydrocarbons

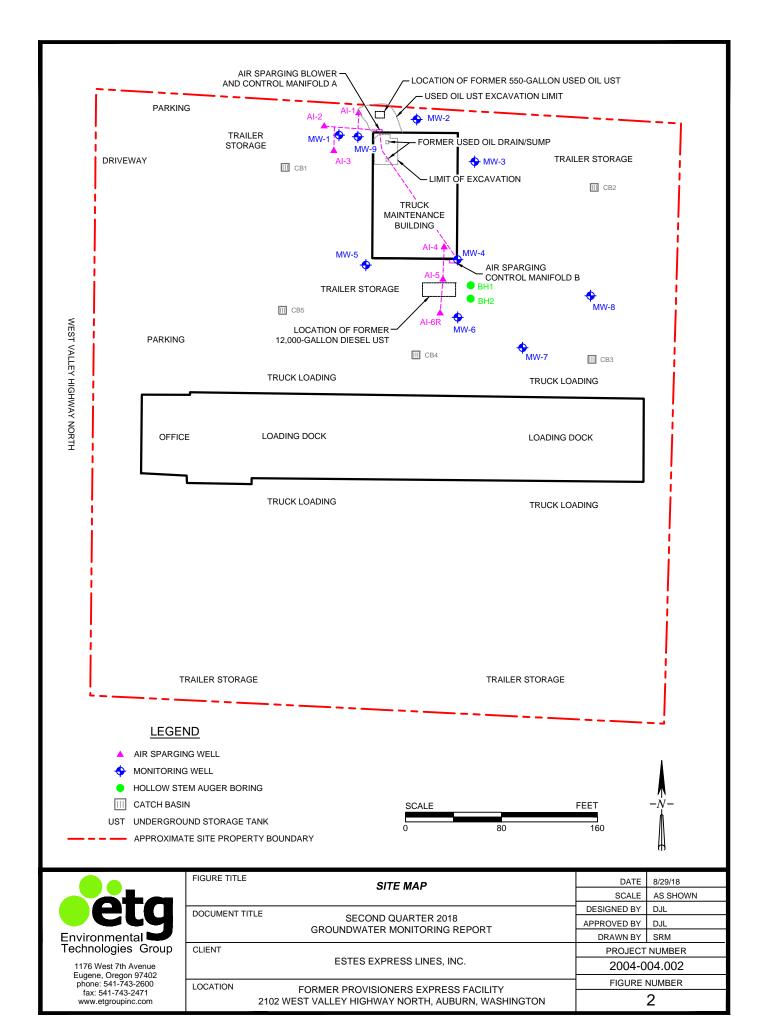
TPH-g - gasoline range total petroleum hydrocarbons

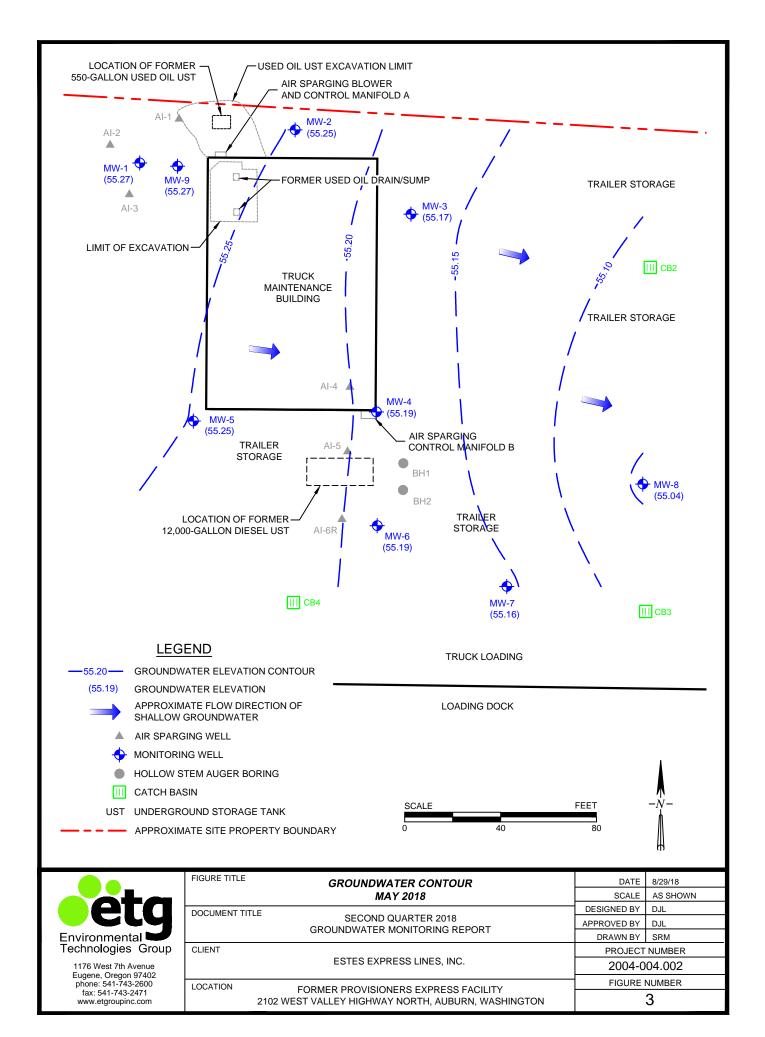
TPH-o - total petroleum hydrocarbons in the oil range

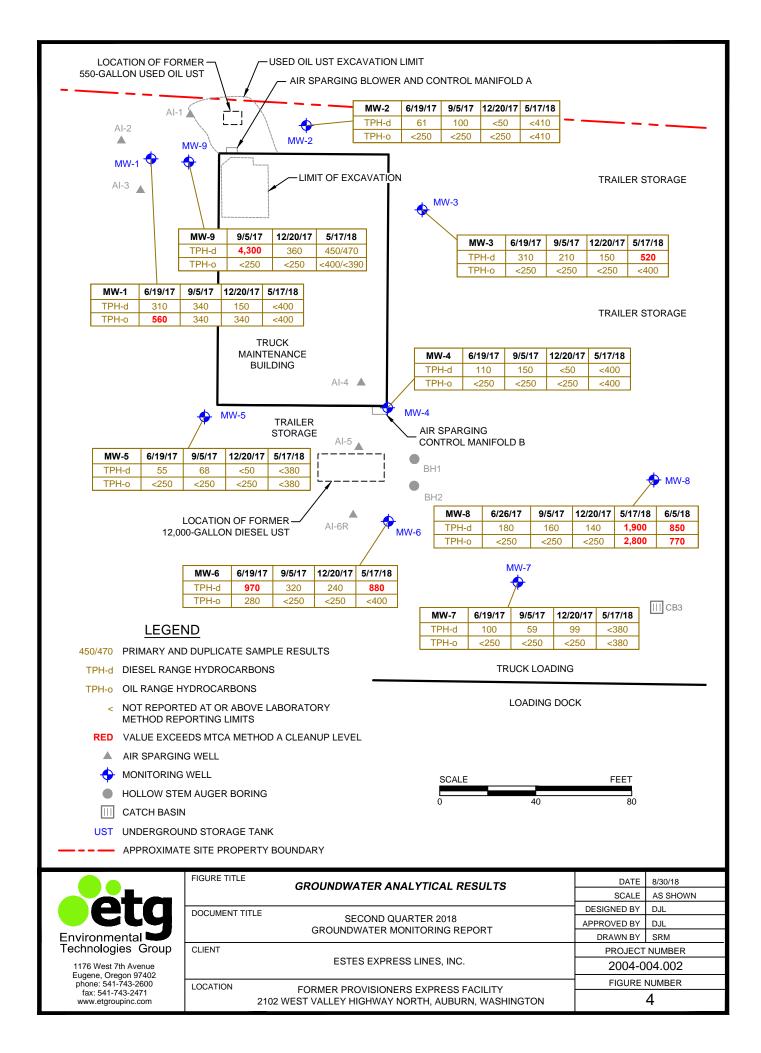
 $\mu g/L$ - micrograms per liter

-- - Not Analyzed


<1 - Not reported at, or above the indicated laboratory method reporting limit


NS - Not Sampled


NA - Not Applicable


^a MTCA Method A Groundwater Cleanup Levels for Unrestricted Land Uses are referenced from the February 12, 2001. Washington Department of Ecology Model Toxics Control Act Cleanup Regulation Chapter 173-340, Table 720-1.

 $[^]b$ 800 μ g/L if benzene has been detected in groundwater; 1,000 μ g/L if benzene has not been detected in groundwater.

ATTACHMENT A FIELD SAMPLING DATA SHEETS

PROJECT	NAME:	£	STES	, WE	ST			WELL	. ID:	MW	-1		
SITE ADD		_						LAREL	CODE	EW) - o<	1718-1	<i>i</i>
SITE ADD	KESS	<u> </u>	/ 15 0 / 5 30	, 04 17				_ DUPLIC					
							,	DOTEIO		D			
Wind From	N N	ΙΕ	E SI	E S_	SW	W	NW	Light		Medi	um	Heavy]
Weather	Sunny		Cloudy	R	ain		?	Temperat	ure:		_°F	℃	
	L							_					
WELL DA		<u> </u>		D:	. T	DT D	14	DT-Water		Produc	ot Thic	Iznagg	7
Date	Tin	ne	Casii	ng Diame	eter	DT-Proc	iuct		r	Produc	Ct Time	CKIICSS	-
5/17/18	083	30		2				5,50					_
PUMP/IN' WATER (·	c):							Notation Section		. .
Time	Liters		PH	Te	mp	DO	S	pec. Cond.	Re	dox		Turb	2
0850	0,5		6.45	/	3.9	6.01		147		2		EAR_] 5
0852	0.7		6.44	1	3.7	5.93	13	955	15	<u> 5_</u>	CL	FAR	5,
0854	0.9		6.45	1	3.6	5.93	3	136	15	58	+	EAR	5
08 56	1,1		6.47	1	3.5	5.90		133	_/ -	53	Ci	EAR	-
		+											1
													-
		\dashv		<u> </u>			_			 	 	<u> </u>	1
						<u></u>			· ·				<u>L</u>
GROUND	WATER	SA	MPLE D	ATA									
Sample Da	ıte: <u>5//</u>	ן בן <u> </u>	(8										
Sample Ti	me: <u>0</u>	900	<u> </u>										
Bottle Type		$\sqrt{}$	Amou	nt & Volu	ıme	Preserva	tive	Filter					
VOA Glass				40 m	d	HCl		NA					
Amber Glass		$\sqrt{}$	2	250 n	nl	HCl		NA					

Notes: DTB=14.49' WELL DTW DROPS @	LOWEST PUMP RATE SOMI/MIN.
Notes: DTB=14.49', WELL DTW DROPS @ SLOW RELOVERY. INCRESED TO 100 M	1/min for SAMPIR PURCE
NEEDS BOLTS LANGER + TAPPED MONUMEN	- THE ALL NOBAL LOCK TOPIUS UK
NEEDS BOLTS LANGAR & PAPERS PHONOMINE	Theres.
Sampled By: Steve McCray	Signature: Mycy

HNO3

250 ml

2

Poly

Total Bottles

PROJECT	Γ ΝΑΜΕ	3:	ESTR	S WEST			WELI	. ID: <u> </u>	W-Z		
				IN, WA				CODE:	EW- 03	17/8-	4
				,				ATE ID:_			•
	г г		- 1-		7 177	2.77	7 7 1.14		1 - di	Hoorn	\neg
Wind From	N	NE	ES	SE S SW	7 W	NV			Medium	Heavy	-
Weather	Sun	ny	Cloudy	Rain			? Temperat	ture:	°F	°C	
WELL D					DW D		DT W-4-			i alemana	7
Date		ime		ing Diameter	DT-Pr	oduct		r Pro	oduct Th	ickness	_
5/17/18	08	3:38	3]	2			5,60				
PIIMP/IN	ITAKE	DEP	TH (ft bto	oc):							
I OMITAL.	, 1111111		- (20 500								
WATER	QUALI	TY D	ATA					Pa 2000 2000	and a sea become	e e Tail the sector to the con-	- W
Time	Lite	rs	PH	Temp	DC		Spec. Cond.	Redox		Turb	DIE
09\$50	0.5		6,1		0.5		168	102		VEAR	5,9
0952	0.		6,15		0.9		166	93		ikan	_
0954	0.	9	6,16		0,5		165	88	1	ver	6.1
0956	1.		6.10	/3./	0.9	56	165	87		LRAR	- 6.7
					-	_			_		_
						-					\dashv
											┨
_					<u> </u>				_		1
			<u> </u>					<u> </u>			
GROUNI	WATE	R SA	MPLE I	DATA							
Sample D		1	/								
	,	,									
Sample T	ime:/	1000	<u> </u>		·						
Bottle Type	e	√	Amou	int & Volume	Preserv				_		*
VOA Glass				40 ml	НС		NA		_		
Amber Glass	S	√	2	250 ml	HC		NA		_		
Poly				250 ml	HN	03	1				
Total Bottles	S		2								
Notes: \(\lambda\)	T3 =	14.5	7,	Pump RAT	B = 10	n M	1 /m				
11010s. <u>D</u>	· , · , · -	, ,,-		70.77							
NEA	805 N	(hw	LOCK	LANGER B	NI 15 (TAPP.	ED MONUM	ens)			
			~			a.	,	Just	Ans,	1.	
Sampled B	By: <u>Steve</u>	e McC	Cray			Sign	nature:	jus	-/-	J_	

PROJECT	`NAME:	ESTES	WEST			WELL	.ID: <u>M</u>	N-3	
SITE ADI	DRESS:	AUBURN	, wa			LABEL	CODE: £	w-05	17/8-9
							ATE ID:_		
			T		T	~		e 1:	T
Wind From	N NE	E SE	S SW	WN	<u>w </u>	Light		<u>1edium</u>	Heavy
Weather	Sunny	Cloudy	Rain		_?	Temperat	ture: <u>&</u>	95 ≤ °F	°C
WELL DA	· · · · · · · · · · · · · · · · · · ·							4	
Date	Time		Diameter	DT-Produc	t	DT-Water		duct Th	ickness
5/17/18	1/804		2			5,63			
PUMP/IN	TAKE DEP	TH (ft btoc):							
	QUALITY I	Committee of the Commit	v8d-App Millor Lakers to title € ° °	o di agrici di Marriago Papa do 1, 11 di	15 × 20 1				
Time	Liters	PH	Temp	DO		c. Cond.	Redox	42-62-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-	Turb
1230		6,34	14.3	0.56		733	1865		FAR
1232	1.8	6.33	14.2	0.66		708	-16	, -	
1234	2.6	6.33	14.2	0.68		691	-15		- / -
1236	3.2	6.34	14.2	0.70		690	-17		\/
1238	4.0	6.33	19.0	0.71		687	-18	1	
								-	
				<u>. </u>					
Sample Da	WATER SA	//3	ΓΑ					•	
	me: /2 9			· · · · · · · · · · · · · · · · · · ·		` ` T		\neg	
Bottle Type	: 1	Amount	& Volume	Preservative	=	Filter	 	-	
VOA Glass Amber Glass			40 ml	HCl		NA NA		-	
Poly	1	2	250 ml	HCl HNO3		NA		\dashv	
Total Bottles		2	230 IIII	111103	L				
Notes: D	TB= 14.5	-2', Gio	ant Malowa	· · · · · · · · · · · · · · · · · · ·					
<u>~~~~~</u>	WOL !	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,			7	1/1		
Sampled B	y: Steve McC	Cray	artm Bor	Sig	gnatur	re:	for All	1cm	

PROJECT	NAME:	ESTE.	S WEST		WEL	L ID:	MW-4	<u>r</u>
SITE ADI	ORESS:	AUBUR	N, WA		LABEI	L CODE:	EW-	051718-8
					DUPLI	CATE ID):	
Wind From	N NE	E SE	S SW	WN	W Lig	ht	Medium	Heavy
Weather	Sunny	Cloudy	Rain		? Temper	ature:	65°F	°C
				<u> </u>		L		
WELL D		·						
Date	Time		g Diameter	DT-Produc			Product Th	iickness
5/17/19	3 11:02		2		5.7	9		<u>-</u>
PUMP/IN	TAKE DEP	TH (ft btoc)	·					
		, ,						
	QUALITY I	particle with the control of the						
Time	Liters	PH	Temp	DO	Spec. Cond.	Red 15	Approximately and a second	Turb
1204	0.4	6.29	13.4	0.53	599	/3		/ yellow Tin
1206	0.8	6.26	13.3	0.56	589 589	12		
1208	1.2	6.26	13.2	0.56	587	1 / 2		
1210	1.6	6.26	13.2	0,51	501	/-		
				-				
						<u> </u>		
GROUND	WATER SA	MPLE DA	TA					
Sample Da	ate: <u>5/17/</u>	18						
	ime: /2/	_						
Bottle Type			& Volume	Preservative	Filter			
VOA Glass			40 ml	HC1	NA			
Amber Glass	· 1	2	250 ml	HC1	NA			
Poly			250 ml	HNO3				
Total Bottles	;	2						
Notes:	NTR = ±	4 JA-1 1	4.90' N	a	22.48.8	12 (0)	h	
Notes)) 12 - 2		<u> </u>	o produce l	N.J.N.			
NALI	LULK.	NERIS (2)) Mrw Larl	KA BOUTS				
a 115	. a. 3.5.4	7		. a.	atrona -	1/1	May	
Sampled B	sy: Steve McC	Cray		Sig	mature:	Now!	1 9	

PROJECT	NAME:	ESTES	WEST		WELI	ID: MW-	.5	
	RESS:A			3		CODE: Eu		
	.TESS					ATE ID:		
				,	T 1.1	76.1		TI a a v a v
Wind From	N NE	E SE	S SW	W NV				Heavy
Weather	Sunny	Cloudy	Rain		? Temperar	ture:	_°F	°C
WELL DA	ATA							
Date	Time	Casir	ng Diameter	DT-Product	DT-Wate	r Produ	ct Thick	ness
8/17/18	10:29		2		5.65		- 	
	TAKE DEP QUALITY D	·	;):				e Lug e very	and the second
Time	Liters	PH	Temp	DO	Spec. Cond.	Redox	3	ırb
1028	1	6.44		0,95	444	144	COE	
1029	1.5	6.44	13.5	0.96	438	22	CLA	AR
1030	2.0	6.43	13.4	0.94	436	20	CLA	11.
1031	2.5	6.43	13.4	0.95	434	18	CIR	<u>sr</u>
		<u> </u>					ļ	
			-					
Sample Da	WATER SA ate: <u> </u>	18	ATA					
Bottle Type		Amour	t & Volume	Preservative	Filter			
VOA Glass			40 ml	HC1	NA			
Amber Glass		2	250 ml	HC1	NA			
Poly			250 ml	HNO3				
Total Bottles Notes: <u>T</u>	DTB= 14	1.60'.	Pump A	4TK 0.5	LPM NO	Draw Do		
						Lucia		

Sampled By: Steve McCray

PROJECT	Γ ΝΑΜΕ	:	ESTE	S WEST	-	WEL	LID: MU	N-6
				u, WA				0-051718-6
	DIGEOU		10150	1				
Wind From	N	NE	E SE	S SW	WN	W Ligh	t Med	lium Heavy
Weather	Sunn	ıy	Cloudy	Rain		_? Tempera	iture: 60	<u>~</u> °C
							<u> </u>	
WELL D	ATA							
Date	T	ime	Casin	g Diameter	DT-Produc	t DT-Wate	er Produ	ict Thickness
5/17/18	3 //	00		2		5.57		
PUMP/IN WATER			TH (ft btoc):				
Time	Liter	Carry of the	PH	Temp	DO	Spec. Cond.	Redox	Turb
1/08	1	73 11541	6.43	14.9	0.47	368	217	CULAR
1110	2		6.46	14.8	6.48	362	-18	Curan
1112	3		6.46	14.8	0.37	361	-18	CLEAR
1/13	4		6.46	14.8	0.36	361	-/7	cursa
1114	5		6-46	14.8	0.35	360	-/7	CLEAR CLEAR CLEAR
	-							
								<u> </u>
GROUNE Sample D	ate: <u>5/</u>	1/11		ATA				
		√ T		0 17.1	D	D:14		
Bottle Type VOA Glass	;	V	Amoun	t & Volume 40 ml	Preservative HCl	Filter NA		
Amber Glass	;	7	2	250 ml	HC1	NA NA		
Poly	-	*	2	250 ml	HNO3	1477		•
Total Bottles			2			1		
Notes:	r Dra	w b	NOW 2 CO	0,5 6	en			

Sampled By: Steve McCray

PROJECT	NAM	E:	EST	ES	WEST			WELL	. ID:	MW	-7	
SITE ADI	ORESS	:	AU	30R1	u, WA			LABEL DUPLIC	CODE	: Ew	- 0517	18-7
Wind From	N	NE	Е	SE	S SW	W N	w	Light		Mediu	ım H	eavy
Weather		nny	Clo	udy	Rain		_?	Temperat	ure:	60	°F	_°C
	L							1				
WELL D						· · · · · · · · · · · · · · · · · · ·	· ` `					
Date		Time		Casing	Diameter	DT-Produc	t	DT-Water		Produc	t Thickne	SS
5/17/18	7 11	1:28	<u>'</u>		2			4.71				
PUMP/IN	QUAL	ITY I	•	btoc):			Is a Company	2141 - 12 2 - 2 - 2 - 2 - 2	Treatment and	any and the same of the same o		*************************************
Time	Lite	ers	P	H	Temp	DO		ec. Cond.	19 25 25 27 28 20 22	dox	Tur	Mar. 11 15 15 15 15
1133	0.4		6.3		14.1	0.48	<u> </u>	629		25	Cirx	_
1/35	0.8			38	13.4	0.52		627		28		
1/37	1.2		61:		13,4	0.54		625		29		-
1139	1.0	0	613	78	13.4	0.53	ļ			29	<u>V</u>	
				_								
									-			
GROUND Sample D	ate: <u>_</u>	1/17	1/8	E DAT	ГА							
Bottle Type)	1	An	nount e	& Volume	Preservative	<u> </u>	Filter				
VOA Glass					40 ml	HCl	1	NA				
Amber Glass	S	1	2		250 ml	HC1	+	NA				
Poly Total Bottles		<u> </u>	<u> </u>		250 ml	HNO3						
Notes: \(\sum_{\text{N}} \)		- /3.	<u>2</u> ,45 ¹		UO DAGI	N DOUN	<u>e_</u>	0.2	1 (m			
NE	203	Low	k ,	Boc	TS Y J	- Peuk OK				/		
Sampled B	sy: <u>Stev</u>	e McC	Cray _			Sig	gnatu	ıre:	K	Jus	Jug	/

PROJECT	NAMI	E:	ESTR	s u	NEST	-		WELI	L ID:	MW	-8		
SITE ADD								 LABEL					(D
SHEADD	KESS	•	/UBC I	<u>,</u>	<i></i>			DUPLIC					
Wind From	N	NE	E	SE	S SW	W	NW	Light	t	Medi	um	Heavy	_
Weather	Sur	ıny	Cloud		Rain		?	Tempera	ture:	65	_°F	°C	
									1				_
WELL DA	TA												
Date		Гіте	Cas	sing Di	ameter	DT-Pro	oduct	DT-Wate	r	Produc	t Thick	cness	_
5/17/18	12	2:48		Z				4.66				·	
PUMP/IN	QUAL.	ITY D	ATA	70 N S S	Talkin salah sadan - P	Tells and Decay	2004PF FF FF	Wisher were before to		e de tradición de la composition della compositi			3 A-7.
Time	Lite	ers	PH		Temp	DO		Spec. Cond.	V-90-2-0-2-0-1-0	dox		urb	D72~
1312	0.		6.33		16.7	0.6		611		56	*		9. ⁷
1314	01.		6.32		16.8	0.6		608		<u>56</u>	Cus	29R	-
1316	0,0		6.32		16.8	0.6		608		57	- · {	/	- 100
1318	0.	5	6.3	2	16.8	0'	62	606		57	V		4.8
							_ -						-{
													1
						 							-
													-
GROUND Sample Da Sample Tir	te:_ <i>≤</i>	10/	. <u>२</u> <u>. २</u> 			,	·	ONAW W	/L 0.	ייים אייים	BWAL	بمی کا ده	J 5ÆN
Bottle Type		1	Amo	1	Volume	Preserv		Filter					
VOA Glass	_				10 ml	HC		NA					
Amber Glass		1	2		50 ml	HC		NA					
Poly		_	-	2	50 ml	HNC)3		 				
Total Bottles			2										
from to U	MO,	NUMA	WRLL.	J-8	MAKO O	J-PLU	6 WA n 5-11	FETH CUS	scars	an no	C Awa	Sivi	166
					prvers	K UNTO	L 528	@ SAMP					
NEAS Sampled By			2000 0 K Cray	-			Signa	ature:	Stu	My	1 cry		

DIW # 1-2" BRION TO OF SCREEN SO SOME OIL IS ON TO DE SCREEN.

PUMP C SCOPEST RATH X 250 MI/MIN, STILL GET DIAW DOWN. DILY SPECS IN

TUBING + SHREN IN PUPPER WATER

PROJECT NAME: ESTES WEST WELL ID: MW-9SITE ADDRESS: AUBURN, WA LABEL CODE: EW-OS/7/8-2DUPLICATE ID: EW-OS/7/8-3Wind From N NE E SE S SW W NW Light Medium Heavy

Wind From	N	NE	Е	SE	S	SW	W	NW	Light	Medium	Heavy
Weather	Sun	ny		udy	R	ain		?	Temperature:	°F	°C

WELL DATA

Date	Time	Casing Diameter	DT-Product	DT-Water	Product Thickness
5/17/18	0835	2		5.64	

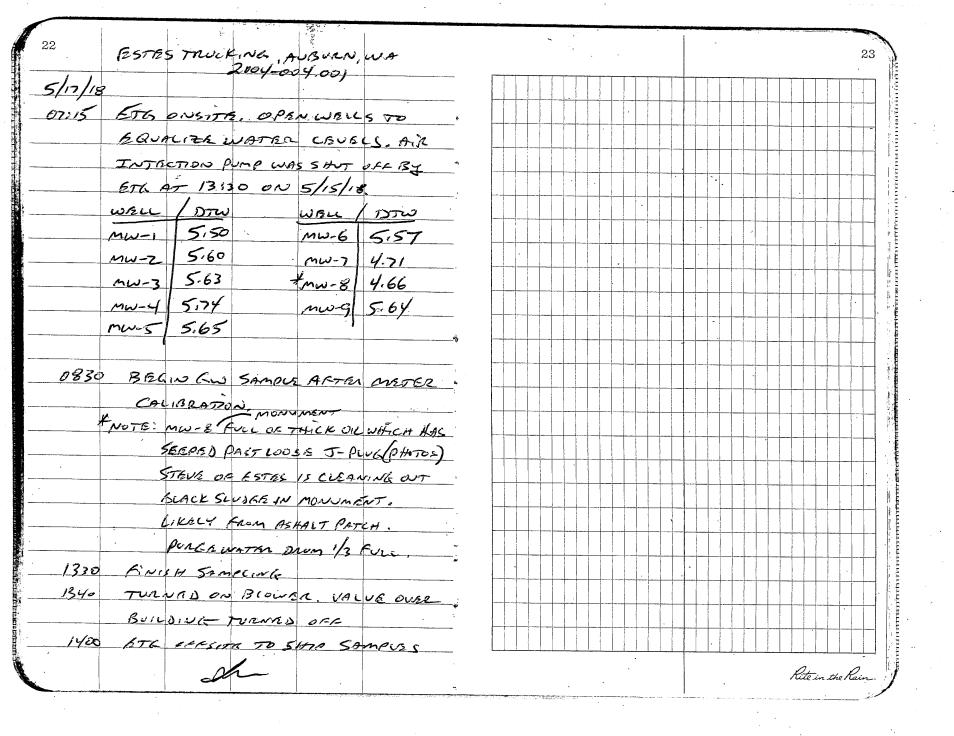
PUMP/INTAKE DEPTH (ft btoc):_____

WATER OUALITY DATA

Time	Liters	PH	Temp	DO	Spec. Cond.	Redox	Turb
09 15 20	0.5	6,02	/3,3	0.67	212	81	CURARY
0922	0.7	6.01	13.4	0.71	209	83	CLEAR
0924	0.9	6.00	13.5	0.67	209	84	CLEAR
0926	1,1	6,00	13.5	0.65	208	83	CVEAR
0928	1.3	5.99	13.5	0.67	208	83	CLEAR
					1		1

GROUNDWATER SAMPLE DATA

Sample Date: 5/17/18


Sample Time: 09 20

DUPLICATE TIME 0930

Bottle Type	1	Amo	unt & Volume	Preservative	Filter	
VOA Glass			40 ml	HC1	NA	
Amber Glass	1	2	250 ml	HCl	NA	
Poly			250 ml	HNO3		

Total Bottles 2

Notes: DTT3 = 13,00', DRAWS	DOWN & SOM /MIN BUT STABILITED
AT 5.85 695 W/ 70 M/	Imin Know Agra. INCRESSED TO 100 M/min
TO SOMPUE	
+ Yellow TINT, NO ODOR	NEROS LOCK COULD & BOLTS OK
Sampled By: Steve McCray	Signature: Stull ry cy

PROJEC'	ΓΝΑ	ME:	ESTES O	UEST		WEL	L ID:	MW- 9		
			AUBURT			LABEL	CODE:_	EW-060	0518-1	
		J	27							
						<u> </u>				_
Wind From	N	NE	E SE	S SW	W N	W Ligh	t	Medium	Heavy	4
Weather	;	Sunny /	Cloudy	Rain		_? Tempera	iture:	≤ 5 °F	°C	
				<u> </u>						_
WELL D	ATA				·					_
Date		Time	Casin	g Diameter	DT-Produc	t DT-Wate	er P	roduct Th	ickness	
6/5/18		1000		2		5.90			Managery are privile	
77										
PUMP/IN	TAK	E DEP	TH (ft btoc)): <u> </u>						
WATER					Triff L. Lawrin			and the second		7
Time		iters	PH	Temp	DO	Spec. Cond.	Redo		Turb	-
1005		,6	6-48	16.3	0.62	613	+	361	CHTUY SIL	77
1007		.2	6.48	16.2	0-61	609				-
1009		.8	6,48	16.3	0.65	609	ļ		1/	-
10/1		,4	6.48	163	0.66	609			VURNY	- 1
1013	ت	10	6.48	16.3	0.67	610			1 3616HT	7 5107
				1.		, .		- 		1
										1
								·		1
			· ·			<u> </u>	Ĺ <u> </u>			1
CDOUND	XX 7 A '	TED SA	MPLE DA	ТА						
		//								
Sample Da	ate:_	6/9/1	<u>&</u>		•				•	
Sample Ti	me:_	1015	 .				•			
Bottle Type	;	1 1	Amount	& Volume	Preservative	Filter				
VOA Glass				40 ml	HC1	NA				
Amber Glass		1	2	250 ml	HCl	NA			•	
Poly				250 ml	HNO3					
Total Bottles			2							
								1 -		
Notes: <u>B</u>	1261	J 59m	PLE ALTO	ER CUEANING	a Puc + P	orkinh 25	1-10	DIEMO	NE OIL	<u>-7</u>
SU13579	NCE	1~ W	ELC, j	UMP RAT	-B 300 M	1 /2412	O.S CTA	<u>n)</u>		
* ORPM	LTEL	MALA	الم والآن الدر-							
			_				11:			
Sampled B	v· Ste	ve McC	rav		Sig	nature:	for	3/		
Sampro D	, . <u></u>	, , O 1110C	<u>. ~ J</u>		~-6					

6/8/18	(0)-		Boir	173 NE 6 019	2		•,	1	٧٤	08/ 12				pors						
	manas, Bahin	6 MW. 8	JE OTHER ME	15/J-pwes	3 Bouts (may	•	30673	220075	2 Rut 75 J. P.	THAMAS ON MONY	30673 OK	30173 OK	•	TO SHP. SAN	- -				Jan	•
25 6.657	CALL BASTE M	~ Sanow	BEKIN WEBAING	SUB 10	Lock,	LOCK,	Lock,	Lock	Lock	Lock	100%	7,00)	3 Lock	0		•				
24 65725	(000	feor	163, 135	77	1-mn	1-vm	ma-3	Y- WH	N. W.	nw.6	1-mn	50,520	8-2014	1130 656	 ş					

1/8 23	4	Sandres S	3	3 3	1200 POL	DACA	1 2	Black	1 2 2	0
6/5/18	Y 5		1085 M	3 5 6	8 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	()	CON CON C	Se Clean	4 2 2 C C C C C C C C C C C C C C C C C	3 0
13 UR W	2 4	2 3	4 000 C	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		(1)	KEN A TEN A	2 7 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ 8
Sinda, A	24-004.00		2	5 3 3 5 6	of the state of th	3,0	2800	6HT 78	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000
S TRUCKING	\$ 3	8 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TINGE OF THE DE	3 3	1 0 0 5 8 5 5 8 5 7 5 5	र ए	7 14 8	10 0 C R 2 C	25
E 57.6	Cush	0650 6.	2700 0	28.60	0		256		200	

ATTACHMENT B LABORATORY ANALYTICAL REPORTS

May 22, 2018

Dan Landry Environmental Technologies Group, Inc 1176 West 7th Avenue Eugene, OR 97402

RE: Project: 2004-004.001 Estes West Trucki

Pace Project No.: 10431975

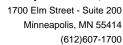
Dear Dan Landry:

Enclosed are the analytical results for sample(s) received by the laboratory on May 18, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jennifer Gross


jennifer.gross@pacelabs.com (206)957-2426 Project Manager

ENNI (TROSS

Enclosures

cc: Dave Seaver, Environmental Technologies Group, Inc.

CERTIFICATIONS

Project: 2004-004.001 Estes West Trucki

Pace Project No.: 10431975

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414-

2485

A2LA Certification #: 2926.01 Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256

EPA Region 8+Wyoming DW Certification #: via MN 027-

053-137

Florida Certification #: E87605
Georgia Certification #: 959
Guam EPA Certification #: MN00064
Hawaii Certification #: MN00064
Idaho Certification #: MN00064
Illinois Certification #: 200011
Indiana Certification #: C-MN-01
Iowa Certification #: 368
Kansas Certification #: E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062
Louisiana DEQ Certification #: 03086
Louisiana DW Certification #: MN00064

Maine Certification #: MN00064 Maryland Certification #: 322

Massachusetts Certification #: M-MN064

Michigan Certification #: 9909

Minnesota Certification #: 027-053-137
Mississippi Certification #: MN00064
Montana Certification #: CERT0092
Nebraska Certification #: NE-OS-18-06
Nevada Certification #: MN00064
New Hampshire Certification #: 2081
New Jersey Certification #: MN002
New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507

Oregon NwTPH Certification #: MN300001
Oregon Secondary Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: MN00064
South Carolina Certification #:74003001
Tennessee Certification #: TN02818
Texas Certification #: T104704192
Utah Certification #: MN00064
Virginia Certification #: 460163
Washington Certification #: C486
West Virginia DW Certification #: 9952 C
West Virginia DEP Certification #: 382
Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: 2004-004.001 Estes West Trucki

Pace Project No.: 10431975

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10431975001	EW-051718-1	Water	05/17/18 09:00	05/18/18 10:00
10431975002	EW-051718-2	Water	05/17/18 09:20	05/18/18 10:00
10431975003	EW-051718-3	Water	05/17/18 09:30	05/18/18 10:00
10431975004	EW-051718-4	Water	05/17/18 10:00	05/18/18 10:00
10431975005	EW-051718-5	Water	05/17/18 10:35	05/18/18 10:00
10431975006	EW-051718-6	Water	05/17/18 11:15	05/18/18 10:00
10431975007	EW-051718-7	Water	05/17/18 11:40	05/18/18 10:00
10431975008	EW-051718-8	Water	05/17/18 12:15	05/18/18 10:00
10431975009	EW-051718-9	Water	05/17/18 12:40	05/18/18 10:00
10431975010	EW-051718-10	Water	05/17/18 13:20	05/18/18 10:00

SAMPLE ANALYTE COUNT

Project: 2004-004.001 Estes West Trucki

Pace Project No.: 10431975

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10431975001	EW-051718-1	NWTPH-Dx		4	PASI-M
10431975002	EW-051718-2	NWTPH-Dx	EC2	4	PASI-M
10431975003	EW-051718-3	NWTPH-Dx	EC2	4	PASI-M
10431975004	EW-051718-4	NWTPH-Dx	EC2	4	PASI-M
10431975005	EW-051718-5	NWTPH-Dx	EC2	4	PASI-M
10431975006	EW-051718-6	NWTPH-Dx	EC2	4	PASI-M
10431975007	EW-051718-7	NWTPH-Dx	EC2	4	PASI-M
10431975008	EW-051718-8	NWTPH-Dx	EC2	4	PASI-M
10431975009	EW-051718-9	NWTPH-Dx	EC2	4	PASI-M
10431975010	EW-051718-10	NWTPH-Dx	EC2	4	PASI-M

(612)607-1700

ANALYTICAL RESULTS

Project: 2004-004.001 Estes West Trucki

Pace Project No.: 10431975

Date: 05/22/2018 03:21 PM

Sample: EW-051718-1	Lab ID: 104	31975001	Collected: 05/17/1	8 09:00	Received: 05	/18/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	ND	mg/L	0.40	1	05/21/18 19:42	05/22/18 12:07	7 68334-30-5	
Motor Oil Range <i>Surrogates</i>	ND	mg/L	0.40	1	05/21/18 19:42	05/22/18 12:07	7	
o-Terphenyl (S)	97	%.	50-150	1	05/21/18 19:42	05/22/18 12:07	7 84-15-1	
n-Triacontane (S)	97	%.	50-150	1	05/21/18 19:42	05/22/18 12:07	7 638-68-6	
Sample: EW-051718-2	Lab ID: 104	31975002	Collected: 05/17/1	8 09:20	Received: 05	5/18/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	0.45	mg/L	0.40	1	05/21/18 19:42	05/22/18 09:44	4 68334-30-5	
Motor Oil Range	ND	mg/L	0.40	1	05/21/18 19:42			
Surrogates				_				
o-Terphenyl (S)	97	%.	50-150	1	05/21/18 19:42			
n-Triacontane (S)	99	%.	50-150	1	05/21/18 19:42	05/22/18 09:44	4 638-68-6	
Sample: EW-051718-3	Lab ID: 104	31975003	Collected: 05/17/1	8 09:30	Received: 05	5/18/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	0.47	mg/L	0.39	1	05/21/18 19:42	05/22/18 10:24	4 68334-30-5	
Motor Oil Range Surrogates	ND	mg/L	0.39	1	05/21/18 19:42	05/22/18 10:24	4	
o-Terphenyl (S)	93	%.	50-150	1	05/21/18 19:42	05/22/18 10:24	4 84-15-1	
n-Triacontane (S)	97	%.	50-150	1	05/21/18 19:42	05/22/18 10:24	4 638-68-6	
Sample: EW-051718-4	Lab ID: 104	31975004	Collected: 05/17/1	8 10:00	Received: 05	5/18/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
		mg/L	0.41	1	05/21/18 19:42	05/22/18 10:3	5 68334-30-5	
Diesel Fuel Range	ND	mg/L						
· ·	ND ND	•	0.41	1	05/21/18 19:42	05/22/18 10:3	5	
Motor Oil Range		mg/L	0.41	1	05/21/18 19:42	05/22/18 10:3	5	
Diesel Fuel Range Motor Oil Range <i>Surrogates</i> o-Terphenyl (S)		•	0.41 50-150 50-150	1 1 1	05/21/18 19:42 05/21/18 19:42 05/21/18 19:42	05/22/18 10:3	5 84-15-1	

(612)607-1700

ANALYTICAL RESULTS

Project: 2004-004.001 Estes West Trucki

Pace Project No.: 10431975

Date: 05/22/2018 03:21 PM

Sample: EW-051718-5	Lab ID: 1043	31975005	Collected: 05/17/1	8 10:35	Received: 05	/18/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	od: NWTPI	H-Dx Preparation Me	thod: E	PA Mod. 3510C			
Diesel Fuel Range	ND	mg/L	0.38	1	05/21/18 19:42	05/22/18 10:47	68334-30-5	
Motor Oil Range Surrogates	ND	mg/L	0.38	1	05/21/18 19:42	05/22/18 10:47	7	
o-Terphenyl (S)	92	%.	50-150	1	05/21/18 19:42	05/22/18 10:47	84-15-1	
n-Triacontane (S)	99	%.	50-150	1	05/21/18 19:42	05/22/18 10:47	7 638-68-6	
Sample: EW-051718-6	Lab ID: 1043	31975006	Collected: 05/17/1	8 11:15	Received: 05	/18/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	od: NWTPI	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	0.88	mg/L	0.40	1	05/21/18 19:42	05/22/18 10:58	8 68334-30-5	
Motor Oil Range Surrogates	ND	mg/L	0.40	1	05/21/18 19:42			
o-Terphenyl (S)	89	%.	50-150	1	05/21/18 19:42	05/22/18 10:58	84-15-1	
n-Triacontane (S)	90	%.	50-150	1	05/21/18 19:42	05/22/18 10:58	8 638-68-6	
Sample: EW-051718-7	Lab ID: 1043	31975007	Collected: 05/17/1	8 11:40	Received: 05	/18/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical Meth	od: NWTPI	H-Dx Preparation Me	thod: E	PA Mod. 3510C			
Diesel Fuel Range	ND	mg/L	0.38	1	05/21/18 19:42	05/22/18 11:09	68334-30-5	
Motor Oil Range	ND ND	mg/L mg/L	0.38 0.38	1 1	05/21/18 19:42 05/21/18 19:42			
Motor Oil Range Surrogates		J				05/22/18 11:09)	
Motor Oil Range Surrogates o-Terphenyl (S)	ND	mg/L	0.38	1	05/21/18 19:42	05/22/18 11:09 05/22/18 11:09) 84-15-1	
Motor Oil Range Surrogates o-Terphenyl (S) n-Triacontane (S)	ND 55	mg/L %. %.	0.38 50-150	1 1 1	05/21/18 19:42 05/21/18 19:42 05/21/18 19:42	05/22/18 11:09 05/22/18 11:09 05/22/18 11:09) 84-15-1	
Motor Oil Range Surrogates p-Terphenyl (S) n-Triacontane (S)	ND 55 54	mg/L %. %.	0.38 50-150 50-150	1 1 1	05/21/18 19:42 05/21/18 19:42 05/21/18 19:42	05/22/18 11:09 05/22/18 11:09 05/22/18 11:09	9 84-15-1 9 638-68-6	Qual
Motor Oil Range Surrogates D-Terphenyl (S) n-Triacontane (S) Sample: EW-051718-8 Parameters	ND 55 54 Lab ID: 1043	mg/L %. %. 31975008 Units	0.38 50-150 50-150 Collected: 05/17/1	1 1 1 8 12:15 DF	05/21/18 19:42 05/21/18 19:42 05/21/18 19:42 Received: 05 Prepared	05/22/18 11:09 05/22/18 11:09 05/22/18 11:09 6/18/18 10:00	9 84-15-1 9 638-68-6 Matrix: Water	Qual
Diesel Fuel Range Motor Oil Range Surrogates o-Terphenyl (S) n-Triacontane (S) Sample: EW-051718-8 Parameters NWTPH-Dx GCS LV Diesel Fuel Range	ND 55 54 Lab ID: 1043	mg/L %. %. 31975008 Units	0.38 50-150 50-150 Collected: 05/17/1 Report Limit	1 1 1 8 12:15 DF	05/21/18 19:42 05/21/18 19:42 05/21/18 19:42 Received: 05 Prepared	05/22/18 11:09 05/22/18 11:09 05/22/18 11:09 5/18/18 10:00 Analyzed	9 84-15-1 9 638-68-6 Matrix: Water CAS No.	Qual
Motor Oil Range Surrogates D-Terphenyl (S) n-Triacontane (S) Sample: EW-051718-8 Parameters NWTPH-Dx GCS LV Diesel Fuel Range Motor Oil Range	ND 55 54 Lab ID: 1043 Results Analytical Meth	mg/L %. %. 31975008 Units	0.38 50-150 50-150 Collected: 05/17/1 Report Limit H-Dx Preparation Me	1 1 1 8 12:15 DF	05/21/18 19:42 05/21/18 19:42 05/21/18 19:42 Received: 05 Prepared PA Mod. 3510C	05/22/18 11:09 05/22/18 11:09 05/22/18 11:09 6/18/18 10:00 Analyzed 05/22/18 11:21	0 84-15-1 0 638-68-6 Matrix: Water CAS No. 68334-30-5	Qual
Motor Oil Range Surrogates o-Terphenyl (S) n-Triacontane (S) Sample: EW-051718-8 Parameters NWTPH-Dx GCS LV	Lab ID: 1043 Results Analytical Meth	mg/L %. %. 31975008 Units mg/L	0.38 50-150 50-150 Collected: 05/17/1 Report Limit H-Dx Preparation Me 0.40	1 1 1 8 12:15 DF ethod: El	05/21/18 19:42 05/21/18 19:42 05/21/18 19:42 Received: 05 Prepared PA Mod. 3510C 05/21/18 19:42	05/22/18 11:09 05/22/18 11:09 05/22/18 11:09 6/18/18 10:00 Analyzed 05/22/18 11:21 05/22/18 11:21	9 84-15-1 9 638-68-6 Matrix: Water CAS No. 68334-30-5	Qual

ANALYTICAL RESULTS

Project: 2004-004.001 Estes West Trucki

Pace Project No.: 10431975

Date: 05/22/2018 03:21 PM

Sample: EW-051718-9	Lab ID: 104	31975009	Collected: 05/17/1	8 12:40	Received: 05	5/18/18 10:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS LV	Analytical Meth	od: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C			
Diesel Fuel Range	0.52	mg/L	0.40	1	05/21/18 19:42	05/22/18 11:32	2 68334-30-5	
Motor Oil Range Surrogates	ND	mg/L	0.40	1	05/21/18 19:42	05/22/18 11:32	2	
o-Terphenyl (S)	94	%.	50-150	1	05/21/18 19:42	05/22/18 11:32	84-15-1	
n-Triacontane (S)	96	%.	50-150	1	05/21/18 19:42	05/22/18 11:32	2 638-68-6	
Sample: EW-051718-10	Lab ID: 104	31975010	Collected: 05/17/1	8 13:20	Received: 05	i/18/18 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
		Utilis		D1	- Frepareu	- Milalyzoa		— Qua
NWTPH-Dx GCS LV			H-Dx Preparation Me		· ·	- Tildiy200	<u> </u>	
NWTPH-Dx GCS LV Diesel Fuel Range			<u> </u>		· ·	· · · · ·		Qua
	Analytical Meth	nod: NWTP	H-Dx Preparation Me	ethod: E	PA Mod. 3510C	05/22/18 08:36	6 68334-30-5	
Diesel Fuel Range Motor Oil Range	Analytical Meth	nod: NWTP mg/L	H-Dx Preparation Me	ethod: E	PA Mod. 3510C 05/21/18 19:42	05/22/18 08:36 05/22/18 08:36	6 68334-30-5	

QUALITY CONTROL DATA

Project: 2004-004.001 Estes West Trucki

Pace Project No.: 10431975

Date: 05/22/2018 03:21 PM

QC Batch: 539667 Analysis Method: NWTPH-Dx

QC Batch Method: EPA Mod. 3510C Analysis Description: NWTPH-Dx GCS LV

Associated Lab Samples: 10431975001, 10431975002, 10431975003, 10431975004, 10431975005, 10431975006, 10431975007,

10431975008, 10431975009, 10431975010

METHOD BLANK: 2934823 Matrix: Water

Associated Lab Samples: 10431975001, 10431975002, 10431975003, 10431975004, 10431975005, 10431975006, 10431975007,

10431975008, 10431975009, 10431975010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Fuel Range	mg/L	ND	0.40	05/22/18 08:01	
Motor Oil Range	mg/L	ND	0.40	05/22/18 08:01	
n-Triacontane (S)	%.	76	50-150	05/22/18 08:01	
o-Terphenyl (S)	%.	92	50-150	05/22/18 08:01	

LABORATORY CONTROL SAMPLE & LC	SD: 2934824		29	34825						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Fuel Range	mg/L	2	1.6	1.7	79	86	50-150	8	20	
Motor Oil Range	mg/L	2	1.7	1.9	84	96	50-150	13	20	
n-Triacontane (S)	%.				78	90	50-150			
o-Terphenyl (S)	%.				82	90	50-150			

SAMPLE DUPLICATE: 2934826		10431975001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Diesel Fuel Range	mg/L		.22J		30	
Motor Oil Range	mg/L	ND	.24J		30	
n-Triacontane (S)	%.	97	99	2		
o-Terphenyl (S)	%.	97	95	2		

SAMPLE DUPLICATE: 2934827		10432019001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Diesel Fuel Range	mg/L	4.2	4.1	2	30	
Motor Oil Range	mg/L	1.8	1.8	5	30	
n-Triacontane (S)	%.	97	94	2		
o-Terphenyl (S)	%.	110	103	2		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALIFIERS

Project: 2004-004.001 Estes West Trucki

Pace Project No.: 10431975

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 05/22/2018 03:21 PM

PASI-M Pace Analytical Services - Minneapolis

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2004-004.001 Estes West Trucki

Pace Project No.: 10431975

Date: 05/22/2018 03:21 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10431975001	EW-051718-1	EPA Mod. 3510C	539667	NWTPH-Dx	 539816
10431975002	EW-051718-2	EPA Mod. 3510C	539667	NWTPH-Dx	539816
10431975003	EW-051718-3	EPA Mod. 3510C	539667	NWTPH-Dx	539816
10431975004	EW-051718-4	EPA Mod. 3510C	539667	NWTPH-Dx	539816
10431975005	EW-051718-5	EPA Mod. 3510C	539667	NWTPH-Dx	539816
10431975006	EW-051718-6	EPA Mod. 3510C	539667	NWTPH-Dx	539816
10431975007	EW-051718-7	EPA Mod. 3510C	539667	NWTPH-Dx	539816
10431975008	EW-051718-8	EPA Mod. 3510C	539667	NWTPH-Dx	539816
10431975009	EW-051718-9	EPA Mod. 3510C	539667	NWTPH-Dx	539816
10431975010	EW-051718-10	EPA Mod. 3510C	539667	NWTPH-Dx	539816

(N/V) Samples 500 90 G 91C SNOTTIGNS 203 . . 42 (N/A) 53 Cooler ŏ Sealed SAMPLEO (V/V) State //Location Received on Residual Chlorina (Y/N) D III AMBI ~ o O TIME Slishr DATE WO#: 10431975 jennifer gross@pacelabs.com, ** ACCEPTED BY I AFFILIATION (IiO rotoM\lesei(D) xG-H4TWN Analyses Test N/A Ş Other 0431975 Address: 1176 West 7th Avenue Methanol Ressos Preservatives Pace Quote:
Pace Project Manager: jer
Pace Profile #: 27530 / 2 1 HOBM Company Name: ETG ЮН Invoice Information Attention: CHAIN-OF-CUSTODY The Chain-of-Custody is a LEGAL **EQNH** 1420 HZSO4 TIME Section C Unpreserved SAMPLER NAME AND SIGNATURE 'n # OF CONTAINERS 8/1-1/8 PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION DATE 1240 1320 14 CHO 0930 |SO/ 12.5 15 1055 0411 31.00 TIME S £76 COLLECTED Purchase Order #: Project Name: Estes West Trucking Facility 2004-004.001 RELINQUISHED BY / AFFILIATION TIME START Frack Meren DATE Required Project Information: SAMPLE TYPE (с=евув с=сому) Ē (see valid codes to left) AND XINTAM Section B Report To: Copy To: Project #: CODE WY WW SI SI OC OC TS MATRIX
Unbring Water
Warse Waser
Wase Waser
Product
Product
Oil
Wipe
Air
China 0, 0/1 1 7 4 m VADDITIONAL COMMENTS 10 Day Standard One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique Fax SAMPLE ID 311120-WZ 1176 West 7th Avenue Eugene, OR 97402 Face Analytical Required Client Information: Requested Due Date: Address: 6 ÷ ç က 7 P 9 7 10 w œ # WBLI Page 11 of 12

hold, incorrect preservative, out of temp, incorrect containers).

Document Name:

Sample Condition Upon Receipt Form

Document No.:

Document Revised: 02May2018

Page 1 of 2

F-MN-L-213-rev.23

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Client Name:			Project #	* LIO#:10431975
Upon Receipt				PM: JMG
Courier: Wred Ex UPS	USPS		ient	
3- \	Other:		iciic	CLIENT: ET Group
Tracking Number: 1475 9640 2435				
1 (Q (10 10 20))				2 Ossiensky Duai Dua Date. Duai Managa
Custody Seal on Cooler/Box Present?	Si	eals Inta	ct?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	□None	<u></u>	ther:	Temp Blank? XYes _No
Thermometer ☐ G87A9170600254 Used: ☐ G87A9155100842	Туре	of Ice:	∑ Wet	Blue None Dry Melted
Cooler Temp Read (°C): 2. Cooler Temp Corre				Biologicał Tissue Frozen? Yes No
Temp should be above freezing to 6°C Correction Factor	r: <u> </u>	<u> </u>	_ Date	and Initials of Person Examining Contents:
USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United St	ates·ΔI ΔF	CA FI	GA ID L	A. MS, Did samples originate from a foreign source (internationally,
NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?	ates. AL, Ar	ι, υλ, _Γ ι, ∐Υε		No including Hawaii and Puerto Rico)?
	lated Soil	Checklis	t (F-MN-	Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	⊈Yes	□No		1.
Chain of Custody Filled Out?	¥Yes	□No		2
Chain of Custody Relinquished?	X√Yes	□No		3.
Sampler Name and/or Signature on COC?	⊠Yes	□No	□N/A	4.
Samples Arrived within Hold Time?	Ø¥es	□No		5.
Short Hold Time Analysis (<72 hr)?	Yes	XÍNo		6.
Rush Turn Around Time Requested?	☐Yes	∑ ⁄w₀		7.
Sufficient Volume?	Yes	□No		8.
Correct Containers Used?	⊠Yes	□No		9.
-Pace Containers Used?	⊠Yes	□No		
Containers Intact?	¥Yes	□No		10.
Filtered Volume Received for Dissolved Tests?	Yes	□No	D X N/A	11. Note if sediment is visible in the dissolved container
Is sufficient information available to reconcile the samples to	XYes	□No	LZK47A	12.
the COC? Matrix: W T	Δ(63			
All containers needing acid/base preservation have been			~~	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH Positive for Res.
checked? All containers needing preservation are found to be in	Yes	No	[∑ N/A	Chlorine? Y N Sample #
compliance with EPA recommendation?				·
(HNO ₃ , H ₂ SO ₄ , <2pH, NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC/DOC Oil and Grease,	Yes	□No	∑ N/A	Initial when Lot # of added
(DRO/8015 (water) and Dioxin/PFAS	Yes	□No	□N/A	Initial when Lot # of added completed: preservative:_
Headspace in VOA Vials (>6mm)?	□Yes	□No	(⊠ N/A	14.
Trip Blank Present?	Yes	No	□X N/A	15.
Trip Blank Custody Seals Present?	□Yes	□No	Ź N/A	
Pace Trip Blank Lot # (if purchased):			· ·	
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:				
	,			
Project Manager Review:	ENNI (JR	250		Date: 05/18/18
Note: Whenever there is a discrepancy affecting North Caroli	,	ac	opy of thi	s form will be sent to the North Carolina DEHNR Certification Office (i.e. out of

(612)607-1700

June 11, 2018

Dan Landry Environmental Technologies Group, Inc 1176 West 7th Avenue Eugene, OR 97402

RE: Project: Estes West Trucking Facility

Pace Project No.: 10434250

Dear Dan Landry:

Enclosed are the analytical results for sample(s) received by the laboratory on June 06, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

JENNI GROSS

Jennifer Gross jennifer.gross@pacelabs.com (206)957-2426 Project Manager

Enclosures

cc: Dave Seaver, Environmental Technologies Group, Inc.

CERTIFICATIONS

Project: Estes West Trucking Facility

Pace Project No.: 10434250

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414-

2485

A2LA Certification #: 2926.01 Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256

EPA Region 8+Wyoming DW Certification #: via MN 027-

053-137

Florida Certification #: E87605
Georgia Certification #: 959
Guam EPA Certification #: MN00064
Hawaii Certification #: MN00064
Idaho Certification #: MN00064
Illinois Certification #: 200011
Indiana Certification #: C-MN-01
Iowa Certification #: 368
Kansas Certification #: E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062
Louisiana DEQ Certification #: 03086
Louisiana DW Certification #: MN00064

Massachusetts Certification #: M-MN064

Maine Certification #: MN00064

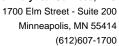
Maryland Certification #: 322

Michigan Certification #: 9909

Minnesota Certification #: 027-053-137
Mississippi Certification #: MN00064
Montana Certification #: CERT0092
Nebraska Certification #: NE-OS-18-06
Nevada Certification #: MN00064
New Hampshire Certification #: 2081
New Jersey Certification #: MN002
New York Certification #: 11647

North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507

Oregon NwTPH Certification #: MN300001
Oregon Secondary Certification #: MN200001
Pennsylvania Certification #: 68-00563
Puerto Rico Certification #: MN00064
South Carolina Certification #: T4003001
Tennessee Certification #: TN02818
Texas Certification #: T104704192
Utah Certification #: MN00064
Virginia Certification #: 460163
Washington Certification #: C486
West Virginia DW Certification #: 9952 C
West Virginia DEP Certification #: 382
Wisconsin Certification #: 999407970

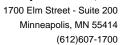


SAMPLE SUMMARY

Project: Estes West Trucking Facility

Pace Project No.: 10434250

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10434250001	EW-060518-1	Water	06/05/18 10:15	06/06/18 13:15



SAMPLE ANALYTE COUNT

Project: Estes West Trucking Facility

Pace Project No.: 10434250

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	
10434250001	EW-060518-1	NWTPH-Dx	JRH	4	PASI-M	_

ANALYTICAL RESULTS

Project: Estes West Trucking Facility

Pace Project No.: 10434250

Date: 06/11/2018 10:57 AM

Sample: EW-060518-1	Lab ID: 1	0434250001	Collected: 06/05/18	8 10:15	Received: 06	/06/18 13:15 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS LV	Analytical M	lethod: NWTPH	l-Dx Preparation Me	thod: El	PA Mod. 3510C			
Diesel Fuel Range	0.85	mg/L	0.40	1	06/07/18 14:04	06/10/18 12:40	68334-30-5	
Motor Oil Range	0.77	mg/L	0.40	1	06/07/18 14:04	06/10/18 12:40		
Surrogates								
o-Terphenyl (S)	95	%.	50-150	1	06/07/18 14:04	06/10/18 12:40	84-15-1	
n-Triacontane (S)	93	%.	50-150	1	06/07/18 14:04	06/10/18 12:40	638-68-6	

QUALITY CONTROL DATA

Project: Estes West Trucking Facility

Pace Project No.: 10434250

QC Batch: 543226 Analysis Method: NWTPH-Dx

QC Batch Method: EPA Mod. 3510C Analysis Description: NWTPH-Dx GCS LV

Associated Lab Samples: 10434250001

METHOD BLANK: 2953504 Matrix: Water

Associated Lab Samples: 10434250001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diesel Fuel Range	mg/L	ND	0.40	06/10/18 12:06	
Motor Oil Range	mg/L	ND	0.40	06/10/18 12:06	
n-Triacontane (S)	%.	75	50-150	06/10/18 12:06	
o-Terphenyl (S)	%.	81	50-150	06/10/18 12:06	

LABORATORY CONTROL SAMPLE & LCSD: 2953505 2953506										
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Fuel Range	mg/L	2	1.9	1.9	96	95	50-150	1	20	
Motor Oil Range	mg/L	2	2.1	2.1	103	104	50-150	1	20	
n-Triacontane (S)	%.				91	90	50-150			
o-Terphenyl (S)	%.				95	93	50-150			

SAMPLE DUPLICATE: 2953507

Date: 06/11/2018 10:57 AM

Parameter	Units	10433926002 Result	Dup Result	RPD	Max RPD	Qualifiers
Diesel Fuel Range	mg/L	<0.054	ND -		30	
Motor Oil Range	mg/L	0.13J	.09J		30	
n-Triacontane (S)	%.	84	54	44		
o-Terphenyl (S)	%.	92	58	46		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Estes West Trucking Facility

Pace Project No.: 10434250

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-M Pace Analytical Services - Minneapolis

BATCH QUALIFIERS

Batch: 543619

Date: 06/11/2018 10:57 AM

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Estes West Trucking Facility

Pace Project No.: 10434250

Date: 06/11/2018 10:57 AM

Lab ID	Sample ID	QC Batch Method	QC Batch Analytical Method		Analytical Batch
10434250001	EW-060518-1	EPA Mod. 3510C	543226	NWTPH-Dx	543619

CHAIN-OF-CUSTODY / And

MO#: 10434250 The Chain-of-Custody is a LEGAL DOCUMENT.,

Invoice Information:

Required Project Information:

Section B

Section A Required Client Information:

Face Analytical www.pacelabs.com

Section C

70

Pace Project No./ Lab I.D. DRINKING WATER SAMPLE CONDITIONS 1390749 OTHER SO NPDES CROUND WATER F Residual Chlorine (Y/N) REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) TIME Site Location STATE DATE UST Asser Johnson - PACE ACCEPTED BY / AFFILIATION 220x9 ÎN/λ Analysis Test 176 w. 74 Other Reference:
Pace Project

Tenant FRA Methanol Preservatives Na₂S₂O₃ 'ace Profile #: 27530 HOBN HCI Company Name: €ОИН [₱]OS²H ace Quote Unpreserved Address: 픮 # OF CONTAINERS Trucking Facility SAMPLE TEMP AT COLLECTION DATE TIME ググ COMPOSITE END/GRAB 3/3 COLLECTED RELINQUISHED BY / AFFILIATION みった。N TIME ろろう COMPOSITE START Project Name: を元と、いんくア Project Number: DATE me urchase Order No.: (G=GRAB C=COMP) SAMPLE TYPE (see valid codes to left) MATRIX CODE Report To: Copy To: a 3 9 k k k k Matrix Codes MATRIX / CODE Drinking Water Water Waste Water Product Soil/Solid Oil Wipe Air Tissue Other dland of people supine. com 550 1176 W 7th AUR ADDITIONAL COMMENTS FUGENE, OR (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Requested Due Date/TAT: EW-060518 SAMPLE ID Required Client Information Sompany: 674 Section D # MBTI 2 Ŋ 9 œ 6 F

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days

F-ALL-Q-020rev.07, 15-May-2007

(N/A) Samples intact

(N/A)

Custody Sealed Cooler

Ice (Y/V) Received on

O° ni qmeT

8/15

DATE Signed 6 (MM/DD/YY):

Meen

2006

PRINT Name of SAMPLER: SIGNATURE of SAMPLER:

SAMPLER NAME AND SIGNATURE

ORIGINAL

Page 9 of 11

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

Pace Project No./ Lab I.D. Samples Intact (Y/V) DRINKING WATER F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS 390749 OTHER (N/N) 4 -25 Custody ' T CASE Ice (Y/V) Received on NPDES ___GROUND WATER Residual Chlorine (Y/N) J° ni qmeT Page: RCRA REGULATORY AGENCY TIME Requested Analysis Filtered (Y/N) 00 Site Location STATE DATE UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION SSOFF XO-HGTWV ↓ tesT sisylenA 1 N A Mocken Methanol Reference: Pace Project Manager: Tr. Nor. 1 no Preservatives Na₂S₂O₃ 1106 E. Pace Profile #: NaOH HCI Invoice Information: 1000 HNO3 Company Name: ^⁵OS^zH Section C Unpreserved TIME Pace Quote Address: Attention: # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: Tour King Freising SAMPLE TEMP AT COLLECTION DATE TIME 101 COMPOSITE END/GRAB 81/8 DATE COLLECTED RELINQUISHED BY / AFFILIATION TIME 10000 COMPOSITE Project Name: んく 7度く いたくア Project Number: DATE Section B Required Project Information: 30 シング 4 **BAYT BLAMAR** (G=GRAB C=COMP) urchase Order No .: 5 MATRIX CODE ₫` Report To: Copy To: YA NO S P N S P Matrix Codes MATRIX / CODE Drinking Water Water Waste Water A Gadin C. C. Covoine to Product Soil/Solid Oil Wipe Air Tissue Other 510 ADDITIONAL COMMENTS 1176 W 7th AUR (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE WENE OF Requested Due Date/TAT: F12.060518 SAMPLE ID Required Client Information Section A Required Client Information: Company: ETA Section D Address: 8 6 9 N m ITEM# Page 10 of 11

Important Note: By signing this form 306 are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

Face Analytical

Note: Whenever there is a discrepancy affecting North Car-

hold, incorrect preservative, out of temp, incorrect containers).

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.23

Document Revised: 02May2018 Page 1 of 2

Issuing Authority:
Pace Minnesota Quality Office

Sample Condition Client Name: Project #: WO#: 10434250 **Upon Receipt** PM: JMG Due Date: 06/13/18 Courier: **□UPS □**USPS Client CLIENT: ET Group ☐ Commercial Pace SpeeDee Other: Tracking Number: Optional: Proj. Due Date: Proj. Name: Custody Seal on Cooler/Box Present? **☑**Yes □No Seals Intact? ___Yes □No Bubble Wrap Packing Material: Bubble Bags None Other: Temp Blank? Yes **--**₽00 Thermometer G87A9170600254 Type of Ice: ₩et □Blue □None Dry Melted Used: ₹ G87A9155100842 Cooler Temp Read (°C): 3.5 Cooler Temp Corrected (°C): 3.5 Biological Tissue Frozen? ☐Yes ☐No Date and Initials of Person Examining Contents: Temp should be above freezing to 6°C Correction Factor: USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United States: AL, AR, CA, FL, GA, ID, LA. MS, Did samples originate from a foreign source (internationally, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)? Yes ПNо including Hawaii and Puerto Rico)? Yes □No If Yes to either question, fill out a Regulated Soil Checklist (F-MN-Q-338) and include with SCUR/COC paperwork. COMMENTS: Chain of Custody Present? Yes □No 1. Chain of Custody Filled Out? □No 2. Chain of Custody Relinquished? INO 3. Sampler Name and/or Signature on COC? □No 4. □N/A Samples Arrived within Hold Time? Пио 5. Short Hold Time Analysis (<72 hr)? Yes Z No 6. Rush Turn Around Time Requested? Yes **∠**No Sufficient Volume? Yes □No 8. Correct Containers Used? Yes □No 9, -Pace Containers Used? Yes □No Containers Intact? **✓**Yes □No 10. Filtered Volume Received for Dissolved Tests? □Yes □No 11. Note if sediment is visible in the dissolved container Is sufficient information available to reconcile the samples to □No 12. the COC? Matrix: All containers needing acid/base preservation have been Positive for Res. 13. ∏HNO_₹ H₂SO₄ □NaOH checked? Chlorine? Y N All containers needing preservation are found to be in Sample # compliance with EPA recommendation? (HNO₃, H₂SO₄, <2pH, NaOH >9 Sulfide, NaOH>12 Cyanide) Yes Exceptions: VOA, Coliform, TOC/DOC Oil and Grease, Initial when Lot # of added DRO/8015 (water) and Dioxin/PFAS Yes completed: preservative: Headspace in VOA Vials (>6mm)? ☐ Yes □No 14. Trip Blank Present? [☐No Yes ZN/A 15. Trip Blank Custody Seals Present? **Z**N/A ☐ Yes □No Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Person Contacted: Date/Time: Comments/Resolution: 06/06/18 Project Manager Review: ENNI (JROSS Date:

s, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of

ATTACHMENT C PHOTOGRAPHS

MW-8 prior to sampling on May 17, 2018.

MW-8 prior to sampling on May 17, 2018, with j-plug removed.

MW-8 j-plug on May 17, 2018.

MW-8 prior to cleaning and resampling on June 5, 2018.

Progression of MW-8 cleaning pads on June 5, 2018.

MW-8 at completion of cleaning, prior to resampling on June 5, 2018.