Remedial Investigation Report

Former Plaid Pantry Store #112 1002 W. Fourth Plain Boulevard Vancouver, Washington Washington Department of Ecology VCP Site ID SW1314

Prepared For

Plaid Pantries, Inc. 10025 SW Allen Boulevard Beaverton, Oregon

Prepared By

EES ENVIRONMENTAL CONSULTING, INC. 240 N. Broadway, Suite 203 Portland, Oregon 97227 (503) 847-2740 www.ees-environmental.com

EES Project #1179-01 September 19, 2018

Page i

Table of Contents

1	INTRO	DUCTIC	DN	1		
	1.1	Genera	al Site Information	1		
	1.2	Site Hi	story	1		
	1.3	Site Us	se	2		
2	FIELD	INVESTI	IGATIONS	3		
	2.1	Previous Investigations				
		2.1.1	Initial Site Assessment - 2011	3		
		2.1.2	Fuel System Upgrades and Abandoned Tank Decommissioning - 2012	3		
		2.1.3	Supplemental Site Assessment - 2012	4		
		2.1.4	Soil Vapor Extraction Pilot Test - 2012	5		
		2.1.5	Interim Remedial Action - 2013 to Present	5		
		2.1.6	Supplemental Site Investigation - 2015	5		
		2.1.7	Perched Groundwater Evaluation - 2016	6		
		2.1.8	Vapor Intrusion Assessment - 2016	7		
		2.1.9	Ongoing SVE Operations and Monitoring	8		
	2.2	Natura	al Conditions	8		
		2.2.1	Site Area Geology	8		
		2.2.2	Site Surface Water	9		
		2.2.3	Site Hydrogeology	9		
	2.3	Site Dr	rainage and Underground Utilities	9		
	2.4	Site Ch	naracterization and Analytical Results			
		2.4.1	Soil	11		
		2.4.2	Soil Gas			
		2.4.3	Sub-Slab/Indoor/Outdoor Air	15		
		2.4.4	Groundwater	16		
		2.4.5	Site Characterization Summary	16		
3	CONC	EPTUAL	SITE MODEL			
	3.1	Human Exposures				
	3.2	Ecolog	ical Receptors			
4	PROPC	DSED CL	EANUP STANDARDS			
	4.1	General19				
		4.1.1	Soil Cleanup Levels			
		4.1.2	Vapors (Indoor Air and Soil Gas)			
	4.2	Risk Characterization Summary				
		4.2.1	Property Receptors			

		4.2.2	Off-Property Receptors	. 24		
	4.3	Points of Compliance				
		4.3.1	Soil	. 24		
		4.3.2	Other Soil-Related Exposure Pathways	. 25		
		4.3.3	Air	. 25		
		4.3.4	Groundwater	. 26		
	4.4	Terrest	rial Ecological Evaluation	. 26		
5	AREAS POTENTIALLY REQUIRING CLEANUP					
	5.1					
	5.2	Ambier	nt Air	. 27		
	5.3	Final Si	te Cleanup Planning	. 28		
6	CONCL	USIONS	AND RECOMMENDATIONS	. 28		
7	LIMITATIONS					
REFE	EFERENCES					

FIGURES

Table 1: Soil Analytical Results – Petroleum Hydrocarbons and Volatile Constituents

- Table 2: Soil Analytical Results PAHs
- Table 3: UST Liquid Analytical Results PCBs

Table 4: Soil Gas Analytical Results

- Table 5: Sub-Slab, Indoor, and Outdoor Air Analytical Results
- Table 6: Corrected Indoor Air Results
- Table 7: Perched Groundwater Analytical Results

APPENDICES

Appendix A: Historical Documentation

Appendix B: Soil Boring and SVE Well Logs

Appendix C: MTCATPH Calculations

Appendix D: Terrestrial Ecological Evaluation

1 INTRODUCTION

EES Environmental Consulting, Inc. (EES) has prepared this Remedial Investigation (RI) Report on behalf of Plaid Pantries, Inc. (Plaid) for the Plaid Pantry #112 retail gasoline station located at 1002 West Fourth Plain Boulevard in Vancouver, Washington (Property, Figure 1).

In accordance with Washington Administrative Code (WAC) 173-340, the purpose of this RI is to present data that adequately characterize the Site for the purpose of developing and evaluating cleanup action alternatives. Specifically, the RI achieves the following objectives:

- Characterizes the nature, extent, and magnitude of contamination for potentially affected media (i.e., soil, soil vapor, and groundwater) using data from field investigations;
- Presents a detailed Conceptual Site Model; and
- Identifies the applicable cleanup regulations and standards for affected media.

1.1 GENERAL SITE INFORMATION

The Property is located at the northwest corner of the intersection of West Fourth Plain Boulevard and Kauffmann Avenue in Vancouver, Washington (Figure 1). The coordinates for the Site are 45°38'26.07" longitude and -122°40'52.58" latitude. The Property's Clark County Identification Number is 101800, and is located in the southwest quarter of Section 22, Township 2N, Range 1E. The 0.26-acre Property is developed with a single commercial building and a retail gasoline station. Building tenants include Plaid Pantry, which operates a convenience store and retail fueling station, and a Domino's Pizza Restaurant (Figure 2a).

Following confirmation of a fuel release in 2011, Plaid conducted remedial investigation and interim cleanup activities and enrolled in the Washington Department of Ecology (Ecology) Voluntary Cleanup Program (VCP) to facilitate Site characterization and cleanup. The following Ecology identification numbers have been assigned to the Site:

- Cleanup Site Identification Number 11759;
- UST Facility Site Identification Number 9158935; and
- Voluntary Cleanup Program (VCP) Site Identification Number SW1314.

The Ecology Project Manager for this project is Aaren Fiedler (360-407-6300). The Property is owned by 1002 West Fourth Plain Blvd LLC, and the Property owner representative is Richard Piacentini (206-448-1975). This report was prepared on behalf of Plaid Pantries, Inc. (Beaverton, Oregon), and the Plaid representative is Jonathan Polonsky (503-646-4246). Plaid's consultant is Paul Ecker of EES Environmental Consulting in Portland, Oregon (503-847-2740).

1.2 SITE HISTORY

Available information indicates that first development of the Property occurred before 1951, but details regarding Site occupants and Property use before that time are not known (PNG 2011). Between 1951

and 1978, the Property was developed with a commercial building. Site occupants during this period of operation included a gasoline service station, an auto repair shop, an auto detailing and upholstery shop, a dry cleaner, a barber shop, a dairy, a wood furniture refinishing shop, and a second-hand store. The nature and volume of fuel and other products used and stored at the Property by others have not been determined. According to the Property owner's representative, a building and two underground fuel storage tanks (USTs, 3,000- and 5,000-gallon capacity) were removed from the Property prior to site redevelopment in the early 1980s. EES has not identified the location of the former USTs at the Property.

Plaid has operated a retail gasoline station and a convenience store at the Property since site redevelopment in 1982. The fueling system includes two 12,000-gallon USTs and one 10,000-gallon underground tank, as registered with Ecology (see Section 1.1). Site features and underground utilities/infrastructure are illustrated on Figures 2a/2b.

Only gasoline is known to have been stored and dispensed at the Property during operation of the Plaid fueling system. Leaded gasoline may have been dispensed at the site during phase-out of that product in the 1980s. EES understands that Plaid did not store or dispense other hydrocarbons such as diesel fuel, bulk motor oil, or other solvents at any time during its facility operations.

Plaid has operated a leak detection system during site fueling operations as required by Ecology. No releases from the fueling system are known or suspected to have occurred during Plaid's period of operation between 1982 and the time of this report (Section 2.1).

Gasoline impacts were first confirmed in soils surrounding a previously unknown UST that was discovered south of the current fuel dispenser island during initial site assessment activities conducted by Plaid in 2011. The identified gasoline release (source) area is located on the Property and appears to be associated with historical fueling infrastructure that pre-dates Plaid's operations at this Property. Other prior releases may have occurred on the Property, although no releases from the Plaid fueling system are known to have occurred. Soil impacts are present beyond the Property boundary to the south, extending beneath a limited portion of the adjacent sidewalk and Fourth Plain Boulevard roadway. Collectively, the area affected by gasoline contamination originating at the subject Property is designated as the Site.

Historical documentation is provided in Appendix A.

1.3 SITE USE

The Property is developed with a single commercial building that is currently occupied by two tenants separately operating the Plaid convenience store and Domino's carry-out pizza restaurant (Figure 2a). In addition, a fueling station occupies the southern portion of the Property.

The subject Property is zoned as Light Industrial (LI), while surrounding tax parcels are also zoned as Light Industrial (LI) or Community Commercial (CC). The intent and function of these zoning types, as described in Title 20 of the City of Vancouver Municipal Code, is listed below.

- Light Industrial The Light Industrial zone is intended to provide appropriate locations for combining certain industries including industrial service, manufacturing, research/development, warehousing activities, and general office uses and limited retail. Current zoning prohibits residential use at the Property or elsewhere in the LI zone.
- Community Commercial The Community Commercial zone is intended to provide for retail goods and services purchased regularly by residents of several nearby neighborhoods. The zone also accommodates offices, institutions, and housing. Housing is allowed above the ground floor in this area.

There are no known future land use changes for the subject Property.

2 FIELD INVESTIGATIONS

2.1 **PREVIOUS INVESTIGATIONS**

Results of Site characterization and interim cleanup tasks conducted to date by Plaid are summarized below and on Tables 1 through 7, and illustrated on Figures 2 through 8. Supporting details are provided under separate cover.

2.1.1 INITIAL SITE ASSESSMENT - 2011

In preparation for Plaid's planned UST system upgrades, PNG Environmental, Inc. (PNG) conducted an initial assessment at the planned excavation areas on the subject Property in September 2011 (PNG 2011). PNG advanced a total of six soil borings to depths of 40 feet below ground surface (bgs) at various locations surrounding the existing Plaid fueling system. No groundwater was encountered in the six borings. Results of the 2011 investigation included the following (see Table 1):

- Gasoline, benzene, and other gasoline constituents were identified at concentrations exceeding MTCA Method A soil cleanup criteria at boring B-5 located south of the existing Plaid fuel dispensing area, near the southern Property margin. Gasoline impacts were identified at depths between approximately 6 and 12.5 feet during the 2011 assessment, with no indications of gasoline impacts observed below this zone of shallow soil contamination.
- Oil-range petroleum hydrocarbons were identified at a depth of nine feet bgs in boring B-2 located north of the Plaid fueling area. Identified oil concentrations were below Ecology's default MTCA Method A soil cleanup levels. The source(s) of the identified oil impacts at boring B-2 have not been determined.
- No chlorinated or other non-fuel volatile organic compounds (VOCs) were identified among soil samples collected during this initial assessment.

2.1.2 FUEL SYSTEM UPGRADES AND ABANDONED TANK DECOMMISSIONING - 2012

Plaid conducted fuel system upgrades at the Property in January and February 2012. During this work, an abandoned and previously unknown underground fuel tank was encountered immediately south of the Plaid fuel dispenser island near boring B-5 and adjacent to the public right-of-way, where soil contamination was previously identified (PNG 2011). The location of the abandoned underground tank

is shown on Figure 2a. The approximately 1,000-gallon steel tank was empty except for residual water and sludge. The tank was not used or known to exist by Plaid or the Property owner, and no specific information concerning the tank's prior use or contents was obtained. Laboratory analyses of tank sludge contents following decommissioning indicated the presence only of gasoline-range petroleum hydrocarbons (see Tables 1 through 3).

Plaid's contractor notified Ecology and decommissioned the tank by removal in February 2012. Upon removal, corrosion and pitting were observed on tank surfaces. Obvious soil contamination surrounded the tank and accessible discolored soils were excavated and disposed of at a subtitle D landfill under permit by Plaid's contractor. Approximately 13 cubic yards of contaminated soil were excavated from the tank area, although the extent of excavation was limited by Plaid's existing fueling system infrastructure and the adjacent public sidewalk to the south. The final excavation area measured approximately six feet by ten feet, and six feet deep.

Based on the identification of relatively high gasoline and related fuel constituent contamination remaining in soils near the abandoned tank, and in an effort to take advantage of Plaid's exposed piping infrastructure during the system upgrade and decommissioning time period, Plaid installed one 10-foot deep, two-inch diameter well (SVE-1) for future soil vapor extraction (SVE) testing, and five additional "place-holder" monuments intended to facilitate future assessment activities (Section 2.1.3). These place-holder locations consisted of small flush-mounted steel vaults placed in locations surrounding the former fuel tank and determined by Plaid's contractor to be isolated from subsurface fuel system piping and other underground Plaid infrastructure.

Confirmatory analytical testing results indicated that residual soil impacts at depths between three and 10 feet bgs exceeded MTCA Method A cleanup levels for gasoline and benzene. No chlorinated solvents or other non-gasoline VOCs were identified in residual tank contents or among confirmatory post-excavation soil samples collected from areas surrounding the former tank.

2.1.3 SUPPLEMENTAL SITE ASSESSMENT - 2012

In August 2012, EES conducted site assessment activities to further evaluate potential gasoline impacts in soil and soil vapor on the Property and south of the Property boundary in the adjacent Fourth Plain Boulevard right-of-way (EES 2012). A total of 13 soil borings (B-7 through B-16, and SVE-2 through SVE-5) and 10 soil vapor borings (S-1 through S-4, S-6, S-7, S-9 through S-11, and S-13) were advanced at the locations shown on Figures 3 through 6. After drilling, four of the 13 soil borings were completed as SVE test wells SVE-2 through SVE-5, and soil vapor samples were collected from each of the newly installed SVE wells. Findings from the 2012 assessment (Tables 1 through 4) included the following:

Gasoline and related constituents were identified in soil at concentrations exceeding MTCA Method A cleanup levels at the Plaid fuel pump area, extending beyond Property margins to the south beneath the public sidewalk and Fourth Plain Boulevard right-of-way. Identified gasoline impacts in soil beneath the public right-of-way did not appear to be in direct contact with known underground utility infrastructure based on site characterization data and information provided by the City of Vancouver.

- Soil vapor data were generally consistent with identified gasoline impacts to soil, with the greatest vapor concentrations centered at the Plaid fuel dispenser island area and extending to the south. Gasoline-related soil vapor concentrations attenuated laterally with distance from this gasoline source area.
- Non-gasoline volatile organic compounds including tetrachloroethene (PCE) and other chlorinated compounds were detected in the 14 soil vapor samples (Table 4). Of these compounds, PCE and/or carbon tetrachloride were detected in three samples at concentrations exceeding MTCA Method B soil gas screening levels. The greatest PCE concentrations were detected at shallow soil vapor extraction wells SVE-3 and SVE-5. Plaid is not known or suspected to have used or managed chlorinated solvents during its site operations. The source of PCE impacts has not been identified.

2.1.4 SOIL VAPOR EXTRACTION PILOT TEST - 2012

EES performed a preliminary soil vapor extraction (SVE) pilot test in October 2012 to evaluate the performance and potential effectiveness of this technology to address identified soil impacts (EES 2013). The test utilized a five-well array installed at the fuel distribution island area during August 2012, including three "shallow-zone" wells screened at depths between 5 and 10 feet (SVE-1, SVE-3, SVE-5), and two "deep-zone" wells (SVE-2, SVE-4) screened at 15- to 20-foot depths (Figure 2c). The findings of the pilot test demonstrated that SVE was likely to be an effective remedial technology and source control for identified contaminants based on observed conditions and performance.

2.1.5 INTERIM REMEDIAL ACTION - 2013 TO PRESENT

Based on the results of the 2012 SVE pilot test, EES installed and began operating an SVE system at the Property in September 2013 (EES 2014, 2018). The SVE system applies a vacuum to the five-well array (SVE-1 through SVE-5) to remediate gasoline source zone impacts near the southern Property margin. The SVE system's observed zone of influence is shown on Figure 2c. The SVE system has operated without major problems since full-time system startup in September 2013, with the exception of an intentional shutdown in 2015-2016 to evaluate perched groundwater conditions (discussed in Section 2.1.7). Within the SVE treatment zone, gasoline and related constituent vapors continue to be removed from the subsurface at concentrations indicating generally diminishing residual impacts and mass removal rates. Source-area soil treatment effectiveness is summarized in Sections 2.1.6 and 2.1.9.

2.1.6 SUPPLEMENTAL SITE INVESTIGATION - 2015

In 2015, EES conducted supplemental site investigation activities to assess potential gasoline vapor intrusion, to develop Site-specific MTCA Method B soil cleanup levels, and to evaluate source-area soil treatment effectiveness. The initial vapor intrusion assessment was conducted to evaluate potential vapor impacts and migration pathways approaching the Property building and in utility corridors south of the Property beneath the adjacent sidewalk and Fourth Plain Boulevard roadway.

In support of this assessment, vapor monitoring wells were installed in shallow soils and utility trench backfill materials across the Site, and five soil borings (B-16 through B-20) were advanced in the known

gasoline source area in order to calculate Site-specific soil cleanup levels (discussed in Section 4.1.1) and to evaluate SVE treatment effectiveness. A total of 21 soil gas samples were collected from Site vapor monitoring wells (B-17, B-18, S-27 through S-31), temporary shallow soil gas borings (S-14, S-15, S-16, S-18, S-20 through S-24, and S-26), and utility trench backfill locations (S-17, S-19, S-25, and S-32). Sample locations and analytical results are shown on Figures 4b through 7, and summarized below.

- In the historic gasoline source-zone area undergoing active SVE treatment, soil gas concentrations of gasoline and benzene were measured at concentrations of up to 8,600 and 140 micrograms per cubic meter (ug/m³), respectively, indicating significant contamination reductions in the source area.
- Soil data collected at source-area borings B-19 and B-20 indicated significant contaminant reduction in the treatment area due to active soil vapor extraction, with 2015 concentrations less than MTCA Method B cleanup levels (CUL) within this zone. For example, pre-treatment (2012) gasoline and benzene concentrations were measured at location Pit-E/6 at up to 64,200 and 93 mg/kg, respectively, compared to post-treatment (2015) concentrations measured at co-located boring B-20 at up to 475 mg/kg gasoline and no detectable benzene.
- South of the Property boundary and beyond the zone of current SVE influence, gasoline contamination was measured in soil at levels exceeding 20,000 mg/kg. However, gasoline-related volatile constituents (BTEX compounds) were not detected in corresponding off-Property soils.
- The greatest soil gas impacts were measured south of the source-zone treatment area and beyond the southern Property margin below the adjacent sidewalk and West Fourth Avenue roadway, where residual soil impacts remain at relatively high concentrations. In this right-of-way area, the highest vapor levels of gasoline (4,900,000 ug/m³ at well B-17) and benzene (120 ug/m³ at boring S-15) were measured beyond the observed SVE influence zone. Soil and vapor impacts beneath the West Fourth Plain Boulevard roadway diminish before reaching the roadway centerline based on sampling data (Figures 4b and 5).
- North of the source-area, soil gas data collected in shallow soils indicate that gasoline and constituent soil vapors diminish with proximity to the Property building. Benzene concentrations up to 100 ug/m³ were measured at temporary soil gas boring S-21 located adjacent to the building, slightly exceeding Ecology's default MTCA Method B soil gas screening level of 10.7 ug/m³.
- Gasoline and related constituents were not detected in utility trench backfill soil gas samples at concentrations that exceeded MTCA Method B soil gas screening levels. Based on these results, elevated levels of site contaminants do not appear to be present in Site utility trenches, and therefore are not likely migrating into the subject Property building via these potential preferential pathways.

2.1.7 Perched Groundwater Evaluation - 2016

Plaid's operating SVE system includes application of vacuum to five well locations in the known gasoline release area near the southern Property margin, and SVE has operated continuously and without major problems since fulltime start-up in September 2013. Until late 2015, site characterization data indicated

that recoverable groundwater had not been encountered to maximum exploration depths up to 40 feet, and identified gasoline releases at the Site were not expected to have been in contact with or otherwise to have impacted local groundwater. EES first observed water in one of the Site's SVE wells during monitoring activities in November 23, 2015. This observation triggered monthly evaluation of groundwater conditions at the Plaid Site using these SVE wells. Groundwater monitoring continued through February 2016 (EES 2016).

Perched groundwater was observed in various Site wells during the period between November 2015 and February 2016. EES shut down the Site's SVE system during this time and collected monthly groundwater samples from existing Site wells to evaluate potential gasoline impacts. Only one of the Site wells (SVE-5) consistently yielded adequate water for sampling. Recoverable groundwater was also available at well S-28 during the December 23, 2015 monitoring event. Among the six groundwater samples analyzed during the monitoring period, no gasoline or related constituents were identified.

Although seasonal perched groundwater within 20 feet of the ground surface has been confirmed at this Site, water conditions during the monitoring period were highly variable within the well network and recoverable perched groundwater was only reliably identified at well SVE-5. Gasoline impacts at the Site appear limited to soil and soil vapor and have not been detected within seasonal perched groundwater, where present. The local static water table is anticipated at depths below 80 feet (discussed in Section 2.2.3).

Investigation findings to date indicate gasoline impacts to Site groundwater have not been detected and are not anticipated. EES re-started the Site's active SVE system in March 2016.

2.1.8 VAPOR INTRUSION ASSESSMENT - 2016

As directed by Ecology, EES and Plaid conducted a Vapor Intrusion Assessment (VIA) in 2016 to evaluate conditions for the Property building (EES 2017). EES used a phased or "tiered" approach for vapor intrusion evaluation as specified in Ecology guidance.

2.1.8.1 TIER 1 VAPOR INTRUSION ASSESSMENT

EES performed Tier 1 VIA sampling in June 2016. Sampling activities included the collection of five soil gas samples at locations immediately south of the existing Property building, as illustrated on Figures 6 and 7. Temporary soil gas borings S-33 through S-36 were advanced to terminal depths of five feet, with a fifth soil gas sample collected from existing vapor monitoring well S-31, which is screened from 5 to 10 feet bgs.

Gasoline, gasoline constituents, and chlorinated solvents were detected in several Tier 1 soil vapor samples. Benzene and PCE were detected at concentrations above MTCA Method B screening levels. Based on Tier 1 findings indicating exceedances of MTCA soil gas screening levels at several locations near the Property building, potential vapor intrusion could not be ruled out and a Tier 2 assessment was triggered as required under MTCA. EES conducted Tier 2 VIA activities in September 2016 to further evaluate potential indoor air vapor intrusion to the Property building. A total of six outdoor air samples (A-4 through A-9), three indoor air samples (A-1 through A-3), and three sub-slab samples (A-1ss through A-3ss) were collected during the Tier II VIA, as shown on Figure 8. Indoor and outdoor barometric pressure measurements were also collected, indicating no discernable gradient between indoor and outdoor air pressure conditions during the sampling event.

Sub-slab gasoline and related constituent vapor concentrations (including benzene, EDB, and naphthalene) measured in September 2016 were either not detected or were measured at concentrations below MTCA soil gas screening criteria. Indoor air samples from the Plaid and Domino's building and outdoor air samples collected at the Property in September 2016 identified gasoline-related vapors at levels that in some cases marginally exceed Ecology screening criteria for indoor air. However, the sources of those vapors (1) do not appear to originate from under the building where no significant sub-slab vapors were identified, and (2) are likely associated with widespread ambient urban air quality and normal retail fueling operations at the Property. The results of the Tier 2 sampling are further discussed in Section 2.4.3.

2.1.9 ONGOING SVE OPERATIONS AND MONITORING

As an interim remedy, Plaid installed an SVE system in the gasoline source area in 2013 and has operated the system since that time. EES conducts monthly operations and maintenance, and quarterly monitoring of the SVE system to evaluate and adjust performance. SVE monitoring results are summarized in regular Interim Remedial Action Measure (IRAM) status reports (EES 2018). Since 2013 startup, cumulative removal of gasoline range hydrocarbons is estimated to be 198 pounds, or approximately 32 gallons. System emissions and performance during 2016 and 2017 are summarized on Table 4.

2.2 NATURAL CONDITIONS

General subsurface conditions including Site stratigraphy and regional hydrogeology are described below. Copies of Site boring logs are included for reference in Appendix B.

2.2.1 SITE AREA GEOLOGY

The majority of the Property is paved with asphalt and concrete, with gravel fill extending to approximately one foot below the paved surface. Subgrade fill is underlain by fine-grained native soil consisting of brown silt and sandy silt, grading to silty sand and extending to depths ranging between 13.5 and 20 feet bgs. The soil is composed of varying amounts of low plastic fines and fine sand. The fine-grained soil is underlain by sands and gravels extending to maximum depths explored of approximately 40 feet bgs. The sand is brown to gray and fine to coarse grained. Observed gravels are sub-round to sub-angular, with cobbles up to three inches in diameter. Groundwater at the Site has not been encountered at terminal exploration depths up to 40 feet.

According to the *Geologic Map of the Vancouver Quadrangle, Washington and Oregon* (Phillips 1987), the site vicinity is depicted as being underlain by Holocene to upper Pleistocene-aged alluvial deposits, which are described as medium to fine sand and silt on the floodplains of the Columbia River. The unit is typically less than 50 feet thick; but locally up to 165 feet thick. This mapped alluvial unit is consistent with EES stratigraphic observations to date.

The subject Property is located on alluvial terrace deposits above the Columbia River, at an elevation of approximately 90 to 95 feet above mean sea level (MSL).

2.2.2 SITE SURFACE WATER

Stormwater appears to be collected and infiltrated at a dry well in the southwest portion of the paved Property and is therefore expected to be isolated from shallow impacted soil present at the site. Vicinity runoff is collected by municipal catch basins and routed into a west-flowing combined sewer located beneath the adjacent Fourth Plain Boulevard. According to the City of Vancouver, this combined sewer discharges to the local waste water treatment facility.

2.2.3 SITE HYDROGEOLOGY

Groundwater has not been encountered on the Property at maximum exploration depths up to 40 feet. To confirm local and regional groundwater conditions, EES previously reviewed available well log information published by Ecology's Water Resources Department (EES 2014).

- Based on the results of the database review, wells in the Site vicinity appear to be screened in the regional aquifer at depths below approximately 100 feet, with first water expected at similar depths. Findings of this well search are consistent with our observation that groundwater was not encountered within 40 feet of the Property ground surface.
- For reference, the Columbia River stage at Vancouver, Washington averages less than 10 feet MSL (USACOE 2004). Compared to Property ground surface elevations ranging between 90 and 95 feet MSL, the water table surface is likely present at depths of 80 feet or greater beneath the subject Property.
- The local water table is expected to flow to the west or southwest following local topography and towards the nearby Columbia River.
- No beneficial groundwater use appears likely within 0.25-mile of the Site. The primary local and regional drinking water supply is from the Troutdale Gravel Aquifer (TGA), which is present among deeper confined water-bearing sands and gravels below the alluvial water table, and the TGA is therefore typically encountered at depths well below 100 feet.

Based on these multiple lines of evidence, and as previously discussed with Ecology, groundwater is not anticipated within 80 feet bgs in the Site vicinity.

2.3 SITE DRAINAGE AND UNDERGROUND UTILITIES

EES reviewed available information regarding the construction, location, and orientation of utility corridors in the vicinity of the Site. Identified Site utilities are described below and shown on Figure 2b.

- Stormwater runoff and surface drainage generally flow to the west-southwest at the Property. Surface runoff in this area is collected by a catch basin in the southwest portion of the Property's parking lot that discharges to an apparent onsite drywell. According to the City of Vancouver Public Works Department, stormwater is likely contained onsite via the drywell. Any Site surface runoff that leaves the Property will likely flow into the West Fourth Plain Boulevard and enter a catch basin array connected to the City's sanitary sewer system.
- Each tenant space at the Property building is served by individual sanitary sewer connections at approximately 1.5 to 2 feet depth that flow to the south. The two sewer lines merge on the Property, then discharge to a 12-foot deep, west-flowing municipal sewer line located beneath West Fourth Plain Boulevard.
- Municipal tap water is supplied to the Property building from a four-foot deep City main that runs west along Kauffman Avenue. Water laterals serve both Property building tenants from the City main. The depth of the two laterals is likely shallower than four feet based on the depth of the City mainline.
- Other identified underground utilities that are present at the Site include electrical power, fiber optic, and natural gas, all of which are likely located within three to four feet of the ground surface. Two unknown underground utilities were identified below the West Fourth Plain roadway; however, City representatives and private locators could not determine their construction, depth, or intended use. Electrical power supply to the on-Site building is overhead; however, an underground power line serves the fuel pump island and store sign (located at the southeast corner of the Property).

Site utilities do not appear to be in direct contact with identified gasoline contamination based on available data (Figures 4b and 5).

2.4 SITE CHARACTERIZATION AND ANALYTICAL RESULTS

This report section describes Site characterization and laboratory analytical testing results of soil, soil gas, air, and perched groundwater samples collected during the RI, between 2011 and 2018. Since active SVE operations were initiated in August 2013, contaminant concentrations in soil have been reduced within the treatment area of the Site, as shown on Figure 5.

Based on the limited vertical extent of soil contamination identified (initially as deep as 13 feet bgs, and reduced to a maximum of 11 feet bgs following SVE operations) and groundwater depths at the Site of greater than 80 feet, groundwater is not expected to be impacted by the gasoline release originating at the Property. Note that shallow perched groundwater has been periodically observed at Site SVE wells but was not found to be contaminated and the deeper, permanent water table and therefore is not considered a Site media of concern (see Section 2.4.4).

Site media were evaluated for gasoline and related common constituents including benzene, toluene, ethylbenzene, xylenes, methyl tertiary butyl ether (MTBE), 1,2-dibromoethane (EDB), 1,2-dichloroethane (EDC), naphthalene, and lead; chlorinated solvents including tetrachloroethylene (PCE), trichloroethylene (TCE), carbon tetrachloride, and 1,1,1-trichoroethane (1,1,1-TCA), and 2-butanone. These chemicals are considered Site contaminants of interest (COI) and were evaluated during this RI.

Analytical testing results are summarized in Tables 1 through 7 and are compared to MTCA Method A and B cleanup levels, where appropriate. Gasoline concentrations in on-Property soil are compared to the Site's TPH-specific MTCA Method B cleanup levels, as described in Section 4.1.1. Laboratory analytical testing results were attached to all interim RI status reports previously submitted to Ecology (Section 2.1) and have been electronically uploaded to the Department's Environmental Information Management (EIM) system. Supporting laboratory documentation is available upon request.

2.4.1 SOIL

Laboratory analytical testing data are evaluated with respect to contaminant occurrence and likely movement at the Site. Current soil conditions are discussed below, including the most recent soil sampling results collected from the SVE treatment area in 2015. Contaminant concentrations originally observed in the source area during 2011 and 2012 have been treated and reduced during subsequent SVE operations, and are not representative of current soil conditions, and therefore are not included in this discussion. The supplemental RI data were shared with Ecology in various work plan documents, status reports, and email communications submitted between August 2015 and April 2018. Comprehensive soil analytical results are included in Tables 1 through 3. Figure sets 4 and 5 illustrate the lateral and vertical extent of gasoline impacts in soil at the Site.

Based upon laboratory testing results, gasoline and related constituent impacts in soil appear to originate from the abandoned UST, extending to the south beneath the West Fourth Plain Boulevard right-of-way (Figure sets 4 and 5). No gasoline releases are known to have occurred during Plaid's operations, nor have any impacts been identified within the Plaid fueling area.

The following data discussion includes a comparison of Site soil concentrations to both MTCA Method A and Method B cleanup levels. Proposed Site cleanup levels and cleanup implications are discussed in Section 4.

2.4.1.1 GASOLINE IN SOIL

Gasoline was measured in Site soil at concentrations initially as high as 64,200 mg/kg in the source area, and was limited to depths between approximately three and 13 feet below ground surface. However, source area soils have subsequently been treated by active SVE operations, with a maximum gasoline concentration of 475 mg/kg observed in the source treatment zone in 2015. Within the Property's source area, residual gasoline concentrations in soil currently achieve MTCA Method B cleanup criteria as detailed in Section 4.1. Gasoline measured in 2012 at the western margin of the source area (1,730 mg/kg at nine feet depth in B-7) has not been re-evaluated since SVE implementation beginning in 2013 but is expected to have diminished based on SVE operations (to be verified).

The greatest remaining gasoline concentrations in Site soils were identified south of the active treatment zone within the adjacent right-of-way, where a maximum concentration of 20,400 mg/kg was measured at a depth of six feet. Although source-area SVE operations appear to have resulted in some reduction of gasoline impacts extending beyond the adjacent Property boundary, residual gasoline

contamination in this small portion of the right-of-way currently exceeds MTCA Method A and B soil cleanup criteria at depths between approximately three and 11 feet (Figure 5).

2.4.1.2 BENZENE IN SOIL

Benzene was co-located with residual gasoline in approximately half of the soil samples analyzed, within the same source area (Table 1). Detected benzene concentrations initially ranged up to 93 mg/kg prior to SVE treatment.

- During previous investigations on the Property, three of the 12 samples collected in 2011 and 2012 where benzene was detected had concentrations above the MTCA Method B soil cleanup level (18.2 mg/kg). These three samples were limited to the gasoline source area on the Property. Since that time, active SVE treatment has diminished benzene in contaminant source area soils to concentrations below analytical detection limits such that soil samples collected in September 2015 indicated that the MTCA Method A and B cleanup levels are satisfied in the gasoline source area on the Property.
- Among numerous soil samples collected south of the Property boundary, benzene concentrations at six locations exceeded the MTCA Method A soil cleanup level of 0.03 mg/kg, with a maximum concentration of 3.7 mg/kg. However, all identified off-Property benzene concentrations are below MTCA Method B soil cleanup criteria (18.2 mg/kg).

2.4.1.3 OTHER GASOLINE CONSTITUENTS IN SOIL

In accordance with MTCA criteria (Table 830-1 in WAC 173-340-900), soil samples were tested for gasoline-related constituents including toluene, ethylbenzene, xylenes, MTBE, EDB, EDC, naphthalene, and lead.

- Toluene, ethylbenzene, xylenes, and/or naphthalene were detected in approximately 15 to 30 percent of the soil samples analyzed.
 - Remaining on-Property constituent concentrations are all below their respective MTCA Method A soil cleanup levels.
 - At three off-Property boring locations (B5, B7, and B11), one or more constituent concentrations exceed MTCA Method A soil cleanup levels, but all are below Method B CULs.
- EDB, EDC, and MTBE were not detected in any of the soil samples analyzed.
- Lead was detected in all 16 samples analyzed but at concentrations that were below the MTCA Method A cleanup level (no MTCA Method B CUL is established for lead). The observed lead concentrations (2.4 to 24 mg/kg) are consistent with published data for naturally occurring background lead in Clark County, Washington (Ecology 1994).

2.4.1.4 Non-Gasoline Contaminants of Interest in Soil

Per MTCA requirements (Table 830-1 in WAC 173-340-900), non-gasoline contaminants were tested for in residual tank sludge and surrounding soils, as described below. Diesel and oil were not detected in

tank sludge. Note that diesel and oil are not known or suspected to have been stored or sold by Plaid at the Property. No non-gasoline COIs were detected in tank sludge.

- Where diesel was detected in 10 of the 39 soil samples (up to 2,660 mg/kg), the analytical laboratory indicated that all such detections were due to overlap from degraded gasoline range hydrocarbons and not related to typical diesel. With regard to heavy oil, detections were identified in two soil samples at concentrations up to 116 mg/kg, far below the MTCA Method A CUL of 2,000 mg/kg.
- PAHs were analyzed in tank sludge and in soil sample Pit Floor/6, where the greatest (flagged) diesel detection was reported. No PAHs were detected in either sample except for naphthalene, which in this case is regarded as a gasoline constituent (discussed in Section 2.4.1.3).
- PCE, TCE, carbon tetrachloride, 1,1,1-TCA, and 2-butanone were not detected in the abandoned tank sludge or in any of the 77 Site soil samples analyzed.
- Polychlorinated biphenyl (PCB) analytical testing was performed on tank sludge but was not performed on Site soil. No PCBs were detected in the tank liquids, and therefore are not anticipated in Site soils.

2.4.2 SOIL GAS

A total of 43 soil gas samples have been collected from subsurface soils located in and around the source area, and from utility trench backfill materials at the Site. The greatest gasoline impacts were observed near the UST source area, although SVE operations have significantly reduced contaminant mass and vapor concentrations in this area based on data collected after several years of treatment. Residual soil gas impacts remain in the right-of-way area south of the source area, beyond the influence of SVE treatment, where gasoline contamination remains in soil.

Soil gas sampling activities most recently included a Tier 1 and 2 VIA to determine whether a vapor intrusion condition may exist at the Property's existing commercial building (EES 2017). Although benzene and gasoline constituents are present in soil gas at the Site, these vapors appear to originate from residual contaminated soils initially located at the gasoline source area, diminish rapidly with distance from the residual source, and do not appear to create unacceptable vapor intrusion conditions in close proximity to or beneath the current Property building or in Site utility trench backfill locations.

Gasoline-range hydrocarbon and benzene concentrations detected in soil gas are summarized on Tables 4 and 5, and illustrated on Figure 6). Findings are summarized below.

2.4.2.1 GASOLINE IN SOIL GAS

The Site's greatest gasoline soil vapor concentrations currently appear to be centered south of the source area and extending beyond the SVE zone of influence beneath the West Fourth Plain Boulevard right-of-way where concentrations measured in 2015 exceeded 10,000 ug/m³ at B-17, B-18, and S-15 (see Table 4 and Figures 6 and 7). Soil gas concentrations generally attenuate by three to four orders of magnitude in samples collected further from the source area and near/below the current Property

building (Figure 7). Anomalously high gasoline soil gas concentrations observed in 2015 near the store building at S-21 were subsequently evaluated and determined not to represent a vapor intrusion concern (Section 2.4.3). This data demonstrates significant vapor attenuation laterally from the source area as expected for an old, degraded gasoline source within fine-grained soils. MTCA Method B soil gas screening levels have been established for gasoline as indicated on Table 4.

Note that SVE implementation since 2013 has mitigated gasoline impacts within the source area. SVE monitoring and operational data is submitted to Ecology on a regular basis and is available upon request.

2.4.2.2 BENZENE IN SOIL GAS

Prior to SVE operation, benzene was initially detected in source area soil gas samples at concentrations up to 82,000 ug/m³. SVE operations have greatly reduced vapor concentrations within the source area treatment zone as summarized in Table 4. The greatest benzene soil vapor concentrations currently appear to be associated with untreated soils south of the source area where concentrations were measured up to 500 ug/m³ in 2015. Vapors attenuate rapidly by up to three orders of magnitude near/below the Property building (Figure 7 and Section 2.4.3).

- Benzene concentrations adjacent to the Property building were below the MTCA Method B soil gas screening level of 32.1 ug/m³ in five of six samples. Sub-slab vapor concentrations collected below the Property building were below the MTCA Method B screening level in all three samples.
- Further south of the Property building at locations in close proximity to the gasoline source area, benzene concentrations measured in soil gas samples exceeded the MTCA Method B screening level.
- Benzene was detected at one of seven utility trench vapor sample locations, at a concentration of 5.9 ug/m³, which is far below the MTCA Method B screening level of 32.1 ug/m³.

2.4.2.3 Other Gasoline Constituents in Soil Gas

Soil gas samples have been tested for other gasoline COIs including toluene, ethylbenzene, xylenes, naphthalene, MTBE, EDB, and EDC. Similar to the gasoline and benzene results, gasoline constituent vapor concentrations were historically highest in the source area, but have diminished with SVE treatment and are now below MTCA Method B cleanup criteria.

2.4.2.4 Non-Gasoline Contaminants of Interest in Soil Gas

Chlorinated solvents including PCE, TCE, and carbon tetrachloride, and 2-butanone in soil gas were identified at various locations across the Site with no discernable source area or pattern. These non-gasoline contaminants have not been used by Plaid and are not associated with Plaid fueling operations. PCE and/or carbon tetrachloride have been detected at various locations across the Site at concentrations above the MTCA Method B soil gas screening level.

2.4.3 SUB-SLAB/INDOOR/OUTDOOR AIR

A total of three sub-slab, three indoor air, and six outdoor air samples were collected at the Property as part of a Tier II Vapor Intrusion Assessment (EES 2017). Based on the findings of the Tier 2 VIA, no evidence of gasoline-related vapor intrusion from subsurface contaminants into building ambient indoor air has been identified. Gasoline and related constituents, and chlorinated solvent concentrations detected in sub-slab vapor, and indoor and outdoor air are summarized on Table 5 and illustrated on Figure 8.

2.4.3.1 GASOLINE IN SUB-SLAB/INDOOR/OUTDOOR AIR

Gasoline was detected in all three indoor air samples at concentrations ranging between 530 and 980 ug/m³ and in three of six outdoor air samples at concentrations ranging between 64 and 350 ug/m³, but was not detected in any of the three sub-slab vapor samples. All three indoor air gasoline concentrations exceeded the newest MTCA Method B cleanup level of 140 ug/m³ for indoor air (Ecology 2018). Among the three indoor air samples, the two measured in the Plaid building space exceeded the EPA referenced value used by Ecology as an indoor air background screening concentration of 594 ug/m³. MTCA does not provide a numeric outdoor air screening level for gasoline.

2.4.3.2 BENZENE IN SUB-SLAB/INDOOR/OUTDOOR AIR

Benzene was detected in two of the three sub-slab vapor samples at laboratory-estimated concentrations up to 5.0 ug/m³, which is less than the MTCA Method B soil gas screening level of 10.7 ug/m³. Benzene was detected in all three indoor air samples at concentrations ranging from 0.93 to 1.5 ug/m³; all three results exceeded the MTCA Method B cleanup level of 0.321 ug/m³ but were within range of typical background concentrations (up to 4.7 ug/m³), as published by Ecology and EPA (Ecology 2018 and EPA 2011, 2012). Benzene was detected in four of six outdoor air samples at concentrations ranging from 0.30 to 3.3 ug/m³, exceeding indoor air concentrations. Among these detected values, benzene concentrations in outdoor air samples A-7 (1.2 ug/m³, located at the entry to the Plaid store) and A-9 (3.3, ug/m³, located near the roadway intersection at the southeastern corner of the Property) appear typical of ambient urban air conditions of 0.98 ug/m³ in the Vancouver area (SWCAA 2007).

2.4.3.3 OTHER GASOLINE CONSTITUENTS IN SUB-SLAB/INDOOR/OUTDOOR AIR

Gasoline constituents were identified in indoor and outdoor air samples as expected for an urban environment, and were generally not found in sub-slab vapors. Naphthalene was identified in indoor air at concentrations up to 0.36 ug/m³ which are within the expected range of indoor air background levels (0.18 to 1.7 ug/m³) specified by Ecology. EDB was measured in one of three indoor air samples at an estimated concentration of 0.022 ug/m³; above the MTCA Method B screening level of 0.00417 ug/m³. EDB has not been detected in any other sub-slab or soil gas samples collected across the Property.

2.4.3.4 Non-Gasoline Contaminants of Interest in Sub-Slab/Indoor/Outdoor Air

PCE, TCE, 2-Butanone, carbon tetrachloride, and 1,1,1-TCA were either not detected in sub-slab vapor, indoor air, or outdoor air samples at concentrations exceeding MTCA Method B screening/cleanup levels. Carbon tetrachloride was detected in the three indoor air and six outdoor air samples at relatively uniform concentrations ranging up to 0.54 ug/m³, which is within the typical range of urban background concentrations of 0.15 to 0.68 ug/m³ (EPA 2011). The source of non-gasoline volatiles in Site soil gas has not been confirmed, but is not attributed to Plaid's current or historical retail gasoline fueling operations at this Property.

2.4.4 GROUNDWATER

With the exception of seasonal perched water encountered in SVE monitoring wells between November 2015 and March 2016 (discussed in Section 2.1.7), groundwater has not been encountered and is not anticipated on the Property within 80 feet of the ground surface. Gasoline and related contaminants were not detected in perched water samples collected from the SVE wells (Table 7). Based on the limited vertical extent of soil contamination remaining within 11 feet of the ground surface, groundwater is not expected to be impacted by the gasoline release originating at the Property and is not regarded as a medium of concern for this Site.

2.4.5 SITE CHARACTERIZATION SUMMARY

Site characterization findings are summarized below with respect to applicable MTCA criteria.

- Gasoline impacts identified at the Site originate from historic fueling operations that occurred prior to Plaid site development in 1982. No releases from the Plaid UST system are known to have occurred.
- Gasoline contamination originates in vadose-zone soils at depths extending to 11 feet bgs, with impacts extending beyond Property boundaries to the south into the West Fourth Plain Boulevard right-of-way.
- Contaminant characteristics indicate degraded gasoline, with diminished constituent concentrations. Among 14 representative soil samples collected within 15 feet of the subject Property ground surface, gasoline and related constituent concentrations in soil are currently below MTCA Method B cleanup levels in all cases. In the right-of-way area south of the Property boundary beyond the zone of SVE influence and at depths between approximately three and 11 feet, gasoline and related constituent concentrations in soil exceed MTCA cleanup criteria. In this adjacent right-of-way area, gasoline concentrations were present in 2015 at concentrations up to 20,400 mg/kg, compared to the Method A and generic Method B cleanup levels of 30 mg/kg and 1,500 mg/kg respectively, and also exceeding the calculated Method B TPH cleanup level of 2,619 mg/kg. Implications for soil cleanup, including the Method B cleanup level calculated using fractionated total petroleum Site data, are discussed in Sections 4 and 5 of this RI report.
- Gasoline and related vapors are present in vadose-zone soils at the Site based on sampling in and around the contaminant core (Figures 4 through 7).

- Soil gas data collected from the area of untreated soils to the south of the gasoline source area exhibits corresponding elevated vapor concentrations that exceed Tier 1 vapor intrusion screening criteria. Potential future building/infrastructure construction near those portions of the Property should consider vapor intrusion issues, although since those impacts are generally limited to the right-of-way area, no such buildings or vapor intrusion issues are anticipated.
- □ Soil gas samples collected near the Property building exceed Tier 1 screening criteria for gasoline-related vapor intrusion. However, subsequent Tier 2 vapor assessment indicates no discernable vapor intrusion conditions inside the Property building.
- Non-gasoline VOCs were identified in Site soil gas and several indoor air/outdoor air samples collected in 2016. The source is unknown and not attributed to Plaid operations, and not identified in any soils nor suspected to be commingled at the gasoline source area that is the subject of this report.
- The water table is present at depths below 80 feet, and is far below the base of identified soil contamination at 11 feet bgs. Contaminants leaching from soil to groundwater are not anticipated at this Site. No Site-related groundwater impacts are known or suspected, and groundwater is not regarded as a medium of concern.

3 CONCEPTUAL SITE MODEL

A Conceptual Site Model (CSM) is a required element of the RI and Site cleanup planning. The CSM evaluates current and reasonably likely future Site conditions, and identifies potential sources of hazardous substances, potentially affected media, and potential migration and exposure pathways for anticipated human and ecological receptors.

3.1 HUMAN EXPOSURES

A summary diagram of the CSM is provided as Figure 9. Only complete pathways can result in exposure. Complete exposure pathways must include each of the following components:

- A source and mechanism of contaminant release.
- An exposure route by which contact can occur.
- A receptor.

At a typical retail gasoline station, releases from the USTs and fuel delivery system are the primary release mechanisms by which COIs may be transferred from the source to affected media. A secondary release mechanism includes vapor migration from soil into indoor and outdoor air. The media potentially affected by primary and secondary release mechanisms include soil and soil vapor. As indicated in Sections 2.4 and 4.3, groundwater at the Site is not known or suspected to be impacted by the Property's gasoline release(s).

Potential human receptors were identified for the Site based on current and reasonably likely future land use. Current Light Industrial site zoning does not permit residential use at the subject Property. Although current Community Commercial zoning allows for limited types of residential land use at nearby properties, it is anticipated that the subject Property will retain its commercial character. Where COIs extend beyond Property margins beneath the adjacent sidewalk and roadway to the south, only limited infrequent construction, excavation, and maintenance use and exposures are anticipated.

Under MTCA, typical commercial and/or residential land use requires the most protective cleanup levels (termed unrestricted land use) normally be applied, based on assumptions for a "reasonable maximum exposure scenario." An alternative set of default cleanup levels utilizing industrial exposure assumptions exist under MTCA, but these values likely cannot be applied for the Site because zoning codes allow for non-industrial usage.

Soil cleanup levels for this Site are based on the published unrestricted land use scenario (MTCA Methods A and B). Modified Method B TPH cleanup levels were also developed by Plaid using Ecology's fractionated TPH data model and based on current and reasonably likely site-specific occupational (non-residential) exposure conditions. Current and potential future human receptors include:

- Commercial/Occupational Workers at Site businesses: employees/workers.
- Retail Store Customers: periodic retail store shoppers and Domino's Pizza patrons.
- Construction Workers: personnel temporarily working at the Site during maintenance or construction activities.
- Trench or Excavation Workers: personnel conducting activities that involve excavation and/or trenching for utility work.
- Roadway Maintenance: personnel working during roadway maintenance activities at the adjacent West Fourth Plain Boulevard right-of-way (re-paving, short-term shallow excavations, etc.).

Identified complete exposure pathways are limited to occupational/commercial scenarios, based on the following qualitative evaluation:

- Potential exposure of current and future commercial/occupational workers and retail store customers to COIs via inhalation of volatile compounds in indoor air originating from subsurface soil.
 - Commercial workers at the Site are currently limited to Plaid store workers and workers at the adjacent carry-out pizza restaurant. Plaid store workers are excluded from Ecology's vapor intrusion considerations due to ongoing fueling operations (Ecology 2009).
 - The soil vapor assessment conducted in 2016 indicates gasoline-related vapors appear limited to the source area and are unlikely to approach the current Property building or identified underground utility features at concentrations exceeding published screening criteria.
- Potential exposure of current and future commercial/occupational workers and retail customers to COIs via ingestion, dermal contact, and inhalation of fugitive dust from shallow

soil. This exposure pathway is very unlikely due to pavement covering the Property soils, and the lack of near-surface Site contaminants accessible for physical disturbance.

- Potential exposure of future construction workers to COIs via ingestion, dermal contact, and inhalation of shallow "surface" soils up to three feet in depth.
- Potential exposure of future trench and/or excavation workers to COIs via ingestion, dermal contact, and inhalation of fugitive dust from subsurface soil extending to 15 feet depth.
- Potential exposure of roadway maintenance workers to COIs via ingestion, dermal contact, and inhalation of fugitive dust from shallow "surface" soil up to three feet in depth.

These exposure pathways are considered in development of Site cleanup levels.

3.2 ECOLOGICAL RECEPTORS

No ecological receptors are known or suspected at the Site based on the results of a simplified terrestrial ecological evaluation (TEE), as described in Section 4.4.

4 PROPOSED CLEANUP STANDARDS

In accordance with MTCA regulations (WAC 173-340) and published Ecology Guidance (2009, 2011, 2015), EES evaluated Site cleanup standards as summarized below.

4.1 GENERAL

The goal of facility cleanup will be to achieve a No Further Action (NFA) or alternative regulatory closure determination for cleanup of gasoline contamination throughout the Site. Recent communications with Ecology indicate that a full NFA cannot be issued until all Site contaminants are remediated, including gasoline, and also non-gasoline halogenated solvent vapors not attributable to Plaid's operations and not commingled with the gasoline release. Since Plaid's cleanup obligation is limited to Site-related gasoline impacts and not other contaminants, the Department has indicated its willingness to issue a "Partial Sufficiency" determination upon Plaid's successful remediation of the gasoline release. This RI does not propose Site cleanup of non-gasoline contaminants, which will be the responsibility of other parties.

Based on a review of available options to approach Site cleanup under MTCA, Plaid intends to use the Method B unrestricted use criteria to address direct contact to residual gasoline impacts present in Site soil, including impacts extending beneath the adjacent right-of-way (leaching to groundwater is not a complete exposure pathway at this Site). Under this approach, Ecology's published Model Remedy guidance (2015; revised 2017) confirms that two options are available for selecting and implementing a protective soil TPH cleanup:

 Option 1: Analyze samples using the EPH/VPH methods, and then follow the procedures specified in Figure 8.1 of Ecology's Guidance for Remediation of Petroleum Contaminated Sites (Ecology 2016) to determine a direct contact TPH cleanup level using the fractionated data. EES used this Ecology model to calculate a Site-specific TPH cleanup level of 2,619 mg/kg (see Section 4.1.1). *The calculated TPH soil cleanup level of 2,619 mg/kg is selected for this Site.*

Option 2: Apply the generic TPH cleanup level of 1,500 mg/kg. The 1,500 mg/kg level applies to situations where only TPH-Gx is present or for mixtures that include TPH-Gx. This level does not affect the Method A cleanup level of 2,000 mg/kg for diesel range organics/heavy oils, or the 4,000 mg/kg level for mineral oil if TPH-Gx is not present or is a limited portion of the mixture.

The calculated TPH cleanup level of 2,619 mg/kg for soil direct contact is applicable to Site conditions, where only gasoline is present (other non-gasoline COIs are not commingled with the gasoline source, and gasoline impacts in soil are isolated from the water table). In addition to addressing TPH, Method B soil cleanup levels must be determined for related constituents using the provisions contained in WAC 173-340-740(3). Ecology's Cleanup Level and Risk Calculations (CLARC) website provides compound-specific Method B direct contact levels for unrestricted use (summarized for the Site in Section 4.1.1 of this RI Report).

After contaminated soil is remediated throughout the Site (including the right-of-way), confirmation testing must be performed to document that the Method B direct contact cleanup levels have been met at the point of compliance and the vapor intrusion pathway has been evaluated and adequately addressed. At that point, Plaid will request a Partial Sufficiency determination from Ecology and no environmental covenant for any portion of the site, including the right-of-way, would be necessary.

The use of Method B unrestricted use cleanup criteria is established under MTCA, most recently clarified in Ecology's 2017 revision to the Model Remedies publication (2015). However, Ecology notes that "the model remedy process does not apply to situations where contamination will remain off the source property above the Method A levels for unrestricted use." In other words, use of the streamlined Model Remedies requires that only Method A cleanup levels may be utilized to achieve MTCA cleanup compliance for the right-of-way. Because the Model Remedy requires the use of Method A CULs for a portion of the Site, Plaid will not utilize the Model Remedy approach and intends to use Model B cleanup criteria for unrestricted use of the entire Site, including the right-of-way.

4.1.1 SOIL CLEANUP LEVELS

The table below summarizes the MTCA cleanup levels for indicator compounds detected in soil at the Site based on MTCA's Required Testing for Petroleum Releases (Table 830-1, WAC 173-340-900). The source of these numeric cleanup levels is Ecology's CLARC database (revised August 2015).

MTCA Method B Soil Cleanup Levels for Gasoline (mg/kg)

CONTAMINANT	MTCA METHOD B SOIL CLEANUP LEVEL	<u>PLAID PROPERTY</u> MAXIMUM REMAINING CONCENTRATION IDENTIFIED IN SOIL	<u>CITY RIGHT-OF-WAY</u> MAXIMUM RESIDUAL CONCENTRATION IDENTIFIED IN UNTREATED SOIL	
Individual Substance	25			
Benzene	18.2	0.80	3.7	
Toluene	6,400	Not detected (<0.86)	23	
Ethylbenzene	8,000	2.1	78	
Xylenes	16,000	12	411	
Naphthalene	1,600 (nc)	0.30	57	
Total Lead	3,000 (gw)	12	24	
Total Petroleum Hyd	drocarbons			
Gasoline Range Organics	1,500* 2,619**	1,730	20,400	

Notes:

nc = non-cancer endpoint

gw = groundwater protection

*1,500 mg/kg generic TPH cleanup level from Model Remedies Publication 15-09-043 (rev. Dec. 2017) **The selected Method B TPH soil cleanup level (2,619 mg/kg) was calculated for gasoline in soil using MTCA methodology (see Section 4.1.1.1).

Non-gasoline contaminants (PCE, TCE, carbon tetrachloride, 2-Butanone, and 1,1,1,-trichloroethane) were not identified in Site soil, not commingled with the gasoline source, and are therefore eliminated as soil COIs.

4.1.1.1 CALCULATED METHOD B TPH CLEANUP LEVELS

EES calculated a Site-specific MTCA Method B CUL for TPH as gasoline in soil using the fractionated analytical approach (Ecology 2007, 2011). The following lines of evidence support development of this Site-specific Method B cleanup level:

- Site gasoline impacts including TPH fraction have been delineated within vadose-zone soils extending between approximately three and 11 feet bgs. Deeper impacts are not known or suspected.
- Groundwater at the Site is present at depths exceeding 80 feet and is not expected to be affected by gasoline release(s) originating at the Property. Although the calculated Site-specific median soil cleanup level exceeds the 1,000 mg/kg residual saturation screening level published for weathered gasoline (Table 745-1 in WAC 173-340-900), the calculated cleanup level remains protective of groundwater due to the limits of soil contamination and significant depth to groundwater at this Site.

 Although no residential use of the Site is anticipated, the MTCA-approved TPH fractionation approach used in developing this cleanup level is regarded as protective of unrestricted Site use. Current and reasonably likely future land use at the Site is non-residential as described in Sections 3 and 4.2, indicating extra levels of protectiveness are incorporated into this cleanup level for unrestricted use.

The Site-specific MTCA Method B soil cleanup level for TPH was calculated using the MTCATPH calculator (version 11.1 [2007]). In order to provide representative data for contaminated soil, four samples (B-16(6), B-17(9), B-18(3), and B-18(9)) were collected from the most highly-contaminated portions of the Site and analyzed using the EPH and VPH analytical method and evaluated using the MTCATPH calculator to derive a cleanup level. The most stringent clean-up level was selected for each sample. The final cleanup value is derived by calculating the median of the four cleanup levels. Based on these parameters, *the Site-specific MTCA Method B cleanup level for gasoline in soil is 2,619 mg/kg*. The MTCATPH calculation details are provided in Appendix C.

4.1.2 VAPORS (INDOOR AIR AND SOIL GAS)

Published Ecology guidance describes the rationale and process for evaluating subsurface vapor conditions with respect to potential indoor air vapor intrusion (Ecology 2009, 2011). MTCA standard Method B cleanup levels for indoor air are published in the 2015 CLARC Data Tables, along with sub-slab soil gas screening levels establishing protective attenuation factors. The sub-slab soil gas screening levels are not strictly intended for use to govern contaminant cleanup, but are evaluated as a first step to determine whether subsequent indoor air sampling and mitigation are necessary. In cases where the sub-slab/soil gas data are below MTCA Method B screening criteria, the vapor intrusion pathway can generally be ruled out. The table below summarizes the MTCA cleanup levels for indoor air and screening levels for soil gas for indicator compounds detected in soil at the Site.

MTCA Method B Air CULs and Sub-Slab Soil Gas Screening I	Levels for Gasoline
--	---------------------

	INDOOR AIR		OUTDOOR AIR	SOIL GAS			
PARAMETER	CLEANUP LEVEL (μg/m³)	MAXIMUM CONCENTRATION IDENTIFIED (µg/m³)	MAXIMUM CONCENTRATION IDENTIFIED (µg/m³)	SUB-SLAB SOIL GAS SCREENING LEVEL (µg/m ³)	<u>BUILDING</u> <u>SUB-SLAB:</u> MAXIMUM CONCENTRATION IDENTIFIED (μg/m ³)	SOIL SOURCE <u>AREA:</u> MAXIMUM CONCENTRATION IDENTIFIED*** (μg/m ³)	
Individual Subs	Individual Substances						
Benzene	0.32	1.5	3.3	10.7	5.0 J	103	
Toluene	2,290 (nc)	8.5	18	76,200 (nc)	25	1,002	
Ethylbenzene	457 (nc)	0.64	1.9	15,200 (nc)	Not detected (<16)	164	
Xylenes	45.7 (nc)	2.7	12	1,520 (nc)	Not detected (<32)	1,569	
Naphthalene	0.0735	0.36	0.84	2.45	Not detected (<5.2)	74	
Total Petroleum Hydrocarbons							
Gasoline Range Organics	140	980	350	NA	Not detected (<1,500)	316,432	

Notes:

Non-gasoline VOCs are not attributed to Plaid operations and therefore are not considered Site COIs.

J = laboratory qualifier; concentration estimated

NA = not available (not published in CLARC)

nc = non-cancer endpoint

NE = not evaluated

*** = 2016-2017 SVE average

4.2 RISK CHARACTERIZATION SUMMARY

The Conceptual Site Model is presented in Section 3 and illustrated on Figure 9. RI and CSM conclusions indicate the following human health receptor scenarios for this Site.

4.2.1 PROPERTY RECEPTORS

Potential contaminant exposures on the Property are attributed to incidental ingestion of soil and inhalation of volatiles intruding into indoor air from gasoline-contaminated soils (Figure sets 4 through 8). Current and future occupational workers, store/restaurant customers, and future construction and excavation workers were identified as potential Property receptors.

- Representative soil contaminant concentrations at the Property are uniformly below MTCA Method B CULs and therefore, no unacceptable direct contact human health impacts are anticipated on the subject Property.
- Soil vapor intrusion represents a potential indirect contaminant exposure pathway. Tier 1 and Tier 2 VIA findings indicate that although measured soil gas concentrations for some COIs at locations adjacent to the Property building are above MTCA Method B screening criteria, subslab vapor concentrations were below MTCA Method B screening criteria. Similarly, some indoor air COI concentrations exceeded MTCA Method B CULs, but when these concentrations are adjusted for outdoor air concentrations, then they are below or similar to regional background concentrations, indicating that under current Property use conditions no vapor intrusion concerns are anticipated for the Property's commercial/restaurant building (Tables 5 and 6).
- If Site redevelopment occurs and new buildings are constructed at other Property locations near the gasoline contaminated soil source area, then potential vapor intrusion conditions and indoor air/inhalation exposures should be re-evaluated and anticipated as necessary. No VIA concerns are anticipated for the Property, including the source area, based on current SVE data.

4.2.2 OFF-PROPERTY RECEPTORS

Soil gasoline impacts originating at the Property extend beyond the Property boundary to the south, beneath a small portion of the adjacent West Fourth Plain Boulevard sidewalk/roadway. Potential contaminant exposures at the ROW are attributed to incidental ingestion and dermal contact with soil by (future) construction, excavation/trench workers, and roadway maintenance workers.

- Representative contaminant concentrations in the right-of-way exceed MTCA Method B soil CULs. However, no direct contact soil exposures are anticipated for any site receptor except potential future construction, excavation, and roadway maintenance work. Therefore, no unacceptable direct contact human health impacts are anticipated for any Site receptors except construction/excavation/maintenance work occurring in affected portions of the right-of-way.
- No buildings are anticipated or allowable within the right-of-way and therefore vapor intrusion is not applicable and has not been further evaluated for this portion of the Site.

4.3 POINTS OF COMPLIANCE

Points of compliance are the locations and media where Site cleanup levels identified in Section 4.1 must be attained. Points of compliance have been determined in accordance with the regulatory requirements contained within WAC 173-340-740(6).

4.3.1 SOIL

Soil cleanup levels are based on human exposure via direct contact from soil. The standard soil point of compliance extends from the ground surface to a depth of 15 feet. RI characterization indicates that all representative on-Property data demonstrate compliance with MTCA Method B soil cleanup levels, while off-Property data exceeds the Method B TPH soil cleanup level of 2,619 mg/kg for gasoline at B-5, B-11, B-17, and B-18. Among 64 representative point of compliance soil samples collected at off-

Property locations within 15 feet of the ground surface, the only six samples exceed the calculated MTCA Method B gasoline cleanup level, representing 9% of the sample population (Table 1). These samples were collected south of the source area below the adjoining sidewalk and West Fourth Plain Boulevard right-of-way (Figure sets 4 and 5).

Other gasoline-related constituent concentrations (BTEX, etc.) also meet MTCA Method B cleanup criteria for soil points of compliance. These results indicate that current soil conditions based on direct contact exposures are adequately protective of human health, with the exception of TPH beneath a small portion of the right-of-way.

4.3.2 OTHER SOIL-RELATED EXPOSURE PATHWAYS

Other soil-related potential Site exposure pathways were evaluated, as follows:

- Soil cleanup levels based on leaching (protection of groundwater) do not apply because Site soil impacts are limited to within approximately 11 feet of the ground surface, vicinity groundwater is present at depths greater than 80 feet bgs, and therefore Site soil impacts are isolated from groundwater by at least 70 feet of non-contaminated soils. Gasoline leaching from soil to groundwater is therefore determined to be an incomplete exposure pathway and eliminated from further consideration.
- Soil cleanup levels based on protection of ecological receptors (the "environment") do not apply because ecological receptors in significant numbers are not anticipated at or near the highly urbanized and developed Site and Site vicinity (see Section 4.4).
- Soil vapor intrusion (an indirect exposure pathway) was evaluated for the Property building under current conditions. Based on Tier 1 and Tier 2 findings, the vapor intrusion pathway for this building was evaluated and ruled out, as presented in Section 4.3.3.

4.3.3 AIR

Ambient air is regarded under MTCA as a standard point of compliance (WAC 173-340-750). The Tier 2 VIA indicated no discernable vapor intrusion conditions were observed. Relatively low concentrations of various chemicals, including gasoline and non-gasoline volatiles, were identified in indoor and outdoor air at the subject Property, but the presence of these chemicals in air is not attributed to vapor intrusion originating from below the building.

- Sub-slab gasoline and related constituent vapor concentrations (including benzene, EDB, and naphthalene) measured in September 2016 were either not detected or were measured at concentrations below MTCA soil gas screening criteria. Where detected, the Tier 2 sub-slab concentrations of gasoline-related compounds were lower than Tier 1 soil gas concentrations measured adjacent to the building and closer to the gasoline source area, which would be expected as petroleum vapor concentrations degrade and diminish with increasing distance from the source area.
- PCE and other non-gasoline volatiles were generally not detected in Tier 2 sub-slab soil gas. Where detected at one of the three sub-slab locations, PCE (23 ug/m³) was far below the corresponding MTCA soil gas screening level of 321 ug/m³, and much diminished compared to

the maximum identified Tier 1 soil gas concentration (3,500 ug/m^3), representing other portions of the Site. The source of non-gasoline volatiles in Site soil gas has not been confirmed, but is not attributed to Plaid's current or past retail gasoline fueling operations at this Property.

- Indoor air samples from the Plaid and Domino's building and outdoor air samples collected at the Property in September 2016 identified gasoline and related vapors at levels that in some cases marginally exceed Ecology criteria for indoor air. However, the sources of those vapors (1) do not appear to originate from under the building where no significant sub-slab vapors were identified, and (2) are likely associated with widespread ambient urban air quality and normal retail store and fueling operations at the Property.
- Because this is a self-service fueling station, customers and employees frequently walk between the fueling area and the store interior, and fuel vapors are expected to be present both indoors and outside the store building. Building materials and retail inventory may also contribute to the observed air quality conditions. A neutral atmospheric pressure gradient between indoor and outdoor air was observed and indicates no obvious preferential airflow, although some slight vapor accumulation inside the building may occur based on the observed air sampling data.

Current literature indicates that concentrations of benzene, PCE, and other volatile contaminants in indoor and outdoor air in typical urban environments are comparable to concentrations measured at the Site during this Tier 2 VIA (Tables 5 and 6). Based on the findings of the Tier 2 VIA, no evidence of gasoline-related vapor intrusion from subsurface contaminants into the building ambient indoor air has been identified.

4.3.4 GROUNDWATER

As previously discussed with Ecology and evaluated during this RI, groundwater is not an affected media of concern at this Site. Where identified, gasoline-related contaminants are limited to the uppermost 11 feet of vadose-zone soils. Groundwater was not encountered at the Site and is not anticipated within 80 feet of the ground surface in this vicinity.

Gasoline-related contaminants are old and highly degraded, and leaching of these hydrocarbons from relatively shallow soil to the much deeper water table is determined to be an incomplete exposure pathway and eliminated from further consideration at this Site. Therefore, the groundwater point of compliance is not applicable for gasoline-related COIs at this Site.

4.4 TERRESTRIAL ECOLOGICAL EVALUATION

In accordance with Ecology's guidance and criteria in WAC 173-340-7492, EES conducted a simplified TEE to determine whether the Site poses a potential threat of significant adverse effects to terrestrial ecological receptors. Based on an exposure analysis, no further evaluation is necessary because the current or planned land use makes wildlife exposure unlikely, as supported by Table 749-1. A copy of this evaluation and Table 749-1 are included in Appendix D.

5 AREAS POTENTIALLY REQUIRING CLEANUP

Interim cleanup actions including source removal (2012) and source-area SVE (2013-present) have mitigated localized gasoline contamination on the subject Property and established protective conditions at this location that satisfy MTCA Method B criteria. Gasoline COI concentrations exceed MTCA cleanup levels immediately south of the Property boundary. Other non-gasoline impacts are present at the Site, but are not attributed to Plaid's operations. Further investigation and possible cleanup of non-gasoline Site contaminants will be the responsibility of other parties.

5.1 SOIL

Under current Site conditions, the soil point of compliance for gasoline appears adequately protective for ecological exposures, and for human direct and indirect contact on the subject Property. Potential future human exposures require soil cleanup in the adjacent right-of-way in order to achieve standard compliance criteria under MTCA. Based on the RI findings, Plaid proposes to apply the calculated MTCA Method B soil TPH direct contact cleanup level of 2,619 mg/kg as the basis for final "unrestricted use" cleanup planning and implementation. This TPH cleanup level was calculated using MTCA methodology and provides the most flexibility with regard to achieving MTCA compliance (Ecology 2011, 2015). Method B soil cleanup criteria for gasoline constituents are achieved throughout the site.

The basis for future soil cleanup will need to address the following unique factors:

- No actionable soil impacts exceeding MTCA Method B CULs remain within the point of compliance for developable portions of the Property, and therefore no remediation is required to address direct contact exposures in these areas.
- South of the Property boundary, MTCA Method B soil CUL exceedances for gasoline were identified beyond the influence of effective SVE treatment, below the southern adjoining sidewalk and West Fourth Plain right-of-way (Figures 10a and 10b). The identified exceedances are localized laterally and vertically, but exceed TPH direct contact cleanup levels for the soil point of compliance by nearly a factor of ten.
- Although identified soil impacts do not appear likely to present a vapor intrusion concern with regard to current Property building conditions, residual contaminated soils represent a continuing source of subsurface vapors that could indirectly impact indoor air quality if future Site building(s) were to be constructed above or near the source area. Soil cleanup and/or vapor control may be required for protection of indoor air based on future development planning (Section 5.2).

5.2 AMBIENT AIR

Indoor air conditions at the Site were evaluated during the Tier 2 VIA and do not require cleanup based on current Site characterization as completed under this RI. Soil gas data indicate residual soil contamination extending beneath the right-of-way represents a source of subsurface gasoline-related vapors that could potentially migrate to indoor air at concentrations exceeding ambient air CULs, if future Site buildings were to be constructed near the source area. Mitigation of residual soil contamination under the right-of-way is expected to address potential vapor migration concerns.

Published Ecology guidance provides an approach for demonstrating soil concentrations are protective of the vapor intrusion pathway by virtue of being "not significantly higher" than concentrations established for groundwater protection. This approach appears to be a good option for final site cleanup. Ecology's recent "Implementation Memos" provide various options for demonstrating vapor intrusion protectiveness. In view of this site's unique setting, a combination of both Method B soil cleanup levels (in this case 2,619 mg/kg for TPH) and Method A groundwater cleanup levels (for volatiles) will be considered for demonstrating vapor intrusion and soil direct contact protectiveness. This approach would meet Ecology objectives by "providing justification that the remaining soil concentrations are *not significantly higher* than a concentration derived for the protection of groundwater in accordance with WAC 173-340-747," (Implementation Memo #18, bullet #2, page 11). Ecology further defines this criteria with respect to vapor intrusion by noting "benzene concentrations less than 3x the Method A cleanup level are *not significant*, provided that limited contaminant mass remains in the soil," (Implementation Memo No. 15, page 8). The cleanup goal for benzene in soil is therefore 0.03 mg/kg, with flexibility to allow up to 0.09 mg/kg for limited areas.

5.3 FINAL SITE CLEANUP PLANNING

Plaid intends to seek compliance with MTCA requirements for cleanup of gasoline-related Site contaminants originating at the subject Property. Because other non-gasoline contaminants are present at the Site, we acknowledge that final site cleanup cannot formally be achieved under MTCA by meeting only gasoline and related volatile constituent cleanup levels as proposed by Plaid. Future gasoline cleanup will therefore continue to be conducted as an Interim Action (WAC 173-340-430), for which no formal Feasibility Study would normally be required, particularly at this site, where SVE is demonstrated to be effective and implementable.

Based on successful and effective SVE operation at the Property and as supplemented by recent technology screening comparisons, EES believes that expansion of SVE components into the right-of-way provides a reasonable basis for Site remedy implementation. This interim remedial action is anticipated to remediate concentrations of COIs to below MTCA Method A cleanup levels in the right-of-way, further eliminating the need for a Feasibility Study or further cleanup actions for gasoline contamination on, beneath, and emanating from the Site.

6 CONCLUSIONS AND RECOMMENDATIONS

Site characterization is complete and indicates that actionable gasoline contamination is currently limited to soil and soil gas impacts extending beyond the southern Property boundary, beneath a portion of the adjacent sidewalk and West Fourth Plain Boulevard roadway. The source of these gasoline impacts appears to be from fueling operations conducted at the Property prior to Plaid's 1982 redevelopment. No releases are known or suspected to have occurred during operation of the Plaid

fueling system. Chlorinated solvent vapor impacts have been identified at this Site, but are not attributable to Plaid operations as discussed with and acknowledged by Ecology.

- The current extent of residual gasoline and related contaminants is limited to vadose-zone soils between approximately three and 11 feet in depth. Although the historical gasoline release occurred on the subject Property, source removal and SVE interim actions achieve the soil point of compliance for this primary source area. No significant gasoline impacts have been identified among underlying soils in the source area following interim actions.
- Based on Tier 1 and 2 assessment data, no vapor intrusion concerns are present with regard to current Property building conditions. However, soil gas concentrations are greater around the small core of residual soil contamination extending south of the Property, and future building construction (if allowable) near this area must consider potential vapor intrusion issues.
- Groundwater is anticipated at depths greater than 80 feet bgs, and therefore is not expected to be impacted by the gasoline release originating and limited to shallow soils at the Property. Because no gasoline impacts are known or suspected among vadose-zone soils within 70 feet of the water table, groundwater is therefore not regarded as a medium of concern for this Site.

Current soil conditions on the subject Property satisfy MTCA Method B cleanup levels for all contaminants of interest. South of the Property boundary and below a portion of the adjoining sidewalk and West Fourth Plain Boulevard right-of-way, gasoline contamination remains in soil at concentrations exceeding MTCA Method B cleanup levels for TPH as gasoline. These residual contaminated soils also represent a continuing source of subsurface vapors that although unlikely, could indirectly impact indoor air quality if future Site building(s) were to be constructed above or near the source area. Off-Property soils located south of the gasoline source area must be remediated to achieve full Site closure under MTCA.

In an effort to address MTCA cleanup requirements for the right-of-way gasoline contamination, Plaid will expand cleanup efforts in that area as feasible, seeking as a primary goal to achieve Method B unrestricted use criteria. Although groundwater is not an affected medium at the Site with respect to gasoline-related COIs, future right-of-way cleanup efforts will also seek to demonstrate vapor intrusion protectiveness if possible, by *not significantly* differing from the MTCA Method A groundwater cleanup levels for gasoline-related volatiles, as specified in published Ecology "Implementation Memo" guidance (2016, 2018). If Method B cleanup criteria are achieved but Method A criteria for gasoline-related volatiles are not, then other means will be employed to demonstrate vapor intrusion protectiveness.

We acknowledge that gasoline impacts below the right-of-way are not directly accessible for excavation, so expansion of the existing SVE system is intended to mitigate and address the localized right-of-way impacts. If MTCA Method A or B cleanup goals are not achievable in a reasonable restoration timeframe, then an environmental covenant may be necessary to establish protective conditions and achieve satisfactory right-of-way cleanup.

Non-gasoline contamination present at the Site has not been identified in Site soils, is not commingled with gasoline impacts, was not used or released by Plaid, and therefore is not Plaid's responsibility for cleanup. However, identified chlorinated solvents must ultimately be mitigated in order to achieve a No

Further Action determination for the Site. In lieu of a full NFA determination, Ecology has agreed to provide a Partial Sufficiency letter to Plaid once gasoline cleanup at the Site achieves compliance with MTCA requirements.

7 LIMITATIONS

EES has prepared this report for use by Plaid Pantries and its agents. This report may be made available to other parties and to regulatory agencies at the discretion of Plaid. This report is not intended for use by others and the information contained herein is not applicable to other Sites.

Our interpretation of subsurface conditions and risk criteria is based on field observations and chemical analytical data within the areas explored. Areas with contamination may exist in portions of the Site that were not explored or analyzed.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with generally accepted practices and laws, rules, and regulations at the time that the report was prepared. No other conditions, expressed or implied, should be understood.

EES ENVIRONMENTAL CONSULTING, INC.

Chris Rhea, LG Project Manager

and Ela

Paul Ecker, LHG Principal

REFERENCES

Ecology 1994. Natural Background Soil Metals Concentrations in Washington State. State of Washington Department of Ecology, Toxics Cleanup Program. October 1994.

Ecology 2007. *Workbook Tools for Calculating Soil and Groundwater Cleanup Levels.* State of Washington Department of Ecology, Toxics Cleanup Program. Revised 2007.

Ecology 2009. *Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action (Review Draft)*. Washington Department of Ecology. October 2009. Revised February 2016.

Ecology 2011. *Guidance for Remediation of Petroleum Contaminated Sites.* State of Washington Department of Ecology, Toxics Cleanup Program. September 2011. Revised June 2016.

Ecology 2015. *Model Remedies for Petroleum Contaminated Soils*. State of Washington Department of Ecology, Toxics Cleanup Program. April 2015. Revised December 2017.

Ecology 2016. *Frequently Asked Question (FAQs) Regarding Empirical Demonstrations and Related Issues. Implementation Memorandum No. 15.* State of Washington Department of Ecology, Toxics Cleanup Program. June 21, 2016.

Ecology 2018. *Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings. Implementation Memorandum No. 18.* State of Washington Department of Ecology, Toxics Cleanup Program. January 18, 2018.

EES 2012. *Site Assessment Report - Plaid Pantry Store #112*. EES Environmental Consulting. December 31, 2012.

EES 2013. *Interim Action Work Plan (Soil Vapor Extraction) - Plaid Pantry Store #112.* EES Environmental Consulting. May 6, 2013.

EES 2014. *Interim Action Status Report – Plaid* Pantry *Store #112*. EES Environmental Consulting. February 3, 2014.

EES 2016. *Perched Groundwater Evaluation - Plaid Pantry Store #112*. EES Environmental Consulting. March 30, 2016.

EES 2017. Vapor Intrusion Assessment - Plaid Pantry Store #112. EES Environmental Consulting. May 18, 2017.

EES 2018. *Technical Memorandum. Status Report – SVE Monitoring (First Quarter 2018). Plaid Pantry Store #112.* EES Environmental Consulting. April 26, 2018.

EPA 2011. Background Indoor Air Concentrations of Volatile Organic Compounds in North America Residences (1990-2005): A Compilation of Statistics for Assessing Vapor Intrusion. Office of Solid Waste and Emergency Response. U.S. Environmental Protection Agency. June 2011. EPA 2012. *EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings*. Office of Solid Waste and Emergency Response. U.S. Environmental Protection Agency. March 16, 2012.

Phillips William M., 1987. *Geologic Map of the Vancouver Quadrangle, Washington and Oregon.* Washington Division of Geology and Earth Resources Open File Report 87-10. 1987.

PNG 2011. *Site Assessment Report - Plaid Pantry Store #112*. PNG Environmental, Inc. October 19, 2011.

USACOE 2004. Portland-Vancouver Harbor Information Package, Second Edition. U.S. Army Corps of Engineers, Reservoir Regulation and Water Quality Section. November 2004.

SWCAA 2007. Vancouver Air Toxics Monitoring Review. Southwest Clean Air Agency. January 26, 2007.
Figures

:\Users\Josh\Desktop\Autocad Files\EES-Autocad\1179-01 Plaid Pantry #112\2018\June 2018\1179-01_BM-Data-060118.dwg 11.3.2015

ers/Josh/Desktop/Autocad Files/EES-Autocad/1179-01 Plaid Pantry #112\2018/June 2018\1179-01_BIM-Data-060118.dwg 11.

Users\Josh\Desktop\Autocad Files\EES-Autocad\1179-01 Plaid Pantry #112\2018\June 2018\1179-01_BM-Data-060118.dwg 11.3.2015

osh\Desktop\Autocad Files\EES-Autocad\1179-01 Plaid Pantry #112\2018\June 2018\1179-01_BM-Data-060118.dwg 11.3

bsh\Desktop\Autocad Files\EES-Autocad\1179-01 Plaid Pantry #112\2018\June 2018\1179-01_BM-Data-060118.dwg 11.3.20

THE SITE IS ENTIRELY PAVED. NO SURFACE WATER CONTACT WITH CONTAMINATED MEDIA IS ANTICIPATED.

	POTENTIAL RECEPTORS	EXCA VATION/	HIGHWAY	6-1-18 PROJECT NO. 1179-01 1179-01 JJT FIGURE NO. D: CJ
TIONAL ERS FEET)	CONSTRUCTION WORKERS (0-3 FEET)	TRENCH WORKERS (0–15 FEET)	MAINTENANCE WORKERS (0–3 FEET)	DATE: FILE: DRAWN: APPROVED:
))	•	•	•	
>		•	•	MODEL
	0	\bigcirc		CONCEPTUAL SITE MODEL
)			_	NCEPTU
)	0	•	0 0	00
)	0	•	0	
)	0	0	0	112 N BL VD. 4.
)	0	0	0	NTRY #112 TH PLAIN E IVER, WA.
)	0	0	0	PLAID PANTRY #112 1002 W FOURTH PLAIN BLVD. VANCOUVER, WA.
)	0	0	0	PL
)	0	0	0	
)	0	0	0	527
)	0 0 0	0 0 0 0		JLTING, INC. tland, OR 97 om
				EES ENVIRONMENTAL CONSULTING, INC. 240 N Broadway #203, Portland, OR 97227 (503) 847-2740 www.ees-environmental.com

Tables

TABLE 1Soil Analytical Results - Gasoline, Diesel, and Other Constituents (mg/kg)Plaid Pantry No. 112

Vancouver, Washington

Location	Date	Sample Depth (feet bgs)	Gasoline	Diesel	Heavy Oil/Lube	Benzene	Toluene	Ethylbenzene	Xylenes	EDB	EDC	MTBE	Naphthalene	Lead	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
Soil Screening L																			
MTCA Method	d A ¹ Unrestricted	Use	100/30 ²	2,000	2,000	0.03	7	6	9	0.005	NA	0.10	5	250	0.05	0.03	NA	NA	2
MTCA Method	d B ³		2,619 ⁴	NC	NC	18.2	6,400 ⁵	8,000 ⁵	16,000 ⁵	0.5	11	556	1,600 ⁵	NC	476	12	NC	14.3	160,000 ⁵
September 201	1 Initial Soil Sam	pling																	
B1-3	09/08/2011	3	24 U	59 U	118 U	0.011 U	0.044 U	0.022 U	0.065 U	0.022 U	0.022 U	0.044 U	0.087 U	-	0.022 U	0.022 U	0.44 U	0.022 U	0.022 U
B1-9	09/08/2011	9	22 U	54 U	108 U	0.013 U	0.051 U	0.026 U	0.077 U	0.026 U	0.026 U	0.051 U	0.10 U	8.3	0.026 U	0.026 U	0.51 U	0.026 U	0.026 U
B1-15	09/08/2011	15	21 U	52 U	103 U	0.013 U	0.052 U	0.026 U	0.078 U	0.026 U	0.026 U	0.052 U	0.10 U	-	0.026 U	0.026 U	0.52 U	0.026 U	0.026 U
B2-3	09/07/2011	3	21 U	53 U	107 U	0.011 U	0.043 U	0.022 U	0.065 U	0.022 U	0.022 U	0.043 U	0.087 U	-	0.022 U	0.022 U	0.43 U	0.022 U	0.022 U
B2-9	09/07/2011	9	25 U	25 U ^{b1}		0.0088 U	0.035 U	0.018 U	0.053 U	0.018 U	0.018 U	0.035 U	0.010 U ^d	-	0.018 U	0.018 U	0.35 U	0.018 U	0.018 U
B2-15	09/09/2011	15 3	21 U	53 U	105 U	0.0068 U	0.027 U	0.014 U	0.041 U	0.014 U	0.014 U	0.027 U	0.054 U	-	0.014 U	0.014 U	0.27 U	0.014 U	0.014 U
B3-3 B3-9	09/07/2011 09/07/2011	3	23 U 26 U	57 U 64 U	113 U 128 U	0.012 U 0.014 U	0.047 U 0.055 U	0.024 U 0.028 U	0.071 U 0.083 U	0.024 U 0.028 U	0.024 U 0.028 U	0.047 U 0.055 U	0.094 U 0.11 U	- 12	0.024 U 0.028 U	0.024 U 0.028 U	0.47 U 0.55 U	0.024 U 0.028 U	0.024 U 0.028 U
B3-3 B4-3	09/07/2011	3	20 U	57 U	128 U	0.014 U 0.013 U	0.053 U 0.051 U	0.028 U	0.083 U 0.076 U	0.028 U	0.028 U 0.026 U	0.053 U 0.051 U	0.11 U	-	0.028 U 0.026 U	0.028 U	0.55 U 0.51 U	0.028 U	0.028 U
B4-9	09/07/2011	9	23 U 21 U	57 U	106 U	0.013 U	0.031 U 0.049 U	0.020 U	0.070 U	0.020 U	0.020 U	0.031 U 0.049 U	0.097 U	-	0.020 U	0.020 U	0.49 U	0.024 U	0.020 U
B5-3	09/08/2011	3	22 U	56 U	112 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B5-6	09/08/2011	6	2,900 ª	>57 ^c	114 U	0.28 U	1.1 U	12	74	0.56 U	0.56 U	1.1 U	14	21	0.56 U	0.56 U	11 U	0.56 U	0.56 U
B5-9	09/08/2011	9	4,070 ^a	>54 ^c	108 U	0.24 U	0.95 U	29	121	0.48 U	0.48 U	0.95 U	8.8	11	0.48 U	0.48 U	9.5 U	0.48 U	0.48 U
B5-12.5	09/08/2011	12.5	444 ^a	638 ^{b,c}	50 U ^b	2.1	0.13 U	5.3	21	0.063 U	0.063 U	0.13 U	1.1	13	0.063 U	0.063 U	1.3 U	0.063 U	0.13 U
B5-20	09/08/2011	20	2.9 Uª	-	-	0.0073 U	0.029 U	0.015 U	0.044 U	0.015 U	0.015 U	0.029 U	0.058 U	-	0.015 U	0.015 U	0.29 U	0.015 U	0.015 U
B6-3	09/08/2011	3	22 U	54 U	107 U	0.0096 U	0.038 U	0.019 U	0.057 U	0.019 U	0.019 U	0.038 U	0.077 U	-	0.019 U	0.019 U	0.38 U	0.019 U	0.019 U
B6-9	09/08/2011	9	23 U	58 U	116 U	0.0093 U	0.037 U	0.019 U	0.056 U	0.019 U	0.019 U	0.037 U	0.074 U	-	0.019 U	0.019 U	0.37 U	0.019 U	0.019 U
B6-12	09/09/2011	12	26 U	64 U	128 U	0.011 U	0.044 U	0.022 U	0.065 U	0.022 U	0.022 U	0.044 U	0.087 U	-	0.022 U	0.022 U	0.44 U	0.022 U	0.022 U
February 2012	Abandoned Tank	Decommissionin	g																
SVE-1/5.0***	02/03/2012	5	22 U	55 U	110 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SVE-1/10.0***	02/03/2012	10	2,750 ^a	>56.1 ^c	112 U	0.39	48	40	301	0.19 U	0.16 U	0.62 U	13	7.6	0.31 U	0.31 U	6.2 U	0.31 U	0.31 U
PIT S/1.5***	02/14/2012	1.5	23 U	25 U ^b	116 ^b	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Tank Sludge***	02/14/2012	NA	2,410 ^a	172 U ^c	345 U	0.040 J	1.9	2.7	19	0.090 U	0.090 U	0.19 U	7.1 ^e	-	0.094 U	0.094 U	2.8 U	0.094 U	0.094 U
PIT N/2***	02/14/2012	2	21 U	52 U	104 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PIT N/6***	02/14/2012	6 2	8.7 U ^a	57 ^c 54 ^c	113 U	0.020 U	0.090 U	0.040 U	0.14	0.040 U	0.040 U	0.090 U	0.17 U	-	0.043 U	0.043 U	0.87 U	0.043 U	0.043 U
PIT S/2 PIT S/6	02/14/2012 02/14/2012	6	1,320 ^a 5,800 ^a	54 62 ^c	109 U 124 U	- 3.4	- 23	- 78	- 411	- 0.81 U	- 0.81 U	- 1.6 U	34	-	- 0.81 U	- 0.81 U	- 16 U	- 0.81 U	- 0.81 U
PIT E/2***	02/14/2012	2	24 U	60 U	124 U	-	-	-	-	-	-	-	-	-	-	-	-	0.81 0	-
PIT E/6***	02/14/2012	6	64,200 ^a	62 ^c	123 U	93	3,570	1,350	9,090	6.5 U	6.5 U	13 U	241	-	6.5 U	6.5 U	182 U	6.5 U	6.5 U
PIT W/2***	02/14/2012	2	1,210 ^a	59 ^c	118 U	-	-	_,	-	-	-	-		-	-	-	-	-	-
PIT W/6***	02/14/2012	6	18,700 ^a	61 ^c	122 U	26	572	296	1,693	1.6 U	1.6 U	3.2 U	67	-	1.6 U	1.6 U	48 U	1.6 U	1.6 U
PIT Floor/6***	02/14/2012	6	34,900 ^a	2,660 ^b	81 U ^b	56	1,460	609	3,605	0.81 U	0.81 U	1.6 U	27 ^e	-	0.81 U	0.81 U	105 U	0.81 U	0.81 U
August 2012 So	il Sampling																		
B-7/6	08/16/2012	6	473 ^a	-	-	0.18 J	0.86 U	2.1	12	0.011 U ^e	0.43 U	0.51 U ^g	1.7 U	-	0.21 U ^g	0.31 U ^g	8.6 U	0.43 U	0.43 U
B-7/9	08/16/2012	9	1,730 ^ª	-	-	0.80	0.82 U	0.89	1.2 U	0.25 U ^g	0.41 U	0.49 U ^g	1.6 U	-	0.21 U ^g	0.30 U ^g	8.2 U	0.41 U	0.41 U
B-7/13	08/16/2012	13	303 ^a	-	-	0.15	0.089 U	0.17	0.25	0.0089 U ^e	0.045 U	0.089 U	0.30	-	0.045 U	0.032 U ^g	0.89 U	0.045 U	0.045 U
B-7/14	08/16/2012	14	5.8 U ^ª	-	-	0.015 U	0.058 U	0.029 U	0.087 U	0.0029 U ^{e,g}	0.029 U	0.058 U	0.12 U	-	0.029 U	0.029 U	0.58 U	0.029 U	0.029 U
B-8/6	08/16/2012	6	8.4 Uª	-	-	0.026	0.084 U	0.072	0.30	0.0042 U ^{e,g}	0.042 U	0.084 U	0.17 U	-	0.042 U	0.031 U ^g	0.84 U	0.042 U	0.042 U
B-8/9	08/16/2012	9	7.4 Uª	-	-	0.042	0.074 U	0.037 U	0.25	0.023 U ^g	0.037 U	0.074 U	0.15 U	-	0.037 U	0.027 U ^g	0.74 U	0.037 U	0.037 U
B-8/13	08/16/2012	13	8.9 U ^ª	-	-	0.022 U	0.089 U	0.044 U	0.13 U	0.0044 U ^{e,g}	0.044 U	0.089 U	0.18 U	-	0.044 U	0.032 U ^g	0.88 U	0.044 U	0.044 U
B-9/3	08/13/2012	3	5.7 U ^a	59 U	117 U	0.0143 U	0.057 U	0.029 U	0.086 U	0.017 U ^g	0.029 U	0.057 U	0.11 U	-	0.029 U	0.029 U	0.57 U	0.029 U	0.029 U
B-9/6	08/13/2012	6	5.2 U ^a	-	-	0.013 U	0.052 U	0.026 U	0.078 U	0.016 U ^g	0.026 U	0.052 U	0.10 U	-	0.026 U	0.026 U	0.52 U	0.026 U	0.026 U
B-9/9	08/13/2012	9	8.2 U ^a	-	-	0.020 U	0.082 U	0.041 U	0.12 U	0.025 U ^g	0.041 U	0.082 U	0.16 U	-	0.041 U	0.030 U ^g	0.82 U	0.041 U	0.041 U
B-9/13	08/13/2012	13	5.9 U ^a	-	-	0.015 U	0.059 U	0.029 U	0.088 U	0.018 U ^g	0.029 U	0.059 U	0.12 U	-	0.029 U	0.029 U	0.59 U	0.029 U	0.029 U
B-10/3	08/13/2012	3	5.4 U ^a	55 U	109 U	0.013 U	0.054 U	0.027 U	0.080 U	0.016 U ^g	0.027 U	0.054 U	0.11 U	-	0.027 U	0.027 U	0.54 U	0.027 U	0.027 U
B-10/6 B-10/9	08/13/2012 08/13/2012	6 9	9.2 U ^a 11 U ^a	-	-	0.023 U 0.028 U	0.092 U 0.11 U	0.046 U 0.056 U	0.14 U 0.17 U	0.028 U ^g 0.034 U ^g	0.046 U 0.056 U	0.092 U 0.067 U ^g	0.18 U 0.22 U	-	0.046 U 0.028 U ^g	0.033 U ^g 0.041 U ^g	0.92 U 1.1 U	0.046 U 0.056 U	0.046 U 0.056 U
B-10/9 B-10/13	08/13/2012	9 13	4.7 U ^a	-	-	0.028 U 0.012 U	0.11 U 0.047 U	0.056 U 0.024 U	0.17 U 0.071 U	0.034 U ^g 0.014 U ^g	0.036 U 0.024 U	0.067 U 0.047 U	0.22 U 0.095 U	-	0.028 U ^s 0.024 U	0.041 U ³ 0.024 U	0.47 U	0.056 U 0.024 U	0.036 U 0.024 U
B-10/13 B-10/18	08/13/2012	13	4.7 U 20 U	- 51 U	- 102 U	0.012 0	0.047 0	0.024 0	- 0.071 0	0.014 0 -	- 0.024 0	- 0.047	0.095 0	-	0.024 0	0.024 0	-	0.024 0	0.024 0
D-10/18	08/13/2012	18	20 0	51 0	102 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-

TABLE 1Soil Analytical Results - Gasoline, Diesel, and Other Constituents (mg/kg)Plaid Pantry No. 112

Vancouver, Washington

Location	Date	Sample Depth (feet bgs)	Gasoline	Diesel	Heavy Oil/Lube	Benzene	Toluene	Ethylbenzene	Xylenes	EDB	EDC	MTBE	Naphthalene	Lead	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
Soil Screening			2																
MTCA Metho	od A ¹ Unrestricted	Use	100/30 ²	2,000	2,000	0.03	7	6	9	0.005	NA	0.10	5	250	0.05	0.03	NA	NA	2
MTCA Metho	od B ³		2,619 ⁴	NC	NC	18.2	6,400 ⁵	8,000 ⁵	16,000 ⁵	0.5	11	556	1,600 ⁵	NC	476	12	NC	14.3	160,000 ⁵
August 2012 S	oil Sampling (cont	tinued)																	
B-11/3	08/14/2012	3	13 ^a	56 U	113 U	0.017 U	0.068 U	0.034 U	0.10 U	0.021 U ^g	0.034 U	0.068 U	0.14 U	-	0.034 U	0.025 U ^g	0.68 U	0.034 U	0.034 U
B-11/6	08/14/2012	6	20,400 ^a	62 X	123 U	3.7	0.81 U	3.9	1.6 U	0.25 U ^g	0.41 U	0.49 U ^g	57	24	0.20 U ^g	0.30 U ^g	8.1 U	0.41 U	0.41 U
B-11/9	08/14/2012	9	1,560 °	-	-	0.47	0.095 U	0.62	0.14 U	0.029 U ^g	0.048 U	0.095 U	1.9	-	0.048 U	0.035 U ^g	2.7 U	0.048 U	0.048 U
B-11/11	08/14/2012	11	5.7 U ^a	-	-	0.014 U	0.057 U	0.029 U	0.086 U	0.0029 U ^{e,g}	0.029 U	0.057 U	0.11 U	3.3	0.029 U	0.029 U	0.57 U	0.029 U	0.029 U
B-11/17	08/14/2012	17	5.6 U ^a	-	-	0.014 U	0.056 U	0.028 U	0.084 U	0.017 U ^g	0.028 U	0.056 U	0.11 U	-	0.028 U	0.028 U	0.56 U	0.028 U	0.028 U
B-11/23	08/14/2012	23	20 U	51 U	102 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-11/29	08/14/2012	29	20 U	51 U	102 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-12/3	08/14/2012	3	5.2 U ^a	58 U	116 U	0.013 U	0.052 U	0.026 U	0.078 U	0.016 U ^g	0.026 U	0.052 U	0.10 U	-	0.026 U	0.026 U	0.52 U	0.026 U	0.026 U
B-12/6 B-12/9	08/14/2012 08/14/2012	6 9	8.1 U ^a 9.6 U ^a	-	-	0.020 U 0.024 U	0.081 U 0.096 U	0.040 U 0.048 U	0.12 U 0.14 U	0.024 U ^g 0.029 U ^g	0.040 U 0.048 U	0.081 U 0.096 U	0.16 U 0.19 U	-	0.040 U 0.048 U	0.029 U ^g 0.035 U ^g	0.81 U 0.96 U	0.040 U 0.048 U	0.040 U 0.048 U
B-12/9 B-12/13	08/14/2012	13	9.6 U 8.1 U ^a	-	-	0.024 U 0.020 U	0.098 U 0.081 U	0.048 U 0.040 U	0.14 U 0.12 U	0.029 U ⁹ 0.025 U ⁹	0.048 U 0.040 U	0.098 U 0.081 U	0.19 U	-	0.048 U 0.040 U	0.033 U ^g	0.98 U 0.81 U	0.048 U 0.040 U	0.048 U 0.040 U
B-12/13 B-12/18	08/14/2012	18	8.1 U 20 U	- 50 U	- 100 U	0.020 0	0.081 0	0.040 0	0.12 0	0.023 U ^s	0.040 0	0.081 0	-	-	0.040 0	0.029 ()° -	0.81 0	0.040 0	-
B-12/18 B-13/3	08/15/2012	3	20 0 7.8 Uª		-	0.019 U	- 0.078 U	0.039 U	0.12 U	- 0.024 U ^g	0.039 U	- 0.078 U	0.16 U	-	0.039 U	- 0.028 U ^g	- 0.78 U	0.039 U	0.039 U
B-13/6	08/15/2012	6	6.5 U ^a	-	-	0.016 U	0.065 U	0.032 U	0.097 U	0.020 U ^g	0.032 U	0.065 U	0.13 U	-	0.032 U	0.023 U ^g	0.65 U	0.032 U	0.032 U
B-13/9	08/15/2012	9	6.9 U ^a	-	-	0.017 U	0.069 U	0.034 U	0.10 U	0.021 U ^g	0.034 U	0.069 U	0.14 U	-	0.034 U	0.025 U ^g	0.69 U	0.032 U	0.034 U
B-13/13	08/15/2012	13	8.0 U ^a	-	-	0.020 U	0.080 U	0.040 U	0.12 U	0.024 U ^g	0.040 U	0.080 U	0.16 U	-	0.040 U	0.029 U ^g	0.80 U	0.040 U	0.040 U
B-14/3	08/15/2012	3	6.6 U ^a	-	-	0.017 U	0.066 U	0.033 U	0.099 U	0.020 U ^g	0.033 U	0.066 U	0.13 U	-	0.033 U	0.024 U ^g	0.66 U	0.033 U	0.033 U
B-14/6	08/15/2012	6	7.0 U ^a	-	-	0.018 U	0.070 U	0.035 U	0.11 U	0.021 U ^g	0.035 U	0.070 U	0.14 U	-	0.035 U	0.025 U ^g	0.70 U	0.035 U	0.035 U
B-14/9	08/15/2012	9	7.6 U ^a	-	-	0.019 U	0.076 U	0.038 U	0.11 U	0.023 U ^g	0.038 U	0.076 U	0.15 U	-	0.038 U	0.027 U ^g	0.76 U	0.038 U	0.038 U
B-14/13	08/15/2012	13	6.2 U ^a	-	-	0.016 U	0.062 U	0.031 U	0.094 U	0.019 U ^g	0.031 U	0.062 U	0.13 U	-	0.031 U	0.023 U ^g	0.62 U	0.031 U	0.031 U
B-15/3	08/15/2012	3	6.6 U ^a	-	-	0.017 U	0.066 U	0.033 U	0.099 U	0.020 U ^g	0.033 U	0.066 U	0.13 U	-	0.033 U	0.024 U ^g	0.66 U	0.033 U	0.033 U
B-15/6	08/15/2012	6	7.9 U ^a	-	-	0.020 U	0.079 U	0.040 U	0.12 U	0.024 U ^g	0.040 U	0.079 U	0.16 U	-	0.040 U	0.029 U ^g	0.79 U	0.040 U	0.040 U
B-15/9	08/15/2012	9	7.6 U ^a	-	-	0.019 U	0.076 U	0.038 U	0.11 U	0.023 U ^g	0.038 U	0.076 U	0.15 U	-	0.038 U	0.027 U ^g	0.76 U	0.038 U	0.038 U
B-15/13	08/15/2012	13	6.2 U ^a	-	-	0.016 U	0.062 U	0.031 U	0.093 U	0.019 U ^g	0.031 U	0.062 U	0.12 U	-	0.031 U	0.023 U ^g	0.62 U	0.031 U	0.031 U
B-16/6	08/16/2012	6	5.8 U ^a	-	-	0.015 U	0.058 U	0.029 U	0.087 U	0.0030 U ^{e,g}	0.029 U	0.058 U	0.17 U	11	0.029 U	0.029 U	0.58 U	0.029 U	0.029 U
B-16/9	08/16/2012	9	8.0 U ^a	-	-	0.020 U	0.080 U	0.040 U	1.2 U	0.024 U ^g	0.040 U	0.080 U	0.16 U	12	0.040 U	0.029 U ^g	0.80 U	0.040 U	0.040 U
B-16/13 SVE-2/8***	08/16/2012 08/16/2012	13 8	5.9 U ^a 6,800 ^a	-	-	0.015 U 14	0.059 U 48	0.030 U 96	0.089 U 436	0.0030 U ^{e,g} 0.27 U ^g	0.030 U 0.45 U	0.059 U <i>0.54 U^g</i>	0.12 U 27	- 11	0.030 U <i>0.22 U^g</i>	0.030 U <i>0.32 U^g</i>	0.59 U 9.0 U	0.030 U 0.45 U	0.030 U 0.45 U
SVE-2/8 SVE-2/12***	08/16/2012	8 12	5 .7 ∪ª	-	-	0.014 U	40 0.057 U	0.029 U	430 0.086 U	0.0029 U ^{e,g}	0.45 U 0.029 U	0.34 0° 0.057 U	0.11 U	2.8	0.22 U ³ 0.029 U	0.32 U ³ 0.029 U	9.0 0 0.57 U	0.43 U 0.029 U	0.43 U 0.029 U
SVE-2/12 SVE-2/16***	08/16/2012	16	5.7 U 7.0 Uª	_	_	0.014 U	0.037 U	0.025 U	0.030 U 0.11 U	0.0025 U ^{e,g}	0.025 U	0.037 U	0.11 U	2.0	0.035 U	0.025 U ^g	0.37 U	0.025 U	0.025 U
SVE-2/20***	08/16/2012	20	5.9 U ^a	-	-	0.014 U	0.059 U	0.030 U	0.089 U	0.018 U ^g	0.030 U	0.059 U	0.12 U	-	0.030 U	0.030 U	0.59 U	0.030 U	0.030 U
SVE-3/5***	08/16/2012	5	-	-	-	-	-	-	-	-	-	-	-	13	-	-	-	-	-
SVE-3/8***	08/16/2012	8	3,820 ^a	-	-	6.5	117	70	389	0.36 U ^g	0.60 U	0.72 U ^g	16	10	0.30 U ^g	0.43 U ^g	12 U	0.60 U	0.60 U
SVE-3/12.5***	08/16/2012	12.5	216 ^a	-	-	1.5	4.8	3.9	21	0.0036 U ^{e,g}	0.36 U	0.43 U ^g	1.4 U	-	0.18 U ^g	0.26 U ^g	7.2 U	0.36 U	0.36 U
SVE-3/14***	08/16/2012	14	6.3 U ^a	-	-	0.016 U	0.063 U	0.031 U	0.094 U	0.0031 U ^{e,g}	0.031 U	0.063 U	0.13 U	-	0.031 U	0.023 U ^g	0.63 U	0.031 U	0.031 U
SVE-3/20***	08/16/2012	20	6.0 U ^a	-	-	0.015 U	0.060 U	0.030 U	0.089 U	0.018 U ^g	0.030 U	0.060 U	0.12 U	-	0.030 U	0.030 U	0.60 U	0.030 U	0.030 U
SVE-4/6***	08/16/2012	6	8.1 U ^a	-	-	0.020 U	0.081 U	0.040 U	0.12 U	0.0040 U ^{e,g}	0.040 U	0.081 U	0.16 U	-	0.040 U	0.029 U ^g	0.81 U	0.040 U	0.040 U
SVE-4/9***	08/16/2012	9	97 ª	-	-	0.018	0.072 U	0.30	0.58	0.022 U ^g	0.036 U	0.072 U	1.4	-	0.036 U	0.026 U ^g	0.72 U	0.036 U	0.036 U
SVE-4/11***	08/16/2012	11	54 ^a	-	-	0.034	0.15	0.82	1.5	0.0038 U ^{e,g}	0.038 U	0.076 U	1.4	-	0.038 U	0.028 U ^g	0.76 U	0.038 U	0.038 U
SVE-4/14***	08/16/2012	14	6.0 U ^a	-	-	0.015 U	0.060 U	0.030 U	0.090 U	0.0030 U ^{e,g}	0.030 U	0.060 U	0.12 U	-	0.030 U	0.030 U	0.60 U	0.030 U	0.030 U
SVE-5/5***	08/16/2012	5	6.1 U ^a	-	-	0.015 U	0.061 U	0.031 U	0.092 U	0.0031 U ^{e,g}	0.031 U	0.061 U	0.12 U	7.5	0.031 U	0.022 U ^g	0.61 U	0.031 U	0.031 U
SVE-5/7.5***	08/16/2012	7.5	793 ^a	-	-	0.15	9.0	7.4	57	0.098 U ^g	0.16 U	0.19 U ^g	21	11	0.081 U ^g	0.12 U ^g	3.2 U	0.16 U	0.16 U
September 20	15 Soil Sampling																		
B-16(3)	09/02/2015	3	3.6 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-16(6)	09/02/2015	6	1,080 J ^{1,a}	-	-	0.18 U	0.73 U	0.37 U	1.1 U	-	-	-	-	-	-	-	-	-	-
B-16(9)	09/02/2015	9	928 J ^{1,a}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-16(12)	09/02/2015	12	5.8 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-17(3)	09/02/2015	3	7.0 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-17(6)	09/02/2015	6	15 [°]	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-17(9) B-17(12)	09/02/2015	9	9,180 ^a	-	-	0.19 U	0.77 U	0.63	1.2 U	-	-	-	-	-	-	-	-	-	-
B-17(12)	09/03/2015	12	5.8 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

EES ENVIRONMENTAL CONSULTING, INC.

TABLE 1 Soil Analytical Results - Gasoline, Diesel, and Other Constituents (mg/kg) Plaid Pantry No. 112

Vancouver, Washington

Location	Date	Sample Depth (feet bgs)	Gasoline	Diesel	Heavy Oil/Lube	Benzene	Toluene	Ethylbenzene	Xylenes	EDB	EDC	MTBE	Naphthalene	Lead	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
Soil Screening	Levels																		
MTCA Metho	d A ¹ Unrestricted	Use	100/30 ²	2,000	2,000	0.03	7	6	9	0.005	NA	0.10	5	250	0.05	0.03	NA	NA	2
MTCA Metho	od B ³		2,619 ⁴	NC	NC	18.2	6,400 ⁵	8,000 ⁵	16,000 ⁵	0.5	11	556	1,600 ⁵	NC	476	12	NC	14.3	160,000 ⁵
September 20	15 Soil Sampling (d	continued)																	
B-18(3)	09/03/2015	3	4,770 °	-	-	0.66 U	2.6 U	2.6	3.9 U	-	-	-	-	-	-	-	-	-	-
B-18(6)	09/03/2015	6	543 ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-18(9)	09/03/2015	9	7,820 ª	-	-	0.19 U	0.74 U	0.37 U	1.1 U	-	-	-	-	-	-	-	-	-	-
B-18(12)	09/04/2015	12	5.8 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-19(3)	09/03/2015	3	5.8 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-19(6)	09/03/2015	6	8.4 ^a	-	-	0.019 U	0.077 U	0.039 U	0.12 U	-	-	-	-	-	-	-	-	-	-
B-19(9)	09/03/2015	9	7.9 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-19(12)	09/03/2015	12	5.7 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-20(6)	09/03/2015	6	5.9 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-20(9)	09/03/2015	9	475 J ^{1,a,f}	-	-	0.018 U	0.073 U	0.036 U	0.11 U	-	-	-	-	-	-	-	-	-	-
B-20(12)	09/03/2015	12	5.7 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

Gasoline, Diesel, and Heavy Oil/Lube by Method by NWTPH-HCID unless otherwise noted.

Volatiles by EPA Method 8260B

¹ Model Toxics Control Act (MTCA) Cleanup Amendments, Method A Soil Cleanup Levels for Unrestricted Land Use (WDOE, CLARC Database, August 2015)

² Per MTCA, the cleanup value for gasoline is 30 mg/kg if benzene is detected and/or if the sum of the toluene, ethylbenzene, and xylenes is greater than one percent of the gasoline concentration, and 100 mg/kg for all other gasoline mixtures.

³ Model Toxics Control Act (MTCA) Cleanup Amendments, Method B Soil Cleanup Levels (cancer endpoint) (WDOE, CLARC Database, August 2015)

⁴ MTCA modified Method B cleanup value calculated using Ecology's Workbook Tool for Calculating Soil and Groundwater Cleanup Levels (revised December 2007). The median soil concentration shown is based on site-specific analytical data combined with generic default assumptions.

⁵ Stated cleanup level is a non-cancer value. No cancer value available.

^a Gasoline by Method NWTPH-Gx/EPA 8260B

^b Diesel and Heavy Oil/Lube by Method NWTPH-Dx

^{b1} Diesel and Heavy Oil/Lube by Method NWTPH-Dx with silica-gel cleanup

^c Results in the diesel organics range are due to overlap from a gasoline range product.

^d Naphthalene analyzed by EPA Method 8270D SIM. No detections were reported for any of the PAH compounds.

^e 1,2-Dibromoethane (EDB) analyzed by EPA 8260B SIM.

^f The chromatographic pattern does not resemble the fuel pattern used for quantitation.

^g The analyte is reported down to the method detection limit. Result is an estimated concentration.

MTBE = Methyl tert-butyl ether

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

PCE = Tetrachloroethene

TCE = Trichloroethene

mg/kg = milligrams per kilogram

Bold values indicate concentrations exceed the Method A cleanup level shown.

Italics indicate analytical reporting limit exceeds lowest cleanup level shown.

U = Undetected at method limit shown

J = Estimated value. Result was below the method reporting limit, but above the method detection limit.

J¹ = Data Validation Qualifier. The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

X = The detection in the diesel range is due to overlap from a gasoline range product.

NA = Not Applicable/Not Available

NC = Not Calculated

- = Not analyzed for this parameter

*** Sampling data collected prior to initiation of active SVE treatment in 2013, and is not representative of current soil conditions. See most recent sampling data (September 2015).

TABLE 2 Soil Analytical Results - Polynuclear Aromatic Hydrocarbons (mg/kg) Plaid Pantry No. 112

Vancouver, Washington

Location	Date	Sample Depth (feet)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Benzo(g,h,i) perylene	Chrysene	Dibenzo(a,h) anthracene	Fluoranthene	Fluorene	Indeno (1,2,3-c,d) pyrene	Naphthalene	Phenanthrene	Pyrene
Soil Screening L MTCA Method MTCA Method	A Unrestricted	Land Use ^a	NA 4,800	NA NA	NA 24,000	NA 1.37	0.1 ^b 0.137 ^b	NA 1.37	NA 13.7	NA NA	NA 137	NA 0.137	NA 3,200	NA 3,200	NA 1.37	5 1,600	NA NA	NA 2,400
Tank Sludge PIT Floor/6	02/14/2012 02/14/2012		0.18 U 0.51 U	0.18 U 0.51 U	0.18 U 0.51 U	0.18 U 0.51 U	0.18 U 0.51 U	0.18 U 0.51 U	0.18 U 0.51 U	0.18 U 0.51 U	0.18 U 0.51 U	0.18 U 0.51 U	0.24 0.51 U	0.18 U 0.51 U	0.18 U 0.51 U	7.1 ¹ 27	0.26 ¹ 0.51 U	0.37 0.51 U

Notes:

Polynuclear Aromatic Hydrocarbons (PAHs) EPA Method 8270D SIM

^a Washington Department of Ecology (WDOE), Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Use, Table 740-1 (August 2015)

^b Cleanup level shown is for toxic equivalent concentration of all carcinogenic PAHs. (See TABLE 2B)

^c MTCA Cleanup Amendments, Method B Soil Cleanup Levels (WDOE, CLARC August 2015)

¹ Laboratory Qualifer. Due to matrix interference, this analyte cannot be accurately quantified. The reported result is an estimate.

mg/kg = Milligrams per kilogram

bgs = below ground surface

NA = Not Available

U = Undetected at method reporting limit shown

TABLE 3 Soil Analytical Results - Polychlorinated Biphenyls (mg/kg) Plaid Pantry No. 112

Vancouver, Washington

Location	Date	Depth (feet bgs)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
Soil Screening Levels MTCA Method A Unrestricted L MTCA Method B ^b	and Use ^a		NA 5.6	NA NA	NA NA	NA NA	NA NA	NA 0.5	NA 0.5
Tank Sludge	02/14/2012	-	0.018 U						

Notes:

Polychlorinated Biphenyls (PCBs) by EPA 8082A.

^a Model Toxics Control Act (MTCA) Cleanup Amendments, Method A Soil Cleanup Levels for Unrestricted Land Use (CLARC, August 2015)

^b MTCA Cleanup Amendments, Method B Soil Cleanup Levels (CLARC, August 2015)

mg/kg = Milligrams per kilogram

bgs = below ground surface

NA = Not Available

- = Not analyzed or not known

U = Undetected at method reporting limit shown

 TABLE 4

 Soil Vapor Analytical Results - Volatile Organic Compounds (µg/m³)

 Plaid Pantry No. 112

Vancouver, Washington

								/ancouver, Wash	ington								
Location	Date	Sample Depth (feet bgs)	Gasoline	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	EDB	EDC	MTBE	Naphthalene	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
Soil Gas Screeni	ing Levels	(1000 080)															
MTCA Method	-		NA	10.7/32.1	76,200/229,000	15,200/45,700	1,520/4,570 ²	1,520/4,570	0.139/0.417	3.21/9.62	321/962	2.45/7.35	321/962	12.3/37	NA	13.9/41.7	76,200/229,000
				- ,-	-,, -,	-,, -,	_)00/ .)0/ 0	,, ,	, -	- ,	- ,	-,	- ,	-,-		,	-,, -,
-	il Vapor Sampling ata Averages for Com	(narican)															
SVE-1	2016-2017 Avg	5-10	316,432	31	45	22	56	51	-	-	-	74	-				
S-1	08/14/2012	5	- 510,452	6.1	43 50	9.6	37	12	1.3 U	0.68 U	0.60 U	4.4	3.7	0.90 U	30	3.8	0.92 U
S-2	08/15/2012	5	-	8.7	72	31	120	43	1.3 U	0.65 U	0.58 U	4.4	32	0.90 U	52	10	0.32 U
S-3	08/15/2012	5	-	3.8	18	2.6	8.2	3.3	1.2 U	0.62 U	0.55 U	4.4	28	0.80 U	16	8.4	0.83 U
S-4	08/14/2012	5	-	10	130	49	180	66	1.2 U	0.63 U	0.55 U	6.2	2.5	0.82 U	38	0.98 U	0.84 U
S-5/SVE-3	08/17/2012	5-10	-	82,000	860,000	210,000	900,000	340,000	2,000 U	1,100 U	950 U	5,500 U	2,200	1,400 U	3,100 U	1,600 U	1,400 U
SVE-3	2016-2017 Avg	5-10	14,455	91	1,002	49	175	78	-	-	-	11		-	-	-	-
S-6	08/14/2012	5	-	2.9	1,002	2.0	6.6	2.6	1.4 U	0.74 U	0.66 U	4.8 U	1.7	0.98 U	33	1.2 U	1.0 U
S-7	08/16/2012	5	-	7.7	14	3.1	9.0	5.0	1.3 U	0.71 U	0.63 U	19	2.0	0.94 U	32	1.1 U	0.95 U
S-8/SVE-5	08/17/2012	5-10	-	7,900	220,000	86,000	340,000	160,000	1,000 U	530 U	470 U	7,700	2,500	710 U	1,600 U	830 U	720 U
SVE-5	2016-2017 Avg	5-10	48,834	103	620	164	1,034	535		-	-	17	_,	-		-	-
S-9	08/15/2012	5	-	2.1	8.1	1.7	6.0	2.5	1.3 U	0.66 U	0.59 U	4.3 U	6.8	0.88 U	16	1.2	0.89 U
S-10	08/14/2012	5	-	1.7	7.0	1.8	7.1	2.6	1.1 U	0.59 U	0.53 U	6.4	22	0.78 U	19	0.92 U	0.80 U
S-11	08/14/2012	15	-	1.3	9.7	2.2	6.6	2.1	1.3 U	0.69 U	0.62 U	4.5 U	100	0.92 U	12	3.5	1.1
S-12/SVE-2	08/20/2012	15-20	-	3,900	22,000	1,400	25,000	17,000	120 U	65 U	75	340 U	130	17 U	47 U	20 U	17 U
SVE-2	2016-2017 Avg	15-20	461	2.3	9.4	3.1	5.1	3.1	-	-	-	8.9	-	-	-	-	-
S-13	08/15/2012	15	-	1.1	11	0.71	3.1	1.2	1.2 U	0.65 U	0.58 U	4.2 U	230	0.86 U	5.9	52	0.88 U
SVE-4	08/17/2012	15-20	-	560	12,000	4,800	22,000	9,300	130 U	66 U	59 U	620	170	88 U	190 U	100 U	89 U
SVE-4	2016-2017 Avg	15-20	8,367	4.9	13	6.7	8.6	6.7	-	-	-	18	-	-	-	-	-
August-Sentem	ber 2015 Soil Vapor	Sampling															
B-17	09/14/2015	5-10	4,900,000	120	120	140	120 U	120 U	_	_	-	_	-	-	_	-	-
B-18	09/14/2015	15-20	17,000	3.9 U	14	5.4 U	7.7	5.4 U	-	-	-	-	-	-	-	-	-
S-14	08/31/2015	5	8,600	130	130	25	42	16	-	-	-	-	-	-	-	-	-
S-15	08/31/2015	5	46,000	500	880	190	360	180	-	-	-	-	-	-	-	-	-
S-16	08/31/2015	5	5,000	130	150	22	35	16	-	-	-	-	-	-	-	-	-
S-17	09/01/2015	4	590 U	4.6 U	8.1	6.3 U	7.3	6.3 U	-	-	-	-	-	-	-	-	-
S-18	09/01/2015	5	580 U	4.5 U	12	6.1 U	12	6.1 U	-	-	-	-	-	-	-	-	-
S-19	09/01/2015	1	540 U	4.2 U	5.9	5.7 U	5.7 U	5.7 U	-	-	-	-	-	-	-	-	-
S-20	09/02/2015	5	540 U	4.5	7.4	5.7 U	7.3	5.7 U	-	-	-	-	-	-	-	-	-
S-21	08/31/2015	5	7,200	100	140	35	71	35	-	-	-	-	-	-	-	-	-
S-22	08/31/2015	5	8,600	140	220	49	100	44	-	-	-	-	-	-	-	-	-
S-23	08/31/2015	5	2,000	20	29	6.5	12	6.2	-	-	-	-	-	-	-	-	-
S-24	08/31/2015	5	520 U	4.7	7.8	5.5 U	5.5 U	5.5 U	-	-	-	-	-	-	-	-	-
S-25	09/02/2015	3.4	600	5.9	31	12	44	13	-	-	-	-	-	-	-	-	-
S-26	09/01/2015	5	560 U	4.4 U	5.2 U	6.0 U	8.4	6.0 U	-	-	-	-	-	-	-	-	-
S-27	09/14/2015	2.3-2.9	540 U	4.2 U	5.0 U	5.8 U	11	7.7	-	-	-	-	-	-	-	-	-
S-28	09/11/2015	1.8-2.2	570 U	4.4 U	5.2 U	6.0 U	6.0 U	6.0 U	-	-	-	-	-	-	-	-	-
S-29	09/11/2015	1.25-1.5	4,600 U ^c	36 U ^c	43 U ^c	49 U ^c	49 U ^c	49 U ^c	-	-	-	-	-	-	-	-	-
S-30	09/11/2015	5-10	560 U	4.3 U	5.1 U	5.9 U	5.9 U	5.9 U	-	-	-	-	-	-	-	-	-
S-31	09/11/2015	5-10	740	5.4	16	8.1	33	8.7	-	-	-	-	-	-	-	-	-
S-32	09/02/2015	5	550 U	4.3 U	6.0	5.8 U	5.8 U	5.8 U	-	-	-	-	-	-	-	-	-
June 2016 VIA T	Fier 1 Assessment																
S-31	06/22/2016	10	79 U	0.31 U	0.33	0.17 U	0.48	0.27	0.30 U	0.16 U	0.70 U	0.51 U	5.3	0.21 U	4.0	0.76	0.21 U
S-33	06/22/2016	5	1,300	14	17	3.1	6.7	3.2	0.28 U	0.15 U	0.66 U	0.48 U	4.6	0.20 U	35	0.23 U	0.20 U
S-34	06/22/2016	5	1,100	5.6	9.1	7.4	34	17	0.72 U	0.38 U	1.7 U	1.2 U	11	0.50 U	53	0.59 U	0.51 U
S-35	06/22/2016	5	790 U	4.6	5.8	21	91	34	3.0 U	1.6 U	7.0 U	5.0 U	3,500	2.1 U	31	2.4 U	2.1 U

TABLE 4 Soil Vapor Analytical Results - Volatile Organic Compounds (μg/m³) Plaid Pantry No. 112 Vancouver, Washington

Notes:

¹ Washington Department of Ecology (WDOE), CLARC database values (August 2015).

The numerator value is the screening level for sub-slab (<15 foot depth) soil gas measurements; the denominator value is for deep (>=15 foot depth) soil gas measurements.

² Screening levels for m-xylene

^c Reporting limits were raised due to high levels of non-target analytes.

Volatiles by EPA Method TO-15

MTBE = Methyl tert-butyl ether

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

PCE = Tetrachloroethene

TCE = Trichloroethene

 $\mu g/m^3$ = Micrograms per cubic meter

Bold values indicate concentrations exceed the Method B soil gas screening level for representative sample depth.

Italics indicate analytical reporting limits exceed Method B soil gas screening level for representative sample depth.

U = Undetected at method reporting limit shown

NA = Not Applicable/Not Available

- = not analyzed for this parameter

TABLE 5 Sub-Slab, Indoor, and Outdoor Air Analytical Results - Volatile Organic Compounds (μg/m³) Plaid Pantry No. 112

Vancouver, Washing	gton

									, washington									
Location	Date	Sample Location	Sample Depth (feet bgs)	Gasoline	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	EDB	EDC	МТВЕ	Naphthalene	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
September	2016 Tier 2 VIA	A - Sub-Slab																
A-1SS	09/22/2016	Domino's Kitchen	0.5	1,000 U	5.0 J	12	11 U	11 U	11 U	1.8 U ⁶	2.1 U ⁶	35 U	3.4 U ⁶	23	2.4 U ⁶	29 U	2.0 U ⁶	13 U
A-2SS	09/22/2016	Plaid Store	0.5	1,200 U	4.7 J	11 U	13 U	13 U	13 U	2.3 U ⁶	2.6 U ⁶	44 U	4.3 U ⁶	21 U	3.0 U ⁶	36 U	2.5 U ⁶	20
A-3SS	09/22/2016	Plaid Maintenance Room	0.5	1,500 U	1.7 U ⁶	25	16 U	16 U	16 U	2.8 U ⁶	3.1 U ⁶	53 U	5.2 U ⁶	25 U	3.7 U ⁶	43 U	3.0 U ⁶	20 U
Median				1,200 U	4.7 J	12	13 U	13 U	13 U	2.3 U ⁶	2.6 U ⁶	44 U	$4.3 U^{6}$	23	3.0 U ⁶	36 U	2.5 U ⁶	20
Mean ⁸				1,233 U	3.8 J	16	13 U	13 U	13 U	2.3 U ⁶	2.6 U ⁶	44 U	4.3 U^{6}	23	3.0 U ⁶	36 U	2.5 U ⁶	18
MTCA Meth	hod B Soil Gas So	creening Levels ¹																
Sub-Slab ((<15 foot depth))		NA	10.7	76,200	15,200	1,520 ⁷	1,520	0.139	3.21	321	2.45	321	12.3	NA	13.9	76,200
September	2016 Tier 2 VIA	A - Indoor Air																
A-1	09/21/2016	Domino's Kitchen	-	530	0.93	1.1	0.16 U	0.32 U	0.16 U	0.0076 U ⁶	0.043 J	0.66 U	0.12 J,J ¹	0.25 U	0.20 U	2.7 U	0.48	0.20 U
A-2	09/21/2016	Plaid Store	-	970	1.5	8.5	0.64	1.9	0.78	0.022 J	0.083 J	0.59 U	0.33 J,J ¹	0.22 U	0.18 U	2.8	0.46	0.18 U
A-3	09/21/2016	Plaid Maintenance Room	-	980	1.4	7.5	0.58	1.8	0.73	0.0071 U ⁶	0.074 J	0.62 U	0.36 J,J ¹	0.23 U	0.18 U	3.2	0.54	0.19 U
Median				970	1.4	7.5	0.58	1.8	0.73	0.0076 U ⁶	0.074 J	0.62 U	0.33 J	0.23 U	0.18 U	2.8	0.48	0.19 U
Mean ⁸				827	1.3	5.7	0.46	1.3	0.56	0.012 J	0.067 J	0.62 U	0.27 J	0.23 U	0.19 U	2.9	0.49	0.19 U
MTCA Meth	hod B Indoor Air	Cleanup Levels ²		140 ⁹	0.321	2,290	457	45.7 ⁷	45.7	0.00417	0.0962	9.62	0.0735	9.62	0.37	2,290	0.417	2,290
US EPA Indo	oor Air Backgrou	und Levels ³																
Range of S	50th Percentile	(2011)		116-594 ⁹	<0.05-4.7 ¹⁰	4.8-24	1-3.7	1.5-14	1.1-3.6	NA	< 0.08 ¹⁰	0.025-3.5	0.18-1.7 ⁹	<0.03-2.2 ¹⁰	<0.02-1.1 ¹⁰	NA	<0.15-0.68 ¹⁰	<0.12-5.9 ¹⁰
Median (5	50th Percentile)	(2012)		NA	2.0	12	3.0	7.5 ^{3a}	7.5 ^{3a}	NA	NA	-	NA	1.5	0.8	NA	-	1.0
Max				NA	26	87	15	100 ^{3a}	100 ^{3a}	NA	NA	1.8	NA	1,896	850	NA	1	140
September	2016 Tier 2 VIA	- Outdoor Air																
A-4	09/21/2016	Domino's Roof	-	72 U	0.28 U	13	1.9	8.6	3.2	0.0073 U ⁶	0.058 J	0.63 U	0.065 J,J ¹	0.31	0.29	2.6 U	0.50	0.19 U
A-5	09/21/2016	Plaid Roof	-	70 U	0.27 U	0.60 J ¹	0.15 U	0.24 J	0.15 U	0.0071 U ⁶	0.049 J	0.62 U	0.10 J,J ¹	0.23 U	0.0072 U	2.5 U	0.50	0.19 U
A-6	09/21/2016	Domino's Entry	-	64	0.30 J ¹	9.2	0.52	2.0	0.80	0.0068 U ⁶	0.094 J	0.59 U	0.84 J ¹	0.22 U	0.067 J	5.3	0.48	0.18 U
A-7	09/21/2016	Plaid Entry	-	67 U	1.2	3.6	0.38	1.2	0.42	0.0068 U ⁶	0.046 J	0.59 U	0.17 J,J ¹	0.22 U	0.0069 U	2.4 U	0.50	0.18 U
A-8	09/21/2016	Western Property Boundary	-	110	0.30	18	1.0	4.5	1.3	$0.0074 U^{6}$	0.070 J	0.64 U	0.079 J,J ¹	0.24 U	0.048 J	2.6 U	0.47	0.20 U
A-9	09/21/2016	Roadway Intersection	-	350	3.3	13	1.2	4.1	1.3	0.0073 U ⁶	0.054 J	0.63 U	0.27 J,J ¹	0.24 U	0.045 J	2.6 U	0.49	0.19 U
Median				71	0.30	11	0.76	3.1	1.1	$0.0072 U^{6}$	0.056 J	0.63 U	0.14 J	0.235	0.05	2.6	0.50	0.19 U
Mean ⁸				122	0.94	10	0.86	3.4	1.2	0.0071 U ⁶	0.062 J	0.62 U	0.25 J	0.243	0.08	3.0	0.49	0.19 U
US EPA Out	door Backgroun	nd Levels ⁴																
Median				NA	0.385	NA	NA	0.17	0.17	0.192	0.081	NA	NA	0.237	0.161	NA	2.7	NA
Max				NA	4.8	NA	NA	0.17	0.17	3.85	2.0	NA	NA	3.4	2.7	NA	2.7	NA
Vancouver	Air Toxics Monit	toring Results ⁵																
vancouver																		

TABLE 5

Sub-Slab, Indoor, and Outdoor Air Analytical Results - Volatile Organic Compounds (µg/m³)

Plaid Pantry No. 112

Vancouver, Washington

Notes:

¹ Washington Department of Ecology (WDOE), Model Toxics Control Act (MTCA) Soil Gas Screening Levels from CLARC Database (August 2015)

² WDOE, MTCA Indoor Air Cleanup Levels from CLARC Database (August 2015)

³ United States Environmental Protection Agency (US EPA) Vapor Intrusion Database Table: Preliminary Evaluation of Attenuation Factors. Table 2 (2011) and Table 3 (March 16, 2012); ^{3a} Screening value shown is for Xylenes.

⁴ US EPA National Scale Air Toxics Assessment Table 1-A list of background concentration values used in the 1999 National-Scale Assessment by pollutant (revised 2006 and 2009)

⁵ Southwest Clean Air Agency, Vancouver 2005 Ambient Air Toxics Monitoring Review Table 4-1 (January 26, 2007)

⁶ Analyte was reported down to the method detection limit.

⁷ Screening level for m-xylene shown

 $^{\rm 8}$ Mean values calculated using 100% of method reporting limit for non-detect values.

⁹ WDOE, Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings, Table 1 (January 2018)

¹⁰ USEPA Vapor Intrusion Database Table: Preliminary Evaluation of Attenuation Factors, Table 2 (2011). Lowest reporting limit (RL) from RL Range column used in place of RL from Range of 50th Percentile.

Volatile Organic Compounds analyzed by EPA Method TO-15

^a Not enough valid sampling days for a statistically meaningful average.

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

MTBE = Methyl tert-butyl ether

PCE = Tetrachloroethene

TCE = Trichloroethene

 $\mu g/m^3$ = Micrograms per cubic meter

bgs = below ground surface

U = Undetected at method reporting limit shown

J = Laboratory Qualifier. The reported value was detected below the reporting limit, but above the detection limit of the instrument. Value should be considered an estimate.

J¹ = Data Validation Qualifier. The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. See data validation report for further explanation.

NA = Not Applicable/Not Available

Bold values indicate concentrations exceed the MTCA Method B cleanup level.

Italics indicate analytical reporting limits exceed MTCA Method B cleanup level.

TABLE 6 Corrected Indoor Air Results (μg/m³) Plaid Pantry No. 112 Vancouver, Washington

	Gasoline	Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	EDB	EDC	MTBE	Naphthalene	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
September 2016 Tier 2 VIA - Corrected Indoor Air Concentrations															
Mean Indoor Air Concentration (uncorrected)	827	1.3	5.7	0.46	1.3	0.56	0.012 J	0.067 J	0.62 U	0.27 J	0.24 U	0.19 U	2.9	0.49	0.19 U
Correction Factor ¹	122	0.94	10	0.86	3.5	1.2	0.0071 U ⁵	0.062 J	0.62 U	0.25 J	0.24	0.20	3.0	0.49	0.19 U
Corrected Indoor Air Concentration ²	705	0.36	-3.9	-0.40	-2.2	-0.64	0.0049	0.0052	0.0067	0.016	-0.0033	-0.012	-0.10	0.00	0.0017
MTCA Method B Indoor Air Cleanup Levels ³	140 ⁷	0.321	2,290	457	45.7 ⁶	45.7	0.00417	0.0962	9.62	0.0735	9.62	0.37	2,290	0.417	2,290
US EPA Indoor Air Screening Levels ⁴															
Range of 50th Percentile (2011)	116-594 ⁷	<0.05-4.7 ⁸	4.8-24	1-3.7	1.5-14	1.1-3.6	NA	<0.08 ⁸	0.025-3.5	0.18-1.7 ⁷	<0.03-2.2 ⁸	<0.02-1.1 ⁸	NA	<0.15-0.68 ⁸	<0.12-5.9 ⁸
Median (50th Percentile) (2012)	NA	2.0	12	3.0	7.5 ^{4a}	7.5 ^{4a}	NA	NA	-	NA	1.5	0.8	NA	-	1.0
Max	NA	26	87	15	100 ^{4a}	100 ^{4a}	NA	NA	1.8	NA	1,896	850	NA	1	140

Notes:

¹ Based on the mean of all outdoor samples collected on 9/21/2016

² Corrected indoor air concentration based on subtracting outdoor air concentration (Correction Factor) from average (mean) indoor air concentration, per Ecology draft Vapor Intrusion Guidance, October 2009. Negative value indicates outdoor air concentration > indoor air concentration.
³ Washington Department of Ecology (WDOE), Model Toxics Control Act (MTCA) Indoor Air Screening Levels from CLARC Database (August 2015)

⁴ United States Environmental Protection Agency (US EPA) Vapor Intrusion Database Table: Preliminary Evaluation of Attenuation Factors. Table 2 (2011) and Table 3 (March 16, 2012); ^{4a} Screening value shown is for Xylenes.

⁵ Analyte was reported down to the method detection limit.

⁶ Screening level for m-xylene shown

⁷ WDOE, Petroleum Vapor Intrusion (PVI): Updated Screening Levels, Cleanup Levels, and Assessing PVI Threats to Future Buildings, Table 1 (January 2018)

⁸ USEPA Vapor Intrusion Database Table: Preliminary Evaluation of Attenuation Factors, Table 2 (2011). Lowest reporting limit (RL) from RL Range column used in place of RL from Range of 50th Percentile.

Volatile Organic Compounds analyzed by EPA Method TO-15

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

MTBE = Methyl tert-butyl ether

PCE = Tetrachloroethene

TCE = Trichloroethene

 $\mu g/m^3$ = Micrograms per cubic meter

U = Undetected at method reporting limit shown

J = Laboratory Qualifier. The reported value was detected below the reporting limit, but above the detection limit of the instrument. Value should be considered an estimate.

NA = Not Applicable/Not Available

Bold values indicate concentrations exceed Ecology cleanup level.

Italics indicate analytical reporting limits exceed MTCA Method B cleanup level.

TABLE 7 Water Analytical Results - Gasoline and Related Constituents (ug/L) Plaid Pantry No. 112

Location	Date	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	EDB	EDC	MTBE	Naphthalene
S-28	12/23/2015	200 U	0.40 U	2.0 U	1.0 U	3.0 U	-	-	-	-
SVE-5	11/24/2015	100 U	0.20 U	1.0 U	0.50 U	1.5 U	0.50 U	0.50 U	1.0 U	2.0 U
	12/11/2015	100 U	0.20 U	1.0 U	0.50 U	1.5 U	-	-	-	-
	12/23/2015	100 U	0.20 U	1.0 U	0.50 U	1.5 U	-	-	-	-
	01/26/2016	100 U	0.20 U	1.0 U	0.50 U	1.5 U	-	-	-	-
	02/19/2016	100 U	0.20 U	1.0 U	0.50 U	1.5 U	-	-	-	-
MTCA Cleanup Level	s ¹									
Method A		800/1,000 ²	5.0	1,000	700	1,000	0.01	5.0	20	160

Notes:

¹Washington Department of Ecology (WDOE), Model Toxics Control Act (MTCA) Cleanup Amendments, Groundwater Cleanup Levels (CLARC Database, August 2015)

² MTCA Method A cleanup level for gasoline is 1,000 ug/L if no benzene is detected; cleanup level is 800 ug/L if benzene is detected

Gasoline by Method NWTPH-Gx

Volatile Compounds by EPA Method 8260B (except as otherwise noted)

ug/L = Micrograms per liter

Italics indicate analytical reporting limit exceeds lowest screening level shown.

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

U = Undetected at method limit shown

Appendix A

MEMORANDUM

Subject:	Historic Information Review Summary
Date:	July 29, 2011
From:	Martin Acaster
To:	Plaid #112 Project File

PNG has reviewed information regarding the Plaid #112 site including aerial photographs, a city directory abstract, and City of Vancouver building records for the property. This memorandum summarizes the findings of this site historical information review.

AERIAL PHOTOGRAPHS

PNG acquired aerial photographs of the Plaid #112 site vicinity from Environmental Data Resources (EDR) and the Washington Department of Transportation (WDOT). EDR provided aerial photographs dated 1951, 1955, 1960, 1963, 1970, 1975, 1984, 1986, 1990, 1994, 2000, 2005 and 2006. WDOT provided photographs dated 1955, 1966, 1970, 1978, and 1984. In general, the aerial photographs show two stages of commercial development at the Plaid #112 site. Aerial photographs for 1955, 1966, 1978, and 1984 are attached as Figures 1 through 4.

The first known development of the property (visible in aerial photographs from 1951 through 1978) consisted of a commercial building originally consisting of three conjoined structures. The primary structure is a square-shaped building located in the center of the property parcel. This building appears to have an attached canopy that extends towards the southeast corner of the property. Smaller satellite structures are attached to the northeast and southwest corners of the primary building. In photos prior to 1963 the northwest corner of the property appears to be covered with vegetation and the southeast corner of the property appears to be paved parking and driveways. The 1963 aerial photograph shows the construction of an addition to the northwest corner of the expanded structure. No additional changes to this commercial structure are evident in aerial photographs dated 1966, 1970, 1975 and 1978.

The second stage of development at the site (visible in aerial photographs from 1984 through 2006) consists of the existing rectangular commercial building currently occupied by Plaid and a Domino's pizza shop. Aerial photographs dated 1984 through 2006 all show the current site features including the building, pump island canopy, concrete underground storage tank (UST) pad, and asphalt paved parking areas to the south of the building.

CITY DIRECTORY ABSTRACT

PNG acquired a city directory abstract report from EDR (Attachment A). The city directory abstract includes occupant listings for the Plaid #112 site under three site addresses for the years 1958, 1965, 1971, 1977, 1983, and 2000. The current Plaid site address is 1002 W Fourth Plain Boulevard. The current Domino's site address is 1006

Plaid #112 Project File July 29, 2011 Page 2

W Fourth Plain Boulevard. According to Clark County GIS database a third address (2600 Kauffman Avenue) was historically included within the property boundaries and generated occupant listings in the city directory abstract. Plaid Pantry is the only listed occupant of the 1002 W Fourth Plain Boulevard address and was only listed in the 2000 directory. Occupants of the 1006 W Fourth Plain Boulevard address include a Furlong Barber Shop in 1958, Standard Dairy in 1965, a thrift/re-sale store in 1971 and 1977 and Domino's in 2000. The address was listed as vacant in 1983. Occupants of the 2600 Kauffman Avenue address include Anderson Garage auto repair and Champion Midway Service gasoline station in 1958, Anderson Garage and Midway Eagle Service in 1965, and Vancouver Auto Upholstery in 1971 and 1977. The 2600 Kauffman Avenue address was not listed in 1983 and 2000 directories.

CITY OF VANCOUVER BUILDING RECORDS

PNG reviewed City of Vancouver building records for the Plaid #112 property. Site addresses included in the search were 1002 W Fourth Plain, 1006 W Fourth Plain, and 2600 Kauffman Avenue. Building records for the three site addresses range from November 1954 through May 1985. The records also indicate that W Fourth Plain Boulevard was previously W 26th Street. Records from 1954, 1955, and 1960 identify the Perkins Oil Company as the site occupant. A 1962 building permit is for the construction of the Standard Dairy, presumably the new building addition visible in the 1963 aerial photograph. 1967 electrical permits indicate Daisy Dry Cleaners as an occupant of the 2600 Kauffman Avenue address and Standard Dairy as the occupant of the 1006 W Fourth Plain Boulevard address. A 1968 plumbing permit identifies Anderson Garage Auto Repair as the 2600 Kauffman Avenue occupant. A 1969 certificate of occupancy identifies a new site address 2602 Kauffman Avenue occupied by an auto detailing business. 1970 certificates of occupancy identify the Perkins Oil Company as the property owner and operator of a gasoline service station and a second hand store as an additional site occupant. A 1971 certificate of occupancy identifies a wood furniture refinishing shop as the occupant of the 1006 W Fourth Plain Boulevard (26th Street) address. Records from 1982 through 1985 show redevelopment of the property and Plaid and Domino's as site occupants.

SUMMARY

Each of the site historic information sources provides information that is consistent with two stages of development at the site. The first known site development appears to be a commercial building with as many as four tenant spaces. Site occupants include a gasoline service station, an auto repair shop, an auto detailing and upholstery shop, a dry cleaner, a barber shop, a dairy, a wood furniture refinishing shop, and a second hand store. The service station/vehicle maintenance shops, wood furniture refinishing shop, and dry cleaners all represent potential sources of contaminants at the Plaid #112 site. These historic uses of the site should be considered during site investigation and the selection of analytical methods for samples collected at the site.

Attachments: Figure 1 – 1955 Aerial Photograph Figure 2 – 1966 Aerial Photograph Figure 3 – 1978 Aerial Photograph Figure 4 – 1984 Aerial Photograph Attachment A – City Directory Abstract **FIGURES**

PLAID PANTRY #112 1002 W. FOURTH PLAIN BLVD VANCOUVER, WASHINGTON

PLAID PANTRY #112 1002 W. FOURTH PLAIN BLVD VANCOUVER, WASHINGTON

PNG ENVIRONMENTAL, INC. DATE: 10-19-11 PLAID PANTRY #112 FILE NAME: 1179-01 1002 W. FOURTH PLAIN BLVD 6665 SW Hampton St., Ste. 101 Tigard, OR 97223 TEL (503) 620-2387 FAX (503) 620-2977 DRAWN BY: JJT VANCOUVER, WASHINGTON APPROVED BY:PE

Attachment A City Directory Abstract
Plaid #112 1002 W Fourth Plain Boulevard Vancouver, WA 98660

Inquiry Number: 3122904.2 July 15, 2011

The EDR-City Directory Abstract

440 Wheelers Farms Road Milford, CT 06461 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING. WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2009 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Abstract is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Abstract includes a search and abstract of available city directory data. For each address, the directory lists the name of the corresponding occupant at five year intervals.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. An "X" indicates where information was identified in the source and provided in this report.

<u>Year</u>	Source	<u>TP</u>	<u>Adjoining</u>	<u>Text Abstract</u>	<u>Source Image</u>
2000	Polk's City Directory	Х	Х	Х	-
1983	Polk's City Directory	-	Х	Х	-
1977	Polk's City Directory	-	Х	Х	-
1971	Polk's City Directory	-	Х	Х	-
1965	Polk's City Directory	-	Х	Х	-
1958	Polk's City Directory	-	Х	Х	-

TARGET PROPERTY INFORMATION

ADDRESS

1002 W Fourth Plain Boulevard Vancouver, WA 98660

FINDINGS DETAIL

Target Property research detail.

<u>Year</u> <u>Uses</u>

2000 Plaid Pantry (groc)

<u>Source</u>

Polk's City Directory

ADJOINING PROPERTY DETAIL

The following Adjoining Property addresses were researched for this report. Detailed findings are provided for each address.

Kauffman Ave

2518 Kauffman Ave

<u>Uses</u>	<u>Source</u>
Caponey Tires	Polk's City Directory
Used Tire Place	Polk's City Directory
Kraemers Arco	Polk's City Directory
Lyles Hancock Service (gas sta)	Polk's City Directory
Lyles Hancock Service (gas sta)	Polk's City Directory
Hodge's Hancock Service (gas sta)	Polk's City Directory
Eli's Stop & Save (gas sta)	Polk's City Directory
	Caponey Tires Used Tire Place Kraemers Arco Lyles Hancock Service (gas sta) Lyles Hancock Service (gas sta) Hodge's Hancock Service (gas sta)

2600 Kauffman Ave

<u>Year</u>	<u>Uses</u>	<u>Source</u>
1977	Vancouver Auto Upholstery	Polk's City Dir
1971	Vancouver Auto Upholstery	Polk's City Dir
1965	Anderson Garage (auto rpr)	Polk's City Dir
	Midway Eagle Service (gas sta)	Polk's City Dir
1958	Anderson Garage (auto rpr)	Polk's City Dir
	Champion Midway Service (gas sta)	Polk's City Dir

2601 Kauffman Ave

oc)
oc)

2610 Kauffman Ave

<u>Year</u>	<u>Uses</u>
2000	Hidden Brick Co
1983	Hidden Brick Co (mfr)
1977	Hidden Brick Co (mfr)
1971	Hidden Brick Co (mfr)
1965	Hidden Brick Co (mfr)
1958	Hidden Brick Co (mfr)

irectory irectory irectory irectory irectory irectory

Source

Polk's City Directory Polk's City Directory Polk's City Directory Polk's City Directory

<u>Source</u>

Polk's City Directory Polk's City Directory

W Fourth Plain Boulevard

W Fourth Plain Boulevard

<u>Year</u>	<u>Uses</u>	<u>Source</u>								
2000	No addresses listed between 815 and 1002	Polk's City Directory								
1983	No addresses listed between 817 and 901	Polk's City Directory								
1977	No addresses listed between 815 and 1006	Polk's City Directory								
1971	No addresses listed between 815 and 1006	Polk's City Directory								
1006 W F	ourth Plain Boulevard									
<u>Year</u>	<u>Uses</u>	<u>Source</u>								
2000	Dominos Pizza	Polk's City Directory								
1983	Vacant	Polk's City Directory								
1977	Re-Sale Store (used clo)	Polk's City Directory								
1971	Thrift Store	Polk's City Directory								
1008 W Fourth Plain Boulevard										
<u>Year</u>	<u>Uses</u>	<u>Source</u>								
1983	Vacant	Polk's City Directory								
1977	Central Personnel Employment Agcy	Polk's City Directory								
1009 W Fo	ourth Plain Boulevard									
<u>Year</u>	<u>Uses</u>	<u>Source</u>								
2000	Residential	Polk's City Directory								
1983	Residential	Polk's City Directory								
1977	Vacant	Polk's City Directory								
1971	Vacant	Polk's City Directory								
1011 W Fo	ourth Plain Boulevard									
<u>Year</u>	<u>Uses</u>	<u>Source</u>								
2000	Residential	Polk's City Directory								
1983	Residential	Polk's City Directory								
1977	Residential	Polk's City Directory								

1971 Residential

901 W Fourth Plain Boulevard

YearUsesSource1983Kauffman Thriftway (groc)Polk's City Directory

Polk's City Directory

W Fourth Plain Boulevard (W 26th)

W Fourth Plain Boulevard (W 26th)

<u>Year</u>	<u>Uses</u>	<u>Source</u>										
1965	No addresses listed between 815 and 1006	Polk's City Directory										
1958	No addresses listed between 817 and 1006	Polk's City Directory										
1006 W Fourth Plain Boulevard (W 26th)												
<u>Year</u>	<u>Uses</u>	<u>Source</u>										
1965	Standard Dairy	Polk's City Directory										
1958	Furlong Barber Shop	Polk's City Directory										
1009 W Fourth Plain Boulevard (W 26th)												
<u>Year</u>	<u>Uses</u>	<u>Source</u>										
1965	Vacant	Polk's City Directory										
1958	Residential	Polk's City Directory										
1011 W Fourth Plain Boulevard (W 26th)												
<u>Year</u>	<u>Uses</u>	<u>Source</u>										
1965	Residential	Polk's City Directory										
1958	Residential	Polk's City Directory										

TARGET PROPERTY: ADDRESS NOT IDENTIFIED IN RESEARCH SOURCE

The following Target Property addresses were researched for this report, and the addresses were not identified in the research source.

Address Researched

Address Not Identified in Research Source

1002 W Fourth Plain Boulevard 1983, 1977, 1971, 1965, 1958

ADJOINING PROPERTY: ADDRESSES NOT IDENTIFIED IN RESEARCH SOURCE

The following Adjoining Property addresses were researched for this report, and the addresses were not identified in research source.

Address Researched	Address Not Identified in Research Source
W Fourth Plain Boulevard	No Years Found
W Fourth Plain Boulevard (W 26th)	No Years Found
1006 W Fourth Plain Boulevard	No Years Found
1006 W Fourth Plain Boulevard (W 26th)	No Years Found
1008 W Fourth Plain Boulevard	1971
1008 W Fourth Plain Boulevard (W 26th)	1965, 1958
1009 W Fourth Plain Boulevard	No Years Found
1009 W Fourth Plain Boulevard (W 26th)	No Years Found
1011 W Fourth Plain Boulevard	No Years Found
1011 W Fourth Plain Boulevard (W 26th)	No Years Found
2518 Kauffman Ave	No Years Found
2600 Kauffman Ave	No Years Found
2601 Kauffman Ave	No Years Found
2610 Kauffman Ave	No Years Found
901 W Fourth Plain Boulevard	1977, 1971
901 W Fourth Plain Boulevard (W 26th)	1965, 1958

Appendix B

		[]
		LL/BORING NUMBER B-1
PNG Environmental, Inc. 6665 SW Hampton St., Suite 101 Tigard, Oregon 97223 TEL (503) 620-2387 FAX (503) 620-2977	PROJECT NUMB	couver, Washington Hultgren
SAMPLE INFORMATION		BOREHOLE/WELL
SAMPLE Blow PID (ppm) % First LAB T (prm) # TYPE Counts PID (ppm) # Water I.D. # #	STRATA	CONSTRUCTION DETAIL
	CONCRETE, 0-0.4', gray, artificially cemented coarse sand with gravel.	Backfill borehole with hydrated bentonite and capped with black dyed concrete.
	ML SILT (ML), 0.4-8', brown, fine-grained silt, low plastic fines, medium dense, dry, no odor.	Air knife from 0' to 10' bgs.
HA 3.4 HA B1-3 -		Soil samples collected at 2' intervals using stainless steel hand auger (HA) in upper 10 feet bgs. Samples below 10 feet bgs collected by GeoProbe Macro Core (MC).
HA 3.2 HA B1-7		
HA 3.1 HA B1-9 - 10 -	ML Sandy SILT (ML), 8-13.5', brown, fine-grained si with increasing fine sand content, low plasticity fines, medium dense, moist, no odor.	lt
MC 4.3 HI-15 15	GM Silty GRAVEL (GM), 13.5-15', fine to subround t subangular coarse gravel up to 1" diameter, 20 percent fines, damp, no odor. GW Sandy GRAVEL (GW), 15-28', fine coarse subrounded gravels up to 1.5" diameter, sand is fine to coarse, trace fines, well graded, moist, no odor.	_
MC 5.0 B1-20 20		
MC 2.5 B1-25 25		
MC 4.5 B1-30 30	SW Gravelly SAND (SW), 25-40', fine to coarse sand with <50 percent fine subrounded gravel, <5 percent fines, no odor.	d,
MC 4.5 B1-34	Note: @ 34' Moist, no odor.	
DRILLING CONTRACTOR: Major Drilling DRILLING METHOD: Geoprobe SAMPLING METHOD: Macro Core DRILLING START TIME: 9-8-11 DRILLING END TIME: 9-8-11	COORDINATES: SURFACE ELEVATION: CASING ELEVATION: SITE DATUM: 	TIME DATE DTW

PNG ENVIRONMENTAL, INC. 6665 SW Hampton St., Suite 101 Tigard, Oregon 97223 TEL (503) 620-2387 FAX (503) 620-2977								▲ =		Plaid Pantry Store B-1 West Fourth Plain Blvd.	WELL PROJECT NAME: F PROJECT NUMBER LOCATION: Vancou LOGGED BY: Craig REVIEWED BY: DATE: 9-8-11	: 1179-01 uver, Washington Hultgren
	SAM	IPLE IN	FOR	21/1					ш	DESCRIPT	ION	
SAMPLE TYPE	Blow Counts	PID (ppm)	% U	First Nater	LAB SAMPLE I.D.	DEPTH bgs (ft)	SAMPLE INTERVAL	STRATA	SOIL TYPE	(USCS Classification, Depth Interva Plasticity, Shapes, Mineral Compo Consistency, Molsture, Odor, Geol	al, Color, Grain Size, sition, Density or	BOREHOLE/WELL CONSTRUCTION DETAIL
МС		3.8			B1-37				SW	Note: @ 37' Moist but not	wet.	Backfill borehole with hydrated bentonite and capped with black dyed concrete. Air knife from 0' to 10' bgs. Soil samples collected at 2' intervals using stainless steel hand auger (HA) in
МС		2.4			B1-40	40 -				Total Boring De	pth @ 40' bgs.	upper 10 feet bgs. Samples below 10 feet bgs collected by GeoProbe Macro Core (MC).
						45 - 50 -				Install temporary well in bo Screen from 25' to 40' bgs Groundwater not encounte	s (dry).	
						55- 60-						
DRILLI SAMPL	NG ME [.] .ING MI	NTRACTO THOD: Ge ETHOD: M ART TIME:	oprobe 1acro C	e Core		65-			SU CA	ORDINATES: RFACE ELEVATION: SING ELEVATION: E DATUM:		TIME DATE DTW

C:\Users\Josh\Desktop\PNG-AutoCAD\1179-01 Plaid Pantry #112\2011\Sept 2011\1179-01 BORING LOGS.dwg

PNG ENVIRONMENTAL, INC. 6665 SW Hampton St., Suite 101 Tigard, Oregon 97223 TEL (503) 620-2387 FAX (503) 620-2977							C'	-		Plaid Pantry Store B-2	WELL PROJECT NAME: F PROJECT NUMBER LOCATION: Vanco LOGGED BY: Craig REVIEWED BY:	l: 1179-01 uver, Washington Hultgren
										West Fourth Plain Blvd.	DATE: 9-7-11	
SAMPLE TYPE	Blow Counts	PID (ppm)	% C %	FIrst Water	LAB SAMPLE I.D.	DEPTH bgs (ft)	SAMPLE NTERVAL	STRATA	SOIL TYPE	USCS Classification, Depth Interve Vlasticity, Shapes, Mineral Compo Consistency, Molsture, Odor, Geo	al, Color, Grain Size, sition, Density or	BOREHOLE/WELL CONSTRUCTION DETAIL
MC	Counto	1.8			B2-35				SP/ SM	SAND with SILT (SP/SM), predominately fine sand, v from 15 to 20 percent, mo	varying amounts of fines	Backfill borehole with hydrated bentonite and capped with black dyed concrete. Air knife from 0' to 10' bgs. Soil samples collected at 2' intervals using stainless steel hand auger (HA) in
MC		3.3			B2-40	40 -				Total Boring De	pth @ 40' bgs.	upper 10 feet bgs. Samples below 10 feet bgs collected by GeoProbe Macro Core (MC).
						45 -				Install temporary well in bo Screen from 25' to 40' bgs Groundwater not encounte	s (dry).	
						50 -						
						55-						
						60-						
						65-						
DRILLING CONTRACTOR: Major Drilling DRILLING METHOD: Geoprobe SAMPLING METHOD: Macro Core DRILLING START TIME: 9-7-11 DRILLING END TIME: 9-7-11									SU CA	ORDINATES: RFACE ELEVATION: SING ELEVATION: 'E DATUM:		TIME DATE DTW

									L		WELL	/BORING NUMBER B-3
PNG ENVIRONMENTAL, INC. 6665 SW Hampton St., Suite 101 Tigard, Oregon 97223 TEL (503) 620-2387 FAX (503) 620-2977								↓ =		Plaid Pantry Store B-3 West Fourth Plain Blvd.	PROJECT NAME: F PROJECT NUMBER LOCATION: Vancou LOGGED BY: Craig REVIEWED BY: DATE: 9-7-11	: 1179-01 uver, Washington Hultgren
	SAM	IPLE IN	FOR	MA	TION				Ы	DESCRIPT	ION	BOREHOLE/WELL
SAMPLE TYPE	B l ow Counts	PID (ppm)		Flrst Vater	LAB SAMPLE I.D.	DEPTH bgs (ft)	SAMPLE INTERVAL	STRATA	SOIL TYPE	(USCS Classification, Depth Interva Plasticity, Shapes, Mineral Compos Consistency, Molsture, Odor, Geol	sltion, Density or	CONSTRUCTION DETAIL
MC		3.0			B3-35	-			SP/ SM	SAND with SILT (SP/SM), sand, trace medium grade plastic fines, moist, no odc	d sand, up to 25 percent	Backfill borehole with hydrated bentonite and capped with black dyed concrete. Air knife from 0' to 10' bgs. Soil samples collected at 2' intervals using stainless steel hand auger (HA) in upper 10 feet bgs. Samples below 10
MC		2.2			B3-40	40 -				Total Boring De	pth @ 40' bgs.	feet bgs collected by GeoProbe Macro Core (MC).
						45 -				Install temporary well in bo Screen from 25' to 40' bgs Groundwater not encounte	; (dry).	
						-						
						50 -	_					
						55-						
						60-						
						-						
						65-						
DRILLING METHOD: Geoprobe SAMPLING METHOD: Macro Core									SUI CA	ORDINATES: RFACE ELEVATION: SING ELEVATION: E DATUM:		TIME DATE DTW

									LC		WELL	
66 Tiq TE	65 S\ gard, EL (50	N Hamp Oregon (3) 620- (3) 620-	oton 972: 2387	St., 23 7			<i>C,</i>	▲ N =		Plaid Pantry Store	PROJECT NAME: F PROJECT NUMBER LOCATION: Vanco LOGGED BY: Craig REVIEWED BY: DATE: 9-7-11	: 1179-01 uver, Washington Hultgren
	SAM	IPLE IN	FOR	2MA			-		ш	DESCRIPT	ION	
SAMPLE TYPE	Blow Counts	PID (ppm)	% U		LAB SAMPLE I.D.	DEPTH bgs (ft)	SAMPLE INTERVAL	STRATA	SOIL TYPE	(USCS Classification, Depth Interva Plasticity, Shapes, Mineral Compo Consistency, Molsture, Odor, Geol	al, Color, Graln Slze, sition, Density or	BOREHOLE/WELL CONSTRUCTION DETAIL
MC		2.5			B4-35				SP	Gravelly SAND (SW), 20-3 >50% fine to coarse sand, gravel up to 1.25" diamete odor. SAND (SP), 36.5-38', brow sand, trace fines, moist, no	, <50% fine to coarse er, trace fines, moist, no vn, predominately fine	Backfill borehole with hydrated bentonite and capped with black dyed concrete. Air knife from 0' to 10' bgs. Soil samples collected at 2' intervals
мс		4.8			B4-40	40 -				SAND and SILT interbeds to moist, no odor. Total Boring De	· · · ·	using stainless steel hand auger (HA) in upper 10 feet bgs. Samples below 10 feet bgs collected by GeoProbe Macro Core (MC).
						45 -				Install temporary well in bo Screen from 25' to 40' bgs Groundwater not encounte	s (dry).	
						50 -						
						55-						
						60-						
						65-						
DRILLI SAMPI DRILLI	NG ME LING MI NG STA	NTRACTO THOD: Ge ETHOD: M ART TIME: D TIME: 9-	eoprobe 1acro (9-7-11	e Core	rilling				SUI CA	ORDINATES: RFACE ELEVATION: SING ELEVATION: E DATUM:		TIME DATE DTW

						Т									
									LC		WELI	_/BORIN	g nume	BER B-	5
PA	IG F	-	ONME		INC					Plaid Pantry Store					
			pton St			,					AME: F	Plaid Pantry	#112		
Ti	gard,	Oregor	97223	•						PROJECT N			inaton		
)3) 620-)3) 620					Å.	_			/: C.Ηι	ultgren	0		
''		5) 020	-2311			1	N 			West Fourth Plain Blvd.					
	SAM	IPLE IN	FORM	ATION				μ	L L	DESCRIPTION		ВС	REHOL	E/WELL	_
SAMPLE TYPE	B l ow Counts	PID (ppm)	양 이 First 盟 Water	LAB SAMPLE	DEPTH bgs (ft) SAMPLE	NTERVAL	STRATA	SOIL TYPE	a dir	(USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Molsture, Odor, Geological Interpretation)				ION DET	
										CONCRETE, 0-0.5'.		Backfill bore			
								м	IL	SILT (ML), 0.5-5.0', brown, low plastic fine no odor.	es, moist,			dyed concre	ete.
НА		2.3		B5-3								Air knife fro		•	
НА		46.3		B5-4.5		-				Note: @ 4.5' Color change to olive gray.		using stainle	ess steel ha	at 2' interval ind auger (H	IA) in
					5+	╢.		sr	_			feet bgs col		ples below eoProbe Ma	
HA		1,692		B5-6		 :				Note: @ 6.0' Silty SAND, olive gray, slight	:	Core (MC).			
] :	· · · ·			petroleum hydrocarbon odor.					
НА		2,349		B5-9						Silty SAND, as above, hydrocarbon stain,	odor,				
					10+	-				and sheen.					
						-									
мс		81		B5-12.5		- :			Note: Local wet zone from 13' to 13.5'. Effe	orts to				
		58				Ŀ			_	collect water sample unsuccessful in this z Sandy GRAVEL (GW), 13.5-20', gray, fine					
					15					coarse subrounded gravel up to 2" diamet to coarse sand, trace fines, well graded, d	er, fine				
										odor.	iry, no				
					-	┥									
						╏	. ~ ,								
				55.00											
MC		3.8		B5-20	20+			s		Gravelly SAND (SW), 20-25', brown to gra					
										coarse sand, fine to coarse subrounded gr to 1.5" diameter, damp no odor.	ravel up				
						-!:.									
					-	-									
MC		2.5		B5-25	25+				w	Sandy GRAVEL (GW), 25-30', Generally a	as above	-			
										increase in gravel content to >50 percent, no odor.					
							,								
						_		4							
MC		2.0		B5-30	30+					Note: @ 30' Sandy GRAVEL, generally as					
					-	ſ	• •			increase in sand grain size with coarse sa predominate, moist, no odor.	na being				
					-										
						Ī									
							•								
		NTRACTO THOD: G	DR: Major eoprobe	Drilling						DRDINATES: RFACE ELEVATION:		TIME	DATE	DTW	_
SAMP	ING M	ETHOD: I	Macro Core	е				C.	AS	ING ELEVATION:				N/A	
		ART TIME D TIME: 9						5	-	E DATUM:					
															

C:\Users\Josh\Desktop\PNG-AutoCAD\1179-01 Plaid Pantry #112\2011\Sept 2011\1179-01 BORING LOGS.dwg

									L		WELI	
66 Tię TE	65 S\ gard, EL (50	NVIR N Hamp Oregon 3) 620- 3) 620-	oton 972 238 ⁻	St. 223 7			C.	↓ =	•	Plaid Pantry Store B-5 West Fourth Plain Blvd.	PROJECT NAME: F PROJECT NUMBER LOCATION: Vanco LOGGED BY: Craig REVIEWED BY: DATE: 9-8-11	R: 1179-01 uver, Washington g Hultgren
	SAN	IPLE IN	FOF	RM/	ATION				ŕPE	DESCRIPT		BOREHOLE/WELL
SAMPLE TYPE	B l ow Counts	PID (ppm)	REC %	Flrst Water	LAB SAMPLE I.D.	DEPTH bgs (ft)	SAMPLE	STRATA	SOIL TYPE	(USCS Classification, Depth Interverse Plasticity, Shapes, Mineral Compo Consistency, Molsture, Odor, Geo	sition, Density or	CONSTRUCTION DETAIL
мс		6.8 4.1			B5-35 B5-40	40 -			sw sm	Gravelly SAND (SW), 35-3 percent fine to coarse san coarse, <50 percent fine to gravel up to 1" diameter, r Silty SAND (SM), 39-40', I sand, low plastic fines, mo Total Boring De	d with predominately o coarse subrounded noist, slight odor @ 35'. brown, fine to medium pist, no odor.	Backfill borehole with hydrated bentonite and capped with black dyed concrete. Air knife from 0' to 10' bgs. Soil samples collected at 2' intervals using stainless steel hand auger (HA) in upper 10 feet bgs. Samples below 10 feet bgs collected by GeoProbe Macro Core (MC).
						45 · 50 · 60 · 65 ·				Install temporary well in bo Screen from 25' to 40' bgs Groundwater not encount	oring. s (dry).	
DRILLI SAMPI DRILLI	NG ME LING MI NG STA	NTRACTO THOD: Ge ETHOD: M ART TIME: D TIME: 9-	eoprob 1acro 9-8-1	be Core	-				SU CA	ORDINATES: RFACE ELEVATION: SING ELEVATION: E DATUM:		TIME DATE DTW

									L		WELL	BORING NUMBER B-6
660 Tig TE	65 S\ Jard, L (50	NVIR N Hamp Oregon 3) 620- 3) 620-	oton 972 238	St. 223 7			С.	↓ =		Plaid Pantry Store B-6 West Fourth Plain Bivd.	PROJECT NAME: F PROJECT NUMBER LOCATION: Vanco LOGGED BY: Craig REVIEWED BY: DATE: 9-8-11	t: 1179-01 uver, Washington ⊨Hultgren
	SAN	IPLE IN	FOF	RM/	ATION		_		YPE	DESCRIPT		BOREHOLE/WELL
SAMPLE TYPE	B l ow Counts	PID (ppm)	REC %	Flrst Water	LAB SAMPLE I.D.	DEPTH bgs (ft)	SAMPLE	STRATA	SOIL TYPE	(USCS Classification, Depth Interva Plasticity, Shapes, Mineral Compo Consistency, Molsture, Odor, Geo	sltion, Density or	CONSTRUCTION DETAIL
MC		0.7			B6-35				SP	SAND (SP), 34.5-40', bro grain, 5 to 10 percent fines		Backfill borehole with hydrated bentonite and capped with black dyed concrete.
мс		2.8			B6-40	40 -				Total Boring De	pth @ 40' bgs.	Air knife from 0' to 10' bgs. Soil samples collected at 2' intervals using stainless steel hand auger (HA) in upper 10 feet bgs. Samples below 10 feet bgs collected by GeoProbe Macro Core (MC).
						45 -				Install temporary well in bo Screen from 25' to 40' bgs Groundwater not encounte	; (dry).	
						45						
						50 -						
						55-						
						60-		•				
						65-						
DRILLIN SAMPL DRILLIN	NG ME ING MI NG ST#	NTRACTO THOD: Ge ETHOD: M ART TIME: D TIME: 9-	eoprol lacro 9-8-1	oe Core	-				SU CA	ORDINATES: RFACE ELEVATION: SING ELEVATION: 'E DATUM:		TIME DATE DTW N/A N/A

□ DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION	SAMPLE	VOLATILE READING (DDMV)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		SAMPLE NUMBER / TESTING AND LABORATORY DATA
		ML	Asphalt (2 inches), no gravel base. SANDY SILT: light brown, damp, sandy SILT, low plasticity	 /.						
_					3.3				■ B7 Ho	7/3 Did
- 5 - - -			Petroleum-like odor and gray staining at 5.5 feet bgs.		25				B7 N	7/6 WTPH-Gx and EPA 8260B
 10		SM	SILTY SAND: dark gray, damp, silty SAND, non-plastic. Petroleum-like odor and staining. Petroleum-like odor and staining from 10 to 13.5 feet bgs		543				B7 N	7/9 NTPH-Gx
 15		SW	GRAVELLY SAND: orangish-gray and brown, damp, fine to coarse gravelly SAND. Gravels are up to coarse, subrounded. No noticeable impact. Decreasing gravel percentage 15 to 20 feet bgs.		608 1.5				N\ ■ B7	7/13 MTPH-Gx and EPA 8260B 7/14 MTPH-Gx and EPA 8260B
-					0.6				B7 Ho	7/18 old
20 	<u>, , , , , , , , , , , , , , , , , , , </u>	» 	End of boring at 20 feet bgs. Borehole backfilled with bentonite chips and capped with asphalt.		_					
 30 BORII	NG N	1ETHOI	D: Hand Auger / Direct Push			NOT		r utilizad ta		a baring to 5 fact bar
BORE DRILL CONT	HOL RIG RAC	e diam : Na tor: P				Han	a auge	r utilized to	o advanc	e boring to 5 feet bgs.
\geq			ry #112 ourth Plain Blvd r, WA	vironm Broadw	/ay,	Suit	e 11	lting, I .5	nc.	LOG OF BORING B7

_			
E-	11	.79	-01

Portland, Oregon 97227 Tel (503) 847-2740

oDEPTH (ft bgs)	GRAPHIC LOG		USCS SYMBOL	SOIL DESCRIPTION	SAMPLE	VOLATILE READING (ppmV)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		SAMPLE NUMBER / TESTING AND LABORATORY DATA
			ML	Asphalt (2 inches), no gravel base. SANDY SILT: light brown, damp, sandy SILT, low plasticity.		1.6					B8/3 Hold
 				Petroleum-like odor and gray staining at 6 feet bgs.		7.8					B8/6 NWTPH-Gx and EPA 8260B
			SM	SILTY SAND: light brown, damp, silty SAND, non-plastic. Hydrocarbon-like odor and gray staining. Petroleum-like odor and gray staining from 10 to 13.5 feet bgs.		5.7					B8/9 NWTPH-Gx
 15			sw	GRAVELLY SAND: orangish-brown and gray, damp, fine to coarse gravelly SAND. Gravels are up to coarse, subrounded. PVC conduit (4-inch) at 14 feet bgs. Moist, with decreasing gravel content from 15 to 20 feet bgs.		2.2					B8/13 NWTPH-Gx and EPA 8260B B8/14 Hold
_ _ _20_		• • • • • • • • • • • •		ugs.		0.7					B8/18 Hold
				End of boring at 20 feet bgs. Borehole backfilled with bentonite chips and capped with asphalt.							
-30- BORI	NG			: Hand Auger / Direct Push			NOT				
				ETER: ELEVATION REFERENCE: NA			Hand	d auge	r utilized to	adva	ance boring to 5 feet bgs.
	RA	сто	R: Pa	GROUND SURFACE ELEVATION: NA acific Soil & Water/NK START CARD/TAG ID: NA EWED BY: AC/LF DRILLING DATES: 8/16/2012 - 8/16/20)12						
\geq				ry #112 ourth Plain Blvd c WA	nme Idw	ay, S	Suit	e 11		nc.	LOG OF BORING B8
	Portland, Oregon 97227 F-1179-01 Tel (503) 847-2740 PAGE 1 OF 1										

odePTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION	SAMPLE	VOLATILE READING (ppmV)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		SAMPLE NUMBER / TESTING AND LABORATORY DATA
			Asphalt (0.75 feet) over gravel base (2 inches).	_						
		ML	SANDY SILT: light brown, damp, sandy SILT, low plasticity.							
_ _ _ 5 _					0.4				B9 NV EP	/3 VTPH-Gx, NWTPH-Dx, and A 8260B
		SM	SILTY SAND: light brown with gray mottling, damp, silty SAND, low plasticity.		0.2				■ B9 NV	/6 VTPH-Gx and EPA 8260B
					0.4				B9 NV	/9 VTPH-Gx and EPA 8260B
-15-			GRAVELLY SAND: light brown, damp, gravelly SAND.	_	0.2					/13 VTPH-Gx and EPA 8260B
-			Gravels are up to medium-grained, subrounded to rounded.		0.3				B9 Ho	/18 Id
- 20	<u>• • • •</u>	<u>.</u>	End of boring at 20 feet bgs. Borehole backfilled with bentonite chips and capped with asphalt.		-					
- 25 										
-30- BORII	NG M	ETHO	D: Air-Knife / Direct Push		1	NOT Air-k		ilized to ad	vance h	oring to 10 feet bgs. Soil
BORE	HOLE	DIAM	ETER: ELEVATION REFERENCE: NA			sam	ples sh	allower that	in 10 fee	et were collected with a hand
DRILL	. RIG:	NA	GROUND SURFACE ELEVATION: NA			-				
CONT	RACT	OR: P	acific Soil & Water/NK START CARD/TAG ID: NA							
LOGG	GED B	Y/REVI	EWED BY: AC/LF DRILLING DATES: 8/13/2012 - 8/13/2	2012						
			ry #112 ourth Plain Blvd r, WA Portland,	adw Oreg	ay, S gon	Suit 972	e 11		nc.	LOG OF BORING B9
Ľ-1	1/9	9-01	Tel (503)	847-	274	0				PAGE 1 OF 1

□ □ □	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION	SAMPLE	VOLATILE READING (ppmV)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		SAMPLE NUMBER / TESTING AND LABORATORY DATA
-0-			Asphalt (0.75 feet) over gravel base (6 inches).							
		ML-	SANDY SILT: Tight brown, damp, sandy SILT, low plasticity.							
- 5 -					0.5				N۷	0/3 VTPH-Gx, NWTPH-Dx, and A 8260B
-					1.2					0/6 VTPH-Gx and EPA 8260B
		SM	SILTY SAND: Tight brown, damp, silty SAND, low plasticity to non-plastic. Increasing sand content.		4.4					0/9 VTPH-Gx and EPA 8260B
		SW	GRAVELLY SAND: light brown and gray, damp, fine to medium SAND, trace fine gravel. GRAVEL: gray to light brown, damp, fine to coarse subrounded GRAVEL, trace sand and fines.		1.9					0/13 VTPH-Gx and EPA 8260B
-15- -			subrounded GRAVEL, trace sand and fines.							
-		SW	GRAVELLY SAND: light brown and gray, damp, fine to coarse SAND with trace medium to coarse subrounded gravel.		1.5					0/18 VTPH-Gx and NWTPH-Dx
20	*****		End of boring at 20 feet bgs. Borehole backfilled with bentonite chips and capped with asphalt.		-					
-30-). Air Krife / Direct Duck			NOT	ES:			
		ETHOL	D: Air-Knife / Direct Push ETER: ELEVATION REFERENCE: NA			Air-k	nife ut ples sh	ilized to ad allower tha	lvance b in 10 fee	oring to 10 feet bgs. Soil t were collected with a hand
DRILL	RIG:	NA	GROUND SURFACE ELEVATION: NA			~~80				
			acific Soil & Water/NK START CARD/TAG ID: NA							
\geq			EWED BY: AC/LF DRILLING DATES: 8/13/2012 - 8/13/20							
			ry #112 ourth Plain Blvd r, WA Portland, C	idw)reg	ay, S gon	Suit 972	e 11		nc.	LOG OF BORING B10
E-1	-1179-01 Portland, Oregon 97227 Tel (503) 847-2740 PAGE 1 OF 1									

□ □ DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION	SAMPLE	VOLATILE READING (ppmV)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		SAMPLE NUMBER / TESTING AND LABORATORY DATA
- U - - - - - - - - - - -		ML	Asphalt (1.1 feet) over gravel base (~6 inches). SANDY SILT: dark gray, damp, sandy SILT, low plasticity to non-plastic. Hydrocarbon-like odor and staining.		11				B N El	11/3 WTPH-Gx, NWTPH-Dx, and PA 8260B
-					1152					11/6 WTPH-Gx, NWTPH-Dx, and PA 8260B
 		SM SW	SILTY SAND: dark gray, damp, silty SAND, low plasticity to non-plastic. Hydrocarbon-like odor and staining. Hydrocarbon-like odor and gray staining from 10 to 10.5 feet bgs. GRAVELLY SAND: orangish-brown to gray, damp, gravelly SAND. Gravels are fine to medium, subrounded. Decreasing hydrocarbon-like odor and no visible staining.		603 4.9				■ B	11/9 WTPH-Gx and EPA 8260B 11/11 WTPH-Gx and EPA 8260B
-15- - - -					1.7					11/17 WTPH-Gx and EPA 8260B
-20- - - - - 25- - -			Decreasing gravel content from 20 to 25 feet bgs.		2.4					11/23 WTPH-Gx and NWTPH-Dx
 			End of boring at 30 feet bgs. Borehole backfilled with bentonite chips and capped with asphalt.		2.2					11/29 WTPH-Gx and NWTPH-Dx
BORE DRILL CONT	HOLE RIG: RACT	DIAMI NA OR: Pa	: Air-Knife / Direct Push ETER: ELEVATION REFERENCE: NA GROUND SURFACE ELEVATION: NA ncific Soil & Water/NK START CARD/TAG ID: NA EWED BY: AC/LF DRILLING DATES: 8/14/2012 - 8/14/20	12			nife ut ples sh			boring to 10 feet bgs. Soil et were collected with a hand
		Pantı N. Fo uver 9-01	ry #112 ourth Plain Blvd r, WA Portland, O Tel (503) 8	dwa Preg	ay, S jon	Suit 972	e 11		nc.	LOG OF BORING B11 PAGE 1 OF 1

DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION	SAMPLE	VOLATILE READING (ppmV)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		SAMPLE NUMBER / TESTING AND LABORATORY DATA
			Asphalt (~1.3 feet) over gravel base (~6 inches).							
		ML	SANDY SILT: light brown, damp, sandy SILT, low plasticity.		1.8				N۷	2/3 NTPH-Gx, NWTPH-Dx, and A 8260B
- 5 - -		SM	SILTY SAND: light brown, damp, silty SAND, non-plastic.	-	2.1					2/6 WTPH-Gx and EPA 8260B
 10					0.3				B1 NV	2/9 WTPH-Gx and EPA 8260B
		SW	GRAVELLY SAND: light brownish-gray, damp to moist, fine to medium SAND with trace fine subrounded gravel.		1.0					2/13 VTPH-Gx and EPA 8260B
-			Increasing gravel percentage. Gravels are fine to medium, moist.		1.2					2/18 VTPH-Gx and NWTPH-Dx
- 20	<u></u>		End of boring at 20 feet bgs. Borehole backfilled with bentonite chips and capped with asphalt.		-					
-										
-30- BORII	NG MI	ETHOD	9: Air-Knife / Direct Push			NOT Air-l	nife ut	ilized to ad	lvance b	oring to 10 feet bgs. Soil
BORE	HOLE	DIAM	ETER: ELEVATION REFERENCE: NA			sam auge	ples sh	allower that	an 10 fee	et were collected with a hand
	RIG:		GROUND SURFACE ELEVATION: NA acific Soil & Water/NK START CARD/TAG ID: NA							
			EWED BY: AC/LF DRILLING DATES: 8/14/2012 - 8/14/	2012						
			ry #112 EES Enviro ourth Plain Blvd 240 N Bro r, WA Portland,	adw	ay, S	Suit	e 11		nc.	LOG OF BORING B12
(E-1	Portland, Oregon 97227 Tel (503) 847-2740 PAGE 1 OF 1									

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION	SAMPLE	VOLATILE READING (ppmV)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		SAMPLE NUMBER / TESTING AND LABORATORY DATA
		ML	Asphalt (~1.1 feet) over gravel base (~4 inches). SANDY SILT: light brown, damp, sandy SILT, trace subangular fine gravel, low plasticity to non-plastic.		0.5					13/3 WTPH-Gx and EPA 8260B
- 5 -		SM	SILTY SAND: Tight brown, damp, silty SAND, non-plastic.		1.5					13/6 WTPH-Gx and EPA 8260B
					1.8				■ B: N'	13/9 WTPH-Gx and EPA 8260B
 		_sw	GRAVELLY SAND: light orangish-brown, moist, fine to coarse SAND with trace gravel up to medium-grained.		1.3					13/13 WTPH-Gx and EPA 8260B
_ _ _20			Increased gravel percentage. Gravels are up to coarse-grained.		0.6				B2 He	13/18 old
-			End of boring at 20 feet bgs. Borehole backfilled with bentonite chips and capped with asphalt.							
BORE DRILL CONT	HOLE RIG: RACT	DIAM NA TOR: P	D: Air-Knife / Direct Push ETER: ELEVATION REFERENCE: NA GROUND SURFACE ELEVATION: NA acific Soil & Water/NK START CARD/TAG ID: NA EWED BY: AC/LF DRILLING DATES: 8/15/2012 - 8/15/20	012		NOT Air-k sam auge	nife ut ples sh	ilized to ad allower tha	vance I n 10 fe	poring to 10 feet bgs. Soil et were collected with a hand
		Pant N. F uve 9-01	ry #112 ourth Plain Blvd r, WA 	dw)reg	ay, S jon	Suit 972	e 11		nc.	LOG OF BORING B13 PAGE 1 OF 1

□ □ □	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION	SAMPLE	VOLATILE READING (ppmV)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		SAMPLE NUMBER / TESTING AND LABORATORY DATA
			Asphalt (1.2 feet) over gravel base (6 inches).		0.9					14/3 WTPH-Gx and EPA 8260B
-5-					0.3					14/6 WTPH-Gx and EPA 8260B
		-sm	SILTY SAND: Tight brown, damp to moist, silty SAND, Tow plasticity to non-plastic.		0.6					14/9 WTPH-Gx and EPA 8260B
 15	SW GRAVELLY SAND: light orangish-brown, moist, fine to coarse gravelly SAND. Gravels are subangular to subrounded.									14/13 WTPH-Gx and EPA 8260B
 20					0.8					14/18 old
-			End of boring at 20 feet bgs. Borehole backfilled with bentonite chips and capped with asphalt.							
25 										
30 BORI	NOTES:									
BORE DRILI CONT	Air-knife utilized to advance boring to 10 feet bgs. Soil BOREHOLE DIAMETER: ELEVATION REFERENCE: NA DRILL RIG: NA GROUND SURFACE ELEVATION: NA CONTRACTOR: Pacific Soil & Water/NK START CARD/TAG ID: NA LOGGED BY/REVIEWED BY: AC/LF DRILLING DATES: 8/15/2012 - 8/15/2012									
Pla 100 Vai	id F 02 V nco	Pant N. F uve	ry #112 ourth Plain Blvd r, WA	dw	ay, S	Suit	e 11		nc.	LOG OF BORING B14
E-1	Portland, Oregon 97227 E-1179-01 Tel (503) 847-2740 PAGE 1 OF 1									

DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION	SAMPLE	VOLATILE READING (ppmV)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		SAMPLE NUMBER / TESTING AND LABORATORY DATA
-0 		SM SW	Asphalt (1.0 foot) over gravel base (6 inches). SANDY SILT: light brown, damp, sandy SILT, low plasticity. SILTY SAND: light brown, damp, silty SAND, low plasticity. Moist, with increasing sand percentage at 10 to 13.5 feet bgs. GRAVELLY SAND: light orangish-brown, moist, fine to coarse gravelly SAND. Gravels are fine to coarse, subrounded to rounded. Increased gravel percentage from 15 to 20 feet bgs. End of boring at 20 feet bgs. Borehole backfilled with bentonite chips and capped with asphalt.		1.9 2.8 2.4 1.4			ц	B1 NV B1 NV	5/3 VTPH-Gx and EPA 8260B 5/6 VTPH-Gx and EPA 8260B 5/13 VTPH-Gx and EPA 8260B 5/13 VTPH-Gx and EPA 8260B
BOREH DRILL F CONTR LOGGE	BORING METHOD: Air-Knife / Direct Push BOREHOLE DIAMETER: ELEVATION REFERENCE: NA DRILL RIG: NA GROUND SURFACE ELEVATION: NA CONTRACTOR: Pacific Soil & Water/NK START CARD/TAG ID: NA LOGGED BY/REVIEWED BY: AC/LF DRILLING DATES: 8/15/2012 - 8/15/2012 Plaid Pantry #112 1002 W. Fourth Plain Blvd EES Environmental Consulting, Inc. 240 N Proadway, Suite 115									
	Vancouver, WA Portland, Oregon 97227 B15 E-1179-01 Tel (503) 847-2740 PAGE 1 OF 1									

ODEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION	SAMPLE	VOLATILE READING (ppmV)	GROUNDWATER	GW SCREENED INTERVAL	FIELD TESTING		SAMPLE NUMBER / TESTING AND ABORATORY DATA
	<u> </u>	ML	Concrete (0.4 feet). No base layer. SANDY SILT: light brown, damp, sandy SILT, trace organics, low plasticity.		2.5				B16, Hold	
 5					1.7				B16,	
 		SM	SILTY SAND: light brownish-gray with orange mottling, — — — — — — — — — — — — — — — — — — —	-	1.9				■ B16,	
		sw	GRAVELLY SAND: grayish-brown, damp, fine to coarse gravelly SAND. Gravels are up to medium-grained, subrounded.		2.1				■ B16, NW	/13 IPH-Gx and EPA 8260B
-15-			Damp to moist, gravel percentage increases from 15 to 20 feet bgs.		2.7				B16, Hold	/18
- 20	••••• •••••		End of boring at 20 feet bgs. Borehole backfilled with bentonite chips and capped with concrete.							
_ -25- _										
BORE DRILL CONT	BORING METHOD: Air-Knife / Direct Push NOLES: BOREHOLE DIAMETER: ELEVATION REFERENCE: NA DRILL RIG: NA GROUND SURFACE ELEVATION: NA CONTRACTOR: Pacific Soil & Water/NK START CARD/TAG ID: NA LOGGED BY/REVIEWED BY: AC/LF DRILLING DATES: 8/16/2012 - 8/16/2012									
Plai 100 Var	Plaid Pantry #112 1002 W. Fourth Plain BlvdEES Environmental Consulting, Inc. 240 N Broadway, Suite 115 Portland, Oregon, 97227LOG OF BORING B16									
ட	T\2	9-01	Tel (503) 8	347-	274	0				PAGE 1 OF 1

о DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL		DESCRIPTION		SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppmV)	GROUNDWATER	SAMPLE SAMPLE NUMBER / FIELD AND FIELD AND TESTING TESTING	WELL SCHEMATIC	t
10 		SP -	Removed for UST upgrad	, medium SAND, no wn, moist to dry, m asticity, no odor, sh	edium silty			0.0 1.1 5,000+		 SVE-1/5 NWTPH-Gx, NWTPH-Dx and EPA 8260B SVE-1/10 NWTPH-Gx, NWTPH-Dx and EPA 8260B 	Concrete Casing (Schedule 4 PVC, 2.0-inch i.d.) Bentonite Chips (3/8-inch) - 10 X 20 Colorado Silica Sand - Well Screen (Schedule 40 PVC, 2.0-inch i.d., with 0.020-inch slots) - End Cap	
BORE		DIAM	D: Direct Push	ELEVATION REFERE GROUND SURFACE CASING ELEVATION	ELEVATION: NA							
СОЛТ	RACT	OR: N	lajor Drilling/KV EWED BY: JG/LF	START CARD/TAG I DRILLING DATES: 2	D: NA	12						
Plaid Pantry #112EES Environmenta1002 W. Fourth Plain Blvd240 N Broadway, 9Vancouver, WAPortland, OregonE-1179-01Tel (503) 847-274						Suite 972	e 11		LOG OF BORING SVE-1 PAGE 1 OF 1			

о DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL		DESCRIPTION		SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppmV)	GROUNDWATER	SAMPLE SAMPLE NUMBER / FIELD AND LABORATORY TESTING	WELL SCHEMATIC
			Existing well monument l	box.							Concrete
			CONCRETE and PEA GRA' No recovery.	VEL (Fill)							Casing (Schedule 40 PVC, 2.0-inch i.d.)
_ _ _ 5 _			PEA GRAVEL (Fill)					717			Bentonite Chips (3/8-inch)
		SM	SILTY SAND: dark gray (s SAND, non-plastic. Petro	tained), damp to m leum-like odor and	oist, silty staining.			2284		SVE-2/6 Hold	
 10								3127 1360		SVE-2/8 NWTPH-Gx and EPA 8260B	
								1500		SVE-2/10 Hold	
-		SW	GRAVELLY SAND: orangi: gravelly SAND, trace cobl No odor or staining. Decreased gravel percent	bles. Gravels are fir	ne to coarse.			6.8		SVE-2/12 NWTPH-Gx and EPA 8260B	
 								4.6		SVE-2/16 NWTPH-Gx and EPA 8260B	 10 X 20 Colorado Silica Sand Well Screen (Schedule 40 PVC, 2.0-inch i.d., with 0.010-inch slots)
								2.7		SVE-2/20 NWTPH-Gx	End Cap
_ _25								2.5		SVE-2/24 Hold	(3/8-inch)
_	· · · · · · · · · · · · · · · · · · ·							1.9		SVE-2/28 Hold	
30 BORI	NG M	ETHOD	D: Direct Push	NCE: NA	I	1	NOTE	S:		<i>\////////</i>	
BORE	HOLE	DIAM	ETER:	ELEVATION: NA							
DRILL	RIG:	NA		N: NA							
СОИТ	RACT	OR: P	acific Soil & Water/NK	START CARD/TAG	ID: NA						
LOGO	ED BY	//REVI	EWED BY: AC/LF	DRILLING DATES: 8	8/17/2012 - 8/17/2	2012					
Pla 100 Var	Plaid Pantry #112EES Environm1002 W. Fourth Plain Blvd240 N BroadwVancouver, WAPortland, Ore						ay, S	Suite	e 11	lting, Inc. .5	LOG OF BORING SVE-2

E-1179-01

Portland, Oregon 97227 Tel (503) 847-2740

00 DEPTH (ft bgs)	GRAPHIC LOG		SOIL	DESCRIPTION		SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppmV)	GROUNDWATER	SAMPLE SAMPLE NUMBER / FIELD AND LABORATORY TESTING		
-		SW SP	SAND: light brown, dry to	o damp, fine SAND, t	trace fines.			1.7		SVE-2/32 Hold	Bentonite Chip: (3/8-inch)	S
35 			No recovery. Sample line	er melted in sampler								
			End of boring at 39 feet b	gs due to refusal.								
-												
 45												
-												
50												
-60 BORI	60 BORING METHOD: Direct Push ELEVATION REFERENCE: NA							NOTE	S:			
DRILL CONT	BOREHOLE DIAMETER: GROUND SURFACE ELEVATION: NA DRILL RIG: NA CASING ELEVATION: NA CONTRACTOR: Pacific Soil & Water/NK START CARD/TAG ID: NA LOGGED BY/REVIEWED BY: AC/LF DRILLING DATES: 8/17/2012 - 8/17/2012											
\geq	Plaid Pantry #112 1002 W. Fourth Plain Blvd Vancouver, WA Portland, Oregon						Suite	e 11	lting, Inc. 5	LOG OF BORIN SVE-2	G	

E-	1	1	7	9	-(n	1
	-	-		-		0	-

240 N Broadway, Suite 115 Portland, Oregon 97227 Tel (503) 847-2740

DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION		SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppmV)	GROUNDWATER	SAMPLE SAMPLE NUMBER / FIELD AND FIELD AND LABORATORY TESTING	WELL SCHEMATIC
			Existing well monument box.							Concrete
-			CONCRETE and PEA GRAVEL (Fill)							Casing (Schedule 40 PVC, 2.0-inch i.d.)
5- 		ML	SANDY SILT: light brown to light gray, dam Petroleum-like odor and staining. Increasing petroleum-like odor and gray st				717 1329		 SVE-3/5 Hold SVE-3/8 NWTPH-Gx and EPA 	 10 X 20 Colorado Silica Sand Well Screen (Schedule 40 PVC, 2.0-inch i.d., with 0.010-inch slots)
-10- - -			Increasing sand percentage.				577		8260B	End Cap
_ _ _15_	· · · · · · · · · · · · · · · · · · ·	SW	GRAVELLY SAND: Tight brownish-gray, dar trace gravel. Decreasing petroleum-like or No recovery from 15 to 20 feet bgs.	np SAND with dor and staining.			19		 SVE-3/12.5 NWTPH-Gx and EPA 8260B SVE-3/14 NWTPH-Gx 	Bentonite Chips (3/8-inch)
 							1.8		and EPA 8260B	
-									NWTPH-Gx	
25 			Damp to moist with decreasing gravel per	centage.			1.3		SVE-3/25 Hold	
-30- BORII	NG M	ETHOD	D: Direct Push ELEVATION REFE	RENCE: NA		1	NOTE	S:		
	BOREHOLE DIAMETER: GROUND SURFACE ELEVATION: NA									
DRILL			CASING ELEVATIO							
			acific Soil & Water/NK START CARD/TAG							
				3 ID. NA : 8/16/2012 - 8/16/2	2012					
\geq	Plaid Pantry #112 1002 W. Fourth Plain Blvd Vancouver, WA Portland, Oregor						Suite	e 11		LOG OF BORING SVE-3

F_1	117	70_	∩1
E	LT /	9-	UΤ

240 N Broadway, Suite 115 Portland, Oregon 97227 Tel (503) 847-2740

орертн (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL E	DESCRIPTION			SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppmV)	GROUNDWATER	SAMPLE SAMPLE NUMBER / FIELD AND LABORATORY TESTING	WELL SCHEMATIC
		SW	Increased grain-size up to subrounded gravel.	coarse and trace fine					17 3.7		SVE-3/31 Hold SVE-3/37 Hold	Bentonite Chips (3/8-inch)
			End of boring at 40 feet b	gs due to refusal.								
BORE	HOLE	DIAM	D: Direct Push ETER:	ELEVATION REFERENCE: GROUND SURFACE ELEV	ATION: NA				NOTE			
CONT		OR: Pa	acific Soil & Water/NK EWED BY: AC/LF	CASING ELEVATION: NA START CARD/TAG ID: N DRILLING DATES: 8/16/2	A	201	2					
Plaid Pantry #112 1002 W. Fourth Plain Blvd Vancouver, WAEES Environmental Consulting, Inc. 240 N Broadway, Suite 115 Portland, Oregon 97227 Tel (503) 847-2740							LOG OF BORING SVE-3 PAGE 2 OF 2					
DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DESCRIPTION		SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppmV)	GROUNDWATER	SAMPLE SAMPLE NUMBER / FIELD AND FIELADRY TESTING	WELL SCHEMATIC		
-------------------	--------------------	--------------	--	-----------------------	--------	---------------------------	----------------------------	-------------	--	---		
-0-			Existing well monument box.							teres in the second		
-		SP -	SAND, PEA GRAVEL and CONCRETE (Fill)							Concrete		
 		SP SM	Metal object found at 3 feet bgs. SILTY SAND: light orangish-brown, damp, silty SAN gravel up to medium-grained, trace organics, non-	ND, trace plastic.			2.3 0.5		 SVE-4/3 Hold SVE-4/6 NWTPH-Gx and EPA 8260B 	 Casing (Schedule 40 PVC, 2.0-inch i.d.) Bentonite Chips (3/8-inch) 		
			Petroleum-like odor and staining at 9 feet bgs.				33		■ SVE-4/9			
-10-			Petroleum-like odor and gray staining to 11.5 feet	høs					NWTPH-Gx			
		SW	GRAVELLY SAND: light brownish-gray, damp GRAV SAND, trace cobbles. Gravels are fine to coarse, subrounded to rounded. No odor or staining.				57		SVE-4/11 NWTPH-Gx and EPA 8260B			
							2.3		■ SVE-4/14			
15 			Decreasing gravel at 18 feet bgs.				1.2		NWTPH-Gx and EPA 8260B	 → 10 X 20 Colorado Silica Sand → Well Screen (Schedule 40 PVC, 2.0-inch i.d., with 0.010-inch slots) 		
-20-			End of boring at 20 feet bgs.							End Cap		
25 												
			D: Direct Push ELEVATION REFERENCE:	NA			NOTE					
BORE	HOLE	DIAM	ETER: GROUND SURFACE ELEVA	ATION: NA								
DRILL	RIG:	NA	CASING ELEVATION: NA									
CONT	RACT	OR: P	acific Soil & Water/NK START CARD/TAG ID: NA	۹.								
LOGG	GED B	//REVI	EWED BY: AC/LF DRILLING DATES: 8/17/2	012 - 8/17/	2012							
Pla 100 Var	id P D2 V	Pant N. F		Enviro N Bro					lting, Inc. .5	LOG OF BORING SVE-4		

1002 W. Fourth Plain Blvd Vancouver, WA	240 N Broadway, Suite 115	LOG OF BORING SVE-4
E-1179-01	Portland, Oregon 97227 Tel (503) 847-2740	PAGE 1 OF 1

O DEPTH (ft bgs)	GRAPHIC LOG	USCS SYMBOL		DESCRIPTION		SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppmV)	GROUNDWATER	SAMPLE SAMPLE NUMBER / FIELD AND LABORATORY TESTING	WELL SCHEMATIC
		ML	Existing well monument I SANDY SILT: light brown, Poor recovery.		w plasticity.						Concrete Casing (Schedule 40 PVC, 2.0-inch i.d.) Bentonite Chips (3/8-inch)
- 5 - - - -		SM	Petroleum-like odor and					12 1379		 SVE-5/5 NWTPH-Gx and EPA 8260B SVE-5/7.5 NWTPH-Gx and EPA 8260B 	 10 X 20 Colorado Silica Sand Well Screen (Schedule 40 PVC, 2.0-inch i.d., with 0.010-inch slots)
-10 - - - - 15-	<u></u>		End of boring at 10 feet b	ogs.				323			End Cap
 20											
	NG M	ETHOD): Direct Push	ELEVATION REFEREN	CE: NA			NOTE	S:		
DRILL CONT	. RIG: RACT	OR: Pa	ETER: acific Soil & Water/d EWED BY: AC/LF	GROUND SURFACE E CASING ELEVATION: START CARD/TAG ID DRILLING DATES: 8/3	NA : NA	012					
		Pant N. F uve 9-01	ry #112 ourth Plain Blvd r, WA	2 F	ES Enviro 240 N Broa Portland, (Fel (503) 8	adwa Dreg	ay, S on	Suite 972	e 11		LOG OF BORING SVE-5 PAGE 1 OF 1

Boring Loca	tion				onsult		EFS Project	Boring Log
Latitude:					()	Project Names	5-29
əngitude:					N	orth	Project Name: 6 2 \\Z.	
•							Sampled By:	of the second seco
ne					5 1 a 6		A-banown port	Start Date:
- \)	h ce cu	the t	SJCI -	C/ E.C	stri c.e.l		Contractor:	End Date: alalis
		10	cate	· ·			Type of Drilling: ALC Bit Diameter:	Equipment Used:
ches won							Water Level Depth: Date/Time Measured:	Elevation:
		1	T	โซ ุต	1	+ R-	Soil Description	
inches Recovered	PID (ppm)	Sheen	Odor	Chemical Analysis	Sample Interval	Contact & Group Symbol	Surface Conditions:	Comments
							0-2" Asphalt	
			<u> </u>			M L	Brown, sandy silt & moist, no odor	
		 					Electrical conduit at 1.55" ("8.5" bgs	
		7	N		2			5-29(1.75)
	0.2	<u></u>					Installed vapor vell at 1.751	(x2)40 ml (x1)802
					3		Beatraite from 1.25 to 0.75	COMPANY CANCE
					4	Ĺ	Manument set in Sendon te but	
			.				grouted on inside for solid floor.	
					5	ŀ		
	.					}		
					6	F	- · · · · ·	
	F					F		
					7			· · · · · · · · · · · · · · · · · · ·
					8			
	-					. -		
					9	-	· · · · · · · · · · · · · · · · · · ·	-
	F					-	· · · · · · · · · · · · · · · · · · ·	
					0	F		
			_					
					2	-		
	-					-	· · · · · · · · · · · · · · · · · · ·	
				:	3			
-								··· ·· ···
		•			* 			
				5	5			
$ \rightarrow $				6	i			
	.				<u>├</u> ──┤		····	
				7	 	-		
$ \land $				8				
				9	ļ			
								
\rightarrow				o				
				귀가				
		<u> </u>		ll		l		
1								

EES Boring Loo	ation						$\overline{}$	EES Project: U79-02	Boring Log Boring Number:
Latitude; ngitude;			•			(Project Name: PPNZ	5-30
						N	orth	Location:	Page:
- 								Sampled By:	of \
								Contractor:	<u> </u>
1	AK	24-3	51						Equipment Used:
	HA	37- 1	o′					Type of Drilling; Hand Auger Water Level Depth; Date/Time Measured;	Elevation:
Inches Driven	7		·····					water Level Deptn: Date/ Time Measured:	Elevation:
	PID			<u>e</u> s			벑율귱	Soil Description	
Inches	(ppm)	Sheen	Odor	Chemical Analysis	In	ample terval	Contact & Group Symbol	Surface Conditions:	Comments
Recovered			·		.			K So	
					1			Asphalt (2") Construction subgrade to 1"	Corect as phalt
			1	 	1	1 T		Brown, silt, sandy silt	
							199 I Bar	Drown, Silt, sanay silt	
					2				
	0.0	Ń	N		3	<u> </u>			5-30(3)00355
						-			(x2)40ml, (x1)
					4			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	ŀ	:							
					5		F		
	0	N	N		6			<u>.</u>	
	-				-	+	-		5-30(0)0092
					7-		-		(x2)40 mi, (x1) 21
	F						-		
	00+				8		Ĺ	····	
		N	1		9		Ļ		5-30(9)@
	-							AH ha	(KZ)40ml (KI)-80
		··· -			0			and the diverse monthing well	New New Y
							~	screened S-10 Logs	· .
					'		Ļ	· · · · · · · · · · · · · · · · · · ·	
			····		2			-	
					-		. -		
					3				
					4				
					1			· · ·	
				!	5-				-
					-		\vdash		
				e	ĵ				
				,	,				
				′	 			· · · · · · · · · · · · · · · · · · ·	
				- 8	;	_			
						·			
	<u></u>			9					
_									
\wedge									
				1		_			
	I	F	1			1	ļ		1

•

.

.

Boring Loca	ation	ironn				<u></u>	ш <u></u> ,		Boring Log Boring Number:
atitude:						(\frown	117-02	. {
angitude:								Project Name: PP 112	5-31
		£					orth	Location:	Page: of \
L.	12.75	5'E 5 01	$\circ \epsilon <$	d)r.	line	- 		Sampled By:	Start Date: 9/11/15
	3.51	5 01	r <\;	b)				1 Contractor	End Date: CILIS
								Type of Drilling; Bit Diameter:	Equipment Used:
hes								Cassade Type of Drilling: Bit Diameter: Direct Push Date/Time Measured:	Elevation:
		7	1	1			-		
\wedge	PID	Sheen	Odor	Chemical Analysis	Sa	mple	Contact & Group Symbol	Soil Description	
inches	(ppm)	Sneen	Udor	Chen	In	terval	SY G C	Surface Conditions:	Comments
ecovered					<u> </u>		<u>A45</u>	· · ·	-
				<u> </u>	-		-	0-35" Asphalt	
·/			<u>†</u>		- 1		ML	Sandy-silt, brown	
<	i				╡┟				
	· · ·				2	-	1	· · · · · · · · · · · · · · · · · · ·	
	0.0	N			3			· · · · · · · · · · · · · · · · · · ·	
\square	ļ	· · · · · ·			ן ין				
					4				
	ŀ				╡╎				
61				<u> </u>	5-				Collect sample
5	0.0t				$ $		+		<u>6-31(5)</u>
	0,0	N			6	+	and -	Silly sand, brown, damp	@0935 (x1802)
	F				_			Sud and New Camp	· ·
					7		F		-
					8				
\sim	0.0				Ĭ		Ļ		
-1	,	N			9⊣	\square	-	-	
	F				H		-		Collect sample
\rightarrow					0		······		5-31(10) @ 0940 (x1002
							X	ind, washined vapor monitoring	Les VI Les (KI YOL
	<u> </u>				2			· · ·	
					3				
	⊢				-		-		
\rightarrow					4		-		· · · · · · · · · · · · · · · · · · ·
					-		\vdash		
\geq					5			· · · · · · · · · · · · · · · · · · ·	
								· · · · · · · · · · · · · · · · · · ·	
					6				
					7				
]	′			· · · · · · · · · · · · · · · · · · ·	
					8	_			
					\vdash				
\rightarrow									
	·					_			
\rightarrow					>├──	-			
< 1	1	1	1	,	1	4	5		

oring Loc			nenta		. <u>.</u>			EES Project: 1179-02	Boring Log Boring Number:
atitude:						()	Project Name:	
ngitude:		· · · · · · · · · · · · · · · · · · ·				N	orth	Project Name: PPI/2	B-\6
•				_	_	_		Sampled By:	l of \
	NU	1 mg /	1						Start Date: 912115
i	1715	1-3	300	2				Contractor: Consecute	End Date: 9 2 15
Ĭ	HA	9-9 0-5	.*5'					DP	Equipment Used:
ves	いビ	9.5	- 20					Water Level Depth: Date/Time Measured:	Elevation:
inches	PiD (ppm)	Sheen	Odor	Chemical Analysis		ample terval	Contact & Group Symbol	Soil Description Surface Conditions:	Comments
				[_		-	Asphalt 0.0951	
•	ļ			<u> </u>	1		ML		
			- <u> </u>					Arrivaily 0.95 3' bown, sandy silt	
		1			- 2			His unnas, awviv	
· .					3]		
	0.3		<u> </u>			1	SM	Silly sand, brown, damp	B-16(3)@1210
	<u>v s</u>	N			4			string he adouted	(KS14DINI, (KI)40
\sim				·	╡╞				
\nearrow			 		5				•
	•				6		ŀ	sitty-sand ibrouin, moist	B.16(6)@1228
	169	7						strong ne odor, some grey-stain	
	ε ····		·		7		-	streaks in brown soil	
							1	is the second	
5/10	518				8	· ·	1	4 8.5 Seeing dork grey staining damp, high he odor	
1		N	Y		9				
	800				μ			over(dade) silty-sand, moist	B(16)(9)@1240
		N	4		οH			in the second	504(5x), m. 04/4x)
	<u>6</u> 9	N	4		-	[<u> </u>	105 moist to wet, moderate he	B-16(10.5)@1440
\nearrow					1		· • •	dor	501-1511, 1004 (42)
					2				
\square	3.8	N	7					+ 11.5-12', soundy gravet, brown (B-16(12)@1440
\rightarrow	2				3			iney i moist - gravelly sand	(x4)40ml, (x2)402
	. -		-		\vdash		-		
7					4		F		
11		N	Y		гЦ			ght ne udor	B-16(15)01445
	Ţ							loist, brown-grey sandy growell to	(X2)40 ml. (k1)40
					6		ļ	gravelly sand	
	-					·			· • • • • • • • • • • • • • • • • • • •
\rightarrow					7		-		
0	ろト	N	N						
			* ···	:	8	\neg	<u>ن</u>	nd of recovery 185 bas	· · · · · · · · · · · · · · · · · · ·
1	·]`	"				B-16(18.5)@1500
+				—) 	_	Ť.	nd boring at 20' bgs	(x2)40ml, (x1)4=
				_		_			
				1		6	,		

•

.

۰ ۱

¢

EES Environmental	Consulting, Inc.
Boring Location	EEC Drojacti

.

Boring Log

0-911 91-201 Kirkni	695 (0	13/15)		lorth	Project Name: PPNZ -Location: Sampled By: A Commple Contractor: Type of Drilling: Bit Diameter:	Page: of Start Date: 9 2 (15 End Date: 9 3 (15 Equipment Used;
Kirkni Hand cu Inches DP 91	iger 3 -zu/	si-q!				Water Level Depth: Date/Time Measured:	Elevation:
PID (ppm) Recovered	Cheen	Odor	Chemical Analysis	Sample Interval	Contact & Group Symbol	Soil Description Surface Conditions:	Comments
				2		Concrete 0-0.45' Vac truck to 3' bgs Brown silty sand with high silt content (SM)	
2.9.5				3	SM	Brown silly sand, moist	B-17(3)@1505 (x2)40mi, (x1)40
225				6		Modecate be adar, moist dark brown silty sand	B-17 (G)C-1510 (X4)40ml, (X2)40
1436 81.6 31.5	N			8 9 0		Dark grey silly-sand, strong he odor, moist	$(x_1) + (y_2) = (x_1) + (y_2) + (y_2$
0.4	<u>N</u> .					lery moist, silty knes 2000 to grey 12.5 a's to Gravelly-sand, brown, moist Faint Hc odor	B-17(12)@0925 (x4)40~11(x2)4 01
71.6	N					Abdecate he odor, maist	B-17(15)@D840 (x2)40m1, (x1)4 02
0.3			7				
			9 0		5	ravelly sond with silt, No. order moist od at ZD lags Constructed MW.	13-17(20)00900 (x2)40 m1 (x1)402

.

•

.

EES Environi				\sim	EES Project:	Boring Log
atitude:			()	EES Project: PP1/2 Project Name:	8-18
ngitude:			N	orth	Project Name: 1179-0.2 L	
						oF
	•				Sampled By:	Start Date:
0-3 (m	crete a	cored			Contractor:	End Date: 9415
3 - Ho	1411 112	/			Type of Drilling: Bit Diameter:	Equipment Used:
3 ··· //(ana aa	ger			Water Level Depth: Date/Time Measured:	Elevation:
		1	[1		· · · · · · · · · · · · · · · · · · ·
PID Sheen	Odor	Chemical Analysis	Sample	Contact & Group Symbol	Soil Description	Comments
inches (ppm) Sheen		Ana	Interval	0 8 9	Surface Conditions: Strong HC odor noticed. While air knifing.	Comments
					Concrete D-0.45'	
				SM		
			1			
			2			
	.		-		· · · · · · · · · · · · · · · · · · ·	·
4837 1			3		Moist, dark grey silty sand VERY strong HC odor, sneen	B-18 (3) @ 1100
					VERY strong HC odor, sneed	0 H (2 x), 1m. 0H (Px)
	+		4			
				F		
			5	-	· · · · · · · · · · · · · · · · · · ·	
1468 N					added the dealer of the second	B-18(6)@1125
			6	F	Marist, dark grey (brown silly sand	(+4)40m (x2)40=
				Ē	<u> </u>	
			7			
	<u> </u>		8			
5264 7				-		and the second
	Y		9	1	Moist, dark gry silly soud	B-18(9)@1135
					VERY strong the odder	(14)40mi, (v2)402
			0	. 4	stemporary) well to attempt to capture	· · · · · · · · · · · · · · · · · · ·
				1	@11.0 bgs. Allempt to cullect GW unsucces	Kan
					it 11.5' Gravelly sand	
0.6 N	N		2		· · · · · · · · · · · · · · · · · · ·	8-18(12)01005
			2			(x4)40 ml, (x2)400
		:	3			· · · · · · · · · · · · · · · · · · ·
		'				·
			₄╞╧═╾┨			
	N					
	N			E H	ka wetaz	B-12(15)@1020 (K2)40 M. (1)402
						CKCLIC Mar CritMos
			i <mark>l 1</mark>			
				ļ –	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		7			· · · · · · · · · · · · · · · · · · ·	
						· · ·
		8				
		9				
				N	10 68 61	B-10(20)@1030
	N.	0				(xz)40ml, (ri)4m
/				James	Wened at 20' Constructed MW.	,
		1				

EES Env				onsult	.ing, .	Inc.	Boring Log
Boring Location	0. N Å	ĕ O		(<u> </u>	EES Project: PRIVZ	Boring Number:
Latitude: ; ongitude:	ર્કુ તેલ જ	B-20			\mathcal{I}	Project Name: 1179-02	B-19
			-	N	orth	-Location:	Page:
						Sampled By:	of Start Date:
)						A. Groomer	Start Date:
0-31	Vac tri	ن دالا دا	eare	C.		Contractor:	End Date:
						Type of Drilling: Direct Push	Equipment Used:
iches Sett	Emp. me	SA.Well	- 600	ston; te	to.	Water Level Depth: Date/Time Measured:	Elevation:
	نى يەر كى ا			1			
PID Inches (ppm Recovered) Sheen	Odor	Chemical Analysis	Sample Interval	Contact & Group Symbol	Soil Description Surface Conditions:	Comments
				· · · · ·		for a gran a grant f	
<u> </u>	}				SM	Concrete 0-0.45'	
	-	-		1	``.	Charles A . June 1 - 201	
						cleared w/ vac truck by 3' bgs	
				4]: [
				3	[
0.3	N				[Very earthy forganic odor too he	B-19(3)@1410
				4			(X2)40,m1, (X1) 8 02
						· · · · · · · · · · · · · · · · · · ·	
	· [· · · · · ·	<u> </u>		5			
347					Ĺ	//	
	N.	$\left \frac{\gamma}{\gamma} \right $		6	-	Brown; silly-sand	B-19(6) (1420
					-		(x4) 40 ml, (x2) 8/2
				7	-		
-	ļ						
	1			8	. (3	8.5 Some grey-Stained soil, sweet has	
291	N	Y		9		Dark brown with grey sitty sand	0-19(9)01430
\square				3		mod. he odor	(×4)40m1, (x2)8/2
	<u> </u>			0		·	
0.3	N	N					
				1	·	sand us	
						et interval 10-10.5 ", high silt content	
- a		N		2		wavelly-sorid at 11-11.5, brown to	B-19(12)@1620
26.8	N	-N		<u> </u>		dank grey	611740al, (x2)8/24
				3		cy - dama	<u>,</u>
						r M- CICCENTY	· · · · · · · · · · · · · · · · · · ·
	N	N		4			· · · · · · · · · · · · · · · · · · ·
2.1						Loist	B-19(15)@16.35
/ T				′			(x2)40 ml, (x1)802
			e				
			`				
			7	·	.		
				[]	·	· · · · · · · · · · · · · · · · · · ·	
	N	\overline{N}	- 8	┝_┿┥			
- 10.3 F	1~ -	17					6. XA :
			9		M	oist, gravely sand (very gravelly)	3-19(19) 1643
						not of 19.51 bys	xel40 mi, (xil2 = 2
			- 0				-
						· · · · · · · · · · · · · · · · · · ·	
			-11				

EES Boring Loca	Envi	ronn	aenta	al C	onsult	ing, i	Inc.	Boring Log
Latitude: ngitude:						\bigcirc	Project Name: PP112	Boring Number;
·	it kais		5-(, ba		orth	Sampled By: Contractor: Contractor: Consecutive	Page: of Start Date: C B C S End Date: C S S S
iches (ir kni land ai DP 91	iger - 200	&f= ' ;	а.	-ur		Water Level Depth: Bit Diameter: Direct PU5 h Date/Time Measured:	Equipment Used: Elevation:
Inches Recovered	PiD (ppm)	Sheen	Odor	Chemical Analysis	Sample Interval	Contact & Group Symbol	Soil Description	Comments
						SM	Concrete D=0.51	· · · · · · · · · · · · · · · · · · ·
						12121	Brown, silly sand Vac truck cleaned to. 3' bgs	
					2		At 31.5" - pea gravel	•
					3		1	
$ \rightarrow $					4			
					5		Continued by vac- clear pea-gravel	
	. -					-		
10	2.4-	N				Ā	6' bys, brown silly sand	B-20(6)@1545
			-N		7		Earthy lorgenic orlar, damp	(xy)40m1, (xz) 8(2.67
				·	8			
-1	600	N	Y		9	-	Strong (Codor	8-20(9)@1600
		· · · · · ·					itions Mc adarchas 111	(44) 40 ml, (+2) 8/2 02) V
AL.		N	×			P	102	B-20(10.5)@(720 "sa
X	Here	N	ר			V B	rown silly sead, strong he oclar	PID=0.3 at very wet interval (105-11)
	3	N	N		2	141 2. 141	10.5-11 very wet, high sill content	B. 20(12)@1710
	- 3	. -			3			(14) 40 m (x2) 2/302
					4			
	.					-		·
					5			
				(6		No recovery, gravel	······
\rightarrow		····			7			
	Ā	VI		8				
0	3 <u> </u>		*				Gravelly sand, grey, damp \$	3-20(20)@17-25
1.		_		9				x2)40-11,(x1)802
				0			alshed at Zo' bas	
						1		· · · · · · · · · · · · · · · · · · ·

* Hollest soil @ (9), very wet soil - night sitt watert (10.5) PID decreased to 0.3 ppm

Between 9-10/ @ 410 ppm voc

EES Boring Loca	ation				1	\frown	EES Project: 1179-02	Boring Number:
Latitude: >ngitude:					(Project Name: PPIIZ	5-27
·					N	lorth	Location:	Page:
							Sampled By:	Start Date:
, 							Contractor:	End Date:
		s de			sa 55		Type of Drilling: Bit Diameter:	Equipment Used;
Inches	A) Kourt	ning .	266-2	S. E. S. P.	384 JU	,	Water Level Depth; Date/Time Measured:	Elevation:
Driven-		<u> </u>	1	1	<u> </u>			
inches Recovered	PID (ppm)	Sheen	Odor	Chemical Analysis	Sample Interval	Contact & Group Symbol	Soil Description Surface Conditions:	Comments
							0-2" Asphalt	1
							Silly-sand, brown, moist, no o Nickalfe to zill"	dod
							Nic lealfe to Zill"	Airkalife to
-/					2			
	03	N	N				4 ^{iv} -tiam ->s pipe	5-27(2.9)
					3	2'11"	Set vapor monitoring well,	01350
					4		Screened between 210 to 24	Ro (x2)40. (v) 8.
	ŀ					.	21916 213	
					5		bedded in penysource 2.75 to 2.25	>
	.		······					
1					6			
					.7	Ľ		
	-					L		
					8			
	-					-		
					9	F		
					0			·
	 				й	-		
					1	-		
	\vdash					-		
					2	-		
				;				
				`			· ·····	
					ب ا			
			- -	5				
				6				
				- 7				
							-	
\rightarrow	-+		·	8				
		_		9				
				_ '				·····
						ļ		1

.

CES.	Envi	tronn	ienta		onsult	<u>ing,</u> .	1nc.	Boring Log
Boring Loca	ution						EES Project: 1179-02	Boring Number:
atitude:					()	Eluciant Monara	- < -
ongitude:					N	orth	Location:	
•								Page: of \
			·				Sampled By: A. Grome	Start Date: 1415
		5						End Date: 7415
	Over	r loca - for	ted	44	e.		Type of Drilling: Bit Diameter:	Equipment Used:
Ŷ	nare	- for	55					
hes Von							Water Level Depth: Date/Time Measured:	Elevation:
		1	ļ				Soil Description	
	PID	Sheen	Odor	Chemical Analysis	Sample	Contact & Group Symbol	Soil Description	
inches	(ppm)	Joneen	Outri	Cher	Interval	5085	Surface Conditions:	Comments
ecovered		<u> </u>				<u> </u>		
		ļ	_	ļ			2-0.19 Asphalt sandy sitt	
				ļ	┥╻┝───	ML	AK-Air raite, sitter stand in own	
	r I I	No.	N		╡╵ <mark>┝</mark> ──			
	1.0				2	49 &	SS line at 1'8" just short of wye	5-28(21)01440
							junction, Tatal depth 2.2!	FOG(N), IN UP(SA)
				_	3	[
]					·	
]			ſ		
\square	L				4	ſ		
						[
\square					5	ſ		
	.]	1				Γ		
					6	Γ		
	ſ		[Γ		·····
					7	F		
	Γ							
					8	F		,
					9			
							•	
					0			· · · · · · · · · · · · · · · · · · ·
						[
					2	<u> </u>		
					3			
								· · ·
			-		4			
							······	
					5			
	[-				-		
\nearrow					6			
				{ }	7	-		
						-		
\rightarrow					3			
					\vdash			
)			
				- 0				
				ı		ļ		
ł	1	4		1 '		1	1	

1 . .

•

Appendix C

EES ENVIRONMENTAL CONSULTING, INC. 240 N. Broadway, Suite 203, Portland OR 97227 (503) 847-2740 www.ees-environmental.com

Technical Memorandum

To: From: Date:	Mark Conan, Jonathan Polonsky, & Brent Chadwick, Plaid Pantries, Inc. Paul Ecker LHG, and Chris Rhea, LG March 31, 2016
Subject:	Development of Site-Specific MTCA Method B Soil Cleanup Level for Gasoline Plaid Pantry Store #112 1002 West Fourth Plain Boulevard Vancouver, Washington Ecology VCP Project SW1314
	EES Project 1179-01/03
This momor	and um documents the methodology for and results of calculating the proposed soil clea

This memorandum documents the methodology for and results of calculating the proposed soil cleanup level for gasoline at the Plaid Pantries, Inc. (Plaid) subject Site. The Site includes Plaid's active convenience market and retail fueling station known as Store #112, with gasoline-contaminated soil extending south of the Property boundary beneath the Fourth Plain Boulevard right-of-way.

EES Environmental Consulting, Inc. (EES) developed this Site-specific Method B soil cleanup level in accordance with MTCA regulations (WAC 173-340) and published Ecology guidance (2007 and 2011). Supporting information is provided below and attached in various data tables and site maps.

Figures 1 and 2 illustrate the Site location, layout, and soil sampling locations. Analytical testing results for Site soils are presented on Tables 1 and 2. Method B cleanup level calculations and model outputs are provided in Tables 3 and 3A-3E.

BACKGROUND

As discussed with Plaid and Washington Department of Ecology (Ecology) representatives, Remedial Investigation (RI) activities at the Site are nearly complete. RI data reports, planning documentation, and status updates are provided to Ecology as part of Plaid's participation in the Department's Voluntary Cleanup Program.

Based on Site characterization and the well-defined Conceptual Site Model (CSM) as discussed with Ecology in 2015-2016, we believe that the development and use of a site-specific Method B soil cleanup level for gasoline is appropriate and will be protective of human health and the environment (WAC 173-340-740). Basic elements of the CSM demonstrate the following:

- Gasoline impacts at the Site are well-defined. These impacts are limited to a localized pocket of shallow soil extending up to 13 feet in depth, within the area illustrated on Figure 2. Subsurface gasoline vapors associated with the historical release(s) are also present and are generally centered on the zone of soil contamination. As discussed with Ecology in December 2015 and early 2016, additional soil vapor assessment planning is underway in an effort to resolve potential RI vapor intrusion data gaps for the Property building.
- The local water table is anticipated at depths exceeding 80 feet and is not expected to be affected by historic gasoline release(s) originating at the Property. Recent evaluation of seasonally perched groundwater indicates no gasoline impacts to this media (EES, 3/30/2016).
- Current and reasonably likely future land use at the Property is commercial. No residential use of the Site is anticipated. Affected portions of the adjacent Fourth Plain Boulevard right-of-way will remain in use as a major local thoroughfare. Potential human receptors at the Site include store workers and customers, and potential future construction and excavation workers (including road and utility workers). Note that Method B calculations provided in this report are protective of unrestricted land use scenarios in accordance with Ecology's criteria.
- Terrestrial ecological exposure is unlikely. No adjustment to cleanup values to protect terrestrial ecological receptors is necessary.
- Plaid's operating soil vapor extraction (SVE) system provides source-area vapor control and mitigation. Gasoline concentrations in soil within the treatment zone are effectively reduced by SVE activity.

SITE-SPECIFIC MTCA METHOD B SOIL CLEANUP LEVELS (GASOLINE)

EES calculated a gasoline cleanup level in soil for unrestricted land use at the Site, using Ecology's default model inputs for the protection of human health (WAC 173-340-740). In accordance with published Ecology guidance (September 2011), EES collected and analyzed multiple soil samples from the high-concentration core of residual gasoline contamination, and these analytical findings were used to calculate a median soil cleanup level that is representative of what we believe to be "worst-case" Site conditions. Analytical data used in these calculations were obtained from soil samples collected in September 2015, including samples B-16(6), B-17(9), B-18(3), and B-18(9). Tables 1 and 2 summarize analytical testing results, and laboratory analytical reports are provided in Attachment A.

Soil cleanup level calculations were performed using Ecology's *Workbook for Calculating Soil and Groundwater Cleanup Levels* (2007), and included a combination of Site-specific chemical analytical data and default Ecology input parameters. The calculation results are summarized on Table 3, with detailed worksheets generated using Ecology's model provided as Tables 3A through 3E.

• The representative median Site-specific Method B soil cleanup level for gasoline was calculated at a concentration of 2,619 mg/kg.

EES proposes to use this Method B gasoline soil cleanup level of 2,619 mg/kg for unrestricted land use and future compliance evaluation purposes. As discussed with Ecology, soil vapor conditions must meet separate protective criteria, to be determined.

We request that Ecology provide a written opinion regarding the proposed soil cleanup level.

ATTACHMENTS

Tables	Table 1: Soil Analytical Results – Gasoline, Diesel, and Related ConstituentsTable 2: Soil Analytical Results – Volatile Petroleum HydrocarbonsTable 3: Summary of Site-Specific MTCA Method B Calculations
Figures	Figure 1: Vicinity Map Figure 2: Maximum Gasoline Concentrations in Soil (September 2015)

Attachment A: Laboratory Analytical Data Reports

TABLES

TABLE 1 Soil Analytical Results - Gasoline, Diesel, and Related Constituents (mg/kg) Plaid Pantry No. 112

Vancouver, Washington

Location	Date	Sample Depth (feet bgs)	Gasoline	Diesel	Heavy Oil/Lube	Benzene	Toluene	Ethylbenzene	Xylenes	EDB	EDC	MTBE	Naphthalene	Lead	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
Soil Screening			2																
	od A ¹ Unrestrict	ed Use	100/30 ²	2,000	2,000	0.03	7	6	9	0.005	NA	0.10	5	250	0.05	0.03	NA	NA	2
MTCA Meth	od B [°]		2,619 ⁴	NC	NC	18.2	6,400 ⁵	8,000 ⁵	16,000 ⁵	0.5	11	556	1,600 ⁵	NC	476	12	NC	14.3	160,000 ⁵
September 20)11 Initial Soil Sa	mpling																	
B1-3	09/08/2011	3	24 U	59 U	118 U	0.011 U	0.044 U	0.022 U	0.065 U	0.022 U	0.022 U	0.044 U	0.087 U	-	0.022 U	0.022 U	0.44 U	0.022 U	0.022 U
B1-9	09/08/2011	9	22 U	54 U	108 U	0.013 U	0.051 U	0.026 U	0.077 U	0.026 U	0.026 U	0.051 U	0.10 U	8.3	0.026 U	0.026 U	0.51 U	0.026 U	0.026 U
B1-15	09/08/2011	15	21 U	52 U	103 U	0.013 U	0.052 U	0.026 U	0.078 U	0.026 U	0.026 U	0.052 U	0.10 U	-	0.026 U	0.026 U	0.52 U	0.026 U	0.026 U
B2-3	09/07/2011	3	21 U	53 U	107 U	0.011 U	0.043 U	0.022 U	0.065 U	0.022 U	0.022 U	0.043 U	0.087 U	-	0.022 U	0.022 U	0.43 U	0.022 U	0.022 U
B2-9	09/07/2011	9	25 U	25 U ^{b:}		0.0088 U	0.035 U	0.018 U	0.053 U	0.018 U	0.018 U	0.035 U	0.010 U ^d	-	0.018 U	0.018 U	0.35 U	0.018 U	0.018 U
B2-15	09/09/2011	15 3	21 U 23 U	53 U	105 U	0.0068 U	0.027 U	0.014 U	0.041 U	0.014 U	0.014 U	0.027 U 0.047 U	0.054 U	-	0.014 U	0.014 U	0.27 U	0.014 U	0.014 U
B3-3 B3-9	09/07/2011 09/07/2011	3	23 U 26 U	57 U 64 U	113 U 128 U	0.012 U 0.014 U	0.047 U 0.055 U	0.024 U 0.028 U	0.071 U 0.083 U	0.024 U 0.028 U	0.024 U 0.028 U	0.047 U 0.055 U	0.094 U 0.11 U	- 12	0.024 U 0.028 U	0.024 U 0.028 U	0.47 U 0.55 U	0.024 U 0.028 U	0.024 U 0.028 U
B3-3 B4-3	09/07/2011	3	20 U	57 U	128 U 114 U	0.014 U 0.013 U	0.053 U 0.051 U	0.028 U	0.083 U 0.076 U	0.028 U 0.026 U	0.028 U 0.026 U	0.053 U 0.051 U	0.11 U	-	0.028 U	0.028 U	0.53 U 0.51 U	0.028 U	0.028 U
B4-9	09/07/2011	9	23 U 21 U	57 U	106 U	0.013 U 0.012 U	0.031 U 0.049 U	0.020 U	0.073 U	0.020 U	0.020 U 0.024 U	0.031 U 0.049 U	0.097 U		0.020 U	0.020 U	0.49 U	0.020 U	0.020 U
B5-3	09/08/2011	3	21 U	55 U	100 U	-	-	-	-	-	-	-	-	-	-	-	-	0.024 0	0.024 0
B5-6	09/08/2011	6	2,900 °	>57 ^c	112 U	0.28 U	1.1 U	12	74	0.56 U	0.56 U	1.1 U	14	21	0.56 U	0.56 U	11 U	0.56 U	0.56 U
B5-9	09/08/2011	9	4,070 ^a	>54 ^c	108 U	0.24 U	0.95 U	29	121	0.48 U	0.48 U	0.95 U	8.8	11	0.48 U	0.48 U	9.5 U	0.48 U	0.48 U
B5-12.5	09/08/2011	12.5	444 ^a	638 ^{b,c}	50 μ ^b	2.1	0.13 U	5.3	21	0.063 U	0.063 U	0.13 U	1.1	13	0.063 U	0.063 U	1.3 U	0.063 U	0.13 U
B5-20	09/08/2011	20	2.9 Uª	-	-	0.0073 U	0.029 U	0.015 U	0.044 U	0.015 U	0.015 U	0.029 U	0.058 U	-	0.015 U	0.015 U	0.29 U	0.015 U	0.015 U
B6-3	09/08/2011	3	22 U	54 U	107 U	0.0096 U	0.038 U	0.019 U	0.057 U	0.019 U	0.019 U	0.038 U	0.077 U	-	0.019 U	0.019 U	0.38 U	0.019 U	0.019 U
B6-9	09/08/2011	9	23 U	58 U	116 U	0.0093 U	0.037 U	0.019 U	0.056 U	0.019 U	0.019 U	0.037 U	0.074 U	-	0.019 U	0.019 U	0.37 U	0.019 U	0.019 U
B6-12	09/09/2011	12	26 U	64 U	128 U	0.011 U	0.044 U	0.022 U	0.065 U	0.022 U	0.022 U	0.044 U	0.087 U	-	0.022 U	0.022 U	0.44 U	0.022 U	0.022 U
February 2012	2 Abandoned Ta	nk Decommission	ning																
SVE-1/5.0	02/03/2012	5	22 U	55 U	110 U	_	_	_	_	-	_	-	-	-	-	_	-	_	_
SVE-1/10.0	02/03/2012	10	2,750 ^a	>56.1 ^c	110 U	0.39	48	40	301	0.19 U	0.16 U	0.62 U	13	7.6	0.31 U	0.31 U	6.2 U	0.31 U	0.31 U
PIT S/1.5	02/14/2012	1.5	23 U	25 U ^b	116 ^b	-	-	-	-	-	-	-		-	-	-	-	-	-
Tank Sludge	02/14/2012	NA	2,410 ª	172 U ^c	345 U	0.040 J	1.9	2.7	19	0.090 U	0.090 U	0.19 U	7.1 ^e	-	0.094 U	0.094 U	2.8 U	0.094 U	0.094 U
PIT N/2	02/14/2012	2	21 U	52 U	104 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PIT N/6	02/14/2012	6	8.7 U ^a	57 ^c	113 U	0.020 U	0.090 U	0.040 U	0.14	0.040 U	0.040 U	0.090 U	0.17 U	-	0.043 U	0.043 U	0.87 U	0.043 U	0.043 U
PIT S/2	02/14/2012	2	1,320 ª	54 ^c	109 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PIT S/6	02/14/2012	6	5,800 ^a	62 ^c	124 U	3.4	23	78	411	0.81 U	0.81 U	1.6 U	34	-	0.81 U	0.81 U	16 U	0.81 U	0.81 U
PIT E/2	02/14/2012	2	24 U	60 U	120 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PIT E/6	02/14/2012	6	64,200 ^a	62 ^c	123 U	93	3,570	1,350	9,090	6.5 U	6.5 U	13 U	241	-	6.5 U	6.5 U	182 U	6.5 U	6.5 U
PIT W/2	02/14/2012	2	1,210 ^a	59 ^c	118 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PIT W/6	02/14/2012	6	18,700 ^a	61 ^c	122 U	26	572	296	1,693	1.6 U	1.6 U	3.2 U	67	-	1.6 U	1.6 U	48 U	1.6 U	1.6 U
PIT Floor/6	02/14/2012	6	34,900 ^a	2,660 ^b	81 U ^b	56	1,460	609	3,605	0.81 U	0.81 U	1.6 U	27 ^e	-	0.81 U	0.81 U	105 U	0.81 U	0.81 U
August 2012 S	Soil Sampling																		
B-7/6	08/16/2012	6	473 ^a	-	-	0.18 J	0.86 U	2.1	12	0.011 U ^e	0.43 U	0.51 U ^g	1.7 U	-	0.21 U ^g	0.31 U ^g	8.6 U	0.43 U	0.43 U
В-7/9	08/16/2012	9	1,730 ^a	-	-	0.80	0.82 U	0.89	1.2 U	0.25 U ^g	0.41 U	0.49 U ^g	1.6 U	-	0.21 U ^g	0.30 U ^g	8.2 U	0.41 U	0.41 U
B-7/13	08/16/2012	13	303 ^a	-	-	0.15	0.089 U	0.17	0.25	0.0089 U ^e	0.045 U	0.089 U	0.30	-	0.045 U	0.032 U ^g	0.89 U	0.045 U	0.045 U
B-7/14	08/16/2012	14	5.8 Uª	-	-	0.015 U	0.058 U	0.029 U	0.087 U	0.0029 U ^{e,g}	0.029 U	0.058 U	0.12 U	-	0.029 U	0.029 U	0.58 U	0.029 U	0.029 U
B-8/6	08/16/2012	6	8.4 U ^a	-	-	0.026	0.084 U	0.072	0.30	0.0042 U ^{e,g}	0.042 U	0.084 U	0.17 U	-	0.042 U	0.031 U ^g	0.84 U	0.042 U	0.042 U
B-8/9	08/16/2012	9	7.4 U ^a	-	-	0.042	0.074 U	0.037 U	0.25	0.023 U ^g	0.037 U	0.074 U	0.15 U	-	0.037 U	0.027 U ^g	0.74 U	0.037 U	0.037 U
B-8/13	08/16/2012	13	8.9 U ^a	-	-	0.022 U	0.089 U	0.044 U	0.13 U	0.0044 U ^{e,g}	0.044 U	0.089 U	0.18 U	-	0.044 U	0.032 U ^g	0.88 U	0.044 U	0.044 U
B-9/3	08/13/2012	3	5.7 U ^a	59 U	117 U	0.0143 U	0.057 U	0.029 U	0.086 U	0.017 U ^g	0.029 U	0.057 U	0.11 U	-	0.029 U	0.029 U	0.57 U	0.029 U	0.029 U
B-9/6	08/13/2012	6	5.2 U ^a	-	-	0.013 U	0.052 U	0.026 U	0.078 U	0.016 U ^g	0.026 U	0.052 U	0.10 U	-	0.026 U	0.026 U	0.52 U	0.026 U	0.026 U
B-9/9	08/13/2012	9	8.2 U ^a	-	-	0.020 U	0.082 U	0.041 U	0.12 U	$0.025 U^{g}$	0.041 U	0.082 U	0.16 U	-	0.041 U	0.030 U ^g	0.82 U	0.041 U	0.041 U
B-9/13	08/13/2012	13	5.9 U ^a	-	-	0.015 U	0.059 U	0.029 U	0.088 U	0.018 U ^g	0.029 U	0.059 U	0.12 U	-	0.029 U	0.029 U	0.59 U	0.029 U	0.029 U
B-10/3	08/13/2012	3	5.4 U ^a	55 U	109 U	0.013 U	0.054 U	0.027 U	0.080 U	0.016 U ^g	0.027 U	0.054 U	0.11 U	-	0.027 U	0.027 U	0.54 U	0.027 U	0.027 U
B-10/6	08/13/2012	6	9.2 U ^a	-	-	0.023 U	0.092 U	0.046 U	0.14 U	0.028 U ^g	0.046 U	0.092 U	0.18 U	-	0.046 U	0.033 U ^g	0.92 U	0.046 U	0.046 U
B-10/9 B-10/13	08/13/2012 08/13/2012	9 13	11 U ^a 4 7 u ^a	-	-	0.028 U	0.11 U	0.056 U 0.024 U	0.17 U	0.034 U ^g	0.056 U	0.067 U ^g	0.22 U	-	0.028 U ^g 0.024 U	0.041 U ^g	1.1 U 0.47 U	0.056 U	0.056 U
B-10/13 B-10/18	08/13/2012	13 18	4.7 Uª 20 U	- 51 U	- 102 U	0.012 U	0.047 U		0.071 U	0.014 U ^g	0.024 U	0.047 U	0.095 U	-	0.024 0	0.024 U	0.47 U -	0.024 U	0.024 U
D-10/10	00/13/2012	10	20 0	51.0	102 0	-	-	-	-	-	-	-	-	-	-	-	-	-	

TABLE 1 Soil Analytical Results - Gasoline, Diesel, and Related Constituents (mg/kg) Plaid Pantry No. 112

Vancouver, Washington

Location	Date	Sample Depth (feet bgs)	Gasoline	Diesel	Heavy Oil/Lube	Benzene	Toluene	Ethylbenzene	Xylenes	EDB	EDC	MTBE	Naphthalene	Lead	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
Soil Screening	Levels																		
MTCA Meth	od A ¹ Unrestricte	ed Use	100/30 ²	2,000	2,000	0.03	7	6	9	0.005	NA	0.10	5	250	0.05	0.03	NA	NA	2
MTCA Meth	od B ³		2,619 ⁴	NC	NC	18.2	6,400 ⁵	8,000 ⁵	16,000 ⁵	0.5	11	556	1,600 ⁵	NC	476	12	NC	14.3	160,000 ⁵
August 2012	Soil Sampling (co	ontinued)																	
B-11/3	08/14/2012	3	13 ^a	56 U	113 U	0.017 U	0.068 U	0.034 U	0.10 U	0.021 U ^g	0.034 U	0.068 U	0.14 U	-	0.034 U	0.025 U ^g	0.68 U	0.034 U	0.034 U
B-11/6	08/14/2012	6	20,400 ^a	62 X	123 U	3.7	0.81 U	3.9	1.6 U	0.25 U ^g	0.41 U	0.49 U ^g	57	24	0.20 U ^g	0.30 U ^g	8.1 U	0.41 U	0.41 U
B-11/9	08/14/2012	9	1,560 ^a	-	-	0.47	0.095 U	0.62	0.14 U	0.029 U ^g	0.048 U	0.095 U	1.9	-	0.048 U	0.035 U ^g	2.7 U	0.048 U	0.048 U
B-11/11	08/14/2012	11	5.7 U ^a	-	-	0.014 U	0.057 U	0.029 U	0.086 U	0.0029 U ^{e,g}	0.029 U	0.057 U	0.11 U	3.3	0.029 U	0.029 U	0.57 U	0.029 U	0.029 U
B-11/17	08/14/2012	17	5.6 U ^a	-	-	0.014 U	0.056 U	0.028 U	0.084 U	0.017 U ^g	0.028 U	0.056 U	0.11 U	-	0.028 U	0.028 U	0.56 U	0.028 U	0.028 U
B-11/23	08/14/2012	23	20 U	51 U	102 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-11/29	08/14/2012	29	20 U	51 U	102 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-12/3	08/14/2012	3	5.2 U ^a	58 U	116 U	0.013 U	0.052 U	0.026 U	0.078 U	0.016 U ^g	0.026 U	0.052 U	0.10 U	-	0.026 U	0.026 U	0.52 U	0.026 U	0.026 U
B-12/6	08/14/2012	6	8.1 U ^a	-	-	0.020 U	0.081 U	0.040 U	0.12 U	0.024 U ^g	0.040 U	0.081 U	0.16 U	-	0.040 U	0.029 U ^g	0.81 U	0.040 U	0.040 U
B-12/9	08/14/2012	9	9.6 U ^a	-	-	0.024 U	0.096 U	0.048 U	0.14 U	0.029 U ^g	0.048 U	0.096 U	0.19 U	-	0.048 U	0.035 U ^g	0.96 U	0.048 U	0.048 U
B-12/13	08/14/2012	13	8.1 U ^a	-	-	0.020 U	0.081 U	0.040 U	0.12 U	0.025 U ^g	0.040 U	0.081 U	0.16 U	-	0.040 U	0.029 U ^g	0.81 U	0.040 U	0.040 U
B-12/18	08/14/2012	18	20 U	50 U	100 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-13/3	08/15/2012	3	7.8 U ^a	-	-	0.019 U	0.078 U	0.039 U	0.12 U	0.024 U ^g	0.039 U	0.078 U	0.16 U	-	0.039 U	0.028 U ^g	0.78 U	0.039 U	0.039 U
B-13/6	08/15/2012	6	6.5 U ^a	-	-	0.016 U	0.065 U	0.032 U	0.097 U	0.020 U ^g	0.032 U	0.065 U	0.13 U	-	0.032 U	0.023 U ^g	0.65 U	0.032 U	0.032 U
B-13/9	08/15/2012	9	6.9 U ^a	-	-	0.017 U	0.069 U	0.034 U	0.10 U	0.021 U ^g	0.034 U	0.069 U	0.14 U	-	0.034 U	0.025 U ^g	0.69 U	0.034 U	0.034 U
B-13/13	08/15/2012	13	8.0 U ^a	-	-	0.020 U	0.080 U	0.040 U	0.12 U	0.024 U ^g	0.040 U	0.080 U	0.16 U	-	0.040 U	0.029 U ^g	0.80 U	0.040 U	0.040 U
B-14/3	08/15/2012	3	6.6 U ^a	-	-	0.017 U	0.066 U	0.033 U	0.099 U	0.020 U ^g	0.033 U	0.066 U	0.13 U	-	0.033 U	0.024 U ^g	0.66 U	0.033 U	0.033 U
B-14/6	08/15/2012	6	7.0 U ^a	-	-	0.018 U	0.070 U	0.035 U	0.11 U	0.021 U ^g	0.035 U	0.070 U	0.14 U	-	0.035 U	0.025 U ^g	0.70 U	0.035 U	0.035 U
B-14/9	08/15/2012	9	7.6 U ^a	-	-	0.019 U	0.076 U	0.038 U	0.11 U	$0.023 U^{g}$	0.038 U	0.076 U	0.15 U	-	0.038 U	0.027 U ^g	0.76 U	0.038 U	0.038 U
B-14/13	08/15/2012	13	6.2 U ^a	-	-	0.016 U	0.062 U	0.031 U	0.094 U	0.019 U ^g	0.031 U	0.062 U	0.13 U	-	0.031 U	0.023 U ^g	0.62 U	0.031 U	0.031 U
B-15/3 B-15/6	08/15/2012 08/15/2012	3 6	6.6 U ^a 7.9 U ^a	-	-	0.017 U 0.020 U	0.066 U 0.079 U	0.033 U 0.040 U	0.099 U 0.12 U	0.020 U ^g 0.024 U ^g	0.033 U 0.040 U	0.066 U 0.079 U	0.13 U	-	0.033 U 0.040 U	0.024 ∪ ^g 0.029 ∪ ^g	0.66 U 0.79 U	0.033 U 0.040 U	0.033 U 0.040 U
B-15/8 B-15/9	08/15/2012	9	7.9 U 7.6 U ^a	-	-	0.020 U 0.019 U	0.079 U 0.076 U	0.040 U	0.12 U 0.11 U	0.024 U ^g	0.040 U 0.038 U	0.079 U 0.076 U	0.16 U 0.15 U	-	0.040 U 0.038 U	0.029 0 ^s 0.027 0 ^g	0.79 U 0.76 U	0.040 U	0.040 0 0.038 U
B-15/9 B-15/13	08/15/2012	13	7.6 U 6.2 U ^a	-	-	0.019 U 0.016 U	0.078 U 0.062 U	0.038 U 0.031 U	0.093 U	0.023 U ^g	0.038 U 0.031 U	0.078 U 0.062 U	0.13 U	-	0.038 U 0.031 U	0.027 0 ⁻ 0.023 0 ^g	0.78 U 0.62 U	0.038 U 0.031 U	0.038 U 0.031 U
B-15/15 B-16/6	08/15/2012	6	5.8 U ^a	-	-	0.010 U	0.002 U 0.058 U	0.031 U 0.029 U	0.093 U 0.087 U	0.0030 U ^{e,g}	0.031 U 0.029 U	0.002 U 0.058 U	0.12 0 0.17 U	- 11	0.029 U	0.023 U- 0.029 U	0.58 U	0.031 U 0.029 U	0.031 U 0.029 U
B-16/9	08/16/2012	9	8.0 U ^a	_	-	0.015 U	0.030 U	0.040 U	1.2 U	0.024 U ^g	0.040 U	0.030 U	0.17 U	12	0.040 U	0.029 U ^g	0.80 U	0.040 U	0.040 U
B-16/13	08/16/2012	13	5.9 U ^a	_	-	0.020 U	0.050 U	0.030 U	0.089 U	0.0030 U ^{e,g}	0.040 U	0.059 U	0.10 U	-	0.030 U	0.025 U 0.030 U	0.59 U	0.030 U	0.030 U
SVE-2/8	08/16/2012	8	6,800 ^a	-	-	14	48	96	436	0.27 U ^g	0.45 U	0.54 U ^g	27	11	0.22 U ^g	0.32 U ^g	9.0 U	0.45 U	0.45 U
SVE-2/12	08/16/2012	12	5.7 U ^a	-	-	0.014 U	0.057 U	0.029 U	0.086 U	0.0029 U ^{e,g}	0.029 U	0.057 U	0.11 U	2.8	0.029 U	0.029 U	0.57 U	0.029 U	0.029 U
SVE-2/16	08/16/2012	16	7.0 U ^a	-	-	0.011 U	0.070 U	0.035 U	0.11 U	0.0035 U ^{e,g}	0.035 U	0.070 U	0.14 U	-	0.035 U	0.025 U ^g	0.70 U	0.035 U	0.035 U
SVE-2/20	08/16/2012	20	5.9 U ^a	-	-	0.014 U	0.059 U	0.030 U	0.089 U	0.018 U ^g	0.030 U	0.059 U	0.12 U	-	0.030 U	0.030 U	0.59 U	0.030 U	0.030 U
SVE-3/5	08/16/2012	5	-	-	-	-	-	-	-	-	-	-	-	13	-	-	-	-	-
SVE-3/8	08/16/2012	8	3,820 ^a	-	-	6.5	117	70	389	0.36 U ^g	0.60 U	0.72 U ^g	16	10	0.30 U ^g	0.43 U ^g	12 U	0.60 U	0.60 U
SVE-3/12.5	08/16/2012	12.5	216 ^a	-	-	1.5	4.8	3.9	21	0.0036 U ^{e,g}	0.36 U	0.43 U ^g	1.4 U	-	0.18 U ^g	0.26 U ^g	7.2 U	0.36 U	0.36 U
SVE-3/14	08/16/2012	14	6.3 U ^a	-	-	0.016 U	0.063 U	0.031 U	0.094 U	0.0031 U ^{e,g}	0.031 U	0.063 U	0.13 U	-	0.031 U	0.023 U ^g	0.63 U	0.031 U	0.031 U
SVE-3/20	08/16/2012	20	6.0 U ^a	-	-	0.015 U	0.060 U	0.030 U	0.089 U	0.018 U ^g	0.030 U	0.060 U	0.12 U	-	0.030 U	0.030 U	0.60 U	0.030 U	0.030 U
SVE-4/6	08/16/2012	6	8.1 U ^a	-	-	0.020 U	0.081 U	0.040 U	0.12 U	0.0040 U ^{e,g}	0.040 U	0.081 U	0.16 U	-	0.040 U	0.029 U ^g	0.81 U	0.040 U	0.040 U
SVE-4/9	08/16/2012	9	97 ^a	-	-	0.018	0.072 U	0.30	0.58	0.022 U ^g	0.036 U	0.072 U	1.4	-	0.036 U	0.026 U ^g	0.72 U	0.036 U	0.036 U
SVE-4/11	08/16/2012	11	54 ^a	-	-	0.034	0.15	0.82	1.5	0.0038 U ^{e,g}	0.038 U	0.076 U	1.4	-	0.038 U	0.028 U ^g	0.76 U	0.038 U	0.038 U
SVE-4/14	08/16/2012	14	6.0 U ^a	-	-	0.015 U	0.060 U	0.030 U	0.090 U	0.0030 U ^{e,g}	0.030 U	0.060 U	0.12 U	-	0.030 U	0.030 U	0.60 U	0.030 U	0.030 U
SVE-5/5	08/16/2012	5	6.1 U ^a	-	-	0.015 U	0.061 U	0.031 U	0.092 U	0.0031 U ^{e,g}	0.031 U	0.061 U	0.12 U	7.5	0.031 U	0.022 U ^g	0.61 U	0.031 U	0.031 U
SVE-5/7.5	08/16/2012	7.5	793 ^a	-	-	0.15	9.0	7.4	57	0.098 U ^g	0.16 U	0.19 U ^g	21	11	0.081 U ^g	0.12 U ^g	3.2 U	0.16 U	0.16 U
September 20)15 Soil Sampling	g																	
B-16(3)	09/02/2015	3	3.6 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-16(6)	09/02/2015	6	1,080 J ^{1,a}	-	-	0.18 U	0.73 U	0.37 U	1.1 U	-	-	-	-	-	-	-	-	-	-
B-16(9)	09/02/2015	9	928 J ^{1,a}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-16(12)	09/02/2015	12	5.8 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-17(3)	09/02/2015	3	7.0 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-17(6)	09/02/2015	6	15 ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-17(9)	09/02/2015	9	9,180 ^a	-	-	0.19 U	0.77 U	0.63	1.2 U	-	-	-	-	-	-	-	-	-	-
B-17(12)	09/03/2015	12	5.8 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FFS ENIVID									Page							· · · ·		1179_all t	ables 03 30 2016

EES ENVIRONMENTAL CONSULTING, INC.

TABLE 1 Soil Analytical Results - Gasoline, Diesel, and Related Constituents (mg/kg) Plaid Pantry No. 112

Vancouver, Washington

Location	Date	Sample Depth (feet bgs)	Gasoline	Diesel	Heavy Oil/Lube	Benzene	Toluene	Ethylbenzene	Xylenes	EDB	EDC	MTBE	Naphthalene	Lead	PCE	TCE	2-Butanone	Carbon Tetrachloride	1,1,1- Trichloroethane
Soil Screening	g Levels																		
MTCA Meth	nod A ¹ Unrestricte	ed Use	100/30 ²	2,000	2,000	0.03	7	6	9	0.005	NA	0.10	5	250	0.05	0.03	NA	NA	2
MTCA Meth	nod B ³		2,619 ⁴	NC	NC	18.2	6,400 ⁵	8,000 ⁵	16,000 ⁵	0.5	11	556	1,600 ⁵	NC	476	12	NC	14.3	160,000 ⁵
September 2	015 Soil Sampling	g (continued)																	
B-18(3)	09/03/2015	3	4,770 ^a	-	-	0.66 U	2.6 U	2.6	3.9 U	-	-	-	-	-	-	-	-	-	-
B-18(6)	09/03/2015	6	543 ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-18(9)	09/03/2015	9	7,820 ª	-	-	0.19 U	0.74 U	0.37 U	1.1 U	-	-	-	-	-	-	-	-	-	-
B-18(12)	09/04/2015	12	5.8 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-19(3)	09/03/2015	3	5.8 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-19(6)	09/03/2015	6	8.4 ^a	-	-	0.019 U	0.077 U	0.039 U	0.12 U	-	-	-	-	-	-	-	-	-	-
B-19(9)	09/03/2015	9	7.9 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-19(12)	09/03/2015	12	5.7 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-20(6)	09/03/2015	6	5.9 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
B-20(9)	09/03/2015	9	475 J ^{1,a,f}	-	-	0.018 U	0.073 U	0.036 U	0.11 U	-	-	-	-	-	-	-	-	-	-
B-20(12)	09/03/2015	12	5.7 U ^a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

Gasoline, Diesel, and Heavy Oil/Lube by Method by NWTPH-HCID unless otherwise noted.

Volatiles by EPA Method 8260B

¹ Model Toxics Control Act (MTCA) Cleanup Amendments, Method A Soil Cleanup Levels for Unrestricted Land Use (WDOE, CLARC Database, August 2015)

² Per MTCA, the cleanup value for gasoline is 30 mg/kg if benzene is detected and/or if the sum of the toluene, ethylbenzene, and xylenes is greater than one percent of the gasoline concentration, and 100 mg/kg for all other gasoline mixtures.

³ Model Toxics Control Act (MTCA) Cleanup Amendments, Method B Soil Cleanup Levels (cancer endpoint) (WDOE, CLARC Database, August 2015)

⁴ MTCA modified Method B cleanup value calculated using Ecology's Workbook Tool for Calculating Soil and Groundwater Cleanup Levels (revised December 2007). The median soil concentration shown is based on site-specific analytical data combined with generic default assumptions. ⁵ Stated cleanup level is a non-cancer value. No cancer value available.

^a Gasoline by Method NWTPH-Gx/EPA 8260B

^b Diesel and Heavy Oil/Lube by Method NWTPH-Dx

 $^{\rm b1}\mbox{Diesel}$ and Heavy Oil/Lube by Method NWTPH-Dx with silica-gel cleanup

^c Results in the diesel organics range are due to overlap from a gasoline range product.

^d Naphthalene analyzed by EPA Method 8270D SIM. No detections were reported for any of the PAH compounds.

^e 1,2-Dibromoethane (EDB) analyzed by EPA 8260B SIM.

^f The chromatographic pattern does not resemble the fuel pattern used for quantitation.

^g The analyte is reported down to the method detection limit. Result is an estimated concentration.

MTBE = Methyl tert-butyl ether

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

PCE = Tetrachloroethene

TCE = Trichloroethene

mg/kg = milligrams per kilogram

Bold values indicate concentrations exceed the Method A cleanup level shown.

Highlighted values exceed Method B cleanup level shown.

Italics indicate analytical reporting limit exceeds lowest cleanup level shown.

U = Undetected at method limit shown

J = Estimated value. Result was below the method reporting limit, but above the method detection limit.

J¹ = Data Validation Qualifier. The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

X = The detection in the diesel range is due to overlap from a gasoline range product.

NA = Not Applicable/Not Available

NC = Not Calculated

- = Not analyzed for this parameter

TABLE 2 Soil Analytical Results - Volatile Petroleum Hydrocarbons (mg/Kg) Plaid Pantry No. 112

Vancouver, Washington

Sample Identification	B-16(6)	B-17(9)	B-18(3)	B-18(9)
Sample Depth (feet bgs)	6	9	3	9
Collection Date	09/02/2015	09/02/2015	09/03/2015	09/03/2015
Aliphatic Hydrocarbon (C5-C6)	6.5	2.4	24	1.8 U
Aliphatic Hydrocarbon (C6-C8)	1.4 UJ	186 J	87 J	41 J
Aliphatic Hydrocarbon (C8-C10)	8.1 J	567 J	277 J	212 J
Aliphatic Hydrocarbon (C10-C12)	175	556	574	409
Aromatic Hydrocarbon (C8-C10)	36	945	548	387
Aromatic Hydrocarbon (C10-C12)	205 J	564 J	513 J	178 J
Aromatic Hydrocarbon (C12-C13)	155 J	180 J	114 J	44 J

Notes:

VPH = Volatile Petroleum Hydrocarbons by NWVPH Method

mg/Kg = Milligrams per kilogram (parts per million) wet weight

bgs = Below ground surface

U = Not detected at method reporting limit shown

 J = Data Validation Qualifier. The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

UJ = Data Validation Qualifier. The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.

TABLE 3 SUMMARY OF SITE-SPECIFIC MTCA METHOD B CALCULATIONS PLAID PANTRY NO. 112 VANCOUVER, WASHINGTON

Parameter	B-16(6)	B-17(9)	B-18(3)	B-18 (9)
	Те	est Current Condition	S	
Measured TPH	587.490	3002.110	2143.180	1273.300
Н	0.2824	1.083	0.8487	0.4694
ECR	4.956E-09	5.231E-09	1.817E-08	5.231E-09
Pass/Fail?	PASS	FAIL	PASS	PASS
	ŀ	Protective Conditions		
Set Criteria	HI = 1	NA	HI=1	HI=1
TPH Concentration	2080.25	NA	2525.20	2714.96
Н	1	NA	1	1
ECR	1.75E-08	NA	2.14E-08	1.12E-08
Pass/Fail	PASS	NA	PASS	PASS
		Test Conditions		
Test TPH	NA	2760	NA	NA
Н	NA	0.995	NA	NA
ECR	NA	4.81E-09	NA	NA
Pass/Fail?	NA	PASS	NA	NA

Arithmetic Average Concentration (based on protective and test conditions) = 2519.26 mg/Kg

Calculated TPH using arithmetic average concentrations of constituents

Parameter	Average
Test Current	Conditions
Measured TPH	1751.250
HI	0.6708
ECR	8.397E-09
Pass/Fail?	PASS
Protective (Conditions
Set Criteria	HI = 1
TPH Concentration	2610.66
HI	1
ECR	1.25E-08
Pass/Fail	PASS
Test Con	ditions
Test TPH	NA
HI	NA
ECR	NA
Pass/Fail?	NA

Median Concentration (as per guidance) = 2618.51 mg/Kg

TABLE 3A

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway) Method B: Unrestricted Land Use (WAC 173-340-740)

Date: 12/3/2015 Site Name: Plaid Pantry 112 Sample Name: B-16-6

		Current	Condition			Adjusted C	ondition		TEST CURRENT CONDITION		
Chemical of Concern or EC group	Measured Soil Conc @dry basis	HQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass or Fail?	Measured TPH Soil Conc, mg/kg= 587.490 HI= 2.824E-01 RISK= 4.956E-09		
	mg/kg	unitless	unitless		mg/kg	unitless	unitless				
Petroleum EC Fraction									Pass or Fail? Pass		
AL_EC >5-6	6.5	5.17E-05			6.50E+00	5.17E-05	-				
AL_EC >6-8	0.7	5.57E-06		-	7.00E-01	5.57E-06			CALCULATE DROTECTIVE CONST		
L_EC >8-10	8.1	3.65E-03			8.10E+00	3.65E-03			CALCULATE PROTECTIVE CONDITION		
L_EC >10-12	175	7.89E-02			1.75E+02	7.89E-02			This tool allows the user to calculate		
L_EC >12-16	0				0.00E+00			-	protective TPH soil concentration based on various soil quality criteria. The Workbook Calculate Protective		
AL_EC >16-21	0			E - 1	0.00E+00				various soil quality criteria. The Workbook uses the same composition ratio as for the TPH Soil Conc		
AL_EC >21-34	0				0.00E+00				measured data.		
AR_EC >8-10	36	4.87E-03			3.60E+01	4.87E-03					
R_EC >10-12	205	1.39E-01			2.05E+02	1.39E-01			Selected Criterion: @HI=1		
R_EC >12-16	155	5.58E-02			1.55E+02	5.58E-02			Most Stringent? YES		
R_EC >16-21	0				0.00E+00		1		Protective TPH Soil Conc, mg/kg = 2080.25		
AR_EC >21-34	0				0.00E+00						
enzene	0.09	2.82E-04	4.96E-09		9.00E-02	2.82E-04	4.95E-09		HI = 1.00E + 00		
oluene	0.365	6.08E-05			3.65E-01	6.08E-05	4.952-09		RISK = 1.75E-08		
thylbenzene	0.185	2.48E-05			1.85E-01	2.48E-05					
otal Xylenes	0.55	3.69E-05			5.50E-01						
aphthalene	0				0.00E+00	3.69E-05 0.00E+00			TEST ADJUSTED CONDITION		
Methyl Naphthalene	0				0.00E+00	0.00E+00 0.00E+00			This tool allows the user to test whether a		
Methyl Naphthalene	0				0.00E+00		85 I I I I I		particular TPH soil concentration is		
Hexane	0	5			0.00E+00	0.00E+00 0.00E+00			protective of human health. The Workbook Test Adjusted uses the same composition ratio as for the TPH Soil		
TBE	0				0.00E+00	0.002+00			uses the same composition ratio as for the TPH Soil measured data.		
hylene Dibromide (EDB)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00				
2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00				
enzo(a)anthracene	0		0.00E+00	For	0.00E+00	0.001100	0.00E+00	For	Tested TPH Soil Conc, mg/kg = 587.4		
enzo(b)fluoranthene	0		0.00E+00	all	0.00E+00		0.00E+00	all	HI = 2.82E-01		
enzo(k)fluoranthene	0		0.00E+00	cPAHs	0.00E+00		0.00E+00	cPAHs	RISK = 4.95E-09		
enzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00	CI ALIS	Pass or Fail? Pass		
nrysene	0		0.00E+00		0.00E+00		0.00E+00				
benz(a,h)anthracene	0	(0.00E+00	Σ Risk=	0.00E+00		0.00E+00	$\Sigma Risk=$			
deno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00			
Sum	587.49	2.82E-01	4.96E-09		5.87E+02	2.82E-01	4.95E-09	0.001100			

TABLE 3B

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway)

Method B: Unrestricted Land Use (WAC 173-340-740)

Date: 12/3/2015 Site Name: Plaid Pantry 112 Sample Name: B-17(9)

		Current C	Condition			Adjusted Co	ndition		TEST CURRENT CONDITION		
Chemical of Concern or EC group	Measured Soil Conc @dry basis	НQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass or Fail?	Measured TPH Soil Conc, mg/kg= 3002.110 HI= 1.083E+00 RISK= 5.231E-09		
	mg/kg	unitless	unitless		mg/kg	unitless	unitless		Pass or Fail? Fail		
Petroleum EC Fraction				Γ			T	T			
AL_EC >5-6	2.4	1.91E-05			2.21E+00	1.76E-05					
L_EC >6-8	186	1.48E-03			1.71E+02	1.36E-03			CALCULATE PROTECTIVE CONDITION		
L EC >8-10	567	2.56E-01			5.21E+02	2.35E-01			This tool allows the user to calculate		
L_EC >10-12	556	2.51E-01			5.11E+02	2.31E-01			protective TPH soil concentration based on		
L_EC >12-16	0				0.00E+00				various soil quality criteria. The Workbook Calculate Protective		
L_EC >16-21	0				0.00E+00				uses the same composition ratio as for the TPH Soil Conc		
AL_EC >21-34	0				0.00E+00				measured data.		
AR_EC >8-10	945	1.28E-01			8.69E+02	1.18E-01					
AR_EC >10-12	564	3.82E-01			5.19E+02	3.51E-01	1.2		Selected Criterion:		
R EC >12-16	180	6.48E-02		F 7 2 3	1.65E+02	5.96E-02			Most Stringent?		
R_EC >16-21	0				0.00E+00		10		Protective TPH Soil Cone, mg/kg =		
AR EC >21-34	0			100000000000000000000000000000000000000	0.00E+00				HI =		
Benzene	0.095	2.97E-04	5.23E-09		8.73E-02	2.73E-04	4.81E-09		RISK =		
oluene	0.385	6.41E-05			3.54E-01	5.90E-05					
thylbenzene	0.63	8.44E-05			5.79E-01	7.76E-05					
otal Xylenes	0.6	4.03E-05			5.52E-01	3.70E-05			TEST ADJUSTED CONDITION		
Japhthalene	0				0.00E+00	0.00E+00			This tool allows the user to test whether a		
Methyl Naphthalene	0				0.00E+00	0.00E+00			particular TPH soil concentration is		
-Methyl Naphthalene	0				0.00E+00	0.00E+00			protective of human health. The Workbook Test Adjusted		
Hexane	0				0.00E+00	0.00E+00			uses the same composition ratio as for the TPH Soil measured data.		
ITBE	0				0.00E+00		1.1.1		ineasured data.		
thylene Dibromide (EDB)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00				
,2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00		Tested TPH Soil Conc, mg/kg = 2760		
enzo(a)anthracene	0		0.00E+00	For	0.00E+00		0.00E+00	For	HI = 9.95E-01		
enzo(b)fluoranthene	0		0.00E+00	all	0.00E+00		0.00E+00	all	RISK = 4.81E-09		
enzo(k)fluoranthene	0		0.00E+00	cPAHs	0.00E+00		0.00E+00	cPAHs	Pass or Fail? Pass		
enzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00		Check Residual Saturation (WAC340-747(10))		
hrysene	0		0.00E+00		0.00E+00		0.00E+00				
bibenz(a,h)anthracene	0		0.00E+00	$\Sigma Risk=$	0.00E+00		0.00E+00	Σ Risk=			
ndeno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00			
Sum	3002.11	1.08E+00	5.23E-09	Fail	2.76E+03	9.95E-01	4.81E-09				

TABLE 3C

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway) Method B: Unrestricted Land Use (WAC 173-340-740)

Date: 12/3/2015 Site Name: Plaid Pantry 112 Sample Name: B-18(3)

0		Current	Condition			Adjusted C	ondition		TEST CURRENT CONDITION
Chemical of Concern or EC group	Measured Soil Conc @dry basis	HQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass or Fail?	Measured TPH Soil Conc, mg/kg= 2143.180 HI= 8.487E-01
	mg/kg	unitless	unitless		mg/kg	unitless	unitless		RISK= 1.817E-08
Petroleum EC Fraction							unitioss		Pass or Fail? Pass
AL_EC >5-6	24	1.91E-04			2.83E+01	2.25E-04			Check Residual Saturation (WAC340-747(10))
AL_EC >6-8	87	6.92E-04			1.02E+02	8.16E-04		-	
AL_EC >8-10	277	1.25E-01			3.26E+02	1.47E-01	1		CALCULATE PROTECTIVE CONDITION
L_EC >10-12	574	2.59E-01		-	6.76E+02	3.05E-01			This tool allows the user to calculate
L_EC >12-16	0			-	0.00E+02	5.05E-01			protective TPH soil concentration based on various soil quality criteria. The Workbook Calculate Protective
L_EC >16-21	0				0.00E+00				various soil quality criteria. The Workbook uses the same composition ratio as for the TPH Soil Conc
AL_EC >21-34	0				0.00E+00				measured data.
AR_EC >8-10	548	7.42E-02			6.46E+02	8.73E-02			
AR_EC >10-12	513	3.47E-01	-		6.04E+02	4.09E-01			
R_EC >12-16	114	4.10E-02			1.34E+02	4.83E-02	- C - C - C		Selected Criterion: @HI=1
R_EC >16-21	0				0.00E+00	1.051 02			Most Stringent? YES
AR_EC >21-34	0				0.00E+00				Protetive TPH Soil Cone, mg/kg = 2525.20
Benzene	0.33	1.03E-03	1.82E-08		3.89E-01	1.22E-03	2.14E-08		HI = 1.00E+00
oluene	1.3	2.17E-04			1.53E+00	2.55E-04	2.14E-08		RISK = 2.14E-08
thylbenzene	2.6	3.48E-04			3.06E+00				
otal Xylenes	1.95	1.31E-04			2.30E+00	4.10E-04 1.54E-04			
aphthalene	0				0.00E+00	0.00E+00			TEST ADJUSTED CONDITION
Methyl Naphthalene	0		if in		0.00E+00	0.00E+00			This tool allows the user to test whether a
Methyl Naphthalene	0				0.00E+00	0.00E+00			particular TPH soil concentration is
Hexane	0				0.00E+00	0.00E+00 0.00E+00			protective of human health. The Workbook Test Adjusted uses the same composition ratio as for the TPH Soil
TBE	0				0.00E+00	0.00E+00			measured data. TPH Soil
hylene Dibromide (EDB)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00		
2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00 0.00E+00		
enzo(a)anthracene	0		0.00E+00	For	0.00E+00	0.00E100	0.00E+00	For	Tested TPH Soil Conc, mg/kg = 2524.51
enzo(b)fluoranthene	0		0.00E+00	all	0.00E+00		0.00E+00	For all	HI = 1.00E + 00
enzo(k)fluoranthene	0		0.00E+00	cPAHs	0.00E+00		0.00E+00	cPAHs	RISK = 2.14E-08
nzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00	CIANS	Pass or Fail? Pass
rysene	0		0.00E+00		0.00E+00		0.00E+00		Check Residual Saturation (WAC340-747(10))
benz(a,h)anthracene	0		0.00E+00	ΣRisk=	0.00E+00		0.00E+00	$\Sigma Risk=$	
deno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	2 RISK= 0.00E+00	
Sum	2143.18	8.49E-01	1.82E-08		2.52E+03	1.00E+00	2.14E-08	0.00E+00	

TABLE 3D

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway) Method B: Unrestricted Land Use (WAC 173-340-740)

Date: 12/3/2015 Site Name: Plaid Pantry 112 Sample Name: B-18(9)

		Current	Condition			Adjusted C	ondition		TEST CURRENT CONDITION		
Chemical of Concern or EC group	Measured Soil Conc	HQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass or	Measured TPH Soil Conc, mg/kg= 1273.300 HI= 4.694E-01		
	@dry basis				tested			Fail?			
	mg/kg	unitless	unitless		mg/kg	unitless	unitless	-	RISK= 5.231E-09		
Petroleum EC Fraction		T		1		and the second			Pass or Fail? Pass		
AL_EC >5-6	0.9	7.16E-06			1.92E+00	1.53E-05		-	Check Residual Saturation (WAC340-747(10))		
AL_EC >6-8	41.4	3.30E-04			8.82E+01	7.02E-04					
AL EC >8-10	212	9.56E-02			4.52E+02	2.04E-01			CALCULATE PROTECTIVE CONDITION		
AL_EC >10-12	409	1.84E-01			8.71E+02	2.04E-01 3.93E-01		1	This tool allows the user to calculate		
AL_EC >12-16	0				0.00E+00	5.95E-01			protective TPH soil concentration based on various soil quality criteria. The Workbook Calculate Protective		
AL_EC >16-21	0				0.00E+00			1	uses the same composition ratio as for the TPH Soil Conc		
AL_EC >21-34	0			- 1	0.00E+00				measured data.		
AR_EC >8-10	387	5.24E-02			8.24E+02	1.12E-01		-			
AR_EC >10-12	178	1.20E-01			3.79E+02	2.57E-01			Selected Criterion: @HI=1		
AR_EC >12-16	43.8	1.58E-02			9.33E+01	3.36E-02			Ŭ		
AR_EC >16-21	0				0.00E+00				Most Stringent? YES		
AR_EC >21-34	0				0.00E+00				Protetive TPH Soil Cone, mg/kg = 2714.96		
Benzene	0.095	2.97E-04	5.23E-09		2.02E-01	6.33E-04	1.11E-08		HI = 1.00E+00		
Foluene	0.37	6.16E-05			7.88E-01	1.31E-04	1.11E-00		RISK = 1.12E-08		
Ethylbenzene	0.185	2.48E-05			3.94E-01	5.28E-05					
Total Xylenes	0.55	3.69E-05			1.17E+00	7.86E-05					
Vaphthalene	0	010721-00			0.00E+00	0.00E+00			TEST ADJUSTED CONDITION		
-Methyl Naphthalene	0				0.00E+00	0.00E+00 0.00E+00			This tool allows the user to test whether a		
-Methyl Naphthalene	0				0.00E+00	0.00E+00			particular TPH soil concentration is protective of human health. The Workbook Test Adjusted		
Hexane	0	1			0.00E+00	0.00E+00			protective of human health. The Workbook Test Adjusted uses the same composition ratio as for the TPH Soil		
TBE	0				0.00E+00	0.00E+00			measured data.		
thylene Dibromide (EDB)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00				
2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00		Tests I TDU G 11 G		
enzo(a)anthracene	0		0.00E+00	For	0.00E+00		0.00E+00	For	Tested TPH Soil Conc, mg/kg = 2712.52		
enzo(b)fluoranthene	0		0.00E+00	all	0.00E+00		0.00E+00	all	HI = 1.00E + 00		
enzo(k)fluoranthene	0		0.00E+00	cPAHs	0.00E+00		0.00E+00	cPAHs	RISK = 1.11E-08 Pass or Fail? Pass		
enzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00		Check Residual Saturation (WAC340-747(10))		
nrysene	0		0.00E+00		0.00E+00		0.00E+00				
ibenz(a,h)anthracene	0		0.00E+00	Σ Risk=	0.00E+00		0.00E+00	$\Sigma Risk=$			
deno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00			
Sum	1273.3	4.69E-01	5.23E-09		2.71E+03	1.00E+00	1.11E-08				

TABLE 3E

Washington State Department of Ecology, Toxics Cleanup Program: Soil Cleanup Level for TPH Sites - Soil Direct Contact: Method B - Unrestricted Land Use

A2. 1B Worksheet for Calculating Soil Cleanup Levels for Protection of Human Health: (Soil Direct Contact Pathway)

Method B: Unrestricted Land Use (WAC 173-340-740) Date: 12/3/2015

Site Name: Plaid Pantry 112 Sample Name: Average

		Current	Condition			Adjusted C	ondition		TEST CURRENT CONDITION		
Chemical of Concern or EC group Conc @dry basis	HQ	RISK	Pass or Fail?	Soil Conc being tested	HQ	RISK	Pass or Fail?	Measured TPH Soil Conc, mg/kg= 1751.250 HI= 6.708E-01 RISK= 8.397E-09			
	mg/kg	unitless	unitless		mg/kg	unitless	unitless		Pass or Fail? Pass		
Petroleum EC Fraction								1	Check Residual Saturation (WAC340-747(10))		
AL_EC >5-6	8.41	6.69E-05		b	1.25E+01	9.98E-05			Cheen Residual Sull allon (WAC340-747(10))		
AL_EC >6-8	78.65	6.26E-04			1.17E+02	9.33E-04			CALCULATE PROTECTIVE CONDITION		
L_EC >8-10	266.02	1.20E-01			3.96E+02	1.79E-01					
L_EC >10-12	428.5	1.93E-01			6.39E+02	2.88E-01			This tool allows the user to calculate protective TPH soil concentration based on		
L_EC >12-16	0				0.00E+00		1		various soil quality criteria. The Workbook Calculate Protective		
AL_EC >16-21	0			1	0.00E+00				uses the same composition ratio as for the TPH Soil Conc		
AL_EC >21-34	0				0.00E+00				measured data.		
AR_EC >8-10	478.9	6.48E-02			7.14E+02	9.66E-02					
AR_EC >10-12	365	2.47E-01			5.44E+02	3.68E-01			Selected Criterion: @HI=1		
R_EC >12-16	123.2	4.44E-02			1.84E+02	6.61E-02			Most Stringent? YES		
R_EC >16-21	0				0.00E+00				Protetive TPH Soil Conc, mg/kg = 2610.66		
R_EC >21-34	0				0.00E+00				HI = 1.00E+00		
Benzene	0.1525	4.77E-04	8.40E-09		2.27E-01	7.11E-04	1.25E-08				
oluene	0.605	1.01E-04			9.02E-01	1.50E-04			RISK = 1.25E-08		
thylbenzene	0.9	1.21E-04		1	1.34E+00	1.80E-04					
otal Xylenes	0.9125	6.12E-05			1.36E+00	9.12E-05					
aphthalene	0				0.00E+00	0.00E+00			TEST ADJUSTED CONDITION		
Methyl Naphthalene	0				0.00E+00	0.00E+00			This tool allows the user to test whether a		
Methyl Naphthalene	0				0.00E+00	0.00E+00			particular TPH soil concentration is protective of human health. The Workbook Test Adjusted		
Hexane	0			1	0.00E+00	0.00E+00			uses the same composition ratio as for the TPH Soil		
TBE	0			1.1.1.1.1.1.1	0.00E+00	01002.00			measured data.		
hylene Dibromide (EDB)	0	C - 7 3	0.00E+00		0.00E+00	0.00E+00	0.00E+00				
2 Dichloroethane (EDC)	0		0.00E+00		0.00E+00	0.00E+00	0.00E+00		Tested TPH Soil Conc, mg/kg = 2610		
enzo(a)anthracene	0		0.00E+00	For	0.00E+00		0.00E+00	For			
enzo(b)fluoranthene	0		0.00E+00	all	0.00E+00		0.00E+00	all	HI = 1.00E+00 RISK = 1.25E-08		
enzo(k)fluoranthene	0		0.00E+00	cPAHs	0.00E+00		0.00E+00	cPAHs	Pass or Fail? Pass		
enzo(a)pyrene	0		0.00E+00		0.00E+00		0.00E+00		Check Residual Saturation (WAC340-747(10))		
nrysene	0		0.00E+00		0.00E+00		0.00E+00				
benz(a,h)anthracene	0		0.00E+00	Σ Risk=	0.00E+00		0.00E+00	Σ Risk=			
deno(1,2,3-cd)pyrene	0		0.00E+00	0.00E+00	0.00E+00		0.00E+00	0.00E+00			
Sum	1751.25	6.71E-01	8.40E-09		2.61E+03	1.00E+00	1.25E-08				

FIGURES

Desktop\Autocad Backup\EES-Autocad\1179-01 Plaid Pantry #112\2016\Jan 2016\1179-01_BM-Data-011916.dwg 11.3.2015

ATTACHMENT A

Apex Labs

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, September 28, 2015

Chris Rhea EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227

RE: PP112 / 1179-03

Enclosed are the results of analyses for work order <u>A5I0103</u>, which was received by the laboratory on 9/3/2015 at 12:25:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex Labs

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227	Projec	Reported: 09/28/15 13:59							
	ANALYTIC	AL REPORT FOR	SAMPLES						
SAMPLE INFORMATION									
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received					
B-16(3)	A5I0103-03	Soil	09/02/15 12:10	09/03/15 12:25					
B-16(6)	A5I0103-04	Soil	09/02/15 12:28	09/03/15 12:25					
B-16(9)	A5I0103-05	Soil	09/02/15 12:40	09/03/15 12:25					
B-16(12)	A5I0103-07	Soil	09/02/15 14:40	09/03/15 12:25					
B-17(3)	A5I0103-10	Soil	09/02/15 15:05	09/03/15 12:25					
B-17(6)	A5I0103-11	Soil	09/02/15 15:10	09/03/15 12:25					
B-17(9)	A5I0103-12	Soil	09/02/15 15:15	09/03/15 12:25					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc			Proje	ect: PP112					
240 N Broadway Ste 203			Project Num	ber: 1179-03			Repor	ted:	
Portland, OR 97227			Project Mana	ger: Chris Rhea			09/28/15	5 13:59	
		AN	ALYTICAL	SAMPLE RES	ULTS				
Gaso	line Rang	e Hydroca	arbons (Ben	zene through N	aphthalene	e) by NWTPH-G	x		
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes	
8-16(3) (A5I0103-03)			Matrix: Soi	l Bato	h: 5090392				
Gasoline Range Organics	ND		3.64	mg/kg dry	50	09/16/15 17:14	NWTPH-Gx (MS)		—
Surrogate: 4-Bromofluorobenzene (Sur)		F	Recovery: 78 %	Limits: 50-150 %	1	"	"		_
1,4-Difluorobenzene (Sur)			82 %	Limits: 50-150 %	"	"	"		
3-16(6) (A5I0103-04)			Matrix: Soi	l Bato	h: 5090184				
Gasoline Range Organics	1080		73.2	mg/kg dry	500	09/08/15 18:59	NWTPH-Gx (MS)		Q-4
Surrogate: 4-Bromofluorobenzene (Sur)		R	ecovery: 111 %	Limits: 50-150 %	1	"	"		_
1,4-Difluorobenzene (Sur)			92 %	Limits: 50-150 %	"	"	"		
3-16(9) (A5I0103-05)			Matrix: Soi	l Bato	h: 5090184				
Gasoline Range Organics	928		83.1	mg/kg dry	500	09/08/15 19:53	NWTPH-Gx (MS)		_
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 109 %	Limits: 50-150 %	1	"	"		-
1,4-Difluorobenzene (Sur)			93 %	Limits: 50-150 %	"		"		
3-16(12) (A5I0103-07RE1)			Matrix: Soi	l Bato	h: 5090205				
Gasoline Range Organics	ND		5.80	mg/kg dry	50	09/09/15 10:55	NWTPH-Gx (MS)		_
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 101 %	Limits: 50-150 %	1	"	"		-
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"		
3-17(3) (A5I0103-10)			Matrix: Soi	l Bato	h: 5090392				
Gasoline Range Organics	ND		7.04	mg/kg dry	50	09/16/15 17:38	NWTPH-Gx (MS)		_
Surrogate: 4-Bromofluorobenzene (Sur)		F	Recovery: 84 %	Limits: 50-150 %	1	"	"		-
1,4-Difluorobenzene (Sur)			83 %	Limits: 50-150 %	"	"	"		
3-17(6) (A5I0103-11RE1)			Matrix: Soi	l Bato	h: 5090205				
Gasoline Range Organics	14.8		8.67	mg/kg dry	50	09/09/15 11:20	NWTPH-Gx (MS)		_
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 113 %	Limits: 50-150 %	1	"	"		_
1,4-Difluorobenzene (Sur)			102 %	Limits: 50-150 %	"		"		
3-17(9) (A5I0103-12RE1)			Matrix: Soi	l Bato	h: 5090205				
Gasoline Range Organics	9180		1530	mg/kg dry	10000	09/09/15 11:44	NWTPH-Gx (MS)		—
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 119 %	Limits: 50-150 %	1	"	"		—

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-03	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 13:59

ANALYTICAL SAMPLE RESULTS

		B	TEX Compo	unds by EPA 82	60B			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
B-16(6) (A5I0103-04)			Matrix: So	il Bato	h: 5090184:			
Benzene	ND		183	ug/kg dry	500	09/08/15 18:59	5035/8260B	
Toluene	ND		732	"	"	"	"	
Ethylbenzene	ND		366	"	"	"	"	
Xylenes, total	ND		1100	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		R	ecovery: 96 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			<i>99 %</i>	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			99 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 70-130 %	"	"	"	
B-17(9) (A5I0103-12)			Matrix: So	il Bato	h: 5090184			
Benzene	ND		192	ug/kg dry	500	09/08/15 21:14	5035/8260B	
Toluene	ND		767	"	"	"	"	
Ethylbenzene	629		383	"	"	"	"	
Xylenes, total	ND		1230	"	"	"	"	R-0
Surrogate: Dibromofluoromethane (Surr)		R	ecovery: 97 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			100 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			98 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			101 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-03	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 13:59
	ANALYTICAL SAMPLE RESULTS	09/28/13

LYTICAL SAMPLE RESULTS

Conventional Chemistry Parameters									
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes	
B-16(6) (A5I0103-04)			Matrix: Soil						
Batch: 5090318									
Total Organic Carbon	1400		200	mg/kg	1	09/16/15 14:35	SM 5310B MOD		
B-17(9) (A5I0103-12)			Matrix: Soil						
Batch: 5090318									
Total Organic Carbon	1100		200	mg/kg	1	09/16/15 14:35	SM 5310B MOD		

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director
EES Environmental Inc			Project	: PP112					
240 N Broadway Ste 203			Project Numbe	r: 1179-03			Rep	orted:	
Portland, OR 97227			Project Manage	r: Chris Rhea			09/28/	15 13:59	
		AN	ALYTICAL S	AMPLE RES	SULTS				
			Percent	Dry Weight					
	- ·		Reporting						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
3-16(3) (A5l0103-03)			Matrix: Soil	Bat	ch: 5090337				
% Solids	82.8		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C		
B-16(6) (A5I0103-04)			Matrix: Soil	Bat	ch: 5090259				
% Solids	77.6		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C		Q-3
3-16(9) (A5I0103-05)			Matrix: Soil	Bat	ch: 5090259				
% Solids	76.4		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C		Q-3
3-16(12) (A5l0103-07)			Matrix: Soil	Bat	ch: 5090259				
% Solids	95.3		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C		Q-3
3-17(3) (A5I0103-10)			Matrix: Soil	Bat	ch: 5090337				
% Solids	87.2		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C		_
3-17(6) (A5I0103-11)			Matrix: Soil	Bat	ch: 5090259				
% Solids	78.2		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C		Q-3
3-17(9) (A5I0103-12)			Matrix: Soil	Bat	ch: 5090259				
% Solids	82.0		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C		Q-3

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Gasoline Range Organics

25.7

5.00

mg/kg wet

EES Environmental Inc				Project	PP112							
240 N Broadway Ste 203			Р	roject Number	: 1179-0	3					Reporte	d:
Portland, OR 97227			Pr	oject Manager	: Chris R	Chea					09/28/15	3:59
		Q	UALITY C	CONTROL	(QC) S.	AMPLE R	ESULTS					
	Gasoline	e Range	Hydrocarb	ons (Benze	ene thro	ough Naph	halene) l	by NWTP	H-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090184 - EPA 5035/	4						Soil					
Blank (5090184-BLK1)				Prep	oared: 09/	08/15 08:28	Analyzed:	09/08/15 14	:51			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 102 %	Limits: 50-	150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			96 %	50-	150 %		"					
LCS (5090184-BS2)				Dror	parad: 00/	08/15 08:28	Analyzad	00/08/15 13	.28			

50

25.0

103

70-130%

Surr: 4-Bromofluorobenzene (Sur)		Recovery: 102 %	Limits: 50-150 %	Dilution: 1x					
1,4-Difluorobenzene (Sur)		98 %	50-150 %	"					
Duplicate (5090184-DUP1)			Prepared: 09	0/02/15 12:28 Analyzed:	09/08/15 1	9:26			
QC Source Sample: B-16(6) (A5I0103-04	l)								
NWTPH-Gx (MS)									
Gasoline Range Organics	517	57.4	mg/kg dry 500	1080			70	30%	Q-04
Surr: 4-Bromofluorobenzene (Sur)		Recovery: 107 %	Limits: 50-150 %	Dilution: 1x					
1,4-Difluorobenzene (Sur)		92 %	50-150 %	"					
Batch 5090205 - EPA 5035A				Soi	I				
Blank (5090205-BLK1)			Prepared: 09	0/09/15 08:00 Analyzed:	09/09/15 1	0:31			
NWTPH-Gx (MS)									
Gasoline Range Organics	ND	3.33	mg/kg wet 50						
Surr: 4-Bromofluorobenzene (Sur)		Recovery: 105 %	Limits: 50-150 %	Dilution: 1x					
1,4-Difluorobenzene (Sur)		99 %	50-150 %	"					
LCS (5090205-BS2)			Prepared: 09	0/09/15 08:00 Analyzed:	09/09/15 1	0:07			
NWTPH-Gx (MS)									
Gasoline Range Organics	23.5	5.00	mg/kg wet 50	25.0	94	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Recovery: 100 %	Limits: 50-150 %	Dilution: 1x					
1,4-Difluorobenzene (Sur)		97 %	50-150 %	"					
Duplicate (5090205-DUP1)			Prepared: 09	0/03/15 08:25 Analyzed:	09/09/15 1	2:33			
QC Source Sample: Other (A5I0181-01)									
NWTPH-Gx (MS)									
Gasoline Range Organics	ND	5.19	mg/kg dry 50	ND				30%	

Apex Laboratories

Philip Nevenberg

240 N Broadway Ste 203Project Number: 1179-03Reported:Portland, OR 97227Project Manager: Chris Rhea09/28/15 13:59	EES Environmental Inc	Project: PP112	
Portland, OR 97227 Project Manager: Chris Rhea 09/28/15 13:59	240 N Broadway Ste 203	Project Number: 1179-03	Reported:
	Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 13:59

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 50354	\						Soil					
Duplicate (5090205-DUP1)				Pre	pared: 09/0	03/15 08:25	Analyzed:	09/09/15 12	:33			
QC Source Sample: Other (A51018)	-01)											
Surr: 4-Bromofluorobenzene (Sur)		Reco	wery: 104 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	-150 %		"					
Duplicate (5090205-DUP2)				Pre	pared: 09/0	09/15 14:26	Analyzed:	09/09/15 17	:57			V-15
QC Source Sample: Other (A510220	-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	1460		229	mg/kg dry	2000		2820			63	30%	Q-0
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 118 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	-150 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-03	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 13:59

	Gasoline	e Range	Hydrocarb	ons (Benz	ene thro	ough Napht	halene)	by NWTP	H-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090392 - EPA 5035/	4						Soi					
Blank (5090392-BLK1)				Pre	pared: 09/	16/15 08:32	Analyzed:	09/16/15 11	:01			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Re	covery: 95 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	-150 %		"					
LCS (5090392-BS2)				Pre	pared: 09/	16/15 08:32	Analyzed:	09/16/15 10	:37			
NWTPH-Gx (MS)												
Gasoline Range Organics	22.7		5.00	mg/kg wet	50	25.0		91	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Re	covery: 92 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	-150 %		"					
Duplicate (5090392-DUP1)				Pre	pared: 09/	11/15 19:15	Analyzed:	09/16/15 18	:52			V-15
QC Source Sample: Other (A51033	1-02)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		6.04	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Re	covery: 78 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			85 %	50	-150 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-03	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 13:59

			BIE	k Compou	nas by E	EPA 8260B	.					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090184 - EPA 5035A							Soil					
Blank (5090184-BLK1)				Prej	pared: 09/0	08/15 08:28	Analyzed:	09/08/15 14	4:51			
5035/8260B												
Benzene	ND		8.33	ug/kg wet	50							
Toluene	ND		33.3	"	"							
Ethylbenzene	ND		16.7	"	"							
Xylenes, total	ND		50.0	"								
Surr: Dibromofluoromethane (Surr)		R	ecovery: 99 %	Limits: 70-	130 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Surr)			100 %	70-	130 %		"					
Toluene-d8 (Surr)			100 %	70-	130 %		"					
4-Bromofluorobenzene (Surr)			103 %	70-	130 %		"					
LCS (5090184-BS3)				Prej	pared: 09/0	08/15 12:28	Analyzed:	09/08/15 1	3:55			
5035/8260B												
Benzene	1010		12.5	ug/kg wet	50	1000		101	65-135%			
Toluene	1000		50.0	"	"	"		100	"			
Ethylbenzene	1010		25.0	"	"	"		101	"			
Xylenes, total	3080		75.0	"	"	3000		103	"			
Surr: Dibromofluoromethane (Surr)		Ree	covery: 105 %	Limits: 70-	130 %	Dili	ution: 1x					
1,4-Difluorobenzene (Surr)			100 %	70-	130 %		"					
Toluene-d8 (Surr)			99 %	70-	130 %		"					
4-Bromofluorobenzene (Surr)			101 %	70-	130 %		"					
Duplicate (5090184-DUP1)				Prej	pared: 09/0	02/15 12:28	Analyzed:	09/08/15 1	9:26			
QC Source Sample: B-16(6) (A510103	3-04)											
5035/8260B												
Benzene	ND		143	ug/kg dry	500		ND				30%	
Toluene	ND		574	"	"		ND				30%	
Ethylbenzene	ND		287	"	"		ND				30%	
Xylenes, total	ND		861	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		R	ecovery: 96 %	Limits: 70-	130 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Surr)			99 %	70-	130 %		"					
Toluene-d8 (Surr)			99 %	70-	130 %		"					
4-Bromofluorobenzene (Surr)			101 %	70-	130 %		"					
Matrix Spike (5090184-MS1)				Droi	pared: 00/	08/15 14:06	Analyzad	00/08/15 2	2.55			V

Apex Laboratories

Philip Nevenberg

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-03	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 13:59

			BTE	X Compou	nds by l	EPA 8260B	6					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090184 - EPA 50354	4						Soi	I				
Matrix Spike (5090184-MS1)				Pre	pared: 09/	08/15 14:06	Analyzed:	09/08/15 2	3:55			V-1:
QC Source Sample: Other (A5I0185	5-08)											
Benzene	1650		18.7	ug/kg dry	50	1490	ND	110	65-135%			
Toluene	1610		74.6	"	"	"	ND	108	"			
Ethylbenzene	1620		37.3	"	"	"	ND	108	"			
Xylenes, total	4900		112	"	"	4480	ND	109	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 105 %	Limits: 70	-130 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Surr)			101 %	70-	130 %		"					
Toluene-d8 (Surr)			97 %	70-	-130 %		"					
4-Bromofluorobenzene (Surr)			102 %	70-	-130 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex La	ıbs
---------	-----

LCS (5090318-BS1)

Duplicate (5090318-DUP1)

QC Source Sample: B-16(6) (A5I0103-04)

10000

1400

200

SM 5310B MOD Total Organic Carbon

SM 5310B MOD Total Organic Carbon 12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227		Project: PP112 Project Number: 1179-03 Project Manager: Chris Rhea					Reported: 09/28/15 13:59					
		Q	UALITY C		· - /							
			Conve	ntional Ch	nemistry	Parameter	rs					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090318 - PSEP T	ос						Soil					
Blank (5090318-BLK1)				Pre	pared: 09/	14/15 07:17	Analyzed: (09/16/15 14	:35			
M 5310B MOD												
Total Organic Carbon	ND		200	mg/kg	1							

1

1

mg/kg

mg/kg

Prepared: 09/14/15 07:17 Analyzed: 09/16/15 14:35

Prepared: 09/14/15 07:17 Analyzed: 09/16/15 14:35

1400

101

85-115%

20%

0.4

10000

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex	Labs
1	

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227				Project: Project Number roject Manager)3					Report 09/28/15	
		Q	UALITY (CONTROL	(QC) S	SAMPLE F	RESULTS					
				Percent	Dry We	eight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090259 - Total Solids	s (Dry We	ight)					Soi					
Duplicate (5090259-DUP1)				Prep	ared: 09	/10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510181-0	05)											
EPA 8000C % Solids	83.6		1.00	% by Weight	1		83.5			0.1	10%	Q·
Duplicate (5090259-DUP2)				Prer	ared: 09	/10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510231-(EPA 8000C	02)			1								
% Solids	84.6		1.00	% by Weight	1		84.8			0.2	10%	Q·
Duplicate (5090259-DUP3)				Prep	ared: 09	/10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510238-2	10)											
EPA 8000C % Solids	87.5		1.00	% by Weight	1		88.2			0.7	10%	Q
Duplicate (5090259-DUP4)				Prer	ared: 09	/10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510249-	06)											
EPA 8000C			1.00	0/1 XX 1 1.						0.5	100/	
% Solids	90.6		1.00	% by Weight	1		91.1			0.5	10%	Q
Duplicate (5090259-DUP5)				Prep	ared: 09	/10/15 14:43	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510244-(EPA 8000C	02)											
% Solids	90.8		1.00	% by Weight	1		90.5			0.3	10%	Q·
Duplicate (5090259-DUP6)				Prep	ared: 09	/10/15 19:44	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510286-6 EPA 8000C	01)											
% Solids	86.6		1.00	% by Weight	1		86.7			0.2	10%	Q·
Duplicate (5090259-DUP7)				Prep	ared: 09	/10/15 19:44	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510293-(01)											
EPA 8000C % Solids	87.0		1.00	% by Weight	1		87.4			0.5	10%	Q

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227				Project: Project Number: Project Manager:	: 1179-03						Reporte 09/28/15 1	
		Q	UALITY (CONTROL ((QC) SA	AMPLE F	RESULTS	8				
				Percent I	Ory Wei	ght						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090337 - Total Solids	(Dry We	eight)					So	il				
Duplicate (5090337-DUP1)				Prep	ared: 09/	4/15 13:12	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A510346-03 EPA 8000C % Solids	³⁾ 99.9		1.00	% by Weight	1		99.9			0.01	10%	
Duplicate (5090337-DUP2)				Prep	ared: 09/	4/15 14:11	Analyzed:	09/15/15 09:	:07			
QC Source Sample: Other (A510188-10 EPA 8000C))											
% Solids	92.3		1.00	% by Weight	1		92.2			0.09	10%	
Duplicate (5090337-DUP3)				Prep	ared: 09/	14/15 14:11	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A510330-04 EPA 8000C % Solids	4) 87.5		1.00	% by Weight	1		87.2			0.3	10%	
Duplicate (5090337-DUP4)				Prep	ared: 09/	4/15 14:11	Analvzed:	09/15/15 09	:07			
QC Source Sample: Other (A510343-08 EPA 8000C												
% Solids	82.4		1.00	% by Weight	1		82.7			0.3	10%	
Duplicate (5090337-DUP5)				Prep	ared: 09/	4/15 17:20	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A510363-02 EPA 8000C % Solids	2) 85.6		1.00	% by Weight	1		88.1			3	10%	
Duplicate (5090337-DUP6)				Prep	ared: 09/	4/15 19:21	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A510373-02 EPA 8000C % Solids	2) 85.5		1.00	% by Weight	1		85.8			0.3	10%	
Duplicate (5090337-DUP7)				Pren	ared: 09/	4/15 19:21	Analyzed	09/15/15 09	:07			
QC Source Sample: Other (A510379-02 EPA 8000C % Solids	2) 82.0		1.00	% by Weight	1		86.5			5	10%	

Duplicate (5090337-DUP8)

QC Source Sample: Other (A5I0383-02)

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Prepared: 09/14/15 19:21 Analyzed: 09/15/15 09:07

Apex	Labs
L	

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-03	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 13:59

	Percent Dry Weight											
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090337 - Total Sol	ids (Dry We	ight)					Soil					
Duplicate (5090337-DUP8)				Prep	oared: 09/	/14/15 19:21	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A5103 EPA 8000C	83-02)											
% Solids	94.3		1.00	% by Weight	1		94.6			0.3	10%	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-03Reported:Portland, OR 97227Project Manager:Chris Rhea09/28/15 13:59

SAMPLE PREPARATION INFORMATION

	0	Basoline Range Hydr	ocarbons (Benzene	e through Naphthalen	e) by NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5090184							
A5I0103-04	Soil	NWTPH-Gx (MS)	09/02/15 12:28	09/02/15 12:28	5.49g/5mL	10g/10mL	0.91
A5I0103-05	Soil	NWTPH-Gx (MS)	09/02/15 12:40	09/02/15 12:40	4.84g/5mL	10g/10mL	1.03
Batch: 5090205							
A5I0103-07RE1	Soil	NWTPH-Gx (MS)	09/02/15 14:40	09/02/15 14:40	4.72g/5mL	10g/10mL	1.06
A5I0103-11RE1	Soil	NWTPH-Gx (MS)	09/02/15 15:10	09/02/15 15:10	4.4g/5mL	10g/10mL	1.14
A5I0103-12RE1	Soil	NWTPH-Gx (MS)	09/02/15 15:15	09/02/15 15:15	4.64g/5mL	10g/10mL	1.08
Batch: 5090392							
A5I0103-03	Soil	NWTPH-Gx (MS)	09/02/15 12:10	09/02/15 12:10	11.64g/5mL	10g/10mL	0.43
A5I0103-10	Soil	NWTPH-Gx (MS)	09/02/15 15:05	09/02/15 15:05	4.54g/5mL	10g/10mL	1.10

	BTEX Compounds by EPA 8260B												
Prep: EPA 5035A Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor						
Batch: 5090184 A510103-04	Soil	5035/8260B	09/02/15 12:28	09/02/15 12:28	5.49g/5mL	10g/10mL	0.91						
A5I0103-04 A5I0103-12	Soil	5035/8260B	09/02/15 15:15	09/02/15 15:15	4.64g/5mL	10g/10mL	1.08						

	Conventional Chemistry Parameters												
Prep: PSEP TOC					Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 5090318													
A5I0103-04	Soil	SM 5310B MOD	09/02/15 12:28	09/14/15 07:17	5g/5g	5g/5g	NA						
A5I0103-12	Soil	SM 5310B MOD	09/02/15 15:15	09/14/15 07:17	5g/5g	5g/5g	NA						

	Percent Dry Weight											
Prep: Total Solids	(Dry Weight	<u>t)</u>			Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 5090259												
A5I0103-04	Soil	EPA 8000C	09/02/15 12:28	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA					
A5I0103-05	Soil	EPA 8000C	09/02/15 12:40	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA					
A5I0103-07	Soil	EPA 8000C	09/02/15 14:40	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA					

Apex Laboratories

Philip Nevenberg

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-03	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 13:59

Percent Dry Weight										
Prep: Total Solids	(Dry Weight)			Sample	Default	RL Prep			
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor			
A5I0103-11	Soil	EPA 8000C	09/02/15 15:10	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA			
A5I0103-12	Soil	EPA 8000C	09/02/15 15:15	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA			
Batch: 5090337										
A5I0103-03	Soil	EPA 8000C	09/02/15 12:10	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA			
A5I0103-10	Soil	EPA 8000C	09/02/15 15:05	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227		Project: PP112 Project Number: 1179-03 Project Manager: Chris Rhea	Reported: 09/28/15 13:59
		Notes and Definitions	
Qualifie	r <u>s:</u>		
Q-04	Spike recovery and/or RPD is outside	control limits due to a non-homogeneous sample matrix.	
Q-38	Oven outside of control limits during of	drying step.	
Q-42	Matrix Spike and/or Duplicate analysi limits. (Refer to the QC Section of Ana	s was performed on this sample. % Recovery or RPD for this analyte is outside lab alytical Report.)	oratory control
R-02	The Reporting Limit for this analyte h	as been raised to account for interference from coeluting organic compounds prese	nt in the sample.
V-15	Sample aliquot was subsampled from sampling.	the sample container. The subsampled aliquot was preserved in the laboratory with	in 48 hours of
Notes an	d Conventions:		
DET	Analyte DETECTED		
ND	Analyte NOT DETECTED at or above	e the reporting limit	
NR	Not Reported		
dry	Sample results reported on a dry weight	ht basis. Results listed as 'wet' or without 'dry'designation are not dry weight correct	eted.
RPD	Relative Percent Difference		
MDL	If MDL is not listed, data has been eva	aluated to the Method Reporting Limit only.	
WMSC	Water Miscible Solvent Correction has	s been applied to Results and MRLs for volatiles soil samples per EPA 8000C.	
Batch QC		nple provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample I acy and precision of the extraction and analysis.	Duplicate (LCS
Blank Policy	chemistry and HCID analyses which a	high bias down to a level equal to $\frac{1}{2}$ the method reporting limit (MRL), except for re assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are nes the level found in the blank for inorganic analyses or less than five times the level form.	potentially
	*	sults to the level found in the blank; water sample results should be divided by the led by 1/50 of the sample dilution to account for the sample prep factor.	dilution factor,
	Results qualified as reported below the qualifications are not applied to J qual	e MRL may include a potential high bias if associated with a B or B-02 qualified bl ified results reported below the MRL.	ank. B and B-02
	QC results are not applicable. For example, spikes, etc.	mple, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes a	nd Matrix
***		y with the Sample and Sample Duplicate results when the %RPD is not available. cate has a reportable result for this analyte, while the other is Non Detect (ND).	In this case,

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Apex Laboratories Philip Nerenberg 12232 S.W. Garden Place Tigard, OR 97223

RE: A5I0103 Lab ID: 1509193

September 22, 2015

Attention Philip Nerenberg:

Fremont Analytical, Inc. received 2 sample(s) on 9/15/2015 for the analyses presented in the following report.

Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mul c. Ledy

Mike Ridgeway President

CLIENT: Project: Lab Order:	Apex Laboratories A5I0103 1509193	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1509193-001	B-16(6)	09/02/2015 12:28 PM	09/15/2015 3:10 PM
1509193-002	B-17(9)	09/02/2015 3:15 PM	09/15/2015 3:10 PM

Case Narrative WO#: 1509193 Date: 9/22/2015

CLIENT:Apex LaboratoriesProject:A510103

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1509193** Date Reported: **9/22/2015**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below LOQ
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- (<20%RSD, <20% Difft of minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank **CCV** - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

WO#: **1509193** Date Reported: **9/22/2015**

Client: Apex Laboratories				Collectior	Date:	9/2/2015 12:28:00 PM
Project: A5I0103						
Lab ID: 1509193-001				Matrix: So	oil	
Client Sample ID: B-16(6)						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Petroleum Hydrocarbon	s by NWVPH			Batc	h ID: 11	845 Analyst: BC
Aliphatic Hydrocarbon (C5-C6)	6.50	1.39		mg/Kg	1	9/16/2015 5:41:00 AM
Aliphatic Hydrocarbon (C6-C8)	ND	1.39		mg/Kg	1	9/16/2015 5:41:00 AM
Aliphatic Hydrocarbon (C8-C10)	8.07	1.39		mg/Kg	1	9/16/2015 5:41:00 AM
Aliphatic Hydrocarbon (C10-C12)	175	27.8	D	mg/Kg	20	9/16/2015 12:16:00 PM
Aromatic Hydrocarbon (C8-C10)	35.6	1.39	Q	mg/Kg	1	9/16/2015 5:41:00 AM
Aromatic Hydrocarbon (C10-C12)	205	27.8	D	mg/Kg	20	9/16/2015 12:16:00 PM
Aromatic Hydrocarbon (C12-C13)	155	27.8	D	mg/Kg	20	9/16/2015 12:16:00 PM
Surr: 1,4-Difluorobenzene	100	65-140		%REC	1	9/16/2015 5:41:00 AM
Surr: Bromofluorobenzene	111	65-140		%REC	1	9/16/2015 5:41:00 AM
NOTES:						

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Analytical Report

WO#: 1509193 Date Reported: 9/22/2015

Client: Apex Laboratories	Collection Date: 9/2/2015 3:15:00 PM							
Project: A5I0103								
Lab ID: 1509193-002				Matrix: S	oil			
Client Sample ID: B-17(9)								
Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Volatile Petroleum Hydrocarbon	s by NWVPH			Batc	h ID: 11	845 Analyst: BC		
Aliphatic Hydrocarbon (C5-C6)	2.35	2.24		mg/Kg	1	9/16/2015 12:51:00 PM		
Aliphatic Hydrocarbon (C6-C8)	186	22.4	D	mg/Kg	10	9/16/2015 6:17:00 AM		
Aliphatic Hydrocarbon (C8-C10)	567	22.4	D	mg/Kg	10	9/16/2015 6:17:00 AM		
Aliphatic Hydrocarbon (C10-C12)	556	22.4	D	mg/Kg	10	9/16/2015 6:17:00 AM		
Aromatic Hydrocarbon (C8-C10)	945	22.4	DQ	mg/Kg	10	9/16/2015 6:17:00 AM		
Aromatic Hydrocarbon (C10-C12)	564	22.4	D	mg/Kg	10	9/16/2015 6:17:00 AM		
Aromatic Hydrocarbon (C12-C13)	180	22.4	D	mg/Kg	10	9/16/2015 6:17:00 AM		
Surr: 1,4-Difluorobenzene	109	65-140		%REC	1	9/16/2015 12:51:00 PM		
Surr: Bromofluorobenzene	129	65-140	D	%REC	10	9/16/2015 6:17:00 AM		
NOTES:								

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Work Order:	1509193
CLIENT:	Apex Laboratories
Project:	A5I0103

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: LCS-11845	SampType: LCS			Units: mg/Kg		Prep Date	e: 9/15/20	15	RunNo: 248	95	
Client ID: LCSS	Batch ID: 11845					Analysis Date	e: 9/16/20	15	SeqNo: 468	958	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	30.4	2.00	30.00	0	101	70	130				
Aliphatic Hydrocarbon (C6-C8)	11.0	2.00	10.00	0	110	70	130				
Aliphatic Hydrocarbon (C8-C10)	9.96	2.00	10.00	0	99.6	70	130				
Aliphatic Hydrocarbon (C10-C12)	9.10	2.00	10.00	0	91.0	70	130				
Aromatic Hydrocarbon (C8-C10)	52.0	2.00	40.00	0	130	70	130				
Aromatic Hydrocarbon (C10-C12)	11.4	2.00	10.00	0	114	70	130				
Aromatic Hydrocarbon (C12-C13)	11.3	2.00	10.00	0	113	70	130				
Surr: 1,4-Difluorobenzene	3.16		2.500		126	65	140				
Surr: Bromofluorobenzene	2.88		2.500		115	65	140				
Sample ID: MB-11845	SampType: MBLK			Units: mg/Kg		Prep Date	e: 9/15/20	15	RunNo: 248	95	
Client ID: MBLKS	Batch ID: 11845					Analysis Date	e: 9/16/20	15	SeqNo: 468	959	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C6-C8)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C8-C10)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C10-C12)	ND	2.00		0	0						
Aromatic Hydrocarbon (C8-C10)	ND	2.00		0	0						
Aromatic Hydrocarbon (C10-C12)	ND	2.00		0	0						
Aromatic Hydrocarbon (C12-C13)	ND	2.00		0	0						
Surr: 1,4-Difluorobenzene	2.71		2.500		108	65	140				
Surr: Bromofluorobenzene	2.71		2.500		108	65	140				
Sample ID: 1509194-001ADUP	SampType: DUP			Units: mg/Kg		Prep Date	e: 9/15/20	15	RunNo: 248	95	
Client ID: BATCH	Batch ID: 11845					Analysis Date	e: 9/16/20	15	SeqNo: 468	955	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	-		RPD Ref Val	%RPD	RPDLimit	Qual
		4.00		0	0			22.00	01.0		
Aliphatic Hydrocarbon (C5-C6)	19.3	1.92		0	0			23.89	21.3	25	

Work Order: 1509193

CLIENT: Apex Laboratories

A5I0103

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 1509194-001ADUP	SampType: DUP			Units: mg/Kg		Prep Dat	te: 9/15/20	15	RunNo: 248	395	
Client ID: BATCH	Batch ID: 11845					Analysis Dat	te: 9/16/20	15	SeqNo: 468	3955	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	557	1.92		0	0			389.4	35.5	25	RE
Aliphatic Hydrocarbon (C10-C12)	474	1.92		0	0			474.9	0.182	25	Е
Aromatic Hydrocarbon (C8-C10)	431	1.92		0	0			413.2	4.22	25	EQ
Aromatic Hydrocarbon (C10-C12)	355	1.92		0	0			362.1	2.03	25	Е
Aromatic Hydrocarbon (C12-C13)	110	1.92		0	0			140.2	23.9	25	Е
Surr: 1,4-Difluorobenzene	2.69		2.395		112	65	140		0		
Surr: Bromofluorobenzene	7.15		2.395		299	65	140		0	0	S

NOTES:

Project:

R - High RPD observed. The method is in control as indicated by the LCS.

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID: 1509194-002AMS	SampType: MS			Units: mg/Kg		Prep Da	te: 9/15/20)15	RunNo: 248	395	
Client ID: BATCH	Batch ID: 11845					Analysis Da	te: 9/16/20)15	SeqNo: 468	3956	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	38.4	1.78	53.29	0	72.1	70	130				
Aliphatic Hydrocarbon (C6-C8)	48.3	1.78	17.76	41.44	38.6	70	130				SE
Aliphatic Hydrocarbon (C8-C10)	237	1.78	17.76	177.6	336	70	130				SE
Aliphatic Hydrocarbon (C10-C12)	224	1.78	17.76	210.6	76.2	70	130				Е
Aromatic Hydrocarbon (C8-C10)	295	1.78	71.05	264.4	43.3	70	130				SE
Aromatic Hydrocarbon (C10-C12)	156	1.78	17.76	154.8	8.92	70	130				SE
Aromatic Hydrocarbon (C12-C13)	46.9	1.78	17.76	43.79	17.5	70	130				S
Surr: 1,4-Difluorobenzene	2.44		2.220		110	65	140				
Surr: Bromofluorobenzene	5.27		2.220		237	65	140				S

NOTES:

S - Analyte concentration was too high for accurate spike recoveries.

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Sample Log-In Check List

С	lient Name:	APEX	Work Order	Number: 1509193	3	
Lo	ogged by:	Mike Ridgeway	Date Receiv	ved: 9/15/201	15 3:10:00 PM	
Cha	nin of Cust	ody				
1.	Is Chain of C	ustody complete?	Yes 🗸	No 🗌	Not Present	
2.	How was the	sample delivered?	UPS			
Log	In					
	Coolers are p	present?	Yes 🗸	No 🗌		
5.						
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No 🗌		
5.		s present on shipping container/cooler?	Yes 🗌	No 🗌	Not Required 🗹	
6	•	npt made to cool the samples?	Yes 🗹	No 🗌		
0.		P				
7.	Were all item	s received at a temperature of $>0^{\circ}C$ to $10.0^{\circ}C^{*}$	Yes 🖌	No 🗌		
_	a					
•.	• • • •	proper container(s)?	Yes 🗹			
-		nple volume for indicated test(s)?	Yes 🗹			
		properly preserved?	Yes 🗹			
11.	Was preserva	ative added to bottles?	Yes 🗋	No 🔽	NA	
12.	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🔽	
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗸	No 🗌		
14.	Does paperw	ork match bottle labels?	Yes 🗹	No 🗌		
15	Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No 🗌		
-		at analyses were requested?	Yes 🗹			
-		ing times able to be met?	Yes 🗸			
<u>Spe</u>	cial Handl	ing (if applicable)				
18.	Was client no	tified of all discrepancies with this order?	Yes 🗌	No 🗌	NA 🗹	-
	Person	Notified: Date	:			
	By Who	m: Via:	eMail	Phone Fax	In Person	
	Regardi	ng:				
	Client Ir	structions:				
19	Additional rer	narks:				

Sample jars not provided to conduct sample moisture check

Item Information

Item #	Temp °C
Cooler	2.3
Sample	7.5
Temp Blank	8.5

SUBCONTRACT ORDER

6059/14115,

Apex Laboratories

A5I0103

 SENDING LABORATORY:
 RECEIVING LABORATORY:

 Apex Laboratories
 Fremont Analytical

 12232 S.W. Garden Place
 3600 Fremont Avenue N.

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 718-0333 Project Manager: Philip Nerenberg 3600 Fremont Avenue N Seattle, WA 98103 Phone :(206) 352-3790 Fax: (206) 352-7178

Sample Name: B-16(6)		Soil Sa	mpled: 09/02/15 12:28	(A5I0103-04)
Analysis	Due	Expires	Comments	
NWTPH-VPH (Sub) Containers Supplied: 40 mL VOA - 5035 (MeOH)	09/25/15 17:00	09/16/15 12:28		
Sample Name: B-17(9)		Soil Sa	mpled: 09/02/15 15:15	(A5I0103-12)
Analysis	Due	Expires	Comments	
NWTPH-VPH (Sub) Containers Supplied:	09/25/15 17:00	09/16/15 15:15		
	B. Sure C Strond Art Watch	veight 2D TA Expira	are on VO, T tron DA	4.
Ruger Kind)			TIDE (Chimar)	

(Shranking	()	UPS (S	hipper)	
Released By UPS (Ship	Date	Received By	Date UN 09/15/15 3:10PM	1
Released By	Date	Received By	Date Page 1 of 1	

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, September 28, 2015

Chris Rhea EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227

RE: PP112 / 1179-03

Enclosed are the results of analyses for work order <u>A5I0181</u>, which was received by the laboratory on 9/4/2015 at 11:40:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227	\$	Project: PP112 ct Number: 1179-03 ct Manager: Chris Rhea		Reported: 09/28/15 14:06				
	ANALYTIC	AL REPORT FOR	SAMPLES					
SAMPLE INFORMATION								
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
B-17(12)	A5I0181-01	Soil	09/03/15 08:25	09/04/15 11:40				
B-18(3)	A5I0181-04	Soil	09/03/15 11:00	09/04/15 11:40				
B-18(6)	A5I0181-05	Soil	09/03/15 11:25	09/04/15 11:40				
B-18(9)	A5I0181-06	Soil	09/03/15 11:35	09/04/15 11:40				
B-18(12)	A5I0181-07	Soil	09/04/15 10:05	09/04/15 11:40				

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc			Proj	ect: PP112					
240 N Broadway Ste 203			Project Nurr	nber: 1179-03			Reported:		
Portland, OR 97227			09/28/15	14:06					
		ANA	LYTICAI	SAMPLE RES	ULTS				
Gasc	line Rang	e Hydrocar	bons (Ben	zene through N	aphthalene	e) by NWTPH-G	x		
			Reporting	Ş					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
3-17(12) (A5l0181-01)		Matrix: Soil Batch: 5090205							
Gasoline Range Organics	ND		5.76	mg/kg dry	50	09/09/15 12:09	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	overy: 101 %	Limits: 50-150 %	1	"	"		
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"		
3-18(3) (A5I0181-04)		Matrix: Soil Batch: 5090205							
Gasoline Range Organics	4770		263	mg/kg dry	2000	09/09/15 12:58	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	overy: 137 %	Limits: 50-150 %	1	"	"		
1,4-Difluorobenzene (Sur)			107 %	Limits: 50-150 %	"	"	"		
3-18(6) (A5I0181-05)			Matrix: So	il Bato	h: 5090205				
Gasoline Range Organics	543		59.1	mg/kg dry	500	09/09/15 13:22	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	overy: 125 %	Limits: 50-150 %	1	"	"		
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"		
3-18(9) (A5I0181-06RE1)			Matrix: So	il Bato	h: 5090205			V-15	
Gasoline Range Organics	7820		744	mg/kg dry	5000	09/09/15 17:07	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	overy: 142 %	Limits: 50-150 %	1	"	"		
1,4-Difluorobenzene (Sur)			105 %	Limits: 50-150 %	"	"	"		
3-18(12) (A5I0181-07)			Matrix: So	il Bato	h: 5090205				
Gasoline Range Organics	ND		5.77	mg/kg dry	50	09/09/15 14:11	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	overy: 106 %	Limits: 50-150 %	1	"	"		
1,4-Difluorobenzene (Sur)			99%	Limits: 50-150 %	"	"	"		

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-03	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 14:06

ANALYTICAL SAMPLE RESULTS

		BT	EX Compo	unds by EPA 82	60B			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
B-18(3) (A5I0181-04)			Matrix: So	il Bato	h: 5090205			
Benzene	ND		657	ug/kg dry	2000	09/09/15 12:58	5035/8260B	
Toluene	ND		2630	"	"	"	"	
Ethylbenzene	2600		1310	"	"	"	"	
Xylenes, total	ND		3940	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rec	overy: 114 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			107 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			97 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			102 %	Limits: 70-130 %	"	"	"	
B-18(9) (A5I0181-06)			Matrix: So	il Bato	h: 5090205			
Benzene	ND		186	ug/kg dry	500	09/09/15 13:47	5035/8260B	
Toluene	ND		744	"	"	"	"	
Ethylbenzene	ND		372	"	"	"	"	
Xylenes, total	ND		1120	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rece	overy: 105 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			105 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			101 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			98 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc			Project	:: PP112					
240 N Broadway Ste 203			Project Numbe	r: 1179-03			Reported:		
Portland, OR 97227			09/28/15 14:06						
		AN	ALYTICAL S	AMPLE RES	SULTS				
			Percent I	Dry Weight					
			Reporting						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
3-17(12) (A5I0181-01)			Matrix: Soil	Bato	ch: 5090259				
% Solids	93.6		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C	Q-3	
8-18(3) (A5I0181-04)			Matrix: Soil	Bato	ch: 5090259				
% Solids	84.3		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C	Q-3	
3-18(6) (A5I0181-05)			Matrix: Soil	Bate	ch: 5090259				
% Solids	83.5		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C	Q-3	
8-18(9) (A5I0181-06)			Matrix: Soil	Bato	ch: 5090259				
% Solids	76.5		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C	Q-3	
3-18(12) (A5I0181-07)			Matrix: Soil	Bate	ch: 5090259				
% Solids	95.5		1.00	% by Weight	1	09/11/15 08:18	EPA 8000C	Q-3	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-03	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 14:06

	Gasoline	Range H	lydrocarb	ons (Benze	ene thro	ugh Naph	thalene) I	by NWT	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 5035A							Soil				-	
Blank (5090205-BLK1)				Prej	pared: 09/	09/15 08:00			0:31			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 105 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	50-	150 %		"					
LCS (5090205-BS2)				Prej	pared: 09/	09/15 08:00	Analyzed:	09/09/15 1	0:07			
NWTPH-Gx (MS)												
Gasoline Range Organics	23.5		5.00	mg/kg wet	50	25.0		94	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 100 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50-	150 %		"					
Duplicate (5090205-DUP1)				Prej	pared: 09/	03/15 08:25	Analyzed:	09/09/15 1	2:33			
QC Source Sample: B-17(12) (A5I018]	1-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.19	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 104 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50-	150 %		"					
Duplicate (5090205-DUP2)				Prej	pared: 09/	09/15 14:26	Analyzed:	09/09/15 1	7:57			V-15
QC Source Sample: Other (A510226-0	1)											
NWTPH-Gx (MS)												
Gasoline Range Organics	1460		229	mg/kg dry	2000		2820			63	30%	Q-
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 118 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50-	150 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: P	PP112	
240 N Broadway Ste 203	Project Number: 1	1179-03	Reported:
Portland, OR 97227	Project Manager: C	Chris Rhea	09/28/15 14:06

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 5035A							Soi	l				
Blank (5090205-BLK1)					Prepared: 09/	/09/15 08:00	Analyzed:	09/09/15 1	0:31			
5035/8260B												
Benzene	ND		8.33	ug/kg w	et 50							
Toluene	ND		33.3	"	"							
Ethylbenzene	ND		16.7	"	"							
Xylenes, total	ND		50.0	"	"							
Surr: Dibromofluoromethane (Surr)		Re	covery: 108 %	Limits:	70-130 %	Dili	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %		70-130 %		"					
Toluene-d8 (Surr)			101 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			103 %		70-130 %		"					
LCS (5090205-BS1)					Prepared: 09/	/09/15 08:00	Analyzed:	09/09/15 0	9:43			
5035/8260B												
Benzene	1010		12.5	ug/kg w	et 50	1000		101	65-135%			
Toluene	988		50.0	"	"	"		99	"			
Ethylbenzene	995		25.0	"	"	"		100	"			
Xylenes, total	3120		75.0	"	"	3000		104	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 104 %	Limits:	70-130 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			100 %		70-130 %		"					
Toluene-d8 (Surr)			98 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			98 %		70-130 %		"					
Duplicate (5090205-DUP1)					Prepared: 09/	/03/15 08:25	Analyzed:	09/09/15 1	2:33			
QC Source Sample: B-17(12) (A51018	31-01)											
5035/8260B												
Benzene	ND		13.0	ug/kg di	•		ND				30%	
Toluene	ND		51.9	"	"		ND				30%	
Ethylbenzene	ND		25.9	"	"		ND				30%	
Xylenes, total	ND		77.8	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Re	covery: 111 %	Limits:	70-130 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			105 %		70-130 %		"					
Toluene-d8 (Surr)			103 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			102 %		70-130 %		"					
Matrix Spike (5090205-MS1)					Prepared: 09/	09/15 14:26	Analyzed:	09/09/15 2	0:02			v

Apex Laboratories

Philip Nevenberg

EES Environmental Inc	Project	: PP112	
240 N Broadway Ste 203	Project Numbe	r: 1179-03	Reported:
Portland, OR 97227	Project Manage	:: Chris Rhea	09/28/15 14:06

BTEX Compounds by EPA 8260B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 50354	4						Soi	I				
Matrix Spike (5090205-MS1)				Pre	pared: 09/	09/15 14:26	Analyzed:	09/09/15 2	0:02			V-1
QC Source Sample: Other (A510226	5-05)											
Benzene	980		13.0	ug/kg dry	50	1040	ND	94	65-135%			
Toluene	980		51.9	"	"	"	ND	94	"			
Ethylbenzene	975		25.9	"	"	"	ND	94	"			
Xylenes, total	3030		77.8	"	"	3120	ND	97	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 105 %	Limits: 70	-130 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			101 %	70-	130 %		"					
Toluene-d8 (Surr)			101 %	70-	130 %		"					
4-Bromofluorobenzene (Surr)			97 %	70-	-130 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex	Labs
1	

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227				Project: Project Number roject Manager)3					Report 09/28/15	
,		Q		CONTROL			RESULTS					
				Percent	Dry We	eight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090259 - Total Solids	s (Dry We	eight)					Soi					
Duplicate (5090259-DUP1)				Prep	ared: 09	/10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: B-18(6) (A5I0181	-05)											
EPA 8000C % Solids	83.6		1.00	% by Weight	1		83.5			0.1	10%	Q
Duplicate (5090259-DUP2)				Prep	ared: 09	/10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510231-(EPA 8000C	02)											
% Solids	84.6		1.00	% by Weight	1		84.8			0.2	10%	Q
Duplicate (5090259-DUP3)				Prep	ared: 09	/10/15 12:05	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510238-	10)											
EPA 8000C % Solids	87.5		1.00	% by Weight	1		88.2			0.7	10%	Q
Duplicate (5090259-DUP4)				, ,	ared: 09	/10/15 12:05	Analyzed:	09/11/15 08	·18			
QC Source Sample: Other (A510249-0	16)			i ieț	area. 07	10/13 12:03	Anaryzeu.	07/11/15 00	.10			
EPA 8000C	,											
% Solids	90.6		1.00	% by Weight	1		91.1			0.5	10%	Q
Duplicate (5090259-DUP5)				Prep	ared: 09	/10/15 14:43	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510244-	02)											
EPA 8000C % Solids	90.8		1.00	% by Weight	1		90.5			0.3	10%	Q
Duplicate (5090259-DUP6)				Prep	ared: 09	/10/15 19:44	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510286-	01)											
EPA 8000C % Solids	86.6		1.00	% by Weight	1		86.7			0.2	10%	Q
Duplicate (5090259-DUP7)				Prer	ared: 09	/10/15 19:44	Analyzed:	09/11/15 08	:18			
QC Source Sample: Other (A510293-0	01)			-1			<u> </u>					
EPA 8000C	<u> </u>			0/1	_		05 ·				1001	
% Solids	87.0		1.00	% by Weight	1		87.4			0.5	10%	Q

Apex Laboratories

Philip Nevenberg

EES Environmental In 240 N Broadway Ste 202 Portland, OR 97227	N Broadway Ste 203 Project Number: 1179-03						Reported: 09/28/15 14:06		
		SAI	MPLE PREPARAT	ION INFORMATION	N				
	G	Basoline Range Hydi	rocarbons (Benzene	e through Naphthalen	e) by NWTPH-Gx				
Prep: EPA 5035A					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
atch: 5090205									
A5I0181-01	Soil	NWTPH-Gx (MS)	09/03/15 08:25	09/03/15 08:25	4.93g/5mL	10g/10mL	1.01		
A5I0181-04	Soil	NWTPH-Gx (MS)	09/03/15 11:00	09/03/15 11:00	5.25g/5mL	10g/10mL	0.95		
A5I0181-05	Soil	NWTPH-Gx (MS)	09/03/15 11:25	09/03/15 11:25	6.09g/5mL	10g/10mL	0.82		
A5I0181-06RE1	Soil	NWTPH-Gx (MS)	09/03/15 11:35	09/03/15 11:35	5.53g/5mL	10g/10mL	0.90		
A5I0181-07	Soil	NWTPH-Gx (MS)	09/04/15 10:05	09/04/15 10:05	4.73g/5mL	10g/10mL	1.06		
			BTEX Compounds	s by EPA 8260B					
Prep: EPA 5035A					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
atch: 5090205									
A5I0181-04	Soil	5035/8260B	09/03/15 11:00	09/03/15 11:00	5.25g/5mL	10g/10mL	0.95		
A5I0181-06	Soil	5035/8260B	09/03/15 11:35	09/03/15 11:35	5.53g/5mL	10g/10mL	0.90		
			Percent Dr	y Weight					
Prep: Total Solids (Dry Weigl	nt)			Sample	Default	RL Prep		

Prep: Total Solids	(Dry Weight	<u>:)</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 5090259							
A5I0181-01	Soil	EPA 8000C	09/03/15 08:25	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA
A5I0181-04	Soil	EPA 8000C	09/03/15 11:00	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA
A5I0181-05	Soil	EPA 8000C	09/03/15 11:25	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA
A5I0181-06	Soil	EPA 8000C	09/03/15 11:35	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA
A5I0181-07	Soil	EPA 8000C	09/04/15 10:05	09/10/15 12:05	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

240 N Bi	vironmental Inc roadway Ste 203 , OR 97227	Project Number:	Project: PP112 Project Number: 1179-03 Project Manager: Chris Rhea			
		Notes and De	efinitions			
Qualifie	ers:					
Q-04	Spike recovery and/or RPD is outside con	ntrol limits due to a non-homoge	neous sample matrix.			
Q-38	Oven outside of control limits during dry	ing step.				
V-15	Sample aliquot was subsampled from the sampling.	sample container. The subsamp	led aliquot was preserved in the laboratory within 48	hours of		
Notes an	nd Conventions:					
DET	Analyte DETECTED					
ND	Analyte NOT DETECTED at or above the	e reporting limit				
NR	Not Reported					
dry	Sample results reported on a dry weight l	basis. Results listed as 'wet' or w	ithout 'dry'designation are not dry weight corrected.			
RPD	Relative Percent Difference					
MDL	If MDL is not listed, data has been evaluated	ated to the Method Reporting Lin	nit only.			
WMSC	Water Miscible Solvent Correction has be	een applied to Results and MRLs	s for volatiles soil samples per EPA 8000C.			
Batch QC	In cases where there is insufficient sample Dup) is analyzed to demonstrate accuracy		es and/or Matrix Spikes, a Lab Control Sample Duplic and analysis.	cate (LCS		
Blank Policy	chemistry and HCID analyses which are	assessed only to the MRL. Samp	¹ / ₂ the method reporting limit (MRL), except for conv ole results flagged with a B or B-02 qualifier are poten inorganic analyses or less than five times the level fo	ntially		
	For accurate comparison of volatile resul and soil sample results should be divided		; water sample results should be divided by the dilution of the sample prep factor.	on factor,		
	Results qualified as reported below the M qualifications are not applied to J qualified		n bias if associated with a B or B-02 qualified blank. I	B and B-02		
	QC results are not applicable. For examp Spikes, etc.	le, % Recoveries for Blanks and	Duplicates, % RPD for Blanks, Blank Spikes and Ma	atrix		

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Apex Laboratories Philip Nerenberg 12232 S.W. Garden Place Tigard, OR 97223

RE: A5I0181 Lab ID: 1509194

September 22, 2015

Attention Philip Nerenberg:

Fremont Analytical, Inc. received 2 sample(s) on 9/15/2015 for the analyses presented in the following report.

Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Mul c. Ledy

Mike Ridgeway President

		Sample Summary		
Client Sample ID	Date/Time Collected	Date/Time Received		
B-18(3)	09/03/2015 11:00 AM	09/15/2015 3:10 PM		
B-18(9)	09/03/2015 11:35 AM	09/15/2015 3:10 PM		
	0181 09194 Client Sample ID B-18(3) B-18(9)	D9194 Date/Time Collected B-18(3) 09/03/2015 11:00 AM		

Case Narrative WO#: 1509194 Date: 9/22/2015

CLIENT:Apex LaboratoriesProject:A5I0181

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1509194** Date Reported: **9/22/2015**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below LOQ
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- (<20%RSD, <20% Difft of minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit

Acronyms:

%Rec - Percent Recovery **CCB** - Continued Calibration Blank **CCV** - Continued Calibration Verification **DF** - Dilution Factor HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **RL** - Reporting Limit **RPD** - Relative Percent Difference SD - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

WO#: **1509194** Date Reported: **9/22/2015**

Client: Apex Laboratories	ries Collection Date: 9/3/2015 11:00:00 AM					
Project: A5I0181						
Lab ID: 1509194-001						
Client Sample ID: B-18(3)						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Petroleum Hydrocarbon	<u>s by NWVPH</u>			Batc	h ID: 11	845 Analyst: BC
Aliphatic Hydrocarbon (C5-C6)	23.9	1.92		mg/Kg	1	9/16/2015 6:53:00 AM
Aliphatic Hydrocarbon (C6-C8)	86.5	38.3	D	mg/Kg	20	9/16/2015 4:45:00 PM
Aliphatic Hydrocarbon (C8-C10)	277	38.3	DQ	mg/Kg	20	9/16/2015 4:45:00 PM
Aliphatic Hydrocarbon (C10-C12)	574	38.3	DQ	mg/Kg	20	9/16/2015 4:45:00 PM
Aromatic Hydrocarbon (C8-C10)	548	38.3	DQ	mg/Kg	20	9/16/2015 4:45:00 PM
Aromatic Hydrocarbon (C10-C12)	513	38.3	D	mg/Kg	20	9/16/2015 4:45:00 PM
Aromatic Hydrocarbon (C12-C13)	114	38.3	D	mg/Kg	20	9/16/2015 4:45:00 PM
Surr: 1,4-Difluorobenzene	112	65-140		%REC	1	9/16/2015 6:53:00 AM
Surr: Bromofluorobenzene	114	65-140	D	%REC	20	9/16/2015 4:45:00 PM
NOTES:						

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Analytical Report

WO#: **1509194** Date Reported: **9/22/2015**

Client: Apex Laboratories	Collection Date: 9/3/2015 11:35:00 AM					
Project: A5I0181						
Lab ID: 1509194-002				Matrix: Se	oil	
Client Sample ID: B-18(9)						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Petroleum Hydrocarbon	<u>s by NWVPH</u>			Batc	h ID: 11	845 Analyst: BC
Aliphatic Hydrocarbon (C5-C6)	ND	1.78		mg/Kg	1	9/16/2015 8:05:00 AM
Aliphatic Hydrocarbon (C6-C8)	41.4	1.78		mg/Kg	1	9/16/2015 8:05:00 AM
Aliphatic Hydrocarbon (C8-C10)	212	35.5	DQ	mg/Kg	20	9/16/2015 5:20:00 PM
Aliphatic Hydrocarbon (C10-C12)	409	35.5	DQ	mg/Kg	20	9/16/2015 5:20:00 PM
Aromatic Hydrocarbon (C8-C10)	387	35.5	DQ	mg/Kg	20	9/16/2015 5:20:00 PM
Aromatic Hydrocarbon (C10-C12)	178	35.5	D	mg/Kg	20	9/16/2015 5:20:00 PM
Aromatic Hydrocarbon (C12-C13)	43.8	1.78		mg/Kg	1	9/16/2015 8:05:00 AM
Surr: 1,4-Difluorobenzene	120	65-140		%REC	1	9/16/2015 8:05:00 AM
Surr: Bromofluorobenzene	116	65-140	D	%REC	20	9/16/2015 5:20:00 PM
NOTES:						

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Work Order:1509194CLIENT:Apex LaboraProject:A510181	atories					١	/olatile F	QC S Petroleum H	SUMMAI Hydrocarb		-
Sample ID: LCS-11845	SampType: LCS			Units: mg/Kg		Prep Da	te: 9/15/20	15	RunNo: 248	395	
Client ID: LCSS	Batch ID: 11845					Analysis Da	te: 9/16/20)15	SeqNo: 468	3958	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C5-C6)	30.4	2.00	30.00	0	101	70	130				
Aliphatic Hydrocarbon (C6-C8)	11.0	2.00	10.00	0	110	70	130				
Aliphatic Hydrocarbon (C8-C10)	9.96	2.00	10.00	0	99.6	70	130				
Aliphatic Hydrocarbon (C10-C12)	9.10	2.00	10.00	0	91.0	70	130				
Aromatic Hydrocarbon (C8-C10)	52.0	2.00	40.00	0	130	70	130				
Aromatic Hydrocarbon (C10-C12)	11.4	2.00	10.00	0	114	70	130				
Aromatic Hydrocarbon (C12-C13)	11.3	2.00	10.00	0	113	70	130				
Surr: 1,4-Difluorobenzene	3.16		2.500		126	65	140				
Surr: Bromofluorobenzene	2.88		2.500		115	65	140				
Sample ID: MB-11845	SampType: MBLK			Units: mg/Kg		Prep Da	te: 9/15/20)15	RunNo: 248	395	
Client ID: MBLKS	Batch ID: 11845					Analysis Da	te: 9/16/20	15	SeqNo: 468	3959	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aliphatic Hydrocarbon (C5-C6)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C6-C8)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C8-C10)	ND	2.00		0	0						
Aliphatic Hydrocarbon (C10-C12)	ND	2.00		0	0						
Aromatic Hydrocarbon (C8-C10)	ND	2.00		0	0						
Aromatic Hydrocarbon (C10-C12)	ND	2.00		0	0						
Aromatic Hydrocarbon (C12-C13)	ND	2.00		0	0						
Surr: 1,4-Difluorobenzene	2.71		2.500		108	65	140				
Surr: Bromofluorobenzene	2.71		2.500		108	65	140				
Sample ID: 1509194-001ADUP	SampType: DUP			Units: mg/Kg		Prep Da	te: 9/15/20)15	RunNo: 248	395	
Client ID: B-18(3)	Batch ID: 11845					Analysis Da	te: 9/16/20	015	SeqNo: 468	3955	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
				-	•			22.00	04.0	05	
Aliphatic Hydrocarbon (C5-C6)	19.3	1.92		0	0			23.89	21.3	25	

Work Order: 1509194

CLIENT: Apex Laboratories

A5I0181

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 1509194-001ADUP	SampType: DUP			Units: mg/Kg		Prep Dat	te: 9/15/20	15	RunNo: 248	395	
Client ID: B-18(3)	Batch ID: 11845					Analysis Dat	te: 9/16/20	15	SeqNo: 468	3955	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	557	1.92		0	0			389.4	35.5	25	RE
Aliphatic Hydrocarbon (C10-C12)	474	1.92		0	0			474.9	0.182	25	Е
Aromatic Hydrocarbon (C8-C10)	431	1.92		0	0			413.2	4.22	25	EQ
Aromatic Hydrocarbon (C10-C12)	355	1.92		0	0			362.1	2.03	25	E
Aromatic Hydrocarbon (C12-C13)	110	1.92		0	0			140.2	23.9	25	Е
Surr: 1,4-Difluorobenzene	2.69		2.395		112	65	140		0		
Surr: Bromofluorobenzene	7.15		2.395		299	65	140		0	0	S

NOTES:

Project:

R - High RPD observed. The method is in control as indicated by the LCS.

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID: 1509194-002AMS	SampType: MS			Units: mg/Kg		Prep Da	te: 9/15/20)15	RunNo: 248	895	
Client ID: B-18(9)	Batch ID: 11845					Analysis Da	te: 9/16/20)15	SeqNo: 468	8956	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	38.4	1.78	53.29	0	72.1	70	130				
Aliphatic Hydrocarbon (C6-C8)	48.3	1.78	17.76	41.44	38.6	70	130				SE
Aliphatic Hydrocarbon (C8-C10)	237	1.78	17.76	177.6	336	70	130				SE
Aliphatic Hydrocarbon (C10-C12)	224	1.78	17.76	210.6	76.2	70	130				Е
Aromatic Hydrocarbon (C8-C10)	295	1.78	71.05	264.4	43.3	70	130				SE
Aromatic Hydrocarbon (C10-C12)	156	1.78	17.76	154.8	8.92	70	130				SE
Aromatic Hydrocarbon (C12-C13)	46.9	1.78	17.76	43.79	17.5	70	130				S
Surr: 1,4-Difluorobenzene	2.44		2.220		110	65	140				
Surr: Bromofluorobenzene	5.27		2.220		237	65	140				S

NOTES:

S - Analyte concentration was too high for accurate spike recoveries.

S - High surrogate recovery attributed to TPH interference. The method is in control as indicated by the Method Blank (MB) & Laboratory Control Sample (LCS).

Sample Log-In Check List

Client Name: APEX		Work Or	der Numbe	er: 1509194		
Logged by: Clare	Griggs	Date Re	ceived:	9/15/2015	5 3:10:00 PM	
Chain of Custody						
1. Is Chain of Custody	complete?	Yes	\checkmark	No 🗌	Not Present	
2. How was the sample	e delivered?	<u>UPS</u>				
<u>Log In</u>						
3. Coolers are present	?	Yes	\checkmark	No 🗌		
4. Shipping container/c	cooler in good condition?	Yes		No 🗌	_	
	ent on shipping container/cooler? for Custody Seals not intact)	Yes		No 🗌	Not Required 🗹	
6. Was an attempt ma	de to cool the samples?	Yes	\checkmark	No 🗌	NA 🗌	
7. Were all items recei	ved at a temperature of $>0^{\circ}C$ to $10.0^{\circ}C^{*}$	Yes		No 🗌		
8. Sample(s) in proper	container(s)?	Yes		No 🗌		
9. Sufficient sample vo	lume for indicated test(s)?	Yes	\checkmark	No 🗌		
10. Are samples proper	y preserved?	Yes	\checkmark	No 🗌		
11. Was preservative ad	ded to bottles?	Yes		No 🗹	NA 🗌	
12. Is there headspace	in the VOA vials?	Yes		No 🗌	NA 🗹	
13. Did all samples cont	ainers arrive in good condition(unbroken)?	Yes	\checkmark	No 🗌		
14. Does paperwork ma	tch bottle labels?	Yes	\checkmark	No 🗌		
15. Are matrices correct	ly identified on Chain of Custody?	Yes		No 🗌		
16. Is it clear what analy	vses were requested?	Yes	\checkmark	No 🗌		
17. Were all holding tim	es able to be met?	Yes	\checkmark	No 🗌		
Special Handling (in	fapplicable)					
	f all discrepancies with this order?	Yes		No 🗌	NA 🗹	
Person Notified	d: Date	:				
By Whom:	Via:	eMa	I Pho	ne 🗌 Fax	In Person	
Regarding:						
Client Instruction	ons:					

Sample jars not provided to conduct sample moisture check

Item Information

Item #	Temp °C
Cooler	2.3
Sample	7.5
Temp Blank	8.5

SUBCONTRACT ORDER

Apex Laboratories

A5I0181

1509 194

SENDING LABORATORY:

Apex Laboratories 12232 S.W. Garden Place Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 718-0333 Project Manager: Philip Nerenberg

RECEIVING LABORATORY:

Fremont Analytical 3600 Fremont Avenue N. Scattle, WA 98103 Phone :(206) 352-3790 Fax: (206) 352-7178

Sample Name: B-18(3)		Soil Sam	apled: 09/03/15 11:00	(A5I0181-04)
Analysis	Due	Expires	Comments	
NWTPH-VPH (Sub) Containers Supplied: (F)40 mL VOA - 5035 (MeOH)	09/25/15 17:00	09/17/15 11:00		18
Sample Name: B-18(9)		Soil Sam	apled: 09/03/15 11:35	(A5I0181-06)
Analysis	Due	Expires	Comments	
NWTPH-VPH (Sub) Containers Supplied: (F)40 mL VOA - 5035 (MeOH)	09/25/15 17:00	09/17/15 11:35		

Be serve weights are on vow. STANDARD TAT WATELT Expiration

Shar	Inhiad		UPS (Shipper)		
Released By	UPS (Shipper)	Date	Received By Shapeen	Date	3:10PM
Released By		Date	Received By	Dute	and the second

Page 1 of 1

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Monday, September 28, 2015

Chris Rhea EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227

RE: PP112 / 1179-01

Enclosed are the results of analyses for work order <u>A5I0188</u>, which was received by the laboratory on 9/4/2015 at 11:40:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227	Reported: 09/28/15 14:46			
	ANALYTIC	AL REPORT FOR	SAMPLES	
	SA		NC	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-19 (3)	A5I0188-01	Soil	09/03/15 14:10	09/04/15 11:40
B-19 (6)	A5I0188-02	Soil	09/03/15 14:20	09/04/15 11:40
B-19 (9)	A5I0188-03	Soil	09/03/15 14:30	09/04/15 11:40
B-19 (12)	A5I0188-04	Soil	09/03/15 16:20	09/04/15 11:40
B-20 (6)	A5I0188-07	Soil	09/03/15 15:45	09/04/15 11:40
B-20 (9)	A5I0188-08	Soil	09/03/15 16:00	09/04/15 11:40
B-20 (12)	A5I0188-10	Soil	09/03/15 17:10	09/04/15 11:40

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain of

EES Environmental Inc			Proj	ect: PP112				
240 N Broadway Ste 203			Project Num	ber: 1179-01			Repor	ted:
Portland, OR 97227			Project Mana	ger: Chris Rhea			09/28/15	14:46
		А	NALYTICAL	SAMPLE RES	SULTS			
Gasc	line Range	e Hydro	carbons (Ben	zene through N	aphthalene	e) by NWTPH-G	x	
A	Result	MDI	Reporting	** *	Dilution	Dete Arreleved	Method	Notos
Analyte	Kesuit	WIDL	Emit	Units	Dilution	Date Analyzed	Method	Notes
B-19 (3) (A5I0188-01)			Matrix: Soi		:h: 5090392			
Gasoline Range Organics	ND		5.75	mg/kg dry	50	09/16/15 18:03	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)			Recovery: 79 % 83 %	Limits: 50-150 % Limits: 50-150 %	1 "			
B-19 (6) (A5I0188-02)			Matrix: Soi	l Bato	:h: 5090205			
Gasoline Range Organics	8.40		7.71	mg/kg dry	50	09/09/15 14:36	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 109 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"		"	
B-19 (9) (A5I0188-03)			Matrix: Soi	l Bato	h: 5090205:			
Gasoline Range Organics	ND		7.91	mg/kg dry	50	09/09/15 15:01	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 108 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	"	"	"	
B-19 (12) (A5I0188-04)			Matrix: Soi	l Bato	:h: 5090205			
Gasoline Range Organics	ND		5.73	mg/kg dry	50	09/09/15 15:26	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 106 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	"	
B-20 (6) (A5I0188-07)			Matrix: Soi	l Bato	h: 5090205:			
Gasoline Range Organics	ND		5.90	mg/kg dry	50	09/09/15 15:51	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 108 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"		"	
B-20 (9) (A5I0188-08RE1)			Matrix: Soi	l Bato	:h: 5090244			
Gasoline Range Organics	475		145	mg/kg dry	1000	09/10/15 12:17	NWTPH-Gx (MS)	F-1
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 127 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			104 %	Limits: 50-150 %	"	"	"	
B-20 (12) (A5I0188-10RE1)			Matrix: Soi	Bato	:h: 5090244			
Gasoline Range Organics	ND		5.67	mg/kg dry	50	09/10/15 11:53	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)			Recovery: 108 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			103 %	Limits: 50-150 %	"		"	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-01	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 14:46

ANALYTICAL SAMPLE RESULTS

		BT	EX Compo	unds by EPA 82	60B			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
3-19 (6) (A5I0188-02)			Matrix: So	il Bato	h: 5090205			
Benzene	ND		19.3	ug/kg dry	50	09/09/15 14:36	5035/8260B	
Toluene	ND		77.1	"	"	"	"	
Ethylbenzene	ND		38.6	"	"	"	"	
Xylenes, total	ND		116	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Reco	overy: 105 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			104 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			102 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			100 %	Limits: 70-130 %	"	"	"	
3-20 (9) (A5l0188-08)			Matrix: So	il Bato	h: 5090205:			
Benzene	ND		18.1	ug/kg dry	50	09/09/15 16:16	5035/8260B	
Toluene	ND		72.5	"	"	"	"	
Ethylbenzene	ND		36.2	"	"	"	"	
Xylenes, total	ND		109	"	"	"	"	
Surrogate: Dibromofluoromethane (Surr)		Rece	overy: 106 %	Limits: 70-130 %	1	"	"	
1,4-Difluorobenzene (Surr)			103 %	Limits: 70-130 %	"	"	"	
Toluene-d8 (Surr)			95 %	Limits: 70-130 %	"	"	"	
4-Bromofluorobenzene (Surr)			96 %	Limits: 70-130 %	"	"	"	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental Inc			Project	: PP112				
240 N Broadway Ste 203			Project Numbe	r: 1179-01			Rep	orted:
Portland, OR 97227			Project Manage	r: Chris Rhea			09/28/	15 14:46
		AN	ALYTICAL S	AMPLE RES	SULTS			
			Percent I	Dry Weight				
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
3-19 (3) (A5I0188-01)			Matrix: Soil	Bato	h: 5090337			
% Solids	86.0		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
8-19 (6) (A5I0188-02)			Matrix: Soil	Bato	:h: 5090337			
% Solids	80.9		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
8-19 (9) (A5I0188-03)			Matrix: Soil	Bato	:h: 5090337			
% Solids	75.6		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
8-19 (12) (A5l0188-04)			Matrix: Soil	Bato	:h: 5090337			
% Solids	91.6		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
8-20 (6) (A5I0188-07)			Matrix: Soil	Bato	:h: 5090337			
% Solids	86.5		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
8-20 (9) (A5I0188-08)			Matrix: Soil	Bato	:h: 5090337			
% Solids	82.0		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	
8-20 (12) (A5I0188-10)			Matrix: Soil	Bato	:h: 5090337			
% Solids	92.2		1.00	% by Weight	1	09/15/15 09:07	EPA 8000C	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc				Project	t: PP112					
240 N Broadway Ste 203			Pro	oject Numbe	er: 1179-01	1			Report	ed:
Portland, OR 97227			Pro	ject Manage	er: Chris R	hea			09/28/15	14:46
		Q	UALITY CO	ONTROL	. (QC) S.	AMPLE R	ESULTS			
		Q	UALITY CO	ONTROL	. (QC) S.	AMPLE R	ESULTS			
	Gasoline	_	UALITY CO		(-)			H-Gx		
	Gasoline	_			(-)			H-Gx %REC	RPD	

Analyte	Result	MDL	Limit	Units	Dıl.	Amount	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090205 - EPA 5035A							Soil					
Blank (5090205-BLK1)				Pre	pared: 09/0	9/15 08:00	Analyzed:	09/09/15 1	0:31			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 105 %	Limits: 50-	150 %	Dii	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	50-	150 %		"					
LCS (5090205-BS2)				Pre	pared: 09/0	9/15 08:00	Analyzed:	09/09/15 1	0:07			
NWTPH-Gx (MS)												
Gasoline Range Organics	23.5		5.00	mg/kg wet	50	25.0		94	70-130%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 100 %	Limits: 50-	150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50-	150 %		"					
Duplicate (5090205-DUP1)				Pre	pared: 09/0	3/15 08:25	Analyzed:	09/09/15 1	2:33			
QC Source Sample: Other (A5I0181-01	1)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.19	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 104 %	Limits: 50-	150 %	Dii	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50-	150 %		"					
Duplicate (5090205-DUP2)				Pre	pared: 09/0	9/15 14:26	Analyzed:	09/09/15 1	7:57			V-15
QC Source Sample: Other (A5I0226-0)	1)											
NWTPH-Gx (MS)												
Gasoline Range Organics	1460		229	mg/kg dry	2000		2820			63	30%	Q-
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 118 %	Limits: 50-	150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50-	150 %		"					
Batch 5090244 - EPA 5035A							Soil					
Blank (5090244-BLK1)				Pre	pared: 09/1	0/15 08:00	Analyzed:	09/10/15 1	1:04			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 107 %	Limits: 50-	150 %	Dii	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	50-	150 %		"					
LCS (5090244-BS2)				Pre	pared: 09/1	0/15 08:00	Analyzed:	09/10/15 1	0:39			
NWTPH-Gx (MS)												
Gasoline Range Organics	21.6		5.00	mg/kg wet	50	25.0		86	70-130%			

Apex Laboratories

Philip Nevenberg

Surr: 4-Bromofluorobenzene (Sur)

Duplicate (5090244-DUP2)

Gasoline Range Organics

Surr: 4-Bromofluorobenzene (Sur)

1,4-Difluorobenzene (Sur)

NWTPH-Gx (MS)

1,4-Difluorobenzene (Sur)

QC Source Sample: Other (A5I0185-16)

EES Environmental Inc				Projec	et: PP112							
240 N Broadway Ste 203			P	oject Numb	er: 1179-0	1					Reporte	ed:
Portland, OR 97227			Pr	oject Manag	er: Chris F	Rhea					09/28/15	14:46
		QI	J ALITY C	ONTROI	L (QC) S	AMPLE F	RESULTS					
	Gasoline	Range	Hydrocarb	ons (Benz	zene thro	ough Naph	thalene)	by NWTPI	l-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090244 - EPA 5035/	4						Soi	l				
LCS (5090244-BS2)				Pre	epared: 09/	/10/15 08:00	Analyzed:	09/10/15 10	:39			
Surr: 4-Bromofluorobenzene (Sur)		Ree	covery: 97 %	Limits: 50	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50)-150 %		"					
Duplicate (5090244-DUP1)				Pr	epared: 09/	/08/15 14:06	Analyzed:	09/10/15 15	:11			V-15
QC Source Sample: Other (A51018	5-12)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.99	mg/kg dry	50		ND				30%	

Limits: 50-150 %

mg/kg dry

Limits: 50-150 %

50-150 %

50-150 %

50

Dilution: 1x

Prepared: 09/08/15 14:06 Analyzed: 09/10/15 17:19

,,

ND

Dilution: 1x

Recovery: 122 %

6.65

111 %

Recovery: 124 %

ND

106 %

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

V-15

30%

EES Environmental Inc 240 N Broadway Ste 203 Portland, OR 97227				oject Numbe		1					Reporte 09/28/15	
	Gasolin	_	UALITY CO		· - /				H-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note

Batch 5090392 - EPA 5035A							Soi				
Blank (5090392-BLK1)				Pre	pared: 09/	16/15 08:32	Analyzed:	09/16/15	11:01		
NWTPH-Gx (MS)											
Gasoline Range Organics	ND		3.33	mg/kg wet	50					 	
Surr: 4-Bromofluorobenzene (Sur)		Re	covery: 95 %	Limits: 50	-150 %	Dil	ution: 1x				
1,4-Difluorobenzene (Sur)			97 %	50-	150 %		"				
LCS (5090392-BS2)				Pre	pared: 09/	6/15 08:32	Analyzed:	09/16/15	10:37		
NWTPH-Gx (MS)											
Gasoline Range Organics	22.7		5.00	mg/kg wet	50	25.0		91	70-130%	 	
Surr: 4-Bromofluorobenzene (Sur)		Re	covery: 92 %	Limits: 50	-150 %	Dil	ution: 1x				
1,4-Difluorobenzene (Sur)			98 %	50-	150 %		"				
Duplicate (5090392-DUP1)				Pre	pared: 09/	1/15 19:15	Analyzed:	09/16/15	18:52		V-15
QC Source Sample: Other (A5I0331-0	2)										
NWTPH-Gx (MS)											
Gasoline Range Organics	ND		6.04	mg/kg dry	50		ND			 30%	
Surr: 4-Bromofluorobenzene (Sur)		Re	covery: 78 %	Limits: 50	-150 %	Dil	ution: 1x				
1,4-Difluorobenzene (Sur)			85 %	50-	150 %		"				

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

EES Environmental Inc	Project: PP	2112	
240 N Broadway Ste 203	Project Number: 117	79-01	Reported:
Portland, OR 97227	Project Manager: Chi	ris Rhea	09/28/15 14:46

QUALITY CONTROL (QC) SAMPLE RESULTS

			Reporting	·· ·		Spike	Source	0/222	%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	RPD	Limit	Notes
Batch 5090205 - EPA 5035A							Soi					
Blank (5090205-BLK1)				I	Prepared: 09/	09/15 08:00	Analyzed:	09/09/15 1	0:31			
5035/8260B												
Benzene	ND		8.33	ug/kg we	et 50							
Toluene	ND		33.3	"	"							
Ethylbenzene	ND		16.7	"	"							
Xylenes, total	ND		50.0	"	"							
Surr: Dibromofluoromethane (Surr)		Re	covery: 108 %	Limits:	70-130 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			104 %		70-130 %		"					
Toluene-d8 (Surr)			101 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			103 %		70-130 %		"					
LCS (5090205-BS1)				I	Prepared: 09/	09/15 08:00	Analyzed:	09/09/15 0	9:43			
5035/8260B												
Benzene	1010		12.5	ug/kg we	et 50	1000		101	65-135%			
Toluene	988		50.0	"	"	"		99	"			
Ethylbenzene	995		25.0	"	"	"		100	"			
Xylenes, total	3120		75.0	"	"	3000		104	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 104 %	Limits:	70-130 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			100 %		70-130 %		"					
Toluene-d8 (Surr)			98 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			98 %		70-130 %		"					
Duplicate (5090205-DUP1)				I	Prepared: 09/	03/15 08:25	Analyzed:	09/09/15 1	2:33			
QC Source Sample: Other (A5I0181-()1)											
5035/8260B												
Benzene	ND		13.0	ug/kg dr	y 50		ND				30%	
Toluene	ND		51.9	"	"		ND				30%	
Ethylbenzene	ND		25.9	"	"		ND				30%	
Xylenes, total	ND		77.8	"	"		ND				30%	
Surr: Dibromofluoromethane (Surr)		Re	covery: 111 %	Limits:	70-130 %	Dil	ution: 1x					
1,4-Difluorobenzene (Surr)			105 %		70-130 %		"					
Toluene-d8 (Surr)			103 %		70-130 %		"					
4-Bromofluorobenzene (Surr)			102 %		70-130 %		"					
Matrix Spike (5090205-MS1)				I	Prepared: 09/	09/15 14:26	Analyzed:	09/09/15 2	0:02			,

Apex Laboratories

Philip Nevenberg

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-01	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 14:46

QUALITY CONTROL (QC) SAMPLE RESULTS

BTEX Compounds by EPA 8260B												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090205 - EPA 5035A	\						Soi					
Matrix Spike (5090205-MS1)				Pre	pared: 09/	09/15 14:26	Analyzed:	09/09/15 2	0:02			V-1
QC Source Sample: Other (A5I0226	-05)											
Benzene	980		13.0	ug/kg dry	50	1040	ND	94	65-135%			
Toluene	980		51.9	"	"	"	ND	94	"			
Ethylbenzene	975		25.9	"	"	"	ND	94	"			
Xylenes, total	3030		77.8	"	"	3120	ND	97	"			
Surr: Dibromofluoromethane (Surr)		Re	covery: 105 %	Limits: 70-	-130 %	Dili	ution: 1x					
1,4-Difluorobenzene (Surr)			101 %	70-	130 %		"					
Toluene-d8 (Surr)			101 %	70-	130 %		"					
4-Bromofluorobenzene (Surr)			97 %	70-	-130 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Apex	Labs
L	

EES Environmental Inc				Project:	PP112								
240 N Broadway Ste 203	Project Number: 1179-01							Report	ed:				
Portland, OR 97227				roject Manager:							09/28/15 14:46		
		Q	UALITY (CONTROL (QC) S	AMPLE F	RESULT	S					
				Percent D)ry We	ight							
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 5090337 - Total Solids (Dry We	eight)					So	il					
Duplicate (5090337-DUP1)				Prepa	ared: 09/	14/15 13:12	Analyzed	: 09/15/15 09	0:07				
QC Source Sample: Other (A510346-03) EPA 8000C)												
% Solids	99.9		1.00	% by Weight	1		99.9			0.01	10%		
Duplicate (5090337-DUP2)				Prepa	ared: 09/	14/15 14:11	Analyzed	: 09/15/15 09	:07				
QC Source Sample: B-20 (12) (A5I0188 EPA 8000C	-10)												
% Solids	92.3		1.00	% by Weight	1		92.2			0.09	10%		
Duplicate (5090337-DUP3)				Prepa	ared: 09/	14/15 14:11	Analyzed	: 09/15/15 09	:07				
QC Source Sample: Other (A510330-04) EPA 8000C)												
% Solids	87.5		1.00	% by Weight	1		87.2			0.3	10%		
Duplicate (5090337-DUP4)				Prepa	ared: 09/	14/15 14:11	Analyzed	09/15/15 09	:07				
QC Source Sample: Other (A510343-08) EPA 8000C)												
% Solids	82.4		1.00	% by Weight	1		82.7			0.3	10%		
Duplicate (5090337-DUP5)				Prepa	ared: 09/	14/15 17:20	Analyzed	: 09/15/15 09	0:07				
QC Source Sample: Other (A510363-02))												
EPA 8000C % Solids	85.6		1.00	% by Weight	1		88.1			3	10%		
Duplicate (5090337-DUP6)				Prepa	ared: 09/	14/15 19:21	Analyzed	: 09/15/15 09	0:07				
QC Source Sample: Other (A510373-02))												
EPA 8000C													
% Solids	85.5		1.00	% by Weight	1		85.8			0.3	10%		
Duplicate (5090337-DUP7)				Prepa	ared: 09/	14/15 19:21	Analyzed	: 09/15/15 09	:07				
QC Source Sample: Other (A510379-02) EPA 8000C)												
% Solids	82.0		1.00	% by Weight	1		86.5			5	10%		
Duplicate (5090337-DUP8)				Prepa	ared: 09/	14/15 19:21	Analyzed	: 09/15/15 09	:07				

Apex Laboratories

Philip Nevenberg

Apex	Labs
L	

EES Environmental Inc	Project: PP112	
240 N Broadway Ste 203	Project Number: 1179-01	Reported:
Portland, OR 97227	Project Manager: Chris Rhea	09/28/15 14:46

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5090337 - Total Solids (Dry Weight) Soil												
Duplicate (5090337-DUP8)				Prep	ared: 09/	14/15 19:21	Analyzed:	09/15/15 09	:07			
QC Source Sample: Other (A5103 EPA 8000C	83-02)											
% Solids	94.3		1.00	% by Weight	1		94.6			0.3	10%	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Environmental IncProject:PP112240 N Broadway Ste 203Project Number:1179-01Reported:Portland, OR 97227Project Manager:Chris Rhea09/28/15 14:46

SAMPLE PREPARATION INFORMATION

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx									
<u> Prep: EPA 5035A</u>					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 5090205									
A5I0188-02	Soil	NWTPH-Gx (MS)	09/03/15 14:20	09/03/15 14:20	4.73g/5mL	10g/10mL	1.06		
A5I0188-03	Soil	NWTPH-Gx (MS)	09/03/15 14:30	09/03/15 14:30	5.25g/5mL	10g/10mL	0.95		
A5I0188-04	Soil	NWTPH-Gx (MS)	09/03/15 16:20	09/03/15 16:20	5.17g/5mL	10g/10mL	0.97		
A5I0188-07	Soil	NWTPH-Gx (MS)	09/03/15 15:45	09/03/15 15:45	5.65g/5mL	10g/10mL	0.89		
Batch: 5090244									
A5I0188-08RE1	Soil	NWTPH-Gx (MS)	09/03/15 16:00	09/03/15 16:00	4.96g/5mL	10g/10mL	1.01		
A5I0188-10RE1	Soil	NWTPH-Gx (MS)	09/03/15 17:10	09/03/15 17:10	5.17g/5mL	10g/10mL	0.97		
Batch: 5090392									
A5I0188-01	Soil	NWTPH-Gx (MS)	09/03/15 14:10	09/03/15 14:10	5.9g/5mL	10g/10mL	0.85		

	BTEX Compounds by EPA 8260B									
Prep: EPA 5035A Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor			
Batch: 5090205	G .'I	5025/02(0D	00/02/15 14 20	00/02/15 14 20	4 70 /5 T	10 /10 I	1.07			
A5I0188-02 A5I0188-08	Soil Soil	5035/8260B 5035/8260B	09/03/15 14:20 09/03/15 16:00	09/03/15 14:20 09/03/15 16:00	4.73g/5mL 4.96g/5mL	10g/10mL 10g/10mL	1.06 1.01			

Percent Dry Weight								
Prep: Total Solids	(Dry Weight	<u>)</u>			Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 5090337								
A5I0188-01	Soil	EPA 8000C	09/03/15 14:10	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA	
A5I0188-02	Soil	EPA 8000C	09/03/15 14:20	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA	
A5I0188-03	Soil	EPA 8000C	09/03/15 14:30	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA	
A5I0188-04	Soil	EPA 8000C	09/03/15 16:20	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA	
A5I0188-07	Soil	EPA 8000C	09/03/15 15:45	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA	
A5I0188-08	Soil	EPA 8000C	09/03/15 16:00	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA	
A5I0188-10	Soil	EPA 8000C	09/03/15 17:10	09/14/15 14:11	1N/A/1N/A	1N/A/1N/A	NA	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

EES Env	vironmental Inc	Project:	PP112				
240 N Br	roadway Ste 203	Project Number:	1179-01	Reported:			
Portland,	, OR 97227	Project Manager:	Chris Rhea	09/28/15 14:46			
		Notes and De	finitions				
Qualifie	ers:						
F-13	The chromatographic pattern does not resemb	ble the fuel standard used for	quantitation				
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.						
V-15	Sample aliquot was subsampled from the sample container. The subsampled aliquot was preserved in the laboratory within 48 hours of sampling.						
Notes ar	nd Conventions:						
DET	Γ Analyte DETECTED						
ND	Analyte NOT DETECTED at or above the reporting limit						
NR	Not Reported						
dry	Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.						
RPD	Relative Percent Difference						
MDL	If MDL is not listed, data has been evaluated	to the Method Reporting Lin	nit only.				
WMSC	Water Miscible Solvent Correction has been a	applied to Results and MRL	s for volatiles soil samples per EPA 8000C.				
Batch QC	In cases where there is insufficient sample pro Dup) is analyzed to demonstrate accuracy and	1 1	es and/or Matrix Spikes, a Lab Control Sample Du and analysis.	plicate (LCS			
Blank Policy	chemistry and HCID analyses which are asse	ssed only to the MRL. Samp	¹ / ₂ the method reporting limit (MRL), except for co le results flagged with a B or B-02 qualifier are p inorganic analyses or less than five times the leve	otentially			
	For accurate comparison of volatile results to and soil sample results should be divided by		; water sample results should be divided by the di o account for the sample prep factor.	lution factor,			
	Results qualified as reported below the MRL qualifications are not applied to J qualified re		a bias if associated with a B or B-02 qualified blar L.	k. B and B-02			
	QC results are not applicable. For example, % Spikes, etc.	6 Recoveries for Blanks and	Duplicates, % RPD for Blanks, Blank Spikes and	Matrix			
***	Used to indicate a possible discrepancy with	the Sample and Sample Dup	licate results when the %RPD is not available. In	this case,			

either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Appendix D

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: Plaid Pantry Store #112

Facility/Site Address: 1002 West Fourth Plain Blvd., Vancouver, WA

Facility/Site No: 11759

VCP Project No.: SW1314

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name:	Chris Rhea
-------	------------

Title: Project Manager

Organization: EES Environmental Consulting, Inc.

Mailing address: 240 N Broadway, Suite 203

City: Portland		State:	OR	Zip code: 97227
Phone: 971.302.7234	Fax:	E	-mail: Chris	@ees-env.com

Step 3: DOCUMENT EVALUATION TYPE AND RESULTS				
A. Exclusion from further evaluation.				
1. Does the	1. Does the Site qualify for an exclusion from further evaluation?			
	(es If you answered "YES," then answer Question 2.			
	No or If you answered " NO" or "UKNOWN," then skip to Step 3B of this form.			
2. What is th	e basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.			
Point of C	ompliance: WAC 173-340-7491(1)(a)			
	All soil contamination is, or will be,* at least 15 feet below the surface.			
	All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.			
Barriers to	Exposure: WAC 173-340-7491(1)(b)			
	All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.			
Undevelop	ped Land: WAC 173-340-7491(1)(c)			
	There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.			
	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.			
Backgrour	Background Concentrations: WAC 173-340-7491(1)(d)			
	Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.			
 * An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. * "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area by wildlife. 				

в	B. Simplified evaluation.					
1.	1. Does the Site qualify for a simplified evaluation?					
	Y	es If you answered "YES," then answer Question 2 below.				
	☐ N Unkn	o or or own If you answered " NO " or " UNKNOWN ," then skip to Step 3C of this form.				
2.	. Did you conduct a simplified evaluation?					
	Y	es If you answered "YES," then answer Question 3 below.				
	□ N	o If you answered " NO ," then skip to Step 3C of this form.				
3.	3. Was further evaluation necessary?					
	□ Y	es If you answered "YES," then answer Question 4 below.				
		o If you answered " NO, " then answer Question 5 below.				
4.	lf further e	valuation was necessary, what did you do?				
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.				
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.				
5.	If no furthe	er evaluation was necessary, what was the reason? Check all that apply. Then skip f this form.				
	Exposure Analysis: WAC 173-340-7492(2)(a)					
		Area of soil contamination at the Site is not more than 350 square feet.				
	X	Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.				
	Pathway A	nalysis: WAC 173-340-7492(2)(b) Table 749-1 is attached.				
		No potential exposure pathways from soil contamination to ecological receptors.				
	Contamina	nt Analysis: WAC 173-340-7492(2)(c)				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.				
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination.				

C.	C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. <i>See</i> WAC 173-340-7493(1)(c).				
1.	. Was there a problem? See WAC 173-340-7493(2).				
	Yes If you answered "YES," then answer Question 2 below.				
	□ N	If you answered " NO ," then identify the reason here and then skip to Question 5 below:			
		No issues were identified during the problem formulation step.			
		While issues were identified, those issues were addressed by the cleanup actions for protecting human health.			
2.	2. What did you do to resolve the problem? See WAC 173-340-7493(3).				
		Used the concentrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to</i> Question 5 below.			
		Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer Questions 3 and 4 below.</i>			
3.		ducted further site-specific evaluations, what methods did you use? nat apply. See WAC 173-340-7493(3).			
		Literature surveys.			
		Soil bioassays.			
		Wildlife exposure model.			
		Biomarkers.			
		Site-specific field studies.			
	Weight of evidence.				
		Other methods approved by Ecology. If so, please specify:			
4.	What was	the result of those evaluations?			
		Confirmed there was no problem.			
		Confirmed there was a problem and established site-specific cleanup levels.			
5.	5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?				
	□ Y	es If so, please identify the Ecology staff who approved those steps:			
	□ No				

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

Northwest Region:Central Region:Attn: VCP CoordinatorAttn: VCP Coordinator3190 160th Ave. SE1250 West Alder St.Bellevue, WA 98008-5452Union Gap, WA 98903-0009Southwest Region:Eastern Region:Attn: VCP CoordinatorAttn: VCP CoordinatorP.O. Box 47775N. 4601 MonroeOhmaia WA 98504 7775Spakeng WA 90205 1205		
Southwest Region:Eastern Region:Attn: VCP CoordinatorAttn: VCP CoordinatorP.O. Box 47775N. 4601 Monroe	Attn: VCP Coordinator 3190 160 th Ave. SE	Attn: VCP Coordinator 1250 West Alder St.
Attn: VCP CoordinatorAttn: VCP CoordinatorP.O. Box 47775N. 4601 Monroe	Bellevue, WA 98008-5452	Union Gap, WA 98903-0009
	Attn: VCP Coordinator	Attn: VCP Coordinator

ECY 090-300 (07/2015) To request ADA accommodation including materials in a format for the visually impaired, call Ecology Toxic Cleanup Program 360-407-7170. Persons with impaired hearing may call Washington Relay Service at 711. Persons with speech disability may call TTY at 877-833-6341.

Table 749-1

Simplified Terrestrial Ecological Evaluation-Exposure Analysis Procedure

Estimate the area of contiguous (connected) <u>undeveloped land</u> on the site or within 500 feet of ar area of the site to the nearest 1/2 acre (1/4 acre if the area is less than 0.5 acre).				
1) From the table below, find the number of points corresponding to the area and enter this number in the field to the right.				
Area (acres) Points 0.25 or less 4 0.5 5 1.0 6 1.5 7 2.0 8 2.5 9 3.0 10 3.5 11	8			
4.0 or more122) Is this an industrial or commercial property? If yes, enter a score of 3. If no, enter a score of 1	3			
3) ^a Enter a score in the box to the right for the habitat quality of the site, using the following rating system ^b . High=1, Intermediate=2, Low=3	3			
4) Is the undeveloped land likely to attract wildlife? If yes, enter a score of 1 in the box to the right. If no, enter a score of 2° .	2			
5) Are there any of the following soil contaminants present: Chlorinated dioxins/furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, pentachlorobenzene? If yes, enter a score of 1 in the box to the right. If no, enter a score of 4.				
6) Add the numbers in the boxes on lines 2-5 and enter this number in the box to the right. If this number is larger than the number in the box on line 1, the simplified evaluation may be ended.	12			

Notes for Table 749-1

^a It is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score of (1) for questions 3 and 4.

^b **Habitat rating system.** Rate the quality of the habitat as high, intermediate or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:

Low: Early <u>successional</u> vegetative stands; vegetation predominantly noxious, nonnative, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.

High: Area is ecologically significant for one or more of the following reasons: Late-<u>successional</u> native plant communities present; relatively high species diversity; used by an uncommon or rare species; <u>priority habitat</u> (as defined by the Washington Department of fish and Wildlife); part of a larger area of habitat where size or fragmentation may be important for the retention of some species.

Intermediate: Area does not rate as either high or low.

^c Indicate "yes" if the area attracts wildlife or is likely to do so. Examples: Birds frequently visit the area to feed; evidence of high use b mammals (tracks, scat, etc.); habitat "island" in an industrial area; unusual features of an area that make it important for feeding animals; heavy use during seasonal migrations.

[Area Calculation Aid] [Aerial Photo with Area Designations] [TEE Table 749-1] [Index of Tables]

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493]

[TEE Home]