Supplemental Remedial Investigation Report

Coleman Oil Company Wenatchee, Washington

Prepared for:
Coleman Oil Company, LLC
335 Mill Road
Lewiston, Idaho 83501

August 8, 2018 Revised October 1, 2018

Prepared by:

HydroCon, LLC 510 Allen Street, Suite B Kelso, Washington 98626 p: (360) 703-6079 f: (360) 703-6086 www.hydroconllc.net

Supplemental Remedial Investigation Report

Nick Varnum

Coleman Oil Company - Wenatchee, Washington

Prepared for:

Coleman Oil Company LLC 335 Mill Road Lewiston, Idaho 83501

HydroCon Project No: 2017-074

August 8, 2018, Revised October 1, 2018

Prepared by:

Nick Varnum, LHG Senior Geologist

Reviewed by:

Craig Hultgren, LHG
Principal Geologist, Project Manager

Table of Contents

1.0	INTRODUCTION	1
1.1	Document Purpose and Objectives	1
1.2		
2.0	BACKGROUND INFORMATION	3
2.1		
2.2	- Pro	
2.3		
3.0	PREVIOUS INVESTIGATIONS	7
3.1		7
3.2		
3.3	,	
3.4		
3.5		
3.6		
4.0	DATA GAPS	14
5.0	SUPPLEMENT REMEDIAL INVESTIGATION TASKS	16
5.1		
5.2		
_	5.2.1 Health and Safety Plan	
5.3	5.2.2 Underground Utility Locates	
	5.3.1 Soil Borings	
_	5.3.2 Monitoring Well Installation	
	5.3.3 Unused Wells	
	5.3.4 Surveying	
5	5.3.5 Groundwater Sampling Procedures	
5	5.3.6 Soil Sampling from the Shoreline of the Columbia River	22
5	5.3.7 Sediment Sampling in Columbia River	23
5	5.3.8 Management of Investigation Derived Waste	24
5.4	Product Recovery	24
	5.4.1 Columbia River	
_	5.4.2 Recovery Sumps	
	5.4.3 Monitoring Wells	
	5.4.4 Sheen Discharge Mitigation System	
5	5.4.5 Volume of Product Released to State Waters	28

5.5	Ну	draulic Testingdraulic Testing	28
5.5	5.1	Hydraulic Testing – February 2018	28
5.5	5.2	Slug Testing - May 2018	29
5.6	Riv	er and Well Water Levels	30
5.7	Fie	eld Investigation Results	31
5.7	7.1	Subsurface Conditions	
5.7		Groundwater Flow Direction and Gradient	
5.8		eld Screening Results	
5.9	An	alytical Results	35
5.9	9.1	Soil Analytical Results	35
5.9	9.2	Shoreline Soil	
5.9	-	Sediment Samples	
5.9		Groundwater Monitoring Well Analytical Results	
5.10		ta Quality Review	
5.11		jacent Properties	
5.12	Ec	ology Well Logs and Local Water Supply	42
5.13	Tei	rrestrial Ecological Evaluation	42
6.0	CON	CEPTUAL SITE MODEL	4 4
6.1	So	urces	44
6.2	Are	eal and Vertical Extent of Soil, Groundwater and Sediment Impacts	44
6.2	2.1	Areal Contaminant Distribution	44
6.2	2.2	Contamination Sources	45
6.2	2.3	Contaminant Migration within the Subsurface	46
6.3	Ch	emicals and Media of Concern and Cleanup Levels	48
6.4	Sit	e Definition	49
6.5	Pre	eliminary Exposure Assessment	49
6.5		Soil-to-Groundwater Pathway	
6.5	5.2	Direct Contact Pathway	50
6.5	5.3	Vapor Pathway	50
6.5.4		Surface Water/Sediment Pathway	50
6.5	5.5	Groundwater/Drinking Water Pathway	51
6.6	Po	tential Data Gaps	51
7.0	RFF	ERENCES	52

Figures

- Figure 1 Site Location Map
- Figure 2 Site Features, Sampling Locations, and Utilities
- Figure 3 Release Location and Product Recovery Volumes as of June 2018
- Figure 4 Total Product Recovery, Maximum Recovery Interval, and (Date of Maximum Recovery Interval)
- Figure 5 Daily Product Recovery and Cumulative Product Recovery
- Figure 6 Total Product Recovery as of January 2018 and as of June 2018
- Figure 7 Relative Flow Rates in Monitoring Wells
- Figure 8 River and Well Water Levels
- Figure 9 Cross Section Locations
- Figure 10 Cross Section A-A'
- Figure 11 Cross Section B-B'
- Figure 12 Cross Section C-C'
- Figure 13 Groundwater Elevation Contours for April 25, 2018
- Figure 14 Groundwater Elevation Contours for April 27, 2018
- Figure 15 Soil Analytical Results
- Figure 16 Shoreline Soil Analytical Results
- Figure 17 Sediment Analytical Results
- Figure 18 Groundwater Analytical Results
- Figure 19 Offsite Facilities
- Figure 20 Area of Well Search on Ecology's Well Report Viewer
- Figure 21 Current Extent of Contamination above Cleanup Levels
- Figure 22 Sandstone Surface Contours and April 27, 2018 Groundwater Contours
- Figure 23 Comparison of Product Recovery, Relative Flow Rates, and Top of Chumstick Formation
- Figure 23 Conceptual Model of Contamination Flow Pathways

HydroCon Page iii

Tables

Table 1 – Well Construction Details

Table 2 - Groundwater Elevation Data

Table 3 – Field Parameters in Groundwater

Table 4 – Light Nonaqueous-Phase Liquid Recovery Categories

Table 5 – Slug Tests - May 2018

Table 6 – Soil Analytical Results - Fuels and BTEX

Table 7 – Sediment Analytical Results – Fuels and BTEX

Table 8 – Groundwater Analytical Results - Fuels and BTEX

Table 9 – Groundwater Analytical Results - Polynuclear Aromatic Hydrocarbons

Appendices

Appendix A – Soil Boring Logs

Appendix B – Well Development Forms

Appendix C – Groundwater Sample Collection Forms

Appendix D - Soil Disposal Receipts

Appendix E – Surface Sediment Field Sample Record

Appendix F – Light Nonaqueous-Phase Liquid Recovery

Appendix G – Drawdown Plots

Appendix H - Laboratory Analytical Reports

Appendix I – Data Validation Reports

Appendix J – Offsite Facility Reviews

Appendix K – Apex Forensics - Characterization MW22-Product

Appendix L – Offsite Wells Logs

Appendix M – Terrestrial Ecological Evaluation

Appendix N – Additional Interim Action #3 Work Plan – Soil and Sediment Sampling

HydroCon Page iv

Acronyms

Able Clean-up Technologies, Inc.
AEC Anderson Environmental Contracting

AIA Additional Interim Action amsl above mean sea level

Anchor Anchor QEA

AST Aboveground Storage Tank

bgs below ground surface

BNSF Burlington Northern – Santa Fe Railroad

BTEX benzene, toluene, ethylbenzene, and total xylenes cPAHs carcinogenic polynuclear aromatic hydrocarbons

COC Chemical of Concern
Coleman Oil Coleman Oil Company
CBR Columbia River Basalt

CUL cleanup level

DRPH diesel range petroleum hydrocarbons Ecology Washington Department of Ecology

EDB 1,2-dibromoethane EDC 1,2-dichloroethane

EDR Environmental Data Resources

EEC Environmental Engineering & Consulting, Inc.

EPA Environmental Protection Agency
EPH Extractable Petroleum Hydrocarbons
ESA Environmental Site Assessment

gmp gallons per minute

GRPH gasoline range petroleum hydrocarbons

HydroCon HydroCon Environmental LLC

μg/L micrograms per liter mg/Kg milligrams per Kilogram

LCS/LCSD Laboratory Control Sample/ Laboratory Control Sample Duplicates

LNAPL light nonaqueous-phase liquid

MDL method detection limit
MRL method reporting limit
MTBE Methyl tert-butyl ether
MTCA Model Toxics Control Act

NRCES NRC Environmental Services, Inc.
ORPH oil range petroleum hydrocarbons

OWS oil water separator

Acronyms (continued)

PAH polynuclear aromatic hydrocarbons

PID photoionization detector

POTW Publically Owned Treatment Works

PUD Public Utilities District

RAO Remedial Action Objective

REC recognized environmental concerns

SAP Sampling and Analysis Plan

HydroCon Page vi

Supplemental Remedial Investigation Work Plan

Coleman Oil Biodiesel Spill Wenatchee, Washington August 8, 2018, Revised October 1, 2018

EXECUTIVE SUMMARY

This SRI Report provides the scope and findings of a subsurface investigation conducted in April 2018. The purpose of the SRI was to collect data necessary to adequately characterize the Site for the purposes of developing and evaluating cleanup action alternatives. The SRI was conducted in accordance with the SRI Work Plan (HydroCon 2018a) that reviewed existing environmental conditions, identified data gaps, and developed a plan to further characterize soil, groundwater, and sediment conditions at the Site.

The SRI was conducted primarily in response to a release of R99 Renewable Diesel at the Coleman Oil Property that was discovered in March 2017. Previous investigations indicated that the release resulted in a petroleum sheen discharge on the Columbia River approximately 400 feet north of the release. Other documented releases at the Property include gasoline releases in 2010 and 2013.

It was the opinion of the previous consultant (Farallon Consulting [Farallon]) that the contamination in the subsurface of the Site was primarily R99 biodiesel. Review of chromatograms from historic and recent sampling by Apex Laboratory's forensic chemist (Mr. Kurt Johnson) has revealed that several other types of petroleum products other than R99 Renewable diesel (gasoline; diesel; lube oil; petroleum byproducts (i.e, polar compounds); Bunker C; and benzene, toluene, ethylbenzene, and total xylenes (BTEX) are present under the Site.

The purpose of the SRI was to fill data gaps that include the following:

- Additional source identification
- Refine the understanding of the nature and extent of soil, groundwater, and sediment contamination
- Refine the understanding of composition and distribution of other petroleum products in the subsurface other than R99 Renewable diesel.
- Develop a better understanding of subsurface conditions and contaminant migration
- Review product recovery and effects of river stage and aquifer elevations
- Update the conceptual site model (CSM)

Due to poor sample recovery experienced by Farallon using the air rotary drilling method, HydroCon selected the sonic drilling method for all borings drilled at the Site. The need for high resolution sampling was necessary to observe the subsurface geology and understand the fate and transport of contamination at the Site, especially considering that the direction of groundwater flow at the Site is opposite the flow in the Columbia River which is adjacent to the Site. Onsite and offsite soil and groundwater conditions were further explored with fifteen borings. Thirteen of the borings were completed as 4-inch diameter monitoring wells. The sonic drilling method provided high quality soil samples and defined the presence of a bedrock layer (Chumstick Formation) which controls the direction of groundwater flow and contaminant transport at the Site. The surface of the bedrock dips to

HydroCon Page ES1

Supplemental Remedial Investigation Work Plan

Coleman Oil Biodiesel Spill Wenatchee, Washington August 8, 2018, Revised October 1, 2018

the north-north east at depths of 6 to 30 feet below the surface. Water levels measurements from the new and existing wells determined that groundwater flow closely parallels the surface of the bedrock.

Field screening (visual observations, odor, PID measurements, distribution of light nonaqueous-phase liquid [LNAPL]) and soil and groundwater laboratory analytical results show that contaminants are most concentrated near on-property sources and in groundwater near the contact of the overlying alluvium and the bedrock formation.

HydroCon conducted additional review of neighboring properties using regulatory database information provided by EDR, a contract information services company, Sanborn maps, historic air photos, historic city directories, historic topo maps, review of the Washington State Department of Ecology (Ecology) databases, and records requests with Ecology. This review identified two facilities (Chelan County PUD/Wenatchee Substation and Burlington Northern Santa Fe (BNSF) railroad), both located north of the Coleman property, that may be contributing to soil and groundwater impacts north of the property (e.g., in the area of MW22).

Product recovery efforts on the Columbia River, in monitoring wells, and in product recovery sumps have been in place since March 2017. The rates of product recovery have decreased significantly with less than 10 percent of the total accumulation of product occurring since January 2018 at most locations. Hydraulic testing in February and May 2018 and installation and operation of pumps in wells MW-9, MW-10 and BH-1 since early May has shown that there is high variability in subsurface flow rates along the migration pathway. This variability appears to be attributed to bedrock geology where complex fractures and/or localized channeling are controlling product migration. Maintaining summer time water levels in the three wells near the observed sheen discharge area (MW-9, MW-10 and BH-1) appears to be effective at reducing the occurrence of sheen in the river.

To date, three releases have been documented at the Site, R99 Renewable diesel (2017) and gasoline (2010 and 2013). This investigation focused on the R99 Renewable diesel release and its discharge to the river. This and previous investigations also document the presence of automotive gasoline, degraded diesel fuel, coal tar, Bunker C, petroleum byproducts (i.e., polar organics), and BTEX.

Investigations to date at the Site provide a reasonable estimate of the nature and extent of contamination on and offsite (the Site). The extent of soil and groundwater impacts is constrained to the south and does not extend south of the Property. Some site-related impact may extend west of the property, under the rail tracks, but groundwater flow is towards the east-northeast in this area. Groundwater was not sampled east of the property due to low water levels, but soil samples collected from MW15 and MW18 do not indicate impacts in this area. The northernmost and downgradient extent of the impacts appears to extend to the area north of the sheen discharge area to MW21. MW22 is also impacted, but there is strong evidence that the impacts are from a different source.

HydroCon Page ES2

Supplemental Remedial Investigation Work Plan

Coleman Oil Biodiesel Spill Wenatchee, Washington August 8, 2018, Revised October 1, 2018

Exposure pathways and potential receptors were evaluated with currently available data. Impacted soil has resulted in groundwater contamination and the soil-to-groundwater pathway is complete. The direct contact pathway point of compliance for human receptors is 15 feet below ground surface. This pathway is complete at areas on the property near release areas and in surface soils near the sheen discharge area, however, contaminants beneath the majority of the property and the area between the property and sheen discharge area are a depths exceeding 15 feet. A remedial excavation was conducted in April-June 2017 in the central portion of the site, however, no confirmations samples were collected and impacted soil may be present at depths of 15 or less in this area. The vapor intrusion exposure pathway is considered to be potentially complete at the Site. Migration of contaminants to the Columbia River via groundwater discharge has been demonstrated at the Site and the surface water pathway is complete. Groundwater in the vicinity of the Site is not developed as a drinking water resource and is not likely to be developed in the future due to a well-established municipal water supply system and the groundwater/drinking water pathway is not complete. A Simplified TEE was conducted for the site. Using the scoring system of MTCA Table 749-1, the TEE can be ended and no further evaluation is required.

HydroCon Page ES3

1.0 INTRODUCTION

HydroCon Environmental, LLC (HydroCon), has prepared this Draft Supplemental Remedial Investigation (SRI) Report on behalf of Coleman Oil Company (Coleman Oil) to collect data to evaluate cleanup actions in response to a release of renewable diesel (R99) fuel from leaking underground piping at the Coleman Oil fuel storage facility at 3 Chehalis Street in Wenatchee, Washington (herein referred to as the Property). The SRI has been prepared to meet the requirements of Exhibit B – Scope of Work and Schedule of Agreed Order No. DE 15389 entered into by Coleman Oil Company, LLC; Coleman, Services IV, LLC; and Ecology with an effective date of October 30, 2017 (Agreed Order). The Agreed Order is a continuation of previous and ongoing significant oil spill response activities and removal actions conducted under the Administrative Order on Consent for Removal Activities issued by the U. S. Environmental Protection Agency (EPA) on May 5, 2017 (EPA Docket No. CWA-10-2017-0114).

The Site, as defined under the Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Chapter 173-340 of the Washington Administrative Code (WAC §173-340-200), comprises the portion of the Property and adjacent properties where hazardous substances have come to be located in soil, groundwater, and surface water at concentrations suspected to exceed applicable cleanup levels (herein referred to as the Site) as a result of releases at the Property.

1.1 Document Purpose and Objectives

Environmental Engineering & Consulting, Inc. (EEC) and HydroCon have been retained by Coleman Oil to provide environmental consulting services for this project. This SRI Report provides the scope and findings of a subsurface investigation conducted in March through May 2018. The purpose of the SRI was to collect data necessary to adequately characterize the Site for the purposes of developing and evaluating cleanup action alternatives. The SRI was conducted in accordance with the SRI Work Plan (HydroCon 2018a) that reviewed existing environmental conditions, identified data gaps, and developed a plan to further characterize soil, groundwater, and sediment conditions at the Site.

1.2 **Document Organization**

The SRI report is organized as follows:

Section 2, Background Information, provides a description of the Site, Property ownership, and geologic and hydrogeologic setting.

Section 3, Previous Investigations, describes the environmental investigations that have been completed at the Site previously.

Section 4, Data Gaps, identifies data gaps addressed in this investigation based on previous work conducted at the Site.

Section 5, Supplemental Remedial Investigation Tasks, presents and describes additional environmental investigations conducted during this SRI to define the nature and extent of impacts from Site releases.

Section 6, Conceptual Site Model, presents a conceptual model and an updated exposure assessment for the Site.

Section 7, **References**, lists the references cited in this report.

2.0 BACKGROUND INFORMATION

The following section provides a summary of the Property location and description, geologic setting, historical land use, environmental history, and contaminants and media of concern at the Property. HydroCon began providing environmental consulting services for the project in December 2017. Most of the information provided for this section is adapted from Farallon's *Preliminary Cleanup Alternatives Evaluation* (2017b) and *Supplemental Data Summary Report* (2017c).

2.1 Site Description

The Property is located at 3 East Chehalis Street in Wenatchee, Washington (Figure 1). The Chelan County Assessor (2017) online records listed the street address as 600 South Worthen Street with a legal description of Manufacturers Amended Block 4 Lots 1-9, 1.27 acres. The Property was listed in the Chelan County Assessor (2017) online records as County Assessor Property Identification No. 10398, Treasurer Map Property Identification No. (Property ID) 55798, and Chelan County Assessor Parcel No. 222011693005 with a listed owner of Coleman Services V LLC.

The Site comprises the following four parcels:

- Chelan County Parcel No. 222011693005 with a listed owner of Coleman Services V LLC (Coleman property);
- Chelan County Parcel No. 222010693001 with a listed owner of Chelan County Public Utilities Department (PUD) (substation to north of Coleman property);
- Chelan County Parcel No. 222011693105 with a listed owner of Chelan County PUD (shoreline east of Coleman Property); and
- Chelan County Parcel No. 222011693100 with a listed owner of Chelan County PUD (shoreline to northeast of Coleman property).

The property and adjacent properties are within the City of Wenatchee's industrial zoning district as of July 14, 2017¹.

HydroCon Page 3

_

¹ http://www.wenatcheewa.gov/home/showdocument?id=17440

2.2 Property Ownership and Operational History

The historical information provided herein regarding the Property was acquired from Blue Mountain Environmental Consulting (2007) and Farallon (2017b).

The Property was first owned and occupied by Standard Oil Company and has been a bulk fuel facility since 1921. Based on information obtained from Sanborn maps, two vertical gasoline aboveground storage tanks (ASTs), four oil ASTs, one kerosene AST, and four structures were present on the Property in the 1920s. The number and configurations of ASTs have changed over time. A 4,000-square-foot, wood-framed building used for offices and warehouse storage was constructed on the northwestern corner of the Property in 1935. By the 1950s, a tank farm was present on the south-central portion of the Property and included 10 approximately 20,000-gallon vertical ASTs.

The Chelan County Assessor (2017) online records indicated that North Central Petroleum, Inc. purchased the Property in 1980. In the early 1990s, a tank farm was present south of the warehouse and office building and contained eleven 19,000-gallon horizontal ASTs and one 1,000-gallon horizontal waste oil AST. An underground storage tank (UST) and cardlock system were installed in 1997, which included inventory control and tank monitoring features and two pump islands (Blue Mountain Environmental Consulting, 2007). This UST has four compartments.

Coleman Services IV, LLC purchased the Property in January 2007 from North Central Petroleum, Inc. (Chelan County Assessor 2017). Some features of the Property were modified over the next 10 years. The eleven 19,000-gallon ASTs were replaced by eight 2,100-gallon ASTs (Tank Farm B) (Figure 2), and one of the two pump islands was dismantled. From 2010 to 2017, the Property included a 4,000-square-foot wood-framed building used for offices and warehouse storage; a 1,591-square-foot, wood-framed storage building on the northeastern corner of the Property; a truck fuel loading rack east of the warehouse and office building; a four-compartment UST and associated card lock pump island on the eastern and south-central portions of the Property; and two tank farms (Figure 2). Tank Farm B, south of the warehouse and office building, included eight 2,100-gallon petroleum ASTs and associated pumps (Figure 2). Tank Farm A, located on the south-central portion of the Property included two 25,000-gallon ASTs, two 20,000-gallon ASTs, one 19,500-gallon AST, five 19,400-gallon ASTs, and associated pumps and piping (Figure 2). The northern portion of the Property was fenced, including the buildings, bulk fuel tank farms, and truck fuel loading rack. The card lock pump island was present south of and outside of the fence (Blue Mountain Environmental Consulting, 2007).

In March and April 2017, the truck fuel loading rack, associated piping, and the eight 2,100-gallon ASTs in Tank Farm B were dismantled and removed from the Property. In June and July 2017, the 4,000-square-foot, wood-framed warehouse and office building and the 1,591-square-foot storage building were demolished and removed, and the remaining ASTs were emptied of petroleum and cleaned.

Currently, only the USTs, card lock pump island, and a fenced truck parking area to the south of the card lock are used in fueling operations conducted at the Property.

2.3 Geologic & Hydrogeologic Setting

The Property is located in the Wenatchee Valley approximately 40 feet west south-west of the Columbia River at an elevation of approximately 660 feet above mean sea level (Figure 1). The topography of the Property slopes very gently to the north north-east parallel to the Columbia River. The area is dominated by basalt lava flows of the Columbia River Basalt (CBR) Supergroup, alluvial ice-age flood deposits from the Columbia River and tributaries, and the Chumstick Formation at depth.

The US Geological Survey (Gresens et. al., 1981) describes the alluvial deposits (Qcgu) as moderately sorted mixed-lithology cobble-to-boulder gravel containing rare angular boulders as large as 2 m of Swakane Biotite Gneiss and quartz diorite mantled with 0.5 to 1.5 m of loess. Soil contains neither textural B-horizon nor K-horizon, calcification being restricted to overgrowths less than 1 mm thick on the undersides of stones. The Qcgl Unit is mapped at the Site and is similar to Qcgu. Gravel bars are 60 to 90 m above the river and embellished with giant current dunes spaced at 100 m.

The Chumstick Formation is bedrock of middle Eocene age consisting of alluvial sandstones with lacustrine mudstone common near the top of the formation. The formation is thousands feet thick and rests on crystalline bedrock (Gresens et. al., 1981). The Chumstick Formation (Tc) is described as sandstone, shale, and conglomerate. The formation is white, locally gray, medium- to coarse-grained, micaceous feldspathic sandstone averaging 35 to 40 percent quartz and 10 to 15 percent lithic clasts, 90 percent volcanic rock that is cross-bedded and channeled, and interbedded with lesser amounts of thin pebbly sandstone and green to bluish shale. Naturally occurring hydrocarbons are possibly present in the upper lacustrine portion of the formation. Type III organic matter (originating from terrestrial plants) has been detected in lacustrine facies by others (Tennyson and Totman, 1987).

The soil beneath the surface of the Property is consistent with alluvial deposits and consists primarily of silt and silty sand, with layers of clay, sand, gravel and cobbles. Boulders up to 4 feet in diameter were excavated during trenching activities conducted at the Site in 2017. The Chumstick Formation is present beneath the alluvial deposits at depths ranging from 12 to 35 feet and extending below the maximum depth explored.

The groundwater hydraulic gradient at the Site is variable and steepens to the east with proximity to the Columbia River. Near the southern portion of the Coleman property, groundwater flow to the east then flows northeast to north. The depth to groundwater and the groundwater flow direction appears to be coincident with the top of the Chumstick Formation. Addition discussion on groundwater is provided in Section 5.7.2.

Farallon's (2017b) initial assessment of the sanitary sewer and other subsurface utilities in South Worthen Street (Figure 2) indicated that groundwater levels are likely well below the utilities and concluded that the utility lines cannot be acting as preferential migration pathways.

3.0 PREVIOUS INVESTIGATIONS

The following Sections 3.1 through 3.2 describe the environmental investigations at the Site as described by Farallon (2017b). Other environmental investigations of the Site are described in Sections 3.3 through 3.6.

3.1 2010 to 2013 Environmental Investigations

On June 2, 2010, a review of daily inventory records for AST 15A by Coleman Oil personnel revealed a discrepancy of approximately 180 gallons of unleaded gasoline (Farallon 2014). Subsequent inspection of AST 15A and associated piping revealed gasoline leaking from a fill valve and flowing onto the concrete ground surface in the AST 15A valve control box on the southern portion of Tank Farm A. In addition, gasoline was observed on the ground surface east of the AST 15A valve control box in an unpaved area between the Tank Farm A containment area and the south-adjacent former fuel dispenser island. Coleman Oil personnel immediately stopped the flow of gasoline from the AST to the leaking fill valve; contacted emergency spill response contractor NRC Environmental Services, Inc. of Spokane, Washington (NRCES) to address the spill; and reported the spill to the appropriate regulatory agencies.

The gasoline release appeared to be limited to a narrow unpaved area between the Tank Farm A containment area and the south-adjacent former fuel dispenser island (Figure 2a). NRCES excavated soil containing gasoline from this area to a depth of approximately 2 feet below ground surface (bgs) using hand tools. Feasible alternatives for excavation of additional material between the Tank Farm A containment area and the south-adjacent former fuel dispenser island were limited due to concerns regarding the structural integrity of the Tank Farm A containment area and the presence of large boulders in the excavation area.

Initial follow-up characterization activities conducted by Environmental Compliance Associates, LLC of Kennewick, Washington included completion of shallow borings using a push-probe drilling rig and completion of a deeper boring using an air rotary drilling rig. Results of the follow-up characterization indicated that concentrations of total petroleum hydrocarbons as gasoline-range petroleum hydrocarbons (GRPH) and benzene, toluene, ethylbenzene, and xylenes (BTEX) in soil decreased significantly with distance both laterally and vertically from the spill area.

Farallon (2014) conducted a subsurface investigation at the Site in July and September 2010 to evaluate whether the surface spill of gasoline had migrated beneath the Site to a deeper groundwater-bearing zone that may be in hydraulic communication with surface water in the adjacent

Columbia River. Monitoring wells MW-1 through MW-4 were installed on the Property, and monitoring well MW-5 was installed east of South Worthen Street (Figure 2).

Groundwater samples were collected from the monitoring wells on an approximately quarterly basis from soon after installation in July and September 2010 until 2013 depending on the well locations (Farallon 2014). GRPH was detected at a concentration exceeding the MTCA Method A cleanup level on one occasion in a groundwater sample collected from monitoring well MW-1. Benzene was detected at concentrations exceeding the MTCA Method A cleanup level on five occasions in 2010 and 2011 in groundwater samples collected from monitoring wells MW-1 and MW-2. With the exception of a single detection of benzene at a concentration less than the MTCA Method A cleanup level in the groundwater sample collected from monitoring well MW-4 in October 2010, GRPH and BTEX were not detected at concentrations exceeding laboratory reporting limits in groundwater samples collected from monitoring wells MW-3 through MW-5.

On May 30, 2013, a gasoline spill occurred at the Site while the UST on the eastern portion of the Site that supplied fuel to the retail sales card lock fuel island was being filled. The spill was reported to the National Response Center and issued Case No. 1048904. Approximately 200 gallons of gasoline overtopped the UST fill port and spilled onto the soil surrounding the UST (Able 2013). Able responded to the incident on May 31, 2013 and began excavation of the impacted soil. A total of 90.08 tons of petroleum-impacted soil was removed from around the UST. The final excavation exposed the UST and was 21 feet long by 18 feet wide, and extended to a depth of 12 feet bgs (Figure 2a). Confirmation soil samples collected from the final limits of the excavation confirmed removal of petroleum-impacted soil to less than MTCA Method A cleanup levels.

Ecology (2015) issued a No Further Action determination for the Property in a letter dated March 13, 2015. The No Further Action determination was contingent on compliance with the Environmental Covenant recorded on October 6, 2014 with Chelan County that specified restrictions and requirements related to residual concentrations of petroleum hydrocarbons at concentrations exceeding MTCA cleanup levels in soil in the area of Tank Farm A.

3.2 **2017 Environmental Investigation**

On March 17, 2017, the Wenatchee Fire Department reported the presence of a sheen and petroleum odor on the Columbia River between Thurston and Chehalis Streets in Wenatchee, Washington. On March 18, 2017, the U.S. Environmental Protection Agency (EPA), Ecology, and Chelan County Emergency Management formed a Unified Command to respond to the occurrence of the sheen. The initial spill response activities included deployment of booms and sorbent pads in the area of the observed sheen on the Columbia River.

On behalf of Coleman Oil, a subcontractor conducted a line tightness test on March 24, 2017 on underground pipe lines used to transfer fuel from ASTs at Tank Farm A to the truck loading rack on the Property. Two of the fuel lines would not hold pressure: the R99 Renewable DieselR99 Renewable Diesel fuel line and the B75 biodiesel fuel line. Coleman Oil closed and locked the B75 biodiesel fuel AST, and closed and locked the isolation valves from the pumps to each of the fuel lines. Review of Coleman Oil inventory records indicated that the release was most likely from the R99 Renewable DieselR99 Renewable Diesel fuel line.

Able, on Coleman Oil's behalf, assumed management of the booms and curtains placed to contain the sheen on the Columbia River on March 26, 2017. Able conducted hourly inspections of the sorbent pads, curtains, and booms placed where a sheen is observed on the Columbia River until the week of June 6, 2017, at which point Anchor QEA of Wenatchee, Washington took over the boom and curtain management on Coleman Oil's behalf. Additional details on the timeline and spill response actions are provided in *Emergency Spill Response Plan, Coleman Oil Wenatachee* [sic] *Facility, 3 East Chehalis Street, Wenatchee, Washington* dated April 1, 2017, prepared by Farallon (2017) (ESRP). The scope of work presented in the ESRP was initiated immediately following approval from Ecology and EPA. The scope of work for the ESRP was expanded by Coleman Oil during implementation to expedite the Site characterization process and cleanup.

Farallon collected groundwater samples from monitoring wells MW-1, MW-2, MW-4, and MW-5 on March 23, 2017 to assess whether the release of R99 Renewable DieselR99 Renewable Diesel had impacted groundwater in the existing Site monitoring wells.

Monitoring wells BH-1 through BH-3 were installed by Ecology consultant Environmental Partners, Inc. of Issaquah, Washington on March 25 and 26, 2017 along South Worthen Street adjacent to the area where the sheen discharge was observed on the Columbia River. On March 26, 2017, Coleman Oil decommissioned the fuel lines that would not hold pressure. All fuel associated with the ASTs in Tank Farm A was subsequently removed from the Property and transported to other Coleman Oil facilities.

Following approval of the ESRP, Coleman Oil initiated additional investigative work at the Site. Review of the test pit data by HydroCon has provided additional clarification on the exploratory test pits and a subsequent remedial excavation. Several exploratory test pits were excavated in early April 2017. The dry well, located in the east-central portion of the Site, was sampled on April 3, 2017. Five samples were collected from the dry well excavation at depths of 3-5 feet. The deepest sample collected at the bottom of the excavation had a concentration of 2,400 mg/kg DRPH and 2,000 mg/kg ORPH. The Fuel Line area was also sampled on April 3 with four samples ranging in depth from 2 to 6 feet. All samples have concentrations above the CUL - up to 58,000 mg/kg DRPH. Eighteen samples were collected from the North-South and East-West trenches, (Figure 2) on April 4 and 5. Sample

depths were at 5 and 10 feet and all exceedances of the DRPH CUL were at 10 feet bgs. The Filling Station area, immediately south of the Fuel Line was sampled on April 6 and the six samples were collected at 2 to 11 feet bgs. All samples exceeded the CUL for DRPH.

Based on these results, a total of 741.43 tons of contaminated soil was excavated and removed from the Site between April 12, 2017 and June 19, 2017. Coleman Oil also removed the former Storage Building (Sump #5 area) and former Maintenance and Warehouse Building as they performed the trenching and remedial excavations. The actual area of the excavations does not appear to have been documented. Based on information provided by Coleman Oil, the excavation area is shown on Figure 2.

On April 6 and 7, 2017, direct-push borings FB-3 through FB-10 were advanced along South Worthen Street, Chehalis Street, and the northern portion of the Property. Between April 10 and 14, 2017, monitoring wells MW-6 through MW-11, potential LNAPL recovery well RW-1, and boring FB-11 were installed at various locations across the Site. The monitoring wells were constructed using either 3- or 4-inch-diameter well materials so that the wells could be used for LNAPL recovery, if necessary.

Concurrent with the monitoring well installation activities, the truck fuel loading rack and subsurface piping leading to the rack were removed. Following the discovery of red-colored LNAPL on perched groundwater in the area of the truck fuel loading rack, a groundwater recovery sump was fabricated and installed in the excavation at this location. The R99 Renewable Diesel is a red-dyed product very similar in color to traditional diesel fuels dyed for identification for off-road use.

Site-wide groundwater monitoring and sampling of new and existing monitoring wells was conducted on April 20 and 21, 2017.

Test pits were installed on the southern, eastern, and northern sides of the warehouse and office building at the Property to help delineate the extent of LNAPL observed in the truck fuel loading rack area excavation. Recovery sumps #1 through #3 were installed along the eastern side of the warehouse and office building, recovery sump #4 was installed in the excavation south of the warehouse and office building, and recovery sump #6 was installed north of the warehouse and office building. Recovery sump #5 was installed in the northeastern corner of the Property, where the former storage building was located (Figure 2). During the test pit excavations, a substance that appeared to be red LNAPL was observed to flow into the excavations from beneath the warehouse and office building. For several days, water and LNAPL were pumped from the recovery sumps into a 10,000-gallon baffle tank with an oil-water separator. The pumps were turned off on April 26, 2017 to facilitate an assessment of the rate of LNAPL recovery into the sumps. Following the assessment, the depth to groundwater began to drop in elevation to below some of the recovery sumps, and recovery of LNAPL diminished. Periodic pumping of groundwater from the recovery sumps continued in an attempt

to draw LNAPL to the sumps, but LNAPL recovery continued to diminish and LNAPL currently is recovered using sorbent pads placed in the recovery sumps and periodic pumping. As of September 28, 2017, groundwater was only present in recovery sumps #2, #5, and #6.

LNAPL bail-down tests were performed on monitoring wells MW-8, MW-9, and BH-2 on May 1, 2017 to estimate the formation transmissivity for evaluation of the feasibility of hydraulic recovery of LNAPL. The bail-down tests were performed by evacuating LNAPL from the monitoring wells using a peristaltic pump, and monitoring the depth to LNAPL and depth to groundwater during recovery after the pumping was terminated. Farallon (2017b) concluded that the LNAPL bail-down testing results indicated that the estimated transmissivity values exceed the generally accepted lower limit for practicable hydraulic recovery by a factor of greater than 2; therefore, LNAPL recovery via pumping wells can be considered as a viable cleanup alternative.

3.3 Soil and Groundwater Analytical Results

Laboratory analytical results for soil samples collected from the trenching excavations and borings completed in April 2017 indicate that total petroleum hydrocarbons (TPH) as diesel-range petroleum hydrocarbons (DRPH) are present at concentrations exceeding MTCA Method A cleanup levels in shallow soil in the area of the truck fuel loading rack and drywell. North of the truck fuel loading rack and drywell, petroleum hydrocarbons at concentrations exceeding MTCA Method A cleanup levels in soil appear to be limited to soil 10 to 15 feet bgs, likely as a result of migration associated with shallow perched groundwater. GRPH and total petroleum hydrocarbons as oil-range petroleum hydrocarbons (ORPH) also were detected in soil samples collected at the Site but were generally noted on the laboratory reports to be the result of overlap from the DRPH results.

Farallon noted in their boring log for FB-11 that a sweet, solvent-like odor, with sheen present and a high PID reading (1,943 ppmv) was present at a depth of 15 feet. However, Farallon failed to collect a sample in this interval for laboratory analysis. In addition, the well log for monitoring well MW-3 indicated that a high PID reading (4,992 ppmv) was observed at a depth of 10 feet bgs in September 2010. No sample was collected from this location either. Both of these borings are located near the north property line. It is HydroCon's opinion that these observations may indicate an offsite volatile organic compound (VOC) source and should be explored further.

At HydroCon's request APEX Laboratory's forensic chemist (Mr. Kurt Johnson) reviewed the chromatograms of these sample results. Mr. Johnson indicated that GRPH, DRPH (other than R99), motor oil, and BTEX are also present in some of the samples. This information indicates that historic releases of other fuel products have occurred at the Site and that there may be potential offsite contributions.

Farallon conducted Site-wide groundwater monitoring and sampling events on April 20 and 21 and September 28 and 29, 2017. Monitoring wells MW-1, MW-2, MW-4, and MW-5 also were sampled on March 23, 2017 prior to the installation of new monitoring wells at the Site in April 2017. Reconnaissance groundwater samples were collected from push-probe borings FB-9 and FB-10 on April 7, 2017. The groundwater analytical results for the groundwater monitoring events are included in Table 8.

DRPH, ORPH, GRPH, and/or benzene were detected at concentrations exceeding their respective MTCA Method A cleanup levels in monitoring wells BH-1 through BH-3, MW-1, and MW-6 through MW-11 and in recovery well RW-1 during the April and/or September groundwater sampling events. During the April 2017 groundwater monitoring and sampling event, groundwater samples were not collected for laboratory analyses from monitoring wells MW-8 and MW-9 due to the presence of LNAPL at these locations. Groundwater samples were not collected from monitoring wells BH-1 and BH-2 during the September groundwater monitoring and sampling event due to insufficient groundwater in the monitoring wells at these locations. Based on historical groundwater analytical data not exceeding the laboratory practical quantitation limit for DRPH, ORPH, GRPH, and BTEX at monitoring well MW-2, a groundwater sample was not collected at this location during the September 2017 groundwater monitoring and sampling event.

3.4 **2017 Interim Actions**

Interim Action work continued to be conducted at the Site. This work includes pumping water from some or all of the sumps (product recovery and maintaining a reduced head near the point of release), water/product level monitoring at wells MW-8 thru MW-10 (and presumably product recovery), and management of the boom area with product recovery utilizing hydrophobic pads and booms. Water removed from sumps goes through an OWS and activated carbon and is stored in Baker tanks prior to discharge via permit into City of Wenatchee sewer system. A detailed review of product recovery through June 2018 is provided in Section 5.4.

3.5 R99 Renewable Diesel Records

In an April 25, 2017 letter to EPA (Coleman 2017), Coleman Oil responded to a request to provide a written report stating the volume of biodiesel that leaked from Coleman Oil's bulk oil plant to the Columbia River. Coleman Oil's response said that R99 Renewable Diesel was first stored at the facility with a purchase on March 22, 2016 to support a single customer. An inventory reading for an October 19, 2016 purchase indicated 55 gallons more in the tank than was on the facility records. On January 5, 2017, an inventory record of R99 indicated a loss of 1,399 gallons. Coleman Oil's review of records showed that from January 2017 forward, actual tank readings of R99 indicated continued loss, totaling 4,543 gallons. Coleman Oil also indicated that record reviews indicated no loss of B75 Biodiesel. The

cause of the leak was determined by line tightness testing, which indicated that 2 lines (R99 and B75) were faulty. These lines were uncovered and two pinholes were found in the R99 line and the B75 line did not have a visible hole.

3.6 Potential Offsite Source Evaluation

Adjacent properties include the Chelan County Public Utility District (Chelan County PUD) Transformer station to the north across Chehalis Street, a Burlington Northern – Santa Fe (BNSF) railroad right-of-way to the west, the Shepard's Oil bulk fuel storage facility to the south, and the Columbia River to the east across South Worthen Street.

A review of regulatory databases conducted for an Environmental Site Assessment (ESA, Blue Mountain Environmental Consulting, 2007) resulted in 15 reported sites within ¼ mile of the property at equal or higher elevation. These sites included service stations, auto repair, public utilities, BNSF, and other primarily commercial businesses. The ESA concluded the following:

These sites are located sufficiently lateral to the property that released contaminants following the hydrological gradient would not intercept the property, and they are located at such distance from the subject property that the probability of environmental impact to the site by released contaminants is negligible.

No details for the above conclusion were provided in the ESA. Monitoring wells were not installed at the Site until 2010 and groundwater flow directions were not known at the time the ESA was prepared. Additionally, it was not within the scope of the ESA to evaluate potential sources of the sheen discharge area at the Columbia River. The discharge area is approximately 350 feet north of the Coleman Oil Site. A Unocal service station located at 405 South Wenatchee Street and the Burlington Northern Rail Yard located at 409 South Columbia Street are located at similar or shorter distances west of the discharge area. The 2007 Environmental Data Resources report used in the ESA (EDR 2007) documents that the service station and railyard had petroleum products released to soil and groundwater in the late 1990's. Additional research on potential offsite sources was conducted as part of this SRI and is presented in Section 5.11.

4.0 DATA GAPS

The data gaps identified in the Work Plan and addressed with this SRI include the following:

- **Source Identification.** A release of R99 Renewable DieselR99 Renewable Diesel from an underground pipeline has been identified at the Property. Impacted soil and groundwater at the Property and a sheen discharge area on the river at a fairly large distance from the release have been documented. Review of chromatograms indicates that there is GRPH, DRPH (other than R99), motor oil, BTEX, and petroleum byproducts (i.e., polar compounds) in the samples. Other sites that have had historical releases have been preliminarily identified. Additional review of other nearby sites is needed.
- **Soil Conditions**. Soils beneath the Site are a mixture of silt, sand, gravel, and cobble flood deposits. Additional soil characterization is needed to better understand the soil structure and potential migration pathways, and in particular, potential migration pathways for LNAPL and dissolved phase contamination to reach the river.
- **Groundwater Conditions**. Additional groundwater investigation is needed to evaluate migration pathways, other potential sources, and the receptors that may be affected. In addition, monitoring wells MW-1 through MW-4 are screened below water levels.
- **Shoreline Soil and Sediment Conditions.** The nature and extent of sediment and nearshore soil impacts near the sheen discharge area are needed to identify preferential pathways and evaluate remedial alternatives.
- **Extent of Groundwater Contamination**. The extent of groundwater contamination has not been constrained to the west, north and east. It should be noted that access to the west (BNSF rail lines) and to the north (Chelan County PUD Transformer Station) is constrained by physical barriers.
- **Extent of Soil Contamination.** The extent of soil contamination has not been constrained to the west, north and east, in the vertical dimension in several areas.
- **River Stage**. A review of river stage and aquifer elevations is needed to assist in the understanding of product migration.
- **Nature of Contamination**. GRPH, DRPH, ORPH, and/or BTEX have been detected in soil and groundwater. Additional laboratory work is needed to better understand the subsurface migration of petroleum hydrocarbons and the potential for additional sources. VOCs may be present at FB-11 and MW-3 (see Section 3.3).

Aquifer Characteristics. An initial evaluation of hydraulic conditions is being addressed under Additional Interim Actions (Addendum #1). Additional testing may be needed to evaluate the feasibility of pump and treat remedial alternatives.

Conceptual Site Model. Based on the results of the SRI, the conceptual site model will need to be updated.

5.0 SUPPLEMENT REMEDIAL INVESTIGATION TASKS

The following sections of this report summarize the objectives and work completed for each phase, the field and analytical methods used, and, a discussion of the ASI results.

5.1 Pre-Field Investigation Activities

HydroCon performed the following activities prior to conducting the site investigation:

- Reviewed historic environmental reports performed at Site (Phase 1 ESA in particular),
- Researched geologic papers on local geology,
- Investigated and make inquiries on underground utility locations,
- Researched Columbia River levels/dam operations,
- Conducted a site visit to observe site topography/site layout/neighboring properties,
- Walked the shoreline to observe signs of stressed vegetation/seeps/sheen.
- Observed booms in the river and product recovery/treatment system.
- Marked boring locations with white paint for public utility locate survey, as is required by law.

5.2 **Permits**

The City of Wenatchee has jurisdiction of the public right-of-way along Chehalis Street and South Worthen Street. A right-of-way excavation permit RW-EXCV-18-017 and a revocable long term temporary use of right-of-way RW-TEMP-18-01 were also obtained for activities conducted in the City of Wenatchee right-of-way. A traffic control plan was developed and executed for drilling the right-of-way.

Coleman entered into an agreement with the City of Wenatchee for temporary discharge of treated groundwater to the City's publically owned treatment works (POTW). Under this agreement the maximum discharge to the POTW is 4,000 gallons per day at a maximum rate of 10 gallons per minute.

5.2.1 Health and Safety Plan

HydroCon prepared a Site-specific health and safety plan (HASP) to govern health and safety protocols used during this investigation. Work was performed using Occupational Safety and Health Administration (OSHA) Level D personal protective equipment consisting of hard hats, safety glasses, protective gloves, and protective boots. HydroCon conducted daily tailgate health and safety meetings prior to the start of each day of field work.

5.2.2 Underground Utility Locates

Due to potential conflict during drilling activities within the public right-of-way and the potential for these utilities to act as preferential pathways/barriers for contaminant migration, an underground utility survey was completed. The Washington Utility Notification Center was notified (Ticket Number 18104874) who notified the following utilities who identified offsite utilities:

- Chelan County PUD #1
- Charter Communications
- Cascade Natural Gas Wenatchee
- City of Wenatchee
- Frontier Communications
- Wenatchee Reclamation District

A private locating company, Utilities Plus, was retained to identify the location of onsite subsurface utilities and to clear specific boring locations located near potential utility conflicts. HydroCon instructed the surveyors (Erlandsen, Inc. of Wenatchee, Washington) to measure each offsite and onsite utility line identified by the above, along with other features, to create a scaled base map. The results of these efforts are shown on Figure 2, which illustrates the locations of water, sewer, storm, electrical, fiber optic, and gas lines.

5.3 Field Methods

Field methods utilized during the SRI are summarized in the following sections.

5.3.1 **Soil Borings**

Budinger & Associates, Inc, of Spokane, Washington was subcontracted to perform the drilling services. Fifteen borings were drilled at the Site including two temporary borings (HC01 and HC02), twelve new 4-inch diameter monitoring wells (MW12 through MW23), and two shallow wells (MW1S and MW3S) using the sonic drilling method. The borings were advanced at the Property on March 28 through April 13, 2018 in an effort to evaluate the horizontal extent of impacted soil and groundwater identified during previous investigations. Boring locations are shown on Figure 2 and boring logs are provided in Appendix A. Borings were advanced at the following locations (from south to north):

 MW12 was located on the southernmost corner of the property to evaluate potential offsite sources and to aid in understanding groundwater flow directions and gradients.

- Monitoring wells MW-1 and MW-3, located south of the USTs and the near the southwest corner
 of the Tank Farm A ASTs, were improperly constructed with well screens installed entirely
 beneath the water table. HydroCon installed new wells next to each of these wells (MW1S and
 MW3S, respectively) with well screens that straddle the water table.
- MW13 was installed at the former Tank Farm B Fuel and Oil ASTs to evaluate potential offsite sources and to aid in understanding groundwater flow directions and gradients.
- HC01 was drilled near the R99 Biodiesel spill area to get a detailed soil profile and assist in understanding of the migration pathway.
- MW15 was installed on the east side of South Worthen Street to investigate the vertical extent of impacts near existing borehole FB-5.
- MW14 was drilled at the Former Main Office and Warehouse Building to evaluate potential
 offsite sources and to aid in understanding groundwater flow directions and gradients.
- HC02 was drilled at the former storage building and 120 feet north of HC01 to get a detailed soil
 profile and assist in understanding of the migration pathway.
- MW18 was installed on the east side of S. Worthen Street to investigate the vertical extent of impacts near existing borehole FB-7.
- MW16 was installed on Chehalis Street to evaluate potential offsite sources and to aid in understanding groundwater flow directions and gradients.
- MW17 was installed on Chehalis Street to evaluate the vertical extent of impacts near existing borehole FB-3.
- MW19 was installed on South Worthen Street north of the Chehalis Street intersection to get a
 detailed soil profile and assist in understanding of the migration pathway.
- MW20 was installed on South Worthen Street north of MW19 to get a detailed soil profile and assist in understanding of the migration pathway.
- MW21 and MW22 were installed on the east side of South Worthen Street north of existing MW-10 to assess the northern extent of impacts.
- MW23 was drilled near the former dry well.

Each boring was advanced in to a completion depth of 20 to 50 feet bgs using sonic drilling techniques. Sonic drilling is accomplished by advancing a hollow drill rod for the first 10 feet, followed by advancing an override casing over the drill cuttings. A sonic casing is then driven to override the core barrel, resulting in a continuously cased borehole. Soil within the core barrel is then extruded in a new plastic sleeve which is observed by the geologist. This process is repeated to the target depth of the soil boring/monitoring well. Upon completion, the borings were backfilled with bentonite or a monitoring well was installed.

Each sample core was inspected for lithologic composition, presence of water, and field screened for the presence of petroleum hydrocarbons (i.e., staining, hydrocarbon odor and organic vapors). The

total organic vapor concentration of each sample was measured using a PID. A portion of each soil sample was placed in a sealable plastic baggie. The tip of the PID was inserted into the plastic bag in the airspace above the soil sample and the PID measurement was recorded. The PID was calibrated before use at the Site to a test gas standard consisting of 100 parts per million (ppm) isobutylene. Because several factors can affect PID readings (e.g. moisture, temperature, and background conditions), HydroCon determined that a value of 2 ppm or greater may indicate the presence of organic vapors originating from contaminants at the Site.

The selected soil samples were removed from the plastic sleeve using a new pair of disposable gloves and placed directly into labeled laboratory-prepared jars and sealed with Teflon-lined lids. Soil samples were placed into laboratory-supplied containers (utilizing EPA Method 5035A field preservation) and immediately placed in an ice-filled cooler along with chain-of-custody documentation for shipment to Apex Labs in Tigard, Oregon. A total of 55 soil samples from borings were collected for laboratory analysis.

The two temporary borings (HC01 and HC02) were backfilled with bentonite pellets below the water table and then with hydrated chips above the water table.

Boring logs detailing the lithology, field screening results, and sample depths are included as Appendix A. Selected soil samples (a minimum of three per boring) were submitted to the laboratory based on sampling objectives (i.e., depth and soil type) and field screening results.

All drilling and sampling tools were decontaminated between boring locations using a hot water pressure washer. All investigation—derived waste generated during purging and decontamination was placed in a labeled 55-gallon drum and stored onsite pending disposal to a licensed disposal facility.

5.3.2 Monitoring Well Installation

Groundwater monitoring wells were installed at soil borings MW1S, MW3S, and MW12 through MW23. The following sections describe methods for installation, development, surveying, and groundwater sampling.

5.3.2.1 Well Installation

Each boring, except HC01 and HC02, was completed as a 4-inch diameter PVC monitoring well. The wells were constructed with variable lengths (10 to 25 feet) of 0.010-inch slotted PVC well screen and a bottom slip cap. Stainless steel centralizers were installed on the well string (one near the sump section, one immediately above the well screen, and then additional centralizers in approximate 10 foot

intervals) so that an even filter pack and seal could be placed around the well. Clean 10-20 graded silica sand was used as a filter pack in the annular space between the PVC casing and the borehole. The wells were surged by the drilling contractor during sand pack installation using a clean surge block. The filter pack was placed at the desired depth interval and then the well was surged. Once no more settlement in the sand pack was observed the drilling contractors placed additional sand in the annulus to the desired depth. Hydrated bentonite was used as a seal. The bentonite was placed from the top of the sand pack to approximately 1 foot below the surface. A traffic grade flush monument was cemented into placed on top of each well. Monitoring well construction details are documented in the boring logs and summarized on Table 1.

5.3.2.2 Well Development

HydroCon developed the monitoring wells by surging and pumping techniques. A clean stainless steel bailer attached to a new length of poly rope was used to surge and bail turbid water from each well. The well was then pumped using new LDPE tubing attached to a clean submersible impeller pump. The process was repeated until no further improvement in water clarity was noted. A minimum of one casing volume was removed from each well. Well development procedures were documented on *Well Development Forms* (Appendix B).

5.3.3 Unused Wells

At Ecology's request, three additional monitoring wells (MW1S, MW3S, and MW23) were added to the SRI to assess groundwater conditions on the southern portion of the Coleman property. Monitoring wells MW-1 through MW-4 were improperly constructed due to improper placement of well screens which prevent accurate monitoring of groundwater. Review of the well logs indicates that the well screens in MW-1 and MW-3 were placed too deep and solid casing is blocking off the uppermost water bearing zone. Due to the proximity of the USTs and the two documented releases of gasoline in the area, Ecology requested that a properly constructed monitoring well be placed next to MW-1. Due to concerns of potential offsite sources of contamination and the measurement of a very high PID measurement at 10 feet bgs (4,992 ppm), Ecology requested that a properly constructed monitoring well be installed next to MW-3. Due to the suspected use of an historic dry well, Ecology requested a monitoring well (MW23) be installed at that location to assess soil and groundwater conditions.

HydroCon petitioned Ecology to abandon the four improperly installed monitoring wells (MW-1 through MW-4) and monitoring well MW-7 (due its close proximity to monitoring well MW23). Ecology responded that they wanted to wait to see the results of the soil and groundwater sampling at these wells before making their decision to approve well abandonment. HydroCon maintains the opinion that monitoring wells MW-1 through MW-4 should be abandoned. The two newly installed shallow wells (MW1S and MW3S) serve as better monitoring points than the deeper wells they are constructed next

to. Monitoring wells MW-2 and MW-4 are not constructed properly and have never had any COC detected in groundwater samples collected from either well. Monitoring wells MW-7 and MW23 have similar construction but are located approximately 15 feet apart. As a long-term cost savings measure for Coleman Oil, HydroCon requests that Ecology consider abandoning one of the two wells.

5.3.4 **Surveying**

Erlandsen, Inc. of Wenatchee, Washington was contracted to survey the location and elevation of the newly installed wells, product recovery sumps, shoreline sampling locations, sediment sampling locations, and the metal rod installed on the shoreline of the Columbia River used to monitor the relative river stage elevation. The vertical and horizontal coordinates of the wells were surveyed relative to established datums in the area. The horizontal coordinates are relative to the North American Datum, 1983 (NAD83) and the vertical coordinates are relative to the North American Vertical Datum, 1988 (NAVD88).

The reference elevation of each monitoring well (at the inscribed reference mark on top of the PVC casing) is used to calculate the groundwater surface elevation at each respective well (Table 2).

5.3.5 Groundwater Sampling Procedures

HydroCon collected groundwater samples on April 24 through 26, 2018 from monitoring wells BH-1, BH-2, BH-3, MW1S, MW-2, MW3S and MW-4 through MW23, except MW15 and MW18 due to lack of water in the wells. A field duplicate was collected from MW3S for QA/QC purposes. Monitoring wells were purged and sampled in accordance with U.S. Environmental Protection Agency (EPA) guidance for low-flow sampling².

Depth to groundwater was measured in the monitoring wells on April 25 (prior to sample collection) and April 27, 2018 (following sample collection) (Table 2). Prior to well purging and sample collection, the well cap on each well was removed and the water level was allowed to equilibrate prior to measuring the depth to water. The depth to water in each well was measured using a clean electronic water level indicator. Water levels were measured at the scribed reference mark (north side of the top of the polyvinyl chloride casing) at each well.

² Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (April 1996). EPA/540/S-95/504

Prior to groundwater sampling, the wells were purged with a low-flow peristaltic pump equipped with a new length of low-density polyethylene tubing attached to a new length of silicone tubing. The tubing intake was placed approximately 2 to 3 feet below the surface of the groundwater or mid-screen in each well. During purging, water quality was monitored using a Quanta multi-parameter water quality meter equipped with a flow-through cell. The water quality parameters monitored and recorded included temperature, pH, specific conductance, dissolved oxygen, turbidity, and oxidation-reduction potential. Each well was purged until all six water quality parameters stabilized or the minimum parameter subset of pH, specific conductance, temperature, and turbidity and/or dissolved oxygen stabilized. Recorded results of water quality monitoring are provided in the *Groundwater Sample Collection Forms* found in Appendix C. Field parameters collected during well sampling are summarized on Table 3.

Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into clean, laboratory-prepared sample containers. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported under chain-of-custody to Apex Labs for laboratory analysis.

Purge water generated during the monitoring event was placed in an appropriately labeled 55-gallon steel drum and temporarily stored on the Property pending receipt of analytical data for proper disposal.

5.3.6 Soil Sampling from the Shoreline of the Columbia River

HydroCon collected soil samples from five locations along the shoreline of the Columbia River. Reconnaissance of the river bank around the suspected area of discharge (shown on Figure 2) revealed four separate locations near the river shoreline that exhibited hydrocarbon odor and staining. These locations appear to be seeps. Additionally, a stormwater outfall pipe that is connected to a storm drain on Chehalis Street near monitoring well MW09 discharges on the bank of the river. The stormwater outfall pipe is made of 10-inch diameter corrugated galvanized steel and is buried approximately 2-feet below ground surface. Effluent from the outfall travels down the river bank and discharges into the Columbia River.

Soil from the four suspected seeps (SL01 through SL04) were sampled directly from the observed stain at each location. The soil sampled was between boulders and concrete waste material used as rip rap along the river bank. The samples were collected by using a clean rock hammer pick to excavate down to approximately 6 inches below ground surface. Soil was then placed into laboratory prepared sample jars using a new pair of nitrile gloves. The soil was classified as Silty Sand consisting of fine sand and low plastic fines. Each of the four seeps sampled exhibited hydrocarbon sheen and a moderate petroleum odor when disturbed during sample collection. The soil sample SL05 was collected directly downstream of the outfall discharge point within the drainage path of the effluent. Observation of this sediment did not exhibit soil staining or any olfactory indications of petroleum contamination.

5.3.7 Sediment Sampling in Columbia River

A total of five sediment samples (SS01 through SS05) were collected in the Columbia River in the area of suspected sheen to assess if petroleum hydrocarbons from the Site have affected shallow sediments near the shoreline. Three near shore surface sediment samples (SS01 through SS03) were placed within close proximity of the four seeps observed along the shoreline (referred to by their sampling identification numbers as SL01 through SL04). These samples were collected in relatively shallow water (approximately 4 feet below the river level). Two surface sediment samples (SS04 and SS05) were collected immediately east of samples SS01 through SS03 at depths ranging from 15.8 to 25 feet below the river level.

Northern Resources Consulting, LLC (NRC) was contracted to perform the sampling. On April 23, 2018, NRC staff performed grab sampling using a 24-liter van veen grab sampler in accordance with the approach, methods, and protocols described in the approved final draft SAP dated March 15, 2018. Field operations were supervised by HydroCon and Mr. Brian Perleberg (Senior Biologist of NRC), who participated in the sampling along with a field technician on NRC's 27-foot custom weld research vessel.

The sampler was deployed from the front of the NRC sampling vessel. The 24 liter van veen grab sampler directly penetrated into the sediment by the weight of the sampler. During the descent to the bottom, the two buckets are held in open position by the means of a hook. When the grab hits the river bottom the tension on the hook is released and the hook is disengaged. Winching the sampler up forces the bucket to close, which digs into and captures the sediment. The sampler was pushed from 11.75 to 14 centimeters into the surface sediment and then retrieved. The sediment from the sampler was placed into labeled laboratory prepared glass jars using a new pair of nitrile gloves. A portion of the sample was placed in a stainless steel tray for lithologic description and field screening. Between samples the stainless steel tray and sampler were washed with Alconox soap. NRC placed a stake at sediment sample locations SS01 through SS03 for field identification.

NRC placed a portion of each sediment sample into a ziplock bag and provided those bags to HydroCon's field representative for observation and field screening. The sediment consisted of fine sand and low plastic fines with trace to 10% black colored organic material. There was no sheen or petroleum odor observed in any of the samples. PID readings ranged from 0.3 to 9.4 ppmv.

At the completion of sediment sampling NRC picked up the surveyors at the boat launch and took them to the sediment sampling locations where they were able to collect survey location coordinates at each of the sediment sample locations. A copy of the *Surface Sediment Field Sample Record* is included in Appendix E.

Once the surveying was completed NRC performed an extensive exploratory exercise to assess if a hydrocarbon sheen could be produced in the surface sediment along the river by agitating it with a steel rod. The rod was approximately 6 feet in length.

This exercise began downstream of the boat launch at Wenatchee Riverfront Park and ended at the at the Senator George Sellar bridge. The field technician agitated the sediment as the boat slowly floated downstream (controlled by motor) and watched for a sheen to be produced. No sheen was observed in any of the probe locations. It is estimated that over 300 probes were done by NRC during this exercise. Due to the rapid drop off of the channel from the bank to the river channel only the shallow sediment along the shoreline was probed. Since the depth of the channel of the river is greater than 20 feet there wasn't a practical way to perform this test. The speed of the river flow and limited visibility limited the ability to observe a sheen at depth.

5.3.8 Management of Investigation Derived Waste

Soil from drill cuttings and shoreline sampling and water generated during drilling, decontamination, well development and groundwater sampling were placed in separate labeled 55-gallon drums. The drums were staged on the Coleman Oil property pending waste profiling. A total of 21 drums of soil were transported to Greater Wenatchee Regional Landfill on April 25, 2018. A copy of the disposal documentation for 4.17 tons of soil is included in Appendix D. Water generated from well development and groundwater sampling were temporarily contained in labeled drums and transported to the water treatment area for disposal. Water generated by the drilling contractor (from pressure washing/decontamination) was temporarily contained in their utility trailer and was emptied on a daily basis during the drilling program. All water was pumped into the site's water treatment system and discharged, under permit, into the City of Wenatchee's sanitary sewer system.

5.4 **Product Recovery**

Ongoing product recovery at the Site monitoring wells, recovery sumps, and along the Columbia River has continued since initial emergency response measures began following the discovery of sheen in the River. Several remedial measures have been performed to recover product including placement of booms and sorbent socks and pads in the Columbia River; installation of recovery sumps near the release point; and product recovery via pumping and/or sorbent socks in the Site monitoring wells. Through June 3, 2018 a total of 404.30 gallons of product has been recovered at the Site.

Figure 3 shows the product recovery locations and volumes collected through June 2018.

Figure 4 shows the total volume recovered, maximum volume of product recovery intervals (typically a day, but up to 100 days) at each location, and the date of that maximum reading.

Figure 5 plots daily recovery and cumulative recovery for selected locations (Columbia River, Sump #1, Sump #5, MW-8, MW-9, and MW-10).

Figure 6 shows total product recovery as of January 2018 and as of June 2018. With the exception of four locations, less than 10 percent of the total product recovery occurred since January 2018. Exceptions include the Columbia River (18%), MW-10 (41%), BH-1 (85%), and the oil/water separator (OWS, 23%). The source of the product in the OWS was from the cumulative pumping the recovery sumps.

Figure 8 plots river levels at the staff gage near the seepage area and product thickness at wells MW-8, MW-9, MW-10, and BH-1.

A discussion of product recovery is provided in detail below. As summary of product recovery by category (pump, socks, booms) is provided on Table 4. A complete record of product recovered at the Site is provided in Appendix F.

5.4.1 Columbia River

Sheen mitigation on the Columbia River is currently being conducted and will continue until no sheen is present on the Columbia River near the Site. Skirts, booms, and sorbent pads have been placed in the Columbia River and are monitored on a daily basis and adjusted and replaced as necessary since March 2017.

Anchor QEA (Anchor) of Wenatchee, Washington assumed management of the booms and curtains containing sheen on the Columbia River on June 1, 2017. Anchor continued that role until April 21, 2018 when EEC assumed the responsibility. EEC is currently conducting daily inspections of the sorbent pads, skirts, and booms and presence of sheen on the Columbia River. Due to the fluctuating river height throughout the year, EEC is required to adjust the height of the booms and locations of sorbent pads so that they are located on the surface of the river. Sorbent pads or booms that exhibit discoloration or staining are removed from the river and replaced with new sorbent pads and booms. Spent sorbent pads and booms are weighed to calculate the amount of recovered product before they are placed into labeled 55 gallon drums for disposal. As of June 3, 2018 a total of 211.5 gallons of product has been recovered from the Columbia River.

5.4.2 Recovery Sumps

As part of emergency spill response operations, six recovery sumps were installed at the Coleman Oil Property in accordance with the Emergency Spill Response Plan (Farallon 2017a). LNAPL has been observed in three recovery sumps (Sumps #2, #3, and #5) constructed near the point of the release (former fuel loading rack). Pumps were placed in these sumps to remove contaminated groundwater and LNAPL and to reduce product migration by creating a cone of depression. Petroleum impacted groundwater and LNAPL from the sumps was pumped to a temporary water treatment system constructed at the Coleman Oil Property. The sump pumps operated on a daily basis when groundwater was present in the recovery sumps. The groundwater that accumulated in the temporary water treatment system holding tank was treated using an OWS and then passing through activated carbon prior to being discharged under permit to the City of Wenatchee sanitary sewer. The pumps were removed from the sumps due to the lack of product recovery on September 5, 2017 (based on the last date noted for pumping from the sumps to the OWS, Appendix F). Sorbent socks were placed in all the sumps. The socks are routinely inspected and replaced, as needed. As of June 3, 2018 the total amount of product recovered from the sumps is 93.784 gallons. A breakdown of the total includes:

- Sump #1 (12.41 gallons)
- Sump #2 (18.66 gallons)
- Sump #3 (3.28 gallons)
- Sump #4 (0.36 gallons)
- Sump #5 (34.14 gallons)
- Sump #6 (13.57 gallons)
- OWS (11.374 gallons) which is the cumulative total of product produced from the recovery sumps.

5.4.3 Monitoring Wells

Product recovery in the Site monitoring wells has been performed either actively (via pumping utilizing a peristaltic pump attached to a new length of sample tubing) or passively utilizing sorbent socks. The socks have been routinely inspected and changed, as necessary. Pumps were installed in MW-9, MW-10, and BH-1 on May 4, 2018 to maintain drawdown (see Section 5.5.2). As of June 3, 2018 the total volume of product recovered in the wells is 107.879 gallons. A breakdown of the total includes:

- MW-6 (0.93 gallons)
- MW-7 (0.02 gallons)
- MW-8 (14.12 gallons)
- MW-9 (41.61 gallons)

- MW-10 (38.39 gallons)
- MW-11 (1.49 gallons)
- BH-1 (1.96 gallons)
- BH-2 (0.52 gallons)
- BH-3 (0.01 gallons)
- RW-1 (0.01 gallons)

5.4.4 Sheen Discharge Mitigation System

Implementation of an Additional Interim Action (AIA, HydroCon 2018) was performed in February 2018 as part of sheen discharge mitigation in the Columbia River (HydroCon 2018b). Pumps were installed at three existing monitoring wells (MW-9, MW-10, and BH-1) prior to the SRI to control water levels and capture LNAPL before discharging into the Columbia River. Design of this system was derived from the results of aquifer testing discussed in further detail in Section 5.5.2 of this report. Pneumatic bottom loading pumps were installed in the three wells to intercept, contain, and/or stop the discharge of LNAPL to the Columbia River on May 4, 2018. The pumps were placed at elevations in the respective wells that mimic summertime levels (MW-9 and BH-1) when sheen is less prevalent in the River or at depths where optimal product recovery was observed during the aguifer testing (MW-10). The discharge line from each well was plumbed into a trench excavated by Anderson Environmental Contracting (AEC) that terminates at the Coleman Oil facility near the vertical tank farm. The effluent from each well is discharged into separate OWSs. A flow meter has been placed on each discharge line. The volume of petroleum impacted water is measured on a daily basis. The volume of recovered product was measured daily until the week of May 20, 2018. Due to a significantly lower rate of product recovery, the measurement of the volume of product recovered has been transitioned to a weekly basis. All recovered product is placed into labeled drums.

The recovered groundwater discharging from the OWS is passed through a filter and activated carbon prior to being discharged under permit into the City of Wenatchee's sewer system. As of June 3, 2018, the total volume of treated water that has been discharged from the Site is 246,690 gallons.

With the exception of minor equipment problems, the wells have been in operation since May 4, 2018, however, they only operate when water is present at the level of the pump. When the pumps are activated, they pump at a rate of approximately 2 gpm as determined by the hydraulic testing (Section 5.5.2). As such, the pumps achieve the goal of maintaining water levels at target depths and thereby reducing migration to the river.

5.4.5 Volume of Product Released to State Waters

In response to an Ecology letter, dated May 10, 2018, regarding a determination of the volume of product spilled to Washington waters at the Coleman Oil facility, HydroCon (2018c) completed calculations to estimate the volume of product which was released to Washington waters. Due to the absence of confirmation soil samples in the excavation areas near the Storage Building and former Maintenance and Warehouse Building (see Section 3.2), HydroCon extrapolated concentrations from available data. Utilizing information provided by Coleman Oil representatives and information detailed in Farallon's reports related to the Site, HydroCon has estimated the volume of product which has and has not contacted Washington waters, been removed from the Site, and is still unaccounted for. During the first 24 to 48 hours after the spill was confirmed, a total of 30 gallons of product were recovered. Since the first 24 to 48 hours, through June 3, 2018, an additional 383.2 gallons of product have been recovered, for a total of 413.2 gallons of product recovered. In addition, as a result of the excavation completed in the immediate vicinity of the spill release, 703 gallons of product were removed from the Site which did not come into contact with Washington waters (recovered from above the water table). The excavations also removed a total of 1,281 gallons of product which did come in contact with Washington waters (recovered from below the water table).

5.5 Hydraulic Testing

Aquifer testing was conducted in February 2018 and indicated that monitoring wells MW-9, MW-10, and BH-1 yield relatively high flow rates in comparison to the other wells tested (BH-2, BH-3, and RW-1), that exhibited rapid dewatering and slow recovery times. HydroCon returned to the Site on May 21, 2018 to perform slug tests to observe relative flow rates of select wells to assess potential contaminant flow pathways at the Site. The following sections describe these testing events.

5.5.1 Hydraulic Testing – February 2018

Aquifer testing was conducted on February 12-15, 2018. Constant-rate or step-drawdown discharge tests were performed on monitoring wells MW-9, MW-10, BH-1 through BH-3 and recovery well RW-1. Water level monitoring during the testing was performed in each of these wells and included MW-8 and MW-11 utilizing transducers to assess if a hydraulic connection was observed.

The purpose of the aquifer testing was to collect data that could support site conceptual model development for product migration and Interim Action design. Specific objectives included the following:

1. Assess whether or not pumping in the existing monitoring wells can result in immediate cessation of the continued seepage to the river, and

Assess if the water levels in the target monitoring wells can be maintained at summertime levels using a temporary pumping infrastructure within the existing monitoring well network, then such pumping should be continued and maintained to prevent continued seepage to the river.

Details of the testing are presented in (HydroCon 2018b).

Of the six wells that were subjected to step-drawdown testing, three of the wells (RW-1, BH-2, and BH-3) could not sustain the initial step pumping rate of 0.25 gallons per minute (gpm) and dewatered after pumping approximately the amount of water stored in the well screen and surrounding sand pack. Wells BH-1, MW-9, and MW-10, however, sustained step flow rates of between 2.0 and 2.5 gpm before water levels reached target elevations. Drawdown was not observed in any nearby monitoring wells during the six step-drawdown tests.

One of the objectives of the tests was to determine if there are observable zones of higher transmissivity. The drawdown results from MW-09, MW-10, and BH-1 are plotted in Appendix G. These plots include the data generated during the final portion of the tests with pumping rates at 2 to 2.5 gpm. As can be seen in the results from MW-10, an inflection in the drawdown plot and the presence of product was observed at Oil was observed 620.5 feet (corresponding to a depth of 25.4 feet) appears to document a zone of higher transmissivity. Similar observations were not observed in MW-09 or BH-1.

Analysis of the data produced with the testing indicates that a pumping rate of 1.75 gpm at the three wells should produce approximately 3.5 feet of drawdown in the aquifer adjacent to the pumping well and the cone of influence would extend out to approximately 100 feet as defined by a drawdown of 0.1 feet. This calculation should be considered as a rough estimate given that the calculation necessitates a number of assumptions, including the thickness of the aquifer, the well efficiencies, and the specific yield. Long-term test pumping of each well would be necessary to better define actual sustainable flow rates.

5.5.2 **Slug Testing - May 2018**

Slug testing was performed on May 21, 2018 to observe relative flow rates of select wells on the Coleman oil property in an attempt to better understand contaminate flow across the Site. Wells included in these tests were wells that were not tested in February 2018 and also did not include wells installed upgradient or cross gradient of the release area. Slug testing included MW-7, MW-8, MW-9, MW-11, MW13, MW14, MW16, MW17, MW19, MW20, MW22, and MW23.

A slug test is a controlled field experiment, to estimate the hydraulic properties of aquifers and aquitards, in which the water level in a control well is caused to change suddenly (rise or fall) and the subsequent water-level response (displacement or change from static) is measured through time in the

control well and one or more surrounding observation wells. Slug tests are frequently designated as rising-head or falling-head tests to describe water-level recovery in the control well following initiation of the test.

Falling-head tests were used to determine relative flow characteristics across the Site. A falling-head test is conducted by rapidly raising the water level in the control well and subsequently measuring the falling water level. Slug-in test is another term for falling-head test. The procedure used is as follows.

The slug for used in the test was 3-inches in diameter and 12-inches long and constructed of galvanized steel. Prior to lowering the slug into the well the initial depth to water was recorded using a water level meter. Immediately following placement of the slug the depth to water was measured to record the displacement created by the slug. Water levels were then collected at one, two, five, and ten minutes after the slug was placed in the well to measure the falling-head response in the well. After 10 minutes the slug was removed decontaminated and the procedure was repeated in another well. Flow rates of high (no displacement recorded), medium (medium displacement and medium falling-head response) to low (large displacement and slow falling-head response) were assigned to each well relative to each other. The results of the slug test are included in this report in Table 5.

The results of the slug tests show that:

- MW-6, MW-11, MW17; MW22 had high flow rates;
- MW-8, MW14, MW16, MW20 and MW23 had medium flow rates; and
- MW-7, MW13, MW19, and MW21 had low flow rates.

The relative flow rates are shown on Figure 7.

The six recovery sumps installed in the 2017 remedial investigation were not tested with slug tests. The product recovery in the sumps may be indicative of relative flow. The product recovered from the sumps through September 5, 2017 ranged from 0.36 gallons (Sump #4) to 34.14 gallons (Sump #5) (see Section 5.4.2). It is possible that sumps with higher product recovery could reflect areas of higher groundwater flow. However, other factors, such as proximity of the top of the bedrock formation, backfill materials used in the area of the different sumps, and construction specifics, could also account for the variability seen in sump product recovery.

5.6 River and Well Water Levels

Figure 8 plots river levels at the staff gage near the seepage area and measured water levels in wells MW-8, MW-9, MW-10, and BH-1. The date (May 4, 2018) that drawdown pumping at MW-9, MW-10, and BH-1 is also shown on the figure. Up until the drawdown pumping began, river levels are always

lower than water levels in the wells. There are similarities in the trends in river and water levels, e.g., river and wells levels are the highest in January and February 2018 and lowest in March and April 2018. Once the pumps were turned on, the water levels in MW-10 and BH-1 are generally lower than the river level.

5.7 Field Investigation Results

This section describes the results of the field investigations.

5.7.1 Subsurface Conditions

Portions of the Site and adjacent roadways where drilling was completed are paved with asphalt that is approximately 3-5 inches thick.

The soil beneath the surface is alluvial deposits consisting primarily of sand, silt, sandy gravel, and gravelly sand. Boulders up to 4 feet in diameter were excavated during trenching activities conducted at the Site in 2017. Alluvial deposits were observed from ground surface to a maximum depth of 31.5 feet bgs at MW15. Generally the alluvial deposits increase in thickness in the north to northeasterly direction from MW12 to MW21.

The Chumstick Formation is present beneath the alluvial deposits at depths ranging from 12 to 35 feet. The formation consists of sandstone, shale, siltstone/mudstone, and conglomerate that is medium to coarse-grained, micaceous feldspathic sandstone averaging 35 to 40 percent quartz and 10 to 15 percent lithic clasts. Cross bedded and channeled, interbedded with lesser amounts of thin pebbly sandstone with and green to bluish shale. (Tabor et. al., 1982). A shaley sandstone and shale with thin interbedding of biotite and organic matter was observed in borings and appears to be consistent with the Nahahum Canyon Unit. The top of the Chumstick Formation encountered at the Site was usually a 1 to 8 foot thick layer of mudstone underlain by 1-6 foot thick layers or sandstone, siltstone and mudstone. The upper portions of the Chumstick has been eroded and weathered. The mudstone is commonly friable and the sandstone is soft and weakly cemented. The underlying mudstone and sandstone appears more massive. The sandstone becomes very dense and strongly cemented with depth exhibiting a cored concrete appearance in the sample cores. This material appears to be acting as an aquitard.

Sandstone was encountered at the top of the formation at MW12, MW13, and MW14. Monitoring well MW22 differs from the sequence above in that the upper 35 feet of this boring consisted of loose silt, sand, gravel, and clay with miscellaneous fill debris consisting of brick, glass, and burnt material. The

Chumstick Formation (siltstone/mudstone) was observed in this boring at 35 feet bgs and extended to the maximum depth explored of 40 feet bgs.

Updated cross sections based on soil borings are shown on Figures 9-12. The ground surface is relatively flat in the east-west direction while the top of the Chumstick Formation slopes to the east between MW16 and the river (280 feet) with a drop in elevation of 30 feet. The ground slopes to the north with a 19 foot drop in elevation between MW12 and MW22 (800 feet). The drop in elevation of the Chumstick Formation is 28 feet between these wells. Columbia River water levels shown on the cross sections correspond to groundwater monitoring events and approximate high and low annual water levels.

5.7.2 **Groundwater Flow Direction and Gradient**

Groundwater levels were measured prior to monitoring well sampling on April 25, 2018 and after sampling on April 27, 2018. Water level measurements were collected for all existing and new wells except MW-1 and MW-3 which were replaced with MW1S and MW3S. MW-1 and MW-3 were replaced because the tops of the well screens were placed at an elevation below the water table. Groundwater elevations are shown on Table 2 and groundwater contour maps are shown on Figure 13 and 14.

On April 25, depth to groundwater ranged from 7.25 feet from the top of monitoring well casing (ft TOC) at MW3S to 27.68 feet below TOC at BH-2. Groundwater levels were not measured on April 25 at MW-5, MW15 and MW18 due to lack of recharge in the wells. Groundwater elevations ranged from 620.05 ft amsl in MW22 to 650.90 ft amsl in MW12. Groundwater flow across the Site was generally to the northeast with a more easterly flow in the southern portion of the Site. The groundwater gradient between MW13, near the middle of the property, and MW22 was 0.0528 ft/ft. The gradient in the southern portion of the Site appears to be flatter, but not quantifiable without measurements from MW-5 and MW15.

Depth to groundwater on April 27 ranged from 7.24 feet from the top of monitoring well casing (TOC) at MW3S to 27.53 feet below TOC at BH-2. Groundwater elevations ranged from 620.05 feet amsl in MW18 to 650.96 feet amsl in MW12. Groundwater flow and gradient north of MW13 are virtually the same as that of April 25. Measurements of MW-5, MW15, and MW18 added definition to the flow direction and gradient between the facility and the river. The groundwater flow direction is to the east-northeast and the gradient between MW-7 and MW15 is 0.46 ft/ft.

As discussed above, results of slug and aquifer testing has shown that some wells at the site have a higher yield than others. In general, wells with higher flow also have had higher product recovery rates. This information suggests that there are preferential pathways in which groundwater and product flow. As shown on the cross sections and documented in the boring logs, the subsurface lithology consists of

alluvium underlain by bedrock. The majority of groundwater flow occurs near the base of the alluvium and in the top of the Chumstick Formation. There's no identified lithologic layer within the alluvium or the Chumstick that is acting as a conduit. What's more likely is that remnant channels and/or fractures within the bedrock are acting as preferential pathways.

5.8 Field Screening Results

Field soil screening was used to understand the distribution of impacted soil and to guide sample collection during drilling, soil sampling and sediment sampling. During drilling, field screening was used to select soil samples for laboratory analysis and to define the extent of PCS in the subsurface to confirm field observations.

Field screening consisted of recording visual and olfactory observations, placing a soil sample in water and describing any resultant hydrocarbon sheen, and measuring volatiles with a photoionization detector (PID) while logging soil cores. The field screening results are recorded on the attached boring logs and summarized in the table below. The table lists elevated PID readings (i.e. above 2.0 ppm) and/or intervals with hydrocarbon odors.

Field Screening Results

Boring ID	Hydrocarbon Odor	PID Readings >2 ppmv @ depth (feet)
HC01	Moderate odor @10'	395 @ 10' 21.3 @ 13'
HC02		9.0 at 15' 2.2 @21'
MW1S		
MW3S	Faint odor @10-15'	91 @ 15'
MW12		1
MW13	Strong odor @ 3.5-8'	5.4 -1,271 @ 3.5-12"
MW14	Slight to moderate odor @ 11.5-14'	8.1-1492 @ 10-17'
MW15		1
MW16		
MW17	Moderate to strong odor @ 10-17'	2.1-1261 @ 13-30'
MW18		-
MW19	Moderate odor @ 17.5-21' Slight odor @ 25'	2.1-551 @ 15-25'
MW20		15-77.8 @ 12-15' 63.2-297 @ 23.5-26'
MW21		9.1-205 @ 24-28'
MW22	Free product @ 31.5 Moderate odor @ 33- 34' Moderate Odor @ 35- 40'	94-279@30-40'
MW23	Faint to moderate odor @ 5-14'	5.6-70 @ 8-12'

Notes:

^{-- =} PID reading of 2 ppmv or less and/or no hydrocarbon odor recorded

Elevated PID readings were generally observed just above the contact with the Chumstick Formation and generally extended one to three feet vertically into the formation. The elevated PID readings were generally observed along the bedding planes in the mudstone and/or friable zones and diminished when it came into contact with the deeper cemented sandstone. The elevated PID readings also coincided with the occurrence of the groundwater table which also was observed in close proximity to the contact between the alluvium and the Chumstick lithologic units.

5.9 Analytical Results

Summary analytical results are provided in Tables 6-8. The laboratory analytical reports and chain-of-custody records are provided in Appendix H. The laboratory results are compared to the MTCA Method A cleanup levels (CUL) for soil and groundwater. The following sections describe the results of the testing.

5.9.1 Soil Analytical Results

Borehole soil analytical results for total petroleum hydrocarbons (TPH and BTEX) are reported as milligrams per kilogram (mg/kg) and are summarized in Table 6 and Figure 15. In the following discussion, soil sample IDs are in the form of HCxx-zz and MWxx-zz where xx is the location and zz is the depth, in feet. The sample concentrations are compared to the MTCA Method A cleanup level (CUL) unless other otherwise noted.

GRPH was detected in 20 of the 55 samples collected at concentrations above the laboratory method reporting limit (MRL, Table 6). Of these, 15 samples exceeded the CUL of 30 mg/Kg. Detected concentrations ranged from 7.99 mg/Kg to 4,180 mg/Kg (MW22-30).

DRPH was detected in 20 of the 55 samples collected at a concentration above the laboratory MRL (Table 6). Four samples exceeded the CUL of 2,000 (HC-1-12, MW13-10, MW19-18, and MW22-30). Detected concentrations ranged from 26.6 mg/Kg to 45,700 mg/Kg (MW22-30)

ORPH was detected in 11 of the 55 samples collected above the laboratory MRL. Two samples exceeded the CUL of 2,000 mg/Kg (MW13-05 and MW22-30). The concentration at MW22-30 is estimated as the method detection limit exceeds the CUL.

Benzene was detected in 6 of the samples collected at concentrations above the laboratory MRLs (Table 6). Four samples exceeded the CUL of 0.03 mg/kg (MW1S-20, MW13-05, MW12-10, and MW22-30)

CULs for toluene, ethylbenzene, and xylenes were exceeded at MW13-05 and for ethylbenzene and xylenes at MW22-30.

Five soil samples, MW3S-15, MW14-5, MW14-10, MW14-15, and MW14-25, were analyzed for VOCs by EPA Method 5035A/8260C (Appendix H, Laboratory Reports A8D0237 and A8D0237). None of the 66 analytes were detected MW3S-15, MW14-5, or MW14-25. Low concentrations of gasoline related compounds were detected at concentrations below CULs in MW14-10 (sec-butylbenzene and 4-isopropyltoluene) and MW14-15 (n-butylbenzene, sec-butylbenzene, 4-isopropyltoluene, and n-propylbenzene).

5.9.2 Shoreline Soil

Shoreline samples were analyzed for GRPH, DRPH, ORPH and BTEX (Table 6 and Figure 16). GRPH, DRPH and ORPH concentrations exceeded CULs in Samples SL01, SL02, SL03, and SL04. GRPH concentrations ranged up to 2,580 mg/Kg and DRPH concentrations ranged up to 39,400 mg/Kg.

5.9.3 **Sediment Samples**

Sediment samples were analyzed for GRPH, DRPH, ORPH, and BTEX (Table 7 and Figure 17). GRPH was not detected, DRPH concentrations ranged up to 842 mg/kg, and ORPH concentrations ranged up to 392 mg/kg. These samples were also run with acid/silica gel cleanup to remove non-petrogenic hydrocarbons which resulted in non-detects below the CUL for ORPH and slightly higher concentrations for samples with diesel detections.

Ecology has published sediment management standards (SCUM II 173-204 WAC). Sediment cleanup objectives (SCO) for diesel and residual range TPH have been established. The SCO for diesel (320 mg/kg) has been exceeded in two sediment samples (SS01-13.97cm and SS02-11.75cm) There are no published SCO's for BTEX or GRPH.

5.9.4 Groundwater Monitoring Well Analytical Results

Twenty-five existing and new wells were sampled April 24 through 26, 2018. Wells MW-1 and MW-3 were replaced with MW1S and MW3S and not sampled. Wells MW15 and MW18 were not sampled due the lack of sufficient water in the wells.

Groundwater analytical results from monitoring wells for TPH, VOCs, lead, and PAHs are reported as micrograms per liter (µg/L) and are summarized in Tables 8 and 9 and Figure 18.

GRPH was detected in 16 of the 25 samples collected at concentrations above the laboratory method reporting limit (MRL, Table 8). Of these, 15 samples exceeded the CUL of 800 µg/L. Detected concentrations ranged from 172 µg/L to 40,900 µg/L (MW13). Monitoring MW13 is located in the

footprint of Tank Farm B and immediately north of the Control Valve Building (Figure 2a). The product line piping has been removed from the Control Valve Building but the pumps remain. Petroleum staining and sorbent pads are present inside the Building. Further investigation is required to characterize the nature and extent of GRPH at MW13.

DRPH was detected in 18 wells above laboratory MRLs. Fifteen samples exceeded the CUL of 500 μ g/L. Detected concentrations ranged from 330 μ g/L to 9,360 μ g/L (BH-2) Concentrations above 2,000 μ g/L were present at BH-2, MW-9, and MW22.

ORPH was not detected in any of the samples above the MRL.

Benzene, toluene, ethylbenzene, and xylenes were analyzed for each sample. Benzene exceeded the CUL at MW13, MW14, and MW20. Toluene and xylenes exceeded the CUL at MW13.

Naphthalene, MTBE, EDB, and EDC was analyzed for in three samples and there were no CUL exceedances (Table 8).

Total lead was analyzed in five samples and there were no exceedances of the CUL.

Polynuclear aromatic hydrocarbons (PAHs) were analyzed in samples from MW21 and MW22. MTCA Method A cleanup levels are only available for naphthalene and benzo[a]anthracene. The naphthalene concentration 692 μg/L exceeded the 160 μg/L CUL at MW22 and this was the highest concentration of any PAH. When establishing and determining compliance with cleanup levels and remediation levels for mixtures of carcinogenic PAHs (cPAHs) under MTCA Cleanup Regulation (WAC 173-340-708(8)(e)), the mixture is considered a single hazardous substance. The Toxicity Equivalency Factor (TEF) was calculated for the two samples per Ecology's Focus Sheet³. One-half the detection limit used for non-detected concentrations. The TEFs are shown on Table 9. Neither sample exceeds the benzo(a)pyrene reference cleanup level of 0.1 μg/L.

Three groundwater samples, MW3S, MW14, and MW17, were analyzed for VOCs by EPA Method 5035A/8260C (Appendix H, Laboratory Report A8D0907). None of the 66 analytes were detected in MW3S. In MW14, benzene,sec-butylbenzene, ethylbenzene, isopropylbenzene, 4-isopropyltoluene, naphthalene, and n-propylbenzene were detected; benzene exceeded the CUL. In MW17, benzene, n-

HydroCon Page 37

-

³ https://fortress.wa.gov/ecy/clarc/FocusSheets/tef.pdf

butylbenzene, sec-butylbenzene, ethylbenzene, isopropylbenzene, naphthalene, n-propylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, m,p-xylene, and o-xylene were detected; no detections exceeded CULs.

5.10 Data Quality Review

Laboratory testing of soil and groundwater resulted in six laboratory reports including Apex Labs Work Orders A8D0007, A8D0237, A8D0535, A8D538 (borehole soil), A8D0907 (monitoring well groundwater), and A8D0914 (shoreline soil). The data review reports are included in Appendix I. The review of the analytical results included the following:

- Holding Times & Sample Receipt
- Surrogate Compounds
- Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Associated Laboratory Duplicate
- Laboratory Control Sample/ Laboratory Control Sample Duplicates (LCS/LCSD)
- Method Blank
- Field Duplicates
- Target Analyte List
- Reporting Limits (MDL and MRL)
- Reported Results

The full *Data Validation Reports* are included in Appendix I and are summarized in the following paragraphs.

A8D0007 - Borehole Soil

Data were qualified due to matrix interference, compound identification issues, and/or LCS/CCV recoveries. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

A8D0237- Borehole Soil

Data were qualified due to matrix interference, compound identification issues, and/or LCS/CCV recoveries. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

A8D0535- Shoreline Soil

Data were qualified due to surrogate recoveries, and/or compound identification issues. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

A8D0538 - Borehole Soil

Data were qualified due to surrogate recoveries and/or laboratory duplicate RPDs. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

A8D0907 – Monitoring Well Groundwater

Data were qualified due to matrix interference, compound identification issues, and/or LCS/CCV recoveries. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

A8D0914 – Shoreline Sediment

Data were qualified due to matrix interference, compound identification issues, and/or LCS/CCV recoveries. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

Appendix I identifies all data qualifies and the reasons for qualification. Aside from the data quality issues identified above and the Appendix, the data quality review identified no concerns with respect of the quality of usability of the data presented herein.

5.11 Adjacent Properties

HydroCon conducted additional review of neighboring properties using regulatory database information provided by EDR⁴, a contract information services company. The purpose of the records review was to identify recognized environmental concerns (RECs) in connection with the Site and the surrounding area. Information in this section is subject to the accuracy of the data provided by the information services company and the date at which the information is updated, and the scope herein did not include confirmation of facilities listed as "unmappable" by regulatory databases. In addition, to the

⁴ EDR Inquiry Number 5228549.2s, March 21, 2018

EDR data base review, Sanborn maps, historic air photos, historic city directories, historic topo maps, review of the of Ecology databases, and a records request with the Ecology regarding the Burlington Northern railroad site and a former Unocal service station were reviewed.

The following summarizes facilities reviewed near the Site and additional details are provided in *Offsite Facility Reviews* in Appendix J. Locations of the facilities are shown on Figure 19.

Listed Facilities

Facility Name And Location	Estimated Distance/Direction/Gradient	Database Listings
Wenatchee Substation 514 Worthen St	Approximately 405' / North / Down-gradient	FINDS, ALLSITES, RCRA NONGEN/NLR, ECHO
Hamptons Auto Repair 601 S Wenatchee Ave	Approximately 659' / West / Cross-gradient	EDR HIST AUTO
Goodyear Tire Wenatchee 703 S Wenatchee Ave	Approximately 707' / Southwest / Up-gradient	ALLSITES, UST
Beryl A Comm 610 Wenatchee Ave	Approximately 739' /West / Cross to upgradient	ALLSITES, UST, SWRCY
Dwight Cash Inc 600 S Wenatchee Ave	Approximately 753' West / Cross-gradient	FINDS, ALLSITES, INACTIVE, DRYCLEANERS, RCRA NONGEN/NLR, ECHO
Jerrys Auto Parts 604 S Wenatchee Ave	Approximately 756' / West / Cross-gradient	ICR, FINDS, ALLSITES, UST, CSCSL, NFA
Dick's/Wolfe Service Inc. 730 S Wenatchee Ave	Approximately 975' / Southwest / Up-gradient	FINDS, ALLSITES, CSCSL, UST, NFA, IRC
Chuck's Auto Repair 500 S Wenatchee Ave	Approximately 995' / Northwest / Cross to down-gradient	FINDS, ALLSITES, UST, CSCSL, NFA, IRC
BNSF Wenatchee Rail yard 409 S Columbia Street	Approximately 1110' / Northwest / Down to cross-gradient	FINDS, ALLSITES, CSCSL, LUST, SPILLS, HSL, NPDES, UST, IRC
Chevron 94484 759 S Wenatchee Ave	Approximately 1156' / Southwest / Up-gradient	ALLSITES, UST
UNOCAL Service Station 4942 405 S Wenatchee Ave	Approximately 1322' / Northwest / down to cross-gradient	FINDS, ALLSITES, VCP, UST, CSCSL, NFA

Of the above facilities, the Wenatchee Substation and BNSF Wenatchee Rail Yard have the potential to be RECs for the Coleman property. The Wenatchee Substation has continually operated as an electrical substation from at least the early 1900s to the present. A search of Ecology website and databases did not return any data for this site. However review of the Sanborn maps from 1921, 1928, 1947, and 1949 indicate an above ground storage tank labeled as "Gas Holder" and boilers powered by oil and coal fuel. The 1949 and 1958 Sanborn maps also show a gas tank and associated pump. The

historic burning of coal oil and other fuel oils at this facility may be the source of the heavy oil found in MW22.

The BNSF Wenatchee Rail Yard is located 1,100 feet northwest of the Coleman property. Ecology cleanup site details sheet states that a diesel release has been confirmed to soil and groundwater. Groundwater continues to be monitored at the site. Kennedy/Jenks (2017) shows the diesel groundwater plume to be under the rail track immediately west of the Wenatchee Substation and the Watten Fresh facility immediately to the north. Abandoned diesel USTs are shown south of the plume. Groundwater elevation contours for May and September 2017 show groundwater flowing north-northeast, perpendicular to the orientation of the rail tracks. Concentrations of diesel and/or heavey oil exceeded Method A CULs in two of the seven wells monitored in 2017. Groundwater monitoring includes analysis of DRPH with acid/silica gel clean-up methods (Kennedy/Jenks 2017). Ecology generally does not approve of the acid/silica gel clean-up procedure (Ecology 2016) and the use of this procedure at BNSF may be masking the effects of polar compounds that may be migrating onto the Site.

The soil samples at MW22 differed from the typical sequence observed in all other borings. The upper 35 feet of this boring consisted of loose silt, sand, gravel, and clay with miscellaneous fill debris consisting of brick, glass, and burnt material and free product resembling black oil at 31.5 feet bgs. These materials and contamination do not appear to be related to the Coleman Oil Property or operations.

A sample of the product collected from MW22 was assessed by Apex Laboratory's forensic chemist (Mr. Kurt Johnson) and a write up is included in Appendix K. Results of the evaluation indicates that the product is derived from coal tar and it does not contain R99 Renewable DieselR99 Renewable Diesel. Therefore, it appears that the plume emanating from the Coleman Oil Site terminates south of MW22 and the product observed in MW22 is not from Coleman Oil.

In an effort to identify potential offsite sources and further refine the lateral extent of contamination, HydroCon drilled five borings (MW12, MW3-S, MW13, MW14, and MW16) along the west property line. There was no detection of GRPH, DRPH, ORPH, or BTEX (Site COCs) in the samples collected from MW12 and MW16 above their respective MRLs.

Boring MW3S is located next to MW-3, which had an elevated PID reading (4,992 ppmv) at 10' bgs. HydroCon observed a faint petroleum odor and elevated PID readings (91 ppmv) at 15 feet bgs and a sample (MW3S-15) was collected. This sample was analyzed for the Site COCs as well as the full list of VOCs. GRPH was detected at a concentration of 83 mg/kg. There were no VOCs detected in the sample above their respective MRL.

Elevated PID readings, gasoline odors, and exceedances of gasoline CULs in soil and groundwater were observed in borings MW13 and MW14. MW13 is located within the footprint of former Tank Farm B and near (north) of the Valve Control Building. MW14 is located in between MW13 and MW16. Since MW13 was drilled near potential sources on the Site HydroCon submitted four samples from MW14 for additional VOC analysis (MW14-5, MW14-10, MW14-15, and MW-25). Low concentrations of gasoline related compounds were detected in MW14-10 (sec-butylbenzene and 4-isopropyltoluene) and MW14-15 (n-butylbenzene, sec-butylbenzene, 4-isopropyltoluene, and n-propylbenzene). Additional investigation is required to evaluate the source and extent of gasoline in this area.

5.12 Ecology Well Logs and Local Water Supply

Chelan County PUD's primary water supply is a wellfield located in the Rocky Reach Aquifer just north of Rocky Reach Dam on the east side of the Columbia River (City of Wenatchee, 2012). Rocky Reach Dam is located 8 miles north of the City of Wenatchee. The wellfield is pumped by four wells over 200 feet deep. This source has excellent water quality and quantity. It serves Chelan PUD, City of Wenatchee, and East Wenatchee Water District customers through a regional pipeline. Chlorine is added for disinfection at the well site, located east of Rocky Reach Dam).

A review of well logs maintained by Ecology (2016) indicates 139 wells in the area on the west side of the Columbia River in the area indicted on Figure 20. Ecology uses three classifications for wells in the database: Water Supply Wells, Resource Protections Wells, and Abandoned Wells. All but two of the wells are identified as Resource Protection Wells. The other two are registered as Water Supply Wells and these well logs are included in *Offsite Well Logs* in Appendix L. The wells logs indicate that neither of the wells are water supply wells; one of the wells (MASCO Corp, 1998) located at 5400 Worthen Street is a monitoring well (Resource Protection Well), and the other (Howard, Leonard, 2013) located 1434 Sunset Hwy was abandoned ("Casing pulled and well decommissioned").

The water supply for the City of Wenatchee and lack of water supply wells in the immediate area of the Site strongly indicate that there are no groundwater users in close proximity of the Site.

5.13 Terrestrial Ecological Evaluation

A Terrestrial Ecological Evaluation (TEE) must be completed any time contaminants could harm plants, soil biota, and wildlife (known as ecological receptors) that live in the environment (WAC §173-340-7490). The Site does not qualify for an exclusion using Ecology criteria (contaminants are located above the 6 foot depth conditional point of compliance; all contaminants not covered by buildings, streets or other physical barriers; there is more than 1.5 acres affected; and contaminant concentrations exceed background levels). A Simplified TEE was conducted for the site by Loowit Consulting Group, LLC (Appendix M). Using the scoring system of MTCA Table 749-1, the TEE can be

ended and no further evaluation is required. As such, the applicable CULs for all portions of the site are the MTCA Method A CULs.

6.0 CONCEPTUAL SITE MODEL

This section presents a conceptual understanding of the Site and identifies potential or suspected sources of hazardous substances, types and concentrations of hazardous substances, potentially contaminated media, and actual and potential exposure pathways and receptors.

6.1 **Sources**

The primary source investigated with this SRI is the R99 Renewable Diesel release discovered as a sheen in the Columbia River on March 17, 2017. Investigation results also indicate a gasoline release in the central eastern portion of the property with the highest concentrations observed at MW13. The source of this release has not been determined. Historical releases of gasoline have been documented near Tank Farm A in 2010 and at UST in 2013. Ecology issued and No Further Action determination for these two releases in 2015 (see Section 3.1). The distribution of the fuels in soil and groundwater and sediments at the Site are discussed in the following section. A dry well located in the central portion of the site was excavated and sampled (Farallon 2017). Confirmation samples resulted in GRPH detections exceeding CULs in the excavation side walls and bottom (Section 3.2). MW23 was drilled in this approximate location, also with GRPH concentrations exceeding CULs at depths of 8 and 12 feet. Groundwater concentrations at MW23 did not exceed CULs. Unexcavated soil may be a source of contamination in this area.

6.2 Areal and Vertical Extent of Soil, Groundwater and Sediment Impacts

This section reviews the areal contaminant distribution and subsurface migration pathways.

6.2.1 Areal Contaminant Distribution

Diesel and gasoline range hydrocarbons exceeding MTCA Method A cleanup levels are present in subsurface soil, groundwater, shoreline soils, and shoreline sediments. R99 Renewable diesel in groundwater extends from the release area to the north-northeast to approximately MW22, a distance of 550 feet. Soil is impacted by diesel transported by groundwater. Shoreline soil and shoreline sediments are impacted by groundwater discharging to the Columbia River approximately 400 feet north of the release area. Gasoline range hydrocarbons extend to the area of impact south of the release area (MW13 and MW01S) and are likely due to historic releases not associated with the R99 Renewable diesel release. Monitoring well MW13 is located within the footprint of former Tank Farm B and next to (north) of the Control Valve Building. Both of these site features had historic handling of gasoline and other petroleum products. Gasoline range hydrocarbons are also present in soil and groundwater downgradient of the R99 Renewable diesel release area. The current extent of

subsurface soil, groundwater, and shoreline soils impacted for diesel and gasoline range hydrocarbons is shown on Figure 21.

Gasoline and diesel impacts to soil and groundwater at MW22, the northernmost monitoring well, are interpreted to be due to a source not associated with the operations at Coleman Oil Company.

6.2.2 Contamination Sources

Sources of contamination at the site can be placed into 4 separate categories (known releases, suspected releases, historic releases, offsite sources). Details of known contamination and potential offsite sources have been discussed above. A discussion of each category is provided below.

Known Releases

- In June 2010, 180 gallons of unleaded gasoline was released from a leaking valve control box on the southern portion of Tank Farm A.
- In May 2013, 200 gallons of gasoline was released while the UST on the eastern portion of the Site that supplied fuel to the retail sales card lock fuel island was being filled. Ecology issued an NFA determination in March 13, 2015 for the site. It should be noted that improper monitoring well construction in two of the wells installed to monitor the gasoline releases (MW-1 and MW-3) may have provided groundwater data that wasn't representative of actual groundwater conditions. This instigated the installation of monitoring wells MW1-S and MW3-S. It's possible that a mass of gasoline impacted soil remains at the site near the 2010 and 2013 releases and may require further remediation.
- On March 17, 2017, the Wenatchee Fire Department reported the presence of a sheen and
 petroleum odor on the Columbia River near the site. Results of investigation and line tightness
 testing indicated that an estimated 4,543 gallons of R99 biodiesel was released from a broken
 fuel line. Ongoing characterization and product recovery measures are being implemented at
 the site for this release.

Suspected Releases

A high concentration of GRPH and benzene has been observed in soil and groundwater samples collected at monitoring well MW13. This well is located within the footprint of former Tank Farm B and adjacent to (north) and downgradient of the Control Valve Building that housed pumps used to load fuel into the storage tanks. Further investigation in this area is warranted to assess the nature and extent of GRPH impacts to the subsurface.

Historic Releases

The site has operated as a bulk fuel facility since 1921. Little is known about historic operations. However, it is likely that handling, storage, and distribution of fuel resulted in spills, leaks, and accidents over the operational history of bulk fuel facilities. This is supported by forensic review of chromatograms that identified several petroleum fuels types in the subsurface other than R99 Renewable diesel including degraded diesel, gasoline, bunker C, and oil.

Offsite Sources

Two adjacent properties that have had known releases and/or handled petroleum products near the subject site include the Wenatchee Substation 514 and the BNSF railroad.

Former Dry Well

The dry well, located in the east-central portion of the site, was sampled on April 3, 2017. Five samples were collected at depths of 3-5 feet. The deepest sample collected at the bottom of the excavation had a concentration of 2,400 mg/Kg DRPH and 2,000 mg/kg ORPH. HydroCon installed monitoring well MW23 at the presumed location of the dry well based on Farallon figures.

6.2.3 Contaminant Migration within the Subsurface

The quality of the borehole core and sample recovery has greatly improved the understanding of contaminant migration in the subsurface at the Site. HydroCon has developed several graphics to illustrate subsurface conditions with this data.

Alluvial deposits are underlain by the Chumstick Formation bedrock. The thickness of the alluvial deposits ranges from 6 to 31.5 feet. Boring logs and drilling observations indicate that a more massive, well cemented sandstone layer is beneath thin layers of mudstone, shale and sandstone and the sandstone appears to be acting as an aquitard in this area. Cross sections are included as Figures 9 through 12 and show the contact between the alluvial deposits and the underlying Chumstick Formation, groundwater levels in April 2018, and the distribution of contamination based on field observations (PID, odor, sheen). These figures demonstrate that the groundwater level is within a few feet of the top of the Chumstick Formation and always above the sandstone layer. An exception is at MW22 where the groundwater is approximately 15 feet above the top of the Chumstick Formation. This area has been disturbed by previous excavation and has been backfilled with construction and other debris.

Six recovery sumps were installed prior to backfilling the remedial excavations during April to June 2017. The remedial excavation was reportedly advanced to bedrock and then backfilled although there's no report documenting the remedial action or installation of the sumps. As shown on the attached logs, the total depth of the sumps ranges from 13 to 20 feet bgs. Pumps were installed in the sumps to recover R99 Diesel Product and maintain a cone of depression in groundwater near the point of release. Initially, the highest recovery of product was at Sump #1 and Sump #2 which are both downgradient and nearest the point of release. Both of these sumps are 13 feet deep. As the water level dropped by pumping (and seasonally) product recovery became more prevalent in the deeper sumps (Sump #2, Sump #5 and Sump #6). The sumps with the most consistent recovery of product was Sump #5 and Sump #6, both of which are located the furthest downgradient from the point of release and are the deepest (20 and 18 feet, respectively). The observation and recovery of product in the sumps follows a similar pattern as what is seen in the downgradient wells with product following the top of the bedrock (Chumstick Formation).

Groundwater flow is generally parallel with the Chumstick Formation as illustrated on Figure 22 which plots the top of the sandstone layer and the April 27 groundwater surface. The groundwater flow direction and the dip of the sandstone surface are both to the north, northeast except in the region between the Property and the Columbia River where both are more to the east. Groundwater levels are approximately 10 feet above the Sandstone. The depth of the top of the sandstone estimated in the easternmost wells (MW15 and MW18) as the boreholes did come in contact with the top of the formation, but not the underlying the sandstone.

Using the survey information of the wells, HydroCon created a plot of the top of the Chumstick Formation, the total amount of product recovered from the wells, and the relative flow rates of the wells obtained from the hydraulic testing at the Site (Figure 23). A correlation can be made between the contours of the bedrock and the presence of LNAPL in individual wells downgradient (north) of the loading rack (point of the release). As shown on the figure, wells with higher flow rates have generally had the most product recovered. A similar relationship between flow rate and product recovery may be present at the recovery sumps as discussed in Section 5.5.2.

Contaminant transport and groundwater flow appears to follow the surface of the Chumstick Formation and field observations paired with analytical data suggest that the petroleum contamination penetrates a few feet into the formation and travels laterally within the shaley sandstone and shale/siltstone/mudstone of the Chumstick Formation. Beginning at the point of release, product migrated downward via gravity until it reached groundwater. Downgradient migration appears to be controlled by geology (bedrock) along preferential pathways within the subsurface that are likely fractured and/or channelized areas within the Chumstick Formation and areas of different porosity in the overlying alluvium. These pathways appear to be complex and localized based on the intermittent

presence of LNAPL in monitoring wells installed near the Columbia River near the observed sheen discharge area and where the four seeps are located. A conceptual model of the flow is shown on Figure 24. This is reinforced by the aquifer testing performed in February 2018 that demonstrated that none of the wells tested are hydraulically connected. However, over 200 gallons of R99 (based on product recovery totals) has made its way into the Columbia River with the apparent discharge points being west of monitoring wells BH-2 (south) to MW-10 (north).

6.3 Chemicals and Media of Concern and Cleanup Levels

The COCs for the Site are those compounds that were detected at concentrations exceeding their respective CULs. The COCs and the media where the COCs were detected above the respective CULs are listed below:

- GRPH, DRPH, and BTEX in soil
- GRPH, DRPH, ORPH, benzene, toluene, and xylenes in groundwater
- DRPH and ORPH in sediments

The selected cleanup alternative must comply with the MTCA cleanup regulations specified in WAC §173-340 and with applicable state and federal laws. The CULs selected for the Site and Property are equivalent and consistent with the RAOs, which state that the ultimate RAO is to reduce risks to human health and the environment to levels suitable for Ecology to make a determination of NFA for the Site. Achieving the interim RAO will enable Ecology to issue a Property-Specific NFA. The associated media-specific CULs for the identified COCs are summarized in the following sections.

The proposed CULs for soil and groundwater beneath the Site are generally the MTCA Method A CULs for Industrial Land Use (see Section 2.1) for COCs that have a Method A cleanup level. If there is no promulgated Method A cleanup level for a given chemical or medium, the proposed cleanup level is the MTCA Method B Standard Formula Value for carcinogenic or noncarcinogenic compounds, depending on the carcinogenic properties of the compound.

The CULs for the media and COCs include those that have been detected in soil (Table 6), groundwater (Tables 7 and 8) and sediment (Table 6) above the CULs. The soil and groundwater CULs are summarized in the tables below, including the source of the cleanup level.

Proposed CULs for Soil

	Cleanup Level	
Chemicals of Concern	(mg/kg)	Source
GRPH ¹	30	
DRPH	2,000	
Benzene	0.03	MTCA Method A, Industrial; WAC §173-340-745(3)(b)(i)
Toluene	7	
Ethylbenzene	6	
Xylenes ²	9	

For all gasoline mixtures with benzene included

Proposed CULs for Groundwater

	Cleanup Level	
Chemicals of Concern	(µg/L)	Source
GRPH ¹	800	
DRPH	500	
ORPH	500	
Benzene	5	MTCA Mathad A: \$172.240.720/2\/b\/:\
Toluene	1,000	MTCA Method A; §173-340-720(3)(b)(i)
Ethylbenzene	700	
Xylenes ²	1,000	
Naphthalenes ³	160	

When benzene is present in groundwater

DRPH and ORPH were detected in sediment samples (Table 6). The Freshwater Sediment Cleanup Objectives and Cleanup Screening Levels for protection of the benthic community for Diesel are 340 mg/kg and 510 mg/kg, respectively (WAC §173-204-563 - Table VI).

6.4 Site Definition

Based on the findings from the investigations conducted by HydroCon and others, the Site is defined as petroleum-contaminated soil and groundwater exceeding the MTCA Method A Industrial CULs and as shown in Figure 20, titled "Site Boundary Definition". In addition, Columbia River sediments are impacted 400 feet north of the release area.

6.5 **Preliminary Exposure Assessment**

The following is a review of exposure pathways and receptors identified for the Site based on currently available data.

²For total xylenes: ortho-, meta-, and para-isomers

²For total xylenes: ortho-, meta-, and para-isomers

³Value is for total of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene

6.5.1 Soil-to-Groundwater Pathway

Analytical testing of groundwater samples indicates that contamination of groundwater via the soil leaching pathway and is considered to be complete.

6.5.2 **Direct Contact Pathway**

Direct contact with soil and groundwater exhibiting concentrations of petroleum hydrocarbons in excess of the CULs is limited to human receptors who come into close contact with the media via direct exposure, including dermal contact or ingestion of excavated soil or groundwater. The standard point of compliance for soil contamination beneath a Site is approximately 15 feet bgs, which represents a reasonable estimate of the depth that could be accessed during normal Site redevelopment activities (WAC §173-340-740[6][d]). Most of the impacted soil at the Site is at a depth of 15 feet or more. Boring locations where soil concentration exceeded MTCA Method A CULs include MW-6 (10.3 and 12 ft), MW-11 (13.2 ft), MW13 (5 and 10 ft), and MW14 (10 ft). Surface soil in the area of MW13 may be impacted. Each of these locations are within the Coleman Oil property, which is secured with fencing. Until such time as the contaminated soil and groundwater are removed or remediated, or an institutional control limiting direct contact is implemented, the direct contact pathway is a potentially viable exposure pathway.

6.5.3 **Vapor Pathway**

Volatile COCs have been identified in soil, however no soil gas samples have been collected. There are no current structures on the Coleman Oil property, except the valve control building, but structures could be built in the future. The vapor intrusion exposure pathway is considered to be potentially complete at the Site.

A telephone conversation with the PUD on September 3, 2018 revealed that a portion of one of the buildings has a basement used for equipment storage. With product observed in MW-9 at a depth of 21.5 feet bgs, the bottom of the basement is likely less than 15 feet (EPA screening guidance adopted by Ecology) above the product level. As such, this building may be subject to vapor intrusion.

6.5.4 Surface Water/Sediment Pathway

Migration of contaminants to the Columbia River via groundwater discharge has been demonstrated at the Site. In addition, concentrations in two sediment samples exceeded the Freshwater Sediment Cleanup Objectives and Cleanup Screening Levels for protection of the benthic community for Diesel Therefore, this pathway is considered complete.

6.5.5 **Groundwater/Drinking Water Pathway**

Groundwater in the vicinity of the Site is not developed as a drinking water resource and is not likely to be developed in the future due to a well-established municipal water supply system. HydroCon reviewed registered water wells on the Ecology website, which revealed that there are no water supply wells in the vicinity of the Site. While adverse impacts to shallow groundwater in the immediate vicinity of the Site have been confirmed, there is no potential for adverse impacts to the municipal water supply or private wells from contaminants migrating from the Property. However, there is a potential for future potable water supply since it cannot be eliminated by criteria of salinity or yield as specified under MTCA.

6.6 Potential Data Gaps

The nature and extent of contamination and contaminate migration has been sufficiently determined for the purposes evaluating feasibility level remedies. Additional work described below will help refine remedial alternatives

Additional work needs to be done in areas where the 15-foot compliance point is present (diesel release and gasoline area), particularly the gasoline impacted area near MW13. Further investigation is needed in this area to determine the lateral and vertical extent of impacts. A sampling plan for this area is included in the Additional Interim Action #3 Work Plan included in Appendix N.

Additional exploration in Chehalis Street between MW-16 and MW-17 would assess the magnitude of migration in this area and may eliminate the flow vector west of MW-17 toward MW-10 shown on Figure 23. This work is currently in progress.

More exploration on Worthen Street between MW22 and BH-2 is necessary to further evaluate the migration pathway to the river in this area. This work is currently in progress.

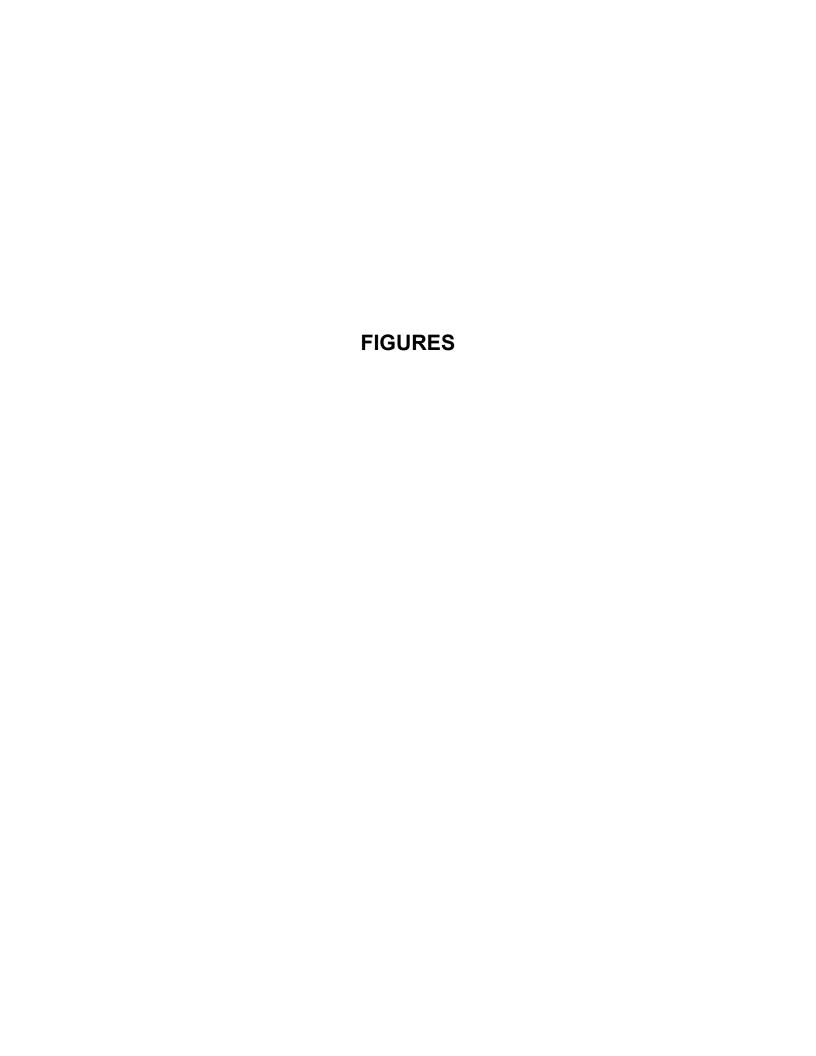
Additional sampling of shoreline soil and sediment is needed to define the extent of impacts. A sediment sampling plan is included in the Additional Interim Action #3 Work Plan included in Appendix N.

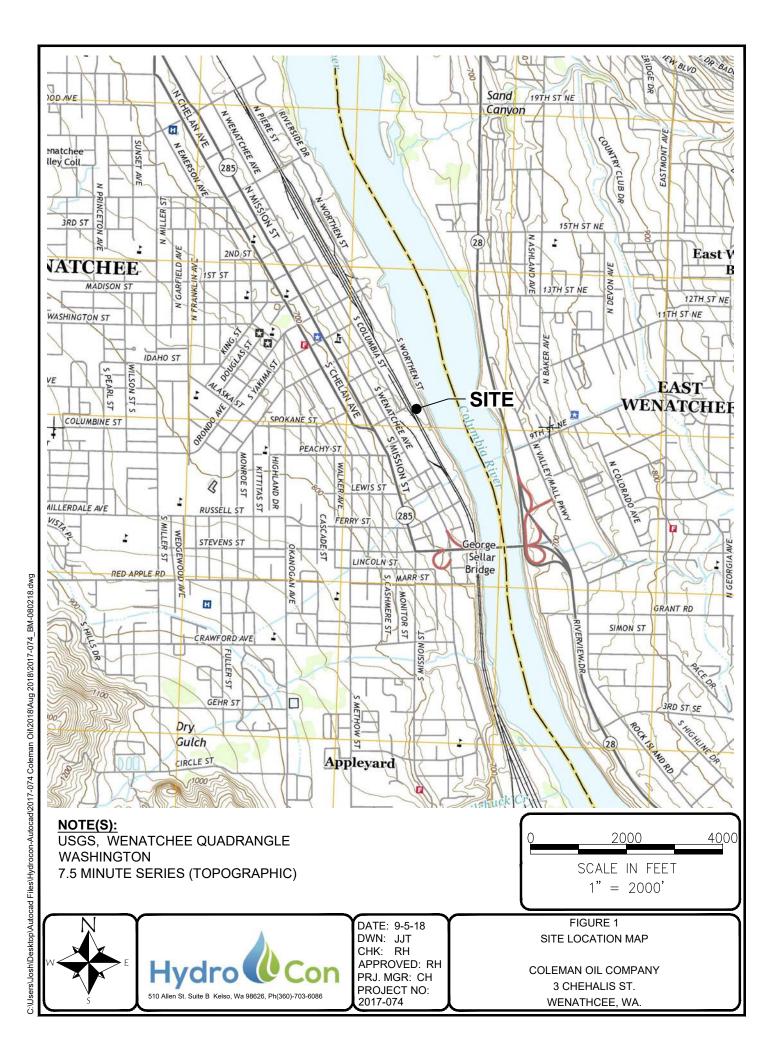
A groundwater monitoring program with location for monitoring, schedule, and analytical parameters is being prepared under separate cover.

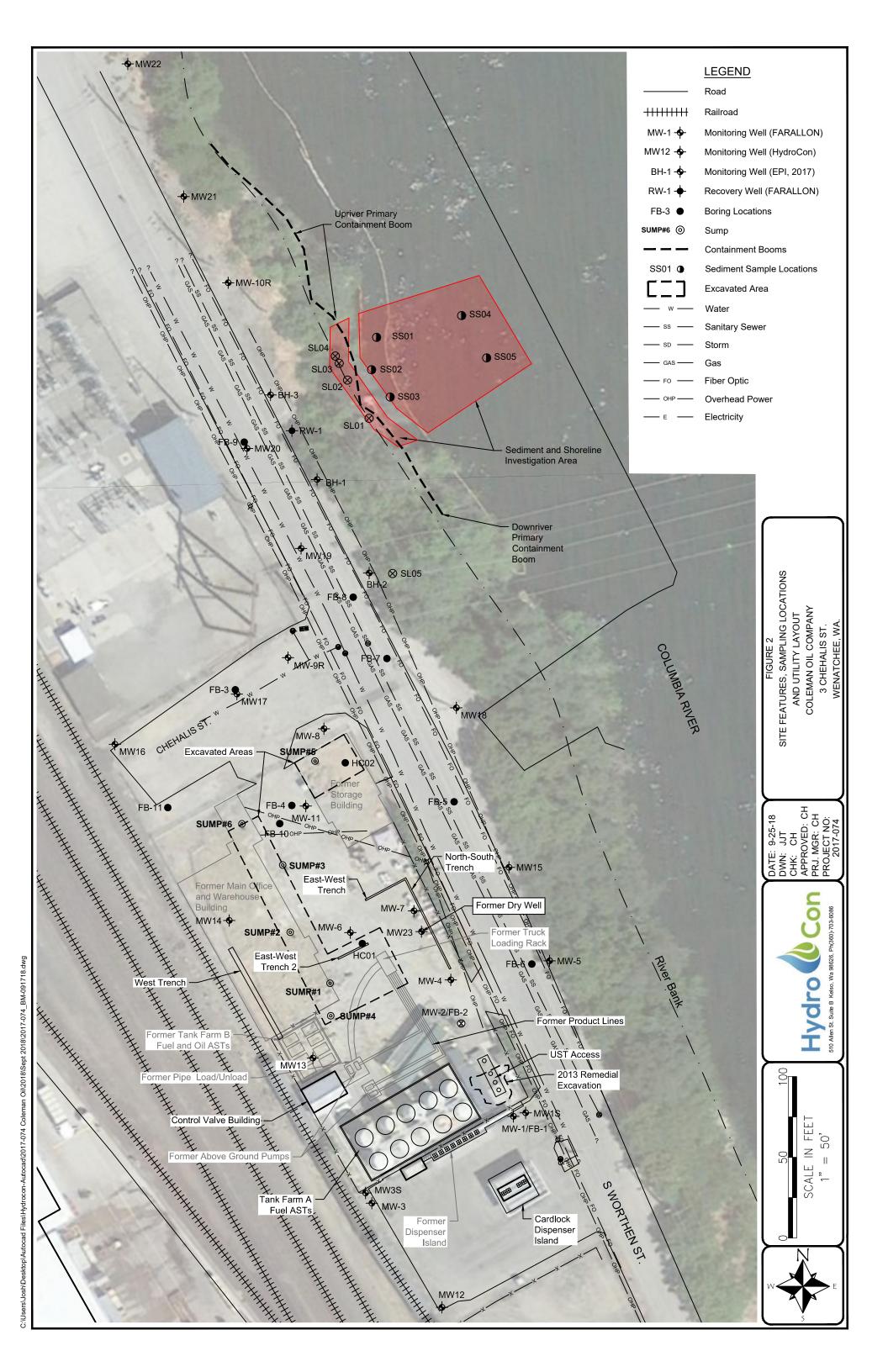
More testing is needed to evaluate groundwater pumping and treatment options/design.

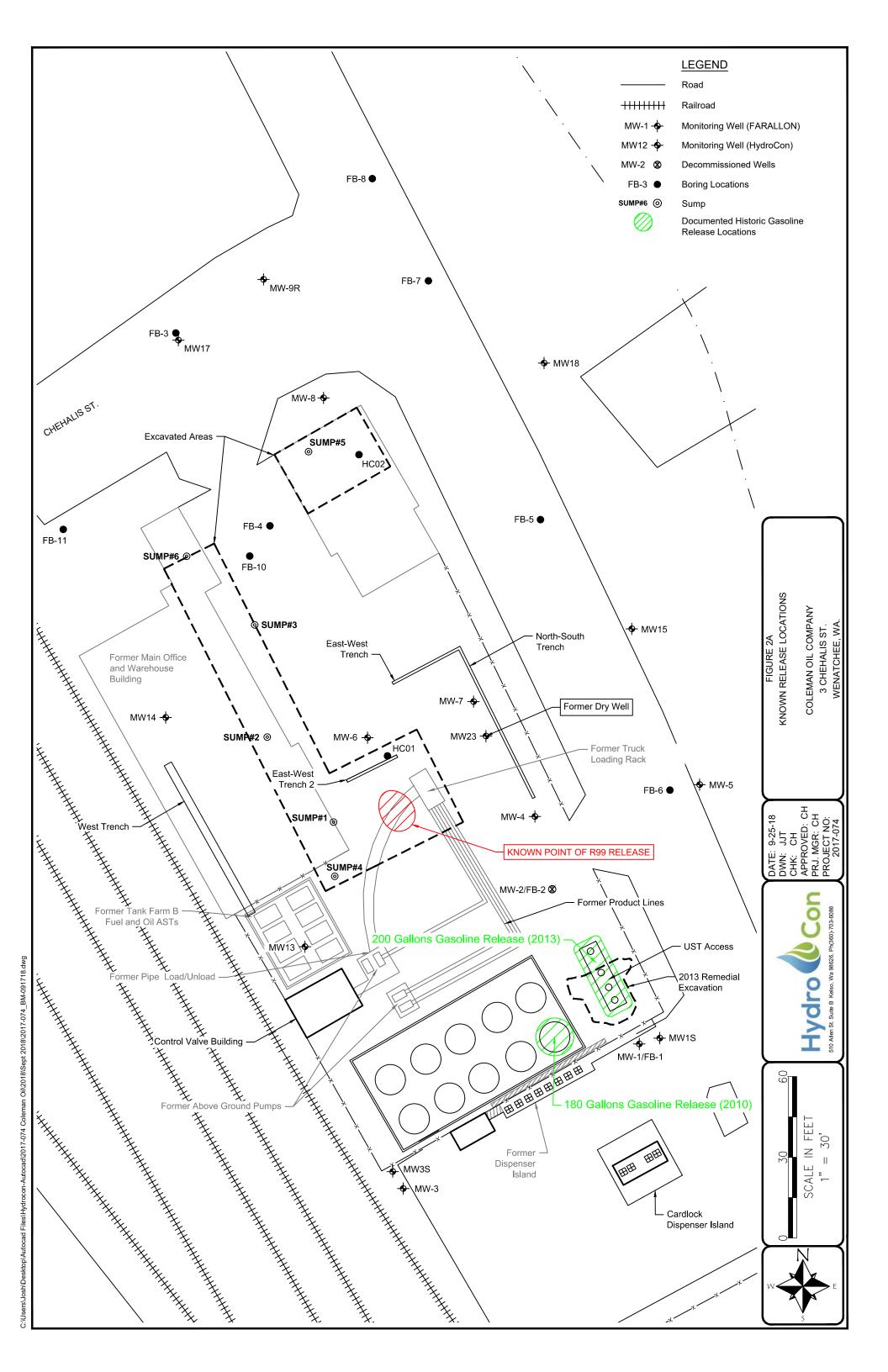
7.0 REFERENCES

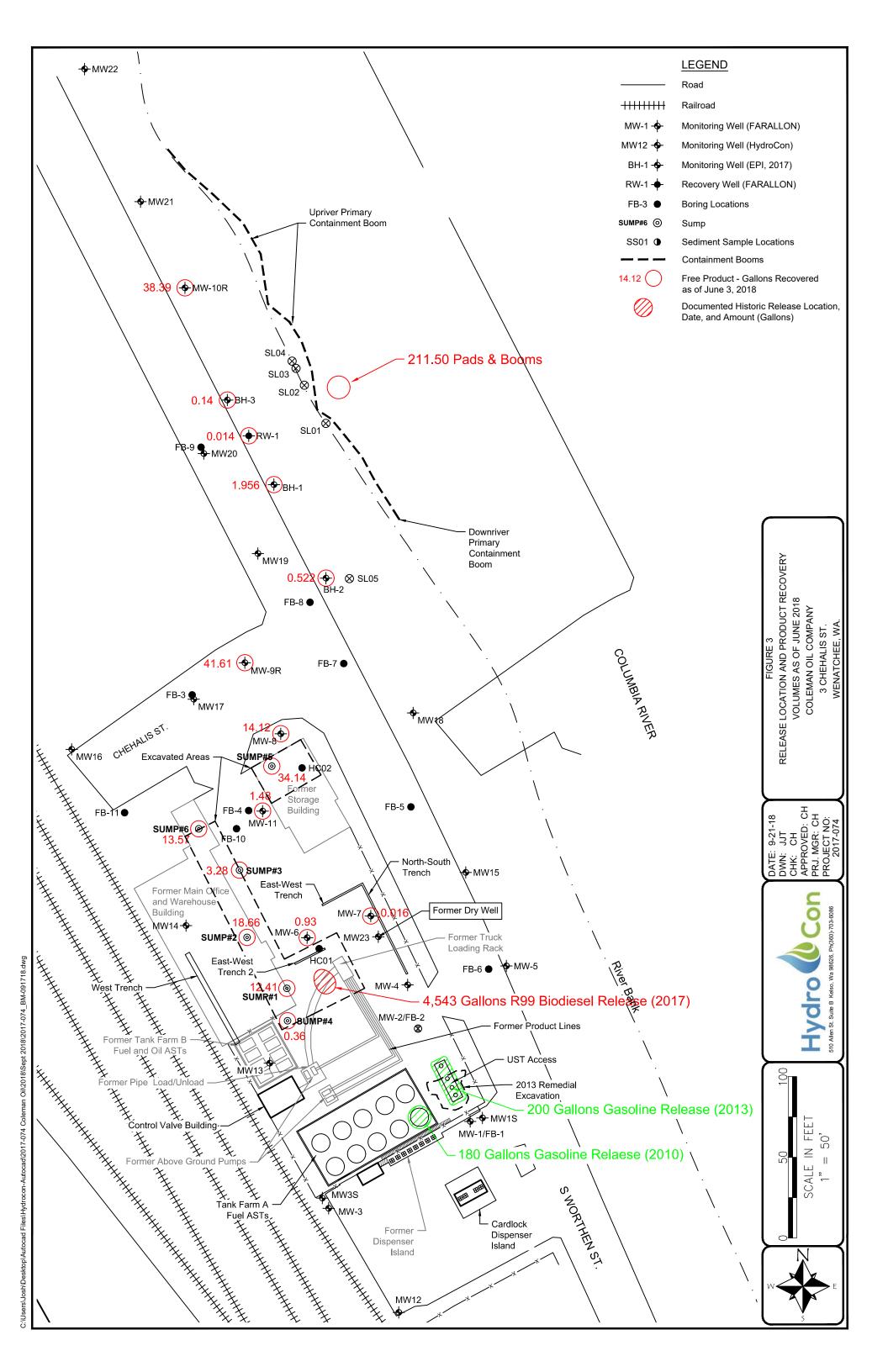
May 25.

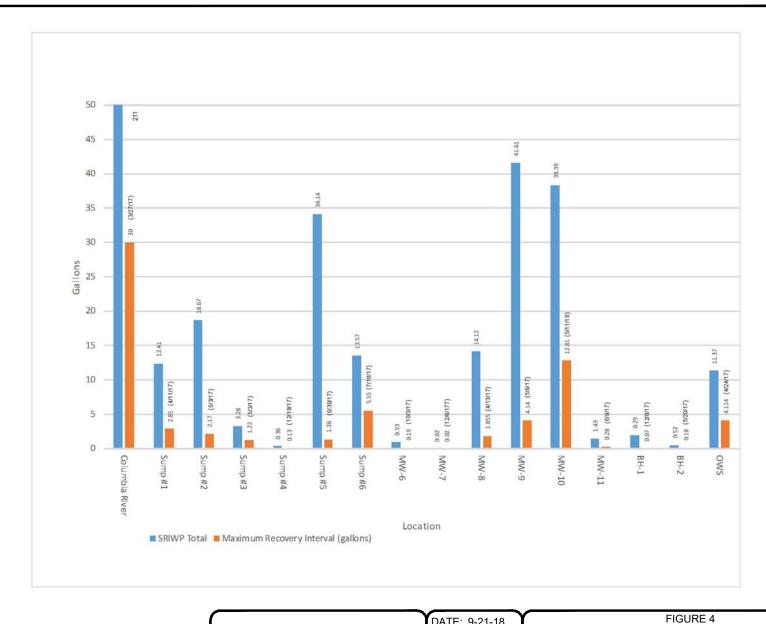

18.


- Able Clean-Up Technologies, Inc. (Able). 2013. Letter Regarding Report for a Gasoline Spill for Coleman Oil, Located at the Coleman Oil Bulk Plant, 3 Chehalis Street, Wenatchee, Washington. From Kipp Silver. To Mark Sater, Coleman Oil. July 1.
- Blue Mountain Environmental Consulting, Inc. 2007. Environmental Site Assessment/ASTM E1527-05 at Coleman Oil Company Wenatchee Cardlock/Bulk Facility, 3 Chehalis St./600 Worthen St., Wenatchee, Washington 98801. Prepared for Bank of Whitman. February 28.
- City of Wenatchee. 2012. City of Wenatchee 2012 Comprehensive Water Supply System Plan.

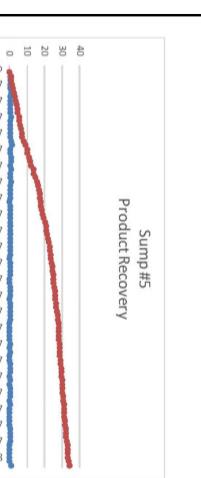

 Prepared by the City of Wenatchee Public Works Department.
- Coleman Oil Company 2017. Letter regarding Volume of R99 Renewable Diesel Release. To Dale Becker US Environmental Protection Agency and Sam Hunn, Washington Department of Ecology. Prepared by Bob Coleman. April 25.
- Farallon Consulting, L.L.C. (Farallon). 2014. Final Groundwater Monitoring Report and Request for No Further Action Determination. Prepared for Coleman Oil Company. January.
- 2017a. Emergency Spill Response Plan, Coleman Oil Wenatachee [sic] Facility, 3 East Chehalis Street, Wenatchee, Washington. April 1.
 2017b. Preliminary Cleanup Alternatives Evaluation, Coleman Oil. Prepared for Coleman Oil.
- ——. 2017c. Supplemental Data Summary Report. Prepared for Coleman Oil Company. October
- ——. 2018a. *Draft Interim Action Work Plan.* Prepared for Coleman Oil Company. February 9.
- ——. 2018b. *Draft Additional Interim Action Work Plan*. Prepared for Coleman Oil Company. February 9.
- Gresems, Randall L., Naeser, Charles W., and Whetten, John W., 1981. Stratigraphy and Age of the Chumstick and Wenatchee Formation: Tertiary Fluvial and Lacustrine Rocks, Chiwaukum Graben, Washington. Geological Society of America Bulletin Part II v. 92. May
- HydroCon, LLC. 2018a. Supplemental Remedial Investigation Work Plan. Coleman Oil R99
 Renewable Diesel Spill, Wenatchee, Washington. Prepared for Coleman Oil Company, LLC.
 March 15.




2018b. Aquifer Testing at Coleman Oil Facility, Wenatchee, Washington, March 16.
 2018c. Product Recovery at Coleman Oil Site 3 East Chehalis Street, Wenatchee, WA. Technical Memorandum to Ms. Connie Smith (Schwabe, Williamson & Wyatt, P.C.). July 5.
 Kennedy/Jenks. 2017. 2017 Annual Groundwater Monitoring Report. BNSF Wenatchee Railyard, Wenatchee, Washington. Prepared for BNSF Railway Company. November 30.
 Tabor, R. W., Waitt, R.B., Frizzell, V.A., Swanson, D.A., Byerly G.R., and Bentley, R.D. 1982. Geologic Map of Wenatchee 1:100,000 Quadrangle, Central Washington. U.S. Geological Survey Miscellaneous Investigations Series Map I-1311.
 Tennyson, Marilyn E., and Totman, Judith, 1987. Review of Geologic Framework and Hydrocarbon Potential of Eastern Oregon and Washington. USGS Open-File Report 87-450-0
 Washington State Department of Ecology (Ecology). 2015. Letter Regarding No Further Action at the Following Site: Coleman Oil Company 1, 3 East Chehalis Street, Wenatchee. From Jennifer Lind. To Jim Cach, Coleman Oil Company. March 13.
 2016. Guidance for the Remediation of Petroleum Contaminated Sites. Toxics Cleanup Program Publication No. 10-09-057. Revised June 2016



DATE: 9-21-18
DWN: JJT
CHK: NV
APPROVED: NV
PRJ. MGR: CH
PROJECT NO:
2017-074


TOTAL PRODUCT RECOVERY, MAXIMUM INTERVAL RECOVERY

(AND DATE OF MAXIMUM INTERVAL)

COLEMAN OIL COMPANY

3 CHEHALIS ST.

WENATCHEE, WA.

6/6/2017

6/10/2017

6/20/2017

6/24/2017

7/2/2017

7/14/2017

7/18/2017

7/22/2017

7/26/2017

7/30/2017

8/3/2017

8/9/2017

8/15/2017

8/18/2017

8/22/2017

8/26/2017

8/30/2017

9/3/2017

9/17/2017

9/25/2017

10/11/2017

10/19/2017

10/24/2017

2/2/2018

7/12/2017

7/17/2017

7/20/2017

7/24/2017

7/27/2017

7/31/2017

8/5/2017

8/11/2017

8/15/2017

8/17/2017

8/21/2017

8/23/2017

8/25/2017

8/28/2017

8/31/2017

9/4/2017

9/12/2017

9/14/2017

9/17/2017

9/19/2017

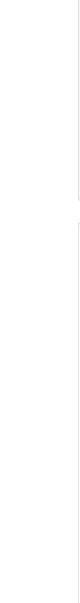
9/24/2017

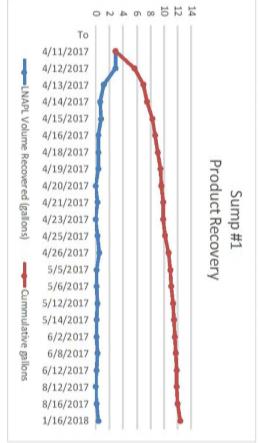
10/2/2017

10/10/2017

10/19/2017

2/15/2018


4/1/2018


To

50 40 30 20 10

Product Recovery

MW-10

200 150 100 50

16 14 12 10 8 8 6 4 4 2

Product Recovery

Product Recovery

MW-8

Columbia River

REAL BOIL

577 8011

SPIROU.

TOTAL.

P. Poly

State of s

10/21/2015 .

La Roya

TRIBOLS

Stations.

82/2018 ·

To

5/4/2017

5/6/2017

5/8/2017

5/11/2017

5/13/2017

5/15/2017

5/17/2017

5/20/2017

5/22/2017

6/5/2017

6/19/2017

6/21/2017

6/23/2017

6/25/2017

6/30/2017

7/3/2017

7/6/2017

7/14/2017

7/16/2017

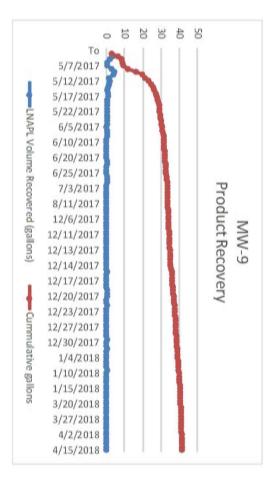
7/17/2017

7/21/2017

8/11/2017

9/26/2017

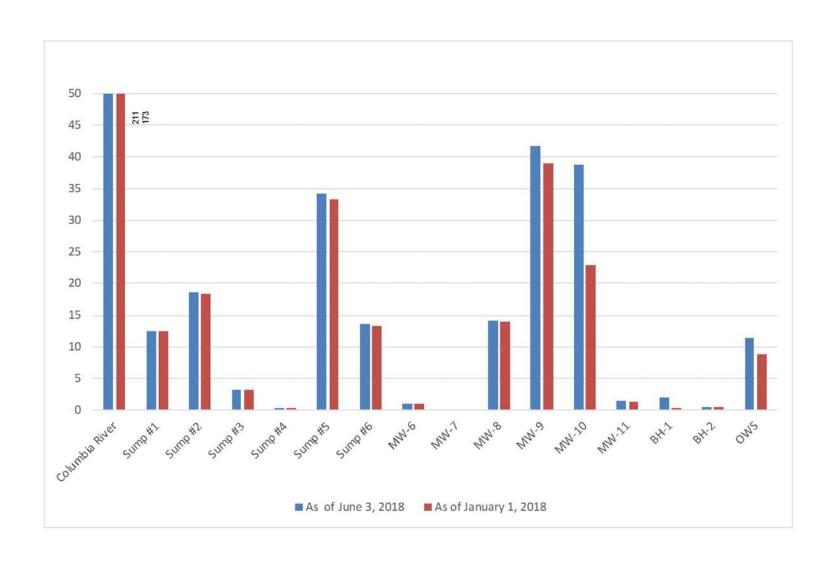
10/3/2017


10/5/2017

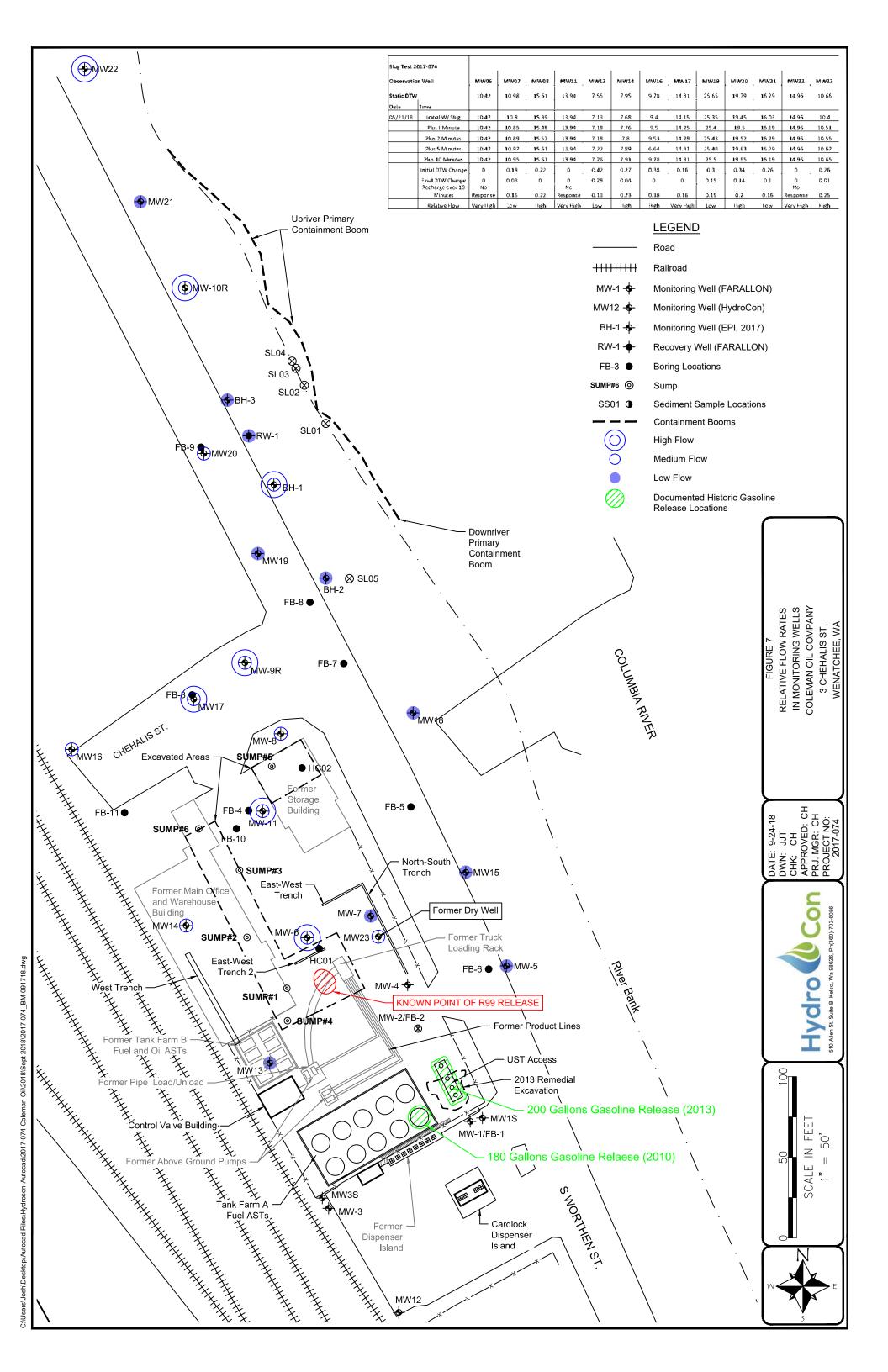
1/10/2018

2/22/2018

4/18/2018

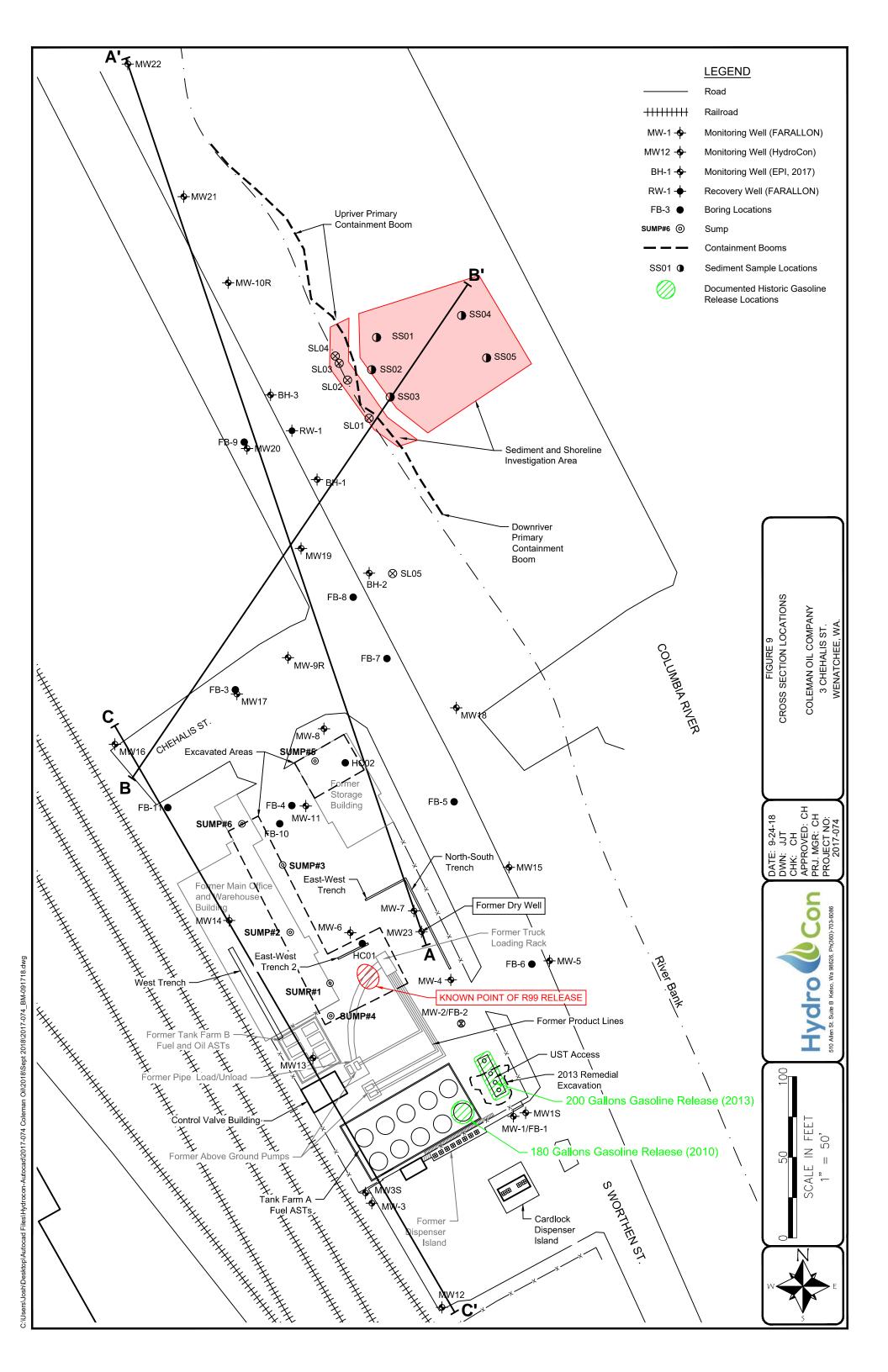

red (gallon

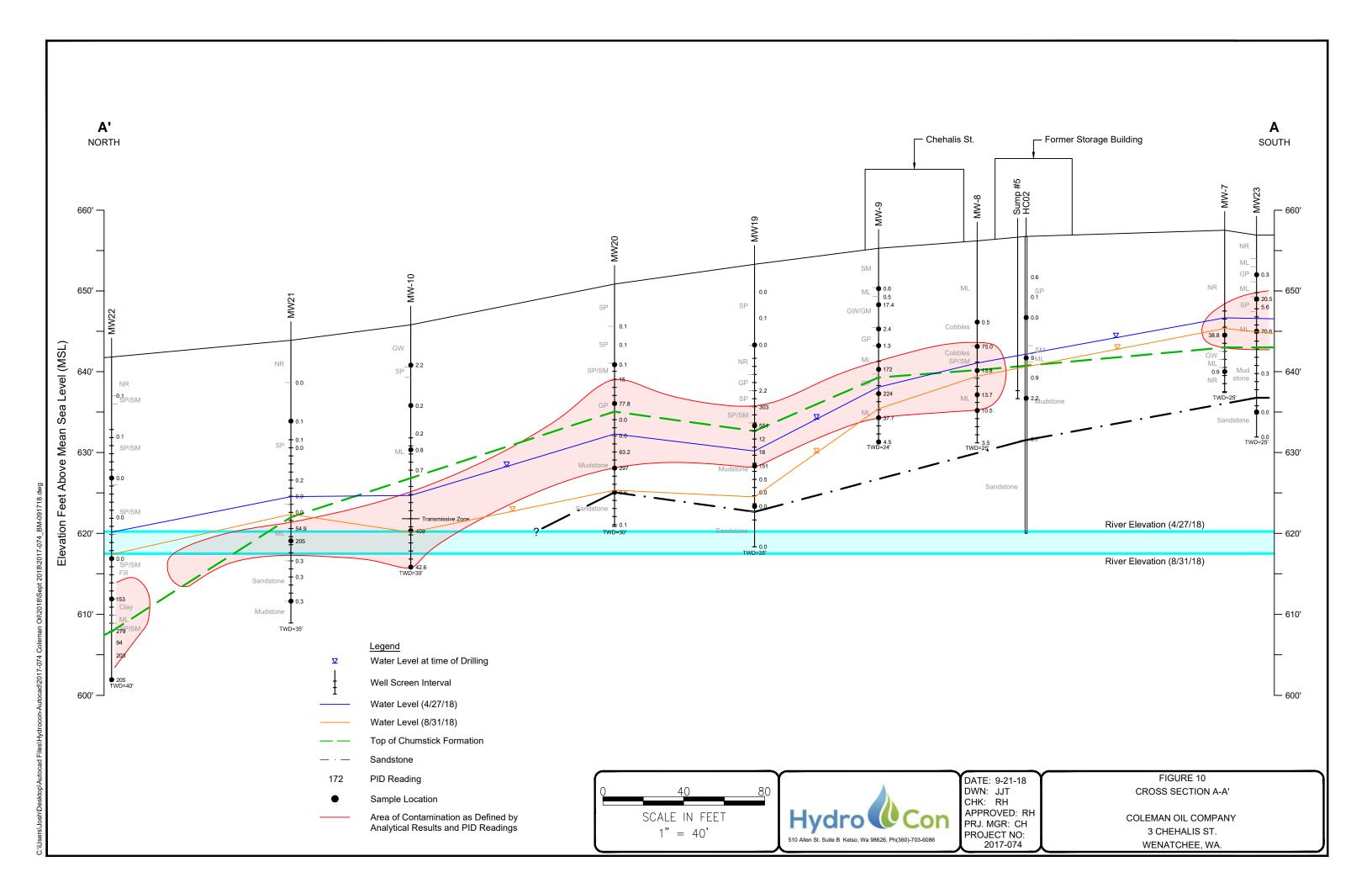
DATE: 9-21-18
DWN: JJT
CHK: NV
APPROVED: NV
PRJ. MGR: CH
PROJECT NO: 2017-074

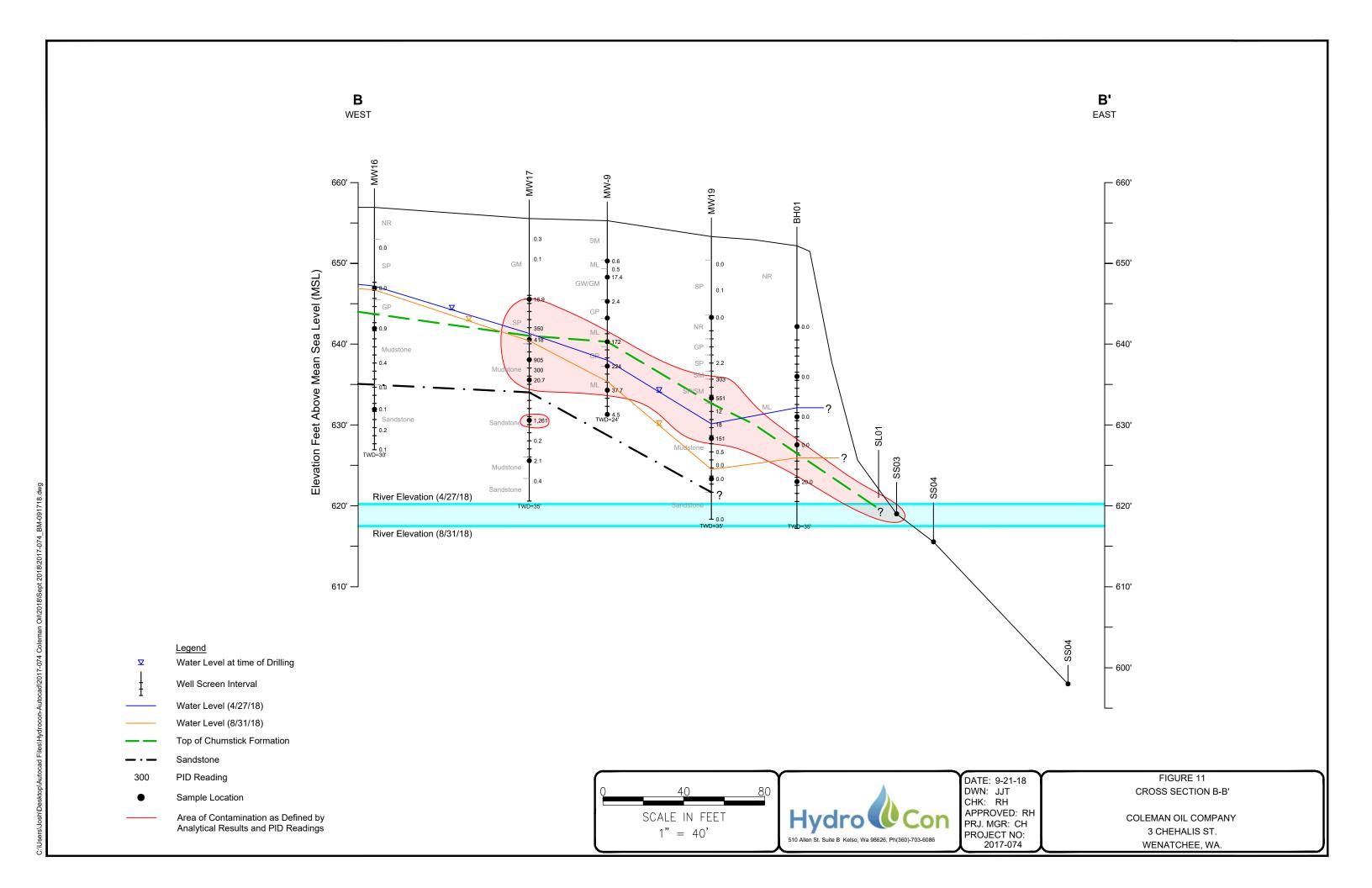

FIGURE 5
DAILY PRODUCT RECOVERY AND
CUMMULATIVE PRODUCT RECOVERY
COLEMAN OIL COMPANY
3 CHEHALIS ST.

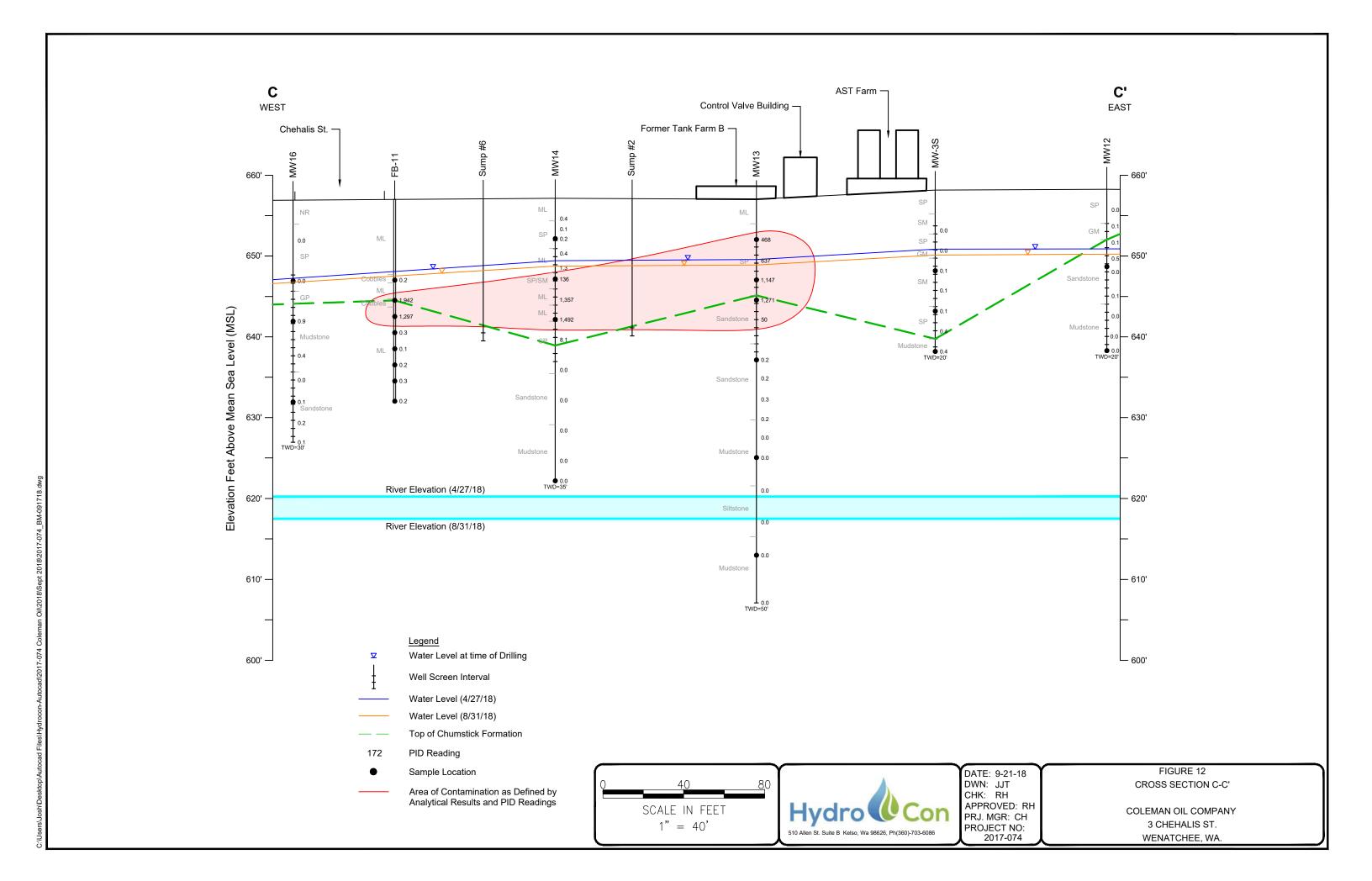
DATE: 9-21-18
DWN: JJT
CHK: NV
APPROVED: NV
PRJ. MGR: CH
PROJECT NO:
2017-074

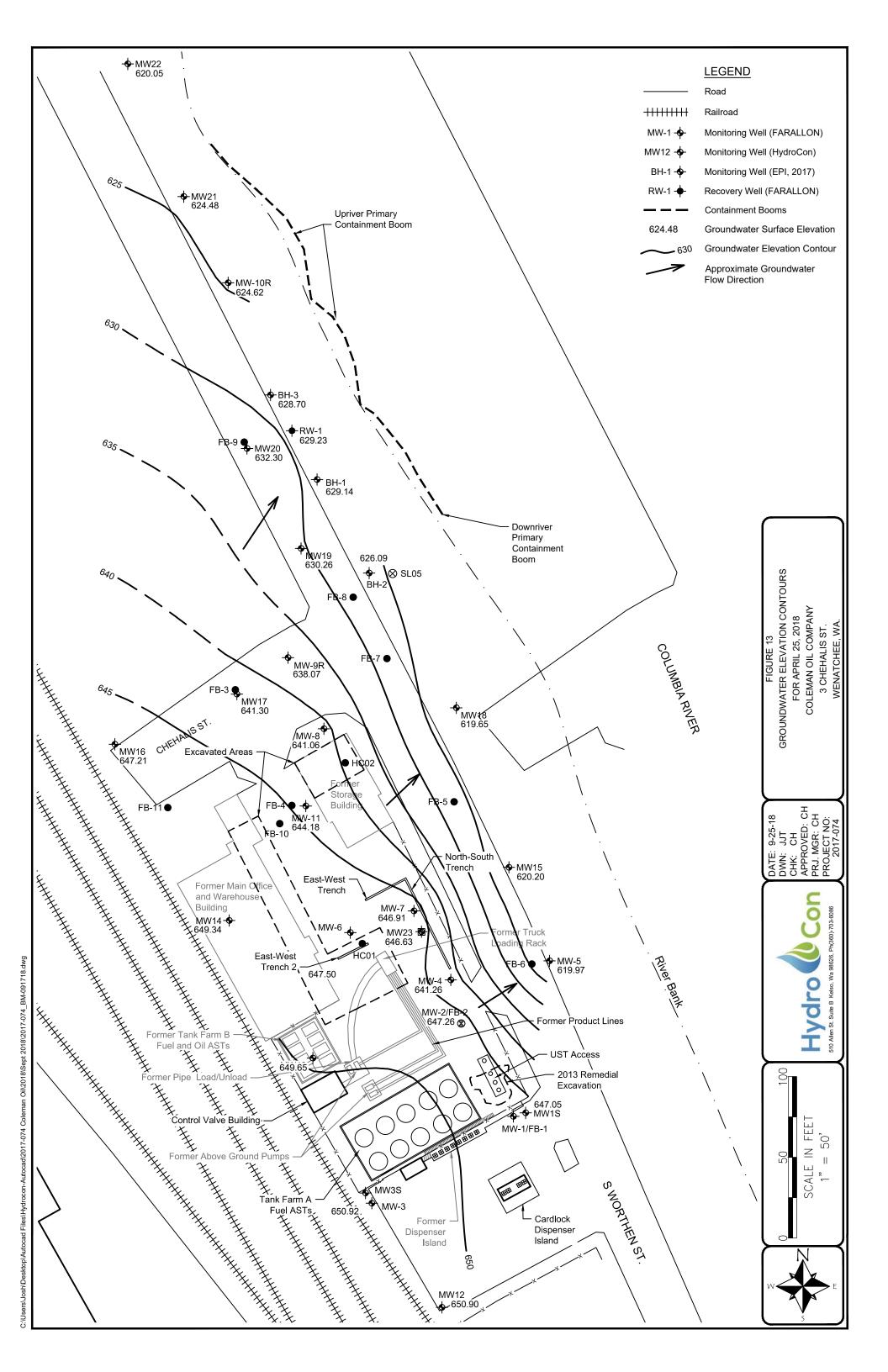
FIGURE 6
TOTAL PRODUCT RECOVERY AS OF
JANUARY VERSUS JUNE 2018
COLEMAN OIL COMPANY
3 CHEHALIS ST.
WENATCHEE, WA.

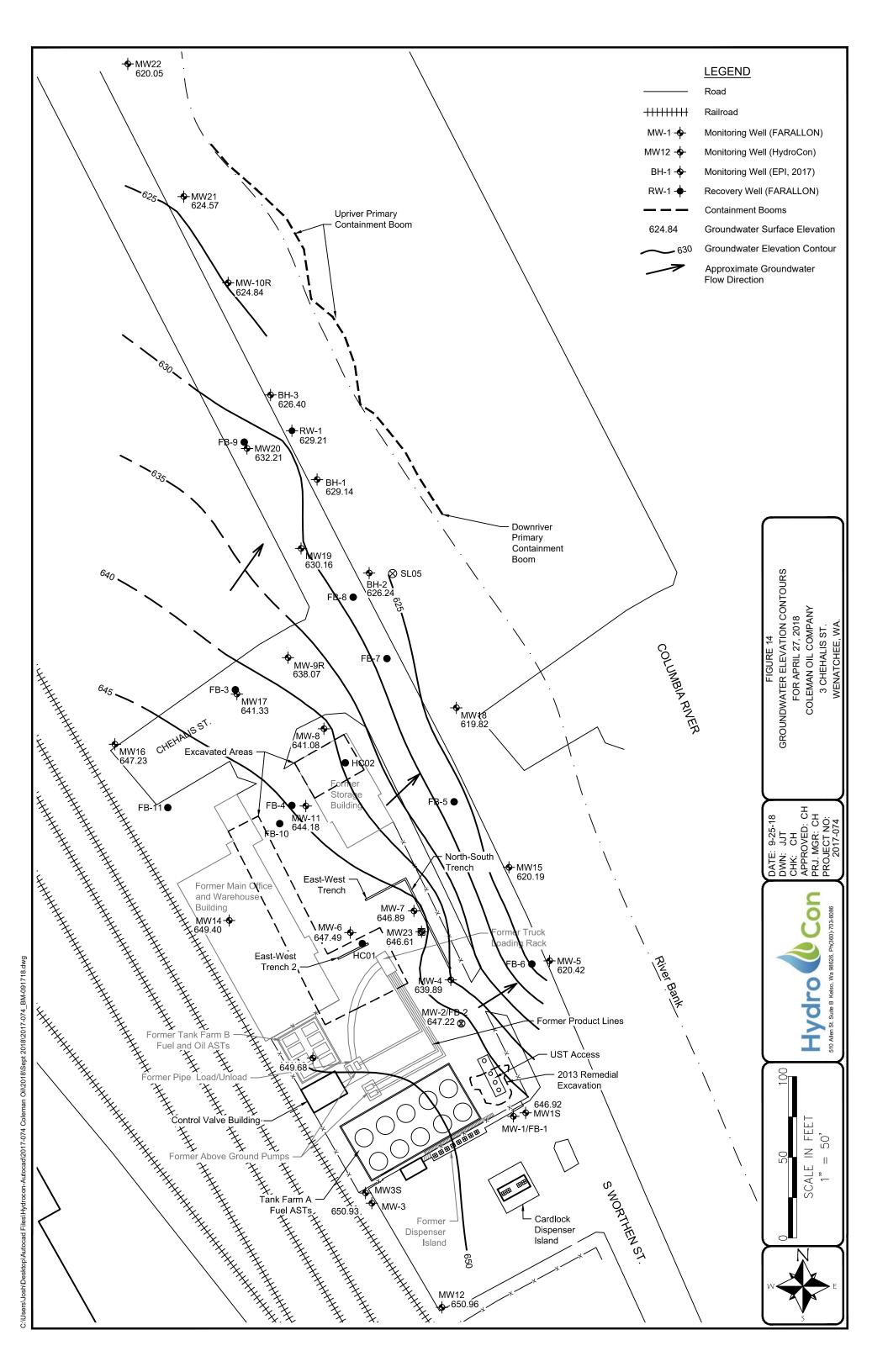


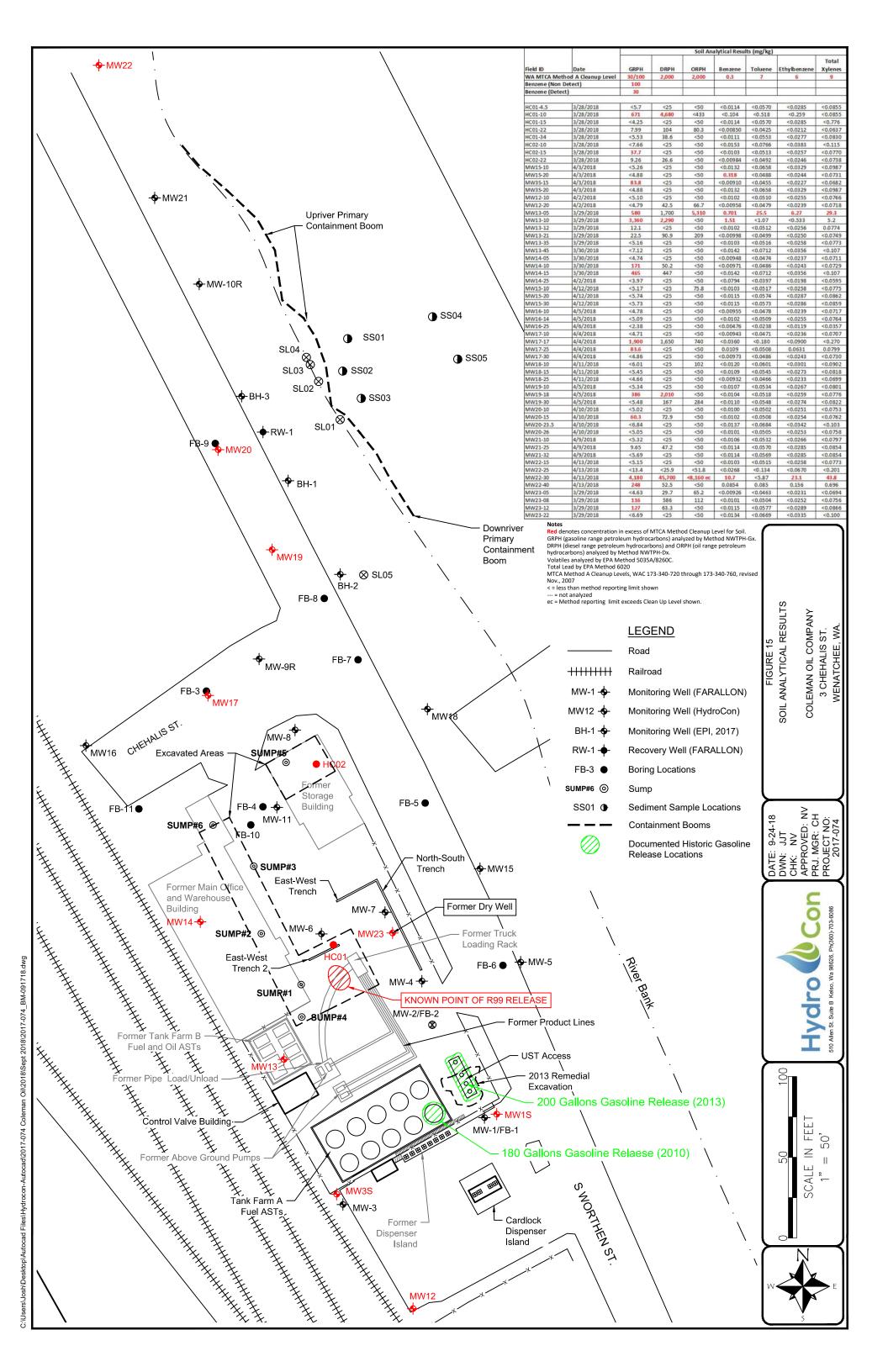


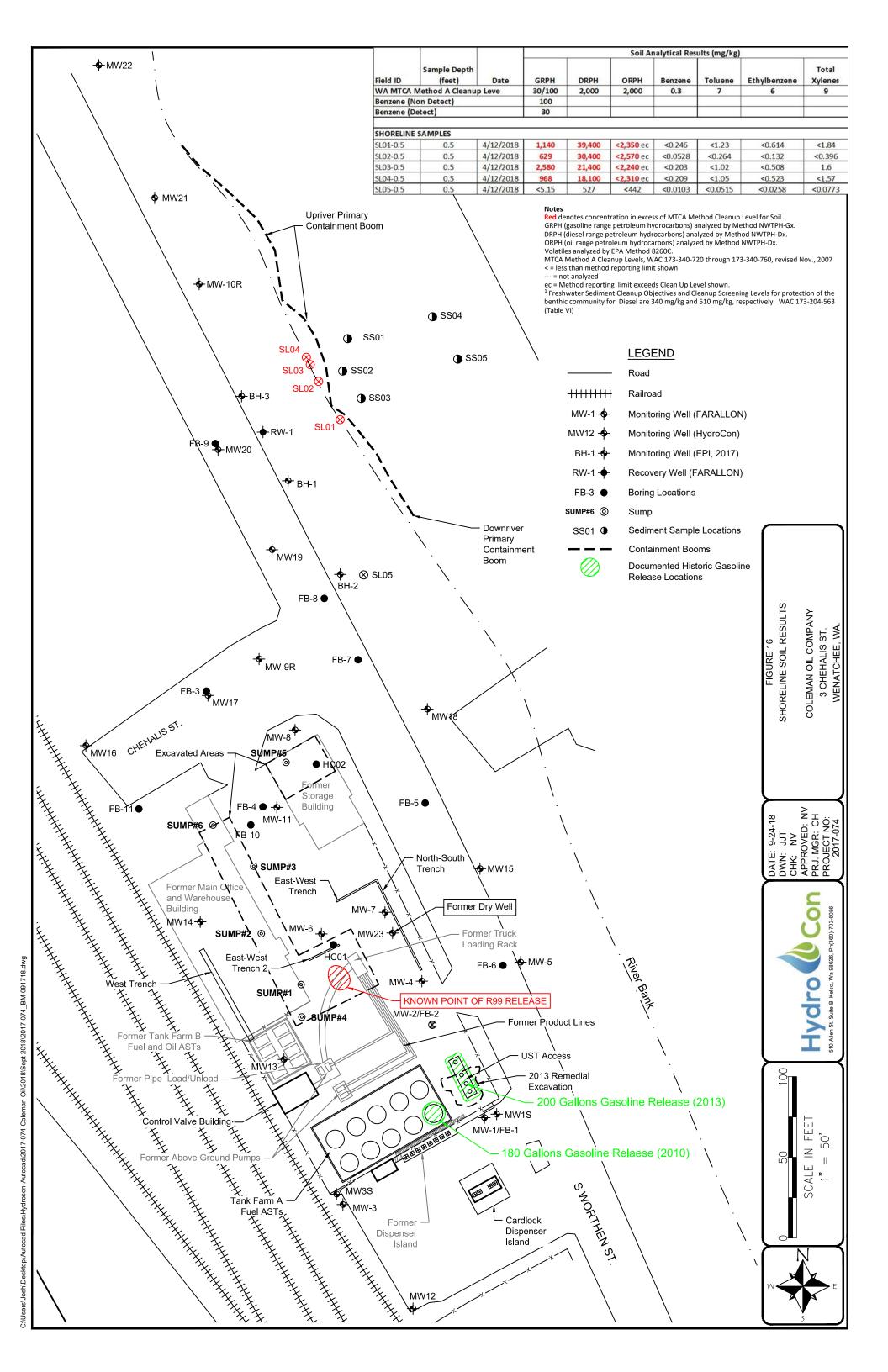


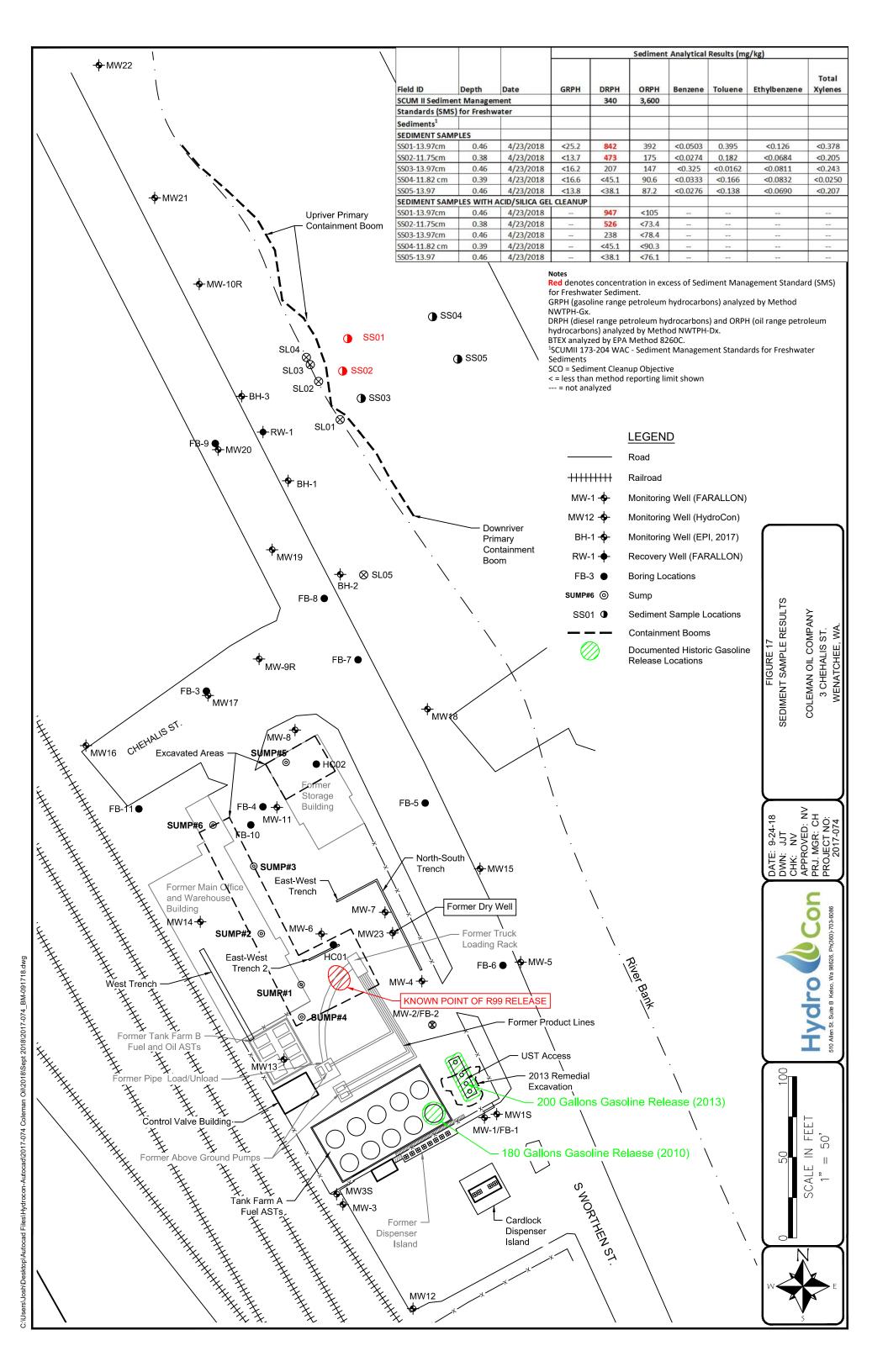

DATE: 9-24-18 DWN: JJT CHK: NV APPROVED: NV PRJ. MGR: CH PROJECT NO: 2017-074 FIGURE 8
RIVER & WELL WATER LEVELS

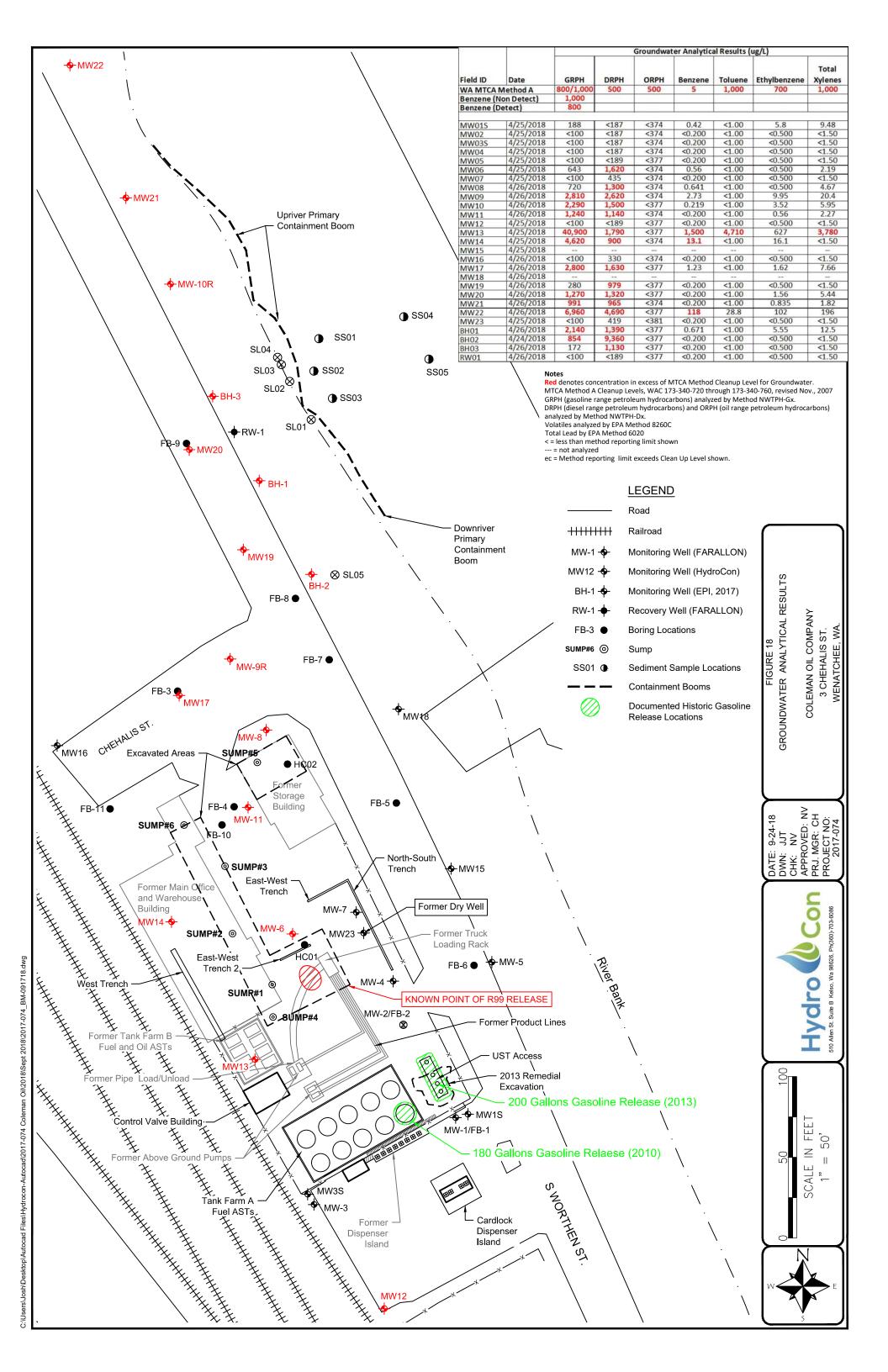

COLEMAN OIL COMPANY 3 CHEHALIS ST. WENATCHEE, WA.

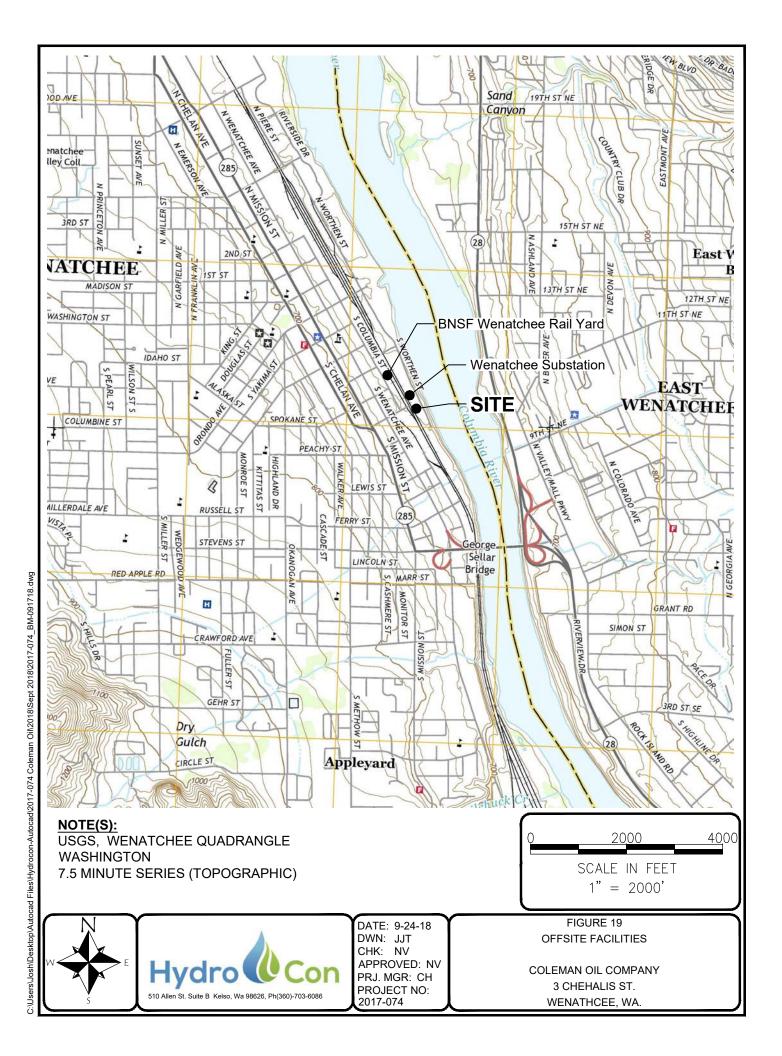


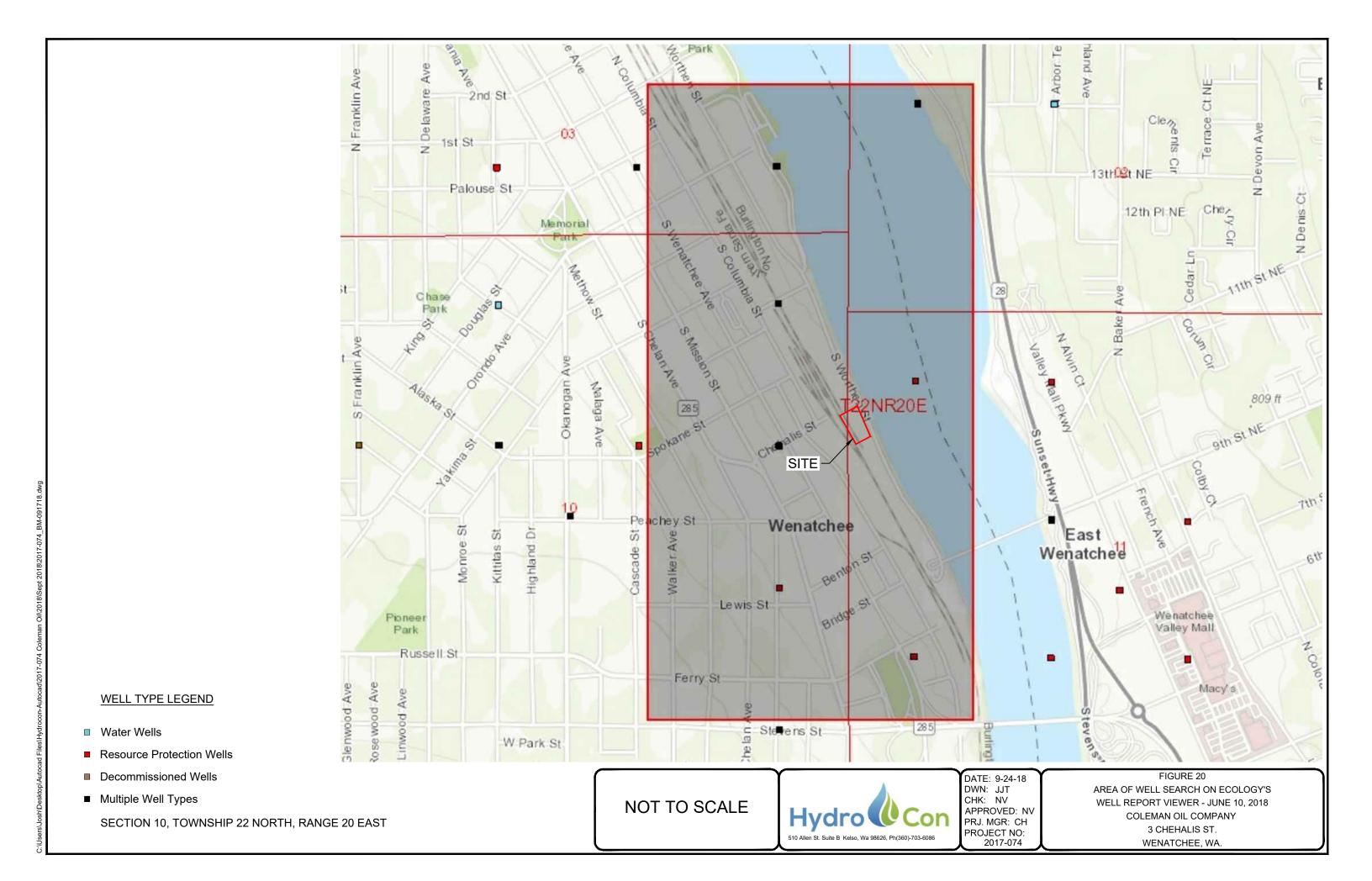


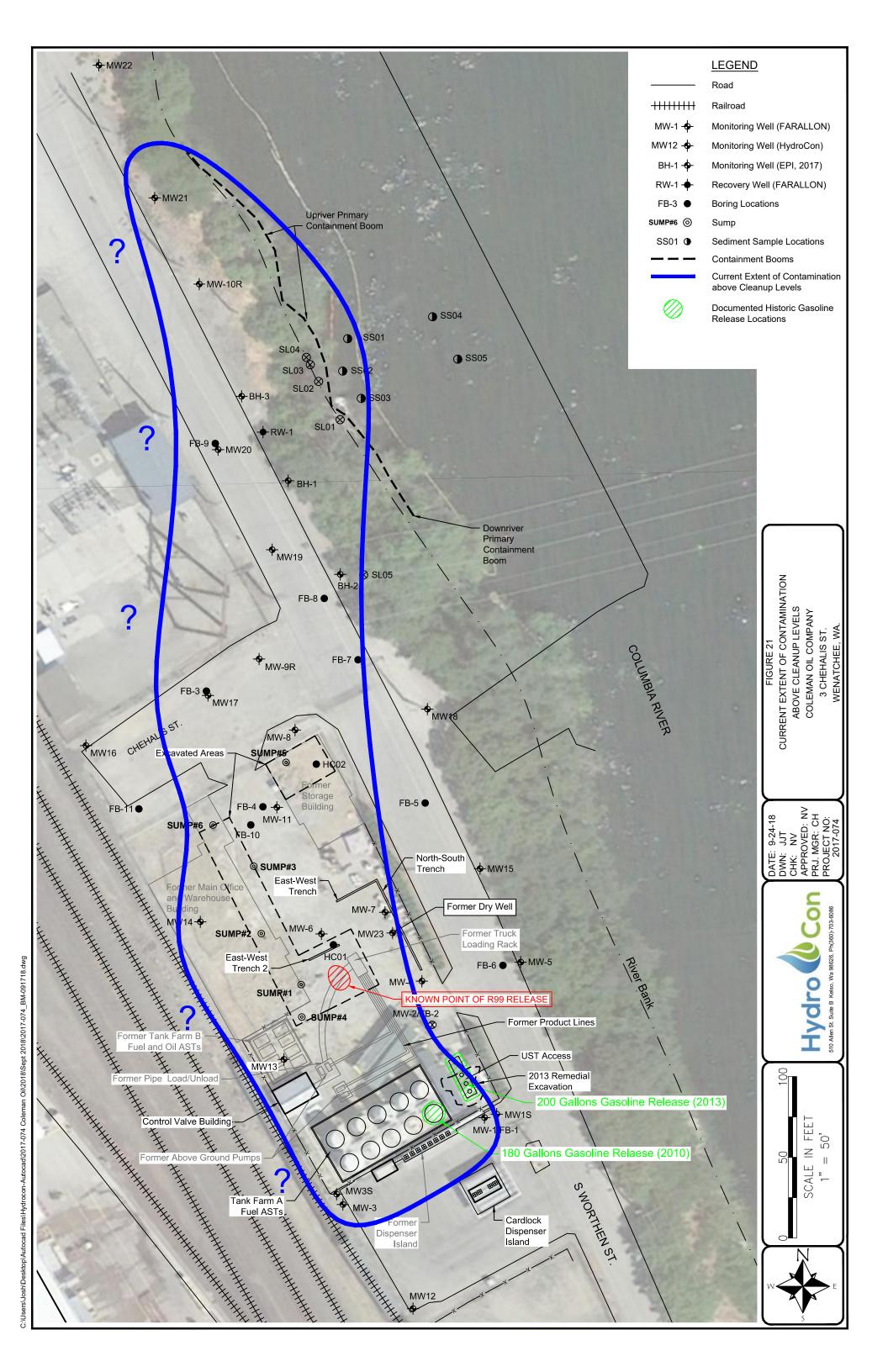


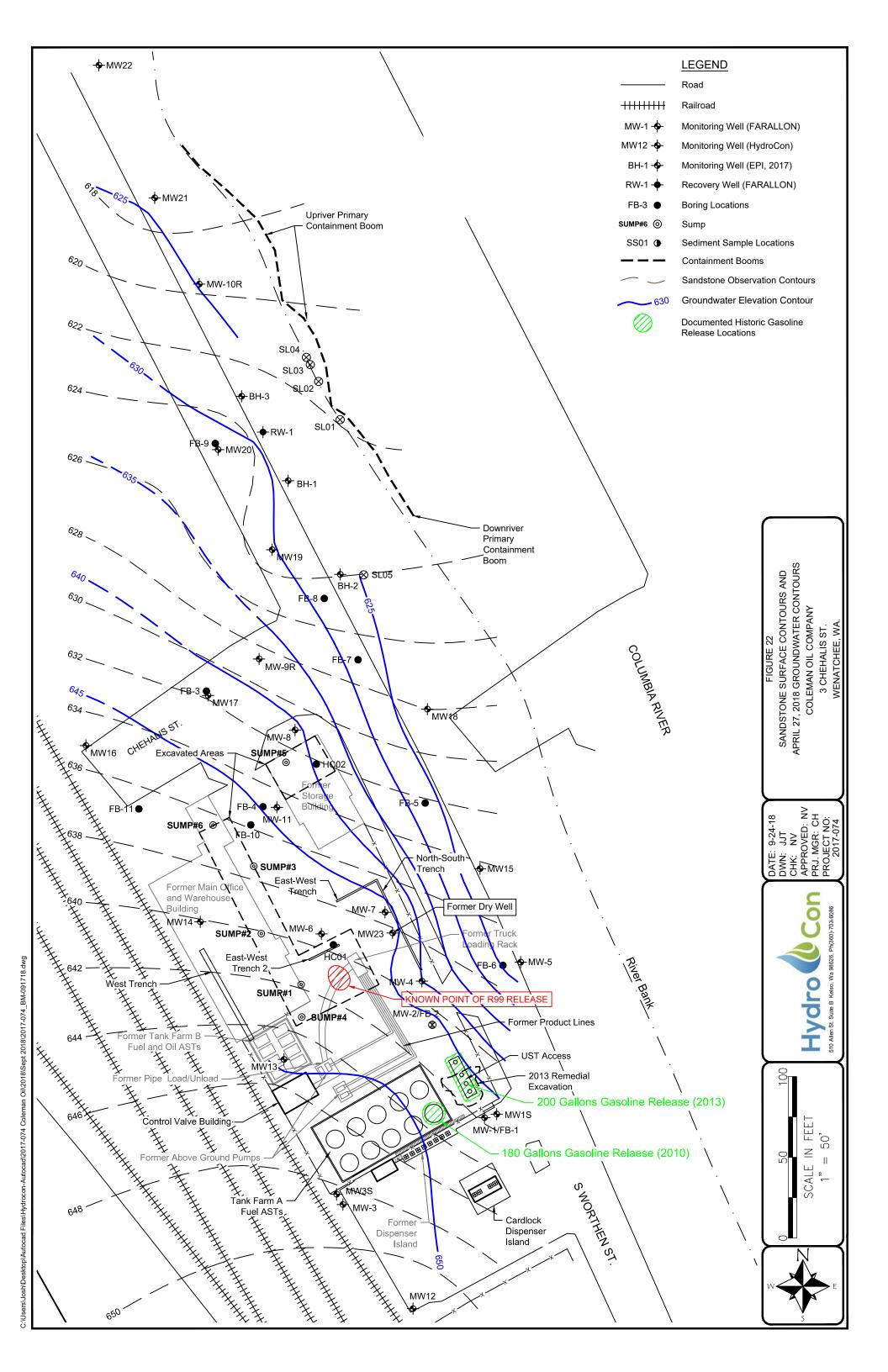


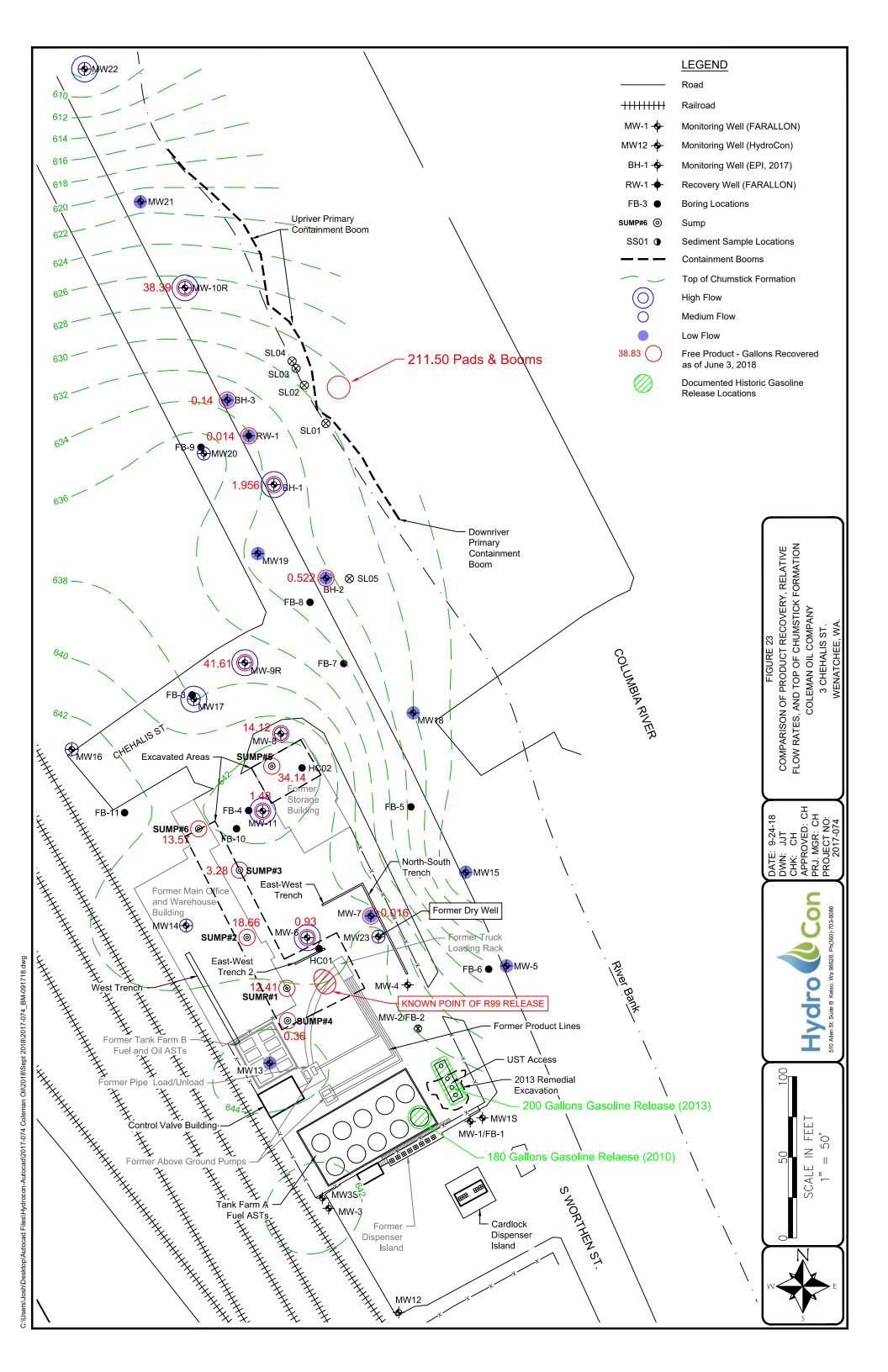












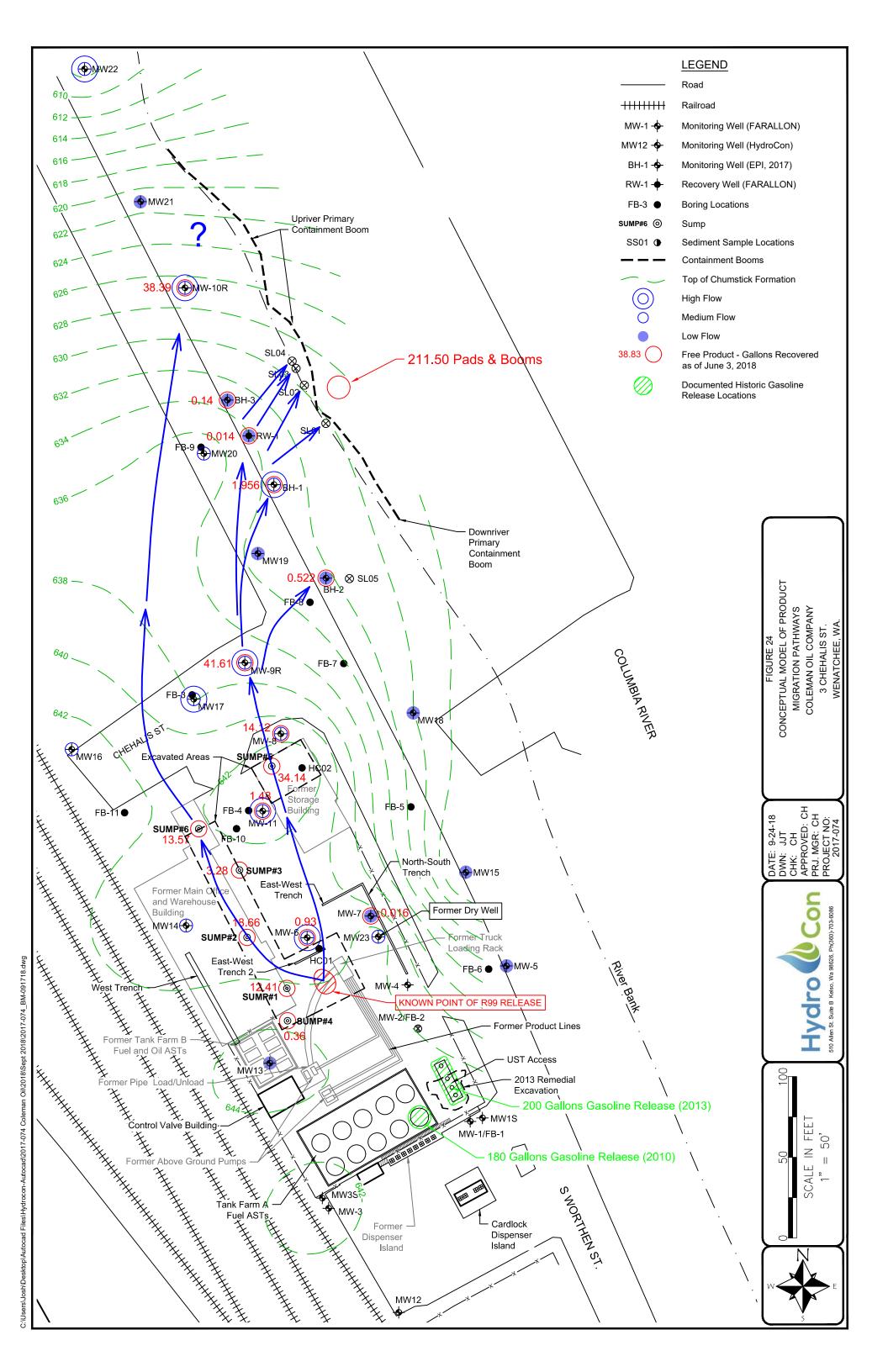


Table 1 Well Construction Details

Coleman Oil Company Wenatchee, Washington

Well ID	Date Installed	Installed By	Drilling Method	Total Boring Depth (feet bgs)	Total Well Depth (feet bgs)	Well Diameter (inch)	Well Construction Material	Screen Slot Size (inch)	Length of Screen (feet)	Length of Bottom Cap (feet)	Screened Interval (feet bgs)	Well Casing Elevation (feet¹)
MW-1	7/7/2010	Farallon	Air Rotary	35.50	35.00	2	PVC	0.01	15	-	20-35	658.01
MW01S	3/4/2018	HydroCon	Sonic	20.00	19.99	4	PVC	0.01	15	0.23	5.37 - 20.37	657.54
MW-2	7/8/2010	Farallon	Air Rotary	40.00	40.00	2	PVC	0.01	15	-	25-40	657.76
MW-3	9/7/2010	Farallon	Air Rotary	35.30	35.00	2	PVC	0.01	10	-	25-35	658.26
MW03S	4/3/2018	HydroCon	Sonic	20.00	19.30	4	PVC	0.01	15	0.23	4.43 - 19.43	658.17
MW-4	9/8/2010	Farallon	Air Rotary	40.10	37.00	2	PVC	0.01	10	-	27-37	657.48
MW-5	9/9/2010	Farallon	Air Rotary	45.40	45.00	2	PVC	0.01	15	-	30-45	656.00
MW-6	4/12/2017	Farallon	Air Rotary	18.40	18.00	4	PVC	0.02	10	-	8-18	657.70
MW-7	4/11/2017	Farallon	Air Rotary	20.10	20.00	4	PVC	0.02	10	-	10-20	657.52
MW-8	4/11/2017	Farallon	Air Rotary	25.20	25.00	4	PVC	0.02	10	-	15-25	656.20
MW-9	4/12/2017	Farallon	Air Rotary	24.50	24.00	4	PVC	0.02	10	-	14-24	655.29
MW-10	4/14/2017	Farallon	Air Rotary	30.20	30.00	2	PVC	0.02	16	-	14-30	645.80
MW-11	4/14/2017	Farallon	Air Rotary	22.30	22.00	4	PVC	0.02	10	-	12-22	658.00
MW12	4/2/2018	HydroCon	Sonic	20.00	19.52	4	PVC	0.01	15	0.23	4.63 - 19.63	658.27
MW13	3/29/2018	HydroCon	Sonic	50.00	19.80	4	PVC	0.01	15	0.23	4.91 - 19.91	657.04
MW14	3/30/2018	HydroCon	Sonic	35.00	20.02	4	PVC	0.01	15	0.23	5.23 - 20.23	657.15
MW15	4/12/2018	HydroCon	Sonic	35.10	35.10	4	PVC	0.01	25	0.23	10.33 - 35.33	654.99
MW16	4/5/2018	HydroCon	Sonic	30.00	29.15	4	PVC	0.01	20	0.23	9.28 - 29.28	656.93
MW17	4/4/2018	HydroCon	Sonic	35.00	29.41	4	PVC	0.01	20	0.23	9.52 - 29.52	655.55
MW18	4/11/2018	HydroCon	Sonic	35.00	34.65	4	PVC	0.01	20	0.23	15.86 - 35.86	654.51
MW19	4/5/2018	HydroCon	Sonic	35.00	31.48	4	PVC	0.01	20	0.23	11.66 - 31.66	653.31
MW20	4/10/2018	HydroCon	Sonic	30.00	29.50	4	PVC	0.01	20	0.23	9.79 - 29.79	650.85
MW21	4/9/2018	HydroCon	Sonic	35.00	32.10	4	PVC	0.01	20	0.23	12.30 - 32.30	643.88
MW22	4/13/2018	HydroCon	Sonic	40.00	39.10	4	PVC	0.01	25	0.23	9.19 - 34.19	641.85
MW23	3/29/2018	HydroCon	Sonic	25.00	22.04	4	PVC	0.01	15	0.23	7.13 - 22.13	656.91
BH-1	3/25/2017	EPI	Air Rotary	30.00	30.00	2	PVC	0.01	10	-	20-30	652.17
BH-2	3/25/2017	EPI	Air Rotary	35.00	35.00	2	PVC	0.01	15	-	20-35	653.77
BH-3	3/26/2017	EPI	Air Rotary	30.00	30.00	2	PVC	0.01	15	-	15-30	648.76
RW-1	4/10/2017	Farallon	Air Rotary	30.00	30.00	3	PVC	0.02	15	-	15-30	650.42

NOTES:

feet¹ = Elevation is relative to NGVD88

bgs = below ground surface

PVC = polyvinyl chloride

Well Identification	Monitoring Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwater Elevation (feet)
identification	4/17/2017	ugsj	(reet)	9.47			648.54
	4/20/2017			9.63			648.38
NAVA / 4	4/27/2017	20.25	CEO 04	10.14			647.87
MW-1	5/1/2017 6/8/2017	20-35	658.01	10.31 11.20			647.70 646.81
	7/3/2017	-		NM			
	9/28/2017			12.36			645.65
MW-1S	4/25/2018	5.37 - 20.37	657.54	10.49			647.05
	4/27/2018 4/17/2017			10.62 9.58			646.92 648.18
	4/20/2017			9.61			648.15
	4/27/2017			10.19			647.57
	5/1/2017			10.36			647.40
MW-2	6/8/2017	25-40	657.76	11.33			646.43
	7/3/2017 9/28/2017	-		11.96 12.65			645.80 645.11
	4/25/2018			10.5			647.26
	4/27/2018			10.54			647.22
	4/17/2017			7.12			651.14
	4/20/2017			7.15			651.11
1444.2	4/27/2017	25.25	CEO 2C	11.44			646.82
MW-3	5/1/2017 6/8/2017	25-35	658.26	7.90 7.33			650.36 650.93
	7/3/2017	1		7.33			650.80
	9/28/2017			7.74			650.52
MW-3S	4/25/2018	4.43 - 19.43	658.17	7.25			650.92
	4/27/2018	25.15	030.17	7.24 15.29			650.93
	4/17/2017 4/20/2017			15.40			642.19 642.08
	4/27/2017			15.74			641.74
	5/1/2017			15.71			641.77
MW-4	6/8/2017	27-37	657.48	16.23			641.25
	7/3/2017			16.93			640.55
	9/28/2017			18.18			639.30
	4/25/2018 4/27/2018			16.22 17.59			641.26 639.89
	4/17/2017			33.98			622.02
	4/20/2017			35.67			620.33
	4/27/2017			34.98			621.02
	5/1/2017			35.92			620.08
MW-5	6/8/2017	30-45	656.00	32.06			623.94
	7/3/2017 9/28/2017	-		36.75 38.67			619.25 617.33
	4/25/2018	-		NM			
	4/27/2018			35.58			620.42
	4/17/2017			9.57			648.13
	4/20/2017			9.40			648.3
	4/27/2017			9.89			647.81
MW-6	5/1/2017	8-18	657.70	9.95 10.60	10.55	0.05	647.75 647.14
10100-0	6/8/2017 7/3/2017	0-10	037.70	11.10	10.33		646.60
	9/28/2017			11.51			646.19
	4/25/2018			10.20			647.50
	4/27/2018			10.21			647.49
	4/17/2017			9.64			647.88
	4/20/2017 4/27/2017	1		9.71 10.26			647.81 647.26
	5/1/2017	1		10.25			647.17
MW-7	6/8/2017	10-20	657.52	11.44			646.08
	7/3/2017	1		11.91			645.61
	9/28/2017			12.46			645.06
	4/25/2018	-		10.61			646.91
	4/27/2018 4/13/2017			10.63 16.71	14.50	2.21	646.89 641.21
	4/17/2017			13.47	14.30	2.21	642.73
	4/20/2017	1		13.96	13.95	0.01	642.25
	4/27/2017			17.25	14.91	2.34	640.78
MW-8	5/1/2017	15-25	656.20	17.47	14.94	2.53	640.70
-	6/8/2017	-		18.02	17.01	0.07	638.18
	7/3/2017 9/28/2017			17.97 18.1	17.91	0.07	638.28 638.10
	4/25/2018	1		15.14			641.06
	4/27/2018			15.12			641.08
	4/17/2017			13.56			641.73
	4/20/2017			14.31			640.98
	4/27/2017			17.45	16.75	0.7	638.39
MW-9	5/1/2017 6/8/2017	14-24	655.29	18.60 22.14	17.33	1.27	637.68 633.15
14144-2	7/3/2017	14-24	033.23	22.14			633.13
		1	l .				
	9/28/2017			22.69			632.6
				22.69 17.22 17.22			632.6 638.07

Well dentification	Monitoring Date	Monitoring Well Screened Interval (feet bgs)	Elevation Top of Casing ¹ (feet)	Depth to Water (feet below top of casing)	Depth to NAPL (feet below top of casing)	LNAPL Thickness (feet)	Groundwate Elevation (feet)
MW-10	4/17/2017			16.72			629.08
	4/20/2017			17.31			628.49
	4/27/2017			18.11			627.69
	5/1/2017	44.00	645.00	18.99			626.81
	6/8/2017	14-30	645.80	19.88			625.92
	7/3/2017			25.06	23.62	1.44	621.86
	9/28/2017 4/25/2018	-		25.7 21.18			620.10 624.62
	4/27/2018			20.96			624.84
	4/17/2017			13.45			644.55
	4/20/2017			13.45			644.55
	4/27/2017			13.76			644.24
NAVA/ 11	5/1/2017	12.22	659.00	13.77			644.23
MW-11	6/8/2017 7/3/2017	12-22	658.00	14.32 14.30	14.05	0.27	643.89 643.70
	9/28/2017	-		14.65			643.35
	4/25/2018			13.82			644.18
	4/27/2018			13.82			644.18
MW-12	4/25/2018 4/27/2018	4.63 - 19.63	658.27	7.37			650.90 650.96
	4/25/2018	101 :::::	c==	7.31 7.39			649.65
MW-13	4/27/2018	4.91 - 19.91	657.04	7.36			649.68
MW-14	4/25/2018	5.23 - 20.23	657.15	7.81			649.34
	4/27/2018	3.23 20.23	037.13	7.75			649.40
MW-15	4/25/2018 4/27/2018	10.33 - 35.33	654.99	NM 34.8			620.19
NAVA 16	4/25/2018	0.20, 20.20	CEC 02	9.72			647.21
MW-16	4/27/2018	9.28 - 29.28	656.93	9.7			647.23
MW-17	4/25/2018	9.52 - 29.52	655.55	14.25			641.3
	4/27/2018			14.22 NM			641.33
MW-18	4/25/2018 4/27/2018	15.86 - 35.86	654.51	34.69			619.82
MW-19	4/25/2018	11.66 31.66	652.21	23.05			630.26
10100-19	4/27/2018	11.66 - 31.66	653.31	23.15			630.16
MW-20	4/25/2018	9.79 - 29.79	650.85	18.55			632.3
	4/27/2018 4/25/2018			18.64 19.4			632.21 624.48
MW-21	4/27/2018	12.30 - 32.30	643.88	19.31			624.57
MW-22	4/25/2018	9.19 - 34.19	641.85	21.802			620.05
10100-22	4/27/2018	9.19 - 34.19	041.83	21.8			620.05
MW-23	4/25/2018 4/27/2018	7.13 - 22.13	656.91	10.28			646.63 646.61
	4/17/2017			10.3 19.71			632.46
	4/20/2017			20.13			632.04
	4/27/2017			22.88			629.29
	5/1/2017			23.16			629.01
BH-1	6/8/2017	20-30	652.17	25.64			626.53
	7/3/2017			28.46	27.91	0.55	624.14
	9/28/2017			28.73			623.44
	4/25/2018	1		23.03			629.14
	4/27/2018	<u></u>	<u></u>	20.03			632.14
	4/17/2017]		26.16			627.61
	4/20/2017]		26.30			627.47
	4/27/2017]		26.56	26.48	0.08	627.27
	5/1/2017	1	_	26.68	26.58	0.1	627.17
BH-2	6/8/2017	20-35	653.77	26.73			627.04
	7/3/2017			28.86			624.91
	9/28/2017	-		31.25			622.52
	4/25/2018	1		27.68			626.09
	4/28/2017	-		27.53			626.24
	4/17/2017	-		17.47			631.29
	4/20/2017	1		17.88			630.88
	4/27/2017	1		18.70			630.06
BH-3	5/1/2017 6/8/2017	15-30	648.76	19.06 21.19			629.70 627.57
3-۱۱۵	7/3/2017	15-50	040.70	21.19			627.06
	9/28/2017	1		23.04			625.72
	4/25/2018	1		20.06			628.70
	4/23/2018	1		22.36			626.40
	4/17/2017			16.15			634.27
	4/20/2017	1		16.34			634.08
	4/27/2017]		17.35			633.07
DVA/ 1	5/1/2017	15 20	650.42	18.55			631.87
	6/8/2017	15-30	650.42	22.67 24.19			627.75 626.23
RW-1	7/3/2017						
KVV-1	7/3/2017 9/28/2017			26.74			623.68

bgs = below ground surface LNAPL = light nonaqueous-phase liquid NAPL = nonaqueous-phase liquid

A specific gravity of 0.78 was used for LNAPL

Table 3 Field Parameters in Groundwater

Coleman Oil Property Wenatchee, Washington

			Specific	Dissolved			
Well	Monitoring	Temperature	Conductivity	Oxygen	рН	ORP	Turbidity
Identification	Date	(°C)	(mS/Cm)	(%)	(SU)	(mV)	(NTU)
MW-1	4/24/2018	14.4	0.604	0.60	6.73	-120.8	1.75
MW-1S	4/24/2018						
MW-2	4/25/2018	14.4	0.81	2.64	7.21	79.8	0.26
MW-3	4/25/2018						
MW-3S	4/25/2018	12.3	0.365	0.53	6.98	-25.4	1.21
MW-4	4/25/2018	15.3	1.16	3.14	7.23	126.4	0.71
MW-5	4/24/2018	14.4	0.84	7.00	7.09	54.1	22.5
MW-6	4/25/2018	13.4	0.565	0.62	6.40	-127.2	2.31
MW-7	4/25/2018	13.4	0.68	0.85	6.46	-38.7	4.01
MW-8	4/26/2017	14.4	0.99	0.43	6.50	-138.2	1.53
MW-9	4/26/2017	15.1	6.34	0.32	6.52	-84.2	3.78
MW-10	4/26/2017	15.4	1.16	0.57	6.51	-66.8	1.23
MW-11	4/26/2017	13.4	0.87	0.60	6.73	-120.8	1.75
MW-12	4/25/2018	12.5	0.336	3.19	7.04	23.6	1.55
MW-13	4/25/2018	11.5	0.632	0.87	6.72	-183.0	2.04
MW-14	4/25/2018	13.1	0.73	0.67	6.70	-70.7	1.51
MW-15	4/25/2018						
MW-16	4/26/2017	13.3	0.26	15.28	7.03	-24.8	1.17
MW-17	4/26/2017	15.1	1.04	0.32	6.55	-132.2	2.44
MW-18	4/26/2017						
MW-19	4/26/2017	15.8	1.35	1.43	6.55	61.0	1.01
MW-20	4/26/2017	13.7	1.12	0.86	6.46	-53.9	12.2
MW-21	4/26/2017	15.2	1.11	0.33	6.50	-64.1	0.63
MW-22	4/26/2017	14.1	0.94	0.98	6.68	-70.5	2.75
MW-23	4/25/2018	13.0	0.69	0.91	6.47	52.2	2.25
BH-1	4/26/2017	16.1	1.04	0.25	6.5	-107.2	1.47
BH-2	4/24/2017	17.3	0.77	0.84	6.53	-72.6	164
BH-3	4/26/2017	14.7	1.21	0.38	6.54	-94.1	4.01
RW-1	4/26/2017	15.3	1.13	0.84	6.74	30.3	1.13

Table 4 Light Nonaqueous-Phase Liquid Recovery Catagories

Coleman Oil Wenatchee, Washington

		Volume	(gallons)	
Recovery Location	Pads	Booms	Sock	Pump
Columbia River	148.56	58.68	0.04	0.00
Sump #1	11.26	1.15	0	0
Sump #2	18.66	0	0	0
Sump #3	3.28	0	0	0
Sump #4	0.36	0	0	0
Sump #5	34.14	0	0	0
Sump #6	8.02	0	0	5.55
MW-6	0	0	0.93	0
MW-8	0	0	2.81	11.025
MW-9	0.33	0	9.87	31.41
MW-10	0.32	0	11.56	26.51
BH-1	0	0	1.556	0.4
BH-2	0	0	0.23	0
Oil-Water Separator	4.29	0	0.02	7.06

Table 5 Simplified Slug Tests - May 2018

Coleman Oil Site Wenatchee, Washington

Obsei	rvation Well	MW-6	MW-7	MW-8	MW-11	MW13	MW14	MW16	MW17	MW19	MW20	MW21	MW22	MW23
Date	Time													
	Static DTW	10.42	10.98	15.61	13.94	7.55	7.95	9.78	14.31	25.65	19.79	16.29	14.96	10.66
	Initial W/ Slug	10.42	10.80	15.39	13.94	7.13	7.68	9.40	14.15	25.35	19.45	16.03	14.96	10.40
	Plus I Minute	10.42	10.86	15.48	13.94	7.19	7.76	9.50	14.25	25.4	19.5	16.19	14.96	10.51
	Plus 2 Minutes	10.42	10.89	15.52	13.94	7.19	7.80	9.53	14.29	25.43	19.52	16.29	14.96	10.56
05/21/18	Plus 5 Minutes	10.42	10.92	15.61	13.94	7.22	7.89	6.64	14.31	25.48	19.63	16.29	14.96	10.62
03/21/18	Plus 10 Minutes	10.42	10.95	15.61	13.94	7.26	7.91	9.78	14.31	25.5	19.65	16.19	14.96	10.65
	Initial DTW Change	0	0.18	0.22	0	0.42	0.27	0.38	0.16	0.3	0.34	0.26	0	0.26
	Final DTW Change	0	0.03	0	0	0.29	0.04	0	0	0.15	0.14	0.10	0	0.01
	Recharge over 10 Minutes	No Response	0.15	0.22	No Response	0.13	0.23	0.38	0.16	0.15	0.20	0.16	No Response	0.25
	Relative Flow	High	Low	Medum	High	Low	Medium	Medium	High	Low	Medium	Low	High	Medium

Notes:

DTW = Depth to Water

Table 6 Soil Analytical Results - Fuels and BTEX

Coleman Oil Site Wenatchee, Washington

### AND ANY CAS Referred A Computered to Sol ### Any Case Fig. Fig.					Fuels			BTEX			
MAYOR META-CREAM MAYOR M											
Part D		p Level for Soil			2,000	2,000	0.3	7	6	9	
Page 10	,										
Part	Benzene (Detect)	Sample Depth		30							
MORTHS 30	Field ID	• •	Date								
DOWN THELL-4.0	Dry Well and Concrete Box E		T	П	1		T				
07 MYELE-8-10				< 7.5					< 0.075	< 0.150	
DOWN MELLS-ALD			1 1								
DIV MELLA-10											
DIVIDITY 1,000						-					
Fig. Link Exception											
FURL LINE FEE FEE JO			.,0,201.	II	1,000						
FIRELLINEER-R-3.0 3.0 43/2/017	FUEL LINE-EX-B-6.0	6.0	4/3/2017		14,000	< 3,300 ec					
Fig. 10.1	FUEL LINE-EX-E-2.0	2.0	4/3/2017		58,000	< 6,000 ec					
North-South Trench Excavation STERICH 15 0 5.0	FUEL LINE-EX-E-3.0	3.0	4/3/2017		3,400	< 230					
No. Proceedings S. S. Adv. Adv. S. S. S. S. S. S. S.	FUEL LINE-EX-N-3.0	3.0	4/3/2017		3,400	< 280					
No. Tenschi-2-10.0 10.0 4/4/2017 4.9 <.5.5		-	T	1		1					
SETERICH-3-10.0 10.0 4/4/2017											
No.TERNCH-45-00 5.0						+					
No. Tense No. No											
No. Tenerol 10.0						1					
No.											
No.THENCH-9-10.0 10.0						1					
Name						1					
EW-TRENCH-15.0 5.0 4/4/2017 < 27 < 54	NS-TRENCH-9-10.0	10.0			5,600	< 600					
EW-TRENCH-15.0 5.0 4/4/2017 < 27 < 54	NS-TRENCH-9-10.0-1	10.0	4/4/2017		6,400	< 570					
EWTERNCH-10.0	East-West Trench Excavation	า									
EW-TRENCH-4-10.0	EW-TRENCH-1-5.0	5.0	4/4/2017		< 27	< 54					
EW-TERNCH-2-5-0 5.0 4/5/2017 <											
EW-TRENCH2-5-5.0 5.0 4/5/2017 < 28 < 55 EW-TRENCH2-6-9.0 9.0 4/5/2017 < 28 < 55			•			1					
EW-TRINCH2-6-9.0 9.0 4/5/2017 < 28 < 55 EW-TRINCH2-7-5.0 5.0 4/5/2017 < 27 < 54			· · ·								
EW-TRENCH2-7-5.0			•								
EW-TERCHZ-8-6.0 6.0 4/5/2017 < 27 < 55			• •			1					
F3EN-1-6.0 6.0 4/6/2017 540 F 8,700 < 550 0.089 0.74 2.4 7.1											
FS-EX-2-4.0 4.0 4/6/2017 45,000 2,200 N1 FS-EX-2-4.0-1 4.0 4/6/2017 45,000 2,500 N1			101=0=	II.							
FS-EX-2-4.0-1	FS-EX-1-6.0	6.0	4/6/2017	540 F	8,700	< 550	0.089	0.74	2.4	7.1	
FS-EX-3-2.0	FS-EX-2-4.0	4.0	4/6/2017		42,000	2,200 N1					
FS-EX-4-8.0 8.0 4/6/2017 1,300 F 12,000 < 660 0.050 0.071 3.9 12.7 FS-EX-51.1.0 11.0 4/6/2017 - 24,000 < 730 -		4.0	4/6/2017		45,000	2,500 N1					
FS-EX-5-11.0			•								
Reconnaissance Borings FB-3-9.0-040617 9.0 4/6/2017 < 5.4 < 27 < 55 < 0.020 < 0.054 < 0.054 < 0.0108 FB-3-12.5-040617 12.5 4/6/2017 420 F 4,000 < 110						1					
FB-3-9.0-040617 9.0 4/6/2017 <5.4 <27 <55 <0.020 <0.054 <0.054 <0.058 FB-3-12.5-040617 12.5 4/6/2017 420 F 4,000 <110 <0.020 <0.020 <0.049 0.68 0.59 FB-3-13.5-040617 13.5 4/6/2017 940 F 14,000 <610 0.046 <0.002 <0.049 0.68 0.59 FB-3-13.5-040617 15.0 4/6/2017 380 F 2,300 150 NH 0.028 <0.044 1.2 0.98 FB-3-15.0-040617 15.0 4/6/2017 <4.2 <26 <51 <0.020 <0.042 <0.042 <0.042 <0.084 FB-5-13.5-040617 15.0 4/6/2017 <4.4 <26 <52 <0.020 <0.044 <0.044 <0.044 <0.088 FB-5-13.5-040617 17.0 4/6/2017 <4.4 <26 <52 <0.020 <0.044 <0.044 <0.044 <0.088 FB-5-13.0-040617 17.0 4/6/2017 <4.8 <27 <53 <0.020 <0.044 <0.044 <0.044 <0.088 FB-5-12.0-040617 17.0 4/6/2017 <4.9 <27 <53 <0.020 <0.048 <0.048 <0.049 <0.094 FB-7-13.0-040617 13.0 4/6/2017 <4.9 <27 <53 <0.020 <0.049 <0.049 <0.049 <0.099 FB-7-23.0-040617 13.0 4/6/2017 <4.9 <27 <53 <0.020 <0.049 <0.049 <0.049 <0.098 FB-7-23.0-040617 23.0 4/6/2017 <4.7 40 N 440 <0.020 <0.047 <0.047 <0.094 FB-8-814.0-040717 14.0 4/7/2017 <5.0 <27 <55 <0.020 <0.047 <0.047 <0.094 FB-8-10.0-040717 10.0 4/7/2017 <5.0 <27 <55 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 FB-9-10.0-040717 14.0 4/7/2017 <5.0 60 <53 <0.020 <0.047 <0.047 <0.094 FB-9-14.0-040717 14.0 4/7/2017 <5.0 60 <53 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050 FB-9-14.0-040717 14.0 4/7/2017 <5.0 60 <53 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050 FB-9-14.0-040717 14.0 4/7/2017 330 F 440 180 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 FB-914.0-040717 14.0 4/7/2017 860 F 5,900 1,800 N1 0.080 <0.055 0.52 2.1 FB-10-14.0-040717 17.1 44/7/2017 530 F 8,200 <580 0.13 <0.020 <0.055 0.52 2.1 FB-10-14.0-040717 17.1 4/7/2017 530 F 8,200 <580 0.13 <0.020 <0.055 0.055 <0.055 <0.011 FB-11-12.34 4/13/2017 <5.9 4.5 40 0.000 <0.050 0.050 0.055 <0.055 <0.055 <0.011 FB-11-12.34 23.4 4/13/2017 <5.9 140 390 <0.020 <0.055 0.055 <0.055 <0.055 <0.011 FB-11-12.34 23.4 4/13/2017 <5.9 140 390 <0.020 <0.055 0.055 <0.055 <0.055 <0.011 FB-11-12.34 4/13/2017 <5.9 140 390 <0.020 <0.055 0.055 <0.055 <0.055 <0.011 FB-11-12.34 23.4 4/13/2017 <5.9 140 390 <0.020 <0.050 0.050 <0		11.0	4/6/2017		24,000	< 730					
FB-3-12.5-040617 12.5 4/6/2017 420 F 4,000 <110 <0.020 <0.049 0.68 0.59 FB-3-13.5-040617 13.5 4/6/2017 940 F 14,000 <610 0.046 <0.042 2.5 4.03 FB-3-13.5-040617 15.0 4/6/2017 380 F 2,300 150 N1 0.028 <0.044 1.2 0.98 FB-3-13.5-040617 15.0 4/6/2017 <4.4 <26 <51 <0.020 <0.042 <0.042 <0.042 <0.084 FB-5-15.0-040617 15.0 4/6/2017 <4.4 <26 <52 <0.020 <0.044 <0.044 <0.044 <0.088 FB-5-15.0-040617 17.0 4/6/2017 <4.8 <27 <53 <0.020 <0.044 <0.044 <0.044 <0.088 FB-5-15.0-040617 17.0 4/6/2017 <4.8 <27 <53 <0.020 <0.044 <0.044 <0.044 <0.096 FB-6-12.0-040617 12.0 4/6/2017 <4.7 <120 1,100 <0.020 <0.047 <0.047 <0.094 FB-7-23.0-040617 13.0 4/6/2017 <4.7 <120 1,100 <0.020 <0.049 <0.049 <0.049 <0.098 FB-7-23.0-040617 13.0 4/6/2017 <4.7 40 N 440 <0.020 <0.047 <0.047 <0.094 FB-8-14.0-040717 14.0 4/7/2017 <5.0 <27 <55 <0.020 <0.047 <0.047 <0.047 <0.094 FB-9-6.9-040717 6.9 4/7/2017 <4.7 1,100 350 <0.020 <0.050 <0.050 <0.050 <0.050 <0.100 FB-9-14.0-040717 14.0 4/7/2017 330 F 440 180 <0.020 <0.050 <0.050 <0.050 <0.050 <0.100 FB-9-14.0-040717 14.0 4/7/2017 880 F 4,300 <610 <0.020 <0.050 <0.050 <0.050 <0.050 <0.100 FB-10-12.8-040717 12.8 4/7/2017 880 F 5,900 1,800 N1 0.080 <0.055 0.52 2.1 FB-10-17.1-040717 17.3 4/7/2017 530 F 8,200 <0.500 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.055 <0.011 FB-10-17.1-040717 17.3 4/7/2017 530 F 8,200 <0.500 <0.055 <0.055 <0.055 <0.055 <0.011 FB-11-12.8 4 3/13/2017 <0.050 <0.050 <0.050 <0.055 <0.055 <0.055 <0.011 FB-11-12.8 4 5.5 3/28/2018 <0.050 <0.050 <0.050 <0.055 <0.055 <0.055 <0.011 FB-11-12.8 4 5.5 3/28/2018 <0.050 <0.050 <0.051 <0.053 <0.055 <0.055 <0.011 <0.0114 <0.0570 <0.0285 <0.055 <0.0055 <0.055 <0.0116 <0.0114 <0.0570 <0.0285 <0.055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0		9.0	4/6/2017	< 5.4	< 27	< 55	< 0.020	< 0.054	< 0.054	< 0.108	
FB-3-13.5-040617 13.5 4/6/2017 380 F 2,300 150 N1 0.028 <0.044 1.2 0.98 FB-5-13.5-040617 15.0 4/6/2017 <4.2 <26 <51 <0.020 <0.042 <0.044 1.2 0.98 FB-5-13.5-040617 15.0 4/6/2017 <4.4 <26 <52 <0.020 <0.044 <0.044 <0.088 FB-5-15.0-040617 15.0 4/6/2017 <4.4 <26 <52 <0.020 <0.024 <0.044 <0.044 <0.088 FB-5-15.0-040617 15.0 4/6/2017 <4.8 <27 <53 <0.020 <0.044 <0.044 <0.088 FB-5-17.0-040617 17.0 4/6/2017 <4.8 <27 <53 <0.020 <0.048 <0.048 <0.048 <0.096 FB-6-12.0-040617 12.0 4/6/2017 <4.8 <27 <53 <0.020 <0.044 <0.044 <0.044 <0.096 FB-6-12.0-040617 12.0 4/6/2017 <4.7 <120 1,100 <0.020 <0.047 <0.047 <0.047 <0.094 FB-73.0-040617 13.0 4/6/2017 <4.9 <27 <53 <0.020 <0.049 <0.049 <0.049 <0.098 FB-72.30-040617 23.0 4/6/2017 <4.7 40 N 440 <0.020 <0.020 <0.047 <0.047 <0.094 FB-73.0-040617 14.0 4/7/2017 <5.0 <27 <55 <0.020 <0.047 <0.047 <0.094 FB-8-14.0-040717 14.0 4/7/2017 <5.0 <27 <55 <0.020 <0.047 <0.047 <0.047 <0.094 FB-91.0-040717 14.0 4/7/2017 <5.0 60 <53 <0.020 <0.0407 <0.047 <0.0407 <0.094 FB-91.0-040717 14.0 4/7/2017 330 F 440 180 <0.020 <0.050 <0.050 <0.050 <0.050 <0.100 FB-91.0-040717 14.0 4/7/2017 880 F 4,300 <610 <0.020 <0.044 0.59 0.99 FB-10-12.8-040717 17.1 4/7/2017 860 F 5,900 1,800 N1 0.080 <0.055 0.52 2.1 FB-10-17.0-040717 17.3 4/7/2017 <5.5 <50 <0.000 <0.086 <0.25 0.58 3.0 FB-10-17.3-040717 17.3 4/7/2017 <5.5 <50 <0.086 <0.020 <0.055 <0.055 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050				1							
FB-3-15.0-040617 15.0 4/6/2017 380 F 2,300 150 N1 0.028 <0.044 1.2 0.98 FB-5-13.5-040617 13.5 4/6/2017 <4.2 <26 <51 <0.020 <0.042 <0.042 <0.084 FB-5-15.0-040617 15.0 4/6/2017 <4.4 <26 <52 <0.020 <0.042 <0.042 <0.084 FB-5-15.0-040617 17.0 4/6/2017 <4.8 <27 <52 <0.020 <0.044 <0.044 <0.088 FB-5-17.0-040617 17.0 4/6/2017 <4.8 <27 <53 <0.020 <0.044 <0.044 <0.088 FB-5-17.0-040617 12.0 4/6/2017 <4.7 <120 1,100 <0.020 <0.047 <0.047 <0.094 FB-713.0-040617 13.0 4/6/2017 <4.9 <27 <53 <0.020 <0.047 <0.047 <0.094 <0.099 FB-723.0-040617 23.0 4/6/2017 <4.9 <27 <53 <0.020 <0.047 <0.047 <0.047 <0.094 FB-313.0-040617 23.0 4/6/2017 <4.7 40 N 440 <0.020 <0.020 <0.047 <0.047 <0.047 <0.094 FB-314.0-040717 14.0 4/7/2017 <5.0 <27 <55 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050 <0.000 FB-96.9-040717 6.9 4/7/2017 <5.0 <27 <55 <0.020 <0.020 <0.047 <0.047 <0.094 FB-91.0-040717 10.0 4/7/2017 <5.0 60 <53 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050 FB-91.40-040717 11.0 40 4/7/2017 330 F 440 180 <0.020 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 FB-91.0-040717 11.0 4/7/2017 880 F 5,900 1,800 N1 0.080 <0.020 <0.044 0.59 0.99 FB-10-14.0-040717 17.1 4/7/2017 860 F 5,900 1,800 N1 0.080 <0.055 0.52 2.1 FB-10-17.3-040717 17.3 4/7/2017 530 F 8,200 <580 0.13 <0.27 1.3 2.2 FB-11-12.6 12.6 4/13/2017 <5.5 <27 <54 0.020 <0.055 <0.055 <0.055 <0.0110 FB-91.12.3-4 23.4 4/13/2017 <5.5 <27 <54 0.020 <0.055 <0.055 <0.055 <0.0110 FB-11-23.4 23.4 4/13/2017 <5.5 <27 <54 0.020 <0.055 <0.055 <0.055 <0.0110 FB-11-23.4 23.4 4/13/2017 <5.5 <27 <54 0.020 <0.055 <0.055 <0.055 <0.0110 FB-11-23.4 23.4 4/13/2017 <5.5 <27 <54 0.020 <0.055 <0.055 <0.055 <0.0110 FB-11-23.4 23.4 4/13/2017 <5.5 <27 <54 0.020 <0.055 <0.055 <0.055 <0.0110 <0.055 <0.055 <0.0110 <0.0111 <0.0570 <0.0285 <0.055 <0.0085 <0.0085 <0.00114 <0.0570 <0.0285 <0.0085 <0.00114 <0.0570 <0.0285 <0.0085 <0.00114 <0.0570 <0.0285 <0.0085 <0.00114 <0.0570 <0.0285 <0.0085 <0.00114 <0.0570 <0.0285 <0.0085 <0.00114 <0.0570 <0.0285 <0.0085 <0.0014 <0.00111 <0.00513 <0.0257 <0.0070 <0.0070 <0.0070 <0.0070 <0.0070 <0.0070 <0.0			• •	1		1					
FB-5-15.0-040617	FB-3-15.0-040617	15.0		380 F	2,300	150 N1	0.028	< 0.044	1.2	0.98	
FB-5-17.0-040617	FB-5-13.5-040617	13.5		< 4.2		< 51	< 0.020	< 0.042	< 0.042	< 0.084	
FB-6-12.0-040617	FB-5-15.0-040617		4/6/2017	< 4.4			< 0.020	< 0.044	< 0.044	< 0.088	
FB-7-13.0-040617				1		1					
FB-7-23.0-040617 23.0 4/6/2017 < 4.7 40 N 440 < 0.020 < 0.047 < 0.047 < 0.094 FB-8-14.0-040717 14.0 4/7/2017 < 5.0 < 27 < 55 < 0.020 < 0.050 < 0.050 < 0.050 < 0.100 FB-9-6.9-040717 6.9 4/7/2017 < 4.7 1,100 350 < 0.020 < 0.047 < 0.047 < 0.094 FB-9-10.0-040717 10.0 4/7/2017 < 5.0 60 < 53 < 0.020 < 0.050 < 0.050 < 0.050 < 0.100 FB-9-14.0-040717 14.0 4/7/2017 330 F 440 180 < 0.020 < 0.050 < 0.050 < 0.050 < 0.0100 FB-10-12.8-040717 12.8 4/7/2017 880 F 4,300 < 610 < 0.020 < 0.044 0.59 0.99 FB-10-14.0-040717 14.0 4/7/2017 860 F 5,900 1,800 N1 0.080 < 0.055 0.52 2.1 FB-10-17.1-040717 17.1 4/7/2017 910 F 1,300 270 0.086 < 0.25 0.58 3.0 FB-10-17.3-040717 17.3 4/7/2017 530 F 8,200 < 580 0.13 < 0.27 1.3 2.2 FB-11-12.6 12.6 4/13/2017 < 5.5 < 27 < 54 0.020 < 0.055 < 0.055 < 0.055 < 0.110 FB-11-23.4 23.4 4/13/2017 < 5.9 140 390 < 0.020 < 0.055 < 0.055 < 0.051 HC01-4.5 4.5 3/28/2018 < 5.7 <25 < 50 <0.0114 < 0.0570 < 0.0285 < 0.085 HC01-10 10 3/28/2018 < 4.25 < 25 < 50 <0.0114 < 0.0570 < 0.0285 < 0.0212 < 0.0637 HC01-34 34 34 3/28/2018 < 5.53 38.6 < 50 < 0.0111 < 0.0553 < 0.0277 < 0.0830 HC02-10 10 3/28/2018 < 7.66 < 25 < 50 < 0.0103 < 0.0513 < 0.0257 < 0.0770				1		· ·					
FB-8-14.0-040717				H .							
FB-9-6.9-040717 6.9 4/7/2017 < 4.7 1,100 350 < 0.020 < 0.047 < 0.094 FB-9-10.0-040717 10.0 4/7/2017 < 5.0				the second second		1					
FB-9-10.0-040717 10.0 4/7/2017 < 5.0 60 < 53 < 0.020 < 0.050 < 0.050 < 0.100 FB-9-14.0-040717 14.0 4/7/2017 330 F 440 180 < 0.020				H .		1					
FB-9-14.0-040717 14.0 4/7/2017 330 F 440 180 < 0.020 < 0.050 0.63 0.48 FB-10-12.8-040717 12.8 4/7/2017 880 F 4,300 < 610				the second second	<u> </u>	+					
FB-10-12.8-040717 12.8 4/7/2017 880 F 4,300 < 610 < 0.020 < 0.044 0.59 0.99 FB-10-14.0-040717 14.0 4/7/2017 860 F 5,900 1,800 N1 0.080 < 0.055				1							
FB-10-14.0-040717 14.0 4/7/2017 860 F 5,900 1,800 N1 0.080 < 0.055 0.52 2.1 FB-10-17.1-040717 17.1 4/7/2017 910 F 1,300 270 0.086 < 0.25				1							
FB-10-17.3-040717 17.3 4/7/2017 530 F 8,200 < 580 0.13 < 0.27 1.3 2.2 FB-11-12.6 12.6 4/13/2017 < 5.5			•	860 F			0.080		0.52	2.1	
FB-11-12.6 12.6 4/13/2017 < 5.5 < 27 < 54 0.020 < 0.055 < 0.055 < 0.110 FB-11-23.4 23.4 4/13/2017 < 5.9	FB-10-17.1-040717	17.1		910 F	1,300	270	0.086	< 0.25	0.58		
FB-11-23.4 23.4 4/13/2017 < 5.9 140 390 < 0.020 < 0.059 < 0.059 < 0.118 HC01-4.5 4.5 3/28/2018 < 5.7				the second second							
HC01-4.5 4.5 3/28/2018 <5.7				1		+					
HC01-10 10 3/28/2018 671 4,680 <433 <0.104 <0.518 <0.259 <0.0855 HC01-15 15 3/28/2018 <4.25				1							
HC01-15 15 3/28/2018 <4.25 <25 <50 <0.0114 <0.0570 <0.0285 <0.776 HC01-22 22 3/28/2018 7.99 104 80.3 <0.00850				1							
HC01-22 22 3/28/2018 7.99 104 80.3 <0.00850				the second second							
HC01-34 34 3/28/2018 <5.53 38.6 <50 <0.0111 <0.0553 <0.0277 <0.0830 HC02-10 10 3/28/2018 <7.66				the second second							
HC02-10 10 3/28/2018 <7.66 <25 <50 <0.0153 <0.0766 <0.0383 <0.115 HC02-15 15 3/28/2018 37.7 <25				1		+					
HC02-15 15 3/28/2018 37.7 <25 <50 <0.0103 <0.0513 <0.0257 <0.0770				H .		1					
		15		1							
	HC02-22	22	3/28/2018	9.26	26.6	<50	<0.00984	<0.0492	<0.0246	<0.0738	

Table 6 **Soil Analytical Results - Fuels and BTEX**

Coleman Oil Site Wenatchee, Washington

				Fuels		BTEX			
			H da B	DA H	ОКРН	Benzene	Toluene	Ethylbenzene	Total Xylenes
WA MTCA Method A Clean	up Level for Soil		mg/kg 30/100	mg/kg 2,000	mg/kg 2,000	mg/kg 0.3	mg/kg 7	mg/kg 6	mg/kg
Benzene (Non Detect)	- P - 2010. 101 00		100	2,000	2,000	0.5	,		
Benzene (Detect)			30						
Field ID	Sample Depth (feet)	Date							
Well Installations	(leet)								
RW-1-17.5	17.5	4/10/2017	< 6.9	< 32	< 63	< 0.020	< 0.069	< 0.069	< 0.138
MW1S-10	10	4/3/2018	<5.26	<25	<50	<0.0132	<0.0658	<0.0329	<0.0987
MW1S-20	20	4/3/2018	<4.88	<25	<50	0.318	<0.0488	<0.0244	<0.0731
MW3S-15 MW3S-20	15 20	4/3/2018 4/3/2018	83.8 <4.88	<25 <25	<50 <50	<0.00910 <0.0132	<0.0455 <0.0658	<0.0227 <0.0329	<0.0682 <0.0987
MW-6-10.3	10.3	4/12/2017	280 F	10,000	< 570	0.068	< 0.065	2.2	0.96
MW-6-12.8	12.8	4/12/2017	1,400 F	3,900	< 310	0.066	< 0.29	0.34	0.76
MW-7-13.0	13.0	4/11/2017	< 5.8	160	< 56	< 0.020	< 0.058	< 0.058	< 0.116
MW-7-17.3	17.3	4/11/2017	< 6.1	< 29	< 58	< 0.020	< 0.061	< 0.061	< 0.122
MW-8-12.8 MW-8-15.0	12.8 15.0	4/11/2017 4/11/2017	< 6.0 < 4.3	1,400 100	< 55 < 51	< 0.020 < 0.020	< 0.060 < 0.043	< 0.060 < 0.043	< 0.120 < 0.086
MW-8-17.5	17.5	4/11/2017	< 5.5	230	< 56	< 0.020	< 0.055	< 0.055	< 0.110
MW-9-12.8	12.8	4/12/2017	< 6.2	< 28	< 55	< 0.020	< 0.062	< 0.062	< 0.124
MW-9-15.6	15.6	4/12/2017	1,800 F	15,000	< 580	< 0.062	< 0.31	0.64	2.7
MW-9-24.5	24.5	4/13/2017	31 F	280	330	< 0.020	< 0.076	< 0.076	0.094
MW-10-15.7	15.7	4/14/2017	< 6.1	< 30	< 59	< 0.020	< 0.061	< 0.061	< 0.122
MW-10-25.1 MW-11-5.8	25.1 5.8	4/14/2017 4/14/2017	1,300 F < 5.0	1,300 < 28	< 55 < 55	0.13 < 0.020	< 0.46 < 0.050	4.5 < 0.050	5.14 < 0.100
MW-11-13.2	13.2	4/14/2017	570 F	600	< 59	< 0.024	< 0.12	1.0	0.100
MW-11-17.8	17.8	4/14/2017	12	58	< 56	< 0.020	< 0.060	< 0.060	< 0.120
MW-12-10	10	4/2/2018	<5.10	<25	<50	<0.0102	<0.0510	<0.0255	<0.0766
MW-12-20	20	4/2/2018	<4.79	42.5	66.7	<0.00958	<0.0479	<0.0239	<0.0718
MW-13-05	5	3/29/2018	580	1,700	5,310	0.701	25.5	6.27	29.3
MW-13-10 MW-13-12	10 12	3/29/2018	3,360	2,290	<50 <50	1.51	<1.07	<0.533	5.2
MW-13-21	21	3/29/2018 3/29/2018	12.1 22.5	<25 90.9	209	<0.0102 <0.00998	<0.0512 <0.0499	<0.0256 <0.0250	0.0774 <0.0749
MW-13-35	35	3/29/2018	<5.16	<25	<50	<0.0103	<0.0516	<0.0258	<0.0773
MW-13-45	45	3/30/2018	<7.12	<25	<50	<0.0142	<0.0712	<0.0356	<0.107
MW-14-05	5	3/30/2018	<4.74	<25	<50	<0.00948	<0.0474	<0.0237	<0.0711
MW-14-10	10	3/30/2018	171	50.2	<50	<0.00971	<0.0486	<0.0243	<0.0729
MW-14-15 MW-14-25	15 25	3/30/2018 4/2/2018	465 <3.97	447 <25	<50 <50	<0.0142 <0.0794	<0.0712 <0.0397	<0.0356 <0.0198	<0.107 <0.0595
MW-15-10	10	4/12/2018	<5.17	<25	75.8	<0.0103	<0.0517	<0.0198	<0.0775
MW-15-20	20	4/12/2018	<5.74	<25	<50	<0.0115	<0.0574	<0.0287	<0.0862
MW-15-30	30	4/12/2018	<5.73	<25	<50	<0.0115	<0.0573	<0.0286	<0.0859
MW-16-10	10	4/5/2018	<4.78	<25	<50	<0.00955	<0.0478	<0.0239	<0.0717
MW-16-14 MW-16-25	14 25	4/5/2018	<5.09	<25	<50	<0.0102	<0.0509	<0.0255	<0.0764
MW-17-10	10	4/6/2018 4/4/2018	<2.38 <4.71	<25 <25	<50 <50	<0.00476 <0.00943	<0.0238 <0.0471	<0.0119 <0.0236	<0.0357 <0.0707
MW-17-17	17	4/4/2018	1,900	1,650	740	<0.0360	<0.180	<0.0230	<0.270
MW-17-25	25	4/4/2018	83.6	<25	<50	0.0109	<0.0508	0.0631	0.0799
MW-17-30	30	4/4/2018	<4.86	<25	<50	<0.00973	<0.0486	<0.0243	<0.0730
MW-18-10	10	4/11/2018	<6.01	<25	102	<0.0120	<0.0601	<0.0301	<0.0902
MW-18-15 MW-18-25	15 25	4/11/2018 4/11/2018	<5.45 <4.66	<25 <25	<50 <50	<0.0109 <0.00932	<0.0545 <0.0466	<0.0273 <0.0233	<0.0818 <0.0699
MW-19-10	10	4/5/2018	<5.34	<25	<50 <50	<0.00932	<0.0466	<0.0233	<0.0899
MW-19-18	18	4/5/2018	386	2,010	<50	<0.0104	<0.0518	<0.0259	<0.0776
MW-19-30	30	4/5/2018	<5.48	167	284	<0.0110	<0.0548	<0.0274	<0.0822
MW-20-10	10	4/10/2018	<5.02	<25	<50	<0.0100	<0.0502	<0.0251	<0.0753
MW-20-15 MW-20-23.5	15 23.5	4/10/2018	60.3	72.9	<50	<0.0102	<0.0508	<0.0254	<0.0762
MW-20-23.5 MW-20-26	23.5	4/10/2018 4/10/2018	<6.84 <5.05	<25 <25	<50 <50	<0.0137 <0.0101	<0.0684 <0.0505	<0.0342 <0.0253	<0.103 <0.0758
MW-21-10	10	4/9/2018	<5.32	<25	<50	<0.0101	<0.0532	<0.0255	<0.0797
MW-21-25	25	4/9/2018	9.65	47.2	<50	<0.0114	<0.0570	<0.0285	<0.0854
MW-21-32	32	4/9/2018	<5.69	<25	<50	<0.0114	<0.0569	<0.0285	<0.0854
MW-22-15	15	4/13/2018	<5.15	<25	<50	<0.0103	<0.0515	<0.0258	<0.0773
MW-22-25 MW-22-30	25 30	4/13/2018 4/13/2018	<13.4 4,180	<25.9 45,700	<51.8 <8,160 ec	<0.0268 10.7	<0.134 <5.87	<0.0670 23.1	<0.201 43.8
MW-22-40	40	4/13/2018	248	52.5	<50	0.0854	0.085	0.156	0.696
MW-23-05	5	3/29/2018	<4.63	29.7	65.2	<0.00926	<0.0463	<0.0231	<0.0694
MW-23-08	8	3/29/2018	116	586	112	<0.0101	<0.0504	<0.0252	<0.0756
MW-23-12	12	3/29/2018	127	63.3	<50	<0.0115	<0.0577	<0.0289	<0.0866
MW-23-22 SHORELINE SAMPLES	22	3/29/2018	<6.69	<25	<50	<0.0134	<0.0669	<0.0335	<0.100
S. OKLLINE SAIVIFLES		1	1,140	39,400	<2,350 ec	<0.246	<1.23	<0.614	<1.84
SL01-0.5	0.5	4/12/2018	1.140						
SL01-0.5 SL02-0.5	0.5 0.5	4/12/2018 4/12/2018	629	30,400	<2,570 ec	<0.0528	<0.264	<0.132	<0.396
SL02-0.5 SL03-0.5	0.5 0.5	4/12/2018 4/12/2018	629 2,580	30,400 21,400	<2,570 ec <2,240 ec	<0.0528 <0.203	<1.02	<0.508	<0.396 1.6
SL02-0.5	0.5	4/12/2018	629	30,400	<2,570 ec	<0.0528			

Notes
Red denotes concentration in excess of MTCA Method Cleanup Level for Soil.
GRPH (gasoline range petroleum hydrocarbons) analyzed by Method NWTPH-Gx.
DRPH (diesel range petroleum hydrocarbons) analyzed by Method NWTPH-Dx.
ORPH (oil range petroleum hydrocarbons) analyzed by Method NWTPH-Dx.
Volatiles analyzed by EPA Method 8260C.
MTCA Method A Cleanup Levels, WAC 173-340-720 through 173-340-760, revised Nov., 2007
< = less than method reporting limit shown
--- = not analyzed
ec = Method reporting limit exceeds Clean Up Level shown.
F = hydrocarbons indicative of heavier fuels are present in sample and impacting the gasoline result (Farallon 2017b).
N = hydrocarbons in the oil-range are impacting the diesel result (Farallon 2017b).

Table 7 Sediment Sample Results - Fuels and BTEX

Coleman Oil Site Wenatchee, Washington

						1			
				Fuels	ı		ВТ	EX	T
			GRPH	ОКРН	ОКРН	Benzene	Toluene	Ethylbenzene	Total Xylenes
			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SCUM II Sediment	Managemo	ent SCO		340	3,600				
Standards (SMS) f	or Freshwa	ter							
Sediments ¹									
	Sample								
Field ID	Depth	Date							
SEDIMENT SAMPL	.ES								
SS01-13.97cm	0.46	4/23/2018	<25.2	842	392	<0.0503	0.395	<0.126	<0.378
SS02-11.75cm	0.38	4/23/2018	<13.7	473	175	<0.0274	0.182	<0.0684	<0.205
SS03-13.97cm	0.46	4/23/2018	<16.2	207	147	<0.325	<0.0162	<0.0811	<0.243
SS04-11.82 cm	0.39	4/23/2018	<16.6	<45.1	90.6	<0.0333	<0.166	<0.0832	<0.0250
SS05-13.97	0.46	4/23/2018	<13.8	<38.1	87.2	<0.0276	<0.138	<0.0690	<0.207
SEDIMENT SAMPL	ES WITH A	CID/SILICA GEL CLEA	ANUP						
SS01-13.97cm	0.46	4/23/2018		947	<105		-		
SS02-11.75cm	0.38	4/23/2018		526	<73.4				
SS03-13.97cm	0.46	4/23/2018		238	<78.4				
SS04-11.82 cm	0.39	4/23/2018		<45.1	<90.3				
SS05-13.97	0.46	4/23/2018		<38.1	<76.1				
Notes			·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

Notes

Red denotes concentration in excess of Sediment Management Standard (SMS) for Freshwater Sediment.

GRPH (gasoline range petroleum hydrocarbons) analyzed by Method NWTPH-Gx.

DRPH (diesel range petroleum hydrocarbons) and ORPH (oil range petroleum hydrocarbons) analyzed by Method NWTPH-Dx. BTEX analyzed by EPA Method 8260C.

¹SCUMII 173-204 WAC - Sediment Management Standards for Freshwater Sediments

SCO = Sediment Cleanup Objective

< = less than method reporting limit shown

--- = not analyzed

Table 8 **Groundwater Analytical Results - Fuels and BTEX**

Coleman Oil Site Wenatchee, Washington

Fuels Volatiles	Metals
GRPH GRPH GRPH Toluene Toluene Wylene, Total Wybhthalene EDB	Total Lead
μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	μg/L
WA MTCA Method A Cleanup for Ground 800/1000 500 500 5 1,000 700 1,000 160 20 0.01 5	15
Benzene (Non Detect) 1,000	
Benzene (Detect) 800	
_Field ID Date	
FB-9 4/7/2017 1,200 F 2,900 1,200 2.4 < 1.0 3.7 1.7	
FB-10 4/7/2017 2,000 F 57,000 < 4,100 71 13 7.1 64	

	A Cleanup for Ground		300	300	•	1,000	700	1,000	100	20	0.01		15
Benzene (Non De	•	1,000										ļ	1
Benzene (Detect)		800		<u> </u>				<u> </u>	<u> </u>	<u> </u>			<u>il</u>
Field ID	Date		T										
FB-9	4/7/2017	1,200 F	2,900	1,200	2.4	< 1.0	3.7	1.7					
FB-10	4/7/2017	2,000 F	57,000	< 4,100	71	13	7.1	64					
BH-1	4/21/2017	820 F	1,900	970 N1	15	2.8	8.3	18.5					
BH-1	4/26/2018	2,140	1,390	<377	0.671	<1.00	5.55	12.5					
BH-2	4/24/2018	854	9,360	<377	<0.200	<1.00	<0.500	<1.50					
BH-2	4/10/2017	1,900 F	100,000	10,000	< 4.0	< 4.0	13	39					
BH-2	4/21/2017	1,500 F	2,600	630 N1	4.2	3.3	12	39	1				
BH-3	4/21/2017	1,800 F	2,400	660	1.8	< 1.0	5.4	8.2					
BH-3	4/26/2018	172	1,130	<377	<0.200	<1.00	<0.500	<1.50					
BH-3	9/29/2017	150 O	1,200	550 N1	<1.0	<1.0	<1.0	<2.0					
RW-1	4/21/2017	< 100	840	540 N1	< 1.0	< 1.0	< 1.0	< 2.0					
RW-1	9/29/2017	<100	360	440	< 1.0	< 1.0	< 1.0	< 2.0		 			
RW-1	4/26/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50					
MW-1				1									
MW-1	3/23/2017		520	480		 		· 	 	 			
 	4/21/2017	210 F	730	510	< 1.0	< 1.0	< 1.0	< 2.0					
MW-1	9/29/2017	200	410	<410	<1.0	<1.0	<1.0	<2.0					-
MW-1S	4/24/2018	188	<187	<374	0.42	<1.00	5.8	9.48					<0.200
MW-2	3/23/2017		< 260	< 410					 	 	ļ	 	
MW-2	4/20/2017	< 100	< 260	< 410	< 1.0	< 1.0	< 1.0	< 2.0	-	<u> </u>	 	 	
MW-2	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50					
MW-3	4/20/2017	< 100	< 260	< 410	< 1.0	< 1.0	< 1.0	< 2.0				ļ	
MW-3	9/28/2017	< 100	<260	<410	< 1.0	< 1.0	< 1.0	< 2.0					<u> </u>
MW-3S	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50	<2.00	<1.00	<0.500	<0.400	
MW-4	3/23/2017		< 260	< 410									
MW-4	4/20/2017	< 100	< 260	< 410	< 1.0	< 1.0	< 1.0	< 2.0					
MW-4	9/28/2017	< 100	<260	<410	< 1.0	< 1.0	< 1.0	< 2.0					<u> </u>
MW-4	4/25/2018	<100	<187	<374	<0.200	<1.00	<0.500	<1.50					
MW-5	3/23/2017		< 260	< 410									
MW-5	4/20/2017	< 100	< 260	< 410	< 1.0	< 1.0	< 1.0	< 2.0					
MW-5	9/28/2017	<100	<260	<410	< 1.0	< 1.0	< 1.0	< 2.0					
MW-5	4/25/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50					
MW-6	4/20/2017	880 F	1,800	480 N1	5.0	< 4.0	6.2	37					
MW-6	9/28/2017	530 O	760	430 N1	<1.0	<1.0	<1.0	4.3					
MW-6	4/25/2018	643	1,620	<374	0.56	<1.00	<0.500	2.19					0.375
MW-7	4/20/2017	1,100 F	1,300	420 N1	3.2	< 1.0	15	11.4					0.075
MW-7	9/28/2017	<100	520	<470 U1	<1.0	<1.0	<1.0	<2.0	<u> </u>	 			
MW-7	4/25/2018	<100	435	<374	<0.200	<1.00	<0.500	<1.50					l
MW-8	9/29/2017	1,300 O	2,100	690 N1	<1.0	<1.00	4.1	27.2					
MW-8	4/26/2018	720	1,300	<374	0.641	<1.00	<0.500	4.67					
MW-9	9/29/2017	500 O											<u> </u>
MW-9			1,200	670 N1	<1.0	<1.0	<1.0	1.5	 	 			
MW-10	4/26/2018	2,810	2,620	<374	2.73	<1.00	9.95	20.4					
 	4/21/2017	1,900 F	3,800	730	3.4	< 1.0	11	12.5	- 	 	ļ	 	
MW-10	9/29/2017	1,900 O	16,000	1,300 N1	<1.0	<1.0	13	26.7	- 	-	 	 	
MW-10	4/26/2018	2,290	1,500	<377	0.219	<1.00	3.52	5.95					
MW-11	4/21/2017	1,400 F	1,700	1,000 N1	28	4.1	8.2	26.1	 		 	 	
MW-11	9/29/2017	1,000 O	3,100	720 N1	<1.0	<1.0	1.9	12.5	 		 	 	
MW-11	4/26/2018	1,240	1,140	<374	<0.200	<1.00	0.56	2.27					
MW-12	4/25/2018	<100	<189	<377	<0.200	<1.00	<0.500	<1.50					
MW-13	4/25/2018	40,900	1,790	<377	1,500	4,710	627	3,780					0.446
MW-14	4/25/2018	4,620	900	<374	13.1	<1.00	16.1	<1.50	3.21	<1.00	<0.500	<0.400	
MW-15	4/25/2018												
MW-16	4/26/2018	<100	330	<374	<0.200	<1.00	<0.500	<1.50					
MW-17	4/26/2018	2,800	1,630	<377	1.23	<1.00	1.62	7.66	4.72	<1.00	<0.500	<0.400	
MW-18	4/26/2018					<1.00	<0.500	<1.50					
MW-18 MW-19	4/26/2018 4/26/2018	280	979	<377	< 0.200	\1.00							
			979 1,320	<377 <377	<0.200	<1.00	1.56	5.44					
MW-19	4/26/2018	280						5.44 1.82					
MW-19 MW-20	4/26/2018 4/26/2018	280 1,270	1,320	<377	<0.200	<1.00	1.56	1				1	

Notes
Red denotes concentration in excess of MTCA Method Cleanup Level for Groundwater.
MTCA Method A Cleanup Levels, WAC 173-340-720 through 173-340-760, revised Nov., 2007
GRPH (gasoline range petroleum hydrocarbons) analyzed by Method NWTPH-Gx.
DRPH (diesel range petroleum hydrocarbons) and ORPH (oil range petroleum hydrocarbons) analyzed by Method NWTPH-Dx.
Volatiles analyzed by EPA Method 8260C
Total Lead by EPA Method 6020

< = less than method reporting limit shown
--- = not analyzed. MW15 and MW18 not sampled due to lack of water in the well.
ec = Method reporting limit exceeds Clean Up Level shown.
F and O = hydrocarbons indicative of heavier fuels are present in sample and impacting the gasoline result (Farallon 2017b)
N1 = hydrocarbons in the diesel-range are impacting the oil result (Farallon 2017b)
U1 = the practical quantitation limit is elevated due to interferences present in the sample (Farallon 2017b)

1 of 1

Table 9

Groundwater Analytical Results - Polynuclear Aromatic Hydrocarbons

Coleman Oil Site Wenatchee, Washington

		Acenaphthene μg/L	Acenaphthylene μg/L	Anthracene μg/L	Benz [a] anthracene µg/L	Benzo [a] pyrene μg/L	Benzo [b] fluoranthene μg/L	Benzo [k] fluoranthene μg/L	Benzo (g,h,i) perylene μg/L	Chrysene μg/L	Dibenz [a,h] anthracene μg/L
WA M	TCA Method A					0.1					
Clea	nup Level for										
Gr	oundwater										
Field ID	Date	-	_	_	_	_				-	
MW21	4/26/2018	0.193	<0.0935	0.145	<0.0935	<0.0935	<0.0935	<0.0935	<0.0935	<0.0935	<0.0935
MW22	4/26/2018	113	<0.0943	8.48	0.284	<0.0943	<0.0943	<0.0943	<0.0943	0.243	<0.0943

		Dibenzofuran	Fluoranthene	Fluorene	Indeno [1,2,3-	2-Methyl-	Naphthalene	Phenanthrene	Pyrene	1- Methyl-	TEF
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
WA MTCA Method A							160				0.1
Cleanup Level for											
Groundwater											
Field ID	Date										
MW21	4/26/2018	0.103	<0.0935	0.144	<0.0935	0.494	1.16	<0.0935	<0.0935	1.48	0.071
MW22	4/26/2018	8.55	3.2	36.7	<0.0943	298	692	36.6	4.3	298	0.095

Notes

Red denotes concentration in excess of MTCA Method Cleanup Level for Soil.

MTCA Method A Cleanup Levels, WAC 173-340-720 through 173-340-760, revised Nov., 2007

< = less than method reporting limit shown

mg/kg = milligrams per kilogram (parts per million)

PAHs by EPA Method 8270D SIM

ec = Method reporting limit exceeds Clean Up Level shown.

TEF = Toxicity Equivalency Factor per Ecology Focus Sheet. One-half the detection limit used for non-detected concentrations.

Appendix A Soil Boring Logs

GUIDE TO BOREHOLE LOGS**

MAJOR	SYM	BOLS	TYPICAL NAMES							
		GW		Well-graded gravels or gravel-sand mixtures, little to no fines.						
ILS	CDAVEL C	GP	0000	Poorly-graded gravels or gravel-sand mixtures, little to no fines.						
COARSE GRAINED SOILS (more than 1/2 of soil >No. 200 sieve size)	GRAVELS more than 50% coarse fraction > no.4 sieve	GM	600	Silty gravels, gravel-sand-silt mixtures.						
NEC 2 of so ve size	iraction > no.4 sieve	GC		Clayey gravels or gravel-sand-clay mixtures						
SE GRAINED (more than 1/2 of soil >No. 200 sieve size)		SW		Well-sorted sands or gravelly sands, little to no fines.						
SE (more >No.2	SANDS	SP		Poorly-sorted sands or gravelly sands, little to no fines.						
OAR	less than 50% coarse fraction > no.4 sieve	SM		Silty sands, sand-silt mixtures.						
Ö		sc		Clayey sands, sand-clay mixtures.						
SIICS	SILTS & CLAYS	ML		Inorganic silts and very fine sands, silty or clayey fine sands or clayey silts with slight plasticity.						
D SC soil ize)	Liquid Limit* less than 50%	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy or silty clays, lean clays.						
INEI 1/2 of sieve si		OL		Organic silts and organic silty clays of low plasticity.						
FINED GRAINED SOILS (more than 1/2 of soil < No. 200 sieve size)	SILTS & CLAYS	МН		Inorganic silts, micaceous or diatomaceous fine sand or silty soils, elastic silts.						
ED (mo	Liquid Limit* greater than 50%	СН		Inorganic clays of high plasticity, fat clays.						
AI	9	ОН		Organic clays of medium to high plasticity, organic silty clay, organic silts.						
HIGHLY	HIGHLY ORGANIC SOILS			Peat or other highly organic soils.						
				Concrete						
				Asphalt						
	Mud		Mudstone							
		SiltS		Siltstone						
		SandS	* * *	Sandstone						

^{*} Liquid Limit represents the moisture content (in percent) of a soil at which point the soil no longer behaves like a plastic and starts to behave like a liquid.

BORING LOG SYMBOLS

SHEEN TYPES:

NS - No Sheen observed SS - Slight Sheen observed (Spotty coverage of

sheen pan, no iridescence)
MS - Moderate Sheen (full coverage of sheen pan, no iridescence) pan, iridescent)

HS - Heavy Sheen (full coverage of sheen

<u>PERCENTAGES:</u> Trace - Particles are present but estimated to be less than 5% Few -5 to 10%

Little - 15 to 25% Some - 30 to 45% Mostly - 50 to 100%

SAMPLE MOISTURE:

Dry - No moisture, dry to touch Moist - Damp but no visible moisture Wet - Visible free water

SAMPLE PLASTICITY (FINE-GRAINED SOILS):

Nonplastic - Cannot be rolled at any moisture content

Barely rolled, lump cannot be formed when drier than plastic limit

Medium - Easily rolled, lump crumbles when drier than plastic limit High -Easily rolled yet takes considerable time to reach the plastic limit, molded shape can be formed without crumbling when drier than the plastic limit

PARTICLE SIZE RANGE (COARSE-GRAINED SOILS): Gravel - Fine, Coarse

Sand - Fine, Medium, Coarse

SAMPLE LOCATION SAMPLE INTERVAL SAMPLE RECOVERY

GROUNDWATER, FIRST OBSERVED

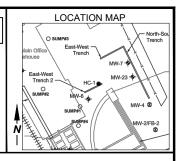
SAMPLE TYPES: SS - Split Spoon G - Grab ST - Shelby Tube

GS - Geoprobe Sampler

Hydro W

Phone: 360-703-6079

WELL/BORING NUMBER


HC01

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren

DATE: 03-28-18

								I ilm
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
SAND (SP) with gravel, yellowish brown (10yr 7/4), fine grained, 5-15% low plastic fines, up to 15% sub-rounded gravels up to 2.5", no odor/sheen, dry.	0 —				0.3			WELL CONSTRUCTION Depths (feet bgs) Borehole: 50 Sump:
NOTE: Poor recovery from 5-10' bgs. Cobble stuck in shoe, similar to material seen at surface to 5' bgs.	5 —			HC01-4.5	0.9			Screen: Casing: Backfill: Sand Pack: Bentonite: 0 - 50 Concrete: Stabilizers:
GRAVELLY SAND (SP), gray (7.5B 5/1), fine grained, 20% sub-rounded gravels up to 3", <5% low plastic fines, moderate petroleum odor with sheen, damp.	10— 			HC01-10	395			
SILT (ML) with sand, brown (7.5Y 7/2), low-moderate plasticity, <20% fine sand, trace amounts of gravels <1/4", no odor/sheen, hard and dense, dry.		-		HC01-15	21.3			
No recovery from 15-17' bgs; Chumstick formation at 17' bgs.	-							
SILTSTONE, light brown (10Y 6/3), soft, 15-20% fine sand in matrix, planar fracture, scattered organic laminations and muscovite.	_ _ _				0.3			
MUDSTONE, softer blackish brown (10PB 4/1), laminated, no odor/sheen, dry.	20 <u></u> -				0.2			
SILTSTONE, light brown (10Y 6/3), soft, 15-20% fine sand in matrix, planar fracture, scattered organic laminations and muscovite.] <u> </u>			HC01-22	0.1			
SANDSTONE, light gray (10PB 6/1), weakly cemented, massive, medium grained sandstone with predominately feldspar and quartz grains.	25— —				0.1			
SILTSTONE, light brown (10Y 6/3), soft, 15-20% fine sand in matrix, planar fracture, scattered organic laminations and muscovite.	_				0.1			
Ü					0.1			
SANDSTONE, light gray (10PB 6/1), weakly cemented, massive, medium grained with predominately feldspar and quartz grains.	_ _				0.3			
SILTSTONE, light brown (10Y 6/3), soft, 15-20% fine sand in matrix, planar fracture, scattered organic laminations and muscovite.	\			HC01-34	1.9			<u>LEGEND:</u> ☐ FILTER PACK
SANDSTONE, light gray (2.5Y, 7/1), fine grained ashy matrix.	35							■ BENTONITE ☑ CEMENT GROUT ☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING
								WATER LEVEL DOINING DIVILLING

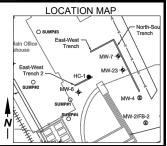
DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic **BOREHOLE DIAMETER: 6"** SAMPLING METHOD: Continuous START CARD NUMBER:

CASING ELEVATION:

GROUND SURFACE ELEVATION: COORDINATES: 153118.1557 COORDINATES: 1771783.523

WELL/BORING NUMBER

HC01


PROJECT NAME: Coleman Oil - Wenatchee

PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren

DATE: 03-28-18

								7 1100
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	OIA	FIRST	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
SANDSTONE, light gray (2.5Y, 7/1), fine grained sand in ashy matrix.	35—	+++						WELL CONSTRUCTION Depths (feet bgs)
MUDSTONE , blackish brown (10PB 4/1), soft, waxy score, clay rich matrix with, very fine sand grain inclusions, weak to moderate cementation, commonly exhibits planer fractures, laminated, no odor/sheen, dry.	_ _ 40—				0.0			Borehole: 50 Sump: Screen: Casing:
SANDSTONE, gray (10PB, 5/1), slightly hard, irregular fracture, medium grained sand, sub-angular, no odor/sheen.	- - -	* * *						Backfill: Sand Pack: Bentonite: 0 - 50 Concrete: Stabilizers:
NOTE: Dark brown mudstone interbedding	45— —	***			0.2			Glabilizers.
between 46-50' bgs.	- - -				0.7			
BOTTOM OF BORING AT 50' B.G.S. Boring backfilled with hydrated bentonite upon completion.	50— — —							
	55— —	- -						
	- - -	-						
	60—	-						
	65—							
	- -							<u>LEGEND:</u> ☑ FILTER PACK
	70—	_						■ BENTONITE ☑ CEMENT GROUT ☑ CUTTINGS/BACKFILL
								WATER LEVEL DURING DRILLING

DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic BOREHOLE DIAMETER: 6" SAMPLING METHOD: Continuous START CARD NUMBER: CASING ELEVATION:

GROUND SURFACE ELEVATION: COORDINATES: 153118.1557 COORDINATES: 1771783.523

Hydro **(**

Phone: 360-703-6079

DRILLING CONTRACTOR: Budinger

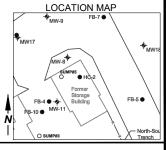
SAMPLING METHOD: Continuous

DRILLING METHOD: Sonic

BOREHOLE DIAMETER: 6"

START CARD NUMBER:

WELL/BORING NUMBER


HC02

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren

DATE: 03-28-18

	DAIL	DATE: 03-20-10						O SUMP#S Trench
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
No recovery 0-2' bgs.	0 —							WELL CONSTRUCTION
SAND (SP) with gravel, yellowish brown (7.5YR 5/2), fine, 10-15% low plastic fines, 5-15% subrounded gravels up to 1.5" in diameter, no odor/sheen, dry. NOTE: Large boulder at 5' bgs.	5 —				0.6			Depths (feet bgs) Borehole: 35 Sump: Screen: Casing: Backfill: Sand Pack: Bentonite: 0 - 35 Concrete: Stabilizers:
SILTY SAND (SM), brown, 30% low plastic fines, 10% subrounded gravels up to 2.5" in diameter, no odor/sheen, damp. SILT (ML) with gravel, brown (7.5Y 6/2), low-moderate plasticity, 15% subangular gravels <3/4" in diameter, no odor/sheen.	10—			HC02-10	0.0			
MUDSTONE, blackish brown (10PB 4/1), laminated, no odor/sheen, dry. Chumstick Formation at 12.5' bgs.	15— —			HC02-15	9.0			
	20—				1.0			
NOTE: Color change at 23' bgs from brown to gray (10PB 6/1), becomes slightly harder, less crumbly SANDSTONE, gray (10PB, 5/1), well cemented, medium grained, sub-angular, no odor/sheen.	25—			HC02-22	0.7			
	30—							<u>LEGEND:</u>
BOTTOM OF BORING AT 35' B.G.S.	35—							☐ FILTER PACK ■ BENTONITE ☑ CEMENT GROUT
Boring backfilled with hydrated bentonite upon completion.				NAC EL EVAT				☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING

CASING ELEVATION:

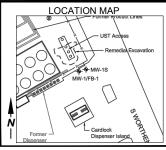
GROUND SURFACE ELEVATION:

COORDINATES: 153060.1732

COORDINATES: 1771815.796

Hydro Con

Phone: 360-703-6079


WELL/BORING NUMBER MW01S

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren

DATE: 04-03-18

	DAIL	. 04-05-10	,					Dispenser Island
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
Plasticity, Shapes, Mineral Composition, Density or	10— 15— 20— 25— 30— 35—		DETAILS		0.0 0.0 0.1 0.1 0.2 0.2	HR WAI	COD	WELL CONSTRUCTION Depths (feet bgs) Borehole: 20.60 Sump: 20.37 - 20.60 Screen: 5.37 - 20.37 Casing: 0 - 5.37 Backfill: Sand Pack: 4 - 20.60 Bentonite: 1 - 4 Concrete: 0 - 1 Stabilizers: Yes MATERIALS USED Casing: 4" PVC Well Screen: 15', 0.010" slotting End Cap: Flat sump Sand Pack: 9 50lbs bag Bentonite: 2 50lbs bag Concrete: 1 50lbs bag Monument: Flush Well Cap: Locking J-plug Other: LEGEND: FILTER PACK BENTONITE CEMENT GROUT
								☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING

DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic BOREHOLE DIAMETER: 6" SAMPLING METHOD: Continuous START CARD NUMBER: BIU613 CASING ELEVATION: 657.54

GROUND SURFACE ELEVATION: 658.15

COORDINATES: 152725.8422 COORDINATES: 1771912.691

Phone: 360-703-6079

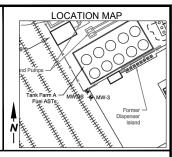
DRILLING CONTRACTOR: Budinger

SAMPLING METHOD: Continuous

START CARD NUMBER: BIU612

DRILLING METHOD: Sonic

BOREHOLE DIAMETER: 6"


WELL/BORING NUMBER MW03S

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren

DATE: 04-03-18

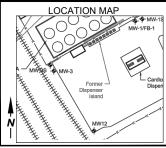
	DATE	. 04-03-10	,					
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
GRAVELLY SAND (SP), brown (10YR 4/4), fine, 10% low plastic fines, 40% subrounded gravels up to 3" in diameter, no odor/sheen, damp. SILTY SAND (SM), reddish brown, fine grained sand, 20% low plastic fines, no odor/sheen, dry.	5 —				0.0	▼		WELL CONSTRUCTION Depths (feet bgs) Borehole: 19.66 Sump: 19.43 - 19.66 Screen: 4.43 - 19.43 Casing: 0 - 4.43 Backfill: Sand Pack: 3 - 19.66 Bentonite: 1 - 3
SAND (SP) with gravel, brown, fine, 5% low plastic fines, 30% rounded gravels up to 2" in diameter, no odor/sheen, dry. SILTY GRAVEL (GM), brown (10YR 4/4), rounded gravels up to 2" in diameter, 20% low plastic fines, 15% fine grained sand, no odor/sheen, damp.	10—			MW3S-10	0.1			Concrete: 0 - 1 Stabilizers: Yes
SILTY SAND (SM), brown/gray (10YR 6/2), 30% low plastic fines, trace gravels, faint petroleum odor, damp.	_ _ _			MW3S-15	0.1			MATERIALS USED Casing: 4" PVC Well Screen: 15', 0.010" slotting
SAND (SP) with silt, brown/gray (10YR 6/2), fine grained sand, 10% low plastic fines, trace gravels up to 1/2" in diameter, no odor/sheen, damp.	15— — —			WW 33-13	0.4			End Cap: Flat sump Sand Pack: 9 50lbs bag Bentonite: 2 50lbs bag Concrete: 1 50lbs bag Monument: Flush
MUDSTONE, dark brown (10YR 3/1), soft, waxy, friable, no odor/sheen. Chumstick Formation at 18' bgs. BOTTOM OF BORING AT 20' B.G.S.	20—			MW3S-20	0.4			Well Cap: Locking J-plug Other:
BUTTOM OF BORING AT 20 B.G.S.	25— 							LEGEND: ☐ FILTER PACK ■ BENTONITE
				INO EL EVAT				☑ CEMENT GROUT ☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING

CASING ELEVATION: 658.17

COORDINATES: 152676.185

COORDINATES: 1771813.525

GROUND SURFACE ELEVATION: 658.53


WELL/BORING NUMBER

MW12

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren DATE: 04-02-18

								2 10 21
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	OIA	FIRST	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
GRAVELLY SAND (SP), brown (10YR 6/2), fine, 5% low plastic fines, 40% subrounded to subangular gravels and cobbles up to 4" in diameter, no odor/sheen, dry.	0 —				0.0			WELL CONSTRUCTION Depths (feet bgs) Borehole: 19.52 Sump: 19.29 - 19.52 Screen: 4.29 - 19.29
SILTY GRAVEL (GM), brown (10YR 4/4), rounded gravels up to 2" in diameter, 25% low plastic fines, 25% fine grained sand, no odor/sheen, damp. SANDSTONE, light brownish gray, soft, breaks on	5 —				0.1	▼		Casing: 0 - 4.29 Backfill: Sand Pack: 3.5 - 19.52 Bentonite: 1 - 3.5 Concrete: 0 - 1
laminate planes, fine sand matrix, cemented, no odor/sheen. Chumstick Formation at 6.5' bgs.	10—	* * *		MW12-10	0.5			Stabilizers: Yes
NOTE: Weakly cemented from 11-13' bgs, abundant organic material and moscovite present in lenses.	- - -	" " " " " "			0.1			MATERIALS USED
MUDSTONE, soft, waxy score, clay rich matrix with very fine sand grain inclusions, weak to moderate cementation, commonly exhibits planer fractures, laminated, no odor/sheen, dry.	15— -				0.0			Casing: 4" PVC Well Screen: 15', 0.010" slotting End Cap: Flat sump Sand Pack: 9 50lbs bag
NOTE: Very dense from 19-20' bgs.					0.0			Bentonite: 3 50lbs bag Concrete: 1 50lbs bag Monument: Flush Well Cap: Locking J-plug
BOTTOM OF BORING AT 20' B.G.S.	20—		:::: = .:::	MW12-20	0.0			Other:
	25— 							
	- 							
	_	-						
	35—	-						LEGEND: ☐ FILTER PACK ☐ BENTONITE
								☑ CEMENT GROUT ☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING

DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic **BOREHOLE DIAMETER: 6"** SAMPLING METHOD: Continuous START CARD NUMBER: BIU611

CASING ELEVATION: 658.27

GROUND SURFACE ELEVATION: 658.61

COORDINATES: 152605.3461 COORDINATES: 1771860.885

Hydro (

Phone: 360-703-6079

WELL/BORING NUMBER

SAMPLE ID

MW13-5

MW13-10

MW13-12

MW13-21

MW13

BLOW

FIRST

吕

5.4

468

627

1,147

1,271

0.2

0.2

0.3

0.2

0.0

0.0

0.0

¥

PROJECT NAME: Coleman Oil - Wenatchee

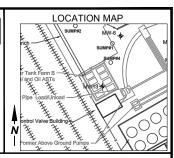
WELL

PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA LOGGED BY: C. Daschel

REVIEWED BY: C. Hultgren DATE: 03-29-18

DEPTH (FT.)


5

10

20

25

35

BOREHOLE/WELL	
CONSTRUCTION DETAILS	

(USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)

DESCRIPTION

SILT (ML), brown, low plasticity, 10% rounded gravels up to 2/3" in diameter, 5% fine sand, decaying organic odor, no sheen, damp.

GRAVELLY SAND (SP), gray, fine, 15% low plastic fines, 30% rounded gravels and cobbles up to 3.5", strong petroleum odor at 3.5', damp.

NOTE: Very strong odor and very slight sheen at 8' bgs, increasing silt content to 20%, decreasing gravel/cobble content to 25%, up to 6" in size.

NOTE: Increasing silt content to 25%, decreasing gravel content to 10% at 10' bgs, bedrock encountered at 12' bgs. Chumstick Formation at 12' bgs.

SANDSTONE, light brownish gray, medium grained, quartz, mica, hard and competent.

SANDSTONE, yellowish brown, soft, friable, medium grained.

MUDSTONE, blackish brown, soft, friable, no odor/sheen

NOTE: Color change to brownish gray at 21.5' bgs. Broken clasts in silt matrix

NOTE: Dark gray and friable between 26-27' bgs.

SANDSTONE, hard, competent at 28.5' bgs.

MUDSTONE, ashy matrix, fine between 29-30' bas.

NOTE: Light gray, soft, predominately silt with fine sand interbeds, waxy, occasionally blackish brown and friable, no odor/sheen.

WELL CONSTRUCTION

Depths (feet bgs)

Borehole: 19.86 Sump: 19.63 - 19.86 Screen: 4.63 - 19.63 Casing: 0 - 4.63

Backfill: Sand Pack: 4 - 19.86 Bentonite: 1 - 4 Concrete: 0 - 1 Stabilizers: Yes

MATERIALS USED

Casing: 4" PVC

Well Screen: 15', 0.010" slotting

End Cap: Flat sump Sand Pack: 10 50lbs bag Bentonite: 11 50lbs bag Concrete: 1 50lbs bag Monument: Flush Well Cap: Locking J-plug

Other:

LEGEND:

- FILTER PACK
- BENTONITE
- CEMENT GROUT
- CUTTINGS/BACKFILL
- ▼ WATER LEVEL DURING DRILLING

DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic

BOREHOLE DIAMETER: 6" SAMPLING METHOD: Continuous START CARD NUMBER: BIU609

CASING ELEVATION: 657.04

MW13-35

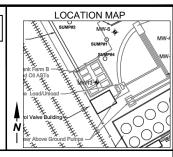
GROUND SURFACE ELEVATION: 657.38

COORDINATES: 152759.753 COORDINATES: 1771780.939

Hydro Con

Phone: 360-703-6079

WELL/BORING NUMBER


MW13

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren

DATE: 03-29-18

	B/(12: 00 20 10						* * * * * * * * * * * * * * * * * * *
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
SILTSTONE, light gray, soft, predominately silt with fine sand interbeds, waxy, occasionally blackish brown and friable, no odor/sheen.	35			0.0			WELL CONSTRUCTION Depths (feet bgs) Borehole: 19.86 Sump: 19.63 - 19.86 Screen: 4.63 - 19.63
NOTE: Siltstone gradually becomes harder and more competent, no odor/sheen.	40			0.0			Casing: 0 - 4.63 Backfill: Sand Pack: 4 - 19.86 Bentonite: 1 - 4 Concrete: 0 - 1 Stabilizers: Yes
MUDSTONE, blackish brown (10PB 4/1), soft, waxy score, clay rich matrix with, very fine sand grain inclusions, weak to moderate cementation, commonly exhibits planer fractures, laminated, no odor/sheen, dry.	45————————————————————————————————————		MW13-45	0.0			
BOTTOM OF BORING AT 50' B.G.S.	50			0.0			MATERIALS USED Casing: 4" PVC Well Screen: 15', 0.010" slotting End Cap: Flat sump Sand Pack: 10 50lbs bag
							Bentonite: 11 50lbs bag Concrete: 1 50lbs bag Monument: Flush Well Cap: Locking J-plug Other:
	55—						
	60—						
	65—						LEGEND:
	70						ESEIND: ☐ FILTER PACK ☐ BENTONITE ☑ CEMENT GROUT ☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING

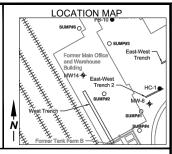
DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic BOREHOLE DIAMETER: 6" SAMPLING METHOD: Continuous START CARD NUMBER: BIU609 CASING ELEVATION: 657.3822 GROUND SURFACE ELEVATION: COORDINATES: 152759.753 COORDINATES: 1771780.939

DRILLING CONTRACTOR: Budinger

START CARD NUMBER: BIU610

DRILLING METHOD: Sonic

BOREHOLE DIAMETER: 6"
SAMPLING METHOD: Continuous


PROJECT NAME: Coleman Oil - Wenatchee

WELL/BORING NUMBER

PROJECT NUMBER: 2017-074
PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren

DATE: 03-30-18

MW14

	DAIL	03-30-10	,					Former Tank Farm B
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
SILT (ML) with gravel, brown, low plasticity, 5% sand, 20% gravels up to 1" in diameter, no odor/sheen, damp. SAND (SP) with gravel, brown, fine to medium grained sand, 5% low plastic fines, 15% gravels up to 1" in diameter, no odor/sheen, damp.	0 — — — — 5 —			MW14-05	0.4 0.1 0.2			WELL CONSTRUCTION Depths (feet bgs) Borehole: 20.46 Sump: 20.23 - 20.46 Screen: 5.23 - 20.23 Casing: 0 - 5.23 Backfill:
SILT (ML) with gravel, brown/gray, low plasticity, 5% sand, 20% gravels up to 1" in diameter, no odor/sheen, dry.	- - -				1.3	▼		Sand Pack: 4 - 20.46 Bentonite: 1 - 4 Concrete: 0 - 1 Stabilizers: Yes
NOTE: Becomes slightly cemented with interbedded sand at 10' bgs.	10— —	-		MW14-10	136			
SAND (SP/SM) with silt, brown/gray, medium grained sand, 10% low plastic fines, trace gravels up to 1/2" in diameter, slight to moderate odor/sheen, damp.	_ _ _				1,357			MATERIALS USED
SILT (ML), brown/gray, low plasticity, 5% sand, 20% gravels up to 1" in diameter, slight to moderate odor/sheen, damp.	15—			MW14-15	1,492			Casing: 4" PVC Well Screen: 15', 0.010" slotting End Cap: Flat sump
SAND (SP), brown/gray (10YR 7/1), medium grained sand, 10% low plastic fines, trace gravels up to 1/2" in diameter, slight to moderate odor/sheen, damp. SILT (ML), brown/gray, low plasticity, 15% sand,					8.1			Sand Pack: 10 50lbs bag Bentonite: 3 50lbs bag Concrete: 1 50lbs bag Monument: Flush Well Cap: Locking J-plug
10% gravels up to 1" in diameter, no odor/sheen, damp. SAND (SP), medium grained sands, poorly to well cemented, interbedded with silt, sandy interbeds locally impacted with moderate petroleum odor.	20— — —		·.:. == .:::		0.0			Other:
SANDSTONE, light gray, hard, clean, medium grained (subangular to angular). Chumstick Formation at 17.5' bgs. MUDSTONE, blackish brown (10YR 3/1), soft,	 25—							
friable, fine sand inclusions, no odor/sheen.	- - -				0.0			
NOTE: Volcanic ash observed between 27-28' bgs.	30— —				0.0			
NOTE: Volcanic ash observed 30' bgs. Lighter gray mudstone with fine sands, occasional poorly cemented sandy interbedding.	- - -				0.0			<u>LEGEND:</u> ☑ FILTER PACK
BOTTOM OF BORING AT 35' B.G.S.	35—			MW14-35				■ BENTONITE ☑ CEMENT GROUT ☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING
			1	<u> </u>				

CASING ELEVATION: 657.15

COORDINATES: 152844.9561

COORDINATES: 1771729.149

GROUND SURFACE ELEVATION: 657.59

Hydro (1) Phone: 360-703-6079

WELL/BORING NUMBER

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren DATE: 04-12-18

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074 PROJECT LOCATION: Wenatchee, WA

MW15

DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
GRAVELLY SAND (SP), brown, fine to medium grained sand, 5% low plastic fines, 15% gravels up to 1" in diameter, no odor/sheen, damp.	5 —				0.0			WELL CONSTRUCTION Depths (feet bgs) Borehole: 35.56 Sump: 35.33 - 35.56 Screen: 10.33 - 35.33 Casing: 0 - 10.33 Backfill: Sand Pack: 9 - 35.56 Bentonite: 1 - 9
NOTE: Soft sands with possible cobbles blocking shoe. Larger cobbles at 8.5' bgs, up to 4" in diameter.	_ _				0.5			Concrete: 0 - 1 Stabilizers: Yes
NOTE: Poor recovery between 10-20' bgs.	10			MW15-10				MATERIALS USED Casing: 4" PVC Well Screen: 25', 0.010" slotting End Cap: Flat sump Sand Pack: 30 50lbs bag Bentonite: 4 50lbs bag Concrete: 1 50lbs bag
NOTE: Driller stated formation increased in hardness at 18' bgs. GRAVELLY SAND (SP), brown, fine to medium grained sand, 5% low plastic fines, 15% gravels up to 1" in diameter, no odor/sheen, damp.	20			MW15-20	0.0			Monument: Flush Well Cap: Locking J-plug Other:
MUDSTONE, yellow gray, medium hard, no odor/sheen. Chumstick Formation at 31.5' bgs. BOTTOM OF BORING AT 35' B.G.S.	30			MW15-30		▼		LEGEND: ☐ FILTER PACK ☐ BENTONITE ☑ CEMENT GROUT ☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING

DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic **BOREHOLE DIAMETER: 6"** SAMPLING METHOD: Continuous START CARD NUMBER: BIU620

CASING ELEVATION: 654.99

GROUND SURFACE ELEVATION: 655.41

COORDINATES: 152877.9008 COORDINATES: 1771902.362

DRILLING CONTRACTOR: Budinger

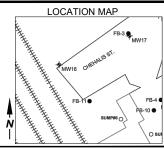
SAMPLING METHOD: Continuous

START CARD NUMBER: BIU616

DRILLING METHOD: Sonic

BOREHOLE DIAMETER: 6"

WELL/BORING NUMBER


MW16

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT NOWIBER. 2017-074
PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren

DATE: 04-05-18

								1 2 2 2
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	БЕРТН (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
Rock stuck in sampler core. GRAVELLY SAND (SP), brown (10YR 5/2), fine to	0 —				0.0			WELL CONSTRUCTION Depths (feet bgs) Borehole: 29.51 Sump: 29.28 - 29.51 Screen: 9.28 - 29.28
medium grained sand, 5% low plastic fines, 25% gravels and cobbles up to 4" in diameter, no odor/sheen, dry.	5 —					_		Casing: 0 - 9.28 Backfill: Sand Pack: 8 - 29.51 Bentonite: 1 - 8 Concrete: 0 - 1 Stabilizers: Yes
NOTE: Poor recovery from 10-13' bgs.	10—			MW16-10	0.0			MATERIAL O LIGER
SANDY GRAVEL (GP), gray, rounded gravels and cobbles up to 6" in diameter, 40% fine to medium sand, no odor/sheen, moist.		000		MW16-14	0.9			MATERIALS USED Casing: 4" PVC Well Screen: 20', 0.010" slotting
MUDSTONE, dark brown (2.5YR 4/2), dense, high clay content, waxy irregular fractures, common fine sand interbeds, no odor/sheen. Chumstick Formation at 14' bgs.	- - -				0.4			End Cap: Flat sump Sand Pack: 14 50lbs bag Bentonite: 4 50lbs bag Concrete: 1 50lbs bag Monument: Flush Well Cap: Locking J-plug Other:
NOTE: Sandy layer between 21-22' bgs. SANDSTONE, Dark bluish gray (10BG 5/1), fine	20—				0.0			Other.
grained sand, increased hardness, well cemented, gritty, no odor/sheen.	25— —			MW16-25	0.1			
	_	" " " "			0.2			
BOTTOM OF BORING AT 30' B.G.S.	30— — —				0.1			
	35—	- -						LEGEND: ☐ FILTER PACK ☐ BENTONITE ☑ CEMENT GROUT
				INC ELEVAT				☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING

CASING ELEVATION: 656.93

COORDINATES: 152954.1511

COORDINATES: 1771658.334

GROUND SURFACE ELEVATION: 657.29

LOCATION MAP **MW17** WELL/BORING NUMBER FB-3 MW17 PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074 1W16 CHEHALIS ST. PROJECT LOCATION: Wenatchee, WA LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren Phone: 360-703-6079 DATE: 04-04-18 DESCRIPTION BLOW DEPTH (FT.) WELL DETAILS SAMPLE ID BOREHOLE/WELL CONSTRUCTION DETAILS (USCS Classification, Depth Interval, Color, Grain Size 딢 Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation) SAND (SP/SM) with silt, brown, fine grained sand, 10% low plastic fines, 10% gravels, no WELL CONSTRUCTION odor/sheen, damp. 0 Depths (feet bgs) SANDY GRAVEL (GP), gray (10YR 5/3), rounded Borehole: 29.75 gravels and cobbles up to 4" in diameter, 30% fine to medium sand, 5% low plastic fines, no Sump: 29.52 - 29.75 odor/sheen, moist. Screen: 9.52 - 29.52 0.3 Casing: 0 - 9.52 NOTE: Boulder encountered between 5-7' bgs. Backfill: Sand Pack: 8 - 29.75 0 Bentonite: 1 - 8 NOTE: Cobble size reduces to up to 3" in diameter Concrete: 0 - 1 0 at 7' bgs. Stabilizers: Yes 000 0 10 MW17-10 0.1 GRAVELLY SAND (SP), gray (SPB 5/1), medium to coarse grained sand, 5% low plastic fines, 40% gravels up to 1" in diameter, moderate to strong 16.9 sweet petroleum odor, heavy sheen, moist. **MATERIALS USED** 350 \blacksquare Casing: 4" PVC Well Screen: 20', 0.010" slotting 15 MW17-15 412 End Cap: Flat sump Sand Pack: 14 50lbs bag Bentonite: 4 50lbs bag MW17-17 905 Concrete: 1 50lbs bag 300 Monument: Flush MUDSTONE, dark brown, soft to hard, common Well Cap: Locking J-plug sandy consolidated interbedding, no odor/sheen, Other: moist. Chumstick Formation at 18' MW17-20 20.7 20 bgs. SANDSTONE, gray, fine grained sand with silty matrix, medium hardness, massive, stepped 25 MW17-25 1,261 fracture, petroleum staining with faint odor observed on fracture surfaces, no contamination away from fractures. 0.2 MW17-30 MUDSTONE, dark brown, soft to hard, common 2.1 sandy consolidated interbedding, no odor/sheen, moist. 0.4 SANDSTONE, gray, fine grained sand with silty matrix, medium hardness, massive, stepped LEGEND: fracture, no indications of contamination. FILTER PACK BENTONITE 35 BOTTOM OF BORING AT 35' B.G.S. M CEMENT GROUT CUTTINGS/BACKFILL ✓ WATER LEVEL DURING DRILLING DRILLING CONTRACTOR: Budinger CASING ELEVATION: 655.55 DRILLING METHOD: Sonic **GROUND SURFACE ELEVATION: 655.89 BOREHOLE DIAMETER: 6"** COORDINATES: 152985.2129 COORDINATES: 1771733.869 SAMPLING METHOD: Continuous

START CARD NUMBER: BIU614

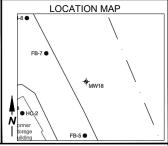
DRILLING METHOD: Sonic

BOREHOLE DIAMETER: 6"

SAMPLING METHOD: Continuous

START CARD NUMBER: BIU619

WELL/BORING NUMBER


MW18

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren

DATE: 04-11-18

DEPTH (FT.)				I	I		
я Э	SYMBOL	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
0 —	-			0.0			WELL CONSTRUCTION Depths (feet bgs)
5 —	- - -			0.1			Borehole: 36.09 Sump: 35.86 - 36.09 Screen: 15.86 - 35.86 Casing: 0 - 15.86 Backfill:
- - _	- - - 1			0.1			Sand Pack: 13 - 36.09 Bentonite: 1 - 13 Concrete: 0 - 1 Stabilizers: Yes
10—			MW18-10	0.0			
15—			MW18-15	0.0			MATERIALS USED Casing: 4" PVC Well Screen: 20', 0.010" slotting End Cap: Flat sump
- -				0.1			Sand Pack: 14 50lbs bag Bentonite: 4 50lbs bag Concrete: 1 50lbs bag Monument: Flush Well Cap: Locking J-plug
20— — —							Other:
25— —			MW18-25	0.1			
				0.0			
30—				0.0			
- -							<u>LEGEND:</u> ☐ FILTER PACK
35—			MW18-35	0.1	_		■ BENTONITE ☑ CEMENT GROUT
	10— 115— 20— 25— 30—	10—	10 20 25 30 30	5 — MW18-10 15 — MW18-15 20 — MW18-25	10 MW18-10 0.0 15 MW18-15 0.0 20 MW18-25 0.1 30 0.0	0.0 0.1 0.1 0.1 10 0.0 0.0 0.0 0.0 0.0 0	5 — 0.1 10 — MW18-10 0.0 15 — 0.1 20 — 0.1 25 — 0.1 MW18-25 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GROUND SURFACE ELEVATION: 655.95

COORDINATES: 153060.82

COORDINATES: 1771816.04

WELL/BORING NUMBER

MW19

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren

DATE: 04-05-18

								FB-7 ●
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	DID	FIRST	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
NOTE: No recovery from 0-3' bgs.	0 — — —				0.0			WELL CONSTRUCTION Depths (feet bgs)
GRAVELLY SAND (SP) , brown (10YR 5/2), fine grained sand, 5% low plastic fines, 10% gravels and cobbles up to 4" in diameter, no odor/sheen, dry.	5 —				0.0			Borehole: 31.89 Sump: 31.66 - 31.89 Screen: 11.66 - 31.66 Casing: 0 - 11.66 Backfill:
	- - -				0.1			Sand Pack: 10 - 31.89 Bentonite: 1 - 10 Concrete: 0 - 1 Stabilizers: Yes
NOTE: No recovery from 10-13' bgs.	10— — —	. 613w1		MW19-10	0.0			
SANDY GRAVEL (GP), gray, rounded to subrounded gravels and cobbles up to 6", 15% coarse sand, no odor/sheen, damp. SAND (SP), brown (10YR 6/6), fine grained sand,		0000			2.2			MATERIALS USED Casing: 4" PVC Well Screen: 20', 0.010" slotting End Cap: Flat sump
10% low plastic fines, strong odor, moderate sheen, medium grained sand, with trace fines lens from 16-16.5' bgs.	_ _ _			MW19-18	303 551			Sand Pack: 9 50lbs bag Bentonite: 2 50lbs bag Concrete: 1 50lbs bag Monument: Flush
SILTY SAND (SM), brown (10YR 7/4), fine grained sand, 40% low plastic fines, moderate petroleum odor, damp. SAND (SP/SM) with silt, brown (10YR 6/6), fine					512 12			Well Cap: Locking J-plug Other:
grained sand, 10% low plastic fines, moderate petroleum odor, moderate sheen, clean sand lens from 18-18.5' bgs. SILTY SAND (SM), brown (10YR 7/4), fine grained	_				18	▼		
sand, 40% low plastic fines, moderate petroleum odor, damp. MUDSTONE, soft, competent, high clay content, common organic binding, rare sandy interbedding,				MW19-25	151 0.5			
waxy, Chumstick Formation at 20.5' bgs. NOTE: 3" sandy seam with slight petroleum odor at 25' bgs.	_ _ _				0.0			
NOTE: No recovery from 30-31' bgs.	30—			MW19-30	0.0			
SANDSTONE, light gray, hard, gritty, medium grained sand, rare organic banding.	<u>-</u>		··· ···					LEGEND:
NOTE: Shale interbed between 33.5-34.5' bgs. BOTTOM OF BORING AT 35' B.G.S.	35—				0.0			☐ FILTER PACK ■ BENTONITE ☑ CEMENT GROUT
DDILLING CONTRACTOR: Partings			Load	INC ELEVAT	ON: 65	22.24		☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING
DRILLING CONTRACTOR: Budinger				ING ELEVATI			NI. 050	7.70

DRILLING METHOD: Sonic **BOREHOLE DIAMETER: 6"** SAMPLING METHOD: Continuous START CARD NUMBER: BIU615

GROUND SURFACE ELEVATION: 653.72

COORDINATES: 153075.4649 COORDINATES: 1771773.624

WELL/BORING NUMBER

PROJECT NAME: Coleman Oil - Wenatchee

SAMPLE ID

MW20-10

MW20-15

MW20-23.5

MW20-26

PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA LOGGED BY: C. Daschel

WELL DETAILS

REVIEWED BY: C. Hultgren DATE: 04-10-18

0

15

20

35-

BLOW

FIRST

0.1

0.1

0.1

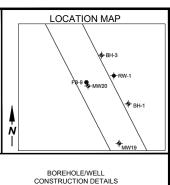
15

77.8

0.0

0.0

63.2


297

0.6

0.1

y

MW20

Consistency, Moisture, Odor, Geological Interpretation)
GRAVELLY SAND (SP), brown (10YR 5/2), fine
grained sand, 5% low plastic fines, 15%
subangular gravels and cobbles up to 1.5", no
odor/sheen, dry.

DESCRIPTION

(USCS Classification, Depth Interval, Color, Grain Size,

NOTE: Concrete fill observed between 2.5-3.5' bgs.

Granite boulder in shoe between 5-7' bgs.

NOTE: Becoming Gravelly Sand with silt (SP/SM)

SANDY GRAVEL (GP), gray, rounded gravels and cobbles up to 3", 35% medium sand, no odor/sheen, moist.

MUDSTONE, dark brown, soft, clay rich, planar fractures, very faint odor, no sheen, moist.

Chumstick Formation at 14' bgs.

NOTE: Sandy lenses within mudstone occupied with organic odor, gray staining, no sheen.

NOTE: Stained fractures in mudstone at 25' bgs.

SANDSTONE, light yellow gray, friable, medium to coarse grained sand, well sorted, no odor/sheen.

BOTTOM OF BORING AT 30' B.G.S.

WELL CONSTRUCTION

Depths (feet bgs)

Borehole: 30.02 Sump: 29.79 - 30.02 Screen: 9.79 - 29.79 Casing: 0 - 9.79

Backfill:

Sand Pack: 8 - 30.02 Bentonite: 1 - 8 Concrete: 0 - 1 Stabilizers: Yes

MATERIALS USED

Casing: 4" PVC

Well Screen: 20', 0.010" slotting

End Cap: Flat sump Sand Pack: 13 50lbs bag Bentonite: 4 50lbs bag Concrete: 1 50lbs bag Monument: Flush

Well Cap: Locking J-plug

Other:

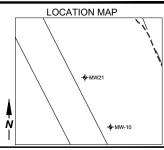
LEGEND:

- FILTER PACK
- BENTONITE
- ☐ CEMENT GROUT ☐ CUTTINGS/BACKFILL
- ▼ WATER LEVEL DURING DRILLING

DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic BOREHOLE DIAMETER: 6" SAMPLING METHOD: Continuous START CARD NUMBER: BIU618 CASING ELEVATION: 650.85

GROUND SURFACE ELEVATION: 651.37

COORDINATES: 153137.3464 COORDINATES: 1771740.168


Phone: 360-703-6079

WELL/BORING NUMBER MW21

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA LOGGED BY: C. Daschel

REVIEWED BY: C. Hultgren DATE: 04-09-18

	L DAIL.	. 04-09-10						
DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
Rock stuck in core barrel, medium sand observed around 5" cobble stuck in core barrel.	0 —	-			0.0			WELL CONSTRUCTION Depths (feet bgs) Borehole: 32.53
SAND (SP), brown (10YR 5/2), fill sand, very clean, 5% sub-angular gravel, rare cobbles up to 3" in diameter, no odor/sheen, dry.	5 —							Sump: 32.30 - 32.53 Screen: 12.30 - 32.30 Casing: 0 - 12.30 Backfill: Sand Pack: 11 - 32.53 Bentonite: 1 - 11 Concrete: 0 - 1 Stabilizers: Yes
NOTE: Increased (to 10%) rounded gravels up to 2" in diameter at 10.5' bgs.	10—			MW21-10	0.1			
NOTE: Possible asphaltic fill, stained black, no petroleum odor encountered at 14' bgs.	 15—_				0.0			MATERIALS USED Casing: 4" PVC Well Screen: 20', 0.010" slotting End Cap: Flat sump
NOTE: Fine grained material content increases to 10%, sub-rounded gravels up to 2" in diameter, becoming Sand with silt (SP/SM).					0.2	_		Sand Pack: 14 50lbs bag Bentonite: 5 50lbs bag Concrete: 1 50lbs bag Monument: Flush Well Cap: Locking J-plug Other:
SILT (ML), brown, low to moderate plasticity, 5%	20—				0.0	_		Outer.
sand, 5% rounded gravels up to 2.5" in diameter, no odor/sheen, damp. SILTSTONE, light yellow gray with interbeds of	_	1			0.0			
dark brown, soft sandy mudstone, Chumstick Formation at 23' bgs. Gray staining between 24.5-27.5' bgs, light odor, staining is more pronounced along bedding planes, becomes slightly cemented by 25' bgs.	25— —			MW21-25	54.9 205			
SANDSTONE, light gray to yellow, soft, gritty with silt/mudstone matrix consolidation, no odor/sheen observed below 27.5' bgs.	_ _ _ _				9.1			
MUDOTONE deskilled to the State of Control	30—			MW21-32	1.5 0.3			
MUDSTONE, dark blackish brown, soft, friable, planar fracturing, waxy, clay rich, no odor/sheen.	_ _							LEGEND: ☐ FILTER PACK
BOTTOM OF BORING AT 35' B.G.S.	35				0.0			■ BENTONITE © CEMENT GROUT

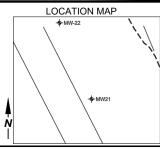
DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic **BOREHOLE DIAMETER: 6"** SAMPLING METHOD: Continuous START CARD NUMBER: BIU617

CASING ELEVATION: 643.88

GROUND SURFACE ELEVATION: 644.31

☑ CEMENT GROUT ☑ CUTTINGS/BACKFILL

✓ WATER LEVEL DURING DRILLING


COORDINATES: 153293.4187 COORDINATES: 1771701.03

Phone: 360-703-6079

WELL/BORING NUMBER MW22

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074 PROJECT LOCATION: Wenatchee, WA

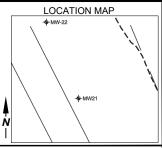
LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren DATE: 04-13-18

DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	PID	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
Rock stuck in core barrel, no recovery.	0 — — —	2						WELL CONSTRUCTION Depths (feet bgs) Borehole: 34.42
GRAVELLY SAND (SP/SM) with silt, brown, fine grained sand, 10% low plastic fines, 10% rounded gravels less than 1", no odor/sheen, dry. Rock stuck in core barrel, poor recovery.	5 —				0.1			Sump: 34.19 - 34.42 Screen: 9.19 - 34.19 Casing: 0 - 9.19 Backfill: Sand Pack: 13 - 34.42 Bentonite: 1 - 13 Concrete: 0 - 1 Stabilizers: Yes
	10—				0.1			
GRAVELLY SAND (SP/SM) with silt, brown/gray, fine to medium grained sand, 10% low plastic fines, 35% rounded gravels and cobbles up to 6" in diameter, no odor/sheen, moist.	15— — — —			MW22-15	0.0			MATERIALS USED Casing: 4" PVC Well Screen: 25', 0.010" slotting End Cap: Flat sump Sand Pack: 14 50lbs bag Bentonite: 4 50lbs bag Concrete: 1 50lbs bag Monument: Flush
NOTE: Possible burn debris between 19.5-25' bgs, reddish brick debris, very light weight, black burned debris with wood and building material fill.	20— — — —				0.0	▼		Well Cap: Locking J-plug Other:
	25— — — —			MW22-25	0.0			
NOTE: Free product, resembling black oil in sampler at 31.5' bgs. CLAY (possible bentonite), light bluish gray, gummy, sticky, fill material.	30— —			MW22-30	153			
SILT (ML), brown, low to moderate plastic, 5% sand, 5% rounded gravels up to 2.5" in diameter, moderate petroleum odor, no sheen, damp, fill material. GRAVELLY SAND (SP/SM) with silt, brown/gray, fine to medium grained sand, 10% low plastic	35—				279			LEGEND: ☐ FILTER PACK ■ BENTONITE ☑ CEMENT GROUT ☑ CUTTINGS/BACKFILL
fines, 35% rounded gravels and cobbles up to 6" in diameter, no odor/sheen, moist.							- 1	✓ WATER LEVEL DURING DRILLING
DRILLING CONTRACTOR: Budinger			CAS	ING ELEVATION	ON: 64	1.85		

DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic **BOREHOLE DIAMETER: 6"** SAMPLING METHOD: Continuous

START CARD NUMBER: BIU621

GROUND SURFACE ELEVATION: 642.17


COORDINATES: 153375.5679 COORDINATES: 1771666.283

WELL/BORING NUMBER

MW22

REVIEWED BY: C. Hultgren DATE: 04-12-18

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074 PROJECT LOCATION: Wenatchee, WA LOGGED BY: C. Daschel

### Control C									
BOTTOM OF BORING AT 40° B.G.S. ### SECTION OF	Plasticity, Shapes, Mineral Composition, Density or	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	OIA	FIRST	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
BOTTOM OF BORING AT 40' B.G.S. Backfill: Sand Pack: 13 - 34.42 Bentonite: 1 - 13 Concrete: 0 - 1 Stabilizers: Yes MATERIALS USED Casing: 4" PVC Well Screen: 25 0.010" slotting End Cap: Flat sump Sand Pack: 14 50lbs bag Concrete: 15 50lbs bag Monument: Flush Well Cap: Locking J-plug Other: LEGEND: PlutTen PACK ■ BENTONITE GCEMENT GROUT	planar fracturing, waxy, clay rich, moderate odor, no sheen, Chumstick Formation at 35'	- - -							Depths (feet bgs) Borehole: 34.42 Sump: 34.19 - 34.42 Screen: 9.19 - 34.19
Casing: 4" PVC Well Screen: 25', 0.010" slotting End Cap: Flat sump Sand Pack: 14 50lbs bag Bentonite: 4 50lbs bag Concrete: 1 50lbs bag Monument: Flush Well Cap: Locking J-plug Other: 60— 65— 65— 70— LEGEND: □ FiltTer PACK ■ BENTONITE ☑ CEMENT GROUT	BOTTOM OF BORING AT 40' B.G.S.	_ _ _ _			MW22-40	205			Backfill: Sand Pack: 13 - 34.42 Bentonite: 1 - 13 Concrete: 0 - 1
UEGEND: IEGEND: FILTER PACK BENTONITE CEMENT GROUT		55—							Casing: 4" PVC Well Screen: 25', 0.010" slotting End Cap: Flat sump Sand Pack: 14 50lbs bag Bentonite: 4 50lbs bag Concrete: 1 50lbs bag Monument: Flush Well Cap: Locking J-plug
		- - -							☐ FILTER PACK ■ BENTONITE

DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic **BOREHOLE DIAMETER: 6"** SAMPLING METHOD: Continuous START CARD NUMBER: BIU621

CASING ELEVATION: 641.85

GROUND SURFACE ELEVATION: 642.17

COORDINATES: 153375.5679 COORDINATES: 1771666.283


Phone: 360-703-6079

WELL/BORING NUMBER MW23

PROJECT NAME: Coleman Oil - Wenatchee PROJECT NUMBER: 2017-074

PROJECT LOCATION: Wenatchee, WA

LOGGED BY: C. Daschel REVIEWED BY: C. Hultgren DATE: 03-29-18

DESCRIPTION (USCS Classification, Depth Interval, Color, Grain Size, Plasticity, Shapes, Mineral Composition, Density or Consistency, Moisture, Odor, Geological Interpretation)	DEPTH (FT.)	SYMBOL	WELL DETAILS	SAMPLE ID	QId	FIRST WATER	BLOW	BOREHOLE/WELL CONSTRUCTION DETAILS
Rock stuck in core barrel, no recovery.	0 —	-		MW23-05	0.3			WELL CONSTRUCTION Depths (feet bgs) Borehole: 22.36 Sump: 22.13 - 22.36 Screen: 7.13 - 22.13 Casing: 0 - 7.13
GRAVELLY SILT (ML), brown (7.5YR 5/2), low plasticity, 25% subrounded gravels up to 2", 10% fine sand, very faint petroleum odor, no sheen, damp. GRAVEL (GP), gray, broken granitic cobbles with 10% silty matrix occupying space between cobbles, faint odor, moist.	- - -			MW23-08	20.5			Backfill: Sand Pack: 6 - 22.36 Bentonite: 1 - 6 Concrete: 0 - 1 Stabilizers: Yes
GRAVELLY SILT (ML), brown (7.5YR 5/2), low plasticity, 25% subrounded gravels up to 2" in diameter, 10% fine sand, very faint odor, no sheen, damp. GRAVELLY SAND (SP), grayish green (7.5G 5/2), 25% rounded gravels less than 1" in diameter,	10—			MW23-12	5.6 70.6	▼		MATERIAL O LIGER
faint petroluem odor, moist. SILT (ML), grayish green (7.5G 5/2), low plasticity, 35% fine sand, trace rounded gravels up to 3/4", sandy interbeds with locally stronger petroluem odor, damp. NOTE: Light gray soil staining, faint, degraded petroleum odor at 12' bgs. Chumstick	15— - -				0.3			MATERIALS USED Casing: 4" PVC Well Screen: 15', 0.010" slotting End Cap: Flat sump Sand Pack: 10 50lbs bag Bentonite: 4 50lbs bag Concrete: 1 50lbs bag
Formation at 14' bgs. MUDSTONE, dark gray (7.5YR, 6/4), moderately cemented, slightly planar fracture, trace fine sand interbeds, no odor/sheen, dry. SANDSTONE, gray (10YR 5/3), medium grained sand, weakly cemented, friable, abundant muscovite, local thin silty interbeds.	20— —			MW23-22	0.0			Monument: Flush Well Cap: Locking J-plug Other:
BOTTOM OF BORING AT 25' B.G.S.	25— —							
	30—							
	35—	-						LEGEND: ☐ FILTER PACK ☐ BENTONITE ☑ CEMENT GROUT ☑ CUTTINGS/BACKFILL ☑ WATER LEVEL DURING DRILLING

DRILLING CONTRACTOR: Budinger DRILLING METHOD: Sonic **BOREHOLE DIAMETER: 6"** SAMPLING METHOD: Continuous START CARD NUMBER: BIU608

CASING ELEVATION: 655.91

GROUND SURFACE ELEVATION: 657.23

COORDINATES: 152838.0396 COORDINATES: 1771848.193

Appendix B Well Development Forms

Well ID #: MW15 Date: 09 April 2018 Time: 1130	Project #:	Coleman Oil Wegatchee 2017 - 074 CD/RH
WELL INFORMATION Monument condition	o Locked o Replaced ured ppm o Added o Other o 2-inch 4-inch	o Other
WELL MEASUREMENTS Total well depth 99 ft 5 Depth to product ft Depth to water 1 05 ft Casing volume 8.94 ft (H Casing volumes 1"=0.04 gpf 1.5"=	₂ 0) X <u>0.65</u> gpf = <u>5</u> .	81_
PURGING INFORMATION Pump type o Peristaltic Sulvey	ew HDPE o New Teflon o Cainless o PVC & Other <u>4</u> ment & Other <u>1</u> ge stop time <u>1226</u> Pur	Other
FIELD PARAMETERS Meters used o FlowThru Cell o H Gallons pH Temp. Cond 60 6.2 15.3°C	ductivity Turbidity Dissolv	red Oxygen ORP
NOTE: Well did not dre		nutes; Purge 40 gallons
Engineer's Signature_	Date Date	te_ 4/9/18

Well ID #: MW3S Project name: Colemn Oil Wuntdree Date: 04 April 2018 Project #: 2017 - 074 Time: 1410 Engineer: CD/RH	
WELL INFORMATION Monument condition Good o Needs repair Well cap condition Good o Locked o Replaced o Needs replacement Headspace reading Not measured ppm Elevation mark o Yes o Added o Other Well diameter o 1.5-inch o 2-inch 4-inch o Other Odor None o Comments	
WELL MEASUREMENTS Total well depth	
PURGING INFORMATION Pump type o Peristaltic Submersible o Centrifugal o Other Purge tubing o New LDPE New HDPE o New Teflon o Other Bailer type o Disposable o Stainless o PVC Other 1 Surge block Bailer cord used o Monofillament Other 2 PVC OTOE Purge start time 1416 Purge stop time 1625 Purge Rate (GPM) 0.62 Total Volume Purged (gallons)	
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other Gallons pH Temp. Conductivity Turbidity Dissolved Oxygen ORP 80 6.7 14.50 MA 231 NTU 70	
NOTES/COMMENTS Purge 20 gallons 1416-1430; 45 secs for 0.56 recharge; Purge 7 gals 1440-1445; From 19' to 13' @ 1503; Purge 13 gallons 1505-1512; Purge 13 gallons 1531-1538; Durge 7 gals 1544-1551; Purge 7 gals 1601-1606; Purge 13 gals 1612-1625	Recharge
Engineer's Signature Date 4/4/18	

Well ID #: MW 12 Project name: Colemn 0:1 Wenotchec Date: 04 April 2018 Project #: 2017 - 074 Time: 1320 Engineer: CO / IZH	
WELL INFORMATION Monument condition Good o Needs repair Well cap condition Good o Locked o Replaced o Needs replacement Headspace reading Not measured ppm Elevation mark o Yes o Added o Other Well diameter o 1.5-inch o 2-inch Odor Odor Odor Ocomments	
WELL MEASUREMENTS Total well depth 19.52 ft Clean bottom o Muddy bottom o Not measured Depth to product ft Depth to water 7.55 ft Casing volume 1\.94 ft (H ₂ O) \times 0.65 gpf = 4.48 Casing volumes 1"=0.04 gpf 1.5"=0.09 gpf 2"=0.16 gpf 4"=0.65 gpf 6"= 1.47 gpf	
PURGING INFORMATION Pump type o Peristaltic Submersible o Centrifugal o Other	
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other	
NOTES/COMMENTS Furge 14 gals 1325-1334, well dry, Purge 14 gals 1358-1407 on 4/5/8; Purge 14 gals 09 on 4/6/18, 1' secharge 0926-0938; Rethand 1/9, DTW 7.05, Purge 15 gals 1055-1103, Recharge 1'1106-1115, 14 mins for additional 1'; Recharged to 10.9' @1320, Purge 10 gals 1323-1329 Purge 10 gals 1420-1425, well clear	
Engineer's Signature Date 4/9/18	

Well ID #: MW13 Project name: Colemn Oil Wenatchee Date: 03 April 2018 Project #: 2017 - 074 Time: 1545 Engineer: OD/IZH	
WELL INFORMATION Monument condition	
WELL MEASUREMENTS Total well depth 19.80 ft o Clean bottom Muddy bottom o Not measured Depth to product ft Depth to water 7.82 ft Casing volume 11.93 ft (H_2O) X 0.65 gpf = 7.78 Casing volumes 1"=0.04 gpf 1.5"=0.09 gpf 2"=0.16 gpf 4"=0.65 gpf 6"= 1.47 gpf	
PURGING INFORMATION Pump type o Peristaltic Submersible o Centrifugal o Other Purge tubing o New LDPE New HDPE o New Teflon o Other Bailer type o Disposable o Stainless o PVC Other Bailer cord used o Monofillament Other Purge start time 1/3/18 Purge stop time 4/5/18 Purge Rate (GPM) Total Volume Purged (gallons) 53	
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other	
NOTES/COMMENTS Purge 14 gals @ 2 gpm, well dry@1558, recharge to 13.5 @ 1657; Purge 6 gals 1658-1702, well dry; Recharge +1 14.4 (@ 1915, Purge 5 gals 1715-1717; Well sits over DTW 8.67 @ 1230 44/18; Purge 12 gallons 1231-1238; Purge 11 gallons 1140-1150 4/15/18; 1' recharge 1152-1207, additional 1' 1207-1241; additional 1' 1241-1325; Purge 5 gals 1335-1337, Well clear	ight;
Engineer's Signature Date 4/5/18	

Well ID #: MW14 Project name: Coleman Oil Wenatchee Date: 03 April 2018 Project #: 2017 - 074 Time: 1200 Engineer: CD 124
WELL INFORMATION Monument condition Good o Needs repair Well cap condition Good o Locked o Replaced o Needs replacement Headspace reading Not measured ppm Elevation mark o Yes o Added o Other Well diameter o 1.5-inch o 2-inch 4-inch o Other Odor Later o Comments
WELL MEASUREMENTS Total well depth 20.02 ft o Clean bottom Muddy bottom o Not measured Depth to product ft Depth to water 8.23 ft Casing volume 1.79 ft (H ₂ O) X 0.65 gpf = 7.66 Casing volumes $1"=0.04$ gpf $1.5"=0.09$ gpf $2"=0.16$ gpf $4"=0.65$ gpf $6"=1.47$ gpf
PURGING INFORMATION Pump type o Peristaltic Submersible o Centrifugal o Other
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other Gallons pH Temp. Conductivity Turbidity Dissolved Oxygen ORP 75 6.4 14.8°C 386 NTu - 35
NOTES/COMMENTS Purge 20 gals, well dry@ 1221, recharge + 14 @ 1230; Purge 7 gals 1231-1236, well dry, Purge 7 gals 1250-1258, Purge 6 gals 1307-1312; Purge 10 gals 1415-1427; Purge 10 gals 1445-1457; Purge 10 gals 1508-1518; Purge 5 gals 1523-1525; Well clear
Engineer's Signature

Well ID #: MW15 Project name: Coleman Oil Wenatime Date: 13 April 2018 Project #: 2017-074 Time: 0830 Engineer: CO 1214
WELL INFORMATION Monument condition Good o Needs repair
WELL MEASUREMENTS Total well depth 35,10 ft o Clean bottom Muddy bottom o Not measured Depth to product ft Depth to water 30.35 ft Casing volume $\frac{4.75}{1.000}$ ft (H_2O) X $\frac{0.65}{1.000}$ gpf $= \frac{3.08}{1.000}$ Casing volumes 1"=0.04 gpf 1.5"=0.09 gpf 2"=0.16 gpf 4"=0.65 gpf 6"= 1.47 gpf
PURGING INFORMATION Pump type o Peristaltic & Submersible o Centrifugal o Other Purge tubing o New LDPE & New HDPE o New Teflon o Other Bailer type o Disposable o Stainless o PVC & Other
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other Gallons pH Temp. Conductivity Turbidity Dissolved Oxygen ORP N/A
NOTES/COMMENTS High sediment local; Well pumped day after 5 gallons; 0.25 of recharge in 40 mins. Well called due to lack of recharge.
Engineer's Signature Date 4/13/18

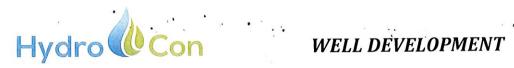
WELL DEVELOPMENT

Well-ID #: MW16 Project name: Coleman (D7) Wenatchee Date: 10 April 2018 Project #: 2017-074 Time: 1410 Engineer: CD /1214	
WELL INFORMATION Monument condition Good o Needs repair Well cap condition Good o Locked o Replaced o Needs replacement Headspace reading Not measured ppm Elevation mark o Yes o Added o Other Well diameter o 1.5-inch o 2-inch 4-inch o Other Odor o Comments	
WELL MEASUREMENTS Total well depth 29.15 ft o Clean bottom Muddy bottom o Not measured Depth to product ft Depth to water 9.78 ft Casing volume 19.37 ft (H ₂ O) X 65 _ gpf = 12.6 Casing volumes $1"=0.04$ gpf $1.5"=0.09$ gpf $2"=0.16$ gpf $4"=0.65$ gpf $6"=1.47$ gpf	T.
PURGING INFORMATION Pump type o Peristaltic Submersible o Centrifugal o Other Purge tubing o New LDPE New HDPE o New Teflon o Other Bailer type o Disposable o Stainless o PVC Other Other Other Other	
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other Gallons pH Temp. Conductivity Turbidity Dissolved Oxygen ORP 65 7. 16.3°C - 266 NTy - 73	
NOTES/COMMENTS Parage 30 gallons 1415-1436, drawdown to 22.4@ 142+; will dry @ 1436; Ift' recharge in 12 min Recharge +1/25.5 @ 1525, parages 126-1529; Parage 3 dats 100 ilong Resume 4/11, Rappe 27 gallon I foot recharge in 11 minutes; 21 fact in 15 mins; Parage additional H gals; Well clear	s 1048-1101
Engineer's Signature Cera Date 4/11/18	

Well ID #: MW17 Project name: Coleman Oil Wenatchee Date: 10 April 2018 Project #: 2017 - 074 Time: 1155 Engineer: CD RH
WELL INFORMATION Monument condition Good O Needs repair Well cap condition Good O Locked O Replaced O Needs replacement Headspace reading Not measured ppm Elevation mark O Yes O Added O Other Well diameter O 1.5-inch O 2-inch 4-inch O Other Odor funt diesel O Comments
WELL MEASUREMENTS Total well depth 29.41 ft Clean bottom o Muddy bottom o Not measured Depth to product ft Depth to water 14.60 ft Casing volume 14.81 ft (H ₂ O) X 0.65 gpf = 9.62 Casing volumes $1"=0.04$ gpf $1.5"=0.09$ gpf $2"=0.16$ gpf $4"=0.65$ gpf $6"=1.47$ gpf
PURGING INFORMATION Pump type o Peristaltic Submersible o Centrifugal o Other Purge tubing o New LDPE New HDPE o New Teflon o Other Bailer type o Disposable o Stainless o PVC Other 4" surge block Bailer cord used o Monofillament Other 2" PVC OTAL Purge start time 1159 Purge stop time 1402 Purge Rate (GPM) 0.77 Total Volume Purged (gallons) 95
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other Gallons pH Temp. Conductivity Turbidity Dissolved Oxygen ORP 95 6.1 16.6°C - 123 NTU - 16
NOTES/COMMENTS Purge, 50 gals 1159-1248. drawdown + 241 @ 1216; 1.0' recharge in 1.5 mins; Recharge to 19.41 @ 1303; Purge 55 gals 1303-1402; Well clear
Engineer's Signature Date 1/10/18

20000000000	
	Well ID #: MV 18 Project name: Coleman Oil Wenatchee Date: 12 April 2018 Project #: 2017 - 074 Time: 0800 Engineer: CD / IRIH
	WELL INFORMATION Monument condition Good o Needs repair
	WELL MEASUREMENTS Total well depth 34.65 ft o Clean bottom Muddy bottom o Not measured Depth to product ft Depth to water 26.83 ft Casing volume $+32$ ft (H_2O) X 0.65 gpf $=5.08$ Casing volumes $1"=0.04$ gpf $=1.47$ gpf
	PURGING INFORMATION Pump type o Peristaltic Submersible o Centrifugal o Other Purge tubing o New LDPE New HDPE o New Teflon o Other Bailer type o Disposable o Stainless o PVC Other Y surge block Bailer cord used o Monofillament Other Purge start time 143 Purge stop time 150 Purge Rate (GPM) - 2 Total Volume Purged (gallons) 13
	FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other Gallons pH Temp. Conductivity Turbidity Dissolved Oxygen ORP
and the second second	NOTES/COMMENTS Purge 12 gallons 1143-1150, well dry. Recharge f/34.4' to 33.56 in 145 minutes; Purge 1 gallon, well dry; Recharge overnight, DTW 34.25 on 4/13/8, no recharge; Well dry
	Engineer's Signature Date 4/13/18

Well ID #: $MW f$ Date: $10 A_{20} 1 2018$ Time: 0820	Project name: Coleman Oil Wenatchee Project #: 2017-074 Engineer: CO /RH
Headspace reading 💢 Not measured	ced o Replaced o Needs replacement ppm ed o Other ch
WELL MEASUREMENTS Total well depth 31.48 ft o Clean be Depth to product ft Depth to water 26.60 ft Casing volume 4.68 ft (H ₂ O) X Casing volumes 1"=0.04 gpf 1.5"=0.09 gpf).65 gpf = 3.04
Purge tubing o New LDPE WNew HDPE	O PVC & Other 4" surge block Other 2" PVC pipe Purge Rate (GPM) -
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o H Gallons pH Temp. Conductivity	Janna o Other Turbidity Dissolved Oxygen ORP
in ourge water: Purce 4 gals, well	nent load; Call well due to
Engineer's Signature	Date 4/11/18



Well ID #: MW 20 Project name: Column Oil Wenatchee Date: 11 April 2013 Project #: 2017 - 074 Time: 1250 Engineer: CD 1814
WELL INFORMATION Monument condition Good Needs repair
WELL MEASUREMENTS Total well depth 29.50 ft o Clean bottom Muddy bottom o Not measured Depth to product ft Depth to water 18.85 ft Casing volume 10.65 ft (H_2O) X 0.65 gpf = 6.9 Casing volumes 1"=0.04 gpf 1.5"=0.09 gpf 2"=0.16 gpf 4"=0.65 gpf 6"= 1.47 gpf
PURGING INFORMATION Pump type o Peristaltic Submersible o Centrifugal o Other Purge tubing o New LDPE New HDPE o New Teflon o Other Bailer type o Disposable o Stainless o PVC Other This was block Bailer cord used o Monofillament Other Purge start time 1257 Purge stop time 1605 Purge Rate (GPM) C.4 Total Volume Purged (gallons)
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other
NOTES/COMMENTS Purge 21 gals well by 1 recharge in lanin; Purge B gals well dry; Recharge +1 20' 1316-1414'; Purge 20 gals, well dry, Recharge +1 21' @ purge 20 gals, well dry, Recharge +1 21' @ purge 20 additional gals, well clear Notiz: Heavy reddish brown sediment load @ beginning of Jevelopment
Engineer's Signature Community Date 4 11 18

WELL DEVELOPMENT

Well ID #: MW 21 Project name: Coleman Oil Wenatche Date: 13 April 2018 Project #: 2017 - 074 Time: 1115 Engineer: CD / RH	e		
WELL INFORMATION Monument condition			
WELL MEASUREMENTS Total well depth 32.10 ft o Clean bottom Muddy bottom o Not measured Depth to product ft Depth to water 19.44 ft Casing volume 72.66 ft (H_2O) X 0.65 gpf = 9.23 Casing volumes 1"=0.04 gpf 1.5"=0.09 gpf 2"=0.16 gpf 4"=0.65 gpf 6"= 1.47 gpf			
PURGING INFORMATION Pump type o Peristaltic Submersible o Centrifugal o Other Purge tubing o New LDPE New HDPE o New Teflon o Other Bailer type o Disposable o Stainless o PVC Other 4" surge block Bailer cord used o Monofillament Other Purge start time 1124 Purge stop time 1325 Purge Rate (GPM) Total Volume Purged (gallons)			
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other Gallons pH Temp. Conductivity Turbidity Dissolved Oxygen ORP 30 6.2 15.7°C - 420 NTU - 39			
NOTES/COMMENTS Purge 25 gals 1124-1143; Recharge 31.3 to 30.3 in 1.5 mins, additional in 1.5 mins; Purge 57 gals 1205-1325; Well clear) (foot recl	large
Engineer's Signature			

Well ID #: MW22 Project name: Coleman 0:1 Wenatchee Date: 23 April 2018 Project #: 2017 - 074 Time: 0945 Engineer: CD	
WELL INFORMATION Monument condition Good o Needs repair Well cap condition Good o Locked o Replaced o Needs replacement Headspace reading Not measuredppm Elevation mark o Yes o Added o Other Well diameter o 1.5-inch o 2-inch 4-inch o Other o Odor o Comments	
WELL MEASUREMENTS Total well depth 39.10 ft o Clean bottom Muddy bottom o Not measured Depth to product $-$ ft Depth to water 22.29 ft Casing volume 16.21 ft (H ₂ O) X 0.65 gpf $= 10.9$ Casing volumes $1"=0.04$ gpf $1.5"=0.09$ gpf $2"=0.16$ gpf $4"=0.65$ gpf $6"=1.47$ gpf	
PURGING INFORMATION Pump type o Peristaltic Submersible o Centrifugal o Other Purge tubing o New LDPE New HDPE o New Teflon o Other Bailer type o Disposable o Stainless o PVC Other Bailer cord used o Monofillament Other Purge start time Purge stop time Purge Rate (GPM) 2.1 Total Volume Purged (gallons)	
FIELD PARAMETERS Meters used o FlowThru Cell o Hach o Hanna o Other	
NOTES/COMMENTS Purge 30 gallons 1005-1015; drawdown to 22.73 after 20 gallons; This viscous oil bayer on top of initial sediment rich purge water; Purge 90 gallons 1040 1127 water clear who oil product	
Engineer's Signature Date 1/23/18	

Well ID #: <u>M w 23</u> Date: <u>03 April</u> Time: 1030	<u> 2018</u>		oleman Oil Wenatchee OI7 - 074 CD/12H
Well cap condition Headspace reading Elevation mark Well diameter	ON Good o Needs of Good o Locked Not measured O Yes o Added O 1.5-inch O Comments	o Replaced ppm o Other %4-inch	o Needs replacement
Depth to product	ft o Clean botto		
Purge tubing o New Bailer type o Dispo Bailer cord used Purge start time 10	taltic Submersible o	New Teflon o Oth PVC WOther 4"; WOther 2"; Purge	
Gallons pH	S Thru Cell o Hach o Han Temp. Conductivity To	urbidity Dissolved	
NOTES/COMMENTS	wiged who well go	ing dry; Wel	Il clear
Engineer's Signature_	Cln	Date_	4/3/18

Appendix C Groundwater Sample Collection Forms

Project Name: Coleman

Date 4/24/18

WELL INFORMATION

Headspace reading:

Well diameter:

Bailer type:___

Comments ____

Monument condition: 🔀 Good

PURGING INFORMATION

Depth to product _____

FIFI D DADAMETEDS

PURGING/DISPOSAL METHOD

Hydrocon Project #: 2017-074

Oil Wennetober

Not measured

2-inch

Needs repair

4-inch

New well

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MW1S Sample I.D. MW15-WOMIS Time: 17-05 Field Duplicate I.D.____ Time: ___ Personnel: _ 🗌 Water in Monument Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Odor ppm 6-inch Other Total well depth 19.99 ft Bottom: Hard Soft Not measured Screen Interval(s): 1.76 - 19.76 Depth to product $\frac{1}{10.57}$ ft Intake Depth (BTOC) $\frac{15}{15}$ Begin Purging Well: $\frac{1}{15}$ Gasing volume $\frac{9.42}{15}$ ft (H₂O) X $\frac{0.65}{15}$ gal/ft = $\frac{6.12}{15}$ gal. X 3 = $\frac{18.36}{15}$ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft Pump type ▶ Peristaltic ☐ Centrifugal ☐ Dedicated Bladder ☐ Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed ☒ Remediation System ☐ Other _____ Odor and for Sheen: Must

Time	Water Level (BTOC)	Purge Rate (L/min)	Temp.	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10
1648	10-62		15.1	0.64	4.82	6.94	-67.2	16.4
1651	10-63		14.4	0,607	2.53	6.77	~100.8	2.93
1654	10.63	0.165	14.3	0.604	1.68	6,75	-109.3	0.83
1657	10.64		14.3	0.605	0.84	6.74	-116.5	2.28
1700	10.64		14.4	0.601	0.73	6.73	-118.1	1.95
1703	10.65		14.4	0,604	0,60	6.73	-120.8	1.75
		So	mole	(2)	1705			
		(4)						

Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:**

SAMPLE INFORMATION

Container Type	Bottle Count	I ICIA I IICOI CA.		Analysis
40 ml VOA	3	ital	(No) 0.45 0.10	
500 ml umber	1	1+01	No 0.45 0.10	
250 ml poly	ì	HNOZ	No 0.45 0.10	
100			No 0.45 0.10	
			No 0.45 0.10	

Sampling Comments:	

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MW07 Sample I.D. MWOZ - WOULS Time: 1400 Project Name: Coleman Oil Wenatchie 2017-074 Field Duplicate I.D._____Time:____ Hydrocon Project #: Date 4 25 18 Personnel: CD WELL INFORMATION ____ Water in Monument Monument condition: 🔯 Good 🔲 Needs repair ☑ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Well cap condition: ppm 🗌 Odor ✓ Not measured Headspace reading: Well diameter: X 2-inch 4-inch 6-inch Other Comments _____ **PURGING INFORMATION** Total well depth 40 ft Bottom: ☐ Hard ☐ Soft ☑ Not measured Screen Interval(s): 25 - 40 Depth to product _____ft Depth to water _____ft Intake Depth (BTOC) _____5 Begin Purging Well: ______136 Casing volume _____29.53 ___ft (H $_2$ O) X ______16 ____gal/ft = ________72 _____gal. X 3 = ________17.16 ______gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft **PURGING/DISPOSAL METHOD** Pump type ☑ Peristaltic ☐ Centrifugal ☐ Dedicated Bladder ☐ Non-Dedicated Bladder Other_____ Bailer type: _____ Water Disposal:: Drummed 🔀 Remediation System Dther _____ Odor and/or Sheen: ___ Nove FIELD PARAMETERS Dissolved Water **Purge Rate** Temp. Sp. Cond. Oxygen **Turbidity** Time pH ORP Level (L/min) (°C) (mS/cm) (±10% or (SU) (NTU) (mV) ≤1.00 ±0.2) (± 10% or ≤10) $(\pm 3\%)$ (± 0.1) (BTOC) 7.20 14,6 0.82 0.52 10.85 4.01 72.6 1338 7.17 0.78 1341 10.89 14.4 0.81 3010 76.7 1344 0.81 2.98 7.19 79.5 0.26 59.01 14.3 0.145 0.81 7.20 80.7 1347 10,93 14.4 2.74 0.38 10.93 0.81 5.80 7.20 80.6 0.28 1350 14,4 79.8 10.92 2.64 1353 14.4 0.81 7.21 0.36 400 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Bottle **Preservative** Field Filtered? **Analysis Container Type** Count HomI VOA No 0.45 0.10 3 HU No 0.45 0.10 1 L amber 1+01 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:___

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: MW3S Project Name: Coleman Oil Wenntchee Time: 0900 Sample I.D. MW35 - WOY13 Field Duplicate I.D. _____ Time: ___ Hydrocon Project #: 2017 - 074 Date 4/25/18 CD Personnel: WELL INFORMATION Monument condition: X Good Needs repair _____ 🔀 Water in Monument Well cap condition: ☑ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Headspace reading:

✓ Not measured Odor ppm 2-inch Well diameter: 🔀 4-inch 6-inch Other____ Comments _____ Now well PURGING INFORMATION Total well depth 19.30 ft Bottom: ☐ Hard ☐ Soft ☒ Not measured Screen Interval(s): ☐ 19.07-19.07 Depth to product_____ft Depth to water $\frac{1}{2.23}$ ft Intake Depth (BTOC) $\frac{1}{1}$ Begin Purging Well: $\frac{0.23.2}{23.55}$ Casing volume $\frac{12.07}{20.05}$ ft (H₂O) X $\frac{0.65}{20.05}$ gal/ft = $\frac{7.35}{20.05}$ gal. X 3 = $\frac{23.55}{20.05}$ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft **PURGING/DISPOSAL METHOD** Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed ☐ Remediation System ☐ Other Bailer type: Odor and/or Sheen: None FIELD PARAMETERS Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pH ORP Level (L/min) (°C) (mS/cm) (±10% or (NTU) (SU) (mV) ≤1.00 ±0.2) (± 10% or ≤10) $(\pm 3\%)$ (± 0.1) (BTOC) 0.375 7.66 2.33 0840 7,41 12.2 4.37 67.8 7.50 12.1 0.368 0.99 7.03 -3.7 5.12 0843 0.81 0.27 -16.7 1.25 0846 7.54 6,99 1202 0.367 0849 7.57 0.366 53.0 6.98 -21.6 1.41 12.2 7.59 0852 0.56 6,97 -23.9 1.21 12.2 0.365 0855 6.98 -25.9 12.3 0.365 0.53 1.21 HOO) chr Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments:_ SAMPLE INFORMATION Bottle **Preservative** Field Filtered? **Container Type Analysis** Count No 0.45 0.10 40ml VOA 3 1401 No) 0.45 0.10 1 Lamber 1+01 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:_____

GROUNDWATER

SAMPLE COLLECTION FORM Well I.D. Number: MWO4 Project Name: Coleman Oil Wenatchee Sample I.D. MWO4 - WO418 Time: 1440 Hydrocon Project #: 2017 - 074 Time:_____ Field Duplicate I.D._____ CD Date 4/25/13 Personnel: WELL INFORMATION Monument condition:
☐ Good ☐ Needs repair ☐ Water in Monument

Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Odor____ Headspace reading: Not measured _____ _ ppm Well diameter: 6-inch Other Comments PURGING INFORMATION Total well depth 37 ft Bottom: \square Hard \square Soft \square Not measured Screen Interval(s): 27 - 37Depth to product _ _ _ ft Depth to water _ $\frac{16.31}{20.69}$ ft $\frac{16.31}{10.00}$ ft $\frac{16.3$ Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type ☑ Peristaltic ☐ Centrifugal ☐ Dedicated Bladder ☐ Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed → Remediation System ☐ Other _____ Bailer type: Odor and/or Sheen: None FIELD PARAMETERS Dissolved Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity Time pH ORP (±10% or Level (L/min) (°C) (mS/cm) (NTU) (SU) (mV) ≤1.00 ±0.2) (± 0.1) $(\pm 10\% \text{ or } \le 10)$ (BTOC) $(\pm 3\%)$ 7.49 133.1 1-17 7.31 0.78 1420 16.85 15.8 1.74 1423 17.37 1.16 2,95 7.23 131.1 15.5 1.82 14126 17.80 0.135 1.16 7.23 129.6 15.4 3.08 1429 1. 25 18.35 15.4 2.83 123.2 1.16 7.25 0.85 15,4 1.16 3.72 127.2 1432 18.82 7.25 126.4 1435 19.25 15.3 1 . 16 7.23 0.71 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type Analysis** Count 40ml VOA No 0.45 0.10 3 1+01 No) 0.45 0.10 1 L amber 1+01 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

Sampling Comments:

Well I.D. Number: MW05 Project Name: Coloman Oil Wenatchee Sample I.D. MW05 - W0418 Time: 1340 Hydrocon Project #: 2017-074 Field Duplicate I.D._____ Time:___ 4/24/18 Personnel: Date WELL INFORMATION Monument condition:
☐ Good ☐ Needs repair ☐ Water in Monument

Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Headspace reading: Not measured Odor_ ppm 6-inch Well diameter: × 2-inch 4-inch Other Comments **PURGING INFORMATION** Total well depth 44-30 ft Bottom: Hard Soft Not measured Screen Interval(s): 30-45 Depth to product Depth to water 35.7+6 ft Intake Depth (BTOC) 39 Begin Purging Well: 1317 Casing volume 2.54 ft (H₂O) X 0.16 gal/ft = 1.36 gal. X 3 = 4.08 gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type ☐ Peristaltic ☐ Centrifugal ☐ Dedicated Bladder ☒ Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed ☒ Remediation System ☐ Other _____ Bailer type: Odor and/or Sheen: None FIELD PARAMETERS Dissolved **Purge Rate** Oxygen **Turbidity** Time Water Temp. Sp. Cond. pH **ORP** (±10% or (°C) (NTU) Level (L/min) (mS/cm) (SU) (mV) ≤1.00 ±0.2) (± 10% or ≤10) $(\pm 3\%)$ (± 0.1) (BTOC) 141.6 0.85 7.67 133.4 68.9 1320 7.03 36.22 0.15 14.7 0.85 7.42 7.05 69.4 65.5 1323 36.22 14,4 0.85 7.00 7.06 45.0 52.8 1326 36.22 6.74 7.07 48.1 14.5 0.84 44.6 1329 36.23 6.32 36-23 14.5 0.84 7.08 54.3 30.0 1332 0.84 7.00 59.1 1335 36.23 14.4 7.09 22.5 cum) Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments:_ SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type Analysis** Count 40ml VOA (No) 0.45 0.10 1+01 No 0.45 0.10 1 L amber 1+01 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Well I.D. Number: MWO/ Project Name: Coleman Of Wenutchee Sample I.D. Mwob-would Time: 1655 Hydrocon Project #: 2017 - 074

Date 4/25/18 Time: -Field Duplicate I.D. CD Personnel: WELL INFORMATION Odor____ Headspace reading: Not measured _ppm Well diameter: 2-inch 4-inch 6-inch Other Comments PURGING INFORMATION Total well depth____ft Bottom: Hard Soft Not measured Screen Interval(s):______ Depth to product _ _ ft Depth to water _ $\frac{10.19}{10.00}$ ft Intake Depth (BTOC) _ $\frac{15}{10.00}$ Begin Purging Well: $\frac{1634}{10.00}$ Casing volume _ $\frac{7.21}{10.00}$ ft (H₂O) X _ $\frac{0.65}{10.00}$ gal/ft = _ $\frac{5.08}{10.00}$ gal. X 3 = $\frac{15.24}{10.00}$ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed ☐ Remediation System ☐ Other Bailer type:_____ Odor and/or Sheen: moderate gus odor FIELD PARAMETERS Dissolved Water **Purge Rate** Temp. Sp. Cond. Oxygen **Turbidity** Time pН ORP (±10% or Level (L/min) $(^{\circ}C)$ (mS/cm) (SU) (NTU) (mV) ≤1.00 ±0.2) $(\pm 10\% \text{ or } \le 10)$ (BTOC) $(\pm 3\%)$ (± 0.1) 14.7 .536 6.44 -35.8 8.82 10.20 5.69 1640 13.6 3.56 10.20 . 566 1.31 6.40 -106.8 1643 13.4 1565 0.90 6.40 3.98 10.20 0.18 -114.5 10.20 .565 0.70 -120,9 4.28 1646 13.5 6.40 0.63 3.24 1649 10.20 6.40 13.4 .566 -124.3 -12702 1652 0.62 6.40 2.31 10.20 13.4 .565 Silm Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type Analysis** Count No 0.45 0.10 3 40ml VOA 1401 No 0.45 0.10 1 Lamber 1401 250 ml poly No 0.45 0.10 HAIO 3 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Well I.D. Number: MWO7 Project Name: Coleman Oil Wenatche Sample I.D. MW07 - W0418 Time: 1520 Hydrocon Project,#: 2017 - 074 Field Duplicate I.D. _____ Time: ____ 4/25/18 CID Date Personnel: WELL INFORMATION Not measured ☐ Odor_____ Headspace reading: ppm Well diameter: 2-inch 6-inch Other Comments PURGING INFORMATION Total well depth 20 ft Bottom: ☐ Hard ☐ Soft ☒ Not measured Screen Interval(s): 10 ~ 20 Depth to product_____ft Depth to water 10.64 ft Intake Depth (BTOC) 15 Begin Purging Well: 14.59 Casing volume 9.36 ft (H₂O) X 0.65 gal/ft = 6.08 gal. X 3 = 18.29 gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft **PURGING/DISPOSAL METHOD** Pump type ☑ Peristaltic ☐ Centrifugal ☐ Dedicated Bladder ☐ Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed ☑ Remediation System ☐ Other _____ Odor and/or Sheen: Very Faint diesel alor FIELD PARAMETERS Dissolved Water **Purge Rate** Time Temp. Sp. Cond. Oxygen **Turbidity** pН ORP (±10% or Level (L/min) (°C) (mS/cm) (SU) (NTU) (mV) $\leq 1.00 \pm 0.2$ (± 10% or ≤10) (BTOC) $(\pm 3\%)$ (± 0.1) 4.10 0.72 1502 14.5 6.51 -12.2 24,4 10.68 6.47 1.98 26.7 1505 10.71 13.5 0.68 -20.1 1508 10.74 13.5 0.68 1.15 -22.2 9.20 1511 10.76 13.5 0.68 0.96 6.45 -26.5 4.17 1514 10.77 0.68 0,40 6.46 3,59 13.4 -31.6 1517 10.78 0.85 6.46 -38.7 13.4 0.68 4.01 Jam Me Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION **Bottle Preservative** Field Filtered? **Container Type Analysis** Count 40ml VOA HCI No 0.45 0.10 L amber 1+01 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:____

n A Cun									I.D. Number:	
Project Na	ame:. <u>Co</u>	lemon	Off	Wenatch	ce.	Sample I.D.	WW08	-WOHIS	Time: 1205	
Hydrocor	Project #:	20							Time:	
Date	4/2	6/18				Personnel:	(D		
Monumer Well cap Headspac Well dian	condition: ce reading: neter:	n: 🗵 G 🗵 G 📜 N	lood lot measu -inch	Replaced red _ X 4-incl	☐ Needs r	eplacement	Surface V	Vater in Well	*	
PURGIN	G INFORM	1ATIO	N							
Total well	l depth	25	ft Bo	ottom: 🔲 F	lard 🗌 Soft	🔀 Not measur	ed Screen I	nterval(s):i	15-25	
Depth to p	oroduct	5.71	ft ft In	taka Donth	(RTOC)	Begi	n Durging Wol	1. 1140		
Casing vo	lume	1.79	ft (H ₂ C	$X \circ \mathcal{O} \cdot \mathcal{O}$	gal/ft	= 6.36	gal. X 3 =	19.08 ga	_ al.	
Volume C	onversion	Factors	: 3/4"=0.0	02 gal/ft 1	"=0.04 gal/ft	2"=0.16 gal/	ft 4"=0.65 ga	l/ft 6"= 1.47 g	gal/ft	
DUE CO-	0 /P*0= = :			ACCESSION OF THE POST		ENGLISH STANDARD STANDARD		ELINATE DE CONTRACTO DE CONTRAC		
	G/DISPOS				. 10 . 1701		B 11 . I B1	11 0.1		
						dder □ Non- d ☑ Remedia				
baner typ	C		vvale	лыроват.	. Di dillille	u 🐹 Kemeula	ESSENT BUCK AND THE SAME BULL OF SHARE	other	Delication and an interest and an interest	
								-		
FIELD P	ARAMETI	ERS					Odor and/or	Sheen: Faint	musty petro al	lor; li
and the second s		T				Dissolved	970074			lor; li
FIELD P	Water	Pur	ge Rate	Temp.	Sp. Cond.	Oxygen	рН	ORP	Turbidity	lor; li
	Water Level	Pur	ge Rate /min)	Temp.	(mS/cm)	1	970074		Turbidity (NTU)	lor; st
	Water	Pur		Temp. (°C)		Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)	lor; 1
Time	Water Level (BTOC)	Pur _i		(°C)	(mS/cm) (±3%)	Oxygen (±10% or	pH (SU)	ORP	Turbidity (NTU)	lor; 1
Time	Water Level (BTOC) 15-18 15-20	Pury (L,	/min)	(°C) 15.5 14.6 14.5	(mS/cm) (±3%) 1.1% 1.0%	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ⊙ .94	pH (SU) (±0.1) ら. 48 ら. 46 し. 47	ORP (mV)	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.69	lor; i
Time 1144 1144 1150 1153	Water Level (BTOC) 15-18 15-20 15-21 15-22	Pur _i (L,	/min)	(°C)	(mS/cm) (±3%) 1.1% 1.0% 1.00	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ⊙ .94 5, 63 0-53	pH (SU) (±0.1) 6. 식용 6. 식당 (5. 식구 6, 식구	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6	Turbidity (NTU) (± 10% or ≤10) 2 - 29	lor ; 1
1144 1142 1150 1153	Water Level (BTOC) 15-18 15-20 15-21 15-22	Pur _s (L,	/min)	(°C) 15.5 14.6 14.5 14.4	(mS/cm) (±3%) 1.1% 1.0% 1.00	Oxygen (±10% or ≤1.00 ±0.2) 1,78 ⊙ .94 5,63 0-53	pH (SU) (±0.1) ら. 48 ら. 46 し. 47	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6 ~127.6	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.69	lor, il
Time 1144 1144 1150 1153	Water Level (BTOC) 15-18 15-20 15-21 15-22	Pur _s (L,	/min)	(°C)	(mS/cm) (±3%) 1.1% 1.0% 1.00	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ⊙ .94 5, 63 0-53	pH (SU) (±0.1) 6. 식용 6. 식당 (5. 식구 6, 식구	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1 - 55 1 - 69 1 - 56	tor, it
1144 1142 1150 1153	Water Level (BTOC) 15-18 15-20 15-21 15-22	Pur _s (L,	/min)	(°C) 15.5 14.6 14.5 14.4	(mS/cm) (±3%) 1.1% 1.0% 1.00	Oxygen (±10% or ≤1.00 ±0.2) 1,78 ⊙ .94 5,63 0-53	pH (SU) (±0.1) 6.48 6.46 6.47 6.48 6.50	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6 ~127.6	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.69 1.56	tor, 1
1144 1142 1150 1153	Water Level (BTOC) 15-18 15-20 15-21 15-22	Pur _s (L,	/min)	(°C) 15.5 14.6 14.5 14.4	(mS/cm) (±3%) 1.1% 1.0% 1.00	Oxygen (±10% or ≤1.00 ±0.2) 1,78 ⊙ .94 5,63 0-53	pH (SU) (±0.1) 6.48 6.46 6.47 6.48 6.50	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6 ~127.6	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.69 1.56	tor; is
1144 1144 1150 1153	Water Level (BTOC) 15-18 15-20 15-21 15-22	Pur _s (L,	/min)	(°C) 15.5 14.6 14.5 14.4	(mS/cm) (±3%) 1.1% 1.0% 1.00 1.00 0.94	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ⊙ .94 ⊙ .63 ⊙ .53 ⊙ .41 0.43	pH (SU) (±0.1) 6.48 6.46 6.47 6.48 6.50	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6 ~127.6	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.69 1.56	tor, 1
1144 1142 1150 1153	Water Level (BTOC) 15-18 15-20 15-21 15-22	Pur _s (L,	/min)	(°C) 15.5 14.6 14.5 14.4	(mS/cm) (±3%) 1.1% 1.0% 1.00	Oxygen (±10% or ≤1.00 ±0.2) 1,78 ⊙ .94 5,63 0-53	pH (SU) (±0.1) 6.48 6.46 6.47 6.48 6.50	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6 ~127.6	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.69 1.56	lor; i
1144 1142 1150 1153 1156	Water Level (BT0C) 15-18 15-20 15-21 15-22 15-22	Pur ₃ (L,	/min)	(°C) 15.5 14.6 14.5 14.4 14.4	(mS/cm) (±3%) 1.18 1.03 1.00 1.00 0.99	Oxygen (±10% or ≤1.00 ±0.2) 1,78 ⊙.94 ⊙.63 ⊙.53 ⊙.41 ⊙.43	pH (SU) (±0.1) 6.48 6.46 6.47 6.48 6.50	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6 ~137.6 ~138.2	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.55 1.56 1.56 1.35	tor, 1
Time 1144 1150 1153 1156 1154	Water Level (BTOC) 15-18 15-20 15-21 15-22 15-22	Pury (L,	ressive measures	(°C) 15.5 14.6 14.5 14.4 14.4 14.4	(mS/cm) (±3%) 1.18 1.00 1.00 1.00 0.94	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ○ .94 ○ .63 ○ .53 ○ .73 ○ .44 ○ .43	pH (SU) (±0.1) 6.48 6.46 6.47 6.48 6.50	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6 ~137.6 ~138.2	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.55 1.56 1.56 1.35	toris
Time 1144 1150 1153 1156 1154	Water Level (BTOC) 15-18 15-20 15-21 15-22 15-22	Pury (L,	ressive measures	(°C) 15.5 14.6 14.5 14.4 14.4 14.4	(mS/cm) (±3%) 1.18 1.03 1.00 1.00 0.99	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ○ .94 ○ .63 ○ .53 ○ .73 ○ .44 ○ .43	pH (SU) (±0.1) 6.48 6.46 6.47 6.48 6.50	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6 ~137.6 ~138.2	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.55 1.56 1.56 1.35	toris
Time 1144 1150 1153 1156 1154 abilization erspective surging Con	Water Level (BTOC) 15-18 15-20 15-21 15-22 15-22 15-20 achieved if the stabilization of mments:	Pury (L,	ressive measures	(°C) 15.5 14.6 14.5 14.4 14.4 14.4	(mS/cm) (±3%) 1.18 1.00 1.00 1.00 0.94	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ○ .94 ○ .63 ○ .53 ○ .73 ○ .44 ○ .43	pH (SU) (±0.1) 6.48 6.46 6.47 6.48 6.50	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6 ~137.6 ~138.2	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.55 1.56 1.56 1.35	tor, 1
Time 1144 1150 1153 1156 1154 abilization erspective surging Con	Water Level (BT0C) 15-18 15-20 15-21 15-22 15-22 15-20 achieved if the stabilization of	Pury (L,	ressive measures	(°C) 15.5 14.6 14.5 14.4 14.4 14.4	(mS/cm) (±3%) 1.18 1.00 1.00 1.00 0.94	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ○ .94 ○ .63 ○ .53 ○ .73 ○ .44 ○ .43	pH (SU) (±0.1) 6.48 6.46 6.47 6.48 6.50	ORP (mV) ~128.0 ~133.6 ~135.3 ~136.6 ~137.6 ~138.2	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.55 1.56 1.56 1.35	lor, i
Time 1144 1142 1150 1153 1156 1154 abilization erspective surging Con	Water Level (BTOC) 15-18 15-20 15-21 15-23 15-23 15-29 Istabilization of the stabilization of	Pury (L,	ressive measures	(°C) 15.5 14.6 14.5 14.4 14.4 14.4	(mS/cm) (±3%) 1.18 1.00 1.00 1.00 0.94	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ○ .94 ○ .63 ○ .53 ○ .73 ○ .44 ○ .43	pH (SU) (±0.1) 6.48 6.46 6.47 6.48 6.50	ORP (mV) -128.0 -133.6 -135.3 -136.6 -137.6 -138.2	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.55 1.56 1.56 1.35	tor, 1
Time 1144 1150 1153 1156 1154 abilization erspective surging Containe	Water Level (BTOC) 15-18 15-20 15-21 15-22 15-22 15-20 IS-18	Pury (L,	ressive mease A minimum	(°C) 15.5 14.6 14.5 14.4 14.4 14.4	(mS/cm) (±3%) 1.18 1.00 1.00 1.00 0.99 Filtered?	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ○ .94 ○ .63 ○ .53 ○ .73 ○ .44 ○ .43	pH (SU) (±0.1) 6. 48 6. 46 6. 47 6. 48 6. 50 6. 50	ORP (mV) -128.0 -133.6 -135.3 -136.6 -137.6 -138.2	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.55 1.56 1.56 1.35	lor, i
Time 1144 1142 1150 1153 1156 1154 abilization erspective curging Con	Water Level (BTOC) 15-18 15-20 15-21 15-23 15-29 15-29 IS-29	Purg (L,	ressive meas	(°C) 15.5 14.6 14.5 14.4 14.4 14.4 No 0 (No 0	(mS/cm) (±3%) 1.18 1.00 1.00 1.00 0.99 Filtered? 1.45 0.10 1.45 0.10	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ○ .94 ○ .63 ○ .53 ○ .73 ○ .41 ○ .43	pH (SU) (±0.1) 6. 48 6. 46 6. 47 6. 48 6. 50 6. 50	ORP (mV) -128.0 -133.6 -135.3 -136.6 -137.6 -138.2	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.55 1.56 1.56 1.35	lor, i
Time 1144 1143 1150 1153 1156 1154 cabilization erspective: urging Containe	Water Level (BTOC) 15-18 15-20 15-21 15-23 15-29 15-29 IS-29	Purg (L,	ressive mease A minimum Preservation	(°C) 15.5 14.6 14.5 14.4 14.4 14.4 14.4 No 0 No 0 No 0	(mS/cm) (±3%) 1.18 1.00 1.00 1.00 0.99 Filtered? 0.45 0.10 0.45 0.10	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ○ .94 ○ .63 ○ .53 ○ .73 ○ .41 ○ .43	pH (SU) (±0.1) 6. 48 6. 46 6. 47 6. 48 6. 50 6. 50	ORP (mV) -128.0 -133.6 -135.3 -136.6 -137.6 -138.2	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.55 1.56 1.56 1.35	tor, 1
Time 1144 1150 1153 1156 1154 tabilization erspective: urging Containe	Water Level (BTOC) 15-18 15-20 15-21 15-23 15-29 15-29 IS-29	Purg (L,	ressive mease A minimum Preservation	(°C) 15.5 14.6 14.5 14.4 14.4 14.4 No 0 (No 0	(mS/cm) (±3%) 1.18 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Oxygen (±10% or ≤1.00 ±0.2) 1, 78 ○ .94 ○ .63 ○ .53 ○ .73 ○ .41 ○ .43	pH (SU) (±0.1) 6. 48 6. 46 6. 47 6. 48 6. 50 6. 50	ORP (mV) -128.0 -133.6 -135.3 -136.6 -137.6 -138.2	Turbidity (NTU) (± 10% or ≤10) 2 - 29 1.55 1.55 1.56 1.56 1.35	lor / 8

Hydrocor	me: <u>Col</u> Project #:	2017	Wenatchee -074		Field Duplic		- WO418	I.D. Number: M Time: 1845 Time:
Monumer Well cap Headspac Well dian	e reading: leter:	⊠ Good ⊠ Good ⊠ Not me □ 2-inch	☐ Needs rep☐ Replaced easured ☑ 4-incl	ppm n	□ 0 nch □ 0	dor ther		
Total well Depth to p Depth to w Casing vo	ume <u>6</u>	- ft - ft - 34 ft - 66 ft	Bottom: For the Bottom: For th	(BTOC) 2 65 gal/ft	= 4,33	in Purging We gal. X 3 =	ll: <u>1322</u> 12,99 ga	_ al.
Pump typ Bailer typ	e:	altic Cer	D ntrifugal □ D Vater Disposal:			tion System	Other	
FIELD P	Water Level (BTOC)	Purge Rat	Temp.	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/or pH (SU) (±0.1)	ORP	Turbidity (NTU) (± 10% or ≤10)
1824 1827 1830 1833 1836 1837	17.25 17.27 17.27 17.21 17.28 17.28		16.3 15.3 15.2 15.1 15.7	1.38 1.35 1.35 1.34 1.35 1.34	2.02 0.62 0.48 0.39 0.35 0.35	6.55 6.52 6.51 6.52 6.52 6.52	-80.6 -82.0 -82.3 -83.6 -84.0 -84.2	4.24 3.81 3.51 3.74 3.31 3.78
		San	mple (<u> </u>	45			
perspective Purging Co	stabilization cr	iteria. A mini	measurements fo mum of six measu			or Dissolved Ox	ygen are recorde	d within their
Contain	er Type	Bottle Press	HCI NO C	Filtered? 0.45 0.10 0.45 0.10 0.45 0.10		Analy	ysis	
			No C	0.45 0.10 0.45 0.10				

Sampling Comments:

GROUNDWATER SAMPLE COLLECTION FORM

light

sheen

Well I.D. Number: MWIO Sample I.D. Mwid - woyld Time: 1615 Project Name: Coleman Oil Wenatchee Field Duplicate I.D. _____Time: ____ Hydrocon Project #: 7017 - 07-4 Personnel:_____ CD Date 4/26/18 WELL INFORMATION Not measured _____ ppm ☐ Odor_ Headspace reading: Well diameter: 2-inch . 4-inch 6-inch Other New vault installed around well Comments PURGING INFORMATION Total well depth____30___ft Bottom: ☐ Hard ☐ Soft ☒ Not measured Screen Interval(s):___14~30___ Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other Water Disposal: Drummed Remediation System Other Bailer type: Odor and/or Sheen: Faint petro odor: FIELD PARAMETERS Dissolved Oxygen **Turbidity** Time Water **Purge Rate** Temp. Sp. Cond. pH ORP (±10% or (NTU) (°C) Level (L/min) (mS/cm) (SU) (mV) ≤1.00 ±0.2) $(\pm 10\% \text{ or } \le 10)$ $(\pm 3\%)$ (± 0.1) (BTOC) -1.6 3.11 6.22 1552 21.01 1.08 6.78 5.59 1.62 21.02 15.5 1.05 6.72 2.5 1555 21.03 0.14 15.3 1.05 1.43 6.68 -13.0 5.67 1558 1.09 1.17 -46.5 3.05 21.03 6,58 1601 15.3 1.56 21.03 1.15 0.71 6.52 -62.2 1604 15.4 21.03 15.4 1.16 0.57 6.51 -66.8 1.23 1607 1610 21.04 15.3 6.52 -62.5 1.20 1.16 0.52 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: Stronger diesel of developed at the end SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type Analysis** Count No 0.45 0.10 Homi VOA HOI 3 No 0.45 0.10 1 L omber 1+01 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

Hydrocor	n Project #:	leman 0:1 2017-0	74		Field Duplic		0418	
Date	4/26/18			NOTE THAT IS NOT THE OWNER, WHEN THE OWNER, WHEN THE	Personnel:_			COLUMN TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO T
Monume Well cap Headspac Well dian	condition: ce reading: neter:	: 🔀 Good [Replaced ured	□ Needs r	eplacement	☐ Surface V	Water in Well	
Total wel	G INFORMA l depth2	27 ft	Bottom: 🗌 Ha	ard 🗌 Soft	🛚 Not measu	red Screen I	nterval(s):	12-22
Depth to p Depth to v Casing vo	vater 13 lume 8	ft ft ft (H; actors: 3/4"=(Intake Depth	(BTOC)gal/ft	Beg = 5.32	in Purging We gal. X 3 = /ft 4"=0.65 ga	ll: <u>0759</u> 15.96 ga 1/ft 6"= 1.47 g	
	IN A CONTRACT OF THE PROPERTY OF THE		7.02 gai/10 1	-0.0 1 gai/10	2 -0.10 gai/	10 1 -0.05 ga	1/10 - 1.17 g	541/10
Pump typ Bailer typ	e 🛛 Perista e:	Wa				ation System	ndder Other_ Other	
FIELD P	ARAMETE	RS				Odor and/or	Sheen: faint	musty od
Time	Water Level (BTOC)	Purge Rate (L/min)	Temp. (°C)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1001	13.82		13.6	0.88	1.44	6.60	-148.4	1.06
1004	13.93	0.165	13.5	0.87	0.86	6.55	-159.1	0.83
1007	13.83		13.4	0.87	0.82	6.55	-163.7	0.75
1013	13.84		13.5	0.87	0,42	6.55	-167.3	0.94
1016	13.84		13.4	0.87	0.36	6.55	-163.2	0.91
				1	10	20		
) our	b/6 /	0) 10	20	100	
		ree successive me				or Dissolved Ox	ygen are recorded	d within their
			m of siv measur	ements should	l be recorded.			
perspective	stabilization cr	iteria. A minimu	iii oi six iiicasai					
	stabilization cr		iii oi six iiicusui		Assessment and the second seco	National State of the Land of	edis espano	track the second of the second
perspective Purging Co	stabilization cr	iteria. A minimu	III of six measur					
perspective Purging Co	stabilization cr mments:	iteria. A minimu	ative Field I	Filtered?		Analy	vsis	
Perspective Purging Co SAMPLE Contain	stabilization cr mments: INFORMATER Type	FION Bottle Preserv Count 3 14C6	ative Field I	45 0.10		Analy	vsis	
perspective Purging Co SAMPLE Contain	stabilization cr mments: INFORMATER Type	ΓΙΟΝ Bottle Preserv Count	Active Field I	45 0.10 45 0.10		Analy	zsis .	
Perspective Purging Co SAMPLE Contain	stabilization cr mments: INFORMATER Type	FION Bottle Preserv Count 3 14C6	(No) 0. (No) 0. (No) 0. (No) 0.	45 0.10 45 0.10 45 0.10		Analy	vsis .	
Perspective Purging Co SAMPLE Contain	stabilization cr mments: INFORMATER Type	FION Bottle Preserv Count 3 14C6	No 0. No 0. No 0. No 0. No 0.	45 0.10 45 0.10		Analy	vsis	

Well I.D. Number: MW 12 Sample I.D. MWIZ-WOHI8 Time: 0955 Project Name: Coleman oil Wenatchee Field Duplicate I.D. _____Time: ____ Hydrocon Project #: 2017-074 CD Date 4/25/18 Personnel: WELL INFORMATION _ 🔀 Water in Monument Monument condition: Good Needs repair Well cap condition: ☑ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Headspace reading: Not measured 2-inch Other _____ ★ 4-inch 6-inch Well diameter: Comments _____ News well **PURGING INFORMATION** Total well depth 19.52 ft Bottom: Hard Soft Not measured Screen Interval(s): 4.29 - 19.29 Depth to product_____ft Depth to water $\frac{1}{7 \cdot 26}$ ft Intake Depth (BTOC) $\frac{1}{1}$ Begin Purging Well: $\frac{OP 35}{5}$ Casing volume $\frac{1226}{5}$ ft (H₂O) X $\frac{O \cdot 65}{5}$ gal/ft = $\frac{7.91}{5}$ gal. X 3 = $\frac{23.91}{5}$ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other Bailer type:_____ Water Disposal:: ☐ Drummed ☒ Remediation System ☐ Other _____ Odor and/or Sheen:_None FIELD PARAMETERS Dissolved **Purge Rate** Sp. Cond. Oxygen Turbidity Water Temp. Time pH ORP (°C) (mS/cm) (±10% or (SU) (NTU) (L/min) Level (mV) ≤1.00 ±0.2) $(\pm 10\% \text{ or } \le 10)$ (± 0.1) (±3%) (BTOC) 114.5 7.40 0.350 8.04 2.31 0936 12.8 7.14 7.49 4.10 80.1 1,65 0.15 12.5 0.337 7.04 0739 3.70 1-64 65.3 0.337 5470 7.58 12-5 7.03 7.67 7.03 44.3 1.50 12.5 0.336 3.39 0945 12.5 0.336 3.37 7.03 35.2 1.56 0943 7.77 7.04 7.85 0.336 21,6 1.55 0951 12.5 3.19 00 annole Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments:_ SAMPLE INFORMATION Bottle **Preservative** Field Filtered? **Analysis Container Type** Count No 0.45 0.10 40ml VOA 3 1401 No 0.45 0.10 3 1401 1 Lamber No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Hydrocor	ame:cole n Project #:	2017	0:1 W	natolise		Sample I.D Field Duplic Personnel:_	ate I.D	W0418	I I.D. Number: M _Time: 1050 _Time:
Monumer Well cap Headspac Well diam	e reading:	: ⊠ Good ⊠ Good ⊠ Not n □ 2-inc	neasured h 🗵	4-inch	ppm 6-in	eplacement	dor	in Monument Water in Well 	I
Total well Depth to p Depth to w Casing vo	oroduct vater lume12	1.80 f - f 41 f 2.39 f	t t Intake t (H ₂ O) X	Depth (BT	OC) <u>\</u> gal/ft	Beg	in Purging W gal. X 3	n Interval(s):	gal.
Pump typ Bailer typ	e:	altic 🗌 C	Centrifuga				ation System	Bladder Other	
Time	Water Level (BTOC)	Purge R (L/mir			p. Cond. mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/ pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1033 1036 1039 1042 1045 1048	7.61 7.70 7.87 7.96 8.10 8.22	-	11 11 11	6 6 5 0	0.634 0.632 0.632 0.632 0.632	3.62 2.49 1.32 1.10 1.00 0.87	6.75 6.71 6.71 6.71 6.72	-110.8 -141.7 -160.8 -171.0 -177.9 -183.0	1,76 1.64 1.89 1.68
			Se	mp	le (@ 10	50		
		ree successi					or Dissolved (Dxygen are record	led within their
perspective Purging Co	stabilization cr mments:	riteria. A mi							
perspective Purging Co	stabilization cr mments: INFORMA' er Type	riteria. A mi	eservative	Field Filte	and the second second		Ana	lysis	

WELL INFORMATION	Project Name Hydrocon Pr Date	roject #:	200	17-074		nec	Field Duplic	ate I.D	-MO418	I.D. Number: 1205 Time: 1205 Time:	
Total well depth 20.02 ft Bottom: Hard Soft Not measured Screen Interval(s): 1.73	Monument o Well cap con Headspace r Well diamet	condition: ndition: reading: er:	☐ Good☐ Good☐ Not☐ 2-ir	measured nch	4-inch	ppm 6-i	0	dor			
Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other	Total well de Depth to proc Depth to wate Casing volun	epth 20 duct 7 er 7	7.02	$ft(H_2O)X$	O. 6	gal/ft	= +,93	gai. x 3 =	250 41 9	aı.	ę.
Time Water Level (IL/min) Purge Rate (IL/min) Preservative Purge Rate (IL/min) Purge Rate (IL/min)	Pump type Bailer type:_	Perista	altic 🗌	Centrifuga	l □ De sposal::[dicated Bla Drumme	dder □ Non- ed ⊠ Remedia	ition System	Other		1.00
1145		Water Level	Purge			(mS/cm)	Oxygen (±10% or	pH (su)	ORP	Turbidity (NTU)	
Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Container Type Bottle Count Preservative Field Filtered? Analysis York VOA 3 HG No 0.45 0.10	1148 1151 1154 1157	7.90 7,96 8.07 8.10 8.14	0.11	13 65 13 13	3.0	0.73 0.73 0.73 0.73	1.69 1.02 0.90 0.80	6.77 6.73 6.72 6.70	-62.9 -66.1 -67.2	2.36 1.73 3.64	
Purging Comments: SAMPLE INFORMATION Container Type Bottle Count Count No 0.45 0.10 Hom Voa 3 Hot No 0.45 0.10				Sa	~		0 12	5			- - - - -
1 b amber 1 Hal (No) 0.45 0.10	perspective stal Purging Comn	bilization cri nents:	iteria. A ı	sive measure ninimum of si	ments for x measur	pH, Conductivements should	vity and Turbidity d be recorded.	or Dissolved Ox	rygen are recorde	ed within their	
1 La (No) 0.45 0.10		Type		Preservative	Field I	iltered?		Analy	ysis		
No 0.45 0.10 No 0.45 0.10					No 0. No 0. No 0.	45 0.10 45 0.10 45 0.10					

TOTAL SECURITION OF THE	Office							Well	I.D. Number:
Hydrocon	ame: n Project # <u>:</u> 	2	017-074			Field Duplic			_Time:
Monumen Well cap Headspac Well diam	condition: re reading: neter:	n: 🔀 G 🔀 G 🗷 N 🗌 2-	ood	eplaced d ⊠ 4-inch	☐ Needs r ppm ☐ 6-i	eplacement	Surface 'dorther	Water in Well 	
Total well Depth to p Depth to w Casing vol	roduct vater9 lume19	29.15 - • 7 2 •43	ft Botto ft ft Inta ft (H ₂ O)	ke Depth (BTOC)gal/ft	Not measu Beg = 12.63 t 2"=0.16 gal/	in Purging We gal. X 3 =	ell: <u>0854</u> 37.89 g	8.92-28.92 gal. gal/ft
Pump type Bailer type	e:	taltic [Centrifug	gal 🗌 De Disposal::[dicated Bla] Drumme	dder □ Non- d ⊠ Remedia	ation System	Other	
Time	Water Level (BTOC)	Purg	ge Rate 'min)	Гетр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o pH (SU) (±0.1)	or Sheen:	Turbidity (NTU) (± 10% or ≤10)
0901 6904 0907 0910 0913 0916	9,82 9,87 9,94 10.04	0)	3.4 3.4 3.4 13.4 13.4	0.92 0.36 0.86 0.86 0.86	14.98 15.36 15.38 15.34 15.82 15.28	7.03 7.03 7.03 7.03 7.03	31.3 -8.1 -17.4 -21.9 -23.6 -24.8	2.54 1.66 1.61 1.09 1.27
			3) cm/b	le Q	0450			
perspective s Purging Cor	stabilization o	criteria. <i>I</i>				vity and Turbidity I be recorded.	or Dissolved Ox	xygen are record	ed within their
Contain		Bottle Count	Preservative	Field F	iltered?		Anal	ysis	
40ml 1	VOA	3	1401		45 0.10 45 0.10				

WELL INFO Monument of Well cap con	roject # <u>:</u> 니 DRMATIO condition: ndition:				Sample I.D Field Duplic Personnel:_		V0413]	.D. Number: Mw Fime: \\os Fime: \\os
Monument c Well cap con Headspace r Well diamete	condition: ndition:		Commence of the commence of th	A STATE OF THE STA				
REPORT OF THE PERSON AND PROPERTY OF THE PERSON NAMED IN COLUMN TO	er:		_ Replaced ured ¥-inch	∐ Needs r ppm ☐ 6-i	replacement	Surface W	later in Well	
PURGING IS Total well de Depth to prod Depth to wate Casing volun Volume Conv	epth 25 duct	円・円) ft ft ft - 25ft - 16 ft (H:	Bottom: Hall Hall Hall Hall Hall Hall Hall Hal	ard Soft (BTOC) 1 gal/ft =0.04 gal/ft	Not measur Begi = 4.85 t 2"=0.16 gal/	red Screen Inn Purging Well gal. X 3 = ft 4"=0.65 gal	nterval(s): :	3 - 29.13 - al/ft
PURGING/I Pump type [Bailer type:_ FIELD PAR	Peristal	ltic 🗌 Centr Wa	rifugal ☐ De ter Disposal∷	edicated Bla Drumme	dder □ Non- d ☑ Remedia	tion System	Other	
	Water Level	Purge Rate (L/min)	Temp.	Sp. Cond. (mS/cm)	Dissolved Oxygen (±10% or	pH (SU)	ORP	Turbidity (NTU)
1050 1 1053 1 1056 1	(BTOC) 4.28 14.29 14.30 14.30	0.165	15.3 15.2 15.1 15.2 15.1	(±3%) 1.02 1.02 1.03 1.03 1.04	\$1.00 ±0.2) 1.96 0.67 0.55 0.44 0.36 0.32	(±0.1) 6.57 6.55 6.55 6.56 6.56 6.55	(mV) -115.7 -123.7 -127.0 -129.7 -131.6 -132.2	(± 10% or ≤10) 3.49 2.40 2.91 3.17 2.82 2.44
			demo	e a	105	5		
perspective stab Purging Comm	oilization crit nents:	eria. A minimu			rity and Turbidity I be recorded.	or Dissolved Oxy	gen are recorded	within their
SAMPLE INI Container	Type B	ottle Preserva	ntive Field F	iltered?	era vara oz varatet iza e bura.	Analys	sis	
1 Lamb	OA	3 HC	No 0.4 No 0.4 No 0.4	45 0.10 45 0.10 45 0.10 45 0.10 45 0.10				

								Wel	I I.D. Number: 🗥
Hydrocon	n Project #:		97 We	1		Field Duplic	ate I.D	~	_Time:+300 _Time:
Monumer Well cap Headspac Well diam	ce reading: neter:	n: ⊠ G ⊠ G ⊠ N □ 2-	ot measure inch	d ₹ 4-inch	ppm 6-i	eplacement 00 00 nch 00	dor ther		l
Total well Depth to portion to well Depth to well Casing vol	roduct	- - - - - - - - - - - - - - - - - - -	ft Botto ft ft Intal ft (H ₂ O)	ke Depth	(BTOC)	Not measur 26' Begins 15.525 t 2"=0.16 gal/	in Purging Wo	ell: 1238 = 16.575 (1.25 - 31.25 gal. gal/ft
Pump type Bailer type	e:	taltic [_ Centrifug			idder □ Non- ed ☑ Remedia	ition System	Other	CO TOTAL STREET, AND DESCRIPTION OF THE PARTY OF THE PART
FIELD PA	Water Level	Purg	ge Rate (min)	Г етр. (°С)	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	Odor and/o pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1247 1245 1248 1251 1254 1254	(BTOC) 23.01 23.10 23.22 23.30 23.37 23.43		15	6.2 6.0 15.9 5.8 15.8	1.26 1.25 1.25 1.25 1.25 1.25	5.04 1.91 1.63 1.48 1.45	6.52 6.53 6.53 6.54 6.55 6.55	44.9 52.3 56.3 53.8 59.7 61.0	1.80 1.15 0.97 1.07 1.23
			Son	mple	(a)	1300			
perspective s Purging Cor	stabilization c	riteria. <i>F</i>				zity and Turbidity I be recorded.	or Dissolved O	xygen are record	ed within their
Containe		Bottle Count	Preservative	Field F	filtered?		Anal	ysis	
			1+01		45 0.10				

Well I.D. Number: MW20 Sample I.D. MW/20-W0418 Time: 1755 Project Name: Coleman Oil Wenatchee Hydrocon Project #: 2017-074 Field Duplicate I.D._____Time:____ Date 4/26/18 Personnel:____ CD WELL INFORMATION Monument condition: ☐ Good ☐ Needs repair ☐ Water in Monument ☐ Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Not measured _____ Headspace reading: Odor Odor _ ppm 2-inch X.4-inch 6-inch Well diameter: Other Comments New Well **PURGING INFORMATION** Total well depth 29.50 ft Bottom: ☐ Hard ☐ Soft 🗵 Not measured Screen Interval(s): 1.27 - 29.27 Depth to product _____ ft Depth to water _____ ft Intake Depth (BTOC) _____ Begin Purging Well: $\frac{173}{173}$ Casing volume ______ ft (H₂O) X ______ 65 ____ gal/ft = ______ 6.97 _____ gal. X 3 = _______ 20.91 _____ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type 🔀 Peristaltic 🔲 Centrifugal 🔲 Dedicated Bladder 🔲 Non-Dedicated Bladder Other Bailer type:_____ Water Disposal:: ☐ Drummed X Remediation System ☐ Other Odor and/or Sheen: Very faint dievel ador FIELD PARAMETERS Dissolved **Purge Rate** Time Water Temp. Sp. Cond. Oxygen Turbidity pН ORP (±10% or (°C) Level (L/min) (mS/cm) (NTU) (SU) (mV) ≤1.00 ±0.2) $(\pm 10\% \text{ or } \le 10)$ (BTOC) $(\pm 3\%)$ (± 0.1) 14.3 1,13 1.37 17-34 18.73 6.46 -71.5 33.1 1.03 1737 18.82 14.0 1.12 6.45 -67.5 27.5 0.90 18.90 0.165 13.8 1.17 6.45 -63.5 20.8 1740 13.8 -59.3 16.8 1743 18.96 0.90 1.12 6.46 13.99 14.0 -56.3 1201 1746 0.85 6.45 ioli 1749 19.02 13.7 6.46 51.1 0.86 -53,9 12.2 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: orange algoe in purge water SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type Analysis** Count Homi VOA 3 No 0.45 0.10 HU No 0.45 0.10 1 L amber 1+61 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Well I.D. Number: MW21

Hydrocon	Project #:	Jemon 0: 2017 -		ee	Field Duplica		400	Time: 1705 Time: -
Monumen Well cap o Headspace Well diam	condition: e reading: eter:	: ⊠ Good ⊠ Good	Replaced sured	☐ Needs r ppm ☐ 6-i	replacement	Surface V	Vater in Well	
Total well Depth to pr Depth to we Casing vol	depth32 roductater19 ume12 pnversion F	2.10 ft - ft .37 ft 2.73 ft (H	Bottom: \square H Intake Depth $_2$ O) X \bigcirc $\stackrel{\checkmark}{\sim}$ $\stackrel{\checkmark}{\sim}$ 0.02 gal/ft 1	ard Soft (BTOC) gal/ft =0.04 gal/f	Not measur 23 Begi $= \frac{2}{2} + \frac{2}{2}$ $= \frac{2}{2} + \frac{2}{3} = 0.16 \text{ gal}$	red Screen I n Purging Wel gal. X 3 = ft 4"=0.65 gal	nterval(s):_ <u>} </u> : <u> 644</u> <u>24-31</u> ga /ft 6"= 1.47 g	<u>. 87 - 31 - 87</u> - al. gal/ft
Pump type	e 🛛 Perist		rifugal 🔲 D		adder □ Non- ed ☑ Remedia			
FIELD PA	ARAMETE	RS				Odor and/or	Sheen: Faint	odor, Sheen
Time	Water Level (BTOC)	Purge Rate (L/min)	Temp.	Sp. Cond. (mS/cm) (±3%)	Dissolved Oxygen (±10% or ≤1.00 ±0.2)	pH (SU) (±0.1)	ORP (mV)	Turbidity (NTU) (± 10% or ≤10)
1648 1651 1654 1657 1700 1703	19.43 19.47 19.49 19.48 19.48	0.16	15.5 15.1 15.3 15.3 15.1 15.2	1.12	6.33 0.73 0.52 0.41 0.36 0.33	6.53 6.50 6.49 6.49 6.50	-53.4 -57.8 -58.9 -61.1 -62.6 -64.1	0.66 0.63 0.68 0.58 0.95 0.63
Stabilization	achieved if th		easurements for	r pH. Conductiv	ity and Turbidity	or Dissolved Ov	gen are recorde	d within their
perspective s Purging Con	tabilization cr nments:	iteria. A minimu				or bissorved oxy	ygen are recorded	within then
	NFORMA		aria I m. 11	nut. to				
Containe	er Type VoA	Bottle Preserv		Filtered? 45 0.10		Analy	Sis	
10ml		3 HC	No 0.	45 0.10 45 0.10 45 0.10 45 0.10 45 0.10				
Sampling Co	omments:							

Well I.D. Number: MW22 Sample I.D. MW22- WO'418 Time: 1980 Project Name: Coleman Oil Wenatcher Hydrocon Project #: 2017 - 074 Field Duplicate I.D. MW103 - WO'18 Time: 1935 4/26/13 Personnel: CD Date WELL INFORMATION Monument condition:
☐ Good ☐ Needs repair ☐ Water in Monument

Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Headspace reading: Not measured _____ Odor____ _ppm Well diameter: 2-inch ✓ 4-inch 6-inch Other New Well Comments PURGING INFORMATION Total well depth 39.10 ft Bottom: ☐ Hard ☐ Soft ☒ Not measured Screen Interval(s): 13.87 - 38.87 Depth to product _ _ _ ft Depth to water _ $\frac{21.80}{17.30}$ ft | Intake Depth (BTOC) _ $\frac{76}{100}$ Begin Purging Well: $\frac{19.08}{19.08}$ Casing volume _ $\frac{17.30}{17.30}$ ft (H₂O) X _ $\frac{9.65}{100}$ gal/ft = _ $\frac{11.25}{100}$ gal. X 3 = $\frac{33.75}{100}$ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type ☑ Peristaltic ☐ Centrifugal ☐ Dedicated Bladder ☐ Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed ☒ Remediation System ☐ Other Bailer type: Odor and/or Sheen: Strong setro dor isheen FIELD PARAMETERS Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen Turbidity pН ORP (±10% or Level (L/min) (°C) (mS/cm) (SU) (NTU) (mV) ≤1.00 ±0.2) $(\pm 10\% \text{ or } \le 10)$ (BTOC) $(\pm 3\%)$ (± 0.1) 0.97 5.22 1911 13.6 2.96 6.85 -41.4 21.82 6.95 5.05 1914 21.82 14.0 2.08 6.70 -31.8 1917 21.87_ 0.16 14.1 0.94 -75.9 5.70 1.29 6.68 2.97 0,94 1920 14.1 -74.5 21.33 1011 6.68 2.98 1923 0.94 1.03 771.0 21.83 14.1 6.67 0,94 -70.5 2.75 1926 21.83 1-1-1 0.98 6.68 samble Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type Analysis** Count Homl VOA No 0.45 0.10 3 1401 No 0.45 0.10 1 Lambor 1401 No 0.45 0.10 250ml poly HN03 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Well I.D. Number: MW 23 Sample I.D. MW23 - W0418 Time: 1605 Project Name: Coleman Oil Wanatchee Hydrocon Project #: 2017-07-4 Field Duplicate I.D._____ Time:___ 4/25/18 CD Date Personnel: WELL INFORMATION Not measured _____ ppm Odor_ Headspace reading: 2-inch X 4-inch 6-inch Other Well diameter: Comments **PURGING INFORMATION** Total well depth 22.04 ft Bottom: ☐ Hard ☐ Soft ☒ Not measured Screen Interval(s): 6, 31 - 21.81 Depth to product _____ ft Depth to water _____ \(\frac{10.25}{49} \) ft Intake Depth (BTOC) _____ Begin Purging Well: _____ \(\frac{1542}{20.98} \) gal/ft = ______ \(\frac{7.66}{20} \) gal. X 3 = _______ gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft **PURGING/DISPOSAL METHOD** Pump type ☑ Peristaltic ☐ Centrifugal ☐ Dedicated Bladder ☐ Non-Dedicated Bladder Other_____ Water Disposal:: ☐ Drummed ☒ Remediation System ☐ Other Bailer type: Odor and/or Sheen: None FIELD PARAMETERS Dissolved Turbidity **Purge Rate** Temp. Sp. Cond. Oxygen pН Time Water ORP (±10% or (NTU) Level (L/min) (°C) (mS/cm) (SU) (mV) ≤1.00 ±0.2) $(\pm 10\% \text{ or } \le 10)$ (± 0.1) (BTOC) $(\pm 3\%)$ 0,71 3.77 67.7 4.59 1546 13.5 6.50 10.37 13.3 0.70 1.64 57.1 5.23 1549 10.41 0.17 6.47 6.46 55.7 2,57 1552 0.70 1.36 10.43 13.1 6.48 53.7 2.35 1555 13.1 0.70 1.08 10.45 1558 13.1 1.01 6.47 53.9 10.46 0.69 2.01 10.47 6,47 1601 13.0 0.69 0.91 52.2 2,25 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments:** SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type** Analysis Count Homl VOA No 0.45 0.10 3 HCI No 0.45 0.10 1 L omber HCI No 0.45 0.10 250 ml pdy HNO3 No 0.45 0.10 No 0.45 0.10

Sampling Comments:

Well I.D. Number: 13th 01 Project Name: Coleman Oil Wenutchee Sample I.D. 31+01 - WOY18 Time: 1340 Hydrocon Project #: 2017-074 Field Duplicate I.D.____ ______ Personnel:____ CID Date 4/25/13 WELL INFORMATION Monument condition: ☐ Good ☐ Needs repair ☐ Water in Monument ☐ Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well Headspace reading: Not measured _____ Odor 🗌 _ppm Well diameter: 2-inch 4-inch 6-inch Other Comments ___ **PURGING INFORMATION** Total well depth 30 ft Bottom: ☐ Hard ☐ Soft ☒ Not measured Screen Interval(s): 20-30 Depth to product _____ft Depth to water 23.06 ft Intake Depth (BTOC) 26 Begin Purging Well: 1319 Casing volume 6.99 ft (H₂O) X 0.16 gal/ft = 1.11 gal. X 3 = 3.35 gal. Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other___ Bailer type:_____ Water Disposal:: Drummed Remediation System Other Odorand/or Sheen: setro olor ino sheen FIELD PARAMETERS Dissolved Time Water **Purge Rate** Temp. Sp. Cond. Oxygen **Turbidity** pH ORP (±10% or (^{0}C) Level (L/min) (mS/cm) (NTU) (SU) (mV) $\leq 1.00 \pm 0.2$ $(\pm 10\% \text{ or } \le 10)$ $(\pm 3\%)$ (± 0.1) (BTOC) 2.67 22.0 1320 23.8 1.16 6.55 1.42 23.02 1383 23.03 1.10 0.64 6.52 -100.8 1.98 0.12 23.03 0.41 -10407 1.73 1326 16.2 1.09 6.51 0.33 -106.6 23.03 16.1 1.09 6.51 1.47 1329 6.51 1332 23,014 16.1 1.09 0.27 -108.3 3.08 23.04 16.1 1.09 0.25 6.50 -107.2 1335 Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. **Purging Comments: SAMPLE INFORMATION** Bottle Preservative Field Filtered? **Container Type Analysis** Count HOMI VOA No 0.45 0.10 1401 3 No) 0.45 0.10 1 Lamber 1+01 No 0.45 0.10 No 0.45 0.10 No 0.45 0.10 Sampling Comments:

Total well depth 35 ft Bottom: Hard Soft Not measured Screen Interval(s): Depth to product ft Bottom: Begin Purging Well: Soft Begin Purging Wel			2017 - c				BH02 - W ate I.D	0418	I.D. Number: 1 Time: 1510 Time: -
FIELD PARAMETERS Odor and/or Sheen: Heavy Sheen Time Water Level (L/min) Purge Rate (L/min) Temp. (°C) Sp. Cond. (mS/cm) (±10% or ≤1.00 ±0.2) pH (sU) (±10% or ≤10) ORP (mV) (NTU) (±10% or ≤10) 1447 27.67 18.72 0.84 4.17 6.72 -51.1 0Z 1450 27.97 16.13 0.78 0.83 6.55 ~80 01Z 1456 28.925 117.1 0.77 0.97 6.54 -80.4 654 1450 28.71 17.1 0.77 0.97 6.54 -71.7 331 1502 28.93 17.3 0.77 0.87 6.53 -72.6 164 1505 29.04 17.2 0.78 0.87 6.53 -69.7 137-	Monumer Well cap Headspac Well dian	nt condition: condition: ce reading: neter:	Good Good Not mea 2-inch	Replaced sured	☐ Needs re ppm	eplacement 0	Surface V	Vater in Well	
Pump type	Total well Depth to p Depth to w Casing vo	l depth 35 oroduct - 27 lume 7.	ft ft65 ft (H	Bottom: Holintake Depth (20) X 6, f	ard Soft [(BTOC) 3 6 gal/ft '=0.04 gal/ft	Not measure Beg 2"=0.16 gal/	red Screen I in Purging Wel gal. X 3 = ft 4"=0.65 gal	nterval(s): I:	 al. gal/ft
Time Water Level (L/min) Purge Rate (L/min) Temp. (°C) Sp. Cond. (mS/cm) (±10% or ≤1.00 ±0.2) Dissolved Oxygen (±10% or ≤1.00 ±0.2) pH (su) (NTU) (±10% or ≤1.00 ±0.2) Turbidity (NTU) (±10% or ≤1.0) 1447 27.67 18.72 5.84 4.17 6.72 -51.1 51.00 ±0.2 51.00 ±0.2 51.1	Pump typ Bailer typ	e Perista e:	altic	rifugal 🔲 De	edicated Blac	dder ⊠ Non- d ⊠ Remedia	tion System [Other	odor
1447 27.67 18.7 0.84 4.17 6.72 -51.1 0.2 1450 57.97 16.0 0.78 0.83 6.55 #80 0.12 1453 28.95 17.1 0.78 2.67 6.54 -80.8 707 1456 28.45 0.15 17.0 0.77 1.64 6.54 -80.4 654 1459 28.71 17.1 0.77 0.97 6.54 -71.7 331 1502 28.93 17.3 0.77 0.84 6.53 -72.6 164 1505 29.04 17.2 0.78 0.87 6.53 -69.2 137		Water Level	Purge Rate		(mS/cm)	Oxygen (±10% or	pH (SU)	ORP	Turbidity (NTU)
1505 29.04 17.2 0.78 0.87 6.53 -69.2 137	1450 1453 1456 1459	27.67 27.97 28.95 28.45 28.71	0.15	16.10 17.0 17.1	0.78 0.73 0.77 0.77	0.83 2.67 1.64 0.97	6.72 6.55 6.54 6.54 6.54	-80 -80.8 -80.4 -77.7	017 707 654 331
	1505	29.04		17.2	0.78	0.87	6.53	-69.2	137-
Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their		achieved if thr	ee successive m	easurements for	pH, Conductiv	ity and Turbidity	or Dissolved Ox	gen are recorde	d within their
perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: OR = Overage SAMPLE INFORMATION	Stabilization perspective Purging Co	stabilization cr mmen t s:	riteria. A minimu ⊙R≃ over≃	ım of six measuı			or Dissolved Oxy	ygen are recorde	d within their
perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: OR = Overage	Stabilization perspective Purging Co	stabilization cr mments: INFORMAT	riteria. A minimu のに こ oven av FION Bottle Count	vative Field	Filtered?				d within their

							Well	I.D. Number: B
	n Project #:	2017-0 18	74	-	Field Duplic	<u>В</u> но3 - м ate I.D	J0418 -	Time: 15-15 Time: ~
Monume Well cap Headspac Well dian	condition: ce reading: meter:	⊠ Good [Replaced cured ured 4-inch	☐ Needs re	eplacement	Surface V	Vater in Well	
Total wel Depth to p Depth to v Casing vo	G INFORMA Il depth 30 product 20 Nater 20 Solume 9.6 Conversion Fa	ft ft 32 ft 2 ft (H ₂	3ottom: ☐ Ha Intake Depth 20) X	ard Soft (BTOC) 26 gal/ft gal/ft	Not measured Beg = 1.55 2"=0.16 gal/	red Screen I in Purging Wel gal. X 3 = ft 4"=0.65 ga	nterval(s):	5-30 al. gal/ft
Pump typ	e 🛛 Perista	L METHOD ltic	rifugal ☐ De ter Disposal::	edicated Blac	dder □ Non- d ⊠ Remedia	Dedicated Bla tion System [ndder Other_ Other	
FIELD P	Water Level	Purge Rate (L/min)	Temp. (°C)	Sp. Cond.	Dissolved Oxygen (±10% or	Odor and/or pH (SU)	ORP	Turbidity (NTU)
1452 1455 1458 1501 1504 1507	(BTOC) 20.35 20.54 20.78 20.99 21.24 21.47	0.135	15:7 14.8 14.8 14.7 14.7	(±3%) 1.24 1.23 1.23 1.22 1.22	2.14 0.72 0.52 0.45 0.41	(±0.1) 6.63 6.60 6.59 6.59 6.59	-39.5 -94.4 -97.5 -93.2 -43.6 -94.1	(± 10% or \$10) 6.09 3.85 3.78 4.43 5.65 4.01
			Same	de (a)	(515			
								-
erspective Purging Co	stabilization cri mments:	teria. A minimui			ity and Turbidity be recorded.	or Dissolved Oxy	/gen are recorde	d within their
erspective Purging Co	stabilization crimments: INFORMAT er Type E	teria. A minimui	m of six measur			or Dissolved Oxy Analy		d within their

Sampling Comments:_____

GROUNDWATER SAMPLE COLLECTION FORM

Well I.D. Number: RWOI Project Name: Coleman Oil Wenatchee Time: 1430 Hydrocon Project #: Z이구- ©구년
Date 시26 18 Field Duplicate I.D.____ Time:____ CD Personnel: WELL INFORMATION Monument condition: ☐ Good ☐ Needs repair ☐ Water in Monument ☐ Well cap condition: ☐ Good ☐ Replaced ☐ Needs replacement ☐ Surface Water in Well ✓ Not measured
 ✓ _____ Headspace reading: _ppm Odor_ ☑ Other _ 3 " Well diameter: 2-inch 4-inch 6-inch Comments **PURGING INFORMATION** Total well depth 30 ft Bottom: ☐ Hard ☐ Soft 🗵 Not measured Screen Interval(s): 15-30 Volume Conversion Factors: 3/4"=0.02 gal/ft 1"=0.04 gal/ft 2"=0.16 gal/ft 4"=0.65 gal/ft 6"= 1.47 gal/ft PURGING/DISPOSAL METHOD Pump type Peristaltic Centrifugal Dedicated Bladder Non-Dedicated Bladder Other Bailer type:____ Water Disposal:: ☐ Drummed 🔀 Remediation System ☐ Other Odor and/or Sheen: None detectal FIELD PARAMETERS Dissolved Time Water **Purge Rate** Oxygen Temp. Sp. Cond. Turbidity pН ORP (°C) (±10% or Level (L/min) (mS/cm) (NTU) (SU) (mV) $\leq 1.00 \pm 0.2$ $(\pm 10\% \text{ or } \le 10)$ (BTOC) $(\pm 3\%)$ (± 0.1) 2.66 1417 15,7 1014 6.78 20.89 30.2 1.05 1415 0.66 21.14 15.4 1.13 6.75 30.2 1.21 0.13 1418 21.36 15,3 1.13 0.56 6.75 30.3 0.79 15.2 1421 0.53 75 30.0 21.53 1.13 0.77 6-75 1424 15.2 29.3 21.70 1.13 0.83 1 . 34 14127 21.85 1013 6.74 15.3 0.89 30.3 1.13 omple Stabilization achieved if three successive measurements for pH, Conductivity and Turbidity or Dissolved Oxygen are recorded within their perspective stabilization criteria. A minimum of six measurements should be recorded. Purging Comments: SAMPLE INFORMATION Bottle Preservative Field Filtered? **Container Type Analysis** Count Homl VOA No 0.45 0.10 3 1401 No 0.45 0.10 1 Lamber HOI No 0.45 0.10 No 0.45 0.10 No 0.45 0.10

WATER QUALITY METER CALIBRATION

Site Name and (Number): Coleman O	Wenatchee Calibration Date: 4/24/18
Hydrocon Site Number: 2017 - 074	Calibration Time: 1990
Weather: Clear	Temperature: 55 F Barometric Pressure: 759. 3 Fig.
Personnel: Chris Daschul	Water Quality Meter: \(\sum 5 \) Pro Plus
Calibration Location: Site Office Of	ther:

	1 st	Initial	Final	2 nd	Initial	Final
Parameter	Standard	Reading	Reading	Standard	Reading	Reading
Temperature (°C)		12.6°C	12.9°C		_	-
Sp. Conductivity (mS/cm)	1.41	1.32	1.41	4.49	-	-
Dissolved Oxygen [(mg/L)/%]					9.54/90.4	%10.53/99.8
pH (SU)	7.00	7.11	6.99	4.00	4.01	4,00
ORP (mV)				220	265.7	219.8
Turbidity (NTU)	40.0	_	-	0.0	~	-

Notes: 1. Quanta meters are calibrated beginning with a Level Two solution followed by the Auto-Cal solution.

- 2. Be sure to check the dissolved oxygen probe calibration procedure (each meter is different).
- 3. Temperature extremes will alter the calibration standards chemistry and the meter's results.

Calibration Comments:_	Turbidity	calibrated	on	seperate	meter	(Hach)	

WATER QUALITY METER

CALIBRATION

Site Name and (Number): Coleman	Oil Wentcher Calibration Date: 4/25/18
Hydrocon Site Number: 2017 - 074	Calibration Time: O为to
Weather: Clear	Temperature: 53° F Barometric Pressure: 753.7 Hay
Personnel: CD	Water Quality Meter: YS1 Pro Plus
Calibration Location: Site Office	Other:

	1 st	Initial	Final	2 nd	Initial	Final
Parameter	Standard	Reading	Reading	Standard	Reading	Reading
Temperature (°C)		12.0°C				
Sp. Conductivity (mS/cm)	1.41	1.43	1.41	4.49	Anna	_
Dissolved Oxygen [(mg/L)/%]					39.01/359.4	%92.59/101.9 9
pH (SU)	7.00	7.06	7.00	4.00	3.97	4.00
ORP (mV)				220	218.2	220.2
Turbidity (NTU)	40.0	-	_	0.0	~	-

Notes: 1. Quanta meters are calibrated beginning with a Level Two solution followed by the Auto-Cal solution.

- 2. Be sure to check the dissolved oxygen probe calibration procedure (each meter is different).
- 3. Temperature extremes will alter the calibration standards chemistry and the meter's results.

Calibration Comments:	Turbidity	calibrated	on sever	rate meter /	Hach (Fassed)	
Phalso c	alibrated w			Initial: 10.03 -		
		-				

WATER QUALITY METER

CALIBRATION

Site Name and (Number):	Oil Wenatchee Calibration Date: 4/26/18
Hydrocon Site Number: 2017 - 074	Calibration Time: 0800
Weather:	Temperature: 52 F Barometric Pressure: 754.5 Hs
Personnel: Chris Darchel	Water Quality Meter: YST Pro Plus
Calibration Location: Site Office Ot	her:

Parameter	1 st Standard	Initial Reading	Final Reading	2 nd Standard	Initial Reading	Final Reading
Temperature (°C)		12.4°C	13.3		-	-
Sp. Conductivity (mS/cm)	1.41	1.45	1.41	4.49		-
Dissolved Oxygen [(mg/L)/%]					9.76 /93.2	% 10.38/99.3
pH (SU)	7.00	7,05	6.99	4.00	3.97	4,00
ORP (mV)				220	232.1	219.8
Turbidity (NTU)	40.0	*	-	0.0	-	-

Notes: 1. Quanta meters are calibrated beginning with a Level Two solution followed by the Auto-Cal solution.

- 2. Be sure to check the dissolved oxygen probe calibration procedure (each meter is different).
- 3. Temperature extremes will alter the calibration standards chemistry and the meter's results.

Calibration Comments:	Calibration	For tw	rbidity	conducted	on seperat	e meter	(Huch) passed
17+ also calibrated							

Appendix D Soil Disposal Receipts

Greater Wenatchee Regional Landfill

Original

191 Webb Road

Ticket# 806620

Wenatchee, WA, 98802

Ph: (509) 884-2802

Customer Name COLEMAN OIL COMPANY LLC Carrier

coleman

Ticket Date 04/25/2018
Payment Type Credit Account Manual Ticket#

Vehicle# Container

Driver

Route

Check#

Hauling Ticket#

Billing# 0508602

Destination

Grid

Manifest 112215wa

Profile 112215WA (DIESEL FUEL IMPACTED SOIL)

Generator WA-COLEMAN OIL COMPANY LLC COLEMAN OIL COMPANY LLC_3 EAST CHEHALIS,

WENATCH

PO#

	Time		Scale	Operator
	04/25/2018			janelle
Out	04/25/2018	11:48:29	Outbound	janelle

Inbound Gross Tare

17580 lb 13680 lb 3900 lb

Net Tons

1.95

Comments

Pro	duct	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
2	Cont Soil Pet-RGC-Tons-C CDHD FEE-Chelan Douglas FEA-FUEL, ENV, ADMIN	100 100 100	1.95 1.95 1.95	Tons Tons Tons	32.00 1.00 4.16	2.25 0.07 0.29	\$1.95	CHELAN CHELAN CHELAN

Total Tax/Fees Total Ticket

\$2.61 \$75.07

Driver's Signature

The total amount includes fees and taxes that may not all be listed on this ticket due to technical limitation.

Greater Wenatchee Regional Landfill

Original

coleman

191 Webb Road

Ticket# 806650

Wenatchee, WA, 98802

Ph: (509) 884-2802

Customer Name COLEMAN OIL COMPANY LLC Carrier

Ticket Date 04/25/2018
Payment Type Credit Account
Manual Ticket#

Vehicle# 0 Container Driver

Route Hauling Ticket# Check# Billing# 0508602

Destination

Grid

Manifest 112215wa Profile 112215WA (DIESEL FUEL IMPACTED SOIL)

Generator WA-COLEMAN OIL COMPANY LLC COLEMAN OIL COMPANY LLC 3 EAST CHEHALIS,

WENATCH PO#

201	Time	12 2 12 2 10 10	Scale	Operator	Inbound	Gross	14920	
	04/25/2018			tgarcia9		Tare	10480	lb
Out	04/25/2018	15:20:00	Outbound	tgarcia9		Net	4440	lb
						Tons	2.	.22

Comments

Product	LD%	Qty	UOM	Rate	Tax/Fee	Amount	Origin
Cont Soil Pet-RGC-Tons-C CDHD FEE-Chelan Douglas FEA-FUEL, ENV, ADMIN	100 100 100		Tons Tons Tons	32.00 1.00 4.16	2.56 0.08 0.33	\$2.22	CHELAN CHELAN CHELAN

Total Tax/Fees Total Ticket \$2.97 \$85.47

Driver's Signature

da 7

The total amount includes fees and taxes that may not all be listed on this ticket due to technical limitation.

Appendix E Surface Sediment Field Sample Record

Northern Resource Consulting, Inc.

ENVIRONMENTAL SERVICES

SUBCONTRACTOR: NORTHERN RESOURCE CONSULTING, INC. 1339 COMMERCE AVE. STE 309B LONGVIEW, WA 98632 **CONTRACT DAILY REPORT**

THE CONTRACTOR		Icon	TRACT TITLE		DATE	
RIME CONTRACTOR	10	CON	Coleman Mil	Sediment	041	23/18
Hydro Con, L	ic	REPO	ORT NO.	Sediment		
PO No. 2017			1178	Wenato	her WA	
ATHER				^	1.71	
Clear a Sun	INY	Willian	· Clifton &	& Brian Per	leberg	
Jiedi a bar	7	TOTAL				TOTAL
MANPOWER	NO.	HOURS	MAJO	R EQUIPMENT	NO.	HOURS
BPAWC		9.5 Hrs	NRC 27 Ft.	Boat & Van Vee	۸ ا	9.5
DIGOC						9.5
	_		24L Grab Sq	mprei		
1150 5504 1204 5504 Sample 1215 Collecte 1245 Collecte River Stage Co	attem Tried Point d Ssoy d Ssos	3,97 cm of ENCO of More toward -Wate -Wate	n Recovery), untered rock grabs 4" to 5 Shore r depth 21.6 r depth 15.8	48" - River SI Moved Samp 12" rock & I Fr Aprox S Fr. took gps we measure Fr. to observable to observable to observable Work Activities, Unusua	le in 251 1/2 inch of OFt, from Coordinate	7. toward Sample Shoic. 2.
SEMADICO DI CONTE	ACTOR (Dal	ove Interrest	tions Deviations Extra	Work Activities, Unusua	Occurrence's, etc	Relevant to
(EMARKS BY CONTE Today's Work).	(ACTOR (Del	ays, interrupt	uons, Deviations, Extra	// -	. 555411511666, 616	,
4:30 - ENd 0	& Day 1	paded A	boat onto tr	ailer the home by		
1:45 - Bought	Diesel	20 90	llows for de	whe name of	124/2018,	
VEC NO					DATE CON	MPLETED
YES NO	CTUPE OF	SITERE	FORE WORK UPO	ON ARRIVAL	04/23/	
	CTURE OF	SITE DEI	ORK PROGRESS	3	04/23/	
	CTURE OF	DAIL I	EMENTS INISTAL	I FD	04/23	118
			EMENTS INSTAL		04/23/	119
*	$A \vdash A \mid I \mid P \mid ($	JUKESC	ON NRC, INC. SER	VLI	07/45/	10

Project Name: <i>Cole</i>						
Sampling Crew	William Clift	EN & BliON	Perlebers			
	04/28/2018		Sampling Method:	Gra	6 Same	ole
	NRC ROY				/	
Subcontractor(s)	Northern Reson	Me Cansult	Sampling Method: Weather:	Clea	c # 50	w a
Station Coordinates	· N/Lat Comme	Recorded				J
Station Coordinates	: N/Lat. Surveyor	Necoroles	-			
	E/Long. Location)	-			
Datum:	NAD 83 / WGS 84	zone:				
Sample ID	5501					
Analysis:	Metals / TBT / SVOCs / VOCs	/ PCBs / Pest	Other:	TPI	4	
	TS / TVS / Grain Size / TOC /	Ammonia / Sulfides	Other:			
	(Circle Appropriate Analyses)			was a sure of the		
Grab Number:	Water Depth: 48" ft. =	UF.	Grab Recovery:_	13.97 c	m Time:	1025
orab Number	Tide Level: P/A ft.	411 11 4 4 4	Sample Interval:			
Bioassay / Chemistry	Depth MLLW: N/A ft.	6" Stage	- wb.s			
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	none)		nóne')	Dry
ıravel	gray	soft/loose	slight	Petroleum	trace	Damp
*(10-75003330)	black	mod dense/stiff	moderate	other:	slight	Moist
ilt clay	brown	dense/stiff	strong		moderate	Wet
organic matter	brown surface	very dense/stiff	overwhelming		heavy	
	Water State of the					
Comments:				A-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	in his deposit design and the plant is belong.	***
Comments: Grab Number:	Water Depth:ft. Tide Level:ft.		Grab Recovery:_ Sample Interval:_		m Time:	
	Tide Level:ft. Depth MLLW:ft.		Sample Interval:_		om	_
Grab Number: Bioassay / Chemistry	Tide Level:ft.	Density:	Sample Interval:_ Sediment Odor:		Sheen:	Moisture:
Grab Number: Bioassay / Chemistry Sediment Type:	Tide Level:ft. Depth MLLW:ft.	Very soft/Loose	Sample Interval:_ Sediment Odor: none	H2S	Sheen:	Moisture:
Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray	Very soft/Loose soft/loose	Sediment Odor: none slight	H2S Petroleum	Sheen: none trace	Moisture: Dry Damp
Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel gravel sand C M F	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black	Very soft/Loose soft/loose mod dense/stiff	Sediment Odor: none slight moderate	H2S	Sheen: none trace slight	Moisture: Dry Damp Moist
Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel sand C M F	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sediment Odor: none slight moderate strong	H2S Petroleum	Sheen: none trace slight moderate	Moisture: Dry Damp
Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black	Very soft/Loose soft/loose mod dense/stiff	Sediment Odor: none slight moderate	H2S Petroleum	Sheen: none trace slight	Moisture: Dry Damp Moist
Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sediment Odor: none slight moderate strong	H2S Petroleum	Sheen: none trace slight moderate	Moisture: Dry Damp Moist
Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments:	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval:_ Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet
Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft.	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval:_ Sediment Odor: none slight moderate strong overwhelming Grab Recovery:_	H2S Petroleum other:	Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist
Grab Number: Bioassay / Chemistry Sediment Type: Sobble Gravel Grand C M F	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft.	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval:_ Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet
Grab Number: Bioassay / Chemistry Sediment Type: Bioable Bioard C M F Bilt clay Bioard C matter Comments: Brab Number:	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft.	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Sample Interval:_ Sediment Odor: none slight moderate strong overwhelming Grab Recovery:_ Sample Interval:_	H2S Petroleum other:	Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet
Grab Number: Bioassay / Chemistry Gediment Type: Jobble Jobble Jorganic C M F Jorganic matter Comments: Grab Number: Bioassay / Chemistry Gediment Type:	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color:	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor:	H2S Petroleum other:	Sheen: none trace slight moderate heavy m Time: cm Sheen:	Moisture: Dry Damp Moist Wet Moisture:
Grab Number: Bioassay / Chemistry Bediment Type: Biobble Bioassay / Chemistry Bioassay / Chemistry Bioassay / Chemistry Bediment Type: Bioassay / Chemistry Bediment Type:	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O.	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff Density: Very soft/Loose	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none	H2S Petroleum other:	Sheen: none trace slight moderate heavy m Time: cm Sheen: none	Moisture: Dry Damp Moist Wet Moisture: Dry
Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel sand C M F cilt clay organic matter Comments: Grab Number: Bioassay / Chemistry Sediment Type: cobble	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color:	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff Density: Very soft/Loose soft/loose	Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight	H2S Petroleum other:	Sheen: none trace slight moderate heavy Time: Sheen: none trace	Moisture: Dry Damp Moist Wet Moisture: Dry Damp
Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel sand C M F cilt clay organic matter Comments:	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O.	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff Density: Very soft/Loose soft/loose mod dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleum other:	Sheen: none trace slight moderate heavy Time: Sheen: none trace slight	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moisture: Dry Damp Moist
Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel sand C M F silt clay organic matter Comments: Grab Number: Bioassay / Chemistry Sediment Type: cobble gravel	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff very dense/stiff very dense/stiff very dense/stiff very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum other:	Sheen: none trace slight moderate heavy Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet Moisture: Dry Damp
Grab Number: Bioassay / Chemistry Sediment Type: Bioable Bravel Brand C M F Brand C M F	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff Density: Very soft/Loose soft/loose mod dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleum other:	Sheen: none trace slight moderate heavy Time: Sheen: none trace slight	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moisture: Dry Damp Moist
Grab Number: Bioassay / Chemistry Sediment Type: Biobble Bravel Biand C M F Bilt clay Broganic matter Comments: Broassay / Chemistry Sediment Type: Brobble Bravel Broad C M F Bilt clay	Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown brown surface Water Depth:ft. Tide Level:ft. Depth MLLW:ft. Sediment Color: D.O. gray black brown	Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff very dense/stiff very dense/stiff very dense/stiff very dense/stiff very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum other:	Sheen: none trace slight moderate heavy Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moisture: Dry Damp Moist

Date/Time Lab Drop Off:

	Brian	Perlebera	
Recorded by:	VIIAN	rerroberg	

Project Name: Colem	and O:1 Proj	ect No: Po No.	2017-074	Station I	D: 5502	
Sampling Crew	11:11: Cl.C.	er Reins P	erlahera			
Sample Date:	04/23/2018		Sampling Method:	Grab	Samal	
Sampling Vessel	NRC ROY				P	
Subcontractor(s):	Northern Resou	ree Chasulti	Weather:	Mea	1 8 Sul	222
Station Coordinates	NRC ROY Northern Resou	e and ad	.)	470 25	107.63"	N
Station Coordinates.	N/Lat. Surveyor 1 E/Long. Location	ecoraea	. "	1200 10	ו ויפטוןט	3 +1-1M
			. "	120 18	01173	0 //-
	NAD 83 /WGS 84	zone:				
	Coleman Oil			TA11		
Analysis:	Metals / TBT / SVOCs / VOCs		Other:	TPH		
	TS / TVS / Grain Size / TOC /	Ammonia / Sulfides	Other:			
	(Circle Appropriate Analyses)					
Grab Number: 0 1	Water Depth: 50" ft.		Grab Recovery:_	11.75 c	m Time:	0945
	Tide Level:ft.	Tide Stage	Sample Interval:_	0-11.75	cm	
Bioassay / Chemistry	Depth MLLW:ft.					
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	none	H2S (none	Dry
gravel	gray	soft/loose`	slight	Petroleum	trace	Damp
sand C M F	black	mod dense/stiff	moderate	other:	slight	Moist
silt clay	brown	dense/stiff	strong			Wet')
organic matter	brown surface	very dense/stiff	overwhelming		heavy	
Comments:						
					The state of the s	
Grab Number:	Water Depth:ft.		Grab Recovery:_	c	m Time:	
	Tide Level:ft.		Sample Interval:_	(cm	~
Bioassay / Chemistry	Depth MLLW:ft.					
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	none	H2S	none	Dry
gravel	gray	soft/loose	slight	Petroleum	trace	Damp
sand C M F	black	mod dense/stiff	moderate	other:	slight	Moist
silt clay	brown	dense/stiff	strong		moderate	Wet
organic matter	brown surface	very dense/stiff	overwhelming		heavy	
Comments:						
Grab Number:	Water Depth:ft.		Grab Recovery:_		m Time:	
Grab Number.	Tide Level:ft.		Sample Interval:		cm	
Bioassay / Chemistry	Depth MLLW:ft.				1000	
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	none	H2S	none	Dry
gravel	gray	soft/loose	slight	Petroleum	trace	Damp
The same state of the same sta	and the second s	mod dense/stiff	moderate	other:	slight	Moist
sand C M F	black brown	dense/stiff	strong	ou ioi.	moderate	Wet
silt clay	DIOWII				CONTRACTOR CONTRACTOR	
organic matter	brown surface	very dense/stiff	overwhelming		heavy	
organic matter	brown surface	very dense/stiff	overwhelming		neavy	
organic matter Comments:	brown surface	very dense/stiff	overwhelming		neavy	
	brown surface	very dense/stiff	overwhelming		Ineavy	

Date/Time Lab Drop Off:

Recorded by: Brian Perleberg

Project Name: Cole a	AN Oil Pro	ject No:		Station II	D: 5503	
Sampling Crows	Whiliam Clif 0\$123/2018 NRC ROY Northern Reson	1 SEA	- of Perlot	ers		
Sampling Crew.	04/33/2010	TON 1 CL DI	Sampling Method:	Grat	Samo	le
Compling Vessel:	1200 POU		oumpining in-	0,100		
Sampling vessel.	North Pag	C 10.14.	Iw Weather:	Cles	151 540	
Subcontractor(s).	NOTTHERN NESOI	THE CONSULT	-5,	Cita	1000	
Station Coordinates:	N/Lat. Surveyor	recorded	-			
	A STATE OF THE PARTY OF THE PAR	~	_			
Datum:	NAD 83 (WGS 84)	zone:				
Sample ID:	5503					
Analysis:	Metals / TBT / SVOCs / VOCs	s / PCBs / Pest	Other:	TPH		
8	TS / TVS / Grain Size / TOC /	Ammonia / Sulfides	Other:			
	(Circle Appropriate Analyses)		STATE OF STA		72 F F 7 S 8 P 2 S 8 P 3 S 1 S 1 S 1 S 1	
Grab Number: _ 4	Water Depth: 4, 1 ft.		Grab Recovery:_	13,97 c	m Time:	0840
Oldb Hambol.	Tide Level: N/A ft.		Sample Interval:_		am.	
Bioassay / Chemistry	Depth MLLW: N/A ft.				2,39	cm per
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	none (H2S (none	Dry
gravel	gray	soft/loose	slight -	Petroleum	trace	Damp
sand C M F	black	mod dense/stiff	moderate	other:	slight	Moist
silt clay	brown	dense/stiff	strong		moderate	Wet
organic matter	brown surface	very dense/stiff	overwhelming		heavy	
Comments:						
Grab Number:	Water Depth:ft.		Grab Recovery:_	С	m Time:	
Grab ivuiliber.	Tide Level:ft.		Sample Interval:			
Bioassay / Chemistry	Depth MLLW:ft.		•			
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	none	H2S	none	Dry
gravel	gray	soft/loose	slight	Petroleum	trace	Damp
sand C M F	black	mod dense/stiff	moderate	other:	slight	Moist
silt clay	brown	dense/stiff	strong		moderate	Wet
organic matter	brown surface	very dense/stiff	overwhelming		heavy	
Comments:						
Crah Numbar	Water Depth: #		Grab Recovery:		m Time:	
Grab Number:	Water Depth:ft. Tide Level:ft.		Sample Interval:		cm	
Bioassay / Chemistry	Depth MLLW:ft.		oumpio mortuni			
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble		Very soft/Loose	none	H2S	none	Dry
	D.O.	very solutionse				
		soft/loose	slight	Petroleum	trace	Damp
gravel	gray	soft/loose				1000
gravel sand C M F	gray black	soft/loose mod dense/stiff	moderate	Petroleum other:	slight	Damp Moist Wet
gravel sand C M F silt clay	gray black brown	soft/loose mod dense/stiff dense/stiff				Moist
gravel sand C M F silt clay organic matter	gray black	soft/loose mod dense/stiff	moderate strong		slight moderate	Moist
gravel sand C M F silt clay	gray black brown	soft/loose mod dense/stiff dense/stiff	moderate strong		slight moderate	Moist
gravel sand C M F silt clay organic matter	gray black brown	soft/loose mod dense/stiff dense/stiff	moderate strong		slight moderate	Moist

Date/Time Lab Drop Off:

Recorded by: Brian Perleberg

Project Name: Colem	an 0:1 Proj	ect No: PO No	2017-074	Station I	D: 550	9
		N & Bria	•			
Sample Date:			Sampling Method:		6	
Sampling Vessel:						
Subcontractor(s):	Northern Resour	re Consultin	Weather:	Clea	r & Sur	UN4
Station Coordinates:	N/Lat. 47" 25' 6;	7.7"	9			0
Waypoint 1	WE/Long. 120° 18' 0	9.6	_			
53 Datum:	NAD 83 (WGS 84)	zone:				
Sample ID:	5504					
Analysis:	Metals / TBT / SVOCs / VOCs	/ PCBs / Pest	Other:	TP	<i>H</i>	
**	TS / TVS / Grain Size / TOC /	Ammonia / Sulfides	Other:			
	(Circle Appropriate Analyses)	II.	OTTENSION OF THE PROPERTY OF THE PARTY OF TH	elista ay ta enzaga caz	Managara a var Naorman	
Grab Number: 31	Water Depth: 21 ft.		Grab Recovery:_	11.82 0	m Time:/	025
	Tide Level: N/A ft.		Sample Interval:			
Bioassay / Chemistry	Depth MLLW: N/1 ft.					
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	none	H2S C	none	Dry
gravel	gray	soft/loose	slight	Petroleum	trace	Damp
sand C MF	black	mod dense/stiff	moderate	other:	slight	Moist
silt clay	brown	dense/stiff	strong		moderate (vvet
organic matter	brown surface	very dense/stiff	overwhelming	TO SERVICE STATE	heavy	
Comments: Had to	Move Sample	location	3 Tim	cs 9	Attemp	ted
28 91ab	Move Sample Sample Leftre	setting or	ve. Rock	PIRE	coust a	10~9
Sulstante	to prevent So	male from	closin	580		
NO. 15 W. 16	and the second s	/	Grab Recovery:_		m Time	
Grab Number:	Water Depth:ft. Tide Level:ft.		Sample Interval:		cm	
Bioassay / Chemistry	Depth MLLW:ft.		Campic interval		J	
Sediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
cobble	D.O.	Very soft/Loose	none	H2S	none	Dry
gravel	gray	soft/loose	slight	Petroleum	trace	Damp
sand C M F	black	mod dense/stiff	moderate	other:	slight	Moist
silt clay	brown	dense/stiff	strong		moderate	Wet
organic matter	brown surface	very dense/stiff	overwhelming		heavy	
Comments:		>				
		28.11.4				
Grab Number:	Water Depth:ft.		Grab Recovery:_			
	and the second of the second o		1922 N. W. W. W. W. W. W.			
	Tide Level:ft.		Sample Interval:	(cm	
Bioassay / Chemistry	Depth MLLW:ft.	Ia				Interior constraints
Sediment Type:	Depth MLLW:ft. Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
Sediment Type: cobble	Depth MLLW:ft. Sediment Color: D.O.	Very soft/Loose	Sediment Odor:	H2S	Sheen:	Dry
Sediment Type:	Depth MLLW:ft. Sediment Color:	Very soft/Loose soft/loose	Sediment Odor: none slight	H2S Petroleum	Sheen: none trace	Dry Damp
Sediment Type: cobble	Depth MLLW:ft. Sediment Color: D.O.	Very soft/Loose soft/loose mod dense/stiff	Sediment Odor: none slight moderate	H2S	Sheen: none trace slight	Dry Damp Moist
Sediment Type: cobble gravel	Depth MLLW:ft. Sediment Color: D.O. gray black brown	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sediment Odor: none slight moderate strong	H2S Petroleum	Sheen: none trace slight moderate	Dry Damp
Sediment Type: cobble gravel sand C M F	Depth MLLW:ft. Sediment Color: D.O. gray black	Very soft/Loose soft/loose mod dense/stiff	Sediment Odor: none slight moderate	H2S Petroleum	Sheen: none trace slight	Dry Damp Moist
Sediment Type: cobble gravel sand C M F silt clay	Depth MLLW:ft. Sediment Color: D.O. gray black brown	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sediment Odor: none slight moderate strong	H2S Petroleum	Sheen: none trace slight moderate	Dry Damp Moist
Sediment Type: cobble gravel sand C M F silt clay organic matter	Depth MLLW:ft. Sediment Color: D.O. gray black brown	Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sediment Odor: none slight moderate strong	H2S Petroleum	Sheen: none trace slight moderate	Dry Damp Moist

Date/Time Lab Drop Off:

Recorded by: Brian Perleberg

roject Name: <i>Cole v</i>	new Oil P	roject No: <i>Colem</i>	400 Oit	Station II	D: 550	75
Sampling Crew:	William Cli	FAN EI Bris	w Perlebe	2/3		
	04/23/20	•	Sampling Method:	CK	AB SI	4mple
	NRC ROY					NNY
Subcontractor(s):	Northern Res	course Gusselft	Weather:	Clea	ca Su	NNY
Station Coordinates:	N/Lat. 47° 25'	47.7"	-))
Station Cooldinates.	E/Long. 120° 18	1 19211				
	- California Contraction					
Datum:	NAD 83 (WGS 84)	zone:				
	5505			-		
Analysis:	Metals / TBT / SVOCs / Vo		Other:	78	<i>17</i>	
	TS / TVS / Grain Size / TC		Other:			
	(Circle Appropriate Analys	es)		THE CHAPTER SINCE	or of the Artist Hotel Color	
rab Number: 🎜 🎉	Water Depth: 15.8 ft		Grab Recovery:_	13.97 c	m Time: _	1245
	Tide Level: N/4 f		Sample Interval:	0-13,97	cm	
ioassay / Chemistry	Depth MLLW: ~/A ft					
ediment Type:	Sediment Color:	Density:	Sediment Odor:		Sheen:	Moisture:
obble	D.O.	Very soft/Loose	none	H2S	none	Dry
avel	gray	soft/loose	slight	Petroleum	trace	Damp
and C M F	black	mod dense/stiff	moderate	other:	slight	Moist
It clay Clay	brown	dense/stiff	strong		moderate	Wer
ganic matter 0	brown surface	very dense/stiff	overwhelming		heavy	
comments:						
comments:						
comments:						
comments:			Grab Paccovany		m Time	
	Water Depth:f		Grab Recovery:			
Srab Number:	Tide Level:f	t.	Grab Recovery:_ Sample Interval:			
Grab Number: dioassay / Chemistry	Tide Level:f	ft. t.	Sample Interval:		cm	
Grab Number: Grab Number: Graph Number: Graph Number: Graph Number:	Tide Level:f Depth MLLW:f Sediment Color:	t. Density:	Sample Interval:		Sheen:	Moisture:
Grab Number: Gloassay / Chemistry Gediment Type: Gobble	Tide Level:f Depth MLLW:f Sediment Color: D.O.	t. Density: Very soft/Loose	Sample Interval: Sediment Odor: none	H2S	Sheen:	Moisture:
Grab Number: dioassay / Chemistry Gediment Type: obble rravel	Tide Level:f Depth MLLW:f Sediment Color: D.O. gray	t. Density: Very soft/Loose soft/loose	Sample Interval: Sediment Odor: none slight	H2S Petroleum	Sheen: none trace	Moisture:
irab Number: ioassay / Chemistry lediment Type: lobble ravel and C M F	Tide Level:f Depth MLLW:f Sediment Color: D.O. gray black	Density: Very soft/Loose soft/loose mod dense/stiff	Sediment Odor: none slight moderate	H2S	Sheen: none trace slight	Moisture: Dry Damp
irab Number: ioassay / Chemistry ediment Type: obble ravel and C M F ilt clay	Tide Level:f Depth MLLW:f Sediment Color: D.O. gray black brown	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sediment Odor: none slight moderate strong	H2S Petroleum	Sheen: none trace slight moderate	Moisture: Dry Damp Moist
rab Number: ioassay / Chemistry ediment Type: obble ravel and C M F	Tide Level:f Depth MLLW:f Sediment Color: D.O. gray black	Density: Very soft/Loose soft/loose mod dense/stiff	Sediment Odor: none slight moderate	H2S Petroleum	Sheen: none trace slight	Moisture: Dry Damp Moist
rab Number: ioassay / Chemistry ediment Type: bbble ravel and C M F It clay rganic matter	Tide Level:f Depth MLLW:f Sediment Color: D.O. gray black brown	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sediment Odor: none slight moderate strong	H2S Petroleum	Sheen: none trace slight moderate	Moisture: Dry Damp Moist
rab Number: ioassay / Chemistry ediment Type: bbble ravel and C M F It clay rganic matter	Tide Level:f Depth MLLW:f Sediment Color: D.O. gray black brown	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sediment Odor: none slight moderate strong	H2S Petroleum	Sheen: none trace slight moderate	Moisture: Dry Damp Moist
irab Number:ioassay / Chemistry lediment Type:	Tide Level:f Depth MLLW:f Sediment Color: D.O. gray black brown	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sediment Odor: none slight moderate strong	H2S Petroleum	Sheen: none trace slight moderate	Moisture: Dry Damp Moist
irab Number: ioassay / Chemistry rediment Type: obble ravel and C M F ilt clay rganic matter comments:	Tide Level:f Depth MLLW:f Sediment Color: D.O. gray black brown brown surface	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Sediment Odor: none slight moderate strong	H2S Petroleum other:	Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist
rab Number: ioassay / Chemistry ediment Type: obble ravel and C M F Ilt clay rganic matter comments:	Tide Level:f Depth MLLW:f Sediment Color: D.O. gray black brown brown surface Water Depth:	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming	H2S Petroleum other:	Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet
rab Number: ioassay / Chemistry ediment Type: obble ravel and C M F It clay rganic matter omments:	Tide Level:	Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery:	H2S Petroleum other:	Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet
rab Number: ioassay / Chemistry ediment Type: bbble ravel and C M F It clay rganic matter comments:	Tide Level:	t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff ft. ft.	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery:	H2S Petroleum other:	Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet
rab Number: ioassay / Chemistry ediment Type: bbble ravel and C M F It clay rganic matter comments: Grab Number: bioassay / Chemistry dediment Type:	Tide Level:f Depth MLLW:f Sediment Color: D.O. gray black brown brown surface Water Depth: Tide Level: Depth MLLW:	t. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff ft. ft.	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval:	H2S Petroleum other:	Sheen: none trace slight moderate heavy	Moisture: Dry Damp Moist Wet Moisture: Dry
rab Number: ioassay / Chemistry ediment Type: obble ravel and C M F Ilt clay rganic matter comments: Grab Number: Sioassay / Chemistry Sediment Type:	Tide Level:	tt. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff ft. ft. Density:	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval:	H2S Petroleum other:	Sheen: none trace slight moderate heavy Cm Time: cm Sheen: none	Moisture: Dry Damp Moist Wet
ioassay / Chemistry ediment Type: obble ravel and C M F ilt clay rganic matter comments: Grab Number: Sioassay / Chemistry Sediment Type: cobble	Tide Level:	tt. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff tt. ft. Density: Very soft/Loose soft/loose	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none	H2S Petroleum other:	Sheen: none trace slight moderate heavy Cm Time: cm Sheen: none	Moisture: Dry Damp Moist Wet Moisture: Dry
ioassay / Chemistry dediment Type: cobble ravel and C M F dilt clay rganic matter comments: Grab Number: Grab Nu	Tide Level: Depth MLLW: Sediment Color: D.O. gray black brown brown surface Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O. gray black	tt. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff ft. ft. Density: Very soft/Loose	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight	H2S Petroleum other: H2S Petroleum	Sheen: none trace slight moderate heavy Time: cm Sheen: none trace	Moisture: Dry Damp Moist Wet Moisture: Dry Damp
rab Number: ioassay / Chemistry ediment Type: bbble ravel and C M F ilt clay rganic matter comments: Grab Number: Sioassay / Chemistry Sediment Type: bbble gravel and C M F ilt clay	Tide Level: Depth MLLW: Sediment Color: D.O. gray black brown brown surface Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O. gray black brown	ft. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff ft. ft. Density: Very soft/Loose soft/loose mod dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate	H2S Petroleum other: H2S Petroleum	Sheen: none trace slight moderate heavy Time: cm Sheen: none trace slight	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moist
rab Number: oassay / Chemistry ediment Type: obble avel and C M F It clay rganic matter omments: rab Number: ioassay / Chemistry ediment Type: obble ravel and C M F ilt clay rganic matter	Tide Level: Depth MLLW: Sediment Color: D.O. gray black brown brown surface Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O. gray black	ft. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff ft. ft. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum other: H2S Petroleum	Sheen: none trace slight moderate heavy Sheen: none trace slight moderate	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moist
rab Number: oassay / Chemistry ediment Type: obble avel and C M F it clay ganic matter omments: rab Number: ioassay / Chemistry ediment Type: obble ravel and C M F	Tide Level: Depth MLLW: Sediment Color: D.O. gray black brown brown surface Water Depth: Tide Level: Depth MLLW: Sediment Color: D.O. gray black brown	ft. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff very dense/stiff ft. ft. Density: Very soft/Loose soft/loose mod dense/stiff dense/stiff	Sample Interval: Sediment Odor: none slight moderate strong overwhelming Grab Recovery: Sample Interval: Sediment Odor: none slight moderate strong	H2S Petroleum other: H2S Petroleum	Sheen: none trace slight moderate heavy Sheen: none trace slight moderate	Moisture: Dry Damp Moist Wet Moisture: Dry Damp Moist

Date/Time Lab Drop Off:

Recorded by	

Physical Description of Sediment Key

Visual Sediment Descriptions consist of the following:

Moisture content, density/consistency, color, minor constituent, MAJOR CONSTITUENT/GROUP NAME. Amount and shape of minor constituents (e.g., wood, shells). Biota. Sheen, odor, petroleum (as needed). Structure descriptions (as needed). Use parenthesis to denote interpretation (e.g., asphalt, glass).

Recovered and In-situ depths

Recovered = measured in the lab, actual sediment depth from core tube In situ = compaction-corrected

Sediment Description Terminology

	Se	ediment Description Terminology				
		1. Moisture Content				
Dry	Little perceptible moistu	re (upland only)				
Damp	Some perceptible moistu	Some perceptible moisture, probably below optimum (clays, core intervals at depth)				
Moist		Probably near optimum moisture content, no visible water (most sediment)				
Wet	Visible free water, proba					
wet		(Core Drive Penetration & Finger Pressure)				
	Z. Defisity	SAND or GRAVEL				
Density	Visual	Notes				
Very loose	freefall	May occur at the top of a core or grab				
Loose	easy penetration					
Medium dense	moderate penetra	ation Typically downcore due to compaction or compression				
Dense	hard penetrati	Bottom of a core, typical to glacial deposits				
Very dense	refusal					
		SILT or CLAY				
Consistency	Visual	Notes				
Very soft	freefall	Soupy				
Soft	easy penetration					
Medium stiff	moderate penetr					
Stiff	hard penetrati					
Very stiff/Hard	refusal	modeling clay (rolls to a ball)				
		3. Color and Shading				
	Example Colors	Shades				
	Black	Light Dark				
	yns (olive, yellow, red)	Very Dark				
Gray	ys (gray, olive brown)	4. Minor and MAJOR Group Name				
		Silt				
	Gravel Sand	Clay				
* MAJOR is written in all						
		constituent, except for trace				
	linor Constituents	Percent				
Tra	ace (clay, silt, etc.)*	0-5				
	ntly (clayey, silty, etc.)	5-15				
Claye	y, silty, sandy, gravelly	15-30				
Ve	ry (clayey, silty, etc.)	30-50				
	GROUP NAME	>50				
* For Trace minor consit	uents, place after MAJOR co	nstituent				
		Descriptors Rounding subrounded, subangular)				
Sand a	nd Gravel (I	orting poorly = many sizes, well = homogenous) Grain color				
		black, white, grey, yellow, etc.)				

Physical Description of Sediment Key

Other Minor C		ituents: % vol. (anthropogenics, etc.)* Percent
Tra		0-5
Occas		5-10
Moderate		10-30
Substantial		30-50
parate major from other mind	or constituents with "and."	
		6. Biota
		olorless, filamentous proteobacteria
	experience of the residence of the control of the c	grass, peat, worms, etc.
	7.	Odor Descriptions
		Trace
		Slight
		Moderate
		Strong
		Petroleum-like
	H₂S - like	e (Hydrogen sulfide - like)
		Septic - like
		8. Sheen
Amo	unt	Percent
None,	trace	<2
Slig	ht	2-15
Mode	erate	15-40
Moderate	to Heavy	40-70
Hea		>70
o odor or sheen observed unle	v.•	
		Description Terminology
Rainbow	Multicolored	
Metallic	Metallic gray-colored	
Florets	Semi-circular and flat (2	2-D)
Blebs	Semi-circular and sphere	
		9. Product
Oil Stained	Visible brown or black	stains on soil (fine grained soil)
Oil Coated	Visible brown or black	coating on soil (coarse grained soil)
0:11111	Math be been a block	oil wetting on soil. Oil appears as a liquid and is not held by soil grains (po
Oil Wetted	Visible brown or black o	on wetting on son. On appears as a riquid and is not held by son grains (po-
	HEREE TO BE THE PARTY OF THE PA	nd Other Sediment Descriptions
Blocky		oe broken down into smaller lumps
Decomposed	Visible sign of decompo	
Fresh	•	mposition or discoloration
Gummy	Cohesive, pliable soil w	ith high percentage of clay
Bed	Greater than 1/2" thick	(
Thin bed	Up to 1/2" thick	
Laminated beds	Thin beds (<1/2" thick)	lying between or alternating within a greater unit
Stratified beds	Beds (>1/2" thick) lying	between or alternating within a greater unit
Layer	A bed or thin bed of an	thropogenic material
Pockets	Semicircular to circular	inclusion/deposit
Winnowed	Loss of material that or	ccurred during coring
Anthropogenic	Debris originated from	human activity

Contacts: For C	Core Processing Only
@	Compositional change or presence of anthropogenic material
	Major unit change/non-discrete, gradational contact
	Major unit change/visually discrete, abrupt contact
	Minor unit change (competancy, color)
Notes	

*Classification of sediment on core logs is based on visual field observations which include density/consistency, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification method ASTM D-2488 for the description and identification of soils was used as an identification guide.

Appendix F Light Nonaqueous-Phase Liquid Recovery

Recovery Location(s)	Time Recovered		Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
, , , , , , , , , , , , , , , , , , , ,	From:	To:		
	Columb	oia River		
Columbia River	3/27/2017	3/27/2017	30.00	pads
Columbia River	3/27/2017	4/2/2017	22.75	booms, pads
Columbia River	4/4/2017	4/4/2017	0.62	pads
Columbia River	4/5/2017	4/5/2017	2.89	booms, pads
Columbia River	4/6/2017	4/6/2017	2.02	booms, pads
Columbia River	4/7/2017	4/7/2017	3.77	booms, pads
Columbia River	4/8/2017	4/8/2017	2.59	pads
Columbia River	4/9/2017	4/9/2017	1.28	pads
Columbia River	4/10/2017	4/10/2017	1.77	pads
Columbia River	4/11/2017	4/11/2017	2.49	pads
Columbia River	4/12/2017	4/12/2017	2.69	pads
Columbia River	4/13/2017	4/13/2017	1.94	pads
Columbia River	4/14/2017	4/14/2017	1.65	pads
Columbia River	4/15/2017	4/15/2017	3.52	pads
Columbia River	4/16/2017	4/16/2017	1.21	pads
Columbia River	4/17/2017	4/17/2017	3.62	pads
Columbia River	4/18/2017	4/18/2017	1.13	pads
Columbia River	4/19/2017	4/19/2017	0.91	pads
Columbia River	4/20/2017	4/20/2017	0.76	pads
Columbia River	4/21/2017	4/21/2017	0.79	pads
Columbia River	4/22/2017	4/22/2017	1.08	pads
Columbia River	4/23/2017	4/23/2017	0.77	pads
Columbia River	4/25/2017	4/25/2017	0.44	pads
Columbia River	4/27/2017	4/27/2017	1.05	pads
Columbia River	4/28/2017	4/28/2017	0.95	pads
Columbia River	4/29/2017	4/29/2017	0.54	pads
Columbia River	4/30/2017	4/30/2017	1.09	pads
Columbia River	5/1/2017	5/1/2017	0.30	pads
Columbia River	5/3/2017	5/3/2017	2.00	pads
Columbia River	5/5/2017	5/5/2017	1.74	pads
Columbia River	5/6/2017	5/6/2017	0.95	pads
Columbia River	5/7/2017	5/7/2017	0.94	pads
Columbia River	5/9/2017	5/9/2017	1.85	pads
Columbia River	5/10/2017	5/10/2017	1.85	pads
Columbia River	5/11/2017	5/11/2017	2.96	pads
Columbia River	5/12/2017	5/12/2017	1.46	pads
Columbia River	5/13/2017	5/13/2017	0.60	pads
Columbia River	5/14/2017	5/14/2017	0.53	pads
Columbia River	5/15/2017	5/15/2017	0.83	pads
Columbia River	5/16/2017	5/16/2017	0.48	pads
Columbia River	5/17/2017	5/17/2017	1.19	pads
Columbia River	5/18/2017	5/18/2017	1.99	pads
Columbia River	5/19/2017	5/19/2017	0.24	pads
Columbia River	5/20/2017	5/20/2017	1.33	pads
Columbia River	5/21/2017	5/21/2017	0.79	pads

Recovery Location(s)	Time Re	covered	Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
	From:	To:		Socks, or rumps
Columbia River	5/22/2017	5/22/2017	0.34	pads
Columbia River	5/31/2017	6/4/2017	0.41	pads
Columbia River	6/5/2017	6/5/2017	0.79	pads
Columbia River	5/25/2017	6/5/2017	1.24	boom
Columbia River	6/5/2017	6/6/2017	1.25	pads
Columbia River	6/6/2017	6/7/2017	0.10	pads
Columbia River	6/7/2017	6/8/2017	0.26	pads
Columbia River	6/8/2017	6/9/2017	0.40	pads
Columbia River	6/9/2017	6/10/2017	0.66	pads
Columbia River	6/10/2017	6/11/2017	0.30	pads
Columbia River	6/10/2017	6/11/2017	0.48	boom
Columbia River	6/11/2017	6/12/2017	1.70	pads
Columbia River	6/12/2017	6/13/2017	0.49	pads
Columbia River	6/18/2017	6/19/2017	0.82	pads
Columbia River	6/19/2017	6/20/2017	2.63	boom
Columbia River	6/19/2017	6/20/2017	0.94	pads
Columbia River	6/20/2017	6/21/2017	0.24	pads
Columbia River	6/20/2017	6/21/2017	0.30	boom
Columbia River	6/21/2017	6/22/2017	0.20	boom
Columbia River	6/21/2017	6/22/2017	0.46	pads
Columbia River	6/22/2017	6/23/2017	0.72	pads
Columbia River	6/23/2017	6/24/2017	0.06	pads
Columbia River	6/24/2017	6/25/2017	0.21	pads
Columbia River	6/25/2017	6/26/2017	0.53	pads
Columbia River	6/22/2017	6/26/2017	0.14	boom
Columbia River	6/26/2017	6/27/2017	0.08	pads
Columbia River	6/27/2017	6/28/2017	0.45	pads
Columbia River	6/26/2017	6/28/2017	0.72	boom
Columbia River	6/28/2017	6/29/2017	0.32	pads
Columbia River	6/29/2017	6/30/2017	1.47	boom
Columbia River	6/29/2017	6/30/2017	0.56	pads
Columbia River	6/30/2017	7/1/2017	0.30	pads
Columbia River	7/1/2017	7/2/2017	0.53	pads
Columbia River	7/1/2017	7/2/2017	0.68	boom
Columbia River	7/2/2017	7/3/2017	0.25	pads
Columbia River	7/3/2017	7/4/2017	0.14	pads
Columbia River	7/4/2017	7/5/2017	1.73	pads
Columbia River	7/4/2017	7/5/2017	0.81	boom
Columbia River	7/5/2017	7/6/2017	0.08	pads
Columbia River	7/6/2017	7/7/2017	0.31	pads
Columbia River	7/7/2017	7/8/2017	0.31	pads
Columbia River	7/8/2017	7/9/2017	0.41	pads
Columbia River	7/9/2017	7/10/2017	0.16	pads
Columbia River	7/10/2017	7/11/2017	0.22	pads
Columbia River	7/11/2017	7/13/2017	0.53	pads
Columbia River	7/13/2017	7/14/2017	0.11	pads

Recovery Location(s)	Time Re	covered	Volume (gallons) with Pade Socks, or	LNAPL Recovered with Pads, Booms,
,	From:	To:		
Columbia River	7/14/2017	7/15/2017		pads
Columbia River	7/15/2017	7/16/2017	0.29	pads
Columbia River	7/16/2017	7/17/2017	0.11	pads
Columbia River	7/18/2017	7/19/2017	0.06	pads
Columbia River	7/5/2017	7/19/2017	0.11	boom
Columbia River	7/19/2017	7/20/2017	0.13	pads
Columbia River	7/20/2017	7/21/2017	0.15	pads
Columbia River	7/21/2017	7/22/2017	0.18	pads
Columbia River	7/21/2017	7/23/2017	0.06	pads
Columbia River	7/19/2017	7/24/2017	0.35	boom
Columbia River	7/23/2017	7/24/2017	0.01	pads
Columbia River	7/24/2017	7/24/2017	0.06	pads
Columbia River	7/25/2017	7/26/2017	0.09	pads
Columbia River	7/26/2017	7/20/2017	0.15	pads
Columbia River	7/27/2017	7/28/2017	0.01	pads
Columbia River	7/24/2017	7/30/2017	0.00	boom
Columbia River	7/28/2017	7/30/2017	0.22	pads
Columbia River	7/30/2017	7/30/2017	0.12	pads
Columbia River	7/30/2017	8/1/2017	0.93	boom
Columbia River	7/30/2017	8/1/2017	0.93	pads
Columbia River	8/1/2017	8/2/2017	0.09	pads
Columbia River	8/1/2017	8/3/2017	0.09	boom
Columbia River	8/2/2017	8/3/2017	0.33	pads
Columbia River	8/3/2017	8/4/2017	0.14	pads
Columbia River	8/4/2017	8/5/2017	0.14	pads
Columbia River	8/3/2017	8/5/2017	0.30	boom
Columbia River	8/5/2017	8/6/2017	1.38	pads
Columbia River	8/6/2017	8/7/2017	0.19	pads
Columbia River	8/7/2017	8/8/2017	0.19	pads
Columbia River	8/5/2017	8/8/2017	0.18	•
Columbia River	8/8/2017	8/9/2017	0.06	boom
Columbia River			0.05	pads
	8/8/2017	8/10/2017	0.05	boom
Columbia River	8/9/2017	8/10/2017	+	pads
Columbia River	8/10/2017	8/11/2017	0.18	pads
Columbia River	8/11/2017	8/12/2017	0.15	pads
Columbia River	8/12/2017	8/13/2017	0.24	pads
Columbia River	8/13/2017	8/14/2017	0.26	pads
Columbia River	8/10/2017	8/14/2017	0.05	boom
Columbia River	8/14/2017	8/15/2017	0.06	pads
Columbia River	8/15/2017	8/16/2017	0.30	pads
Columbia River	8/16/2017	8/17/2017	0.39	pads
Columbia River	8/17/2017	8/18/2017	0.13	pads
Columbia River	8/18/2017	8/19/2017	0.06	pads
Columbia River	8/19/2017	8/20/2017	0.20	pads
Columbia River	8/8/2017	8/20/2017	0.07	boom
Columbia River	8/20/2017	8/21/2017	0.17	pads

	Time Recovered			LNAPL Recovered
	Time Re	coverea	Volume (gallons)	with Pads, Booms,
Recovery Location(s)		-		Socks, or Pumps ¹
California Discar	From:	To:	0.05	
Columbia River	8/21/2017	8/22/2017	0.05	pads
Columbia River	8/23/2017	8/23/2017	0.05	pads
Columbia River	8/24/2017	8/24/2017	0.03	pads
Columbia River	8/25/2017	8/25/2017	0.30	pads
Columbia River	8/26/2017	8/26/2017	0.07	pads
Columbia River	8/28/2017	8/28/2017	0.34	pads
Columbia River	8/29/2017	8/29/2017	0.18	pads
Columbia River	8/30/2017	8/30/2017	0.04	pads
Columbia River	8/20/2017	8/30/2017	0.46	boom
Columbia River	8/20/2017	8/31/2017	0.98	boom
Columbia River	9/1/2017	9/1/2017	0.22	pads
Columbia River	8/20/2017	9/1/2017	0.55	boom
Columbia River	9/2/2017	9/2/2017	0.13	pads
Columbia River	9/3/2017	9/3/2017	0.22	pads
Columbia River	8/30/2017	9/4/2017	1.30	boom
Columbia River	9/4/2017	9/4/2017	0.14	pads
Columbia River	9/5/2017	9/5/2017	0.37	pads
Columbia River	9/12/2017	9/12/2017	0.08	pads
Columbia River	8/20/2017	9/14/2017	0.24	boom
Columbia River	9/14/2017	9/14/2017	0.01	pads
Columbia River	9/15/2017	9/15/2017	0.20	pads
Columbia River	9/16/2017	9/16/2017	0.03	pads
Columbia River	9/17/2017	9/17/2017	0.22	pads
Columbia River	9/19/2017	9/19/2017	0.05	pads
Columbia River	9/20/2017	9/20/2017	0.03	pads
Columbia River	9/1/2017	9/21/2017	0.60	boom
Columbia River	9/1/2017	9/22/2017	0.76	boom
Columbia River	9/22/2017	9/22/2017	0.07	pads
Columbia River	9/25/2017	9/25/2017	0.11	pads
Columbia River	9/25/2017	10/1/2017	0.17	pads
Columbia River	unknown	10/2/2017	1.04	boom
Columbia River	10/2/2017	10/6/2017	0.25	pads
Columbia River	10/6/2017	10/31/2017	0.33	boom
Columbia River	11/31/17	11/29/2017	1.90	boom
Columbia River	10/31/2017	11/30/2017	3.38	boom
Columbia River	unknown	12/1/2017	0.37	pads
Columbia River	10/31/2017	12/3/2017	0.48	boom
Columbia River	unknown	12/5/2017	0.41	pads
Columbia River	12/5/2017	12/3/2017	0.58	pads
Columbia River	12/11/2017	12/16/2017	0.26	pads
Columbia River	12/11/2017	12/18/2017	0.51	pads
Columbia River	12/18/2017	12/20/2017	0.73	pads
Columbia River	12/18/2017	12/20/2017	0.73	pads
Columbia River	12/20/2017	12/23/2017	0.23	pads
Columbia River	12/22/2017	12/25/2017	0.34	pad
	12/22/2017	12/27/2017	0.10	
Columbia River	12/22/201/	12/2//201/	0.10	pads

Recovery Location(s)	Time Re	covered	Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
	From:	To:		Socks, or rumps
Columbia River	12/26/2017	12/28/2017	0.27	pads
Columbia River	12/28/2017	12/29/2017	0.28	pads
Columbia River	12/29/2017	12/30/2017	0.31	pads
Columbia River	12/30/2017	12/31/2017	0.18	pads
Columbia River	12/28/2017	1/1/2018	0.51	pads
Columbia River	1/1/2018	1/3/2018	0.42	pads
Columbia River	1/3/2018	1/4/2018	0.63	pads
Columbia River	1/4/2018	1/6/2018	1.11	pads
Columbia River	1/6/2018	1/7/2018	0.41	pads
Columbia River	1/7/2018	1/8/2018	0.04	sock
Columbia River	1/8/2018	1/9/2018	0.28	socks
Columbia River	1/9/2018	1/10/2018	0.54	pads
Columbia River	1/10/2018	1/11/2018	0.49	pads
Columbia River	1/11/2018	1/12/2018	0.81	pads
Columbia River	1/12/2018	1/13/2018	0.41	pads
Columbia River	1/13/2018	1/14/2018	0.19	pads
Columbia River	1/14/2018	1/15/2018	0.19	pads
Columbia River	1/15/2018	1/16/2018	0.63	pads
Columbia River	1/16/2018	1/17/2018	0.33	pads
Columbia River	unknown	1/18/2018	1.99	boom
Columbia River	1/18/2018	1/18/2018	0.11	pads
Columbia River	1/18/2018	1/19/2018	0.30	pads
Columbia River	1/19/2018	1/20/2018	0.13	pads
Columbia River	1/20/2018	1/22/2018	0.29	pads
Columbia River	1/22/2018	1/23/2018	0.98	pads
Columbia River	1/23/2018	1/24/2018	0.79	pads
Columbia River	1/24/2018	1/25/2018	0.40	pads
Columbia River	1/25/2018	1/26/2018	0.61	pads
Columbia River	1/26/2018	1/27/2018	0.22	pads
Columbia River	1/27/2018	1/28/2018	1.08	pads
Columbia River	1/28/2018	1/29/2018	0.02	pads
Columbia River	1/29/2018	1/30/2018	0.51	pads
Columbia River	1/30/2018	1/31/2018	0.15	pads
Columbia River	1/31/2018	2/1/2018	0.46	pads
Columbia River	2/1/2018	2/2/2018	0.38	pads
Columbia River	2/2/2018	2/3/2018	0.40	pads
Columbia River	2/3/2018	2/5/2018	0.59	pads
Columbia River	2/5/2018	2/7/2018	1.62	boom
Columbia River	2/7/2018	2/7/2018	0.36	pads
Columbia River	2/7/2018	2/9/2018	0.63	pads
Columbia River	2/9/2018	2/11/2018	0.68	pads
Columbia River	2/11/2018	2/13/2018	0.16	pads
Columbia River	2/13/2018	2/14/2018	0.05	pads
Columbia River	2/14/2018	2/15/2018	0.18	pads
Columbia River	2/15/2018	2/16/2018	0.19	pads
Columbia River	2/16/2018	2/17/2018	0.39	pads

Recovery Location(s)	Time Re	covered	Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
	From:	To:		Socks, or rumps
Columbia River	2/17/2018	2/19/2018	0.29	pads
Columbia River	2/19/2018	2/20/2018	0.71	pads
Columbia River	2/20/2018	2/21/2018	0.39	pads
Columbia River	2/21/2018	2/22/2018	0.13	pads
Columbia River	2/22/2018	2/24/2018	0.43	pads
Columbia River	2/24/2018	2/26/2018	0.29	pads
Columbia River	2/26/2018	2/27/2018	0.04	pads
Columbia River	2/27/2018	3/2/2018	0.15	pads
Columbia River	3/2/2018	3/5/2018	0.11	pads
Columbia River	3/5/2018	3/6/2018	0.14	pads
Columbia River	3/6/2018	3/7/2018	0.07	pads
Columbia River	3/7/2018	3/9/2018	0.20	pads
Columbia River	3/9/2018	3/14/2018	0.45	pads
Columbia River	3/14/2018	3/19/2018	0.05	pads
Columbia River	3/19/2018	3/20/2018	0.01	pads
Columbia River	3/20/2018	3/23/2018	0.25	pads
Columbia River	3/23/2018	3/24/2018	0.04	pads
Columbia River	3/24/2018	3/25/2018	0.03	pads
Columbia River	3/25/2018	3/26/2018	0.01	pads
Columbia River	3/26/2018	3/28/2018	0.10	pads
Columbia River	3/28/2018	3/29/2018	0.01	pads
Columbia River	3/29/2018	4/1/2018	0.01	pads
Columbia River	4/1/2018	4/3/2018	0.01	pads
Columbia River	4/3/2018	4/5/2018	0.01	pads
Columbia River	4/5/2018	4/6/2018	0.01	pads
Columbia River	4/6/2018	4/7/2018	0.01	pads
Columbia River	4/7/2018	4/9/2018	0.02	pads
Columbia River	4/9/2018	4/10/2018	0.01	pads
Columbia River	4/10/2018	4/11/2018	0.01	pads
Columbia River	4/11/2018	4/14/2018	0.17	pads
Columbia River	4/14/2018	4/16/2018	0.45	pads
Columbia River	4/16/2018	4/17/2018	0.15	pads
Columbia River	4/17/2018	4/18/2018	0.09	pads
Columbia River	4/18/2018	4/19/2018	0.29	pads
Columbia River	4/19/2018	4/20/2018	0.18	pads
Columbia River	4/20/2018	4/21/2018	0.02	pads
Columbia River	4/21/2018	4/22/2018	0.22	pads
Columbia River	4/22/2018	4/23/2018	0.24	pads
Columbia River	4/23/2018	4/24/2018	0.26	pads
Columbia River	4/24/2018	4/24/2018	2.84	socks
Columbia River	4/24/2018	4/25/2018	0.24	pads
Columbia River	4/25/2018	4/26/2018	0.34	pads
Columbia River	4/26/2018	4/27/2018	0.39	pads
Columbia River	4/27/2018	4/28/2018	0.22	pads
Columbia River	4/28/2018	4/29/2018	0.63	pads
Columbia River	4/29/2018	4/30/2018	0.02	pads

Recovery Location(s)	Time Recovered		Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
	From:	To:		
Columbia River	4/30/2018	5/1/2018	2.14	pads
Columbia River	4/30/2018	5/1/2018	0.07	pads
Columbia River	5/1/2018	5/2/2018	2.58	pads
Columbia River	5/2/2018	5/2/2018	0.23	pads
Columbia River	5/2/2018	5/3/2018	0.19	pads
Columbia River	5/3/2018	5/4/2018	0.20	pads
Columbia River	5/3/2018	5/4/2018	1.02	socks
Columbia River	5/4/2018	5/5/2018	0.04	pads
Columbia River	5/4/2018	5/5/2018	0.18	pads
Columbia River	5/5/2018	5/6/2018	0.04	pads
Columbia River	5/6/2018	5/7/2018	0.07	pads
Columbia River	5/7/2018	5/9/2018	0.26	pads
Columbia River	5/9/2018	5/10/2018	0.04	pads
Columbia River	5/10/2018	5/11/2018	0.18	pads
Columbia River	5/11/2018	5/15/2018	0.03	pads
Columbia River	5/15/2018	2/23/2018	0.32	pads
Columbia River	2/23/2018	5/25/2018	0.01	pads
Columbia River	5/25/2018	5/26/2018	0.13	pads
Columbia River	5/29/2018	6/3/2018	0.09	pads
Total Recovered from Columbia River	3/27/2017	9/5/2017	211.50	pads & booms

	Time Recovered		Volume (gallons)	LNAPL Recovered with Pads, Booms,
Recovery Location(s)			Gamens,	Socks, or Pumps ¹
	From:	To:		occine) or a compo
	Sump #1 Ne	ar Fuel Rack		
Sump #1	4/11/2017	4/11/2017	2.85	pads, booms
Sump #1	4/12/2017	4/12/2017	2.85	pads
Sump #1	4/13/2017	4/13/2017	1.21	pads
Sump #1	4/14/2017	4/14/2017	0.63	pads
Sump #1	4/15/2017	4/15/2017	0.73	boom
Sump #1	4/16/2017	4/16/2017	0.42	boom
Sump #1	4/18/2017	4/18/2017	0.42	pads
Sump #1	4/19/2017	4/19/2017	0.42	pads
Sump #1	4/20/2017	4/20/2017	0.05	pads
Sump #1	4/21/2017	4/21/2017	0.31	pads
Sump #1	4/23/2017	4/23/2017	0.05	pads
Sump #1	4/25/2017	4/25/2017	0.26	pads
Sump #1	4/26/2017	4/26/2017	0.50	pads
Sump #1	5/5/2017	5/5/2017	0.18	pads
Sump #1	5/6/2017	5/6/2017	0.16	pads
Sump #1	5/12/2017	5/12/2017	0.26	pads
Sump #1	5/14/2017	5/14/2017	0.16	pads
Sump #1	5/23/2017	6/2/2017	0.07	pads
Sump #1	6/2/2017	6/8/2017	0.19	pads
Sump #1	6/8/2017	6/12/2017	0.18	pads
Sump #1	8/9/2017	8/12/2017	0.02	pads
Sump #1	8/12/2017	8/16/2017	0.07	pads
Sump #1	8/16/2017	1/16/2018	0.42	pads
Total Recovered from Sump #1	4/11/2017	8/16/2017	12.41	pads

Recovery Location(s)	Time Recovered		Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
, , ,	From:	To:		occine, or remipe
	Sump #2 Near Ware	house Loading	Dock	
Sump #2	4/19/2017	4/19/2017	0.48	pads
Sump #2	4/20/2017	4/20/2017	0.05	pads
Sump #2	4/21/2017	4/21/2017	0.31	pads
Sump #2	4/22/2017	4/22/2017	0.05	pads
Sump #2	4/23/2017	4/23/2017	0.15	pads
Sump #2	4/24/2017	4/24/2017	0.58	pads
Sump #2	4/26/2017	4/26/2017	0.63	pads
Sump #2	5/2/2017	5/2/2017	0.36	pads
Sump #2	5/3/2017	5/3/2017	2.17	pads
Sump #2	5/5/2017	5/5/2017	0.18	pads
Sump #2	5/23/2017	6/22/2017	0.01	pads
Sump #2	6/22/2017	6/28/2017	0.16	pads
Sump #2	6/28/2017	7/5/2017	0.24	pads
Sump #2	7/5/2017	7/11/2017	0.33	pads
Sump #2	7/11/2017	7/15/2017	0.31	pads
Sump #2	7/15/2017	7/16/2017	0.14	pads
Sump #2	7/16/2017	7/18/2017	0.24	pads
Sump #2	7/18/2017	7/19/2017	0.26	pads
Sump #2	7/19/2017	7/20/2017	0.21	pads
Sump #2	7/20/2017	7/21/2017	0.20	pads
Sump #2	7/21/2017	7/22/2017	0.10	pads
Sump #2	7/22/2017	7/24/2017	0.20	pads
Sump #2	7/24/2017	7/25/2017	0.08	pads
Sump #2	7/25/2017	7/26/2017	0.11	pads
Sump #2	7/26/2017	7/28/2017	0.15	pads
Sump #2	7/28/2017	7/30/2017	0.03	pads
Sump #2	7/30/2017	8/1/2017	0.07	pads
Sump #2	8/1/2017	8/3/2017	0.20	pads
Sump #2	8/3/2017	8/4/2017	0.09	pads
Sump #2	8/4/2017	8/6/2017	0.09	pads
Sump #2	8/6/2017	8/7/2017	0.08	pads
Sump #2	8/7/2017	8/8/2017	0.09	pads
Sump #2	8/8/2017	8/9/2017	0.19	pads
Sump #2	8/9/2017	8/10/2017	0.15	pads
Sump #2	8/10/2017	8/11/2017	0.27	pads
Sump #2	8/11/2017	8/12/2017	0.04	pads
Sump #2	8/12/2017	8/13/2017	0.22	pads
Sump #2	8/13/2017	8/15/2017	0.46	pads
Sump #2	8/15/2017	8/16/2017	0.03	pads
Sump #2	8/16/2017	8/17/2017	0.05	pads
Sump #2	8/18/2017	8/19/2017	0.06	pads
Sump #2	8/19/2017	8/21/2017	0.04	pads
Sump #2	8/21/2017	8/22/2017	0.04	pads
Sump #2	8/22/2017	8/23/2017	0.04	pads
Sump #2	8/23/2017	8/24/2017	0.07	pads

Recovery Location(s)	Time Re	covered	Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
	From:	To:		ooms, or rumps
Sump #2	8/25/2017	8/26/2017	0.12	pads
Sump #2	8/26/2017	8/27/2017	0.07	pads
Sump #2	8/27/2017	8/28/2017	0.14	pads
Sump #2	8/28/2017	8/29/2017	0.07	pads
Sump #2	8/29/2017	8/29/2017	0.15	pads
Sump #2	8/29/2017	8/30/2017	0.14	pads
Sump #2	8/30/2017	8/31/2017	0.22	pads
Sump #2	8/31/2017	9/1/2017	0.23	pads
Sump #2	9/1/2017	9/2/2017	0.31	pads
Sump #2	9/2/2017	9/4/2017	0.18	pads
Sump #2	9/4/2017	9/5/2017	0.13	pads
Sump #2	9/5/2017	9/6/2017	0.13	pads
Sump #2	9/6/2017	9/6/2017	0.16	pads
Sump #2	9/11/2017	9/12/2017	0.13	pads
Sump #2	9/12/2017	9/13/2017	0.19	pads
Sump #2	9/13/2017	9/14/2017	0.24	pads
Sump #2	9/14/2017	9/15/2017	0.20	pads
Sump #2	9/15/2017	9/17/2017	0.24	pads
Sump #2	9/18/2017	9/18/2017	0.17	pads
Sump #2	9/18/2017	9/19/2017	0.13	pads
Sump #2	9/19/2017	9/20/2017	0.20	pads
Sump #2	9/20/2017	9/21/2017	0.12	pads
Sump #2	9/21/2017	9/22/2017	0.21	pads
Sump #2	9/22/2017	9/24/2017	0.30	pads
Sump #2	9/24/2017	9/25/2017	0.30	pads
Sump #2	9/25/2017	9/26/2017	0.17	pads
Sump #2	9/26/2017	9/27/2017	0.36	pads
Sump #2	9/27/2017	10/2/2017	0.31	pads
Sump #2	10/2/2017	10/3/2017	0.20	pads
Sump #2	10/3/2017	10/4/2017	0.17	pads
Sump #2	10/4/2017	10/5/2017	0.10	pads
Sump #2	10/5/2017	10/7/2017	0.10	pads
Sump #2	10/7/2017	10/9/2017	0.12	pads
Sump #2	10/9/2017	10/11/2017	0.17	pads
Sump #2	10/11/2017	10/13/2017	0.14	pads
Sump #2	10/13/2017	10/14/2017	0.23	pads
Sump #2	10/14/2017	10/15/2017	0.15	pads
Sump #2	10/15/2017	10/16/2017	0.10	pads
Sump #2	10/16/2017	10/17/2017	0.10	pads
Sump #2	10/17/2017	10/19/2017	0.18	pads
Sump #2	10/19/2017	10/20/2017	0.28	pads
Sump #2	10/20/2017	10/22/2017	0.32	pads
Sump #2	10/22/2017	10/23/2017	0.28	pads
Sump #2	10/23/2017	10/24/2017	0.30	pads
Sump #2	11/21/2017	12/5/2017	0.02	pads
Sump #2	12/5/2017	12/21/2017	0.03	pads

Recovery Location(s)	Time Re	Time Recovered		LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
	From:	To:		
Sump #2	12/21/2017	1/2/2018	0.08	pads
Sump #2	12/21/2017	1/12/2018	0.01	pads
Sump #2	1/12/2018	4/20/2018	0.15	pads
Sump #2	4/20/2018	6/1/2018	0.10	pads
Total Recovered from Sump #2	4/19/2017	6/1/2018	18.66	pads
	Sump #3 N	Near Office		
Sump #3	4/22/2017	4/22/2017	0.31	pads
Sump #3	4/23/2017	4/23/2017	0.36	pads
Sump #3	4/24/2017	4/24/2017	0.98	pads
Sump #3	4/26/2017	4/26/2017	0.05	pads
Sump #3	5/2/2017	5/2/2017	0.36	pads
Sump #3	5/3/2017	5/3/2017	1.22	pads
Total Recovered from Sump #3	4/22/2017	5/3/2017	3.28	pads

Recovery Location(s)	Time Re	covered	Volume (gallons)	LNAPL Recovered with Pads, Booms,
, , ,	From:	To:		
	Sump #4 South E	nd of Warehou	ise	
Sump #4	4/25/2017	4/25/2017	0.05	pads
Sump #4	4/26/2017	4/26/2017	0.05	pads
Sump #4	5/23/2017	6/21/2017	0.03	pads
Sump #4	12/15/2007	12/19/2017	0.13	pads
Sump #4	12/19/2017	6/1/2018	0.10	pads
Total Recovered from Sump #4	4/25/2017	6/1/2018	0.36	pads
	Sump #5 Near S	Storage Buildin	g	
Sump #5	5/27/2017	6/2/2017	0.07	pads
Sump #5	6/2/2017	6/3/2017	0.63	pads
Sump #5	6/3/2017	6/5/2017	0.24	pads
Sump #5	6/5/2017	6/6/2017	0.42	pads
Sump #5	6/6/2017	6/7/2017	0.53	pads
Sump #5	6/7/2017	6/8/2017	0.74	pads
Sump #5	6/8/2017	6/9/2017	0.57	pads
Sump #5	6/9/2017	6/10/2017	0.39	pads
Sump #5	6/10/2017	6/11/2017	0.34	pads
Sump #5	6/11/2017	6/12/2017	0.34	pads
Sump #5	6/12/2017	6/13/2017	0.48	pads
Sump #5	6/19/2017	6/20/2017	0.73	pads
Sump #5	6/20/2017	6/21/2017	0.19	pads
Sump #5	6/21/2017	6/22/2017	0.29	pads
Sump #5	6/22/2017	6/23/2017	0.55	pads
Sump #5	6/23/2017	6/24/2017	0.40	pads
Sump #5	6/24/2017	6/28/2017	0.36	pads
Sump #5	6/28/2017	6/29/2017	0.68	pads
Sump #5	6/29/2017	6/30/2017	1.36	pads
Sump #5	6/30/2017	7/2/2017	0.65	pads
Sump #5	7/2/2017	7/5/2017	0.38	pads
Sump #5	7/5/2017	7/12/2017	0.68	pads
Sump #5	7/12/2017	7/13/2017	0.69	pads
Sump #5	7/13/2017	7/14/2017	0.66	pads
Sump #5	7/14/2017	7/15/2017	1.11	pads
Sump #5	7/15/2017	7/16/2017	0.40	pads
Sump #5	7/16/2017	7/17/2017	0.66	pads
Sump #5	7/17/2017	7/18/2017	1.05	pads
Sump #5	7/18/2017	7/19/2017	0.42	pads
Sump #5	7/19/2017	7/20/2017	0.61	pads
Sump #5	7/20/2017	7/21/2017	0.46	pads
Sump #5	7/21/2017	7/22/2017	0.38	pads
Sump #5	7/22/2017	7/23/2017	0.11	pads
Sump #5	7/23/2017	7/24/2017	0.28	pads
Sump #5	7/24/2017	7/25/2017	0.57	pads
Sump #5	7/25/2017	7/26/2017	0.55	pads
Sump #5	7/26/2017	7/27/2017	0.53	pads
Sump #5	7/27/2017	7/28/2017	0.66	pads

	Time Recovered		Volume (gallons)	LNAPL Recovered with Pads, Booms,
Recovery Location(s)	Time Re	covered	Volume (gamons)	Socks, or Pumps ¹
Recovery Location(s)	From:	To:		Socks, or Pumps
Sump #5	7/28/2017	7/29/2017	0.46	pads
Sump #5	7/29/2017	7/30/2017	0.38	pads
Sump #5	7/30/2017	7/30/2017	0.32	pads
Sump #5	7/30/2017	8/1/2017	0.30	pads
Sump #5	8/1/2017	8/2/2017	0.63	pads
Sump #5	8/2/2017	8/3/2017	0.50	pads
Sump #5	8/3/2017	8/4/2017	0.34	pads
Sump #5	8/4/2017	8/6/2017	0.32	pads
Sump #5	8/6/2017	8/7/2017	0.14	pads
Sump #5	8/7/2017	8/9/2017	0.14	pads
Sump #5	8/9/2017	8/11/2017	0.35	pads
Sump #5	8/11/2017	8/11/2017	0.33	pads
Sump #5	8/11/2017	8/14/2017	0.20	pads
Sump #5	8/15/2017	8/15/2017	0.27	pads
Sump #5	8/15/2017	8/15/2017	0.06	pads
Sump #5	8/15/2017	8/16/2017	0.26	pads
Sump #5	8/16/2017	8/10/2017	0.30	pads
Sump #5	8/17/2017	8/17/2017	0.30	pads
•	8/18/2017	8/19/2017	0.21	pads
Sump #5	8/19/2017	8/20/2017	0.07	pads
Sump #5	8/20/2017	8/20/2017	0.26	pads
Sump #5	8/21/2017	8/22/2017	0.40	pads
Sump #5	8/22/2017	8/23/2017	0.39	-
Sump #5 Sump #5	8/23/2017	8/23/2017	0.39	pads
Sump #5	8/24/2017	8/25/2017	0.28	pads pads
Sump #5	8/25/2017	8/25/2017	0.05	pads
Sump #5	8/26/2017	8/27/2017	0.06	pads
Sump #5	8/27/2017	8/28/2017	0.08	pads
Sump #5	8/28/2017	8/30/2017	0.08	pads
Sump #5	8/30/2017	8/30/2017	0.20	pads
Sump #5	8/30/2017	8/31/2017	0.20	pads
Sump #5	8/30/2017	9/1/2017	0.21	pads
Sump #5	9/1/2017	9/2/2017	0.13	pads
Sump #5	9/2/2017	9/3/2017	0.14	pads
Sump #5	9/3/2017	9/6/2017	0.14	pads
Sump #5	9/11/2017	9/13/2017	0.20	pads
Sump #5	9/13/2017	9/15/2017	0.20	•
Sump #5	9/13/2017	9/13/2017	0.22	pads pads
	9/13/2017	9/17/2017		•
Sump #5	9/17/2017	9/19/2017	0.18	pads
Sump #5	9/19/2017	9/20/2017	0.10 0.22	pads
Sump #5			0.22	pads
Sump #5	9/21/2017	9/25/2017		pads
Sump #5	9/25/2017	9/27/2017	0.40	pads
Sump #5	9/25/2017 10/5/2017	10/5/2017	0.09	pads
Sump #5		10/9/2017	0.18	pads
Sump #5	10/9/2017	10/11/2017	0.09	pads

Recovery Location(s)	Time Recovered		Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
	From:	To:		
Sump #5	10/11/2017	10/13/2017	0.12	pads
Sump #5	10/13/2017	10/16/2017	0.10	pads
Sump #5	10/16/2017	10/18/2017	0.13	pads
Sump #5	10/18/2017	10/19/2017	0.13	pads
Sump #5	10/19/2017	10/20/2017	0.34	pads
Sump #5	10/20/2017	10/22/2017	0.28	pads
Sump #5	10/22/2017	10/23/2017	0.19	pads
Sump #5	10/23/2017	10/24/2017	0.48	pads
Sump #5	11/23/2017	12/5/2017	0.15	pads
Sump #5	12/5/2017	12/21/2017	0.08	pads
Sump #5	12/21/2017	1/11/2018	0.15	pads
Sump #5	12/21/2017	2/2/2018	0.10	pads
Sump #5	2/2/2018	2/21/2018	0.13	pads
Sump #5	2/21/2018	4/17/2018	0.71	pads
Total Recovered from Sump #5	5/27/2017	4/17/2018	34.14	pads

Recovery Location(s)	Time Recovered		Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
, , , ,	From:	To:		•
S	ump #6 on Northe	rn End of Ware	house	
Sump #6	7/18/2017	7/18/2017	0.99	pads
Sump #6	7/18/2017	7/18/2017	5.55	pump
Sump #6	7/18/2017	7/19/2017	0.78	pads
Sump #6	7/19/2017	7/20/2017	0.24	pads
Sump #6	7/20/2017	7/24/2017	0.01	pads
Sump #6	7/24/2017	7/30/2017	0.07	pads
Sump #6	7/30/2017	8/1/2017	0.05	pads
Sump #6	8/1/2017	8/9/2017	0.20	pads
Sump #6	8/9/2017	8/11/2017	0.09	pads
Sump #6	8/11/2017	8/12/2017	0.05	pads
Sump #6	8/12/2017	8/13/2017	0.07	pads
Sump #6	8/13/2017	8/14/2017	0.07	pads
Sump #6	8/14/2017	8/15/2017	0.21	pads
Sump #6	8/15/2017	8/16/2017	0.11	pads
Sump #6	8/16/2017	8/17/2017	0.11	pads
Sump #6	8/16/2017	8/17/2017	0.04	pads
Sump #6	8/17/2017	8/18/2017	0.05	pads
Sump #6	8/18/2017	8/19/2017	0.10	pads
Sump #6	8/19/2017	8/20/2017	0.15	pads
Sump #6	8/20/2017	8/23/2017	0.11	pads
Sump #6	8/23/2017	8/24/2017	0.06	pads
Sump #6	8/24/2017	8/24/2017	0.07	pads
Sump #6	8/24/2017	8/25/2017	0.07	pads
Sump #6	8/25/2017	8/26/2017	0.10	pads
Sump #6	8/26/2017	8/27/2017	0.08	pads
Sump #6	8/27/2017	8/28/2017	0.12	pads
Sump #6	8/28/2017	8/29/2017	0.02	pads
Sump #6	8/30/2017	8/31/2017	0.06	pads
Sump #6	8/31/2017	9/1/2017	0.10	pads
Sump #6	9/1/2017	9/3/2017	0.17	pads
Sump #6	9/3/2017	9/6/2017	0.16	pads
Sump #6	9/11/2017	9/13/2017	0.07	pads
Sump #6	9/13/2017	9/15/2017	0.13	pads
Sump #6	9/15/2017	9/17/2017	0.10	pads
Sump #6	9/17/2017	9/20/2017	0.15	pads
Sump #6	9/20/2017	9/24/2017	0.13	pads
Sump #6	9/24/2017	9/26/2017	0.09	pads
Sump #6	9/26/2017	9/27/2017	0.06	pads
Sump #6	9/26/2017	10/2/2017	0.22	pads
Sump #6	10/2/2017	10/3/2017	0.05	pads
Sump #6	10/3/2017	10/4/2017	0.03	pads
Sump #6	10/4/2017	10/4/2017	0.05	pads
Sump #6	10/6/2017	10/9/2017	0.03	pads
Sump #6	10/9/2017	10/3/2017	0.09	pads
Sump #6	10/13/2017	10/13/2017	0.09	pads

Recovery Location(s)	Time Re	Time Recovered		LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
	From:	To:		
Sump #6	10/16/2017	10/18/2017	0.20	pads
Sump #6	10/19/2017	10/20/2017	0.11	pads
Sump #6	10/20/2017	10/22/2017	0.48	pads
Sump #6	10/22/2017	10/24/2017	0.36	pads
Sump #6	11/22/2017	12/5/2017	0.19	pads
Sump #6	12/5/2017	12/21/2017	0.05	pads
Sump #6	12/5/2017	1/19/2018	0.26	pads
Sump #6	1/19/2018	4/17/2018	0.22	pads
Sump #6	4/17/2018	5/7/2018	0.04	pads
Total Recovered from Sump #6	7/18/2017	5/7/2018	13.57	pads & pump

Recovery Location(s)	Time Recovered		Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
, ,,	From:	To:		· '
	M\	N-6		
MW-6	6/16/2017	9/25/2017	0.09	sock
MW-6	9/30/2017	10/2/2017	0.11	sock
MW-6	10/2/2017	10/3/2017	0.19	sock
MW-6	10/3/2017	10/4/2017	0.08	sock
MW-6	10/4/2017	10/13/2017	0.04	sock
MW-6	10/13/2017	10/23/2017	0.10	sock
MW-6	10/23/2017	10/24/2017	0.10	sock
MW-6	10/24/2017	10/25/2017	0.10	sock
MW-6	10/25/2017	11/30/2017	0.08	sock
MW-6	11/30/2017	1/23/2018	0.03	sock
MW-6	1/23/2018	2/8/2018	0.01	sock
Total Recovered from MW-6	6/16/2017	2/8/2018	0.93	sock
	Monitoring	Well MW-8		
MW-8	4/13/2017	4/13/2017	1.86	pump
MW-8	5/4/2017	5/4/2017	1.62	pump
MW-8	5/5/2017	5/5/2017	0.68	pump
MW-8	5/6/2017	5/6/2017	0.57	pump
MW-8	5/7/2017	5/7/2017	0.51	pump
MW-8	5/8/2017	5/8/2017	0.67	pump
MW-8	5/10/2017	5/10/2017	1.12	pump
MW-8	5/11/2017	5/11/2017	0.79	pump
MW-8	5/12/2017	5/12/2017	0.56	pump
MW-8	5/13/2017	5/13/2017	0.79	pump
MW-8	5/14/2017	5/14/2017	0.34	pump
MW-8	5/15/2017	5/15/2017	0.34	pump
MW-8	5/16/2017	5/16/2017	0.34	pump
MW-8	5/17/2017	5/17/2017	0.11	pump
MW-8	5/18/2017	5/18/2017	0.11	pump
MW-8	5/20/2017	5/20/2017	0.07	socks
MW-8	5/21/2017	5/21/2017	0.08	socks
MW-8	5/22/2017	5/22/2017	0.03	socks
MW-8	5/29/2017	6/2/2017	0.10	socks
MW-8	6/2/2017	6/5/2017	0.06	sock
MW-8	6/2/2017	6/8/2017	0.05	sock
MW-8	6/18/2017	6/19/2017	0.12	sock
MW-8	6/19/2017	6/20/2017	0.11	sock
MW-8	6/20/2017	6/21/2017	0.21	sock
MW-8	6/21/2017	6/22/2017	0.15	sock
MW-8	6/22/2017	6/23/2017	0.13	sock
MW-8	6/23/2017	6/24/2017	0.09	sock
MW-8	6/24/2017	6/25/2017	0.10	sock
MW-8	6/25/2017	6/26/2017	0.08	sock
MW-8	6/26/2017	6/30/2017	0.08	sock
MW-8	6/30/2017	7/2/2017	0.09	sock
MW-8	7/2/2017	7/3/2017	0.11	sock

				LNAPL Recovered
	Time Re	Time Recovered		with Pads, Booms,
Recovery Location(s)				Socks, or Pumps ¹
	From:	To:		
MW-8	7/4/2017	7/5/2017	0.11	sock
MW-8	7/5/2017	7/6/2017	0.07	sock
MW-8	7/6/2017	7/10/2017	0.05	sock
MW-8	7/10/2017	7/14/2017	0.07	sock
MW-8	7/14/2017	7/15/2017	0.10	sock
MW-8	7/15/2017	7/16/2017	0.11	sock
MW-8	7/16/2017	7/17/2017	0.11	sock
MW-8	7/17/2017	7/17/2017	0.62	pump
MW-8	7/17/2017	7/18/2017	0.08	sock
MW-8	7/18/2017	7/21/2017	0.07	sock
MW-8	7/21/2017	7/27/2017	0.02	sock
MW-8	7/27/2017	8/11/2017	0.03	sock
MW-8	8/11/2017	9/11/2017	0.04	sock
MW-8	9/11/2017	9/26/2017	0.02	sock
MW-8	9/30/2017	10/2/2017	0.11	sock
MW-8	10/2/2017	10/3/2017	0.11	sock
MW-8	10/3/2017	10/4/2017	0.09	sock
MW-8	10/4/2017	10/5/2017	0.07	sock
MW-8	10/2/2017	12/6/2017	0.05	sock
MW-8	10/5/2017	1/10/2018	0.02	sock
MW-8	10/5/2017	1/24/2018	0.04	sock
MW-8	1/24/2018	2/22/2018	0.01	sock
MW-8	2/22/2018	3/13/2018	0.03	sock
MW-8	3/13/2018	4/18/2018	0.02	sock
Total Recovered from MW-8	4/13/2017	4/18/2018	14.12	pump & socks

Recovery Location(s)	Time Recovered		Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
, ,,	From:	To:		
	Monitoring	Well MW-9		
MW-9	5/2/2017	5/2/2017	3.00	pump
MW-9	5/4/2017	5/4/2017	3.58	pump
MW-9	5/5/2017	5/5/2017	1.80	pump
MW-9	5/6/2017	5/6/2017	0.56	pump
MW-9	5/7/2017	5/7/2017	0.28	pump
MW-9	5/8/2017	5/8/2017	2.70	pump
MW-9	5/9/2017	5/9/2017	4.14	pump
MW-9	5/10/2017	5/10/2017	3.82	pump
MW-9	5/11/2017	5/11/2017	1.46	pump
MW-9	5/12/2017	5/12/2017	1.80	pump
MW-9	5/13/2017	5/13/2017	1.57	pump
MW-9	5/14/2017	5/14/2017	1.12	pump
MW-9	5/15/2017	5/15/2017	0.45	pump
MW-9	5/16/2017	5/16/2017	0.67	pump
MW-9	5/17/2017	5/17/2017	0.67	pump
MW-9	5/18/2017	5/18/2017	0.45	pump
MW-9	5/19/2017	5/19/2017	0.45	pump
MW-9	5/20/2017	5/20/2017	0.35	sock
MW-9	5/21/2017	5/21/2017	0.21	sock
MW-9	5/22/2017	5/22/2017	0.26	sock
MW-9	6/2/2017	6/2/2017	0.32	sock
MW-9	6/3/2017	6/3/2017	0.16	sock
MW-9	6/4/2017	6/4/2017	0.21	sock
MW-9	6/5/2017	6/5/2017	0.24	sock
MW-9	6/5/2017	6/5/2017	0.11	sock
MW-9	6/5/2017	6/6/2017	0.34	pump
MW-9	6/7/2017	6/7/2017	0.25	sock
MW-9	6/8/2017	6/8/2017	0.36	sock
MW-9	6/8/2017	6/9/2017	0.09	sock
MW-9	6/9/2017	6/10/2017	0.10	sock
MW-9	6/10/2017	6/11/2017	0.11	sock
MW-9	6/11/2017	6/12/2017	0.10	sock
MW-9	6/12/2017	6/13/2017	0.11	sock
MW-9	6/13/2017	6/14/2017	0.12	sock
MW-9	6/19/2017	6/20/2017	0.11	sock
MW-9	6/20/2017	6/21/2017	0.21	sock
MW-9	6/21/2017	6/22/2017	0.19	sock
MW-9	6/22/2017	6/23/2017	0.15	sock
MW-9	6/23/2017	6/24/2017	0.08	sock
MW-9	6/24/2017	6/25/2017	0.08	sock
MW-9	6/25/2017	6/26/2017	0.18	sock
MW-9	6/26/2017	6/27/2017	0.18	sock
MW-9	6/27/2017	6/28/2017	0.16	sock
MW-9	6/29/2017	6/30/2017	0.10	sock
MW-9	6/30/2017	7/3/2017	0.07	sock

Recovery Location(s)	Time Re	covered	Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
, ,,	From:	To:		occino, or rumpo
MW-9	7/3/2017	7/7/2017	0.08	sock
MW-9	7/7/2017	7/17/2017	0.08	sock
MW-9	7/17/2017	7/23/2017	0.05	sock
MW-9	7/23/2017	7/27/2017	0.02	sock
MW-9	7/27/2017	8/11/2017	0.03	sock
MW-9	8/11/2017	8/23/2017	0.03	sock
MW-9	8/23/2017	9/11/2017	0.05	sock
MW-9	9/11/2017	9/26/2017	0.04	sock
MW-9	9/26/2017	10/24/2017	0.11	sock
MW-9	11/27/2017	12/6/2017	0.08	sock
MW-9	12/7/2017	12/8/2017	0.08	sock
MW-9	12/8/2017	12/9/2017	0.08	sock
MW-9	12/10/2017	12/10/2017	0.05	sock
MW-9	12/9/2017	12/10/2017	0.09	sock
MW-9	12/11/2017	12/11/2017	0.07	sock
MW-9	12/10/2017	12/11/2017	0.08	sock
MW-9	unknown	12/12/2017	0.13	pump
MW-9	12/12/2017	12/12/2017	0.06	sock
MW-9	12/11/2017	12/12/2017	0.09	sock
MW-9	12/12/2017	12/13/2017	0.04	sock
MW-9	unknown	12/12/2017	0.13	pump
MW-9	12/12/2017	12/12/2017	0.06	sock
MW-9	12/11/2017	12/12/2017	0.09	sock
MW-9	12/12/2017	12/13/2017	0.04	sock
MW-9	12/12/2017	12/14/2017	0.14	pump
MW-9	12/13/2017	12/14/2017	0.09	sock
MW-9	12/12/2017	12/15/2017	0.58	pump
MW-9	12/14/2017	12/15/2017	0.08	sock
MW-9	12/15/2017	12/16/2017	0.08	Sock
MW-9	12/16/2017	12/17/2017	0.07	sock
MW-9	12/15/2017	12/18/2017	0.06	pump
MW-9	12/17/2017	12/18/2017	0.07	sock
MW-9	12/18/2017	12/19/2017	0.23	pump
MW-9	12/18/2017	12/19/2017	0.17	sock
MW-9	12/19/2017	12/20/2017	0.38	pump
MW-9	12/19/2017	12/20/2017	0.09	sock
MW-9	12/20/2017	12/21/2017	0.07	sock
MW-9	12/20/2017	12/22/2017	0.22	pump
MW-9	12/21/2017	12/22/2017	0.07	sock
MW-9	12/22/2017	12/23/2017	0.08	sock
MW-9	12/23/2017	12/24/2017	0.07	sock
MW-9	12/24/2017	12/25/2017	0.08	sock
MW-9	12/26/2017	12/26/2017	0.08	sock
MW-9	12/25/2017	12/26/2017	0.08	sock
MW-9	12/26/2017	12/27/2017	0.05	sock
MW-9	12/22/2017	12/27/2017	0.13	pump

				LNAPL Recovered
	Time Recovered		Volume (gallons)	with Pads, Booms,
Recovery Location(s)				Socks, or Pumps ¹
, , , ,	From:	To:		
MW-9	12/27/2017	12/28/2017	0.08	sock
MW-9	12/28/2017	12/29/2017	0.08	sock
MW-9	12/27/2017	12/29/2017	0.16	pump
MW-9	12/29/2017	12/30/2017	0.07	sock
MW-9	12/30/2017	1/1/2018	0.09	sock
MW-9	12/29/2017	1/2/2018	0.34	pump
MW-9	1/1/2018	1/2/2018	0.09	sock
MW-9	1/2/2018	1/3/2018	0.10	sock
MW-9	1/3/2018	1/4/2018	0.09	sock
MW-9	1/2/2018	1/5/2018	0.05	pump
MW-9	1/4/2018	1/5/2018	0.08	sock
MW-9	1/5/2018	1/6/2018	0.05	sock
MW-9	1/6/2018	1/8/2018	0.33	pads
MW-9	1/8/2018	1/10/2018	0.10	sock
MW-9	1/10/2018	1/11/2018	0.11	sock
MW-9	1/11/2018	1/12/2018	0.11	sock
MW-9	1/12/2018	1/13/2018	0.11	sock
MW-9	1/13/2018	1/14/2018	0.10	sock
MW-9	1/14/2018	1/15/2018	0.10	sock
MW-9	1/15/2018	1/24/2018	0.03	sock
MW-9	1/24/2018	1/31/2018	0.13	sock
MW-9	1/31/2018	2/5/2018	0.07	sock
MW-9	2/5/2018	2/8/2018	0.03	sock
MW-9	2/8/2018	3/20/2018	0.05	sock
MW-9	3/20/2018	3/21/2018	0.07	sock
MW-9	3/21/2018	3/22/2018	0.06	sock
MW-9	3/22/2018	3/24/2018	0.05	sock
MW-9	3/24/2018	3/26/2018	0.06	sock
MW-9	3/26/2018	3/27/2018	0.06	sock
MW-9	3/27/2018	3/28/2018	0.07	sock
MW-9	3/28/2018	3/30/2018	0.05	sock
MW-9	3/30/2018	3/31/2018	0.08	sock
MW-9	3/31/2018	4/1/2018	0.06	sock
MW-9	4/1/2018	4/2/2018	0.08	sock
MW-9	4/2/2018	4/3/2018	0.06	sock
MW-9	4/3/2018	4/5/2018	0.07	sock
MW-9	4/5/2018	4/8/2018	0.08	sock
MW-9	4/8/2018	4/10/2018	0.06	sock
MW-9	4/10/2018	4/15/2018	0.05	sock
Total Recovered from MW-9	5/16/2017	4/15/2018	41.61	pump & socks

Recovery Location(s)	Time Recovered		Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹				
-	From:	To:						
Monitoring Well MW-10								
MW-10	7/4/2017	7/5/2017	0.15	sock				
MW-10	7/5/2017	7/6/2017	0.29	sock				
MW-10	7/6/2017	7/7/2017	0.24	sock				
MW-10	7/7/2017	7/10/2017	0.17	sock				
MW-10	7/10/2017	7/11/2017	0.19	sock				
MW-10	7/11/2017	7/12/2017	0.16	sock				
MW-10	7/12/2017	7/13/2017	0.14	sock				
MW-10	7/13/2017	7/14/2017	0.13	sock				
MW-10	7/14/2017	7/15/2017	0.07	sock				
MW-10	7/15/2017	7/16/2017	0.08	sock				
MW-10	7/16/2017	7/13/2017	0.09	sock				
MW-10	7/17/2017	7/17/2017	0.41	pump				
MW-10	7/17/2017	7/17/2017	0.07	sock				
MW-10	7/18/2017	7/18/2017	0.20	pump				
MW-10	7/18/2017	7/19/2017	0.05	sock				
MW-10	7/19/2017	7/19/2017	0.11	pump				
MW-10	7/19/2017	7/19/2017	0.09	sock				
MW-10	7/20/2017	7/20/2017	1.13	pump				
MW-10	7/20/2017	7/20/2017	0.09	sock				
MW-10	7/20/2017	7/21/2017	1.03					
MW-10	7/21/2017	7/21/2017	0.03	pump sock				
MW-10	7/22/2017	7/22/2017	0.03	sock				
MW-10	7/23/2017	7/23/2017	0.03	sock				
MW-10	7/24/2017	7/24/2017	0.62					
MW-10	7/24/2017	7/24/2017	0.07	pump sock				
MW-10	7/25/2017	7/25/2017	0.07					
				sock sock				
MW-10	7/25/2017	7/26/2017	0.07					
MW-10	7/26/2017	7/26/2017	1.23	pump				
MW-10	7/26/2017 7/27/2017	7/27/2017	0.07	sock				
MW-10		7/27/2017	0.82	pump				
MW-10	7/27/2017	7/27/2017	0.66	pump				
MW-10	7/27/2017	7/27/2017	0.04	sock				
MW-10	7/27/2017	7/28/2017	0.08	sock				
MW-10	7/28/2017	7/29/2017	0.09	sock				
MW-10	7/29/2017	7/30/2017	0.09	sock				
MW-10	7/30/2017	7/31/2017	0.10	sock				
MW-10	7/31/2017	8/1/2017	0.09	sock				
MW-10	8/1/2017	8/2/2017	0.11	sock				
MW-10	8/2/2017	8/3/2017	0.10	sock				
MW-10	8/3/2017	8/3/2017	0.08	sock				
MW-10	8/3/2017	8/4/2017	0.09	sock				
MW-10	8/4/2017	8/5/2017	0.09	sock				
MW-10	8/5/2017	8/6/2017	0.09	sock				
MW-10	8/6/2017	8/7/2017	0.11	sock				
MW-10	8/7/2017	8/8/2017	0.10	sock				

Recovery Location(s)		covered	Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
-	From:	To:		
MW-10	8/8/2017	8/9/2017	0.10	sock
MW-10	8/9/2017	8/11/2017	0.11	sock
MW-10	8/11/2017	8/11/2017	0.06	sock
MW-10	8/11/2017	8/13/2017	0.09	sock
MW-10	8/13/2017	8/14/2017	0.09	sock
MW-10	8/14/2017	8/14/2017	0.09	sock
MW-10	8/14/2017	8/14/2017	1.00	pump
MW-10	8/14/2017	8/15/2017	0.05	sock
MW-10	8/15/2017	8/15/2017	1.60	pump
MW-10	8/15/2017	8/15/2017	0.07	sock
MW-10	8/15/2017	8/16/2017	0.09	sock
MW-10	8/16/2017	8/16/2017	0.09	sock
MW-10	8/16/2017	8/17/2017	0.09	sock
MW-10	8/17/2017	8/17/2017	1.44	pump
MW-10	8/17/2017	8/17/2017	0.07	sock
MW-10	8/17/2017	8/18/2017	0.11	sock
MW-10	8/18/2017	8/18/2017	0.07	pump
MW-10	8/18/2017	8/18/2017	0.09	sock
MW-10	8/18/2017	8/19/2017	0.10	sock
MW-10	8/19/2017	8/20/2017	0.11	sock
MW-10	8/20/2017	8/21/2017	0.09	sock
MW-10	8/21/2017	8/21/2017	0.09	sock
MW-10	8/21/2017	8/21/2017	0.01	pump
MW-10	8/21/2017	8/22/2017	0.09	sock
MW-10	8/22/2017	8/22/2017	0.10	pump
MW-10	8/22/2017	8/22/2017	0.09	sock
MW-10	8/22/2017	8/23/2017	0.10	sock
MW-10	8/23/2017	8/23/2017	0.15	pump
MW-10	8/23/2017	8/23/2017	0.09	sock
MW-10	8/23/2017	8/24/2017	0.09	sock
MW-10	8/24/2017	8/24/2017	0.05	pump
MW-10	8/24/2017	8/24/2017	0.07	pads
MW-10	8/24/2017	8/25/2017	0.09	sock
MW-10	8/25/2017	8/25/2017	0.05	pump
MW-10	8/25/2017	8/25/2017	0.08	sock
MW-10	8/25/2017	8/26/2017	0.11	sock
MW-10	8/26/2017	8/27/2017	0.09	sock
MW-10	8/27/2017	8/28/2017	0.09	sock
MW-10	8/28/2017	8/28/2017	0.05	pump
MW-10	8/28/2017	8/28/2017	0.09	sock
MW-10	8/28/2017	8/29/2017	0.11	sock
MW-10	8/29/2017	8/29/2017	0.07	sock
MW-10	8/29/2017	8/30/2017	0.11	sock
MW-10	8/30/2017	8/30/2017	0.04	pump
MW-10	8/30/2017	8/31/2017	0.11	sock
MW-10	8/31/2017	9/1/2017	0.11	sock

Recovery Location(s)	Time Recovered on(s)		Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹
	From:	To:		-
1W-10	9/1/2017	9/1/2017	0.09	pump
1W-10	9/1/2017	9/1/2017	0.09	sock
1W-10	9/1/2017	9/2/2017	0.11	sock
1W-10	9/2/2017	9/3/2017	0.09	sock
1W-10	9/3/2017	9/4/2017	0.11	sock
1W-10	9/4/2017	9/5/2017	0.10	sock
1W-10	9/5/2017	9/5/2017	0.07	pump
1W-10	9/5/2017	9/5/2017	0.09	sock
1W-10	9/5/2017	9/6/2017	0.11	sock
1W-10	9/6/2017	9/6/2017	0.09	sock
1W-10	9/11/2017	9/12/2017	0.09	sock
1W-10	9/12/2017	9/12/2017	0.05	pump
1W-10	9/12/2017	9/12/2017	0.10	sock
1W-10	9/12/2017	9/13/2017	0.10	sock
1W-10	9/13/2017	9/13/2017	0.05	pump
1W-10	9/13/2017	9/13/2017	0.09	sock
1W-10	9/13/2017	9/14/2017	0.09	sock
1W-10	9/14/2017	9/14/2017	0.06	pump
1W-10	9/14/2017	9/14/2017	0.09	sock
1W-10	9/15/2017	9/15/2017	0.10	sock
1W-10	9/15/2017	9/15/2017	0.05	pump
1W-10	9/14/2017	9/15/2017	0.09	sock
1W-10	9/15/2017	9/17/2017	0.11	sock
1W-10	9/18/2017	9/18/2017	0.10	sock
1W-10	9/18/2017	9/18/2017	0.05	pump
1W-10	9/17/2017	9/18/2017	0.11	sock
1W-10	9/19/2017	9/19/2017	0.07	sock
1W-10	9/19/2017	9/19/2017	0.05	pump

Recovery Location(s)	Time Re	covered	Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹	
Recovery Location(s)	From:	To:			
MW-10	9/18/2017	9/19/2017	0.10	sock	
MW-10	9/20/2017	9/20/2017	0.02	pump	
MW-10	9/19/2017	9/20/2017	0.09	sock	
MW-10	9/20/2017	9/21/2017	0.09	sock	
MW-10	9/22/2017	9/22/2017	0.02	pump	
MW-10	9/21/2017	9/22/2017	0.11	sock	
MW-10	9/22/2017	9/24/2017	0.11	sock	
MW-10	9/25/2017	9/25/2017	0.05	pump	
MW-10	9/24/2017	9/25/2017	0.11	sock	
MW-10	9/25/2017	9/26/2017	0.11	sock	
MW-10	9/26/2017	9/27/2017	0.06	pads	
MW-10	9/27/2017	10/1/2017	0.11	sock	
MW-10	9/30/2017	10/2/2017	0.12	sock	
MW-10	10/2/2017	10/3/2017	0.18	sock	
MW-10	10/3/2017	10/4/2017	0.20	sock	
MW-10	10/4/2017	10/5/2017	0.10	sock	
MW-10	10/5/2017	10/6/2017	0.10	sock	
MW-10	10/6/2017	10/9/2017	0.09	sock	
MW-10	10/6/2017	10/10/2017	0.09	sock	
MW-10	10/10/2017	10/12/2017	0.10	sock	
MW-10	10/12/2017	10/13/2017	0.10	sock	
MW-10	10/13/2017	10/16/2017	0.05	sock	
MW-10	10/16/2017	10/17/2017	0.08	sock	
MW-10	10/17/2017	10/18/2017	0.09	sock	
MW-10	10/18/2017	10/19/2017	0.09	sock	
MW-10	10/19/2017	10/20/2017	0.16	sock	
MW-10	10/20/2017	10/23/2017	0.19	sock/pump	
MW-10	10/22/2017	10/24/2017	0.06	pump	
MW-10	11/29/2017	1/9/2018	0.03	sock	
MW-10	1/9/2018	2/8/2018	0.01	sock	
MW-10	2/8/2018	2/15/2018	0.06	sock	
MW-10	2/15/2018	3/20/2018	0.19	pump	
MW-10	3/20/2018	3/20/2018	0.09	sock	
MW-10	3/20/2018	3/21/2018	0.05	sock	
MW-10	3/21/2018	3/29/2018	0.03	sock	
MW-10	3/29/2018	3/31/2008	0.08	sock	
MW-10	3/31/2008	4/1/2018	0.09	sock	
MW-10	4/1/2018	4/15/2018	0.04	sock	
MW-10	begin pumping		12.81	pump	
MW-10		5/24/2018	1.88	pump	
MW-10		5/29/2018	0.24	pump	
Total Recovered from MW-10	7/4/2017	5/29/2018	38.39	pump, pads, & socks	

Recovery Location(s)	Time Re	covered	Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹				
	From:	To:						
Monitoring Well MW-11								
MW-11	6/8/2017	6/9/2017	0.28	socks				
MW-11	6/9/2017	6/10/2017	0.10	sock				
MW-11	6/10/2017	6/11/2017	0.08	sock				
MW-11	6/11/2017	6/13/2017	0.07	sock				
MW-11	7/18/2017	7/19/2017	0.08	sock				
MW-11	7/19/2017	8/4/2017	0.01	sock				
MW-11	10/6/2017	10/7/2017	0.09	sock				
MW-11	10/7/2017	10/8/2017	0.09	sock				
MW-11	10/8/2017	10/10/2017	0.11	sock				
MW-11	10/10/2017	10/12/2017	0.10	sock				
MW-11	10/12/2017	10/23/2017	0.11	sock				
MW-11	10/23/2017	10/24/2017	0.11	sock				
MW-11	10/24/2017	10/25/2017	0.10	sock				
MW-11	11/22/2017	1/2/2018	0.03	sock				
MW-11	1/2/2018	1/23/2018	0.03	sock				
MW-11	1/23/2018	2/8/2018	0.01	sock				
MW-11	2/8/2018	2/25/2018	0.05	sock				
MW-11	2/25/2018	3/11/2018	0.04	sock				
Total Recovered from MW-11	6/8/2017	3/11/2018	1.49	sock				

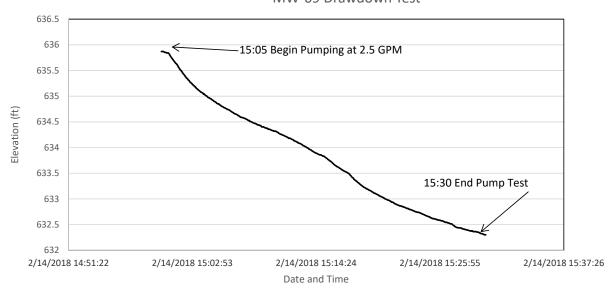
				LNAPL Recovered
	Time Re	covered	Volume (gallons)	with Pads, Booms,
Recovery Location(s)				Socks, or Pumps ¹
	From:	To:		
	Monitoring	g Well BH-1		
BH-1	7/4/2017	7/7/2017	0.03	sock
BH-1	7/7/2017	7/10/2017	0.04	sock
BH-1	7/10/2017	7/12/2017	0.04	sock
BH-1	7/12/2017	7/20/2017	0.07	sock
BH-1	7/20/2017	7/23/2017	0.01	sock
BH-1	7/23/2017	9/26/2017	0.02	sock
BH-1	9/26/2017	12/8/2017	0.07	sock
BH-1	12/8/2017	2/8/2018	0.01	sock
BH-1	2/8/2018	3/3/2018	0.09	sock
BH-1	3/3/2018	3/4/2018	0.08	sock
BH-1	3/4/2018	3/5/2018	0.09	sock
BH-1	3/5/2018	3/9/2018	0.06	sock
BH-1	3/9/2018	3/10/2018	0.09	sock
BH-1	3/12/2018	3/12/2018	0.31	pump
BH-1	3/10/2018	3/12/2018	0.08	sock
BH-1	3/12/2018	3/12/2018	0.11	sock
BH-1	3/12/2018	3/13/2018	0.08	sock
BH-1	3/14/2018	3/14/2018	0.09	pump
BH-1	3/13/2018	3/14/2018	0.07	sock
BH-1	3/14/2018	3/14/2018	0.09	sock
BH-1	3/14/2018	3/15/2018	0.08	sock
BH-1	3/15/2018	3/16/2018	0.07	sock
BH-1	3/16/2018	4/14/2018	0.09	sock
BH-1	4/14/2018	4/15/2018	0.08	sock
BH-1	4/15/2018	4/16/2018	0.07	sock
BH-1	4/16/2018	4/20/2018	0.04	sock
Total Recovered from BH-1	7/4/2017	4/20/2018	1.96	sock
		Well BH-2		
BH-2	5/20/2017	5/20/2017	0.18	socks
BH-2	5/21/2017	5/21/2017	0.08	socks
BH-2	5/22/2017	5/22/2017	0.03	socks
BH-2	5/23/2017	6/2/2017	0.03	sock
BH-2	6/2/2017	6/5/2017	0.02	sock
BH-2	6/5/2017	6/12/2017	0.08	sock
BH-2	6/18/2017	6/22/2017	0.03	sock
BH-2	6/22/2017	7/23/2017	0.02	sock
BH-2	7/23/2017	9/26/2017	0.01	sock
BH-2	10/31/2017	1/2/2018	0.03	sock
BH-2	1/2/2018	2/8/2018	0.01	sock
BH-2	2/8/2018	2/26/2018	0.01	sock
Total Recovered from BH-2	6/18/2017	2/26/2018	0.52	sock

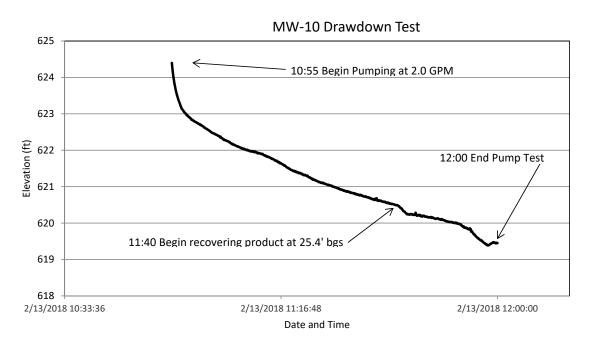
Appendix F

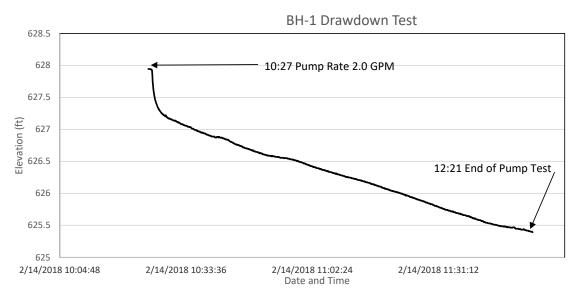
Coleman Oil Wenatchee, Washington

Recovery Location(s)	Time Re	covered	Volume (gallons)	LNAPL Recovered with Pads, Booms, Socks, or Pumps ¹					
	From:	To:		•					
Oil-Water Separator									
Oil-water separator	4/24/2017	4/24/2017	4.11	pump					
Oil-water separator	7/23/2017	7/24/2017	0.82	pump					
Oil-water separator	7/24/2017	7/24/2017	0.62	pump					
Oil-water separator	7/25/2017	7/25/2017	1.18	pump					
Oil-water separator	7/24/2017	8/14/2017	0.02	sock					
Oil-water separator	8/23/2017	8/23/2017	0.05	pump					
Oil-water separator	8/25/2017	8/25/2017	0.12	pump					
Oil-water separator	8/25/2017	8/25/2017	0.05	pads					
Oil-water separator	8/28/2017	8/28/2017	0.07	pump					
Oil-water separator	8/29/2017	8/29/2017	0.02	pump					
Oil-water separator	8/29/2017	8/29/2017	0.05	pads					
Oil-water separator	8/30/2017	8/30/2017	0.02	pump					
Oil-water separator	9/5/2017	9/5/2017	0.05	pump					
Oil-water separator	9/18/2017	9/18/2017	0.10	pads					
Oil-water separator	10/3/2017	10/6/2017	0.12	pads					
Oil-water separator	11/30/2017	12/13/2017	0.12	pads					
Oil-water separator	12/13/2017	12/18/2017	0.13	pads					
Oil-water separator	12/18/2017	12/23/2017	0.20	pads					
Oil-water separator	12/23/2017	1/3/2018	0.09	pads					
Oil-water separator	1/3/2018	1/15/2018	0.42	pads					
Oil-water separator	1/15/2018	1/20/2018	0.17	pads					
Oil-water separator	1/20/2018	1/25/2018	0.18	pads					
Oil-water separator	1/25/2018	2/1/2018	0.06	pads					
Oil-water separator	2/1/2018	2/6/2018	0.14	pads					
Oil-water separator	2/6/2018	2/15/2018	0.57	pads					
Oil-water separator	2/15/2018	2/16/2018	0.27	pads					
Oil-water separator	2/16/2018	2/21/2018	0.92	pads					
Oil-water separator	2/21/2018	2/27/2018	0.17	pads					
Oil-water separator	2/27/2018	3/17/2018	0.30	pads					
Oil-water separator	3/17/2018	4/12/2018	0.23	pads					
Total Recovered from Oil-Water Separat	4/24/2017	9/5/2017	11.37						
Total Recovered LNAPL	3/27/2017	6/3/2018	404.30						

¹The quantity of LNAPL recovered by sorbent material in gallons was determined by subtracting the total Ecology = Washington State Department of Ecology weight of oiled sorbent material from the total weight of pre-oiled sorbent material, assuming 25%percent as water content. This process complies with requirements of Washington Administrative Code


LNAPL = light nonaqueous-phase liquid


Appendix G Draw Down Plots



Appendix G Draw Down Plots Wenatchee, Washington

MW-09 Drawdown Test

Appendix H Laboratory Analytical Reports

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, April 11, 2018

Craig Hultgren HydroCon LLC 510 Allen St. Suite B Kelso, WA 98626

RE: Coleman Wenatchee / 2017-074

Enclosed are the results of analyses for work order <u>A8D0007</u>, which was received by the laboratory on 3/31/2018 at 11:35:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerichini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION Sample ID Laboratory ID Matrix **Date Sampled Date Received** HC01-4.5 A8D0007-01 Soil 03/28/18 09:00 03/31/18 11:35 HC01-10 A8D0007-02 Soil 03/28/18 10:05 03/31/18 11:35 HC01-15 A8D0007-03 Soil 03/28/18 10:10 03/31/18 11:35 HC01-22 A8D0007-04 Soil 03/28/18 10:50 03/31/18 11:35 HC01-34 A8D0007-05 Soil 03/28/18 11:50 03/31/18 11:35 A8D0007-06 Soil 03/28/18 15:50 HC02-10 03/31/18 11:35 HC02-15 A8D0007-07 Soil 03/28/18 15:55 03/31/18 11:35 A8D0007-08 Soil 03/28/18 16:45 03/31/18 11:35 HC02-22 MW23-05 A8D0007-09 Soil 03/29/18 08:45 03/31/18 11:35 03/29/18 08:55 MW23-08 A8D0007-10 Soil 03/31/18 11:35 MW23-12 A8D0007-11 Soil 03/29/18 09:20 03/31/18 11:35 MW23-22 A8D0007-12 Soil 03/29/18 10:05 03/31/18 11:35 MW13-5 A8D0007-13 Soil 03/29/18 15:20 03/31/18 11:35 MW13-10 A8D0007-14 Soil 03/29/18 16:05 03/31/18 11:35 MW13-12 A8D0007-15 Soil 03/29/18 16:35 03/31/18 11:35 MW13-21 A8D0007-16 Soil 03/29/18 17:20 03/31/18 11:35 MW13-35 A8D0007-17 Soil 03/29/18 18:20 03/31/18 11:35 MW13-45 A8D0007-18 Soil 03/30/18 08:40 03/31/18 11:35 MW14-05 A8D0007-19 Soil 03/30/18 15:25 03/31/18 11:35 MW14-10 A8D0007-20 Soil 03/30/18 15:30 03/31/18 11:35 MW14-15 A8D0007-21 Soil 03/30/18 18:05 03/31/18 11:35 MW99-15 A8D0007-22 Soil 03/30/18 18:10 03/31/18 11:35

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx								
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
HC01-4.5 (A8D0007-01)			Matrix: Soi		tch: 804040			
Diesel	ND		25.0	mg/kg dry	1	04/04/18 20:51	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		i	Recovery: 77 %	Limits: 50-150 %	"	"	"	
HC01-10 (A8D0007-02)			Matrix: Soi	l Ba	tch: 804040	65		
Diesel	4680		216	mg/kg dry	10	04/04/18 21:12	NWTPH-Dx	F-13
Oil	ND		433	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	ecovery: 100 %	Limits: 50-150 %	"	"	"	S-05
HC01-15 (A8D0007-03)			Matrix: Soi	l Ba	tch: 804040	65		
Diesel	ND		25.0	mg/kg dry	1	04/04/18 21:53	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		i	Recovery: 72 %	Limits: 50-150 %	"	"	"	
HC01-22 (A8D0007-04)			Matrix: Soi	I Ba	tch: 804040	65		
Diesel	104		25.0	mg/kg dry	1	04/04/18 22:14	NWTPH-Dx	F-13, F-15
Oil	80.3		50.0	"	"	"	"	F-03, F-16
Surrogate: o-Terphenyl (Surr)		i	Recovery: 83 %	Limits: 50-150 %	"	"	"	
HC01-34 (A8D0007-05)			Matrix: Soi	l Ba	tch: 804040	65		
Diesel	38.6		25.0	mg/kg dry	1	04/04/18 22:35	NWTPH-Dx	F-13
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		i	Recovery: 92 %	Limits: 50-150 %	"	"	"	
HC02-10 (A8D0007-06)			Matrix: Soi	l Ba	tch: 804040	65		
Diesel	ND		25.0	mg/kg dry	1	04/04/18 22:56	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		i	Recovery: 85 %	Limits: 50-150 %	"	"	"	
HC02-15 (A8D0007-07)			Matrix: Soi	I Ba	tch: 804040	65		
Diesel	ND		25.0	mg/kg dry	1	04/04/18 23:16	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		i	Recovery: 92 %	Limits: 50-150 %	"	п	"	
HC02-22 (A8D0007-08)			Matrix: Soi	l Ba	tch: 804040	65		
Diesel	26.6		25.0	mg/kg dry	1	04/04/18 23:37	NWTPH-Dx	F-13
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 88 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

		Diesel ar	nd/or Oil Hy	drocarbons by	NWTPH-D	x		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW23-05 (A8D0007-09)			Matrix: So	il B	atch: 80404	65		
Diesel	29.7		25.0	mg/kg dry	1	04/05/18 01:21	NWTPH-Dx	F-13
Oil	65.2		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Rec	covery: 104 %	Limits: 50-150 %	"	"	"	
MW23-08 (A8D0007-10)			Matrix: So	il B	atch: 80404	65		
Diesel	586		25.0	mg/kg dry	1	04/05/18 01:42	NWTPH-Dx	F-11, F-15
Oil	112		50.0	"	"	"	"	F-16
Surrogate: o-Terphenyl (Surr)		R	ecovery: 93 %	Limits: 50-150 %	"	"	"	
MW23-12 (A8D0007-11)			Matrix: So	il B	atch: 80404	65		
Diesel	63.3		25.0	mg/kg dry	1	04/05/18 02:02	NWTPH-Dx	F-11
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	ecovery: 72 %	Limits: 50-150 %	"	"	"	
MW23-22 (A8D0007-12)			Matrix: So	il B	atch: 80404	65		
Diesel	ND		25.0	mg/kg dry	1	04/05/18 02:23	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Rec	covery: 100 %	Limits: 50-150 %	"	"	"	
MW13-5 (A8D0007-13)			Matrix: So	il B	atch: 80404	34		
Diesel	1700		98.7	mg/kg dry	5	04/04/18 23:25	NWTPH-Dx	F-15
Oil	5310		197	"	"	"	"	F-16
Surrogate: o-Terphenyl (Surr)		Rec	covery: 120 %	Limits: 50-150 %	"	"	"	
MW13-10 (A8D0007-14)			Matrix: So	il B	atch: 80404	34		
Diesel	2290		25.0	mg/kg dry	1	04/05/18 00:24	NWTPH-Dx	F-13
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	covery: 111 %	Limits: 50-150 %	"	"	п	
MW13-12 (A8D0007-15)			Matrix: So	il B	atch: 80404	34		
Diesel	ND		25.0	mg/kg dry	1	04/05/18 00:44	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)	<u> </u>	R	ecovery: 91 %	Limits: 50-150 %	"	"	"	
MW13-21 (A8D0007-16)			Matrix: So	il B	atch: 80404	34		
Diesel	90.9		25.0	mg/kg dry	1	04/05/18 01:04	NWTPH-Dx	F-13, F-15
Oil	209		50.0	"	"	"	"	F-03, F-16
Surrogate: o-Terphenyl (Surr)		R	ecovery: 97 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

		Diesel an	d/or Oil Hy	drocarbons by I	WTPH-D	x		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW13-35 (A8D0007-17)			Matrix: So	il Ba	tch: 80404	34		
Diesel	ND		25.0	mg/kg dry	1	04/05/18 01:24	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 88 %	Limits: 50-150 %	"	"	"	
MW13-45 (A8D0007-18)			Matrix: So	il Ba	tch: 80404	34		
Diesel	ND		25.0	mg/kg dry	1	04/05/18 01:43	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 93 %	Limits: 50-150 %	"	"	"	
MW14-05 (A8D0007-19)			Matrix: So	il Ba	tch: 80404	34		
Diesel	ND		25.0	mg/kg dry	1	04/05/18 02:03	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Rec	covery: 105 %	Limits: 50-150 %	"	"	"	
MW14-10 (A8D0007-20)			Matrix: So	il Ba	tch: 80404	34		
Diesel	50.2		25.0	mg/kg dry	1	04/05/18 02:23	NWTPH-Dx	F-13
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 92 %	Limits: 50-150 %	"	"	"	
MW14-15 (A8D0007-21)			Matrix: So	il Ba	tch: 80404	34		
Diesel	447		25.0	mg/kg dry	1	04/05/18 02:43	NWTPH-Dx	F-13
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Rec	covery: 105 %	Limits: 50-150 %	"	"	"	
MW99-15 (A8D0007-22)			Matrix: So	il Ba	tch: 80404	34		
Diesel	328		25.0	mg/kg dry	1	04/04/18 22:46	NWTPH-Dx	F-13
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		Re	ecovery: 82 %	Limits: 50-150 %	"	n .	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

Gaso	oline Rang	e Hydroca	arbons (Ben	zene through N	aphthalen	e) by NWTPH-G	<u> </u>	
Analyte	Result	MDL	Reporting Limit	TT '4	Dilution	Date Analyzed	Method	Notes
HC01-4.5 (A8D0007-01)	Resuit	MIDL	Matrix: Soi	Units Ba	tch: 804037		Memou	notes
Gasoline Range Organics	ND		5.70	mg/kg dry	50	04/02/18 16:26	NWTPH-Gx (MS)	
	ND					04/02/18 10.20	nw ifii-Ox (MS)	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Re	ecovery: 105 % 100 %	Limits: 50-150 % Limits: 50-150 %	1 "	"	"	
HC01-10 (A8D0007-02)			Matrix: Soi		tch: 804037			
Gasoline Range Organics	671		51.8	mg/kg dry	500	04/02/18 17:20	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 138 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			101 %	Limits: 50-150 %	"	"	"	
HC01-15 (A8D0007-03)			Matrix: So	il Ba	tch: 804037	72		
Gasoline Range Organics	ND		4.25	mg/kg dry	50	04/02/18 17:47	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 114 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			101 %	Limits: 50-150 %	"	"	"	
HC01-22 (A8D0007-04)			Matrix: Soi	il Ba	tch: 804037	72		
Gasoline Range Organics	7.99		6.33	mg/kg dry	50	04/02/18 18:13	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 115 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
HC01-34 (A8D0007-05)			Matrix: Soi	il Ba	tch: 804037	72		
Gasoline Range Organics	ND		5.53	mg/kg dry	50	04/02/18 18:40	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 115 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
HC02-10 (A8D0007-06)			Matrix: So	il Ba	tch: 804037	72		
Gasoline Range Organics	ND		7.66	mg/kg dry	50	04/02/18 19:07	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Ré	ecovery: 109 %	Limits: 50-150 %	1	"	п	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	n .	
HC02-15 (A8D0007-07)			Matrix: Soi	il Ba	tch: 804039	99		
Gasoline Range Organics	37.7		5.13	mg/kg dry	50	04/03/18 11:03	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 139 %	Limits: 50-150 %	1	"	п	
1,4-Difluorobenzene (Sur)			103 %	Limits: 50-150 %	"	"	n .	
HC02-22 (A8D0007-08)			Matrix: Soi	il Ba	tch: 804039	99		
Gasoline Range Organics	9.26		4.92	mg/kg dry	50	04/03/18 11:30	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 122 %	Limits: 50-150 %	1	"	п	
1,4-Difluorobenzene (Sur)			104 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

			`		•	e) by NWTPH-G		
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
MW23-05 (A8D0007-09)			Matrix: So		tch: 80403		monoa	110103
Gasoline Range Organics	ND		4.63	mg/kg dry	50	04/03/18 12:23	NWTPH-Gx (MS)	
	IND					"	"	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Re	ecovery: 110 % 104 %	Limits: 50-150 % Limits: 50-150 %	1	"	"	
			Matrix: So		tch: 80403	00		
MW23-08 (A8D0007-10) Gasoline Range Organics	116		5.04	mg/kg dry	50	04/03/18 12:50	NWTPH-Gx (MS)	
	110					04/03/18 12.30	" "	
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Re	covery: 179 % 104 %	Limits: 50-150 % Limits: 50-150 %	1 "	"	"	S-08
MW23-12 (A8D0007-11)	127		Matrix: So		tch: 80403		MUTDI C 240	
Gasoline Range Organics	127		5.77	mg/kg dry	50	04/03/18 13:17	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 191 %	Limits: 50-150 %	1	"	"	S-08
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
MW23-22 (A8D0007-12)			Matrix: So	il Ba	tch: 80403			
Gasoline Range Organics	ND		6.69	mg/kg dry	50	04/03/18 13:44	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 112 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			102 %	Limits: 50-150 %	"	"	"	
MW13-5 (A8D0007-13RE1)			Matrix: So	il Ba	tch: 80403	99		
Gasoline Range Organics	580		65.9	mg/kg dry	500	04/03/18 18:14	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 118 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			104 %	Limits: 50-150 %	"	"	"	
MW13-10 (A8D0007-14RE1)			Matrix: So	il Ba	tch: 80403	99		
Gasoline Range Organics	3360		107	mg/kg dry	1000	04/03/18 19:07	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 155 %	Limits: 50-150 %	1	"	"	S-08
1,4-Difluorobenzene (Sur)			108 %	Limits: 50-150 %	"	"	"	
MW13-12 (A8D0007-15)			Matrix: So	il Ba	tch: 80403	99		
Gasoline Range Organics	12.1		5.12	mg/kg dry	50	04/03/18 15:05	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 114 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			103 %	Limits: 50-150 %	"	"	"	
MW13-21 (A8D0007-16)			Matrix: So	il Ba	tch: 80403	99		
Gasoline Range Organics	22.5		4.99	mg/kg dry	50	04/03/18 15:32	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 117 %	Limits: 50-150 %	1	11	n .	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

Gaso	line Rang	e Hydrocai	bons (Ben	zene through N	aphthalen	e) by NWTPH-G	x	
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW13-35 (A8D0007-17)			Matrix: So	il Ba	tch: 804039	99		
Gasoline Range Organics	ND		5.16	mg/kg dry	50	04/03/18 16:26	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 115 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW13-45 (A8D0007-18)			Matrix: So	il Ba	tch: 80403	99		
Gasoline Range Organics	ND		7.12	mg/kg dry	50	04/03/18 16:53	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 110 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
MW14-05 (A8D0007-19)			Matrix: So	il Ba	atch: 804030	63		
Gasoline Range Organics	ND		4.74	mg/kg dry	50	04/02/18 18:41	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 104 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			96 %	Limits: 50-150 %	"	"	"	
MW14-10 (A8D0007-20)			Matrix: So	il Ba	atch: 804030	63		
Gasoline Range Organics	171		4.86	mg/kg dry	50	04/02/18 19:08	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 142 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			107 %	Limits: 50-150 %	"	"	"	
MW14-15 (A8D0007-21RE1)			Matrix: So	il Ba	atch: 804040	01		
Gasoline Range Organics	465		50.9	mg/kg dry	500	04/03/18 13:33	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 109 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
MW99-15 (A8D0007-22)			Matrix: So	il Ba	atch: 804030	63		
Gasoline Range Organics	787		20.3	mg/kg dry	200	04/02/18 20:02	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 134 %	Limits: 50-150 %	1	n n	II.	
1,4-Difluorobenzene (Sur)			107 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighinic

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

		BT	EX Compo	unds by EPA 82	60C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
HC01-4.5 (A8D0007-01)			Matrix: So	il Ba	tch: 804037	72		
Benzene	ND		0.0114	mg/kg dry	50	04/02/18 16:26	5035A/8260C	
Toluene	ND		0.0570	"	"	"	"	
Ethylbenzene	ND		0.0285	"	"	"	"	
Xylenes, total	ND		0.0855	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			98 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			101 %	Limits: 80-120 %	"	"	"	
HC01-10 (A8D0007-02)			Matrix: So	il Ba	tch: 804037	72		
Benzene	ND		0.104	mg/kg dry	500	04/02/18 17:20	5035A/8260C	
Toluene	ND		0.518	"	"	"	"	
Ethylbenzene	ND		0.259	"	"	"	"	
Xylenes, total	ND		0.776	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 100 %	Limits: 80-120 %	1	п	"	
Toluene-d8 (Surr)			91 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"	
HC01-15 (A8D0007-03)			Matrix: So	il Ba	tch: 804037	72		
Benzene	ND		0.00850	mg/kg dry	50	04/02/18 17:47	5035A/8260C	
Toluene	ND		0.0425	"	"	"	"	
Ethylbenzene	ND		0.0212	"	"	"	"	
Xylenes, total	ND		0.0637	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 104 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"	
HC01-22 (A8D0007-04)			Matrix: So	il Ba	tch: 804037	72		
Benzene	ND		0.0127	mg/kg dry	50	04/02/18 18:13	5035A/8260C	
Toluene	ND		0.0633	"	"	"	"	
Ethylbenzene	ND		0.0316	"	"	"	"	
Xylenes, total	ND		0.0949	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits: 80-120 %	1	п	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
HC01-34 (A8D0007-05)			Matrix: So	il Ra	tch: 804037	72		
, ,			munix. Oo	ıı Da	ten. 00 7 00	_		

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260C												
A 1.	D 1	MDI	Reporting		D'1 - '	D. A. I.	M.d. 1	3.7				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
HC01-34 (A8D0007-05)			Matrix: So	il Ba	tch: 80403							
Toluene	ND		0.0553	mg/kg dry	50	"	5035A/8260C					
Ethylbenzene	ND		0.0277	"	"	"	"					
Xylenes, total	ND		0.0830	"	"	"	"					
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 102 %	Limits: 80-120 %	1	"	"					
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"					
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"					
HC02-10 (A8D0007-06)			Matrix: Soi	il Ba	tch: 80403	72						
Benzene	ND		0.0153	mg/kg dry	50	04/02/18 19:07	5035A/8260C					
Toluene	ND		0.0766	"	"	"	"					
Ethylbenzene	ND		0.0383	"	"	"	n .					
Xylenes, total	ND		0.115	"	"	"	"					
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 103 %	Limits: 80-120 %	1	"	"					
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"					
4-Bromofluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"					
HC02-15 (A8D0007-07)			Matrix: So	il Ba	tch: 804039	99						
Benzene	ND		0.0103	mg/kg dry	50	04/03/18 11:03	5035A/8260C					
Toluene	ND		0.0513	"	"	"	"					
Ethylbenzene	ND		0.0257	"	"	"	"					
Xylenes, total	ND		0.0770	"	"	"	"					
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 105 %	Limits: 80-120 %	1	"	"					
Toluene-d8 (Surr)			90 %	Limits: 80-120 %	"	"	"					
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"					
HC02-22 (A8D0007-08)			Matrix: So	il Ba	tch: 80403	99						
Benzene	ND		0.00984	mg/kg dry	50	04/03/18 11:30	5035A/8260C					
Toluene	ND		0.0492	"	"	"	"					
Ethylbenzene	ND		0.0246	"	"	"	"					
Xylenes, total	ND		0.0738	"	"	"	"					
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 105 %	Limits: 80-120 %	1	"	"					
Toluene-d8 (Surr)			94 %	Limits: 80-120 %	"	"	"					
4-Bromofluorobenzene (Surr)			101 %	Limits: 80-120 %	"	"	"					
MW23-05 (A8D0007-09)			Matrix: Soi	il Ba	tch: 804039	99						
Benzene	ND		0.00926	mg/kg dry	50	04/03/18 12:23	5035A/8260C					
Toluene	ND		0.0463	"	"	"	"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

		BT	EX Compo	unds by EPA 82	60C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW23-05 (A8D0007-09)			Matrix: So	il Ba	tch: 80403	99		
Ethylbenzene	ND		0.0231	mg/kg dry	50	"	5035A/8260C	
Xylenes, total	ND		0.0694	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 105 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	n n	"	
4-Bromofluorobenzene (Surr)			98 %	Limits: 80-120 %	"	"	"	
MW23-08 (A8D0007-10)			Matrix: So	il Ba	tch: 80403	99		
Benzene	ND		0.0101	mg/kg dry	50	04/03/18 12:50	5035A/8260C	
Toluene	ND		0.0504	"	"	"	"	
Ethylbenzene	ND		0.0252	"	"	"	"	
Xylenes, total	ND		0.0756	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 101 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			88 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"	
MW23-12 (A8D0007-11)			Matrix: So	il Ba	tch: 80403	99		
Benzene	ND		0.0115	mg/kg dry	50	04/03/18 13:17	5035A/8260C	
Toluene	ND		0.0577	"	"	"	"	
Ethylbenzene	ND		0.0289	"	"	"	"	
Xylenes, total	ND		0.0866	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 102 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			89 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"	
MW23-22 (A8D0007-12)			Matrix: So	il Ba	tch: 80403	99		
Benzene	ND		0.0134	mg/kg dry	50	04/03/18 13:44	5035A/8260C	
Toluene	ND		0.0669	"	"	"	"	
Ethylbenzene	ND		0.0335	"	"	"	"	
Xylenes, total	ND		0.100	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 104 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	n .	"	
4-Bromofluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"	
MW13-5 (A8D0007-13)			Matrix: So	il Ba	tch: 80403	99		
Benzene	0.701		0.0132	mg/kg dry	50	04/03/18 14:11	5035A/8260C	
Ethylbenzene	6.27		0.0329	"	"	"	"	
Xylenes, total	29.3		0.0988	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

		ВТ	EX Compo	unds by EPA 82	60C			
	D 1	MDI	Reporting		75 W	5		N T :
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW13-5 (A8D0007-13)			Matrix: So	il Ba	tch: 80403	99		
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits: 80-120 %	1	"	5035A/8260C	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
MW13-5 (A8D0007-13RE1)			Matrix: So	il Ba	tch: 80403	99		
Toluene	25.5		0.659	mg/kg dry	500	04/03/18 18:14	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Re	covery: 99 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"	
MW13-10 (A8D0007-14RE1)			Matrix: So	il Ba	tch: 80403	99		
Benzene	1.51		0.213	mg/kg dry	1000	04/03/18 19:07	5035A/8260C	
Toluene	ND		1.07	"	"	"	"	
Ethylbenzene	ND		0.533	"	"	"	"	
Xylenes, total	5.20		1.60	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 101 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
MW13-12 (A8D0007-15)			Matrix: So	il Ba	tch: 80403	99		
Benzene	ND		0.0102	mg/kg dry	50	04/03/18 15:05	5035A/8260C	
Toluene	ND		0.0512	"	"	"	"	
Ethylbenzene	ND		0.0256	"	"	"	"	
Xylenes, total	0.0774		0.0768	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 102 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
MW13-21 (A8D0007-16)			Matrix: So	il Ba	tch: 80403	99		
Benzene	ND		0.00998	mg/kg dry	50	04/03/18 15:32	5035A/8260C	
Toluene	ND		0.0499	"	"	"	"	
Ethylbenzene	ND		0.0250	"	"	"	"	
Xylenes, total	ND		0.0749	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 101 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
//W13-35 (A8D0007-17)			Matrix: So	il Da	tch: 80403	99		

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

		ВТ	EX Compo	unds by EPA 82	260C			
			Reporting	<u> </u>				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW13-35 (A8D0007-17)			Matrix: So	oil Ba	atch: 80403	99		
Benzene	ND		0.0103	mg/kg dry	50	04/03/18 16:26	5035A/8260C	
Toluene	ND		0.0516	"	"	"	"	
Ethylbenzene	ND		0.0258	"	"	"	"	
Xylenes, total	ND		0.0773	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 102 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
MW13-45 (A8D0007-18)			Matrix: So	il Ba	atch: 80403	99		
Benzene	ND		0.0142	mg/kg dry	50	04/03/18 16:53	5035A/8260C	
Toluene	ND		0.0712	"	"	"	"	
Ethylbenzene	ND		0.0356	"	"	"	"	
Xylenes, total	ND		0.107	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

	V	olatile Or	ganic Compou	inds by EPA	5035A/826	0C		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
/W14-05 (A8D0007-19)			Matrix: Soil	Batch: 8040363				
Acetone	ND		0.948	mg/kg dry	50	04/02/18 18:41	5035A/8260C	
Acrylonitrile	ND		0.0948	"	"	"	"	
Benzene	ND		0.00948	"	"	"	"	
Bromobenzene	ND		0.0237	"	"	"	"	
Bromochloromethane	ND		0.0474	"	"	"	"	
Bromodichloromethane	ND		0.0474	"	"	"	"	
Bromoform	ND		0.0948	"	"	"	"	
Bromomethane	ND		0.474	"	"	"	"	
2-Butanone (MEK)	ND		0.474	"	"	"	"	
n-Butylbenzene	ND		0.0474	"	"	"	"	
sec-Butylbenzene	ND		0.0474	"	"	"	"	
tert-Butylbenzene	ND		0.0474	"	"	"	"	
Carbon disulfide	ND		0.474	"	"	"	"	
Carbon tetrachloride	ND		0.0474	"	"	"	"	
Chlorobenzene	ND		0.0237	"	"	"	"	
Chloroethane	ND		0.474	"	"	"	"	
Chloroform	ND		0.0474	"	"	"	"	
Chloromethane	ND		0.237	"	"	"	"	
2-Chlorotoluene	ND		0.0474	"	"	"	"	
4-Chlorotoluene	ND		0.0474	"	"	"	"	
Dibromochloromethane	ND		0.0948	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND		0.237	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.0474	"	"	"	"	
Dibromomethane	ND		0.0474	"	"	"	"	
1,2-Dichlorobenzene	ND		0.0237	"	"	"	"	
1,3-Dichlorobenzene	ND		0.0237	"	"	"	"	
1,4-Dichlorobenzene	ND		0.0237	"	"	"	"	
Dichlorodifluoromethane	ND		0.0948	"	"	"	"	
1,1-Dichloroethane	ND		0.0237	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.0237	"	"	"	"	
1,1-Dichloroethene	ND		0.0237	"	"	"	"	
cis-1,2-Dichloroethene	ND		0.0237	"	"	"	"	
trans-1,2-Dichloroethene	ND		0.0237	"	"	"	"	
1,2-Dichloropropane	ND		0.0237	"	"	"	"	
1,3-Dichloropropane	ND		0.0474	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Note
MW14-05 (A8D0007-19)			Matrix: Soil	Ва	tch: 804036	33		
2,2-Dichloropropane	ND		0.0474	mg/kg dry	50	"	5035A/8260C	
1,1-Dichloropropene	ND		0.0474	"	"	"	"	
cis-1,3-Dichloropropene	ND		0.0474	"	"	"	"	
trans-1,3-Dichloropropene	ND		0.0474	"	"	"	"	
Ethylbenzene	ND		0.0237	"	"	"	"	
Hexachlorobutadiene	ND		0.0948	"	"	"	"	
2-Hexanone	ND		0.474	"	"	"	"	
Isopropylbenzene	ND		0.0474	"	"	"	"	
4-Isopropyltoluene	ND		0.0474	"	"	"	"	
Methylene chloride	ND		0.237	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND		0.474	"	"	"	"	
Methyl tert-butyl ether (MTBE)	ND		0.0474	"	"	"	· ·	
Naphthalene	ND		0.0948	"	"	"	"	
n-Propylbenzene	ND		0.0237	"	"	"	"	
Styrene	ND		0.0474	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		0.0237	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		0.0474	"	"	"	"	
Tetrachloroethene (PCE)	ND		0.0237	"	"	"	"	
Toluene	ND		0.0474	"	"	"	"	
1,2,3-Trichlorobenzene	ND		0.237	"	"	"	"	
1,2,4-Trichlorobenzene	ND		0.237	"	"	"	"	
1,1,1-Trichloroethane	ND		0.0237	"	"	"	· ·	
1,1,2-Trichloroethane	ND		0.0237	"	"	"	n .	
Trichloroethene (TCE)	ND		0.0237	"	"	"	"	
Trichlorofluoromethane	ND		0.0948	"	"	"	"	
1,2,3-Trichloropropane	ND		0.0474	"	"	"	"	
1,2,4-Trimethylbenzene	ND		0.0474	"	"	"	· ·	
1,3,5-Trimethylbenzene	ND		0.0474	"	"	"	· ·	
Vinyl chloride	ND		0.0237	"	"	"	n .	
m,p-Xylene	ND		0.0474	"	"	"	· ·	
o-Xylene	ND		0.0237	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr))	Re	ecovery: 102 %	Limits: 80-120 %	1	II.	"	
Toluene-d8 (Surr)			100 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Su	rr)		99 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

		olatile Or	ganic Compou	ınds by EPA	5035A/826	0C		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW14-10 (A8D0007-20)			Matrix: Soil	В	atch: 80403	63		
Acetone	ND		0.971	mg/kg dry	50	04/02/18 19:08	5035A/8260C	
Acrylonitrile	ND		0.0971	"	"	"	"	
Benzene	ND		0.00971	"	"	"	"	
Bromobenzene	ND		0.0243	"	"	"	"	
Bromochloromethane	ND		0.0486	"	"	"	"	
Bromodichloromethane	ND		0.0486	"	"	"	"	
Bromoform	ND		0.0971	"	"	"	"	
Bromomethane	ND		0.486	"	"	"	"	
2-Butanone (MEK)	ND		0.728	"	"	"	"	R-02
n-Butylbenzene	ND		0.0486	"	"	"	"	
sec-Butylbenzene	0.105		0.0486	"	"	"	"	
tert-Butylbenzene	ND		0.0486	"	"	"	"	
Carbon disulfide	ND		0.486	"	"	"	"	
Carbon tetrachloride	ND		0.0486	"	"	"	"	
Chlorobenzene	ND		0.0243	"	"	"	"	
Chloroethane	ND		0.486	"	"	"	"	
Chloroform	ND		0.0486	"	"	"	"	
Chloromethane	ND		0.243	"	"	"	"	
2-Chlorotoluene	ND		0.0486	"	"	"	"	
4-Chlorotoluene	ND		0.0486	"	"	"	"	
Dibromochloromethane	ND		0.0971	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND		0.243	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.0486	"	"	"	"	
Dibromomethane	ND		0.0486	"	"	"	"	
1,2-Dichlorobenzene	ND		0.0243	"	"	"	"	
1,3-Dichlorobenzene	ND		0.0243	"	"	"	"	
1,4-Dichlorobenzene	ND		0.0243	"	"	"	"	
Dichlorodifluoromethane	ND		0.0971	"	"	"	"	
1,1-Dichloroethane	ND		0.0243	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.0243	"	"	"	"	
1,1-Dichloroethene	ND		0.0243	"	"	"	"	
cis-1,2-Dichloroethene	ND		0.0243	"	"	"	"	
trans-1,2-Dichloroethene	ND		0.0243	"	"	"	"	
1,2-Dichloropropane	ND		0.0243	"	"	"	"	
1,3-Dichloropropane	ND		0.0486	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

	Volatile Organic Compounds by EPA 5035A/8260C								
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes	
WW14-10 (A8D0007-20)			Matrix: Soil		atch: 80403				
2,2-Dichloropropane	ND		0.0486	mg/kg dry	50	"	5035A/8260C		
1,1-Dichloropropene	ND		0.0486	"	"	"	"		
cis-1,3-Dichloropropene	ND		0.0486	"	"	"	"		
trans-1,3-Dichloropropene	ND		0.0486	"	"	"	"		
Ethylbenzene	ND		0.0243	"	"	"	"		
Hexachlorobutadiene	ND		0.0971	"	"	"	"		
2-Hexanone	ND		0.486	"	"	"	"		
Isopropylbenzene	ND		0.0486	"	"	"	"		
4-Isopropyltoluene	0.0724		0.0486	"	"	"	"		
Methylene chloride	ND		0.243	"	"	"	"		
4-Methyl-2-pentanone (MiBK)	ND		0.728	"	"	"	"	R-(
Methyl tert-butyl ether (MTBE)	ND		0.0486	"	"	"	"		
Naphthalene	ND		0.0971	"	"	ıı .	"		
n-Propylbenzene	ND		0.0243	"	"	ıı .	"		
Styrene	ND		0.0486	"	"	ıı .	"		
1,1,1,2-Tetrachloroethane	ND		0.0243	"	"	ıı .	"		
1,1,2,2-Tetrachloroethane	ND		0.243	"	"	ıı .	"	R-(
Tetrachloroethene (PCE)	ND		0.0243	"	"	ıı .	"		
Toluene	ND		0.0486	"	"	ıı .	"		
1,2,3-Trichlorobenzene	ND		0.243	"	"	"	"		
1,2,4-Trichlorobenzene	ND		0.243	"	"	"	"		
1,1,1-Trichloroethane	ND		0.0243	"	"	"	"		
1,1,2-Trichloroethane	ND		0.0243	"	"	"	"		
Trichloroethene (TCE)	ND		0.0243	"	"	"	"		
Trichlorofluoromethane	ND		0.0971	"	"	"	"		
1,2,3-Trichloropropane	ND		0.0486	"	"	"	"		
1,2,4-Trimethylbenzene	ND		0.0486	"	"	"	"		
1,3,5-Trimethylbenzene	ND		0.0486	"	"	"	"		
Vinyl chloride	ND		0.0243	"	"	"	"		
m,p-Xylene	ND		0.0486	"	"	"	"		
o-Xylene	ND		0.0243	"	"	"	"		
Surrogate: 1,4-Difluorobenzene (Surr)		Re	covery: 103 %	Limits: 80-120 %	1	"	"		
Toluene-d8 (Surr)			101 %	Limits: 80-120 %	"	"	"		
4-Bromofluorobenzene (Surr	·)		100 %	Limits: 80-120 %	"	"	"		

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

		olatile Or	ganic Compou	inas by EPA	5035A/826	UC .		
	ъ	100	Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW14-15 (A8D0007-21)			Matrix: Soil	В	atch: 80403			
Acetone	ND		1.02	mg/kg dry	50	04/02/18 19:35	5035A/8260C	
Acrylonitrile	ND		0.357	"	"	"	"	R-02
Benzene	ND		0.0102	"	"	"	"	
Bromobenzene	ND		0.0255	"	"	"	"	
Bromochloromethane	ND		0.0509	"	"	"	"	
Bromodichloromethane	ND		0.0509	"	"	"	"	
Bromoform	ND		0.102	"	"	"	"	
Bromomethane	ND		0.509	"	"	"	"	
2-Butanone (MEK)	ND		3.57	"	"	"	"	R-02
n-Butylbenzene	0.151		0.0509	"	"	"	"	
sec-Butylbenzene	0.196		0.0509	"	"	"	"	
tert-Butylbenzene	ND		0.0662	"	"	"	"	R-02
Carbon disulfide	ND		0.509	"	"	"	"	
Carbon tetrachloride	ND		0.0509	"	"	"	"	
Chlorobenzene	ND		0.0509	"	"	"	"	R-02
Chloroethane	ND		0.509	"	"	"	"	
Chloroform	ND		0.0509	"	"	"	"	
Chloromethane	ND		0.255	"	"	"	"	
2-Chlorotoluene	ND		0.102	"	"	"	"	R-02
4-Chlorotoluene	ND		0.0509	"	"	"	"	
Dibromochloromethane	ND		0.102	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND		0.255	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.0509	"	"	"	"	
Dibromomethane	ND		0.0509	"	"	"	"	
1,2-Dichlorobenzene	ND		0.0255	"	"	"	"	
1,3-Dichlorobenzene	ND		0.0255	"	"	"	"	
1,4-Dichlorobenzene	ND		0.0255	"	"	"	"	
Dichlorodifluoromethane	ND		0.102	"	"	"	"	
1,1-Dichloroethane	ND		0.0255	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.0255	"	"	"	"	
1,1-Dichloroethene	ND		0.0255	"	"	"	"	
cis-1,2-Dichloroethene	ND		0.0255	"	"	"	"	
trans-1,2-Dichloroethene	ND		0.0255	"	"	"	"	
1,2-Dichloropropane	ND		0.0255	"	"	"	"	
1,3-Dichloropropane	ND		0.0509	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

		olatile Or	ganic Compo	unds by EPA	5035A/826	0C		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW14-15 (A8D0007-21)			Matrix: Soil		atch: 80403			
2,2-Dichloropropane	ND		0.0509	mg/kg dry	50	"	5035A/8260C	
1,1-Dichloropropene	ND		0.0509	"	"	"	"	
cis-1,3-Dichloropropene	ND		0.0509	"	"	"	"	
trans-1,3-Dichloropropene	ND		0.0509	"	"	"	"	
Ethylbenzene	ND		0.0255	"	"	"	"	
Hexachlorobutadiene	ND		0.102	"	"	"	"	
2-Hexanone	ND		0.509	"	"	"	"	
Isopropylbenzene	ND		0.0509	"	"	"	"	
4-Isopropyltoluene	0.0728		0.0509	"	"	"	"	
Methylene chloride	ND		0.255	"	"	"	"	
4-Methyl-2-pentanone (MiBK)	ND		1.53	"	"	"	"	R-0
Methyl tert-butyl ether (MTBE)	ND		0.0509	"	"	"	"	
Naphthalene	ND		0.102	"	"	"	"	
n-Propylbenzene	0.0525		0.0255	"	"	"	"	
Styrene	ND		0.0509	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND		0.0255	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND		0.306	"	"	"	"	R-0
Tetrachloroethene (PCE)	ND		0.0255	"	"	"	"	
Toluene	ND		0.0509	"	"	"	"	
1,2,3-Trichlorobenzene	ND		0.255	"	"	"	"	
1,2,4-Trichlorobenzene	ND		0.255	"	"	"	"	
1,1,1-Trichloroethane	ND		0.0255	"	"	"	"	
1,1,2-Trichloroethane	ND		0.0255	"	"	"	"	
Trichloroethene (TCE)	ND		0.0255	"	"	"	"	
Trichlorofluoromethane	ND		0.102	"	"	"	"	
1,2,3-Trichloropropane	ND		0.204	"	"	"	"	R-0
1,2,4-Trimethylbenzene	ND		0.0509	"	"	"	"	
1,3,5-Trimethylbenzene	ND		0.0509	"	"	"	"	
Vinyl chloride	ND		0.0255	"	"	"	"	
m,p-Xylene	ND		0.0509	"	"	"	"	
o-Xylene	ND		0.0255	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Re	ecovery: 103 %	Limits: 80-120 %	1	"	n .	
Toluene-d8 (Surr)			-	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr))			Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

	Volatile Organic Compounds by EPA 5035A/8260C										
Amalusta	Result	MDL	Reporting	XX 1:	Dil+:	Data Ar-l	Mathad	Notes			
Analyte	Kesuit	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
MW99-15 (A8D0007-22)			Matrix: Soil		atch: 80403						
Acetone	ND		4.06	mg/kg dry	200	04/02/18 20:02	5035A/8260C				
Acrylonitrile	ND		1.02	"	"	"	"	R-0			
Benzene	ND		0.0406	"	"	"	"				
Bromobenzene	ND		0.102	"	"	"	"				
Bromochloromethane	ND		0.203	"	"	"	"				
Bromodichloromethane	ND		0.203	"	"	"	"				
Bromoform	ND		0.406	"	"	"	"				
Bromomethane	ND		2.03	"	"	"	"				
2-Butanone (MEK)	ND		6.10	"	"	"	"	R-0			
n-Butylbenzene	0.258		0.203	"	"	"	"				
sec-Butylbenzene	0.323		0.203	"	"	"	"				
tert-Butylbenzene	ND		0.203	"	"	"	"				
Carbon disulfide	ND		2.03	"	"	"	"				
Carbon tetrachloride	ND		0.203	"	"	"	"				
Chlorobenzene	ND		0.102	"	"	"	"				
Chloroethane	ND		2.03	"	"	"	"				
Chloroform	ND		0.203	"	"	"	"				
Chloromethane	ND		1.02	"	"	"	"				
2-Chlorotoluene	ND		0.203	"	"	"	"				
4-Chlorotoluene	ND		0.203	"	"	"	"				
Dibromochloromethane	ND		0.406	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND		1.02	"	"	"	"				
1,2-Dibromoethane (EDB)	ND		0.203	"	"	"	"				
Dibromomethane	ND		0.203	"	"	"	"				
1,2-Dichlorobenzene	ND		0.102	"	"	"	"				
1,3-Dichlorobenzene	ND		0.102	"	"	"	"				
1,4-Dichlorobenzene	ND		0.102	"	"	"	"				
Dichlorodifluoromethane	ND		0.406	"	"	"	"				
1,1-Dichloroethane	ND		0.102	"	"	"	"				
1,2-Dichloroethane (EDC)	ND		0.102	"	"	ıı .	"				
1,1-Dichloroethene	ND		0.102	"	"	"	"				
cis-1,2-Dichloroethene	ND		0.102	"	"	"	"				
trans-1,2-Dichloroethene	ND		0.102	"	"	"	"				
1,2-Dichloropropane	ND		0.102	"	"	"	"				
1,3-Dichloropropane	ND ND		0.102	"	"	"	"				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

	\	Volatile Organic Compounds by EPA 5035A/8260C									
	D 1:) (D)	Reporting				N. d. i	N			
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
MW99-15 (A8D0007-22)			Matrix: Soil		atch: 80403						
2,2-Dichloropropane	ND		0.203	mg/kg dry	200	"	5035A/8260C				
1,1-Dichloropropene	ND		0.203	"	"	"	"				
cis-1,3-Dichloropropene	ND		0.203	"	"	"	"				
trans-1,3-Dichloropropene	ND		0.203	"	"	"	"				
Ethylbenzene	ND		0.102	"	"	"	"				
Hexachlorobutadiene	ND		0.406	"	"	"	"				
2-Hexanone	ND		2.03	"	"	"	"				
Isopropylbenzene	ND		0.203	"	"	"	"				
4-Isopropyltoluene	ND		0.203	"	"	"	"				
Methylene chloride	ND		1.02	"	"	"	"				
4-Methyl-2-pentanone (MiBK)	ND		4.06	"	"	"	"	R-0			
Methyl tert-butyl ether (MTBE)	ND		0.203	"	"	"	"				
Naphthalene	ND		0.406	"	"	"	"				
n-Propylbenzene	ND		0.102	"	"	"	"				
Styrene	ND		0.203	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND		0.102	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND		0.813	"	"	"	"	R-0			
Tetrachloroethene (PCE)	ND		0.102	"	"	"	"				
Toluene	ND		0.203	"	"	"	"				
1,2,3-Trichlorobenzene	ND		1.02	"	"	"	"				
1,2,4-Trichlorobenzene	ND		1.02	"	"	"	"				
1,1,1-Trichloroethane	ND		0.102	"	"	"	"				
1,1,2-Trichloroethane	ND		0.102	"	"	"	"				
Trichloroethene (TCE)	ND		0.102	"	"	"	"				
Trichlorofluoromethane	ND		0.406	"	"	"	"				
1,2,3-Trichloropropane	ND		0.203	"	"	"	"				
1,2,4-Trimethylbenzene	ND		0.203	"	"	"	"				
1,3,5-Trimethylbenzene	ND		0.203	"	"	"	"				
Vinyl chloride	ND		0.102	"	"	"	"				
m,p-Xylene	ND		0.203	"	"	"	"				
o-Xylene	ND		0.102	"	"	"	"				
Surrogate: 1,4-Difluorobenzene (Surr))	Re	covery: 102 %	Limits: 80-120 %	1	"	"				
Toluene-d8 (Surr)			103 %	Limits: 80-120 %	"	"	"				
4-Bromofluorobenzene (Sur	rr)		98 %	Limits: 80-120 %	"	"	"				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

			Percen	t Dry Weight				
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
HC01-4.5 (A8D0007-01)			Matrix: So	I B	atch: 80404	19		
% Solids	87.3		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
HC01-10 (A8D0007-02)			Matrix: So	I B	atch: 80404	19		
% Solids	84.3		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
HC01-15 (A8D0007-03)			Matrix: Soi	І В	atch: 80404	19		
% Solids	83.7		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
HC01-22 (A8D0007-04)			Matrix: So	I B	atch: 80404	19		
% Solids	77.9		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
HC01-34 (A8D0007-05)			Matrix: So	l B	atch: 80404	19		
% Solids	91.4		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
HC02-10 (A8D0007-06)			Matrix: So	l B	atch: 80404	19		
% Solids	86.4		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
HC02-15 (A8D0007-07)			Matrix: So	I B	atch: 80404	19		
% Solids	80.0		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
HC02-22 (A8D0007-08)			Matrix: Soi	I B	atch: 80404	19		
% Solids	85.9		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
MW23-05 (A8D0007-09)			Matrix: So	І В	atch: 80404	19		
% Solids	87.5		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
MW23-08 (A8D0007-10)			Matrix: So	І В	atch: 80404	19		
% Solids	85.4		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
MW23-12 (A8D0007-11)			Matrix: So	І В	atch: 80404	19		
% Solids	82.1		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
MW23-22 (A8D0007-12)			Matrix: So	I B	atch: 80404	19		
% Solids	77.8		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
MW13-5 (A8D0007-13)			Matrix: So	I B	atch: 80404	19		
% Solids	75.8		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
MW13-10 (A8D0007-14)			Matrix: So	l B	atch: 80404	19		
% Solids	86.1		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	
MW13-12 (A8D0007-15)			Matrix: Soi	I B	atch: 80404	19		
% Solids	88.3		1.00	% by Weight		04/04/18 09:03	EPA 8000C	
MW13-21 (A8D0007-16)			Matrix: Soi	I B	atch: 80404	19		
% Solids	84.4		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight												
			Reporting		•	_						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
MW13-35 (A8D0007-17)			Matrix: Soil	Ва	tch: 80404	19						
% Solids	88.6		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C					
MW13-45 (A8D0007-18)			Matrix: Soil	Ва	tch: 80404	19						
% Solids	75.0		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C					
MW14-05 (A8D0007-19)			Matrix: Soil	Ва	tch: 80404	19						
% Solids	95.3		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C					
MW14-10 (A8D0007-20)			Matrix: Soil	Ва	tch: 80404	19						
% Solids	90.0		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C					
MW14-15 (A8D0007-21)			Matrix: Soil	Ва	itch: 80404	19						
% Solids	88.5		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C					
MW99-15 (A8D0007-22)			Matrix: Soil	Ва	itch: 80404	19						
% Solids	90.1		1.00	% by Weight	1	04/04/18 09:03	EPA 8000C					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

Result MDL Reporting Units Dil. Spike Source Result MRECE					
Blank (8040434-BLK2)	%REC Limits			RPD .imit	Notes
NWTPH-Dx Diesel ND 25.0 mg/kg wet 1 Surr: o-Terphenyl (Surr) Recovery: 93 % Limits: 50-150 % Dilution: 1x LCS (8040434-BS1) Prepared: 04/04/18 07:10 Analyzed: 04/04/18 18: NWTPH-Dx Diesel 127 25.0 mg/kg wet 1 125 102 Surr: o-Terphenyl (Surr) Recovery: 116 % Limits: 50-150 % Dilution: 1x Duplicate (8040434-DUP1) Prepared: 04/04/18 07:10 Analyzed: 04/04/18 18: Duplicate (8040434-DUP1) Prepared: 04/04/18 07:10 Analyzed: 04/04/18 18: Duplicate (8040434-DUP1) Prepared: 04/04/18 07:10 Analyzed: 04/04/18 18: Surr: o-Terphenyl (Surr) Recovery: 121 % Limits: 50-150 % Dilution: 5x Batch 8040465-BLK1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx Diesel ND 25.0 mg/kg wet 1 Soil Blank (8040465-BLK1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx Diesel ND 25.0 mg/kg wet 1 Soil Surr: o-Terphenyl (Surr) Recovery: 100 % Limits: 50-150 % Dilution: 1x LCS (8040465-BS1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx					
Diesel ND	07:23				
Oil ND S0.0 " " " S0.0 " " " Sur: o-Terphenyl (Surr) Recovery: 93 % Limits: 50-150 % Dilution: 1x					
No					
Prepared: 04/04/18 07:10 Analyzed: 04/04/18					
Diesel 127 25.0 mg/kg wet 1 125 102					
Diesel 127	23:05				
Note					
Duplicate (8040434-DUP1) Prepared: 04/04/18 07:10 Analyzed: 04/04/18 2 QC Source Sample: MW13-5 (A8D0007-13) NWTPH-Dx Diesel 1690 100 mg/kg dry 5 1700 5310	76-115%	5%			
QC Source Sample: MW13-5 (A8D0007-13) NWTPH-Dx Diesel 1690 100 mg/kg dry 5 1700 Oil 5350 201 " " 5310 Surr: o-Terphenyl (Surr) Recovery: 121 % Limits: 50-150 % Dilution: 5x Batch 8040465 - EPA 3546 (Fuels) Soil Blank (8040465-BLK1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx Diesel ND 25.0 mg/kg wet 1 Oil ND 50.0 " " " Surr: o-Terphenyl (Surr) Recovery: 100 % Limits: 50-150 % Dilution: Ix LCS (8040465-BS1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18					
NWTPH-Dx Diesel 1690 100 mg/kg dry 5 1700 Oil 5350 201 " " 5310 Surr: o-Terphenyl (Surr) Recovery: 121 % Limits: 50-150 % Dilution: 5x Batch 8040465 - EPA 3546 (Fuels) Prepared: 04/04/18 13:18 Analyzed: 04/04/18	23:45				
Diesel 1690 100 mg/kg dry 5 1700 Oil 5350 201 " " 5310 Surr: o-Terphenyl (Surr) Recovery: 121 % Limits: 50-150 % Dilution: 5x Batch 8040465 - EPA 3546 (Fuels) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx Diesel ND 25.0 mg/kg wet 1 Oil ND 50.0 " " Surr: o-Terphenyl (Surr) Recovery: 100 % Limits: 50-150 % Dilution: 1x LCS (8040465-BS1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx NWTPH-Dx Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx Oil					
Oil 5350 201 " " 5310 Surr: o-Terphenyl (Surr) Recovery: 121 % Limits: 50-150 % Dilution: 5x Batch 8040465 - EPA 3546 (Fuels) Soil Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx Diesel ND 25.0 mg/kg wet 1 Surr: o-Terphenyl (Surr) Recovery: 100 % Limits: 50-150 % Dilution: 1x Dilution: 1x LCS (8040465-BS1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx					
Signature Sign		(0.3 3	30%	F-15
Soil Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx Diesel ND 25.0 mg/kg wet 1 0il ND 50.0 " " Surr: o-Terphenyl (Surr) Recovery: 100 % Limits: 50-150 % Dilution: 1x LCS (8040465-BS1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx		(0.6 3	30%	F-16
Prepared: 04/04/18 13:18 Analyzed: 04/04/18					
NWTPH-Dx Diesel ND 25.0 mg/kg wet 1 Oil ND 50.0 " " Surr: o-Terphenyl (Surr) Recovery: 100 % Limits: 50-150 % Dilution: 1x LCS (8040465-BS1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx					
Diesel ND 25.0 mg/kg wet 1 Oil ND 50.0 " " Surr: o-Terphenyl (Surr) Recovery: 100 % Limits: 50-150 % Dilution: 1x LCS (8040465-BS1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx	19:28				
Oil ND 50.0 " "					
Surr: o-Terphenyl (Surr) Recovery: 100 % Limits: 50-150 % Dilution: 1x LCS (8040465-BS1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx					
LCS (8040465-BS1) Prepared: 04/04/18 13:18 Analyzed: 04/04/18 NWTPH-Dx					
NWTPH-Dx					
	19:48				
Diesel 110 25.0 mg/kg wet 1 125 88					
	76-115%	5%			
Surr: o-Terphenyl (Surr) Recovery: 103 % Limits: 50-150 % Dilution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ough Naphi	halene) l	by NWTF	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040363 - EPA 5035A							Soil					
Blank (8040363-BLK1)				Pre	pared: 04/	/02/18 10:00	Analyzed:	04/02/18 1	2:00			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 101 %	Limits: 50	-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			96 %	50-	150 %		"					
LCS (8040363-BS2)				Pre	pared: 04/	/02/18 10:00	Analyzed:	04/02/18 1	1:34			
NWTPH-Gx (MS)												
Gasoline Range Organics	27.5		5.00	mg/kg wet	50	25.0		110	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 100 %	Limits: 50	-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			97 %	50-	150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ugh Naphi	thalene) b	y NWTP	H-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040372 - EPA 5035	4						Soil					
Blank (8040372-BLK1)				Pre	pared: 04/	02/18 13:00	Analyzed: (04/02/18 15	:05			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.00	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 106 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	-150 %		"					
LCS (8040372-BS2)				Pre	pared: 04/	02/18 13:00	Analyzed: (04/02/18 14	:38			
NWTPH-Gx (MS)												
Gasoline Range Organics	23.0		5.00	mg/kg wet	50	25.0		92	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 105 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			100 %	50	-150 %		"					
Duplicate (8040372-DUP1)				Pre	pared: 04/	02/18 14:46	Analyzed: (04/02/18 16	:53			
QC Source Sample: HC01-4.5 (A8	D0007-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.69	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 106 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			100 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ugh Naph	thalene)	by NWTI	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040399 - EPA 5035	4						Soi	l				
Blank (8040399-BLK1)				Pre	pared: 04/	03/18 09:00	Analyzed:	04/03/18 1	0:36			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 106 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			103 %	50-	150 %		"					
LCS (8040399-BS2)				Pre	pared: 04/	03/18 09:00	Analyzed:	04/03/18 1	0:09			
NWTPH-Gx (MS)												
Gasoline Range Organics	23.2		5.00	mg/kg wet	50	25.0		93	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 107 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	50-	150 %		"					
Duplicate (8040399-DUP1)				Pre	pared: 03/	28/18 16:45	Analyzed:	04/03/18 1	1:57			
QC Source Sample: HC02-22 (A8I	00007-08)											
NWTPH-Gx (MS)												
Gasoline Range Organics	6.56		4.42	mg/kg dry	50		9.26			34	30%	Q-0
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 120 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			101 %	50-	150 %		"					
Duplicate (8040399-DUP2)				Pre	pared: 03/	29/18 17:20	Analyzed:	04/03/18 1	5:59			
QC Source Sample: MW13-21 (A8	D0007-16)											
NWTPH-Gx (MS)												
Gasoline Range Organics	23.5		5.04	mg/kg dry	50		22.5			4	30%	
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 115 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50-	150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ugh Naph	thalene) l	by NWTF	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040401 - EPA 5035A							Soil]				
Blank (8040401-BLK1)				Pre	pared: 04/	03/18 08:30	Analyzed:	04/03/18 1	0:40			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 105 %	Limits: 50-	150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	50-	150 %		"					
LCS (8040401-BS2)				Pre	pared: 04/	03/18 08:30	Analyzed:	04/03/18 1	0:13			
NWTPH-Gx (MS)												
Gasoline Range Organics	26.5		5.00	mg/kg wet	50	25.0		106	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 100 %	Limits: 50-	150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			98 %	50-	150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	ınds by l	EPA 8260C	; 					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040372 - EPA 5035A	١						Soi	I				
Blank (8040372-BLK1)				Pre	epared: 04/	02/18 13:00	Analyzed:	04/02/18 1	5:05			
5035A/8260C												
Benzene	ND		0.0100	mg/kg wet	50							
Toluene	ND		0.0500	"	"							
Ethylbenzene	ND		0.0250	"	"							
Xylenes, total	ND		0.0750	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 101 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80	-120 %		"					
LCS (8040372-BS1)				Pre	epared: 04/	02/18 13:00	Analyzed:	04/02/18 1	4:11			
5035A/8260C												
Benzene	1.03		0.0100	mg/kg wet	50	1.00		103	80-120%			
Toluene	0.965		0.0500	"	"	"		96	"			
Ethylbenzene	1.03		0.0250	"	"	"		103	"			
Xylenes, total	3.25		0.0750	"	"	3.00		108	"			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 100 %	Limits: 80	0-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					
Duplicate (8040372-DUP1)				Pre	epared: 04/	02/18 14:46	Analyzed:	04/02/18 1	6:53			
QC Source Sample: HC01-4.5 (A8I	00007-01)											
5035A/8260C												
Benzene	ND		0.0114	mg/kg dry	50		ND				30%	
Toluene	ND		0.0569	"	"		ND				30%	
Ethylbenzene	ND		0.0285	"	"		ND				30%	
Xylenes, total	ND		0.0854	"	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 102 %	Limits: 80)-120 %	Dila	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by E	EPA 8260C						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040399 - EPA 5035A	4						Soil					
Blank (8040399-BLK1)				Prep	pared: 04/0	03/18 09:00	Analyzed:	04/03/18 1	0:36			
5035A/8260C												
Benzene	ND		0.00667	mg/kg wet	50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 105 %	Limits: 80-	120 %	Dilu	tion: Ix					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80-	120 %		"					
LCS (8040399-BS1)				Prep	pared: 04/0	03/18 09:00	Analyzed:	04/03/18 0	9:42			
5035A/8260C												
Benzene	1.02		0.0100	mg/kg wet	50	1.00		102	80-120%			
Toluene	0.909		0.0500	"	"	"		91	"			
Ethylbenzene	0.983		0.0250	"	"	"		98	"			
Xylenes, total	3.08		0.0750	"	"	3.00		103	"			
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 102 %	Limits: 80-	120 %	Dilu	tion: Ix					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80-	120 %		"					
Duplicate (8040399-DUP1)				Prej	pared: 03/	28/18 16:45	Analyzed:	04/03/18 1	1:57			
QC Source Sample: HC02-22 (A8D	00007-08)											
5035A/8260C												
Benzene	ND		0.00884	mg/kg dry	50		ND				30%	
Toluene	ND		0.0442	"	"		ND				30%	
Ethylbenzene	ND		0.0221	"	"		ND				30%	
Xylenes, total	ND		0.0663	"	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 102 %	Limits: 80-	120 %	Dilu	tion: Ix					
Toluene-d8 (Surr)			94 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80-	120 %		"					
Duplicate (8040399-DUP2)				Prep	pared: 03/2	29/18 17:20	Analyzed:	04/03/18 1	5:59			
QC Source Sample: MW13-21 (A8	D0007-16)											
5035A/8260C												
Benzene	ND		0.0101	mg/kg dry	50		ND				30%	
Toluene	ND		0.0504	"	"		ND				30%	
Ethylbenzene	ND		0.0252	"	"		ND				30%	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by I	EPA 8260C						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040399 - EPA 5035 <i>A</i>	4						Soil	1				
Duplicate (8040399-DUP2)				Prep	oared: 03/	29/18 17:20	Analyzed:	04/03/18 1	5:59			
QC Source Sample: MW13-21 (A8)	D0007-16)											
5035A/8260C												
Xylenes, total	ND		0.0756	mg/kg dry	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Re	covery: 99 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"					
Matrix Spike (8040399-MS1)				Prep	pared: 03/	30/18 08:40	Analyzed:	04/03/18 17	7:20			
QC Source Sample: MW13-45 (A8	D0007-18)											
5035A/8260C												
Benzene	1.46		0.0142	mg/kg dry	50	1.42	ND	102	77-121%			
Toluene	1.29		0.0712	"	"	"	ND	91	"			
Ethylbenzene	1.42		0.0356	"	"	"	ND	100	76-122%			
Xylenes, total	4.42		0.107	"	"	4.27	ND	104	78-124%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			95 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

			Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch 8040363 - EPA 5035	Α						Soi					
Blank (8040363-BLK1)				Prep	oared: 04/0	02/18 10:00	Analyzed:	04/02/18 12	:00			
5035A/8260C												
Acetone	ND		0.667	mg/kg wet	50							
Acrylonitrile	ND		0.0667	"	"							
Benzene	ND		0.00667	"	"							
Bromobenzene	ND		0.0167	"	"							
Bromochloromethane	ND		0.0333	"	"							
Bromodichloromethane	ND		0.0333	"	"							
Bromoform	ND		0.0667	"	"							
Bromomethane	ND		0.333	"	"							
2-Butanone (MEK)	ND		0.333	"	"							
n-Butylbenzene	ND		0.0333	"	"							
sec-Butylbenzene	ND		0.0333	"	"							
tert-Butylbenzene	ND		0.0333	"	"							
Carbon disulfide	ND		0.333	"	"							
Carbon tetrachloride	ND		0.0333	"	"							
Chlorobenzene	ND		0.0167	"	"							
Chloroethane	ND		0.333	"	"							
Chloroform	ND		0.0333	"	"							
Chloromethane	ND		0.167	"	"							
2-Chlorotoluene	ND		0.0333	"	"							
4-Chlorotoluene	ND		0.0333	"	"							
Dibromochloromethane	ND		0.0667	"	"							
1,2-Dibromo-3-chloropropane	ND		0.167	"	"							
1,2-Dibromoethane (EDB)	ND		0.0333	"	"							
Dibromomethane	ND		0.0333	"	"							
1,2-Dichlorobenzene	ND		0.0167	"	"							
1,3-Dichlorobenzene	ND		0.0167	"	"							
1,4-Dichlorobenzene	ND		0.0167	"	"							
Dichlorodifluoromethane	ND		0.0667	"	"							
1,1-Dichloroethane	ND		0.0167	"	"							
1,2-Dichloroethane (EDC)	ND		0.0167	"	"							
1,1-Dichloroethene	ND		0.0167	"	"							
cis-1,2-Dichloroethene	ND		0.0167	"	"							
trans-1,2-Dichloroethene	ND		0.0167	"	"							
1,2-Dichloropropane	ND		0.0167	"	,,							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

Batch 8040363 - EPA 5035A Blank (8040363-BLK1) 5035A/8260C 1,3-Dichloropropane 2,2-Dichloropropene cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene n-Propylbenzene	ND	 0.0333 0.0333 0.0333 0.0333	Prep	pared: 04/0	2/18 10:00		:00	 	
5035A/8260C 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND ND ND ND ND ND ND ND	 0.0333 0.0333 0.0333 0.0333	mg/kg wet	"			:00	 	
1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropene cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND ND ND ND ND ND ND ND	 0.0333 0.0333 0.0333 0.0333	"	"				 	
2,2-Dichloropropane 1,1-Dichloropropene cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND ND ND ND ND ND ND ND	 0.0333 0.0333 0.0333 0.0333	"	"				 	
1,1-Dichloropropene cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND ND ND ND ND	 0.0333 0.0333 0.0333	"						
cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND ND ND ND	 0.0333 0.0333		"		 		 	
trans-1,3-Dichloropropene Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND ND ND ND	 0.0333	"			 		 	
Ethylbenzene Hexachlorobutadiene 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND ND ND			"		 		 	
Hexachlorobutadiene 2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND ND	0.0167	"	"		 		 	
2-Hexanone Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND	 0.0167	"	"		 		 	
Isopropylbenzene 4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene		0.0667	"	"		 		 	
4-Isopropyltoluene Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND	 0.333	"	"		 		 	
Methylene chloride 4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene		 0.0333	"	"		 		 	
4-Methyl-2-pentanone (MiBK) Methyl tert-butyl ether (MTBE) Naphthalene	ND	 0.0333	"	"		 		 	
Methyl tert-butyl ether (MTBE) Naphthalene	ND	 0.167	"	"		 		 	
Naphthalene	ND	 0.333	"	"		 		 	
*	ND	 0.0333	"	"		 		 	
n Dronylbanzana	ND	 0.0667	"	"		 		 	
II-I TOPYTOCIIZCIIC	ND	 0.0167	"	"		 		 	
Styrene	ND	 0.0333	"	"		 		 	
1,1,1,2-Tetrachloroethane	ND	 0.0167	"	"		 		 	
1,1,2,2-Tetrachloroethane	ND	 0.0333	"	"		 		 	
Tetrachloroethene (PCE)	ND	 0.0167	"	"		 		 	
Toluene	ND	 0.0333	"	"		 		 	
1,2,3-Trichlorobenzene	ND	 0.167	"	"		 		 	
1,2,4-Trichlorobenzene	ND	 0.167	"	"		 		 	
1,1,1-Trichloroethane	ND	 0.0167	"	"		 		 	
1,1,2-Trichloroethane	ND	 0.0167	"	"		 		 	
Trichloroethene (TCE)	ND	 0.0167	"	"		 		 	
Trichlorofluoromethane	ND	 0.0667	"	"		 		 	
1,2,3-Trichloropropane	ND	 0.0333	"	"		 		 	
1,2,4-Trimethylbenzene	ND	 0.0333	"	"		 		 	
1,3,5-Trimethylbenzene	ND	 0.0333	"	"		 		 	
Vinyl chloride	ND	 0.0167	"	"		 		 	
m,p-Xylene	ND	 0.0333	"	"		 		 	
o-Xylene	ND	 0.0353	"	,,		 		 	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gusa & Zmenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	olatile Orga	nic Compou	ınds by	EPA 503	5A/8260C					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040363 - EPA 5035A	١						Soi	I				
Blank (8040363-BLK1)				Prep	ared: 04/0	02/18 10:00	Analyzed:	04/02/18 1	2:00			
5035A/8260C												
Surr: 4-Bromofluorobenzene (Surr)		Re	ecovery: 98 %	Limits: 80-1	20 %	Dil	lution: 1x					
LCS (8040363-BS1)				Prep	ared: 04/0	02/18 10:00	Analyzed:	04/02/18 1	1:05			
5035A/8260C												
Acetone	1.58		1.00	mg/kg wet	50	2.00		79	80-120%			Q-5
Acrylonitrile	0.944		0.100	"	"	1.00		94	"			
Benzene	0.986		0.0100	"	"	"		99	"			
Bromobenzene	1.00		0.0250	"	"	"		100	"			
Bromochloromethane	1.02		0.0500	"	"	"		102	"			
Bromodichloromethane	0.949		0.0500	"	"	"		95	"			
Bromoform	1.10		0.100	"	"	"		110	"			
Bromomethane	1.08		0.500	"	"	"		108	"			
2-Butanone (MEK)	1.67		0.500	"	"	2.00		84	"			
n-Butylbenzene	0.968		0.0500	"	"	1.00		97	"			
sec-Butylbenzene	1.05		0.0500	"	"	"		105	"			
tert-Butylbenzene	0.986		0.0500	"	"	"		99	"			
Carbon disulfide	0.872		0.500	"	"	"		87	"			
Carbon tetrachloride	0.990		0.0500	"	"	"		99	"			
Chlorobenzene	1.02		0.0250	"	"	"		102	"			
Chloroethane	1.04		0.500	"	"	"		104	"			
Chloroform	0.947		0.0500	"	"	"		95	"			
Chloromethane	0.873		0.250	"	"	"		87	"			
2-Chlorotoluene	1.00		0.0500	"	"	"		100	"			
4-Chlorotoluene	1.00		0.0500	"	"	"		100	"			
Dibromochloromethane	1.19		0.100	"	"	"		119	"			
1,2-Dibromo-3-chloropropane	1.14		0.250	"	"	"		114	"			
1,2-Dibromoethane (EDB)	1.00		0.0500	"	"	"		100	"			
Dibromomethane	0.945		0.0500	"	"	"		94	"			
1,2-Dichlorobenzene	0.970		0.0250	"	"	"		97	"			
1,3-Dichlorobenzene	1.01		0.0250	"	"	"		101	••			
1,4-Dichlorobenzene	0.961		0.0250	"	"	"		96	**			
Dichlorodifluoromethane	0.824		0.100	"	"	"		82	**			
1,1-Dichloroethane	1.00		0.0250	"	"	"		100	**			
1,2-Dichloroethane (EDC)	0.962		0.0250	"	"	"		96	"			
1,1-Dichloroethene	0.902		0.0250	,,	,,	,,		94	,,			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

<u> </u>			Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC		RPD	Limit	Note
Batch 8040363 - EPA 5035A	1						Soi					
LCS (8040363-BS1)				Prep	oared: 04/0	02/18 10:00	Analyzed:	04/02/18 11	:05			
5035A/8260C												
cis-1,2-Dichloroethene	0.992		0.0250	mg/kg wet	"	"		99	"			
trans-1,2-Dichloroethene	0.985		0.0250	"	"	"		99	"			
1,2-Dichloropropane	1.00		0.0250	"	"	"		100	"			
1,3-Dichloropropane	0.996		0.0500	"	"	"		100	"			
2,2-Dichloropropane	0.931		0.0500	"	"	"		93	"			
1,1-Dichloropropene	0.972		0.0500	"	"	"		97	"			
cis-1,3-Dichloropropene	1.00		0.0500	"	"	"		100	"			
trans-1,3-Dichloropropene	1.02		0.0500	"	"	"		102	"			
Ethylbenzene	0.986		0.0250	"	"	"		99	"			
Hexachlorobutadiene	0.956		0.100	"	"	"		96	"			
2-Hexanone	1.78		0.500	"	**	2.00		89	"			
Isopropylbenzene	0.980		0.0500	"	"	1.00		98	"			
4-Isopropyltoluene	0.998		0.0500	"	"	"		100	"			
Methylene chloride	0.928		0.250	"	"	"		93	"			
4-Methyl-2-pentanone (MiBK)	1.79		0.500	"	"	2.00		89	"			
Methyl tert-butyl ether (MTBE)	0.916		0.0500	"	"	1.00		92	"			
Naphthalene	1.01		0.100	"	"	"		101	"			
n-Propylbenzene	1.04		0.0250	"	"	"		104	"			
Styrene	0.970		0.0500	"	"	"		97	"			
1,1,1,2-Tetrachloroethane	0.997		0.0250	"	"	"		100	"			
1,1,2,2-Tetrachloroethane	1.12		0.0500	"	"	"		112	"			
Tetrachloroethene (PCE)	0.982		0.0250	"	"	"		98	"			
Toluene	1.01		0.0500	"	"	"		101	"			
1,2,3-Trichlorobenzene	0.986		0.250	"	"	"		99	"			
1,2,4-Trichlorobenzene	0.970		0.250	"	"	"		97	"			
1,1,1-Trichloroethane	0.943		0.0250	"	"	"		94	"			
1,1,2-Trichloroethane	1.00		0.0250	"	"	"		100	"			
Trichloroethene (TCE)	0.960		0.0250	"	"	"		96	"			
Trichlorofluoromethane	0.987		0.100	"	"	"		99	"			
1,2,3-Trichloropropane	0.985		0.0500	"	"	"		99	"			
1,2,4-Trimethylbenzene	0.985		0.0500	"	"	"		95	"			
1,3,5-Trimethylbenzene	0.933		0.0500	"	,,	"		99	,,			
Vinyl chloride	0.990		0.0300	"	,,	"		91	,,			
m,p-Xylene	1.96		0.0230	,,	"	2.00		91	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

		VC	olatile Orga	nic Compo	unus by	PA 503	5A/626UC					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040363 - EPA 5035	4						Soi	l				
LCS (8040363-BS1)				Prep	oared: 04/0	02/18 10:00	Analyzed:	04/02/18 1	1:05			
5035A/8260C												
o-Xylene	0.969		0.0250	mg/kg wet	"	1.00		97	"			
Surr: 1,4-Difluorobenzene (Surr)		Rec	covery: 100 %	Limits: 80-	120 %	Dii	lution: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80-	120 %		"					
Matrix Spike (8040363-MS1)				Prep	oared: 03/3	30/18 18:10	Analyzed:	04/02/18 2	0:28			
QC Source Sample: MW99-15 (A8	D0007-22)											
5035A/8260C												
Acetone	7.01		4.06	mg/kg dry	200	8.12	ND	86	36-164%			Q-5
Acrylonitrile	5.11		0.406	"	"	4.06	ND	103	65-134%			
Benzene	4.22		0.0406	"	"	"	ND	104	77-121%			
Bromobenzene	4.11		0.102	"	"	"	ND	101	78-121%			
Bromochloromethane	4.37		0.203	"	"	"	ND	108	78-125%			
Bromodichloromethane	4.02		0.203	"	"	"	ND	99	75-127%			
Bromoform	4.21		0.406	"	"	"	ND	104	67-132%			
Bromomethane	4.33		2.03	"	"	"	ND	107	53-143%			
2-Butanone (MEK)	13.6		2.03	"	"	8.12	ND	105	51-148%			
n-Butylbenzene	4.41		0.203	"	"	4.06	0.258	102	70-128%			
sec-Butylbenzene	4.69		0.203	"	"	"	0.323	107	73-126%			
tert-Butylbenzene	4.22		0.203	"	"	"	ND	104	73-125%			
Carbon disulfide	3.57		2.03	"	"	"	ND	88	63-132%			
Carbon tetrachloride	4.13		0.203	"	"	"	ND	102	70-135%			
Chlorobenzene	4.30		0.102	"	"	"	ND	106	79-120%			
Chloroethane	4.32		2.03	"	"	"	ND	106	59-139%			
Chloroform	4.12		0.203	"	"	"	ND	101	78-123%			
Chloromethane	3.54		1.02	"	"	"	ND	87	50-136%			
2-Chlorotoluene	4.37		0.203	"	"	"	ND	105	75-122%			
4-Chlorotoluene	4.19		0.203	"	"	"	ND	103	72-124%			
Dibromochloromethane	4.89		0.406	"	"	"	ND	121	74-126%			
1,2-Dibromo-3-chloropropane	4.43		1.02	"	"	"	ND	109	61-132%			
1,2-Dibromoethane (EDB)	4.35		0.203	"	"	"	ND	107	78-122%			
Dibromomethane	4.13		0.203	"	"	"	ND	102	78-125%			
1,2-Dichlorobenzene	3.98		0.102	"	"	"	ND	98	78-121%			
1,3-Dichlorobenzene	4.23		0.102	"	"	"	ND	104	77-121%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

			Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	RPD	Limit	Notes
Batch 8040363 - EPA 5035A							Soil					
Matrix Spike (8040363-MS1)				Prep	oared: 03/	30/18 18:10	Analyzed: 0	04/02/18 2	0:28			
QC Source Sample: MW99-15 (A8D	0007-22)											
5035A/8260C												
1,4-Dichlorobenzene	3.96		0.102	mg/kg dry	"	"	ND	97	75-120%			
Dichlorodifluoromethane	3.27		0.406	"	"	"	ND	80	29-149%			
1,1-Dichloroethane	4.31		0.102	"	"	"	ND	106	76-125%			
1,2-Dichloroethane (EDC)	4.01		0.102	"	"	"	ND	99	73-128%			
1,1-Dichloroethene	4.04		0.102	"	"	"	ND	99	70-131%			
cis-1,2-Dichloroethene	4.24		0.102	"	"	"	ND	104	77-123%			
trans-1,2-Dichloroethene	4.14		0.102	"	"	"	ND	102	74-125%			
1,2-Dichloropropane	4.32		0.102	"	"	"	ND	106	76-123%			
1,3-Dichloropropane	4.27		0.203	"	"	"	ND	105	77-121%			
2,2-Dichloropropane	3.55		0.203	"	"	"	ND	87	67-133%			
1,1-Dichloropropene	4.24		0.203	"	"	"	ND	104	76-125%			
cis-1,3-Dichloropropene	4.18		0.203	"	"	"	ND	103	74-126%			
trans-1,3-Dichloropropene	4.09		0.203	"	"	"	ND	101	71-130%			
Ethylbenzene	4.11		0.102	"	"	"	ND	101	76-122%			
Hexachlorobutadiene	4.28		0.406	"	"	"	ND	105	61-135%			
2-Hexanone	8.46		2.03	"	"	8.12	ND	104	53-145%			
Isopropylbenzene	4.28		0.203	"	"	4.06	ND	105	68-134%			
4-Isopropyltoluene	4.44		0.203	"	"	"	0.124	106	73-127%			
Methylene chloride	3.99		1.02	"	"	"	ND	98	70-128%			
4-Methyl-2-pentanone (MiBK)	13.1		2.03	"	"	8.12	ND	123	65-135%			
Methyl tert-butyl ether (MTBE)	3.95		0.203	"	"	4.06	ND	97	73-125%			
Naphthalene	4.32		0.406	"	"	"	ND	106	62-129%			
n-Propylbenzene	4.46		0.102	"	"	"	ND	108	73-125%			
Styrene	4.34		0.203	"	"	"	ND	107	76-124%			
1,1,1,2-Tetrachloroethane	4.11		0.102	"	"	"	ND	101	78-125%			
1,1,2,2-Tetrachloroethane	4.59		0.203	"	"	"	ND	97	70-124%			
Tetrachloroethene (PCE)	4.19		0.102	"	"	"	ND	103	73-128%			
Toluene	4.27		0.203	"	"	"	ND	105	77-121%			
1,2,3-Trichlorobenzene	3.87		1.02	"	"	"	ND	95	66-130%			
1,2,4-Trichlorobenzene	3.78		1.02	"	"	"	ND	93	67-129%			
1,1,1-Trichloroethane	4.04		0.102	"	"	"	ND	99	73-130%			
1,1,2-Trichloroethane	6.26		0.102	"	,,	"	ND	154	78-121%			(
Trichloroethene (TCE)	4.32		0.102	"	,,	"	ND ND	106	77-123%			`

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	olatile Orga	nic Compo	unds b	y EPA 5035	A/8260C					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040363 - EPA 5035A							Soi	l				
Matrix Spike (8040363-MS1)				Prej	pared: 03/	30/18 18:10	Analyzed:	04/02/18 2	0:28			
QC Source Sample: MW99-15 (A8D	00007-22)											
5035A/8260C												
Trichlorofluoromethane	3.73		0.406	mg/kg dry	"	"	ND	92	62-140%			
1,2,3-Trichloropropane	4.12		0.203	"	"	"	ND	101	73-125%			
1,2,4-Trimethylbenzene	3.98		0.203	"	"	"	ND	98	75-123%			
1,3,5-Trimethylbenzene	4.19		0.203	"	"	"	ND	103	73-124%			
Vinyl chloride	3.76		0.102	"	"	"	ND	93	56-135%			
m,p-Xylene	8.33		0.203	"	"	8.12	ND	103	77-124%			
o-Xylene	4.23		0.102	"	"	4.06	ND	104	77-123%			
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 102 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			103 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

QUALITY CONTROL (QC) SAMPLE RESULTS

	Percent Dry Weight													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 8040419 - Total Solid	ds (Dry We	ight)					Soi	l						
Duplicate (8040419-DUP3)				Prep	ared: 04	/03/18 18:11	Analyzed:	04/04/18 09	:03					
QC Source Sample: HC01-4.5 (A8)	D0007-01)													
EPA 8000C														
% Solids	86.6		1.00	% by Weight	1		87.3			0.7	10%			
Duplicate (8040419-DUP4)				Prep	ared: 04	/03/18 18:11	Analyzed:	04/04/18 09	:03					
QC Source Sample: MW23-12 (A8	D0007-11)													
EPA 8000C														
% Solids	82.2		1.00	% by Weight	1		82.1			0.1	10%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

SAMPLE PREPARATION INFORMATION

		Dies	sel and/or Oil Hydroc	arbons by NWTPH-Dx	(
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040434							
A8D0007-13	Soil	NWTPH-Dx	03/29/18 15:20	04/04/18 07:10	13.36g/5mL	10g/5mL	0.75
A8D0007-14	Soil	NWTPH-Dx	03/29/18 16:05	04/04/18 07:10	12.17g/5mL	10g/5mL	0.82
A8D0007-15	Soil	NWTPH-Dx	03/29/18 16:35	04/04/18 07:10	12.98g/5mL	10g/5mL	0.77
A8D0007-16	Soil	NWTPH-Dx	03/29/18 17:20	04/04/18 07:10	12.47g/5mL	10g/5mL	0.80
A8D0007-17	Soil	NWTPH-Dx	03/29/18 18:20	04/04/18 07:10	12.44g/5mL	10g/5mL	0.80
A8D0007-18	Soil	NWTPH-Dx	03/30/18 08:40	04/04/18 07:10	13.6g/5mL	10g/5mL	0.74
A8D0007-19	Soil	NWTPH-Dx	03/30/18 15:25	04/04/18 07:10	12.88g/5mL	10g/5mL	0.78
A8D0007-20	Soil	NWTPH-Dx	03/30/18 15:30	04/04/18 07:10	13.25g/5mL	10g/5mL	0.76
A8D0007-21	Soil	NWTPH-Dx	03/30/18 18:05	04/04/18 07:10	13.31g/5mL	10g/5mL	0.75
A8D0007-22	Soil	NWTPH-Dx	03/30/18 18:10	04/04/18 07:10	13.53g/5mL	10g/5mL	0.74
Batch: 8040465							
A8D0007-01	Soil	NWTPH-Dx	03/28/18 09:00	04/04/18 13:18	10.95g/5mL	10g/5mL	0.91
A8D0007-02	Soil	NWTPH-Dx	03/28/18 10:05	04/04/18 13:18	10.97g/5mL	10g/5mL	0.91
A8D0007-03	Soil	NWTPH-Dx	03/28/18 10:10	04/04/18 13:18	10.63g/5mL	10g/5mL	0.94
A8D0007-04	Soil	NWTPH-Dx	03/28/18 10:50	04/04/18 13:18	10.68g/5mL	10g/5mL	0.94
A8D0007-05	Soil	NWTPH-Dx	03/28/18 11:50	04/04/18 13:18	10.2g/5mL	10g/5mL	0.98
A8D0007-06	Soil	NWTPH-Dx	03/28/18 15:50	04/04/18 13:18	10.87g/5mL	10g/5mL	0.92
A8D0007-07	Soil	NWTPH-Dx	03/28/18 15:55	04/04/18 13:18	10.18g/5mL	10g/5mL	0.98
A8D0007-08	Soil	NWTPH-Dx	03/28/18 16:45	04/04/18 13:18	10.08g/5mL	10g/5mL	0.99
A8D0007-09	Soil	NWTPH-Dx	03/29/18 08:45	04/04/18 13:18	10.55g/5mL	10g/5mL	0.95
A8D0007-10	Soil	NWTPH-Dx	03/29/18 08:55	04/04/18 13:18	10.53g/5mL	10g/5mL	0.95
A8D0007-11	Soil	NWTPH-Dx	03/29/18 09:20	04/04/18 13:18	10.3g/5mL	10g/5mL	0.97
A8D0007-12	Soil	NWTPH-Dx	03/29/18 10:05	04/04/18 13:18	10.89g/5mL	10g/5mL	0.92

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx							
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040363							
A8D0007-19	Soil	NWTPH-Gx (MS)	03/30/18 15:25	03/30/18 15:25	5.84g/5mL	5g/5mL	0.86
A8D0007-20	Soil	NWTPH-Gx (MS)	03/30/18 15:30	03/30/18 15:30	6.46g/5mL	5g/5mL	0.77
A8D0007-22	Soil	NWTPH-Gx (MS)	03/30/18 18:10	03/30/18 18:10	6.13g/5mL	5g/5mL	0.82
Batch: 8040372							
A8D0007-01	Soil	NWTPH-Gx (MS)	03/28/18 09:00	03/28/18 09:00	5.76g/5mL	5g/5mL	0.87

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite BProject Number: 2017-074Reported:Kelso, WA 98626Project Manager: Craig Hultgren04/11/18 13:27

SAMPLE PREPARATION INFORMATION

	G	Sasoline Range Hydr	ocarbons (Benzen	e through Naphthalene	e) by NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A8D0007-02	Soil	NWTPH-Gx (MS)	03/28/18 10:05	03/28/18 10:05	6.99g/5mL	5g/5mL	0.72
A8D0007-03	Soil	NWTPH-Gx (MS)	03/28/18 10:10	03/28/18 10:10	9.12g/5mL	5g/5mL	0.55
A8D0007-04	Soil	NWTPH-Gx (MS)	03/28/18 10:50	03/28/18 10:50	6.54g/5mL	5g/5mL	0.77
A8D0007-05	Soil	NWTPH-Gx (MS)	03/28/18 11:50	03/28/18 11:50	5.41g/5mL	5g/5mL	0.92
A8D0007-06	Soil	NWTPH-Gx (MS)	03/28/18 15:50	03/28/18 15:50	4.21g/5mL	5g/5mL	1.19
Batch: 8040399							
A8D0007-07	Soil	NWTPH-Gx (MS)	03/28/18 15:55	03/28/18 15:55	8.04g/5mL	5g/5mL	0.62
A8D0007-08	Soil	NWTPH-Gx (MS)	03/28/18 16:45	03/28/18 16:45	7.1g/5mL	5g/5mL	0.70
A8D0007-09	Soil	NWTPH-Gx (MS)	03/29/18 08:45	03/29/18 08:45	7.3g/5mL	5g/5mL	0.69
A8D0007-10	Soil	NWTPH-Gx (MS)	03/29/18 08:55	03/29/18 08:55	6.99g/5mL	5g/5mL	0.72
A8D0007-11	Soil	NWTPH-Gx (MS)	03/29/18 09:20	03/29/18 09:20	6.51g/5mL	5g/5mL	0.77
A8D0007-12	Soil	NWTPH-Gx (MS)	03/29/18 10:05	03/29/18 10:05	6.1g/5mL	5g/5mL	0.82
A8D0007-13RE1	Soil	NWTPH-Gx (MS)	03/29/18 15:20	03/29/18 15:20	6.61g/5mL	5g/5mL	0.76
A8D0007-14RE1	Soil	NWTPH-Gx (MS)	03/29/18 16:05	03/29/18 16:05	6.42g/5mL	5g/5mL	0.78
A8D0007-15	Soil	NWTPH-Gx (MS)	03/29/18 16:35	03/29/18 16:35	6.35g/5mL	5g/5mL	0.79
A8D0007-16	Soil	NWTPH-Gx (MS)	03/29/18 17:20	03/29/18 17:20	7.28g/5mL	5g/5mL	0.69
A8D0007-17	Soil	NWTPH-Gx (MS)	03/29/18 18:20	03/29/18 18:20	6.25g/5mL	5g/5mL	0.80
A8D0007-18	Soil	NWTPH-Gx (MS)	03/30/18 08:40	03/30/18 08:40	6.11g/5mL	5g/5mL	0.82
Batch: 8040401							
A8D0007-21RE1	Soil	NWTPH-Gx (MS)	03/30/18 18:05	03/30/18 18:05	6.35g/5mL	5g/5mL	0.79

			BTEX Compounds	s by EPA 8260C			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040372							
A8D0007-01	Soil	5035A/8260C	03/28/18 09:00	03/28/18 09:00	5.76g/5mL	5g/5mL	0.87
A8D0007-02	Soil	5035A/8260C	03/28/18 10:05	03/28/18 10:05	6.99g/5mL	5g/5mL	0.72
A8D0007-03	Soil	5035A/8260C	03/28/18 10:10	03/28/18 10:10	9.12g/5mL	5g/5mL	0.55
A8D0007-04	Soil	5035A/8260C	03/28/18 10:50	03/28/18 10:50	6.54g/5mL	5g/5mL	0.77
A8D0007-05	Soil	5035A/8260C	03/28/18 11:50	03/28/18 11:50	5.41g/5mL	5g/5mL	0.92
A8D0007-06	Soil	5035A/8260C	03/28/18 15:50	03/28/18 15:50	4.21g/5mL	5g/5mL	1.19
Batch: 8040399							
A8D0007-07	Soil	5035A/8260C	03/28/18 15:55	03/28/18 15:55	8.04g/5mL	5g/5mL	0.62
A8D0007-08	Soil	5035A/8260C	03/28/18 16:45	03/28/18 16:45	7.1g/5mL	5g/5mL	0.70

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

SAMPLE PREPARATION INFORMATION

rep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A8D0007-09	Soil	5035A/8260C	03/29/18 08:45	03/29/18 08:45	7.3g/5mL	5g/5mL	0.69
A8D0007-10	Soil	5035A/8260C	03/29/18 08:55	03/29/18 08:55	6.99g/5mL	5g/5mL	0.72
A8D0007-11	Soil	5035A/8260C	03/29/18 09:20	03/29/18 09:20	6.51g/5mL	5g/5mL	0.77
A8D0007-12	Soil	5035A/8260C	03/29/18 10:05	03/29/18 10:05	6.1g/5mL	5g/5mL	0.82
A8D0007-13	Soil	5035A/8260C	03/29/18 15:20	03/29/18 15:20	6.61g/5mL	5g/5mL	0.76
A8D0007-13RE1	Soil	5035A/8260C	03/29/18 15:20	03/29/18 15:20	6.61g/5mL	5g/5mL	0.76
A8D0007-14RE1	Soil	5035A/8260C	03/29/18 16:05	03/29/18 16:05	6.42g/5mL	5g/5mL	0.78
A8D0007-15	Soil	5035A/8260C	03/29/18 16:35	03/29/18 16:35	6.35g/5mL	5g/5mL	0.79
A8D0007-16	Soil	5035A/8260C	03/29/18 17:20	03/29/18 17:20	7.28g/5mL	5g/5mL	0.69
A8D0007-17	Soil	5035A/8260C	03/29/18 18:20	03/29/18 18:20	6.25g/5mL	5g/5mL	0.80
A8D0007-18	Soil	5035A/8260C	03/30/18 08:40	03/30/18 08:40	6.11g/5mL	5g/5mL	0.82

		Volatil	e Organic Compoun	ds by EPA 5035A/826	OC		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040363							
A8D0007-19	Soil	5035A/8260C	03/30/18 15:25	03/30/18 15:25	5.84g/5mL	5g/5mL	0.86
A8D0007-20	Soil	5035A/8260C	03/30/18 15:30	03/30/18 15:30	6.46g/5mL	5g/5mL	0.77
A8D0007-21	Soil	5035A/8260C	03/30/18 18:05	03/30/18 18:05	6.35g/5mL	5g/5mL	0.79
A8D0007-22	Soil	5035A/8260C	03/30/18 18:10	03/30/18 18:10	6.13g/5mL	5g/5mL	0.82

			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weight	<u> </u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040419							
A8D0007-01	Soil	EPA 8000C	03/28/18 09:00	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-02	Soil	EPA 8000C	03/28/18 10:05	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-03	Soil	EPA 8000C	03/28/18 10:10	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-04	Soil	EPA 8000C	03/28/18 10:50	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-05	Soil	EPA 8000C	03/28/18 11:50	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-06	Soil	EPA 8000C	03/28/18 15:50	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-07	Soil	EPA 8000C	03/28/18 15:55	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-08	Soil	EPA 8000C	03/28/18 16:45	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-09	Soil	EPA 8000C	03/29/18 08:45	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

SAMPLE PREPARATION INFORMATION

			Percent Dry	y Weight			
Prep: Total Solids	(Dry Weight)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A8D0007-10	Soil	EPA 8000C	03/29/18 08:55	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-11	Soil	EPA 8000C	03/29/18 09:20	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-12	Soil	EPA 8000C	03/29/18 10:05	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-13	Soil	EPA 8000C	03/29/18 15:20	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-14	Soil	EPA 8000C	03/29/18 16:05	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-15	Soil	EPA 8000C	03/29/18 16:35	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-16	Soil	EPA 8000C	03/29/18 17:20	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-17	Soil	EPA 8000C	03/29/18 18:20	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-18	Soil	EPA 8000C	03/30/18 08:40	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-19	Soil	EPA 8000C	03/30/18 15:25	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-20	Soil	EPA 8000C	03/30/18 15:30	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-21	Soil	EPA 8000C	03/30/18 18:05	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA
A8D0007-22	Soil	EPA 8000C	03/30/18 18:10	04/03/18 18:11	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

Notes and Definitions

Qualifiers:

F-03	The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not
	representative of the fuel pattern reported.
F-11	The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.

F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation

F-15 Results for diesel are estimated due to overlap from the reported oil result.

F-16 Results for oil are estimated due to overlap from the reported diesel result.

Q-01 Spike recovery and/or RPD is outside acceptance limits.

Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.

Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -1%. The results are reported as Estimated Values.

Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to ensure detection at the reporting level.

R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the

S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

S-08 TPH-Gx Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract. See 8260B results for accurate Surrogate recovery.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional policy chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially

chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in

the blank for organic analyses.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerughini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

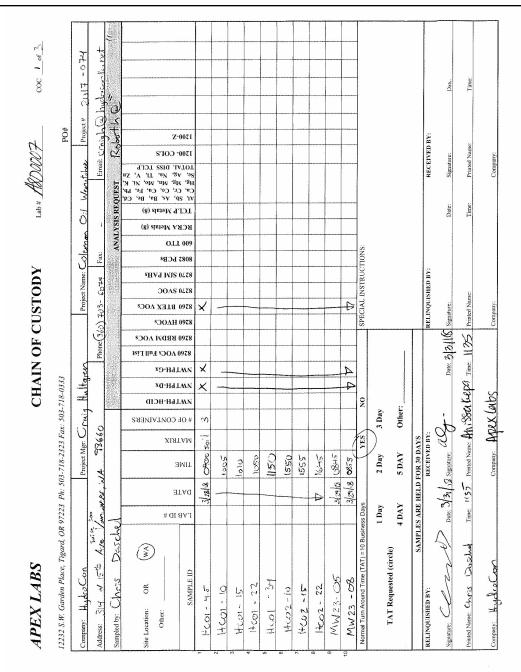
HydroCon LLC Project: Coleman Wenatchee

510 Allen St. Suite B Project Number: 2017-074 Reported:
Kelso, WA 98626 Project Manager: Craig Hultgren 04/11/18 13:27

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

- --- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- *** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).


Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee510 Allen St. Suite BProject Number:2017-074Reported:Kelso, WA 98626Project Manager:Craig Hultgren04/11/18 13:27

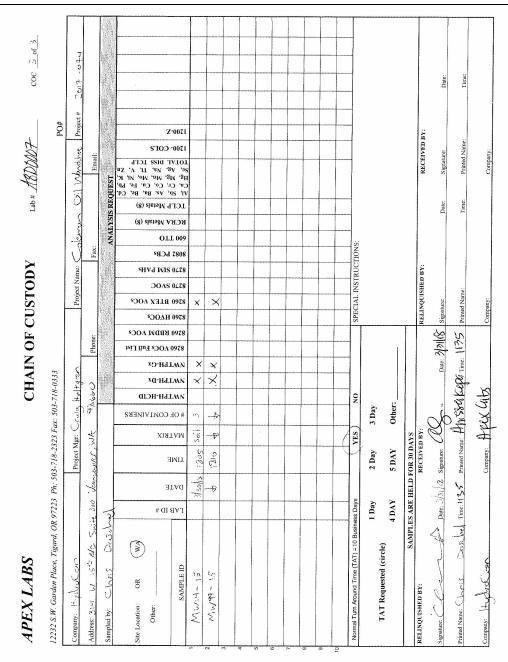
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dosa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee510 Allen St. Suite BProject Number:2017-074Reported:Kelso, WA 98626Project Manager:Craig Hultgren04/11/18 13:27


MA Swite 300 Marvand (WA) (WA) (WA) (WA) (WA) (WA) (WA) (WA)	WTPH-Gx OF CONTAINERS AATPH-DX OF CONTAINERS TME AATPH-Dx AA	3-0333		l							PO#		
DAYEASA WA DATE	AATPH-HCID OF CONTAINERS OF CONTAINERS	500											
OR (WA) SAMPLE 1D LA 200 Manusane, 10/A OR (WA) SAMPLE 1D LA 200 Manusane, 10/A SAMPLE 1D LA 200 SAMPLE 1D LA 20	O CONTRINENS	,			Project Name: Colemn	nie:	in the		Ot Mennisher		Project #	2017-04	Ξ
OR (WA) SAMPLE 1D DATE 17.2 SAMPLE 1D DATE 3.3 SAMPLE 1D DATE	OF CONTAINERS		Phone (362)	560) 703-	P+03 -8		Fax:	ţ	Em	Site S	13 Ap	Email: Craigh & hydracon [c. net	r. net
SAMPLE 1D LAB ID # DATE DATE SAMPLE 1D SAMPLE 1D	OF CONTAINERS			,			ANA	LYSIS	ANALYSIS REQUEST	Sec.	ري بالمعطور	P.,	
3/2/3 0920	#	AWTPH-Gx	8700 KBDW AOC ⁸	8790 HAOC?	8200 BTEX VOCs	8087 PCBs 8270 SIM PAHs	OTT 000	RCRA Metals (8)	TCLP Metals (8) Al, Sb, As, Bs, Be, Cd, Cs, Cr, Co, Cu, Fe, Pb, Hg, Mg, Mg, Mr, K, Se, Ag, Ns, Th, Y, Zn TOTAL DISS TCLP	1500- COF8	Z-0071		
33	E 1 isa	×		×	~								
MW23-22 1805													
MIN13 5													
MW13-10 1605													
MW13-12 1635													
MW13-21 \$ 1720													
M.W13-35 3/20/18 1820													
MW13 - 45 3/2/18 0840													
MW 4-05													
1550	5A	A		-	0								
Normal Turn Around Time (TAT) = 10 Business Days	KES NO			SPECI	SPECIAL INSTRUCTIONS:	RUCTIC	NS:						
I Day 2 Day	3 Day												
TAT Requested (circle) 4 DAY 5 DAY	Other:		1										
SAMPLES ARE HELD FOR 30 DAYS	IVS												
RELINQUISHED BY: RECEIVED BY:) BY:			RELING	RELINQUISHED BY:	BY:			REC	RECEIVED BY:	.Y:		
Signature: CLA Date: 3/31/18 Signature: C	3,	Date	Date: 2/2/118 Signature:	Signatur	نو			Q	Date: Signs	Signature:		Date:	WHAT I
Printed Name: Charles Driebald Time. 1135 Printed Name. AM S&A Legold Time. 1135	# An 580 1	Sep 6 Tim	1135	Printed Name	Уатьс:			Ţ	Time: Print	Printed Name:		Time:	
Company: 14ds-0Con	ARKAGAK	- 1 2		Company	ić.				Company	Dany:			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProjectColeman Wenatchee510 Allen St. Suite BProject Number:2017-074Reported:Kelso, WA 98626Project Manager:Craig Hultgren04/11/18 13:27

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dosa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC 510 Allen St. Suite B Kelso, WA 98626

Project: Coleman Wenatchee

Project Number: 2017-074 Project Manager: Craig Hultgren **Reported:** 04/11/18 13:27

APEX LABS COOLER RECEIPT FOR	<u>M</u>
11 11 - 10	- t WO#: A8_D0007
Project/Project #: Coleman Oil Wenatchee 1	017-074
Delivery info:	
Date/Time Received: 37118@1135 By: AKK	
Delivered by: ApexClient_X_ESSFedExUPSSwiftSo	CDC CI
Cooler Inspection Inspected by: ACC : 3 31	Other
C1	Yes No_X
Signed/Dated by Client? Yes X No	resNo_A
Signed/Dated by Apex? Yes X No	
Cooler#1 Cooler#2 Cooler#3 Cooler#4 Co	ooler#5 Cooler#6 C1#7
Temperature (deg. C)	Cooler #5 Cooler #6 Cooler #7
Received on Ice?((Y/N)	
Temp. Blanks?((Y/N) 1.4	
Ice Type: (Gel/Real/Other)	
Condition: About	
If some coolers are in temp and some out, were green dot applied to out of tem Samples Inspection: Inspected by: ### : #############################	
Containers/Volumes Received Appropriate for Analysis? Yes 💹 No Co	
Do VOA Vials have Visible Headspace? Yes No NA	
Comments	
Water Samples: pH Checked and Appropriate (except VOAs): YesNoN	IAX
Comments:	
Additional Information:	
Labeled by: Witness: Cooler Inspected by: S	See Project Contact Form: Y
W CXX	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighinic

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Thursday, April 19, 2018

Craig Hultgren HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

RE: Coleman Wenatchee / 2017-074

Enclosed are the results of analyses for work order <u>A8D0237</u>, which was received by the laboratory on 4/7/2018 at 10:55:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerichini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION Sample ID Laboratory ID Matrix **Date Sampled Date Received** 04/07/18 10:55 MW14-25 A8D0237-01 Soil 04/02/18 09:30 MW12-10 A8D0237-03 Soil 04/02/18 15:45 04/07/18 10:55 MW12-20 A8D0237-04 Soil 04/02/18 17:10 04/07/18 10:55 MW3S-10 A8D0237-05 Soil 04/03/18 08:35 04/07/18 10:55 A8D0237-06 Soil 04/03/18 09:30 04/07/18 10:55 MW3S-15 A8D0237-07 Soil 04/03/18 10:20 04/07/18 10:55 MW3S-20 MW1S-10 A8D0237-08 Soil 04/03/18 15:10 04/07/18 10:55 A8D0237-09 Soil 04/03/18 16:10 04/07/18 10:55 MW1S-20 MW17-10 A8D0237-10 Soil 04/04/18 09:15 04/07/18 10:55 A8D0237-11 04/04/18 09:25 MW17-15 Soil 04/07/18 10:55 MW17-17 A8D0237-12 Soil 04/04/18 09:55 04/07/18 10:55 MW17-20 A8D0237-13 Soil 04/04/18 10:00 04/07/18 10:55 MW17-25 A8D0237-14 Soil 04/04/18 10:30 04/07/18 10:55 A8D0237-15 MW17-30 Soil 04/04/18 10:35 04/07/18 10:55 MW19-10 A8D0237-16 Soil 04/05/18 08:40 04/07/18 10:55 MW19-18 A8D0237-17 Soil 04/05/18 09:30 04/07/18 10:55 MW19-25 A8D0237-18 Soil 04/05/18 09:55 04/07/18 10:55 MW19-30 A8D0237-19 Soil 04/05/18 10:20 04/07/18 10:55 MW16-10 A8D0237-20 Soil 04/05/18 16:15 04/07/18 10:55 MW16-14 A8D0237-21 Soil 04/05/18 16:55 04/07/18 10:55 A8D0237-22 Soil 04/06/18 09:00 04/07/18 10:55 MW16-25

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

		Diesel	and/or Oil Hy	drocarbons by	NWTPH-D	x		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW14-25 (A8D0237-01)			Matrix: So	il Ba	tch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/12/18 22:55	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 52 %	Limits: 50-150 %	"	"	"	
MW12-10 (A8D0237-03)			Matrix: So	il Ba	atch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/12/18 23:16	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 83 %	Limits: 50-150 %	"	"	"	
MW12-20 (A8D0237-04)			Matrix: So	il Ba	atch: 80407	40		
Diesel	42.5		25.0	mg/kg dry	1	04/12/18 23:58	NWTPH-Dx	F-13, F-15
Oil	66.7		50.0	"	"	"	"	F-03, F-16
Surrogate: o-Terphenyl (Surr)			Recovery: 80 %	Limits: 50-150 %	"	"	"	
MW3S-15 (A8D0237-06)			Matrix: So	il Ba	atch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 00:19	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 80 %	Limits: 50-150 %	"	"	"	
MW3S-20 (A8D0237-07)			Matrix: So	il Ba	atch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 00:41	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 75 %	Limits: 50-150 %	"	"	"	
MW1S-10 (A8D0237-08)			Matrix: So	il Ba	atch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 01:02	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 72 %	Limits: 50-150 %	"	"	"	
MW1S-20 (A8D0237-09)			Matrix: So	il Ba	atch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 01:23	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 67 %	Limits: 50-150 %	"	"	"	
MW17-10 (A8D0237-10)			Matrix: So	il Ba	atch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 01:44	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 75 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

		Diesel	and/or Oil Hy	drocarbons by l	NWTPH-D	<u>x</u>		
			Reporting					
Analyte	Result	MDL		Units	Dilution	Date Analyzed	Method	Notes
MW17-17 (A8D0237-12)			Matrix: So	il Ba	tch: 80407	40		
Diesel	1650		25.0	mg/kg dry	1	04/13/18 02:05	NWTPH-Dx	F-13, F-15
Oil	740		50.0	"	"	"	"	F-16
Surrogate: o-Terphenyl (Surr)			Recovery: 87 %	Limits: 50-150 %	"	"	"	
MW17-25 (A8D0237-14)			Matrix: So	il Ba	tch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 03:49	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 83 %	Limits: 50-150 %	"	"	"	
MW17-30 (A8D0237-15)			Matrix: So	il Ba	tch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 04:10	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 77 %	Limits: 50-150 %	"	"	"	
MW19-10 (A8D0237-16)			Matrix: So	il Ba	tch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 04:31	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 84 %	Limits: 50-150 %	"	"	"	
MW19-18 (A8D0237-17)			Matrix: Soi	il Ba	tch: 80407	40		
Diesel	2010		25.0	mg/kg dry	1	04/13/18 04:52	NWTPH-Dx	F-13
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 80 %	Limits: 50-150 %	"	"	"	
MW19-30 (A8D0237-19)			Matrix: Soi	il Ba	tch: 80407	40		
Diesel	167		25.0	mg/kg dry	1	04/13/18 05:12	NWTPH-Dx	F-13, F-15
Oil	284		50.0	"	"	"	"	F-03, F-16
Surrogate: o-Terphenyl (Surr)			Recovery: 66 %	Limits: 50-150 %	"	"	"	
MW16-10 (A8D0237-20)			Matrix: So	il Ba	tch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 05:33	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 87 %	Limits: 50-150 %	"	"	"	
MW16-14 (A8D0237-21)			Matrix: Soi	il Ba	itch: 80407	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 05:54	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 74 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

		Diesel a	nd/or Oil Hyd	drocarbons by	NWTPH-D	ĸ		
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
MW16-25 (A8D0237-22)			Matrix: Soi	l Ba	atch: 804074	40		
Diesel	ND		25.0	mg/kg dry	1	04/13/18 06:15	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		F	Recovery: 86 %	Limits: 50-150 %	"	n n	II .	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

L Gast	Jille Italiy	c riyuroc		zone unough N	aprilitaien	e) by NWTPH-G	n.	
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
MW14-25 (A8D0237-01)			Matrix: So		tch: 804059			
Gasoline Range Organics	ND		3.97	mg/kg dry	50	04/09/18 18:22	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 106 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	"	"	"	
MW12-10 (A8D0237-03)			Matrix: So	il Ba	itch: 80405	91		
Gasoline Range Organics	ND		5.10	mg/kg dry	50	04/09/18 11:48	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 108 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW12-20 (A8D0237-04)			Matrix: So	il Ba	itch: 804059	91		
Gasoline Range Organics	ND		4.79	mg/kg dry	50	04/09/18 12:41	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 117 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW3S-15 (A8D0237-06)			Matrix: So	il Ba	tch: 80405	99		
Gasoline Range Organics	83.8		4.55	mg/kg dry	50	04/09/18 19:15	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 109 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			103 %	Limits: 50-150 %	"	"	"	
MW3S-20 (A8D0237-07)			Matrix: So	il Ba	tch: 804059	91		
Gasoline Range Organics	ND		6.58	mg/kg dry	50	04/09/18 16:45	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 108 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	"	
MW1S-10 (A8D0237-08)			Matrix: So	il Ba	tch: 804059	91		
Gasoline Range Organics	ND		5.26	mg/kg dry	50	04/09/18 17:12	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 107 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
MW1S-20 (A8D0237-09)			Matrix: So	il Ba	tch: 804059	91		
Gasoline Range Organics	ND		4.88	mg/kg dry	50	04/09/18 17:39	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 106 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW17-10 (A8D0237-10)			Matrix: So	il Ba	tch: 80405	91		
Gasoline Range Organics	ND		4.71	mg/kg dry	50	04/09/18 18:06	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	ecovery: 108 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			101 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

Gaso	onne Kang	е нуагоса	rbons (Ben	zene through Na	apntnaien	e) by NWTPH-G	X	
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
MW17-17 (A8D0237-12RE1)			Matrix: So	il Ba	tch: 80406	30		
Gasoline Range Organics	1900		180	mg/kg dry	2000	04/10/18 14:07	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Red	covery: 148 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			105 %	Limits: 50-150 %	"	"	"	
MW17-25 (A8D0237-14RE1)			Matrix: So	il Ba	tch: 80406	30		
Gasoline Range Organics	83.6		5.08	mg/kg dry	50	04/10/18 13:40	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 119 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			87 %	Limits: 50-150 %	"	"	"	
MW17-30 (A8D0237-15)			Matrix: So	il Ba	tch: 804059	91		
Gasoline Range Organics	ND		4.86	mg/kg dry	50	04/09/18 19:55	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 110 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			103 %	Limits: 50-150 %	"	"	"	
MW19-10 (A8D0237-16)			Matrix: So	il Ba	tch: 804059	91		
Gasoline Range Organics	ND		5.34	mg/kg dry	50	04/09/18 20:22	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Red	covery: 106 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			102 %	Limits: 50-150 %	"	"	"	
MW19-18 (A8D0237-17)			Matrix: So	il Ba	tch: 80405	91		
Gasoline Range Organics	386		5.18	mg/kg dry	50	04/09/18 20:49	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Red	covery: 295 %	Limits: 50-150 %	1	"	"	S-08
1,4-Difluorobenzene (Sur)			107 %	Limits: 50-150 %	"	"	"	
MW19-30 (A8D0237-19RE1)			Matrix: So	il Ba	tch: 80406	30		
Gasoline Range Organics	ND		5.48	mg/kg dry	50	04/10/18 13:13	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Re	covery: 117 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"	
MW16-10 (A8D0237-20RE1)			Matrix: So	il Ba	tch: 80406	30		
Gasoline Range Organics	ND		4.78	mg/kg dry	50	04/10/18 12:46	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Red	covery: 107 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			101 %	Limits: 50-150 %	"	"	"	
MW16-14 (A8D0237-21)			Matrix: So	il Ba	tch: 80405	99		
Gasoline Range Organics	ND		5.09	mg/kg dry	50	04/09/18 20:35	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 103 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			99 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

Gas	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes				
MW16-25 (A8D0237-22)	Matrix: Soil Batch: 8040599											
Gasoline Range Organics	ND		2.38	mg/kg dry	50	04/09/18 21:02	NWTPH-Gx (MS)					
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 105 %	Limits: 50-150 %	1	"	"					
1,4-Difluorobenzene (Sur)			100 %	Limits: 50-150 %	"	"	"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

		B1	TEX Compo	unds by EPA 82	60C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW12-10 (A8D0237-03)			Matrix: So	il Ba	tch: 80405	91		
Benzene	ND		0.0102	mg/kg dry	50	04/09/18 11:48	5035A/8260C	
Toluene	ND		0.0510	"	"	"	"	
Ethylbenzene	ND		0.0255	"	"	"	"	
Xylenes, total	ND		0.0766	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Red	covery: 102 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			104 %	Limits: 80-120 %	"	"	"	
MW12-20 (A8D0237-04)			Matrix: So	il Ba	tch: 80405	91		
Benzene	ND		0.00958	mg/kg dry	50	04/09/18 12:41	5035A/8260C	
Toluene	ND		0.0479	"	"	"	"	
Ethylbenzene	ND		0.0239	"	"	"	"	
Xylenes, total	ND		0.0718	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Red	covery: 100 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
MW3S-20 (A8D0237-07)			Matrix: So	il Ba	tch: 80405	91		
Benzene	ND		0.0132	mg/kg dry	50	04/09/18 16:45	5035A/8260C	
Toluene	ND		0.0658	"	"	"	"	
Ethylbenzene	ND		0.0329	"	"	"	"	
Xylenes, total	ND		0.0987	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Red	covery: 103 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
MW1S-10 (A8D0237-08)			Matrix: So	il Ba	tch: 80405	91		
Benzene	ND		0.0105	mg/kg dry	50	04/09/18 17:12	5035A/8260C	
Toluene	ND		0.0526	"	"	"	"	
Ethylbenzene	ND		0.0263	"	"	"	"	
Xylenes, total	ND		0.0790	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 103 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"	
MW1S-20 (A8D0237-09)			Matrix: So	il Ba	tch: 80405	91		
Benzene	0.318		0.00975	mg/kg dry	50	04/09/18 17:39	5035A/8260C	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

		В	TEX Compo	unds by EPA 82	60C			
Amalada	Result	MDL	Reporting		Dilatia	Data Analysis I	Mathad	Natas
Analyte	Resuit	MIDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW1S-20 (A8D0237-09)			Matrix: So		tch: 80405	91		
Toluene	ND		0.0488	mg/kg dry	50	"	5035A/8260C	
Ethylbenzene	ND		0.0244		"			
Xylenes, total	ND		0.0731	"		"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 102 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			101 %	Limits: 80-120 %	"	"	"	
MW17-10 (A8D0237-10)			Matrix: So	il Ba	tch: 80405	91		
Benzene	ND		0.00943	mg/kg dry	50	04/09/18 18:06	5035A/8260C	
Toluene	ND		0.0471	"	"	"	"	
Ethylbenzene	ND		0.0236	"	"	"	"	
Xylenes, total	ND		0.0707	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rea	covery: 104 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"	
MW17-17 (A8D0237-12)			Matrix: So	il Ba	tch: 80405	91		R-0
Benzene	ND		0.0360	mg/kg dry	200	04/09/18 18:33	5035A/8260C	
Toluene	ND		0.180	"	"	"	"	
Ethylbenzene	ND		0.0900	"	"	"	"	
Xylenes, total	ND		0.270	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 105 %	Limits: 80-120 %	1	"	11	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			101 %	Limits: 80-120 %	"	"	"	
MW17-25 (A8D0237-14RE1)			Matrix: So	il Ba	tch: 80406	30		
Benzene	0.0109		0.0102	mg/kg dry	50	04/10/18 13:40	5035A/8260C	
Toluene	ND		0.0508	"	"	"	"	
Ethylbenzene	0.0631		0.0254	"	"	"	"	
Xylenes, total	0.0799		0.0762	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 107 %	Limits: 80-120 %	1	"	11	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			106 %	Limits: 80-120 %	"	"	"	
MW17-30 (A8D0237-15)			Matrix: So	il Ba	tch: 80405	91		
Benzene	ND		0.00973	mg/kg dry	50	04/09/18 19:55	5035A/8260C	
Toluene	ND		0.0486	"	"	"	"	
Ethylbenzene	ND		0.0243	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260C												
	- ·		Reporting									
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes				
MW17-30 (A8D0237-15)			Matrix: So	il Ba	tch: 80405							
Xylenes, total	ND		0.0730	mg/kg dry	50	"	5035A/8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits: 80-120 %	1	"	"					
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"					
4-Bromofluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"					
MW19-10 (A8D0237-16)			Matrix: So	il Ba	tch: 80405	91						
Benzene	ND		0.0107	mg/kg dry	50	04/09/18 20:22	5035A/8260C					
Toluene	ND		0.0534	"	"	"	"					
Ethylbenzene	ND		0.0267	"	"	"	"					
Xylenes, total	ND		0.0801	"	"	"	"					
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits: 80-120 %	1	"	"					
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"					
4-Bromofluorobenzene (Surr)			101 %	Limits: 80-120 %	"	"	"					
MW19-18 (A8D0237-17)			Matrix: So	il Ba	tch: 80405	91						
Benzene	ND		0.0104	mg/kg dry	50	04/09/18 20:49	5035A/8260C					
Toluene	ND		0.0518	"	"	"	"					
Ethylbenzene	ND		0.0259	"	"	"	"					
Xylenes, total	ND		0.0776	"	"	"	"					
Surrogate: 1,4-Difluorobenzene (Surr)		Re	covery: 98 %	Limits: 80-120 %	1	"	"					
Toluene-d8 (Surr)			92 %	Limits: 80-120 %	"	"	"					
4-Bromofluorobenzene (Surr)			101 %	Limits: 80-120 %	"	"	"					
MW19-30 (A8D0237-19)			Matrix: So	il Ba	tch: 80405	91						
Benzene	ND		0.0110	mg/kg dry	50	04/09/18 21:16	5035A/8260C					
Toluene	ND		0.0548	"	"	"	"					
Ethylbenzene	ND		0.0274	"	"	"	"					
Xylenes, total	ND		0.0822	"	"	"	"					
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 101 %	Limits: 80-120 %	1	"	"					
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"					
4-Bromofluorobenzene (Surr)			100 %	Limits: 80-120 %	"	"	"					
MW16-10 (A8D0237-20RE1)			Matrix: So	il Ba	tch: 80406	30						
Benzene	ND		0.00955	mg/kg dry	50	04/10/18 12:46	5035A/8260C					
Toluene	ND		0.0478	"	"	"	"					
Ethylbenzene	ND		0.0239	"	"	"	"					
Xylenes, total	ND		0.0717	"	"	"	"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

		B1	EX Compo	unds by EPA 82	60C			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW16-10 (A8D0237-20RE1)			Matrix: So	il Ba	tch: 80406	30		
Surrogate: 1,4-Difluorobenzene (Surr)		Red	covery: 104 %	Limits: 80-120 %	1	"	5035A/8260C	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
MW16-14 (A8D0237-21)			Matrix: So	il Ba	tch: 80405	99		
Benzene	ND		0.0102	mg/kg dry	50	04/09/18 20:35	5035A/8260C	
Toluene	ND		0.0509	"	"	"	"	
Ethylbenzene	ND		0.0255	"	"	"	"	
Xylenes, total	ND		0.0764	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 103 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			101 %	Limits: 80-120 %	"	"	n .	
4-Bromofluorobenzene (Surr)			99 %	Limits: 80-120 %	"	"	"	
MW16-25 (A8D0237-22)			Matrix: So	il Ba	tch: 80405	99		
Benzene	ND		0.00476	mg/kg dry	50	04/09/18 21:02	5035A/8260C	
Toluene	ND		0.0238	"	"	"	"	
Ethylbenzene	ND		0.0119	"	"	"	"	
Xylenes, total	ND		0.0357	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 104 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			100 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			97 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C											
			Reporting								
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
MW14-25 (A8D0237-01)			Matrix: Soil	В	atch: 80405	99					
Acetone	ND		0.794	mg/kg dry	50	04/09/18 18:22	5035A/8260C				
Acrylonitrile	ND		0.0794	"	"	"	"				
Benzene	ND		0.00794	"	"	"	"				
Bromobenzene	ND		0.0198	"	"	"	"				
Bromochloromethane	ND		0.0397	"	"	"	"				
Bromodichloromethane	ND		0.0397	"	"	"	"				
Bromoform	ND		0.0794	"	"	"	"				
Bromomethane	ND		0.397	"	"	"	"				
2-Butanone (MEK)	ND		0.397	"	"	"	"				
n-Butylbenzene	ND		0.0397	"	"	"	"				
sec-Butylbenzene	ND		0.0397	"	"	"	"				
tert-Butylbenzene	ND		0.0397	"	"	"	"				
Carbon disulfide	ND		0.397	"	"	"	"				
Carbon tetrachloride	ND		0.0397	"	"	"	"				
Chlorobenzene	ND		0.0198	"	"	"	"				
Chloroethane	ND		0.397	"	"	"	"				
Chloroform	ND		0.0397	"	"	"	"				
Chloromethane	ND		0.198	"	"	"	"				
2-Chlorotoluene	ND		0.0397	"	"	"	"				
4-Chlorotoluene	ND		0.0397	"	"	"	"				
Dibromochloromethane	ND		0.0794	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND		0.198	"	"	"	"				
1,2-Dibromoethane (EDB)	ND		0.0397	"	"	"	"				
Dibromomethane	ND		0.0397	"	"	"	"				
1,2-Dichlorobenzene	ND		0.0198	"	"	"	"				
1,3-Dichlorobenzene	ND		0.0198	"	"	"	"				
1,4-Dichlorobenzene	ND		0.0198	"	"	"	"				
Dichlorodifluoromethane	ND		0.0794	"	"	"	"				
1,1-Dichloroethane	ND		0.0198	"	"	"	"				
1,2-Dichloroethane (EDC)	ND		0.0198	"	"	"	"				
1,1-Dichloroethene	ND		0.0198	"	"	"	"				
cis-1,2-Dichloroethene	ND		0.0198	"	"	"	"				
trans-1,2-Dichloroethene	ND		0.0198	"	"	"	"				
1,2-Dichloropropane	ND		0.0198	"	"	"	"				
1,3-Dichloropropane	ND		0.0397	"	"	"	"				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C											
			Reporting								
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
MW14-25 (A8D0237-01)			Matrix: Soil	Ва	atch: 804059	99					
2,2-Dichloropropane	ND		0.0397	mg/kg dry	50	"	5035A/8260C				
1,1-Dichloropropene	ND		0.0397	"	"	"	"				
cis-1,3-Dichloropropene	ND		0.0397	"	"	"	"				
trans-1,3-Dichloropropene	ND		0.0397	"	"	"	"				
Ethylbenzene	ND		0.0198	"	"	"	"				
Hexachlorobutadiene	ND		0.0794	"	"	"	"				
2-Hexanone	ND		0.397	"	"	"	"				
Isopropylbenzene	ND		0.0397	"	"	"	"				
4-Isopropyltoluene	ND		0.0397	"	"	"	"				
Methylene chloride	ND		0.198	"	"	"	"				
4-Methyl-2-pentanone (MiBK)	ND		0.397	"	"	"	"				
Methyl tert-butyl ether (MTBE)	ND		0.0397	"	"	"	"				
Naphthalene	ND		0.0794	"	"	"	"				
n-Propylbenzene	ND		0.0198	"	"	"	"				
Styrene	ND		0.0397	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND		0.0198	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND		0.0397	"	"	"	"				
Tetrachloroethene (PCE)	ND		0.0198	"	"	"	"				
Toluene	ND		0.0397	"	"	"	"				
1,2,3-Trichlorobenzene	ND		0.198	"	"	"	"				
1,2,4-Trichlorobenzene	ND		0.198	"	"	"	"				
1,1,1-Trichloroethane	ND		0.0198	"	"	"	"				
1,1,2-Trichloroethane	ND		0.0198	"	"	"	"				
Trichloroethene (TCE)	ND		0.0198	"	"	"	"				
Trichlorofluoromethane	ND		0.0794	"	"	"	"				
1,2,3-Trichloropropane	ND		0.0397	"	"	"	"				
1,2,4-Trimethylbenzene	ND		0.0397	"	"	"	"				
1,3,5-Trimethylbenzene	ND		0.0397	"	"	"	"				
Vinyl chloride	ND		0.0198	"	"	"	"				
m,p-Xylene	ND		0.0397	"	"	"	"				
o-Xylene	ND		0.0198	II .	"	"	"				
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 102 %	Limits: 80-120 %	1	"	"				
Toluene-d8 (Surr)			-	Limits: 80-120 %	"	"	"				
4-Bromofluorobenzene (Surr	•)		98 %	Limits: 80-120 %	"	"	"				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

	<u> </u>	olatile Of	ganic Compou	inus by EPA	JUJJA/020	00		
Analyte	Result	MDL	Reporting Limit	***	Dilution	Date Analyzed	Method	Notes
<u> </u>	Result	MDL		Units		<u>-</u>	Method	Notes
MW3S-15 (A8D0237-06)			Matrix: Soil		atch: 80405		5025 1 102 (0.0	
Acetone	ND		0.910	mg/kg dry	50	04/09/18 19:15	5035A/8260C	
Acrylonitrile	ND		0.0910	"	"	"	"	
Benzene	ND		0.00910	"	"		"	
Bromobenzene	ND		0.0227	"	"	"	"	
Bromochloromethane	ND		0.0455	"	"	"	"	
Bromodichloromethane	ND		0.0455	"	"	"	"	
Bromoform	ND		0.0910	"	"	"	"	
Bromomethane	ND		0.455	"	"	"	"	
2-Butanone (MEK)	ND		2.27	"	"	"	"	R-0
n-Butylbenzene	ND		0.0455	"	"	"	"	
sec-Butylbenzene	ND		0.0455	"	"	"	"	
tert-Butylbenzene	ND		0.0455	"	"	"	"	
Carbon disulfide	ND		0.455	"	"	"	"	
Carbon tetrachloride	ND		0.0455	"	"	"	"	
Chlorobenzene	ND		0.0227	"	"	"	"	
Chloroethane	ND		0.455	"	"	"	"	
Chloroform	ND		0.0455	"	"	"	"	
Chloromethane	ND		0.227	"	"	"	"	
2-Chlorotoluene	ND		0.0455	"	"	"	"	
4-Chlorotoluene	ND		0.0455	"	"	"	"	
Dibromochloromethane	ND		0.0910	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND		0.227	"	"	"	"	
1,2-Dibromoethane (EDB)	ND		0.0455	"	"	"	"	
Dibromomethane	ND		0.0455	"	"	"	"	
1,2-Dichlorobenzene	ND		0.0227	"	"	"	"	
1,3-Dichlorobenzene	ND		0.0227	"	"	"	"	
1,4-Dichlorobenzene	ND		0.0227	"	"	"	"	
Dichlorodifluoromethane	ND		0.0910	"	"	"	"	
1,1-Dichloroethane	ND		0.0227	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		0.0227	"	"	"	"	
1,1-Dichloroethene	ND		0.0227	"	"	"	"	
cis-1,2-Dichloroethene	ND		0.0227	"	"	"	"	
trans-1,2-Dichloroethene	ND		0.0227	"	"	"	"	
1,2-Dichloropropane	ND		0.0227	"	"	"	"	
1,3-Dichloropropane	ND		0.0455	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 5035A/8260C											
			Reporting								
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
MW3S-15 (A8D0237-06)			Matrix: Soil	Ва	atch: 804059	99					
2,2-Dichloropropane	ND		0.0455	mg/kg dry	50	"	5035A/8260C				
1,1-Dichloropropene	ND		0.0455	"	"	"	"				
cis-1,3-Dichloropropene	ND		0.0455	"	"	"	"				
trans-1,3-Dichloropropene	ND		0.0455	"	"	"	"				
Ethylbenzene	ND		0.0227	"	"	"	"				
Hexachlorobutadiene	ND		0.0910	"	"	"	"				
2-Hexanone	ND		0.455	"	"	"	"				
Isopropylbenzene	ND		0.0455	"	"	"	"				
4-Isopropyltoluene	ND		0.0455	"	"	"	"				
Methylene chloride	ND		0.227	"	"	"	"				
4-Methyl-2-pentanone (MiBK)	ND		0.455	"	"	"	"				
Methyl tert-butyl ether (MTBE)	ND		0.0455	"	"	"	"				
Naphthalene	ND		0.0910	"	"	"	"				
n-Propylbenzene	ND		0.0227	"	"	"	"				
Styrene	ND		0.0455	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND		0.0227	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND		0.0455	"	"	"	"				
Tetrachloroethene (PCE)	ND		0.0227	"	"	"	"				
Toluene	ND		0.0455	"	"	"	"				
1,2,3-Trichlorobenzene	ND		0.227	"	"	"	"				
1,2,4-Trichlorobenzene	ND		0.227	"	"	"	"				
1,1,1-Trichloroethane	ND		0.0227	"	"	"	"				
1,1,2-Trichloroethane	ND		0.0227	"	"	"	"				
Trichloroethene (TCE)	ND		0.0227	"	"	"	"				
Trichlorofluoromethane	ND		0.0910	"	"	"	"				
1,2,3-Trichloropropane	ND		0.0455	"	"	"	"				
1,2,4-Trimethylbenzene	ND		0.0455	"	"	"	"				
1,3,5-Trimethylbenzene	ND		0.0455	"	"	"	"				
Vinyl chloride	ND		0.0227	"	"	"	"				
m,p-Xylene	ND		0.0455	"	"	"	"				
o-Xylene	ND		0.0227	"	"	"	"				
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 103 %	Limits: 80-120 %	1	"	"				
Toluene-d8 (Surr)			104 %	Limits: 80-120 %	"	"	"				
4-Bromofluorobenzene (Surr))		100 %	Limits: 80-120 %	"	"	n .				

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

			Percen	t Dry Weight				
A 1 4-	Result	MDL	Reporting		Dil e	Data An I I	Moth - 1	N T=4.
Analyte	Kesuit	MDL	Limit	Units	Dilution		Method	Notes
MW14-25 (A8D0237-01)	91.5		Matrix: Soi		satch: 80406	77 04/12/18 08:41	EDA 9000C	
% Solids	91.5		1.00	% by Weight			EPA 8000C	
MW12-10 (A8D0237-03)			Matrix: Soi		Batch: 80406			
% Solids	94.7		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW12-20 (A8D0237-04)			Matrix: Soi		atch: 80406			
% Solids	88.4		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW3S-15 (A8D0237-06)			Matrix: Soi	I B	atch: 80406	18		
% Solids	88.5		1.00	% by Weight	1	04/10/18 10:50	EPA 8000C	
MW3S-20 (A8D0237-07)			Matrix: Soi	I B	atch: 80406	77		
% Solids	85.2		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW1S-10 (A8D0237-08)			Matrix: Soi	I В	atch: 80406	77		
% Solids	91.2		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW1S-20 (A8D0237-09)			Matrix: Soi	I B	atch: 80406	77		
% Solids	86.6		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW17-10 (A8D0237-10)			Matrix: Soi	I B	atch: 80406	77		
% Solids	85.3		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW17-17 (A8D0237-12)			Matrix: Soi	I B	atch: 80406	77		
% Solids	90.3		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW17-25 (A8D0237-14)			Matrix: Soi	I Batch: 8040677				
% Solids	83.8		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW17-30 (A8D0237-15)			Matrix: Soi	I B	atch: 80406	77		
% Solids	90.1		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW19-10 (A8D0237-16)			Matrix: Soi	I B	atch: 80406	77		
% Solids	92.7		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW19-18 (A8D0237-17)			Matrix: Soi	I B	satch: 80406	77		
% Solids	85.0		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	
MW19-30 (A8D0237-19)			Matrix: Soi		satch: 80406			
% Solids	83.5		1.00	% by Weight		04/12/18 08:41	EPA 8000C	
MW16-10 (A8D0237-20)			Matrix: Soi	, ,	atch: 80406			
% Solids	94.4		1.00	% by Weight		04/12/18 08:41	EPA 8000C	
	<i>></i>		Matrix: Soi	, ,	satch: 80406		2111 00000	
MW16-14 (A8D0237-21) % Solids	88.1		1.00	% by Weight			EPA 8000C	

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

ANALYTICAL SAMPLE RESULTS

			Percent	Dry Weight				
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW16-25 (A8D0237-22)			Matrix: Soil	Ва	atch: 80406	77		
% Solids	94.0		1.00	% by Weight	1	04/12/18 08:41	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040740 - EPA 3546	(Fuels)						Soil					
Blank (8040740-BLK1)				Prep	oared: 04/	12/18 13:16	Analyzed:	04/12/18 22	2:13			
NWTPH-Dx												
Diesel	ND		25.0	mg/kg wet	1							
Oil	ND		50.0	"	"							
Surr: o-Terphenyl (Surr)		Re	covery: 87 %	Limits: 50-	150 %	Dilu	tion: 1x					
LCS (8040740-BS1)				Prep	oared: 04/	12/18 13:16	Analyzed:	04/12/18 22	2:34			
NWTPH-Dx												
Diesel	110		25.0	mg/kg wet	1	125		88	76-115%			
Surr: o-Terphenyl (Surr)		Re	ecovery: 92 %	Limits: 50-	150 %	Dilu	tion: 1x					
Duplicate (8040740-DUP1)				Prep	oared: 04/	12/18 13:16	Analyzed:	04/12/18 23	3:37			
QC Source Sample: MW12-10 (A	8D0237-03)											
NWTPH-Dx												
Diesel	ND		25.0	mg/kg dry	1		ND				30%	
Oil	ND		50.0	"	"		ND				30%	
Surr: o-Terphenyl (Surr)		Re	covery: 86 %	Limits: 50-	150 %	Dilu	tion: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040591 - EPA 5035	Α						Soil	l				
Blank (8040591-BLK1)				Pr	epared: 04/	09/18 09:30	Analyzed:	04/09/18 1	0:55			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 106 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	0-150 %		"					
LCS (8040591-BS2)				Pr	epared: 04/	09/18 09:30	Analyzed:	04/09/18 1	0:28			
NWTPH-Gx (MS)												
Gasoline Range Organics	22.7		5.00	mg/kg wet	50	25.0		91	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 105 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	50	0-150 %		"					
Duplicate (8040591-DUP1)				Pr	epared: 04/	02/18 15:45	Analyzed:	04/09/18 1	2:14			
QC Source Sample: MW12-10 (A8	D0237-03)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.12	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 108 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	50	0-150 %		"					
Duplicate (8040591-DUP2)				Pr	epared: 04/	04/18 10:30	Analyzed:	04/09/18 1	9:27			
QC Source Sample: MW17-25 (A8	D0237-14)											
NWTPH-Gx (MS)												
Gasoline Range Organics	107		5.08	mg/kg dry	50		76.8			33	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 117 %	Limits: 50	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ough Naphi	thalene)	by NWTP	H-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040599 - EPA 5035	4						Soi	l				
Blank (8040599-BLK1)				Pre	pared: 04/	/09/18 10:00	Analyzed:	04/09/18 12	:40			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Rec	covery: 96 %	Limits: 50	-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			94 %	50	-150 %		"					
LCS (8040599-BS2)				Pre	epared: 04/	/09/18 10:00	Analyzed:	04/09/18 12	2:13			
NWTPH-Gx (MS)												
Gasoline Range Organics	25.2		5.00	mg/kg wet	50	25.0		101	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	covery: 96 %	Limits: 50	-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			94 %	50	-150 %		"					
Duplicate (8040599-DUP1)				Pre	pared: 04/	/02/18 09:30	Analyzed:	04/09/18 18	3:48			
QC Source Sample: MW14-25 (A8	D0237-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5.01	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 103 %	Limits: 50	-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ough Naphi	thalene) l	y NWTF	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040630 - EPA 5035A							Soil					
Blank (8040630-BLK1)				Pre	pared: 04/	10/18 09:00	Analyzed:	04/10/18 1	1:26			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 107 %	Limits: 50	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	50-	-150 %		"					
LCS (8040630-BS2)				Pre	pared: 04/	10/18 09:00	Analyzed:	04/10/18 1	0:59			
NWTPH-Gx (MS)												
Gasoline Range Organics	21.9		5.00	mg/kg wet	50	25.0		88	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 106 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			101 %	50-	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by E	-PA 8260C						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040591 - EPA 5035	4						Soil					
Blank (8040591-BLK1)				Pre	pared: 04/0	09/18 09:30	Analyzed: (04/09/18 1	0:55			
5035A/8260C												
Benzene	ND		0.00667	mg/kg wet	50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 101 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"					
LCS (8040591-BS1)				Pre	pared: 04/0	09/18 09:30	Analyzed: (04/09/18 0	9:59			
5035A/8260C												
Benzene	1.01		0.0100	mg/kg wet	50	1.00		101	80-120%			
Toluene	0.936		0.0500	"	"	"		94	"			
Ethylbenzene	0.998		0.0250	"	"	"		100	"			
Xylenes, total	3.16		0.0750	"	"	3.00		105	"			
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 100 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80-	120 %		"					
Duplicate (8040591-DUP1)				Pre	pared: 04/0	02/18 15:45	Analyzed: (04/09/18 1	2:14			
QC Source Sample: MW12-10 (A8	D0237-03)											
5035A/8260C												
Benzene	ND		0.0102	mg/kg dry	50		ND				30%	
Toluene	ND		0.0512	"	"		ND				30%	
Ethylbenzene	ND		0.0256	"	"		ND				30%	
Xylenes, total	ND		0.0768	"	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 103 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"					
Duplicate (8040591-DUP2)				Pre	pared: 04/0	04/18 10:30	Analyzed: (04/09/18 1	9:27			
QC Source Sample: MW17-25 (A8	D0237-14)			<u> </u>		<u></u>						<u> </u>
5035A/8260C												
Benzene	0.0109		0.0102	mg/kg dry	50		ND				30%	Q-0
Toluene	ND		0.0508	"	"		ND				30%	
Ethylbenzene	0.0631		0.0254	"	"		0.0398			45	30%	Q-0

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by	EPA 8260C	;					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040591 - EPA 5035A							Soil					
Duplicate (8040591-DUP2)				Pre	pared: 04	/04/18 10:30	Analyzed:	04/09/18 19	:27			
QC Source Sample: MW17-25 (A8D	00237-14)											
5035A/8260C												
Xylenes, total	0.0889		0.0762	mg/kg dry	"		0.0571			44	30%	Q-05
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 105 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			106 %	80-	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

			RIE	X Compou	nas by E	PA 8260C						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040599 - EPA 5035 <i>A</i>	١						Soil					
Blank (8040599-BLK1)				Pre	pared: 04/0	09/18 10:00	Analyzed:	04/09/18 1	2:40			
5035A/8260C												
Benzene	ND		0.00667	mg/kg wet	50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Re	covery: 100 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			101 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80-	120 %		"					
LCS (8040599-BS1)				Pre	pared: 04/	09/18 10:00	Analyzed:	04/09/18 1	1:46			
5035A/8260C												
Benzene	0.951		0.0100	mg/kg wet	50	1.00		95	80-120%			
Toluene	0.998		0.0500	"	"	"		100	"			
Ethylbenzene	0.956		0.0250	"	"	"		96	"			
Xylenes, total	2.85		0.0750	"	"	3.00		95	"			
Surr: 1,4-Difluorobenzene (Surr)		R	ecovery: 98 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80-	120 %		"					
Duplicate (8040599-DUP1)				Pre	pared: 04/0	02/18 09:30	Analyzed:	04/09/18 1	8:48			
QC Source Sample: MW14-25 (A8)	D0237-01)											
5035A/8260C												
Benzene	ND		0.0100	mg/kg dry	50		ND				30%	
Toluene	ND		0.0501	"	"		ND				30%	
Ethylbenzene	ND		0.0251	"	"		ND				30%	
Xylenes, total	ND		0.0752	"	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Re	covery: 101 %	Limits: 80-	120 %	Dilu	ıtion: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80-	120 %		"					
Matrix Spike (8040599-MS1)				Pre	pared: 04/0	03/18 09:30	Analyzed:	04/09/18 1	9:42			
QC Source Sample: MW3S-15 (A8	D0237-06)			<u> </u>		<u></u>						
5035A/8260C												
Benzene	0.988		0.00910	mg/kg dry	50	0.910	ND	109	77-121%			
Toluene	0.958		0.0455	"	"	"	ND	105	"			

Apex Laboratories

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by	EPA 8260C						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040599 - EPA 5035/	4						Soil					
Matrix Spike (8040599-MS1)				Pre	pared: 04/	03/18 09:30	Analyzed:	04/09/18 1	9:42			
QC Source Sample: MW3S-15 (A8	D0237-06)											
5035A/8260C												
Xylenes, total	2.87		0.0682	mg/kg dry	"	2.73	ND	105	78-124%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 103 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			101 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by I	EPA 8260C						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040630 - EPA 5035A							Soil					
Blank (8040630-BLK1)				Prep	oared: 04/	10/18 09:00	Analyzed:	04/10/18 1	1:26			
5035A/8260C												
Benzene	ND		0.00667	mg/kg wet	50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 104 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"					
LCS (8040630-BS1)				Prep	oared: 04/	10/18 09:00	Analyzed:	04/10/18 1	0:25			
5035A/8260C												
Benzene	1.03		0.0100	mg/kg wet	50	1.00		103	80-120%			
Toluene	0.931		0.0500	"	"	"		93	"			
Ethylbenzene	1.00		0.0250	"	"	"		100	"			
Xylenes, total	3.14		0.0750	"	"	3.00		105	"			
Surr: 1,4-Difluorobenzene (Surr)		Rec	covery: 101 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Kesuit	MIDL	Liiiit	UIIIIS	DII.	Amount	Kesuit	/0KEC	Limits	NΓD	LIIIII	notes
Batch 8040599 - EPA 5035A	١						Soil					
Blank (8040599-BLK1)				Prep	oared: 04/0	9/18 10:00	Analyzed:	04/09/18 12	:40			
5035A/8260C												
Acetone	ND		0.667	mg/kg wet	50							
Acrylonitrile	ND		0.0667	"	"							
Benzene	ND		0.00667	"	"							
Bromobenzene	ND		0.0167	"	"							
Bromochloromethane	ND		0.0333	"	"							
Bromodichloromethane	ND		0.0333	"	"							
Bromoform	ND		0.0667	"	"							
Bromomethane	ND		0.333	"	"							
2-Butanone (MEK)	ND		0.333	"	"							
n-Butylbenzene	ND		0.0333	"	"							
sec-Butylbenzene	ND		0.0333	"	"							
tert-Butylbenzene	ND		0.0333	"	"							
Carbon disulfide	ND		0.333	"	"							
Carbon tetrachloride	ND		0.0333	"	"							
Chlorobenzene	ND		0.0167	"	"							
Chloroethane	ND		0.333	"	"							
Chloroform	ND		0.0333	"	"							
Chloromethane	ND		0.167	"	"							
2-Chlorotoluene	ND		0.0333	"	"							
4-Chlorotoluene	ND		0.0333	"	"							
Dibromochloromethane	ND		0.0667	"	"							
1,2-Dibromo-3-chloropropane	ND		0.167	"	"							
1,2-Dibromoethane (EDB)	ND		0.0333	"	"							
Dibromomethane	ND		0.0333	"	"							
1,2-Dichlorobenzene	ND		0.0167	"	"							
1,3-Dichlorobenzene	ND		0.0167	"	"							
1,4-Dichlorobenzene	ND		0.0167	"	"							
Dichlorodifluoromethane	ND		0.0667	"	"							
1,1-Dichloroethane	ND		0.0167	"	"							
1,2-Dichloroethane (EDC)	ND		0.0167	"	"							
1,1-Dichloroethene	ND		0.0167	"	"							
cis-1,2-Dichloroethene	ND		0.0167	"	"							
trans-1,2-Dichloroethene	ND		0.0167	"	"							
1,2-Dichloropropane	ND		0.0167	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040599 - EPA 5035A					_		Soil		_			
Blank (8040599-BLK1)				Prep	ared: 04/0	09/18 10:00	Analyzed:	04/09/18 12	2:40			
5035A/8260C												
1,3-Dichloropropane	ND		0.0333	mg/kg wet	"							
2,2-Dichloropropane	ND		0.0333	"	"							
1,1-Dichloropropene	ND		0.0333	"	"							
cis-1,3-Dichloropropene	ND		0.0333	"	"							
trans-1,3-Dichloropropene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Hexachlorobutadiene	ND		0.0667	"	"							
2-Hexanone	ND		0.333	"	"							
Isopropylbenzene	ND		0.0333	"	"							
4-Isopropyltoluene	ND		0.0333	"	"							
Methylene chloride	ND		0.167	"	"							
4-Methyl-2-pentanone (MiBK)	ND		0.333	"	"							
Methyl tert-butyl ether (MTBE)	ND		0.0333	"	"							
Naphthalene	ND		0.0667	"	"							
n-Propylbenzene	ND		0.0167	"	"							
Styrene	ND		0.0333	"	"							
1,1,2-Tetrachloroethane	ND		0.0167	"	"							
1,1,2,2-Tetrachloroethane	ND		0.0333	"	"							
Tetrachloroethene (PCE)	ND		0.0167	"	"							
Toluene	ND		0.0333	"	"							
1,2,3-Trichlorobenzene	ND		0.167	"	"							
1,2,4-Trichlorobenzene	ND		0.167	"	"							
1,1,1-Trichloroethane	ND		0.0167	"	"							
1,1,2-Trichloroethane	ND		0.0167	"	"							
Trichloroethene (TCE)	ND		0.0167	"	"							
Trichlorofluoromethane	ND		0.0667	"	"							
1,2,3-Trichloropropane	ND		0.0333	"	"							
1,2,4-Trimethylbenzene	ND		0.0333	"	"							
1,3,5-Trimethylbenzene	ND		0.0333	"	"							
Vinyl chloride	ND		0.0167	"	"							
m,p-Xylene	ND		0.0333	"	"							
o-Xylene	ND		0.0167	"	"							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gosa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

			Reporting			Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	RPD	Limit	Notes
Batch 8040599 - EPA 5035 <i>A</i>	١						Soi	I				
Blank (8040599-BLK1)				Prepa	ared: 04/0	09/18 10:00	Analyzed:	04/09/18 1	2:40			
5035A/8260C												
Surr: 4-Bromofluorobenzene (Surr)		Re	ecovery: 99 %	Limits: 80-1	20 %	Dili	ution: 1x					
LCS (8040599-BS1)				Prep	ared: 04/0	09/18 10:00	Analyzed:	04/09/18 1	1:46			
5035A/8260C												
Acetone	1.32		1.00	mg/kg wet	50	2.00		66	80-120%			Q-5
Acrylonitrile	0.840		0.100	"	"	1.00		84	"			
Benzene	0.951		0.0100	"	"	"		95	"			
Bromobenzene	0.953		0.0250	"	"	"		95	"			
Bromochloromethane	0.998		0.0500	"	"	"		100	"			
Bromodichloromethane	0.902		0.0500	"	"	"		90	"			
Bromoform	1.07		0.100	"	"	"		107	"			
Bromomethane	1.01		0.500	"	"	"		101	"			
2-Butanone (MEK)	1.45		0.500	"	"	2.00		72	"			Q-5
n-Butylbenzene	0.940		0.0500	"	"	1.00		94	"			
sec-Butylbenzene	0.994		0.0500	"	"	"		99	"			
tert-Butylbenzene	0.924		0.0500	"	"	"		92	"			
Carbon disulfide	0.829		0.500	"	"	"		83	"			
Carbon tetrachloride	0.940		0.0500	"	"	"		94	"			
Chlorobenzene	0.996		0.0250	"	"	"		100	"			
Chloroethane	0.899		0.500	"	"	"		90	"			
Chloroform	0.916		0.0500	"	"	"		92	"			
Chloromethane	0.816		0.250	"	"	"		82	"			
2-Chlorotoluene	0.951		0.0500	"	"	"		95	"			
4-Chlorotoluene	0.948		0.0500	"	"	"		95	"			
Dibromochloromethane	1.14		0.100	"	"	"		114	"			
1,2-Dibromo-3-chloropropane	1.02		0.250	"	"	"		102	"			
1,2-Dibromoethane (EDB)	0.962		0.0500	"	"	"		96	"			
Dibromomethane	0.889		0.0500	"	"	"		89	"			
1,2-Dichlorobenzene	0.946		0.0250	"	"	"		95	"			
1,3-Dichlorobenzene	0.991		0.0250	"	"	"		99	"			
1,4-Dichlorobenzene	0.955		0.0250	"	"	"		95	"			
Dichlorodifluoromethane	0.771		0.100	"	"	"		77	"			Q-5
1,1-Dichloroethane	0.944		0.0250	"	"	"		94	"			
1,2-Dichloroethane (EDC)	0.890		0.0250	"	"	"		89	"			
1,1-Dichloroethene	0.873		0.0250	"	,,	"		87	,,			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

			olatile Orga	<u> </u>								
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Note
Batch 8040599 - EPA 5035A							Soil					
.CS (8040599-BS1)				Prep	ared: 04/0	09/18 10:00	Analyzed:	04/09/18 11	:46			
035A/8260C	·		·			·		·	·		·	
cis-1,2-Dichloroethene	0.936		0.0250	mg/kg wet	"	"		94	"			
trans-1,2-Dichloroethene	0.942		0.0250	"	"	"		94	"			
1,2-Dichloropropane	0.947		0.0250	"	"	"		95	"			
1,3-Dichloropropane	0.953		0.0500	"	"	"		95	"			
2,2-Dichloropropane	0.929		0.0500	"	"	"		93	"			
1,1-Dichloropropene	0.923		0.0500	"	"	"		92	"			
cis-1,3-Dichloropropene	0.938		0.0500	"	"	"		94	"			
trans-1,3-Dichloropropene	0.979		0.0500	"	"	"		98	"			
Ethylbenzene	0.956		0.0250	"	"	"		96	"			
Hexachlorobutadiene	0.964		0.100	"	"	"		96	"			
2-Hexanone	1.60		0.500	"	"	2.00		80	"			
Isopropylbenzene	0.948		0.0500	"	"	1.00		95	"			
4-Isopropyltoluene	0.952		0.0500	"	"	"		95	"			
Methylene chloride	0.880		0.250	"	"	"		88	"			
4-Methyl-2-pentanone (MiBK)	1.62		0.500	"	"	2.00		81	"			
Methyl tert-butyl ether (MTBE)	0.842		0.0500	"	"	1.00		84	"			
Naphthalene	0.895		0.100	"	"	"		90	"			
n-Propylbenzene	0.981		0.0250	"	"	"		98	"			
Styrene	0.964		0.0500	"	"	"		96	"			
1,1,1,2-Tetrachloroethane	0.986		0.0250	"	"	"		99	"			
1,1,2,2-Tetrachloroethane	1.04		0.0500	"	"	"		104	"			
Tetrachloroethene (PCE)	0.990		0.0250	"	"	"		99	"			
Toluene	0.998		0.0500	"	"	"		100	"			
1,2,3-Trichlorobenzene	0.928		0.250	"	"	"		93	"			
1,2,4-Trichlorobenzene	0.916		0.250	"	"	"		92	"			
1,1,1-Trichloroethane	0.906		0.0250	"	"	"		91	"			
1,1,2-Trichloroethane	0.978		0.0250	"	"	"		98	"			
Trichloroethene (TCE)	0.936		0.0250	"	"	"		94	"			
Trichlorofluoromethane	0.940		0.100	"	"	"		94	"			
1,2,3-Trichloropropane	0.933		0.0500	"	"	"		93	"			
1,2,4-Trimethylbenzene	0.912		0.0500	"	"	"		91	"			
1,3,5-Trimethylbenzene	0.936		0.0500	"	"	"		94	"			
Vinyl chloride	0.802		0.0250	"	"	"		80	"			
m,p-Xylene	1.93		0.0500	"	"	2.00		96	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

			olatile Orga	nic Compo	urius by	/ EFA 503	3A/0200C					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040599 - EPA 5035A							Soi	l				
LCS (8040599-BS1)				Prep	oared: 04/	09/18 10:00	Analyzed:	04/09/18 11	:46			
5035A/8260C												
o-Xylene	0.920		0.0250	mg/kg wet	"	1.00		92	"			
Surr: 1,4-Difluorobenzene (Surr)		ì	Recovery: 98 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80-	120 %		"					
Duplicate (8040599-DUP1)				Prep	oared: 04/0	02/18 09:30	Analyzed:	04/09/18 18	:48			
QC Source Sample: MW14-25 (A8I	00237-01)											
5035A/8260C												
Acetone	ND		1.00	mg/kg dry	50		ND				30%	
Acrylonitrile	ND		0.100	"	••		ND				30%	
Benzene	ND		0.0100	"	**		ND				30%	
Bromobenzene	ND		0.0251	"	**		ND				30%	
Bromochloromethane	ND		0.0501	"	••		ND				30%	
Bromodichloromethane	ND		0.0501	"	••		ND				30%	
Bromoform	ND		0.100	"	"		ND				30%	
Bromomethane	ND		0.501	"	"		ND				30%	
2-Butanone (MEK)	ND		0.501	"	••		ND				30%	
n-Butylbenzene	ND		0.0501	"	"		ND				30%	
sec-Butylbenzene	ND		0.0501	"	"		ND				30%	
tert-Butylbenzene	ND		0.0501	"	"		ND				30%	
Carbon disulfide	ND		0.501	"	"		ND				30%	
Carbon tetrachloride	ND		0.0501	"	"		ND				30%	
Chlorobenzene	ND		0.0251	"	"		ND				30%	
Chloroethane	ND		0.501	"	"		ND				30%	
Chloroform	ND		0.0501	"	"		ND				30%	
Chloromethane	ND		0.251	"	"		ND				30%	
2-Chlorotoluene	ND		0.0501	"	••		ND				30%	
4-Chlorotoluene	ND		0.0501	"	"		ND				30%	
Dibromochloromethane	ND		0.100	"	••		ND				30%	
1,2-Dibromo-3-chloropropane	ND		0.251	"	••		ND				30%	
1,2-Dibromoethane (EDB)	ND		0.0501	"	••		ND				30%	
Dibromomethane	ND		0.0501	"	"		ND				30%	
1,2-Dichlorobenzene	ND		0.0251	"	"		ND				30%	
1,3-Dichlorobenzene	ND		0.0251	"	"		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

		•	olatile Orga		uao							
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040599 - EPA 5035A	<u>I</u>						Soi	l				
Duplicate (8040599-DUP1)				Prep	ared: 04/	02/18 09:30	Analyzed:	04/09/18 18	:48			
QC Source Sample: MW14-25 (A8D	00237-01)											
5035A/8260C												
1,4-Dichlorobenzene	ND		0.0251	mg/kg dry	"		ND				30%	
Dichlorodifluoromethane	ND		0.100	"	"		ND				30%	
1,1-Dichloroethane	ND		0.0251	"	"		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.0251	"	"		ND				30%	
1,1-Dichloroethene	ND		0.0251	"	"		ND				30%	
cis-1,2-Dichloroethene	ND		0.0251	"	"		ND				30%	
trans-1,2-Dichloroethene	ND		0.0251	"	"		ND				30%	
1,2-Dichloropropane	ND		0.0251	"	"		ND				30%	
1,3-Dichloropropane	ND		0.0501	"	"		ND				30%	
2,2-Dichloropropane	ND		0.0501	"	"		ND				30%	
1,1-Dichloropropene	ND		0.0501	"	"		ND				30%	
cis-1,3-Dichloropropene	ND		0.0501	"	"		ND				30%	
trans-1,3-Dichloropropene	ND		0.0501	"	"		ND				30%	
Ethylbenzene	ND		0.0251	"	"		ND				30%	
Hexachlorobutadiene	ND		0.100	"	"		ND				30%	
2-Hexanone	ND		0.501	"	"		ND				30%	
Isopropylbenzene	ND		0.0501	"	"		ND				30%	
4-Isopropyltoluene	ND		0.0501	"	"		ND				30%	
Methylene chloride	ND		0.251	"	"		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		0.501	"	"		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		0.0501	"	"		ND				30%	
Naphthalene	ND		0.100	"	"		ND				30%	
n-Propylbenzene	ND		0.0251	"	"		ND				30%	
Styrene	ND		0.0501	"	"		ND				30%	
1,1,1,2-Tetrachloroethane	ND		0.0251	"	"		ND				30%	
1,1,2,2-Tetrachloroethane	ND		0.0501	"	"		ND				30%	
Tetrachloroethene (PCE)	ND		0.0251	"	"		ND				30%	
Toluene	ND		0.0501	"	"		ND				30%	
1,2,3-Trichlorobenzene	ND		0.251	"	"		ND				30%	
1,2,4-Trichlorobenzene	ND		0.251	"	"		ND				30%	
1,1,1-Trichloroethane	ND		0.0251	"	"		ND				30%	
1,1,2-Trichloroethane	ND		0.0251	"	••		ND				30%	
Trichloroethene (TCE)	ND		0.0251	"	,,		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

		VC	olatile Orga	nic Compo	unas by	PA 5035	0A/8260C					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040599 - EPA 5035A	4						Soi	I				
Duplicate (8040599-DUP1)				Prep	oared: 04/0	02/18 09:30	Analyzed:	04/09/18 1	8:48			
QC Source Sample: MW14-25 (A8)	D0237-01)											
5035A/8260C												
Trichlorofluoromethane	ND		0.100	mg/kg dry	"		ND				30%	
1,2,3-Trichloropropane	ND		0.0501	"	"		ND				30%	
1,2,4-Trimethylbenzene	ND		0.0501	"	"		ND				30%	
1,3,5-Trimethylbenzene	ND		0.0501	"	"		ND				30%	
Vinyl chloride	ND		0.0251	"	"		ND				30%	
m,p-Xylene	ND		0.0501	"	"		ND				30%	
o-Xylene	ND		0.0251	"	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 101 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80-	120 %		"					
Matrix Spike (8040599-MS1)				Prep	oared: 04/0	03/18 09:30	Analyzed:	04/09/18 1	9:42			
QC Source Sample: MW3S-15 (A8	D0237-06)											
5035A/8260C												
Acetone	2.27		0.910	mg/kg dry	50	1.82	ND	125	36-164%			Q-5
A amilamituila			0.0010	"								
Acrylonitrile	1.26		0.0910	"	"	0.910	ND	139	65-134%			Q-0
Benzene	1.26 0.988		0.0910	"	"	0.910	ND ND	139 109				Q-0
									65-134%			Q-0
Benzene	0.988		0.00910	"	"	"	ND	109	65-134% 77-121%			Q-0
Benzene Bromobenzene	0.988 0.935		0.00910 0.0227	"	"	"	ND ND	109 103	65-134% 77-121% 78-121%			Q-0
Benzene Bromobenzene Bromochloromethane	0.988 0.935 1.13		0.00910 0.0227 0.0455	" "	"	"	ND ND ND	109 103 124	65-134% 77-121% 78-121% 78-125%		 	Q-0
Benzene Bromobenzene Bromochloromethane Bromodichloromethane	0.988 0.935 1.13 0.965	 	0.00910 0.0227 0.0455 0.0455	" " "	"	" "	ND ND ND ND	109 103 124 106	65-134% 77-121% 78-121% 78-125% 75-127%	 	 	Q-0
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	0.988 0.935 1.13 0.965 1.09	 	0.00910 0.0227 0.0455 0.0455 0.0910	" " " " " " " " " " " " " " " " " " " "	" " "	" " "	ND ND ND ND ND	109 103 124 106 120	65-134% 77-121% 78-121% 78-125% 75-127% 67-132%	 	 	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	0.988 0.935 1.13 0.965 1.09 1.11	 	0.00910 0.0227 0.0455 0.0455 0.0910 0.455	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	ND ND ND ND ND	109 103 124 106 120 121	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143%		 	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	0.988 0.935 1.13 0.965 1.09 1.11 4.19	 	0.00910 0.0227 0.0455 0.0455 0.0910 0.455 0.455	" " " " " " " " " " " " " " " " " " " "	"""""""""""""""""""""""""""""""""""""""	"""""""""""""""""""""""""""""""""""""""	ND ND ND ND ND ND ND ND	109 103 124 106 120 121 125	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148%	 	 	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	0.988 0.935 1.13 0.965 1.09 1.11 4.19 0.878	 	0.00910 0.0227 0.0455 0.0455 0.0910 0.455 0.455 0.0455	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " 1.82 0.910	ND	109 103 124 106 120 121 125 96	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128%	 	 	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	0.988 0.935 1.13 0.965 1.09 1.11 4.19 0.878 0.943	 	0.00910 0.0227 0.0455 0.0455 0.0910 0.455 0.455 0.0455	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	" " " 1.82 0.910	ND	109 103 124 106 120 121 125 96 104	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126%		 	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	0.988 0.935 1.13 0.965 1.09 1.11 4.19 0.878 0.943 0.883		0.00910 0.0227 0.0455 0.0455 0.0910 0.455 0.455 0.0455 0.0455	"" "" "" "" "" "" "" "" "" "" "" "" ""	"""""""""""""""""""""""""""""""""""""""	" " 1.82 0.910 "	ND N	109 103 124 106 120 121 125 96 104	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 73-125%		 	Q-0 Q-54
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	0.988 0.935 1.13 0.965 1.09 1.11 4.19 0.878 0.943 0.883		0.00910 0.0227 0.0455 0.0455 0.0910 0.455 0.455 0.0455 0.0455 0.0455	"" "" "" "" "" "" "" "" "" "" "" "" ""	"" "" "" "" "" "" "" "" "" "" "" "" ""	" " 1.82 0.910 " "	ND N	109 103 124 106 120 121 125 96 104 97	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 73-125% 63-132%	 	 	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride	0.988 0.935 1.13 0.965 1.09 1.11 4.19 0.878 0.943 0.883 0.969		0.00910 0.0227 0.0455 0.0455 0.0910 0.455 0.455 0.0455 0.0455 0.0455 0.455	"" "" "" "" "" "" "" "" "" "" "" "" ""	"""""""""""""""""""""""""""""""""""""""	" " 1.82 0.910 " "	ND N	109 103 124 106 120 121 125 96 104 97 106 108	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 63-132% 70-135%	 	 	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene	0.988 0.935 1.13 0.965 1.09 1.11 4.19 0.878 0.943 0.883 0.969 0.984		0.00910 0.0227 0.0455 0.0455 0.0910 0.455 0.455 0.0455 0.0455 0.0455 0.0455			1.82	ND N	109 103 124 106 120 121 125 96 104 97 106 108 107	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 73-125% 63-132% 70-135% 79-120%		 	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane	0.988 0.935 1.13 0.965 1.09 1.11 4.19 0.878 0.943 0.883 0.969 0.984 0.977 1.07		0.00910 0.0227 0.0455 0.0455 0.0910 0.455 0.455 0.0455 0.0455 0.0455 0.0455 0.0455			1.82	ND N	109 103 124 106 120 121 125 96 104 97 106 108 107	65-134% 77-121% 78-121% 78-125% 75-127% 67-132% 53-143% 51-148% 70-128% 73-126% 73-125% 63-132% 70-135% 79-120% 59-139%		 	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

		-	atiio Oiga	nic Compo								
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040599 - EPA 5035A							Soi	l				
Matrix Spike (8040599-MS1)				Prep	ared: 04/	03/18 09:30	Analyzed:	04/09/18 19	9:42			
QC Source Sample: MW3S-15 (A8I	00237-06)											
5035A/8260C												
4-Chlorotoluene	0.932		0.0455	mg/kg dry	"	"	ND	102	72-124%			
Dibromochloromethane	1.15		0.0910	"	"	"	ND	126	74-126%			
1,2-Dibromo-3-chloropropane	1.03		0.227	"	"	"	ND	113	61-132%			
1,2-Dibromoethane (EDB)	1.00		0.0455	"	"	"	ND	110	78-122%			
Dibromomethane	1.01		0.0455	"	"	"	ND	111	78-125%			
1,2-Dichlorobenzene	0.916		0.0227	"	"	"	ND	101	78-121%			
1,3-Dichlorobenzene	0.941		0.0227	"	"	"	ND	103	77-121%			
1,4-Dichlorobenzene	0.910		0.0227	"	"	"	ND	100	75-120%			
Dichlorodifluoromethane	0.859		0.0910	"	"	"	ND	94	29-149%			Q-54
1,1-Dichloroethane	1.08		0.0227	"	"	"	ND	118	76-125%			
1,2-Dichloroethane (EDC)	0.994		0.0227	"	"	"	ND	109	73-128%			
1,1-Dichloroethene	1.01		0.0227	"	"	"	ND	110	70-131%			
cis-1,2-Dichloroethene	1.02		0.0227	"	"	"	ND	112	77-123%			
trans-1,2-Dichloroethene	0.998		0.0227	"	"	"	ND	110	74-125%			
1,2-Dichloropropane	1.04		0.0227	"	"	"	ND	115	76-123%			
1,3-Dichloropropane	0.994		0.0455	"	"	"	ND	109	77-121%			
2,2-Dichloropropane	0.841		0.0455	"	"	"	ND	92	67-133%			
1,1-Dichloropropene	1.00		0.0455	"	"	"	ND	110	76-125%			
cis-1,3-Dichloropropene	0.938		0.0455	"	"	"	ND	103	74-126%			
trans-1,3-Dichloropropene	0.953		0.0455	"	"	"	ND	105	71-130%			
Ethylbenzene	0.936		0.0227	"	"	"	ND	103	76-122%			
Hexachlorobutadiene	0.887		0.0910	"	"	"	ND	97	61-135%			
2-Hexanone	2.01		0.455	"	"	1.82	ND	110	53-145%			
Isopropylbenzene	0.928		0.0455	"	"	0.910	ND	102	68-134%			
4-Isopropyltoluene	0.897		0.0455	"	"	"	ND	99	73-127%			
Methylene chloride	1.01		0.227	"	"	"	ND	111	70-128%			
4-Methyl-2-pentanone (MiBK)	2.21		0.455	"	"	1.82	ND	105	65-135%			
Methyl tert-butyl ether (MTBE)	0.903		0.0455	"	"	0.910	ND	99	73-125%			
Naphthalene	0.930		0.0910	"	"	"	ND	102	62-129%			
n-Propylbenzene	0.950		0.0227	"	"	"	ND	104	73-125%			
Styrene	0.981		0.0455	"	"	"	ND	108	76-124%			
1,1,1,2-Tetrachloroethane	0.936		0.0227	"	"	"	ND	103	78-125%			
1,1,2,2-Tetrachloroethane	1.08		0.0455	"	"	"	ND	119	70-124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

		Vo	olatile Orga	nic Compo	unds by	y EPA 503	5A/8260C					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040599 - EPA 5035	4						Soil					
Matrix Spike (8040599-MS1)				Pre	pared: 04/	03/18 09:30	Analyzed:	04/09/18 1	9:42			
QC Source Sample: MW3S-15 (A8	D0237-06)											
5035A/8260C												
Tetrachloroethene (PCE)	0.902		0.0227	mg/kg dry	"	"	ND	99	73-128%			
Toluene	0.958		0.0455	"	"	"	ND	105	77-121%			
1,2,3-Trichlorobenzene	0.894		0.227	"	"	"	ND	98	66-130%			
1,2,4-Trichlorobenzene	0.885		0.227	"	"	"	ND	97	67-129%			
1,1,1-Trichloroethane	0.964		0.0227	"	"	"	ND	106	73-130%			
1,1,2-Trichloroethane	1.04		0.0227	"	"	"	ND	114	78-121%			
Trichloroethene (TCE)	0.996		0.0227	"	"	"	ND	109	77-123%			
Trichlorofluoromethane	0.904		0.0910	"	"	"	ND	99	62-140%			
1,2,3-Trichloropropane	0.932		0.0455	"	"	"	ND	102	73-125%			
1,2,4-Trimethylbenzene	0.869		0.0455	"	"	"	ND	95	75-123%			
1,3,5-Trimethylbenzene	0.910		0.0455	"	"	"	ND	100	73-124%			
Vinyl chloride	1.14		0.0227	"	"	"	ND	125	56-135%			
m,p-Xylene	1.90		0.0455	"	"	1.82	ND	104	77-124%			
o-Xylene	0.971		0.0227	"	"	0.910	ND	107	77-123%			
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 103 %	Limits: 80-	-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			101 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent [Ory Wei	ght						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040618 - Total Soli	ds (Dry We	eight)					Soi					
Duplicate (8040618-DUP1)				Prep	ared: 04/	10/18 05:30	Analyzed:	04/10/18 10	:50			
QC Source Sample: MW3S-15 (A	8D0237-06)											
EPA 8000C	06.0		1.00	% by Weight	1		88.5			2	10%	
% Solids No Client related Bat	86.9 ch QC sample			, ,	ige for m	ore information	on.					
No Client related Bat Batch 8040677 - Total Soli	ch QC sample	es analyzec		ch. See notes pa			Soi		41			
No Client related Bat Batch 8040677 - Total Soli Duplicate (8040677-DUP1)	ch QC sample	es analyzec		ch. See notes pa		ore information	Soi		:41			
No Client related Bat Batch 8040677 - Total Soli	ch QC sample	es analyzec		ch. See notes pa			Soi		:41			
No Client related Bat Batch 8040677 - Total Solid Duplicate (8040677-DUP1) QC Source Sample: MW14-25 (A8	ch QC sample	es analyzec		ch. See notes pa			Soi		:41	1	10%	
No Client related Bat Batch 8040677 - Total Soli Duplicate (8040677-DUP1) QC Source Sample: MW14-25 (A8EPA 8000C	ch QC sample ds (Dry We	es analyzed	d for this bate	Prep % by Weight	ared: 04/	11/18 09:50	Soil Analyzed:	04/12/18 08		1	10%	
No Client related Bat Batch 8040677 - Total Solid Duplicate (8040677-DUP1) QC Source Sample: MW14-25 (A8EPA 8000C) % Solids	ds (Dry We BD0237-01)	es analyzed	d for this bate	Prep % by Weight	ared: 04/	11/18 09:50	Soil Analyzed:	04/12/18 08		1	10%	
No Client related Bat Batch 8040677 - Total Solid Duplicate (8040677-DUP1) QC Source Sample: MW14-25 (A8 EPA 8000C % Solids Duplicate (8040677-DUP2)	ds (Dry We BD0237-01)	es analyzed	d for this bate	Prep % by Weight	ared: 04/	11/18 09:50	Soil Analyzed:	04/12/18 08		1	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/19/18 09:44

SAMPLE PREPARATION INFORMATION

		Dies	sel and/or Oil Hydroc	arbons by NWTPH-Dx	(
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040740							
A8D0237-01	Soil	NWTPH-Dx	04/02/18 09:30	04/12/18 13:16	10.05g/5mL	10g/5mL	1.00
A8D0237-03	Soil	NWTPH-Dx	04/02/18 15:45	04/12/18 13:16	10.07g/5mL	10g/5mL	0.99
A8D0237-04	Soil	NWTPH-Dx	04/02/18 17:10	04/12/18 13:16	10.32g/5mL	10g/5mL	0.97
A8D0237-06	Soil	NWTPH-Dx	04/03/18 09:30	04/12/18 13:16	10.77g/5mL	10g/5mL	0.93
A8D0237-07	Soil	NWTPH-Dx	04/03/18 10:20	04/12/18 13:16	10.46g/5mL	10g/5mL	0.96
A8D0237-08	Soil	NWTPH-Dx	04/03/18 15:10	04/12/18 13:16	10.67g/5mL	10g/5mL	0.94
A8D0237-09	Soil	NWTPH-Dx	04/03/18 16:10	04/12/18 13:16	10.6g/5mL	10g/5mL	0.94
A8D0237-10	Soil	NWTPH-Dx	04/04/18 09:15	04/12/18 13:16	10.68g/5mL	10g/5mL	0.94
A8D0237-12	Soil	NWTPH-Dx	04/04/18 09:55	04/12/18 13:16	10.33g/5mL	10g/5mL	0.97
A8D0237-14	Soil	NWTPH-Dx	04/04/18 10:30	04/12/18 13:16	10.42g/5mL	10g/5mL	0.96
A8D0237-15	Soil	NWTPH-Dx	04/04/18 10:35	04/12/18 13:16	10.19g/5mL	10g/5mL	0.98
A8D0237-16	Soil	NWTPH-Dx	04/05/18 08:40	04/12/18 13:16	11.32g/5mL	10g/5mL	0.88
A8D0237-17	Soil	NWTPH-Dx	04/05/18 09:30	04/12/18 13:16	10.42g/5mL	10g/5mL	0.96
A8D0237-19	Soil	NWTPH-Dx	04/05/18 10:20	04/12/18 13:16	10.92g/5mL	10g/5mL	0.92
A8D0237-20	Soil	NWTPH-Dx	04/05/18 16:15	04/12/18 13:16	10.81g/5mL	10g/5mL	0.93
A8D0237-21	Soil	NWTPH-Dx	04/05/18 16:55	04/12/18 13:16	10.38g/5mL	10g/5mL	0.96
A8D0237-22	Soil	NWTPH-Dx	04/06/18 09:00	04/12/18 13:16	10.21g/5mL	10g/5mL	0.98

		Gasoline Range Hydi	ocarbons (Benzene	through Naphthalen	e) by NWTPH-Gx		•
Prep: EPA 5035A Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
Batch: 8040591	IVIGUIX	Wichiod	Sampled	Терагеи			
A8D0237-03	Soil	NWTPH-Gx (MS)	04/02/18 15:45	04/02/18 15:45	5.47g/5mL	5g/5mL	0.91
A8D0237-04	Soil	NWTPH-Gx (MS)	04/02/18 17:10	04/02/18 17:10	6.85g/5mL	5g/5mL	0.73
A8D0237-07	Soil	NWTPH-Gx (MS)	04/03/18 10:20	04/03/18 10:20	5.14g/5mL	5g/5mL	0.97
A8D0237-08	Soil	NWTPH-Gx (MS)	04/03/18 15:10	04/03/18 15:10	5.74g/5mL	5g/5mL	0.87
A8D0237-09	Soil	NWTPH-Gx (MS)	04/03/18 16:10	04/03/18 16:10	7.04g/5mL	5g/5mL	0.71
A8D0237-10	Soil	NWTPH-Gx (MS)	04/04/18 09:15	04/04/18 09:15	7.62g/5mL	5g/5mL	0.66
A8D0237-15	Soil	NWTPH-Gx (MS)	04/04/18 10:35	04/04/18 10:35	6.43g/5mL	5g/5mL	0.78
A8D0237-16	Soil	NWTPH-Gx (MS)	04/05/18 08:40	04/05/18 08:40	5.45g/5mL	5g/5mL	0.92
A8D0237-17	Soil	NWTPH-Gx (MS)	04/05/18 09:30	04/05/18 09:30	6.86g/5mL	5g/5mL	0.73
Batch: 8040599							
A8D0237-01	Soil	NWTPH-Gx (MS)	04/02/18 09:30	04/02/18 09:30	7.8g/5mL	5g/5mL	0.64

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

SAMPLE PREPARATION INFORMATION

	0	Basoline Range Hyd	rocarbons (Benzen	e through Naphthalen	e) by NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A8D0237-06	Soil	NWTPH-Gx (MS)	04/03/18 09:30	04/03/18 09:30	7.25g/5mL	5g/5mL	0.69
A8D0237-21	Soil	NWTPH-Gx (MS)	04/05/18 16:55	04/05/18 16:55	6.42g/5mL	5g/5mL	0.78
A8D0237-22	Soil	NWTPH-Gx (MS)	04/06/18 09:00	04/06/18 09:00	12.88g/5mL	5g/5mL	0.39
Batch: 8040630							
A8D0237-12RE1	Soil	NWTPH-Gx (MS)	04/04/18 09:55	04/04/18 09:55	6.99g/5mL	5g/5mL	0.72
A8D0237-14RE1	Soil	NWTPH-Gx (MS)	04/04/18 10:30	04/04/18 10:30	7.26g/5mL	5g/5mL	0.69
A8D0237-19RE1	Soil	NWTPH-Gx (MS)	04/05/18 10:20	04/05/18 10:20	6.67g/5mL	5g/5mL	0.75
A8D0237-20RE1	Soil	NWTPH-Gx (MS)	04/05/18 16:15	04/05/18 16:15	5.91g/5mL	5g/5mL	0.85
			BTEX Compound	s by EPA 8260C			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040591							
A8D0237-03	Soil	5035A/8260C	04/02/18 15:45	04/02/18 15:45	5.47g/5mL	5g/5mL	0.91
A8D0237-04	Soil	5035A/8260C	04/02/18 17:10	04/02/18 17:10	6.85g/5mL	5g/5mL	0.73
A8D0237-07	Soil	5035A/8260C	04/03/18 10:20	04/03/18 10:20	5.14g/5mL	5g/5mL	0.97
A8D0237-08	Soil	5035A/8260C	04/03/18 15:10	04/03/18 15:10	5.74g/5mL	5g/5mL	0.87
A8D0237-09	Soil	5035A/8260C	04/03/18 16:10	04/03/18 16:10	7.04g/5mL	5g/5mL	0.71
A8D0237-10	Soil	5035A/8260C	04/04/18 09:15	04/04/18 09:15	7.62g/5mL	5g/5mL	0.66
A8D0237-12	Soil	5035A/8260C	04/04/18 09:55	04/04/18 09:55	6.99g/5mL	5g/5mL	0.72
A8D0237-15	Soil	5035A/8260C	04/04/18 10:35	04/04/18 10:35	6.43g/5mL	5g/5mL	0.78
A8D0237-16	Soil	5035A/8260C	04/05/18 08:40	04/05/18 08:40	5.45g/5mL	5g/5mL	0.92
A8D0237-17	Soil	5035A/8260C	04/05/18 09:30	04/05/18 09:30	6.86g/5mL	5g/5mL	0.73
A8D0237-19	Soil	5035A/8260C	04/05/18 10:20	04/05/18 10:20	6.67g/5mL	5g/5mL	0.75
Batch: 8040599							
A8D0237-21	Soil	5035A/8260C	04/05/18 16:55	04/05/18 16:55	6.42g/5mL	5g/5mL	0.78
A8D0237-22	Soil	5035A/8260C	04/06/18 09:00	04/06/18 09:00	12.88g/5mL	5g/5mL	0.39
Batch: 8040630							
A8D0237-14RE1	Soil	5035A/8260C	04/04/18 10:30	04/04/18 10:30	7.26g/5mL	5g/5mL	0.69
A8D0237-20RE1	Soil	5035A/8260C	04/05/18 16:15	04/05/18 16:15	5.91g/5mL	5g/5mL	0.85
		Volatile	Organic Compour	ds by EPA 5035A/826	0C		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

SAMPLE PREPARATION INFORMATION

		Volatil	e Organic Compoun	ds by EPA 5035A/8260	C		
Batch: 8040599							
A8D0237-01	Soil	5035A/8260C	04/02/18 09:30	04/02/18 09:30	7.8g/5mL	5g/5mL	0.64
A8D0237-06	Soil	5035A/8260C	04/03/18 09:30	04/03/18 09:30	7.25g/5mL	5g/5mL	0.69

			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weight	1			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040618							
A8D0237-06	Soil	EPA 8000C	04/03/18 09:30	04/10/18 05:30	1N/A/1N/A	1N/A/1N/A	NA
Batch: 8040677							
A8D0237-01	Soil	EPA 8000C	04/02/18 09:30	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-03	Soil	EPA 8000C	04/02/18 15:45	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-04	Soil	EPA 8000C	04/02/18 17:10	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-07	Soil	EPA 8000C	04/03/18 10:20	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-08	Soil	EPA 8000C	04/03/18 15:10	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-09	Soil	EPA 8000C	04/03/18 16:10	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-10	Soil	EPA 8000C	04/04/18 09:15	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-12	Soil	EPA 8000C	04/04/18 09:55	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-14	Soil	EPA 8000C	04/04/18 10:30	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-15	Soil	EPA 8000C	04/04/18 10:35	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-16	Soil	EPA 8000C	04/05/18 08:40	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-17	Soil	EPA 8000C	04/05/18 09:30	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-19	Soil	EPA 8000C	04/05/18 10:20	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-20	Soil	EPA 8000C	04/05/18 16:15	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-21	Soil	EPA 8000C	04/05/18 16:55	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA
A8D0237-22	Soil	EPA 8000C	04/06/18 09:00	04/11/18 09:50	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

Notes and Definitions

Qualifiers:

F-03	The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
F-15	Results for diesel are estimated due to overlap from the reported oil result.
F-16	Results for oil are estimated due to overlap from the reported diesel result.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -14.1%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -2.9%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -7.7%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to ensure detection at the reporting level.
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
R-04	Reporting levels elevated due to dilution necessary for analysis.

Notes and Conventions:

DET	Analyte DETECTED	

ND Analyte NOT DETECTED at or above the reporting limit

extract. See 8260B results for accurate Surrogate recovery.

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

S-08

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

TPH-Gx Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

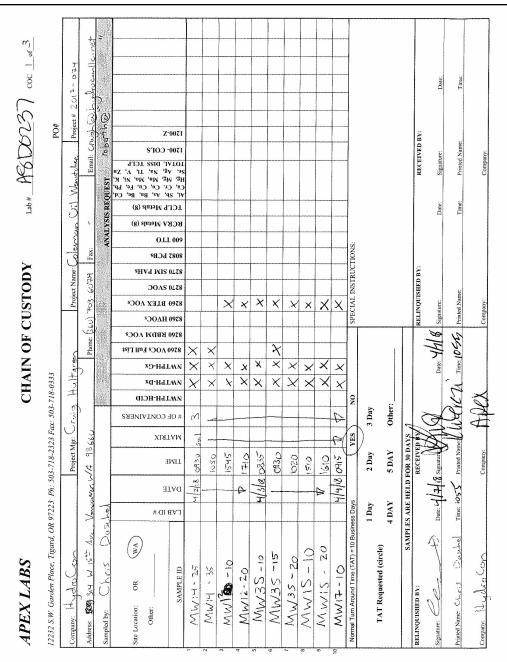
314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/19/18 09:44

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- *** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

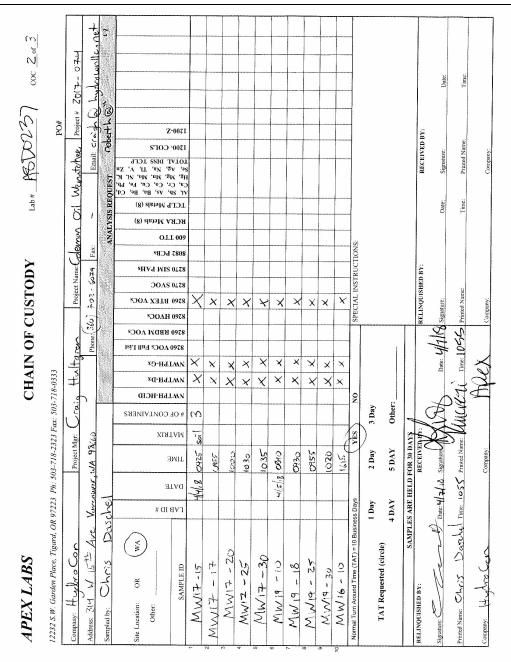

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Reported:Vancouver, WA 98660Project Manager:Craig Hultgren04/19/18 09:44

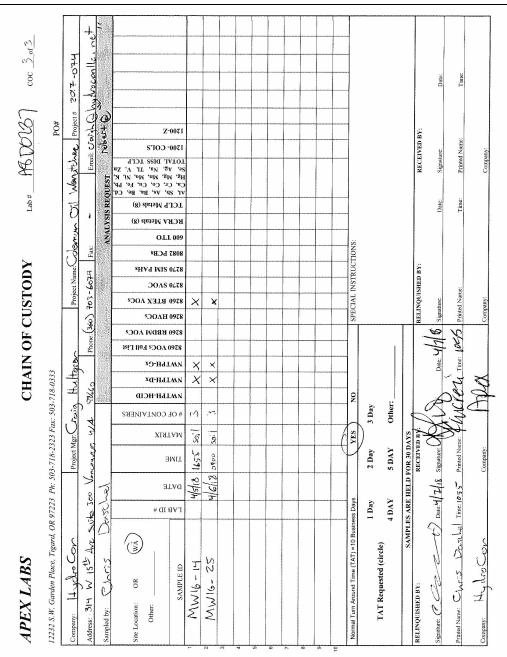

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Reported:Vancouver, WA 98660Project Manager:Craig Hultgren04/19/18 09:44


Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Reported:Vancouver, WA 98660Project Manager:Craig Hultgren04/19/18 09:44

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dosa & Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Reported:Vancouver, WA 98660Project Manager:Craig Hultgren04/19/18 09:44

APEX LABS COOLER RECEIPT FORM
Client: Element WO#: A8
Project/Project #: Coleman Oil Wenatcher
Delivery info:
Date/Time Received: 4718@ 1055 By:
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other
Cooler Inspection Inspected by: 47/18 @ 1055
Chain of Custody Included? Yes No Custody Seals? Yes No
Signed/Dated by Client? Yes No
Signed/Dated by Apex? Yes No
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (deg. C) Received on Ice? (YN) Temp. Blanks? (YN) Ice Type: (Gel/Rea/Other) Condition: Cooler out of temp? (Y (Y) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/No/NA Samples Inspection: Inspected by: All Samples Intact? Yes \(\) No \(\) Comments: ACCULIF & Bottle Labels/COCs agree? Yes \(\) No \(\) Comments: ACCULIF & Cooler #4 Cooler #5 Cooler #6 Cooler #7 Cooler #7 Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Inspected on Ice? (YN) Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Inspected on Ice? (YN) Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Inspected on Ice? (YN) Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Inspected on Ice? (YN) Cooler #1 Cooler #2 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Inspected on Ice? (YN) Cooler #1 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Inspected on Ice? (YN) Cooler #4 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Inspected on Ice? (YN) Cooler #1 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Inspected on Ice? (YN) Cooler #1 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Inspected on Ice? (YN) Cooler #1 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Inspected on Ice? (YN) Items
Do VOA Vials have Visible Headspace? Yes No NA //
Comments
Water Samples: pH Checked and Appropriate (except VOAs): YesNoNA
Comments:
Additional Information:
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y
See Project Contact Form: Y
F W F

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Sunday, April 22, 2018

Craig Hultgren HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

RE: Coleman Wenatchee / 2017-074

Enclosed are the results of analyses for work order <u>A8D0535</u>, which was received by the laboratory on 4/14/2018 at 10:30:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:36

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATION								
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received					
SL01-0.5	A8D0535-01	Soil	04/12/18 11:00	04/14/18 10:30					
SL02-0.5	A8D0535-02	Soil	04/12/18 11:15	04/14/18 10:30					
SL03-0.5	A8D0535-03	Soil	04/12/18 11:30	04/14/18 10:30					
SL04-0.5	A8D0535-04	Soil	04/12/18 11:45	04/14/18 10:30					
SL05-0.5	A8D0535-05	Soil	04/12/18 12:00	04/14/18 10:30					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:36

ANALYTICAL CASE NARRATIVE

Work Order: A8D0535

At the request of the client, only samples with "SL" prefixes were included in this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:36

ANALYTICAL SAMPLE RESULTS

		Diesel a	nd/or Oil Hyd	drocarbons by	NWTPH-D:	x		
	·		Reporting		•			
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SL01-0.5 (A8D0535-01)			Matrix: So	il Ba	tch: 80409	93		
Diesel	39400		1180	mg/kg dry	50	04/20/18 01:05	NWTPH-Dx	F-13
Oil	ND		2350	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	"	"	"	S-01
SL02-0.5 (A8D0535-02)			Matrix: Soi	il Ba	atch: 80409	93		
Diesel	30400		1290	mg/kg dry	50	04/20/18 01:26	NWTPH-Dx	F-13
Oil	ND		2570	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	"	"	"	S-01
SL03-0.5 (A8D0535-03)			Matrix: Soi	il Ba	tch: 80409	93		
Diesel	21400		1120	mg/kg dry	50	04/20/18 02:07	NWTPH-Dx	F-13
Oil	ND		2240	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	"	"	"	S-01
SL04-0.5 (A8D0535-04)			Matrix: Soi	il Ba	tch: 80409	93		
Diesel	18100		1150	mg/kg dry	50	04/20/18 02:28	NWTPH-Dx	F-13
Oil	ND		2310	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	"	"	"	S-01
SL05-0.5 (A8D0535-05)			Matrix: Soi	il Ba	tch: 80409	93		
Diesel	ND		221	mg/kg dry	10	04/20/18 03:10	NWTPH-Dx	
Oil	527		442	"	"	"	"	
Surrogate: o-Terphenyl (Surr)		R	ecovery: 102 %	Limits: 50-150 %	"	"	"	S-05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:36

ANALYTICAL SAMPLE RESULTS

Gaso	oline Rang	e Hydroca	rbons (Ben	zene through N	aphthalen	e) by NWTPH-G	x	
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SL01-0.5 (A8D0535-01)			Matrix: So	il Ba	atch: 80408	34		
Gasoline Range Organics	1140		123	mg/kg dry	1000	04/17/18 15:00	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 141 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
SL02-0.5 (A8D0535-02RE1)			Matrix: So	il Ba	atch: 80409	14		
Gasoline Range Organics	629		26.4	mg/kg dry	200	04/18/18 16:21	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 140 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			109 %	Limits: 50-150 %	"	"	"	
SL03-0.5 (A8D0535-03)			Matrix: So	il Ba	atch: 80408	34		
Gasoline Range Organics	2580		102	mg/kg dry	1000	04/17/18 16:21	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 165 %	Limits: 50-150 %	1	"	"	S-08
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	"	"	"	
SL04-0.5 (A8D0535-04)			Matrix: So	il Ba	atch: 80408	34		
Gasoline Range Organics	968		105	mg/kg dry	1000	04/17/18 16:48	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 130 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			94 %	Limits: 50-150 %	"	"	"	
SL05-0.5 (A8D0535-05RE1)			Matrix: So	il Ba	atch: 80409	14		
Gasoline Range Organics	ND		5.15	mg/kg dry	50	04/18/18 15:54	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 108 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			108 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:36

ANALYTICAL SAMPLE RESULTS

		B1	TEX Compo	unds by EPA 82	60C			
	D 1:	MOI	Reporting					N
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SL01-0.5 (A8D0535-01)			Matrix: So	oil Ba	tch: 80408			R-0
Benzene	ND		0.246	mg/kg dry	1000	04/17/18 15:00	5035A/8260C	
Toluene	ND		1.23	"	"	"	"	
Ethylbenzene	ND		0.614	"	"	"	"	
Xylenes, total	ND		1.84	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Re	covery: 100 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			89 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
SL02-0.5 (A8D0535-02RE1)			Matrix: So	il Ba	itch: 80409	14		R-04
Benzene	ND		0.0528	mg/kg dry	200	04/18/18 16:21	5035A/8260C	
Toluene	ND		0.264	"	"	"	"	
Ethylbenzene	ND		0.132	"	"	"	"	
Xylenes, total	ND		0.396	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Re	covery: 108 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			96 %	Limits: 80-120 %	"	"	"	
SL03-0.5 (A8D0535-03)			Matrix: So	oil Ba	itch: 80408	34		
Benzene	ND		0.203	mg/kg dry	1000	04/17/18 16:21	5035A/8260C	
Toluene	ND		1.02	"	"	"	"	
Ethylbenzene	ND		0.508	"	"	"	"	
Xylenes, total	1.60		1.52	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		R	ecovery: 99 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			91 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			105 %	Limits: 80-120 %	"	"	"	
SL04-0.5 (A8D0535-04)			Matrix: So	il Ba	itch: 80408	34		R-04
Benzene	ND		0.209	mg/kg dry	1000	04/17/18 16:48	5035A/8260C	
Toluene	ND		1.05	"	"	"	"	
Ethylbenzene	ND		0.523	"	"	"	"	
Xylenes, total	ND		1.57	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		R	ecovery: 96 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			91 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			105 %	Limits: 80-120 %	"	"	"	
SL05-0.5 (A8D0535-05RE1)			Matrix: So	il Ba	itch: 80409	14		
Benzene	ND		0.0103	mg/kg dry	50	04/18/18 15:54	5035A/8260C	
Delizene	ND		0.0103	mg/kg ury	50	07/10/10 13.34	3033A/0200C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:36

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260C									
			Reporting						
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes	
SL05-0.5 (A8D0535-05RE1)			Matrix: So	il Ba	tch: 804091	14			
Toluene	ND		0.0515	mg/kg dry	50	"	5035A/8260C		
Ethylbenzene	ND		0.0258	"	"	"	"		
Xylenes, total	ND		0.0773	"	"	"	"		
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 107 %	Limits: 80-120 %	1	"	"		
Toluene-d8 (Surr)			102 %	Limits: 80-120 %	"	"	"		
4-Bromofluorobenzene (Surr)			98 %	Limits: 80-120 %	"	"	"		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:36

ANALYTICAL SAMPLE RESULTS

		•	Percent	Dry Weight	•			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
SL01-0.5 (A8D0535-01)			Matrix: Soil	Ва	atch: 80408	76		
% Solids	82.1		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
SL02-0.5 (A8D0535-02)			Matrix: Soil	Ва	atch: 80408	76		
% Solids	74.7		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
SL03-0.5 (A8D0535-03)			Matrix: Soil	Ва	atch: 80408	76		
% Solids	84.0		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
SL04-0.5 (A8D0535-04)			Matrix: Soil	Ва	atch: 80408	76		
% Solids	82.7		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
SL05-0.5 (A8D0535-05)			Matrix: Soil	Ва	atch: 80408	76		
% Solids	87.3		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:36

QUALITY CONTROL (QC) SAMPLE RESULTS

			Diesel and	or Oil Hydr	ocarbo	ns by NW1	PH-Dx					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040993 - EPA 3540	6 (Fuels)						Soi	I				
Blank (8040993-BLK1)				Prep	ared: 04	/19/18 14:31	Analyzed:	04/19/18 2	1:57			
NWTPH-Dx												
Diesel	ND		25.0	mg/kg wet	1							
Oil	ND		50.0	"	"							
Mineral Oil	ND		36.4	"	"							
Surr: o-Terphenyl (Surr)		Re	ecovery: 95 %	Limits: 50-	150 %	Dilı	ution: 1x					
LCS (8040993-BS1)				Prep	ared: 04	19/18 14:31	Analyzed:	04/19/18 22	2:18			
NWTPH-Dx												
Diesel	120		25.0	mg/kg wet	1	125		96	76-115%			
Surr: o-Terphenyl (Surr)		Red	overy: 106 %	Limits: 50-	150 %	Dilı	tion: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:36

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ugh Naphi	thalene) b	y NWTP	H-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
1 2118137 10	1100411		2			111104111	1100011	707220	2,,,,,,		2,,,,,,	- 110101
Batch 8040834 - EPA 5035	4						Soil					
Blank (8040834-BLK1)				Pre	pared: 04/	17/18 09:00	Analyzed: (04/17/18 13	:39			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 108 %	Limits: 50	-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			100 %	50	-150 %		"					
LCS (8040834-BS5)				Pre	pared: 04/	17/18 09:00	Analyzed: (04/17/18 13	:12			
NWTPH-Gx (MS)												
Gasoline Range Organics	22.8		5.00	mg/kg wet	50	25.0		91	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 105 %	Limits: 50	-150 %	Dilı	tion: 1x					
1,4-Difluorobenzene (Sur)			101 %	50	-150 %		"					
Duplicate (8040834-DUP1)				Pre	pared: 04/	12/18 11:00	Analyzed: (04/17/18 15	:27			
QC Source Sample: SL01-0.5 (A8I	00535-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	1170		126	mg/kg dry	1000		1140			3	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 140 %	Limits: 50	-150 %	Dilı	ition: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:36

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ough Naph	thalene) l	y NWTI	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040914 - EPA 5035A							Soil					
Blank (8040914-BLK1)				Pre	pared: 04	18/18 09:40	Analyzed:	04/18/18 1	2:20			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 103 %	Limits: 50-	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50-	150 %		"					
LCS (8040914-BS3)				Pre	pared: 04	/18/18 09:40	Analyzed:	04/18/18 1	1:54			
NWTPH-Gx (MS)												
Gasoline Range Organics	26.0		5.00	mg/kg wet	50	25.0		104	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 100 %	Limits: 50-	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			103 %	50-	150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:36

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by E	PA 8260C	; 					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040834 - EPA 5035A							Soi]				
Blank (8040834-BLK1)				Pre	pared: 04/1	17/18 09:00	Analyzed:	04/17/18 13	3:39			
5035A/8260C												
Benzene	ND		0.00667	mg/kg wet	50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 103 %	Limits: 80-	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	120 %		"					
LCS (8040834-BS4)				Pre	pared: 04/1	17/18 09:00	Analyzed:	04/17/18 12	2:36			
5035A/8260C												
Benzene	1.09		0.0100	mg/kg wet	50	1.00		109	80-120%			
Toluene	0.966		0.0500	"	"	"		97	"			
Ethylbenzene	1.05		0.0250	"	"	"		105	"			
Xylenes, total	3.26		0.0750	"	"	3.00		109	"			
Surr: 1,4-Difluorobenzene (Surr)		Red	covery: 101 %	Limits: 80-	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80-	120 %		"					
Duplicate (8040834-DUP1)				Pre	pared: 04/	12/18 11:00	Analyzed:	04/17/18 15	5:27			
QC Source Sample: SL01-0.5 (A8D0)535-01)											
5035A/8260C												
Benzene	ND		0.251	mg/kg dry	1000		ND				30%	
Toluene	ND		1.26	"	"		ND				30%	
Ethylbenzene	ND		0.628	"	"		ND				30%	
Xylenes, total	ND		1.88	"	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		R	ecovery: 99 %	Limits: 80-	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			89 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:36

QUALITY CONTROL (QC) SAMPLE RESULTS

BTEX Compounds by EPA 8260C												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040914 - EPA 5035A							Soil					
Blank (8040914-BLK1)				Pre	pared: 04/	18/18 09:40	Analyzed:	04/18/18 1	2:20			
5035A/8260C												
Benzene	ND		0.00667	mg/kg wet	50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 104 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80-	120 %		"					
LCS (8040914-BS2)				Pre	pared: 04/	18/18 09:40	Analyzed:	04/18/18 1	1:27			
5035A/8260C												
Benzene	1.03		0.0100	mg/kg wet	50	1.00		103	80-120%			
Toluene	0.992		0.0500	"	"	"		99	"			
Ethylbenzene	0.970		0.0250	"	"	"		97	"			
Xylenes, total	2.91		0.0750	"	"	3.00		97	"			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 102 %	Limits: 80-	120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:36

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040876 - To	otal Solids (Dry We	eight)					Soil					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:36

SAMPLE PREPARATION INFORMATION

		Diese	and/or On Hydroc	arbons by NWTPH-D	<u> </u>		
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040993							
A8D0535-01	Soil	NWTPH-Dx	04/12/18 11:00	04/19/18 14:31	10.35g/5mL	10g/5mL	0.97
A8D0535-02	Soil	NWTPH-Dx	04/12/18 11:15	04/19/18 14:31	10.41g/5mL	10g/5mL	0.96
A8D0535-03	Soil	NWTPH-Dx	04/12/18 11:30	04/19/18 14:31	10.63g/5mL	10g/5mL	0.94
A8D0535-04	Soil	NWTPH-Dx	04/12/18 11:45	04/19/18 14:31	10.47g/5mL	10g/5mL	0.96
A8D0535-05	Soil	NWTPH-Dx	04/12/18 12:00	04/19/18 14:31	10.37g/5mL	10g/5mL	0.96
	(Basoline Range Hydi	rocarbons (Benzene	e through Naphthalen	e) by NWTPH-Gx		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040834							
A8D0535-01	Soil	NWTPH-Gx (MS)	04/12/18 11:00	04/12/18 11:00	6.04g/5mL	5g/5mL	0.83
A8D0535-03	Soil	NWTPH-Gx (MS)	04/12/18 11:30	04/12/18 11:30	7.2g/5mL	5g/5mL	0.69
A8D0535-04	Soil	NWTPH-Gx (MS)	04/12/18 11:45	04/12/18 11:45	7.22g/5mL	5g/5mL	0.69
Batch: 8040914					_	_	
A8D0535-02RE1	Soil	NWTPH-Gx (MS)	04/12/18 11:15	04/12/18 11:15	6.83g/5mL	5g/5mL	0.73
A8D0535-05RE1	Soil	NWTPH-Gx (MS)	04/12/18 12:00	04/12/18 12:00	6.47g/5mL	5g/5mL	0.77
			BTEX Compounds	s by EPA 8260C			
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040834							
A8D0535-01	Soil	5035A/8260C	04/12/18 11:00	04/12/18 11:00	6.04g/5mL	5g/5mL	0.83
A8D0535-03	Soil	5035A/8260C	04/12/18 11:30	04/12/18 11:30	7.2g/5mL	5g/5mL	0.69
A8D0535-04	Soil	5035A/8260C	04/12/18 11:45	04/12/18 11:45	7.22g/5mL	5g/5mL	0.69
Batch: 8040914							
A8D0535-02RE1	Soil	5035A/8260C	04/12/18 11:15	04/12/18 11:15	6.83g/5mL	5g/5mL	0.73
A8D0535-05RE1	Soil	5035A/8260C	04/12/18 12:00	04/12/18 12:00	6.47g/5mL	5g/5mL	0.77
			Percent Dr	y Weight			
Prep: Total Solids	(Dry Weigl	<u></u> ht)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:36

SAMPLE PREPARATION INFORMATION

	Percent Dry Weight												
Prep: Total Solids	(Dry Weight	<u>:)</u>			Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
A8D0535-01	Soil	EPA 8000C	04/12/18 11:00	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA						
A8D0535-02	Soil	EPA 8000C	04/12/18 11:15	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA						
A8D0535-03	Soil	EPA 8000C	04/12/18 11:30	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA						
A8D0535-04	Soil	EPA 8000C	04/12/18 11:45	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA						
A8D0535-05	Soil	EPA 8000C	04/12/18 12:00	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported: Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:36

Notes and Definitions

Qualifiers:

F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation

R-04 Reporting levels elevated due to dilution necessary for analysis.

S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix

interference.

S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

S-08 TPH-Gx Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample

extract. See 8260B results for accurate Surrogate recovery.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected. dry

Relative Percent Difference RPD

If MDL is not listed, data has been evaluated to the Method Reporting Limit only. MDL

Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C. WMSC

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy

Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Reported:Vancouver, WA 98660Project Manager:Craig Hultgren04/22/18 07:36

APEX LABS				0	HA	Z	OF	ご	CHAIN OF CUSTODY	OD	7			Lab #	Lab #ASPOS35	3	×		200	coc 2 of 3	M
12232 S.W. Garden Place, Tigard, OR 97223 Ph.: 503-718-2323 Fax: 503-718-0333	23 Ph: 5	03-718-2	323 Fax.	503-71	8-033.	~											PO#				
Company: Huching		Project Mgr.		Crava	7	Haltara	5		Proje	Project Name				5		-		17 17		1	
Address:				}			Phone:				ــــــــــــــــــــــــــــــــــــــ	Fox:	\{)		3	Projec	2 6	1 6	1	
Sampled by: Chris Ocaschel	1										1		AL VS	SRE	ANALYSIS REOUFST		B COOK TO THE		त्यू स्रोत	اهنء المعصكهم	ર ડ
Site Location: OR (WA) Other: SAMPLE ID A	HTAG	TIME	MATRIX	WWTPH-HCID # OF CONTAINERS	NWTPH-Dx	NWTPH-Gx	8700 AOC? Enii List	8700 HAOC®	8260 BTEX VOC5	OOAS 0478	\$HV4 WIS 0478	8082 PCBs	RCRA Metals (8)	TCLP Metals (8)	LI, Sb, As, Ba, Be, Cd, Sa, Cr, Co, Cu, Fe, Pb, Sp, Ma, Tl, V, Zn Co, Ch, Tr, V, Zn Co, Ch, Tr, V, Zn Co, Co,	OLAL DISS TCLP	Z-00Z				
MW18-25	7/n/18	7/11/18 CA25	Soil	3	×	X			×	\vdash	-	<u> </u>	_		S H D		+-	+		+	_
2 MW18-35	\rightarrow	1020				7	1	-		+-	╁	-	\perp			-				+	
* MW15-10	4/12/18	4/12/18 0845			×	×		-	X	\vdash	+	-	-			-		-		-	_
MW15 - 20		0830							_	 	╁	1	_			1	1	-		+	
MW15 - 30		1000				-	_	<u> </u>	=	 	-	-				\perp					
SLoi-org		1100					-			-	-	<u> </u>	1	Т		-				1	1
SL02-0,5	_	11.5								\vdash	-	-				-	1			-	
52.03.05.5		1130					<u> </u>	_		+-	-	-				_		-	\dagger	-	
SL 04 - 0.5		1145						_		\vdash	-	-		T		-		-	1	+	
2505-0.5	4	128	A (_	₽	A	-	<u> </u>	4	+-	+	+		T		_	1		T	-	
Normal Turn Around Time (TAT) = 10 Business Days	iys	\prod	YES	NO			-	SPE	SPECIAL INSTRUCTIONS:	VSTRI	CTIC	NS				1			-	\dashv	
1 Day TAT Requested (circle) 4 DAY	s ×	2 Day 5 DAY)	3 Day Other:				I		Q3	+	12	И	§	Put st sumples on separate report	ر 2	ઝ	perat	"	3	1
SAMPLES ARE HELD FOR 30 DAYS REI INQUIRGHED BY:	E HELD 1	OR 30 D	AYS					_													
1	8/14/18	RECEIVE Signature		4	3	Jate:	ac. 4 14 (8		RELINQUISHED BY: Signature:	HED B	¥:			Date:	Sign Sign	RECEIVED BY:	BY:				
Printed Name: Chapts Daschred Time	Time: 1030 Printed Nam	Printed Nam	3	ale	Mad	ime:	2	Printe	Printed Name		ŝ			Time:	Prin	Printed Name	i .		Time:		
Company: Hydes Con		Company:	3	22				Company	any:						Com	Company:					
				`																	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Reported:Vancouver, WA 98660Project Manager:Craig Hultgren04/22/18 07:36

APEX LABS COOLER RECEIPT FORM
Client: Hydro Con Element WO#: A8 D 0535
Project/Project #: Coleman Od Wengschel
Delivery info:
Date/Time Received: 4 4 18 @ 1030 By:
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other
Cooler Inspection Inspected by: (8) : 4 4 8 @ 1030
Chain of Custody Included? Yes No Custody Seals? Yes No
Signed/Dated by Client? YesNo
Signed/Dated by Apex? Yes No
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (deg. C)
Received on Ice? (?)/N)
Temp. Blanks? (Y/N)
Ice Type: (Gel/Real/Other)
Condition:
Cooler out of temp? (Y/K) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/No/NA Samples Inspection: Inspected by: All Samples Intact? Yes No Comments: Bottle Labels/COCs agree? Yes Y No Comments:
Containers/Volumes Received Appropriate for Analysis? Yes Y No Comments:
Do VOA Vials have Visible Headspace? Yes No NA _X
Comments
Water Samples: pH Checked and Appropriate (except VOAs): YesNoNA
Comments:
Additional Information:
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y
MA NV #
Mrs 22
\mathcal{K} ,

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Sunday, April 22, 2018

Craig Hultgren HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

RE: Coleman Wenatchee / 2017-074

Enclosed are the results of analyses for work order <u>A8D0538</u>, which was received by the laboratory on 4/14/2018 at 10:30:00AM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerichini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION Sample ID Laboratory ID Matrix **Date Sampled Date Received** MW21-10 A8D0538-01 Soil 04/09/18 08:25 04/14/18 10:30 MW21-25 A8D0538-02 Soil 04/09/18 09:35 04/14/18 10:30 MW21-32 A8D0538-03 Soil 04/09/18 10:15 04/14/18 10:30 MW20-10 A8D0538-04 Soil 04/10/18 08:45 04/14/18 10:30 MW20-15 A8D0538-05 Soil 04/10/18 09:25 04/14/18 10:30 MW20-23.5 A8D0538-06 Soil 04/10/18 10:30 04/14/18 10:30 MW100-23.5 A8D0538-07 Soil 04/10/18 10:30 04/14/18 10:30 A8D0538-08 Soil 04/10/18 11:05 04/14/18 10:30 MW20-26 MW18-10 A8D0538-09 Soil 04/11/18 08:20 04/14/18 10:30 MW18-15 A8D0538-10 04/11/18 08:35 Soil 04/14/18 10:30 MW18-25 A8D0538-11 Soil 04/11/18 09:25 04/14/18 10:30 MW18-35 A8D0538-12 Soil 04/11/18 10:20 04/14/18 10:30 MW15-10 A8D0538-13 Soil 04/12/18 08:45 04/14/18 10:30 A8D0538-14 04/12/18 09:30 MW15-20 Soil 04/14/18 10:30 MW15-30 A8D0538-15 Soil 04/12/18 10:00 04/14/18 10:30 MW22-15 A8D0538-16 Soil 04/13/18 09:00 04/14/18 10:30 MW22-25 A8D0538-17 Soil 04/13/18 09:20 04/14/18 10:30 MW22-30 A8D0538-18 Soil 04/13/18 09:45 04/14/18 10:30 MW22-40 A8D0538-19 Soil 04/13/18 10:30 04/14/18 10:30

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 32

Goas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

		Diesel	and/or Oil Hyd	drocarbons by	NWTPH-D	x		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW21-10 (A8D0538-01)			Matrix: Soi	il Ba	atch: 80409	93		
Diesel	ND		25.0	mg/kg dry	1	04/20/18 04:54	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 88 %	Limits: 50-150 %	"	"	"	
MW21-25 (A8D0538-02)			Matrix: So	il Ba	atch: 80409	93		
Diesel	47.2		25.0	mg/kg dry	1	04/20/18 05:15	NWTPH-Dx	F-11
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 80 %	Limits: 50-150 %	"	"	"	
MW21-32 (A8D0538-03)			Matrix: So	il Ba	atch: 80409	93		
Diesel	ND		25.0	mg/kg dry	1	04/20/18 05:36	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 88 %	Limits: 50-150 %	"	"	"	
MW20-10 (A8D0538-04)			Matrix: So	il Ba	atch: 80409	93		
Diesel	ND		25.0	mg/kg dry	1	04/20/18 05:56	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 95 %	Limits: 50-150 %	"	"	"	
MW20-15 (A8D0538-05)			Matrix: So	il Ba	atch: 80409	93		
Diesel	72.9		25.0	mg/kg dry	1	04/20/18 06:18	NWTPH-Dx	F-13
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 86 %	Limits: 50-150 %	"	"	"	
MW20-23.5 (A8D0538-06)			Matrix: Soi	il Ba	atch: 80409	93		
Diesel	ND		25.0	mg/kg dry	1	04/20/18 06:38	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 98 %	Limits: 50-150 %	"	"	"	
MW100-23.5 (A8D0538-07)			Matrix: Soi	il Ba	atch: 80409	93		
Diesel	ND		25.0	mg/kg dry	1	04/20/18 07:00	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 89 %	Limits: 50-150 %	"	"	"	
MW20-26 (A8D0538-08)			Matrix: So	il Ba	atch: 80409	93		
Diesel	ND		25.0	mg/kg dry	1	04/20/18 07:20	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 82 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 3 of 32

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

		Diesel a	nd/or Oil Hyd	rocarbons by N	WTPH-D	x		
	D 1) (D)	Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW18-10 (A8D0538-09)			Matrix: Soil		tch: 804099			
Diesel	ND		25.0	mg/kg dry	1	04/20/18 07:41	NWTPH-Dx	
Oil	102		50.0					
Surrogate: o-Terphenyl (Surr)			Recovery: 94 %	Limits: 50-150 %	"	"	"	
MW18-15 (A8D0538-10)			Matrix: Soil	Ва	tch: 804099	93		
Diesel	ND		25.0	mg/kg dry	1	04/20/18 08:02	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 92 %	Limits: 50-150 %	"	"	"	
MW18-25 (A8D0538-11)			Matrix: Soil	Ва	tch: 804099	93		
Diesel	ND		25.0	mg/kg dry	1	04/20/18 08:23	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 89 %	Limits: 50-150 %	"	"	"	
MW15-10 (A8D0538-13)			Matrix: Soil	Ва	tch: 804099	97		
Diesel	ND		25.0	mg/kg dry	1	04/19/18 22:39	NWTPH-Dx	
Oil	75.8		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 95 %	Limits: 50-150 %	"	n .	"	
MW15-20 (A8D0538-14)			Matrix: Soil	Ва	tch: 804099	97		
Diesel	ND		25.0	mg/kg dry	1	04/19/18 23:00	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 79 %	Limits: 50-150 %	"	u u	"	
MW15-30 (A8D0538-15)			Matrix: Soil	Ва	tch: 804099	97		
Diesel	ND		25.0	mg/kg dry	1	04/19/18 23:20	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 81 %	Limits: 50-150 %	"	"	"	
MW22-15 (A8D0538-16)			Matrix: Soil	Ва	tch: 804099	97		
Diesel	ND		25.0	mg/kg dry	1	04/19/18 23:41	NWTPH-Dx	
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 92 %	Limits: 50-150 %	"	"	"	
MW22-25 (A8D0538-17)			Matrix: Soil	Ва	tch: 804099	97		
Diesel	ND		25.9	mg/kg dry	1	04/20/18 00:02	NWTPH-Dx	
Oil	ND		51.8	"	u	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 79 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

		Diesel a	nd/or Oil Hy	drocarbons by	NWTPH-D	x		
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW22-30 (A8D0538-18)			Matrix: So	il B	atch: 80409	97		
Diesel	45700		4080	mg/kg dry	100	04/20/18 00:23	NWTPH-Dx	F-13
Oil	ND		8160	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: %	Limits: 50-150 %	"	"	"	S-01
MW22-40 (A8D0538-19)			Matrix: So	il B	atch: 80409	97		
Diesel	52.5		25.0	mg/kg dry	1	04/20/18 01:05	NWTPH-Dx	F-24
Oil	ND		50.0	"	"	"	"	
Surrogate: o-Terphenyl (Surr)			Recovery: 96 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

Gaso	oline Rang	e Hydrocar	pons (Ben	zene through Na	apntnalen	e) by NWTPH-G	<u>x</u>	
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
MW21-10 (A8D0538-01)			Matrix: Soi	il Ba	tch: 804083	34		
Gasoline Range Organics	ND		5.32	mg/kg dry	50	04/17/18 18:09	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 109 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			95 %	Limits: 50-150 %	"	"	"	
MW21-25 (A8D0538-02)			Matrix: Soi	il Ba	tch: 804083	34		
Gasoline Range Organics	9.65		5.70	mg/kg dry	50	04/17/18 23:04	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 125 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW21-32 (A8D0538-03)			Matrix: Soi	il Ba	tch: 804083	34		
Gasoline Range Organics	ND		5.69	mg/kg dry	50	04/17/18 19:29	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 108 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	"	"	"	
MW20-10 (A8D0538-04)			Matrix: Soi	il Ba	tch: 804083	34		
Gasoline Range Organics	ND		5.02	mg/kg dry	50	04/17/18 19:56	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 105 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	"	"	"	
MW20-15 (A8D0538-05)			Matrix: Soi	il Ba	tch: 804083	34		
Gasoline Range Organics	60.3		5.08	mg/kg dry	50	04/17/18 20:23	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 145 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			96 %	Limits: 50-150 %	"	"	"	
MW20-23.5 (A8D0538-06)			Matrix: Soi	il Ba	tch: 804083	34		
Gasoline Range Organics	ND		6.84	mg/kg dry	50	04/17/18 20:50	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 115 %	Limits: 50-150 %	1	11	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW100-23.5 (A8D0538-07)			Matrix: Soi	il Ba	tch: 804083	34		
Gasoline Range Organics	ND		6.61	mg/kg dry	50	04/17/18 21:17	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 117 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW20-26 (A8D0538-08)			Matrix: Soi	il Ba	tch: 804083	34		
Gasoline Range Organics	ND		5.05	mg/kg dry	50	04/17/18 21:44	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 108 %	Limits: 50-150 %	1	11	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

Gaso	onne Kang	е нуагоса	rbons (Ben	zene through Na	apntnaien	e) by NWTPH-G	X	
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
MW18-10 (A8D0538-09)			Matrix: So	il Ba	tch: 80408	34		
Gasoline Range Organics	ND		6.01	mg/kg dry	50	04/17/18 22:11	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 106 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW18-15 (A8D0538-10)			Matrix: So	il Ba	tch: 80408	34		
Gasoline Range Organics	ND		5.45	mg/kg dry	50	04/17/18 22:38	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	overy: 105 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW18-25 (A8D0538-11)			Matrix: So	il Ba	tch: 80408	34		
Gasoline Range Organics	ND		4.66	mg/kg dry	50	04/17/18 23:31	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rec	covery: 107 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW15-10 (A8D0538-13)			Matrix: So	il Ba	tch: 80409 [,]	12		
Gasoline Range Organics	ND		5.17	mg/kg dry	50	04/18/18 20:07	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rea	covery: 112 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			95 %	Limits: 50-150 %	"	"	"	
MW15-20 (A8D0538-14)			Matrix: So	il Ba	tch: 80409 [,]	12		
Gasoline Range Organics	ND		5.74	mg/kg dry	50	04/18/18 20:34	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Red	covery: 116 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			97 %	Limits: 50-150 %	"	"	"	
MW15-30 (A8D0538-15)			Matrix: So	il Ba	tch: 80409 [,]	12		
Gasoline Range Organics	ND		5.73	mg/kg dry	50	04/18/18 21:01	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Rea	covery: 115 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			98 %	Limits: 50-150 %	"	"	"	
MW22-15 (A8D0538-16)			Matrix: So	il Ba	tch: 80409 [,]	12		
Gasoline Range Organics	ND		5.15	mg/kg dry	50	04/18/18 21:28	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Red	covery: 114 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			96 %	Limits: 50-150 %	"	"	"	
MW22-25 (A8D0538-17)			Matrix: So	il Ba	tch: 80409	12		
Gasoline Range Organics	ND		13.4	mg/kg dry	50	04/18/18 21:55	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Red	covery: 113 %	Limits: 50-150 %	1	"	"	
I,4-Difluorobenzene (Sur)			97%	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

Gaso	oline Rang	e Hydrocar	bons (Ben	zene through N	aphthalen	e) by NWTPH-G	x	
			Reporting	;				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW22-30 (A8D0538-18)			Matrix: So	oil Ba	tch: 80409	12		
Gasoline Range Organics	4180		587	mg/kg dry	5000	04/18/18 22:22	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 114 %	Limits: 50-150 %	1	"	"	
1,4-Difluorobenzene (Sur)			96 %	Limits: 50-150 %	"	"	"	
MW22-40 (A8D0538-19)			Matrix: So	il Ba	tch: 80409	12		
Gasoline Range Organics	248		5.31	mg/kg dry	50	04/18/18 23:16	NWTPH-Gx (MS)	Q-42
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 178 %	Limits: 50-150 %	1	"	"	S-08
1,4-Difluorobenzene (Sur)			104 %	Limits: 50-150 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

Analyte MW21-10 (A8D0538-01) Benzene Toluene Ethylbenzene Xylenes, total Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) MW21-25 (A8D0538-02) Benzene Toluene Ethylbenzene Xylenes, total Surrogate: 1,4-Difluorobenzene (Surr)	Result ND ND ND ND ND	MDL	Reporting Limit Matrix: So 0.0106 0.0532	Units	Dilution tch: 804083	Date Analyzed	Method	Notes
MW21-10 (A8D0538-01) Benzene Toluene Ethylbenzene Xylenes, total Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) MW21-25 (A8D0538-02) Benzene Toluene Ethylbenzene Xylenes, total	ND ND ND		Matrix: So 0.0106 0.0532	mg/kg dry	tch: 804083		Method	Notes
Benzene Toluene Ethylbenzene Xylenes, total Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) MW21-25 (A8D0538-02) Benzene Toluene Ethylbenzene Xylenes, total	ND ND		0.0106 0.0532	mg/kg dry		34		
Toluene Ethylbenzene Xylenes, total Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) MW21-25 (A8D0538-02) Benzene Toluene Ethylbenzene Xylenes, total	ND ND		0.0532		50			
Ethylbenzene Xylenes, total Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) MW21-25 (A8D0538-02) Benzene Toluene Ethylbenzene Xylenes, total	ND				30	04/17/18 18:09	5035A/8260C	
Xylenes, total Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) MW21-25 (A8D0538-02) Benzene Toluene Ethylbenzene Xylenes, total				"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr) Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) MW21-25 (A8D0538-02) Benzene Toluene Ethylbenzene Xylenes, total	ND		0.0266	"	"	"	"	
Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr) MW21-25 (A8D0538-02) Benzene Toluene Ethylbenzene Xylenes, total			0.0797	"	"	"	"	
4-Bromofluorobenzene (Surr) MW21-25 (A8D0538-02) Benzene Toluene Ethylbenzene Xylenes, total		Rec	covery: 101 %	Limits: 80-120 %	1	"	"	
MW21-25 (A8D0538-02) Benzene Toluene Ethylbenzene Xylenes, total			95 %	Limits: 80-120 %	"	"	"	
Benzene Toluene Ethylbenzene Xylenes, total			105 %	Limits: 80-120 %	"	"	"	
Toluene Ethylbenzene Xylenes, total			Matrix: So	il Ba	tch: 804083	34		
Ethylbenzene Xylenes, total	ND		0.0114	mg/kg dry	50	04/17/18 23:04	5035A/8260C	
Xylenes, total	ND		0.0570	"	"	"	"	
· ·	ND		0.0285	"	"	"	"	
Supposata: 1.4 Diffuoyohonzana (Supp)	ND		0.0854	"	"	"	"	
Surrogate. 1,4-Dijiuorovenzene (Surr)		Rec	covery: 101 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			93 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			102 %	Limits: 80-120 %	"	"	"	
MW21-32 (A8D0538-03)			Matrix: So	il Ba	tch: 804083	34		
Benzene	ND		0.0114	mg/kg dry	50	04/17/18 19:29	5035A/8260C	
Toluene	ND		0.0569	"	"	"	"	
Ethylbenzene	ND		0.0285	"	"	"	"	
Xylenes, total	ND		0.0854	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 101 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			106 %	Limits: 80-120 %	"	"	"	
MW20-10 (A8D0538-04)			Matrix: So	il Ba	tch: 804083	34		
Benzene	ND		0.0100	mg/kg dry	50	04/17/18 19:56	5035A/8260C	
Toluene	ND		0.0502	"	"	"	"	
Ethylbenzene	ND		0.0251	"	"	"	"	
Xylenes, total	ND		0.0753	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Red	covery: 101 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			104 %	Limits: 80-120 %	"	"	"	
MW20-15 (A8D0538-05)			Matrix: So	.il B∍	tch: 804083	2./		
Benzene				Ба	CII. 00400	J -7		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

		B1	EX Compo	unds by EPA 82	60C			
Analyte	Result	MDL	Reporting Limit	TT. '-	Dilution	Date Analyzed	Method	Notes
MW20-15 (A8D0538-05)	Result	IVIDE	Matrix: Soi	Units	tch: 80408		Wichiod	TVOICS
Toluene	ND		0.0508	mg/kg dry	50	"	5035A/8260C	
	ND ND		0.0308	mg/kg ury	30	,,	3033A/8200C	
Ethylbenzene Xylenes, total	ND ND		0.0254	"	"	"	"	
	ND					"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		R	ecovery: 99 %	Limits: 80-120 %	1	"		
Toluene-d8 (Surr)			88 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			106 %	Limits: 80-120 %				
MW20-23.5 (A8D0538-06)			Matrix: So	l Ba	tch: 80408	34		
Benzene	ND		0.0137	mg/kg dry	50	04/17/18 20:50	5035A/8260C	
Toluene	ND		0.0684	"	"	"	"	
Ethylbenzene	ND		0.0342	"	"	"	"	
Xylenes, total	ND		0.103	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 102 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			94 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			105 %	Limits: 80-120 %	"	"	"	
MW100-23.5 (A8D0538-07)			Matrix: So	l Ba	tch: 80408	34		
Benzene	ND		0.0132	mg/kg dry	50	04/17/18 21:17	5035A/8260C	
Toluene	ND		0.0661	"	"	"	"	
Ethylbenzene	ND		0.0330	"	"	"	"	
Xylenes, total	ND		0.0991	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Red	covery: 102 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			106 %	Limits: 80-120 %	"	"	"	
MW20-26 (A8D0538-08)			Matrix: Soi	l Ba	tch: 80408	34		
Benzene	ND		0.0101	mg/kg dry	50	04/17/18 21:44	5035A/8260C	
Toluene	ND		0.0505	"	"	"	"	
Ethylbenzene	ND		0.0253	"	"	"	"	
Xylenes, total	ND		0.0758	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	covery: 103 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			106 %	Limits: 80-120 %	"	"	"	
MW18-10 (A8D0538-09)			Matrix: Soi	I Ba	tch: 80408	34		
Benzene	ND		0.0120	mg/kg dry	50	04/17/18 22:11	5035A/8260C	
Toluene	ND		0.0601	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

		B1	EX Compo	unds by EPA 82	60C			
	D. Iv) (D)	Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW18-10 (A8D0538-09)			Matrix: So	il Ba	tch: 80408			
Ethylbenzene	ND		0.0301	mg/kg dry	50	"	5035A/8260C	
Xylenes, total	ND		0.0902	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 102 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			105 %	Limits: 80-120 %	"	"	"	
MW18-15 (A8D0538-10)			Matrix: So	il Ba	tch: 80408	34		
Benzene	ND		0.0109	mg/kg dry	50	04/17/18 22:38	5035A/8260C	
Toluene	ND		0.0545	"	"	"	"	
Ethylbenzene	ND		0.0273	"	"	"	"	
Xylenes, total	ND		0.0818	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 102 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			104 %	Limits: 80-120 %	"	"	"	
MW18-25 (A8D0538-11)			Matrix: So	il Ba	tch: 80408	34		
Benzene	ND		0.00932	mg/kg dry	50	04/17/18 23:31	5035A/8260C	
Toluene	ND		0.0466	"	"	"	"	
Ethylbenzene	ND		0.0233	"	"	"	"	
Xylenes, total	ND		0.0699	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Rec	overy: 102 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			103 %	Limits: 80-120 %	"	"	"	
MW15-10 (A8D0538-13)			Matrix: So	il Ba	tch: 80409	12		
Benzene	ND		0.0103	mg/kg dry	50	04/18/18 20:07	5035A/8260C	
Toluene	ND		0.0517	"	"	"	"	
Ethylbenzene	ND		0.0258	"	"	"	"	
Xylenes, total	ND		0.0775	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		Re	covery: 97 %	Limits: 80-120 %	1	п	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			108 %	Limits: 80-120 %	"	"	"	
MW15-20 (A8D0538-14)			Matrix: So	il Ba	tch: 80409	12		
Benzene	ND		0.0115	mg/kg dry	50	04/18/18 20:34	5035A/8260C	
Toluene	ND		0.0574	"	"	"	"	
Ethylbenzene	ND		0.0287	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

		B	TEX Compo	unds by EPA 82	60C			
	D 1:) (D)	Reporting		P.1) (d . 1	
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW15-20 (A8D0538-14)			Matrix: So		tch: 80409			
Xylenes, total	ND		0.0862	mg/kg dry	50	"	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		R	lecovery: 98 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			95 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			110 %	Limits: 80-120 %	"	"	"	
MW15-30 (A8D0538-15)			Matrix: So	il Ba	tch: 80409 [.]	12		
Benzene	ND		0.0115	mg/kg dry	50	04/18/18 21:01	5035A/8260C	
Toluene	ND		0.0573	"	"	"	"	
Ethylbenzene	ND		0.0286	"	"	"	"	
Xylenes, total	ND		0.0859	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		R	ecovery: 99 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			108 %	Limits: 80-120 %	"	"	"	
MW22-15 (A8D0538-16)			Matrix: So	il Ba	tch: 80409	12		
Benzene	ND		0.0103	mg/kg dry	50	04/18/18 21:28	5035A/8260C	
Toluene	ND		0.0515	"	"	"	"	
Ethylbenzene	ND		0.0258	"	"	"	"	
Xylenes, total	ND		0.0773	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		R	ecovery: 98 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			109 %	Limits: 80-120 %	"	"	"	
MW22-25 (A8D0538-17)			Matrix: Soi	il Ba	tch: 80409	12		
Benzene	ND		0.0268	mg/kg dry	50	04/18/18 21:55	5035A/8260C	
Toluene	ND		0.134	"	"	"	"	
Ethylbenzene	ND		0.0670	"	"	"	"	
Xylenes, total	ND		0.201	"	"	"	"	
Surrogate: 1,4-Difluorobenzene (Surr)		R	ecovery: 98 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	"	
4-Bromofluorobenzene (Surr)			108 %	Limits: 80-120 %	"	"	"	
MW22-30 (A8D0538-18)			Matrix: Soi	il Ba	tch: 80409	12		
Benzene	10.7		1.17	mg/kg dry	5000	04/18/18 22:22	5035A/8260C	
Toluene	ND		5.87	"	"	"	"	
Ethylbenzene	23.1		2.94	"	"	"	"	
Xylenes, total	43.8		8.81	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

		В	TEX Compo	unds by EPA 82	60C			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
MW22-30 (A8D0538-18)			Matrix: So	il Ba	atch: 80409	12		
Surrogate: 1,4-Difluorobenzene (Surr)			Recovery: 98 %	Limits: 80-120 %	1	"	5035A/8260C	
Toluene-d8 (Surr)			97 %	Limits: 80-120 %	"	"	n n	
4-Bromofluorobenzene (Surr)			105 %	Limits: 80-120 %	"	"	"	
MW22-40 (A8D0538-19)			Matrix: So	il Ba	atch: 80409	12		
Benzene	0.0854		0.0106	mg/kg dry	50	04/18/18 23:16	5035A/8260C	Q-42
Toluene	0.0850		0.0531	"	"	"	"	Q-42
Ethylbenzene	0.156		0.0266	"	"	"	"	Q-42
Xylenes, total	0.696		0.0797	"	"	"	"	Q-42
Surrogate: 1,4-Difluorobenzene (Surr)			Recovery: 96 %	Limits: 80-120 %	1	"	"	
Toluene-d8 (Surr)			96 %	Limits: 80-120 %	"	"	n n	
4-Bromofluorobenzene (Surr)			108 %	Limits: 80-120 %	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

			Percen	t Dry Weight				
A 1.	D14	MDI	Reporting		D1 4	D . A . I	Mala	NI.
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
MW21-10 (A8D0538-01)	00.0		Matrix: Soi		atch: 804087		ED4 0000C	
% Solids	90.9		1.00	% by Weight		04/18/18 09:45	EPA 8000C	
MW21-25 (A8D0538-02)			Matrix: Soi		atch: 80408			
% Solids	85.8		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW21-32 (A8D0538-03)			Matrix: Soi	I B	atch: 80408	76		
% Solids	81.5		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW20-10 (A8D0538-04)			Matrix: Soi	I В	atch: 80408	76		
% Solids	87.5		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW20-15 (A8D0538-05)			Matrix: Soi		atch: 80408			
% Solids	85.6		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW20-23.5 (A8D0538-06)			Matrix: Soi	I B	atch: 80408	76		
% Solids	75.6		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW100-23.5 (A8D0538-07)			Matrix: Soi	I B	atch: 80408	76		
% Solids	90.6		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW20-26 (A8D0538-08)			Matrix: Soi	l B	atch: 80408	76		
% Solids	82.1		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW18-10 (A8D0538-09)			Matrix: Soi	l B	atch: 80408	76		
% Solids	93.6		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW18-15 (A8D0538-10)			Matrix: Soi	l B	atch: 80408	76		
% Solids	92.4		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW18-25 (A8D0538-11)			Matrix: Soi	l B	atch: 804087	76		
% Solids	90.1		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW15-10 (A8D0538-13)			Matrix: Soi	l B	atch: 804087	76		
% Solids	94.4		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW15-20 (A8D0538-14)			Matrix: Soi	l B	atch: 80408	76		
% Solids	80.7		1.00	% by Weight			EPA 8000C	
MW15-30 (A8D0538-15)			Matrix: Soi	B	atch: 80408	76		
% Solids	81.6		1.00	% by Weight		04/18/18 09:45	EPA 8000C	
MW22-15 (A8D0538-16)			Matrix: Soi		atch: 80408			
% Solids	88.8		1.00	% by Weight		04/18/18 09:45	EPA 8000C	
	00.0			, ,			2111 00000	
MW22-25 (A8D0538-17) % Solids	72.2		Matrix: Soi	% by Weight	atch: 804087	04/18/18 09:45	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 14 of 32

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

ANALYTICAL SAMPLE RESULTS

			Percent	Dry Weight				
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
MW22-30 (A8D0538-18)			Matrix: Soil	Ва	atch: 804087	76		
% Solids	74.4		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	
MW22-40 (A8D0538-19)			Matrix: Soil	Ва	atch: 804087	76		
% Solids	92.3		1.00	% by Weight	1	04/18/18 09:45	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

QUALITY CONTROL (QC) SAMPLE RESULTS

		Diesel and	or Oil Hydr	ocarbo	ns by NWT	PH-Dx					
Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
(Fuels)						Soi					
			Prep	ared: 04/	19/18 14:31	Analyzed:	04/19/18 2	1:57			
ND		25.0	mg/kg wet	1							
ND		50.0	"	"							
ND		36.4	"	"							
	Re	ecovery: 95 %	Limits: 50-1	50 %	Dilı	ution: 1x					
			Prep	ared: 04/	19/18 14:31	Analyzed:	04/19/18 2	2:18			
120		25.0	mg/kg wet	1	125		96	76-115%			
	Red	covery: 106 %	Limits: 50-1	50 %	Dilı	ution: 1x					
			Prep	ared: 04/	19/18 14:31	Analyzed:	04/20/18 0	8:45			
8D0538-11)											
ND		25.0	mg/kg dry	1		ND				30%	
ND		50.0	"	"		ND				30%	
ND		43.2	"	"		ND				30%	
	Re	ecovery: 95 %	Limits: 50-1	50 %	Dilı	ution: 1x					
(Fuels)						Soil	Ī				
			Prep	ared: 04/	19/18 16:53	Analyzed:	04/19/18 2	2:02			
ND		25.0	mg/kg wet	1							
ND		50.0	"	"							
ND		33.3	"	"							
	Re	ecovery: 92 %	Limits: 50-1	50 %	Dilı	ution: 1x					
			Prep	ared: 04/	19/18 16:53	Analyzed:	04/19/18 2	2:22			
	ND ND ND ND ND ND ND ND	Result MDL	Result MDL Reporting Limit	Result MDL Reporting Units	Result MDL Limit Units Dil.	Result MDL Limit Units Dil. Spike Amount	Result MDL Limit Units Dil. Amount Result	Result MDL Reporting Limit Units Dil. Spike Amount Result %REC	Result MDL Reporting Units Dil. Spike Source Result %REC Limits Spike Source Continue Continu	Result MDL Reporting Units Dil. Spike Source Result RPD	Result MDL Reporting Limit Units Dil. Spike Source Result %REC Limits RPD Limit

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ough Napht	halene) l	by NWTP	H-Gx			
			Reporting		_	Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Dil.	Amount	Result	%REC	Limits	RPD	Limit	Notes
Batch 8040834 - EPA 5035A	L						Soil					
Blank (8040834-BLK1)	·			Pre	pared: 04/	17/18 09:00	Analyzed:	04/17/18 13	:39			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 108 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			100 %	50-	-150 %		"					
LCS (8040834-BS5)				Pre	pared: 04/	17/18 09:00	Analyzed:	04/17/18 13	:12			
NWTPH-Gx (MS)												
Gasoline Range Organics	22.8		5.00	mg/kg wet	50	25.0		91	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 105 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			101 %	50-	-150 %		"					
Duplicate (8040834-DUP2)				Pre	pared: 04/	09/18 08:25	Analyzed:	04/17/18 18	:36			
QC Source Sample: MW21-10 (A8I	00538-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		4.92	mg/kg dry	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 108 %	Limits: 50	-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			97 %	50-	-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoline	Range	Hydrocarb	ons (Benz	ene thro	ough Naph	thalene)	by NWTF	PH-Gx			
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040912 - EPA 5035	A						Soi					
Blank (8040912-BLK1)				Pre	pared: 04/	13/18 17:00	Analyzed:	04/18/18 1	8:47			
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg wet	50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 112 %	Limits: 50-	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			95 %	50-	150 %		"					
LCS (8040912-BS2)				Pre	pared: 04/	13/18 17:00	Analyzed:	04/18/18 1	8:20			
NWTPH-Gx (MS)												
Gasoline Range Organics	26.1		5.00	mg/kg wet	50	25.0		104	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 109 %	Limits: 50-	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50-	150 %		"					
Duplicate (8040912-DUP1)				Pre	pared: 04/	13/18 10:30	Analyzed:	04/18/18 2	3:43			
QC Source Sample: MW22-40 (A8	D0538-19)											
NWTPH-Gx (MS)												
Gasoline Range Organics	35.7		6.97	mg/kg dry	50		248			150	30%	Q-0
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 117 %	Limits: 50-	-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50-	150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by I	EPA 8260C	<u> </u>					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040834 - EPA 5035 <i>A</i>	4						Soil					
Blank (8040834-BLK1)				Prep	oared: 04/	17/18 09:00	Analyzed:	04/17/18 1	3:39			
5035A/8260C				•								
Benzene	ND		0.00667	mg/kg wet	50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: 1,4-Difluorobenzene (Surr)		Re	covery: 103 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	120 %		"					
LCS (8040834-BS4)				Prer	oared: 04/	17/18 09:00	Analyzed:	04/17/18 1	2:36			
5035A/8260C				1								
Benzene	1.09		0.0100	mg/kg wet	50	1.00		109	80-120%			
Toluene	0.966		0.0500	"	"	"		97	"			
Ethylbenzene	1.05		0.0250	"	"	"		105	"			
Xylenes, total	3.26		0.0750	"	"	3.00		109	"			
Surr: 1,4-Difluorobenzene (Surr)		Re	covery: 101 %	Limits: 80-	120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			96 %		120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80-	120 %		"					
Duplicate (8040834-DUP2)				Prer	oared: 04/	09/18 08:25	Analyzed:	04/17/18 1	8:36			
QC Source Sample: MW21-10 (A8)	D0538-01)											
5035A/8260C	20000 01)											
Benzene	ND		0.00984	mg/kg dry	50		ND				30%	
Toluene	ND		0.00704	mg/kg ury	"		ND				30%	
Ethylbenzene	ND		0.0246	"	"		ND				30%	
Xylenes, total	ND		0.0240	"	"		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)	110		covery: 102 %	Limits: 80-	120 %		ution: 1x				3070	
Toluene-d8 (Surr)		Ke	95 %		120 %	Dill	uion: 1x					
4-Bromofluorobenzene (Surr)			106 %		120 %		"					
, Diomojiaoroociaciic (barr)			100 /0	50	//							
Matrix Spike (8040834-MS1)				Prep	pared: 04/	11/18 09:25	Analyzed:	04/17/18 2	3:58			
QC Source Sample: MW18-25 (A8)	D0538-11)											
5035A/8260C												
Benzene	0.921		0.00932	mg/kg dry	50	0.932	ND	99	77-121%			
Toluene	0.828		0.0466	"	"	"	ND	89	"			
Ethylbenzene	0.888		0.0233	"	"	"	ND	95	76-122%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

QUALITY CONTROL (QC) SAMPLE RESULTS

	BTEX Compounds by EPA 8260C												
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 8040834 - EPA 5035/	4						Soil						
Matrix Spike (8040834-MS1)				Prej	pared: 04/	11/18 09:25	Analyzed:	04/17/18 23	3:58				
QC Source Sample: MW18-25 (A8	D0538-11)												
5035A/8260C													
Xylenes, total	2.77		0.0699	mg/kg dry	"	2.79	ND	99	78-124%				
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 100 %	Limits: 80-	120 %	Dilu	tion: 1x						
Toluene-d8 (Surr)			95 %	80-	120 %		"						
4-Bromofluorobenzene (Surr)			101 %	80-	120 %		"						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by E	EPA 8260C						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040912 - EPA 5035A	4						Soil					
Blank (8040912-BLK1)				Prep	oared: 04/	13/18 17:00	Analyzed:	04/18/18 1	8:47			
5035A/8260C												
Benzene	ND		0.00667	mg/kg wet	50							
Toluene	ND		0.0333	"	"							
Ethylbenzene	ND		0.0167	"	"							
Xylenes, total	ND		0.0500	"	"							
Surr: 1,4-Difluorobenzene (Surr)		R	ecovery: 97 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			109 %	80-	120 %		"					
LCS (8040912-BS1)				Prep	oared: 04/	13/18 17:00	Analyzed:	04/18/18 1	7:53			
5035A/8260C												
Benzene	0.990		0.0100	mg/kg wet	50	1.00		99	80-120%			
Toluene	0.948		0.0500	"	"	"		95	"			
Ethylbenzene	1.03		0.0250	"	"	"		103	"			
Xylenes, total	3.31		0.0750	"	"	3.00		110	"			
Surr: 1,4-Difluorobenzene (Surr)		R	ecovery: 96 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			105 %	80-	120 %		"					
Duplicate (8040912-DUP1)				Prep	oared: 04/	13/18 10:30	Analyzed:	04/18/18 2	23:43			
QC Source Sample: MW22-40 (A8	D0538-19)											
5035A/8260C												
Benzene	0.0578		0.0139	mg/kg dry	50		0.0854			39	30%	Q-0
Toluene	ND		0.0697	"	"		0.0850			46	30%	Q-0-
Ethylbenzene	0.112		0.0348	"	"		0.156			33	30%	Q-0-
Xylenes, total	0.430		0.104	"	"		0.696			47	30%	Q-0
Surr: 1,4-Difluorobenzene (Surr)		R	ecovery: 96 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %		120 %		"					
4-Bromofluorobenzene (Surr)			109 %	80-	120 %		"					
Matrix Spike (8040912-MS1)				Prep	oared: 04/	13/18 10:30	Analyzed:	04/19/18 0	00:10			
QC Source Sample: MW22-40 (A8	D0538-19)											
5035A/8260C												
Benzene	1.07		0.0106	mg/kg dry	50	1.06	0.0854	93	77-121%			
Toluene	1.02		0.0531	"	"	"	0.0850	89	"			
TOTUCIIC												

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTE	X Compou	nds by l	EPA 8260C						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040912 - EPA 5035/	4						Soil					
Matrix Spike (8040912-MS1)				Prep	pared: 04/	13/18 10:30	Analyzed:	04/19/18 0	0:10			
QC Source Sample: MW22-40 (A8	D0538-19)											
5035A/8260C												
Xylenes, total	4.18		0.0797	mg/kg dry	"	3.18	0.696	110	78-124%			
Surr: 1,4-Difluorobenzene (Surr)		Re	ecovery: 95 %	Limits: 80-	120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			106 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent I	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040876 - Total Sol	ids (Dry We	ight)					Soil					
Duplicate (8040876-DUP3)				Prep	ared: 04/	17/18 09:53	Analyzed:	04/18/18 09	:45			
QC Source Sample: MW20-15 (A	(8D0538-05)											
EPA 8000C												
% Solids	84.5		1.00	% by Weight	1		85.6			1	10%	
Duplicate (8040876-DUP4)				Prep	ared: 04/	17/18 09:53	Analyzed:	04/18/18 09	:45			
QC Source Sample: MW22-40 (A	8D0538-19)											
EPA 8000C												
% Solids	92.0		1.00	% by Weight	1		92.3			0.3	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

SAMPLE PREPARATION INFORMATION

		Dies	sel and/or Oil Hydroc	arbons by NWTPH-Dx	ζ		
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040993							
A8D0538-01	Soil	NWTPH-Dx	04/09/18 08:25	04/19/18 14:31	10.16g/5mL	10g/5mL	0.98
A8D0538-02	Soil	NWTPH-Dx	04/09/18 09:35	04/19/18 14:31	10.24g/5mL	10g/5mL	0.98
A8D0538-03	Soil	NWTPH-Dx	04/09/18 10:15	04/19/18 14:31	10.69g/5mL	10g/5mL	0.94
A8D0538-04	Soil	NWTPH-Dx	04/10/18 08:45	04/19/18 14:31	10.34g/5mL	10g/5mL	0.97
A8D0538-05	Soil	NWTPH-Dx	04/10/18 09:25	04/19/18 14:31	10.4g/5mL	10g/5mL	0.96
A8D0538-06	Soil	NWTPH-Dx	04/10/18 10:30	04/19/18 14:31	10.65g/5mL	10g/5mL	0.94
A8D0538-07	Soil	NWTPH-Dx	04/10/18 10:30	04/19/18 14:31	10.84g/5mL	10g/5mL	0.92
A8D0538-08	Soil	NWTPH-Dx	04/10/18 11:05	04/19/18 14:31	10.25g/5mL	10g/5mL	0.98
A8D0538-09	Soil	NWTPH-Dx	04/11/18 08:20	04/19/18 14:31	10.32g/5mL	10g/5mL	0.97
A8D0538-10	Soil	NWTPH-Dx	04/11/18 08:35	04/19/18 14:31	10.81g/5mL	10g/5mL	0.93
A8D0538-11	Soil	NWTPH-Dx	04/11/18 09:25	04/19/18 14:31	10.25g/5mL	10g/5mL	0.98
Batch: 8040997							
A8D0538-13	Soil	NWTPH-Dx	04/12/18 08:45	04/19/18 16:53	10.85g/5mL	10g/5mL	0.92
A8D0538-14	Soil	NWTPH-Dx	04/12/18 09:30	04/19/18 16:53	10.85g/5mL	10g/5mL	0.92
A8D0538-15	Soil	NWTPH-Dx	04/12/18 10:00	04/19/18 16:53	10.66g/5mL	10g/5mL	0.94
A8D0538-16	Soil	NWTPH-Dx	04/13/18 09:00	04/19/18 16:53	11.32g/5mL	10g/5mL	0.88
A8D0538-17	Soil	NWTPH-Dx	04/13/18 09:20	04/19/18 16:53	10.71g/5mL	10g/5mL	0.93
A8D0538-18	Soil	NWTPH-Dx	04/13/18 09:45	04/19/18 16:53	6.59g/5mL	10g/5mL	1.52
A8D0538-19	Soil	NWTPH-Dx	04/13/18 10:30	04/19/18 16:53	11.12g/5mL	10g/5mL	0.90

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx							
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8040834							
A8D0538-01	Soil	NWTPH-Gx (MS)	04/09/18 08:25	04/09/18 08:25	5.71g/5mL	5g/5mL	0.88
A8D0538-02	Soil	NWTPH-Gx (MS)	04/09/18 09:35	04/09/18 09:35	5.98g/5mL	5g/5mL	0.84
A8D0538-03	Soil	NWTPH-Gx (MS)	04/09/18 10:15	04/09/18 10:15	6.73g/5mL	5g/5mL	0.74
A8D0538-04	Soil	NWTPH-Gx (MS)	04/10/18 08:45	04/10/18 08:45	6.64g/5mL	5g/5mL	0.75
A8D0538-05	Soil	NWTPH-Gx (MS)	04/10/18 09:25	04/10/18 09:25	6.88g/5mL	5g/5mL	0.73
A8D0538-06	Soil	NWTPH-Gx (MS)	04/10/18 10:30	04/10/18 10:30	6.33g/5mL	5g/5mL	0.79
A8D0538-07	Soil	NWTPH-Gx (MS)	04/10/18 10:30	04/10/18 10:30	4.53g/5mL	5g/5mL	1.10
A8D0538-08	Soil	NWTPH-Gx (MS)	04/10/18 11:05	04/10/18 11:05	7.68g/5mL	5g/5mL	0.65
A8D0538-09	Soil	NWTPH-Gx (MS)	04/11/18 08:20	04/11/18 08:20	4.71g/5mL	5g/5mL	1.06

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 24 of 32

Dosa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

SAMPLE PREPARATION INFORMATION

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx							
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A8D0538-10	Soil	NWTPH-Gx (MS)	04/11/18 08:35	04/11/18 08:35	5.37g/5mL	5g/5mL	0.93
A8D0538-11	Soil	NWTPH-Gx (MS)	04/11/18 09:25	04/11/18 09:25	6.74g/5mL	5g/5mL	0.74
Batch: 8040912							
A8D0538-13	Soil	NWTPH-Gx (MS)	04/12/18 08:45	04/12/18 08:45	5.43g/5mL	5g/5mL	0.92
A8D0538-14	Soil	NWTPH-Gx (MS)	04/12/18 09:30	04/12/18 09:30	6.81g/5mL	5g/5mL	0.73
A8D0538-15	Soil	NWTPH-Gx (MS)	04/12/18 10:00	04/12/18 10:00	6.66g/5mL	5g/5mL	0.75
A8D0538-16	Soil	NWTPH-Gx (MS)	04/13/18 09:00	04/13/18 09:00	6.23g/5mL	5g/5mL	0.80
A8D0538-17	Soil	NWTPH-Gx (MS)	04/13/18 09:20	04/13/18 09:20	3.02g/5mL	5g/5mL	1.66
A8D0538-18	Soil	NWTPH-Gx (MS)	04/13/18 09:45	04/13/18 09:45	8.1g/5mL	5g/5mL	0.62
A8D0538-19	Soil	NWTPH-Gx (MS)	04/13/18 10:30	04/13/18 10:30	5.54g/5mL	5g/5mL	0.90

BTEX Compounds by EPA 8260C							
Prep: EPA 5035A Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
Batch: 8040834							
A8D0538-01	Soil	5035A/8260C	04/09/18 08:25	04/09/18 08:25	5.71g/5mL	5g/5mL	0.88
A8D0538-02	Soil	5035A/8260C	04/09/18 09:35	04/09/18 09:35	5.98g/5mL	5g/5mL	0.84
A8D0538-03	Soil	5035A/8260C	04/09/18 10:15	04/09/18 10:15	6.73g/5mL	5g/5mL	0.74
A8D0538-04	Soil	5035A/8260C	04/10/18 08:45	04/10/18 08:45	6.64g/5mL	5g/5mL	0.75
A8D0538-05	Soil	5035A/8260C	04/10/18 09:25	04/10/18 09:25	6.88g/5mL	5g/5mL	0.73
A8D0538-06	Soil	5035A/8260C	04/10/18 10:30	04/10/18 10:30	6.33g/5mL	5g/5mL	0.79
A8D0538-07	Soil	5035A/8260C	04/10/18 10:30	04/10/18 10:30	4.53g/5mL	5g/5mL	1.10
A8D0538-08	Soil	5035A/8260C	04/10/18 11:05	04/10/18 11:05	7.68g/5mL	5g/5mL	0.65
A8D0538-09	Soil	5035A/8260C	04/11/18 08:20	04/11/18 08:20	4.71g/5mL	5g/5mL	1.06
A8D0538-10	Soil	5035A/8260C	04/11/18 08:35	04/11/18 08:35	5.37g/5mL	5g/5mL	0.93
A8D0538-11	Soil	5035A/8260C	04/11/18 09:25	04/11/18 09:25	6.74g/5mL	5g/5mL	0.74
Batch: 8040912							
A8D0538-13	Soil	5035A/8260C	04/12/18 08:45	04/12/18 08:45	5.43g/5mL	5g/5mL	0.92
A8D0538-14	Soil	5035A/8260C	04/12/18 09:30	04/12/18 09:30	6.81g/5mL	5g/5mL	0.73
A8D0538-15	Soil	5035A/8260C	04/12/18 10:00	04/12/18 10:00	6.66g/5mL	5g/5mL	0.75
A8D0538-16	Soil	5035A/8260C	04/13/18 09:00	04/13/18 09:00	6.23g/5mL	5g/5mL	0.80
A8D0538-17	Soil	5035A/8260C	04/13/18 09:20	04/13/18 09:20	3.02g/5mL	5g/5mL	1.66
A8D0538-18	Soil	5035A/8260C	04/13/18 09:45	04/13/18 09:45	8.1g/5mL	5g/5mL	0.62
A8D0538-19	Soil	5035A/8260C	04/13/18 10:30	04/13/18 10:30	5.54g/5mL	5g/5mL	0.90

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

SAMPLE PREPARATION INFORMATION

Percent Dry Weight								
Prep: Total Solids	Prep: Total Solids (Dry Weight) Sample Default RL Prep							
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 8040876								
A8D0538-01	Soil	EPA 8000C	04/09/18 08:25	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-02	Soil	EPA 8000C	04/09/18 09:35	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-03	Soil	EPA 8000C	04/09/18 10:15	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-04	Soil	EPA 8000C	04/10/18 08:45	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-05	Soil	EPA 8000C	04/10/18 09:25	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-06	Soil	EPA 8000C	04/10/18 10:30	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-07	Soil	EPA 8000C	04/10/18 10:30	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-08	Soil	EPA 8000C	04/10/18 11:05	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-09	Soil	EPA 8000C	04/11/18 08:20	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-10	Soil	EPA 8000C	04/11/18 08:35	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-11	Soil	EPA 8000C	04/11/18 09:25	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-13	Soil	EPA 8000C	04/12/18 08:45	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-14	Soil	EPA 8000C	04/12/18 09:30	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-15	Soil	EPA 8000C	04/12/18 10:00	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-16	Soil	EPA 8000C	04/13/18 09:00	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-17	Soil	EPA 8000C	04/13/18 09:20	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-18	Soil	EPA 8000C	04/13/18 09:45	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	
A8D0538-19	Soil	EPA 8000C	04/13/18 10:30	04/17/18 09:53	1N/A/1N/A	1N/A/1N/A	NA	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300Project Number: 2017-074Reported:Vancouver, WA 98660Project Manager: Craig Hultgren04/22/18 07:54

Notes and Definitions

Qualifiers:

F-11 The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.

F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation

F-24 The chromatographic pattern does not resemble the fuel standard used for quantitation. The Diesel result represents carbon range C12 to

C24, and the Oil result represents >C24 to C40.

Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.

Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control

limits. (Refer to the QC Section of Analytical Report.)

S-01 Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix

interference.

S-08 TPH-Gx Surrogate recovery cannot be accurately quantified due to interference from coeluting organic compounds present in the sample

extract. See 8260B results for accurate Surrogate recovery.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

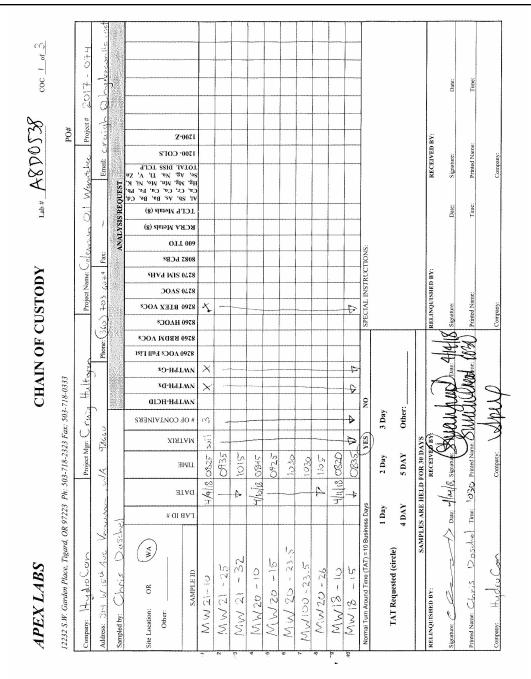
Assa & Somerughini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLC Project: Coleman Wenatchee

314 W 15th Street Suite 300 Project Number: 2017-074 Reported:
Vancouver, WA 98660 Project Manager: Craig Hultgren 04/22/18 07:54

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

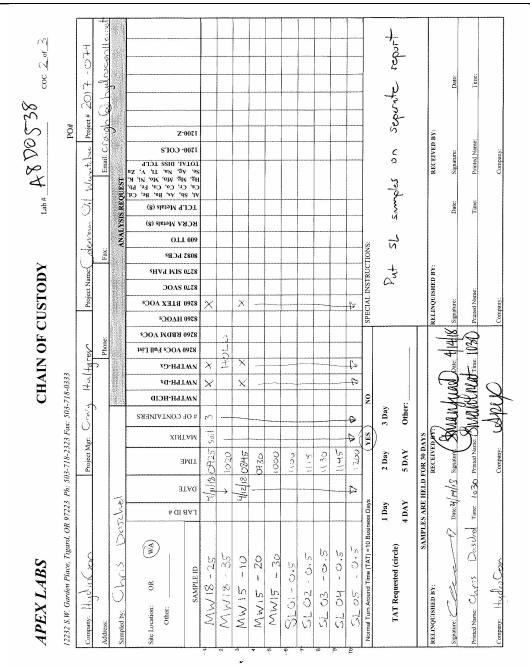

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Reported:Vancouver, WA 98660Project Manager:Craig Hultgren04/22/18 07:54

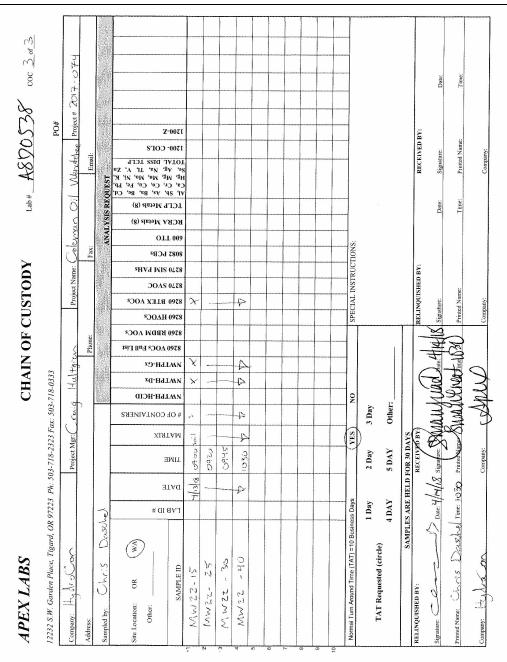

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dosa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Reported:Vancouver, WA 98660Project Manager:Craig Hultgren04/22/18 07:54


Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dosa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Reported:Vancouver, WA 98660Project Manager:Craig Hultgren04/22/18 07:54

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Reported:Vancouver, WA 98660Project Manager:Craig Hultgren04/22/18 07:54

APEX LABS COOLER RECEIPT FORM
Client: 4440 COY Element WO#: A8 DO 538
Project/Project #: Coleman Oil Wenatchee
Delivery info:
Date/Time Received: 4 4 8 @ 1030 By:
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other
Cooler Inspection Inspected by: (8) : 4 4 8 @ 1030
Chain of Custody Included? Yes No Custody Seals? Yes No
Signed/Dated by Client? YesNo
Signed/Dated by Apex? Yes No
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (deg. C)
Received on Ice? (1)/N)
Temp. Blanks? (Y/N)
Ice Type: (Gel/Real/Other)
Condition: SOU
Cooler out of temp? (Y/N) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/No/NA Samples Inspection: Inspected by: (H) H(M) @ (M) (M)
All Samples Intact? Yes No Comments: MWIJ-10 4 02 jar broken
in lab Salvaged 3/4 volume
Bottle Labels/COCs agree? Yes No Comments: MW21-25 Don Jar & 1/2
voas reads 4-9-17. NN18-35 Ton 1/2 vous reads 1030.
Containers/Volumes Received Appropriate for Analysis? Yes Y No Comments:
D. VOA V. I. I. V. T. H. I. J. A. W. J. W.
Do VOA Vials have Visible Headspace? Yes No NA
Comments
Water Samples: pH Checked and Appropriate (except VOAs): YesNoNA
Additional Information: MW 18-10 1/2 MeOH was weight smudged
Additional Information: 10000 13 10 12 Meth 1043 well Share after
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y
CAN MARK
The state of the s

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Tuesday, May 8, 2018

Craig Hultgren HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

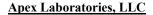
RE: A8D0907 - 2017-074

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A8D0907, which was received by the laboratory on 4/28/2018 at 10:55:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: Idomenighini@apex-labs.com, or by phone at 503-718-2323.

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.


All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

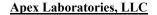
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: 2017-074
Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221

ANALYTICAL REPORT FOR SAMPLES


SAN	/IPI F I	NFORM	ΙΔΤΙΩΝ

Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW1S-W	A8D0907-01	Water	04/24/18 17:05	04/28/18 10:55
MW02-W	A8D0907-02	Water	04/25/18 14:00	04/28/18 10:55
MW3S-W	A8D0907-03	Water	04/25/18 09:00	04/28/18 10:55
MW04-W	A8D0907-04	Water	04/25/18 14:40	04/28/18 10:55
MW05-W	A8D0907-05	Water	04/24/18 13:40	04/28/18 10:55
MW06-W	A8D0907-06	Water	04/25/18 16:55	04/28/18 10:55
MW07-W	A8D0907-07	Water	04/25/18 15:20	04/28/18 10:55
MW08-W	A8D0907-08	Water	04/26/18 12:05	04/28/18 10:55
MW09-W	A8D0907-09	Water	04/26/18 18:45	04/28/18 10:55
MW10-W	A8D0907-10	Water	04/26/18 16:15	04/28/18 10:55
MW11-W	A8D0907-11	Water	04/26/18 10:20	04/28/18 10:55
MW12-W	A8D0907-12	Water	04/25/18 09:55	04/28/18 10:55
MW13-W	A8D0907-13	Water	04/25/18 10:50	04/28/18 10:55
MW14-W	A8D0907-14	Water	04/25/18 12:05	04/28/18 10:55
MW16-W	A8D0907-15	Water	04/26/18 09:20	04/28/18 10:55
MW17-W	A8D0907-16	Water	04/26/18 11:05	04/28/18 10:55
MW19-W	A8D0907-17	Water	04/26/18 13:00	04/28/18 10:55
MW20-W	A8D0907-18	Water	04/26/18 17:55	04/28/18 10:55
MW21-W	A8D0907-19	Water	04/26/18 17:05	04/28/18 10:55
MW22-W	A8D0907-20	Water	04/26/18 19:30	04/28/18 10:55
MW23-W	A8D0907-21	Water	04/25/18 16:05	04/28/18 10:55
BH01-W	A8D0907-22	Water	04/26/18 13:40	04/28/18 10:55
BH02-W	A8D0907-23	Water	04/24/18 15:10	04/28/18 10:55
BH03-W	A8D0907-24	Water	04/26/18 15:15	04/28/18 10:55
RWO1-W	A8D0907-25	Water	04/26/18 14:30	04/28/18 10:55
MW102-W	A8D0907-26	Water	04/26/18 11:10	04/28/18 10:55
MW103-W	A8D0907-27	Water	04/26/18 19:35	04/28/18 10:55
BLANK	A8D0907-28	Water	04/24/18 13:00	04/28/18 10:55

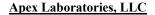
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren


Report ID:
A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

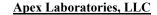
	Di	esel and/or Oil	Hydrocark	ons by NW	TPH-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW1S-W (A8D0907-01)		Matrix: \	N ater		Batch: 805	0406		
Diesel	ND		187	ug/L	1	05/02/18	NWTPH-Dx	F-1
Oil	ND		374	ug/L	1	05/02/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 101 %	Limits:	50-150 %	1	05/02/18	NWTPH-Dx	
MW02-W (A8D0907-02)		Matrix: \	N ater		Batch: 805	0406		
Diesel	ND		187	ug/L	1	05/02/18	NWTPH-Dx	
Oil	ND		374	ug/L	1	05/02/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 99 %	Limits:	50-150 %	1	05/02/18	NWTPH-Dx	
MW3S-W (A8D0907-03)		Matrix: \	N ater		Batch: 805			
Diesel	ND		187	ug/L	1	05/03/18	NWTPH-Dx	F-1
Oil	ND		374	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 98 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	
MW04-W (A8D0907-04)		Matrix: \	N ater		Batch: 805			
Diesel	ND		187	ug/L	1	05/03/18	NWTPH-Dx	
Oil	ND		374	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 98 %	Limits:	50-150 %	I	05/03/18	NWTPH-Dx	
MW05-W (A8D0907-05)		Matrix: \	N ater		Batch: 805	0406		
Diesel	ND		189	ug/L	1	05/03/18	NWTPH-Dx	
Oil	ND		377	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 97 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	
MW06-W (A8D0907-06)		Matrix: Water			Batch: 805	0406		
Diesel	1620		187	ug/L	1	05/03/18	NWTPH-Dx	F-1
Oil	ND		374	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 98 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren


Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

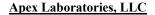
	Die	esel and/or Oil	nyarocart	ons by NW	TPH-UX			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW07-W (A8D0907-07)		Matrix: Water		Batch: 8050	0406			
Diesel	435		187	ug/L	1	05/03/18	NWTPH-Dx	F-1
Oil	ND		374	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 99 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	
MW08-W (A8D0907-08)		Matrix: V	Vater		Batch: 8050	0406		
Diesel	1300		187	ug/L	1	05/03/18	NWTPH-Dx	F-1;
Oil	ND		374	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 99 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	
MW09-W (A8D0907-09)		Matrix: V	Vater		Batch: 8050			
Diesel	2620		187	ug/L	1	05/03/18	NWTPH-Dx	F-1;
Oil	ND		374	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 102 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	
MW10-W (A8D0907-10)		Matrix: V	Vater		Batch: 8050	0406		
Diesel	1500		189	ug/L	1	05/03/18	NWTPH-Dx	F-1.
Oil	ND		377	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 99 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	
MW11-W (A8D0907-11)		Matrix: V	Vater		Batch: 8050	0406		
Diesel	1140		187	ug/L	1	05/03/18	NWTPH-Dx	F-1.
Oil	ND		374	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 100 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	
MW12-W (A8D0907-12)		Matrix: Water			Batch: 8050)406		
Diesel	ND		189	ug/L	1	05/03/18	NWTPH-Dx	
Oil	ND		377	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 99 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

	Di	esel and/or Oil	Hydrocarb	ons by NW	TPH-Dx			
	Sample	Detection	Reporting	T I	Dil d	Date	Malan C	N.
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW13-W (A8D0907-13)		Matrix:	Water		Batch: 805	0406		
Diesel	1790		189	ug/L	1	05/03/18	NWTPH-Dx	F-11, F-2
Oil	ND		377	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 101 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	
MW14-W (A8D0907-14)		Matrix:	Water		Batch: 805	0406		
Diesel	900		187	ug/L	1	05/03/18	NWTPH-Dx	F-11, F-2
Oil	ND		374	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 101 %	Limits:	50-150 %	I	05/03/18	NWTPH-Dx	_
MW16-W (A8D0907-15)		Matrix:	Water		Batch: 8050406			
Diesel	330		187	ug/L	1	05/03/18	NWTPH-Dx	F-1
Oil	ND		374	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 102 %	Limits:	50-150 %	I	05/03/18	NWTPH-Dx	
MW17-W (A8D0907-16)		Matrix:	Water		Batch: 805			
Diesel	1630		189	ug/L	1	05/03/18	NWTPH-Dx	F-13, F-2
Oil	ND		377	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 102 %	Limits:	50-150 %	I	05/03/18	NWTPH-Dx	
MW19-W (A8D0907-17)		Matrix:	Water		Batch: 805	0406		
Diesel	979		189	ug/L	1	05/03/18	NWTPH-Dx	F-1
Oil	ND		377	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 102 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	
MW20-W (A8D0907-18)		Matrix: Water			Batch: 805	0406		
Diesel	1320		189	ug/L	1	05/03/18	NWTPH-Dx	F-1
Oil	ND		377	ug/L	1	05/03/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 99 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

Project Manager: Craig Hultgren

	Di	esel and/or Oil	Hydrocark	ons by NW	TPH-Dx				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
MW21-W (A8D0907-19)		Matrix: \	N ater		Batch: 805				
Diesel	965		187	ug/L	1	05/03/18	NWTPH-Dx	F-1	
Oil	ND		374	ug/L	1	05/03/18	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recovery: 102 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx		
MW22-W (A8D0907-20)		Matrix: \	N ater		Batch: 805	0406			
Diesel	4690		189	ug/L	1	05/03/18	NWTPH-Dx	F-1	
Oil	ND		377	ug/L	1	05/03/18	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recovery: 103 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx		
MW23-W (A8D0907-21)		Matrix: Water				Batch: 8050449			
Diesel	419		190	ug/L	1	05/03/18	NWTPH-Dx	F-1	
Oil	ND		381	ug/L	1	05/03/18	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recovery: 96 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx		
BH01-W (A8D0907-22)		Matrix: \	N ater		Batch: 805				
Diesel	1390		189	ug/L	1	05/02/18	NWTPH-Dx	F-1	
Oil	ND		377	ug/L	1	05/02/18	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recovery: 100 %	Limits:	50-150 %	1	05/02/18	NWTPH-Dx		
BH02-W (A8D0907-23)		Matrix: \	N ater		Batch: 805	0343			
Diesel	9360		189	ug/L	1	05/02/18	NWTPH-Dx	F-13	
Oil	ND		377	ug/L	1	05/02/18	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recovery: 106 %	Limits:	50-150 %	1	05/02/18	NWTPH-Dx		
BH03-W (A8D0907-24)		Matrix: Water			Batch: 805	0343			
Diesel	1130		189	ug/L	1	05/02/18	NWTPH-Dx	F-1	
Oil	ND		377	ug/L	1	05/02/18	NWTPH-Dx		
Surrogate: o-Terphenyl (Surr)		Recovery: 102 %	Limits:	50-150 %	1	05/02/18	NWTPH-Dx		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

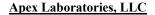
	Di	Diesel and/or Oil Hydrocarbons by NWTPH-Dx								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
RWO1-W (A8D0907-25)		Matrix: Water			Batch: 8050	343				
Diesel	ND		189	ug/L	1	05/02/18	NWTPH-Dx			
Oil	ND		377	ug/L	1	05/02/18	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)		Recovery: 101 %	Limits:	50-150 %	I	05/02/18	NWTPH-Dx			
MW102-W (A8D0907-26)		Matrix: V	Vater		Batch: 8050	343				
Diesel	1650		189	ug/L	1	05/02/18	NWTPH-Dx	F-1		
Oil	ND		377	ug/L	1	05/02/18	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)		Recovery: 103 %	Limits:	50-150 %	I	05/02/18	NWTPH-Dx			
MW103-W (A8D0907-27)		Matrix: V	Vater		Batch: 8050	343				
Diesel	4490		189	ug/L	1	05/02/18	NWTPH-Dx	F-13		
Oil	ND		377	ug/L	1	05/02/18	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)		Recovery: 105 %	Limits:	50-150 %	1	05/02/18	NWTPH-Dx			
BLANK (A8D0907-28)		Matrix: V	Vater		Batch: 8050	343				
Diesel	ND		189	ug/L	1	05/02/18	NWTPH-Dx			
Oil	ND		377	ug/L	1	05/02/18	NWTPH-Dx			
Surrogate: o-Terphenyl (Surr)		Recovery: 99 %	Limits:	50-150 %	1	05/02/18	NWTPH-Dx			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren


Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Not
MW1S-W (A8D0907-01)		Matrix: Water			Batch: 8041	230		
Gasoline Range Organics	188		100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 10	00 % Limits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		ğ	94 %	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
MW02-W (A8D0907-02)		Matrix	x: Water		Batch: 8041	230		
Gasoline Range Organics	ND		100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 10	D2 % Limits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		9	93 %	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
MW3S-W (A8D0907-03)		Matrix	x: Water		Batch: 8041	230		
Gasoline Range Organics	ND		100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 10	02 % Limits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		Ģ	95 %	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
MW04-W (A8D0907-04)		Matrix	x: Water		Batch: 8041	230		
Gasoline Range Organics	ND		100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)	<u> </u>	Recovery: 10	03 % Limits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		Ģ	93 %	50-150 %	I	04/30/18	NWTPH-Gx (MS)	
MW05-W (A8D0907-05)		Matrix	x: Water		Batch: 8041	230		
Gasoline Range Organics	ND		100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 10	01 % Limits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		Ģ	94 %	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
MW06-W (A8D0907-06RE1)		Matrix: Water			Batch: 8050	336		
Gasoline Range Organics	643		100	ug/L	1	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 11	16 % Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		g	98 %	50-150 %	1	05/01/18	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

 Project Number:
 2017-074
 Report ID:

 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Repo	orting			Date		
Analyte	Result	Limit	-	mit	Units	Dilution	Analyzed	Method Ref.	Not
MW07-W (A8D0907-07)		Matrix: Water			Batch: 8041	230			
Gasoline Range Organics	ND			100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	08 %	Limits:	50-150 %	I	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %		50-150 %	1	04/30/18	NWTPH-Gx (MS)	
MW08-W (A8D0907-08)		Matr	ix: Water			Batch: 8041	230		
Gasoline Range Organics	702		-	100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	06 %	Limits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			96 %		50-150 %	I	04/30/18	NWTPH-Gx (MS)	
MW09-W (A8D0907-09RE1)		Matrix: Water			Batch: 8050	336			
Gasoline Range Organics	2810		-	100	ug/L	1	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	112 %	Limits:	50-150 %	I	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			97 %		50-150 %	1	05/01/18	NWTPH-Gx (MS)	
MW10-W (A8D0907-10)		Matr	ix: Water			Batch: 8041	230		
Gasoline Range Organics	2290			100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	111 %	Limits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %		50-150 %	1	04/30/18	NWTPH-Gx (MS)	
MW11-W (A8D0907-11)		Matr	ix: Water			Batch: 8041	230		
Gasoline Range Organics	1240		-	100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	107 %	Limits:	50-150 %	I	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			97 %		50-150 %	1	04/30/18	NWTPH-Gx (MS)	
MW12-W (A8D0907-12)		Matr	ix: Water			Batch: 8041	230		
Gasoline Range Organics	ND			100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	05 %	Limits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %		50-150 %	1	04/30/18	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Jamenghini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

Analyte	Sample Result	Detection Limit		porting Limit	Units	Dilution	Date Analyzed	Method Ref.	Not
MW13-W (A8D0907-13)		Matr	ix: Wat	er		Batch: 8041	255		
Gasoline Range Organics	40900			1000	ug/L	10	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	113 %	Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		1	106 %		50-150 %	1	05/01/18	NWTPH-Gx (MS)	
MW14-W (A8D0907-14)		Matr	ix: Wat	er		Batch: 8041	255		
Gasoline Range Organics	4620			100	ug/L	1	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	108 %	Limits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			96 %		50-150 %	1	04/30/18	NWTPH-Gx (MS)	
MW16-W (A8D0907-15)		Matr	ix: Wat	er		Batch: 8041	255		
Gasoline Range Organics	ND			100	ug/L	1	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	100 %	Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		1	105 %		50-150 %	1	05/01/18	NWTPH-Gx (MS)	
MW17-W (A8D0907-16)		Matr	ix: Wat	er		Batch: 8041	255		
Gasoline Range Organics	2800			100	ug/L	1	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	108 %	Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			97 %		50-150 %	1	05/01/18	NWTPH-Gx (MS)	
MW19-W (A8D0907-17RE1)		Matr	ix: Wat	er		Batch: 8050	380		
Gasoline Range Organics	280			100	ug/L	1	05/02/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	108 %	Limits:	50-150 %	1	05/02/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %		50-150 %	1	05/02/18	NWTPH-Gx (MS)	
MW20-W (A8D0907-18)		Matrix: Water			Batch: 8041	255			
Gasoline Range Organics	1270			100	ug/L	1	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	101 %	Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		1	107 %		50-150 %	1	05/01/18	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

 Project Number:
 2017-074
 Report ID:

 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221


ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	No
MW21-W (A8D0907-19RE1)		Matrix: Water			Batch: 80503			
Gasoline Range Organics	991		100	ug/L	1	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 102	Limits:	50-150 %	I	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		107	7 %	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
MW22-W (A8D0907-20RE1)		Matrix:	Water		Batch: 8050	333		
Gasoline Range Organics	6960		500	ug/L	5	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 101	% Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		108	3 %	50-150 %	I	05/01/18	NWTPH-Gx (MS)	
MW23-W (A8D0907-21)		Matrix:	Water		Batch: 8050336			
Gasoline Range Organics	ND		100	ug/L	1	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 96	% Limits:	50-150 %	I	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		92	. %	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
BH01-W (A8D0907-22)		Matrix:	Water		Batch: 8050	336		
Gasoline Range Organics	2140		100	ug/L	1	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 101	% Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		94	1%	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
BH02-W (A8D0907-23)		Matrix:	Water		Batch: 8050	336		
Gasoline Range Organics	854		100	ug/L	1	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 104	% Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		94	1 %	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
BH03-W (A8D0907-24)		Matrix: Water			Batch: 8050	336		
Gasoline Range Organics	172		100	ug/L	1	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)	<u> </u>	Recovery: 97	'% Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		91	%	50-150 %	1	05/01/18	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Jamenyhini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

 Project Number:
 2017-074
 Report ID:

 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
RWO1-W (A8D0907-25)		Matrix:	Water		Batch: 8041	257			
Gasoline Range Organics	ND		100	ug/L	1	05/01/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 109	% Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)		113	%	50-150 %	1	05/01/18	NWTPH-Gx (MS)		
MW102-W (A8D0907-26)		Matrix:	Water		Batch: 8050	336			
Gasoline Range Organics	2650		100	ug/L	1	05/01/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 110	% Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)		96	%	50-150 %	1	05/01/18	NWTPH-Gx (MS)		
MW103-W (A8D0907-27)		Matrix:	Water		Batch: 8050	336			
Gasoline Range Organics	6940		1000	ug/L	10	05/01/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 96	% Limits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)		94	%	50-150 %	1	05/01/18	NWTPH-Gx (MS)		
BLANK (A8D0907-28)		Matrix:	Water		Batch: 8041	255			
Gasoline Range Organics	ND		100	ug/L	1	04/30/18	NWTPH-Gx (MS)		
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 101	% Limits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)		
1,4-Difluorobenzene (Sur)		104	%	50-150 %	1	04/30/18	NWTPH-Gx (MS)		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260C											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note			
MW1S-W (A8D0907-01)		Matrix: Water			Batch: 8041	1230					
Benzene	0.420		0.200	ug/L	1	04/30/18	EPA 8260C				
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
Ethylbenzene	5.80		0.500	ug/L	1	04/30/18	EPA 8260C				
Xylenes, total	9.48		1.50	ug/L	1	04/30/18	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 98 %	Limits:	80-120 %	1	04/30/18	EPA 8260C				
Toluene-d8 (Surr)		101 %	ò	80-120 %	1	04/30/18	EPA 8260C				
4-Bromofluorobenzene (Surr)		103 %	,	80-120 %	1	04/30/18	EPA 8260C				
MW02-W (A8D0907-02)		Matrix: \	N ater		Batch: 8041	1230					
Benzene	ND		0.200	ug/L	1	04/30/18	EPA 8260C				
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
Ethylbenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C				
Xylenes, total	ND		1.50	ug/L	1	04/30/18	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 100 %	Limits:	80-120 %	1	04/30/18	EPA 8260C				
Toluene-d8 (Surr)		101 %	Ď	80-120 %	1	04/30/18	EPA 8260C				
4-Bromofluorobenzene (Surr)		104 %	Ď	80-120 %	1	04/30/18	EPA 8260C				
MW04-W (A8D0907-04)		Matrix: \	N ater		Batch: 8041	1230					
Benzene	ND		0.200	ug/L	1	04/30/18	EPA 8260C				
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
Ethylbenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C				
Xylenes, total	ND		1.50	ug/L	1	04/30/18	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 100 %	Limits:	80-120 %	1	04/30/18	EPA 8260C				
Toluene-d8 (Surr)		100 %	Ď	80-120 %	1	04/30/18	EPA 8260C				
4-Bromofluorobenzene (Surr)		103 %	Ď	80-120 %	1	04/30/18	EPA 8260C				
MW05-W (A8D0907-05)		Matrix: Water			Batch: 8041	1230					
Benzene	ND		0.200	ug/L	1	04/30/18	EPA 8260C				
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
Ethylbenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

	BTEX Compounds by EPA 8260C											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note				
MW05-W (A8D0907-05)	Matrix: Water				Batch: 804	1230						
Xylenes, total	ND		1.50	ug/L	1	04/30/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 1	00 % Limits:	80-120 %	1	04/30/18	EPA 8260C					
Toluene-d8 (Surr)		1	00 %	80-120 %	1	04/30/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		1	05 %	80-120 %	1	04/30/18	EPA 8260C					
MW06-W (A8D0907-06RE1)		Matri	x: Water		Batch: 8050	0336						
Benzene	0.560		0.200	ug/L	1	05/01/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C					
Xylenes, total	2.19		1.50	ug/L	1	05/01/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	99 % Limits:	80-120 %	1	05/01/18	EPA 8260C					
Toluene-d8 (Surr)		1	00 %	80-120 %	1	05/01/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		1	03 %	80-120 %	1	05/01/18	EPA 8260C					
MW07-W (A8D0907-07)		Matri	x: Water		Batch: 804	1230						
Benzene	ND		0.200	ug/L	1	04/30/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	04/30/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 1	01 % Limits:	80-120 %	1	04/30/18	EPA 8260C					
Toluene-d8 (Surr)		1	00 %	80-120 %	1	04/30/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		1	00 %	80-120 %	1	04/30/18	EPA 8260C					
MW08-W (A8D0907-08)		Matrix: Water			Batch: 804	1230						
Benzene	0.641		0.200	ug/L	1	04/30/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C					
Xylenes, total	4.67		1.50	ug/L	1	04/30/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	99 % Limits:	80-120 %	1	04/30/18	EPA 8260C					
Toluene-d8 (Surr)			99 %	80-120 %	1	04/30/18	EPA 8260C					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID:
A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260C												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note				
MW08-W (A8D0907-08)		Matrix	Water		Batch: 804	1230						
Surrogate: 4-Bromofluorobenzene (Surr)		Recovery: 100	% Limits:	80-120 %	1	04/30/18	EPA 8260C					
MW09-W (A8D0907-09RE1)		Matrix	Matrix: Water		Batch: 8050	336						
Benzene	2.73		0.200	ug/L	1	05/01/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Ethylbenzene	9.95		0.500	ug/L	1	05/01/18	EPA 8260C					
Xylenes, total	20.4		1.50	ug/L	1	05/01/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 100	% Limits:	80-120 %	1	05/01/18	EPA 8260C					
Toluene-d8 (Surr)		100	1%	80-120 %	1	05/01/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		99	%	80-120 %	1	05/01/18	EPA 8260C					
MW10-W (A8D0907-10)		Matrix: Water E		Batch: 804	1230							
Benzene	0.219		0.200	ug/L	1	04/30/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C					
Ethylbenzene	3.52		0.500	ug/L	1	04/30/18	EPA 8260C					
Xylenes, total	5.95		1.50	ug/L	1	04/30/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 99	% Limits:	80-120 %	1	04/30/18	EPA 8260C					
Toluene-d8 (Surr)		99	%	80-120 %	1	04/30/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		101	%	80-120 %	1	04/30/18	EPA 8260C					
MW11-W (A8D0907-11)		Matrix	Water		Batch: 804	1230						
Benzene	ND		0.200	ug/L	1	04/30/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C					
Ethylbenzene	0.560		0.500	ug/L	1	04/30/18	EPA 8260C					
Xylenes, total	2.27		1.50	ug/L	1	04/30/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 98	% Limits:	80-120 %	1	04/30/18	EPA 8260C					
Toluene-d8 (Surr)		100	1%	80-120 %	1	04/30/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		102	. %	80-120 %	1	04/30/18	EPA 8260C					
MW12-W (A8D0907-12)		Matrix	Water		Batch: 804	1230						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

		BTEX C	ompounds by	/ EPA 8260	C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW12-W (A8D0907-12)		Matrix	k: Water		Batch: 804	1230		
Benzene	ND		0.200	ug/L	1	04/30/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	04/30/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 10	01 % Limits:	80-120 %	1	04/30/18	EPA 8260C	
Toluene-d8 (Surr)		10	01 %	80-120 %	1	04/30/18	EPA 8260C	
4-Bromofluorobenzene (Surr)		10	03 %	80-120 %	1	04/30/18	EPA 8260C	
MW13-W (A8D0907-13)		Matrix	k: Water		Batch: 804	1255		
Benzene	1500		2.00	ug/L	10	05/01/18	EPA 8260C	
Ethylbenzene	627		5.00	ug/L	10	05/01/18	EPA 8260C	
Xylenes, total	3780		15.0	ug/L	10	05/01/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 10	08 % Limits:	80-120 %	1	05/01/18	EPA 8260C	
Toluene-d8 (Surr)		g	95 %	80-120 %	1	05/01/18	EPA 8260C	
4-Bromofluorobenzene (Surr)		ç	92 %	80-120 %	1	05/01/18	EPA 8260C	
MW13-W (A8D0907-13RE1)		Matrix	c: Water		Batch: 8050	0333		
Toluene	4710		100	ug/L	100	05/01/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 11	0 % Limits:	80-120 %	1	05/01/18	EPA 8260C	
Toluene-d8 (Surr)		g	99 %	80-120 %	1	05/01/18	EPA 8260C	
4-Bromofluorobenzene (Surr)		Ģ	95 %	80-120 %	I	05/01/18	EPA 8260C	
MW16-W (A8D0907-15)		Matrix	c: Water		Batch: 804	1255		
Benzene	ND		0.200	ug/L	1	05/01/18	EPA 8260C	
Toluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
Ethylbenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C	
Xylenes, total	ND		1.50	ug/L	1	05/01/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 10	07 % Limits:	80-120 %	I	05/01/18	EPA 8260C	
Toluene-d8 (Surr)		9	99 %	80-120 %	1	05/01/18	EPA 8260C	
4-Bromofluorobenzene (Surr)		g	96 %	80-120 %	1	05/01/18	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zmenghini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

	BTEX Compounds by EPA 8260C											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note				
MW19-W (A8D0907-17RE1)		Matr	ix: Water		Batch: 8050	380						
Benzene	ND		0.200	ug/L	1	05/02/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	05/02/18	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	05/02/18	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	05/02/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 1	00 % Limits:	80-120 %	1	05/02/18	EPA 8260C					
Toluene-d8 (Surr)		1	01 %	80-120 %	1	05/02/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		1	02 %	80-120 %	I	05/02/18	EPA 8260C					
MW20-W (A8D0907-18)		Matr	ix: Water		Batch: 8041	255						
Benzene	ND		0.200	ug/L	1	05/01/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Ethylbenzene	1.56		0.500	ug/L	1	05/01/18	EPA 8260C					
Xylenes, total	5.44		1.50	ug/L	1	05/01/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 1	08 % Limits:	80-120 %	1	05/01/18	EPA 8260C					
Toluene-d8 (Surr)			98 %	80-120 %	1	05/01/18	EPA 8260C					
4-Bromofluorobenzene (Surr)			95 %	80-120 %	1	05/01/18	EPA 8260C					
MW21-W (A8D0907-19RE1)		Matr	ix: Water		Batch: 8050	1333						
Benzene	ND		0.200	ug/L	1	05/01/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Ethylbenzene	0.835		0.500	ug/L	1	05/01/18	EPA 8260C					
Xylenes, total	1.82		1.50	ug/L	1	05/01/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 1	.09 % Limits:	80-120 %	1	05/01/18	EPA 8260C					
Toluene-d8 (Surr)			98 %	80-120 %	1	05/01/18	EPA 8260C					
4-Bromofluorobenzene (Surr)			94 %	80-120 %	1	05/01/18	EPA 8260C					
MW22-W (A8D0907-20RE1)		Matrix: Water			Batch: 8050)333						
Benzene	118		1.00	ug/L	5	05/01/18	EPA 8260C					
Toluene	28.8		5.00	ug/L	5	05/01/18	EPA 8260C					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260C												
Analyte	Sample Result	Detection Limit	Reportin Limit	g Units	Dilution	Date Analyzed	Method Ref.	Note				
MW22-W (A8D0907-20RE1)		Matr	ix: Water		Batch: 805	0333						
Ethylbenzene	102		2.50	ug/L	5	05/01/18	EPA 8260C					
Xylenes, total	196		7.50	ug/L	5	05/01/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	110 % Lim	its: 80-120 %	1	05/01/18	EPA 8260C					
Toluene-d8 (Surr)			98 %	80-120 %	1	05/01/18	EPA 8260C					
4-Bromofluorobenzene (Surr)			93 %	80-120 %	I	05/01/18	EPA 8260C					
MW23-W (A8D0907-21)		Matr	ix: Water		Batch: 805	0336						
Benzene	ND		0.200	ug/L	1	05/01/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	05/01/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 1	102 % Lim	its: 80-120 %	1	05/01/18	EPA 8260C					
Toluene-d8 (Surr)		1	102 %	80-120 %	1	05/01/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		1	104 %	80-120 %	1	05/01/18	EPA 8260C					
BH01-W (A8D0907-22)		Matr	ix: Water		Batch: 805	0336						
Benzene	0.671		0.200	ug/L	1	05/01/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Ethylbenzene	5.55		0.500	ug/L	1	05/01/18	EPA 8260C					
Xylenes, total	12.5		1.50	ug/L	1	05/01/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 1	102 % Lim	its: 80-120 %	I	05/01/18	EPA 8260C					
Toluene-d8 (Surr)		1	101 %	80-120 %	1	05/01/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		1	101 %	80-120 %	I	05/01/18	EPA 8260C					
BH02-W (A8D0907-23)		Matrix: Water			Batch: 805	0336						
Benzene	ND		0.200	ug/L	1	05/01/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Ethylbenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C					
Xylenes, total	ND		1.50	ug/L	1	05/01/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 1	102 % Lim	its: 80-120 %	1	05/01/18	EPA 8260C					

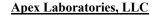
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee
Project Number: 2017-074

Report ID: A8D0907 - 050818 0221


ANALYTICAL SAMPLE RESULTS

Project Manager: Craig Hultgren

	BTEX Compounds by EPA 8260C											
Analyte	Sample Result	Detectio Limit		Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note			
BH02-W (A8D0907-23)		Ma	trix: V	Vater		Batch: 8050	0336	36				
Surrogate: Toluene-d8 (Surr)		Recovery:	100 %	Limits:	80-120 %	1	05/01/18	EPA 8260C				
4-Bromofluorobenzene (Surr)			102 %		80-120 %	I	05/01/18	EPA 8260C				
BH03-W (A8D0907-24)		Ma	trix: V	Vater		Batch: 8050	336					
Benzene	ND			0.200	ug/L	1	05/01/18	EPA 8260C				
Toluene	ND			1.00	ug/L	1	05/01/18	EPA 8260C				
Ethylbenzene	ND			0.500	ug/L	1	05/01/18	EPA 8260C				
Xylenes, total	ND			1.50	ug/L	1	05/01/18	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	101 %	Limits:	80-120 %	1	05/01/18	EPA 8260C				
Toluene-d8 (Surr)			102 %		80-120 %	1	05/01/18	EPA 8260C				
4-Bromofluorobenzene (Surr)			104 %		80-120 %	1	05/01/18	EPA 8260C				
RWO1-W (A8D0907-25)		Matrix: Water		Batch: 804	1257							
Benzene	ND			0.200	ug/L	1	05/01/18	EPA 8260C				
Toluene	ND			1.00	ug/L	1	05/01/18	EPA 8260C				
Ethylbenzene	ND			0.500	ug/L	1	05/01/18	EPA 8260C				
Xylenes, total	ND			1.50	ug/L	1	05/01/18	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	112 %	Limits:	80-120 %	1	05/01/18	EPA 8260C				
Toluene-d8 (Surr)			99 %		80-120 %	1	05/01/18	EPA 8260C				
4-Bromofluorobenzene (Surr)			98 %		80-120 %	I	05/01/18	EPA 8260C				
MW103-W (A8D0907-27)		Ma	trix: V	Vater		Batch: 8050	0336					
Benzene	122			2.00	ug/L	10	05/01/18	EPA 8260C				
Toluene	31.4			10.0	ug/L	10	05/01/18	EPA 8260C				
Ethylbenzene	109			5.00	ug/L	10	05/01/18	EPA 8260C				
Xylenes, total	223			15.0	ug/L	10	05/01/18	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	101 %	Limits:	80-120 %	1	05/01/18	EPA 8260C				
Toluene-d8 (Surr)			104 %		80-120 %	1	05/01/18	EPA 8260C				
4-Bromofluorobenzene (Surr)			104 %		80-120 %	1	05/01/18	EPA 8260C				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

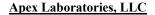
BTEX Compounds by EPA 8260C											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
BLANK (A8D0907-28)		Matrix:	Water		Batch: 8041	255					
Benzene	ND		0.200	ug/L	1	04/30/18	EPA 8260C				
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
Ethylbenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C				
Xylenes, total	ND		1.50	ug/L	1	04/30/18	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 106 %	6 Limits:	80-120 %	1	04/30/18	EPA 8260C				
Toluene-d8 (Surr)		98 %	o o	80-120 %	1	04/30/18	EPA 8260C				
4-Bromofluorobenzene (Surr)		97 %	ó	80-120 %	1	04/30/18	EPA 8260C				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

0 1				Volatile Organic Compounds by EPA 8260C										
Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes							
	Matrix:	Water		Batch: 8041	230									
ND		20.0	ug/L	1	04/30/18	EPA 8260C								
ND		2.00	ug/L	1	04/30/18	EPA 8260C								
ND		0.200	ug/L	1	04/30/18	EPA 8260C								
ND		0.500	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		5.00	ug/L	1	04/30/18	EPA 8260C								
ND		10.0	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		10.0	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		0.500	ug/L	1	04/30/18	EPA 8260C								
ND		5.00	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		5.00	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		1.00		1	04/30/18	EPA 8260C								
ND		5.00	ug/L	1	04/30/18	EPA 8260C								
ND		0.500	ug/L	1	04/30/18	EPA 8260C								
ND		1.00	ug/L	1	04/30/18	EPA 8260C								
ND		0.500	ug/L	1	04/30/18	EPA 8260C								
ND		0.500		1	04/30/18	EPA 8260C								
ND		0.500	_	1	04/30/18	EPA 8260C								
ND		1.00		1	04/30/18	EPA 8260C								
ND		0.400	_	1	04/30/18	EPA 8260C								
	Result ND	ND	Matrix: Water ND 20.0 ND 2.00 ND 0.200 ND 0.500 ND 0.500 ND 1.00 ND 1.00 ND 10.0 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 1.00 ND 5.00 ND 5.00 ND 5.00 ND 1.00 ND 1.00 ND 1.00 ND 5.00 ND 1.00 ND 5.00 ND 5.00 ND 5.00 ND	Result Limit Limit Units Matrix: Water ND 20.0 ug/L ND 2.00 ug/L ND 0.500 ug/L ND 0.500 ug/L ND 1.00 ug/L ND 5.00 ug/L ND 5.00 ug/L ND 5.00 ug/L	Matrix: Water Batch: 8041 ND	Mesult Limit Limit Units Dilution Analyzed ND 20.0 ug/L 1 04/30/18 ND 2.00 ug/L 1 04/30/18 ND 0.200 ug/L 1 04/30/18 ND 0.500 ug/L 1 04/30/18 ND 1.00 ug/L<	No							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

 Project Number:
 2017-074
 Report ID:

 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
MW3S-W (A8D0907-03)		Matrix:	Water		Batch: 8041230					
1,1-Dichloroethene	ND		0.400	ug/L	1	04/30/18	EPA 8260C			
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	04/30/18	EPA 8260C			
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	04/30/18	EPA 8260C			
1,2-Dichloropropane	ND		0.500	ug/L	1	04/30/18	EPA 8260C			
1,3-Dichloropropane	ND		1.00	ug/L	1	04/30/18	EPA 8260C			
2,2-Dichloropropane	ND		1.00	ug/L	1	04/30/18	EPA 8260C			
1,1-Dichloropropene	ND		1.00	ug/L	1	04/30/18	EPA 8260C			
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	04/30/18	EPA 8260C			
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	04/30/18	EPA 8260C			
Ethylbenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C			
Hexachlorobutadiene	ND		5.00	ug/L	1	04/30/18	EPA 8260C			
2-Hexanone	ND		10.0	ug/L	1	04/30/18	EPA 8260C			
Isopropylbenzene	ND		1.00	ug/L	1	04/30/18	EPA 8260C			
4-Isopropyltoluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C			
Methylene chloride	ND		3.00	ug/L	1	04/30/18	EPA 8260C			
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	04/30/18	EPA 8260C			
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	04/30/18	EPA 8260C			
Naphthalene	ND		2.00	ug/L	1	04/30/18	EPA 8260C			
n-Propylbenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C			
Styrene	ND		1.00	ug/L	1	04/30/18	EPA 8260C			
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	04/30/18	EPA 8260C			
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	04/30/18	EPA 8260C			
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	04/30/18	EPA 8260C			
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C			
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	04/30/18	EPA 8260C			
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	04/30/18	EPA 8260C			
1,1,1-Trichloroethane	ND		0.400	ug/L	1	04/30/18	EPA 8260C			
1,1,2-Trichloroethane	ND		0.500	ug/L	1	04/30/18	EPA 8260C			
Trichloroethene (TCE)	ND		0.400	ug/L	1	04/30/18	EPA 8260C			
Trichlorofluoromethane	ND		2.00	ug/L	1	04/30/18	EPA 8260C			
	-									

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C

		olatile Organ	iic Compour	ias by EPA	82600			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW3S-W (A8D0907-03)		Matrix: Water			Batch: 8041230			
1,2,3-Trichloropropane	ND		1.00	ug/L	1	04/30/18	EPA 8260C	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	04/30/18	EPA 8260C	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	04/30/18	EPA 8260C	
Vinyl chloride	ND		0.400	ug/L	1	04/30/18	EPA 8260C	
m,p-Xylene	ND		1.00	ug/L	1	04/30/18	EPA 8260C	
o-Xylene	ND		0.500	ug/L	1	04/30/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 100) % Limits:	80-120 %	1	04/30/18	EPA 8260C	
Toluene-d8 (Surr)		100) %	80-120 %	1	04/30/18	EPA 8260C	
4-Bromofluorobenzene (Surr)		103	3 %	80-120 %	1	04/30/18	EPA 8260C	
MW14-W (A8D0907-14)		Matrix	: Water		Batch: 804	1255		
Acetone	ND		20.0	ug/L	1	04/30/18	EPA 8260C	
Acrylonitrile	ND		110	ug/L	1	04/30/18	EPA 8260C	R-02
Benzene	13.1		0.200	ug/L	1	04/30/18	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	04/30/18	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	04/30/18	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	04/30/18	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	04/30/18	EPA 8260C	
2-Butanone (MEK)	ND		85.0	ug/L	1	04/30/18	EPA 8260C	R-02
n-Butylbenzene	ND		1.00	ug/L	1	04/30/18	EPA 8260C	
sec-Butylbenzene	4.24		1.00	ug/L	1	04/30/18	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	04/30/18	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	04/30/18	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	04/30/18	EPA 8260C	

0.500

5.00

1.00

5.00

1.00

ug/L

ug/L

ug/L

ug/L

ug/L

Apex Laboratories

Chlorobenzene

Chloromethane

2-Chlorotoluene

Chloroethane

Chloroform

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

04/30/18

04/30/18

04/30/18

04/30/18

04/30/18

EPA 8260C

EPA 8260C

EPA 8260C

EPA 8260C

EPA 8260C

Awas Somenighini

ND

ND

ND

ND

ND

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID:
A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

Project Manager: Craig Hultgren

Volatile Organic Compounds by EPA 8260C											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
MW14-W (A8D0907-14)		Matrix:	Water		Batch: 8041	255					
4-Chlorotoluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
Dibromochloromethane	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	04/30/18	EPA 8260C				
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	04/30/18	EPA 8260C				
Dibromomethane	ND		1.30	ug/L	1	04/30/18	EPA 8260C	R-02			
1,2-Dichlorobenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C				
1,3-Dichlorobenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C				
1,4-Dichlorobenzene	ND		0.500	ug/L	1	04/30/18	EPA 8260C				
Dichlorodifluoromethane	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
1,1-Dichloroethane	ND		0.400	ug/L	1	04/30/18	EPA 8260C				
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	04/30/18	EPA 8260C				
1,1-Dichloroethene	ND		0.400	ug/L	1	04/30/18	EPA 8260C				
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	04/30/18	EPA 8260C				
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	04/30/18	EPA 8260C				
1,2-Dichloropropane	ND		0.500	ug/L	1	04/30/18	EPA 8260C				
1,3-Dichloropropane	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
2,2-Dichloropropane	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
1,1-Dichloropropene	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
Ethylbenzene	16.1		0.500	ug/L	1	04/30/18	EPA 8260C				
Hexachlorobutadiene	ND		5.00	ug/L	1	04/30/18	EPA 8260C				
2-Hexanone	ND		10.0	ug/L	1	04/30/18	EPA 8260C				
Isopropylbenzene	11.0		1.00	ug/L	1	04/30/18	EPA 8260C				
4-Isopropyltoluene	1.87		1.00	ug/L	1	04/30/18	EPA 8260C				
Methylene chloride	ND		3.00	ug/L	1	04/30/18	EPA 8260C				
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	04/30/18	EPA 8260C				
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	04/30/18	EPA 8260C				
Naphthalene	3.21		2.00	ug/L	1	04/30/18	EPA 8260C				
n-Propylbenzene	8.50		0.500	ug/L	1	04/30/18	EPA 8260C				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

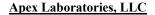
Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS


Volatile Organic Compounds by EPA 8260C												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note				
MW14-W (A8D0907-14)		Matrix: \	Nater	Batch: 8041255								
Styrene	ND		1.00	ug/L	1	04/30/18	EPA 8260C					
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	04/30/18	EPA 8260C					
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	04/30/18	EPA 8260C					
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	04/30/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	04/30/18	EPA 8260C					
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	04/30/18	EPA 8260C					
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	04/30/18	EPA 8260C					
1,1,1-Trichloroethane	ND		0.400	ug/L	1	04/30/18	EPA 8260C					
1,1,2-Trichloroethane	ND		0.500	ug/L	1	04/30/18	EPA 8260C					
Trichloroethene (TCE)	ND		0.400	ug/L	1	04/30/18	EPA 8260C					
Trichlorofluoromethane	ND		2.00	ug/L	1	04/30/18	EPA 8260C					
1,2,3-Trichloropropane	ND		1.00	ug/L	1	04/30/18	EPA 8260C					
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	04/30/18	EPA 8260C					
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	04/30/18	EPA 8260C					
Vinyl chloride	ND		0.400	ug/L	1	04/30/18	EPA 8260C					
m,p-Xylene	ND		1.00	ug/L	1	04/30/18	EPA 8260C					
o-Xylene	ND		0.500	ug/L	1	04/30/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 98 %	Limits:	80-120 %	1	04/30/18	EPA 8260C					
Toluene-d8 (Surr)		104 %		80-120 %	1	04/30/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		92 %)	80-120 %	I	04/30/18	EPA 8260C					
MW17-W (A8D0907-16)		Matrix: \	N ater		Batch: 8041	255						
Acetone	ND		20.0	ug/L	1	05/01/18	EPA 8260C					

MW17-W (A8D0907-16)		Matrix: Water		В	atch: 804	1255		
Acetone	ND		20.0	ug/L	1	05/01/18	EPA 8260C	
Acrylonitrile	ND		43.0	ug/L	1	05/01/18	EPA 8260C	R-02
Benzene	1.23		0.200	ug/L	1	05/01/18	EPA 8260C	
Bromobenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C	
Bromochloromethane	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
Bromodichloromethane	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
Bromoform	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
Bromomethane	ND		5.00	ug/L	1	05/01/18	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	s by EPA	8260C			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW17-W (A8D0907-16)		Matrix:	Water		Batch: 8041	255		
2-Butanone (MEK)	ND		44.0	ug/L	1	05/01/18	EPA 8260C	R-02
n-Butylbenzene	1.54		1.00	ug/L	1	05/01/18	EPA 8260C	M-02
sec-Butylbenzene	1.71		1.00	ug/L	1	05/01/18	EPA 8260C	
tert-Butylbenzene	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
Carbon disulfide	ND		10.0	ug/L	1	05/01/18	EPA 8260C	
Carbon tetrachloride	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
Chlorobenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C	
Chloroethane	ND		5.00	ug/L	1	05/01/18	EPA 8260C	
Chloroform	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
Chloromethane	ND		5.00	ug/L	1	05/01/18	EPA 8260C	
2-Chlorotoluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
4-Chlorotoluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
Dibromochloromethane	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/01/18	EPA 8260C	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/01/18	EPA 8260C	
Dibromomethane	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C	
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
1,1-Dichloroethane	ND		0.400	ug/L	1	05/01/18	EPA 8260C	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/01/18	EPA 8260C	
1,1-Dichloroethene	ND		0.400	ug/L	1	05/01/18	EPA 8260C	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	05/01/18	EPA 8260C	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	05/01/18	EPA 8260C	
1,2-Dichloropropane	ND		0.500	ug/L	1	05/01/18	EPA 8260C	
1,3-Dichloropropane	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
2,2-Dichloropropane	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
1,1-Dichloropropene	ND		1.00	ug/L	1	05/01/18	EPA 8260C	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/01/18	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

 Project Number:
 2017-074
 Report ID:

 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

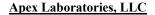
Volatile Organic Compounds by EPA 8260C												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW17-W (A8D0907-16)		Matrix:	Water		Batch: 8041	255						
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Ethylbenzene	1.62		0.500	ug/L	1	05/01/18	EPA 8260C					
Hexachlorobutadiene	ND		5.00	ug/L	1	05/01/18	EPA 8260C					
2-Hexanone	ND		10.0	ug/L	1	05/01/18	EPA 8260C					
Isopropylbenzene	3.43		1.00	ug/L	1	05/01/18	EPA 8260C					
4-Isopropyltoluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Methylene chloride	ND		3.00	ug/L	1	05/01/18	EPA 8260C					
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/01/18	EPA 8260C					
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Naphthalene	4.72		2.00	ug/L	1	05/01/18	EPA 8260C					
n-Propylbenzene	6.48		0.500	ug/L	1	05/01/18	EPA 8260C					
Styrene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/01/18	EPA 8260C					
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/01/18	EPA 8260C					
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/01/18	EPA 8260C					
1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
1,1,2-Trichloroethane	ND		0.500	ug/L	1	05/01/18	EPA 8260C					
Trichloroethene (TCE)	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
Trichlorofluoromethane	ND		2.00	ug/L	1	05/01/18	EPA 8260C					
1,2,3-Trichloropropane	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
1,2,4-Trimethylbenzene	20.5		1.00	ug/L	1	05/01/18	EPA 8260C					
1,3,5-Trimethylbenzene	2.21		1.00	ug/L	1	05/01/18	EPA 8260C					
Vinyl chloride	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
m,p-Xylene	6.38		1.00	ug/L	1	05/01/18	EPA 8260C					
o-Xylene	1.28		0.500	ug/L	1	05/01/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 98	% Limits:	80-120 %	1	05/01/18	EPA 8260C					
Toluene-d8 (Surr)		100	%	80-120 %	1	05/01/18	EPA 8260C					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID: A8D0907 - 050818 0221


ANALYTICAL SAMPLE RESULTS

Project Manager: Craig Hultgren

	Volatile Organic Compounds by EPA 8260C													
Anglyto	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes						
Analyte	Kesuit	Pilliff	Limit	Units			Method Ref.	Notes						
MW17-W (A8D0907-16)			Water		Batch: 8041	255								
Surrogate: 4-Bromofluorobenzene (Surr)		Recovery: 96	% Limits:	80-120 %	1	05/01/18	EPA 8260C							
MW102-W (A8D0907-26)	Matrix: Water				Batch: 8050	336								
Acetone	ND		20.0	ug/L	1	05/01/18	EPA 8260C							
Acrylonitrile	ND		78.0	ug/L	1	05/01/18	EPA 8260C	R-02						
Benzene	1.21		0.200	ug/L	1	05/01/18	EPA 8260C							
Bromobenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C							
Bromochloromethane	ND		1.00	ug/L	1	05/01/18	EPA 8260C							
Bromodichloromethane	ND		1.00	ug/L	1	05/01/18	EPA 8260C							
Bromoform	ND		1.00	ug/L	1	05/01/18	EPA 8260C							
Bromomethane	ND		5.00	ug/L	1	05/01/18	EPA 8260C							
2-Butanone (MEK)	ND		70.0	ug/L	1	05/01/18	EPA 8260C	R-02						
n-Butylbenzene	1.98		1.00	ug/L	1	05/01/18	EPA 8260C	M-0						
sec-Butylbenzene	2.15		1.00	ug/L	1	05/01/18	EPA 8260C							
tert-Butylbenzene	ND		1.00	ug/L	1	05/01/18	EPA 8260C							
Carbon disulfide	ND		10.0	ug/L	1	05/01/18	EPA 8260C							
Carbon tetrachloride	ND		1.00	ug/L	1	05/01/18	EPA 8260C							
Chlorobenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C							
Chloroethane	ND		5.00	ug/L	1	05/01/18	EPA 8260C							
Chloroform	ND		1.00	ug/L	1	05/01/18	EPA 8260C							
Chloromethane	ND		5.00	ug/L	1	05/01/18	EPA 8260C							
2-Chlorotoluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C							
4-Chlorotoluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C							
Dibromochloromethane	ND		1.00	ug/L	1	05/01/18	EPA 8260C							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	05/01/18	EPA 8260C							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	05/01/18	EPA 8260C							
Dibromomethane	ND		1.00	ug/L	1	05/01/18	EPA 8260C							
1,2-Dichlorobenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C							
1,3-Dichlorobenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C							
1,4-Dichlorobenzene	ND		0.500	ug/L	1	05/01/18	EPA 8260C							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID:
A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

Project Manager: Craig Hultgren

Volatile Organic Compounds by EPA 8260C												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW102-W (A8D0907-26)		Matrix:	Water		Batch: 8050	336						
Dichlorodifluoromethane	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
1,1-Dichloroethane	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
1,1-Dichloroethene	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
1,2-Dichloropropane	ND		0.500	ug/L	1	05/01/18	EPA 8260C					
1,3-Dichloropropane	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
2,2-Dichloropropane	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
1,1-Dichloropropene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Ethylbenzene	1.69		0.500	ug/L	1	05/01/18	EPA 8260C					
Hexachlorobutadiene	ND		5.00	ug/L	1	05/01/18	EPA 8260C					
2-Hexanone	ND		10.0	ug/L	1	05/01/18	EPA 8260C					
Isopropylbenzene	3.74		1.00	ug/L	1	05/01/18	EPA 8260C					
4-Isopropyltoluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Methylene chloride	ND		3.00	ug/L	1	05/01/18	EPA 8260C					
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	05/01/18	EPA 8260C					
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
Naphthalene	6.02		2.00	ug/L	1	05/01/18	EPA 8260C					
n-Propylbenzene	7.22		0.500	ug/L	1	05/01/18	EPA 8260C					
Styrene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	05/01/18	EPA 8260C					
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
Toluene	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	05/01/18	EPA 8260C					
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	05/01/18	EPA 8260C					
1,1,1-Trichloroethane	ND		0.400	ug/L	1	05/01/18	EPA 8260C					

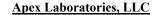
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren


Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260C												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW102-W (A8D0907-26)		Matrix: Water			Batch: 8050	336						
1,1,2-Trichloroethane	ND		0.500	ug/L	1	05/01/18	EPA 8260C					
Trichloroethene (TCE)	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
Trichlorofluoromethane	ND		2.00	ug/L	1	05/01/18	EPA 8260C					
1,2,3-Trichloropropane	ND		1.00	ug/L	1	05/01/18	EPA 8260C					
1,2,4-Trimethylbenzene	22.5		1.00	ug/L	1	05/01/18	EPA 8260C					
1,3,5-Trimethylbenzene	2.47		1.00	ug/L	1	05/01/18	EPA 8260C					
Vinyl chloride	ND		0.400	ug/L	1	05/01/18	EPA 8260C					
m,p-Xylene	6.57		1.00	ug/L	1	05/01/18	EPA 8260C					
o-Xylene	1.58		0.500	ug/L	1	05/01/18	EPA 8260C					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 102 9	% Limits:	80-120 %	1	05/01/18	EPA 8260C					
Toluene-d8 (Surr)		107 9	%	80-120 %	1	05/01/18	EPA 8260C					
4-Bromofluorobenzene (Surr)		105 9	%	80-120 %	1	05/01/18	EPA 8260C					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID:
A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW21-W (A8D0907-19)		Matrix:	Water		Batch: 8050	406		Q-22				
Acenaphthene	0.193		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Acenaphthylene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Anthracene	0.145		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Benz(a)anthracene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Benzo(a)pyrene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Benzo(b)fluoranthene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Benzo(k)fluoranthene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Benzo(g,h,i)perylene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Chrysene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Dibenz(a,h)anthracene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Dibenzofuran	0.103		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Fluoranthene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Fluorene	0.144		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Indeno(1,2,3-cd)pyrene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
1-Methylnaphthalene	1.48		0.187	ug/L	1	05/03/18	EPA 8270D (SIM)					
2-Methylnaphthalene	0.494		0.187	ug/L	1	05/03/18	EPA 8270D (SIM)					
Naphthalene	1.16		0.187	ug/L	1	05/03/18	EPA 8270D (SIM)	M-0				
Phenanthrene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					
Pyrene	ND		0.0935	ug/L	1	05/03/18	EPA 8270D (SIM)					

MW22-W (A8D0907-20)		Matrix:	Matrix: Water		Batch: 805	0406		Q-22
Acenaphthylene	ND		12.3	ug/L	1	05/03/18	EPA 8270D (SIM)	R-02
Anthracene	8.48		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
Benz(a)anthracene	0.284		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	M-05
Benzo(a)pyrene	ND		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
Chrysene	0.243		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	M-05
Dibenz(a,h)anthracene	ND		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	

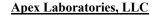
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221


ANALYTICAL SAMPLE RESULTS

	Polyard	omatic Hydro	carbons (PAF	is) by EPA	02/UD 3IN			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
MW22-W (A8D0907-20)		Matrix:	Water		Batch: 8050	0406		Q-2
Dibenzofuran	8.55		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
Fluoranthene	3.20		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
Fluorene	36.7		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
Phenanthrene	36.6		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
Pyrene	4.30		0.0943	ug/L	1	05/03/18	EPA 8270D (SIM)	
MW22-W (A8D0907-20RE1)		Matrix	Water		Batch: 8050)406		Q-2
Acenaphthene	113		9.43	ug/L	100	05/03/18	EPA 8270D (SIM)	
1-Methylnaphthalene	298		18.9	ug/L	100	05/03/18	EPA 8270D (SIM)	
2-Methylnaphthalene	210		18.9	ug/L	100	05/03/18	EPA 8270D (SIM)	
Naphthalene	692		18.9	ug/L	100	05/03/18	EPA 8270D (SIM)	
MW103-W (A8D0907-27)		Matrix	Water		Batch: 8050	343		Q-2
Acenaphthylene	ND		11.6	ug/L	1	05/02/18	EPA 8270D (SIM)	R-0
Anthracene	8.98		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	
Benz(a)anthracene	0.294		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	M-0
Benzo(a)pyrene	ND		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	
Benzo(g,h,i)perylene	ND		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	
Chrysene	0.250		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	M-0
Dibenz(a,h)anthracene	ND		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	
Dibenzofuran	8.15		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	
Fluoranthene	3.25		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	
Fluorene	33.7		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	
Pyrene	4.47		0.0943	ug/L	1	05/02/18	EPA 8270D (SIM)	_
MW103-W (A8D0907-27RE1)		Matrix	Water		Batch: 8050)343		Q-2

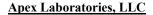
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID: A8D0907 - 050818 0221


ANALYTICAL SAMPLE RESULTS

Project Manager: Craig Hultgren

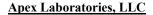
Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM												
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
MW103-W (A8D0907-27RE1)		Matrix:		Batch: 8050	343		Q-22					
Acenaphthene	105		4.72	ug/L	50	05/03/18	EPA 8270D (SIM)					
1-Methylnaphthalene	274		9.43	ug/L	50	05/03/18	EPA 8270D (SIM)					
2-Methylnaphthalene	200		9.43	ug/L	50	05/03/18	EPA 8270D (SIM)					
Naphthalene	681		9.43	ug/L	50	05/03/18	EPA 8270D (SIM)					
Phenanthrene	41.4		4.72	ug/L	50	05/03/18	EPA 8270D (SIM)					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 200.8 (ICPMS)												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW1S-W (A8D0907-01)		Matrix:	Water									
Batch: 8050348												
Lead	ND		0.200	ug/L	1	05/02/18	EPA 200.8					
MW06-W (A8D0907-06)		Matrix:	Water									
Batch: 8050348												
Lead	0.357		0.200	ug/L	1	05/02/18	EPA 200.8					
MW13-W (A8D0907-13)		Matrix: Water										
Batch: 8050348												
Lead	0.446		0.200	ug/L	1	05/02/18	EPA 200.8					
MW22-W (A8D0907-20)		Matrix:	Water									
Batch: 8050348												
Lead	ND		0.200	ug/L	1	05/02/18	EPA 200.8					
MW23-W (A8D0907-21)		Matrix:	Water									
Batch: 8050348												
Lead	ND		0.200	ug/L	1	05/02/18	EPA 200.8					
MW103-W (A8D0907-27)		Matrix:	Matrix: Water									
Batch: 8050348												
Lead	ND		0.200	ug/L	1	05/02/18	EPA 200.8					

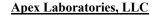
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	r Oil Hyd	rocarbon	s by NW7	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050343 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (8050343-BLK1)		Prepared	: 05/01/18 09:	32 Analyz	ed: 05/01/13	3 21:39						
NWTPH-Dx												
Diesel	ND		182	ug/L	1							
Oil	ND		364	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	very: 105 %	Limits: 50	-150 %	Dilı	ution: 1x					
LCS (8050343-BS1)		Prepared	: 05/01/18 09:	32 Analyz	ed: 05/01/13	3 22:02						
NWTPH-Dx												
Diesel	833		200	ug/L	1	1250		67	58-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 100 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
LCS Dup (8050343-BSD1)		Prepared	: 05/01/18 09:	32 Analyz	ed: 05/01/13	3 22:24						Q-
NWTPH-Dx												
Diesel	941		200	ug/L	1	1250		75	58-115%	12	20%	
Surr: o-Terphenyl (Surr)		Reco	very: 108 %	Limits: 50	-150 %	Dilı	ıtion: 1x					
Batch 8050406 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (8050406-BLK1)		Prepared	: 05/02/18 13:	43 Analyz	ed: 05/02/18	3 22:18						
NWTPH-Dx												
Diesel	ND		182	ug/L	1							
Oil	ND		364	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	very: 102 %	Limits: 50	-150 %	Dilı	ution: 1x					
LCS (8050406-BS1)		Prepared	: 05/02/18 13:	43 Analyz	ed: 05/02/13	3 22:41						
NWTPH-Dx												
Diesel	1250		200	ug/L	1	1250		100	58-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 102 %	Limits: 50	-150 %	Dilı	ution: 1x					
		Prepared	. 05/02/18 13:	43 Analyz	ed: 05/02/13	3 23:04						Q-
LCS Dup (8050406-BSD1)		rrepured	. 00,02,10 15.									
LCS Dup (8050406-BSD1)		Теригеа	. 00,02,10 10.									
	1250		200	ug/L	1	1250		100	58-115%	0.08	20%	

Apex Laboratories

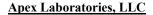
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenichinic

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: <u>Coleman Wenatchee</u>
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	Irocarbor	ns by NW1	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050449 - EPA 3510C (F	uels/Acid	Ext.)					Wat	er				
Blank (8050449-BLK1)		Prepared	: 05/03/18 13:	06 Analyz	ed: 05/03/1	8 20:53						
NWTPH-Dx												
Diesel	ND		182	ug/L	1							
Oil	ND		364	ug/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 96 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS (8050449-BS1)		Prepared	: 05/03/18 13:	06 Analyz	ed: 05/03/1	8 21:16						
NWTPH-Dx												
Diesel	1130		200	ug/L	1	1250		91	58-115%			
Surr: o-Terphenyl (Surr)		Rece	overy: 99 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS Dup (8050449-BSD1)		Prepared	: 05/03/18 13:	06 Analyz	red: 05/03/1	8 21:39						Q-19
NWTPH-Dx												
Diesel	1180		200	ug/L	1	1250		94	58-115%	4	20%	
Surr: o-Terphenyl (Surr)		Rece	overy: 98 %	Limits: 50	0-150 %	Dilı	ution: 1x					

Apex Laboratories

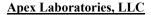
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS


Project Manager: Craig Hultgren

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041230 - EPA 5030B							Wat	er				
Blank (8041230-BLK1)		Prepared	Prepared: 04/30/18 09:08 Analyzed: 04/30/18 10:33									
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 95 % 90 %	Limits: 5	0-150 % 0-150 %	Dili	ution: 1x					
LCS (8041230-BS2)		Prepared	: 04/30/18 09:	08 Analyz	zed: 04/30/1	8 10:05						
NWTPH-Gx (MS)												
Gasoline Range Organics	488		100	ug/L	1	500		98	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 98 %	Limits: 5	0-150 %	Dila	ution: 1x					
1,4-Difluorobenzene (Sur)			96 %	50	0-150 %		"					
Duplicate (8041230-DUP1)		Prepared	: 04/30/18 10:	27 Analyz	zed: 04/30/1	8 14:21						
QC Source Sample: MW1S-W (A	8D0907-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	193		100	ug/L	1		188			3	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 103 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			95 %	50	0-150 %		"					
Duplicate (8041230-DUP2)		Prepared: 04/30/18 10:27 Analyzed: 04/30/18 18:08										
QC Source Sample: MW06-W (AS	8D0907-06)											
NWTPH-Gx (MS)			400-									
Gasoline Range Organics	ND		1000	ug/L	10		623			***	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 107 %	Limits: 5		Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			94 %	50	0-150 %		"					

Apex Laboratories

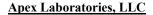
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041255 - EPA 5030B							Wat	er				
Blank (8041255-BLK1)	Prepared: 04/30/18 15:23 Analyzed: 04/30/18 17:28											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 101 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	5	0-150 %		"					
LCS (8041255-BS2)		Prepared:	04/30/18 15:	23 Analy	zed: 04/30/1	8 17:01						
NWTPH-Gx (MS)												
Gasoline Range Organics	466		100	ug/L	1	500		93	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recovery: 107 %		Limits: 50-150 %		Dilution: 1x						
1,4-Difluorobenzene (Sur)			107 %	5	0-150 %		"					
Duplicate (8041255-DUP1)		Prepared:	04/30/18 15:	23 Analy	zed: 05/01/1	8 02:54						
QC Source Sample: MW13-W (A	8D0907-13)											
NWTPH-Gx (MS)												
Gasoline Range Organics	39000		1000	ug/L	10		40900			5	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 113 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	5	0-150 %		"					

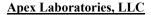
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren


Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range H	lydrocarbo	ons (Benz	zene thro	ugh Naph	thalene) l	by NWTF	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041257 - EPA 5030B							Wate	er				
Blank (8041257-BLK1)		Prepared	04/30/18 16:	:15 Analyz	zed: 04/30/1	8 18:04						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recov	very: 107 % 110 %	Limits: 50	0-150 % 0-150 %	Dili	ution: Ix "					
LCS (8041257-BS2)		Prepared:	04/30/18 16:	:15 Analyz	zed: 04/30/1	8 17:09						
NWTPH-Gx (MS)												
Gasoline Range Organics	498		100	ug/L	1	500		100	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 103 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			106 %	5(0-150 %		"					
Duplicate (8041257-DUP1)		Prepared	04/30/18 17:	:58 Analyz	zed: 04/30/1	8 21:13						
QC Source Sample: Non-SDG (A8	3D0780-16)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		5000	ug/L	50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 107 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			110 %	5(0-150 %		"					
Duplicate (8041257-DUP2)		Prepared	04/30/18 17:	:58 Analyz	zed: 05/01/1	8 01:43						
QC Source Sample: RWO1-W (A	8D0907-25)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 110 %	Limits: 5	0-150 %	Dill	ution: 1x					
1,4-Difluorobenzene (Sur)			111 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	lydrocarbo	ns (Benz	zene thro	ugh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050333 - EPA 5030B							Wat	er				
Blank (8050333-BLK1)		Prepared	: 05/01/18 09:	12 Analyz	zed: 05/01/1	8 11:50						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 99 %	Limits: 50		Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	50	0-150 %		"					
LCS (8050333-BS3)		Prepared	: 05/01/18 09:	12 Analyz	zed: 05/01/1	8 11:23						
NWTPH-Gx (MS)												
Gasoline Range Organics	454		100	ug/L	1	500		91	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 103 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			107 %	5(0-150 %		"					
Duplicate (8050333-DUP1)		Prepared	: 05/01/18 11:	45 Analyz	zed: 05/01/18	8 12:44						
QC Source Sample: Non-SDG (A8	3D0931-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		1000	ug/L	10		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Rece	overy: 98 %	Limits: 5	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			107 %	50	0-150 %		"					

Apex Laboratories

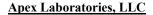
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID:
A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range I	Hydrocarbo	ons (Benz	zene thro	ugh Naph	thalene) b	y NWTF	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wate	ər				
Blank (8050336-BLK1)		Prepared	: 05/01/18 10:	:22 Analyz	zed: 05/01/1	8 11:47						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 103 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			94 %	5(0-150 %		"					
LCS (8050336-BS2)		Prepared	: 05/01/18 10:	:22 Analyz	zed: 05/01/1	8 11:18						
NWTPH-Gx (MS)												
Gasoline Range Organics	493		100	ug/L	1	500		99	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 106 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			100 %	50	0-150 %		"					
Duplicate (8050336-DUP1)		Prepared	: 05/01/18 11:	07 Analyz	zed: 05/01/1	8 15:06						
QC Source Sample: MW23-W (A	8D0907-21)											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Rec	overy: 98 %	Limits: 5	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			92 %	50	0-150 %		"					
Duplicate (8050336-DUP2)		Prepared	: 05/01/18 11:	07 Analyz	zed: 05/01/1	8 20:46						
QC Source Sample: Non-SDG (A8	3D0344-23)											
NWTPH-Gx (MS)												
Gasoline Range Organics	2550		100	ug/L	1		2740			7	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 99 %	Limits: 50	0-150 %	Dili	ution: 1x	<u> </u>			<u> </u>	<u> </u>
1,4-Difluorobenzene (Sur)			78 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren


Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range F	lydrocarbo	ns (Benz	zene thro	ugh Naph	thalene) l	y NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050380 - EPA 5030B							Wat	er				
Blank (8050380-BLK1)		Prepared	05/02/18 09:	54 Analyz	zed: 05/02/1	8 11:19						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 105 %	Limits: 50	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			92 %	50	0-150 %		"					
LCS (8050380-BS2)		Prepared	05/02/18 09:	54 Analyz	zed: 05/02/1	8 10:50						
NWTPH-Gx (MS)												
Gasoline Range Organics	482		100	ug/L	1	500		96	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 102 %	Limits: 50	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			97 %	50	0-150 %		"					
Duplicate (8050380-DUP1)		Prepared	05/02/18 11:	08 Analyz	zed: 05/02/1	8 21:45						
QC Source Sample: Non-SDG (A8	8E0053-03)											
NWTPH-Gx (MS)												
Gasoline Range Organics	118000		10000	ug/L	100		121000			3	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 102 %	Limits: 50	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			91 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041230 - EPA 5030B							Wat	er				
Blank (8041230-BLK1)		Prepared	: 04/30/18 09:	08 Analyz	ed: 04/30/18	3 10:33						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80	-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	-120 %		"					
LCS (8041230-BS1)		Prepared	: 04/30/18 09:	08 Analyz	ed: 04/30/18	3 09:37						
EPA 8260C		<u>-</u>										
Benzene	19.7		0.200	ug/L	1	20.0		98	80-120%			
Toluene	19.1		1.00	ug/L	1	20.0		95	80-120%			
Ethylbenzene	20.1		0.500	ug/L	1	20.0		100	80-120%			
Xylenes, total	63.8		1.50	ug/L	1	60.0		106	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
Duplicate (8041230-DUP1)		Prepared	: 04/30/18 10:	27 Analyz	ed: 04/30/18	3 14:21						
QC Source Sample: MW1S-W (A8	D0907-01)											
EPA 8260C	0.44.4		0.200	ď			0.400				200/	
Benzene	0.414		0.200	ug/L	1		0.420			1	30%	
Toluene	ND		1.00	ug/L	1		ND			0.2	30%	
Ethylbenzene	5.78		0.500	ug/L	1		5.80			0.3	30%	
Xylenes, total	9.43		1.50	ug/L	1		9.48			0.5	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80		Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %		-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %							
Duplicate (8041230-DUP2)		Prepared	: 04/30/18 10:	27 Analyz	ed: 04/30/18	3 18:08						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

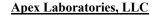
Lisa Domenighini, Client Services Manager

Awa & Smeinghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260C	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041230 - EPA 5030B							Wat	er				
Duplicate (8041230-DUP2)		Prepared	: 04/30/18 10:	27 Analyz	zed: 04/30/1	8 18:08						
QC Source Sample: MW06-W (A8	BD0907-06)											
Benzene	ND		2.00	ug/L	10		ND				30%	
Toluene	ND		10.0	ug/L	10		ND				30%	
Ethylbenzene	ND		5.00	ug/L	10		ND				30%	
Xylenes, total	ND		15.0	ug/L	10		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 100 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	0-120 %		"					
Matrix Spike (8041230-MS1)		Prepared	: 04/30/18 10:	27 Analyz	zed: 04/30/1	3 19:04						
QC Source Sample: MW09-W (A8	BD0907-09)											
EPA 8260C												
Benzene	210		2.00	ug/L	10	200	2.49	104	79-120%			
Toluene	200		10.0	ug/L	10	200	ND	100	80-121%			
Ethylbenzene	228		5.00	ug/L	10	200	9.99	109	79-121%			
Xylenes, total	717		15.0	ug/L	10	600	16.6	117	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

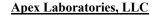
Doas Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID:
A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041255 - EPA 5030B							Wat	er				
Blank (8041255-BLK1)		Prepared	: 04/30/18 15:	23 Analyz	ed: 04/30/1	8 17:28						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	1-120 %		"					
LCS (8041255-BS1)		Prepared	: 04/30/18 15:	23 Analyz	ed: 04/30/1	8 16:33						
EPA 8260C												
Benzene	20.6		0.200	ug/L	1	20.0		103	80-120%			
Toluene	18.7		1.00	ug/L	1	20.0		94	80-120%			
Ethylbenzene	19.3		0.500	ug/L	1	20.0		97	80-120%			
Xylenes, total	58.0		1.50	ug/L	1	60.0		97	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80)-120 %		"					
Duplicate (8041255-DUP1)		Prepared	: 04/30/18 15:	23 Analyz	red: 05/01/1	8 02:54						
QC Source Sample: MW13-W (A8	D0907-13)											
EPA 8260C	1.420		2.00	/T	10		1500			-	200/	
Benzene	1430		2.00	ug/L	10		1500			5	30%	
Toluene	3370		10.0	ug/L	10		3430			2	30%	
Ethylbenzene Vylanas, total	608		5.00	ug/L	10		627			3 2	30% 30%	
Xylenes, total	3700		15.0	ug/L	10		3780			2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80		Dilı	ution: 1x					
Toluene-d8 (Surr)			97 % 93 %		0-120 % 0-120 %		,,					
4-Bromofluorobenzene (Surr)			95 %	80)-120 %							
Matrix Spike (8041255-MS1)		Prepared	: 04/30/18 15:	23 Analyz	ed: 05/01/1	8 03:48						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gisa A Jamenighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			ВТЕХ	Compou	ınds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041255 - EPA 5030B							Wat	er				
Matrix Spike (8041255-MS1)		Prepared	: 04/30/18 15:2	23 Analyz	ed: 05/01/1	8 03:48						
QC Source Sample: MW21-W (A	8D0907-19)											
Benzene	22.3		0.200	ug/L	1	20.0	0.204	110	79-120%			
Toluene	19.6		1.00	ug/L	1	20.0	0.846	94	80-121%			
Ethylbenzene	21.0		0.500	ug/L	1	20.0	1.07	100	79-121%			
Xylenes, total	63.6		1.50	ug/L	1	60.0	2.82	101	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 108 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041257 - EPA 5030B							Wat	er				
Blank (8041257-BLK1)		Prepared	: 04/30/18 16:	15 Analyz	ed: 04/30/1	8 18:04						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80)-120 %		"					
LCS (8041257-BS3)		Prepared	: 04/30/18 16:	15 Analyz	ed: 04/30/1	8 17:37						
EPA 8260C		1										
Benzene	19.0		0.200	ug/L	1	20.0		95	80-120%			
Toluene	17.6		1.00	ug/L	1	20.0		88	80-120%			
Ethylbenzene	17.8		0.500	ug/L	1	20.0		89	80-120%			
Xylenes, total	52.0		1.50	ug/L	1	60.0		87	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 105 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	1-120 %		"					
Duplicate (8041257-DUP1)		Prepared	: 04/30/18 17:	58 Analyz	ed: 04/30/1	8 21:13						
QC Source Sample: Non-SDG (A8	D0780-16)			-								
EPA 8260C												
Benzene	13.8		10.0	ug/L	50		13.2			4	30%	
Toluene	ND		50.0	ug/L	50		49.0			***	30%	
Ethylbenzene	ND		25.0	ug/L	50		ND				30%	
Xylenes, total	ND		75.0	ug/L	50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	1-120 %		"					
Duplicate (8041257-DUP2)			: 04/30/18 17:									

EPA 8260C

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goad Zmenghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041257 - EPA 5030B							Wat	er				
Duplicate (8041257-DUP2)		Prepared	: 04/30/18 17:	58 Analyz	ed: 05/01/1	8 01:43						
QC Source Sample: RWO1-W (A	8D0907-25)											
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 111 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80)-120 %		"					
Matrix Spike (8041257-MS1)		Prepared	: 04/30/18 17:	58 Analyz	ed: 04/30/1	8 22:34						
QC Source Sample: Non-SDG (A8	D0780-23)											
EPA 8260C												
Benzene	185		2.00	ug/L	10	200	ND	93	79-120%			
Toluene	179		10.0	ug/L	10	200	ND	90	80-121%			
Ethylbenzene	183		5.00	ug/L	10	200	ND	91	79-121%			
Xylenes, total	529		15.0	ug/L	10	600	ND	88	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 102 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			96 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

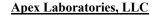
<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS


Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050333 - EPA 5030B							Wat	er				
Blank (8050333-BLK1)		Prepared	: 05/01/18 09:	12 Analyz	ed: 05/01/1	8 11:50						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					
LCS (8050333-BS2)		Prepared	: 05/01/18 09:	12 Analyz	ed: 05/01/1	8 10:56						
EPA 8260C		*										
Benzene	21.9		0.200	ug/L	1	20.0		109	80-120%			
Toluene	19.8		1.00	ug/L	1	20.0		99	80-120%			
Ethylbenzene	20.5		0.500	ug/L	1	20.0		103	80-120%			
Xylenes, total	61.3		1.50	ug/L	1	60.0		102	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 109 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
Duplicate (8050333-DUP1)		Prepared	: 05/01/18 11:	45 Analyz	ed: 05/01/13	8 12:44						
QC Source Sample: Non-SDG (A8)	D0931-01)											
EPA 8260C			• • •	~							2021	
Benzene	ND		2.00	ug/L	10		ND				30%	
Toluene	ND		10.0	ug/L	10		ND				30%	
Ethylbenzene	ND		5.00	ug/L	10		ND				30%	
Xylenes, total	ND		15.0	ug/L	10		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 110 %	Limits: 80		Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %		-120 %							
4-Bromofluorobenzene (Surr)			94 %	80	-120 %		"					
Matrix Spike (8050333-MS1)		Prenared	: 05/01/18 11:	45 Analyz	ed: 05/01/13	8 18:08						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

Awa & Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260C	:					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050333 - EPA 5030B							Wat	er				
Matrix Spike (8050333-MS1)		Prepared	: 05/01/18 11:4	45 Analyz	ed: 05/01/1	8 18:08						
QC Source Sample: Non-SDG (A8	E0015-01)											
Benzene	21.7		0.200	ug/L	1	20.0	ND	109	79-120%			
Toluene	19.1		1.00	ug/L	1	20.0	ND	95	80-121%			
Ethylbenzene	19.4		0.500	ug/L	1	20.0	ND	97	79-121%			
Xylenes, total	57.2		1.50	ug/L	1	60.0	ND	95	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 108 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			99 %	80	-120 %		"					

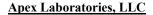
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: 2017-074
Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wat	er				
Blank (8050336-BLK1)		Prepared	: 05/01/18 10:	22 Analyz	ed: 05/01/1	8 11:47						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			105 %	80	-120 %		"					
LCS (8050336-BS1)		Prepared	: 05/01/18 10:	22 Analyz	ed: 05/01/1	8 10:50						
EPA 8260C												
Benzene	19.9		0.200	ug/L	1	20.0		100	80-120%			
Toluene	19.8		1.00	ug/L	1	20.0		99	80-120%			
Ethylbenzene	21.2		0.500	ug/L	1	20.0		106	80-120%			
Xylenes, total	67.1		1.50	ug/L	1	60.0		112	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 99 %	Limits: 80)-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	-120 %		"					
Duplicate (8050336-DUP1)		Prepared	: 05/01/18 11:	07 Analyz	ed: 05/01/13	3 15:06						
QC Source Sample: MW23-W (A8	D0907-21)											
EPA 8260C	NE		0.200	~			MD				200/	
Benzene	ND		0.200	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80		Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %		-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %							
Duplicate (8050336-DUP2)		Prepared	: 05/01/18 11:	07 Analyz	ed: 05/01/18	3 20:46						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260C	;					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wat	er				
Duplicate (8050336-DUP2)		Prepared	: 05/01/18 11:	07 Analyz	ed: 05/01/18	3 20:46						
QC Source Sample: Non-SDG (A8	D0344-23)											
Benzene	58.0		0.200	ug/L	1		61.0			5	30%	
Toluene	53.7		1.00	ug/L	1		58.8			9	30%	
Ethylbenzene	66.3		0.500	ug/L	1		73.6			10	30%	
Xylenes, total	82.5		1.50	ug/L	1		90.9			10	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80)-120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80	0-120 %		"					
Matrix Spike (8050336-MS1)		Prepared	: 05/01/18 11:	07 Analyz	ed: 05/01/18	3 18:53						
QC Source Sample: Non-SDG (A8	D0910-01)											
EPA 8260C												
Benzene	21.8		0.200	ug/L	1	20.0	ND	109	79-120%			
Toluene	20.7		1.00	ug/L	1	20.0	ND	103	80-121%			
Ethylbenzene	21.4		0.500	ug/L	1	20.0	ND	107	79-121%			
Xylenes, total	66.7		1.50	ug/L	1	60.0	ND	111	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	0-120 %		"					

Apex Laboratories

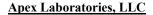
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050380 - EPA 5030B							Wat	er				
Blank (8050380-BLK1)		Prepared	: 05/02/18 09:	54 Analyz	ed: 05/02/1	8 11:19						
EPA 8260C												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	1-120 %		"					
LCS (8050380-BS1)		Prepared	: 05/02/18 09:	54 Analyz	red: 05/02/1	8 10:22						
EPA 8260C												
Benzene	17.9		0.200	ug/L	1	20.0		90	80-120%			
Toluene	17.4		1.00	ug/L	1	20.0		87	80-120%			
Ethylbenzene	17.7		0.500	ug/L	1	20.0		88	80-120%			
Xylenes, total	55.6		1.50	ug/L	1	60.0		93	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 98 %	Limits: 80)-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	120 %		"					
Duplicate (8050380-DUP1)		Prepared	: 05/02/18 11:	08 Analyz	ed: 05/02/18	3 21:45						
QC Source Sample: Non-SDG (A8)	E0053-03)											
EPA 8260C			20.0	~	100					•	200/	
Benzene	14700		20.0	ug/L	100		15100			2	30%	
Toluene	4940		100	ug/L	100		5040			2	30%	
Ethylbenzene	982		50.0	ug/L	100		1030			5	30%	
Xylenes, total	3060		150	ug/L	100		3140			2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 95 %	Limits: 80		Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %		120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80)-120 %							
Matrix Spike (8050380-MS1)		Prepared	: 05/02/18 11:	08 Analyz	ed: 05/02/18	3 16:32						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jusa A Zemenighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260C						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050380 - EPA 5030B							Wat	er				
Matrix Spike (8050380-MS1)		Prepared	: 05/02/18 11:0	08 Analyz	ed: 05/02/18	8 16:32						
QC Source Sample: Non-SDG (A8	E0058-01)											
Benzene	19.9		0.200	ug/L	1	20.0	ND	99	79-120%			
Toluene	19.9		1.00	ug/L	1	20.0	ND	99	80-121%			
Ethylbenzene	21.5		0.500	ug/L	1	20.0	ND	107	79-121%			
Xylenes, total	68.9		1.50	ug/L	1	60.0	ND	115	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 99 %	Limits: 80)-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					

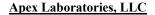
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Number: 2017-074

Project Manager: Craig Hultgren


Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

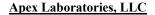
			Volatile Org	janic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
atch 8041230 - EPA 5030B							Wat	er				
lank (8041230-BLK1)		Prepared	: 04/30/18 09:0	08 Analyz	ed: 04/30/18	8 10:33						
PA 8260C												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L ug/L	1							
Dichlorodifluoromethane	ND		1.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L ug/L	1							
cis-1,2-Dichloroethene	ND ND		0.400	ug/L ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Satch 8041230 - EPA 5030B							Wat	er				
Blank (8041230-BLK1)		Prepared	: 04/30/18 09:0	08 Analyz	ed: 04/30/18	8 10:33						
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
trans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
4-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		3.00	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether	ND		1.00	ug/L	1							
(MTBE)												
Naphthalene	ND		2.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L	1							
Trichlorofluoromethane	ND		2.00	ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.400	ug/L	1							

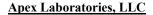
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID:
A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA	8260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041230 - EPA 5030B							Wat	er				
Blank (8041230-BLK1)		Prepared	: 04/30/18 09:	08 Analyz	ed: 04/30/1	8 10:33						
m,p-Xylene	ND		1.00	ug/L	1							
o-Xylene	ND		0.500	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80)-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	-120 %		"					
LCS (8041230-BS1)		Prepared	: 04/30/18 09:	08 Analyz	ed: 04/30/1	8 09:37						
EPA 8260C												
Acetone	35.1		20.0	ug/L	1	40.0		88	80-120%			
Acrylonitrile	19.5		2.00	ug/L	1	20.0		98	80-120%			
Benzene	19.7		0.200	ug/L	1	20.0		98	80-120%			
Bromobenzene	19.9		0.500	ug/L	1	20.0		100	80-120%			
Bromochloromethane	18.1		1.00	ug/L	1	20.0		90	80-120%			
Bromodichloromethane	19.5		1.00	ug/L	1	20.0		97	80-120%			
Bromoform	20.5		1.00	ug/L	1	20.0		102	80-120%			
Bromomethane	15.0		5.00	ug/L	1	20.0		75	80-120%			E-05, Q-5
2-Butanone (MEK)	38.7		10.0	ug/L	1	40.0		97	80-120%			
n-Butylbenzene	22.5		1.00	ug/L	1	20.0		112	80-120%			
sec-Butylbenzene	22.0		1.00	ug/L	1	20.0		110	80-120%			
tert-Butylbenzene	21.3		1.00	ug/L	1	20.0		107	80-120%			
Carbon disulfide	19.9		10.0	ug/L	1	20.0		100	80-120%			
Carbon tetrachloride	19.0		1.00	ug/L	1	20.0		95	80-120%			
Chlorobenzene	19.8		0.500	ug/L	1	20.0		99	80-120%			
Chloroethane	21.0		5.00	ug/L	1	20.0		105	80-120%			
Chloroform	19.2		1.00	ug/L	1	20.0		96	80-120%			
Chloromethane	14.9		5.00	ug/L	1	20.0		75	80-120%			Q-5
2-Chlorotoluene	21.3		1.00	ug/L	1	20.0			80-120%			
4-Chlorotoluene	20.9		1.00	ug/L	1	20.0		105	80-120%			
Dibromochloromethane	21.3		1.00	ug/L	1	20.0			80-120%			
1,2-Dibromo-3-chloropropane	20.8		5.00	ug/L	1	20.0			80-120%			
1,2-Dibromoethane (EDB)	20.7		0.500	ug/L	1	20.0			80-120%			
Dibromomethane	18.9		1.00	ug/L	1	20.0			80-120%			
1,2-Dichlorobenzene	20.4		0.500	ug/L	1	20.0			80-120%			

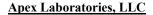
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

 Project Number:
 2017-074
 Report ID:


 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Satch 8041230 - EPA 5030B							Wat	er				
CS (8041230-BS1)		Prepared	: 04/30/18 09:0	08 Analyz	ed: 04/30/1	8 09:37						
1,3-Dichlorobenzene	20.8		0.500	ug/L	1	20.0		104	80-120%			
1,4-Dichlorobenzene	19.7		0.500	ug/L	1	20.0		99	80-120%			
Dichlorodifluoromethane	17.2		1.00	ug/L	1	20.0		86	80-120%			
1,1-Dichloroethane	19.0		0.400	ug/L	1	20.0		95	80-120%			
1,2-Dichloroethane (EDC)	18.3		0.400	ug/L	1	20.0		91	80-120%			
1,1-Dichloroethene	19.4		0.400	ug/L	1	20.0		97	80-120%			
cis-1,2-Dichloroethene	19.7		0.400	ug/L	1	20.0		99	80-120%			
trans-1,2-Dichloroethene	19.6		0.400	ug/L	1	20.0		98	80-120%			
1,2-Dichloropropane	19.3		0.500	ug/L	1	20.0		96	80-120%			
1,3-Dichloropropane	19.8		1.00	ug/L	1	20.0		99	80-120%			
2,2-Dichloropropane	20.7		1.00	ug/L	1	20.0		104	80-120%			
1,1-Dichloropropene	19.8		1.00	ug/L	1	20.0		99	80-120%			
cis-1,3-Dichloropropene	21.8		1.00	ug/L	1	20.0		109	80-120%			
trans-1,3-Dichloropropene	21.9		1.00	ug/L	1	20.0		110	80-120%			
Ethylbenzene	20.1		0.500	ug/L	1	20.0		100	80-120%			
Hexachlorobutadiene	20.2		5.00	ug/L	1	20.0		101	80-120%			
2-Hexanone	41.1		10.0	ug/L	1	40.0		103	80-120%			
Isopropylbenzene	22.1		1.00	ug/L	1	20.0		111	80-120%			
4-Isopropyltoluene	22.9		1.00	ug/L	1	20.0		114	80-120%			
Methylene chloride	18.5		3.00	ug/L	1	20.0		93	80-120%			
4-Methyl-2-pentanone (MiBK)	40.9		10.0	ug/L	1	40.0		102	80-120%			
Methyl tert-butyl ether	20.1		1.00	ug/L	1	20.0		101	80-120%			
(MTBE) Naphthalene	20.7		2.00	ug/L	1	20.0		104	80-120%			
n-Propylbenzene	20.7		0.500	ug/L ug/L	1	20.0		104	80-120% 80-120%			
Styrene	22.9		1.00	-	1	20.0		103	80-120%			
1,1,1,2-Tetrachloroethane	21.2		0.400	ug/L ug/L	1	20.0		106	80-120%			
1,1,2-Tetrachloroethane	20.4		0.400	ug/L ug/L	1	20.0		100	80-120%			
			0.500	_								
Tetrachloroethene (PCE)	19.8			ug/L	1	20.0		99	80-120%			
Toluene	19.1		1.00	ug/L	1	20.0		95	80-120%			
1,2,3-Trichlorobenzene	19.8		2.00	ug/L	1	20.0		99	80-120%			
1,2,4-Trichlorobenzene	21.3		2.00	ug/L	1	20.0		106	80-120%			
1,1,1-Trichloroethane	19.2		0.400	ug/L	1	20.0		96	80-120%			

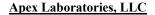
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Number: 2017-074

Project Manager: Craig Hultgren


Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	Janne Col	inpounds	<i>w</i> y =	5200C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Satch 8041230 - EPA 5030B							Wate	er				
CS (8041230-BS1)		Prepared	: 04/30/18 09:0	08 Analyz	ed: 04/30/18	8 09:37						
1,1,2-Trichloroethane	19.6		0.500	ug/L	1	20.0		98	80-120%			
Trichloroethene (TCE)	20.0		0.400	ug/L	1	20.0		100	80-120%			
Trichlorofluoromethane	18.7		2.00	ug/L	1	20.0		94	80-120%			
1,2,3-Trichloropropane	19.4		1.00	ug/L	1	20.0		97	80-120%			
1,2,4-Trimethylbenzene	22.0		1.00	ug/L	1	20.0		110	80-120%			
1,3,5-Trimethylbenzene	21.5		1.00	ug/L	1	20.0		108	80-120%			
Vinyl chloride	19.5		0.400	ug/L	1	20.0		97	80-120%			
m,p-Xylene	42.2		1.00	ug/L	1	40.0		106	80-120%			
o-Xylene	21.6		0.500	ug/L	1	20.0		108	80-120%			
urr: 1,4-Difluorobenzene (Surr)		Recov	very: 100 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					
QC Source Sample: MW1S-W (A) PA 8260C	<u>8D0907-01)</u>											
Acetone	ND		20.0	ug/L	1		ND				30%	
Acrylonitrile	ND		20.0									
			2.00	110/I	1							
•			2.00	ug/L	1		ND				30%	
Benzene	0.414		0.200	ug/L	1		ND 0.420			1	30% 30%	
Benzene Bromobenzene	0.414 ND		0.200 0.500	ug/L ug/L	1 1		ND 0.420 ND			1	30% 30% 30%	
Benzene Bromobenzene Bromochloromethane	0.414 ND ND	 	0.200 0.500 1.00	ug/L ug/L ug/L	1 1 1	 	ND 0.420 ND ND	 	 	1 	30% 30% 30% 30%	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane	0.414 ND ND ND	 	0.200 0.500 1.00 1.00	ug/L ug/L ug/L ug/L	1 1 1	 	ND 0.420 ND ND ND	 		1 	30% 30% 30% 30% 30%	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform	0.414 ND ND ND ND	 	0.200 0.500 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L	1 1 1 1	 	ND 0.420 ND ND ND ND ND	 	 	1 	30% 30% 30% 30% 30% 30%	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	0.414 ND ND ND ND ND	 	0.200 0.500 1.00 1.00 1.00 5.00	ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1	 	ND 0.420 ND ND ND ND ND ND	 		1 	30% 30% 30% 30% 30% 30% 30%	
Benzene Bromobenzene Bromochloromethane Bromoform Bromomethane 2-Butanone (MEK)	0.414 ND ND ND ND ND ND ND ND	 	0.200 0.500 1.00 1.00 1.00 5.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1	 	ND 0.420 ND	 	 	1 	30% 30% 30% 30% 30% 30% 30% 30%	
Benzene Bromobenzene Bromochloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	0.414 ND	 	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1	 	ND 0.420 ND		 	 1 	30% 30% 30% 30% 30% 30% 30% 30%	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene	0.414 ND	 	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1		ND 0.420 ND			 1 	30% 30% 30% 30% 30% 30% 30% 30% 30%	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene	0.414 ND	 	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1	 	ND 0.420 ND			1	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	0.414 ND	 	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1	 	ND 0.420 ND			1 ***	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride	0.414 ND	 	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00 1.00 1.00 1.00	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1 1	 	ND 0.420 ND			1 ***	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide	0.414 ND	 	0.200 0.500 1.00 1.00 1.00 5.00 10.0 1.00 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1 1 1 1 1 1 1 1 1 1	 	ND 0.420 ND			1 ***	30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Craig Hultgren

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
satch 8041230 - EPA 5030B							Wat	er				
Ouplicate (8041230-DUP1)		Prepared	: 04/30/18 10:2	27 Analyz	zed: 04/30/1	8 14:21						
QC Source Sample: MW1S-W (A8	8D0907-01)											
Chloromethane	ND		5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
4-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND		1.00	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1		ND				30%	
Dibromomethane	ND		1.00	ug/L	1		ND				30%	
1,2-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
1,3-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
1,4-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND		1.00	ug/L	1		ND				30%	
1,1-Dichloroethane	ND		0.400	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1		ND				30%	
1,1-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
1,2-Dichloropropane	ND		0.500	ug/L	1		ND				30%	
1,3-Dichloropropane	ND		1.00	ug/L	1		ND				30%	
2,2-Dichloropropane	ND		1.00	ug/L	1		ND				30%	
1,1-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	5.78		0.500	ug/L	1		5.80			0.3	30%	
Hexachlorobutadiene	ND		5.00	ug/L	1		ND				30%	
2-Hexanone	ND		10.0	ug/L	1		ND				30%	
Isopropylbenzene	ND		1.00	ug/L	1		0.716			***	30%	
4-Isopropyltoluene	ND		1.00	ug/L	1		ND				30%	
Methylene chloride	ND		3.00	ug/L	1		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	1.14		1.00	ug/L	1		1.09			4	30%	
Naphthalene	ND		2.00	ug/L	1		1.90			***	30%	

Apex Laboratories

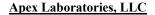
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS


Project Manager: Craig Hultgren

			Volatile Org	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041230 - EPA 5030B							Wate	er				
Duplicate (8041230-DUP1)		Prepared	: 04/30/18 10:2	27 Analyz	ed: 04/30/18	8 14:21						
QC Source Sample: MW1S-W (A	8D0907-01)											
n-Propylbenzene	1.24		0.500	ug/L	1		1.28			4	30%	
Styrene	ND		1.00	ug/L	1		ND				30%	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1		ND				30%	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND		0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND		0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND		0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND		2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND		1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	8.13		1.00	ug/L	1		8.19			0.7	30%	
1,3,5-Trimethylbenzene	1.30		1.00	ug/L	1		1.30			0.5	30%	
Vinyl chloride	ND		0.400	ug/L	1		ND				30%	
m,p-Xylene	9.12		1.00	ug/L	1		9.18			0.7	30%	
o-Xylene	ND		0.500	ug/L	1		0.297			***	30%	
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 99 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	1-120 %		"					
Duplicate (8041230-DUP2)		Prepared	: 04/30/18 10:2	27 Analyz	ed: 04/30/18	3 18:08						
OC Source Sample: MW06-W (AS	8D0907-06)											
EPA 8260C												
Acetone	ND		200	ug/L	10		ND				30%	
Acrylonitrile	ND		20.0	ug/L	10		ND				30%	
Benzene	ND		2.00	ug/L	10		ND				30%	
Bromobenzene	ND		5.00	ug/L	10		ND				30%	
Bromochloromethane	ND		10.0	ug/L	10		ND				30%	
Bromodichloromethane	ND		10.0	ug/L	10		ND				30%	
Bromoform	ND		10.0	ug/L	10		ND				30%	

Apex Laboratories

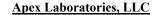
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 8041230 - EPA 5030B							Wat	er				
Duplicate (8041230-DUP2)		Prepared	: 04/30/18 10:2	27 Analyz	zed: 04/30/1	8 18:08						
QC Source Sample: MW06-W (A8	8D0907-06)											
Bromomethane	ND		50.0	ug/L	10		ND				30%	
2-Butanone (MEK)	ND		100	ug/L	10		ND				30%	
n-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
sec-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
tert-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
Carbon disulfide	ND		100	ug/L	10		ND				30%	
Carbon tetrachloride	ND		10.0	ug/L	10		ND				30%	
Chlorobenzene	ND		5.00	ug/L	10		ND				30%	
Chloroethane	ND		50.0	ug/L	10		ND				30%	
Chloroform	ND		10.0	ug/L	10		ND				30%	
Chloromethane	ND		50.0	ug/L	10		ND				30%	
2-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
4-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
Dibromochloromethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dibromo-3-chloropropane	ND		50.0	ug/L	10		ND				30%	
1,2-Dibromoethane (EDB)	ND		5.00	ug/L	10		ND				30%	
Dibromomethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
1,3-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
1,4-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
Dichlorodifluoromethane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloroethane	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloroethane (EDC)	ND		4.00	ug/L	10		ND				30%	
1,1-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
cis-1,2-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
trans-1,2-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloropropane	ND		5.00	ug/L	10		ND				30%	
1,3-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
2,2-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
cis-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
trans-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smeinghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: <u>Coleman Wenatchee</u>
Project Number: **2017-074**

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Craig Hultgren

		Detection	Reporting			Spike	Source		% REC		RPD	
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	% REC Limits	RPD	Limit	Notes
Batch 8041230 - EPA 5030B							Wat	er				
Ouplicate (8041230-DUP2)		Prepared	04/30/18 10:	27 Analyz	ed: 04/30/18	8 18:08						
QC Source Sample: MW06-W (A8	D0907-06)											
Ethylbenzene	ND		5.00	ug/L	10		ND				30%	
Hexachlorobutadiene	ND		50.0	ug/L	10		ND				30%	
2-Hexanone	ND		100	ug/L	10		ND				30%	
Isopropylbenzene	ND		10.0	ug/L	10		ND				30%	
4-Isopropyltoluene	ND		10.0	ug/L	10		ND				30%	
Methylene chloride	ND		30.0	ug/L	10		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		100	ug/L	10		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		10.0	ug/L	10		ND				30%	
Naphthalene	ND		20.0	ug/L	10		ND				30%	
n-Propylbenzene	ND		5.00	ug/L	10		ND				30%	
Styrene	ND		10.0	ug/L	10		ND				30%	
1,1,1,2-Tetrachloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2,2-Tetrachloroethane	ND		5.00	ug/L	10		ND				30%	
Tetrachloroethene (PCE)	ND		4.00	ug/L	10		ND				30%	
Toluene	ND		10.0	ug/L	10		ND				30%	
1,2,3-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,2,4-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,1,1-Trichloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2-Trichloroethane	ND		5.00	ug/L	10		ND				30%	
Trichloroethene (TCE)	ND		4.00	ug/L	10		ND				30%	
Trichlorofluoromethane	ND		20.0	ug/L	10		ND				30%	
1,2,3-Trichloropropane	ND		10.0	ug/L	10		ND				30%	
1,2,4-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
1,3,5-Trimethylbenzene	ND		10.0	ug/L	10		ND				30%	
Vinyl chloride	ND		4.00	ug/L	10		ND				30%	
m,p-Xylene	ND		10.0	ug/L	10		ND				30%	
o-Xylene	ND		5.00	ug/L	10		ND				30%	
ırr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goast Jamenghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Craig Hultgren

			Volatile Org	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041230 - EPA 5030B							Wat	er				
Matrix Spike (8041230-MS1)		Prepared	: 04/30/18 10::	27 Analyz	zed: 04/30/1	8 19:04						
QC Source Sample: MW09-W (A	8D0907-09)											
EPA 8260C												
Acetone	422		200	ug/L	10	400	ND	105	39-160%			
Acrylonitrile	188		20.0	ug/L	10	200	ND	94	63-135%			
Benzene	210		2.00	ug/L	10	200	2.49	104	79-120%			
Bromobenzene	205		5.00	ug/L	10	200	ND	103	80-120%			
Bromochloromethane	195		10.0	ug/L	10	200	ND	98	78-123%			
Bromodichloromethane	224		10.0	ug/L	10	200	ND	112	79-125%			
Bromoform	228		10.0	ug/L	10	200	ND	114	66-130%			
Bromomethane	155		50.0	ug/L	10	200	ND	78	53-141%			E-05, Q-54
2-Butanone (MEK)	421		100	ug/L	10	400	ND	105	56-143%			
n-Butylbenzene	250		10.0	ug/L	10	200	ND	125	75-128%			
sec-Butylbenzene	237		10.0	ug/L	10	200	ND	118	77-126%			
tert-Butylbenzene	240		10.0	ug/L	10	200	ND	120	78-124%			
Carbon disulfide	204		100	ug/L	10	200	ND	102	64-133%			
Carbon tetrachloride	237		10.0	ug/L	10	200	ND	119	72-136%			
Chlorobenzene	211		5.00	ug/L	10	200	ND	105	80-120%			
Chloroethane	201		50.0	ug/L	10	200	ND	101	60-138%			
Chloroform	218		10.0	ug/L	10	200	ND	109	79-124%			
Chloromethane	144		50.0	ug/L	10	200	ND	72	50-139%			Q-54
2-Chlorotoluene	216		10.0	ug/L	10	200	ND	108	79-122%			
4-Chlorotoluene	221		10.0	ug/L	10	200	ND	110	78-122%			
Dibromochloromethane	232		10.0	ug/L	10	200	ND	116	74-126%			
1,2-Dibromo-3-chloropropane	229		50.0	ug/L	10	200	ND	114	62-128%			
1,2-Dibromoethane (EDB)	221		5.00	ug/L	10	200	ND	111	77-121%			
Dibromomethane	212		10.0	ug/L	10	200	ND	106	79-123%			
1,2-Dichlorobenzene	213		5.00	ug/L	10	200	ND	107	80-120%			
1,3-Dichlorobenzene	215		5.00	ug/L	10	200	ND	108	80-120%			
1,4-Dichlorobenzene	204		5.00	ug/L	10	200	ND	102	79-120%			
Dichlorodifluoromethane	201		10.0	ug/L	10	200	ND	101	32-152%			
1,1-Dichloroethane	205		4.00	ug/L	10	200	ND	102	77-125%			
1,2-Dichloroethane (EDC)	223		4.00	ug/L	10	200	ND	112	73-128%			
1,1-Dichloroethene	215		4.00	ug/L	10	200	ND	107	71-131%			

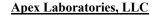
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041230 - EPA 5030B							Wat	er				
Matrix Spike (8041230-MS1)		Prepared	: 04/30/18 10:2	27 Analyz	ed: 04/30/1	8 19:04						
QC Source Sample: MW09-W (A8	D0907-09)											
cis-1,2-Dichloroethene	212		4.00	ug/L	10	200	ND	106	78-123%			
trans-1,2-Dichloroethene	216		4.00	ug/L	10	200	ND	108	75-124%			
1,2-Dichloropropane	196		5.00	ug/L	10	200	ND	98	78-122%			
1,3-Dichloropropane	207		10.0	ug/L	10	200	ND	103	80-120%			
2,2-Dichloropropane	204		10.0	ug/L	10	200	ND	102	60-139%			
1,1-Dichloropropene	227		10.0	ug/L	10	200	ND	114	79-125%			
cis-1,3-Dichloropropene	220		10.0	ug/L	10	200	ND	110	75-124%			
trans-1,3-Dichloropropene	235		10.0	ug/L	10	200	ND	117	73-127%			
Ethylbenzene	228		5.00	ug/L	10	200	9.99	109	79-121%			
Hexachlorobutadiene	230		50.0	ug/L	10	200	ND	115	66-134%			
2-Hexanone	441		100	ug/L	10	400	ND	110	57-139%			
Isopropylbenzene	244		10.0	ug/L	10	200	ND	122	72-131%			
4-Isopropyltoluene	253		10.0	ug/L	10	200	ND	127	77-127%			
Methylene chloride	190		30.0	ug/L	10	200	ND	95	74-124%			
4-Methyl-2-pentanone (MiBK)	441		100	ug/L	10	400	ND	110	67-130%			
Methyl tert-butyl ether (MTBE)	212		10.0	ug/L	10	200	ND	106	71-124%			
Naphthalene	242		20.0	ug/L	10	200	ND	121	61-128%			
n-Propylbenzene	228		5.00	ug/L	10	200	11.5	108	76-126%			
Styrene	237		10.0	ug/L	10	200	ND	119	78-123%			
1,1,1,2-Tetrachloroethane	236		4.00	ug/L	10	200	ND	118	78-124%			
1,1,2,2-Tetrachloroethane	206		5.00	ug/L	10	200	ND	103	71-121%			
Tetrachloroethene (PCE)	214		4.00	ug/L	10	200	ND	107	74-129%			
Toluene	200		10.0	ug/L	10	200	ND	100	80-121%			
1,2,3-Trichlorobenzene	219		20.0	ug/L	10	200	ND	110	69-129%			
1,2,4-Trichlorobenzene	225		20.0	ug/L	10	200	ND	113	69-130%			
1,1,1-Trichloroethane	234		4.00	ug/L	10	200	ND	117	74-131%			
1,1,2-Trichloroethane	208		5.00	ug/L	10	200	ND	104	80-120%			
Trichloroethene (TCE)	215		4.00	ug/L	10	200	ND	108	79-123%			
Trichlorofluoromethane	246		20.0	ug/L	10	200	ND	123	65-141%			
1,2,3-Trichloropropane	211		10.0	ug/L	10	200	ND	106	73-122%			
1,2,4-Trimethylbenzene	290		10.0	ug/L	10	200	51.5	119	76-124%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041230 - EPA 5030B							Wat	er				
Matrix Spike (8041230-MS1)		Prepared	: 04/30/18 10:2	27 Analyz	zed: 04/30/1	8 19:04						
QC Source Sample: MW09-W (AS	<u>3D0907-09)</u>											
1,3,5-Trimethylbenzene	257		10.0	ug/L	10	200	19.9	119	75-124%			
Vinyl chloride	193		4.00	ug/L	10	200	ND	96	58-137%			
m,p-Xylene	474		10.0	ug/L	10	400	10.3	116	80-121%			
o-Xylene	243		5.00	ug/L	10	200	6.38	118	78-122%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID:
A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 8041255 - EPA 5030B							Wate	er				
Blank (8041255-BLK1)		Prepared	: 04/30/18 15:2	23 Analyz	ed: 04/30/1	8 17:28						
EPA 8260C												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		1.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							

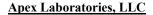
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

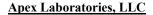
Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
						Wat	er				
	Prepared	: 04/30/18 15:2	23 Analyz	ed: 04/30/18	3 17:28						
ND		0.400	ug/L	1							
ND		0.500	ug/L	1							
ND		1.00	ug/L	1							
ND		1.00	ug/L	1							
ND		1.00	ug/L	1							
ND		1.00	ug/L	1							
ND		1.00	ug/L	1							
ND		0.500	ug/L	1							
ND		5.00	ug/L	1							
ND		10.0	ug/L	1							
ND		1.00	ug/L	1							
ND		1.00	ug/L	1							
ND		3.00	ug/L	1							
ND		10.0	ug/L	1							
ND		1.00	ug/L	1							
ND		2 00	11σ/Ι	1							
			_								
			_								
			_								
			_								
			_								
			_								
			_								
			_								
			-								
			_								
			_								
			_								
	ND N	Result Limit ND ND <td>Result Limit Limit ND 0.400 ND 0.500 ND 1.00 ND 10.0 ND 1.00 ND 1.00 ND 1.00 ND 0.500 ND 0.400 ND 0.400 ND 0.400 ND 0.400 ND 0.500 ND 0.400 ND <t< td=""><td> Prepared: 04/30/18 15:23 Analyz </td><td> Prepared: 04/30/18 15:23 Analyzed: 04/30/18 </td><td>Prepared: 04/30/18 15:23 Analyzed: 04/30/18 17:28 ND 0.400 ug/L 1 ND 0.500 ug/L 1 ND 0.500 ug/L 1 ND 1.00 ug/L 1 ND 5.00 ug/L 1 ND 1.00 ug/L 1 ND 1.00 ug/L 1 ND 1.00 ug/L 1 ND </td><td> No</td><td> Result</td><td> Result</td><td> Result Limit Limit Units Dilution Amount Result % REC Limits RPD </td><td> </td></t<></td>	Result Limit Limit ND 0.400 ND 0.500 ND 1.00 ND 10.0 ND 1.00 ND 1.00 ND 1.00 ND 0.500 ND 0.400 ND 0.400 ND 0.400 ND 0.400 ND 0.500 ND 0.400 ND <t< td=""><td> Prepared: 04/30/18 15:23 Analyz </td><td> Prepared: 04/30/18 15:23 Analyzed: 04/30/18 </td><td>Prepared: 04/30/18 15:23 Analyzed: 04/30/18 17:28 ND 0.400 ug/L 1 ND 0.500 ug/L 1 ND 0.500 ug/L 1 ND 1.00 ug/L 1 ND 5.00 ug/L 1 ND 1.00 ug/L 1 ND 1.00 ug/L 1 ND 1.00 ug/L 1 ND </td><td> No</td><td> Result</td><td> Result</td><td> Result Limit Limit Units Dilution Amount Result % REC Limits RPD </td><td> </td></t<>	Prepared: 04/30/18 15:23 Analyz	Prepared: 04/30/18 15:23 Analyzed: 04/30/18	Prepared: 04/30/18 15:23 Analyzed: 04/30/18 17:28 ND 0.400 ug/L 1 ND 0.500 ug/L 1 ND 0.500 ug/L 1 ND 1.00 ug/L 1 ND 5.00 ug/L 1 ND 1.00 ug/L 1 ND 1.00 ug/L 1 ND 1.00 ug/L 1 ND	No	Result	Result	Result Limit Limit Units Dilution Amount Result % REC Limits RPD	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041255 - EPA 5030B							Wat	er				
Blank (8041255-BLK1)		Prepared	: 04/30/18 15:	23 Analyz	ed: 04/30/1	8 17:28						
Vinyl chloride	ND		0.400	ug/L	1							
m,p-Xylene	ND		1.00	ug/L	1							
o-Xylene	ND		0.500	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80	-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					
LCS (8041255-BS1)		Prepared	: 04/30/18 15:	23 Analyz	ed: 04/30/1	8 16:33						
EPA 8260C												
Acetone	38.3		20.0	ug/L	1	40.0		96	80-120%			
Acrylonitrile	19.9		2.00	ug/L	1	20.0		99	80-120%			
Benzene	20.6		0.200	ug/L	1	20.0		103	80-120%			
Bromobenzene	18.8		0.500	ug/L	1	20.0		94	80-120%			
Bromochloromethane	22.0		1.00	ug/L	1	20.0		110	80-120%			
Bromodichloromethane	21.1		1.00	ug/L	1	20.0		106	80-120%			
Bromoform	21.5		1.00	ug/L	1	20.0		107	80-120%			
Bromomethane	39.0		5.00	ug/L	1	20.0		195	80-120%			E-05, Q-50
2-Butanone (MEK)	38.1		10.0	ug/L	1	40.0		95	80-120%			
n-Butylbenzene	18.8		1.00	ug/L	1	20.0		94	80-120%			
sec-Butylbenzene	18.2		1.00	ug/L	1	20.0		91	80-120%			
tert-Butylbenzene	17.2		1.00	ug/L	1	20.0		86	80-120%			
Carbon disulfide	19.5		10.0	ug/L	1	20.0		98	80-120%			
Carbon tetrachloride	20.7		1.00	ug/L	1	20.0		103	80-120%			
Chlorobenzene	18.6		0.500	ug/L	1	20.0		93	80-120%			
Chloroethane	23.0		5.00	ug/L	1	20.0		115	80-120%			
Chloroform	20.6		1.00	ug/L	1	20.0		103	80-120%			
Chloromethane	18.5		5.00	ug/L	1	20.0		93	80-120%			
2-Chlorotoluene	17.9		1.00	ug/L	1	20.0		90	80-120%			
4-Chlorotoluene	18.2		1.00	ug/L	1	20.0		91	80-120%			
Dibromochloromethane	19.8		1.00	ug/L	1	20.0		99	80-120%			
1,2-Dibromo-3-chloropropane	19.8		5.00	ug/L	1	20.0		99	80-120%			
1,2-Dibromoethane (EDB)	19.2		0.500	ug/L	1	20.0		96	80-120%			
Dibromomethane	22.2		1.00	ug/L	1	20.0		111	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Satch 8041255 - EPA 5030B							Wat	er				
CS (8041255-BS1)		Prepared	: 04/30/18 15:2	23 Analyz	ed: 04/30/18	8 16:33						
1,2-Dichlorobenzene	18.8		0.500	ug/L	1	20.0		94	80-120%			
1,3-Dichlorobenzene	18.5		0.500	ug/L	1	20.0		93	80-120%			
1,4-Dichlorobenzene	18.5		0.500	ug/L	1	20.0		93	80-120%			
Dichlorodifluoromethane	20.7		1.00	ug/L	1	20.0		103	80-120%			
1,1-Dichloroethane	21.1		0.400	ug/L	1	20.0		105	80-120%			
1,2-Dichloroethane (EDC)	20.2		0.400	ug/L	1	20.0		101	80-120%			
1,1-Dichloroethene	20.3		0.400	ug/L	1	20.0		101	80-120%			
cis-1,2-Dichloroethene	20.5		0.400	ug/L	1	20.0		103	80-120%			
trans-1,2-Dichloroethene	20.3		0.400	ug/L	1	20.0		101	80-120%			
1,2-Dichloropropane	21.1		0.500	ug/L	1	20.0		106	80-120%			
1,3-Dichloropropane	18.9		1.00	ug/L	1	20.0		94	80-120%			
2,2-Dichloropropane	19.8		1.00	ug/L	1	20.0		99	80-120%			
1,1-Dichloropropene	19.9		1.00	ug/L	1	20.0		100	80-120%			
cis-1,3-Dichloropropene	18.8		1.00	ug/L	1	20.0		94	80-120%			
trans-1,3-Dichloropropene	17.8		1.00	ug/L	1	20.0		89	80-120%			
Ethylbenzene	19.3		0.500	ug/L	1	20.0		97	80-120%			
Hexachlorobutadiene	18.0		5.00	ug/L	1	20.0		90	80-120%			
2-Hexanone	34.5		10.0	ug/L	1	40.0		86	80-120%			
Isopropylbenzene	18.8		1.00	ug/L	1	20.0		94	80-120%			
4-Isopropyltoluene	17.8		1.00	ug/L	1	20.0		89	80-120%			
Methylene chloride	20.8		3.00	ug/L	1	20.0		104	80-120%			
4-Methyl-2-pentanone (MiBK)	34.6		10.0	ug/L	1	40.0		87	80-120%			
Methyl tert-butyl ether (MTBE)	18.8		1.00	ug/L	1	20.0		94	80-120%			
Naphthalene	18.3		2.00	ug/L	1	20.0		92	80-120%			
n-Propylbenzene	19.2		0.500	ug/L	1	20.0		96	80-120%			
Styrene	18.8		1.00	ug/L	1	20.0		94	80-120%			
1,1,1,2-Tetrachloroethane	19.2		0.400	ug/L	1	20.0		96	80-120%			
1,1,2,2-Tetrachloroethane	20.1		0.500	ug/L	1	20.0		100	80-120%			
Tetrachloroethene (PCE)	18.3		0.400	ug/L	1	20.0		91	80-120%			
Tetrahydrofuran	18.3		10.0	ug/L	1	20.0		92	80-120%			
Toluene	18.7		1.00	ug/L	1	20.0		94	80-120%			
1,2,3-Trichlorobenzene	18.0		2.00	ug/L	1	20.0		90	80-120%			

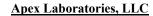
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

 Project Number:
 2017-074
 Report ID:

 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	yanıc Co	inpounds	by EPA 8	2000					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041255 - EPA 5030B							Wat	er				
LCS (8041255-BS1)		Prepared	: 04/30/18 15:2	23 Analyz	ed: 04/30/1	8 16:33						
1,2,4-Trichlorobenzene	17.9		2.00	ug/L	1	20.0		89	80-120%			
1,1,1-Trichloroethane	19.9		0.400	ug/L	1	20.0		99	80-120%			
1,1,2-Trichloroethane	19.1		0.500	ug/L	1	20.0		96	80-120%			
Trichloroethene (TCE)	19.0		0.400	ug/L	1	20.0		95	80-120%			
Trichlorofluoromethane	28.1		2.00	ug/L	1	20.0		140	80-120%			Q-5
1,2,3-Trichloropropane	19.5		1.00	ug/L	1	20.0		97	80-120%			
1,2,4-Trimethylbenzene	18.5		1.00	ug/L	1	20.0		93	80-120%			
1,3,5-Trimethylbenzene	18.6		1.00	ug/L	1	20.0		93	80-120%			
Vinyl chloride	22.6		0.400	ug/L	1	20.0		113	80-120%			
m,p-Xylene	39.0		1.00	ug/L	1	40.0		97	80-120%			
o-Xylene	19.0		0.500	ug/L	1	20.0		95	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 106 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80)-120 %		"					
Duplicate (8041255-DUP1)		Prepared	: 04/30/18 15:2	23 Analyz	ed: 05/01/1	8 02:54						
QC Source Sample: MW13-W (A	8D0907-13)											
EPA 8260C												
Acetone	ND		200	ug/L	10		ND				30%	
Acrylonitrile	ND		112	ug/L	10		121			***	30%	R-0
Benzene	1430		2.00	ug/L	10		1500			5	30%	
Bromobenzene	ND		5.00	ug/L	10		ND				30%	
Bromochloromethane	ND		10.0	ug/L	10		ND				30%	
Bromodichloromethane	ND		10.0	ug/L	10		ND				30%	
Bromoform	ND		10.0	ug/L	10		ND				30%	
Bromomethane	ND		50.0	ug/L	10		ND				30%	
2-Butanone (MEK)	ND		100	ug/L	10		102			***	30%	
n-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
sec-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
tert-Butylbenzene	ND		10.0	ug/L	10		ND				30%	
Carbon disulfide	ND		100	ug/L	10		ND				30%	
Carbon tetrachloride	ND		10.0	ug/L	10		ND				30%	
Chlorobenzene	ND		5.00	ug/L	10		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: <u>Coleman Wenatchee</u>
Project Number: 2017-074

Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Craig Hultgren

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
3atch 8041255 - EPA 5030B							Wate	er				
Ouplicate (8041255-DUP1)		Prepared	: 04/30/18 15:2	23 Analyz	zed: 05/01/18	3 02:54						
QC Source Sample: MW13-W (A8	BD0907-13)											
Chloroethane	ND		50.0	ug/L	10		ND				30%	
Chloroform	ND		10.0	ug/L	10		ND				30%	
Chloromethane	ND		50.0	ug/L	10		ND				30%	
2-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
4-Chlorotoluene	ND		10.0	ug/L	10		ND				30%	
Dibromochloromethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dibromo-3-chloropropane	ND		50.0	ug/L	10		ND				30%	
1,2-Dibromoethane (EDB)	ND		5.00	ug/L	10		ND				30%	
Dibromomethane	ND		10.0	ug/L	10		ND				30%	
1,2-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
1,3-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
1,4-Dichlorobenzene	ND		5.00	ug/L	10		ND				30%	
Dichlorodifluoromethane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloroethane	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloroethane (EDC)	ND		4.00	ug/L	10		ND				30%	
1,1-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
cis-1,2-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
trans-1,2-Dichloroethene	ND		4.00	ug/L	10		ND				30%	
1,2-Dichloropropane	ND		5.00	ug/L	10		ND				30%	
1,3-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
2,2-Dichloropropane	ND		10.0	ug/L	10		ND				30%	
1,1-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
cis-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
trans-1,3-Dichloropropene	ND		10.0	ug/L	10		ND				30%	
Ethylbenzene	608		5.00	ug/L	10		627			3	30%	
Hexachlorobutadiene	ND		50.0	ug/L	10		ND				30%	
2-Hexanone	ND		100	ug/L	10		ND				30%	
Isopropylbenzene	23.7		10.0	ug/L	10		24.3			2	30%	
4-Isopropyltoluene	ND		10.0	ug/L	10		ND				30%	
Methylene chloride	ND		30.0	ug/L	10		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		100	ug/L	10		ND				30%	

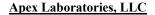
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

 Project Number:
 2017-074
 Report ID:

 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

		D:	D 4:			0.1	C		0/ DEC		DDD	
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041255 - EPA 5030B							Wat	er				
Duplicate (8041255-DUP1)		Prepared	: 04/30/18 15:	23 Analyz	ed: 05/01/1	8 02:54						
QC Source Sample: MW13-W (A	8D0907-13)											
Methyl tert-butyl ether (MTBE)	ND		10.0	ug/L	10		ND				30%	
Naphthalene	61.8		20.0	ug/L	10		64.4			4	30%	
n-Propylbenzene	30.5		5.00	ug/L	10		32.9			8	30%	
Styrene	ND		10.0	ug/L	10		ND				30%	
1,1,1,2-Tetrachloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2,2-Tetrachloroethane	ND		5.00	ug/L	10		ND				30%	
Tetrachloroethene (PCE)	ND		4.00	ug/L	10		ND				30%	
Tetrahydrofuran	ND		100	ug/L	10		ND				30%	
Toluene	3370		10.0	ug/L	10		3430			2	30%	
1,2,3-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,2,4-Trichlorobenzene	ND		20.0	ug/L	10		ND				30%	
1,1,1-Trichloroethane	ND		4.00	ug/L	10		ND				30%	
1,1,2-Trichloroethane	ND		5.00	ug/L	10		ND				30%	
Trichloroethene (TCE)	ND		4.00	ug/L	10		ND				30%	
Trichlorofluoromethane	ND		20.0	ug/L	10		ND				30%	
1,2,3-Trichloropropane	ND		10.0	ug/L	10		ND				30%	
1,2,4-Trimethylbenzene	245		10.0	ug/L	10		254			4	30%	
1,3,5-Trimethylbenzene	46.7		10.0	ug/L	10		49.1			5	30%	
Vinyl chloride	ND		4.00	ug/L	10		ND				30%	
m,p-Xylene	2440		10.0	ug/L	10		2490			2	30%	
o-Xylene	1260		5.00	ug/L	10		1280			2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 107 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			93 %	80	-120 %		"					
Matrix Spike (8041255-MS1)		Prepared	: 04/30/18 15:	23 Analyz	ed: 05/01/1	8 03:48						
QC Source Sample: MW21-W (A	8D0907-19)											
EPA 8260C												
Acetone	45.2		20.0	ug/L	1	40.0	ND	113	39-160%			
Acrylonitrile	21.1		2.00	ug/L	1	20.0	ND	105	63-135%			
Benzene	22.3		0.200	ug/L	1	20.0	0.204	110	79-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS


Project Manager: Craig Hultgren

			Volatile Org	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041255 - EPA 5030B							Wat	er				
Matrix Spike (8041255-MS1)		Prepared	: 04/30/18 15::	23 Analyz	zed: 05/01/1	8 03:48						
QC Source Sample: MW21-W (A8	8D0907-19)											
Bromobenzene	18.7		0.500	ug/L	1	20.0	ND	94	80-120%			
Bromochloromethane	24.2		1.00	ug/L	1	20.0	ND	121	78-123%			
Bromodichloromethane	21.4		1.00	ug/L	1	20.0	ND	107	79-125%			
Bromoform	20.8		1.00	ug/L	1	20.0	ND	104	66-130%			
Bromomethane	42.7		5.00	ug/L	1	20.0	ND	214	53-141%			E-05, Q-54
2-Butanone (MEK)	42.3		10.0	ug/L	1	40.0	ND	106	56-143%			
n-Butylbenzene	22.1		1.00	ug/L	1	20.0	2.97	96	75-128%			
sec-Butylbenzene	20.3		1.00	ug/L	1	20.0	1.91	92	77-126%			
tert-Butylbenzene	17.6		1.00	ug/L	1	20.0	ND	88	78-124%			
Carbon disulfide	21.8		10.0	ug/L	1	20.0	ND	109	64-133%			
Carbon tetrachloride	22.5		1.00	ug/L	1	20.0	ND	113	72-136%			
Chlorobenzene	19.6		0.500	ug/L	1	20.0	ND	98	80-120%			
Chloroethane	27.3		5.00	ug/L	1	20.0	ND	136	60-138%			
Chloroform	21.7		1.00	ug/L	1	20.0	ND	108	79-124%			
Chloromethane	21.2		5.00	ug/L	1	20.0	ND	106	50-139%			
2-Chlorotoluene	18.2		1.00	ug/L	1	20.0	ND	91	79-122%			
4-Chlorotoluene	18.0		1.00	ug/L	1	20.0	ND	90	78-122%			
Dibromochloromethane	19.9		1.00	ug/L	1	20.0	ND	100	74-126%			
1,2-Dibromo-3-chloropropane	17.8		5.00	ug/L	1	20.0	ND	89	62-128%			
1,2-Dibromoethane (EDB)	19.6		0.500	ug/L	1	20.0	ND	98	77-121%			
Dibromomethane	23.9		1.00	ug/L	1	20.0	ND	120	79-123%			
1,2-Dichlorobenzene	19.0		0.500	ug/L	1	20.0	ND	95	80-120%			
1,3-Dichlorobenzene	18.8		0.500	ug/L	1	20.0	ND	94	80-120%			
1,4-Dichlorobenzene	18.6		0.500	ug/L	1	20.0	ND	93	79-120%			
Dichlorodifluoromethane	23.5		1.00	ug/L	1	20.0	ND	118	32-152%			
1,1-Dichloroethane	22.0		0.400	ug/L	1	20.0	ND	110	77-125%			
1,2-Dichloroethane (EDC)	21.5		0.400	ug/L	1	20.0	ND	108	73-128%			
1,1-Dichloroethene	22.7		0.400	ug/L	1	20.0	ND	113	71-131%			
cis-1,2-Dichloroethene	22.1		0.400	ug/L	1	20.0	ND	110	78-123%			
trans-1,2-Dichloroethene	22.1		0.400	ug/L	1	20.0	ND	110	75-124%			
1,2-Dichloropropane	22.4		0.500	ug/L	1	20.0	ND	112	78-122%			
1,3-Dichloropropane	19.6		1.00	ug/L	1	20.0	ND	98	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

 Project Number:
 2017-074
 Report ID:

 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	anic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041255 - EPA 5030B							Wat	er				
Matrix Spike (8041255-MS1)		Prepared	: 04/30/18 15:2	3 Analyz	zed: 05/01/1	8 03:48						
QC Source Sample: MW21-W (A8	BD0907-19)											
2,2-Dichloropropane	15.3		1.00	ug/L	1	20.0	ND	76	60-139%			
1,1-Dichloropropene	21.9		1.00	ug/L	1	20.0	ND	110	79-125%			
cis-1,3-Dichloropropene	17.5		1.00	ug/L	1	20.0	ND	87	75-124%			
trans-1,3-Dichloropropene	16.7		1.00	ug/L	1	20.0	ND	84	73-127%			
Ethylbenzene	21.0		0.500	ug/L	1	20.0	1.07	100	79-121%			
Hexachlorobutadiene	17.0		5.00	ug/L	1	20.0	ND	85	66-134%			
2-Hexanone	34.4		10.0	ug/L	1	40.0	ND	86	57-139%			
Isopropylbenzene	21.1		1.00	ug/L	1	20.0	1.57	98	72-131%			
4-Isopropyltoluene	19.7		1.00	ug/L	1	20.0	ND	98	77-127%			
Methylene chloride	22.4		3.00	ug/L	1	20.0	ND	112	74-124%			
4-Methyl-2-pentanone (MiBK)	35.8		10.0	ug/L	1	40.0	ND	90	67-130%			
Methyl tert-butyl ether (MTBE)	19.1		1.00	ug/L	1	20.0	ND	96	71-124%			
Naphthalene	20.0		2.00	ug/L	1	20.0	1.29	93	61-128%			
n-Propylbenzene	23.4		0.500	ug/L	1	20.0	4.03	97	76-126%			
Styrene	18.9		1.00	ug/L	1	20.0	ND	95	78-123%			
1,1,1,2-Tetrachloroethane	19.9		0.400	ug/L	1	20.0	ND	99	78-124%			
1,1,2,2-Tetrachloroethane	21.0		0.500	ug/L	1	20.0	ND	105	71-121%			
Tetrachloroethene (PCE)	19.1		0.400	ug/L	1	20.0	ND	95	74-129%			
Tetrahydrofuran	19.2		10.0	ug/L	1	20.0	ND	96	57-133%			
Toluene	19.6		1.00	ug/L	1	20.0	0.846	94	80-121%			
1,2,3-Trichlorobenzene	18.3		2.00	ug/L	1	20.0	ND	91	69-129%			
1,2,4-Trichlorobenzene	17.8		2.00	ug/L	1	20.0	ND	89	69-130%			
1,1,1-Trichloroethane	21.4		0.400	ug/L	1	20.0	ND	107	74-131%			
1,1,2-Trichloroethane	21.8		0.500	ug/L	1	20.0	ND	109	80-120%			
Trichloroethene (TCE)	20.7		0.400	ug/L	1	20.0	ND	103	79-123%			
Trichlorofluoromethane	33.0		2.00	ug/L	1	20.0	ND	165	65-141%			Q
1,2,3-Trichloropropane	19.4		1.00	ug/L	1	20.0	ND	97	73-122%			
1,2,4-Trimethylbenzene	36.3		1.00	ug/L	1	20.0	18.7	88	76-124%			
1,3,5-Trimethylbenzene	21.3		1.00	ug/L	1	20.0	2.99	92	75-124%			
Vinyl chloride	25.6		0.400	ug/L	1	20.0	ND	128	58-137%			
m,p-Xylene	42.7		1.00	ug/L	1	40.0	1.60	103	80-121%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041255 - EPA 5030B							Wat	er				
Matrix Spike (8041255-MS1)		Prepared	: 04/30/18 15:	23 Analyz	zed: 05/01/1	8 03:48						
QC Source Sample: MW21-W (AS	BD0907-19)											
o-Xylene	20.9		0.500	ug/L	1	20.0	1.22	98	78-122%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 108 %	Limits: 80	0-120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	0-120 %		"					

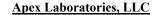
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 8050336 - EPA 5030B							Wate	er				
Blank (8050336-BLK1)		Prepared	: 05/01/18 10::	22 Analyz	zed: 05/01/1	8 11:47						
EPA 8260C												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		1.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

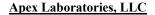
			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
3atch 8050336 - EPA 5030B							Wat	er				
Blank (8050336-BLK1)		Prepared	: 05/01/18 10:2	22 Analyz	ed: 05/01/18	3 11:47						
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
trans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
Isopropylbenzene	ND		1.00	ug/L	1							
4-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		3.00	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether	ND		1.00	ug/L	1							
(MTBE)												
Naphthalene	ND		2.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L	1							
Trichlorofluoromethane	ND		2.00	ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.400	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

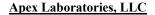
			Volatile Or	ganic Co	mpounds	by EPA	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wat	er				
Blank (8050336-BLK1)		Prepared	: 05/01/18 10:	22 Analyz	ed: 05/01/1	8 11:47						
m,p-Xylene	ND		1.00	ug/L	1							
o-Xylene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 99 %	Limits: 80)-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			105 %	80	-120 %		"					
LCS (8050336-BS1)		Prepared	: 05/01/18 10:	22 Analyz	ed: 05/01/1	8 10:50						
EPA 8260C		•										
Acetone	41.2		20.0	ug/L	1	40.0		103	80-120%			
Acrylonitrile	19.0		2.00	ug/L	1	20.0		95	80-120%			
Benzene	19.9		0.200	ug/L	1	20.0		100	80-120%			
Bromobenzene	20.2		0.500	ug/L	1	20.0		101	80-120%			
Bromochloromethane	19.3		1.00	ug/L	1	20.0		96	80-120%			
Bromodichloromethane	22.3		1.00	ug/L	1	20.0		111	80-120%			
Bromoform	22.4		1.00	ug/L	1	20.0		112	80-120%			
Bromomethane	15.4		5.00	ug/L	1	20.0		77	80-120%			E-05, Q-5
2-Butanone (MEK)	43.4		10.0	ug/L	1	40.0		108	80-120%			
n-Butylbenzene	23.3		1.00	ug/L	1	20.0		117	80-120%			
sec-Butylbenzene	22.7		1.00	ug/L	1	20.0		114	80-120%			
tert-Butylbenzene	23.3		1.00	ug/L	1	20.0		116	80-120%			
Carbon disulfide	19.6		10.0	ug/L	1	20.0		98	80-120%			
Carbon tetrachloride	22.7		1.00	ug/L	1	20.0		114	80-120%			
Chlorobenzene	20.6		0.500	ug/L	1	20.0		103	80-120%			
Chloroethane	19.5		5.00	ug/L	1	20.0		98	80-120%			
Chloroform	21.5		1.00	ug/L	1	20.0		107	80-120%			
Chloromethane	14.4		5.00	ug/L	1	20.0			80-120%			Q-5
2-Chlorotoluene	21.6		1.00	ug/L	1	20.0			80-120%			
4-Chlorotoluene	21.7		1.00	ug/L	1	20.0			80-120%			
Dibromochloromethane	23.5		1.00	ug/L	1	20.0			80-120%			
1,2-Dibromo-3-chloropropane	21.9		5.00	ug/L	1	20.0			80-120%			
1,2-Dibromoethane (EDB)	22.1		0.500	ug/L	1	20.0			80-120%			
Dibromomethane	20.8		1.00	ug/L	1	20.0			80-120%			
	20.0		1.00	45/1		_0.0			20 120/0			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 8050336 - EPA 5030B							Wat	er				
LCS (8050336-BS1)		Prepared	: 05/01/18 10:2	22 Analyz	ed: 05/01/1	8 10:50						
1,2-Dichlorobenzene	20.4		0.500	ug/L	1	20.0		102	80-120%			
1,3-Dichlorobenzene	21.2		0.500	ug/L	1	20.0		106	80-120%			
1,4-Dichlorobenzene	19.9		0.500	ug/L	1	20.0		100	80-120%			
Dichlorodifluoromethane	18.6		1.00	ug/L	1	20.0		93	80-120%			
1,1-Dichloroethane	20.0		0.400	ug/L	1	20.0		100	80-120%			
1,2-Dichloroethane (EDC)	21.8		0.400	ug/L	1	20.0		109	80-120%			
1,1-Dichloroethene	20.8		0.400	ug/L	1	20.0		104	80-120%			
cis-1,2-Dichloroethene	21.1		0.400	ug/L	1	20.0		105	80-120%			
trans-1,2-Dichloroethene	20.8		0.400	ug/L	1	20.0		104	80-120%			
1,2-Dichloropropane	20.5		0.500	ug/L	1	20.0		102	80-120%			
1,3-Dichloropropane	20.7		1.00	ug/L	1	20.0		103	80-120%			
2,2-Dichloropropane	23.3		1.00	ug/L	1	20.0		117	80-120%			
1,1-Dichloropropene	21.9		1.00	ug/L	1	20.0		109	80-120%			
cis-1,3-Dichloropropene	23.0		1.00	ug/L	1	20.0		115	80-120%			
trans-1,3-Dichloropropene	24.0		1.00	ug/L	1	20.0		120	80-120%			
Ethylbenzene	21.2		0.500	ug/L	1	20.0		106	80-120%			
Hexachlorobutadiene	21.0		5.00	ug/L	1	20.0		105	80-120%			
2-Hexanone	43.5		10.0	ug/L	1	40.0		109	80-120%			
Isopropylbenzene	23.1		1.00	ug/L	1	20.0		116	80-120%			
4-Isopropyltoluene	23.9		1.00	ug/L	1	20.0		120	80-120%			
Methylene chloride	18.7		3.00	ug/L	1	20.0		94	80-120%			
4-Methyl-2-pentanone (MiBK)	43.3		10.0	ug/L	1	40.0		108	80-120%			
Methyl tert-butyl ether (MTBE)	21.4		1.00	ug/L	1	20.0		107	80-120%			
Naphthalene	21.3		2.00	ug/L	1	20.0		107	80-120%			
n-Propylbenzene	21.2		0.500	ug/L	1	20.0		106	80-120%			
Styrene	23.3		1.00	ug/L	1	20.0		117	80-120%			
1,1,1,2-Tetrachloroethane	23.0		0.400	ug/L	1	20.0		115	80-120%			
1,1,2,2-Tetrachloroethane	20.7		0.500	ug/L	1	20.0		103	80-120%			
Tetrachloroethene (PCE)	20.9		0.400	ug/L	1	20.0		105	80-120%			
Toluene	19.8		1.00	ug/L	1	20.0		99	80-120%			
1,2,3-Trichlorobenzene	20.7		2.00	ug/L	1	20.0		103	80-120%			
1,2,4-Trichlorobenzene	21.2		2.00	ug/L	1	20.0		106	80-120%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Craig Hultgren

			Volatile Org	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wat	er				
LCS (8050336-BS1)		Prepared	1: 05/01/18 10:	22 Analyz	zed: 05/01/1	8 10:50						
1,1,1-Trichloroethane	22.6		0.400	ug/L	1	20.0		113	80-120%			
1,1,2-Trichloroethane	19.9		0.500	ug/L	1	20.0		99	80-120%			
Trichloroethene (TCE)	21.6		0.400	ug/L	1	20.0		108	80-120%			
Trichlorofluoromethane	23.3		2.00	ug/L	1	20.0		116	80-120%			
1,2,3-Trichloropropane	21.0		1.00	ug/L	1	20.0		105	80-120%			
1,2,4-Trimethylbenzene	23.1		1.00	ug/L	1	20.0		116	80-120%			
1,3,5-Trimethylbenzene	22.6		1.00	ug/L	1	20.0		113	80-120%			
Vinyl chloride	18.7		0.400	ug/L	1	20.0		94	80-120%			
m,p-Xylene	44.5		1.00	ug/L	1	40.0		111	80-120%			
o-Xylene	22.6		0.500	ug/L	1	20.0		113	80-120%			
Xylenes, total	67.1		1.50	ug/L	1	60.0		112	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 99 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					
Duplicate (8050336-DUP1) OC Source Sample: MW23-W (A	8D0907-21)	Prepared	1: 05/01/18 11:0	07 Analyz	ed: 05/01/18	8 15:06						
EPA 8260C Acetone	ND		20.0	110/I	1		ND				30%	
Acrylonitrile	ND ND		2.00	ug/L ug/L	1		ND ND				30%	
Benzene	ND ND		0.200	ug/L ug/L	1		ND ND				30%	
Bromobenzene	ND ND		0.500	ug/L ug/L	1		ND ND				30%	
Bromodenzene Bromochloromethane	ND ND		1.00	ug/L ug/L	1		ND ND				30%	
Bromodichloromethane	ND ND		1.00		1		ND ND				30%	
Bromodicnioromethane Bromoform	ND ND		1.00	ug/L ug/L	1		ND ND				30%	
Bromomethane	ND ND		5.00		1		ND ND				30%	
			10.0	ug/L								
2-Butanone (MEK)	ND ND			ug/L	1		ND ND				30%	
n-Butylbenzene	ND		1.00 1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND			ug/L	1		ND				30%	
tert-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
Carbon disulfide	ND		10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND		1.00	ug/L	1		ND				30%	
Chlorobenzene	ND		0.500	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: <u>Coleman Wenatchee</u>
Project Number: **2017-074**

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Craig Hultgren

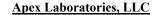
			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
3atch 8050336 - EPA 5030B							Wate	er				
Duplicate (8050336-DUP1)		Prepared	: 05/01/18 11:0)7 Analyz	ed: 05/01/18	3 15:06						
QC Source Sample: MW23-W (A8	BD0907-21)											
Chloroethane	ND		5.00	ug/L	1		ND				30%	
Chloroform	ND		1.00	ug/L	1		ND				30%	
Chloromethane	ND		5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
4-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND		1.00	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1		ND				30%	
Dibromomethane	ND		1.00	ug/L	1		ND				30%	
1,2-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
1,3-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
1,4-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND		1.00	ug/L	1		ND				30%	
1,1-Dichloroethane	ND		0.400	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1		ND				30%	
1,1-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
1,2-Dichloropropane	ND		0.500	ug/L	1		ND				30%	
1,3-Dichloropropane	ND		1.00	ug/L	1		ND				30%	
2,2-Dichloropropane	ND		1.00	ug/L	1		ND				30%	
1,1-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Hexachlorobutadiene	ND		5.00	ug/L	1		ND				30%	
2-Hexanone	ND		10.0	ug/L	1		ND				30%	
Isopropylbenzene	ND		1.00	ug/L	1		ND				30%	
4-Isopropyltoluene	ND		1.00	ug/L	1		ND				30%	
Methylene chloride	ND		3.00	ug/L	1		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1		ND				30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID: A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Craig Hultgren

			Volatile Org	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wat	er				
Ouplicate (8050336-DUP1)		Prepared	: 05/01/18 11:0	07 Analyz	ed: 05/01/18	3 15:06						
QC Source Sample: MW23-W (A	8D0907-21)											
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1		ND				30%	
Naphthalene	ND		2.00	ug/L	1		ND				30%	
n-Propylbenzene	ND		0.500	ug/L	1		ND				30%	
Styrene	ND		1.00	ug/L	1		ND				30%	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1		ND				30%	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND		0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND		0.500	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND		0.400	ug/L	1		ND				30%	
Trichlorofluoromethane	ND		2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND		1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
Vinyl chloride	ND		0.400	ug/L	1		ND				30%	
m,p-Xylene	ND		1.00	ug/L	1		ND				30%	
o-Xylene	ND		0.500	ug/L	1		ND				30%	
Xylenes, total	ND		1.50	ug/L	1		ND				30%	
urr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80	0-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	1-120 %		"					
Duplicate (8050336-DUP2)		Prepared	: 05/01/18 11:0	07 Analyz	ed: 05/01/18	3 20:46						
QC Source Sample: Non-SDG (A8 PA 8260C	D0344-23)											
Acetone	150		20.0	ug/L	1		162			8	30%	
Acrylonitrile	ND		2.00	ug/L	1		ND				30%	
Benzene	58.0		0.200	ug/L	1		61.0			5	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Craig Hultgren

			Volatile Org	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wat	er				
Duplicate (8050336-DUP2)		Prepared	: 05/01/18 11:0)7 Analyz	ed: 05/01/18	3 20:46						
QC Source Sample: Non-SDG (A8	D0344-23)											
Bromobenzene	ND		0.500	ug/L	1		ND				30%	
Bromochloromethane	ND		1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND		1.00	ug/L	1		ND				30%	
Bromoform	24.1		1.00	ug/L	1		24.6			2	30%	
Bromomethane	25.3		5.00	ug/L	1		21.6			16	30%	
2-Butanone (MEK)	100		10.0	ug/L	1		110			9	30%	
n-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
tert-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
Carbon disulfide	ND		10.0	ug/L	1		ND				30%	
Carbon tetrachloride	63.1		1.00	ug/L	1		70.1			10	30%	
Chlorobenzene	82.6		0.500	ug/L	1		88.3			7	30%	
Chloroethane	ND		5.00	ug/L	1		ND				30%	
Chloroform	84.0		1.00	ug/L	1		87.0			4	30%	
Chloromethane	23.4		5.00	ug/L	1		24.6			5	30%	
2-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
4-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
Dibromochloromethane	74.2		1.00	ug/L	1		74.7			0.6	30%	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1		ND				30%	
Dibromomethane	101		1.00	ug/L	1		102			1	30%	
1,2-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
1,3-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
1,4-Dichlorobenzene	71.4		0.500	ug/L	1		77.0			8	30%	
Dichlorodifluoromethane	ND		1.00	ug/L	1		ND				30%	
1,1-Dichloroethane	51.3		0.400	ug/L	1		55.6			8	30%	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1		ND				30%	
1,1-Dichloroethene	87.8		0.400	ug/L	1		92.3			5	30%	
cis-1,2-Dichloroethene	45.8		0.400	ug/L	1		47.2			3	30%	
trans-1,2-Dichloroethene	31.9		0.400	ug/L	1		32.6			2	30%	
1,2-Dichloropropane	131		0.500	ug/L	1		136			4	30%	
1,3-Dichloropropane	ND		1.00	ug/L	1		ND				30%	

Apex Laboratories

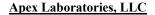
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwast Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID:
A8D0907 - 050818 0221


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Orç	ganic Co	mpounds	by EPA 8	260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wat	er				
Duplicate (8050336-DUP2)		Prepared	: 05/01/18 11:0)7 Analyz	red: 05/01/1	8 20:46						
QC Source Sample: Non-SDG (A81	D0344-23)											
2,2-Dichloropropane	ND		1.00	ug/L	1		ND				30%	
1,1-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
cis-1,3-Dichloropropene	105		1.00	ug/L	1		107			2	30%	
trans-1,3-Dichloropropene	47.2		1.00	ug/L	1		48.2			2	30%	
Ethylbenzene	66.3		0.500	ug/L	1		73.6			10	30%	
Hexachlorobutadiene	34.5		5.00	ug/L	1		36.3			5	30%	
2-Hexanone	167		10.0	ug/L	1		184			10	30%	
Isopropylbenzene	ND		1.00	ug/L	1		ND				30%	
4-Isopropyltoluene	ND		1.00	ug/L	1		ND				30%	
Methylene chloride	73.5		3.00	ug/L	1		75.7			3	30%	
4-Methyl-2-pentanone (MiBK)	146		10.0	ug/L	1		159			8	30%	
Methyl tert-butyl ether (MTBE)	87.4		1.00	ug/L	1		88.8			2	30%	
Naphthalene	73.6		2.00	ug/L	1		76.2			3	30%	
n-Propylbenzene	ND		0.500	ug/L	1		ND				30%	
Styrene	47.3		1.00	ug/L	1		51.6			9	30%	
1,1,1,2-Tetrachloroethane	46.3		0.400	ug/L	1		49.5			7	30%	
1,1,2,2-Tetrachloroethane	111		0.500	ug/L	1		118			6	30%	
Tetrachloroethene (PCE)	47.5		0.400	ug/L	1		53.3			12	30%	
Toluene	53.7		1.00	ug/L	1		58.8			9	30%	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	26.2		0.400	ug/L	1		28.3			8	30%	
1,1,2-Trichloroethane	88.2		0.500	ug/L	1		90.3			2	30%	
Trichloroethene (TCE)	65.5		0.400	ug/L	1		67.8			3	30%	
Trichlorofluoromethane	56.6		2.00	ug/L	1		62.3			10	30%	
1,2,3-Trichloropropane	42.7		1.00	ug/L	1		44.6			4	30%	
1,2,4-Trimethylbenzene	76.9		1.00	ug/L	1		83.9			9	30%	
1,3,5-Trimethylbenzene	58.1		1.00	ug/L	1		63.5			9	30%	
Vinyl chloride	ND		0.400	ug/L	1		ND				30%	
m,p-Xylene	18.5		1.00	ug/L	1		20.3			9	30%	
o-Xylene	64.0		0.500	ug/L	1		70.6			10	30%	

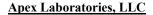
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

 Project Number:
 2017-074
 Report ID:


 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wat	er				
Duplicate (8050336-DUP2)		Prepared	: 05/01/18 11:	07 Analyz	zed: 05/01/1	8 20:46						
QC Source Sample: Non-SDG (A8	D0344-23)											
Xylenes, total	82.5		1.50	ug/L	1		90.9			10	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80	0-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			101 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			103 %	80	0-120 %		"					
Matrix Spike (8050336-MS1)		Prepared	: 05/01/18 11:	07 Analyz	zed: 05/01/1	8 18:53						
QC Source Sample: Non-SDG (A8	D0910-01)											
EPA 8260C												
Acetone	44.3		20.0	ug/L	1	40.0	ND	111	39-160%			
Acrylonitrile	21.4		2.00	ug/L	1	20.0	ND	107	63-135%			
Benzene	21.8		0.200	ug/L	1	20.0	ND	109	79-120%			
Bromobenzene	21.4		0.500	ug/L	1	20.0	ND	107	80-120%			
Bromochloromethane	20.1		1.00	ug/L	1	20.0	ND	100	78-123%			
Bromodichloromethane	20.4		1.00	ug/L	1	20.0	ND	102	79-125%			
Bromoform	20.2		1.00	ug/L	1	20.0	ND	101	66-130%			
Bromomethane	15.9		5.00	ug/L	1	20.0	ND	80	53-141%			E-05, Q-54b
2-Butanone (MEK)	44.4		10.0	ug/L	1	40.0	ND	111	56-143%			
n-Butylbenzene	23.5		1.00	ug/L	1	20.0	ND	117	75-128%			
sec-Butylbenzene	23.8		1.00	ug/L	1	20.0	ND	119	77-126%			
tert-Butylbenzene	22.7		1.00	ug/L	1	20.0	ND	114	78-124%			
Carbon disulfide	22.5		10.0	ug/L	1	20.0	ND	112	64-133%			
Carbon tetrachloride	19.9		1.00	ug/L	1	20.0	ND	100	72-136%			
Chlorobenzene	20.9		0.500	ug/L	1	20.0	ND	104	80-120%			
Chloroethane	23.4		5.00	ug/L	1	20.0	ND	117	60-138%			
Chloroform	20.0		1.00	ug/L	1	20.0	ND	100	79-124%			
Chloromethane	13.6		5.00	ug/L	1	20.0	ND	68	50-139%			Q-54d
2-Chlorotoluene	22.7		1.00	ug/L	1	20.0	ND	114	79-122%			
4-Chlorotoluene	22.1		1.00	ug/L	1	20.0	ND	110	78-122%			
Dibromochloromethane	21.5		1.00	ug/L	1	20.0	ND	108	74-126%			
1,2-Dibromo-3-chloropropane	21.6		5.00	ug/L	1	20.0	ND	108	62-128%			
1,2-Dibromoethane (EDB)	21.7		0.500	ug/L	1	20.0	ND	108	77-121%			
Dibromomethane	20.1		1.00	ug/L	1	20.0	ND	101	79-123%			

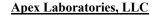
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS


Project Manager: Craig Hultgren

			Volatile Org	anic Co	mpounds	by EPA 8	3260C					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wat	er				
Matrix Spike (8050336-MS1)		Prepared	: 05/01/18 11:0	7 Analyz	ed: 05/01/18	8 18:53						
QC Source Sample: Non-SDG (A8)	D0910-01)											
1,2-Dichlorobenzene	21.2		0.500	ug/L	1	20.0	ND	106	80-120%			
1,3-Dichlorobenzene	21.6		0.500	ug/L	1	20.0	ND	108	80-120%			
1,4-Dichlorobenzene	20.2		0.500	ug/L	1	20.0	ND	101	79-120%			
Dichlorodifluoromethane	18.7		1.00	ug/L	1	20.0	ND	94	32-152%			
1,1-Dichloroethane	21.1		0.400	ug/L	1	20.0	ND	106	77-125%			
1,2-Dichloroethane (EDC)	19.1		0.400	ug/L	1	20.0	ND	95	73-128%			
1,1-Dichloroethene	21.7		0.400	ug/L	1	20.0	ND	108	71-131%			
cis-1,2-Dichloroethene	21.3		0.400	ug/L	1	20.0	ND	107	78-123%			
trans-1,2-Dichloroethene	22.0		0.400	ug/L	1	20.0	ND	110	75-124%			
1,2-Dichloropropane	21.4		0.500	ug/L	1	20.0	ND	107	78-122%			
1,3-Dichloropropane	21.4		1.00	ug/L	1	20.0	ND	107	80-120%			
2,2-Dichloropropane	18.3		1.00	ug/L	1	20.0	ND	91	60-139%			
1,1-Dichloropropene	22.2		1.00	ug/L	1	20.0	ND	111	79-125%			
cis-1,3-Dichloropropene	22.1		1.00	ug/L	1	20.0	ND	111	75-124%			
trans-1,3-Dichloropropene	21.9		1.00	ug/L	1	20.0	ND	109	73-127%			
Ethylbenzene	21.4		0.500	ug/L	1	20.0	ND	107	79-121%			
Hexachlorobutadiene	20.6		5.00	ug/L	1	20.0	ND	103	66-134%			
2-Hexanone	45.7		10.0	ug/L	1	40.0	ND	114	57-139%			
Isopropylbenzene	23.2		1.00	ug/L	1	20.0	ND	116	72-131%			
4-Isopropyltoluene	24.3		1.00	ug/L	1	20.0	ND	122	77-127%			
Methylene chloride	20.1		3.00	ug/L	1	20.0	ND	101	74-124%			
4-Methyl-2-pentanone (MiBK)	47.0		10.0	ug/L	1	40.0	ND	118	67-130%			
Methyl tert-butyl ether	21.3		1.00	ug/L	1	20.0	ND	106	71-124%			
(MTBE) Naphthalene	22.6		2.00	ug/L	1	20.0	ND	113	61-128%			
n-Propylbenzene	22.4		0.500	ug/L ug/L	1	20.0	ND ND	113	76-126%			
Styrene	23.6		1.00	ug/L ug/L	1	20.0	ND ND	112	78-123%			
1,1,1,2-Tetrachloroethane	23.6		0.400	-	1	20.0	ND ND	107	78-123% 78-124%			
			0.400	ug/L								
1,1,2,2-Tetrachloroethane Tetrachloroethene (PCE)	22.1 21.2		0.300	ug/L	1	20.0 20.0	ND ND	111 106	71-121% 74-129%			
				ug/L	1							
Toluene	20.7		1.00	ug/L	1	20.0	ND	103	80-121%			
1,2,3-Trichlorobenzene	21.4		2.00	ug/L	1	20.0	ND	107	69-129%			

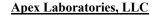
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smeinghine

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

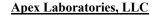
Volatile Organic Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050336 - EPA 5030B							Wat	er				
Matrix Spike (8050336-MS1)		Prepared	: 05/01/18 11:	07 Analyz	ed: 05/01/18	3 18:53						
QC Source Sample: Non-SDG (A8	D0910-01)											
1,2,4-Trichlorobenzene	21.1		2.00	ug/L	1	20.0	ND	106	69-130%			
1,1,1-Trichloroethane	20.4		0.400	ug/L	1	20.0	ND	102	74-131%			
1,1,2-Trichloroethane	20.6		0.500	ug/L	1	20.0	ND	103	80-120%			
Trichloroethene (TCE)	21.6		0.400	ug/L	1	20.0	ND	108	79-123%			
Trichlorofluoromethane	19.0		2.00	ug/L	1	20.0	ND	95	65-141%			
1,2,3-Trichloropropane	20.6		1.00	ug/L	1	20.0	ND	103	73-122%			
1,2,4-Trimethylbenzene	23.4		1.00	ug/L	1	20.0	ND	117	76-124%			
1,3,5-Trimethylbenzene	23.2		1.00	ug/L	1	20.0	ND	116	75-124%			
Vinyl chloride	23.8		0.400	ug/L	1	20.0	ND	119	58-137%			
m,p-Xylene	44.2		1.00	ug/L	1	40.0	ND	110	80-121%			
o-Xylene	22.5		0.500	ug/L	1	20.0	ND	113	78-122%			
Xylenes, total	66.7		1.50	ug/L	1	60.0	ND	111	79-121%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80	-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			100 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			100 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID:
A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

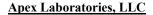
	Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 8050343 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er					
Blank (8050343-BLK2)		Prepared	: 05/01/18 09:32	2 Analyz	ed: 05/02/1	8 19:14						Q-22	
EPA 8270D (SIM)													
Acenaphthene	ND		0.0909	ug/L	1								
Acenaphthylene	ND		0.0909	ug/L	1								
Anthracene	ND		0.0909	ug/L	1								
Benz(a)anthracene	ND		0.0909	ug/L	1								
Benzo(a)pyrene	ND		0.0909	ug/L	1								
Benzo(b)fluoranthene	ND		0.0909	ug/L	1								
Benzo(k)fluoranthene	ND		0.0909	ug/L	1								
Benzo(g,h,i)perylene	ND		0.0909	ug/L	1								
Chrysene	ND		0.0909	ug/L	1								
Dibenz(a,h)anthracene	ND		0.0909	ug/L	1								
Dibenzofuran	ND		0.0909	ug/L	1								
Fluoranthene	ND		0.0909	ug/L	1								
Fluorene	ND		0.0909	ug/L	1								
Indeno(1,2,3-cd)pyrene	ND		0.0909	ug/L	1								
1-Methylnaphthalene	ND		0.182	ug/L	1								
2-Methylnaphthalene	ND		0.182	ug/L	1								
Naphthalene	ND		0.182	ug/L	1								
Phenanthrene	ND		0.0909	ug/L	1								
Pyrene	ND		0.0909	ug/L	1								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

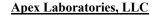
		Polya	romatic Hyd	rocarbo	ons (PAH	s) by EPA	8270D S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050406 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (8050406-BLK2)		Prepared	: 05/02/18 13:43	3 Analyz	zed: 05/03/1	8 12:14						Q-22
EPA 8270D (SIM)												
Acenaphthene	ND		0.0909	ug/L	1							
Acenaphthylene	ND		0.0909	ug/L	1							
Anthracene	ND		0.0909	ug/L	1							
Benz(a)anthracene	ND		0.0909	ug/L	1							
Benzo(a)pyrene	ND		0.0909	ug/L	1							
Benzo(b)fluoranthene	ND		0.0909	ug/L	1							
Benzo(k)fluoranthene	ND		0.0909	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0909	ug/L	1							
Chrysene	ND		0.0909	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0909	ug/L	1							
Dibenzofuran	ND		0.0909	ug/L	1							
Fluoranthene	ND		0.0909	ug/L	1							
Fluorene	ND		0.0909	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.0909	ug/L	1							
1-Methylnaphthalene	ND		0.182	ug/L	1							
2-Methylnaphthalene	ND		0.182	ug/L	1							
Naphthalene	ND		0.182	ug/L	1							
Phenanthrene	ND		0.0909	ug/L	1							
Pyrene	ND		0.0909	ug/L	1							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**


Report ID: A8D0907 - 050818 0221

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 200.8 (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050348 - EPA 3015A							Wate	ər				
Blank (8050348-BLK1)		Prepared	: 05/01/18 10:2	9 Analyz	ed: 05/02/13	8 16:10						
EPA 200.8												
Lead	ND		0.200	ug/L	1							
LCS (8050348-BS1)		Prepared	: 05/01/18 10:2	9 Analyz	ed: 05/02/18	8 16:05						
EPA 200.8												
Lead	53.0		0.200	ug/L	1	55.6		95	85-115%			
Duplicate (8050348-DUP1)		Prepared	: 05/01/18 10:2	9 Analyz	ed: 05/02/13	8 16:35						
QC Source Sample: Non-SDG (A8	D0886-02)											
EPA 200.8 Lead	ND		0.200	ug/L	1		ND				20%	
Matrix Spike (8050348-MS1)		Prepared	: 05/01/18 10:2	9 Analyz	ed: 05/02/18	8 16:40						
QC Source Sample: Non-SDG (A8	D0886-02)											
EPA 200.8												
Lead	53.1		0.200	ug/L	1	55.6	ND	96	70-130%			
Matrix Spike (8050348-MS2)		Prepared	: 05/01/18 10:2	9 Analyz	ed: 05/02/18	8 18:49						
OC Source Sample: Non-SDG (A8	D0931-01)											
EPA 200.8												
Lead	58.9		0.200	ug/L	1	55.6	6.88	94	70-130%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

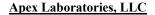
<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

SAMPLE PREPARATION INFORMATION


		Diesel an	ıd/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3510C (Fuels/Acid Ex	<u>t.)</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050343							
A8D0907-22	Water	NWTPH-Dx	04/26/18 13:40	05/01/18 12:36	1060mL/5mL	1000mL/5mL	0.94
A8D0907-23	Water	NWTPH-Dx	04/24/18 15:10	05/01/18 12:36	1060mL/5mL	1000mL/5mL	0.94
A8D0907-24	Water	NWTPH-Dx	04/26/18 15:15	05/01/18 12:36	1060mL/5mL	1000mL/5mL	0.94
A8D0907-25	Water	NWTPH-Dx	04/26/18 14:30	05/01/18 12:36	1060mL/5mL	1000mL/5mL	0.94
A8D0907-26	Water	NWTPH-Dx	04/26/18 11:10	05/01/18 12:36	1060mL/5mL	1000mL/5mL	0.94
A8D0907-27	Water	NWTPH-Dx	04/26/18 19:35	05/01/18 12:36	1060mL/5mL	1000mL/5mL	0.94
A8D0907-28	Water	NWTPH-Dx	04/24/18 13:00	05/01/18 09:32	1060mL/5mL	1000 mL/5 mL	0.94
Batch: 8050406							
A8D0907-01	Water	NWTPH-Dx	04/24/18 17:05	05/02/18 13:43	1070mL/5mL	1000mL/5mL	0.94
A8D0907-02	Water	NWTPH-Dx	04/25/18 14:00	05/02/18 13:43	1070mL/5mL	1000mL/5mL	0.94
A8D0907-03	Water	NWTPH-Dx	04/25/18 09:00	05/02/18 13:43	1070mL/5mL	1000mL/5mL	0.94
A8D0907-04	Water	NWTPH-Dx	04/25/18 14:40	05/02/18 13:43	1070mL/5mL	1000mL/5mL	0.94
A8D0907-05	Water	NWTPH-Dx	04/24/18 13:40	05/02/18 13:43	1060mL/5mL	1000mL/5mL	0.94
A8D0907-06	Water	NWTPH-Dx	04/25/18 16:55	05/02/18 13:43	1070mL/5mL	1000mL/5mL	0.94
A8D0907-07	Water	NWTPH-Dx	04/25/18 15:20	05/02/18 13:43	1070mL/5mL	1000mL/5mL	0.94
A8D0907-08	Water	NWTPH-Dx	04/26/18 12:05	05/02/18 13:43	1070mL/5mL	1000mL/5mL	0.94
A8D0907-09	Water	NWTPH-Dx	04/26/18 18:45	05/02/18 13:43	1070mL/5mL	1000mL/5mL	0.94
A8D0907-10	Water	NWTPH-Dx	04/26/18 16:15	05/02/18 16:50	1060mL/5mL	1000mL/5mL	0.94
A8D0907-11	Water	NWTPH-Dx	04/26/18 10:20	05/02/18 16:50	1070mL/5mL	1000mL/5mL	0.94
A8D0907-12	Water	NWTPH-Dx	04/25/18 09:55	05/02/18 16:50	1060mL/5mL	1000mL/5mL	0.94
A8D0907-13	Water	NWTPH-Dx	04/25/18 10:50	05/02/18 16:50	1060mL/5mL	1000mL/5mL	0.94
A8D0907-14	Water	NWTPH-Dx	04/25/18 12:05	05/02/18 16:50	1070mL/5mL	1000mL/5mL	0.94
A8D0907-15	Water	NWTPH-Dx	04/26/18 09:20	05/02/18 16:50	1070mL/5mL	1000mL/5mL	0.94
A8D0907-16	Water	NWTPH-Dx	04/26/18 11:05	05/02/18 16:50	1060mL/5mL	1000mL/5mL	0.94
A8D0907-17	Water	NWTPH-Dx	04/26/18 13:00	05/02/18 16:50	1060mL/5mL	1000mL/5mL	0.94
A8D0907-18	Water	NWTPH-Dx	04/26/18 17:55	05/02/18 16:50	1060mL/5mL	1000mL/5mL	0.94
A8D0907-19	Water	NWTPH-Dx	04/26/18 17:05	05/02/18 16:50	1070mL/5mL	1000mL/5mL	0.94
A8D0907-20	Water	NWTPH-Dx	04/26/18 19:30	05/02/18 16:50	1060mL/5mL	1000mL/5mL	0.94
Batch: 8050449							
A8D0907-21	Water	NWTPH-Dx	04/25/18 16:05	05/03/18 13:06	1050mL/5mL	1000mL/5mL	0.95

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

SAMPLE PREPARATION INFORMATION

	Ga	asoline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) t	y NWTPH-Gx		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8041230							
A8D0907-01	Water	NWTPH-Gx (MS)	04/24/18 17:05	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00
A8D0907-02	Water	NWTPH-Gx (MS)	04/25/18 14:00	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00
A8D0907-03	Water	NWTPH-Gx (MS)	04/25/18 09:00	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00
A8D0907-04	Water	NWTPH-Gx (MS)	04/25/18 14:40	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00
A8D0907-05	Water	NWTPH-Gx (MS)	04/24/18 13:40	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00
A8D0907-07	Water	NWTPH-Gx (MS)	04/25/18 15:20	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00
A8D0907-08	Water	NWTPH-Gx (MS)	04/26/18 12:05	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00
A8D0907-10	Water	NWTPH-Gx (MS)	04/26/18 16:15	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00
A8D0907-11	Water	NWTPH-Gx (MS)	04/26/18 10:20	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00
A8D0907-12	Water	NWTPH-Gx (MS)	04/25/18 09:55	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00
Batch: 8041255							
A8D0907-13	Water	NWTPH-Gx (MS)	04/25/18 10:50	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00
A8D0907-14	Water	NWTPH-Gx (MS)	04/25/18 12:05	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00
A8D0907-15	Water	NWTPH-Gx (MS)	04/26/18 09:20	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00
A8D0907-16	Water	NWTPH-Gx (MS)	04/26/18 11:05	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00
A8D0907-18	Water	NWTPH-Gx (MS)	04/26/18 17:55	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00
A8D0907-28	Water	NWTPH-Gx (MS)	04/24/18 13:00	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00
Batch: 8041257							
A8D0907-25	Water	NWTPH-Gx (MS)	04/26/18 14:30	04/30/18 17:58	5mL/5mL	5mL/5mL	1.00
Batch: 8050333							
A8D0907-19RE1	Water	NWTPH-Gx (MS)	04/26/18 17:05	05/01/18 11:45	5mL/5mL	5mL/5mL	1.00
A8D0907-20RE1	Water	NWTPH-Gx (MS)	04/26/18 19:30	05/01/18 11:45	5mL/5mL	5mL/5mL	1.00
Batch: 8050336							
A8D0907-06RE1	Water	NWTPH-Gx (MS)	04/25/18 16:55	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00
A8D0907-09RE1	Water	NWTPH-Gx (MS)	04/26/18 18:45	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00
A8D0907-21	Water	NWTPH-Gx (MS)	04/25/18 16:05	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00
A8D0907-22	Water	NWTPH-Gx (MS)	04/26/18 13:40	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00
A8D0907-23	Water	NWTPH-Gx (MS)	04/24/18 15:10	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00
A8D0907-24	Water	NWTPH-Gx (MS)	04/26/18 15:15	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00
A8D0907-26	Water	NWTPH-Gx (MS)	04/26/18 11:10	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00
A8D0907-27	Water	NWTPH-Gx (MS)	04/26/18 19:35	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

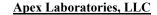
The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: 2017-074
Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221


SAMPLE PREPARATION INFORMATION

	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
Prep: EPA 5030B					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 8050380												
A8D0907-17RE1	Water	NWTPH-Gx (MS)	04/26/18 13:00	05/02/18 11:08	5mL/5mL	5mL/5mL	1.00					

	BTEX Compounds by EPA 8260C										
<u>Prep: EPA 5030B</u>					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 8041230											
A8D0907-01	Water	EPA 8260C	04/24/18 17:05	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00				
A8D0907-02	Water	EPA 8260C	04/25/18 14:00	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00				
A8D0907-04	Water	EPA 8260C	04/25/18 14:40	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00				
A8D0907-05	Water	EPA 8260C	04/24/18 13:40	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00				
A8D0907-07	Water	EPA 8260C	04/25/18 15:20	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00				
A8D0907-08	Water	EPA 8260C	04/26/18 12:05	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00				
A8D0907-10	Water	EPA 8260C	04/26/18 16:15	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00				
A8D0907-11	Water	EPA 8260C	04/26/18 10:20	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00				
A8D0907-12	Water	EPA 8260C	04/25/18 09:55	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00				
Batch: 8041255											
A8D0907-13	Water	EPA 8260C	04/25/18 10:50	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00				
A8D0907-15	Water	EPA 8260C	04/26/18 09:20	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00				
A8D0907-18	Water	EPA 8260C	04/26/18 17:55	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00				
A8D0907-28	Water	EPA 8260C	04/24/18 13:00	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00				
Batch: 8041257											
A8D0907-25	Water	EPA 8260C	04/26/18 14:30	04/30/18 17:58	5mL/5mL	5mL/5mL	1.00				
Batch: 8050333											
A8D0907-13RE1	Water	EPA 8260C	04/25/18 10:50	05/01/18 11:45	5mL/5mL	5mL/5mL	1.00				
A8D0907-19RE1	Water	EPA 8260C	04/26/18 17:05	05/01/18 11:45	5mL/5mL	5mL/5mL	1.00				
A8D0907-20RE1	Water	EPA 8260C	04/26/18 19:30	05/01/18 11:45	5mL/5mL	5mL/5mL	1.00				
Batch: 8050336											
A8D0907-06RE1	Water	EPA 8260C	04/25/18 16:55	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00				
A8D0907-09RE1	Water	EPA 8260C	04/26/18 18:45	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

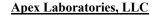
<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0907 - 050818 0221

SAMPLE PREPARATION INFORMATION


	BTEX Compounds by EPA 8260C											
Prep: EPA 5030B					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A8D0907-21	Water	EPA 8260C	04/25/18 16:05	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00					
A8D0907-22	Water	EPA 8260C	04/26/18 13:40	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00					
A8D0907-23	Water	EPA 8260C	04/24/18 15:10	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00					
A8D0907-24	Water	EPA 8260C	04/26/18 15:15	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00					
A8D0907-27	Water	EPA 8260C	04/26/18 19:35	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00					
Batch: 8050380												
A8D0907-17RE1	Water	EPA 8260C	04/26/18 13:00	05/02/18 11:08	5mL/5mL	5mL/5mL	1.00					

	Volatile Organic Compounds by EPA 8260C											
Prep: EPA 5030B					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 8041230												
A8D0907-03	Water	EPA 8260C	04/25/18 09:00	04/30/18 10:27	5mL/5mL	5mL/5mL	1.00					
Batch: 8041255												
A8D0907-14	Water	EPA 8260C	04/25/18 12:05	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00					
A8D0907-16	Water	EPA 8260C	04/26/18 11:05	04/30/18 15:23	5mL/5mL	5mL/5mL	1.00					
Batch: 8050336												
A8D0907-26	Water	EPA 8260C	04/26/18 11:10	05/01/18 11:07	5mL/5mL	5mL/5mL	1.00					

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270D SIM											
Prep: EPA 3510C (I	Fuels/Acid Ex	<u>t.)</u>			Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 8050343												
A8D0907-27	Water	EPA 8270D (SIM)	04/26/18 19:35	05/01/18 12:36	1060mL/5mL	1000mL/2mL	2.36					
A8D0907-27RE1	Water	EPA 8270D (SIM)	04/26/18 19:35	05/01/18 12:36	1060mL/5mL	1000mL/2mL	2.36					
Batch: 8050406												
A8D0907-19	Water	EPA 8270D (SIM)	04/26/18 17:05	05/02/18 16:50	1070mL/5mL	1000mL/2mL	2.34					
A8D0907-20	Water	EPA 8270D (SIM)	04/26/18 19:30	05/02/18 16:50	1060mL/5mL	1000mL/2mL	2.36					
A8D0907-20RE1	Water	EPA 8270D (SIM)	04/26/18 19:30	05/02/18 16:50	1060mL/5mL	1000mL/2mL	2.36					

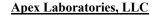
Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: <u>Coleman Wenatchee</u>
Project Number: 2017-074

Project Manager: Craig Hultgren


Report ID: A8D0907 - 050818 0221

SAMPLE PREPARATION INFORMATION

		Polyaromatic	Hydrocarbons (PAHs	s) by EPA 8270D S	IM		
Prep: EPA 3510C (F	uels/Acid Ex	<u>t.)</u>			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
		Tot	al Metals by EPA 200	.8 (ICPMS)			
Prep: EPA 3015A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050348							
A8D0907-01	Water	EPA 200.8	04/24/18 17:05	05/01/18 10:29	45mL/50mL	45mL/50mL	1.00
A8D0907-06	Water	EPA 200.8	04/25/18 16:55	05/01/18 10:29	45mL/50mL	45mL/50mL	1.00
A8D0907-13	Water	EPA 200.8	04/25/18 10:50	05/01/18 10:29	45mL/50mL	45mL/50mL	1.00
A8D0907-20	Water	EPA 200.8	04/26/18 19:30	05/01/18 10:29	45mL/50mL	45mL/50mL	1.00
A8D0907-21	Water	EPA 200.8	04/25/18 16:05	05/01/18 10:29	45 mL/50 mL	45mL/50mL	1.00
A8D0907-27	Water	EPA 200.8	04/26/18 19:35	05/01/18 10:29	45 mL/50 mL	45 mL/50 mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project Number: 2017-074
Project Manager: Craig Hultgren

Report ID:
A8D0907 - 050818 0221

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Client Sar	nple and Quality Control (QC) Sample Qualitier Definitions:
E	Estimated Value. The result is above the calibration range of the instrument.
E-05	Estimated Result. Initial Calibration Verification (ICV) failed high. No affect on non-detect results.
F-11	The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
F-20	Result for Diesel is Estimated due to overlap from Gasoline Range Organics or other VOCs.
M-02	Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-22	Due to limited sample volume or hold time restraints, the NWTPH-Dx extract was used for the 8270 SIM PAH analysis. Therefore no PAH Surrogates and/or Batch QC results are available. Results are Estimated Values.
Q-54	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +20%. The results are reported as Estimated Values.
Q-54a	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by +75%. The results are reported as Estimated Values.
Q-54b	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -3%. The results are reported as Estimated Values.
Q-54c	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -5%. The results are reported as Estimated Values.
Q-54d	Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260C/8270D by -8%. The results are reported as Estimated Values.
Q-55	Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260C, however there is adequate sensitivity to ensure detection at the reporting level.
Q-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260C

The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Apex Laboratories

R-02

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A8D0907 - 050818 0221

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source: In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Miscellaneous Notes:

- "---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somerighini

Report ID:

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: <u>Coleman Wenatchee</u>
Project Number: 2017-074

Project Manager: Craig Hultgren A8D0907 - 050818 0221

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the blank results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met. Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

 HydroCon LLC
 Project
 Coleman Wenatchee

 314 W 15th Street Suite 300
 Project Number:
 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager:
 Craig Hultgren
 A8D0907 - 050818 0221

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) | EPA ID: OR01039

All reported analytes are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex	Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Cert?

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

Project Mgr: C Proj	S S S S S S S S S S	## A PUR		# Cu
1 1 July 12 Ave Suive 300 Vanger (Chr. 5 Cosc) 201 Vanger (Chr. 5 Cosc)	T ANTPH-HCID	## ## ## ## ## ## ## ## ## ## ## ## ##	1	FC#
OR (WA) OR (WA) OR (WA) OR (WA) OR (WA) SAMPLE ID AND HIS AND HIS HARBER HIS BOOK HIS B	AWTPH-DX	83 BCBP 20 C C C C C C C C C C C C C C C C C C	- 1	(Dil Monusta Las Project # 7 (Dil + 1-12)
OR (WA) OR (WA) OR (WA) OR (WA) OR (WA) OR (WA) OATE	AWTPH-GX	87 BCB8 10 8AOC 10 8AOC 10 BLEX AOC8 10 HAOC8		The state of the s
OR (WA) SAMPLE ID A C - W O'H S H S S H O'H	× 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 SIM BVH2 10 SAOC 00 BLEX AOC2 00 HAOC2	ANALYSIS REQUEST	
8	X	78 78 78	600 TTO RCRA Metals (8) TCLP Metals (8) Al. Sb. As, Bs. Be. Cd., Fe. Pb., Co., Cu., Fe. Pb., Ee., Ph., E., Pb., Metals (8)	1500-COF2 1500-COF2 26 ' '8' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
4 15 15 10 10 10 10 10 10	An area and a second	×	10_	d
\$ H(s) (2400)		X		
1/25/18 1440				
		×		
MWC5-W0418 HR/18 1340 /	7	×		
MW06 - WOMB 4/4/3 655 /	<u>ا</u>	×	ā	
NWO WOYS 4/25/18 1520	T	×		
- WOYIS 4/26/18 1205	1	X		
MWC9 - WOMIS 426/8/1845	7	X		
1/26/18/1615	するか	X		
Normal Turn Around Time (TAT) = 10 Business Days (YES)	ON	SPECIAL INSTRUCTIONS:		The second secon
TAT Decembered (eigenly) 3 1	3 Day	W. W		
4 DAY 5 DAY	Other:			
SAMPLES ARE HELD		T		
ISHED BY:	0 0	RELINQUISHED BY:		RECEIVED BY:
Signature: (Signature: M) Date: (Signature: M)	Date: 4 6	Signature:	Date	Signature: Date:
Printed Name: Cly. () Sack () Time: 1055 Printed Name:	Layered Time: 10	101 Funed Name:	Time:	Printed Name: Time:
Company: Madd: OCon Company:	M	Company		Сописания

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: 2017-074
Project Manager: Craig Hultgren

Report ID:
A8D0907 - 050818 0221

					3	IAI	CHAIN OF CUSTODY	2	ב כ	ָ ֭֭֭֡֡֞		ت			Lab #	ر	Z		17 0 NUTU 1 coc 2 or 3	200	(S)	col
12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	97223 F	h: 503-71	8-2323	Fax: 50	3-718.	9333												#0d				
Company: Hydro Coo		Proj	Project Mgr.	Food		Hullard	3	(roject	Project Name:	J	0.000000		130	1 (100	1	Project	- 10 2 # Division Project # 2 017		口たご	17
Address: 314 W 162 /2vc Su.	Swite 300	13	Vancower, WA		93660	_	£	ne: C.	Phone: (5(4)) 448 - 2402	84	7,0	Fax	'	,	1	Em		Email: C.c. a before		1 '		+
Sampled by: Charis Das One	inel							}					NA.	YSIS	ANALYSIS REOUEST	1955					1	
Site Location: OR (WA) Other:		DATE	XIATAN	OF CONTAINERS	MTPH-HCID	xd-HqTW	700 AOC* Enji Fist MLbH-C*	790 BBDM AOC8	90 HAOC?	520 SAOC 500 BLEX AOCs	8HV4 WIS 0/2	987 PCBs	OTT 00	CRA Metals (8)	CLP Metals (8) Sb, As, Ba, Be, Cd, CE, Co, Cu, Fe, Pb,	, Cr, Co, Cu, Fe, Pb, , Mg, Mn, Mo, Ni, K, Ag, Ng, Ti, Y, Zn otal diss TCLP	00- COFS	Z-00				
SAMPLE ID					N		+	_			-	08			TV	.98, TO,		150		1	+	
8140A - 11/20V		(%) (Market	5 T	5		< <				X	-											
MWIZ-WOYIB	77	4/25/18/0755	15	7.					\sim	X			-									┼
M.W13 - WOYIS	1/2	Azshg 1050	0	lr)					X						2	1					-	+
MW WOHIS		5071 110711	la.	Τ.			X		<u> </u>					-						+	-	-
MW16 - WOHIF	7	1/26/18 OF 20	9	T					×				_	+-				-	_	+-	-	+
MWIF - WOHIN	3	4 (26/1X) 11105	₽5	T			X							-						+	-	+
MW 19 - WOYLX	7	4/26/18 1:500	9	7.5					×				-	ļ						-	-	+
15:W 20 - WONIS	7.7	7/26/18 7	U)	1					$1\times$	-				-						+	+	-
15W21 - WOYR	3-	7051 31/21P	١٠.	T					×		X			-				1		+	+	-
MW 22-1004118	129	13 1430	0	1,03		1	Þ		^	-	X		+	-	<u>a</u>					+	+	+
Normal Turn Around Time (TAT) = 10 Business Days	s Days		(YES		NO				SPEC1/	YE INS	SPECIAL INSTRUCTIONS:	TIONS		-						1	-	-
	1 Day	2 Day) as	3 Day																		
t.A.t. Kequested (circle)	4 DAY	SDAY	<u> </u>	Other:	ا																	
SAMPLES ARE HELD FOR 30 DAYS	ARE HE	LD FOR 3	0 DAYS					T														
RELINQUISHED BY:	-	RECE	RECEIVED BY:	1			'	1	RELINQUISHED BY:	UISHE	D BY:					RECE	RECEIVED BY:	::				
Signature. Signature.)ate: "{ [2]	Date: 4 [2X] 15 Signature:	uc:	7	N	Dat	2	Z	Signature					Date:	41	Signature:	re:		~	Date:		
Printed Name: ("Logic Solves Time: 1055 Printed Name: Margor	ime: 105	55 Printed	Name: 6	Suca	inh	Time		1%	O.S. Printed Name.	ame:	-			Time:	ü	Printed	Printed Name:			Time:		
Company: Hylly		Company		Xox	×				ę													

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID:
A8D0907 - 050818 0221

CHANGE THE ALABS Company: Hayles Then there, Then to R 9723 Ph. 503-718-233 Fox. 503-718-0333 Company: Hayles Control of Project Mair Cros. Hay Address: 3H to Location: OR (WA) Sampled by: Christ
--

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0907 - 050818 0221

Client:	11 (ALEA LABS CO	OLER RECEIPT	FORM
Project/Project #:	Client: HYUVU	N	Ele	ement WO#: A8 D0907
Date/Time Received: 4 18 @ 10:55 By: W\S Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other Cooler Inspection Inspected by: W\S : 4128 @ Client ESS FedEx UPS Swift Senvoy SDS Other Cooler Inspection Inspected by: W\S : 4128 @ Client ESS FedEx UPS Swift Senvoy SDS Other ESS No Color Inspected by: No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #	Project/Project #:	Coleman Dil	Wenatch	ice /2017-074
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS_Other_ Cooler Inspection Inspected by: Why : UPS Wift Senvoy SDS_Other_ Chain of Custody Included? Yes No Custody Seals? Yes No Signed/Dated by Client? Yes No Signed/Dated by Client? Yes No Signed/Dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler Temperature (deg. C) 2.3 2.1 5.4 Received on Ice? (NO) Ice Type: (Gel/Real/Other) Condition: Cooler out of temp? (VO) Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/No Samples Inspection: Inspected by: : UPS Wift Samples Intact? Yes No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments: Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:			10000	
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS_Other_Cooler Inspection Inspected by: WW : UPS WIFT Senvoy SDS_Other_Cooler Inspection Chain of Custody Included? Yes No Custody Seals? Yes No Signed/Dated by Client? Yes No Custody Seals? Yes No Signed/Dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler Temperature (deg. C) 2.3 2.1 5.4 Received on Ice? (VN) Temp. Blanks? (YN) Ice Type: (Gel/Real/Other) Cooler out of temp? (VN)Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/No Samples Inspection: Inspected by: : UPS WIFT Samples Inspected Samples Inspected Appropriate for Analysis? Yes WIFT Samples WIFT Samples Physical Received Appropriate (except VOAs): Yes WIFT Samples Physical Received Physical Receiv	Date/Time Received: 니기	6/18 @ 10:55	Bv: 1/4/.5	
Cooler Inspection Inspected by: Why : U18 @ Chain of Custody Included? Yes No Custody Seals? Yes No Signed/Dated by Client? Yes No Custody Seals? Yes No Signed/Dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler Temperature (deg. C) 2.3 2.1 5.4 Received on Ice? (VIN) Temp. Blanks? (YN) Ice Type: (Gel/Real/Other) Cooler out of temp? (VIN) Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/Not Samples Inspection: Inspected by:	Delivered by: ApexCl	ent ESS FedEx	UPS Swift	Senvoy CDC Cd
Signed/Dated by Client? Yes No Custody Seals? Yes No Signed/Dated by Apex? Yes No Signed/Dated by Apex? Yes No Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler Temperature (deg. C) 2.3 2.1 5.4 Received on Ice? (VIN) Temp. Blanks? (Y(N)) Ice Type: (Gel/Real/Other) Cooler out of temp? (VIN) Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/Nof Samples Inspection: Inspected by:	Cooler Inspection I	nspected by:Ms	: 4/28	scrivoysbsOther
Signed/Dated by Client? Yes No Signed/Dated by Apex? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler	Chain of Custody Included	Yes √ No	Custody Sea	uls? Yes No N
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler Temperature (deg. C) 2.3 2 / 5.4 Received on Ice? (NN) Temp. Blanks? (YN) Ice Type: (Gel/Real/Other) Condition: Cooler out of temp? (ND) Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/Not Samples Inspection: Inspected by: No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments: Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:	Signed/Dated by Client?		,	140 /
Received on Ice? (VN) Temp. Blanks? (YN) Ice Type: (Gel/Rea)/Other) Condition: Cooler out of temp? (VN) Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/Not amples Inspection: All Samples Intact? Yes No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:	Signed/Dated by Apex?	Yes No		
Received on Ice? (VN) Temp. Blanks? (YN) Ice Type: (Gel/Rea)/Other) Condition: Cooler out of temp? (VN) Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/Not amples Inspection: All Samples Intact? Yes No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:		Cooler #1 Cooler #2 C	Cooler #3 Cooler #	4 Cooler #5 Cooler #6 Cooler
Temp. Blanks? (YN) Ice Type: (Gel/Real/Other) Condition: Cooler out of temp? (YN) Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/Not Samples Inspection: Inspected by: All Samples Intact? Yes No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:		2.3 2.1	5.4	
Temp. Blanks? (YN) Ice Type: (Gel/Real/Other) Condition: Cooler out of temp? (VN) Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/Not samples Inspection: Inspected by: All Samples Intact? Yes No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:				_
Ice Type: (Gel/Real/Other) Condition: Cooler out of temp? (NP)Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/Not Samples Inspection: Inspected by: All Samples Intact? Yes No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments: Water Samples: pH Checked and Appropriate (except VOAs): Yes Additional Information:	. 0			83 19-0
Cooler out of temp? (VN) Possible reason why: If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/Not Samples Inspection: Inspected by: All Samples Intact? Yes No Comments: Bottle Labels/COCs agree? Yes No Comments: Containers/Volumes Received Appropriate for Analysis? Yes No Comments: Do VOA Vials have Visible Headspace? Yes No NA Comments Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:				
If some coolers are in temp and some out were green dot applied to out of temperature samples? Yes/Not Samples Inspection: Inspected by:	-	400d - ==		
Do VOA Vials have Visible Headspace? Yes No NA Comments Water Samples: pH Checked and Appropriate (except VOAs): Yes No NA Comments: Additional Information:	Bottle Labels/COCs agree?	res No Commo	ents:	
Comments	Containers/Volumes Receive	d Appropriate for Analysi	s? Yes X No_	_ Comments:
Water Samples: pH Checked and Appropriate (except VOAs): Yes No_NA Comments: Additional Information:		Headspace? Yes N	∘ <u>X</u> NA	
Additional Information:				
Additional Information:		and Appropriate (except	VOAs): Yes <u>k</u> No	NA
abalad by:				
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y	Additional Information:			The state of the s
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y			<u> </u>	
TS See Project Contact Form: Y	Labeled by: Witne	se: C1 2		
D MD		Cooler In	ispected by:	See Project Contact Form: Y
		- E		
	15	E.	[m	
	15		M	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Tuesday, May 8, 2018

Craig Hultgren HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

RE: A8D0914 - 2017-074

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A8D0914, which was received by the laboratory on 4/28/2018 at 10:55:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somerughini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: <u>Coleman Wenatchee</u>
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID:
A8D0914 - 050818 0317

ANALYTICAL REPORT FOR SAMPLES

	<u>SA</u>	MPLE INFORMAT	ION	
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SS01-13.97cm	A8D0914-01	Soil	04/23/18 10:25	04/28/18 10:55
SS02-11.75cm	A8D0914-02	Soil	04/23/18 09:45	04/28/18 10:55
SS03-13.97cm	A8D0914-03	Soil	04/23/18 08:40	04/28/18 10:55
SS04-11.82cm	A8D0914-04	Soil	04/23/18 12:15	04/28/18 10:55
SS05-13.97cm	A8D0914-05	Soil	04/23/18 12:45	04/28/18 10:55

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee
Project Number: 2017-074

Report ID:
A8D0914 - 050818 0317

ANALYTICAL SAMPLE RESULTS

Project Manager: Craig Hultgren

	Di	esel and/or Oil	Hydrocart	ons by NWTF	PH-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SS01-13.97cm (A8D0914-01)		Matrix: S	Soil	E	Batch: 8050	371		
Diesel	848		52.5	mg/kg dry	1	05/02/18	NWTPH-Dx	F-1
Oil	392		105	mg/kg dry	1	05/02/18	NWTPH-Dx	F-03, Q-4
Surrogate: o-Terphenyl (Surr)		Recovery: 99 %	Limits:	50-150 %	1	05/02/18	NWTPH-Dx	
SS02-11.75cm (A8D0914-02)		Matrix: S	Soil	E	Batch: 8050	0371		
Diesel	473		36.7	mg/kg dry	1	05/02/18	NWTPH-Dx	F-1
Oil	175		73.4	mg/kg dry	1	05/02/18	NWTPH-Dx	F-0.
Surrogate: o-Terphenyl (Surr)		Recovery: 98 %	Limits:	50-150 %	I	05/02/18	NWTPH-Dx	
SS03-13.97cm (A8D0914-03)		Matrix: S	Soil	E	Batch: 8050	371		
Diesel	207		39.2	mg/kg dry	1	05/02/18	NWTPH-Dx	F-13
Oil	147		78.4	mg/kg dry	1	05/02/18	NWTPH-Dx	F-0
Surrogate: o-Terphenyl (Surr)		Recovery: 101 %	Limits:	50-150 %	I	05/02/18	NWTPH-Dx	
SS04-11.82cm (A8D0914-04)		Matrix: S	Soil	E	Batch: 8050	0371		
Diesel	ND		45.1	mg/kg dry	1	05/02/18	NWTPH-Dx	
Oil	90.6		90.3	mg/kg dry	1	05/02/18	NWTPH-Dx	F-1
Surrogate: o-Terphenyl (Surr)		Recovery: 92 %	Limits:	50-150 %	1	05/02/18	NWTPH-Dx	
SS05-13.97cm (A8D0914-05)		Matrix: S	Soil	E	Batch: 8050	371		
Diesel	ND		38.1	mg/kg dry	1	05/02/18	NWTPH-Dx	
Oil	87.2		76.2	mg/kg dry	1	05/02/18	NWTPH-Dx	F-1
Surrogate: o-Terphenyl (Surr)		Recovery: 92 %	Limits:	50-150 %	1	05/02/18	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Report ID:

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren A8D0914 - 050818 0317

ANALYTICAL SAMPLE RESULTS

	iesel and/or Oil	Hydrocarbons	by NWTP	H-Dx with Acid	d/Silica G	el Cleanup		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SS01-13.97cm (A8D0914-01)		Matrix: S	Soil	E	Batch: 8050	1423		
Diesel	947		52.5	mg/kg dry	1	05/03/18	NWTPH-Dx/SG	F-1:
Oil	ND		105	mg/kg dry	1	05/03/18	NWTPH-Dx/SG	Q-3
Surrogate: o-Terphenyl (Surr)		Recovery: 107 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx/SG	
SS02-11.75cm (A8D0914-02)		Matrix: S	Soil	E	Batch: 8050	1423		
Diesel	526		36.7	mg/kg dry	1	05/03/18	NWTPH-Dx/SG	F-1
Oil	ND		73.4	mg/kg dry	1	05/03/18	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Recovery: 103 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx/SG	
SS03-13.97cm (A8D0914-03)		Matrix: \$	Soil	E	3atch: 8050	1423		
Diesel	238		39.2	mg/kg dry	1	05/03/18	NWTPH-Dx/SG	F-1.
Oil	ND		78.4	mg/kg dry	1	05/03/18	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Recovery: 106 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx/SG	
SS04-11.82cm (A8D0914-04)		Matrix: \$	Soil	E	3atch: 8050)423		
Diesel	ND		45.1	mg/kg dry	1	05/03/18	NWTPH-Dx/SG	
Oil	ND		90.3	mg/kg dry	1	05/03/18	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Recovery: 100 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx/SG	
SS05-13.97cm (A8D0914-05)		Matrix: S	Soil	E	Batch: 8050	1423		
Diesel	ND		38.1	mg/kg dry	1	05/03/18	NWTPH-Dx/SG	
Oil	ND		76.2	mg/kg dry	1	05/03/18	NWTPH-Dx/SG	
Surrogate: o-Terphenyl (Surr)		Recovery: 101 %	Limits:	50-150 %	1	05/03/18	NWTPH-Dx/SG	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID:
A8D0914 - 050818 0317

ANALYTICAL SAMPLE RESULTS

Project Manager: Craig Hultgren

Gasol	ine Range H	ydrocarbon	ıs (Benzen	e thi	rough Naphth	nalene) by	NWTPH-0	Sx .	
Analyte	Sample Result	Detection Limit	Reportin Limit	_	Units	Dilution	Date Analyzed	Method Ref.	Notes
SS01-13.97cm (A8D0914-01RE1)		Matr	ix: Soil		E	Batch: 8050	338		
Gasoline Range Organics	ND		25.1	2	mg/kg dry	50	05/01/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	114 % Lir	nits:	50-150 %	1	05/01/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		1	104 %		50-150 %	1	05/01/18	NWTPH-Gx (MS)	
SS02-11.75cm (A8D0914-02)		Matr	ix: Soil		E	Batch: 8041	236		
Gasoline Range Organics	ND		13.	7	mg/kg dry	50	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery:	111 % Lir	nits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		1	101 %		50-150 %	1	04/30/18	NWTPH-Gx (MS)	
SS03-13.97cm (A8D0914-03)		Matr	ix: Soil		E	Batch: 8041	236		
Gasoline Range Organics	ND		16.3	2	mg/kg dry	50	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	110 % Lir	nits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		1	101 %		50-150 %	1	04/30/18	NWTPH-Gx (MS)	
SS04-11.82cm (A8D0914-04)		Matr	ix: Soil		E	Batch: 8041	236		
Gasoline Range Organics	ND		16.	6	mg/kg dry	50	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	110 % Lir	nits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		1	100 %		50-150 %	1	04/30/18	NWTPH-Gx (MS)	
SS05-13.97cm (A8D0914-05)		Matr	ix: Soil		E	Batch: 8041	236		
Gasoline Range Organics	ND		13.	8	mg/kg dry	50	04/30/18	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery: 1	112 % Lir	nits:	50-150 %	1	04/30/18	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)		1	102 %		50-150 %	1	04/30/18	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0914 - 050818 0317

ANALYTICAL SAMPLE RESULTS

		BTEX Com	pounds by	/ EPA 8260C				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
SS01-13.97cm (A8D0914-01)		Matrix: S	Soil	Е	Batch: 8041	1236		
Benzene	ND		0.0503	mg/kg dry	50	04/30/18	5035A/8260C	
Toluene	0.395		0.252	mg/kg dry	50	04/30/18	5035A/8260C	
Ethylbenzene	ND		0.126	mg/kg dry	50	04/30/18	5035A/8260C	
Xylenes, total	ND		0.378	mg/kg dry	50	04/30/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 105 %	Limits:	80-120 %	1	04/30/18	5035A/8260C	
Toluene-d8 (Surr)		100 %	ı	80-120 %	1	04/30/18	5035A/8260C	
4-Bromofluorobenzene (Surr)		97 %	ı	80-120 %	1	04/30/18	5035A/8260C	
SS02-11.75cm (A8D0914-02)		Matrix: S	Soil	E	Batch: 8041	1236		
Benzene	ND		0.0274	mg/kg dry	50	04/30/18	5035A/8260C	
Toluene	0.182		0.137	mg/kg dry	50	04/30/18	5035A/8260C	
Ethylbenzene	ND		0.0684	mg/kg dry	50	04/30/18	5035A/8260C	
Xylenes, total	ND		0.205	mg/kg dry	50	04/30/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 106 %	Limits:	80-120 %	I	04/30/18	5035A/8260C	
Toluene-d8 (Surr)		100 %		80-120 %	1	04/30/18	5035A/8260C	
4-Bromofluorobenzene (Surr)		98 %	1	80-120 %	1	04/30/18	5035A/8260C	
SS03-13.97cm (A8D0914-03)		Matrix: S	Soil	Batch: 8041236				
Benzene	ND		0.0325	mg/kg dry	50	04/30/18	5035A/8260C	
Toluene	ND		0.162	mg/kg dry	50	04/30/18	5035A/8260C	
Ethylbenzene	ND		0.0811	mg/kg dry	50	04/30/18	5035A/8260C	
Xylenes, total	ND		0.243	mg/kg dry	50	04/30/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery: 106 %	Limits:	80-120 %	1	04/30/18	5035A/8260C	
Toluene-d8 (Surr)		100 %	ı	80-120 %	1	04/30/18	5035A/8260C	
4-Bromofluorobenzene (Surr)		99 %		80-120 %	1	04/30/18	5035A/8260C	
SS04-11.82cm (A8D0914-04)		Matrix: S	Soil	E	Batch: 8041	1236		
Benzene	ND		0.0333	mg/kg dry	50	04/30/18	5035A/8260C	
Toluene	ND		0.166	mg/kg dry	50	04/30/18	5035A/8260C	
Ethylbenzene	ND		0.0832	mg/kg dry	50	04/30/18	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0914 - 050818 0317

ANALYTICAL SAMPLE RESULTS

		BTEX	Com	pounds by	/ EPA 8260C				
Analyte	Sample Result	Detectio Limit	n	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SS04-11.82cm (A8D0914-04)		Mat	trix: S	oil	E	3atch: 8041	236		
Xylenes, total	ND			0.250	mg/kg dry	50	04/30/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits:	80-120 %	1	04/30/18	5035A/8260C	
Toluene-d8 (Surr)			100 %		80-120 %	1	04/30/18	5035A/8260C	
4-Bromofluorobenzene (Surr)			96 %		80-120 %	1	04/30/18	5035A/8260C	
SS05-13.97cm (A8D0914-05)		Mat	trix: S	oil	E	Batch: 8041	236		
Benzene	ND			0.0276	mg/kg dry	50	04/30/18	5035A/8260C	
Toluene	ND			0.138	mg/kg dry	50	04/30/18	5035A/8260C	
Ethylbenzene	ND			0.0690	mg/kg dry	50	04/30/18	5035A/8260C	
Xylenes, total	ND			0.207	mg/kg dry	50	04/30/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	107 %	Limits:	80-120 %	1	04/30/18	5035A/8260C	
Toluene-d8 (Surr)			100 %		80-120 %	1	04/30/18	5035A/8260C	
4-Bromofluorobenzene (Surr)			97 %		80-120 %	1	04/30/18	5035A/8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

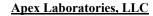
Grand Zmeinghinie

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0914 - 050818 0317


ANALYTICAL SAMPLE RESULTS

		P	ercent Dry W	eight				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SS01-13.97cm (A8D0914-01)		Matrix	: Soil	В	atch: 805	0341		
% Solids	35.3		1.00	% by Weight	1	05/02/18	EPA 8000C	
SS02-11.75cm (A8D0914-02)		Matrix	: Soil	В	atch: 805	0341		
% Solids	52.3		1.00	% by Weight	1	05/02/18	EPA 8000C	
SS03-13.97cm (A8D0914-03)		Matrix	: Soil	В	atch: 805	0341		
% Solids	50.3		1.00	% by Weight	1	05/02/18	EPA 8000C	
SS04-11.82cm (A8D0914-04)		Matrix	: Soil	В	atch: 805	0341		
% Solids	44.1		1.00	% by Weight	1	05/02/18	EPA 8000C	
SS05-13.97cm (A8D0914-05)		Matrix	: Soil	В	atch: 805	0330		
% Solids	51.8		1.00	% by Weight	1	05/01/18	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0914 - 050818 0317

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	rocarbo	ns by NW	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050371 - EPA 3546 (F	uels)						Soil					
Blank (8050371-BLK1)		Prepared	: 05/01/18 18:	13 Analyz	ed: 05/01/1	8 23:56						
NWTPH-Dx												
Diesel	ND		25.0	mg/kg w	et 1							
Oil	ND		50.0	mg/kg w	et 1							
Surr: o-Terphenyl (Surr)		Rece	overy: 91 %	Limits: 50	-150 %	Dili	ution: 1x					
LCS (8050371-BS1)		Prepared	: 05/01/18 18:	13 Analyz	ed: 05/02/1	8 00:19						
NWTPH-Dx												
Diesel	116		25.0	mg/kg w	et 1	125		93	76-115%			
Surr: o-Terphenyl (Surr)		Rece	overy: 99 %	Limits: 50	-150 %	Dili	ution: 1x					
Duplicate (8050371-DUP1)		Prepared	: 05/01/18 18:	13 Analyz	ed: 05/02/1	8 01:04						
QC Source Sample: SS01-13.97c	m (A8D0914-	01)										
NWTPH-Dx												
Diesel	1020		52.6	mg/kg dı	y 1		848			19	30%	F-13
Oil	655		105	mg/kg di	y 1		392			50	30%	F-03, Q-04
Surr: o-Terphenyl (Surr)		Rece	overy: 99 %	Limits: 50	-150 %	Dilt	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Number:2017-074Report ID:Project Manager:Craig HultgrenA8D0914 - 050818 0317

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diese	I and/or O	l Hydrocai	rbons by	NWTPH-I	Ox with Ac	cid/Silica	Gel Clea	ınup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050423 - EPA 3546 w/	/SG+Acid (N	NWTPH)					Soil					
Blank (8050423-BLK1)		Prepared	: 05/01/18 18	:13 Analyz	ed: 05/03/1	8 20:53						
NWTPH-Dx/SG												
Diesel	ND		25.0	mg/kg w	et 1							
Oil	ND		50.0	mg/kg w	et 1							
Surr: o-Terphenyl (Surr)		Reco	very: 103 %	Limits: 50	-150 %	Dilı	ution: 1x					
LCS (8050423-BS1)		Prepared	: 05/01/18 18	:13 Analyz	ed: 05/03/1	8 21:16						
NWTPH-Dx/SG												
Diesel	124		25.0	mg/kg w	et 1	125		100	76-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 110 %	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (8050423-DUP1)		Prepared	: 05/01/18 18	:13 Analyz	ed: 05/03/1	8 22:02						
QC Source Sample: SS01-13.97c	m (A8D0914-	-01)										
NWTPH-Dx/SG												
Diesel	1250		52.6	mg/kg di	y 1		947			27	30%	F-1
Oil	120		105	mg/kg di	y 1		89.1			30	30%	F-0
Surr: o-Terphenyl (Surr)		Reco	very: 108 %	Limits: 50	-150 %	Dilı	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0914 - 050818 0317

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range I	lydrocarbo	ons (Benz	zene throu	ıgh Naph	thalene) l	y NWTF	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041236 - EPA 5035A							Soil					
Blank (8041236-BLK1)		Prepared	: 04/30/18 09:	:30 Analyz	zed: 04/30/18	8 11:46						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg w	et 50							
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	very: 104 % 100 %	Limits: 50	0-150 % 0-150 %	Dil	ution: 1x					
LCS (8041236-BS2)		Prepared	: 04/30/18 09:	:30 Analyz	zed: 04/30/18	8 11:19						
NWTPH-Gx (MS)				·								
Gasoline Range Organics	29.7		5.00	mg/kg w	vet 50	25.0		119	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 105 %	Limits: 50	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	0-150 %		"					
Duplicate (8041236-DUP1)		Prepared	: 04/26/18 17:	:00 Analyz	zed: 04/30/18	8 14:53						
QC Source Sample: Non-SDG (A8	3D0902-01)											
Gasoline Range Organics	509		67.9	mg/kg d	ry 500		547			7	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 118 %	Limits: 50	0-150 %	Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	50	0-150 %		"					
Duplicate (8041236-DUP2)		Prepared	: 04/30/18 15:	:00 Analyz	zed: 04/30/18	8 21:45						
QC Source Sample: Non-SDG (A8	<u>3D0927-06)</u>											
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		6.86	mg/kg d			ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 109 %	Limits: 50		Dil	ution: 1x					
1,4-Difluorobenzene (Sur)			103 %	50	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0914 - 050818 0317

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolir	ne Range F	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene) l	by NWTF	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050338 - EPA 5035A							Soil					
Blank (8050338-BLK1)		Prepared	: 05/01/18 09:	:00 Analy	zed: 05/01/1	8 11:20						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 105 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			104 %	5	0-150 %		"					
LCS (8050338-BS2)		Prepared	: 05/01/18 09:	:00 Analy	zed: 05/01/1	8 10:54						
NWTPH-Gx (MS)												
Gasoline Range Organics	28.4		5.00	mg/kg v	vet 50	25.0		114	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 105 %	Limits: 5	0-150 %	Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			105 %	5	0-150 %		"					
Duplicate (8050338-DUP1)		Prepared	: 04/25/18 09:	:15 Analy	zed: 05/01/1	8 13:34						
QC Source Sample: Non-SDG (A8	3D0863-01)											
NWTPH-Gx (MS)												
Gasoline Range Organics	278		6.27	mg/kg o	lry 50		301			8	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recon	very: 201 %	Limits: 5	0-150 %	Dil	ution: 1x					2
1,4-Difluorobenzene (Sur)			104 %	5	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0914 - 050818 0317

QUALITY CONTROL (QC) SAMPLE RESULTS

			BIEX	Compou	ias by E	PA 8260C	<i>;</i>					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041236 - EPA 5035A							Soil					
Blank (8041236-BLK1)		Prepared: (04/30/18 09::	30 Analyze	d: 04/30/1	8 11:46						
5035A/8260C												
Benzene	ND		0.00667	mg/kg we	t 50							
Toluene	ND		0.0333	mg/kg we	t 50							
Ethylbenzene	ND		0.0167	mg/kg we	t 50							
Xylenes, total	ND		0.0500	mg/kg we	t 50							
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 105 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	120 %		"					
LCS (8041236-BS1)		Prepared: (04/30/18 09::	30 Analyze	d: 04/30/1	8 10:48						
5035A/8260C		•										
Benzene	1.11		0.0100	mg/kg we	t 50	1.00		111	80-120%			
Toluene	1.08		0.0500	mg/kg we	t 50	1.00		108	80-120%			
Ethylbenzene	1.04		0.0250	mg/kg we	t 50	1.00		104	80-120%			
Xylenes, total	3.13		0.0750	mg/kg we	t 50	3.00		104	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 104 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			102 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80-	120 %		"					
Duplicate (8041236-DUP1)		Prepared: (04/26/18 17:0	00 Analyze	d: 04/30/1	8 14:53						
QC Source Sample: Non-SDG (A8I	00902-01)											
5035A/8260C												
Benzene	ND		0.136	mg/kg dry	500		ND				30%	
Toluene	ND		0.679	mg/kg dry	500		ND				30%	
Ethylbenzene	ND		0.339	mg/kg dry	500		0.190			***	30%	
Xylenes, total	1.08		1.02	mg/kg dry	500		1.08			0	30%	
Surr: 1,4-Difluorobenzene (Surr)		Recove	ry: 106 %	Limits: 80-	120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			101 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80-	120 %		"					
Duplicate (8041236-DUP2)		Dramarad: (04/30/18 15:0	00 Amalyza	d: 04/20/1	0.21.45						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0914 - 050818 0317

QUALITY CONTROL (QC) SAMPLE RESULTS

			ВТЕХ	Compou	nds by E	PA 8260C	:					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041236 - EPA 5035A							Soil					
Duplicate (8041236-DUP2)		Prepared	: 04/30/18 15:	00 Analyze	ed: 04/30/1	8 21:45						
QC Source Sample: Non-SDG (A8	D0927-06)											
Benzene	ND		0.0137	mg/kg dr	y 50		ND				30%	
Toluene	ND		0.0686	mg/kg dr	y 50		ND				30%	
Ethylbenzene	ND		0.0343	mg/kg dr	y 50		ND				30%	
Xylenes, total	ND		0.103	mg/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 108 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			101 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			97 %	80-	120 %		"					
Matrix Spike (8041236-MS1)		Prepared	: 04/23/18 12:	45 Analyze	ed: 04/30/1	8 19:04						
QC Source Sample: SS05-13.97cm	(A8D0914-	<u>-05)</u>										
5035A/8260C												
Benzene	3.17		0.0276	mg/kg dr	y 50	2.76	ND	115	77-121%			
Toluene	2.91		0.138	mg/kg dr	y 50	2.76	ND	105	77-121%			
Ethylbenzene	2.78		0.0690	mg/kg dr	y 50	2.76	ND	101	76-122%			
Xylenes, total	8.25		0.207	mg/kg dr	y 50	8.28	ND	100	78-124%			
Surr: 1,4-Difluorobenzene (Surr)		Recon	very: 107 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			100 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID:
A8D0914 - 050818 0317

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Craig Hultgren

				Percent	Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050330 - Total Solids (l	Dry Weigh	nt)					Soil					
Duplicate (8050330-DUP1)		Prepared	: 05/01/18 05	:51 Analyz	ed: 05/01/1	8 10:06						
QC Source Sample: Non-SDG (A8	D0780-22)											
0/ C-1:1-	75 (1.00	0/ l W -:	-l-4 1		76.4			1	100/	
% Solids	75.6		1.00	% by Weig	gnt 1		/0.4			1	10%	
Batch 8050341 - Total Solids (I	Dry Weigh	nt)					Soil					
Duplicate (8050341-DUP1)		Prepared	: 05/01/18 09:	28 Analyz	ed: 05/02/1	8 08:28						
QC Source Sample: Non-SDG (A8 EPA 8000C	D0780-01)											
% Solids	70.1		1.00	% by Weig	ght 1		70.2			0.2	10%	
Duplicate (8050341-DUP2)		Prepared	: 05/01/18 09:	28 Analyz	ed: 05/02/1	8 08:28						
QC Source Sample: Non-SDG (A8	D0863-01)											
<u>EPA 8000C</u> % Solids	77.9		1.00	% by Weig	ght 1		78.4			0.7	10%	
Duplicate (8050341-DUP3)		Prepared	: 05/01/18 09:	28 Analyze	ed: 05/02/1	8 08:28						
QC Source Sample: Non-SDG (A8	D0916-05)											
EPA 8000C												
% Solids	93.7		1.00	% by Weig	ght 1		93.8			0.09	10%	
Duplicate (8050341-DUP4)		Prepared	: 05/01/18 09:	28 Analyz	ed: 05/02/1	8 08:28						
QC Source Sample: Non-SDG (A8	D0935-04)											
## Solids	83.6		1.00	% by Weig	ght 1		83.3			0.3	10%	
Duplicate (8050341-DUP5)		Prepared	: 05/01/18 17:	:19 Analyz	ed: 05/02/1	8 08:28						
QC Source Sample: Non-SDG (A8 EPA 8000C	E0030-01)											

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Report ID:
A8D0914 - 050818 0317

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Craig Hultgren

Percent Dry Weight												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits		RPD Limit	Notes
Batch 8050341 - Total Solids	(Dry Weigh	nt)					Soil					
Duplicate (8050341-DUP6)		Prepared	: 05/01/18 18:	59 Analyz	zed: 05/02/1	8 08:28						
QC Source Sample: Non-SDG (A EPA 8000C	8E0038-02)											
% Solids	75.2		1.00	% by We	ight 1		75.1			0.05	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Doas Smerighini

<u>HydroCon LLC</u> 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID: A8D0914 - 050818 0317

SAMPLE PREPARATION INFORMATION

		Diesel an	ıd/or Oil Hydrocarbor	s by NWTPH-Dx			·
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050371							
A8D0914-01	Soil	NWTPH-Dx	04/23/18 10:25	05/01/18 18:13	10.79g/5mL	10g/5mL	0.93
A8D0914-02	Soil	NWTPH-Dx	04/23/18 09:45	05/01/18 18:13	10.41g/5mL	10g/5mL	0.96
A8D0914-03	Soil	NWTPH-Dx	04/23/18 08:40	05/01/18 18:13	10.14g/5mL	10g/5mL	0.99
A8D0914-04	Soil	NWTPH-Dx	04/23/18 12:15	05/01/18 18:13	10.05g/5mL	10g/5mL	1.00
A8D0914-05	Soil	NWTPH-Dx	04/23/18 12:45	05/01/18 18:13	10.13g/5mL	10g/5mL	0.99

		Diesel and/or Oil Hydroc	arbons by NWTPH-	Dx with Acid/Silica	Gel Cleanup							
Prep: EPA 3546 w/s	Prep: EPA 3546 w/SG+Acid (NWTPH) Sampl											
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 8050423												
A8D0914-01	Soil	NWTPH-Dx/SG	04/23/18 10:25	05/01/18 18:13	10.79g/5mL	10g/5mL	0.93					
A8D0914-02	Soil	NWTPH-Dx/SG	04/23/18 09:45	05/01/18 18:13	10.41g/5mL	10g/5mL	0.96					
A8D0914-03	Soil	NWTPH-Dx/SG	04/23/18 08:40	05/01/18 18:13	10.14g/5mL	10g/5mL	0.99					
A8D0914-04	Soil	NWTPH-Dx/SG	04/23/18 12:15	05/01/18 18:13	10.05g/5mL	10g/5mL	1.00					
A8D0914-05	Soil	NWTPH-Dx/SG	04/23/18 12:45	05/01/18 18:13	10.13g/5mL	10g/5mL	0.99					

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx									
Prep: EPA 5035A					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 8041236									
A8D0914-02	Soil	NWTPH-Gx (MS)	04/23/18 09:45	04/23/18 09:45	5.23g/5mL	5g/5mL	0.96		
A8D0914-03	Soil	NWTPH-Gx (MS)	04/23/18 08:40	04/23/18 08:40	4.4g/5mL	5g/5mL	1.14		
A8D0914-04	Soil	NWTPH-Gx (MS)	04/23/18 12:15	04/23/18 12:15	5.5g/5mL	5g/5mL	0.91		
A8D0914-05	Soil	NWTPH-Gx (MS)	04/23/18 12:45	04/23/18 12:45	5.27g/5mL	5g/5mL	0.95		
Batch: 8050338									
A8D0914-01RE1	Soil	NWTPH-Gx (MS)	04/23/18 10:25	04/23/18 10:25	4.43g/5mL	5g/5mL	1.13		

BTEX Compounds by EPA 8260C

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660

Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID:
A8D0914 - 050818 0317

SAMPLE PREPARATION INFORMATION

BTEX Compounds by EPA 8260C									
Prep: EPA 5035A					Sample	Default	RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor		
Batch: 8041236									
A8D0914-01	Soil	5035A/8260C	04/23/18 10:25	04/23/18 10:25	4.43g/5mL	5g/5mL	1.13		
A8D0914-02	Soil	5035A/8260C	04/23/18 09:45	04/23/18 09:45	5.23g/5mL	5g/5mL	0.96		
A8D0914-03	Soil	5035A/8260C	04/23/18 08:40	04/23/18 08:40	4.4g/5mL	5g/5mL	1.14		
A8D0914-04	Soil	5035A/8260C	04/23/18 12:15	04/23/18 12:15	5.5g/5mL	5g/5mL	0.91		
A8D0914-05	Soil	5035A/8260C	04/23/18 12:45	04/23/18 12:45	5.27g/5mL	5g/5mL	0.95		

Percent Dry Weight								
Prep: Total Solids (Dry Weight)				Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 8050330								
A8D0914-05	Soil	EPA 8000C	04/23/18 12:45	05/01/18 05:51	1N/A/1N/A	1N/A/1N/A	NA	
Batch: 8050341								
A8D0914-01	Soil	EPA 8000C	04/23/18 10:25	05/01/18 09:28	1N/A/1N/A	1N/A/1N/A	NA	
A8D0914-02	Soil	EPA 8000C	04/23/18 09:45	05/01/18 09:28	1N/A/1N/A	1N/A/1N/A	NA	
A8D0914-03	Soil	EPA 8000C	04/23/18 08:40	05/01/18 09:28	1N/A/1N/A	1N/A/1N/A	NA	
A8D0914-04	Soil	EPA 8000C	04/23/18 12:15	05/01/18 09:28	1N/A/1N/A	1N/A/1N/A	NA	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: <u>Coleman Wenatchee</u>
Project Number: 2017-074

Project Manager: Craig Hultgren

Report ID: A8D0914 - 050818 0317

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

F-03	The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not
	representative of the fuel pattern reported.

- F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation
- F-17 No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-37 Sample is non-homogenous. Sample results are less than MRL and duplicate results have hits greater than the MRL. See Duplicate results.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- S-03 Reextraction and analysis, or analysis of laboratory duplicate, confirms surrogate failure due to sample matrix effect.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somenichini

HydroCon LLCProject:Coleman Wenatchee314 W 15th Street Suite 300Project Number:2017-074

 314 W 15th Street Suite 300
 Project Number: 2017-074
 Report ID:

 Vancouver, WA 98660
 Project Manager: Craig Hultgren
 A8D0914 - 050818 0317

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source: In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" *** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

-For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somerughini

Report ID:

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee
Project Number: 2017-074

Project Manager: Craig Hultgren A8D0914 - 050818 0317

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the blank results are less than ten times the level found in blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met. Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenyhini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLCProjectColeman Wenatchee314 W 15th Street Suite 300Project Number:2017-074Report ID:Vancouver, WA 98660Project Manager:Craig HultgrenA8D0914 - 050818 0317

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) | EPA ID: OR01039

All reported analytes are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex	Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Cert?

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenyhini

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID:
A8D0914 - 050818 0317

Date: #0d Z-007I RECEIVED BY Printed Name 1700 - COF2 Signature: Lab # A8D0914 TOTAL DISS TCLP Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Hg, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Tl, V, Zn TOTAI, DISC TOTA TCLP Metals (8) RCRA Metals (8) OTT 009 8087 ECB? CHAIN OF CUSTODY SHV4 MIS 0478 360年8-2402 OOAS 0478 8700 BLEX AOC8 P \$200 HAQC? 8700 KBDW AOC8 8260 VOCs Full List NWTPH-Gx 13 12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333 XQ-HALMN CHOH-HALMN Time: 1055 Printed Name (Merry 197 3 Day # OF CONTAINERS MATRIX SAMPLES ARE HELD FOR 30 DAYS 555 0570 1215 245 5 DAY 2 Day LIME DATE 1 Day # dl ava -13.97cm SOH-11.822m FAT Requested (circle) APEX LABS SSOL-18,975 OR Sos 5502-5503-B

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

HydroCon LLC 314 W 15th Street Suite 300 Vancouver, WA 98660 Project: Coleman Wenatchee

Project Number: **2017-074**Project Manager: **Craig Hultgren**

Report ID:

A8D0914 - 050818 0317

Client: _	Hudrolon	Element WO#: A8 D0914
Project/Pr	oject#: Loi	Leman Dil Wenatchee /2017-034
Delivery in		
	Received: 47418	@ 10:55 By: W5
	y: ApexClient_\(\frac{\frac{1}{2}}{2}\)	SIMUL SCHOOL SIDS Under
Chain of Cu	stody Included? Y	ted by: WS : 4/28/18 @
		Yes No Custody Seals? Yes No
Signed/Date		/es
orgined/Date		Ves No_
Temperature	(deg C) 2:3	ler#1 Cooler#2 Cooler#3 Cooler#4 Cooler#5 Cooler#6 Cool
Received on	(108.0)	
Temp. Blank	· · ·	
	el/Real/Other)	
Condition:	(A)	
Samples Ins	temp? (YN)Possiblers are in temp and sorection: Inspected but ntact? Yes / No_	ome out, were green dot applied to out of temperature samples? Xes/No by: 30 18 @ +477 400
All Samples I Bottle Labels.	rs are in temp and sonection: Inspected by the intact? Yes \(\sqrt{No} \)	ome out, were green dot applied to out of temperature samples? Xes/No by: Comments:
All Samples Ins Bottle Labels WIT 0 112	ars are in temp and sopection: Inspected by intact? Yes \sqrt{No} No \sqrt{COCs} agree? Yes \sqrt{VOCs} VOCS	me out were green dot applied to out of temperature samples? Xes/No by: 430 18 @ +4777 400 % Comments:
All Samples Ins Bottle Labels WT 0 112	rs are in temp and sopection: Inspected \mathbb{R} intact? Yes $\sqrt{N_0}$ No \sqrt{COCs} agree? Yes $\sqrt{1000}$ Polumes Received App	ome out, were green dot applied to out of temperature samples? Xes/No by: Comments:
Bottle Labels WIT of 112 Containers/V.	rs are in temp and somection: Inspected by the intact? Yes \(\sqrt{No}\) No \(\) COCs agree? Yes \(\) \(\)	me out were green dot applied to out of temperature samples? Xes/No by: 430 18 @ +4777 400 % Comments:
Bottle Labels WIT of 111 Containers/Ve SSOS - 4	rs are in temp and sopection: Inspected by the intact? Yes \(\sum No_{\text{COCs agree?}} \text{ Yes_{\text{COCs agree?}} \text{ Yes_{\text{OOS}}} \text{ Vols_{\text{OOS}}} \text{ Vols_{\text{OOS}}} \text{ Vols_{\text{OOS}}} \text{ Vols_{\text{COCS}}} Vols	me out were green dot applied to out of temperature samples? Xes/No by: 430 8 @ +4777 400 \$\text{SSO1} \$\text{Comments:} \\ \text{No_V Comments:} \text{LAS_NG_SSO1} \$\text{SSO1} \$\text{SSO2} \$\text{SSO3} \$\text{SSO3} \$\text{SSO3} \$\text{SSO3} \$\text{SSO3} \$\text{SSO3} \$\text{Comments:} \\ \text{propriate for Analysis? Yes \sqrt{No_ Comments:}} \text{No_ Comments:}
Bottle Labels WIT of 112 Containers/V. SSOS – [4 Do VOA Vial Comments Water Sample	rs are in temp and sorpection: Inspected by the intact? Yes \(\sum_{NO} \) No \(\sum_{NO} \) (COCs agree? Yes \(\sum_{NO} \) + \$\S05 \(\sum_{NO} \) (Solumes Received App \(\sum_{NO} \) (Solumes have Visible Heads as: pH Checked and A	where out, were green dot applied to out of temperature samples? Xes/Noby: 430 8 @ +4777 400 % Comments: No Comments: 11/3 12/4 SSO1 SSO2 SSO3 SSO3
Bottle Labels WIT of 111 Containers/Ve SSOS - 4 Do VOA Vial Comments Water Sample Comments:	rs are in temp and sorection: Inspected by the intact? Yes \(\sum \) No \(\) No \(\) \(me out were green dot applied to out of temperature samples? Xes/Noby: 430 8 @ +4777 400 Ses/Noby: 430 8 @ +4777 400 Ses/Noby: 430 8 @ +4777 400 Ses/Noby: 400
Bottle Labels WIT of 111 Containers/Ve SSOS - 4 Do VOA Vial Comments Water Sample Comments:	rs are in temp and sopection: Inspected by Intact? Yes \(\sum_{No} \) No_ COOCs agree? Yes_ \(\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitex{\$\text{\$\text{\$\text{\$\text{\$\exite	me out were green dot applied to out of temperature samples? Xes/Noby: 430 8 @ +4777 400 Ses/Noby: 430 8 @ +4777 400 Ses/Noby: 430 8 @ +4777 400 Ses/Noby: 400
Bottle Labels WIT of 111 Containers/Ve SSOS - 4 Do VOA Vial Comments Water Sample Comments:	rs are in temp and sorection: Inspected by the intact? Yes \(\sum \) No \(\) No \(\) \(me out were green dot applied to out of temperature samples? Xes/Noby: 430 8 @ +4777 400 Ses/Noby: 430 8 @ +4777 400 Ses/Noby: 430 8 @ +4777 400 Ses/Noby: 400
Bottle Labels WIT of 111 Containers/Ve SSOS - 4 Do VOA Vial Comments Water Sample Comments:	rs are in temp and sopection: Inspected by the intact? Yes \(\sum No_{\text{NO}} \) No_{\text{COCs agree?} Yes_{\text{OCS agree?} Yes_{\	me out were green dot applied to out of temperature samples? Xes/No by: 430 8 @ +4777 400 \$ Comments:
Bottle Labels WIT of 112 Containers/Ve SSO5 - 4 Do VOA Vial Comments Water Sample Comments:	rs are in temp and sorection: Inspected by the intact? Yes \(\sum \) No \(\) No \(\) \(me out were green dot applied to out of temperature samples? Xes/Noby: 430 8 @ +4777 400 Ses/Noby: 430 8 @ +4777 400 Ses/Noby: 430 8 @ +4777 400 Ses/Noby: 400
Bottle Labels WIT of 112 Containers/Ve SSO5 - 4 Do VOA Vial Comments Water Sample Comments:	rs are in temp and sopection: Inspected by the intact? Yes \(\sum No_{\text{NO}} \) No_{\text{COCs agree?} Yes_{\text{OCS agree?} Yes_{\	me out were green dot applied to out of temperature samples? Xes/No by: 430 8 @ +4777 400 \$ Comments:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Zmeinghinie

Appendix I Data Validation Reports

TO:	Craig Hultgren, HydroCon		
FROM:	Manon Tanner-Dave		
DATE:	May 30, 2018 (revised September 1		
SUBJECT:	Laboratory Validation Report		
HydroCon TOC Site No.	2017-048		
Sampling Event Type:	Soil Sampling	Number of Samples:	22
Laboratory Work Order:	A8D0007	Final Report Date & Time:	April 11, 2018
Analysis & Method			
 ☑ Diesel Range Hy ☐ Diesel Range Or ☑ Volatile Organic ☑ BETX (8021B) ☐ Dissolved Lead ☐ Sulfate (300.0) ☑ Other – Percent Data Package Comple	solids	· · · · · · · · · · · · · · · · · · ·	over letter; no issues
EDD to Hardcopy Veri			
, ESS was not provid			

Technical Data Validation:
⊠ Holding Times & Sample Receipt
⊠ Surrogate Compounds
⊠ Associated Laboratory Duplicate
□ Laboratory Control Sample Laboratory Control Sample Duplicates (LCS/LCSD)
⊠ Method Blank
⊠ Field Duplicates
⊠ Target Analyte List
⊠ Reporting Limits (MDL and MRL)
⊠ Reported Results
Holding Times & Sample Receipt:
All holding times and sample receipt were acceptable.

Surrogate Compounds:

All surrogate percent recoveries (%R) were within laboratory limits, with the exceptions noted below:

The TPH-Gx surrogate recovery for samples MW23-08, MW23-22, and MW13-10 could not be accurately quantified due to interference from co-eluting organic compounds present in the sample extract. Surrogate recoveries from the BTEX analysis were evaluated and found to be within control limits; no qualifiers applied to the results.

Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Matrix spikes were analyzed at the appropriate frequency and all %R were within the acceptance criteria, with the exceptions noted below:

MS/MSD	Percent Recovery						Recovery		Recovery		Control Limits	RPD	Associated Samples	Comments/Qualifiers
Compound	MS	MSD												
MW99-15 (8040363-MS1)														
Acetone	86		36-164%		MW14-05 MW14-10 MW14-15 MW99-15	The daily continuing calibration verification %R for acetone associated with 8040363-MS1 (MW99-15) failed the ±20% criteria listed in EPA 8260C by -1%. The result was reported by the lab as an estimated value. Associated samples were non-detect for acetone and results were qualified as estimated (UJ-Cc).								
1,1,2-Trichloroethane	154		78-121%			The MS %R was above the control limit. All results were non-detect; no qualifier applied to the results.								

Associated Laboratory Duplicate:

Laboratory duplicates were analyzed at the appropriate frequency and all relative percent difference (RPD) were within the acceptance criteria, with the exceptions noted below:

The NWTPH-Gx laboratory duplicate associated with sample HC02-22 had an RPD outside of the control limit (30%) at 34%. Since the sample result and the duplicate results were both <5x the MRL and their absolute difference was <2x the MRL, no qualifiers were applied to the results.

Laboratory Control Sample/Laboratory Control Sample Duplicates:

LCS were analyzed at the appropriate frequency and all %R were within the acceptance criteria, with the exceptions noted below:

LCS/LCSD	Percent Recovery		Control Limits	RPD	Associated Samples	Comments/Qualifiers
Compound	LCS	LCSD				
LCS (8040363-BS1)						
Acetone	79		80-120%		MW14-05 MW14-10 MW14-15 MW99-15	The LCS %R was below the control limits; all associated results were non-detect and qualified as estimated (UJ-LCS).

٨	Λε	١ţ	h	o	d	R	lai	nk:

Method blanks were analyzed at the appropriate frequency and were non-detect (ND) for all target analytes.

Field Duplicate(s):

Relative percent differences (RPDs) between parent and field duplicate samples were acceptable.

Parent/field duplicate samples = MW14-15 and MW99-15.

RPDs between GRO and n-Butylbenzene were >50%. However, each sample had different dilution factors which caused the RPD outlier to be not applicable.

	Parent Sample	Duplicate Sample		
Analyte	MW14-15	MW99-15	RPD	Comments/Qualifiers
Diesel	447	328	30.7	
Oil	Non detect	Non detect	Not calculated	
GRO	465	787	51.4	Different dilution factors – RPD not applicable.
n-Butylbenzene	0.151	0.258	52.3	Different dilution factors – RPD not applicable.
4-Isopropyltoluene	0.0728	Non detect	Not calculated	
n-Propylbenzene	0.0525	Non detect	Not calculated	
% Solids	88.5	90.1	1.8	

Target Analyte List:

All requested analytes were present.	

Reporting Limits (MDL and MRL):

Reporting limits were within the acceptance criteria, with the following exceptions noted below:

Select samples had elevated MRLs due to sample dilution as a result of high analyte concentrations or matrix interference issues. Results were reported from the dilution analyses, as applicable.

Select VOC analytes had elevated MRLs to account for interference from co-eluting organic compounds present in the sample. All associated results were non-detect.

Reported Results:

All reported results are acceptable, with the exceptions noted below:

Laboratory qualifiers for NWTPH-Dx, -Gx:

- (F-03) The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
 - o J-Other qualify affected results.
- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
 - J-Other qualify affected results.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
 - o J-Chrom qualify affected results.
- (F-15) Results for diesel are estimated due to overlap from the reported oil result.
 - o J-Other qualify affected results.
- (F-16) Results for oil are estimated due to overlap from the reported diesel result.
 - o J-Other qualify affected results.

Lab Validation Assessment

Data Quality Review Statement for Report

to the quality or usability of the data presented herein.

The data meet the criteria outlined above, with the noted exceptions. Data were qualified matrix interference, compound identification issues, and/or LCS/CCV recoveries. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

Aside from the data quality issues discussed above, the data quality review identified no concerns with respect

Appendix A. Data Validation Qualifiers and Definitions

The following lists the data validation qualifier codes and their definitions that were assigned to analytical results in this data validation review process.

Data Validation

Qualifiers and

(R) The sample result is reject due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence

☐ (DNR) Do not report. A more appropriate result is reported from another analysis or dilution.

Appendix B. Data Validation Qualified Summary Table

Laboratory qualifiers:

Definitions:

- (F-03) The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
- (F-15) Results for diesel are estimated due to overlap from the reported oil result.

of the analyte cannot be verified.

• (F-16) Results for oil are estimated due to overlap from the reported diesel result.

Validation qualifiers:

- (J) The result is an estimated quantity.
- (UJ) Estimated and not detected. The analyte is considered not detected at the reported value, and the
 associated numerical value is an estimated value.

Reason codes:

- Cc = Calibration (continuing).
- Chrom = Chromatographic pattern doesn't match the pattern of the calibration standard.
- LCS = Laboratory control sample recovery.
- Other = Other, described in data validation report.

Appendix B. Validator Qualified Data Summary Table

Sample ID	Laboratory ID	Method	Parameter Name	Result Value	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code(s)
HC01-10	A8D0007-02	NWTPH-Dx	Diesel	4680	mg/kg	F-13	J	Chrom
HC01-22	A8D0007-04	NWTPH-Dx	Diesel	104	mg/kg	F-13, F-15	J	Chrom, Other
HC01-22	A8D0007-04	NWTPH-Dx	Oil	80.3	mg/kg	F-03, F-16	J	Other
HC01-34	A8D0007-05	NWTPH-Dx	Diesel	38.6	mg/kg	F-13	J	Chrom
HC02-22	A8D0007-08	NWTPH-Dx	Diesel	26.6	mg/kg	F-13	J	Chrom
MW23-05	A8D0007-09	NWTPH-Dx	Diesel	29.7	mg/kg	F-13	J	Chrom
MW23-08	A8D0007-10	NWTPH-Dx	Diesel	586	mg/kg	F-11, F-15	J	Other
MW23-08	A8D0007-10	NWTPH-Dx	Oil	112	mg/kg	F-16	J	Other
MW23-12	A8D0007-11	NWTPH-Dx	Diesel	63.3	mg/kg	F-11	J	Other
MW13-5	A8D0007-13	NWTPH-Dx	Diesel	1700	mg/kg	F-15	J	Other
MW13-5	A8D0007-13	NWTPH-Dx	Oil	5310	mg/kg	F-16	J	Other
MW13-10	A8D0007-14	NWTPH-Dx	Diesel	2290	mg/kg	F-13	J	Chrom
MW13-21	A8D0007-16	NWTPH-Dx	Diesel	90.9	mg/kg	F-13, F-15	J	Chrom, Other
MW13-21	A8D0007-16	NWTPH-Dx	Oil	209	mg/kg	F-03, F-16	J	Other
MW14-10	A8D0007-20	NWTPH-Dx	Diesel	50.2	mg/kg	F-13	J	Chrom
MW14-15	A8D0007-21	NWTPH-Dx	Diesel	447	mg/kg	F-13	J	Chrom
MW99-15	A8D0007-22	NWTPH-Dx	Diesel	328	mg/kg	F-13	J	Chrom
MW14-05	A8D0007-19	EPA 8260C	Acetone	<0.948	mg/kg		UJ	Cc, LCS

Sample ID	Laboratory ID	Method	Parameter Name	Result Value	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code(s)
MW14-10	A8D0007-20	EPA 8260C	Acetone	< 0.971	mg/kg		UJ	Cc, LCS
MW14-15	A8D0007-21	EPA 8260C	Acetone	<1.02	mg/kg		UJ	Cc, LCS
MW99-15	A8D0007-22	EPA 8260C	Acetone	<4.06	mg/kg		UJ	Cc, LCS

TO:	Craig Hultgren, HydroCon						
FROM:	Manon Tanner-Dave						
DATE:	May 30, 2018 (revised September 17	, 2018)					
SUBJECT:	Laboratory Validation Report						
HydroCon TOC Site No.	2017-074						
Sampling Event Type:	Soil Sampling	Number of Samples:	21				
Laboratory Work Order:	A8D0237 Final Report Date & Time:						
Analysis & Method							
 ☑ Diesel Range H ☐ Diesel Range O ☑ Volatile Organic ☑ BETX (8021B) ☐ Dissolved Lead ☐ Sulfate (300.0) ☑ Other – Percent Data Package Complete	solids		cover letter; no issues				
EDD to Hardcopy Veri							
An EDD was not provid	aea.						

Technical Data Validation:

X	Holding	Times	&	Sample	Receipt
---	---------	-------	---	--------	---------

- ☑ Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- □ Laboratory Control Sample Duplicates (LCS/LCSD)
- ☐ Field Duplicates
- □ Target Analyte List
- ⊠ Reporting Limits (MDL and MRL)

Holding Times & Sample Receipt:

All holding times and sample receipt were acceptable, with the exceptions noted below:

Discrepancies were noted on the cooler receipt form that the collection times for samples MW17-30 and MW19-30 were different on the jars than what was noted on the chain of custody form. No impact to data quality.

Surrogate Compounds:

All surrogate percent recoveries (%R) were within laboratory limits, with the exceptions noted below:

Parent Sample			
Compound	%R	%R (8260B)	
Control Limits	50-150%	80-120%	Comments/Qualifiers
MW19-18			
4-Bromofluorobenzene (Surr)	295%	101%	TPH-Gx surrogate recovery cannot be accurately quantified due to interference from co-eluting organic compounds present in the sample extract. See 8260B results for accurate surrogate recovery. No qualifiers applied to the results.

Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Matrix spikes were analyzed at the appropriate frequency and all %R were within the acceptance criteria, with the exceptions noted below:

MS/MSD	Percent	Recovery	Control		Associated	
Compound	MS	MSD	Limits	RPD	Samples	Comments/Qualifiers
MW3S-15 (8040599-MS1)						
Acetone	125%	NA	36-164%	NA		Daily CCV recovery for this analyte failed the ±20% criteria listed in EPA 8260C by -14.1%. The results are reported as estimated values; UJ-Cc qualify results.
Acrylonitrile	139%	NA	65-134%	NA		Sample results were non- detect; no qualifiers applied to the results.
2-Butanone (MEK)	125%	NA	51-148%	NA	MW14-25 MW3S-15	Daily CCV recovery for this analyte failed the ±20% criteria listed in EPA 8260C by -7.7%. The results are reported as estimated values; UJ-Cc qualify results.
Dichlorodifluoromethane	94%	NA	29-149%	NA		Daily CCV recovery for this analyte failed the ±20% criteria listed in EPA 8260C by -2.9%. The results are reported as estimated values; UJ-Cc qualify results.

Associated Laboratory Duplicate:

Laboratory duplicates were analyzed at the appropriate frequency and all relative percent difference (RPD) were within the acceptance criteria, with the exceptions noted below:

Parent Sample		Comments/Qualifiers	
Compound	RPD		
Control Limit	30%		
MW17-25 (Batch 8040591)			
NWTPH-Gx	33%	L DED qualify regult in the perent and duplicate complex	
Ethylbenzene	45%	J-REP qualify result in the parent and duplicate samples.	

Laboratory Control Sample/Laboratory Control Sample Duplicates:

LCS were analyzed at the appropriate frequency and all %R were within the acceptance criteria, with the exceptions noted below:

LCS/LCSD	Percent	Recovery	Control		Associated	
Compound	LCS	LCSD	Limits	RPD	Samples	Comments/Qualifiers
LCS (8040599-BS1)						
Acetone	66%	NA		NA		Daily CCV/LCS
2-Butanone (MEK)	72%	NA		NA		recovery was below
Dichlorodifluoromethane	77%	NA	80-120%	NA	MW14-25 MW3S-15	the ±20% criteria listed in EPA 8260C; all associated results were non-detect and qualified as estimated (UJ-LCS).

Method Blank:
Method blanks were analyzed at the appropriate frequency and were non-detect (ND) for all target analytes.

Field Duplicate(s):	
Not applicable.	
Target Analyte List:	
All requested analytes were present.	
Reporting Limits (MDL and MRL):	
Reporting limits were within the acceptance criteria, with the following exceptions noted below:	
Select samples had elevated MRLs due to sample dilution as a result of high analyte concentrations or matrix interference issues. Results were reported from the dilution analyses, as applicable.	
Select VOC analytes had elevated MRLs to account for interference from co-eluting organic compounds present in the sample. All associated results were non-detect.	

Reported Results:

All reported results are acceptable.

Laboratory qualifiers for NWTPH-Dx, -Gx:

- (F-03) The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
 - o J-Other qualify affected results.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
 - o J-Chrom qualify affected results.
- (F-15) Results for diesel are estimated due to overlap from the reported oil result.
 - o J-Other qualify affected results.
- (F-16) Results for oil are estimated due to overlap from the reported diesel result.
 - o J-Other qualify affected results.

Lab Validation Assessment

Analyti	cal results are	usable to mee	t the project ob	ojectives.		

Data Quality Review Statement for Report

Aside from the data quality issues discussed above, the data quality review identified no concerns with respect to the quality or usability of the data presented herein.	
The data meet the criteria outlined above, with the noted exceptions. Data were qualified matrix interference	-n

The data meet the criteria outlined above, with the noted exceptions. Data were qualified matrix interference, compound identification issues, and/or LCS/CCV recoveries. No data were rejected and completeness was
100 percent. All results are usable for their intended purpose.

Appendix A. Data Validation Qualifiers and Definitions

The following lists the data validation qualifier codes and their definitions that were assigned to analytical results in this data validation review process.

Data Validation
Qualifiers and
Definitions:

(R) The sample result is reject due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

☐ (DNR) Do not report. A more appropriate result is reported from another

Appendix B. Data Validation Qualified Summary Table

analysis or dilution.

Laboratory qualifiers:

- (F-03) The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
- (F-15) Results for diesel are estimated due to overlap from the reported oil result.
- (F-16) Results for oil are estimated due to overlap from the reported diesel result.

Validation qualifiers:

- (J) The result is an estimated quantity.
- (UJ) Estimated and not detected. The analyte is considered not detected at the reported value, and the
 associated numerical value is an estimated value.

Reason codes:

- Cc = Calibration (continuing).
- Chrom = Chromatographic pattern doesn't match the pattern of the calibration standard.
- LCS = Laboratory control sample recovery.
- Other = Other, described in data validation report.
- REP = Precision (all replicates).

Sample ID	Laboratory ID	Method	Parameter Name	Result Value	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
MW12-20	A8D0237-04	NWTPH-Dx	Diesel	42.5	mg/kg	F-13, F-15	J	Chrom, Other
MW12-20	A8D0237-04	NWTPH-Dx	Oil	66.7	mg/kg	F-03, F-16	J	Other
MW17-17	A8D0237-12	NWTPH-Dx	Diesel	1650	mg/kg	F-13, F-15	J	Chrom, Other
MW17-17	A8D0237-12	NWTPH-Dx	Oil	740	mg/kg	F-16	J	Other
MW19-18	A8D0237-17	NWTPH-Dx	Diesel	2010	mg/kg	F-13	J	Chrom
MW19-30	A8D0237-19	NWTPH-Dx	Diesel	167	mg/kg	F-13, F-15	J	Chrom, Other
MW19-30	A8D0237-19	NWTPH-Dx	Oil	284	mg/kg	F-03, F-16	J	Other
MW17-25	A8D0237-14	NWTPH-Gx	GRO	76.8	mg/kg		J	REP
MW17-25	8040591-DUP2	NWTPH-Gx	GRO	107	mg/kg		J	REP
MW17-25	A8D0237-14	BTEX	Ethylbenzene	0.0398	mg/kg		J	REP
MW17-25	8040591-DUP2	BTEX	Ethylbenzene	0.0631	mg/kg		J	REP
MW14-25	A8D0237-01	EPA 8260C	Acetone	<0.794	mg/kg		UJ	Cc, LCS
MW14-25	A8D0237-01	EPA 8260C	2-Butanone (MEK)	<0.397	mg/kg		UJ	Cc, LCS
MW14-25	A8D0237-01	EPA 8260C	Dichlorodifluoromethane	< 0.0794	mg/kg		UJ	Cc, LCS
MW3S-15	A8D0237-06	EPA 8260C	Acetone	<0.910	mg/kg		UJ	Cc, LCS
MW3S-15	A8D0237-06	EPA 8260C	2-Butanone (MEK)	<2.27	mg/kg		UJ	Cc, LCS
MW3S-15	A8D0237-06	EPA 8260C	Dichlorodifluoromethane	<0.0910	mg/kg		UJ	Cc, LCS

TO:	Craig Hultgren, HydroCon		
FROM:	Manon Tanner-Dave		
DATE:	May 31, 2018 (revised September 18,		
SUBJECT:	Laboratory Validation Report		
HydroCon TOC Site No.	2017-074		
Sampling Event Type:	Soil Sampling	Number of Samples:	5
Laboratory Work Order:	A8D0535	Final Report Date & Time:	April 22, 2018
Analysis & Method			
☑ Diesel Range Hy☑ Diesel Range Or	solids teness:	Dx) □	
EDD to Hardcopy Veri	fication:		
An EDD was not provid	ed.		

⊠ Holding Times & Sample Receipt	
☐ Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD)	
☑ Laboratory Control Sample/ Laboratory Control Sample Duplicates (LCS/LCSD)	
⊠ Method Blank	
☐ Field Duplicates	
⊠ Target Analyte List	
⊠ Reporting Limits (MDL and MRL)	
⊠ Reported Results	
Holding Times & Sample Receipt:	
All holding times and sample receipt were acceptable.	
	_
Surrogate Compounds:	

Technical Data Validation:

Parent Sample			
Compound	%R	%R (8260B)	
Control Limits	50-150%	80-120%	Comments/Qualifiers
SL03-05 (A8D0535-03)			
4-Bromofluorobenzene (Surr)	165%	99%	TPH-Gx surrogate recovery cannot be accurately quantified due to interference from co-eluting organic compounds present in the sample extract. See 8260B results for accurate surrogate recovery. No qualifiers applied to the results.

All surrogate percent recoveries (%R) were within laboratory limits, with the exceptions noted below:

The TPH-Dx surrogate recoveries for samples SL01-0.5, SL02-0.5, SL03-0.5, and SL04-0.5 were not available due to sample dilution required from high analyte concentration and/or matrix interference; results were qualified as estimated (J/UJ-Mi).

Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD):
Not applicable.
Associated Laboratory Duplicate:
Laboratory duplicates were analyzed at the appropriate frequency and all relative percent
difference (RPD) were within the acceptance criteria.
Laboratory Control Sample/Laboratory Control Sample Duplicates:
LCS were analyzed at the appropriate frequency and all %R were within the acceptance criteria.
Method Blank:
Method blanks were analyzed at the appropriate frequency and were non-detect (ND) for all target analytes.

Field Duplicate(s):
Not applicable.
Target Analyte List:
All requested analytes were present.
Reporting Limits (MDL and MRL):
Reporting limits were within the acceptance criteria, with the following exceptions noted below:
Select samples had elevated MRLs due to sample dilution as a result of high analyte concentrations or matrix interference issues. Results were reported from the dilution analyses, as applicable.

All reported results are acceptable.
Laboratory qualifiers for NWTPH-Dx:
 (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation. J-Chrom qualify affected results.
Lab Validation Assessment
Analytical results are usable to meet the project objectives.

Reported Results:

Data Quality Review Statement for Report

to the quality or usability of the data presented herein.

The data meet the criteria outlined above, with the noted exceptions. Data were qualified due to matrix interference and/or compound identification issues. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

Aside from the data quality issues discussed above, the data quality review identified no concerns with respect

Appendix A. Data Validation Qualifiers and Definitions

The following lists the this data validation rev	data validation qualifier codes and their definitions that were assigned to analytical results in iew process.			
Data Validation Qualifiers and Definitions:	\Box (R) The sample result is reject due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.			
	$\hfill\Box$ (DNR) Do not report. A more appropriate result is reported from another analysis or dilution.			

Appendix B. Data Validation Qualified Summary Table

Laboratory qualifiers:

- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
- (S-01) Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.

Validation qualifiers:

- (J) The result is an estimated quantity.
- (UJ) Estimated and not detected. The analyte is considered not detected at the reported value, and the associated numerical value is an estimated value.
- Reason codes:

 Chrom = Chromatographic pattern doesn't match the pattern of the calibration standard.

 Mi = Matrix interference.

Sample ID	Laboratory ID	Method	Parameter Name	Result Value	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
SL01-0.5	A8D0535-01	NWTPH-Dx	Diesel	39400	mg/kg	F-13, S-01	J	Chrom, Mi
SL02-0.5	A8D0535-02	NWTPH-Dx	Diesel	30400	mg/kg	F-13, S-01	J	Chrom, Mi
SL03-0.5	A8D0535-03	NWTPH-Dx	Diesel	21400	mg/kg	F-13, S-01	J	Chrom, Mi
SL04-0.5	A8D0535-04	NWTPH-Dx	Diesel	18100	mg/kg	F-13, S-01	J	Chrom, Mi
SL01-0.5	A8D0535-01	NWTPH-Dx	Oil	<2350	mg/kg	S-01	UJ	Mi
SL02-0.5	A8D0535-02	NWTPH-Dx	Oil	<2570	mg/kg	S-01	UJ	Mi
SL03-0.5	A8D0535-03	NWTPH-Dx	Oil	<2240	mg/kg	S-01	UJ	Mi
SL04-0.5	A8D0535-04	NWTPH-Dx	Oil	<2310	mg/kg	S-01	UJ	Mi

TO:	Craig Hultgren, HydroCon		
FROM:	Manon Tanner-Dave		
DATE:	May 31, 2018 (revised September 19	, 2018)	
SUBJECT:	Laboratory Validation Report		
HydroCon TOC Site No.	2017-074		
Sampling Event Type:	Soil Sampling	19	
Laboratory Work Order:	A8D0538	April 22, 2018	
Analysis & Method			
 ☑ Diesel Range H ☐ Diesel Range O ☑ Volatile Organic ☑ BETX (8021B) ☐ Dissolved Lead ☐ Sulfate (300.0) ☑ Other – Percent Data Package Complete	t solids) ·	cover letter; no issues
EDD to Hardcopy Veri			
An EDD was not provid	ded.		

Technical Data Validation:

- □ Laboratory Control Sample Laboratory Control Sample Duplicates (LCS/LCSD)

- ⊠ Reporting Limits (MDL and MRL)
- ⊠ Reported Results

Holding Times & Sample Receipt:

All holding times and sample receipt were acceptable, with the exceptions noted below:

The 4oz jar for sample MW15-10 was broken in the lab; 3/4 of the volume was salvaged.

Discrepancies were noted in the cooler receipt form that the collection date for sample MW21-25 and the collection time for sample MW18-35 were different on the jars and VOAs than what was noted on the chain of custody form.

Surrogate Compounds:

All surrogate percent recoveries (%R) were within laboratory limits, with the exceptions noted below:

Parent Sample			
Compound	%R	%R (8260B)	
Control Limits	50-150%	80-120%	Comments/Qualifiers
MW22-40 (A8D0538-19)			
4-Bromofluorobenzene (Surr)	178%	108%	TPH-Gx surrogate recovery cannot be accurately quantified due to interference from co-eluting organic compounds present in the sample extract. See 8260B results for accurate surrogate recovery. No qualifiers applied to the results.

The TPH-Dx surrogate recovery for sample MW22-30 is not available due to sample dilution required from high analyte concentration and/or matrix interference; results were qualified as estimated (J/UJ-Mi).

Matrix spikes were analyzed at the app	ropriate frequer	ncy and all %R were within the acceptance criteria.
Associated Laboratory Duplicate:		
_aboratory duplicates were analyzed at	the appropriate	e frequency and all relative percent
difference (RPD) were within the accep		' '
	<u></u>	·
Parent Sample		
Compound	RPD	Comments/Qualifiers
Control Limit	30%	
/W22-40 (8040912-DUP1)		
NWTPH-Gx	150% 39%	J-REP qualify result in the parent and duplicate samples.
Benzene	3970	Parent sample result >5x RL, duplicate sample result <5x RL. Absolute difference <2x RL; no qualifiers applied to the
		results.
Toluene	46%	Parent and duplicate sample results <5x RL. Absolute
Ethodhanaa	220/	difference <2x RL; no qualifiers applied to the results.
Ethylbenzene	33%	Parent and duplicate sample results <5x RL. Absolute difference <2x RL; no qualifiers applied to the results.
Xylenes, total	47%	Parent sample results >5x RL, duplicate sample result <5x
3,22.22, 22.22.		RL. Absolute difference >2x RL; J-REP qualify results.
aboratory Control Sample/Laborato	ry Control San	nple Duplicates:
CS were analyzed at the appropriate f	requency and a	III %R were within the acceptance criteria.
200 Word analyzed at the appropriate i	requeriey and a	in 7517 Word Within the deceptance official.

Method blanks were analyzed at the appropriate frequency and were non-detect (ND) for all target analytes.

Field Duplicate(s):
Relative percent differences (RPDs) between parent and field duplicate samples were acceptable.
Parent/field duplicate samples = MW20-23.5 and MW100-23.5.
Target Analyte List:
All requested analytes were present.
Reporting Limits (MDL and MRL):
Reporting limits were within the acceptance criteria, with the following exceptions noted below:
Select samples had elevated MRLs due to sample dilution as a result of high analyte concentrations or matrix interference issues. Results were reported from the dilution analyses, as applicable.

Reported Results:

All reported results are acceptable.

Laboratory qualifiers for NWTPH-Dx:

- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
 - o J-Other qualify affected results.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
 - o J-Chrom qualify affected results.
- (F-24) The chromatographic pattern does not resemble the fuel standard used for quantitation. The Diesel result represents carbon range C12 to C24.
 - o J-Chrom qualify affected results.
- (S-01) Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
 - o J/UJ-Mi qualify affected results.

Lab Validation Assessment

Ana	alytical results a	are usable to me	eet the project ob	ojectives.		

Data Quality Review Statement for Report

results are usable for their intended purpose.

the quality or usability of the data presented herein.		
The data meet the criteria outlined above, with the noted exceptions. Data were qualified due to surrorecoveries and/or laboratory duplicate RPDs. No data were rejected and completeness was 100 percer	O	

Aside from the data quality issues discussed above, the data quality review identified no concerns with respect

Appendix A. Data Validation Qualifiers and Definitions

The following lists the of this data validation rev	data validation qualifier codes and their definitions that were assigned to analytical results in ew process.
Data Validation Qualifiers and Definitions:	☐ (R) The sample result is reject due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

☐ (DNR) Do not report. A more appropriate result is reported from another

Appendix B. Data Validation Qualified Summary Table

analysis or dilution.

Laboratory qualifiers:

- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
- (F-24) The chromatographic pattern does not resemble the fuel standard used for quantitation. The Diesel result represents carbon range C12 to C24.
- (S-01) Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.

Validation qualifiers:

- (J) The result is an estimated quantity.
- (UJ) Estimated and not detected. The analyte is considered not detected at the reported value, and the
 associated numerical value is an estimated value.

Reason codes:

- Chrom = Chromatographic pattern doesn't match the pattern of the calibration standard.
- Mi = Matrix interference.
- Other = Other, described in data validation report.
- REP = Precision (all replicates).

Sample ID	Laboratory ID	Method	Parameter Name	Result Value	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
MW21-25	A8D0538-02	NWTPH-Dx	Diesel	47.2	mg/kg	F-11	J	Other
MW20-23.5	A8D0538-05	NWTPH-Dx	Diesel	72.9	mg/kg	F-13	J	Chrom
MW22-30	A8D0538-18	NWTPH-Dx	Diesel	45700	mg/kg	F-13, S-01	J	Mi
MW22-40	A8D0538-19	NWTPH-Dx	Diesel	52.5	mg/kg	F-24	J	Chrom
MW22-30	A8D0538-18	NWTPH-Dx	Oil	<8160	mg/kg	S-01	UJ	Mi
MW22-40	A8D0538-19	NWTPH-Gx	GRO	248	mg/kg		J	REP
MW22-40	8040912-DUP1	NWTPH-Gx	GRO	35.7	mg/kg		J	REP
MW22-40	A8D0538-19	EPA 8260C	Xylenes, total	0.696	mg/kg		J	REP
MW22-40	8040912-DUP1	EPA 8260C	Xylenes, total	0.430	mg/kg		J	REP

TO:	Craig Hultgren, HydroCon		
FROM:	Manon Tanner-Dave		
DATE:	June 4, 2018 (revised September 20, 20		
SUBJECT:	Laboratory Validation Report		
HydroCon TOC Site No.	2017-074		
Sampling Event Type:	Water Sampling	Number of Samples:	28
Laboratory Work Order:	A8D0907	Final Report Date & Time:	May 8, 2018
Analysis & Method			
☐ Diesel Range Or ☐ Volatile Organic ☐ BETX (8021B) ☐ Total Lead (200.8 ☐ Sulfate (300.0) ☐ Other – PAHs (E Data Package Complete	PA 8270D SIM)		over letter; no issues
EDD to Hardcopy Verif			

⊠ Holding Times & Sample Receipt
⊠ Surrogate Compounds
☑ Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD)
⊠ Associated Laboratory Duplicate
□ Laboratory Control Sample/ Laboratory Control Sample Duplicates (LCS/LCSD)
⊠ Method Blank
⊠ Field Duplicates
⊠ Target Analyte List
⊠ Reporting Limits (MDL and MRL)
⊠ Reported Results
Holding Times & Sample Receipt:
All holding times and sample receipt were acceptable.
Surrogate Compounds:
All surrogate percent recoveries (%R) were within laboratory limits.

Technical Data Validation:

Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Matrix spikes were analyzed at the appropriate frequency and all %R were within the acceptance criteria, with the exceptions noted below:

MS/MSD	Percent Recovery		Control Limits	RPD	Associated Samples	Comments/Qualifiers	
Compound	MS	MSD					
MW09-W (8041230-MS1)							
Bromomethane	78%		53-141%			Daily CCV recovery for this	
Chloromethane	25%		50-139%			analyte failed the ±20%	
					MW3S-W	criteria listed in EPA 8260C/8270D by -5%. The results are reported as estimated values (UJ-Cc).	
MW21-W (8041255-MS1)							
Bromomethane	214%		53-141%			Daily CCV recovery for this	
Trichlorofluoromethane	165%		50-139%		MW14-W MW17-W	analyte failed the ±20% criteria listed in EPA 8260C/8270D by +75%. The results are reported as estimated values (UJ-Cc).	

Associated Laboratory Duplicate:

difference (RPD) were within the acceptance criteria.	
	_

Laboratory Control Sample/Laboratory Control Sample Duplicates:

LCS were analyzed at the appropriate frequency and all %R were within the acceptance criteria, with the exceptions noted below:

Laboratory duplicates were analyzed at the appropriate frequency and all relative percent

LCS/LCSD	Percent Recovery		Control Limits	RPD	Associated Samples	Comments/Qualifiers	
Compound	LCS	LCSD					
LCS (8041230-BS1)							
Bromomethane	75%		00.4200/		MANA/2C \A/		
Chloromethane	75%		80-120%		MW3S-W		
LCS (8041255-BS1)						All associated results were	
Bromomethane	195%		00.4000/		MW14-W	non-detect and qualified as estimated (UJ-LCS).	
Trichlorofluoromethane	140%		80-120%		MW17-W	estimated (03-LC3).	
LCS (8041230-BS1)							
Bromomethane	77%		80-120%		MW102-W		
Chloromethane	72%		00-120%		10100 102-00		

Method blanks were analyzed at the appropriate frequency and were non-detect (ND) for all target analytes.						

Field Duplicate(s):

Relative percent differences (RPDs) between parent and field duplicate samples were acceptable.

	Parent Sample	Duplicate Sample		
Analyte	MW17-W	MW102-W	RPD	Comments/Qualifiers
Diesel	1630	1650	1.2	
Oil	ND	ND	Not calculated	
GRO	2800	2650	5.5	
Benzene	1.23	1.21	1.6	
n-Butylbenzene	1.54	1.98	25	
sec-Butylbenzene	1.71	2.15	22.8	
Ethylbenzene	1.62	1.69	4.2	
Isopropylbenzene	3.43	3.74	8.6	
Naphthalene	4.72	6.02	24.2	
n-Propylbenzene	6.48	7.22	10.8	
1,2,4-Trimethylbenzene	20.5	22.5	9.3	
1,3,5-Trimethylbenzene	2.21	2.47	11.1	
m,p-Xylene	6.38	6.57	2.9	
o-Xylene	1.28	1.58	21	

	Parent Sample	Duplicate Sample		
Analyte	MW22-W	MW103-W	RPD	Comments/Qualifiers
Diesel	4690	4490	4.3	
Oil	ND	ND	Not calculated	
GRO	6960	6940	0.3	
Benzene	118	122	3.3	
Toluene	28.8	31.4	8.6	
Ethylbenzene	102	109	6.6	
Xylenes, total	196	223	12.9	
Anthracene	8.48	8.98	5.7	
Benz(a)anthracene	0.284	0.294	3.5	
Chrysene	0.243	0.25	2.8	
Dibenzofuran	8.55	8.15	4.8	
Fluoranthene	3.2	3.25	1.6	
Fluorene	36.7	33.7	8.5	
Phenanthrene	36.6	41.4	12.3	
Pyrene	4.3	4.47	3.9	
Acenaphthene	113	105	7.3	
1-Methylnaphthalene	298	274	8.4	
2-Methylnaphthalene	210	200	4.9	
Naphthalene	692	681	1.6	

Target Analyte List:

All requested analytes were present.			

Reporting Limits (MDL and MRL):

Reporting limits were within the acceptance criteria, with the following exceptions noted below:

Select samples had elevated MRLs due to sample dilution as a result of high analyte concentrations or matrix interference issues. Results were reported from the dilution analyses, as applicable.

Select VOC and PAH analytes had elevated MRLs to account for interference from co-eluting organic compounds present in the sample. All associated results were non-detect.

Reported Results:

All reported results are acceptable.

Laboratory qualifiers for PAHs:

- (M-02) Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
 - o J/UJ-Mi qualify affected results.
- (M-05) Estimated result. Peak separation for structural isomers is insufficient for accurate quantification.
 - o J/UJ-Other qualify affected results.
- (Q-22) Due to limited sample volume or hold time restraints, the NWTPH-Dx extract was used for the 8270 SIM PAH analysis. Therefore no PAH surrogates and/or Batch QC results are available. Results are estimated values.
 - o J/UJ-SSR qualify affected results.
- (R-02) The reporting limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
 - o J/UJ-Mi qualify affected results.

Laboratory qualifiers for NWTPH-Dx:

- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
 - o J/UJ-Other qualify affected results.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
 - o J/UJ-Chrom qualify affected results.
- (F-20) Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.
 - o J/UJ-Mi qualify affected results.

Laboratory qualifiers for BTEX:

- (M-02) Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
 - J/UJ-Mi qualify affected results.

Analytical results are usable to meet the project objectives.

Lab Validation Assessment

Note: All PAH results were qualified as est	timated due to limited sample volume	The MMTPH-Dy extract was

Note: All PAH results were qualified as estimated due to limited sample volume. The NWTPH-Dx extract was used for the PAH analysis; therefore, no PAH surrogates and/or Batch QC are available.

Data Quality Review Statement for Report

to the quality or usability of the data presented herein.

The data meet the criteria outlined above, with the noted exceptions. Data were qualified due to matrix interference, compound identification issues, and/or LCS/CCV recoveries. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

Aside from the data quality issues discussed above, the data quality review identified no concerns with respect

Appendix A. Data Validation Qualifiers and Definitions

The following lists the data validation qualifier codes and their definitions that were assigned to analytical results in this data validation review process.

Data Validation	١
Qualifiers and	
Definitions:	

☐ (R) The sample result is reject due to serious deficiencies in the ability to
analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
☐ (DNR) Do not report. A more appropriate result is reported from another analysis or dilution.

Appendix B. Data Validation Qualified Summary Table

Laboratory qualifiers:

- (F-11) The hydrocarbon pattern indicates possible weathered diesel, or a contribution from a related component.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.
- (F-20) Result for Diesel is estimated due to overlap from Gasoline Range Organics or other VOCs.
- (M-02) Due to matrix interference, this analyte cannot be accurately quantified. The reported result is estimated.
- (M-05) Estimated result. Peak separation for structural isomers is insufficient for accurate quantification.
- (Q-22) Due to limited sample volume or hold time restraints, the NWTPH-Dx extract was used for the 8270 SIM PAH analysis. Therefore no PAH surrogates and/or Batch QC results are available. Results are estimated values.
- (R-02) The reporting limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Validation qualifiers:

- (J) The result is an estimated quantity.
- (UJ) Estimated and not detected. The analyte is considered not detected at the reported value, and the
 associated numerical value is an estimated value.

Reason codes:

- Cc = Calibration (continuing).
- Chrom = Chromatographic pattern doesn't match the pattern of the calibration standard.
- LCS = Laboraotry control sample recovery.
- Mi = Matrix interference.
- Other = Other, described in data validation report.
- SSR = Surrogate spike/labeled compound recovery.

Sample ID	Laboratory ID	Method	Parameter Name	Result	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
MW1S-W	A8D0907-01	NWTPH-Dx	Diesel	<187	μg/L	F-11	UJ	Other
MW3S-W	A8D0907-03	NWTPH-Dx	Diesel	<187	μg/L	F-11	UJ	Other
MW06-W	A8D0907-06	NWTPH-Dx	Diesel	1620	μg/L	F-13	J	Chrom
MW07-W	A8D0907-07	NWTPH-Dx	Diesel	435	μg/L	F-11	J	Other
MW08-W	A8D0907-08	NWTPH-Dx	Diesel	1300	μg/L	F-13	J	Chrom
MW09-W	A8D0907-09	NWTPH-Dx	Diesel	2620	μg/L	F-13	J	Chrom
MW10-W	A8D0907-10	NWTPH-Dx	Diesel	1500	μg/L	F-13	J	Chrom
MW11-W	A8D0907-11	NWTPH-Dx	Diesel	1140	μg/L	F-13	J	Chrom
MW13-W	A8D0907-13	NWTPH-Dx	Diesel	1790	μg/L	F-11, F-20	J	Other, Mi
MW14-W	A8D0907-14	NWTPH-Dx	Diesel	900	μg/L	F-11, F-20	J	Other, Mi
MW16-W	A8D0907-15	NWTPH-Dx	Diesel	330	μg/L	F-11	J	Other
MW17-W	A8D0907-16	NWTPH-Dx	Diesel	1630	μg/L	F-13, F-20	J	Chrom, Mi
MW19-W	A8D0907-17	NWTPH-Dx	Diesel	979	μg/L	F-13	J	Chrom
MW20-W	A8D0907-18	NWTPH-Dx	Diesel	1320	μg/L	F-13	J	Chrom
MW21-W	A8D0907-19	NWTPH-Dx	Diesel	965	μg/L	F-13	J	Chrom
MW22-W	A8D0907-20	NWTPH-Dx	Diesel	4690	μg/L	F-13	J	Chrom
MW23-W	A8D0907-21	NWTPH-Dx	Diesel	419	μg/L	F-11	J	Other
BH01-W	A8D0907-22	NWTPH-Dx	Diesel	1390	μg/L	F-13	J	Chrom
BH02-W	A8D0907-23	NWTPH-Dx	Diesel	9360	μg/L	F-13	J	Chrom
BH03-W	A8D0907-24	NWTPH-Dx	Diesel	1130	μg/L	F-13	J	Chrom

	1			T				
MW102-W	A8D0907-26	NWTPH-Dx	Diesel	1650	μg/L	F-13	J	Chrom
MW103-W	A8D0907-27	NWTPH-Dx	Diesel	4490	μg/L	F-13	J	Chrom
MW17-W	A8D0907-16	EPA 8260C	n-Butylbenzene	1.54	μg/L	M-02	J	Mi
MW102-W	A8D0907-26	EPA 8260C	n-Butylbenzene	1.98	μg/L	M-02	J	Mi
MW3S-W	A8D0907-03	EPA 8260C	Bromomethane	<5.00	μg/L		UJ	LCS, Cc
MW3S-W	A8D0907-03	EPA 8260C	Chloromethane	<5.00	μg/L		UJ	LCS, Cc
MW14-W	A8D0907-14	EPA 8260C	Bromomethane	<5.00	μg/L		UJ	LCS, Cc
MW14-W	A8D0907-14	EPA 8260C	Trichlorofluoromethane	<2.00	μg/L		UJ	LCS, Cc
MW17-W	A8D0907-16	EPA 8260C	Bromomethane	<5.00	μg/L		UJ	LCS, Cc
MW17-W	A8D0907-16	EPA 8260C	Trichlorofluoromethane	<2.00	μg/L		UJ	LCS, Cc
MW102-W	A8D0907-26	EPA 8260C	Bromomethane	<5.00	μg/L		UJ	LCS
MW102-W	A8D0907-26	EPA 8260C	Chloromethane	<5.00	μg/L		UJ	LCS
MW21-W	A8D0907-19	EPA 8270D SIM	Acenaphthene	0.193	μg/L	Q-22	J	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Acenaphthylene	< 0.0935	μg/L	Q-22	UJ	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Anthracene	0.145	μg/L	Q-22	J	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Benz(a)anthracene	< 0.0935	μg/L	Q-22	UJ	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Benzo(a)pyrene	< 0.0935	μg/L	Q-22	UJ	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Benzo(b)fluoranthene	< 0.0935	μg/L	Q-22	UJ	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Benzo(k)fluoranthene	< 0.0935	μg/L	Q-22	UJ	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Benzo(g,h,i)perylene	<0.0935	μg/L	Q-22	UJ	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Chrysene	<0.0935	μg/L	Q-22	UJ	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Dibenz(a,h)anthracene	<0.0935	μg/L	Q-22	UJ	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Dibenzofuran	0.103	μg/L	Q-22	J	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Fluoranthene	< 0.0935	μg/L	Q-22	UJ	SSR

MW21-W	A8D0907-19	EPA 8270D SIM	Fluorene	0.144	μg/L	Q-22	Ј	SSR
					-			
MW21-W	A8D0907-19	EPA 8270D SIM	Indeno(1,2,3-cd)pyrene	< 0.0935	μg/L	Q-22	UJ	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	1-Methylnaphthalene	1.48	μg/L	Q-22	J	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	2-Methylnaphthalene	0.494	μg/L	Q-22	J	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Naphthalene	1.16	μg/L	Q-22, M-02	J	SSR, Mi
MW21-W	A8D0907-19	EPA 8270D SIM	Phenanthrene	< 0.0935	μg/L	Q-22	UJ	SSR
MW21-W	A8D0907-19	EPA 8270D SIM	Pyrene	< 0.0935	μg/L	Q-22	UJ	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Acenaphthylene	<12.3	μg/L	Q-22, R-02	UJ	SSR, Mi
MW22-W	A8D0907-20	EPA 8270D SIM	Anthracene	8.48	μg/L	Q-22	J	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Benz(a)anthracene	0.284	μg/L	Q-22, M-05	J	SSR, Other
MW22-W	A8D0907-20	EPA 8270D SIM	Benzo(a)pyrene	<0.0943	μg/L	Q-22	UJ	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Benzo(b)fluoranthene	<0.0943	μg/L	Q-22	UJ	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Benzo(k)fluoranthene	<0.0943	μg/L	Q-22	UJ	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Benzo(g,h,i)perylene	<0.0943	μg/L	Q-22	UJ	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Chrysene	0.243	μg/L	Q-22, M-05	J	SSR, Other
MW22-W	A8D0907-20	EPA 8270D SIM	Dibenz(a,h)anthracene	< 0.0943	μg/L	Q-22	UJ	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Dibenzofuran	8.55	μg/L	Q-22	J	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Fluoranthene	3.20	μg/L	Q-22	J	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Fluorene	36.7	μg/L	Q-22	J	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Indeno(1,2,3-cd)pyrene	<0.0943	μg/L	Q-22	UJ	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Phenanthrene	36.6	μg/L	Q-22	J	SSR
MW22-W	A8D0907-20	EPA 8270D SIM	Pyrene	4.30	μg/L	Q-22	J	SSR
MW22-W	A8D0907-20RE1	EPA 8270D SIM	Acenaphthene	113	μg/L	Q-22	J	SSR
MW22-W	A8D0907-20RE1	EPA 8270D SIM	1-Methylnaphthalene	298	μg/L	Q-22	J	SSR

MW22-W	A8D0907-20RE1	EPA 8270D SIM	2-Methylnaphthalene	210	μg/L	Q-22	J	SSR
MW22-W	A8D0907-20RE1	EPA 8270D SIM	Naphthalene	692	μg/L	Q-22	J	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Acenaphthylene	<11.6	μg/L	Q-22, R-02	UJ	SSR, Mi
MW103-W	A8D0907-27	EPA 8270D SIM	Anthracene	8.98	μg/L	Q-22	J	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Benz(a)anthracene	0.294	μg/L	Q-22, M-05	J	SSR, Other
MW103-W	A8D0907-27	EPA 8270D SIM	Benzo(a)pyrene	< 0.0943	μg/L	Q-22	UJ	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Benzo(b)fluoranthene	< 0.0943	μg/L	Q-22	UJ	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Benzo(k)fluoranthene	< 0.0943	μg/L	Q-22	UJ	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Benzo(g,h,i)perylene	< 0.0943	μg/L	Q-22	UJ	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Chrysene	0.250	μg/L	Q-22, M-05	J	SSR, Other
MW103-W	A8D0907-27	EPA 8270D SIM	Dibenz(a,h)anthracene	< 0.0943	μg/L	Q-22	UJ	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Dibenzofuran	8.15	μg/L	Q-22	J	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Fluoranthene	3.25	μg/L	Q-22	J	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Fluorene	33.7	μg/L	Q-22	J	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Indeno(1,2,3-cd)pyrene	< 0.0943	μg/L	Q-22	UJ	SSR
MW103-W	A8D0907-27	EPA 8270D SIM	Pyrene	4.47	μg/L	Q-22	J	SSR
MW103-W	A8D0907-27RE1	EPA 8270D SIM	Acenaphthene	105	μg/L	Q-22	J	SSR
MW103-W	A8D0907-27RE1	EPA 8270D SIM	1-Methylnaphthalene	274	μg/L	Q-22	J	SSR
MW103-W	A8D0907-27RE1	EPA 8270D SIM	2-Methylnaphthalene	200	μg/L	Q-22	J	SSR
MW103-W	A8D0907-27RE1	EPA 8270D SIM	Naphthalene	681	μg/L	Q-22	J	SSR
MW103-W	A8D0907-27RE1	EPA 8270D SIM	Phenanthrene	41.4	μg/L	Q-22	J	SSR

TO:	Craig Hultgren, HydroCon		
FROM:	Manon Tanner-Dave		
DATE:	June 4, 2018 (revised September 2		
SUBJECT:	Laboratory Validation Report		
HydroCon TOC Site No.	2017-074		
Sampling Event Type:	Soil Sampling	5	
Laboratory Work Order:	May 8, 2018		
Analysis & Method			
 ☑ Diesel Range H ☑ Diesel Range C ☐ Volatile Organic ☑ BETX (8021B) ☐ Dissolved Lead ☐ Sulfate (300.0) ☑ Other – Percent Data Package Complete	t solids	G)	over letter; no issues
EDD to Hardcopy Ver			

 ☑ Holding Times & Sample Receipt ☑ Surrogate Compounds ☑ Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD) ☑ Associated Laboratory Duplicate ☑ Laboratory Control Sample/ Laboratory Control Sample Duplicates (LCS/LCSD) ☑ Method Blank ☐ Field Duplicates ☑ Target Analyte List ☑ Reporting Limits (MDL and MRL) ☑ Reported Results 	
Holding Times & Sample Receipt:	
All holding times and sample receipt were acceptable, with the exceptions noted below:	
Discrepancies were noted in the cooler receipt form that the sample IDs on the sample jars and their associated VOAs were different.	
Surrogate Compounds:	
All surrogate percent recoveries (%R) were within laboratory limits.	

Technical Data Validation:

Associated Matrix Spike/Matrix Spike Duplicate (MS/MSD):	
Matrix spikes were analyzed at the appropriate frequency and all %R were within the acceptance crit	eria.
Associated Laboratory Duplicate:	
Laboratory duplicates were analyzed at the appropriate frequency and all relative percent difference (RPD) were within the acceptance criteria, with the exceptions noted below:	
The Oil laboratory duplicate associated with sample SS01-13.97cm had an RPD outside of the contro (30%) at 50%. The lab noted that the sample was non-homogenous; no qualifiers were applied to the results.	
_aboratory Control Sample/Laboratory Control Sample Duplicates:	
LCS were analyzed at the appropriate frequency and all %R were within the acceptance criteria.	
Method Blank:	
Method blanks were analyzed at the appropriate frequency and were non-detect (ND) for all target ar	nalytes.

Field Duplicate(s):
Not applicable.
<u> </u>
Target Analyte List:
All requested analytes were present.
Reporting Limits (MDL and MRL):
Reporting limits were within the acceptance criteria, with the following exceptions noted below:
Select samples had elevated MRLs due to sample dilution as a result of high analyte concentrations or matrix interference issues. Results were reported from the dilution analyses, as applicable.

Reported Results:
All reported results are acceptable.
Laboratory qualifiers for NWTPH-Dx:
 (F-03) The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported. J/UJ-Other qualify affected results.
(F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation. J/UJ-Chrom qualify affected results.
Lab Validation Assessment
Analytical results are usable to meet the project objectives.

Data Quality Review Statement for Report

Aside from the data quality issues discussed above, the data quality review identified no concerns with respect to the quality or usability of the data presented herein.

The data meet the criteria outlined above, with the noted exceptions. Data were qualified due to compound identification and/or matrix interference issues. No data were rejected and completeness was 100 percent. All results are usable for their intended purpose.

Appendix A. Data Validation Qualifiers and Definitions

this data validation rev	data validation qualifier codes and their definitions that were assigned to analytical results in view process.			
Data Validation Qualifiers and Definitions:	\Box (R) The sample result is reject due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.			
	$\hfill\Box$ (DNR) Do not report. A more appropriate result is reported from another analysis or dilution.			

Appendix B. Data Validation Qualified Summary Table

Laboratory qualifiers:

- (F-03) The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
- (F-13) The chromatographic pattern does not resemble the fuel standard used for quantitation.

Validation qualifiers:

(J) The result is an estimated quantity.

Reason codes:

- Chrom = Chromatographic pattern doesn't match the pattern of the calibration standard.
- Other = Other, described in data validation report.

Appendix B. Validator Qualified Data Summary Table

Sample ID	Laboratory ID	Method	Parameter Name	Result	Result Units	Laboratory Qualifier	Validator Qualifier	Reason Code
SS01-13.97cm	A8D0914-01	NWTPH-Dx	Diesel	848	mg/kg	F-13	J	Chrom
SS01-13.97cm	A8D0914-01	NWTPH-Dx	Oil	392	mg/kg	F-03	J	Other
SS02-11.75cm	A8D0914-02	NWTPH-Dx	Diesel	473	mg/kg	F-13	J	Chrom
SS02-11.75cm	A8D0914-02	NWTPH-Dx	Oil	175	mg/kg	F-03	J	Other
SS03-13.97cm	A8D0914-03	NWTPH-Dx	Diesel	207	mg/kg	F-13	J	Chrom
SS03-13.97cm	A8D0914-03	NWTPH-Dx	Oil	147	mg/kg	F-03	J	Other
SS01-13.97cm	A8D0914-01	NWTPH-Dx	Diesel w/ Acid/Silica Gel Cleanup	947	mg/kg	F-13	J	Chrom
SS02-11.75cm	A8D0914-02	NWTPH-Dx	Diesel w/ Acid/Silica Gel Cleanup	526	mg/kg	F-13	J	Chrom
SS03-13.97cm	A8D0914-03	NWTPH-Dx	Diesel w/ Acid/Silica Gel Cleanup	238	mg/kg	F-13	J	Chrom

Appendix J Offsite Facility Reviews

Listed Facilities

Facility Name And Location	Estimated Distance/Direction/Gradient	Database Listings
Wenatchee Substation 514 Worthen St	Approximately 405' / North / Down-gradient	FINDS, ALLSITES, RCRA NONGEN/NLR, ECHO
Hamptons Auto Repair 601 S Wenatchee Ave	Approximately 659' / West / Cross-gradient	EDR HIST AUTO
Goodyear Tire Wenatchee 703 S Wenatchee Ave	Approximately 707' / Southwest / Up- gradient	ALLSITES, UST
Beryl A Comm 610 Wenatchee Ave	Approximately 739' /West / Cross to upgradient	ALLSITES, UST, SWRCY
Dwight Cash Inc 600 S Wenatchee Ave	Approximately 753' /West / Cross-gradient	FINDS, ALLSITES, INACTIVE, DRYCLEANERS, RCRA NONGEN/NLR, ECHO
Jerrys Auto Parts 604 S Wenatchee Ave	Approximately 756' / West / Cross-gradient	ICR, FINDS, ALLSITES, UST, CSCSL, NFA
Dick's/Wolfe Service Inc 730 S Wenatchee Ave	Approximately 975' / Southwest / Up- gradient	FINDS, ALLSITES, CSCSL, UST, NFA, IRC
Chuck's Auto Repair 500 S Wenatchee Ave	Approximately 995' / Northwest / Cross to down-gradient	FINDS, ALLSITES, UST, CSCSL, NFA, IRC
BNSF Wenatchee Rail yard 409 S Columbia Street	Approximately 1110' / Northwest / Down to cross-gradient	FINDS, ALLSITES, CSCSL, LUST, SPILLS, HSL, NPDES, UST, IRC
Chevron 94484 759 S Wenatchee Ave	Approximately 1156' / Southwest / Up- gradient	ALLSITES, UST
UNOCAL Service Station 4942 405 S Wenatchee Ave	Approximately 1322' / Northwest / down to cross-gradient	FINDS, ALLSITES, VCP, UST, CSCSL, NFA

Wenatchee Substation

This facility was identified in the EDR report as being listed on multiple databases including FINDS, ALLSITES, RCRA NONGEN/NLR, and ECHO databases. This facility has continually operated as an electrical substation from at least the early 1900s to the present. A search of Ecology website and databases did not return any data for this site. However review of the Sanborn maps from 1921, 1928, 1947, and 1949 indicate an above ground storage tank labeled as "Gas Holder" and boilers powered by oil and coal fuel. The 1949 and 1958 Sanborn maps also show a gas tank and associated pump. The historic burning of coal oil and other fuel oils at this facility may be the source of the heavy oil found in MW22. Based on the distance from the subject property, groundwater flow direction, and available information, this site represents a potential REC at this time.

Hamptons Auto Repair

The site was identified in the EDR report as being listed on the EDR HIST AUTO database. The site operated as a auto repair facility from 2003 to 2010. A search of

Ecology website and databases did not return any data for this site. Based on the distance from the subject property, available information, and type of business this site does not represent a REC at this time.

Goodyear Tire Wenatchee

This facility was identified in the EDR report as being listed on two databases including ALLSITES and UST databases. This site had one UST that contained petroleum products that was removed in December of 1999. A search of Ecology website and databases did not return any data for this site. Based on the available information and location of this site, it does not represent a REC at this time.

Beryl A Comm

This facility was identified in the EDR report as being listed on multiple databases including ALLSITES, UST, and SWRCY databases. This site contained a UST for used automotive oil. The site is a drop off location for used motor oil from households. A search of Ecology website and databases did not return any data for this site. Based on the distance from the subject property, available information, and no reported releases this site does not represent a REC at this time.

Dwight Cash Inc

This facility was identified in the EDR report as being listed on multiple databases including FINDS, ALLSITES, INACTIVE, DRYCLEANERS, RCRA NONGEN/NLR, and ECHO. The site is an inactive dry cleaner site that operated in the 1990s. A search of Ecology website and databases did not return any data for this site. Based on the distance from the subject property, available information, and no reported releases this site does not represent a REC at this time.

Jerry's Auto Parts

This facility was identified in the EDR report as being listed on multiple databases including ICR, FINDS, ALLSITES, UST, CSCSL, and NFA databases. On 6/15/1992 five USTs were removed from the Jerry's auto parts facility. These USTs were installed in the 1930s and were last used in 1975. The tanks consisted of three waste oil tanks ranging in size from 100, 300, and 500 gallons and two 1,000 gallon tanks that reportedly contained gasoline. The tanks were removed and petroleum contaminated soil was observed and excavated to the extent feasible. A four inch thick layer of diesel contaminated soil was left in place and on 8/3/1992 the site was placed on the Leaking Underground Storage Tank (LUST) list with the Cleanup ID number 8437. Cleanup report documentation was available for review on the Ecology website. The Ecology cleanup site details sheet states that cleanup was completed at the site on 2/2/2002 and Ecology issued a determination of no further action (NFA) for the site on 2/7/2002. Based on the NFA determination from Ecology and the distance and location from the subject property, this site does not represent a REC at this time.

Dick's/Wolfe Service Inc

This facility was identified in the EDR report as being listed on multiple databases including FINDS, ALLSITES, CSCSL, UST, NFA, and IRC databases. This site contained a regulated UST for fueling and an auto repair facility. On 7/30/1993 the site was placed on the Leaking Underground Storage Tank (LUST) list for a confirmed diesel release to soil with the Cleanup ID number 9186. Cleanup report documentation was not available for review on the Ecology website. The Ecology cleanup site details sheet states that cleanup was completed at the site on 1/18/2006 and Ecology issued a determination of no further action (NFA) for the site on 1/18/2006. Based on the NFA determination from Ecology and the distance and location from the subject property, this site does not represent a REC at this time.

Chucks Auto Repair

This facility was identified in the EDR report as being listed on multiple databases including FINDS, ALLSITES, UST, CSCSL, NFA, and IRC databases. This site contained a regulated UST for fueling and an auto repair facility. On 3/5/1992 the site was placed on the Leaking Underground Storage Tank (LUST) list for a confirmed diesel release to soil with the Cleanup ID number 10113. Cleanup report documentation was not available for review on the Ecology website. The Ecology cleanup site details sheet states that cleanup was completed at the site on 12/4/2006 and Ecology issued a determination of no further action (NFA) for the site on 12/4/2006. Based on the NFA determination from Ecology and the distance and location from the subject property, this site does not represent a REC at this time.

BNSF Wenatchee Rail Yard

This facility was identified in the EDR report as being listed on multiple databases including FINDS, ALLSITES, CSCSL, LUST, SPILLS, HSL, NPDES, UST, and IRC databases. This site is an active rail yard and contains a regulated UST for fueling. On 12/30/1991 the site was placed on the Leaking Underground Storage Tank (LUST) list for a confirmed diesel release to soil and groundwater with the Cleanup ID number 5820. Limited report documentation was available for review on the Ecology website. The Ecology cleanup site details sheet states that a diesel release has been confirmed to soil and groundwater from both diesel USTs. The site was placed on the Hazardous Site Listing/NPL list with a site rank of 5. Site ranks are determined by Ecology on a scale from 1 to 5 with 5 being the most hazardous to human health and the environment. The site is currently listed as awaiting clean up and currently groundwater monitoring is ongoing at the site. Based on the distance and location from the subject property, and the nature of the release this site represents a potential REC at this time.

Chevron 94484

This facility was identified in the EDR report as being listed on multiple databases including ALLSITES and UST databases. This site contained a regulated UST for fueling equipment. A search of Ecology website and databases did not return any data for this site. Based on the distance from the subject property, available information, and no reported releases this site does not represent a REC at this time.

UNOCAL Service Station 4942

This facility was identified in the EDR report as being listed on multiple databases including FINDS, ALLSITES, VCP, UST, CSCSL, and NFA databases. This site contained regulated USTs for fueling equipment. As detailed in the Remedial Soil Excavation report dated 2/9/2005, seven USTs were removed from the UNOCAL facility. Four of these USTs were installed in the late 1960s and were and were fiberglass construction. Each of these tanks were in good condition. The three other tanks appeared to be pre 1960s non UNICAL steel tanks. The tanks consisted of two 300 and one 1,000 gallons tanks that reportedly contained petroleum products. The tanks were removed and petroleum contaminated soil was observed and excavated. On 8/25/1991 the site was placed on the Hazardous Site Listings/NPL list with the Cleanup ID number 7013. Cleanup report documentation was available for review on the Ecology website. The Ecology cleanup site details sheet states that cleanup was completed at the site on 4/26/2005 and Ecology issued a determination of no further action (NFA) for the site on 4/26/2005. Based on the NFA determination from Ecology and the distance and location from the subject property, this site does not represent a REC at this time.

The remaining facilities listed in the database report do not appear to represent RECs to the site at this time based upon regulatory status, apparent topographic gradient, and/or distance from the site.

Unmapped facilities are those that do not contain sufficient address or location information to evaluate the facility listing locations relative to the site.

Appendix K Apex Forensics - Characterization MW22Product

August 1, 2018

Craig Hultgren HydroCon LLC 314 W 15th Street, Suite 300 Vancouver, WA 98660

Dear Mr. Hultgren:

Included are the results from the characterization of the product sample MW22-Product for your Coleman Oil Wenatchee, #2017-074 project. The sample was submitted in good condition to Apex Forensics on April 14, 2018. The sample was assigned work order number A8D0623 and placed in a refrigerator maintained at 4°C until removed for sample processing. The focus of this investigation was to provide identification and characterization of the sample using the American Society for Testing and Materials (ASTM) Method D2887-14.

The ASTM Method 2887-14 was completed in order to determine the boiling range and chemical composition of the material present in the sample MW22-Product. An aliquot of the sample was diluted with carbon disulfide and analyzed using an Agilent 6890 Gas Chromatograph (GC) fitted with a Flame Ionization Detector (FID). The GC/FID trace generated for the sample is enclosed. GC/FID traces of the method blank associated with the analytical batch as well as reference standards are also provided.

The GC/FID traces of the sample yielded detailed information on the boiling range and general chemical composition of the material that elutes under the ASTM Method 2887-14 GC/FID conditions between 36°C and 545°C. A detailed summary characterizing the material identified in the sample MW22-Product is enclosed.

It was requested that we review the GC/FID trace generated in order to evaluate whether R-99 (biodiesel) was present in the sample MW22-Product. Comparison of the GC/FID trace generated for a standard of R-99 provided by Coleman Oil shows that R-99 was not present in the sample MW22-Product. Based on the GC/FID trace generated, the material present in the sample MW22-Product is indicative of coal tar or a coal tar-based material.

Please contact us if additional consultation is needed by our firm in the interpretation of the analytical results provided or if you would like to arrange for long term storage of the

samples. We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Respectfully,

Kurt Johnson, Senior Chemist Director of Forensic Services Apex Laboratories, LLC

Enclosures

Date of Report: 08/01/18 Date Received: 04/14/18

Project: Coleman Oil Wenatchee, #2017-074, A8D0623

Date Extracted: 04/24/18 Date Analyzed: 04/24/18

RESULTS FROM THE ANALYSIS OF THE PRODUCT SAMPLE FOR FORENSIC EVALUATION BY CAPILLARY GAS CHROMATOGRAPHY USING A FLAME IONIZATION DETECTOR (FID)

<u>Sample ID</u> <u>GC Characterization</u>

MW22-Product

A8D0623-01

The GC trace using the flame ionization detector (FID) showed the presence of medium to high boiling compounds. The patterns displayed by these peaks are indicative of coal tar or a coal tar based material.

The medium to high boiling compounds appear as an irregular pattern of peaks on top of a slight hump or unresolved complex mixture (UCM). This material elutes from approximately $n\text{-}\mathrm{C}_{10}$ to $n\text{-}\mathrm{C}_{40}$. This correlates with a temperature range of approximately $174^{\circ}\mathrm{C}$ to $522^{\circ}\mathrm{C}$. Within this range, abundant peaks are present which are indicative of polycyclic aromatic hydrocarbons (PAHs).

The large peak seen near 25 minutes on the GC/FID trace is pentacosane, added as a quality assurance check for this GC analysis.

APEX LABS

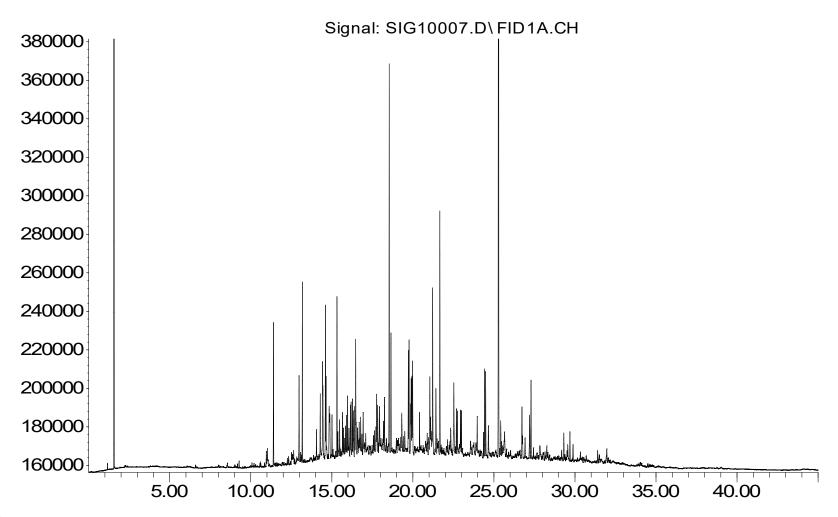
CHAIN OF CUSTODY

Lab # A8 20423

COC ___of__\

12232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333 Company: Hydrocon Project Mgr. Cing Hultgran Project Name: Coleman Oil Wenatcher Project # 2012 - 474 Address: Sampled by: Chas Das Uhal ANALYSIS REQUEST # OF CONTAINERS 8260 VOCs Full List 8260 RBDM VOCs 8260 BTEX VOCs Site Location: OR RCRA Metals (8) 8270 SIM PAHS Other: 8260 HVOCs 8270 SVOC SAMPLE ID MWZZ-product Normal Turn Around Time (TAT) = 10 Business Days NO SPECIAL INSTRUCTIONS: 1 Day 2 Day 3 Day TAT Requested (circle) 4 DAY Other: 5 DAY SAMPLES ARE HELD FOR 30 DAYS RELINOUISHED BY: RELINOUISHED BY: RECEIVED BY: Printed Name: Ches Sasche Time: 1030 Printed Name Will Westime: 1030 Printed Name: Company: Company:

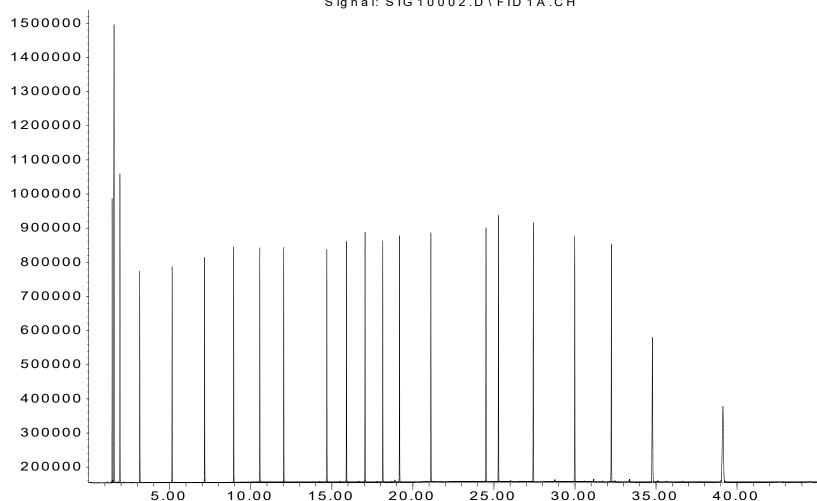
APEX LABS COOLER RECEIPT FORM


11.	ALLA LADS C	OLEK RECEIPT I	UKIVI
Client: Hydro Cov	1	Elei	nent WO#: A8 DOUD
Project/Project #:	man Oil W	enatchee	
Delivery info:	1		
Date/Time Received: 414	118 @ 1030	_ By:	
Delivered by: ApexCli			Senvoy SDS Other
Cooler Inspection Ir	spected by:	: 41	H18 @ 1030
Chain of Custody Included?	Yes No	Custody Seal	
Signed/Dated by Client?	Yes // No	·	
Signed/Dated by Apex?	Yes No		
Temperature (deg. C) Received on Ice? (Y/N) Temp. Blanks? (Y/N) Ice Type: (Gel/Real/Other) Condition: Cooler out of temp? (Y/N) If some coolers are in temp a Samples Inspection: Inspection: All Samples Intact? Yes Bottle Labels/COCs agree?	ossible reason why:	n dot applied to out of : YIHIS	temperature samples? Yes/No.NA @ 1535
Containers/Volumes Received	d Appropriate for Analy	sis? Yes 🗡 No	Comments:
Do VOA Vials have Visible F Comments 42 HS	Headspace? Yes 🛨	No NA	
Water Samples: pH Checked	and Appropriate (excer	t VOAs): Yes No	NA X
a			
Additional Information:			
Labeled by: Witne	ss: Cooler	Inspected by:	See Project Contact Form: Y

Product Sample: MW22 Product (A8D0623-01)

Hydrocon LLC - Coleman Wenatchee

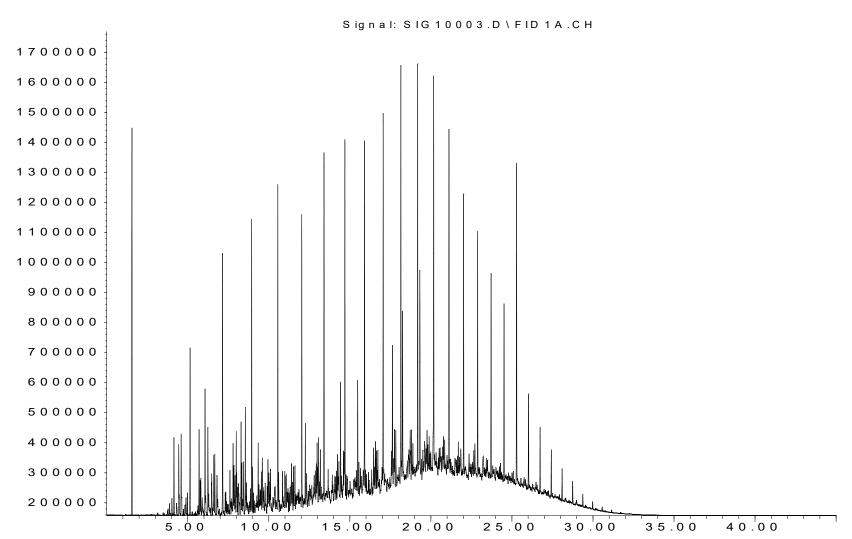
Date Analyzed: April 24, 2018


Time

ASTM Reference Sample: 2887 Alk A Hydrocon LLC - Coleman Wenatchee Date Analyzed: April 24, 2018

Response_

Signal: SIG10002.D\FID1A.CH



Time

ASTM Reference Sample: 2887 Gas/Oil A Hydrocon LLC - Coleman Wenatchee Date Analyzed: April 24, 2018

Response_

QC Sample: Method Blank Hydrocon LLC - Coleman Wenatchee Date Analyzed: April 24, 2018

Response_

Signal: SIG10006.D\FID1A.CH 1500000 1400000 1300000 1200000 1100000 1000000 900000 800000 700000 600000 500000 400000 300000 200000

20.00

25.00

30.00

35.00

40.00

Tim e

10.00

5.00

15.00

Appendix L Offsite Wells Logs

-	
<u>{</u>	0
Ŧ	
ECC	RTMENT DLOG I Washing
Ø	Con
- 1 - 1	Dec

WATER WELL REPORT Original & 1" copy – Ecology, 2" copy – owner, 3" copy – driller

COLOGY	Const	ruction/Dec	ommission	("x"	in circi	le
Constru	ection	489148				

☐ Decommission ORIGINAL INSTALLATION			
Notice of Intent Number			
PROPOSED USE: Domestic Industrial Municipal			
□ DeWater ☑ Irrigation □ Test Well □ Other			
TYPE OF WORK: Owner's number of well (if more than one)			
☑ New well ☐ Reconditioned Method: ☐ Dug ☐ Bored ☐ Driven ☐ Deepened ☐ Cable ☒ Rotary ☐ Jetted			
DIMENSIONS: Diameter of well 6 inches, drilled 58 ft.			
Depth of completed well Off.			
CONSTRUCTION DETAILS			
Casing ☑ Welded 6" Diam from 0 ft. to 23 ft.			
Installed:			
Perforations: Yes No			
Type of perforator used			
SIZE of perfsin. byin. and no. of perfsfromft. toft.			
Screens: Yes No K-Pac Location			
Manufacturer's Name			
Type Model No.			
DiamSlot sizefromft. toft.			
Diam. Slot size from ft. to ft.			
Gravel/Filter packed: Yes No Size of gravel/sand Materials placed from ft. to ft.			
Surface Seal: ☑ Yes ☐ No To what depth? 20ft.			
Material used in seal Bentonite			
Type of water? Depth of strata			
Method of scaling strata off			
PUMP: Manufacturer's Name Type: H.P.			
WATER LEVELS: Land-surface elevation above mean sea level <u>696</u> ft.			
Static level NONEft. below top of well Date 07-04-13			
Artesian pressure lbs. per square inch Date			
Artesian water is controlled by (cap, valve, etc.)			
WELL TESTS: Drawdown is amount water level is lowered below static level			
Was a pump test made? Yes No If yes, by whom?			
Yield:gal/min. withft. drawdown afterhrs.			
Yield:gal/min, withft. drawdown afterhrs.			
Yield:gal./min. withft. drawdown afterhrs. Recovery data (time taken as zero when pump turned off) (water level measured from			
kecovery agia (time taken as zero when pump numea ogj) (water level measurea from well top to water level)			
Time Water Level Time Water Level Time Water Level			
Date of test			

Bailer test _____ gal./min. with ____ft. drawdown after ____hrs Airtest 0 gal/min. with stem set at _____ft. for ____hrs. Artesian flow g.p.m. Date 07-04-13

__ Was a chemical analysis made? 🔲 Yes 🛛 No

Notice of Intent No. WE 16256		
Inique Ecology Well ID Tag No. <u>BHT :</u>	598	
Vater Right Permit No		
roperty Owner Name <u>Howard, Leonard</u>	<u> </u>	
Vell Street Address 1434 Sunset Hwy.		
City East Wenatchee County Do		_
ocation <u>NW</u> 1/4-1/4 <u>SW</u> 1/4 Sec <u>02</u> T		
s, t, r Still REQUIRED)	WII <u>22</u> K <u>20</u>	Or
		www (
at/Long Lat Deg <u>N 47</u> Lat	Min/Sec 25.609	5
Long Deg W 120 L		
Fax Parcel No. (Required) <u>22200130</u>		
CONCERN CONTRACTOR OF THE CONT		
CONSTRUCTION OR DECOM Formation: Describe by color, character, size of a	material and structure, and	d the kind a
nature of the material in each stratum penetrated, of information. (USE ADDITIONAL SHEETS		r each char
MATERIAL	FROM	TO
Brown sandy loam, boulders	0	16
Gravels	16	21
Coarse sand	21	23
Shale	23	31
Brown sandstone Gray sandstone	31	35
Shale		58
	1 39	
Silaie	39	
	39	30
Casing pulled and well	39	
Casing pulled and well decommissioned	39	
Casing pulled and well	39	
Casing pulled and well decommissioned	39	
Casing pulled and well decommissioned	39	
Casing pulled and well decommissioned	39	
Casing pulled and well decommissioned	39	
Casing pulled and well decommissioned	39	
Casing pulled and well decommissioned	39	
Casing pulled and well decommissioned	OF ECOLO	
Casing pulled and well decommissioned	OF ECOLOGY	
Casing pulled and well decommissioned	OF ECOLOGIA	
Casing pulled and well decommissioned	OF ECOLOGIA	
Casing pulled and well decommissioned	JUL 1 8 2013	
Casing pulled and well decommissioned	OF ECOLOGIA Received JUL 1 8 2013	
Casing pulled and well decommissioned	OF ECOLOGIA Received JUL 1 8 2013	
Casing pulled and well decommissioned	OF ECOLOGIA	
Casing pulled and well decommissioned	OF ECOLOGIA Received JUL 1 8 2013	

WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well

construction standards. Materials used and the information reported above are tru	ue to my best knowledge and belief.
☐ Driller ☐ Engineer ☐ Trainee Name (Prior) Brett Phythian	Drilling Company Tumwater Drilling & Pump Inc.
Driller/Engineer/Trainee Signature	Address P.O.Box 777 9290 Hwy 2
Driller or trainee License No. 1249	City, State, Zip Leavenworth , WA, 98826
IF TRAINEE; Driller's License No:	Contractor's
Driller's Signature:	Registration No. TUWADP011LZ Date 07-11-2013

The Department of Ecology does NOT Warranty the Data and/or the Information on this Well Report.

File Original and First Copy with Department of Ecology Second Copy — Owner's Copy Third Copy — Driller's Copy

WATER WELL REPORT

Start Card No. 17975

UNIQUE WELL I.D. 8 7 EC 373

STATE OF WASHINGTON

Water Right Permit No.

_	OWNER: Name MASCO CORP	- 21001 VAN BOAN 20 TATION	Mi 48180
	LOCATION OF WELL: County COLUMN	(17 A) - NE 14 NE 1/4 Sec 10 T 2	2 N.R 20 WM
2a)	STREET ADDRESS OF WELL (or nearest address) 5. 400 CUONTHE	IN LUFT GATCHER LUA	<u></u>
3)	PROPOSED USE: Domestic Industrial Municipal	(10) WELL LOG or ABANDONMENT PROCEDURE D	ESCRIPTION
-	Imigation DeWater Test Well St. Other TYPE OF WORK Owner's number of well	Formation: Describe by color, character, size of material and structure, and and the kind and nature of the material in each stratum penetrated, with change of information.	
4)	TYPE OF WORK: Owner's number of well (If more than one)	MATERIAL	FROM TO
	Abandoned New well P Method: Dug Bored Despensed Cable Driven	Asphilt	0 3"
	Reconditioned	Cubbles course sand	3 6
5)	DIMENSIONS: Diameter of well Z inches.	rourse same Fine same	6 40
	Orilled 20 feet. Depth of completed well 20' ft.		
	ACMICTON DETAILS		
6)	CONSTRUCTION DETAILS:		
	Casing installed: Z Diam. from C ft. to / C ft. Welded Diam. from ft. to ft.		
	Liner Installed Threaded Diam. from ft. to ft.		<u> </u>
	Perforations: Yes No 🗹		
	Type of perforation usedin. byin.		
	perforations fromft. toft.		
	perforations from ft. to ft.		
	perforations from ft. to ft.		
	Screens: Yes 🕅 No 🗌		
	Manufacturer's Name		
	Type Model No.		TWO TOO
	Diam. Z Slot size O/O from / 0 h, to 20 ft.		
	Diam. Slot size from ft. to ft.		A 1 3 5
	Gravel packed: Yes 【 No □ Size of gravel/C/2.0		12 Pi S
	Gravel placed from		(a 15 3)
			COULT SO
	Surface seal: Yes \ No \ To what depth? \ The third is the seal of		
	Did any strata contain unusable water? Yes No 🗵		
	Type of water? Depth of strata		
	Method of sealing strata off		
			<u> </u>
(7)	PUMP: Manufacturer's Name AP		
		<u> </u>	-27-78 19
(8)	WATER LEVELS: Land-surface elevation above mean sea level	Work Started 7-24-9819. Completed	
	Static level ft. below top of well Date	WELL CONSTRUCTOR CERTIFICATION:	
	Artesian pressure lbs. per square inch: Date Artesian water is controlled by	l' constructed and/or accept responsibility for construction	n of this well and its
	(Cap, valve, etc.)	compliance with all Washington well construction standard	s. Materials used and
(9)	WELL TESTS: Drawdown is amount water level is lowered below static level	the information reported above are true to my best knowled	ige and belief.
	Was a pump test made? Yes	NAME Environmental West Exploration, Inc	2
	Yield:gal./min. with ft. drawdown after hrs.	(PERSON, FIRM, OR CORPORATION) (TYPE OF	A PRINT)
	11 11 15	Address P.O. Box 11095, Spokane, WA 99211	
	n n n	(Signed) Mussitt Licen	10 No. 2040
	Recovery data (time taken as zero when purip turned off) (water level measured from well top to water level)	(Signed) Licen	
1	Rime Water Level Time Water Level Time Water Level	Contractor's	
		Registration PP Date 31 July	. 19 98
	Date of test	(USE ADDITIONAL SHEETS IF NECESS	занү)
	Baller testgal./min. with ft. drawdown after hrs.		-
	Airtest gal./min. with stem set at ft. for hrs.	Ecology is an Equal Opportunity and Affirmative Action	employer. For spe-
	Artesian flow g.p.m. Date	cial accommodation needs, contact the Water Resource 407-8600, The TDD number is (206) 407-8006.	ne c. rodiani at (506)
	Temperature of water 5 / Was a chemical analysis made? Yes No 🔞		

and the control of th

Appendix M Terrestrial Ecological Evaluation

Terrestrial Ecological Evaluation for Coleman Oil Company Wenatchee, Washington

Prepared for: HydroCon, LLC 1339 Commerce Avenue, Suite 211 Longview, WA 98632

Project # 112.01

Prepared by: Loowit Consulting Group, LLC 312 Gray Road Castle Rock, WA 98611 360.431.5118

September 10, 2018

Table of Contents

SIGNATURE PAGE	3
LIST OF ACRONYMS	4
INTRODUCTION	5
Purpose and Need	5
Site Description	5
METHODS	6
Desktop Review	6
TEE PROCESS	6
Step 1 – Characterization of the Site	7
Step 2 – Evaluation of Exclusions	7
Step 3 – Select Evaluation Method	8
Step 4 – Conduct the TEE	8
Step 5 – Identify Areas of Potential Ecological Concern	8
Step 6 – Conduct the Feasibility Study	8
Step 7 – Document the Process	8
RESULTS and DISCUSSION	8
CONCLUSIONS	9
LIMITATIONS	9
REFERENCES	10
FIGURES	
APPENDXIX A – Terrestrial Ecological Evaluation Form	
APPENDIX P. Table 740 1	

SIGNATURE PAGE

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned:

Timothy J. Haderly, Principal Scientist/Owner

Loowit Consulting Group, LLC

LIST OF ACRONYMS

BAF Bioaccumulation Factor

BTEX Benzene, Toluene, Ethylbenzene, and Total Xylenes

CAP Cleanup Action Plan

DRPH Diesel Range Petroleum Hydrocarbons
GRPH Gasoline Range Petroleum Hydrocarbons

MDL Method Detection Limit
MTCA Model Toxics Control Act

NFA No Further Action

ORPH Oil Range Petroleum Hydrocarbons

RCW Revised Code of Washington
TEE Terrestrial Ecological Evaluation
TPH Total Petroleum Hydrocarbons
VCP Voluntary Cleanup Program
WAC Washington Administrative Code

INTRODUCTION

Purpose and Need

Loowit Consulting Group, LLC (LCG) was retained by HydroCon, LLC to conduct a Terrestrial Ecological Evaluation (TEE) at the Coleman Oil Company site located at 600 S Worthen St. in Wenatchee, Washington (Figure 1). On March 17, 2017, the Wenatchee Fire Department reported the presence of a sheen and petroleum odor on the Columbia River between Thurston and Chehalis Streets in Wenatchee, Washington. A subcontractor hired by Coleman Oil Company conducted a line tightness test on March 24, 2017 on underground pipe lines used to transfer fuel from ASTs at Tank Farm A to the truck loading rack on the property. Two of the fuel lines would not hold pressure: the R99 renewable diesel fuel line and the B75 biodiesel fuel line. A review of Coleman Oil inventory records indicated that the release was most likely from the R99 renewable diesel fuel line.

As part of an Agreed Order under the Washington State Model Toxics Control ACT (MTCA) WAC 173-340, Coleman Oil has conducted additional subsurface investigations to further define the extent of soil and groundwater contamination from the renewable diesel fuel spill. Under WAC 173-340, a TEE is required to evaluate threats to plants, soil biota, and wildlife from contaminated soils at a cleanup site.

Site Description

The subject site consists of a single parcel that was operated as a bulk fuel terminal and commercial fueling facility until early 2018. The bulk fuel tanks have been removed while the commercial fueling station is still in operation. Site specifics include:

Site Address: 600 S Worthen St.

Wenatchee, WA 98801 (Chelan County Assessor)

or

3 Chehalis St, Wenatchee, WA 98801

Current Owner: Coleman Services IV, LLC

Tax Parcel Number: 222011693005

<u>Legal Description</u>: Section 11, Township 22 North, Range 20 East, W.M.

Property Size: Approximately 1.27 acres

<u>Jurisdiction</u>: City of Wenatchee

The subject site is situated between Chehalis Street to the north, Worthen Street to the east, and BNSF railroad to the west (Figure 2). To the east of Worthen St. is the Apple Capital Loop Trail, overhead electrical lines, a narrow vegetated riparian area, and a very steep slope to the Columbia River. Property east of the Apple Capital Loop Trail, including the vegetated riparian area, is owned by Chelan County PUD. Topography at the site is flat with stormwater directed to storm drains in the adjacent city streets.

METHODS

Desktop Review

Prior to visiting the subject site, LCG conducted a desktop review of readily available mapping resources and other pertinent information including:

- Chelan County GIS (http://maps.co.chelan.wa.us/chelancountyGIS/).
 This source provided parcel information, aerial photographs, physical attributes, and other information from the Chelan County Assessor.
- US Fish and Wildlife Service National Wetlands Inventory Wetlands Mapper (https://www.fws.gov/wetlands/data/mapper.html). This mapping source depicts wetlands and streams throughout the United States.
- US Department of Agriculture Natural Resources Conservation Service Web Soil Survey (https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx). This source depicts mapped soils including hydric soils throughout the United States.
- Washington Department of Natural Resources Forest Practices Application Mapping Tool (https://fpamt.dnr.wa.gov/default.aspx). This mapping source depicts streams and wetlands in Washington State.
- Washington Department of Fish and Wildlife Salmonscape
 (http://apps.wdfw.wa.gov/salmonscape/map.html). This mapping source depicts streams and fish distribution in Washington State.
- Washington Department of Fish and Wildlife Priority Habitat and Species (http://apps.wdfw.wa.gov/phsontheweb/). This mapping source depicts priority habitats and species throughout Washington State.

TEE PROCESS

The MTCA TEE process is designed to identify sites which have the potential to impact ecological receptors from surface and/or shallow contaminated soils. A seven step process is used to complete the TEE process.

Step 1 - Characterization of the Site

The Coleman Oil Company site has been properly characterized by the collection and analysis of groundwater samples, surface water samples, subsurface soil samples, shoreline soil samples, and sediment samples within and adjacent to the subject site (Figure 2). Results of these analyses indicate varying concentrations of:

- Gasoline Range Petroleum Hydrocarbons (GRPH)
- Diesel range petroleum hydrocarbons (DRPH)
- Oil Range Petroleum Hydrocarbons (ORPH)
- Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX)

Step 2 - Evaluation of Exclusions

To determine if a site qualifies for exclusion, the site is evaluated against four exclusions listed below. The Coleman Oil Site in Wenatchee does not qualify for exclusion as summarized below:

Exclusion #1: Will all soil contamination be located at least 6 feet beneath the ground surface (conditional point of compliance)? **[NO]**

"Yes" to this question, the site qualifies for exclusion with institutional controls.

Will all soil contamination be located at least 15 feet beneath the ground surface? **[NO]** "Yes" to this question, the site qualifies for exclusion, institutional controls not required.

Exclusion #2: Will all soil contamination be covered by buildings, paved roads, pavement, or other physical barriers that will prevent plants or wildlife from being exposed? [NO]

"Yes" to this question qualifies for exclusion, with institutional controls.

Exclusion #3: Is there less than 1.5 acres of contiguous undeveloped land on the site, or within 500 feet of any area of the site affected by hazardous substances other than those listed in WAC 173-340-7491(1)(c)(ii)? [NO]

AND

Is there less than 0.25 acres of contiguous undeveloped land on or within 500 feet of any area of the site affected by hazardous substances listed in WAC 173-340-7491(1)(c)(ii)? [NO]

(Must answer "yes" to both questions to qualify for this exclusion. Other factors decide whether you will need institutional controls at your site if you use the exclusion.)

Exclusion #4: Are concentrations of hazardous substances in the soil less than or equal to natural background concentrations of those substances at the point of compliance? **[NO]**

"Yes" to this question qualifies for exclusion, institutional controls not required.

Step 3 - Select Evaluation Method

The TEE Form (Appendix A) is used to determine which evaluation method is most appropriate for the subject site.

Step 4 - Conduct the TEE

This step in the process determines if the (1) the TEE process can be ended, (2) if a simplified TEE is required, or (3) a site-specific TEE is required. The simplified TEE for the Coleman Oil site in Wenatchee can be ended according to the results for Table 749-1 (Appendix B). A detailed summary of answers listed in Table 749-1 is included in the Results and Discussion section.

Step 5 - Identify Areas of Potential Ecological Concern

Not required

Step 6 - Conduct the Feasibility Study

Not required

Step 7 - Document the Process

Not Required

RESULTS and DISCUSSION

LCG conducted a TEE at the Coleman Oil site in Wenatchee, Washington as part of the requirements of MTCA in WAC 173-340. The Coleman Oil site is located adjacent to the Columbia River that has a narrow riparian area providing limited habitat to terrestrial wildlife. Based on a review of site conditions, conversations with Ecology staff, and putting the site through the TEE process; it was determined that the site does not qualify for an exclusion and a simplified TEE for the Coleman Oil site in Wenatchee can be ended according to the results for Table 749-1 (Appendix B).

Table 749-1 Results

Question #1 – This question assigns points for the size (acres) of "undeveloped" land on and within 500 feet of a project site. Undeveloped land means land that is not covered with buildings, roads, paved areas or other barriers preventing wildlife from feeding on plants, earthworms, insects or other food in or on the soil. The only areas qualifying as

undeveloped lands at the project site is the riparian area along the Columbia River. This area is comprised of approximately 1.47 aces (Figure 3) thereby receiving a score of 7 points.

Question 2 – This question asks if the property is industrial or commercial. The subject site is classified as industrial property by the City of Wenatchee (2017),. The question does not make clear if the property is just the subject site or also includes the area within 500 feet of the subject site. Taking the more conservative approach, this question was assigned the lower score of 1 but an argument for a higher score of 3 could be made.

Question #3 – This question assigns points for the quality of habitat. A score of 2 was assigned as the habitat in the riparian area is neither high quality of low quality given location in the landscape.

Question 41 – This question asks if the undeveloped land is likely to attract wildlife. The answer is yes as birds and mammals can easily visit and utilize the riparian area along the Columbia River. A score of 1 point was assigned.

Question 5 – This question asks if a list of soil contaminants are present. None of the listed contaminants have been identified so a score of 4 points was assigned.

Question # – This question adds the scores from questions #2 through #5 which is 8 points. If this sore is higher than the score listed in Question #1 (7 points), the simplified terrestrial ecological evaluation may be ended under WAC 173-34-7492(2)(a)(ii). Eight points is higher than 7 points so the simplified TEE for the Coleman Oil site in Wenatchee can be ended.

CONCLUSIONS

The simplified TEE for the Coleman Oil site in Wenatchee can be ended according to the results documented in Table 749-1 (Appendix A).

LIMITATIONS

The findings and conclusions contained in this document were based on information and data available at the time this document was prepared and evaluated using standard Best Professional Judgement. LCG assumes no responsibility for the accuracy of information and data generated by others. Local, State, and Federal regulatory agencies may or may not agree with the findings and conclusions contained in this document.

REFERENCES

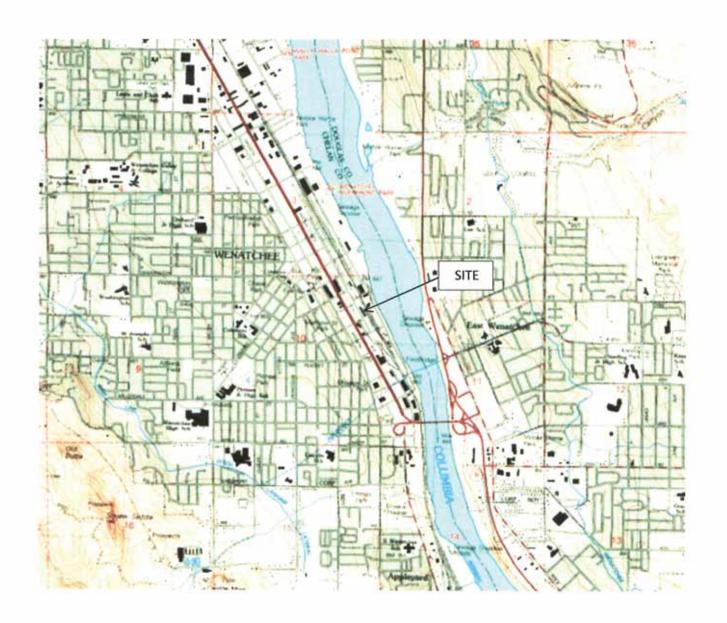
Anderson, P., Meyer, S., Olson, P., Stockdale, E. 2016. Determining the Ordinary High Water Mark for Shoreline Management Act Compliance in Washington State. Shorelands and Environmental Assistance Program Washington State Department of Ecology Olympia, Washington. Publication no. 16-06-029. October 2016 Final Review.

Chelan County GIS Maps.

City of Wenatchee. 2017. http://www.wenatcheewa.gov/home/showdocument?id=17440

Revised Code of Washington (RCW) Chapter 70.105D.

Washington Administrative Code (WAC) Chapter 173-340.


Wenatchee City Code. Title 12 - Environmental Protection.

FIGURES

Figure 1 – Site Location Map

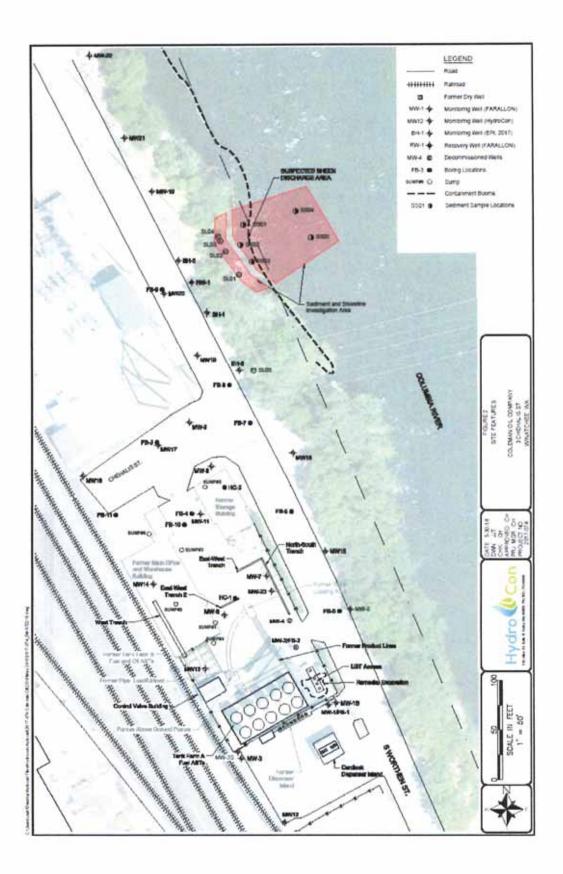

Figure 2 – Site Map

Figure 3 – Riparian Areas (Undeveloped Lands)

Loowit Consulting Group, LLC Natural Resources & Project Management 360.431.5118 Figure 1 Site Location Map

Appendix A

Table 749-1

Table 749-1 Simplified Terrestrial Ecological Evaluation - Exposure Analysis Procedure under WAC 173-340-7492 (2)(a)(ii).a

1.47 acres	Estimate the area of contiguous (connected) under the site or within 500 feet of any area of the site to acre (1/4 acre if the area is less than 0.5 acre). "U means land that is not covered by existing building areas or other barriers that will prevent wildlife find plants, earthworms, insects or other food in or on	o the nearest 1/2 indeveloped land" ngs, roads, paved rom feeding on		
	 From the table below, find the number of points corresponding to the area and enter this number in the box to the right. 			
	Area (acres)	Point		
	0.25 or less	4		
	0.5	5		
_	1.0	6		
7	1.5	7		
	2.0	8		
	2.5	9		
	3.0	10		
	3.5	11		
	4.0 or more	12		
1	 Is this an industrial or commercial property? See WAC 173-340-7490 (3)(c). If yes, enter a scoto the right. If no, enter a score of 1. 	ore of 3 in the box		
2	 Enter a score in the box to the right for the hab site, using the rating system shown belowb. (High Intermediate = 2, Low = 3) 	itat quality of the $i = 1$,		
1	 Is the undeveloped land likely to attract wildlif score of 1 in the box to the right. If no, enter a sco footnote c. 	e? If yes, enter a ore of 2. See		
4	5) Are there any of the following soil contaminan Chlorinated dibenzo-p-dioxins/dibenzofurans, PC DDT, DDE, DDD, aldrin, chlordane, dieldrin, encheptachlor, benzene hexachloride, toxaphene, hex pentachlorophenol, pentachlorobenzene? If yes, e in the box to the right. If no, enter a score of 4.	B mixtures, dosulfan, endrin, achlorobenzene,		
8	6) Add the numbers in the boxes on lines 2 throug number in the box to the right. If this number is la number in the box on line 1, the simplified terrests evaluation may be ended under WAC 173-3-40-7-49	rger than the rial ecological		

Footnotes:

- alt is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score (1) for questions 3 and 4.
- b Habitat rating system. Rate the quality of the habitat as high, intermediate or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:
- Low: Early successional vegetative stands; vegetation predominantly noxious, nonnative, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.
- High: Area is ecologically significant for one or more of the following reasons: Late-successional native plant communities present; relatively high species diversity; used by an uncommon or rare species; priority habitat (as defined by the Washington department of fish and wildlife); part of a larger area of habitat where size or fragmentation may be important for the retention of some species. Intermediate: Area does not rate as either high or low.
- c Indicate "yes" if the area attracts wildlife or is likely to do so. Examples: Birds frequently visit the area to feed; evidence of high use by mammals (tracks, scat, etc.); habitat "island" in an industrial area; unusual features of an area that make it important for feeding animals; heavy use during seasonal migrations.

APPENDIX N Additional Interim Action #3 Work Plan Soil and Sediment Sampling Pending