

Environment

Prepared forSubmitterTesoro Logistics Operations, LLC.AECOM3450 S. 344th Way, Suite 201111 SWAuburn, WA 98001-5931Suite 150

Submitted to Washington Department of Ecology Submitted by AECOM 111 SW Columbia Suite 1500 Portland, OR 97201

60569792 October 2018

First Semiannual 2018 Groundwater Monitoring Report

Tesoro Pasco Bulk Fuel Terminal

2900 Sacajawea Park Road Pasco, Washington Cleanup Site ID: 4867 Facility Site ID: 55763995

AECOM 111 SW Columbia Suite 1500 Portland, OR 97201 www.aecom.com 503 222 7200 tel 503 222 4292 fax

October 11, 2018

Christer Loftenius Hydrogeologist Washington State Department of Ecology Eastern Regional Office 4601 North Monroe Street Spokane, WA 99205 <u>clof461@ecy.wa.gov</u> (hard copy and electronic copy)

Re: First Semiannual 2018 Groundwater Monitoring Report Tesoro Pasco Bulk Fuel Terminal 2900 Sacajawea Park Road Pasco, Washington Cleanup Site ID: 4867 Facility Site ID: 55763995

Dear Mr. Loftenius:

The attached report has been prepared by AECOM on behalf of Tesoro Logistics Operations, LLC. This report describes the results of the first semiannual groundwater monitoring event for 2018 at the Tesoro Pasco Bulk Fuel Terminal. If you have any questions or require additional information, please contact me at (503) 478-2765.

Sincerely,

AECOM

Nicky Moody Project Manager

cc: Anastasia E. Duarte, Tesoro Refining and Marketing Company, 3450 S. 344th Way, Suite 135, Auburn, WA (electronic only)

Table of Contents

1 Introduction	1-1
1.1 Site Information1.2 Groundwater Monitoring Network and Program	1-1 1-1
2 Groundwater Monitoring and Sampling Activities and Results	
 2.1 Monitoring Well Gauging Field Activities and Monitoring Results 2.2 Groundwater Sampling Field Activities 2.3 Groundwater Analytical Methods and Results 	
2.3.1 Groundwater Analytical Methods2.3.2 Groundwater Analytical Results	
2.4 Natural Attenuation Evaluation	
2.4.1 Types of Natural Attenuation Parameters and Analytical Methods2.4.2 Natural Attenuation Parameter Results	
2.5 Investigation-Derived Waste	
3 Conclusions and Recommendations	
4 Limitations	4-1
5 References	

List of Figures

-igures	Following the Text
---------	--------------------

Figure 1	Site Vicinity Map
Figure 2	Site Plan
Figure 3	Groundwater Elevation Contour Map – June 2018
Figure 4	Groundwater Analytical Data Summary Map – June 2018

List of	Tables	
---------	--------	--

Table 1	Groundwater Monitoring and Sampling Program Summary
---------	---

- Table 2
 Current Event Groundwater Monitoring and Analytical Data
- Table 3
 Current Natural Attenuation Parameter Data

List of Appendices Following the Text

Appendix A	Site Background and History
	Table A1. Historical and Current Groundwater Monitoring and Analytical Data
	Table A2. Historical and Current Natural Attenuation Parameter Data
Appendix B	Groundwater Quality Sampling Information Forms
Appendix C	Data Validation Report, Analytical Report, and Chain of Custody Form

1 Introduction

AECOM has prepared this First Semiannual 2018 Groundwater Monitoring Report on behalf of Tesoro Logistics Operations, LLC. (Tesoro) for the Tesoro Pasco Bulk Fuel Terminal. This report summarizes the results of the 2018 first semiannual groundwater monitoring event.

1.1 Site Information

This section only includes a summary of the project information; additional background information, location, and history including historical groundwater data tables are provided as Appendix A.

Chevron Pipeline Company (CPL) operated the Pasco Bulk Fuel Terminal (the facility) from 1950 until Tesoro Logistics Operations LLC (Tesoro) purchased the facility in June 2013. Tidewater Terminal Company, Inc. (Tidewater) owns and operates fuel pipelines within a three-acre easement that crosses the facility. The area within the northwest corner of the facility, labeled on Figure 2 as the Tidewater site, includes the area of a pipeline fuel release that occurred in July 2000 (see Appendix A). Tidewater is responsible for managing ongoing environmental activities in this portion of the facility.

Since the purchase from CPL and the separation of the remedial investigation activities at the Tidewater site from the remainder of the facility in July 2015, Tesoro has been responsible for managing ongoing environmental activities within the facility exclusive of the Tidewater area (the Site); this area is labeled as the Site on Figure 2. The Site is listed on the Washington State Department of Ecology (Ecology) Cleanup Site Identification (ID) 4867.

The Site is located at 2900 Sacajawea Park Road in Pasco, within the north half of the southwest quarter of Section 35 in Township 9 North and Range 30 East in Franklin County, Washington (Figure 1). The Site consists of aboveground storage tanks (ASTs), loading racks, pumping stations, underground and aboveground pipelines, a barge loading dock, a lined evaporation pond, and terminal offices (Azure, 2014).

The Site has been an active fuel terminal since September 1950 and receives fuel products through underground pipelines and is capable of receiving fuel products by barge. Twenty-one ASTs ranging from 10,000 to 50,000 gallons (Azure, 2014) are used to store diesel, gasoline, jet fuel, and ethanol (URS, 2011).

The Site is adjacent to the Lake Wallula portion segment of the Snake River and surrounded by unimproved land to the southwest, north, and northeast. The elevation at the Site ranges from approximately 356 feet National Geodetic Vertical Datum (NGVD) along the river to approximately 425 feet NGVD in the upland portion of the Site where the storage tanks are located (URS, 2011). A Burlington Northern Santa Fe (BNSF) rail spur runs though the Site along the Snake River.

1.2 Groundwater Monitoring Network and Program

Fourteen monitoring wells (MW-1 through MW-14) and one recovery well (RW-1) have been installed at the Site as shown on Figures 2 through 4. These wells are active and included in the monitoring well network with the following exceptions:

- MW-1 and RW-1 were buried during construction work as of December 2017 and May 2014, respectively (CEECON, 2017). Permanent abandonment of MW-1 and RW-1 was proposed by CEECON Testing, Inc. (CEECON) in December 2017 (CEECON, 2017) and approved by Ecology on April 19, 2018 (Ecology, 2018). Both wells were permanently decommissioned during the third quarter of 2018 the details of which will be described in a subsequent deliverable.
- MW-5 and MW-9 were destroyed in 1987 (URS, 2011).
- MW-13 was installed above the water table (URS, 2011).

The current monitoring program is directed in accordance with Section 4.5 of the *Supplemental RI/FS Work Plan*. According to the *Supplemental RI/FS Work Plan*, semiannual groundwater monitoring will continue until a new Draft Cleanup Action Plan (DCAP) is implemented for the Site. The current groundwater monitoring schedule is summarized below and included in Table 1 (CEECON, 2016).

- Depth-to-groundwater measurements are collected semiannually from all 10 active monitoring wells: MW-2 through MW-4, MW-6 through MW-8, MW-10 through MW-12, and MW-14.
- Groundwater samples are collected during the first semiannual monitoring event from all 10 active monitoring wells: MW-2 through MW-4, MW-6 through MW-8, MW-10 through MW-12, and MW-14.
- Groundwater samples are collected during the second semiannual monitoring event from the following seven monitoring wells: MW-2, MW-3, MW-6, MW-7, MW-11, MW-12, and MW-14.

2 Groundwater Monitoring and Sampling Activities and Results

CEECON conducted the first semiannual 2018 monitoring event on June 11 through 14, 2018. The groundwater monitoring and sampling activities are discussed in this section.

2.1 Monitoring Well Gauging Field Activities and Monitoring Results

Prior to purging and sampling, CEECON collected depth-to-groundwater measurements from all 10 active monitoring wells in accordance with Section 1.2 and Table 1. Depth-to-groundwater measurements were collected from the well top of casing (TOC) using an electronic water level meter and were recorded on the Water Quality Sampling Information forms, which are included in Appendix B.

The depth-to-groundwater measurements and groundwater elevations (calculated from the surveyed TOC elevations) for this event are listed on Table 2 and Table A1 in Appendix A with the historical data. Using the calculated groundwater elevations for this event, a groundwater elevation contour map was prepared as Figure 3.

During this event, groundwater elevations ranged from 342.88 feet^a at MW-6 to 344.39 feet^a at MW-2. Based on these groundwater elevations, groundwater at the Site appears to generally flow to the south.

The Lake Wallula water elevation was approximately 341.37 feet^a, which is approximately 2 feet above the 10year annual average elevation and approximately 1.5 feet above the 10-year average for the same period in May. The average water elevation for the past 10 years is approximately 339.38 feet^a while the historic minimum and maximum elevations are 335.17 feet^a and 343.71 feet^a, respectively.

2.2 Groundwater Sampling Field Activities

During this event, CEECON collected groundwater samples from all 10 active monitoring wells in accordance with Section 1.2 and Table 1.

The monitoring wells were purged and sampled using standard low-flow sampling techniques. The purge water was field-analyzed for the following parameters: pH, conductivity, dissolved oxygen (DO), temperature, and oxidation reduction potential (ORP). Copies of the Water Quality Sampling Information forms, which include field parameters, are included in Appendix B. The final stabilized field parameters from this event are tabulated as part of the natural attenuation analysis on Table 3 and Table A2 in Appendix A with the historical data.

CEECON field personnel wore disposable nitrile gloves while collecting and handling the groundwater samples. Sample containers were tightly sealed, uniquely labeled, and stored on ice for transportation to the laboratory. CEECON delivered the samples to TestAmerica Seattle in Tacoma, Washington and followed chain-of-custody (COC) procedures from sample collection to sample analysis. A copy of the COC form is included in Appendix C with the complete laboratory analytical report.

2.3 Groundwater Analytical Methods and Results

This section summarizes the groundwater analytical methods and results.

2.3.1 Groundwater Analytical Methods

CEECON submitted 10 primary groundwater samples and one field duplicate for analysis of the following constituents in accordance with Section 4.5 of the *Supplemental RI/FS Work Plan*:

- Total petroleum hydrocarbons, gasoline range (TPH-g) using Washington Method NWTPH-Gx
- Total petroleum hydrocarbons, diesel range (TPH-d) and total petroleum hydrocarbons, oil range (TPH-o) using Washington Method NWTPH-Dx

^a North American Vertical Datum of 1929 (NAVD29)

- Benzene, toluene, ethylbenzene, and total xylenes (BTEX), naphthalene, lead scavengers (1,2dibromeoethane [EDB] and 1,2-dichloroethane [EDC]), and fuel oxygenates (di-isopropyl ether [DIPE], ethyl tertiary-butyl ether [ETBE], methyl tertiary-butyl ether [MTBE], tertiary-butyl alcohol [TBA], and tertiary-amyl methyl ether [TAME]) using Environmental Protection Agency (EPA) Method 8260C
- Fuel oxygenates ethanol and methanol using EPA Method 8015C

One trip blank was submitted for analysis of TPH-g, BTEX, EDB, EDC, DIPE, ETBE, MTBE, TBA, and TAME.

The analytical laboratory report and COC form are included in Appendix C. A data validation was also completed on the analytical results, which is provided as a Data Review Report in Appendix C.

2.3.2 Groundwater Analytical Results

The current groundwater analytical results for this event are listed in Table 2 and Appendix A, Table A1 with the historical results. In addition, the TPH-g, TPH-d, and TPH-o analytical results for this event are included on Figure 4.

The analytical detections for the 10 primary groundwater samples collected during this event are summarized below.

- TPH-g, BTEX, naphthalene, all the lead scavengers, and all the fuel oxygenates were not detected in any of the ten groundwater samples.
- TPH-d was detected in the groundwater samples from MW-2, MW-3, MW-6, MW-11, MW-12, and MW-14.
- TPH-o was detected in the groundwater samples from MW-2, MW-3, and MW-6.

The groundwater analytical results were compared to the Ecology Model Toxic Control Act (MTCA) Method A Cleanup Levels (herein referred to as the MTCA cleanup levels) on Table 2 and Figure 4. The results of this comparison are summarized below:

 Both TPH-d and TPH-o were detected at concentrations greater than their respective MTCA cleanup levels in the groundwater sample from MW-3.

These analytical results are generally in line with the historical analyte concentrations (Table A1 in Appendix A).

2.4 Natural Attenuation Evaluation

The natural attenuation results provide additional data documenting conditions of petroleum hydrocarbon degradation processes in groundwater. This section summarizes the natural attenuation parameter methods and results.

Assessment of natural attenuation included collection of additional parameters. The groundwater samples were collected at select wells representing background and source areas to provide additional information to evaluate if natural attenuation processes are active at the Site.

The additional parameters can be divided into two groups:

- Direct measurement of electron acceptors (e.g., DO, ORP, sulfate, and nitrate)
- Indirect measurement of byproduct(s) of the partially or fully metabolized electron acceptor (e.g., manganese, ferrous iron, methane, and alkalinity)

Contaminant degrading microorganisms will utilize the most efficient electron acceptors under the prevailing redox conditions, while creating metabolic by-products. For example, oxygen (as measured by DO and ORP) is consumed in aerobic respiration to create carbon dioxide (CO_2) while the other electron acceptors are consumed in anaerobic respiration: ferric iron (Fe^{3+}) to create soluble ferrous iron (Fe^{2+}), nitrate to create elemental nitrogen, manganese (Mn^{4+}) to create soluble manganese (Mn^{2+}), and sulfate to create sulfide (Newell et.al., 1995).

When evaluating these parameters, the occurrence of natural attenuation is indicated by either a relatively reduced level of the electron acceptors or an elevated level of the metabolic by-products in locations within and external to the contaminant plume.

2.4.1 Types of Natural Attenuation Parameters and Analytical Methods

Natural attenuation parameters collected during this event in accordance with Table 1 include the following:

- Field parameters (pH, conductivity, DO, temperature, and ORP) collected during the sampling of all 10 monitoring wells
- Ferrous iron and nitrate measurements collected using field test kits during the sampling of the following four monitoring wells: MW-2, MW-6, MW-8, and MW-12.

Natural attenuation laboratory analytical testing on groundwater samples collected at the following four monitoring wells: MW-2, MW-6, MW-8, and MW-12. These four samples were submitted to TestAmerica for analysis of the following:

- Dissolved manganese (laboratory filtered) using EPA Method 200.7
- Sulfate using EPA Method 300
- Alkalinity using Standard Method 2320B
- Methane using method RSK 175

The field parameters, ferrous iron measurements, and nitrate measurements were recorded on the Water Quality Sampling Information forms included in Appendix B.

The analytical laboratory report and COC form are included in Appendix C. A data validation was also completed on the analytical results, which is provided as a Data Review Report in Appendix C.

2.4.2 Natural Attenuation Parameter Results

The natural attenuation parameter results from this event are tabulated on Table 3 and Table A2 in Appendix A with the historical data and summarized below.

- pH was neutral ranging from 6.57 to 7.49 at MW-12 and MW-4, respectively.
- Conductivity ranged from 0.730 milliseimens per centimeter (mS/cm) to 1.16 mS/cm at MW-10 and MW-2, respectively.
- DO readings were typical of aerobic conditions, ranging from 1.95 milligrams per liter (mg/L) to 8.38 mg/L at MW-12 and MW-6, respectively.
- Positive ORP measurements (suggesting oxidizing conditions) were recorded at all the monitoring wells sampled and ranged from 42 millivolts (mv) in MW-3 to 212 mv in MW-12.
- Ferrous iron was only detected in MW-3 (0.96 mg/L).
- Nitrate was detected in all four of the sampled monitoring wells and ranged from 8.09 mg/L in MW-6 to 42.9 mg/L in MW-8.
- Sulfate was detected in all four of the sampled monitoring wells and ranged from an estimated 96 mg/L in MW-6 to 120 mg/L in MW-8 and MW-12.
- Alkalinity was detected in all four of the sampled monitoring wells and ranged from 150 mg/L in MW-6 to 400 mg/L in MW-2.
- Manganese was only detected in MW-12 (0.043 mg/L).
- Methane was not detected in the four sampled monitoring wells.

The geochemical data continues to provide evidence that natural attenuation through biodegradation is occurring at the Site. Considering the geochemical indicators, oxidizing conditions, and the various factors discussed above, it appears aerobic biodegradation is ongoing and is likely substantially contributing to the continued attenuation of the petroleum hydrocarbons in groundwater.

- High DO concentrations and ORP values in the plume suggest aerobic biodegradation may be a significant degradation pathway.

- The presence of variable and high nitrate values could indicate biodegradation, through denitrification and the nitrate reduction process, is active seasonally or in isolated areas but is not the primary degradation pathway.
- Manganese and iron do not appear to be active degradation pathways.
- Anaerobic conditions favorable for sulfate reduction (including low DO concentrations and ORP levels less than -100mV) do not appear to be present or are only present seasonally in isolated areas at the Site.
- Methane is not present in the natural attenuation samples, indicating anaerobic biodegradation is currently not a significant degradation pathway at the Site.
- Increased alkalinity in groundwater samples with detectable concentrations of TPH-d and TPH-o suggest biodegradation may be occurring in the contaminant plume or along the periphery.

2.5 Investigation-Derived Waste

During this monitoring event, the field activities generated the following investigation-derived waste: purge water and miscellaneous wastes (sample tubing, gloves, paper towels, etc.). Miscellaneous wastes were managed as solid waste. The purge water was disposed of in the facility process-water treatment system.

3 Conclusions

During the first semiannual 2018 monitoring event, CEECON collected depth-to-groundwater measurements and groundwater samples from 10 wells in accordance with the current program. Conclusions from the first semiannual 2018 monitoring event are as follows:

- The groundwater flow direction is south at a variable hydraulic gradient.
- The detected analyte concentrations are generally similar to detected concentrations from previous events.
- Exceedances of the MTCA cleanup levels during this event are listed below:
 - TPH-d in MW-3
 - TPH-o in MW-3

The data from the monitoring event will be uploaded into Ecology's Environmental Information Management (EIM) database.

The findings and conclusions documented in this report have been prepared for specific application to this project and have been developed in a manner consistent with the level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area and in general accordance with the terms and conditions set forth in our Agreement. No warranty or other conditions express or implied should be understood.

The findings presented in this report are based on conditions observed at specific site locations and sampling intervals at the time of the assessment. Because conditions between the monitoring well locations or borings may vary over distance and time, the potential always remains for the presence of unknown, unidentified, unforeseen, or changed surface and subsurface contamination. Conclusions in this report are based on comparison of chemical analytical results to current regulatory standards.

This report is for the exclusive use of Tesoro and its representatives. No fourth party shall have the right to rely on AECOM's opinions rendered in connection with the services or in this report without our written consent, and the second party's agreement to be bound to the same conditions and limitations as Tesoro.

5 References

- Azure, 2014. *Confirmation Sampling Workplan.* Tesoro Logistics (Former Chevron) Pasco Bulk Terminal 2900 Sacajawea Park Road, Pasco, WA. Facility Site ID: 55763995; Cleanup Site ID: 4867. November 12.
- CEECON, 2016. Supplemental RI/FS Work Plan. Former Chevron Pipe Line Company Pasco Bulk Terminal, Pasco, Washington. March 31.
- CEECON, 2017. Addendum to Supplemental Remedial Investigation Feasibility Study. Andeavor Tesoro Logistics (Former Chevron) Pasco Bulk Fuel Terminal, Pasco, Washington. December 10.
- Ecology, 2018. Letter from Christer Loftenius (Washington State Department of Ecology) to Anastasia Duarte (Tesoro), received April 23.
- Newell, C.J., Winters, J.A., Rifai, H.S., Miller, R.N., Gonzales, J, and Wiedemeier, T.H., 1995. "Modeling Intrinsic Remediation with Multiple Electron Acceptors: Results from Seven Sites."
- URS, 2011. Remedial Investigation/Feasibility Study Report for the NWTC Pasco Terminal. Pasco, Washington. September 29.

Figures

ΑΞϹΟΜ

60569792

SITE PLAN

TESORO LOGISTICS OPERATIONS, LLC TESORO PASCO BULK FUEL TERMINAL PASCO, WASHINGTON

60569792

GROUNDWATER ELEVATION CONTOUR MAP – JUNE 2018

TESORO LOGISTICS OPERATIONS, LLC TESORO PASCO BULK FUEL TERMINAL PASCO, WASHINGTON

60569792

TESORO PASCO BULK FUEL TERMINAL PASCO, WASHINGTON

Tables

Table 1. Groundwater Monitoring and Sampling Program SummaryTesoro Pasco Bulk Fuel TerminalPasco, Washington

														Mon	itoring and S	ampling Prog	ram					
														Fuel Oxy	genates			Natural At	tenuation			
Well Type	Well ID	Well Status	Install Date	Total Boring Depth (feet bgs)	TOC Elevation (feet MSL) (1)	Well Diameter (inches)	Well Screen Interval (feet below bgs)	Screen Length (feet)	Measure Depth to Groundwater (During 1st/2nd SA)	Collect Samples (During 1st SA)	Collect Samples (During 2nd SA)	TPH-g, TPH- d, & TPH-o (NWTPH-Gx and NWTPH-Dx)	VOCs: BTEX+N, EDB, & EDC (EPA 8260C)	DIPE, ETBE, MTBE, TBA, & TAME (EPA 8260C)	Ethanol & Methanol (EPA 8015C)	Field Parameters (pH, Cond., DO, Temp, & ORP)	Ferrous Iron & Nitrate (Field Test Kits)	Dissolved Manganese (lab filtered) (200.7 Rev 4.4 - Metals)	Sulfate (EPA Method 300)	Alkalinity (SM 2320B)	Methane (RSK 175)	QA/QC Samples
	MW-1	Abandoned	11/83	93.9	419.40	4	73.9 - 93.9	20														
	MW-2	Active	11/83	83.3	417.28	4	63.3 - 83.3	20	Х	Х	Х	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	
	MW-3	Active	11/83	94.95	423.42	4	74.95 - 94.95	20	Х	Х	Х	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA						
	MW-4	Active	11/83	76.75	412.09	4	56.75 - 76.75	20	Х	Х		1st SA	1st SA	1st SA	1st SA	1st SA						
	MW-5	Well destroyed	06/08/05																			
	MW-6	Active	11/17/86	23.5	358.61	2	8.5 - 23.5	15	Х	Х	Х	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	
Monitoring Wells	MW-7	Active	11/18/86	79	411.40	2	57 - 77	20	Х	Х	Х	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA						
	MW-8	Active	11/25/86	56	383.91	2	29 - 54	25	Х	Х		1st SA	1st SA	1st SA	1st SA	1st SA	1st SA	1st SA	1st SA	1st SA	1st SA	
	MW-9	Well destroyed	11/20/86	26		2	10 - 25	15														
	MW-10	Active	1/6/89	78.25	407.91	4	55 - 78	23	Х	Х		1st SA	1st SA	1st SA	1st SA	1st SA						
	MW-11	Active	1/16/89	84.5	423.48	2	75 - 85	10	Х	Х	Х	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA						
	MW-12	Active	1/17/89	85	423.65	2	33 - 60 / 75 - 85	37	Х	Х	Х	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	duplicate
	MW-13	Well always dry	1/17/89	48	424.07	2	18.5 - 47.5	29														
	MW-14	Active	1/17/89	82.5	421.97	2	27.5 - 53 / 72.5 - 82.5	36	Х	Х	Х	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA	1st/2nd SA						
Recovery Wells	RW-1	Abandoned	1/4/89	105	417.29	8	64 - 98	34														

Notes:

(1) On July 12, 2018, the wells were resurveyed by Stratton Surveying and Mapping, P.C. The horizontal datum = Washington State Plane South Zone North American Datum 1983(1991). The vertical datum = North American Vertical Datum 29.

Acronyms: -- = Not applicable or not sampled BTEX = benzene, toluene, ethylbenzene, and total xylenes Cond = conductivity DG = down-gradient DIPE = di-isopropyl ether DO = dissolved oxygen EDB = ethylene dibromide (1,2 dibromoethane) EDC = ethylene dichloride (1,2 dichloroethane) EPA = US Environmental Protection Agency ETBE = ethyl tertiary-butyl ether MSL = mean sea level MTBE = methyl tertiary-butyl ether ORP = oxidation reduction potential QA = quality assurance QC = quality control SA = semiannual SM = Standard Methods SVE = soil vapor extraction TAME = tertiary-amyl methyl ether TBA = tertiary-butanol Temp = temperature TOC = top of casing TPH = total petroleum hydrocarbons TPH-g = gasoline range hydrocarbons (as analzyed by Northwest Method NWPTH-Gx) TPH-d = diesel range hydrocarbons (as analyzed by Northwest Method NWTPH-Dx) TPH-o = motor oil range hydrocarbons (as analyzed by Northwest Method TPH-Rx with silica gel cleanup) UG = up-gradient VOC = Volatile organic compounds

Table 2. Current Event Groundwater Monitoring and Analytical Data

Tesoro Pasco Bulk Fuel Terminal Pasco, Washington

		Total Petro	oleum Hydr	ocarbons			VOCs and	d Lead Sc	avengers					Fue	el Oxgenat	tes					
Location	Sample Date	TOC Elevation (feet MSL) (1)	Depth to GW (feet below TOC)	GW Elevation (feet MSL) (1)	ТРН-9	ТРН-д	трн-о	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	EDB	EDC	DIPE	ETBE	MTBE	TBA	TAME	Ethanol	Methanol
Eco	Ecology's MTCA Method A Cleanup Levels (for groundwater) (2)(-					500	500	5	1,000	700	1,000	160	0.01	5	NE	NE	20	NE	NE	NE	NE
Units						ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	mg/L
MW-2	6/14/18	417.28	72.89	344.39	250 U	450	480	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
MW-3	6/14/18	423.42	79.20	344.22	250 U	4,700	860	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
MW-4	6/13/18	412.09	68.15	343.94	250 U	110 U	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
MW-6	6/11/18	358.61	15.73	342.88	250 U	180	460	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
MW-7	6/13/18	411.40	67.16	344.24	250 U	110 U	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
MW-8	6/11/18	383.91	39.65	344.26	250 U	110 U	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
MW-10	6/13/18	407.91	63.58	344.33	250 U	110 U	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
MW-11	6/14/18	423.48	79.30	344.18	250 U	160	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
MW-12	6/14/18	423.65	79.45	344.20	250 U	190	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
MW-14	6/13/18	421.97	77.74	344.23	250 U	110	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U

Notes:

Values in **bold** were detected above the limit

= Shaded values exceed Ecology's MTCA Method A Groundwater Cleanup Level.

-- = not sampled; not submitted for this analyte; or not gauged

Analytical results are compared to Ecology's MTCA Method A groundwater cleanup levels.

(1) On May 11, 2018, the wells were resurveyed by Stratton Surveying and Mapping, P.C. The horizontal datum = Washington State Plane South Zone North American Datum 1983(1991).

(2) Ecology's MTCA Method A Cleanup Levels for Groundwater (Washington Administrative Code 173-340-900 Table 720-1)

(3) Ecology's TPH-g MTCA Method A Cleanup Levels for Groundwater has two levels. If benzene is present in groundwater, the level is 800 ug/L; if no detectable benzene in groundwater, the level is 1,000 ug/L.

Acronyms:

μg/L = microgram per liter DIPE = di-isopropyl ether Ecology = Washington State Department of Ecology EDB = 1,2-Dibromoethane EDC = 1,2-Dichloroethane ETBE = ethyl tertiary-butyl ether ft = feet GW = groundwater J = Estimated Concentration mg/L = milligram per liter MSL = mean sea level MTBE = Methyl tertiary-butyl ether MTCA = Model Toxics Control Act NE = MTCA Method A screening levels have not been established. TAME = tertiary-amyl methyl ether TBA = tertiary-butanol TOC = top of casing TPH = total petroleum hydrocarbon TPH-g = gasoline range hydrocarbons (as analzyed by Northwest Method NWPTH-Gx) TPH-d = diesel range hydrocarbons (as analyzed by Northwest Method NWTPH-Dx) TPH-o = motor oil range hydrocarbons (as analyzed by Northwest Method TPH-Dx) U = Analyte not detected above limit shown VOC = Volatile organic compounds

Table 3. Current Natural Attenuation Parameter Data

Tesoro Pasco Bulk Fuel Terminal Pasco, Washington

				Fi	ield Para	meters				Laborato	ory Analytic	al
Location	Date	Hq	Conductivity	Dissolved Oxygen	Temperature	ORP	Ferrous Iron	Nitrate	Sulfate	Alkalinity	Manganese	Methane
l	Jnits	S.U.	mS/cm	mg/L	°C	mV	′ mg/L mg/L		mg/L	mg/L	mg/L	mg/L
MW-2	6/14/18	6.84	1.16	3.40	22.39	178	0.96	11.0	110	400	0.020 U	0.0050 U
MW-3	6/14/18	6.70	1.03	2.75	19.46	42						
MW-4	6/13/18	7.49	0.813	7.56	20.99	161						
MW-6	6/11/18	7.38	0.828	8.38	20.69	156	0.01 U	8.09	96 J	150	0.020 U	0.0050 U
MW-7	6/13/18	7.25	0.837	6.58	22.15	182						
MW-8	6/11/18	7.28	0.866	7.46	19.77	175	0.01 U	42.9	120	180	0.020 U	0.0050 U
MW-10	6/13/18	7.35	0.730	4.96	28.26	178						
MW-11	6/14/18	6.71	0.956	3.35	21.77	198						
MW-12	6/14/18	6.57	1.12	1.95	18.69	212	0.01 U	23.8	120	290	0.043	0.0050 U
MW-14	6/13/18	7.06	0.908	5.14	20.22	188						

Notes:

Values in **bold** were detected above the limit

-- = not sampled or not submitted for this analyte

Acronyms: °C = degrees celsius

ft = feet

J = estimated concentration

mg/L = milligrams per liter

mS/cm = milliseimens per centimeter mV = millivolts

ORP = Oxidation Reduction Potential S.U. = Standard Unit

U = analyte not detected above limit shown

Appendix A Site Background and History

Appendix A. Site Background and History

The following background and historical summary was prepared using information provided in the URS and CH2MHill *Remedial Investigation/Feasibility Study (RI/FS) Report* dated September 29, 2011 (URS, 2011b) and the Washington State Department of Ecology (Ecology) *Draft Cleanup Action Plan* (DCAP) dated December 2012 (Ecology, 2012).

A1. Ownership History and Facility/Site Definitions

Chevron Pipeline Company (CPL) operated the Pasco Bulk Fuel Terminal (the facility) from 1950 until Tesoro Logistics Operations LLC (Tesoro) purchased the facility in June 2013. Tidewater Terminal Company, Inc. (Tidewater) owns and operates fuel pipelines within a three-acre easement that crosses the facility.

The area within the northwest corner of the facility, labeled on Figure 2 as the Tidewater site, includes the area of a pipeline fuel release that occurred in July 2000. Tidewater is responsible for managing ongoing environmental remediation activities in this portion of the facility.

Since the purchase from CPL and the separation of the remedial investigation activities at the Tidewater site from the remainder of the facility in July 2015, Tesoro has been responsible for managing ongoing environmental activities within the facility exclusive of the Tidewater area (the Site); this area is labeled as the Site on Figure 2.

A2. Site Location and Description

The Site is located at 2900 Sacajawea Park Road in Pasco, Washington, on the north bank of the Snake River (Lake Wallula) (Figures 1 and 2).

The Site consists of approximately 33-acres of land used for transfer and bulk storage of refined fuels that include gasoline, diesel, and jet fuel. Twenty-one aboveground storage tanks (ASTs) that vary in storage capacity between approximately 10,000 to 50,000 gallons (Azure, 2014) are present on-site, in addition to eight fuel additive ASTs with capacities between 500- and 12,000-gallons. The Site also includes a 23,000-gallon capacity relief AST, underground and aboveground pipelines, rail spur, truck loading rack, barge loading dock, pumping stations, evaporation pond, and terminal office areas. Underground pipelines that cross the Site include two fuel supply pipelines that originate from Tesoro's Salt Lake City refinery. The pipelines are oriented along a northwest-southeast direction at the Site with the dormant south pipeline (6-inch diameter) historically used to transport unleaded gasoline and diesel fuel and the active north pipeline (8-inch diameter) used for jet fuel and other liquid petroleum hydrocarbon products (Figure 2). Tidewater operates a fuel transfer pipeline that exits the northwest area of the Site, and turns northeast along Sacajawea Park Road toward the location of the Tidewater Terminal. Additional pipelines that are no longer in operation were reportedly located at the eastern area of the Site and near the Snake River shoreline (Figure 2). A reported unlined evaporation pond was formerly located adjacent to the current lined evaporation pond at the eastern area of the Site (Figure 2).

The Site is surrounded by unimproved vacant land on three sides with limited, periodic agricultural land use. The Site has relatively flat topography with an elevation of approximately 420 feet above mean sea level (MSL) in the upland bluff area where the ASTs and truck loading facilities are located. A relatively steep land slope is present at the southeast area of the Site and drops to a relatively flat and narrow bench area along the Snake River, where the barge loading dock is located. The Snake River (Lake Wallula) surface water elevation is approximately 350 feet MSL, with river flow and lake level controlled by dams.

A3. Regulatory History

Ecology conducted an initial investigation of the site-wide facility in December 2000, and informed CPL by letter on December 12, 2000 that the Site would be listed on Ecology's Hazardous Sites database.

On December 4, 2009, Ecology issued Agreed Order No. DE 7294 to CPL and Tidewater to conduct a site-wide RI/FS.

The site-wide RI/FS was issued on September 29, 2011 and included the following findings:

- Liquid phase petroleum hydrocarbons have been sufficiently removed and addressed.

- Residual dissolved-phase petroleum hydrocarbons still remain on-site within localized areas. The lateral extent of the dissolved-phase plume has continued to decrease since remedial actions were discounted.

In December 2012, Ecology issued the DCAP and selected Alternative 1, which includes monitored natural attenuation (MNA) coupled with passive bioventing, as the cleanup action for the site-wide facility. Alternative 1 includes a restriction on groundwater use; no groundwater may be taken from the site except for use related to the cleanup, such as groundwater monitoring. Alternative 1 also requires groundwater monitoring continue to confirm natural attenuation is reducing the contamination to below the cleanup levels for a minimum of four consecutive sampling events in accordance with the December 2012 Compliance Monitoring Plan (URS, 2012).

In July 2015, after completion of borings CB-1 and CB-2 in June 2015, Ecology separated the facility into two distinct and unique sites: 1) the Site and 2) the Tidewater site.

On March 31, 2016, Ecology issued Agreed Order No. DE 12989 to Tesoro for the Site. This order required Tesoro to perform a supplemental RI including the completion of a Supplemental RI/FS Work Plan, RI field investigations, and a Supplemental RI/FS Report.

The Supplemental RI/FS Work Plan was issued for the Site on March 31, 2016, and the RI field investigations are currently on-going. The current monitoring program is directed in accordance with Section 4.5 of the Supplemental RI/FS Work Plan. According to the Supplemental RI/FS Work Plan, semiannual groundwater monitoring will continue until a new DCAP is implemented for the Site.

A4. Hydrocarbon Release and History

A total of 27 events of fuel hydrocarbon releases from storage tanks, pipelines and loading racks are documented for the Site during the period between 1972 and 2009 (URS, 2011b). The historical releases vary in estimated volumes between a few gallons and approximately 41,000 gallons per event, but the volume of at least one release is unknown (URS, 2011b). Many of the releases were contained and are not reported to have come in contact with surface soil.

The most significant documented releases occurred in the upland area of the Site, including the following four events (URS, 2011b):

- 665 barrels (27,930 gallons) of diesel released from Tank 8 in March 1976
- 600 barrels (25,200 gallons) of gasoline released from Tank 13 in December 1978
- 610 barrels (25,620 gallons) of gasoline released from Tank 17 in February 1984
- 976 barrels (41,000 gallons) of gasoline released from the Tidewater transfer pipeline in July 2000

The estimated volume of hydrocarbons recovered within a short period following the discovery of these four historic releases varied between approximately 12% and 33% of the estimated volume released in the CPL events, and approximately 85% recovery within a relatively short period following the Tidewater event (URS, 2011a). Longer-term remedial actions to address the historical releases were conducted between 1987 and 2003, resulting in further removal of hydrocarbons from the subsurface (see Section A6).

A5. Remedial Investigations and Monitoring Data

CPL installed 15 monitoring wells between 1983 and 1989 to investigate impacts to groundwater because of historical releases at the Site (Table 1). Groundwater sampling results collected by CPL confirmed petroleum contamination was present, including total petroleum hydrocarbons, gasoline range (TPH-g), diesel range (TPH-d), and oil range (TPH-o); and benzene, ethylbenzene, toluene, and xylene (BTEX) compounds (URS, 2011b). Tidewater installed 20 monitoring wells in 2000 and 2001 to investigate impacts resulting from the pipeline release event discovered in July 2000. Tidewater identified extensive impacts to groundwater near the pipeline release area, consisting primarily of TPH-g and BTEX compounds (URS, 2011b).

Tesoro (i.e., former CPL) and Tidewater monitoring wells located at the upland area of the Site were generally installed at depths between approximately 75 to 100 feet below grade (Table 1). Tesoro well MW-6 is the only remaining well located near the river shoreline and was installed to a depth of 23.5 feet.

Depth to groundwater measurements collected from the monitoring wells between 1986 and 2014 show the historical depth-to-groundwater measured in well MW-2 ranged from 71.70 feet below the top of well casing (TOC) (344.87 feet MSL) in March 1988 to 75.12 feet below TOC (341.45 feet MSL) in September 2002 (URS, 2011b). Historical groundwater level hydrographs show relatively minor groundwater level changes (i.e., less than

all MW-11) at the Site over the period since initial well installation in 1987 (LIRS, 2011b)

approximately 3 feet at well MW-11) at the Site over the period since initial well installation in 1987 (URS, 2011b). The water level in the adjacent Snake River is reportedly maintained between 335 and 340 feet MSL (Ecology, 2012).

Historical and most recent groundwater level data indicate the general direction of groundwater flow is southeast, in the direction toward the Snake River and in the area of the Tesoro wells. Though the historical gradient is essentially flat in the area of the Tidewater wells, the inferred groundwater flow direction based on current and historical conditions is toward the south. Data from the most recent joint monitoring event conducted in May 2014 show the calculated horizontal groundwater gradient varies across the Site, with a nearly flat gradient (i.e., less than 0.0002 feet/feet) in the area of the Tidewater wells and Tesoro wells on the upland bluff above the Snake River. In the area of the Tesoro wells located on the steeply sloping land surface between the upland bluff and the Snake River, the calculated horizontal groundwater gradient is approximately 0.008 feet/feet. These data are generally consistent with historic reports of potentiometric data and interpretations of groundwater flow direction and gradients at the Site (Azure and CH2MHill, 2014).

Geologic cross sections presented in the RI/FS Report were constructed using lithologic data from well borings installed at the Site (URS, 2011b). These data indicate the entire interval of vadose-zone (i.e., depth interval between ground surface and approximately 75 feet below grade) and saturated-zone sediments to a depth of approximately 100 feet is reported to consist of relatively coarse-grained sand and sandy gravel sediments. The relative amount of gravel is reported to generally increase with depth at the Site (URS, 2011b). These data also indicate the aquifer is monitored by the Site wells and is characterized by unconfined conditions.

Groundwater investigations and monitoring to assess the extent and distribution of petroleum impacts to groundwater were conducted on behalf of CPL and Tidewater and are presented in the RI/FS Report (URS, 2011b). Most recent joint groundwater monitoring data were collected on behalf of Tesoro and Tidewater in May 2014 and are presented in the *1st Semi-Annual 2014 Ground-Water Monitoring Report* dated August 20, 2014 (Azure and CH2MHill, 2014). No soil sample or soil laboratory analytical data for the CPL well borings are presented in the RI/FS Report and do not appear to have been collected (URS, 2011b).

Semiannual groundwater monitoring has been conducted by Tesoro since June 2015. Results of remedial investigation and groundwater monitoring completed at the Tesoro Site (i.e., former CPL) through October 2017 (Appendix A, Table A-1) include the following:

- Initial reports of petroleum hydrocarbon impacts included detection of separate-phase hydrocarbons (SPH) at MW-2 and observation of sheen on surface water along the Snake River shoreline in July 1986.
- More than a trace amount of SPH or sheen was reported at one or more of the following wells during the period between 1986 and 2003: MW-2, MW-3, MW-6, MW-7, MW-8, MW-10, MW-11, and MW-12.
- The greatest thickness of SPH measured in a well was approximately four feet recorded at MW-4 in 1991.
- Remedial activities that included soil excavation and groundwater pumping, product removal, and soil vapor extraction (SVE) and air sparge (AS) remedial system operations were completed between January 1987 and July 2000 (see Section A6 below).
- SPH have not been reported at any well since 2003, though trace free product was reported at well MW-3 in June and December 2010.
- The highest historical concentrations of the following hydrocarbon constituents were reported during the period between 1983 to 2017:
 - \circ TPH-g at 48,600 micrograms per liter (µg/L) (MW-3 in March 2000)
 - o TPH-d at 1,165,000 μg/L (MW-3 in March 2000)
 - o TPH-o at 4,200 µg/l (MW-11 in July 2005)
 - o Benzene at 430 μg/L (MW-12 in November 1990)
 - o Toluene at 1,050 μg/L (MW-11 in January 1989)
 - o Ethylbenzene at 700 μg/L (MW-11 in January 1989)
 - o Total xylenes at 2,900 μg/L (MW-11 in February 1991)

Additionally, soil and grab groundwater sampling data were collected by Tesoro in June 2015 to investigate whether Tidewater's TPH-g plume is commingled with Tesoro's plume (primarily TPH-d) in the area peripheral to Tidewater monitoring wells MW-7 and MW-8 (Figure 2).

- June 2015 soil sample data from confirmation borings CB-1 and CB-2 show petroleum hydrocarbons were essentially not reported at concentrations above laboratory reporting limits at both boring locations.
- June 2015 grab groundwater sample data from borings CB-1 and CB-2 show TPH-d (up to 3,100 μg/L) and TPH-o (up to 4,600 μg/L) were reported at both borings.
- June 2015 grab groundwater sample data from borings CB-1 and CB-2 show TPH-g results below laboratory reporting limits (i.e., <250 μg/L) at both borings.

These data confirm the absence of commingling of hydrocarbons between the Tesoro and Tidewater sites, and the lack of a potential source of hydrocarbon release in the general area of the Tesoro site where the borings are located.

A6. Remedial Action Summary

This section provides a summary of past remedial actions.

- Remedial soil excavation and groundwater pumping activities were conducted in May 1987 to remove jet fuel impacted soil and groundwater along the Snake River shoreline area. The excavation and pumping activities were conducted in response to observations of a hydrocarbon sheen on surface water along the Snake River shoreline in July 1986 and subsequent discovery of a leaking underground pipeline located near the area of the sheen. Approximately 1,900 cubic yards of impacted soil were reportedly excavated, and the excavation was backfilled with clean soil. An undisclosed quantity of impacted groundwater was pumped from MW-5. A pumping system, oil/water separator, and water infiltration gallery operated from January to April 1987.
- A product skimmer was installed in MW-2 in December 1987 and was moved to well MW-3 in September 1992. The product skimmer reportedly operated until October 1993 and an undisclosed quantity of product was removed from the wells.
- A groundwater supply well was removed from the Site in May 1989.
- Two separate SVE systems were installed in October 1989 and operated with various well configurations until July 2000. SVE wells included MW-2, MW-3, MW-7, MW-10, MW-11, MW-12 and MW-13. SVE monitoring data show the removal of an estimated 258,000 pounds (41,500 gallons) of petroleum hydrocarbons from vadose-zone soil during the period between October 1989 and approximately February 1993.
- Air sparging was conducted from September 1992 until July 2000 for varying durations at wells MW-2, MW-3, MW-11 and MW-12.

A7. References

- Azure and CH2MHill, 2014. 1st Semi-Annual 2014 Ground-Water Monitoring Report, Tesoro Logistics (former Chevron) Pasco Bulk Terminal, Pasco, Washington. August 20.
- Ecology, 2012. Draft Cleanup Action Plan, Chevron Pipeline Company Pasco Bulk Terminal. December.
- URS, 2011a. Addendum to the Preliminary Remedial Investigation Report for the NWTC Pasco Terminal, Pasco, Washington. February 24.
- URS, 2011b. *Remedial Investigation/Feasibility Study Report* for the CPL Pasco Terminal, Pasco, Washington. December.
- URS, 2012. Compliance Monitoring Plan for the NWTC Pasco Terminal, Pasco, Washington. September 29.

Table A1. Historical and Current Groundwater Monitoring and Analytical Data Tesoro Pasco Bulk Fuel Terminal

Pasco, Washington

						Total Pet	troleum Hydr	ocarbons	ns VOCs and Lead Scavengers								Fuel Oxgenates							
Location	Sample Date	TOC Elevation	Depth to GW	GW Elevation	Change in GW Elevation	ГРН-д	ЪН-Ч	ГРН-о	3enzene	Toluene	Ξthylbenzene	Fotal Xylenes	Vaphthalene	EDB	EDC	OIPE	ETBE	ИТВЕ	rba	FAME	Ethanol	Vethanol		
	Ecolo	av's MTCA Meth	od A Cleanup Le	evels (for around	water) (2)(3)	800/1.000 ²	500	500	5	1.000	700	1.000	160	0.01	5	NE	NE	20	NE	NE	NE	NE		
		07	•		Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	mg/L		
Site Monitoring We	ells																							
MW-1							Well installed	above the gr	oundwater 1	able (alway	rs dry); also l	buried as of	December 2	2017	_	_								
MW-2	12/15/10	417.28	73.21	344.07		50 U	3,100	2,400	1.0 U	1.0 U	1.0 U	2.0 U									10 U			
	5/29/14	417.28	72.83	344.45	-0.38	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U		
	10/29/14	417.28	74.03	343.25	1.20	250 U	250 U	500 U	0.50 U	0.68	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U		
	6/4/15	417.28	73.31	343.97	-0.72	250 U	140	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U		
	9/28/15	417.28	74.42	342.86	1.11	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U				
	8/29/16	417.28	74.52	342.76	0.10	50 U	1,400	710	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U		
	12/5/16	417.28	74.02	343.26	-0.50	50 U	410	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U		
	5/17/17	417.28	72.86	344.42	-1.16																			
	10/24/17	417.28	74.12	343.16	1.26	250 U	580	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U		
	6/14/18	417.28	72.89	344.39	-1.23	250 U	450	480	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U		
MW-3	12/14/10	423.42	79.38	344.04		NS	NS	NS	NS	NS	NS	NS									10 U			
	5/28/14	423.42	78.85	344.57	-0.53	250 U	1,100	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U		
	10/30/14	423.42	80.18	343.24	1.33	620	18,000	500 U	0.50 U	1.4	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U		
	6/4/15	423.42	79.46	343.96	-0.72	250 U	3,300	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.51	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	24.8	93.2		
	9/29/15	423.42	80.58	342.84	1.12	733	3,300	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U				
	8/30/16	423.42	80.60	342.82	0.02	1,400	11,000	1,100	2.0 U	2.0 U	3.0 U	3.0 U	2.5	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U		
	12/6/16	423.42	80.17	343.25	-0.43	290	6,600	290	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 0	10 U	10 U		
	5//16/17	423.42	79.04	344.38	-1.13	500 U	2,600	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U		
	10/25/17	423.42	80.23	343.19	1.19	380	5,700	410	2.0 0	2.0 0	3.0 0	3.0 0	2.0 0	2.0 0	2.0 0	2.0 0	6.0 U	2.0 0	100 U	6.0 U	10 0	10 0		
	6/14/18	423.42	79.20	344.22	-1.03	250 0	4,700	860 040 U	3.0 0	2.0 0	3.0 0	3.0 0	4.0 0	2.0 0	2.0 0	2.0 0	6.0 U	2.0 0	100 0	6.0 0	10 0	10.0		
10100-4	12/15/10	412.09	08.43	343.66		0.00	120 0	240 0	1.0 0		1.0 0	2.0 0	0.50.11		0.50.11									
	5/28/14	412.09	67.98	344.11	-0.45	250 0	250 U	500 0	0.50 0	0.50 0	0.50 0		0.50 0	0.50 0	0.50 0	0.50 0	0.50 0	0.50 0	5.0 0	0.50 0	5.00	50.0 0		
	6/2/15	412.09	69.17	342.92	-0.60	250 0	250 0	250 U	0.50 0	0.50 0	0.50 0		0.50 0	0.50 0	0.50 0	0.50 0	0.50 0	0.50 0	5.00	0.50 0	5.00	50.0 0		
	0/3/15	412.09	60.52	343.01	-0.09	250 0	100 0	250 0	0.50 0	0.52	0.5 0	1.0 0	0.50 0	0.50 0	0.50 0	0.50 0	0.50 0	0.50 0	5.0 0	0.50 0	5.0 0	50.0 0		
	9/20/15	412.09	69.52	342.57	0.14	50 11	110	250 11	2011	2011	2011	3011	2011	1011	1011	1011	5011	1011	 25	5011	10.11	10.11		
	12/5/16	412.09	09.00	542.45		50 0	110 0	230 0	2.0 0	2.0 0	3.0 0	5.0 0	2.0 0	1.0 0	1.0 0	1.0 0	5.0 0	1.0 0	25 0	5.0 0	10 0	10 0		
	5/15/17	412.09	68.02	344.07		500 11	100 []	250 11	2011	2011	3011	3011	2011	2011	2011	2011	6011	2011	100 11	6011	10 11	10 11		
	6/13/18	412.09	68 15	343.04	0.13	250 11	110 11	250 U	3.0 U	2.00	3.0.0	3011	2.0 0	2.00	2.00	2.00	6011	2.00	100 U	6011	10 U	10 U		
MW-5	0/13/10	412.03	00.15	343.94	0.10	230 0	1100	550 0	Well de	estroved in	0.0 0 May 1987	5.0 0	4.0 0	2.0 0	2.0 0	2.0 0	0.0 0	2.0 0	100 0	0.0 0	10.0	100		
MW-6	12/14/10	358.61	16.34	342.27		50 U	120 U	240 U	1.0 U	1.0 U	1.0 U	2.0 U									10 U			
	5/29/14	358.61	15.57	343.04	-0.77	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U		
	10/29/14	358.61	16.82	341.79	1.25	250 U	250 U	500 U	0.50 U	4.9	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U		
	6/3/15	358.61	16.18	342.43	-0.64	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U		
	9/28/15	358.61	17.15	341.46	0.97	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U				
	8/30/16	358.61	17.15	341.46	0.00	50 U	110 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U		
	12/5/16	358.61	16.91	341.70	-0.24	50 U	110 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U		
	5/16/17	358.61	15.88	342.73	-1.03	500 U	100 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U		
	10/23/17	358.61	17.01	341.60	1.13	250 U	100 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U		
	6/11/18	358.61	15.73	342.88	-1.28	250 U	180	460	3.0 U	2.0 U	3.0 U	<u>3</u> .0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	<u>1</u> 0 U		

Table A1. Historical and Current Groundwater Monitoring and Analytical Data Tesoro Pasco Bulk Fuel Terminal

Pasco, Washington

						Total Petroleum Hydrocarbons VO							vengers			Fuel Oxgenates							
Location	Sample Date	TOC Elevation	Depth to GW	GW Elevation	Change in GW Elevation	грн-д	P-Hd	ГРН-о	3enzene	Foluene	Ethylbenzene	Fotal Xylenes	Vaphthalene	EDB	EDC	OIPE	ETBE	ИТВЕ	ſ₿Ă	FAME	Ethanol	Methanol	
	Ecolo	av's MTCA Meth	od A Cleanup Le	vels (for ground	water) (2)(3)	800/1.000 ²	500	500	5	1.000	700	1.000	160	0.01	5	NE	NE	20	NE	NE	NE	NE	
					Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	mg/L	
MW-7	12/15/10	411.40	67.37	344.03		50 U	120 U	240 U	1.0 U	1.0 U	1.0 U	2.0 U									10 U		
	5/28/14	411.40	67.02	344.38	-0.35	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U	
	10/29/14	411.40	68.23	343.17	1.21	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U	
	6/3/15	411.40	67.48	343.92	-0.75	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U	
	9/28/15	411.40	68.61	342.79	1.13	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U			
	8/30/16	411.40	68.74	342.66	0.13	50 U	110 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U	
	12/5/16	411.40	68.18	343.22	-0.56	50 U	110 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U	
	5/15/17	411.40	67.02	344.38	-1.16	500 U	100 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U	
	10/24/17	411.40	68.22	343.18	1.20	250 U	100 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U		6.0 U	2.0 U	100 U	6.0 U	10 U	10 U	
	6/13/18	411.40	67.16	344.24	-1.06	250 U	110 U	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U	
MW-8	12/15/10	383.91	39.93	343.98		50 U	120 U	240 U	1.0 U	1.0 U	1.0 U	2.0 U									10 U		
	5/28/14	383.91	39.56	344.35	-0.37	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U	
	10/29/14	383.91	40.78	343.13	1.22	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U	
	6/3/15	383.91	40.04	343.87	-0.74	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	55.6	
	9/28/15	383.91	41.13	342.78	1.09																'		
	8/30/16	383.91	40.30	343.61	-0.83	50 U	110 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U	
	12/5/16	383.91																					
	5/17/17	383.91	39.56	344.35		500 U	100 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U	
	6/11/18	383.91	39.65	344.26	0.090	250 U	110 U	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U	
MW-9		T	1	1	1	1			Well de	stroyed in I	May 1987			1				1					
MW-10	12/15/10	407.91	63.84	344.07		50 U	120 U	240 U	1.0 U	1.0 U	1.0 U	2.0 U									10 U		
	5/28/14	407.91	63.46	344.45	-0.38	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U	
	10/29/14	407.91	64.68	343.23	1.22	250 U	250 U	500 U	0.50 U	1.1	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U	
	6/3/15	407.91	63.91	344.00	-0.77	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	63.7	
	9/28/15	407.91	65.02	342.89	1.11																'		
	8/30/16	407.91	65.22	342.69	0.20	50 U	110 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U	
	12/5/16	407.91																			'		
	5/15/17	407.91	63.50	344.41		500 U	100 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U	
	6/13/18	407.91	63.58	344.33	0.080	250 U	110 U	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U	
MW-11	12/16/10	423.48	79.46	344.02		50 U	200	240 U	1.0 U	1.0 U	1.0 U	2.0 U									10 U		
	5/29/14	423.48	79.19	344.29	-0.27	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U	
	10/30/14	423.48	80.31	343.17	1.12	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U	
	6/4/15	423.48	79.55	343.93	-0.76	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	52.6	
	9/29/15	423.48	80.67	342.81	1.12	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	[']		
	8/29/16	423.48	80.42	343.06	-0.25	50 U	520	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U	
	12/5/16	423.48	80.29	343.19	-0.13	50 U	360	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U	
	5/16/17	423.48	79.15	344.33	-1.14	500 U	390	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U	
	10/25/17	423.48	80.31	343.17	1.16	250 U	360	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U	
	6/14/18	423.48	79.30	344.18	-1.01	250 U	160	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U	

Table A1. Historical and Current Groundwater Monitoring and Analytical Data Tesoro Pasco Bulk Fuel Terminal

Pasco, Washington

						Total Petroleum Hydrocarbons VOCs and Lead Scavengers									Fuel Oxgenates							
Location	Sample Date	TOC Elevation (feet MSL) (1)	Depth to GW (feet below TOC)	GW Elevation (feet MSL) (1)	Change in GW Elevation (feet)	6-НАТ	р-нат	о-ндт	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	EDB	EDC	DIPE	ETBE	MTBE	TBA	TAME	Ethanol	Methanol
	Ecolo	gy's MTCA Metho	od A Cleanup Le	evels (for ground	lwater) (2)(3)	800/1,000 ²	500	500	5	1,000	700	1,000	160	0.01	5	NE	NE	20	NE	NE	NE	NE
					Units:	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	mg/L
MW-12	12/16/10	423.65	79.62	344.03		50 U	490	430	1.0 U	1.0 U	1.0 U	2.0 U									10 U	
	5/29/14	423.65	79.26	344.39	-0.36	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U
	10/30/14	423.65	80.45	343.20	1.19	250 U	250 U	500 U	0.50 U	0.66	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U
	6/4/15	423.65	79.72	343.93	-0.73	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	53.3
	9/29/15	423.65	80.83	342.82	1.11	250 U	100 U	250 U	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U		
	12/6/16	423.65	80.48	343.17	-0.35	50 U	110 U	250 U	6.0	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U
	5/16/17	423.65	79.30	344.35	-1.18	500 U	100 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
	10/24/17	423.65	80.45	343.20	1.15	250 U	160	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
	6/14/18	423.48	79.30	344.18	-0.98	250 U	160	350 U	3.0 U	2.0 U	3.0 U	3.0 U	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 U	100 U	6.0 U	10 U	10 U
MW-13			[1			Well insta	lled above	the ground	vater table (always dry)					1			1		1
MW-14	12/15/10	421.97	77.94	344.03		50 U	120 U	240 U	1.0 U	1.0 U	1.0 U	2.0 U									10 U	
	5/29/14	421.97	77.58	344.39	-0.36	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U
	10/29/14	421.97	78.80	343.17	1.22	250 U	250 U	500 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U
	6/4/15	421.97	78.04	343.93	-0.76	250 U	100 U	250 U	0.50 U	0.72	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U	5.0 U	50.0 U
	9/28/15	421.97	79.18	342.79	1.14	250 U	100 U	250 U	0.50 U	0.72	0.50 U	1.0 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	0.50 U		
	8/29/16	421.97	79.32	342.65	0.14	50 U	120	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U
	12/5/16	421.97	78.75	343.22	-0.57	50 U	110 U	250 U	2.0 U	2.0 U	3.0 U	3.0 U	2.0 U	1.0 U	1.0 U	1.0 U	5.0 U	1.0 U	25 U	5.0 U	10 U	10 U
	5/17/17	421.97	77.55	344.42	-1.20	500 U	100 U	250 U	2.0 0	2.0 0	3.0 U	3.0 U	2.0 0	2.0 0	2.0 0	2.0 0	6.0 U	2.0 0	100 U	6.0 U	10 U	10 U
	10/24/17	421.97	18.18	343.19	1.23	250 U	100 0	250 U	2.0 0	2.0 0	3.0 0	3.0 0	2.0 0	2.0 0	2.0 0	2.0 0	6.0 U	2.0 0	100 0	6.0 U	10 0	10 0
DW/ 1	0/13/18	421.97	72.29	344.23	-1.04	250 U	110	350 U	3.0 0	2.0 0	3.0 0	3.0 0	4.0 U	2.0 U	2.0 U	2.0 U	6.0 U	2.0 0	100 0	6.U U	10 U	10 0
KVV-1	12/16/10	417.29	/ 3.28	344.01		50 U	120 0	240 U		1.0 U		2.0 0									10 0	
									wenbu	neu, status	UNKNOWN											

Notes:

Values in **bold** were detected above the limit

Shaded values exceed Ecology's MTCA Method A Groundwater Cleanup Level. Analytical results are compared to Ecology's MTCA Method A groundwater cleanup levels.

-- = not sampled; not submitted for this analyte; or not gauged

(1) On July 12, 2018, the wells were resurveyed by Stratton Surveying and Mapping, P.C. The horizontal datum = Washington State Plane South Zone North American Datum 1983(1991). The vertical datum = North American Vertical Datum 29. (2) Ecology's MTCA Method A Cleanup Levels for Groundwater (Washington Administrative Code 173-340-900 Table 720-1)

(3) Ecology's TPH-g MTCA Method A Cleanup Levels for Groundwater has two levels. If benzene is present in groundwater, the level is 800 ug/L; if no detectable benzene in groundwater, the level is 1,000 ug/L.

Acronyms:

µg/L = microgram per liter DIPE = di-isopropyl ether Ecology = Washington State Department of Ecology EDB = 1,2-Dibromoethane EDC = 1,2-Dichloroethane ETBE = ethyl tertiary-butyl ether GW = groundwater J = Estimated Concentration mg/L = milligram per liter MSL = mean sea level MTBE = Methyl tertiary-butyl ether MTCA = Model Toxics Control Act NA = not analyzed NE = MTCA Method A screening levels have not been established. TAME = tertiary-amyl methyl ether TBA = tertiary-butanol or t-butyl alcohol TOC = top of casing TPH = total petroleum hydrocarbon TPH-g = gasoline range hydrocarbons (as analzyed by Northwest Method NWPTH-Gx) TPH-d = diesel range hydrocarbons (as analyzed by Northwest Method NWTPH-Dx) TPH-o = motor oil range hydrocarbons (as analyzed by Northwest Method TPH-Dx) U = Analyte not detected above limit shown VOC = Volatile organic compounds

Table A2. Historical and Current Natural Attenuation Parameter Data

Tesoro Pasco Bulk Fuel Terminal Pasco, Washington

Field Parameters Laboratory Analytica	
Parado PH PH Conductivity Conductivity Dissolved Oxygen Oxygen ORP ORP Nitrate Nitrate Alkalinity Manganese	Methane
Units S.U. mS/cm mg/L °C mV mg/L mg/L mg/L mg/L mg/L mg/L	mg/L
MW-2 5/29/14 7.16 1.215 2.49 17.58 146.3 1.16 13.8 100 537 0.0050 U	0.001 U
10/29/14 6.85 1.578 1.07 17.51 91.6 1.33 2.6 140 730 0.011	0.001 U
6/4/15 6.84 1.018 2.21 17.97 -66.6 0.53 0.1 107 558 0.0050 U	0.001 U
9/28/15 6.91 1.467 1.77 17.60 -7.0 1.7 167 711 0.0050 U	0.0242
8/29/16 7.38 1.40 1.74 19.89 94 110 0.02 U	0.0050 U
12/5/16 6.63 1.05 6.16 15.80 282 89 400	0.0050 U
10/24/17 7.34 1.27 8.93 17.58 112.0 0.01 U 9.70 110 350 0.02 U	0.01
6/14/18 6.84 1.16 3.4 22.39 178 0.96 11.0 110 400 0.020 U	0.0050 U
MW-3 5/28/14 7.15 1.053 18.12 -105.6	
MW-4 5/28/14 7.68 0.728 17.78 82.2	
9/28/15	
8/30/16 8.36 0.813 7.34 18.32 59	
12/5/16	
5/15/17 7.99 0.861 7.78 17.9 -27	
6/13/18 7.49 0.813 7.56 20.99 161	
MW-6 5/29/14 7.93 0.095 8.78 15.40 127.1 0 18.5 110 252 0.0050 U	0.0010 U
10/29/14 7.43 0.817 6.79 19.45 84.7 0.40 0 100 185 0.0050 U	0.0010 U
6/3/15 7.53 0.744 8.59 17.18 -44.8 0 0 107 169 0.0050 U	0.00168
9/28/15 7.53 0.812 6.76 19.23 -8.5 15.7 108 189 0.0050 U	0.0010 U
8/30/16 8.30 0.836 7.39 18.88 110 100 0.020 U	0.0050 U
12/5/16 6.83 0.851 6.84 14.54 207 93 170 0.020 U	0.0050 U
5/16/17 8.06 0.824 7.89 14.65 66 96 150 0.020 U	0.0085
10/23/17 7.61 0.863 9.32 19.68 186 0.01 U 0.04 98 180 0.020 U	0.0050 U
6/11/18 7.38 0.828 8.38 20.69 156 0.01 U 8.09 96 J 150 0.020 U	0.0050 U
MW-7 5/28/14 7.63 0.775 18.48 101.7	
9/28/15 7.10 0.798 7.40 17.31 -6.4 6.0 103 203 0.0086	0.0010 U
6/13/18 7.25 0.837 6.58 22.15 182	

Table A2. Historical and Current Natural Attenuation Parameter Data

Tesoro Pasco Bulk Fuel Terminal Pasco, Washington

		Field Parameters							Laborato	ry Analytica		
Location	Date	На	Conductivity	Dissolved Oxygen	Temperature	ORP	Ferrous Iron	Nitrate	Sulfate	Alkalinity	Manganese	Methane
Ur	nits	S.U.	mS/cm	mg/L	°C	mV	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW-8	5/28/14	7.70	0.755		17.50	89.5	0.59	16.8	110	242	0.0050 U	0.0010 U
	10/29/14	7.37	0.774	7.05	17.34	75.3	0	18.4	100	190	0.0072 U	0.0010 U
	6/3/15	7.39	0.778	7.38	17.90	-42.7	0	16.7	108	185	0.0050 U	0.0010 U
	9/28/15											
	8/30/16	7.72	0.843	5.29	19.46	143			100		0.020 U	0.0050 U
	12/5/16											
	5/17/17	7.88	0.869	5.68	17.96	28			100	170	0.020 U	0.0050 U
	6/11/18	7.28	0.866	7.46	19.77	175	0.01 U	42.9	120	180	0.020 U	0.0050 U
MW-10	5/28/14	7.65	0.764		17.91	137.6						
	10/29/14	7.40	0.769	7.45	17.02	80.6						
	6/3/15	7.29	0.78	7.32	17.90	-34.4						
	9/28/15											
	8/30/16	8.28	0.831	5.40	18.26	100						
	12/5/16											
	5/15/17	7.39	0.888	6.24	17.41	29						
	6/13/18	7.35	0.730	4.96	28.26	178						
MW-11	5/29/14	7.20	0.889	1.08	19.27	102.7						
	10/30/14	6.96	0.932	1.12	18.47	89.0						
	6/4/15	6.89	0.916	0.94	18.97	-49.8						
	9/29/15	6.89	0.914	0.89	18.40	-15.4						
	8/29/16	7.32	0.952	2.67	19.99	148						
	12/5/16	6.70	0.933	1.73	17.14	204						
	5/16/17	7.44	0.949	4.79	17.41	46						
	10/25/17	7.37	1.040	7.49	18.57	154						
	6/14/18	6.71	0.956	3.35	21.77	198						
MW-12	5/29/14	7.22	0.993	1.81	19.82	-27.5		9.2	110	309	0.270	0.0142
	10/30/14	6.82	1.135	2.55	16.73	-50.6	4.68	0	110	350	0.280	0.0870
	6/4/15	6.82	1.017	2.17	18.40	-74.5	0.34	10.4	113	312	0.201	0.0010 U
	9/29/15	6.82	1.124	1.15	16.49	-63.7		7.0	107	367	0.252	0.0362
	8/29/16	7.45	1.290	1.10	19.42	-10			83		0.25	0.760
	12/6/16	6.80	0.993	3.22	14.52	121				270	0.19	0.063
	5/16/17	7.96	0.965	3.93	15.97	36			100	240	0.16	0.012
	10/24/17	7.50	1.100	3.39	17.70	49	0.01 U	10.5	98.0	270	0.19	0.090
	6/14/18	6.57	1.12	1.95	18.69	212	0.01 U	23.8	120	290	0.043	0.0050 U
MW-14	5/29/14	7.53	0.795	5.70	17.69	101.4						
	10/29/14	7.23	0.805	5.65	17.81	105.4						
	6/4/15	7.39	0.784	6.22	17.02	-46.6						
	8/29/16	7.71	0.877	5.19	18.76	120						
	12/5/16	6.97	0.855	6.29	15.43	178						
	5/17/17	7.71	0.923	3.02	17.44	46						
	10/24/17	7.70	0.932	6.18	17.69	144						

Notes:

Values in **bold** were detected above the limit

-- = not sampled or not submitted for this analyte

Acronyms:

°C = degrees celsius

ft = feet

J = estimated concentration

mg/L = milligrams per liter

mS/cm = milliseimens per centimeter

mV = millivolts

ORP = Oxidation Reduction Potential

S.U. = Standard Unit

U = analyte not detected above limit shown

Appendix B Groundwater Quality Sampling Information Forms

WATER QUALITY SAMPLING INFORMATION

Date: 6/ 1/2018 Well No: 1/1/2018 Project: Tesoro-Pasco Bulk Terminal Sampling method: low flow

Sampled by: MH/RS CEECON Project No: 654.01

Notes:

GROUNDWATER

4 Tubing vol. (L) = length (ft.) X 0.023Well diameter (in.) Tubing ID dia. (in.) 3/8" Well elevation (ft.) Tubing length (ft.) Depth to static water (ft.) Tubing vol. (Liters) Well screen interval (ft.) Purge Pump: submersible Well casing depth (ft.)_ 2-in. Casing=0.16 gals or 0.61 L/ft. Water volume in well (gals) 4-in. Casing=0.65 gals or 2.5 L/ft. Pump/tubing inlet depth (ft) 74 6-in. Casing=1.47 gals or 5.6 L/ft.

Analyses requested:

2, PLASTE O.2500 XS

No. & types of sample bottles used: VOA: 4/HUL X9. 4/0 x3, Angen 0.25 Method of shipment: cooler

TIME	DTW (ft)	VOL. PURGED (Liters)	TEMP (°C)	pH ± 0.1	DO (mg/l) ± 10%	SPECIFIC CONDUCTIVITY (uS/cm) ± 3%	ORP (mV) ±10mV	TDS (g/L) ± 10%	CLARITY/ COLOR/ REMARKS
15:32	72.89	0							
1	402	0						2	Start
10.34	73.05	0.5	22.40	7.18	5.78	1.13	178	0724	16 Came
10:38	73.05	1.0	22.12	6.94	4.63	1.16	186	0746	Blacon MUT
10:42	73.05	1.5	2256	6.98	3.80	1.15	190	0.739	24
10:46	73.05	2.0	22 49	6.85	3.56	1.15	192	0.759	4
10:49	13-05	2.5	22.39	684	3.40	1.16	193	0 +42	
-		3.0							
		3.5	3						
		4.0							
		4.5	5			and the second second			
		5.0							3
		SAMPLE	Peny	1	9 10:5	5 a.m.			
		SAMPLE	Pump	OFF	- j1:10	1.m			
						FE-70.9	16		
				12		N-> 11	5		

SAMPLED	Sample Name:	C-MW-2-0618	
	Location Name:	AO7294- MW- <u>2.</u>	

WATER QUALITY SAMPLING INFORMATION

Date: <u>6/12/2018</u> Well No: <u>mu</u>.<u>3</u> Project: <u>Tesoro-Pasco Bulk Terminal</u> Sampling method: low flow Sampled by: <u>MH/RS</u> CEECON Project No: <u>654.01</u>

GROUNDWATER

Well diameter (in.)4Tubing ID dia. (in.)3/8"Well elevation (ft.)74.20Tubing length (ft.)Tubing length (ft.)Depth to static water (ft.)74.20Tubing vol. (Liters)Well screen interval (ft.)75.95Purge Pump: submersibleWell casing depth (ft.)952-in. Casing=0.16 gals or 0.61 L/ft.Water volume in well (gals)4-in. Casing=0.65 gals or 2.5 L/ft.Pump/tubing inlet depth (ft)96

Notes:

Tubing	vol. (L) =	e length	(ft.) X 0.	023

Analyses requested: No. & types of sample bottles used:

Method of shipment: cooler

TIME	DTW (ft)	VOL. PURGED (Liters)	TEMP (°C)	pH ± 0.1	DO (mg/l) ± 10%	SPECIFIC CONDUCTIVITY (uS/cm) ± 3%	ORP (mV) ±10mV	TDS (g/L) ± 10%	CLARITY/ COLOR/ REMARKS
		0			31	WHI ODAR HX	Gr, K	RELIT BODY	NO, CLOUDY
1:30	79.18	0			CLEDAM	ar as Panap	NK PR	OCH-RESED	Start
2:33	79.20	0.5	18.95	6.83	3.68	1.04	53	0.663	
2:35	79.20	1.0	18.79	6.77	3.20	1.04	53	6.66C	
7:38	79.20	1.5	18.79	6.B	3.19	1.04	5	0.663	
E:41	79.22	2.0	18.98	6.71	3.05	1.03	45	6.659	
2:43	79.24	2.5	18.87	670	2.24	1.04	42	0.664	
2:45	7923	3.0	19.10	6.70	2.31	1.021	40	0.664	
2:50	79.23	3.5	19.4/6	6.70	2.75	1.03	42	062	
		4.0	.:						
		4.5							
		5.0							
		SAMAR	TAND	-9	3:00 p.n	n,			
		ALMP 1	Ser.	3	2.22				
		VUTIT L	PP C	- '	urop.	V V V			

MRAP 0.250 x6, VOA W/HU

	 SAMPLED	Sample Name:	C-MW- <u>\$</u> -0618
		Location Name:	AO7294- MW- <u>3.</u>

WATER QUALITY SAMPLING INFORMATION

Date: <u>6/1/2018</u> Well No: <u>Mio ~ 4</u> Project: <u>Tesoro-Pasco Bulk Terminal</u> Sampling method: <u>low flow</u>

Sampled by: <u>MH/RS</u> CEECON Project No: <u>654.01</u>

GROUNDWATER

Well diameter (in.) 47	Tubing ID dia. (in.) <u>3/8</u> "
Well elevation (ft.)	Tubing length (ft.)
Depth to static water (ft.) _68.15	_ Tubing vol. (Liters)
Well screen interval (ft.) 57-7+	_Purge Pump: <u>submersible</u>
Well casing depth (ft.) 77	_2-in. Casing=0.16 gals or 0.61 L/ft.
Water volume in well (gals)	_4-in. Casing=0.65 gals or 2.5 L/ft.
Pump/tubing inlet depth (ft) 71	_6-in. Casing=1.47 gals or 5.6 L/ft.

Notes:

Tubing vol. (L) = length (ft.) X 0.023	

Analyses requested:

No. & types of sample bottles used: 1/1/14 w/Hax6, w/6 x3, 250ml Ama x 2_____ Method of shipment: cooler

TIME	DTW (ft)	VOL. PURGED (Liters)	TEMP (°C)	рН ± 0.1	DO (mg/l) ± 10%	SPECIFIC CONDUCTIVITY (uS/cm) ± 3%	ORP (mV) ±10mV	TDS (g/L) ± 10%	CLARITY/ COLOR/ REMARKS
12:22	63.12	0			Amp	BSUBR ON	Fraz	T ATT	DPT
BTE-	6838	0							Start
12:32	68.15	0.5	22.62	70	8.29	0.809	138	8.517	CLEAR
12:35	68.15	1.0	20.80	7.61	7.94	0.813	147	0.520	No que
12:38	68.15	1.5	24.04	7.55	7.77	0.811	154	0.519	1-
2:40	1815	2.0	20.92	7.52	7.73	0,806	158	6.516	- IJ
12:42	68.15	2.5	20.78	7.51	7.71	0.808	160	0.517	k
12:44	\$ 15	3.0	20.99	7:49	7.36	0.813	161	0.520	4
	3221	3.5		, í					P
		4.0						9.02	
		4.5							
		5.0							
	the	SAMP	18 TO	mE	12:50				
		Rum	P OFI	F 1	2:55				
		,							
								80 C	

	SAMPLED	Sample Name:	C-MW- <u>4</u> -0618
		Location Name:	AO7294- MW- <u>4</u> .

Tubing vol. (L) = length (ft.) X 0.023

~ 253 ml PLESTICX 2

Method of shipment: cooler

WATER QUALITY SAMPLING INFORMATION

Date: <u>6/// /2018</u> Well No: <u>///// /6</u> Project: <u>Tesoro-Pasco Bulk Terminal</u> Sampling method: <u>low flow</u> Sampled by: <u>MH/RS</u> <u>CEECON</u> Project No: <u>654.01</u>

GROUNDWATER

Well diameter (in.) 2^{-7} Tubing ID dia. (in.) $3/8^{\prime\prime}$ Well elevation (ft.)Tubing length (ft.)Tubing length (ft.)Depth to static water (ft.)15, 73Tubing vol. (Liters)Well screen interval (ft.)23, 5Purge Pump: submersibleWell casing depth (ft.)23, 52-in. Casing=0.16 gals or 0.61 L/ft.Water volume in well (gals)4-in. Casing=0.65 gals or 2.5 L/ft.Pump/tubing inlet depth (ft)206-in. Casing=1.47 gals or 5.6 L/ft.

Analyses requested:

No. & types of sample bottles used 104; 10/Har 1 10/ x2 25Bml Amber XL

SPECIFIC рΗ DO ORP TDS CLARITY/ TIME DTW VOL. PURGED TEMP CONDUCTIVITY ± (mV)(g/L)COLOR/ (mg/l) $\pm 10 mV$ REMARKS (ft) (Liters) (°C) $(uS/cm) \pm 3\%$ $\pm 10\%$ 0.1 ± 10% 0 Ramp AN 0 Start 1573 1248 CLAUDI/TORBEN 8.95 15.75 0.5 0.831 7.49 12:50 0.5 15.77 8.32 1.0 0.844 0533 20.17 7.42 57 Diss 8.64 0.832 0532 15.7+ 1.5 7.42 55 0.58 846 0.53 2.0 0.828 15.77 20.43 7.39 156 1:01 15.77 2.5 0. 828 8.39 53 104 20.69 229 156 3.0 3.5 4.0 4.5 5.0 An 60.0 June

	SAMPLED	Sample Name:	C-MW6-0618
		Location Name:	AO7294- MW- <u>6</u> .

Notes:

Date: <u>61/2/2018</u> Well No: <u>Mw-7</u> Project: <u>Tesoro-Pasco Bulk Terminal</u> Sampling method: <u>low flow</u>

Sampled by: <u>MH/RS</u> <u>CEECON</u> Project No: <u>654.01</u>

GROUNDWATER

Well diameter (in.) <u>2</u>	_ Tubing ID dia. (in.) <u>3/8"</u>
Well elevation (ft.)	_ Tubing length (ft.)
Depth to static water (ft.) 67.16	_ Tubing vol. (Liters)
Well screen interval (ft.) 57.77	_ Purge Pump: <u>submersible</u>
Well casing depth (ft.)	_2-in. Casing=0.16 gals or 0.61 L/ft.
Water volume in well (gals)	_4-in. Casing=0.65 gals or 2.5 L/ft.
Pump/tubing inlet depth (ft) <u>71</u>	_6-in. Casing=1.47 gals or 5.6 L/ft.

Notes:

Tubing vol. (L) = length (ft.) $X 0.023$	

Analyses requested:

No. & types of sample bottles used: 61013 1/10, 6 1/0 21 1/0 20 Amer. Method of shipment: cooler

TIME	DTW (ft)	VOL. PURGED (Liters)	TEMP (°C)	pH ± 0.1	DO (mg/l) ± 10%	SPECIFIC CONDUCTIVITY (uS/cm) ± 3%	ORP (mV) ±10mV	TDS (g/L) ± 10%	CLARITY/ COLOR/ REMARKS
		0							
1:26	6716	0	Hon .	MAR					Start
129	67.16	0.5	27:50	735	6.46	0.822	169	6.526	CLEAR
1:31	67.16	1.0	23.38	7.28	6.56	0.842	176	0.538	abruess
1:33	A.16	1.5	22.51	7.27	6.67	0.8414	179	0.5411	H
1.34	67.16	2.0	22.15	727	6.64	6.841	181	6.538	ŋ
1.31	67.16	2.5	22.15	7.25	6.58	0. 537	182	0.5.35	11
		3.0							
		3.5							
		4.0							
		4.5							
		5.0							
		SAMPLE T	ME -7	1	40				
			+·		879 - C				
	, 	Pamp OF	F -	7 /	:50 p.n				

	SAMPLED	Sample Name:	C-MW- <u>7</u> -0618
 <u>. </u>		Location Name:	A07294- MW- <u>7</u> .

Date: 6/ 1/ /2018 Well No: 10- 8 Project: Tesoro-Pasco Bulk Terminal Sampling method: low flow

Sampled by: MH/RS CEECON Project No: 654.01

GROUNDWATER

Well diameter (in.)	_ Tubing ID dia. (in.)3/8"
Well elevation (ft.)	_ Tubing length (ft.)
Depth to static water (ft.) 3965	_ Tubing vol. (Liters)
Well screen interval (ft.) 29-54	_ Purge Pump: <u>submersible</u>
Well casing depth (ft.) 54	_2-in. Casing=0.16 gals or 0.61 L/ft.
Water volume in well (gals)	_4-in. Casing=0.65 gals or 2.5 L/ft.
Pump/tubing inlet depth (ft)6	_6-in. Casing=1.47 gals or 5.6 L/ft.

Notes:

Tubing vol. (L) = length (ft.) X 0.023

Analyses requested:

A 250 MR RUKER X2 No. & types of sample bottles used: 10A3 0/1/4x9 W/0 x3, 250, 2 Ansax2 Method of shipment: cooler

TIME	DTW (ft)	VOL. PURGED (Liters)	TEMP (°C)	рН ± 0.1	DO (mg/l) ± 10%	SPECIFIC CONDUCTIVITY (uS/cm) ± 3%	ORP (mV) ±10mV	TDS (g/L) ± 10%	CLARITY/ COLOR/ REMARKS
		0							
2130	31.65	0			PUMP SUM	et ci	SAL IN	6 GDOR	Start
2:32	319.67	0.5	21.28	7.47	8.20	0.866	153	0.555	agar
2:35	3167	1.0	20.56	7.39	7.65	0.864	163	0.351	11
2:37	29.67	1.5	20.32	735	7.48	0.862	168	6.553	Ŷ
2:40	39.67	2.0	20.02	7.31	7.52	0.867	172	8.554	21
2:42	39.67	2.5	177	7.29	747	8. 8.6C	174	0.554	4
2:45	3962	3.0	19.27	728	7.46	0.866	175	0.555	4
		3.5					v		
1		4.0							
		4.5							
		5.0							
	Sam	SAMIPLEST							
	SAND	& Arok	2'0	hua		Es->	10.0	þÍ	
,	Pamp	OFF	3:02	pim		N-1	429		
				Ø			F		

	SAMPLED	Sample Name:	C-MW-2-0618
 		Location Name:	AO7294- MW- <u>ð</u> .

Tubing vol. (L) = length (ft.) X 0.023

WATER QUALITY SAMPLING INFORMATION

Date: <u>6/ B/2018</u> Well No: <u>MIO ~ 10</u> Project: <u>Tesoro-Pasco Bulk Terminal</u> Sampling method: <u>low flow</u> Sampled by: <u>MH/RS</u> <u>CEECON</u> Project No: <u>654.01</u>

GROUNDWATER

Well diameter (in.) 4'	_ Tubing ID dia. (in.) <u>3/8"</u>
Well elevation (ft.)	_ Tubing length (ft.)
Depth to static water (ft.) <u>63.58</u>	_ Tubing vol. (Liters)
Well screen interval (ft.) <u>SS - 78</u>	_ Purge Pump: submersible
Well casing depth (ft.) 78	_2-in. Casing=0.16 gals or 0.61 L/ft.
Water volume in well (gals)	_4-in. Casing=0.65 gals or 2.5 L/ft.
Pump/tubing inlet depth (ft) 69	_6-in. Casing=1.47 gals or 5.6 L/ft.

Notes:

Analyses requested:

No. & types of sample bottles used: 6 10 A: W/HU 3 %, 20.250 AmBER_____Method of shipment: cooler

TIME	DTW (ft)	VOL. PURGED (Liters)	TEMP (°C)	рН ± 0.1	DO (mg/l) ± 10%	SPECIFIC CONDUCTIVITY (uS/cm) ± 3%	ORP (mV) ±10mV	TDS (g/L) ± 10%	CLARITY/ COLOR/ REMARKS
		0							
215	B.S	0							Start
2:18	63.39	0.5	29.16	7.51	5.32	0.723	162	0.462	CLEAD
2:20	13.60	1.0	28.85	7.46	5.14	0.723	167	640	NO ODO
2:22	63.60	1.5	28.59	7.42	5.02	0.726	172	0.465	Y
224	1360	2.0	28.36	7.38	4.93	0727	176	0.466	4
2:26	1360	2.5	28.26	7.35	4.96	6.730	178	0.4173	Þ
	0	3.0							
		3.5							
		4.0							
		4.5							
		5.0							
		SAMPLO 3	PANA		12:22				
		Amp OPP	2	2	58				
		v .							

	SAMPLED	Sample Name:	C-MW-2-0618
		Location Name:	AO7294- MW-0.

Sampled by: <u>MH/RS</u> <u>CEECON</u> Project No: <u>654.01</u>

GROUNDWATER

Well diameter (in.) 2	_ Tubing ID dia. (in.)
Well elevation (ft.)	Tubing length (ft.)
Depth to static water (ft.) 79.30	_ Tubing vol. (Liters)
Well screen interval (ft.) 75.85	_Purge Pump: submersible
Well casing depth (ft.) 85	_2-in. Casing=0.16 gals or 0.61 L/ft.
Water volume in well (gals)	_4-in. Casing=0.65 gals or 2.5 L/ft.
Pump/tubing inlet depth (ft) <u>SO</u>	_6-in. Casing=1.47 gals or 5.6 L/ft.

Notes:

Tubing vol. (L) = length (ft.) X 0.023

Analyses requested:

No. & types of sample bottles used: 14116 46 x3, Angel 6.160 X Method of shipment: cooler

TIME	DTW (ft)	VOL. PURGED (Liters)	TEMP (°C)	pH ± 0.1	DO (mg/l) ± 10%	SPECIFIC CONDUCTIVITY (uS/cm) ± 3%	ORP (mV) ±10mV	TDS (g/L) ± 10%	CLARITY/ COLOR/ REMARKS
		0				No os	e at	R	
11:55	7930	0		_		SLACHT B	Pourp	CLOUDTYS	5 Start
11:59	79.43	0.5	23.48	675	148	1.09	195	0.676	CLEAR TH
2:01	79.43	1.0	22.45	6.71	1.29	1.09	194	8.700	11
12:03	7940	1.5	21.99	669	180	1.06	195	8.579	11
200	79.40	2.0	21.61	671	2.52	1.02	126	0651	11
D:11	79.40	2.5	21.65	672	3.14	0.776	199	0.624	4
12:141	29.40	3.0	21.70	6.71	3.29	0 963	200	0617	Ð
12:16	79.40	3.5	21,77	6.71	3.35	0.956	198	0.615	1
		4.0							
		4.5			1				
		5.0				/	nw-13	T.D. = .	50.65
						DAMA	Mur	an Bor	rom
		SAMPLE	TRO	MZ	- 12:	2000			
		,			511	P			
		Pump	GFF		+ 12:	28 0.00			

	SAMPLED	Sample Name:	C-MW- <u>//</u> -0618
		Location Name:	AO7294- MW- <u>//</u> .

Date: <u>6/14/2018</u> Well No: <u>mw - /2</u> Project: <u>Tesoro-Pasco Bulk Terminal</u> Sampling method: low flow Sampled by: <u>MH/RS</u> <u>CEECON</u> Project No: <u>654.01</u>

GROUNDWATER

Well diameter (in.) Tubing ID dia. (in.) 3/8" Well elevation (ft.) Tubing length (ft.) Depth to static water (ft.) 79.45 Tubing vol. (Liters)_ Well screen interval (ft.) 75-85 Purge Pump: submersible Well casing depth (ft.)____ 85 2-in. Casing=0.16 gals or 0.61 L/ft. Water volume in well (gals) 4-in. Casing=0.65 gals or 2.5 L/ft. Pump/tubing inlet depth (ft)_ 80 6-in. Casing=1.47 gals or 5.6 L/ft.

Notes:

Tubing vol. (L) = length (ft.) X 0.023

Analyses requested: <u>mw.12 - VOA's w/ HCL X9, w/o x 3</u> AmBer 6.250 X2, <u>PLASSER 0.250 X2</u>. No. & types of sample bottles used: <u>WARE W/ HCL X6, % x3</u>, <u>AmBer 0.250 X2</u>, <u>PLASSER 0.250 X2</u>.

TIME	DTW (ft)	VOL. PURGED (Liters)	TEMP (°C)	pH ± 0.1	DO (mg/l) ± 10%	SPECIFIC CONDUCTIVITY (uS/cm) ± 3%	ORP (mV) ±10mV	TDS (g/L) ± 10%	CLARITY/ COLOR/ REMARKS
		0				CLEAR	NO	abor, NO	COLOR
1:20	79.45	0					/		Start
1:23	79.59	0.5	21.67	6.71	2,39	114	208	0.72.8	CLEAD
1.27	79.55	1.0	21.38	6.62	2.06	114	209	0.727	4
1:31	79.63	1.5	1944	658	262	1.14	211	0.120	4
P:33	79.65	2.0	18.69	6.57	1.95	1.12	212	6.705	67
	e	2.5							
		3.0							
		3.5							
		4.0				Fr - 2	0.01		
		4.5				NI	3.8		
		5.0							
		Sanche	The	E i	al mw.	12 -7 1'4	0 pm		
		SAMEN	The	þ.	En mu-	123-5 1:5	20.m		
		_				,	,		
		Pump	OFF	7	1:58	m			

	SAMPLED	Sample Name:	C-MW-120618
		Location Name:	AO7294- MW- <u>12</u>

Date: <u>6//3/2018</u> Well No: <u>MW -//-</u> Project: <u>Tesoro-Pasco Bulk Terminal</u> Sampling method: <u>low flow</u>

Sampled by: <u>MH/RS</u> <u>CEECON</u> Project No: <u>654.01</u>

GROUNDWATER

 Well diameter (in.)
 2"
 Tubing ID dia. (in.)
 3/8"
 T

 Well elevation (ft.)
 Tubing length (ft.)
 Tubing length (ft.)
 T

 Depth to static water (ft.)
 77. 74
 Tubing vol. (Liters)
 T

 Well screen interval (ft.)
 73. 93
 Purge Pump: submersible

 Well casing depth (ft.)
 83
 2-in. Casing=0.16 gals or 0.61 L/ft.

 Water volume in well (gals)
 4-in. Casing=0.65 gals or 2.5 L/ft.

 Pump/tubing inlet depth (ft)
 78
 6-in. Casing=1.47 gals or 5.6 L/ft.

Notes:

Tubing vol. (L)	= length	(ft.) X 0.023
Y X	<u></u>	

Analyses requested:

No. & types of sample bottles used: 1045 W/HUNG, W/0x3, AmBAR 6.250 & X >_ Method of shipment: cooler

TIME	DTW (ft)	VOL. PURGED (Liters)	TEMP (°C)	pH ± 0.1	DO (mg/l) ± 10%	SPECIFIC CONDUCTIVITY (uS/cm) ± 3%	ORP (mV) ±10mV	TDS (g/L) ± 10%	CLARITY/ COLOR/ REMARKS
		0							
3:55	77.74	0				HAMP ON	SCRAHAL	1CECOLDY	Start
3:57	77.75	0.5	22.06	734	5.62	0.892	166	0.570	ALS ODDR
2:59	77.75	1.0	21.63	723	5.15	6.891	172	0.569	SALAP (LOUD)
4:61	77.75	1.5	20.76	7.16	5.13	0.899	180	0.576	11 9
4:04	77.75	2.0	20,34	7.10	5.16	0.905	185	0.580	¹¹ /1
4:06	77.75	2.5	20.22	7.06	5.14	0.908	188	0.581	1, 9
-		3.0							
		3.5				and the second			
		4.0							1
		4.5							-
		5.0							
		Sampre	TAME		4:12 p.m.				
		Pump	ØFF	4	18 pin				
							1		

SAMPLED	Sample Name:	C-MW-14-0618
	Location Name:	AO7294- MW <u>/4</u> .

Appendix C Data Validation Report, Analytical Report, and Chain of Custody Form

AECOM 1111 3rd Ave Suite 1600 Seattle, WA 98101 www.aecom.com 206 438 2700 tel 866 495 5288 fax

То	Nicky Moody, Project Manager	Info	FINAL
	Summary Data Quality Review		
	Tesoro-Pasco		
Subject	June 2018 Groundwater Sampling		
	Lucy Panteleeff, Chemist		
From	Jennifer B. Garner, Chemist		
Date	July 19, 2018		

The summary data quality review of 11 groundwater samples, one equipment blank, and 1 trip blank collected between June 11 and June 14, 2018, has been completed. The samples were analyzed at TestAmerica Laboratories, Incorporated (TA) located in Tacoma, Washington and Nashville, Tennessee, for volatile organic compounds (VOCs) by EPA Method 8260C; total petroleum hydrocarbons (TPHs) by Washington State Department of Ecology (Ecology) Methods NWTPH-Gx (gasoline-range TPH) and NWTPH-Dx (diesel-range and heavy oil-range TPH); alcohols by EPA Method 8015C; methane by EPA Method RSK-175; dissolved manganese by EPA Method 200.7 Revision 4.4; sulfate by EPA Method 300.0, and/or total alkalinity by Standard Methods (SM) 2320B. The laboratory provided a summary report containing sample results and associated quality assurance (QA) and quality control (QC) data for all samples. The following samples are associated with TA laboratory group 580-78110-1:

	Laboratory	
Sample ID	ID	Requested Analyses
C-MW-02	580-78110-1	VOCs, TPH-Gx, TPH-Dx, Alcohols, Methane,
		Manganese, Sulfate, Alkalinity
C-MW-03	580-78110-2	VOCs, TPH-Gx, TPH-Dx, Alcohols
C-MW-04	580-78110-3	VOCs, TPH-Gx, TPH-Dx, Alcohols
C-MW-06	580-78110-4	VOCs, TPH-Gx, TPH-Dx, Alcohols, Methane,
		Manganese, Sulfate, Alkalinity
C-MW-07	580-78110-5	VOCs, TPH-Gx, TPH-Dx, Alcohols
C-MW-08	580-78110-6	VOCs, TPH-Gx, TPH-Dx, Alcohols, Methane,
		Manganese, Sulfate, Alkalinity
C-MW-10	580-78110-7	VOCs, TPH-Gx, TPH-Dx, Alcohols
C-MW-11	580-78110-8	VOCs, TPH-Gx, TPH-Dx, Alcohols
C-MW-12	580-78110-9	VOCs, TPH-Gx, TPH-Dx, Alcohols, Methane,
		Manganese, Sulfate, Alkalinity
C-MW-12D	580-78110-10	VOCs, TPH-Gx, TPH-Dx, Alcohols
C-MW-14	580-78110-11	VOCs, TPH-Gx, TPH-Dx, Alcohols
C-EB	580-78110-12	VOCs, TPH-Gx, TPH-Dx, Alcohols
Trip Blank	580-78110-13	VOCs, TPH-Gx

Data were evaluated based on validation criteria established in the *National Functional Guidelines for Organic Superfund Methods Data Review*, January 2017, and the *National Functional Guidelines for Inorganic Superfund Methods Data Review*, January 2017, as applied to the reported methodology.

The following data components were reviewed during the limited data validation procedure for compliance with method specific or laboratory control charted criteria where appropriate: chain of custody forms, holding times, field/method/trip/instrument blanks, surrogate recoveries, matrix

Summary Data Quality Review Tesoro-Pasco June 2018 Groundwater Sampling Laboratory Groups: 580-78110-1

spike/matrix spike duplicate recoveries, laboratory and field duplicate results, laboratory control sample/laboratory control sample duplicate recoveries, reporting limits, and electronic data deliverables.

A summary of qualifiers that may be assigned to results in these laboratory groups are included in Table 1. Qualifiers that may be assigned to results include:

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
- DNR Do Not Report. Another result is available that is more reliable or appropriate.

Sample Receipt

Upon receipt by the laboratories, the sample jar information was compared to the chain-of-custody (COC) and the cooler temperatures were recorded. No discrepancies related to sample identifications were noted and the coolers were received at temperatures within the EPA-recommended limits of greater than 0°C and less than or equal to 6°C.

Organic Analyses

Samples were analyzed for VOCs, TPHs, alcohols, and methane by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Surrogates Acceptable
- 4. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Acceptable
- 5. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Acceptable except as noted below:

<u>General</u> – MS/MSDs for all organic analyses except methane were performed using C-MW-03. Results were acceptable except as noted below.

Summary Data Quality Review Tesoro-Pasco June 2018 Groundwater Sampling Laboratory Groups: 580-78110-1

<u>VOCs by 8260C</u> – The percent recovery for ethyl-t-butyl ether (ETBE) in the MS (77%) was below the control limits of 79-131%. The percent recovery for ETBE in the MSD and the relative percent difference for the MS/MSD pair were acceptable; therefore, data were not qualified based on this MS result.

<u>Methane by RSK-175</u> – An MS/MSD was not performed in association with this analysis. Precision and accuracy were assessed using the LCS/LCSD results.

6. Field Duplicate (applicable to VOCs, alcohols, and TPHs only) – Acceptable

<u>General</u> – A field duplicate was submitted for C-MW-12 and identified as C-MW-12D. Results were comparable.

- 7. Reporting Limits Acceptable
- 8. Other Items of Note:

<u>VOCs by EPA Method 8260C</u> – The laboratory noted that the percent difference (%D) for t-butyl alcohol (high) exceeded the method limits of $\pm 20\%$ in the continuing calibration verification (CCV) analyzed on June 21, 2018. t-Butyl alcohol was not detected in the associated samples; therefore, data were not qualified based on this CCV result.

<u>Diesel and Motor Oil-range TPHs by NWTPH-Dx</u> – The laboratory noted that the %Ds for one or more analytes were outside the method limits of $\pm 20\%$ in the following CCVs:

Analytical Batch	Analyte	%D
580-277361	o-Terphenyl (surrogate)	low
	o-Terphenyl (surrogate)	high
	Motor Oil	high
580-277477	o-Terphenyl (surrogate)	low

Data were not qualified based on surrogate %Ds. Motor oil-range TPH was not detected in samples reported in analytical batch 580-277361; therefore, data were not qualified based on this elevated CCV result.

<u>Diesel-range TPH by NWTPH-Dx</u> – The laboratory noted that the diesel chromatographic patterns eluted later than the typical diesel patterns in C-MW-02, C-MW-03, and C-MW-06.

Metals

Samples were analyzed for dissolved manganese by EPA Method 200.7 Rev 4.4.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable
- 3. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Acceptable

Summary Data Quality Review Tesoro-Pasco June 2018 Groundwater Sampling Laboratory Groups: 580-78110-1

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) – Acceptable

An MS/MSD was performed using C-MW-08. Results were acceptable.

5. Laboratory Duplicates – Acceptable

A laboratory duplicate was performed using C-MW-08. Results were comparable.

6. Reporting Limits – Acceptable

Conventional Analyses

Samples were analyzed for sulfate and alkalinity by the methods identified in the introduction of this report.

- 1. Holding Times Acceptable
- 2. Blanks Acceptable where applicable
- 3. Laboratory Control Sample (LCS) Acceptable
- 4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Acceptable

<u>Sulfate by EPA Method 300.0</u> – An MS/MSD was performed using C-MW-06. The percent recoveries for sulfate in the MS (85%) and MSD (85%) were below the control limit of 90-110%. The result for sulfate in C-MW-06 was qualified as estimated and flagged 'J' based on these MS/MSD results.

<u>Alkalinity by SM2320B</u> – MS/MSDs were not performed in association with this analysis. Precision was assessed using the laboratory duplicate. Accuracy was assessed using the LCS.

5. Laboratory Duplicate – Acceptable

<u>Sulfate by EPA Method 300.0</u> – A laboratory duplicate was not performed in association with this analysis. Precision was assessed using the MS/MSD relative percent difference.

<u>Alkalinity by SM2320B</u> – A laboratory duplicate was performed using C-MW-02. Results were comparable.

6. Reporting Limits – Acceptable

Overall Assessment of Data

The data reported in this laboratory group, as qualified, are considered to be usable for meeting project objectives. The completeness for TestAmerica laboratory group 580-78110-1 is 100%.

Table 1 - Summary of Qualified Data

Sample ID	Laboratory ID	Analyte	Laboratory Result	Units	Final Result
C-MW-06	580-78110-4	Sulfate	96	mg/L	96 J

Notes:

J - estimated value mg/L - milligram per liter

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-78110-1

Client Project/Site: Tesoro Pasco Sampling Event: Pasco

For:

AECOM 333 SW 5th Ave, Ste 225 Portland, Oregon 97204

Attn: Nicky Moody

Shuiderug

Authorized for release by: 6/29/2018 12:56:24 PM Sheri Cruz, Project Manager I

(253)922-2310 sheri.cruz@testamericainc.com

Ask-

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	5
Client Sample Results	6
QC Sample Results	23
Chronicle	35
Certification Summary	39
Sample Summary	41
Chain of Custody	42
Receipt Checklists	47

TestAmerica Job ID: 580-78110-1

1 2 3 4 5 6 7 8 9 10

Job ID: 580-78110-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-78110-1

Comments

No additional comments.

Receipt

The samples were received on 6/15/2018 12:15 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.1° C, 1.6° C and 3.9° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 580-276929 recovered above the upper control limit for 2-Methyl-2-propanol. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: C-MW-02 (580-78110-1), C-MW-03 (580-78110-2), C-MW-04 (580-78110-3), C-MW-06 (580-78110-4), C-MW-07 (580-78110-5), C-MW-08 (580-78110-6), C-MW-10 (580-78110-7), C-MW-11 (580-78110-8), C-MW-12 (580-78110-9), C-MW-12D (580-78110-10), C-MW-14 (580-78110-11), C-EB (580-78110-12) and (CCVIS 580-276929/3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) NWTPH-Dx: Continuing calibration verification (CCV) standard associated with batch 580-277361 recovered outside %Drift acceptance criteria for o-Terphenyl surrogate. The %Recovery is within acceptance criteria for the surrogate in the CCV and associated samples; therefore, the data are qualified and reported. C-MW-04 (580-78110-3), C-MW-07 (580-78110-5), C-MW-08 (580-78110-6), C-MW-10 (580-78110-7), C-MW-11 (580-78110-8), C-MW-12 (580-78110-9), C-MW-12D (580-78110-10), C-MW-14 (580-78110-11), C-EB (580-78110-12), (CCV 580-277361/35), (CCV 580-277361/46) and (CCVRT 580-277361/3)

Method(s) NWTPH-Dx: The continuing calibration verification (CCV) associated with batch 580-277361 recovered above the upper control limit for Motor Oil. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: C-MW-04 (580-78110-3), C-MW-07 (580-78110-5), C-MW-08 (580-78110-6), C-MW-10 (580-78110-7), C-MW-11 (580-78110-8), C-MW-12 (580-78110-9), C-MW-12D (580-78110-10), C-MW-14 (580-78110-11), C-EB (580-78110-12), (CCV 580-277361/35) and (CCV 580-277361/46).

Method(s) NWTPH-Dx: The %D of surrogate (o-Terphenyl) for CCVRT and CCV associated with batch 580-277477 was outside the lower control limits. All associated sample surrogate fell within acceptance criteria; therefore, the data have been reported. (CCV 580-277477/14), (CCV 580-277477/25) and (CCVRT 580-277477/3)

Method(s) NWTPH-Dx: The following samples contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: C-MW-02 (580-78110-1), C-MW-03 (580-78110-2) and C-MW-06 (580-78110-4).

Method(s) NWTPH-Dx: The following samples and QC were rerun due to CCV failures in the initial analysis. C-MW-02 (580-78110-1), C-MW-03 (580-78110-2), C-MW-03 (580-78110-2[MS]), C-MW-03 (580-78110-2), C-MW-06 (580-78110-4), (LCS 580-277260/2-A), (LCSD 580-277260/3-A) and (MB 580-277260/1-A)

Method(s) RSK-175: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 490-523477.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 580-78110-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description	
F1	MS and/or MSD Recovery is outside acceptance limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General C	Chemistry	
• ""		

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

RL

2.0

2.0

3.0

2.0

6.0

3.0

2.0

4.0

100

6.0

2.0

3.0

Limits

80 - 126

80 - 125

77 - 120

80 - 122

80 - 120

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Analyte

1.2-DCA

Benzene

Ethylbenzene

Naphthalene

t-Butyl alcohol

Xylenes, Total

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

Surrogate

Tert-amyl methyl ether

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

DIPE

MTBE

Toluene

1,2-Dibromoethane

Ethyl-t-butyl ether (ETBE)

Client Sample ID: C-MW-02

Date Collected: 06/14/18 10:55

Date Received: 06/15/18 12:15

Method: 8260C - Volatile Organic Compounds by GC/MS

06/21/18 14:30

06/21/18 14:30

06/21/18 14:30

1

1

1

1

1

1

1

1

1

Dil Fac

L	ab Sampl	e ID: 580-78 Matrix	110-1 Water	
)	Prepared	Analyzed	Dil Fac	5
		06/21/18 14:30	1	
		06/21/18 14:30	1	
		06/21/18 14:30	1	
		06/21/18 14:30	1	
		06/21/18 14:30	1	

ug/L		06/21/18 14:30
ug/L		06/21/18 14:30
	Prepared	Analyzed
	Prepared	Analyzed 06/21/18 14:30
	Prepared	Analyzed 06/21/18 14:30 06/21/18 14:30
	Prepared	Analyzed 06/21/18 14:30 06/21/18 14:30 06/21/18 14:30
	Prepared	Analyzed 06/21/18 14:30 06/21/18 14:30 06/21/18 14:30 06/21/18 14:30

D

Method: 8015C - Nonhalogenated Organic using GC/FID (Direct Aqueous Injection)

Result Qualifier

ND

%Recovery Qualifier

102

105

98

105

100

Analyte	Result C	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10	mg/L	. –		06/20/18 09:57	1
Methanol	ND		10	mg/L			06/20/18 09:57	1
Surrogate	%Recovery G	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	94		52 - 128				06/20/18 09:57	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte Gasoline	Result ND	Qualifier	RL 0.25	MDL	Unit mg/L	D	Prepared	Analyzed 06/16/18 02:29	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		50 - 150			-		06/16/18 02:29	1
Trifluorotoluene (Surr)	102		50 - 150					06/16/18 02:29	1

Method: RSK-175 - Di	ssolved Gases (GC)						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.0050	mg/L			06/22/18 11:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Acetylene (Surr)	94		70 - 130				06/22/18 11:08	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)										
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac	
#2 Diesel (C10-C24)	0.45		0.11		mg/L		06/25/18 10:32	06/27/18 00:53	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
o-Terphenyl	94		50 - 150				06/25/18 10:32	06/27/18 00:53	1	

Client Sample ID: C-MW-02 Date Collected: 06/14/18 10:55 Date Received: 06/15/18 12:15

Lab Sample ID: 580-78110-1 Matrix: Water

Method: NWTPH-Dx - Northwes	st - Semi-V	olatile Petro	oleum Prod	ucts (G	C) - RA				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	0.48		0.35		mg/L		06/25/18 10:32	06/27/18 19:20	1
Method: 200.7 Rev 4.4 - Metals	(ICP) - Dis	solved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	ND		0.020		mg/L		06/26/18 15:42	06/27/18 14:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	110		2.4		mg/L			06/23/18 11:38	2
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	400		5.0		mg/L			06/23/18 18:05	1
Bicarbonate Alkalinity as CaCO3	400		5.0		mg/L			06/23/18 18:05	1
Carbonate Alkalinity as CaCO3	ND		5.0		mg/L			06/23/18 18:05	1
Hydroxide Alkalinity as CaCO3	ND		5.0		mg/L			06/23/18 18:05	1

Lab Sample ID: 580-78110-2 Matrix: Water

5

Client Sample ID: C-MW-03 Date Collected: 06/14/18 15:00 Date Received: 06/15/18 12:15

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS			_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/21/18 14:56	1
1,2-DCA	ND		2.0		ug/L			06/21/18 14:56	1
Benzene	ND		3.0		ug/L			06/21/18 14:56	1
DIPE	ND		2.0		ug/L			06/21/18 14:56	1
Ethyl-t-butyl ether (ETBE)	ND	F1	6.0		ug/L			06/21/18 14:56	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 14:56	1
MTBE	ND		2.0		ug/L			06/21/18 14:56	1
Naphthalene	ND		4.0		ug/L			06/21/18 14:56	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 14:56	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 14:56	1
Toluene	ND		2.0		ug/L			06/21/18 14:56	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 14:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		80 - 126			-		06/21/18 14:56	1
4-Bromofluorobenzene (Surr)	104		80 - 125					06/21/18 14:56	1
Dibromofluoromethane (Surr)	99		77 - 120					06/21/18 14:56	1
Toluene-d8 (Surr)	104		80 - 122					06/21/18 14:56	1
Trifluorotoluene (Surr)	99		80 - 120					06/21/18 14:56	1
- Method: 8015C - Nonhalog	enated Organi	c usina G	C/FID (Direct	Aqueou	ıs Iniecti	on)			
Analyte	Result	Qualifier	RL	MDL	Unit	́ D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10		mg/L			06/20/18 10:03	1
Methanol	ND		10		mg/L			06/20/18 10:03	1
Surrogate	%Recoverv	Qualifier	Limits				Prepared	Analvzed	Dil Fac

0								
Isopropyl acetate (Surr)	93		52 - 128				06/20/18 10:03	1
Method: NWTPH-Gx - Northwe	est - Volatil	e Petroleu	m Products (GC)				
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.25	mg/L			06/16/18 04:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		50 - 150				06/16/18 04:32	1
Trifluorotoluene (Surr)	102		50 - 150				06/16/18 04:32	1
-								

Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	4.7		0.11		mg/L		06/25/18 10:32	06/27/18 01:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	108		50 - 150				06/25/18 10:32	06/27/18 01:15	1

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	0.86		0.35		mg/L			06/25/18 10:32	06/27/18 19:42	1

TestAmerica Seattle

Client Sample ID: C-MW-04

Date Collected: 06/13/18 12:55

Date Received: 06/15/18 12:15

5

1	
1	
1	
1	
1	8
1	
1	9
1	
1	

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/21/18 16:15	1
1,2-DCA	ND		2.0		ug/L			06/21/18 16:15	1
Benzene	ND		3.0		ug/L			06/21/18 16:15	1
DIPE	ND		2.0		ug/L			06/21/18 16:15	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 16:15	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 16:15	1
МТВЕ	ND		2.0		ug/L			06/21/18 16:15	1
Naphthalene	ND		4.0		ug/L			06/21/18 16:15	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 16:15	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 16:15	1
Toluene	ND		2.0		ug/L			06/21/18 16:15	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 16:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		80 - 126					06/21/18 16:15	1
4-Bromofluorobenzene (Surr)	105		80 - 125					06/21/18 16:15	1
Dibromofluoromethane (Surr)	97		77 - 120					06/21/18 16:15	1
Toluene-d8 (Surr)	103		80 - 122					06/21/18 16:15	1
Trifluorotoluene (Surr)	100		80 - 120					06/21/18 16:15	1
Method: 8015C - Nonhalog	enated Organi	c usina G	C/FID (Direct	Aqueou	ıs Iniecti	on)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10		mg/L		-	06/20/18 10:21	1
Methanol	ND		10		ma/L			06/20/18 10:21	1

				5			
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	89		52 - 128	-		06/20/18 10:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.25		mg/L			06/16/18 03:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		50 - 150					06/16/18 03:00	1
Trifluorotoluene (Surr)	100		50 - 150					06/16/18 03:00	1

Method: NWTPH-Dx - No	orthwest - Semi-Volatile P	etroleum Prod	lucts (GC)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND	0.11	mg/L		06/25/18 10:32	06/27/18 02:21	1
Motor Oil (>C24-C36)	ND	0.35	mg/L		06/25/18 10:32	06/27/18 02:21	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	95	50 - 150			06/25/18 10:32	06/27/18 02:21	1

Lab Sample ID: 580-78110-4 Matrix: Water

Date Collected: 06/11/18 13:15 Date Received: 06/15/18 12:15

Method: 8260C - Volatile O	rganic Compo	unds bv G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/21/18 16:41	1
1,2-DCA	ND		2.0		ug/L			06/21/18 16:41	1
Benzene	ND		3.0		ug/L			06/21/18 16:41	1
DIPE	ND		2.0		ug/L			06/21/18 16:41	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 16:41	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 16:41	1
MTBE	ND		2.0		ug/L			06/21/18 16:41	1
Naphthalene	ND		4.0		ug/L			06/21/18 16:41	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 16:41	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 16:41	1
Toluene	ND		2.0		ug/L			06/21/18 16:41	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 16:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 126			-		06/21/18 16:41	1
4-Bromofluorobenzene (Surr)	102		80 - 125					06/21/18 16:41	1
Dibromofluoromethane (Surr)	96		77 - 120					06/21/18 16:41	1
Toluene-d8 (Surr)	104		80 - 122					06/21/18 16:41	1
Trifluorotoluene (Surr)	100		80 - 120					06/21/18 16:41	1

Method: 8015C - Nonhalogenated Organic using GC/FID (Direct Aqueous Injection)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND	10	mg/L			06/20/18 10:28	1
Methanol	ND	10	mg/L			06/20/18 10:28	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	99	52 - 128				06/20/18 10:28	1

Method: NWTPH-Gx - Northwest -	Volatile	Petroleum	Products (GC)	
		· ····			

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.25	mg/L			06/16/18 03:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		50 - 150				06/16/18 03:31	1
Trifluorotoluene (Surr)	102		50 - 150				06/16/18 03:31	1

Method: RSK-175 - Dis	ssolved Gases (GC)	1						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.0050	mg/L			06/21/18 11:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Acetylene (Surr)	101		70 - 130				06/21/18 11:02	1

Method: NWTPH-Dx - No	orthwest - Semi-V	olatile Pet	roleum Prod	ucts (G	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.18		0.11		mg/L		06/25/18 10:32	06/27/18 03:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	100		50 - 150				06/25/18 10:32	06/27/18 03:05	1

Client Sample ID: C-MW-06 Date Collected: 06/11/18 13:15 Date Received: 06/15/18 12:15

Lab Sample ID: 580-78110-4 Matrix: Water

ater 2

5

Method: NWTPH-Dx - Northwes	st - Semi-V	olatile Petro	oleum Produ	ucts (GO	C) - RA				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	0.46		0.35		mg/L		06/25/18 10:32	06/27/18 20:48	1
Method: 200.7 Rev 4.4 - Metals	(ICP) - Dis	solved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	ND		0.020		mg/L		06/26/18 15:42	06/27/18 14:22	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	96		1.2		mg/L			06/22/18 23:03	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	150		5.0		mg/L			06/23/18 18:05	1
Bicarbonate Alkalinity as CaCO3	150		5.0		mg/L			06/23/18 18:05	1
Carbonate Alkalinity as CaCO3	ND		5.0		mg/L			06/23/18 18:05	1
Hydroxide Alkalinity as CaCO3	ND		5.0		mg/L			06/23/18 18:05	1

Client Sample ID: C-MW-07

Date Collected: 06/13/18 13:40 Date Received: 06/15/18 12:15

2 3 4 5 6

Lab Sample ID: 580-78110-5	
. Matrix: Water	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/21/18 17:07	1
1,2-DCA	ND		2.0		ug/L			06/21/18 17:07	1
Benzene	ND		3.0		ug/L			06/21/18 17:07	1
DIPE	ND		2.0		ug/L			06/21/18 17:07	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 17:07	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 17:07	1
МТВЕ	ND		2.0		ug/L			06/21/18 17:07	1
Naphthalene	ND		4.0		ug/L			06/21/18 17:07	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 17:07	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 17:07	1
Toluene	ND		2.0		ug/L			06/21/18 17:07	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 17:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		80 - 126			-		06/21/18 17:07	1
4-Bromofluorobenzene (Surr)	105		80 - 125					06/21/18 17:07	1
Dibromofluoromethane (Surr)	99		77 - 120					06/21/18 17:07	1
Toluene-d8 (Surr)	102		80 - 122					06/21/18 17:07	1
Trifluorotoluene (Surr)	101		80 - 120					06/21/18 17:07	1

Method: 8015C - Nonhalogenated Organic using GC/FID (Direct Aqueous Injection)

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND		10		mg/L			06/20/18 10:34	1
Methanol	ND		10		mg/L			06/20/18 10:34	1
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	90		52 - 128					06/20/18 10:34	1

Method: NWTPH-Gx - Northwe	est - Volatil	e Petroleui	m Products (GC)				
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.25	mg/L			06/16/18 04:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		50 - 150				06/16/18 04:02	1
Trifluorotoluene (Surr)	100		50 - 150				06/16/18 04:02	1

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) Analyte Result Qualifier MDL Unit RL D Prepared Analyzed Dil Fac #2 Diesel (C10-C24) ND mg/L 06/25/18 10:32 06/27/18 03:27 0.11 1 Motor Oil (>C24-C36) ND 0.35 mg/L 06/25/18 10:32 06/27/18 03:27 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 102 50 - 150 06/25/18 10:32 06/27/18 03:27 o-Terphenyl 1

7 8 9

Lab Sample	ID:	580-78	110-6
		Matrix:	Water

Client Sample ID: C-MW-08 Date Collected: 06/11/18 14:55

Date Received: 06/15/18 12:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/21/18 17:33	1
1,2-DCA	ND		2.0		ug/L			06/21/18 17:33	1
Benzene	ND		3.0		ug/L			06/21/18 17:33	1
DIPE	ND		2.0		ug/L			06/21/18 17:33	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 17:33	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 17:33	1
MTBE	ND		2.0		ug/L			06/21/18 17:33	1
Naphthalene	ND		4.0		ug/L			06/21/18 17:33	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 17:33	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 17:33	1
Toluene	ND		2.0		ug/L			06/21/18 17:33	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 17:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		80 - 126			-		06/21/18 17:33	1
4-Bromofluorobenzene (Surr)	104		80 - 125					06/21/18 17:33	1
Dibromofluoromethane (Surr)	99		77 - 120					06/21/18 17:33	1
Toluene-d8 (Surr)	104		80 - 122					06/21/18 17:33	1
Trifluorotoluene (Surr)	98		80 - 120					06/21/18 17:33	1
- Method: 8015C - Nonhalog	enated Organi	c usina G(C/FID (Direct	Aqueou	s Iniecti	on)			
Analyte	Result	Qualifier	RL	MDL	Unit	о., D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10		mg/L		-	06/20/18 10:40	1
Methanol	ND		10		ma/L			06/20/18 10:40	1

Methanol	ND		10	ilig/L		00/20/10 10.40	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	96		52 - 128	-		06/20/18 10:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.25		mg/L			06/16/18 17:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		50 - 150					06/16/18 17:38	1
Trifluorotoluene (Surr)	101		50 - 150					06/16/18 17:38	1

Wethou. Kok-175 - Di	SSUIVEU Gases (GC)						
Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND	0.0050	mg/L			06/21/18 11:06	1
Surrogate	%Recovery Qua	alifier Limits			Prepared	Analyzed	Dil Fac
Acetylene (Surr)	97	70 - 130				06/21/18 11:06	1

Method: NWTPH-Dx - No	orthwest - Semi-V	olatile Pet	roleum Prod	ucts (GC	C)				
Analyte	Result	Qualifier	RL	MDL	Únit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		0.11		mg/L		06/25/18 10:32	06/27/18 03:49	1
Motor Oil (>C24-C36)	ND		0.35		mg/L		06/25/18 10:32	06/27/18 03:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	101		50 - 150				06/25/18 10:32	06/27/18 03:49	1

Client Sample ID: C-MW-08 Date Collected: 06/11/18 14:55 Date Received: 06/15/18 12:15

Lab Sample ID: 580-78110-6 Matrix: Water

5

Method: 200.7 Rev 4.4 - Metals (Analyte Manganese	(ICP) - Dis Result ND	Solved Qualifier	RL 0.020	MDL	Unit mg/L	D	Prepared 06/26/18 15:42	Analyzed 06/27/18 13:53	Dil Fac
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	120		2.4		mg/L			06/23/18 12:13	2
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	180		5.0		mg/L			06/23/18 18:05	1
Bicarbonate Alkalinity as CaCO3	180		5.0		mg/L			06/23/18 18:05	1
Carbonate Alkalinity as CaCO3	ND		5.0		mg/L			06/23/18 18:05	1
Hydroxide Alkalinity as CaCO3	ND		5.0		mg/L			06/23/18 18:05	1

Lab Sample	ID:	580-78110-7
		Matrix: Water

Client Sample ID: C-MW-10 Date Collected: 06/13/18 14:32 Date Received: 06/15/18 12:15

Analyte	Result	Qualifier	C/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L		•	06/21/18 18:00	1
1,2-DCA	ND		2.0		ug/L			06/21/18 18:00	1
Benzene	ND		3.0		ug/L			06/21/18 18:00	1
DIPE	ND		2.0		ug/L			06/21/18 18:00	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 18:00	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 18:00	1
MTBE	ND		2.0		ug/L			06/21/18 18:00	1
Naphthalene	ND		4.0		ug/L			06/21/18 18:00	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 18:00	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 18:00	1
Toluene	ND		2.0		ug/L			06/21/18 18:00	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 18:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		80 - 126					06/21/18 18:00	1
4-Bromofluorobenzene (Surr)	104		80 - 125					06/21/18 18:00	1
Dibromofluoromethane (Surr)	98		77 - 120					06/21/18 18:00	1
Toluene-d8 (Surr)	104		80 - 122					06/21/18 18:00	1
Trifluorotoluene (Surr)	98		80 - 120					06/21/18 18:00	1
Method: 8015C - Nonhalog	enated Organi	c using G	C/FID (Direct	Aqueou	s Injecti	on)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10		ma/l			06/20/18 10.46	1

Methanol	ND	10	mg/L		06/20/18 10:46	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	86	52 - 128			06/20/18 10:46	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.25	mg/L			06/16/18 18:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		50 - 150				06/16/18 18:09	1
Trifluorotoluene (Surr)	103		50 - 150				06/16/18 18:09	1

Method: NWTPH-Dx - No	orthwest - Semi-Volati	ile Petroleum Prod	lucts (GC)				
Analyte	Result Qual	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND	0.11	mg/L		06/25/18 10:32	06/27/18 04:11	1
Motor Oil (>C24-C36)	ND	0.35	mg/L		06/25/18 10:32	06/27/18 04:11	1
Surrogate	%Recovery Qual	lifier Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	102	50 - 150			06/25/18 10:32	06/27/18 04:11	1

Client Sample ID: C-MW-11

5

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Method: 8260C - Volatile O Analyte	rganic Compo Result	unds by G Qualifier	C/MS RL	MDL	Unit	D	Prepared	Analyzed
1,2-Dibromoethane	ND		2.0		ug/L		·	06/21/18 18:20
1,2-DCA	ND		2.0		ug/L			06/21/18 18:26
Benzene	ND		3.0		ug/L			06/21/18 18:26
DIPE	ND		2.0		ug/L			06/21/18 18:26
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 18:26
Ethylbenzene	ND		3.0		ug/L			06/21/18 18:26
МТВЕ	ND		2.0		ug/L			06/21/18 18:26
Naphthalene	ND		4.0		ug/L			06/21/18 18:26
t-Butyl alcohol	ND		100		ug/L			06/21/18 18:26
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 18:26
Toluene	ND		2.0		ug/L			06/21/18 18:26
Xylenes, Total	ND		3.0		ug/L			06/21/18 18:26
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
1,2-Dichloroethane-d4 (Surr)	106		80 - 126					06/21/18 18:26
4-Bromofluorobenzene (Surr)	102		80 - 125					06/21/18 18:26
Dibromofluoromethane (Surr)	99		77 - 120					06/21/18 18:26
Toluene-d8 (Surr)	105		80 - 122					06/21/18 18:26
Trifluorotoluene (Surr)	99		80 - 120					06/21/18 18:26
Method: 8015C - Nonhalog	enated Organi	c using GC	C/FID (Direc	t Aqueou	s Injecti	on)		
Analyte	Result	Qualifier	RL	MDL	Unit	Ó D	Prepared	Analyzed
Ethanol	ND		10		mg/L			06/20/18 10:52
Methanol	ND		10		mg/L			06/20/18 10:52
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
Isopropyl acetate (Surr)	88		52 - 128					06/20/18 10:52
Method: NWTPH-Gx - North	nwest - Volatile	e Petroleur	n Products	(GC)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Gasoline	ND		0.25		mg/L			06/16/18 18:40
_	%Recoverv	Qualifier	Limits				Prepared	Analyzed
Surrogate	,							00/40/40 40.40
Surrogate 4-Bromofluorobenzene (Surr)	<u>96</u>		50 - 150					06/16/18 18:40
Surrogate 4-Bromofluorobenzene (Surr) Trifluorotoluene (Surr)			50 - 150 50 - 150					06/16/18 18:40
Surrogate 4-Bromofluorobenzene (Surr) Trifluorotoluene (Surr) Method: NWTPH-Dx - North		olatile Pet	50 - 150 50 - 150 roleum Pro	ducts (G0	C)			06/16/18 18:40
Surrogate 4-Bromofluorobenzene (Surr) Trifluorotoluene (Surr) Method: NWTPH-Dx - North Analyte	96 101 nwest - Semi-V Result	olatile Pet Qualifier	50 - 150 50 - 150 roleum Pro RL	ducts (G0 MDL	C) Unit	D	Prepared	06/16/18 18:40 06/16/18 18:40 Analyzed
Surrogate 4-Bromofluorobenzene (Surr) Trifluorotoluene (Surr) Method: NWTPH-Dx - North Analyte #2 Diesel (C10-C24)		olatile Pet Qualifier	50 - 150 50 - 150 roleum Pro RL 0.11	ducts (GC MDL	C) Unit mg/L	D	Prepared 06/25/18 10:32	06/16/18 18:40 06/16/18 18:40 Analyzed 06/27/18 04:33
Surrogate 4-Bromofluorobenzene (Surr) Trifluorotoluene (Surr) Method: NWTPH-Dx - North Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36)		olatile Pet Qualifier	50 - 150 50 - 150 roleum Prov RL 0.11 0.35	ducts (G0 MDL	C) Unit mg/L mg/L	D	Prepared 06/25/18 10:32 06/25/18 10:32	Analyzed 06/27/18 04:33 06/27/18 04:33
Surrogate 4-Bromofluorobenzene (Surr) Trifluorotoluene (Surr) Method: NWTPH-Dx - North Analyte #2 Diesel (C10-C24) Motor Oil (>C24-C36) Surrogate	96 101 102 104 105 101 101 Result 0.16 ND %Recovery	Olatile Pet Qualifier	<u>50 - 150</u> 50 - 150 roleum Pro RL 0.11 0.35 Limits	ducts (GC MDL	C) Unit mg/L mg/L	D	Prepared 06/25/18 10:32 06/25/18 10:32 Prepared	Analyzed 06/27/18 04:33 06/27/18 04:33 06/27/18 04:33 Analyzed 04:33

6/29/2018

2 3 4 5 6 7

7 8 9

Lab Sample	ID:	580-78110-9
		Matrix: Water

Date Collected: 06/14/18 13:40 Date Received: 06/15/18 12:15

Client Sample ID: C-MW-12

Method: 8260C - Volatile Org	ganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/21/18 18:52	1
1,2-DCA	ND		2.0		ug/L			06/21/18 18:52	1
Benzene	ND		3.0		ug/L			06/21/18 18:52	1
DIPE	ND		2.0		ug/L			06/21/18 18:52	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 18:52	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 18:52	1
MTBE	ND		2.0		ug/L			06/21/18 18:52	1
Naphthalene	ND		4.0		ug/L			06/21/18 18:52	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 18:52	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 18:52	1
Toluene	ND		2.0		ug/L			06/21/18 18:52	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 18:52	1
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		80 - 126					06/21/18 18:52	1
4-Bromofluorobenzene (Surr)	105		80 - 125					06/21/18 18:52	1
Dibromofluoromethane (Surr)	99		77 - 120					06/21/18 18:52	1
Toluene-d8 (Surr)	103		80 - 122					06/21/18 18:52	1
Trifluorotoluene (Surr)	98		80 - 120					06/21/18 18:52	1
	-								
Method: 8015C - Nonhaloge	nated Organi	c using G	C/FID (Direct /	Aqueou	is Injecti	ion)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10		mg/L			06/20/18 10:58	1
Methanol	ND		10		mg/L			06/20/18 10:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	88		52 - 128			-		06/20/18 10:58	1
Mothered NIA/TDU Ov. North		Defealer	Due du eta (f						
Method: NWIPH-GX - North	West - Volatile	Ouglifier	m Products ((<u>зс)</u> мрі	Unit	п	Proparad	Analyzod	Dil Eac
Analyte	Result	Quaimer	RL	NDL	Unit	U	riepareu	Analyzeu	DIFAC

Gasoline	ND	0.25	mg/L		06/16/18 19:42	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94	50 - 150			06/16/18 19:42	1
Trifluorotoluene (Surr)	100	50 - 150			06/16/18 19:42	1

Method: RSK-175 - Di	ssolved Gases (GC))							
Analyte	Result	Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.0050	r	mg/L			06/22/18 11:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Acetylene (Surr)	96		70 - 130			-		06/22/18 11:13	1

Method: NWTPH-Dx - No	rthwest - Semi-Volatile P	Petroleum Proc	lucts (GC)				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.19	0.11	mg/L		06/25/18 10:32	06/27/18 04:55	1
Motor Oil (>C24-C36)	ND	0.35	mg/L		06/25/18 10:32	06/27/18 04:55	1
Surrogate o-Terphenyl	%Recovery Qualifier	<i>Limits</i>			Prepared 06/25/18 10:32	Analyzed 06/27/18 04:55	Dil Fac

Lab Sample ID: 580-78110-9

Matrix: Water

5

Date Collected: 06/14/18 13:40 Date Received: 06/15/18 12:15

Client Sample ID: C-MW-12

Method: 200.7 Rev 4.4 - Metals ((ICP) - Dis	solved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	0.043		0.020		mg/L		06/26/18 15:42	06/27/18 14:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	120		2.4		mg/L			06/23/18 12:25	2
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	290		5.0		mg/L			06/23/18 18:05	1
Bicarbonate Alkalinity as CaCO3	290		5.0		mg/L			06/23/18 18:05	1
Carbonate Alkalinity as CaCO3	ND		5.0		mg/L			06/23/18 18:05	1
Hydroxide Alkalinity as CaCO3	ND		5.0		mg/L			06/23/18 18:05	1

Client Sample ID: C-MW-12D

Date Collected: 06/14/18 13:52 Date Received: 06/15/18 12:15

Lab Sample ID: 580-78110-10 Matrix: Water

5

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/21/18 19:18	1
1,2-DCA	ND		2.0		ug/L			06/21/18 19:18	1
Benzene	ND		3.0		ug/L			06/21/18 19:18	1
DIPE	ND		2.0		ug/L			06/21/18 19:18	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 19:18	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 19:18	1
MTBE	ND		2.0		ug/L			06/21/18 19:18	1
Naphthalene	ND		4.0		ug/L			06/21/18 19:18	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 19:18	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 19:18	1
Toluene	ND		2.0		ug/L			06/21/18 19:18	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 19:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		80 - 126			-		06/21/18 19:18	1
4-Bromofluorobenzene (Surr)	103		80 - 125					06/21/18 19:18	1
Dibromofluoromethane (Surr)	98		77 - 120					06/21/18 19:18	1
Toluene-d8 (Surr)	104		80 - 122					06/21/18 19:18	1
Trifluorotoluene (Surr)	97		80 - 120					06/21/18 19:18	1

Method: 8015C - Nonhalogenated Organic using GC/FID (Direct Aqueous Injection)

Analyte	Result Qualifier	RL	MDL Unit	D Prep	bared Analyzed	Dil Fac
Ethanol	ND	10	mg/L		06/20/18 11:04	1
Methanol	ND	10	mg/L		06/20/18 11:04	1
Surrogate	%Recovery Qualifier	Limits		Preµ	oared Analyzed	Dil Fac
Isopropyl acetate (Surr)	96	52 - 128			06/20/18 11:04	1

Method: NWTPH-Gx - North	nwest - Volatile	e Petroleu	m Products (GC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.25		mg/L			06/16/18 20:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		50 - 150					06/16/18 20:12	1
Trifluorotoluene (Surr)	101		50 - 150					06/16/18 20:12	1

Method: NWTPH-Dx - No	rthwest - Semi-Vol	latile Petro	oleum Prod	ucts (GC	C)				
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.18		0.11		mg/L		06/25/18 10:32	06/27/18 05:16	1
Motor Oil (>C24-C36)	ND		0.36		mg/L		06/25/18 10:32	06/27/18 05:16	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	95		50 - 150				06/25/18 10:32	06/27/18 05:16	1

Lab Sample ID:	580-78110-11
	Matrix: Water

Date Collected: 06/13/18 16:12 Date Received: 06/15/18 12:15

Client Sample ID: C-MW-14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/21/18 19:44	1
1,2-DCA	ND		2.0		ug/L			06/21/18 19:44	1
Benzene	ND		3.0		ug/L			06/21/18 19:44	1
DIPE	ND		2.0		ug/L			06/21/18 19:44	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 19:44	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 19:44	1
MTBE	ND		2.0		ug/L			06/21/18 19:44	1
Naphthalene	ND		4.0		ug/L			06/21/18 19:44	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 19:44	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 19:44	1
Toluene	ND		2.0		ug/L			06/21/18 19:44	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 19:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		80 - 126			-		06/21/18 19:44	1
4-Bromofluorobenzene (Surr)	103		80 - 125					06/21/18 19:44	1
Dibromofluoromethane (Surr)	99		77 - 120					06/21/18 19:44	1
Toluene-d8 (Surr)	104		80 - 122					06/21/18 19:44	1
Trifluorotoluene (Surr)	97		80 - 120					06/21/18 19:44	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10		mg/L			06/20/18 11:10	1
Methanol	ND		10		mg/L			06/20/18 11:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	97		52 - 128					06/20/18 11:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.25		mg/L			06/16/18 20:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		50 - 150			-		06/16/18 20:44	1
Trifluorotoluene (Surr)	102		50 - 150					06/16/18 20:44	1

Method: NWTPH-Dx - No	rthwest - Semi-V	olatile Pet	roleum Prod	ucts (GC)				
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.11		0.11	mg/L		06/25/18 10:32	06/27/18 05:38	1
Motor Oil (>C24-C36)	ND		0.35	mg/L		06/25/18 10:32	06/27/18 05:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	86		50 - 150			06/25/18 10:32	06/27/18 05:38	1

Lab Sample ID: 580-78110-12

Matrix: Water

5

Clien	t Sam	ple	ID: (C-E	В
Date C	Collecte	ed: 0	6/13/ ⁻	18 1	6:45

Date Received: 06/15/18 12:15

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/21/18 20:10	1
1,2-DCA	ND		2.0		ug/L			06/21/18 20:10	1
Benzene	ND		3.0		ug/L			06/21/18 20:10	1
DIPE	ND		2.0		ug/L			06/21/18 20:10	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 20:10	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 20:10	1
MTBE	ND		2.0		ug/L			06/21/18 20:10	1
Naphthalene	ND		4.0		ug/L			06/21/18 20:10	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 20:10	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 20:10	1
Toluene	ND		2.0		ug/L			06/21/18 20:10	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 20:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		80 - 126					06/21/18 20:10	1
4-Bromofluorobenzene (Surr)	102		80 - 125					06/21/18 20:10	1
Dibromofluoromethane (Surr)	100		77 - 120					06/21/18 20:10	1
Toluene-d8 (Surr)	103		80 - 122					06/21/18 20:10	1
Trifluorotoluene (Surr)	99		80 - 120					06/21/18 20:10	1
_ Method: 8015C - Nonhalog	enated Organi	c usina G	C/FID (Direct	Aaueou	s Iniecti	on)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10		mg/L			06/20/18 11:16	1

Methanol	ND	10	mg/L		06/20/18 11:16	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	84	52 - 128			06/20/18 11:16	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.25		mg/L			06/16/18 21:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		50 - 150					06/16/18 21:15	1
Trifluorotoluene (Surr)	100		50 - 150					06/16/18 21:15	1

Method: NWIPH-DX - No	orthwest - Semi-vola	itile Petroleum Prod	aucts (GC)				
Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND	0.11	mg/L		06/25/18 10:32	06/27/18 06:00	1
Motor Oil (>C24-C36)	ND	0.35	mg/L		06/25/18 10:32	06/27/18 06:00	1
Surrogate	%Recovery Qua	alifier Limits			Prepared	Analyzed	Dil Fac
o-Terphenyl	97	50 - 150			06/25/18 10:32	06/27/18 06:00	1

RL

2.0

2.0

3.0

2.0

6.0

3.0

2.0

4.0

100

6.0

2.0

3.0

MDL Unit

ug/L

D

Prepared

Analyte

1.2-DCA

Benzene

Ethylbenzene

Naphthalene

t-Butyl alcohol

Xylenes, Total

DIPE

MTBE

Toluene

1,2-Dibromoethane

Ethyl-t-butyl ether (ETBE)

Tert-amyl methyl ether

Client Sample ID: Trip Blank

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

Date Collected: 06/11/18 00:01

Date Received: 06/15/18 12:15

Lab Sample ID: 580-78110-13

Analyzed

06/16/18 16:28

06/16/18 16:28

06/16/18 16:28

06/16/18 16:28

06/16/18 16:28

06/16/18 16:28

06/16/18 16:28

06/16/18 16:28

06/16/18 16:28

06/16/18 16:28

06/16/18 16:28

06/16/18 16:28

Matrix: Water

Dil Fac	5
1	
1	
1	
1	
1	
1	8
1	_
1	9
1	
1	

1

Surrogate	%Recovery	Qualifier	Limits	Prepared And	alyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		80 - 126	06/16/	/18 16:28	1
4-Bromofluorobenzene (Surr)	100		80 - 125	06/16/	/18 16:28	1
Dibromofluoromethane (Surr)	98		77 - 120	06/16/	/18 16:28	1
Toluene-d8 (Surr)	107		80 - 122	06/16/	/18 16:28	1
Trifluorotoluene (Surr)	99		80 - 120	06/16/	/18 16:28	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.25		mg/L			06/16/18 16:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		50 - 150					06/16/18 16:05	1
Trifluorotoluene (Surr)	93		50 - 150					06/16/18 16:05	1

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5

5
6
8
9

1

1

Method: 8260C - Volatile Organic Compounds by GC/MS

107

99

Lab Sample ID: MB 580-276450/5 Matrix: Water

Analysis Batch: 276450									
-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/16/18 15:15	1
1,2-DCA	ND		2.0		ug/L			06/16/18 15:15	1
Benzene	ND		3.0		ug/L			06/16/18 15:15	1
DIPE	ND		2.0		ug/L			06/16/18 15:15	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/16/18 15:15	1
Ethylbenzene	ND		3.0		ug/L			06/16/18 15:15	1
MTBE	ND		2.0		ug/L			06/16/18 15:15	1
Naphthalene	ND		4.0		ug/L			06/16/18 15:15	1
t-Butyl alcohol	ND		100		ug/L			06/16/18 15:15	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/16/18 15:15	1
Toluene	ND		2.0		ug/L			06/16/18 15:15	1
Xylenes, Total	ND		3.0		ug/L			06/16/18 15:15	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		80 - 126					06/16/18 15:15	1
4-Bromofluorobenzene (Surr)	100		80 - 125					06/16/18 15:15	1
Dibromofluoromethane (Surr)	98		77 - 120					06/16/18 15:15	1

80 - 122

80 - 120

Lab Sample ID: LCS 580-276450/6 Matrix: Water Analysis Batch: 276450

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

LCS LCS %Rec. Spike Analyte Added **Result Qualifier** Unit %Rec Limits D 1,2-Dibromoethane 10.0 9.60 96 79 - 120 ug/L 1,2-DCA 10.0 9.61 ug/L 96 76 - 131 Benzene 10.0 9.62 ug/L 96 75 - 128 DIPE 12.5 12.4 ug/L 100 71 - 141 Ethyl-t-butyl ether (ETBE) 12.5 11.6 ug/L 93 79_131 Ethylbenzene 100 75 - 120 10.0 9.99 ug/L MTBE 10.0 9.31 ug/L 93 72 - 130 m-Xylene & p-Xylene 10.0 10.2 ug/L 102 75 - 120 Naphthalene 10.0 8.70 87 50 - 144 ug/L o-Xylene 10.0 10.4 104 74 - 120 ug/L t-Butyl alcohol 100 96.4 J ug/L 96 31 - 150 Tert-amyl methyl ether 12.5 12.2 ug/L 97 75 - 133 Toluene 10.0 9.80 ug/L 98 75 - 120 74 - 120 Xylenes, Total 20.0 20.6 103 ug/L

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		80 - 126
4-Bromofluorobenzene (Surr)	99		80 - 125
Dibromofluoromethane (Surr)	98		77 - 120
Toluene-d8 (Surr)	102		80 - 122
Trifluorotoluene (Surr)	97		80 - 120

Client Sample ID: Lab Control Sample Prep Type: Total/NA

06/16/18 15:15

06/16/18 15:15

6

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-276450/7 Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
10.0	9.45		ug/L		95	79 - 120	2	26
10.0	9.87		ug/L		99	76 - 131	3	11
10.0	9.72		ug/L		97	75 - 128	1	14
12.5	12.7		ug/L		102	71 - 141	2	11
12.5	12.0		ug/L		96	79 - 131	4	17
10.0	10.1		ug/L		101	75 - 120	1	14
10.0	9.55		ug/L		96	72 - 130	3	18
10.0	10.2		ug/L		102	75 - 120	0	14
10.0	8.52		ug/L		85	50 - 144	2	16
10.0	10.5		ug/L		105	74 - 120	1	16
100	98.3	J	ug/L		98	31 - 150	2	35
12.5	12.4		ug/L		99	75 - 133	2	16
10.0	9.90		ug/L		99	75 - 120	1	13
20.0	20.7		ug/L		104	74 - 120	0	15
	Spike Added 10.0 10.0 10.0 12.5 12.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0	Spike LCSD Added Result 10.0 9.45 10.0 9.87 10.0 9.72 12.5 12.7 12.5 12.0 10.0 9.55 10.0 10.1 10.0 9.55 10.0 10.2 10.0 10.5 10.0 98.3 12.5 12.4 10.0 9.90 20.0 20.7	Spike LCSD LCSD Added Result Qualifier 10.0 9.45 100 10.0 9.87 100 10.0 9.72 125 12.5 12.7 125 10.0 10.1 10.0 10.0 9.55 10.0 10.0 10.2 10.0 10.0 10.5 100 10.0 98.3 J 12.5 12.4 10.0 10.0 9.90 20.0	Spike LCSD LCSD Added Result Qualifier Unit 10.0 9.45 ug/L 10.0 9.87 ug/L 10.0 9.72 ug/L 10.0 9.72 ug/L 12.5 12.7 ug/L 10.0 10.1 ug/L 10.0 10.1 ug/L 10.0 10.2 ug/L 10.0 10.2 ug/L 10.0 10.5 ug/L 10.0 10.5 ug/L 10.0 98.3 J 10.0 9.90 ug/L 10.0 9.90 ug/L 10.0 9.90 ug/L	Spike LCSD LCSD Added Result Qualifier Unit D 10.0 9.45 ug/L ug/L 10.0 9.87 ug/L 1 10.0 9.72 ug/L 1 10.0 9.72 ug/L 1 12.5 12.7 ug/L 1 10.0 10.1 ug/L 1 10.0 10.1 ug/L 1 10.0 9.55 ug/L 1 10.0 10.2 ug/L 1 10.0 10.2 ug/L 1 10.0 10.5 ug/L 1 10.0 98.3 J ug/L 10.0 9.90 ug/L 1 10.0 20.0	Spike LCSD LCSD Added Result Qualifier Unit D %Rec 10.0 9.45 ug/L 95 10.0 9.87 ug/L 99 10.0 9.72 ug/L 97 12.5 12.7 ug/L 96 10.0 9.72 ug/L 96 10.0 9.72 ug/L 96 10.0 9.75 ug/L 96 10.0 10.1 ug/L 101 10.0 9.55 ug/L 96 10.0 10.2 ug/L 96 10.0 10.2 ug/L 102 10.0 8.52 ug/L 102 10.0 8.52 ug/L 98 12.5 12.4 ug/L 99 10.0 9.90 ug/L 99 10.0 9.90 ug/L 99 10.0 9.90 ug/L 99	Spike LCSD LCSD Write Marce Marce Limits 10.0 9.45 ug/L 95 79.120 10.0 9.45 ug/L 99 76.131 10.0 9.87 ug/L 97 75.128 10.0 9.72 ug/L 97 75.128 12.5 12.7 ug/L 96 79.131 10.0 10.1 ug/L 96 79.131 10.0 10.1 ug/L 96 79.131 10.0 10.1 ug/L 96 72.130 10.0 10.1 ug/L 96 72.130 10.0 9.55 ug/L 96 72.130 10.0 10.2 ug/L 102 75.120 10.0 8.52 ug/L 85 50.144 10.0 10.5 ug/L 98 31.150 12.5 12.4 ug/L 99 75.133 10.0 9.90	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		80 - 126
4-Bromofluorobenzene (Surr)	98		80 - 125
Dibromofluoromethane (Surr)	99		77 - 120
Toluene-d8 (Surr)	101		80 - 122
Trifluorotoluene (Surr)	99		80 - 120

Lab Sample ID: MB 580-276929/5 Matrix: Water Analysis Batch: 276929

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		2.0		ug/L			06/21/18 12:45	1
1,2-DCA	ND		2.0		ug/L			06/21/18 12:45	1
Benzene	ND		3.0		ug/L			06/21/18 12:45	1
DIPE	ND		2.0		ug/L			06/21/18 12:45	1
Ethyl-t-butyl ether (ETBE)	ND		6.0		ug/L			06/21/18 12:45	1
Ethylbenzene	ND		3.0		ug/L			06/21/18 12:45	1
MTBE	ND		2.0		ug/L			06/21/18 12:45	1
Naphthalene	ND		4.0		ug/L			06/21/18 12:45	1
t-Butyl alcohol	ND		100		ug/L			06/21/18 12:45	1
Tert-amyl methyl ether	ND		6.0		ug/L			06/21/18 12:45	1
Toluene	ND		2.0		ug/L			06/21/18 12:45	1
Xylenes, Total	ND		3.0		ug/L			06/21/18 12:45	1
	MB	МВ							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		80 - 126		06/21/18 12:45	1
4-Bromofluorobenzene (Surr)	104		80 - 125		06/21/18 12:45	1
Dibromofluoromethane (Surr)	99		77 - 120		06/21/18 12:45	1
Toluene-d8 (Surr)	105		80 - 122		06/21/18 12:45	1
Trifluorotoluene (Surr)	99		80 - 120		06/21/18 12:45	1
Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 580-276929/6 Matrix: Water

Analysis Batch: 276929								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane	10.0	11.2		ug/L		112	79 - 120	
1,2-DCA	10.0	10.9		ug/L		109	76 - 131	
Benzene	10.0	11.3		ug/L		113	75 - 128	
DIPE	12.5	13.9		ug/L		111	71 ₋ 141	
Ethyl-t-butyl ether (ETBE)	12.5	13.5		ug/L		108	79 - 131	
Ethylbenzene	10.0	11.1		ug/L		111	75 - 120	
MTBE	10.0	10.7		ug/L		107	72 - 130	
m-Xylene & p-Xylene	10.0	11.1		ug/L		111	75 - 120	
Naphthalene	10.0	11.2		ug/L		112	50 ₋ 144	
o-Xylene	10.0	11.4		ug/L		114	74 - 120	
t-Butyl alcohol	100	101		ug/L		101	31 - 150	
Tert-amyl methyl ether	12.5	13.6		ug/L		109	75 - 133	
Toluene	10.0	11.2		ug/L		112	75 ₋ 120	
Xylenes, Total	20.0	22.5		ug/L		113	74 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		80 - 126
4-Bromofluorobenzene (Surr)	104		80 - 125
Dibromofluoromethane (Surr)	100		77 - 120
Toluene-d8 (Surr)	104		80 - 122
Trifluorotoluene (Surr)	98		80 - 120

Lab Sample ID: LCSD 580-276929/7 Matrix: Water Analysis Batch: 276929

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane	10.0	10.8		ug/L		108	79 - 120	4	26
1,2-DCA	10.0	10.2		ug/L		102	76 - 131	6	11
Benzene	10.0	10.1		ug/L		101	75 - 128	11	14
DIPE	12.5	12.8		ug/L		102	71 - 141	8	11
Ethyl-t-butyl ether (ETBE)	12.5	12.6		ug/L		101	79 - 131	7	17
Ethylbenzene	10.0	10.5		ug/L		105	75 - 120	5	14
MTBE	10.0	10.1		ug/L		101	72 - 130	6	18
m-Xylene & p-Xylene	10.0	10.5		ug/L		105	75 - 120	6	14
Naphthalene	10.0	10.7		ug/L		107	50 - 144	5	16
o-Xylene	10.0	10.4		ug/L		104	74 - 120	9	16
t-Butyl alcohol	100	117		ug/L		117	31 - 150	15	35
Tert-amyl methyl ether	12.5	12.5		ug/L		100	75 - 133	8	16
Toluene	10.0	10.6		ug/L		106	75 - 120	6	13
Xylenes, Total	20.0	20.9		ug/L		105	74 - 120	7	15

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		80 - 126
4-Bromofluorobenzene (Surr)	105		80 - 125
Dibromofluoromethane (Surr)	99		77 - 120
Toluene-d8 (Surr)	104		80 - 122

TestAmerica Seattle

Client Sample ID: C-MW-03

Prep Type: Total/NA

6

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-276929/7 Matrix: Water

Analysis Batch: 276929

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Trifluorotoluene (Surr)	101		80 - 120

Lab Sample ID: 580-78110-2 MS Matrix: Water Analysis Batch: 276929

Sample	Sample	Spike	MS	MS				%Rec.	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
ND		11.6	9.81		ug/L		84	79 - 120	
ND		11.6	9.38		ug/L		81	76 ₋ 131	
ND		11.6	9.64		ug/L		83	75 - 128	
ND		14.5	11.7		ug/L		80	71 ₋ 141	
ND	F1	14.5	11.2	F1	ug/L		77	79 ₋ 131	
ND		11.6	9.52		ug/L		82	75 - 120	
ND		11.6	9.11		ug/L		78	72 - 130	
ND		11.6	9.60		ug/L		83	75 - 120	
ND		11.6	9.83		ug/L		85	50 - 144	
ND		11.6	9.34		ug/L		80	74 - 120	
ND		116	101		ug/L		87	31 - 150	
ND		14.5	11.2		ug/L		77	75 ₋ 133	
ND		11.6	9.94		ug/L		85	75 - 120	
ND		23.3	18.9		ug/L		81	74 - 120	
	Sample Result ND ND ND ND ND ND ND ND ND ND ND ND ND	SampleSampleResultQualifierNDNDNDNDNDF1ND	Sample Sample Spike Result Qualifier Added ND 11.6 11.6 ND 11.6 14.5 ND F1 14.5 ND 11.6 11.6 ND	Sample Result Sample Qualifier Spike Added MS ND 11.6 9.81 ND 11.6 9.38 ND 11.6 9.64 ND 14.5 11.7 ND F1 14.5 11.2 ND 11.6 9.52 ND 11.6 9.60 ND 11.6 9.83 ND 11.6 9.34 ND 11.6 9.34 ND 11.6 9.34 ND 11.6 9.94 ND 11.6 9.94 ND 11.6 9.94 ND 11.6 9.94 ND 23.3 18.9	Sample Result Sample Qualifier Spike Added MS MS ND 11.6 9.81 Qualifier ND 11.6 9.64 Provide Constraints ND 11.6 9.64 Provide Constraints ND 11.6 9.64 Provide Constraints ND 11.6 9.52 Provide Constraints ND 11.6 9.60 Provide Constraints ND 11.6 9.83 Provide Constraints ND 11.6 9.34 Provide Constraints ND 11.6 9.94 Provide Constraints ND 11.6 9.94 Provide Constraints ND 11.6 9.94 Provide Const ND	Sample Result Sample Qualifier Spike Added MS MS ND 11.6 9.81 Qualifier Unit ND 11.6 9.81 ug/L ND 11.6 9.64 ug/L ND 11.6 9.64 ug/L ND 11.6 9.64 ug/L ND 11.6 9.64 ug/L ND 11.6 9.52 ug/L ND 11.6 9.60 ug/L ND 11.6 9.83 ug/L ND 11.6 9.83 ug/L ND 11.6 9.34 ug/L ND 11.6 9.34 ug/L ND 11.6 9.94 ug/L ND 11.6 9.94	Sample Result Sample Qualifier Spike Added MS MS ND 11.6 9.81 Qualifier Unit D ND 11.6 9.81 Qualifier Unit D ND 11.6 9.81 Qualifier Unit D ND 11.6 9.81 ug/L Ug/L D ND 11.6 9.38 ug/L Unit D ND 11.6 9.38 ug/L Unit D ND 11.6 9.38 ug/L Unit D ND 11.6 9.64 ug/L Ug/L Ug/L ND 11.6 9.52 ug/L Ug/L	Sample Sample Spike MS MS Result Qualifier Qualifier Unit D %Rec ND 11.6 9.81 ug/L 84 ND 11.6 9.81 ug/L 81 ND 11.6 9.81 ug/L 81 ND 11.6 9.64 ug/L 83 ND 11.6 9.64 ug/L 80 ND 11.6 9.64 ug/L 80 ND 11.6 9.52 ug/L 82 ND 11.6 9.60 ug/L 83 ND 11.6 9.83 ug/L 85 ND 11.6 9.34 ug/L 80 ND 11.6 9.34 ug/L 87	Sample Sample Spike MS MS Unit D %Rec. ND 11.6 9.81 ug/L 84 79-120 ND 11.6 9.81 ug/L 84 79-120 ND 11.6 9.81 ug/L 81 76-131 ND 11.6 9.64 ug/L 83 75-128 ND 11.6 9.64 ug/L 80 71-141 ND 14.5 11.2 F1 ug/L 82 75-128 ND F1 14.5 11.2 F1 ug/L 77 79-131 ND 11.6 9.52 ug/L 82 75-120 ND 11.6 9.60 ug/L 83 75-120 ND 11.6 9.83 ug/L 83 75-120 ND 11.6 9.84 ug/L 83 75-120 ND 11.6 9.34 ug/L 80 74-120

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		80 - 126
4-Bromofluorobenzene (Surr)	103		80 - 125
Dibromofluoromethane (Surr)	98		77 - 120
Toluene-d8 (Surr)	103		80 - 122
Trifluorotoluene (Surr)	98		80 - 120

Lab Sample ID: 580-78110-2 MSD Matrix: Water Analysis Batch: 276929

RPE D Limi 4 35 26 35
24 Limi 24 35 26 35
24 35 26 35
26 35
24 35
27 35
27 35
27 35
26 35
26 35
27 35
27 35
29 35
27 35
26 35
27 35

TestAmerica Seattle

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: C-MW-03

Prep Type: Total/NA

QC Sample Results

Client: AECOM Project/Site: Tesoro Pasco

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		80 - 126
4-Bromofluorobenzene (Surr)	102		80 - 125
Dibromofluoromethane (Surr)	98		77 - 120
Toluene-d8 (Surr)	104		80 - 122
Trifluorotoluene (Surr)	100		80 - 120

Method: 8015C - Nonhalogenated Organic using GC/FID (Direct Aqueous Injection)

Lab Sample ID: MB 490-52316 Matrix: Water Analysis Batch: 523161	51/4						Client Sam	ole ID: Method Prep Type: To	Blank btal/NA
· ·····, ··· · ··· · · · · · · ·	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		10		mg/L			06/20/18 09:04	1
Methanol	ND		10		mg/L			06/20/18 09:04	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	100		52 - 128			-		06/20/18 09:04	1

Lab Sample ID: LCS 490-523161/5 Matrix: Water Analysis Batch: 523161

-		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol		50.2	63.7		mg/L		127	70 - 130	
Methanol		50.2	63.6		mg/L		127	70 - 130	
	LCS LCS								

Surrogate	%Recovery	Qualifier	Limits
Isopropyl acetate (Surr)	102		52 - 128

Lab Sample ID: 580-78110-2 MS Matrix: Water Analysis Batch: 523161

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	ND		50.2	64.4		mg/L		128	65 - 130	
Methanol	ND		50.2	64.4		mg/L		128	64 - 138	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
Isopropyl acetate (Surr)	100		52 - 128							

Lab Sample ID: 580-78110-2 MSD Matrix: Water Analysis Batch: 523161

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethanol	ND		50.2	60.7		mg/L		121	65 - 130	6	11
Methanol	ND		50.2	60.2		mg/L		120	64 - 138	7	21
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Isopropyl acetate (Surr)	79		52 - 128								

TestAmerica Job ID: 580-78110-1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: C-MW-03

Client Sample ID: C-MW-03

Prep Type: Total/NA

Prep Type: Total/NA

6/29/2018

Method: NWTPH-Gx -	Northwest	: - V	olatile	Petroleur	n Proc	ducts	(GC)						
Lab Sample ID: MB 580-2 Matrix: Water	276431/6								Clie	ent Sam	ple ID: M Prep Tv	lethod pe: To	l Blank otal/NA
Analysis Batch: 276431													
		MB	МВ										
Analyte	Re	sult	Qualifier	RI	<u> </u>	MDL Un	it	D	Ρ	repared	Analy	zed	Dil Fac
Gasoline		ND		0.2	5	mg	/L				06/15/18	16:09	1
•		MB	MB						_				
Surrogate	%Reco	very	Qualifier	Limits	_					repared	Analy	zed	Dil Fac
4-Bromotiuorobenzene (Surr)		91		50 - 150							06/15/18	16:09	1
		92		50 - 150							00/15/16	10.09	1
Lab Sample ID: LCS 580-	276431/7						С	lient	Sai	mple ID	: Lab Co	ntrol S	Sample
Matrix: Water											Prep Ty	pe: To	otal/NA
Analysis Batch: 276431				Calles	1.00	1.00					% Dee		
Analyto				Addod	Posult	Qualifia	r llnit		п	%Pac	%Rec.		
Gasoline				1.00	0.884	Quaime				88	79 120		
				1.00	0.004		iiig/L			00	75-120		
	LCS	LCS											
Surrogate	%Recovery	Qual	lifier	Limits									
4-Bromofluorobenzene (Surr)	108			50 - 150									
Trifluorotoluene (Surr)	97			50 - 150									
Lab Sample ID: LCSD 58	0-276431/8						Client	Sam	ple	ID: Lab	Control	Samp	le Dup
Matrix: Water									÷.,		Prep Ty	pe: To	tal/NA
Analysis Batch: 276431													
-				Spike	LCSD	LCSD					%Rec.		RPD
Analyte				Added	Result	Qualifie	r Unit		D	%Rec	Limits	RPD	Limit
Gasoline				1.00	0.928		mg/L			93	79 - 120	5	5 10
	LCSD	LCS	D										
Surrogate	%Recoverv	Qual	lifier	Limits									
4-Bromofluorobenzene (Surr)	105			50 - 150									
Trifluorotoluene (Surr)	101			50 - 150									
-													
Lab Sample ID: 580-7811	0-2 MS									Client	Sample	ID: C-	MW-03
Matrix: Water											Prep Ty	pe: To	otal/NA
Analysis Batch: 276431	. .	_		• •							~·-		
A secola da	Sample	Sam	ple	Spike	MS	MS			_	0/ D	%Rec.		
Analyte		Quai			Result	Qualifie			<u> </u>	%Rec			
Gasoline	ND			1.00	0.967		mg/∟			97	79-120		
	MS	MS											
Surrogate	%Recovery	Qual	lifier	Limits									
4-Bromofluorobenzene (Surr)	109			50 - 150									
Trifluorotoluene (Surr)	101			50 - 150									
Lab Sample ID: 580-7811	0-2 MSD									Client	Sample	ID: C-	MW-03
Matrix: Water											Prep Tv	pe: To	otal/NA
Analysis Batch: 276431													
,	Sample	Sam	ple	Spike	MSD	MSD					%Rec.		RPD
Analyte	Result	Qual	lifier	Added	Result	Qualifie	r Unit		D	%Rec	Limits	RPD	Limit
Gasoline				1.00	1 04		m/			104	79 120		10

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Limits

50 - 150

MSD MSD

%Recovery Qualifier

106

Analysis Batch: 276431

4-Bromofluorobenzene (Surr)

Matrix: Water

Surrogate

Lab Sample ID: 580-78110-2 MSD

2 3 4 5 6 7

Client Sample ID: C-MW-03 Prep Type: Total/NA

Trifluorotoluene (Surr)	101			50 - 150										
Lab Sample ID: MB 580-27	76481/6								c	Clie	ent San	nple ID: M	ethod	Blank
Matrix: Water												Prep Ty	be: To	tal/NA
Analysis Batch: 276481														
		MB	MB											
Analyte	Re	sult	Qualifier	RL	-	MDL	Unit		D	Р	repared	Analyz	ed	Dil Fac
Gasoline		ND		0.25	5		mg/L					06/16/18	14:32	1
		ΜВ	МВ											
Surrogate	%Reco	verv	Qualifier	Limits						Р	repared	Analyz	zed	Dil Fac
4-Bromofluorobenzene (Surr)		91		50 - 150	-				-		•	06/16/18	14:32	1
Trifluorotoluene (Surr)		108		50 - 150								06/16/18	14:32	1
Lab Sample ID: LCS 580-2	76481/7							Cli	ent	Sai	nole IC	: Lab Cor	trol S	ample
Matrix: Water								•		- u		Pren Tvi	be: To	tal/NA
Analysis Batch: 276481														
······, ·····				Spike	LCS	LCS	3					%Rec.		
Analyte				Added	Result	Qua	alifier	Unit		D	%Rec	Limits		
Gasoline				1.00	0.910			mg/L		_	91	79 - 120		
	LCS	LCS	5											
Surrogate	%Recovery	Qua	alifier	Limits										
4-Bromofluorobenzene (Surr)	118			50 - 150										
Trifluorotoluene (Surr)	104			50 - 150										
Lab Sample ID: LCSD 580	-276481/8						C	lient S	Sam	ole	ID: Lal		Sampl	e Dup
Matrix: Water												Prep Ty	pe: Tot	tal/NA
Analysis Batch: 276481														
-				Spike	LCSD	LCS	SD					%Rec.		RPD
Analyte				Added	Result	Qua	alifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline				1.00	0.945			mg/L			94	79 - 120	4	10
	LCSD	LCS	SD											
Surrogate	%Recovery	Qua	alifier	Limits										
4-Bromofluorobenzene (Surr)	105	-		50 - 150										
Trifluorotoluene (Surr)	106			50 - 150										
Method: RSK-175 - Dis	solved G	ise	s (GC)											
Lab Sample ID: MR 400 51	2477/5										nt Con		othod	Dlank

Lab Sample ID. NID 490-52547				Chefit Sam	pie iD. Method	DIAIIK			
Matrix: Water								Prep Type: To	otal/NA
Analysis Batch: 523477									
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	ND		0.0050		mg/L			06/21/18 09:23	1

TestAmerica Seattle

Method: RSK-175 - Dissolved Gases (GC) (Continued)

Lab Sample ID: MB 490-52 Matrix: Water	23477/5						Clie	ent Sam	ple ID: Me Prep Type	thod e: To	Blank tal/NA
Analysis Batch: 523477											
-	MF	NR MR									
Surrogate	%Recovery	, MB v Qualifier	Limits				P	repared	Analyze	ed	Dil Fac
Acetvlene (Surr)		2								9:23	1
		-								0.20	
Lab Sample ID: LCS 490-5	23477/6					Clie	nt Sar	nple ID	: Lab Cont	rol S	ample
Matrix: Water								- C	Prep Type	e: To	tal/NA
Analysis Batch: 523477											
-			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Methane			0.287	0.267		mg/L		93	85 - 115		
	105.10	S									
Surrogate	%Recovery Or	- alifier	l imits								
Acetylene (Surr)	93		70 - 130								
			,								
Lab Sample ID: LCSD 490	-523477/7				C	lient Sa	mple	ID: Lab	Control S	ampl	e Dup
Matrix: Water									Prep Typ	e: To	tal/NA
Analysis Batch: 523477											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methane			0.287	0.262		mg/L		91	85 - 115	2	30
		20									
Surrogata	V Bacawary O	SD	Limito								
			70 120								
	91		70-730								
Lab Sample ID: MB 490-52	23775/5						Clie	ent Sam	nple ID: Me	thod	Blank
Matrix: Water									Prep Typ	e: To	tal/NA
Analysis Batch: 523775											
	ME	MB									
Analyte	Resul	t Qualifier	RL		MDL Unit	[) Pi	repared	Analyze	ed	Dil Fac
Methane	NE	<u> </u>	0.0050		mg/L			-	06/22/18 0	9:32	1
0	ME						_				011 5
Surrogate	%Recovery	Qualifier	$-\frac{Limits}{70,400}$				P	repared		ea -	DIIFac
Acetylene (Surr)	9.	5	70 - 130						06/22/18 0	9:32	1
– Lab Sample ID: I CS 490-5	23775/6					Clice	nt Sar		. Lah Cont	rol S	ample
Matrix: Water	23113/0					Cilei	it Sai	inple in	Prop Type	101 30	tal/NA
Analysis Batch: 522775									гіср тур	e. 10	
Analysis Daten. 023/13			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Methane			0.287	0.269		ma/L		94	85 - 115		
		_									
	LCS LC	S									
Surrogate	%Recovery Qu	alifier	Limits								

Acetylene (Surr)

70 - 130

2 3 4 5 6 7 8

Method: NWTPH-Dx -	Northwest	- Semi-Vo	olatile Petr	oleur	n Produ	ucts (G	C)				
Lab Sample ID: MB 580-2	77260/1-A						Clie	ent Sam	ple ID: Me	thod	Blank
Matrix: Water									Prep Typ	8:10	121/NA
Analysis Balch: 277361									Ргер Ба	.cn: 2	//200
Analyta	Bos	wid ivid	ы					roparod	Apolyza	.d	
$\frac{\text{Analyte}}{\text{#2 Discol.} (C10, C24)}$	Res					L		7epareu			
#2 Diesel (C10-C24)		ND	0.11		IIIg/L		00/2	25/10 10.52	2 00/20/10 2	5.05	1
	I	MB MB									
Surrogate	%Recov	ery Qualifier	· Limits				F	Prepared	Analyze	ed 🗧	Dil Fac
o-Terphenyl	1	100	50 - 150				06/2	25/18 10:32	2 06/26/18 2	3:03	1
						0.11					
Lab Sample ID: LCS 580-2	277260/2-A					Cliei	nt Sa	mple ID:	Lab Cont	rolS	ample
Matrix: water									Prep Typ	e: 10	
Analysis Batch: 277361			Calles	1.00	1.00				Prep Bat	ch: 2	77260
A secol of a			Бріке	LUS	LUS	119	-	0/ D	%Rec.		
Analyte				Result	Qualifier			%Rec			
#2 Diesei (C10-C24)			2.00	1.70		mg/L		00	50 - 120		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl	99		50 - 150								
Lab Sample ID: LCSD 580)-277260/3-A				(Client Sa	mple	ID: Lab	Control S	ampl	e Dup
Matrix: Water									Prep Typ	e: To	tal/NA
Analysis Batch: 277361									Prep Bat	ch: 2	77260
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
#2 Diesel (C10-C24)			2.00	1.77		mg/L		89	50 - 120	1	26
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl	108		50 - 150								
_											
Lab Sample ID: 580-78110	0-2 MS							Client	Sample ID): C-N	/W-03
Matrix: Water									Prep Typ	e: To	tal/NA
Analysis Batch: 277361									Prep Bat	ch: 2	77260
	Sample S	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
#2 Diesel (C10-C24)	4.7		2.03	6.51		mg/L		89	50 - 120		
	MS	MS									
Surrogate	%Recoverv	Qualifier	Limits								
o-Terphenyl	97		50 - 150								
_ · ·											
Lab Sample ID: 580-78110)-2 MSD							Client	Sample ID): C-N	/W-03
Matrix: Water									Prep Typ	e: To	tal/NA
Analysis Batch: 277361									Prep Bat	ch: 2	77260
	Sample 3	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
#2 Diesel (C10-C24)	4.7		2.02	6.35		mg/L		81	50 - 120	2	26
	MSD	MSD									
Surrogate	%Recoverv	 Qualifier	Limits								
o-Terphenyl	102		50 - 150								

TestAmerica Seattle

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) - RA

2 3 4 5 6 7

Lab Sample ID: MB 580-2772 Matrix: Water Analysis Batch: 277477	260/1-A	MB MB						Clie	ent Sam	ple ID: Me Prep Typ Prep Ba	ethod I be: Tot itch: 27	3lank al/NA 7260
Analyte	Re	sult Qualifier		RL	I	MDL Unit	1	D P	repared	Analyz	ed I	Dil Fac
Motor Oil (>C24-C36) - RA		ND		0.35		mg/L		06/2	5/18 10:32	2 06/27/18	17:31	1
Lab Sample ID: LCS 580-277 Matrix: Water Analysis Batch: 277477	260/2-A		Spike		LCS	LCS	Clie	nt Sai	mple ID:	Lab Con Prep Typ Prep Ba %Rec.	trol Sa be: Tot tch: 27	mple al/NA 7260
Analyte			Added	F	Result	Qualifier	Unit	D	%Rec	Limits		
Motor Oil (>C24-C36) - RA			2.00		1.99		mg/L		100	64 - 120		
Lab Sample ID: LCSD 580-27 Matrix: Water Analysis Batch: 277477	7260/3-A		Spike		LCSD	LCSD	lient Sa	mple	ID: Lab	Control S Prep Typ Prep Ba %Rec.	Sample be: Tot tch: 27	Dup al/NA 7260 RPD
Analyte			Added	- F	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Motor Oil (>C24-C36) - RA			2.00		2.00		mg/L		100	64 - 120	0	24
Lab Sample ID: 580-78110-2 Matrix: Water Analysis Batch: 277477	MS Sample	Sample	Spike		MS	MS			Client	Sample I Prep Typ Prep Ba %Rec.	D: C-M be: Tot tch: 27	W-03 al/NA 7260
Analyte	Result	Qualifier	Added	F	Result	Qualifier	Unit	D	%Rec	Limits		
Motor Oil (>C24-C36) - RA	0.86		2.03		2.61		mg/L		86	64 - 120		
Lab Sample ID: 580-78110-2 Matrix: Water Analysis Batch: 277477	MSD Sample	Sample	Spike		MSD	MSD			Client	Sample I Prep Typ Prep Ba %Rec.	D: C-M be: Tot itch: 27	W-03 al/NA 7260 RPD
Analyte	Result	Qualifier	Added	F	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit

Method: 200.7 Rev 4.4 - Metals (ICP)

0.86

Motor Oil (>C24-C36) - RA

Lab Sample ID: LCS 580-277439/10-A Matrix: Water Analysis Batch: 277623	Spike	LCS	LCS	Clier	nt Sai	mple IC): Lab Cor Prep Ty Prep Ba %Rec.	ntrol Sa pe: Tot atch: 2	ample al/NA 77439
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Manganese	0.100	0.0964		mg/L		96	85 - 115		
Lab Sample ID: LCSD 580-277439/11-A			(Client Sa	mple	ID: Lal	b Control	Sample	e Dup
Matrix: Water							Prep Ty	pe: Tot	al/NA
Analysis Batch: 277623							Prep Ba	atch: 2	77439
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Manganese	0.100	0.0967		mg/L		97	85 - 115	0	20

2.02

2.63

mg/L

87 64 - 120

1

2 3 4 5 6 7

Method: 200.7 Rev 4.4 - Metals (ICP) (Contir	nued)
--	-------

Lab Sample ID: MB 580-277 Matrix: Water Analysis Batch: 277623	297/5-B	MB MB								Clie	ent Sam	ple ID: M Prep Type Prep Ba	ethod I e: Diss itch: 27	Blank olved 77439
Analyte	Re	sult Qualifier	r	RL	1	MDL U	Jnit		D	Pi	repared	Analvz	ed	Dil Fac
Manganese		ND		0.020			ng/L		_	06/2	6/18 15:4	2 06/27/18	13:43	1
	MS										Client	Sample I	D: C-M	W-08
Matrix: Water												Prep Type	: Diss	olved
Analysis Batch: 277623												Prep Ba	tch: 27	77439
	Sample	Sample	Spike		MS	MS						%Rec.		
Analyte	Result	Qualifier	Added		Result	Qualif	fier l	Unit		D	%Rec	Limits		
Manganese	ND		0.100		0.0932		r	mg/L			93	70 - 130		
	MSD										Client	Sample I	D: C-M	80-W
Matrix: Water												Prep Type	: Diss	olved
Analysis Batch: 277623												Prep Ba	tch: 27	77439
-	Sample	Sample	Spike		MSD	MSD						%Rec.		RPD
Analyte	Result	Qualifier	Added	I	Result	Qualif	ier l	Unit		D	%Rec	Limits	RPD	Limit
Manganese	ND		0.100		0.0925		r	mg/L			93	70 - 130	1	20
	DU										Client	Sample I	D: C-M	W-08
Matrix: Water												Prep Type	: Diss	olved
Analysis Batch: 277623												Prep Ba	tch: 27	77439
-	Sample	Sample			DU	DU						•		RPD
Analyte	Result	Qualifier			Result	Qualif	fier l	Unit		D			RPD	Limit
Manganese	ND				ND		r	mg/L					NC	20

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 580-277166/ Matrix: Water Analysis Batch: 277166	3								Cli	ent San	nple ID: Metho Prep Type: 1	d Blank 'otal/NA
		MB MB										
Analyte	Res	sult Qualifie	r	RL	I	MDL U	Jnit		D F	Prepared	Analyzed	Dil Fac
Sulfate		ND		1.2		n	ng/L				06/22/18 17:47	1
Lab Sample ID: LCS 580-277166 Matrix: Water Analysis Batch: 277166	5/4							Clie	ent Sa	mple IC): Lab Control Prep Type: 1	Sample otal/NA
-			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Qualif	fier	Unit	D	%Rec	Limits	
Sulfate			50.0		50.9			mg/L		102	90 - 110	
	1									Clien	t Sample ID: C	-MW-06
Matrix: Water											Prep Type: 1	'otal/NA
Analysis Batch: 277215												
S	Sample	Sample	Spike		MS	MS					%Rec.	
Analyte	Result	Qualifier	Added		Result	Qualif	fier	Unit	D	%Rec	Limits	
Sulfate	96		50.0		139	F1		mg/L		85	90 - 110	

5

6

Method: 300.0 - Anions, Ion Chromatography (Continued)

ND

Lab Sample ID: 580-78110-4 MSDClient Sample ID:Matrix: WaterPrep TypeAnalysis Batch: 277215Prep Type						D: C-M pe: Tot	IW-06 al/NA				
· · · · · , · · · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	96		50.0	138	F1	mg/L		85	90 - 110	0	15

Method: SM 2320B - Alkalinity

Hydroxide Alkalinity as CaCO3

Lab Sample ID: LCS 580-27 Matrix: Water	77222/2					Clie	nt Sai	nple ID	: Lab Control S Prep Type: To	Sample otal/NA
Analysis Batch: 21/222			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity			100	104		mg/L		104	85 - 115	
 Lab Sample ID: 580-78110-	1 DU							Client	t Sample ID: C-	MW-02
Matrix: Water									Prep Type: To	otal/NA
Analysis Batch: 277222										
	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPE	Limit
Alkalinity	400			409		mg/L				. 17
Bicarbonate Alkalinity as CaCO3	400			409		mg/L			2	20
Carbonate Alkalinity as CaCO3	ND			ND		mg/L			NC	20

ND

mg/L

NC

Lab Sample ID: 580-78110-2

Lab Sample ID: 580-78110-3

Matrix: Water

Matrix: Water

Lab Sample ID: 580-78110-1 Matrix: Water

Client Sample ID: C-MW-02 Date Collected: 06/14/18 10:55 Date Received: 06/15/18 12:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	_	1	276929	06/21/18 14:30	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 09:57	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276431	06/16/18 02:29	JCV	TAL SEA
Total/NA	Analysis	RSK-175		1	523775	06/22/18 11:08	AAB	TAL NSH
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 00:53	AEK	TAL SEA
Total/NA	Prep	3510C	RA		277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx	RA	1	277477	06/27/18 19:20	CJ	TAL SEA
Dissolved	Filtration	FILTRATION			277297	06/25/18 14:19	CJB	TAL SEA
Dissolved	Prep	200.7			277439	06/26/18 15:42	CJB	TAL SEA
Dissolved	Analysis	200.7 Rev 4.4		1	277623	06/27/18 14:19	HJM	TAL SEA
Total/NA	Analysis	300.0		2	277215	06/23/18 11:38	EMM	TAL SEA
Total/NA	Analysis	SM 2320B		1	277222	06/23/18 18:05	EMM	TAL SEA

Client Sample ID: C-MW-03 Date Collected: 06/14/18 15:00 Date Received: 06/15/18 12:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276929	06/21/18 14:56	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 10:03	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276431	06/16/18 04:32	JCV	TAL SEA
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 01:15	AEK	TAL SEA
Total/NA	Prep	3510C	RA		277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx	RA	1	277477	06/27/18 19:42	CJ	TAL SEA

Client Sample ID: C-MW-04 Date Collected: 06/13/18 12:55 Date Received: 06/15/18 12:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276929	06/21/18 16:15	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 10:21	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276431	06/16/18 03:00	JCV	TAL SEA
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 02:21	AEK	TAL SEA

Dilution

Factor

1

1

1

1

1

1

1

1

1

Run

RA

RA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Dissolved

Dissolved

Dissolved

Total/NA

Total/NA

Lab

TAL SEA

TAL SEA

TAL SEA

Lab Sample ID: 580-78110-5

Lab Sample ID: 580-78110-6

5 7

Lab Sample ID: 580-78110-4 Matrix: Water

TAL NSH TAL SEA TAL NSH TAL SEA TAL SEA TAL SEA TAL SEA TAL SEA TAL SEA TAL SEA

Matrix: Water

Matrix: Water

Client Sample ID: C-MW-07 Date Collected: 06/13/18 13:40 Date Received: 06/15/18 12:15

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276929	06/21/18 17:07	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 10:34	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276431	06/16/18 04:02	JCV	TAL SEA
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 03:27	AEK	TAL SEA

Client Sample ID: C-MW-08 Date Collected: 06/11/18 14:55 Date Received: 06/15/18 12:15

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276929	06/21/18 17:33	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 10:40	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276481	06/16/18 17:38	JCV	TAL SEA
Total/NA	Analysis	RSK-175		1	523477	06/21/18 11:06	AAB	TAL NSH
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 03:49	AEK	TAL SEA
Dissolved	Filtration	FILTRATION			277297	06/25/18 14:19	CJB	TAL SEA
Dissolved	Prep	200.7			277439	06/26/18 15:42	CJB	TAL SEA
Dissolved	Analysis	200.7 Rev 4.4		1	277623	06/27/18 13:53	HJM	TAL SEA
Total/NA	Analysis	300.0		2	277215	06/23/18 12:13	EMM	TAL SEA
Total/NA	Analysis	SM 2320B		1	277222	06/23/18 18:05	EMM	TAL SEA

TestAmerica Seattle

Batch

Number

276929

277260

277361

Prepared

523161 06/20/18 10:28 AAB

276431 06/16/18 03:31 JCV

523477 06/21/18 11:02 AAB

277260 06/25/18 10:32 SPS

277477 06/27/18 20:48 CJ

277297 06/25/18 14:19 CJB

277439 06/26/18 15:42 CJB

277623 06/27/18 14:22 HJM

277166 06/22/18 23:03 EMM

277222 06/23/18 18:05 EMM

or Analyzed Analyst

06/21/18 16:41 TL1

06/25/18 10:32 SPS

06/27/18 03:05 AEK

Client Sample ID: C-MW-06

Batch

Type

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Filtration

Analysis

Analysis

Analysis

Prep

Prep

Prep

Batch

Method

8260C

8015C

NWTPH-Gx

NWTPH-Dx

NWTPH-Dx

FILTRATION

200.7 Rev 4.4

RSK-175

3510C

3510C

200.7

300.0

SM 2320B

Date Collected: 06/11/18 13:15 Date Received: 06/15/18 12:15

Lab Sample ID: 580-78110-7

Matrix: Water

2 3 4 5 6 7 8 9

Lab Sample ID: 580-78110-8 Matrix: Water

Lab Sample ID: 580-78110-9

Lab Sample ID: 580-78110-10

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276929	06/21/18 18:26	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 10:52	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276481	06/16/18 18:40	JCV	TAL SEA
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 04:33	AEK	TAL SEA

Client Sample ID: C-MW-12 Date Collected: 06/14/18 13:40 Date Received: 06/15/18 12:15

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276929	06/21/18 18:52	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 10:58	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276481	06/16/18 19:42	JCV	TAL SEA
Total/NA	Analysis	RSK-175		1	523775	06/22/18 11:13	AAB	TAL NSH
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 04:55	AEK	TAL SEA
Dissolved	Filtration	FILTRATION			277297	06/25/18 14:19	CJB	TAL SEA
Dissolved	Prep	200.7			277439	06/26/18 15:42	CJB	TAL SEA
Dissolved	Analysis	200.7 Rev 4.4		1	277623	06/27/18 14:25	HJM	TAL SEA
Total/NA	Analysis	300.0		2	277215	06/23/18 12:25	EMM	TAL SEA
Total/NA	Analysis	SM 2320B		1	277222	06/23/18 18:05	EMM	TAL SEA

Client Sample ID: C-MW-12D Date Collected: 06/14/18 13:52 Date Received: 06/15/18 12:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276929	06/21/18 19:18	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 11:04	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276481	06/16/18 20:12	JCV	TAL SEA

TestAmerica Seattle

Matrix: Water

Client Sample ID: C-MW-10

Date Collected: 06/13/18 14:32 Date Received: 06/15/18 12:15

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276929	06/21/18 18:00	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 10:46	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276481	06/16/18 18:09	JCV	TAL SEA
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 04:11	AEK	TAL SEA

Client Sample ID: C-MW-11 Date Collected: 06/14/18 12:20 Date Received: 06/15/18 12:15

Lab Chronicle

TestAmerica Job ID: 580-78110-1

Lab Sample ID: 580-78110-11

Lab Sample ID: 580-78110-12

Matrix: Water

Matrix: Water

Client: AECOM Project/Site: Tesoro Pasco

-,	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 05:16	AEK	TAL SEA

Client Sample ID: C-MW-14 Date Collected: 06/13/18 16:12 Date Received: 06/15/18 12:15

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276929	06/21/18 19:44	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 11:10	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276481	06/16/18 20:44	JCV	TAL SEA
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 05:38	AEK	TAL SEA

Client Sample ID: C-EB

Date Collected: 06/13/18 16:45 Date Received: 06/15/18 12:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276929	06/21/18 20:10	TL1	TAL SEA
Total/NA	Analysis	8015C		1	523161	06/20/18 11:16	AAB	TAL NSH
Total/NA	Analysis	NWTPH-Gx		1	276481	06/16/18 21:15	JCV	TAL SEA
Total/NA	Prep	3510C			277260	06/25/18 10:32	SPS	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	277361	06/27/18 06:00	AEK	TAL SEA

Client Sample ID: Trip Blank Date Collected: 06/11/18 00:01 Date Received: 06/15/18 12:15

Lab Sample ID: 580-78110-13 Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	276450	06/16/18 16:28	TL1	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	276481	06/16/18 16:05	JCV	TAL SEA

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

10

EPA Region

Analyte

t-Butyl alcohol

Xylenes, Total

Identification Number

C553

Hydroxide Alkalinity as CaCO3

Authority

Washington

8260C

8260C

SM 2320B

Analysis Method

Expiration Date

02-17-19

8 9 10

5

Laboratory: TestAmerica Nashville

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

The following analytes are included in this report, but accreditation/certification is not offered by the governing authority:

Matrix

Water

Water

Water

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Program

Prep Method

State Program

Authority	Program	EPA Region	Identification Number	Expiration Date
A2LA	ISO/IEC 17025	· · ·	0453.07	12-31-19
Alaska (UST)	State Program	10	UST-087	06-30-18 *
Arizona	State Program	9	AZ0473	05-05-19
Arkansas DEQ	State Program	6	88-0737	04-25-19
California	State Program	9	2938	10-31-18
Connecticut	State Program	1	PH-0220	12-31-19
Florida	NELAP	4	E87358	06-30-18 *
Georgia	State Program	4	NA: NELAP & A2LA	12-31-19
Illinois	NELAP	5	200010	12-09-18
lowa	State Program	7	131	04-01-18 *
Kansas	NELAP	7	E-10229	10-31-18
Kentucky (UST)	State Program	4	19	06-30-18 *
Kentucky (WW)	State Program	4	90038	12-31-18
Louisiana	NELAP	6	30613	06-30-18 *
Maine	State Program	1	TN00032	11-03-19
Maryland	State Program	3	316	03-31-19
Massachusetts	State Program	1	M-TN032	06-30-18 *
Minnesota	NELAP	5	047-999-345	12-31-18
Mississippi	State Program	4	N/A	06-30-19
Montana (UST)	State Program	8	NA	02-24-20
Nevada	State Program	9	TN00032	07-31-18
New Hampshire	NELAP	1	2963	10-09-18
New Jersey	NELAP	2	TN965	06-30-18 *
New York	NELAP	2	11342	03-31-19
North Carolina (WW/SW)	State Program	4	387	12-31-18
North Dakota	State Program	8	R-146	06-30-18 *
Ohio VAP	State Program	5	CL0033	07-06-19
Oklahoma	State Program	6	9412	08-31-18
Oregon	NELAP	10	TN200001	04-26-19
Pennsylvania	NELAP	3	68-00585	06-30-18 *
Rhode Island	State Program	1	LAO00268	12-30-18
South Carolina	State Program	4	84009 (001)	02-28-18 *
Tennessee	State Program	4	2008	02-23-20
Texas	NELAP	6	T104704077	08-31-18
USDA	Federal		P330-13-00306	12-01-19
Utah	NELAP	8	TN00032	07-31-18
Virginia	NELAP	3	460152	06-14-19
Washington	State Program	10	C789	07-19-18
West Virginia DEP	State Program	3	219	02-28-19

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Seattle

Project/Site: Tesoro Pasco Laboratory: TestAmerica Nashville (Continued) All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Client: AECOM

Authority	Program	EPA Region	Identification Number	Expiration Date
Wisconsin	State Program	5	998020430	08-31-18
Wyoming (UST)	A2LA	8	453.07	12-31-19

Accreditation/Certification Summary

TestAmerica Job ID: 580-78110-1

Sample Summary

Matrix

Water

Client: AECOM Project/Site: Tesoro Pasco

Client Sample ID

C-MW-02

C-MW-03

C-MW-04

C-MW-06

C-MW-07

C-MW-08

C-MW-10

C-MW-11

C-MW-12

C-MW-12D

C-MW-14

Trip Blank

C-EB

Lab Sample ID

580-78110-1

580-78110-2

580-78110-3

580-78110-4

580-78110-5

580-78110-6

580-78110-7

580-78110-8

580-78110-9

580-78110-10

580-78110-11

580-78110-12

580-78110-13

TestAmerica Job ID: 580-78110-1

06/14/18 10:55 06/15/18 12:15

06/14/18 15:00 06/15/18 12:15

06/13/18 12:55 06/15/18 12:15

06/11/18 13:15 06/15/18 12:15

06/13/18 13:40 06/15/18 12:15

06/11/18 14:55 06/15/18 12:15

06/13/18 14:32 06/15/18 12:15

06/14/18 12:20 06/15/18 12:15

06/14/18 13:40 06/15/18 12:15

06/14/18 13:52 06/15/18 12:15

06/13/18 16:12 06/15/18 12:15

06/13/18 16:45 06/15/18 12:15 06/11/18 00:01 06/15/18 12:15

Collected

Received

TestAmerica Seattle

TestAmerica Seattle

5755 8th Street East Tacoma, WA 98424 Phone (253) 922-2310 Fax (253) 922-5047

Client Information	Sampler: ADer	uger 1	Hopages	Lab Cru	PM: uz, She	Carrier Tracking No(s): heri L							COC No: 580-22636-7530	J.1								
Client Contact: Michael Hodges	Phone 259	-6453		E-M she	fail: Pri cruz	@test	tamer	ricain	c cor	n	~~~									Page: 1 of 2		
Company:		هير في ٢٠	•		T							l	i							Job #:		
CEECON Testing, Inc. Address:	Due Date Request	ed:	· ·				· <u> </u>	œُ		nalys		кеq	ues	sted			[···]			Preservation Cor	les:	
434 North Canal Street Suite Six								.2-ED												A - HCL	M - Hexane	
City: South San Francisco	TAT Requested (d	ini nequesteu (uays).						CA.1												B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State, Zip: CA 94080	STANDAR	Λ						,1,2-D												D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	
Phone:	PO #:						ļ	, TBA			(La									F - MeOH G - Amchlor	R - Na2S2O3 \$ - H2SD4	3
253-896-8708(Tel) Email:	WO #:				- 2			TAME			P F									H - Ascorbic Acid I - Ice	T - TSP Dode U - Acetone	ecahydrate
ceecon@msn.com	Project #				es of		To	TBE,			se(Le								22	J - DI Water K - EDTA	V - MCAA W - pH 4-5	
Tesoro Pasco	58010386				Ne S		Metha	IPE,E			ansgr								ntain	L - EDA	Z - other (spe	ecify)
Site: Washington	SSOW#:				amp		anol,	TBE,C			s Mai	2							8	Other:		
	•	I	Sample	Matrix	Pe		- Eff	EX,M	×	ate	ši –	lethau	alinity						a l			
			Type	(W=water, S=solid	Filte	хq-н	NA.	(BT	Ъ. Н	Sulfa	CWA	175-W	s, Ałka						Num			
Sample Identification	Sample Date	Sample Tíme	(C=comp, G=grab) a	O≂waste/oił, T≖Tissue, A≂Air		NWTF	80150	8260C Naphi	LMN	300.0	200.7	RSK	2320E						[otal	Special in	structions/I	Note:
		$>\!$	Preservati	on Code:	$\overline{\mathbf{M}}$		N	A	A	N N		A	N					Ď	X			
C-MW-02	6/14/18	10:55		Water		X	x	x	х	x	x	x	х									
C-MW-03	6/14/18	3:00.	6	Water	1,	< X	X	X	х		1								N	MS/MSD		
C-MW-04	6/12/10	12:50		Water		X	x	x	х										ſ			
C-MW-06	6/11/10	1:15 m		Water		x	X	X	х	X	x	x	х							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
C-MW-07	6/3/ IR	1:40	C	Water		x	x	x	х			- [
C-MW-08	6/11/18	2:55m	$ \mathcal{L} $	Water		x	X	х	X	X	×	x	х									·
C-MW-10	6/13/18	2:32	$\boldsymbol{\mathcal{L}}$	Water		x	х	x	х													
C-MW-11	6/14/18	12:20m	$\left \right\rangle$	Water		x	x	х	х													
C-MW-12	6/H/B	140 p.m	C	Water		x	x	x	x	x	×	x	х			5	80-7	8110	Ch	ain of Custody		
C-MW-12D	6/14/18	1.52 pm		Water		x	x	x	x						1				••••••		······································	
Possible Hazard Identification		[]			S	ample	Disp	osal	(Af	ee ma	iy b	e as	sess	sed if	san	nples	s are	retair	ned	longer than 1 r	nonth)	
Non-Hazard Flammable Skin Irritant	Poison B Unkno	wn R	adiological			R	eturn Instri	To C	lient	` Real	LY.	Dis	spos	al By	Lab		L	Arci	hive	e For	Months	
				-	3	Jecial	msuc	LCUON	is/QC	, nequ	111 CI	nena	5.									
Empty Kit Relinquished by:		Date:			Time	- IPog-	Jund F							Methoc	t of SI	hipme	ent: Cime:				Company	
Machher Houses	4/15/18	12:150		- <u>GELON</u>)	1		2	al	~						- - 	151	18		1215	SEAT	ne
Relinquished by:	Date/Time:	V	Co	ompany		Rece	ived by	y:								Date/T	lime:				Company	
Relinquished by:	Date/Time:		Ca	ompany		Rece	ived by	y:								Date/1	lime:				Company	
Custody Seals Intact: Custody Seal No.:	. <u></u>					Coole	ər Tem	peratu	re(s) °	°C and (Other	r Rem	arks:								L	
A Yes A No				Page 4	42 of	49															f	6/29/20

Loc: 580 78110 Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Seattle

5755 8th Street East

Chain of Custody Record

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Tacoma, WA 98424 Phone (253) 922-2310 Fax (253) 922-5047

Oliant Information	Sampler: Lab PM:							M: Sheri I						rackin	g No(s	s):			COC No:			
Client Information	Phone:			E-Mail:	2, Shen L								080-22636-7530 Page:	.2	····							
Michael Hodges				sheri.	cruz@	gtest:	americ	ainc	.com										2 of 2			
Company: CEECON Testing Inc									Δn	alvei	e P	6011	octo	d					Job #:			
Address:	Due Date Requeste	d:				1		n l		arys		equ			1	T	1	100408	Preservation Cod	es:		
434 North Canal Street Suite Six																			A - HCL	M - Hexar)e	
City: South San Francisco	TAT Requested (da	ys):						7CA.1.											B - NaOH C - Zn Acetate	N - None O - AsNa(02	
State, Zip: CA, 94080					(A,1,2-1														D - Nitric Acid E - NaHSO4	P - Na2O Q - Na2S	4S D3	
Phone: 253-896-8708(Tel)	PO #:				6		1			1	Liant								G - Amchlor H - Ascorbic Acid	S - H2SO T - TSP D	203 4 odecahydrate	
Email: ceecon@msn.com	WO #:	√O #:				00 00 00 00 00 00 00 00 00 00 00 00 00													I - Ascorbic Acid I - Ice J - DI Water	U - Acetone V - MCAA		
Project Name:	Project #:	Project #: 58010386					than									iner	K - EDTA L - EDA	W - pH 4- Z - other (5 specify)			
Iesoro Pasco Sile:	58010386 SSOW#:	SOW#:					, Me	DIPE			- - -							onte	Other:			
Washington							lano			1 2	E							ofc	outor,			
Sample Identification	Sample Date	Sample Time	Sample Ma Type (w=v (C=comp, 0=wat G=grab) BT=Tissu	t rix vater, blid, ste/oil, e, A=Air)	Partorn MS/	NWTPH-Dx	8015C_DAI - Et	Naphth)	NWTPH_Gx	300.0 Sulfate		2320R Alkalini						Total Number	Special In	struction	s/Note:	
	\geq	$\geq \leq$	Preservation Co	ode: 🜔	$\langle X \rangle$	A	N A	A		I N	A	N						X			1000	
C-MW-14	6/13/18	4:12	C Wa	ter		х	x	х	х													
C-EB	4/13/18	4:45	C Wa	ter		х	x	x	x													
Trip Blank Rep DATE ->	5/29/18	By FL	C Wa	ter				×	×							L						
		· · · ·						_				_	_	<u> </u>	ļ	ļ						
·····										-		_	-	<u> </u>	<u> </u>							
Therm. ID: A2 Cor: S.9 ° Unc: J.8 Cooler Dsc: L r.g. S.7 «Cor: S.9 ° Unc: J.8 Packing: Qubbus FedEx: - Cust. Seal: Yes No UPS: Lab Cour: VerPacks/Dry Ice/None Other: Cl. do	1 Therm. J Cooler D Packing: Cust. See Cust. See	ID: AU Dsc: 1- y : Dubb al: Yes ks/Dry Ice	FedEx <u>Cor:</u> <u>Cor:</u> FedEx <u>Cor:</u> Cor: <u>Cor:</u> Cor: <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor:</u> <u>Cor</u>	Unc: <u> </u>	0 0 0			I Thei Cool Pack Cust	I rm. I ler D ding: t. Sea Pacl	 D:_ <u>k</u> sc; <u> </u> sc; <u> </u> sc; <u> </u> sv s/Dr;	42 () 5 () () () () () () () () () () () () ()	 		Ted Ted UPS Lab	 <u></u> U Ex: S: Cou er: <u>C</u>	 'nc: F:	1.5 d•					
Possible Hazard Identification					San	nple	Dispo	sal (A fe	e maj	/ be	asse	ssed	if sa	mple	s are	e reta	inec	l longer than 1 n	nonth)		
Deliverable Requested: I, II, III, IV, Other (specify)		ni Rê	แบบบฎเธล!		Spe	cial I	nstruc	tions	ent /QC	Requi	reme	oispo ents:	isal E	sy Lai	U	<u> </u>	An	cnivi	e ror	Months		
Empty Kit Relinquished by:	ſ	Date:		Ťi	ime:								Meti	nod of	Shipm	ent:						
Relinguished by: MGWAM KODGOS Relinguished by:	Date/Time: Date/Time:	12:15p	ル Compan Compan	(a)	F	Receiv	ved by:	Y	æ	er.					Date/ Date/	Time: Time:	5/(8	1215	Company SE p Company	קק	
Relinquished by:	Date/Time:		Company	4	F	Receiv	ved by:								Date/	Time:				Company		
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No	L		Pa	ne 43	of 4	Cooler .9	r Tempe	rature	e(s) °C	and O	ther R	emark	s:		L					<u></u>	6/29/20	

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN COOLER RE	ECEIPT FORM	
Cooler Received/Opened On06-19-2018_@09:45	- <u>5</u>	80-78110 Chain of Custody
Time Samples Removed From Cooler 1 20 Time Sampl	es Placed In Storage <u>(}</u>	b (2 Hour Window)
1. Tracking #(last 4 digits, FedEx)	Courier: _FedEx_	A
IR Gun ID_31470368 pH Strip Lot_///	$\frac{P_1}{T_2}$ Chlorine Strip Lot $\frac{P_2}{T_2}$	M
2. Temperature of rep. sample or temp blank when opened:	U_Degrees Celsius	<u>A</u>
3. If Item #2 temperature is 0°C or less, was the representative s.	ample or temp blank frozen?	YES NO NA
4. Were custody seals on outside of cooler?	aut)	ČENONA
F. Were the coole intent signed and dated correctly?		AFR NO NA
5. Were cuetedy papers inside cooler?		NESNONA
Leartify that Language the cooler and answered questions 1-6 (int	(al)	EA
7. Wore clusted veals on containers' YES NO) and Intact	YES NO MA
Wore these signed and dated correctly?		YES NO MA
8 Packing mat/lused? Bubblewran Plastic bag Peanute	Vermiculite Foam Insert P	aner Other Nono
9 Cooling process:	Ice (direct contact) Dry ice	e Other None
10. Did all containers arrive in good condition (unbroken)?		VES NO NA
11. Were all container labels complete (# date, signed, pres, etc	12	YES NO NA
12 Did all container labels and fags agree with custody napers?	,.	YES NO NA
13a Wore VOA vials received?		YES NO NAT
b. Was there any observable headspace present in any VOA v	al?	YES NO (NA)
Larger than this.		
14. Was there a Trip Blank in this cooler? YESNA	If multiple coolers, seque	ence #
I certify that I unloaded the cooler and answered questions 7-14 (intial) 9 c	<u> </u>
15a. On pres'd bottles, did pH test strips suggest preservation re	ached the correct pH level?	YESNO
b. Did the bottle labels indicate that the correct preservatives	were used	YES NO NA
16. Was residual chlorine present?		YESNONA
I certify that I checked for chlorine and pH as per SOP and answe	red guestions 15-16 (intial)	or
17. Were custody papers properly filled out (ink, signed, etc)?		KESNONA
18. Did you sign the custody papers in the appropriate place?		ESNONA
19. Were correct containers used for the analysis requested?		YESNONA

20. Was sufficient amount of sample sent in each container?

I certify that I entered this project into LIMS and answered questions 17-20 (intial)

I certify that I attached a label with the unique LIMS number to each container (intial) 21. Were there Non-Conformance issues at login? YES....Ko Was a NCM generated? YES....Ko#

...NO...NA

O

					IJ			00	ရ	6	
--	--	--	--	--	----	--	--	----	---	---	--

-

TestAmerica Seattle										781		10		7811		78110		110		oct A.	morior
5755 8th Street East	(Chain e	of Cus	todv R	lec	cor	d				•	• ·			-	• •			esiminenco		
Tacoma, WA 98424 Phone (253) 922-2310 Fax (253) 922-5047				··· ·															HE LEADER IN EN	VIRONMENTAL TESTIN	
	Sampler:			Lab F	PM:														JC No:	·· · · ·	
Client Information (Sub Contract Lab)	Phone:			E-Ma	z, sr ail:								State	of Origi	ו:				Page:		
Shipping/Receiving				sher	ri.cru	uz@te	estan	nerica	ainc.c	com			Was	ningto	n				Page 1 of 2		
Company: TestAmerica Laboratories, Inc					Acc Sta	reditat ate Pr	ions R ogra	equire m - M	d (Se Vashi	e note) ingtor	r: N								Job <i>#</i> : 580-78110 - 1		
Address:	Due Date Request	ed:								A	hala	Dee		a al					Preservation Code	es:	
City:	TAT Requested (d	ays):			\square	新鮮				Ana	iysis	Rec	ues	ea					A - HCL	M - Hexane	
Nashville	_																	1.	C - Zn Acetate	O - AsNaO2	
State, ∠ip: TN, 37204																			E - NaHSO4	Q - Na2SO3	
Phone: 615-726-0177(Tel) 615-726-3404(Fax)	PO #:				1)														F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4	
Email:	WO #:				-Î														I - Ice	T - TSP Dodecahydrate U - Acetone	
Design Margan	Burlaul #				- Se	(0N												SIS	J - DI Water K - EDTA	V - MCAA W - pH 4-5	
Tesoro Pasco	58010386				Σe	0.88	shols											tain	L - EDA	Z - other (specify)	
Site:	SSOW#:					200	Alc											00	Other:		
					- S	SWI	Q No	than										erol			
			Sample	Matrix (w=water.	Itere	SMIU) AII (2/ W6										quin			
		Sample	(C=comp,	S≔solid, O≕waste/oil,	밀	florn	2	5										tal N			
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	BT=Tissue, A≃Air)	喧		<u>8</u>	S	100 81	17.1 1				, ,		_ <u>_</u>		P	Special Ins	structions/Note:	
		10.55	Preserva	tion Code:	А	X.				di C	1959			2.25				X	<u></u>		
C-MW-02 (580-78110-1)	6/14/18	Pacific		Water			x	×										6			
C-MW-03 (580-78110-2)	6/14/18	15:00 Pacific		Water			x											3			
C-MW-03 (580-78110-2MS)	6/14/18	15:00 Pacific	MS	Water			x											-3			
C-MW-03 (580-78110-2MSD)	6/14/18	15:00 Pacific	MSD	Water			x											3			
C-MW-04 (580-78110-3)	6/13/18	12:55 Pacific		Water	Π		x											3			
C-MW-06 (580-78110-4)	6/11/18	13:15 Pacific		Water			x	x								1		6			
C-MW-07 (580-78110-5)	6/13/18	13:40 Pacific		Water	Π		x	1										3	1		
C-MW-08 (580-78110-6)	6/11/18	14:55 Pacific		Water	Π		x	x										6			
C-MW-10 (580-78110-7)	6/13/18	14:32 Pacific		Water	Π		x					1						3	(
Note: Since laboratory accreditations are subject to change, TestAmerica Labor	atories, Inc. places the	ownership of r	method, analyte	e & accreditation	n con	npliano	e upo	n out s	subcor	ntract I	aborato	ries. 1	his sar	nple sh	ipmen	t is form	varded	unde	r chain-of-custody. If t	he laboratory does not	
Laboratories, Inc. attention immediately. If all requested accreditations are curr	ent to date, return the	signed Chain of	f Custody attes	ting to said corr	nplica	ince to	TestA	merica	a Labo	oratorie	es, inc.		be prov	iueu. A	ary cha	anges t		editati	on status should be bro	Jugni to restAmenca	
Possible Hazard Identification						Sam	ple L	Dispo	sal (A fe	e may	/ be a	sses	sed if	sam	oles a	are re	tain	ed longer than 1	month)	
Unconfirmed							Ret	urn T	o Cli	ient			Dispos	al By	Lab			Arct	hive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	rable Rank: 2	2			Spec	ial In	struc	tions	/QC	Requi	remei	nts:						· · · · · · · · · · · · · · · · · · ·	<u> </u>	
Empty Kit Relinquished by:		Date:			Tin	ne:		_	•	· · · · · ·				Methoo	of Shi	pment:					
Relinquished by:	Date/Time:	1		Company		F	leceiv	ed by:							Da	ate/Tim	ie:			Company	
Relinquished by:	6/18/ Date/Time:	/18		Company	la	न	leceiv	ed by:							Da	ate/Tim	e:			Company	
Relinguished by:	Date/Time:			Company													ate/Tim				Company
			Company			Received by:				A					6-1	19-1	18	0945	TA-NA		
Custody Seals Intact: Custody Seal No.:						Ċ	ooler	Tempe	erature	e(s) °C	and O	ther Re	marks:						2	<u> </u>	

Loc: 580

Loc: 580

Ver: 09/20/2016

Custody Seal No .:

Custody Seals Intact:

∆ Yes ∆ No

TestAmerica Seattle

5755 8th Street East

Tacoma, WA 98424

Chain of Custody Record

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

Phone (253) 922-2310 Fax (253) 922-5047 Sampler: Lab PM: arrier Tracking No(s): COC No: 580-56389.2 Client Information (Sub Contract Lab) Cruz, Sheri L lient Contact hone E-Mail: State of Origin: age: Shipping/Receiving sheri.cruz@testamericainc.com Washington Page 2 of 2 Company Accreditations Required (See note): Job # TestAmerica Laboratories, Inc State Program - Washington 580-78110-1 Preservation Codes: Address: Due Date Requested: 6/27/2018 Analysis Requested 2960 Foster Creighton Drive, M - Hexane A - HCL City: TAT Requested (days): B - NaOH N - None Nashville C - Zn Acetate O - AsNaO2 State, Zip: D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3 TN, 37204 F - MeOH R - Na2S2O3 Phone: °O #: G - Amchlor S - H2SO4 615-726-0177(Tel) 615-726-3404(Fax) T - TSP Dodecahydrate H - Ascorbic Acid Email: WO#: 1-lce U - Acetone No) J - DI Water V - MCAA K - EDTA W - pH 4-5 Project Name: Project #: Perform MS/MSD (Yes of 8015C_DAI/ (MOD) Alcohols L - EDA Z - other (specify) Tesoro Pasco 58010386 Other: SSOW#: Tesoro - Pasco/Burbank RSK_175/ Methane 5 Total Number Matrix Sample (W≕water, Type Sesolid, (C=comp, Sample O=waste/oi Sample Identification - Client ID (Lab ID) Sample Date Time G=grab) Special Instructions/Note: BT=Tissue, A=/ Preservation Code: 12:20 3 C-MW-11 (580-78110-8) 6/14/18 Water Х Pacific 13:40 C-MW-12 (580-78110-9) 6/14/18 Water Х Х è. Loc: 580 Pacific 13:52 78110 х C-MW-12D (580-78110-10) 6/14/18 Water 3 Pacific 16:12 C-MW-14 (580-78110-11) 6/13/18 Water х 3 Pacific 16:45 х C-EB (580-78110-12) 6/13/18 Water 3 Pacific Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. 1 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Archive For Return To Client Disposal By Lab Unconfirmed Months Deliverable Requested: I, II, III, IV, Other (specify) Primary Deliverable Rank: 2 Special Instructions/QC Requirements: Empty Kit Relinguished by: Method of Shipment: Date: Time: Relinquished by: Date/Time: Company Received by: Date/Time: Company Tom 18/18 6 Relinquished by: Date/Time Company Received by: Date/Time: Company Relinquished by: Date/Time: Company Received by: Date/Time: 5945 TH-NA au-19-18 por

Cooler Temperature(s) °C and Other Remarks:

Ver: 09/20/2016

3.6

Login Sample Receipt Checklist

Client: AECOM

Login Number: 78110 List Number: 1 Creator: Gall, Brandon A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-78110-1

List Source: TestAmerica Seattle

Login Sample Receipt Checklist

Client: AECOM

Login Number: 78110 List Number: 2 Creator: West, Derrick D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-78110-1

List Source: TestAmerica Nashville

List Creation: 06/19/18 01:52 PM

Login Sample Receipt Checklist

Client: AECOM

Login Number: 78110 List Number: 3 Creator: West, Derrick D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 580-78110-1

List Source: TestAmerica Nashville

List Creation: 06/19/18 01:57 PM

About AECOM

AECOM (NYSE: ACM) is a global provider of professional technical and management support services to a broad range of markets, including transportation, facilities, environmental, energy, water and government. With approximately 100,000 employees around the world, AECOM is a leader in all of the key markets that it serves. AECOM provides a blend of global reach, local knowledge, innovation, and collaborative technical excellence in delivering solutions that enhance and sustain the world's built, natural, and social environments. A Fortune 500 company, AECOM serves clients in more than 100 countries and has annual revenue in excess of \$6 billion.

More information on AECOM and its services can be found at www.aecom.com.

111 SW Columbia Suite 1500 Portland, OR 97201 503.222.7200