PHASE II ENVIRONMENTAL SITE ASSESSMENT

FORMER NORTHERN STATE HOSPITAL SEDRO-WOOLLEY, WASHINGTON

Prepared for

PORT OF SKAGIT

October 29, 2018 Project No. 0624.04.10

Prepared by Maul Foster & Alongi, Inc. 1329 N State Street, Suite 301, Bellingham, WA 98225

PHASE II ENVIRONMENTAL SITE ASSESSMENT

FORMER NORTHERN STATE HOSPITAL SEDRO-WOOLLEY, WASHINGTON

The material and data in this report were prepared under the supervision and direction of the undersigned.

MAUL FOSTER & ALONGI, INC.

	Carolyn R. Wise, GIT Project Geologist
	LRER
	Blair Paulik, PhD Project Environmental Toxicologist
	11.11.11
	Michael Stringer, AICP Principal Planner/Project Manager
U.S. E	NVIRONMENTAL PROTECTION AGENCY
	Susan Morales Brownfield Project Manager

Date:_____

CONTENTS

TABLES	AND ILLUSTRATIONS	V
ACRO	nyms and abbreviations	VI
1	INTRODUCTION 1.1 REGULATORY FRAMEWORK 1.2 STATEMENT OF OBJECTIVES 1.3 REPORT ORGANIZATION	1 1 1 2
2	BACKGROUND AND PHYSICAL SETTING 2.1 PROPERTY DESCRIPTION 2.2 PROPERTY HISTORY 2.3 PHYSICAL SETTING 2.4 AREAS OF CONCERN	2 2 3 3 4
3	FIELD AND ANALYTICAL METHODS 3.1 AOC 1: FORMER LAUNDRY BUILDING 3.2 AOC 2: POWER HOUSE BUILDING 3.3 AOC 3: LEAD IN SOIL 3.4 AOC 5: PROPERTY-WIDE METALS IN SOIL	6 6 7 7 8
4	ANALYTICAL RESULTS 4.1 AOC 1: FORMER LAUNDRY BUILDING 4.2 AOC 2: POWER HOUSE BUILDING 4.3 AOC 3: LEAD IN SOIL 4.4 AOC 5: PROPERTY-WIDE METALS IN SOIL	8 9 9 9
5	CONCEPTUAL SITE MODEL 5.1 SOURCE CHARACTERIZATION 5.2 FATE AND TRANSPORT OF CONTAMINANTS 5.3 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS 5.4 ECOLOGICAL SCREENING	10 10 14 14
6	CLEANUP STANDARDS 6.1 SOIL 6.2 GROUNDWATER	16 17 17
7	RISK SCREENING 7.1 AOC 1: FORMER LAUNDRY BUILDING 7.2 AOC 2: POWER HOUSE BUILDING 7.3 AOC 3: LEAD IN SOIL 7.4 AOC 5: PROPERTY-WIDE METALS	18 18 19 19 20
8	RECOMMENDATIONS	21
LIMITAT	TIONS	
REFERE	ENCES	
TABLES		
FIGURE	- S	

CONTENTS (CONTINUED)

APPENDIX A

BORING LOGS

APPENDIX B

FIELD SAMPLING DATA SHEETS

APPENDIX C

ANALYTICAL LABORATORY REPORTS

APPENDIX D

DATA VALIDATION MEMORANDUM

APPENDIX E

NATURAL BACKGROUND MEMORANDUM

APPENDIX F

ECOLOGICAL SCREENING LEVEL MEMORANDUM

TABLES AND ILLUSTRATIONS

FOLLOWING REPORT:

TABLES

- 2-1 WATER LEVEL MEASUREMENTS
- 3-1 SAMPLING AND ANALYSIS SUMMARY
- 4-1 SOIL ANALYTICAL RESULTS—FORMER LAUNDRY BUILDING AOC
- 4-2 GROUNDWATER ANALYTICAL RESULTS—FORMER LAUNDRY BUILDING AOC
- 4-3 SOIL ANALYTICAL RESULTS—POWER HOUSE BUILDING AOC
- 4-4 SOIL ANALYTICAL RESULTS—LEAD IN SOIL AOC
- 4-5 SOIL ANALYTICAL RESULTS—PROPERTY-WIDE METALS IN SOIL AOC, ISM DECISION UNITS
- 4-6 SOIL ANALYTICAL RESULTS—PROPERTY-WIDE METALS IN SOIL AOC, DISCRETE SAMPLES

FIGURES

- 1-1 PROPERTY VICINITY
- 2-1 GROUNDWATER ELEVATION CONTOURS
- 3-1 FORMER LAUNDRY BUILDING AOC
- 3-2 POWER HOUSE AOC
- 3-3 LEAD IN SOIL AOC—TREVENNEN
- 3-4 LEAD IN SOIL AOC—COLEMAN
- 3-5 LEAD IN SOIL AOC—DENNY
- 3-6 SOIL ISM DECISION UNITS
- 4-1 METALS IN SOIL—DISCRETE SAMPLE LOCATIONS
- 5-1 CONCEPTUAL SITE MODEL
- 7-1 METALS IN SOIL—ISM DECISION UNITS

ACRONYMS AND ABBREVIATIONS

AOC area of concern

Apex Apex Laboratories, LLC

ARAR applicable or relevant and appropriate requirement

bgs below ground surface cis-1,2-DCE cis-1,2-dichloroethene

City of Sedro-Woolley, Washington

COC chain of custody

cPAH carcinogenic polycyclic aromatic hydrocarbon

CSM conceptual site model

CUL cleanup level

cVOC chlorinated volatile organic compound

DES Washington State Department of Enterprise Services

DRO diesel-range organics

DU decision unit

Ecology Washington State Department of Ecology

ESA environmental site assessment
ISM incremental sampling methodology

MFA Maul Foster & Alongi, Inc.
mg/kg milligrams per kilogram
MTCA Model Toxics Control Act
NSRA Northern State Recreation Area

ORO heavy-oil-range organics

PCE tetrachloroethene
pg/g picograms per gram
PID photoionization detector

PLIA Pollution Liability Insurance Agency

POC point of compliance Port Port of Skagit ppm parts per million

Property Former Northern State Hospital property RI/FS remedial investigation and feasibility study

SES Sound Earth Strategies, Inc.

SL screening level TCE trichloroethene

TEE terrestrial ecological evaluation
TEQ toxic equivalency quotient
trans-1,2-DCE trans-1,2-dichloroethene
ug/L micrograms per liter

USEPA U.S. Environmental Protection Agency

VC vinyl chloride

WAC Washington Administrative Code

XRF x-ray fluorescence

On behalf of the Port of Skagit (Port), Maul Foster & Alongi, Inc. (MFA) has prepared this phase II environmental site assessment (ESA) for the Former Northern State Hospital (also known as the Sedro-Woolley Innovation for Tomorrow Center) property (the Property), located at 2070 Northern State Road in Sedro-Woolley, Washington (Figure 1-1). On July 1, 2018, the Port took title to the Property from the Washington State Department of Enterprise Services (DES). The Property is currently owned and managed by the Port, with buildings leased to multiple tenants, including the Cascade Job Corps, for on-site housing and educational services; the Pioneer Center North, as a drug and alcohol treatment facility with on-site housing; and the Washington Military Department, for a vehicle storage, maintenance, and fueling facility. Historically, the Property was used as a self-sustaining treatment and residence facility for people with mental illness, and included on-site patient and staff housing, a power house, maintenance shops, a laundry, and a fueling station.

1.1 Regulatory Framework

The Port received a U.S. Environmental Protection Agency (USEPA) Brownfields Assessment Grant to support site assessment at the Property. This phase II ESA was conducted to evaluate environmental impacts associated with areas of concern (AOCs) identified during previous investigations, as described in the 2018 phase II ESA work plan (MFA, 2018a). Phase II ESA activities were conducted in general accordance with guidance put forth in the Model Toxics Control Act (MTCA) (Washington Administrative Code [WAC] 173-340) and with the requirements of the American Society for Testing and Materials (ASTM) Standard Practice for ESAs: Phase II ESA Process (ASTM E1903-11).

1.2 Statement of Objectives

The focus of this phase II ESA was to further characterize environmental contamination associated with AOCs to gain information sufficient for developing and evaluating potential cleanup actions. The following were specific project objectives for this investigation:

- Refine the conceptual site model (CSM) previously developed for the Property.
- Investigate hazardous substances in environmental media to identify potential sources of contamination and contaminant concentrations above MTCA cleanup levels (CULs). Assessment of hazardous substances was limited to non-petroleum-related constituents.
- Evaluate potential risks to current and reasonably likely future human and ecological receptors.
- Evaluate potential cleanup options for impacted environmental media on the Property.

1.3 Report Organization

This document is organized as follows:

- **Section 2** summarizes background information, including the Property history, previous investigations, the physical setting, and the AOCs identified during previous investigations.
- Section 3 defines the field and analytical methods completed during assessment activities.
- **Section 4** presents the analytical results associated with samples collected during this investigation.
- *Section 5* presents the refined CSM.
- **Section 6** defines the applicable CULs specific to the Property.
- Section 7 evaluates the analytical data relative to applicable CULs for the Property.
- **Section 8** summarizes the recommendations for AOCs following results of the phase II ESA.

2 BACKGROUND AND PHYSICAL SETTING

2.1 Property Description

The Property is in the northeast corner of Sedro-Woolley (see Figure 1-1). The approximately 210-acre Property includes twelve tax parcels based upon the boundary line adjustment completed on June 29, 2018 (see Figure 1-1). The Property was annexed by the City of Sedro-Woolley (City) on September 19, 2015. The Property is bordered on the north, east, and south by the Northern State Recreation Area (NSRA), a public open space owned and managed by Skagit County and historically associated with the Northern State Hospital. The Property is bordered by Fruitdale Road and residential properties to the west.

The Property is in sections 7,8, 17, and 18 of township 35 north and range 5 east of the Willamette Meridian, on a small plateau with a slight downward topographic slope toward the east, south, and southwest in the direction of Hansen Creek and Brickyard Creek. The Property currently comprises over 80 buildings and structures. Tenants occupy some of the buildings, but many buildings are currently vacant.

In 1998, as part of its comprehensive plan amendments, the City established a land use designation for the Property in anticipation of potential future annexation. The City Comprehensive Plan Land Use Map designates the Property as Public (P). The P zoning designation continues with annexation and allows for a range of potential uses in the public interest, not restricted to only open-space use. The Port, in partnership with the City and Skagit County, is currently leading an effort to transform the Property into a center for innovation and technology that incorporates research, high-tech

manufacturing, education, and recreational uses, in accordance with the Subarea Plan (City, 2015) and the Planned Action Final Environmental Impact Statement (City and Port, 2015).

2.2 Property History

The Property was developed in 1909 and operated as a treatment and residence facility and hospital for people with mental illness until its closure in 1973. After the facility's closure, the 220-acre treatment and residential campus was transferred from the Washington State Department of Social and Health Services to the Washington State General Services Administration, which later became the DES. The adjacent farmland was transferred to the Department of Natural Resources, which later transferred ownership to Skagit County. On July 1, 2018, the Property was transferred from DES to the Port.

The Northern State Hospital was designed to be self-sustaining and included on-site patient and staff housing, dedicated water supply reservoirs and an associated potable water treatment facility, a fueling station for on-site vehicles, maintenance and paint shops, and a laundry facility. During the construction of the hospital, much of the Property was logged, graded, drained, and terraced to provide a suitable ground surface the campus (Artifacts Consulting, 2008).

Several buildings have been demolished and, based on interviews with maintenance staff, the debris from a few of those buildings has been buried and/or disposed of on the Property (MFA, 2014, 2018b). Many of the remaining buildings and structures associated with the former facility, as well as the campus landscape, are listed on the National Registry of Historic Places.

2.3 Physical Setting

The Property is located on a slight topographic plateau to the north of the Skagit Valley and is in the Lower Skagit-Samish watershed. In general, the Property slopes south and southeast toward the Skagit Valley and the Skagit River (Water Resource Inventory Area No. 3).

According to the Geologic Map of the Sedro-Woolley North and Lyman 7.5-minute quadrangles, the Property and vicinity are underlain by Quaternary glaciomarine drift (Dragovich et al., 1999). The glaciomarine deposits typically consist of "poorly sorted, poorly compacted diamicton consisting of silty, sandy, gravelly clay to clayey gravel; moderately well- to well-sorted sandy silt, sandy clay, clayey silt, and clay" (Dragovich et al., 1999). Geologic cross sections developed through interpretation of well log, geotechnical boring, and field information show approximately horizontally oriented, 100- to 130-foot-thick deposits of Quaternary glaciomarine drift in the vicinity of the Property (Dragovich et al., 1999).

Soil observations recorded during this phase II ESA were consistent with those of previous investigations and indicate relatively consistent geology throughout the Property, except at locations near Hansen Creek and north of the Power House (see boring logs in Appendix A) (MFA, 2015; Sound Earth Strategies, Inc. [SES], 2017). Thick units of soft to hard, nonplastic silt and clay with varying amounts of fine sand to depths of approximately 9 to 15 feet below ground surface (bgs) were encountered in most boring locations. Underlying the silt unit, thick deposits of bluish gray silty clay to clay were observed to approximately 25 feet bgs. Silty sand was observed underlying the silt unit to

the maximum depth of 30 feet bgs. Minor lenses of silty sand and silty or sandy gravel were encountered intermittently in silt and clay units between 10 and 30 feet bgs. Soils near Hansen Creek, north of the Power House, consisted of sandy and gravelly soils below the silt at approximately 6 feet bgs. Fill containing brick pieces and woody debris was observed up to 15 feet bgs in the area to the north of the Power House (MFA, 2015; SES, 2017).

Water levels measured on May 1, 2018, from nine monitoring wells on the Property indicated that groundwater was present between approximately 5 and 16 feet bgs, consistent with previous observations (see Table 2-1 and water field sampling data sheets in Appendix B) (MFA, 2014, 2015; SES, 2017). Groundwater across the northern portion of the Property was determined to flow east toward Hansen Creek, consistent with previous observations (see Figure 2-1) (MFA, 2015; SES, 2017). Because of the large size of the Property and the limited area represented by the monitoring wells, it is possible that the groundwater flow direction varies throughout the Property. It is inferred that groundwater in other areas of the Property flows either southeast, because of the gradual topographic slope of the area toward the Skagit River Valley; west toward Brickyard Creek; or east toward Hansen Creek, depending on the location at the Property (see Figure 1-1).

Two creeks, Hansen and Brickyard, intersect the Property (Figure 1-1). Hansen Creek bounds the north, east, and southeast portions of the Property. Brickyard Creek is located along the western perimeter of the Property. Both creeks discharge to the Skagit River, south of the Property.

2.4 Areas of Concern

During previous investigations, several features of environmental concern were identified and assessed (MFA, 2014, 2015; SES, 2017). Confirmed impacts to soil, groundwater, and/or soil vapor were identified in association with the seven AOCs described below. Additional details on each AOC are provided in the phase II ESA work plan (MFA, 2018a).

AOC 1: Former Laundry Building

Chlorinated solvents (chlorinated volatile organic compounds [cVOCs]), including tetrachloroethene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (cis-1,2-DCE), were detected in soil, groundwater, and/or soil vapor in the northeast area of the former laundry building (see Figure 1-1) (MFA, 2018a). Historical use of chlorinated solvents in potential dry-cleaning operations was identified as a potential source of cVOC impacts in the former laundry building AOC.

Soil and groundwater cVOC impacts associated with this AOC were further assessed during this phase II ESA, as discussed in Section 3.1.

AOC 2: Power House Building

Concentrations of heavy-oil-range organics (ORO) and carcinogenic polycyclic aromatic hydrocarbons (cPAHs) were detected above the MTCA Method A CULs (for unrestricted land use) in shallow soil (less than 1 foot bgs) north of the Power House (see Figure 1-1) (MFA, 2018a). Historical fill material containing coal/asphalt debris was determined to be a potential source of the ORO and cPAH impacts to shallow soil.

Additional assessment was completed during this phase II ESA to further evaluate the extent of cPAH- and ORO-impacted fill material and to evaluate the potential presence of dioxins and furans, as discussed in Section 3.2.

AOC 3: Lead in Soil

Elevated concentrations of lead were identified in shallow soil immediately adjacent to historical buildings and at one location in the athletic field (MFA, 2018a). This suggests that lead is/was present in the exterior paint of the historical buildings and has impacted the soil at the Property.

Soil lead impacts associated with this AOC were further assessed during this phase II ESA, as discussed in Section 3.3.

AOC 4: Arsenic in Soil

Localized, elevated concentrations of arsenic in soil have been identified at the Property (MFA, 2018a). There are a few potential sources for elevated arsenic concentrations in soil that may be present at the Property, including naturally occurring arsenic, historical pesticide use, and arsenic-containing wood-treatment chemicals associated with wood used in building construction and/or in building demolition debris (MFA, 2018a).

Arsenic-impacted shallow soil (less than 0.5 foot bgs) was assessed as part of the work conducted for the property-wide metals in soil AOC (AOC 5), as discussed below. Further evaluation of potential arsenic impacts below 0.5 foot bgs, and arsenic impacts specifically in the athletic field and former Ward building areas, was not conducted as part of this phase II ESA. Arsenic impacts below 0.5 foot bgs and in the areas with previous MTCA Method A CUL exceedances will be reevaluated based on the findings of this phase II ESA (see Section 8).

AOC 5: Property-Wide Metals in Soil

Aside from arsenic and lead in AOCs 3 and 4, as discussed above, which have been detected at concentrations above MTCA Method A CULs in some cases, other metals, including barium, chromium, copper, selenium, and zinc, have been detected at concentrations in surface and subsurface soil throughout the Property above area-wide background values and criteria protective of ecological receptors (MFA, 2018a). Given the relatively consistent concentration distribution of these metals, they were suspected of being related to an area-wide or natural background condition, but additional assessment was needed to confirm this.

This AOC was assessed during this phase II ESA, as discussed in Section 3.4.

AOC 6: Maintenance Building

Benzene, toluene, ethylbenzene, total xylenes, and gasoline were identified in subsurface soil (between 7 and 9 feet bgs) and groundwater adjacent to the maintenance building (see Figure 1-1) at concentrations above MTCA Method A CULs (SES, 2017).

Additional assessment of this AOC is being conducted by SES via the Washington State Pollution Liability Insurance Agency (PLIA), as investigation of petroleum impacts is not eligible for funding through the USEPA Brownfields Assessment Grant; therefore, this AOC was not further assessed as part of this phase II ESA.

AOC 7: Lead and Arsenic in Groundwater

Total and dissolved arsenic and lead were detected in samples from reconnaissance groundwater borings and monitoring wells, installed across the northeastern portion of the Property, at concentrations above MTCA Method A CULs and surface water applicable or relevant and appropriate requirements (ARARs) (MFA, 2018a). Given the proximity of elevated arsenic and/or lead concentrations to Hansen Creek, there is potential for groundwater with metals concentrations above surface water ARARs to discharge to the creek.

As discussed above in relation to AOC 5, widespread elevated metals concentrations have been identified in soil across the Property. Before characterization of potential metals loading to Hansen Creek, additional assessment of area-wide metals concentrations in soil was conducted to evaluate the potential of an area-wide elevated metals condition at the Property (i.e., AOC 5). Therefore, this AOC was not further assessed during this phase II ESA, but it may be included in future investigations and/or assessments of the Property.

3 FIELD AND ANALYTICAL METHODS

This investigation was conducted, in accordance with the phase II ESA work plan (MFA, 2018a), on April 23 through May 1, 2018, and focused on further assessment of AOCs 1, 2, 3, and 5.

3.1 AOC 1: Former Laundry Building

Three monitoring wells (MW09, MW10, and MW11) were installed on April 23, using a direct-push drill rig operated by a Washington State-certified driller (Holt Services, Inc. of Puyallup, Washington) near the historical PCE exceedance in groundwater (boring GP8) to evaluate a localized groundwater flow direction and to further evaluate the nature and extent of a PCE release in soil and groundwater (see Figure 3-1). Monitoring well screens were installed in a silty sand to sandy silt unit below the silt to clayey silt/clay unit boundary between approximately 20 and 30 feet bgs (see boring logs in Appendix A).

Soil conditions were described, and visual and olfactory observations were recorded during drilling. A photoionization detector (PID) was used to screen soil for olfactory indications of soil contamination (e.g., hydrocarbon-like odors). Soil samples were collected from MW09 and MW10 (immediately adjacent to the former laundry building) at the following three depths: near surface, the capillary fringe, and the saturated zone. Saturated samples were included to assess potential dissolved-phase contamination.

Monitoring well locations were surveyed by Skagit Surveyors & Engineers of Sedro-Woolley, Washington, on April 27, 2018. Water levels were collected from nine of the 11 on-Property monitoring wells to evaluate groundwater flow conditions at the time of groundwater sampling. Well caps on two of the monitoring wells (MW06 and MW08) could not be removed at the time. Groundwater was observed to flow east toward Hansen Creek, consistent with previous observations (see Figure 2-1). Groundwater samples were collected from monitoring wells MW09 through MW11 (see field sampling data sheets in Appendix B).

Under standard chain-of-custody (COC) procedures, soil and groundwater samples were submitted to Apex Laboratories, LLC (Apex) for analysis. The samples were analyzed for cVOCs, including PCE and its breakdown products (i.e., TCE, cis-1,2-DCE, trans-1,2-dichloroethene [trans-1,2-DCE], and vinyl chloride [VC]) (see Table 3-1).

3.2 AOC 2: Power House Building

Soil borings (GP49 through GP54; see Figure 3-2) were advanced by a direct-push drill rig operated by Holt Services, Inc., up to 10 feet bgs in locations immediately outside the edges of the currently paved areas under which cPAH and ORO exceedances were previously detected (see boring logs in Appendix A). Soil conditions were described, and visual and olfactory observations were recorded during drilling. A PID was used to screen soil for olfactory indications of soil contamination (e.g., hydrocarbon-like odors). Fill material containing coal-like fragments and terracotta pieces was observed in each boring up to 2.3 feet bgs, suggesting that fill material does extend outside paved areas north, east, and southeast of the Power House. Geographic coordinates for the boring locations were recorded by a handheld global positioning system.

Soil samples were collected from the near surface, fill material, and/or the underlying silt/sand unit to assess impacts in the fill material, if present, and potential accumulation of airborne particulates discharged from the smokestack. Under standard COC procedures, samples were submitted to Apex for analysis. Soil samples were analyzed for cPAHs, ORO, and/or dioxins and furans (see Table 3-1).

3.3 AOC 3: Lead in Soil

A two-tiered approach was used to evaluate the horizontal and vertical extent of lead impacts around the Trevennen, Coleman, and Denny buildings, as described in the phase II work plan (see Figures 3-3 through 3-5, respectively) (MFA, 2018a). These buildings were selected for use as demonstration pilots because they are scheduled for renovation before other historical buildings on the Property. During both tiers of investigation, soil samples were collected at 0- to 0.5-foot, 0.5- to 1-foot, and/or 1- to 2-foot sample depths, using a thin-walled tube sampler for sample collection and employing x-ray fluorescence (XRF) for taking lead concentration measurements (see field sampling data sheets in Appendix B).

Following the Tier 1 sampling and analysis of soil samples, it was determined that the XRF could be used to screen samples with concentrations below the MTCA A CUL, if the XRF value was below 100 parts per million (ppm). This was determined by comparing the analytical and field screening results of the Tier 1 sampling. Therefore, during the Tier 2 sampling, if the XRF lead measurement

was equal to or above 100 ppm, no sample was collected for laboratory analysis and a second, step-out, sample was screened approximately 1 foot beyond the first. A 1-foot step-out process was used instead of a 5-foot increment because concentrations of lead had been observed to decrease significantly with distance from the demonstration building and depth below the surface. If a soil sample had an XRF lead measurement below 100 ppm, it was submitted to Apex for analysis under standard COC procedures.

The one five-point composite soil sample was collected near the Denny building. A portion of this sample was submitted to Apex for lead analysis on a 24-hour turnaround time, and a portion was retained for potential use as a site-specific calibration standard during field screening activities conducted during the second tier of investigation. However, it was determined that there was not enough consistency between the laboratory-reported value of the composite and the XRF-screened values, given the large size of the composite and the variability due to the heterogeneity of the sample. Therefore, the five-point composite was not used as a site-specific calibration standard.

3.4 AOC 5: Property-Wide Metals in Soil

To address property-wide metals in soil, soil samples were collected from the entire Property, using an incremental sampling methodology (ISM) approach. The Property was divided into 18 decision units (DUs) for ISM soil sampling, based on historical, current, and proposed land uses on the Property (see Figure 3-6). DUs 16 and 17 were identified as having minimal known anthropogenic impacts and were therefore chosen as natural background DUs. One ISM sample was collected in each DU, consisting of composited soil from ten sampling locations in that DU, and processed using the ISM sample processing protocol (ITRC, 2012). The ten locations in each DU where samples were collected for DU ISM samples are illustrated in Figure 3-6. After ISM processing, all DU ISM samples were analyzed for arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc by USEPA Method 6020A. Additionally, five discrete samples were collected in each DU, at half of the locations where samples were collected for the composited ISM samples. The ten discrete samples collected from the two natural-background DUs were also analyzed for these ten metals by USEPA Method 6020A. The discrete samples from the remaining 16 DUs were initially archived for potential future analysis. A subset of these discrete samples was analyzed as part of an additional sampling effort following initial data screening. This additional analysis is described further in Section 4.4 below. Additional details on the sampling methodology employed for this AOC are described the phase II ESA work plan (MFA, 2018a).

4 ANALYTICAL RESULTS

Laboratory analytical reports are provided in Appendix C. Analytical data and the laboratory's internal quality assurance and quality control data were reviewed to assess whether they meet project-specific data quality objectives. This review was performed consistent with accepted USEPA procedures for evaluating laboratory analytical data (USEPA, 2017a,b) and appropriate laboratory and method-specific guidelines (Apex, 2016). A data validation memorandum summarizing data evaluation

procedures, usability of data, and deviations from specific field and/or laboratory methods is presented as Appendix D. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

The following is a summary of the soil and groundwater analytical results for samples collected during the investigation. The analyses performed are summarized in Table 3-1; analytical results are summarized in Tables 4-1 through 4-5; and sample locations are shown in Figures 3-1 through 3-6.

4.1 AOC 1: Former Laundry Building

Soil samples collected from monitoring wells MW09 and MW10 near the former laundry building were analyzed for cVOCs (see Figure 3-1). PCE and TCE were detected in subsurface saturated soil between 13 and 13.5 feet bgs at MW10 (see Table 4-1 and Figure 3-1). No other cVOCs were detected in the analyzed soil samples.

Groundwater samples collected from monitoring wells MW09 through MW11 were analyzed for cVOCs. PCE and TCE were detected in groundwater collected at MW10 (see Table 4-2 and Figure 3-1). No other cVOCs were detected in the analyzed groundwater samples.

4.2 AOC 2: Power House Building

Soils samples collected from GP49 through GP54 outside the paved area north, east, and southeast of the Power House were analyzed for cPAHs, diesel-range organics (DRO), and ORO (see Figure 3-2). cPAHs were detected in shallow soil (less than 1 foot bgs) at GP49, GP50, GP51, GP52, and GP54 (see Table 4-3). ORO were detected in shallow soil samples (less than 1 foot bgs) at GP50, GP51, GP53, and GP54 (see Table 4-3). DRO were detected in shallow soil (less than 1 foot bgs) at GP49, GP50, and GP51 and in subsurface soil up to 7.8 feet bgs at GP52 (see Table 4-3).

Analysis for dioxin and furans was conducted on shallow soil samples collected near the former incinerator near the Power House building at GP49, GP53, and GP53 (see Figure 3-2). Dioxins and furans were detected in every analyzed sample (see Table 4-3).

4.3 AOC 3: Lead in Soil

Analysis for lead was conducted on samples collected from shallow soil (less than 1.5 feet bgs) adjacent to the Trevennen, Coleman, and Denny buildings (see Figures 3-3 through 3-5). Lead was detected in every sample analyzed (see Table 4-4). Lead concentrations ranged from 7.21 to 421 milligrams per kilogram (mg/kg).

4.4 AOC 5: Property-Wide Metals in Soil

Results of the property-wide soil metals analysis are presented in Table 4-5. Arsenic, barium, cadmium, chromium, copper, lead, and zinc were detected in all 18 DUs. Selenium was detected only in DU04, DU10, DU11, and DU16. Neither mercury nor silver was detected in any of the DUs.

Based upon the results of the initial DU analyses and risk screening described in Section 7 below, discrete soil samples collected in DUs with ecological screening level (SL) exceedances were analyzed for the metals that had ecological exceedances in corresponding DU samples. Discrete soil sampling locations that were included in this additional analysis step are shown in Figure 4-1. Results of this additional metals analysis of discrete soil samples are presented in Table 4-6 and are discussed further in Sections 5.1.4.1 and 7.4.1.

5 CONCEPTUAL SITE MODEL

The CSM describes potential chemical sources, release mechanisms, environmental transport processes, exposure routes, and receptors. The primary purpose of the CSM is to describe pathways by which human and ecological receptors could be exposed to site-related chemicals. A complete exposure pathway consists of four necessary elements: (1) a source and mechanism of chemical release to the environment, (2) an environmental transport medium for a released chemical, (3) a point of potential contact with the impacted medium (referred to as the exposure point), and (4) an exposure route (e.g., soil ingestion) at the exposure point.

The CSM describes potential exposure scenarios based on information collected during the Property investigations. Elements of potentially complete exposure scenarios relevant to human health and ecological receptors are discussed below and are presented in Figure 5-1. Specific ecological receptors that were considered included mammals, birds, soil biota and plants. Results of the property-wide metals in soil investigation were screened against ecological SLs that are based on the toxicity of these metals to wildlife (mammals and birds), soil biota, and plants. The CSM diagram focuses on Property receptors and potential exposure pathways related to historical releases from the Property. Limited data are available for areas outside the Property boundaries, which may be affected by sources unrelated to on-Property historical releases. Potential off-Property sources and potential exposure pathways are therefore not well understood. The CSM may be subject to further modification as additional information becomes available. The CSM and exposure scenarios for a site play a role in selection of cleanup standards.

5.1 Source Characterization

Potential sources of contamination associated with historical operations at the Property were identified during previous environmental investigations at the Property, as described in the phase II ESA work plan (MFA, 2018a).

5.1.1 AOC 1: Former Laundry Building

Concentrations of PCE and TCE were detected in soil and groundwater at MW10, colocated near previous detections of PCE and TCE in soil, groundwater, and/or soil vapor (i.e., GP23 and GP8) (see Figure 3-1). A localized flow direction at the former laundry building was confirmed to be east toward Hansen Creek with a component of flow to the southeast along the southern edge of the

former laundry building, consistent with previous investigations. A monitoring well located to the east of the former laundry building identified PCE and TCE groundwater impacts beneath the northeast corner of the former laundry building. Groundwater impacts appear localized to this area as there were no detections of PCE or TCE identified at the upgradient or downgradient monitoring well or reconnaissance groundwater (i.e., temporary well) locations. However, given the limited number of soil and soil vapor samples, the extent of soil impacts has not yet been fully delineated and may extend below the existing building.

As discussed in previous reports, no records of dry cleaning operations at the former laundry building were located; however, the presence of PCE in groundwater, soil, and soil vapor in this AOC indicates that a solvent containing PCE likely was used at some point during historical operations in the building. During a review of historical building plans, laundry extractor machines were noted in building plans at the north end of the former laundry building, and utility maps identified a potential drainage pipe at the northeast corner of the building (MFA, 2018a). Given the consistent detections of PCE and/or TCE in soil, groundwater, and soil vapor in this portion of the former laundry building, it is likely that the operation of these features is the source of the PCE identified in this area. This is supported by the absence of detections in groundwater west, northwest, southwest, and southeast of the former laundry building.

5.1.2 AOC 2: Power House Building

DRO, ORO and cPAHs were detected in shallow soil outside the paved area north and northeast of the Power House (see Table 4-3 and Figure 3-2). Detections of DRO, ORO, and cPAHs were largely confined to the top foot of soil and to soil containing coal and terracotta fragments, consistent with fill material observed during previous investigations (see Appendix A) (MFA, 2015; SES, 2017). Although fill material was observed to extend outside the paved areas north and northeast of the Power House, the associated cPAH, DRO, and ORO impacts appeared relatively consistent and at low concentrations. Therefore, it appears that the elevated concentrations of cPAH and ORO are confined to an area immediately adjacent and to the north of the Power House, in fill material (extending less than 3 feet bgs) containing more asphalt-like fill debris underlying the existing asphalt, as observed during previous investigations (MFA, 2015; SES, 2017).

Dioxins and furans were detected in shallow soil (less than 1 foot bgs) collected from borings near the former incinerator and in the fill material outside the paved area north and northeast of the Power House (see Table 4-3). These detections likely are associated with the historical operation of the Power House smokestack and the potential historical combustion of materials in the incinerator. However, the detections of dioxins and furans were relatively low and did not suggest a significant source of dioxins and furans associated with the Power House AOC.

5.1.3 AOC 3: Lead in Soil

Elevated concentrations of lead were identified in shallow soil immediately adjacent to historical buildings on the Property (see Figures 3-3 through 3-5). During this investigation, lead concentrations appeared relatively consistent among the three demonstration buildings (i.e., Trevennen, Coleman, and Denny). All three demonstration buildings had been constructed during the operation of the

hospital prior to its closure in 1973; however, the Coleman building has since been renovated and intermittently occupied. Next to the demonstration buildings, a significant number of paint chips were observed on the surface and near surface of the soil during soil sample collection. Elevated detections of lead impacts surrounding historical buildings appear to be localized in both vertical and lateral extent, with concentrations decreasing with depth and distance from the historical buildings.

The cultural resources assessment report for the campus indicated that paint treated with lead and zinc had been used on the campus buildings (Artifacts Consulting, 2008). It appears that lead-containing paint has flaked or peeled off the historical building surfaces and has been deposited in adjacent shallow soil. Therefore, the elevated concentrations of lead identified in these soil samples suggests that lead paint is/was present in the exterior paint of the historical buildings and is the source of elevated lead concentrations in shallow soil at the Property.

Results from the additional discrete soil analyses associated with the decision unit sampling (see Section 4.4), identified a soil sample within DU04 (i.e., SS08-S-0.5) with a detection of lead above the MTCA Method A CUL at 572 mg/kg at 0.5-feet bgs. This elevated lead detection was collected near a previous shallow soil sample (GP16) with a lead detection above the MTCA Method A CUL. Aside from these localized detections, lead concentrations in the soil throughout the Property have been low; as noted in the lead concentrations for the other DUs on the Property (see Table 4-5). Therefore, these isolated detections in the shallow soil of the athletic field are likely the result of lead-based-paint-impacted soil redistributed via wind-based transport or by excavation and replacement of soil.

5.1.4 AOC 5: Property-Wide Metals in Soil

Elevated metal detections were observed mostly in DUs in the northeastern-eastern area of the Property (i.e., DU02, DU04, DU11, and DU14) (see Table 4-5). This is consistent with known and potential sources of metals associated with historical industrial and agricultural use of this area of the Property.

Soil in DU02, immediately north and adjacent to the Power House, contained elevated concentrations of copper and zinc. Operation of the Power House resulted in long-term handling and storage of coal and petroleum products that may have impacted surrounding shallow soil. Other historical activities in this area of the Property included carpentry, paint storage and handling, and general maintenance (MFA, 2018a). The impacts associated with these operations are consistent with the elevated concentrations of copper and zinc observed in DU02.

The concentration of lead in DU04 soil was significantly higher than lead concentrations detected in the remaining DUs on the Property. An athletic field is present within the boundary of DU04 and may have been subject to historical applications of pesticides containing lead arsenate resulting in elevated concentrations of lead in soil. As discussed above in Section 5.1.3, lead paint has resulted in elevated lead detections in soil immediately adjacent to historical buildings on the Property. Although the extent of lead paint impacts in soil appear limited to areas immediately adjacent to building exteriors, there is potential that lead paint chips were sporadically dispersed to other areas of the Property and resulted in slightly elevated concentrations of lead in shallow soil.

Concentrations of chromium in DU11 and DU14 were slightly elevated relative to chromium detections in the remaining DUs on the Property. A historical tree nursery, present in DU11 and portions of DU14, was used during the operation of Northern State Hospital. Historically, chromium was used in chromated arsenical pesticides. This is a group of pesticides made of chromium, copper, and/or arsenic that guard wood against insects and fungi (USEPA, 2016). DU11 also contained the highest arsenic concentration, and one of the highest concentrations of copper, of any of the DUs on the Property. This area of the Property may have received more frequent applications of pesticides containing chromium, resulting in shallow soil impacts.

5.1.4.1 AOC 5: Property-Wide Metals in Soil – Additional Discrete Sample Analysis

Analyses for additional discrete metals were completed for the decision units with at least one ecological screening level exceedance (i.e., DU02, DU04, DU11, and DU14). All metals included in the additional discrete sample analysis were detected (Table 4-6, Figure 4-1). This confirms the initial trends observed in the DUs for the property-wide metals in soil.

The spatial variability of metals concentrations was different in each DU. In DU02, concentrations of both copper and zinc were highest at two of the five discrete locations (SS38-S-0.5 and SS40-S-0.5). These samples were collected immediately adjacent to buildings in the most densely developed area of the Property. It's likely that historical use of these buildings (e.g., paint and equipment storage, operation and use of the filtration and chlorination buildings) may have resulted in slightly elevated concentrations of these metals in the shallow soil.

In DU04, there was one discrete sample (SS08-S-0.5) with a concentration of lead above the MTCA Method A CUL, as discussed in Section 5.1.3. All other lead concentrations within this DU were significantly below ecological screening criteria. Therefore, the elevated detection of lead associated with the initial DU analysis was likely the result of the single elevated detection at SS08 and not an DU-wide elevated lead concentration.

Two decision units, DU11 and DU14 had elevated chromium concentrations in their analyzed discrete samples. Chromium concentrations in DU11 were consistently elevated above ecological screening criteria in all five discrete samples. Elevated concentrations of chromium ranged from 111 to 169 mg/kg, slightly exceeding the site-specific natural background value of 101 mg/kg. DU11 is in an area of well-established vegetation and large trees. A source for the slightly elevated chromium results is not definitive and may be associated with historical pesticide use or fill.

In DU14, the three discrete samples with elevated chromium concentrations (SS68-S-0.5, SS69-S-0.5, and SS70-S-0.5) were collected in the southern half of DU14, adjacent to DU11 (see Figure 4-1). The concentrations of these elevated chromium detections ranged between 149 and 203 mg/kg, relatively consistent with the concentrations observed in DU11. This suggests that the elevated chromium concentrations are homogenous in this area of the Property and may be related to a similar source.

Results of the risk screening of the data from this assessment are discussed further in section 7.4.1.

5.2 Fate and Transport of Contaminants

The primary mechanisms likely to influence the fate and transport of chemicals at the Property include natural biodegradation of organic chemicals, sorption to soil, advection and dispersion in groundwater, volatilization of volatile chemicals from soil or groundwater to air, and leaching of chemicals from soil to groundwater. The relative importance of these processes varies, depending on the chemical and physical properties of the released contaminant. The properties of soil and the dynamics of groundwater flow also affect contaminant fate and transport.

The Property is widely vegetated, with large areas of unpaved ground surface. The soil-to-groundwater migration pathway is potentially complete because of the potential for infiltration of precipitation through the unpaved ground surface at the Property into the vadose-zone soil. Leaching of near-surface soil impacts during precipitation events could result in impacts to shallow groundwater at the Property.

Volatile contaminants may partition to the vapor phase in the source area or downgradient of the source area via groundwater transport of dissolved-phase contamination. Contaminant vapors partitioning from contaminated soil or groundwater could result in impacts to indoor and outdoor air quality.

Shallow groundwater beneath the Property likely discharges to Hansen Creek, north, east, and southeast of the Property. Dissolved-phase contamination migrating downgradient of the source area could potentially discharge to Hansen Creek, resulting in surface water and sediment impacts.

5.3 Potential Receptors and Exposure Pathways

Potential human and ecological receptors and exposure pathways are shown in Figure 5-1.

The Property is currently used for educational, commercial, and residential purposes. Buildings historically used for hospital operations now provide temporary housing for Cascade Job Corps students and Pioneer Center residents. Redevelopment plans for the property include adaptive reuse of existing buildings for residential and commercial uses as well as development of new buildings for education, commercial, and industrial uses. Therefore, based on current and potential future uses of the Property, human receptors may include construction workers, occupational workers, and residents.

Hansen Creek, located north, east, and southeast of the Property, provides salmon habitat that may attract recreational fishers. Therefore, recreational fishers are also potential receptors at the Property.

Ecological receptors could potentially be exposed to chemical impacts at the Property. As discussed in Section 2.3, the Property abuts the NSRA, which includes more than 700 acres of undeveloped forestland, grasslands, and wetlands and likely supports a diverse population of ecological receptors.

The following pathways are potentially complete for human health and ecological receptors (see Figure 5-1).

Occupational Workers and On-Site Residents—Occupational workers and residents currently occupy the Property intermittently for activities related to the operation of the Cascade Job Corps and the Pioneer Center. Future redevelopment may include increased residential use of the Property. The pathways by which current or future residents could potentially be exposed to chemicals at the Property include:

- Direct skin contact with, incidental ingestion of, and inhalation of windborne particulates from chemically impacted shallow soil
- Inhalation of indoor air vapors emanating from soil or groundwater with volatile chemical impacts
- Direct skin contact with, ingestion of, and inhalation of volatizing chemically impacted potable groundwater
- Direct skin contact with and incidental ingestion of surface water or sediment in Hansen Creek that has been chemically impacted via discharges of chemically impacted groundwater

On-Site Construction Workers—There are currently no construction workers (e.g., excavation workers, trench workers) on the Property. However, construction activities may be performed as part of the Property's redevelopment or future maintenance or improvement activities. Future construction workers could potentially be exposed to chemicals at the Property by the following pathways:

- Direct skin contact with, incidental ingestion of, and inhalation of windborne particulates from chemically impacted soil in excavations
- Inhalation of indoor air vapors emanating from soil or groundwater with volatile chemical impacts
- Dermal contact with, incidental ingestion of, or inhalation of vapors emanating from chemically impacted shallow groundwater encountered in excavations below the water table, or ingestion of groundwater if used for potable purposes
- Direct skin contact with and incidental ingestion of surface water or sediment in Hansen Creek that has been chemically impacted via discharges of chemically impacted groundwater

Recreational Fishers—Hansen Creek, a tributary of the Skagit River, has been identified as a salmon habitat area and may be used by recreational fishers. Recreational fishers could potentially be exposed to chemicals at the Property by the following pathways:

• Direct skin contact with and incidental ingestion of surface water or sediment in Hansen Creek that has been chemically impacted via discharges of chemically impacted groundwater

• Ingestion of chemicals bioaccumulated in the tissue of fish from chemically impacted surface water or sediment in Hansen Creek

Ecological Receptors—Ecological receptors, including mammals, birds, plants and soil biota, may be exposed to chemically impacted shallow soil, surface water, sediment, and/or fish tissue at the Property by the following pathways:

- Direct skin contact with, incidental ingestion of, and inhalation of windborne particulates from chemically impacted shallow soil
- Direct contact with and ingestion of surface water or sediment in Hansen Creek that has been chemically impacted via discharges of chemically impacted groundwater.
- Ingestion of chemicals bioaccumulated in the tissue of fish from chemically impacted surface water or sediment in Hansen Creek.

Relatively low concentrations of groundwater contamination were detected approximately 20 feet or more from Hansen Creek. Therefore, exposure pathways that include discharges of chemically impacted groundwater to surface water and sediment in Hansen Creek are potentially insignificant but will be retained as potentially complete pathways pending further investigation and/or cleanup action development.

Scenarios involving exposure to vapors in outdoor air are also considered insignificant, given the attenuation that likely would occur in outdoor air.

5.4 Ecological Screening

Ecological receptors could potentially be exposed to chemical impacts at the Property via the exposure pathways discussed above. Large portions of the Property are vegetated and it abuts the NSRA, which includes more than 700 acres of undeveloped forestland, grasslands, and wetlands. This large area of undeveloped open space is likely to attract wildlife to the Property. To determine potential for adverse effects to ecological receptors, site-specific natural background values and ecological SLs were developed during this investigation (see Appendices E and F). These values were used to screen data from the property-wide metals in soil evaluation against site-specific ecological SLs to determine whether metals concentrations in soil at the site pose risks to ecological receptors. The findings of this evaluation could be used to support a future Terrestrial Ecological Evaluation (TEE).

Cleanup standards for the Property were developed based on the CSM presented in the preliminary RI/FS (MFA, 2015). The CSM and cleanup standards were reevaluated based on additional data collected during this phase II ESA, as discussed below.

According to MTCA, the cleanup standards for a site have two primary components: chemical-specific CULs and points of compliance (POCs). The CUL is the concentration of a chemical in a specific environmental medium that will not pose unacceptable risks to human health or the environment. The POC is the location where the CUL must be met.

6.1 Soil

For human health screening, soil was screened against MTCA Method A CULs for unrestricted land use. The Method A values are for protection of human health via the direct-contact or ingestion pathways and protection of groundwater via the soil-leaching-to-groundwater pathway. For certain constituents, MTCA Method A CULs are not available and Method B CULs were applied. Method B CULs may be used at any site. This is consistent with the approach used in the preliminary RI/FS (MFA, 2015).

As discussed in Section 5.4, an ecological screening of property-wide metals in soil concentrations was conducted to facilitate selection of an appropriate cleanup action that is protective of potential ecological receptors at the Property. Natural background concentrations and site-specific ecological SLs were developed for this ecological screening (see Appendices E and F). This ecological screening was conducted in accordance with TEE guidance presented in WAC 173-340-7493.

Soil CULs for the protection of potable groundwater (leaching-to-groundwater pathway) were evaluated for locations where groundwater data were not available to determine the potential for chemically impacted soil to affect groundwater resources. Potable water for the Property is provided by the Skagit Public Utility District.

6.1.1 Points of Compliance in Soil

The soil POC is the depth at which soil CULs shall be attained. The standard POC in soil for human direct contact and for ecological receptors is from the surface to 15 feet bgs throughout the entire site. This standard POC is applied to soil on the Property.

6.2 Groundwater

Groundwater was screened to MTCA Method A CULs and, where appropriate based on the CSM, ARARs for freshwater surface water. For certain constituents, MTCA Method A CULs are not available and Method B CULs were applied. This is consistent with the approach used in the preliminary RI/FS (MFA, 2015).

Concentrations of cVOCs detected in groundwater were also compared to MTCA Method B groundwater SLs for protection of indoor air, provided in the Washington State Department of Ecology's (Ecology) draft soil vapor intrusion guidance (Ecology, 2016).

Potable water for the Property is provided by the Skagit Public Utility District. There are no known drinking water supply wells on the Property. No human health exceedances were identified in soil during the evaluation of property-wide metals. Therefore, groundwater beneath the Property was not

assessed for potability as part of this investigation but may be included in future investigation or assessments.

6.2.1 Points of Compliance in Groundwater

For groundwater, the POC is the point or points where the groundwater CULs must be attained for a site to comply with the cleanup standards. Groundwater CULs shall be attained in all groundwater from the POC to the outer boundary of the hazardous-substance plume. A conditional POC may be established if it is not practicable to meet the CULs throughout the site within a reasonable restoration time frame (WAC 173-340-720(8)(c)). A conditional POC for groundwater is not proposed at this time.

7 RISK SCREENING

Soil and groundwater sample results were compared to applicable CULs, as discussed in Section 6 (see Tables 4-1 through 4-5). Detected concentrations of some constituents were summed for comparison to applicable CULs as follows:

- A toxic equivalency quotient (TEQ) was calculated for cPAHs for comparison to the benzo(a)pyrene CUL.
- A TEQ was calculated for dioxins and furans.
- TEQs were calculated for dioxins and furans for mammals and birds.

7.1 AOC 1: Former Laundry Building

At 23 micrograms per liter (ug/L), PCE in the groundwater near the northeast corner of the former laundry building (sampling location MW10) exceeded the MTCA Method A CUL of 5 ug/L and the MTCA Method B groundwater screening level for protection of indoor air of 22.9 ug/L (see Figure 3-1). TCE was also detected in the groundwater at this location; however, the detection, at 1.38 ug/L, was below the MTCA Method A CUL of 5 ug/L and the MTCA Method B groundwater SL for protection of indoor air of 1.55 ug/L. No other detections of PCE, TCE, 1,1-DCE, cis-1,2-DCE, trans-1,2-DCE, or VC were identified in the groundwater collected from monitoring wells located upgradient and downgradient at MW09 and MW11, respectively (see Figure 3-1). The PCE and TCE detections in MW10 were not screened to surface water screening criteria, as there were no detections of cVOCs in the downgradient well. The location of the PCE and TCE detections in groundwater is consistent with previous investigations (MFA, 2015). Given the lack of cVOCs detected in the monitoring wells located upgradient and downgradient of the PCE and TCE detections in groundwater, it is unlikely that impacts are migrating to nearby surface water in Hansen Creek, and the absence of detections of PCE or any of its daughter products at any other historical sample

location near the former laundry building suggests that the groundwater impacts likely are localized to an area in the direct vicinity of the northeast corner of the laundry building¹.

Soil collected from MW10, where PCE and TCE were found in groundwater, had detections of PCE and TCE above the MTCA Method A CUL in a soil sample collected at 13 to 13.5 feet bgs, but was not detected at the 0.4- to 1.2-foot or the 24- to 25-foot sampling depth in the same location (MW10) (see Figure 3-1). The detections of both PCE and TCE were above MTCA Method A CULs.

7.2 AOC 2: Power House Building

There were no exceedances of cPAHs or ORO in soil above MTCA Method A CULs; however, fill material including coal fragments and terracotta debris was identified in the soil borings advanced outside the paved area north and northeast of the Power House (see Table 4-3 and Figure 3-2).

Concentrations of dioxin/furans were well below the MTCA Method B SL of 12.8 picograms per gram (pg/g) as well as the natural background value of 5.21 pg/g (Ecology, 2010); therefore, it is unlikely that the former incinerator impacted the soil near the Power House with dioxin/furan concentrations (see Table 4-3).

7.3 AOC 3: Lead in Soil

Lead concentrations exceeding the MTCA Method A CUL of 250 mg/kg were observed at locations immediately adjacent to the demonstration buildings (see Figures 3-3 through 3-5). Nine of 44 soil samples (approximately two locations per building) had detections of lead above the MTCA Method A CUL, with concentrations ranging between 256 and 421 mg/kg (see Table 4-4).

Lead impacts above MTCA Method A CULs, found in areas surrounding historical buildings, appear to be localized in both vertical and lateral extent, with concentrations decreasing with depth and distance from these buildings. This suggests that lead exceedances in shallow soil are largely restricted to locations immediately adjacent to historical buildings; however, there remains the potential for small areas on the Property to contain elevated lead concentrations caused by widespread historical lead paint use on campus building exteriors. The elevated lead detection within the athletic field (i.e., SS08 within DU04), illustrates the potential for these isolated exceedances of lead to be present throughout the Property given the long historical use of the Property.

¹ A subsurface vapor sample collected during the 2015 RI/FS identified PCE at 100 micrograms per cubic meter (ug/m³), below the Method B screening level for sub-slab soil gas of 321 ug/m³. This screening level assumes natural attenuation through the existing slab of the building. If renovation actions are performed on the building between the issuance of this report and completion of applicable remedial actions, it is recommended that the renovation design incorporate protections for workers should the foundation be penetrated during renovations, and an appropriate system installed to protect against vapor intrusion for future building inhabitants.

7.4 AOC 5: Property-Wide Metals

No MTCA Method A CULs were exceeded in the property-wide soil metals data (Table 4-5). Metals concentrations in soil were generally below site-specific ecological SLs, with exceedances limited to a few metals at locations in the northeastern corner of the Property:

• DU02: copper, zinc

• DU04: lead

DU11: chromiumDU14: chromium

Complete human health and ecological screening of property-wide metals data is presented in Table 4-5. Exceedances of site-specific ecological SLs are shown in Figure 7-1. If a metal detection in a DU exceeded an ecological indicator concentration but was below the site-specific natural background value, it was not considered an exceedance (WAC 173-340-700(6)(d)).

7.4.1 Additional Discrete Sample Analysis

All metals concentrations measured in the additional discrete soil samples analysis were below MTCA Method A CULs, with the exception of lead in discrete sample SS08-S-0.5, collected at the northern end of DU04, as discussed in Sections 5.1.3 and 7.3 (Table 4-6 and Figure 4-1). Of the remaining discrete samples included in the additional sample analysis, ecological SL exceedances were observed in the following samples:

- DU02
 - SS38-S-0.5: copper, zinc
 - SS40-S-0.5: copper, zinc
- DU02
 - SS08-S-0.5: lead
- DU11
 - SS51-S-0.5: chromium
 - SS52-S-0.5: chromium
 - SS53-S-0.5: chromium
 - SS54-S-0.5: chromium
 - SS55-S-0.5: chromium
- DU14
 - SS68-S-0.5: chromium

- SS69-S-0.5: chromium
- SS70-S-0.5: chromium

Human health and ecological screening of additional metals data from discrete sampling locations is presented in Table 4-6, and sampling locations are shown in Figure 4-1. If a metal detection in a DU exceeded an ecological indicator concentration but was below the site-specific natural background value, it was not considered an exceedance (WAC 173-340-700(6)(d)).

The discrete sampling data from DU02 suggest that there are heterogeneous exceedances of ecological SLs of copper and zinc in surface soil in this DU likely related to historical use of this area of the Property. DU02 encompasses the most developed area of the Property with much of the DU covered in buildings, concrete, and/or asphalt. Given the conditions in this DU, it is unlikely to support significant habitat for ecological receptors.

With the exception of the single elevated lead concentration at SS08, all other lead concentrations within discrete samples from DU02 were below ecological SLs. Therefore, it is unlikely that lead detections above ecological SLs are widespread within this DU.

Elevated chromium detections within DU11 and DU14 indicate that there are widespread ecological exceedances of chromium in surface soil in this area of the Property likely related to the same source. However, these chromium exceedances only slightly exceed the site-specific natural background value of 101 mg/kg. This area of the Property is widely vegetated with well-established trees and foliage that currently provide significant habitat for a wide range of ecological receptors.

8 RECOMMENDATIONS

Based on the current understanding of the nature and extent of CUL exceedances, it is recommended that an analysis of brownfields cleanup alternatives (ABCA) be conducted to evaluate potential remediation actions specific to each AOC, as is applicable and appropriate to physical and environmental conditions within each AOC.

AOC 1: Former Laundry Building

As described above in Section 7.1, PCE and TCE were detected in soil and groundwater during this phase II ESA. Previous investigations detected PCE, TCE, and cis-1,2-DCE in soil, groundwater, and/or soil vapor in the northeast area of the former laundry building (MFA, 2015). The extent of impacts is sufficiently characterized to support evaluation of cleanup alternatives.

AOC 2: Power House Building

Based on the results of this phase II ESA, it appears that cPAH and ORO impacts in the shallow (less than 3 feet bgs) fill material containing asphalt debris are localized to a small area underlying the

existing asphalt immediately north of the Power House. The extent of impacts is sufficiently characterized to support evaluation of cleanup alternatives.

AOC 3: Lead in Soil

Lead impacts above MTCA Method A CULs surrounding historical buildings appear to be localized in both vertical and lateral extent, with concentrations decreasing with depth and distance from the buildings. The extent of impacts is sufficiently characterized to support evaluation of cleanup alternatives.

AOC 4: Arsenic in Soil

Previous investigations have identified localized areas of arsenic concentrations above MTCA Method A CULs at depths up to 9 feet bgs (i.e., in the athletic field and an eastern landscaped area of the Property adjacent to the former Ward D, E, F, and G buildings) (MFA, 2015). Additional assessment of this AOC was not completed as part of this phase II ESA, with the exception of shallow soil impacts (less than 0.5-foot bgs) associated with the property-wide metals AOC. No MTCA A CUL exceedances of arsenic were detected during the assessment of property-wide metals; however, additional evaluation of potential arsenic impacts below 0.5-foot bgs is still needed. The extent of impacts is sufficiently characterized to support evaluation of cleanup alternatives.

AOC 5: Property-Wide Metals

As discussed in Section 7.4.1, three DUs (i.e., DU02, DU11, and DU14) had concentrations of at least one metal above ecological SLs.

A net environmental benefit analysis (NEBA) should be performed to further evaluate next steps for these DUs.

AOC 6: Maintenance Building

As discussed in Section 2.4, additional assessment and cleanup of this AOC is being conducted by SES with oversight from PLIA.

AOC 7: Lead and Arsenic in Groundwater

As discussed in Section 2.4, total and dissolved arsenic and lead were detected above MTCA Method A CULs and surface water ARARs in samples from reconnaissance groundwater collected across the northeastern portion of the Property during previous investigations. Given the proximity of elevated arsenic and/or lead concentrations to Hansen Creek, there is potential for groundwater with metals concentrations above surface water ARARs to discharge to the creek.

Additional characterization and evaluation of metals in groundwater at the Property should be conducted to allow for evaluation of cleanup alternatives.

LIMITATIONS

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Apex. 2016. Quality systems manual. Rev. 5. Apex Laboratories, LLC., Tigard, Oregon. April 1.

Artifacts Consulting. 2008. North Cascades Gateway Center (Northern State Hospital) cultural resources assessment for Washington State Department of General Administration. Artifacts Consulting, Inc., City, Washington. February.

City. 2015. Subarea plan: The Center for Innovation and Technology. City of Sedro-Woolley, Washington. November 17.

City and Port. 2015. Planned action final environmental impact statement. City of Sedro-Woolley and Port of Skagit, Washington. November 16.

Dragovich, J. D., D. K. Norman, T. J. Lapen, and G. Anderson. 1999. Geologic map of the Sedro-Woolley North and Lyman 7.5-minute quadrangles, Western Skagit County, Washington. Geology and Earth Resources, Washington Division.

Ecology. 2010. Natural background for dioxins/furans in WA soils. Technical memorandum no. 8. Washington State Department of Ecology. August 9.

Ecology. 2016. Guidance for evaluating soil vapor intrusion in Washington State: investigation and remediation. Publication No. 09-09-047. Washington State Department of Ecology. Review draft, revised in February.

ITRC. 2012. Technical and regulatory guidance: incremental sampling methodology. The Interstate Technology & Regulatory Council Incremental Sampling Methodology Team. February.

MFA. 2014. Final focused site assessment work plan for Northern State Hospital property, Sedro-Woolley, Washington. Maul Foster & Alongi, Inc., Bellingham, Washington. September 9.

MFA. 2015. Preliminary remedial investigation and feasibility study for Northern State Hospital property, Sedro-Woolley, Washington. Maul Foster & Alongi, Inc., Bellingham, Washington. June 30.

MFA. 2018a. Phase II environmental site assessment work plan, former Northern State Hospital, Sedro-Woolley, Washington. Maul Foster & Alongi, Inc., Bellingham, Washington. March 1.

MFA. 2018b. Phase I environmental site assessment, former Northern State Hospital property, Sedro-Woolley, Washington. Maul Foster & Alongi, Inc., Bellingham, Washington. June 20.

SES. 2017. Preliminary planning assessment. Prepared for Pollution Liability Insurance Agency, Lacey, Washington. Sound Earth Strategies, Inc., Seattle, Washington. October 25.

USEPA. 2016. Chromated arsenicals (CCA). https://www.epa.gov/ingredients-used-pesticide-products/chromated-arsenicals-cca (accessed July 24, 2018). November 22.

USEPA. 2017a. USEPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

USEPA. 2017b. USEPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

TABLES

Table 2-1

Water Level Measurements Former Northern State Hospital Phase II ESA Port of Skagit

Sedro-Woolley, Washington

Well ID	MP Elevation (feet NGVD29)	Date	Time	DTW (feet)	DTB (feet)	Groundwater Elevation (feet)
MW01	133.81	05/01/2018	9:30 AM	13.41	24.55	120.40
MW02	131.03	05/01/2018	10:15 AM	16.35	19.45	114.68
MW03	125.86	05/01/2018	10:05 AM	9.28	19.00	116.58
MW04	117.39	05/01/2018	10:20 AM	9.32 19.43		108.07
MW05	117.6163	05/01/2018	10:30 AM	6.55	17.10	111.07
MW06	129.7132	05/01/2018	9:45 AM	a	a	a
MW07	127.0996	05/01/2018	9:58 AM	7.75	16.95	119.35
MW08	128.0230	05/01/2018	9:55 AM	a	a	a
MW09	131.1042	05/01/2018	9:25 AM	5.95 28.92		125.15
MW10	130.4096	05/01/2018	9:15 AM	5.20	29.34	125.21
MW11	130.1546	05/01/2018	9:20 AM	6.30	26.55	123.85

NOTES:

DTW and DTB are measured from top of well casing.

DTB = depth to bottom.

DTW = depth to water.

ESA = environmental site assessment.

MP = measuring point (i.e., top of well casing).

NGVD29 = National Geodetic Vertical Datum of 1929.

^aUnable to remove well cap to measure water level.

Table 3-1
Sampling and Analysis Summary
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

		Location Sample Type Type				Ī					Analytical Suite									
Δ()('				· ·	·		No. of Locations	Location ID ^a	Sample Matrix	No. Locations by Sample Matrix	Total Depth (ft bgs)	Sample Collection Depth/Screened Interval (ft bgs)	No. Samples per Location	Total No. Samples	cVOCs	DRO/ ORO	cPAHs	Dioxins/ Furans	Lead ^b (24- hour TAT)	Lead ^b (Standard TAT)
	Monitoring Well	Discrete	3	MW09, MW10	Soil	2 30	30	near surface capillary fringe saturated zone	3	6	X		-1							
Edoridry Bollaning	*******	Grab		MW09 to MW11	GW	1		15 to 20	2 ^c	2	Х									
						2			1	2	Х									
AOC 2: Power House—fill material	Boring Location	Discrete	3	GP49, GP52, GP53	Soil	3	5 to 10, to top of silt/sand unit underlying fill material	See boring logs in Appendix A	3	9		Х	X							
								0 to 0.5	1	3				Х						
AOC 2: Power House—fill material and former incinerator	Boring Location	Discrete	3	GP49 to GP54	Soil	3	5 to 10, to top of silt/sand unit underlying fill material	See boring logs in Appendix A	3	9		Х	Х							
AOC 3: Lead in	Surface Soil (Thin-walled Tube Sampler) Disc	Five-point composite, site specific calibration standard	5	HA29		5	- 1	0 to 1.0	1	1					Х					
		Discrete, initial location	13	HA14 to HA28	Soil	13		0 to 0.5 0.5 to 1.0	2	26	1		-1		Х					
		Discrete, step- out location	26	HA30 to HA35		6				52	1		-			X				
	Surface Soil (Thin-walled Tube Sampler)	10-point ISM composite 17 Dus 1 through 9, and 11 through 18 1 Du 10		170				17 ^d	1		-1				Х					
AOC 5: Branart			DU 10		30 ^e				3 ^{d,e}							Х				
Wide Metals in (Thin-w		Discrete, natural	1	DU 16	Soil	5	0.5	0 to 0.5	1	5	-						Х			
		background DUs	1	DU 17		5				5							Х			
		Discrete, other DUs	16	DUs 1 through 15, and 18		80				80							А			

Table 3-1
Sampling and Analysis Summary
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

NOTES:

-- = do not analyze.

A = sample will be archived for potential future analysis for specified analytes.

AOC = area of concern.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons; analysis by USEPA Method 8270D.

cVOCs = chlorinated volatile organic compounds, including tetrachloroethene, trichloroethene, cis-1,2-dichlorothene, trans-1,2-dichloroethene, and vinyl chloride; analysis by USEPA Method 8260C selective ion monitoring. dioxins/furans = dioxins and furans; analysis by USEPA Method 1613B.

DRO/ORO = diesel- and heavy-oil-range organics; analysis by Northwest Total Petroleum Hydrocarbons Dx Method.

DU = decision unit.

ESA = environmental site assessment.

ft bgs = feet below ground surface.

GW = groundwater.

ID = identification.

ISM = incremental sampling methodology.

ISM Metals = arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc; analysis by USEPA Method 6020A.

No. = number.

TAT = turnaround time.

USEPA = U.S. Environmental Protection Agency.

X = analyze.

^aLocation IDs designated for proposed borings and monitoring wells are temporary; final location IDs will be assigned in field.

^blead analysis by USEPA Method 6020A.

^cIncludes a field duplicate groundwater sample, which will be collected from one of the three monitoring wells.

 $^{\rm d}$ One 10-point composite sample from each DU will be analyzed.

^eTriplicate 10-point ISM composited samples will be collected from this DU and submitted to laboratory for analysis.

Table 4-1

Soil Analytical Results—Former Laundry Building AOC Former Northern State Hospital Phase II ESA Port of Skagit Sedro-Woolley, Washington

Location:			MW09	MW09	MW09	MW10	MW10	MW10		
Sample Name:	MTCA A	MTCA B	MW09-S-0.5	MW09-S-6.0	MW09-S-19.0	MW10-S-1.0	MW10-S-13.5	MW10-S-24.5		
Collection Date:	MICAA	MICAB	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018		
Collection Depth (ft bgs):			0.2 - 0.7	5.8 - 6.2	18.7 - 19.3	0.4 - 1.2	13 - 13.5	24 - 25		
VOCs (mg/kg)										
1,1-Dichloroethene	NV	4000	0.0153 U	0.016 U	0.0149 U	0.0203 U	0.0168 U	0.0159 U		
cis-1,2-Dichloroethene	NV	160	0.0153 U	0.016 U	0.0149 U	0.0203 U	0.0168 U	0.0159 U		
Tetrachloroethene	0.05	476	0.0153 U	0.016 U	0.0149 U	0.0203 U	6.7	0.0159 U		
trans-1,2-dichloroethene	NV	1600	0.0153 U	0.016 U	0.0149 U	0.0203 U	0.0168 U	0.0159 U		
Trichloroethene	0.03	12	0.0153 U	0.016 U	0.0149 U	0.0203 U	0.056	0.0159 U		
Vinyl chloride	NV	240	0.0153 U	0.016 U	0.0149 U	0.0203 U	0.0168 U	0.0159 U		

NOTES:

Detected results are shown in **bold** font.

Results that exceed MTCA A cleanup level, or a MTCA B cleanup level if no MTCA A value is available, are shaded. Non-detect results are not evaluated against cleanup criteria.

AOC = area of concern.

ESA = environmental site assessment.

ft bgs = feet below ground surface.

mg/kg = milligrams per kilogram.

MTCA = Model Toxics Control Act.

MTCA A = MTCA method A, unrestricted land use, for soil.

NV = no value.

U = result not detected at method detection limit.

VOC = volatile organic compound.

Table 4-2

Groundwater Analytical Results—Former Laundry Building AOC Former Northern State Hospital Phase II ESA Port of Skagit Sedro-Woolley, Washington

Location:			Vapor Intrusion	MW09	MW10	MW10	MW11
Sample Name:	MTCA A	MTCA B	Screening Level	MW09-GW-050118	MW10-GW-050118	MWDUP-GW-050118	MW11-GW-050118
Collection Date:			Method B	05/01/2018	05/01/2018	05/01/2018	05/01/2018
VOCs (ug/L)							
1,1-Dichloroethene	NV	400	11.2	0.2 U	0.2 U	0.2 U	0.2 U
cis-1,2-Dichloroethene	NV	16	NV	0.2 U	0.2 U	0.2 U	0.2 U
Tetrachloroethene	5	20.8	22.9	0.2 U	22.8	23	0.2 U
trans-1,2-dichloroethene	NV	160	NV	0.2 U	0.2 U	0.2 U	0.2 U
Trichloroethene	5	0.54	1.55	0.2 U	1.34	1.38	0.2 U
Vinyl chloride	0.2	24	0.347	0.2 U	0.2 U	0.2 U	0.2 U

NOTES:

Detected results are shown in **bold** font.

Shaded results indicate an exceedance of the MTCA A cleanup level or vapor intrusion screening level. Non-detect results are not evaluated against cleanup criteria.

AOC = area of concern.

ESA = environmental site assessment.

MTCA = Model Toxics Control Act.

MTCA A = MTCA method A, for groundwater. Where no value is available, a MTCA method B value is shown.

NV = no value.

U = Result is not detected at the method detection limit.

ug/L = micrograms per liter.

VOC = volatile organic compound.

Table 4-3
Soil Analytical Results—Power House Building AOC
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

Location:				GP49	GP49	GP49	GP50	GP50	GP51	GP51	GP52
Sample Name:	MTCA A	MTCA B	MTCA EIC	GP49-S-0.5	GP49-S-10.0	GP49-S-7.0	GP50-S-0.5	GP50-S-1.5	GP51-S-0.5	GP51-S-1.0	GP52-S-0.5
Collection Date:	MICAA	MICAB	MICAEIC	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018
Collection Depth (ft bgs):				0.2-1	10-10.5	6.8-7.4	0.3-0.7	1.1-1.7	0.2-0.9	0.9-1.3	0.3-0.8
Dioxins/Furans (pg/g)		-							•		
1,2,3,4,6,7,8-HpCDD	NV	NV	NV	6.09							6.2
1,2,3,4,6,7,8-HpCDF	NV	NV	NV	1.76 J							1.71 J
1,2,3,4,7,8,9-HpCDF	NV	NV	NV	0.149 U							0.23 J
1,2,3,4,7,8-HxCDD	NV	NV	NV	0.212 UJ							0.289 J
1,2,3,4,7,8-HxCDF	NV	NV	NV	0.218 J							0.202 J
1,2,3,6,7,8-HxCDD	NV	NV	NV	0.397 UJ							0.525 J
1,2,3,6,7,8-HxCDF	NV	NV	NV	0.193 UJ							0.166 UJ
1,2,3,7,8,9-HxCDD	NV	161	NV	0.355							0.465 J
1,2,3,7,8,9-HxCDF	NV	NV	NV	0.0931 U							0.112 U
1,2,3,7,8-PeCDD	NV	NV	NV	0.177 J							0.248 J
1,2,3,7,8-PeCDF	NV	NV	NV	0.244 J							0.156 J
2,3,4,6,7,8-HxCDF	NV	NV	NV	0.202 UJ							0.22 UJ
2,3,4,7,8-PeCDF	NV	NV	NV	0.238 UJ							0.333 J
2,3,7,8-TCDD	NV	12.8	NV	0.0994 U							0.11 U
2,3,7,8-TCDF	NV	NV	NV	0.306 UJ							0.232 J
OCDD	NV	NV	NV	36.2							33.4
OCDF	NV	NV	NV	2.58 J							9.58 J
Total HpCDDs	NV	NV	NV	11.6							11.2
Total HpCDFs	NV	NV	NV	3.68 J							8.16
Total HxCDDs	NV	NV	NV	6.32 J							27.5
Total HxCDFs	NV	NV	NV	2.74 J							2.83 J
Total PeCDDs	NV	NV	NV	4.2 J							21.4
Total PeCDFs	NV	NV	NV	3.09 J							4.02 J
Total TCDDs	NV	NV	NV	3.86 U							20.6
Total TCDFs	NV	NV	NV	3.2 U							3.4
Dioxin/Furan TEQ (ND=0)	NV	12.8	NV	0.332 J							0.618 J
Total Dioxins Mammalian TEQ (ND=0) ^a	NV	NV	2	0.284 J							0.448 J
Total Dioxins Avian TEQ (ND=0) ^a	NV	NV	2	0.047 J							0.167 J
Total Furans Mammalian TEQ (ND=0) ^a	NV	NV	2	0.222 J							0.324 J
Total Furans Avian TEQ (ND=0) ^a	NV	NV	2	0.0638 J							0.6202 J
cPAHs (mg/kg)	144	144		0.0000 3					<u> </u>		0.0202 3
Benzo(a)anthracene	NV	1.37	NV	0.023 J	0.00643 U	0.00733 U	0.0252 J	0.00642 U	0.00778 J	0.00624 U	0.00506 U
Benzo(a)pyrene	0.1	0.137	12	0.023 3	0.00643 U	0.00733 U	0.0252 3	0.00642 U	0.00778 J	0.00624 U	0.00506 U
Benzo(b)fluoranthene	NV	1.37	NV	0.0234 J	0.00643 U	0.00733 U	0.0185 J	0.00642 U	0.00327 U	0.00624 U	0.00506 U
Benzo(k)fluoranthene	NV	13.7	NV	0.00934 J	0.00643 U	0.00733 U	0.00653 U	0.00642 U	0.00713 J	0.00624 U	0.00506 U
Chrysene	NV	13.7	NV	0.00734 J	0.00643 U	0.00733 U	0.00633 U	0.00642 U	0.00329 U	0.00624 U	0.00506 U
Dibenzo(a,h)anthracene	NV	0.137	NV	0.0233 J 0.00632 U	0.00643 U	0.00733 U	0.00653 U	0.00642 U	0.00682 J 0.00529 U	0.00624 U	0.00506 U
Indeno(1,2,3-cd)pyrene	NV	1.37	NV	0.00632 0	0.00643 U	0.00733 U	0.0085 J	0.00642 U	0.00529 U	0.00624 U	0.00506 U
cPAH TEQ (ND=0)	0.1	1.37 NV	NV	0.0131 0.0252 J	0.00643 U	0.00733 U	0.0083 J	0.00642 U	0.00329 U	0.00624 U	0.00506 U
IPH (mg/kg)	0.1	14.4	14.6	0.0232 J	0.00043 0	0.00733 0	U.UZZS J	0.00042 0	J 0.00130 J	0.00024 0	0.00306 0
Diesel-Range Hydrocarbons	2000	NV	200	16.9 J	12.9 U	13.5 U	38.2	12.7 U	14.5 J	12.3 U	10.5 U
Lube-Oil-Range Hydrocarbons	2000	NV	NV	25 U			35.5 J		22.3 J		
Lube-Oll-Kange nyarocarbons	2000	14.6	14.6	25 U	25.8 U	27.1 U	ა၁.5 J	25.3 U		24.6 U	21 U

Table 4-3
Soil Analytical Results—Power House Building AOC
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

Location:				GP52	GP52	GP53	GP53	GP53	GP54	GP54
Sample Name:		A ATO A D	1 4TC 4 FIC	GP52-S-6.0	GP52-S-7.5	GP53-S-0.5	GP53-S-1.0	GP53-S-2.0	GP54-S-0.5	GP54-S-5.5
Collection Date:	MTCA A	MTCA B	MTCA EIC	04/23/2018	04/23/2018	04/24/2018	04/24/2018	04/24/2018	04/24/2018	04/24/2018
Collection Depth (ft bgs):				5.5-6.1	7.2-7.8	0.3-0.8	0.8-1.2	1.5-2.2	0.4-0.9	5.3-6
Dioxins/Furans (pg/g)	•									
1,2,3,4,6,7,8-HpCDD	NV	NV	NV			4.36 J				
1,2,3,4,6,7,8-HpCDF	NV	NV	NV			3.6 J				
1,2,3,4,7,8,9-HpCDF	NV	NV	NV			0.421 J				
1,2,3,4,7,8-HxCDD	NV	NV	NV			0.0842 UJ				
1,2,3,4,7,8-HxCDF	NV	NV	NV			2.05 J				
1,2,3,6,7,8-HxCDD	NV	NV	NV			0.264 J				
1,2,3,6,7,8-HxCDF	NV	NV	NV			0.482 J				
1,2,3,7,8,9-HxCDD	NV	161	NV			0.131 J				
1,2,3,7,8,9-HxCDF	NV	NV	NV			0.19 UJ				
1,2,3,7,8-PeCDD	NV	NV	NV			0.21 UJ				
1,2,3,7,8-PeCDF	NV	NV	NV			0.578 J				
2,3,4,6,7,8-HxCDF	NV	NV	NV			0.354 J				
2,3,4,7,8-PeCDF	NV	NV	NV			0.395 J				
2,3,7,8-TCDD	NV	12.8	NV			0.115 J				
2,3,7,8-TCDF	NV	NV	NV			0.219 J				
OCDD	NV	NV	NV			38.7 J				
OCDF	NV	NV	NV			2.03 J				
Total HpCDDs	NV	NV	NV			7.73 J				
Total HpCDFs	NV	NV	NV			7.94 J				
Total HxCDDs	NV	NV	NV			2.58 J				
Total HxCDFs	NV	NV	NV			7.89 J				
Total PeCDDs	NV	NV	NV			1.75 UJ				
Total PeCDFs	NV	NV	NV			4.76 J				
Total TCDDs	NV	NV	NV			0.836 J				
Total TCDFs	NV	NV	NV			1.09 J				
Dioxin/Furan TEQ (ND=0)	NV	12.8	NV			0.697 J				
Total Dioxins Mammalian TEQ (ND=0) ^a	NV	NV	2			0.210 J				
Total Dioxins Avian TEQ (ND=0) ^a	NV	NV	2			0.487 J				
Total Furans Mammalian TEQ (ND=0) ^a	NV	NV	2			0.139 J				
` ;	NV	NV	2			1.00 J				
Total Furans Avian TEQ (ND=0) ^a	14.4	14.4	Z			1.00 J				
cPAHs (mg/kg)	NIV/	1.07	NIV/	0.007/4.11	0.00740.11	0.015.1	0.00542.11	0.007711	0.07/ 1	0.0074211
Benzo(a)anthracene	NV 0.1	1.37 0.137	NV	0.00764 U	0.00742 U	0.015 J	0.00543 U	0.0067 U	0.076 J	0.00643 U
Benzo(a)pyrene	0.1		12	0.00764 U	0.00742 U	0.0148	0.00543 U	0.0067 U	0.0529 J	0.00643 U
Benzo(b)fluoranthene	NV	1.37	NV	0.00764 U	0.00742 U	0.02 J	0.00543 U	0.0067 U	0.0758 J	0.00643 U
Benzo(k)fluoranthene	NV	13.7	NV	0.00764 U	0.00742 U	0.00611 J	0.00543 U	0.0067 U	0.0279 U	0.00643 U
Chrysene	NV	137	NV	0.00764 U	0.00742 U	0.0178 J	0.00543 U	0.0067 U	0.0958 J	0.00643 U
Dibenzo(a,h)anthracene	NV	0.137	NV	0.00764 U	0.00742 U	0.00516 U	0.00543 U	0.0067 U	0.0279 U	0.00643 U
Indeno(1,2,3-cd)pyrene	NV 0.1	1.37	NV	0.00764 U	0.00742 U	0.0123	0.00543 U	0.0067 U	0.0347 J	0.00643 U
CPAH TEQ (ND=0)	0.1	NV	NV	0.00764 U	0.00742 U	0.0203 J	0.00543 U	0.0067 U	0.0725 J	0.00643 U
TPH (mg/kg)	2000	N 13.7	200	15.0.11	150 !	0.70.11	10.0.11	10 / 11	110 !!	10.11
Diesel-Range Hydrocarbons	2000	NV	200	15.2 U	15.9 J	9.79 U	10.3 U	13.6 U	11.2 U	13 U
Lube-Oil-Range Hydrocarbons	2000	NV	NV	30.3 U	27.9 U	82	20.6 U	27.3 U	131	25.9 U

NOTES:

Detected results are shown in **bold** font.

Results that exceed a MTCA A cleanup level, or a MTCA B cleanup level if no MTCA A value is available, are shaded. Non-detect results are not evaluated against cleanup criteria.

Results that exceed a MTCA EIC are shaded. Non-detect results are not evaluated against cleanup criteria.

-- = not analyzed.

AOC = area of concern.

cPAH = carcinogenic polycyclic aromatic hydrocarbon.

dioxin/furan TEQ = dioxin/furan toxicity equivalency quotient.

ESA = environmental site assessment.

ft bgs = feet below ground surface.

J = result is an estimated value.

mg/kg = milligrams per kilogram.

MTCA = Model Toxics Control Act.

MTCA A = MTCA method A, unrestricted land use, for soil.

MTCA EIC = MTCA ecological indicator soil concentration for protection of terrestrial plants and animals (Washington Administrative Code 173-340-900, 173-340-7490).

ND = non-detect.

NV = no value.

pg/g = picograms per gram.

TPH = total petroleum hydrocarbons.

U = result not detected at method detection limit or estimated detection limit.

UJ = result not detected at method detection limit or estimated detection limit, and is an estimated value.

aTotal dioxin TEQ and total furan TEQ summed using methodology described in Washington State Department of Ecology publication 16-09-044, "Toxics Cleanup Program Implementation Memo #13", June 12, 2016.

Location:			HA16	HA16	HA17	HA17	HA18	HA18	HA19	HA19	HA20	HA20	HA21	HA21
Sample Name:	MTCA A	MTCA EIC	HA16-S-0.5	HA16-S-1.0	HA17-S-0.5	HA17-S-1.0	HA18-S-0.5	HA18-S-1.0	HA19-S-0.5	HA19-S-1.0	HA20-S-0.5	HA20-S-1.0	HA21-S-0.5	HA21-S-1.0
Collection Date:	MICAA	MICALIC	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018
Collection Depth (ft bgs):			0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0
Metals (mg/kg)														
Lead	250	50	342	224	82.8	45.6	327	65.6	126	112	355	84.6	421	256

Location:			HA21	HA22	HA22	HA23	HA23	HA24	HA24	HA25	HA25	HA26	HA26
Sample Name:	MTCA A	MTCA EIC	HA21-S-1.5	HA22-S-0.5	HA22-S-1.0	HA23-S-0.5	HA23-S-1.0	HA24-S-0.5	HA24-S-1.0	HA25-S-0.5	HA25-S-1.0	HA26-S-0.5	HA26-S-1.0
Collection Date:	MICAA	MICALIC	04/30/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018
Collection Depth (ft bgs):			1.5	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0	0.5	1.0
Metals (mg/kg)			•		•								
Lead	250	50	257	172	111	146	146	120	95.8	45.4	50.4	249	396

Location:			HA26	HA27	HA27	HA28	HA28	HA28	HA29	HA30	HA30	HA31	HA31
Sample Name:	MTCA A	MTCA EIC	HA26-S-1.5	HA27-S-0.5	HA27-S-1.0	HA28-S-0.5	HA28-S-1.0	HA28-S-1.5	HA29-S-1.0-CS	HA30-S-0.5	HA30-S-1.0	HA31-S-0.5	HA31-S-1.0
Collection Date:	MICAA	MICALIC	04/30/2018	04/23/2018	04/23/2018	04/23/2018	04/23/2018	04/30/2018	04/23/2018	04/30/2018	04/30/2018	04/30/2018	04/30/2018
Collection Depth (ft bgs):			1.5	0.5	1.0	0.5	1.0	1.5	1.0	0.5	1.0	0.5	1.0
Metals (mg/kg)					•						•		
Lead	250	50	307	185	120	213	282	159	276	141	50.8	15.8	17.5

Location:			HA32	HA32	HA33	HA33	HA33	HA34	HA34	HA34	HA35	HA35	HA35
Sample Name:	MTCA A	MTCA EIC	HA32-S-0.5	HA32-S-1.0	HA33-S-0.5	HA33-S-1.0	HA33-S-1.5	HA34-S-0.5	HA34-S-1.0	HA34-S-1.5	HA35-S-0.5	HA35-S-1.0	HA35-S-1.5
Collection Date:	MICAA	MICALIC	04/30/2018	04/30/2018	04/30/2018	04/30/2018	04/30/2018	04/30/2018	04/30/2018	04/30/2018	04/30/2018	04/30/2018	04/30/2018
Collection Depth (ft bgs):			0.5	1.0	0.5	1.0	1.5	0.5	1.0	1.5	0.5	1.0	1.5
Metals (mg/kg)					•								
Lead	250	50	105	16.9	29.4	10.9	7.21	107	71.7	53.2	112	46.4	42.1

NOTES:

Detected results are shown in **bold** font.

Results that exceed MTCA A cleanup level, or a MTCA B cleanup level if no MTCA A value is available, are shaded. Non-detect results are not evaluated against cleanup criteria.

Results that exceed an ecological indicator concentration are shaded. Non-detect results are not evaluated against cleanup criteria.

Shaded results indicate exceedance of one or more screening levels. Screening levels with exceedances are also shaded.

AOC = area of concern.

ESA = environmental site assessment.

ft bgs = feet below ground surface.

mg/kg = milligrams per kilogram.

MTCA = Model Toxics Control Act.

MTCA EIC = MTCA ecological indicator soil concentration for protection of terrestrial plants and animals. Value shown is the lowest available concentration for plant, soil biota, or wildlife.

WAC = Washington State Administrative Code.

Table 4-5
Soil Analytical Results—Property-Wide Metals in Soil AOC, ISM Decision Units
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

Location:			Site-Specific	Site-Sp	ecific Eco	logical	DU01	DU02	DU03	DU04	DU05	DU06	DU07	DU08	DU09
Sample Name:	MTCA	MTCA	Natural	Screenin	ig Level (M	TCA EICs	DU01-S-0.5	DU02-S-0.5	DU03-S-0.5	DU04-S-0.5	DU05-S-0.5	DU06-S-0.5	DU07-S-0.5	DU08-S-0.5	DU09-S-0.5
Collection Date:	CUL	Source	Background	unless	otherwise r	noted) ^a	04/25/2018	04/25/2018	04/27/2018	04/24/2018	04/26/2018	04/24/2018	04/24/2018	04/26/2018	04/30/2018
Collection Depth	COL	300100	Value	Plants	Soil	Wildlife	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5
(ft bgs):			value .	1 IGITIS	Biota	Wildine	0-3	0-3	0-3	0-3	0-3	0-3	0-3	0-5	0-3
Metals (mg/kg)															
Arsenic	20	MTCA A	18.9	10	60	132	8.87	14.7	11.6	10.4	12.3	10.2	9.31	11.9	13.1
Barium	16000	MTCA B	345	500	330 ^c	102	154	193	127	153	134	122	124	122	140 J
Cadmium	2	MTCA A	1.00 ^f	4	20	14	0.358	0.342	0.425	0.282	0.365	0.246	0.243	0.382	0.408
Chromium	2000 ^b	MTCA A	101	42	42	67	59.6	82.7	67.7	80.8	71.2	64.3	61.7	72.9	73
Copper	3200	MTCA B	76.1	100	50	217	60.5	204	48.9	44.1	52.3	45.6	45.6	42.3	49.6
Lead	250	MTCA A	53	120 ^c	500	118	48.9	89	30.2	128	34	27.8	27.1	20.5	26.2
Mercury	2	MTCA A	0.14 ^g	0.3	0.1	5.5	1.8 U	2.46 U	1.54 U	1.25 U	1.16 U	0.594 U	2.12 U	1.17 U	0.473 U
Selenium	400	MTCA B	0.78 ^f	1	70	0.3	0.523 U	0.521 U	0.537 U	0.567 J	0.568 U	0.55 U	0.519 U	0.564 U	0.537 U
Silver	400	MTCA B	0.7	2	50 ^e	14 ^c	0.523 U	0.521 U	0.537 U	0.566 U	0.568 U	0.55 U	0.519 U	0.564 U	0.537 U
Zinc	24000	MTCA B	179	86	200	360	121	221	123	128	127	113	108	100	112 J

Table 4-5
Soil Analytical Results—Property-Wide Metals in Soil AOC, ISM Decision Units
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

Location:			Site-Specific	Site-Sp	ecific Ecol	ogical		DU10		DU11	DU12	DU13	DU14	DU15	DU16 ^d	DU17 ^d	DU18
Sample Name:	MTCA	MTCA	Natural	Screenin	g Level (M ⁻	TCA EICs	DU10A-S-0.5	DU10B-S-0.5	DU10C-S-0.5	DU11-S-0.5	DU12-S-0.5	DU13-S-0.5	DU14-S-0.5	DU15-S-0.5	DU16-S-0.5	DU17-S-0.5	DU18-S-0.5
Collection Date:	CUL	Source	Background	unless o	otherwise n	ioted) ^a	04/27/2018	04/27/2018	04/27/2018	04/26/2018	04/27/2018	04/26/2018	04/27/2018	04/25/2018	04/26/2018	04/25/2018	04/25/2018
Collection Depth	CUL	300100	Value	Plants	Soil	Wildlife	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5
(ft bgs):			Value	TIGHTS	Biota	Wildine	0-3	0-3	0-3	0-3	0-5	0-3	0-3	0-3	0-3	0-3	0-3
Metals (mg/kg)																	
Arsenic	20	MTCA A	18.9	10	60	132	11	10.4	10.7	16.8	9.69	9.11	12.3	9.9	8.67	10.6	8.12
Barium	16000	MTCA B	345	500	330 ^c	102	147	120	129	107	142	93.7	99.3	100	120	119	93.1
Cadmium	2	MTCA A	1.00 ^f	4	20	14	0.288 J	0.185 J	0.39 J	0.517	0.227	0.249	0.579	0.334	0.182 J	0.216 J	0.188 J
Chromium	2000 ^b	MTCA A	101	42	42	67	68.7	82.7	72	159	74.6	92.4	117	64.3	40.8	52.2	49.7
Copper	3200	MTCA B	76.1	100	50	217	45.5	38.2	41.5	59.5	50.2	40.5	53.3	32.5	26.7	42.7	35.2
Lead	250	MTCA A	53	120 ^c	500	118	41.2 J	15 J	14.7 J	25.3	58.4	14.7	84.1	12.9	16.3	22.5	11.3
Mercury	2	MTCA A	0.14 ^g	0.3	0.1	5.5	0.813 UJ	0.484 UJ	0.402 UJ	2.1 U	1.31 U	1.77 U	1.91 U	1.38 U	1.55 U	0.776 U	2.73 U
Selenium	400	MTCA B	0.78 ^f	1	70	0.3	0.622 J	0.575 J	0.699 J	0.716 J	0.501 U	0.496 U	0.528 U	0.575 U	0.585 J	0.579 U	0.53 U
Silver	400	MTCA B	0.7	2	50 ^e	14 ^c	0.528 U	0.563 U	0.543 U	0.524 U	0.501 U	0.496 U	0.528 U	0.575 U	0.572 U	0.579 U	0.53 U
Zinc	24000	MTCA B	179	86	200	360	144	102	105	111	125	82.4	122	88.4	77.7	90.4	72.2

NOTES:

Detected results are shown in **bold** font.

MTCA Method A CULs for unrestricted land use are provided, where available. MTCA Method B CULs are provided when MTCA Method A CULs are not available.

Shading indicates SLV exceedance by results that are also greater than the site-specific natural background.

CUL = cleanup level.

DU = decision unit.

Eco-SSL = USEPA ecological soil screening levels.

ft bgs = feet below ground surface.

J = result is an estimated value.

mg/kg = milligrams per kilogram.

MTCA = Model Toxics Control Act

MTCA EIC = MTCA ecological indicator soil concentration for protection of terrestrial plants and animals. The value shown is the lowest available plant, soil biota, or wildlife concentration (Washington Administrative Code 173-340-900, Table 749-3).

SLV = screening level value.

U = result not detected at method detection limit.

UJ = result not detected and is an estimated value.

USEPA = U.S. Environmental Protection Agency.

^aEICs were obtained from MTCA Table 749-3.

^bValue is for chromium III.

^cEco-SSLs were obtained from: https://www.epa.gov/chemical-research/interim-ecological-soil-screening-level-documents.

^dData from discrete samples collected in DU16 and DU17 were used to develop the site-specific natural background values for this property that are presented in this table and used in the screening process (see Appendix E). Therefore, data from these DUs are not screened and are only presented for completeness.

Oak Ridge National Laboratory screening benchmark concentration for the toxicity of chemicals to soil microorganisms and microbial processes, presented here: https://info.ornl.gov/sites/publications/Files/Pub57854.pdf.

¹Statewide 90th percentile natural background concentration developed by the Washinton Department of Ecology, obtained from: https://fortress.wa.gov/ecy/publications/documents/94115.pdf.

⁹Calculated using normal distribution in MTCA Stat program downloaded from: https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools.

Table 4-6
Soil Analytical Results—Property-Wide Metals in Soil AOC, Discrete Samples
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

Location:			Site-Specific	Site-Specific					DU02					DU04		
Sample Name:	MTCA	MTCA	Natural	Leve	el (MTCA EIG	Cs	SS36-S-0.5	SS37-S-0.5	SS38-S-0.5	SS39-S-0.5	SS40-S-0.5	SS06-S-0.5	SS07-S-0.5	SS08-S-0.5	SS09-S-0.5	SS10-S-0.5
Collection Date:	CUL	Source	Background	unless o	therwise no	oted) ^a	04/25/2018	04/25/2018	04/25/2018	04/25/2018	04/25/2018	04/24/2018	04/24/2018	04/24/2018	04/24/2018	04/24/2018
Collection Depth (ft bgs):	COL	300100	Value	Plants	Soil Biota	Wildlife	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5
Metals (mg/kg)																
Chromium	2000 ^b	MTCA A	101	42	42	67										
Copper	3200	MTCA B	76.1	100	50	217	63.9	58.6	1050	26.5	120					
Lead	250	MTCA A	53	120 ^c	500	118					-	27.7	36.7	572	59.3	34.4
Zinc	24000	MTCA B	179	86	200	360	121	175	279	67.4	390					

Table 4-6
Soil Analytical Results—Property-Wide Metals in Soil AOC, Discrete Samples
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

Location:			Site-Specific	Site-Specific	_	-			DU11					DU14		
Sample Name:	MTCA	MTCA	Natural	Leve	el (MTCA El	Cs	SS51-S-0.5	SS52-S-0.5	SS53-S-0.5	SS54-S-0.5	SS55-S-0.5	SS66-S-0.5	SS67-S-0.5	SS68-S-0.5	SS69-S-0.5	SS70-S-0.5
Collection Date:	CUL	Source	Background	unless o	therwise no	oted) ^a	04/26/2018	04/26/2018	04/26/2018	04/26/2018	04/26/2018	04/27/2018	04/27/2018	04/27/2018	04/27/2018	04/27/2018
Collection Depth (ft bgs):	COL	300100	Value	Plants	Soil Biota	Wildlife	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5	0-5
Metals (mg/kg)																
Chromium	2000 ^b	MTCA A	101	42	42	67	130	169	124	150	111	85.5	83.7	149	203	198
Copper	3200	MTCA B	76.1	100	50	217										
Lead	250	MTCA A	53	120 ^c	500	118										
Zinc	24000	MTCA B	179	86	200	360				-						

Table 4-6
Soil Analytical Results—Property-Wide Metals in Soil AOC, Discrete Samples
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

NOTES:

Detected results are shown in **bold** font.

MTCA Method A CULs for unrestricted land use are provided, where available. MTCA Method B CULs are provided when MTCA Method A CULs are not available.

Shading indicates SLV exceedance by results that are also greater than the site-specific natural background.

CUL = cleanup level.

DU = decision unit.

Eco-SSL = USEPA ecological soil screening levels.

ft bgs = feet below ground surface.

mg/kg = milligrams per kilogram.

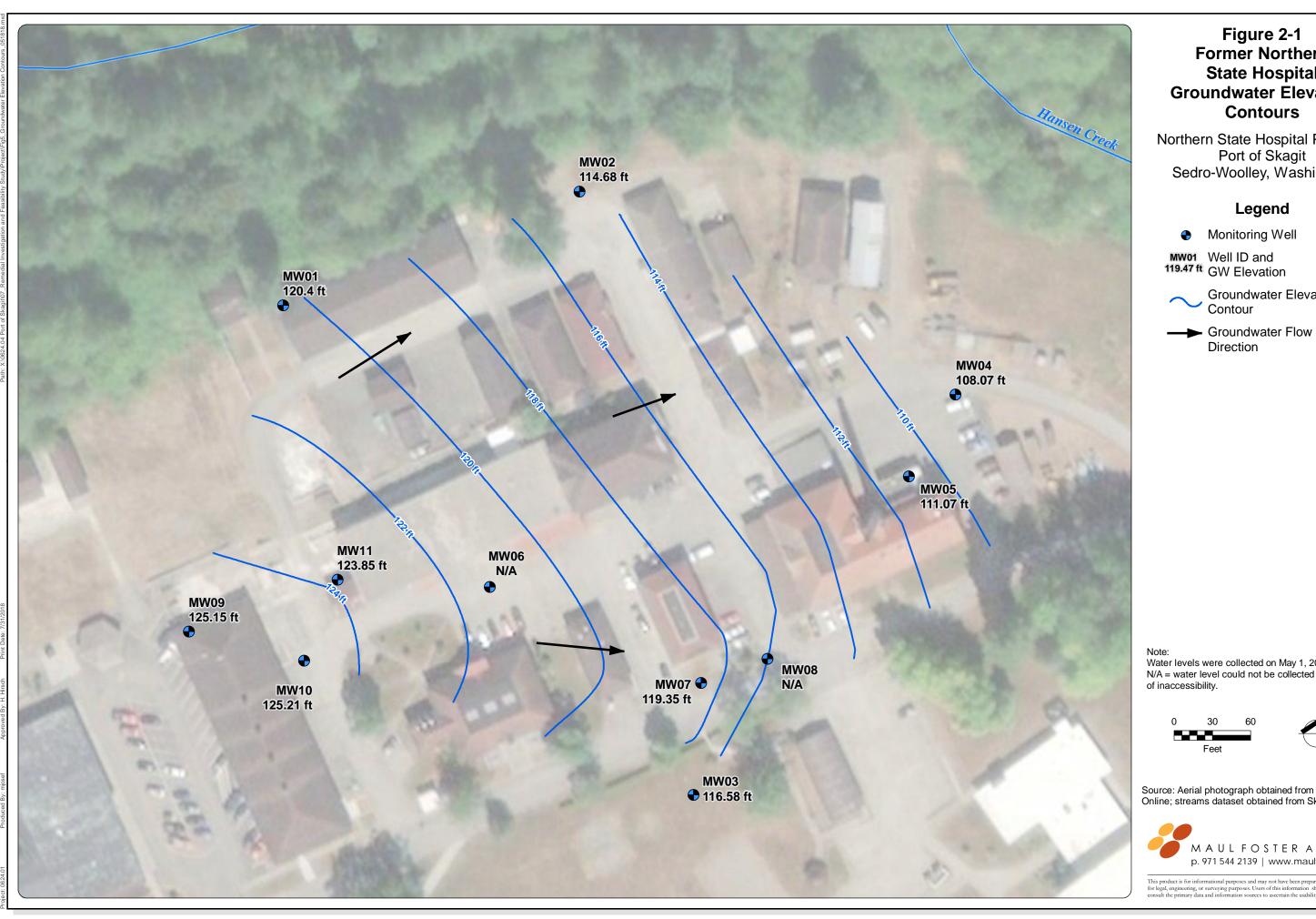
MTCA = Model Toxics Control Act.

MTCA EIC = MTCA ecological indicator soil concentration for protection of terrestrial plants and animals. The value shown is the lowest available plant, soil biota, or wildlife concentration (Washington Administrative Code 173-340-900, Table 749-3).

SLV = screening level value.

USEPA = U.S. Environmental Protection Agency.

^aEICs were obtained from MTCA Table 749-3.


^bValue is for chromium III.

^cEco-SSLs were obtained from: https://www.epa.gov/chemical-research/interim-ecological-soil-screening-level-documents.

FIGURES

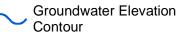
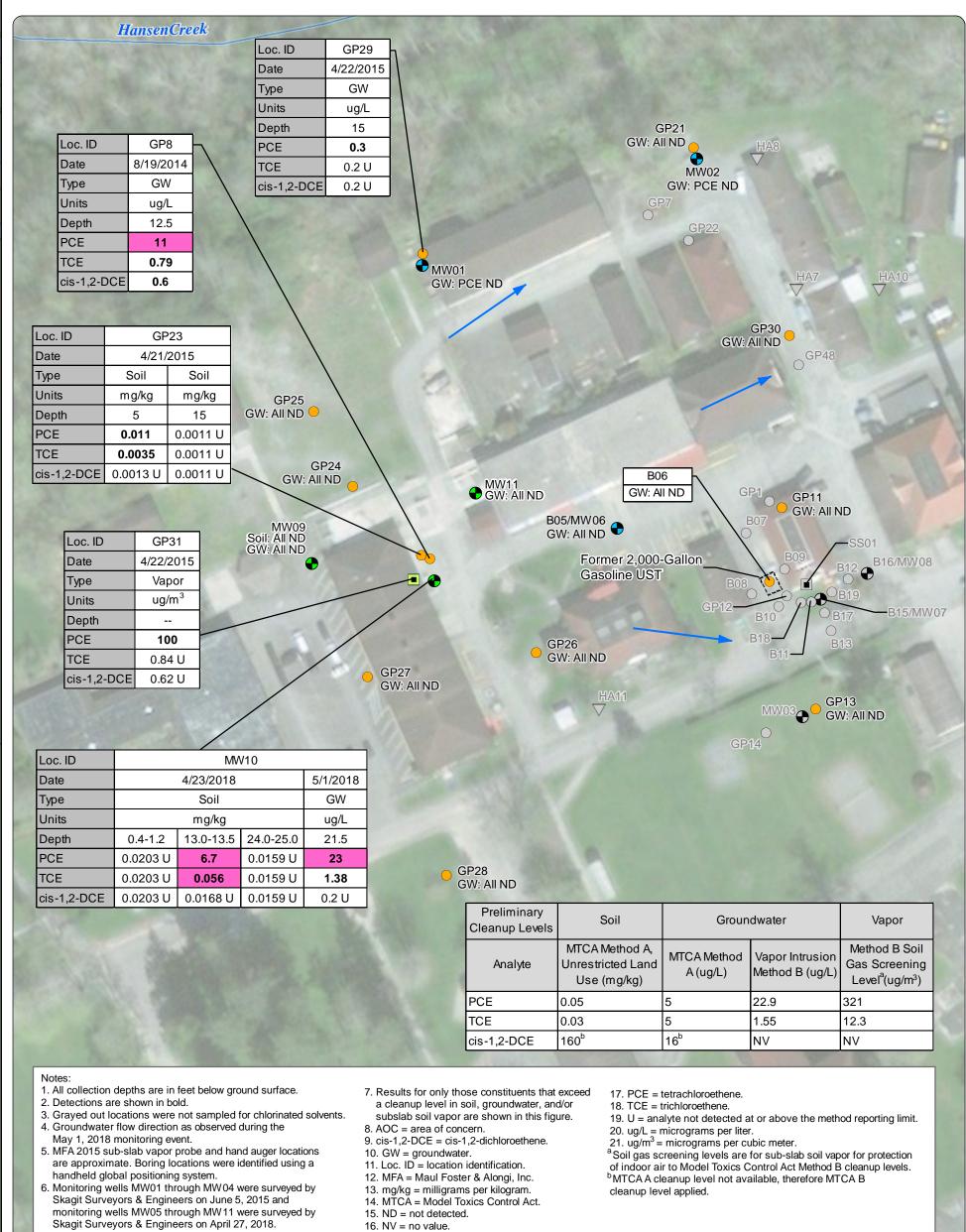


Figure 2-1 Former Northern **State Hospital Groundwater Elevation**

Northern State Hospital Property Port of Skagit Sedro-Woolley, Washington


Water levels were collected on May 1, 2018. N/A = water level could not be collected because

Source: Aerial photograph obtained from Esri ArcGIS Online; streams dataset obtained from Skagit County.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Skagit Surveyors & Engineers on April 27, 2018.

Source: Aerial photograph obtained from Esri ArcGIS Online

Legend

New Monitoring Well

Sampled

Sampled

Previous Monitoring Well

Previous Boring Location

Previous Monitoring Well Not

Previous Boring Location Not

Sub-Slab Vapor Probe

Sub-Slab Vapor Probe Not Sampled

Hand Auger Location Not Sampled

Groundwater Flow Direction

Former Northern State Hospital

Port of Skagit Sedro-Woolley, Washington

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

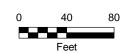
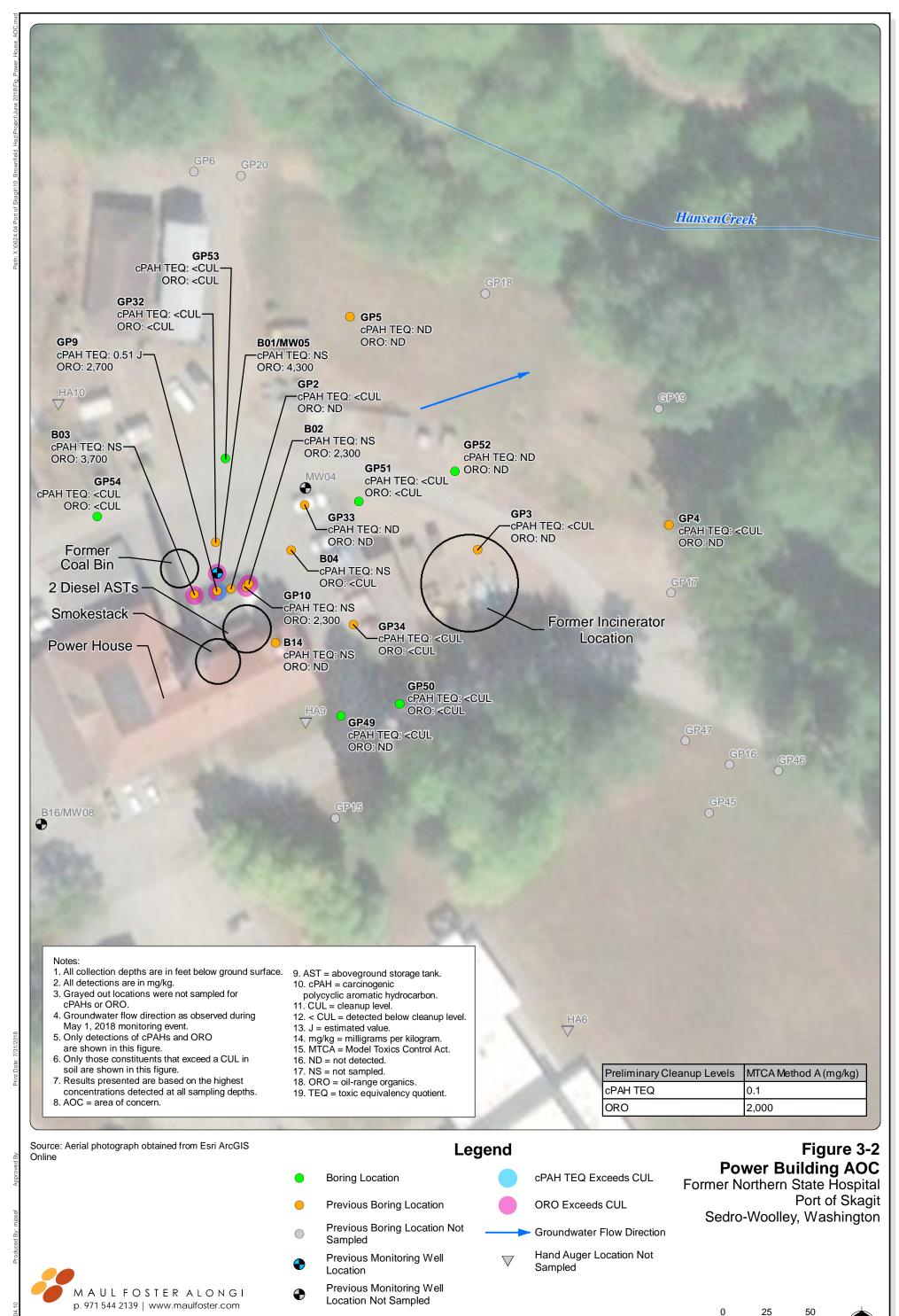
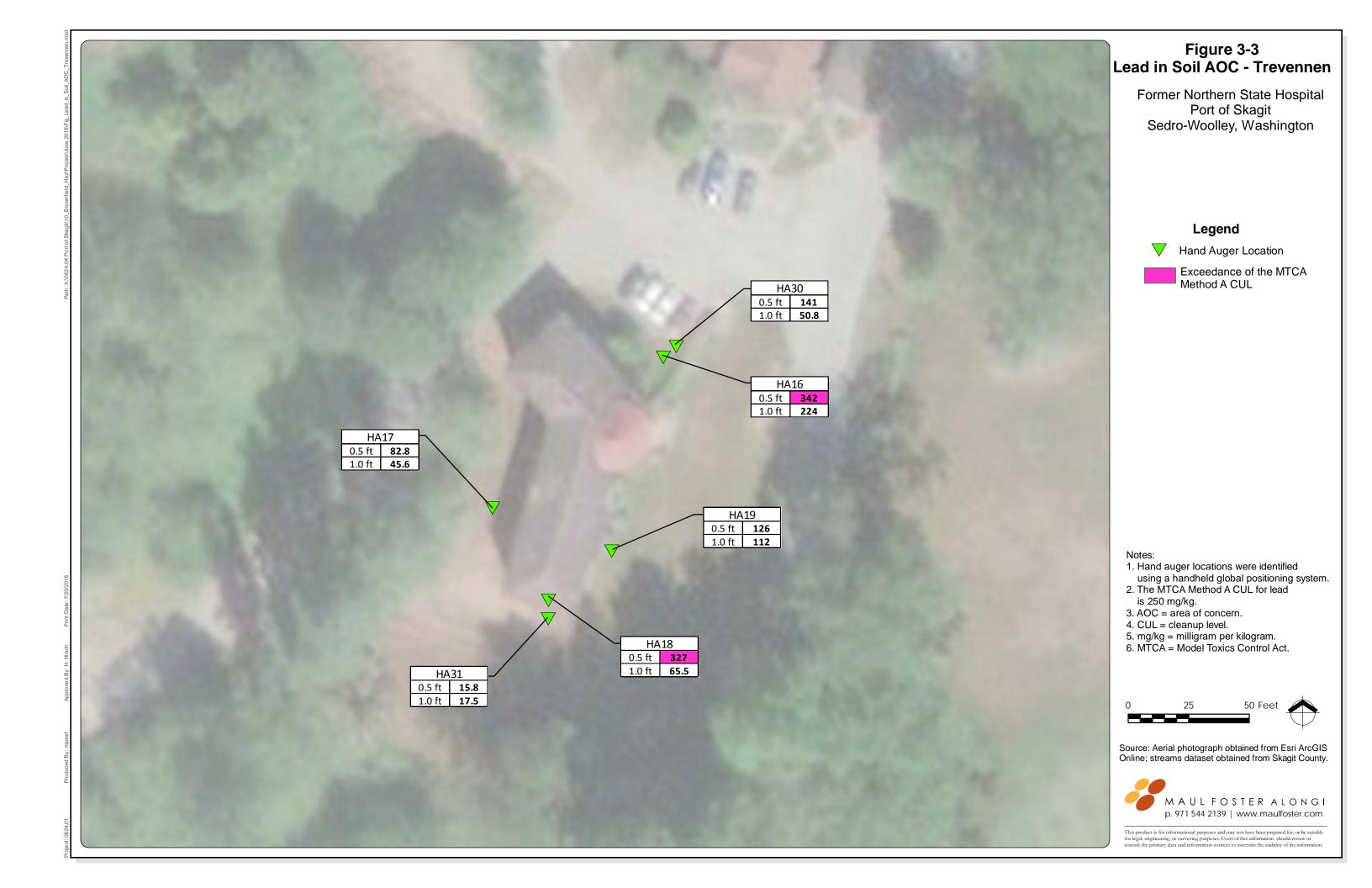
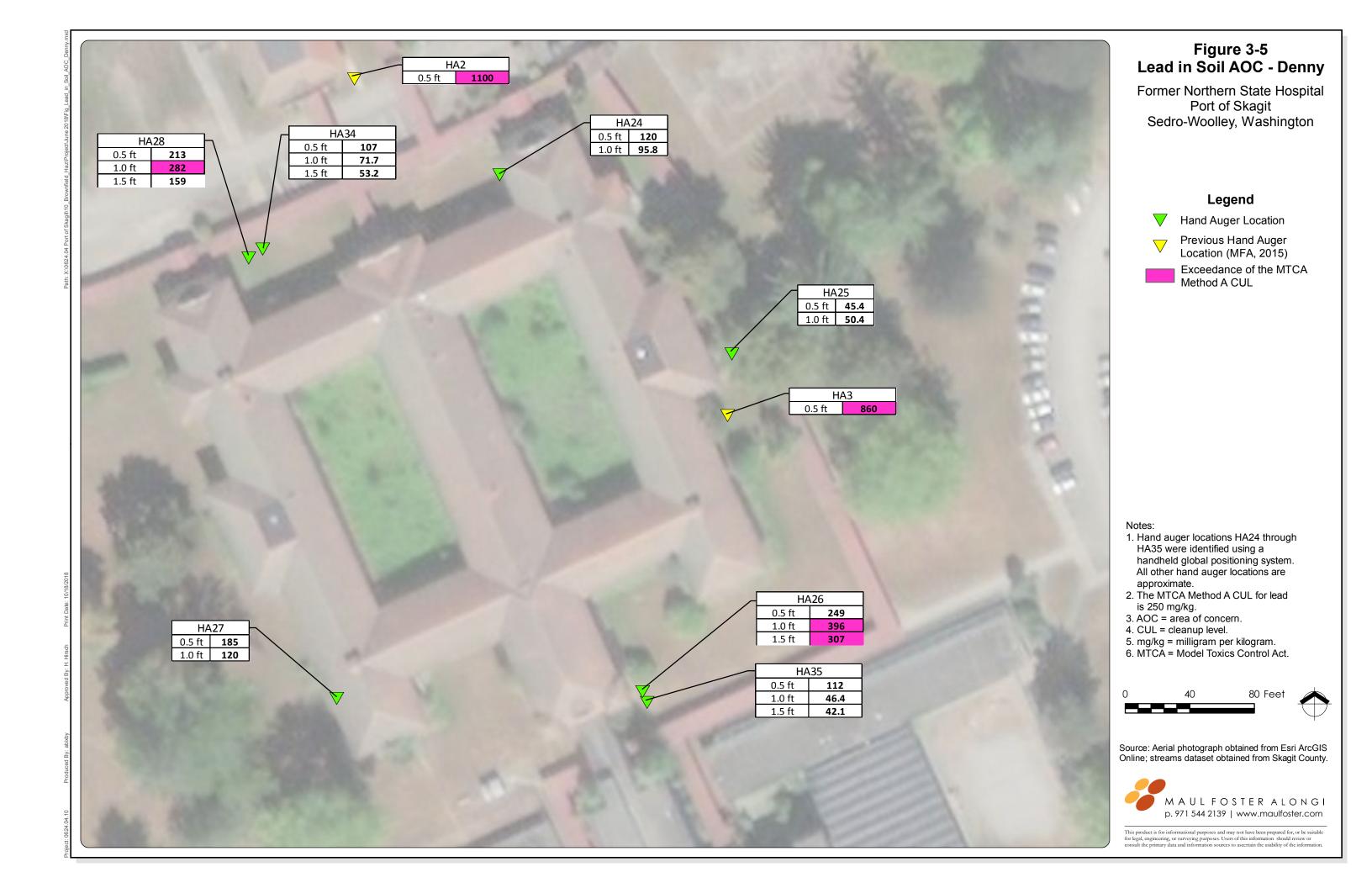
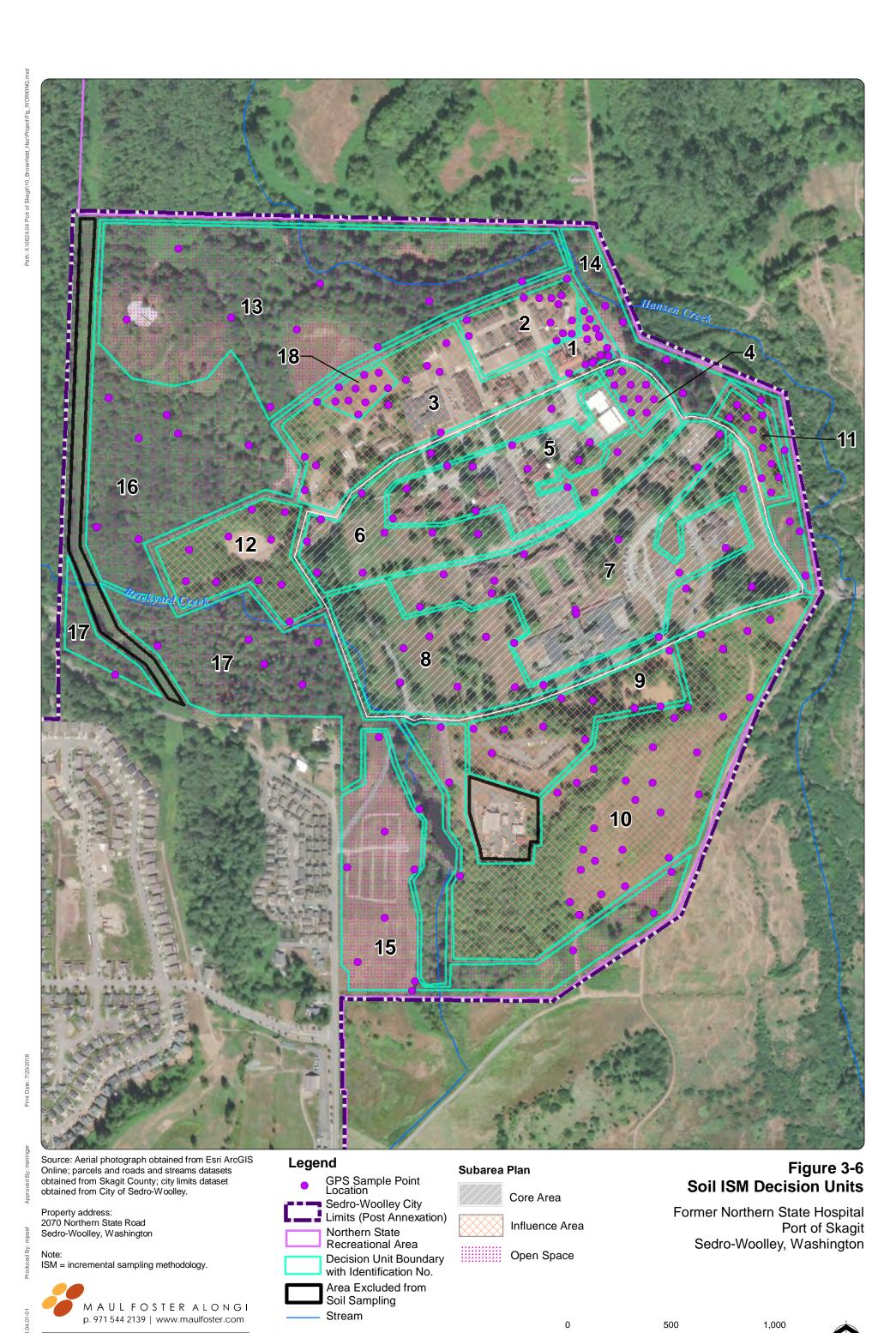



Figure 3-1


Former Laundry

Building AOC




Feet

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Feet

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

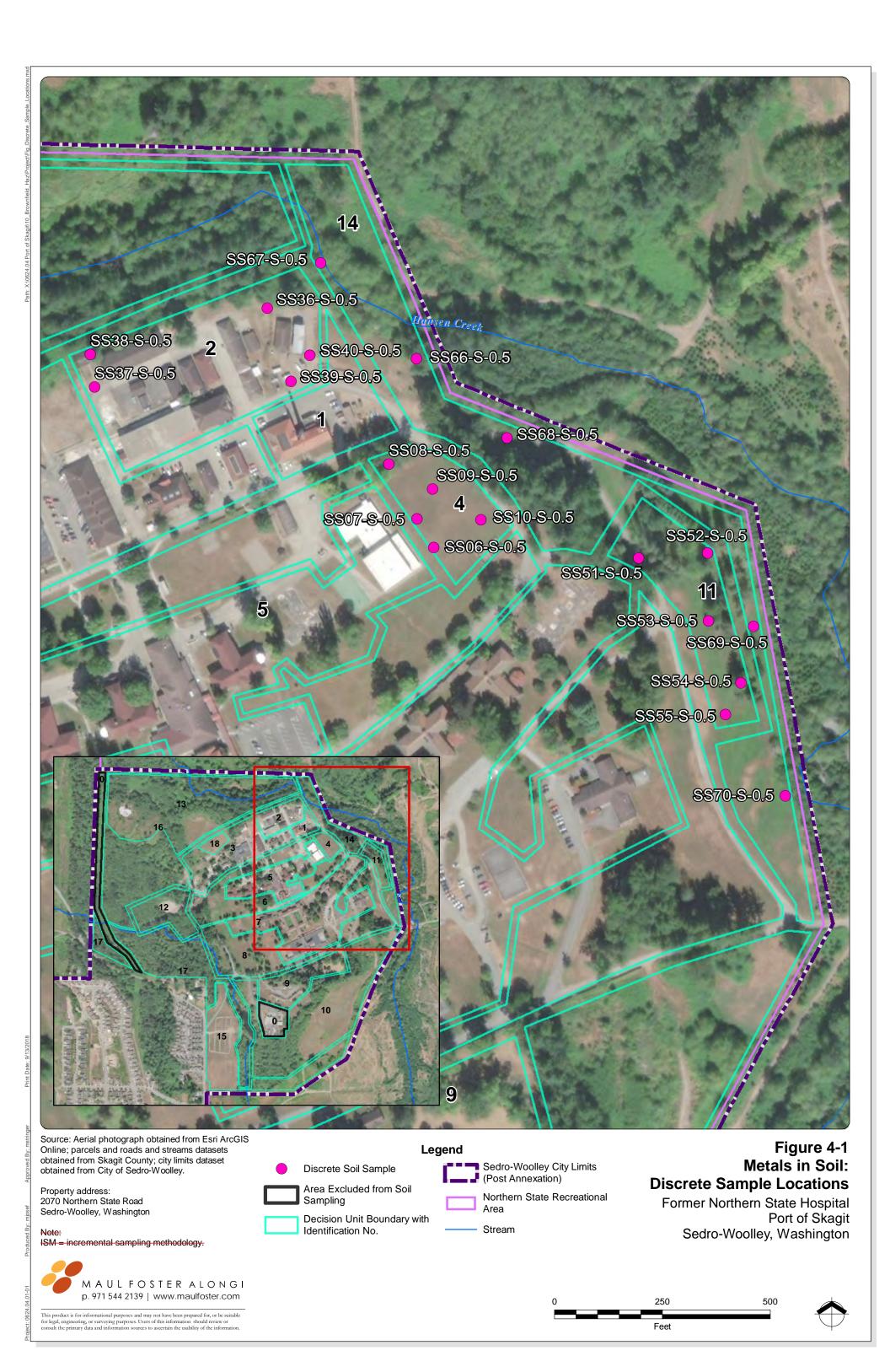
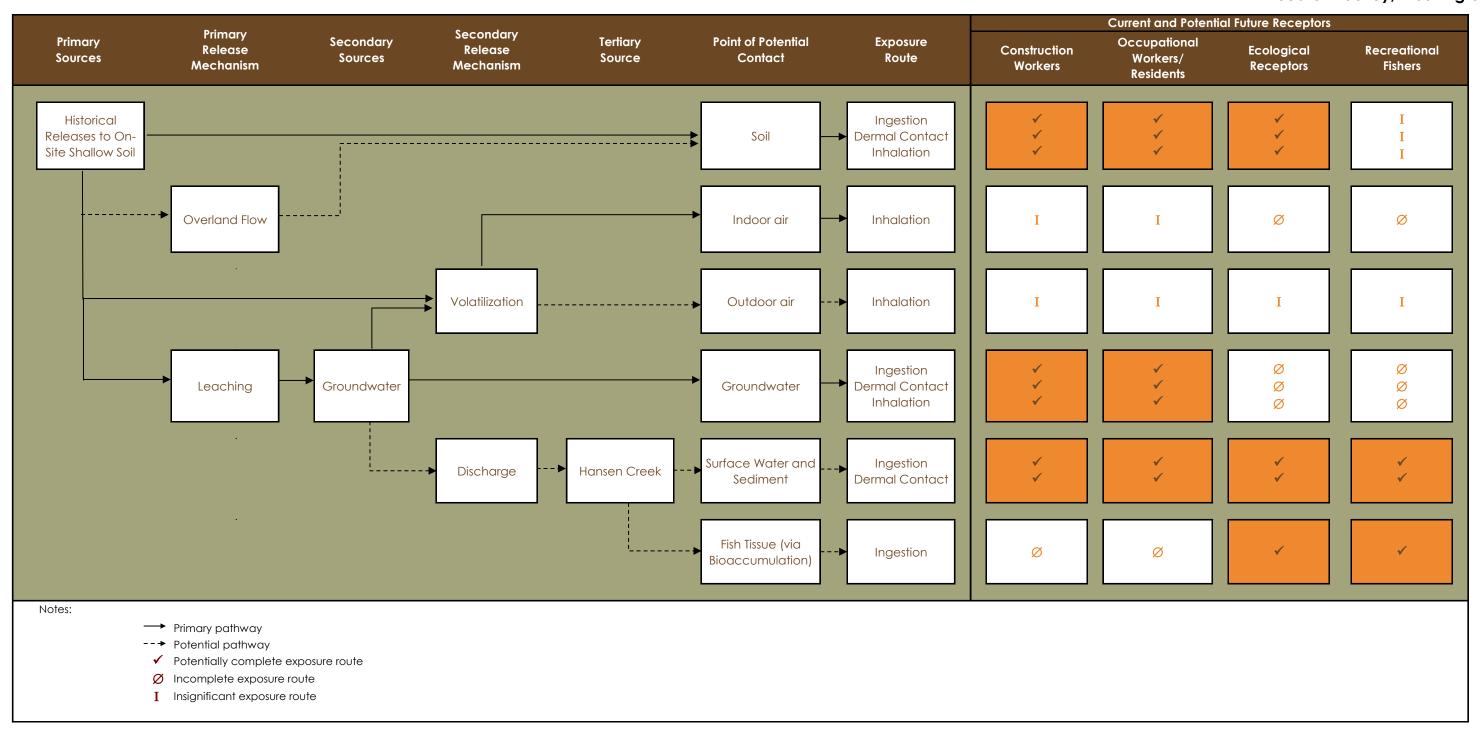
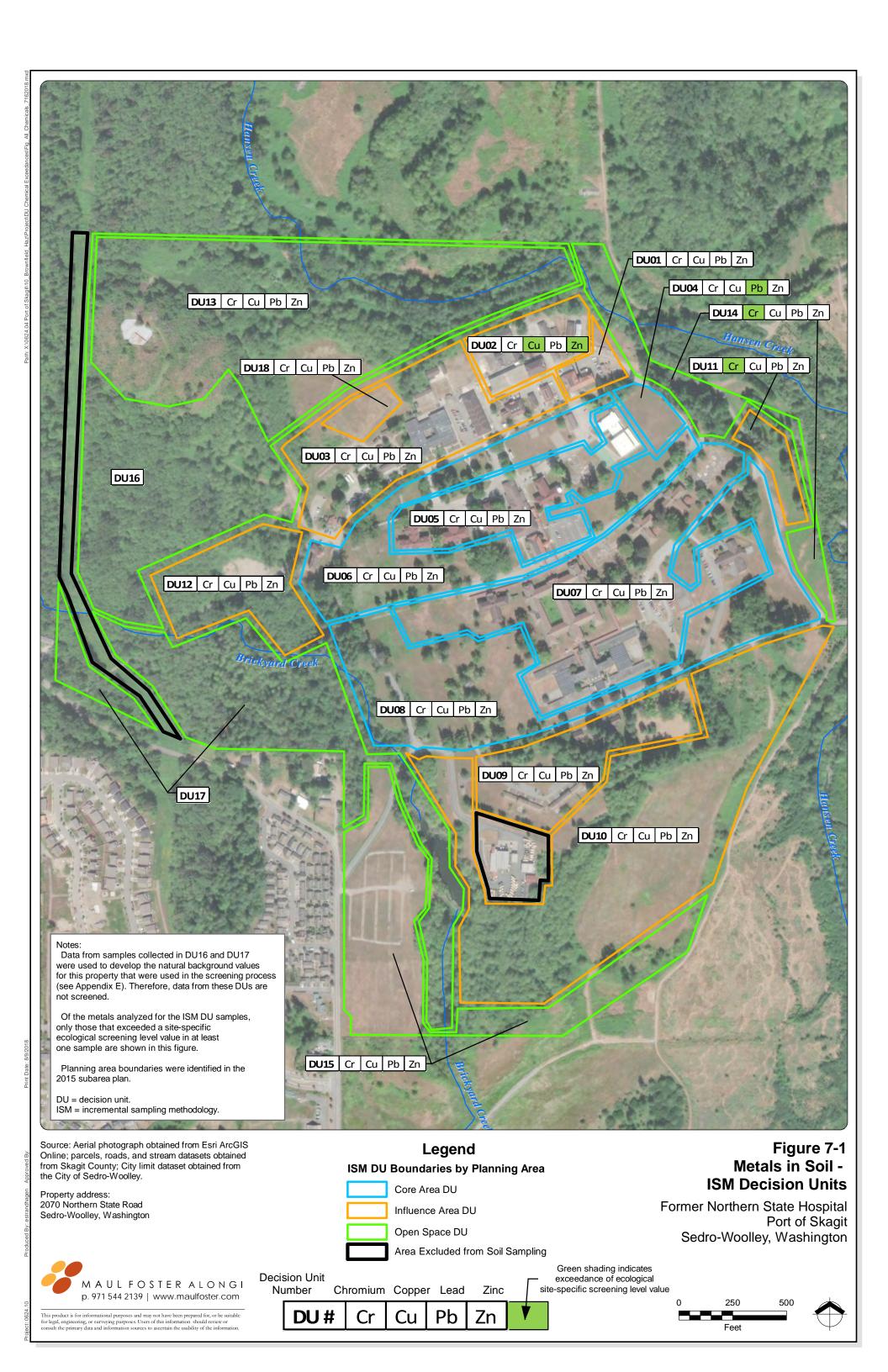




Figure 5-1
Conceptual Site Model
Former Northern State Hospital
Port of Skagit
Sedro-Woolley, Washington

APPENDIX A BORING LOGS

Maul	Foster &	Alon	ıgi, I	nc.		Project N	lumb	er	Well N	lumber	Sheet
			<u> </u>			0624.0				249	1 of 1
Proje Start Drille Geold	ct Name ct Location /End Date r/Equipment ogist/Engineer ple Method	2070 4/23/ Holt C. W	North 18 to 4 Service	ern St 4/23/18 es, Ind	tate Ro	essment oad, Sedro-V probe	Vooll	ey, Washin	gton	TOC Elevation (feet) Surface Elevation (fee Northing Easting Hole Depth Outer Hole Diam	15.0-feet 2.25-inch
	Well				ample i	Data		1		Soil Description	
Depth (feet, BGS)	Details	Interval	Percent Recovery	Collection Method g	Number `	Name (Type)	Blows/6"	Lithologic Column		<u>'</u>	
_ 1			32	GP		GP49-S-0.5 PID = 0.2 ppm	1		fines; 40% sar 30% gravel, fii	nd, fine to coarse graine	SW-SM); blackish brown; 30% ed, angular to subangular; angular; loose; trace organica aments; no odor; dry.
3									1.6 to 5.0 feet: no	ecovery.	
5 6 7		-	48	GP		GP49-S-7.0			40% sand, fine gravel, fine siz	AVELLY SILTY SAND e to medium grained, ai e, angular to subangula ments; woody debris; n	(SW-SM); brown; 20% fines, ngular to subangular; 40% ar; dense; black and o odor; moist.
9		_			F	MD = 0.4 ppm	1		7.4 to 10.0 feet: no	recovery.	
10 11 12 13 14			100	GP		GP49-S-10.0 PID = 0.0 ppm	7		sand, very fine	grained; vēry stiff; ora	95% fines, low plasticity; 5% inge mottling; no odor; dry.
									Total Depth = 15.0 <u>Borehole Completi</u> 0 to 15.0 feet: 2.5- 0 to 15.0 feet: Ben	on Details:	vith potable water.
NOTES	S: 1. bgs = below	w ground	d surfac	ce. 2. D	epths a	re relative to fe	et bg	s. 3. PID = pho	otoionization detector	4. ppm = parts per million.	

							_		Developed Log/Mell Cons	.1			
Maul Foster & Alongi, Inc.					Geologic Borehole Log/Well Construction								
wau	i Foster &	Alo	ngı, I	ınc.		Project l		er	Well Number	Sheet			
						0624.	04.10		GP50	1 of 1			
Proje	ect Name	Swi	ft Cent	ter - EF	A As	sessment			TOC Elevation (fee	<i>t</i>)			
Proje	ect Location	207	0 Norti	hern St	tate R	oad, Sedro-l	Wooll	ey, Washin	gton Surface Elevation (feet)			
Stan	t/End Date	4/23	3/18 to	4/23/18	8			•	Northing				
Drille	er/Equipment	Holt	t Servi	ces, In	c./Ge	oprobe			Easting				
	logist/Engineer	C. V				•			Hole Depth	5.0-feet			
Sam	ple Method	Dire	ct-Pus	sh					Outer Hole Diam	2.25-inch			
<u> </u>	Well			- Se	ample	Data			Soil Description	1			
36	Details	_	Percent Recovery	Collection Method C		l		Lithologic Column	Com Becompain				
oth et, E		Interval	<i>§ §</i>	tho	Number	Name (Type)	3/ows/6	l olo					
Depth (feet, BGS)		Inte	Pe. Re	No Co	N	rvaine (Type)	Blo	Col					
<u> </u>			46	GP		0050 0 0 5			0 to 1.1 feet: GRAVELLY SILTY SAND				
1	GP50-S-0.5 PID = 0.0 ppm								់ំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំ				
_ ′					·	GP50-S-1.5			coal-like material fragments; whitish fragments; no odor; moist.				
-						GP30-3-1.3 PID = 0.0 ppr			(FILL)	E			
_ 2			•		·	12 0.0 pp	ľ		1.1 to 2.3 feet: SILT (ML); light brown;	95% fines, low plasticity; 5%			
								НШППП	sand, very fine grained; no odor; d	ry			
3									2.3 to 5.0 feet: no recovery.				
										-			
										=			
4										<u></u>			
										<u> </u>			
5										1			
	KXXXXXXXXXXX								Tatal Daniel - F. O. Sant Inna				

Total Depth = 5.0 feet bgs.

Borehole Completion Details:
0 to 5.0 feet: 2.5-inch borehole.
0 to 5.0 feet: Bentonite chips hydrated with potable water.

			G	eologic	Borehole Log/Well Cons	struction	
Maı	ıl Foster &	Alongi, Inc.	Project Numb		Well Number	Sheet	
			0624.04.10)	GP51	1 of 1	
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method		Swift Center - El 2070 Northern S 4/23/18 to 4/23/1 Holt Services, In C. Wise Direct-Push	tate Road, Sedro-Wool 8	ley, Washin	TOC Elevation (feet) gton Surface Elevation (feet) Northing Easting Hole Depth 5.0-fe Outer Hole Diam 2.25-		
Depth (feet, BGS)	Well Details	Interval Percent Recovery Collection Method	ample Data Jegurn Vame (Type) Swoja	Lithologic Column	Soil Descriptio	n	
. 1 2 . 3 . 4		- 80 GP	PID = 0.0 ppm GP51-S-0.5 PID = 0.0 ppm GP51-S-1.0 PID = 0.0 ppm		0 to 0.2 feet: TOPSOIL; brown; 30% fi grained, angular to subangular; 1 loose; lots of organics; no odor; dr 0.2 to 0.9 feet: SILTY SANDY GRAVE 30% sand, fine to medium grained angular to subangular; dense; lots debris; no odor; dry. 0.9 to 4.0 feet: SILT (ML); light brown, sand, very fine grained; very stiff; 4.0 to 5.0 feet: no recovery.	0% gravel, fine size, angular; y. EL (GW-GM); black; 30% fines; d, angular; 40% gravel, fine size, s of coal-like fragments, woody	

Total Depth = 5.0 feet bgs.

Borehole Completion Details:
0 to 5.0 feet: 2.5-inch borehole.
0 to 5.0 feet: Bentonite chips hydrated with potable water.

0 to 10.0 feet: Bentonite chips hydrated with potable water.

		1	Geologic	Borehole Log/Well Cons	truction
Maul Foster &	Alongi, Inc.	Project Nun 0624.04. 1		Well Number GP53	Sheet 1 of 1
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method	Swift Center - EP. 2070 Northern St. 4/24/18 to 4/24/18 Holt Services, Ind C. Wise Direct-Push	ate Road, Sedro-Woo	olley, Washin	TOC Elevation (feet gton Surface Elevation (f Northing Easting Hole Depth Outer Hole Diam	•
Details Well Details	Interval Percent Recovery Collection Method & S	mple Data Japan Name (Type)	Lithologic Column	Soil Description	
2 3 4 5 5	_ 76 GP _ _ _ _	GP53-S-0.5 PID = 1.1 ppm GP53-S-1.0 PID = 0.6 ppm GP53-S-2.0 PID = 0.5 ppm		0 to 0.8 feet: GRAVELLY SILTY SAND 20% fines; 50% sand, medium to or subangular; 30% gravel, fine size, a terracotta and ash-like fragments; 10.8 to 1.2 feet: SILTY SAND with GRAV 60% sand, fine to coarse grained, a gravel, fine size, angular to subang coal-like fragments; no odor; dry. 1.2 to 3.8 feet: SILT (ML); light brown; sand, very fine grained; very stiff; of 3.8 to 5.0 feet: no recovery.	oarse grained, angular to angular to subangular; loose; no odor; dry.

Total Depth = 5.0 feet bgs.

Borehole Completion Details:
0 to 5.0 feet: 2.5-inch borehole.
0 to 5.0 feet: Bentonite chips hydrated with potable water.

Total Depth = 10.0 feet bgs.

<u>Borehole Completion Details:</u> 0 to 10.0 feet: 2.5-inch borehole.

0 to 10.0 feet: Bentonite chips hydrated with potable water.

Project Name Project Location Startificate Date Different Epidement Control Push Hotel Startificate Date Sample Method Different Push Hotel Services, Inc./Geoprobe C. Wise Sample Method Different Push Different Push Different Push Hotel Services, Inc./Geoprobe C. Wise Sample Method Different Push Different Push Sample Method Different Push Different Push Sample Method Different Push Sample Data Sample Method Different Push Different Push Sample Method Different Push Different	Maul Foster & Alongi, Inc.			nc.	Project Numb		Well Number	Sheet	
Well Details Sample Data Soul Description Page	Project Location Start/End Date Driller/Equipment Geologist/Engineer 2070 Northern St 4/23/18 to 4/23/18 Holt Services, Inc C. Wise					A Assessment ate Road, Sedro-Wool 3		TOC Elevation (feet) gton Surface Elevation (fee Northing Easting Hole Depth	131.1042 t) 30.0-feet
10		i	Dire			mple Data			2.25-111011
2 2 2 3 1 feet: SILT (ML); light brown; 95% fines, low plasticity; 5% sand, very fine to fine grained; very stiff, crange mottles; no odor, dry, very fine to fine grained; very stiff, crange mottles; no odor, dry, very fine to fine grained; very stiff, crange mottles; no odor, dry to most. 3.1 to 5.0 feet: no recovery. 5.0 to 9.4 feet: SILT (ML); light brown; 95% fines, low plasticity; 5% sand, very fine grained; very stiff, orange mottles, no odor, dry to most. 78 89 90 78 80 810 = 0.0 ppm PID = 0.0 p	(feet, BG	Details	Interval	Percent Recovery	Collection Method	Name (Type) Name (Type)	Lithologic		
100 GP	2	A A A A A A A A A A A A A A A A A A B <t< td=""><td>▼</td><td>62</td><td>GP</td><td>PID = 0.0 ppm</td><td></td><td>0.2 to 3.1 feet: SILT (ML); light brown; 95 sand, very fine to fine grained; very si dry.</td><td></td></t<>	▼	62	GP	PID = 0.0 ppm		0.2 to 3.1 feet: SILT (ML); light brown; 95 sand, very fine to fine grained; very si dry.	
PID = 0.0 ppm				100	GP			sand, very fine grained; very stiff; ora	% fines, low plasticity; 5% nge mottles; no odor; dry to
PID = 0.0 ppm PID =	8								
subangular; soft; no odor; wet. 11.6 to 13.3 feet: SILTY SAND (SM); gray; 30% fines; 70% sand, ver fine to fine grained; dense, no odor; wet. 13.3 to 13.6 feet: SILT (ML); gray; 100% fines, medium plasticity, soft no odor; moist. 13.6 to 13.9 feet: SILTY SAND (SM); gray; 30% fines; 70% sand, ver fine to fine grained; dense, no odor; wet. 13.9 to 15.0 feet: no recovery. 15.0 to 17.7 feet: SILT (MH); gray; 95% fines, high plasticity; 5% sand very fine grained; soft; no odor; moist. 17.7 to 18.2 feet: SANDY SILT (ML); gray; 80% fines, medium plasticity; 20% sand, very fine to fine grained; soft; no odor; moist. 18.2 to 19.3 feet: SILT (ML); gray; 95% fines, high plasticity; 5% sand very fine grained; soft; no odor; moist. 19.3 to 20.0 feet: no recovery.	10		Ā	78	GP	PID = 0.0 ppm		very fine to fine grained; dense; no oc 10.0 to 11.6 feet: SILT with GRAVEL (ML)	lor; moist ; light brown; 90% fines,
PID = 0.0 ppm PID = 0.0 ppm 13.3 to 13.6 feet: SILT (ML); gray; 100% fines, medium plasticity; sof no odor; moist. 13.6 to 13.9 feet: SILTY SAND (SM); gray; 30% fines; 70% sand, ver fine to fine grained; dense; no odor; wet. 13.9 to 15.0 feet: no recovery. 15.0 to 17.7 feet: SILT (MH); gray; 95% fines, high plasticity; 5% san very fine grained; soft; no odor; moist. 17.7 to 18.2 feet: SANDY SILT (ML); gray; 80% fines, medium plasticity; 20% sand, very fine to fine grained; soft; no odor; moist. 17.7 to 18.2 feet: SANDY SILT (ML); gray; 80% fines, medium plasticity; 20% sand, very fine to fine grained; soft; no odor; moist. 18.2 to 19.3 feet: SILTY (ML); gray; 95% fines, high plasticity; 5% sand very fine grained; soft; no odor; moist. 19.3 to 20.0 feet: no recovery.	11 12					PID = 0.0 ppm		subangular; soft; no odor; wet. 11.6 to 13.3 feet: SILTY SAND (SM); gray	; 30% fines; 70% sand, ver
no odor; moist. 13.6 to 13.9 feet: SILTY SAND (SM); gray; 30% fines; 70% sand, very fine to fine grained; dense; no odor; wet. 13.9 to 15.0 feet: no recovery. 15.0 to 17.7 feet: SILT (MH); gray; 95% fines, high plasticity; 5% sand very fine grained; soft; no odor; moist. 17.7 to 18.2 feet: SANDY SILT (ML); gray; 80% fines, medium plasticity; 20% sand, very fine to fine grained; soft; no odor; moist. 17.7 to 18.2 feet: SANDY SILT (ML); gray; 80% fines, medium plasticity; 20% sand, very fine to fine grained; soft; no odor; moist. 18.2 to 19.3 feet: SILT (ML); gray; 95% fines, high plasticity; 5% sand very fine grained; soft; no odor; moist. 19.3 to 20.0 feet: no recovery.	13					PID = 0.0 ppm		nne to nne gramed, dense, no odor, w	ei.
PID = 0.0 ppm PID = 0.0 ppm PID = 0.0 ppm PID = 0.0 ppm MW09-S-19.0 PID = 0.0 ppm PID = 0.0				86	GP	PID = 0.0 ppm		no odor; moist. 13.6 to 13.9 feet: SILTY SAND (SM); gray fine to fine grained; dense; no odor; w 13.9 to 15.0 feet: no recovery.	; 30% fines; 70% sand, ver vet
PID = 0.0 ppm plasticity; 20% sand, very fine to fine grained; soft; no odor; moist 18.2 to 19.3 feet: SILT (ML); gray; 95% fines, high plasticity; 5% sand very fine grained; soft; no odor; moist. 19.3 to 20.0 feet: no recovery.						PID = 0.0 ppm		very fine grained; soft; no odor; moist.	ıcə, піун ріазисіцу; 5% Sani
MW09-S-19.0 PID = 0.0 ppm very fine grained; soft, no odor; moist. 19.3 to 20.0 feet: no recovery.	18					PID = 0.0 ppm		plasticity; 20% sand, very fine to fine	grained; soft; no odor; mois
								very fine grained; soft; no odor; moist	
		S: 1 bas = 5	low are:	nd ourse	20 2 5	anthe are relative to fact to		marany nalusinyl chlarida saman 4 DID	Dionization dataster F

18.2 to 30.0 feet: 10x20 silica sand filter pack.

Monitoring Well Completion Details.

Washington State Department of Ecology Well Tag Number: BKL-333 Traffic-grade, flush-mounted, monitoring well vault.

0 to 19.2 feet: 2-inch diameter, schedule 40, polyvinyl chloride, riser

19.2 to 29.2 feet: 2-inch diameter, schedule 40, polyvinyl chloride, 0.010 machine slot, prepacked well screen.

29.2 to 29.4 feet: 2-inch, schedule 40, polyvinyl chloride pipe end cap.

NOTES: 1. bgs = below ground surface. 2. Depths are relative to feet bgs. 3. GW = temporary polyvinyl chloride screen. 4. PID = photoionization detector 5. ppm = parts per million. 6. WS = reconnaissance groundwater sample.

viau	I Foster &	Alon	ıgı, I	nc.	Project Nun 0624.04. 1		Well Number MW10	Sheet 1 of 2
Proje Start Drille Geol	ect Name ect Location t/End Date er/Equipment logist/Engineer uple Method	2070 4/23/ Holt : C. Wi	North 18 to 4 Servic	ern St 4/23/18 es, Ind	A Assessment ate Road, Sedro-Woo B c./Geoprobe	olley, Washin	TOC Elevation (feet) gton Surface Elevation (feet) Northing Easting Hole Depth Outer Hole Diam	130.4096 30.0-feet 2.25-inch
Deptn (feet, BGS)	Well Details	Interval	Percent Recovery	Collection Method S	Numple Data Nample Data Nample Na		Soil Description	
10		-	100	GP	< 4			
1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	100	GP	MW10-S-1.0 PID = 0.4 ppm		0 to 0.4 feet: CONCRETE; gray; no odor; dry. 0.4 to 1.4 feet: SILT (ML); dark brown; 95% f. 5% sand, very fine grained; very stiff; recorange mottles; no odor; dry. 1.4 to 5.0 feet: SILT (ML); light brown; 95% fi 5% sand, very fine grained; very stiff; no	nes, medium plasticity; I and black fragments; nes, medium plasticity;
3	Ţ				PID = 0.7 ppm			
5 6	Ž	- -	80	GP	PID = 0.0 ppm		5.0 to 6.2 feet: SILT with GRAVEL (ML); light plasticity; 10% gravel, fine grained, angu odor; wet.	
7					PID = 0.0 ppm	797	6.2 to 9.0 feet: SILT (ML); light brown; 100% stiff; trace fine sand; no odor; moist.	fines, high plasticity; vei
9							9.0 to 10.0 feet: no recovery.	
10 11		t	100	GP	PID = 0.1 ppm		10.0 to 11.3 feet: SILT with GRAVEL (ML); lig plasticity; trace sand; 10% gravel, fine siz soft; no odor; wet.	
12 13							11.3 to 14.0 feet: SILT (MH); light brown; 100 trace fine sand; firm; moist.	% fines, high plasticity;
14					MW10-S-13.5 PID = 0.8 ppm		@ 13.5 feet: color change to gray.	
15			400	0.5	PID = 0.0 ppm		14.0 to 15.0 feet: SILTY SAND; gray; 30% fin to fine grained; medium dense; no odor;	moist.
16			100	GP	PID = 0.0 ppm		15.0 to 16.8 feet: SANDY SILT (ML); gray; 60 40% sand, very fine grained; soft; no odd	
17					PID = 0.1 ppm		16.8 to 17.5 feet: SILT (ML); gray; 100% fine	s, low plasticity; soft; no
18					PID = 0.0 ppm		odor; moist. 17.5 to 18.3 feet: SILTY SAND (SM); gray; 30; 70% sand, very fine to fine grained; med moist.	0% fines, low plasticity; ium dense; no odor;
19					PID = 0.1 ppm		18.3 to 20.0 feet: SILT with SAND (ML); gray plasticity; 10% sand, very fine to fine gra	
20		_						

1.0 to 23.0 feet: Bentonite chips hydrated with potable water.

23.0 to 30.0 feet: 10x20 silica sand filter pack.

Monitoring Well Completion Details.

Washington State Department of Ecology Well Tag Number:

Traffic-grade, flush-mounted, monitoring well vault.

0 to 24.4 feet: 2-inch diameter, schedule 40, polyvinyl chloride, riser

24.4 to 29.4 feet: 2-inch diameter, schedule 40, polyvinyl chloride, 0.010 machine slot, prepacked well screen.

29.4 to 29.6 feet: 2-inch, schedule 40, polyvinyl chloride pipe end

NOTES: 1. bgs = below ground surface. 2. Depths are relative to feet bgs. 3. GW = temporary polyvinyl chloride screen. 4. PID = photoionization detector 5. ppm = parts per million. 6. WS = reconnaissance groundwater sample.

wau	I Foster 8	, Alo	ngı, ı	nc.	Project Nur		Well Number	Sheet
Proje Start Drille Geol	ect Name ect Location t/End Date er/Equipment logist/Engineer	207 4/2: Hol C. 1	70 North 3/18 to It Servic Wise	ern St 4/23/18 es, In	0624.04. PA Assessment tate Road, Sedro-Wo 8 c./Geoprobe		TOC Elevation (feet) gton Surface Elevation (feet) Northing Easting Hole Depth Outer Hole Diam	1 of 2 130.1546 30.0-feet
	nple Method Well		ect-Pus		ample Data		Soil Description	2.25-inch
Depth (feet, BGS)	Details	Interval	Percent Recovery	Collection Method C		Lithologic Column		
1 2 3 4 5 6 7 8 9		▼ .	- 100 - 100	GP GP	PID = 0.2 ppm PID = 0.4 ppm		0 to 0.4 feet: CONCRETE; gray; dry. 0.4 to 5.0 feet: SILT (ML); light brown; 95% fi sand, very fine to fine grained; very stiff; expanding silt; no odor; dry. 5.0 to 9.6 feet: SILT (ML); light brown; 95% fi sand, very fine to fine grained; very stiff; expanding silt; no odor; dry. 9.6 to 10.0 feet: SILTY SAND (SM); light brow very fine to fine; dense; no odor; moist. 10.0 to 11.7 feet: SILT (ML); light brown; 95%	nes, low plasticity; 5% orange mottles;
11 12 13					PID = 0.5 ppm PID = 0.1 ppm		5% sand, very fine grained; trace gravel; 11.7 to 13.5 feet: SILT (ML); gray; 100% fine odor; moist. 13.5 to 14.0 feet: SILTY SAND (SM); gray; 3	very soft; no odor; wet. s, high plasticity; soft; no
14 15			- 100	GP	PID = 0.3 ppm PID = 0.0 ppm		fine to fine grained; firm; no odor; moist. 14.0 to 15.0 feet: SILT (ML); gray; 100% fine odor; moist. 15.0 to 17.5 feet: SILT (ML); gray; 95% fines very fine grained; trace gravel; very soft;	s, high plasticity; soft; no
16 17					PID = 0.0 ppm		. S. y graniou, nado gravor, vory son,	600., 1101.
18 19 20			_		PID = 0.1 ppm PID = 0.2 ppm PID = 0.0 ppm PID = 0.0 ppm		17.5 to 18.0 feet: SILTY SAND (SM); gray; 36 fine to fine grained; medium dense; no o 18.0 to 19.0 feet: SILT (ML); gray; 100% fine odor; moist. 19.0 to 19.5 feet: SILTY SAND (SM); gray; 36 fine to fine grained; dense; no odor; mois 19.5 to 20.0 feet: SILT (ML); gray; 100% fine	dor; wet. s, high plasticity; soft; no 0% fines; 70% sand, ver t.
NOTE					epths are relative to feet	bgs. 3. GW = ter	nporary polyvinyl chloride screen. 4. PID = photoion	ization detector 5. ppm = pa
					groundwater sample.	J	, <u> </u>	P P

16.0 to 28.0 feet: 10x20 silica sand filter pack.

28.0 to 30.0 feet: Slough.

Monitoring Well Completion Details:

Washington State Department of Ecology Well Tag Number: BKL-332 Traffic-grade, flush-mounted, monitoring well vault.

0 to 17.0 feet: 2-inch diameter, schedule 40, polyvinyl chloride, riser

0 to 27.0 feet: 2-inch diameter, schedule 40, polyvinyl chloride, 0.010 machine slot, prepacked well screen.

27.0 to 27.2 feet: 2-inch, schedule 40, polyvinyl chloride pipe end cap.

NOTES: 1. bgs = below ground surface. 2. Depths are relative to feet bgs. 3. GW = temporary polyvinyl chloride screen. 4. PID = photoionization detector 5. ppm = parts per million. 6. WS = reconnaissance groundwater sample.

GBLWC W:\GINT\GINTWPROJECTS\0624.04.10\MW09 TO MW11 GP49 TO GP54.GPJ 7\9\18

									gic Borehole Log/Well Construction Well Number Sheet			
Mau	I Foster &	Alo	ngi,	Inc.		Project I 0624.			Well Number Sheet MW01 1 of 2			
Proje Star Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer nple Method	249 6/8/ Holi C. V	09 Hul 15 to 6 t Servi	Drive 3/8/15 ces, Ir	e, Sea	ital Property Iro-Woolley, eoprobe 782	Was	hington	TOC Elevation (feet) Surface Elevation (feet) Northing Easting Hole Depth Outer Hole Diam 119.5 25.0-fe			
(\$;	Well			_s Sa	ample	Data		0	Soil Description			
Depth (feet, BGS)	Details	Interval	Percent Recovery	Collection Method o	Number	Name (Type)	Blows/6"	Lithologic Column				
			68	GP					0.0 to 0.4 feet: ASPHALT; black; 10% fines; 30% sand, medium	i to		
. 2									coarse, angular; 60% gravel, fine, angular; dry. 0.4 to 3.4 feet: SILT (ML); yellowish brown; 95% fines, hard, nonplastic; 5% sand, very fine; dry.			
. 3										_		
4									3.4 to 5.0 feet: no recovery.			
5 6 7 8		Ī	90	GP					5.0 to 9.2 feet: SILT (ML); yellowish brown; 95% fines, hard, nonplastic; 5% sand, very fine; dry.	. —		
9			48	GP					9.2 to 9.5 feet: GRAVELLY SAND (SP); brownish black; 10% fir. 60% sand, medium to coarse, angular to subangular; 30% gravel, fine, angular to subangular; loose; dry.	 าe		
11 12				O.					19.5 to 10.0 feet: no recovery. 10.0 to 10.8 feet: GRAVELLY SAND (SW); brownish black; 10% fines; 60% sand, medium to coarse, angular to subangular; 30% gravel, fine, angular to subangular; loose; dry. 10.8 to 12.0 feet: SILT (ML); yellowish brown; 95% fines, hard to stiff, nonplastic; 5% sand, very fine; moist.			
13 14								+1	12.0 to 12.4 feet: SILT (ML); blue gray; 90% fines, nonplastic; 10 sand, very fine; soft; moist to wet. 12.4 to 15.0 feet: no recovery.	09		
15 16		l	80	GP					15.0 to 16.5 feet: SILTY SAND (SM); blue gray; 20% fines; 80% sand, very fine; medium dense; moist.	; -		
17									16.5 to 18.0 feet: SILT (ML); blue gray; 90% fines, low plasticity; medium soft; 10% sand, very fine; moist.	;-		
18 19	Z	7							18.0 to 19.0 feet: SILTY SAND (SM); blue gray; 20% fines; 80% sand, very fine, medium dense; moist to wet, wet at 18.5 fee			
13	 								19.0 to 20.0 feet: no recovery.	-		
20 NOTE	ES: GP = Geopro	obe ma	crocore	liner.						_		
$\overline{\sum}$	Water level at	time c	of drilli	ing.								

Total Depth = 25.0 feet below ground surface.

Borehole Completion Details:

0.0 to 25.0 feet: 3.75-inch borehole.

0.0 to 1.0 feet: Concrete.

1.0 to 19.0 feet: Bentonite chips hydrated with potable water.

19.0 to 25.0 feet: 10x20 silica sand filter pack.

<u>Monitoring Well Completion Details:</u> Washington State Department of Ecology Well Tag Number BIQ 042.

Traffic grade, flush-mounted, monitoring well vault.

0.0 to 19.8 feet: 2-inch diameter, schedule 40, polyvinyl chloride, riser pipe.

19.8 to 24.8 feet: 2-inch diameter, schedule 40, polyvinyl chloride, 0.010 machine slot, prepacked, well screen.

24.8 to 20.0 feet: 2-inch, schedule 40, polyvinyl chloride pipe end

Maul Foste	r &	Alo	ngi,	Inc.		Project I	Numb	per	Borehole Log/Well Cons	Sheet
Project Name Project Locatio Start/End Date Driller/Equipme Geologist/Engi Sample Method	ent neer	2490 6/8/1 Holt C. W	9 Hub 15 to 6 Servic	Drive /8/15 ces, In	e, Sed	0624. tal Property Iro-Woolley, coprobe 782	Was		MW02 1 of 2 TOC Elevation (feet) Surface Elevation (feet) 113.3 Northing Easting Hole Depth 20.0-fi Outer Hole Diam 3.75-ji	
(Geet, BGS) Weight Detail Det	ll .		Percent Recovery		ample	Data	9/s.	Lithologic Column	Soil Description	3.75-inch
Dept.										
			72	GP					0.0 to 0.3 feet: GRAVEL (GP); gray; 5 to coarse, angular; 70% gravel, co 0.3 to 0.6 feet: SILTY SAND (SM); ble medium, angular to subangular; d 0.6 to 3.6 feet: SILT (ML); yellowish b nonplastic; 15% sand, very fine to 3.6 to 5.0 feet: no recovery.	parse, angular; dry. (FILL) ack; 20% fines; 80% sand, dry. rown; 85% fines, hard,
- 5 - 6			80	GP					5.0 to 7.2 feet: SILT (ML); yellowish b nonplastic; 15% sand, very fine to	
_ 8									7.2 to 7.4 feet: SAND (SW); dark brownedium to coarse, angular to sub angular to subangular; dry. 7.4 to 9.0 feet: SILT (ML); yellowish bound to 10.0 feet: no recovery.	angular; 40% gravel, coarse,
. 11			48	GP					10.0 to 12.4 feet: GRAVEL (GW); blac medium to coarse, angular; 70% of to subangular; dry to moist. @ 11.0 feet: Unit becomes wet.	
13								<u> </u>	12.4 to 15.0 feet: no recovery.	
16			48	GP					15.0 to 16.4 feet: SANDY GRAVEL (G sand, medium to coarse, angular fine to medium, angular to subang	to subangular; 60% gravel,
17 18 19									16.4 to 16.8 feet: SANDY GRAVEL (Confines; 40% sand, medium to coars to medium, angular; moist (a) 16.8 feet: Unit becomes wet. 16.8 to 17.4 feet: SANDY GRAVEL (Confine to medium, angular; 60 angular to subangular; wet. 17.4 to 20.0 feet: no recovery.	se, angular; 50% gravel, fine GWS); gray; 10% fines; 30%
20	eoproi	be mad	crocore	liner.						

Total Depth = 20.0 feet below ground surface.

Borehole Completion Details:

0.0 to 20.0 feet: 3.75-inch borehole.

0.0 to 1.0 feet: Concrete.

1.0 to 13.0 feet: Bentonite chips hydrated with potable water.

13.0 to 20.0 feet: 10x20 silica sand filter pack.

Monitoring Well Completion Details: Washington State Department of Ecology Well Tag Number BIQ 041.

Traffic grade, flush-mounted, monitoring well vault.

0.0 to 14.0 feet: 2-inch diameter, schedule 40, polyvinyl chloride, riser pipe.

14.0 to 19.0 feet: 2-inch diameter, schedule 40, polyvinyl chloride, 0.010 machine slot, prepacked, well screen.

19.0 to 19.2 feet: 2-inch, schedule 40, polyvinyl chloride pipe end

Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method Well Details	Northern S 24909 Hub 6/8/15 to 6/ Holt Service	State H o Drive, /8/15 ces, Ind	-	7822DT	shington	Well Number MW03 TOC Elevation (feet) Surface Elevation (feet) Northing Easting Hole Depth Outer Hole Diam Soil Description	Sheet 1 of 2 115.5 20.0-feet 3.75-inch
Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method (SO Well Details	24909 Hub 6/8/15 to 6/ Holt Servic C. Wise Direct Pus	Drive, 1/8/15 Ces, Inc	Sedro-Woo	lley, Was		Surface Elevation (feet) Northing Easting Hole Depth Outer Hole Diam	20.0-feet
Well Details	Interval Percent Recovery	Collection Method S		[ype] "9/smoj	ogic nn		3.79-IIICI
		Collectio Method		ype) "9/smo/s	logic		
1	92	GP		E	Lithologic Column		
3						0.0 to 0.8 feet: SANDY SILT (ML); brown; 70 nonplastic; 30% sand, very fine to fine; tr (TOPSOIL) 0.8 to 4.6 feet: SILT (ML); yellowish brown; 9 nonplastic; 5% sand, very fine; orange m	ace organics; dry.
5					$H \cap H \cap H$	4.6 to 5.0 feet: no recovery.	
6	100	GP				5.0 to 8.0 feet: SILT (ML); yellowish brown; 9 nonplastic; 5% sand, very fine; orange m	
9						8.0 to 10.0 feet: SILT (ML); yellowish brown; nonplastic; 5% sand, very fine; soft; oran	
0 1	<u>96</u>	GP				10.0 to 12.2 feet: SILT (ML); yellowish brown nonplastic; 5% sand, very fine; soft; oran wet at 10.5 feet.	
3						12.2 to 14.8 feet: SILT (ML); blue gray; 100% plasticity, very soft; intermittent lenses of 0.2 inches thick; wet.	fines, medium silty sand less than
5						11 0 to 15 0 foot no recovery	
6	100	GP				14.8 to 15.0 feet: no recovery. 15.0 to 20.0 feet: SILT WITH SAND (ML); blu soft, medium plasticity; 20% sand, very f of silty sand less than 0.2 inches thick; w	ne; intermittent lense
OTES: GP = Geopro	obe macrocore	liner.	1		1 - 1 - 1 - 1 - 1		
σ. Εσ. σι = ασ οριο	madrodore	101 .					
☑ Water level at t		,					

			Geologic Borehole Log/Well Construction						
Maul	l Foster & A	Alongi, Inc.	Project Numbe	er	Well Number	Sheet			
			0624.04.07		MW03	2 of 2			
Depth (feet, BGS)	Well Details	Interval Percent Recovery Collection Method	ample Data Language Language	Lithologic Column	Soil Descriptio	on			

Total Depth = 20.0 feet below ground surface.

Borehole Completion Details: 0.0 to 20.0 feet: 3.75-inch borehole.

0.0 to 1.5 feet: Concrete.

1.5 to 13.5 feet: Bentonite chips hydrated with potable water. 13.5 to 20.0 feet: 10x20 silica sand filter pack.

Monitoring Well Completion Details:
Washington State Department of Ecology Well Tag Number BIQ 043.

Traffic grade, flush-mounted, monitoring well vault.

0.0 to 14.5 feet: 2-inch diameter, schedule 40, polyvinyl chloride, riser pipe.

14.5 to 19.5 feet: 2-inch diameter, schedule 40, polyvinyl chloride, 0.010 machine slot, prepacked, well screen.

19.5 to 19.7 feet: 2-inch, schedule 40, polyvinyl chloride pipe end

Maul Foster &	Alongi, Ir	nc. Project	Number	Borehole Log/Well Consti	Sheet	
			1.04.07	MW04	1 of 2	
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method	24909 Hub D 6/8/15 to 6/8/	ate Hospital Propert Prive, Sedro-Woolley /15 s, Inc./Geoprobe 78:	, Washington	TOC Elevation (feet) Surface Elevation (feet) Northing Easting Hole Depth Outer Hole Diam 3.75		
i		Sample Data		Soil Description	0.70 11101	
Debth (feet, BGS) Well Details	Interval Percent Recovery	Sample Data Sample Data Sample Data Name (Type	Blows/6" Lithologic Column	Con Boothpilon		
1	70 0	GP GP		0.0 to 0.7 feet: SAND (SW); dark gray; 20 loose; 20% gravel, medium, angular in 0.7 to 1.5 feet: SAND (SW); dark gray to sand, fine to medium, loose; 10% gray subangular; trace coal fragments; dry. 1.5 to 3.2 feet: GRAVELLY SAND (SW); sand, fine to medium, loose; 40% gray angular to subangular; dry. 3.2 to 5.0 feet: no recovery. 5.0 to 5.5 feet: GRAVELLY SAND (SW); sand, fine to medium, loose; 40% gray angular to subangular; dry. 5.5 to 6.2 feet: SANDY GRAVEL (GW); not angular to subangular; dry. 6.5 to 8.5 feet: SILT WITH SAND (ML); do medium plasticity, soft; 20% sand, versubangular; moist. 8.5 to 10.0 feet: no recovery.	o subangular; dry. black; 20% fines; 70% vel, medium, angular to . gray; 20% fines; 40% vel, medium to coarse, eddish brown; 10% fines; r to subangular; 50% bangular, loose; trace ark gray; 80% fines, ry fine to fine, angular to	
11	92	GP GP		10.0 to 11.1 feet: SILT WITH SAND (ML, medium plasticity, soft; 20% sand, ve subangular; moist. 11.1 to 11.4 feet: SANDY GRAVEL (GW) fines; 40% sand, medium to coarse, a 50% gravel, fine to medium, angular brick pieces; moist. 11.4 to 13.2 feet: SILTY SAND (SM); dark sand, fine to medium, angular to subargments; moist. 13.2 to 13.8 feet: SANDY SILT (ML); dark nonplastic; 30% sand, very fine to fine trace lenses of silty sand; moist. 13.8 to 15.0 feet: NANDY SILT (ML); dark plasticity, stiff to medium stiff; 25% sa angular to subangular; moist to wet, to	ry fine to fine, angular to ; reddish brown; 10% angular to subangular; to subangular; to subangular, loose; track gray; 30% fines; 70% angular; stiff; trace brick or gray; 70% fines, hard, e, angular to subrounded or gray; 75% fines, low and, very fine to fine,	
20				19.6 to 20.0 feet: no recovery.		
NOTES: GP = Geopro	be macrocore line	er.				

			Geologic Borehole Log/Well Construction					
Mau	l Foster & A	Alongi, Inc.	Project Number	er	Well Number	Sheet		
			0624.04.07		MW04	2 of 2		
Depth (feet, BGS)	Well Details	Interval Percent Recovery Collection Method &	ample Data John Name (Type) Name (Type)	Lithologic Column	Soil Descriptio	n		

Total Depth = 20.0 feet below ground surface.

Borehole Completion Details: 0.0 to 20.0 feet: 3.75-inch borehole.

0.0 to 1.5 feet: Concrete.

1.5 to 8.0 feet: Bentonite chips hydrated with potable water.

8.0 to 20.0 feet: 10x20 silica sand filter pack.

Monitoring Well Completion Details: Washington State Department of Ecology Well Tag Number BIQ 040.

Traffic grade, flush-mounted, monitoring well vault.

0.0 to 9.0 feet: 2-inch diameter, schedule 40, polyvinyl chloride, riser pipe.

9.0 to 19.0 feet: 2-inch diameter, schedule 40, polyvinyl chloride, 0.010 machine slot, prepacked, well screen.

19.0 to 19.2 feet: 2-inch, schedule 40, polyvinyl chloride pipe end

Project: Port of Skagit Project Number: 1303-003 Logged by: CJT Date Started:

8/28/17 Surface Conditions: Asphalt Well Location N/S: 8' N of NE tank room corner

23' W of NE tank room corner

Reviewed by: EBF Date Completed: 8/28/17

Well Location E/W:

BORING **B01** LOG | MW05

Site Address: 2070 Northern State Road

Sedro-Woolley, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion --

feet bgs

				Da	ite Completed	l: 8/28	/17		After Comple	etion feet bgs
Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic D	Description	Well Detail/ Water Depth
0 -				0.1	B01-0.5	GP		Asphalt Dry GRAVEL with sand, traddark brown to black, no hyd 75) (fill).		
_	$\left \right $		100	0.0		ML		Moist SILT, trace clay and v gray, no hydrocarbon odor		an to
5-			75	0.0	B01-04	SM ML		Moist SAND with gravel and gray/black/brown, no hydro 15). Moist, clayey SILT, trace ve wood, tan to gray, no hydro	carbon odor (19	ıce
_	$\left\langle \cdot \right\rangle$			0.0	B01-08					. 1000 1000
10 —			100	0.2		ML		Moist SILT with fine sand, to dark brown, moderate orga hydrocarbon odor (80-20-0)	nic odor, no	roots,
-	$\left\langle \cdot \right\rangle$			0.2	B01-12	SM		Wet, silty SAND, dark brown hydrocarbon odor (20-80-0)		
-			100	0.0		SM-ML		Moist to wet SILT and fine Spieces, dark brown/gray, ve hydrocarbon odor (50-50-0)	ry faint possibl	
15 —	\bigwedge			0.3	B01-16	ML		Moist to wet SILT, trace fine possible hydrocarbon odor		ry faint
-				0.2		SM-ML		Moist to wet interbedded SI SILTY SAND, gray, no hydro 0).		
20	\bigwedge		100	0.2	B01-20			Boring terminated at 20 fee monitoring well MW05, scre feet bgs.		
Drillin	ng Co	./Drille	r: S	tandard Probe/F	Russell We	ell/Auger D	iameter:	1/2 inches	Notes/Comme	ents:
	_	uipmer		eoProbe Truck		ell Screene				
-	Sampler Type: Liner					reen Slot S		0.010 inches		
1		ype/We	_		I	ter Pack U		Colorado silica sand		
					-	rface Seal nular Seal		Concrete Bentonite		
1		Depth: ID No.:		JP 714	9	nular Seal onument Ty		Flush mount	Page:	1 of 1
									. ~33.	

Project: Port of Skagit **Project Number:** 1303-003 CJT Logged by: **Date Started:** 8/28/17

Surface Conditions: Concrete

Well Location N/S: 3' S of SW loading dock corner Well Location E/W: 41' W of SW loading dock corner

Reviewed by: **EBF Date Completed:** 8/28/17 BORING **B05** LOG MW06

Site Address: 2070 Northern State Road

Sedro-Woolley, Washington

Water Depth At Time of Drilling

feet bgs

Water Depth After Completion --

feet bgs

		Da	te Complete	d: 8/28	/17	After Completion	reet bgs
Depth (feet bgs) Interval Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class		Lithologic Description	Well Detail/ Water Depth
0 -	75	0.3		SM-ML		Concrete Crushed asphalt Moist SILT and fine SAND, trace organics, mottled tan/gray, no hydrocarbon odor (50-50-0).	
-		0.4	B05-04			Maria Oli Tariti Carana da Maria	
5—	100	0.3		ML		Moist SILT with fine sand, trace clay, trace organics, mottled tan/gray, no hydrocarbon odor (85-15-0).	
-/\		0.4	B05-08				
10 —	100	0.4					
-/\		0.4	B05-12	ML		Moist SILT with clay, gray, no hydrocarbon odor	
	100	0.3				(100-0-0).	
15 —		0.4	B05-16	SM	20000000 20000000 20000000 20000000	Wet, silty SAND, gray, no hydrocarbon odor (40- 60-0).	\sqrt{\sq}}}}}}}}}} \sqrt{\sq}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}} \sqrt{\sqrt{\sqrt{\sq}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{
	100	0.2		ML		Wet SILT and CLAY, trace sand, gray, no hydrocarbon odor (95-5-0).	
20		0.2	B05-20	SM		Wet, silty SAND, gray, no hydrocarbon odor (40-60-0).	7777
Drilling Co./Driller:	Sta	andard Probe/F	Russell W	ell/Auger D	iameter:	1/2 inches Notes/Comments:	
Drilling Equipment	: Ge	eoProbe Truck	w	ell Screene	d Interval:	10-20 feet bgs Boring terminated at 20 fee	t bgs. Completed

Sampler Type:

Liner lbs

Hammer Type/Weight: 20 **Total Boring Depth:** feet bgs 20 **Total Well Depth:** feet bgs BJP 715 State Well ID No.:

Screen Slot Size: Filter Pack Used:

Monument Type:

0.010 Colorado silica sand Surface Seal: Concrete **Annular Seal:** Bentonite

Flush mount

Boring terminated at 20 feet bgs. Completed as monitoring well MW06, screened from 10 to 20 feet bgs.

inches

1 of 1 Page:

Project: Port of Skagit Project Number: 1303-003 Logged by: GCF Date Started: 9/19/17

Surface Conditions: Grass 6' S of SW maintenance building corner Well Location N/S:

Well Location E/W: 6' E of SW maintenance building corner Reviewed by: EBF

Date Completed: 9/19/17 BORING **B15** LOG | MW07

Site Address: 7682 Northern State Road

Sedro-Woolley, Washington

Water Depth At - Time of Drilling

15 feet bgs

Water Depth

After Completion 10.16 feet bgs

Depth (feet bgs)	Interval	Blow Count	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic D	escription	Well Detail/ Water Depth
0 -			95	0.0		SM		Moist, silty SAND, trace gra hydrocarbon odor (30-65-5).	vel, brown, no	
5—			100	16.3	B15-7	SM		Moist, silty fine SAND, gray, odor (40-60-0).		
10 —			90	0.4		ML		Moist SILT with fine sand, b streaks, no hydrocarbon od	rown with gray or (80-20-0).	<u>~</u>
15 —			90	1.1	B15-12	SM ML	2000 2000 2000 2000 2000 2000 2000 200	Moist, silty fine SAND, gray, odor (40-60-0). Moist to wet SILT with fine shydrocarbon odor (90-10-0).	sand, gray, no	
20			0	0.2	B15-16			No recovery. Boring terminated at 20 feet monitoring well MW07, scre	bgs. Completed as ened from 10 to 20	
Drillin Drillin Samp Hamn Total	g Equ ler Ty ner Ty Borin Well I	./Drille uipmer /pe: ype/We ig Dept Depth: ID No.:	nt: (20	W Solbs File feet bgs Ar	ell/Auger D ell Screene creen Slot S Iter Pack Usurface Seals nnular Seal	d Interval: Size: sed:	1/2 inches 10-20 feet bgs 0.010 inches Colorado silica sand Concrete Bentonite Flush mount	Notes/Comments:	1 of 1

Project: Port of Skagit **Project Number:** 1303-003 Logged by: GCF **Date Started:** 9/19/17 Surface Conditions: Asphalt

Well Location N/S: 15' S of SE maintenance building corner Well Location E/W: 12' E of SE maintenance building corner

Reviewed by: EBF **Date Completed:** 9/19/17

Monument Type:

Flush mount

BJP 717

State Well ID No.:

Site Address: 7682 Northern State Road Sedro-Woolley, Washington

LOG | MW08

B16

Water Depth At Time of Drilling

BORING

15 feet bgs

Water Depth

After Completion 12.62 feet bgs

1 of 1

Page:

1		_		0,10,			-	· I
Depth (feet bgs) Interval	% Recovery	PID (ppm)	Sample ID	USCS Class	Graphic	Lithologic [Description	Well Detail/ Water Depth
	90	0.0		SM		Moist, silty SAND with grav hydrocarbon odor (20-70-10	rel, brown, no 0).	
5-	20	0.0						
10 —	0					No recovery		
15 —	30	0.0	B16-15	ML		Moist to wet SILT with fine hydrocarbon odor (70-30-0)	sand, gray, no).	
20 Poilling Co (Poi	100	0.1	B16-20	SM	00000000000000000000000000000000000000	Wet, silty fine to medium S. hydrocarbon odor (20-80-0)).	
Drilling Co./Dr Drilling Equipn Sampler Type: Hammer Type/ Total Boring D	nent: G L Weight:		We Scr Ibs Filt	II/Auger D II Screene een Slot S er Pack Us face Seal:	d Interval: Size: sed:	1/2 inches 10-20 feet bgs 0.010 inches Colorado silica sand Concrete	Notes/Comments: Boring terminated at 20 feet as monitoring well MW08, s to 20 feet bgs.	t bgs. Completed creened from 10
Total Well Dep	th: 2		-	nular Seal:	:	Bentonite		

APPENDIX B FIELD SAMPLING DATA SHEETS

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA16
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA16-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		9:36:00 AM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

• •	Rootlets and terracotta pieces in soil; no paint chips visible. XRF: Pb = 283 ppm
General Sampling Comment	North side of Trevennen building.

Sample collected from 0- to 0.5-ft bgs.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA16
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA16-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		9:48:00 AM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

	No paint chips visible. XRF: Pb = 198 ppm
General Sampling Comment	North side of Trevennen building.

Sample collected from 0.5- to 1.0-ft bgs.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

<u>Signature</u>

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA17
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA17-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		10:15:00 AM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0- to 0.5-ft bgs. No paint chips visible. Some large

(approximately 4-inch) pieces of terracotta, rootlets, and cobbles.

	XRF: Pb = 77 ppm
General Sampling Comment	Located approximately 4-feet from west wall of Trevennen building.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA17
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA17-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		10:20:00 AM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

r r r r	Moist soil, finer with depth, small to coarse size gravel, rootlets, no paint chips or terracotta pieces. XRF: Pb = 50 ppm
General Sampling Comment	Located approximately 4-feet from west wall of Trevennen building.

Sample collected from 0.5- to 1.0-ft bgs.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA18
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA18-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		10:42:00 AM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0- to 0.5-ft bgs. Very fine size gravel, loose, mostly organics,

5	some small rootlets. No paint chips or terracotta pieces observed. XRF: Pb = 244 ppm
General Sampling Comment	Location approximately 26-inches from south well of Trevennen building.
Concrui Sumpring Comment	

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA18
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA18-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		10:50:00 AM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs. Very fine size gravel, loose, mostly

r in r	organics, some small rootlets. No paint chips or terracotta pieces observed. Rocks encountered at approximatley 10- to 12-inches bgs. XRF: Pb = 144 ppm
General Sampling Comment	Located on south wall of Trevennen building.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA19
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA19-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		12:05:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0- to 0.5-ft bgs. Medium to dark brown fine soil, mostly

organics, few to no rocks observed, no paint chips or terracotta observed. XRF: Pb = 489 ppm
Located approximately 14-inches from east wall of Trevennen building.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA19
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA19-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		12:10:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs. Medium to dark brown fine soil, mostly

	organics, few to no rocks observed, no paint chips or terracotta observed. XRF: Pb = 203 ppm
General Sampling Comment	Located approximately 14-inches from east wall of Trevennen building.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA20
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA20-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		1:35:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sumple Description.	Sample collected from 0- to 0.5-ft bgs. Dark brown fine soil, very few rocks or pebbles, no paint chips or terracotta pieces. XRF: Pb = 208 ppm
	200 pp.m

General Sampling Comment

Soil sample (HA20) collected approximately 21-inches from southeast wall of Coleman building.

Analyzed paint on wall of Coleman building with XRF approximately 4-feet above ground surface, XRF reading of paint on wall: Pb = 10,355 ppm.

C	1:	N / 1	α 1.
Sami	nung	Method	Code
~ ~~~	P	1.1001100	

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA20
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA20-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		1:42:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample Description:	Sample collected from 0.5- to 1.0-ft bgs. Dark brown fine soil, very few rocks or pebbles, no paint chips or terracotta pieces. XRF: Pb = 74 ppm
General Sampling Comment	Located approximatley 21-inches from southeast wall of Coleman building.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

<u>Signature</u>

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA21
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA21-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		2:16:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample Description:	Sample collected from 0- to 0.5-ft bgs. Dark brown, fine, organic soil, no paint chips
	or terracotta pieces, or rocks observed, small rootlets.
	XRF: $Pb = 254 \text{ ppm}$

General Sampling Comment

Located approximately 13-inches from south wall of Coleman building. Wall of Coleman building, collected approximately 6-inches from ground surface analyzed by XRF, Pb = 4,742 (+- 358) ppm.

Sampling Me	thod Code:
-------------	------------

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA21
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA21-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		2:20:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs. Dark brown, fine, organic soil, no paint

	chips or terracotta pieces, or rocks observed, small rootlets. XRF: Pb = 162 ppm
General Sampling Comment	Located approximately 13-inches from south wall of Coleman building.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA21
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA21-S-1.5
Sub Area		Sample Depth	1.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		12:20:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

		Other	
		Total Containers	1
Sample Description:	Sample collected from 1.0- to 1.5-ft bgs. Light brown clay with orange mottles. XRF: Pb = 187		
General Sampling Comment			
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	g Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Oth	er (Specify)	

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA22
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA22-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		2:50:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample Description:	Sample collected from 0.5- to 1.0-ft bgs. Dark brown to medium, organics, no paint chips, terracotta pieces, or rocks, dry. XRF: Pb = 136 ppm
General Sampling Comment	Located approximatley 8-inches from west wall of Coleman building.

Sample collected from 0.5- to 1.0-ft bgs.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

<u>Signature</u>

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA22
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA22-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		2:54:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs.

	Dark brown to medium becoming lighter with depth, organics, no paint chips, terracotta pieces, or rocks, dry. XRF: Pb = 77 ppm
General Sampling Comment	Located approximatley 8-inches from west wall of Coleman building.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA23
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA23-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		3:47:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	XRF: Pb = 104 ppm
General Sampling Comment	Sample collected 8-inches from northwest side of north wall of Coleman building. Unable to collect sample on northeast side of building due to recent landscaping of area with a XRF reading: Pb = 34 ppm.

Sample collected from 0- to 0.5-ft bgs.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

(360) 694-2691 Fax. (360) 906-1958 400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA23
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA23-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		3:51:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

G 1G 1 G 4 Legeted to northwest side of north well of Colomon building Unable to collect	Sample Description:	Sample collected from 0.5- to 1.0-ft bgs. XRF: Pb = 80 ppm
General Sampling Comment	General Sampling Comment	Located to northwest side of north wall of Coleman building. Unable to collect sample on northeast side of building due to recent landscaping of area, XRF: Pb = 34 ppm.

Sample collected from 0.5- to 1.0-ft bgs.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA24
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA24-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		4:30:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0- to 0.5-ft bgs.

	Gray-brown, fine soil, no visible paint chips, rocks, dry. XRF: Pb = 91 ppm
General Sampling Comment	Located approximately 20-inches from inner side of northeast corner of Denny building, cleared blackberries to sample.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA24	
Project Number	0624.04.10	Sampler	LBP	
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018	
Sampling Event	April 2018	Sample Name	HA24-S-1.0	
Sub Area		Sample Depth	1	
FSDS QA:	LBP 5/18/18	Easting	Northing TOC	

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		4:40:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs.

F	Gray-brown, fine soil, no visible paint chips, rocks, dry. XRF: Pb = 93 ppm
General Sampling Comment	Located approximatley 20-inches from inner side of northeast corner of Denny building, cleared blackberries to sample.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA25
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA25-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		5:26:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Medium brown soil, no paint chips or rocks, native, moist.

Sample collected from 0- to 0.5-ft bgs.

	XRF: Pb = 33 ppm
Strict on Source bring Committee	Located approximately 4-inches from east wall of Denny building, closer to south side of building.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA25
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA25-S-1.0
Sub Area		Sample Depth	1.0
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		5:28:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Medium brown soil, no paint chips or rocks, native, moist.

	XRF: Pb = 34 ppm
General Sampling Comment	Located approximately 4-inches from east wall of Denny building, closer to south side of building.

Sample collected from 0.5- to 1.0-ft bgs.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA26
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA26-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		5:48:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample Description:	Sample collected from 0- to 0.5-ft bgs. No paint chips or gravel observed. XRF: Pb = 199 ppm
General Sampling Comment	Collected 7-inches from east side of Denny building.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

<u>Signature</u>

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA26
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA26-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		5:52:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs.

No paint chips or gravel observed.

	XRF: $Pb = 370 \text{ ppm}$
General Sampling Comment	Collected 7-inches from east side of Denny building. Collected second XRF reading from same location, XRF: Pb = 308 ppm.
	, , , , , , , , , , , , , , , , , , , ,

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA26
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA26-S-1.5
Sub Area		Sample Depth	1.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		2:15:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

		8 OZ. SOII	
		Other	
		Total Containers	1
Sample Description:	Sample collected from 1.0- to 1.5-ft bgs. Light brown clay with mottles and some paint chips. XRF: Pb = 292 ppm		
General Sampling Comment			
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	g Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) O	ther (Specify)	

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA27
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA27-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		6:20:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0- to 0.5-ft bgs. Dark brown to black, fine, organics, no paint

	chips, asphalt-like fragments observed, moist. XRF: Pb = 117 ppm
Semeral Sampling Comment	Collected 30-inches from west wall of Denny building, heavily surrounded by blackberries.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA27
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA27-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		6:24:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs. Dark brown to black, fine, organics, no

F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	paint chips, asphalt-like fragments observed, moist. XRF: Pb = 66 ppm
General Sampling Comment	Collected 30-inches from west wall of Denny building, heavily surrounded by blackberries.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA28
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA28-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		7:10:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0- to 0.5-ft bgs. Dark brown to black, fine, organics, no paint

F	chips, asphalt-like fragments observed, moist. XRF: Pb = 117 ppm
General Sampling Comment	Collected on interior (courtyard-facing) side of north courtyard of Denny building 7-inches from wall of Denny building, heavily surrounded by blackberries.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA28
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA28-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		7:20:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sumple 2 escription.	Sample collected from 0.5- to 1.0-ft bgs. Dark brown to black, fine, organics, no paint chips, asphalt-like fragments observed, moist. XRF: Pb = 174 ppm

General Sampling Comment

Collected on interior (courtyard-facing) side of north courtyard of Denny building 7-inches from wall of Denny building closer to the northwest, heavily surrounded by blackberries.

Sa	mp	ling	Met	hod	Coc	le:

(1) Backhoe.	(2) Hand Auger.	, (3) Drill Bit Cutting	Head. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	. (7) Grab. (8) Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA28
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA28-S-1.5
Sub Area		Sample Depth	1.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		1:20:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

		0 11-0-1	
		Total Containers	1
Sample Description:	Sample collected from 1.0- to 1.5-ft bgs. Light brown clay with mottles. XRF: Pb = 112 ppm		
General Sampling Comment			
Sampling Method Code:			
(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting	g Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) C	Other (Specify)	

(360) 694-2691 Fax. (360) 906-1958 400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA29
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/23/2018
Sampling Event	April 2018	Sample Name	HA29-S-1.0-CS
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		7:30:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample Description:	Sample collected from 0.5- to 1.0-ft bgs. XRF: Pb = 139 ppm
General Sampling Comment	Sample composited from five discrete samples collected to 1.0 feet bgs from samples around the Denny building.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA30
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA30-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		10:50:00 AM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0- to 0.5-ft bgs at five from from HA16. Lots of terracotta fragments. XRF: Pb = 82

General Sampling Comment

Two feet from HA16 at 0.5 feet bgs, XRF: Pb = 169 ppm Three feet from HA16 at 0.5 feet bgs, XRF: Pb = 200 ppmFour feet from HA16 at 0.5 feet bgs, XRF: Pb = 134 ppm

Five feet from HA16 at 0.5 feet bgs, XRF: Pb = 82 ppm (sample collected)

Sampling 1	Method	Code:
------------	--------	-------

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA30
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA30-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		11:00:00 AM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs.

Lots of terracotta fragments.

	XRF: Pb = 58 ppm
General Sampling Comment	Five feet from HA16 at 1.0 feet bgs, XRF: Pb = 58 ppm

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA31
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA31-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		11:20:00 AM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample Description:	Sample collected from 0- to 0.5-ft bgs. Very gravelly well graded sand, coarse grained. XRF: Pb = 52 ppm		

General Sampling Comment

Collected XRF reading four feet from HA19 at 0.5 feet bgs, Pb = 436 ppm. Moved to five feet from HA19 at 0.5 feet bgs, Pb = 52 ppm, prior to collecting sample.

Sa	mp	ling	Met	hod	Coc	le:

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA31
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA31-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		11:30:00 AM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Very gravelly well graded sand, coarse grained.

Sample collected from 0.5- to 1.0-ft bgs.

	XRF: Pb = 11 ppm
General Sampling Comment	Collected XRF reading five feet from HA19 at 1.0 feet bgs, Pb = 11 ppm, prior to collecting sample.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA32
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA32-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		12:00:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0- to 0.5-ft bgs.

Lots of organics, some terracotta pieces.

	XRF: Pb = 82 ppm
general sampling comment	Collected XRF reading three feet from HA20 at 0.5 feet bgs, Pb = 82 ppm, prior to collecting sample.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA32
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA32-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		12:05:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs.

Light brown silt with orange mottles.

	XRF: PD = 16 ppm
General Sampling Comment	Collected XRF reading three feet from HA20 at 1.0 feet bgs, Pb = 16 ppm, prior to collecting sample.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA33
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA33-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		12:35:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample Description:	Sample collected from 0- to 0.5-ft bgs at five feet from HA21. Very gravelly sand, lots of organics. XRF: Pb = 21 ppm		
General Sampling Comment	Collected XRF reading three feet from HA21 at 0.5 feet bgs, Pb = 281 ppm Moved out five feet from HA21, collected XRF reading at 0.5 feet bgs, Pb = 21 ppm (sample collected)		

Sampling Method Code:

(1) Backhoe.	(2) Hand Auger.	, (3) Drill Bit Cutting	Head. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	. (7) Grab. (8) Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA33
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA33-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		12:40:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs.

Very gravelly sand, lots of organics.

	XRF: Pb = 12 ppm
General Sampling Comment	Moved out five feet from HA21, collected XRF reading at 1.0 feet bgs, Pb = 12 ppm

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA33
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA33-S-1.5
Sub Area		Sample Depth	1.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		12:45:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

	XRF: Pb = 15 ppm
General Sampling Comment	Moved out five feet from HA21, collected XRF reading at 1.5 feet bgs, Pb = 15 ppm

Sample collected from 1.0- to 1.5-ft bgs.

Sand with clay, fewer organics.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA34
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA34-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		1:30:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

	XRF: Pb = 82 ppm
General Sampling Comment	Collected XRF reading three feet from HA28 at 0.5 feet bgs, Pb = 82 ppm, prior to collecting sample.

Sample collected from 0- to 0.5-ft bgs.

Silty sand, lots of organics.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA34
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA34-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		1:35:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0.5- to 1.0-ft bgs.

Silty sand with more fines, lots of organics.

	XRF: Pb = 83 ppm
Semeral Sampling Comment	Collected XRF reading three feet from HA28 at 1.0 feet bgs, Pb = 83 ppm, prior to collecting sample.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA34
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA34-S-1.5
Sub Area		Sample Depth	1.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		1:40:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

	XRF: Pb = 44 ppm
General Sampling Comment	Collected XRF reading three feet from HA28 at 1.5 feet bgs, Pb = 44 ppm, prior to collecting sample.

Sample collected from 1.0- to 1.5-ft bgs.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

Mottled silt.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA35
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA35-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		2:40:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

Sample collected from 0- to 0.5-ft bgs at five feet from HA26. Sandy silt, lots of organics, rootlets. XRF: Pb = 108 ppm

General Sampling Comment

Three feet from HA26 at 0.5 feet bgs, XRF: Pb = 155 ppm Four feet from HA26 at 0.5 feet bgs, XRF: Pb = 159 ppm

Five feet from HA26 at 0.5 feet bgs, XRF: Pb = 108 ppm (sample collected)

Samp	lino i	Met	hod	$C \cap d$	ρ.
Damp.	ms.	IVICE.	nou	Cou	٠.

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA35
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA35-S-1.0
Sub Area		Sample Depth	1
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		2:45:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

	XRF: Pb = 47 ppm
General Sampling Comment	Five feet from HA26 at 1.0 feet bgs, XRF: Pb = 47 ppm

Sample collected from 0.5- to 1.0-ft bgs.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

Sandy silt.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	HA35
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	HA35-S-1.5
Sub Area		Sample Depth	1.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sample Description:

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Discrete		2:50:00 PM	2 oz. soil	
					4 oz. soil	1
					8 oz. soil	
					Other	
					Total Containers	1

	XRF: Pb = 52 ppm
General Sampling Comment	Five feet from HA26 at 1.5 feet bgs, XRF: Pb = 52 ppm

Sample collected from 1.0- to 1.5-ft bgs.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

Sandy silt. mottling.

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU01
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/25/2018
Sampling Event	April 2018	Sample Name	DU01-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		5:05:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

~ ·	Incremental sampling methodology (ISM) sample, collected from 0 to 0.5-ft bgs. ISM sample, F, coal-like fragments.

General Sampling Comment

SS31-S-0.5 @ 17:05.

SS32-S-0.5 @ 17:20, rocky with gravel.

SS33-S-0.5 @ 17:30, only top 4-inches able to be sampled, very gravelly, terracotta-

like pieces.

SS34-S-0.5 @ 17:55.

SS35-S-0.5 @ 18:05 coal- and terracotta-like pieces

Sampling Method Code	Samp	oling	Method	Code
----------------------	------	-------	--------	------

	(1) Backhoe.	(2) Hand Auger.	. (3) Drill Bit Cutting Hea	d, (4) Geoprobe, (5) Split Spoor	n. (6) Shelbey Tube. (7)	Grab. (8) Other (Specify)
--	---	-------------	-----------------	-----------------------------	----------------------------------	--------------------------	---------------------------

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU02
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/25/2018
Sampling Event	April 2018	Sample Name	DU02-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		6:30:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

~ 	Incremental sampling methodology (ISM) sample, collected from 0- to 0.5-ft bgs. ISM sample, F, gravel and terracotta pieces.
	ISM sample, C, ash and coal fragments.

General Sampling Comment

SS36-S-0.5 @ 18:40, rocks/gravel SS37-S-0.5 @ 18:55, lots of gravel at depth. SS38-S-0.5 @ 19:05, black, coal-like fragments SS39-S-0.5 @ 19:15, gravelly.

SS40-S-0.5 @ 19:23, gravelly.

	Sam	pling	Method	Code
--	-----	-------	--------	------

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU03
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/27/2018
Sampling Event	April 2018	Sample Name	DU03-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		4:00:00 PM	2 oz. soil	
					4 oz. soil	
					8 oz. soil	
					Other	1
					Total Containers	1

~ ·	Incremental sampling methodology sample, collected from 0- to 0.5-ft bgs. Organics and clay.

General Sampling Comment

SS86-S-0.5 @ 16:10, in tall grass. SS87-S-0.5 @ 16:15, in ball field grass.

SS88-S-0.5 @ 16:30, very coarse gravel with fines.

SS89-S-0.5 @ 16:40, very gravelly. SS90-S-0.5 @ 17:00, lots of organics.

Samp	ling	Met	hod	Cod	le
------	------	-----	-----	-----	----

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU04
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/24/2018
Sampling Event	April 2018	Sample Name	DU04-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		1:30:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

Sample Description:	Incremental sampling methodology sample, collected from 0- to 0.5-ft bgs.

General Sampling Comment

SS06-S-0.5 @ 13:30, medium brown clay-like soil, trace rootlets.

SS07-S-0.5 @ 13:52, coal-like fragments.

SS08-S-0.5 @ 14:20, coal-like fragments, organics, trace rootlets.

SS09-S-0.5 @ 14:30.

SS10-S-0.5 @ 14:55, coal-like fragments, rootlets.

Samr	oling	Met	hod	Cod	le:
Duilip	JIIII 5 .	11100	IIOG		

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU05
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/26/2018
Sampling Event	April 2018	Sample Name	DU05-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		8:00:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

Sample Description:	Incremental sampling methodology sample, collected from 0- to 0.5 ft bgs.

General Sampling Comment

SS61-S-0.5 @ 20:15.

SS62-S-0.5 @ 20:20, light tan/gray, fine-grained soil, black and terracotta fragments.

SS63-S-0.5 @ 20:30. SS64-S-0.5 @ 20:40.

SS65-S-0.5 @ 20:50.

Sampling Method Code:

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

Sign	ature		
			_

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU06
Project Number	0624.04.10	Sampler	LBP
Project Name	Northern State Hospital Property	Sampling Date	04/24/2018
Sampling Event	April 2018	Sample Name	DU06-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		9:30:00 AM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

S 4411 P 10 2 S 4 S 4 T 1 P 4 T 4 T 4 T 4 T 4 T 4 T 4 T 4 T 4 T 4	Incremental sampling methodology sample, collected from 0- to 0.5-ft bgs.
	Brown fine soil, few rocks, rootlets present, no paint chips or terracotta pieces
	observed.

General Sampling Comment

SS01-S-0.5 @ 9:30, dark brown, clay-like, rootlets.

SS02-S-0.5 @ 11:21, very dark brownish black and clay-like, rootlets.

SS03-S-0.5 @ 11:40, rootlets, wet.

SS04-S-0.5 @ 12:14, light to medium brown, rootlets, dry.

SS05-S-0.5 @ 12:32, rootlets, dry.

Sampling 1	Method	Code:
------------	--------	-------

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU07
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/24/2018
Sampling Event	April 2018	Sample Name	DU07-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		3:47:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

2011p10 2 02011p010110	Incremental sampling methodology (ISM) sample, collected from 0- to 0.5 ft bgs. Terracotta pieces observed in some ISM samples.
	Terracotta pieces observed in some isivi samples.

General Sampling Comment

SS11-S-0.5 @ 15:47, Medium brown soil, some gravel, organics.

SS12-S-0.5 @ 16:10, sandy soil.

SS13-S-0.5 @ 16:22, black and red fragments.

SS14-S-0.5 @ 17:13, among trees. SS15-S-0.5 @ 17:22, gravelly.

Samn	lina	NAAt	naa	1 00	Δ
Samp	mne .	IVICE.	uvu	COU	LU.

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU08
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/26/2018
Sampling Event	April 2018	Sample Name	DU08-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		6:15:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

20011p10 2 05011p110111	Incremental sampling methodology (ISM) sample, collected from 0- to 0.5-ft bgs. ISM sample, B, light tan/gray fine soil
	ISM sample, F, black coal- and ash-like fragments and terracotta pieces

General Sampling Comment

	SS	56-	S-0	.5	(a)	18:25,	tight	soil.
--	----	-----	-----	----	-------------	--------	-------	-------

SS57-S-0.5 @ 18:50, concrete at 4-inches bgs.

SS58-S-0.5 @ 19:00, light brown, rootlets, under sod.

SS59-S-0.5 @ 19:10, organics.

SS60-S-0.5 @ 19:30, organics, lots of worms.

Sa	mp	ling	Met	hod	Coc	le:

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU09
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/30/2018
Sampling Event	April 2018	Sample Name	DU09-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		3:00:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

Sample Description:	Incremental sampling methodology sample, collected from 0- to 0.5-ft bgs.

General Sampling Comment

SS96-S-0.5 @ 15:30, lots of terracotta pieces.

SS97-S-0.5 @ 15:35, some burnt-wood pieces.

SS98-S-0.5 @ 15:50, lots of organics, burnt wood fragments.

SS99-S-0.5 @ 16:20, mostly clay, rootlets. SS100-S-0.5 @ 16:30, mostly clay, rootlets.

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU10
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/27/2018
Sampling Event	April 2018	Sample Name	DU10A-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		10:15:00 AM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

Sample Description:

Incremental sampling methodology (ISM) sample, collected from 0- to 0.5-ft bgs. Fine organics, some black fragments. ISM samples collected under tall grass. At ISM location, A8, dark black, burnt wood-like debris @ 0.25 - 0.5 feet bgs.

General Sampling Comment

SS71-S-0.5 @ 10:30. SS72-S-0.5 @ 11:00.

SS73-S-0.5 @ 11:20.

SS74-S-0.5 @ 11:40, orange mottling and black fragments, burnt wood-like.

SS75-S-0.5 @ 12:00.

Samp	lino i	Met	hod	$C \cap d$	ρ.
Damp.	ms.	IVICE.	nou	Cou	٠.

(1) Backhoe. (2) Hand Auge	er. (3) Drill Bit Cutting	Head. (4) Geoprobe.	(5) Split Spoon, (6	Shelbey Tube. (7)) Grab, (8) Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU10
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/27/2018
Sampling Event	April 2018	Sample Name	DU10B-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		1:55:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

2011p10 2 02011p010110	Incremental sampling methodology (ISM) sample, collected from 0- to 0.5-ft bgs. Organics and clay.

General Sampling Comment

SS76-S-0.5 @ 13:55, organics, iron oxidation.

SS77-S-0.5 @ 14:00, clay with depth.

SS78-S-0.5 @ 14:05, very clayey, black fragments.

SS79-S-0.5 @ 14:18. SS80-S-0.5 @ 14:30.

Samp	ling	Met	hod	Cod	le
------	------	-----	-----	-----	----

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU10
Project Number	0624.04.10	Sampler	CRW
Project Name	Northern State Hospital Property	Sampling Date	04/27/2018
Sampling Event	April 2018	Sample Name	DU10C-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		1:00:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

 Incremental sampling methodology (ISM) sample, collected from 0- to 0.5-ft bgs. Mostly organics with some clay.

General Sampling Comment

SS81-S-0.5 @ 13:00, some terracotta.

SS82-S-0.5 @ 13:20. SS83-S-0.5 @ 13:40.

SS84-S-0.5 @ 15:10.

SS85-S-0.5 @ 15:30, gravelly, primarily clay.

C	1:	N / 1	α 1.
Sami	nung	Method	Code
~ ~~~	P	1.1001100	

(1) Backhoe, (2) Hand Auger	: (3) Drill Bit Cutting Hea	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tr	the. (7) Grab. (8	8) Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU11
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/26/2018
Sampling Event	April 2018	Sample Name	DU11-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		5:15:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

Sample Description:

Incremental sampling methodology sample, collected from 0- to 0.5-ft bgs.

No terracotta or coal-like pieces observed. Relatively homogeneous black/gray fine organic soil.

General Sampling Comment

SS51-S-0.5 @ 17:25, blackish gray organics.

SS52-S-0.5 @ 17:35, clay-like, blackish gray.

SS53-S-0.5 @ 17:40, clay-like blackish gray.

SS54-S-0.5 @ 17:50, clay-like blackish gray and woody debris.

SS55-S-0.5 @ 18:00, clay-like blackish gray.

C	1:	N / 1	α 1.
Sami	nung	Method	Code
~ ~~~	P	1.1001100	

(1) Backhoe (2)	Hand Auger	(3) Drill Bit Cuttin	g Head (4) Ger	probe (5) Split S	noon (6) Shelhe	v Tube (7) Grah	, (8) Other (Specify)
(ι) Dacknot, (2) Hand Augel,	(3) Dim Dit Cuttin	g ricau, (+) Oci	prooc, (5) spiit s	poon, (o) shelde	y rube, (7) Grab	, (b) Office (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU12
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/27/2018
Sampling Event	April 2018	Sample Name	DU12-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		5:20:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

2011p10 2 02011p110111	Incremental sampling methodology (ISM) sample, collected from 0- to 0.5-ft bgs. At ISM location, 12H, wood debris in silt.

General Sampling Comment

SS91-S-0.5 @ 17:30, clayey, building debris next to sample location.

SS92-S-0.5 @ 17:55, terracotta, black coal-like fragments, organics.

SS93-S-0.5 @ 18:20, clay, some organics.

SS94-S-0.5 @ 18:40, organics with woody debris

SS95-S-0.5 @ 18:50.

Sampling l	Method	Code:
------------	--------	-------

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU13
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/26/2018
Sampling Event	April 2018	Sample Name	DU13-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		8:05:00 AM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

Sample Description:	Incremental sampling methodology sample, collected from 0- to 0.5-ft bgs.

General Sampling Comment

SS41-S-0.5 @ 8:25, adjacent to resevior.

SS42-S-0.5 @ 9:00, dark clayey soil, some gravel.

SS43-S-0.5 @ 9:50, brown, very organic.

SS44-S-0.5 @ 10:20. SS45-S-0.5 @ 10:45.

Samr	oling	Met	hod	Cod	le:
Duilip	JIIII 5 .	11100	IIOG		

(1) Backhoe, (2) Hand Auger, (3) Drill Bit Cutting Head, (4) Geoprobe, (5) Split Spoon, (6) Shelbey Tube, (7) Grab, (8) Other (Specify)

Sign	ature		
			_

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU14
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/27/2018
Sampling Event	April 2018	Sample Name	DU14-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		8:05:00 AM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

200112010	Incremental sampling methodology sample, collected from 0- to 0.5-ft bgs. Mostly fine grained organics.

General Sampling Comment

SS66-S-0.5 @ 8:05. SS67-S-0.5 @ 8:20.

SS68-S-0.5 @ 8:45. SS69-S-0.5 @ 9:00. gray.

SS69-S-0.5 @ 9:00, gray, organics. SS70-S-0.5 @ 9:45, gray, organics.

Sampling Method Code	Samp	oling	Method	Code
----------------------	------	-------	--------	------

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU15
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/25/2018
Sampling Event	April 2018	Sample Name	DU15-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		11:50:00 AM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

Incremental sampling methodology sample, collected from 0- to 0.5-ft bgs. Predominantly fine, organic, dark brown with trace gravel.

General Sampling Comment

	SS21-S-0.5 @	12:00,	soft soil	under sod,	terracotta	and	coal
--	--------------	--------	-----------	------------	------------	-----	------

SS22-S-0.5 @ 12:17.

SS23-S-0.5 @ 12:28, soft organic soil.

SS24-S-0.5 @ 14:17, more gravel.

SS25-S-0.5 @ 14:30, lots of blackberries, some black fragments.

Sampling l	Method	Code:
------------	--------	-------

Sign	ature		
			_

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU16
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/26/2018
Sampling Event	April 2018	Sample Name	DU16-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		12:45:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

Sample Description:	Incremental sampling methodology (ISM) sample, collected from 0- to 0.5-ft bgs.
	Organics and clay.
	ISM sample, 16F, burnt wood in top 4-inches of soil.

General Sampling Comment

SS46-S-0.5 @ 13:00, dark brown, fine, rootlets with light brown clay with mottles.

SS47-S-0.5 @ 13:25.

SS48-S-0.5 @ 13:50, reddish tan, lots of organics.

SS49-S-0.5 @ 14:30, dark brown to black, fine, organics, near wetland.

SS50-S-0.5 @ 14:50.

Samp	lino i	Met	hod	$C \cap d$	ρ.
Damp.	ms.	IVICE.	nou	Cou	٠.

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU17
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/25/2018
Sampling Event	April 2018	Sample Name	DU17-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		7:45:00 AM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

Sample Description:	Incremental sampling methodology sample, collected from 0- to 0.5-ft bgs.
•	At some locations, dark brown organic soil near surface and light brown clay with
	depth.

General Sampling Comment

3310-3-0.3 @ 0.12. Coar and terracolla-like fraginer	oal- and terracotta-like fragmen	terracotta-like	and terra	. coal-	8:12.	@	-0.5	6-S	SS1	S
--	----------------------------------	-----------------	-----------	---------	-------	---	------	-----	-----	---

SS17-S-0.5 @ 8:50, deer fur at top of soil.

SS18-S-0.5 @ 9:50, dark soil, organics, large cobbles. SS19-S-0.5 @ 11:05, west bank of Brickyard Creek. SS20-S-0.5 @ 11:20, clay with black fragments.

Samn	lina	NAAt	naa	1 00	Δ
Samp	mne .	IVICE.	uvu	COU	LU.

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

400 E. Mill Plain Blvd, Suite 400, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1958

Soil Field Sampling Data Sheet

Client Name	Port of Skagit	Sample Location	DU18
Project Number	0624.04.10	Sampler	CRW & LBP
Project Name	Northern State Hospital Property	Sampling Date	04/25/2018
Sampling Event	April 2018	Sample Name	DU18-S-0.5
Sub Area		Sample Depth	0.5
FSDS QA:	LBP 5/18/18	Easting	Northing TOC TOC

Sample Information

Sampling Method	Sample Type	Sample Category	PID/FID	Sampling Time	Container Code	#
(2) Hand Auger	Soil	Composite		3:20:00 PM	2 oz. soil	
					4 oz. soil	5
					8 oz. soil	
					Other	1
					Total Containers	6

200000000000000000000000000000000000000	Incremental sampling methodology sample, collected from 0- to 0.5-ft bgs. Light gray/tan soil.

General Sampling Comment

SS26-S-0.5 @ 15:20. SS27-S-0.5 @ 15:35, terracotta and coal. SS28-S-0.5 @ 15:45, three-inches of sod. SS29-S-0.5 @ 16:00, coal-like fragments.

SS30-S-0.5 @ 16:05

Samr	oling	Met	hod	Cod	le:
Duilip	JIIII 5 .	11100	IIOG		

(1) Backhoe, (2) Hand Auger	r. (3) Drill Bit Cutting He:	d. (4) Geoprobe	e. (5) Split Spoon. ((6) Shelbey Tube	(7) Grab. (8)	Other (Specify)

Signature		

APPENDIX C ANALYTICAL LABORATORY REPORTS

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Thursday, April 26, 2018

Heather Good Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301 Bellingham, WA 98225

RE: 0624.04.10-03--Northern State Hospital / 0624.04.04-10

Enclosed are the results of analyses for work order <u>A8D0754</u>, which was received by the laboratory on 4/24/2018 at 12:50:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Project Number: 0624.04.04-10 Reported:
Bellingham, WA 98225 Project Manager: Heather Good 04/26/18 15:29

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION Sample ID Laboratory ID Matrix **Date Received Date Sampled** 04/24/18 12:50 HA16-S-0.5 A8D0754-01 Soil 04/23/18 09:36 HA16-S-1.0 A8D0754-02 Soil 04/23/18 09:48 04/24/18 12:50 HA17-S-0.5 A8D0754-03 Soil 04/23/18 10:15 04/24/18 12:50 HA17-S-1.0 A8D0754-04 Soil 04/23/18 10:20 04/24/18 12:50 HA18-S-0.5 A8D0754-05 Soil 04/23/18 10:42 04/24/18 12:50 HA18-S-1.0 A8D0754-06 Soil 04/23/18 10:50 04/24/18 12:50 HA19-S-0.5 A8D0754-07 Soil 04/23/18 12:05 04/24/18 12:50 HA19-S-1.0 A8D0754-08 Soil 04/23/18 12:10 04/24/18 12:50 A8D0754-09 Soil 04/23/18 13:35 04/24/18 12:50 HA20-S-0.5 A8D0754-10 04/23/18 13:42 HA20-S-1.0 Soil 04/24/18 12:50 HA21-S-0.5 A8D0754-11 Soil 04/23/18 14:16 04/24/18 12:50 A8D0754-12 04/23/18 14:20 HA21-S-1.0 Soil 04/24/18 12:50 HA22-S-0.5 A8D0754-13 Soil 04/23/18 14:50 04/24/18 12:50 A8D0754-14 HA22-S-1.0 Soil 04/23/18 14:54 04/24/18 12:50 A8D0754-15 HA23-S-0.5 Soil 04/23/18 15:47 04/24/18 12:50 HA23-S-1.0 A8D0754-16 Soil 04/23/18 15:51 04/24/18 12:50 HA24-S-0.5 A8D0754-17 Soil 04/23/18 16:30 04/24/18 12:50 HA24-S-1.0 A8D0754-18 Soil 04/23/18 16:40 04/24/18 12:50 HA25-S-0.5 A8D0754-19 Soil 04/23/18 17:26 04/24/18 12:50 HA25-S-1.0 A8D0754-20 Soil 04/23/18 17:28 04/24/18 12:50 HA26-S-0.5 A8D0754-21 Soil 04/23/18 17:48 04/24/18 12:50 HA26-S-1.0 A8D0754-22 Soil 04/23/18 17:52 04/24/18 12:50 HA27-S-0.5 A8D0754-23 Soil 04/23/18 18:20 04/24/18 12:50 HA27-S-1.0 A8D0754-24 Soil 04/23/18 18:24 04/24/18 12:50 HA28-S-0.5 A8D0754-25 Soil 04/23/18 19:10 04/24/18 12:50 HA28-S-1.0 A8D0754-26 Soil 04/23/18 19:20 04/24/18 12:50 HA29-S-1.0-CS A8D0754-27 Soil 04/23/18 19:30 04/24/18 12:50

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goad Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10 Project Manager: Heather Good **Reported:** 04/26/18 15:29

ANALYTICAL SAMPLE RESULTS

		Tot	al Metals by	EPA 6020 (IC	PMS)			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
HA16-S-0.5 (A8D0754-01)			Matrix	: Soil				
Batch: 8041092		<u></u>						
Lead	342	0.132	0.264	mg/kg dry	10	04/24/18 18:05	EPA 6020A	
HA16-S-1.0 (A8D0754-02)			Matrix	: Soil				
Batch: 8041092								
Lead	224	0.132	0.263	mg/kg dry	10	04/24/18 18:30	EPA 6020A	
HA17-S-0.5 (A8D0754-03)			Matrix	: Soil				
Batch: 8041092								
Lead	82.8	0.130	0.259	mg/kg dry	10	04/24/18 18:35	EPA 6020A	
HA17-S-1.0 (A8D0754-04)			Matrix	: Soil				
Batch: 8041092								
Lead	45.6	0.135	0.269	mg/kg dry	10	04/24/18 18:40	EPA 6020A	
HA18-S-0.5 (A8D0754-05)			Matrix	: Soil				
Batch: 8041092								
Lead	327	0.123	0.246	mg/kg dry	10	04/24/18 18:55	EPA 6020A	
HA18-S-1.0 (A8D0754-06)			Matrix	: Soil				
Batch: 8041092								
Lead	65.6	0.122	0.243	mg/kg dry	10	04/24/18 19:00	EPA 6020A	
HA19-S-0.5 (A8D0754-07)			Matrix	: Soil				
Batch: 8041092								
Lead	126	0.136	0.271	mg/kg dry	10	04/24/18 19:04	EPA 6020A	
HA19-S-1.0 (A8D0754-08)			Matrix	: Soil				
Batch: 8041092								
Lead	112	0.129	0.259	mg/kg dry	10	04/24/18 19:09	EPA 6020A	
HA20-S-0.5 (A8D0754-09)			Matrix					
Batch: 8041092								
Lead	355	0.149	0.299	mg/kg dry	10	04/24/18 19:24	EPA 6020A	
HA20-S-1.0 (A8D0754-10)			Matrix					
Batch: 8041092			muula					
Lead	84.6	0.142	0.284	mg/kg dry	10	04/24/18 19:29	EPA 6020A	
			Matrix		-			
HA21-S-0.5 (A8D0754-11) Batch: 8041092			IVIQUIX	. 5011				
Lead	421	0.147	0.294	mg/kg dry	10	04/24/18 19:34	EPA 6020A	
	721	0.17/			10	0 1/2 1/ TO 17.5T	2111 002011	
HA21-S-1.0 (A8D0754-12)			Matrix	: 5011				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10 Project Manager: Heather Good **Reported:** 04/26/18 15:29

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)											
			Reporting								
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes			
HA21-S-1.0 (A8D0754-12)			Matrix	: Soil							
Batch: 8041092											
Lead	256	0.150	0.300	mg/kg dry	10	04/24/18 19:39	EPA 6020A				
HA22-S-0.5 (A8D0754-13)			Matrix	: Soil							
Batch: 8041092											
Lead	172	0.127	0.254	mg/kg dry	10	04/24/18 19:44	EPA 6020A				
HA22-S-1.0 (A8D0754-14)			Matrix	: Soil							
Batch: 8041092											
Lead	111	0.136	0.272	mg/kg dry	10	04/24/18 19:49	EPA 6020A				
HA23-S-0.5 (A8D0754-15)			Matrix	: Soil							
Batch: 8041092											
Lead	146	0.150	0.300	mg/kg dry	10	04/24/18 19:54	EPA 6020A				
HA23-S-1.0 (A8D0754-16)			Matrix	: Soil							
Batch: 8041092											
Lead	146	0.140	0.280	mg/kg dry	10	04/24/18 19:59	EPA 6020A				
HA24-S-0.5 (A8D0754-17)			Matrix	: Soil							
Batch: 8041092											
Lead	120	0.136	0.272	mg/kg dry	10	04/24/18 20:04	EPA 6020A				
HA24-S-1.0 (A8D0754-18)			Matrix	: Soil							
Batch: 8041092											
Lead	95.8	0.135	0.270	mg/kg dry	10	04/24/18 20:09	EPA 6020A				
HA25-S-0.5 (A8D0754-19)			Matrix	: Soil							
Batch: 8041092											
Lead	45.4	0.148	0.296	mg/kg dry	10	04/24/18 20:24	EPA 6020A				
HA25-S-1.0 (A8D0754-20)			Matrix	: Soil							
Batch: 8041095						<u> </u>					
Lead	50.4	0.149	0.299	mg/kg dry	10	04/24/18 20:49	EPA 6020A				
HA26-S-0.5 (A8D0754-21)			Matrix	: Soil							
Batch: 8041095		_									
Lead	249	0.141	0.282	mg/kg dry	10	04/24/18 20:54	EPA 6020A				
HA26-S-1.0 (A8D0754-22)			Matrix	: Soil							
Batch: 8041095											
Lead	396	0.138	0.277	mg/kg dry	10	04/24/18 20:59	EPA 6020A				
HA27-S-0.5 (A8D0754-23)			Matrix	: Soil							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10 Project Manager: Heather Good **Reported:** 04/26/18 15:29

ANALYTICAL SAMPLE RESULTS

		Tota	al Metals by	EPA 6020 (ICF	PMS)			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
HA27-S-0.5 (A8D0754-23)			Matrix	: Soil				
Batch: 8041095								
Lead	185	0.156	0.311	mg/kg dry	10	04/24/18 21:04	EPA 6020A	Q-42
HA27-S-1.0 (A8D0754-24)			Matrix	: Soil				
Batch: 8041095								
Lead	120	0.167	0.334	mg/kg dry	10	04/24/18 22:25	EPA 6020A	
HA28-S-0.5 (A8D0754-25)			Matrix	c: Soil				
Batch: 8041095								
Lead	213	0.139	0.278	mg/kg dry	10	04/24/18 22:30	EPA 6020A	
HA28-S-1.0 (A8D0754-26)			Matrix	: Soil				
Batch: 8041095								
Lead	282	0.142	0.285	mg/kg dry	10	04/24/18 22:35	EPA 6020A	
HA29-S-1.0-CS (A8D0754-27)			Matrix	: Soil				
Batch: 8041095								
Lead	276	0.154	0.308	mg/kg dry	10	04/24/18 22:40	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10 Project Manager: Heather Good **Reported:** 04/26/18 15:29

ANALYTICAL SAMPLE RESULTS

			Percent	Dry Weight				
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
HA16-S-0.5 (A8D0754-01)			Matrix	: Soil	Batch: 80	41072		
% Solids	74.4	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA16-S-1.0 (A8D0754-02)			Matrix	: Soil	Batch: 80	41072		
% Solids	76.7	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA17-S-0.5 (A8D0754-03)			Matrix	: Soil	Batch: 80	41072		
% Solids	82.8	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA17-S-1.0 (A8D0754-04)			Matrix	: Soil	Batch: 80	41072		
% Solids	82.2	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA18-S-0.5 (A8D0754-05)			Matrix	: Soil	Batch: 80	41072		
% Solids	84.4	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA18-S-1.0 (A8D0754-06)			Matrix	: Soil	Batch: 80	41072		
% Solids	87.3	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA19-S-0.5 (A8D0754-07)			Matrix	: Soil	Batch: 80	41072		
% Solids	78.7	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA19-S-1.0 (A8D0754-08)			Matrix	: Soil	Batch: 80	41072		
% Solids	74.7	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA20-S-0.5 (A8D0754-09)			Matrix	: Soil	Batch: 80	41072		
% Solids	73.9	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA20-S-1.0 (A8D0754-10)			Matrix	: Soil	Batch: 80	41072		
% Solids	74.7	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA21-S-0.5 (A8D0754-11)			Matrix	: Soil	Batch: 80	41072		
% Solids	72.7	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA21-S-1.0 (A8D0754-12)			Matrix	: Soil	Batch: 80	41072		
% Solids	73.8	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA22-S-0.5 (A8D0754-13)			Matrix	: Soil	Batch: 80	41072		
% Solids	77.1	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA22-S-1.0 (A8D0754-14)			Matrix	: Soil	Batch: 80	41072		
% Solids	73.5	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA23-S-0.5 (A8D0754-15)			Matrix	: Soil	Batch: 80	41072		
% Solids	72.1	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA23-S-1.0 (A8D0754-16)			Matrix	: Soil	Batch: 80	41072		
% Solids	73.6	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10 Project Manager: Heather Good **Reported:** 04/26/18 15:29

ANALYTICAL SAMPLE RESULTS

			Percent	t Dry Weight				
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
HA24-S-0.5 (A8D0754-17)			Matri	x: Soil	Batch: 80	41072		
% Solids	72.8	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA24-S-1.0 (A8D0754-18)			Matri	x: Soil	Batch: 80	41072		
% Solids	73.4	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA25-S-0.5 (A8D0754-19)			Matri	x: Soil	Batch: 80	41072		
% Solids	68.1	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA25-S-1.0 (A8D0754-20)			Matri	x: Soil	Batch: 80	41072		
% Solids	66.9	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA26-S-0.5 (A8D0754-21)			Matri	x: Soil	Batch: 80	41072		
% Solids	75.9	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA26-S-1.0 (A8D0754-22)			Matri	x: Soil	Batch: 80	41072		
% Solids	74.5	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA27-S-0.5 (A8D0754-23)			Matri	x: Soil	Batch: 80	41072		
% Solids	67.4	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA27-S-1.0 (A8D0754-24)			Matri	x: Soil	Batch: 80	41072		
% Solids	65.5	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA28-S-0.5 (A8D0754-25)			Matri	x: Soil	Batch: 80	41072		
% Solids	74.6	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA28-S-1.0 (A8D0754-26)			Matri	x: Soil	Batch: 80	41072		
% Solids	74.1	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	
HA29-S-1.0-CS (A8D0754-27)			Matri	x: Soil	Batch: 80	41072		
% Solids	71.7	1.00	1.00	% by Weight	1	04/25/18 08:51	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10 Project Manager: Heather Good **Reported:** 04/26/18 15:29

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 602	20 (ICPMS	5)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041092 - EPA 3051	Α						Soi	l				
Blank (8041092-BLK1)				Prep	pared: 04/2	24/18 13:52	Analyzed:	04/24/18 17	7:55			
EPA 6020A												
Lead	ND	0.0962	0.192	mg/kg wet	10							
LCS (8041092-BS1)				Prep	oared: 04/2	24/18 13:52	Analyzed:	04/24/18 18	3:00			
EPA 6020A												
Lead	52.1	0.100	0.200	mg/kg wet	10	50.0		104	80-120			
Duplicate (8041092-DUP1)				Prep	pared: 04/2	24/18 13:52	Analyzed:	04/24/18 18	3:45			
QC Source Sample: HA17-S-1.0 (A8D0754-04)											
EPA 6020A												
Lead	45.6	0.130	0.260	mg/kg dry	10		45.6			0.008	40%	
Matrix Spike (8041092-MS1)				Prep	oared: 04/2	24/18 13:52	Analyzed:	04/24/18 18	3:50			
QC Source Sample: HA17-S-1.0 (A8D0754-04)											-
EPA 6020A												
Lead	115	0.131	0.262	mg/kg dry	10	65.6	45.6	106	75-125			
Matrix Spike (8041092-MS2)				Prep	pared: 04/2	24/18 13:52	Analyzed:	04/24/18 20):29			
QC Source Sample: HA25-S-0.5 (A8D0754-19)											
EPA 6020A												
Lead	114	0.144	0.288	mg/kg dry	10	72.0	45.4	95	75-125			
Batch 8041095 - EPA 3051	Δ						Soi	I				
Blank (8041095-BLK1)				Prer	pared: 04/2	24/18 15:01):39			
EPA 6020A				1	•							
Lead	ND	0.0962	0.192	mg/kg wet	10							
LCS (8041095-BS1)				Preg	oared: 04/2	24/18 15:01	Analyzed:	04/24/18 20):44			
EPA 6020A							-					
Lead	52.2	0.100	0.200	mg/kg wet	10	50.0		104	80-120			
Duplicate (8041095-DUP1)				Prep	pared: 04/2	24/18 15:01	Analyzed:	04/24/18 21	:09			
QC Source Sample: HA27-S-0.5 (A8D0754-23)											
EPA 6020A												
Lead	203	0.147	0.295	mg/kg dry	10		185			9	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10 Project Manager: Heather Good **Reported:** 04/26/18 15:29

QUALITY CONTROL (QC) SAMPLE RESULTS

			Tota	l Metals by	EPA 60	20 (ICPMS	5)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041095 - EPA 305	1A						Soil					
Matrix Spike (8041095-MS1)				Pre	pared: 04/	24/18 15:01	Analyzed:	04/24/18 2	1:14			
QC Source Sample: HA27-S-0.5	(A8D0754-23)											
EPA 6020A												
Lead	290	0.145	0.289	mg/kg dry	10	72.3	185	145	75-125			Q-03, Q-04

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10 Project Manager: Heather Good **Reported:** 04/26/18 15:29

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent l	Dry Wei	ght						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041072 - Total Solid	s (Dry We	eight)					Soi	I				
Duplicate (8041072-DUP1)				Prep	ared: 04/2	24/18 09:45	Analyzed:	04/25/18 08	:51			
QC Source Sample: Other (A8D069	01-01)											
EPA 8000C												
% Solids	86.0	1.00	1.00	% by Weight	1		88.1			2	10%	
Duplicate (8041072-DUP3)				Prep	ared: 04/2	24/18 18:16	Analyzed:	04/25/18 08	:51			
QC Source Sample: HA17-S-0.5 (A8	8D0754-03)											
EPA 8000C												
% Solids	85.5	1.00	1.00	% by Weight	1		82.8			3	10%	
Duplicate (8041072-DUP4)				Prep	ared: 04/2	24/18 18:16	Analyzed:	04/25/18 08	:51			
QC Source Sample: HA23-S-0.5 (A8	8D0754-15)											
EPA 8000C												
% Solids	71.5	1.00	1.00	% by Weight	1		72.1			0.7	10%	
Duplicate (8041072-DUP5)				Prep	ared: 04/2	24/18 18:16	Analyzed:	04/25/18 08	:51			
QC Source Sample: HA29-S-1.0-CS	(A8D0754-2	7)										
EPA 8000C												
% Solids	71.3	1.00	1.00	% by Weight	1		71.7			0.5	10%	
Duplicate (8041072-DUP6)				Prep	ared: 04/2	24/18 18:16	Analyzed:	04/25/18 08	:51			
QC Source Sample: Other (A8D077	' 1-05)											
EPA 8000C												
% Solids	75.0	1.00	1.00	% by Weight	1		75.7			1	10%	
Duplicate (8041072-DUP7)				Prep	ared: 04/2	24/18 19:51	Analyzed:	04/25/18 08	:51			
QC Source Sample: Other (A8D076	55-02)											
EPA 8000C												
% Solids	85.4	1.00	1.00	% by Weight	1		85.6			0.2	10%	
Duplicate (8041072-DUP8)				Prep	ared: 04/2	24/18 19:51	Analyzed:	04/25/18 08	:51			
QC Source Sample: Other (A8D077	78-01)											
EPA 8000C												
% Solids	77.9	1.00	1.00	% by Weight	1		78.6			1	10%	
Duplicate (8041072-DUP9)				Prep	ared: 04/2	24/18 19:51	Analyzed:	04/25/18 08	:51			
QC Source Sample: Other (A8D077	79-08)											
Anna Tallanara								, -	7.	7		<i>C</i>
Apex Laboratories						-		amples analyz ort must be rej				of
y . \ °	1.				uy uot	пон. 11113 и	унсин гер	s musi ve rej	saucea in	crui et	<i>y</i> ·	
Asa A Zomenig	4.4											

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10
Project Manager: Heather Good

Reported: 04/26/18 15:29

QUALITY CONTROL (QC) SAMPLE RESULTS

			·	Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041072 - Total Sol	ids (Dry We	eight)					Soil					
Duplicate (8041072-DUP9)				Prej	pared: 04	24/18 19:51	Analyzed:	04/25/18 08	:51			
QC Source Sample: Other (A8D0	0779-08)											
EPA 8000C												
% Solids	75.7	1.00	1.00	% by Weight	1		76.2			0.7	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10
Project Manager: Heather Good

Reported: 04/26/18 15:29

SAMPLE PREPARATION INFORMATION

Total Metals by EPA 6020 (ICPMS)											
Prep: EPA 3051A					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 8041092											
A8D0754-01 S	oil	EPA 6020A	04/23/18 09:36	04/24/18 13:52	0.51g/50mL	0.5g/50mL	0.98				
A8D0754-02 S	oil	EPA 6020A	04/23/18 09:48	04/24/18 13:52	0.495g/50mL	0.5g/50mL	1.01				
A8D0754-03 S	oil	EPA 6020A	04/23/18 10:15	04/24/18 13:52	0.466g/50mL	0.5g/50mL	1.07				
A8D0754-04 S	oil	EPA 6020A	04/23/18 10:20	04/24/18 13:52	0.452g/50mL	0.5g/50mL	1.11				
A8D0754-05 S	oil	EPA 6020A	04/23/18 10:42	04/24/18 13:52	0.481g/50mL	0.5g/50mL	1.04				
A8D0754-06 S	oil	EPA 6020A	04/23/18 10:50	04/24/18 13:52	0.471g/50mL	0.5g/50mL	1.06				
A8D0754-07 S	oil	EPA 6020A	04/23/18 12:05	04/24/18 13:52	0.469g/50mL	0.5g/50mL	1.07				
A8D0754-08 S	oil	EPA 6020A	04/23/18 12:10	04/24/18 13:52	0.517g/50mL	0.5g/50mL	0.97				
A8D0754-09 S	oil	EPA 6020A	04/23/18 13:35	04/24/18 13:52	0.453g/50mL	0.5g/50mL	1.10				
A8D0754-10 S	oil	EPA 6020A	04/23/18 13:42	04/24/18 13:52	0.471g/50mL	0.5g/50mL	1.06				
A8D0754-11 S	oil	EPA 6020A	04/23/18 14:16	04/24/18 13:52	0.467g/50mL	0.5g/50mL	1.07				
A8D0754-12 S	oil	EPA 6020A	04/23/18 14:20	04/24/18 13:52	0.452g/50mL	0.5g/50mL	1.11				
A8D0754-13 S	oil	EPA 6020A	04/23/18 14:50	04/24/18 13:52	0.511g/50mL	0.5g/50mL	0.98				
A8D0754-14 S	oil	EPA 6020A	04/23/18 14:54	04/24/18 13:52	0.499g/50mL	0.5g/50mL	1.00				
A8D0754-15 S	oil	EPA 6020A	04/23/18 15:47	04/24/18 13:52	0.463g/50mL	0.5g/50mL	1.08				
A8D0754-16 S	oil	EPA 6020A	04/23/18 15:51	04/24/18 13:52	0.485g/50mL	0.5g/50mL	1.03				
A8D0754-17 S	oil	EPA 6020A	04/23/18 16:30	04/24/18 13:52	0.505g/50mL	0.5g/50mL	0.99				
A8D0754-18 S	oil	EPA 6020A	04/23/18 16:40	04/24/18 13:52	0.505g/50mL	0.5g/50mL	0.99				
A8D0754-19 S	oil	EPA 6020A	04/23/18 17:26	04/24/18 13:52	0.496g/50mL	0.5g/50mL	1.01				
Batch: 8041095											
A8D0754-20 S	oil	EPA 6020A	04/23/18 17:28	04/24/18 15:01	0.5g/50mL	0.5g/50mL	1.00				
A8D0754-21 S	oil	EPA 6020A	04/23/18 17:48	04/24/18 15:01	0.467g/50mL	0.5g/50mL	1.07				
A8D0754-22 S	oil	EPA 6020A	04/23/18 17:52	04/24/18 15:01	0.485g/50mL	0.5g/50mL	1.03				
A8D0754-23 S	oil	EPA 6020A	04/23/18 18:20	04/24/18 15:01	0.477g/50mL	0.5g/50mL	1.05				
A8D0754-24 S	oil	EPA 6020A	04/23/18 18:24	04/24/18 15:01	0.458g/50mL	0.5g/50mL	1.09				
A8D0754-25 S	oil	EPA 6020A	04/23/18 19:10	04/24/18 15:01	0.482g/50mL	0.5g/50mL	1.04				
A8D0754-26 S	oil	EPA 6020A	04/23/18 19:20	04/24/18 15:01	0.474g/50mL	0.5g/50mL	1.05				
	oil	EPA 6020A	04/23/18 19:30	04/24/18 15:01	0.453g/50mL	0.5g/50mL	1.10				
			Percent Dry	Weight							

			Percent Dry	Weight			
Prep: Total Solid	ls (Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8041072							
A8D0754-01	Soil	EPA 8000C	04/23/18 09:36	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-02	Soil	EPA 8000C	04/23/18 09:48	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: 0624.04.04-10Reported:Bellingham, WA 98225Project Manager: Heather Good04/26/18 15:29

SAMPLE PREPARATION INFORMATION

			Percent Dry	Weight			
Prep: Total Solid	ds (Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A8D0754-03	Soil	EPA 8000C	04/23/18 10:15	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-04	Soil	EPA 8000C	04/23/18 10:20	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-05	Soil	EPA 8000C	04/23/18 10:42	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-06	Soil	EPA 8000C	04/23/18 10:50	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-07	Soil	EPA 8000C	04/23/18 12:05	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-08	Soil	EPA 8000C	04/23/18 12:10	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-09	Soil	EPA 8000C	04/23/18 13:35	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-10	Soil	EPA 8000C	04/23/18 13:42	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-11	Soil	EPA 8000C	04/23/18 14:16	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-12	Soil	EPA 8000C	04/23/18 14:20	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-13	Soil	EPA 8000C	04/23/18 14:50	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-14	Soil	EPA 8000C	04/23/18 14:54	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-15	Soil	EPA 8000C	04/23/18 15:47	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-16	Soil	EPA 8000C	04/23/18 15:51	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-17	Soil	EPA 8000C	04/23/18 16:30	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-18	Soil	EPA 8000C	04/23/18 16:40	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-19	Soil	EPA 8000C	04/23/18 17:26	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-20	Soil	EPA 8000C	04/23/18 17:28	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-21	Soil	EPA 8000C	04/23/18 17:48	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-22	Soil	EPA 8000C	04/23/18 17:52	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-23	Soil	EPA 8000C	04/23/18 18:20	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-24	Soil	EPA 8000C	04/23/18 18:24	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-25	Soil	EPA 8000C	04/23/18 19:10	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-26	Soil	EPA 8000C	04/23/18 19:20	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA
A8D0754-27	Soil	EPA 8000C	04/23/18 19:30	04/24/18 18:16	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Project Number: 0624.04.04-10 Reported: Bellingham, WA 98225 04/26/18 15:29 Project Manager: Heather Good

Notes and Definitions

Qualifiers:

Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.

Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.

Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected. dry

RPD Relative Percent Difference

If MDL is not listed, data has been evaluated to the Method Reporting Limit only. **MDL**

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate QC (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional Policy chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: 0624.04.04-10 Project Manager: Heather Good

Reported: 04/26/18 15:29

																						-
APEX LABS						CH.	CHAIN OF CUSTODY	Ō	C	CS	<u>S</u>	λ			Lab#	# MSD	0	12		coc 3 of	ري ادر	1
12232 S.W. Garden Place, Tigard, OR 97223 Ph.: 503-718-2323 Fax: 503-718-0333	97223	Ph: 50	3-718-2.	323 Fa	:: 503-;	18-03	33											PO#				
Company: Maul Foster Along	if.		Project Mgr. Heather	fgr. H	ea ti	rer	Good	po		Pro	Project Name: Sw. 4	me:S	3	17	Ses	nter		Projec	Project # 0624.04.1	24.0	2.70	
Address: 1329 N. State St. 5te 301	245	Ste		Bham,		NA		Phone	360	Phone: 360 594/6257	625	L/	Fax:			Ema	ha	100	Email: hgood amaustoster com	naul	toste	1 3
Sampled by: C. Wise ; B. Paulik	Jan	ak			499989								¥	(ALY	SIS RI	ANALYSIS REQUEST	7					
Site Location: OR (WA) Other: SAMPLE ID	LAB ID #	DATE	TIME	MATRIX	# OF CONTAINERS	NWTPH-HCID NWTPH-Dx	хо-налми	8260 VOCs Full List	8700 KBDW AOC	8760 BTEX VOCs	OOAS 0478	SHV4 MIS 0428	8082 PCBs	BCRA Metals (8)	TCLP Metals (8)	Li, Sb, As, Ba, Be, Cd, La, Cr, Co, Cu, Fe, Pb, tg, Mg, Mn, Mo, Ni, K, e, Ag, Na, Ti, V, Zn 'OTAL DISS TCLP	1700° COTS	Z-0071	ר <i>פ</i> ניכן			
1 HAIB-S-0.5	7	8/82/6	936	S	-							+	-	-	ļ	S H		Ť	X			
2 HA16-5-1.0			846	S	_														×			
*HAIT - S- 0.5			1015	S	_														X			
4 HAIT-S-1-0			020	S															×			
1			1042	()	_														X			
"HAIS-S-1.0			0501	S	_				-	_									X			
1 HAIG - S-0.5			5021	S															X			
8 HAI9 - S- 1.0			1210																X			
			1335	0	_													\sim	×			
"HA20-5-1-0		>	1342	S		_												\cap	$\sqrt{}$			
Normal Turn Around Time (TAT) = 10 Business Days	ss Days			YES	_	NO NO			<u> </u>	SPECIAL INSTRUCTIONS:	INST	ECT3	SNO.									
TAT December of (release)	1 Day	2.002	2 Day		3 Day																	
	4 DAY		5 DAY		Other:				······································													.,
SAMPLES ARE HELD FOR 30 DAYS	SARE	HELD I	OR 30 D	X					П		1											
Signature: 2175 Chili	Date:	81/12	RECEIVED BY Date: 1/24/18 Signortics //		se.)		Date:	Imal.	~ ~ § §	RELINOUISHER Signéture	A SEE	(ڇَ		7	4-24-18		S \ 3		SALA HATATA	Date 4	- P	
Printed Name ar Clyn Wyc	Time: 🗞 🖍	1	Printed Names VWAYBEIDIL Time.	5	AUDE	ipu	Time:	335	. 5	Fright WANGROVE 17:50	JWP	250	10°	١	4				Mourtinat.	- to		
Company: MEA			Company:	Ü	ESS NN	3			. 3	ESS NW	ふ	3				Company)	N IN			
									1													7

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: 0624.04.04-10Reported:Bellingham, WA 98225Project Manager: Heather Good04/26/18 15:29

APEX LABS CHAIN OF CUSTODY Lab # ABDUTGY coc 4_of 5	
12232 S.W. Garden Place, Tigard, OR 97223 Ph.: 503-718-2323 Fax: 503-718-0333	
Company: Mail Foster Along, Project May Heather Good Project Name: Swift Center Project # D624-04.10	
Email: hc	2
Sampled by: CW is & ' B. Powlik	
PR (B) AGCS AGCS Enli List AURERS Signification Significatio	
AND	
71 001 3/8 1	
0.1-	
" HA32 - S - 1. 0 1454 S 1	
8 HA23-S-O.S 1547 S 1	
1	
"HA25-S-0.5 (1726 S)	
1728 5 1	
Normal Turn Around Time (TAT) = 10 Business Days YES NO SPECIAL INSTRUCTIONS:	
TAT Requested (circle) 2 Day 3 Day	
4 DAY 5 DAY Other:	
SAMPLES ARE HELD F	
Signature, G. C. Date, 724/8 Signature, AM Signature, AM Signature, AM Signature, G. C.	
Ti JUANA BY 2015 JANA WAYSLED (2)50 prince Name / 1/11/10/14	
Communic	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Project Number: 0624.04.04-10 Reported:
Bellingham, WA 98225 Project Manager: Heather Good 04/26/18 15:29

APEX LABS		CHAIN OF CUSTODY	FCU	STOI	λ			Lab#	2008	1800754		COC 5 of 5	2
12232 S.W. Garden Place, Tigard, OR 97223 Ph: 503-718-2323 Fax: 503-718-0333	3-718-2323 Fax: 503-;	718-0333								#Od			
Company: Mail Foster Alongi	Project Mgr. Heather	her Good		Project Name: Swift	ne: Sa	Hic		Center		Projec	100 = 1	Project # 0624-04.10	2
Address: 1329 N. State St. Ste 301	, Bham,	WA Pho	Phone: 3605946257	34625	7 Fax:	×			Email:	7	(B)	Email: harood@mard fester con	esteria
Sampled by: C. Wise ? B. Poulik						ANA	LYSIS	ANALYSIS REQUEST		,			
Site Location: OR (WA) Other: SAMPLE ID DATE	TIME # 0F CONTAINERS	8700 AOC'S E''II T'E'I NALLH'-D'X NALLH'-HCID	8700 HAOC ⁸ 8700 KBDM AOC ⁸	8700 RAOC	8087 PCBs 8270 SIM PAHs	OTT 009	RCRA Metals (8)	TCLP Metals (8) Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Bg, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Tt, V, Zn	TATE SEIG TEIDI	1500-S 1500- COFS	7500		
14A26-5-0.5 4/23/18 1748	1748 SHT									<u> </u>	X		
2 HAZ6 - S-1.0	(752 S)				-	ļ			ļ		\ \ \		
"HA27-S-0.5	1820 5 1												
0-1-	1824 5 1												
10	1910 S 1										\ \ \		
"HA28-S-1.0	1 5 006								-		X		
THA29-5-1.0-CS	1 8081									-			
ω σ													
01.									+				
Normal Turn Around Time (TAT) = 10 Business Days	YES N	NO	SPEC	SPECIAL INSTRUCTIONS:	UCTIO	NS:							
TAT Demonstrad (circula)	2 Day 3 Day												
4 DAY	5 DAY Other:	OMORPHUM			0								
SAMPLES ARE HELD I	OR 30 DAYS		T	1	64								
Signature: CLOCATA Date: 24/18 Signature	RECEIVED &Y:	M/m/	/ RELIF	RELINQUISHED 6Y	ر انق		12	124.18 Pate:	RECEIVED BY	**************************************	7	Just Albu	X
Printed Naple: arcly Clist Time. 815 P.	Printeg Same SON WANDER Prince 815	bel Crime SI		Principles WA URBOL 1250	40	Ray)		Printed Nam	4	al Guer	L. 1050	10
Company. MFA	Company: ES UN	>	Comp	(Company:	7.2				Company:		O YU		
											1		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301

Bellingham, WA 98225

Project: 0624.04.10-03--Northern State Hospital

Project Number: 0624.04.04-10 Project Manager: Heather Good **Reported:** 04/26/18 15:29

APEX LABS COOLER RECEIPT FORM
Client: Maul Foster Bellingham Element WO#: A8 D0754
Project/Project #: SWIF CLUTEY / 0624-04-10
Delivery info:
Date/Time Received: 4 24 18 @ 1250 By:
Delivered by: Apex Client ESS FedEx UPS Swift Senvoy SDS Other
Cooler Inspection Inspected by: (8) : 42418 @ 1757
Chain of Custody Included? Yes No Custody Seals? Yes V No
Signed/Dated by Client? Yes / No
Signed/Dated by Apex? Yes / No
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (deg. C) 18 5.4
Received on Ice? (Y)N)
Temp. Blanks? (V)N) 4.9 1.6
Ice Type: (Gel/Real/Other)
Condition:
Cooler out of temp? (YN) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/No(NA) Samples Inspection: Inspected by: All Samples Intact? Yes
Bottle Labels/COCs agree? Yes No Comments:
Containers/Volumes Received Appropriate for Analysis? Yes No Comments:
Do VOA Vials have Visible Headspace? Yes No NA Comments
Water Samples: pH Checked and Appropriate (except VOAs): YesNoNA/ Comments:
Additional Information:
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y
W 45

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Wednesday, May 23, 2018

Heather Good Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301 Bellingham, WA 98225

RE: A8D0757 - 0624.04.10-03--Northern State Hospital - Swift Center/0624.04.10

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A8D0757, which was received by the laboratory on 4/24/2018 at 12:50:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.



Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Report ID:

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Project Number: Swift Center/0624.04.10 Bellingham, WA 98225

Project Manager: Heather Good A8D0757 - 05 23 18 1243

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMAT	TION	
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW10-S-1.0	A8D0757-01	Soil	04/23/18 11:30	04/24/18 12:50
MW10-S-13.5	A8D0757-02	Soil	04/23/18 11:40	04/24/18 12:50
MW10-S-24.5	A8D0757-03	Soil	04/23/18 11:45	04/24/18 12:50
MW09-S-0.5	A8D0757-04	Soil	04/23/18 15:40	04/24/18 12:50
MW09-S-6.0	A8D0757-05	Soil	04/23/18 16:10	04/24/18 12:50
MW09-S-19.0	A8D0757-06	Soil	04/23/18 16:20	04/24/18 12:50
GP49-S-0.5	A8D0757-07	Soil	04/23/18 17:20	04/24/18 12:50
GP49-S-7.0	A8D0757-08	Soil	04/23/18 17:25	04/24/18 12:50
GP49-S-10.0	A8D0757-09	Soil	04/23/18 17:30	04/24/18 12:50
GP50-S-0.5	A8D0757-10	Soil	04/23/18 17:40	04/24/18 12:50
GP50-S-1.5	A8D0757-11	Soil	04/23/18 17:45	04/24/18 12:50
GP51-S-0.5	A8D0757-12	Soil	04/23/18 17:50	04/24/18 12:50
GP51-S-1.0	A8D0757-13	Soil	04/23/18 17:55	04/24/18 12:50
GP52-S-0.5	A8D0757-14	Soil	04/23/18 18:00	04/24/18 12:50
GP52-S-6.0	A8D0757-15	Soil	04/23/18 18:05	04/24/18 12:50
GP52-S-7.5	A8D0757-16	Soil	04/23/18 18:10	04/24/18 12:50

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225

0624.04.10-03--Northern State Hospital Project:

Project Number: Swift Center/0624.04.10 Project Manager: Heather Good

Report ID: A8D0757 - 05 23 18 1243

ANALYTICAL CASE NARRATIVE

Work Order: A8D0757

Amended Report

MDL reporting-

This report has been amended to reflect MDL reporting.

Lisa Domenighini Client Services Manager 5-23-18

Subcontract

This report is not complete without the attached subcontract laboratory report for Dioxins and Furans that was subcontracted to Cape Fear Environmental.

Lisa Domenighini Client Services Manager 5-10-18

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of }$ custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10
Project Manager: Heather Good

Report ID: A8D0757 - 05 23 18 1243

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP49-S-0.5 (A8D0757-07)			Matrix:	Soil		Batch: 8041	1135	
Diesel	16.9	12.5	25.0	mg/kg dry	1	04/25/18	NWTPH-Dx	J
Oil	ND	25.0	50.0	mg/kg dry	1	04/25/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 90 %	Limits: 50-150 %	5 1	04/25/18	NWTPH-Dx	
GP49-S-7.0 (A8D0757-08)			Matrix:	Soil		Batch: 8041	1135	
Diesel	ND	13.5	27.1	mg/kg dry	1	04/25/18	NWTPH-Dx	
Oil	ND	27.1	54.1	mg/kg dry	1	04/25/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 92 %	Limits: 50-150 %	6 I	04/25/18	NWTPH-Dx	
GP49-S-10.0 (A8D0757-09)			Matrix:	Soil		Batch: 8041	1135	
Diesel	ND	12.9	25.8	mg/kg dry	1	04/25/18	NWTPH-Dx	
Oil	ND	25.8	51.5	mg/kg dry	1	04/25/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 94 %	Limits: 50-150 %	5 1	04/25/18	NWTPH-Dx	
GP50-S-0.5 (A8D0757-10)			Matrix:	Soil		Batch: 8041	1135	
Diesel	38.2	12.8	25.6	mg/kg dry	1	04/26/18	NWTPH-Dx	F-17
Oil	35.5	25.6	51.2	mg/kg dry	1	04/26/18	NWTPH-Dx	J
Surrogate: o-Terphenyl (Surr)		Reco	very: 83 %	Limits: 50-150 %	5 1	04/26/18	NWTPH-Dx	
GP50-S-1.5 (A8D0757-11)			Matrix:	Soil		Batch: 8041	1135	
Diesel	ND	12.7	25.3	mg/kg dry	1	04/26/18	NWTPH-Dx	
Oil	ND	25.3	50.6	mg/kg dry	1	04/26/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 80 %	Limits: 50-150 %	5 1	04/26/18	NWTPH-Dx	
GP51-S-0.5 (A8D0757-12)			Matrix:	Soil		Batch: 8041	1135	
Diesel	14.5	10.6	25.0	mg/kg dry	1	04/26/18	NWTPH-Dx	J
Oil	22.3	21.2	50.0	mg/kg dry	1	04/26/18	NWTPH-Dx	J
Surrogate: o-Terphenyl (Surr)		Reco	very: 87 %	Limits: 50-150 %	5 1	04/26/18	NWTPH-Dx	
GP51-S-1.0 (A8D0757-13)			Matrix:	Soil		Batch: 8041	1135	
Diesel	ND	12.3	25.0	mg/kg dry	1	04/26/18	NWTPH-Dx	
Oil	ND	24.6	50.0	mg/kg dry	1	04/26/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	5 I	04/26/18	NWTPH-Dx	
GP52-S-0.5 (A8D0757-14)			Matrix:	Soil		Batch: 8041	1135	
Diesel	ND	10.5	25.0	mg/kg dry	1	04/26/18	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jose & Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Report ID:

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: 0624.04.10-03--Northern State Hospital

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good A8D0757 - 05 23 18 1243

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTPI	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP52-S-0.5 (A8D0757-14)			Matrix:	Soil		Batch: 8041	1135	
Oil	ND	21.0	50.0	mg/kg dry	1	04/26/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 87%	Limits: 50-150 %	1	04/26/18	NWTPH-Dx	
GP52-S-6.0 (A8D0757-15)			Matrix:	Soil		Batch: 8041	1135	
Diesel	ND	15.2	30.3	mg/kg dry	1	04/26/18	NWTPH-Dx	
Oil	ND	30.3	60.6	mg/kg dry	1	04/26/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 89 %	Limits: 50-150 %	1	04/26/18	NWTPH-Dx	
GP52-S-7.5 (A8D0757-16)			Matrix:	Soil		Batch: 8041	1135	
Diesel	15.9	14.0	27.9	mg/kg dry	1	04/26/18	NWTPH-Dx	J
Oil	ND	27.9	55.9	mg/kg dry	1	04/26/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 97 %	Limits: 50-150 %	1	04/26/18	NWTPH-Dx	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Project Number: Swift Center/0624.04.10 Report ID: Bellingham, WA 98225 Project Manager: Heather Good A8D0757 - 05 23 18 1243

ANALYTICAL SAMPLE RESULTS

	Haloger	nated Volatile	Organic Co	ompounds by E	PA 8260	С		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW10-S-1.0 (A8D0757-01)			Matrix:	Soil		Batch: 8041	1067	
1,1-Dichloroethene	ND	20.3	40.6	ug/kg dry	50	04/24/18	5035A/8260C	
cis-1,2-Dichloroethene	ND	20.3	40.6	ug/kg dry	50	04/24/18	5035A/8260C	
trans-1,2-Dichloroethene	ND	20.3	40.6	ug/kg dry	50	04/24/18	5035A/8260C	
Tetrachloroethene (PCE)	ND	20.3	40.6	ug/kg dry	50	04/24/18	5035A/8260C	
Trichloroethene (TCE)	ND	20.3	40.6	ug/kg dry	50	04/24/18	5035A/8260C	
Vinyl chloride	ND	20.3	40.6	ug/kg dry	50	04/24/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 92 %	Limits: 80-120 %	1	04/24/18	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	04/24/18	5035A/8260C	
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	04/24/18	5035A/8260C	
MW10-S-13.5 (A8D0757-02)			Matrix:	Soil		Batch: 8041	1067	
1,1-Dichloroethene	ND	16.8	33.6	ug/kg dry	50	04/24/18	5035A/8260C	
cis-1,2-Dichloroethene	ND	16.8	33.6	ug/kg dry	50	04/24/18	5035A/8260C	
trans-1,2-Dichloroethene	ND	16.8	33.6	ug/kg dry	50	04/24/18	5035A/8260C	
Tetrachloroethene (PCE)	6700	16.8	33.6	ug/kg dry	50	04/24/18	5035A/8260C	
Trichloroethene (TCE)	56.0	16.8	33.6	ug/kg dry	50	04/24/18	5035A/8260C	
Vinyl chloride	ND	16.8	33.6	ug/kg dry	50	04/24/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 94 %	Limits: 80-120 %	1	04/24/18	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	04/24/18	5035A/8260C	
4-Bromofluorobenzene (Surr)			109 %	80-120 %	1	04/24/18	5035A/8260C	
MW10-S-24.5 (A8D0757-03RE1)			Matrix:	Soil		Batch: 8041	1110	
1,1-Dichloroethene	ND	15.9	31.8	ug/kg dry	50	04/25/18	5035A/8260C	
cis-1,2-Dichloroethene	ND	15.9	31.8	ug/kg dry	50	04/25/18	5035A/8260C	
trans-1,2-Dichloroethene	ND	15.9	31.8	ug/kg dry	50	04/25/18	5035A/8260C	
Tetrachloroethene (PCE)	ND	15.9	31.8	ug/kg dry	50	04/25/18	5035A/8260C	
Trichloroethene (TCE)	ND	15.9	31.8	ug/kg dry	50	04/25/18	5035A/8260C	
Vinyl chloride	ND	15.9	31.8	ug/kg dry	50	04/25/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	1	04/25/18	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	I	04/25/18	5035A/8260C	
4-Bromofluorobenzene (Surr)			106 %	80-120 %	I	04/25/18	5035A/8260C	
MW09-S-0.5 (A8D0757-04)			Matrix:	Soil		Batch: 8041	1067	
1,1-Dichloroethene	ND	15.3	30.6	ug/kg dry	50	04/24/18	5035A/8260C	
cis-1,2-Dichloroethene	ND	15.3	30.6	ug/kg dry	50	04/24/18	5035A/8260C	
trans-1,2-Dichloroethene	ND	15.3	30.6	ug/kg dry	50	04/24/18	5035A/8260C	
Tetrachloroethene (PCE)	ND	15.3	30.6	ug/kg dry	50	04/24/18	5035A/8260C	
Trichloroethene (TCE)	ND	15.3	30.6	ug/kg dry	50	04/24/18	5035A/8260C	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Report ID:

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: 0624.04.10-03--Northern State Hospital

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good A8D0757 - 05 23 18 1243

ANALYTICAL SAMPLE RESULTS

	Halogen	ated Volatile	Organic Co	ompounds by E	PA 8260	С		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW09-S-0.5 (A8D0757-04)			Matrix:	Soil		Batch: 8041	1067	
Vinyl chloride	ND	15.3	30.6	ug/kg dry	50	04/24/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 93 %	Limits: 80-120 %	1	04/24/18	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	04/24/18	5035A/8260C	
4-Bromofluorobenzene (Surr)			109 %	80-120 %	1	04/24/18	5035A/8260C	
MW09-S-6.0 (A8D0757-05)			Matrix:	Soil		Batch: 8041	1067	
1,1-Dichloroethene	ND	16.0	32.0	ug/kg dry	50	04/24/18	5035A/8260C	
cis-1,2-Dichloroethene	ND	16.0	32.0	ug/kg dry	50	04/24/18	5035A/8260C	
trans-1,2-Dichloroethene	ND	16.0	32.0	ug/kg dry	50	04/24/18	5035A/8260C	
Tetrachloroethene (PCE)	ND	16.0	32.0	ug/kg dry	50	04/24/18	5035A/8260C	
Trichloroethene (TCE)	ND	16.0	32.0	ug/kg dry	50	04/24/18	5035A/8260C	
Vinyl chloride	ND	16.0	32.0	ug/kg dry	50	04/24/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 94 %	Limits: 80-120 %	1	04/24/18	5035A/8260C	
Toluene-d8 (Surr)			93 %	80-120 %	1	04/24/18	5035A/8260C	
4-Bromofluorobenzene (Surr)			109 %	80-120 %	1	04/24/18	5035A/8260C	
MW09-S-19.0 (A8D0757-06)			Matrix:	Soil		Batch: 8041	1067	
1,1-Dichloroethene	ND	14.9	29.9	ug/kg dry	50	04/24/18	5035A/8260C	
cis-1,2-Dichloroethene	ND	14.9	29.9	ug/kg dry	50	04/24/18	5035A/8260C	
trans-1,2-Dichloroethene	ND	14.9	29.9	ug/kg dry	50	04/24/18	5035A/8260C	
Tetrachloroethene (PCE)	ND	14.9	29.9	ug/kg dry	50	04/24/18	5035A/8260C	
Trichloroethene (TCE)	ND	14.9	29.9	ug/kg dry	50	04/24/18	5035A/8260C	
Vinyl chloride	ND	14.9	29.9	ug/kg dry	50	04/24/18	5035A/8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 95 %	Limits: 80-120 %	1	04/24/18	5035A/8260C	
Toluene-d8 (Surr)			94 %	80-120 %	1	04/24/18	5035A/8260C	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	04/24/18	5035A/8260C	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good A8D0757 - 05 23 18 1243

ANALYTICAL SAMPLE RESULTS

	Polyar	omatic Hydro	carbons (P	AHs) by EPA 82	70D SIM			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP49-S-0.5 (A8D0757-07RE1)			Matrix:	Soil		Batch: 804	1238	
Benz(a)anthracene	23.0	6.32	12.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	M-05
Benzo(a)pyrene	18.1	6.32	12.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	23.4	6.32	12.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	M-05
Benzo(k)fluoranthene	9.34	6.32	12.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	J
Chrysene	23.3	6.32	12.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	M-05
Dibenz(a,h)anthracene	ND	6.32	12.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	13.1	6.32	12.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 81 %	Limits: 44-120 %	1	04/30/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			84 %	54-127 %	1	04/30/18	EPA 8270D (SIM)	
GP49-S-7.0 (A8D0757-08RE1)			Matrix:	Soil		Batch: 804	1238	
Benz(a)anthracene	ND	7.33	14.7	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(a)pyrene	ND	7.33	14.7	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND	7.33	14.7	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND	7.33	14.7	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Chrysene	ND	7.33	14.7	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND	7.33	14.7	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	7.33	14.7	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 80 %	Limits: 44-120 %	1	04/30/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			84 %	54-127 %	1	04/30/18	EPA 8270D (SIM)	
GP49-S-10.0 (A8D0757-09RE1)			Matrix:	Soil		Batch: 804	1238	
Benz(a)anthracene	ND	6.43	12.9	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(a)pyrene	ND	6.43	12.9	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND	6.43	12.9	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND	6.43	12.9	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Chrysene	ND	6.43	12.9	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND	6.43	12.9	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	6.43	12.9	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 83 %	Limits: 44-120 %	1	04/30/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			89 %	54-127 %	1	04/30/18	EPA 8270D (SIM)	
GP50-S-0.5 (A8D0757-10RE1)			Matrix:	Soil		Batch: 804	1238	
Benz(a)anthracene	25.2	6.53	13.1	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	M-05
Benzo(a)pyrene	16.8	6.53	13.1	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	18.5	6.53	13.1	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	M-05
Benzo(k)fluoranthene	ND	6.53	13.1	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Chrysene	25.7	6.53	13.1	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	M-05

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zomenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

<u>Maul Foster & Alongi, INC-Bellingham</u> 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good A8D0757 - 05 23 18 1243

ANALYTICAL SAMPLE RESULTS


	Polyard	omatic Hydro	carbons (P	AHs) by EPA 82	70D SIM			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP50-S-0.5 (A8D0757-10RE1)			Matrix:	Soil		Batch: 804	1238	
Dibenz(a,h)anthracene	ND	6.53	13.1	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	8.50	6.53	13.1	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	J
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 78 %	Limits: 44-120 %	1	04/30/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			81 %	54-127 %	1	04/30/18	EPA 8270D (SIM)	
GP50-S-1.5 (A8D0757-11RE1)			Matrix:	Soil		Batch: 804	1238	
Benz(a)anthracene	ND	6.42	12.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(a)pyrene	ND	6.42	12.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND	6.42	12.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND	6.42	12.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Chrysene	ND	6.42	12.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND	6.42	12.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	6.42	12.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 80 %	Limits: 44-120 %	1	04/30/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			88 %	54-127 %	1	04/30/18	EPA 8270D (SIM)	
GP51-S-0.5 (A8D0757-12RE1)			Matrix:	Soil		Batch: 804	1238	
Benz(a)anthracene	7.78	5.29	10.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	J
Benzo(a)pyrene	ND	5.29	10.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	7.15	5.29	10.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	J
Benzo(k)fluoranthene	ND	5.29	10.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Chrysene	6.82	5.29	10.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	J
Dibenz(a,h)anthracene	ND	5.29	10.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	5.29	10.6	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 78 %	Limits: 44-120 %	1	04/30/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			81 %	54-127 %	1	04/30/18	EPA 8270D (SIM)	
GP51-S-1.0 (A8D0757-13RE1)			Matrix:	Soil		Batch: 804	1238	
Benz(a)anthracene	ND	6.24	12.5	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Benzo(a)pyrene	ND	6.24	12.5	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND	6.24	12.5	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND	6.24	12.5	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Chrysene	ND	6.24	12.5	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND	6.24	12.5	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	6.24	12.5	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 78 %	Limits: 44-120 %	1	05/01/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			85 %	54-127 %		05/01/18	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 9 of 59 Page 9 of 30

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

<u>Maul Foster & Alongi, INC-Bellingham</u> 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good A8D0757 - 05 23 18 1243

ANALYTICAL SAMPLE RESULTS

	Polyard	omatic Hydro	carbons (P	AHs) by EPA 82	70D SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP52-S-0.5 (A8D0757-14RE1)			Matrix:			Batch: 804		
Benz(a)anthracene	ND	5.06	10.1	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Benzo(a)pyrene	ND	5.06	10.1	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND	5.06	10.1	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND	5.06	10.1	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Chrysene	ND	5.06	10.1	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND	5.06	10.1	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	5.06	10.1	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)			very: 83 %	Limits: 44-120 %	1	05/01/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)		11000	87 %	54-127 %		05/01/18	EPA 8270D (SIM)	
GP52-S-6.0 (A8D0757-15RE1)			Matrix:	Soil		Batch: 804	1238	
Benz(a)anthracene	ND	7.64	15.3	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Benzo(a)pyrene	ND	7.64	15.3	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND	7.64	15.3	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND	7.64	15.3	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Chrysene	ND	7.64	15.3	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND	7.64	15.3	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	7.64	15.3	ug/kg dry	1	05/01/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 76 %	Limits: 44-120 %	1	05/01/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			76 %	54-127 %		05/01/18	EPA 8270D (SIM)	
GP52-S-7.5 (A8D0757-16RE1)			Matrix:	Soil		Batch: 804	1238	
Benz(a)anthracene	ND	7.42	14.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(a)pyrene	ND	7.42	14.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND	7.42	14.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND	7.42	14.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Chrysene	ND	7.42	14.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND	7.42	14.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	7.42	14.8	ug/kg dry	1	04/30/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 88 %	Limits: 44-120 %	1	04/30/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			94 %	54-127 %	1	04/30/18	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Asa A Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10
Project Manager: Heather Good

Report ID: A8D0757 - 05 23 18 1243

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
	Sample	Detection	Reporting	**	P.1:	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW10-S-1.0 (A8D0757-01)			Matrix:			Batch: 8041	1146	
% Solids	68.3	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
MW10-S-13.5 (A8D0757-02)			Matrix:	Soil		Batch: 8041	1146	
% Solids	72.5	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
MW10-S-24.5 (A8D0757-03)			Matrix:	Soil		Batch: 8041	1146	
% Solids	76.9	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
MW09-S-0.5 (A8D0757-04)			Matrix:	Soil		Batch: 8041	1146	
% Solids	78.3	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
MW09-S-6.0 (A8D0757-05)			Matrix:	Soil		Batch: 8041	1146	
% Solids	77.9	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
MW09-S-19.0 (A8D0757-06)			Matrix:	Soil		Batch: 8041	1146	
% Solids	77.6	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
GP49-S-0.5 (A8D0757-07)			Matrix:	Soil		Batch: 8041	1146	
% Solids	76.4	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
GP49-S-7.0 (A8D0757-08)			Matrix:	Soil		Batch: 8041	1146	
% Solids	67.4	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
GP49-S-10.0 (A8D0757-09)			Matrix:	Soil		Batch: 8041	1146	
% Solids	74.6	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
GP50-S-0.5 (A8D0757-10)			Matrix:	Soil		Batch: 8041	1146	
% Solids	75.5	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
GP50-S-1.5 (A8D0757-11)			Matrix:	Soil		Batch: 8041	1146	
% Solids	73.7	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
GP51-S-0.5 (A8D0757-12)			Matrix:	Soil		Batch: 8041	1146	
% Solids	87.9	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
GP51-S-1.0 (A8D0757-13)			Matrix:	Soil		Batch: 8041	1146	
% Solids	74.5	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

<u>Maul Foster & Alongi, INC-Bellingham</u> 1329 North State Street, Suie 301

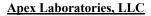
Bellingham, WA 98225

Project: 0624.04.10-03--Northern State Hospital

Project Number: Swift Center/0624.04.10
Project Manager: Heather Good

Report ID:
A8D0757 - 05 23 18 1243

ANALYTICAL SAMPLE RESULTS


		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP52-S-0.5 (A8D0757-14)			Matrix:	Soil		Batch: 8041	1146	
% Solids	94.6	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
GP52-S-6.0 (A8D0757-15)			Matrix:	Soil		Batch: 8041	1146	
% Solids	63.8	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	
GP52-S-7.5 (A8D0757-16)			Matrix:	Soil		Batch: 8041	1146	
% Solids	63.3	1.00	1.00	% by Weight	1	04/26/18	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 12 of 59 Page 12 of 30

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good

Report ID: A8D0757 - 05 23 18 1243

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	or Oil Hyd	Irocarbor	s by NW7	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041135 - EPA 3546 (F	uels)						Soil					
Blank (8041135-BLK1)			Prepared	d: 04/25/18	13:36 Ana	lyzed: 04/25	/18 22:15					
NWTPH-Dx												
Diesel	ND	8.33	25.0	mg/kg w	ret 1							
Oil	ND	16.7	50.0	mg/kg w	ret 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 97 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS (8041135-BS1)			Prepared	d: 04/25/18	13:36 Ana	lyzed: 04/25	/18 22:36					
NWTPH-Dx												
Diesel	113	10.0	25.0	mg/kg w	ret 1	125		91	76-115%			
Surr: o-Terphenyl (Surr)		Recov	very: 102 %	Limits: 50	0-150 %	Dilı	ution: 1x					
Duplicate (8041135-DUP1)			Prepared	d: 04/25/18	13:36 Ana	lyzed: 04/25	/18 23:17					
OC Source Sample: GP49-S-0.5 NWTPH-Dx	(A8D0757-07)	1										
Diesel	ND	12.6	25.1	mg/kg d	ry 1		16.9			***	30%	Q-05
Oil	ND	25.1	50.2	mg/kg d	ry 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 86 %	Limits: 50		Dilı	ution: 1x					
Duplicate (8041135-DUP2)			Prepared	d: 04/25/18	13:36 Ana	lyzed: 04/26	/18 08:54					
QC Source Sample: Non-SDG (A	A8D0782-01)							<u> </u>			<u> </u>	<u> </u>
Diesel	ND	9.47	25.0	mg/kg d	ry 1		ND				30%	
Oil	ND	18.9	50.0	mg/kg d	-		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 94 %	Limits: 50	0-150 %	Dilı	ution: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Asa & Jamenghini

1329 North State Street, Suie 301

Bellingham, WA 98225

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

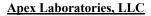
Maul Foster & Alongi, INC-Bellingham Project:

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good

0624.04.10-03--Northern State Hospital

Report ID: A8D0757 - 05 23 18 1243


QUALITY CONTROL (QC) SAMPLE RESULTS

		Haloge	nated Vola	tile Organ	nic Comp	ounds by	y EPA 826	50C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041067 - EPA 5035A							Soil					
Blank (8041067-BLK1)			Prepared	d: 04/24/18 0	8:30 Ana	lyzed: 04/24	/18 10:59					
5035A/8260C												
1,1-Dichloroethene	ND	8.33	16.7	ug/kg we	t 50							
cis-1,2-Dichloroethene	ND	8.33	16.7	ug/kg we	t 50							
trans-1,2-Dichloroethene	ND	8.33	16.7	ug/kg we	t 50							
Tetrachloroethene (PCE)	ND	8.33	16.7	ug/kg we	t 50							
Trichloroethene (TCE)	ND	8.33	16.7	ug/kg we	t 50							
Vinyl chloride	ND	8.33	16.7	ug/kg we	t 50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-	-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			106 %	80-	120 %		"					
LCS (8041067-BS1)			Prepared	d: 04/24/18 0	8:30 Ana	lyzed: 04/24	/18 10:05					
5035A/8260C												
1,1-Dichloroethene	931	12.5	25.0	ug/kg we	t 50	1000		93	80-120%			
cis-1,2-Dichloroethene	989	12.5	25.0	ug/kg we	t 50	1000		99	80-120%			
trans-1,2-Dichloroethene	928	12.5	25.0	ug/kg we	t 50	1000		93	80-120%			
Tetrachloroethene (PCE)	1050	12.5	25.0	ug/kg we	t 50	1000		105	80-120%			
Trichloroethene (TCE)	1030	12.5	25.0	ug/kg we	t 50	1000		103	80-120%			
Vinyl chloride	1130	12.5	25.0	ug/kg we	t 50	1000		113	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80-	-120 %	Dil	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80-	120 %		"					
Duplicate (8041067-DUP1)			Prepared	d: 04/20/18 1	3:45 Ana	lyzed: 04/24	/18 13:41					
QC Source Sample: Non-SDG (A8	D0714-01)											
1,1-Dichloroethene	ND	53.9	108	ug/kg dry	y 200		ND				30%	
cis-1,2-Dichloroethene	ND	53.9	108	ug/kg dry			ND				30%	
trans-1,2-Dichloroethene	ND	53.9	108	ug/kg dry			ND				30%	
Tetrachloroethene (PCE)	ND	53.9	108	ug/kg dry			ND				30%	
Trichloroethene (TCE)	ND	53.9	108	ug/kg dry			ND				30%	
Vinyl chloride	ND	53.9	108	ug/kg dry			ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 91 %	Limits: 80-		Dili	ution: 1x					
Toluene-d8 (Surr)			93 %		120 %		"					
4-Bromofluorobenzene (Surr)			107 %		120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Asa & Zmenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

Project: <u>0624.04.10-03--Northern State Hospital</u>
Project Number: Swift Center/0624.04.10

1329 North State Street, Suie 301 Bellingham, WA 98225

Project Manager: Heather Good

Report ID:

A8D0757 - 05 23 18 1243

QUALITY CONTROL (QC) SAMPLE RESULTS

		Haloge	nated Vola	tile Organ	ic Com	ounds by	/ EPA 826	30C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041067 - EPA 5035A							Soil					
Matrix Spike (8041067-MS1)			Prepared	1: 04/20/18 1	3:45 Ana	lyzed: 04/24	/18 14:08					
OC Source Sample: Non-SDG (A8	D0714-01)											
5035A/8260C												
1,1-Dichloroethene	3640	53.9	108	ug/kg dry	200	4310	ND	85	70-131%			
cis-1,2-Dichloroethene	3680	53.9	108	ug/kg dry	200	4310	ND	86	77-123%			
trans-1,2-Dichloroethene	3620	53.9	108	ug/kg dry	200	4310	ND	84	74-125%			
Tetrachloroethene (PCE)	4520	53.9	108	ug/kg dry	200	4310	ND	105	73-128%			
Trichloroethene (TCE)	4230	53.9	108	ug/kg dry	200	4310	ND	98	77-123%			
Vinyl chloride	3910	53.9	108	ug/kg dry	200	4310	ND	91	56-135%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 91 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			94 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			107 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 15 of 59 Page 15 of 30

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Maul Foster & Alongi, INC-Bellingham</u> 1329 North State Street, Suie 301

Bellingham, WA 98225

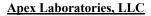
Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10

A8D0757 - 05 23 18 1243

Report ID:

QUALITY CONTROL (QC) SAMPLE RESULTS


Project Manager: Heather Good

		Haloge	nated Vola	tile Orgar	nic Comp	ounds by	/ EPA 826	30C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041110 - EPA 5035A							Soil					
Blank (8041110-BLK1)			Prepared	d: 04/25/18 0	9:00 Ana	yzed: 04/25	/18 12:00					
5035A/8260C												
1,1-Dichloroethene	ND	8.33	16.7	ug/kg we	t 50							
cis-1,2-Dichloroethene	ND	8.33	16.7	ug/kg we	t 50							
trans-1,2-Dichloroethene	ND	8.33	16.7	ug/kg we	t 50							
Tetrachloroethene (PCE)	ND	8.33	16.7	ug/kg we	t 50							
Trichloroethene (TCE)	ND	8.33	16.7	ug/kg we	t 50							
Vinyl chloride	ND	8.33	16.7	ug/kg we	t 50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 96 %	Limits: 80-		Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %		120 %		"					
4-Bromofluorobenzene (Surr)			105 %	80-	120 %		"					
LCS (8041110-BS2)			Prepared	d: 04/25/18 0	9:00 Ana	vzed: 04/25	/18 11:06					
5035A/8260C			-1			<i>y</i>						
1,1-Dichloroethene	883	12.5	25.0	ug/kg we	t 50	1000		88	80-120%			
cis-1,2-Dichloroethene	917	12.5	25.0	ug/kg we		1000		92	80-120%			
trans-1,2-Dichloroethene	870	12.5	25.0	ug/kg we	t 50	1000		87	80-120%			
Tetrachloroethene (PCE)	1060	12.5	25.0	ug/kg we	t 50	1000		106	80-120%			
Trichloroethene (TCE)	985	12.5	25.0	ug/kg we	t 50	1000		98	80-120%			
Vinyl chloride	1080	12.5	25.0	ug/kg we	t 50	1000		108	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 97 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %		120 %		"					
4-Bromofluorobenzene (Surr)			105 %	80-	120 %		"					
Duplicate (8041110-DUP1)			Prepared	d: 04/12/18 0	9:05 Anal	yzed: 04/25	/18 15:10					
QC Source Sample: Non-SDG (A8	BD0629-03)											
1,1-Dichloroethene	ND	15.0	30.0	ug/kg dry	50		ND				30%	
cis-1,2-Dichloroethene	ND	15.0	30.0	ug/kg dry	50		ND				30%	
trans-1,2-Dichloroethene	ND	15.0	30.0	ug/kg dry	50		ND				30%	
Tetrachloroethene (PCE)	ND	15.0	30.0	ug/kg dry	50		ND				30%	
Trichloroethene (TCE)	ND	15.0	30.0	ug/kg dry	50		ND				30%	
Vinyl chloride	ND	15.0	30.0	ug/kg dry			ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			96 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			106 %	80-	120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa A Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Maul Foster & Alongi, INC-Bellingham

Project: Project Number: Swift Center/0624.04.10

0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225

Project Manager: Heather Good

Report ID: A8D0757 - 05 23 18 1243

QUALITY CONTROL (QC) SAMPLE RESULTS

		Haloger	nated Vola	tile Orgar	ic Comp	ounds by	EPA 826	30C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041110 - EPA 5035A							Soil					
Matrix Spike (8041110-MS1)			Prepared	1: 04/12/18 0	9:15 Ana	lyzed: 04/25	/18 16:04					
OC Source Sample: Non-SDG (A8	D0629-04)											
5035A/8260C												
1,1-Dichloroethene	862	11.7	23.3	ug/kg dry	50	933	ND	92	70-131%			
cis-1,2-Dichloroethene	894	11.7	23.3	ug/kg dry	50	933	ND	96	77-123%			
trans-1,2-Dichloroethene	852	11.7	23.3	ug/kg dry	50	933	ND	91	74-125%			
Tetrachloroethene (PCE)	951	11.7	23.3	ug/kg dry	50	933	ND	102	73-128%			
Trichloroethene (TCE)	949	11.7	23.3	ug/kg dry	50	933	ND	102	77-123%			
Vinyl chloride	1100	11.7	23.3	ug/kg dry	50	933	ND	118	56-135%			
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 97 %	Limits: 80-	120 %	Dilı	tion: 1x					
Toluene-d8 (Surr)			94 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80-	120 %		"					

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 17 of 59 $_{Page\ 17\ of\ 30}$

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

<u>Maul Foster & Alongi, INC-Bellingham</u> 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: 0624.04.10-03--Northern State Hospital

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good A8D0757 - 05 23 18 1243

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270D S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041238 - EPA 3546							Soil					
Blank (8041238-BLK1)			Prepared	1: 04/30/18 0	9:57 Ana	lyzed: 04/30	/18 16:10					
EPA 8270D (SIM)												
Acenaphthene	ND	4.55	9.09	ug/kg we	t 1							
Acenaphthylene	ND	4.55	9.09	ug/kg we	t 1							
Anthracene	ND	4.55	9.09	ug/kg we	t 1							
Benz(a)anthracene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(a)pyrene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(b)fluoranthene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(k)fluoranthene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(g,h,i)perylene	ND	4.55	9.09	ug/kg we	t 1							
Chrysene	ND	4.55	9.09	ug/kg we	t 1							
Dibenz(a,h)anthracene	ND	4.55	9.09	ug/kg we	t 1							
Dibenzofuran	ND	4.55	9.09	ug/kg we								
Fluoranthene	ND	4.55	9.09	ug/kg we	t 1							
Fluorene	ND	4.55	9.09	ug/kg we								
Indeno(1,2,3-cd)pyrene	ND	4.55	9.09	ug/kg we								
1-Methylnaphthalene	ND	4.55	9.09	ug/kg we								
2-Methylnaphthalene	ND	4.55	9.09	ug/kg we								
Naphthalene	ND	4.55	9.09	ug/kg we								
Phenanthrene	ND	4.55	9.09	ug/kg we								
Pyrene	ND	4.55	9.09	ug/kg we								
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 92 %	Limits: 44-		Dilı	ution: lx					
p-Terphenyl-d14 (Surr)		11000	103 %		127 %	2	"					
LCS (8041238-BS1)			Prenared	1: 04/30/18 0	9:57 Anal	lyzed: 04/30)/18 16·37					
EPA 8270D (SIM)			r.s. ee			J						
Acenaphthene	725	5.00	10.0	ug/kg we	t 1	800		91	40-122%			
Acenaphthylene	746	5.00	10.0	ug/kg we		800		93	32-132%			
Anthracene	685	5.00	10.0	ug/kg we		800		86	47-123%			
Benz(a)anthracene	718	5.00	10.0	ug/kg we		800			49-126%			
Benzo(a)pyrene	712	5.00	10.0	ug/kg we		800			45-129%			
Benzo(b)fluoranthene	722	5.00	10.0	ug/kg we		800			45-132%			
Benzo(k)fluoranthene	721	5.00	10.0	ug/kg we		800			47-132%			
Benzo(g,h,i)perylene	661	5.00	10.0	ug/kg we		800			43-134%			
Chrysene	740	5.00	10.0	ug/kg we		800			50-124%			
Dibenz(a,h)anthracene	727	5.00	10.0	ug/kg we		800			45-134%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenghine

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Maul Foster & Alongi, INC-Bellingham</u> 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: 0624.04.10-03--Northern State Hospital

Project Number: Swift Center/0624.04.10
Project Manager: Heather Good

Report ID: A8D0757 - 05 23 18 1243

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic H	ydrocarbo	ns (PAH	s) by EPA	8270D SI	М				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041238 - EPA 3546							Soil					
LCS (8041238-BS1)			Prepare	d: 04/30/18 (9:57 Ana	lyzed: 04/30	/18 16:37					
Dibenzofuran	711	5.00	10.0	ug/kg we	t 1	800		89	44-120%			
Fluoranthene	648	5.00	10.0	ug/kg we	t 1	800		81	50-127%			
Fluorene	714	5.00	10.0	ug/kg we	t 1	800		89	43-125%			
Indeno(1,2,3-cd)pyrene	835	5.00	10.0	ug/kg we	t 1	800		104	45-133%			
1-Methylnaphthalene	684	5.00	10.0	ug/kg we	t 1	800		86	40-120%			
2-Methylnaphthalene	694	5.00	10.0	ug/kg we	t 1	800		87	38-122%			
Naphthalene	679	5.00	10.0	ug/kg we	t 1	800		85	35-123%			
Phenanthrene	675	5.00	10.0	ug/kg we	t 1	800		84	50-121%			
Pyrene	635	5.00	10.0	ug/kg we	t 1	800		79	47-127%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 91 %	Limits: 44	-120 %	Dilt	ution: 1x					
p-Terphenyl-d14 (Surr)			100 %	54-	127 %		"					
Duplicate (8041238-DUP1)			Prepare	d: 04/30/18 (9:57 Ana	lyzed: 04/30	/18 17:29					
QC Source Sample: GP49-S-0.5 ((A8D0757-071	RE1)										
EPA 8270D (SIM)												
Benz(a)anthracene	17.5	6.31	12.6	ug/kg dr	y 1		23.0			27	30%	M-05
Benzo(a)pyrene	14.7	6.31	12.6	ug/kg dr	y 1		18.1			21	30%	
Benzo(b)fluoranthene	18.3	6.31	12.6	ug/kg dr	y 1		23.4			24	30%	M-05
Benzo(k)fluoranthene	6.95	6.31	12.6	ug/kg dr	y 1		9.34			29	30%	J
Chrysene	21.4	6.31	12.6	ug/kg dr	y 1		23.3			8	30%	M-05
Dibenz(a,h)anthracene	ND	6.31	12.6	ug/kg dr	y 1		ND				30%	
Indeno(1,2,3-cd)pyrene	11.1	6.31	12.6	ug/kg dr	y 1		13.1			16	30%	J
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 79 %	Limits: 44	-120 %	Dilt	ution: 1x					
p-Terphenyl-d14 (Surr)			83 %	54-	127 %		"					
Matrix Spike (8041238-MS1)			Prepare	d: 04/30/18 (9:57 Ana	lyzed: 04/30	/18 20:33					
QC Source Sample: GP52-S-7.5	(A8D0757-16I	RE1)										
EPA 8270D (SIM)												
Benz(a)anthracene	954	7.42	14.8	ug/kg dr	y 1	1190	ND	80	49-126%			
Benzo(a)pyrene	942	7.42	14.8	ug/kg dr	y 1	1190	ND	79	45-129%			
Benzo(b)fluoranthene	967	7.42	14.8	ug/kg dr	y 1	1190	ND	82	45-132%			
Benzo(k)fluoranthene	909	7.42	14.8	ug/kg dr	y 1	1190	ND	77	47-132%			
	000	7.42	14.8	ug/kg dr	v 1	1100	ND	83	50-124%			
Chrysene	980	7.42	14.0	ug/kg ui	y I	1190	ND	83	30-12470			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Imenghini

Project:

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

Bellingham, WA 98225

1329 North State Street, Suie 301 Project Number:

Project Number: Swift Center/0624.04.10

0624.04.10-03--Northern State Hospital

Project Manager: Heather Good

Report ID: A8D0757 - 05 23 18 1243

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarb	ons (PAH	s) by EPA	8270D S	M				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041238 - EPA 3546							Soil					
Matrix Spike (8041238-MS1)			Prepared	: 04/30/18	09:57 Ana	alyzed: 04/30	/18 20:33					
OC Source Sample: GP52-S-7.5 (A8D0757-16	<u>RE1)</u>										
Indeno(1,2,3-cd)pyrene	856	7.42	14.8	ug/kg d	ry 1	1190	ND	72	45-133%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	very: 86 %	Limits: 4	4-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			91 %	5	4-127 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 20 of 59 $_{Page\ 20\ of\ 30}$

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good A8D0757 - 05 23 18 1243

QUALITY CONTROL (QC) SAMPLE RESULTS


				Percen	t Dry Weig	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8041146 - Total Solids (Dry	Weigh	t)					Soil					
Duplicate (8041146-DUP1)			Prepared	1: 04/25/18	19:10 Anal	yzed: 04/26/	/18 10:15					
OC Source Sample: Non-SDG (A8D08	<u>803-01)</u>											
% Solids	71.7	1.00	1.00	% by Wei	ght 1		71.9			0.4	10%	
Duplicate (8041146-DUP2)			Prepared	1: 04/25/18	19:10 Anal	yzed: 04/26/	/18 10:15					
QC Source Sample: Non-SDG (A8D08	<u>312-04)</u>											
% Solids	76.1	1.00	1.00	% by Wei	ght 1		76.0			0.1	10%	
Duplicate (8041146-DUP3)			Prepared	1: 04/25/18	19:35 Anal	yzed: 04/26/	/18 10:15					
QC Source Sample: Non-SDG (A8D08	<u>819-02)</u>											
% Solids	82.6	1.00	1.00	% by Wei	ght 1		82.3			0.4	10%	
Duplicate (8041146-DUP4)			Prepared	1: 04/25/18	19:35 Anal	yzed: 04/26/	/18 10:15					
QC Source Sample: Non-SDG (A8D08	324-03)											
% Solids	83.2	1.00	1.00	% by Wei	ght 1		83.5			0.3	10%	
Duplicate (8041146-DUP5)			Prepared	1: 04/25/18	19:10 Anal	yzed: 04/26/	/18 10:15					
QC Source Sample: Non-SDG (A8D07	775-01)											
% Solids	89.8	1.00	1.00	% by Wei	ght 1		90.2			0.5	10%	
Duplicate (8041146-DUP6)			Prepared	1: 04/26/18	09:56 Anal	yzed: 04/26/	/18 10:15					
OC Source Sample: Non-SDG (A8D07	782-01)											
% Solids	91.3	1.00	1.00	% by Wei	ght 1		91.5			0.2	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Maul Foster & Alongi, INC-Bellingham</u> 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good

Report ID: A8D0757 - 05 23 18 1243

SAMPLE PREPARATION INFORMATION

		Diesel an	ıd/or Oil Hydrocarbor	s by NWTPH-Dx			
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8041135							
A8D0757-07	Soil	NWTPH-Dx	04/23/18 17:20	04/25/18 13:36	10.46g/5mL	10g/5mL	0.96
A8D0757-08	Soil	NWTPH-Dx	04/23/18 17:25	04/25/18 13:36	10.96g/5mL	10g/5mL	0.91
A8D0757-09	Soil	NWTPH-Dx	04/23/18 17:30	04/25/18 13:36	10.4g/5mL	10g/5mL	0.96
A8D0757-10	Soil	NWTPH-Dx	04/23/18 17:40	04/25/18 13:36	10.35g/5mL	10g/5mL	0.97
A8D0757-11	Soil	NWTPH-Dx	04/23/18 17:45	04/25/18 13:36	10.72g/5mL	10g/5mL	0.93
A8D0757-12	Soil	NWTPH-Dx	04/23/18 17:50	04/25/18 13:36	10.73g/5mL	10g/5mL	0.93
A8D0757-13	Soil	NWTPH-Dx	04/23/18 17:55	04/25/18 13:36	10.92g/5mL	10g/5mL	0.92
A8D0757-14	Soil	NWTPH-Dx	04/23/18 18:00	04/25/18 13:36	10.05g/5mL	10g/5mL	1.00
A8D0757-15	Soil	NWTPH-Dx	04/23/18 18:05	04/25/18 13:36	10.35g/5mL	10g/5mL	0.97
A8D0757-16	Soil	NWTPH-Dx	04/23/18 18:10	04/25/18 13:36	11.32g/5mL	10g/5mL	0.88

		Halogenated V	olatile Organic Com	oounds by EPA 826	30C		
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8041067							
A8D0757-01	Soil	5035A/8260C	04/23/18 11:30	04/23/18 11:30	6.31g/5mL	5g/5mL	0.79
A8D0757-02	Soil	5035A/8260C	04/23/18 11:40	04/23/18 11:40	7.16g/5mL	5g/5mL	0.70
A8D0757-04	Soil	5035A/8260C	04/23/18 15:40	04/23/18 15:40	6.75g/5mL	5g/5mL	0.74
A8D0757-05	Soil	5035A/8260C	04/23/18 16:10	04/23/18 16:10	6.45g/5mL	5g/5mL	0.78
A8D0757-06	Soil	5035A/8260C	04/23/18 16:20	04/23/18 16:20	7.11g/5mL	5g/5mL	0.70
Batch: 8041110							
A8D0757-03RE1	Soil	5035A/8260C	04/23/18 11:45	04/23/18 11:45	6.68g/5mL	5g/5mL	0.75

		Polyaromatic F	Hydrocarbons (PAH	s) by EPA 8270D S	IM		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8041238							
A8D0757-07RE1	Soil	EPA 8270D (SIM)	04/23/18 17:20	04/30/18 09:57	10.35g/5mL	10g/5mL	0.97
A8D0757-08RE1	Soil	EPA 8270D (SIM)	04/23/18 17:25	04/30/18 09:57	10.11g/5mL	10g/5mL	0.99
A8D0757-09RE1	Soil	EPA 8270D (SIM)	04/23/18 17:30	04/30/18 09:57	10.42g/5mL	10g/5mL	0.96

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

Project: <u>0624.04.10-03--Northern State Hospital</u>
Project Number: Swift Center/0624.04.10

1329 North State Street, Suie 301 Bellingham, WA 98225

Project Manager: Heather Good

Report ID: A8D0757 - 05 23 18 1243

SAMPLE PREPARATION INFORMATION

		Polyaromatic F	Hydrocarbons (PAH:	s) by EPA 8270D S	IM		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A8D0757-10RE1	Soil	EPA 8270D (SIM)	04/23/18 17:40	04/30/18 09:57	10.15g/5mL	10g/5mL	0.99
A8D0757-11RE1	Soil	EPA 8270D (SIM)	04/23/18 17:45	04/30/18 09:57	10.57g/5mL	10g/5mL	0.95
A8D0757-12RE1	Soil	EPA 8270D (SIM)	04/23/18 17:50	04/30/18 09:57	10.76g/5mL	10g/5mL	0.93
A8D0757-13RE1	Soil	EPA 8270D (SIM)	04/23/18 17:55	04/30/18 09:57	10.75g/5mL	10g/5mL	0.93
A8D0757-14RE1	Soil	EPA 8270D (SIM)	04/23/18 18:00	04/30/18 09:57	10.45g/5mL	10g/5mL	0.96
A8D0757-15RE1	Soil	EPA 8270D (SIM)	04/23/18 18:05	04/30/18 09:57	10.26g/5mL	10g/5mL	0.98
A8D0757-16RE1	Soil	EPA 8270D (SIM)	04/23/18 18:10	04/30/18 09:57	10.66g/5mL	10g/5mL	0.94

			Percent Dry We	ight			
Prep: Total Solids (Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8041146							
A8D0757-01	Soil	EPA 8000C	04/23/18 11:30	04/25/18 19:10	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-02	Soil	EPA 8000C	04/23/18 11:40	04/25/18 19:10	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-03	Soil	EPA 8000C	04/23/18 11:45	04/25/18 19:10	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-04	Soil	EPA 8000C	04/23/18 15:40	04/25/18 19:10	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-05	Soil	EPA 8000C	04/23/18 16:10	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-06	Soil	EPA 8000C	04/23/18 16:20	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-07	Soil	EPA 8000C	04/23/18 17:20	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-08	Soil	EPA 8000C	04/23/18 17:25	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-09	Soil	EPA 8000C	04/23/18 17:30	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-10	Soil	EPA 8000C	04/23/18 17:40	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-11	Soil	EPA 8000C	04/23/18 17:45	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-12	Soil	EPA 8000C	04/23/18 17:50	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-13	Soil	EPA 8000C	04/23/18 17:55	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-14	Soil	EPA 8000C	04/23/18 18:00	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-15	Soil	EPA 8000C	04/23/18 18:05	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA
A8D0757-16	Soil	EPA 8000C	04/23/18 18:10	04/25/18 19:35	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Report ID:

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

0624.04.10-03--Northern State Hospital Project: Project Number: Swift Center/0624.04.10

Project Manager: Heather Good A8D0757 - 05 23 18 1243

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

F-17 No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.

Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL. J

M-05Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.

Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level. Q-05

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Awas Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10
Project Manager: Heather Good

Report ID:
A8D0757 - 05 23 18 1243

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

-For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Zmenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Project Number: Swift Center/0624.04.10

0624.04.10-03--Northern State Hospital

Project Manager: Heather Good

A8D0757 - 05 23 18 1243

Report ID:

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Bellingham, WA 98225

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the blank results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

Project:

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met. Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 26 of 59 Page 26 of 30

Ava & Somerighini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 0624.04.10-03--Northern State Hospital

Project Number: Swift Center/0624.04.10
Project Manager: Heather Good

Report ID:
A8D0757 - 05 23 18 1243

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Project:

Apex Laboratories

Matrix Analysis TNI ID Analyte TNI_ID Cert?

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 27 of 59 $_{Page\ 27\ of\ 30}$

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

 $\underline{\textbf{Maul Foster \& Alongi, INC-Bellingham}}$

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good A8D0757 - 05 23 18 1243

	APEX LABS CHAIN OF CUSTODY Lab # ASDOTS 7 coc 1 of 5	600d Project Name: Swift Center	3	P_LICEALS P_LI	1/2/8/13OS3	1140 S 3	1H5 S 3	S S S	1610 S 3	1620 S 3	X	X X X X X X X X X X X X X X X X X X X		X 118018	Ves (YES) NO SPECIAL INSTRUCTIONS.	y 2 Day 3 Day	Y 5 DAY Other:	E HELD FOR 30 DAYS	RECEIVED BY: 4/24/18 Segment Signal S	Proposition DANGER Time 815 Proposition 14.8 P. 12.50	Common 53 MA
	773 Db. 603 719 3333 Erron 60	Foster Alongi Project Mgr. Hea.	11K	DATE TIME MATRIX	1130 S	S	ഗ	S	S	S		1725 5 1	(730 S	13-49 13-49	Normal Turn Around Time (TAT) = 10 Business Days)		SAMPLES ARE HELD FOR 30 DAYS	Date: 124/18 Signature	Time & 15 Printed Name JON IN	SSA COMBRA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good A8D0757 - 05 23 18 1243

COUT VI III					ز	UA	CHAIN OF CUSTODY		3	7		_		_1	ap#	2)	-	Lab # 1370 / COC d. of S	Ü	. U	Jo	ام
12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax. 503-718-0333	97223 P.	h: 503-7	18-2323	8 Fax: 5	03-718	-0333												#O4	**				
Company: Maul Foster Alongi	Along		Project Mgr. Heather	Hec	the	1.1	Good	7		Project Name: Sco ; {+	Name:	3	14	$ \sim $	enter	3		F S	Project # 0624.04.10	062	12.C	٩. ١	0
Address: 1329 N. State	35	5	Ste 301, Bham	Bhar		WΑ	풉	one.	Phone: 360 594 6257 Fax: 3605946270	146	25	Fax	3	465	150	CE	nail: 1	190	Email: hgood Gmaulfuster-com	3	33	fish	3-53
Sampled by: C. Wise ? B		Paulik	ار										ANAL	YSIS	ANALYSIS REQUEST			þ					
Sire Location: OR WA Other: SAMPLE ID	LAB ID #	DATE	TIME	# OF CONTAINERS	NWTPH-HCID	xa-hatwn	8700 VOCs Full List NWTPH-Gx	8760 RBDM VOCs	8760 HVOC ₈	8740 SAOC 8700 BLEX AOC ²	HHAPSHYAWIS 0LZ8	8087 PCB ₈	OTT 000	RCRA Metals (8)	TCLP Metals (8) At, Sb, As, Ba, Be, Cd,	Al, Sb, As, Ba, Be, Cd, Ca, Ct, Co, Cu, Fe, Pb, Hg, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Tl, V, Zn TOTAL DISS TCLP	TOTAL DISS TCLP	Z-0071	svamy/suxxoio				
GPSD-S-1.5	4/2	F1 8/EZ/P	1745 S	<u>-</u>		X					X							_		\vdash	-	-	<u> </u>
Sp51-8-05		<u> </u>	1750 S	5		×			-		\times						-	ļ		\vdash	ļ	-	
GPS1-S-1.0		브	1755 S	<u>-</u>		X					X						ļ					-	-
6P52-5-0.5		∽	1800 S	_		\times					X						-	ļ	X	 	 		
3P52-S-6-0		∞ِ	805	- S		X					X									-	-	-	
GP52-S-7.5	→		1810 S			X					\times				$\left \cdot \cdot \right $		-				T		
		-						_															
					-									-			-	-					
			\dashv																		-	-	
Normal Turn Around Time (TAT) = 10 Business Days	ess Days		(KES	S	NO.			T	SPEC	SPECIAL INSTRUCTIONS:	STRUC	NOIT:											
	1 Day	7	2 Day	3 Day	ay																		
, tal requested (circle)	4 DAY	51	5 DAY	Offer	- <u>}</u> :																		
	SAMPLES ARE HELD FOR 30 DAYS	LD FOR	30 DAY	1							11												
RELINQUISHED BY: Signature (Date: 024	RECEIVED A Signafue:	RECEIVED BY:			4	4/24/18 Date:	8	RELIN	RELINQUISHED BY:	ED BY:			1-12 Da	4-2418 Date:		RECEIVED B	NA STATE	I TY		4	474 X	~
Printed Name: arcolymd 158	7,8 Tune: 8/5	7	Prince And WAVE WE THE TIMES	SU UM	Jose C	1	5/Q0m		Printed	JON WALDE VOLD	1863	36		12.50 Time:	3 H	Pri		K.	2	1	1	3	3
MFA M			FCC AIN		/:/ 0	>			13	NN-500	3							}		_			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225

Project:

0624.04.10-03--Northern State Hospital

Project Number: Swift Center/0624.04.10

Project Manager: Heather Good

Report ID: A8D0757 - 05 23 18 1243

Project/Project #: Shuff Cluter /0624-04-	
	-[()
Delivery info:	60
Date/Time Received: 4 24 18 @ 1250 By:	
Delivered by: Apex Client ESS FedEx UPS Cooler Inspected by:	Swift Senvoy SDS Other
Chain of Custody Included by	72110
Signed/Dated by Client? Yes / No Cust	tody Seals? Yes V(X) No X
Signed/Dated by Apex? Yes \angle No	
	Cooler #4 Cooler #5 Cooler #6 Coo
Temperature (deg. C) 18 5.4	Cooler #4 Cooler #5 Cooler #6 Coo
Received on Ice? (Y)N)	
Temp. Blanks? (YN) 4.9 1.6	
Ice Type: (Gel/Real/Other)	
Condition: SOVA	
Bottle Labels/COCs agree? Yes No Comments: MW Wall WW 9 - S - 1, D , 3 TBS # 17 (Le Y Containers/Volumes Received Appropriate for Analysis? Yes	received interest list doe
volanies received Appropriate for Analysis? Yes V	No Comments:
Do VOA Vials have Visible Headspace? Yes No	V
Comments	N N
Water Samples: pH Checked and Appropriate (except VOAs): Ye	No. No. No.
Comments:	sNoNA
Additional Information:	Subsampler COR
	Subsampling voviewer
abeled by: Witness: Cooler Increated by	: See Project Contact Form:
Williess: Cooler Inspected by	 See Project Contact Form:
abeled by: Witness: Cooler Inspected by	To the sound of th

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 30 of 59 $_{Page\ 30\ of\ 30}$

Ava & Somerighini

an affiliate of The GEL Group INC

www.capefearanalytical.com

May 10, 2018

Ms. Lisa Domenighini Apex Laboratories 12232 S.W. Garden Place Portland, Oregon 97223

Re: Dioxin & PCB's subcontract Work Order: 13235 SDG: A8D0757

Dear Ms. Domenighini:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on April 25, 2018. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Cyrole Larkins

Cynde Larkins Project Manager

Enclosures

SUBCONTRACT ORDER

Apex Laboratories A8D0757

@ 423/18

CFA WO # 13235

SENDING LABORATORY:

Apex Laboratories

12232 S.W. Garden Place

Tigard, OR 97223

Phone: (503) 718-2323 Fax: (503) 718-0333

Project Manager:

Lisa Domenighini

RECEIVING LABORATORY:

Cape Fear Analytical, LLC 3306 Kitty Hawk Rd Suite 120 Wilmington, NC 28405

Phone: (910) 795-0421

Fax: -

Sample Name: GP49-S-0.5		Soil Sampled:	04/23/18 17:20	(A8D0757-07)
Analysis	Due	Expires C	Comments	
1613 Dioxin (Sub) Containers Supplied: (B)4 oz Glass Jar	05/07/18 17:00	04/30/18 17:20		
Sample Name: GP52-S-0.5		Soil Sampled:	04/23/18 18:00	(A8D0757-14)
Analysis	Due	Expires C	Comments	
1613 Dioxin (Sub) Containers Supplied:	05/07/18 17:00	04/30/18 18:00		

Standard TAT
5.10C

Released By Date

Fed Ex (Shipper)

Trescased By

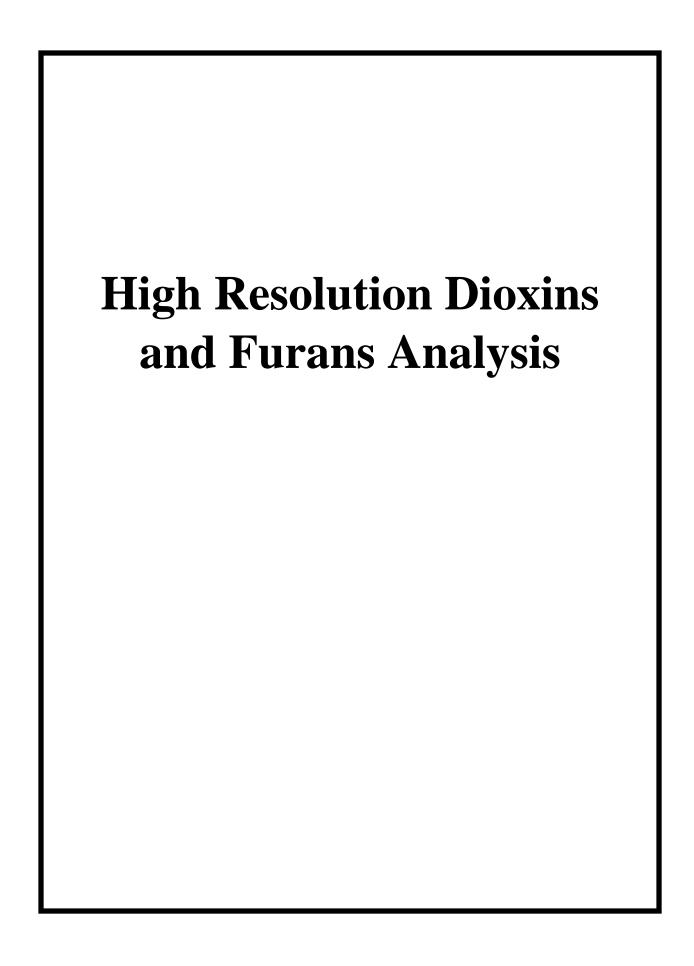
Fed Ex (Shipper)

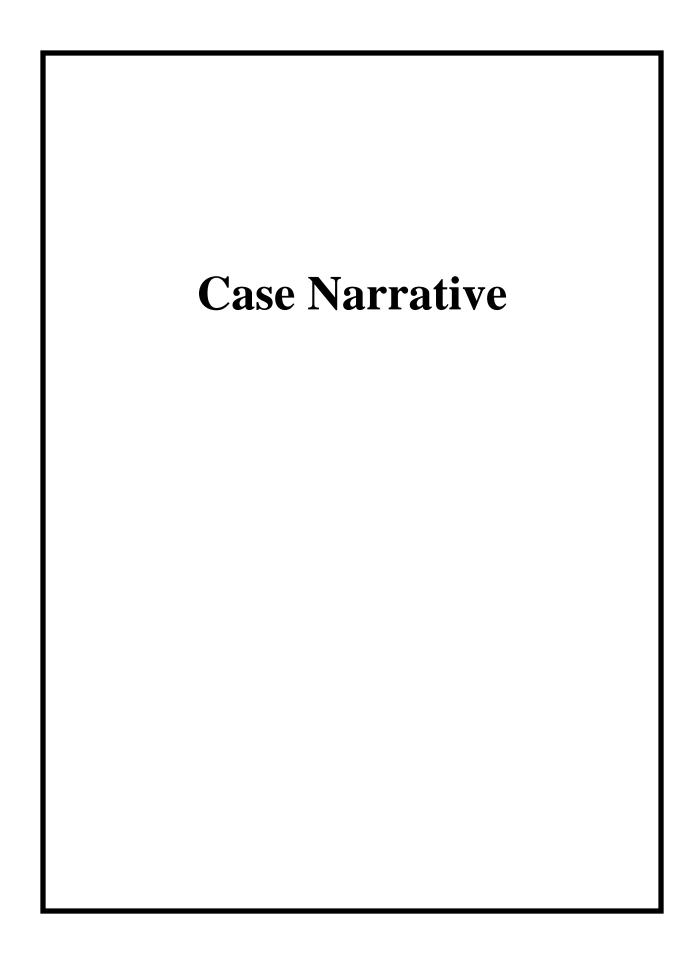
Released By

Date

adri Sipollo (FV

Date


Date


Page 32 of Page 1 of 1

SAMPLE RECEIPT CHECKLIST

13235

					cape Fear Analytical	·	
Clier	ot: APEX					Work Order:	13125 CS APRICE
Ship	ping Company: FRCEX				Date/Time Received: (PR18	@ 0936
Ship	pected Hazard Information ped as DOT Hazardous? ples identified as Foreign Soil?	Yes	NA	No	Screened <0 Samples < 2	x background?	Yes NA No*
	ample Receipt Specifics ample in shipment?	Yes	NA	No	* Notify RSO of Air Witness:	f any responses in this o	column immediately.
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-C	Conforming Items)
171	Shipping containers received intact and sealed?				Circle Applicable: seals broken damaged container leaking container		
	Chain of Custody documents included with shipment?						
	Samples requiring cold preservation within 0-6°C?			(Preservation Method: (e bags) blue ice dry ice none other (describe)	\$35APR	0(=5.10(
1 4 1	Aqueous samples found to have visible solids?				Sample IDs, containers affected:		
	Samples requiring chemical preservation at proper pH?				Sample IDs, containers affected and pH observed: If preservative added, Lot#:		
161	Samples requiring preservation have no residual chlorine?				Sample IDs, containers affected: If preservative added, Lot#:		
7	Samples received within holding time?				Sample IDs, tests affected:		
IXI	Sample IDs on COC match IDs on containers?				Sample IDs, containers affected:		
1 4 1	Date & time of COC match date & time on containers?				Sample IDs, containers affected:	**************************************	
1 101	Number of containers received match number indicated on COC?				List type and number of containers / Sample IDs, containers	ainers affected:	alass
	COC form is properly signed in relinquished/received sections?	/					3,10133
	ments: HEMP WOMK inc	ch)de	ed			
					*		
	Checklist performed	by: Ir	nitials:		Date:	APRIS	CF-UD-F-7 Page 33 of 59

HDOX Case Narrative Apex Laboratories (APEX) SDG A8D0757 Work Order 13235

Method/Analysis Information

Product: Dioxins/Furans by EPA Method 1613B in Solids

Analytical Method: EPA Method 1613B

Extraction Method: SW846 3540C

Analytical Batch Number: 37541 Clean Up Batch Number: 37540 Extraction Batch Number: 37539

Sample Analysis

The following samples were analyzed using the analytical protocol as established in Method 1613B:

Sample ID	Client ID
12021188	Method Blank (MB)
12021189	Laboratory Control Sample (LCS)
12021190	Laboratory Control Sample Duplicate (LCSD)
12021191	13235001(GP49-S-0.5) Matrix Spike (MS)
12021192	13235001(GP49-S-0.5) Matrix Spike Duplicate (MSD)
13235001	GP49-S-0.5
13235002	GP52-S-0.5

The samples in this SDG were analyzed on a "dry weight" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-002 REV# 15.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

Sample 13235001 (GP49-S-0.5)- Batch 37541 was selected for analysis as the matrix spike and matrix spike duplicate.

Matrix Spike (MS) Recovery Statement

The MS recoveries were within the established acceptance limits.

Matrix Spike Duplicate (MSD) Recovery Statement

The MSD recoveries were within the established acceptance limits.

MS/MSD Relative Percent Difference (RPD) Statement

The RPD(s) between the MS and MSD met the acceptance limits.

Technical Information

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this SDG did not require dilutions.

Sample Re-extraction/Re-analysis

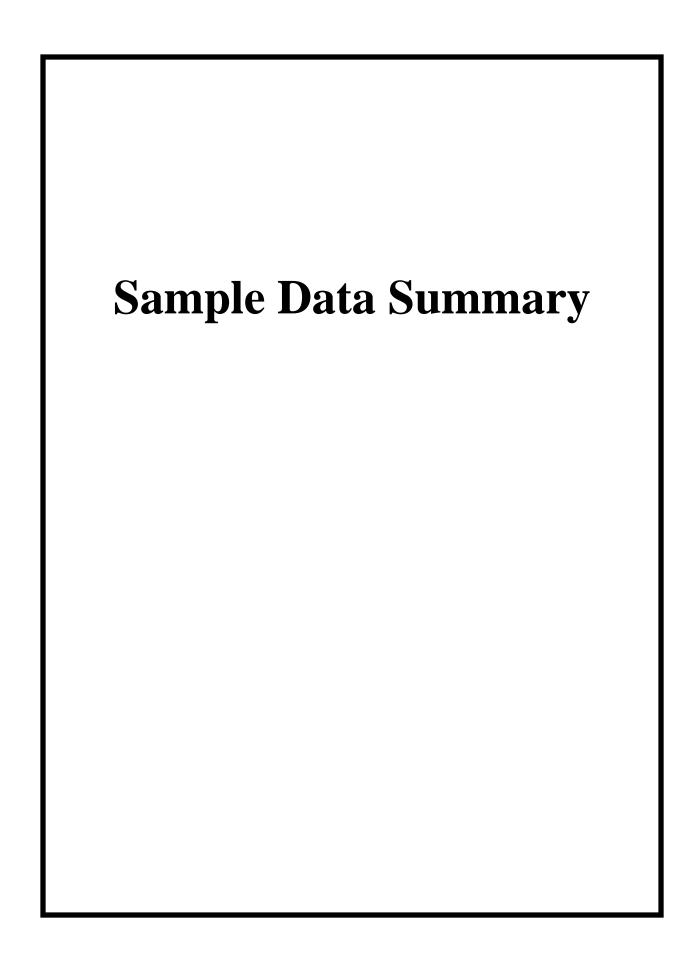
Re-extractions or re-analyses were not required in this SDG.

Miscellaneous Information

Nonconformance (NCR) Documentation

A NCR was not required for this SDG.

Manual Integrations


Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction. Manual integrations were required for data files in this SDG.

Sample preparation

No difficulties were encountered during sample preparation.

Electronic Packaging Comment

This data package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory has developed systems to generate all data packages electronically. The following change from traditional packages should be noted: Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative will include the data validator's signature and title. The signature page also includes the data qualifiers used in the fractional package. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Qualifier Definition Report for

APEX001 Apex Laboratories

Client SDG: A8D0757 CFA Work Order: 13235

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- J Value is estimated
- K Estimated Maximum Possible Concentration
- U Analyte was analyzed for, but not detected above the specified detection limit.
- DL Indicates that sample is diluted.
- RA Indicates that sample is re-analyzed without re-extraction.
- RE Indicates that sample is re-extracted.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Heather Patterson

Date: 10 MAY 2018 Title: Group Leader

Report Date:

Page 1

May 10, 2018

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Number: A8D0757 Lab Sample ID: 13235001 1613B Soil **Client Sample: Client ID:**

GP49-S-0.5

37541 **Run Date:** 05/04/2018 22:25 Data File: A03MAY18A_4-9

Prep Batch: 37539 **Prep Date:** 03-MAY-18

Batch ID:

APEX001 Client: 04/23/2018 17:20 **Date Collected:** Date Received:

Method:

Analyst:

Prep Method:

04/25/2018 09:36

EPA Method 1613B MJC

SW846 3540C

Instrument: Dilution:

%Moisture:

Prep Basis:

Project:

Matrix:

27.9 **Dry Weight**

APEX00111

SOIL

HRP750 1

Prep Date:	03-MAY-18	Prep Aliquot:	13.97 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD	U	0.0994	pg/g	0.0994	0.993
40321-76-4	1,2,3,7,8-PeCDD	J	0.177	pg/g	0.101	4.96
39227-28-6	1,2,3,4,7,8-HxCDD	JK	0.212	pg/g	0.139	4.96
57653-85-7	1,2,3,6,7,8-HxCDD	JK	0.397	pg/g	0.133	4.96
19408-74-3	1,2,3,7,8,9-HxCDD	J	0.355	pg/g	0.139	4.96
35822-46-9	1,2,3,4,6,7,8-HpCDD		6.09	pg/g	0.222	4.96
3268-87-9	1,2,3,4,6,7,8,9-OCDD		36.2	pg/g	0.224	9.93
51207-31-9	2,3,7,8-TCDF	JK	0.306	pg/g	0.126	0.993
57117-41-6	1,2,3,7,8-PeCDF	J	0.244	pg/g	0.0568	4.96
57117-31-4	2,3,4,7,8-PeCDF	JK	0.238	pg/g	0.0572	4.96
70648-26-9	1,2,3,4,7,8-HxCDF	J	0.218	pg/g	0.0756	4.96
57117-44-9	1,2,3,6,7,8-HxCDF	JK	0.193	pg/g	0.0818	4.96
60851-34-5	2,3,4,6,7,8-HxCDF	JK	0.202	pg/g	0.0798	4.96
72918-21-9	1,2,3,7,8,9-HxCDF	U	0.0931	pg/g	0.0931	4.96
67562-39-4	1,2,3,4,6,7,8-HpCDF	J	1.76	pg/g	0.100	4.96
55673-89-7	1,2,3,4,7,8,9-HpCDF	U	0.149	pg/g	0.149	4.96
39001-02-0	1,2,3,4,6,7,8,9-OCDF	J	2.58	pg/g	0.164	9.93
41903-57-5	Total TeCDD	K	3.86	pg/g	0.0994	0.993
36088-22-9	Total PeCDD	JK	4.20	pg/g	0.101	4.96
34465-46-8	Total HxCDD	K	6.32	pg/g	0.133	4.96
37871-00-4	Total HpCDD		11.6	pg/g	0.222	4.96
30402-14-3	Total TeCDF	K	3.20	pg/g	0.126	0.993
30402-15-4	Total PeCDF	JK	3.09	pg/g	0.0441	4.96
55684-94-1	Total HxCDF	JK	2.74	pg/g	0.0756	4.96
38998-75-3	Total HpCDF	J	3.68	pg/g	0.100	4.96
3333-30-2	TEQ WHO2005 ND=0 with EMPCs		0.534	pg/g		
3333-30-3	TEQ WHO2005 ND=0.5 with EMPCs		0.589	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		196	199	pg/g	98.8	(25%-164%)
13C-1,2,3,7,8-PeCDD		176	199	pg/g	88.8	(25%-181%)
3C-1,2,3,4,7,8-HxCDD		170	199	pg/g	85.9	(32%-141%)
C-1,2,3,6,7,8-HxCDD		158	199	pg/g	79.7	(28%-130%)
C-1,2,3,4,6,7,8-HpCDD		175	199	pg/g	88.0	(23%-140%)
C-OCDD		355	397	pg/g	89.3	(17%-157%)
2,3,7,8-TCDF		168	199	pg/g	84.6	(24%-169%)
1,2,3,7,8-PeCDF		168	199	pg/g	84.6	(24%-185%)
2,3,4,7,8-PeCDF		165	199	pg/g	83.1	(21%-178%)
1,2,3,4,7,8-HxCDF		153	199	pg/g	77.0	(26%-152%)
1,2,3,6,7,8-HxCDF		134	199	pg/g	67.5	(26%-123%)
2,3,4,6,7,8-HxCDF		149	199	pg/g	74.8	(28%-136%)
1,2,3,7,8,9-HxCDF		156	199	pg/g	78.4	(29%-147%)

Cape Fear Analytical LLC Report Date: May 10, 2018

> **Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary**

A8D0757 APEX001 APEX00111 SDG Number: Client: **Project:** 04/23/2018 17:20 13235001 SOIL Lab Sample ID: **Date Collected:** Matrix: 1613B Soil 04/25/2018 09:36 %Moisture: 27.9 Date Received: **Client Sample:**

Prep Basis: Client ID: GP49-S-0.5 **Dry Weight**

Batch ID: 37541 Method: EPA Method 1613B 05/04/2018 22:25 **Instrument: HRP750 Run Date:** Analyst: MJC

Dilution: 1 Data File: A03MAY18A_4-9 SW846 3540C 37539 **Prep Method:** Prep Batch:

Prep Aliquot: EDL PQL CAS No. Qual Result Units **Parmname**

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		144	199	pg/g	72.7	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		151	199	pg/g	75.9	(26%-138%)
37Cl-2,3,7,8-TCDD		21.3	19.9	pg/g	107	(35%-197%)

13.97 g

Comments:

Prep Date:

J Value is estimated

Estimated Maximum Possible Concentration K

03-MAY-18

Analyte was analyzed for, but not detected above the specified detection limit.

Page 2

of 2

Report Date:

Page 1

May 10, 2018

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

Client: A8D0757 13235002 **Date Collected:** Lab Sample ID: 1613B Soil **Date Received:**

APEX001 04/23/2018 18:00 04/25/2018 09:36 **Project:** APEX00111 Matrix: %Moisture: **Prep Basis: Dry Weight**

0.0818

0.111

pg/g

pg/g

pg/g

pg/g

4.99

4.99

SOIL 8.1

GP52-S-0.5 **Client ID: Batch ID:** 37541

Run Date: 05/05/2018 00:48 Data File: A03MAY18A_4-12

Total HxCDF

Total HpCDF

TEQ WHO2005 ND=0 with EMPCs

TEQ WHO2005 ND=0.5 with EMPCs

55684-94-1

38998-75-3

3333-30-2

3333-30-3

Method: EPA Method 1613B Analyst: MJC

Instrument: HRP750 Dilution: 1

Prep Batch: 37539 **Prep Date:** 03-MAY-18

SDG Number:

Client Sample:

Prep Method: Prep Aliquot:

SW846 3540C 10.9 g

CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
1746-01-6	2,3,7,8-TCDD	U	0.11	pg/g	0.110	0.998	_
40321-76-4	1,2,3,7,8-PeCDD	J	0.248	pg/g	0.0976	4.99	
39227-28-6	1,2,3,4,7,8-HxCDD	J	0.289	pg/g	0.140	4.99	
57653-85-7	1,2,3,6,7,8-HxCDD	J	0.525	pg/g	0.132	4.99	
19408-74-3	1,2,3,7,8,9-HxCDD	J	0.465	pg/g	0.139	4.99	
35822-46-9	1,2,3,4,6,7,8-HpCDD		6.20	pg/g	0.180	4.99	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		33.4	pg/g	0.199	9.98	
51207-31-9	2,3,7,8-TCDF	J	0.232	pg/g	0.135	0.998	
57117-41-6	1,2,3,7,8-PeCDF	J	0.156	pg/g	0.0852	4.99	
57117-31-4	2,3,4,7,8-PeCDF	J	0.333	pg/g	0.0757	4.99	
70648-26-9	1,2,3,4,7,8-HxCDF	J	0.202	pg/g	0.0818	4.99	
57117-44-9	1,2,3,6,7,8-HxCDF	JK	0.166	pg/g	0.0902	4.99	
60851-34-5	2,3,4,6,7,8-HxCDF	JK	0.220	pg/g	0.0908	4.99	
72918-21-9	1,2,3,7,8,9-HxCDF	U	0.112	pg/g	0.112	4.99	
67562-39-4	1,2,3,4,6,7,8-HpCDF	J	1.71	pg/g	0.111	4.99	
55673-89-7	1,2,3,4,7,8,9-HpCDF	J	0.230	pg/g	0.151	4.99	
39001-02-0	1,2,3,4,6,7,8,9-OCDF	J	9.58	pg/g	0.187	9.98	
41903-57-5	Total TeCDD		20.6	pg/g	0.110	0.998	
36088-22-9	Total PeCDD		21.4	pg/g	0.0976	4.99	
34465-46-8	Total HxCDD		27.5	pg/g	0.132	4.99	
37871-00-4	Total HpCDD		11.2	pg/g	0.180	4.99	
30402-14-3	Total TeCDF		3.40	pg/g	0.135	0.998	
30402-15-4	Total PeCDF	JK	4.02	pg/g	0.0489	4.99	

2.83

8.16

0.656

0.717

Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
	191	200	pg/g	95.4	(25%-164%)
	187	200	pg/g	93.8	(25%-181%)
	175	200	pg/g	87.9	(32%-141%)
	166	200	pg/g	83.0	(28%-130%)
	185	200	pg/g	92.6	(23%-140%)
	375	399	pg/g	94.0	(17%-157%)
	174	200	pg/g	86.9	(24%-169%)
	178	200	pg/g	89.4	(24%-185%)
	178	200	pg/g	89.0	(21%-178%)
	157	200	pg/g	78.6	(26%-152%)
	140	200	pg/g	69.9	(26%-123%)
	153	200	pg/g	76.8	(28%-136%)
	157	200	pg/g	78.7	(29%-147%)
	Qual	191 187 175 166 185 375 174 178 178 157 140	191 200 187 200 175 200 166 200 185 200 375 399 174 200 178 200 178 200 157 200 140 200 153 200	191 200 pg/g 187 200 pg/g 187 200 pg/g 175 200 pg/g 166 200 pg/g 185 200 pg/g 375 399 pg/g 174 200 pg/g 178 200 pg/g 178 200 pg/g 157 200 pg/g 140 200 pg/g 153 200 pg/g	191 200 pg/g 95.4 187 200 pg/g 93.8 175 200 pg/g 87.9 166 200 pg/g 83.0 185 200 pg/g 92.6 375 399 pg/g 94.0 174 200 pg/g 86.9 178 200 pg/g 89.4 178 200 pg/g 89.4 178 200 pg/g 89.0 157 200 pg/g 78.6 140 200 pg/g 69.9 153 200 pg/g 76.8

JK

Cape Fear Analytical LLC Report Date: May 10, 2018

> **Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary**

A8D0757 APEX001 APEX00111 SDG Number: Client: **Project:** 04/23/2018 18:00 13235002 Lab Sample ID: **Date Collected:** Matrix: SOIL 1613B Soil %Moisture: 8.1 **Date Received:** 04/25/2018 09:36 **Client Sample:**

Dry Weight Client ID: GP52-S-0.5 **Prep Basis: Batch ID:** 37541 Method: EPA Method 1613B

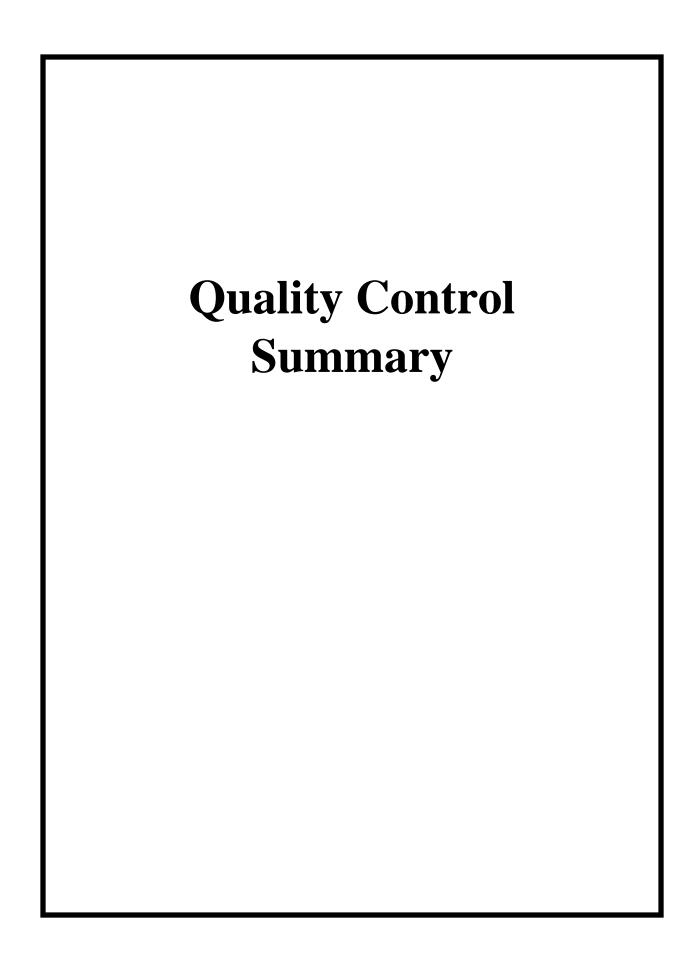
05/05/2018 00:48 **Instrument: HRP750 Run Date:** Analyst: MJC Dilution: Data File: A03MAY18A_4-12 1 SW846 3540C

Prep Method: Prep Aliquot: 10.9 g **Prep Date:** 03-MAY-18 CAS No. Units **EDL PQL Parmname** Qual Result

Surrogate/Tracer recovery Units Recovery% **Acceptable Limits** Qual Result Nominal 13C-1,2,3,4,6,7,8-HpCDF 147 200 73.6 (28%-143%) pg/g 13C-1,2,3,4,7,8,9-HpCDF 156 200 78.2 (26%-138%) pg/g 37Cl-2,3,7,8-TCDD 20.6 103 (35%-197%) 20.0 pg/g

Comments:

Prep Batch:


Value is estimated J

Estimated Maximum Possible Concentration K

37539

Analyte was analyzed for, but not detected above the specified detection limit.

Page 2

Report Date: May 10, 2018 Page 1

of 3

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A8D0757 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
2021189	LCS for batch 37539	13C-2,3,7,8-TCDD		95.2	(20%-175%)
		13C-1,2,3,7,8-PeCDD		91.6	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		90.5	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		85.6	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		94.8	(22%-166%)
		13C-OCDD		93.4	(13%-199%)
		13C-2,3,7,8-TCDF		83.6	(22%-152%)
		13C-1,2,3,7,8-PeCDF		86.6	(21%-192%)
		13C-2,3,4,7,8-PeCDF		86.5	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF		80.8	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF		71.1	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF		79.5	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF		81.1	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF		73.8	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF		79.3	(20%-186%)
		37C1-2,3,7,8-TCDD		103	(31%-191%)
2021190	LCSD for batch 37539	13C-2,3,7,8-TCDD		98.1	(20%-175%)
		13C-1,2,3,7,8-PeCDD		92.3	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD		89.2	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD		86.1	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD		93.5	(22%-166%)
		13C-OCDD		92.0	(13%-199%)
		13C-2,3,7,8-TCDF		86.3	(22%-152%)
		13C-1,2,3,7,8-PeCDF		88.6	(21%-192%)
		13C-2,3,4,7,8-PeCDF		88.5	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF		79.4	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF		71.9	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF		78.4	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF		80.6	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF		72.8	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF		78.2	(20%-186%)
		37Cl-2,3,7,8-TCDD		104	(31%-191%)
021188	MB for batch 37539	13C-2,3,7,8-TCDD		98.0	(25%-164%)
		13C-1,2,3,7,8-PeCDD		94.2	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		93.0	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		86.5	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		98.4	(23%-140%)
		13C-OCDD		98.4	(17%-157%)
		13C-2,3,7,8-TCDF		87.1	(24%-169%)
		13C-1,2,3,7,8-PeCDF		89.6	(24%-185%)
		13C-2,3,4,7,8-PeCDF		87.7	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		79.4	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		72.0	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		78.9	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		84.7	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		77.0	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		82.6	(26%-138%)
		37Cl-2,3,7,8-TCDD		108	(35%-197%)
235001	GP49-S-0.5	13C-2,3,7,8-TCDD		98.8	(25%-164%)

Report Date: May 10, 2018 Page 2

of 3

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A8D0757 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
3235001	GP49-S-0.5	13C-1,2,3,7,8-PeCDD		88.8	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		85.9	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		79.7	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		88.0	(23%-140%)
		13C-OCDD		89.3	(17%-157%)
		13C-2,3,7,8-TCDF		84.6	(24%-169%)
		13C-1,2,3,7,8-PeCDF		84.6	(24%-185%)
		13C-2,3,4,7,8-PeCDF		83.1	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		77.0	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		67.5	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		74.8	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		78.4	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		72.7	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		75.9	(26%-138%)
		37C1-2,3,7,8-TCDD		107	(35%-197%)
2021191	GP49-S-0.5(13235001MS)	13C-2,3,7,8-TCDD		93.0	(25%-164%)
	,	13C-1,2,3,7,8-PeCDD		86.6	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		81.1	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		77.2	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		85.6	(23%-140%)
		13C-OCDD		87.2	(17%-157%)
		13C-2,3,7,8-TCDF		84.9	(24%-169%)
		13C-1,2,3,7,8-PeCDF		84.7	(24%-185%)
		13C-2,3,4,7,8-PeCDF		81.8	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		73.3	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		64.1	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		72.3	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		74.9	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		71.4	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		74.1	(26%-138%)
		37Cl-2,3,7,8-TCDD		112	(35%-197%)
2021102	CD40 C 0 5/12225001MCD)	12C 2 2 7 0 TCDD		101	(250/ 1640/)
2021192	GP49-S-0.5(13235001MSD)	13C-2,3,7,8-TCDD		101	(25%-164%)
		13C-1,2,3,7,8-PeCDD		96.9	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		91.2	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		84.3	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		95.0	(23%-140%)
		13C-OCDD		97.3	(17%-157%)
		13C-2,3,7,8-TCDF		87.5	(24%-169%)
		13C-1,2,3,7,8-PeCDF		92.6	(24%-185%)
		13C-2,3,4,7,8-PeCDF		91.7	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		82.0	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		72.3	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		78.6	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		82.1	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		77.9	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF 37Cl-2,3,7,8-TCDD		81.2 112	(26%-138%) (35%-197%)
222000	CDC2 G A 5	100 0 0 0 0 0 0000		05.1	(050/ 1510)
3235002	GP52-S-0.5	13C-2,3,7,8-TCDD		95.4	(25%-164%)
		13C-1,2,3,7,8-PeCDD		93.8	(25%-181%)

Report Date: May 10, 2018 Page 3

of 3

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A8D0757 Matrix Type: SOLID

Acceptance Recovery **QUAL** Sample ID **Client ID Surrogate** (%) Limits 13235002 GP52-S-0.5 13C-1,2,3,4,7,8-HxCDD 87.9 (32%-141%) 13C-1,2,3,6,7,8-HxCDD 83.0 (28%-130%) 13C-1,2,3,4,6,7,8-HpCDD 92.6 (23%-140%) 13C-OCDD 94.0 (17%-157%) 13C-2,3,7,8-TCDF 86.9 (24%-169%) 13C-1,2,3,7,8-PeCDF (24%-185%) 89.4 13C-2,3,4,7,8-PeCDF (21%-178%) 89.0 13C-1,2,3,4,7,8-HxCDF (26%-152%) 78.6 13C-1,2,3,6,7,8-HxCDF 69.9 (26%-123%) 13C-2,3,4,6,7,8-HxCDF 76.8 (28%-136%) 13C-1,2,3,7,8,9-HxCDF 78.7 (29%-147%) (28%-143%) 13C-1,2,3,4,6,7,8-HpCDF 73.6 13C-1,2,3,4,7,8,9-HpCDF 78.2 (26%-138%) 37Cl-2,3,7,8-TCDD 103 (35%-197%)

^{*} Recovery outside Acceptance Limits

[#] Column to be used to flag recovery values

D Sample Diluted

Page 1

of 2

Hi-Res Dioxins/Furans

Quality Control Summary Spike Recovery Report

SDG Number: A8D0757 Sample Type: Laboratory Control Sample

Client ID: LCS for batch 37539 Matrix: SOIL

Lab Sample ID: 12021189

Instrument: HRP750 Analysis Date: 05/04/2018 20:02 Dilution: 1

Analyst: MJC Prep Batch ID:37539

			Amount Added	Spike Conc.	Recovery	Acceptance
CAS No.		Parmname	pg/g	pg/g	%	Limits
746-01-6	LCS	2,3,7,8-TCDD	20.0	20.7	103	67-158
10321-76-4	LCS	1,2,3,7,8-PeCDD	100	99.6	99.6	70-142
9227-28-6	LCS	1,2,3,4,7,8-HxCDD	100	96.5	96.5	70-164
57653-85-7	LCS	1,2,3,6,7,8-HxCDD	100	92.4	92.4	76-134
9408-74-3	LCS	1,2,3,7,8,9-HxCDD	100	100	100	64-162
5822-46-9	LCS	1,2,3,4,6,7,8-HpCDD	100	89.5	89.5	70-140
268-87-9	LCS	1,2,3,4,6,7,8,9-OCDD	200	192	96.2	78-144
1207-31-9	LCS	2,3,7,8-TCDF	20.0	16.3	81.5	75-158
117-41-6	LCS	1,2,3,7,8-PeCDF	100	87.1	87.1	80-134
7117-31-4	LCS	2,3,4,7,8-PeCDF	100	84.0	84	68-160
0648-26-9	LCS	1,2,3,4,7,8-HxCDF	100	90.4	90.4	72-134
7117-44-9	LCS	1,2,3,6,7,8-HxCDF	100	93.6	93.6	84-130
0851-34-5	LCS	2,3,4,6,7,8-HxCDF	100	89.9	89.9	70-156
2918-21-9	LCS	1,2,3,7,8,9-HxCDF	100	91.6	91.6	78-130
7562-39-4	LCS	1,2,3,4,6,7,8-HpCDF	100	95.2	95.2	82-122
6673-89-7	LCS	1,2,3,4,7,8,9-HpCDF	100	95.3	95.3	78-138
0001-02-0	LCS	1,2,3,4,6,7,8,9-OCDF	200	166	82.9	63-170

Page 2

of 2

Hi-Res Dioxins/Furans Quality Control Summary Spike Recovery Report

SDG Number: A8D0757 Sample Type: Laboratory Control Sample Duplicate

Client ID: LCSD for batch 37539 Matrix: SOIL

Lab Sample ID: 12021190

Instrument: HRP750 Analysis Date: 05/04/2018 20:50 Dilution: 1

Analyst: MJC Prep Batch ID:37539

CAS No.		Parmname	Amount Added pg/g	Spike Conc. pg/g	Recovery	Acceptance Limits	RPD %	Acceptance Limits
1746-01-6	LCSD	2,3,7,8-TCDD	20.0	19.9	99.5	67-158	3.76	0-20
40321-76-4	LCSD	1,2,3,7,8-PeCDD	100	100	100	70-142	0.381	0-20
39227-28-6	LCSD	1,2,3,4,7,8-HxCDD	100	96.7	96.7	70-164	0.190	0-20
57653-85-7	LCSD	1,2,3,6,7,8-HxCDD	100	94.8	94.8	76-134	2.63	0-20
19408-74-3	LCSD	1,2,3,7,8,9-HxCDD	100	102	102	64-162	1.56	0-20
35822-46-9	LCSD	1,2,3,4,6,7,8-HpCDD	100	90.3	90.3	70-140	0.890	0-20
3268-87-9	LCSD	1,2,3,4,6,7,8,9-OCDD	200	194	97	78-144	0.789	0-20
51207-31-9	LCSD	2,3,7,8-TCDF	20.0	16.5	82.3	75-158	1.01	0-20
57117-41-6	LCSD	1,2,3,7,8-PeCDF	100	85.9	85.9	80-134	1.42	0-20
57117-31-4	LCSD	2,3,4,7,8-PeCDF	100	86.1	86.1	68-160	2.53	0-20
70648-26-9	LCSD	1,2,3,4,7,8-HxCDF	100	90.6	90.6	72-134	0.159	0-20
57117-44-9	LCSD	1,2,3,6,7,8-HxCDF	100	92.6	92.6	84-130	1.04	0-20
60851-34-5	LCSD	2,3,4,6,7,8-HxCDF	100	91.9	91.9	70-156	2.22	0-20
72918-21-9	LCSD	1,2,3,7,8,9-HxCDF	100	91.1	91.1	78-130	0.523	0-20
67562-39-4	LCSD	1,2,3,4,6,7,8-HpCDF	100	97.3	97.3	82-122	2.11	0-20
55673-89-7	LCSD	1,2,3,4,7,8,9-HpCDF	100	98.3	98.3	78-138	3.07	0-20
39001-02-0	LCSD	1,2,3,4,6,7,8,9-OCDF	200	168	83.8	63-170	1.01	0-20

Page 1

May 10, 2018

of 2

Hi-Res Dioxins/Furans

Quality Control Summary Spike Recovery Report

SDG Number: A8D0757 Sample Type: Matrix Spike

 Client ID:
 GP49-S-0.5(13235001MS)
 Matrix:
 SOIL

 Lab Sample ID:
 12021191
 %Moisture:
 27.9

Instrument: HRP750 Analysis Date: 05/04/2018 23:13 Dilution: 1

Analyst: MJC Prep Batch ID:37539

			Amoun Added		Spike Conc.	Recovery	Acceptance	
CAS No.		Parmname	pg/g		pg/g	%	Limits	
1746-01-6	MS	2,3,7,8-TCDD	19.9	U	20.7	104	70-130	_
40321-76-4	MS	1,2,3,7,8-PeCDD	99.3	J	104	105	70-130	
39227-28-6	MS	1,2,3,4,7,8-HxCDD	99.3	JK	97.9	98.5	70-130	
57653-85-7	MS	1,2,3,6,7,8-HxCDD	99.3	JK	98.9	99.2	70-130	
19408-74-3	MS	1,2,3,7,8,9-HxCDD	99.3	J	105	105	70-130	
35822-46-9	MS	1,2,3,4,6,7,8-HpCDD	99.3		102	96.5	70-130	
3268-87-9	MS	1,2,3,4,6,7,8,9-OCDD	199		245	105	70-130	
51207-31-9	MS	2,3,7,8-TCDF	19.9	JK	16.9	83.4	70-130	
57117-41-6	MS	1,2,3,7,8-PeCDF	99.3	J	90.2	90.7	70-130	
57117-31-4	MS	2,3,4,7,8-PeCDF	99.3	JK	91.2	91.6	70-130	
70648-26-9	MS	1,2,3,4,7,8-HxCDF	99.3	J	96.2	96.7	70-130	
57117-44-9	MS	1,2,3,6,7,8-HxCDF	99.3	JK	101	101	70-130	
60851-34-5	MS	2,3,4,6,7,8-HxCDF	99.3	JK	95.9	96.4	70-130	
72918-21-9	MS	1,2,3,7,8,9-HxCDF	99.3	U	96.6	97.3	70-130	
57562-39-4	MS	1,2,3,4,6,7,8-HpCDF	99.3	J	101	100	70-130	
55673-89-7	MS	1,2,3,4,7,8,9-HpCDF	99.3	U	101	102	70-130	
39001-02-0	MS	1,2,3,4,6,7,8,9-OCDF	199	J	175	87.1	70-130	

Page 2

May 10, 2018

of 2

Hi-Res Dioxins/Furans

Quality Control Summary Spike Recovery Report

SDG Number: A8D0757 Sample Type: Matrix Spike Duplicate

Client ID: GP49-S-0.5(13235001MSD) Matrix: SOIL Lab Sample ID: 12021192 %Moisture: 27.9

Instrument: HRP750 Analysis Date: 05/05/2018 00:00 Dilution: 1

Analyst: MJC Prep Batch ID:37539

CAS No.		Parmname	Amour Added pg/g		Spike Conc. pg/g	Recovery	Acceptance Limits	RPD %	Acceptance Limits				
1746-01-6	MSD	2,3,7,8-TCDD	19.8	U	20.6	104	70-130	0.633	0-20				
40321-76-4	MSD	1,2,3,7,8-PeCDD	99.1	J	101	102	70-130	3.01	0-20				
39227-28-6	MSD	1,2,3,4,7,8-HxCDD	99.1	JK	98.0	98.7	70-130	0.0554	0-20				
57653-85-7	MSD	1,2,3,6,7,8-HxCDD	99.1	JK	96.9	97.4	70-130	1.98	0-20				
19408-74-3	MSD	1,2,3,7,8,9-HxCDD	99.1	J	102	103	70-130	2.52	0-20				
35822-46-9	MSD	1,2,3,4,6,7,8-HpCDD	99.1		101	95.3	70-130	1.27	0-20				
3268-87-9	MSD	1,2,3,4,6,7,8,9-OCDD	198		243	104	70-130	0.939	0-20				
51207-31-9	MSD	2,3,7,8-TCDF	19.8	JK	17.2	85.5	70-130	2.22	0-20				
57117-41-6	MSD	1,2,3,7,8-PeCDF	99.1	J	88.4	88.9	70-130	2.09	0-20				
57117-31-4	MSD	2,3,4,7,8-PeCDF	99.1	JK	89.3	89.9	70-130	2.10	0-20				
70648-26-9	MSD	1,2,3,4,7,8-HxCDF	99.1	J	93.5	94.1	70-130	2.89	0-20				
57117-44-9	MSD	1,2,3,6,7,8-HxCDF	99.1	JK	96.5	97.2	70-130	4.44	0-20				
60851-34-5	MSD	2,3,4,6,7,8-HxCDF	99.1	JK	95.0	95.6	70-130	0.989	0-20				
72918-21-9	MSD	1,2,3,7,8,9-HxCDF	99.1	U	93.5	94.3	70-130	3.32	0-20				
67562-39-4	MSD	1,2,3,4,6,7,8-HpCDF	99.1	J	99.7	98.9	70-130	1.32	0-20				
55673-89-7	MSD	1,2,3,4,7,8,9-HpCDF	99.1	U	98.9	99.8	70-130	2.07	0-20				
39001-02-0	MSD	1,2,3,4,6,7,8,9-OCDF	198	J	170	84.6	70-130	3.04	0-20				

May 10, 2018

Method Blank Summary

Page 1

of 1

SDG Number: A8D0757

MB for batch 37539

Instrument ID: HRP750

Client:

APEX001 Matrix:

SOIL Data File: A03MAY18A_4-8

Client ID: Lab Sample ID: 12021188 Column:

Prep Date: 03-MAY-18

Analyzed: 05/04/18 21:38

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed	
01 LCS for batch 37539	12021189	A03MAY18A_4-6	05/04/18	2002	
02 LCSD for batch 37539	12021190	A03MAY18A_4-7	05/04/18	2050	
03 GP49-S-0.5	13235001	A03MAY18A_4-9	05/04/18	2225	
04 GP49-S-0.5(13235001MS)	12021191	A03MAY18A_4-10	05/04/18	2313	
05 GP49-S-0.5(13235001MSD)	12021192	A03MAY18A_4-11	05/05/18	0000	
06 GP52-S-0.5	13235002	A03MAY18A_4-12	05/05/18	0048	

Page 1

May 10, 2018

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

Client:

APEX001

Project: Matrix:

APEX00111

SOIL

Client ID:

SDG Number:

Lab Sample ID:

Client Sample:

QC for batch 37539 MB for batch 37539

Batch ID:

37541

Run Date: 05/04/2018 21:38

A8D0757

12021188

Method: EPA Method 1613B Analyst: MJC

Prep Basis:

As Received

Data File: Prep Batch: A03MAY18A_4-8 37539

TEQ WHO2005 ND=0.5 with EMPCs

Prep Method: Prep Aliquot: 10 g

SW846 3540C

HRP750 Instrument: Dilution: 1

Prep Date: 03-MAY-18

CAS No. **EDL PQL Parmname** Qual Result Units 1746-01-6 0.072 2,3,7,8-TCDD U pg/g 0.072 1.00 40321-76-4 1,2,3,7,8-PeCDD U 0.0822 0.0822 5.00 pg/g U 39227-28-6 1,2,3,4,7,8-HxCDD 0.0976 pg/g0.0976 5.00 57653-85-7 1,2,3,6,7,8-HxCDD U 0.0952 0.0952 5.00 pg/g 19408-74-3 1,2,3,7,8,9-HxCDD 0.0988 U pg/g 0.0988 5.00 U 0.115 0.115 35822-46-9 1,2,3,4,6,7,8-HpCDD 5.00 pg/g 3268-87-9 1,2,3,4,6,7,8,9-OCDD 0.560 0.214 10.0 pg/g 51207-31-9 2,3,7,8-TCDF U 0.0764 0.0764 1.00 pg/g U 57117-41-6 1,2,3,7,8-PeCDF 0.0572 pg/g 0.0572 5.00 57117-31-4 2,3,4,7,8-PeCDF U 0.0536 0.0536 5.00 pg/g 70648-26-9 1,2,3,4,7,8-HxCDF U 0.0618 0.0618 5.00 pg/g U 0.0632 0.0632 57117-44-9 1,2,3,6,7,8-HxCDF pg/g 5.00 60851-34-5 2,3,4,6,7,8-HxCDF U 0.065 0.065 5.00 pg/g 72918-21-9 1,2,3,7,8,9-HxCDF U 0.0748 0.0748 5.00 pg/g U 1,2,3,4,6,7,8-HpCDF 0.0762 0.0762 5.00 67562-39-4 pg/g 55673-89-7 1,2,3,4,7,8,9-HpCDF U 0.108 0.108 5.00 pg/g 39001-02-0 1,2,3,4,6,7,8,9-OCDF U 0.151 0.151 10.0 pg/g U Total TeCDD 0.072 0.072 1.00 41903-57-5 pg/g Total PeCDD U 0.0822 0.0822 36088-22-9 5.00 pg/g 34465-46-8 Total HxCDD U 0.0952 0.0952 pg/g 5.00 U 37871-00-4 Total HpCDD 0.115 pg/g 0.115 5.00 30402-14-3 Total TeCDF 0.0764 0.0764 U 1.00 pg/g 30402-15-4 Total PeCDF U 0.041 0.041 5.00 pg/g 55684-94-1 Total HxCDF U 0.0618 0.0618 5.00 pg/g 38998-75-3 0.0762 Total HpCDF U 0.0762 5.00 pg/g TEQ WHO2005 ND=0 with EMPCs 0.000168 3333-30-2 pg/g

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		196	200	pg/g	98.0	(25%-164%)
13C-1,2,3,7,8-PeCDD		188	200	pg/g	94.2	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		186	200	pg/g	93.0	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		173	200	pg/g	86.5	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		197	200	pg/g	98.4	(23%-140%)
13C-OCDD		394	400	pg/g	98.4	(17%-157%)
13C-2,3,7,8-TCDF		174	200	pg/g	87.1	(24%-169%)
13C-1,2,3,7,8-PeCDF		179	200	pg/g	89.6	(24%-185%)
13C-2,3,4,7,8-PeCDF		175	200	pg/g	87.7	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		159	200	pg/g	79.4	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		144	200	pg/g	72.0	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		158	200	pg/g	78.9	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		169	200	pg/g	84.7	(29%-147%)

0.119

pg/g

3333-30-3

Cape Fear Analytical LLC Report Date: May 10, 2018

> **Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary**

A8D0757 Client: APEX001 **Project:** APEX00111 SDG Number: 12021188 SOIL Lab Sample ID: Matrix:

QC for batch 37539 **Client Sample:**

MB for batch 37539 As Received **Client ID: Prep Basis: Batch ID:** 37541 Method: EPA Method 1613B

05/04/2018 21:38 **Instrument: HRP750 Run Date:** Analyst: MJC Dilution: 1 Data File: A03MAY18A_4-8

Prep Method: Prep Aliquot: 10 g **Prep Date:** 03-MAY-18 Qual

Surrogate/Tracer recovery Units Recovery% **Acceptable Limits** Qual Result Nominal 13C-1,2,3,4,6,7,8-HpCDF 154 200 77.0 (28%-143%) pg/g 13C-1,2,3,4,7,8,9-HpCDF 165 200 82.6 (26%-138%) pg/g 37Cl-2,3,7,8-TCDD 21.6 20.0 108 (35%-197%) pg/g

Result

SW846 3540C

Units

EDL

PQL

Comments:

Prep Batch:

CAS No.

37539

Parmname

Page 2

Value is estimated

Analyte was analyzed for, but not detected above the specified detection limit.

APEX001 SDG Number: A8D0757 Client: **Project:** APEX00111 12021189 SOIL Lab Sample ID: Matrix: QC for batch 37539 **Client Sample: Client ID:** LCS for batch 37539 **Prep Basis:** As Received **Batch ID:** 37541 Method: EPA Method 1613B 05/04/2018 20:02 Analyst: **Instrument:** HRP750 **Run Date:** MJC

 Data File:
 A03MAY18A_4-6

 Prep Batch:
 37539

 Prep Method:
 SW846 3540C

Prep Batch: 37539 Prep Method: SW846 35 Prep Date: 03-MAY-18 Prep Aliquot: 10 g

Prep Date:	03-MAY-18	Prep Anquot:	10 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD		20.7	pg/g	0.0482	1.00
40321-76-4	1,2,3,7,8-PeCDD		99.6	pg/g	0.0922	5.00
39227-28-6	1,2,3,4,7,8-HxCDD		96.5	pg/g	0.173	5.00
57653-85-7	1,2,3,6,7,8-HxCDD		92.4	pg/g	0.172	5.00
19408-74-3	1,2,3,7,8,9-HxCDD		100	pg/g	0.177	5.00
35822-46-9	1,2,3,4,6,7,8-HpCDD		89.5	pg/g	0.348	5.00
3268-87-9	1,2,3,4,6,7,8,9-OCDD		192	pg/g	0.204	10.0
51207-31-9	2,3,7,8-TCDF		16.3	pg/g	0.0654	1.00
57117-41-6	1,2,3,7,8-PeCDF		87.1	pg/g	0.0956	5.00
57117-31-4	2,3,4,7,8-PeCDF		84.0	pg/g	0.0876	5.00
70648-26-9	1,2,3,4,7,8-HxCDF		90.4	pg/g	0.177	5.00
57117-44-9	1,2,3,6,7,8-HxCDF		93.6	pg/g	0.187	5.00
60851-34-5	2,3,4,6,7,8-HxCDF		89.9	pg/g	0.179	5.00
72918-21-9	1,2,3,7,8,9-HxCDF		91.6	pg/g	0.226	5.00
67562-39-4	1,2,3,4,6,7,8-HpCDF		95.2	pg/g	0.276	5.00
55673-89-7	1,2,3,4,7,8,9-HpCDF		95.3	pg/g	0.390	5.00
39001-02-0	1,2,3,4,6,7,8,9-OCDF		166	pg/g	0.167	10.0

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-2,3,7,8-TCDD		190	200	pg/g	95.2	(20%-175%)	
13C-1,2,3,7,8-PeCDD		183	200	pg/g	91.6	(21%-227%)	
13C-1,2,3,4,7,8-HxCDD		181	200	pg/g	90.5	(21%-193%)	
13C-1,2,3,6,7,8-HxCDD		171	200	pg/g	85.6	(25%-163%)	
13C-1,2,3,4,6,7,8-HpCDD		190	200	pg/g	94.8	(22%-166%)	
13C-OCDD		374	400	pg/g	93.4	(13%-199%)	
13C-2,3,7,8-TCDF		167	200	pg/g	83.6	(22%-152%)	
13C-1,2,3,7,8-PeCDF		173	200	pg/g	86.6	(21%-192%)	
13C-2,3,4,7,8-PeCDF		173	200	pg/g	86.5	(13%-328%)	
13C-1,2,3,4,7,8-HxCDF		162	200	pg/g	80.8	(19%-202%)	
13C-1,2,3,6,7,8-HxCDF		142	200	pg/g	71.1	(21%-159%)	
13C-2,3,4,6,7,8-HxCDF		159	200	pg/g	79.5	(22%-176%)	
13C-1,2,3,7,8,9-HxCDF		162	200	pg/g	81.1	(17%-205%)	
13C-1,2,3,4,6,7,8-HpCDF		148	200	pg/g	73.8	(21%-158%)	
13C-1,2,3,4,7,8,9-HpCDF		159	200	pg/g	79.3	(20%-186%)	
37Cl-2,3,7,8-TCDD		20.6	20.0	pg/g	103	(31%-191%)	

Comments:

Page 1

Dilution:

1

U Analyte was analyzed for, but not detected above the specified detection limit.

MJC

EPA Method 1613B

APEX001 SDG Number: A8D0757 Client: **Project:** APEX00111 12021190 SOIL Lab Sample ID: Matrix:

QC for batch 37539 **Client Sample: Client ID:** LCSD for batch 37539

Batch ID: 37541

Run Date: 05/04/2018 20:50

Data File: A03MAY18A_4-7

Prep Batch: 37539

Method:

Analyst:

SW846 3540C **Prep Method:**

Prep Date:	03-MAY-18	Prep Aliquot:	10 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD		19.9	pg/g	0.0402	1.00
40321-76-4	1,2,3,7,8-PeCDD		100	pg/g	0.085	5.00
39227-28-6	1,2,3,4,7,8-HxCDD		96.7	pg/g	0.117	5.00
57653-85-7	1,2,3,6,7,8-HxCDD		94.8	pg/g	0.117	5.00
19408-74-3	1,2,3,7,8,9-HxCDD		102	pg/g	0.120	5.00
35822-46-9	1,2,3,4,6,7,8-HpCDD		90.3	pg/g	0.362	5.00
3268-87-9	1,2,3,4,6,7,8,9-OCDD		194	pg/g	0.222	10.0
51207-31-9	2,3,7,8-TCDF		16.5	pg/g	0.0638	1.00
57117-41-6	1,2,3,7,8-PeCDF		85.9	pg/g	0.099	5.00
57117-31-4	2,3,4,7,8-PeCDF		86.1	pg/g	0.0856	5.00
70648-26-9	1,2,3,4,7,8-HxCDF		90.6	pg/g	0.148	5.00
57117-44-9	1,2,3,6,7,8-HxCDF		92.6	pg/g	0.161	5.00
60851-34-5	2,3,4,6,7,8-HxCDF		91.9	pg/g	0.168	5.00
72918-21-9	1,2,3,7,8,9-HxCDF		91.1	pg/g	0.204	5.00
67562-39-4	1,2,3,4,6,7,8-HpCDF		97.3	pg/g	0.272	5.00
55673-89-7	1,2,3,4,7,8,9-HpCDF		98.3	pg/g	0.372	5.00
39001-02-0	1,2,3,4,6,7,8,9-OCDF		168	pg/g	0.186	10.0

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		196	200	pg/g	98.1	(20%-175%)
13C-1,2,3,7,8-PeCDD		185	200	pg/g	92.3	(21%-227%)
13C-1,2,3,4,7,8-HxCDD		178	200	pg/g	89.2	(21%-193%)
13C-1,2,3,6,7,8-HxCDD		172	200	pg/g	86.1	(25%-163%)
13C-1,2,3,4,6,7,8-HpCDD		187	200	pg/g	93.5	(22%-166%)
13C-OCDD		368	400	pg/g	92.0	(13%-199%)
13C-2,3,7,8-TCDF		173	200	pg/g	86.3	(22%-152%)
13C-1,2,3,7,8-PeCDF		177	200	pg/g	88.6	(21%-192%)
13C-2,3,4,7,8-PeCDF		177	200	pg/g	88.5	(13%-328%)
13C-1,2,3,4,7,8-HxCDF		159	200	pg/g	79.4	(19%-202%)
13C-1,2,3,6,7,8-HxCDF		144	200	pg/g	71.9	(21%-159%)
13C-2,3,4,6,7,8-HxCDF		157	200	pg/g	78.4	(22%-176%)
13C-1,2,3,7,8,9-HxCDF		161	200	pg/g	80.6	(17%-205%)
13C-1,2,3,4,6,7,8-HpCDF		146	200	pg/g	72.8	(21%-158%)
13C-1,2,3,4,7,8,9-HpCDF		156	200	pg/g	78.2	(20%-186%)
37Cl-2,3,7,8-TCDD		20.9	20.0	pg/g	104	(31%-191%)

Comments:

Page 1

As Received

HRP750

1

Prep Basis:

Instrument:

Dilution:

Analyte was analyzed for, but not detected above the specified detection limit.

A8D0757 APEX001 APEX00111 SDG Number: Client: **Project:** 12021191 04/23/2018 17:20 SOIL Lab Sample ID: **Date Collected:** Matrix: 04/25/2018 09:36 %Moisture: 27.9 QC for batch 37539 Date Received: **Client Sample: Prep Basis: Client ID:** GP49-S-0.5(13235001MS) **Dry Weight Batch ID:** 37541 Method: EPA Method 1613B 05/04/2018 23:13 **Instrument:** HRP750 **Run Date: Analyst:** MJC Dilution: 1 Data File:

 Data File:
 A03MAY18A_4-10

 Prep Batch:
 37539
 Prep Method:
 SW846 3540C

 Prep Date:
 03-MAY-18
 Prep Aliquot:
 13.97 g

Prep Date:	03-MAY-18	Frep Anquot.	13.97 g				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
1746-01-6	2,3,7,8-TCDD		20.7	pg/g	0.106	0.993	
40321-76-4	1,2,3,7,8-PeCDD		104	pg/g	0.138	4.96	
39227-28-6	1,2,3,4,7,8-HxCDD		97.9	pg/g	0.212	4.96	
57653-85-7	1,2,3,6,7,8-HxCDD		98.9	pg/g	0.214	4.96	
19408-74-3	1,2,3,7,8,9-HxCDD		105	pg/g	0.218	4.96	
35822-46-9	1,2,3,4,6,7,8-HpCDD		102	pg/g	0.383	4.96	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		245	pg/g	0.383	9.93	
51207-31-9	2,3,7,8-TCDF		16.9	pg/g	0.130	0.993	
57117-41-6	1,2,3,7,8-PeCDF		90.2	pg/g	0.107	4.96	
57117-31-4	2,3,4,7,8-PeCDF		91.2	pg/g	0.103	4.96	
70648-26-9	1,2,3,4,7,8-HxCDF		96.2	pg/g	0.170	4.96	
57117-44-9	1,2,3,6,7,8-HxCDF		101	pg/g	0.187	4.96	
60851-34-5	2,3,4,6,7,8-HxCDF		95.9	pg/g	0.176	4.96	
72918-21-9	1,2,3,7,8,9-HxCDF		96.6	pg/g	0.220	4.96	
67562-39-4	1,2,3,4,6,7,8-HpCDF		101	pg/g	0.284	4.96	
55673-89-7	1,2,3,4,7,8,9-HpCDF		101	pg/g	0.415	4.96	
39001-02-0	1,2,3,4,6,7,8,9-OCDF		175	pg/g	0.234	9.93	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		185	199	pg/g	93.0	(25%-164%)
13C-1,2,3,7,8-PeCDD		172	199	pg/g	86.6	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		161	199	pg/g	81.1	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		153	199	pg/g	77.2	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		170	199	pg/g	85.6	(23%-140%)
13C-OCDD		346	397	pg/g	87.2	(17%-157%)
13C-2,3,7,8-TCDF		169	199	pg/g	84.9	(24%-169%)
13C-1,2,3,7,8-PeCDF		168	199	pg/g	84.7	(24%-185%)
13C-2,3,4,7,8-PeCDF		162	199	pg/g	81.8	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		146	199	pg/g	73.3	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		127	199	pg/g	64.1	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		143	199	pg/g	72.3	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		149	199	pg/g	74.9	(29%-147%)
13C-1,2,3,4,6,7,8-HpCDF		142	199	pg/g	71.4	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		147	199	pg/g	74.1	(26%-138%)
37Cl-2,3,7,8-TCDD		22.3	19.9	pg/g	112	(35%-197%)

Comments:

Page 1

U Analyte was analyzed for, but not detected above the specified detection limit.

A8D0757 APEX001 APEX00111 SDG Number: Client: **Project:** 12021192 04/23/2018 17:20 **Date Collected:** SOIL Lab Sample ID: Matrix: QC for batch 37539 04/25/2018 09:36 %Moisture: 27.9 Date Received: **Client Sample:** Dry Weight **Client ID:** GP49-S-0.5(13235001MSD) **Prep Basis: Batch ID:** 37541 Method: EPA Method 1613B

Run Date: 05/05/2018 00:00 Analyst: MJC

Data File: A03MAY18A_4-11

Prep Batch: 37539 Prep Method: SW846 3540C Prep Date: 03-MAY-18 Prep Aliquot: 13.99 g

Trep Date.	US-IVIA 1 - 10	Trep inquot.	10.77 6			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD		20.6	pg/g	0.0981	0.991
40321-76-4	1,2,3,7,8-PeCDD		101	pg/g	0.120	4.96
39227-28-6	1,2,3,4,7,8-HxCDD		98.0	pg/g	0.176	4.96
57653-85-7	1,2,3,6,7,8-HxCDD		96.9	pg/g	0.175	4.96
19408-74-3	1,2,3,7,8,9-HxCDD		102	pg/g	0.180	4.96
35822-46-9	1,2,3,4,6,7,8-HpCDD		101	pg/g	0.371	4.96
3268-87-9	1,2,3,4,6,7,8,9-OCDD		243	pg/g	0.323	9.91
51207-31-9	2,3,7,8-TCDF		17.2	pg/g	0.129	0.991
57117-41-6	1,2,3,7,8-PeCDF		88.4	pg/g	0.103	4.96
57117-31-4	2,3,4,7,8-PeCDF		89.3	pg/g	0.102	4.96
70648-26-9	1,2,3,4,7,8-HxCDF		93.5	pg/g	0.168	4.96
57117-44-9	1,2,3,6,7,8-HxCDF		96.5	pg/g	0.154	4.96
60851-34-5	2,3,4,6,7,8-HxCDF		95.0	pg/g	0.172	4.96
72918-21-9	1,2,3,7,8,9-HxCDF		93.5	pg/g	0.206	4.96
67562-39-4	1,2,3,4,6,7,8-HpCDF		99.7	pg/g	0.262	4.96
55673-89-7	1,2,3,4,7,8,9-HpCDF		98.9	pg/g	0.379	4.96
39001-02-0	1,2,3,4,6,7,8,9-OCDF		170	pg/g	0.287	9.91

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		201	198	pg/g	101	(25%-164%)
13C-1,2,3,7,8-PeCDD		192	198	pg/g	96.9	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		181	198	pg/g	91.2	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		167	198	pg/g	84.3	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		188	198	pg/g	95.0	(23%-140%)
13C-OCDD		386	396	pg/g	97.3	(17%-157%)
13C-2,3,7,8-TCDF		174	198	pg/g	87.5	(24%-169%)
13C-1,2,3,7,8-PeCDF		184	198	pg/g	92.6	(24%-185%)
13C-2,3,4,7,8-PeCDF		182	198	pg/g	91.7	(21%-178%)
13C-1,2,3,4,7,8-HxCDF		162	198	pg/g	82.0	(26%-152%)
13C-1,2,3,6,7,8-HxCDF		143	198	pg/g	72.3	(26%-123%)
13C-2,3,4,6,7,8-HxCDF		156	198	pg/g	78.6	(28%-136%)
13C-1,2,3,7,8,9-HxCDF		163	198	pg/g	82.1	(29%-147%)
13C-1,2,3,4,6,7,8-HpCDF		154	198	pg/g	77.9	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		161	198	pg/g	81.2	(26%-138%)
37Cl-2,3,7,8-TCDD		22.2	19.8	pg/g	112	(35%-197%)

Comments:

Page 1

HRP750

1

Instrument:

Dilution:

U Analyte was analyzed for, but not detected above the specified detection limit.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Friday, May 25, 2018

Heather Good Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301 Bellingham, WA 98225

RE: A8D0903 - 0624.04.10-03--Northern State Hospital - 0624.04.10

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A8D0903, which was received by the laboratory on 4/28/2018 at 9:15:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.


All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Project Number: 0624.04.10 Report ID: Bellingham, WA 98225 Project Manager: Heather Good A8D0903 - 05 25 18 1253

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATION							
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
GP53-S-0.5	A8D0903-01	Soil	04/24/18 09:20	04/28/18 09:15				
GP53-S-1.0	A8D0903-02	Soil	04/24/18 09:25	04/28/18 09:15				
GP53-S-2.0	A8D0903-03	Soil	04/24/18 09:30	04/28/18 09:15				
GP54-S-0.5	A8D0903-04	Soil	04/24/18 09:40	04/28/18 09:15				
GP54-S-5.5	A8D0903-05	Soil	04/24/18 09:45	04/28/18 09:15				
DU06-S-0.5(As Received)	A8D0903-06	Soil	04/24/18 09:30	04/28/18 09:15				
DU06-S-0.5(After Processing)	A8D0903-07	Soil	04/24/18 09:30	04/28/18 09:15				
SS01-S-0.5	A8D0903-08	Soil	04/24/18 09:30	04/28/18 09:15				
SS02-S-0.5	A8D0903-09	Soil	04/24/18 11:21	04/28/18 09:15				
SS03-S-0.5	A8D0903-10	Soil	04/24/18 11:40	04/28/18 09:15				
SS04-S-0.5	A8D0903-11	Soil	04/24/18 12:14	04/28/18 09:15				
SS05-S-0.5	A8D0903-12	Soil	04/24/18 12:32	04/28/18 09:15				
DU04-S-0.5(As Received)	A8D0903-13	Soil	04/24/18 13:30	04/28/18 09:15				
DU04-S-0.5(After Processing)	A8D0903-14	Soil	04/24/18 13:30	04/28/18 09:15				
SS06-S-0.5	A8D0903-15	Soil	04/24/18 13:30	04/28/18 09:15				
SS07-S-0.5	A8D0903-16	Soil	04/24/18 13:52	04/28/18 09:15				
SS08-S-0.5	A8D0903-17	Soil	04/24/18 14:20	04/28/18 09:15				
SS09-S-0.5	A8D0903-18	Soil	04/24/18 14:30	04/28/18 09:15				
SS10-S-0.5	A8D0903-19	Soil	04/24/18 14:55	04/28/18 09:15				
DU07-S-0.5(As Received)	A8D0903-20	Soil	04/24/18 15:47	04/28/18 09:15				
DU07-S-0.5(After Processing)	A8D0903-21	Soil	04/24/18 15:47	04/28/18 09:15				
SS11-S-0.5	A8D0903-22	Soil	04/24/18 15:47	04/28/18 09:15				
SS12-S-0.5	A8D0903-23	Soil	04/24/18 16:10	04/28/18 09:15				
SS13-S-0.5	A8D0903-24	Soil	04/24/18 16:22	04/28/18 09:15				
SS14-S-0.5	A8D0903-25	Soil	04/24/18 17:13	04/28/18 09:15				
SS15-S-0.5	A8D0903-26	Soil	04/24/18 17:22	04/28/18 09:15				
DU17-S-0.5(As Received)	A8D0903-27	Soil	04/25/18 07:45	04/28/18 09:15				
DU17-S-0.5(After Processing)	A8D0903-28	Soil	04/25/18 07:45	04/28/18 09:15				
SS16-S-0.5	A8D0903-29	Soil	04/25/18 08:12	04/28/18 09:15				
SS17-S-0.5	A8D0903-30	Soil	04/25/18 08:50	04/28/18 09:15				
SS18-S-0.5	A8D0903-31	Soil	04/25/18 09:50	04/28/18 09:15				
SS19-S-0.5	A8D0903-32	Soil	04/25/18 11:05	04/28/18 09:15				
SS20-S-0.5	A8D0903-33	Soil	04/25/18 11:20	04/28/18 09:15				
DU15-S-0.5(As Received)	A8D0903-34	Soil	04/25/18 11:50	04/28/18 09:15				

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Project Number: 0624.04.10 Report ID: Bellingham, WA 98225 Project Manager: Heather Good A8D0903 - 05 25 18 1253

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMAT	ION	
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DU15-S-0.5(After Processing)	A8D0903-35	Soil	04/25/18 11:50	04/28/18 09:15
SS21-S-0.5	A8D0903-36	Soil	04/25/18 12:00	04/28/18 09:15
SS22-S-0.5	A8D0903-37	Soil	04/25/18 12:17	04/28/18 09:15
SS23-S-0.5	A8D0903-38	Soil	04/25/18 12:28	04/28/18 09:15
SS24-S-0.5	A8D0903-39	Soil	04/25/18 14:17	04/28/18 09:15
SS25-S-0.5	A8D0903-40	Soil	04/25/18 14:30	04/28/18 09:15
DU18-S-0.5(As Received)	A8D0903-41	Soil	04/25/18 15:20	04/28/18 09:15
DU18-S-0.5(After Processing)	A8D0903-42	Soil	04/25/18 15:20	04/28/18 09:15
SS26-S-0.5	A8D0903-43	Soil	04/25/18 15:20	04/28/18 09:15
SS27-S-0.5	A8D0903-44	Soil	04/25/18 15:35	04/28/18 09:15
SS28-S-0.5	A8D0903-45	Soil	04/25/18 15:45	04/28/18 09:15
SS29-S-0.5	A8D0903-46	Soil	04/25/18 16:00	04/28/18 09:15
SS30-S-0.5	A8D0903-47	Soil	04/25/18 16:05	04/28/18 09:15
DU02-S-0.5(As Received)	A8D0903-48	Soil	04/25/18 18:30	04/28/18 09:15
DU02-S-0.5(After Processing)	A8D0903-49	Soil	04/25/18 18:30	04/28/18 09:15
SS36-S-0.5	A8D0903-50	Soil	04/25/18 18:40	04/28/18 09:15
SS37-S-0.5	A8D0903-51	Soil	04/25/18 18:55	04/28/18 09:15
SS38-S-0.5	A8D0903-52	Soil	04/25/18 19:05	04/28/18 09:15
SS39-S-0.5	A8D0903-53	Soil	04/25/18 19:15	04/28/18 09:15
SS40-S-0.5	A8D0903-54	Soil	04/25/18 19:23	04/28/18 09:15
DU01-S-0.5(As Received)	A8D0903-55	Soil	04/25/18 17:05	04/28/18 09:15
DU01-S-0.5(After Processing)	A8D0903-56	Soil	04/25/18 17:05	04/28/18 09:15
SS31-S-0.5	A8D0903-57	Soil	04/25/18 17:05	04/28/18 09:15
SS32-S-0.5	A8D0903-58	Soil	04/25/18 17:20	04/28/18 09:15
SS33-S-0.5	A8D0903-59	Soil	04/25/18 17:30	04/28/18 09:15
SS34-S-0.5	A8D0903-60	Soil	04/25/18 17:55	04/28/18 09:15
SS35-S-0.5	A8D0903-61	Soil	04/25/18 18:05	04/28/18 09:15
DU13-S-0.5(As Received)	A8D0903-62	Soil	04/26/18 08:05	04/28/18 09:15
DU13-S-0.5(After Processing)	A8D0903-63	Soil	04/26/18 08:05	04/28/18 09:15
SS41-S-0.5	A8D0903-64	Soil	04/26/18 08:25	04/28/18 09:15
SS42-S-0.5	A8D0903-65	Soil	04/26/18 09:00	04/28/18 09:15
SS43-S-0.5	A8D0903-66	Soil	04/26/18 09:50	04/28/18 09:15
SS44-S-0.5	A8D0903-67	Soil	04/26/18 10:20	04/28/18 09:15
SS45-S-0.5	A8D0903-68	Soil	04/26/18 10:45	04/28/18 09:15

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Project Number: 0624.04.10 Report ID: Bellingham, WA 98225 Project Manager: Heather Good A8D0903 - 05 25 18 1253

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMAT	ION	
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
DU16-S-0.5(As Received)	A8D0903-69	Soil	04/26/18 12:45	04/28/18 09:15
DU16-S-0.5(After Processing)	A8D0903-70	Soil	04/26/18 12:45	04/28/18 09:15
SS46-S-0.5	A8D0903-71	Soil	04/26/18 13:00	04/28/18 09:15
SS47-S-0.5	A8D0903-72	Soil	04/26/18 13:25	04/28/18 09:15
SS48-S-0.5	A8D0903-73	Soil	04/26/18 13:50	04/28/18 09:15
SS49-S-0.5	A8D0903-74	Soil	04/26/18 14:30	04/28/18 09:15
SS50-S-0.5	A8D0903-75	Soil	04/26/18 14:50	04/28/18 09:15
DU11-S-0.5(As Received)	A8D0903-76	Soil	04/26/18 17:15	04/28/18 09:15
DU11-S-0.5(After Processing)	A8D0903-77	Soil	04/26/18 17:15	04/28/18 09:15
SS51-S-0.5	A8D0903-78	Soil	04/26/18 17:25	04/28/18 09:15
SS52-S-0.5	A8D0903-79	Soil	04/26/18 17:35	04/28/18 09:15
SS53-S-0.5	A8D0903-80	Soil	04/26/18 17:40	04/28/18 09:15
SS54-S-0.5	A8D0903-81	Soil	04/26/18 17:50	04/28/18 09:15
SS55-S-0.5	A8D0903-82	Soil	04/26/18 18:00	04/28/18 09:15
DU08-S-0.5(As Received)	A8D0903-83	Soil	04/26/18 18:15	04/28/18 09:15
DU08-S-0.5(After Processing)	A8D0903-84	Soil	04/26/18 18:15	04/28/18 09:15
SS56-S-0.5	A8D0903-85	Soil	04/26/18 18:25	04/28/18 09:15
SS57-S-0.5	A8D0903-86	Soil	04/26/18 18:50	04/28/18 09:15
SS58-S-0.5	A8D0903-87	Soil	04/26/18 19:00	04/28/18 09:15
SS59-S-0.5	A8D0903-88	Soil	04/26/18 19:10	04/28/18 09:15
SS60-S-0.5	A8D0903-89	Soil	04/26/18 19:30	04/28/18 09:15
DU05-S-0.5(As Received)	A8D0903-90	Soil	04/26/18 20:00	04/28/18 09:15
DU05-S-0.5(After Processing)	A8D0903-91	Soil	04/26/18 20:00	04/28/18 09:15
SS61-S-0.5	A8D0903-92	Soil	04/26/18 20:15	04/28/18 09:15
SS62-S-0.5	A8D0903-93	Soil	04/26/18 20:20	04/28/18 09:15
SS63-S-0.5	A8D0903-94	Soil	04/26/18 20:30	04/28/18 09:15
SS64-S-0.5	A8D0903-95	Soil	04/26/18 20:40	04/28/18 09:15
SS65-S-0.5	A8D0903-96	Soil	04/26/18 20:50	04/28/18 09:15
DU14-S-0.5(As Received)	A8D0903-97	Soil	04/27/18 08:05	04/28/18 09:15
DU14-S-0.5(After Processing)	A8D0903-98	Soil	04/27/18 08:05	04/28/18 09:15
SS66-S-0.5	A8D0903-99	Soil	04/27/18 08:05	04/28/18 09:15
SS67-S-0.5	A8D0903-AA	Soil	04/27/18 08:20	04/28/18 09:15
SS68-S-0.5	A8D0903-AB	Soil	04/27/18 08:45	04/28/18 09:15
SS69-S-0.5	A8D0903-AC	Soil	04/27/18 09:00	04/28/18 09:15

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital


1329 North State Street, Suie 301 Project Number: 0624.04.10 Report ID: Bellingham, WA 98225 Project Manager: Heather Good A8D0903 - 05 25 18 1253

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMAT	ION	
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SS70-S-0.5	A8D0903-AD	Soil	04/27/18 09:45	04/28/18 09:15
DU10A-S-0.5(As Received)	A8D0903-AE	Soil	04/27/18 10:15	04/28/18 09:15
DU10A-S-0.5(After Processing)	A8D0903-AF	Soil	04/27/18 10:15	04/28/18 09:15
SS71-S-0.5	A8D0903-AG	Soil	04/27/18 10:30	04/28/18 09:15
SS72-S-0.5	A8D0903-AH	Soil	04/27/18 11:00	04/28/18 09:15
SS73-S-0.5	A8D0903-AI	Soil	04/27/18 11:20	04/28/18 09:15
SS74-S-0.5	A8D0903-AJ	Soil	04/27/18 11:40	04/28/18 09:15
SS75-S-0.5	A8D0903-AK	Soil	04/27/18 12:00	04/28/18 09:15
DU10C-S-0.5(As Received)	A8D0903-AL	Soil	04/27/18 13:00	04/28/18 09:15
DU10C-S-0.5(After Processing)	A8D0903-AM	Soil	04/27/18 13:00	04/28/18 09:15
SS81-S-0.5	A8D0903-AN	Soil	04/27/18 13:10	04/28/18 09:15
SS82-S-0.5	A8D0903-AO	Soil	04/27/18 13:20	04/28/18 09:15
SS83-S-0.5	A8D0903-AP	Soil	04/27/18 13:30	04/28/18 09:15
SS84-S-0.5	A8D0903-AQ	Soil	04/27/18 15:10	04/28/18 09:15
SS85-S-0.5	A8D0903-AR	Soil	04/27/18 15:30	04/28/18 09:15
DU10B-S-0.5(As Received)	A8D0903-AS	Soil	04/27/18 13:55	04/28/18 09:15
DU10B-S-0.5(After Processing)	A8D0903-AT	Soil	04/27/18 13:55	04/28/18 09:15
SS76-S-0.5	A8D0903-AU	Soil	04/27/18 13:55	04/28/18 09:15
SS77-S-0.5	A8D0903-AV	Soil	04/27/18 14:00	04/28/18 09:15
SS78-S-0.5	A8D0903-AW	Soil	04/27/18 14:05	04/28/18 09:15
SS79-S-0.5	A8D0903-AX	Soil	04/27/18 14:18	04/28/18 09:15
SS80-S-0.5	A8D0903-AY	Soil	04/27/18 14:30	04/28/18 09:15
DU03-S-0.5(As Received)	A8D0903-AZ	Soil	04/27/18 16:00	04/28/18 09:15
DU03-S-0.5(After Processing)	A8D0903-BA	Soil	04/27/18 16:00	04/28/18 09:15
SS86-S-0.5	A8D0903-BB	Soil	04/27/18 16:10	04/28/18 09:15
SS87-S-0.5	A8D0903-BC	Soil	04/27/18 16:15	04/28/18 09:15
SS88-S-0.5	A8D0903-BD	Soil	04/27/18 16:30	04/28/18 09:15
SS89-S-0.5	A8D0903-BE	Soil	04/27/18 16:40	04/28/18 09:15
SS90-S-0.5	A8D0903-BF	Soil	04/27/18 17:00	04/28/18 09:15
DU12-S-0.5(As Received)	A8D0903-BG	Soil	04/27/18 17:20	04/28/18 09:15
DU12-S-0.5(After Processing)	A8D0903-BH	Soil	04/27/18 17:20	04/28/18 09:15
SS91-S-0.5	A8D0903-BI	Soil	04/27/18 17:30	04/28/18 09:15
SS92-S-0.5	A8D0903-BJ	Soil	04/27/18 17:55	04/28/18 09:15
SS93-S-0.5	A8D0903-BK	Soil	04/27/18 18:20	04/28/18 09:15

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Project Number: 0624.04.10 Report ID: Bellingham, WA 98225 Project Manager: Heather Good A8D0903 - 05 25 18 1253

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFORMATION								
Client Sample ID Laboratory ID Matrix Date Sampled Date Received									
SS94-S-0.5	A8D0903-BL	Soil	04/27/18 18:40	04/28/18 09:15					
SS95-S-0.5	A8D0903-BM	Soil	04/27/18 18:50	04/28/18 09:15					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Project Number: 0624.04.10 Report ID: Bellingham, WA 98225 Project Manager: Heather Good A8D0903 - 05 25 18 1253

ANALYTICAL CASE NARRATIVE

Work Order: A8D0903

Amended Report: EPA 6020A Mercury in Soil

Revised Source Results and Recoveries for Matrix Spike Batch QC Samples:

Raw data showed interferences for Mercury in the samples and Batch QC due to sample preparation steps employing Tungsten. The Detection Limits for the samples and matrix spikes were raised above the Tungsten interference in the samples, resulting in high recoveries for the Matrix Spike compounds, as the interference was not being corrected for.

However, due to the fact that the Detection Limit for the Matrix Spike was set just equal to the hit in the source sample, the report showed a value for the source samples for both 8050598-MS3 and MS4. These are now correctly reported as Non Detect (ND).

In addition, the Recovery for 8050598-MS3 has now changed to 201% from 146%, due to these changes.

David Jack Technical Manager 5/25/2018

Subcontract

This report is not complete without the attached subcontract laboratory report for Dioxins and Furans that was subcontracted to Cape Fear Analytical.

Lisa Domenighini Client Services Manager 5/17/18

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: 0624.04.10-03--Northern State Hospital

Project Number: 0624.04.10 Project Manager: Heather Good

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTPI	H-Dx			_
	Sample	Detection	Reporting	** **	Dil di	Date	V 4 12 6	N
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
GP53-S-0.5 (A8D0903-01)		Matrix: Soil)452	
Diesel	ND	9.79	25.0	mg/kg dry	1	05/04/18	NWTPH-Dx	
Oil	82.0	19.6	50.0	mg/kg dry	1	05/04/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 84 %	Limits: 50-150 %	1	05/04/18	NWTPH-Dx	
GP53-S-1.0 (A8D0903-02)			Matrix:	Soil		Batch: 8050)452	
Diesel	ND	10.3	25.0	mg/kg dry	1	05/04/18	NWTPH-Dx	
Oil	ND	20.6	50.0	mg/kg dry	1	05/04/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recovery: 62 % Limits: 50-150 %			1	05/04/18	NWTPH-Dx	
GP53-S-2.0 (A8D0903-03)		Matrix: Soil				Batch: 8050		
Diesel	ND	13.6	27.3	mg/kg dry	1	05/04/18	NWTPH-Dx	
Oil	ND	27.3	54.5	mg/kg dry	1	05/04/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 79 %	Limits: 50-150 %	1	05/04/18	NWTPH-Dx	
GP54-S-0.5 (A8D0903-04)			Matrix:	Soil		Batch: 8050)452	
Diesel	ND	11.2	25.0	mg/kg dry	1	05/04/18	NWTPH-Dx	
Oil	131	22.4	50.0	mg/kg dry	1	05/04/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-150 %	1	05/04/18	NWTPH-Dx	
GP54-S-5.5 (A8D0903-05)			Matrix:	Soil		Batch: 8050		
Diesel	ND	13.0	25.9	mg/kg dry	1	05/04/18	NWTPH-Dx	
Oil	ND	25.9	51.9	mg/kg dry	1	05/04/18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 84%	Limits: 50-150 %	1	05/04/18	NWTPH-Dx	

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225

Project: 0624.04.10-03--Northern State Hospital

Project Number: 0624.04.10 Project Manager: Heather Good

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

	Polyare	omatic Hydro	carbons (P	AHs) by EPA 82	70D SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP53-S-0.5 (A8D0903-01RE1)		Matrix: Soil			Batch: 8050382			
Benz(a)anthracene	15.0	5.16	10.3	ug/kg dry	1	05/03/18	EPA 8270D (SIM)	M-05
Benzo(a)pyrene	14.8	5.16	10.3	ug/kg dry	1	05/03/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	20.0	5.16	10.3	ug/kg dry	1	05/03/18	EPA 8270D (SIM)	M-05
Benzo(k)fluoranthene	6.11	5.16	10.3	ug/kg dry	1	05/03/18	EPA 8270D (SIM)	J, M-05
Chrysene	17.8	5.16	10.3	ug/kg dry	1	05/03/18	EPA 8270D (SIM)	M-05
Dibenz(a,h)anthracene	ND	5.16	10.3	ug/kg dry	1	05/03/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	12.3	5.16	10.3	ug/kg dry	1	05/03/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 85 %	Limits: 44-120 %	1	05/03/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			85 %	54-127 %	1	05/03/18	EPA 8270D (SIM)	
GP53-S-1.0 (A8D0903-02)		Matrix: Soil				Batch: 805	0382	
Benz(a)anthracene	ND	5.43	10.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Benzo(a)pyrene	ND	5.43	10.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND	5.43	10.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND	5.43	10.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Chrysene	ND	5.43	10.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND	5.43	10.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	5.43	10.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 86 %	Limits: 44-120 %	1	05/02/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			86 %	54-127 %	1	05/02/18	EPA 8270D (SIM)	
GP53-S-2.0 (A8D0903-03)			Matrix:	Soil		Batch: 805	0382	
Benz(a)anthracene	ND	6.70	13.4	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Benzo(a)pyrene	ND	6.70	13.4	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND	6.70	13.4	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND	6.70	13.4	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Chrysene	ND	6.70	13.4	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND	6.70	13.4	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	6.70	13.4	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 77 %	Limits: 44-120 %	1	05/02/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			72 %	54-127 %	1	05/02/18	EPA 8270D (SIM)	
GP54-S-0.5 (A8D0903-04)			Matrix:	Soil		Batch: 805	0382	
Benz(a)anthracene	76.0	27.9	55.7	ug/kg dry	5	05/02/18	EPA 8270D (SIM)	M-05
Benzo(a)pyrene	52.9	27.9	55.7	ug/kg dry	5	05/02/18	EPA 8270D (SIM)	J
Benzo(b)fluoranthene	75.8	27.9	55.7	ug/kg dry	5	05/02/18	EPA 8270D (SIM)	M-05
Benzo(k)fluoranthene	ND	27.9	55.7	ug/kg dry	5	05/02/18	EPA 8270D (SIM)	
Chrysene	95.8	27.9	55.7	ug/kg dry	5	05/02/18	EPA 8270D (SIM)	M-05

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

	Polyard	omatic Hydro	carbons (P	AHs) by EPA 82	70D SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
GP54-S-0.5 (A8D0903-04)	·		Matrix:	Soil		Batch: 805	0382	
Dibenz(a,h)anthracene	ND	27.9	55.7	ug/kg dry	5	05/02/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	34.7	27.9	55.7	ug/kg dry	5	05/02/18	EPA 8270D (SIM)	J
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	ery: 95 %	Limits: 44-120 %	5	05/02/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			97 %	54-127 %	5	05/02/18	EPA 8270D (SIM)	
GP54-S-5.5 (A8D0903-05)			Matrix:	Soil		Batch: 805	0382	
Benz(a)anthracene	ND	6.43	12.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Benzo(a)pyrene	ND	6.43	12.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Benzo(b)fluoranthene	ND	6.43	12.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Benzo(k)fluoranthene	ND	6.43	12.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Chrysene	ND	6.43	12.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Dibenz(a,h)anthracene	ND	6.43	12.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	6.43	12.9	ug/kg dry	1	05/02/18	EPA 8270D (SIM)	
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	ery: 78 %	Limits: 44-120 %	1	05/02/18	EPA 8270D (SIM)	
p-Terphenyl-d14 (Surr)			75 %	54-127 %	1	05/02/18	EPA 8270D (SIM)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 10 of 80 Page 10 of 58

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 60)20 (ICPMS)				
A 1.	Sample	Detection	Reporting	YY **	D11 - 1	Date	Md Inc	NT :
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU06-S-0.5(After Processing) (A8D090	03-07)		Matrix: S	oil				
Batch: 8050598								
Arsenic	10.2	0.550	1.10	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	122	0.550	1.10	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.246	0.110	0.220	mg/kg dry	10	05/12/18	EPA 6020A	Q-42
Chromium	64.3	0.550	1.10	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	45.6	1.10	2.20	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	27.8	0.110	0.220	mg/kg dry	10	05/12/18	EPA 6020A	
Mercury	ND	0.594	0.594	mg/kg dry	10	05/12/18	EPA 6020A	R-0
Selenium	ND	0.550	1.10	mg/kg dry	10	05/12/18	EPA 6020A	Q-4
Silver	ND	0.550	1.10	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	113	2.20	4.40	mg/kg dry	10	05/12/18	EPA 6020A	
DU04-S-0.5(After Processing) (A8D090)3-14)		Matrix: S	oil				
Batch: 8050598								
Arsenic	10.4	0.566	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	153	0.566	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.282	0.113	0.226	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	80.8	0.566	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	44.1	1.13	2.26	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	128	0.113	0.226	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	0.567	0.566	1.13	mg/kg dry	10	05/12/18	EPA 6020A	J
Silver	ND	0.566	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	128	2.26	4.53	mg/kg dry	10	05/12/18	EPA 6020A	
DU04-S-0.5(After Processing) (A8D090)3-14RE1)		Matrix: S	oil				
Batch: 8050598								
Mercury	ND	1.25	1.25	mg/kg dry	10	05/15/18	EPA 6020A	R-0
DU07-S-0.5(After Processing) (A8D090)3-21)		Matrix: S	oil				
Batch: 8050598								
Arsenic	9.31	0.519	1.04	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	124	0.519	1.04	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.243	0.104	0.208	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	61.7	0.519	1.04	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	45.6	1.04	2.08	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	27.1	0.104	0.208	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.519	1.04	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.519	1.04	mg/kg dry	10	05/12/18	EPA 6020A	
	108			2 2 3				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 60	020 (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU07-S-0.5(After Processing) (A8D	00903-21RE1)		Matrix: S	Soil				
Batch: 8050598								
Mercury	ND	2.12	2.12	mg/kg dry	10	05/15/18	EPA 6020A	R-0
DU17-S-0.5(After Processing) (A8D	00903-28)		Matrix: S	Soil				
Batch: 8050598								
Arsenic	10.6	0.579	1.16	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	119	0.579	1.16	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.216	0.116	0.232	mg/kg dry	10	05/12/18	EPA 6020A	J
Chromium	52.2	0.579	1.16	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	42.7	1.16	2.32	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	22.5	0.116	0.232	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.579	1.16	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.579	1.16	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	90.4	2.32	4.63	mg/kg dry	10	05/12/18	EPA 6020A	
DU17-S-0.5(After Processing) (A8D	00903-28RE1)		Matrix: S	Soil				
Batch: 8050598	ND	0.776	0.776		10	05/15/10	EPA 6020A	R-0
Mercury	ND	0.776	0.776	mg/kg dry	10	05/15/18	EPA 0020A	K-0
SS16-S-0.5 (A8D0903-29)			Matrix: S	Soil				
Batch: 8050484								
Arsenic	13.9	0.938	1.88	mg/kg dry	10	05/07/18	EPA 6020A	
Barium	531	0.938	1.88	mg/kg dry	10	05/07/18	EPA 6020A	
Cadmium	ND	0.938	1.88	mg/kg dry	10	05/07/18	EPA 6020A	
Chromium	71.1	0.938	1.88	mg/kg dry	10	05/07/18	EPA 6020A	
Copper	66.6	3.75	7.50	mg/kg dry	10	05/07/18	EPA 6020A	
Lead	96.2	0.188	0.375	mg/kg dry	10	05/07/18	EPA 6020A	
Mercury	ND	0.150	0.300	mg/kg dry	10	05/07/18	EPA 6020A	
Selenium	ND	0.938	1.88	mg/kg dry	10	05/07/18	EPA 6020A	
Silver	0.390	0.188	0.375	mg/kg dry	10	05/07/18	EPA 6020A	
Zinc	267	3.75	7.50	mg/kg dry	10	05/07/18	EPA 6020A	
SS17-S-0.5 (A8D0903-30)			Matrix: S	Soil				
Batch: 8050484								
Arsenic	15.2	0.887	1.77	mg/kg dry	10	05/07/18	EPA 6020A	
Barium	118	0.887	1.77	mg/kg dry	10	05/07/18	EPA 6020A	
Cadmium	ND	0.887	1.77	mg/kg dry	10	05/07/18	EPA 6020A	
Chromium	56.5	0.887	1.77	mg/kg dry	10	05/07/18	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
SS17-S-0.5 (A8D0903-30)			Matrix: S	Soil							
Copper	28.9	3.55	7.10	mg/kg dry	10	05/07/18	EPA 6020A				
Lead	40.5	0.177	0.355	mg/kg dry	10	05/07/18	EPA 6020A				
Mercury	0.183	0.142	0.284	mg/kg dry	10	05/07/18	EPA 6020A	J			
Selenium	ND	0.887	1.77	mg/kg dry	10	05/07/18	EPA 6020A				
Silver	0.406	0.177	0.355	mg/kg dry	10	05/07/18	EPA 6020A				
Zinc	108	3.55	7.10	mg/kg dry	10	05/07/18	EPA 6020A				
SS18-S-0.5 (A8D0903-31)			Matrix: S	Soil							
Batch: 8050484											
Arsenic	8.01	0.942	1.88	mg/kg dry	10	05/07/18	EPA 6020A				
Barium	122	0.942	1.88	mg/kg dry	10	05/07/18	EPA 6020A				
Cadmium	ND	0.942	1.88	mg/kg dry	10	05/07/18	EPA 6020A				
Chromium	39.5	0.942	1.88	mg/kg dry	10	05/07/18	EPA 6020A				
Copper	27.8	3.77	7.54	mg/kg dry	10	05/07/18	EPA 6020A				
Lead	42.0	0.188	0.377	mg/kg dry	10	05/07/18	EPA 6020A				
Mercury	ND	0.151	0.301	mg/kg dry	10	05/07/18	EPA 6020A				
Selenium	ND	0.942	1.88	mg/kg dry	10	05/07/18	EPA 6020A				
Silver	0.191	0.188	0.377	mg/kg dry	10	05/07/18	EPA 6020A	J			
Zinc	75.2	3.77	7.54	mg/kg dry	10	05/07/18	EPA 6020A				
SS19-S-0.5 (A8D0903-32)			Matrix: S	Soil							
Batch: 8050484											
Arsenic	8.65	1.16	2.32	mg/kg dry	10	05/07/18	EPA 6020A				
Barium	147	1.16	2.32	mg/kg dry	10	05/07/18	EPA 6020A				
Cadmium	ND	1.16	2.32	mg/kg dry	10	05/07/18	EPA 6020A				
Chromium	67.8	1.16	2.32	mg/kg dry	10	05/07/18	EPA 6020A				
Copper	34.3	4.64	9.28	mg/kg dry	10	05/07/18	EPA 6020A				
Lead	39.9	0.232	0.464	mg/kg dry	10	05/07/18	EPA 6020A				
Mercury	ND	0.186	0.371	mg/kg dry	10	05/07/18	EPA 6020A				
Selenium	ND	1.16	2.32	mg/kg dry	10	05/07/18	EPA 6020A				
Silver	ND	0.232	0.464	mg/kg dry	10	05/07/18	EPA 6020A				
Zinc	87.8	4.64	9.28	mg/kg dry	10	05/07/18	EPA 6020A				
SS20-S-0.5 (A8D0903-33)			Matrix: S	 Soil							
Batch: 8050484											
Arsenic	15.1	0.790	1.58	mg/kg dry	10	05/07/18	EPA 6020A				
Barium	158	0.790	1.58	mg/kg dry	10	05/07/18	EPA 6020A				
Cadmium	ND	0.790	1.58	mg/kg dry	10	05/07/18	EPA 6020A				
Chromium	91.1	0.790	1.58	mg/kg dry	10	05/07/18	EPA 6020A				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 13 of 80 Page 13 of 58

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 60	020 (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SS20-S-0.5 (A8D0903-33)			Matrix: S	Soil				
Copper	54.7	3.16	6.32	mg/kg dry	10	05/07/18	EPA 6020A	
Lead	14.4	0.158	0.316	mg/kg dry	10	05/07/18	EPA 6020A	
Mercury	ND	0.126	0.253	mg/kg dry	10	05/07/18	EPA 6020A	
Silver	0.316	0.158	0.316	mg/kg dry	10	05/07/18	EPA 6020A	
Zinc	133	3.16	6.32	mg/kg dry	10	05/07/18	EPA 6020A	
SS20-S-0.5 (A8D0903-33RE1)			Matrix: S	Soil				
Batch: 8050484								
Selenium	ND	0.790	1.58	mg/kg dry	10	05/07/18	EPA 6020A	
DU15-S-0.5(After Processing) (A8D0	903-35)		Matrix: S	Soil				
Batch: 8050598								
Arsenic	9.90	0.575	1.15	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	100	0.575	1.15	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.334	0.115	0.230	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	64.3	0.575	1.15	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	32.5	1.15	2.30	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	12.9	0.115	0.230	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.575	1.15	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.575	1.15	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	88.4	2.30	4.60	mg/kg dry	10	05/12/18	EPA 6020A	
DU15-S-0.5(After Processing) (A8D0	903-35RE1)		Matrix: S	Soil				
Batch: 8050598		·				·	·	
Mercury	ND	1.38	1.38	mg/kg dry	10	05/15/18	EPA 6020A	R-0
DU18-S-0.5(After Processing) (A8D0	903-42)		Matrix: S	Soil				
Batch: 8050598		·			·	·		
Arsenic	8.12	0.530	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	93.1	0.530	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.188	0.106	0.212	mg/kg dry	10	05/12/18	EPA 6020A	J
Chromium	49.7	0.530	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	35.2	1.06	2.12	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	11.3	0.106	0.212	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.530	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.530	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	72,2	2.12	4.24	mg/kg dry	10	05/12/18	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 14 of 80 Page 14 of 58

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

 $\underline{\textbf{Maul Foster \& Alongi, INC-Bellingham}}$

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 6	020 (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU18-S-0.5(After Processing) (A8D090	3-42RE1)		Matrix: S	Soil				
Batch: 8050598								
Mercury	ND	2.73	2.73	mg/kg dry	10	05/15/18	EPA 6020A	R-01
DU02-S-0.5(After Processing) (A8D090	3-49)		Matrix: \$	Soil				
Batch: 8050598								
Arsenic	14.7	0.521	1.04	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	193	0.521	1.04	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.342	0.104	0.208	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	82.7	0.521	1.04	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	204	1.04	2.08	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	89.0	0.104	0.208	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.521	1.04	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.521	1.04	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	221	2.08	4.17	mg/kg dry	10	05/12/18	EPA 6020A	
DU02-S-0.5(After Processing) (A8D090	3-49RE1)		Matrix: S	Soil				_
Batch: 8050598								
Mercury	ND	2.46	2.46	mg/kg dry	10	05/15/18	EPA 6020A	R-01
DU01-S-0.5(After Processing) (A8D090	3-56)		Matrix: S	Soil				_
Batch: 8050598								
Arsenic	8.87	0.523	1.05	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	154	0.523	1.05	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.358	0.105	0.209	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	59.6	0.523	1.05	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	60.5	1.05	2.09	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	48.9	0.105	0.209	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.523	1.05	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.523	1.05	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	121	2.09	4.18	mg/kg dry	10	05/12/18	EPA 6020A	
DU01-S-0.5(After Processing) (A8D090)3-56RE1)		Matrix: S	Soil				
Batch: 8050598	·							
Mercury	ND	1.80	1.80	mg/kg dry	10	05/15/18	EPA 6020A	R-01
DU13-S-0.5(After Processing) (A8D090)3-63)		Matrix: S	Soil				
Batch: 8050598	-							
Arsenic	9.11	0.496	0.992	mg/kg dry	10	05/12/18	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 60	020 (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU13-S-0.5(After Processing) (A	8D0903-63)		Matrix: S	Soil				
Barium	93.7	0.496	0.992	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.249	0.0992	0.198	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	92.4	0.496	0.992	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	40.5	0.992	1.98	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	14.7	0.0992	0.198	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.496	0.992	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.496	0.992	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	82.4	1.98	3.97	mg/kg dry	10	05/12/18	EPA 6020A	
DU13-S-0.5(After Processing) (A	8D0903-63RE1)		Matrix: S	Soil				
Batch: 8050598								
Mercury	ND	1.77	1.77	mg/kg dry	10	05/15/18	EPA 6020A	R-0
DU16-S-0.5(After Processing) (A	8D0903-70)		Matrix: S	Soil				
Batch: 8050598								
Arsenic	8.67	0.572	1.14	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	120	0.572	1.14	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.182	0.114	0.229	mg/kg dry	10	05/12/18	EPA 6020A	J
Chromium	40.8	0.572	1.14	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	26.7	1.14	2.29	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	16.3	0.114	0.229	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	0.585	0.572	1.14	mg/kg dry	10	05/12/18	EPA 6020A	J
Silver	ND	0.572	1.14	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	77.7	2.29	4.57	mg/kg dry	10	05/12/18	EPA 6020A	
DU16-S-0.5(After Processing) (A	8D0903-70RE1)		Matrix: S	Boil				
Batch: 8050598								
Mercury	ND	1.55	1.55	mg/kg dry	10	05/15/18	EPA 6020A	R-0
SS46-S-0.5 (A8D0903-71)			Matrix: S	Soil				
Batch: 8050484								
Arsenic	7.29	0.746	1.49	mg/kg dry	10	05/07/18	EPA 6020A	
Barium	160	0.746	1.49	mg/kg dry	10	05/07/18	EPA 6020A	
Cadmium	ND	0.746	1.49	mg/kg dry	10	05/07/18	EPA 6020A	
Chromium	51.2	0.746	1.49	mg/kg dry	10	05/07/18	EPA 6020A	
Copper	25.3	2.98	5.97	mg/kg dry	10	05/07/18	EPA 6020A	
Lead	20.7	0.149	0.298	mg/kg dry	10	05/07/18	EPA 6020A	
Mercury	ND	0.119	0.239	mg/kg dry	10	05/07/18	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 16 of 80 Page 16 of 58

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)										
	Sample	Detection	Reporting			Date		_			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
SS46-S-0.5 (A8D0903-71)			Matrix: S	Soil							
Selenium	ND	0.746	1.49	mg/kg dry	10	05/07/18	EPA 6020A				
Silver	ND	0.149	0.298	mg/kg dry	10	05/07/18	EPA 6020A				
Zinc	64.4	2.98	5.97	mg/kg dry	10	05/07/18	EPA 6020A				
SS47-S-0.5 (A8D0903-72)		Matrix: Soil									
Batch: 8050484											
Arsenic	15.7	0.866	1.73	mg/kg dry	10	05/07/18	EPA 6020A				
Barium	345	0.866	1.73	mg/kg dry	10	05/07/18	EPA 6020A				
Cadmium	ND	0.866	1.73	mg/kg dry	10	05/07/18	EPA 6020A				
Chromium	25.9	0.866	1.73	mg/kg dry	10	05/07/18	EPA 6020A				
Copper	37.0	3.47	6.93	mg/kg dry	10	05/07/18	EPA 6020A				
Lead	37.4	0.173	0.347	mg/kg dry	10	05/07/18	EPA 6020A				
Mercury	ND	0.139	0.277	mg/kg dry	10	05/07/18	EPA 6020A				
Selenium	ND	0.866	1.73	mg/kg dry	10	05/07/18	EPA 6020A				
Silver	ND	0.173	0.347	mg/kg dry	10	05/07/18	EPA 6020A				
Zinc	157	3.47	6.93	mg/kg dry	10	05/07/18	EPA 6020A				
SS48-S-0.5 (A8D0903-73)			Matrix: S	Soil							
Batch: 8050484											
Arsenic	7.41	0.756	1.51	mg/kg dry	10	05/07/18	EPA 6020A				
Barium	105	0.756	1.51	mg/kg dry	10	05/07/18	EPA 6020A				
Cadmium	ND	0.756	1.51	mg/kg dry	10	05/07/18	EPA 6020A				
Chromium	37.4	0.756	1.51	mg/kg dry	10	05/07/18	EPA 6020A				
Copper	20.2	3.02	6.05	mg/kg dry	10	05/07/18	EPA 6020A				
Lead	13.9	0.151	0.302	mg/kg dry	10	05/07/18	EPA 6020A				
Mercury	0.143	0.121	0.242	mg/kg dry	10	05/07/18	EPA 6020A	J			
Selenium	ND	0.756	1.51	mg/kg dry	10	05/07/18	EPA 6020A				
Silver	0.158	0.151	0.302	mg/kg dry	10	05/07/18	EPA 6020A	J			
Zinc	83.3	3.02	6.05	mg/kg dry	10	05/07/18	EPA 6020A				
SS49-S-0.5 (A8D0903-74)			Matrix: S	Soil							
Batch: 8050484											
Arsenic	13.9	0.917	1.83	mg/kg dry	10	05/07/18	EPA 6020A				
Barium	138	0.917	1.83	mg/kg dry	10	05/07/18	EPA 6020A				
Cadmium	ND	0.917	1.83	mg/kg dry	10	05/07/18	EPA 6020A				
Chromium	73.6	0.917	1.83	mg/kg dry	10	05/07/18	EPA 6020A				
Copper	45.2	3.67	7.34	mg/kg dry	10	05/07/18	EPA 6020A				
Lead	25.4	0.183	0.367	mg/kg dry	10	05/07/18	EPA 6020A				
Mercury	0.183	0.147	0.294	mg/kg dry	10	05/07/18	EPA 6020A	J			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 17 of 80 $_{Page\ 17\ of\ 58}$

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253


ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 60	020 (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
SS49-S-0.5 (A8D0903-74)			Matrix: S	Soil				
Selenium	1.20	0.917	1.83	mg/kg dry	10	05/07/18	EPA 6020A	J
Silver	0.679	0.183	0.367	mg/kg dry	10	05/07/18	EPA 6020A	
Zinc	115	3.67	7.34	mg/kg dry	10	05/07/18	EPA 6020A	
SS50-S-0.5 (A8D0903-75)			Matrix: S	Soil				
Batch: 8050484								
Arsenic	10.8	0.828	1.66	mg/kg dry	10	05/07/18	EPA 6020A	
Barium	141	0.828	1.66	mg/kg dry	10	05/07/18	EPA 6020A	
Cadmium	ND	0.828	1.66	mg/kg dry	10	05/07/18	EPA 6020A	
Chromium	74.7	0.828	1.66	mg/kg dry	10	05/07/18	EPA 6020A	
Copper	40.7	3.31	6.62	mg/kg dry	10	05/07/18	EPA 6020A	
Lead	22.8	0.166	0.331	mg/kg dry	10	05/07/18	EPA 6020A	
Mercury	0.168	0.132	0.265	mg/kg dry	10	05/07/18	EPA 6020A	J
Selenium	0.859	0.828	1.66	mg/kg dry	10	05/07/18	EPA 6020A	J
Silver	0.581	0.166	0.331	mg/kg dry	10	05/07/18	EPA 6020A	
Zinc	121	3.31	6.62	mg/kg dry	10	05/07/18	EPA 6020A	
DU11-S-0.5(After Processing) (A8D	0903-77)		Matrix: S	Soil				
Batch: 8050598								
Arsenic	16.8	0.524	1.05	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	107	0.524	1.05	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.517	0.105	0.210	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	159	0.524	1.05	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	59.5	1.05	2.10	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	25.3	0.105	0.210	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	0.716	0.524	1.05	mg/kg dry	10	05/12/18	EPA 6020A	J
Silver	ND	0.524	1.05	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	111	2.10	4.19	mg/kg dry	10	05/12/18	EPA 6020A	
DU11-S-0.5(After Processing) (A8D	0903-77RE1)		Matrix: S	Soil				
Batch: 8050598								
Mercury	ND	2.10	2.10	mg/kg dry	10	05/15/18	EPA 6020A	R-0
DU08-S-0.5(After Processing) (A8D	00903-84)		Matrix: S	Soil				
Batch: 8050598			<u> </u>	<u> </u>				
Arsenic	11.9	0.564	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	122	0.564	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.382	0.113	0.226	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	72.9	0.564	1.13	mg/kg dry	10	05/12/18	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 6	020 (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU08-S-0.5(After Processing) (A	.8D0903-84)		Matrix: S	Soil				
Copper	42.3	1.13	2.26	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	20.5	0.113	0.226	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.564	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.564	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	100	2.26	4.52	mg/kg dry	10	05/12/18	EPA 6020A	
DU08-S-0.5(After Processing) (A	8D0903-84RE1)		Matrix: S	Soil				_
Batch: 8050598								
Mercury	ND	1.17	1.17	mg/kg dry	10	05/15/18	EPA 6020A	R-01
DU05-S-0.5(After Processing) (A	8D0903-91)		Matrix: S	Soil				
Batch: 8050598								
Arsenic	12.3	0.568	1.14	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	134	0.568	1.14	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.365	0.114	0.227	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	71.2	0.568	1.14	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	52.3	1.14	2.27	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	34.0	0.114	0.227	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.568	1.14	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.568	1.14	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	127	2.27	4.55	mg/kg dry	10	05/12/18	EPA 6020A	
DU05-S-0.5(After Processing) (A	8D0903-91RE1)		Matrix: S	Soil				
Batch: 8050598								
Mercury	ND	1.16	1.16	mg/kg dry	10	05/15/18	EPA 6020A	R-01
DU14-S-0.5(After Processing) (A	.8D0903-98)		Matrix: S	Soil				
Batch: 8050598								
Arsenic	12.3	0.528	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	99.3	0.528	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.579	0.106	0.211	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	117	0.528	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	53.3	1.06	2.11	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	84.1	0.106	0.211	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.528	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.528	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	122	2.11	4.22	mg/kg dry	10	05/12/18	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gesa A Jamenghine

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 6	020 (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU14-S-0.5(After Processing) (A8D09	903-98RE1)		Matrix: S	Soil				
Batch: 8050598								
Mercury	ND	1.91	1.91	mg/kg dry	10	05/15/18	EPA 6020A	R-01
DU10A-S-0.5(After Processing) (A8D0	0903-AF)		Matrix: \$	Soil				
Batch: 8050598								
Arsenic	11.0	0.528	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	147	0.528	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.288	0.106	0.211	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	68.7	0.528	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	45.5	1.06	2.11	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	41.2	0.106	0.211	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	0.622	0.528	1.06	mg/kg dry	10	05/12/18	EPA 6020A	J
Silver	ND	0.528	1.06	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	144	2.11	4.22	mg/kg dry	10	05/12/18	EPA 6020A	
DU10A-S-0.5(After Processing) (A8D)	0903-AFRE1)		Matrix: S	Soil				
Batch: 8050598								
Mercury	ND	0.813	0.813	mg/kg dry	10	05/15/18	EPA 6020A	R-01
DU10C-S-0.5(After Processing) (A8D)	0903-AM)		Matrix: S	Soil				
Batch: 8050598								
Arsenic	10.7	0.543	1.09	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	129	0.543	1.09	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.390	0.109	0.217	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	72.0	0.543	1.09	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	41.5	1.09	2.17	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	14.7	0.109	0.217	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	0.699	0.543	1.09	mg/kg dry	10	05/12/18	EPA 6020A	J
Silver	ND	0.543	1.09	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	105	2.17	4.34	mg/kg dry	10	05/12/18	EPA 6020A	
DU10C-S-0.5(After Processing) (A8D0	0903-AMRE1)		Matrix: S	Soil				
Batch: 8050598								
	ND	0.402	0.402	mg/kg dry	10	05/15/18	EPA 6020A	R-01
Mercury								
DU10B-S-0.5(After Processing) (A8D0	0903-AT)		Matrix: S	Soil				
	0903-AT)		Matrix: S	Soil				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253


ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 6	020 (ICPMS)				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
DU10B-S-0.5(After Processing) ((A8D0903-AT)		Matrix: S	Soil				
Barium	120	0.563	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.185	0.113	0.225	mg/kg dry	10	05/12/18	EPA 6020A	J
Chromium	82.7	0.563	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	38.2	1.13	2.25	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	15.0	0.113	0.225	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	0.575	0.563	1.13	mg/kg dry	10	05/12/18	EPA 6020A	J
Silver	ND	0.563	1.13	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	102	2.25	4.50	mg/kg dry	10	05/12/18	EPA 6020A	
DU10B-S-0.5(After Processing) ((A8D0903-ATRE1)		Matrix: \$	Soil				
Batch: 8050598								
Mercury	ND	0.484	0.484	mg/kg dry	10	05/15/18	EPA 6020A	R-0
DU03-S-0.5(After Processing) (A	.8D0903-BA)		Matrix: S	Soil				
Batch: 8050598								
Arsenic	11.6	0.537	1.07	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	127	0.537	1.07	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.425	0.107	0.215	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	67.7	0.537	1.07	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	48.9	1.07	2.15	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	30.2	0.107	0.215	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.537	1.07	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.537	1.07	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	123	2.15	4.29	mg/kg dry	10	05/12/18	EPA 6020A	
DU03-S-0.5(After Processing) (A	8D0903-BARE1)		Matrix: S	Soil				
Batch: 8050598								
Mercury	ND	1.54	1.54	mg/kg dry	10	05/15/18	EPA 6020A	R-0
DU12-S-0.5(After Processing) (A	.8D0903-BH)		Matrix: \$	Soil				
Batch: 8050598								
Arsenic	9.69	0.501	1.00	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	142	0.501	1.00	mg/kg dry	10	05/12/18	EPA 6020A	
Cadmium	0.227	0.100	0.200	mg/kg dry	10	05/12/18	EPA 6020A	
Chromium	74.6	0.501	1.00	mg/kg dry	10	05/12/18	EPA 6020A	
Copper	50.2	1.00	2.00	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	58.4	0.100	0.200	mg/kg dry	10	05/12/18	EPA 6020A	
Selenium	ND	0.501	1.00	mg/kg dry	10	05/12/18	EPA 6020A	
Silver	ND	0.501	1.00	mg/kg dry	10	05/12/18	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 60)20 (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU12-S-0.5(After Processing)	(A8D0903-BH)		Matrix: S	Soil				
Zinc	125	2.00	4.01	mg/kg dry	10	05/12/18	EPA 6020A	
DU12-S-0.5(After Processing)	(A8D0903-BHRE1)		Matrix: S	Soil				_
Batch: 8050598								
Mercury	ND	1.35	1.35	mg/kg dry	10	05/15/18	EPA 6020A	R-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 22 of 80 Page 22 of 58

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Anglyta	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
Analyte	Acsuit	Pilliff			Dilution			ivotes
GP53-S-0.5 (A8D0903-01)	02.0	1.00	Matrix: \$			Batch: 8050		
% Solids	92.9	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
GP53-S-1.0 (A8D0903-02)			Matrix: \$			Batch: 8050		
% Solids	88.8	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
GP53-S-2.0 (A8D0903-03)			Matrix: \$	Soil		Batch: 8050)381	
% Solids	71.1	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
GP54-S-0.5 (A8D0903-04)			Matrix: \$	Soil		Batch: 8050	1381	
% Solids	86.4	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
GP54-S-5.5 (A8D0903-05)			Matrix: \$	Soil		Batch: 8050)381	
% Solids	75.4	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
DU06-S-0.5(After Processing) (A8D0903-0	7)		Matrix: \$	Soil		Batch: 8050	1631	
% Solids	96.8	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU04-S-0.5(After Processing) (A8D0903-1	4)		Matrix: \$	Soil		Batch: 8050)631	
% Solids	96.4	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU07-S-0.5(After Processing) (A8D0903-2	1)		Matrix: \$	Soil		Batch: 8050)631	
% Solids	97.5	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU17-S-0.5(After Processing) (A8D0903-2	8)		Matrix: \$	Soil		Batch: 8050	1631	
% Solids	95.3	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
SS16-S-0.5 (A8D0903-29)			Matrix: \$	Soil		Batch: 8050)381	
% Solids	53.2	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
SS17-S-0.5 (A8D0903-30)			Matrix: \$	Soil		Batch: 8050	1381	
% Solids	58.2	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
SS18-S-0.5 (A8D0903-31)			Matrix: \$	Soil		Batch: 8050)381	
% Solids	56.9	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
SS19-S-0.5 (A8D0903-32)			Matrix: \$	Soil		Batch: 8050	1381	
% Solids	44.6	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

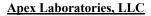
Gwa A Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253


ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	/eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
SS20-S-0.5 (A8D0903-33)			Matrix:	Soil		Batch: 8050)381	
% Solids	64.5	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
DU15-S-0.5(After Processing) (A8D0903-35))		Matrix:	Soil		Batch: 8050)631	
% Solids	96.3	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU18-S-0.5(After Processing) (A8D0903-42))		Matrix:	Soil		Batch: 8050	0631	
% Solids	97.9	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU02-S-0.5(After Processing) (A8D0903-49))		Matrix:	Soil		Batch: 8050	0631	
% Solids	98.3	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU01-S-0.5(After Processing) (A8D0903-56))		Matrix:	Soil	<u> </u>	Batch: 8050	0631	
% Solids	97.6	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU13-S-0.5(After Processing) (A8D0903-63))		Matrix:	Soil		Batch: 8050	0631	
% Solids	97.7	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU16-S-0.5(After Processing) (A8D0903-70))		Matrix:	Soil		Batch: 8050	0631	
% Solids	95.3	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
SS46-S-0.5 (A8D0903-71)			Matrix:	Soil		Batch: 8050	381	
% Solids	67.7	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
SS47-S-0.5 (A8D0903-72)			Matrix:	Soil		Batch: 8050	381	
% Solids	59.4	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
SS48-S-0.5 (A8D0903-73)			Matrix:	Soil		Batch: 8050)381	
% Solids	65.0	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
SS49-S-0.5 (A8D0903-74)			Matrix:	Soil		Batch: 8050)381	
% Solids	55.8	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
SS50-S-0.5 (A8D0903-75)			Matrix:	Soil		Batch: 8050)381	
% Solids	60.7	1.00	1.00	% by Weight	1	05/03/18	EPA 8000C	
DU11-S-0.5(After Processing) (A8D0903-77))		Matrix:	Soil		Batch: 8050	0631	
% Solids	98.3	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Maul Foster & Alongi, INC-Bellingham</u> 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry V	Veight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU08-S-0.5(After Processing) (A8D0903-	84)		Matrix:	Soil		Batch: 8050	0631	
% Solids	96.5	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU05-S-0.5(After Processing) (A8D0903-	91)		Matrix:	Soil		Batch: 8050	0631	
% Solids	97.1	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU14-S-0.5(After Processing) (A8D0903-	98)		Matrix:	Soil		Batch: 8050	0631	
% Solids	98.4	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU10A-S-0.5(After Processing) (A8D0903	B-AF)		Matrix:	Soil		Batch: 8050	0631	
% Solids	95.3	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU10C-S-0.5(After Processing) (A8D0903	B-AM)		Matrix:	Soil		Batch: 8050	0631	
% Solids	95.7	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU10B-S-0.5(After Processing) (A8D0903	B-AT)		Matrix:	Soil		Batch: 8050	0631	
% Solids	96.1	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU03-S-0.5(After Processing) (A8D0903-	BA)		Matrix:	Soil		Batch: 8050	0631	
% Solids	97.2	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	
DU12-S-0.5(After Processing) (A8D0903-l	BH)		Matrix:	Soil		Batch: 8050	0631	
% Solids	96.8	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 25 of 80 Page 25 of 58

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

QUALITY CONTROL (QC) SAMPLE RESULTS


		D	iesel and/o	or Oil Hyd	rocarbor	ns by NW	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050452 - EPA 3546 (F	uels)						Soil	<u> </u>				
Blank (8050452-BLK1)			Prepared	d: 05/03/18 1	3:33 Ana	lyzed: 05/03	3/18 21:55					
NWTPH-Dx												
Diesel	ND	8.33	25.0	mg/kg w	et 1							
Oil	ND	16.7	50.0	mg/kg w	et 1							
Mineral Oil	ND	16.7	33.3	mg/kg w	et 1							
Surr: o-Terphenyl (Surr)		Reco	overy: 98 %	Limits: 50	-150 %	Dil	lution: 1x					
LCS (8050452-BS1)			Prepared	d: 05/03/18 1	3:33 Ana	lyzed: 05/03	3/18 22:15					
NWTPH-Dx												
Diesel	107	10.0	25.0	mg/kg w	et 1	125		85	76-115%			
Surr: o-Terphenyl (Surr)		Reco	overy: 95 %	Limits: 50	-150 %	Dil	lution: 1x					
Duplicate (8050452-DUP2)			Prepared	d: 05/03/18 1	3:33 Ana	lyzed: 05/04	1/18 07:31					
QC Source Sample: Non-SDG (A	A8E0104-03)											
Diesel	ND	13.2	26.4	mg/kg dı	y 1		ND				30%	
Oil	ND	26.4	52.9	mg/kg dı	y 1		ND				30%	
Mineral Oil	ND	26.4	52.9	mg/kg dı	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 86 %	Limits: 50		Dil	lution: 1x					
Duplicate (8050452-DUP3)			Prepared	d: 05/03/18 I	13:33 Ana	lyzed: 05/04	1/18 11:21					
OC Source Sample: Non-SDG (A	A8D0863-01R	E1)										
Diesel	3260	122	243	mg/kg dı	y 10		3710			13	30%	
Oil	ND	243	487	mg/kg dı	y 10		ND				30%	
Mineral Oil	ND	243	487	mg/kg dı	y 10		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 88 %	Limits: 50	-150 %	Dil	ution: 10x					S

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 26 of 80 Page 26 of 58

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

Project: <u>062</u>

0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225 Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253


QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	/drocarbo	ns (PAH	s) by EPA	8270D S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050382 - EPA 3546							Soil					
Blank (8050382-BLK2)			Prepared	1: 05/02/18 0	9:21 Anal	lyzed: 05/03	/18 13:07					
EPA 8270D (SIM)												
Acenaphthene	ND	4.55	9.09	ug/kg we	t 1							
Acenaphthylene	ND	4.55	9.09	ug/kg we	t 1							
Anthracene	ND	4.55	9.09	ug/kg we	t 1							
Benz(a)anthracene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(a)pyrene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(b)fluoranthene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(k)fluoranthene	ND	4.55	9.09	ug/kg we	t 1							
Benzo(g,h,i)perylene	ND	4.55	9.09	ug/kg we	t 1							
Chrysene	ND	4.55	9.09	ug/kg we	t 1							
Dibenz(a,h)anthracene	ND	4.55	9.09	ug/kg we	t 1							
Dibenzofuran	ND	4.55	9.09	ug/kg we	t 1							
Fluoranthene	ND	4.55	9.09	ug/kg we	t 1							
Fluorene	ND	4.55	9.09	ug/kg we	t 1							
Indeno(1,2,3-cd)pyrene	ND	4.55	9.09	ug/kg we	t 1							
1-Methylnaphthalene	ND	4.55	9.09	ug/kg we	t 1							
2-Methylnaphthalene	ND	4.55	9.09	ug/kg we	t 1							
Naphthalene	ND	4.55	9.09	ug/kg we	t 1							
Phenanthrene	ND	4.55	9.09	ug/kg we	t 1							
Pyrene	ND	4.55	9.09	ug/kg we	t 1							
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 93 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			95 %		127 %		"					
LCS (8050382-BS2)			Prepared	l: 05/02/18 0	9:21 Anal	lyzed: 05/03	/18 13:33					
EPA 8270D (SIM)												
Acenaphthene	699	5.00	10.0	ug/kg we	t 1	800		87	40-122%			
Acenaphthylene	712	5.00	10.0	ug/kg we	t 1	800		89	32-132%			
Anthracene	666	5.00	10.0	ug/kg we	t 1	800		83	47-123%			
Benz(a)anthracene	685	5.00	10.0	ug/kg we	t 1	800		86	49-126%			
Benzo(a)pyrene	688	5.00	10.0	ug/kg we	t 1	800		86	45-129%			
Benzo(b)fluoranthene	658	5.00	10.0	ug/kg we	t 1	800		82	45-132%			
Benzo(k)fluoranthene	644	5.00	10.0	ug/kg we	t 1	800		81	47-132%			
Benzo(g,h,i)perylene	651	5.00	10.0	ug/kg we	t 1	800		81	43-134%			
Chrysene	710	5.00	10.0	ug/kg we	t 1	800		89	50-124%			
Dibenz(a,h)anthracene	674	5.00	10.0	ug/kg we		800		84	45-134%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Asa & Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: 0624.04.10Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8D0903 - 05 25 18 1253


QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050382 - EPA 3546							Soil					
LCS (8050382-BS2)			Prepared	1: 05/02/18 09	9:21 Ana	lyzed: 05/03/	/18 13:33					
Dibenzofuran	683	5.00	10.0	ug/kg wet	t 1	800		85	44-120%			
Fluoranthene	674	5.00	10.0	ug/kg wet	1	800		84	50-127%			
Fluorene	674	5.00	10.0	ug/kg wet	1	800		84	43-125%			
Indeno(1,2,3-cd)pyrene	644	5.00	10.0	ug/kg wet	1	800		80	45-133%			
1-Methylnaphthalene	672	5.00	10.0	ug/kg wet	1	800		84	40-120%			
2-Methylnaphthalene	683	5.00	10.0	ug/kg wet	1	800		85	38-122%			
Naphthalene	685	5.00	10.0	ug/kg wet	1	800		86	35-123%			
Phenanthrene	684	5.00	10.0	ug/kg wet	1	800		85	50-121%			
Pyrene	671	5.00	10.0	ug/kg wet	1	800		84	47-127%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 92 %	Limits: 44-	120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			91 %	54-	127 %		"					
Duplicate (8050382-DUP1)			Prepared	1: 05/02/18 09	9:21 Ana	lyzed: 05/02	/18 15:43					
QC Source Sample: Non-SDG (A	8D0902-01)											
Acenaphthene	ND	228	228	ug/kg dry	20		ND				30%	
Acenaphthylene	ND	114	228	ug/kg dry	20		ND				30%	
Anthracene	ND	365	365	ug/kg dry	20		ND				30%	R-02
Benz(a)anthracene	ND	342	342	ug/kg dry	20		355			***	30%	R-02
Benzo(a)pyrene	ND	114	228	ug/kg dry	20		ND				30%	
Benzo(b)fluoranthene	ND	114	228	ug/kg dry			ND				30%	
Benzo(k)fluoranthene	ND	114	228	ug/kg dry	20		ND				30%	
Benzo(g,h,i)perylene	ND	114	228	ug/kg dry			ND				30%	
Chrysene	ND	388	388	ug/kg dry			388			***	30%	R-02
Dibenz(a,h)anthracene	ND	114	228	ug/kg dry			ND				30%	
Dibenzofuran	ND	251	251	ug/kg dry			255			***	30%	R-02
Fluoranthene	231	114	228	ug/kg dry			239			3	30%	
Fluorene	ND	228	228	ug/kg dry			ND				30%	
Indeno(1,2,3-cd)pyrene	ND	114	228	ug/kg dry			ND				30%	
1-Methylnaphthalene	ND	456	456	ug/kg dry			ND				30%	R-02
2-Methylnaphthalene	ND	228	228	ug/kg dry			ND				30%	
Naphthalene	ND	342	342	ug/kg dry			ND				30%	R-02
Phenanthrene	425	114	228	ug/kg dry			431			1	30%	
Pyrene	2150	114	228	ug/kg dry			2260			5	30%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awas Smenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	ydrocarbo	ns (PAH	s) by EPA	8270D S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050382 - EPA 3546							Soil					
Duplicate (8050382-DUP1)			Prepare	d: 05/02/18 0	9:21 Ana	lyzed: 05/02	/18 15:43					
OC Source Sample: Non-SDG (As	8D0902-01)	Reco	overy: 97 %	Limits: 54-	127 %	Dilı	ution: 20x					
Matrix Spike (8050382-MS1)			Prepare	d: 05/02/18 0	9:21 Ana	lyzed: 05/02	/18 16:09					
QC Source Sample: Non-SDG (A	8E0039-04)											
EPA 8270D (SIM)												
Acenaphthene	785	6.25	12.5	ug/kg dry	1	1000	ND	78	40-122%			
Acenaphthylene	804	6.25	12.5	ug/kg dry	1	1000	ND	80	32-132%			
Anthracene	734	6.25	12.5	ug/kg dry	1	1000	ND	73	47-123%			
Benz(a)anthracene	745	6.25	12.5	ug/kg dry	1	1000	ND	74	49-126%			
Benzo(a)pyrene	751	6.25	12.5	ug/kg dry	1	1000	ND	75	45-129%			
Benzo(b)fluoranthene	731	6.25	12.5	ug/kg dry	1	1000	ND	73	45-132%			
Benzo(k)fluoranthene	718	6.25	12.5	ug/kg dry	1	1000	ND	72	47-132%			
Benzo(g,h,i)perylene	701	6.25	12.5	ug/kg dry	1	1000	ND	70	43-134%			
Chrysene	773	6.25	12.5	ug/kg dry	1	1000	ND	77	50-124%			
Dibenz(a,h)anthracene	726	6.25	12.5	ug/kg dry	1	1000	ND	73	45-134%			
Dibenzofuran	767	6.25	12.5	ug/kg dry	1	1000	ND	77	44-120%			
Fluoranthene	756	6.25	12.5	ug/kg dry	1	1000	ND	76	50-127%			
Fluorene	776	6.25	12.5	ug/kg dry		1000	ND		43-125%			
Indeno(1,2,3-cd)pyrene	688	6.25	12.5	ug/kg dry	1	1000	ND	69	45-133%			
1-Methylnaphthalene	751	6.25	12.5	ug/kg dry	1	1000	ND	75	40-120%			
2-Methylnaphthalene	764	6.25	12.5	ug/kg dry	1	1000	ND	76	38-122%			
Naphthalene	756	6.25	12.5	ug/kg dry		1000	ND	76	35-123%			
Phenanthrene	744	6.25	12.5	ug/kg dry	1	1000	ND	74	50-121%			
Pyrene	745	6.25	12.5	ug/kg dry	1	1000	ND	74	47-127%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 76 %	Limits: 44-	120 %	Dilı	ution: 1x				·	
p-Terphenyl-d14 (Surr)			78 %	54-	127 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total I	Metals by	EPA 602	0 (ICPMS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 8050484 - EPA 3051A							Soil					
Blank (8050484-BLK1)			Prepared	: 05/04/18 1	2:54 Ana	lyzed: 05/07	/18 20:43					
EPA 6020A												
Arsenic	ND	0.481	0.962	mg/kg we	t 10							
Barium	ND	0.481	0.962	mg/kg we	t 10							
Cadmium	ND	0.481	0.962	mg/kg we	t 10							
Chromium	ND	0.481	0.962	mg/kg we	t 10							
Copper	ND	1.92	3.85	mg/kg we	et 10							
Lead	ND	0.0962	0.192	mg/kg we	et 10							
Mercury	ND	0.0769	0.154	mg/kg we	et 10							
Selenium	ND	0.481	0.962	mg/kg we	et 10							
Silver	ND	0.0962	0.192	mg/kg we	et 10							
Zinc	ND	1.92	3.85	mg/kg we	t 10							
LCS (8050484-BS1)			Prepared	: 05/04/18 1	2:54 Ana	lyzed: 05/07	//18 20:46					
EPA 6020A			-			<u>, </u>						
Arsenic	52.4	0.500	1.00	mg/kg we	t 10	50.0		105	80-120%			
Barium	53.0	0.500	1.00	mg/kg we	t 10	50.0		106	80-120%			
Cadmium	50.1	0.500	1.00	mg/kg we	et 10	50.0		100	80-120%			
Chromium	50.0	0.500	1.00	mg/kg we	t 10	50.0		100	80-120%			
Copper	51.3	2.00	4.00	mg/kg we	et 10	50.0		103	80-120%			
Lead	51.1	0.100	0.200	mg/kg we		50.0		102	80-120%			
Mercury	0.949	0.0800	0.160	mg/kg we		1.00		95	80-120%			
Selenium	25.2	0.500	1.00	mg/kg we		25.0		101	80-120%			
Silver	25.8	0.100	0.200	mg/kg we		25.0		103	80-120%			
Zinc	50.8	2.00	4.00	mg/kg we		50.0		102	80-120%			
Matrix Spike (8050484-MS1)			Prepared	: 05/04/18 1	2:54 Ana	lyzed: 05/07	7/18 21:37					
QC Source Sample: Non-SDG (A8	BE0023-04)											
EPA 6020A												
Arsenic	69.1	0.577	1.15	mg/kg dr	y 10	57.7	3.82	113	75-125%			
Barium	149	0.577	1.15	mg/kg dr	y 10	57.7	89.3	103	75-125%			
Cadmium	65.9	0.577	1.15	mg/kg dr	y 10	57.7	ND	114	75-125%			
Chromium	72.3	0.577	1.15	mg/kg dr	y 10	57.7	12.5	104	75-125%			
Copper	94.8	2.31	4.62	mg/kg dr	y 10	57.7	27.8	116	75-125%			
Lead	119	0.115	0.231	mg/kg dr		57.7	50.2	119	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goast Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total I	Metals by I	EPA 602	0 (ICPMS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050484 - EPA 3051A							Soil					
Matrix Spike (8050484-MS1)			Prepared	: 05/04/18 12	:54 Ana	lyzed: 05/07/	/18 21:37					
OC Source Sample: Non-SDG (AS	8E0023-04)											
Mercury	3.41	0.0924	0.185	mg/kg dry	10	1.15	2.40	87	75-125%			
Selenium	30.8	0.577	1.15	mg/kg dry	10	28.9	ND	107	75-125%			
Silver	32.6	0.115	0.231	mg/kg dry	10	28.9	ND	113	75-125%			
Zinc	161	2.31	4.62	mg/kg dry	10	57.7	100	105	75-125%			
Matrix Spike (8050484-MS2)			Prepared	: 05/04/18 12	:54 Ana	lyzed: 05/07/	/18 22:04					
QC Source Sample: Non-SDG (A8	8E0121-02)											
EPA 6020A												
Arsenic	68.1	0.607	1.21	mg/kg dry	10	60.7	8.24	99	75-125%			
Barium	204	0.607	1.21	mg/kg dry	10	60.7	154	82	75-125%			
Cadmium	60.7	0.607	1.21	mg/kg dry	10	60.7	ND	100	75-125%			
Chromium	70.2	0.607	1.21	mg/kg dry	10	60.7	19.6	83	75-125%			
Copper	82.4	2.43	4.86	mg/kg dry	10	60.7	21.7	100	75-125%			
Lead	69.3	0.121	0.243	mg/kg dry	10	60.7	11.1	96	75-125%			
Mercury	1.26	0.0971	0.194	mg/kg dry	10	1.21	ND	104	75-125%			Q-41
Selenium	30.0	0.607	1.21	mg/kg dry	10	30.3	ND	99	75-125%			
Silver	31.0	0.121	0.243	mg/kg dry	10	30.3	ND	102	75-125%			
Zinc	127	2.43	4.86	mg/kg dry	10	60.7	75.7	84	75-125%			
Matrix Spike Dup (8050484-MS	D1)		Prepared	: 05/04/18 12	:54 Ana	lyzed: 05/07/	/18 21:40					
QC Source Sample: Non-SDG (AS	8E0023-04)											
Arsenic	63.9	0.541	1.08	mg/kg dry	10	54.1	3.82	111	75-125%	2	40%	
Barium	158	0.541	1.08	mg/kg dry	10	54.1	89.3	127	75-125%	21	40%	Q-04
Cadmium	61.0	0.541	1.08	mg/kg dry	10	54.1	ND	113	75-125%	1	40%	
Chromium	68.2	0.541	1.08	mg/kg dry	10	54.1	12.5	103	75-125%	0.4	40%	
Copper	87.2	2.16	4.32	mg/kg dry		54.1	27.8	110	75-125%	6	40%	
Lead	109	0.108	0.216	mg/kg dry		54.1	50.2	109	75-125%	9	40%	
Mercury	3.43	0.0865	0.173	mg/kg dry		1.08	2.40	95	75-125%	8	40%	
Selenium	28.4	0.541	1.08	mg/kg dry		27.0	ND	105	75-125%	2	40%	
Silver	30.3	0.108	0.216	mg/kg dry	10	27.0	ND	112	75-125%	0.7	40%	
Zinc	160	2.16	4.32	mg/kg dry		54.1	100	111	75-125%	5	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 31 of 80 Page 31 of 58

Awa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project:

1329 North State Street, Suie 301Project Number: 0624.04.10Bellingham, WA 98225Project Manager: Heather Good

Report ID:

A8D0903 - 05 25 18 1253

QUALITY CONTROL (QC) SAMPLE RESULTS

0624.04.10-03--Northern State Hospital

			Total N	Metals by	EPA 602	0 (ICPMS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050598 - EPA 3051A							Soil					
Blank (8050598-BLK1)			Prepared	: 05/09/18 1	1:58 Ana	lyzed: 05/12	/18 02:26					
EPA 6020A												
Arsenic	ND	0.481	0.962	mg/kg we	t 10							
Barium	ND	0.481	0.962	mg/kg we	et 10							
Cadmium	ND	0.0962	0.192	mg/kg we	et 10							
Chromium	ND	0.481	0.962	mg/kg we	t 10							
Copper	ND	0.962	1.92	mg/kg we	et 10							
Lead	ND	0.0962	0.192	mg/kg we	et 10							
Mercury	ND	0.0385	0.0769	mg/kg we	et 10							
Selenium	ND	0.481	0.962	mg/kg we	et 10							
Silver	ND	0.481	0.962	mg/kg we	t 10							
Zinc	ND	1.92	3.85	mg/kg we	et 10							
LCS (8050598-BS1)			Prepared	: 05/09/18 1	1:58 Ana	lyzed: 05/12	/18 02:35					
EPA 6020A			1			<u>, </u>						
Arsenic	49.6	0.500	1.00	mg/kg we	et 10	50.0		99	80-120%			
Barium	53.5	0.500	1.00	mg/kg we	et 10	50.0		107	80-120%			
Cadmium	49.4	0.100	0.200	mg/kg we	t 10	50.0		99	80-120%			
Chromium	52.9	0.500	1.00	mg/kg we		50.0		106	80-120%			
Copper	53.6	1.00	2.00	mg/kg we		50.0		107	80-120%			
Lead	48.9	0.100	0.200	mg/kg we		50.0			80-120%			
Mercury	1.02	0.0400	0.0800	mg/kg we		1.00			80-120%			
Selenium	23.6	0.500	1.00	mg/kg we		25.0			80-120%			
Silver	24.8	0.500	1.00	mg/kg we		25.0			80-120%			
Zinc	49.1	2.00	4.00	mg/kg we		50.0			80-120%			
Duplicate (8050598-DUP1)			Prepared	: 05/09/18 1	1:58 Ana	yzed: 05/12	/18 02:44					
QC Source Sample: DU06-S-0.5(After Process	ing) (A8D0903	-07)									
EPA 6020A												
Arsenic	9.51	0.565	1.13	mg/kg dr	y 10		10.2			7	40%	
Barium	122	0.565	1.13	mg/kg dr	y 10		122			0.6	40%	
Cadmium	0.511	0.113	0.226	mg/kg dr	y 10		0.246			70	40%	Q-05
Chromium	67.8	0.565	1.13	mg/kg dr	y 10		64.3			5	40%	
Copper	41.6	1.13	2.26	mg/kg dr	y 10		45.6			9	40%	
Lead	27.2	0.113	0.226	mg/kg dr	v 10		27.8			2	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253


QUALITY CONTROL (QC) SAMPLE RESULTS

			Total I	Metals by	EPA 602	0 (ICPMS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050598 - EPA 3051A							Soil					
Duplicate (8050598-DUP1)			Prepared	: 05/09/18 1	1:58 Ana	lyzed: 05/12	/18 02:44					
OC Source Sample: DU06-S-0.5(A	After Process	ing) (A8D0903	<u>3-07)</u>									
Mercury	ND	0.712	0.712	mg/kg dr	y 10		ND				40%	R-01
Selenium	ND	0.565	1.13	mg/kg dr	y 10		ND				40%	
Silver	ND	0.565	1.13	mg/kg dr	y 10		ND				40%	
Zinc	110	2.26	4.52	mg/kg dr	y 10		113			2	40%	
Ouplicate (8050598-DUP2)			Prepared	: 05/09/18 1	1:58 Anal	lyzed: 05/12	/18 02:49					
QC Source Sample: DU06-S-0.5(A	After Process	ing) (A8D0903	<u>3-07)</u>					<u> </u>				<u> </u>
CPA 6020A												
Arsenic	9.89	0.530	1.06	mg/kg dr	y 10		10.2			3	40%	
Barium	118	0.530	1.06	mg/kg dr	y 10		122			4	40%	
Cadmium	0.276	0.106	0.212	mg/kg dr	y 10		0.246			12	40%	
Chromium	63.9	0.530	1.06	mg/kg dr	y 10		64.3			0.7	40%	
Copper	42.5	1.06	2.12	mg/kg dr	y 10		45.6			7	40%	
Lead	27.9	0.106	0.212	mg/kg dr	y 10		27.8			0.5	40%	
Mercury	0.594	0.594	0.594	mg/kg dr	y 10		ND				40%	R-01
Selenium	0.570	0.530	1.06	mg/kg dr	y 10		ND				40%	Q-05, .
Silver	ND	0.530	1.06	mg/kg dr	y 10		ND				40%	
Zinc	107	2.12	4.24	mg/kg dr	y 10		113			6	40%	
Matrix Spike (8050598-MS1)			Prepared	: 05/09/18 1	1:58 Anal	lyzed: 05/12	/18 03:03					
QC Source Sample: DU06-S-0.5(A	After Process	ing) (A8D0903	<u>3-07)</u>									
CPA 6020A												
Arsenic	59.6	0.536	1.07	mg/kg dr	y 10	53.6	10.2	92	75-125%			
Barium	167	0.536	1.07	mg/kg dr		53.6	122	83	75-125%			
Cadmium	50.3	0.107	0.214	mg/kg dr	y 10	53.6	0.246	93	75-125%			
Chromium	106	0.536	1.07	mg/kg dr	y 10	53.6	64.3	78	75-125%			
Copper	92.8	1.07	2.14	mg/kg dr	y 10	53.6	45.6	88	75-125%			
Lead	74.5	0.107	0.214	mg/kg dr		53.6	27.8	87	75-125%			
Selenium	24.8	0.536	1.07	mg/kg dr	y 10	26.8	ND	93	75-125%			
Silver	24.3	0.536	1.07	mg/kg dr		26.8	ND	91	75-125%			
Zinc	156	2.14	4.29	mg/kg dr	y 10	53.6	113	80	75-125%			
Matrix Spike (8050598-MS2)			D '	05/00/10 1	1.50 4	1 1 05/32	/10.04.42					
			гтерагеа	. 03/09/18 1	1.Jo Ana	lyzed: 05/12	/10 04:42					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jose & Jomenichini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total I	Metals by	EPA 602	0 (ICPMS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050598 - EPA 3051A							Soil					
Matrix Spike (8050598-MS2)			Prepared	: 05/09/18 1	1:58 Ana	lyzed: 05/12	/18 04:42					
OC Source Sample: DU12-S-0.5(A	After Process	ing) (A8D0903	3-BH <u>)</u>									
EPA 6020A												
Arsenic	57.4	0.499	0.999	mg/kg dr	y 10	50.0	9.69	96	75-125%			
Barium	194	0.499	0.999	mg/kg dr	y 10	50.0	142	105	75-125%			
Cadmium	47.8	0.0999	0.200	mg/kg dr	y 10	50.0	0.227	95	75-125%			
Chromium	120	0.499	0.999	mg/kg dr	y 10	50.0	74.6	90	75-125%			
Copper	102	0.999	2.00	mg/kg dr	y 10	50.0	50.2	103	75-125%			
Lead	102	0.0999	0.200	mg/kg dr	y 10	50.0	58.4	87	75-125%			
Selenium	23.6	0.499	0.999	mg/kg dr	y 10	24.9	ND	95	75-125%			
Silver	24.3	0.499	0.999	mg/kg dr	y 10	24.9	ND	98	75-125%			
Zinc	173	2.00	3.99	mg/kg dr	y 10	50.0	125	97	75-125%			
Matrix Spike (8050598-MS3)			Prepared	: 05/09/18 1	1:58 Ana	lyzed: 05/15	/18 19:24					
QC Source Sample: DU06-S-0.5(A	After Process	ing) (A8D0903	<u>3-07)</u>									
EPA 6020A												
Mercury	2.15	0.600	0.600	mg/kg dr	y 10	1.07	ND	201	75-125%			AMEND, Q-02 Q-16, R-01
Matrix Spike (8050598-MS4)			Prepared	: 05/09/18 1	1:58 Ana	lyzed: 05/15	/18 21:12					
QC Source Sample: DU12-S-0.5(A	After Process	ing) (A8D0903	B-BHRE1)									
EPA 6020A												
Mercury	2.25	1.40	1.40	mg/kg dr	y 10	0.999	ND	226	75-125%			AMEND, Q-02 Q-16, R-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Jose & Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050381 - Total Solids	(Dry Weigh	ıt)					Soil					
Duplicate (8050381-DUP1)			Prepared	1: 05/02/18	09:19 Ana	lyzed: 05/03/	18 07:10					
OC Source Sample: GP53-S-0.5 EPA 8000C	(A8D0903-01)										
% Solids	92.7	1.00	1.00	% by Wei	ght 1		92.9			0.2	10%	
Duplicate (8050381-DUP2)			Prepared	1: 05/02/18	09:19 Ana	llyzed: 05/03	18 07:10					
QC Source Sample: SS46-S-0.5 (EPA 8000C	(A8D0903-71)											
% Solids	69.4	1.00	1.00	% by Wei	ght 1		67.7			3	10%	
Duplicate (8050381-DUP3)			Prepared	1: 05/02/18	09:19 Ana	llyzed: 05/03	18 07:10					
QC Source Sample: Non-SDG (A	8E0010-01)											
% Solids	57.8	1.00	1.00	% by Wei	ght 1		60.3			4	10%	
Duplicate (8050381-DUP4)			Prepared	1: 05/02/18	09:19 Ana	lyzed: 05/03	18 07:10					
QC Source Sample: Non-SDG (A	8E0039-04)											
% Solids	77.2	1.00	1.00	% by Wei	ght 1		77.5			0.4	10%	
Duplicate (8050381-DUP5)			Prepared	1: 05/02/18	18:57 Ana	lyzed: 05/03	18 07:10					
QC Source Sample: Non-SDG (A	8E0082-01)											
% Solids	75.5	1.00	1.00	% by Wei	ght 1		74.6			1	10%	
Duplicate (8050381-DUP6)			Prepared	1: 05/02/18	18:57 Ana	llyzed: 05/03	18 07:10					
OC Source Sample: Non-SDG (A	8E0087-02)											
% Solids	82.9	1.00	1.00	% by Wei	ght 1		83.3			0.5	10%	
Duplicate (8050381-DUP7)			Prepared	1: 05/02/18	19:36 Ana	alyzed: 05/03	18 07:10					
QC Source Sample: Non-SDG (A	8E0093-05)											
% Solids	73.8	1.00	1.00	% by Wei	ght 1		73.8			0.09	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Zomenighini

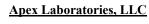
12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253


QUALITY CONTROL (QC) SAMPLE RESULTS

			Percent Dry Wei	ght						
Analyte Result	Detection Limit	Reporting Limit	Units Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050631 - Total Solids (Dry Weig	ht)				Soil					
Duplicate (8050631-DUP1)		Prepared	l: 05/10/18 09:02 Ana	lyzed: 05/11/	/18 08:45					
OC Source Sample: Non-SDG (A8D0867-17) % Solids 90.4	1.00	1.00	% by Weight 1		89.5			0.9	10%	
Duplicate (8050631-DUP2)		Prepared	l: 05/10/18 09:02 Ana	yzed: 05/11/	/18 08:45					
OC Source Sample: Non-SDG (A8E0265-11) % Solids 70.6	1.00	1.00	% by Weight 1		70.5			0.2	10%	
Duplicate (8050631-DUP3)		Prepared	l: 05/10/18 09:02 Ana	yzed: 05/11/	/18 08:45					
OC Source Sample: Non-SDG (A8E0304-03) % Solids 86.3	1.00	1.00	% by Weight 1		83.4			3	10%	
Duplicate (8050631-DUP4)		Prepared	l: 05/10/18 12:26 Ana	lyzed: 05/11/	/18 08:45					
OC Source Sample: Non-SDG (A8E0130-20) % Solids 96.6	1.00	1.00	% by Weight 1		96.8			0.2	10%	
Duplicate (8050631-DUP5)		Prepared	l: 05/10/18 12:26 Ana	lyzed: 05/11/	/18 08:45					
OC Source Sample: DU06-S-0.5(After Proces	sing) (A8D0903	<u>3-07)</u>								
% Solids 96.7	1.00	1.00	% by Weight 1		96.8			0.1	10%	
Duplicate (8050631-DUP6)		Prepared	l: 05/10/18 19:56 Ana	lyzed: 05/11/	/18 08:45					
QC Source Sample: Non-SDG (A8E0342-01)										
% Solids 78.8	1.00	1.00	% by Weight 1		78.8			0.004	10%	
Duplicate (8050631-DUP7)		Prepared	l: 05/10/18 19:56 Ana	yzed: 05/11/	/18 08:45					
OC Source Sample: Non-SDG (A8E0346-01)										
% Solids 75.5	1.00	1.00	% by Weight 1		75.7			0.3	10%	
Duplicate (8050631-DUP8)		Prepared	l: 05/10/18 19:56 Ana	lyzed: 05/11/	/18 08:45					
QC Source Sample: Non-SDG (A8E0354-01)										
% Solids 76.0	1.00	1.00	% by Weight 1		76.7			1	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight

RPD % REC Detection Reporting Spike Source Analyte Result Limit Units Dilution Amount Result % REC Limits RPD Limit Notes Limit

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Ava & Jomenyhini

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Lisa Domenighini, Client Services Manager

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Maul Foster & Alongi, INC-Bellingham</u> 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>
Project Number: <u>0624.04.10</u>

Project Manager: Heather Good

Report ID: A8D0903 - 05 25 18 1253

SAMPLE PREPARATION INFORMATION

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx						
Prep: EPA 3546 (F	uels)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050452							
A8D0903-01	Soil	NWTPH-Dx	04/24/18 09:20	05/03/18 13:33	10.99g/5mL	10g/5mL	0.91
A8D0903-02	Soil	NWTPH-Dx	04/24/18 09:25	05/03/18 13:33	10.95g/5mL	10g/5mL	0.91
A8D0903-03	Soil	NWTPH-Dx	04/24/18 09:30	05/03/18 13:33	10.32g/5mL	10g/5mL	0.97
A8D0903-04	Soil	NWTPH-Dx	04/24/18 09:40	05/03/18 13:33	10.34g/5mL	10g/5mL	0.97
A8D0903-05	Soil	NWTPH-Dx	04/24/18 09:45	05/03/18 13:33	10.22g/5mL	10g/5mL	0.98

		Polyaromatic F	Hydrocarbons (PAH:	s) by EPA 8270D S	IM		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050382							
A8D0903-01RE1	Soil	EPA 8270D (SIM)	04/24/18 09:20	05/02/18 09:21	10.43g/5mL	10g/5mL	0.96
A8D0903-02	Soil	EPA 8270D (SIM)	04/24/18 09:25	05/02/18 09:21	10.37g/5mL	10g/5mL	0.96
A8D0903-03	Soil	EPA 8270D (SIM)	04/24/18 09:30	05/02/18 09:21	10.49g/5mL	10g/5mL	0.95
A8D0903-04	Soil	EPA 8270D (SIM)	04/24/18 09:40	05/02/18 09:21	10.38g/5mL	10g/5mL	0.96
A8D0903-05	Soil	EPA 8270D (SIM)	04/24/18 09:45	05/02/18 09:21	10.31g/5mL	10g/5mL	0.97

	Total Metals by EPA 6020 (ICPMS)						
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050484							
A8D0903-29	Soil	EPA 6020A	04/25/18 08:12	05/04/18 12:54	0.501g/50mL	0.5g/50mL	1.00
A8D0903-30	Soil	EPA 6020A	04/25/18 08:50	05/04/18 12:54	0.484g/50mL	0.5g/50mL	1.03
A8D0903-31	Soil	EPA 6020A	04/25/18 09:50	05/04/18 12:54	0.466g/50mL	0.5g/50mL	1.07
A8D0903-32	Soil	EPA 6020A	04/25/18 11:05	05/04/18 12:54	0.483g/50mL	0.5g/50mL	1.04
A8D0903-33	Soil	EPA 6020A	04/25/18 11:20	05/04/18 12:54	0.491g/50mL	0.5g/50mL	1.02
A8D0903-33RE1	Soil	EPA 6020A	04/25/18 11:20	05/04/18 12:54	0.491g/50mL	0.5g/50mL	1.02
A8D0903-71	Soil	EPA 6020A	04/26/18 13:00	05/04/18 12:54	0.495g/50mL	0.5g/50mL	1.01
A8D0903-72	Soil	EPA 6020A	04/26/18 13:25	05/04/18 12:54	0.486g/50mL	0.5g/50mL	1.03
A8D0903-73	Soil	EPA 6020A	04/26/18 13:50	05/04/18 12:54	0.509g/50mL	0.5g/50mL	0.98
A8D0903-74	Soil	EPA 6020A	04/26/18 14:30	05/04/18 12:54	0.488g/50mL	0.5g/50mL	1.02
A8D0903-75	Soil	EPA 6020A	04/26/18 14:50	05/04/18 12:54	0.497g/50mL	0.5g/50mL	1.01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goa A Jamenghini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

SAMPLE PREPARATION INFORMATION

		Tot	al Metals by EPA 602	20 (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050598							
A8D0903-07	Soil	EPA 6020A	04/24/18 09:30	05/09/18 11:58	0.47g/50mL	0.5g/50mL	1.06
A8D0903-14	Soil	EPA 6020A	04/24/18 13:30	05/09/18 11:58	0.458g/50mL	0.5g/50mL	1.09
A8D0903-14RE1	Soil	EPA 6020A	04/24/18 13:30	05/09/18 11:58	0.458g/50mL	0.5g/50mL	1.09
A8D0903-21	Soil	EPA 6020A	04/24/18 15:47	05/09/18 11:58	0.494g/50mL	0.5g/50mL	1.01
A8D0903-21RE1	Soil	EPA 6020A	04/24/18 15:47	05/09/18 11:58	0.494g/50mL	0.5g/50mL	1.01
A8D0903-28	Soil	EPA 6020A	04/25/18 07:45	05/09/18 11:58	0.453g/50mL	0.5g/50mL	1.10
A8D0903-28RE1	Soil	EPA 6020A	04/25/18 07:45	05/09/18 11:58	0.453g/50mL	0.5g/50mL	1.10
A8D0903-35	Soil	EPA 6020A	04/25/18 11:50	05/09/18 11:58	0.451g/50mL	0.5g/50mL	1.11
A8D0903-35RE1	Soil	EPA 6020A	04/25/18 11:50	05/09/18 11:58	0.451g/50mL	0.5g/50mL	1.11
A8D0903-42	Soil	EPA 6020A	04/25/18 15:20	05/09/18 11:58	0.482g/50mL	0.5g/50mL	1.04
A8D0903-42RE1	Soil	EPA 6020A	04/25/18 15:20	05/09/18 11:58	0.482g/50mL	0.5g/50mL	1.04
A8D0903-49	Soil	EPA 6020A	04/25/18 18:30	05/09/18 11:58	0.488g/50mL	0.5g/50mL	1.02
A8D0903-49RE1	Soil	EPA 6020A	04/25/18 18:30	05/09/18 11:58	0.488g/50mL	0.5g/50mL	1.02
A8D0903-56	Soil	EPA 6020A	04/25/18 17:05	05/09/18 11:58	0.49g/50mL	0.5g/50mL	1.02
A8D0903-56RE1	Soil	EPA 6020A	04/25/18 17:05	05/09/18 11:58	0.49g/50mL	0.5g/50mL	1.02
A8D0903-63	Soil	EPA 6020A	04/26/18 08:05	05/09/18 11:58	0.516g/50mL	0.5g/50mL	0.97
A8D0903-63RE1	Soil	EPA 6020A	04/26/18 08:05	05/09/18 11:58	0.516g/50mL	0.5g/50mL	0.97
A8D0903-70	Soil	EPA 6020A	04/26/18 12:45	05/09/18 11:58	0.459g/50mL	0.5g/50mL	1.09
A8D0903-70RE1	Soil	EPA 6020A	04/26/18 12:45	05/09/18 11:58	0.459g/50mL	0.5g/50mL	1.09
A8D0903-77	Soil	EPA 6020A	04/26/18 17:15	05/09/18 11:58	0.485g/50mL	0.5g/50mL	1.03
A8D0903-77RE1	Soil	EPA 6020A	04/26/18 17:15	05/09/18 11:58	0.485g/50mL	0.5g/50mL	1.03
A8D0903-84	Soil	EPA 6020A	04/26/18 18:15	05/09/18 11:58	0.459g/50mL	0.5g/50mL	1.09
A8D0903-84RE1	Soil	EPA 6020A	04/26/18 18:15	05/09/18 11:58	0.459g/50mL	0.5g/50mL	1.09
A8D0903-91	Soil	EPA 6020A	04/26/18 20:00	05/09/18 11:58	0.453g/50mL	0.5g/50mL	1.10
A8D0903-91RE1	Soil	EPA 6020A	04/26/18 20:00	05/09/18 11:58	0.453g/50mL	0.5g/50mL	1.10
A8D0903-98	Soil	EPA 6020A	04/27/18 08:05	05/09/18 11:58	0.481g/50mL	0.5g/50mL	1.04
A8D0903-98RE1	Soil	EPA 6020A	04/27/18 08:05	05/09/18 11:58	0.481g/50mL	0.5g/50mL	1.04
A8D0903-AF	Soil	EPA 6020A	04/27/18 10:15	05/09/18 11:58	0.497g/50mL	0.5g/50mL	1.01
A8D0903-AFRE1	Soil	EPA 6020A	04/27/18 10:15	05/09/18 11:58	0.497g/50mL	0.5g/50mL	1.01
A8D0903-AM	Soil	EPA 6020A	04/27/18 13:00	05/09/18 11:58	0.481g/50mL	0.5g/50mL	1.04
A8D0903-AMRE1	Soil	EPA 6020A	04/27/18 13:00	05/09/18 11:58	0.481g/50mL	0.5g/50mL	1.04
A8D0903-AT	Soil	EPA 6020A	04/27/18 13:55	05/09/18 11:58	0.462g/50mL	0.5g/50mL	1.08
A8D0903-ATRE1	Soil	EPA 6020A	04/27/18 13:55	05/09/18 11:58	0.462g/50mL	0.5g/50mL	1.08
A8D0903-BA	Soil	EPA 6020A	04/27/18 16:00	05/09/18 11:58	0.479g/50mL	0.5g/50mL	1.04
A8D0903-BARE1	Soil	EPA 6020A	04/27/18 16:00	05/09/18 11:58	0.479g/50mL	0.5g/50mL	1.04
A8D0903-BH	Soil	EPA 6020A	04/27/18 17:20	05/09/18 11:58	0.515g/50mL	0.5g/50mL	0.97

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 39 of 80 Page 39 of 58

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

SAMPLE PREPARATION INFORMATION

Total Metals by EPA 6020 (ICPMS)							
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A8D0903-BHRE1	Soil	EPA 6020A	04/27/18 17:20	05/09/18 11:58	0.515g/50mL	0.5g/50mL	0.97

			Percent Dry We	ght			
Prep: Total Solids (Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050381							
A8D0903-01	Soil	EPA 8000C	04/24/18 09:20	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-02	Soil	EPA 8000C	04/24/18 09:25	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-03	Soil	EPA 8000C	04/24/18 09:30	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-04	Soil	EPA 8000C	04/24/18 09:40	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-05	Soil	EPA 8000C	04/24/18 09:45	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-29	Soil	EPA 8000C	04/25/18 08:12	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-30	Soil	EPA 8000C	04/25/18 08:50	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-31	Soil	EPA 8000C	04/25/18 09:50	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-32	Soil	EPA 8000C	04/25/18 11:05	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-33	Soil	EPA 8000C	04/25/18 11:20	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-71	Soil	EPA 8000C	04/26/18 13:00	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-72	Soil	EPA 8000C	04/26/18 13:25	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-73	Soil	EPA 8000C	04/26/18 13:50	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-74	Soil	EPA 8000C	04/26/18 14:30	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-75	Soil	EPA 8000C	04/26/18 14:50	05/02/18 09:19	1N/A/1N/A	1N/A/1N/A	NA
Batch: 8050631							
A8D0903-07	Soil	EPA 8000C	04/24/18 09:30	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-14	Soil	EPA 8000C	04/24/18 13:30	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-21	Soil	EPA 8000C	04/24/18 15:47	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-28	Soil	EPA 8000C	04/25/18 07:45	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-35	Soil	EPA 8000C	04/25/18 11:50	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-42	Soil	EPA 8000C	04/25/18 15:20	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-49	Soil	EPA 8000C	04/25/18 18:30	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-56	Soil	EPA 8000C	04/25/18 17:05	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-63	Soil	EPA 8000C	04/26/18 08:05	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-70	Soil	EPA 8000C	04/26/18 12:45	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-77	Soil	EPA 8000C	04/26/18 17:15	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-84	Soil	EPA 8000C	04/26/18 18:15	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa A Jamenghini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253

SAMPLE PREPARATION INFORMATION

			Percent Dry We	ight			
Prep: Total Solids (I	Dry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A8D0903-91	Soil	EPA 8000C	04/26/18 20:00	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-98	Soil	EPA 8000C	04/27/18 08:05	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-AF	Soil	EPA 8000C	04/27/18 10:15	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-AM	Soil	EPA 8000C	04/27/18 13:00	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-AT	Soil	EPA 8000C	04/27/18 13:55	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-BA	Soil	EPA 8000C	04/27/18 16:00	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA
A8D0903-BH	Soil	EPA 8000C	04/27/18 17:20	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 41 of 80 Page 41 of 58

Ava & Somerighini

Bellingham, WA 98225

AMEND

S-05

AMENDED REPORT

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301

Project: <u>0624.04.10-03--Northern State Hospital</u>
Project Number: <u>0624.04.10</u>

Project Manager: Heather Good

Report ID: A8D0903 - 05 25 18 1253

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-02	Spike recovery is outside of established control limits due to matrix interference.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
Q-16	Reanalysis of an original Batch QC sample.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
R-01	The Reporting Limit for this analyte has been raised to account for matrix interference.
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

Result for this sample or analyte has been amended from the original report. See Case Narrative for details.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 42 of 80 Page 42 of 58

Awas Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported
RPD Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

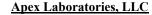
Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

'*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:


Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

-For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the blank results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met. Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 44 of 80 Page 44 of 58

Ava & Somerighini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Cert?

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

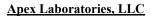
Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters


Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 45 of 80 Page 45 of 58

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: 0624.04.10-03--Northern State Hospital

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

Project # 0624-04.1() Archive revening samples. Contact good bill SUNDA PO# 1700-COF2 Al. Sb, As, Ba, Be, C Ca, Cr, Co, Cu, Fe, I Be, Mg, Mn, Mo, Ni, Se, Ag, Na, Tl, V, IOTAL DISS TCLP for future information TCLP Metals (8) RCRA Metals (8) OTT 003 SPECIAL INSTRUCTIONS: 8087 LCB2 CHAIN OF CUSTODY 14610 STAN PARTS 0728 OOAS 0478 8700 BLEX AOC8 8260 HVOCs 8700 KBDW AOC8 8700 AOCs Euli List NMLbH-CX .2232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333 XQ-H4TWN Project Mgr. Heather NWTPH-HCID 3 Day # OF CONTAINERS MATRIX MPLES ARE HELD FOR 30 DAYS 930 5 DAY CR 7 TIME Alongil DATE 4 DAY TYB ID # Foster State Σ M N N S 10 5 S WA S-0, TAT Requested (circle) <u>,</u> Ö SP53-S-1.0 0 5 2 Now SP53-8-0. S Ó 0 0 3P53-S ţ 1 3 3 SPSH SPS4 SO) Other: Site

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Gwa & Smenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>


Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID:
A8D0903 - 05 25 18 1253

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**


Report ID: A8D0903 - 05 25 18 1253

18 18 18 18 18 18 18 18	1200-2 1
ROBERT POR ROB	TCLP Metab (8) Project Project
8087 PCBs 32.0 SIM PAHs	1200-COLS 1200-COLS
8087 LCP2 8700 SIM bVH2 8710 SIM bVH2	7/dws S E 2 2-0071 S100-0071 S100-0071 4101. 1801 TV101 uz 'A '11. '18, '3y '9s
S087 bCB8 S087 bCB8 S087 bCB8 S70 8 RV BVB8 S70 8 RV BVB8 S70 8 RV BVB BVB BVB BVB BVB BVB BVB BVB BVB	7/dws. 25/ Z-0071 STOD-0071 dTDL SSIG TV101 uz 'A '11 ''e, ''3v' ''os'
S-0.5 //w/s 1622 S 1 S-0.5 (122 S 1 S-0.5 //s/s 745 S 1 S-0.5 882 S 1	I I I I I I I I I I I I I I I I I I I
S-0.5 (1713) S-0.5 (185/18 745) S-0.5 (185/18 745)	
5-0.5 * 123 5-0.5 * 1/2/8 745	
-S-0.5 4/6/18 74/5 -S-0.5 812	
18-0.0 81	
してい	
0.00	
0.0.0	
20.0.5	X
07070	X
	\rightarrow
TAT Requested (circle) 1 Day 2 Day 3 Day And Archive (FMain Mach	maining samples. Contact
4 DAY 5 DAY Other: ON PO FULLIFIE	fuller infination.
AULUNS Date: 421/8 Signature AU 4-20-18 Signature AU	4-28-18 Signature M - 128/18
Princed Name (2100 Gyr) US of Time 1910 Princed Name WALLE Time: 1900 Princed Name N WALPS NOVE Time ON Strange No.	M. Time. PM Sprince Note and Other Time. 715
Company, MFA Company, USS NW (company, USS NW	And

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID:
A8D0903 - 05 25 18 1253

		CHAIN OF CUSTODY	CUSIODI		Lab# 1800903		coc 4 of 12
12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	Ph: 503-718-2323 Fax: 50.	3-718-0333		3		PO#	
Address: 1329 N. State St.	0	- 10	Project Name: STL7++	Switt (enter		Project # 0624.64.10
"C.Wise / B,	Lik	(7), W (A) Phone:		Fax:	Email:	123990	hapod (Maultoster
#401 BD #	DATE TIME # OF CONTAINERS	8790 KBDW AOC? 8700 AOC? Emi Tist AMLEH-CX AMLEH-DX AMLEH-HCID	8740 81VI DVH? 8740 8ACC 8760 BLEX AOC? 8760 HAOC?	8087 PCRA Metals (8)	TCLP Metals (8) 1. 35, A5, Ba, Be, Cd, Ce, Co, Cu, Fe, Pb, Cd, Cd, Cd, Cd, Cd, Cd, Cd, Cd, Cd, Cd	700-Z 700-COF2	
551-5-0.5	1 S 000 81/50/2			t		-	
SS22-S-0.5	1217 S						
5823-8-0.5	1938 S						
SS24-8-0.5	11 8 111						
SSZE-S-0.5	1130 S 1						
DW18-S-0.5	15,20 S 1			×			
5	1520 5 1						
SSZ7-S-0.5	1535 S 1						
SS28-8-0.5	1545 5						
5529-8-0.5	- (500)						
Normal Turn Around Time (TAT) = 10 Business Days		NO	SPECIAL INSTRUCTIONS:	NOIS:			
1 Day	2 Day 3 Day		Arch	<i>§</i>	ر د ارد		+
4 DAY	5 DAY Other:			الاستار	De .	On the firm and admit to the confection of the c	80 (40)
	SAMPLES ARE HELD FOR 30 DAYS		12-12-12-12-12-12-12-12-12-12-12-12-12-1	SU MORE	>	inforation.	_
RELIAQUISAÇED BY: Signature: 1917 Of 1916 / 17	RECEIVED BY:	4-27-18 Date:	RELINQUISHED W.: Signfure:////////////////////////////////////	25	RECEIVE	2	She lie
Printed Name (Molyn Wile Time: 19	1900 Printed Name WARD OR	1900 Time:	Prince State WARAPIDE THE DIE	Upoble		Frined Name 7 17	Tree of the
Company: MFA	NN SSA		EZE NIM	NI		h. 9.7	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: 0624.04.10-03--Northern State Hospital

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

samples. Contact mantes D629,04 PO# Z-0071 STOD-0071 Mending スのか TCLP Metals (8) RCRA Metals (8) OLI 009 Archive SPECIAL INSTRUCTIONS 8087 PCBs CHAIN OF CUSTODY SHV4 MIS 0748 OOAS 0478 8700 BLEX AOC8 8760 HYOCs 8700 KBDW AOC 8700 AOCs Full List 900 NWTPH-Gx 12232 S.W. Garden Place, Tigard, OR 97223 Ph.: 503-718-2323 Fax: 503-718-0333 Headher MALLH-Dx NWTPH-HCID Other: 3 Day # OF CONTAINERS Star MATRIX 5 (2) SOS () 5 9 SAMPLES ARE HELD FOR 30 DAYS Project Mgr. 1923 1605 8305 1705 1840 1905 7915 5 DAY 2 Day 30 LIME Ste 129/8 DATE 1 Day 4 DAY 35 # OI HV7 Alox State (2) S S S S N Company: Maxi Foster (× 5 5 10 TAT Requested (circle) 0, 0, Ò 0 Ö 0 Wise S-0, Ò Dud2-S-0 5830-3-0. 1 1 OR 0 5539-5 S 0) $\langle \rangle$ 38-SS40-5 36-1 537 Site Location: Other: DAG ampled by: Õ

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goast Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**


Report ID: A8D0903 - 05 25 18 1253

1200-COC	PO# Project # COZ4, OH, 10 Project (a) maus fester com
Poster Mongy Project Man	Project # 0624.04.10
100 10 10 10 10 10 10 1	bgod (a manstoster.
1500-C015 1500	
4 (circle) 1 Day 2 Day 4 (circle) 2 C C C C C C C C C C C C C C C C C C	ないことにはいいというできないというできないというというないとなると
0.5 125/8 1730 S 1 0.5 1755 S 1 0.5 124/8 805 S 1 0.5 124/8 805 S 1 1.0.5 124/5 S 1 1.0.5 1 1.0.	
0.5 1755 S 1	
0.5 \(\lambda \) \	
0.5 424/8 805 S 825 S 905	
- 0.5 8.25 S	>
- 0.5 900 S 1 - 0.5 950 S 1 - 0.5 950 S 1 - 0.5 9450 S 1 - 0.5 9450 S 1 - 0.5 9450 S 1	
- 0.5 950 S 1	
- 0.5 020 S	
- O. S O45 S O45 S O45 S	
S - O \sim S V $ 2 \cup $	
2 Day 3 Day	×
1 Day 2 Day 3 Day	
4 DAV S DAV	plss. Contact
	Mation
	,
	W. Mark
excly Well 1900 prince 1900 prince 1900 prince 1900 prince 1900 White De Time Of Sprince Sent Organic of 15	of Office all
Company. MFA Company, FSS NW Commun ESS NW	Are

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Somenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

					5	CITALLY OF CUSTODI	3	5		5	-			# qe	Lab # 77600703	3	33		200	COC 1 of 1	J
12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fax: 503-718-0333	R 97223 PI	i: 503-71	18-2323	Fax: 50.	1-718-0	333			-			ľ	1				#O4				
Company: Mildill toster Along,	150016	Pro	Project Mgr. Heather	Hear	her	(0000	8		Proje	Project Name: Sw7++	(Ž	+5		Certer	t		Project	Project # 0624-04.10)- h&	1.4	0
Address: 1329 N. State St. Ste 301	St. 372	- 1	Bhum,	1/4	th		Phone				Fax:	×			[E	mail:	Email: hoood a macufoster com	3	Mae	Sati	le C
Sampled by: C. Wise ! B.	Poulik	ar										ANA	LYSIS	ANAL YSIS REOUEST	4009980		7				
Site Location: OR (WA) Other: SAMPLE ID	LAB ID #	DATE	MATRIX	# OF CONTAINERS	имтрн-нстр	имлрн-С _х имлрн-С _х	8260 VOCs Full List	8700 HAOC? 8700 KBDW AOC?	8700 BLEX AOC?	OOAS 0278	8085 PCBs 8270 SIM PAHs		RCRA Metals (8)	TCLP Metals (8)	nZ ,V ,IT ,sN ,gA ,si	1700-COFS	Z-0071	18th Sample			
8846-8-0.5	200	7021 8/	S					-			-		>	-	el -					+	_
5849-S-O.S		33	13,25 8	_		-				+	-		$\langle \rangle$	+		-					
SS48-S-0.5		13.6	350 S										X	-		-				-	
S249-8-0.5		143	1436 S								-		\times			-	_			-	
5850-8-0.5		꾼	14g0 S	_				-			-		X	-		-				-	
8		7	S										X	ļ						+	-
5851-8-0.5		17.25	- 1							!						-	 				
8852-8-0.5		出	1735 S	_						-				ļ		_				-	_
SS53-8-0.5		7	PHO S	_				-		-	-					-				+	
5554-8-0.5	→	17E	20 03							<u> </u>			-	-		<u> </u>					
Normal Turn Around Time (TAT) = 10 Business Days	ess Days				NO			SPE	SPECIAL INSTRUCTIONS:	NSTRU	CTIO	Š:		-		-			1	-	
	1 Day	2 Day) *	3 Day					F	Archive ognatures	3	15	Za	らら	9		Squ 2/45.	(5)			
, A. Kequestea (Crete)	4 DAY	5 DAY	<u>}</u>	Other:								ل ، :			\bigcirc	C)		ز	á.
SAMPLE	SAMPLES ARE HELD FOR 30 DAYS,	D FOR 3	0 DAYS,	1						/	\sum_{i}	JA12 P	<u></u>		Ž	$\bar{\xi}$		3		FIRMARE.	2
RELINOUSHED BY: Signanthe: AV Company	Date: /27/	RECEIVE	RECEIVED BY:	1/2		Date	4-17-1	Sign	RELINQUISHEBAS.	The state of the s	(پا	3	177	7/8	4-28-18 Signature	RECEIVE	1 = 1	11	7	A/81/2	0
Printed Name and Lyn 2015e Inc. 1900 Printed Name WHIGH.	Time: 190	O Printed	3	242	Rife	Time:	Time: 1500		13	3	3	3	الّو ا	B	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A men	Proposition Warselve rull 5 prince Gam Obvirging	1	Ime.	916	
Company: MFA		Сомраву:		ESS- NIN	\geq				7	3	F35 UM	3					N. S.			}	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 52 of 80 Page 52 of 58

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

APEX LABS					⁵	HAI	N O	FC	CHAIN OF CUSTODY		<u> </u>		1	Lab# 1800403	180	J. J	2		200	Coc 8 of 12	
12232 S.W. Garden Place, Tigard, OR 97223 Phr. 503-718-2323 Fax: 503-718-0333	97223	Ph: 503-;	718-232;	Fax: 5	03-718.	0333		5									#Od				
Company: Maul Foster Alongi	long		Project Mgr. Heather	Hea	the	1	Good	1	Proj	Project Name: (SW)	6:	t.ch.	1.	Center	1		Project #	0/0	24.0	Project # 0/024,04,10	
Address: 1329 N. State St. Str. 301	87.	301	Bham, WA	n'W	Z		Phone:	نو			Fax.	J 2			Emai	ho	2000	(6)2	naul	Final hacodamantherecon	18
Sampled by: C. Wise . B. Pacelik	Pace	Lik										ANAI	YSIS	ANALYSIS REOUEST							
Site Lecation: OR (WA) Other:	LAB ID #	DATE	TIME	# OF CONTAINERS	MWTPH-HCID	XQTPH-DX	8260 VOCs Full List	STOO BEDW AOC	3760 BTEX VOCs	OOAS 047	2082 PCBs 2770 SIM PAHs		CRA Metals (8)	CLP Metals (8) L. Sb., As., Ba, Be, Cd., L. Cr., Co, Cu, Fe, Pb, L. Cr., Co, Cu, Fe, Pb, A. Mg, Ma, Tl, V, Zn, A. Mg, Na, Tl, V, Zn, A. Mar, Mar, Tl, V, Zn, A. Mar, Mar, Mar, A. Mar, Mar, Mar, A. Mar, Mar, A. Mar	7, Cr, Co, Cu, Fe, Pb, Ag, Ma, Ma, Tl, V, Zn, Ag, Ma, Tl, V, Zn	5000-COF8	Z-002				
15355-5-0.5	7-/-	S 0081 81/mc/2	300			-						+			H S				+		T
20-8-80mg		81	1815 S	-		-				+	-		X	-			2				
3856-5-0,5		8)	(8,25	- S				ļ			 		1-	-		-			+		
\$857-8-0.5		1850 180	√ 3										-			T	-		-		T
		<u>a</u>	1900 S	-							-		-			+	-		-		
\$559 - 5-0.5		2	9 0161	0							-		-	ļ			-				1
S80-S-07S		5	1930 8	-										<u> </u>		1	-				T
DUP5-5-0,5		8	2000										V			-	X				1
\$5861-5-0.5		26	2015 S								-		-			-				1	1
"SS62-8-0.5		30	2020 S								-		-	-		+					T
Normal urn Around Time (TAT) = 10 Business Days	s Days			<u>=</u>	S S			1	SPECIAL INSTRUCTIONS:	INSTRU	CTION	-S:									1
TAT Requested (circle)	1 Day	2.1	2 Day	3 Day	X					A	3	B	200	May	25	٠.	Ž	56/6			
	4 DAY	5 D	5 DAY	Other: _	1					Ž	14V	+		2	-67	(9	antitude of the standing	
SAMPLES ARE HELD FOR 30 DAYS	ARE HI	ELD FOR	30 DAY	Ž				7	1	100	,	3		<u> </u>	7	<u>,</u>	Z 2	<u>ځ</u>		\$ \$:
Signature (MY Office)	4/27 Date: /27	RECEIVE	RECEIVED BY:			427-18 Date:	8 h		RELINQUISHIND BY:		.: Z	7	7	4-28-18 Sign	RECEIVED BY	E C	2		7/2	118	7
Printed Name axolyn Wise Time 1900 Printed MARRIME	ime: 19(50 Print	Name C.	14065	S.	Time	006 June		R	3	2	8	ر الس	2915	Printed	(T	100	Prince Man We Up & 1 Pet Trin DAIS Prince Land	ine:		1
Company: MFA		Comp	Company; ESS- MM	7	1			වී	Company: ESS NW	36	N	2			Company:	,	Jegy /	v			
- normal management plant particular designation of the second se																	-				7

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: 0624.04.10

Project Manager: Heather Good

Report ID:

A8D0903 - 05 25 18 1253

B Heather Good Report To Maul Foster Alongi	Good		SAMPLE CHAIN OF CUSTODY SAMPLERS (signature)	SAMPLERS (signature)	ture)	USTOL	NY S. Plue	Ch		1820403 Pa	Page#	of Of	0
Company Maul Foster Alongi Address 1329 N. State St. Ste 30	r Alon Le St. S	9,' te 30/	PROJE -	PROJECT NAME SWIFT	Center		0	P(P, L	PO# 01.124.04.10	1	X Standard Turnaround □ RUSH Rush charges authorized by:	round orized by	a
City, State, ZIP Bellinghum, WH 98229 Phone Email Psycolomicul	um, WA hgrodle	inghum, WH 98729 REM. Email 194 vod Omicui Hoster	REMARKS or fer	IKS				INVOICE TO H. Good MFA	INVOICE TO,	St. Dispos	SAMPLE DISPOSAL Dispose after 30 days RArchive Samples	SPOSAL	
							Al	ANALYSES	SREQU	ESTED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Gasoline BTEX by 8021B	AOCs by 8260C	PAHs 8270D SIM	2 Jours WSI		Notes	
5563-5-0.5		81/22/18	2030	0									
SS04-S-0.5		4/20/18	2040	0	_								
SS65-8-0.5		4/20/18	2020	S	_								
DUIH - S-0.5		81/27/2	805	S	~				X	X			
SS66-5-0.5			805	\bigcirc									
SSB7-8-0.5			820	S	_								
5568-8-0.5			345	S									
5569-5-0.5			900	S									
SS70-S-0.5			945	S				<u> </u>					
DUIGH-S-0,5		≫	1015	S					X	X			
	SI	SIGNATURE			PRINT NAME	NAME			COM	COMPANY	DATE	H	TIME
Fredman & Bruya, Inc.	neumquisned by: J	12/2	3	3	arolyn	7	S. S.		とより	4	1/12/		906
	Relinguiskot 1.			207	LIAN	JON WAYBRIOK		3	ESS- NW	N	4/r/1/8		1900
	Bosoined H			3	3	JON WARRIOL	2	3	WY-55-	3	4/28/18		09.15
			Ý.	Jan.	2	The		_	Sich		Cholo	_	6,0

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**


Report ID: A8D0903 - 05 25 18 1253

	SS Let 1. Step	Tr 309 VA 7872 Date Sampled	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature) Careful PROJECT NAME Sample # of PH. Diese ine Time Sample # of PPH. Diese ine Time Sample # of PPH. Diese ine 1200 S 1200 S 1320 S 1320 S 1330 S 1510 S 151	SAMPLERS (signature) Carolyn. PROJECT NAME SLOT A Center Programme Frankly From Lange ampled Type Jars TPH-HOTD TPH-HOTD Sampled Type Jars TPH-HOTD Sampled	IN OF CUSTOD mature) (219/4) To the third with the contact of the third th	STON AND AND AND AND AND AND AND AND AND AN	TPH-Dissell TPH-D	A C C C C C C C C C C C C C C C C C C C	Complete Complete	5 40m2 WS	Page #	100 100	of 7c DTIME und ized by: POSAL wys Notes (710C)		
3012 16" Avenue West Reo Seattle, WA 98119-2029 Reli	Relinquished by:	2/1/2		3 3	So washing	\$12.0 812.0	le le		成多	3 3		8/182/5	3000	3 5	21N
Ph. (206) 285-8282	Received by			B	an Obvien	67.E	4	+	3	2		flegue	690	7, 1	7.]

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**


Report ID: A8D0903 - 05 25 18 1253

"				SAMPLE	SAMPLE CHAIN OF CUSTODY	OF C	OSTO	YQ.				1000	A8208903		Ţ,
Report To Heather Good SAMPLERS (signature) arol Company Maul Foster Alongi PROJECT NAME Address 1329 N. State J. Ste 30/ Swith Center	ther (1 Fast, N. Star	5 6 60 A	Vingi St. 30	PROJEC	SAMPLERS (signature) PROJECT NAME Swith Cent	inte	arolyn Wise	2		PC PC	PO# 04.10		Page# TURN/ Standard T RUSH ush charges	Page # / of C TURNAROUND TIME Standard Turnaround DRUSH Rush charges authorized by:	8
City, State, ZIP Dell'inghum 1114 98227 Phone Bmail Middle onull fa	Email Email	an M	Email Medical Medital Action Contact Consideration on the second of the more into	2 REMAR	REMARKS Archive Moush. Light Contact O short of the contact of the	15.5	(main contac	1 T. T.		NVOI	INVOICE TO H. Good		SAN Dispose Archive Other	SAMPLE DISPOSAL © Dispose after 30 days Z'Archive Samples © Other	
						H			AN/	ILYSE	ANALYSES REQUESTEI	UESTE	Q		Γ
Sample ID		Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID	TPH-Gasoline	AOCs by 8260C	SAOCs Py 8270D	S AASS	18H Sample		Notes	
SS85-8-0.5	0.5		81/22/h	1530	S			ļ	_		I		-		
DUIGE-S-0.5	0.0		81/22/4	1355	8			+-	-		+	×			
8874-S-0.5	0.5			1355	(V)	-	-	-	-				+-		Ţ
S877-S-0.S	0.5			0041	0	_		-	ļ				-		
SS78-S-0.5	0.S			1405	S										T
5579-8-0.5	S			8141	S			-			-		+		
\$80-8-0.5	0.5			1430	S		<u> </u>	 			-				
DUB3-5-0.5	0.5			1600	S	_		-	<u> </u>		\vdash				1
S:0-S-98SS	5.0			0191	5			 			+		-		
SS87-S-0.5	0.5		\rightarrow	1015	S			-			1				
Friedman & Dunner L.		948	MENATURE			PRINT NAME	NAME					COMPANY		DATE TIME	
Treaman & Bruya, In. 3012 16th Avenue West	ن	ushed by:	The same	3	Carolyn a	7	it vi	1.50		2	MFA	K		00	1365
Seattle, WA 98119-2029		Relinquished by:			JON WARRING	MUNK	ille			2	ES-NW	>		0061 31/12/2	8
Ph. (206) 285-8282		a toy:	557		JON WATEROOF	20	20.6			, DA	AS DW	3		1/28/18 DA 15	
		1)	7						7				dank 10	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

 1329 North State Street, Suie 301
 Project Number: 0624.04.10
 Report ID:

 Bellingham, WA 98225
 Project Manager: Heather Good
 A8D0903 - 05 25 18 1253

			SAMPLE CHAIN OF CUSTODY	CHAIN	OF CU	STODY			A8D0903	0403			
Report To Maul Foster	ter A.	Chugy	SAMPLE	SAMPLERS (signature)	V	achin	3	2		Page #TURNA	Page # (2 of / TURNAROUND TIME		
Company Heather Good Address 1329 N. State St. 54391	(9000 ute 87. 4	St. 301	PROJEC	PROJECT NAME Swift	enter	3	063	PO# 0624.04,10		KStandard ORUSH	Zstandard Turnaround DRUSH Rush charges authorized by:	by:	
City, State, ZIP Edinglauso, WH 9827S Phone Email Age oct le maul	napan, WH 9873 REMARK. Email typoolle praul rister	1 9823	REMARKS Loste	SS (T I	INVOICE TO		SAMI Dispose af Archive Sa	SAMPLE DISPOSAL Dispose after 30 days Z'Archive Samples	AL	
							ANAL	ANALYSES REQUESTED	UESŢEI				
Sample ID	Lab ID	Date Sampled	Time	Sample Type	Jars of TPH-HCID	TPH-Diesel	AOCs by 8260C BTEX by 8021B	SVOCs by 8270D	KCCH Exmpl		Notes	\$	
5288-5-0.5		81/22/18	0891	S	_								
5589-5-0.5			040	5									
SS90-S-0.5			1200 JOO	S)								
DUIZ-S-0.5			120	S					X				
SS41-8-0.5			1730	S									
5592-5-0.5			1755	S						,			
5593-5-0.5			1820	S									
S-0-8-H6SS			0481	S	_								
SS95-8-05			1850	S									
		\rightarrow											
	118	STGNATURE			PRINT NAME	VAME		00	COMPANY		DATE,	TIME	
	Relinquished by:	The second	3	(are	wolyn	60%	2	MEA	Z		81/27/18	1500	
	Keceived by			NO	WAN	IN WARREIDIO	$ \setminus $	ESS- NW	NW		4/1/2/18	900	
6202	inquisned by			<u>ે</u>	WF5	JON WAVERIBLE		公	CY SM		4/28/18	5160	
Ph. (206) 285-8282 Rec	Received by:	J.		Jan 1	en Obsker	,		ANEX	~	7	yastis 915	212	
)											

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 57 of 80 $_{Page 57 of 58}$

Grand Jamenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: **0624.04.10**Project Manager: **Heather Good**

Report ID: A8D0903 - 05 25 18 1253

APEX LABS COOLER RECEIPT FORM
Client: MFA Element WO#: A8 DOGOZ
Project/Project #: Swift Cente
Delivery info: Date/Time Received: 418 @ 9/5 By:
Cooler Inspection Inspected by: COB : Yes W @ 9:15 Chain of Custody Included? Yes No Custody Seals? Yes No X Signed/Dated by Client? Yes No No X
Signed/Dated by Apex? Yes V No
Temperature (deg. C) Received on Ice? (Y/N) Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 1.2 2.6 /.2 2.8
Temp. Blanks? (Y/N)
Ice Type: (Gel/Real/Other)
Condition:
Cooler out of temp? (YN) Possible reason why: If some coolers are in temp and some out, were green dot applied to out of temperature samples? Yes/No/NA Samples Inspection: Inspected by: : 4/28/18 @ 10:00
All Samples Intact? Yes 🙎 No Comments:
Bottle Labels/COCs agree? Yes No X Comments: No T on SS 15-5-05 SS 15-5-05
Bottle Labels/COCs agree? Yes No No Comments: No T on 5515-5-0.5, 55 25-5-05, DUN-5-05, 5551-5-05, No D on lower 54161
Containers/Volumes Received Appropriate for Analysis? Yes No Comments:
Londs 3369, DV10B-5-05, DV12 Subhampled: MS
Withusped:
Do VOA Vials have Visible Headspace? Yes No NA X Comments What rulls DV06-5-05, let rulls DV06-5 0.5 must had be to
Water Samples: pH Checked and Appropriate (except VOAs): YesNoNA
Additional Information: D DN (abels read 4/25/18 DN SS41, SS42, SS43, SS44, SS44, SS44, SS44, SS44, SS50, S451, DV 08, LOL vends 4/26/18 D Dn labels
Labeled by: Witness: Cooler Inspected by: See Project Contact Form: Y
n 5 cor

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 58 of 80 Page 58 of 58

Ava & Somerighini

an affiliate of The GEL Group INC

www.capefearanalytical.com

May 11, 2018

Ms. Lisa Domenighini Apex Laboratories 12232 S.W. Garden Place Portland, Oregon 97223

Re: Dioxin & PCB's subcontract Work Order: 13267 SDG: A8D0903

Dear Ms. Domenighini:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on April 24, 2018. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Sincerely,

Andrea Scarpello Project Manager

Autrea J. Scarypello

Enclosures

SUBCONTRACT ORDER

Apex Laboratories A8D0903

CFA WO#13267

SENDING LABORATORY:

Apex Laboratories 12232 S.W. Garden Place

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 718-0333

Project Manager: Lisa Domenighini

RECEIVING LABORATORY:

Cape Fear Analytical, LLC 3306 Kitty Hawk Rd Suite 120 Wilmington, NC 28405 Phone :(910) 795-0421

Fax: -

Sample Name: GP53-S-0.5		Soil Sam	pled: 04/24/18 09:20	(A8D0903-01)
Analysis	Due	Expires	Comments	
1613B Dioxins and Furans (SUB)	05/11/18 17:00	10/21/18 09:20		
Containers Supplied:				
(B)4 oz Glass Jar				

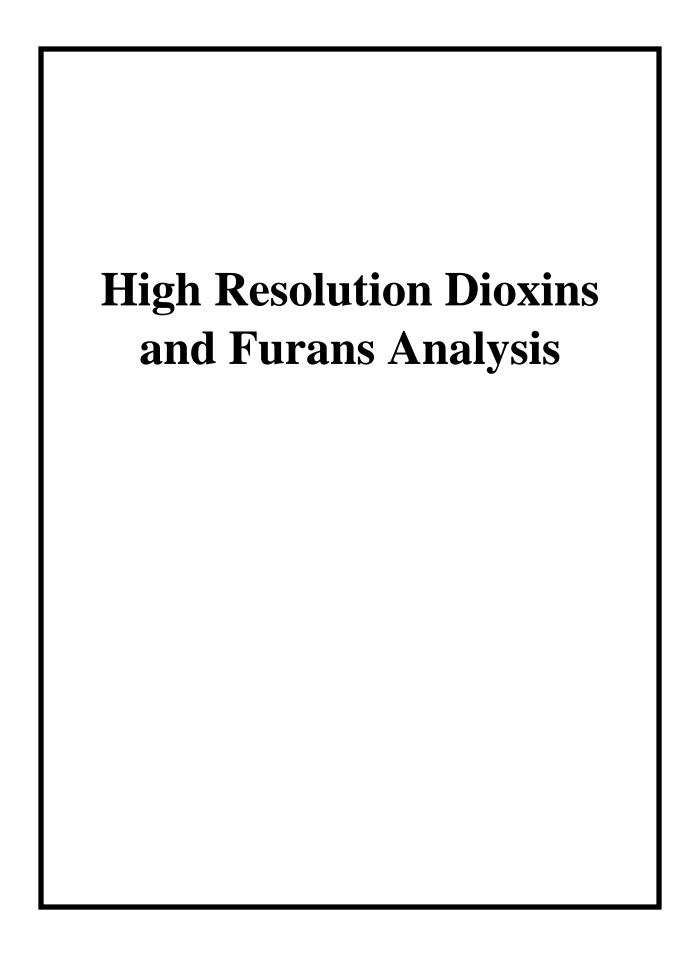
Standard.

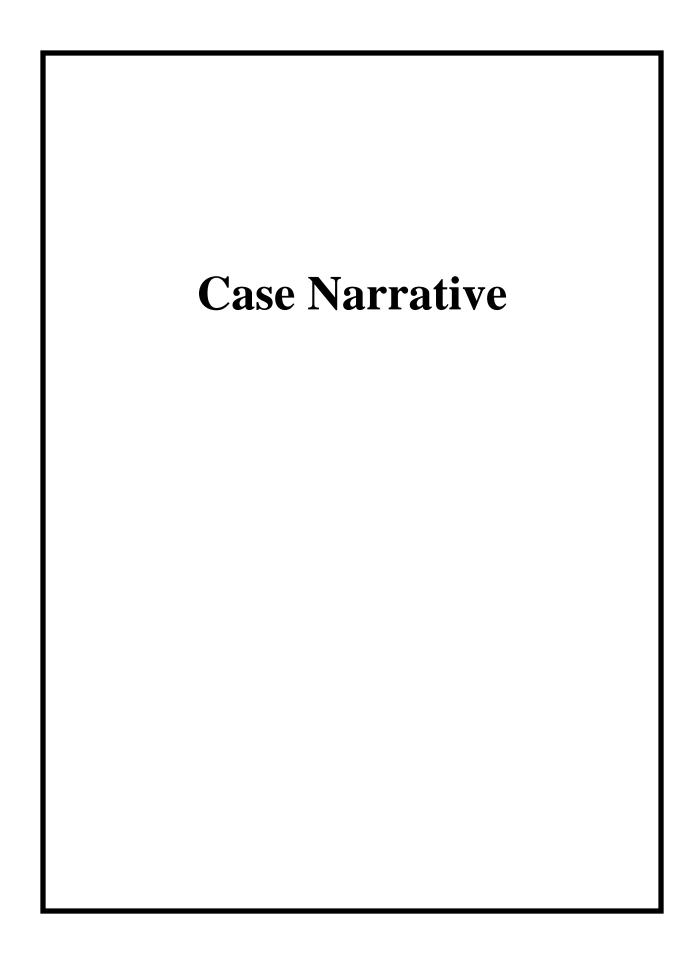
Released By Date Received By Date

Fed Ex (Shipper)

Released By Date

Received By Date


Received By Date


Page 60 of age 1 of 1

SAMPLE RECEIPT CHECKLIST

				(Cape Fear Analytical
Clie	nt: Apex Laboratore	2			Work Order: 13207
Ship	oping Company: Fed Ex				Date/Time Received: $S/a//g$ $9.4a$
Ship	pected Hazard Information pped as DOT Hazardous?	Yes	NA	No	DOE Site Sample Packages Yes NA No* Screened <0.5 mR/hr?
San	pples identified as Foreign Soil?				Samples < 2x background? * Notify RSO of any responses in this column immediately.
	Sample Receipt Specifics sample in shipment?	Yes	NA	No	Air Witness:
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	/			Circle Applicable: seals broken damaged container leaking container other(describe)
2	Chain of Custody documents included with shipment?	/			
3	Samples requiring cold preservation within 0-6°C?				Preservation Method: (ce bag) blue ice dry ice none other (describe) 4.9-0.6= 4.3°
4	Aqueous samples found to have visible solids?				Sample IDs, containers affected:
5	Samples requiring chemical preservation at proper pH?		/		Sample IDs, containers affected and pH observed: If preservative added, Lot#:
6	Samples requiring preservation have no residual chlorine?				Sample IDs, containers affected: If preservative added, Lot#:
7	Samples received within holding time?	/		,	Sample IDs, tests affected:
8	Sample IDs on COC match IDs on containers?				Sample IDs, containers affected:
9	Date & time of COC match date & time on containers?				Sample IDs, containers affected:
1 7/11	Number of containers received match number indicated on COC?	\checkmark	/		List type and number of containers / Sample IDs, containers affected:
	COC form is properly signed in relinquished/received sections?				
Con	nments:				
d a	trip blunk included sample has wate leaked in the but less not appear	r Co	W e i	UNG pr	jar and appears to have ip bag slightly. The sample omised.
re 3	Checklist performed	by: Ir	nitials:	01511105	Date: 5/2 / 8 Page 61 of 86F-UD-F-7

Page 3 of 22

HDOX Case Narrative Apex Laboratories (APEX) SDG A8D0903 Work Order 13267

Method/Analysis Information

Product: Dioxins/Furans by EPA Method 1613B in Solids

Analytical Method: EPA Method 1613B

Extraction Method: SW846 3540C

Analytical Batch Number: 37541 Clean Up Batch Number: 37540 Extraction Batch Number: 37539

Sample Analysis

The following samples were analyzed using the analytical protocol as established in EPA Method 1613B:

Sample ID	Client ID
12021188	Method Blank (MB)
12021189	Laboratory Control Sample (LCS)
12021190	Laboratory Control Sample Duplicate (LCSD)
13267001	GP53-S-0.5

The samples in this SDG were analyzed on a "dry weight" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-002 REV# 15.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (CCV) met the acceptance criteria.

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

A matrix spike and matrix spike duplicate analysis was not required for this SDG.

Technical Information

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this SDG did not require dilutions.

Sample Re-extraction/Re-analysis

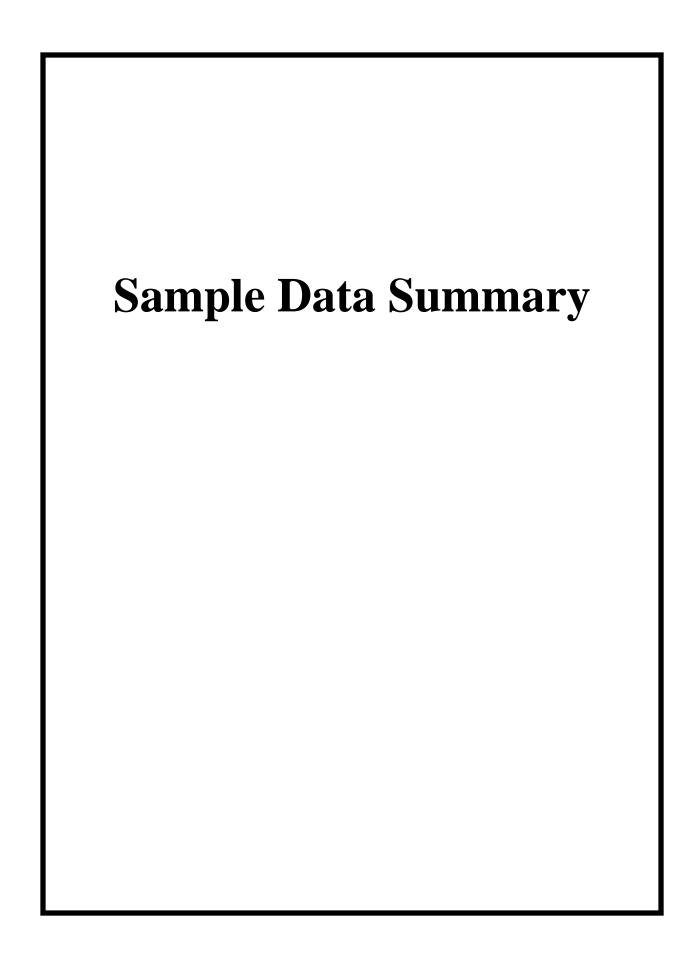
Re-extractions or re-analyses were not required in this SDG.

Miscellaneous Information

Nonconformance (NCR) Documentation

A NCR was not required for this SDG.

Manual Integrations


Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction. Manual integrations were required for data files in this SDG.

Sample preparation

No difficulties were encountered during sample preparation.

Electronic Packaging Comment

This data package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory has developed systems to generate all data packages electronically. The following change from traditional packages should be noted: Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative will include the data validator's signature and title. The signature page also includes the data qualifiers used in the fractional package. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Qualifier Definition Report for

APEX001 Apex Laboratories

Client SDG: A8D0903 CFA Work Order: 13267

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- J Value is estimated
- K Estimated Maximum Possible Concentration
- U Analyte was analyzed for, but not detected above the specified detection limit.
- DL Indicates that sample is diluted.
- RA Indicates that sample is re-analyzed without re-extraction.
- RE Indicates that sample is re-extracted.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Heather Patterson

Date: 11 MAY 2018 Title: Group Leader

Report Date:

Page 1

May 11, 2018

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Number: A8D0903 13267001 Lab Sample ID: 1613B Soil **Client Sample:**

Client: **Date Collected:** Date Received:

APEX001 04/24/2018 09:20 05/02/2018 09:42

EPA Method 1613B

SW846 3540C

Project: Matrix: %Moisture: **Prep Basis:**

APEX00111 SOIL 17.8

Dry Weight

Client ID: GP53-S-0.5

Batch ID: 37541 **Run Date:**

05/05/2018 01:36 A03MAY18A_4-13 Analyst: MJC **Instrument:** HRP750 Dilution: 1

Prep Batch: 37539 **Prep Date:**

Data File:

Prep Method:

Method:

Prep Aliquot: 16.77 g 03-MAY-18

CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD	J	0.115	pg/g	0.0678	0.726
40321-76-4	1,2,3,7,8-PeCDD	JK	0.210	pg/g	0.0633	3.63
39227-28-6	1,2,3,4,7,8-HxCDD	U	0.0842	pg/g	0.0842	3.63
57653-85-7	1,2,3,6,7,8-HxCDD	J	0.264	pg/g	0.0959	3.63
19408-74-3	1,2,3,7,8,9-HxCDD	J	0.131	pg/g	0.0925	3.63
35822-46-9	1,2,3,4,6,7,8-HpCDD		4.36	pg/g	0.157	3.63
3268-87-9	1,2,3,4,6,7,8,9-OCDD		38.7	pg/g	0.222	7.26
51207-31-9	2,3,7,8-TCDF	J	0.219	pg/g	0.090	0.726
57117-41-6	1,2,3,7,8-PeCDF	J	0.578	pg/g	0.128	3.63
57117-31-4	2,3,4,7,8-PeCDF	J	0.395	pg/g	0.114	3.63
70648-26-9	1,2,3,4,7,8-HxCDF	J	2.05	pg/g	0.057	3.63
57117-44-9	1,2,3,6,7,8-HxCDF	J	0.482	pg/g	0.0591	3.63
60851-34-5	2,3,4,6,7,8-HxCDF	J	0.354	pg/g	0.0588	3.63
72918-21-9	1,2,3,7,8,9-HxCDF	JK	0.190	pg/g	0.0707	3.63
67562-39-4	1,2,3,4,6,7,8-HpCDF	J	3.60	pg/g	0.0943	3.63
55673-89-7	1,2,3,4,7,8,9-HpCDF	J	0.421	pg/g	0.127	3.63
39001-02-0	1,2,3,4,6,7,8,9-OCDF	J	2.03	pg/g	0.142	7.26
41903-57-5	Total TeCDD		0.836	pg/g	0.0678	0.726
36088-22-9	Total PeCDD	JK	1.75	pg/g	0.0633	3.63
34465-46-8	Total HxCDD	J	2.58	pg/g	0.0842	3.63
37871-00-4	Total HpCDD		7.73	pg/g	0.157	3.63
30402-14-3	Total TeCDF	K	1.09	pg/g	0.090	0.726
30402-15-4	Total PeCDF	K	4.76	pg/g	0.0399	3.63
55684-94-1	Total HxCDF	K	7.89	pg/g	0.057	3.63
38998-75-3	Total HpCDF		7.94	pg/g	0.0943	3.63
3333-30-2	TEQ WHO2005 ND=0 with EMPCs		0.925	pg/g		
3333-30-3	TEQ WHO2005 ND=0.5 with EMPCs		0.930	pg/g		

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		122	145	pg/g	83.8	(25%-164%)
13C-1,2,3,7,8-PeCDD		119	145	pg/g	82.0	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		116	145	pg/g	80.1	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		108	145	pg/g	74.6	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		122	145	pg/g	83.9	(23%-140%)
3C-OCDD		244	290	pg/g	83.9	(17%-157%)
3C-2,3,7,8-TCDF		111	145	pg/g	76.7	(24%-169%)
C-1,2,3,7,8-PeCDF		112	145	pg/g	77.2	(24%-185%)
C-2,3,4,7,8-PeCDF		113	145	pg/g	77.6	(21%-178%)
3C-1,2,3,4,7,8-HxCDF		102	145	pg/g	70.4	(26%-152%)
3C-1,2,3,6,7,8-HxCDF		92.4	145	pg/g	63.7	(26%-123%)
3C-2,3,4,6,7,8-HxCDF		101	145	pg/g	69.6	(28%-136%)
3C-1,2,3,7,8,9-HxCDF		103	145	pg/g	70.8	(29%-147%)

Cape Fear Analytical LLC Report Date: May 11, 2018

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

A8D0903 APEX001 APEX00111 SDG Number: Client: **Project:** 04/24/2018 09:20 13267001 **Date Collected:** SOIL Lab Sample ID: Matrix: 1613B Soil 05/02/2018 09:42 %Moisture: 17.8 Date Received: **Client Sample:**

Client ID: GP53-S-0.5 Prep Basis: Dry Weight

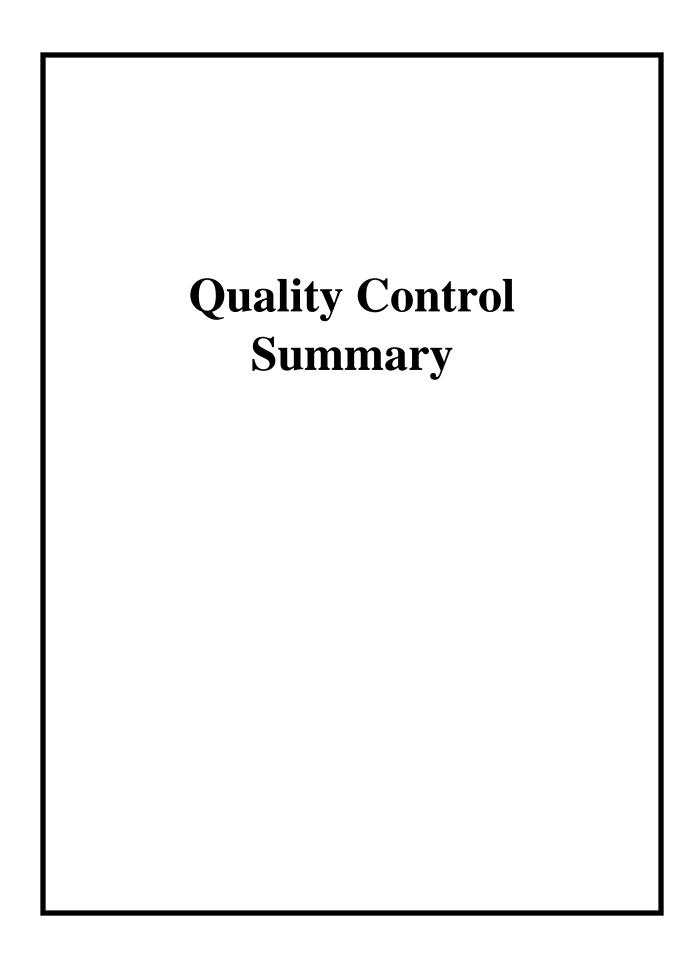
 Batch ID:
 37541
 Method:
 EPA Method 1613B

 Run Date:
 05/05/2018 01:36
 Analyst:
 MJC
 Instrument:
 HRP750

Data File:A03MAY18A_4-13Dilution:1Prep Batch:37539Prep Method:SW846 3540CPrep Date:03-MAY-18Prep Aliquot:16.77 g

CAS No. Parmname Qual Result Units EDL PQL

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1,2,3,4,6,7,8-HpCDF		96.8	145	pg/g	66.7	(28%-143%)
13C-1,2,3,4,7,8,9-HpCDF		103	145	pg/g	70.8	(26%-138%)
37Cl-2,3,7,8-TCDD		15.0	14.5	pg/g	104	(35%-197%)


Comments:

J Value is estimated

K Estimated Maximum Possible Concentration

U Analyte was analyzed for, but not detected above the specified detection limit.

Page 2

Report Date: May 11, 2018 Page 1

of 2

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A8D0903 Matrix Type: SOLID

2021189	LCS for batch 37539		(%)	Limits
		13C-2,3,7,8-TCDD	95.2	(20%-175%)
		13C-1,2,3,7,8-PeCDD	91.6	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD	90.5	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD	85.6	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD	94.8	(22%-166%)
		13C-OCDD	93.4	(13%-199%)
		13C-2,3,7,8-TCDF	83.6	(22%-152%)
		13C-1,2,3,7,8-PeCDF	86.6	(21%-192%)
		13C-2,3,4,7,8-PeCDF	86.5	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF	80.8	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF	71.1	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF	79.5	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF	81.1	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF	73.8	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF	79.3	(20%-186%)
		37Cl-2,3,7,8-TCDD	103	(31%-191%)
2021190	LCSD for batch 37539	13C-2,3,7,8-TCDD	98.1	(20%-175%)
		13C-1,2,3,7,8-PeCDD	92.3	(21%-227%)
		13C-1,2,3,4,7,8-HxCDD	89.2	(21%-193%)
		13C-1,2,3,6,7,8-HxCDD	86.1	(25%-163%)
		13C-1,2,3,4,6,7,8-HpCDD	93.5	(22%-166%)
		13C-OCDD	92.0	(13%-199%)
		13C-2,3,7,8-TCDF	86.3	(22%-152%)
		13C-1,2,3,7,8-PeCDF	88.6	(21%-192%)
		13C-2,3,4,7,8-PeCDF	88.5	(13%-328%)
		13C-1,2,3,4,7,8-HxCDF	79.4	(19%-202%)
		13C-1,2,3,6,7,8-HxCDF	71.9	(21%-159%)
		13C-2,3,4,6,7,8-HxCDF	78.4	(22%-176%)
		13C-1,2,3,7,8,9-HxCDF	80.6	(17%-205%)
		13C-1,2,3,4,6,7,8-HpCDF	72.8	(21%-158%)
		13C-1,2,3,4,7,8,9-HpCDF	78.2	(20%-186%)
		37Cl-2,3,7,8-TCDD	104	(31%-191%)
2021188	MB for batch 37539	13C-2,3,7,8-TCDD	98.0	(25%-164%)
		13C-1,2,3,7,8-PeCDD	94.2	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD	93.0	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD	86.5	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD	98.4	(23%-140%)
		13C-OCDD	98.4	(17%-157%)
		13C-2,3,7,8-TCDF	87.1	(24%-169%)
		13C-1,2,3,7,8-PeCDF	89.6	(24%-185%)
		13C-2,3,4,7,8-PeCDF	87.7	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF	79.4	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF	72.0	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF	78.9	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF	84.7	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF	77.0	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF	82.6	(26%-138%)
		37Cl-2,3,7,8-TCDD	108	(35%-197%)
3267001	GP53-S-0.5	13C-2,3,7,8-TCDD	83.8	(25%-164%)

Report Date: May 11, 2018 Page 2

of 2

Hi-Res Dioxins/Furans Surrogate Recovery Report

SDG Number: A8D0903 Matrix Type: SOLID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
13267001	GP53-S-0.5	13C-1,2,3,7,8-PeCDD		82.0	(25%-181%)
		13C-1,2,3,4,7,8-HxCDD		80.1	(32%-141%)
		13C-1,2,3,6,7,8-HxCDD		74.6	(28%-130%)
		13C-1,2,3,4,6,7,8-HpCDD		83.9	(23%-140%)
		13C-OCDD		83.9	(17%-157%)
		13C-2,3,7,8-TCDF		76.7	(24%-169%)
		13C-1,2,3,7,8-PeCDF		77.2	(24%-185%)
		13C-2,3,4,7,8-PeCDF		77.6	(21%-178%)
		13C-1,2,3,4,7,8-HxCDF		70.4	(26%-152%)
		13C-1,2,3,6,7,8-HxCDF		63.7	(26%-123%)
		13C-2,3,4,6,7,8-HxCDF		69.6	(28%-136%)
		13C-1,2,3,7,8,9-HxCDF		70.8	(29%-147%)
		13C-1,2,3,4,6,7,8-HpCDF		66.7	(28%-143%)
		13C-1,2,3,4,7,8,9-HpCDF		70.8	(26%-138%)
		37Cl-2,3,7,8-TCDD		104	(35%-197%)

^{*} Recovery outside Acceptance Limits

[#] Column to be used to flag recovery values

D Sample Diluted

Report Date:

Page 1

May 11, 2018

of 2

Hi-Res Dioxins/Furans

Quality Control Summary Spike Recovery Report

SDG Number: A8D0903 Sample Type: Laboratory Control Sample

Client ID: LCS for batch 37539 Matrix: SOIL

Lab Sample ID: 12021189

Instrument: HRP750 Analysis Date: 05/04/2018 20:02 Dilution: 1

Analyst: MJC Prep Batch ID:37539

Batch ID: 37541

			Amount Added	Spike Conc.	Recovery	Acceptance
CAS No.		Parmname	pg/g	pg/g	%	Limits
1746-01-6	LCS	2,3,7,8-TCDD	20.0	20.7	103	67-158
40321-76-4	LCS	1,2,3,7,8-PeCDD	100	99.6	99.6	70-142
39227-28-6	LCS	1,2,3,4,7,8-HxCDD	100	96.5	96.5	70-164
57653-85-7	LCS	1,2,3,6,7,8-HxCDD	100	92.4	92.4	76-134
19408-74-3	LCS	1,2,3,7,8,9-HxCDD	100	100	100	64-162
35822-46-9	LCS	1,2,3,4,6,7,8-HpCDD	100	89.5	89.5	70-140
3268-87-9	LCS	1,2,3,4,6,7,8,9-OCDD	200	192	96.2	78-144
51207-31-9	LCS	2,3,7,8-TCDF	20.0	16.3	81.5	75-158
57117-41-6	LCS	1,2,3,7,8-PeCDF	100	87.1	87.1	80-134
57117-31-4	LCS	2,3,4,7,8-PeCDF	100	84.0	84	68-160
70648-26-9	LCS	1,2,3,4,7,8-HxCDF	100	90.4	90.4	72-134
57117-44-9	LCS	1,2,3,6,7,8-HxCDF	100	93.6	93.6	84-130
60851-34-5	LCS	2,3,4,6,7,8-HxCDF	100	89.9	89.9	70-156
72918-21-9	LCS	1,2,3,7,8,9-HxCDF	100	91.6	91.6	78-130
67562-39-4	LCS	1,2,3,4,6,7,8-HpCDF	100	95.2	95.2	82-122
55673-89-7	LCS	1,2,3,4,7,8,9-HpCDF	100	95.3	95.3	78-138
39001-02-0	LCS	1,2,3,4,6,7,8,9-OCDF	200	166	82.9	63-170

Page 2

of 2

Hi-Res Dioxins/Furans

Quality Control Summary Spike Recovery Report

SDG Number: A8D0903 Sample Type: Laboratory Control Sample Duplicate

Client ID: LCSD for batch 37539 Matrix: SOIL

Lab Sample ID: 12021190

Instrument: HRP750 Analysis Date: 05/04/2018 20:50 Dilution: 1

Analyst: MJC Prep Batch ID:37539

Batch ID: 37541

CAS No.		Parmname	Amount Added pg/g	Spike Conc. pg/g	Recovery	Acceptance Limits	RPD %	Acceptance Limits
1746-01-6	LCSD	2,3,7,8-TCDD	20.0	19.9	99.5	67-158	3.76	0-20
40321-76-4	LCSD	1,2,3,7,8-PeCDD	100	100	100	70-142	0.381	0-20
39227-28-6	LCSD	1,2,3,4,7,8-HxCDD	100	96.7	96.7	70-164	0.190	0-20
57653-85-7	LCSD	1,2,3,6,7,8-HxCDD	100	94.8	94.8	76-134	2.63	0-20
19408-74-3	LCSD	1,2,3,7,8,9-HxCDD	100	102	102	64-162	1.56	0-20
35822-46-9	LCSD	1,2,3,4,6,7,8-HpCDD	100	90.3	90.3	70-140	0.890	0-20
3268-87-9	LCSD	1,2,3,4,6,7,8,9-OCDD	200	194	97	78-144	0.789	0-20
51207-31-9	LCSD	2,3,7,8-TCDF	20.0	16.5	82.3	75-158	1.01	0-20
57117-41-6	LCSD	1,2,3,7,8-PeCDF	100	85.9	85.9	80-134	1.42	0-20
57117-31-4	LCSD	2,3,4,7,8-PeCDF	100	86.1	86.1	68-160	2.53	0-20
70648-26-9	LCSD	1,2,3,4,7,8-HxCDF	100	90.6	90.6	72-134	0.159	0-20
57117-44-9	LCSD	1,2,3,6,7,8-HxCDF	100	92.6	92.6	84-130	1.04	0-20
60851-34-5	LCSD	2,3,4,6,7,8-HxCDF	100	91.9	91.9	70-156	2.22	0-20
72918-21-9	LCSD	1,2,3,7,8,9-HxCDF	100	91.1	91.1	78-130	0.523	0-20
67562-39-4	LCSD	1,2,3,4,6,7,8-HpCDF	100	97.3	97.3	82-122	2.11	0-20
55673-89-7	LCSD	1,2,3,4,7,8,9-HpCDF	100	98.3	98.3	78-138	3.07	0-20
39001-02-0	LCSD	1,2,3,4,6,7,8,9-OCDF	200	168	83.8	63-170	1.01	0-20

Report Date:

May 11, 2018

Method Blank Summary

Page 1

of 1

SDG Number: A8D0903

MB for batch 37539

APEX001 **Client:** Instrument ID: HRP750

Matrix:

SOIL Data File: A03MAY18A_4-8

Client ID: Lab Sample ID: 12021188

Prep Date:

03-MAY-18

Analyzed: 05/04/18 21:38

Column:

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed	
01 LCS for batch 37539	12021189	A03MAY18A_4-6	05/04/18	2002	
02 LCSD for batch 37539	12021190	A03MAY18A_4-7	05/04/18	2050	
03 GP53-S-0.5	13267001	A03MAY18A_4-13	05/05/18	0136	

A8D0903

12021188

37541

QC for batch 37539

MB for batch 37539

05/04/2018 21:38

Report Date:

Page 1

May 11, 2018

of 2

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

MJC

Client:

APEX001

Project: Matrix:

APEX00111

SOIL

1

As Received

Prep Basis: Instrument:

HRP750

Data File: A03MAY18A_4-8 Prep Batch:

SDG Number:

Lab Sample ID:

Client Sample:

Client ID:

Batch ID:

Run Date:

37539

Prep Method:

Method:

Analyst:

SW846 3540C

EPA Method 1613B

Dilution:

Prep Aliquot: 10 g **Prep Date:** 03-MAY-18

CAS No. **EDL PQL Parmname** Qual Result Units 1746-01-6 0.072 2,3,7,8-TCDD U pg/g 0.072 1.00 40321-76-4 1,2,3,7,8-PeCDD U 0.0822 0.0822 5.00 pg/g U 39227-28-6 1,2,3,4,7,8-HxCDD 0.0976 pg/g0.0976 5.00 57653-85-7 1,2,3,6,7,8-HxCDD U 0.0952 0.0952 5.00 pg/g 19408-74-3 1,2,3,7,8,9-HxCDD 0.0988 U pg/g 0.0988 5.00 U 0.115 0.115 35822-46-9 1,2,3,4,6,7,8-HpCDD 5.00 pg/g 3268-87-9 1,2,3,4,6,7,8,9-OCDD 0.560 0.214 10.0 pg/g 51207-31-9 2,3,7,8-TCDF U 0.0764 0.0764 1.00 pg/g U 57117-41-6 1,2,3,7,8-PeCDF 0.0572 pg/g 0.0572 5.00 57117-31-4 2,3,4,7,8-PeCDF U 0.0536 0.0536 5.00 pg/g 70648-26-9 1,2,3,4,7,8-HxCDF U 0.0618 0.0618 5.00 pg/g U 0.0632 0.0632 57117-44-9 1,2,3,6,7,8-HxCDF pg/g 5.00 60851-34-5 2,3,4,6,7,8-HxCDF U 0.065 0.065 5.00 pg/g 72918-21-9 1,2,3,7,8,9-HxCDF U 0.0748 0.0748 5.00 pg/g U 1,2,3,4,6,7,8-HpCDF 0.0762 0.0762 5.00 67562-39-4 pg/g 55673-89-7 1,2,3,4,7,8,9-HpCDF U 0.108 0.108 5.00 pg/g 39001-02-0 1,2,3,4,6,7,8,9-OCDF U 0.151 0.151 10.0 pg/g U Total TeCDD 0.072 0.072 1.00 41903-57-5 pg/g Total PeCDD U 0.0822 0.0822 36088-22-9 5.00 pg/g 34465-46-8 Total HxCDD U 0.0952 0.0952 pg/g 5.00 U 37871-00-4 Total HpCDD 0.115 pg/g 0.115 5.00 30402-14-3 Total TeCDF 0.0764 0.0764 U 1.00 pg/g 30402-15-4 Total PeCDF U 0.041 0.041 5.00 pg/g 55684-94-1 Total HxCDF U 0.0618 0.0618 5.00 pg/g 38998-75-3 0.0762 Total HpCDF U 0.0762 5.00 pg/g TEQ WHO2005 ND=0 with EMPCs 0.000168 3333-30-2 pg/g 3333-30-3 TEQ WHO2005 ND=0.5 with EMPCs 0.119 pg/g

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		196	200	pg/g	98.0	(25%-164%)
13C-1,2,3,7,8-PeCDD		188	200	pg/g	94.2	(25%-181%)
13C-1,2,3,4,7,8-HxCDD		186	200	pg/g	93.0	(32%-141%)
13C-1,2,3,6,7,8-HxCDD		173	200	pg/g	86.5	(28%-130%)
13C-1,2,3,4,6,7,8-HpCDD		197	200	pg/g	98.4	(23%-140%)
3C-OCDD		394	400	pg/g	98.4	(17%-157%)
3C-2,3,7,8-TCDF		174	200	pg/g	87.1	(24%-169%)
3C-1,2,3,7,8-PeCDF		179	200	pg/g	89.6	(24%-185%)
C-2,3,4,7,8-PeCDF		175	200	pg/g	87.7	(21%-178%)
3C-1,2,3,4,7,8-HxCDF		159	200	pg/g	79.4	(26%-152%)
3C-1,2,3,6,7,8-HxCDF		144	200	pg/g	72.0	(26%-123%)
3C-2,3,4,6,7,8-HxCDF		158	200	pg/g	78.9	(28%-136%)
3C-1,2,3,7,8,9-HxCDF		169	200	pg/g	84.7	(29%-147%)

Cape Fear Analytical LLC Report Date: May 11, 2018

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

SDG Number: A8D0903 Client: APEX001 Project: APEX00111
Lab Sample ID: 12021188 APEX001 Project: APEX00111

Client Sample: QC for batch 37539
Client ID: MB for batch 37539
Prep Basis: As Received

Batch ID: 37541 Method: EPA Method 1613B

Run Date: 05/04/2018 21:38 Analyst: MJC Instrument: HRP750
Data File: A03MAY18A_4-8 Dilution: 1
Prep Batch: 37539 Prep Method: SW846 3540C

Prep Date: 03-MAY-18 Prep Aliquot: 10 g

CAS No. Parmname Qual Result Units EDL PQL

Surrogate/Tracer recovery Units Recovery% **Acceptable Limits** Qual Result Nominal 13C-1,2,3,4,6,7,8-HpCDF 154 200 77.0 (28%-143%) pg/g 13C-1,2,3,4,7,8,9-HpCDF 165 200 82.6 (26%-138%) pg/g 37Cl-2,3,7,8-TCDD 21.6 20.0 108 (35%-197%) pg/g

Comments:

Page 2

J Value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

MJC

APEX001 SDG Number: A8D0903 Client: **Project:** APEX00111 12021189 SOIL Lab Sample ID: Matrix: QC for batch 37539 **Client Sample:** LCS for batch 37539 As Received **Client ID: Prep Basis: Batch ID:** 37541 Method: EPA Method 1613B

Analyst: Data File: A03MAY18A_4-6

05/04/2018 20:02

Run Date:

SW846 3540C 37539 Prep Method: Prep Batch:

Prep Date:	03-MAY-18	Prep Aliquot:	10 g				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
1746-01-6	2,3,7,8-TCDD		20.7	pg/g	0.0482	1.00	
40321-76-4	1,2,3,7,8-PeCDD		99.6	pg/g	0.0922	5.00	
39227-28-6	1,2,3,4,7,8-HxCDD		96.5	pg/g	0.173	5.00	
57653-85-7	1,2,3,6,7,8-HxCDD		92.4	pg/g	0.172	5.00	
19408-74-3	1,2,3,7,8,9-HxCDD		100	pg/g	0.177	5.00	
35822-46-9	1,2,3,4,6,7,8-HpCDD		89.5	pg/g	0.348	5.00	
3268-87-9	1,2,3,4,6,7,8,9-OCDD		192	pg/g	0.204	10.0	
51207-31-9	2,3,7,8-TCDF		16.3	pg/g	0.0654	1.00	
57117-41-6	1,2,3,7,8-PeCDF		87.1	pg/g	0.0956	5.00	
57117-31-4	2,3,4,7,8-PeCDF		84.0	pg/g	0.0876	5.00	
70648-26-9	1,2,3,4,7,8-HxCDF		90.4	pg/g	0.177	5.00	
57117-44-9	1,2,3,6,7,8-HxCDF		93.6	pg/g	0.187	5.00	
60851-34-5	2,3,4,6,7,8-HxCDF		89.9	pg/g	0.179	5.00	
72918-21-9	1,2,3,7,8,9-HxCDF		91.6	pg/g	0.226	5.00	
67562-39-4	1,2,3,4,6,7,8-HpCDF		95.2	pg/g	0.276	5.00	
55673-89-7	1,2,3,4,7,8,9-HpCDF		95.3	pg/g	0.390	5.00	
39001-02-0	1,2,3,4,6,7,8,9-OCDF		166	pg/g	0.167	10.0	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		190	200	pg/g	95.2	(20%-175%)
13C-1,2,3,7,8-PeCDD		183	200	pg/g	91.6	(21%-227%)
13C-1,2,3,4,7,8-HxCDD		181	200	pg/g	90.5	(21%-193%)
13C-1,2,3,6,7,8-HxCDD		171	200	pg/g	85.6	(25%-163%)
13C-1,2,3,4,6,7,8-HpCDD		190	200	pg/g	94.8	(22%-166%)
13C-OCDD		374	400	pg/g	93.4	(13%-199%)
13C-2,3,7,8-TCDF		167	200	pg/g	83.6	(22%-152%)
13C-1,2,3,7,8-PeCDF		173	200	pg/g	86.6	(21%-192%)
13C-2,3,4,7,8-PeCDF		173	200	pg/g	86.5	(13%-328%)
13C-1,2,3,4,7,8-HxCDF		162	200	pg/g	80.8	(19%-202%)
13C-1,2,3,6,7,8-HxCDF		142	200	pg/g	71.1	(21%-159%)
13C-2,3,4,6,7,8-HxCDF		159	200	pg/g	79.5	(22%-176%)
13C-1,2,3,7,8,9-HxCDF		162	200	pg/g	81.1	(17%-205%)
13C-1,2,3,4,6,7,8-HpCDF		148	200	pg/g	73.8	(21%-158%)
13C-1,2,3,4,7,8,9-HpCDF		159	200	pg/g	79.3	(20%-186%)
37Cl-2,3,7,8-TCDD		20.6	20.0	pg/g	103	(31%-191%)

Comments:

Page 1

HRP750

1

Instrument:

Dilution:

Analyte was analyzed for, but not detected above the specified detection limit.

Hi-Res Dioxins/Furans Certificate of Analysis Sample Summary

A8D0903 APEX001 SDG Number: Client: **Project:** APEX00111 12021190 SOIL Lab Sample ID: Matrix: QC for batch 37539 **Client Sample: Client ID:** LCSD for batch 37539 **Prep Basis:** As Received **Batch ID:** 37541 Method: EPA Method 1613B 05/04/2018 20:50 Analyst: **Instrument:** HRP750 **Run Date:** MJC

 Data File:
 A03MAY18A_4-7

 Prep Batch:
 37539

 Prep Method:
 SW846 3540C

Prep Date: 03-MAY-18 Prep Aliquot: 10 g

Prep Date:	03-MAY-18	Frep Anquot:	10 g			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL
1746-01-6	2,3,7,8-TCDD		19.9	pg/g	0.0402	1.00
40321-76-4	1,2,3,7,8-PeCDD		100	pg/g	0.085	5.00
39227-28-6	1,2,3,4,7,8-HxCDD		96.7	pg/g	0.117	5.00
57653-85-7	1,2,3,6,7,8-HxCDD		94.8	pg/g	0.117	5.00
19408-74-3	1,2,3,7,8,9-HxCDD		102	pg/g	0.120	5.00
35822-46-9	1,2,3,4,6,7,8-HpCDD		90.3	pg/g	0.362	5.00
3268-87-9	1,2,3,4,6,7,8,9-OCDD		194	pg/g	0.222	10.0
51207-31-9	2,3,7,8-TCDF		16.5	pg/g	0.0638	1.00
57117-41-6	1,2,3,7,8-PeCDF		85.9	pg/g	0.099	5.00
57117-31-4	2,3,4,7,8-PeCDF		86.1	pg/g	0.0856	5.00
70648-26-9	1,2,3,4,7,8-HxCDF		90.6	pg/g	0.148	5.00
57117-44-9	1,2,3,6,7,8-HxCDF		92.6	pg/g	0.161	5.00
60851-34-5	2,3,4,6,7,8-HxCDF		91.9	pg/g	0.168	5.00
72918-21-9	1,2,3,7,8,9-HxCDF		91.1	pg/g	0.204	5.00
67562-39-4	1,2,3,4,6,7,8-HpCDF		97.3	pg/g	0.272	5.00
55673-89-7	1,2,3,4,7,8,9-HpCDF		98.3	pg/g	0.372	5.00
39001-02-0	1,2,3,4,6,7,8,9-OCDF		168	pg/g	0.186	10.0

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-2,3,7,8-TCDD		196	200	pg/g	98.1	(20%-175%)
13C-1,2,3,7,8-PeCDD		185	200	pg/g	92.3	(21%-227%)
13C-1,2,3,4,7,8-HxCDD		178	200	pg/g	89.2	(21%-193%)
13C-1,2,3,6,7,8-HxCDD		172	200	pg/g	86.1	(25%-163%)
13C-1,2,3,4,6,7,8-HpCDD		187	200	pg/g	93.5	(22%-166%)
13C-OCDD		368	400	pg/g	92.0	(13%-199%)
13C-2,3,7,8-TCDF		173	200	pg/g	86.3	(22%-152%)
13C-1,2,3,7,8-PeCDF		177	200	pg/g	88.6	(21%-192%)
13C-2,3,4,7,8-PeCDF		177	200	pg/g	88.5	(13%-328%)
13C-1,2,3,4,7,8-HxCDF		159	200	pg/g	79.4	(19%-202%)
13C-1,2,3,6,7,8-HxCDF		144	200	pg/g	71.9	(21%-159%)
13C-2,3,4,6,7,8-HxCDF		157	200	pg/g	78.4	(22%-176%)
13C-1,2,3,7,8,9-HxCDF		161	200	pg/g	80.6	(17%-205%)
13C-1,2,3,4,6,7,8-HpCDF		146	200	pg/g	72.8	(21%-158%)
13C-1,2,3,4,7,8,9-HpCDF		156	200	pg/g	78.2	(20%-186%)
37Cl-2,3,7,8-TCDD		20.9	20.0	pg/g	104	(31%-191%)

Comments:

Page 1

Dilution:

1

U Analyte was analyzed for, but not detected above the specified detection limit.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Thursday, May 24, 2018

Heather Good Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301 Bellingham, WA 98225

RE: A8E0130 - 0624.04.10-03--Northern State Hospital - [none]

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A8E0130, which was received by the laboratory on 5/3/2018 at 3:43:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: ldomenighini@apex-labs.com, or by phone at 503-718-2323.

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Assa & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORM	ATION	
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
HA30-S-0.5	A8E0130-01	Soil	04/30/18 10:50	05/03/18 15:43
HA30-S-1.0	A8E0130-02	Soil	04/30/18 11:00	05/03/18 15:43
HA31-S-0.5	A8E0130-03	Soil	04/30/18 11:20	05/03/18 15:43
HA31-S-1.0	A8E0130-04	Soil	04/30/18 11:30	05/03/18 15:43
HA32-S-0.5	A8E0130-05	Soil	04/30/18 12:00	05/03/18 15:43
HA32-S-1.0	A8E0130-06	Soil	04/30/18 12:05	05/03/18 15:43
HA21-S-1.5	A8E0130-07	Soil	04/30/18 12:20	05/03/18 15:43
HA33-S-0.5	A8E0130-08	Soil	04/30/18 12:35	05/03/18 15:43
HA33-S-1.0	A8E0130-09	Soil	04/30/18 12:40	05/03/18 15:43
HA33-S-1.5	A8E0130-10	Soil	04/30/18 12:45	05/03/18 15:43
HA34-S-0.5	A8E0130-11	Soil	04/30/18 13:30	05/03/18 15:43
HA34-S-1.0	A8E0130-12	Soil	04/30/18 13:35	05/03/18 15:43
HA34-S-1.5	A8E0130-13	Soil	04/30/18 13:40	05/03/18 15:43
HA28-S-1.5	A8E0130-14	Soil	04/30/18 13:20	05/03/18 15:43
HA26-S-1.5	A8E0130-15	Soil	04/30/18 14:15	05/03/18 15:43
HA35-S-0.5	A8E0130-16	Soil	04/30/18 14:40	05/03/18 15:43
HA35-S-1.0	A8E0130-17	Soil	04/30/18 14:45	05/03/18 15:43
HA35-S-1.5	A8E0130-18	Soil	04/30/18 14:50	05/03/18 15:43
DU09-S-0.5 (As Received)	A8E0130-19	Soil	04/30/18 15:00	05/03/18 15:43
DU09-S-0.5 (After Processing)	A8E0130-20	Soil	04/30/18 15:00	05/03/18 15:43
SS96-S-0.5	A8E0130-21	Soil	04/30/18 15:30	05/03/18 15:43
SS97-S-0.5	A8E0130-22	Soil	04/30/18 15:35	05/03/18 15:43
SS98-S-0.5	A8E0130-23	Soil	04/30/18 15:50	05/03/18 15:43
SS99-S-0.5	A8E0130-24	Soil	04/30/18 16:20	05/03/18 15:43
SS100-S-0.5	A8E0130-25	Soil	04/30/18 16:30	05/03/18 15:43
MW09-GW-050118	A8E0130-26	Water	05/01/18 12:50	05/03/18 15:43
MW10-GW-050118	A8E0130-27	Water	05/01/18 14:15	05/03/18 15:43
MWDUP-GW-050118	A8E0130-28	Water	05/01/18 14:15	05/03/18 15:43
MW11-GW-050118	A8E0130-29	Water	05/01/18 15:20	05/03/18 15:43

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-BellinghamProject:0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

ANALYTICAL CASE NARRATIVE

Work Order: A8E0130

Amended Report

Missing Analyte-

This report has been amended due to not reporting vinyl chloride on the original report.

Lisa Domenighini Client Services Manager 5-24-18

Amended Report

MDL reporting-

This report has been amended to reflect MDL reporting.

Lisa Domenighini Client Services Manager 5-23-18

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

ANALYTICAL SAMPLE RESULTS

	Halogen	ated Volatile	Organic Co	ompounds by E	PA 8260	<u>C</u>		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW09-GW-050118 (A8E0130-26)			Matrix:	Water		Batch: 8050)444	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Vinyl chloride	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97%	Limits: 80-120 %	1	05/04/18	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	05/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	05/04/18	EPA 8260C	
MW10-GW-050118 (A8E0130-27)			Matrix:	Water		Batch: 8050)444	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Tetrachloroethene (PCE)	22.8	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Trichloroethene (TCE)	1.34	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Vinyl chloride	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	1	05/04/18	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	05/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	05/04/18	EPA 8260C	
MWDUP-GW-050118 (A8E0130-28)			Matrix:	Water		Batch: 8050)444	
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Tetrachloroethene (PCE)	23.0	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Trichloroethene (TCE)	1.38	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Vinyl chloride	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 101 %	Limits: 80-120 %	1	05/04/18	EPA 8260C	
Toluene-d8 (Surr)			98 %	80-120 %	1	05/04/18	EPA 8260C	
4-Bromofluorobenzene (Surr)			100 %	80-120 %		05/04/18	EPA 8260C	
MW11-GW-050118 (A8E0130-29)		Matrix: Water		Water		Batch: 8050444		
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa A Jamenghini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

ANALYTICAL SAMPLE RESULTS

	Halogenated Volatile Organic Compounds by EPA 8260C										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
MW11-GW-050118 (A8E0130-29)			Matrix:	Water		Batch: 8050	444				
Vinyl chloride	ND	0.200	0.400	ug/L	1	05/04/18	EPA 8260C				
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery	v: 101 %	Limits: 80-120 %	5 1	05/04/18	EPA 8260C				
Toluene-d8 (Surr)			98 %	80-120 %	5 1	05/04/18	EPA 8260C				
4-Bromofluorobenzene (Surr)			99 %	80-120 %	5 1	05/04/18	EPA 8260C				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

 $\underline{\textbf{Maul Foster \& Alongi, INC-Bellingham}}$

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]

Project Manager: Heather Good

Report ID: A8E0130 - 05 24 18 1120

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 6	020 (ICPMS)				
	Sample	Detection	Reporting	***	Dil di	Date	M 4 1D 6	N
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
HA30-S-0.5 (A8E0130-01)			Matrix:	Soil				
Batch: 8050684	1.11	0.106	0.272	71 1	10	05/14/10	EDA (020 A	
Lead	141	0.186	0.372	mg/kg dry	10	05/14/18	EPA 6020A	
HA30-S-1.0 (A8E0130-02)			Matrix:	Soil				
Batch: 8050684								
Lead	50.8	0.130	0.261	mg/kg dry	10	05/14/18	EPA 6020A	
HA31-S-0.5 (A8E0130-03)			Matrix:	Soil				
Batch: 8050684								
Lead	15.8	0.114	0.229	mg/kg dry	10	05/14/18	EPA 6020A	
HA31-S-1.0 (A8E0130-04)			Matrix:	Soil				
Batch: 8050684								
Lead	17.5	0.112	0.225	mg/kg dry	10	05/14/18	EPA 6020A	
HA32-S-0.5 (A8E0130-05)			Matrix:	Soil				
Batch: 8050684								
Lead	105	0.154	0.307	mg/kg dry	10	05/14/18	EPA 6020A	
HA32-S-1.0 (A8E0130-06)			Matrix:	Soil				
Batch: 8050684								
Lead	16.9	0.133	0.266	mg/kg dry	10	05/14/18	EPA 6020A	
HA21-S-1.5 (A8E0130-07)			Matrix:	Soil				
Batch: 8050684								
Lead	257	0.129	0.258	mg/kg dry	10	05/14/18	EPA 6020A	
HA33-S-0.5 (A8E0130-08)			Matrix:	Soil				
Batch: 8050684								
Lead	29.4	0.172	0.345	mg/kg dry	10	05/14/18	EPA 6020A	
HA33-S-1.0 (A8E0130-09)			Matrix:	Soil				
Batch: 8050684								
Lead	10.9	0.108	0.216	mg/kg dry	10	05/14/18	EPA 6020A	
HA33-S-1.5 (A8E0130-10)			Matrix:	Soil				
Batch: 8050684		·			·			
Lead	7.21	0.110	0.220	mg/kg dry	10	05/14/18	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]

Project Manager: Heather Good A8E0130 - 05 24 18 1120

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 60	020 (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
HA34-S-0.5 (A8E0130-11)			Matrix: S	Soil				
Batch: 8050684								
Lead	107	0.162	0.323	mg/kg dry	10	05/14/18	EPA 6020A	
HA34-S-1.0 (A8E0130-12)			Matrix: S	Soil				
Batch: 8050684								
Lead	71.7	0.144	0.288	mg/kg dry	10	05/14/18	EPA 6020A	
HA34-S-1.5 (A8E0130-13)			Matrix: S	Soil				
Batch: 8050684								
Lead	53.2	0.148	0.295	mg/kg dry	10	05/14/18	EPA 6020A	
HA28-S-1.5 (A8E0130-14)			Matrix: S	Soil				
Batch: 8050684								
Lead	159	0.143	0.286	mg/kg dry	10	05/14/18	EPA 6020A	
HA26-S-1.5 (A8E0130-15)			Matrix: S	Soil				
Batch: 8050684								
Lead	307	0.126	0.253	mg/kg dry	10	05/14/18	EPA 6020A	
HA35-S-0.5 (A8E0130-16)			Matrix: S	Soil				
Batch: 8050684								
Lead	112	0.159	0.318	mg/kg dry	10	05/14/18	EPA 6020A	
HA35-S-1.0 (A8E0130-17)			Matrix: S	Soil				
Batch: 8050727								
Lead	46.4	0.138	0.276	mg/kg dry	10	05/14/18	EPA 6020A	
HA35-S-1.5 (A8E0130-18)			Matrix: S	Soil				
Batch: 8050727								
Lead	42.1	0.135	0.269	mg/kg dry	10	05/14/18	EPA 6020A	
DU09-S-0.5 (After Processing) (A8E	0130-20)		Matrix: S	Soil				
Batch: 8050640								
Arsenic	13.1	0.537	1.07	mg/kg dry	10	05/12/18	EPA 6020A	
Barium	140	0.537	1.07	mg/kg dry	10	05/12/18	EPA 6020A	Q-42
Cadmium	0.408	0.107	0.215	mg/kg dry	10	05/12/18	EPA 6020A	Q-42
Chromium	73.0	0.537	1.07	mg/kg dry	10	05/12/18	EPA 6020A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301

Bellingham, WA 98225

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 **EPA ID: OR01039**

AMENDED REPORT

Project: 0624.04.10-03--Northern State Hospital

Project Number: [none] Report ID: A8E0130 - 05 24 18 1120

Project Manager: Heather Good

ANALYTICAL SAMPLE RESULTS

		Total Met	als by EPA 60	020 (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU09-S-0.5 (After Processing	g) (A8E0130-20)		Matrix: S	Soil				
Copper	49.6	1.07	2.15	mg/kg dry	10	05/12/18	EPA 6020A	
Lead	26.2	0.107	0.215	mg/kg dry	10	05/12/18	EPA 6020A	
Mercury	ND	0.473	0.473	mg/kg dry	10	05/12/18	EPA 6020A	R-0
Selenium	ND	0.537	1.07	mg/kg dry	10	05/12/18	EPA 6020A	Q-4
Silver	ND	0.537	1.07	mg/kg dry	10	05/12/18	EPA 6020A	
Zinc	112	2.15	4.30	mg/kg dry	10	05/12/18	EPA 6020A	Q-42

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Ava & Somerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

<u>Maul Foster & Alongi, INC-Bellingham</u> 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]
Project Manager: Heather Good

Report ID: A8E0130 - 05 24 18 1120

ANALYTICAL SAMPLE RESULTS

Percent Dry Weight											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
HA30-S-0.5 (A8E0130-01)			Matrix:	Soil		Batch: 8050539					
% Solids	59.4	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA30-S-1.0 (A8E0130-02)			Matrix:	Batch: 8050539							
% Solids	78.5	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA31-S-0.5 (A8E0130-03)			Matrix:	Soil		Batch: 8050)539				
% Solids	88.6	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA31-S-1.0 (A8E0130-04)			Matrix:	Soil		Batch: 8050)539				
% Solids	88.5	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA32-S-0.5 (A8E0130-05)			Matrix:	Soil		Batch: 8050)539				
% Solids	70.9	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA32-S-1.0 (A8E0130-06)			Matrix:	Soil		Batch: 8050)539				
% Solids	78.1	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA21-S-1.5 (A8E0130-07)			Matrix:		Batch: 8050539						
% Solids	75.0	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA33-S-0.5 (A8E0130-08)			Matrix:	Soil		Batch: 8050	539				
% Solids	60.2	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA33-S-1.0 (A8E0130-09)			Matrix:	Soil		Batch: 8050)539				
% Solids	90.8	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA33-S-1.5 (A8E0130-10)			Matrix:	Soil		Batch: 8050)539				
% Solids	92.0	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA34-S-0.5 (A8E0130-11)			Matrix:	Soil		Batch: 8050)539				
% Solids	68.2	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA34-S-1.0 (A8E0130-12)			Matrix:	Soil		Batch: 8050)539				
% Solids	72.4	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				
HA34-S-1.5 (A8E0130-13)			Matrix:	Soil		Batch: 8050539					
% Solids	72.2	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]

Project Manager: Heather Good

Report ID: A8E0130 - 05 24 18 1120

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight						
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
HA28-S-1.5 (A8E0130-14)			Matrix:	Soil	Batch: 8050539					
% Solids	75.2	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C			
HA26-S-1.5 (A8E0130-15)			Matrix:		Batch: 8050539					
% Solids	78.2	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C			
HA35-S-0.5 (A8E0130-16)			Soil							
% Solids	67.7	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C			
HA35-S-1.0 (A8E0130-17)			Matrix:	Soil	Batch: 8050539					
% Solids	75.3	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C			
HA35-S-1.5 (A8E0130-18)		Matrix: Soil				Batch: 8050539				
% Solids	79.3	1.00	1.00	% by Weight	1	05/09/18	EPA 8000C			
DU09-S-0.5 (After Processing) (A8E	E0130-20)		Matrix:	Soil		Batch: 8050	0631			
% Solids	96.8	1.00	1.00	% by Weight	1	05/11/18	EPA 8000C			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Awa & Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

QUALITY CONTROL (QC) SAMPLE RESULTS

Halogenated Volatile Organic Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Note
Batch 8050444 - EPA 5030B							Wat	er				
Blank (8050444-BLK1)			Prepared	d: 05/04/18	09:11 Anal	yzed: 05/04/	/18 10:32					
EPA 8260C												
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1							
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1							
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1							
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1							
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1							
Vinyl chloride	ND	0.200	0.400	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Recov	ery: 102 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
LCS (8050444-BS1)			Prepared	1: 05/04/18	09:11 Anal	yzed: 05/04/	/18 09:38					
EPA 8260C			1			-						
1,1-Dichloroethene	24.1	0.200	0.400	ug/L	1	20.0		120	80-120%			
cis-1,2-Dichloroethene	19.0	0.200	0.400	ug/L	1	20.0		95	80-120%			
trans-1,2-Dichloroethene	18.4	0.200	0.400	ug/L	1	20.0		92	80-120%			
Tetrachloroethene (PCE)	20.0	0.200	0.400	ug/L	1	20.0		100	80-120%			
Trichloroethene (TCE)	18.5	0.200	0.400	ug/L	1	20.0		92	80-120%			
Vinyl chloride	17.4	0.200	0.400	ug/L	1	20.0		87	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 93 %	Limits: 80-120 %		Dilution: 1x						
Toluene-d8 (Surr)			99 %	80-120 %		"						
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
Duplicate (8050444-DUP1)			Prepared	1: 05/04/18	10:23 Anal	yzed: 05/04/	/18 12:49					
QC Source Sample: MW09-GW-0	50118 (A8E	(0130-26)										
EPA 8260C												
1,1-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
cis-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
trans-1,2-Dichloroethene	ND	0.200	0.400	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Trichloroethene (TCE)	ND	0.200	0.400	ug/L	1		ND				30%	
Vinyl chloride	ND	0.200	0.400	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)	Recovery: 98 %		Limits: 80-120 %		Dilı	ution: 1x						
Toluene-d8 (Surr)			99 %	80	0-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Josa A Zmenighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

QUALITY CONTROL (QC) SAMPLE RESULTS

Halogenated Volatile Organic Compounds by EPA 8260C												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REG	% REC Limits	RPD	RPD Limit	Notes
Batch 8050444 - EPA 5030B							Wat	er				
Duplicate (8050444-DUP1)			Prepared	d: 05/04/18	10:23 Ana	lyzed: 05/04	/18 12:49					
OC Source Sample: MW09-GW-0	50118 (A8E	0130-26)										
Surr: 4-Bromofluorobenzene (Surr)		Recov	very: 101 %	Limits: 80	0-120 %	Dili	ution: 1x					
Matrix Spike (8050444-MS1)			Prepared	1: 05/04/18	10:23 Ana	lyzed: 05/04	/18 15:12					
QC Source Sample: MW11-GW-05	50118 (A8E	0130-29)										
EPA 8260C												
1,1-Dichloroethene	17.1	0.200	0.400	ug/L	1	20.0	ND	86	71-131%			
cis-1,2-Dichloroethene	20.6	0.200	0.400	ug/L	1	20.0	ND	103	78-123%			
trans-1,2-Dichloroethene	20.2	0.200	0.400	ug/L	1	20.0	ND	101	75-124%			
Tetrachloroethene (PCE)	20.9	0.200	0.400	ug/L	1	20.0	ND	104	74-129%			
Trichloroethene (TCE)	19.1	0.200	0.400	ug/L	1	20.0	ND	95	79-123%			
Vinyl chloride	18.7	0.200	0.400	ug/L	1	20.0	ND	94	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 96 %	Limits: 80	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			98 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
Matrix Spike (8050444-MS2)			Prepared	d: 05/04/18	10:23 Ana	lyzed: 05/04	/18 17:08					
OC Source Sample: Non-SDG (A8	E0146-01)											
EPA 8260C												
1,1-Dichloroethene	17.0	0.200	0.400	ug/L	1	20.0	ND	85	71-131%			
cis-1,2-Dichloroethene	19.9	0.200	0.400	ug/L	1	20.0	ND	99	78-123%			
trans-1,2-Dichloroethene	20.0	0.200	0.400	ug/L	1	20.0	ND	100	75-124%			
Tetrachloroethene (PCE)	20.2	0.200	0.400	ug/L	1	20.0	ND	101	74-129%			
Trichloroethene (TCE)	18.8	0.200	0.400	ug/L	1	20.0	ND	94	79-123%			
Vinyl chloride	18.7	0.200	0.400	ug/L	1	20.0	ND	94	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 95 %	Limits: 80	0-120 %	Dili	ution: 1x					
Toluene-d8 (Surr)			97 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	0-120 %		"					
Matrix Spike (8050444-MS3)			Prepared	d: 05/04/18	17:00 Ana	lyzed: 05/04	/18 20:23					
QC Source Sample: Non-SDG (A8	E0156-01)											
EPA 8260C												
1,1-Dichloroethene	222	2.00	4.00	ug/L	10	200	ND	111	71-131%			
cis-1,2-Dichloroethene	198	2.00	4.00	ug/L	10	200	ND	99	78-123%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

QUALITY CONTROL (QC) SAMPLE RESULTS

		Haloge	nated Vola	tile Orga	nic Comp	ounds by	EPA 826	30C				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050444 - EPA 5030B							Wat	er				
Matrix Spike (8050444-MS3)			Prepared	1: 05/04/18	17:00 Ana	lyzed: 05/04/	18 20:23					
OC Source Sample: Non-SDG (A8	E0156-01)											
trans-1,2-Dichloroethene	195	2.00	4.00	ug/L	10	200	ND	98	75-124%			
Tetrachloroethene (PCE)	203	2.00	4.00	ug/L	10	200	ND	101	74-129%			
Trichloroethene (TCE)	187	2.00	4.00	ug/L	10	200	ND	94	79-123%			
Vinyl chloride	188	2.00	4.00	ug/L	10	200	ND	94	58-137%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 95 %	Limits: 80	0-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			97 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			101 %	80	-120 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total I	Metals by	EPA 602	0 (ICPMS))					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050640 - EPA 3051A							Soil					
Blank (8050640-BLK1)			Prepared	: 05/10/18 0	9:58 Ana	lyzed: 05/11/	/18 23:32					
EPA 6020A												
Arsenic	ND	0.481	0.962	mg/kg we	t 10							
Barium	ND	0.481	0.962	mg/kg we	t 10							
Cadmium	ND	0.0962	0.192	mg/kg we	t 10							
Chromium	ND	0.481	0.962	mg/kg we	t 10							
Copper	ND	0.962	1.92	mg/kg we	t 10							
Lead	ND	0.0962	0.192	mg/kg we	t 10							
Mercury	ND	0.0385	0.0769	mg/kg we	t 10							
Selenium	ND	0.481	0.962	mg/kg we	t 10							
Silver	ND	0.481	0.962	mg/kg we	t 10							
Zinc	ND	1.92	3.85	mg/kg we	t 10							
LCS (8050640-BS1)			Prepared	: 05/10/18 0	9:58 Ana	lyzed: 05/12/	/18 00:00					
EPA 6020A						-						
Arsenic	51.6	0.500	1.00	mg/kg we	t 10	50.0		103	80-120%			
Barium	52.4	0.500	1.00	mg/kg we	t 10	50.0		105	80-120%			
Cadmium	48.9	0.100	0.200	mg/kg we	t 10	50.0		98	80-120%			
Chromium	49.9	0.500	1.00	mg/kg we	t 10	50.0		100	80-120%			
Copper	55.1	1.00	2.00	mg/kg we	t 10	50.0		110	30-120%			
Lead	52.5	0.100	0.200	mg/kg we	t 10	50.0		105	30-120%			
Mercury	1.09	0.0400	0.0800	mg/kg we	t 10	1.00		109	80-120%			
Selenium	25.2	0.500	1.00	mg/kg we	t 10	25.0		101	80-120%			
Silver	25.6	0.500	1.00	mg/kg we	t 10	25.0		102	80-120%			
Zinc	51.7	2.00	4.00	mg/kg we		50.0		103	80-120%			
Duplicate (8050640-DUP1)			Prepared	: 05/10/18 0	9:58 Ana	lyzed: 05/12/	/18 02:12					
QC Source Sample: DU09-S-0.5 (A	After Proces	sing) (A8E013)-20)									
EPA 6020A												
Arsenic	16.0	0.541	1.08	mg/kg dry	/ 10		13.1			20	40%	
Barium	176	0.541	1.08	mg/kg dry	/ 10		140			22	40%	
Cadmium	ND	0.108	0.216	mg/kg dry	/ 10		0.408			***	40%	Q-05
Chromium	89.0	0.541	1.08	mg/kg dry	/ 10		73.0			20	40%	
Copper	61.5	1.08	2.16	mg/kg dry	/ 10		49.6			21	40%	
Lead	30.9	0.108	0.216	mg/kg dry	/ 10		26.2			16	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goa A Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total I	Metals by	EPA 602	20 (ICPMS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050640 - EPA 3051A							Soil					
Duplicate (8050640-DUP1)			Prepared	: 05/10/18 0	9:58 Ana	lyzed: 05/12	/18 02:12					
OC Source Sample: DU09-S-0.5 (A	After Proces	sing) (A8E013	0-20)									
Mercury	ND	0.605	0.605	mg/kg dr	y 10		ND				40%	R-01
Selenium	0.582	0.541	1.08	mg/kg dr	y 10		ND				40%	J, Q-0
Silver	ND	0.541	1.08	mg/kg dr	y 10		ND				40%	
Zinc	143	2.16	4.32	mg/kg dr	y 10		112			24	40%	
Duplicate (8050640-DUP2)			Prepared	: 05/10/18 0	9:58 Ana	lyzed: 05/12	/18 02:16					
QC Source Sample: DU09-S-0.5 (A	After Proces	sing) (A8E013	0-20)									
EPA 6020A												
Arsenic	12.2	0.532	1.06	mg/kg dr	y 10		13.1			7	40%	
Barium	134	0.532	1.06	mg/kg dr	y 10		140			5	40%	
Cadmium	0.405	0.106	0.213	mg/kg dr	y 10		0.408			0.9	40%	
Chromium	73.3	0.532	1.06	mg/kg dr	y 10		73.0			0.4	40%	
Copper	46.8	1.06	2.13	mg/kg dr	y 10		49.6			6	40%	
Lead	23.8	0.106	0.213	mg/kg dr	y 10		26.2			10	40%	
Mercury	ND	0.478	0.478	mg/kg dr	y 10		ND				40%	R-01
Selenium	ND	0.532	1.06	mg/kg dr	y 10		ND				40%	
Silver	ND	0.532	1.06	mg/kg dr	y 10		ND				40%	
Zinc	104	2.13	4.25	mg/kg dr	y 10		112			8	40%	
Matrix Spike (8050640-MS1)			Prepared	: 05/10/18 0	9:58 Ana	lyzed: 05/12	/18 02:21					
QC Source Sample: DU09-S-0.5 (A	After Proces	sing) (A8E013	0-20)									
EPA 6020A												
Arsenic	71.9	0.562	1.12	mg/kg dr	y 10	56.2	13.1	105	75-125%			
Barium	224	0.562	1.12	mg/kg dr	y 10	56.2	140	149	75-125%			Q-03
Cadmium	56.8	0.112	0.225	mg/kg dr	y 10	56.2	0.408	100	75-125%			
Chromium	136	0.562	1.12	mg/kg dr	y 10	56.2	73.0	113	75-125%			
Copper	115	1.12	2.25	mg/kg dr	y 10	56.2	49.6	117	75-125%			
Lead	82.1	0.112	0.225	mg/kg dr	y 10	56.2	26.2	99	75-125%			
Mercury	1.69	0.494	0.494	mg/kg dr	y 10	1.12	ND	150	75-125%			R-01
Selenium	27.4	0.562	1.12	mg/kg dr	y 10	28.1	ND	98	75-125%			
Silver	28.8	0.562	1.12	mg/kg dr		28.1	ND	103	75-125%			
Zinc	191	2.25	4.49	mg/kg dr	y 10	56.2	112	141	75-125%			Q-03

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Maul Foster & Alongi, INC-Bellingham

Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050640 - EPA 3051A							Soil					
Matrix Spike (8050640-MS2)			Prepared	: 05/10/18 0	9:58 Ana	lyzed: 05/12	/18 00:33					
OC Source Sample: Non-SDG (A8	BE0073-04)											
EPA 6020A												
Arsenic	96.2	0.688	1.38	mg/kg dry	/ 10	68.8	24.5	104	75-125%			
Barium	198	0.688	1.38	mg/kg dry	/ 10	68.8	126	105	75-125%			
Cadmium	67.6	0.138	0.275	mg/kg dry	/ 10	68.8	0.362	98	75-125%			
Chromium	88.9	0.688	1.38	mg/kg dry	/ 10	68.8	26.1	91	75-125%			
Copper	109	1.38	2.75	mg/kg dry	/ 10	68.8	35.0	107	75-125%			
Lead	84.5	0.138	0.275	mg/kg dry	/ 10	68.8	19.8	94	75-125%			
Mercury	1.50	0.0550	0.110	mg/kg dry	/ 10	1.38	0.0642	104	75-125%			
Selenium	32.8	0.688	1.38	mg/kg dry	/ 10	34.3	ND	96	75-125%			
Silver	35.3	0.688	1.38	mg/kg dry	/ 10	34.3	ND	103	75-125%			
Zinc	147	2.75	5.50	mg/kg dry	/ 10	68.8	75.4	104	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Project Number: [none]

Project:

Report ID:

Bellingham, WA 98225

Project Manager: Heather Good

0624.04.10-03--Northern State Hospital


A8E0130 - 05 24 18 1120

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total I	Metals by	EPA 602	0 (ICPMS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050684 - EPA 3051A							Soil					
Blank (8050684-BLK1)			Prepared	: 05/11/18 (09:42 Anal	yzed: 05/14/	/18 20:53					
EPA 6020A												
Lead	ND	0.0962	0.192	mg/kg w	et 10							
LCS (8050684-BS1)			Prepared	: 05/11/18 (09:42 Anal	yzed: 05/14/	/18 20:57					
EPA 6020A						-						
Lead	54.1	0.100	0.200	mg/kg w	et 10	50.0		108	80-120%			
Duplicate (8050684-DUP1)			Prepared	: 05/11/18 (09:42 Anal	yzed: 05/14/	/18 21:24					
OC Source Sample: HA30-S-0.5 (EPA 6020A	A8E0130-01)										
Lead	146	0.173	0.347	mg/kg d	ry 10		141			3	40%	
Matrix Spike (8050684-MS1)			Prepared	: 05/11/18	09:42 Anal	yzed: 05/14/	/18 21:28					
QC Source Sample: HA30-S-0.5 (A8E0130-01)										
EPA 6020A		_										
Lead	225	0.165	0.330	mg/kg d	ry 10	82.5	141	102	75-125%			
Matrix Spike (8050684-MS2)			Prepared	: 05/11/18)9:42 Anal	yzed: 05/14/	/18 22:56					
QC Source Sample: HA35-S-0.5 (EPA 6020A	A8E0130-16)										
Lead	202	0.156	0.312	mg/kg d	ry 10	78.1	112	114	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.0</u>

0624.04.10-03--Northern State Hospital

Project Number: [none]

Project Manager: Heather Good A8E0130 - 05 24 18 1120

. _ ____

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 602	0 (ICPMS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050727 - EPA 3051A							Soil					
Blank (8050727-BLK1)			Prepared	: 05/14/18 (9:58 Anal	yzed: 05/14	/18 17:40					
EPA 6020A												
Lead	ND	0.0962	0.192	mg/kg w	et 10							
LCS (8050727-BS1)			Prepared	: 05/14/18 (9:58 Anal	yzed: 05/14/	/18 17:35					
EPA 6020A												
Lead	49.5	0.100	0.200	mg/kg w	et 10	50.0		99	80-120%			
Duplicate (8050727-DUP1)			Prepared	: 05/14/18 (9:58 Anal	yzed: 05/14	/18 18:15					
OC Source Sample: Non-SDG (A8	BE0190-02)											
Lead	59.3	0.118	0.237	mg/kg dr	y 10		68.6			15	40%	
Matrix Spike (8050727-MS1)			Prepared	: 05/14/18 (9:58 Ana	yzed: 05/14	/18 18:20					
QC Source Sample: Non-SDG (A8	BE0190-02)											
EPA 6020A												
Lead	114	0.116	0.233	mg/kg dr	y 10	58.1	68.6	79	75-125%			
Matrix Spike (8050727-MS2)			Prepared	: 05/14/18 (9:58 Anal	yzed: 05/14	/18 18:31					
QC Source Sample: Non-SDG (A8	BE0396-02)											
EPA 6020A												
Lead	101	0.129	0.258	mg/kg dr	y 10	64.6	32.7	105	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]

Project Manager: Heather Good A8E0130 - 05 24 18 1120

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry Weig	ht						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050539 - Total Solids (Dr	y Weigh	t)					Soil					
Duplicate (8050539-DUP1)			Prepared	1: 05/08/18	09:26 Anal	yzed: 05/09/	/18 08:49					
OC Source Sample: HA30-S-0.5 (A8 EPA 8000C	E0130-01)										
% Solids	63.6	1.00	1.00	% by Wei	ght 1		59.4			7	10%	
Duplicate (8050539-DUP2)			Prepared	l: 05/08/18	09:26 Anal	yzed: 05/09/	/18 08:49					
QC Source Sample: HA34-S-0.5 (A8 EPA 8000C	E0130-11	1										
% Solids	64.2	1.00	1.00	% by Wei	ght 1		68.2			6	10%	
Duplicate (8050539-DUP3)			Prepared	1: 05/08/18	09:26 Anal	yzed: 05/09/	/18 08:49					
QC Source Sample: Non-SDG (A8E0	189-01)											
% Solids	92.7	1.00	1.00	% by Wei	ght 1		93.1			0.4	10%	
Duplicate (8050539-DUP4)			Prepared	1: 05/08/18	09:26 Anal	yzed: 05/09/	/18 08:49					
QC Source Sample: Non-SDG (A8E0	190-09)											
% Solids	94.9	1.00	1.00	% by Wei	ght 1		94.6			0.3	10%	
Duplicate (8050539-DUP5)			Prepared	1: 05/08/18	09:26 Anal	yzed: 05/09/	/18 08:49					
QC Source Sample: Non-SDG (A8E0	194-03)											
% Solids	83.3	1.00	1.00	% by Wei	ght 1		84.0			0.9	10%	
Duplicate (8050539-DUP6)			Prepared	1: 05/08/18	17:54 Anal	yzed: 05/09/	/18 08:49					
OC Source Sample: Non-SDG (A8E0	231-06)											
% Solids	88.9	1.00	1.00	% by Wei	ght 1		89.0			0.2	10%	
Duplicate (8050539-DUP7)			Prepared	1: 05/08/18	17:54 Anal	yzed: 05/09/	/18 08:49					
QC Source Sample: Non-SDG (A8E0	244-02)											
% Solids	82.9	1.00	1.00	% by Wei	ght 1		82.1			1	10%	
Duplicate (8050539-DUP8)			Prepared	1: 05/08/18	18:43 Anal	yzed: 05/09/	/18 08:49					
QC Source Sample: Non-SDG (A8E0	250-02)											
% Solids	92.9	1.00	1.00	% by Wei	ght 1		92.3			0.7	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]

Project Manager: Heather Good A8E0130 - 05 24 18 1120

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 8050539 - Total Solids	(Dry Weigl	nt)					Soil					
Duplicate (8050539-DUP9)			Prepared	1: 05/08/18	20:07 Ana	lyzed: 05/09/	/18 08:49					
OC Source Sample: Non-SDG (A	8E0258-02)											
% Solids	80.6	1.00	1.00	% by Wei	ght 1		79.9			0.9	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Batch 8050631 - Total Solids (D	ry Weight)					Soil			
Duplicate (8050631-DUP1)			Prepare	d: 05/10/18 09:02 Ana	lyzed: 05/11	1/18 08:45			
QC Source Sample: Non-SDG (A8I	00867-17)								
% Solids	90.4	1.00	1.00	% by Weight 1		89.5	 	0.9	10%
Duplicate (8050631-DUP2)			Prepare	d: 05/10/18 09:02 Ana	lyzed: 05/11	1/18 08:45			
QC Source Sample: Non-SDG (A8E	E0265-11)								
% Solids	70.6	1.00	1.00	% by Weight 1		70.5	 	0.2	10%
Duplicate (8050631-DUP3)			Prepare	d: 05/10/18 09:02 Ana	lyzed: 05/11	1/18 08:45			
QC Source Sample: Non-SDG (A8F	E0304-03)								
% Solids	86.3	1.00	1.00	% by Weight 1		83.4	 	3	10%
Duplicate (8050631-DUP4)			Prepare	d: 05/10/18 12:26 Anal	lyzed: 05/11	1/18 08:45			
QC Source Sample: DU09-S-0.5 (At	fter Processins	g) (A8E0130-	20)						
EPA 8000C									
% Solids	96.6	1.00	1.00	% by Weight 1		96.8	 	0.2	10%
Duplicate (8050631-DUP5)			Prepare	d: 05/10/18 12:26 Ana	lyzed: 05/11	1/18 08:45			
OC Source Sample: Non-SDG (A8I	00903-07)								
% Solids	96.7	1.00	1.00	% by Weight 1		96.8	 	0.1	10%
Duplicate (8050631-DUP6)			Prepare	d: 05/10/18 19:56 Ana	yzed: 05/11	1/18 08:45			
QC Source Sample: Non-SDG (A8F	E0342-01)								
% Solids	78.8	1.00	1.00	% by Weight 1		78.8	 	0.004	10%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Maul Foster & Alongi, INC-Bellingham

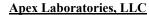
Apex Laboratories, LLC

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Project: <u>0624.04.10-03--Northern State Hospital</u>

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120


QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 8050631 - Total Solids (Dry Weight) Soil													
Duplicate (8050631-DUP7)			Prepared	d: 05/10/18	19:56 Anal	lyzed: 05/11/	18 08:45						
OC Source Sample: Non-SDG (A	8E0346-01)												
% Solids	75.5	1.00	1.00	% by Wei	ght 1		75.7			0.3	10%		
Duplicate (8050631-DUP8) Prepared: 05/10/18 19:56 Analyzed: 05/11/18 08:45													
QC Source Sample: Non-SDG (A	8E0354-01)												
% Solids	76.0	1.00	1.00	% by Wei	ght 1		76.7			1	10%		

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

 $\underline{\textbf{Maul Foster \& Alongi, INC-Bellingham}}$

Project: 0624.04

Project Number: [none]

0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301 Bellingham, WA 98225

Project Manager: Heather Good

Report ID: A8E0130 - 05 24 18 1120

SAMPLE PREPARATION INFORMATION

		Halogenated \	/olatile Organic Comp	oounds by EPA 826	30C		
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050444							
A8E0130-26	Water	EPA 8260C	05/01/18 12:50	05/04/18 10:23	5mL/5mL	5mL/5mL	1.00
A8E0130-27	Water	EPA 8260C	05/01/18 14:15	05/04/18 10:23	5mL/5mL	5mL/5mL	1.00
A8E0130-28	Water	EPA 8260C	05/01/18 14:15	05/04/18 10:23	5mL/5mL	5mL/5mL	1.00
A8E0130-29	Water	EPA 8260C	05/01/18 15:20	05/04/18 10:23	5mL/5mL	5mL/5mL	1.00

		Tot	al Metals by EPA 602	20 (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050640							
A8E0130-20	Soil	EPA 6020A	04/30/18 15:00	05/10/18 09:58	0.481g/50mL	0.5g/50mL	1.04
Batch: 8050684							
A8E0130-01	Soil	EPA 6020A	04/30/18 10:50	05/11/18 09:42	0.452g/50mL	0.5g/50mL	1.11
A8E0130-02	Soil	EPA 6020A	04/30/18 11:00	05/11/18 09:42	0.489g/50mL	0.5g/50mL	1.02
A8E0130-03	Soil	EPA 6020A	04/30/18 11:20	05/11/18 09:42	0.493g/50mL	0.5g/50mL	1.01
A8E0130-04	Soil	EPA 6020A	04/30/18 11:30	05/11/18 09:42	0.503g/50mL	0.5g/50mL	0.99
A8E0130-05	Soil	EPA 6020A	04/30/18 12:00	05/11/18 09:42	0.459g/50mL	0.5g/50mL	1.09
A8E0130-06	Soil	EPA 6020A	04/30/18 12:05	05/11/18 09:42	0.481g/50mL	0.5g/50mL	1.04
A8E0130-07	Soil	EPA 6020A	04/30/18 12:20	05/11/18 09:42	0.517g/50mL	0.5g/50mL	0.97
A8E0130-08	Soil	EPA 6020A	04/30/18 12:35	05/11/18 09:42	0.482g/50mL	0.5g/50mL	1.04
A8E0130-09	Soil	EPA 6020A	04/30/18 12:40	05/11/18 09:42	0.509g/50mL	0.5g/50mL	0.98
A8E0130-10	Soil	EPA 6020A	04/30/18 12:45	05/11/18 09:42	0.495g/50mL	0.5g/50mL	1.01
A8E0130-11	Soil	EPA 6020A	04/30/18 13:30	05/11/18 09:42	0.453g/50mL	0.5g/50mL	1.10
A8E0130-12	Soil	EPA 6020A	04/30/18 13:35	05/11/18 09:42	0.479g/50mL	0.5g/50mL	1.04
A8E0130-13	Soil	EPA 6020A	04/30/18 13:40	05/11/18 09:42	0.469g/50mL	0.5g/50mL	1.07
A8E0130-14	Soil	EPA 6020A	04/30/18 13:20	05/11/18 09:42	0.464g/50mL	0.5g/50mL	1.08
A8E0130-15	Soil	EPA 6020A	04/30/18 14:15	05/11/18 09:42	0.506g/50mL	0.5g/50mL	0.99
A8E0130-16	Soil	EPA 6020A	04/30/18 14:40	05/11/18 09:42	0.464g/50mL	0.5g/50mL	1.08
Batch: 8050727							
A8E0130-17	Soil	EPA 6020A	04/30/18 14:45	05/14/18 09:58	0.481g/50mL	0.5g/50mL	1.04
A8E0130-18	Soil	EPA 6020A	04/30/18 14:50	05/14/18 09:58	0.469g/50mL	0.5g/50mL	1.07

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham Project: 0624.04.10-03--Northern State Hospital

1329 North State Street, Suie 301Project Number: [none]Report ID:Bellingham, WA 98225Project Manager: Heather GoodA8E0130 - 05 24 18 1120

SAMPLE PREPARATION INFORMATION

			Percent Dry We	ght	_		
Prep: Total Solids (I	Ory Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 8050539							
A8E0130-01	Soil	EPA 8000C	04/30/18 10:50	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-02	Soil	EPA 8000C	04/30/18 11:00	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-03	Soil	EPA 8000C	04/30/18 11:20	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-04	Soil	EPA 8000C	04/30/18 11:30	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-05	Soil	EPA 8000C	04/30/18 12:00	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-06	Soil	EPA 8000C	04/30/18 12:05	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-07	Soil	EPA 8000C	04/30/18 12:20	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-08	Soil	EPA 8000C	04/30/18 12:35	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-09	Soil	EPA 8000C	04/30/18 12:40	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-10	Soil	EPA 8000C	04/30/18 12:45	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-11	Soil	EPA 8000C	04/30/18 13:30	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-12	Soil	EPA 8000C	04/30/18 13:35	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-13	Soil	EPA 8000C	04/30/18 13:40	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-14	Soil	EPA 8000C	04/30/18 13:20	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-15	Soil	EPA 8000C	04/30/18 14:15	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-16	Soil	EPA 8000C	04/30/18 14:40	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-17	Soil	EPA 8000C	04/30/18 14:45	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
A8E0130-18	Soil	EPA 8000C	04/30/18 14:50	05/08/18 09:26	1N/A/1N/A	1N/A/1N/A	NA
Batch: 8050631							
A8E0130-20	Soil	EPA 8000C	04/30/18 15:00	05/10/18 12:26	1N/A/1N/A	1N/A/1N/A	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301

Bellingham, WA 98225

Project: <u>0624.04.10-03--Northern State Hospital</u>
Project Number: [none]

Report ID:

Project Manager: Heather Good

A8E0130 - 05 24 18 1120

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

T	E-4 4 - J D 14	D 4 d-44-d b-14b-14i4i4ii-4	T
.J	Esumated Result.	Result detected below the lowest point of the calibration curve, but above the specified MI	. J. L.

- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control

limits. (Refer to the QC Section of Analytical Report.)

R-01 The Reporting Limit for this analyte has been raised to account for matrix interference.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]

Project Manager: Heather Good

A8E0130 - 05 24 18 1120

Report ID:

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

-For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham 1329 North State Street, Suie 301 Project: <u>0624.04.10-03--Northern State Hospital</u>
Project Number: [none]

Report ID:

Project Manager: Heather Good

A8E0130 - 05 24 18 1120

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Bellingham, WA 98225

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the blank results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met. Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Grand Jomenyhini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 EPA ID: OR01039

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]
Project Manager: Heather Good

Report ID: A8E0130 - 05 24 18 1120

LABORATORY ACCREDITATION INFORMATION

TNI Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Cert?

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Report ID:

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]

Project Manager: Heather Good A8E0130 - 05 24 18 1120

Borrow T. Hen Sher Const	Poor	2	SAMPL	SAMPLE CHAIN OF CUSTODY SAMPLERS (signature)	OF C	USTODY	O.	18	2013	Page#	<i>w</i>	
Company Well Forter Alongi Address 1329 W. State St. Ste 301	te St. Ste	301	PROJE	PROJECT NAME Surt Center	nter	arolyn	2	7.5e PO# 04.24.04.10		TURNAROUND TIME ndard Turnaround SH charges authorized by:	TURNAROUND TIME A Standard Turnaround © RUSH Rush charges authorized by:	
City, State, ZIP Bellngham, WH 98239 Phone	Email Agood Emaultister cons	98829 Imaultos	REMAR Con	REMARKS Agnic compley, contact M before	36 8	ample		INVOICE TO H. Good		SAMPLE DISPOSAL Dispose after 30 days Z Archive Samples	SPOSAL	
					H		ANAI	ANALYSES REQUESTED	UESTED			7 [
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of Jars	TPH-HCID TPH-Gasoline	AOCs by 8260C	AVOCs by 8270D			Notes	
HA30-5-0.5		4/30/8	1050	S				1		-		-1
HA30-8-1.0				S	+		-					
HA31-5-0.5			1120	S	-		1					
HA31-5-1.0			1130	0	_		1	->		-		
HA32-5-0.5			1200	00	-							*
HA32-S-1.0			1205	8	_							
HA21-5-1.5			1320	8	_		-					
HA33-5-0.5			1235	S	_		 					
HA33-5-1.0			0h81	S	_			×				
HA33-S-1.5		د_	1245	S			-			-		_,_
Friedman & Bring In	STO STORY	STGNATUBE /			PRINT NAME	NAME		CON	COMPANY	DATE	TIME	r
	Received 1	The state of	1	13.	7	arolyn Wise		MFA		81/6/5	+-	1
	Relinquished by:	4		Mister	11	General		Bux		2/3/6	8 15.43	- FOR
Ph. (206) 285-8282	Received by:						1					T.
	5										_	
— А. Уманический выполнений политический пол												

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Goas Smerighini

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]

Project Manager: Heather Good

A8E0130 - 05 24 18 1120

Report ID:

Company Well Foster Along, Address 1329 N. State 8t. Ste 301 Address 1329 N. State 8t. Ste 301 City, State, ZIP Bellingham, WH 9827 REMARKS Archire Samples Phone Email Agood (a) maultest excom Prior to disposate Sample ID Lab ID Date Time Sample # of H. D. Date H#34-5-0.5 1950 1830 5 1 FPH	PROJE PRODE PROJE PRODE PR	PROJECT NAME	rolue //	5	Page# of
	18279 REMA	ot corre		PO# 104.10	1 UKNAKUUND TIME P Standard Turnaround E RUSH Rush charges authorized by:
Lab ID		RKS Archire suest ON n Prior to	- 36	INVOICE TO	SAMPLE DISPOSAL Dispose after 30 days Archive Samples Other
Lab ID			[A	ANALYSES REQUESTED	
2	te Time pled Sampled	Sample # of Type Jars	TPH-HCID TPH-Gasoline TPH-Gasoline	CCKH & AOCs py 8270D SIM VOCs by 8270D	Agns? M?!
	0881 811	<i>∽</i>		X	
4434-5-10	/335	- S		X	
HA34-5-1.5	1340	- S		X	
HA28-5-1.5	1320	8 /		X	
HA26-5-1.5	1415	1 8		X	
HA35-5-0.5	0/14	\ \ \		.×	
HA35-5-1.0	5/1/2	ر م		×	
HA35-S-1.5	1450	\ S		×	
DU09-3-0.5	1500	\ \		\(\frac{1}{2}\)	
SS96-5-0.5 \	1530	S /			
SIGNATURE	JRE /	PRIN	PRINT NAME	COMPANY	DATE TIME
Friedman & Bruyo, Inc. Remajusned by:	Julie Julie	Corolyn Wise	Wise	MFA	ds.
		1/5 Kenagor		Hux	Eh:51 8/16/6
Ph. (206) 285-8282 Received by:	THE CONTRACT OF THE CONTRACT O				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

AMENDED REPORT

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project: <u>0624.04.10-03--Northern State Hospital</u>

Project Number: [none]

Project Manager: Heather Good

Report ID: A8E0130 - 05 24 18 1120

	Environmental Inc.	Chain	Chain of Custody	stody		A	13			Q	Dago	ω_{z}	3	
Analytical Labora 14648 NE 95th Phone: (425) 86	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 889-3881 • www.onsite-env.com	Turnaround Request (in working days)	Lak	Laboratory Number:	mber:		2	3		-				
Company, Maul Foster Hongs, Project Number. Ob 24, 04, 10	ter Hongs	(Check One)	à.	(dn-			<u> </u>	á .						
Project Mame:	enter	(7 Days		SG Clean-	(VinO	evel)	31808 ee	S8 sebioi	1318 sebi		∀⊅5			
Heather Good Sampled by	Good	Standard TH	nitainer Ontainer	3 √ bioA [(Waters	(SHAG (SHAG	plesticid			slet	991 (esse	<u>5</u> -		
(are/	yn Wise		iber of Ci	bH-G×	Jenated V	seliation level-wol S\G0\S	8082A ochlorine		SCRA Me	eM AOTN	Metals oil and gn	001		e)III)
Lah 10 Sampi		Sampled Sampled Matrix	mu N TWN	TWN	EDB	sHA9						1 0		sioM 9
0547-5-0.5		730/8 1535 S	2029, 500				_		-		-			6
3878-8-0.5	3-0-5	1550 S	_				-		+		+			+
8849-8-05	3-0.5	1420 S	_			-	-		+		+-		1	+
88/00-5-0.5	5-0.5	V 1430 S	_			-	+				-		1	+
)-600m	MW09-6W-050118	5/1/s 1250 W	2				+-	+			+	\triangleright	+	+
MW10 - C	1	91/8/415 W	13		-	-	-		-		+	\diamondsuit		-
MWDUP-(9/18 1415 W	13		-		-		+		+-	\$		+-
MW11-6	MW11-6W-050118	5/18 1520 W	13		-			-		1	+	\Rightarrow	1	
					-	-	\bot	+	-		-	\triangleleft	1	
					-		-	-	-		+-			+
Refinquished	C A Samerino	Company	暑心	/	7854754 7039254	Comments/Special Instructions	Special	Instruct	SE	11	-]]	11	+
Received		MAL	,	81.7		Please archive samp	20	3	11	ş	3	hur	3/6	<i>p</i>
Relinquished		My Sur Summe	(C) parage	8	15:43	will mother		6 6	4	Š,	36	sugge C1	~l	
Received					T	Some general	2 6		0	Ki	8	P		
Relinquished						i i	ģ	Ž						
Received							6							
Reviewed/Date		Reviewed/Date			3 3	Data Fackage: Standard □ Level III □ Level IV □	Je: Sta	dard	ev lev	=	Leve			
					2	Online and an an annual report Electronic Data Deliverables (EDDs)	THIS WILL	Tinal	bort	Electro	nic Dat	a Deliveral	oles (EDD	Š

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 <u>EPA ID: OR01039</u>

Maul Foster & Alongi, INC-Bellingham

1329 North State Street, Suie 301 Bellingham, WA 98225 Project:

0624.04.10-03--Northern State Hospital

Project Number: [none]

Project Manager: Heather Good

Report ID: A8E0130 - 05 24 18 1120

Client: M/	APEX LABS COOLER RECEIPT FORM Element WO#: A8 E0/3D
	Swift Center /0024.04.10
Delivery info:	
	15:43 @ 5/3/18 By: W
Cooler Inspection	Inspected by: 11/18 a 15:44
Chain of Custody Includ	
Signed/Dated by Client?	7 7
Signed/Dated by Apex?	
_	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (deg. C)	3.2
Received on Ice? (VN)	
Temp. Blanks? (YN)	
Ice Type: (Gel/Real/Othe	
Condition:	Possible reason why:
	Inspected by: 1111 : 5/4/18 @ 8:48 No Comments:
Bottle Labels/COCs agre	ee? Yes $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	ceived Appropriate for Analysis? Yes No Comments:
Do VOA Vials have Visi	ible Headspace? Yes No X NA
Comments	
Water Samples: pH Cher	cked and Appropriate (except VOAs): YesNoNAX
Additional Information:	
Additional Information:	
Additional Information:	
	Witness: Cooler Inspected by: See Project Contact Form: Y
Additional Information: Labeled by: V	Witness: Cooler Inspected by: See Project Contact Form: Y

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

APPENDIX D DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 0624.04.10 | OCTOBER 29, 2018 | PORT OF SKAGIT

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for soil and groundwater samples collected in April and May 2018 at the former Northern State Hospital property, located at 2070 Northern State Road in Sedro-Woolley, Washington.

Apex Laboratories, LLC (Apex) performed the analyses. Apex report numbers A8D0754, A8D0757, A8D0903, A8E0130, and A8H0102 were reviewed. Incremental sampling methodology (ISM) samples were collected and named according to decision units (DUs). Apex processed and composited ISM samples prior to analysis consistent with industry standard procedures. Selected discrete soil boring samples from reports A8D0757 and A8D0903 were subcontracted to Cape Fear Analytical, LLC (CFA) for dioxin/furan analysis; the subcontract laboratory reports (WO13235 and WO13267) are appended to the Apex reports. Sample results reported in A8H0102 were originally received with sample delivery group A8D0903 and were relogged to A8H0102 for follow-up analyses. The analyses performed and samples analyzed are listed below.

Analysis Reference

Carcinogenic Polycyclic Aromatic Hydrocarbons	USEPA 8270D-SIM
Diesel- and Lube-Oil-Range Hydrocarbons	NWTPH-Dx
Dioxins/Furans	USEPA 1613B
Halogenated Volatile Organic Compounds	USEPA 8260C
Percent Dry Weight	USEPA 8000C
Total Metals	USEPA 6020A

NWTPH = Northwest Total Petroleum Hydrocarbons. SIM = selected ion monitoring. USEPA = U.S. Environmental Protection Agency.

		Sa	imples		
Repor	t A8D0754		Report A8D09	03/WO13267	
HA16-S-0.5	HA23-S-0.5	GP53-S-0.5	SS21-S-0.5 (hold)	SS46-S-0.5	SS71-S-0.5 (hold)
HA16-S-1.0	HA23-S-1.0	GP53-S-1.0	SS22-S-0.5 (hold)	SS47-S-0.5	SS72-S-0.5 (hold)
HA17-S-0.5	HA24-S-0.5	GP53-S-2.0	SS23-S-0.5 (hold)	SS48-S-0.5	SS73-S-0.5 (hold)
HA17-S-1.0	HA24-S-1.0	GP54-S-0.5	SS24-S-0.5 (hold)	SS49-S-0.5	SS74-S-0.5 (hold)
HA18-S-0.5	HA25-S-0.5	GP54-S-5.5	SS25-S-0.5 (hold)	SS50-S-0.5	SS75-S-0.5 (hold)
HA18-S-1.0	HA25-S-1.0	DU06-S-0.5	DU18-S-0.5	DU11-S-0.5	DU10C-S-0.5
HA19-S-0.5	HA26-S-0.5	SS01-S-0.5 (hold)	SS26-S-0.5 (hold)	SS51-S-0.5 (hold)	SS81-S-0.5 (hold)
HA19-S-1.0	HA26-S-1.0	SS02-S-0.5 (hold)	SS27-S-0.5 (hold)	SS52-S-0.5 (hold)	SS82-S-0.5 (hold)
HA20-S-0.5	HA27-S-0.5	SS03-S-0.5 (hold)	SS28-S-0.5 (hold)	SS53-S-0.5 (hold)	SS83-S-0.5 (hold)

		So	ımples		
Repor	ł A8D0754		Report A8D09	903/WO13267	
HA20-S-1.0	HA27-S-1.0	SS04-S-0.5 (hold)	SS29-S-0.5 (hold)	SS54-S-0.5 (hold)	SS84-S-0.5 (hold)
HA21-S-0.5	HA28-S-0.5	SS05-S-0.5 (hold)	SS30-S-0.5 (hold)	SS55-S-0.5 (hold)	SS85-S-0.5 (hold)
HA21-S-1.0	HA28-S-1.0	DU04-S-0.5	DU02-S-0.5	DU08-S-0.5	DU10B-S-0.5
HA22-S-0.5	HA29-S-1.0-CS	SS06-S-0.5 (hold)	SS36-S-0.5 (hold)	SS56-S-0.5 (hold)	SS76-S-0.5 (hold)
HA22-S-1.0	-	SS07-S-0.5 (hold)	SS37-S-0.5 (hold)	SS57-S-0.5 (hold)	SS77-S-0.5 (hold)
Repor	† A8E0130	SS08-S-0.5 (hold)	SS38-S-0.5 (hold)	SS58-S-0.5 (hold)	SS78-S-0.5 (hold)
HA30-S-0.5	HA35-S-0.5	SS09-S-0.5 (hold)	SS39-S-0.5 (hold)	SS59-S-0.5 (hold)	SS79-S-0.5 (hold)
HA30-S-1.0	HA35-S-1.0	SS10-S-0.5 (hold)	SS40-S-0.5 (hold)	SS60-S-0.5 (hold)	SS80-S-0.5 (hold)
HA31-S-0.5	HA35-S-1.5	DU07-S-0.5	DU01-S-0.5	DU05-S-0.5	DU03-S-0.5
HA31-S-1.0	DU09-S-0.5	SS11-S-0.5 (hold)	SS31-S-0.5 (hold)	SS61-S-0.5 (hold)	SS86-S-0.5 (hold)
HA32-S-0.5	SS96-S-0.5 (hold)	SS12-S-0.5 (hold)	SS32-S-0.5 (hold)	SS62-S-0.5 (hold)	SS87-S-0.5 (hold)
HA32-S-1.0	SS97-S-0.5 (hold)	SS13-S-0.5 (hold)	SS33-S-0.5 (hold)	SS63-S-0.5 (hold)	SS89-S-0.5 (hold)
HA21-S-1.5	SS98-S-0.5 (hold)	SS14-S-0.5 (hold)	SS34-S-0.5 (hold)	SS64-S-0.5 (hold)	SS90-S-0.5 (hold)
HA33-S-0.5	SS99-S-0.5 (hold)	SS15-S-0.5 (hold)	SS35-S-0.5 (hold)	SS65-S-0.5 (hold)	DU12-S-0.5
HA33-S-1.0	SS100-S-0.5	DU17-S-0.5	DU13-S-0.5	DU14-S-0.5	SS91-S-0.5 (hold)
HA33-S-1.5	MW09-GW-	SS16-S-0.5	SS41-S-0.5 (hold)	SS66-S-0.5 (hold)	SS92-S-0.5 (hold)
HA34-S-0.5	MW10-GW-	SS17-S-0.5	SS42-S-0.5 (hold)	SS67-S-0.5 (hold)	SS93-S-0.5 (hold)
HA34-S-1.0	MWDUP-GW-	SS18-S-0.5	SS43-S-0.5 (hold)	SS68-S-0.5 (hold)	SS94-S-0.5 (hold)
HA34-S-1.5	MW11-GW-	SS19-S-0.5	SS44-S-0.5 (hold)	SS69-S-0.5 (hold)	SS95-S-0.5 (hold)
HA28-S-1.5	-	SS20-S-0.5	SS45-S-0.5 (hold)	SS70-S-0.5 (hold)	-
HA26-S-1.5	-	DU15-S-0.5	DU16-S-0.5	DU10A-S-0.5	-
		Report A8D	0757/ WO13235		
MW10-S-1.0	MW09-S-0.5	GP49-S-0.5	GP50-S-0.5	GP51-S-1.0	GP52-S-7.5
MW10-S-13.5	MW09-S-6.0	GP49-S-7.0	GP50-S-1.5	GP52-S-0.5	-
MW10-S-24.5	MW09-S-19.0	GP49-S-10.0	GP51-S-0.5	GP52-S-6.0	
		Repor	† A8H0102		
SS06-S-0.5	SS10-S-0.5	SS39-S-0.5	SS53-S-0.5	SS67-S-0.5	-
SS07-S-0.5	SS36-S-0.5	SS40-S-0.5	SS54-S-0.5	SS68-S-0.5	-
SS08-S-0.5	SS37-S-0.5	SS51-S-0.5	SS55-S-0.5	SS69-S-0.5	-
SS09-S-0.5	SS38-S-0.5	SS52-S-0.5	SS66-S-0.5	SS70-S-0.5	-

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of USEPA procedures (USEPA, 2014, 2016, 2017a,b) and appropriate laboratory and method-specific guidelines (Apex, 2016; CFA, 2016; USEPA, 1986).

In report A8D0757, Apex noted that the NWTPH-Dx diesel-range hydrocarbon chromatographic pattern for sample GP50-S-0.5 did not resemble a fuel. The results are

reported from carbon range C12 to C24 as diesel-range hydrocarbons; thus, qualification was not required.

In reports A8D0757 and A8D0903, Apex flagged some USEPA Method 8270D-SIM results because of insufficient chromatographic peak separation. The results are considered estimated and have been qualified by the reviewer with "J" as estimated:

Report	Sample	Component	Original Result (ug/kg)	Qualified Result (ug/kg)
		Benz(a)anthracene	23.0	23.0 J
	GP49-S-0.5	Benzo(b)fluoranthene	23.4	23.4 J
A8D0757		Chrysene	23.3	23.3 J
A0D0/3/		Benz(a)anthracene	25.2	25.2 J
	GP50-S-0.5	Benzo(b)fluoranthene	18.5	18.5 J
		Chrysene	25.7	25.7 J
		Benz(a)anthracene	15.0	15.0 J
	GP53-S-0.5	Benzo(b)fluoranthene	20.0	20.0 J
A8D0903		Chrysene	17.8	17.8 J
A0D0903		Benz(a)anthracene	76.0	76.0 J
	GP54-S-0.5	Benzo(b)fluoranthene	75.8	75.8 J
		Chrysene	95.8	95.8 J

NOTES:

USEPA Method 8270D-SIM results detected below the method reporting limit (MRL) were not qualified by the reviewer, as Apex had already flagged the results as estimated.

The reviewer confirmed that USEPA Method 1613B 2,3,7,8-TCDF confirmation analysis was not required for results detected below the MRL, as the results were considered estimated.

USEPA Method 1613B estimated maximum potential concentrations (EMPCs) results were qualified by the reviewer as estimated, not detected, at the reported concentration, in accordance with USEPA guidance (USEPA, 2014, 2016).

USEPA Method 1613B EMPC results that were also associated with method blank detections requiring qualification are discussed in the method blank section of this validation report and thus are not discussed in the EMPC qualification tables below.

USEPA Method 1613B total homolog EMPC results were qualified by the reviewer as estimated, not detected, at the reported concentration when all associated congeners were reported as EMPCs or non-detect. However, when one or more associated congeners was reported as a detection without an EMPC qualifier, the total homolog result was qualified by the reviewer with "J" as estimated, except for results already flagged with "J" because of detection below the MRL.

USEPA Method 1613B EMPC results were qualified by the reviewer as follows:

J = result is estimated.

ug/kg = micrograms per kilogram.

Report	Sample	Component	Original Result (pg/g)	Qualified Result (pg/g)
		1,2,3,4,7,8-HxCDD	0.212 JK	0.212 UJ
		1,2,3,6,7,8-HxCDD	0.397 JK	0.397 UJ
		2,3,7,8-TCDF	0.306 JK	0.306 UJ
		2,3,4,7,8-PeCDF	0.238 JK	0.238 UJ
		1,2,3,6,7,8-HxCDF	0.193 JK	0.193 UJ
	GP49-S-0.5	2,3,4,6,7,8-HxCDF	0.202 JK	0.202 UJ
	GF49-3-0.5	Total TeCDD	3.86 K	3.86 U
A8D0757/		Total PeCDD	4.20 JK	4.20 J
WO13235		Total HxCDD	6.32 K	6.32 J
		Total TeCDF	3.20 K	3.20 U
		Total PeCDF	3.09 JK	3.09 J
		Total HxCDF	2.74 JK	2.74 J
		1,2,3,6,7,8-HxCDF	0.166 JK	0.166 UJ
	GP52-S-0.5	2,3,4,6,7,8-HxCDF	0.220 JK	0.220 UJ
	GP32-3-0.3	Total PeCDF	4.02 JK	4.02 J
		Total HxCDF	2.83 JK	2.83 J
		1,2,3,7,8-PeCDD	0.210 JK	0.210 UJ
		1,2,3,7,8,9-HxCDF	0.190 JK	0.190 UJ
A8D0903/	CDE3 C O C	Total PeCDD	1.75 JK	1.75 UJ
WO13267	GP53-S-0.5	Total TeCDF	1.09 K	1.09 J
		Total PeCDF	4.76 K	4.76 J
		Total HxCDF	7.89 K	7.89 J

NOTES:

EMPC = estimated maximum potential concentration.

pg/g = picograms per gram.

UJ = Result is not detected and is an estimated value.

UJK = Result is non-detect, an estimated value, and an EMPC.

UK = Result is not detected and is an EMPC.

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

J = Result is an estimated value.

JK = Result is estimated value (detected below the MRL and an EMPC.

K = Result is an EMPC.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. Where an analyte was detected in a sample and in the associated method blank, the sample result was qualified if the concentration was less than ten times the method blank concentration for USEPA Method 6020A results and less than ten times the method blank concentration for remaining results.

USEPA Method 1613B sample results were qualified by the reviewer with "U" as not detected at the sample result value when the result was less than five times the associated method blank EMPC concentration. For methods other than USEPA 1613B, if an analyte was detected between the method detection limit (MDL) and MRL in both the sample and the associated method blank, the sample result was qualified "U" as not detected at the MRL. If an analyte was detected above the MRL and at less than ten times the method blank concentration (for USEPA Method 6020A) or less than five times the method blank concentration (for all other methods), the result was qualified "U" as not detected at the sample value.

In reports A8D0757 (appended CFA report WO13235) and A8D0903 (appended report WO13267) the USEPA Method 1613B batch 37539 method blank had a detection of 1,2,3,4,6,7,8,9-OCDD between the estimated detection limit (EDL) and the MRL, at 0.560 picogram per gram. The associated sample results were greater than five times the method blank concentration; thus, no results were qualified.

The remaining laboratory method blanks were non-detect to MDLs.

Trip Blanks

Trip blanks were not required for this sampling event, as volatile organic compounds were not analyzed.

Equipment Rinsate Blanks

Equipment rinsate blanks were not submitted for analysis.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike (MS)/matrix spike duplicate (MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency. When MS/MSD percent recoveries were outside acceptance limits because of high concentrations of analyte in the sample, and MS/MSD exceedances were flagged by the laboratory because of high concentrations of analyte, no qualifications were made by the reviewer.

In report A8D0754, the MS sample (8041095-MS1) for USEPA Method 6020 had a result of total lead above the upper percent recovery limit of 125 percent, at 145 percent, because of

high concentration of analyte present in the sample and a nonhomogenous sample matrix. No qualifications were made by the reviewer.

In report A8D0903, the USEPA Method 6020A batch 8050484 MSD (8050484-MSD1) exceeded the upper percent recovery acceptance limit of 125 percent for barium, at 127 percent. The associated MS had acceptable percent recovery and the MS/MSD relative percent difference (RPD) met control limits; thus, no results were qualified.

In report A8D0903, two USEPA Method 6020A batch 805098 MSs (8050598-MS3 and 8050598-MS4) exceeded the upper percent recovery acceptance limit of 125 percent for mercury, at 201 percent and 226 percent, respectively. The reviewer confirmed that both samples used to prepare the MSs had been reported as non-detect with raised reporting limits because of tungsten interference. All associated sample results were non-detect; based on the high percent recovery exceedances, qualification was not required.

In report A8E0130, the USEPA Method 6020A batch 8050640 MS (8050640-MS1) exceeded the upper percent recovery acceptance limit of 125 percent for barium, at 149 percent, and for zinc, at 141 percent. The sample used to prepare the MS was qualified by the reviewer with "J" as estimated.

Report	Sample	Component	Original Result (mg/kg)	Qualified Result (mg/kg)
A 9E0120	DU00 5 0 F	Barium	140	140 J
A8E0130	DU09-S-0.5	Zinc	112	112 J

NOTES:

J = Result is an estimated value. mg/kg = milligrams per kilogram.

All remaining recoveries were within acceptance limits for percent recovery.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the MRL were not evaluated for precision.

In report A8D0903, the USEPA Method 6020A cadmium and selenium results for sample DU09-S-0.5 were flagged by Apex because of association with a batch laboratory duplicate (8050640-DUP1) that had exceeded RPD control limits. The laboratory duplicate and sample results were either less than five times the MRL or were non-detect; thus, no results were qualified.

In report A8E0130, the USEPA Method 6020A cadmium and selenium results for sample DU09-S-0.5 were flagged by Apex because of association with a batch laboratory duplicate (8050640-DUP1) that exceeded RPD control limits. The laboratory duplicate and sample results were either less than five times the MRL or were non-detect; thus, no results were qualified.

All laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE RESULTS

A laboratory control sample (LCS) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS samples were extracted and analyzed at the required frequency. All LCS analytes were within acceptance limits for percent recovery.

CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch. CCV results were not reported. If quality control results met acceptance criteria, quality control flags for CCV exceedances required no action from the reviewer.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. Report A8E0130 states that one field duplicate was submitted for analysis (MW10-GW-050118/MWDUP-GW-050118). MFA uses acceptance criteria of 100 percent RPD for results that are less than five times the MRL, or 50 percent RPD for results that are greater than five times the MRL. Non-detect data are not used in the evaluation of field duplicate results. All analytes were within the acceptance criteria.

ISM REPLICATE EVALUATION

According to report A8D0903, triplicate ISM samples were collected and submitted to Apex for metals analysis (DU10A-S-0.5, DU10B-S-0.5, and DU10C-S-0.5). The relative standard deviations (RSDs) of the replicate sets of metals results were calculated. RSDs were not calculated when results were non-detect or qualified "U" because of EMPCs.

RSDs ranged from 2.80 percent to 64.4 percent. ISM replicate results were qualified as estimates when RSDs exceeded 35 percent. The reviewer qualified non-detect results with "UJ" and detected results with "J," as estimated. A summary of ISM RSDs with associated exceedances and qualifiers added is shown below:

Analyte	DU10A-S-0.5 (mg/kg)	DU10B-S-0.5 (mg/kg)	DU10C-S-0.5 (mg/kg)	Percent RSD	
Arsenic	11	10.4	10.7	2.80	
Barium	147	120	129	10.4	
Cadmium	0.288	0.185 J	0.39	35.6	
Chromium	68.7	82.7	72	9.83	
Copper	45.5	38.2	41.5	8.76	
Lead	41.2	15	14.7	64.4	
Mercury	0.813 U	0.484 U	0.402 U	38.4	
Selenium	0.622 J	0.575 J	0.699 J	9.91	
Silver	0.528 U	0.563 U	0.543 U	3.22	
Zinc	144	102	105	20.0	

NOTES:

J = Result is an estimated value. mg/kg = milligrams per kilogram.

RSD = relative standard deviation.

U = Result is non-detect.

Sample ID	Analyte	Percent RSD	Qualifier Added
DU10A-S-0.5	Cadmium	35.6	J
DU10B-S-0.5	Lead	64.4	J
DU10C-S-0.5	Mercury	38.4	UJ

NOTES:

J = Result is an estimated value.

RSD = relative standard deviation.

UJ = Result is non-detect and an estimated value.

REPORTING LIMITS

Apex reported routine MDLs for non-detect results. CFA reported results to EDLs. Results between the MDL or EDL and the MRL were flagged by the laboratories with "J" as estimated. Samples requiring dilutions because of high analyte concentrations and/or matrix interferences were reported with raised EDLs or MDLs, and MRLs.

The reviewer confirmed that USEPA Method 8260C soil results were reported with a base dilution factor of 1:50 that was necessary for analysis.

In report A8D0903, USEPA Method 6020A mercury reporting limits were raised for all ISM samples because of interference from tungsten, which was introduced during ISM sample processing. No additional action was required.

In report A8E0130, the USEPA Method 6020A mercury MDL and MRL were raised for sample DU09-S-0.5 because of matrix interference. No qualification was required.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

In report A8D0757, Apex noted on the cooler receipt form that containers for sample MW09-S-0.5 had been labeled as MW09-S-1.0. After confirming that, based on the original boring log, the correct sample name was MW09-S-0.5, the reviewer notified the samplers. No additional action was required.

In report A8D0757, Apex noted on the cooler receipt form that trip blank containers had been submitted with samples for that report; however, the trip blank was not recorded on the chain of custody. The reviewer confirmed that analysis had not been requested and then notified the samplers. No additional action was required.

All ISM sample names reported by Apex were appended with "(After Processing)" to indicate sample processing, or with "(As Received)" to indicate the unprocessed aliquot analyzed for percent moisture. For brevity, samples are referenced in this validation memorandum by the original sample name.

In report A8D0903, Apex noted on the cooler receipt form that sample collection time had not been recorded on sample containers for SS15-S-0.5, SS25-S-0.5, DU11-S-0.5, SS51-S-0.5, SS69-S-0.5, DU10B-S-0.5, and DU12-S-0.5. The sample collection date was not recorded on sample containers for SS61-S-0.5. The sample collection date on the following containers was 4/25/2018 and did not match the sample collection date of 4/26/2018 on the chain of custody: SS41-S-0.5, SS42-S-0.5, SS43-S-0.5, SS44-S-0.5, SS45-S-0.5, SS47-S-0.5, SS48-S-0.5, SS50-S-0.5, SS51-S-0.5, and DU08-S-0.5. The reviewer confirmed that the sample dates recorded on the chain of custody were correct, based on comparison with field sampling data sheets. The samplers were notified. Samples were logged in and reported with the correct sample collection dates and times.

In report A8D0903, sample DU06-S-0.5 was recorded on the chain of custody with sample name D406-S-0.5. Apex noted on the cooler receipt form that the sample name recorded on the container was DU06-S-0.5. The sample name was corrected by the MFA project manager and the correct sample name, DU06-S-0.5, was reported.

In reports A8D0903 and A8E0130, copper and zinc were added to all requested USEPA Method 6020A analyses after samples were received by Apex. No action was required by the reviewer.

In report A8D0903, subcontract report WO13267, CFA noted on the sample receipt checklist that the sample jar contained water and appeared to have slightly leaked into the packing material. CFA noted that the sample did not appear to be compromised. Apex was notified, and at the MFA project manager's request, the reviewer qualified associated sample results with "J" as estimated. Results already flagged as estimated because of detection below the MRL were not additionally qualified.

Report	Sample	Component	Original Result (pg/g)	Qualified Result (pg/g)		
		1,2,3,4,7,8-HxCDD	0.0842 U	0.0842 UJ		
	GP53-S-0.5	1,2,3,4,6,7,8-HpCDD	4.36	4.36 J		
A8D0903/		1,2,3,4,6,7,8,9-OCDD	38.7	38.7 J		
WO13267		Total TeCDD	0.836	0.836 J		
		Total HpCDD	7.73	7.73 J		
		Total HpCDF	7.94	7.94 J		

NOTES:

J = Result is an estimated value.

pg/g = picograms per gram.

U = Result is non-detect.

UJ = Result is non-detect and an estimated value.

In report A8H0102, Apex stated in the case narrative that the MFA project manager requested analysis of archived samples after the original report, A8D0903, was issued. A record of the follow-up analysis request was not provided with report A8H0102. The reviewer confirmed with the MFA project manager that the analyses performed and samples analyzed were correct.

No additional issues were found.

Apex. 2016. Quality systems manual. Rev. 5. Apex Laboratories, LLC, Tigard, Oregon. April 1.

CFA. 2016. Quality assurance plan. Rev. 14. Cape Fear Analytical, LLC, Wilmington, North Carolina. April.

USEPA. 1986. Test methods for evaluating solid waste: physical/chemical methods. EPA-530/SW-846. Update VI. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. September (phase II, July 2018).

USEPA. 2014. R10 data validation and review guidelines for polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran data (PCDD/PCDF) using Method 1613B and SW846 Method 8290A. EPA-910-R-14-003. U.S. Environmental Protection Agency, Office of Environmental Assessment. May.

USEPA. 2016. USEPA contract laboratory program, national functional guidelines for high resolution Superfund methods data review. EPA 542-B-16-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. April.

USEPA. 2017a. USEPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

USEPA. 2017b. USEPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

APPENDIX E NATURAL BACKGROUND MEMORANDUM

NATURAL BACKGROUND CONCENTRATION DEVELOPMENT

PROJECT NO. 0624.04.10 | OCTOBER 29, 2018 | PORT OF SKAGIT

Maul Foster & Alongi, Inc. calculated natural background values of metals in soil at the Former Northern State Hospital property (the Property), in accordance with Washington Model Toxics Control Act (MTCA) guidance (Washington Administrative Code 173-340-709). Natural background value development and calculation methods were finalized after consultation with representatives of the Washington State Department of Ecology (Ecology).

NATURAL BACKGROUND DATASET

In the Phase II Environmental Site Assessment Work Plan, two decision units (DUs), DUs 16 and 17 (Figure 3-6), were identified as having minimal known anthropogenic impacts. These two DUs were therefore chosen to represent natural background conditions for the Property. Five discrete samples were collected in each of these DUs, yielding ten discrete samples, which were analyzed for arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc. These data comprise the background dataset presented in Table E-1.

NATURAL BACKGROUND VALUE CALCULATIONS

Natural background values were initially calculated for all metals in this assessment using USEPA ProUCL, in accordance with Ecology's ProUCL Guidelines as suggested through consultation with Arthur Buchan of Ecology.² Supporting information used to develop natural background values, including natural background datasets for each metal, results of outlier tests, results of goodness of fit tests, and natural background values are presented in Table E-2.

Goodness-of-fit tests were performed using ProUCL to determine whether the natural background dataset for each metal fit a normal, gamma, or lognormal distribution. If the dataset for a metal fit multiple distributions, the distribution with the highest correlation coefficient (R) was used. Then, a 90% upper tolerance limit (UTL) with 90% coverage was calculated based on the appropriate distribution for the background dataset for each metal. This approach was used to calculate natural background values for arsenic, chromium, copper, lead, and zinc. If goodness-of-fit tests indicated that the data did not fit a normal, gamma, or lognormal distribution, then a nonparametric 90% UTL with 90% coverage was calculated. Barium was found to not fit a distribution, and therefore a nonparametric UTL was calculated as the natural background value for barium.

In cases where >0% and <50% of the observations in the background dataset for a metal were non-detect, a Kaplan-Meier 90% UTL with 90% coverage with the appropriate distribution

¹ MFA. Phase II environmental site assessment work plan, former Northern State Hospital, Sedro-Woolley, Washington. Maul Foster & Alongi, Inc., Bellingham, Washington, March 1, 2018.

²A. Buchan. ProUCL draft guidelines. Washington State Department of Ecology, January 17, 2017.

was chosen, as recommended in MTCA guidance. This approach was used to determine the natural background value for silver.

In cases where more than 50% of the observations in the background dataset for a metal were non-detect, goodness-of-fit tests were not calculated and the nonparametric 90% UTL with 90% coverage was automatically used as the natural background value. This approach was used to calculate initial natural background values for cadmium, mercury, and selenium.

TREATMENT OF NONDETECTS

Full method detection limits were used in ProUCL data assessments and calculations in all cases where concentrations were below detection limits. These cases were denoted with the "0" identifier before being input into ProUCL for analysis and natural background determination.

TREATMENT OF OUTLIERS

During sampling, one of ten sampling locations was identified as having some evidence of anthropogenic impact. That location had concentrations twofold higher than the rest of the background locations for barium, lead, and zinc. Further, outlier tests conducted in ProUCL identified concentrations of these three metals at this sampling location as outliers in their natural background datasets. Therefore, data from this sample were excluded from natural background calculations for barium, lead, and zinc. Natural background values for barium, lead, and zinc were therefore calculated with data from the remaining nine samples in the natural background dataset. Data from this sample were retained for all metals for which this sample was not an outlier according to outlier tests conducted using ProUCL. Natural background values for arsenic, cadmium, copper, lead, mercury, selenium, silver, and zinc were therefore calculated with data from all ten samples in the natural background dataset.

SELECTION OF FINAL NATURAL BACKGROUND VALUES

The calculation approach described above yielded the final natural background values for most of the metals in this assessment (specifically: arsenic, silver, chromium, barium, copper, lead, and zinc).

Alternative approaches were used to identify final natural background values for cadmium, mercury and selenium for use in this assessment. Specifically, the statewide 90th percentile natural background concentrations developed by the Washington Department of Ecology were used as the final natural background values for cadmium and selenium.³ Additionally, MTCA Stat 97 was used to generate the natural background value for mercury.⁴ The final chosen natural background value for mercury was the 90th percentile background value recommended by MTCA Stat based on a normal distribution.

³ C. San Juan. Natural background soil metals concentrations in Washington state, Toxics Cleanup Program Department of Ecology, Olympia, Washington. October 1994.

⁴ Ecology. MTCA Stat97 background module. https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools (accessed September 7, 2018)

RESULTS

Results of the evaluations described above, as well as the recommended site-specific natural background values for all metals, are presented in Table E-2. The resulting natural background values are also shown in Tables 4-5 and 4-6 of the main text.

Please note that natural background values presented here are subject to change if additional guidance is received in the future.

Table E-1 Soil Analytical Results—Discrete Decision Unit Soil Former Northern State Hospital Phase II ESA Port of Skagit Sedro-Woolley, Washington

Location:	DU.	17	DU	17	DU1	7	DU1	7	DU1	7	DU.	16	DU1	6	DU1	6	DU1	16	DU1	16
Sample Name:	SS16-S	S-0.5	SS17-S	S-0.5	SS18-S	5-0.5	SS19-S	5-0.5	SS20-S	-0.5	SS46-S	S-0.5	SS47-S	5-0.5	SS48-S	-0.5	SS49-S	S-0.5	SS50-S	5-0.5
Collection Date:	04/25/	2018	04/25/	2018	04/25/	2018	04/25/	2018	04/25/	2018	04/26/	2018	04/26/	2018	04/26/	2018	04/26/	2018	04/26/	2018
Metals (mg/kg)		MDL																		
Arsenic	13.9	0.938	15.2	0.887	8.01	0.942	8.65	1.16	15.1	0.79	7.29	0.746	15.7	0.866	7.41	0.756	13.9	0.917	10.8	0.828
Barium	531	0.938	118	0.887	122	0.942	147	1.16	158	0.79	160	0.746	345	0.866	105	0.756	138	0.917	141	0.828
Cadmium	0.938 U	0.938	0.887 U	0.887	0.942 U	0.942	1.16 U	1.16	0.79 U	0.79	0.746 U	0.746	0.866 U	0.866	0.756 U	0.756	0.917 U	0.917	0.828 U	0.828
Chromium	71.1	0.938	56.5	0.887	39.5	0.942	67.8	1.16	91.1	0.79	51.2	0.746	25.9	0.866	37.4	0.756	73.6	0.917	74.7	0.828
Copper	66.6	3.75	28.9	3.55	27.8	3.77	34.3	4.64	54.7	3.16	25.3	2.98	37	3.47	20.2	3.02	45.2	3.67	40.7	3.31
Lead	96.2	0.188	40.5	0.177	42	0.188	39.9	0.232	14.4	0.158	20.7	0.149	37.4	0.173	13.9	0.151	25.4	0.183	22.8	0.166
Mercury	0.15 U	0.15	0.183 J	0.142	0.151 U	0.151	0.186 U	0.186	0.126 U	0.126	0.119 U	0.119	0.139 U	0.139	0.143 J	0.121	0.183 J	0.147	0.168 J	0.132
Selenium	0.938 U	0.938	0.887 U	0.887	0.942 U	0.942	1.16 U	1.16	0.79 U	0.79	0.746 U	0.746	0.866 U	0.866	0.756 U	0.756	1.2 J	0.917	0.859 J	0.828
Silver	0.39	0.188	0.406	0.177	0.191 J	0.188	0.232 U	0.232	0.316	0.158	0.149 U	0.149	0.173 U	0.173	0.158 J	0.151	0.679	0.183	0.581	0.166
Zinc	267	3.75	108	3.55	75.2	3.77	87.8	4.64	133	3.16	64.4	2.98	157	3.47	83.3	3.02	115	3.67	121	3.31

NOTES:

Detected results are shown in **bold** font.

ESA = environmental site assessment.

J = Result is an estimated value.

MDL = method detection limit.

mg/kg = milligrams per kilogram.

U = Result not detected at MDL.

Table E-2
Natural Background Supporting Information
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

Metals		Arsenic		Silver		Barium	Cadmium		
	Data (mg/kg)	Detection (0=N and 1=Y)	Data (mg/kg)	Detection (0=N and 1=Y)	Data (mg/kg)	Detection (0=N and 1=Y)	Data (mg/kg)	Detection (0=N and 1=Y)	
	13.9	1	0.39	1	531	1	0.938	0	
	15.2	1	0.406	1	118	1	0.888	0	
	8.01	1	0.188	1	122	1	0.942	0	
	8.65	1	0.232	0	147	1	1.16	0	
Data	15.1	1	0.316	1	158	1	0.79	0	
	7.29	1	0.149	0	160	1	0.746	0	
	15.7	1	0.173	0	345	1	0.866	0	
	7.41	1	0.151	1	105	1	0.756	0	
	13.9	1	0.679	1	138	1	0.918	0	
	10.8	1	0.581	1	141	1	0.828	0	
Percent Censored Data		0%	30%			0%		100%	
Outlier Observed?		No	No		Yes (531 is	Yes (531 is an outlier at 10% significance level)		NA	
Normal Correlation Coefficient (R)		R = 0.936	R = 0.981			R = 0.781°	Over 50% of data are censored; natural		
Gamma Correlation Coefficient (R)		R = 0.9184	R = 0.9796			$R = 0.845^{\circ}$	background value calculated based on		
Lognormal Correlation Coefficient (R)		$R = 0.9328$ $R = 0.978$ $R = 0.868^{\circ}$		$R = 0.868^{\circ}$	nonparametric distribution ^b				
Distribution Used		Normal		Normal		Nonparametric	Nonparametric		
Calculated Natural Background Value (mg/kg)	18.9		0.7			345°		1.16	
Recommended Natural Background Value (mg/kg)	18.9			0.7		345°	1.00 ^d		
Natural Background Source	Calculated (90% UTL with 90% Coverage Assuming Normal Distribution)			Calculated (Kaplan-Meier 90% UTL with 90% Coverage Assuming Normal Distribution ^c)		90% Percentile Bootstrap UTL with 90% Assuming Nonparametric Distribution)	Washington State Natural Background Concentrations		

Table E-2
Natural Background Supporting Information
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

Metals		Copper		Chromium		Mercury	Lead		
	Data (mg/kg)	Detection (0=N and 1=Y)	Data (mg/kg)	Detection (0=N and 1=Y)	Data (mg/kg)	Detection (0=N and 1=Y)	Data (mg/kg)	Detection (0=N and 1=Y)	
	66.6	1	71.1	1	0.15	0	96.2	1	
	28.9	1	56.5	1	0.142	1	40.5	1	
	27.8	1	39.5	1	0.151	0	42	1	
	34.3	1	67.8	1	0.186	0	39.9	1	
Data	54.7	1	91.1	1	0.126	0	14.4	1	
	25.3	1	51.2	1	0.119	0	20.7	1	
	37	1	25.9	1	0.139	0	37.4	1	
	20.2	1	37.4	1	0.121	1	13.9	1	
	45.2	1	73.6	1	0.147	1	25.4	1	
	40.7	1	74.7	1	0.132	1	22.8	1	
Percent Censored Data		0%	0%		60%		0%		
Outlier Observed?		No	No			NA		Yes (96.2 is an outlier at 1% significance level)	
Normal Correlation Coefficient (R)		R = 0.971	R = 0.984		Over 50% of data are censored; natural		$R = 0.948^{\circ}$		
Gamma Correlation Coefficient (R)		R = 0.994 R = 0.9653			_	value calculated based on	$R = 0.9228^{\circ}$		
Lognormal Correlation Coefficient (R)		R = 0.9959		R = 0.965	nonpa	rametric distribution ^b	R = 0.948°		
Distribution Used		Lognormal	Normal		1	Vonparametric	Normal		
Calculated Natural Background Value (mg/kg)	76.1		101		0.19		53°		
Recommended Natural Background Value (mg/kg)	76.1		101			0.14 ^e		53°	
Natural Background Source	Calculated (90% UTL with 90% Coverage Assuming Lognormal Distribution)			Calculated (90% UTL with 90% Coverage Assuming Normal Distribution)		und Value Assuming Normal Calculated with MTCA Stat ^e	Calculated (90% UTL with 90% Coverage Assuming Normal Distribution)		

Table E-2
Natural Background Supporting Information
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

Metals		Selenium	Zinc			
	Data (mg/kg)	Detection (0=N and 1=Y)	Data (mg/kg)	Detection (0=N and 1=Y)		
	0.78	0	267	1		
	0.812	0	108	1		
	0.376	0	75.2	1		
	0.232	0	87.8	1		
Data	0.632	0	133	1		
	0.149	0	64.4	1		
	0.173	0	157	1		
	0.302	0	83.3	1		
	0.917	1	115	1		
	0.828	1	121	1		
Percent Censored Data		80%	0%			
Outlier Observed?		NA	Yes (267 is an outlier at 5% significance level)			
Normal Correlation Coefficient (R)	Over 50% of	data are censored; natural	R = 0.988°			
Gamma Correlation Coefficient (R)	_	value calculated based on	R = 0.9927°			
Lognormal Correlation Coefficient (R)	nonpa	rametric distribution ^b	R = 0.9921°			
Distribution Used	1	Nonparametric	Gamma			
Calculated Natural Background Value (mg/kg)		0.92	179°			
Recommended Natural Background Value (mg/kg)	0.78 ^d			179°a		
Natural Background Source		State Natural Background Concentrations	Calculated (90% WH Approx. Gamma UTL with 90% Coverage Assuming Gamma Distribution)			

Table E-2
Natural Background Supporting Information
Former Northern State Hospital Phase II ESA
Port of Skagit
Sedro-Woolley, Washington

Notes

^a An outlier was identified through outlier testing in ProUCL; that outlier was excluded from all subsequent natural background calculations.

^b Where over 50% of background data were censored, natural background statistics were calculated based on nonparametric distributions as directed in the ProUCL guidance for MTCA authored by Arthur Buchan in 2017.

^c Where between 0% and 50% of background data were censored, a Kaplan-Meier 90% UTL with 90% coverage was chosen for the natural background value, as directed in the ProUCL guidance for MTCA authored by Arthur Buchan in 2017.

^d Statewide 90th percentile natural background concentration developed by the Washinton Department of Ecology, obtained from: https://fortress.wa.gov/ecy/publications/documents/94115.pdf.

^e Calculated using normal distribution in MTCA Stat program downloaded from: https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools.

APPENDIX F

ECOLOGICAL SCREENING LEVEL MEMORANDUM

SITE-SPECIFIC ECOLOGICAL SCREENING LEVEL DEVELOPMENT

PROJECT NO. 0624.04.10 | OCTOBER 29, 2018 | PORT OF SKAGIT

Maul Foster & Alongi, Inc., developed site-specific ecological screening levels (SLs) for metals in soil at the Former Northern State Hospital property (the Property), in support of a potential future site-specific Terrestrial Ecological Evaluation (TEE) per Washington Model Toxics Control Act (MTCA) guidance (Washington Administrative Code [WAC] 173-340-7493). Site-specific ecological SLs were finalized per MTCA guidance (WAC 173-340-7493) and after consultation with representatives of the Washington State Department of Ecology.

MTCA ECOLOGICAL INDICATOR CONCENTRATIONS

The Phase II environmental site assessment (ESA) work plan established that site-specific ecological SLs would be developed for the Property as part of the Phase II ESA. Default MTCA ecological indicator concentrations (EICs) were used for most site-specific ecological SLs (WAC 173-340-7493, Table 749-3).

SUBSTITUTIONS OF SCREENING LEVELS

There were a few cases where alternative ecological SLs were substituted for MTCA EICs. In a few additional cases the MTCA EIC list was supplemented with ecological SLs from alternative sources, in accordance with MTCA TEE guidance (WAC 170-340-7493(3)(a). Specifically:

- The U.S. Environmental Protection Agency (USEPA) ecological soil SL of 120 milligrams per kilogram (mg/kg)¹ for lead toxicity to plants was substituted for the EIC for lead toxicity to plants.
- No MTCA EIC is provided in WAC Table 749-3 for exposure of soil biota to barium. The USEPA ecological soil SL for exposure of soil invertebrates to barium of 330 mg/kg was used for this value.²
- No MTCA EIC is provided in WAC Table 749-3 for exposure of wildlife to silver. The USEPA ecological soil SL for exposure of mammals to silver of 14 mg/kg was used for this value.³
- No MTCA EIC is provided in WAC Table 749-3 for exposure of soil biota to silver. Additionally, there is no USEPA ecological soil SL for exposure of soil invertebrates to silver. A screening benchmark concentration of 50 mg/kg was developed by the

¹ USEPA. Ecological soil screening levels for lead. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC, March 2005.

² USEPA. Ecological soil screening levels for barium. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC, February 2005.

³ USEPA. Ecological soil screening levels for silver. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC, September 2006.

Oak Ridge National Laboratory based on the toxicity of silver to soil microorganisms and microbial processes.⁴ This value was used as the ecological SLV for exposure of soil biota to silver.

RESULTS

The chosen site-specific ecological SLs are presented in Tables 4-5 and 4-6 of the of the main text.

Please note that site-specific ecological SLs presented here are subject to change if additional guidance is received in the future.

⁴ Oak Ridge National Laboratory screening benchmark concentration for the toxicity of chemicals to soil microorganisms and microbial processes: https://info.ornl.gov/sites/publications/Files/Pub57854.pdf.