

USTs N-1, 2, 3, 4, 25, and 26 Site-Specific Summary Report Port of Tacoma UST Remediation Program Tacoma, Washington

Prepared for Port of Tacoma

February 3, 2011 17581-00

USTs N-1, 2, 3, 4, 25, and 26 Site-Specific Summary Report Port of Tacoma UST Remediation Program Tacoma, Washington

Prepared for Port of Tacoma

February 3, 2011 17581-00

Prepared by Hart Crowser, Inc.

Tolla I hut

Colleen Rust Senior Staff Hydrogeologist

Ron Z.S

Ross Stainsby, LHG, PMP Senior Associate

CONTENTS	<u>Page</u>
1.0 INTRODUCTION	1
2.0 PROJECT BACKGROUND	1
3.0 PREVIOUS INVESTIGATIONS	2
4.0 GEOLOGY AND HYDROGEOLOGY	3
5.0 SUMMARY OF 2010 INVESTIGATION ACTIVITIES	4
5.1 Direct-Push Probe Investigation 5.2 Soil Sampling and Analytical Results 5.3 Groundwater Sampling and Analytical Results	4 4 5
6.0 CONCLUSIONS AND RECOMMENDATIONS	6
7.0 REFERENCES	7

TABLES

The final funding deal results for reality son sumples (final crowser, 2009a)

- 2 Prior Analytical Results for Nearby Groundwater Samples (Hart Crowser, 2009a)
- 3 Analytical Results for Soil Samples, USTs N-1, 2, 3, 4, 25, and 26 (Hart Crowser, 2010)
- 4 Analytical Results for Groundwater Samples, USTs N-1, 2, 3, 4, 25, and 26 (Hart Crowser, 2010)

FIGURES

- 1 Vicinity Map
- 2 Area Map
- 3 Site Plan USTs N-1, 2, 3, 4, 25, and 26

APPENDIX A GEOPHYSICAL SURVEY REPORT AND ASSOCIATED FIGURE

APPENDIX B DIRECT-PUSH PROBE EXPLORATION LOGS AND BORING LOGS FROM PREVIOUS INVESTIGATIONS

CONTENTS (Continued)

APPENDIX C NAVY DRAWING

APPENDIX D CHEMICAL DATA QUALITY REVIEW AND LABORATORY REPORTS

USTs N-1, 2, 3, 4, 25, AND 26 SITE-SPECIFIC SUMMARY REPORT PORT OF TACOMA UST REMEDIATION PROGRAM TACOMA, WASHINGTON

1.0 INTRODUCTION

Hart Crowser has prepared this Site-Specific Summary Report as part of the Port of Tacoma's (Port) Underground Storage Tank (UST) Remediation Program. The Port's UST Remediation Program is focused on the northern end of the Blair-Hylebos Peninsula, north of East 11th Street in Tacoma, Washington (Figure 1).

The overall goal of this investigation is to test for the presence of contamination in soil and groundwater related to USTs N-1, 2, 3, 4, 25, and 26 (Figure 2). A Site-Specific Sampling and Analysis Plan (SSAP) (Hart Crowser 2010b), which supplemented the Area-Wide Sampling and Analysis Plan (AWSAP) (Hart Crowser 2010a), was created for this investigation. The SSAP identified the contaminants of concern related to USTs N-1, 2, 3, 4, 25, and 26 and provided a detailed sample collection protocol and rationale for this investigation.

2.0 PROJECT BACKGROUND

Currently, it is unknown whether USTs N-1, 2, 3, 4, 25, and 26 have been removed or remain in place. As of 2008/2009 the USTs were not included in the Port of Tacoma's UST records, but were identified on 1940s–1950s drawings of the former US Naval Station next to Building 529 which was labeled "Central Heating Plant." The tanks were labeled as six 25,000-gallon fuel tanks. It is likely that these USTs would have contained fuel oil for the boilers. The drawings indicate that USTs N-1, 2, 3, and 4 were in place before 1949 and USTs N-25 and 26 were installed before 1953. No information confirming the UST construction materials was available but the USTs were likely made of steel, given their ages.

The Navy drawing depicting the UST locations is provided in Appendix C. Hart Crowser performed field investigations in April 2010 with a magnetometer and ground penetrating radar (GPR) to better determine the UST locations (Global Geophysics 2010). Results from the geophysical surveys are provided in Appendix A.

The magnetometer survey detected numerous anomalies. In general, the majority of magnetometer anomalies appear to coincide with the location, number, and orientation of USTs N-1, 2, 3, 4, 25, and 26 based on 1940s–1950s

drawings of the former US Naval Station (Appendix A figure). Several of the anomalies may also be caused by interference from surface metal objects such as propane tanks, storm drain catch basins and metal vaults.

The GPR survey detected one anomaly within the survey area. Interpretation of the magnetometer and GPR results indicate that this anomaly was likely a metal pipe (Global Geophysics 2010). Based on the results of the magnetometer and GPR survey, it is likely that the USTs remain in place.

3.0 PREVIOUS INVESTIGATIONS

This section summarizes prior environmental data available in the vicinity of USTs N-1, 2, 3, 4, 25, and 26. These data are from environmental investigations completed by Hart Crowser in 1980 and 2009 and by Conestoga-Rovers & Associates (CRA) in 1995 and 2006. Boring logs from these investigations are provided in Appendix B. The 1980 Hart Crowser and 1995 and 2006 CRA borings were completed to evaluate soil and groundwater at depths greater than that typically impacted by petroleum hydrocarbons from USTs. Soil and groundwater samples were not collected for analysis during those investigations in the area of concern for this project, therefore, the boring logs are provided for stratigraphic information only.

In 2008, Hart Crowser completed one direct-push probe, HC08-EP107, approximately 50 feet project northeast of the USTs (Figure 2). This exploration was completed for the Port of Tacoma in association with its planned Blair-Hylebos Peninsula terminal redevelopment project (Hart Crowser 2009a).

Only one soil sample (HC08-EP107) was collected from that boring from the unsaturated zone at 2.5 to 4 feet below ground surface (bgs). The sample was analyzed for diesel- and oil-range petroleum hydrocarbons by NWTPH-Dx, gasoline-range petroleum hydrocarbons by NWTPH-Gx, PCBs, and selected metals. All analytical results were below Model Toxics Controls Act (MTCA) Method A (Chapter 173-340 WAC) soil cleanup levels for industrial properties. Analytical results for sample HC08-EP107 are provided in Table 1.

Groundwater was encountered at approximately 10 feet bgs. A grab groundwater sample from boring HC08-EP107 was collected from the screened interval at 10.75 to 11.75 feet bgs from the direct-push probe and was analyzed for NWTPH-Gx, NWTPH-Dx, VOCs, metals, and pH. The resulting groundwater analytical results are provided in Table 2.

All 2008 groundwater analytes were reported to be below MTCA Method A (173-340 WAC) groundwater cleanup levels, with the exception of vinyl chloride. Vinyl chloride was reported to be present at 190 ug/L. The MTCA Method A groundwater cleanup level for vinyl chloride is 0.2 ug/L.

Based on Port-provided resources, we can infer that the contents of USTs N-1, 2, 3, 4, 25, and 26 likely always were fuel oil. In addition, the location of the 2008 boring was documented to be within a vinyl chloride plume that has migrated to this location from an adjacent property (CRA 2008). Because all evidence indicates that elevated vinyl chloride in groundwater at this location is likely from a separate neighboring source and is not related to USTs N-1, 2, 3, 4, 25, and 26, vinyl chloride was not carried forward as a contaminant of concern related to these USTs.

4.0 GEOLOGY AND HYDROGEOLOGY

These USTs are located on the uplands of the Blair-Hylebos Peninsula (Figure 1). Subsurface conditions on the peninsula generally consist of an industrial fill layer extending from 0 to about 6 feet bgs over nonindustrial fill material, hydraulically dredged and placed over local tideflats and intertidal areas in the early 1900s to create the upland peninsula (Hart Crowser 2009b).

Local subsurface conditions observed in direct-push probe explorations in the vicinity of USTs N-1, 2, 3, 4, 25, and 26 generally consisted of varying thicknesses of silty sand, sand, and gravelly sand to sandy gravel. In explorations HC-N12342526-2 and HC-N12342526-3 sand was observed below the asphalt and base course extending to 12 and 16 feet bgs, respectively. Gravelly sand with brick debris was observed below the asphalt and base course in HC-N12342526-4 to 14 feet bgs where an obstruction was encountered. Exploration HC-N12342526-1 encountered gravelly sand to eight feet bgs, overlying sand from 8 to 13.5 feet bgs, and sandy gravel from 13.5 to 16 feet bgs. Shallow groundwater was encountered between 9 and 12 feet bgs in previous and current investigation explorations.

Since 1996, groundwater flow in this area has been controlled by the Occidental groundwater extraction system that surrounds these USTs. Historically, shallow groundwater in this area most likely flowed north toward Commencement Bay. Currently, groundwater flow at this location most likely is toward the closest extraction well (just south of these USTs) with strong downward components.

5.0 SUMMARY OF 2010 INVESTIGATION ACTIVITIES

5.1 Direct-Push Probe Investigation

ESN Northwest, Inc. of Olympia, Washington, completed four direct-push probe explorations, HC-N12342526-1 through HC-N12342526-4 on September 27, 2010. These probes were completed near all four sides of the inferred USTs N-1, 2, 3, 4, 25, and 26 locations to depths of approximately 12 to 16 feet bgs. The exploration locations are shown on Figure 3 and boring logs are provided in Appendix B.

Prior to this subsurface investigation, we contacted One-Call to locate utilities in the public right-of-way (ROW) and contracted with a private utility locating company to locate potential utilities on private property.

After the samples were collected, the probe locations were backfilled and abandoned in general accordance with the State of Washington Administrative Code on Minimum Standards for Construction and Maintenance of Wells (Chapter 173-160 WAC).

Investigation-derived waste associated with this environmental investigation was stored in labeled drums on site, pending receipt of laboratory results, waste designation, and appropriate disposal by the Port.

5.2 Soil Sampling and Analytical Results

Hart Crowser collected and field screened continuous soil samples from direct push probes HC-N12342526-1 through HC-N12342526-4 at 4-foot-depth intervals using a Photoionization Detector (PID) and sheen test.

A total of five soil samples were collected: one each from HC-N12342526-1, HC-N12342526-2, and HC-N12342526-4, and two samples from HC-N12342526-3. Three of the five samples were collected from intervals with field indications of potential contamination. Soil sample HC-N12342526-3-S1 was collected from 1 to 4 feet bgs after creosote-like odors and a moderate sheen was observed in wood debris located at 2.5 feet bgs.

Soil sample HC-N12342526-4-S3 was collected from an interval in which a red and black oily substance was observed (between 8 and 11 feet bgs). The impacted interval coincided with the depth of groundwater observed in the push probe. The substance exhibited strong petroleum-like odors and a heavy sheen.

Soil samples HC-N12342526-1-S3/4 were collected after observation of petroleum-like sheen from 12 to 13.5 feet bgs.

All soil samples were submitted to Onsite Environmental Inc. (OnSite) of Redmond, Washington, for chemical analysis of diesel- and oil-range petroleum hydrocarbons by NWTPH-Dx; gasoline-range petroleum hydrocarbons by NWTPH-Gx; and benzene, ethylbenzene, toluene, and total xylenes (BETX) by EPA Method 8021.

Soil Analytical Results

Soil sample HC-N12342526-4-S3 was reported to contain diesel- and oil- range petroleum hydrocarbons at 22,000 mg/kg and 25, 000 mg/kg, respectively, exceeding MTCA Method A cleanup levels of 2,000 mg/kg. BETX was also detected in the sample; however, the benzene concentration of 0.14 mg/kg was the only compound detected above its respective cleanup level (0.03 mg/kg).

Diesel- and oil- range petroleum hydrocarbons were detected at 46 mg/kg and 98 mg/kg, respectively, in soil sample HC-N12342526-3-S1, below the MTCA Method A cleanup level of 2000 mg/kg. Soil sample HC-N12342526-3-S3, collected from 12 to 14 feet bgs did not contain diesel-, oil-, gasoline-range petroleum hydrocarbons and BETX above analytical detection limits.

Diesel-, oil-, and gasoline-range petroleum hydrocarbons and BETX were not detected in soil samples HC-N12342526-1-S3/4, HC-N12342526-2-S3, and HC-N12342526-3-S4.

The analytical results for the direct push probe soil samples are summarized in Table 3. The results of our review of chemical data quality and laboratory reports are provided in Appendix C.

5.3 Groundwater Sampling and Analytical Results

Groundwater samples were collected from temporary 3-foot miniwells installed in each of the four shallow push probe explorations, HC-N12342526-1 through HC-N12342526-4. One sample from each location was submitted to Onsite for chemical analysis of diesel-, oil-, gasoline-range petroleum hydrocarbons and BETX. Details of the Hart Crowser grab groundwater sampling procedures can be found in the SSAP (Hart Crowser 2010b) and AWSAP (Hart Crowser 2010a).

Groundwater Analytical Results

A slight to moderate sheen was observed during field screening of purge water from exploration HC-N12342526-1. The groundwater sample from this exploration contained diesel- and oil-range petroleum hydrocarbons at 0.53 mg/L and 1.8 mg/L respectively, exceeding the MTCA Method A cleanup level of 0.5 mg/L for each hydrocarbon range.

An oily product was observed during field screening of purge water from push probe exploration HC-N12342526-4. Groundwater from this exploration contained benzene at 16 ug/L, above the MTCA Method A cleanup level of 5 ug/L. Diesel- and oil-range petroleum hydrocarbons were also detected at 1.5 ug/L and 0.67 ug/L, respectively, above applicable cleanup levels of 0.5 mg/L.

No evidence of petroleum-related contamination was observed during field screening of the purge water collected from the two shallow push probe explorations HC-N12342526-2 and HC-N12342526-3. Diesel-, oil-, gasoline-range petroleum hydrocarbons and BETX were not detected above applicable analytical detection limits in these groundwater samples.

The analytical results for the direct push probe grab groundwater samples are summarized in Table 4. The results of our review of chemical data quality and laboratory reports are provided in Appendix C.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Currently, it is unknown whether USTs N-1, 2, 3, 4, 25, and 26 remain in place. However, the geophysical survey conducted as part of this investigation did identify six anomalies that may represent the UST locations.

A red and black oily substance was observed in soil between 8 and 12 feet bgs in exploration HC-N12342526-4. Diesel- and oil- range petroleum hydrocarbon and benzene concentrations of 22,000 mg/kg, 25, 000 mg/kg, and 0.13 mg/kg respectively, were detected in sample HC-N12342526-4-S3 from that interval.

Groundwater impacts exceeding cleanup levels were detected in explorations HC-N12342526-1 and HC-N12342526-4. An oily product was observed during field screening of purge water from exploration HC-N12342526-4. The groundwater sample contained diesel- and oil-range petroleum hydrocarbons and benzene concentrations at 1.5 mg/L, 0.67 mg/L, and 16 ug/L respectively. The groundwater sample from exploration HC-N12342526-1 contained

concentrations of diesel- and oil-range petroleum hydrocarbons at 0.53 mg/L and 1.8 mg/L respectively.

No other soil impacts exceeding cleanup levels were detected during the current investigation. Previous investigations found detectable levels of petroleum related compounds in soil and groundwater in the vicinity of USTs N-1 2, 3, 4, 25 and 26, but well below cleanup levels (Tables 1 and 2).

We recommend advancing additional explorations in the vicinity of explorations HC-N12342526-1 and HC-N12342526-4 to determine the extent of the soil and groundwater petroleum hydrocarbon impacts.

There are no records that indicate that these tanks have been removed. There also are no records that indicate that the USTs have been used since the Washington State Underground Storage Tank Regulations Chapter 173-360 were developed in 1989. It is not likely that the USTs were closed to today's standards. Therefore, we recommend that surface explorations be completed to determine if these tanks still remain and if so, we recommend removal. As part of the UST removal process, a UST site assessment in accordance with Ecology and Tacoma Pierce County Health Department guidance must be conducted.

7.0 REFERENCES

Conestoga-Rovers & Associates (CRA), 2008. Preliminary Draft Site Characterization Report. Prepared for Occidental Chemical Corporation, March 2008.

Ecology, 2007. Model Toxics Control Act (MTCA) cleanup regulation, chapter 173-340 WAC.

Ecology, 2007b. Underground Storage Tank Regulations 173-340 (WAC).

Global Geophysics, 2010. Report for a Geophysical Survey to Locate Buried Underground Storage Tanks. Prepared for Hart Crowser, Inc. April 18, 2010.

Hart Crowser, 2008. Revised Geotechnical Work Plan for East Blair Three, Port of Tacoma, Washington. Prepared for Port of Tacoma. August 8, 2008, with addendum dated September 22, 2008.

Hart Crowser, 2009a. Environmental Site Characterization Data Report, Proposed Terminal Development, Port of Tacoma, Washington. Prepared for Port of Tacoma. February 27, 2009. Hart Crowser, 2010. Area-Wide Sampling and Analysis Plan. Port of Tacoma UST Remediation Program Sampling, Tacoma, Washington. Prepared for the Port of Tacoma. April 27, 2010.

Hart Crowser, 2010b. USTs N-1, 2, 3, 4, 25, and 26 Site-Specific Sampling and Analysis Plan. Port of Tacoma UST Remediation Program Sampling, Tacoma, Washington. Prepared for the Port of Tacoma. May 28, 2010.

J:\Jobs\1758100\Phase 21 1,2,3,4,25,26\Summary Report\UST N-1,2,3,4,25,26 Summary Report.doc

Table 1 - Prior Analytical Results for Nearby Soil Samples (Hart Crowser, 2009a)

Exploration No./Sample ID Sampling Date Depth in Feet		HC08-EP107 10/01/08 2.5 to 4
	MTCA Cleanup Level Method A Industrial	
Metals in mg/kg		
Arsenic	20	5 U
Cadmium	2	0.2 U
Chromium		12.1
Copper		13.1
Lead	1,000	5
Mercury	2	0.05 U
Nickel		8
Zinc		30
TCLP Metals in mg/L		
Lead		
TPH in mg/kg		
Diesel-Range Hydrocarbons	2,000	6.4
Motor Oil-Range Hydrocarbons	2,000	37
Gasoline-Range Hydrocarbons	100/30 ^a	6.8
PCBs in ug/kg		
Aroclor 1016		32 U
Aroclor 1221		32 U
Aroclor 1232		32 U
Aroclor 1242		32 U
Aroclor 1248		32 U
Aroclor 1254		32 U
Aroclor 1260		32 U
Total PCBs	10,000	32 U

Notes:

Blank entry indicates no applicable MTCA criteria established or sample not analyzed for specific analyte. U: Not detected at reporting limit indicated.

J: Estimated value.

9 Bold, boxed entry indicates concentration exceeds MTCA screening criteria.

^a 100 mg/kg when no benzene present, 30 mg/kg when benzene present.

Table 2 - Prior Analytical Results for Nearby Groundwater Samples (Hart Crowser, 2009a)

pH ^(a) 6.81 TPH in mg/L Diesel-Range Hydrocarbons 0.5 0.34	
pH 6.81TPH in mg/L6.81Diesel-Range Hydrocarbons0.50.34	
Diesel-Range Hydrocarbons 0.5 0.34	
Diesei-Range Hydrocarbons 0.5 0.34	
Mater Oil Department	
Gasoline-Range Hydrocarbons 0.8/1 ⁽⁰⁾ 0.25 U	
Metals in mg/L	
Arsenic 0.005 0.05 U	
Cadmium 0.005 0.002 U	
Chromium 0.05 0.029	
Copper 0.03	
Lead 0.015 0.02 U	
Mercury 0.002 0.0001 U	
NICKEI 0.02	
ZINC U.U4	
Volatiles in ug/L	
1,1,1,1,2-Tetrachioroethane 0.2 0	
1,1,1-Inchloroethane 200 0.2 0	
1,1,2,Z ² Tetrachiologinane 0.2 0	
1.1.2-Trichloroethane 0.2.0	
1 1-Dichloroethane 0.2 U	
1 1-Dichloroethene 0.2 U	
1 1-Dichloropropene 0.2 U	
1.2.3-Trichlorobenzene 0.5 U	
1.2.3-Trichloropropane 0.5 U	
1.2.4-Trichlorobenzene 0.5 U	
1,2,4-Trimethylbenzene 0.2 U	
1,2-Dibromo-3-chloropropane 0.5 U	
1,2-Dichlorobenzene 0.3	
1,2-Dichloroethane 5 0.2 U	
1,2-Dichloropropane 0.2 U	
1,3,5-Trimethylbenzene 0.2 U	
1,3-Dichlorobenzene 0.2 U	
1,3-Dichloropropane 0.2 U	
1,4-Dichlorobenzene 0.2 U	
2,2-Dichloropropane 0.2 U	
2-Butanone 2.5 U	
2-Chloroethylvinylether 1 U	
2-Chlorotoluene 0.2 U	
2-Hexanone 2.5 U	
4-Chiorotoluene 0.2 0	
4-Isopropyitoluene 3.2	
4-ivietnyi-z-Penianone (iviibk) 2.5 0	
Accelein 3U	
Acrylonitrile 5 U	
Bromohenzene 0.0	
Bromochloromethane 0.2 U	
Bromodichloromethane 0.2 U	

Table 2 - Prior Analytical Results for Nearby Groundwater Samples (Hart Crowser, 2009a)

Sample ID Sampling Date Screen Interval in Feet	MTCA Cleanup Level	HC08-EP107 10/01/08 10.75 to 11.75
Bromoethane		0211
Bromoform		0.2 0
Bromomethane		0.5 U
Carbon Disulfide		021
Carbon Tetrachloride		0211
Chlorobenzene		0.2 U
Chloroethane		021
Chloroform		0.2 U
Chloromethane		0.2 U
cis-1.2-Dichloroethene		11
cis-1.3-Dichloropropene		0.2 U
Dibromochloromethane		0.2 U
Dibromomethane		0.2 U
Ethylbenzene	700	0.2 U
Ethylene Dibromide	0.01	0.2 U
Hexachlorobutadiene		0.5 U
Isopropylbenzene		0.2 U
m,p-Xylene		0.4 U
Methyl Iodide		1 U
Methylene Chloride	5	0.5 U
Naphthalene	160	0.5 U
n-Butylbenzene		0.2 U
n-Propylbenzene		0.2 U
o-Xylene		0.2
sec-Butylbenzene		0.2 U
Styrene		0.2 U
tert-Butylbenzene		0.2 U
Tetrachloroethene	5	0.3
Toluene	1000	0.2 U
trans-1,2-Dichloroethene		6.2
trans-1,3-Dichloropropene		0.2 U
trans-1,4-Dichloro-2-butene	_	1 U
Trichloroethene	5	0.5
Irichlorofluoromethane		0.2 U
Vinyl Acetate		1 U
Vinyl Chloride	0.2	190

Notes:

U = Not detected at reporting limit indicated.

Bold, boxed entry indicates concentration exceeds MTCA screening criteria. Blank indicates sample not analyzed for specific analyte or no criteria available.

(a) pH measured in the field at the time of sample collection.

(b) 0.8 mg/L when no benzene present, 1 mg/L when benzene present.

Sample ID	MTCA	HC-N12342526-1-S3/4	HC-N12342526-2-S3	HC-N12342526-3-S1	HC-N12342526-3-S4	HC-N12342526-4-S3
Sampling Date	Cleanup Level	9/24/2010	9/24/2010	9/24/2010	9/24/2010	9/24/2010
Sample Depth in Feet	Method A	10 to 13	8 to 10	1 to 4	12 to 14	10 to 12
TPH in mg/kg						
Diesel Range Organics	2000	31 U	33 U	46	30 U	22000
Lube Oil	2000	62 U	65 U	98	60 U	25000
Gasoline Range Organics	100/30 ^ª	6.1 U	7.4 U	5 U	6 U	6.6 U
BTEX in mg/kg						
Benzene	0.03	0.02 U	0.02 U	0.02 U	0.02 U	0.14
Ethylbenzene	6	0.061 U	0.074 U	0.05 U	0.06 U	1.5
m, p-Xylene	9	0.061 U	0.074 U	0.05 U	0.06 U	0.85
o-Xylene	9	0.061 U	0.074 U	0.05 U	0.06 U	6.6 U
Toluene	7	0.061 U	0.074 U	0.05 U	0.06 U	0.089

Table 3 - Analytical Results for Soil Samples, USTs N-1, 2, 3, 4, 25, and 16 (Hart Crowser, 2010)

Notes:

U = Not detected at the reporting limit indicated.

^a 100 mg/kg when no benzene present, 30 mg/kg when benzene present. Bold boxed entry indicates concentration exceeds MTCA cleanup level.

Reporting limits that exceed the MTCA cleanup level are italicized.

Hart Crowser 1758100\ChemRslts-21

Table 4 - Analytical Results for Groundwater Samples, USTs N-1, 2, 3, 4, 25, and 16 (Hart Crowser, 2010)

Sample ID Sampling Date Screen Interval in Feet	MTCA Cleanup Level Method A	HC-N12342526-1 GW 9/24/2010 11 to 14	HC-N12342526-2 GW 9/24/2010 9 to 12	HC-N12342526-3 GW 9/24/2010 12 to 15	HC-N12342526-4-GW 9/24/2010 10 to 13
TPH in mg/L					
Diesel Range Organics	0.5	0.53	0.26 U	0.26 U	1.5
Lube Oil	0.5	1.8	0.42 U	0.42 U	0.67
Gasoline Range Organics	0.8/1 ^a	0.1 U	0.1 U	0.1 U	0.95
BTEX in ug/L					
Benzene	5	1 U	1 U	1 U	16
Ethylbenzene	700	1 U	1 U	1 U	26
m, p-Xylene	1000	1 U	1 U	1 U	6.9
o-Xylene	1000	1 U	1 U	1 U	7.4
Toluene	1000	1 U	1 U	1 U	1.5

Notes:

U = Not detected at the reporting limit indicated.

^a 0.8 mg/L when no benzene present, 1 mg/L when benzene present. Bold boxed entry indicates concentration exceeds MTCA cleanup level. Reporting limits that exceed the MTCA cleanup level are italicized.

> Hart Crowser 1758100\ChemRslts-21

JAB 02/3/11 1758100-003.dwg

3 02/3/11 1758100P21-001.dw

Explora	tion Location and Number
342526-1 ⊙	Exploration
U-6A 鱼	Environmental Probe, Soil Samples Only (GeoEngineers 2008) (Approximate Location)
78 S (25/50)	Hydraulic Monitoring Well, Installed Screen Depth in Feet (CRA 1995, 2008)
12 	Hydraulic and Groundwater Monitoring Well, Installed Screen Depth in Feet (Hart Crowser 1980, CRA 1995, 2008)
C08-EP107● B5-07●	Environmental Probe with Groundwater and Soil Samples (Hart Crowser 2009 a,b)
	Historical Exploration
3, 4, 25, 26 🗆	Possible UST Location and Designation based on Port of Tacoma and GeoEngineers provided information
	Possible UST Location based on Geophysical Investigation
Utility Ir	nformation
SD	Storm Drain
	Main Water Line
-FW	Fire Water Line
———— BP ——	Below Ground Power and Electrical Line
AIR	Air Line
JIL	Oil Line
ST	Steam Line
	Utilidor
	Port of Taxama
-	UST Remediation Program
	Site Plan USTs N-1, 2, 3, 4, 25, 26
60	17581-00 Phase 21 2/11
60	17581-00 Phase 21 2/11

I HARTCROWSER Figure

3

APPENDIX A GEOPHYSICAL SURVEY REPORT AND ASSOCIATED FIGURE

Global Geophysics

Tel: 425-890-4321 Fax: 360-805-0259

April 18, 2010

Our ref: 100-0401.000

Hart Crowser, Inc. 1700 Westlake Avenue North, Suite 200 Seattle, WA 98109-3056

ATTENTION: Ms. Colleen Rust

RE: REPORT FOR A GEOPHYSICAL SURVEY TO LOCATE BURIED UNDERGROUND STORAGE TANK

Dear Ms. Rust:

Global Geophysics conducted magnetic and ground penetrating radar (GPR) surveys at the Port of Tacoma, WA. The proposed objectives of the geophysical investigation was to locate underground storage tanks (USTs).

GEOPHYSICAL METHODS, INSTRUMENTATION AND FIELD PROCEDURES

Magnetometry and ground penetrating radar (GPR) were used to locate underground storage tanks (USTs) for this survey. The following paragraphs describe the methods and field procedures.

Magnetometry

The magnetometer measures variations in the magnetic field of the Earth, including local distortions or anomalies of the field caused by ferrous objects or minerals. In general, the magnitude of the magnetometer response is proportional to the mass of the ferrous object and the distance from the magnetometer. A single drum can be detected to a depth of approximately 15 to 20 feet. Non-ferrous metals, such as copper and aluminum, cannot be located with a magnetometer.

A Geometric Model 858 Cesium magnetometer was used for this investigation. A grid of 3 ft by 10 ft was set up in different areas. The magnetic data were collected along the lines every 3 ft apart except location N-11 where 5 ft spacing was used. The magnetic data was downloaded everyday for QA/QC on site.

Ground Penetrating Radar

The GPR method uses electromagnetic pulses, emitted at regular intervals by an antenna to map subsurface features. The electromagnetic pulses are reflected where changes in electrical properties of materials occur such as changes in lithology or where underground utilities are present. The reflected electromagnetic energy is received by an antenna, converted into an electrical signal, and

Hart Crowser, Inc.		April 18, 2010
Ms. Colleen Rust	2	100-0401.000

recorded on the GPR unit. The data is recorded and viewed in real time on a graphical display that depicts a continuous profile or cross-section image of the subsurface directly beneath the path of the antenna.

The depth of penetration of the GPR signal varies according to antenna frequency and the conductivity of the subsurface material. The depth of subsurface penetration with GPR decreases with an increase in the frequency of the antenna and an increase in soil conductivity. Low frequency antennas (50 to 500 MHz) provide the best compromise between obtaining good subsurface penetration and resolution.

The data at selected locations were collected using Geophysical Survey Systems, Inc. (GSSI) SIR 2000 GPR system with an antenna having a center frequency of 200 MHz. The data were digitally recorded for post processing.

RESULTS

The magnetic data was not collected at Area N-23, 24, because there were a lot of surface metal objects present at the site, and the access restrictions due to temporary buildings at the site. Only GPR data was collected at this location.

Both magnetic and GPR data were collected in the following areas: N-9, 10; N-11; N-12; N-17; N-1,2,3,4,25,26; N-23, 24; N-6; N-18, 19; P-24; N-13; and N-20, 21, 22. The magnetic data contour plans with interpretation are shown in figures in the Appendix A. Magnetic anomalies (areas in red and blue colors) are interpreted as buried metal objects or underground storgae tanks (USTs).

LIMITATIONS OF THE GEOPHYSICAL METHOD

Global geophysics services are conducted in a manner consistent with the level of care and skill ordinarily exercised by other members of the geophysical community currently practicing under similar conditions subject to the time limits and financial and physical constraints applicable to the services. Magnetic and GPR are remote sensing geophysical methods that may not detect all subsurface conditions due to the limitations of the methods, soil conditions, size of the features and their depths.

Sincerely,

Global Geophysics

Jomes

John Liu, Ph.D., R.G. Principal Geophysicist

Attachment: Appendix A – Site Figures

APPENDIX B DIRECT-PUSH PROBE EXPLORATION LOGS AND BORING LOGS FROM PREVIOUS INVESTIGATIONS

DIRECT-PUSH PROBE EXPLORATION LOGS

Key to Exploration Logs

Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and probes is estimated based on visual observation and is presented parenthetically on the

logs. SAND or GR Density	AVEL Stand Penet Resis in Blo	ard ration SII tance (N) Co ws/Foot	_T or CLA	Y Stand Penel Resis	iard tration tance (N) ows/Foot	Approximate Shear Strength in TSF
Very loose Loose	0 1 4 1	:o4 Ve :o10 So	ry soft ft	0 1	to 2 to 4	<0.125 0.125 to 0.25
Medium den	se 10 i	:o 30 Me	n dium stiff	4 1	to 8	0.25 to 0.5
Dense	30 1	to 50 Sti	ff	8 1	to 15	0.5 to 1.0
Very dense	>	50 Ve	ry stiff	15 1	to 30	1.0 to 2.0
		Ha	rd	>	30	>2.0
Sampling	Test Symi	ools				-
🗙 1.5" I.D.	Split Spoon	\bigotimes o	Grab (Jar)		3.0" I.	D. Split Spoon
Shelby	Tube (Pushed	d) 🛛 E	lag			
Cuttings	j		Core Run			
	SC	OIL CLASSI	FICATIO	N CHA	RT	
M	AJOR DIVISI	ONS	SYM GRAPH	BOLS	DES	TYPICAL SCRIPTIONS
		CLEAN			WELL-GRAD	ED GRAVELS, GRAVEL -
	GRAVEL AND GRAVELLY	GRAVELS		GW	SAND MIXTU FINES	IRES. LITTLE OR NO
	SOILS	(LITTLE OR NO FINES		GP	POORLY-GR GRAVEL - S/ OR NO FINE	ADED GRAVELS. AND MIXTURES, LITTLE S
GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAV SILT MIXTUR	ELS. GRAVEL - SAND - RES
	RETAINED ON NO 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GR/ CLAY MIXTU	AVELS, GRAVEL - SAND - RES
MORE THAN 50% OF MATERIAL IS LARGER THAN NO 200 SIEVE SIZE	SAND AND	CLEAN SANDS	• •	sw	WELL-GRAD SANDS, LITT	ED SANDS GRAVELLY
	SOILS	(LITTLE OR NO FINES		SP	POORLY-GR GRAVELLY S FINES	ADED SANDS. SAND. LITTLE OR NO
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SAND MIXTURES	S, SAND - SILT
	PASSING ON NO 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SAN MIXTURES	IDS, SAND - CLAY
				ML	INORGANIC SANDS, ROC CLAYEY FINI SILTS WITH	SILTS AND VERY FINE CK FLOUR, SILTY OR E SANDS OR CLAYEY SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC MEDIUM PLA CLAYS, SAN LEAN CLAYS	CLAYS OF LOW TO ASTICITY, GRAVELLY DY CLAYS, SILTY CLAYS
				OL	ORGANIC SI CLAYS OF LI	LTS AND ORGANIC SILT) DW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO 200 SIEVE SIZE				MH	INORGANIC DIATOMACE SILTY SOILS	SILTS, MICACEOUS OR OUS FINE SAND OR
OK.B	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC PLASTICITY	CLAYS OF HIGH
				он	ORGANIC CL HIGH PLAST	AYS OF MEDIUM TO ICITY, ORGANIC SILTS
Н	GHLY ORGANIC S	SOILS	علب علب	PT	PEAT, HUMU HIGH ORGAN	IS, SWAMP SOILS WITH

Moisture

Dry Little perceptible moisture

- Damp Some perceptible moisture, likely below optimum
- Moist Likely near optimum moisture content
- Wet Much perceptible moisture, likely above optimum

Estimated Percentage
<5
5 - 12
12 - 30
30 - 50

Labo	ratory Test Symbols
GS	Grain Size Classification
CN	Consolidation
UU	Unconsolidated Undrained Triaxial
CU	Consolidated Undrained Triaxial
CD	Consolidated Drained Triaxial
QU	Unconfined Compression
DS	Direct Shear
к	Permeability
PP	Pocket Penetrometer
	Approximate Compressive Strength in TSF
ΤV	Torvane
	Approximate Shear Strength in TSF
CBR	California Bearing Ratio
MD	Moisture Density Relationship
AL	Atterberg Limits
	Water Content in Percent
	Liquid Limit
	Natural Blastic Limit
	FidSuc Linit
PID	Photoionization Detector Reading
CA	Chemical Analysis
DT	In Situ Density in PCF
OT	Tests hy Others

Groundwater Indicators

 ☑ Groundwater Level on Date or (ATD) At Time of Drilling
 ♀ Groundwater Seepage ζ (Test Pits)

KEY SHEET 17581-00-21-PP.GPJ HC_CORP GDT 2/2/11

Location: See Figure 3. Approximate Ground Surface Elevation: 17 Feet Horizontal Datum: NA Vertical Datum: MLLW

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: P. Cordell Reviewed By: C. Rust

1. Refer to Figure B-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time
- 5. NS = No Sheen; SS = Slight Sheen; MS = Moderate Sheen; HS = Heavy Sheen

Location: See Figure 3. Approximate Ground Surface Elevation: 17 Feet Horizontal Datum: NA Vertical Datum: MLLW

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: P. Cordell Reviewed By: C. Rust

1. Refer to Figure B-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time
- 5. NS = No Sheen; SS = Slight Sheen; MS = Moderate Sheen; HS = Heavy Sheen

Location: See Figure 3. Approximate Ground Surface Elevation: 17 Feet Horizontal Datum: NA Vertical Datum: MLLW

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: P. Cordell Reviewed By: C. Rust

1. Refer to Figure B-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. NS = No Sheen; SS = Slight Sheen; MS = Moderate Sheen; HS = Heavy Sheen

Location: See Figure 3 Approximate Ground Surface Elevation: 17 Feet Horizontal Datum: NA Vertical Datum: MLLW

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: P. Cordell Reviewed By: C. Rust

Refer to Figure B-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487). 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

5. NS = No Sheen; SS = Slight Sheen; MS = Moderate Sheen; HS = Heavy Sheen

BORING LOGS FROM PREVIOUS INVESTIGATIONS

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

(WL-102) Page 1 of 1

PROJECT NAME: OXYCHEM - TACOMA PROJECT NUMBER: 1002-15 CLIENT: OCCIDENTAL CHEMICAL CORPORATION LOCATION: AS PER PLAN

HOLE DESIGNATION: 12-25 DATE COMPLETED: OCTOBER 4, 1995 DRILLING METHOD: RESONANT SONIC CRA SUPERVISOR: J. SCHWALLER

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR	SAMPLE			
11. 805	REFERENCE POINT (Top of Riser) GROUND SURFACE	10.56 10.4	INSTALLATION	NUMBER	STATE	V' VALUE	PID (ppm)
-2.5	Refer to 12–45 for strati graphic details.		CONCRETE SEAL				
-5.0			BLACK				
-7.5			CASING				
-10.0			BENTONITE GROUT				
-15.0			BENTONITE PELLETS				(
-17.5			SAND PACK				
-20.0			6"Ø BOREHOLE				
-22.5			WELL SCREEN				
-25.0 -	END OF HOLE @ 25.0ft BGS	-14.5	SCREEN DETAILS Screened Interval:				
-27.5			18.5 to 23.5tt BGS Length: 5tt Diameter: 2" Slot Size: #10 Material: Stainless Steel				
-30.0			Sand Pack: 15.5 to 25.0ft BGS Material: 20/40 Sand				
-32.5							
N	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE WATER FOUND ♀ STATIC WATER LEVEL ¥	FER TO (CURRENT ELEVATION TABLE	I.		I	

GEOLOGIC LOG

QUALITATIVE CHEMICAL CONCENTRATIONS AT SAMPLED DEPTH (mg/l)

WELL D	ESIGN
	DEPTH I
	1/2-
	10

	DEPTH IN FEET			T° C	NoOH	NoCl	CI-Organics	1
	0 S HOLE DRILLED BY CASED CABLE TOOL		Dark gray silty fine					
	METHOD	=	to medium SAND					1
	- 10 CASING (0.23" WALL)			17.0	0	13,000	0	
0	CEMENT GROUT SEAL			15.0	0	29,800	· 0	
	20			NA	0	18,100	0	
	-ARTIFICIAL SAND FACK. No. 16 LANE MT. SILICA SAND (DED = 0.043 IN.)			NA	0	20,700	0	l lin
	30 10' OF 4" PS - JOHNSON		and a cilty fine	NA	0	14,500	· 0	
	(304 L) WW SCREEN WITH 0.020 INCH		SAND	14.0	0	10,700	0	
	40 SLOT SIZE			NA	0	11,700	0	
				15.0	0	10,500	0	
	BOTTON OF WELL			15.0	0	8,100	0	
	COMPLETED JUNE 3, 1980			NA	0	7,400	NA	
-	E 60			NA	0	7,000	NA	
				NA	0	7,000	NA	
	E 70			16.5	0	9,200	NA	
				15.5	0	15,900	0	
	60 E			NA	0	24,300	NA	
				15.0	0.	37,400	NA	
	E 90			14.5	. 0	24,800	NA	
				14.5	0	23,600	NA	
	E 100			14.5	0	22,400	NA	
				15.0	o	18,500	NA	
	E 110			12.5	0	17.900	NA	
				13.0	0	17,800	0	
	E 120			13.0	0	17,600	NA	
				13.0	0	16,700	NA	
	E 130 E			13.5	5 0	14,300	NA	
				NA	0	14,000) NA	
	E 140				° O	13,600	0	
	E E		Dark gray, gravelly	13.0	0 0	13,500	AN C	
	E 150		Dark green-gray,	NA	0	13.20	D NA	
		-OS	slightly gravelly	e NA	0	12,60	0 0	
1	E 160		SAND		0	11,90	O NA	·
			Gray-brown, slighty gravelly silty SAND	NA	0	11.60	0 NA	
	E 170			NA	0	11,40	NA O	
			Bottom of Boring]				1
T	E 18		Completed May 19,198	J-864	-02	July	198	0
SUR	PALE ELEVATION			HART	-CROWSE	R &	ciates inc	è•.

NA + Not Available

L

TRACE = Detectoble but not Measurable

Figure C-11

.

|--|

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 4

PROJECT NAME: Former OCC Tacoma Facility

PROJECT NUMBER: 07843 CLIENT: Glenn Springs Holdings

LOCATION: Tacoma, WA

HOLE DESIGNATION: 12-100 DRAFT DATE COMPLETED: March 23, 2006 DRILLING METHOD: HSA FIELD PERSONNEL: R. Bayne

DEPTH			DEPTH	monitoring well		SAMPLE					
ft BGS	ft BGS				ЦЦ	VAL	(ft)	ПĒ	(mq		
						UMB	TER	SEC (VAL	fd) D	
						ź	Ż	Ľ	Ż	Ē	
-	(See stratigraphic logs for wells 12-25, 12-45, and 12-160 for stratigraph).				Concrete						
-2											
-											
-4											
-					Bentonite						
-6					Chips						
-											
- 8											
-											
- 10					Portland Slurry						
Ē											
- 12					2"Ø STEEL RISER						
F											
- 14											
-					8"Ø BOREHOLE						
16 											
-											
18 											
F											
- 20											
-											
- 24											
_											
- 26											
- 											
ים - - ר											
3 											
ŠĽ											
ද <u>්</u> - 34											
С Г Г					EVATION TABLE	<u> </u>					
		_,									
5	CHEMICAL ANALYSIS CORAINS	SIZE AN	NALYSIS								

PROJECT NAME: Former OCC Tacoma Facility			HOLE DESIGNATION: 12-TUU DKAFT							
PROJECT NUM	IBER: 07843	DATE COMPLETED: March 23, 2006								
CLIENT: Glenn Springs Holdings			DRILLING METHOD: HSA							
LOCATION: Ta	coma, WA	FIELD P	ERSONNEL: R. Bayne							
DEPTH ft BCS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH # BGS	monitoring well	SAMPLE						
11 863		11 663	-	3ER	RVAL	(ŧ	TUE	(mqc		
				NUM	NTEF	REC	N' VA	PID (F		
- 36					_		-			
- 38										
- 40			Portland Slurry	,						
-42			2"0 STEEL							
 			RISER							
-44										
-46										
E										
48										
50										
-										
- 52										
-										
— 54 —										
56 										
- 58										
62										
5 − 64										
66										
68										
BE										
<u>NOT</u> ES		FER TO CUF	RENT ELEVATION TABLE							
5	CHEMICAL ANALYSIS GRAIN SIZE A	MALYSIS								

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 2 of 4

 12 100 DDAET

CLENT: Glem Springs Holdings DRILLING METHOD: HSA LOCATION: Tacoma, WA FIELD PERSONNEL: R. Bayne DEPTH t BGS STRATIGRAPHIC DESCRIPTION & REMARKS DEPTH t BGS monitoring well -72 -74 -78 -80 -82 -84 -90 -91 -92 -94 Not Sampled	PROJE	CT NUMBER: 07843	3 DATE COMPLETED: March 23, 2006							
LUCATION: Tacoma, WA FIELD PERSONNEL: R. Bayne	CLIENT	: Glenn Springs Holdings	DRILLING METHOD: HSA							
DEPTH tBGS STRATIGRAPHIC DESCRIPTION & REMARKS DEPTH tBGS monitoring well SAMPLE -72 -72 -74 -76 -77 -78 -78 -78 -78 -80 -78 -78 -78 -84 -78 -78 -70 -84 -78 -78 -70 -84 -78 -78 -84 -78 -78 -84 -78 -78 -84 -78 -78 -90 -78 -78 -84 -78 -78 -84 -78 -78 -84 -79 -70 -84 -79 -70 -90 -79 -70 -91 -79 -70	LOCATI	LOCATION: Tacoma, WA FIELD PERSONNEL: R. Bayne								
It BGS STRATUGRAPHIC DESCRIPTION & REMARKS It BGS Itomicing weil -72 -72 -74 -76 -78 -80 -84 -84 -86 -90 -91 -92 -94 -94	DEPTH			DEPTH	H SAMPLE					
-72 -74 -76 -76 -78 -80 -80 -82 -84 -86 -84 -84 -86 -88 -90 -90 -92 -910 -94 -9500	ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		ft BGS		(mq				
72 74 76 78 80 82 84 86 88 90 92 94 95.00 95.00					NUMB INTER 'N' VAL	pID (p				
74 76 78 80 82 84 86 88 90 91 92 94 95.00	- - - 72									
76 78 80 82 84 86 90 92 94 95.00	74									
78 80 82 84 86 90 90 92 94 Not Sampled 95.00	- 76									
80 - - Portland Slurry 82 - 2°0 STEEL 84 - 8°0 86 - 8°0 90 - BoreHOLE 92 - - 94 - 5and 96 Not Sampled 95.00	- 78 									
82 20 STEEL 84 86 88 90 92 94 94 94 95.00					Portland Slurry					
					2"0 STEEL RISER					
	- 84				8™ BOREHOLE					
90 92 94 94 Not Sampled 95.00 95.00	- 86									
92 94 94 Not Sampled 95.00 95.00	- 00				Bentopite					
-94 Not Sampled	- 92									
Not Sampled 95.00	- 94				Sand					
	96	Not Sampled		95.00						
SM/ML - SILTY SAND, trace clay, compact, fine 97.00 97.00 97.00 Image: Smith and trace medium grain sand 97.00 97.00 97.00	9.6DT 12/4/	SM/ML - SILTY SAND, trace clay, compact, fine grain, poorly graded, dark brown, moist to wet, trace medium grain sand		97.00	2"0 STEEL SS1 13	5.1				
ML - SAND and SILT, trace clay, soft, low plasticity, homogenous, dark brown/grey, wet, fne grain sand, occasional shell fragments SUMP	CKA CORI	ML - SAND and SILT, trace clay, soft, low plasticity, homogenous, dark brown/grey, wet, fne grain sand, occasional shell fragments		101.00	SUMP SS2 4	3.0				
END OF BOREHOLE @ 101.0ft BGS - 102 WELL DETAILS Screened interval: 95.00 to 100.00ft BGS	102	END OF BOREHOLE @ 101.0ft BGS		101.00	WELL DETAILS Screened interval: 95.00 to 100.00ft BGS					
9 104 Length: 5ft Diameter: 2in 3 Slot Size: 10 Slot Size: 10 Slot Size: 10	90 104 20 20 20 20 20 20 20 20 20 20 20 20 20				Length: 5ft Diameter: 2in Slot Size: 10					
MOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE	RBURD	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE	; REFE	ER TO CUF	URRENT ELEVATION TABLE					
CHEMICAL ANALYSIS GRAIN SIZE ANALYSIS	OVEF	CHEMICAL ANALYSIS GRAIN SI	ZE AN	IALYSIS						

HOLE DESIGNATION:

12-100 DRAFT

Page 3 of 4

PROJECT NAME: Former OCC Tacoma Facility

|--|

Page 4 of 4

PROJECT NAME: Former OCC Tacoma Facility

PROJECT NUMBER: 07843

CLIENT: Glenn Springs Holdings

LOCATION: Tacoma, WA

HOLE DESIGNATION: 12-100 DRAFT DATE COMPLETED: March 23, 2006 DRILLING METHOD: HSA FIELD PERSONNEL: R. Bayne

DEPTH		STRATIGRAPHIC DESCR	IPTION & REM	ARKS	DEPTH	monitoring well	nitoring well			SAMF	PLE	
ft BGS					ft BGS			NUMBER	NTERVAL	REC (ft)	N' VALUE	(mqq) Olc
- 						Material: steel Seal: 89.00 to 91.00ft BGS Material: Bentonite Sand Pack: 91.00 to 101.00ft BGS						
110						Material: Sand						
- 												
- 114 												
- 116 												
- 118 												
- 120 												
- 												
- 124 												
- 126 												
- 128 												
- 												
132												
2 - 134												
136												
5 - 138												
	NOTES:	MEASURING POINT ELE	EVATIONS MAY	CHANGE; REFE	ER TO CUF	RRENT ELEVATION TABLI	E					
		CHEMICAL ANALYSIS	\bigcirc	GRAIN SIZE AN	ALYSIS							

WELL DESIGN

DEPTH IN

GEOLOGIC LOG

12-160

QUALITIVE CHEMICAL CONCENTRATIONS AT SAMPLED DEPTH (mg/l)

E	TA 0	8" HOLE DRILLED BY			<u>т°с</u>	NaOH	NaCI	Cl-Organici
		CASED CABLE TOOL Method		Dark gray silty fine				
	10			to medium SAND				
		CEMENT GROUT SEAL			17.0	0	13.000	0
	20				15.0	i	29.800	. 0
					NA	0	18,100	0
	30				NA	0	20.700	0
				-Grades to silty fin	e NA	0	14,500	
				SAND	14.0	0	10,700	0
		- 4" WELDED STEEL			NA	0	11.700	0
	So the	CASING (0.23 WALL)			15.0	0	10.500	0
					15.0	0	8,100	0
·	60				NA	0	7,400	NA
					NA	0	7,000	NA
	70				NA	0	7,000	NA
					16.5	0	9,200	NA
	••				15.5	0	15,900	0
					NA	0	24,300	NA
	30				15.0	0	37.400	NA
					14.5	0	24.800	NA
	100		FE		14.5	0	23.600	NA
					14.5	0	22,400	NA
	110				15:0	0	18,500	NA
	1)E				12.5	0	17.900	NA
	120				13.0	0	17,800	0
					13.0	0	17.600	NA
	130		臣昌		13.0	0	16,700	NA
	<i>A</i>		臣王		13.5	0	14,300	NA
	140		臣司		NA	0	14,000	NA
		RTIFICIAL SAND PACK	===	Dark gray gravelly	NA	0	13,600	0
	E 150	" OF 4" PR- 1000000		silty SAND	13.0	0	13,500	NA
		STAINLESS STEEL (304 L) WW SCREEN		Dark green-gray,	NA	0	13.200	NA
	<u>₹</u> 160	WITH 0.020 INCH SLOT SIZE	118	silty medium to fine	NA	0	12,600	0
-	HO	LE BACK FILLED WITH	DF-	SAND	NA	0	11,900	NA
	170	AND CEMENT GROUT		gravelly silty SAND	NA	0	11,600	NA
		RAVEL IN LOWER			NA	0	11,400	NA
	E IE	ROUT PER CUBIC FOOT		Bottom of Boring	l			
SURFAC	E ELE	VATION 17.3' MLL	·	Long 19,1980	-864-02	۔ بال	Iy	1980
NA = Not	Avoilable	TRACE = Detec	toble but a	et Measurable H	ART-CR	OWSER &	associat	es lac.
						F	igure C-l	2

(WL-101) Page 1 of 1

PROJECT NAME: OXYCHEM - TACOMA PROJECT NUMBER: 1002-15 CLIENT: OCCIDENTAL CHEMICAL CORPORATION LOCATION: AS PER PLAN HOLE DESIGNATION: 12A-25 DATE COMPLETED: OCTOBER 4, 1995 DRILLING METHOD: RESONANT SONIC CRA SUPERVISOR: J. SCHWALLER

		PHIC DESCRIPTION & REMARKS ELEV. MONITOR SAMPLE					
ft. BGS	GROUND SURFACE	ft. BGS	INSTALLATION	UMBER	STATE	· VALUE	PID (ppm)
	REFERENCE POINT (Top of Curb Box)	12.65		z		Ż.	
	Refer to 12A-50 for stratigraphic details.		CONCRETE SEAL				
-2.5							
-5.0			BLACK				
			STEEL CASING				
-7.5							
-10.0			BENTONITE				
-12.5							
-12.0			BENTONITE				
-15.0			SAND PACK				
-17.5							
			6" Ø BOREHOLE				
-20.0							
-22.5							
05.0		-12.3	TAIL PIPE				
-25.0	END OF HOLE @ 25.0ft BGS		SCREEN DETAILS Screened Interval:				
-27.5			18,5 to 23,51t BGS Length: 5ft Diameter: 2" Slot Size: 410				
-30.0			Material: Stainless Steel Sand Pack: 15.5 to 25.0ft BGS				
-50.0			Material: 20/40 Sand				
-32.5							
N	OTES: MEASURING POINT ELEVATIONS MAY CHANGE: WATER FOUND V STATIC WATER LEVEL V	REFER TO	JUUKKENT ELEVATION TABLE				

(WL-103) Page 1 of 2

PROJECT NAME: OXYCHEM - TACOMA PROJECT NUMBER: 1002-15 CLIENT: OCCIDENTAL CHEMICAL CORPORATION LOCATION: AS PER PLAN

HOLE DESIGNATION: 12A-50 DATE COMPLETED: OCTOBER 4, 1995 DRILLING METHOD: RESONANT SONIC CRA SUPERVISOR: J. SCHWALLER

DEPTH	STRATIGRAPHIC DE scriptio n & Remarks	ELEV.	MONITOR		S	AMPLE	
11. 805	GROUND SURFACE REFERENCE POINT (Teo of Curb Boy)	12.8 12.8	INSTALLATION	UMBER	STATE	VALUE	PID (ppm)
	SW-SAND, loose, very fine to fine grained, well graded, dark gray, red grains, moist	12.00	CONCRETE	z	0,	N.	
-2.5			SEAL				
-5.0			C.S.S.S.S.				
-7.5	– wet		<u>Vananan</u>				
-10.0	SM-SAND, some silt, dense, very fine grained	3.8	BENTONITE				
-12.5							
-15.0 -	SW-SAND, dense, well graded, dark brown	-2.2					
-17.5				сс			٥
-20.0	– dark gray		6"ø BOREHOLE				
-22.5							
-25.0	ML/CL-SILT and CLAY, soft, poorly graded	-11.2					
-27.5	SM-SAND, some silt, medium dense	10.2	X X X X X X X X X X X X X X X X X X X				
-30.0			BLACK CARBON				
-32.5	,	-20.2	CASING				
	SW-SAND, trace silt, loose	20.2					
NC	DIES: MEASURING POINT ELEVATIONS MAY CHANGE; RE WATER FOUND ♀ STATIC WATER LEVEL ▼	FER TO C	URRENT ELEVATION TABLE				

(WL-103) Page 2 of 2

PROJECT NAME: OXYCHEM - TACOMA PROJECT NUMBER: 1002-15 CLIENT: OCCIDENTAL CHEMICAL CORPORATION LOCATION: AS PER PLAN HOLE DESIGNATION: 12A-50 DATE COMPLETED: OCTOBER 4, 1995 DRILLING METHOD: RESONANT SONIC CRA SUPERVISOR: J. SCHWALLER

Page 1 of 1

PROJECT NAME: Former OCC Tacoma Facility

PROJECT NUMBER: 07843 CLIENT: Glenn Springs Holdings

LOCATION: Tacoma, WA

HOLE DESIGNATION: 78-25 DRAFT DATE COMPLETED: March 28, 2006 DRILLING METHOD: HSA FIELD PERSONNEL: R. Bayne

Page 1 of 2

PROJECT NAME: Former OCC Tacoma Facility PROJECT NUMBER: 07843

CLIENT: Glenn Springs Holdings

LOCATION: Tacoma, WA

HOLE DESIGNATION: 78-50 DRAFT DATE COMPLETED: March 28, 2006 DRILLING METHOD: HSA FIELD PERSONNEL: R. Bayne

DEPTH		DEPTH	Monitoring Well			SAMF	PLE	
ft BGS	STRATIGRAFHIC DESCRIPTION & REIMARNS	ft BGS		ĸ	AL	ft)	ПE	(m
				MBI	ER/		VAL	dd) (
				N Z	IN T	R	z	ЫЧ
_	ASPHALT	0.32			\setminus			
-	FILL - SAND and GRAVEL, trace silt, compact, medium to coarse, well graded, brown, damp	X	Concrete	SS1	$ \rangle$	0.3	17	0.0
2	occasional stone	X			$ /\rangle$			
-	- no gravel, loose, fine to medium grain, some	×			\leftarrow			
-4	coarse grain	X		SS2	X	1.5	8	0.0
E.		X			$\mid \land \rangle$			
- 6	- sandy silt stiff fine grain very low plasticity	X			\mathbb{N} /			
F	horizontal layering, (redish and brown),	×		SS3	X	1.5	9	0.0
F	brown/rusty, damp	×			$ / \setminus$			
	brown, moist, occasional red and white gine	X	¥ 🕅 🕅		$\left \right\rangle$			
_	grain, sand, poorly graded	X		SS4	X	1.0	10	0.6
- 10	saturated	10.00			$\left(\rightarrow \right)$			
-	SP - SAND with SILT, loose to compact, fien to		BOREHOLE		$\left \right\rangle$			
- 12	saturated, occasional red and white fine grain		Portland Slurry	SS5	Ň	2.3	9	1.3
_	sand	13.00			\square			
-	SM - SILTY SAND loose, fine grain, poorly	10.00		000	\mathbb{N}	10		0.2
- 14	graded, dark brown, moist to wet, occasional			550		1.0	8	0.3
F	fine grain sand		2" Ø STEEL RISER		$\left(\right)$			
16	- becoming compact and saturated			557	$ \vee $	23	۹	01
-				00/	$ \wedge $	2.0		0.1
- 18	- 0.16' sandy slit seam - becoming loose and wet, occasional medium				$\left(\longrightarrow \right)$			
-	grain sand			SS8		0.5	5	0.1
- 20		20.00			\square			
- 20	SP - SAND, with SILT, loose, medium to fine	20.000			\mathbb{N} /			
-	saturated, red and white medium to fine grain			SS9	X	1.5	7	0.3
- 22	sand, shell fragments throughout				$ / \setminus$			
_	- trace silt, compact, occasional coarse grain				\vdash			
- 24				SS10	X	0.5	12	0.3
F		25.00			$\left(\rightarrow \right)$			
26	SP - SAND, trace silt, compact, medium to fine	25.50			$\left \right\rangle$			
14/06	grain, poorly graded, dark brown, wet to			SS11	X	1.1	21	0.4
≓2	sand, shell fragments throughout, occasional				$/ \setminus$			
20	coarse grain sand	년 일			\square			
RO F				SS12		1.0	25	0.4
Ŭ 30 ≴					(\rightarrow)			
				6643	$ \vee $	0.0	20	10
b 32				3313	$ \wedge $	0.0	20	1.0
0784		33.00			$\left(\longrightarrow \right)$			
8-34	medium grain, poorly graded, dark brown, wet,			SS14		1.0	15	0.4
	trace red and white fine grain sand, trace coarse				arsigma			
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	FER TO CU	RRENT ELEVATION TABLE					
ERB		NAL \ /0						
ð	CHEMICAL ANALYSIS C GRAIN SIZE /	ANALYSIS						

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 2 of 2

PROJECT NAME: Former OCC Tacoma Facility

PROJECT NUMBER: 07843 CLIENT: Glenn Springs Holdings

LOCATION: Tacoma, WA

78-50 DRAFT HOLE DESIGNATION: DATE COMPLETED: March 28, 2006 DRILLING METHOD: HSA FIELD PERSONNEL: R. Bayne

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	STRATIGRAPHIC DESCRIPTION & REMARKS DEPTH frags Monitoring Well						
ft BGS		ft BGS		JMBER	IERVAL	EC (ft)	VALUE	(mqq) C
	P. '61		<u> </u>	ž	Ľ	2	Ż	E
- 	grain sand, occasional shell fragments [HOW IS THIS DIFFERENT FROM 20 TO 25 FT ABOVE?]			SS15		0.8	23	0.8
- 38			Bentonite Chips	SS16	$\left \right\rangle$	1.0	13	0.2
40 	SM/ML - SAND and SILT, compact/stiff, poorly graded, very low plasticity, very fine grain, layering throughout, brown/grey, moist sand and silt layers throughout, occasional woody layers	40.00	8" 0 BOREHOLE	SS17	\square	1.5	13	0.1
- - 	intermixed			SS18	$\left \right\rangle$	0.5	9	0.2
- 46 	Not Sampled	45.00	Sand 10-20	SS19		2.0		
- 48 	SP - SAND, trace silt, compact, fien grain, poorly graded, dark brown, wet, occasional red and white fine sand grains	47.00	2" Ø STEEL SCREEN	SS20	\square	0.5	23	0.1
50 50	- 0.02' wood and shell fragment layer	51.00		SS21	\ge	0.8	21	0.1
- 52 	END OF BOREHOLE @ 51.0ft BGS		WELL DETAILS Screened interval: 45.00 to 50.00ft BGS					
- 54 			Length: 5tt Diameter: 2in Slot Size: 10 Material: Steel					
- 56 			Seal: 37.50 to 41.00ft BGS Material: Bentonite					
58 			41.00 to 51.00ft BGS Material: Sand 10-20					
e 60								
GDT 12/4/								
64 64								
66								
7820 907 - 68								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE: REF	ER TO CUF	 RRENT ELEVATION TABLE					
OVERBU	WATER FOUND ↓ CHEMICAL ANALYSIS O GRAIN SIZE AN	IALYSIS						

Boring Log HC07-S14

Location: N 715662 E 1166784 Approximate Ground Surface Elevation: 17 Feet Horizontal Datum: State Plane WA South, NAD 83 Vertical Datum: MLLW Drill Equipment: Mobile B-59 Hammer Type: SPT Automatic hammer Hole Diameter: 6.5 inches Logged By: P. Cordell Reviewed By: G. Knechtel

scs d	Graphic		Depth	0	ſ				_01017	NICL	IES
ass	Log	Soil Descriptions	in Feet	Sample	^	Blows	s per ⊢oc 10)[)() /	30	10 50)+
\ <u>\</u>		3.5 inches of Asphalt over 15 inches of	0		Ĭ	•	10 2	<u></u>	<u>;</u>	1 .	í Émini
* *	•	, GRAVEL.	ŀ		ŀ	- :		:			
Ν		Loose, damp, brown, slightly gravelly SAND.	í F		1 İ	- :	1	1	:		
		(FILL)		S-1 X	3	• : •	1				
	<u>}</u>					- : \		:	1	· ·	
Ρ		Loose, moist, brown to gray SAND with shell	-5	S-2	3 [• ·]		:			
		nagments. (FILL)			5	1					1
			[3	_ : [
			\Box	S-3	4	_ :▲	•				
		Bottom of Boring at 9.0 Feet.	ATD			•	· .	· ·	· ·	· · ·	
		Started 12/10/07.			ŀ	- :	:	1		<u> </u>	
		Completed 12/10/07.	-		ŀ	- :		1 :		:	
			-		ł	- :	:				
			-		}	- :					
			-15		ŀ	· · · ·	+ .	+	+ -	+	
			+		ł	- :		:			
			F		ŀ	- :		:			
						- :			:	:	
			-		Ì	- :	· ·			:	
			-20			· ·	1		:	:]
			-		[_ :		·	:		
			_		[· ·	
			-25				:				1
									1	:	
			-			- :		:	1		
			-			- :	:		1	:	
			_			- :	:			:	
			-30								
			-								
			-			- :					11
			-			- :				:	
			-					1			
			-35				1		1 :		1
			F			⊢ :		:	1 :		
			F			Ľ.					
			Γ			[:	1 :				
											1
			_40								
			L			L :					
			F			- :					
			-			⊢ :		:	1 :	:	
			-45			<u> </u>		<u> </u>	·	+ + +	$\left \right $
			+			⊢ :					
			+			} ∶					11
			-		1	⊢ ∶					
			-			F :				1	
			└─ ₅₀		ſ	L D	20	40	60	80 10	」()()+
					Ì	• Wate	er Conte	nt in Per	cent		

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time. with time.

HARTCROWSER 17441-00 12/07 Figure A-27

Boring Log HC07-S15

Location: N 715805 E 1166589 Approximate Ground Surface Elevation: 17 Feet Horizontal Datum: State Plane WA South, NAD 83 Vertical Datum: MLLW

Drill Equipment: Mobile B-59 Harmer Type: SPT Automatic harmer Hole Diameter: 6.5 inches Logged By: P. Cordell Reviewed By: G. Knechtel

SCS Graphic		Depth	·	PENE	: IRATI	ON RES	ISTAN	CE TI	ES
ass Log	Soil Descriptions	in Feet	Sample	▲ Blow	s per Foo	t n an	40	50+	
	5 inches of Asphalt	л -0		ļ	10 2		- 40		
-SM	ose damp gray-brown slightly silty SAND			- :			:	:	
wi	th occasional seams of sandy SILT.	-			:		:		
(F	ILL?)		S-1 X 4	- •	▲ :		:	:	
		-	r r r	F:/	1 :		•	·	
		5	S-2 3		•			•	
		-							
			\sim \sim 2						
Gr	ades wet.	ATD	S-3				:	:	
Bo	ottom of Boring at 9.0 Feet.	-10				· .	· .		
St	arted 12/10/07.			:			:	:	
		_		- :	:		:	:	
		-		⊢ :			:	:	
		-		F :	<u>.</u>		·	:	
		-15					:		
		-		- ·					
		-		F :					
		F		- ·			.		
							:	:	
				· - :			:	:	
		_		L :			:	:	
		-		<u>⊢</u> :			·	:	
		-25			<u>.</u>	<u> </u>	· ·	<u>.</u>	
		-							
		-		- :					
		-		- :			:	·	
		-		- :				÷	
		-30							
		_			:	•	•	: []	
				Γ:			:	:	
				E :	:			:	
		35		· ·	· ·		<u>.</u>	÷	
					1		:	·	
		-					·	·	
		-						.	
		-		- :			:	.	
		<u>40</u>			+				
		F		F :			:	:	
		F		F :			:	:	
		-					·	:	
		45			:		<u>.</u>	•	
		40			:		:	:]	
				[;				÷	
		L		Ļ					
		L		L :				:	
		L50		•	<u> </u>		·		

- Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with the second stratement of the second stratement o
- with time.

Push Probe Log HC08-EP107

Location: N 715801.48 E 1166730.28 Approximate Ground Surface Elevation: 17.89 Feet Horizontal Datum: NAD 83/07 Vertical Datum: MLLW

Drill Equipment: Push Probe Sample Type: Acetate Liner Hole Diameter: 2 inches Logged By: A. Goodwin/K. Reinauer – Reviewed By: G. Both

LAB TESTS USCS Graphic Depth & (PID) Class Soil Descriptions in Feet Log Sample -0 GM 6 inches of Asphalt over damp, yellow-brown, slightly silty, sandy GRAVEL. · (0.1) SS - (0.1) SS ŜМ Damp, brown, slightly silty SAND. HC08-EP107 ĊA Grades to moist, brown, silty SAND. -5 ·(0.1) SS (0.1) SS Grades to moist, brown, slightly silty SAND. Bands of iron staining (0.1) SS PUSH PROBE LOG-ENV 1744105PP.GPJ HC_CORP.GDT 2/23/09 -10 ∏ ATD - (0.1) NS Grades wet, dark brown. Bottom of Probe at 11.8 Feet. Started 10/01/08 Completed 10/01/08. Grab groundwater sample collected for chemical analysis from screened interval at 10.75 to 11.75 feet below ground surface. 15

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

5. HS = High Sheen; MS = Moderate Sheen; SS = Slight Sheen; NS = No Sheen

APPENDIX C NAVY DRAWING

APPENDIX D CHEMICAL DATA QUALITY REVIEW AND LABORATORY REPORTS

APPENDIX D CHEMICAL DATA QUALITY REVIEW AND CERTIFICATES OF ANALYSIS

Chemical Data Quality Review for USTs N-1, 2, 3, 4, 25, and 26

Five soil samples and four water samples were collected on September 24 and 27, 2010. The samples were submitted to OnSite Environmental Inc., of Redmond, Washington, for chemical analysis. The sample results were reported as Laboratory Reference Nos. 1009-267 and 1009-285.

The water and soil samples were analyzed for the following:

- Gasoline range organics by Washington State Department of Ecology (Ecology) method NWTPH-Gx;
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021; and
- Diesel and lube oil range organics by Ecology method NWTPH-Dx with Acid/Silica Gel Cleanup.

Quality assurance/quality control (QA/QC) reviews of laboratory procedures were performed on an ongoing basis by the laboratories. Hart Crowser performed the data review, using laboratory quality control results summary sheets, to ensure they met data quality objectives for the project. The following criteria were evaluated in the standard data quality review process:

- Holding times;
- Method blanks;
- Surrogate recoveries;
- Laboratory control sample (LCS) recoveries;
- Matrix spike/matrix spike duplicate (MS/MSD) recoveries;
- Laboratory duplicate relative percent differences (RPDs); and
- Reporting limits (RL).

The data were determined to be acceptable for use without qualification. Full laboratory results are presented at the end of this memo. Results of the data reviews follow.

Soil Samples

Gasoline by NWTPH-Gx

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

BTEX by EPA 8021

The required holding times were met. No method blank contamination was detected. Surrogate and LCS recoveries were within laboratory control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

The reporting limit for o-Xylene in sample HC-N12342526-4-S3 was elevated due to matrix interferences.

Diesel and Lube Oil by NWTPH-Dx

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Laboratory duplicate RPDs were within control limits or not applicable as the sample and duplicate were non-detect.

Surrogate recoveries were within method control limits with the following exception: No surrogate recovery was reported for sample HC-N12342526-4-S3 due to the high sample dilution required by high levels of target analytes. No results were qualified.

Water Samples

Gasoline by NWTPH-Gx

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within laboratory control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

Hydrocarbons indicative of heavier fuels were impacting the gasoline results in sample HC-N12342526-4. Results were not qualified.

BTEX by EPA 8021

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate and MS recoveries were within laboratory control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

Diesel and Lube Oil by NWTPH-Dx

The required holding times were met. Reporting limits were acceptable. No method blank contamination was detected. Surrogate recoveries were within method control limits. Laboratory duplicate RPDs were not applicable as the sample and duplicate were non-detect.

Hydrocarbons in the gasoline range were impacting the diesel results in sample HC-N12342526-4. Results were not qualified.

J:\Jobs\1758100\Phase 21 1,2,3,4,25,26\Summary Report\UST N-1,2,3,4,25,26 Summary Report.doc

ONSITE ENVIRONMENTAL INC. LABORATORY REPORTS

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 6, 2010

Colleen Rust Hart Crowser, Inc. 1700 Westlake Avenue North, Suite 200 Seattle, WA 98109-3056

Re: Analytical Data for Project 17581-00 21 Laboratory Reference No. 1009-267

Dear Colleen:

Enclosed are the analytical results and associated quality control data for samples submitted on September 24, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 6, 2010 Samples Submitted: September 24, 2010 Laboratory Reference: 1009-267 Project: 17581-00 21

Case Narrative

Samples were collected on September 24, 2010 and received by the laboratory on September 24, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-4-S3					
Laboratory ID:	09-267-01					
Diesel Range Organics	22000	590	NWTPH-Dx	9-29-10	9-30-10	
Lube Oil	25000	1200	NWTPH-Dx	9-29-10	9-30-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl		50-150				S

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

					Date	Dat	е	
Analyte	Result	PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK								
Laboratory ID:	MB0929S2							
Diesel Range Organics	ND	25	NWTPH-Dx		9-29-10	9-29-	10	
Lube Oil Range Organics	ND	50	NWTPH-Dx		9-29-10	9-29-	10	
Surrogate:	Percent Recove	ry Control Limits						
o-Terphenyl	109	50-150						
			Perce	ent	Recovery		RPD	
Analyte	Resul	t	Recov	ery	Limits	RPD	Limit	Flags
DUPLICATE								
Laboratory ID:	09-273-	09						
	ORIG [OUP						
Mineral Oil	46.6	38.3				20	NA	
Surrogate:								
o-Terphenyl			106	98	50-150			

4

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-4-GW					
Laboratory ID:	09-267-03					
Diesel Range Organics	1.5	0.28	NWTPH-Dx	9-27-10	9-28-10	М
Lube Oil	0.67	0.45	NWTPH-Dx	9-27-10	9-28-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	96	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

						Date	Dat	е	
Analyte	Result		PQL	Method		Prepared	Analy	zed	Flags
METHOD BLANK									
Laboratory ID:	MB0927W1								
Diesel Range Organics	ND		0.25	NWTPH-D)x	9-27-10	9-28-	10	
Lube Oil Range Organics	ND		0.40	NWTPH-D	Эх	9-27-10	9-28-	10	
Surrogate:	Percent Recov	rery	Control Limits						
o-Terphenyl	103		50-150						
				Per	cent	Recovery		RPD	
Analyte	Resu	ılt		Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-222	2-01							
	ORIG	DUF)						
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				115	122	50-150			

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-4-S3					
Laboratory ID:	09-267-01					
Benzene	0.14	0.020	EPA 8021	9-28-10	9-29-10	
Toluene	0.089	0.066	EPA 8021	9-28-10	9-29-10	
Ethyl Benzene	1.5	0.066	EPA 8021	9-28-10	9-29-10	
m,p-Xylene	0.85	0.066	EPA 8021	9-28-10	9-29-10	
o-Xylene	ND	6.6	EPA 8021	9-28-10	9-29-10	U1
Gasoline	ND	6.6	NWTPH-Gx	9-28-10	9-29-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0928S2					
Benzene	ND	0.020	EPA 8021	9-28-10	9-28-10	
Toluene	ND	0.050	EPA 8021	9-28-10	9-28-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-28-10	9-28-10	
m,p-Xylene	ND	0.050	EPA 8021	9-28-10	9-28-10	
o-Xylene	ND	0.050	EPA 8021	9-28-10	9-28-10	
Gasoline	ND	5.0	NWTPH-Gx	9-28-10	9-28-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	92	55-127				

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-2	51-08									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	JA	NA	NA	30	
Surrogate:											
Fluorobenzene						89	90	55-127			
SPIKE BLANKS											
Laboratory ID:	SB09	28S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.925	0.978	1.00	1.00		93	98	75-113	6	9	
Toluene	0.900	0.943	1.00	1.00		90	94	75-116	5	10	
Ethyl Benzene	0.907	0.952	1.00	1.00		91	95	82-117	5	10	

Surrogate:

0.915

0.913

0.958

0.958

1.00

1.00

1.00

1.00

92

91

91

96

96

92

81-122

83-118

55-127

5

5

10

10

m,p-Xylene

o-Xylene

Fluorobenzene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-4-GW	1				
Laboratory ID:	09-267-03					
Benzene	16	1.0	EPA 8021	10-4-10	10-4-10	
Toluene	1.5	1.0	EPA 8021	10-4-10	10-4-10	
Ethyl Benzene	26	1.0	EPA 8021	10-4-10	10-4-10	
m,p-Xylene	6.9	1.0	EPA 8021	10-4-10	10-4-10	
o-Xylene	7.4	1.0	EPA 8021	10-4-10	10-4-10	
Gasoline	950	100	NWTPH-Gx	10-4-10	10-4-10	0
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	100	74-121				

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

•				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1004W1					
Benzene	ND	1.0	EPA 8021	10-4-10	10-4-10	
Toluene	ND	1.0	EPA 8021	10-4-10	10-4-10	
Ethyl Benzene	ND	1.0	EPA 8021	10-4-10	10-4-10	
m,p-Xylene	ND	1.0	EPA 8021	10-4-10	10-4-10	
o-Xylene	ND	1.0	EPA 8021	10-4-10	10-4-10	
Gasoline	ND	100	NWTPH-Gx	10-4-10	10-4-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	96	74-121				

					Source	Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Result	Recovery		Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	10-0 ⁻	16-02									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	٨N	NA	NA	30	
Toluene	ND	ND	NA	NA		١	A	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	A	NA	NA	30	
Surrogate:											
Fluorobenzene						78	79	74-121			
MATRIX SPIKES											
Laboratory ID:	10-01	6-02									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	52.0	52.4	50.0	50.0	ND	104	105	78-118	1	8	
Toluene	48.9	49.1	50.0	50.0	ND	98	98	81-119	0	8	
Ethyl Benzene	49.2	49.3	50.0	50.0	ND	98	99	81-121	0	8	
m,p-Xylene	49.4	49.1	50.0	50.0	ND	99	98	79-123	1	8	

Surrogate:

49.1

49.1

50.0

50.0

ND

98

99

98

99

79-121

74-121

o-Xylene

Fluorobenzene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

8

0

Date of Report: October 6, 2010 Samples Submitted: September 24, 2010 Laboratory Reference: 1009-267 Project: 17581-00 21

% MOISTURE

Date Analyzed: 9-29-10

Client ID

Lab ID

% Moisture

HC-N12342526-4-S3

09-267-01

15

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Sample Custody Record

Samples Shipped to: ONSITE

Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581

100 17541-00 21 LAD NUMBER 00 067	REQUESTED ANALYSIS	
PROJECT NAME POT UST PROGRAM - N12342526	ex s	쫎 원 전 OBSERVATIONS/COMMENTS/
HART CROWSER CONTACT COLLEEN RUST,		COMPOSITING INSTRUCTIONS
ROGS STAINSBY, PHIL CORDELL		0. OF
SAMPLED BY: PRC	N N N N N N N N N N N N N N N N N N N	Ž
LAB NO. SAMPLE ID DESCRIPTION DATE TIME MATRIX		
1 HC-N12342526-4-53 9/24/10 1410 SOIL	XXX	6
2 41-N12342526-4-54 1435		6
3 HC-N12342576-4-6W 1525 HD	XXX	15
RELINQUISHED BY DATE BECEIVED BY DATE	SPECIAL SHIPMENT HANDLING OR	てナ TOTAL NUMBER OF CONTAINERS
9/w/10 J- 24-10	STORAGE REQUIREMENTS:	SAMPLE RECEIPT INFORMATION CUSTODY SEALS:
PRIMATE LORDER TIME	& Please hold additional	
COMPANY C 1615 Dear Messy 4:15	Samples and volume for	
	AUTURE avanysis.	SHIPMENT METHOD: HAND
RELINQUISHED BY DATE RECEIVED BY DATE		
AIGNATURE , A GINATURE , A GINA	COOLER NO.: STORAGE LOCATION:	
PRINT NAME TIME PRINT HAME TIME		
Speedy Mess, 516 OSC 1715	See Lab Work Order No	□ 72 HOURS OTHER
White and Yellow Copies to Lab Pink to Project Manager Lab to Return White Copy to Ha	Crowser Gold to Sample Custodian	

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

October 5, 2010

Colleen Rust Hart Crowser, Inc. 1700 Westlake Avenue North, Suite 200 Seattle, WA 98109-3056

Re: Analytical Data for Project 17581-00 21 Laboratory Reference No. 1009-285

Dear Colleen:

Enclosed are the analytical results and associated quality control data for samples submitted on September 28, 2010.

The standard policy of OnSite Environmental Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely

David Baumeister Project Manager

Enclosures

Date of Report: October 5, 2010 Samples Submitted: September 28, 2010 Laboratory Reference: 1009-285 Project: 17581-00 21

Case Narrative

Samples were collected on September 27, 2010 and received by the laboratory on September 28, 2010. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

NWTPH Gx/BTEX (soil) Analysis

Per EPA Method 5035A, samples were received by the laboratory in pre-weighed 40 mL VOA vials within 48 hours of sample collection. They were stored in a freezer at between -7°C and -20°C until extraction or analysis.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

NWTPH-Gx/BTEX

Matrix: Water Units: ug/L (ppb)

5 (11)				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-1 GW					
Laboratory ID:	09-285-01					
Benzene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Toluene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Ethyl Benzene	ND	1.0	EPA 8021	9-29-10	9-29-10	
m,p-Xylene	ND	1.0	EPA 8021	9-29-10	9-29-10	
o-Xylene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Gasoline	ND	100	NWTPH-Gx	9-29-10	9-29-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	74-121				
Client ID:	HC-N12342526-2 GW					
Laboratory ID:	09-285-02					
Benzene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Toluene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Ethyl Benzene	ND	1.0	EPA 8021	9-29-10	9-29-10	
m,p-Xylene	ND	1.0	EPA 8021	9-29-10	9-29-10	
o-Xylene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Gasoline	ND	100	NWTPH-Gx	9-29-10	9-29-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	89	74-121				
Client ID:	HC-N12342526-3 GW					
Laboratory ID:	09-285-03					
Benzene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Toluene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Ethyl Benzene	ND	1.0	EPA 8021	9-29-10	9-29-10	
m,p-Xylene	ND	1.0	EPA 8021	9-29-10	9-29-10	
o-Xylene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Gasoline	ND	100	NWTPH-Gx	9-29-10	9-29-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	90	74-121				

3

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0929W1					
Benzene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Toluene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Ethyl Benzene	ND	1.0	EPA 8021	9-29-10	9-29-10	
m,p-Xylene	ND	1.0	EPA 8021	9-29-10	9-29-10	
o-Xylene	ND	1.0	EPA 8021	9-29-10	9-29-10	
Gasoline	ND	100	NWTPH-Gx	9-29-10	9-29-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	74-121				

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	e Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-28	85-01									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		١	١A	NA	NA	30	
Toluene	ND	ND	NA	NA		١	ΝA	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		١	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		١	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		١	A	NA	NA	30	
Gasoline	ND	ND	NA	NA		١	A	NA	NA	30	
Surrogate:											
Fluorobenzene						90	89	74-121			
MATRIX SPIKES											
Laboratory ID:	09-28	35-01									
	MS	MSD	MS	MSD		MS	MSD				
Benzene	49.5	48.6	50.0	50.0	ND	99	97	78-118	2	8	
Toluene	47.3	46.7	50.0	50.0	ND	95	93	81-119	1	8	
Ethyl Benzene	47.6	47.1	50.0	50.0	ND	95	94	81-121	1	8	
m.p-Xvlene	47.5	46.7	50.0	50.0	ND	95	93	79-123	2	8	

Surrogate: Fluorobenzene

o-Xylene

47.9

46.9

50.0

50.0

ND

96

100

94

97

79-121

74-121

2

8

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881
NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-1-S3/4					
Laboratory ID:	09-285-04					
Benzene	ND	0.020	EPA 8021	9-29-10	9-29-10	
Toluene	ND	0.061	EPA 8021	9-29-10	9-29-10	
Ethyl Benzene	ND	0.061	EPA 8021	9-29-10	9-29-10	
m,p-Xylene	ND	0.061	EPA 8021	9-29-10	9-29-10	
o-Xylene	ND	0.061	EPA 8021	9-29-10	9-29-10	
Gasoline	ND	6.1	NWTPH-Gx	9-29-10	9-29-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	94	55-127				
Client ID:	HC-N12342526-2-S3					
Laboratory ID:	09-285-05					
Benzene	ND	0.020	EPA 8021	9-29-10	9-29-10	
Toluene	ND	0.074	EPA 8021	9-29-10	9-29-10	
Ethyl Benzene	ND	0.074	EPA 8021	9-29-10	9-29-10	
m,p-Xylene	ND	0.074	EPA 8021	9-29-10	9-29-10	
o-Xylene	ND	0.074	EPA 8021	9-29-10	9-29-10	
Gasoline	ND	7.4	NWTPH-Gx	9-29-10	9-29-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	101	55-127				
Client ID:	HC-N12342526-3-S4					
Laboratory ID:	09-285-06					
Benzene	ND	0.020	EPA 8021	9-29-10	9-29-10	
Toluene	ND	0.060	EPA 8021	9-29-10	9-29-10	
Ethyl Benzene	ND	0.060	EPA 8021	9-29-10	9-29-10	
m,p-Xylene	ND	0.060	EPA 8021	9-29-10	9-29-10	
o-Xylene	ND	0.060	EPA 8021	9-29-10	9-29-10	
Gasoline	ND	6.0	NWTPH-Gx	9-29-10	9-29-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	95	55-127				

NWTPH-Gx/BTEX

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-3-S1					
Laboratory ID:	09-285-07					
Benzene	ND	0.020	EPA 8021	9-29-10	9-30-10	
Toluene	ND	0.050	EPA 8021	9-29-10	9-30-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-29-10	9-30-10	
m,p-Xylene	ND	0.050	EPA 8021	9-29-10	9-30-10	
o-Xylene	ND	0.050	EPA 8021	9-29-10	9-30-10	
Gasoline	ND	5.0	NWTPH-Gx	9-29-10	9-30-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	98	55-127				

NWTPH-Gx/BTEX QUALITY CONTROL

Matrix: Soil Units: mg/kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0929S2					
Benzene	ND	0.020	EPA 8021	9-29-10	9-29-10	
Toluene	ND	0.050	EPA 8021	9-29-10	9-29-10	
Ethyl Benzene	ND	0.050	EPA 8021	9-29-10	9-29-10	
m,p-Xylene	ND	0.050	EPA 8021	9-29-10	9-29-10	
o-Xylene	ND	0.050	EPA 8021	9-29-10	9-29-10	
Gasoline	ND	5.0	NWTPH-Gx	9-29-10	9-29-10	
Surrogate:	Percent Recovery	Control Limits				
Fluorobenzene	88	55-127				

					Source	Per	cent	Recovery		RPD	
Analyte	Re	sult	Spike	Level	Result	Rec	overy	Limits	RPD	Limit	Flags
DUPLICATE											
Laboratory ID:	09-2	58-05									
	ORIG	DUP									
Benzene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Toluene	ND	ND	NA	NA		Ν	٨	NA	NA	30	
Ethyl Benzene	ND	ND	NA	NA		Ν	A	NA	NA	30	
m,p-Xylene	ND	ND	NA	NA		Ν	A	NA	NA	30	
o-Xylene	ND	ND	NA	NA		Ν	١A	NA	NA	30	
Gasoline	ND	ND	NA	NA		Ν	A	NA	NA	30	
Surrogate:											
Fluorobenzene						97	98	55-127			
SPIKE BLANKS											
Laboratory ID:	SB09	29S1									
	SB	SBD	SB	SBD		SB	SBD				
Benzene	0.918	0.967	1.00	1.00		92	97	75-113	5	9	
Toluene	0.895	0.941	1.00	1.00		90	94	75-116	5	10	
Ethyl Benzene	0.899	0.950	1.00	1.00		90	95	82-117	6	10	
m,p-Xylene	0.913	0.961	1.00	1.00		91	96	81-122	5	10	
o-Xylene	0.910	0.955	1.00	1.00		91	96	83-118	5	10	

Surrogate:

Fluorobenzene

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

91

93

55-127

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

• • • •				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-1 GW					
Laboratory ID:	09-285-01					
Diesel Range Organics	0.53	0.26	NWTPH-Dx	9-30-10	10-3-10	
Lube Oil	1.8	0.42	NWTPH-Dx	9-30-10	10-3-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	122	50-150				
Client ID:	HC-N12342526-2 GW					
Laboratory ID:	09-285-02					
Diesel Range Organics	ND	0.26	NWTPH-Dx	9-30-10	10-3-10	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	9-30-10	10-3-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	115	50-150				
Client ID:	HC-N12342526-3 GW					
Laboratory ID:	09-285-03					
Diesel Range Organics	ND	0.26	NWTPH-Dx	9-30-10	10-3-10	
Lube Oil Range Organics	ND	0.42	NWTPH-Dx	9-30-10	10-3-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	130	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Water Units: mg/L (ppm)

						Date	Date			
Analyte	Result		PQL	Method		Prepared Analyzed			Flags	
METHOD BLANK										
Laboratory ID:	MB0930W1									
Diesel Range Organics	ND		0.25	NWTPH-D)x	9-30-10	10-3-	10		
Lube Oil Range Organics	ND		0.40	NWTPH-D)x	9-30-10	10-3-	10		
Surrogate:	Percent Recov	rery	Control Limits							
o-Terphenyl	108		50-150							
				Per	cent	Recovery		RPD		
Analyte	Resu	ılt		Reco	overy	Limits	RPD	Limit	Flags	
DUPLICATE										
Laboratory ID:	09-285	5-02								
	ORIG	DUF)							
Diesel Range Organics	ND	ND					NA	NA		
Lube Oil Range Organics	ND	ND					NA	NA		
Surrogate:										
o-Terphenyl				115	114	50-150				

9

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

NWTPH-Dx

(with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	HC-N12342526-1-S3/4					
Laboratory ID:	09-285-04					
Diesel Range Organics	ND	31	NWTPH-Dx	9-30-10	9-30-10	
Lube Oil Range Organics	ND	62	NWTPH-Dx	9-30-10	9-30-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	65	50-150				
Client ID:	HC-N12342526-2-S3					
Laboratory ID:	09-285-05					
Diesel Range Organics	ND	33	NWTPH-Dx	9-30-10	9-30-10	
Lube Oil Range Organics	ND	65	NWTPH-Dx	9-30-10	9-30-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	82	50-150				
Client ID:	HC-N12342526-3-S4					
Laboratory ID.	09-285-06					
Diesel Range Organics	ND	30	NWTPH-Dx	9-30-10	9-30-10	
Lube Oil Range Organics	ND	60	NWTPH-Dx	9-30-10	9-30-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	97	50-150				
Client ID:	HC-N12342526-3-S1					
Laboratory ID:	09-285-07					
Diesel Range Organics	46	27	NWTPH-Dx	9-30-10	9-30-10	
Lube Oil	98	53	NWTPH-Dx	9-30-10	9-30-10	
Surrogate:	Percent Recovery	Control Limits				
o-Terphenyl	93	50-150				

NWTPH-Dx QUALITY CONTROL (with acid/silica gel clean-up)

Matrix: Soil Units: mg/Kg (ppm)

						Date	Dat	е	
Analyte	Result		PQL	Method		Prepared Analyzed			Flags
METHOD BLANK									
Laboratory ID:	MB0930S1								
Diesel Range Organics	ND		25	NWTPH-D)x	9-30-10	9-30-	10	
Lube Oil Range Organics	ND		50	NWTPH-D)x	9-30-10	9-30-	10	
Surrogate:	Percent Recov	rery	Control Limits						
o-Terphenyl	100		50-150						
				Per	cent	Recovery		RPD	
Analyte	Resu	ılt		Reco	overy	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	09-309	-01							
	ORIG	DUF	D						
Diesel Range Organics	ND	ND					NA	NA	
Lube Oil Range Organics	ND	ND					NA	NA	
Surrogate:									
o-Terphenyl				105	112	50-150			

Date of Report: October 5, 2010 Samples Submitted: September 28, 2010 Laboratory Reference: 1009-285 Project: 17581-00 21

% MOISTURE

Date Analyzed: 9-29-10

Client ID	Lab ID	% Moisture
HC-N12342526-1-S3/4	09-285-04	19
HC-N12342526-2-S3	09-285-05	23
HC-N12342526-3-S4	09-285-06	17
HC-N12342526-3-S1	09-285-07	6

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

This report pertains to the samples analyzed in accordance with the chain of custody, and is intended only for the use of the individual or company to whom it is addressed.

Data Qualifiers and Abbreviations

A - Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.

B - The analyte indicated was also found in the blank sample.

C - The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.

E - The value reported exceeds the quantitation range and is an estimate.

F - Surrogate recovery data is not available due to the high concentration of coeluting target compounds.

H - The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.

I - Compound recovery is outside of the control limits.

J - The value reported was below the practical quantitation limit. The value is an estimate.

K - Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.

L - The RPD is outside of the control limits.

M - Hydrocarbons in the gasoline range are impacting the diesel range result.

M1 - Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.

N - Hydrocarbons in the lube oil range are impacting the diesel range result.

N1 - Hydrocarbons in diesel range are impacting lube oil range results.

O - Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.

- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.

T - The sample chromatogram is not similar to a typical _____

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- Y Sample extract treated with an acid/silica gel cleanup procedure.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Sample Custody Record

7

Hart Crowser, Inc. 1910 Fairview Avenue East Seattle, Washington 98102-3699 Phone: 206-324-9530 FAX: 206-328-5581

JOB 17531-00 21 LAB NUMBER 09-285					REQ	JESTED A	NALYSIS	· · · · ·	v	3		
	PROJECT NAME BT UST PROGRAM N-1,2,3,4,25,26 HART CROWSER CONTACT C.R.ST SAMPLED BY:	AULTOH-6×	AWJTPH-Dx	RETX			-tu hut			OBSERVATIONS/COMMENTS/ COMPOSITING INSTRUCTIONS		
[LAB NO. SAMPLE ID DESCRIPTION DATE TIME MATRIX											
ł	H(-N12342526-1 Gev CHARC. 9/27/10 1025 WATER	X	X	X					15			
2	HC-N12342526-262 0945	X	X	X					IJ	ny)		
8	HC-N12342526-3 GW 1225	X	X	X					5			
	HC-N12342526-4 GW		<u> </u>							NO SAMPLE		
£	HC-N12342526-1-53/4 0955501L	X		X			\times		6			
5	H(-N/2342526-2-53 0845	X	X	X			X		6			
6	K-N12342526-3 - 1200		X	X			\mathbf{X}		6	7		
4	HC-N12342526-41-54									NOSAMPLE		
	44											
7	HC-N12342526-3-51 19/27/10 1150 501L	X	X	X			<u>x</u>		6	,		
ŀ		-										
ļ												
ŀ	RELINQUISHED BY DATE RECEIVED BY DATE	SF SF	PECI/	AL SH GF B	IPMENT HA	ANDLING NTS:	OR		CA	TOTAL NUMBER OF CONTAINERS		
ŀ	SIGNATURE 1/27/19 SIGNATURE 9/12/10	×	Ple	se a	hold	extra	Samp	iles and				
ľ	PRINT NAME TIME PRINT NAME TIME	- ` '	vol	wm	e			,		JYES □NO □N/A GOOD CONDITION		
-	COMPANY LOOWSCI 1400 COMPANY HC 1800								T T			
[RELINQUISHED BY DATE RECEIVED BY DATE											
	9.28.10 9/28/10 2 4 Hor 9.28.10).:		STORA	GE LOCATION	: TI	JRNAROUND TIME:		
4	SIGNATURE TIME PACKAGO TIME									□ 24 HOURS □ 1 WEEK		
	PRINTENAME PRINTENAME DUICH	Se	e La	b Wc	rk Order N	o			_ [🗆 48 HOURS 🗙 STANDARD		
l	COMPANY //C OCC COMPANY	fo	for Other Contract Requirements					1.15 /		J /2 HOURS OTHER		
1	White and Yellow Copies to Lab Pink to Project Manager Lab to Return White Copy to Hart Crowser Gold to Sample Custodian											