

Limited Subsurface Investigation Report

Seattle Times Property 1120 John Street Seattle, Washington

Prepared For:

Onni Group 300 - 550 Robson Street Vancouver, BC V6B 2B7

August 16, 2013

Prepared By:

Environmental Partners, Inc. 295 NE Gilman Boulevard, Suite 201 Issaquah, Washington 98027 (425) 395-0010

Eric Koltes L.G. Senidr Geologistchael Koltes

EPI Project Number:

65602.0

Adam Morine, P.E.

Senior Engineer

QR ARM TR GK

TABLE OF CONTENTS

1.0	INTR	RODUCT	ΓΙΟΝ		1
2.0	BAC	KGROL	JND		2
3.0	OBJ	ECTIVE	s		5
4.0	MET	HODOL	.ogy		5
	4.1	Drilling	and Soil S	Sampling	6
	4.2	_		nstallation and Ground Water Sampling	
	4.3			npling	
	4.4				
	4.5	Produc	ct Sampling]	8
	4.6	Analyti	ical Method	ds	8
5.0	FIND	INGS			9
	5.1	Subsu	rface Cond	litions	9
	5.2	Analyti	ical Results	s and Findings	9
		5.2.1	AOPC 1:	Printing Press Areas	9
			5.2.1.1	Soil Samples	9
			5.2.1.2	Wipe Samples	10
		5.2.2	AOPC 2:	Interior Ink Tanks	11
			5.2.2.1	Soil Samples	11
			5.2.2.2	Sump Water Samples	11
		5.2.3	AOPC 3:	Ink Room	12
			5.2.3.1	Soil Samples	12
		5.2.4	AOPC 4:	Compressor Room	13
			5.2.4.1	Soil Samples	
			5.2.4.2	Wipe Samples	
			5.2.4.3	Product Samples	
				Sump Water Samples	
		5.2.5		Northern UST Complex and Fuel Dispenser	
			5.2.5.1	Soil Samples	
			5.2.5.2	Ground Water Sample	
		5 0 0	5.2.5.3	Ecology File Review	
		5.2.6		Waste Oil UST	
		E 0.7	5.2.6.1	Soil Samples	
		5.2.7		Heating Oil UST	
			5.4.7.1	Soil Samples	

		5.2.8	AOPC 8: Heating Oil USTs	17
			5.2.8.1 Soil Samples	17
		5.2.9	AOPC 9: Hoists	18
			5.2.9.1 Soil Samples	18
		5.2.10	AOPC 10: SUMPS	18
			5.2.10.1 Soil Samples	18
6.0	POT	ENTIAL	OFF-SITE SOURCES	19
	6.1	Soil Sa	amples	19
	6.2		w Ground Water Samples	
	6.3		Ground Water Samples	
		6.3.1	Northwestern Corner (MW-2)	
		6.3.2	Northeastern Corner (MW-3)	
7.0	CON	CI HEIC	ONS	
8.0	DISC	CLAIMEI	R	24
TAB	LES			
Table	e 1	Su	ımmary of Requested Analyses	
Table			oil Analytical Results (in mg/kg)	
Table	e 3		ipe Analysis Results (in µg/100 cm²)	
Table	e 4	Gr	ound Water Analytical Results (in μg/L)	
Table			nallow Sump Ground Water Analytical Results (in μg/L)	
Table	e 6	Pro	oduct Analysis (in mg/kg)	
FIGL	JRES			
Figu	re 1	Ge	eneral Vicinity Map	
Figu			te Representation	
Figu			ound Water Monitoring Well Locations	
Figu			oil Analytical Data – PCBs – AOPC 1 – Printing Press Areas	
Figu			pe Analytical Data – PCBs – AOPC 1 – Printing Press Areas	
Figu	re 6		Impling Locations and Sump Water Analytical – DRO and ORO – AOPC 2 – Interio	r
Figui	re 7		oil Analytical Data – DRO and ORO – AOPC 3 – Ink Tank Room and AOPC 9 –	
9 31			pists	
Figui	re 8	So	oil Analytical Data – PCBs – AOPC 4 – Compressor Room	
Figu	re 9	Wi	pe Analytical Data – PCBs – AOPC 4 – Compressor Room	
-	re 10		imp Water Analytical Data – DRO and ORO – AOPC 4 – Compressor Room	
Figu	re 11	Sa	impling Locations – AOPC 5 – Northern UST Complex and Dispenser	

Figure 12	Sampling Locations – AOPC 6 – Waste Oil UST
Figure 13	Sampling Locations – AOPC 7 – Heating Oil UST (in the office area)
Figure 14	Soil Analytical Data – DRO and ORO – AOPC 8: Heating Oil USTs
Figure 15	Ground Water Analytical Data – VOCs

ATTACHMENTS

Attachment A Boring Logs

Attachment B Analytical Reports

1.0 INTRODUCTION

Environmental Partners, Inc. (EPI) is pleased to submit this Limited Subsurface Investigation Report documenting subsurface investigation activities conducted at the Seattle Times property located at 1120 John Street in Seattle, Washington (the subject property, see Figure 1). The subsurface investigation activities documented herein have been performed to characterize the environmental conditions prior to purchase of the subject property. This report is intended to document the findings of the investigative activities and present the potential environmental implications involved with subject property purchase and redevelopment. At the time of the investigations documented herein, the subject property was owned by The Seattle Times (Seattle Times) and was the historical printing and operations facility used in the production of newspapers since approximately 1940.

The following sections will address the various findings located within distinct locations throughout the subject property and present an evaluation of the potential impact that those findings may have on the current and future value of the subject property.

Portions of the environmental due-diligence work documented herein were initially performed for previous prospective buyers. Under contract, the previous prospective buyers were required to provide the results of any investigation to Seattle Times after their contract to purchase the subject property was expired. The culminating results of the previous investigations were then provided to the Onni Group by Seattle Times. Subsequent follow-up due-diligence work was performed by EPI directly for the Onni Group. This report summarizes all of the environmental due-diligence prepared by EPI to date for the subject property.

This work documented herein was intended to satisfy the requirements of a remedial investigation as defined in the Model Toxics Control Act, (MTCA), WAC 173-340-350. However, due to the complex development history of the subject property and dense nature of subsurface infrastructure, sampling locations were limited. Therefore, it was not possible to fully characterize the nature and extent of contaminants at the subject property. Resultantly, additional sampling will be necessary during redevelopment to provide a complete understanding of the existing conditions.

As a required component of a MTCA-compliant remedial investigation, a full comparative cleanup level analysis is necessary. This analysis is beyond the scope of services for this project. For purposes of the work documented herein, the analytical data collected during this work were compared against the MTCA Method A cleanup levels for soil and ground water using an unrestricted land use standard for screening purposes.

The soil cleanup levels used for screening are the MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses (Method A Soil CULs) as documented in MTCA Table 740-1. The ground water cleanup levels used for screening are the MTCA Method A Ground Water Cleanup Levels (Method A Ground Water CULs) as documented in MTCA Table 720-1.

For select metals (silver and barium) where a MTCA Method A cleanup level is not available, the MTCA Method B cleanup level for direct contact using an unrestricted land use scenario (MTCA Method B Soil CUL) was used for data comparison.

Discussions in this letter report regarding compliance are with respect to the MTCA Method A or B CULs only. As previously noted, in order to fully characterize the environmental risks associated with the subject property, a full remedial investigation, including a cleanup levels analysis will be necessary.

Method A Soil CULs for chromium are provided for a totalized chromium value, which includes both chromium III and chromium VI. Chromium VI is not stable in the environment and readily breaks down to chromium III. Therefore, for purposes of this evaluation, chromium detections at the subject property were compared to the chromium III cleanup level of 2,000 mg/kg. However, additional sampling should be conducted prior to development of the property to rule out the presence of chromium VI above its respective cleanup level.

In instances where wipe samples were collected, these results were compared to the Action Level established by the US EPA.

2.0 BACKGROUND

In order to develop a scope of work (SOW) to perform subsurface investigation activities, EPI reviewed a *Phase I Environmental Site Assessment Report* for the subject property dated January 8, 2010, prepared by Farallon Consulting, L.L.C. for Bush Strout & Kornfeld (Phase I ESA). EPI also performed a site reconnaissance the subject property to assess access limitations for drilling and sampling equipment.

The Phase I ESA identified several recognized environmental conditions (RECs) at the subject property. These RECs included:

- The presence of at least 11 underground storage tanks (USTs). The USTs contained a range of compounds including waste oils and liquids, heating oil, diesel fuel, gasoline, and petroleum- and solvent-based inks. The USTs were installed as early as 1930 and at least three have been closed-in-place. The Phase I ESA also indicated that there is the potential for additional unknown or undocumented USTs to be present at the subject property. Five of the USTs and a fuel dispenser are located east of a maintenance garage in the northwestern corner of the subject property.
- Potential releases of inks and/or cleaning compounds from two large newspaper printing presses located on below-grade foundations.
- The presence of a maintenance garage on the property with the known use of solvents and petroleum products for vehicle maintenance since about 1948.
- The presence of a hazardous materials storage room with drains that are connected to an oil/water separator and a UST located west of the building. The age, location, and condition of that UST are not known.
- The potential migration of releases from adjacent or nearby properties onto the subject property.

During the EPI's site reconnaissance, Seattle Times personnel were able to provide plans of the oil/water separator/UST located to the west of the subject property building.

Based EPI's review of the Phase I ESA and observations made during the site reconnaissance, a total of 10 areas of potential concern (AOPCs) were identified for the subject property:

AOPC 1: Printing Press Areas

AOPC 1 includes two separate rooms within the building. One room consists of four locations which house a total of approximately 38 newspaper printing presses between the four press units, and the second room contains approximately 9 additional printing presses. Within each of the press units, a series of 9 to 10 presses are located on top of sunken concrete pads, which house the presses.

It is understood that these presses were in operation during the 1960's and during EPI's site walk, oily stains were observed and surficial cracking of the concrete pads has occurred. To the best of EPI's knowledge, these presses used hydraulic oils, ink, and compressed air during the printing process.

AOPC 2: Interior Ink Tanks (centrally located)

AOPC 2 consists of the two interior building ink tanks, which supplied ink to the pressrooms. These two vertical 4,000 (north tank) and 5,000-gallon (south tank) tanks are apparently housed within concrete vaults, which were constructed on top of the native soils of the sub-floor.

AOPC 3: Ink Room (adjacent to shop in northwest corner)

AOPC 3 consists of the abandoned aboveground ink tanks located within a portion of the maintenance shop/garage area, in the northwest corner of the Site. These ink tanks are similar in their product storage to the ink tanks listed above in AOPC 2, but are above ground. Conditions during the site walk indicated considerable cracking of the concrete floor beneath the tanks and heavy-oil type stains on the surface of the floor which ran into these cracks, causing concern for the potential for considerable contaminant migration to the subsurface.

AOPC 4: Compressor Room

AOPC 4 consists of the boiler room and compressor room within the Facility. This AOPC consists of two separate floors within a common area, with the upper area consisting of several large reciprocating piston-type compressors and the bottom area consisting of the boilers used to heat the building on the subject property. Each of these respective areas was constructed with concrete floors built on top of native or disturbed soil.

AOPC 5: Northern UST Complex and Dispenser

This AOPC consists of five known USTs and one fuel dispenser located in the northwest corner of the subject property. This AOPC consists of:

- Two 12,000-gallon active gasoline USTs with cathodic protection;
- One 8,000-gallon diesel oil UST; and
- Two 5,000-gallon waste oil USTs.
- AOPC 6: Waste Oil UST (adjacent to the west of the facility)

AOPC 6 consists of one known 2,000-gallon UST used for storage of waste oil located on the west side of the subject property, outside the building.

AOPC 7: Heating Oil UST (in the office area)

AOPC 7 consists of one 12,000-gallon heating oil UST, oriented east-west, and located beneath the southwest addition to the building. The UST was reportedly installed in 1974 and emptied in 2007. The UST is reportedly constructed of steel with an exterior coating of asphalt.

AOPC 8: Heating Oil USTs (south-centrally located alleyway)

AOPC 8 consists of two 2,000-gallon heating oil USTs located in the alley south of the boiler room. These USTs were installed in 1930 and were reportedly filled with concrete slurry in 1997.

AOPC 9: Hoists (located in maintenance garage)

AOPC 9 consists of four hydraulic hoists installed in the floor of the maintenance garage.

AOCP 10: Sumps (located throughout facility)

AOPC 10 consists of four sumps at locations throughout the facility. The exact construction details of each sump were unknown. The sumps are assumed to be approximately 8 feet deep.

The AOPCs are depicted on Figure 2.

During a review of Ecology files from nearby properties that might have posed some environmental risk, EPI reviewed a document related to the property located adjacent to the north of the subject property, the Troy Laundry facility, a historical dry-cleaning business. That document titled DRAFT *Remedial Investigation*, dated May 2012 indicated that there was a documented release of trichloroethene (TCE) and tetrachloroethene (PCE) to soil and ground water. It also indicated that the regional ground water aquifer is present at a depth of 80 to 90 feet and flows toward the east-southeast. Therefore, the subject property is located cross- to down-gradient from the Troy Laundry facility. In addition to the regional ground water, there are also laterally discontinuous lenses of shallow ground water ranging in depth from about 20 to 35 feet.

The subsurface investigative activities documented herein were focused on addressing the above AOPCs and off-site potential sources of contamination.

The investigation was performed in three mobilization phases as follows:

- July 2012;
- September 2012; and
- May 2013.

The July, 2012 mobilization phase was primarily focused on large-scale, on-site issues associated with AOPCs 1 through 5. The September, 2012 mobilization phase focused on AOPCs 6 through 10 and included ground water monitoring well installation to screen ground water conditions along the northern property boundary. The May, 2013 mobilization phase was performed to address the major data gaps remaining from the initial mobilization phases and included collecting additional samples in AOPC 7 (Heating Oil UST [in the office area]) and installation of an additional well to further screen ground water along the northern property boundary.

3.0 OBJECTIVES

The objective of the subsurface investigation was to assess the potential for environmental liability associated with the purchase of the subject property. The investigation work at the subject property has allowed EPI to prepare prospective buyers for the potential of environmental impacts associated with the subject property and to present the potential risks associated with redevelopment.

The specific objective of this subsurface investigation report is to provide a screening-level evaluation of the analytical results and findings from each AOPC.

4.0 METHODOLOGY

Five basic methods of investigation were used to collect environmental samples of the medias of concern. These methods included:

Drilling and soil sampling. Hollow-stem auger (HSA) drilling was used to investigate areas
that were accessible to large drilling equipment and which required drilling to a depth where it
was reasonably expected to detect contaminated soils. Soil borings located exterior of the
building were advanced using a full size CME 55 drill rig.

Shallower, direct-push probe drilling was performed in areas with limited space for drilling equipment. This drilling technique was typically performed in areas within the facility building(s). Shallow soil borings were advanced using a limited-access Geoprobe unit model 54LT.

Monitoring well installation and ground water sampling. Ground water samples were
collected from wells that were installed in several locations following the installation of
monitoring wells. An additional shallow reconnaissance ground water sample was collected
from AOPC 5 during soil boring advancement.

- **Sump water sampling**. Samples were collected from several areas throughout the facility where shallow groundwater is pumped from a series of de-watering sumps beneath the facility building(s).
- Wipe sampling. Wipe samples were collected within portions of the facility that were
 considered areas that were likely to contain polychlorinated biphenyls (PCBs). Wipe samples
 were collected on equipment surfaces, concrete floors, and utility piping.
- **Product sampling**. Samples of the oil (product) found within some of the equipment at the facility were collected and analyzed for the presence of PCBs.

4.1 Drilling and Soil Sampling

EPI advanced a series of soil borings at the subject property using the methods described above for the purposes of collecting soil samples to assess subsurface soil conditions. Prior to boring advancement, each location was screened for utilities by a private utility locator. After utilities were cleared, each boring location was concrete-cored prior to boring advancement. HSA boring locations were first excavated to a minimum of three feet below ground surface (bgs) within each borehole in order to ensure that no utilities were present prior to drilling.

During boring advancement, soils were screened for the potential presence of contamination using a photoionization detector (PID) and using general observations of odor and discoloration. Soil samples were collected in accordance with standard protocols for the collection of soil samples utilizing appropriate sampling techniques for the required analytical method. In addition, soils were investigated as they were removed from the subsurface and were logged according to the Unified Soil Classification System, ASTM D2488. The specific sample locations and depths are summarized for each AOPC-specific section, and are presented on Table 2. Boring logs for each HSA boring location are included in Attachment A. A summary of the DPT borings is also included in Attachment A.

4.2 Monitoring Well Installation and Ground Water Sampling

A total of three ground water monitoring wells were installed on the northern property boundary to assess if off-site ground water impacts from the Troy Laundry facility are potentially migrating on to the subject property. With the exception of MW-3, each monitoring well was installed using standard HSA drilling techniques.

EPI contracted with Cascade Drilling, L.P. (Cascade) to install each monitoring well using hollow stem auger (HSA) drilling and well installation methods. The locations of the monitoring wells are specified on Figure 3. As-built well details and soil boring logs are provided in Attachment A.

Cascade used a truck-mounted HSA drilling rig to advance boreholes and install the monitoring wells. The wells were constructed of 2-inch diameter, flush threaded, schedule 40 PVC casing and screen in conformance with WAC 173-160-430. Well screen assemblies consisted of 15 feet of 0.010-inch (*i.e.*, 10 slot), flush-threaded, machine-slotted screen with a threaded end cap.

A sand filter pack consisting of "20-40 Colorado" silica sand was placed in the annulus of the borehole to a depth of about one foot above the top of the well screen. Bentonite chips were placed in the annular space from the top of the sand pack to within two feet of ground surface, and were then hydrated. The wells were completed with a traffic-rated flush-mount steel well monument and a watertight locking cap. All well installation procedures were performed in accordance with the requirements of WAC 173-160, Minimum Standards for Construction and Maintenance of Wells.

Investigative derived waste (IDW; e.g., drill cuttings, decontamination water, well development fluids, etc.) were contained in 55-gallon drums and stored on-site pending disposal.

Monitoring well MW-1 was installed in the northwest corner of the subject property to a depth of about 100 feet. Ground water was first encountered in this boring at a depth of about 88 feet.

Monitoring well MW-2 was installed in the central portion of the northern property boundary to a depth of about 30 feet. Ground water was first encountered in this boring at a depth of about 14 feet. This well was installed within the laterally discontinuous shallow ground water, typical in the area of the subject property.

Monitoring well MW-3 was installed in the northeast corner of the subject property to a depth of about 100 feet. Ground water was first encountered in this boring at a depth of about 14 feet. Due to the presence of shallow ground water, a conductor casing was installed prior to advancing a boring to deeper ground water to prevent the contamination of deeper water by overlying shallower water. Soil samples were collected to verify the thickness of the shallow water bearing unit prior to installing the conductor casing. Soils exhibited conditions that suggested that the water encountered at the 14-foot depth was about five feet thick (from about 14 to 19 feet). Therefore, it was determined that the conductor casing would be installed to a depth of 30 feet to effectively prevent the downward migration of the shallow ground water. The conductor casing consisted of 12-inch diameter steel casing installed into a 15-inch borehole. After the conductor casing was installed, boring advancement continued to the terminal depth of 100 feet for well installation. Deeper water was encountered at a depth of 95 feet.

Following installation, ground water wells were developed to remove sediment from the vicinity of the well screens and to allow for representative water sample collection. Measurements of pH, conductivity, and temperature were recorded during purging. Consecutive readings of these parameters stabilized to within 10 percent prior to sample collection. Ground water samples were collected using a disposable Teflon® bailers with bottom emptying devices that minimize the volatilization of components during sampling.

In addition to ground water samples collected from the EPI installed monitoring wells, one additional reconnaissance ground water sample was collected from boring U-6, where the laterally discontinuous shallow ground water was encountered in AOPC 5.

Samples were submitted for a range of analyses, as indicated in Table 1.

4.3 Sump Water Sampling

Water samples were collected from a total of three shallow sumps at the subject property that are used to dewater areas of shallow-perched ground water beneath the facility's infrastructure. Disposable Teflon® bailers were used to collect sump samples. The samples were submitted for the range of analyses as indicated in Table 1.

4.4 Wipe Sampling

Wipe samples were collected on the surfaces of various equipment throughout the facility that had the potential for PCB impacts. Wipe samples were collected in accordance with Environmental Protection Agency's (EPA's) document titled *Wipe Sampling and Double Wash/Rinse Cleanup as recommended by the Environmental Protection Agency PCB Spill Cleanup Policy dated June 23, 1987, Revised and Clarified on April 18, 1991.*

Wipe samples were collected using a laboratory-prepared gauze pad saturated with hexane, which was then scrubbed over 100 square centimeters (100 cm²) and placed into a laboratory-supplied container. Laboratory prepared cardboard templates were used to gauge 100 cm² on flat surfaces. Wipe samples were analyzed for PCB content using EPA Method 8082.

4.5 Product Sampling

A total of three large compressors exist within a portion of the facility that were used to deliver compressed air to various equipment throughout the facility. Each of these compressors used oil to lubricate portions of the compressors. In order to determine the likelihood that PCBs were used in these compressors, EPI collected samples of the oils within the compressors. Samples of the oils in the compressors were collected by using a pipet to remove aliquots of the oils from an oil reservoir located on the compressors.

4.6 Analytical Methods

Soil and ground water samples were submitted to an analytical laboratory under standard chain-of-custody procedures for a range of analyses, depending on the likelihood within each AOPC to detect various compounds. Samples were submitted for the range of analyses indicated in Table 1. The following analytical methods were used for analysis, as appropriate:

- Gasoline-range organics (GRO) by NWTPH-Gx Methods;
- Diesel- and Oil-range organics (DRO and ORO) by NWTPH-Dx Methods;
- Volatile organic compounds (VOCs) by EPA Method 8260;
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B;
- Ethylene dibromide (EDB) and ethylene dichloride (EDC) by EPA Method 8260B;
- Methyl tertiary butyl ether (MTBE) by EPA Method 8260B;
- Carcinogenic polyaromatic hydrocarbons (cPAHs) by EPA Method 8270;
- Polychlorinated biphenyls (PCBs) by EPA Method 8082; and

> RCRA Metals arsenic, barium, cadmium, chromium, lead, selenium, and silver) by EPA 6000/7000 series methods.

All analyses from sampling events at the subject property were submitted to Friedman and Bruya, Inc. (FBI) in Seattle, Washington. Laboratory reports for all of the sample events are provided in Attachment B. A discussion of the findings from within each AOPC is described in detail in the AOPC-specific sections that follow.

5.0 FINDINGS

5.1 Subsurface Conditions

Subsurface conditions at the subject property varied depending on the AOPC investigated and the depth explored. In general, shallow soils beneath the concrete floor in areas of AOPC 1, the printing press areas, consisted of approximately 2 to 6 inches of structurally-supportive, non-native sub-base material. Native soils located beneath the sub-base material generally consisted of well-graded sands, clay-sand mixtures, and clay to approximately 7 feet bgs, where the soils generally transition to poorly graded sands with gravel and thick lean clay, down to the maximum depth explored. The native soils are typical of glacial till, which is common in the area of the subject property.

A regional ground water aquifer is present at depths ranging from of 85 to 95 feet. According to reports reviewed for the northern adjacent property, the regional aquifer flows toward the east-southeast. In addition to the regional ground water table, there are also laterally discontinuous lenses of shallow ground water ranging in depth from about 15 to 20 feet.

5.2 Analytical Results and Findings

5.2.1 AOPC 1: Printing Press Areas

5.2.1.1 Soil Samples

AOPC 1 consists of the printing press areas. Depths of soil samples ranged from just beneath the concrete, to a maximum investigated depth of 4.0 feet using DPT methods. A total of 16 subsurface locations were investigated within AOPC 1, as depicted on Figure 4. From these locations, a total of 17 soil samples were submitted for a range of analyses, as indicated in Table 1. The analytical results are summarized in Table 2.

The analytical results for soil samples collected and analyzed from AOPC 1 are as follows:

- Neither GRO, DRO, ORO, nor VOCs were detected at a concentration exceeding the compound-specific MDL for the associated analysis performed.
- PCBs were detected in two samples (sample P2 and sample P19) at concentrations of 0.2 mg/kg and 0.23 mg/kg, respectively. None of the detected concentrations of PCBs exceeded the MTCA Method A Soil CUL of 1 mg/kg for PCBs.

- The following RCRA metals and maximum concentrations were detected above the compound-specific MDL:
 - Chromium 25.1 mg/kg;
 - Arsenic 8.68 mg/kg;
 - Silver 1.13 mg/kg;
 - Barium 97.1 mg/kg; and
 - Lead 20.4 mg/kg.

With the exception of chromium, none of the RCRA metals were detected at a concentration above the MTCA Method A Soil CUL or Method B CUL.

Although no COPCs were detected in soil at concentrations that exceed MTCA Method A Soil CULs, special handling and disposal will be required during development for soils containing low-concentration PCBs. Additional sampling should be performed during development to accurately define the area requiring special handling.

5.2.1.2 Wipe Samples

A total of 24 wipe samples were collected from the surface of the printing presses within AOPC 1 to screen for the presence of PCBs, as depicted on Figure 5.

The following presents the general findings of the wipe sampling performed within AOPC 1:

- Wipe sampling indicated the presence of PCBs in each of the wipe samples at concentrations ranging from 1.4 μ g/100 cm² to 12 μ g/100 cm.
- The EPA action level for requiring cleanup prior to disposal is 10 μg/100 cm².
- Concentrations of detected PCBs were below the EPA action level of 10 μ g/100 cm² in all locations with the exception of wipe locations P-21 and P-39 which exhibited a concentrations of 12 μ g/100 cm² and 23 μ g/100 cm².
- Printing presses that exhibit concentrations of PCBs at concentrations above the EPA
 action level will require remedial action (i.e., industrial cleaning) prior to decommissioning.
 In addition, it will be necessary to assess the concrete floor and walls to ensure that the
 concrete surrounding the presses does not also require industrial cleaning prior to
 demolition. This additional sampling and analysis should be completed prior to
 decommissioning and demolition.

5.2.2 AOPC 2: Interior Ink Tanks

5.2.2.1 Soil Samples

A total of 4 shallow borings were advanced near the interior ink tanks in AOPC 2 using DPT methods. The boring locations are depicted on Figure 6. A total of 3 soil samples ranging in depths from 1.75 to 4.5 feet, were submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 2.

The analytical results for soil samples collected and analyzed from AOPC 2 are as follows:

- Neither GRO, DRO, ORO, nor VOCs were detected at a concentration exceeding the compound-specific MDL for the associated analysis performed.
- No COPCs were detected in soil at concentrations exceeding a potential cleanup level.
- The following RCRA metals and maximum concentrations were detected above their compound-specific MDLs:
 - Chromium 21.2 mg/kg;
 - Arsenic 5.70 mg/kg;
 - Barium 58.6 mg/kg; and
 - Lead 32.2 mg/kg.

With the exception of chromium, none of the RCRA metals were detected at a concentration above the MTCA Method A Soil CUL or Method B CUL.

5.2.2.2 Sump Water Samples

One of the sumps considered to be part of AOPC 10 (10d) is located within the AOPC 2 area. Two of the soil borings documented above for AOPC 2 were also advanced for assessment of soil conditions adjacent to the sump in this area. The soil results presented above are also applicable to the sump in AOPC 2.

In addition, one water sample (S-5) was collected from the sump in this area and was submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 5 and on Figure 6.

The following present the general findings of water conditions within AOPC 2:

GRO was not detected at a concentration exceeding the compound-specific MDL.

Chloroform was detected at a concentration of 1 µg/L. There is no MTCA Method A CUL available for chloroform. Chloroform is a common laboratory contaminant and is not likely present in water at the subject property. Future assessment activities should include reassessing for the presence of chloroform in sump water. No other VOCs were detected at a concentration exceeding the compound-specific MDL.

 DRO and ORO were detected at concentrations of 110,000 micrograms/Liter (μg/L) and 10,000 μg/L, respectively. Each of these concentrations exceed the MTCA Method A GW CUL of 500 μg/L, which is applicable to both DRO and ORO.

The presence of DRO and ORO in sump water is indicative of a DRO and ORO subsurface release at the subject property. Defining the nature and extent of such a release was beyond the scope of services for this project. Additional investigation should be performed during development to determine the source of the impacts as well as the nature and extent of the release. It is likely that remedial actions will be necessary in order to address the source of the sump water impacts.

5.2.3 AOPC 3: Ink Room

5.2.3.1 Soil Samples

A total of 4 shallow borings were advanced near the interior ink tanks in AOPC 3 using DPT methods. The boring locations are depicted on Figure 7. A total of 4 soil samples, each collected at a depth of 5 feet, were submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 2.

The analytical results for soil samples collected and analyzed from AOPC 3 are as follows:

- Neither GRO, DRO, ORO, nor VOCs were detected at a concentration exceeding the compound-specific MDL for the associated analysis performed.
- No COPCs were detected in soil at concentrations exceeding a potential cleanup level.
- The following RCRA metals and maximum concentrations were detected above their compound-specific MDLs:
 - Chromium 22.7 mg/kg;
 - Arsenic 2.8 mg/kg;
 - Barium 86.5 mg/kg; and
 - Lead 5.5 mg/kg.

With the exception of chromium, none of the RCRA metals were detected at a concentration above their respective MTCA Method A Soil CULs or Method B CULs.

Based on the data collected, no remediation or special handling or disposal of soils will be required in AOPC 3.

5.2.4 AOPC 4: Compressor Room

5.2.4.1 Soil Samples

A total of 6 shallow borings were advanced near the compressors in AOPC 4 using DPT methods. The boring locations are depicted on Figure 8. A total of 6 soil samples ranging in depths from near surface to 0.75 feet, were submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 2.

The analytical results for soil samples collected and analyzed from AOPC 4 are as follows:

- Neither GRO, DRO, ORO, nor VOCs were detected at a concentration exceeding the compound-specific MDL for the associated analysis performed.
- The following RCRA metals and maximum concentrations were detected above their compound-specific MDLs:
 - Chromium 18.4 mg/kg;
 - Arsenic 2.98 mg/kg;
 - Silver 1.69 mg/kg;
 - Barium 65.7mg/kg; and
 - Lead 47.0 mg/kg.

None of the RCRA metals were detected at a concentration above the MTCA Method A Soil CUL or Method B CUL.

 PCBs were detected in two samples (C-2 and C-12) at concentrations of 1.3 mg/kg and 1.2 mg/kg, respectively. These concentrations both exceed the MTCA Method A CUL of 1 mg/kg.

Based on the data collected in AOPC 4, a release of PCBs has occurred to soil at concentrations that are above the MTCA Method A Soil CUL and will require remediation during development. Due to restrictions on sampling areas due to dense infrastructure, it was not practicable to define the nature and extent of PCB impacts to soil. Such sampling should be conducted as a component of remedial efforts to be conducted during development.

5.2.4.2 Wipe Samples

A total of six wipe samples (two per compressor) were collected from the surface of the compressors to screen for potential PCBs. The analytical results are summarized in Table 3 and are depicted on Figure 9.

Wipe sampling indicated the presence of PCBs in three of the six locations sampled at concentrations ranging from 0.47 μ g/100 cm² to 0.54 μ g/100 cm². The EPA action level for requiring cleanup prior to disposal is 10 μ g/100 cm². Concentrations of detected PCBs were below the EPA action level of 10 μ g/100 cm² in all locations.

Based on these results, it does not appear that special handling or disposal will be required for the compressor equipment.

5.2.4.3 Product Samples

A total of 3 product samples (one per compressor) were collected from the oil reservoirs on the compressors to screen for potential PCBs. The analytical results are summarized in Table 6.

PCBs were not detected in product at concentrations above the compound-specific method detection limit for the analysis performed.

5.2.4.4 Sump Water Samples

One of the sumps considered to be part of AOPC 10 (10c) is located within the AOPC 4 area. One water sample was collected from the sump in this area. The water sample (S-4) was submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 5 and on Figure 10.

The following present the general findings of water conditions within AOPC 2:

- Neither GRO nor VOCs were detected at a concentration exceeding the compound-specific MDL for the associated analysis.
- DRO was detected at a concentration of 340 μg/L, which is below the MTCA Method A GW CUL of 500 μg/L.
- ORO was detected at concentrations of 1,900 μg/L, which is above the MTCA Method A GW CUL of 500 μg/L.

The presence of ORO in sump water is indicative of an ORO subsurface release at the subject property. Defining the nature and extent of such a release was beyond the scope of services for this project. Additional investigation should be performed during development to determine the source of the impacts as well as the nature and extent of the release. It is likely that remedial actions will be necessary in order to address the source of the sump water impacts.

5.2.5 AOPC 5: Northern UST Complex and Fuel Dispenser

5.2.5.1 Soil Samples

A total of 7 borings were advanced near the USTs in AOPC 5 using a combination of DPT and HSA drilling methods. The boring locations are depicted on Figure 11. A total of 9 soil samples ranging in depths from 8 feet to 15 feet, were submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 2.

Boring placement in AOPC 5 was limited due to infrastructure and dense utilities throughout the UST complex. Two additional boring locations were attempted in AOPC 5, but exhibited refusal and were unsuccessful. With the exception of one location, U-3, the borings were advanced to a total depth of 20 feet.

Neither GRO, DRO, ORO, BTEX, or VOCs were detected at concentrations exceeding the compound-specific MDL for the associated analyses performed in any of the soil samples.

5.2.5.2 Ground Water Sample

Shallow, perched ground water was encountered in one boring location (U-6), which was located near the loading dock. The depth to ground water was approximately 15 feet and is likely associated with the laterally discontinuous shallow ground water typically observed in the area. One shallow reconnaissance ground water sample was collected from U-6 and was submitted for analysis as indicated in Table 1. The analytical results are summarized in Table 4 and are depicted on Figure 11.

TCE was detected in the ground water sample at 9 μ g/L, which exceeds the MTCA Method A Ground Water Cleanup Level of 5 μ g/L.

The presence of TCE in the shallow ground water indicates that a release of TCE has occurred. TCE is a known contaminant from the Troy laundry site adjacent to the north of the subject property, however, a water sample collected from a shallow ground water well installed on the northern property boundary did not contain detectable concentrations of TCE (see *Potential Off-Site Issues* below). This suggests that the TCE detected in shallow ground water may be from an on-site source. However, there is insufficient data to determine the source of the TCE impacts. Determining the source of the TCE impacts was beyond the scope of services for this project and is not likely possible in the current facility configuration.

Remedial actions will be necessary to address the TCE impacts to ground water, however, additional data will be required in order to determine an appropriate remedy. This data should be collected during, or after, demolition activities are conducted.

5.2.5.3 Ecology File Review

As part of the due diligence process prior to purchase, a file review of the subject property and nearby properties was performed at the Ecology's Northwest Regional Office (NWRO) in Bellevue,

Washington, which was conducted on August 2, 2012. Based on a review of the files, there appeared to be one on-site concern for the subject property.

EPI reviewed a report prepared by Ecova in 1990 that documented the removal of a UST in the southwest corner of the loading dock area of the facility. That report presented the sidewall conditions of the excavation following tank removal and reported that residual hydrocarbons, as high as 4,300 mg/kg, were left in place in soil. This area received a 'No Further Action' (NFA) determination on February 10, 2012, however it is unclear how the property received an NFA without removal of these soils. Although this area has received an NFA, based on the file review, soils in the loading dock are likely impacted at concentrations above current cleanup levels and will likely require additional remedial action during redevelopment. Due to the current configuration of the USTs present in this area and the dense nature of above ground and subsurface infrastructure in the loading dock, EPI was unable investigate these conditions.

5.2.6 AOPC 6: Waste Oil UST

5.2.6.1 Soil Samples

Two borings were advanced near the waste oil UST in AOPC 6 using HSA drilling methods. The boring locations are depicted on Figure 12. A total of two soil samples, each collected at a depth of 10 feet, were submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 2.

The analytical results for soil samples collected and analyzed from AOPC 6 are as follows:

- Neither GRO, DRO, ORO, VOCs, PAHs, nor PCBs were detected at concentrations exceeding the compound-specific MDL for the associated analyses performed.
- The following RCRA metals and maximum concentrations were detected above their compound-specific MDLs:
 - Chromium 12.7 mg/kg;
 - Arsenic 2.48 mg/kg; and
 - Lead 2.3 mg/kg.

None of the RCRA metals were detected at a concentration above the MTCA Method A or Method B CULs.

Based on the data collected, no remediation or special handling or disposal of soils appears to be required in AOPC 6.

5.2.7 AOPC 7: Heating Oil UST

5.2.7.1 Soil Samples

A total of six borings were advanced near the heating oil UST in AOPC 7 using DPT and hand auger drilling methods. The boring locations are depicted on Figure 13. A total of six soil samples from depths ranging from 8 to 20 feet, were submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 2.

Neither DRO, ORO, or BTEX compounds were detected at concentrations exceeding the compoundspecific MDL for the associated analysis performed in any of the samples submitted from AOPC 7.

Based on the data collected, no remediation or special handling or disposal of soils appears to be required in AOPC 7.

5.2.8 AOPC 8: Heating Oil USTs

5.2.8.1 Soil Samples

A total of three borings were advanced near the former heating oil USTs in AOPC 8 using DPT drilling methods. The boring locations are depicted on Figure 14. A total of three soil samples from depths ranging from 8.5 to 9 feet, were submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 2.

The analytical results for soil samples collected and analyzed from AOPC 8 are as follows:

- DRO was detected at concentrations ranging from 290 mg/kg to 940 mg/kg, which are less than the MTCA Method A Soil CUL of 2,000 mg/kg for DRO.
- ORO was detected at concentrations ranging from 1,700 mg/kg to 4,600 mg/kg, which are above the MTCA Method A Soil CUL of 2,000 mg/kg for ORO.
- BTEX compounds were not detected at concentrations exceeding the compound-specific MDL for the associated analysis performed.

Based on the data collected in AOPC 8, a release of DRO has occurred to soil at concentrations that are above the MTCA Method A Soil CULs and will require remediation during development. Due to restrictions on sampling areas due to dense infrastructure, it was not practicable to define the nature and extent of DRO impacts to soil. Such sampling should be conducted as a component of remedial efforts to be conducted simultaneously with development.

5.2.9 AOPC 9: Hoists

5.2.9.1 Soil Samples

A total of six borings were advanced near the hydraulic hoists in AOPC 9 using DPT drilling methods. The boring locations are depicted on Figure 7. A total of six soil samples from depths ranging from 4 to 8 feet bgs, were submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 2.

The analytical results for soil samples collected and analyzed from AOPC 9 are as follows:

- DRO was detected at concentrations ranging from 120 mg/kg to 810 mg/kg, which are less than the MTCA Method A Soil CUL of 2,000 mg/kg for DRO.
- ORO was detected in one soil sample at a concentration of 640 mg/kg, which is less than the MTCA Method A Soil CUL of 2,000 mg/kg for ORO.

Although no COPCs were detected in soil at concentrations above the MTCA Method A Soil CULs, special handling and disposal will be required during development for soils containing low-concentration DRO and ORO. Additional sampling should be performed during development to accurately define the area requiring special handling.

5.2.10 AOPC 10: SUMPS

5.2.10.1 Soil Samples

AOPC 10 consists of select shallow ground water de-watering sumps located throughout the facility. A total of three borings were advanced near sumps labeled as 10c, 10d, and 10g using DPT drilling methods. All other sumps were inaccessible for subsurface drilling. These sumps and boring locations are depicted on Figures 6, 7, and 8. A total of three soil samples from depths ranging from 5 to 7 feet bgs, were submitted for the range of analyses indicated in Table 1. The analytical results are summarized in Table 2.

The analytical results for soil samples collected and analyzed from AOPC 10 are as follows:

- Neither DRO, ORO, VOCs, nor PCBs were detected at a concentration exceeding the compound-specific MDL for the associated analyses performed in any of the samples submitted from AOPC 10.
- The following RCRA metals and maximum concentrations were detected above the compound-specific MDL:
 - Chromium 21.2 mg/kg;
 - Arsenic 2.3mg/kg; and

Lead – 8.69 mg/kg.

With the exception of chromium, none of the RCRA metals were detected at a concentration above the MTCA Method A Soil CUL or Method B CUL.

5.2.10.2 Sump Water

As indicated above in the summaries for AOPC 2 and AOPC 4, DRO and ORO were detected in the water from the sump located near the interior ink tanks and in the sump located in the compressor room. A summary of these conditions are included above in Sections 5.2.2.2 (AOPC 2) and 5.2.4.4 (AOPC 4).

One additional sump water sample was collected in a sump adjacent to the north of AOPC 7 (10a). This sample location (S-2) is depicted on Figure 13. No COPCs were detected at a concentration exceeding the compound-specific MDL for the associated analyses performed

6.0 POTENTIAL OFF-SITE SOURCES

A total of three monitoring wells were installed along the northern subject property boundary in order to determine the potential for off-site contamination migration onto the subject property from the northern adjacent Troy Laundry facility. One of the three ground water wells were screened across the laterally discontinuous shallow ground water located at a depth of about 15 feet (MW-1). The other two wells (MW-2 and MW-3) were screened across the regional aquifer table present at depths of 88 to 95 feet. Monitoring well locations are depicted on Figure 15.

During advancement of MW-3, the laterally discontinuous shallow ground water was encountered at a depth of 20 feet. A water reconnaissance ground water sample was collected from this ground water zone prior to further advancement. After collecting the shallow ground water sample, the conductor casing was installed to seal off the shallow ground water, as described in the Methodology section of this report. The laterally discontinuous ground water was not encountered during advancement of boring MW-2.

6.1 Soil Samples

A total of six soil samples from depths ranging from 10 to 100 feet, were submitted during advancement of monitoring well borings for the range of analyses indicated in Table 1. The analytical results are summarized in Table 2.

The analytical results for soil samples collected and analyzed from these borings are as follows:

- Neither DRO, ORO, nor VOCs were detected at a concentrations exceeding the compound-specific MDLs for the associated analyses performed in any of the samples.
- The following RCRA metals and maximum concentrations were detected above their compound-specific MDLs:

Chromium – 14.4 mg/kg;

o Arsenic - 1.8 mg/kg; and

Lead – 2.31 mg/kg.

None of the RCRA metals were detected at concentrations above their MTCA Method A Soil CULs or Method B CULs.

6.2 Shallow Ground Water Samples

A total of two ground water samples were submitted from the laterally discontinuous ground water along the northern property line (MW-1 and MW-3) for the range of analyses indicated in Table 1. The analytical results are summarized in Table 4.

The analytical results for shallow ground water is as follows:

- Neither DRO, ORO, nor VOCs were detected at a concentration exceeding the compoundspecific MDL for the associated analysis performed in any of the samples.
- The following RCRA metals and maximum concentrations were detected above the compound-specific MDL:
 - Arsenic 1.38 μg/L; and
 - Dissolved Arsenic 1.10 μg/L.

None of the RCRA metals were detected at a concentration above the MTCA Method A GW CUL or Method B CUL.

6.3 Deep Ground Water Samples

A total of two ground water samples were submitted from the deep regional aquifer along the northern property line (MW-2 and MW-3) for the range of analyses indicated in Table 1. The analytical results are summarized in Table 4.

Each well was installed in opposite corners of the subject property northern border and are located as follows:

- MW-2 Northwestern corner
- MW-3 Northeastern corner

The analytical results for deep ground water are summarized individually.

6.3.1 Northwestern Corner (MW-2)

The ground water sample collected from the deep aquifer in the northwestern corner of the subject property (MW-2) was impacted with compounds consistent with dry cleaning activities. In addition, there were detections of fuel-related compounds. The following compounds and concentrations were detected in northwestern corner deep ground water at concentrations above their respective MTCA Method A GW CULs:

- Vinyl chloride (VC) 1.3 μg/L;
- TCE 5.6 μg/L;
- Tetrachloroethene (PCE) 10 μg/L; and
- Total Chromium 57.1 μg/L.

Followup analysis for dissolved chromium was below the MTCA Method A GW CUL indicating that the total result was likely due to turbidity and not an actual release.

VC, TCE and PCE were all similarly detected at the Troy Laundry facility and are likely the result of contamination migrating onto the subject property from the north.

The following compounds and associated concentrations were detected in northwestern deep ground water at concentrations below their respective ground water cleanup levels (if available):

- GRO 340 μg/L;
- DRO 400 μg/L;
- Cis-1,2-dichloroethene 22 μg/L;
- Chloroform 2.3 μg/L;
- O-xylene 1.7 μg/L;
- Isopropylbenzene 3.2 µg/L;
- 1,3,5-Trimethylbenzene 3.9 μg/L;
- Tert-Butylbenzene 1.3 μg/L;
- 1,2,4-Trimethylbenzene 34 μg/L;
- sec-Butylbenzene 3.9 μg/L;

- p-Isopropyltoluene 2 μg/L;
- Arsenic 2.19 μg/L; and
- Lead 4.84 µg/L.

6.3.2 Northeastern Corner (MW-3)

Neither DRO, ORO, nor VOCs were detected at a concentration exceeding the compound-specific MDL for the associated analysis performed in any of the samples.

7.0 CONCLUSIONS

The following conclusions are supported by the findings of this Limited Subsurface Investigation:

- A total of four AOPCs will require remedial actions. Those four COPCs have soil and/or water with contaminants of concern at concentrations above potentially applicable cleanup levels and include:
 - AOPC 2 (Interior Tank Area);
 - AOPC 4 (Compressor Room);
 - o AOPC 5 (Northern UST Complex and Fuel Dispenser); and
 - AOPC 8 (Heating Oil USTs).
- After completion of remedial actions based on attainment of cleanup levels in AOPC 2, AOPC 4, AOPC 5, and AOPC 8, additional soils will likely remain beyond that limits of the remedial excavation that contain detectable concentrations of contaminants of concern. These soils impacted at concentrations below cleanup levels will still require specialized handling and disposal and cannot be disposed off-Site as "clean" soils are re-used as "clean" fill material.
- Other soils are present at the Site that require special handling and disposal. These soils
 include those that may be impacted with concentrations of contaminants of concern that
 are below cleanup levels but cannot be transported off-Site for use as "clean" fill or
 disposed of as "clean" based on the MTCA regulation. These soils are located in AOPC 1
 (Printing Presses) and AOPC 9 (Hoists) where soils are impacted with contaminants at
 concentrations that are below the MTCA Method A Soil CULs.
- A total of at least 11 USTs will be encountered at the subject property during development and will require decommissioning in accordance with applicable regulations. Nine of the USTs are located in areas that have confirmed impacts requiring remediation (AOPC 2, AOPC 5, and AOPC 8). While impacts were not identified next to the remaining two USTs

located in AOPC 6 and AOPC 7, it is not uncommon to encounter soils that will require special handling and disposal associated with these USTs.

- Environmental conditions at the subject property are not fully characterized. Soil and ground water at the subject property has been investigated to the maximum extent practicable considering access limitations, the current level of development, and the limited room available for the collection of subsurface samples. It is possible that additional impacts may be encountered during redevelopment activities. If apparent impacts are encountered in soil based on odor, discoloration or other indicators, a qualified environmental consultant should be contacted to assess actual conditions and assist in compliance with applicable regulations (if any).
- Ground water encountered during development near AOPC 5 and other areas on the northern portion of the subject property will require special handling. Laterally discontinuous shallow ground water is impacted with TCE in AOPC 5 (Northern UST Complex and Fuel Dispenser) and may require remediation during redevelopment.
- Based on the available data and the available data for the Troy Laundry Site, it is advisable
 to assume that shallow ground water encountered along the northern property boundary
 should be contained during development activities and analyzed prior to disposal.
- Deep ground water in the northwestern portion of the subject property is impacted with drycleaning related compounds, which likely originate from the Troy Laundry Site. The extent of these impacts was not determined during this investigation and additional sampling may be warranted. Based upon the proximity of the subject property to the Troy Laundry Site and the known conditions at that Site, Onni should evaluate the installation of a vapor barrier during redevelopment of the subject property.
- Several of the printing presses will require remedial action (i.e., industrial cleaning) prior to
 decommissioning due to the presence of PCB surface impacts. In addition, it will be
 necessary to assess the concrete floor and walls to ensure that the concrete surrounding
 the presses does not also require industrial cleaning prior to demolition. This additional
 sampling and analysis should be completed prior to decommissioning and demolition.
- Ground water conditions beneath the subject property have not been fully investigated due
 to the limited availability for access of drilling equipment. It is possible that additional
 ground water impacts exist at the subject property as a result of on-site activities. These
 conditions should be evaluated during the redevelopment of the subject property.
- The work conducted herein was performed as a screening level assessment and is not considered a full MTCA-compliant Remedial Investigation. Several data gaps exist in the characterization of the subject property prior and during implementation of remedial actions. Further sampling is not currently possible given the dense above and below grade infrastructure of the facility. EPI recommends preparing a work plan for further necessary investigation and remedial action that can be implemented concurrently with development.

8.0 DISCLAIMER

As applicable and available within the project schedule and budget, EPI has completed the agreed scope of services employing professional standards applicable in the industry today. We assume no risk for existing conditions on the subject property.

To the extent that these services have required judgment, there can be no assurance that fully definitive or desired results were obtained, or if any results were obtained, that they were supportive of any given course of action. The services have included the application of judgment to scientific principles; to that extent, certain results of this work have been based on subjective interpretation. We make no warranties, express or implied including, without limitation, warranties as to merchantability or fitness for a particular purpose. The information provided in this letter report is not to be construed as legal advice.

This report was prepared solely for Onni Group and its affiliates, partners, and lenders and the contents herein may not be used or relied upon by any other person without the express written consent and authorization of EPI. By accepting this report, the user agrees that any use or reliance it places on this report shall be limited to the terms and conditions of the contract under which this document was generated, the qualifications and limitations stated in the report, and with the acknowledgement that the actual site conditions may change with time and that hidden conditions not discoverable within the scope of this assessment may exist at the subject property.

	_
Tab	les

Table 1
Summary of Requested Analyses
Subsurface Investigation Report
Seattle Times Building
1120 John Street, Seattle, Washington

AOPC	Location	Drilling Method	Sample	Depth ^a (Feet)	GRO⁵	DRO/ORO°	BTEX ^d	VOCs°	EDB/EDC MTBA ^f	cPAHs ^g	PCBs ^h	RCRA Metals ⁱ
	P-1	DPT	Soil	0	Х	Х		Х			X	Х
	P-2	DPT	Soil	0	Х	Х		Х			Х	Х
	P-3	DPT	Soil	0	Х	Х		Х			Х	Х
	P-4	DPT	Soil	0	Х	Х		Х			Х	Х
	P-5	DPT	Soil	0	Х	Х		Х			Х	Х
	P-6	DPT	Soil	0	Х	Х		Х			х	Х
	P-7	DPT	Soil	0	Х	Х		Х			Х	Х
	P-8	DPT	Soil	1	Х	Х		Х			Х	Х
	P-9	DPT	Soil	1.5	Х	Х		Х			х	Х
	P-10	DPT	Soil	1.5	Х	Х		Х			Х	Х
	P-11	-	Wipe	-							Х	
	P-12	-	Wipe	-							Х	
	P-13	-	Wipe	-							Х	
	P-14	-	Wipe	-							Х	
	P-15	DPT	Soil	1.5		Х		Х			Х	Х
	P-16	DPT	Soil	3		Х		Х			Х	Х
	P-17	DPT	Soil	1.5		Х		Х			Х	Х
	P-18	DPT	Soil	1.5		Х		Х			Х	Х
a			Soil	1.5		Х		Х			Х	Х
1 is Are	P-19	DPT	Soil	4		X		X		•	X	X
AOPC 1 Printing Press Area	P-20	DPT	Soil	1.5		Х		х			Х	Х
A(nting	P-21	-	Wipe	-							Х	
Pri	P-22	-	Wipe	-							Х	
	P-23	-	Wipe	-							Х	
	P-24	-	Wipe	-							Х	
	P-25	-	Wipe	-							Х	
	P-26	-	Wipe	-							Х	
	P-27	-	Wipe	-							Х	
	P-28	-	Wipe	-							Х	
	P-29	-	Wipe	-							Х	
	P-30	-	Wipe	-							Х	
	P-31	-	Wipe	-							Х	
	P-32	-	Wipe	-							Х	
	P-33	-	Wipe	-							Х	
	P-34	-	Wipe	-							Х	
	P-35	-	Wipe	-							Х	
	P-36	-	Wipe	-							Х	
	P-37	-	Wipe	-							Х	
	P-38	-	Wipe	-							Х	
	P-39	-	Wipe	-							Х	
	P-40	-	Wipe	-							Х	

Table 1 Summary of Requested Analyses Subsurface Investigation Report Seattle Times Building 1120 John Street, Seattle, Washington

AOPC	Location	Drilling Method	Sample	Depth ^a (Feet)	GRO⁵	DRO/ORO°	BTEX ^d	VOCse	EDB/EDC	cPAHs ^g	PCBs ^h	RCRA Metals ⁱ
Ø	T-1	DPT	Soil	4		Х		Х				Х
AOPC 2 Interior Ink Tanks	T-1A ^j	DPT	Soil	4		Х		Х			Х	Х
OPC.		DPT	Soil	1.75		Х		Х				Х
A(terioi	T-2	DPT	Soil	4.5		Х		Х				Х
Ξ	T-3	DPT	Soil	2		Х		Х				Х
	I-1	DPT	Soil	5	Х	Х		Х				Х
AOPC 3 Ink Room	I-2	DPT	Soil	5	Х	Х		Х				Х
AOP nk R	I-3	DPT	Soil	5	Х	Х		Х				Х
_	I-4	DPT	Soil	5	Х	Х		Х				Х
	C-1	DPT	Soil	0.75	Х	Х		Х			Х	Х
	C-2	DPT	Soil	0.75	Х	Х		Х			Х	Х
	C-3	DPT	Soil	0.75	Х	Х		Х			Х	Х
	C-4	-	Wipe	-							X	
	C-5	-	Wipe	-							X	
_	C-6	-	Wipe	-							X	
Roon	C-7	-	Product	-							X	
AOPC 4 ompressor Room	C-8	-	Product	-							X	
AO npres	C-9	-	Product	_							X	
Con	C-10	DPT	Soil	0.5		X					X	
	C-11	DPT	Soil	0.5		X					X	
	C-12	DPT	Soil	0.5		X					X	
	C-13	-	Wipe	-							X	
	C-13		Wipe								X	
	C-14 C-15		Wipe	-							X	
	U-1	HSA	Soil	15	Х	X	Х				^	
	U-2	HSA	Soil	15	X	X	X					
×	U-3	HSA	Soil	8	X	X	X					
mple or	0-3	DPT		10	^	^		X				
C 5 ST Cc pens	11.0		Soil									
AOP n US d Dis	U-6	DPT	Soil	15	X	X	X	X				
AOPC 5 Northern UST Complex and Dispensor		-	GW	18	X	X	X	Х				
Š	U-7	DPT	Soil	15	X	X	X					
	U-8	DPT	Soil	15	X	X	X					
6 ⊢	U-9	DPT	Soil	15	Х	X	Х					
AOPC 6 Waste Oil UST	W-1	HSA	Soil	10	X	X		X		X	X	X
A ≥ <u>o</u>	W-2	HSA	Soil	10	Х	Х		Х		Х	Х	Х
	0-1	DPT	Soil	8		X	X					
, UST	O-2	DPT	Soil	0		X	Х					
AOPC 7 (Heating Oil UST)	O-3	DPT	Soil	5		Х	Х					
AC	AOPC7:SB1	DPT	Soil	20		X	Х					
Ĕ	AOPC7:SB2	DPT	Soil	20		Х	Х					
	AOPC7:SB3	DPT	Soil	20		Х	Х					
8 3 1 Oil 8	A-1	DPT	Soil	9		Х	Х					
AOPC 8 Heating Oil USTs	A-2	DPT	Soil	9		Х	Х					
He	A-3	DPT	Soil	8.5		X	Х					

Table 1 **Summary of Requested Analyses Subsurface Investigation Report Seattle Times Building** 1120 John Street, Seattle, Washington

AOPC	Location	Drilling Method	Sample	Depth ^a (Feet)	GRO⁵	DRO/ORO°	BTEX ^d	VOCse	EDB/EDC MTBA ^f	cPAHs ^g	PCBs ^h	RCRA Metals ⁱ
	H-1	DPT	Soil	7		Х					X	Х
	H-2	DPT	Soil	4		Х					Х	Х
c 9 sts	H-3	DPT	Soil	7		Х					Х	Х
AOPC 9 Hoists	H-4	DPT	Soil	7		Х					Х	Х
	H-5	DPT	Soil	7		Х					X	Х
	H-6	DPT	Soil	8		Х					Х	Х
	S-1	DPT	Soil	7		Х		Х			X	Х
	S-2	-	GW	-	Х	Х		х				
C 10 nps	S-3	DPT	Soil	7		Х		х			X	Х
AOPC 10 Sumps	S-4	DPT	Soil	5		Х		Х			Х	Х
	3-4	DFI	GW	-	X	X		×				
	S-5	-	GW	-	Х	Х		Х				
	MW-1	HSA	Soil	10	Х	Х		Х				
	10100-1	-	GW	88	Х	Х		Х				X
	MW-2	HSA	Soil	10	Х	Х		Х				X
Site	10100-2	-	GW	15	Х	X		X				X
Potential Off-Site Sources			Soil	20				х				
entia Sou			GW	20				Х				
Pote	MW-3	HSA	Soil	30				×				
	10100-3		Soil	80				Х				
			Soil	100				Х				
		-	GW	-				Х				

Notes:

- Direct-push technology drilling.
- **HSA**
- Direct-push technology drilling.
 Hollow-stem auger drilling.
 Indicates sample selected for analysis by this method.
 A depth of "0" indicates sample will be collected immediately beneath subfloor construction. Value indicates depth to water for ground water (GW) samples.
 Gasoline-range organics (GRO) by NWTPH-Gx Methods.
 Diesel- and oil-range organics (DRO and ORO) by NWTPH-Dx Methods.
 Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B.
 Volatile organic compounds (VOCs) by EPA Method 8260C.
 Ethylene dibromide (EDB) and Ethylene dichloride (EDC) and Methyl tertiary butyl ether (MTBE) by EPA Method 8260B.
 Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270.
 Polychlorinated biphenyls (PCBs) by EPA Method 8082.
 Resource Conservation and Recovery Act (RCRA) Metals (chromium, arsenic, selenium, silver, cadmium, barium, and lead) by EPA Method 200.8. Mercury Χ
- a b

- e f
- Resource Conservation and Recovery Act (RCRA) Metals (chromium, arsenic, selenium, silver, cadmium, barium, and lead) by EPA Method 200.8. Mercury by EPA Method 1631E.
- "A" indicates that the sample will be archived by the lab for potential future analysis.

Compounds:

Gasoline-range organics DRO/ORO Diesel-range organics

Benzene, toluene, ethylbenzene, and xylenes BTEX

Volatile organic compound Ethylene dibromide VOC EDB Ethylene dichloride EDC MTBA Methyl tertiary butyl ether

Carcinogenic polycyclic aromatic hydrocarbon cPAH Polychlorinated biphenyl PCB

Table 2 Soil Analytical Results (in mg/kg) Subsurface Investigation Report Seattle Times Building 1120 John Street, Seattle, Washington

Area of	01-	Dete			Petroleur drocarbo					Detected		Detecte	ed RCRA M	letals ^h	
Potential Concern	Sample Location	Date Sampled	Depth ^a (Feet)	GRO ^b	DRO°	ORO°	BTEX ^d	VOCs ^e	cPAHs ^f	PCBs ^g (AROCLOR 1254)	Chromium	Arsenic	Silver	Barium	Lead
	P-1	7/19/12	0	<2	<50	<250		ND		<0.1	19.7	4.95	1.13	89.3	7.41
	P-2	7/19/12	0	<2	<50	<250		ND		0.2	17.8	5.5	<1	70.1	12.9
	P-3	7/19/12	0	<2	<50	<250		ND		<0.1	15.9	2.88	<1	61.6	11.3
	P-4	7/19/12	0	<2	<50	<250		ND		<0.1	22.9	3.11	<1	97.1	5.54
	P-5	7/19/12	0	<2	<50	<250		ND		<0.1	18.9	4.47	<1	51.0	5.38
	P-6	7/19/12	0	<2	<50	<250		ND		<0.1	14.4	2.36	<1	36.0	4.32
æ	P-7	7/19/12	0	<2	<50	<250		ND		<0.1	13.2	1.73	<1	37.1	1.70
AOPC 1 Printing Press Area	P-8	7/20/12	1	<2	<50	<250		ND		<0.1	16.2	6.02	<1	69.1	8.41
AOPC 1 ng Press	P-9	7/24/12	1.5	<2	<50	<250		ND		<0.1	14.6	2.02	<1	40.9	11.4
AC	P-10	7/24/12	1.5	<2	<50	<250		ND		<0.1	11.8	2.42	<1	45.2	19.7
Pri	P-15	9/4/12	1.5		<50	<250		ND		<0.1	13.5	2.60			7.62
	P-16	9/4/12	3		<50	<250		ND		<0.1	11.8	1.79			20.4
	P-17	9/4/12	1.5		<50	<250		ND		<0.1	19.8	8.68			7.35
	P-18	9/4/12	1.5		<50	<250		ND		<0.1	24.6	2.57			5.20
		9/4/12	1.5		<50	<250		ND		0.23	25.1	5.13			7.46
	P-19	9/4/12	4		<50	<250		ND		<0.1	23.4	3.54			4.80
	P-20	9/4/12	1.5		<50	<250		ND		<0.1	23.8	3.61			4.99
	T-1	7/19/12	4		<50	<250		ND			17.0	5.70	<1	58.6	32.2
AOPC 2 Interior Ink Tanks	T-1A	7/20/12	4		<50	<250		ND		<0.1	14.5	1.55	<1	35.7	19.6
AOPC 2 rior Ink 1		7/24/12	1.75		<50	<250		ND			21.2	3.24	<1	34.6	2.14
AC nterio	T-2	7/24/12	4.5		<50	<250		ND			17.1	1.16	<1	35.1	1.99
=	T-3	7/24/12	2		<50	<250		ND			21.0	1.43	<1	51.7	3.23
	I-1	7/20/12	5	<2	<50	<250		ND			12.8	1.87	<1	34.6	2.72
C 3	I-2	7/20/12	5	<2	<50	<250		ND			22.7	2.80	<1	86.5	5.50
AOPC 3 Ink Room	I-3	7/20/12	5	<2	<50	<250		ND			7.50	<1	<1	23.2	1.29
_	I-4	7/20/12	5	<2	<50	<250		ND			11.7	1.96	<1	41.5	2.80
	C-1	7/24/12	0.75	<2	<50	<250		ND		<0.1	16.9	1.74	<1	43.5	6.49
	C-2	7/24/12	0.75	<2	<50	<250		ND		1.3	18.4	2.98	1.69	65.7	47.0
C 4 essor m	C-3	7/24/12	0.75	<2	<50	<250		ND		<0.1	15.2	1.86	<1	58.0	6.67
AOPC 4 Compressor Room	C-10	9/5/12	0.5		<50	<250				<0.1					
ပ	C-11	9/5/12	0.5		<50	<250				<0.1					
	C-12	9/5/12	0		<50	420				1.2					
	U-1	7/19/12	15	<2	<50	<250	ND								
	U-2	7/19/12	15	<2	<50	<250	ND								
nplex 'r	U-3	7/20/12	8	<2	<50	<250	ND								
AOPC 5 rthern UST Complex and Dispensor		7/26/12	10					ND							
AOPC (Northern UST)	U-6	7/26/12	15	<2	<50	<250	ND	ND							
orthei	U-7	7/26/12	15	<2	<50	<250	ND								
Ž	U-8	7/26/12	15	<2	<50	<250	ND								
	U-9	7/26/12	15	<2	<50	<250	ND								
C 6	W-1	9/4/12	10	<2	<50	<250		ND	ND	<0.1	12.4	1.67			2.3
AOPC 6 Waste Oil UST	W-2	9/6/12	10	<2	<50	<250		ND	ND	<0.1	12.7	2.48			1.83

Table 2 Soil Analytical Results (in mg/kg) **Subsurface Investigation Report Seattle Times Building** 1120 John Street, Seattle, Washington

Area of	Sample	Date	Depth ^a		Petroleur drocarbo					Detected PCBs ^g	Detected RCRA Metals ^h						
Potential Concern	Location	Sampled	(Feet)	GRO⁵	DRO°	ORO°	BTEX ^d	VOCs ^e	cPAHs ^f	(AROCLOR 1254)	Chromium	Arsenic	Silver	Barium	Lead		
	0-1	9/6/12	8		<50	<250	ND							Silver Barium L			
E	0-2	9/6/12	9		<50	<250	ND										
AOPC 7 Heating Oil UST	O-3	9/6/12	5		<50	<250	ND										
AOPC 7 ating Oil	AOPC7:SB1	5/17/13	20		<50	<250	ND										
Ŧ	AOPC7:SB2	5/17/13	20		<50	<250	ND										
	AOPC7:SB3	5/17/13	20		<50	<250	ND										
ε ii	A-1	9/6/12	9		560 x	4,600	ND										
AOPC 8 Heating Oil USTs	A-2	9/5/12	9		290 x	1,700	ND										
Hes	A-3	9/5/12	8.5		940 x	4,600	ND										
	H-1	9/4/12	7		<50	<250				<0.1	20.7	2.16			4.21		
AOPC 9 Hoists	H-2	9/4/12	4		<50	<250				<0.1	11.9	3.1			1.87		
	H-3	9/4/12	7		810	640				<0.1	21.3	2.44			4.02		
AOP Hois	H-4	9/4/12	7		120	<250				<0.1	15.2	1.54			2.84		
	H-5	9/6/12	7		<50	<250				<0.1	18.5	1.76			3.89		
	H-6	9/6/12	8		<50	<250				<0.1	14.1	1.25			1.65		
0	S-1	9/4/12	7		<50	<250		ND		<0.1	20.8	2.03			4.27		
AOPC 10 Sumps	S-3	9/6/12	7		<50	<250		ND		<0.1	18.3	2.30			3.67		
S AC	S-4	9/5/12	5		<50	<250		ND		<0.1	21.2	1.85			8.69		
	MW-1	9/5/12	10	<2	<50	<250		ND			13.1	1.80			2.31		
ite	MW-2	9/4/12	10	<2	<50	<250		ND	ND	<0.1	14.4	1.68			2.15		
Off-S rces		4/29/13	20					ND									
Potential Off-Site Sources	N41A / O	4/29/13	30					ND									
Pot	MW-3	4/29/13	80					ND									
		4/30/13	100					ND									
	ethod A Soil Jnrestricted	=		30/100 ^j	2,000	2,000	N/A ^k	N/A	N/A	11	2,000 ^m	20	400 ⁿ	16,000°	250		

Notes:

All results presented in milligrams/kilogram (mg/kg).

Bold results indicate that the compound was detected. Bold Shaded cells indicate that result exceeded the cleanup level.

Not analyzed.

- Concentration is less than the analytical method detection limit.
- Concentration is less than the compound-specific method detection limit.
- A depth of "0" indicates sample will be collected immediately beneath subfloor construction.
- Gasoline-range organics (GRO) by NWTPH-Gx Methods.
 Diesel- and oil-range organics (DRO and ORO) by NWTPH-Dx Methods.
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021B.
- Volatile organic compounds (VOCs) by EPA Method 8260C.
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270D SIM. Polychlorinated biphenyls (PCBs) by EPA Method 8082.
- g h Resource Conservation and Recovery Act (RCRA) Metals chromium, arsenic, silver, barium, and lead by EPA Method 200.8. Mercury by EPA Method 1631E. There were no detections of
- cadmium, selenium, and mercury in any samples. Model Toxics Control Act (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 (WAC 173-340-900). Cleanup level is 100 mg/kg for gasoline mixtures without benzene and the total of ethylbenzene, toluene, and xylene are less than 1% of the gasoline mixture, 30 mg/kg for all other
- Not applicable; cleanup level varies for each compound within the compound group. Cleanup level based on total value for all PCBs. k
- m
- Cleanup level is 19 for chromium VI, 2,000 for chromium III.

 No MTCA Method A Soil Cleanup Level for Unrestricted Land Uses available. MTCA Method B Soil Cleanup Level based on direct contact presented. n

Qualifier:

The sample chromatographic pattern does not resemble the fuel standard used for quantitation. Х

Compounds:

Gasoline-range organics Diesel-range organics Oil-range organics GRO DRO ORO

BTEX Benzene, toluene, ethylbenzene, and xylenes Volatile organic compound VOC cPAH Carcinogenic polycyclic aromatic hydrocarbon

Polychlorinated biphenyl PCB

Table 3 Wipe Analysis Results (in ug/100 cm²) Subsurface Investigation Report Seattle Times Building 1120 John Street, Seattle, Washington

Area of Potential Concern	Sample Location	Date Sampled	Detected Polychlorinated Biphenyls ^a (AROCLOR 1254)				
	P-11	7/24/12	2.7 jl				
	P-12	7/24/12	4.6 jl				
	P-13	7/24/12	2.2 jl				
	P-14	7/24/12	5.5 jl				
	P-21	9/7/12	12				
	P-22	9/7/12	1.4				
	P-23	9/7/12	7.1				
	P-24	9/7/12	7.6				
	P-25	9/7/12	5.8				
o	P-26	9/7/12	3.1				
Are	P-27	9/7/12	1.5				
AOPC 1 Printing Press Area	P-28	9/7/12	5.0				
AOPC 1	P-29	9/7/12	2.5				
rinti	P-30	9/7/12	1.9				
	P-31	9/7/12	3.0				
	P-32	9/7/12	5.7				
	P-33	9/7/12	1.9				
	P-34	9/7/12	9.7				
	P-35	9/7/12	4.8				
	P-36	9/7/12	6.7				
	P-37	9/7/12	8.6				
	P-38	9/7/12	9.3				
	P-39	9/7/12	23				
	P-40	9/7/12	8.9				
Ē -	C-4	7/24/12	<1.0				
%or	C-5	7/24/12	<1.0				
AOPC 4 Compressor Roo	C-6	7/24/12	<1.0				
AOF	C-13	9/7/12	0.47				
l mo	C-14	9/7/12	0.50				
	C-15	9/7/12	0.54				
	EPA Action Lev	/el	10				

Notes:

All results presented in micrograms/square hundredths centimeters (µg/100 cm²).

Bold Bold results indicate that the compound was detected at a concentration greater than the method detection limit.

Shaded cells indicate that result exceeded the action level.

- The laboratory control sample analytical result is out of control limits. The reported concentration should be considered an estimate.
- Polychlorinated biphenyls (PCBs) by EPA Method 8082.

Table 4 Ground Water Analytical Data (in µg/L) Subsurface Investigation Report Seattle Times Building 1120 John Street, Seattle, Washington

				Petrole	ım Hydro	carbons					Dete	ected Vol	atile Orga	nic Carb	ons ^c							Met	als ^d		
Area of Potential Concern	Sample Location	Date Sampled	Depth to Water	Gasoline-Range Organics (GRO)ª	Diesel- Range Organics (DRO) ^b	Oil-Range Organics (ORO) ^b	Vinyl Chloride	cis-1,2- Dichloroethene	Chloroform	Trichloroethene	Toluene	Tetracolorethene	o-Xylene	Isopropylbenzene	1,3,5- Trimethylbenzene	tert-Butylbenzene	1,2,4- Trimethylbenzene	sec-Butylbenzene	p-Isopropyltoluene	Chromium	Dissolved Chromium	Arsenic	Dissolved Arsenic	Lead	Dissolved Lead
AOPC 5 Northern UST Complex and Dispensor	U-6	7/26/12	16	<100	<50	<250	<0.2	<1	2.4	9.0	<1	<1	<1	<1	<1	<1	<1	<1	<1			1			
	MW-1	9/6/12	15	<100	<50	<250	<0.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.38	1.10	<1	<1
Off-Site	MW-2	9/6/12		340	400 x	<250	1.3	22	2.3	5.6	<1	10	1.7	3.2	3.9	1.3	34	3.9	2.0	57.1	2.8 lc	2.19	<1	4.84	<1
Potential Off-Site Sources	MW-3	4/30/13	95				<0.2	<1	4.7 lc	<1	12	<1	<1	<1	<1	<1	<1	<1	<1						
	MW-3	4/30/13	20				<0.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1						
MTCA Met	hod A Cleanup	Levels for Gro	ound Water ^e	1,000 ^f	500	500	0.2	NVE	NVE	5	1,000	5	1,000	NVE	NVE	NVE	NVE	NVE	NVE	ţ	50		5	1	15

All results presented in micrograms/liter (µg/L).

Shaded cells indicate that result exceeded the cleanup level.

Not analyzed.

- Concentration is less than the analytical method detection limit.
 Gasoline-range organics (GRO) by NWTPH-Gx Methods.
 Diesel- and oil-range organics (DRO and ORO) by NWTPH-Dx Methods.
 Volatile organic compounds (VOCs) by EPA Method 8260C.
- Analyzed by EPA Method 200.8. Mercury by EPA Method 1631E. There were no detections of cadmium and mercury in any samples. Model Toxics Control Act (MTCA) Method A Cleanup Levels for Ground Water, Table 720-1 (WAC 173-340-900). MTCA Method A Cleanup Level for GRO with no detectable benzene in ground water.

Qualifier:

- The presence of the compound indicated is likely due to laboratory contamination.
- The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Table 5 Shallow Sump Ground Water Analytical Results (in μg/L) Subsurface Investigation Report Seattle Times Building 1120 John Street, Seattle, Washington

Area of Potential	Sample Location Date Sampled						
Concern	Location		Gasoline-Range Organics (GRO) ^a	Diesel-Range Organics (DRO) ^b	Oil-Range Organics (ORO) ^b	Chloroform	
	S-2	9/6/12	<100	<50	<250	<1	
AOPC 10 Sumps	S-4 9/7/12		<100	310 x	1,900	<1	
	S-5	9/6/12	<100	110,000 x	10,000 x	1.0	
MTCA Method A Cleanup Levels for Ground Water ^d		1,000°	500	500	NVE		

Notes:

All results presented in micrograms/liter (µg/L).

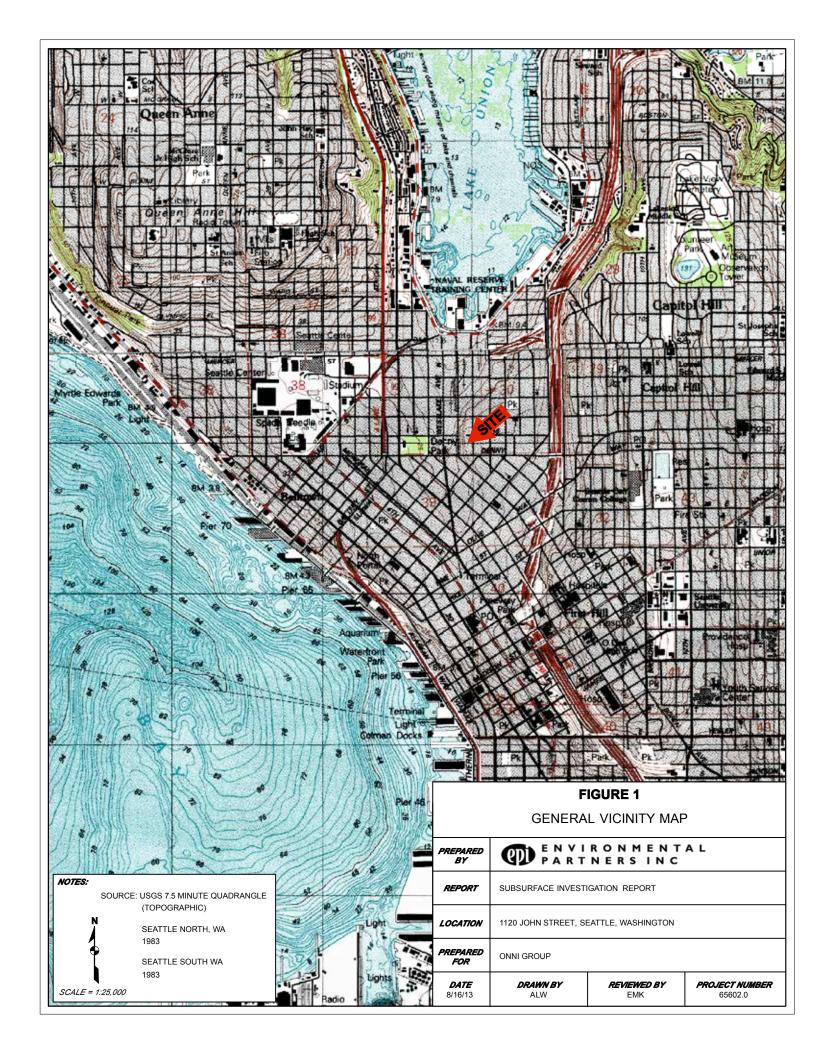
Shaded cells indicate that result exceeded the cleanup level.

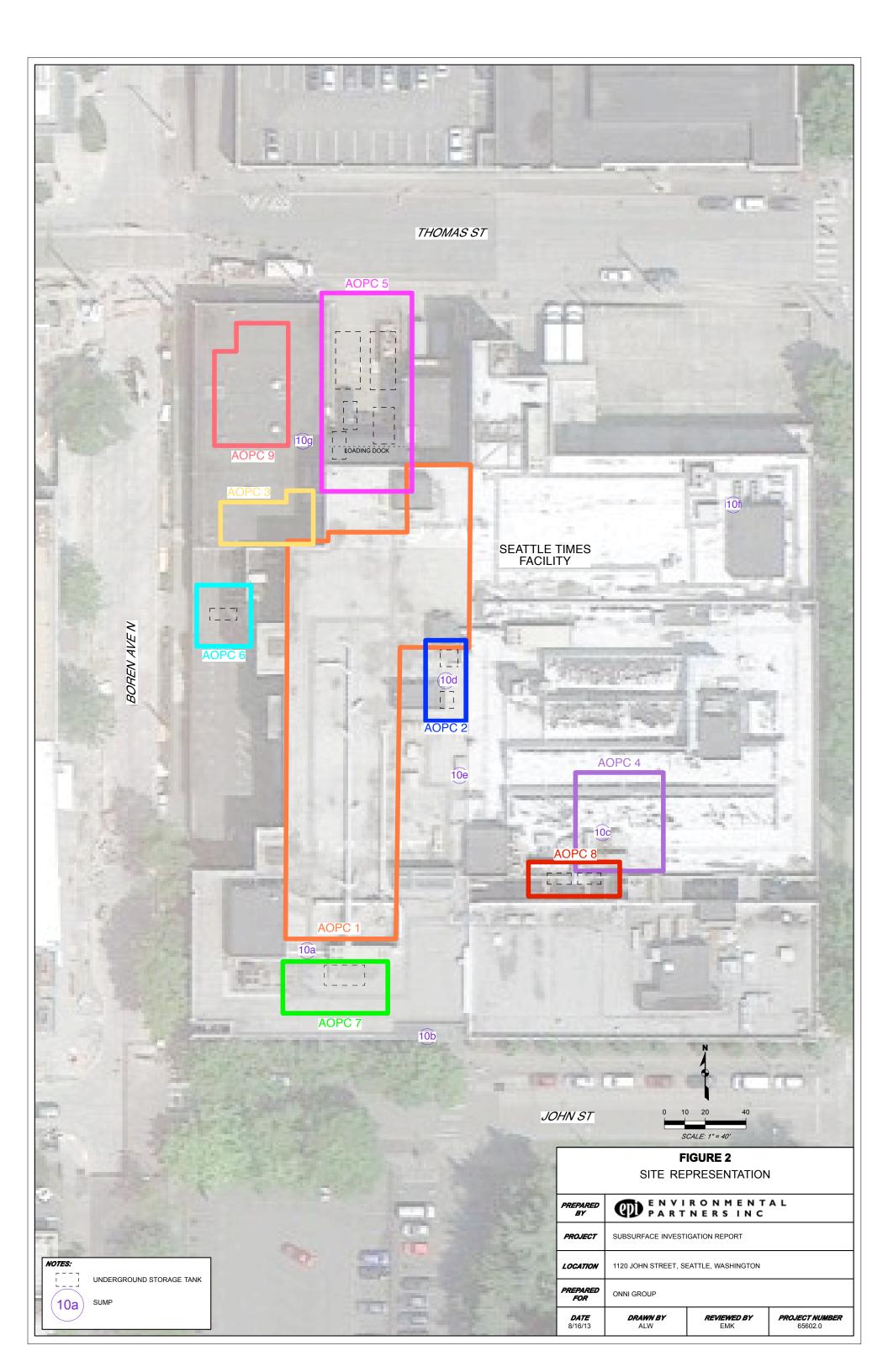
- -- Not analyzed.
- Concentration is less than the analytical method detection limit.
- a Gasoline-range organics (GRO) by NWTPH-Gx Methods.
- b Diesel- and oil-range organics (DRO and ORO) by NWTPH-Dx Methods.
- c Volatile organic compounds (VOCs) by EPA Method 8260C.
- d Model Toxics Control Act (MTCA) Method A Cleanup Levels for Ground Water, Table 720-1 (WAC 173-340-900).
- e MTCA Method A Cleanup Level for Ground Water for GRO with no detectable benzene in ground water.

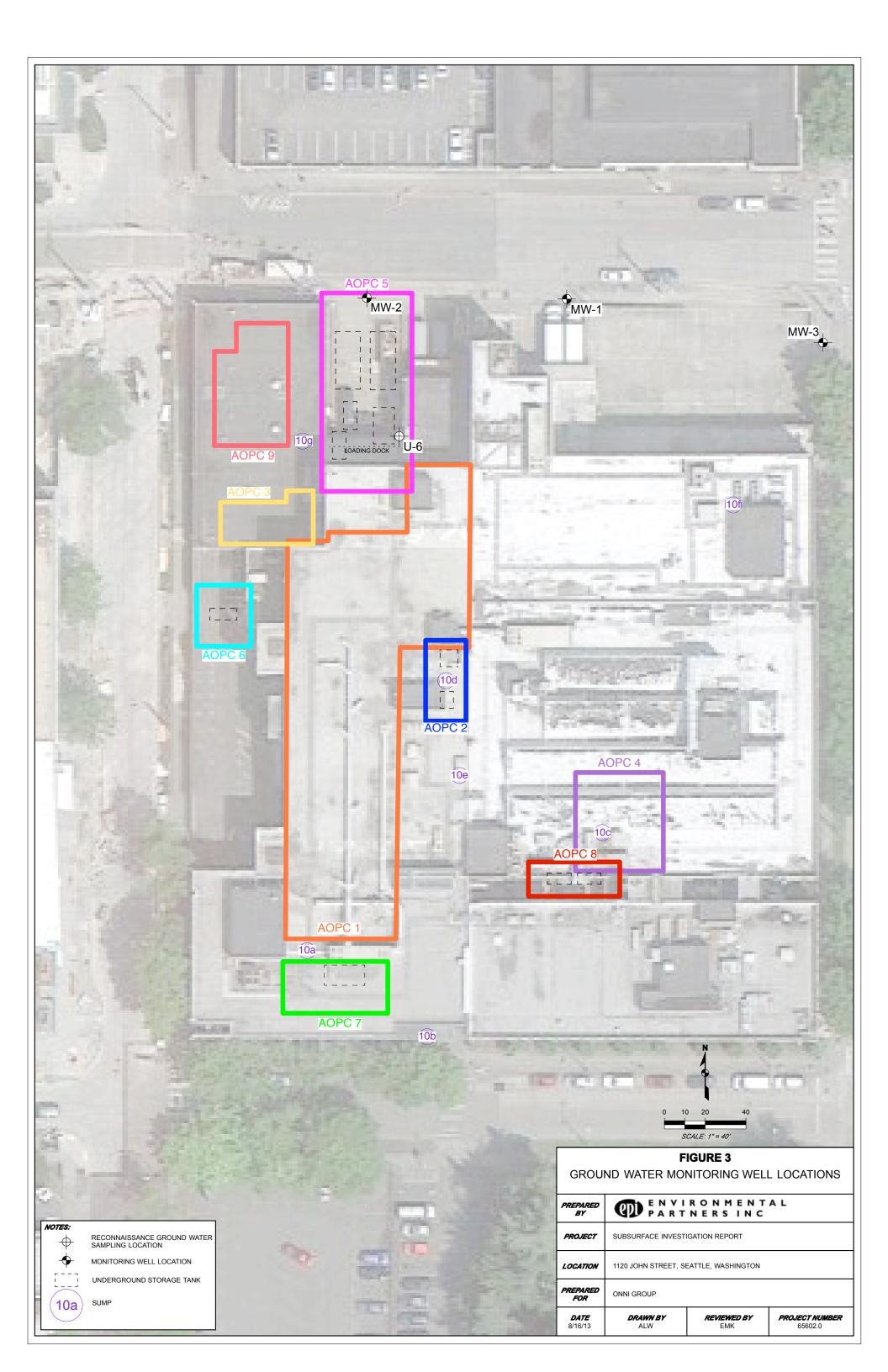
Qualifier:

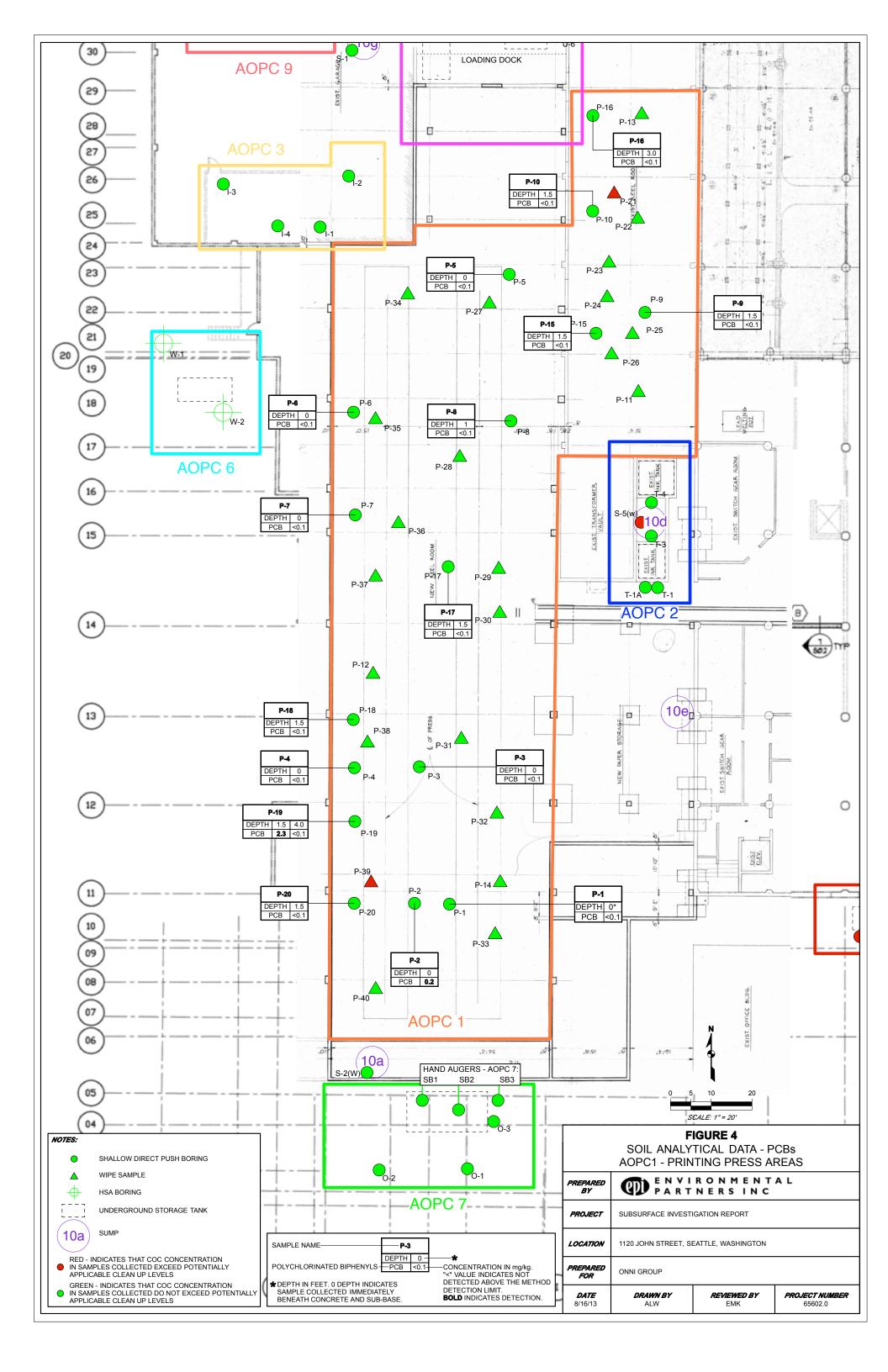
x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

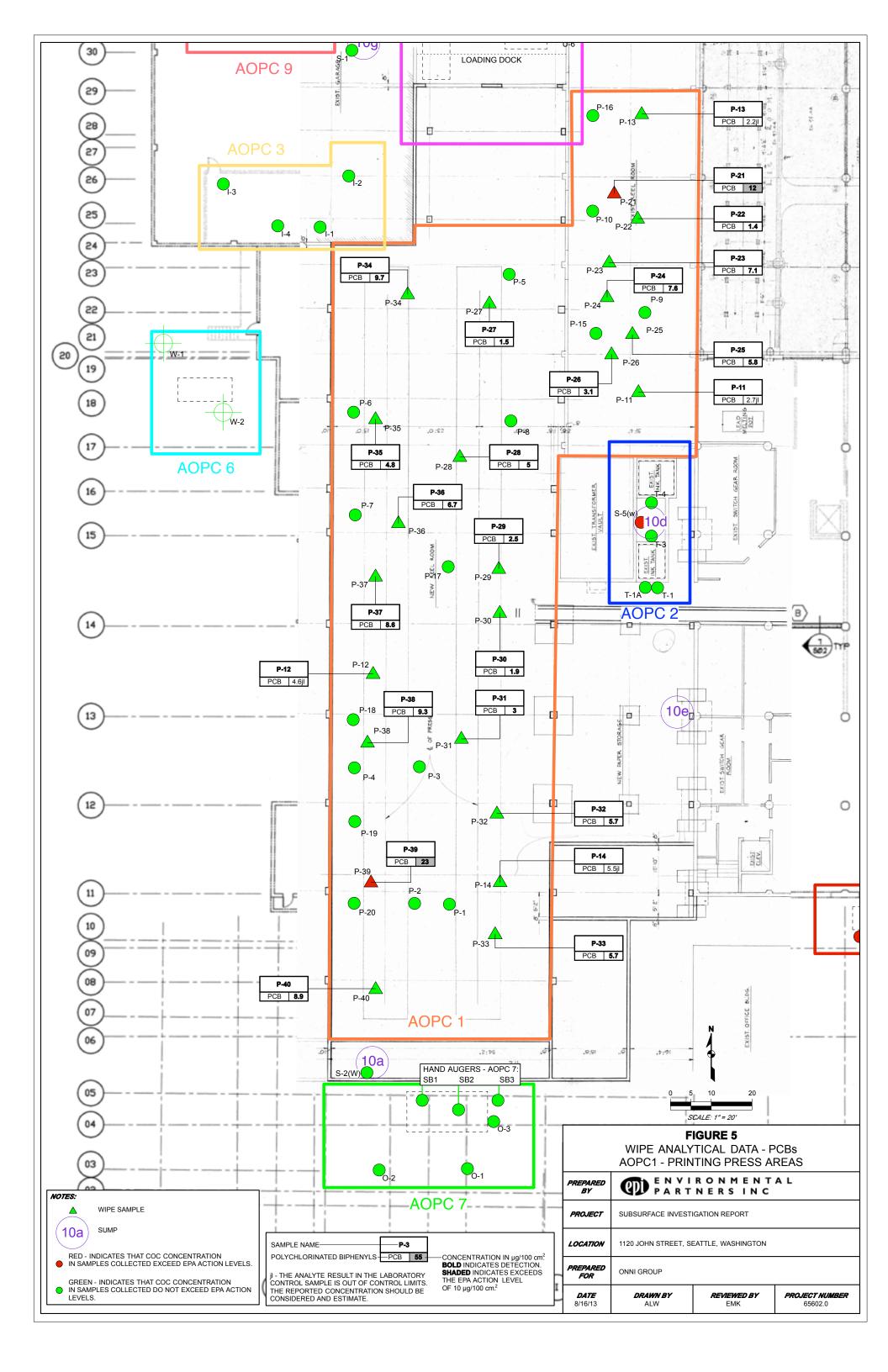
Table 6 Product Analysis (in mg/kg) Subsurface Investigation Report Seattle Times Building 1120 John Street, Seattle, Washington

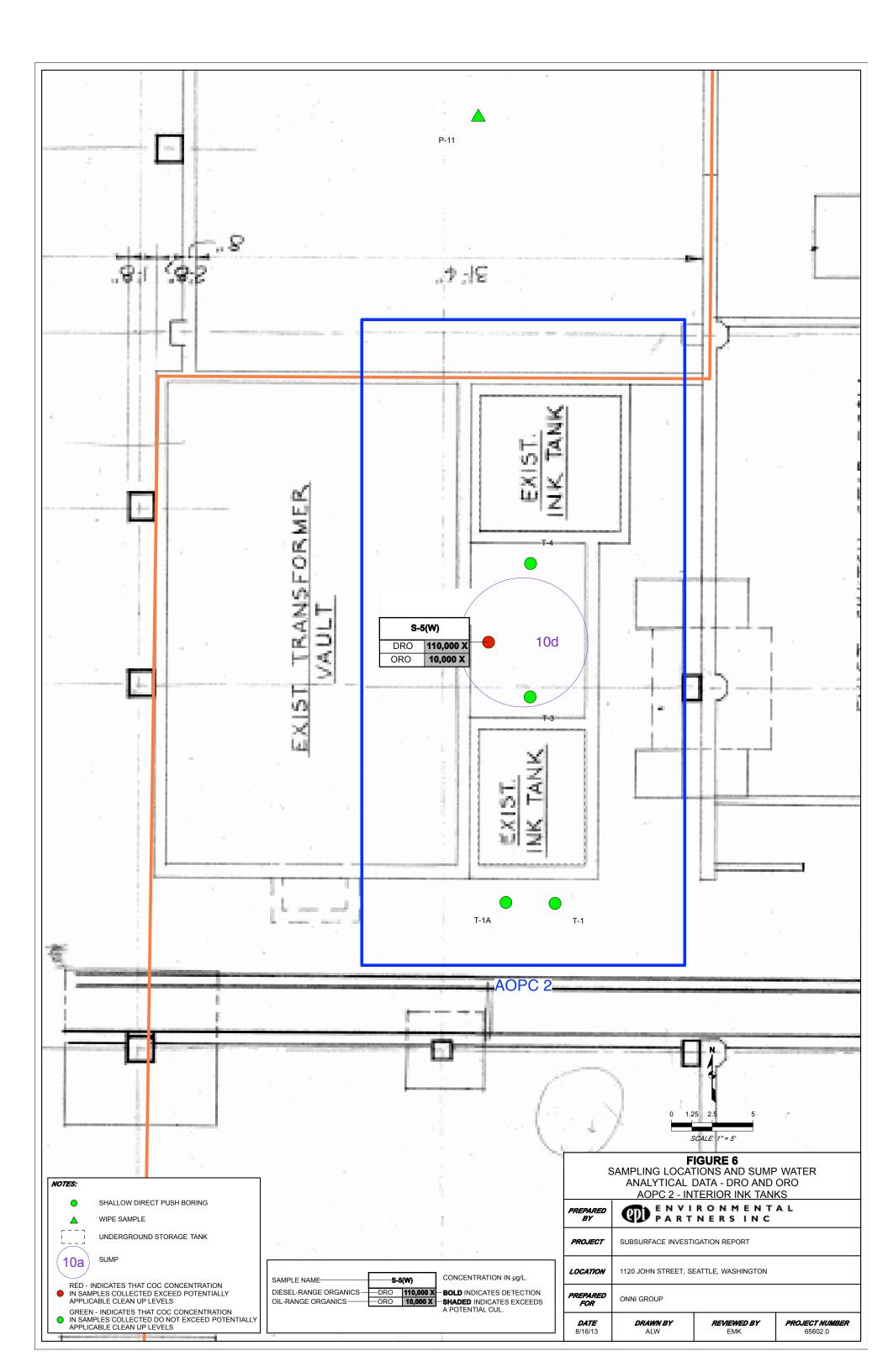

Area of Potential Concern	Sample Location	Date Sampled	Polychlorinated Biphenyls ^a	
4 sor	C-7	7/24/12	<2	
OPC npres	C-8	7/24/12	<2	
Con	C-9	7/24/12	<2	

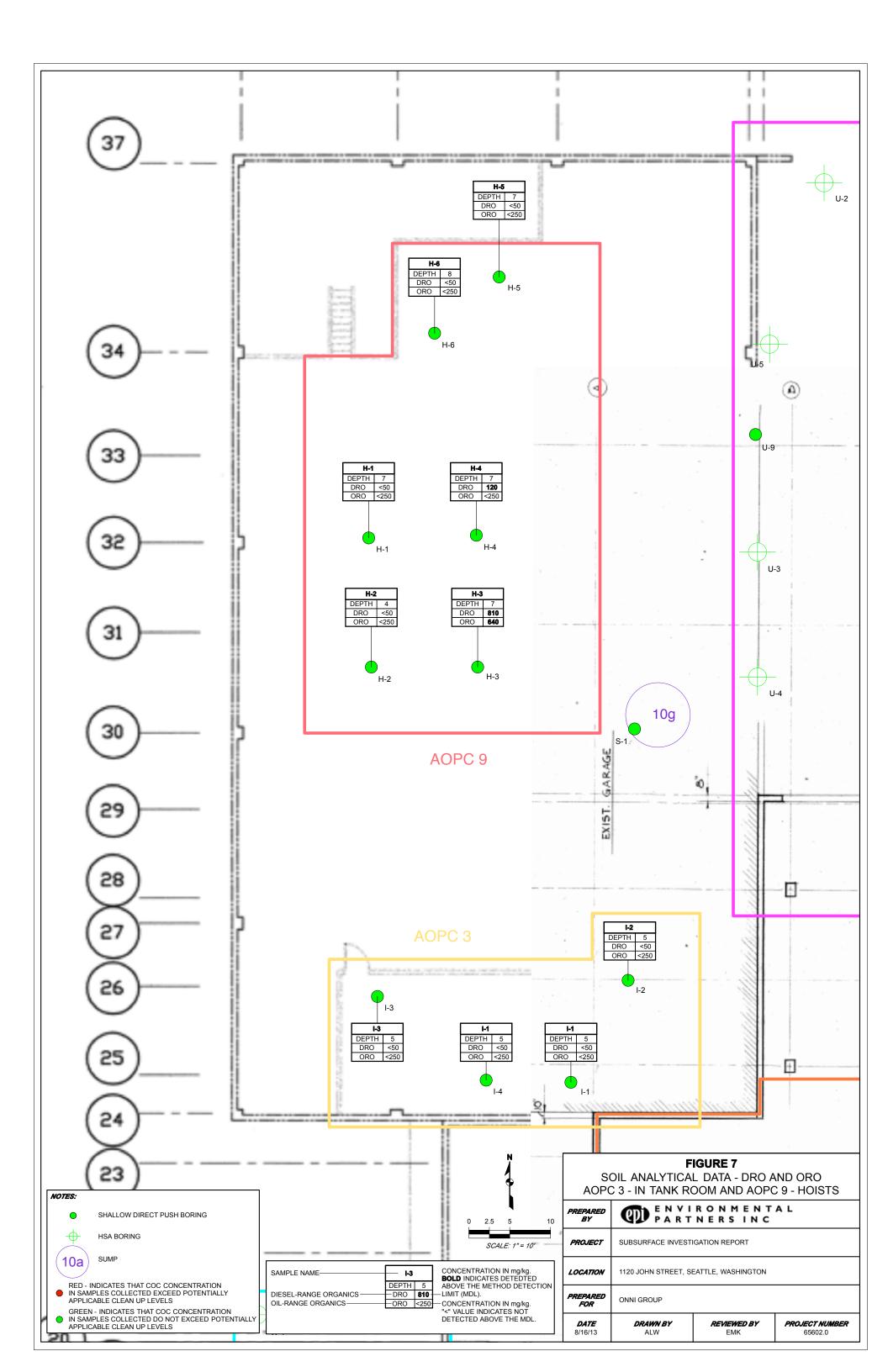

Notes:

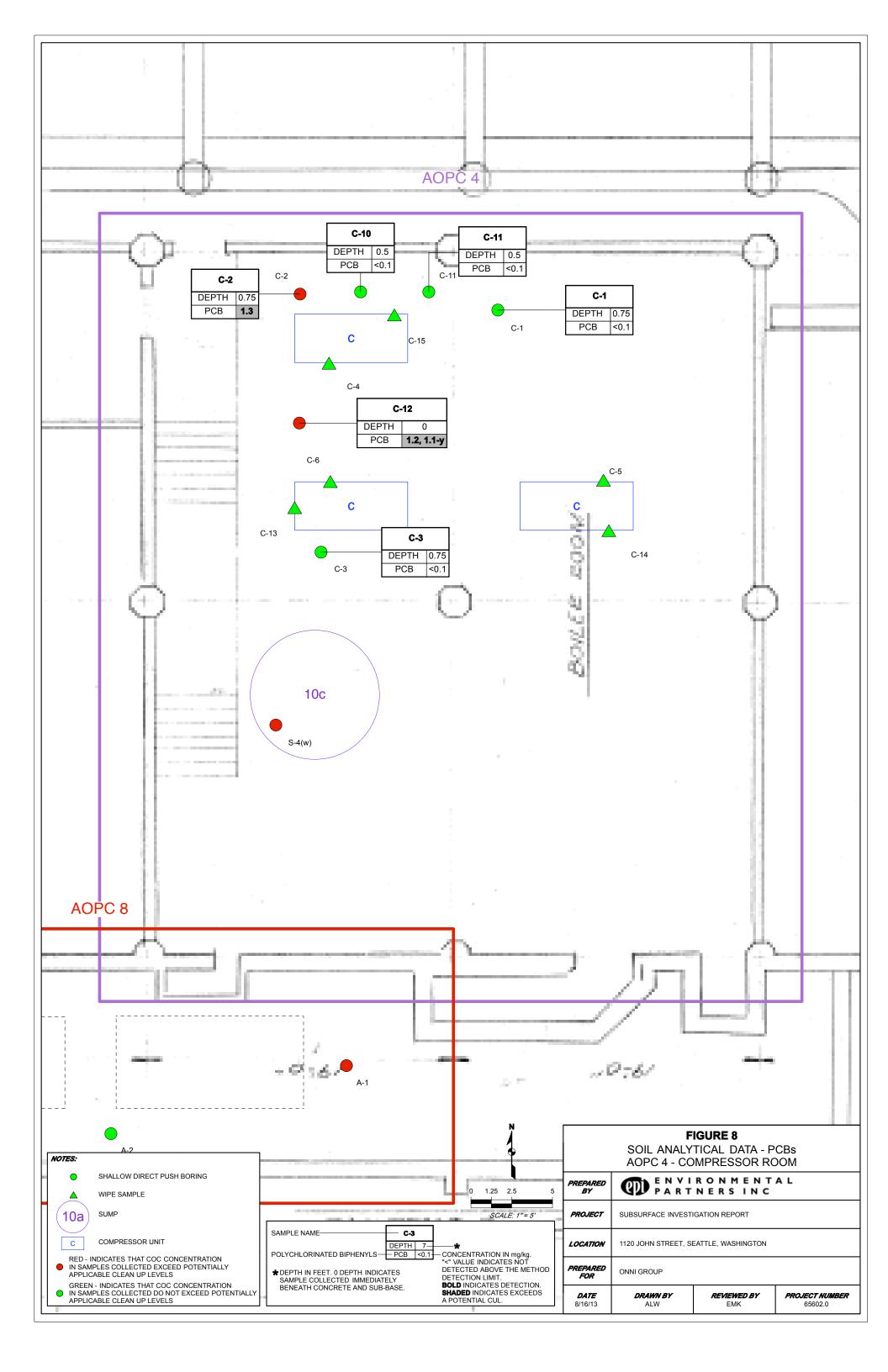

All results presented in milligrams/kilogram (mg/kg).

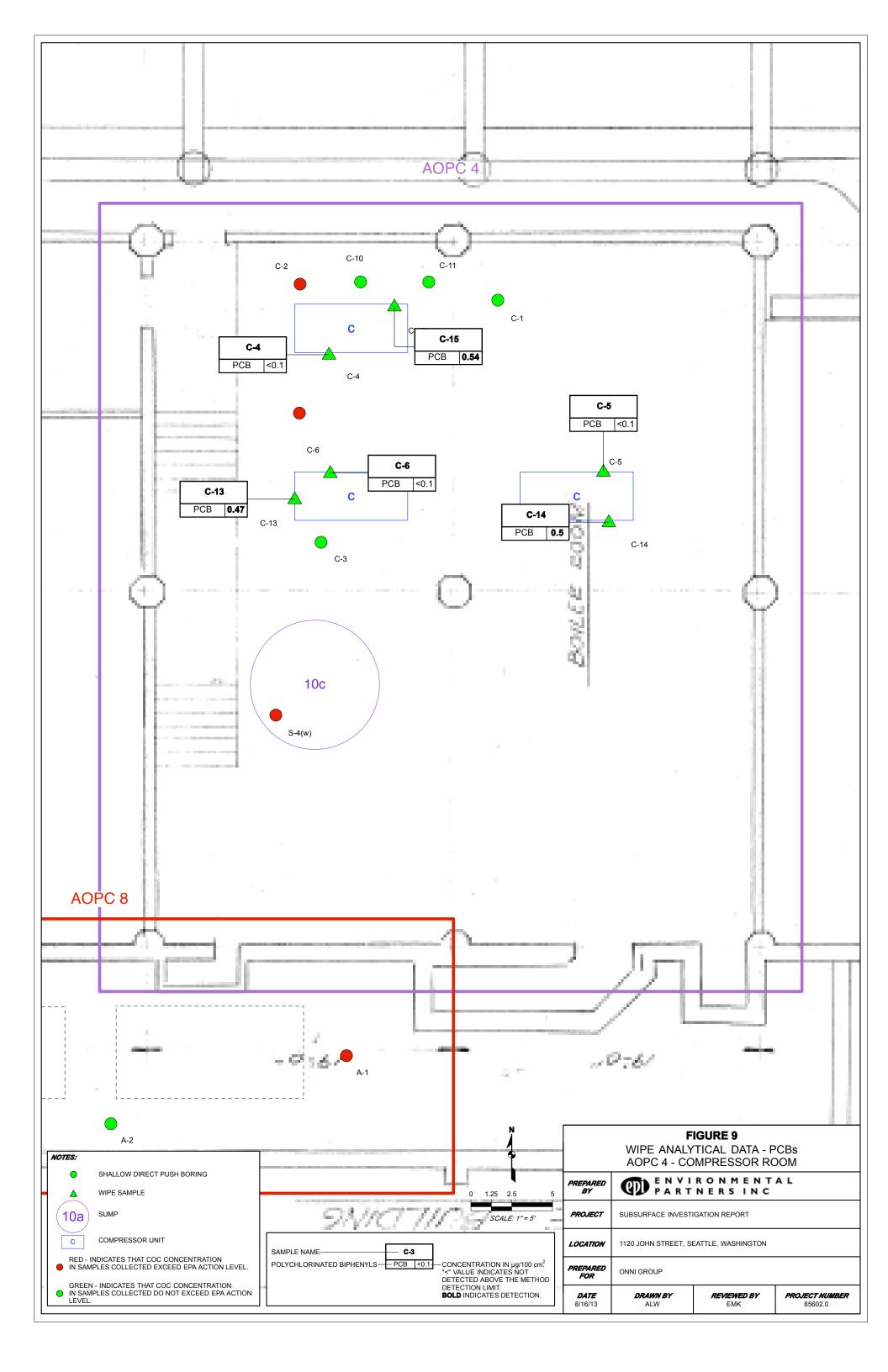

a Polychlorinated biphenyls (PCBs) by EPA Method 8082.

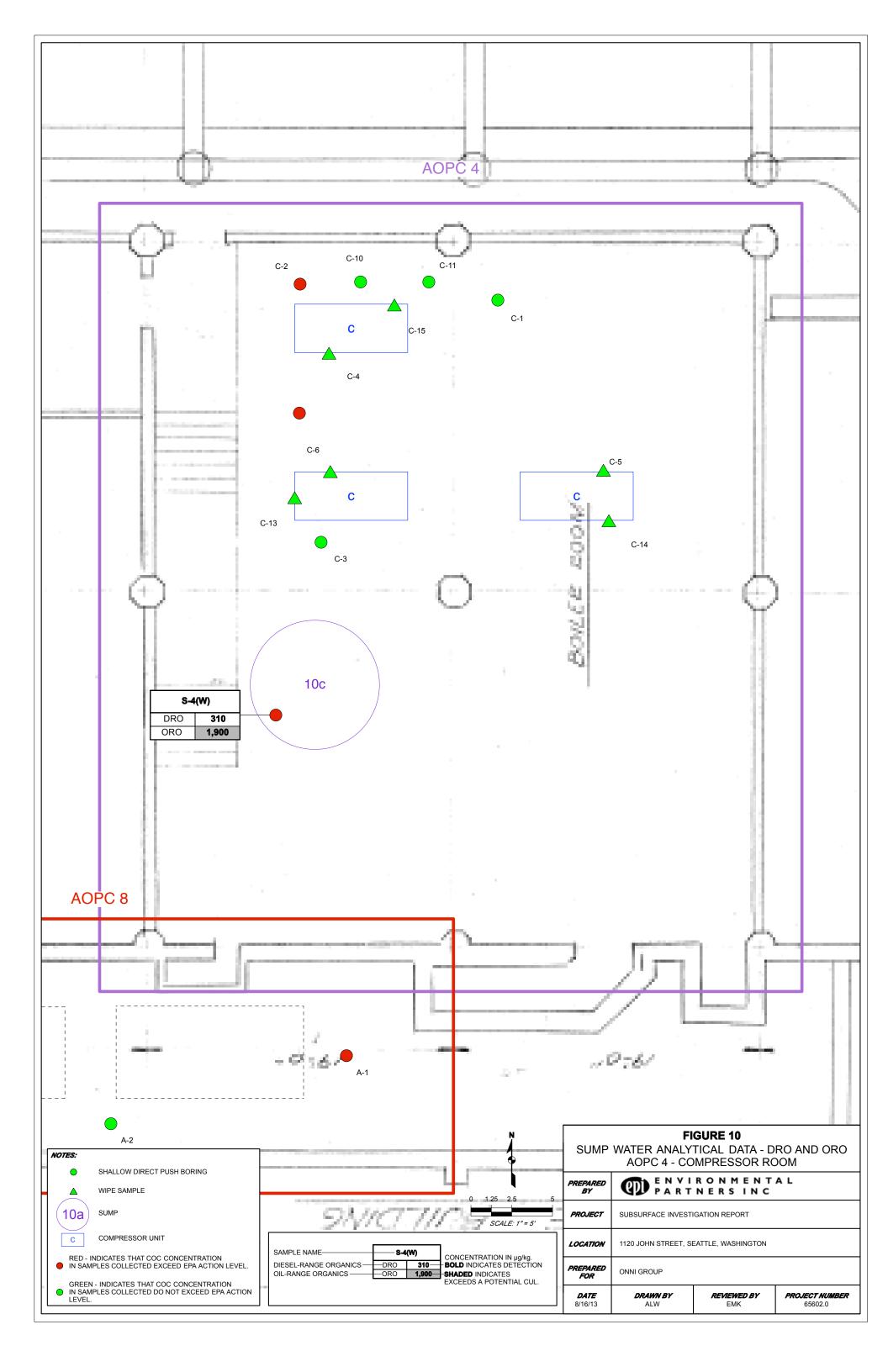


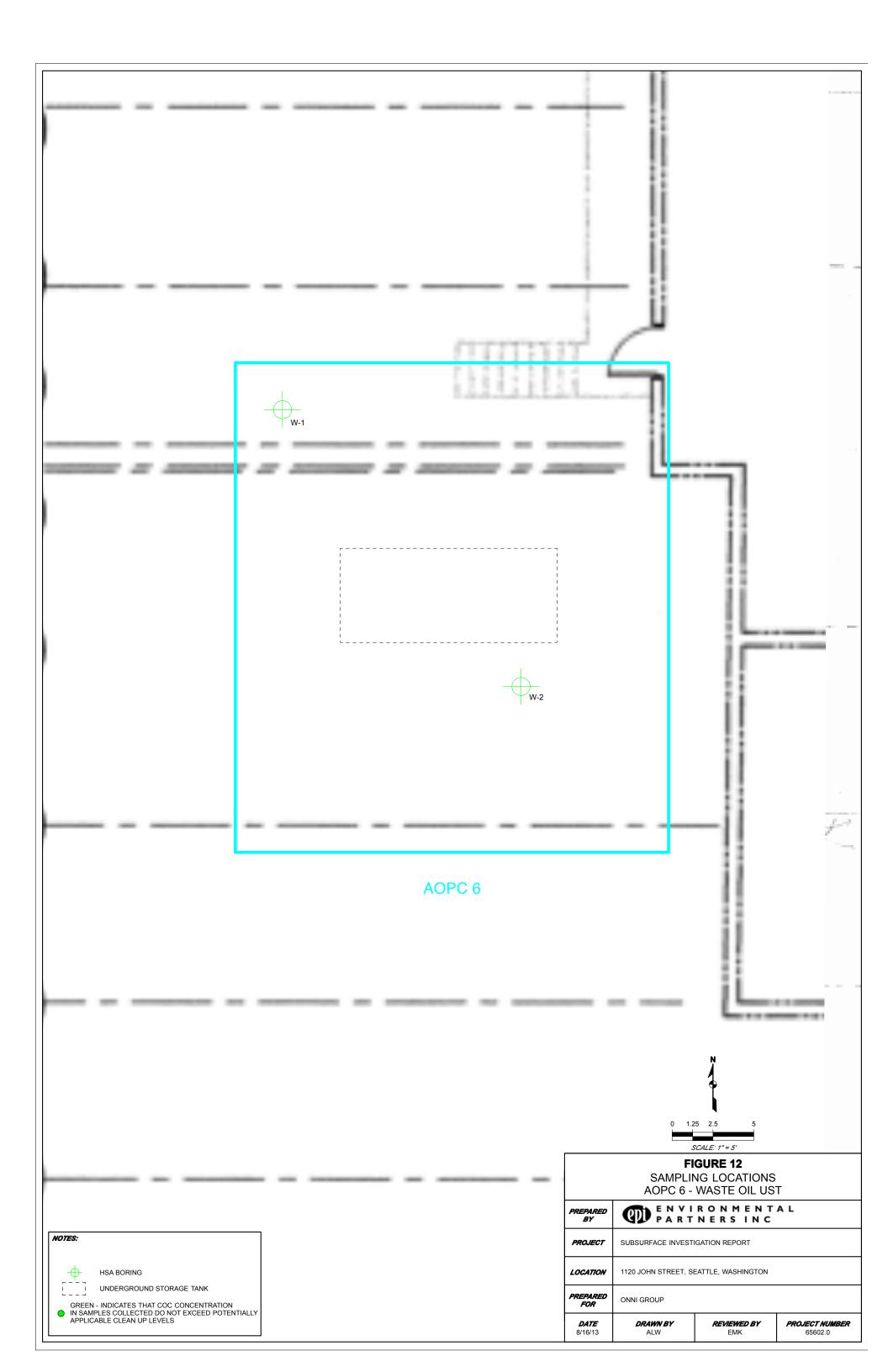


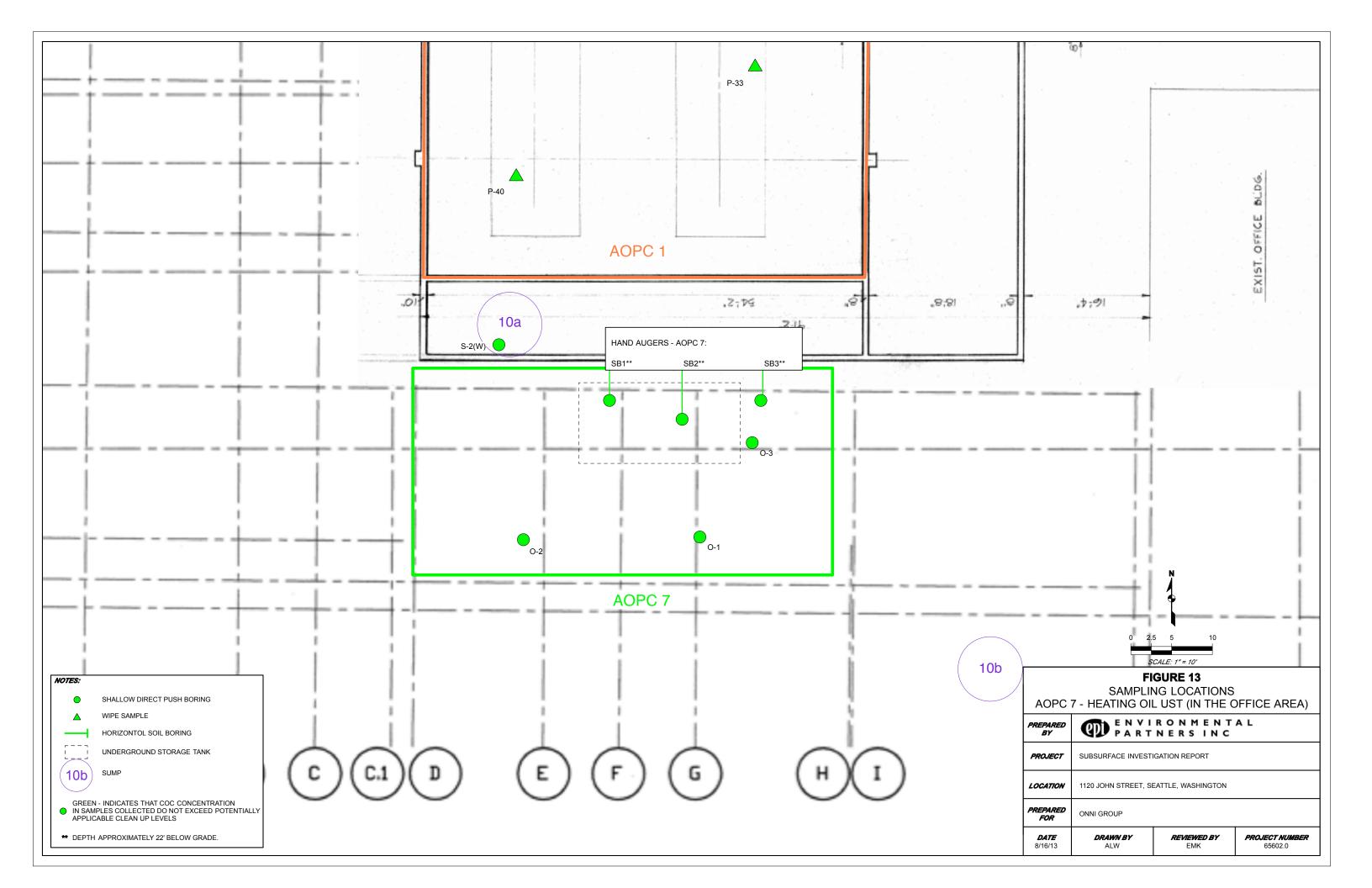


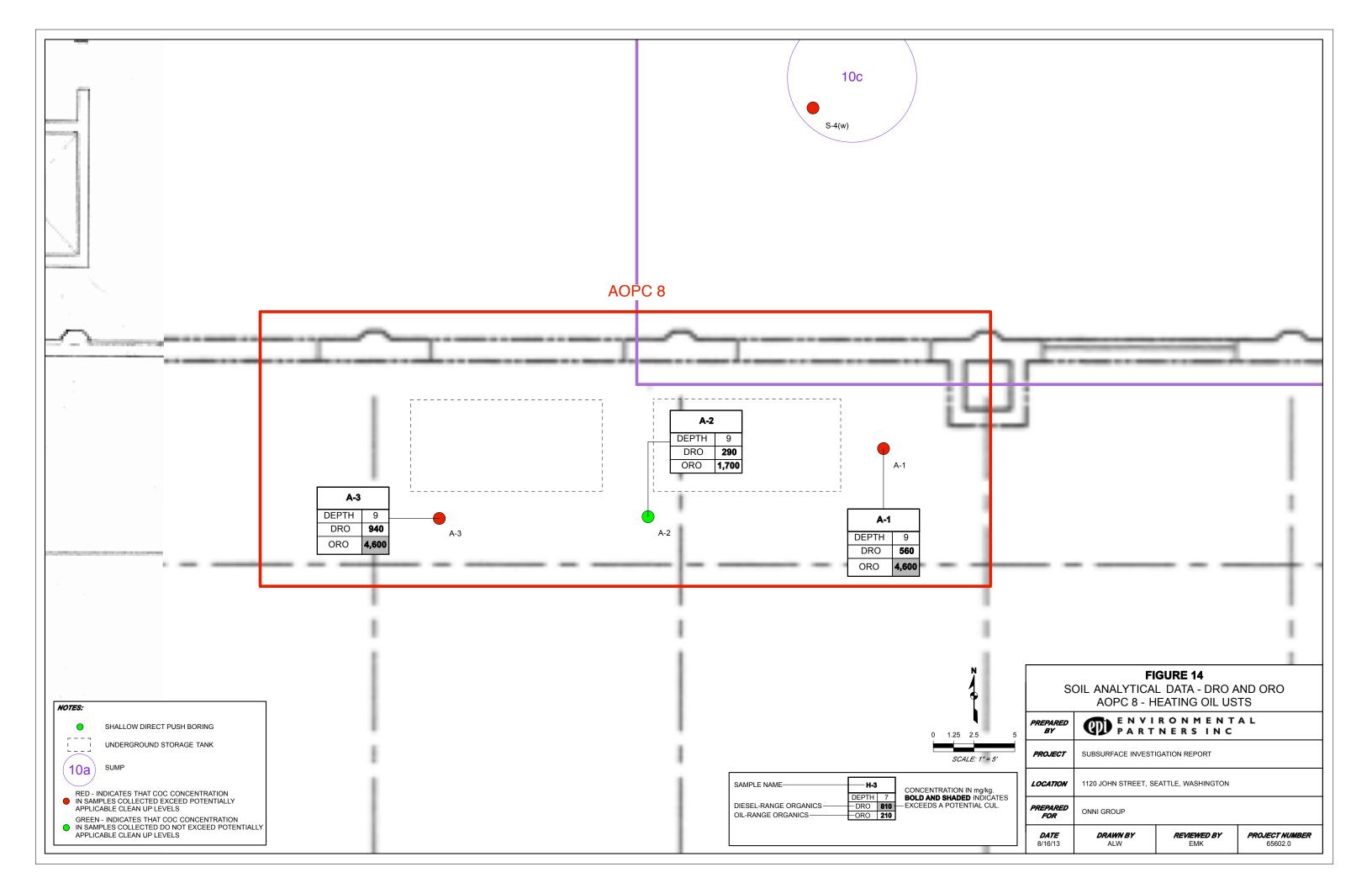


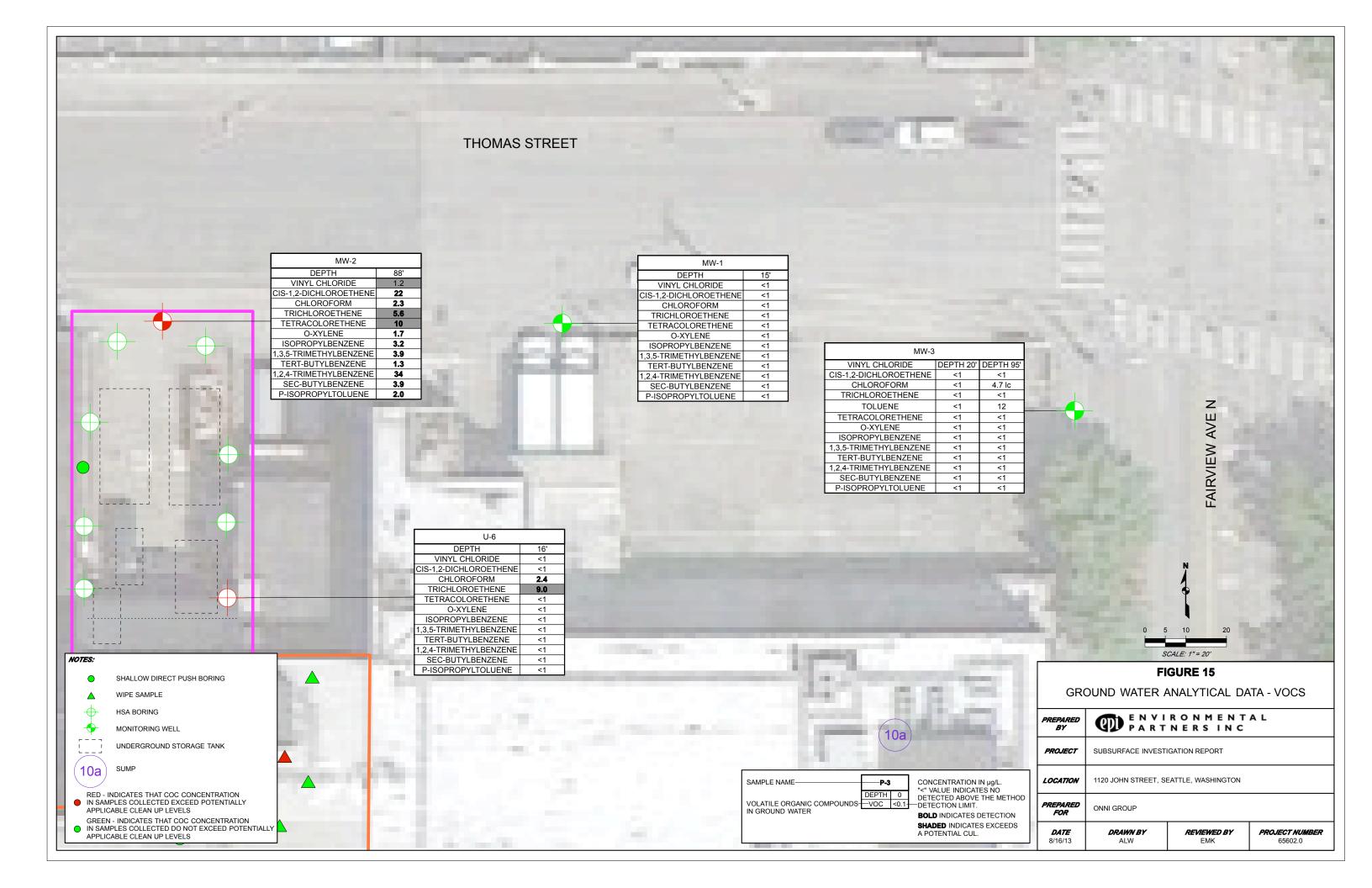












Attachment A Boring Logs

ENVIRONMENTAL PARTNERS INC **Boring: MW-1** Contractor: Cascade Drilling Casing Material: Sch 40 PVC Client: Onni Group Site Address: 1120 John Street Equipment: CME-75 HSA Casing Size: 2" Borehole Diameter: 8" City & State: Seattle WA Screen Interval: 12-27 Date of Drilling: September 5, 2012 Sampler Specs: 2.5" Screen Size (in.): 0.010" Logged by: M. Busby, L.H.G. Hammer Size: 140lbs Screen Type: Sch 40 PVC machine Total Depth (ft): 30.5 Elevation (ft amsl): Unknown ATD Filter Pack: #2/12 **Blow Counts** Lithology Depth (ft) Recovery Well Completion Interval PID Comments **NSCS** Description Sample Details **Ground Surface** 0 Concrete Fraffic-rated monument SP Pea Gravel Concrete Brown; moist; loose; mostly coarse 2 sand; no odor 3 1.8 2 **PVC** blank Bentonite 10 8.0 12 MW1-10 ML Silt with sand 12 Brown; moist; very stiff; mostly silt 12 with minor sand ML 13 Gravelly Silt with Sand Brown; moist to wet; hard; mostly W.L 14.09 bgs ATD silt with some gravel and minor 15 20 #2/12 Silca Sand 0.7 50-6 16 17 Silt ML 18 **PVC** screen Dark gray; wet; mostly silt with

12

23

50-5

50-6

Sheet: 1 of 1

MW1-30

8.0

0.4

0.4

Drawn by: KLA

Checked by: EK

19

20

21 22

23

24

25

26 27

28

29

30

31

32

Project #: 65602.0

trace sand and trace gravel

Dark gray; wet; mostly silt with

Brown; moist; hard; mostly silt with

End of Boring

trace fine sand and trace gravel

some sand and trace gravel

Sandy Silt

Silt

ML

ENVIRONMENTAL PARTNERS INC **Boring: MW-2** Contractor: Cascade Drilling Casing Material: Sch 40 PVC Client: Onni Group Site Address: 1120 John Street Equipment: CME-75 HSA Casing Size: 2" City & State: Seattle WA Borehole Diameter: 8.25" Screen Interval: 85'- 100' Date of Drilling: September 4 & 5, 2012 Sampler Specs: 2.5" Screen Size (in.): 0.010" Logged by: M. Busby, L.H.G. Screen Type: Sch 40 PVC machine Hammer Size: 140lbs Total Depth (ft): 100.5 Elevation (ft amsl): Unknown ATD Filter Pack: #2/12 **Blow Counts** Lithology Depth (ft) Recovery Well Completion Interval PID Description Comments **NSCS** Sample Details **Ground Surface Concrete Fraffic-rated monumen** ML Brown; dry; hard mostly silt with trace 12 21 25 50-6 Silt with Sand Brown; dry; hard; mostly silt with minor ssand and trace gravel 12 10 18 MW2-10 102 35 Brown; dry; hard; mostly silt with trace sand and trace gravel ML 12 18 MW-2-15 91 25

50-6

50-6"

Sheet: 1 of 4

MW-2-20

20

Project #: 65602.0

Bentonite⁻

3.6

1.2

Drawn by: KLA

Checked by: EK

ENVIRONMENTAL PARTNERS INC **Boring: MW-2** Contractor: Cascade Drilling Casing Material: Sch 40 PVC Client: Onni Group Site Address: 1120 John Street Equipment: CME-75 HSA Casing Size: 2" City & State: Seattle WA Borehole Diameter: 8.25" Screen Interval: 85'- 100' Date of Drilling: September 4 & 5, 2012 Sampler Specs: 2.5" Screen Size (in.): 0.010" Logged by: M. Busby, L.H.G. Screen Type: Sch 40 PVC machine Hammer Size: 140lbs Total Depth (ft): 100.5 Elevation (ft amsl): Unknown ATD Filter Pack: #2/12 **Blow Counts** Recovery Lithology Depth (ft) Well Completion Interval PID Description Sample Comments **NSCS** Details 50-6 Elastic Silt Dark brown; dry; hard; medium МН plasticity; mostly silt with trace sand 30 20 50-6" 1.8 10 35 17 2.4 20 Gravelly Silt with Sand ML Light brown and orange; dry; hard; mostly silt with some gravel and minor 40 50-6" 2.1

> 25 50-6"

> > 30

Sheet: 2 of 4

Project #: 65602.0

0.1

Drawn by: KLA

Checked by: EK

PARTNERS INC

Boring: MW-2

Client: Onni Group

Contractor: Cascade Drilling

Cas

Site Address: 1120 John Street
City & State: Seattle WA

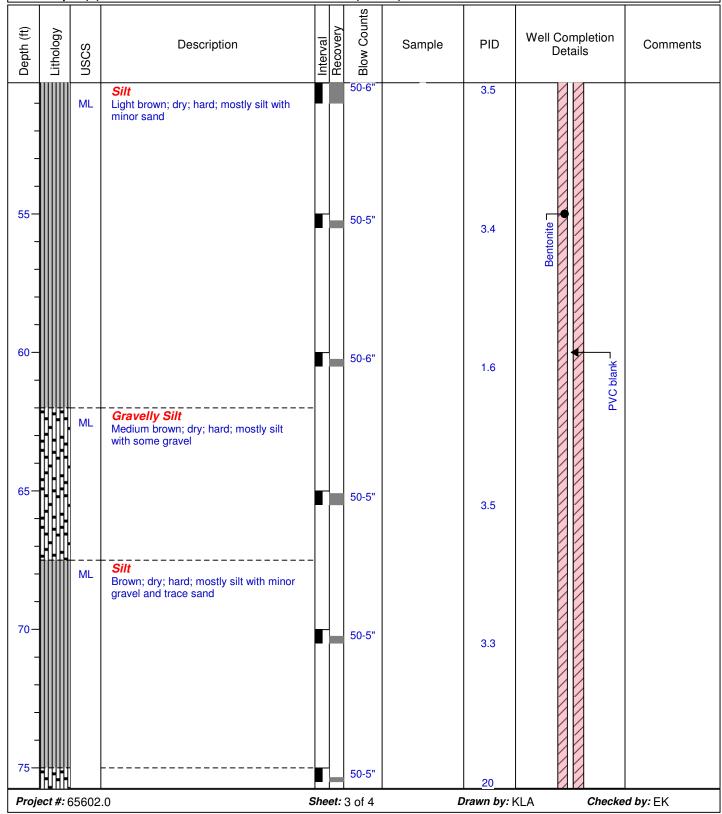
Date of Drilling: September 4 & 5, 2012

Logged by: M. Busby, L.H.G. Total Depth (ft): 100.5

Contractor: Cascade Drilling Equipment: CME-75 HSA Borehole Diameter: 8.25"

Borehole Diameter: 8.25" Sampler Specs: 2.5" Hammer Size: 140lbs

Elevation (ft amsl): Unknown ATD


Casing Material: Sch 40 PVC

Casing Size: 2"

Screen Interval: 85'- 100' Screen Size (in.): 0.010"

Screen Type: Sch 40 PVC machine

Filter Pack: #2/12

ENVIRONMENTAL PARTNERS INC **Boring: MW-2** Contractor: Cascade Drilling Casing Material: Sch 40 PVC Client: Onni Group Site Address: 1120 John Street Equipment: CME-75 HSA Casing Size: 2" City & State: Seattle WA Borehole Diameter: 8.25" Screen Interval: 85'- 100' Date of Drilling: September 4 & 5, 2012 Sampler Specs: 2.5" Screen Size (in.): 0.010" Logged by: M. Busby, L.H.G. Screen Type: Sch 40 PVC machine Hammer Size: 140lbs Total Depth (ft): 100.5 Elevation (ft amsl): Unknown ATD Filter Pack: #2/12 **Blow Counts** Recovery Lithology Depth (ft) Well Completion Interval PID Description Comments Sample **NSCS** Details Gravelly Silt ML Brown and light gray; dry; mostly silt with minor gravel 50-6" 0.6 85 50-6" MW2-85 101 Silty Sand Brown; and light gray; moist to wet; mostly fine to medium sand with some silt W.L 88' bgs ATD #2/12 Silca Sand 90 50-6" 57

20 50-6"

50-6"

Sheet: 4 of 4

Silty Gravel with Sand Brown; wet; mostly fine gravel with

some silt and minor sand

GM

Project #: 65602.0

31

3.5

Drawn by: KLA

PVC screen

Checked by: EK

ENVIRONMENTAL PARTNERS INC **Boring: MW-3** Contractor: Cascade Drilling Casing Material: Sch 40 PVC Client: Onni Group Site Address: 1120 John Street Equipment: CME-75 HSA Casing Size: 2" City & State: Seattle WA Borehole Diameter: 15"(0-30) 8"(30-100) Screen Interval: 85'- 100' Date of Drilling: April 29 & 30, 2013 Sampler Specs: 2.5" Screen Size (in.): 0.010" Logged by: E. Caddey, L.G. Hammer Size: 140lbs Screen Type: Sch 40 PVC machine Total Depth (ft): 100 Elevation (ft amsl): 0 Filter Pack: 2/12 **Blow Counts** Recovery Lithology Depth (ft) Well Completion Interval PID Comments **NSCS** Description Sample Details **Ground Surface** 0 Concrete Traffic-rated monument Poorly-graded Sand Concrete SP Gray; damp; mostly fine to medium sand; apparent fill material Well-Graded Sand with Silt and 0.1 4 5 Gray-green; damp; loose; mostly fine to coarse sand with few silt and few gravel Becomes medium dense 10 0.1 emporary steel casing 5 Poorly-graded Sand with Silt and SP-Gravel SM Gray; damp; medium dense; mostly fine to medium sand with few silt and few gravel; 15 0.1 Becomes dense 50-6" Bentonite 6" perched water table 19 21 20 23 0.4 **PVC blank** Sandy Lean Clay with Gravel CL Gray; damp; hard; low plasticity; no dilatency; mostly clay with some sand and few gravel SW-SM **Sheet:** 1 of 4 Drawn by: KLA Checked by: EC Project #: 65602.0

ENVIRONMENTAL PARTNERS INC **Boring: MW-3** Contractor: Cascade Drilling Casing Material: Sch 40 PVC Client: Onni Group Site Address: 1120 John Street Equipment: CME-75 HSA Casing Size: 2" City & State: Seattle WA Borehole Diameter: 15"(0-30) 8"(30-100) Screen Interval: 85'- 100' Date of Drilling: April 29 & 30, 2013 Sampler Specs: 2.5" Screen Size (in.): 0.010" Logged by: E. Caddey, L.G. Hammer Size: 140lbs Screen Type: Sch 40 PVC machine Total Depth (ft): 100 Elevation (ft amsl): 0 Filter Pack: 2/12 **Blow Counts** Recovery Lithology Depth (ft) Well Completion Interval PID Description Comments **USCS** Sample Details Well-graded Sand with Silt and Gravel 50-6" Gray-blue; damp; very dense; mostly fine to coarse sand with few silt and few gravel 30 End of casing 0.0 19 50-6 35 0.1 50-5" 40 **PVC blank** 0.2 50-5" Well-graded Sand with Clay and SW-Gravel 45 SC Gray-blue; damp; very dense; 0.0 mostly fine to coarse sand with few 17 clay and few gravel 50-5" Project #: 65602.0 **Sheet:** 2 of 4 Drawn by: KLA Checked by: EC

ENVIRONMENTAL PARTNERS INC **Boring: MW-3** Contractor: Cascade Drilling Casing Material: Sch 40 PVC Client: Onni Group Site Address: 1120 John Street Equipment: CME-75 HSA Casing Size: 2" City & State: Seattle WA Borehole Diameter: 15"(0-30) 8"(30-100) Screen Interval: 85'- 100' Date of Drilling: April 29 & 30, 2013 Sampler Specs: 2.5" Screen Size (in.): 0.010" Logged by: E. Caddey, L.G. Screen Type: Sch 40 PVC machine Hammer Size: 140lbs Total Depth (ft): 100 Elevation (ft amsl): 0 Filter Pack: 2/12 **Blow Counts** Lithology Depth (ft) Recovery Well Completion Interval PID Description Comments **NSCS** Sample Details Well-graded Sand with Clay and SW-0.0 Gravel 25 SM Gray-blue; damp; very dense; 50-5" mostly fine to coarse sand with few clay and few gravel Well-graded Sand with Silt and Gray-green; damp; very dense; fine to coarse sand with few silt and few 55 Bentonite 0.1 50-6" 60 0.1 **PVC** blank SW 50-6" SM 65 0.2 25 50-6 70 Well-graded Sand with Gravel SW 0.0 Brown; damp; very dense; fine to 50-6" coarse sand with few gravel 75 Project #: 65602.0 **Sheet:** 3 of 4 Drawn by: KLA Checked by: EC

ENVIRONMENTAL PARTNERS INC **Boring: MW-3** Contractor: Cascade Drilling Casing Material: Sch 40 PVC Client: Onni Group Site Address: 1120 John Street Equipment: CME-75 HSA Casing Size: 2" City & State: Seattle WA Borehole Diameter: 15"(0-30) 8"(30-100) Screen Interval: 85'- 100' Date of Drilling: April 29 & 30, 2013 Sampler Specs: 2.5" Screen Size (in.): 0.010" Logged by: E. Caddey, L.G. Screen Type: Sch 40 PVC machine Hammer Size: 140lbs Total Depth (ft): 100 Elevation (ft amsl): 0 Filter Pack: 2/12 **Blow Counts** Lithology Depth (ft) Recovery Well Completion Interval PID Description Comments **USCS** Sample Details Well-graded Sand with Gravel 0.1 Brown; damp; very dense; fine to 25 coarse sand with few gravel 50-6" 80 Well-graded Sand with Silt and SW-0.2 gravel SM 50-6" Brown-gray; damp; very dense; mostly fine to coarse sand with few silt and few gravel 85 Well-graded Sand SW 0.5 Brown; damp; very dense; mostly 26 fine to coarse sand with few silt 50-6'

10/20 Silca Sand T 90 28 0.2 23 50-6" **PVC** screen Poorly-graded Sand with Gravel SP Gray-brown; moist to wet; very dense; mostly medium sand with few gravel 95-20 0.3 20 25 0.4 100 Project #: 65602.0 Sheet: 4 of 4 Drawn by: KLA Checked by: EC

Drilling Contractor: Cascade Drilling

Client: Onni Group

Drill Method: CME-75 HSA

Site Address: 1120 John Street, Seattle WA Date of Drilling: July 19, 2012

Borehole Size: 10"

Logged by: E. Caddey, L.G.

Decommissioning Method: Hydrated bentonite chips

Boring: U-1

Depth (ft)	Lithology	USCS	Description	Interval	Recovery	Blow Counts	Sample	PID	Sheen	Comments
0-			Ground Surface							
"=	XX		Concrete							No petro odor or
		SP	Poorly-graded Sand with Gravel							staining observed
=			Brown; damp; mostly medium sand with few gravel							
2-			with lew graver							
=								0.2		
=										
4-										
=										
=			Becomes very dense			10				
=						20 30		0.0		
6-						30				
=										
=										
8-										
=										
=										
10=										
10-						10	U-1:10	26	no	
=	<u> </u>					50-6	0-1.10	20		
=	HHH	SM	Silty Sand with Gravel Gray; moist to wet; very dense;							
12		SW-	with mostly fine to coarse sand with							
=		SC	\some silt and minor gravel							
=			Well-graded Sand with Clay Gray; damp; very dense; mostly							
14-			fine to coarse sand with some clay							
' =										
=						00				
						36 50-6	U-1:15	8.0		
16-										
=										
=										
18-		SP	Poorly graded Sand with Cravel							
=		35	Poorly-graded Sand with Gravel Brown; damp; very dense; mostly							
			fine sand with few gravel							
20									no	
						50-6		0.2	no	
=										
				-						

Client: Onni Group

Site Address: 1120 John Street, Seattle WA

Date of Drilling: July 19, 2012

Logged by: E. Caddey, L.G.

Boring: U-2

Drilling Contractor: Cascade Drilling

Drill Method: CME-75 HSA

Borehole Size: 10"

Decommissioning Method: Hydrated bentonite chips

Depth (ft)	Lithology	USCS	Description	Interval	Recovery	Blow Counts	Sample	PID	Sheen	Comments
0-	XXX		Ground Surface							
=		SP	Concrete Poorly-graded Sand							No petro odor or staining observed
=		SF	Brown; damp; mostly medium sand with trace gravel							otaning observed
2 =			with trace graver					0.2		
=								0.2		
=										
[
=			Becomes very dense			12		1.6		
6-						16 16		1.0		
=										
=										
8-										
=										
10						18			no	
=		014				50-6	U-2:10	2.3		
=		SM	Silty Sand with Gravel Gray; moist to wet; very dense; mostly fine to coarse sand with							
12-		SW- SC	mostly fine to coarse sand with some silt and minor gravel							
=			Well-graded Sand with Clay Grav: damp: very dense: mostly							
14-			Gray; damp; very dense; mostly fine to coarse sand with minor clay and few gravel							
=			and low graver							
=						38 50-6	U-2:15	2.3		
16-										
=										
18-										
=										
20 =						70-6		2.1	no	
\equiv		'							•	

Boring: U-6 Client: Onni Group Drilling Contractor: Cascade Drilling Site Address: 1120 John Street, Seattle WA Drill Method: Limited access HSA

Date of Drilling: July 26, 2012

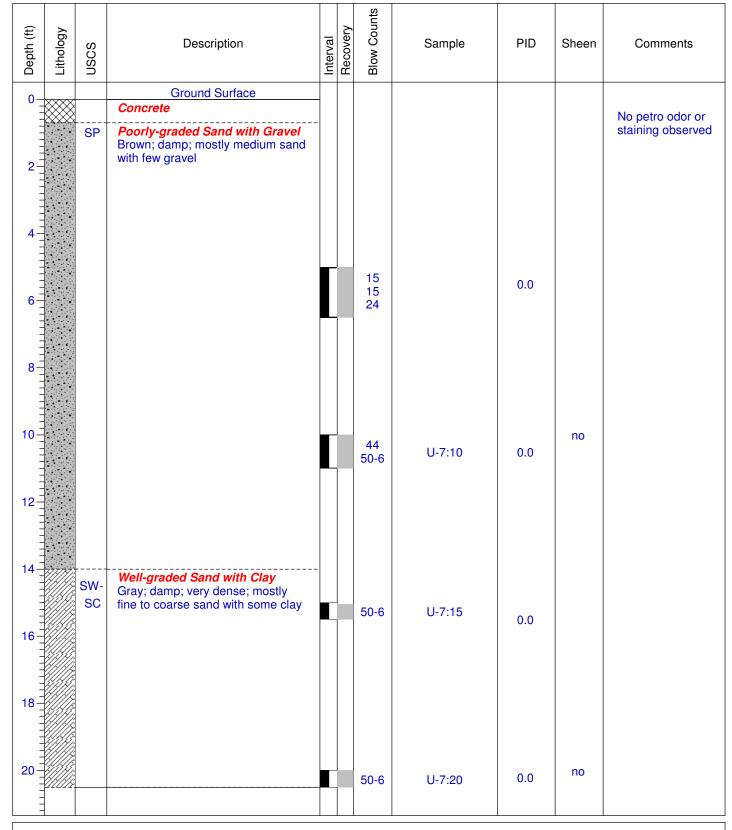
Borehole Size: 8.25"

Logged by: E. Caddey, L.G.

Decommissioning Method: Hydrated bentonite chips

Depth (ft)	Lithology	nscs	Description	Interval	Recovery	Blow Counts	Sample	PID	Sheen	Comments
0-	~~~		Ground Surface							
	$\otimes\!\!\!\otimes$		Concrete							No petro odor or staining observed
=		SP	Poorly-graded Sand with Gravel Brown; damp; mostly medium sand							staining observed
2			with few gravel							
=										
4-										
=										
						25		0.0		
6-						50-6		0.0		
			Becomes very dense							
=										
8-										
=										
10-						25	U-6:10	0.2	no	
						50-6	0-6.10	0.2		
12-										
=			8" of perched water							
14-										
' =							U-6:6W			
		SW- SC	Well-graded Sand with Clay			50-6	U-6:15	0.0		
16-		SC	Gray; damp; very dense; mostly fine to coarse sand with some clay					0.3		
=										
18-										
=										
20						50-6	U-6:20	0.0	no	
	21.12.2					30-0	3 3.20			

Drilling Contractor: Cascade Drilling **Drill Method:** Limited access HSA

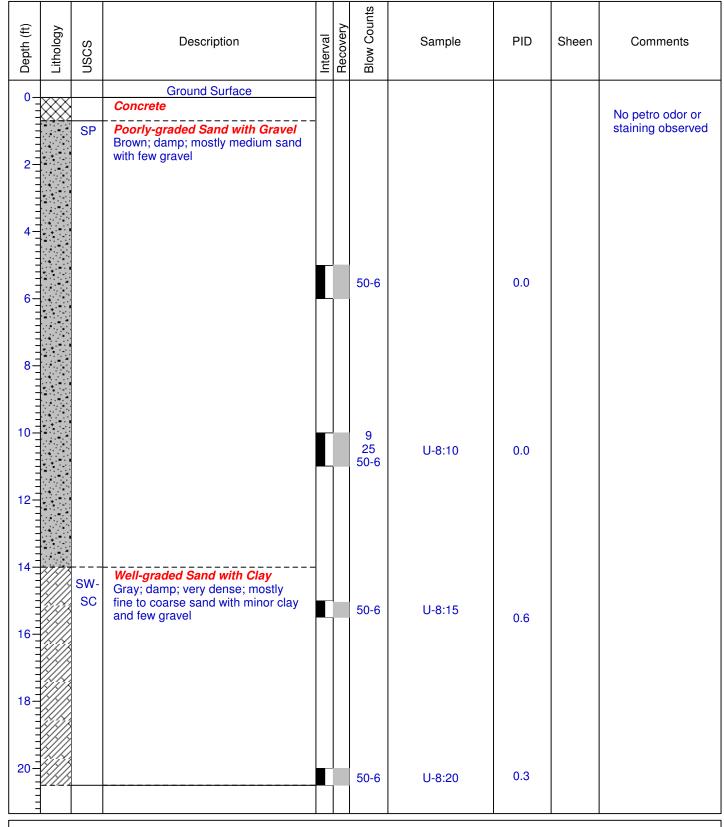

Client: Onni Group Site Address: 1120 John Street Date of Drilling: July 26, 2012

Logged by: E. Caddey, L.G.

Borehole Size: 8.25"

Decommissioning Method: Hydrated bentonite chips

Boring: U-7


PARTNERS INC

Boring: U-8 *Drilling Contractor:* Cascade Drilling *Drill Method:* Limited Access HSA

Client: Onni Group Site Address: 1120 John Street Date of Drilling: July 26, 2012

Borehole Size: 8.25"

Logged by: E. Caddey, L.G. Decommissioning Method: Hydrated bentonite chips

Drilling Contractor: Cascade Drilling

Client: Onni Group

Drill Method: CME-75 HSA

Site Address: 1120 John Street Date of Drilling: July 26, 2012 Logged by: E. Caddey, L.G.

Borehole Size: 8.25"

Decommissioning Method: Hydrated bentonite chips

Boring: U-9

Depth (ft)	Lithology	nscs	Description	Interval	Recovery	Blow Counts	Sample	PID	Sheen	Comments
0-			Ground Surface							
			Concrete							No petro odor or
		SP	Poorly-graded Sand with Gravel							No petro odor or staining observed
			Brown; damp; mostly medium sand with few gravel							
2-			3 3 3							
4-										
-										
						25		0.1		
6-						50-6		0.1		
8-										
"										
10-						17		0.0		
-						50-6		0.0		
12-										
-										
		SW-	Well-graded Sand with Clay							
14-		SC SC	Well-graded Sand with Clay Gray; damp; very dense; mostly fine to coarse sand with some clay							
'			ine to coarse sand with some day							
-						50-6				
10						00 0		0.1		
16-										
=										
18-										
20-						50-6				
	2////2					JU-0		0.2		

Direct-Push Technology Boring Log Subsurface Investigation Report Seattle Times Building 1120 John Street, Seattle, Washington

Boring #	Date	Total Depth (feet)	USCS Soil Type
U-3	7/20/12	12	0–7 SP; 7–12 SW-SC
U-4	7/20/12	7	SW-SC
U-5	7/19/12	6	SP
I-1	7/20/12	3	SW-SC
I-2	7/20/12	3	SW-SC
I-3	7/20/12	3	SW-SC
I-4	7/20/12	3	SW-SC
P-8	7/20/12	3	0–2 SP; 2–3 SW-SC
J-1A	7/20/12	7	0-6 SP; 6-7 SW-SC
T-2	7/24/12	6	0-4.5 SP; 4.5-6 SW-SC/ML
T-3	7/24/12	5.5	0–2 SP; 2–5.5 SW-SC
P-9	7/24/12	4	SP
P-10	7/24/12	4	SP
C-1	7/24/12	1	SW-SC
C-2	7/24/12	1	SW-SC
C-3	7/24/12	1	SW-SC
T-1	7/19/12	4	SW-SC
P-7	7/19/12	4	SW-SC
P-6	7/19/12	4.25	SW-SC
P-5	7/19/12	4	SC
P-4	7/19/12	4	CL
P-3	7/19/12	4	CL
P-2	7/19/12	4	CL
P-1	7/19/12	4	CL
P-15	9/4/12	4	SC
P-16	9/4/12	4	SW-SC
P-17	9/14/12	4	SW-SC
P-18	9/4/12	4	SW-SC
P-19	9/4/12?	4	SW-SC
P-20	9/4/12?	4	SW-SC
H-1	9/4/12	7	0-2 SM; 2-7 SW-SC
H-2	9/4/12	7	SM
H-3	9/4/12	7	0-3.5 SM; 3.5-7 SW-SC
H-4	9/4/12	7	<1.5 SM; 1.5+ SW-SC
H-5	9/6/12	8	SW-SC
O-1	9/6/12	8	SP / SW

Direct-Push Technology Boring Log Subsurface Investigation Report Seattle Times Building 1120 John Street, Seattle, Washington

Boring #	Date	Total Depth (feet)	USCS Soil Type
0-2	9/6/12	9	SP / SW
O-3	9/6/12	5	SP / SW-SC
S-1	9/4/12	7	SW-SC
S-2	9/4/12	4	SW
S-3	9/4/12	2	SM
S-3A	9/4/12	7	SW-SC
S-4	9/4/12	5	SW-SC
A-1	9/6/12	9	SP
A-2	9/5/12	9	SP
A-3	9/5/12	9	SP
C-10	9/5/12	1	SW-SC
C-11	9/5/12	1	SW-SC

Notes:

	UN	IFIED SOIL	CLASSIF	CATION S	YSTEM						
		FIELD IDENTIFE	CATION PROC	EDURES		Syn	nbol				
	(Excluding	particles over 3 inches	and basing fraction	s on estimated weigh	nt)	Text	Graph				
eve	Sieve	Clean Gravel		Well-Graded Gravel, Gravel-Sand Mixtures with little or no fines							
iis 000 Si	vei an 50% No. 4	Less than 5% Fines		ed Gravel, Gravel-Sa with little or no fines		GP					
N 0. 2	Gravel More than 50% retanited on No. 4 Sieve	Gravel with		vel, Gravel-Sand-Silt or silty fines as deter		GM					
aine ned on	retani	Fines More than 12% Fines		vel, Gravel-Sand-Cla ayey fines as detern		GC					
Coarse-Grained Soils More than 50% retained on No. 200 Sieve	, se	Clean Sand		raded Sand, Gravelly with little or no fines		sw	1				
arse 1 50%	Sand More than 50% passing No. 4 Sieve	Less than 5% Fines		Poorly Graded Sand, Gravelly Sands with little or no fines							
e thar	Sal fore this	Sand with	Silty Sar (non-plastic o		SM						
Mor	a sed	Fines More than 12% Fines		Clayey Sand, Gravel-Sand-Clay Mixtures (plastic or clayey fines as determined below)							
Sieve			Dry Strength	Dilatancy	Toughness						
ils 200 S			None to Low	Slow to Rapid	None	ML					
Fine-Grained Soils than 50% passing No. 200	ıys	less than 50	Medium to High	None to Slow	Medium	CL					
aine passin	Silts and Clays	Liquid Limit	Slow	Low	OL						
6-G	s an		Low to Medium	None to Slow	Low to Medium	МН					
Fin.	Sii	Liquid Limit greater than 50 (OH if >30%	High to Very High	None	High	СН					
More		organics by volume)	Medium to High	None to Very Slow	Low to Medium	ОН					
Highly O	rganic Soi	s (>50% Organics)	Readily iden frequ	PT	********						

Attachment B Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

May 8, 2013

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: 65601.1, F&BI 305018

Dear Mr. Koltes:

Included are the results from the testing of material submitted on May 1, 2013 from the 65601.1, F&BI 305018 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0508R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 1, 2013 by Friedman & Bruya, Inc. from the Environmental Partners 65601.1, F&BI 305018 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Environmental Partners
305018-01	MW-3:20
305018-02	MW-3:30
305018-03	MW-3:50
305018-04	MW-3:70
305018-05	MW-3:80
305018-06	MW-3:85
305018-07	MW-3:90
305018-08	MW-3:100
305018-09	MW-3:20:GW
305018-10	MW-3:GW

Bromomethane in the 8260C laboratory control sample and laboratory control sample duplicate failed the acceptance criteria. The data were flagged accordingly.

The 8260C vinyl chloride concentrations were flagged due to hydrochloric acid preservation per EPA SW-846 table 4-1.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-3:20:GW Client: **Environmental Partners** 65601.1, F&BI 305018 Date Received: Project: 05/01/13 Lab ID: Date Extracted: 05/01/13 305018-09 Date Analyzed: 05/01/13 Data File: 050138.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2 pr	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	MW-3:GW	Client:	Environmental Partners
Date Received:	05/01/13	Project:	65601.1, F&BI 305018
Date Extracted:	05/01/13	Lab ID:	305018-10
Date Analyzed:	05/01/13	Data File:	050139.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2 pr	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	4.7	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	12	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: **Environmental Partners** Date Received: Not Applicable Project: 65601.1, F&BI 305018 05/01/13 Lab ID: Date Extracted: 03-0772 mb Date Analyzed: 05/01/13 Data File: 050113.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	104	50	150
4-Bromofluorobenzene	102	50	150

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1 ca	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-3:20 Client: **Environmental Partners** Date Received: Project: 05/01/13 65601.1, F&BI 305018 Lab ID: Date Extracted: 05/01/13 305018-01 Date Analyzed: 05/01/13 Data File: 050127.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Compounds.	mg/kg (ppm)	Compounds.	ilig/kg (ppili)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	<0.5 jl	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-3:30 Client: **Environmental Partners** Date Received: Project: 05/01/13 65601.1, F&BI 305018 Lab ID: Date Extracted: 05/01/13 305018-02 Date Analyzed: 05/01/13 Data File: 050128.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	103	50	150
4-Bromofluorobenzene	102	50	150

C	Concentration	C	Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	<0.5 jl	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-3:80 Client: **Environmental Partners** Date Received: Project: 65601.1, F&BI 305018 05/01/13 Lab ID: Date Extracted: 05/01/13 305018-05 Date Analyzed: 05/01/13 Data File: 050129.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	105	50	150
Toluene-d8	102	50	150
4-Bromofluorobenzene	101	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	<0.5 jl	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW-3:100 Client: **Environmental Partners** Date Received: Project: 05/01/13 65601.1, F&BI 305018 Lab ID: Date Extracted: 05/01/13 305018-08 Date Analyzed: 05/01/13 Data File: 050130.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	105	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	<0.5 jl	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: **Environmental Partners** Date Received: Not Applicable Project: 65601.1, F&BI 305018 05/01/13 Lab ID: Date Extracted: 03-0771 mb Date Analyzed: 05/01/13 Data File: 050107.D Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	103	50	150

Compounds	Concentration	Compounds	Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	<0.5 ca jl	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chlorofor m	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Date of Report: 05/08/13 Date Received: 05/01/13

Project: 65601.1, F&BI 305018

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 304562-01 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<1	108	55-144
Chloromethane	ug/L (ppb)	50	<10	108	67-131
Vinyl chloride	ug/L (ppb)	50	<0.2	110	61-139
Bromomethane Chloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	146 vo 123	66-129 68-126
Trichlorofluoromethane	ug/L (ppb) ug/L (ppb)	50	<1	110	71-128
Acetone	ug/L (ppb)	250	<10	97	48-149
1,1-Dichloroethene	ug/L (ppb)	50	<1	111	71-123
Methylene chloride	ug/L (ppb)	50	< 5	101	61-126
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	96	68-125
trans-1,2-Dichloroethene 1.1-Dichloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	104 103	72-122 79-113
2,2-Dichloropropane	ug/L (ppb)	50	<1	110	58-132
cis-1,2-Dichlor oethene	ug/L (ppb)	50	<1	106	73-119
Chloroform	ug/L (ppb)	50	<1	104	80-112
2-Butanone (MEK)	ug/L (ppb)	250	<10	96	69-123
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	102	78-113
1,1,1-Trichloroethane 1,1-Dichloropropene	ug/L (ppb)	50 50	<1	108 107	79-116
Carbon tetrachloride	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	113	67-121 72-123
Benzene	ug/L (ppb)	50	< 0.35	103	79-109
Trichloroethene	ug/L (ppb)	50	<1	104	75-109
1,2-Dichloropropane	ug/L (ppb)	50	<1	103	80-111
Bromodichloromethane	ug/L (ppb)	50	<1	110	78-117
Dibromomethane	ug/L (ppb)	50 250	<1	104	80-112
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	250 50	<10 <1	102 110	79-123 76-120
Toluene	ug/L (ppb)	50	<1	101	73-117
trans-1,3-Dichloropropene	ug/L (ppb)	50	<1	112	75-122
1,1,2-Trichloroethane	ug/L (ppb)	50	<1	96	81-111
2-Hexanone	ug/L (ppb)	250	<10	96	75-126
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb)	50 50	<1 <1	97 97	81-111
Dibromochloromethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	97 111	72-113 69-129
1,2-Dibromoethane (EDB)	ug/L (ppb) ug/L (ppb)	50 50	<1	101	83-114
Chlorobenzene	ug/L (ppb)	50	<1	100	75-115
Ethylbenzene	ug/L (ppb)	50	<1	102	71-120
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	112	78-122
m,p-Xylene	ug/L (ppb)	100	<2	101	63-128
o-Xylene Styrene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	102 105	64-129 70-122
Isopropylbenzene	ug/L (ppb)	50	<1	104	76-118
Bromoform	ug/L (ppb)	50	<1	114	49-138
n-Propylbenzene	ug/L (ppb)	50	<1	101	74-117
Bromobenzene	ug/L (ppb)	50	<1	99	70-121
1,3,5-Trimethylbenzene	ug/L (ppb)	50 50	<1	102 98	81-112
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	98 96	79-120 72-119
2-Chlorotoluene	ug/L (ppb)	50	<1	99	77-114
4-Chlorotoluene	ug/L (ppb)	50	<1	101	81-109
tert-Butylbenzene	ug/L (ppb)	50	<1	101	81-116
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	103	74-118
sec-Butylbenzene	ug/L (ppb)	50 50	<1	101 103	77-118
p-Isopropyltoluene 1.3-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	103	64-132 81-111
1,4-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1	97	78-111
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	99	81-111
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	108	69-129
1,2,4 Trichlorobenzene	ug/L (ppb)	50	<1	97	74-115
Hexachlorobutadiene	ug/L (ppb)	50	<1	95	67-120
Naphthalene 1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	101 96	63-136 79-115
1,2,0 11telliorobelizette	ag L (ppu)	30	~1	50	10 110

ENVIRONMENTAL CHEMISTS

Date of Report: 05/08/13 Date Received: 05/01/13

Project: 65601.1, F&BI 305018

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con-	eror Sampre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	105	107	54-149	2
Chloromethane	ug/L (ppb)	50 50	107 108	107	67-133	0 2
Vinyl chloride Bromomethane	ug/L (ppb) ug/L (ppb)	50 50	108 160 vo	110 144 vo	73-132 69-123	2 11
Chloroethane	ug/L (ppb)	50	121	123	68-126	2
Trichlorofluoromethane	ug/L (ppb)	50	108	108	70-132	0
Acetone	ug/L (ppb)	250	121	115	44-145	5
1,1-Dichloroethene Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	110 100	110 97	75-119 63-132	0 3
Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50	100	98	70-122	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	105	105	76-118	õ
1,1-Dichloroethane	ug/L (ppb)	50	104	102	80-116	2
2,2-Dichloropropane	ug/L (ppb)	50	114	113	62-141	1
cis-1,2-Dichloroethene Chloroform	ug/L (ppb) ug/L (ppb)	50 50	105 106	102 104	81-111 81-109	3 2
2-Butanone (MEK)	ug/L (ppb) ug/L (ppb)	250	110	104	53-140	4
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	106	104	79-109	2
1,1,1-Trichloroethane	ug/L (ppb)	50	105	105	80-116	0
1,1-Dichloropropene	ug/L (ppb)	50	107	104	78-112	3
Carbon tetrachloride Benzene	ug/L (ppb) ug/L (ppb)	50 50	110 103	113 103	72-128 81-108	3
Trichloroethene	ug/L (ppb) ug/L (ppb)	50 50	107	103	77-108	0
1,2-Dichloropropane	ug/L (ppb)	50	104	104	82-109	0
Bromodichloromethane	ug/L (ppb)	50	110	109	76-120	1
Dibromomethane	ug/L (ppb)	50	108	106	80-110	2
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb)	250 50	113 113	110 110	59-142 76-128	3 3
Toluene	ug/L (ppb) ug/L (ppb)	50 50	101	99	83-108	2
trans-1,3-Dichloropropene	ug/L (ppb)	50	114	111	76-128	3
1,1,2-Trichloroethane	ug/L (ppb)	50	101	97	82-110	4
2-Hexanone	ug/L (ppb)	250	108	103	53-145	5
1,3-Dichloropropane Tetrachloroethene	ug/L (ppb)	50 50	102 96	99 95	83-110	3 1
Dibromochloromethane	ug/L (ppb) ug/L (ppb)	50 50	96 114	95 113	78-109 63-140	1
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	106	104	85-113	2
Chlorobenzene	ug/L (ppb)	50	100	98	84-108	2
Ethylbenzene	ug/L (ppb)	50	101	100	84-110	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50 100	110 102	109 100	76-125	1 2
m,p-Xylene o-Xylene	ug/L (ppb) ug/L (ppb)	50	102	99	84-112 82-113	2
Styrene	ug/L (ppb)	50	104	102	84-116	2
Isopropylbenzene	ug/L (ppb)	50	104	102	81-122	2
Bromoform	ug/L (ppb)	50	122	121	40-161	1
n-Propylbenzene Bromobenzene	ug/L (ppb)	50 50	102 100	101 98	81-115 80-113	1 2
1,3,5-Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	102	101	83-117	1
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	104	100	79-118	4
1,2,3-Trichloropropane	ug/L (ppb)	50	105	103	74-116	2
2-Chlorotoluene	ug/L (ppb)	50	100	99	79-112	1
4-Chlorotoluene tert-Butylbenzene	ug/L (ppb)	50 50	100 101	99 101	81-113 81-119	1
1,2,4 Trimethylbenzene	ug/L (ppb) ug/L (ppb)	50 50	102	101	83-116	0
sec-Butylbenzene	ug/L (ppb)	50	101	102	83-116	1
p-Isopropyltoluene	ug/L (ppb)	50	104	102	82-119	2
1,3-Dichlorobenzene	ug/L (ppb)	50	102	100	83-111	2
1,4-Dichlorobenzene	ug/L (ppb)	50	98	97	82-109	1
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	50 50	100 118	98 116	83-111 62-133	2 2
1,2,4Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	98	94	77-117	4
Hexachlorobutadiene	ug/L (ppb)	50	92	90	74-118	2
Naphthalene	ug/L (ppb)	50	107	103	75-131	4
1,2,3-Trichlorobenzene	ug/L (ppb)	50	96	94	82-115	2

ENVIRONMENTAL CHEMISTS

Date of Report: 05/08/13 Date Received: 05/01/13

Project: 65601.1, F&BI 305018

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 305018-08 (Matrix Spike)

			Sample	Percent	
	Reporting	Spike	Result	Recovery	Acceptance
Analyte	Units	Level	(Wet wt)	MS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	19	10-56
Chloromethane	mg/kg (ppm)	2.5	< 0.5	49	10-90
Vinyl chloride	mg/kg (ppm)	2.5	<0.05	50	10-91
Bromomethane Chloroethane	mg/kg (ppm)	2.5 2.5	<0.5 <0.5	33 58	10-110 10-101
Trichlorofluoromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.5 <0.5	58 52	10-101
Acetone	mg/kg (ppm)	12.5	<0.5	67	11-141
1.1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	65	11-103
Methylene chloride	mg/kg (ppm)	2.5	<0.5	67	14-128
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	74	17-134
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	71	13-112
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	74	23-115
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	18-117
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	78 80	25-120 29-117
2-Butanone (MEK)	mg/kg (ppm) mg/kg (ppm)	12.5	<0.05 <0.5	67	20-133
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	77	22-124
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	76	27-112
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	77	26-107
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	79	22-115
Benzene	mg/kg (ppm)	2.5	< 0.03	77	26-114
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	80	30-112
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	31-119
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	83	31-131
Dibromomethane	mg/kg (ppm)	2.5 12.5	<0.05 <0.5	80 75	27-124 16-147
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5	<0.5 <0.05	75 85	28-137
Toluene	mg/kg (ppm)	2.5	< 0.05	79	34-112
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	83	30-136
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	74	32-126
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	69	17-147
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	75	29-125
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	72	27-110
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	86	32-143
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	76 79	32-126 37-113
Ethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	78	38-111
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	<0.05	88	35-126
m,p-Xylene	mg/kg (ppm)	5	<0.1	78	38-112
o-Xylene	mg/kg (ppm)	2.5	< 0.05	79	38-113
Styrene	mg/kg (ppm)	2.5	< 0.05	82	38-118
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	82	37-114
Bromoform	mg/kg (ppm)	2.5	< 0.05	85	18-155
n-Propylbenzene Bromobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	78 75	36-114
1,3,5-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	75 79	40-115 35-116
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	<0.05	73 73	33-128
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	74	33-123
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	78	39-110
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	78	39-111
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	79	36-116
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	79	35-116
sec-Butylbenzene	mg/kg (ppm)	2.5 2.5	< 0.05	80 81	33-118
p-Isopropyltoluene 1.3-Dichlorobenzene	mg/kg (ppm)		< 0.05	81 79	32-119
1,4-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	79 77	38-111 39-109
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	<0.05	77 79	40-111
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	<0.5	81	34-134
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	79	31-117
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	75	25-122
Naphthalene	mg/kg (ppm)	2.5	< 0.05	78	39-120
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	77	35-117

ENVIRONMENTAL CHEMISTS

Date of Report: 05/08/13 Date Received: 05/01/13

Project: 65601.1, F&BI 305018

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con-	er or Sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	48	46	10-76	4
Chloromethane	mg/kg (ppm)	2.5 2.5	74 83	76 84	34-98 42-107	3
Vinyl chloride Bromomethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	83 29 vo	84 37 vo	42-107 46-113	1 24 vo
Chloroethane	mg/kg (ppm)	2.5	74	79	47-115	7
Trichlorofluoromethane	mg/kg (ppm)	2.5	89	89	53-112	0
Acetone	mg/kg (ppm)	12.5	111	98	39-147	12
1,1-Dichloroethene Methylene chloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	97 101	98 103	65-110 62-119	1 2
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	102	101	72-122	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	102	102	71-113	0
1,1-Dichloroethane	mg/kg (ppm)	2.5	101	103	76-109	2
2,2-Dichloropropane	mg/kg (ppm)	2.5	105	110	64-151	5
cis-1,2-Dichloroethene Chloroform	mg/kg (ppm)	2.5 2.5	106 107	105 107	77-110 78-108	1
2-Butanone (MEK)	mg/kg (ppm) mg/kg (ppm)	12.5	106	99	60-121	7
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	105	104	80-109	í
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	107	108	72-116	1
1,1-Dichloropropene	mg/kg (ppm)	2.5	105	107	77-108	2
Carbon tetrachloride Benzene	mg/kg (ppm)	2.5 2.5	113 103	111 104	67-123 75-107	2 1
Trichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	106	104 108 vo	72-107	2
1,2-Dichloropropane	mg/kg (ppm)	2.5	104	106 106	78-111	2
Bromodichloromethane	mg/kg (ppm)	2.5	111	111	75-126	0
Dibromomethane	mg/kg (ppm)	2.5	108	106	80-111	2
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm)	12.5	112 115	105 115	80-128	6 0
Toluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	103	102	71-138 79-112	1
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	118	114	77-135	3
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	101	100	84-115	1
2-Hexanone	mg/kg (ppm)	12.5	104	97	71-129	7
1,3-Dichloropropane Tetrachloroethene	mg/kg (ppm)	2.5 2.5	103 98	100 97	82-113 77-110	3 1
Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	98 117	113	64-152	3
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	107	104	83-116	3
Chlorobenzene	mg/kg (ppm)	2.5	103	102	82-113	1
Ethylbenzene	mg/kg (ppm)	2.5	103	103	81-114	0
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5 5	116 103	114 103	76-125 82-115	2
m,p-Xylene o-Xylene	mg/kg (ppm) mg/kg (ppm)	2.5	103	103	82-115 81-116	1
Styrene	mg/kg (ppm)	2.5	106	107	81-118	1
Isopropylbenzene	mg/kg (ppm)	2.5	107	107	81-117	0
Bromoform	mg/kg (ppm)	2.5	125	115	50-174	8
n-Propylbenzene	mg/kg (ppm)	2.5 2.5	103 101	104 101	82-116	1
Bromobenzene 1,3,5-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101	101	82-118 83-120	3
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	103	99	83-125	2
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	103	97	79-116	6
2-Chlorotoluene	mg/kg (ppm)	2.5	99	102	80-114	3
4-Chlorotoluene	mg/kg (ppm)	2.5	101	104	82-114	3
tert-Butylbenzene 1,2,4-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	103 104	105 107	82-116 82-116	2
sec-Butylbenzene	mg/kg (ppm)	2.5	103	105	81-123	2
p-Isopropyltoluene	mg/kg (ppm)	2.5	106	107	82-124	1
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	104	105	80-118	1
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	98	101	79-117	3
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	99 112	101 104	80-118 71-131	2 7
1,2,4Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	94	96	71-131 75-122	2
Hexachlorobutadiene	mg/kg (ppm)	2.5	96	97	74-130	ĩ
Naphthalene	mg/kg (ppm)	2.5	98	98	83-128	0
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	96	97	80-126	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

305018	SAMPLE CHAIN OF CO	ISTODY ME_	05-01-13 182/12
Send Report To Kric Kolter	SAMPLERS (signature)		PAGE#OF
Company Environmental Partners, Inc.	PROJECT ID/ADDRESS	65601,1	Standard □ RUSH
Address 295 NE Gilman Blvd.		0700(7)	Rush charges authorized by:
City, State, ZIP Issaquah, WA 98027	SITE NAME	REMARKS	SAMPLE DISPOSAL
City, State, ZIP 155aquari, WY 50027	Seattle Times		Dispose after 30 days Return samples
Phone # <u>(425) 395-0010</u> Fax # <u>(425) 395-001</u>			☐ Will call with instructions

		1							NAL	/SES	REQU	ESTED)		
Sample ID	LAB ID	Date Sampled	Time Sampled	Matrix	# of jars	8015 - GRO	8015 - DRO	BTEX by 8021B	BTEX by 602	VOC by 8260C	VOC by 524				Notes
MW-3:20	OIAED	4/29/13	09:55	50/1	4					X					
MW-3:30	027		10:55		i					X					
MW-3:50	03		14:30												Hold
MW-3170	04		15:28									Ī			Hold
MW-3:80	05	$\sqrt{}$	15:48							X					
MW-3:85	06	4/30/13	08:40												Hold
MW-3190	η¥	·	08:49												Hold
MW-3:100	08		09:15		V					X					
MW-3:20:GW	09	4/29/13	10:40	water	4					X					
MW-3:20:GW MW-3:GW	10	4/2/13	17:40	16.	4					X					· · · · · · · · · · · · · · · · · · ·
					,							- I			
								·							
														\neg	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

SIGNATURE/	PRINT NAME	COMPANY	DATE	TIME
Relinquisped by:	Ere Caddol	FPI	5/1/3	08:00
Received Williams	Michael E-Jehl	Pibne	1	4
Relinquished by:		Samples recei	vol at 3	°C
Received by:		1320 11 11 13 13 13 15	VEIL 116 2	 `

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Kurt Johnson, B.S. Eric Young, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

May 23, 2013

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd.. Suite 201 Issaquah, WA 98027

RE: Seattle Times 65602.0, F&BI 305352

Dear Mr. Koltes:

Included are the results from the testing of material submitted on May 17, 2013 from the Seattle Times 65602.0, F&BI 305352 project. There are 6 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl **Project Manager**

Enclosures

c: Eric Caddey, Cynthia Moon

EPI0523R.DOC

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on May 17, 2013 by Friedman & Bruya, Inc. from the Environmental Partners Seattle Times 65602.0, F&BI 305352 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Partners
305352 -01	AOPC7:SB1
305352 -02	AOPC7:SB2
305352 -03	AOPC7:SB3

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/13 Date Received: 05/17/13

Project: Seattle Times 65602.0, F&BI 305352

Date Extracted: 05/20/13 Date Analyzed: 05/20/13

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
AOPC7:SB1 305352-01	<0.02	< 0.02	< 0.02	< 0.06	<2	90
AOPC7:SB2 305352-02	< 0.02	< 0.02	< 0.02	< 0.06	<2	90
AOPC7:SB3 305352-03	<0.02	<0.02	< 0.02	< 0.06	<2	90
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<2	88

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/13 Date Received: 05/17/13

Project: Seattle Times 65602.0, F&BI 305352

Date Extracted: 05/20/13 Date Analyzed: 05/20/13

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
AOPC7:SB1 305352-01	<50	<250	74
AOPC7:SB2 305352-02	< 50	<250	64
AOPC7:SB3 305352-03	< 50	<250	71
Method Blank 03-938 MB	< 50	<250	91

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/13 Date Received: 05/17/13

Project: Seattle Times 65602.0, F&BI 305352

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 305352-01 (Duplicate)

Analyte	Reporting Units	Sample Result (Wet Wt)	Duplicate Result (Wet Wt)	RPD (Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	87	69-120
Toluene	mg/kg (ppm)	0.5	88	70-117
Ethylbenzene	mg/kg (ppm)	0.5	91	65-123
Xylenes	mg/kg (ppm)	1.5	90	66-120
Gasoline	mg/kg (ppm)	20	100	71-131

ENVIRONMENTAL CHEMISTS

Date of Report: 05/23/13 Date Received: 05/17/13

Project: Seattle Times 65602.0, F&BI 305352

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 305359-03 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet Wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	79	82	64-133	4

Laboratory Code: Laboratory Control Sample

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	92	58-147

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

305352 SA	MPLE CHAIN OF CU	STODY HE O	5-17-13, CI/VSI		
Send Report To Eric Cadde V/ Fric HolTes			PAGE #OFOF		
Company Environmental Partners, Inc.	PROJECT ID/ADDRESS	JOB# 65602,0	Standard RUSH		
Address 295 NE Gilman Blvd.	Seattle Times		Rush charges authorized by:		
City, State, ZIP Issaquah, WA 98027		REMARKS EMAIL FOULT TO	SAMPLE DISPOSAL Dispose after 30 days		
Phone # <u>(425) 395-0010</u> Fax # <u>(425) 395-0011</u>	Eric Kel Ter Return samples Will call with instructions				
		ANALYSES REQUESTE			
		60C 60C 524			

						NAL	SES	REQU	ESTE	D					
Sample ID	LAB ID	Date Sampled	Time Sampled	Matrix	# of jars	8015 - GRO	8015 - DRO EXTEADED		BTEX by 602	VOC by 8260C	VOC by 524				Notes
AOPC7:SBI	01 X.D	5/17/13	11:50	5011	4		X	X							
AUPCT-SBY	02		12:12	1	4		X	X							
A0PC7-5B3	03	1	13:10	1	Ÿ		X	X							
			<u></u>												
·			<u> </u>												

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	_DATE	TIME
Relinguished by	Fric Caddell	EPI	3/17/13	15:17
Received by: Loo LOI_	A. Podnozova	FBI	5/2/17	15:10
Relinquished by:			1///	13,70
Received by:		Samples receive	C at C	T.

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

September 17, 2012

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: 1120 John Street

Dear Mr. Koltes:

Included are the results from the testing of material submitted on September 5, 2012 from the 1120 John Street, F&BI 209029 project. There are 26 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0917R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 5, 2012 by Friedman & Bruya, Inc. from the Environmental Partners 1120 John Street, F&BI 209029 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Environmental Partners
209029-01	MW2-10
209029-02	MW2-15
209029-03	MW2-20
209029-04	W1-10
209029-05	W1-15
209029-06	MW2-85

An 8270D internal standard failed the acceptance criteria for sample W1-10 due to matrix interferences. The data were flagged accordingly.

Several 8260C compounds failed below the acceptance criteria in the matrix spike samples. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

An 8260C direct sparge internal standard failed the acceptance criteria for sample W1-10 due to matrix interferences. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

Date Extracted: 09/05/12 Date Analyzed: 09/05/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW2-10 209029-01	<2	90
W1-10 209029-04	<2	92
Method Blank 02-1584 MB	<2	81

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

Date Extracted: 09/05/12 Date Analyzed: 09/06/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
MW2-10 209029-01	<50	<250	104
W1-10 209029-04	<50	<250	110
Method Blank	< 50	<250	113

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW2-10 Client: Environmental Partners

Date Received: 09/05/12 Project: 1120 John Street, F&BI 209029

 Date Extracted:
 09/06/12
 Lab ID:
 209029-01

 Date Analyzed:
 09/06/12
 Data File:
 209029-01.032

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 115 60 125 Indium 60 99 125 Holmium 103 60 125

Concentration

Analyte: mg/kg (ppm)

Chromium 14.4
Arsenic 1.68
Cadmium <1
Lead 2.15

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: W1-10 Client: Environmental Partners

Date Received: 09/05/12 Project: 1120 John Street, F&BI 209029

 Date Extracted:
 09/06/12
 Lab ID:
 209029-04

 Date Analyzed:
 09/06/12
 Data File:
 209029-04.033

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 119 60 125 Indium 100 60 125 Holmium 104 60 125

Concentration

Analyte: mg/kg (ppm)

Chromium 12.4
Arsenic 1.67
Cadmium <1
Lead 2.30

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Environmental Partners

Date Received: NA Project: 1120 John Street, F&BI 209029

Date Extracted:09/06/12Lab ID:I2-585 mbDate Analyzed:09/06/12Data File:I2-585 mb.008Matrix:SoilInstrument:ICPMS1

Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 101 60 125 100 Indium 60 125 Holmium 101 60 125

Concentration

Analyte: mg/kg (ppm)

Chromium <1
Arsenic <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

Date Extracted: 09/06/12

Date Analyzed: 09/07/12 and 09/17/12

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
MW2-10 209029-01	< 0.1
W1-10 209029-04	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID: W1-10 Client: Environmental Partners

 Date Received:
 09/05/12
 Project:
 1120 John Street, F&BI 209029

 Date Extracted:
 09/11/12
 Lab ID:
 209029-04

 Date Analyzed:
 09/11/12
 Data File:
 091108.D

Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Operator: VM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 98 50 150 Toluene-d8 97 50 150 4-Bromofluorobenzene 146 J 50 150

Concentration Compounds: mg/kg (ppm)

1,2-Dibromoethane (EDB) <0.005 J

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: 1120 John Street, F&BI 209029
Date Extracted: 09/11/12 Lab ID: 02-1614 mb

Date Analyzed: 09/11/12 Data File: 091107.D

Matrix: Soil Instrument: GCMS4

Units: mg/kg (ppm) Operator: VM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 107 50 150 Toluene-d8 100 50 150 4-Bromofluorobenzene 109 50 150

Concentration

Compounds: mg/kg (ppm)

1,2-Dibromoethane (EDB) <0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW2-10 Client: Environmental Partners

Date Received: 09/05/12 Project: 1120 John Street, F&BI 209029

Date Extracted: 09/06/12 Lab ID: 209029-01

Date Extracted: 09/06/12 Lab ID: 209029-01
Date Analyzed: 09/07/12 Data File: 090724.D
Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Operator: VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Compounds.	mg/kg (ppm)	Compounds.	ing/kg (ppiii)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: W1-10 Client: Environmental Partners
Date Received: 09/05/12 Project: 1120 John Street, F&BI 209029

Lab ID: Date Extracted: 09/06/12 209029-04 Date Analyzed: 09/07/12 Data File: 090725.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Compounds.	mg/kg (ppm)	Compounds.	ing/kg (ppiii)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Environmental Partners
Date Received: NA Project: 1120 John Street, F&BI 209029

Lab ID: Date Extracted: 09/06/12 02-1577 mb Date Analyzed: 09/06/12 Data File: 090611.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Compounds.	mg/kg (ppm)	Compounds.	ing/kg (ppiii)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: W1-10 Client: **Environmental Partners**

Date Received: 09/05/12 Project: 1120 John Street, F&BI 209029

Lab ID: 209029-04 Date Extracted: 09/10/12

Date Analyzed: 09/12/12 Data File: 091208.D\ECD1A.CH

Instrument: Matrix: Soil GC7 mg/kg (ppm) Units: Operator: mwdl

Upper Limit: Lower % Recovery: Limit:

Surrogates: TCMX 116 50 150

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1

Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: 1120 John Street, F&BI 209029

Date Extracted: 09/10/12 Lab ID: 02-1607 mb

Date Analyzed: 09/12/12 Data File: 091210.D\ECD1A.CH

Matrix: Soil Instrument: GC7
Units: mg/kg (ppm) Operator: mwdl

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1

Aroclor 1232 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: W1-10 Client: Environmental Partners

Date Received: 09/05/12 Project: 1120 John Street, F&BI 209029

Lab ID: Date Extracted: 09/06/12 209029-04 1/5 Date Analyzed: 09/06/12 Data File: 090628.D Instrument: Matrix: Soil GCMS6 Units: mg/kg (ppm) Operator: VM

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracona d10

Anthracene-d10 99 50 150 Benzo(a)anthracene-d12 117 35 159

< 0.01

Concentration Compounds: mg/kg (ppm)

Benz(a)anthracene <0.01
Chrysene <0.01
Benzo(a)pyrene <0.01
Benzo(b)fluoranthene <0.01
Benzo(k)fluoranthene <0.01
Indeno(1,2,3-cd)pyrene <0.01

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: 1120 John Street, F&BI 209029

Date Extracted: 09/06/12 Lab ID: 02-1574 mb2 1/5

Date Extracted: 09/06/12 Lab ID: 02-1374 II

Date Analyzed: 09/06/12 Data File: 090619.D

Matrix: Soil Instrument: GCMS6

Units: mg/kg (ppm) Operator: VM

Surrogates: Lower Upper Limit: Limit:

Surrogates:% Recovery:Limit:Limit:Anthracene-d109650150Benzo(a)anthracene-d1211635159

Concentration

Compounds: mg/kg (ppm)

Benz(a)anthracene <0.01
Chrysene <0.01
Benzo(a)pyrene <0.01
Benzo(b)fluoranthene <0.01
Benzo(k)fluoranthene <0.01
Indeno(1,2,3-cd)pyrene <0.01
Dibenz(a,h)anthracene <0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 209012-02 (Duplicate)

		(Wet Wt)	(Wet Wt)	Relative Percent
	Reporting	Sample	Duplicate	Differ ence
Analyte	Units	Result	Result	(Limit 20)
Gasoline	mg/kg (ppm)	<2	<2	nm

		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	95	71-131	

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 209029-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	112	112	64-133	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	132	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 209038-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	mg/kg (ppm)	50	7.44	105	96	63-120	9
Arsenic	mg/kg (ppm)	10	1.38	124	107	56-125	15
Cadmium	mg/kg (ppm)	10	<1	122 vo	109	85-117	11
Lead	mg/kg (ppm)	50	2.31	120	105	64-139	13

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	100	81-117
Arsenic	mg/kg (ppm)	10	100	79-112
Cadmium	mg/kg (ppm)	10	101	88-114
Lead	mg/kg (ppm)	50	98	83-118

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 209038-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	109	105	54-156	4

		Percent			
	Reporting Units	Spike	Recovery	Acceptance	
Analyte		Level	LCS	Criteria	
Mercury	mg/kg (ppm)	0.125	106	73-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Ç Ç	•		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,2-Dibromoethane (EDB)	mg/kg (ppm)	0.05	112	98	70-130	13

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 209028-08 (Matrix Spike)

· ·	•			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	4 vo	10-60
Chloromethane	mg/kg (ppm)	2.5	< 0.5	22	10-89
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	19	10-91
Bromomethane	mg/kg (ppm)	2.5	< 0.5	34	10-102
Chloroethane	mg/kg (ppm)	2.5	< 0.5	30	10-97
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	14	10-94
Acetone	mg/kg (ppm)	12.5	< 0.5	47	37-115
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	24	16-100
Methylene chloride	mg/kg (ppm)	2.5	<0.5	39	34-108
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	50 34	42-103 19-102
1.1-Dichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	34 37	37-97
2,2-Dichloropropane	mg/kg (ppm)	2.5	<0.05	32	29-105
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	42	41-101
Chloroform	mg/kg (ppm)	2.5	< 0.05	42 vo	43-100
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	43 vo	48-104
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	47	43-98
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	35	35-102
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	28 vo	34-100
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	32	30-107
Benzene	mg/kg (ppm)	2.5	< 0.03	38 vo	39-98
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	38	38-101
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	42 vo	45-101
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	46	45-115
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	49	46-101
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	53	52-105
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	47	42-120
Toluene	mg/kg (ppm)	2.5	< 0.05	39 vo	45-99
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	41 vo	46-118
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	46 vo	51-104
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	45 vo	49-108
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	42 vo	49-101
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	31 vo	38-102
Dibromochloromethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	47 47 vo	42-132
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	47 vo 41 vo	49-105 47-100
Ethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	37 vo	47-100
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	47	46-112
m,p-Xylene	mg/kg (ppm)	5	<0.03	38 vo	48-102
o-Xylene	mg/kg (ppm)	2.5	< 0.05	40 vo	49-101
Styrene	mg/kg (ppm)	2.5	< 0.05	38 vo	49-106
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	38 vo	47-104
Bromoform	mg/kg (ppm)	2.5	< 0.05	39	25-171
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	34 vo	47-105
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	40 vo	48-105
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	36 vo	47-105
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	45 vo	51-108
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	42 vo	50-104
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	35 vo	47-102
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	35 vo	47-102
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	37 vo	48-105
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	36 vo	48-105
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	35 vo	47-106
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	35 vo	47-107
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	34 vo	47-103
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	35 vo	46-102
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	36 vo	48-104
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	44	39-130
1,2,4 Trichlorobenzene Hexachlorobu tadiene	mg/kg (ppm)	2.5 2.5	<0.25 <0.25	23 vo 25 vo	44-106 44-106
Naphthalene	mg/kg (ppm)	2.5 2.5	<0.25 <0.05	25 V0 34 V0	48-108
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.25	34 Vo 28 vo	48-108 46-107
1, L, J 11 KINDI ODENZENE	mg/kg (bhin)	۵.۵	~0.23	20 VU	40-107

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

zazoratory couet zazoratory con	or or oumpro		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	46	49	11-84	6
Chloromethane	mg/kg (ppm)	2.5	69	67	41-99	3
Vinyl chloride	mg/kg (ppm)	2.5	84	84	51-102	0
Bromomethane	mg/kg (ppm)	2.5	89	90	51-111	1
Chloroethane	mg/kg (ppm)	2.5	93	96	53-113	3
Trichlorofluoromethane	mg/kg (ppm)	2.5	94	96	61-113	2
Acetone	mg/kg (ppm)	12.5	83	86	69-132	4
1.1-Dichloroethene	mg/kg (ppm)	2.5	92	93	67-116	i
Methylene chloride	mg/kg (ppm)	2.5	89	89	62-130	0
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	97	98	78-116	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	97	99	70-116	2
1,1-Dichloroethane	mg/kg (ppm)	2.5	97	97	79-109	0
2,2-Dichloropropane	mg/kg (ppm)	2.5	115	113	70-123	2
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	99	76-113	1
Chloroform	mg/kg (ppm)	2.5	96	97	77-113	1
2-Butanone (MEK)	mg/kg (ppm)	12.5	85	86	76-114	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	98	79-114	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	103	103	73-119	0
1,1-Dichloropropene	mg/kg (ppm)	2.5	96	96	77-110	0
Carbon tetrachloride	mg/kg (ppm)	2.5	107	108	67-126	1
Benzene	mg/kg (ppm)	2.5	95	95	70-115	0
Trichloroethene	mg/kg (ppm)	2.5	93	97	70-113	4
1,2-Dichloropropane	mg/kg (ppm)	2.5	97	97	79-110	0
Bromodichlor omethane	mg/kg (ppm)	2.5	107	109	76-119	2
Dibromomethane	mg/kg (ppm)	2.5	100	102	78-115	2
4-Methyl-2-pentanone	mg/kg (ppm)	12.5 2.5	94 115	95 117	80-120 80-117	1 2
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	96			1
Toluene trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	96 111	95 110	79-112 81-118	1
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	99	98	83-111	1
2-Hexanone	mg/kg (ppm)	12.5	91	91	80-121	0
1,3-Dichloropropane	mg/kg (ppm)	2.5	96	94	81-114	2
Tetrachloroethene	mg/kg (ppm)	2.5	97	95	73-117	2
Dibromochloromethane	mg/kg (ppm)	2.5	116	117	59-143	1
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	103	103	82-113	0
Chlorobenzene	mg/kg (ppm)	2.5	97	98	81-110	ĺ
Ethylbenzene	mg/kg (ppm)	2.5	97	97	79-116	0
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	107	107	76-121	0
m,p-Xylene	mg/kg (ppm)	5	100	100	80-115	0
o-Xylene	mg/kg (ppm)	2.5	102	101	81-113	1
Styrene	mg/kg (ppm)	2.5	103	103	79-118	0
Isopropylbenzene	mg/kg (ppm)	2.5	102	102	81-114	0
Bromoform	mg/kg (ppm)	2.5	122	119	36-166	2
n-Propylbenzene	mg/kg (ppm)	2.5	99	99	82-114	0
Bromobenzene	mg/kg (ppm)	2.5	98	98	83-113	0
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	103	103	82-115	0
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	107	104	81-116	3
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	93	93	53-136	0
2-Chlorotoluene	mg/kg (ppm)	2.5	96	96	81-113	0
4-Chlorotoluene	mg/kg (ppm)	2.5	98	98	83-111	0
tert-Butylbenzene	mg/kg (ppm)	2.5	101	101	81-113	0
1,2,4Trimethylbenzene	mg/kg (ppm)	2.5	101	100	82-115	1
sec-Butylbenzene	mg/kg (ppm)	2.5	103	103	81-115	0
p-Isopropyltoluene	mg/kg (ppm)	2.5	103	103	82-115	0
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm)	2.5	97 95	97 96	81-113	0 1
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	95 98	96 99	82-109 82-111	1
1,2-Dichiorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	98 107	107	82-111 72-123	0
1,2-Dibromo-3-chioropropane 1.2.4 Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	93	91	81-110	2
Hexachlorobutadiene	mg/kg (ppm)	2.5	99	100	78-116	1
Naphthalene	mg/kg (ppm)	2.5	104	105	85-114	1
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	104	104	86-112	0
-,-,		2.0			00 112	9

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 209033-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Aroclor 1016	mg/kg (ppm)	< 0.1	< 0.1	nm
Aroclor 1260	mg/kg (ppm)	< 0.1	< 0.1	nm

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	109	112	70-130	3
Aroclor 1260	mg/kg (ppm)	0.8	103	104	70-130	1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/05/12

Project: 1120 John Street, F&BI 209029

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 209017-07 1/5 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	98	23-144
Chrysene	mg/kg (ppm)	0.17	< 0.01	99	45-122
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	110	31-144
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	95	45-130
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	104	39-128
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	102	28-146
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	96	46-129

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benz(a)anthracene	mg/kg (ppm)	0.17	86	87	51-115	1
Chrysene	mg/kg (ppm)	0.17	88	90	55-129	2
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	92	96	56-123	4
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	91	97	54-131	6
Benzo(a)pyrene	mg/kg (ppm)	0.17	83	87	51-118	5
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	93	84	49-148	10
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	85	79	50-141	7

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

209029	SAMPLE CHAIN OF CUS	TODY ME O	9/05/12 VS2/BI3
Send Report To Eric Koltes	SAMPLERS (signature)	1	PAGE #OF
Company Environmental Partners, Inc.	PROJECT ID/ADDRESS 1120 Sohn Street	JOB#	Standard RUSH
Address 295 NE Gilman Blvd.		DEMARKS	Rush charges authorized by:
City, State, ZIP Issaquah, WA 98027	Seattle Times	REMARKS	SAMPLE DISPOSAL Dispose after 30 days Return samples
Phone # <u>(425) 395-0010</u> Fax # <u>(425) 395-0011</u>	Statife ILMES		Return samples Will call with instructions

					· ·			- 1	NALY	SES I	REQU	FSTF	<u> </u>			
Sample ID	LAB ID	Date Sampled		Matrix	# of jars	8015 - GRO	8015 - DRO	BTEX by 8021B	BTEX by 602	VOC by 8260C	VOC by 524	coa/ea/		MCA 5		Notes
MN2-10	OSA. E	9/4/12	1442	Soil	4	\times	X			×				\times		5 containers
MW2-15	02A-1	1/4/12	1452	Soil	4							7				Hold 5 cont
MW2-20	03A.E	1/4/2	1455	5011	4								-			Holl 5 cont
W1-10	94A5		1611	Soil	8	X	\setminus	1		X	,	X	X	X	X	10 cond
W1-15	25A3	9/4/12		Soi/	8							,				Hold 10 conf
MW2-85	06AF	9/5/12		50:1	5											Hold 6cont
																*-po MB
				ļ										مرما		9/5/12
							-					eceiv	dat			, wc
											105	ecer.				
			That the same of t							<u>ş</u> a'	nples					
				1												

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Monty Buche	EPI	9/5/12	1023
Received by: Amm by	James Bruy	C28	9/5/12	1028
Relinquished by:	70		127.00	رم
Received by:				

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

September 18, 2012

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: 63801.1, F&BI 209033

Dear Mr. Koltes:

Included are the results from the testing of material submitted on September 5, 2012 from the 63801.1, F&BI 209033 project. There are 48 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0918R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 5, 2012 by Friedman & Bruya, Inc. from the Environmental Partners 63801.1, F&BI 209033 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Partners
209033-01	P-15:1.5
209033-02	P-15:4
209033-03	P-16:3
209033-04	S-1:7
209033-05	H-1:7
209033-06	H-2:4
209033-07	H-3:7
209033-08	H-4:7
209033-09	P-17:1.5
209033-10	P-17:4
209033-11	P-18:1.5
209033-12	P-18:4
209033-13	P-19:1.5
209033-14	P-19:4
209033-15	P-20:1.5
209033-16	P-20:4

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/05/12

Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Date Analyzed: 09/10/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
P-15:1.5 209033-01	< 50	<250	122
P-16:3 209033-03	< 50	<250	131
S-1:7 209033-04	< 50	<250	123
H-1:7 209033-05	< 50	<250	121
H-2:4 209033-06	< 50	<250	129
H-3:7 209033-07	810	640	124
H-4:7 209033-08	120	<250	122
P-17:1.5 209033-09	< 50	<250	126
P-18:1.5 209033-11	< 50	<250	125
P-19:1.5 209033-13	< 50	<250	125

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/05/12

Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Date Analyzed: 09/10/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
P-19:4 209033-14	< 50	<250	129
P-20:1.5 209033-15	<50	<250	126
Method Blank	< 50	<250	121

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P-15:1.5 Client: **Environmental Partners** Date Received: 09/05/12 Project: 63801.1, F&BI 209033 Lab ID: Date Extracted: 09/07/12 209033-01 Date Analyzed: 09/10/12 Data File: 209033-01.015 Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	115	60	125
Indium	96	60	125
Holmium	93	60	125

Concentration mg/kg (ppm)

Chromium 13.5

Arsenic 2.60
Cadmium <1
Lead 7.62

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P-16:3 Client: **Environmental Partners** Date Received: 09/05/12 Project: 63801.1, F&BI 209033 Lab ID: Date Extracted: 09/07/12 209033-03 Date Analyzed: 09/10/12 Data File: 209033-03.016 Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	122	60	125
Indium	101	60	125
Holmium	101	60	125

Analyte: Concentration mg/kg (ppm)

Chromium11.8Arsenic1.79Cadmium<1</td>Lead20.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

 Client ID:
 S-1:7
 Client:
 Environmental Partners

 Date Received:
 09/05/12
 Project:
 63801.1, F&BI 209033

 Date Extracted:
 09/07/12
 Lab ID:
 209033-04

Date Analyzed: 09/11/12 Data File: 209033-04 rr.042

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	109	60	125
Indium	91	60	125
Holmium	96	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium 20.8
Arsenic 2.03
Cadmium <1
Lead 4.27

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: H-1:7 Client: Environmental Partners
Date Received: 09/05/12 Project: 63801.1, F&BI 209033
Date Extracted: 09/07/12 Lab ID: 209033-05

Date Analyzed: 09/11/12 Data File: 209033-05 rr.043

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 110 60 125 Indium 91 60 125 Holmium 94 60 125

Concentration

Analyte: mg/kg (ppm)

Chromium 20.7
Arsenic 2.16
Cadmium <1
Lead 4.21

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: H-2:4 Client: **Environmental Partners** Date Received: Project: 09/05/12 63801.1, F&BI 209033 Lab ID: Date Extracted: 09/07/12 209033-06 Date Analyzed: 09/10/12 Data File: 209033-06.020 Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	121	60	125
Indium	100	60	125
Holmium	100	60	125

Concentration
Analyte: mg/kg (ppm)

Chromium11.9Arsenic3.10Cadmium<1</td>Lead1.87

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

 Client ID:
 H-3:7
 Client:
 Environmental Partners

 Date Received:
 09/05/12
 Project:
 63801.1, F&BI 209033

 Date Extracted:
 09/07/12
 Lab ID:
 209033-07

Date Analyzed: 09/11/12 Data File: 209033-07 rr.044

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	111	60	125
Indium	92	60	125
Holmium	96	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium 21.3
Arsenic 2.44
Cadmium <1
Lead 4.02

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: H-4:7 Client: **Environmental Partners** Date Received: Project: 09/05/12 63801.1, F&BI 209033 Lab ID: 09/07/12 209033-08 Date Extracted: Date Analyzed: 09/10/12 Data File: 209033-08.022 Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	122	60	125
Indium	100	60	125
Holmium	99	60	125

Concentration
Analyte: mg/kg (ppm)

Chromium 15.2
Arsenic 1.54
Cadmium <1
Lead 2.84

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P-17:1.5 Client: **Environmental Partners** Date Received: Project: 09/05/12 63801.1, F&BI 209033 09/07/12 Lab ID: 209033-09 Date Extracted: Date Analyzed: 09/11/12 Data File: 209033-09 rr.045 Matrix: Instrument: Soil ICPMS1

Units: Soil Instrument: ICPMS

Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 110 60 125 Indium 95 60 125 Holmium 94 60 125

Analyte: Concentration mg/kg (ppm)

Chromium19.8Arsenic8.68Cadmium<1</td>Lead7.35

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P-18:1.5 Client: **Environmental Partners** 09/05/12 Date Received: Project: 63801.1, F&BI 209033 Lab ID: 09/07/12 209033-11 Date Extracted: Date Analyzed: 09/11/12 Data File: 209033-11 rr.046

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 113 60 125 Indium 93 60 125 Holmium 97 60 125

Analyte: Concentration mg/kg (ppm)

Chromium 24.6
Arsenic 2.57
Cadmium <1
Lead 5.20

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P-19:1.5 Client: **Environmental Partners** Date Received: Project: 09/05/12 63801.1, F&BI 209033 Lab ID: 09/07/12 209033-13 Date Extracted: Date Analyzed: 09/11/12 Data File: 209033-13 rr.047 Matrix: Instrument: Soil ICPMS1

Units: Soil Instrument: ICPM Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 110 60 125 Indium 89 60 125 Holmium 92 60 125

Analyte: Concentration mg/kg (ppm)

Chromium25.1Arsenic5.13Cadmium<1</td>Lead7.46

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P-19:4 Client: Environmental Partners
Date Received: 09/05/12 Project: 63801.1, F&BI 209033
Date Extracted: 09/07/12 Lab ID: 209033-14

Date Analyzed: 09/11/12 Data File: 209033-14 rr.048

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 113 60 125 Indium 92 60 125 Holmium 97 60 125

Concentration

Analyte: mg/kg (ppm)

Chromium23.4Arsenic3.54Cadmium<1</td>Lead4.80

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P-20:1.5 Client: **Environmental Partners** Date Received: Project: 09/05/12 63801.1, F&BI 209033 Lab ID: 09/07/12 209033-15 Date Extracted: Date Analyzed: 09/11/12 Data File: 209033-15 rr.049

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 112 60 125 Indium 90 60 125 Holmium 96 60 125

Analyte: Concentration mg/kg (ppm)

Chromium 23.8
Arsenic 3.61
Cadmium <1
Lead 4.99

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Environmental Partners
Date Received: Not Applicable Project: 63801.1, F&BI 209033

Date Extracted:09/07/12Lab ID:I2-593 mbDate Analyzed:09/10/12Data File:I2-593 mb.008Matrix:SoilInstrument:ICPMS1

Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 103 60 125 98 Indium 60 125 Holmium 99 60 125

Concentration

Analyte: mg/kg (ppm)

Chromium <1 Arsenic <1 Cadmium <1 Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Environmental Partners
Date Received: Not Applicable Project: 63801.1, F&BI 209033

Date Extracted:09/07/12Lab ID:I2-593 mbDate Analyzed:09/11/12Data File:I2-593 mb.041Matrix:SoilInstrument:ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	92	60	125
Indium	93	60	125
Holmium	94	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium <1 Arsenic <1 Cadmium <1 Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/05/12

Project: 63801.1, F&BI 209033

Date Extracted: 09/07/12 Date Analyzed: 09/12/12

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
P-15:1.5 209033-01	<0.1
P-16:3 209033-03	<0.1
S-1:7 209033-04	<0.1
H-1:7 209033-05	<0.1
H-2:4 209033-06	<0.1
H-3:7 209033-07	<0.1
H-4:7 209033-08	<0.1
P-17:1.5 209033-09	<0.1
P-18:1.5 209033-11	<0.1
P-19:1.5 209033-13	<0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/05/12

Project: 63801.1, F&BI 209033

Date Extracted: 09/07/12 Date Analyzed: 09/12/12

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
P-19:4 209033-14	<0.1
P-20:1.5 209033-15	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P-15:1.5 Client: **Environmental Partners** 09/05/12 Date Received: Project: 63801.1, F&BI 209033 Lab ID: Date Extracted: 09/07/12 209033-01 Date Analyzed: 09/07/12 Data File: 090726.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	100	50	150

Compounds	Concentration	Compounds:	Concentration
Compounds:	mg/kg (ppm)	Compounds.	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P-16:3 Client: **Environmental Partners** Date Received: Project: 09/05/12 63801.1, F&BI 209033 Lab ID: Date Extracted: 09/07/12 209033-03 Date Analyzed: 09/07/12 Data File: 090727.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-		•	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: S-1:7 Client: **Environmental Partners** Date Received: 09/05/12 Project: 63801.1, F&BI 209033 Lab ID: Date Extracted: 09/07/12 209033-04 Date Analyzed: 09/07/12 Data File: 090728.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-		_	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P-17:1.5 Client: **Environmental Partners** Date Received: 09/05/12 Project: 63801.1, F&BI 209033 Lab ID: Date Extracted: 09/07/12 209033-09 Date Analyzed: 09/07/12 Data File: 090729.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-	0 0 11	•	0 0
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane Chloroethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluen e	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P-18:1.5 Client: **Environmental Partners** 09/05/12 63801.1, F&BI 209033 Date Received: Project: Lab ID: Date Extracted: 09/07/12 209033-11 Date Analyzed: 09/07/12 Data File: 090730.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethen e	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P-19:1.5 Client: **Environmental Partners** 09/05/12 Date Received: Project: 63801.1, F&BI 209033 Lab ID: Date Extracted: 09/07/12 209033-13 Date Analyzed: 09/07/12 Data File: 090731.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P-19:4 Client: **Environmental Partners** Date Received: Project: 09/05/12 63801.1, F&BI 209033 Lab ID: Date Extracted: 09/07/12 209033-14 Date Analyzed: 09/07/12 Data File: 090732.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: VM

	Lower	∪pper
% Recovery:	Limit:	Limit:
100	50	150
100	50	150
99	50	150
	100 100	% Recovery: Limit: 100 50 100 50

Community	Concentration	C	Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylen e	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P-20:1.5 Client: **Environmental Partners** 63801.1, F&BI 209033 Date Received: Project: 09/05/12 Lab ID: Date Extracted: 09/07/12 209033-15 Date Analyzed: 09/08/12 Data File: 090733.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: VM

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: **Environmental Partners** 63801.1, F&BI 209033 Date Received: Not Applicable Project: 09/07/12 Lab ID: Date Extracted: 02-1592 mb Date Analyzed: 09/07/12 Data File: 090722.D Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-		_	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichloroben zene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: P-15:1.5 Client: **Environmental Partners** Date Received: 09/05/12 Project: 63801.1, F&BI 209033 Date Extracted:

Lab ID: 209033-01 09/10/12

Date Analyzed: 09/13/12 Data File: 091260.D\ECD1A.CH Matrix:

Instrument: Soil GC7 mg/kg (ppm) Units: Operator: mwdl

Upper Limit: Lower Surrogates: TCMX % Recovery: Limit: 114 50 150

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1

Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: P-16:3 Client: Environmental Partners
Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Lab ID: 209033-03

Date Analyzed: 09/13/12 Data File: 091264.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1
Aroclor 1242 <0.1

Aroclor 1248 <0.1 Aroclor 1254 <0.1 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: S-1:7 Client: **Environmental Partners** Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Lab ID: 209033-04 Date Extracted: 09/10/12

Date Analyzed: 09/13/12 Data File: 091266.D\ECD1A.CH

Matrix: Soil Instrument: GC7 mg/kg (ppm) Units: Operator: mwdl

Upper Limit: Lower Surrogates: TCMX % Recovery: Limit: 107 50 150

< 0.1

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248

Aroclor 1254 < 0.1 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: H-1:7 Client: Environmental Partners
Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Lab ID: 209033-05

Date Analyzed: 09/13/12 Data File: 091268.D\ECD1A.CH

Aroclor 1254 <0.1 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: H-2:4 Client: Environmental Partners Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Lab ID: 209033-06

Date Analyzed: 09/13/12 Data File: 091270.D\ECD1A.CH

Aroclor 1248 <0.1 Aroclor 1254 <0.1 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: H-3:7 Client: Environmental Partners
Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Lab ID: 209033-07

Date Analyzed: 09/13/12 Data File: 091272.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: H-4:7 Client: Environmental Partners Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Lab ID: 209033-08

Date Analyzed: 09/13/12 Data File: 091274.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1

Aroclor 1232 <0.1

 Aroclor 1232
 <0.1</td>

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: P-17:1.5 Client: Environmental Partners
Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Lab ID: 209033-09

Date Analyzed: 09/13/12 Data File: 091276.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1
Aroclor 1242 <0.1

Aroclor 1242 <0.1 Aroclor 1248 <0.1 Aroclor 1254 <0.1 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: P-18:1.5 Client: Environmental Partners
Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Date Feature to decrease to the control of the control of

Date Extracted: 09/10/12 Lab ID: 209033-11

Date Analyzed: 09/13/12 Data File: 091278.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1

Aroclor 1232 <0.1

Aroclor 1016 <0.1

Aroclor 1242 <0.1 Aroclor 1248 <0.1 Aroclor 1254 <0.1 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: P-19:1.5 Client: Environmental Partners
Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Lab ID: 209033-13

Date Analyzed: 09/13/12 Data File: 091280.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1
Aroclor 1242 <0.1
Aroclor 1248 <0.1

Aroclor 1254 0.23 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: P-19:4 Client: Environmental Partners Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Lab ID: 209033-14

Date Analyzed: 09/13/12 Data File: 091282.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1

Aroclor 1242 <0.1 Aroclor 1248 <0.1 Aroclor 1254 <0.1 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: P-20:1.5 Client: Environmental Partners
Date Received: 09/05/12 Project: 63801.1, F&BI 209033

Date Fertnested: 09/10/13

Date Extracted: 09/10/12 Lab ID: 209033-15

Date Analyzed: 09/13/12 Data File: 091284.D\ECD1A.CH
Matrix: Soil Instrument: GC7

Matrix: Soil Instrument: GC7
Units: mg/kg (ppm) Operator: mwdl

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1
Aroclor 1242 <0.1

Aroclor 1248 <0.1 Aroclor 1254 <0.1 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Method Blank Client: Environmental Partners
Date Received: Not Applicable Project: 63801.1, F&BI 209033

Date Extracted: 09/10/12 Lab ID: 02-1607 mb

Date Analyzed: 09/12/12 Data File: 091210.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/05/12

Project: 63801.1, F&BI 209033

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 209033-03 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	70	79	79	64-133	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	82	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/05/12

Project: 63801.1, F&BI 209033

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 209072-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	mg/kg (ppm)	50	13.1	92 b	86 b	63-120	7 b
Arsenic	mg/kg (ppm)	10	1.80	106	98	56-125	8
Cadmium	mg/kg (ppm)	10	<1	106	98	85-117	8
Lead	mg/kg (ppm)	50	2.31	104	97	64-139	7

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	112	81-117
Arsenic	mg/kg (ppm)	10	108	79-112
Cadmium	mg/kg (ppm)	10	105	88-114
Lead	mg/kg (ppm)	50	105	83-118

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/05/12

Project: 63801.1, F&BI 209033

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 209072-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	89	95	54-156	7

			Percent	
	Reporting Units	Spike	Recovery	Acceptance
Analyte		Level	LCS	Criteria
Mercury	mg/kg (ppm)	0.125	85	73-131

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/05/12

Project: 63801.1, F&BI 209033

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 209033-01 (Matrix Spike)

· ·	1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	14	10-60
Chloromethane	mg/kg (ppm)	2.5	< 0.5	42	10-89
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	46	10-91
Bromomethane	mg/kg (ppm)	2.5	< 0.5	57	10-102
Chloroethane	mg/kg (ppm)	2.5	< 0.5	57	10-97
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	45	10-94
Acetone	mg/kg (ppm)	12.5	< 0.5	69	37-115
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	57	16-100
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	67	34-108
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	79	42-103
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	68	19-102
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	73	37-97
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	73	29-105
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	41-101
Chloroform	mg/kg (ppm)	2.5	< 0.05	76	43-100
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	68	48-104
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	77	43-98
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	76	35-102
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	70	34-100
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	74	30-107
Benzene	mg/kg (ppm)	2.5	< 0.03	74	39-98
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	79	38-101
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	45-101
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	86	45-115
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	82	46-101
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	76	52-105
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	91	42-120
Toluene	mg/kg (ppm)	2.5	< 0.05	76	45-99
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	87	46-118
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	81	51-104
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	76	49-108
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	49-101
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	74	38-102
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	93	42-132
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	83	49-105
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	78	47-100
Ethylbenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	78 84	47-101 46-112
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5 5	<0.05 <0.1	84 80	46-112 48-102
m,p-Xylene	mg/kg (ppm)		<0.15	82	
o-Xylene Styrene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	82 83	49-101 49-106
Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	81	47-104
Bromoform		2.5	< 0.05	97	25-171
n-Propylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	80	47-105
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	79	48-105
1.3.5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	82	47-105
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	78	51-108
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	77	50-104
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	78	47-102
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	80	47-102
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	80	48-105
1,2,4 Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	82	48-105
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	82	47-106
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	82	47-107
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	77	47-103
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	77	46-102
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	79	48-104
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	84	39-130
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	74	44-106
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	80	44-106
Naphthalene	mg/kg (ppm)	2.5	< 0.05	83	48-108
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	83	46-107

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/05/12

Project: 63801.1, F&BI 209033

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

J	•		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	44	42	11-84	5
Chloromethane	mg/kg (ppm)	2.5	68	66	41-99	3
Vinyl chloride	mg/kg (ppm)	2.5	84	81	51-102	4
Bromomethane	mg/kg (ppm)	2.5	86	89	51-111	3
Chloroethane	mg/kg (ppm)	2.5	90	96	53-113	6
Trichlorofluoromethane	mg/kg (ppm)	2.5	91	94	61-113	3
Acetone	mg/kg (ppm)	12.5	87	87	69-132	0
1.1-Dichloroethene	mg/kg (ppm)	2.5	90	93	67-116	3
Methylene chloride	mg/kg (ppm)	2.5	88	90	62-130	2
		2.5	98	99	78-116	1
Methyl t-butyl ether (MTBE) trans-1,2-Dichloroethene	mg/kg (ppm)	2.5 2.5	98 96	99	78-116 70-116	3
1.1-Dichloroethane	mg/kg (ppm)	2.5 2.5	96 97	99 97	70-116	0
	mg/kg (ppm)					
2,2-Dichloropropane	mg/kg (ppm)	2.5	108	109	70-123	1
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	100	76-113	2
Chloroform	mg/kg (ppm)	2.5	97	98	77-113	1
2-Butanone (MEK)	mg/kg (ppm)	12.5	86	84	76-114	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	98	99	79-114	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	102	105	73-119	3
1,1-Dichloropropene	mg/kg (ppm)	2.5	96	95	77-110	1
Carbon tetrachloride	mg/kg (ppm)	2.5	104	108	67-126	4
Benzene	mg/kg (ppm)	2.5	94	94	70-115	0
Trichloroethene	mg/kg (ppm)	2.5	95	97	70-113	2
1,2-Dichloropropane	mg/kg (ppm)	2.5	96	97	79-110	1
Bromodichloromethane	mg/kg (ppm)	2.5	106	109	76-119	3
Dibromomethane	mg/kg (ppm)	2.5	102	104	78-115	2
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	94	96	80-120	2
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	113	116	80-117	3
Toluene	mg/kg (ppm)	2.5	93	95	79-112	2
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	106	108	81-118	2
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	96	98	83-111	2
2-Hexanone	mg/kg (ppm)	12.5	89	91	80-121	2
1,3-Dichloropropane	mg/kg (ppm)	2.5	93	94	81-114	1
Tetrachloroethene	mg/kg (ppm)	2.5	95	96	73-117	1
Dibromochloromethane	mg/kg (ppm)	2.5	115	117	59-143	2
1.2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	102	104	82-113	2
Chlorobenzene	mg/kg (ppm)	2.5	97	99	81-110	2
Ethylbenzene	mg/kg (ppm)	2.5	95	97	79-116	2
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	107	109	76-121	2
m,p-Xylene	mg/kg (ppm)	5	99	101	80-115	2
o-Xylene	mg/kg (ppm)	2.5	101	102	81-113	1
Styrene	mg/kg (ppm)	2.5	102	104	79-118	2
Isopropylbenzene	mg/kg (ppm)	2.5	101	103	81-114	2
Bromoform	mg/kg (ppm)	2.5	116	118	36-166	2
n-Propylbenzene	mg/kg (ppm)	2.5	98	100	82-114	2
Bromobenzene	mg/kg (ppm)	2.5	98	101	83-113	3
1,3,5-Trimethylbenzene		2.5	102	105	82-115	3
1,3,3-1 rimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5 2.5	102	103	82-115 81-116	3 1
	mg/kg (ppm)	2.5 2.5	91	93	53-136	2
1,2,3-Trichloropropane	mg/kg (ppm)					
2-Chlorotoluene	mg/kg (ppm)	2.5	94	97	81-113	3
4-Chlorotoluene	mg/kg (ppm)	2.5	97	100	83-111	3
tert-Butylbenzene	mg/kg (ppm)	2.5	101	103	81-113	2
1,2,4 Trimethylbenzene	mg/kg (ppm)	2.5	101	102	82-115	1
sec-Butylbenzene	mg/kg (ppm)	2.5	101	104	81-115	3
p-Isopropyltoluene	mg/kg (ppm)	2.5	103	105	82-115	2
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	98	100	81-113	2
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	96	98	82-109	2
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	100	101	82-111	1
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	103	106	72-123	3
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	90	93	81-110	3
Hexachlorobutadiene	mg/kg (ppm)	2.5	95	98	78-116	3
Naphthalene	mg/kg (ppm)	2.5	106	108	85-114	2
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	102	105	86-112	3
	5 5 41 ,					

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/05/12

Project: 63801.1, F&BI 209033

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 209033-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Aroclor 1016	mg/kg (ppm)	< 0.1	< 0.1	nm
Aroclor 1260	mg/kg (ppm)	< 0.1	< 0.1	nm

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	109	112	70-130	3
Aroclor 1260	mg/kg (ppm)	0.8	103	104	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

209 033	SAMPLE CHAIN OF CU	JSTODY ME Oglas	1/2 VS3/BI3
Send Report To Eric Kultes	SAMPLERS (signature)		#OF
Company Environmental Partners, Inc.	PROJECT ID/ADDRESS	JOB#	TURNAROUND TIME Standard RUSH
Address 295 NE Gilman Blvd.	M; Creek	63801.1	Rush charges authorized by:
City, State, ZIP Issaquah, WA 98027	SITE NAME	REMARKS	SAMPLE DISPOSAL. Dispose after 30 days Return samples
Phone # (425) 395-0010 Fax # (425) 395-0011	·		☐ Will call with instructions

								- 1	NAL	(SES	REQU	ESTE	D	
Sample ID	LAB ID	Date Sampled	Time Sampled	Matrix	# of jars	8015 - GRO	8015 - DRO	BTEX by 8021B	BTEX by 602	VOC by 8260C	VOC by 524	PCRS	Mrchs	Notes
P-15;1.5	6(A · E	9/4/12	11:02	50,1	5		X			X		X	Χ	
P-15:4	OZA G		11:26		5		X			ス		X	X	Archive
P-16:3	03A F		11:55		7		X			X		X	区	
5-1:7	OYAH		12:50		7		X			X		X	X	
4-1:7	05		13:25		1		X					X	X	
H-2:4	06		13:40				X					X	X	
H-3:7	07		14:00		Ī		X					X	X	
H-4:7	95		15:10		1		X					X	X	
P-17:1.5	09A 5		16:10		5		X			X		X	1	
	10 A-	Ē	16:17		5		X			×		X	X	Arlive
P-18:1.5	11 AC		16:25		5		X			X		X	X	
P-18:4	12A 6		16:30		3-		X,			X		X	X	Archive
P-19:1.5	12A B		16:38		5		1			×		メ	X	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Err Cadder	EPF	9/5/12	(0:30)
Received by:	Janes Brown	FFR		10/20
Relinguished by:				
Received by:			6	
		Samples 1	eceived at	°C
	Received by: Received by: Received by: Received by:	Received by: Received by: Received by: Received by:	Received by: Received by: Received by: Received by: Samples 1	Received by: Received by: Relinquished by: Takes Brown FIFT 9/5/12 Relinquished by:

209033 SA	MPLE CHA	IN O	FÇ	US	TO	DY	HE	- 09	05/	1/2	VS3/AZ3	•	
Send Report To Eric Koltes	SAMPLE S (signate	////							PAG		OF OF OR		
Company Environmental Partners, Inc.	PROJECT ID/ADDRESS				16		ОВ# [//_	,	Standard RUSH				
Address 295 NE Gilman Blvd.	SITE NAME	ων\ 				REMÁ	RKS		Ku:		authorized by: AMPLE DISPOSAL		
City, State, ZIP <u>Issaquah, WA 98027</u> Phone # <u>(425) 395-0010</u> Fax # <u>(425) 395-0011</u>	-								Dispose after 30 days Return samples Will call with instructions				
					NAL	(SES	REQU	ESTE	D				
		l e	ူ	21B	302	၁၉	24						

·							F	NAL	/SES	REQU	ESTE	D		·		
Sample ID	LAB ID	Date Sampled	-	Matrix	# of jars	8015 - GRO	8015 - DRO	BTEX by 8021B	ВТЕХ by 602	VOC by 8260C	VOC by 524	PCBs	MOTOR			Notes
P-19:4	MAB	9/4/12	16:45	505/	5		X			X		X	X			Nodina 400 gar
	15 A-E		16:50		5		×			X		X	*			TO CHILL
P-20; 4	16A-E		16:55		5		X			人		X	/			Archie
	3															
																and the same of th
					·	, and the second										<u> </u>
						-										
d.																#
													-			
														-		
			•													·

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

RINT NAME	COMPANY DATE	E TIME
tel EP	I 9/5/1	A 10:00
rox Re	h 9/4/	
	7	
		146V EPT 9/5/1

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

September 17, 2012

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Mill Creek / Seattle Times

Dear Mr. Koltes:

Included are the results from the testing of material submitted on September 7, 2012 from the Mill Creek / Seattle Times, F&BI 209072 project. There are 47 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0917R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 7, 2012 by Friedman & Bruya, Inc. from the Environmental Partners Mill Creek / Seattle Times, F&BI 209072 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Partners
209072-01	MW1-10
209072-02	MW1-30
209072-03	W2-10
209072-04	W2-15
209072-05	MW1-0912
209072-06	MW2-0912

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

Date Extracted: 09/07/12 Date Analyzed: 09/07/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
MW1-10 209072-01	<2	91
W2-10 209072-03	<2	89
Method Blank 02-1603 MB	<2	91

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

Date Extracted: 09/07/12 Date Analyzed: 09/08/12

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
MW1-0912 209072-05	<100	93
MW2-0912 209072-06	340	102
Method Blank 02-1605 MB	<100	94

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

Date Extracted: 09/10/12 Date Analyzed: 09/10/12

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 51-134)
MW1-0912 209072-05	<50	<250	93
MW2-0912 209072-06	400 x	<250	90
Method Blank 02-1608 MB	<50	<250	81

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

Date Extracted: 09/07/12 Date Analyzed: 09/09/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	$\frac{\text{Diesel Range}}{(C_{10}\text{-}C_{25})}$	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
MW1-10 209072-01	<50	<250	133
W2-10 209072-03	<50	<250	143
Method Blank	<50	<250	135

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW1-0912 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: 09/11/12 Date Extracted: 209072-05 Date Analyzed: 09/11/12 Data File: 209072-05.084 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 77 60 125 77 Indium 60 125 Holmium 81 60 125

Concentration

Analyte: ug/L (ppb)

Chromium <1
Arsenic 1.38
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW2-0912 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: 09/11/12 209072-06 Date Extracted: Date Analyzed: 09/11/12 Data File: 209072-06.085 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 111 60 125 Indium 81 60 125 Holmium 83 60 125

Concentration

Analyte: ug/L (ppb)

Chromium57.1Arsenic2.19Cadmium<1</td>Lead4.84

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: I2-599 mb Date Extracted: 09/11/12 Date Analyzed: 09/11/12 Data File: I2-599 mb.067 Matrix: Instrument: ICPMS1 Water Units: ug/L (ppb) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 102 60 125 103 Indium 60 125 Holmium 102 60 125

Concentration

Analyte: ug/L (ppb)

Chromium <1 Arsenic <1 Cadmium <1 Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW1-0912 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

09/10/12 Lab ID: 209072-05 Date Extracted: Date Analyzed: 09/10/12 Data File: 209072-05.060 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 98 60 125 Indium 101 60 125 Holmium 96 60 125

Concentration

Analyte: ug/L (ppb)

Chromium <1
Arsenic 1.10
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: MW2-0912 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

09/10/12 Lab ID: 209072-06 Date Extracted: Date Analyzed: 09/10/12 Data File: 209072-06.063 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 96 60 125 92 Indium 60 125 Holmium 94 60 125

Concentration

Analyte: ug/L (ppb)

Chromium 2.80 lc
Arsenic <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Dissolved Metals By EPA Method 200.8

Client ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: Date Extracted: 09/10/12 I2-594 mb Date Analyzed: 09/10/12 Data File: I2-594 mb.057 Instrument: Matrix: Water ICPMS1 Units: ug/L (ppb) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 102 60 125 Indium 106 60 125 Holmium 100 60 125

Concentration

Analyte: ug/L (ppb)

Chromium <1 Arsenic <1 Cadmium <1 Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: MW1-10 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

 Date Extracted:
 09/07/12
 Lab ID:
 209072-01

 Date Analyzed:
 09/10/12
 Data File:
 209072-01.010

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 122 60 125 Indium 100 60 125 Holmium 100 60 125

Concentration

Analyte: mg/kg (ppm)

Chromium 13.1
Arsenic 1.80
Cadmium <1
Lead 2.31

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: W2-10 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

 Date Extracted:
 09/07/12
 Lab ID:
 209072-03

 Date Analyzed:
 09/10/12
 Data File:
 209072-03 rr.054

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

Upper Lower % Recovery: Limit: **Internal Standard:** Limit: Germanium 114 60 125 Indium 101 60 125 Holmium 98 60 125

Concentration

Analyte: mg/kg (ppm)

Chromium 12.7
Arsenic 2.48
Cadmium <1
Lead 1.83

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: **Environmental Partners**

Date Received: Project: Mill Creek / Seattle Times, F&BI 209072 NA

Lab ID: Date Extracted: 09/07/12 I2-593 mb Date Analyzed: 09/10/12 Data File: I2-593 mb.008 Matrix: Soil Instrument: ICPMS1

mg/kg (ppm) Units: Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	103	60	125
Indium	98	60	125
Holmium	99	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium <1 Arsenic <1 Cadmium <1 Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

Date Extracted: 09/07/12 Date Analyzed: 09/12/12

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported as ug/L (ppb)

Sample ID	<u>Total Mercury</u>
Laboratory ID	
MW1-0912 209072-05	<0.1
MW2-0912 209072-06	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

Date Extracted: 09/07/12 Date Analyzed: 09/12/12

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR DISSOLVED MERCURY USING EPA METHOD 1631E

Results Reported as ug/L (ppb)

Sample ID	<u>Dissolved Mercury</u>
Laboratory ID	
MW1-0912 209072-05	<0.1
MW2-0912 209072-06	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

Date Extracted: 09/07/12 Date Analyzed: 09/12/12

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
MW1-10 209072-01	<0.1
W2-10 209072-03	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID: W2-10 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: Date Extracted: 09/11/12 209072-03 Date Analyzed: 09/11/12 Data File: 091110.D Instrument: Matrix: Soil GCMS4 mg/kg (ppm) Units: Operator: VM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 86 50 150 Toluene-d8 95 50 150 4-Bromofluorobenzene 150 101 50

Concentration

Compounds: mg/kg (ppm)

1,2-Dibromoethane (EDB) <0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C Direct Sparge

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek / Seattle Times, F&BI 209072

Date Extracted:09/11/12Lab ID:02-1614 mbDate Analyzed:09/11/12Data File:091107.DMatrix:SoilInstrument:GCMS4

Units: Soil Instrument: GCM Units: mg/kg (ppm) Operator: VM

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 107 50 150 Toluene-d8 100 50 150 4-Bromofluorobenzene 150 109 50

Concentration

Compounds: mg/kg (ppm)

1,2-Dibromoethane (EDB) <0.005

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW1-10 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: Date Extracted: 09/07/12 209072-01 Date Analyzed: 09/08/12 Data File: 090741.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	99	50	150

Compounds	Concentration	Compounds	Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: W2-10 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: Date Extracted: 09/07/12 209072-03 Date Analyzed: 09/08/12 Data File: 090742.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	98	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: Date Extracted: 09/07/12 02-1592 mb Date Analyzed: 09/07/12 Data File: 090722.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

Commonwedge	Concentration	Common de	Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW1-0912 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: Date Extracted: 09/10/12 209072-05 Date Analyzed: 09/11/12 Data File: 091049.D Matrix: Instrument: GCMS9 Water Units: ug/L (ppb) Operator: VM

	Lower	∪pper
% Recovery:	Limit:	Limit:
100	50	150
100	50	150
99	50	150
	100 100	% Recovery: Limit: 100 50 100 50

Compounda	Concentration	Compounds	Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: MW2-0912 Client:	Environmental Partners
------------------------------------	------------------------

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: Date Extracted: 209072-06 09/10/12 Date Analyzed: 09/11/12 Data File: 091050.D Matrix: Instrument: GCMS9 Water Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	97	50	150

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
-	<1	-	<1
Dichlorodifluoromethane Chloromethane	<1 <10	1,3-Dichloropropane Tetrachloroethene	<1 10
		Dibromochloromethane	10 <1
Vinyl chloride Bromomethane	1.3 <1		<1 <1
Chloroethane	<1 <1	1,2-Dibromoethane (EDB) Chlorobenzene	<1 <1
	· -		· -
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	1.7
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	3.2
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	22	Bromobenzene	<1
Chloroform	2.3	1,3,5-Trimethylbenzene	3.9
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	1.3
Benzene	< 0.35	1,2,4-Trimethylbenzene	34
Trichloroethene	5.6	sec-Butylbenzene	3.9
1,2-Dichloropropane	<1	p-Isopropyltoluene	2.0
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: Date Extracted: 09/10/12 02-1613 mb Date Analyzed: 09/10/12 Data File: 091020.D Matrix: Water Instrument: GCMS9 Units: ug/L (ppb) Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: W2-10 Client: **Environmental Partners**

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: Date Extracted: 09/11/12 209072-03 rr1/5 Date Analyzed: 09/13/12 Data File: 091311.D Instrument: Matrix: Soil GCMS6 Units: mg/kg (ppm) Operator: VM

Lower

< 0.01

Upper Limit: Surrogates: % Recovery: Limit: Anthracene-d10 100 150 50 Benzo(a)anthracene-d12 129 35 159

Concentration Compounds: mg/kg (ppm)

Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek / Seattle Times, F&BI 209072

Lab ID: Date Extracted: 09/11/12 02-1626 mb2 Date Analyzed: 09/12/12 Data File: 091206.D Instrument: Matrix: Soil GCMS6 Units: mg/kg (ppm) Operator: VM

Surrogates: Lower Upper Limit: Limit:

Anthracene-d10 99 50 150
Benzo(a)anthracene-d12 116 35 159

< 0.01

Concentration Compounds: mg/kg (ppm)

Benz(a)anthracene <0.01
Chrysene <0.01
Benzo(a)pyrene <0.01
Benzo(b)fluoranthene <0.01
Benzo(k)fluoranthene <0.01
Indeno(1,2,3-cd)pyrene <0.01

Dibenz(a,h)anthracene

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: W2-10 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek / Seattle Times, F&BI 209072

Date Extracted: 09/10/12 Lab ID: 209072-03

Date Analyzed: 09/12/12 Data File: 091226.D\ECD1A.CH

Concentration mg/kg (ppm)

 Aroclor 1221
 <0.1</td>

 Aroclor 1232
 <0.1</td>

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek / Seattle Times, F&BI 209072

Date Extracted: 09/10/12 Lab ID: 02-1607 mb

Date Analyzed: 09/12/12 Data File: 091210.D\ECD1A.CH

Matrix: Soil Instrument: GC7
Units: mg/kg (ppm) Operator: mwdl

Concentration mg/kg (ppm)

Aroclor 1221 <0.1

Aroclor 1232 <0.1

Aroclor 1016 <0.1 Aroclor 1242 <0.1 Aroclor 1248 <0.1 Aroclor 1254 <0.1 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 209066-01 (Duplicate)

-	_	(Wet Wt)	(Wet Wt)	Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	mg/kg (ppm)	<2	<2	nm

	1 ercent					
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Gasoline	mg/kg (ppm)	20	100	71-131	_	

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 209082-01 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	95	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	79	79	58-134	0

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 209072-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	128	131	64-133	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	127	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 209088-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	ug/L (ppb)	20	<1	87	84	71-130	4
Arsenic	ug/L (ppb)	10	16.8	102 b	91 b	51-167	11 b
Cadmium	ug/L (ppb)	5	<1	93	89	86-115	4
Lead	ug/L (ppb)	10	12.0	93 b	86 b	85-115	8 b

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chromium	ug/L (ppb)	20	102	80-119
Arsenic	ug/L (ppb)	10	100	81-118
Cadmium	ug/L (ppb)	5	101	86-118
Lead	ug/L (ppb)	10	103	84-120

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED METALS USING EPA METHOD 200.8

Laboratory Code: 209072-05 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	ug/L (ppb)	20	<1	90	89	71-130	1
Arsenic	ug/L (ppb)	10	1.10	95	98	51-167	3
Cadmium	ug/L (ppb)	5	<1	93	92	86-115	1
Lead	ug/L (ppb)	10	<1	91	91	85-115	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chromium	ug/L (ppb)	20	104	80-119
Arsenic	ug/L (ppb)	10	101	81-118
Cadmium	ug/L (ppb)	5	104	86-118
Lead	ug/L (ppb)	10	102	84-120

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 209072-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	mg/kg (ppm)	50	13.1	92 b	86 b	63-120	7 b
Arsenic	mg/kg (ppm)	10	1.80	106	98	56-125	8
Cadmium	mg/kg (ppm)	10	<1	106	98	85-117	8
Lead	mg/kg (ppm)	50	2.31	104	97	64-139	7

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	112	81-117
Arsenic	mg/kg (ppm)	10	108	79-112
Cadmium	mg/kg (ppm)	10	105	88-114
Lead	mg/kg (ppm)	50	105	83-118

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 209072-05 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	ug/L (ppb)	0.5	< 0.1	91	91	78-124	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Mercury	ug/L (ppb)	0.5	93	78-123

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR DISSOLVED MERCURY USING EPA METHOD 1631E

Laboratory Code: 209072-05 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	ug/L (ppb)	0.5	< 0.1	89	94	78-124	5

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Mercury	ug/L (ppb)	0.5	92	78-123

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 209072-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	89	95	54-156	7

			Percent	
	Reporting Units	Spike	Recovery	Acceptance
Analyte		Level	LCS	Criteria
Mercury	mg/kg (ppm)	0.125	85	73-131

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

· ·	•		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
1,2-Dibromoethane (EDB)	mg/kg (ppm)	0.05	112	98	70-130	13

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 209033-01 (Matrix Spike)

·	1 '			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	14	10-60
Chloromethane	mg/kg (ppm)	2.5	<0.5	42	10-89
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	46	10-91
Bromomethane	mg/kg (ppm)	2.5	< 0.5	57	10-102
Chloroethane	mg/kg (ppm)	2.5	<0.5	57 57	10-102
Trichlorofluoromethane	mg/kg (ppm)	2.5	<0.5	45	10-94
Acetone	mg/kg (ppm)	12.5	<0.5	69	37-115
1.1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	57	16-100
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	67	34-108
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	79	42-103
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	68	19-102
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	73	37-97
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	73	29-105
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75 75	41-101
Chloroform	mg/kg (ppm)	2.5	< 0.05	76	43-100
2-Butanone (MEK)		12.5	<0.5	68	48-104
1,2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	77	43-98
1,1,1-Trichloroethane		2.5	< 0.05	76	35-102
	mg/kg (ppm)	2.5	< 0.05	70 70	34-100
1,1-Dichloropropene Carbon tetrachloride	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	70 74	34-100 30-107
Benzene	mg/kg (ppm)	2.5 2.5	<0.03	74 74	39-98
	mg/kg (ppm)				
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	79	38-101
1,2-Dichloropropane	mg/kg (ppm)	2.5 2.5	< 0.05	79 86	45-101
Bromodichloromethane	mg/kg (ppm)		< 0.05		45-115
Dibromomethane	mg/kg (ppm)	2.5	<0.05	82	46-101
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	76	52-105
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	91	42-120
Toluene	mg/kg (ppm)	2.5	< 0.05	76	45-99
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	87	46-118
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	81	51-104
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	76	49-108
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	49-101
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	74	38-102
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	93	42-132
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	83	49-105
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	78	47-100
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	78	47-101
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	84	46-112
m,p-Xylene	mg/kg (ppm)	5	< 0.1	80	48-102
o-Xylene	mg/kg (ppm)	2.5	< 0.05	82	49-101
Styrene	mg/kg (ppm)	2.5	< 0.05	83	49-106
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	81	47-104
Bromoform	mg/kg (ppm)	2.5	< 0.05	97	25-171
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	80	47-105
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	79	48-105
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	82	47-105
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	78	51-108
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	77	50-104
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	78	47-102
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	80	47-102
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	80	48-105
1,2,4 Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	82	48-105
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	82	47-106
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	82	47-107
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	77	47-103
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	77	46-102
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	79	48-104
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	84	39-130
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	74	44-106
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	80	44-106
Naphthalene	mg/kg (ppm)	2.5	< 0.05	83	48-108
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	83	46-107

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Zaboratory couet Zaboratory con	cror Sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	44	42	11-84	5
Chloromethane	mg/kg (ppm)	2.5	68	66	41-99	3
Vinyl chloride	mg/kg (ppm)	2.5	84	81	51-102	4
Bromomethane	mg/kg (ppm)	2.5	86	89	51-111	3
Chloroethane	mg/kg (ppm)	2.5	90	96	53-113	6
Trichlorofluoromethane	mg/kg (ppm)	2.5	91	94	61-113	3
Acetone	mg/kg (ppm)	12.5	87	87	69-132	0
1.1-Dichloroethene	mg/kg (ppm)	2.5	90	93	67-116	3
Methylene chloride	mg/kg (ppm)	2.5	88	90	62-130	2
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	98	99	78-116	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	96	99	70-116	3
1.1-Dichloroethane	mg/kg (ppm)	2.5	97	97	79-109	Ō
2,2-Dichloropropane	mg/kg (ppm)	2.5	108	109	70-123	1
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	100	76-113	2
Chloroform	mg/kg (ppm)	2.5	97	98	77-113	1
2-Butanone (MEK)	mg/kg (ppm)	12.5	86	84	76-114	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	98	99	79-114	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	102	105	73-119	3
1,1-Dichloropropene	mg/kg (ppm)	2.5	96	95	77-110	1
Carbon tetrachloride	mg/kg (ppm)	2.5	104	108	67-126	4
Benzene	mg/kg (ppm)	2.5	94	94	70-115	0
Trichloroethene	mg/kg (ppm)	2.5	95	97	70-113	2
1,2-Dichloropropane	mg/kg (ppm)	2.5	96	97	79-110	1
Bromodichloromethane	mg/kg (ppm)	2.5	106	109	76-119	3
Dibromomethane	mg/kg (ppm)	2.5	102	104	78-115	2
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	94	96	80-120	2
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	113	116	80-117	3
Toluene	mg/kg (ppm)	2.5	93	95	79-112	2
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	106	108	81-118	2
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	96	98	83-111	2
2-Hexanone	mg/kg (ppm)	12.5	89	91	80-121	2
1,3-Dichloropropane	mg/kg (ppm)	2.5	93	94	81-114	1
Tetrachloroethene	mg/kg (ppm)	2.5	95	96	73-117	1
Dibromochloromethane	mg/kg (ppm)	2.5	115	117	59-143	2
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	102	104	82-113	2
Chlorobenzene	mg/kg (ppm)	2.5	97	99	81-110	2
Ethylbenzene	mg/kg (ppm)	2.5	95	97	79-116	2
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	107	109	76-121	2
m,p-Xylene	mg/kg (ppm)	5	99	101	80-115	2
o-Xylene	mg/kg (ppm)	2.5	101	102	81-113	1
Styrene	mg/kg (ppm)	2.5	102	104	79-118	2 2
Isopropylbenzene	mg/kg (ppm)	2.5	101	103	81-114	
Bromoform	mg/kg (ppm)	2.5	116	118	36-166	2 2
n-Propylbenzene Bromobenzene	mg/kg (ppm)	2.5 2.5	98 98	100 101	82-114 83-113	3
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	102	105	82-115	3 3
1,1,2,2-Tetrachloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	102	103	82-115 81-116	3 1
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	91	93	53-136	2
2-Chlorotoluene	mg/kg (ppm)	2.5	94	97	81-113	3
4-Chlorotoluene	mg/kg (ppm)	2.5	97	100	83-111	3
tert-Butylbenzene	mg/kg (ppm)	2.5	101	103	81-113	2
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	101	102	82-115	1
sec-Butylbenzene	mg/kg (ppm)	2.5	101	104	81-115	3
p-Isopropyltoluene	mg/kg (ppm)	2.5	103	105	82-115	2
1.3-Dichlorobenzene	mg/kg (ppm)	2.5	98	100	81-113	2
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	96	98	82-109	2
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	100	101	82-111	1
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	103	106	72-123	3
1,2,4Trichlorobenzene	mg/kg (ppm)	2.5	90	93	81-110	3
Hexachlorobutadiene	mg/kg (ppm)	2.5	95	98	78-116	3
Naphthalene	mg/kg (ppm)	2.5	106	108	85-114	2
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	102	105	86-112	3
	• •					

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 209075-01 (Matrix Spike)

	Donorting	Cnilco	Comple	Percent	Assentance
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Acceptance Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<10	117	62-131
Chloromethane	ug/L (ppb)	50	<10	103	68-127
Vinyl chloride	ug/L (ppb)	50	1.6	114	76-124
Bromomethane	ug/L (ppb)	50	<1	99	67-127
Chloroethane	ug/L (ppb)	50	<1	103	69-123
Trichlorofluoromethane	ug/L (ppb)	50	<1	105	75-121
Acetone	ug/L (ppb)	250	<10	86	68-137
1,1-Dichloroethene	ug/L (ppb)	50	<1	96	75-118
Methylene chloride	ug/L (ppb)	50	<5	90	64-120
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	97	74-120
trans-1,2-Dichloroethene 1,1-Dichloroethane	ug/L (ppb)	50 50	<1 <1	95 99	75-119 82-109
2.2-Dichloropropane	ug/L (ppb)	50 50	<1	95 95	62-109
cis-1,2-Dichloroethene	ug/L (ppb) ug/L (ppb)	50 50	6.1	95 97	83-109
Chloroform	ug/L (ppb)	50	<1	96	81-110
2-Butanone (MEK)	ug/L (ppb)	250	<10	89	75-122
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	92	76-114
1,1,1-Trichloroethane	ug/L (ppb)	50	<1	99	77-116
1,1-Dichloropropene	ug/L (ppb)	50	<1	96	81-110
Carbon tetrachloride	ug/L (ppb)	50	<1	100	74-119
Benzene	ug/L (ppb)	50	0.73	97	79-108
Trichloroethene	ug/L (ppb)	50	4.1	93	79-105
1,2-Dichloropropane	ug/L (ppb)	50	<1	99	83-110
Bromodichloromethane	ug/L (ppb)	50	<1	100	77-118
Dibromomethane	ug/L (ppb)	50	<1	96	82-109
4-Methyl-2-pentanone	ug/L (ppb)	250	<10	94	78-123
cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	104	76-120
Toluene	ug/L (ppb)	50	<1	96 100	82-108
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/L (ppb)	50 50	<1 <1	100 98	77-118 83-110
2-Hexanone	ug/L (ppb)	250	<10	94	75-128
1,3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<10 <1	94 97	84-109
Tetrachloroethene	ug/L (ppb)	50	22	97 b	69-114
Dibromochloromethane	ug/L (ppb)	50	<1	101	66-133
1.2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	98	85-110
Chlorobenzene	ug/L (ppb)	50	<1	94	82-107
Ethylbenzene	ug/L (ppb)	50	<1	95	79-112
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	98	78-118
m,p-Xylene	ug/L (ppb)	100	<2	94	81-111
o-Xylene	ug/L (ppb)	50	<1	94	82-110
Styrene	ug/L (ppb)	50	<1	92	73-116
Isopropylbenzene	ug/L (ppb)	50	<1	98	80-112
Bromoform	ug/L (ppb)	50	<1	93	45-151
n-Propylbenzene	ug/L (ppb)	50 50	<1	95 93	77-116
Bromobenzene 1,3,5-Trimethylbenzene	ug/L (ppb)	50 50	<1 <1	93 94	84-110 78-114
1,1,2,2-Tetrachloroethane	ug/L (ppb) ug/L (ppb)	50 50	<1 <1	94 104	78-114 82-117
1,2,3-Trichloropropane	ug/L (ppb)	50 50	<1	95	77-116
2-Chlorotoluene	ug/L (ppb)	50	<1	94	79-112
4-Chlorotoluene	ug/L (ppb)	50	<1	93	80-112
tert-Butylbenzene	ug/L (ppb)	50	<1	96	81-114
1,2,4-Trimethylbenzene	ug/L (ppb)	50	<1	94	76-115
sec-Butylbenzene	ug/L (ppb)	50	<1	96	80-115
p-Isopropyltoluene	ug/L (ppb)	50	<1	96	78-116
1,3-Dichlorobenzene	ug/L (ppb)	50	<1	93	81-110
1,4-Dichlorobenzene	ug/L (ppb)	50	<1	92	79-109
1,2-Dichlorobenzene	ug/L (ppb)	50	<1	94	81-110
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	102	67-128
1,2,4-Trichlorobenzene	ug/L (ppb)	50	<1	88	77-113
Hexachlorobutadiene	ug/L (ppb)	50	<1	94	66-122
Naphthalene	ug/L (ppb)	50	<1	97	79-120
1,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	97	78-115

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

3	•		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	111	119	56-138	7
Chloromethane	ug/L (ppb)	50	102	103	66-131	1
Vinyl chloride	ug/L (ppb)	50	113	114	73-126	1
Bromomethane	ug/L (ppb)	50	100	102	65-131	2
Chloroethane	ug/L (ppb)	50	104	107	69-125	3
Trichlorofluoromethane	ug/L (ppb)	50	104	106	75-124	2
Acetone	ug/L (ppb)	250	81	83	64-136	2
1,1-Dichloroethene	ug/L (ppb)	50	97	99	72-122	2
Methylene chloride	ug/L (ppb)	50	90	93	56-128	3
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	98	100	76-120	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	94	98	74-122	4
1,1-Dichloroethane	ug/L (ppb)	50	97	99	85-107	2
2,2-Dichloropropane	ug/L (ppb)	50	105	108	83-119	3
cis-1,2-Dichloroethene	ug/L (ppb)	50	97	98	85-105	1
Chloroform	ug/L (ppb)	50	95	97	83-107	2
2-Butanone (MEK)	ug/L (ppb)	250	85	87	75-118	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	92	93	85-107	ī
1,1,1-Trichloroethane	ug/L (ppb)	50	98	101	81-114	3
1,1-Dichloropropene	ug/L (ppb)	50	95	97	85-107	2
Carbon tetrachloride	ug/L (ppb)	50	100	103	77-118	3
Benzene	ug/L (ppb)	50	95	97	81-107	2
Trichloroethene	ug/L (ppb)	50	94	97	80-104	3
1,2-Dichloropropane	ug/L (ppb)	50	97	99	86-106	2
Bromodichloromethane	ug/L (ppb)	50	101	102	76-117	ī
Dibromomethane	ug/L (ppb)	50	95	98	86-106	3
4-Methyl-2-pentanone	ug/L (ppb)	250	92	96	85-113	4
cis-1,3-Dichloropropene	ug/L (ppb)	50	112	114	78-120	2
Toluene	ug/L (ppb)	50	95	96	86-105	1
trans-1,3-Dichloropropene	ug/L (ppb)	50	110	112	82-116	2
1,1,2-Trichloroethane	ug/L (ppb)	50	97	98	87-106	ī
2-Hexanone	ug/L (ppb)	250	90	91	84-117	1
1,3-Dichloropropane	ug/L (ppb)	50	97	98	86-107	1
Tetrachloroethene	ug/L (ppb)	50	97	97	81-106	0
Dibromochloromethane	ug/L (ppb)	50	107	109	57-138	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	98	101	89-107	3
Chlorobenzene	ug/L (ppb)	50	94	96	86-104	2
Ethylbenzene	ug/L (ppb)	50	96	97	87-107	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	98	100	79-117	2
m,p-Xylene	ug/L (ppb)	100	97	98	87-107	1
o-Xylene	ug/L (ppb)	50	96	98	86-107	2
Styrene	ug/L (ppb)	50	102	103	87-110	1
Isopropylbenzene	ug/L (ppb)	50	99	101	87-108	2
Bromoform	ug/L (ppb)	50	107	107	27-167	0
n-Propylbenzene	ug/L (ppb)	50	97	99	87-109	2
Bromobenzene	ug/L (ppb)	50	96	97	86-108	1
1,3,5-Trimethylbenzene	ug/L (ppb)	50	100	103	88-108	3
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	103	104	82-116	1
1,2,3-Trichloropropane	ug/L (ppb)	50	94	97	75-117	3
2-Chlorotoluene	ug/L (ppb)	50	95	97	85-109	2
4-Chlorotoluene	ug/L (ppb)	50	95	97	87-107	2
tert-Butylbenzene	ug/L (ppb)	50	99	101	86-110	2
1,2,4-Trimethylbenzene	ug/L (ppb)	50	99	102	87-109	3
sec-Butylbenzene	ug/L (ppb)	50	99	101	88-110	2
p-Isopropyltoluene	ug/L (ppb)	50	100	101	87-112	1
1,3-Dichlorobenzene	ug/L (ppb)	50	95	97	88-105	2
1,4-Dichlorobenzene	ug/L (ppb)	50	92	95	87-104	3
1,2-Dichlorobenzene	ug/L (ppb)	50	96	98	86-107	2
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	102	106	65-126	4
1,2,4 Trichlorobenzene	ug/L (ppb)	50	94	96	86-109	2
Hexachlorobutadiene	ug/L (ppb)	50	101	101	78-116	0
Naphthalene	ug/L (ppb)	50	103	108	89-114	5
1,2,3-Trichlorobenzene	ug/L (ppb)	50	102	108	89-111	6

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 209106-05 1/5 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Benz(a)anthracene	mg/kg (ppm)	0.17	0.048	89 b	23-144
Chrysene	mg/kg (ppm)	0.17	0.075	75 b	45-122
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	0.091	99 b	31-144
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	0.026	103	45-130
Benzo(a)pyrene	mg/kg (ppm)	0.17	0.075	99 b	39-128
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	0.057	139 b	28-146
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	0.012	137 vo	46-129

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Benz(a)anthracene	mg/kg (ppm)	0.17	88	98	51-115	11
Chrysene	mg/kg (ppm)	0.17	96	99	55-129	3
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	104	126 vo	56-123	19
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	99	114	54-131	14
Benzo(a)pyrene	mg/kg (ppm)	0.17	88	100	51-118	13
Inden o(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	88	107	49-148	19
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	90	111	50-141	21 vo

ENVIRONMENTAL CHEMISTS

Date of Report: 09/17/12 Date Received: 09/07/12

Project: Mill Creek / Seattle Times, F&BI 209072

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 209033-01 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Aroclor 1016	mg/kg (ppm)	< 0.1	< 0.1	nm
Aroclor 1260	mg/kg (ppm)	< 0.1	< 0.1	nm

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	109	112	70-130	3
Aroclor 1260	mg/kg (ppm)	0.8	103	104	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

209072	SAMPLE CHAIN OF CUSTODY ME 09	-07-12 BAS/USI/UF
Send Report To Eric Koltes Company Enumerated Parfects Address 295 NE Giban Blud.	PROJECT NAME/NO. PO# Millorede/Scartle Times	Page # of/ TURNAROUND TIME Standard (2 Weeks) □ RUSH Rush charges authorized by
City, State, ZIP <u>Issagush</u> WA Phone # 425-922-5666 Fax # 425-395	REMARKS	SAMPLE DISPOSAL ☐ Dispose after 30 days ☐ Return samples ☐ Will call with instructions

											MIN	ILI 3	COL	ŒŲ	JESI.	ED			1	
	Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS	MEAS Head	BAY/sag/sag	CPAHS	PCTS			Notes	
:	MW1-10	011-6	15/12	1629	Soil	6	X	X		X		·	X							
	MU1-30	02A.F	9/5/12	1650	Soil	6				•									Hold] .
`**	W2-10	03 A-6	9/6/12	1126	Soi (7	\geq	X		\boxtimes			\geq	X	\times	\times	1		· ·	
	WZ-15	1446	9/6/12	1134	Soil	7													Hold	
MW	MW1-0918 0912 MW2-0912	╇┷┵╌	9/6/12	1638	H20	7	X	X		\boxtimes			义						Total+Dissolved pare	1 1 / 1
	MW2-0912	06	7/6/12	1746	Hro	7	X	X		\boxtimes			\times						\	
		,																		
	·							4							Sam	nles	rece	امعدا	9]
										İ						~.~O		100	at	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

: .	• SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
	Relinquished by	North Busse	EPI	9/6/12	1800
)	Received S.	En Cadal	EPI	11.	18:00
-	Relinquished by	Eric Caddol	EP\$	9/7/4	08.39
	Received by Milled	Mighael Erd h 1	Fahr	10	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

September 18, 2012

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Mill Creek 63801.1

Dear Mr. Koltes:

Included are the results from the testing of material submitted on September 7, 2012 from the Mill Creek 63801.1, F&BI 209073 project. There are 29 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0918R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 7, 2012 by Friedman & Bruya, Inc. from the Environmental Partners Mill Creek 63801.1, F&BI 209073 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Partners
209073-01	S-4:5
209073-02	C-10:0.5
209073-03	C-11:0.5
209073-04	C-12
209073-05	A-2:9
209073-06	A-3:8.5
209073-07	A-1:9
209073-08	O-1:8
209073-09	O-2:9
209073-10	O-3:5
209073-11	H-5:7
209073-12	H-6:8
209073-13	S-3:7

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Date Analyzed: 09/10/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Surrogate (% Recovery) (Limit 50-150)
A-2:9 209073-05	< 0.02	< 0.02	< 0.02	< 0.06	84
A-3:8.5 209073-06	< 0.02	< 0.02	< 0.02	<0.06	82
A-1:9 209073-07	< 0.02	< 0.02	< 0.02	< 0.06	82
O-1:8 209073-08	< 0.02	< 0.02	< 0.02	< 0.06	79
O-2:9 209073-09	< 0.02	< 0.02	< 0.02	< 0.06	88
O-3:5 209073-10	< 0.02	< 0.02	< 0.02	<0.06	87
Method Blank 02-1609 MB	< 0.02	< 0.02	< 0.02	< 0.06	80

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Date Analyzed: 09/11/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
S-4:5 209073-01	< 50	<250	86
C-10:0.5 209073-02	< 50	<250	93
C-11:0.5 209073-03	< 50	<250	97
C-12 209073-04	< 50	420	98
A-2:9 209073-05	290 x	1,700	86
A-3:8.5 209073-06	940 x	4,600	84
A-1:9 209073-07	560 x	4,600	87
O-1:8 209073-08	< 50	<250	83
O-2:9 209073-09	< 50	<250	84
O-3:5 209073-10	< 50	<250	86

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Date Analyzed: 09/11/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
H-5:7 209073-11	< 50	<250	88
H-6:8 209073-12	< 50	<250	87
S-3:7 209073-13	<50	<250	88
Method Blank	< 50	<250	92

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: S-4:5 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/07/12 Lab ID: 209073-01

Date Analyzed: 09/10/12 Data File: 209073-01 rr.056

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 113 60 125 Indium 95 60 125 Holmium 89 60 125

Concentration

Analyte: mg/kg (ppm)

Chromium21.2Arsenic1.85Cadmium<1</td>Lead8.69

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: H-5:7 Client: **Environmental Partners**

Date Received: Project: 09/07/12 Mill Creek 63801.1, F&BI 209073

Lab ID: 09/07/12 209073-11 Date Extracted: Date Analyzed: 09/10/12 Data File: 209073-11.030 Matrix: Instrument: Soil ICPMS1

Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 123 60 125 101 Indium 60 125 Holmium 100 60 125

Concentration

Analyte: mg/kg (ppm)

Chromium 18.5 Arsenic 1.76 Cadmium <1 3.89 Lead

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: H-6:8 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

 Date Extracted:
 09/07/12
 Lab ID:
 209073-12

 Date Analyzed:
 09/10/12
 Data File:
 209073-12.032

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	114	60	125
Indium	98	60	125
Holmium	96	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium14.1Arsenic1.25Cadmium<1</td>Lead1.65

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: S-3:7 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

 Date Extracted:
 09/07/12
 Lab ID:
 209073-13

 Date Analyzed:
 09/10/12
 Data File:
 209073-13.033

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	124	60	125
Indium	99	60	125
Holmium	97	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium 18.3
Arsenic 2.30
Cadmium <1
Lead 3.67

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Environmental Partners

Date Received: Not Applicable Project: Mill Creek 63801.1, F&BI 209073

Date Extracted:09/07/12Lab ID:I2-593 mbDate Analyzed:09/10/12Data File:I2-593 mb.008Matrix:SoilInstrument:ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	103	60	125
Indium	98	60	125
Holmium	99	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium <1
Arsenic <1
Cadmium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/07/12 Date Analyzed: 09/12/12

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Sample ID Laboratory ID	<u>Total Mercury</u>
S-4:5 209073-01	<0.1
H-5:7 209073-11	<0.1
H-6:8 209073-12	<0.1
S-3:7 209073-13	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: S-4:5 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

Lab ID: Date Extracted: 09/07/12 209073-01 Date Analyzed: 09/08/12 Data File: 090743.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	101	50	150
4-Brom of luor obenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-	0 0 11	•	0 0
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane Chloroethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlor obenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: S-3:7 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

Lab ID: Date Extracted: 09/07/12 209073-13 Date Analyzed: 09/08/12 Data File: 090744.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	101	50	150
4-Brom of luor obenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-	0 0 11	•	0 0
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane Chloroethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlor obenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: Not Applicable Project: Mill Creek 63801.1, F&BI 209073

09/07/12 Lab ID: Date Extracted: 02-1592 mb Date Analyzed: 09/07/12 Data File: 090722.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: VM

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	98	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-		_	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: S-4:5 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Lab ID: 209073-01

Date Analyzed: 09/12/12 Data File: 091238.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: mwdl

Concentration mg/kg (ppm)

< 0.1

Aroclor 1221 <0.1 Aroclor 1232 <0.1 Aroclor 1016 <0.1 Aroclor 1242 <0.1

Compounds:

Aroclor 1248

Aroclor 1254 <0.1 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: C-10:0.5 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Lab ID: 209073-02

Date Analyzed: 09/12/12 Data File: 091240.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: mwdl

 Aroclor 1232
 <0.1</td>

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: C-11:0.5 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Lab ID: 209073-03

Date Analyzed: 09/12/12 Data File: 091242.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: mwdl

Concentration mg/kg (ppm)

 Aroclor 1221
 <0.1</td>

 Aroclor 1232
 <0.1</td>

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: C-12 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Lab ID: 209073-04

Date Analyzed: 09/12/12 Data File: 091244.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: mwdl

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1

Aroclor 1242 <0.1 Aroclor 1248 <0.1 Aroclor 1254 1.2 Aroclor 1260 1.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: H-5:7 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Lab ID: 209073-11

Date Analyzed: 09/12/12 Data File: 091246.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: mwdl

Concentration mg/kg (ppm)

Aroclor 1221 <0.1

 Aroclor 1232
 <0.1</td>

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: H-6:8 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Lab ID: 209073-12

Date Analyzed: 09/12/12 Data File: 091248.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: mwdl

Concentration Compounds: mg/kg (ppm)

 Aroclor 1221
 <0.1</td>

 Aroclor 1232
 <0.1</td>

 Aroclor 1016
 <0.1</td>

 Aroclor 1242
 <0.1</td>

 Aroclor 1248
 <0.1</td>

 Aroclor 1254
 <0.1</td>

 Aroclor 1260
 <0.1</td>

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: S-3:7 Client: Environmental Partners

Date Received: 09/07/12 Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Lab ID: 209073-13

Date Analyzed: 09/13/12 Data File: 091252.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: mwdl

Concentration mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1
Aroclor 1242 <0.1
Aroclor 1248 <0.1
Aroclor 1254 <0.1
Aroclor 1260 <0.1

Compounds:

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: Not Applicable Project: Mill Creek 63801.1, F&BI 209073

Date Extracted: 09/10/12 Lab ID: 02-1612 mb

Date Analyzed: 09/12/12 Data File: 091230.D\ECD1A.CH

Matrix: Soil Instrument: GC7
Units: mg/kg (ppm) Operator: mwdl

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES USING EPA METHOD 8021B

Laboratory Code: 209073-05 (Duplicate)

•	-	(Wet Wt)	(Wet Wt)	Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Benzene	mg/kg (ppm)	0.5	105	69-120	
Toluene	mg/kg (ppm)	0.5	105	70-117	
Ethylbenzene	mg/kg (ppm)	0.5	103	65-123	
Xylenes	mg/kg (ppm)	1.5	103	66-120	

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 209073-09 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	79	81	64-133	2

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	86	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 209072-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	mg/kg (ppm)	50	13.1	92 b	86 b	63-120	7 b
Arsenic	mg/kg (ppm)	10	1.80	106	98	56-125	8
Cadmium	mg/kg (ppm)	10	<1	106	98	85-117	8
Lead	mg/kg (ppm)	50	2.31	104	97	64-139	7

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	112	81-117
Arsenic	mg/kg (ppm)	10	108	79-112
Cadmium	mg/kg (ppm)	10	105	88-114
Lead	mg/kg (ppm)	50	105	83-118

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 209072-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	89	95	54-156	7

			Percent		
	Reporting Units	Spike	Recovery	Acceptance	
Analyte		Level	LCS	Criteria	
Mercury	mg/kg (ppm)	0.125	85	73-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 209033-01 (Matrix Spike)

•	1 /			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	14	10-60
Chloromethane	mg/kg (ppm)	2.5	< 0.5	42	10-89
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	46	10-91
Bromomethane	mg/kg (ppm)	2.5	< 0.5	57	10-102
Chloroethane	mg/kg (ppm)	2.5	< 0.5	57	10-97
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	45	10-94
Acetone	mg/kg (ppm)	12.5	< 0.5	69	37-115
1.1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	57	16-100
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	67	34-108
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	79	42-103
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	68	19-102
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	73	37-97
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	73	29-105
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	41-101
Chloroform	mg/kg (ppm)	2.5	< 0.05	76	43-100
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	68	48-104
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	77	43-98
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	76	35-102
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	70	34-100
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	74	30-107
Benzene	mg/kg (ppm)	2.5	< 0.03	74	39-98
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	79	38-101
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	45-101
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	86	45-115
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	82	46-101
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	76	52-105
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	91	42-120
Toluene	mg/kg (ppm)	2.5	< 0.05	76	45-99
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	87	46-118
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	81	51-104
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	76	49-108
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	79	49-101
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	74	38-102
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	93	42-132
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	83	49-105
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	78	47-100
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	78	47-101
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	84	46-112
m,p-Xylene	mg/kg (ppm)	5	< 0.1	80	48-102
o-Xylene	mg/kg (ppm)	2.5	< 0.05	82	49-101
Styrene	mg/kg (ppm)	2.5	< 0.05	83	49-106
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	81	47-104
Bromoform	mg/kg (ppm)	2.5	< 0.05	97	25-171
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	80	47-105
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	79	48-105
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	82	47-105
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	78 77	51-108 50-104
1,2,3-Trichloropropane	mg/kg (ppm)			78	47-102
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	78 80	47-102 47-102
tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	80	48-105
1,2,4-Trimethylbenzene		2.5	< 0.05	82	48-105
sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	82 82	48-105 47-106
p-Isopropyltoluene		2.5	< 0.05	82	47-100
1.3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	62 77	47-107
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	77	46-102
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	79	48-104
1,2-Ditriorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	<0.5	84	39-130
1,2,4Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	74	44-106
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	80	44-106
Naphthalene	mg/kg (ppm)	2.5	< 0.05	83	48-108
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	83	46-107
1,8,0 1110110DCIDCIIC	8/ v.8 (bb)	2.0	~0.20	00	10 107

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

zaboratory couet zaboratory con	cror Sampro		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane		2.5	44	42	11-84	5
Chloromethane	mg/kg (ppm) mg/kg (ppm)	2.5	68	66	41-99	3
Vinyl chloride	mg/kg (ppm)	2.5	84	81	51-102	4
Bromomethane	mg/kg (ppm)	2.5	86	89	51-102	3
Chloroethane	mg/kg (ppm)	2.5	90	96	53-113	6
Trichlorofluoromethane	mg/kg (ppm)	2.5	91	94	61-113	3
Acetone	mg/kg (ppm)	12.5	87	87	69-132	0
1.1-Dichloroethene	mg/kg (ppm)	2.5	90	93	67-116	3
Methylene chloride	mg/kg (ppm)	2.5	88	90	62-130	2
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	98	99	78-116	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	96	99	70-116	3
1,1-Dichloroethane	mg/kg (ppm)	2.5	97	97	79-109	0
2,2-Dichloropropane	mg/kg (ppm)	2.5	108	109	70-123	1
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	100	76-113	2
Chloroform	mg/kg (ppm)	2.5	97	98	77-113	1
2-Butanone (MEK)	mg/kg (ppm)	12.5	86	84	76-114	2
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	98	99	79-114	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	102	105	73-119	3
1,1-Dichloropropene	mg/kg (ppm)	2.5	96	95	77-110	1
Carbon tetrachloride	mg/kg (ppm)	2.5	104	108	67-126	4
Benzene	mg/kg (ppm)	2.5	94	94	70-115	0
Trichloroethene	mg/kg (ppm)	2.5	95	97	70-113	2
1,2-Dichloropropane	mg/kg (ppm)	2.5	96	97	79-110	1
Bromodichloromethane	mg/kg (ppm)	2.5	106	109	76-119	3
Dibromomethane	mg/kg (ppm)	2.5	102	104	78-115	2
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	94	96	80-120	2 3
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	113	116	80-117	
Toluene	mg/kg (ppm)	2.5 2.5	93 106	95 108	79-112 81-118	2 2
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	96	98	83-111	2
2-Hexanone	mg/kg (ppm)	12.5	89	91	80-121	2
1,3-Dichloropropane	mg/kg (ppm)	2.5	93	94	81-114	1
Tetrachloroethene	mg/kg (ppm)	2.5	95	96	73-117	1
Dibromochloromethane	mg/kg (ppm)	2.5	115	117	59-143	2
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	102	104	82-113	2
Chlorobenzene	mg/kg (ppm)	2.5	97	99	81-110	2
Ethylbenzene	mg/kg (ppm)	2.5	95	97	79-116	2
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	107	109	76-121	2
m,p-Xylene	mg/kg (ppm)	5	99	101	80-115	2
o-Xylene	mg/kg (ppm)	2.5	101	102	81-113	1
Styrene	mg/kg (ppm)	2.5	102	104	79-118	2
Isopropylbenzene	mg/kg (ppm)	2.5	101	103	81-114	2
Bromoform	mg/kg (ppm)	2.5	116	118	36-166	2
n-Propylbenzene	mg/kg (ppm)	2.5	98	100	82-114	2
Bromobenzene	mg/kg (ppm)	2.5	98	101	83-113	3
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	102	105	82-115	3
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	102	103	81-116	1
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	91	93	53-136	2
2-Chlorotoluene	mg/kg (ppm)	2.5	94 97	97 100	81-113	3 3
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm)	2.5 2.5	97 101	100	83-111 81-113	2
	mg/kg (ppm)		101	103	82-115	1
1,2,4 Trimethylbenzene sec-Butylbenzene	mg/kg (ppm)	2.5 2.5	101	102	82-115 81-115	3
p-Isopropyltoluene	mg/kg (ppm)	2.5	101	104	82-115	2
1.3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	98	100	81-113	2
1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	98 96	98	81-113 82-109	2
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	100	101	82-111	1
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	103	106	72-123	3
1.2.4 Trichlorobenzene	mg/kg (ppm)	2.5	90	93	81-110	3
Hexachlorobutadiene	mg/kg (ppm)	2.5	95	98	78-116	3
Naphthalene	mg/kg (ppm)	2.5	106	108	85-114	2
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	102	105	86-112	3
	0 0 ,					

ENVIRONMENTAL CHEMISTS

Date of Report: 09/18/12 Date Received: 09/07/12

Project: Mill Creek 63801.1, F&BI 209073

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 209073-12 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Aroclor 1016	mg/kg (ppm)	< 0.1	< 0.1	nm
Aroclor 1260	mg/kg (ppm)	< 0.1	< 0.1	nm

Laboratory Code: Laboratory Control Sample

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	120	114	70-130	5
Aroclor 1260	mg/kg (ppm)	0.8	123	107	70-130	14

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- $\mbox{d} v$ Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

2090	73		·	SAI	MP	LE C	HAI	۷Ō	FÇ	US	TO	DY	ME	09/0	07/1Z	<u>_</u> , [†]	BB BIZ/ NSZ
Send Report To	Eric Kull	er .				MPLERS (PAGE #	<u> </u>	OFOF
Company	Environment	al Partn	ers, Inc.		PRO	OJECT ID/						<u> </u>	OB#	r	Stand	lard	
Address	295 NE Gilma	an Blvd.				<u> </u>	Crbe	<u>k</u>					. '		Rush cha		horized by:
City, State, ZIP	Issaquah, WA	98027			511	E NAME					i	REMA	RKS		Dispo	se after :	
Phone # (425)	395-0010 F	ax # _(425) 395-0	011											☐ Will d		nstructions
		γ				<u> </u>					NAL	<u> YSES</u>	<u>REQU</u>	ESTED	· · · · · · · · · · · · · · · · · · ·		
Sam	ple ID	LAB ID	Date Sampled	Time Sample	d	Matrix	# of	S-GRO	5 - DRO	by 8021B	(by 602	oy 8260C	by 524	Sc	24 24 24		Notes

								<i>F</i>	NAL	SES	<u>REQU</u>	<u>ESTED</u>	1	
Sample ID	LAB ID	Date Sampled	Time Sampled	Matrix	# of jars	8015 - GRO	8015 - DRO	BTEX by 8021B	BTEX by 602	VOC by 8260C	VOC by 524	PCBs	Moral S Mrc45	Notes
5-4:5	01 A-E	9/5/4	(0:38	Suil	5		X			X		X	X	
C-10:0.5	02		11:11		1		X					X		
C-11:0.5	03		11:20		1		X					X		(*
C-12	04		11:30		l		X					X		
A-2:9	05 A-I		16:30		4		X	X						
A-3:8,5	06	V.	16:50		4		X	X		,				
A-1:9	07	9/6/12	09:24		4	ŕ	X	X						
0-1:8	08	1	13:13		4		×	×						
0-2:9	og		(3:72		4		X	X						
0-7:5	10		14:00		4		X	人						
H-5:7	[1]		16:05		45		X					X	X	
H-6:#8	12/2		16:15		5		X					X	X	
'S-3,7	13 1		17:00		5		X			X		X	X	

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282 Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	a Eric Godel	EP\$	9/7/12	18:59
Received	Michael E-dill	Fabru	1	1
Relinquished by:				
Received by:		Samples received at	9°C	

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

September 20, 2012

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Mill Creek

Dear Mr. Koltes:

Included are the results from the testing of material submitted on September 7, 2012 from the Mill Creek, F&BI 209093 project. There are 29 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0920R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 7, 2012 by Friedman & Bruya, Inc. from the Environmental Partners Mill Creek, F&BI 209093 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Partners
209093-01	C-13
209093-02	C-14
209093-03	C-15
209093-04	P-21
209093-05	P-22
209093-06	P-23
209093-07	P-24
209093-08	P-25
209093-09	P-26
209093-10	P-27
209093-11	P-28
209093-12	P-29
209093-13	P-30
209093-14	P-31
209093-15	P-32
209093-16	P-33
209093-17	P-34
209093-18	P-35
209093-19	P-36
209093-20	P-37
209093-21	P-38
209093-22	P-39
209093-23	P-40

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Date Received: Date Extracted:	09/07/12 09/13/12	Client: Project: Lab ID:	Environmental Partners Mill Creek, F&BI 209093 209093-01
Date Analyzed:	09/14/12	Data File:	091414.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7

Matrix: Wipe Instrument: GC7
Units: ug/wipe Operator: mwdl
Lower

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	115	50	150

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	0.47
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	C-14	Client:	Environmental Partners
Date Received:	09/07/12		Mill Creek, F&BI 209093
		Project:	·
Date Extracted:	09/13/12	Lab ID:	209093-02
Date Analyzed:	09/14/12	Data File:	091416.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	114	50	150

ICMX	114	50
Compounds:	Concentration ug/wipe	
Aroclor 1221	< 0.1	
Aroclor 1232	< 0.1	
Aroclor 1016	< 0.1	
Aroclor 1242	< 0.1	
Aroclor 1248	< 0.1	
Aroclor 1254	0.50	
Aroclor 1260	< 0.1	

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	C-15	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-03
Date Analyzed:	09/14/12	Data File:	091418.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	111	50	150

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	0.54
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-21	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-04
Date Analyzed:	09/14/12	Data File:	091420.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	12
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-22	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/18/12	Lab ID:	209093-05
Date Analyzed:	09/18/12	Data File:	091808.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	111	50	150

1011111	111
Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	1.4
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-23	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-06
Date Analyzed:	09/14/12	Data File:	091424.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	7.1
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-24	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-07
Date Analyzed:	09/14/12	Data File:	091426.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	84	50	150

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	7.6
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Date Received:	09/07/12	Client: Project:	Environmental Partners Mill Creek, F&BI 209093
Date Extracted: Date Analyzed:	09/13/12 09/14/12	Lab ID: Data File:	209093-08 091428.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7

Units: ug/wipe Operator: mwdl

Surrogates: % Recovery: Limit: Upper Limit:

Surrogates: TCMX % Recovery: 92 50 150 Concentration Compounds: ug/wipe Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 5.8 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-26	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-09
Date Analyzed:	09/14/12	Data File:	091432.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7

Matrix: Wipe Instrument: GC7
Units: ug/wipe Operator: mwdl

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	106	50	150

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	3.1
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-27	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-10
Date Analyzed:	09/14/12	Data File:	091434.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7

Matrix: Wipe Instrument: GC7
Units: ug/wipe Operator: mwdl

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	103	50	150

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	1.5
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-28	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-11
Date Analyzed:	09/15/12	Data File:	091436.D\ECD1A.CH
Matrix	Wino	Instrument	CC7

Matrix: Wipe Instrument: GC7 Units: ug/wipe Operator: mwdl

Concentration Compounds: ug/wipe Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 5.0 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-29	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-12
Date Analyzed:	09/15/12	Data File:	091438.D\ECD1A.CH
Matrix	Wino	Instrument	CC7

Matrix: Wipe Instrument: GC7 Units: Ug/wipe Operator: mwdl

Concentration Compounds: ug/wipe Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 2.5 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-30	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-13
Date Analyzed:	09/15/12	Data File:	091440.D\ECD1A.CH
3.6	X X 7 *	т.	0.07

Matrix: Wipe Instrument: GC7 Units: ug/wipe Operator: mwdl

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	90	50	150

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	1.9
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-31	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-14

Date Analyzed: 09/15/12 Data File: 091442.D\ECD1A.CH
Matrix: Wipe Instrument: GC7
Units: ug/wipe Operator: mwdl

Surrogates: % Recovery: Limit: Limit: TCMX 90 50 150

Concentration Compounds: ug/wipe Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 3.0 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-32	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-15
Date Analyzed:	09/15/12	Data File:	091444.D\ECD1A.CH
Matrix:	Wine	Instrument:	GC7

Matrix: Wipe Instrument: GC7 Units: ug/wipe Operator: mwdl

Concentration Compounds: ug/wipe Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 5.7 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Date Received:	P-33 09/07/12	Client: Project:	Environmental Partners Mill Creek, F&BI 209093
Date Received: Date Extracted:	09/13/12	Lab ID:	209093-16
Date Analyzed:	09/15/12	Data File:	091446.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	99	50	150

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	1.9
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-34	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-17
Date Analyzed:	09/15/12	Data File:	091448.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

Surrogates: % Recovery: Limit: Limit: TCMX 95 50 150

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	9.7
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Date Received:	P-35 09/07/12	Client: Project:	Environmental Partners Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-18
Date Analyzed:	09/15/12	Data File:	091450.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7

Units: ug/wipe Operator: mwdl

Lower U

Surrogates: TCMX	% Recovery: 86	Lower Limit: 50	Upper Limit: 150
	Concentration		

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	4.8
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-36	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-19
Date Analyzed:	09/15/12	Data File:	091454.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

Surrogates: % Recovery: Limit: Limit: TCMX 98 50 150

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	6.7
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:		Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-20
Date Analyzed:	09/15/12	Data File:	091456.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
TCMX	95	50	150

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	8.6
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-38	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-21
Date Analyzed:	09/15/12	Data File:	091464.D\ECD1A.CH

Matrix: Wipe Instrument: GC7 Units: Ug/wipe Operator: mwdl

Concentration Compounds: ug/wipe Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 9.3 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-39	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-22
Date Analyzed:	09/15/12	Data File:	091466.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7
Units:	ug/wipe	Operator:	mwdl

Compounds:	Concentration ug/wipe
Aroclor 1221	< 0.1
Aroclor 1232	< 0.1
Aroclor 1016	< 0.1
Aroclor 1242	< 0.1
Aroclor 1248	< 0.1
Aroclor 1254	23
Aroclor 1260	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Date Received:	P-40 09/07/12	Client: Project:	Environmental Partners Mill Creek, F&BI 209093
Date Extracted:	09/13/12	Lab ID:	209093-23
Date Analyzed:	09/15/12	Data File:	091468.D\ECD1A.CH
Matrix:	Wipe	Instrument:	GC7

Matrix: Wipe Instrument: GC7 Units: ug/wipe Operator: mwdl

Concentration Compounds: ug/wipe Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 8.9 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Method Blank		Client:	Environmental Partners	
Date Received:	Not Applicable	Project:	Mill Creek, F&BI 209093	

Date Extracted: 09/13/12 Lab ID: 02-1648 mb
Date Analyzed: 09/14/12 Data File: 091408.D\ECD1A.CH

Matrix: Wipe Instrument: GC7
Units: ug/wipe Operator: mwdl

Concentration Compounds: ug/wipe Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260 < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	Method Blank	Client:	Environmental Partners
Date Received:	Not Applicable	Project:	Mill Creek, F&BI 209093

Date Extracted: 09/13/12 Lab ID: 02-1649 mb

Date Analyzed: 09/15/12 Data File: 091458.D\ECD1A.CH Matrix: Instrument: Wipe GC7 Units: ug/wipe Operator: mwdl

Upper Limit: Lower Surrogates: TCMX % Recovery: Limit: 103 50 150

< 0.1

Concentration Compounds: ug/wipe Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1 Aroclor 1254 < 0.1 Aroclor 1260

ENVIRONMENTAL CHEMISTS

Date of Report: 09/20/12 Date Received: 09/07/12

Project: Mill Creek, F&BI 209093

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WIPE SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: Laboratory Control Sample

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/wipe	50	100	105	70-130	5
Aroclor 1260	ug/wipe	50	89	91	70-130	2

ENVIRONMENTAL CHEMISTS

Date of Report: 09/20/12 Date Received: 09/07/12

Project: Mill Creek, F&BI 209093

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WIPE SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: Laboratory Control Sample

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/wipe	50	96	93	70-130	3
Aroclor 1260	ug/wipe	50	91	90	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- $\mbox{d} v$ Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

209093	SAMPLE CHAIN OF CUSTODY	ME 09/0	
Send Report To Eric Kultes Company Environmental Partners. Address 295 NE Gilman Blud S	PROJECT NAME/NO. 17:11 Crook	PO#	Page # of TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by
City, State, ZIP <u>FS19 qual</u> , WA 980 Phone # 415 - 395-0010 Fax #	DED CA DATE		SAMPLE DISPOSAL D'Dispose after 30 days Return samples Will call with instructions
	ANA	LYSES REQUEST	ED
	ssel oline 8021B 8260 8270		

								ANALYSES REQUESTED]
Sample ID	Lab ID	Date Sample		Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS C. 7.	してはい						Notes	
C-13.	01	9/7/12	09:50	Wipo							λ						10 cm	X loem A	THE THE
C-14	02		09:55	-							_ >								
C-14 C-15	03		10:00	, /)	\langle							
P-21	oy		11:10																
P-77	05		11:17									X							
P-23	06		11:23									<u> </u>							
F-24	07		11:24																
P-25	08		(1:33																
P-36	09		11:42								7	$\langle $							
P-27.	10		12:51									Χ						V	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE,	TIME
Relinquished by:	Ene Carder	EPA	9/7/12	16.00
Received by:	Dd vo	FFBI	1,7	1/
Relinquished by:		Namal	23	
Received by:		Samples rec	erved at	°C

FORMS\COC\COC.DOC

209093			. 1	SAN	MPLE (HAIN O	FC	UST	COD	Y	1	1E	09/	07	112	2_		`	EC	ツ>
Send Report To Eric Kalles						SAMPLERS (signature)									Page # of TURNAROUND TIME					
Company Environmental Partners, Fac.					PROJECT NAME/NO. PO#								tandard (2 Weeks) RUSH Rush charges authorized by							
Address 295 NE GILMAN Blud, #201					Mill Creek								SAMPLE DISPOSAL							
City, State, ZIP Isrago	unh, 1	NA 9	8027		REMARKS								Dispose after 30 days ☐ Return samples							
Phone # 425-395-000	Fax	x #																ith instr	uctions	3
		,								AN	ALYS	SES R	EQUE	STEI)		Т			
Sample ID	Lab	Date	Time	San	nple Type	# of	-Diesel	Gasoline	by 8021B	s by 8270		4						[Notes	

												ANA	TLIS	ES K	<u>.EQU</u>	COL	<u>си</u>			
Sample ID	Lab ID	Sai	Date mpled	Time Sampled	Samp	le Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS	PCBS					Notes	
P-28	11	9/	7/13	12:56	w	P6	1							X					10 cm X 10 cm A].
F-d9	12			13:03	3									X						
P-30	13			13:10										X						
P-31	14			13:16										X						
P-32	15			13:22		1								X						
P-33	16			13:31										X						
P-74	17			13:42			Î							X						
P-35	18			14-60					i.					X						
F-76	19		/	14:10	1 1		1							X	A					
1-37	ao			1424			(X	`					

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Eric Cadder	EFI	9/7/19	16. aa
Received by:	Do vo	FYBI	11	11
Relinquished by:				
Received by:		nnies receive	ed at <u>23</u>	°C

209093	AMPLE CHAIN OF CUSTODY	ME 09/07	1/12 Page #_ P of 3 E03
Send Report To Enc Kulter	SAMPLERS (signature)		Page #of
Company Environmental Partners Inc	PROJECT NAME/NO.	PO#	Standard (2 Weeks)
Address 295 NE GIMAN Blud, STED			Rush charges authorized by
City, State, ZIP Fraguel, WA 98027 Phone # 425 295-6010 Fax #	REMARKS		SAMPLE DISPOSAL S Dispose after 30 days
Phone # 45 - 395 - w10 Fax #			☐ Return samples ☐ Will call with instructions
	ANAL	YSES REQUEST	ED
	11 nne nne 11 nn		

						ANALYSES REQUESTED										
Sample ID	Lab ID	Date Sampled		Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS	PCBS				Notes
P-78	21	9/7/12	14:30	wipe	j							Х				10 cm X 10 cm are
P-39	22		14:42	1	1							X				
P-40	23	V	15:05	V	1							X				
							: <u>-</u>									
100																

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE/	PRINT NAME	COMPANY	DATE, TIME
Relinquished by:	Erc Caldel	RPI	9/7/1 16.ac
Received by:	Do va	FFBI	
Relinquished by:		Samples receive	23
Received by:		Proor receive	oc atoc

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

September 21, 2012

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Mill Creek, F&BI 209071

Dear Mr. Koltes:

Included are the results from the testing of material submitted on September 7, 2012 from the Mill Creek, F&BI 209071 project. There are 12 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0921R.DOC

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 7, 2012 by Friedman & Bruya, Inc. from the Environmental Partners Mill Creek, F&BI 209071 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Environmental Partners
209071-01	S-2:Water
209071-02	S-5:Water
209071-03	S-4:Water

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/12 Date Received: 09/07/12

Project: Mill Creek, F&BI 209071

Date Extracted: 09/07/12 Date Analyzed: 09/08/12

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 51-134)
S-2:Water 209071-01	<100	95
S-5:Water 209071-02	<100	98
S-4:Water 209071-03	<100	94
Method Blank 02-1605 MB	<100	94

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/12 Date Received: 09/07/12

Project: Mill Creek, F&BI 209071

Date Extracted: 09/10/12

Date Analyzed: 09/10/12 and 09/19/12

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

			Surrogate
Sample ID	<u>Diesel Range</u>	Motor Oil Range	(% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 51-134)
S-2:Water 209071-01	<50	<250	85
S-5:Water 209071-02 1/10	110,000 x	10,000 x	ip
S-4:Water 209071-03	310 x	1,900	104
Method Blank 02-1608 MB	< 50	<250	81

ENVIRONMENTAL CHEMISTS

Client Sample ID:	S-2:Water	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209071
Date Extracted:	09/10/12	Lab ID:	209071-01
Date Analyzed:	09/10/12	Data File:	091032.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	93	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	S-5:Water	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209071
Date Extracted:	09/10/12	Lab ID:	209071-02
Date Analyzed:	09/10/12	Data File:	091033.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	101	50	150
4-Bromofluorobenzene	95	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	1.0	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromom ethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Client Sample ID:	S-4:Water	Client:	Environmental Partners
Date Received:	09/07/12	Project:	Mill Creek, F&BI 209071
Date Extracted:	09/10/12	Lab ID:	209071-03
Date Analyzed:	09/11/12	Data File:	091048.D
Matrix:	Water	Instrument:	GCMS9
Units:	ug/L (ppb)	Operator:	VM

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Date Extracted:09/10/12Lab ID:02-1613 mbDate Analyzed:09/10/12Data File:091020.DMatrix:WaterInstrument:GCMS9	Client Sample ID:	Method Blank	Client:	Environmental Partners
Date Analyzed: 09/10/12 Data File: 091020.D Matrix: Water Instrument: GCMS9	Date Received:	NA	Project:	Mill Creek, F&BI 209071
Matrix: Water Instrument: GCMS9	Date Extracted:	09/10/12	Lab ID:	02-1613 mb
	Date Analyzed:	09/10/12	Data File:	091020.D
Units: ug/L (ppb) Operator: VM	Matrix:	Water	Instrument:	GCMS9
	Units:	ug/L (ppb)	Operator:	VM

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	99	50	150

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/12 Date Received: 09/07/12

Project: Mill Creek, F&BI 209071

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 209082-01 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	ug/L (ppb)	<100	<100	nm

Laboratory Code: Laboratory Control Sample

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	ug/L (ppb)	1,000	95	69-134	_

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/12 Date Received: 09/07/12

Project: Mill Creek, F&BI 209071

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	79	79	58-134	0

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/12 Date Received: 09/07/12

Project: Mill Creek, F&BI 209071

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 209075-01 (Matrix Spike)

	Reporting	Spike	Sample	Percent Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	ug/L (ppb)	50	<10	117	62-131
Chloromethane	ug/L (ppb) ug/L (ppb)	50 50	<10	103	68-127
'invl chloride	ug/L (ppb)	50	1.6	114	76-124
romomethane	ug/L (ppb)	50	<1	99	67-127
hloroethane	ug/L (ppb)	50	<1	103	69-123
richlorofluoromethane	ug/L (ppb)	50	<1	105	75-121
cetone	ug/L (ppb)	250	<10	86	68-137
,1-Dichloroethene	ug/L (ppb)	50	<1	96	75-118
Methylene chloride	ug/L (ppb)	50	< 5	90	64-120
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	<1	97	74-120
rans-1,2-Dichloroethene	ug/L (ppb)	50	<1	95	75-119
1-Dichloroethane	ug/L (ppb)	50	<1	99	82-109
,2-Dichloropropane	ug/L (ppb)	50	<1	95	62-124
is-1,2-Dichloroethene	ug/L (ppb)	50	6.1	97	83-109
hloroform	ug/L (ppb)	50	<1	96	81-110
-Butanone (MEK)	ug/L (ppb)	250	<10	89	75-122
2-Dichloroethane (EDC)	ug/L (ppb)	50	<1	92	76-114
,1,1-Trichloroethane	ug/L (ppb)	50	<1	99	77-116
1-Dichloropropene	ug/L (ppb)	50	<1	96	81-110
arbon tetrachloride	ug/L (ppb)	50	<1	100	74-119
enzene	ug/L (ppb)	50	0.73	97	79-108
richloroethene	ug/L (ppb)	50	4.1	93	79-105
2-Dichloropropane	ug/L (ppb)	50	<1	99	83-110
Bromodichloromethane	ug/L (ppb)	50	<1	100	77-118
Dibromomethane	ug/L (ppb)	50 250	<1	96	82-109
-Methyl-2-pentanone	ug/L (ppb)		<10	94	78-123
is-1,3-Dichloropropene	ug/L (ppb)	50	<1	104	76-120
'oluene rans-1,3-Dichloropropene	ug/L (ppb)	50 50	<1 <1	96 100	82-108
.1.2-Trichloroethane	ug/L (ppb)	50 50	<1	98	77-118 83-110
,1,2-111cmoroethane -Hexanone	ug/L (ppb) ug/L (ppb)	250	<1 <10	98 94	75-128
-riexanone ,3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50 50	<10	94 97	84-109
etrachloroethene	ug/L (ppb)	50	22	97 b	69-114
Dibromochloromethane	ug/L (ppb)	50 50	<1	101	66-133
,2-Dibromoethane (EDB)	ug/L (ppb)	50	<1	98	85-110
Chlorobenzene	ug/L (ppb)	50	<1	94	82-107
Cthylbenzene	ug/L (ppb)	50	<1	95	79-112
,1,1,2-Tetrachloroethane	ug/L (ppb)	50	<1	98	78-118
n,p-Xylene	ug/L (ppb)	100	<2	94	81-111
-Xylene	ug/L (ppb)	50	<1	94	82-110
tyrene	ug/L (ppb)	50	<1	92	73-116
sopropylbenzene	ug/L (ppb)	50	<1	98	80-112
romoform	ug/L (ppb)	50	<1	93	45-151
-Propylbenzene	ug/L (ppb)	50	<1	95	77-116
romobenzene	ug/L (ppb)	50	<1	93	84-110
3,5-Trimethylbenzene	ug/L (ppb)	50	<1	94	78-114
1,2,2-Tetrachloroethane	ug/L (ppb)	50	<1	104	82-117
,2,3-Trichloropropane	ug/L (ppb)	50	<1	95	77-116
Chlorotoluene	ug/L (ppb)	50	<1	94	79-112
Chlorotoluene	ug/L (ppb)	50	<1	93	80-112
ert-Butylbenzene	ug/L (ppb)	50	<1	96	81-114
2,4 Trimethylbenzene	ug/L (ppb)	50	<1	94	76-115
ec-Butylbenzene	ug/L (ppb)	50	<1	96	80-115
Isopropyltoluene	ug/L (ppb)	50	<1	96	78-116
3-Dichlorobenzene	ug/L (ppb)	50	<1	93	81-110
4-Dichlorobenzene	ug/L (ppb)	50	<1	92	79-109
,2-Dichlorobenzene	ug/L (ppb)	50	<1	94	81-110
,2-Dibromo-3-chloropropane	ug/L (ppb)	50	<10	102	67-128
2,4Trichlorobenzene	ug/L (ppb)	50	<1	88	77-113
Iexachlorobutadiene	ug/L (ppb)	50	<1	94	66-122
Japhthalene	ug/L (ppb)	50	<1	97	79-120
,2,3-Trichlorobenzene	ug/L (ppb)	50	<1	97	78-115

ENVIRONMENTAL CHEMISTS

Date of Report: 09/21/12 Date Received: 09/07/12

Project: Mill Creek, F&BI 209071

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Zazoratory coue. Zazoratory contr	or Sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	111	119	56-138	7
Chloromethane	ug/L (ppb)	50	102	103	66-131	i
Vinyl chloride	ug/L (ppb)	50	113	114	73-126	1
Bromomethane	ug/L (ppb)	50	100	102	65-131	2
Chloroethane	ug/L (ppb)	50	104	107	69-125	3
Trichlorofluoromethane	ug/L (ppb)	50	104	106	75-124	2
Acetone	ug/L (ppb)	250	81	83	64-136	2
1,1-Dichloroethene	ug/L (ppb)	50	97	99	72-122	2
Methylene chloride	ug/L (ppb)	50	90	93	56-128	3
Methyl t-butyl ether (MTBE)	ug/L (ppb)	50	98	100	76-120	2
trans-1,2-Dichloroethene	ug/L (ppb)	50	94	98	74-122	4
1,1-Dichloroethane	ug/L (ppb)	50	97	99	85-107	2
2,2-Dichloropropane	ug/L (ppb)	50	105	108	83-119	3
cis-1,2-Dichloroethene	ug/L (ppb)	50	97	98	85-105	1
Chloroform	ug/L (ppb)	50	95	97	83-107	2
2-Butanone (MEK)	ug/L (ppb)	250	85	87	75-118	2
1,2-Dichloroethane (EDC)	ug/L (ppb)	50	92	93	85-107	1
1,1,1-Trichloroethane	ug/L (ppb)	50	98	101	81-114	3
1,1-Dichloropropene	ug/L (ppb)	50	95	97	85-107	2
Carbon tetrachloride	ug/L (ppb)	50	100	103	77-118	3
Benzene	ug/L (ppb)	50	95	97	81-107	2
Trichloroethene	ug/L (ppb)	50	94	97	80-104	3
1,2-Dichloropropane	ug/L (ppb)	50	97	99	86-106	2
Bromodichloromethane	ug/L (ppb)	50	101	102	76-117	1
Dibromomethane	ug/L (ppb)	50	95	98	86-106	3
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb)	250 50	92 112	96 114	85-113 78-120	4 2
Toluene	ug/L (ppb)	50	95	96	86-105	1
trans-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	50 50	95 110	112	82-116	2
1,1,2-Trichloroethane	ug/L (ppb) ug/L (ppb)	50	97	98	87-106	1
2-Hexanone	ug/L (ppb)	250	90	91	84-117	1
1,3-Dichloropropane	ug/L (ppb) ug/L (ppb)	50	97	98	86-107	1
Tetrachloroethene	ug/L (ppb)	50	97	97	81-106	0
Dibromochloromethane	ug/L (ppb)	50	107	109	57-138	2
1,2-Dibromoethane (EDB)	ug/L (ppb)	50	98	101	89-107	3
Chlorobenzene	ug/L (ppb)	50	94	96	86-104	2
Ethylbenzene	ug/L (ppb)	50	96	97	87-107	1
1,1,1,2-Tetrachloroethane	ug/L (ppb)	50	98	100	79-117	2
m,p-Xylene	ug/L (ppb)	100	97	98	87-107	1
o-Xylene	ug/L (ppb)	50	96	98	86-107	2
Styrene	ug/L (ppb)	50	102	103	87-110	1
Isopropylbenzene	ug/L (ppb)	50	99	101	87-108	2
Bromoform	ug/L (ppb)	50	107	107	27-167	0
n-Propylbenzene	ug/L (ppb)	50	97	99	87-109	2
Bromobenzene	ug/L (ppb)	50	96	97	86-108	1
1,3,5-Trimethylbenzene	ug/L (ppb)	50	100	103	88-108	3
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	103	104	82-116	1
1,2,3-Trichloropropane	ug/L (ppb)	50	94	97	75-117	3
2-Chlorotoluene	ug/L (ppb)	50	95	97	85-109	2
4-Chlorotoluene	ug/L (ppb)	50	95	97	87-107	2
tert-Butylbenzene	ug/L (ppb)	50	99	101	86-110	2
1,2,4-Trimethylbenzene	ug/L (ppb)	50	99	102	87-109	3
sec-Butylbenzene	ug/L (ppb)	50	99	101	88-110	2
p-Isopropyltoluene	ug/L (ppb)	50	100	101	87-112	1
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L (ppb)	50 50	95 92	97 95	88-105 87-104	2 3
1,4-Dichlorobenzene 1,2-Dichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	92 96	95 98	87-104 86-107	2
1,2-Dictilorobenzene 1,2-Dibromo-3-chloropropane	ug/L (ppb) ug/L (ppb)	50 50	102	106	65-126	4
1,2-Dibromo-3-chioropropane 1.2.4-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	94	96	86-109	2
Hexachlorobutadiene	ug/L (ppb) ug/L (ppb)	50	101	101	78-116	0
Naphthalene	ug/L (ppb) ug/L (ppb)	50	103	108	89-114	5
1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50	102	108	89-111	6
-,-,	29. 7 (bbn)	50		100	55 111	·

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

209071			SAI	MPLE C	HAI	N C	FC	CUS	FTO	DY	ME	. (09/0	17/	12,	E03/V2_OF_
Send Report To Fic K	oltes			SAMPLERS	(signature									OE #		OF
company Environment		ners, Inc.		PROJECT ID)/ADDRI	ESS				•	JOB#		X	Standa RUSH	ard	NAROUND TIME
ddress 295 NE Gilr	nan Blvd	•			II Cm	uK	****						Ru	sh char		norized by:
ity, State, ZIP <u>Issaquah, W</u> 'hone # <u>(425) 395-0010</u>		(425) 395-0		SITE NAME						REMA	ARKS			Return	se after : n sample	PLE DISPOSAL 30 days is structions
									ANAL'	YSES	REQU	ESTE	D			
Sample ID	LAB ID	Date Sampled	Time Sampled	Matrix	# of jars	8015 - GRO	8015 - DRO	BTEX by 8021B	BTEX by 602	VOC by 8260C	VOC by 524					Notes
S-2: Water S-4: Water	DIA-E	9/6/12	(4:50	water	5	X	X			X						
S-5: Water	02 T	1/1	17:15		11	X	X			X		,				
5-4: Water	03	9/7/1	08:18	11	5	ズ	文			X						
	Obp.		-:			٠										
· · · · · · · · · · · · · · · · · · ·	 		·													
					-	_										
													<u></u>	1	<u>.</u>	
					\$. ⁷⁷											
	+							- .								

iedman & Bruya, Inc. 12 16th Avenue West attle, WA 98119-2029 . (206) 285-8282 x (206) 283-5044

SIGNATURE /	PRINT NAME	COMPANY	DATE	TIME
Relinquished Late:	Frie CyddeV	EII	9/7/14	0839
Received by Mind of	Mukael E-Ch	FERM	11	L
Relinquished by:				
Received by:		Samples received	at 9 '	C

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

August 1, 2012

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Mill Creek

Dear Mr. Koltes:

Included are the results from the testing of material submitted on July 20, 2012 from the Mill Creek, F&BI 207273 project. There are 31 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0801R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 20, 2012 by Friedman & Bruya, Inc. from the Environmental Partners Mill Creek, F&BI 207273 project. Samples were logged in under the laboratory ID's listed below.

Environmental Partners
P1:0
P1:3
P2:0
P2:3
P3:0
P3:3
P4:0
P4:3
P5:0
P5:3
P6:0
P6:3
P7:0
P7:3
T1:4

Several 8260C compounds failed below the acceptance criteria in the matrix spike samples. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

Date Extracted: 07/20/12 Date Analyzed: 07/20/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
P1:0 207273-01	<2	97
P2:0 207273-03	<2	94
P3:0 207273-05	<2	92
P4:0 207273-07	<2	93
P5:0 207273-09	<2	92
P6:0 207273-11	<2	92
P7:0 207273-13	<2	97
Method Blank 02-1287 MB	<2	96

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

Date Extracted: 07/20/12 Date Analyzed: 07/20/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
P1:0 207273-01	< 50	<250	105
P2:0 207273-03	< 50	<250	106
P3:0 207273-05	< 50	<250	103
P4:0 207273-07	< 50	<250	105
P5:0 207273-09	< 50	<250	107
P6:0 207273-11	< 50	<250	106
P7:0 207273-13	< 50	<250	107
T1:4 207273-15	<50	<250	104
Method Blank 02-1284 MB2	< 50	<250	109

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P1:0 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek, F&BI 207273

Date Extracted: 07/23/12 Lab ID: 207273-01

Date Analyzed: 07/24/12 Data File: 207273-01.033

Date Analyzed:07/24/12Data File:207273-01.03Matrix:SoilInstrument:ICPMS1Units:mg/kg (ppm)Operator:AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 106 60 125 Indium 95 60 125 Holmium 102 60 125

Concentration
Analyte: mg/kg (ppm)

 Chromium
 19.7

 Arsenic
 4.95

 Selenium
 <1</td>

 Silver
 1.13

 Cadmium
 <1</td>

 Barium
 89.3

 Lead
 7.41

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P2:0 Client: **Environmental Partners** Date Received: Project: 07/20/12 Mill Creek, F&BI 207273 Lab ID: 07/23/12 207273-03 Date Extracted: Date Analyzed: 07/24/12 Data File: 207273-03.034 Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	104	60	125
Indium	96	60	125
Holmium	103	60	125

Concentration mg/kg (ppm)

Chromium 17.8

 Chromium
 17.8

 Arsenic
 5.50

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 70.1

 Lead
 12.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P3:0 Client: **Environmental Partners** Date Received: Project: 07/20/12 Mill Creek, F&BI 207273 Lab ID: 07/23/12 207273-05 Date Extracted: Date Analyzed: 07/24/12 Data File: 207273-05.035 Matrix: Instrument: Soil ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	107	60	125
Indium	97	60	125
Holmium	105	60	125

Concentration
Analyte: mg/kg (ppm)

Chromium 15.9

 Chromium
 15.9

 Arsenic
 2.88

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 61.6

 Lead
 11.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P4:0 Client: Environmental Partners
Date Received: 07/20/12 Project: Mill Creek, F&BI 207273
Date Extracted: 07/23/12 Lab ID: 207273-07
Date Applying 07/24/12 Date File: 207273 07 026

Date Analyzed:07/24/12Data File:207273-07.036Matrix:SoilInstrument:ICPMS1Units:mg/kg (ppm)Operator:AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 114 60 125 Indium 60 96 125 Holmium 104 60 125

Analyte: Concentration mg/kg (ppm)

 Chromium
 22.9

 Arsenic
 3.11

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 97.1

 Lead
 5.54

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P5:0 Client: **Environmental Partners** Date Received: Project: 07/20/12 Mill Creek, F&BI 207273 Lab ID: 07/23/12 207273-09 Date Extracted: Date Analyzed: 07/24/12 Data File: 207273-09.037 Matrix: Instrument: Soil ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	106	60	125
Indium	97	60	125
Holmium	104	60	125

Analyte: Concentration mg/kg (ppm)

 Chromium
 18.9

 Arsenic
 4.47

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 51.0

 Lead
 5.38

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P6:0 Client: **Environmental Partners** Date Received: Project: 07/20/12 Mill Creek, F&BI 207273 07/23/12 Lab ID: 207273-11 Date Extracted: Date Analyzed: 07/24/12 Data File: 207273-11.038

Matrix: Soil Instrument: ICPMS1
Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 103 60 125 Indium 97 60 125 Holmium 106 60 125

Analyte: Concentration mg/kg (ppm)

Chromium14.4Arsenic2.36Selenium<1</td>Silver<1</td>Cadmium<1</td>Barium36.0Lead4.32

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P7:0 Client: **Environmental Partners** Date Received: 07/20/12 Project: Mill Creek, F&BI 207273 07/23/12 Lab ID: 207273-13 Date Extracted: Date Analyzed: 07/24/12 Data File: 207273-13.039

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 102 60 125 94 Indium 60 125 Holmium 104 60 125

Analyte: Concentration mg/kg (ppm)

 Chromium
 13.2

 Arsenic
 1.73

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 37.1

 Lead
 1.70

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: T1:4 Client: **Environmental Partners** Date Received: 07/20/12 Project: Mill Creek, F&BI 207273 07/23/12 Lab ID: 207273-15 Date Extracted: Date Analyzed: 07/24/12 Data File: 207273-15.040

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 101 60 125 97 Indium 60 125 Holmium 104 60 125

Analyte: Concentration mg/kg (ppm)

 Chromium
 17.0

 Arsenic
 5.70

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 58.6

 Lead
 32.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Environmental Partners
Date Received: NA Project: Mill Creek, F&BI 207273

Date Extracted: 07/23/12 Lab ID: I2-487 mb
Date Analyzed: 07/24/12 Data File: I2-487 mb rr.042

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	90	60	125
Indium	97	60	125
Holmium	103	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium <1
Arsenic <1
Selenium <1
Silver <1
Cadmium <1
Barium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

Date Extracted: 07/23/12 Date Analyzed: 07/23/12

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
P1:0 207273-01	<0.1
P2:0 207273-03	<0.1
P3:0 207273-05	<0.1
P4:0 207273-07	<0.1
P5:0 207273-09	<0.1
P6:0 207273-11	<0.1
P7:0 207273-13	<0.1
T1:4 207273-15	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P1:0 Client: Environmental Partners
Date Received: 07/20/12 Project: Mill Creek, F&BI 207273
Date Extracted: 07/20/12 Lab ID: 207273-01
Date Analyzed: 07/21/12 Data File: 072045.D

Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	•	<0.05
Chloromethane	<0.5 <0.5	1,3-Dichloropropane Tetrachloroethene	<0.03 <0.025
Vinyl chloride	<0.05 <0.05	Dibromochloromethane	< 0.023
Bromomethane	<0.05	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5 <0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	<0.5 <0.5		< 0.05
	<0.5 <0.5	Ethylbenzene 1,1,1,2-Tetrachloroethane	<0.05 <0.05
Acetone			
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P2:0 Client: Environmental Partners
Date Received: 07/20/12 Project: Mill Creek, F&BI 207273
Date Extracted: 07/20/12 Lab ID: 207273-03

Pate Applying the 07/91/12 Page File: 072046 P

Date Analyzed: 07/21/12 Data File: 072046.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: JS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-		•	0 0
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P3:0 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek, F&BI 207273

Date Extracted: 07/20/12 Lab ID: 207273-05

Date Applyzed: 07/21/12 Data File: 072047 D

Date Analyzed:07/21/12Data File:072047.DMatrix:SoilInstrument:GCMS9Units:mg/kg (ppm)Operator:JS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	102	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	•	<0.05
Chloromethane	<0.5 <0.5	1,3-Dichloropropane Tetrachloroethene	< 0.025
Vinyl chloride	<0.05 <0.05	Dibromochloromethane	< 0.023
Bromomethane	<0.05	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5 <0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	<0.5 <0.5		< 0.05
	<0.5 <0.5	Ethylbenzene 1,1,1,2-Tetrachloroethane	<0.05 <0.05
Acetone			
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P4:0 Client: Environmental Partners
Date Received: 07/20/12 Project: Mill Creek, F&BI 207273
Date Extracted: 07/20/12 Lab ID: 207273-07
Date Analyzed: 07/21/12 Data File: 072048.D

Matrix: Soil Instrument: GCMS9
Units: mg/kg (ppm) Operator: JS

Upper Lower Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 105 50 150 Toluene-d8 101 50 150 4-Bromofluorobenzene 103 50 150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P5:0 Client: Environmental Partners
Date Received: 07/20/12 Project: Mill Creek, F&BI 207273
Date Extracted: 07/20/12 Lab ID: 207273-09

Date Analyzed: 07/21/12 Data File: 072049.D

Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P6:0 Client: **Environmental Partners** Date Received: Project: Mill Creek, F&BI 207273 07/20/12 Lab ID: Date Extracted: 07/20/12 207273-11 Date Analyzed: 07/21/12 Data File: 072050.D

Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: JS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	102	50	150

Compounda	Concentration	Compounds	Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P7:0 Client: Environmental Partners
Date Received: 07/20/12 Project: Mill Creek, F&BI 207273
Date Extracted: 07/20/12 Lab ID: 207273-13
Date Analyzed: 07/21/12 Data File: 072051.D

Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	102	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	101	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: T1:4 Client: Environmental Partners
Date Received: 07/20/12 Project: Mill Creek, F&BI 207273
Date Extracted: 07/20/12 Lab ID: 207273-15

Date Analyzed: 07/21/12 Data File: 072052.D

Matrix: Soil Instrument: GCMS9

Units: mg/kg (ppm) Operator: JS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	101	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-	0 0 11	•	0 0
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Environmental Partners
Date Received: NA Project: Mill Creek, F&BI 207273

Lab ID: Date Extracted: 07/20/12 02-1266 mb Date Analyzed: 07/20/12 Data File: 072013.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: JS

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	104	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	103	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-		_	
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopr opylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

Date Extracted: 07/23/12 Date Analyzed: 07/26/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR PCBs REPORTED AS AROCLORS USING EPA METHOD 8082A

	Aroclo	or						Surrogate
Sample ID Laboratory ID	<u>1221</u>	<u>1232</u>	<u>1016</u>	<u>1242</u>	<u>1248</u>	<u>1254</u>	<u>1260</u>	(% Rec.) (Limit 50-150)
P1:0 207273-01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	118
P2:0 207273-03	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	114
P3:0 207273-05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	112
P4:0 207273-07	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	116
P5:0 207273-09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	101
P6:0 207273-11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	120
P7:0 207273-13	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	120
Method Blank	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	103

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 207273-03 (Duplicate)

		(Wet Wt)	(Wet Wt)	Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	mg/kg (ppm)	<2	<2	nm

			rercent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	95	61-153	

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 207262-02 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	107	107	64-133	0

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	101	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 207294-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	mg/kg (ppm)	50	12.8	95 b	98 b	63-120	3 b
Arsenic	mg/kg (ppm)	10	1.87	101	100	56-125	1
Selenium	mg/kg (ppm)	5	<1	91	96	64-118	5
Silver	mg/kg (ppm)	10	<1	105	104	83-112	1
Cadmium	mg/kg (ppm)	10	<1	108	109	85-117	1
Barium	mg/kg (ppm)	50	34.6	102 b	105 b	65-132	3 b
Lead	mg/kg (ppm)	50	2.72	101	103	64-139	2

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	111	81-117
Arsenic	mg/kg (ppm)	10	101	79-112
Selenium	mg/kg (ppm)	5	91	83-113
Silver	mg/kg (ppm)	10	104	85-113
Cadmium	mg/kg (ppm)	10	107	88-114
Barium	mg/kg (ppm)	50	103	87-113
Lead	mg/kg (ppm)	50	106	83-118

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 207294-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	93	99	54-156	6

			Percent	
	Reporting Units	Spike	Recovery	Acceptance
Analyte		Level	LCS	Criteria
Mercury	mg/kg (ppm)	0.125	88	73-131

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 207257-01 (Matrix Spike)

· ·	1 '			Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	9 vo	50-150
Chloromethane	mg/kg (ppm)	2.5	< 0.5	31 vo	50-150
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	31 vo	50-150
Bromomethane	mg/kg (ppm)	2.5	< 0.5	38 vo	50-150
Chloroethane	mg/kg (ppm)	2.5	< 0.5	40 vo	50-150
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	28 vo	50-150
Acetone	mg/kg (ppm)	12.5	< 0.5	67	50-150
1.1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	40 vo	50-150
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	57	50-150
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	62	50-150
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	48 vo	50-150
1,1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	55	50-150
2,2-Dichloropropan e	mg/kg (ppm)	2.5	< 0.05	54	50-150
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	60	50-150
Chloroform	mg/kg (ppm)	2.5	< 0.05	61	50-150
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	64	50-150
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	61	50-150
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	55	50-150
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	52	50-150
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	55	50-150
Benzene	mg/kg (ppm)	2.5	< 0.03	56	50-150
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	56	50-150
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	60	50-150
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	69	50-150
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	63	50-150
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	68	50-150
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	65	50-150
Toluene	mg/kg (ppm)	2.5	< 0.05	62	50-150
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	67	50-150
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	65	50-150
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	70	50-150
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	65	50-150
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	59	50-150
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	75	50-150
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	67	50-150
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	64	50-150
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	63	50-150
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	69	50-150
m,p-Xylene	mg/kg (ppm)	5	< 0.1	64	50-150
o-Xylene	mg/kg (ppm)	2.5	< 0.05	64	50-150
Styrene	mg/kg (ppm)	2.5	< 0.05	66	50-150
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	64	50-150
Bromoform	mg/kg (ppm)	2.5	< 0.05	78	50-150
n-Propylbenzene	mg/kg (ppm)	2.5	< 0.05	65	50-150
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	66	50-150
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	66	50-150
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	68	50-150
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	69	50-150
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	64	50-150
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	65	50-150
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	66	50-150
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	65	50-150
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	65	50-150
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	66	50-150
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	65	50-150
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	65	50-150
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	66	50-150
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	73	50-150
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	63	50-150
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	64	50-150
Naphthalene	mg/kg (ppm)	2.5	< 0.05	67	50-150
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	68	50-150

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

zaboratory couet zaboratory con	cror Sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	52	53	10-79	2
Chloromethane	mg/kg (ppm)	2.5	67	73	26-95	9
Vinyl chloride	mg/kg (ppm)	2.5	79	81	36-100	2
Bromomethane	mg/kg (ppm)	2.5	71	75	47-99	5
Chloroethane	mg/kg (ppm)	2.5	75	75	28-114	0
Trichlorofluoromethane	mg/kg (ppm)	2.5	80	83	39-118	4
Acetone	mg/kg (ppm)	12.5	98	102	50-124	4
1,1-Dichloroethene	mg/kg (ppm)	2.5	86	89	47-121	3
Methylene chloride	mg/kg (ppm)	2.5	91	95	50-134	4
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	93	97	53-123	4
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	91	94	47-121	3
1,1-Dichloroethane	mg/kg (ppm)	2.5	94	96	55-117	2
2,2-Dichloropropane	mg/kg (ppm)	2.5	103	106	52-129	3
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	98	101	66-116	3
Chloroform	mg/kg (ppm)	2.5	97	100	58-120	3
2-Butanone (MEK)	mg/kg (ppm)	12.5	96	100	68-109	4
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	94	97	48-127	3
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	98	100	57-125	2
1,1-Dichloropropene	mg/kg (ppm)	2.5	95	98	60-115	3
Carbon tetrachloride	mg/kg (ppm)	2.5	102	105	57-130	3
Benzene	mg/kg (ppm)	2.5	93	96	56-117	3
Trichloroethene	mg/kg (ppm)	2.5	93	95	64-114	2
1,2-Dichloropropane	mg/kg (ppm)	2.5	95	100	66-113	5
Bromodichloromethane	mg/kg (ppm)	2.5	103	105	76-113	2
Dibromomethane	mg/kg (ppm)	2.5	98	101	62-121	3
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm)	12.5 2.5	99 104	103 107	63-126 75-117	4 3
Toluene	mg/kg (ppm)	2.5	99	107	61-115	3 1
trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	107	110	74-117	3
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	99	101	73-111	2
2-Hexanone	mg/kg (ppm)	12.5	103	105	50-129	2
1,3-Dichloropropane	mg/kg (ppm)	2.5	99	101	60-118	2
Tetrachloroethene	mg/kg (ppm)	2.5	99	102	59-120	3
Dibromochloromethane	mg/kg (ppm)	2.5	108	110	72-117	2
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	103	105	71-113	2
Chlorobenzene	mg/kg (ppm)	2.5	99	102	64-112	3
Ethylbenzene	mg/kg (ppm)	2.5	100	103	60-121	3
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	107	110	74-118	3
m,p-Xylene	mg/kg (ppm)	5	101	103	63-118	2
o-Xylene	mg/kg (ppm)	2.5	100	103	64-117	3
Styrene	mg/kg (ppm)	2.5	102	104	67-120	2
Isopropylbenzene	mg/kg (ppm)	2.5	100	103	65-118	3
Bromoform	mg/kg (ppm)	2.5	105	108	47-145	3
n-Propylbenzene	mg/kg (ppm)	2.5	100	102	67-115	2
Bromobenzene	mg/kg (ppm)	2.5	99	103	69-115	4
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	100	103	67-118	3
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	101	104	73-111	3
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	99	103	46-125	4
2-Chlorotoluene	mg/kg (ppm)	2.5	99 99	102 102	64-115	3 3
4-Chlorotoluene tert-Butylbenzene	mg/kg (ppm)	2.5 2.5	99 100	102 104	66-114 70-113	3 4
	mg/kg (ppm)		100	103	67-117	3
1,2,4 Trimethylbenzene sec-Butylbenzene	mg/kg (ppm)	2.5 2.5	100	103	68-116	3 4
p-Isopropyltoluene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100	104	69-117	3
1.3-Dichlorobenzene	mg/kg (ppm)	2.5	98	104	67-113	3 4
1,4-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	98 97	102	67-113	4
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	99	101	71-109	2
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	102	105	70-119	3
1.2.4 Trichlorobenzene	mg/kg (ppm)	2.5	97	101	75-109	4
Hexachlorobutadiene	mg/kg (ppm)	2.5	99	102	70-116	3
Naphthalene	mg/kg (ppm)	2.5	99	106	72-113	7
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	100	106	74-113	6
	0 0 41 /					

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek, F&BI 207273

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 207294-12 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Aroclor 1016	mg/kg (ppm)	< 0.1	< 0.1	nm
Aroclor 1260	mg/kg (ppm)	< 0.1	< 0.1	nm

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	1.6	96	88	60-142	9
Aroclor 1260	mg/kg (ppm)	0.8	102	96	63-144	6

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

20+2+3	SAMPLE CHAIN OF CUSTODY	ME 07/2	0/12 152/153
Send Report To Erik Kolteg Company EPT Address 295 NEGilman Blvd Svite 201	PROJECT NAME/NO. Mill Creek	PO#	Page #/ of TURNAROUND TIME □ Standard (2 Weeks) □ RUSH Rush charges authorized by
City, State, ZIP <u>ISSaquah</u> WA 18027 Phone # <u>425-395-0010</u> Fax #	REMARKS		SAMPLE DISPOSAL ☐ Dispose after 30 days ☐ Return samples ☐ Will call with instructions

						Ĭ				ANA	LYSE	RE	QUEST	ΓED		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPI	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS 5082	PCBA 8 motels				Notes
P1:0	01 \$	7/19/12	1201	Sot	5	X	X		X		X	$\langle \rangle$				
P1:3	02 E		1220		S											Archive
P2:0	03		1240		5	X	X		X		Z					
P7:3	oy		1245		5											Avehine
P3:0	05		1306		5	X	X	B	X		X	$\langle X$				
P3:3	66		1316		5											Archine
P4:0	07		1347		7	X	X		X		X	X				
P4:3	08		1352		5											Avenive
D5:0	09		1449		5	X	X		X		X	$\langle \rangle$		i i		
P5:3	101	V	1454		5											Archive

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

CICNATURE	DDINTENAME	COMPANY	DATE	TOTA (TO
SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Rel/manished by:	MARYHOLDER	EPI	7/20/12	1050
Received by: (m) Cum	Whan Phan	FEBI	7/20/12	1052
Relinquished by		Samples rec	arvad at 4	•~
Received by:		Sumples for	oved at	

. Şarkır

FORMS\COC\COC.DOC

207273	SAMPLE CHAIN OF CUSTODY	ME OFF	20/12 7 81
Send Report To Erikoltes Company EPI Address	PROJECT NAME/NO. Mill Creek	PO#	TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by
City, State, ZIP Fax #	REMARKS		SAMPLE DISPOSAL ☐ Dispose after 30 days ☐ Return samples ☐ Will call with instructions

									ANA	LYSE	S REQ	UEST	ED	•		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS SO					Notes
PG:0	11/5	7/19/12	1512	Soil	5	X	X		X		7					
P6:3	12		1520		5											Archive
P7:0	13		1536		5	X	X		X		X					
P7:3	144	·	(550		ഗ											Archive
T1:4	12 B	V	1604	4	5	X			X			X				
			•													

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinful hed by:	Manytholder	EPI	7/20/12	10:50
Received by:	Nhan Phan	FEBI	07/20/R	10:50
Relinquished by:		G	4	
Received by:		Samples receiv	ved at'	.°C

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

August 1, 2012

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Mill Creek 63801.0

Dear Mr. Koltes:

Included are the results from the testing of material submitted on July 20, 2012 from the Mill Creek 63801.0, F&BI 207294 project. There are 28 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0801R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 20, 2012 by Friedman & Bruya, Inc. from the Environmental Partners Mill Creek 63801.0, F&BI 207294 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Environmental Partners
207294-01	U-1:15
207294-02	U-2:15
207294-03	U-3:8
207294-04	I-1:.5
207294-05	I-1:3
207294-06	I-2:.5
207294-07	I-2:3
207294-08	I-3:.5
207294-09	I-3:3
207294-10	I-4:.5
207294-11	I-4:3
207294-12	T-1A:4
207294-13	T-1A:7
207294-14	P-8:1
207294-15	P-8:3

The 8260C calibration standard failed the acceptance criteria for dichlorofluoromethane. The data were flagged accordingly.

Several 8260C compounds failed below the acceptance criteria in the matrix spike samples. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

Several compounds in the 8260C laboratory control sample and laboratory control sample duplicate exceeded the acceptance criteria. The analytes were not detected in the sample, therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

Date Extracted: 07/23/12 Date Analyzed: 07/23/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
I-1:.5 207294-04	<2	91
I-2:.5 207294-06	<2	93
I-3:.5 207294-08	<2	96
I-4:.5 207294-10	<2	92
P-8:1 207294-14	<2	92
Method Blank 02-1296 MB	<2	96

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

Date Extracted: 07/23/12 Date Analyzed: 07/23/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-132)
U-1:15 207294-01	<0.02	< 0.02	< 0.02	< 0.06	<2	75
U-2:15 207294-02	<0.02	< 0.02	< 0.02	< 0.06	<2	79
U-3:8 207294-03	< 0.02	< 0.02	< 0.02	<0.06	<2	79
Method Blank 02-1296 MB	< 0.02	< 0.02	< 0.02	< 0.06	<2	77

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

Date Extracted: 07/23/12 Date Analyzed: 07/23/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
U-1:15 207294-01	< 50	<250	123
U-2:15 207294-02	< 50	<250	108
U-3:8 207294-03	< 50	<250	108
I-1:.5 207294-04	< 50	<250	109
I-2:.5 207294-06	< 50	<250	110
I-3:.5 207294-08	< 50	<250	110
I-4:.5 207294-10	< 50	<250	107
T-1A:4 207294-12	< 50	<250	108
P-8:1 207294-14	<50	<250	101
Method Blank 02-1292 MB	<50	<250	110

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: I-1:.5 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

 Date Extracted:
 07/23/12
 Lab ID:
 207294-04

 Date Analyzed:
 07/24/12
 Data File:
 207294-04.023

 Matrix:
 Soil
 Instrument:
 ICPMS1

 Units:
 mg/kg (ppm)
 Operator:
 AP

Units: mg/kg (ppm) Operator: AP
Lower

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	98	60	125
Indium	94	60	125
Holmium	101	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium12.8Arsenic1.87Selenium<1</td>Silver<1</td>Cadmium<1</td>Barium34.6Lead2.72

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: I-2:.5 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

Lab ID: 07/23/12 Date Extracted: 207294-06 Date Analyzed: 07/24/12 Data File: 207294-06.027 Matrix: Instrument: Soil ICPMS1 mg/kg (ppm) Units: Operator: AP

Lower Upper Internal Standard: % Recovery: Limit: Limit: Germanium 115 60 125

 Germanium
 115
 60
 125

 Indium
 95
 60
 125

 Holmium
 103
 60
 125

Analyte: Concentration mg/kg (ppm)

 Chromium
 22.7

 Arsenic
 2.80

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 86.5

 Lead
 5.50

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: I-3:.5 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

 Date Extracted:
 07/23/12
 Lab ID:
 207294-08

 Date Analyzed:
 07/24/12
 Data File:
 207294-08.028

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	103	60	125
Indium	96	60	125
Holmium	104	60	125

Concentration

Analyte: mg/kg (ppm)

 Chromium
 7.50

 Arsenic
 <1</td>

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 23.2

 Lead
 1.29

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: I-4:.5 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

 Date Extracted:
 07/23/12
 Lab ID:
 207294-10

 Date Analyzed:
 07/24/12
 Data File:
 207294-10.029

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	104	60	125
Indium	95	60	125
Holmium	101	60	125

Concentration

Analyte: mg/kg (ppm)

 Chromium
 11.7

 Arsenic
 1.96

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 41.5

 Lead
 2.80

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: T-1A:4 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

 Date Extracted:
 07/23/12
 Lab ID:
 207294-12

 Date Analyzed:
 07/24/12
 Data File:
 207294-12.030

 Matrix:
 Soil
 Instrument:
 ICPMS1

 $Units: \hspace{1cm} mg/kg \hspace{0.1cm} (ppm) \hspace{1cm} Operator: \hspace{0.5cm} AP$

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	103	60	125
Indium	93	60	125
Holmium	101	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium14.5Arsenic1.55Selenium<1</td>Silver<1</td>Cadmium<1</td>Barium35.7Lead19.6

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P-8:1 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

 Date Extracted:
 07/23/12
 Lab ID:
 207294-14

 Date Analyzed:
 07/24/12
 Data File:
 207294-14.032

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	105	60	125
Indium	95	60	125
Holmium	102	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium16.2Arsenic6.02Selenium<1</td>Silver<1</td>Cadmium<1</td>Barium69.1Lead8.41

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek 63801.0, F&BI 207294

 Date Extracted:
 07/23/12
 Lab ID:
 I2-487 mb

 Date Analyzed:
 07/24/12
 Data File:
 I2-487 mb rr.042

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: AP

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	90	60	125
Indium	97	60	125
Holmium	103	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium <1
Arsenic <1
Selenium <1
Silver <1
Cadmium <1
Barium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

Date Extracted: 07/23/12 Date Analyzed: 07/23/12

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Sample ID Laboratory ID	<u>Total Mercury</u>
I-1:.5 207294-04	<0.1
I-2:.5 207294-06	<0.1
I-3:.5 207294-08	<0.1
I-4:.5 207294-10	<0.1
T-1A:4 207294-12	<0.1
P-8:1 207294-14	<0.1
Method Blank	<0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: I-1:.5 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

Lab ID: Date Extracted: 07/23/12 207294-04 Date Analyzed: 07/23/12 Data File: 072324.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	100	50	150

Compounds	Concentration	Compounds:	Concentration
Compounds:	mg/kg (ppm)	Compounds.	mg/kg (ppm)
Dichlorodifluoromethane	<0.5 ca	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachlor oethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: I-2:.5 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

Lab ID: Date Extracted: 07/23/12 207294-06 Date Analyzed: 07/23/12 Data File: 072325.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	100	50	150

C 1	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	<0.5 ca	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: I-3:.5 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

Lab ID: Date Extracted: 07/23/12 207294-08 Date Analyzed: 07/23/12 Data File: 072326.DMatrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: JS

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	50	150
Toluene-d8	97	50	150
4-Bromofluorobenzene	100	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-	0 0 11	•	0 0
Dichlorodifluoromethane	<0.5 ca	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: I-4:.5 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

Lab ID: Date Extracted: 07/23/12 207294-10 Date Analyzed: 07/23/12 Data File: 072327.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	100	50	150
4-Bromofluorobenzene	103	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
-	0 0 11	•	0 0
Dichlorodifluoromethane	<0.5 ca	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: T-1A:4 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

Lab ID: Date Extracted: 07/23/12 207294-12 Date Analyzed: 07/23/12 Data File: 072328.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	99	50	150
4-Bromofluorobenzene	101	50	150

Commonwedor	Concentration	Commounder	Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	<0.5 ca	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P-8:1 Client: Environmental Partners

Date Received: 07/20/12 Project: Mill Creek 63801.0, F&BI 207294

Lab ID: Date Extracted: 07/23/12 207294-14 Date Analyzed: 07/24/12 Data File: 072329.D Matrix: Soil Instrument: GCMS9 Units: mg/kg (ppm) Operator: JS

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	100	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	100	50	150

Compounds	Concentration mg/kg (ppm)	Compounds:	Concentration
Compounds:		Compounds.	mg/kg (ppm)
Dichlorodifluoromethane	<0.5 ca	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek 63801.0, F&BI 207294

Lab ID: Date Extracted: 07/23/12 02-1267 mb Date Analyzed: 07/23/12 Data File: 072308.D Matrix: Soil Instrument: GCMS9 mg/kg (ppm) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	101	50	150
Toluene-d8	98	50	150
4-Bromofluorobenzene	100	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

Date Extracted: 07/23/12 Date Analyzed: 07/26/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR PCBs REPORTED AS AROCLORS USING EPA METHOD 8082A

Sample ID Laboratory ID	Aroclo <u>1221</u>	or 1232	<u>1016</u>	1242	1248	<u>1254</u>	1260	Surrogate (% Rec.) (Limit 50-150)
T-1A:4 207294-12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	111
P-8:1 207294-14	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	123
Method Blank	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	103

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 207294-01 (Duplicate)

•	-	(Wet Wt)	(Wet Wt)	Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	mg/kg (ppm)	0.5	80	66-121		
Toluene	mg/kg (ppm)	0.5	81	72-128		
Ethylbenzene	mg/kg (ppm)	0.5	83	69-132		
Xylenes	mg/kg (ppm)	1.5	83	69-131		
Gasoline	mg/kg (ppm)	20	100	61-153		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 207293-02 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	1,200	109	108	63-146	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	103	79-144

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 207294-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	mg/kg (ppm)	50	12.8	95 b	98 b	63-120	3 b
Arsenic	mg/kg (ppm)	10	1.87	101	100	56-125	1
Selenium	mg/kg (ppm)	5	<1	91	96	64-118	5
Silver	mg/kg (ppm)	10	<1	105	104	83-112	1
Cadmium	mg/kg (ppm)	10	<1	108	109	85-117	1
Barium	mg/kg (ppm)	50	34.6	102 b	105 b	65-132	3 b
Lead	mg/kg (ppm)	50	2.72	101	103	64-139	2

Laboratory Code: Laboratory Control Sample

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	111	81-117
Arsenic	mg/kg (ppm)	10	101	79-112
Selenium	mg/kg (ppm)	5	91	83-113
Silver	mg/kg (ppm)	10	104	85-113
Cadmium	mg/kg (ppm)	10	107	88-114
Barium	mg/kg (ppm)	50	103	87-113
Lead	mg/kg (ppm)	50	106	83-118

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 207294-04 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	93	99	54-156	6

Laboratory Code: Laboratory Control Sample

			Percent		
	Reporting Units	Spike	Recovery	Acceptance	
Analyte		Level	LCS	Criteria	
Mercury	mg/kg (ppm)	0.125	88	73-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 207295-01 (Matrix Spike)

· ·				Percent	
Analyte	Reporting Units	Spike Level	Sample Result	Recovery MS	Acceptance Criteria
Dichlorodifluoromethane	mg/kg (ppm)	2.5	<0.5	18 vo	50-150
Chloromethane	mg/kg (ppm)	2.5	<0.5	43 vo	50-150
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	47 vo	50-150
Bromomethane	mg/kg (ppm)	2.5	< 0.5	53	50-150
Chloroethane	mg/kg (ppm)	2.5	< 0.5	53	50-150
Trichlorofluoromethane	mg/kg (ppm)	2.5	< 0.5	51	50-150
Acetone	mg/kg (ppm)	12.5	< 0.5	87	50-150
1,1-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	63	50-150
Methylene chloride	mg/kg (ppm)	2.5	< 0.5	79	50-150
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	< 0.05	85	50-150
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	75	50-150
1,1-Dichloroethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	81 90	50-150
2,2-Dichloropropane cis-1,2-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	90 85	50-150 50-150
Chloroform	mg/kg (ppm)	2.5	< 0.05	88	50-150
2-Butanone (MEK)	mg/kg (ppm)	12.5	<0.5	87	50-150
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	<0.05	86	50-150
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	84	50-150
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	80	50-150
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	88	50-150
Benzene	mg/kg (ppm)	2.5	< 0.03	82	50-150
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	83	50-150
1,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	86	50-150
Bromodichloromethane	mg/kg (ppm)	2.5	< 0.05	105	50-150
Dibromomethane	mg/kg (ppm)	2.5	< 0.05	90	50-150
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	< 0.5	93	50-150
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	101	50-150
Toluene	mg/kg (ppm)	2.5	< 0.05	87	50-150
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	102 90	50-150 50-150
2-Hexanone	mg/kg (ppm)	2.5 12.5	<0.05 <0.5	90 93	
1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	<0.05 <0.05	93 89	50-150 50-150
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	88	50-150
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	127	50-150
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	95	50-150
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	90	50-150
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	91	50-150
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	99	50-150
m,p-Xylene	mg/kg (ppm)	5	< 0.1	91	50-150
o-Xylene	mg/kg (ppm)	2.5	< 0.05	92	50-150
Styrene	mg/kg (ppm)	2.5	< 0.05	94	50-150
Isopropylbenzene	mg/kg (ppm)	2.5	< 0.05	92	50-150
Bromoform	mg/kg (ppm)	2.5	< 0.05	145	50-150
n-Propylbenzene Bromobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	91 91	50-150 50-150
1,3,5-Trimethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5	< 0.05	92	50-150
1,1,2,2-Tetrac hloroethane	mg/kg (ppm)	2.5	<0.05	93	50-150
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	<0.05	91	50-150
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	90	50-150
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	90	50-150
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	92	50-150
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	92	50-150
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	93	50-150
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	96	50-150
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	91	50-150
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	92	50-150
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	< 0.05	92	50-150
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	< 0.5	112	50-150
1,2,4 Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	91	50-150
Hexachlorobutadiene	mg/kg (ppm)	2.5	< 0.25	92	50-150
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.25	93 94	50-150 50-150
1,2,3-111CHIOFODERIZERE	mg/kg (ppm)	2.3	<0.25	94	30-130

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: Laboratory Control Sample

Zaboratory couet Zaboratory con	er or Sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane		2.5	49	44	10-79	11
Chloromethane	mg/kg (ppm) mg/kg (ppm)	2.5	67	67	26-95	0
Vinyl chloride	mg/kg (ppm)	2.5	77	78	36-100	1
Bromomethane	mg/kg (ppm)	2.5	71	70 71	47-99	0
Chloroethane	mg/kg (ppm)	2.5	72	73	28-114	1
Trichlorofluoromethane	mg/kg (ppm)	2.5	79	79 79	39-118	0
Acetone	mg/kg (ppm)	12.5	95	95	50-124	0
1.1-Dichloroethene	mg/kg (ppm)	2.5	88	87	47-121	1
Methylene chloride	mg/kg (ppm)	2.5	96	94	50-134	2
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	96	95	53-123	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	92	91	47-121	1
1,1-Dichloroethane	mg/kg (ppm)	2.5	96	96	55-117	0
2,2-Dichloropropane	mg/kg (ppm)	2.5	107	106	52-129	1
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	100	100	66-116	0
Chloroform	mg/kg (ppm)	2.5	98	98	58-120	0
2-Butanone (MEK)	mg/kg (ppm)	12.5	94	94	68-109	0
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	96	96	48-127	0
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	101	99	57-125	2
1,1-Dichloropropene	mg/kg (ppm)	2.5	98	96	60-115	2
Carbon tetrachloride	mg/kg (ppm)	2.5	108	106	57-130	2
Benzene	mg/kg (ppm)	2.5	96	95	56-117	1
Trichloroethene	mg/kg (ppm)	2.5	95	95	64-114	0
1,2-Dichloropropane	mg/kg (ppm)	2.5	99	98	66-113	1
Bromodichloromethane	mg/kg (ppm)	2.5	120 vo	117 vo	76-113	3
Dibromomethane	mg/kg (ppm)	2.5	99	100	62-121	1
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	103	101	63-126	2
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	112	112	75-117	0
Toluene	mg/kg (ppm)	2.5 2.5	101 116	98 113	61-115 74-117	3 3
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101	98	74-117	ა 3
2-Hexanone	mg/kg (ppm)	12.5	98	100	50-129	2
1,3-Dichloropropane	mg/kg (ppm)	2.5	100	99	60-118	1
Tetrachloroethene	mg/kg (ppm)	2.5	100	101	59-120	1
Dibromochloromethane	mg/kg (ppm)	2.5	148 vo	143 vo	72-117	3
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	105	104	71-113	1
Chlorobenzene	mg/kg (ppm)	2.5	100	99	64-112	1
Ethylbenzene	mg/kg (ppm)	2.5	102	101	60-121	1
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	113	110	74-118	3
m,p-Xylene	mg/kg (ppm)	5	102	102	63-118	0
o-Xylene	mg/kg (ppm)	2.5	102	101	64-117	1
Styrene	mg/kg (ppm)	2.5	103	103	67-120	0
Isopropylbenzene	mg/kg (ppm)	2.5	102	101	65-118	1
Bromoform	mg/kg (ppm)	2.5	163 vo	160 vo	47-145	2
n-Propylbenzene	mg/kg (ppm)	2.5	101	100	67-115	1
Bromobenzene	mg/kg (ppm)	2.5	101	100	69-115	1
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	102	101	67-118	1
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	102	104	73-111	2
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	101	100	46-125	1
2-Chlorotoluene 4-Chlorotoluene	mg/kg (ppm)	2.5 2.5	100 101	99 100	64-115 66-114	1 1
tert-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101	100	70-114	2
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	102	102	67-117	1
sec-Butylbenzene	mg/kg (ppm)	2.5	102	101	68-116	1
p-Isopropyltoluene	mg/kg (ppm)	2.5	102	103	69-117	1
1.3-Dichlorobenzene	mg/kg (ppm)	2.5	101	100	67-113	1
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	100	99	67-110	1
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	100	99	71-109	1
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	123 vo	123 vo	70-119	0
1.2.4 Trichlorobenzene	mg/kg (ppm)	2.5	101	101	75-109	0
Hexachlorobutadiene	mg/kg (ppm)	2.5	102	101	70-116	1
Naphthalene	mg/kg (ppm)	2.5	103	103	72-113	0
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	104	103	74-113	1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/01/12 Date Received: 07/20/12

Project: Mill Creek 63801.0, F&BI 207294

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 207294-12 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Aroclor 1016	mg/kg (ppm)	< 0.1	< 0.1	nm
Aroclor 1260	mg/kg (ppm)	< 0.1	< 0.1	nm

Laboratory Code: Laboratory Control Sample

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	1.6	96	88	60-142	9
Aroclor 1260	mg/kg (ppm)	0.8	102	96	63-144	6

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

207294 Send Report To Eri	c Kalt	2		SAMPL	ERS (sign	aturé					į.		Tr			of
Company FPI Address 295 NG]	CT NAME		28	n1	0		PC)#]] [XStan □ RUS	dard H	(2 Weeks)
City, State, ZIP <u>Lssq</u> Phone # 415 481 - 3			8027	REMAI							-		1	□ Disp □ Retu	ose a irn sa	PLE DISPOSAL after 30 days amples with instructions
									AÑA	LYSI	ES RE	QUES'	ГED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	PH-Diesel	X by 8021B		Cs by 8270	HFS	AS MODIS					Notes

													_ 、				· ·	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS	RCAA8 Hold		-			Notes	
U-1:15	OILE	7/19/20	10:26	501	5	X	义	X							.,			
U-7:15 U-3:8	02	ν.	14:96		2	人	X	X										
4-3:8		7/20/20	0908		٦	人	X	X										
I-1:,5	94		4:44		5	X	X	`\.	X			X					· · · · · · · · · · · · · · · · · · ·	
I-1;3	0 5		11:49		5												Archive	
I-2;,5	060		11:55		3	X	X		X		İ	X						
I-7:3	97		19:02		7					-							Archive	
I-31.5	08		12/8		٠ ک	义	X	1	X			X						
I-3;3	09		19:32		5												Archive	
I-4:15	10	4	(3:30	V	5	又	X	1	N N			지						

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

-SIGNATURE	PRINT NAME	COMPANY	DATE,	TIME
Relinquished by:	Erre Caddel	EPI	7/20/1	16:10
Received by:	NINIH	FBI	7/20/R	15:10
Relinquished by:				. 0-10
Received by:		received	at 4 %	

FORMS\COC\COC.DOC

207294 SAI	MPLE CHAIN OF CUSTODY	ME 07-2	0-12 V\$3/E
Send Report To Eric Kol Tes	SAMPLERS (signature)		Page #of TURNAROUND TIME
Company EPI	PROJECT NAME/NO.	PO#	XStandard (2 Weeks) □ RUSH
Address 295 NE GILMAN Blud STODUL	M:V Creek / 63801.0		Rush charges authorized by
City, State, ZIP <u>Inaqual</u> WA 98027 Phone # 425 - 281-3624 Fax #	REMARKS		SAMPLE DISPOSAL ☐ Dispose after 30 days
Phone # 475 - 281- 3624 Fax #			☐ Return samples ☐ Will call with instructions
	ANA	LYSES REQUESTI	ED
	sel line 021B 260 8270	Molq	

The state of the s						L				<u>ANA</u>	LYS	SES I	REQU	JEST	ED		
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS	PCBS	8 ALPATION				Notes
I-4:3	IIAE	7/20/12	13:30	Sail	5												Archive
T-14:4	12 T		14:10		5	X			X			Χ	X				
t-14:7	13		14:30		5												Archive
P-8:1 P-8:3	14		14:30		5-	X	Х		X			X	X				
P-813	15		14:35		5												Archive.
-																	
																	7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
											1						

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282 Fax (206) 283-5044 FORMS\COC\COC.DOC

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by	Eric Cardol	EPT	7/20/12	16:10
Received by:	VINH	FBI	7/20/12	16:10
Relinquished by:				
Received by:		des rec	cived at 4	ياتية

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

August 2, 2012

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Mill Creek Trust, PO 63801.0

Dear Mr. Koltes:

Included are the results from the testing of material submitted on July 24, 2012 from the Mill Creek Trust, PO 63801.0, F&BI 207338 project. There are 50 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Jerry Boyd EPI0802R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 24, 2012 by Friedman & Bruya, Inc. from the Environmental Partners Mill Creek Trust, PO 63801.0, F&BI 207338 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Environmental Partners
207338-01	T-2:1.75
207338-02	T-2:4.5
207338-03	T-3:2
207338-04	T-3:5.5
207338-05	P-9:1.5
207338-06	P-9:4
207338-07	P-10:1.5
207338-08	P-10:4
207338-09	C-1:0.75
207338-10	C-2:0.75
207338-11	C-3:0.75
207338-12	C-7
207338-13	C-8
207338-14	C-9
207338-15	C-4
207338-16	C-5
207338-17	C-6
207338-18	P-11
207338-19	P-12
207338-20	P-13
207338-21	P-14

For the PCB analysis of the wipe samples the 1016 and 1260 aroclor failed below the laboratory control sample acceptance criteria. The data were flagged accordingly.

Dichlorofluoromethane failed below the acceptance criteria in the matrix spike sample. The laboratory control samples met the acceptance criteria, therefore the data were likely due to sample matrix effect.

The 8260C laboratory control sample and laboratory control sample duplicate failed the relative percent difference for several compounds. The analytes were not detected therefore the data were acceptable.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/25/12 Date Analyzed: 07/25/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 58-139)
P-9:1.5 207338-05	<2	94
P-10:1.5 207338-07	<2	94
C-1:0.75 207338-09	<2	95
C-2:0.75 207338-10	<2	94
C-3:0.75 207338-11	<2	94
Method Blank 02-1306 MB	<2	99

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/25/12 Date Analyzed: 07/25/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 53-144)
T-2:1.75 207338-01	< 50	<250	93
T-2:4.5 207338-02	< 50	<250	100
T-3:2 207338-03	< 50	<250	89
P-9:1.5 207338-05	< 50	<250	95
P-10:1.5 207338-07	< 50	<250	97
C-1:0.75 207338-09	< 50	<250	99
C-2:0.75 207338-10	< 50	<250	100
C-3:0.75 207338-11	< 50	<250	91
Method Blank 02-1308 MB	<50	<250	93

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: T-2:1.75 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

 Date Extracted:
 07/27/12
 Lab ID:
 207338-01

 Date Analyzed:
 07/27/12
 Data File:
 207338-01.018

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

T . 10. 1 1	0/ D	Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	99	60	125
Indium	86	60	125
Holmium	86	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium21.2Arsenic3.24Selenium<1</td>Silver<1</td>Cadmium<1</td>Barium34.6Lead2.14

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: T-2:4.5 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

 Date Extracted:
 07/27/12
 Lab ID:
 207338-02

 Date Analyzed:
 07/27/12
 Data File:
 207338-02.021

 Matrix:
 Soil
 Instrument:
 ICPMS1

 Units:
 mg/kg (ppm)
 Operator:
 AP

nits: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	96	60	125
Indium	85	60	125
Holmium	89	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium17.1Arsenic1.16Selenium<1</td>Silver<1</td>Cadmium<1</td>Barium35.1Lead1.99

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: T-3:2 Client: **Environmental Partners**

Date Received: Project: Mill Creek Trust, PO 63801.0, F&BI 207338 07/24/12

Lab ID: 07/27/12 207338-03 Date Extracted: Date Analyzed: 07/27/12 Data File: 207338-03.022 Matrix: Instrument: Soil ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	100	60	125
Indium	85	60	125
Holmium	87	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium 21.0 Arsenic 1.43 Selenium <1 Silver <1 Cadmium <1 Barium 51.7 Lead 3.23

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P-9:1.5 Client: **Environmental Partners**

Date Received: Project: Mill Creek Trust, PO 63801.0, F&BI 207338 07/24/12

Lab ID: 07/27/12 207338-05 Date Extracted: Date Analyzed: 07/27/12 Data File: 207338-05.023 Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	∪pper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	95	60	125
Indium	82	60	125
Holmium	85	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium 14.6 Arsenic 2.02 Selenium <1 Silver <1 Cadmium <1 Barium 40.9 Lead 11.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: P-10:1.5 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

 Date Extracted:
 07/27/12
 Lab ID:
 207338-07

 Date Analyzed:
 07/27/12
 Data File:
 207338-07.027

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	99	60	125
Indium	85	60	125
Holmium	87	60	125

Concentration

Analyte: mg/kg (ppm)

 Chromium
 11.8

 Arsenic
 2.42

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 45.2

 Lead
 19.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: C-1:0.75 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

07/27/12 Lab ID: Date Extracted: 207338-09 Date Analyzed: 07/27/12 Data File: 207338-09.028 Matrix: Instrument: Soil ICPMS1 mg/kg (ppm) Units: Operator: AP

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 99 60 125 Indium 82 60 125 Holmium 87 60 125

Concentration

Analyte: mg/kg (ppm)

 Chromium
 16.9

 Arsenic
 1.74

 Selenium
 <1</td>

 Silver
 <1</td>

 Cadmium
 <1</td>

 Barium
 43.5

 Lead
 6.49

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: C-2:0.75 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

 Date Extracted:
 07/27/12
 Lab ID:
 207338-10

 Date Analyzed:
 07/27/12
 Data File:
 207338-10.029

 Matrix:
 Soil
 Instrument:
 ICPMS1

 $Units: \hspace{1.5cm} mg/kg \hspace{0.1cm} (ppm) \hspace{1.5cm} Operator: \hspace{0.5cm} AP$

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	114	60	125
Indium	86	60	125
Holmium	88	60	125

Concentration

Analyte: mg/kg (ppm)

 Chromium
 18.4

 Arsenic
 2.98

 Selenium
 <1</td>

 Silver
 1.69

 Cadmium
 <1</td>

 Barium
 65.7

 Lead
 47.0

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: C-3:0.75 Client: **Environmental Partners**

Date Received: Project: Mill Creek Trust, PO 63801.0, F&BI 207338 07/24/12

Lab ID: 07/27/12 207338-11 Date Extracted: Date Analyzed: 07/27/12 Data File: 207338-11.030 Matrix: Instrument: Soil ICPMS1

Units: mg/kg (ppm) Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	100	60	125
Indium	84	60	125
Holmium	90	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium 15.2 Arsenic 1.86 Selenium <1 Silver <1 Cadmium <1 Barium 58.0 Lead 6.67

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: **Environmental Partners**

Date Received: Project: Mill Creek Trust, PO 63801.0, F&BI 207338 NA

Lab ID: Date Extracted: 07/27/12 I2-502 mb Date Analyzed: 07/27/12 Data File: I2-502 mb.016 Matrix: Instrument: ICPMS1 Soil

mg/kg (ppm) Units: Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	87	60	125
Indium	86	60	125
Holmium	89	60	125

Concentration

Analyte: mg/kg (ppm)

Chromium <1 Arsenic <1 Selenium <1 Silver <1 Cadmium <1 Barium <1 Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Date Analyzed: 07/30/12

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Total Mercury</u>
T-2:1.75 207338-01	<0.1
T-2:4.5 207338-02	<0.1
T-3:2 207338-03	<0.1
P-9:1.5 207338-05	<0.1
P-10:1.5 207338-07	<0.1
C-1:0.75 207338-09	<0.1
C-2:0.75 207338-10	<0.1
C-3:0.75 207338-11	<0.1
M d lDl l	0.1
Method Blank	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: T-2:1.75 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Lab ID: Date Extracted: 07/25/12 207338-01 Date Analyzed: 07/30/12 Data File: 073017.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	97	55	145
4-Bromofluorobenzene	101	65	139

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlor obenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: T-2:4.5 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Lab ID: Date Extracted: 07/25/12 207338-02 Date Analyzed: 07/30/12 Data File: 073018.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	97	55	145
4-Bromofluorobenzene	101	65	139

Compounds	Concentration	Compounds:	Concentration
Compounds:	mg/kg (ppm)	Compounds.	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: T-3:2 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Lab ID: Date Extracted: 07/25/12 207338-03 Date Analyzed: 07/30/12 Data File: 073019.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Operator: JS

	Lower	∪pper
% Recovery:	Limit:	Limit:
98	62	142
97	55	145
101	65	139
	98 97	% Recovery: Limit: 98 62 97 55

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P-9:1.5 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Lab ID: Date Extracted: 07/25/12 207338-05 Date Analyzed: 07/30/12 Data File: 073020.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	142
Toluene-d8	98	55	145
4-Bromofluorobenzene	102	65	139

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylben zene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: P-10:1.5 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Lab ID: Date Extracted: 07/25/12 207338-07 Date Analyzed: 07/30/12 Data File: 073021.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	142
Toluene-d8	96	55	145
4-Bromofluorobenzene	100	65	139

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluen e	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: C-1:0.75 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Lab ID: Date Extracted: 07/25/12 207338-09 Date Analyzed: 07/30/12 Data File: 073022.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	62	142
Toluene-d8	97	55	145
4-Bromofluorobenzene	101	65	139

Compounda	Concentration	Compounds	Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichlor opropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: C-2:0.75 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Lab ID: Date Extracted: 07/25/12 207338-10 Date Analyzed: 07/30/12 Data File: 073023.D Matrix: Instrument: Soil GCMS4 Units: mg/kg (ppm) Operator: JS

Lower Upper Surrogates: % Recovery: Limit: Limit: 1,2-Dichloroethane-d4 100 62 142 Toluene-d8 97 55 145 4-Bromofluorobenzene 101 65 139

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: C-3:0.75 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Lab ID: Date Extracted: 07/25/12 207338-11 Date Analyzed: 07/30/12 Data File: 073024.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	62	142
Toluene-d8	97	55	145
4-Bromofluorobenzene	100	65	139

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Lab ID: Date Extracted: 07/25/12 02-1270 mb Date Analyzed: 07/30/12 Data File: 073004.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Units: Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	98	62	142
Toluene-d8	97	55	145
4-Bromofluorobenzene	100	65	139

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.5	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.5
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: P-9:1.5 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/30/12 Lab ID: 207338-05

Date Analyzed: 07/31/12 Data File: 073116.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: ML

Surrogates: % Recovery: Limit: Limit: TCX 124 50 150

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1

Aroclor 1242 <0.1 Aroclor 1248 <0.1 Aroclor 1254 <0.1 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: P-10:1.5 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/30/12 Lab ID: 207338-07

Date Analyzed: 07/31/12 Data File: 073120.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: ML

Surrogates: % Recovery: Limit: Limit: TCX 104 50 150

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: C-1:0.75 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/30/12 Lab ID: 207338-09

Date Analyzed: 07/31/12 Data File: 073122.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: ML

Surrogates: % Recovery: Limit: Limit: TCX 117 50 150

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1
Aroclor 1232 <0.1
Aroclor 1016 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: C-2:0.75 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/30/12 Lab ID: 207338-10

Date Analyzed: 07/31/12 Data File: 073124.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: ML

Surrogates: % Recovery: Limit: Limit: TCX 110 50 150

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <0.1

Aroclor 1232 <0.1

Aroclor 1016 <0.1

Aroclor 1242 <0.1 Aroclor 1248 <0.1 Aroclor 1254 1.3 Aroclor 1260 <0.1

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: C-3:0.75 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/30/12 Lab ID: 207338-11

Date Analyzed: 07/31/12 Data File: 073126.D\ECD1A.CH

Matrix: Soil Instrument: GC7 Units: mg/kg (ppm) Operator: ML

Aroclor 1016

Aroclor 1242

Aroclor 1248

Aroclor 1254

Aroclor 1260

 4
 5
 6
 7
 7
 8
 8
 9
 1
 1
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 1
 2
 2
 3
 4
 4
 5
 7
 8
 9
 1
 2
 2
 2
 3
 4
 4
 5
 4
 6
 7
 7
 8
 9
 1
 2
 2
 2
 3
 4
 4
 4
 5
 6
 7
 7
 8
 9
 9
 1
 2
 2
 2
 3
 4
 4
 5
 6
 7
 6
 7
 7
 8
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 <l

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Method Blank Client: **Environmental Partners**

Date Received: NA Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Lower

Date Extracted: 07/30/12 Lab ID: 02-1338 mb

Date Analyzed: 07/31/12 Data File: 073110.D\ECD1A.CH

Matrix: Instrument: Soil GC7 Units: mg/kg (ppm) Operator: ML

Upper Limit: Surrogates: % Recovery: Limit: TCX 118 50 150

< 0.1

< 0.1

Concentration Compounds: mg/kg (ppm) Aroclor 1221 < 0.1 Aroclor 1232 < 0.1 Aroclor 1016 < 0.1 Aroclor 1242 < 0.1 Aroclor 1248 < 0.1

Aroclor 1254

Aroclor 1260

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: C-7 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 207338-12

Date Analyzed: 07/30/12 Data File: 073020.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <2
Aroclor 1232 <2
Aroclor 1016 <2

Aroclor 1242 <2
Aroclor 1248 <2
Aroclor 1254 <2
Aroclor 1260 <2

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: C-8 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 207338-13

Date Analyzed: 07/30/12 Data File: 073022.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <2
Aroclor 1232 <2
Aroclor 1016 <2

Aroclor 1242 <2
Aroclor 1248 <2
Aroclor 1254 <2
Aroclor 1260 <2

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: C-9 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 207338-14

Date Analyzed: 07/30/12 Data File: 073024.D\ECD1A.CH

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <2
Aroclor 1232 <2

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 02-1336 mb

Date Analyzed: 07/30/12 Data File: 073014.D\ECD1A.CH

Surrogates: % Recovery: Limit: Limit: TCX 115 50 150

Concentration
Compounds: mg/kg (ppm)

Aroclor 1221 <2
Aroclor 1232 <2
Aroclor 1016 <2
Aroclor 1242 <2

Aroclor 1242 <2
Aroclor 1248 <2
Aroclor 1254 <2
Aroclor 1260 <2

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	C-4	Client:	Environmental Partners
-------------------	-----	---------	-------------------------------

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 207338-15

Date Analyzed: 07/30/12 Data File: 073036.D\ECD1A.CH

Matrix: Wipe Instrument: GC7 Units: ug/wipe Operator: mwdl

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: C-5	Client:	Environmental Partners
-----------------------	---------	-------------------------------

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 207338-16

Date Analyzed: 07/31/12 Data File: 073038.D\ECD1A.CH

Matrix: Wipe Instrument: GC7 Units: Ug/wipe Operator: mwdl

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	C-6	Client:	Environmental Partners
-------------------	-----	---------	-------------------------------

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 207338-17

Date Analyzed: 07/31/12 Data File: 073040.D\ECD1A.CH

Matrix: Wipe Instrument: GC7 Units: ug/wipe Operator: mwdl

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-11	Client:	Environmental Partners
-------------------	------	---------	-------------------------------

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 207338-18

Date Analyzed: 07/31/12 Data File: 073042.D\ECD1A.CH

Matrix: Wipe Instrument: GC7 Units: ug/wipe Operator: mwdl

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-12	Client:	Environmental Partners
-------------------	------	---------	-------------------------------

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 207338-19

Date Analyzed: 07/31/12 Data File: 073044.D\ECD1A.CH

Matrix: Wipe Instrument: GC7 Units: Ug/wipe Operator: mwdl

Surrogates: Kecovery: Limit: Upper Limit: TCX 83 50 150

<1.0

Concentration
Compounds: ug/wipe

Aroclor 1221 <1.0
Aroclor 1232 <1.0
Aroclor 1016 <1.0
Aroclor 1242 <1.0
Aroclor 1248 <1.0
Aroclor 1248 <1.0
Aroclor 1254 4.6 jl

Aroclor 1260

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID:	P-13	Client:	Environmental Partners
-------------------	------	---------	-------------------------------

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 207338-20

Date Analyzed: 07/31/12 Data File: 073046.D\ECD1A.CH

Matrix: Wipe Instrument: GC7 Units: ug/wipe Operator: mwdl

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: P-14 Client: Environmental Partners

Date Received: 07/24/12 Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 207338-21

Date Analyzed: 07/31/12 Data File: 073048.D\ECD1A.CH

Matrix: Wipe Instrument: GC7 Units: Ug/wipe Operator: mwdl

<1.0

Concentration
Compounds: ug/wipe

Aroclor 1221 <1.0
Aroclor 1232 <1.0
Aroclor 1016 <1.0
Aroclor 1242 <1.0
Aroclor 1248 <1.0
Aroclor 1248 <5.5 jl

Aroclor 1260

ENVIRONMENTAL CHEMISTS

Analysis For PCBs By EPA Method 8082

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek Trust, PO 63801.0, F&BI 207338

Date Extracted: 07/27/12 Lab ID: 02-1337 mb

Date Analyzed: 07/30/12 Data File: 073030.D\ECD1A.CH

Matrix: Wipe Instrument: GC7 Units: ug/wipe Operator: mwdl

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TPH AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 207333-04 (Duplicate)

		(Wet Wt)	(Wet Wt)	Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	mg/kg (ppm)	3 a	4 a	29 a

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	20	95	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 207338-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	112	101	64-133	10

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	105	58-147

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 207338-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	mg/kg (ppm)	50	21.2	86 b	80 b	63-120	7 b
Arsenic	mg/kg (ppm)	10	3.24	105 b	100 b	56-125	5 b
Selenium	mg/kg (ppm)	5	<1	99	100	64-118	1
Silver	mg/kg (ppm)	10	<1	107	107	83-112	0
Cadmium	mg/kg (ppm)	10	<1	106	108	85-117	2
Barium	mg/kg (ppm)	50	34.6	107 b	109 b	65-132	2 b
Lead	mg/kg (ppm)	50	2.14	109	107	64-139	2

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	99	81-117
Arsenic	mg/kg (ppm)	10	102	79-112
Selenium	mg/kg (ppm)	5	104	83-113
Silver	mg/kg (ppm)	10	104	85-113
Cadmium	mg/kg (ppm)	10	108	88-114
Barium	mg/kg (ppm)	50	101	87-113
Lead	mg/kg (ppm)	50	108	83-118

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 207338-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Mercury	mg/kg (ppm)	0.125	< 0.1	76	86	54-156	12

			Percent		
	Reporting Units	Spike	Recovery	Acceptance	
Analyte		Level	LCS	Criteria	
Mercury	mg/kg (ppm)	0.125	82	73-131	_

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 207335-09 (Matrix Spike)

		Percent					
	Reporting	Spike	Sample	Recovery	Acceptance		
Analyte	Units	Level	Result	MS	Criteria		
Dichlorodifluoromethane	mg/kg (ppm)	2.5	< 0.5	7 vo	10-142		
Chloromethane	mg/kg (ppm)	2.5	< 0.5	26	10-126		
Vinyl chloride	mg/kg (ppm)	2.5	< 0.05	23	10-138		
Bromomethane	mg/kg (ppm)	2.5	< 0.5	38	10-163		
Chloroethane	mg/kg (ppm)	2.5	<0.5	44	10-176		
Trichlorofluoromethane	mg/kg (ppm)	2.5 12.5	<0.5	53 66	10-176		
Acetone 1.1-Dichloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	<0.5 <0.05	43	10-163 10-160		
Methylene chloride	mg/kg (ppm)	2.5	<0.5	53	10-156		
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	<0.05	64	21-145		
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	53	14-137		
1.1-Dichloroethane	mg/kg (ppm)	2.5	< 0.05	58	19-140		
2,2-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	32	10-158		
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	< 0.05	62	25-135		
Chloroform	mg/kg (ppm)	2.5	< 0.05	65	21-145		
2-Butanone (MEK)	mg/kg (ppm)	12.5	< 0.5	55	19-147		
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	< 0.05	69	12-160		
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	61	10-156		
1,1-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	55	17-140		
Carbon tetrachloride	mg/kg (ppm)	2.5	< 0.05	61	9-164		
Benzene	mg/kg (ppm)	2.5	< 0.03	61	29-129		
Trichloroethene	mg/kg (ppm)	2.5	< 0.03	59	21-139		
1,2-Dichloropropane Bromodichloromethane	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	65 71	30-135 23-155		
	mg/kg (ppm)	2.5 2.5		71 70			
Dibromomethane 4-Methyl-2-pentanone	mg/kg (ppm) mg/kg (ppm)	2.5 12.5	<0.05 <0.5	70 71	23-145 24-155		
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	<0.05	60	28-144		
Toluene	mg/kg (ppm)	2.5	<0.05	67	35-130		
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	< 0.05	65	26-149		
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	< 0.05	72	30-142		
2-Hexanone	mg/kg (ppm)	12.5	< 0.5	78	15-166		
1,3-Dichloropropane	mg/kg (ppm)	2.5	< 0.05	71	31-137		
Tetrachloroethene	mg/kg (ppm)	2.5	< 0.025	63	20-133		
Dibromochloromethane	mg/kg (ppm)	2.5	< 0.05	74	28-150		
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	< 0.05	72	28-142		
Chlorobenzene	mg/kg (ppm)	2.5	< 0.05	70	32-129		
Ethylbenzene	mg/kg (ppm)	2.5	< 0.05	70	32-137		
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	71	31-143		
m,p-Xylene	mg/kg (ppm)	5	<0.1	71	34-136		
o-Xylene Styrene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	72 58	33-134 35-137		
Isopropylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.05	58 72	31-142		
Bromoform	mg/kg (ppm)	2.5	< 0.05	75	21-156		
n-Propylbenzene	mg/kg (ppm)	2.5	<0.05	73 71	23-146		
Bromobenzene	mg/kg (ppm)	2.5	< 0.05	72	34-130		
1.3.5-Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	71	18-149		
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	< 0.05	70	28-140		
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	< 0.05	72	25-144		
2-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	71	31-134		
4-Chlorotoluene	mg/kg (ppm)	2.5	< 0.05	72	31-136		
tert-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	71	30-137		
1,2,4 Trimethylbenzene	mg/kg (ppm)	2.5	< 0.05	71	10-182		
sec-Butylbenzene	mg/kg (ppm)	2.5	< 0.05	71	23-145		
p-Isopropyltoluene	mg/kg (ppm)	2.5	< 0.05	73	21-149		
1,3-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	< 0.05	70 70	30-131		
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm)	2.5 2.5	<0.05 <0.05	70 69	29-129 31-132		
1,2-Dichioropenzene 1.2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.05 <0.5	63	31-132 11-161		
1,2,4Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	<0.25	62	22-142		
Hexachlorobutadiene	mg/kg (ppm)	2.5	<0.25	65	19-142		
Naphthalene	mg/kg (ppm)	2.5	< 0.05	64	14-157		
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	< 0.25	63	20-144		
	0 0 41 /						

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

	Reporting	Spike	Percent	Percent	Acceptance	RPD
Analyte	Units	Level	Recovery LCS	Recovery LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	49	29	10-146	51 vo
Chloromethane	mg/kg (ppm)	2.5	64	46	27-133	33 vo
Vinyl chloride	mg/kg (ppm)	2.5	73	53	22-139	32 vo
Bromomethane Chloroethane	mg/kg (ppm)	2.5 2.5	85 84	68 72	38-114 20-153	22 vo
Chloroethane Trichlorofluoromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	84 114	111	10-196	15 3
Acetone	mg/kg (ppm)	12.5	106	93	52-141	13
1,1-Dichloroethene	mg/kg (ppm)	2.5	91	75	47-128	19
Methylene chloride	mg/kg (ppm)	2.5	87	80	42-132	8
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	98	89	60-123	10
trans-1,2-Dichloroethene 1,1-Dichloroethane	mg/kg (ppm)	2.5 2.5	95 97	85 87	67-127 68-115	11 11
2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	129	121	57-133	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	99	92	72-113	7
Chloroform	mg/kg (ppm)	2.5	97	91	66-120	6
2-Butanone (MEK)	mg/kg (ppm)	12.5	111	105	57-123	6
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	97	90	56-135	7
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	104	96	62-131	8
1,1-Dichloropropene Carbon tetrachloride	mg/kg (ppm)	2.5 2.5	99 110	91 101	69-128 60-139	8 9
Benzene	mg/kg (ppm) mg/kg (ppm)	2.5	97	89	68-114	9
Trichloroethene	mg/kg (ppm)	2.5	88	82	68-114	7
1,2-Dichloropropane	mg/kg (ppm)	2.5	98	91	72-127	7
Bromodichloromethane	mg/kg (ppm)	2.5	103	96	72-130	7
Dibromomethane	mg/kg (ppm)	2.5	102	95	70-120	7
4-Methyl-2-pentanone	mg/kg (ppm)	12.5	103	98	45-145	5
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	107	101	75-136	6
Toluene trans-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	99 106	93 100	66-126 72-132	6 6
1.1.2-Trichloroethane	mg/kg (ppm)	2.5	99	95	75-113	4
2-Hexanone	mg/kg (ppm)	12.5	96	89	33-152	8
1,3-Dichloropropane	mg/kg (ppm)	2.5	99	94	72-130	5
Tetrachloroethene	mg/kg (ppm)	2.5	100	94	72-114	6
Dibromochloromethane	mg/kg (ppm)	2.5	106	100	74-125	6
1,2-Dibromoethane (EDB) Chlorobenzene	mg/kg (ppm)	2.5 2.5	102 98	96 93	74-132 76-111	6 5
Ethylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	100	93 94	64-123	5 6
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	101	95	69-135	6
m,p-Xylene	mg/kg (ppm)	5	101	98	78-122	3
o-Xylene	mg/kg (ppm)	2.5	104	97	77-124	7
Styrene	mg/kg (ppm)	2.5	105	99	74-126	6
Isopropylbenzene	mg/kg (ppm)	2.5	101	96	76-127	5
Bromoform	mg/kg (ppm)	2.5	105 102	101 94	56-132 74-124	4 8
n-Propylbenzene Bromobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	102	94 97	74-124 72-122	8 6
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	101	94	76-126	7
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	104	97	56-143	7
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	97	91	61-137	6
2-Chlorotoluene	mg/kg (ppm)	2.5	100	92	74-121	8
4-Chlorotoluene	mg/kg (ppm)	2.5	101	94	75-122	7
tert-Butylbenzene	mg/kg (ppm)	2.5 2.5	100	93	73-130	7 7
1,2,4 Trimethylbenzene sec-Butylbenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	101 99	94 92	76-125 71-130	7
p-Isopropyltoluene	mg/kg (ppm)	2.5	103	95	70-132	8
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	100	94	75-121	6
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	100	94	74-117	6
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	98	92	76-121	6
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	83	79	61-136	5
1,2,4 Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm)	2.5 2.5	90 93	81 84	70-129 50-153	11 10
Naphthalene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	93 90	84 82	60-125	10 9
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	90	80	62-130	12
, ,						

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

Laboratory Code: 207338-05 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 20)
Aroclor 1016	mg/kg (ppm)	< 0.1	< 0.1	nm
Aroclor 1260	mg/kg (ppm)	< 0.1	< 0.1	nm

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	0.8	106	110	70-130	4
Aroclor 1260	mg/kg (ppm)	0.8	102	96	70-130	6

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF PRODUCT SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

	Reporting	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	mg/kg (ppm)	25	95	83	70-130	13
Aroclor 1260	mg/kg (ppm)	25	92	87	70-130	6

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/24/12

Project: Mill Creek Trust, PO 63801.0, F&BI 207338

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WIPE SAMPLES FOR POLYCHLORINATED BIPHENYLS AS AROCLOR 1016/1260 BY EPA METHOD 8082A

	Reporting Units	Spike	% Recovery	% Recovery	Acceptance	RPD
Analyte		Level	LCS	LCSD	Criteria	(Limit 20)
Aroclor 1016	ug/wipe (ppm)	50	61 vo	65 vo	70-130	6
Aroclor 1260	ug/wipe (ppm)	50	71	64 vo	70-130	10

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- $hr\ \hbox{- The sample and duplicate were reextracted and reanalyzed.} \ RPD\ results\ were\ still\ outside\ of\ control\ limits. \ The\ variability\ is\ attributed\ to\ sample\ inhomogeneity.}$
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

207338 SAI	MPLE CHAIN OF CUSTODY	ME OF	24/12 , USZ/ASY
Company Environmental Partners Inc.	PROJECT NAME/NO. Mill Crock Trust	PO# 63801.0	TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by
Address 295 NE Gilman Blvd, 576dal City, State, ZIP Israguah, WA 99027 Phone # 425-395-000 Fax #	REMARKS		SAMPLE DISPOSAL ☐ Dispose after 30 days ☐ Return samples ☐ Will call with instructions
	ANA	ALYSES REQUESTI	ED
	11B S0 50 770		

										<u>ANA</u>	LYSES	REQU	JESTI	ED	
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HFS RLRA FALRA C	PCRS			Notes
T-2:1:75 T-2:4.5 T-3:2	OLAE	7/24/12	09:12	sail	5	X			X		X			!	
T-2:4.5	121E		09:25			X			X		X				
T-3:2	05 E		09:41			X			X		オ				
T-315,5	04 E	F	09:50												Archive
P-9:1.5	05 E		(0:00			X	×		X		X	X			
P-9:4	86 A E		10:05			·									Archive
P-10:1.5	07 E		(0:00			X	X		人		X	X			
P-10; 4 C-1; 10,75 C-2:,75	08 AE		(0:25												Archie
C-1; 6.75	ON A E		16:41			X	X		X		X	X			
C-2:.75	OAE		10:50	V		X	X		X		X	X			

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

		`	
SJERATUBE	PRINT NAME	COMPANY	DATE/ TIME
Relinquished by:	Eric Caddel	EPI	7/24/12/15:15
Received by:	Nhan Phan	FEBT	7/24/12 1515
Relinquished by:			
Received by:		Samples recei	ved at <u>@</u> °C

PORMS\COC\COC.DOC

207338				SAMPLE (CHAIN C	F CU	STO	D¥	ME	07/	124	1/12	2 VS2/ AQ4/	
Send Report To Frical Company Envirante Address 295 NE G	Environmental Partners, Inc. 95 NE Gilman Blud, 576 201 2, ZIP Israquah, WA 98027					PROJECT NAME/NO. PO# Mill Crock TrusT REMARKS						TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions		
r none # 10 3 [7]	<u> </u>	Α π						AN	ALYSES	REQUES		J WHI CHI	With insudousis	
Sample ID	Lab	Date	Time	Sample Type	# of	-Diesel	by 8021B	by8260 s by 8270	IFS # Flood	82			Notes	

						ANALYSES REQUESTED									
Sample ID	Lab ID	Date Sampled	Time Sampled	Sample Type	# of containers	TPH-Diesel	TPH-Gasoline	BTEX by 8021B	VOCs by8260	SVOCs by 8270	HES F RCAB Flora	PCB			Notes
C-3:.75	NAE	7/24/62	16:54	501	5	X	X		X		X	X			
c-7	12		11:00	011	l							X			
C-8	13		11:09		1							1		<u> </u>	
C-9	14		11:22									X			
C-4	12		11:55	WiPE								X			locax loca
C-5	16		12:05		l							X			1/
C-6	17		12-11									X			
P-11	18		いる		Ì							X			11
P-4	9		12:47		1							X			Ч
P-13	20	1	14:28		1							X			Ų

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE/ TIME
Relinguished by:	Eric Caddell	ECT	7/24/1 15:15
Received by he hew	When Phan	FEBI	7/04/10 15:13
Relinquished by:		1	
Received by:		Samples rece	eived at 6 °C

FORMS\COC\COC.DOC

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Eric Caddell	ERI	7/24/2	15:15
Received by:	- Nhan Phan	FEBT	7/24/17	V
Relinquished by:				
Received by:		Samples	eceived at	6 °C

FORMS\COC\COC.DOC

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 e-mail: fbi@isomedia.com

August 2, 2012

Eric Koltes, Project Manager Environmental Partners, Inc. 295 NE Gilman Blvd., Suite 201 Issaquah, WA 98027

RE: Mill Creek, Job 63801.0

Dear Mr. Koltes:

Included are the results from the testing of material submitted on July 26, 2012 from the Mill Creek Trust, Job 63801.0, F&BI 207392 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures EPI0802R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on July 26, 2012 by Friedman & Bruya, Inc. from the Environmental Partners Mill Creek Trust, Job 63801.0, F&BI 207392 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Environmental Partners
207392-01	U-6:10
207392-02	U-6:15
207392-03	U-6:GW
207392-04	U-6:20
207392-05	U-7:10
207392-06	U-7:15
207392-07	U-7:20
207392-08	U-8:10
207392-09	U-8:15
207392-10	U-8:20
207392-11	U-9:10
207392-12	U-9:15
207392-13	U-9:20

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/26/12

Project: Mill Creek Trust, Job 63801.0, F&BI 207392

Date Extracted: 07/27/12 Date Analyzed: 07/27/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-132)
U-6:15 207392-02	< 0.02	< 0.02	< 0.02	< 0.06	<2	77
U-7:15 207392-06	< 0.02	< 0.02	< 0.02	< 0.06	<2	80
U-8:15 207392-09	< 0.02	< 0.02	< 0.02	< 0.06	<2	79
U-9:15 207392-12	<0.02	< 0.02	<0.02	< 0.06	<2	78
Method Blank 02-1319 MB	<0.02	< 0.02	<0.02	< 0.06	<2	75

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/26/12

Project: Mill Creek Trust, Job 63801.0, F&BI 207392

Date Extracted: 07/27/12 Date Analyzed: 07/27/12

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
U-6:GW 207392-03	<1	<1	<1	<3	<100	77
Method Blank 02-1320 MB	<1	<1	<1	<3	<100	77

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/26/12

Project: Mill Creek Trust, Job 63801.0, F&BI 207392

Date Extracted: 07/27/12

Date Analyzed: 07/27/12 and 07/28/12

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
U-6:15 207392-02	< 50	<250	121
U-7:15 207392-06	< 50	<250	115
U-8:15 207392-09	< 50	<250	109
U-9:15 207392-12	< 50	<250	111
Method Blank 02-1317 MB	<50	<250	113

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/26/12

Project: Mill Creek Trust, Job 63801.0, F&BI 207392

Date Extracted: 07/30/12 Date Analyzed: 07/31/12

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
U-6:GW 207392-03	<50	<250	127
Method Blank 02-1340 MB	<50	<250	109

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: U-6:GW Client: Environmental Partners

Date Received: 07/26/12 Project: Mill Creek Trust, Job 63801.0, F&BI 207392

Lab ID: Date Extracted: 07/27/12 207392-03 Date Analyzed: 07/27/12 Data File: 072713.D Matrix: Instrument: GCMS4 Water Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	103	57	121
Toluene-d8	100	63	127
4-Bromofluorobenzene	101	60	133

Compounds:	Concentration ug/L (ppb)	Compounds:	Concentration ug/L (ppb)
Compounds.	ug/L (ppb)	Compounds.	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	2.4	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	9.0	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Environmental Partners

Date Received: NA Project: Mill Creek Trust, Job 63801.0, F&BI 207392

Lab ID: Date Extracted: 07/27/12 02-1321 mb Date Analyzed: 07/27/12 Data File: 072709.D Matrix: Water Instrument: GCMS4 Units: ug/L (ppb) Operator: JS

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	99	57	121
Toluene-d8	99	63	127
4-Bromofluorobenzene	100	60	133

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1	1,3-Dichloropropane	<1
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	< 0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Methylene chloride	<5	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	<1
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	<1
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.35	1,2,4-Trimethylbenzene	<1
Trichloroethene	<1	sec-Butylbenzene	<1
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<10
Toluene	<1	1,2,4-Trichlorobenzene	<1
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<1
1,1,2-Trichloroethane	<1	Naphthalene	<1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/26/12

Project: Mill Creek Trust, Job 63801.0, F&BI 207392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 207379-01 (Duplicate)

v	•	(Wet Wt)	(Wet Wt)	Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	83	66-121
Toluene	mg/kg (ppm)	0.5	82	72-128
Ethylbenzene	mg/kg (ppm)	0.5	85	69-132
Xylenes	mg/kg (ppm)	1.5	83	69-131
Gasoline	mg/kg (ppm)	20	95	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/26/12

Project: Mill Creek Trust, Job 63801.0, F&BI 207392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 207397-02 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	90	72-119
Toluene	ug/L (ppb)	50	87	71-113
Ethylbenzene	ug/L (ppb)	50	87	72-114
Xylenes	ug/L (ppb)	150	82	72-113
Gasoline	ug/L (ppb)	1,000	100	70-119

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/26/12

Project: Mill Creek Trust, Job 63801.0, F&BI 207392

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 207379-01 (Matrix Spike)

			(Wet wt)	Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	108	105	63-146	3

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	106	79-144

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/26/12

Project: Mill Creek Trust, Job 63801.0, F&BI 207392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

- -	-		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	83	84	63-142	1

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/26/12

Project: Mill Creek Trust, Job 63801.0, F&BI 207392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 207400-04 (Matrix Spike)

Reporting Spike Result MS Criteria					Percent	
Dichlorodifluoromethane		Reporting	Spike	Sample		Acceptance
Chloromethane						
Viry Ichloride						
Brommethane						
Chloroethane	. J					
Trichlorotmethane						
Action						
J.I.Dichloroethene ug/L (ppb) 50 21 100 60-136 Methylene chloride ug/L (ppb) 50 <5 94 67-132 Methyl+ butyl ether (MTBE) ug/L (ppb) 50 <1 96 74-127 Trans-12-Dichloroethene ug/L (ppb) 50 <1 101 72-129 Trans-12-Dichloroethene ug/L (ppb) 50 <1 101 72-129 Trans-12-Dichloroethene ug/L (ppb) 50 <1 102 70-128 Trans-12-Dichloroethene ug/L (ppb) 50 <1 101 77-127 Trans-12-Dichloroethene ug/L (ppb) 50 <1 101 77-127 Trans-12-Dichloroethene ug/L (ppb) 50 <1 101 77-127 Trans-12-Dichloroethane (EDC) ug/L (ppb) 50 <1 109 60-33 Trans-12-Dichloroethane (EDC) ug/L (ppb) 50 <1 109 60-146 Trans-12-Dichloroethane (EDC) ug/L (ppb) 50 <1 109 60-146 Trans-12-Dichloroethane ug/L (ppb) 50 <1 103 69-133 Trans-12-Dichloroethene ug/L (ppb) 50 <1 118 56-152 Trans-12-Dichloroethene ug/L (ppb) 50 <1 118 56-152 Trans-12-Dichloroethene ug/L (ppb) 50 <1 101 78-125 Trans-12-Dichloroethene ug/L (ppb) 50 <1 107 61-150 Trans-12-Dichloroethene ug/L (ppb) 50 <1 106 66-141 Trans-12-Dichloroethene ug/L (ppb) 50 <1 104 68-131 Trans-12-Dichloroethene ug/L (ppb) 50 <1 104	Acetone		250	<10	92	10-182
Methyl t-butyl ether (MTBE)						
trans 12-Dichloroethene ug/L (ppb) 50 < 1 101 72-129 70-128 22-Dichloropropane ug/L (ppb) 50 < 1 96 38-154 615-12-Dichloroethene ug/L (ppb) 50 < 1 101 71-127						
1,1-Dichlororethane						
22. Dichloropropane						
cis 1.2 Dichloroethene ug/L (ppb) 50 <1 101 71-127 Chloroform ug/L (ppb) 50 <1 101 65-132 2 Butanone (MEK) ug/L (ppb) 50 <1 106 69-133 1.1, Firthoroethane ug/L (ppb) 50 <1 109 60-148 1.1, Firthoroethane ug/L (ppb) 50 <1 103 69-133 Carbon tetrachloride ug/L (ppb) 50 <1 118 56-152 Benzene ug/L (ppb) 50 <1 118 56-152 Benzene ug/L (ppb) 50 <1 118 56-152 Enzene ug/L (ppb) 50 <1 101 78-125 Trichloroethene ug/L (ppb) 50 <1 101 78-125 Bromodichloromethane ug/L (ppb) 50 <1 106 66-141 4-Methyl-2-pentanone ug/L (ppb) 50 <1 106 66-141 4-Methyl-2-pentanone ug/L						
Chloroform ug/L (ppb) 50 1 101 65-132						
2-Butanone (MEK)						
1,2-Dichloroethane (EDC)						
1.1-Dichloropropene	1,2-Dichloroethane (EDC)		50	<1	106	69-133
Carbon tetrachloride						
Benzene						
Trichloroethene						
12-Dichloropropane ug/L (ppb) 50						
Bromotichloromethane						
Dibromomethane						
4-Methyl-2-pentanone ug/L (ppb) 250 <10						
Toluen						
Trans-I.3-Dichloropropene	cis-1,3-Dichloropropene	ug/L (ppb)	50	<1	100	72-132
1,1,2 Trichloroethane		ug/L (ppb)				76-122
2-Hexanone						
1.3-Dichloropropane						
Tetrachloroethene						
Dibromochloromethane						
1.2-Dibromoethane (EDB)						
Ethylbenzene ug/L (ppb) 50 <1 104 69-135 1,1,1,2-Tetrachloroethane ug/L (ppb) 50 <1 104 73-137 mp-Xylene ug/L (ppb) 50 <1 106 68-137 styrene ug/L (ppb) 50 <1 106 68-137 Styrene ug/L (ppb) 50 <1 107 71-133 Isopropylbenzene ug/L (ppb) 50 <1 105 65-142 Bromoform ug/L (ppb) 50 <1 105 65-142 Bromoform ug/L (ppb) 50 <1 105 65-142 n-Propylbenzene ug/L (ppb) 50 <1 101 58-144 n-Propylbenzene ug/L (ppb) 50 <1 101 58-144 n-Propylbenzene ug/L (ppb) 50 <1 101 58-144 1,3,5-Trimethylbenzene ug/L (ppb) 50 <1 102 75-124 1,3,5-Trimethylbenzene ug/L (ppb) 50 <1 101 66-137 1,1,2,2-Tetrachloroethane ug/L (ppb) 50 <1 100 53-150 2-Chlorotoluene ug/L (ppb) 50 <1 100 53-150 2-Chlorotoluene ug/L (ppb) 50 <1 100 53-150 2-Chlorotoluene ug/L (ppb) 50 <1 100 65-137 1,2,4-Trimethylbenzene ug/L (ppb) 50 <1 102 65-130 1,2,4-Trimethylbenzene ug/L (ppb) 50 <1 100 59-146 sec-Butylbenzene ug/L (ppb) 50 <1 100 59-146 sec-Butylbenzene ug/L (ppb) 50 <1 100 72-123 1,4-Dichlorobenzene ug/L (ppb) 50 <1 99 66-141 1,3-Dichlorobenzene ug/L (ppb) 50 <1 99 69-126 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (p						
1.1.1_2-Tetrachloroethane	Chlorobenzene	ug/L (ppb)	50	<1	101	77-122
m.pXylene ug/L (ppb) 100 <2 105 69-135 o-Xylene ug/L (ppb) 50 <1						
o-Xylene ug/L (ppb) 50 <1 106 68-137 Styrene ug/L (ppb) 50 <1						
Styrene ug/L (ppb) 50 <1 107 71-133 Isopropylbenzene ug/L (ppb) 50 <1						
Isopropylbenzene						
Bromoform ug/L (ppb) 50 <1 108 65-142 n-Propylbenzene ug/L (ppb) 50 <1 101 38-144 state to the propylbenzene ug/L (ppb) 50 <1 101 38-144 state to the propylbenzene ug/L (ppb) 50 <1 102 75-124 1.3.5-Trimethylbenzene ug/L (ppb) 50 <1 101 66-137 1.1.2.2-Tetrachloroethane ug/L (ppb) 50 <1 102 51-154 1.2.3-Trichloropropane ug/L (ppb) 50 <1 100 53-150 2-Chlorotoluene ug/L (ppb) 50 <1 101 66-127 4-Chlorotoluene ug/L (ppb) 50 <1 101 66-127 4-Chlorotoluene ug/L (ppb) 50 <1 102 65-130 tetr-Butylbenzene ug/L (ppb) 50 <1 102 65-130 tetr-Butylbenzene ug/L (ppb) 50 <1 100 59-146 sec-Butylbenzene ug/L (ppb) 50 <1 100 59-146 sec-Butylbenzene ug/L (ppb) 50 <1 100 59-146 sec-Butylbenzene ug/L (ppb) 50 <1 100 72-123 1.3-Dichlorobenzene ug/L (ppb) 50 <1 100 72-123 1.4-Dichlorobenzene ug/L (ppb) 50 <1 100 72-123 1.4-Dichlorobenzene ug/L (ppb) 50 <1 99 69-126 1.2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-126 1.2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1.2-Dibromo-3-chloropropane ug/L (ppb) 50 <1 99 69-128 1.2-Dibromo-3-chloropropane ug/L (ppb) 50 <1 89 76-132 Hexachlorobutadiene ug/L (ppb) 50 <1 90 60-143 Naphthalene						
n-Propylbenzene ug/L (ppb) 50 <1 101 58-144 Bromobenzene ug/L (ppb) 50 <1						
Bromobenzene ug/L (ppb) 50 <1 102 75-124 1,3,5-Trimethylbenzene ug/L (ppb) 50 <1						
1.1,2,2-Tetrachloroethane ug/L (ppb) 50 <1	Bromobenzene		50	<1	102	75-124
1,2,3-Trichloropropane ug/L (ppb) 50 <1						
2-Chlorotoluene ug/L (ppb) 50 <1 101 66-127 4-Chlorotoluene ug/L (ppb) 50 <1						
4-Chlorotoluene ug/L (ppb) 50 <1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
1,2,4-Trimethylbenzene ug/L (ppb) 50 <1 100 59-146 sec-Butylbenzene ug/L (ppb) 50 <1 99 64-140 p-Isopropyltoluene ug/L (ppb) 50 <1 101 65-141 1,3-Dichlorobenzene ug/L (ppb) 50 <1 100 72-123 1,4-Dichlorobenzene ug/L (ppb) 50 <1 99 69-126 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1,2-Dichlorobenzene ug/L (ppb) 50 <1 99 32-164 1,2,4-Trichlorobenzene ug/L (ppb) 50 <1 92 32-164 1,2,4-Trichlorobenzene ug/L (ppb) 50 <1 89 76-132 Hexachlorobutadiene ug/L (ppb) 50 <1 90 60-143 Naphthalene ug/L (ppb) 50 <1 93 44-164						
sec-Butylbenzene ug/L (ppb) 50 <1 99 64-140 p-Isopropyltoluene ug/L (ppb) 50 <1						
p-Isopropyltoluene ug/L (ppb) 50 <1 101 65-141 1.3-Dichlorobenzene ug/L (ppb) 50 <1 100 72-123 1.4-Dichlorobenzene ug/L (ppb) 50 <1 99 69-126 1.2-Dichlorobenzene ug/L (ppb) 50 <1 99 69-128 1.2-Dibromo-3-chloropropane ug/L (ppb) 50 <1 99 69-128 1.2-Lichlorobenzene ug/L (ppb) 50 <1 99 32-164 1.2.4-Trichlorobenzene ug/L (ppb) 50 <1 89 76-132 Hexachlorobutadiene ug/L (ppb) 50 <1 90 60-143 Naphthalene ug/L (ppb) 50 <1 93 44-164						
1,4-Dichlorobenzene ug/L (ppb) 50 <1			50	<1	101	65-141
1,2-Dichlorobenzene ug/L (ppb) 50 <1				<1		
1,2-Dibromo-3-chloropropane ug/L (ppb) 50 <10						
1,2,4-Trichlorobenzene ug/L (ppb) 50 <1						
Hexachlorobutadiene ug/L (ppb) 50 <1 90 60-143 Naphthalene ug/L (ppb) 50 <1						
Naphthalene ug/L (ppb) 50 <1 93 44-164						

ENVIRONMENTAL CHEMISTS

Date of Report: 08/02/12 Date Received: 07/26/12

Project: Mill Creek Trust, Job 63801.0, F&BI 207392

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Analyte	Reporting Units	Spike Level	Percent Recovery LCS	Percent Recovery LCSD	Acceptance Criteria	RPD (Limit 20)
Dichlorodifluoromethane	ug/L (ppb)	50	112	113	25-158	1
Chloromethane	ug/L (ppb) ug/L (ppb)	50	104	104	45-156	0
Vinyl chloride	ug/L (ppb)	50	105	107	50-154	2
Bromomethane	ug/L (ppb)	50	100	102	55-143	2
Chloroethane	ug/L (ppb)	50	95	97	58-146	2
Trichlorofluoromethane	ug/L (ppb)	50	119	120	50-150	1
Acetone	ug/L (ppb)	250	104	101	60-155	3
1,1-Dichloroethene Methylene chloride	ug/L (ppb) ug/L (ppb)	50 50	101 98	103 96	67-136 39-148	2 2
Methyl t-butyl ether (MTBE)	ug/L (ppb) ug/L (ppb)	50	101	102	64-147	1
trans-1,2-Dichloroethene	ug/L (ppb)	50	101	103	68-128	2
1,1-Dichloroethane	ug/L (ppb)	50	102	103	79-121	1
2,2-Dichloropropane	ug/L (ppb)	50	112	113	55-143	1
cis-1,2-Dichloroethene	ug/L (ppb)	50	104	104	80-123	0
Chloroform	ug/L (ppb)	50	100	102	80-121	2
2-Butanone (MEK)	ug/L (ppb)	250	110	112 103	57-149	2
1,2-Dichloroethane (EDC) 1,1,1-Trichloroethane	ug/L (ppb) ug/L (ppb)	50 50	102 107	108	73-132 83-130	1 1
1,1-Dichloropropene	ug/L (ppb)	50	105	106	77-129	1
Carbon tetrachloride	ug/L (ppb)	50	114	116	75-158	2
Benzene	ug/L (ppb)	50	102	105	69-134	3
Trichloroethene	ug/L (ppb)	50	92	93	80-120	1
1,2-Dichloropropane	ug/L (ppb)	50	102	104	77-123	2
Bromodichloromethane	ug/L (ppb)	50	104	106	81-133	2
Dibromomethane	ug/L (ppb)	50	105	105	82-125	0
4-Methyl-2-pentanone cis-1,3-Dichloropropene	ug/L (ppb) ug/L (ppb)	250 50	104 107	105 108	70-140 82-132	1 1
Toluene	ug/L (ppb) ug/L (ppb)	50	104	106	72-122	2
trans-1,3-Dichloropropene	ug/L (ppb)	50	106	107	80-136	1
1,1,2-Trichloroethane	ug/L (ppb)	50	103	105	75-124	2
2-Hexanone	ug/L (ppb)	250	101	101	64-152	0
1,3-Dichloropropane	ug/L (ppb)	50	102	105	76-126	3
Tetrachloroethene	ug/L (ppb)	50	106	108	76-121	2
Dibromochloromethane	ug/L (ppb)	50	107	109	84-133	2
1,2-Dibromoethane (EDB) Chlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	104 101	105 103	82-125 83-114	1 2
Ethylbenzene	ug/L (ppb) ug/L (ppb)	50	103	105	77-124	2
1.1.1.2-Tetrachloroethane	ug/L (ppb)	50	103	106	84-127	3
m,p-Xylene	ug/L (ppb)	100	105	109	83-125	4
o-Xylene	ug/L (ppb)	50	106	107	86-121	1
Styrene	ug/L (ppb)	50	107	109	85-127	2
Isopropylbenzene	ug/L (ppb)	50	106	108	87-122	2
Bromoform n-Propylbenzene	ug/L (ppb) ug/L (ppb)	50 50	105 103	105 104	74-136 74-126	0 1
Bromobenzene	ug/L (ppb) ug/L (ppb)	50	105	104	80-121	1
1,3,5-Trimethylbenzene	ug/L (ppb)	50	103	104	80-126	1
1,1,2,2-Tetrachloroethane	ug/L (ppb)	50	99	101	66-126	2
1,2,3-Trichloropropane	ug/L (ppb)	50	99	100	67-124	1
2-Chlorotoluene	ug/L (ppb)	50	101	103	77-127	2
4-Chlorotoluene	ug/L (ppb)	50	103	104	78-128	1
tert-Butylbenzene	ug/L (ppb)	50	101	103	85-127	2 2
1,2,4 Trimethylbenzene sec-Butylbenzene	ug/L (ppb) ug/L (ppb)	50 50	102 102	104 104	82-125 80-125	2
p-Isopropyltoluene	ug/L (ppb)	50	103	105	82-127	2
1,3-Dichlorobenzene	ug/L (ppb)	50	102	104	85-116	2
1,4-Dichlorobenzene	ug/L (ppb)	50	100	102	84-121	2
1,2-Dichlorobenzene	ug/L (ppb)	50	99	101	85-116	2
1,2-Dibromo-3-chloropropane	ug/L (ppb)	50	88	86	57-141	2
1,2,4 Trichlorobenzene	ug/L (ppb)	50	90	91	72-130	1
Hexachlorobutadiene	ug/L (ppb)	50 50	93 91	93 91	53-141	0
Naphthalene 1,2,3-Trichlorobenzene	ug/L (ppb) ug/L (ppb)	50 50	91 91	91 92	64-133 65-136	0 1
1,8,0 IIIcinolobelizelle	ag r (bho)	30	J1	32	00-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- $ve-Estimated\ concentration\ calculated\ for\ an\ analyte\ response\ above\ the\ valid\ instrument\ calibration\ range.\ A\ dilution\ is\ required\ to\ obtain\ an\ accurate\ quantification\ of\ the\ analyte.$
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

207392			SA	MPLE _C C	HĄ	N Q	FC	:US	TO	DY	М	IE C	37-	26 -	- 12	BI3	1083/W
Send Report To Eric Kol	ter			SAMPLERS									PAC	GE #_	TURN	OF 7	102
Company Environment Address 295 NE Gilma				PROJECT ID			wt		6	<i>3</i> 86	OB#		[D]	Standa RUSH h charg	rd	orized by:	A03
City, State, ZIP Issaquah, WA	98027	425) 395-0	0011	SITE NAME					I	REMA	RKS			Return	e after 3 samples	•	8
	····	····						-	NALI	SES	REQU	ESTED)			ſ	
Sample ID	LAB ID	Date Sampled	Time Sample	d Matrix	# of jars	015 - GRO	015 - DRO	EX by 8021B	TEX by 602	C by 8260C	OC by 524					Note	

		Y							11176	JES	<u> NEWU</u>		<u></u>	i	
Sample ID		Date Sampled		Matrix	# of jars	8015 - GRO	8015 - DRO	BTEX by 8021B	BTEX by 602	VOC by 8260C	VOC by 524				Notes Notes
U-6:10	OI A.E	7/26/6	09:23	5011	5										Archive
4-6:15	OZAE		09:30	5011	5	X	X	X							7,5
U-6! GW	03 A.D		10:00	water	4	X	X	Ì		×					
W-6:20	04 LE		10:15	50/1	۲										Archive
u-7:10 u-7:15	05 T		11:15	5011	5										Archive
U-7:15	06		11:24	50/1	7	X	人	X							
U-7120	07 A-D		11:34	50/1	94										Archive
U-8:10	OR AE		(3:10	5011	5										Archive
a-8:15	09 T		13:18		5	X	X	X							
4-8:20	10		13:28		45	1						1			Archive
U-9:10	u		14:24		X										Archive
U-9:15	12		14:34		7	X	X	X		,				7	
U-9:20	13	V	14:43		5-										Archive

riedman & Bruya, Inc. 912 16th Avenue West 2attle, WA 98119-2029 h. (206) 285-8282 2x (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relipquished by:	Eric Caddel	EPI	7/26/12	16:00
Received by:	HONG NGWIE	1 report	1/100	2
Relinquished by.				
Received by:				