Remedial Investigation Report Addendum 2

BOEING KENT SPACE CENTER FACILITY South 208th Street KENT, WASHINGTON

September 2018

Prepared by:

DALTON, OLMSTED, & FUGLEVAND 1001 SW Klickitat Way, Suite 200B Seattle, Washington 98134

Prepared for:

THE BOEING COMPANY Seattle, Washington

Table of Contents

1.0	INTRO	DUCTION	. 1
2.0		ONAL PCB INVESTIGATION	
2.1	Resu	ılts	. 2
2.2	Conc	lusions	. 2
3.0	BOEING	G PROPERTY DUE DILIGENCE INVESTIGATION	. 2
3.1	Arse	nic Data Gap Investigation	. 3
3	.1.1	Results	. 3
3.2	Othe	er Pertinent Results	. 4
3.	.2.1	Former Building 18-24 Area	. 4
3.	.2.2	Former Building 18-63 Area	. 5
4.0	METHO	DDS AND REPORTING FOR FURTHER FIELD INVESTIGATION	. 6
5.0	REFERE	ENCES	. 6
6.0	CLOSIN	ıg	. 7

TABLES

- Table 1 Soil/Stormwater Solids Results PCBs
- Table 2 Groundwater/Stormwater Results PCBs
- Table 3 Soil Results Arsenic
- Table 4 Groundwater Results Arsenic
- Table 5 Soil Results VOCs
- Table 6 Groundwater Results VOCs
- Table 7 Soil Results TPH
- Table 8 Groundwater Results TPH
- Table 9 Soil Results SVOCs
- Table 10 Groundwater Results SVOCs
- Table 11 Soil Results Metals
- Table 12 Groundwater Results Metals
- Table 13 Planned Stormsystem Baseline Soil Data
- Table 14 Soil Gas Analytical Results

FIGURES

Figure 1 –2018 Additional RI and Due Diligence Sampling

APPENDICIES

Appendix A - Boring Logs

Appendix B – Analytical Data and Validation

1.0 INTRODUCTION

This August 2018 Remedial Investigation (RI) Addendum was prepared by Dalton, Olmsted, and Fuglevand (DOF) on behalf of the Boeing Company (Boeing). The purpose of this second Addendum is to present results of investigation performed after submittal of the draft RI and first Addendum, and propose additional work to resolve data gaps identified during performance of these subsequent investigations.

Boeing submitted a draft RI Report in December 2017 (DOF, 2017) and an earlier 2018 RI Addendum that included sediment trap results (DOF, 2018). Boeing received an email from the Department of Ecology (Ecology) on March 30, 2018 with comments and questions regarding these documents. A technical meeting was held between Boeing, Ecology, and DOF in April 2018 to discuss Ecology's comments and questions on the RI. Boeing shared recent soil and groundwater results from an environmental investigation that Boeing real estate (and their consultant) performed in support of property due diligence that pertained to some of Ecology's questions. Boeing also agreed to conduct additional sampling to further evaluate polychlorinated biphenyls (PCBs) as part of the RI. This additional soil and groundwater sampling was conducted in May 2018. Results are presented in this Addendum.

The real estate investigation was conducted over the course of the past year and is now complete. Results of that investigation are summarized in this Addendum; the complete Phase II Environmental Site Assessment Report will be provided to Ecology once it is received by Boeing. The Phase II Report will include laboratory and data validation reports which a not documented in this Addendum.

2.0 ADDITIONAL PCB INVESTIGATION

Two sediment samples were collected by Boeing real estate's consultant (Landau) in the storm ditch along the east side of the site in July 2018. These samples were identified as BD1 and BD2, shown on Figure 1. Results are presented in Table 13, along with other soil samples collected in order to document baseline conditions for potential stormwater management areas under review by Boeing real estate. PCBs were not detected in either of the samples collected from the existing ditch.

In addition, DOF completed five additional temporary borings (SB-21 through SB-25, Figure 1) for soil and groundwater sampling on May 7, 2018. These sampling locations were identified in collaboration with Ecology based on their close proximity to stormwater lines, an electrical substation, and Building 18-59. The 1998 Closure Report for Building 18-59 Container Storage Area (TetraTech, 1998) identified PCB concentrations in soil as high as 500 ug/kg, but did not include any groundwater sampling.

Drilling was completed by Washington licensed drillers from Holt Drilling using a direct push drill rig. Soil was continuously collected for screening, logging, and sampling via two-inch diameter macro samplers with acrylic liner. Shallow soil samples were collected for analysis of PCBs. Boring logs showing the lithology observed are included as Appendix A. Indications of contamination were not observed at any of the sampling locations.

Shallow groundwater samples were collected for PCB analysis using a groundwater sampler consisting of a five-feet long, %-inch diameter temporary PVC well and screen (0.010-inch slot size). Groundwater samples were collected via low-flow purging with a peristaltic pump and disposable tubing.

Samples were analyzed by Analytical Resources Inc. for PCBs using EPA Method 8082. Once the laboratory produced reports and Electronic Data Deliverables (EDDs) for the data, the data were reviewed and validated, consistent with the RI Work Plan (Landau, 2016) by EcoChem, Inc. The analytical and data validation reports are included as Appendix B. Data were also uploaded to Ecology's Electronic Information System (EIM), in accordance with the requirements of the Agreed Order. All data were found to be usable, as discussed in the data validation memoranda.

2.1 Results

Results of all RI PCB sampling are shown in Tables 1 (soil and solids) and 2 (groundwater and stormwater), along with data from historical studies provided for reference. These data show that results are consistent and generally lower than those anticipated by earlier studies, specifically:

- PCBs were not detected in soil or groundwater samples collected at SB23 or SB25.
- The only detection of PCBs in a groundwater sample was Aroclor 1254 at SB22, where it was detected at a concentration of 0.008 μ g/L, near the limit of analytical detection and below the standard reporting limit. This is also slightly lower than the one detection in stormwater samples collected as part of the RI (0.012 μ g/).
- The only detections of PCBs in soil were also Aroclor 1254, detected at KSC-SB-21 at 20.3 μ g/kg and KSC-SB-24 at 8.4 μ g/kg. Both of these are well below the detections from the stormwater system solids samples collected as part of the RI.

2.2 Conclusions

PCBs samples were collected near suspected historical or potential current sources of PCBs to soil and groundwater contamination. As presented in the draft RI Report, the data collected as part of the RI are generally consistent with regional and historical data, and with what might be expected for a similar industrial site that is well-maintained with underutilized parking and traffic. Results do not indicate the presence of an unidentified source contributing to site contamination. Higher concentrations detected in stormwater system samples are likely from an anthropogenic source typical of the urban environment.

3.0 BOEING PROPERTY DUE DILIGENCE INVESTIGATION

As part of due diligence property evaluation, Boeing real estate collected additional soil, groundwater, soil vapor and stormwater system data at the property over the last year. Boeing real estate's consultant, Landau Associates, collected groundwater samples from 28 locations (including the seven monitoring wells installed as part of the RI), soil samples from 28 locations, storm system baseline soil and sediment samples from 8 locations, and soil vapor samples from 34 locations between late 2017 and summer 2018. These results have been combined with the RI data set for presentation in this memo to aid in the completion of the RI.

Figure 1 shows these sampling locations along with those performed as part of the RI. Results of additional due diligence sampling are summarized in Tables 3 to 14. Tables include summary results for detected compounds. The data collected as part of the due diligence project has been screened against current MTCA values from CLARC including the RI screening levels where available, Method B groundwater values (and MCLs), and Method C soil and soil gas values. Soil and groundwater sampling

was conducted during separate events in November 2017, May 2018, and July 2018. Soil vapor sampling was conducted in December 2017, January 2018, May 2018, and July 2018. In some cases soil vapor sampling points were resampled during separate events. Sampling soil vapor is a standard component of Boeing's due diligence site assessment process and frequently used to evaluate the need for additional soil or groundwater sampling as well potential risks to existing or future buildings. Permanent sampling ports were installed and used at such locations. Boring logs showing lithology and vapor sampling port construction are included in Appendix A.

The following subsections discuss results that are pertinent to completion of the RI and comments previously discussed with Ecology.

3.1 Arsenic Data Gap Investigation

Ecology indicated in their March 2018 email to Boeing regarding the RI Report that additional evaluation of arsenic in the north-northwest corner of the property was warranted based on reported concentrations. SWMU-23 was also noted as a potential source of arsenic contamination in groundwater based on its historical use and nearby detections. Ecology requested further evaluation of arsenic in soil and groundwater in these two areas to confirm the soil concentrations, check for source areas, and to delineate the arsenic concentrations in groundwater.

As part of the due diligence property evaluation, Boeing real estate collected additional soil and groundwater data for arsenic at the property over the last year. Boeing real estate's consultant, Landau Associates, collected 14 groundwater and 22 soil samples that were analyzed for arsenic.

3.1.1 Results

Results of due diligence arsenic sampling are presented along with data from historical studies in Tables 3 and 4. Compared to results presented in the RI, the new results are similarly highly variable.

In the north-northwest area of the site, the additional results confirm there does appear to be an area of higher concentration arsenic in groundwater, with several results over 100 μ g/L (Table 4); however soil samples from this area within the range of previously collected samples and do not indicate a release to soil that is contributing directly to the groundwater concentrations. Soil concentrations ranged from 1.31 to 18.1 mg/kg without clear correlation between higher soil concentrations and areas where groundwater concentrations are higher. Notably, a new northernmost (downgradient) sample was collected (LAI34) showing an arsenic concentrations at the low end of those collected (3.85 μ g/L).

In the south end of the property new samples collected near the higher concentration detection located at SB-12 (266 μ g/L) showed lower concentrations at surrounding borings, ranging from 8 to 91 μ g/L. Soil samples collected in this area also did not indicate a specific release ranging from 2.33 to 7.04 mg/kg.

Newly collected soil data confirmed earlier results (Table 3), showing a similar distribution, with an average RI soil sample concentration of 5.6 mg/kg, below the state-determined regional soil background concentration of 7.3 mg/kg. Similar to past assessments conducted in the area and discussed in the RI, the updated dataset indicates that the elevated concentrations of arsenic detected in groundwater at several locations appear to be isolated and are not associated with known releases of arsenic.

The shallow groundwater is not used for drinking purposes and Boeing is willing to file an environmental covenant for the property to restrict the use of groundwater from the site.

3.2 Other Pertinent Results

Results of the abundant due diligence sampling effort performed over the last year add clarity to the RI dataset. Generally results confirmed low concentrations of constituents tested across the site and solidify the site characterization developed to date. However, results also indicate that two RI SWMU areas warrant further evaluation. One area is in the vicinity of AOC-2, the former UST KS-7 located near the former Building 18-24 on the west side of the site and the other is near Building 18-62 (former Milling Machine Area) at the south end of the site near the former Building 18-63. These areas are discussed in the following sections.

3.2.1 Former Building 18-24 Area

Results of data collected in this area are highlighted in Tables 5 through 8 (soil and groundwater results for TPH and VOCs) and Table 14 (soil vapor results). While soil sampling results did not reveal any sources of contamination in the area, several low level VOCs were detected in groundwater in this area, as well as groundwater detection of gasoline at 1,470 μ g/L. As part of the RI sampling vinyl chloride at 0.19 μ g/L was detected at locations SB-6 and SB-8 and then during due diligence sampling 1,1-dichloroethene was detected at 8.77 μ g/L at location LAI19. Several SVOCs were also detected at LAI19 at relatively low levels (Tables 9 and 10). The new soil and groundwater data did not change the conclusions about this area made in the RI or in the neighboring Clearwater evaluations completed historically. These values are not indicative of an unidentified source of contamination contributing to the detections initially detected during the Clearwater investigation. Values are low, confirming the area where vinyl chloride is detected is small, and may be declining naturally as concentrations from the RI are an order of magnitude lower than detected during the Clearwater investigation.

Despite low soil and groundwater concentrations, several VOCs were detected in soil vapor samples collected from this area, including trichloroethene, benzene, 1,2,4-trimethylbenzene, and trichlorofluoromethane at levels slightly above Ecology's MTCA Method C Sub-Slab Soil Gas Screening Level. Based on these detections further consideration of this area is proposed.

The following supplemental data collection tasks are proposed:

- Review and documentation of historical information regarding former Building 18-24 use and demolition. A source for these specific contaminants has not been identified; however the RI focused on the UST KS-7 in this area, which was located north of the soil gas detections.
- Completion of three direct push temporary groundwater sampling points in the area. Proposed
 locations are shown on Figure 1. One boring is proposed to the north, west, and south of the
 area of soil gas detections mentioned. The area to the east is well bounded by previous
 sampling location LAI20 and existing monitoring well MW-6, neither of which showed detections
 of VOCs above screening levels.
- Sampling of multiple groundwater depths at each of the three direct push points to identify if
 higher concentrations of VOCs exist at depth. At each location a groundwater sample will be
 collected from the water table and three subsequent depths at the same location. Samples will
 be collected via direct push equipment utilizing a four to five foot screen. Tentative sampling
 depths proposed based on previous sampling are:
 - 7 to 11 feet below ground surface (bgs);
 - o 16 to 20 feet bgs;

- o 25 to 29 feet bgs; and
- o 34 to 38 feet bgs.
- Laboratory analysis of VOCs by EPA Method 8260 and gasoline range petroleum hydrocarbons by Ecology Method NWTPH-Gx. The two shallowest depth zones will be analyzed on a rush turnaround for each sample location. If chlorinated VOCs, benzene (or benzene related compounds such as 1,2,4-trimethylbenzene), or gasoline are detected, the two deeper samples will also be analyzed. One shallow sample will also be collected and analyzed for total organic carbon.
- Continuous visual logging of soil, along with field screening using a photoionization detector
 (PID) during drilling will be conducted at each boring to total depth.

3.2.2 Former Building 18-63 Area

Results of data collected in this area are highlighted in Tables 5 through 8 (soil and groundwater results for TPH and VOCs) and Table 14 (soil vapor results). While soil sampling results did not reveal any sources of contamination in the area, several VOCs were detected in groundwater in this area, as well as groundwater detections of diesel and oil range petroleum. The due diligence groundwater samples with elevated diesel and oil detections were tested using both silica gel cleanup preparation and without. Results of the samples that included the silica gel cleanup were all below the RI screening level, as shown in Table 8. The VOC detected in groundwater above screening levels during due diligence sampling included 1,1-dichloroethene at 36.2 μ g/L at location LAI14 and vinyl chloride at three locations with concentrations up to 12.6 μ g/L at LAI32.

Soil vapor data also revealed benzene, chloroform, and 1,3-butadiene concentrations above Ecology's MTCA Method C Sub-Slab Soil Gas Screening Level at several locations (LAI14, LAI30 and LAI31) in this area. Based on these detections further consideration of this area is proposed. The following supplemental data collection tasks are proposed:

- Review and documentation of historical information regarding former Building 18-63 use and demolition and existing Building 18-62 use. A source for these specific contaminants has not been identified; however the RI focused on the 18-62 Milling Area, which was located north of the recent groundwater and soil vapor detections.
- Completion of two direct push temporary groundwater sampling points in the area. Proposed locations are shown on Figure 1. One boring is proposed near the location of sample LAI32 where the highest groundwater detection of vinyl chloride was (12.6 μg/L). Other samples collected east, west, and south of that point were all below the RI screening level, including the nearest permanent monitoring well MW-4. A second boring is proposed north of LAI32, immediately next to the 18-62 building which is downgradient of LAI32, and near the point LAI31 where vinyl chloride was also detected in groundwater but at a much lower concentration (0.29 μg/L).
- Sampling of multiple groundwater depths at each of the two direct push points to identify if
 higher concentrations of VOCs exist at depth. At each location a groundwater sample will be
 collected from the water table and three subsequent depths at the same location. Samples will
 be collected via direct push equipment utilizing a four to five foot screen. Tentative sampling
 depths proposed based on previous sampling are:

- o 7 to 11 feet below ground surface (bgs);
- 16 to 20 feet bgs;
- o 25 to 29 feet bgs; and
- o 34 to 38 feet bgs.
- Laboratory analysis of VOCs by EPA Method 8260 and diesel and oil range petroleum hydrocarbons by Ecology Method NWTPH-Dx without silica gel cleanup (consistent with the RI Work Plan methods for groundwater samples). The two shallowest depth zones will be analyzed on a rush turnaround for each sample location. If chlorinated VOCs, benzene (or benzene related compounds such as 1,2,4-trimethylbenzene), chloroform, or 1,3-butadiene, are detected, the two deeper samples will also be analyzed. One shallow sample will also be collected and analyzed for total organic carbon.
- Continuous visual logging of soil, along with field screening using a photoionization detector
 (PID) during drilling will be conducted at each boring to total depth.

4.0 METHODS AND REPORTING FOR FURTHER FIELD INVESTIGATION

Sample collection methods and data quality protocols for work proposed in this Addendum will follow those included in the Final RI Work Plan (Landau, 2016).

Once laboratory data are received and validated, results will be reviewed with Ecology to determine if further characterization is warranted or if Boeing may proceed to finalization of the RI. The investigation performed to date is consistent with the RI approach outlined by Ecology in their Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action (Publication 09-09-047), updated in April 2018. Reference to this document and how the additional data fit in under that approach to characterization will be included in the final RI.

Full laboratory reports for the due diligence data described in the Addendum will be reported to Ecology in a future bimonthly report once the Phase II Report is finalized by Landau.

5.0 REFERENCES

DOF, 2017. Draft Remedial Investigation Report, Boeing Kent Space Center Facility, Kent, Washington, prepared for the Boeing Company, prepared by DOF, Seattle, Washington, December 28.

DOF, 2018. 2018 RI Addendum, Boeing Kent Space Center Facility, Kent, Washington, prepared for the Boeing Company, prepared by DOF, Seattle, Washington.

Ecology, 2018. Email from Byung Maeng to Lindsey Mahrt, Subject: Ecology comments on Boeing KSC RI report and its addendum, March 30.

Landau, 2018. Email from Kathryn Hartley to Lindsey Mahrt, Subject: Kent Space Center Figure and Data Tables, September 2.

Landau, 2016. Final Remedial Investigation Work Plan, Boeing Kent Space Center Facility, Kent, Washington, prepared for the Boeing Company, prepared by Landau Associates, Edmonds, Washington, October 12.

TetraTech, 1998. Closure Report, Building 18-59 Container Storage Area, Boeing Space Center, Kent, Washington, September.

6.0 CLOSING

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Soil/Stormwater Solids Results - PCBs

Remedial Investigation Addendum 2 Boeing Kent Space Center

								PCBs (μg/kg)				
Sample Date	Area	Sample Location ID	Sample Depth BGS (feet)	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCBs
Call Davis									F	RI Storm So	olids Scree	ning Level	110
Soil Borings	1 144 1 540 50	WCC CD24	1 1 2	40.411	40.411	40411	40411	40411	20.2	40411	40411	40411	20.2
5/7/2018	West of 18-59	KSC-SB21	1-3	18.1 U	20.3	18.1 U	18.1 U	18.1 U	20.3				
5/7/2018	South of 18-59	KSC-SB22	1-3	17.9 U	ND								
5/7/2018	Substation	KSC-SB23	1-3	17.9 U	ND								
5/7/2018	Substation	KSC-SB24	1-3	18.3 U	8.4 J	18.3 U	18.3 U	18.3 U	8.4 J				
5/7/2018	Substation	KSC-SB25	1-3	19.0 U	ND								
Storm System	Solids												
12/20/2017	Manhole 20.237M	KSC-MH- 20.237M-1217	0-0.3	19.5 U	19.5 U	19.5 U	19.5 U	84.6	199	71.7			355.3
12/20/2017	Manhole 20.236M	KSC-MH- 20.236M-1217	0-0.3	150 U	1480	497			1977				
12/20/2017	Manhole 16.12M	KSC-MH- 16.12M-1217					INSUFFIC	CIENT VOLU	JME				
12/20/2017	Manhole 15.10M	KSC-MH- 15.10M-1217	0-0.3	19.4 U	19.4 U	19.4 U	19.4 U	48.4 U	126	80.8			206.8
6/29/2017	Outfall-Mill Creek 20/20B	OF-20	0-0.3	18.3 U	ND								
5/4/2017	Outfall- East Drainage Ditch 16	KSC-OF-16-0.3	0-0.3	17.6 U			ND						
5/4/2017	Outfall-North Detention Pond	OF-DP-0.3	0-0.3	19.5 U	122	67.5			189.5				

Notes and Abbreviations

Bolded values are above Remedial Investigation (RI) Screening Level

BGS = below ground surface

PCBs = polychlorinated biphenyl

U = not detected above the value shown

J = Estimated concentration value detected below the reporting limit.

μg/kg = migrograms per kilogram

ND = Analyte not detected at or above the reporting limit.

MH 20.236 has previously been referred to as MH 20.235

Table 2 Groundwater/Stormwater Results - PCBs

Remedial Investigation Addendum 2
Boeing Kent Space Center

		Canada La satian					PCBs	(μg/L)				
Sample Date	Location	Sample Location ID	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Aroclor 1262	Aroclor 1268	Total PCB's
	RI Stormwat	er Screening Level	0.003					0.0001	0.014			0.00006
Groundwater												
5/7/2018	West of 18-59	KSC-SB21	0.010 U	ND								
5/7/2018	South of 18-59	KSC-SB22	0.010 U	0.008 J	0.010 U	0.010 U	0.010 U	0.008 J				
5/7/2018	Substation	KSC-SB23	0.010 U	ND								
5/7/2018	Substation	KSC-SB24	0.010 U	ND								
5/7/2018	Substation	KSC-SB25	0.010 U	0.011 U	0.012 U	0.013 U	0.014 U	0.015 U	0.016 U	0.017 U	0.018 U	ND
Stormwater												
1/18/2017	Manhole	MH-20.237-W	0.010 U	ND								
1/18/2017	Manhole	MH-20.236-W	0.010 U	0.012	0.010 U	0.010 U	0.010 U	0.012				
1/18/2017	Manhole	MH-16.12-W	0.010 U	ND								
1/18/2017	Manhole	MH-15.10-W	0.010 U	ND								
1/20/2017	Outfall-Mill Creek 20/20B	OF-20-W	0.010 U	ND								
1/18/2017	Outfall- East Drainage Ditch 16	OF-16-W	0.010 U	ND								
1/18/2017	Outfall-North Detention Pond	OF-NDP-W	0.010 U	ND								

Notes and Abbreviations

Bolded values are above Remedial Investigation (RI) Screening Level

PCBs = polychlorinated biphenyl

U = not detected above the value shown

J = Estimated concentration value detected below the reporting limit.

μg/L = migrograms per liter

ND = Analyte not detected at or above the reporting limit.

MH 20.236 has previously been referred to as MH 20.235

Soil Results - Arsenic

Remedial Investigation Addendum 2 Boeing Kent Space Center

Sample Date	Area	Sample Location ID	Sample Depth BGS (feet)	Arsenic (mg/kg)
			RI Screening Level	7.3
RI Soil Results		1	44.5.40.5	
1/24/2017	SWMU 88/89 - Building 18-43	SB-1	11.5-12.5	7.57
1/24/2017	SWMU 88/89 - Building 18-43	SB-2	11.5-12.5	8.59
1/27/2017	AOC-1/3 - Building 18-54 north	SB-3 MW1	8.5-9.5	6.71 J 1.31 J
4/12/2017			2.5	
4/11/2017	northeast	MW2 MW3	2.5	4.78 J
4/11/2017 4/11/2017	east southeast	MW4	2.5 2.5	3.26 J 5.76 J
4/11/2017	southwest	MW5	2.5	3.44 J
4/11/2017	west	MW6	2.5	4.64 J
4/11/2017	northwest	MW7	2.5	2.93 J
Due Diligence S		101007	2.3	2.333
Due Diligence 3	our results		4.2	2.65
11/14/2017	northwest - storage	LAI1	1-3	2.65
			8-10	6.2
11/14/2017	northwest - storage	LAI2	1-3 6.3-8.3	3.1
			0.7-2.7	3.73 3.92
11/15/2017	north - storage	LAI3	5.5-7.5	9.41
			0.7-2.7	2.65
11/15/2017	north - Building 18-43	LAI4	6.7-8.7	9.52
			1-3	4.26
11/15/2017	northeast - Building 18-47	LAI7	8-10	3.98
			1-3	2.77
11/13/2017	south - former Building 18-63	LAI13	8-10	7.04
44 /42 /2047	and the same and the late	1.414.0	1-3	2.33
11/13/2017	southwest - parking lot	LAI18	6-8	3.08
7/11/2010	t fames a Duilding 40 24	1.414.0	1.5-3	18.1 J
7/11/2018	west - former Building 18-24	LAI19	11-13	4.72
11/14/2017	northwest 19 E0 storage	LAI21	0.3-2.3	3.23
11/14/2017	northwest - 18-59 storage	LAIZI	6.5-8.5	7.59
11/14/2017	northwest - 18-59 storage	LAI22	6.3-8.3	7.81
11/14/2017	Hortifwest - 18-33 storage	LAIZZ	10-12	4.95
5/21/2018	north - downgradient	LAI34	1-3	5.47
3/21/2018	north - downgradient	LAIS4	10.5-12.5	14.2
Historical Strike	er Soil Results			
7/29/2010		KSC-DP-3	7-8	2.2
7/29/2010		KSC-DP-7	3.5-4	3
7/29/2010		KSC-DP-8	4.5-5	1.5
7/29/2010		KSC-DP-9	5.5-6	1.8
7/30/2010		KSC-DP-11	5-5.5	3.2
7/30/2010		KSC-DP-13	4.5-5	3.5
7/30/2010		KSC-DP-16	7.5-8	7.6
1/27/2011		KSC-DP-17	4-5	2.6
1/27/2011		KSC-DP-18	4-5	1.9
1/27/2011		KSC-DP-19	3.5-4.5	2.3
1/27/2011		KSC-DP-20	4.5-5.5	2.6
1/25/2011		KSC-DP-26	1-1.5	3.1
1/25/2011		KSC-DP-27	1-2	3.5
1/25/2011		KSC-DP-28	2.5-3.5	3.8
1/25/2011		KSC-DP-29	7-8	4.1
1/25/2011		KSC-DP-30	2.5-3.5	4.7
1/26/2011		KSC-DP-31	5-6	4.3
1/26/2011		KSC-DP-32	3.5-4.5	7.7
1/26/2011		KSC-DP-33	1.5-2.5	8.6

Notes and Abbreviations

Bolded values are above Remedial Investigation (RI) Screening Level BGS = below ground surface

J = Estimated concentration value detected below the reporting limit.

Table 4 Groundwater Results - Arsenic

			Dissolved
Sample Date	Sample Location Area	Sample Location	Arsenic
		ID	(μg/L)
		RI Screening Level	
RI Groundwate		3 2 2 3	
1/24/2017	SWMU 88/89 - Building 18-43	SB-1	193
1/24/2017	SWMU 88/89 - Building 18-43	SB-2	133
1/27/2017	AOC-1/3 - Building 18-54	SB-3	51.1
1/24/2017	AOC-2 - Building 18-35	SB-8	48.3
1/25/2017	Building 18-62 Milling	SB-12	266
1/26/2017	Building 18-67 UST	SB-13	16.7
1/26/2017	Building 18-42 - KS-1	SB-14	105
1/26/2017	Building 18-41 - KS-3	SB-17	<2
5/4/2017	north	MW1	85.2
5/3/2017	northeast	MW2	28.2
5/3/2017	east	MW3	25.6
5/3/2017	southeast	MW4	18.9
5/3/2017	southeast	MW4 Duplicate	18.4
5/3/2017	southwest	MW5	3.3
5/4/2017	west	MW6	27.9
5/4/2017	northwest	MW7	27.1
Due Diligence	Groundwater Results		
11/14/2017	northwest - storage	LAI2	186
11/15/2017	north - storage	LAI3	144
11/15/2017	north - Building 18-43	LAI4	67.6
11/16/2017	north - parking lot	LAI5	55.6
11/15/2017	east - parking lot	LAI9	78.1
11/15/2017	southeast - parking lot	LAI11	59.7
11/13/2017	south - former Building 18-63	LAI13	91.4
11/13/2017	southwest - parking lot	LAI16	62.3
11/13/2017	southwest - parking lot	LAI18	8
7/11/2018	west - former Building 18-24	LAI19	43.9
11/14/2017	northwest - 18-59 storage	LAI21	269
11/14/2017	northwest - 18-59 storage	LAI22	120
5/21/2018	south - former Building 18-63	LAI32	44.8
5/21/2018	north - downgradient	LAI34	3.85
	Indwater Results	1	
1/25/2012		KSC-DP-34	12.6
1/25/2012		KSC-DP-35	15
1/25/2012		KSC-DP-36	47.1
1/25/2012		KSC-DP-37	5.2
1/25/2012		KSC-DP-38	27.9
1/25/2012		KSC-DP-39	58.4
1/25/2012		KSC-DP-40	3.3
1/25/2012		KSC-DP-41	3.3
2/9/2012	Striker	KSC-DP-42	6
2/9/2012		Kent-1	59.6
2/9/2012		Kent-2	<2
2/8/2012		Kent-3	<2
2/8/2012		Kent-4	<2
2/8/2012		Kent-6	3.9
2/9/2012		Kent-7	115
2/9/2012		Kent-8	14.5

Table 4 Groundwater Results - Arsenic

Remedial Investigation Addendum 2 Boeing Kent Space Center

Sample Date	Sample Location Area	Sample Location ID	Dissolved Arsenic (μg/L)
		RI Screening Level	0.02
2/9/2012		15M17S	<2
2/9/2012		15M30A	10.8
7/28/2010		KSC-DP-1	23.8
7/30/2010		KSC-DP-2	8.1
7/30/2010		KSC-DP-3	40.3
7/29/2010		KSC-DP-4	9.6
7/30/2010		KSC-DP-5	120
7/29/2010		KSC-DP-9	13.8
7/30/2010		KSC-DP-11	43.8
7/30/2010		KSC-DP-15	9.1
7/30/2010		KSC-DP-16	53.3
1/27/2011		KSC-DP-17	59.9
1/27/2011		KSC-DP-18	115
1/27/2011		KSC-DP-19	77
1/27/2011		KSC-DP-20	33.7
1/26/2011		KSC-DP-22	66
1/26/2011		KSC-DP-23	66.7
1/26/2011		KSC-DP-24	2.7
1/26/2011		KSC-DP-25b	71.6
1/25/2011		KSC-DP-26	0.8
1/25/2011		KSC-DP-27	111
1/25/2011	Striker	KSC-DP-28	18
1/25/2011	Stilkei	KSC-DP-29	1.1
1/25/2011		KSC-DP-30	31.9
1/26/2011		KSC-DP-31	65.4
1/26/2011		KSC-DP-32	2.8
1/26/2011		KSC-DP-33	0.3
11/21/1994		92MW-01	19
11/21/1994		92MW-02	17
11/21/1994		92MW-03	25
11/21/1994		93MW-04	17
11/21/1994		93MW-05	16
4/27/2009		MW-1	27
4/27/2009		MW-2	24
4/27/2009		MW-3	51
10/26/1998		P-1	42
10/26/1998		P-2	13
10/26/1998		P-3	18
10/26/1998		P-4	21
3/6/2000		KGC-MW-1	19
3/6/2000		KGC-MW-2	3
3/6/2000		KGC-MW-3	12

Notes and Abbreviations

Bolded values are above Remedial Investigation Screening Level

ug/L = micrograms per liter

 ${\sf J}$ = Estimated concentration value detected below the reporting limit.

Table 5 Soil Results - VOCs

Remedial Investigation Addendum 2 Boeing Kent Space Center

		Sample	Sample									ı	Detected VOC	s (mg/kg)									
Sample Date	Area	Location ID	Depth BGS (feet)	1,2,4- Trichlorobenz ene	1,2,4- Trimethylben zene	1,3,5- Trimethylbenz ene	2-Butanone/ MEK	2-Hexanone	4- Isopropyltolue ne	Acetone	Benzene	Carbon Disulfide	Ethylbenzene	Isopropylben zene	m,p-Xylene	Methyl Iodide	Methylene Chloride	Naphthalene	o-Xylene	Styrene	Toluene	Total Xylenes	Trichlorofluor omethane (CFC 11)
	Method	C Soil Scre	ening Level	4.5.E+03		4.E+04	2.1.E+06			3.2.E+06	2.4.E+03	3.5.E+05	3.5.E+05	3.5.E+05	7.00E+05		6.6.E+04	7.0.E+04	7.0.E+05	7.0.E+05	2.8.E+05	7.0.E+05	1.1.E+06
RI Soil Result	ts																						
None collecte																							
Due Diligenc	e Soil Results																						
11/14/2017	northwest -	LAI1	1-3	0.00446 U	0.00089 U		0.00446 U	0.00446 U	0.00089 U	0.0112		0.00089 U		0.00089 U								ļ	
	storage		8-10	0.00580 U	0.00116 U	0.00116 U	0.00580 U	0.00580 U	0.00116 U	0.0293	0.00116 U		0.00116 U					0.00580 U					
11/14/2017	northwest -	LAI2	1-3	0.00459 U	0.00092 U	0.00092 U	0.00459 U	0.00459 U	0.00092 U	0.0110		0.00092 U	0.00092 U					0.00459 U		0.00092 U			
	storage		6.3-8.3 0.7-2.7	0.00607 U 0.00463 U	0.00121 U 0.00093 U		0.0368 0.00463 U	0.00607 U 0.00463 U	0.00121 U 0.00093 U	0.152 0.0116		0.00121 U 0.00093 U	0.00121 U 0.00093 U				0.00243 U	0.00607 U 0.00463 U		0.00121 U		0.00243 U 0.00185 U	
11/15/2017	north - storage	LAI3	5.5-7.5	0.00403 U	0.00093 U		0.00403 U	0.00403 U	0.00093 U 0.00145 U	0.0110		0.00093 U	0.00093 U					0.00403 U				1	
	north - Building 18-		0.7-2.7	0.00488 U	0.00098 U	0.00098 U	0.00488 U	0.00488 U	0.00098 U	0.0131	0.00098 U	0.00098 U	0.00098 U						0.00098 U	0.00098 U		1	1
11/15/2017	43	LAI4	6.7-8.7	0.00649 U	0.00130 U	0.00130 U	0.0114	0.00649 U	0.00130 U	0.0596	0.00130 U	0.00130 U	0.00130 U				0.00260 U		0.00130 U	0.00130 U		ł	1
44 /45 /2047	northeast -	1.017	1-3	0.00555 U	0.00111 U	0.00111 U	0.00696	0.00555 U	0.00111 U	0.0389	0.00111 U	0.00129	0.00111 U				0.00222 U	0.00555 U		0.00111 U	0.00111 U	0.00222 U	
11/15/2017	Building 18-47	LAI7	8-10	0.00614 U	0.00123 U	0.00123 U	0.00614 U	0.00614 U	0.00123 U	0.0121	0.00123 U	0.00123 U	0.00123 U	0.00123 U	0.00245 U	0.00123 U	0.00245 U	0.00614 U	0.00123 U	0.00123 U	0.00123 U	0.00245 U	0.00123 U
11/13/2017	south - former	LAI13	1-3	0.00507 U	0.00101 U	0.00101 U	0.00507 U	0.00507 U	0.00101 U	0.0216	0.00101 U	0.00125	0.00101 U	0.00101 U	0.00203 U	0.00101 U	0.00203 U	0.00507 U	0.00101 U	0.00101 U	0.00101 U	0.00203 U	0.00101 U
11/13/2017	Building 18-63	LAIIS	8-10	0.00702 U	0.00140 U	0.00140 U	0.00702 U	0.00702 U	0.00140 U	0.0336	0.00140 U	0.00140 U	0.00140 U	0.00140 U	0.00281 U	0.00140 U	0.00281 U	0.00702 U	0.00140 U	0.00140 U	0.00140 U	0.00281 U	0.00140 U
7/10/2018	south - former Building 18-63	LAI14	7.5-9.3	0.00666 U	0.00152	0.00133 U	0.0190	0.00666 U	0.00133 U	0.0986	0.00133 U	0.00133 U	0.00568	0.0144	0.0242	0.00133 U	0.00266 U	0.0105	0.00623	0.0313	0.00737	0.0304	0.00133 U
11/13/2017	southwest -	LAI18	1-3	0.00443 U	0.00089 U	0.00089 U	0.00443 U	0.00443 U	0.00089 U	0.0182	0.00089 U	0.00089 U	0.00089 U	0.00089 U	0.00177 U	0.00089 U	0.00177 U		0.00089 U	0.00089 U	0.00089 U	0.00177 U	0.00089 U
11/15/2017	parking lot	2, 1120	6-8	0.00466 U	0.00093 U	0.00093 U	0.00466 U	0.00466 U	0.00093 U	0.0203	0.00102	0.00093 U	0.00093 U	0.00093 U	0.00186 U	0.00093 U	0.00186 U	0.00466 U	0.00093 U	0.00093 U	0.00096	0.00186 U	
7/11/2018	west - former	LAI19	1.5-3	0.00526 U	0.00241	0.00115	0.00601	0.00526 U	0.00105 U	0.129	0.00105 U	0.00105 U	0.00105 U					3.17		0.00105 U		1	
	Building 18-24		11-13	0.00635 U	0.00127 U		0.00635 U	0.00635 U	0.00127 U	0.0153	0.00127 U	0.00182	0.00127 U	0.00127 U		0.00395	0.00267 U					0.00254 U	
11/14/2017	northwest - 18-59	LAI21	0.3-2.3	0.00442 U	0.00088 U	0.00088 U	0.00442 U	0.00442 U	0.00088 U	0.00806	0.00088 U		0.00088 U		0.00177 U			0.00442 U		0.00088 U			
	storage		6.5-8.5	0.00651 U	0.00130 U		0.00651 U	0.00651 U	0.00130 U	0.0323	0.00130 U	0.00130 U	0.00130 U					0.00651 U		0.00130 U			
11/14/2017	northwest - 18-59	LAI22	6.3-8.3 10-12	0.00688 U 0.00666 U	0.00138 U 0.00133 U	0.00138 U 0.00133 U	0.0112 0.00666 U	0.00688 U 0.00666 U	0.00138 U 0.00133 U	0.0521 0.0209	0.00138 U 0.00133 U	0.00138 U 0.00212	0.00138 U 0.00133 U	0.00138 U 0.00133 U			0.00275 U	0.00688 U 0.00666 U		0.00138 U			
7/12/2018	storage south - former	LAI31	10-12	0.00654 U	0.00133 U	0.00133 U	0.00654 U	0.00654 U	0.00133 U	0.0209	0.00133 U	0.00212 0.00131 U			0.00268 U			0.00654 U		0.00133 U			
	Building 18-63																						
7/12/2018	south - former	LAI32	2-3	0.00516 U	0.00103 U		0.00516 U	0.00516 U		0.00952	0.00103 U			0.00103 U								1	
	Building 18-63 north -		8-9 1-3	0.00697 U 0.00495 U	0.00139 U 0.00099 U		0.00697 U 0.00495 U	0.00697 U 0.00495 U	0.00139 U 0.00099 U	0.0335	0.00183 0.00099 U	0.00139 U 0.00181	0.00139 U 0.00099 U		0.00279 U 0.00198 U			0.00697 U 0.00495 U					
5/21/2018	downgradient	LAI34	10.5-12.5	0.00493 U	0.00099 U		0.00493 U 0.00618 U	0.00493 U	0.00099 U 0.00124 U	0.0284	0.00099 U	0.00181 0.00124 U			0.00198 U							ł	1
7/18/2018	south - former	LAI35	7.5-8.5	0.00618 U				0.00618 U		0.0197	0.00124 0	0.00124 0		0.00124 U								0.00247 U	
7/11/2018	Building 18-63 west - former	LAI37	2.7-3.7	0.00551 U	0.00110 U	0.00110 U	0.00551 U	0.00551 U	0.00110 U	0.0351	0.00110 U	0.00110 U	0.00110 U	0.00110 U	0.00220 U	0.00110 U	0.00369	0.00815	0.00110 U	0.00110 U	0.00110 U	0.00220 U	0.00110 U
7/11/2018	Building 18-24 west - former Building 18-24	LAI38	3-3.6	0.00528 U	0.00106 U	0.00106 U	0.00528 U	0.00733	0.00106 U	0.0593	0.00106 U	0.00106 U	0.00106 U	0.00106 U	0.00211 U	0.00106 U	0.00270	0.00528 U	0.00106 U	0.00106 U	0.00117	0.00236	0.00106 U
7/11/2018	west - former Building 18-24	LAI39	2-3	0.00506 U	0.00101 U	0.00101 U	0.00506 U	0.00506 U	0.00101 U	0.0456	0.00101 U	0.00101 U	0.00101 U	0.00101 U	0.00202 U	0.00101 U	0.00281	0.00506 U	0.00101 U	0.00101 U	0.00101 U	0.00202 U	0.00101 U
7/11/2018	west - former Building 18-24	LAI40	3-4	0.0146	0.00441	0.00192	0.0283	0.0374	0.00352	0.324	0.00119 U	0.00119 U	0.00284	0.00119 U	0.00571	0.00119 U	0.00323	0.0511	0.00329	0.00385	0.00184	0.00900	0.00628

Notes and Abbreviations

Only detected VOCs shown

No Remedial Investigation Screening Levels developed; minimum MTCA Method C Soil Screening Level shown **Bolded values** are detections above MTCA Method C soil screening level

All units in milligrams per kilogram

BGS = below ground surface

VOC = volatile organic compound

U = not detected above the value shown

DOF

Sample in vicinity of former Building 18-24 Sample in vicinity of former Building 18-63

Groundwater Results - VOCs

Remedial Investigation Addendum 2

Boeing Kent Space Center

													Detected	VOCs (μg,	/L)									
Sample Date	Location	Sample Location ID	1,1- Dichloroe thane	1,1- Dichloroe thene	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	2- Butanone /MEK	Acetone	Benzene	Carbon Disulfide	Chlorome thane	cis- 1,2- DCE	Ethylbenz ene	Isopropyl benzene	m,p- Xylene	Naphthal ene	n- Propylbe nzene	o-Xylene	Styrene	Tetrachlo roethene	Toluene	Total Xylenes	Trichlorof luoromet hane (CFC 11)	Vinyl Chloride
		RI Screening Level							0.6			16									57			0.02
	MTCA Method B Groundwat	er Screening Level	7.68	7		80	4800	7200	0.8	800		16	700	800	1600	160	800	1600	100	5	640	1600	2400	2
RI Groundwate	r Results																							
1/24/2017	AOC-2 - Building 18-35	SB-6							0.3			0.2	0.5 U								0.20 U	0.5 U		0.19
1/24/2017	AOC-2 - Building 18-35	SB-7							0.20 U			0.20 U	0.5 U								0.20 U	0.5 U		0.20 U
1/24/2017	AOC-2 - Building 18-35	SB-8							0.20 U			0.2	0.5 U								0.20 U	0.5 U	-	0.19
1/26/2017	Building 18-67 UST	SB-13				1			0.20 U				0.5 U	1					-		0.20 U	0.5 U	-	
1/26/2017	Building 18-41 - KS-3	SB-17				-			0.20 U				0.5 U								0.20 U	0.5 U		
1/27/2017	Building 18-41 - KS-3	SB-18							0.20 U				0.5 U								0.20 U	0.5 U		
1/25/2017	Building 18-41 - KS-3	SB-19							0.20 U				0.5 U								0.9	0.5 U		
1/27/2017	Building 18-41 - KS-3	SB-20							0.20 U				0.5 U								0.20 U	0.5 U		
Due Diligence	Groundwater Results																							
11/14/2017	northwest - storage	LAI1	2.00 U	2.00 U	2.00 U	2.00 U	50.0 U	50.0 U	2.00 U	2.00 U	5.00 U	2.00 U	2.00 U	2.00 U	4.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	6.00 U	2.00 U	2.00 U
11/14/2017	northwest - storage	LAI2	2.00 U	2.00 U	2.00 U	2.00 U	50.0 U	50.0 U	2.00 U	2.00 U	5.00 U	2.00 U	2.00 U	2.00 U	4.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	6.00 U	2.00 U	2.00 U
11/15/2017	north - storage	LAI3	2.00 U	2.00 U	2.00 U	2.00 U	50.0 U	50.0 U	2.00 U	2.00 U	5.00 U	2.00 U	2.00 U	2.00 U	4.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	6.00 U	2.00 U	2.00 U
11/15/2017	north - Building 18-43	LAI4	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
11/16/2017	north - parking lot	LAI5	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
11/14/2017	northeast - Building 18-47	LAI7	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	6.95	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20	0.60 U	0.20 U	0.20 U
11/15/2017			0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
11/15/2017	east - parking lot	LAI9	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
11/15/2017	southeast - parking lot	LAI11	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
11/13/2017	south - former Building 18-63	LAI13	1.00 U	1.00 U	1.00 U	1.00 U	25.0 U	25.0 U	1.00 U	1.00 U	2.50 U	1.00 U	1.00 U	1.00 U	2.00 U	2.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U
7/10/2018	south - former Building 18-63	LAI14	0.20 U	36.2	0.48	0.50	9.31	32.5	0.48	0.36	0.68	0.20 U	17.2	1.53	61.1	1.76	0.20 U	14.3	7.56	0.80	14.8	75.4	0.20 U	7.92
11/13/2017	southwest - parking lot	LAI16	1.00 U	1.00 U	1.00 U	1.00 U	25.0 U	25.0 U	1.00 U	1.00 U	2.50 U	1.00 U	1.00 U	1.00 U	2.00 U	2.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U	1.00 U	1.00 U
11/13/2017	southwest - parking lot	LAI18	1.00 U	1.00 U	1.00 U	1.00 U	25.0 U	25.0 U	1.00 U	1.00 U	2.50 U	1.00 U	1.00 U	1.00 U	2.00 U	2.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	3.00 U 29.8	1.00 U	1.00 U
7/11/2018 11/14/2017	west - former Building 18-24 northwest - 18-59 storage	LAI19 LAI21	1.00 U 0.20 U	8.72 0.20 U	5.01 0.20 U	1.00 U 0.20 U	25.0 U 5.00 U	25.0 U 5.00 U	1.00 U 0.20 U	1.00 U 0.20 U	2.50 U 0.50 U	1.00 U 0.20 U	4.85 0.20 U	1.00 U 0.20 U	18.5 0.40 U	75.2 0.50 U	1.00 U 0.20 U	11.3 0.20 U	1.00 U 0.20 U	1.00 U 0.20 U	16.3 0.20 U	0.60 U	6.85 0.20 U	1.00 U 0.20 U
11/14/2017	northwest - 18-59 storage	LAI21 LAI22	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
7/12/2018	south - former Building 18-63	LAI31	0.20 U	0.20 U	4.07	1.15	5.00 U	5.00 U	0.20 U	0.20 U	1.00	0.20 U	1.84	0.20 U	12.7	0.50 U	0.36	6.77	0.20 U	0.20 U	7.04	19.4	0.20 U	0.29
5/21/2018			0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.42	0.50 U	0.20 U	0.20 U	1.15	0.75	0.66	0.20 U	0.32	0.20 U	0.20 U	0.20 U	1.07	0.20 U	11.2
7/12/2018	south - former Building 18-63	LAI32	0.26	0.20 U	2.70	0.82	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	1.55	3.60	10.5	0.50 U	0.31	4.97	0.20 U	0.20 U	5.49	15.4	0.20 U	12.6
5/21/2018	north - downgradient	LAI34	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
7/18/2018	south - former Building 18-63	LAI35	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20	0.60 U	0.20 U	0.20 U
7/18/2018	south - former Building 18-63	LAI36	0.20 U	0.20 U	4.47	1.25	5.00 U	5.00 U	0.20 U	0.20 U	0.57	0.20 U	2.64	0.20 U	17.4	0.50 U	0.44	8.29	0.20 U	0.20 U	11.3	25.7	0.20 U	0.20 U
7/18/2018	south - former Building 18-63	LAI44	2.00 U	2.00 U	2.00 U	2.00 U	50.0 U	50.0 U	2.00 U	2.00 U	5.00 U	2.00 U	2.00 U	2.00 U	4.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	6.00 U	2.00 U	2.00 U
11/14/2017	north	MW1	2.00 U	2.00 U	2.00 U	2.00 U	50.0 U	50.0 U	2.00 U	2.00 U	5.00 U	2.00 U	2.00 U	2.00 U	4.00 U	5.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	6.00 U	2.00 U	2.00 U
11/14/2017	northeast	MW2	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.75	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
11/14/2017	east	MW3	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
11/14/2017	southeast	MW4	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U		0.20 U	0.20 U		0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
11/14/2017	southwest	MW5	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U		0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
11/14/2017	west	MW6	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U		0.20 U	0.65	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U		0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
11/14/2017	northwest	MW7	0.20 U	0.20 U	0.20 U	0.20 U	5.00 U	5.00 U	0.20 U	0.20 U	0.50 U	0.20 U	0.20 U	0.20 U	0.40 U	0.50 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.60 U	0.20 U	0.20 U
Historical Grou	ndwater Results																							
12/17/2001		18-21-1							1.0 U		$oxedsymbol{oxed}$	1.6									1.0 U			1.1
10/8/2003		18-21-2							0.20 U			0.5									0.4			0.2
12/17/2001		18-23-1							1.0 U			6.1									1.0 U			3.3
12/18/2001		18-23-2							10 U			10 U									10 U			10 U
10/8/2003		18-23-3							0.20 U			0.20 U									0.20 U			0.20 U
10/8/2003		18-23-4							0.20 U			0.4									0.20 U			0.20 U
10/8/2003		18-23-5							0.20 U			0.4								-	0.20 U			0.20 U
10/9/2003		18-35-3	-	-					1.8			0.8									0.20 U			0.20 U
10/9/2003 12/17/2001		18-35-4 18-62-7	-	-					0.20 U 1.0 U			8.7 1.0 U								-	0.20 U 1.0 U			2.2 1.0 U
10/9/2003		18-62-8	 	 					0.20 U		 	0.20 U									0.20 U			0.20 U
10/3/2003		10-02-0	<u> </u>	<u> </u>				l	0.200	l	ı	0.20 0						ı		l	0.200			0.200

Groundwater Results - VOCs

Remedial Investigation Addendum 2 Boeing Kent Space Center

													Detected	VOCs (μg	/L)									
Sample Date	Location	Sample Location ID	1,1-	1,1- Dichloroe thene	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	2- Butanone /MEK	Acetone	Benzene	Carbon Disulfide	Chlorome thane	<i>cis-</i> 1,2- DCE	Ethylbenz ene	Isopropyl benzene	m,p- Xylene	Naphthal ene	n- Propylbe nzene	o-Xylene	Styrene	Tetrachlo roethene	Toluene	Total Xylenes	Trichlorof luoromet hane (CFC 11)	Vinyl
		RI Screening Level							0.6			16									57			0.02
	MTCA Method B Groundwat	ter Screening Level	7.68	7		80	4800	7200	0.8	800		16	700	800	1600	160	800	1600	100	5	640	1600	2400	2
12/26/2001		BSC-18-22-01							1.0 U			1.0 U									1.0 U			1.0 U
12/26/2001	Clearwater	BSC-18-22-02							1.0 U			8									1.0 U			1.0 U
12/26/2001		BSC-18-22-03							1.4			1.0 U									1.0 U			1.0 U
12/26/2001		BSC-18-23-01							1.0 U			1.0 U									1.0 U			1.0 U
12/26/2001		BSC-18-23-02							1.0 U			1.0 U									1.0 U			1.0 U
12/27/2001		BSC-18-62-03							1.0 U			1.0 U									1.0 U			1.0 U
12/26/2001		BSC-18-62-04							1.0 U			1.0 U									1.0 U			1.0 U
12/27/2001		BSC-18-62-05							1.0 U			1.0 U									1.0 U			1.0 U
12/26/2001		BSC-18-62-06							1.0 U			1.0 U									1.0 U			1.0 U
12/27/2001		BSC-18-63-01							1.0 U			1.0 U									1.0 U			1.0 U
12/27/2001		BSC-18-63-02							1.0 U			1.0 U									1.0 U			1.0 U
12/27/2001		BSC-18-67-02							1.0 U			1.0 U									1.0 U			1.0 U
12/27/2001		BSC-18-67-03							1.0 U			1.0 U									1.0 U			1.0 U
12/27/2001		BSC-18-67-04							1.0 U			1.0 U									1.0 U			1.0 U
7/28/2010		KSC-DP-1							0.20 U			0.20 U									0.20 U			0.20 U
7/30/2010		KSC-DP-2							0.20 U			23									0.20 U			0.3
7/30/2010		KSC-DP-3							0.20 U			0.20 U									0.20 U			0.2
7/29/2010		KSC-DP-4							0.20 U			0.20 U									0.20 U			0.20 U
7/30/2010		KSC-DP-5							0.20 U			0.20 U									0.2			0.20 U
7/29/2010		KSC-DP-9							0.20 U			0.20 U									0.20 U			0.20 U
7/30/2010	Striker	KSC-DP-11							0.20 U			0.20 U									0.20 U			0.20 U
7/30/2010		KSC-DP-15							0.20 U			0.3									0.20 U			0.20 U
7/30/2010		KSC-DP-16							0.20 U			1									0.20 U			1.8
1/27/2011		KSC-DP-17							0.20 U			0.2									0.20 U			0.8
1/27/2011		KSC-DP-18							0.20 U			0.4									0.2			1.4
1/27/2011		KSC-DP-19							0.20 U			0.20 U									0.6			0.2
1/27/2011		KSC-DP-20							0.20 U			0.20 U									0.2			0.20 U

Notes and Abbreviations

Only detected VOCs shown

Only select Remedial Investigation Screening Levels developed; minimum MTCA Method B Groundwater Screening Level (or MCL if lower) additionally shown

Bolded values are detections above the RI Screening Level or MTCA screening level

VOCs = Volatile Organic Compounds

ug/L = micrograms per liter

Sample in vicinity of former Building 18-24

Sample in vicinity of former Building 18-63

Soil Results - TPH

Remedial Investigation Addendum 2 **Boeing Kent Space Center**

Sample Date	Area	Sample Location ID	Sample Depth BGS (feet)	Gasoline Range Organics	Diesel Range Organics HCID	Oil Range Organics	Gasoline Range Organics (Gx)		Oil Range Organics ilica gel		Oil Range Organics silica gel
		RI Sc	reening Levels	100/30	460	2000	100/30	460	2000	460	2000
RI Soil Results						l.					
1/27/2017	AOC-1/3	SB-3	8.5-9.5					9.7 U	42 U		
1/27/2017	AOC-1/3	SB-4	8-9					8.3 U	36 U		
1/27/2017	AOC-1/3	SB-5	11-12					7.8 U	33 U		
Due Diligence		<u> </u>									
			1-3	11 U	28 U	56 U					
11/14/2017	northwest - storage	LAI1	8-10	13 U	31 U	63 U					
			1-3	11 U	28 U	56 U					
11/14/2017	northwest - storage	LAI2	6.3-8.3	13 U	31 U	63 U					
/ /			0.7-2.7	11 U	28 U	56 U					
11/15/2017	north - storage	LAI3	5.5-7.5	14 U	35 U	70 U					
44/45/2047			0.7-2.7	11 U	28 U	57 U					
11/15/2017	north - Building 18-43	LAI4	6.7-8.7	14 U	35 U	69 U					
44/45/2047	northeast - Building 18-		1-3	11 U	28 U	56 U					
11/15/2017	47	LAI7	8-10	13 U	33 U	67 U					
11/13/2017	south - former Building	LAI13	1-3	11 U	27 U	54 U					
11/15/2017	18-63	LAIIS	8-10	14 U	34 U	69 U					
7/10/2018	south - former Building 18-63	LAI14	7.5-9.3					35.2	139		
11/13/2017	southwest - parking lot	LAI18	1-3	11 U	28 U	132				9.35	83.0
11/15/2017	Southwest - parking lot	LAIIO	6-8	12 U	30 U	60				6.52	45.7
7/11/2018	west - former Building	LAI19	1.5-3	-	-		10.3	19.5	80.2		
7/11/2018	18-24	LAITS	11-13		-		9.37 U	6.38 U	12.8 U		
11/14/2017	northwest - 18-59	LAI21	0.3-2.3	11 U	27 U	55 U		-			
11/14/2017	storage	LAIZI	6.5-8.5	13 U	33 U	66 U					
11/14/2017	northwest - 18-59	LAI22	6.3-8.3	14 U	34 U	68 U					
11/14/2017	storage	LAIZZ	10-12	14 U	35 U	145				10.5	85.6
7/12/2018	south - former Building	LAI32	2-3							5.08 U	10.2 U
7/12/2010	18-63	LAISZ	8-9							6.68 U	24.9
5/21/2018	north - downgradient	LAI34	1-3	13 U	32 U	65 U					
3/21/2010	north downgradient	LAIST	10.5-12.5	11 U	28 U	56 U					
7/18/2018	south - former Building 18-63	LAI44	7-8					5.38 U	21.7		
Historical Strik	er Data										
7/29/2010		KSC-DP-3	7-8					2000	87		
7/29/2010		KSC-DP-7	3.5-4					5.6 U	11 U		
7/29/2010		KSC-DP-8	4.5-5					5.6 U	11 U		
7/29/2010		KSC-DP-9	5.5-6					5.5 U	51		
7/30/2010		KSC-DP-11	5-5.5					5.9 U	12 U		
7/30/2010		KSC-DP-13	4.5-5					5.9 U	12 U		

Notes and Abbreviations

Bolded values are above Remedial Investigation Screening Level

BGS = below ground surface

TPH = Total petroleum hydrocarbons

All units in milligrams per kilogram

Italics indicate silica gel cleanup status uncertain

Sample in vicinity of former Building 18-24

Sample in vicinity of former Building 18-63

Table 8 Groundwater Results - TPH

Sample Date	Location	Sample Location ID	Gasoline Range Organics	Diesel Range Organics HCID	Oil Range Organics	TPH- Gasoline (Gx)	Diesel Range Organics	Oil Range Organics ilica gel	Diesel Range Organics	Oil Range Organics It silica gel	Oil (mg/L)
<u> </u>		RI Screening Level				800	500	500	500	500	500
RI Groundwate		Ki Screening Level				000	300	300	300	300	
		CD 2		l	1		l		00.11	25011	
1/27/2017	AOC-1/3 - Building 18-54	SB-3							99 U	250 U	
1/27/2017	AOC-1/3 - Building 18-54	SB-4							99 U	250 U	
1/27/2017	AOC-1/3 - Building 18-54	SB-5							97 U	240 U	
1/24/2017	AOC-2 - Building 18-35	SB-6							95 U		
1/24/2017	AOC-2 - Building 18-35	SB-7							95 U		
1/24/2017	AOC-2 - Building 18-35	SB-8							130		
1/25/2017	Building 18-62 Milling	SB-9							95 U		200 U
1/25/2017	Building 18-62 Milling	SB-10							130		200 U
1/25/2017	Building 18-62 Milling	SB-11							290 J		325
1/25/2017	Building 18-62 Milling	SB-12							180		216
1/26/2017	Building 18-67 UST	SB-13				250 U			97 U		
1/26/2017	Building 18-42 - KS-1	SB-14							250		
1/26/2017	Building 18-42 - KS-1	SB-15							280		
1/26/2017	Building 18-42 - KS-1	SB-16							420		
1/26/2017	Building 18-41 - KS-3	SB-17				250 U					
1/27/2017	Building 18-41 - KS-3	SB-18				250 U					
1/25/2017	Building 18-41 - KS-3	SB-19				250 U					
1/27/2017	Building 18-41 - KS-3	SB-20				250 U					
5/4/2017	north	MW1	-			-			103 U	257 U	
5/3/2017	northeast	MW2							97.6 U	244 U	
5/3/2017	east	MW3							96.4 U	241 U	
5/3/2017	southeast	MW4							100 UJ	250 U	
3/3/2017	Southeast	MW4 Duplicate							216 J	400	
5/3/2017	southwest	MW5							103 U	257 U	
5/4/2017	west	MW6							100 U	251 U	
5/4/2017	northwest	MW7							99 U	248 U	
Due Diligence (Groundwater Results										
11/14/2017	northwest - storage	LAI1	250 U	500 U	1000 U						
11/14/2017	northwest - storage	LAI2	250 U	500 U	1000 U						
11/15/2017	north - storage	LAI3	250 U	500 U	1000 U						
11/15/2017	north - Building 18-43	LAI4	250 U	500 U	1000 U						
11/16/2017	north - parking lot	LAI5	250 U	500 U	1000 U						

Table 8 Groundwater Results - TPH

Sample Date	Location	Sample Location ID	Gasoline Range Organics	Diesel Range Organics	Oil Range Organics	TPH- Gasoline (Gx)	Diesel Range Organics	Oil Range Organics	Diesel Range Organics	Oil Range Organics	Oil (mg/L)
				HCID	1	000		lica gel		t silica gel	
		RI Screening Level				800	500	500	500	500	500
11/15/2017	northeast - Building 18-47	LAI7				100 U					
11/15/2017	east - parking lot	LAI9	250 U	500 U	1000 U						
11/15/2017	southeast - parking lot	LAI11	250 U	500 U	1000 U						
11/13/2017	south - former Building 18-63	LAI13	250 U	500 U	1000 U						
7/10/2018	south - former Building 18-63	LAI14					105	209	1040	568	
11/13/2017	southwest - parking lot	LAI16	250 U	500 U	1000 U						
11/13/2017	southwest - parking lot	LAI18	250 U	500 U	1000 U						
7/11/2018	west - former Building 18-24	LAI19				1470	178	200 U	2750	200 U	
11/14/2017	northwest - 18-59 storage	LAI21	250 U	500 U	1000 U						
11/14/2017	northwest - 18-59 storage	LAI22	250 U	500 U	1000 U						
7/12/2018	south - former Building 18-63	LAI31					100 U	200 U	100 U	200 U	
5/21/2018	th f Duildin - 10 C2	1.4122	250 U	500	1000 U				729	316	
7/12/2018	south - former Building 18-63	LAI32					100 U	200 U	503	315	
5/21/2018	north - downgradient	LAI34	250 U	500 U	1000 U						
7/18/2018	south - former Building 18-63	LAI35	-				100 U	200 U	100 U	200 U	
7/12/2018	south - former Building 18-63	LAI36					100 U	200 U	100 U	200 U	
7/18/2018	south - former Building 18-63	LAI44	-				100 U	200 U	1040	634	
Historical Grou	indwater Sample Results										
12/17/2001		18-21-1							250 U	500 U	
10/8/2003		18-21-2							260	500 U	
12/17/2001		18-23-1							250 U	500 U	
12/18/2001		18-23-2							1400	950	
10/8/2003		18-23-3							250 U	500 U	
10/8/2003		18-23-4							250 U	500 U	
10/8/2003		18-23-5							250 U	500 U	
12/17/2001		18-35-2							290	500 U	
10/9/2003		18-35-3							250 U	500 U	
10/9/2003		18-35-4							250 U	500 U	
12/17/2001		18-62-7							250 U	500 U	
10/9/2003		18-62-8							250 U	500 U	
12/26/2001	Classication	BSC-18-22-01							250 U	500 U	
12/26/2001	Clearwater	BSC-18-22-02							250 U	500 U	
12/26/2001		BSC-18-22-03							250 U	500 U	

Table 8 Groundwater Results - TPH

Remedial Investigation Addendum 2 Boeing Kent Space Center

Sample Date	Location	Sample Location ID	Gasoline Range Organics	Diesel Range Organics HCID	Oil Range Organics	TPH- Gasoline (Gx)	Diesel Range Organics	Oil Range Organics lica gel	Diesel Range Organics	Oil Range Organics It silica gel	Oil (mg/L)
		21.6				800	500	500	500	500	500
		RI Screening Level				800	300	300			300
12/26/2001		BSC-18-23-01							250 U	500 U	
12/26/2001		BSC-18-23-02							250 U	500 U	
12/27/2001		BSC-18-62-03							250 U	500 U	
12/26/2001		BSC-18-62-04							250 U	500 U	
12/27/2001		BSC-18-62-05							250 U	500 U	
12/26/2001		BSC-18-62-06							250 U	500 U	
12/27/2001		BSC-18-63-01							250 U	500 U	
12/27/2001		BSC-18-63-02							250 U	500 U	
12/27/2001		BSC-18-67-02							250 U	500 U	
12/27/2001		BSC-18-67-03							250 U	500 U	
12/27/2001		BSC-18-67-04							250 U	500 U	
7/28/2010		KSC-DP-1				250 U			100 U	200 U	
7/30/2010		KSC-DP-2				250 U			100 U	270	
7/30/2010		KSC-DP-3				360			110	200 U	
7/29/2010		KSC-DP-4				250 U			100 U	200 U	
7/30/2010		KSC-DP-5				250 U			100 U	200 U	
7/29/2010		KSC-DP-9				250 U			100 U	200 U	
7/30/2010	Striker	KSC-DP-11				250 U			100 U	200 U	
7/30/2010		KSC-DP-15				250 U			100 U	200 U	
7/30/2010		KSC-DP-16				250 U			100 U	200 U	
1/26/2011		KSC-DP-22				100 U			110 U	220 U	
1/26/2011		KSC-DP-23				100 U			100 U	210 U	
1/26/2011		KSC-DP-24				350			110 U	210 U	
1/26/2011		KSC-DP-25b				380			200	210 U	

Notes and Abbreviations

Bolded values are above Remedial Investigation Screening Level

TPH = Total petroleum hydrocarbons

All results shown in ug/L (micrograms per liter)

Italics indicate silica gel cleanup status uncertain

Sample in vicinity of former Building 18-24

Sample in vicinity of former Building 18-63

Table 9 Soil Results - SVOCs

Remedial Investigation Addendum 2 Boeing Kent Space Center

		Sample	Sample						De	tected SVO	Cs (mg/kg)						
Sample Date	Area	Location	Depth BGS (feet)	1- Methylnap hthalene	2- Methylnap hthalene	Acenaphthe ne	bis(2- Ethylhexyl) Phthalate	Dibenzofur an	Fluoranthe ne	Fluorene	Isophorone	Naphthale ne	Phenanthr ene	Pyrene	Benzo(a)py rene	Chrysene	cPAH TEQ
	MTCA Metho	d C Soil Sci	eening Level	4.5E+03	1.4E+04	2.1E+05	9.4E+03	3.5E+03	1.4E+05	1.4E+05	1.4E+05	7.0E+04		1.1E+05	18	1.8E+04	
RI Soil Result	ts																
None colle	ected													-			
Due Diligeno	e Soil Results																
11/14/2017	northwest - storage	LAI1	1-3 8-10	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	ND ND
11/14/2017	northwest - storage	LAI2	1-3 6.3-8.3	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	ND ND
11/15/2017	north - storage	LAI3	0.7-2.7 5.5-7.5	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	0.062 U 0.062 U	ND ND
11/15/2017	north - Building 18- 43	LAI4	0.7-2.7 6.7-8.7	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	0.063 U 0.063 U	ND ND
11/15/2017	northeast - Building 18-47	LAI7	1-3 8-10	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	0.062 U 0.067 U	ND ND
11/13/2017	south - former Building 18-63	LAI13	1-3 8-10	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	0.068 U 0.062 U	ND ND
11/13/2017	southwest -	LAI18	1-3 6-8	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	ND ND
7/11/2018	west - former Building 18-24	LAI19	1.5-3 11-13	0.119 0.064 U	0.215 0.064 U	0.216	0.4 0.064 U	0.158 0.064 U	0.165 0.064 U	0.13 0.064 U	0.473 0.064 U	0.369 0.113	0.345 0.064 U	0.137 0.064 U	0.062 U 0.196	0.079 0.064 U	0.00079 0.196
11/14/2017	northwest - 18-59 storage	LAI21	0.3-2.3	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	0.06 U 0.065 U	ND ND
11/14/2017	northwest - 18-59 storage	LAI22	6.3-8.3	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	0.062 U 0.064 U	ND ND
5/21/2018	north - downgradient	LAI34	1-3 10.5-12.5	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	0.062 U 0.065 U	ND ND

Notes and Abbreviations

Only detected SVOCs shown

No Remedial Investigation Screening Levels developed; minimum MTCA Method C Soil Screening Level shown

Bolded values are detections above MTCA Method C soil screening level

All units in milligrams per kilogram

BGS = below ground surface

SVOC = volatile organic compound

U = not detected above the value shown

ND = none detected

Groundwater Results - SVOCs

Remedial Investigation Addendum 2 Boeing Kent Space Center

							SVOCs (μg/L)				
Sample Date	Location	Sample Location	1-	2,4-	2-	2-	4-	Acenaphth		Dibenzofur		Naphthalen
		ID	Methylnaphth			, ,	Methylphe	ene	Carbazole	an	Fluorene	е
	MTCA Method B Groundwate	ar Caroonina Loval	alene 1.5	enol 160	hthalene 32	nol 400	nol 800	960		16	640	160
DI Committee de la committee d		er Screening Lever	1.5	100	32	400	800	960		10	640	160
RI Groundwate	er Results	1		1	T	1	1			1		
None												
Due Diligence	Groundwater Results											
11/14/2017	northwest - storage	LAI1	1.1 U	3.4 U	1.1 U	1.1 U	2.2 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
11/14/2017	northwest - storage	LAI2	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11/15/2017	north - storage	LAI3	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11/15/2017	north - Building 18-43	LAI4	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11/16/2017	north - parking lot	LAI5	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11/15/2017	east - parking lot	LAI9	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11/15/2017	southeast - parking lot	LAI11	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11/13/2017	south - former Building 18-63	LAI13	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11/13/2017	southwest - parking lot	LAI16	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11/13/2017	southwest - parking lot	LAI18	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
7/11/2018	west - former Building 18-24	LAI19	17.3	30.9	6.1	5.6	2.8	25.1	7.4	2.5	4.7	61.7
11/14/2017	northwest - 18-59 storage	LAI21	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11/14/2017	northwest - 18-59 storage	LAI22	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
5/21/2018	south - former Building 18-63	LAI32	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
5/21/2018	north - downgradient	LAI34	1.0 U	3.0 U	1.0 U	1.0 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

Notes and Abbreviations

No Remedial Investigation Screening Levels developed; minimum MTCA Method B (or MCL if lower) Groundwater Screening Level shown

Bolded values are detections above MTCA Method B groundwater screening level

Only detected SVOCs shown

SVOCs = Semi Volatile Organic Compounds

ug/L = micrograms per liter

Soil Results - Metals

Remedial Investigation Addendum 2 **Boeing Kent Space Center**

Sample Date	Area	Sample Location ID	Sample Depth BGS					Metals	(mg/kg)				
		Location iD	(feet)	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver	Zinc	Nickel
		RI Scre	ening Levels		1	48	100	220	2	0.8	13.6	270	100
RI Soil Results													
1/24/2017	SWMU 88/89 - Building 18-43	SB-1	11.5-12.5			24.2	37.6	6.78			0.232 U	80.3	21.7
1/24/2017	SWMU 88/89 - Building 18-43	SB-2	11.5-12.5			25.5	42.7	7.3			0.252 U	54.4	24.3
Due Diligence	Soil Results												
11/14/2017	northwest - storage	LAI1	1-3	38.0	0.11 U	17.0		4.74	0.0296	0.55 U	0.22 U		
11/14/2017	Hortiwest - storage	LAII	8-10	70.7	0.19	16.2		11.4	0.0953	0.86	0.24 U		
11/14/2017	northwest - storage	LAI2	1-3	59.3	0.11 U	15.3		2.79	0.0217 U	0.53 U	0.21 U		
11/14/2017	northwest - storage	LAIZ	6.3-8.3	65.7	0.12 U	14.7		4.51	0.0616	0.61	0.23 U		
11/15/2017	north - storage	LAI3	0.7-2.7	81.2	0.11 U	30.7		5.60	0.0382	0.92	0.53 U		
11/13/2017	ū	LAIS	5.5-7.5	125	0.15 U	23.7		7.01	0.169	2.40	0.76 U		
11/15/2017	north - Building 18-	LAI4	0.7-2.7	60.1	0.11 U	29.7		3.74	0.0410	0.65	0.21 U		
11, 10, 201,	43		6.7-8.7	79.9	0.35	27.8		22.0	0.0794	1.09	0.25 U		
11/15/2017	northeast - Building	LAI7	1-3	56.1	0.11 U	25.8		4.69	0.0371	0.69	0.21 U		
11, 10, 201,	18-47	2,,	8-10	69.2	0.13 U	14.8		3.63	0.0688	0.95	0.26 U		
11/13/2017	south - former	LAI13	1-3	62.1 J	0.11 U	20.3		4.29	0.0404	0.54 U	0.22 U		
	Building 18-63		8-10	111	0.14 U	20.0		6.91	0.0797	1.05	0.27 U		
11/13/2017	southwest - parking	LAI18	1-3	67.1	0.11 U	25.4		4.52	0.0284	0.53 U	0.21 U		
	lot		6-8	65.0	0.11 U	24.8		3.82	0.0346	0.55 U	0.22 U		
7/11/2018	west - former	LAI19	1.5-3	62.3	0.15	23.7 J		17.1 J	0.0456	0.56 U	0.23 U		
	Building 18-24		11-13	64.6	0.13 U	16.4		3.64	0.0415	0.66 U	0.26 U		
11/14/2017	northwest - 18-59	LAI21	0.3-2.3	58.1	0.11 U	25.1		3.03	0.0257 U	0.53 U	0.21 U		
	storage		6.5-8.5	104	0.23	22.4		15.9	0.0959	0.93	0.25 U		
11/14/2017	northwest - 18-59	LAI22	6.3-8.3	89.1	0.20	22.2		14.6	0.113	0.92	0.24 U		
	storage		10-12	72.9	0.13 U	23.3		4.88	0.0452	0.87	0.26 U		
5/21/2018	north -	LAI34	1-3	63.2	0.11	22.0		6.62	0.0382	1.22	0.22 U		
Historical Strik	downgradient		10.5-12.5	99.1	0.36	19.7		27.7	0.118	1.60	0.26 U		
	lei Dala	VCC DD 2	7.0		ı	20	20.4		1			42	
7/29/2010	-	KSC-DP-3	7-8			28	20.1	4				42	
7/29/2010	-	KSC-DP-7	3.5-4			29	22.1	4				42	
7/29/2010	Striker	KSC-DP-8	4.5-5			29	18.1	3				37	
7/29/2010	-	KSC-DP-9	5.5-6			21	15.4	2				28	
7/30/2010	-	KSC-DP-11	5-5.5			10.9	16.4	3				25	
7/30/2010		KSC-DP-13	4.5-5			14.3	20.3	5				29	

Notes and Abbreviations

Bolded values are above Remedial Investigation Screening Level

BGS = below ground surface

All units in milligrams per kilogram

U = not detected above the value shown

Groundwater Results - Metals

		Sample Location				Disso	lved Meta	ls (µg/L)				
Sample Date	Sample Location Area	ID	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Copper	Nickel	Zinc
		RI Screening Level	2000*	0.25	10	0.5	0.012	5	0.3	3.5	49	32
RI Groundwate	er Results											
	SWMU 88/89 -											
1/24/2017	Building 18-43	SB-1			2 U	1 U			0.5 U	2.7	5.4	15 U
	SWMU 88/89 -											
1/24/2017	Building 18-43	SB-2			2 U	1 U			0.5 U	2 U	18.8	15 U
5/4/2017	north	MW1		0.5 U	3.5	1.4	0.2 U	2 U	0.5 U	39.8 J	5.3	35.6 J
5/3/2017	northeast	MW2		0.5 U	2 U	1 U	0.2 U	2 U	0.5 U	2 U	7.9	15 U
5/3/2017	east	MW3	-	0.5 U	2 U	1 U	0.2 U	2 U	0.5 U	2.1	2 U	15 U
5/3/2017	southeast	MW4	-	0.5 U	2 U	1 U	0.2 U	2 U	0.5 U	2.1	2 U	15 U
3/3/2017	Southeast	MW4 Duplicate	-	0.5 U	2 U	1 U	0.2 U	2 U	0.5 U	2 U	2 U	15 U
5/3/2017	southwest	MW5		0.5 U	2 U	1 U	0.2 U	2 U	0.5 U	2.9	2 U	15 U
5/4/2017	west	MW6		0.5 U	2 U	1 U	0.2 U	2 U	0.5 U	2 U	3.8	15 UJ
5/4/2017	northwest	MW7		0.5 U	2 U	1 U	0.2 U	2 U	0.5 U	2.4 J	2.5	15 UJ
Due Diligence	Groundwater Results											
11/14/2017	northwest - storage	LAI2	16.7	0.100 U	2.84	0.100 U	0.100 U	1.19	0.200 U			
11/15/2017	north - storage	LAI3	16.3	0.100 U	1.31	0.100 U	0.100 U	0.781	0.200 U			
			15.0	0.100 U	0.958	0.100 U	0.100 U	0.500 U	0.200 U			
11/15/2017	north - Building 18-43	LAI4										
11/16/2017	north - parking lot	LAI5	30.1	0.100 U	0.834	0.100 U	0.100 U	0.500 U	0.200 U			
11/15/2017	east - parking lot	LAI9	44.1	0.100 U	1.22	0.100 U	0.100 U	0.500 U	0.200 U			
			45.7	0.100 U	0.500 U	0.100 U	0.100 U	0.500 U	0.200 U			
11/15/2017	southeast - parking lot	LAI11										
	south - former Building		14.0	0.100 U	0.503	0.100 U	0.100 U	0.500 U	0.200 U			
11/13/2017	18-63	LAI13										
			38.0	0.100 U	0.500 U	0.100 U	0.100 U	0.500 U	0.200 U			
11/13/2017	southwest - parking lot	LAI16										
			29.7	0.100 U	1.88	0.100 U	0.100 U	0.642	0.200 U			
11/13/2017	southwest - parking lot	LAI18										
7/44/2040	west - former Building		16.9	0.100 U	1.00 U	0.100 U	0.100 U	0.500 U	0.200 U			
7/11/2018	18-24	LAI19	40.2	0.400.11	2.07	0.400.11	0.400.11	4.52	0.20011			
11/11/2017	northwest - 18-59	1 4124	40.2	0.100 U	2.07	0.100 U	0.100 U	1.53	0.200 U			
11/14/2017	storage northwest - 18-59	LAI21	12.2	0.100 U	0.545	0.100 U	0.100 U	0.500 U	0.200 U			
11/14/2017		LAI22	12.2	0.100 0	0.545	0.100 0	0.100 0	0.500 0	0.200 0			
11/14/2017	storage south - former Building	LAIZZ	5.95	0.100 U	0.699	0.234	0.100 U	1.45	0.200 U			
5/21/2018	18-63	LAI32	5.55	0.100 0	0.055	0.234	0.100 0	1.45	0.200 0			
3/21/2010	10 03	LAISZ	9.98	0.100 U	0.500 U	0.100 U	0.100 U	0.500 U	0.200 U			
5/21/2018	north - downgradient	LAI34	3.30	0.100 0	0.300 0	0.100 0	0.100 0	0.300 0	0.200 0			
	undwater Results	2.110 .										
12/17/2001		18-21-1		0.2 U	3	1 U			l l	1.4	1.5	5
10/8/2003		18-21-2		0.3	30	7				21.3	45.6	61
12/17/2001		18-23-1		0.2 U	2	1 U				0.5 U	0.8	4 U
12/18/2001	1	18-23-2										
10/8/2003		18-23-3		0.2 U	13	2				10.4	25.3	33
10/8/2003	1	18-23-4		0.2	21	6				15.1	35	44
10/8/2003	1	18-23-5		0.3	42	6				30.3	67.5	122
12/17/2001	1	18-35-2										
10/9/2003		18-35-3	1	0.2 U	3.1	1 U	-	1		6.4	4.0	9
10/9/2003		18-35-4	-	0.2 U	0.5 U	1 U	-	-		0.8	1.5	4 U
12/17/2001		18-62-7		0.2 U	2	1 U				0.7	2.6	4 U
10/9/2003		18-62-8		0.2 U	0.6	1 U				1.1	1.5	4 U
12/26/2001	Clearwater	BSC-18-22-01		0.2 U	0.5 U	1 U				1.6	10.1	4 U
12/26/2001	Cicai watei	BSC-18-22-02	-	0.2 U	2 U	1 U				0.8	3.6	4
12/26/2001		BSC-18-22-03	-	0.2 U	2 U	1 U	-	-		0.9	3.8	4 U
12/26/2001		BSC-18-23-01		0.2 U	2 U	1 U				0.6	3.7	4 U
12/26/2001		BSC-18-23-02		0.2 U	3	1 U				0.8	5.7	8
12/27/2001		BSC-18-62-03		0.2 U	2 U	1 U				0.5 U	1	4 U
12/26/2001		BSC-18-62-04		0.2 U	0.5 U	1 U				0.5 U	1	4 U
12/27/2001		BSC-18-62-05		0.2 U	0.5 U	1 U				3.2	4.1	4 U

Groundwater Results - Metals

Remedial Investigation Addendum 2 Boeing Kent Space Center

Sample Date	Sample Location Area	Sample Location				Disso	lved Meta	ls (μg/L)				
Sample Date	Sample Location Area	ID	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Copper	Nickel	Zinc
	•	RI Screening Level	2000*	0.25	10	0.5	0.012	5	0.3	3.5	49	32
12/26/2001		BSC-18-62-06		0.2 U	0.5 U	1 U				0.6	1.6	4 U
12/27/2001		BSC-18-63-01		0.2 U	2 U	1 U				0.5 U	0.5 U	4 U
12/27/2001		BSC-18-63-02		0.2 U	2 U	1 U				0.5 U	1	4 U
12/27/2001		BSC-18-67-02		0.2 U	2 U	1 U				0.9	1.4	4 U
12/27/2001		BSC-18-67-03		0.2 U	2 U	1 U				0.6	2.4	4 U
12/27/2001		BSC-18-67-04	-	0.2 U	2 U	1 U				0.8	1.7	4 U
7/28/2010		KSC-DP-1	-	0.2 U	1 U	1 U	0.1 U			0.5 U		4 U
7/30/2010		KSC-DP-2	-	2 U	5 U	20 U	0.1 U			2 U		10 U
7/30/2010		KSC-DP-3		2 U	5 U	20 U	0.1 U			2 U		10 U
7/29/2010		KSC-DP-4		0.2 U	1 U	1 U	0.1 U			0.5		4 U
7/30/2010	Striker	KSC-DP-5		2 U	5 U	20 U	0.1 U			2 U		10 U
7/29/2010		KSC-DP-9	1	0.2 U	2	1 U	0.1 U			0.8		4 U
7/30/2010		KSC-DP-11	1	2 U	5 U	20 U	0.1 U			2 U		10 U
7/30/2010		KSC-DP-15	1	2 U	5 U	20 U	0.1 U			2 U		10 U
7/30/2010		KSC-DP-16		2 U	5 U	20 U	0.1 U			2 U		10 U

Notes and Abbreviations

Bolded values are above Remedial Investigation Screening Level

 $^{^{*}}$ indicates value is MTCA Method B Groundwater Screening level; no level accounted for in RI U = not detected above the value shown

Planned Stormsystem Baseline Soil Data

Remedial Investigation Addendum 2

Boeing Kent Space Center

	1						Боспів	Kent Space Ce		Sample Denti	n, Sample Date	<u> </u>						
	RI	BD1	BD2	TD1	TD1	TD1	TD2	TD2	TD2	TD3	TD3	TD3	TE1	TE1	TE2	TE2	TE3	TE3
Analyte	Screeing															ļ		+
Allalyte	Level	0 ft	0 ft 0.3 ft	0.5 ft	7 ft	9 ft	0 ft	7 ft	9 ft	0.5 ft	9 ft	11 ft	0.5 ft	4 ft	0.5 ft	4 ft	0.5 ft	4 ft
	Levei	0.3 ft 7/20/2018		1.5 ft	8 ft	10 ft	1 ft 7/18/2018	8 ft	10 ft	1.5 ft	10 ft 7/18/2018	12 ft 7/18/2018	1.5 ft	5 ft	1.5 ft	5 ft	1.5 ft	5 ft
Total Matala (ma/ka)		//20/2018	7/20/2018	7/18/2018	7/18/2018	7/18/2018	//18/2018	7/18/2018	7/18/2018	7/18/2018	//18/2018	//18/2018	7/18/2018	7/18/2018	7/18/2018	7/18/2018	7/18/2018	7/18/2018
Total Metals (mg/kg)	7.3	2.50	2.52	2.85	6.49	1.96	3.22	2.92	4.12	4.05	2.62	2.21	5.90	1.52	4.22	2 24	I 500	1.05
Arsenic	NA	3.58 58.8	2.53 41.8	65.8	60.2 J	34.4	59.7	47.2	49.2	81.2	2.62 57.1	3.31 71.5	104	1.53 44.9	4.23 69.5	2.21 45.4	5.00 70.1	1.85 65.6
Barium		0.12 U				0.12 U		0.14 U	0.14 U	0.10 U	0.13 U	0.14 U		0.13 U	1	ł		0.13 U
Cadmium	0.69 42		0.10 U	0.12 U	0.27	10.6	0.10 U 56.4 J -		14.9	27.3	14.0		0.45	11.8	0.11	0.11 U	0.11 U	
Chromium, Total		16.1	11.1	23.5	16.1 J			13.8				16.1	22.3		15.3	12.7	15.2	15.0
Copper	400 220	21.8 4.57	16.5 2.69	20.7	25.0	11.7	22.0	17.8	19.1 2.40	20.9	22.7	25.9	33.0	14.1	24.6	15.8	30.1 4.03	24.9
Lead				3.39	11.9	2.09	4.51	2.32		3.65	2.92	3.46	38.4	18.9	3.79	1.99		2.91
Mercury Solonium	2.09	0.0515	0.0408	0.0280 U	0.0513	0.0307 U	0.0263 U	0.0313 U	0.0355 U	0.0225 U	0.0548	0.0370	0.0445	0.0907	0.0395	0.0333	0.0347	0.0396
Selenium	0.8	0.61 U	0.52 U	0.62 U	0.72	0.68	0.51 U	0.73	0.82	0.52 U	0.90	1.01	0.73	0.64 U	0.75	0.64	0.85	0.89
Zinc Potroloum Hydrocarbons (mg/kg)	3,200	34.1	28.0	39.3	46.9	23.2	41.6	27.7	29.5	43.4	29.9	37.7	83.6	21.8	36.2	25.9	35.7	29.1
Petroleum Hydrocarbons (mg/kg)	20	Т		5.6.111			5.07.111					ı	F 20 III	I	F 74 III	I	F 46 III	T
Gasoline-Range Organics	30			5.6 UJ			5.87 UJ			5.36 UJ			5.38 UJ		5.74 UJ		5.46 UJ	
Diesel-Range Organics (no silica gel)	460			5.50 U			6.05 U			5.22 U			12.3		5.71 U		5.83 U	
Oil-Range Organics (no silica gel)	2,000			11.0 U			12.1 U			10.4 U			51.5		11.4 U		11.7 U	
Diesel-Range Organics (with silica gel)	460	6.17 U	5.31 U		6.39 U	6.30 U		6.61 U	7.85 U		6.33 U	6.73 U		5.87 U		6.43 U		6.42 U
Oil-Range Organics (with silica gel)	2,000	12.3 U	10.6 U		12.8 U	12.6 U		13.2 U	17.0		12.7 U	13.5 U		11.7 U		12.9 U		12.8 U
PAHs (mg/kg)		0.0047411	0.00404.11		0.0040011	0.00404.11		0.00407.11	0.00403.11	1 1	0.0040411	0.00402.11		0.00407.11	ı	0.0040611	l	0.00405.11
2-Methylnaphthalene		0.00474 U	0.00481 U		0.00490 U	0.00481 U		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Benzo(a)anthracene		0.00526	0.00481 U		0.00490 U	0.00481 U		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Benzo(a)pyrene		0.00729	0.00481 U		0.00490 U	0.00481 U		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Benzo(b)fluoranthene		0.0105	0.00481 U		0.00490 U	0.00481 U		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Benzo(g,h,i)perylene		0.0113	0.00528		0.00508	0.00481 U		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Benzo(J)fluoranthene		0.00474 U	0.00481 U		0.00490 U	0.00481 U		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Benzo(k)fluoranthene		0.00516	0.00481 U		0.00490 U	0.00481 U		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Chrysene		0.0105	0.00488		0.00490 U	0.00481 U		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Dibenzo(a,h)anthracene		0.0117	0.0108		0.0116	0.0111		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Fluoranthene		0.0154	0.00604		0.00490 U	0.00481 U		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Indeno(1,2,3-cd)pyrene		0.0163	0.0125		0.0123	0.0107		0.00497 U	0.00493 U		0.00971	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Phenanthrene		0.00813	0.00496		0.00490 U	0.00481 U		0.00497 U	0.00497		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Pyrene Tatal Barrafluorenth and		0.0124	0.00567		0.00490 U	0.00481 U		0.00497 U	0.00493 U		0.00484 U	0.00482 U		0.00487 U		0.00496 U		0.00495 U
Total Benzofluoranthenes		0.0211	0.00963 U		0.00980 U	0.00962 U		0.00993 U	0.00986 U		0.00968 U	0.00964 U		0.00974 U		0.00992 U		0.00989 U
cPAH TEQ	17	NC 0.13504	NC 0.05042		0.00239	0.00218		ND	ND		0.000971	ND NC		ND NC		ND		ND
Total PAHs	17	0.13504	0.05013		NC	NC		NC	NC		NC	NC		NC		NC		NC
PCBs (mg/kg)	Т	0.000011	0.00201:	0.000011	0.00404:	0.00001:	0.0000	0.00001:	0.00001:	0.004071	0.00401:	0.004077	0.0056			0.0040::		
Aroclor 1254		0.0039 U	0.0038 U	0.0039 U	0.0040 U	0.0039 U	0.0038 U	0.0039 U	0.0039 U	0.0040 U	0.0040 U	0.0040 U	0.0056	0.0039 U	0.0038 U	0.0040 U	0.0039 U	0.0040 U
Aroclor 1260		0.0039 U	0.0038 U	0.0039 U	0.0040 UJ	0.0039 UJ	0.0038 U	0.0039 UJ	0.0039 UJ	0.0040 U	0.0040 UJ	0.0040 UJ	0.0060	0.0039 UJ	0.0038 U	0.0040 UJ	0.0039 U	0.0040 UJ
Total PCBs	0.11	0.0039 U	0.0038 U	0.0039 U	0.0040 UJ	0.0039 UJ	0.0038 U	0.0039 UJ	0.0039 UJ	0.0040 U	0.0040 UJ	0.0040 UJ	0.0116	0.0039 UJ	0.0038 U	0.0040 UJ	0.0039 U	0.0040 UJ

Notes:

U = The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.

J = The result is an estimated quantity.

Data provided by Landau Associates

Bold = detected compound above RI screening level

Abbreviations and Acronyms:

ft = feet

mg/kg = milligrams per kilogram

-- = not analyzed

NA = not applicable

NC = Not Calculated

Remedial Investigation Addendum 2 Boeing Kent Space Center

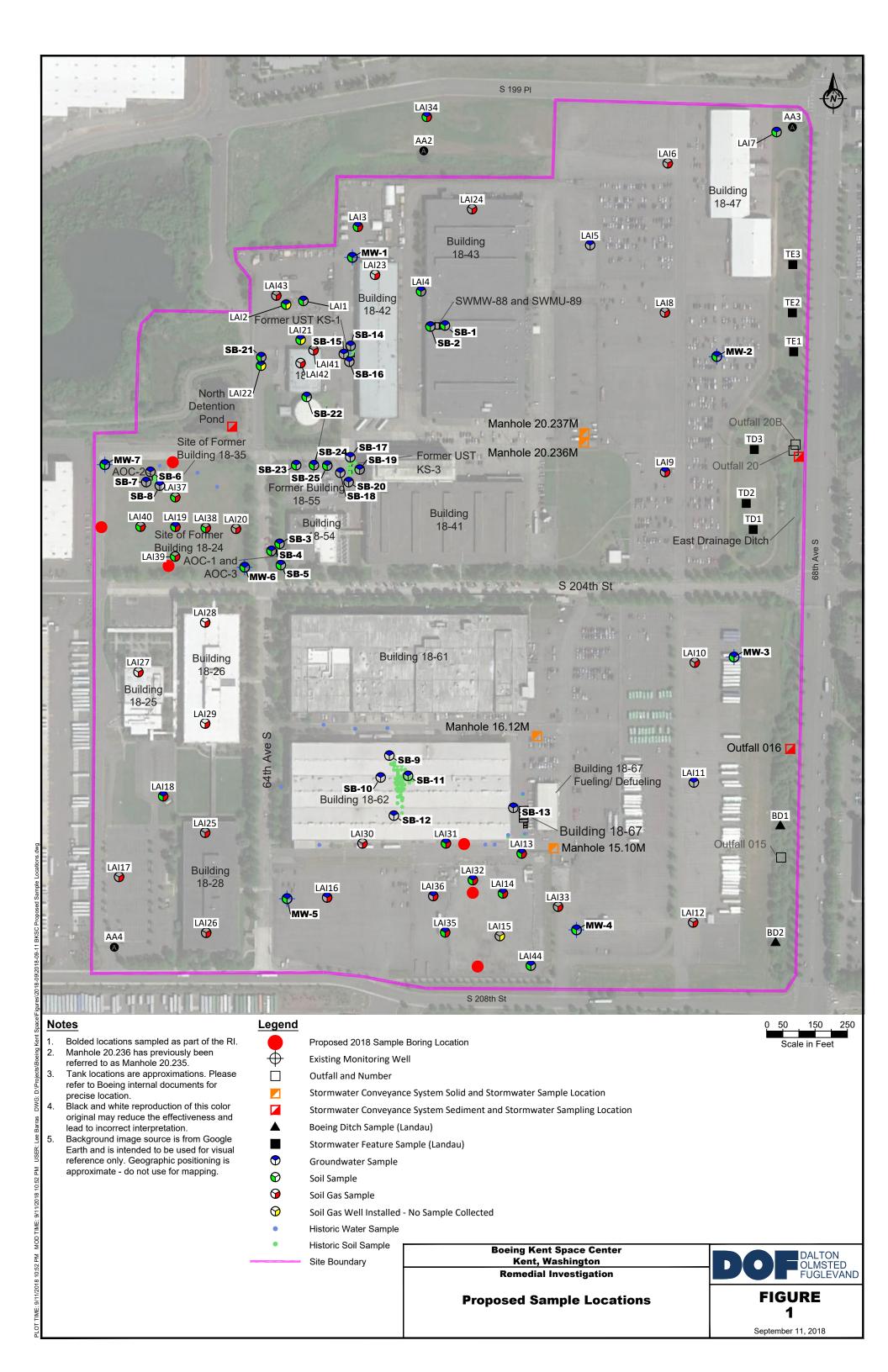
	Screening				Forme	er Building 18-24	4 Area			
	Method C	LAI19	LAI19	LAI19	LAI20	LAI20	LAI37	LAI38	LAI39	LAI40
Analyte	Industrial	12/7/2017	5/23/2018	7/16/2018	12/7/2017	5/23/2018	7/16/2018	7/16/2018	7/16/2018	7/16/2018
Volatile Organic Compounds (μg/m3	; TO-15)									
1,1,1-Trichloroethane	170,000	12 U	940 U	820 U	5.5 U	6.3 U	31 U	130 U	6.5 U	90 U
1,1,2-Trichlorotrifluoroethane	1,000,000	16 U	1300 U	1100 U	7.8 U	8.9 U	44 U	180 U	9.1 U	130 U
1,2,4-Trimethylbenzene	233	16	850 U	740 U	9.2	5.7	75	730	5.8 U	140
1,3,5-Trimethylbenzene	NL	16	850 U	740 U	5.0 U	5.7 U	45	1400	5.8 U	81 U
1,3-Butadiene	28	4.7 U	380 U	330 U	2.2 U	2.6 U	13 U	54 U	2.6 U	36 U
1,3-Dichlorobenzene	NL	13 U	1000 U	900 U	6.1 U	7.0 U	34 U	140 U	7.2 U	99 U
1,4-Dichlorobenzene	76	13 U	1000 U	900 U	6.1 U	7.0 U	34 U	140 U	7.2 U	99 U
2,2,4-Trimethylpentane	NL	9.9 U	810 U	700 U	40	68	27 U	110 U	5.6 U	77 U
2-Butanone/MEK	170,000	31	2000 U	1800 U	12 U	14 U	68 U	290 U	14 U	190 U
4-Ethyltoluene	NL	14	850 U	740 U	7.9	5.7 U	49	750 J	5.8 U	100
Acetone	NL	470	4100 U	3600 U	24 U	44	140 U	730	28 U	390 U
Benzene	107	6.8 U	550 U	480 U	10	23	18 U	77 U	3.8 U	120
Carbon Disulfide	23,000	26 U	2200 U	1900 U	24	120	72 U	300 U	15 U	200 U
Carbon Tetrachloride	139	13 U	1100 U	940 U	6.4 U	7.3 U	36 U	150 U	7.5 U	100 U
Chloroform	36	10 U	840 U	730 U	5.0 U	5.7 U	34	120 U	5.8 U	80 U
Cyclohexane	NL	7.3 U	600 U	520 U	43	33	20 U	83 U	4.1 U	120
Dichlorodifluoromethane	3,300	16	1000	990	5.0 U	5.7 U	28 U	120 U	180	82 U
Ethanol	NL	16 U	1300 U	1100 U	7.6 U	8.7 U	43 U	2700	9.0 U	120 U
Ethylbenzene	33,000	12	930	840	5.9	5.0 U	43	180	5.2 U	340
Isopropanol	NL	21 U	1700 U	1500 U	10 U	11 U	56 U	240 U	12 U	160 U
Isopropylbenzene	13,000	10 U	850 U	740 U	5.0 U	9.4	28 U	120 U	5.8 U	81 U
m,p-Xylene	NL	23	2600	1300	12	5.0 U	96	290	5.2 U	630
n-Heptane	NL	8.7 U	710 U	610 U	7.6	6.1	24 U	99 U	4.9 U	120
n-Hexane	23,000	7.5 U	610 U	530 U	13	8.1	20 U	85 U	4.2 U	200
n-Propylbenzene	NL	10 U	850 U	740 U	5.0 U	5.7 U	28 U	120 U	5.8 U	81 U
o-Xylene	3,300	16	820	650 U	11	9.4	62	550	5.2 U	310
Styrene	33,000	9.0 U	740 U	640 U	4.3 U	4.9 U	24 U	100 U	5.1 U	290
Tetrachloroethene	1,300	15	1200 U	1000 U	16	28	41	160 U	16	110 U
Tetrahydrofuran	NL	6.2 U	510 U	440 U	3.0 U	3.4 U	17 U	72 U	3.5 U	49 U
Toluene	170,000	9.4	5700	3500 J	15	4.4 U	22 U	91 U	4.5 U	320
Trichloroethene	67	11 U	930 U	810 U	5.4 U	6.2 U	39	130 U	6.4 U	92
Trichlorofluoromethane (CFC 11)	23,000	3300	220000	210000	26	25	3100	32000	2000	23000
Vinyl Chloride	93	5.4 U	440 U	380 U	2.6 U	3.0 U	15 U	62 U	3.0 U	42 U

Notes:

U = The compound was not detected at the reported concentration. **Bold** text indicates detected analyte.

Grey Box indicates above MTCA Method C soil gas screening level

NL = not listed


 $\mu g/m^3$ = micrograms per cubic meter

	Screening						Forme	er Building 18-6	3 Area							7
	Method C	LAI13	LAI13	LAI14	LAI14	LAI16	LAI30	LAI31	LAI31	LAI32	LAI32	LAI33	LAI35	LAI36	LAI3	LAI6
Analyte	Industrial	12/6/2017	7/16/2018	12/7/2017	7/16/2018	12/6/2017	5/23/2018	5/23/2018	7/16/2018	5/23/2018	7/16/2018	5/23/2018	7/20/2018	7/16/2018	12/6/2017	12/6/2017
Volatile Organic Compounds (μg/m3	; TO-15)														T	
1,1,1-Trichloroethane	170,000	5.9 U	6.7 U	23 U	70 U	5.9 U	6.3 U	6.4 U	7.3 U	6.4 U	27 U	6.3 U	6.5 U	6.5 U	5.8 U	5.8 U
1,1,2-Trichlorotrifluoroethane	1,000,000	8.3 U	9.4 U	32 U	99 U	8.2 U	8.9	8.9 U	10 U	9.0 U	38 U	8.8 U	9.1 U	9.1 U	8.2 U	8.2 U
1,2,4-Trimethylbenzene	233	5.3 U	6.0 U	21 U	63 U	5.3 U	16	21	6.6 U	25	24 U	5.7 U	5.8 U	5.8 U	5.2 U	5.2 U
1,3,5-Trimethylbenzene	NL	5.3 U	6.0 U	21 U	63 U	5.3 U	7.9	7.8	6.6 U	42	24 U	5.7 U	5.8 U	5.8 U	5.2 U	5.2 U
1,3-Butadiene	28	2.4 U	2.7 U	24	28 U	2.4 U	2.5 U	180	3.0 U	2.6 U	11 U	2.6 U	2.6 U	2.6 U	4.2	29
1,3-Dichlorobenzene	NL	6.5 U	7.4 U	25 U	78 U	6.5 U	25	34	8.0	34	71	26	7.1 U	7.2 U	6.4 U	6.4 U
1,4-Dichlorobenzene	76	6.5 U	7.4 U	25 U	78 U	6.5 U	6.9 U	7.0 U	8.1 U	7.1 U	30 U	6.9 U	7.1 U	7.2 U	6.4 U	6.4 U
2,2,4-Trimethylpentane	NL	5.1 U	5.7 U	20 U	60 U	5.0 U	5.4 U	5.4 U	6.3 U	26	32	5.4 U	5.5 U	5.6 U	41	5.0 U
2-Butanone/MEK	170,000	13 U	14 U	50 U	150 U	13 U	15	25	16 U	490	100	14 U	15	14 U	12 U	12 U
4-Ethyltoluene	NL	5.3 U	6.0 U	21	63 U	5.3 U	28	36	6.6 U	42	24 U	5.7 U	5.8 U	5.8 U	5.2 U	5.2 U
Acetone	NL	26 U	97	100	330	26 U	80	110	32 U	59	120 U	67	65	28 U	25 U	25 U
Benzene	107	3.5 U	3.9 U	170	310	3.4 U	38	170	4.3 U	30	20	3.7 U	9.3	3.8 U	58	12
Carbon Disulfide	23,000	14 U	15 U	52 U	160 U	13 U	73	120	17 U	28	61 U	14 U	120	15 U	13 U	24
Carbon Tetrachloride	139	6.8 U	7.7 U	65	81 U	6.8 U	7.2 U	7.3 U	8.5 U	10	31 U	7.3 U	7.4 U	7.5 U	6.7 U	6.7 U
Chloroform	36	5.3 U	6.0 U	25	63 U	5.2 U	160	77	6.6 U	26	24 U	5.6 U	33	5.8 U	5.2 U	7.1
Cyclohexane	NL	3.7 U	4.2 U	34	96	3.7 U	38	73	4.6 U	91	110	13	4.1 U	4.1 U	35	8.0
Dichlorodifluoromethane	3,300	5.4 U	6.1 U	34	64 U	5.3 U	5.7 U	5.8 U	6.6 U	5.8 U	24 U	5.7 U	5.9 U	5.9 U	5.3 U	5.3 U
Ethanol	NL	8.2 U	34	32 U	97 U	8.1 U	12	8.8 U	10 U	8.8 U	37 U	21	8.9 U	21	8.0 U	8.0 U
Ethylbenzene	33,000	4.7 U	5.3 U	18 U	130	4.7 U	15	45	5.8 U	86	34	5.0 U	5.1 U	5.2 U	4.6 U	4.6 U
Isopropanol	NL	11 U	12 U	41 U	130 U	10 U	11 U	11 U	13 U	12 U	48 U	11 U	12 U	12 U	10 U	10 U
Isopropylbenzene	13,000	5.3 U	6.0 U	54	230	5.3 U	5.6 U	6.2	6.6 U	240	110	5.7 U	5.8 U	5.8 U	5.2 U	5.2 U
m,p-Xylene	NL	4.7 U	5.3 U	44	150	4.7 U	47	89	5.8 U	170	45	5.0 U	14	5.3	4.6 U	4.6 U
n-Heptane	NL	4.4 U	5.0 U	30	81	4.4 U	36	230	5.5 U	62	71	4.7 U	7.5	4.9 U	8.4	9.7
n-Hexane	23,000	3.8 U	4.3 U	110	360	3.8 U	58	270	4.7 U	130	150	18	8.0	4.2 U	43	62
n-Propylbenzene	NL	5.3 U	6.0 U	21 U	63 U	5.3 U	6.6	11	6.6 U	9.9	24 U	5.7 U	5.8 U	5.8 U	5.2 U	5.2 U
o-Xylene	3,300	4.7 U	5.3 U	51	160	4.7 U	17	35	5.8 U	150	52	5.0 U	5.1 U	5.2 U	4.6 U	4.6 U
Styrene	33,000	4.6 U	5.2 U	20	160	4.6 U	4.9 U	18	5.7 U	120	21 U	4.9 U	5.0 U	5.1 U	4.5 U	4.5 U
Tetrachloroethene	1,300	7.4 U	8.3 U	28 U	88 U	7.3 U	7.8 U	7.9 U	9.1 U	12	33 U	7.8 U	8.0 U	8.1 U	7.2 U	7.2 U
Tetrahydrofuran	NL	3.2 U	3.6 U	12 U	38 U	3.2 U	3.4 U	3.4 U	4.0 U	3.5 U	14 U	3.4 U	3.5 U	3.5 U	3.1 U	3.1 U
Toluene	170,000	4.1 U	5.4	97	230	7.1	48	190	5.1 U	94	60	4.4 U	23	4.5 U	57	15
Trichloroethene	67	5.8 U	6.6 U	23 U	69 U	5.8 U	6.2 U	6.3 U	7.2 U	12	26 U	6.2 U	6.4 U	6.4 U	5.7 U	5.7 U
Trichlorofluoromethane (CFC 11)	23,000	6.1 U	6.9 U	950	3000	6.0 U	6.5 U	6.5 U	9.8	620	610	6.5 U	24	9.2	6.0 U	6.0 U
Vinyl Chloride	93	2.8 U	3.1 U	11 U	33 U	2.7 U	2.9 U	3.0 U	3.4 U	7.3	12 U	3.0 U	3.0 U	3.0 U	2.7 U	2.7 U

	Screening														I	
	Method C	LAI8	LAI9	LAI10	LAI12	LAI17	LAI18	LAI23	LAI23	LAI23	LAI24	LAI25	LAI26	LAI27	LAI27	LAI27
Analyte	Industrial	5/23/2018	12/6/2017	12/6/2017	5/23/2018	12/6/2017	12/6/2017	12/20/2017	1/30/2018	5/23/2018	12/7/2017	12/6/2017	12/6/2017	12/20/2017	1/30/2018	5/23/2018
Volatile Organic Compounds (μg/m3	; TO-15)															
1,1,1-Trichloroethane	170,000	6.5 U	5.5 U	5.3 U	6.2 U	6.2 U	6.3 U	5.9 U	6.4 U	6.5 U	6.1 U	5.8 U	5.8 U	6.3 U	6.2 U	6.5 U
1,1,2-Trichlorotrifluoroethane	1,000,000	9.1 U	7.7 U	7.5 U	8.7 U	8.7 U	8.8 U	8.3 U	8.9 U	9.2 U	23	8.2 U	8.2 U	8.8 U	8.7 U	9.1 U
1,2,4-Trimethylbenzene	233	32	4.9 U	4.8 U	48	5.6 U	5.6 U	6.2	5.7 U	5.9 U	5.5 U	5.2 U	5.2 U	5.7 U	5.6 U	5.8 U
1,3,5-Trimethylbenzene	NL	13	4.9 U	4.8 U	23	5.6 U	5.6 U	5.3 U	5.7 U	5.9 U	5.5 U	5.2 U	5.3 U	5.7 U	5.6 U	5.8 U
1,3-Butadiene	28	2.6 U	2.2 U	2.2 U	2.5 U	2.5 U	2.5 U	2.4 U	2.6 U	2.6 U	2.5 U	2.4 U	2.4 U	2.6 U	2.5 U	2.6 U
1,3-Dichlorobenzene	NL	16	6.0 U	5.9 U	44	6.8 U	6.9 U	6.5 U	7.0 U	7.2 U	6.7 U	6.4 U	6.4 U	6.9 U	6.8 U	7.2 U
1,4-Dichlorobenzene	76	7.2 U	6.0 U	5.9 U	6.8 U	6.8 U	6.9 U	250	7.6	7.2 U	6.7 U	6.4 U	7.4	190	23	7.2 U
2,2,4-Trimethylpentane	NL	5.6 U	12	7.2	5.3 U	5.3 U	9.8	5.0 U	5.4 U	5.6 U	5.2 U	5.0 U	5.0 U	5.4 U	5.3 U	5.6 U
2-Butanone/MEK	170,000	17	12 U	12 U	13 U	13 U	14 U	26	14 U	14 U	13 U	12 U	13 U	16	13 U	14 U
4-Ethyltoluene	NL	36	4.9 U	4.8 U	60	5.6 U	5.6 U	5.4	5.7 U	5.9 U	5.5 U	5.2 U	5.3 U	5.7 U	5.6 U	5.8 U
Acetone	NL	48	24 U	23 U	27 U	51	27 U	150	28 U	28 U	27 U	25 U	25 U	99	27 U	28 U
Benzene	107	12	3.2 U	3.1 U	3.6 U	3.6 U	7.3	5.3	3.7 U	3.8 U	3.6 U	3.4 U	3.4 U	4.9	3.6 U	3.8 U
Carbon Disulfide	23,000	15 U	12 U	12 U	14 U	14 U	41	18	14 U	15 U	14 U	13 U	13 U	14 U	14 U	15 U
Carbon Tetrachloride	139	7.5 U	6.3 U	6.1 U	7.2 U	7.2 U	7.2 U	6.8 U	7.3 U	7.5 U	7.0 U	6.7 U	6.7 U	7.3 U	7.1 U	7.5 U
Chloroform	36	20	4.9 U	4.8 U	10	5.6 U	5.6 U	5.3 U	5.7 U	5.8 U	5.5 U	5.2 U	5.2 U	5.6 U	5.5 U	5.8 U
Cyclohexane	NL	33	8.7	27	3.9 U	6.7	19	3.7 U	4.0 U	4.1 U	3.8 U	3.7 U	3.7 U	4.0 U	3.9 U	4.1 U
Dichlorodifluoromethane	3,300	5.9 U	5.0 U	4.8 U	5.6 U	5.6 U	5.7 U	5.3 U	5.8 U	5.9 U	5.5 U	5.3 U	5.3 U	5.7 U	5.6 U	5.9 U
Ethanol	NL	11	7.6 U	7.3 U	15	8.6 U	8.7 U	21	16 J	9.0 U	8.4 U	8.0 U	8.1 U	22	8.5 UJ	9.0 U
Ethylbenzene	33,000	16	4.4 U	4.2 U	4.9 U	4.9 U	5.0 U	4.7 U	5.0 U	5.2 U	4.9 U	4.6 U	4.6 U	5.4	4.9 U	5.2 U
Isopropanol	NL	12 U	9.9 U	9.6 U	11 U	11 U	11 U	11 U	11 U	12 U	11 U	10 U	10 U	11 U	11 U	12 U
Isopropylbenzene	13,000	5.8 U	4.9 U	4.8 U	5.6 U	5.6 U	5.6 U	5.3 U	5.7 U	5.9 U	5.5 U	5.2 U	5.2 U	5.7 U	5.6 U	5.8 U
m,p-Xylene	NL	32	4.4 U	4.2 U	21	5.0 U	8.2	18	5.0 U	5.2 U	4.9 U	4.6 U	7.8	16	5.2	5.2 U
n-Heptane	NL	35	4.1 U	4.0 U	7.6	4.7 U	45	4.4 U	4.8 U	4.9 U	4.6 U	4.4 U	4.4 U	4.7 U	4.6 U	4.9 U
n-Hexane	23,000	95	3.5 U	15	16	5.4	150	3.8 U	4.1 U	4.2 U	3.9 U	3.8 U	3.8 U	5.7	4.0 U	4.2 U
n-Propylbenzene	NL	6.2	4.9 U	4.8 U	11	5.6 U	5.6 U	5.3 U	5.7 U	5.9 U	5.5 U	5.2 U	5.3 U	5.7 U	5.6 U	5.8 U
o-Xylene	3,300	14	4.4 U	4.2 U	8.7	5.0 U	5.0 U	5.9	5.0 U	5.2 U	4.9 U	4.6 U	4.6 U	5.4	4.9 U	5.2 U
Styrene	33,000	5.1 U	4.3 U	4.2 U	4.8 U	4.8 U	4.9 U	4.6 U	5.0 U	5.1 U	4.8 U	4.5 U	4.6 U	4.9 U	4.8 U	5.1 U
Tetrachloroethene	1,300	8.1 U	6.8 U	6.6 U	7.7 U	7.7 U	7.8 U	7.3 U	7.9 U	8.1 U	7.6 U	7.2 U	7.2 U	7.8 U	7.7 U	8.1 U
Tetrahydrofuran	NL	3.5 U	3.0 U	2.9 U	3.4 U	3.4 U	3.4 U	29	3.4 U	3.5 U	3.3 U	3.1 U	3.2 U	26	3.3 U	3.5 U
Toluene	170,000	28	3.8 U	3.7 U	5.7	4.3 U	12	27	4.4 U	4.5 U	4.2 U	4.0 U	4.0 U	18	4.2 U	4.5 U
Trichloroethene	67	6.4 U	5.4 U	5.2 U	6.1 U	6.1 U	6.2 U	5.8 U	6.3 U	6.4 U	6.0 U	5.7 U	5.8 U	6.2 U	6.1 U	6.4 U
Trichlorofluoromethane (CFC 11)	23,000	6.7 U	5.6 U	5.5 U	6.4 U	6.4 U	6.5 U	6.1 U	6.5 U	6.7 U	6.3 U	6.0 U	6.0 U	6.5 U	6.3 U	6.7 U
Vinyl Chloride	93	3.0 U	2.6 U	2.5 U	2.9 U	2.9 U	2.9 U	2.8 U	3.0 U	3.0 U	2.9 U	2.7 U	2.7 U	3.0 U	2.9 U	3.0 U

	Screening						
	Method C	LAI28	LAI29	LAI34	LAI41	LAI42	LAI43
Analyte	Industrial	12/6/2017	12/6/2017	5/23/2018	7/20/2018	7/17/2018	7/17/2018
Volatile Organic Compounds (μg/m3	; TO-15)						
1,1,1-Trichloroethane	170,000	5.8 U	5.8 U	6.3 U	9.0	6.5 U	6.6 U
1,1,2-Trichlorotrifluoroethane	1,000,000	8.2 U	8.2 U	8.8 U	55	42	9.3 U
1,2,4-Trimethylbenzene	233	5.2 U	5.2 U	5.6 U	5.6 U	5.8 U	5.9 U
1,3,5-Trimethylbenzene	NL	5.3 U	5.3 U	5.6 U	5.6 U	5.8 U	5.9 U
1,3-Butadiene	28	2.4 U	2.4 U	2.5 U	2.5 U	2.6 U	2.7 U
1,3-Dichlorobenzene	NL	6.4 U	6.4 U	31	6.8 U	7.2 U	7.3 U
1,4-Dichlorobenzene	76	6.4 U	6.4 U	6.9 U	6.8 U	8.6	7.3 U
2,2,4-Trimethylpentane	NL	5.0 U	5.0 U	5.4 U	5.3 U	5.6 U	5.6 U
2-Butanone/MEK	170,000	13 U	13 U	14 U	13 U	14 U	14 U
4-Ethyltoluene	NL	5.3 U	5.3 U	5.6 U	5.6 U	5.8 U	5.9 U
Acetone	NL	25 U	25 U	27 U	27 U	360	29 U
Benzene	107	3.4 U	3.4 U	3.7 U	8.4	3.8 U	3.9 U
Carbon Disulfide	23,000	13 U	13 U	14 U	14 U	15 U	15 U
Carbon Tetrachloride	139	6.7 U	6.7 U	7.2 U	7.2 U	7.5 U	7.6 U
Chloroform	36	5.2 U	5.2 U	5.6 U	5.6 U	5.8 U	5.9 U
Cyclohexane	NL	3.7 U	3.7 U	4.0 U	3.9 U	4.1 U	4.2 U
Dichlorodifluoromethane	3,300	5.3 U	5.3 U	77	5.6 U	5.9 U	6.0 U
Ethanol	NL	8.1 U	8.1 U	8.7 U	8.6 U	210	73
Ethylbenzene	33,000	4.6 U	4.6 U	5.0 U	4.9 U	5.2 U	5.2 U
Isopropanol	NL	10 U	10 U	11 U	11 U	86	12 U
Isopropylbenzene	13,000	5.2 U	5.2 U	5.6 U	5.6 U	5.8 U	5.9 U
m,p-Xylene	NL	4.6 U	4.6 U	5.0 U	16	5.2 U	5.2 U
n-Heptane	NL	4.4 U	4.4 U	4.7 U	4.7 U	4.9 U	5.0 U
n-Hexane	23,000	3.8 U	3.8 U	4.0 U	4.0 U	4.2 U	4.3 U
n-Propylbenzene	NL	5.3 U	5.3 U	5.6 U	5.6 U	5.8 U	5.9 U
o-Xylene	3,300	4.6 U	4.6 U	5.0 U	5.0 U	5.2 U	5.2 U
Styrene	33,000	4.6 U	4.6 U	4.9 U	4.8 U	5.1 U	5.2 U
Tetrachloroethene	1,300	7.2 U	7.2 U	7.8 U	55	8.1 U	8.2 U
Tetrahydrofuran	NL	3.2 U	3.2 U	3.4 U	4.4	54	3.6 U
Toluene	170,000	4.0 U	4.0 U	4.3 U	4.3 U	4.5 U	5.6
Trichloroethene	67	5.8 U	5.8 U	6.2 U	6.1 U	6.4 U	6.5 U
Trichlorofluoromethane (CFC 11)	23,000	6.0 U	6.0 U	6.5 U	13	6.7 U	8.4
Vinyl Chloride	93	2.7 U	2.7 U	2.9 U	2.9 U	3.0 U	3.1 U

Figure

Boring Logs

Sheet 1 of 1

PROJEC	`T. Bo	oina	KSC B	DI.		COORDINATES: 156866.	QN 1	2001	22.7	E (NIA	Sheet 1 of 1
					t of Bldg. 18-59	SURFACE ELEVATION: 29		.2001	33.2	L (IVA	.063)
DRILLIN						DATE: 5/7/18					
					probe 7822 DT	TOTAL DEPTH OF BORING	G: 1	5.0'			
DRILLIN						LOGGED BY: D. Cooper					
SAMPLI	ING M	1ETH(OD: 2	2" dia	. X 5' Macro w/acrylic liner	RESPONSIBLE PROF.: D. (Соор	er			REG. NO.: 1600
					rknife/vac-truck from 0-5'						
			PLES		VISUAL SOIL DESCRIPTIO	N .					RUCTION DETAILS RILLING REMARKS
DEPTH (feet)	Lab Sample	Sample Recovery	Blows/Foot	PID (ppm)	Soil Group Name (USCS): color, moisture, density/co discriptors	onsistency, grain size, other					
_					Washed gravel surfacing	g					
1 — 2 — 3 — 4 — 5 — 7 — 8 — 9 —	SB21-(1-3)			0.1	POORLY GRADED SAND WITH SILT AND moist, gray (7.5yr - 5/1), 20% gravel, 70	GRAVEL (SP-SM):		∇			Temporary
10 — 11 — 12 — 13 — 14 —					SILT (ML): wet, gray (7.5YR-6/1), 100% sil POORLY GRADED SAND (S saturated, dark gray (7.5YR-4/1), 10	SP):					3/4" PVC screen 0.010 slotted screen set for groundwater grab sample: KSC-SB21- GW-050718
15 -	 	\triangle			Rottom of Boring 15 O foot		\vdash				
16 -					Bottom of Boring 15.0 feet Backfilled with bentonite chip.		- - -				
17 —							- -				
18							— -				
19 —							- -				
_							-				

DDOILC	T. Do	oina	VCC D			COORDINATES: 156907	2 N. 1	2002	F.C. 0	DE /NIA	Sheet 1 of 1
PROJEC					h of Bldg. 18-59	COORDINATES: 156807.2N 1288256.8E (NAD83) SURFACE ELEVATION: 29'					
DRILLIN						DATE: 5/7/18					
					probe 7822 DT		G · 1	5 N'			
DRILLIN					-	TOTAL DEPTH OF BORING: 15.0' LOGGED BY: D. Cooper					
_					. X 5' Macro w/acrylic liner	RESPONSIBLE PROF.: D. (
					rknife/vac-truck from 0-5'	INESPONSIBLE PROF. D. C	COOL	JEI			KLG. NO 1000
NOTES.	БОП		PLES	ру ат	VISUAL SOIL DESCRIPTIO	N.		١٨/١	=11.0	TONST	TRUCTION DETAILS
			LLS		VISOAL SOIL DESCRIPTION						RILLING REMARKS
ΞΞ		ver			Soil Group Name (USCS): color, moisture, density/co	onsistency, grain size, other			,		
DEPTH (feet)	ole	Seco	ot	(discriptors						
۵)	aml	le F	s/Fc	ppr							
	Lab Sample	Sample Recovery	Blows/Foot	PID (ppm)							
	۳	Š	B	Ь	DOODLY CDADED CAND WITH CUT AND	CDAVEL (CD CMA).					
_					POORLY GRADED SAND WITH SILT AND moist, brown(7.5yr-5/3) with roots, 10% grav		-				
1 -					moist, brown(7.5y1-5/5) with roots, 10% grav	7ei, 20% Siit, 70% Saiiu	-				
-	SB22-(1-3						_				
2 -	22-(0.1			_				
	SB			0.1			_				
3							_				
-							_				
4					POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM): moist, gray (7.5yr - 5/1), 20% gravel, 70% sand, 10% silt						
_			,								
5 —		\									
6		\									
_		\					_				
7 —		\					_				
_		\					_	$\overline{\Delta}$			
8 —		\					_				
_		\					_				
9 —		\					_				
_	1	\forall			CUT (NAL)	.ll.	-				Temporary
10 —	k	\triangle			SILT (ML): wet/gray 100% silt,	plastic	-		=		3/4" PVC
_	1	\ /					-				screen 0.010
11 —		\ /					_				slotted screen set for
_		\ /					-				groundwater
12 —		\vee					_				grab sample:
_		λI			POORLY GRADED SAND (S	SP):	_				KSC-SB22- GW-050718
13 -		/\			saturated, dark gray (7.5YR-4/1), 10	•	_			\checkmark	GW-030718
_		/\			5.11. 1.11.		_				
14 —		/ \									
15		\									
15 -					Bottom of Boring 15.0 feet						
16 —					Backfilled with bentonite chip.		_				
_							_				
17 —							_				
_							-				
18 —							-				
-							-				
19 —							_				
-							-				
20 —							-				
_							-				
							1				<u> </u>

PROJEC	`T· Bo	naina	KSC B	21		COORDINATES: 156596	5N 1	12882	07 3	RE (NIA	Sheet 1 of 1
					t, North of Substation	COORDINATES: 156596.5 N 1288207.3 E (NAD83) SURFACE ELEVATION: 26'					
DRILLIN						DATE: 5/7/18					
					probe 7822 DT	TOTAL DEPTH OF BORING	G: 1	5.0'			
DRILLIN						LOGGED BY: D. Cooper	BY: D. Cooper				
SAMPL	ING N	1ETH	OD: 2	2" dia	. X 5' Macro w/acrylic liner	RESPONSIBLE PROF.: D. (: D. Cooper REG. NO.: 1600				
NOTES	: Bori	ng cle	eared	by ai	rknife/vac-truck from 0-5'						
			PLES		VISUAL SOIL DESCRIPTION						RILLING REMARKS
DEPTH (feet)	Lab Sample	Soil Group Name (USCS): color, moisture, density/consistency, grain size, other discriptors									
_					6-inch concrete		_				
1 — 2 — 3 — 4 — 5 —	SB23-(1-3)			0.1	POORLY GRADED SAND WITH SILT AND wet, brown (7.5YR-5/3) 20% gravel, 70			Ž			
6 — 7 — 8 — 9 — 10 — 11 —					SILT (ML): wet, gray (7.5YR-5/1), 100% sil	t, plastic	- - - - -	<u>~</u>			Temporary 3/4" PVC screen 0.010 slotted screen
11 — 12 — 13 — 14 — 15 —					POORLY GRADED SAND (S saturated, dark gray (7.5YR-4/1), 10	•	- - - - -				set for groundwater grab sample: KSC-SB23- GW-050718
16 — 17 —					Bottom of Boring 15.0 feet Backfilled with bentonite chip and concrete patch.		- - -				
18 — 19 — 20 —							- - - - -				

DROJEC	T. Do	oina	VSC B) I		COORDINATES: 1E6E04	ENI 1	12002	75 /	IE /NIA	Sheet 1 of 1		
PROJEC					er, North of substation	COORDINATES: 156594.5 N 1288275.4 E (NAD83) SURFACE ELEVATION: 27'							
DRILLIN						DATE: 5/7/18							
					probe 7822 DT	TOTAL DEPTH OF BORING: 15.0'							
DRILLIN						LOGGED BY: D. Cooper							
					. X 5' Macro w/acrylic liner	•	ONSIBLE PROF.: D. Cooper REG. NO.: 1600						
					rknife/vac-truck from 0-5'								
1101201		SAM	PLES	<i>υγ</i> ω.	VISUAL SOIL DESCRIPTION				WELL CONSTRUCTION DETAILS				
DEPTH (feet)	Lab Sample	Sample Recovery	Blows/Foot	PID (ppm)	<u>Soil Group Name (USCS):</u> color, moisture, density/co discriptors					AND/OR DRILLING REMARKS			
_					6-inch concrete		_						
1 — 2 — 3 — 4 —	SB24-(1-3)			0.1	POORLY GRADED SAND WITH SILT AND moist, gray, 20% gravel, 70% san	, ,	 						
5 — 6 —	5	\setminus			- Grading siltier with depth		- - -	Ā					
7 — 8 — 9 — 10 —	Š				SILT (ML): plastic, wet, gray (7.5YR-5/1), 2	100% silt	- - - - - -				Temporary 3/4" PVC screen 0.010		
11 — 12 — 13 — 14 —	,				POORLY GRADED SAND (S saturated, dark, gray (7.5YR-4/1), 10		- - - - - -				slotted screen set for groundwater grab sample: KSC-SB24- 050718		
15 — 16 — 17 — 18 — 19 —					Bottom of Boring 15.0 feet Backfilled with bentonite chip and concrete patch.		- - - - -						
20 —							_ _						

DROJEC	T. Do	oina	VCC D) I		COORDINATES: 156506	2N 1	2002	16.0	NE /NIA	Sheet 1 of 1
PROJEC					North of Substation	COORDINATES: 156596.2 N 1288346.0 E (NAD83) SURFACE ELEVATION: 28'					
DRILLIN						DATE: 5/7/18					
—					probe 7822 DT	TOTAL DEPTH OF BORING	G: 1	5.0'			
DRILLIN						LOGGED BY: D. Cooper					
					. X 5' Macro w/acrylic liner	·			REG. NO.: 1600		
					rknife/vac-truck from 0-5'						
			PLES		VISUAL SOIL DESCRIPTIO	N		WE	LL (CONST	TRUCTION DETAILS
		ery						Al	ND/	OR DE	RILLING REMARKS
DEPTH (feet)	a)	Sample Recovery	L		Soil Group Name (USCS): color, moisture, density/co	onsistency, grain size, other					
DEF (fe	ab Sample	Re	-00	m)	discriptors						
	Sar	Jple	/s/	dd)							
	Lab	San	Blows/Foot	PID (ppm)							
					6-inch Concrete						
1											
1	3)						_				
2 —	-(1-						_				
_	SB25-(1-3)			0.1			_				
3	S				moist, gray (7.5YR-5/1), 20% gravel, 70	% sand, 10% silt	_				
_							_				
4							_				
_											
5 —		Ш					_				
_	ľ	\					_	\Box			
6 —		\					-	$\bar{\Delta}$			
_		\					_				
7 —		\					_				
_		\			SHT (MIL).		-				
8 —		$\overline{}$			SILT (ML): plastic, wet, gray (7.5YR-6/1), 1009	4 silt inlastic	-				
_		$\backslash / $			plastic, wet, gray (7.5111-0/1), 100/	o siit, piastic	-				
9 —		ХΙ					_				
_		$/ \setminus$					_				Temporary
10 —	ĺ						_		Ш		3/4" PVC
ļ., [–]		\			wet, gray, 100% silt		_				screen 0.010 slotted screen
11 —		\			- 4 6 - 7,		_				set for
12 -		\								,	groundwater
12 —		\					_				grab sample: KSC-SB25-
13 —		\			POORLY GRADED SAND (S	SP):					GW-050718
_		\			dark gray (7.5YR-4/1), saturated, 10	0% fine sand	_		\equiv	¥	
14							_		\equiv		
_		\bigvee					_		\equiv		
15 —		\triangle									
_					Bottom of Boring 15.0 feet		-				
16 —					Backfilled with bentonite chip and concrete patch.		-				
_							-				
17 —							-				
_							-				
18 —											
_							-				
19 —											
_							-				
20											

Soil Classification System

MAJOR DIVISIONS

GRAPHIC LETTER SYMBOL SYMBOL DESCRIPTIONS (2)(3)

GRAVEL AND GRAVEL (Little or no fines)

CLEAN GRAVEL
(Little or no fines)

GRAVELLY SOIL

CLEAN GRAVEL
(Little or no fines)

GRAVELLY SOIL

CLEAN GRAVEL
(Little or no fines)

GRAVELLY SOIL

CLEAN GRAVEL
(Little or no fines)

	GRAVEL AND	CLEAN GRAVEL	00000	GW	Well-graded gravel; gravel/sand mixture(s); little or no fines
SOIL rial is size)	GRAVELLY SOIL	(Little or no fines)	000000	GP	Poorly graded gravel; gravel/sand mixture(s); little or no fines
- 00 50 1	(More than 50% of coarse fraction retained	GRAVEL WITH FINES		GM	Silty gravel; gravel/sand/silt mixture(s)
-GRAINED 150% of mat No. 200 siev	on No. 4 sieve)	(Appreciable amount of fines)		GC	Clayey gravel; gravel/sand/clay mixture(s)
	SAND AND	CLEAN SAND		SW	Well-graded sand; gravelly sand; little or no fines
COARSE (More thar larger than	SANDY SOIL	(Little or no fines)		SP	Poorly graded sand; gravelly sand; little or no fines
(Mo	(More than 50% of coarse fraction passed	SAND WITH FINES		SM	Silty sand; sand/silt mixture(s)
	through No. 4 sieve)	(Appreciable amount of fines)		SC	Clayey sand; sand/clay mixture(s)
L ial	SILT A	ND CLAY		ML	Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity
D SOIL f material 200 sieve		t less than 50)		CL	Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay
-GRAINED than 50% of I er than No. 2 size)	(= 4==	,		OL	Organic silt; organic, silty clay of low plasticity
GRA lan 50 r than siz	SILT A	ND CLAY		MH	Inorganic silt; micaceous or diatomaceous fine sand
FINE-GR/ (More than 5 is smaller tha	(Liquid limit o	(Liquid limit greater than 50)		СН	Inorganic clay of high plasticity; fat clay
T ≶ <u>s</u>	(=-4			ОН	Organic clay of medium to high plasticity; organic silt
	HIGHLY ORGA	NIC SOIL		PT	Peat; humus; swamp soil with high organic content

GRAPHIC LETTER
OTHER MATERIALS SYMBOL SYMBOL TYPICAL DESCRIPTIONS

PAVEMENT	AC or PC	Asphalt concrete pavement or Portland cement pavement		
ROCK	RK	Rock (See Rock Classification)		
WOOD	WD	Wood, lumber, wood chips		
DEBRIS	DB	Construction debris, garbage		

NOTES:

- USCS letter symbols correspond to symbols used by the Unified Soil Classification System and ASTM classification methods. Dual letter symbols (e.g., SP-SM for sand or gravel) indicate soil with an estimated 5-15% fines. Multiple letter symbols (e.g., ML/CL) indicate borderline or multiple soil classifications.
- 2. Soil descriptions are based on the general approach presented in the Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), outlined in ASTM D 2488. Where laboratory index testing has been conducted, soil classifications are based on the Standard Test Method for Classification of Soils for Engineering Purposes, as outlined in ASTM D 2487.
- 3. Soil description terminology is based on visual estimates (in the absence of laboratory test data) of the percentages of each soil type and is defined as follows:

Primary Constituent: > 50% - "GRAVEL," "SAND," "SILT," "CLAY," etc.

Secondary Constituents: > 30% and ≤ 50% - "very gravelly," "very sandy," "very silty," etc.

> 15% and ≤ 30% - "gravelly," "sandy," "silty," etc.

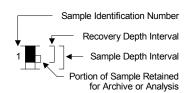
Additional Constituents: > 5% and ≤ 15% - "with gravel," "with said," "with silt," etc.

≤ 5% - "trace gravel," "trace sand," "trace silt," etc., or not noted.

Boeing Kent Space Center Kent, Washington

Soil Classification System and Key

Figure A-1


Drilling and Sampling Key

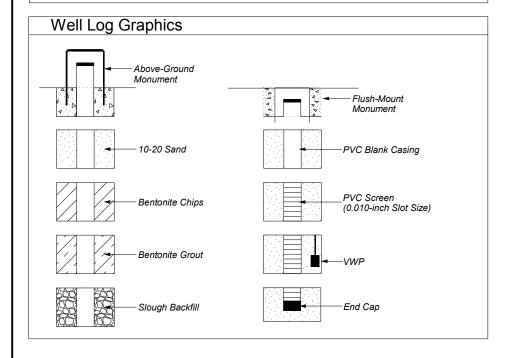
SAMPLER TYPE

SAMPLE NUMBER & INTERVAL

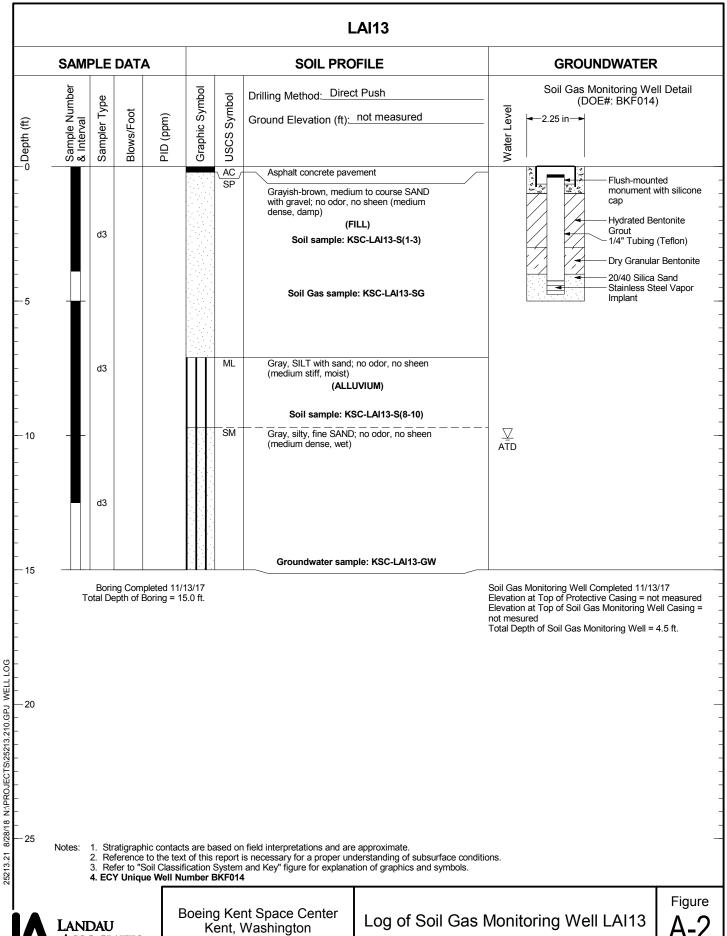
Code Description

- a 3.25-inch O.D., 2.42-inch I.D. Split Spoon
- b 2.00-inch O.D., 1.50-inch I.D. Split Spoon
- c Shelby Tube
- d Grab Sample
- e Single-Tube Core Barrel
- f Double-Tube Core Barrel
- g Other See text if applicable
- 1 300-lb Hammer, 30-inch Drop
- 2 140-lb Hammer, 30-inch Drop
- 3 Pushed
- 4 Rotosonic
- 5 Air Rotary (Rock)
- 6 Wash Rotary (Rock)
- 7 Other See text if applicable

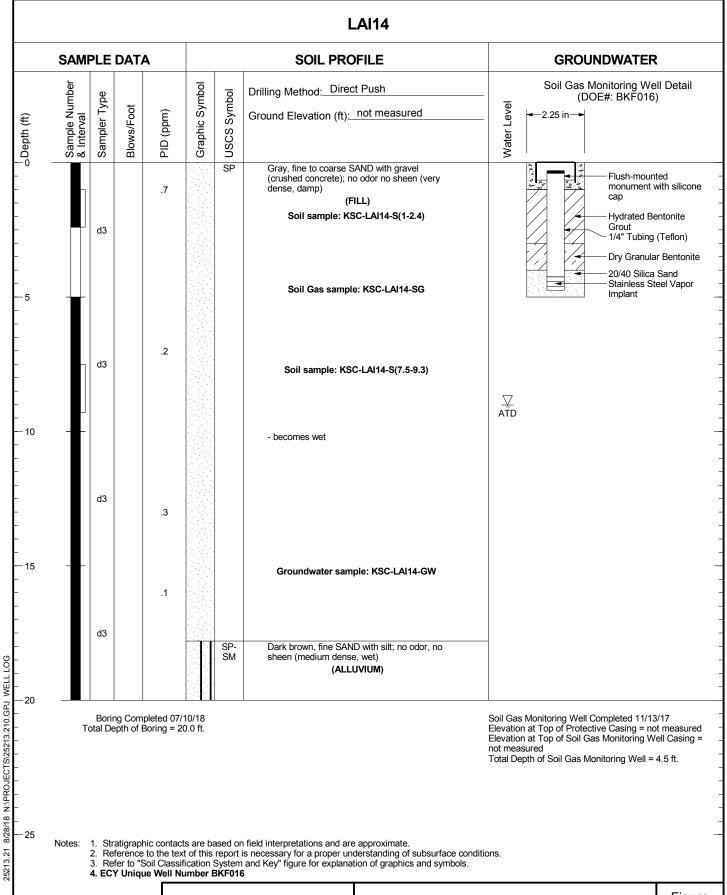
Field and Lab Test Data

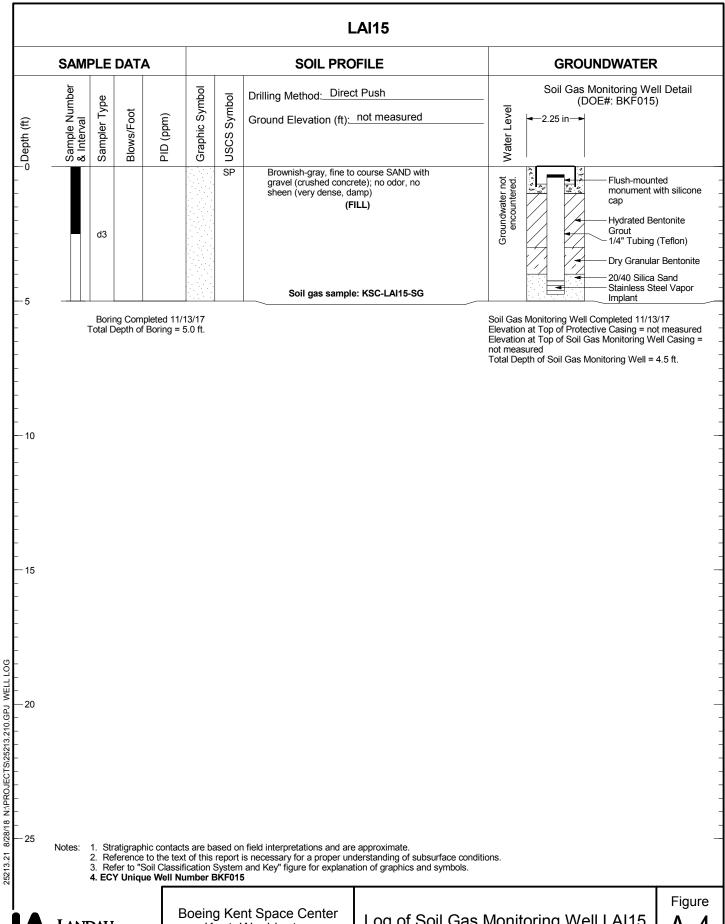

Description
Pocket Penetrometer, tsf
Torvane, tsf
Photoionization Detector VOC screening, ppm
Moisture Content, %
Dry Density, pcf
Material smaller than No. 200 sieve, %
Grain Size - See separate figure for data
Atterberg Limits - See separate figure for data
Vane Shear Test
Other Geotechnical Testing
Chemical Analysis

Groundwater


 ∇ Approximate water elevation at time of drilling (ATD).

Approximate water elevation at other time(s). When multiple water levels are obtained other than ATD, only a representative range is shown. See text for additional information.


Note: Groundwater levels can fluctuate due to precipitation, seasonal conditions, and other factors.



LANDAU ASSOCIATES

Boeing Kent Space Center Kent, Washington

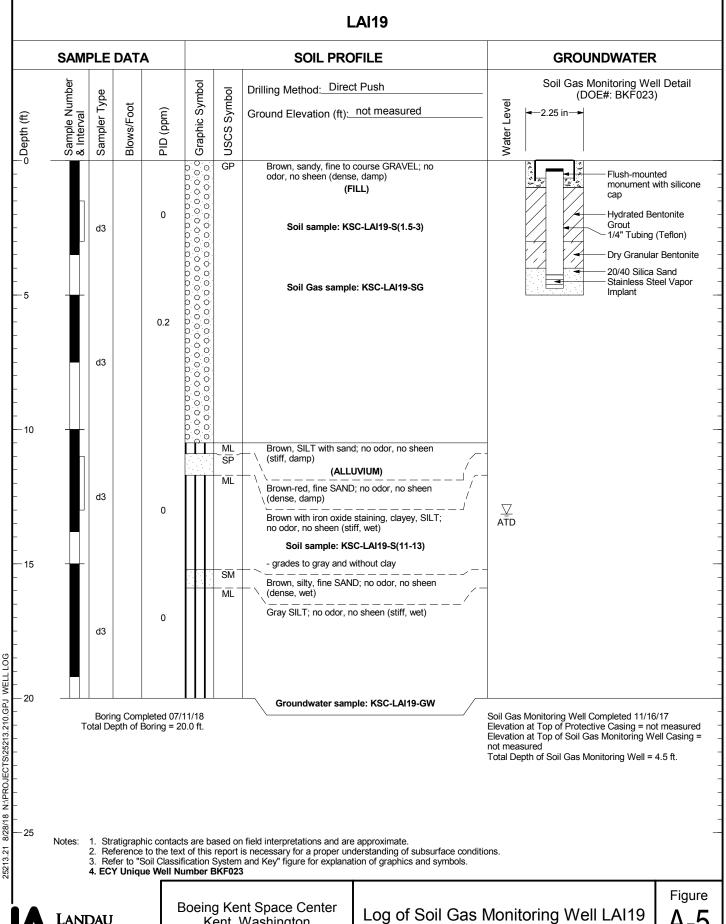
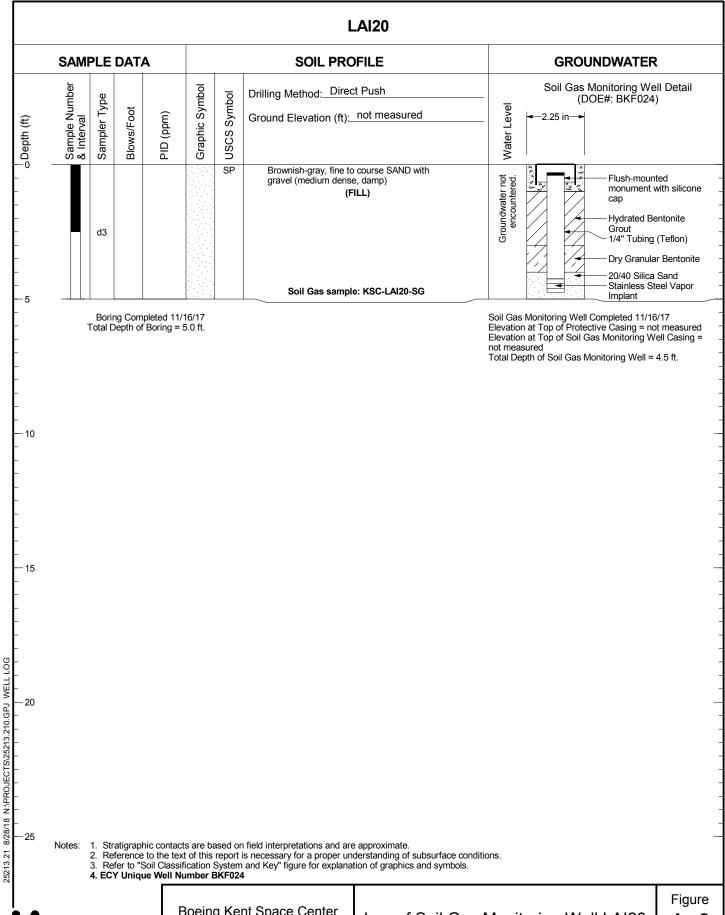
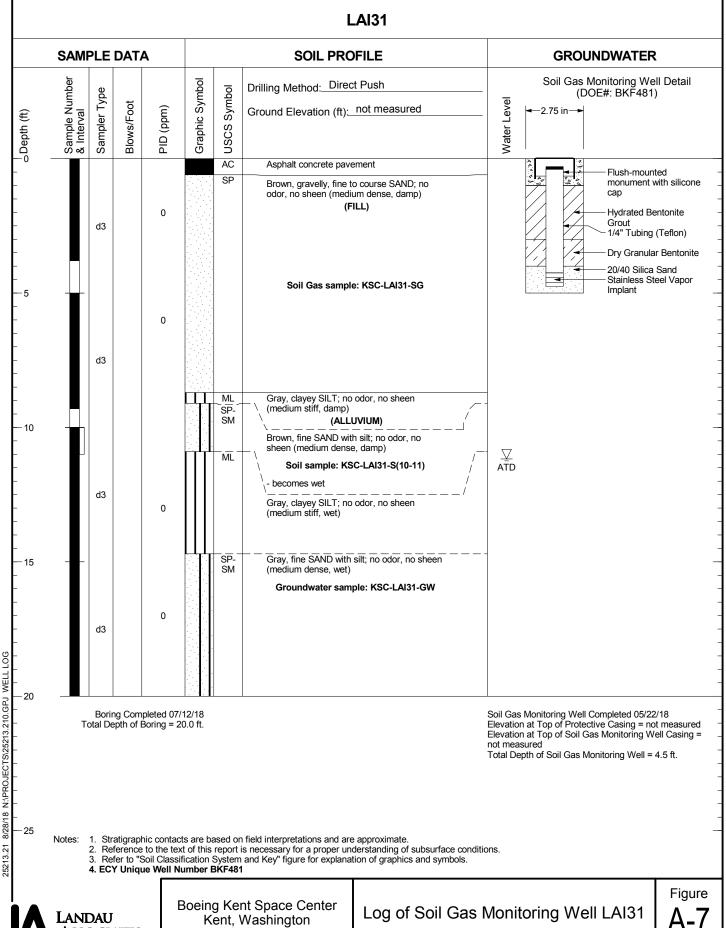
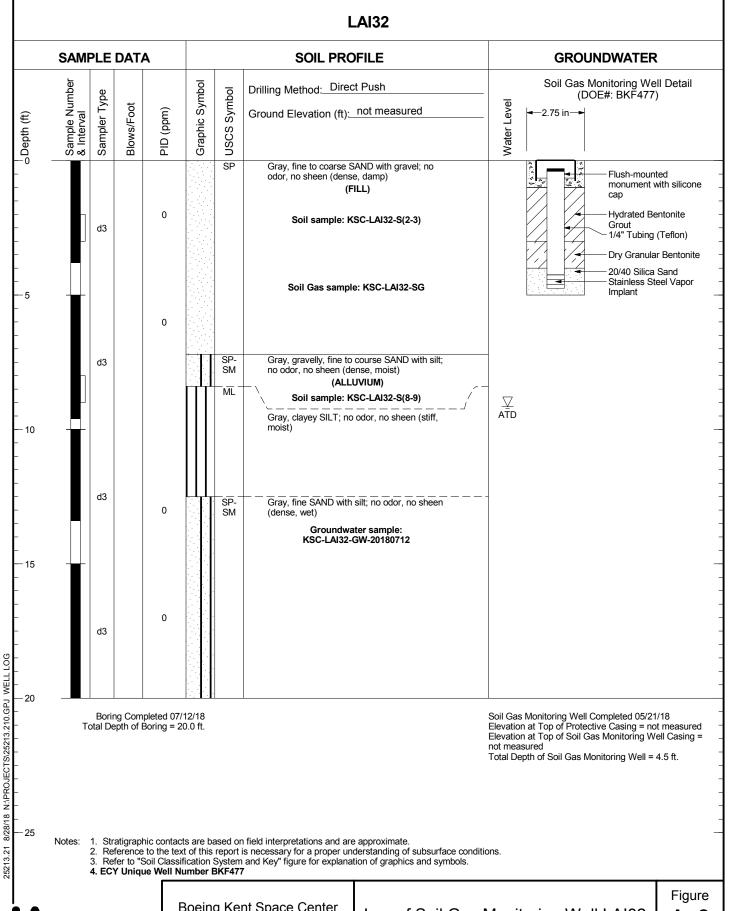

Log of Soil Gas Monitoring Well LAI14

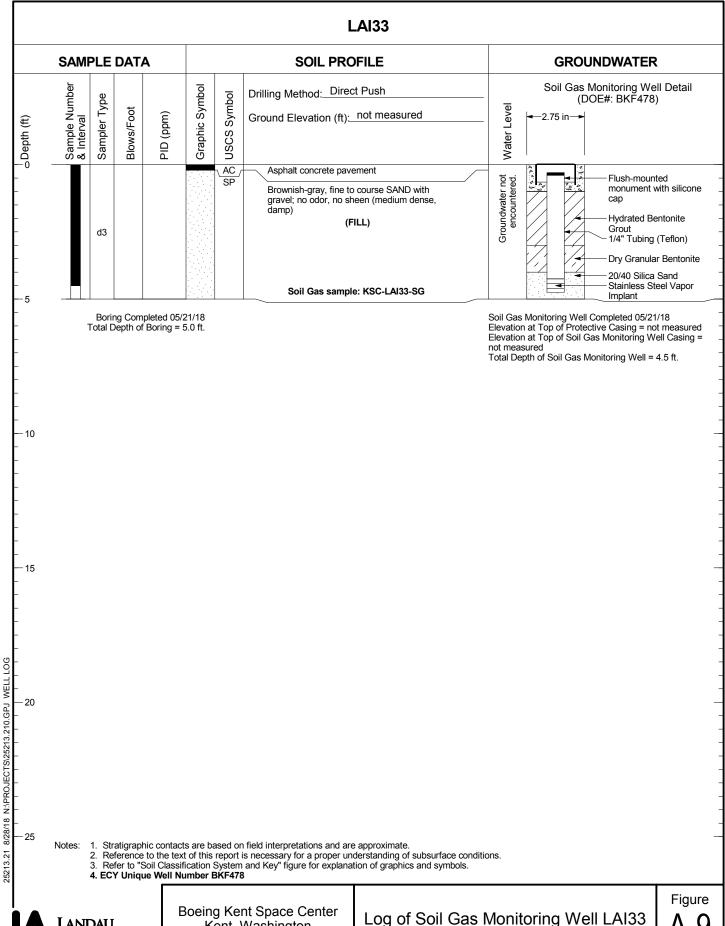
Figure A_3


LANDAU **ASSOCIATES** Kent, Washington

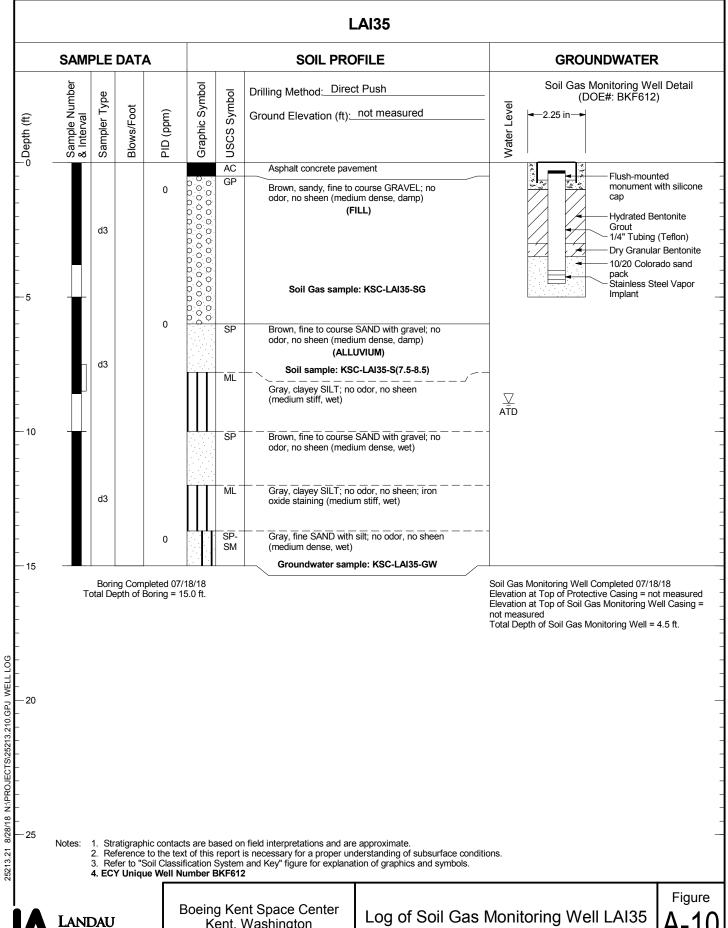
Log of Soil Gas Monitoring Well LAI15



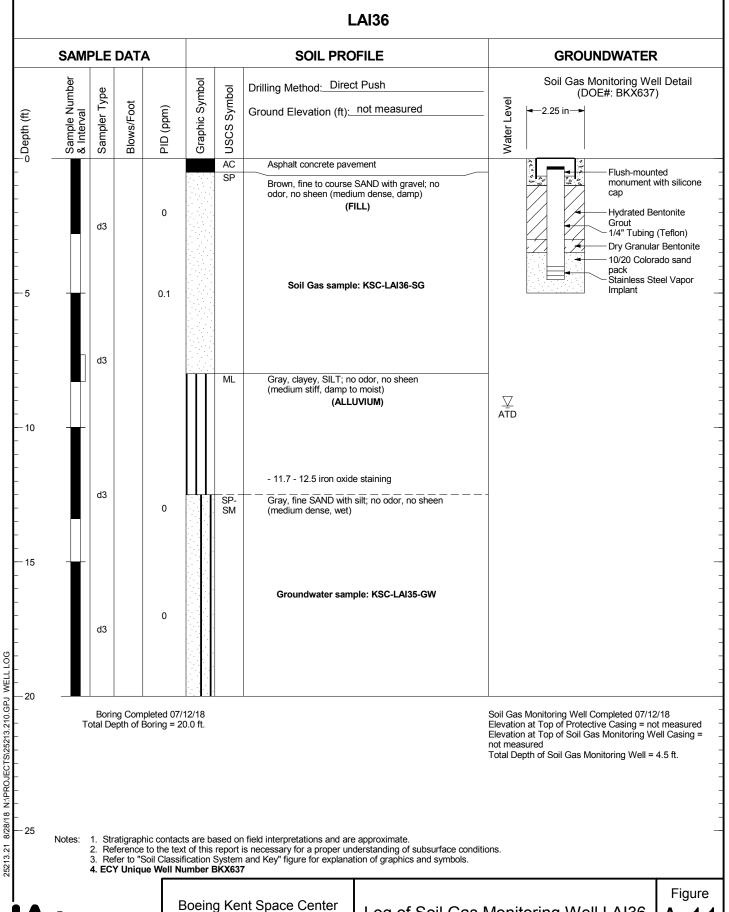

Kent, Washington

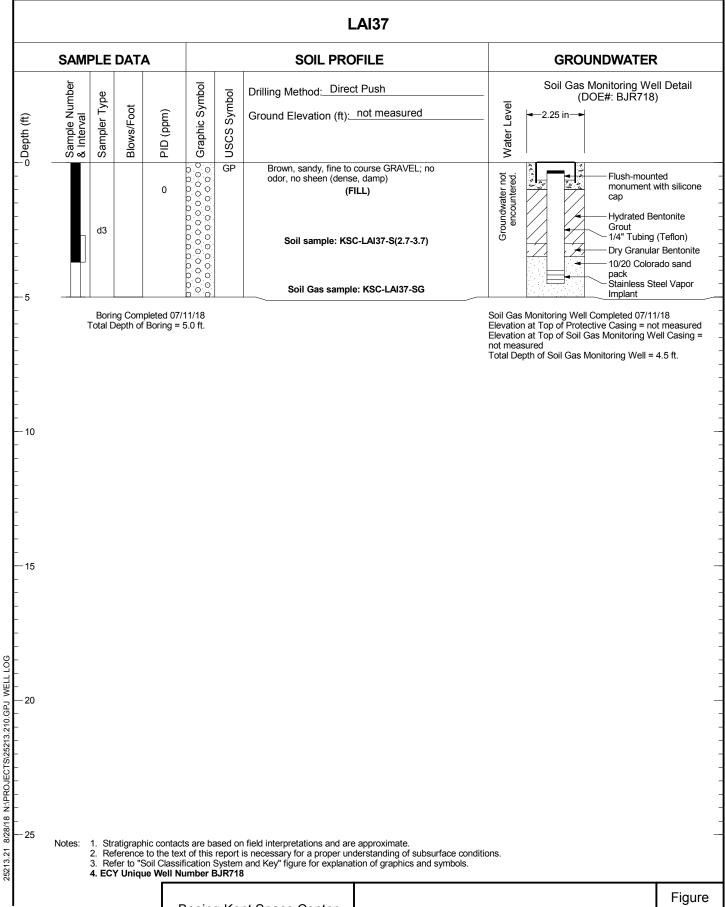


ASSOCIATES

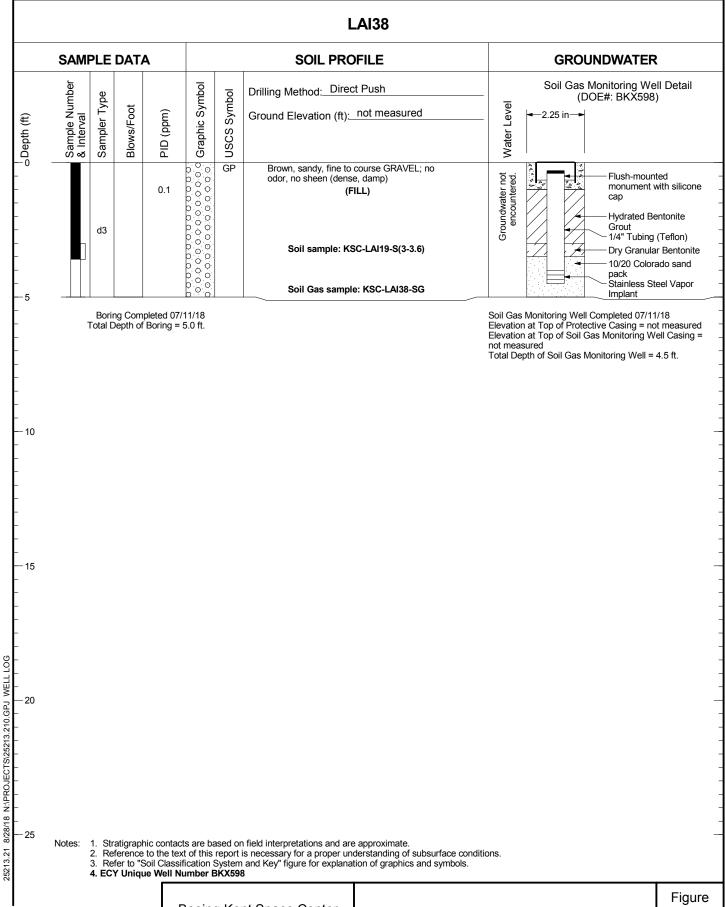


LANDAU **ASSOCIATES** **Boeing Kent Space Center** Kent, Washington

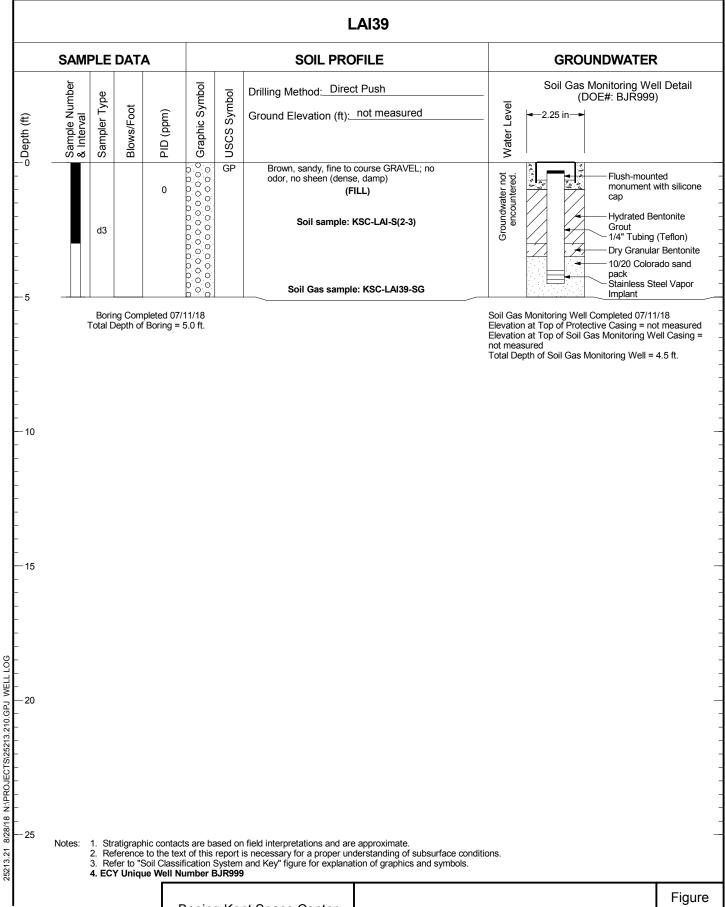

Log of Soil Gas Monitoring Well LAI32

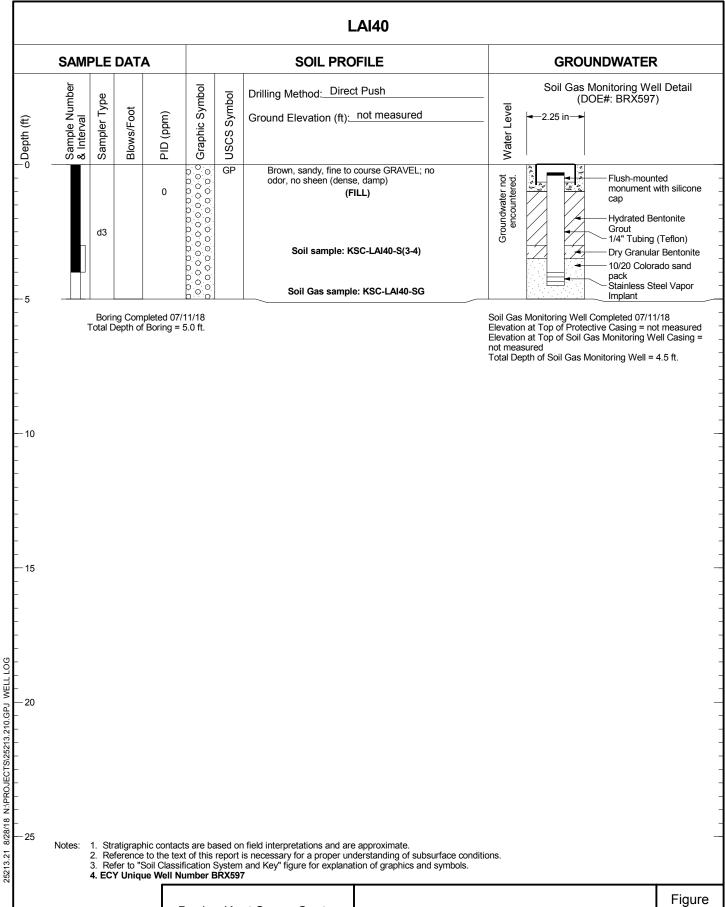


LANDAU ASSOCIATES


Boeing Kent Space Center Kent, Washington

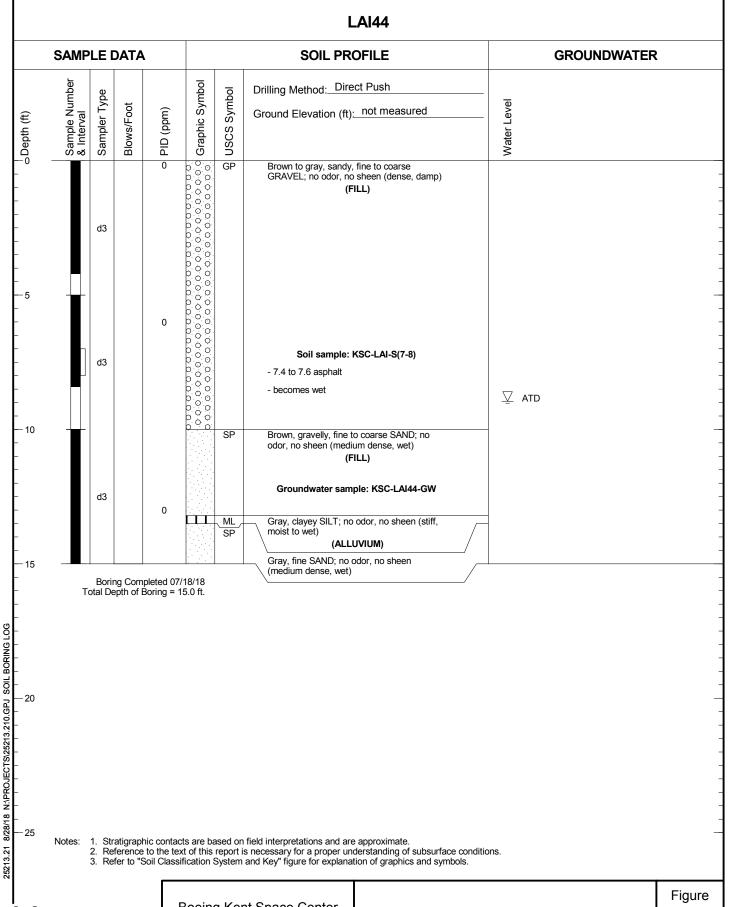
Log of Soil Gas Monitoring Well LAI36


Figure **A-11**



Boeing Kent Space Center Kent, Washington

Log of Soil Gas Monitoring Well LAI39



Boeing Kent Space Center Kent, Washington

Log of Soil Gas Monitoring Well LAI40

Figure **A-15**

LANDAU ASSOCIATES

Boeing Kent Space Center Kent, Washington

Log of Boring LAI44

A-16

Laboratory Report and Data Validation (Supplemental RI PCB Investigation)

DATA VALIDATION REPORT

BOEING KENT SPACE CENTER GROUNDWATER & SOIL SAMPLING

Prepared for:

Dalton Olmsted & Fuglevand 10827 NE 68th Street Suite B Kirkland, Washington 98033

Prepared by:

EcoChem, Inc. 500 Union Street, Suite 1010 Seattle, Washington 98101

EcoChem Project: C8105-2

June 1, 2018

Approved for Release:

Christina Mott Frans Senior Project Manager EcoChem, Inc.

ChiDM. Frans

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of the summary validation (Stage 2A) performed on groundwater and soil samples and the associated laboratory and field quality control samples for the Boeing Kent Space Center. A complete list of samples is provided in the **Sample Index**.

Samples were analyzed by Analytical Resources, Incorporated, Tukwila, Washington. The analytical method and EcoChem project chemists are listed in the following table:

Analysis	METHOD OF ANALYSIS	PRIMARY REVIEW	SECONDARY REVIEW	
PCB Aroclors	SW8082A	C. Frans	R. Frans	

The data were reviewed using guidance and quality control criteria documented in the analytical methods; the sampling and analysis plan (SAP) for the *Remedial Investigation Work Plan Boeing Kent Space Center Facility, Ecology Review Draft* (Landau Associates, July 29, 2016) and *USEPA National Functional Guidelines for Organic Data Review* (EPA, 1999 & 2008).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Validation criteria are included at the end of the report. No data were qualified for any reason. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report.

Sample Index Boeing Kent Space Center

SDG	Sample ID	Lab Sample ID	PCB
	KSCRI-SB21-(1-3)-050718	18E0127-01	✓
	KSCRI-SB22-(1-3)-050718	18E0127-02	✓
	KSCRI-SB23-(1-3)-050718	18E0127-03	✓
	KSCRI-SB24-(1-3)-050718	18E0127-04	✓
	KSCRI-SB25-(1-3)-050718	18E0127-05	✓
18E0127	KSC-SB21-GW-050718	18E0127-06	✓
	KSC-SB22-GW-050718	18E0127-07	✓
	KSC-SB23-GW-050718	18E0127-08	✓
	KSC-SB24-GW-050718	18E0127-09	✓
	KSC-SB25-GW-050718	18E0127-10	✓
	KSC-DUP-GW-050718	18E0127-11	✓

DATA VALIDATION REPORT DOF – Boeing Kent Space Center Polychlorinated Biphenyl Compounds - Method SW8082A

This report documents the review of analytical data from the analyses of soil and groundwater samples and the associated field and laboratory quality control (QC) samples. Samples were analyzed by Analytical Resources, Incorporated, Tukwila, Washington. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	VALIDATION LEVEL		
18F0127	5 soil samples	Ctaga 2A		
10EU127	6 groundwater samples	Stage 2A		

DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

EDD TO HARDCOPY VERIFICATION

All sample IDs and results reported in the electronic data deliverable (EDD) were verified (10% verification) by comparing the EDD to the laboratory data package.

TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

1	Sample Preservation and Holding Times	✓	Matrix Spikes/Matrix Spike Duplicates
✓ Laboratory Blanks		1	Field Duplicates
1	Field Blanks	✓	Target Analyte List
✓	Surrogate Compounds	✓	Reporting Limits
\checkmark	Laboratory Control Samples (LCS)	✓	Reported Results

[✓] Stated method quality objectives (MQO) and QC criteria have been met. No outliers are noted or discussed

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 0°C-6°C and be extracted within 14 days for sediment samples and extracts must be analyzed within 40 days of extraction.

¹ Quality control outliers are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Several samples were received at a temperature greater than the advisory temperature range at 10.1°C. PCB Aroclor compounds are stable at this temperature; no qualifiers were required.

All samples were extracted and analyzed within the required holding times.

Field Blanks

No field blanks were submitted with this sampling event.

Field Duplicates

For water samples, the QAPP RPD control limit is 20% for results greater than 5x the reporting limit (RL). For results less than 5x the RL, the absolute difference between the sample and replicate must be less than 2x the RL.

One field duplicate pair was included with this SDG, Samples KSC-SB23-GW-050718 & KCS-DUP-GW-050718. No target analytes were detected in either sample; field precision was acceptable.

Target Analyte List

All target analytes as specified in the QAPP/SAP were reported.

Reporting Limits

The target analyte reporting limits specified in the QAPP/SAP were met.

OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable, as demonstrated by the surrogate and laboratory control sample (LCS) percent recovery values. Precision was also acceptable as demonstrated by the MS/MSD and field duplicate RPD values.

No data were qualified for any reason.

All data, as reported, are acceptable for use.

PCB Aroclors by GC (Based on Organic NFG 2008 and SW-846 Method 8082A)

QC Element	Acceptance Criteria (NFG)	Source of Criteria	Action for Non-Conformance	Reason Code	Discussion and Comments
Sample					
Cooler/Storage Temperature Preservation	4°C ± 2°C Tissue/sediments (may be frozen -20°C)	NFG ⁽¹⁾ Method ⁽²⁾	If required by project: J (pos)/UJ (ND) if greater than 6° C	1	Use Professional Judgment (PJ) to qualify for temperature outlier. Current SW846 criterion is \leq 6° C (3)
Holding Time	Extraction Aqueous: 7 days from collection Extraction Solid: 14 days from collection Exraction Tissue/Sediment (frozen): 1 year Analysis (all matrices): 40 days from extraction	NFG ⁽¹⁾ Method ⁽²⁾	If required by project: J (pos)/UJ (ND) if ext/analyzed > HT J (pos)/R (ND) if gross exceedance (> 2x HT)	1	Use PJ to qualify for holding time outlier. Current SW846 does not have an extraction holding time limit. (3) Gross exceedance > 2x HT, as per NFG 1999
Instrument Perfo	rmance				
Retention Times	Surrogates: TCMX (± 0.05); DCB (± 0.10) Aroclors (± 0.07)	NFG ⁽¹⁾	NJ (pos)/R (ND) results for analytes with RT shifts	24	
Initial Calibration	Minimum 5 point with RSD ≤ 20% OR correlation coefficient (r-value) ≥ 0.995 OR Minimum 6-point with co-efficient of determination (r2-value) ≥ 0.99	NFG ⁽¹⁾ Method ⁽⁴⁾	J (pos) if %RSD greater than 20% OR r-value < 0.995 OR r^2 -value < 0.99	5A	Refer to TM-01 for additional information. Use bias flags (H,L) ⁽⁵⁾ where appropriate
Initial Calibration Verification (ICV)	No NFG criteria. Project specific.	Project	J (pos) if > UCL J (pos)/UJ (ND) if < LCL	5B	Use bias flags (H,L) where appropriate
Continuing Calibration (Prior to each 12 hr. shift)	%D ± 20%	Method ⁽²⁾	If > 20% (high bias): J (pos) If <20% (low bias: J (pos)/UJ (ND)	5B	Refer to TM-01 for additional information. Use bias flags (H,L) where appropriate
Blank Contaminat					
Method Blank (MB)	MB: One per matrix per batch of (of ≤ 20 samples) No detected compounds > RL	NFG ⁽¹⁾ Method ⁽²⁾	U (pos) if result is less than appropriate 5X action level.	7	Hierarchy of blank review: #1 - Review MB and IB, qualify as needed
Field Blank (FB)	FB: frequency as per QAPP No detected compounds > RL	NFG ⁽¹⁾ Method ⁽²⁾	U (pos) if result is less than appropriate 5X action level.	6	#2 - Review FB , qualify as needed
Instrument Blanks (IB)	Analyzed at the beginning and end of every 12 hour sequence No analyte > CRQL	NFG ⁽¹⁾	U (pos) if result is less than appropriate 5X action level.	7	Note: Actions as per NFG 1999 Note: IB not required by method

PCB Aroclors by GC (Based on Organic NFG 2008 and SW-846 Method 8082A)

QC Element	Acceptance Criteria (NFG)	Source of Criteria	Action for Non-Conformance		Discussion and Comments		
Precision and Accuracy							
MS/MSD (recovery)	One set per matrix per batch (of ≤ 20 samples) AR1016 and AR1260: %R = 29% - 135%, or project limits	NFG ⁽¹⁾ Method ⁽²⁾	Qualify parent only unless other QC indicates systematic problems. J (pos) if both %R > upper control limit (UCL) J (pos)/UJ (ND) if both %R < lower control limit (LCL) J (pos)/R (ND) if both %R < 10%	8	No action if only one spike %R is outside criteria. No action if native analyte conc. > 5x the amount spiked. Use bias flags (H,L) where appropriate. Actions apply to all Aroclors in parent sample.		
MS/MSD (RPD)	One set per matrix per batch (of ≤ 20 samples) AR1016: RPD < 15%, AR1260: RPD < 20% or project limits	NFG ⁽¹⁾ Method ⁽²⁾	Qualify parent only unless other QC indicates systematic problems. J (pos) if RPD > control limit	9	No action if parent is ND.		
LCS	One per lab batch (of \leq 20 samples) AR1016 and AR1260: $\%$ R = 50% - 150%, or project limits	NFG ⁽¹⁾	J (pos) if %R > UCL	10	Use bias flags (H,L) where appropriate. Actions apply to all Aroclors in associated samples.		
LCS/LCSD (RPD)	if analyzed use MS/MSD RPD criteria	NFG (1)	J (pos) assoc. compound in all samples	9	LCSD not required by method or NFG		
Precision and Acc	uracy						
Surrogates	TCMX and DCBP added to every sample %R = 30% - 150% or project limits	NFG ⁽¹⁾ Method ⁽²⁾	J (pos) if either %R > UCL J (pos)/UJ (ND) if either %R < LCL J (pos)/R (ND) if either %R < 10%	13	If %R < 10% (sample dilution is a factor), use PJ Use bias flags (H,L) where appropriate		
Internal Standards (if used)	Acceptable Range: IS area = 50% to 200% of CCAL area RT within 30 seconds of CC RT	Method ⁽²⁾	J (pos) if area > 200% J (pos)/UJ (ND) if area < 50% J (pos)/R (ND) if area < 25% RT > 30 seconds, narrate	19			
Field Duplicates	Solids: RPD < 50% OR difference < 2X RL (for results < 5X RL) Aqueous: RPD < 35% OR difference < 1X RL (for results < 5X RL)	EcoChem	J (pos)/UJ (ND) Qualify only parent and field duplicate samples	9	use project limits if specified		

PCB Aroclors by GC (Based on Organic NFG 2008 and SW-846 Method 8082A)

QC Element	Acceptance Criteria (NFG)	Source of Criteria	Action for Non-Conformance	Reason Code	Discussion and Comments			
Compound Identi	Compound Identification/Quantification							
Quantitation/ Identification	Between two columns: RPD < 40% or %D < 25% Within Retention Time Windows on both columns.	NFG ⁽¹⁾ Method ⁽²⁾	J (pos) if RPD = 40% - 60% (25% - 60% for %D) NJ (pos) if > 60% R (pos) if RTW criterion not met	3	See TM-08 for additional info.			
Calibration Range	on column concentration < high calibration standard	NFG ⁽¹⁾ Method ⁽²⁾	J (pos) if conc > high standard and sample was not diluted	20				
Dilutions, Re- extractions and/or Reanalyses	Report only one result per analyte	Standard reporting policy	Use "DNR" to flag results that will not be reported.	11	TM-04 Rev. 1 for additional info.			
Sample Clean-up								
GPC/Sulfur/ Florisil/Acid	No criteria - cleanups are optional	NFG ⁽¹⁾ Method ⁽²⁾	Use Professional Judgment	14	special cleanups may be required for project cleanup standards may be associated with GPC/florisil cleanups			

¹ National Functional Guidelines for Organic Data Review, June, 2008

² Polychlorinated Biphenyls (PCBs) by Gas Chromatography USEPA Method SW846 8082A, Feb 2007, Rev. 1

³ SW846, Chapter 4, Organic Analytes

⁴ Determinative Chromatographic Separations , Method 8000C , March 2003, Rev.3

⁵ "H" = high bias indicated; "L" = low bias indicated

22 May 2018

Natasya Gray Dalton, Olmsted & Fuglevand, Inc 1420 - 156th Ave., NE STE C1 Bellevue, WA 98007

RE: Boeing Kent Space Center

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s)

18E0127

Associated SDG ID(s)
N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the requirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in it entirety.

Theling & Frisher

Accreditation # 66169

Chain of Custody Record & Laboratory Analysis Request ARI Assigned Number: Turn-around Requested: Analytical Resources, Incorporated Page: 860127 NORMIZ Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 ARI Client Company: Phone: Date: Ice Present? Tukwila, WA 98168 706-731-7550 206-695-6200 206-695-6201 (fax) Client Contact: Cooler Temps: 5, 42/0./0 No. of www.arilabs.com TASTA GRAY NGRATA ROPNUL COM Coolers: Client Project Name:

BOEING K Analysis Requested Notes/Comments KSC RI Client Project #: 8087 Samplers: B-002 DLOOPEN / LKENNEN Sample ID Date Time Matrix No. Containers KSEMI-SB21-(1-3)-050718 5/7/18 09.00 SOIL KSCAI -SB22-(1-3)-050718 1030 KSCRI-SB23-(1-3)-050718 1100 KXVII-SB24-(1-3).00071B 1145 WCRI-JB25-(1-3)-050718 7 1400 MS/MSD Comments/Special Instructions Relinquished by: Received by: Relinquished by: Received by (Signature) (Signature) (Signature) (Signature) RL of 20 mg/kg Printed Name Printed Name: Printed Name: Company: Company:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

05/08/18 0825

0875

Date & Time:

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Date & Time:

Chain of Custody Record & Laboratory Analysis Request ARI Assigned Number; Turn-around Requested: Page:

ARI Client Company: Turn-around Requested: Phone:					Page	2	of	2	,	Analyti	ical Resources, Incorporated cal Chemists and Consultants outh 134th Place, Suite 100
ARI Client Company:			731-75	10	Date,	7/12	Pres	ent?	es	Tukwila	a, WA 98168
Client Contact:	1007th 85.000 to				No. of		Cool		10.100	206-69	5-6200 206-695-6201 (fax) rilabs.com
Client Project Name:	NGRAMO	@ pofull c	2h		Coolers	1	Tem			www.a	mads.com
BOZING KSC NI								Analysis	Requested		Notes/Comments
Client Project #:	Samplers:	orn/LI	KUNY		28087						
Sample ID	Date	Time	Matrix	No. Containers	1 00 T						
KSC-3BZ1-GW-050718	5/7/18	1000	WATER	6	X						ms/msD
KSC-SBZZ-GW-050718		1130		1	X						
KSC-SB23-GW-050718		1230		2	X						
KSC-3824-GW-050718		1330		2	X						
KSC-5825-GW-050718		1300 1	Se	2	X						
KSC- DUP-GW-050718		1235		2	X						
	0		P)								
5											
Of the state of th		: 1/			,	,					
Comments/Special Instructions	Relinquished by: (Signature)	Xu h	_	Received by: (Signature)	1	11/	1	Relinquished	by:	Received by:	
RL 0.01 Mg/L	Printed Name:			Printed Name:	and 1	00	0	(Signature) Printed Nam	9:	(Signature) Printed Name	e:
1	Lak	e there		Ja	(06	wal	to				Appel 1
	Company:	PE		Company:	ZI			Company:		Company:	
	Date & Time: 5-8-18	083	25	Date & Time:	08/1	08	35	Date & Time:		Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Analytical Report

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
KSCRI-SB21-(1-3)-050718	18E0127-01	Solid	07-May-2018 09:00	08-May-2018 08:25
KSCRI-SB22-(1-3)-050718	18E0127-02	Solid	07-May-2018 10:30	08-May-2018 08:25
KSCRI-SB23-(1-3)-050718	18E0127-03	Solid	07-May-2018 11:00	08-May-2018 08:25
KSCRI-SB24-(1-3)-050718	18E0127-04	Solid	07-May-2018 11:45	08-May-2018 08:25
KSCRI-SB25-(1-3)-050718	18E0127-05	Solid	07-May-2018 14:00	08-May-2018 08:25
KSC-SB21-GW-050718	18E0127-06	Water	07-May-2018 10:00	08-May-2018 08:25
KSC-SB22-GW-050718	18E0127-07	Water	07-May-2018 11:30	08-May-2018 08:25
KSC-SB23-GW-050718	18E0127-08	Water	07-May-2018 12:30	08-May-2018 08:25
KSC-SB24-GW-050718	18E0127-09	Water	07-May-2018 13:30	08-May-2018 08:25
KSC-SB25-GW-050718	18E0127-10	Water	07-May-2018 15:00	08-May-2018 08:25
KSC-DUP-GW-050718	18E0127-11	Water	07-May-2018 12:35	08-May-2018 08:25

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

Case Narrative

Sample receipt

Samples as listed on the preceding page were received May 8, 2018 under ARI work order 18E0127. For details regarding sample receipt, please refer to the Cooler Receipt Form.

PCB Aroclors - EPA Method SW8082A

The sample(s) were extracted and analyzed within the recommended holding times.

Initial and continuing calibrations were within method requirements.

Internal standard areas were within limits.

The surrogate percent recoveries were within control limits.

The method blank(s) were clean at the reporting limits.

The LCS percent recoveries were within control limits.

The Matrix Spike/Matrix Spike duplicate recoveries and RPD were within limits.

Printed: 5/8/2018 11:17:33AM

WORK ORDER

18E0127

Client: Dalton	n, Olmsted & Fuglevand, Inc	Project Manager: Kelly Bottem					
Project: Boeing	g Kent Space Center	Project Number: [none]					
Report To:		Invoice To:					
Dalton, Olmsteo	l & Fuglevand, Inc	Dalton, Olmsted & Fuglevand, Inc					
Dave Cooper		Dave Cooper					
1420 - 156th Ave., NE STE C1		1420 - 156th Ave., NE STE C1					
Bellevue, WA 98007		Bellevue, WA 98007					
Phone: (206) 660-3466		Phone :(206) 660-3466					
Fax: -		Fax: -					
Date Due:	22-May-2018 18:00 (10 day TAT)						
Received By:	Jacob Walter	Date Received: 08-May-2018 08:25					
Logged In By:	Jacob Walter	Date Logged In: 08-May-2018 10:59					
Samples Received at:	5.4°C						
Intact, properly s	igned and dated custody seals attached to outside of cooler(s)						
Custody papers p	properly filled out (in, signed, analyses requested, etc)	Yes Was a temperature blank included in the cooler No					
All bottles arrived	e used (if appropriate)						
Number of conta	d in good condition (unbroken)iners listed on COC match number received	Yes All bottle labels complete and legible					
Correct bottles us	sed for the requested analyses	Yes Bottle labels and tags agree with COC					
Analyses/bottles	require preservation (attach preservation sheet excluding VOC RI	.No Sufficient amount of sample sent in each bottle Yes					
Analysis	Due TAT	Expires Comments					

Printed: 5/8/2018 11:17:33AM

WORK ORDER

18E0127

Client: Dalton, Olmsted & Fuglevand, Inc
Project Boeing Kent Space Center
Project Number: [none]

Analysis	Due	TAT	Expires	Comments
18E0127-01 KSCRI-S	SB21-(1-3)-050718 Solid Samp	oled 07-	May-2018 09:00	
(GMT-08:00) Pacific	Гime (US & Canada)	w		
A = Glass WM, Clear, 8 oz				
	3 -105 °C, Soli 22-May-2018 15:00	10	04-Jun-2018 09:00	
	(MTCA 0.1 u;22-May-2018 15:00	10	21-May-2018 09:00	
18E0127-02 KSCRI-S (GMT-08:00) Pacific T	SB22-(1-3)-050718 Solid Samp Fime (US & Canada)	led 07-	May-2018 10:30	
A = Glass WM, Clear, 8 oz				
	(MTCA 0.1 u;22-May-2018 15:00	10	21-May-2018 10:30	
Solids, Total, Dried at 103	-105 °C, Soli 22-May-2018 15:00	10	04-Jun-2018 10:30	
18E0127-03 KSCRI-S (GMT-08:00) Pacific T	B23-(1-3)-050718 [Solid] Samp Fime (US & Canada)	led 07-	May-2018 11:00	
A = Glass WM, Clear, 8 oz				
8082A PCB (20 ug/kg) or	(MTCA 0.1 u;22-May-2018 15:00	10	21-May-2018 11:00	
	-105 °C, Soli 22-May-2018 15:00	10	04-Jun-2018 11:00	
(GMT-08:00) Pacific T $A = Glass WM, Clear, 8 oz$				
	-105 °C, Soli 22-May-2018 15:00 (MTCA 0.1 u;22-May-2018 15:00	10	04-Jun-2018 11:45	
		10	21-May-2018 11:45	
(GMT-08:00) Pacific T	B25-(1-3)-050718 [Solid] Samp Time (US & Canada)	led 07-1	May-2018 14:00	MS/MSD
A = Glass WM, Clear, 8 oz	B = Glass WM, Clear, 8 oz			
	-105 °C, Soli 22-May-2018 15:00	10	04-Jun-2018 14:00	
8082A PCB (20 ug/kg) or (MTCA 0.1 u;22-May-2018 15:00	10	21-May-2018 14:00	
18E0127-06 KSC-SB2 (GMT-08:00) Pacific T	1-GW-050718 [Water] Sampled ime (US & Canada)	l 07-Ma	ay-2018 10:00	MS/MSD
A = Glass NM, Amber, 1000 n	B = Glass NM, Amber, 1000 mL	C =	Glass NM, Amber, 1000 m	D = Glass NM, Amber, 1000 mL
$E = Glass\ NM,\ Amber,\ 1000\ n$			enverse et 2000 et 2000 tea teapers 2000 700 700 tea 100 700 100 100 100 100 100 100 100 100	- Simo Pin, Timber, Total III.
8082A PCB (20 ug/kg) or (MTCA 0.1 u,22-May-2018 15:00	10	14-May-2018 10:00	
18E0127-07 KSC-SB22 (GMT-08:00) Pacific T	2-GW-050718 [Water] Sampled	07-Mε	ny-2018 11:30	
(Chill bolob) I delile I	me (Co & Canada)			
A = Glass NM, Amber, 1000 n				

Printed: 5/8/2018 11:17:33AM

WORK ORDER

18E0127

Client: Dalton, Olmsted & Fuglevand, Inc Project Manager: Kelly Bottem

Project: Boeing Kent Space Center Project Number: [none]

 Analysis
 Due
 TAT
 Expires
 Comments

 18E0127-08
 KSC-SB23-GW-050718
 [Water]
 Sampled 07-May-2018 12:30

(GMT-08:00) Pacific Time (US & Canada)

A = Glass NM, Amber, 1000 mL B = Glass NM, Amber, 1000 mL

8082A PCB (20 ug/kg) or (MTCA 0.1 u/22-May-2018 15:00 10 14-May-2018 12:30

18E0127-09 KSC-SB24-GW-050718 [Water] Sampled 07-May-2018 13:30

(GMT-08:00) Pacific Time (US & Canada)

A = Glass NM, Amber, 1000 mL B = Glass NM, Amber, 1000 mL

8082A PCB (20 ug/kg) or (MTCA 0.1 u;22-May-2018 15:00 10 14-May-2018 13:30

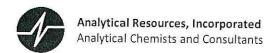
18E0127-10 KSC-SB25-GW-050718 [Water] Sampled 07-May-2018 15:00

(GMT-08:00) Pacific Time (US & Canada)

A = Glass NM, Amber, 1000 mL B = Glass NM, Amber, 1000 mL

8082A PCB (20 ug/kg) or (MTCA 0.1 u.22-May-2018 15:00 10 14-May-2018 15:00

18E0127-11 KSC-DUP-GW-050718 [Water] Sampled 07-May-2018 12:35

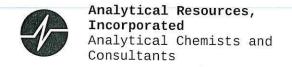

(GMT-08:00) Pacific Time (US & Canada)

A = Glass NM, Amber, 1000 mL B = Glass NM, Amber, 1000 mL

8082A PCB (20 ug/kg) or (MTCA 0.1 u;22-May-2018 15:00 10 14-May-2018 12:35

Reviewed By Date

Page 3 of 3


Cooler Receipt Form

ARI Client: DOF	Project Name:
COC No(s):NA	Delivered by: Fed-Ex UPS Courier Hand Delivered Other:
Assigned ARI Job No: 1860177	
Preliminary Examination Phase:	Tracking No: NA
Were intact, properly signed and dated custody seals attached	d to the outside of to cooler?
Were custody papers included with the cooler?	
	720 110
Were custody papers properly filled out (ink, signed, etc.) Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for of time:	chemistry) 542 1018
If cooler temperature is out of compliance fill out form 00070F	Cooler Temp Gun ID#: Possob
Cooler Accepted by:	22/11
	Date: OS/OS/IX Time: ON DS
Log-In Phase:	is and attach all snipping documents
Was a temperature blank included in the cooler?	YES NO
	rap Wet too Gel Packs Baggies Foam Block Paper Other:
Was sufficient ice used (if appropriate)?	NA YES NO
Were all bottles sealed in individual plastic bags?	VEC
Did all bottles arrive in good condition (unbroken)?	
Were all bottle labels complete and legible?	140
Did the number of containers listed on COC match with the num	mbor of contain 10
Did all bottle labels and tags agree with custody papers?	
Were all bottles used correct for the requested analyses?	
Do any of the analyses (bottles) require preservation? (attach p	
Were all VOC vials free of air bubbles?	
	1.20 110
Was sufficient amount of sample sent in each bottle?	
Date VOC Trip Blank was made at ARI	
Was Sample Split by ARI : NA YES Date/Time:	Equipment: Split by:
Samples Logged by:Da	te: <u>05/08/17</u> Time: 1058
** Notify Project Manag	ger of discrepancies or concerns **
Sample ID on Bottle Sample ID on COC	
Sample is on COC	Sample ID on Bottle Sample ID on COC
Additional Notes, Discrepancies, & Resolutions:	
The state of the s	
By: Date:	
Small Air Pubbles	Small → "sm" (< 2 mm)
-2mm Peabubles LARGE Air Bubbles > 4 mm	
	Peabubbles → "pb" (2 to < 4 mm)
	Large → "lg" (4 to < 6 mm)
	Headspace → "hs" (>6 mm)

0016F 3/2/10

Cooler Receipt Form

Revision 014

00070F

Cooler Temperature Compliance Form

ARI Work Order: 1860107		
Cooler#: Temp	erature(°C):	Y°C
Sample ID	Bottle Count	
Inteme	Bottle Count	Bottle Type
1		
	-	
Cooler#: Tempe	erature(°C):	100
Sample ID	Dattle Count	Bottle Type
Samples Received as	pore 6°C	-
V5/ 122 /1 57 215/		4.6
KSC-5022 - Ch - 050718	/	1646
1686-2003-6M-02018	2	1 LAC
165C-5B25-6W-050718 165C-5B25-6W-050718	1	ILAG
1/((-1)/2 - (1/2 050/18	2	LAG
165C-DUP-CW- 050718	1	1646
Cooler#:Tempe	erature(°C):	
Sample ID	Bottle Count	Bottle Type
		,,,,,,
Cooler#: Tempe	rature(°C):	
Sample ID	Bottle Count	Bottle Type
•		
Completed by:	Date	05/05/15

Cooler Temperature Compliance Form

Sampled: 05/07/2018 09:00

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSCRI-SB21-(1-3)-050718 18E0127-01 (Solid)

Aroclor PCB
Method: EPA 8082A

Instrument: ECD7 Analyzed: 18-May-2018 14:02

Sample Preparation: Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BGE0349 Sample Size: 6.06 g (wet) Dry Weight: 5.53 g
Prepared: 14-May-2018 Final Volume: 5 mL % Solids: 91.19

Prepared: 14-May-2018 Final Volume: 5 mL
Sample Cleanup: Cleanup Method: Sulfuric Acid

Cleanup Batch: CGE0102 Initial Volume: 5 mL
Cleaned: 18-May-2018 Final Volume: 5 mL

Sample Cleanup: Cleanup Method: Sulfur
Cleanup Batch: CGE0103 Initial Volume: 5 mL
Cleaned: 18-May-2018 Final Volume: 5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	7.2	18.1	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	7.2	18.1	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	7.2	18.1	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	7.2	18.1	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	7.2	18.1	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	7.2	18.1	20.3	ug/kg	
Aroclor 1260	11096-82-5	1	8.4	18.1	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	8.4	18.1	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	8.4	18.1	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	94.7	%	
Surrogate: Tetrachlorometaxylene				53-120 %	104	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	92.3	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	97.3	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSCRI-SB21-(1-3)-050718 18E0127-01 (Solid)

Extractions

Method: PSEP 1986 Sampled: 05/07/2018 09:00

Instrument: N/A Analyzed: 08-May-2018 12:34

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BGE0220 Sample Size: 1 g (wet)
Prepared: 08-May-2018 Final Volume: 1 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.01 91.19 %

Analytical Resources, Inc.

Sampled: 05/07/2018 10:30

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSCRI-SB22-(1-3)-050718 18E0127-02 (Solid)

Aroclor PCB
Method: EPA 8082A

Instrument: ECD7 Analyzed: 18-May-2018 14:24

Sample Preparation: Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BGE0349 Sample Size: 6 g (wet) Dry Weight: 5.59 g
Prepared: 14-May-2018 Final Volume: 5 mL % Solids: 93.21

Prepared: 14-May-2018 Final Volume: 5 mL %
Sample Cleanup: Cleanup Method: Sulfuric Acid

Cleanup Batch: CGE0102 Initial Volume: 5 mL
Cleaned: 18-May-2018 Final Volume: 5 mL

Sample Cleanup: Cleanup Method: Sulfur
Cleanup Batch: CGE0103 Initial Volume: 5 mL
Cleaned: 18-May-2018 Final Volume: 5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	7.2	17.9	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	7.2	17.9	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	7.2	17.9	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	7.2	17.9	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	7.2	17.9	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	7.2	17.9	ND	ug/kg	U
Aroclor 1260	11096-82-5	1	8.3	17.9	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	8.3	17.9	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	8.3	17.9	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	100	%	
Surrogate: Tetrachlorometaxylene				53-120 %	104	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	96.6	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	98.6	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSCRI-SB22-(1-3)-050718 18E0127-02 (Solid)

Extractions

Method: PSEP 1986 Sampled: 05/07/2018 10:30

Instrument: N/A Analyzed: 08-May-2018 12:34

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BGE0220 Sample Size: 1 g (wet)
Prepared: 08-May-2018 Final Volume: 1 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.01 93.21 %

Analytical Resources, Inc.

Sampled: 05/07/2018 11:00

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSCRI-SB23-(1-3)-050718 18E0127-03 (Solid)

Aroclor PCB
Method: EPA 8082A

Instrument: ECD7 Analyzed: 18-May-2018 14:46

Sample Preparation: Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BGE0349 Sample Size: 6.13 g (wet) Dry Weight: 5.60 g

Prepared: 14-May-2018 Final Volume: 5 mL % Solids: 91.30
Sample Cleanup: Cleanup Method: Sulfuric Acid

Cleanup Batch: CGE0102 Initial Volume: 5 mL
Cleaned: 18-May-2018 Final Volume: 5 mL

Sample Cleanup: Cleanup Method: Sulfur
Cleanup Batch: CGE0103 Initial Volume: 5 mL
Cleaned: 18-May-2018 Final Volume: 5 mL

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	7.1	17.9	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	7.1	17.9	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	7.1	17.9	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	7.1	17.9	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	7.1	17.9	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	7.1	17.9	ND	ug/kg	U
Aroclor 1260	11096-82-5	1	8.3	17.9	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	8.3	17.9	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	8.3	17.9	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	99.7	%	
Surrogate: Tetrachlorometaxylene				53-120 %	104	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	96.1	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	97.5	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSCRI-SB23-(1-3)-050718 18E0127-03 (Solid)

Extractions

Method: PSEP 1986 Sampled: 05/07/2018 11:00

Instrument: N/A Analyzed: 08-May-2018 12:34

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BGE0220 Sample Size: 1 g (wet)
Prepared: 08-May-2018 Final Volume: 1 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.01 91.30 %

Analytical Resources, Inc.

Sampled: 05/07/2018 11:45

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSCRI-SB24-(1-3)-050718 18E0127-04 (Solid)

Aroclor PCB
Method: EPA 8082A

Instrument: ECD7 Analyzed: 18-May-2018 15:09

Sample Preparation: Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BGE0349 Sample Size: 6.11 g (wet) Dry Weight: 5.46 g

Preparation Batch: BGE0349 Sample Size: 6.11 g (wet) Dry Weight: 5.46 g
Prepared: 14-May-2018 Final Volume: 5 mL % Solids: 89.36

Sample Cleanup: Cleanup Method: Sulfuric Acid
Cleanup Batch: CGE0102 Initial Volume: 5 mL

Cleaned: 18-May-2018 Final Volume: 5 mL
Sample Cleanup: Cleanup Method: Sulfur

Cleanup Batch: CGE0103 Initial Volume: 5 mL
Cleaned: 18-May-2018 Final Volume: 5 mL

eleaned: 10 May 2010	i mai voidine.	U 1112					
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	7.3	18.3	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	7.3	18.3	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	7.3	18.3	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	7.3	18.3	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	7.3	18.3	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	7.3	18.3	8.4	ug/kg	J
Aroclor 1260	11096-82-5	1	8.5	18.3	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	8.5	18.3	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	8.5	18.3	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	95.6	%	
Surrogate: Tetrachlorometaxylene				53-120 %	96.5	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	91.5	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	96.9	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSCRI-SB24-(1-3)-050718 18E0127-04 (Solid)

Extractions

Method: PSEP 1986 Sampled: 05/07/2018 11:45

Instrument: N/A Analyzed: 08-May-2018 12:34

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BGE0220 Sample Size: 1 g (wet)
Prepared: 08-May-2018 Final Volume: 1 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.01 89.36 %

Analytical Resources, Inc.

Sampled: 05/07/2018 14:00

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSCRI-SB25-(1-3)-050718 18E0127-05 (Solid)

Aroclor PCB
Method: EPA 8082A

Instrument: ECD7 Analyzed: 18-May-2018 15:31

Sample Preparation: Preparation Method: EPA 3546 (Microwave)
Preparation Batch: BGE0349 Sample Size: 6.01 g (wet) Dry Weight: 5.27 g

Prepared: 14-May-2018 Final Volume: 5 mL % Solids: 87.66
Sample Cleanup: Cleanup Method: Sulfuric Acid

Cleanup Batch: CGE0102 Initial Volume: 5 mL Cleaned: 18-May-2018 Final Volume: 5 mL

Sample Cleanup: Cleanup Method: Sulfur
Cleanup Batch: CGE0103 Initial Volume: 5 mL

Cleaned: 18-May-2018

,							
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	7.6	19.0	ND	ug/kg	U
Aroclor 1221	11104-28-2	1	7.6	19.0	ND	ug/kg	U
Aroclor 1232	11141-16-5	1	7.6	19.0	ND	ug/kg	U
Aroclor 1242	53469-21-9	1	7.6	19.0	ND	ug/kg	U
Aroclor 1248	12672-29-6	1	7.6	19.0	ND	ug/kg	U
Aroclor 1254	11097-69-1	1	7.6	19.0	ND	ug/kg	U
Aroclor 1260	11096-82-5	1	8.8	19.0	ND	ug/kg	U
Aroclor 1262	37324-23-5	1	8.8	19.0	ND	ug/kg	U
Aroclor 1268	11100-14-4	1	8.8	19.0	ND	ug/kg	U
Surrogate: Decachlorobiphenyl				40-133 %	93.6	%	
Surrogate: Tetrachlorometaxylene				53-120 %	97.5	%	
Surrogate: Decachlorobiphenyl [2C]				40-133 %	90.8	%	
Surrogate: Tetrachlorometaxylene [2C]				53-120 %	95.2	%	

Final Volume: 5 mL

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSCRI-SB25-(1-3)-050718 18E0127-05 (Solid)

Extractions

Method: PSEP 1986 Sampled: 05/07/2018 14:00

Instrument: N/A Analyzed: 08-May-2018 12:34

Sample Preparation: Preparation Method: No Prep-Organics

Preparation Batch: BGE0220 Sample Size: 1 g (wet)
Prepared: 08-May-2018 Final Volume: 1 g

Analyte CAS Number Dilution Result Units Notes

Total Solids 1 0.01 87.66 %

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSC-SB21-GW-050718 18E0127-06 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 05/07/2018 10:00
Instrument: ECD7			Analyzed: 18-May-2018 21:05
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BGE0280 Prepared: 10-May-2018	Sample Size: 1000 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CGE0106 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CGE0104 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CGE0105 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	

Cicalicu. 18-May-2018	Tillal volulile.	0.5 IIIL					
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	59.3	%	
Surrogate: Tetrachlorometaxylene				32-120 %	55.4	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	57.9	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	53.4	%	

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSC-SB22-GW-050718 18E0127-07 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 05/07/2018 11:30
Instrument: ECD7			Analyzed: 18-May-2018 22:12
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BGE0280 Prepared: 10-May-2018	Sample Size: 1000 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CGE0106 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CGE0104 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CGE0105 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	

	Cleaned: 18-May-2018	rinai voiume: ().5 IIIL					
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Anaryte		CAS Number	Dilution	Limit	Limit	Result	Ullits	Notes
Aroclor 1016		12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221		11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232		11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242		53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248		12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254		11097-69-1	1	0.002	0.010	0.008	ug/L	J
Aroclor 1260		11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262		37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268		11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobipheny	vl .				29-120 %	32.7	%	
Surrogate: Tetrachlorometaxy	lene				32-120 %	48.1	%	
Surrogate: Decachlorobipheny	vl [2C]				29-120 %	32.4	%	
Surrogate: Tetrachlorometaxy	lene [2C]				32-120 %	44.1	%	

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSC-SB23-GW-050718 18E0127-08 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 05/07/2018 12:30
Instrument: ECD7			Analyzed: 18-May-2018 22:34
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BGE0280 Prepared: 10-May-2018	Sample Size: 1000 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CGE0106 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CGE0104 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CGE0105 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	

Cleaned. 18	-Way-2018	rinai voiume: (IIIL					
Analyte		CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Aroclor 1016		12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221		11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232		11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242		53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248		12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254		11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260		11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262		37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268		11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl					29-120 %	66.7	%	
Surrogate: Tetrachlorometaxylene					32-120 %	55.6	%	
Surrogate: Decachlorobiphenyl [2C]					29-120 %	64.7	%	
Surrogate: Tetrachlorometaxylene [2C]					32-120 %	53.7	%	

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSC-SB24-GW-050718 18E0127-09 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 05/07/2018 13:30
Instrument: ECD7			Analyzed: 18-May-2018 22:56
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BGE0280 Prepared: 10-May-2018	Sample Size: 1000 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CGE0106 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CGE0104 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CGE0105 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	

			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	66.4	%	
Surrogate: Tetrachlorometaxylene				32-120 %	54.7	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	63.7	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	54.5	%	

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSC-SB25-GW-050718 18E0127-10 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 05/07/2018 15:00
Instrument: ECD7			Analyzed: 18-May-2018 23:19
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BGE0280 Prepared: 10-May-2018	Sample Size: 1000 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CGE0106 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CGE0104 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CGE0105 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	

Cicalica. 10-May-2010	i mai voiume.	J.J IIIL					
Analyte	CAS Number	Dilution	Detection Limit	Reporting Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	61.8	%	
Surrogate: Tetrachlorometaxylene				32-120 %	56.2	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	59.9	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	55.1	%	

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

KSC-DUP-GW-050718 18E0127-11 (Water)

Aroclor PCB

Method: EPA 8082A			Sampled: 05/07/2018 12:35
Instrument: ECD7			Analyzed: 18-May-2018 23:41
Sample Preparation:	Preparation Method: EPA 3510C SepF Preparation Batch: BGE0280 Prepared: 10-May-2018	Sample Size: 1000 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Silica Gel Cleanup Batch: CGE0106 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfuric Acid Cleanup Batch: CGE0104 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	
Sample Cleanup:	Cleanup Method: Sulfur Cleanup Batch: CGE0105 Cleaned: 18-May-2018	Initial Volume: 0.5 mL Final Volume: 0.5 mL	

Cicalicu. 18-May-2018	Tillai voiulle.	0.5 IIIL					
			Detection	Reporting			
Analyte	CAS Number	Dilution	Limit	Limit	Result	Units	Notes
Aroclor 1016	12674-11-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1221	11104-28-2	1	0.002	0.010	ND	ug/L	U
Aroclor 1232	11141-16-5	1	0.002	0.010	ND	ug/L	U
Aroclor 1242	53469-21-9	1	0.002	0.010	ND	ug/L	U
Aroclor 1248	12672-29-6	1	0.002	0.010	ND	ug/L	U
Aroclor 1254	11097-69-1	1	0.002	0.010	ND	ug/L	U
Aroclor 1260	11096-82-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1262	37324-23-5	1	0.003	0.010	ND	ug/L	U
Aroclor 1268	11100-14-4	1	0.003	0.010	ND	ug/L	U
Surrogate: Decachlorobiphenyl				29-120 %	62.9	%	
Surrogate: Tetrachlorometaxylene				32-120 %	52.0	%	
Surrogate: Decachlorobiphenyl [2C]				29-120 %	61.2	%	
Surrogate: Tetrachlorometaxylene [2C]				32-120 %	50.1	%	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc

Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1 Bellevue WA, 98007 Project Number: [none]
Project Manager: Natasya Gray

Reported: 22-May-2018 12:43

Aroclor PCB - Quality Control

Batch BGE0280 - EPA 3510C SepF

Instrument: ECD7 Analyst: JGR

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BGE0280-BLK1)				Prep	ared: 10-May	y-2018 Ar	alyzed: 18-	-May-2018	19:36		
Aroclor 1016	ND	0.002	0.010	ug/L							U
Aroclor 1221	ND	0.002	0.010	ug/L							U
Aroclor 1232	ND	0.002	0.010	ug/L							U
Aroclor 1242	ND	0.002	0.010	ug/L							U
Aroclor 1248	ND	0.002	0.010	ug/L							U
Aroclor 1254	ND	0.002	0.010	ug/L							U
Aroclor 1260	ND	0.003	0.010	ug/L							U
Aroclor 1262	ND	0.003	0.010	ug/L							U
Aroclor 1268	ND	0.003	0.010	ug/L							U
Surrogate: Decachlorobiphenyl	0.0136	<u></u>		ug/L	0.0200		68.0	29-120		<u></u>	<u> </u>
Surrogate: Tetrachlorometaxylene	0.0108			ug/L	0.0200		53.8	32-120			
Surrogate: Decachlorobiphenyl [2C]	0.0132			ug/L	0.0200		66.2	29-120			
Surrogate: Tetrachlorometaxylene [2C]	0.0106			ug/L	0.0200		52.8	32-120			
LCS (BGE0280-BS1)				Prep	ared: 10-May	y-2018 Ar	nalyzed: 18-	-May-2018	19:58		
Aroclor 1016	0.041	0.002	0.010	ug/L	0.0500		82.3	54-120			
Aroclor 1260	0.039	0.003	0.010	ug/L	0.0500		78.9	51-128			
Surrogate: Decachlorobiphenyl	0.0132			ug/L	0.0200		66.2	29-120			
Surrogate: Tetrachlorometaxylene	0.0105			ug/L	0.0200		52.3	32-120			
Surrogate: Decachlorobiphenyl [2C]	0.0130			ug/L	0.0200		65.0	29-120			
Surrogate: Tetrachlorometaxylene [2C]	0.0105			ug/L	0.0200		52.5	32-120			
Matrix Spike (BGE0280-MS1)	S	ource: 18E	20127-06	Prep	ared: 10-May	y-2018 Ar	nalyzed: 18-	-May-2018	21:28		
Aroclor 1016	0.040	0.002	0.010	ug/L	0.0500	ND	80.0	54-120			
Aroclor 1260	0.032	0.003	0.010	ug/L	0.0500	ND	64.0	51-128			
Surrogate: Decachlorobiphenyl	0.0116			ug/L	0.0200		58.1	29-120			
Surrogate: Tetrachlorometaxylene	0.0104			ug/L	0.0200		51.8	32-120			
Surrogate: Decachlorobiphenyl [2C]	0.0113			ug/L	0.0200		56.4	29-120			
Surrogate: Tetrachlorometaxylene [2C]	0.0103			ug/L	0.0200		51.4	32-120			
Recovery limits for target analytes in MS/MSD (QC samples are	advisory on	ly.								
Matrix Spike Dup (BGE0280-MSD1)	S	ource: 18E	20127-06	Prep	ared: 10-May	y-2018 Ar	nalyzed: 18-	-May-2018	21:50		
Aroclor 1016	0.040	0.002	0.010	ug/L	0.0500	ND	80.0	54-120	0.14	30	
Aroclor 1260	0.037	0.003	0.010	ug/L	0.0500	ND	74.0	51-128	13.90	30	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

Aroclor PCB - Quality Control

Batch BGE0280 - EPA 3510C SepF

Instrument: ECD7 Analyst: JGR

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Matrix Spike Dup (BGE0280-MSD1)	So	ource: 18E	E0127-06	Prepa	red: 10-May	y-2018 Ar	alyzed: 18-	May-2018 2	21:50		
Surrogate: Decachlorobiphenyl	0.0125			ug/L	0.0200		62.4	29-120			
Surrogate: Tetrachlorometaxylene	0.0105			ug/L	0.0200		52.3	32-120			
Surrogate: Decachlorobiphenyl [2C]	0.0122			ug/L	0.0200		60.9	29-120			
Surrogate: Tetrachlorometaxylene [2C]	0.0103			ug/L	0.0200		51.3	32-120			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc

Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1 Bellevue WA, 98007 Project Number: [none]
Project Manager: Natasya Gray

Reported: 22-May-2018 12:43

Aroclor PCB - Quality Control

Batch BGE0349 - EPA 3546 (Microwave)

Instrument: ECD7 Analyst: JGR

		Detection	Reporting		Spike	Source		%REC		RPD	
QC Sample/Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Blank (BGE0349-BLK1)				Prepa	red: 14-Ma	y-2018 An	alyzed: 18	-May-2018	13:17		
Aroclor 1016	ND	8.0	20.0	ug/kg							U
Aroclor 1221	ND	8.0	20.0	ug/kg							U
Aroclor 1232	ND	8.0	20.0	ug/kg							U
Aroclor 1242	ND	8.0	20.0	ug/kg							U
Aroclor 1248	ND	8.0	20.0	ug/kg							U
Aroclor 1254	ND	8.0	20.0	ug/kg							U
Aroclor 1260	ND	9.3	20.0	ug/kg							U
Aroclor 1262	ND	9.3	20.0	ug/kg							U
Aroclor 1268	ND	9.3	20.0	ug/kg							U
Surrogate: Decachlorobiphenyl	40.7			ug/kg	40.0		102	40-133			
Surrogate: Tetrachlorometaxylene	42.4			ug/kg	40.0		106	53-120			
Surrogate: Decachlorobiphenyl [2C]	39.2			ug/kg	40.0		98.1	40-133			
Surrogate: Tetrachlorometaxylene [2C]	40.4			ug/kg	40.0		101	53-120			
LCS (BGE0349-BS1)				Prepa	ared: 14-Ma	y-2018 An	alyzed: 18	-May-2018	13:39		
Aroclor 1016	540	8.0	20.0	ug/kg	500	-	108	52-120			
Aroclor 1260	505	9.3	20.0	ug/kg	500		101	57-120			
Surrogate: Decachlorobiphenyl	39.0			ug/kg	40.0		97.4	40-133			
Surrogate: Tetrachlorometaxylene	41.1			ug/kg	40.0		103	53-120			
Surrogate: Decachlorobiphenyl [2C]	37.7			ug/kg	40.0		94.2	40-133			
Surrogate: Tetrachlorometaxylene [2C]	40.0			ug/kg	40.0		100	53-120			
Matrix Spike (BGE0349-MS1)	S	ource: 18E	20127-05	Prepa	red: 14-Ma	v-2018 An	alvzed: 18	-May-2018	15:53		
Aroclor 1016	549	7.6	18.9	ug/kg	472	ND	116	52-120			
Aroclor 1260	505	8.8	18.9	ug/kg	472	ND	107	57-120			
Surrogate: Decachlorobiphenyl	37.5			ug/kg	37.8		99.2	40-133			
Surrogate: Tetrachlorometaxylene	39.5			ug/kg	37.8		105	53-120			
Surrogate: Decachlorobiphenyl [2C]	36.2			ug/kg	37.8		95.8	40-133			
Surrogate: Tetrachlorometaxylene [2C]	37.8			ug/kg	37.8		100	53-120			
Recovery limits for target analytes in MS/MSD Q	C samples are	advisory on	ly.								
Matrix Spike Dup (BGE0349-MSD1)	S	ource: 18E	20127-05	Prepa	ared: 14-Ma	y-2018 An	alyzed: 18	-May-2018	16:16		
Aroclor 1016	507	7.5	18.8	ug/kg	469	ND	108	52-120	7.98	30	
Aroclor 1260	458	8.7	18.8	ug/kg	469	ND	97.7	57-120	9.71	30	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

Aroclor PCB - Quality Control

Batch BGE0349 - EPA 3546 (Microwave)

Instrument: ECD7 Analyst: JGR

QC Sample/Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Matrix Spike Dup (BGE0349-MSD1)	So	urce: 18F	0127-05	Prepa	red: 14-Ma	y-2018 Ar	alyzed: 18-	May-2018 1	16:16		
Surrogate: Decachlorobiphenyl	36.1			ug/kg	37.5		96.3	40-133			
Surrogate: Tetrachlorometaxylene	38.8			ug/kg	37.5		103	53-120			
Surrogate: Decachlorobiphenyl [2C]	35.1			ug/kg	37.5		93.5	40-133			
Surrogate: Tetrachlorometaxylene [2C]	36.2			ug/kg	37.5		96.4	53-120			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

Certified Analyses included in this Report

Analyte	Certifications	
EPA 8082A in Solid		
Aroclor 1016	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1016 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1221	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1221 [2C]	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1232	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1232 [2C]	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1242	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1242 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1248	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1248 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1254	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1254 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1260	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1260 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1262	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1262 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1268	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1268 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
EPA 8082A in Water		
Aroclor 1016	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1016 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1221	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1221 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1232	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1232 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1242	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1242 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1248	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1248 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	
Aroclor 1254	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1254 [2C]	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1260	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1260 [2C]	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1262	WADOE, DoD-ELAP, NELAP, CALAP, ADEC	
Aroclor 1262 [2C]	WADOE,DoD-ELAP,NELAP,CALAP,ADEC	

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, IncProject: Boeing Kent Space Center1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

Aroclor 1268 WADOE, DoD-ELAP, NELAP, CALAP, ADEC
Aroclor 1268 [2C] WADOE, DoD-ELAP, NELAP, CALAP, ADEC

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	17-015	02/07/2019
CALAP	California Department of Public Health CAELAP	2748	06/30/2018
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	02/07/2019
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006-011	05/12/2019
WADOE	WA Dept of Ecology	C558	06/30/2018
WA-DW	Ecology - Drinking Water	C558	06/30/2018

Analytical Resources, Inc.

Dalton, Olmsted & Fuglevand, Inc Project: Boeing Kent Space Center

1420 - 156th Ave., NE STE C1Project Number: [none]Reported:Bellevue WA, 98007Project Manager: Natasya Gray22-May-2018 12:43

Notes and Definitions

J Estimated concentration value detected below the reporting limit.

U This analyte is not detected above the applicable reporting or detection limit.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.