Port of Longview TPH Site

Interim Action Work Plan

Prepared for

Port of Longview PO Box 1258 Longview, Washington 98632

August 24, 2018

LIMITATIONS This report has been prepared for the exclusive use of the Port of Longview, their authorized agents, and regulatory agencies. It has been prepared following the described methods and information available at the time of the work. No other party should use this report for any purpose other than that originally intended, unless Floyd | Snider agrees in advance to such reliance in writing. The information contained herein should not be utilized for any purpose or project except the one originally intended. Under no circumstances shall this document be altered, updated, or revised without written authorization of Floyd | Snider.

Table of Contents

1.0	Introd	uction	1-1			
2.0	Background2-1					
	2.1	CHEVRON PIPELINES	2-1			
	2.2	LONGVIEW FIBRE PIPELINE	2-1			
3.0	2016 S	pill Response	3-1			
4.0	Pipe C	ontent Analytical Results	4-1			
5.0	Projec	t Team	5-1			
6.0	Propos	sed Removal Action	6-1			
7.0	Best N	lanagement Practices	7-1			
8.0	Health	and Safety and Environmental Controls	8-1			
9.0	Permit	ting	9-1			
	9.1	STATE ENVIRONMENTAL POLICY ACT REQUIREMENTS	9-1			
	9.2	APPLICABLE FEDERAL, STATE, AND LOCAL PERMIT REQUIREMENTS	9-1			
10.0	Schedu	ıle1	0-1			
11.0	Report	ting1	1-1			
12.0	References					
		List of Tables				
Table 4	1 1	List of Tables Summary of Pine Analytical Results				
Table 4	1.1	List of Tables Summary of Pipe Analytical Results				
Table 4	4.1					
		Summary of Pipe Analytical Results				
		Summary of Pipe Analytical Results List of Figures				
	1.1	Summary of Pipe Analytical Results List of Figures Site Map				
Figure	1.1	Summary of Pipe Analytical Results List of Figures Site Map List of Drawings				
Figure	1.1 ng G1	List of Figures Site Map List of Drawings Berths 1 and 2 Abandoned Fuel Pipe Site Plans				
Figure Drawir	1.1 ng G1 dix A	List of Figures Site Map List of Drawings Berths 1 and 2 Abandoned Fuel Pipe Site Plans List of Appendices				
Figure Drawin	1.1 ng G1 dix A dix B	List of Figures Site Map List of Drawings Berths 1 and 2 Abandoned Fuel Pipe Site Plans List of Appendices Laboratory Results				

List of Acronyms and Abbreviations

Acronym/

Abbreviation Definition

AST Aboveground storage tank

BMP Best management practices

Ecology Washington State Department of Ecology

NRC NRC Environmental Services

NWP Nationwide Permit

Port of Longview

SEPA State Environmental Policy Act

TS Transit Shed

USACE U.S. Army Corps of Engineers

USCG U.S. Coast Guard

WAC Washington Administrative Code

1.0 Introduction

This Interim Action Work Plan describes how abandoned fuel pipelines lying under Berths 1 and 2 at the Port will be removed. Removal of the pipes as an interim action is necessitated by the deteriorating condition of the pipes.

In the 1920s, Standard Oil Company and Longview Fibre Company installed pipelines to transfer petroleum products from ships docked at the Port of Longview (Port) Berths 1 and 2 (berths; Figure 1.1). The exposed pipelines were supported by infrastructure under the berths and entered the uplands through the bulkhead and continued below ground from the berths to both the Standard Oil Company bulk tank farm, which still exists but is now owned by Wilson Oil, and a former 80,000-barrel aboveground storage tank (AST) once owned by Longview Fibre Company, Crown Zellerbach, and the Port; the AST was removed in 1995. The Standard Oil Company pipelines, which Wilson Oil operated, transferred gasoline, diesel, stove oil, Bunker C, and PS 300 fuels from ships docked at the berths via the pipelines to the bulk tank farm. Bunker C fuel- and petroleum-contaminated ballast water was sent to the AST via a separate pipeline. The 80,000-barrel AST and four known underground storage tanks (USTs) were abandoned in place and/or removed in various phases between 1986 and 1992. No on-going petroleum distribution is occurring at the Port and, to the extent possible, all known potential sources of petroleum hydrocarbons have been removed.

Releases of hydrocarbons to Site soil and groundwater were subsequently discovered in the vicinity of the buried pipes, AST, and USTs. Cleanup of these releases to upland soil and groundwater and removal of the historical pipes underneath Berths 1 and 2 will be the focus of the upcoming Agreed Order between the site potentially liable parties and the Washington State Department of Ecology (Ecology).

In March 2016, small amounts of petroleum product were released from the abandoned pipelines under the berths to the Columbia River through two separate corroded areas. The Port took immediate spill response measures, including deploying a boom around the dock in the area of the spill and stopping the leak. The Port reported the releases to the U.S. Coast Guard (USCG) and Ecology. The USCG dispatched personnel to investigate. The USCG found that while the initial response actions were appropriate, the Port needed to develop a spill response plan to insure continued monitoring until a final action could be developed that would address future spillage potential. In addition, a fine of \$250.00 was levied to the Port. After consultation with Ecology, it was determined that the final action should be conducted under Ecology's authority.

The work described in this plan to remove the historical pipes and permanently eliminate future spillage potential will be conducted as an interim action under an Agreed Order between Ecology and the Port. As described in Washington Administrative Code (WAC) 173-340-430, an interim action is "a remedial action that is technically necessary to reduce a threat to human health or the environment by eliminating or substantially reducing one or more pathways for exposure to a hazardous substance" and/or "corrects a problem that may become substantially worse or cost substantially more to address if the remedial action is delayed."

Given that the historical pipelines underneath Berths 1 and 2 present an ongoing risk of a release that may become substantially worse or cost substantially more to address if the remedial action is delayed, Ecology has determined that an interim action is warranted under WAC 173-340-430.

2.0 Background

Since 1926, several pipelines have been constructed and used to transport a variety of petroleum products from ships berthed on the Columbia River to the former Standard Oil/Chevron bulk facility and to an 80,000-barrel AST and a fuel transfer facility (loading rack) that were operated and maintained by Longview Fibre (refer to Figure 1.1). These petroleum products included stove oil, Bunker C, PS300 fuel (a heavy fuel oil also referred to as No. 5 oil), gasoline, and diesel.

2.1 CHEVRON PIPELINES

By 1944, Standard Oil was operating a set of four pipelines along this route, which bends to the east south of the former mechanic's shop, extends several hundred feet to the east, and then bends to the south, where it emerges at the shoreline beneath Berth 2. Between 1955 and 1973, Standard Oil constructed a new set of pipelines to re-route the southern portion of their pipelines, and reportedly abandoned in place the older pipelines at that time (Golder 1994). These newer pipelines continued south from the bend directly to the shoreline at Berth 1. In 1983 or 1984, Chevron shut down all the pipelines from the berth to their bulk facility, and reportedly decommissioned the remaining operable lines by cleaning the lines and placing a concrete plug at both ends; however, documentation of this is lacking (Golder 1994). In 1984, the former Standard Oil bulk plant facility was sold to Wilcox and Flegel.

2.2 LONGVIEW FIBRE PIPELINE

The former 80,000-barrel AST was supplied from a pipeline that begin on a wharf on the Columbia River in the present location of Berth 2. This infrastructure was operated from 1935 to 1973 primarily to transfer and store Bunker C fuel from tanker ships for use as boiler fuel by Longview Fibre. The pipelines also carried PS300 fuel (#5 fuel oil). In 1973, Crown Zellerbach purchased the AST from Longview Fibre; rather than using the former Longview Fibre pipeline, Crown Zellerbach used the Chevron-owned pipeline to transport Bunker C to a cross-over valve, which then entered the Longview Fibre pipeline at a location very close to the AST (Wilson Oil 1993). Product was not stored in the AST between 1975 and 1976. During portions of 1977 and 1978, Crown Zellerbach used the Longview Fibre pipeline and the AST to store and transfer petroleum-impacted ballast waters from ships (Golder 1994). The AST does not appear to have been used following its sale to the Port in 1983 and subsequent removal in 1995. The fuel loading rack was operated by Longview Fibre from the 1930s to the 1970s, reportedly to load fuel, including Bunker C, from ships and the AST into railroad tank cars for transport to the Longview Fibre facility.

3.0 2016 Spill Response

On February 17, 2016, Port personnel noticed a small petroleum sheen on the water in front of Berth 1. The cause of the sheen was found to be drippage from a corroded section of a former pipeline underneath the berth. The material that was dripping and causing the sheen appeared to be a heavy fuel oil, such as Bunker C. Two booms (inner and outer) were deployed to contain the sheen and oil adsorbent pads were used to collect any oil within the booms. A bucket was placed under the pipe to control the drippage followed by cutting and plugging the leaking area. The National Response Center, USCG, and Ecology were notified within hours of discovery as well as NRC Environmental Services (NRC), the Port's spill response contractor. The USCG responded by inspecting the situation and requesting the Port provide a response plan. The Port developed an initial response plan to inspect the booms and check on the pipe and plug daily and to eventually remove the pipes. No further drips were noted after the hole was plugged. Therefore, on February 25, the outer perimeter, yellow, hard boom with apron boom was removed, leaving the soft, oil-only adsorbent inner boom around the water directly under the area of pipe leakage.

On March 4, a second leak was discovered close to the location of the first leak but from another pipeline underneath the berths. It is suspected that the initial activity in responding to the leak caused a shift in the adjacent pipelines, resulting in the second leak. The Port responded by redeploying the hard boom on the outer perimeter and using oil-only adsorbent booms and adsorbent pads, as was done before. Due to the advanced corrosion on that section of pipe, it was not possible to cut and plug the leak. Therefore, the Port had to evacuate the product in that section of pipe and place a bucket with pads under the pipe to contain any remaining drippage. The collected product appeared to be a lighter petroleum product such as kerosene.

The hard boom, sorbent boom, and suspended buckets continue to be deployed and monitored. In April 2017, with no further leaking being observed since March 4, the hard boom was removed leaving only the sorbent boom and buckets in place. Port staff inspect the pipes weekly for additional leaks.

Drawing G1 is an aerial plan view of the full extent of the pipelines under Berths 1 and 2 that contains details as to the number, size, and length of each pipeline, including the locations of the two leaks. In general, there are five distinct pipelines, labelled by the Port on Drawing G1 as A, B, C, D, and E. A sample of the leaking material from the pipeline that initially leaked (noted as Pipeline C) was collected on February 18. A sample of the leaking material from the second leaking, Pipeline B, was collected on March 28. Samples of product in Pipelines D and E were collected in late March as well. An attempt was made at sampling Pipeline A, but this pipeline was found to be empty at a low point in the line.

4.0 Pipe Content Analytical Results

In total, samples of product from four pipelines were collected and submitted to either ALS Laboratories or Specialty Analytical. Samples were tested for product identification, presence of chloride, volatile, and semivolatile organic compounds, polychlorinated biphenyls (PCBs), and metals. Results confirm that the residual products in the pipes were consistent with the historical record of use (i.e., diesel and Bunker C type fuels). The lack of a fluid sample from Pipe A suggested the possibility this pipeline was used to transport gasoline, and that residual gasoline left in the pipeline at abandonment has since evaporated. Laboratory results from the testing of the four samples are included in Appendix A. Field notes by Port personnel as to how each sample was collected are provided in Appendix B. Table 4.1 provides a summary of the results.

5.0 Project Team

The project will be performed by the following parties:

- Port of Longview. The Port has overall responsibility for the project, as well as physical removal of the pipes and disposal of any wastes generated. All work will be conducted by Port Trade Union Labor, except for testing and evacuation of pipes for gases/vapors, spill response, hauling, and manifesting for disposal.
- NRC. NRC is responsible for development of the Health and Safety Plan, oversight of the waste evacuation from pipes, manifesting of the waste, and coordination of hauling the waste. They will also provide spill response support for the project, if required.
- Sound Testing, Inc. Sound Testing will be responsible for assessing the concentration
 of oxygen, carbon dioxide, and explosive gases within the pipes prior to pipe removal
 and inerting pipes, if necessary.
- **Floyd|Snider.** Floyd|Snider will provide general assistance in project planning and will be responsible for project documentation and reporting.

6.0 Proposed Removal Action

The removal action will remove the abandoned pipelines, A through E, exposed under Berths 1 and 2 (refer to Sheet 1 of Drawing G1). The demolition of the pipelines is proposed to occur in sequential steps as described below:

- 1. Prior to any start of work, proper best management practices (BMPs) will be in place upland and in-water.
- 2. Electrical and/or plumbing work will be conducted prior to or concurrent with pipe removal to ensure no disruption in service occurs during pipe removal work.
- 3. Under dock scaffolding will be constructed under and around the pipes for Berth 1 and Berth 2 pipe removal. Current catwalks will be utilized as much as possible; however, much of the pipeline length runs parallel to the existing catwalks. This scaffolding will be constructed and removed by Port labor. Proper BMPs will be employed during construction and removal of the scaffolding. No treated wood will be used in construction of the scaffolding. No work will be conducted in-water or below the ordinary high-water mark.
- 4. A section (12 feet by 20 feet) of the concrete deck of the dock between Berths 1 and 2 will be cut to allow pipe section removal. The decking will be cut by Port labor via a concrete saw for the pavement and a chainsaw for the creosote timber decking underneath. Demolition materials will be placed in a drop box on the upland side of the dock behind the bulkhead line or within Transit Shed (TS) 1 or 2 and will be hauled off and disposed of at an appropriate facility once the project is completed.
- 5. Prior to removal of the pipes, a marine chemist will test the atmosphere inside each pipe to ensure there is no potential for ignition of flammable gases/vapors. If gases/vapors are found, measures will be taken to remove such gases/vapors to levels that are not potentially explosive.
- 6. Prior to removal of the pipes, all liquids will be evacuated as much as possible. Three of the five pipes have heavy viscous fuel (pipes C, D, and E; refer to Drawing G1). Pipe B was evacuated as much as possible through the Port's investigative sampling process; however, there is still potential for residuals within that pipeline. Pipe A was determined at the time of investigative sampling to not have product. Both pipelines A and B will be examined again, and evacuated as needed, prior to removal. A vacuum truck may assist with the evacuation of liquids.
- 7. The pipelines will be removed individually beginning at the downstream end of Berth 1 and working upstream to Berth 2. Each pipe will be cut by reciprocating saw (or something similar) into sections approximately 10 feet in length (dependent on the pipe weight and location of the cut).
- 8. The pipe ends will be elevated as much as possible to allow any residual liquids to flow toward the low point. The upper end of the pipe will then be cut and capped with a Plumber's plug, balloon, or other type plug. The pipe will then be elevated in

the opposite direction to allow for any residual liquids to flow toward the capped end; that end will be cut and plugged. This will continue until the entire pipe has been removed, as repeated at subsequent pipes.

9. Each section of capped pipe will be hand-moved, and/or moved through an alternative system yet to be determined, carried along the scaffolding and/or catwalk under the berth to the opening in the dock decking and lifted out via crane and placed into drop boxes for disposal or for product recovery. The drop box staging area will be within Transit Shed (TS) 2. TS 1 may also be used if additional space is needed.

The pipes will be vacuumed via vacuum truck prior to removal from under the berth; however, there may be some residual product in the pipes. If that is the case, the Port will try and remove the product again by vacuum truck for recycling if possible. This activity will be conducted within TS 2.

Although the drop boxes will be lined to eliminate potential leaks, an added precaution will be employed. The Port will place absorbents on the bottom of the lined drop boxes (refer to Sheet 3 of Drawing G1). All drop boxes will be hauled as needed to appropriate landfills based on the analysis previously performed or additional analysis as needed. Analysis will be coordinated with Floyd|Snider, and drop box removal will be coordinated with NRC.

The containment system at Berth 1 is part of the Port's wastewater infrastructure and permitted through the Port's State Waste Discharge Permit (permit #ST6081). Operation of the infrastructure is documented in the Port of Longview Industrial Wastewater Discharge Permit Compliance Manual, attached as Appendix C. Appendix C provides the Outfall 001 Discharge Procedures (Section 11 of the compliance manual) and flow diagram (Appendix B of the compliance manual). Further, refer to Sheet 3 of Drawing G1 to identify the catch basin numbers and valve locations.

In summary, Berth 1 consists of an area that can capture process water and incidental stormwater through a series of daisy-chained catch basins to a sump pump system, from which the captured water is pumped to a Rain for Rent tank(s). Catch basins 101 and 111 are fitted with hand valves to either allow stormwater to be discharged to the river through under-dock piping or redirected through alternate piping to the catch basin where the sump pump is located. This allows for collection of process water and incidental stormwater within the contained area.

Disposal of the process water and incidental stormwater, as outlined in Appendix C, will be modified for this project. Collected water will be handled as follows:

a. Water captured in the Rain for Rent tank(s) will be sampled and profiled to determine whether there are hazardous wastes that would preclude the Port from discharging waste waters from Outfall 004 per the Port's wastewater

- permit parameters. The Port will confer with Don Reif at Ecology, as well as with Floyd | Snider, on analysis parameters.
- b. If water analysis determines that discharge through Outfall 004 is possible, the Port will contact and gain approval from Don Reif, Ecology, and Duane Leaf, Three Rivers Regional Wastewater Authority, prior to any discharge.
- c. If water analysis determines that the water cannot be discharged through Outfall 004, the Port will have the water disposed of at an appropriate facility. This will be coordinated with the vacuum truck contractor, Flyod|Snider, and NRC.

Waste fluids generated from the vacuum truck will be managed and coordinated with the vacuum truck contractor, Floyd|Snider, and NRC. No hazardous wastes are expected be generated.

- 10. The Port operates under an Industrial Stormwater General Permit (WAR001242). To satisfy compliance under this permit, any bulk commodity imported or exported across Berth 1 is done within this containment area, and the process water and incidental stormwater collected are treated through one of the Port's permitted wastewater treatment facilities. In this instance, the process water and incidental stormwater collected will be evaluated as discussed above prior to disposal. Nevertheless, this activity complies with both the Industrial Stormwater General Permit and Waste Discharge permit.
- 11. Once pipes are removed, scaffolding under the deck will be removed and the hole in the concrete decking will be replaced. All installed BMPs, including in-water boom, will remain in place until construction is complete.

7.0 Best Management Practices

The Port proposes to utilize the following BMPs during the removal of pipelines:

- 1. The Port has acquired, and work will comply with, the general, regional, and specific conditions of a U.S. Army Corps of Engineers (USACE)-issued Nationwide Permit (NWP) No. 38 for "cleanup of hazardous and toxic waste."
- 2. Equipment used for this project will not operate in-water, but work will occur over water, waterward of the ordinary high-water mark.
- 3. Equipment will include a Port crane for lifting the pipe from under the berth, vacuum truck, spill response boom and equipment, and hand-held saws and tools. The crane will be located upland away from the water and catch basins, and it will be parked within the containment area at Berth 1. All hand tools will be stored at the maintenance yard when not being used. Spill response equipment (i.e., boom) will be left in place until construction is complete. A spill response trailer is stationed on the downstream side of TS 1 if additional equipment is needed.
- 4. Equipment will be checked daily for leaks and before using the equipment near the water. Any required repairs will be completed at the Port's mechanic shop or maintenance yard.
- 5. Preventative spill measures will include the following:
 - a. Deploy appropriate boom within the area of decking and pipe removal prior to and during removal actions.
 - b. Make appropriate spill materials available for use within the area of construction.
 - c. NRC will be on site for pipe disposal management and spill response services.
 - d. When possible, sorbent material will be placed below pipelines at the cut locations, within the immediate area of the lined drop boxes, and near the temporary dock opening to prevent spills from reaching the river.
 - e. Lined (i.e., adsorbent placed on plastic) drop boxes will either be covered in place or located within TS 2 (alternatively TS 1) to prevent stormwater encountering residual contaminates.
- 6. Construction/Deconstruction: Prevent project contaminants, such as petroleum products, hydraulic fluid, concrete, sediments, sediment-laden water, chemicals, or any other toxic or harmful materials from entering or leaching into waters of the state by:
 - a. Use of tarps or other methods to prevent wood, sawdust, trimmings, drill shavings, concrete, and other debris from contacting the bed or waters of the state.

- b. Evacuating any liquid materials prior to under-dock removal via a vacuum truck from the dock.
- c. Installing end caps to the fuel pipeline sections during removal, such as Plumber's plugs, balloons, or other such materials to ensure no hazardous liquids enter the water.
- d. Use of contained area on Berth 1 where process water and incidental stormwater can be piped to a Rain for Rent tank.
- e. Ensure that all drop boxes are covered if on dock, or moved into TS 2 during non-activity or at end of work day.
- f. Placing a containment boom in water around the work area to confine sawdust dispersal. The containment boom will be gathered, and the collected sawdust disposed of after completion of work. Water used during the cutting/boring process and the combined water and concrete dust (slurry) will all be vacuumed up during cutting/boring so that little or no slurry enters the water. Larger debris/materials/waste with a potential to fall into the river will be caught by prepositioned webbing/hangers. This work will occur from the dock.
- 7. Prior to removal of the pipes, the Port will have a marine chemist test the pipe atmospheres for any gases/vapors. If potentially explosive vapors are found, the atmosphere in the pipelines will be inerted to ensure safe removal.

8.0 Health and Safety and Environmental Controls

Appendix D to this document contains the Health and Safety Plan prepared by NRC, who will provide support for this project to the Port.

9.0 Permitting

The proposed work is not subject to review for compliance with the Shoreline Management Act or a demolition permit from the City of Longview. The pipeline removal will be performed under the Model Toxics Control Act. WAC 173-340-710 which provides an exemption for those procedural requirements of all relevant and appropriate requirements (ARARs) related to the onsite remedial actions. This exemption waives the responsibility to obtain such approvals but does not provide relief of the need to perform the work in a manner that satisfies the substantive requirements of those ARARs. The proposed removal and best management practices will meet the required ARARs.

The pipeline work will require review through Washington State Environmental Policy Act and a Nation Wide Permit from the U.S. Army Corps of Engineers Portland District.

9.1 STATE ENVIRONMENTAL POLICY ACT REQUIREMENTS

The Washington State SEPA Rules described a "demolition" in WAC 197-11-800(2)(g), which specifically exempts demolition projects where the construction of such structures would be exempt under WAC 197-11-800(1) and (2). These construction exemptions do not apply to petroleum pipelines, and therefore the demolition of such structures is not exempt from SEPA review. The Port, as a municipal corporation of the State of Washington, has SEPA lead official authority. The Port's SEPA Resolution 2014-6 adopts the state's policies and procedures under Chapter 43.21C RCW and WAC 197-11. However, the Port recognizes the efficiency of having Ecology act in the SEPA lead official role for the environmental review of the pipeline demolition, and the MTCA Interim Action and Agreed Order process. The Port will work in collaboration with Ecology throughout the SEPA process. The Port will provide the SEPA checklist to Ecology for determination and the SEPA comment period with be combined with the 30-day comment period of the interim action work plan. Once comments are addressed, work would begin on this project.

9.2 APPLICABLE FEDERAL, STATE, AND LOCAL PERMIT REQUIREMENTS

This project is within the regulatory purview of the USACE under a NWP 38. The NWP 38 provides federal authorization for specific activities required to clean up hazardous and toxic waste, and such an authorization is required for projects within waters of the state. The pipeline removal is consistent with the activities authorized under NWP 38, and the Port has acquired this approval. The Port has reviewed the general conditions associated with the NWP and has determined that the work will substantively comply with the general conditions related to project construction. Compliance with these general conditions will ensure that potential adverse effects to the Columbia River are avoided and minimized, and that the project is conducted in a manner that meets USACE approval.

The Port operates under an Industrial Stormwater General Permit (WAR001242) and an Industrial Wastewater Permit (ST6081). All work will be in conformance with the Port's current permit requirements (refer to item 9 in Section 6.0).

The Washington State Shoreline Management Act (90.58 RCW and WAC 173-27) and the City of Longview's Shoreline Master Program (LMC 17.60) do not require application for a substantial development permit or an exemption for this project. This project is not considered development and therefore not within the jurisdiction of said regulations.

10.0 Schedule

The work will commence following Ecology approval of this document and in accordance with the schedule in the Agreed Order. The interim action is expected to require 6 to 8 weeks to complete and will be considered complete once demobilization has occurred. Ecology will be notified within 48 hours of demobilization. An Agency Review Draft Interim Action Report will be submitted to Ecology for review and approval within 60 calendar days of completion of the interim action.

11.0 Reporting

The work will be documented in an Interim Action Report submitted to Ecology for approval after completion of field activities and in accordance with the schedule in the Agreed Order. The report will include a description of the work performed and include appendices with representative photographs and all analytical reports (if generated), as well as any copies of waste disposal manifests.

During the period of work itself, Ecology will receive weekly updates from the Port as to the work accomplished the prior week and the work expected to be accomplished the upcoming week.

12.0 References

- Golder Associates (Golder). 1994. Phase IV Characterization Report, Bunker C and Diesel Fuel Investigation, Port of Longview. 7 December.
- Wilson Oil, Inc. (Wilson Oil). 1993. Letter from Steve Wilcox, Wilson Oil, to Judy Grigg, Port of Longview re: Golder and Associates Report. 29 September.

Port of Longview TPH Site Interim Action Work Plan

Table

Table 4.1 Summary of Pipe Analytical Results

Samula ID Rive C Rive D Rive D Rive D					
	Sample ID	Pipe C	Pipe B	Pipe D	Pipe E
Analyte	Units				
General Chemistry	T				
Ignitability (Flash Point)	°F	>230	>140	>140	>140
Chloride	mg/kg	50 Ui	23	18	45
Hydrocarbon Fuel Fingerpri	nt by 8015M				
Automatic Trans Fluid	mg/kg		5,000 U	10,000 U	10,000 U
Hydraulic Oil	mg/kg		5,000 U	10,000 U	10,000 U
Gasoline	mg/kg		2,000 U	4,000 U	4,000 U
Mineral Spirits	mg/kg		2,000 U	4,000 U	4,000 U
Kerosene	mg/kg		5,000 U	10,000 U	10,000 U
Diesel	mg/kg		>99%	538,000	229,000 K
Oil	mg/kg		10,000 U, A3	295,000 A2	292,000 A2
Total Petroleum Hydrocarbo	on by 8015C				
Diesel-Range Organic	mg/kg	400,000 DY			
Residual-Range Organic	mg/kg	200,000 DY			
Total Metals by 6020A & 74	71B				
Arsenic	mg/kg	1.8 U	0.471 U	0.485 U	0.533
Barium	mg/kg	0.4 U	0.471 U	0.485 U	0.532 U
Cadmium	mg/kg	0.09 U	0.0943 U	0.0971 U	0.106 U
Chromium	mg/kg	0.4 U	0.943 U	0.971 U	1.06 U
Lead	mg/kg	0.9 U	0.236 U	0.243 U	2.94
Mercury	mg/kg	0.02 U	0.0159 U	0.0143 U	0.0168 U
Nickel	mg/kg	NA	0.471 U	51.3	38.3
Selenium	mg/kg	3	0.943 U	0.971 U	1.06 U
Silver	mg/kg	0.4 U	0.0943 U	0.0971 U	0.106 U
Zinc	mg/kg	1.4	4.71 U	4.85 U	5.32 U
Semivolatile Organics (Dete	cted Analyte	es Only) by 8270	D		
1-Methylnaphthalene	mg/kg		NA	2,550	823
2-Methylnaphthalene	mg/kg	3,800 D	NA	3,440	1,040
Acenaphthene	mg/kg	180 D	NA	199	113
Acenaphthylene	mg/kg	67 D	NA	100 UQ	100 UQ
Anthracene	mg/kg	97 D	NA	100 UQ	100 UQ
Benz(a)anthracene	mg/kg	620 D	NA	458	100 UQ
Benzo(a)pyrene	mg/kg	270 D	NA	237	100 UQ
Benzo(b)fluoranthene	mg/kg	170 DX	NA	159	100 UQ

Table 4.1 Summary of Pipe Analytical Results

	Sample ID	Pipe C	Pipe B	Pipe D	Pipe E
Analyte	Units	-			-
Semivolatile Organics (Detected Analytes Only) by 8270D (cont.)					
Benzo(g,h,i)perylene	mg/kg	73 D	NA	100 UQ	100 UQ
Chrysene	mg/kg	980 D	NA	890	100 UQ
Dibenzofuran	mg/kg	140 D	NA	100 UQ	100 UQ
Fluoranthene	mg/kg	62 D	NA	100 UQ	100 UQ
Fluorene	mg/kg	320 D	NA	294	135
Naphthalene	mg/kg	1,100 D	NA	1,270	311
N-Nitrosodiphenylamine	mg/kg	380 D*	NA	100 UQ	100 UQ
Phenanthrene	mg/kg	760 D	NA	714	577
Pyrene	mg/kg	490 D	NA	478	229
Volatile Organics (Detected	Analytes On	ly) by 8260B			
1,2,4-Trimethylbenzene	mg/kg	230	406	516	168
1,3,5-Trimethylbenzene	mg/kg	49	90.3	125	52.9
4-Isopropyltoluene	mg/kg	20 U	32.5	19.9	22
Ethylbenzene	mg/kg	15	22.4	48.2	25.7
Isopropylbenzene	mg/kg	20 U	14.8	44.5	10.4
m,p-Xylene	mg/kg	77	102	190	107
Naphthalene	mg/kg	780 *	635	1140	366
n-Butylbenzene	mg/kg	75	81.8	62.4	17.2
n-Propylbenzene	mg/kg	20 U	58.4	55.3	22.7
o-Xylene	mg/kg	38	59.5	97.9	54.2
sec-Butylbenzene	mg/kg	20 U	31	20.4	10
Toluene	mg/kg	27	10 U	51.4	35.9
Polychlorinated Biphenyls (F	PCBs) by 808	32A			
Aroclor 1016	mg/kg	0.98 Ui	1.3 U	1.1 U	1.04 U
Aroclor 1221	mg/kg	1.9 U	1.3 U	1.1 U	1.04 U
Aroclor 1232	mg/kg	0.93 U	1.3 U	1.1 U	1.04 U
Aroclor 1242	mg/kg	0.93 U	1.3 U	1.1 U	1.04 U
Aroclor 1248	mg/kg	0.93 U	1.3 U	1.1 U	1.04 U
Aroclor 1254	mg/kg	0.93 U	1.3 U	1.1 U	1.04 U
Aroclor 1260	mg/kg	0.93 U	1.3 U	1.1 U	1.04 U
Aroclor 1262	mg/kg	NA	1.3 U	1.1 U	1.04 U
Aroclor 1268	mg/kg	NA	1.3 U	1.1 U	1.04 U
PCBs (Total, Aroclor)	mg/kg	1.9 U	1.3 U	1.1 U	1.04 U

Table 4.1
Summary of Pipe Analytical Results

	Sample ID	Pipe C	Pipe B	Pipe D	Pipe E	
Analyte	Units					
Total Halogens by 9076 or Total Chloride by 9056A						
Total Halogens or Chloride	mg/kg	50 Ui	23	18	45	

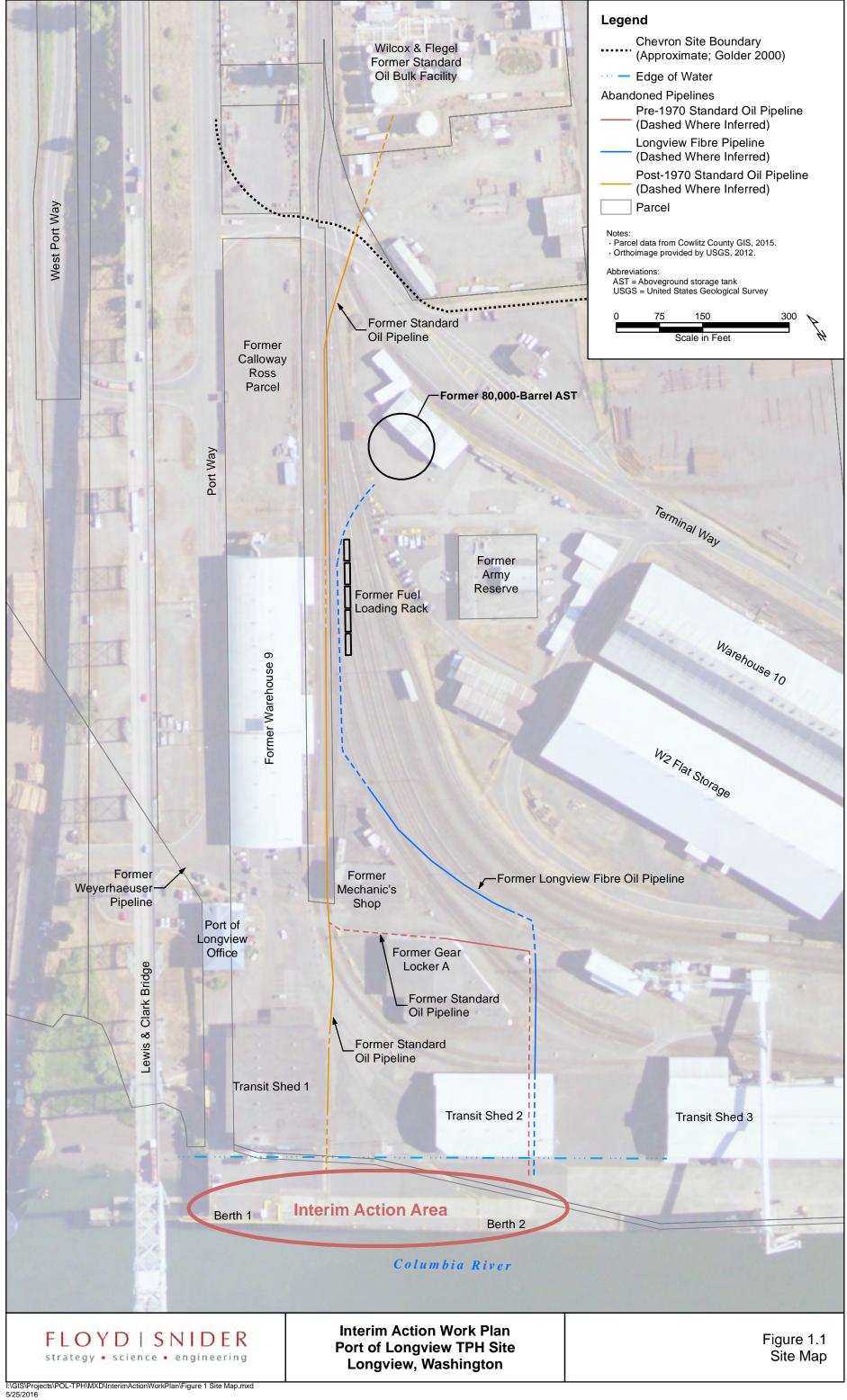
Note:

Berth Oil Pipe B sample was analyzed by ALS Kelso, all other samples analyzed by Specialty Analytical.

Abbreviations

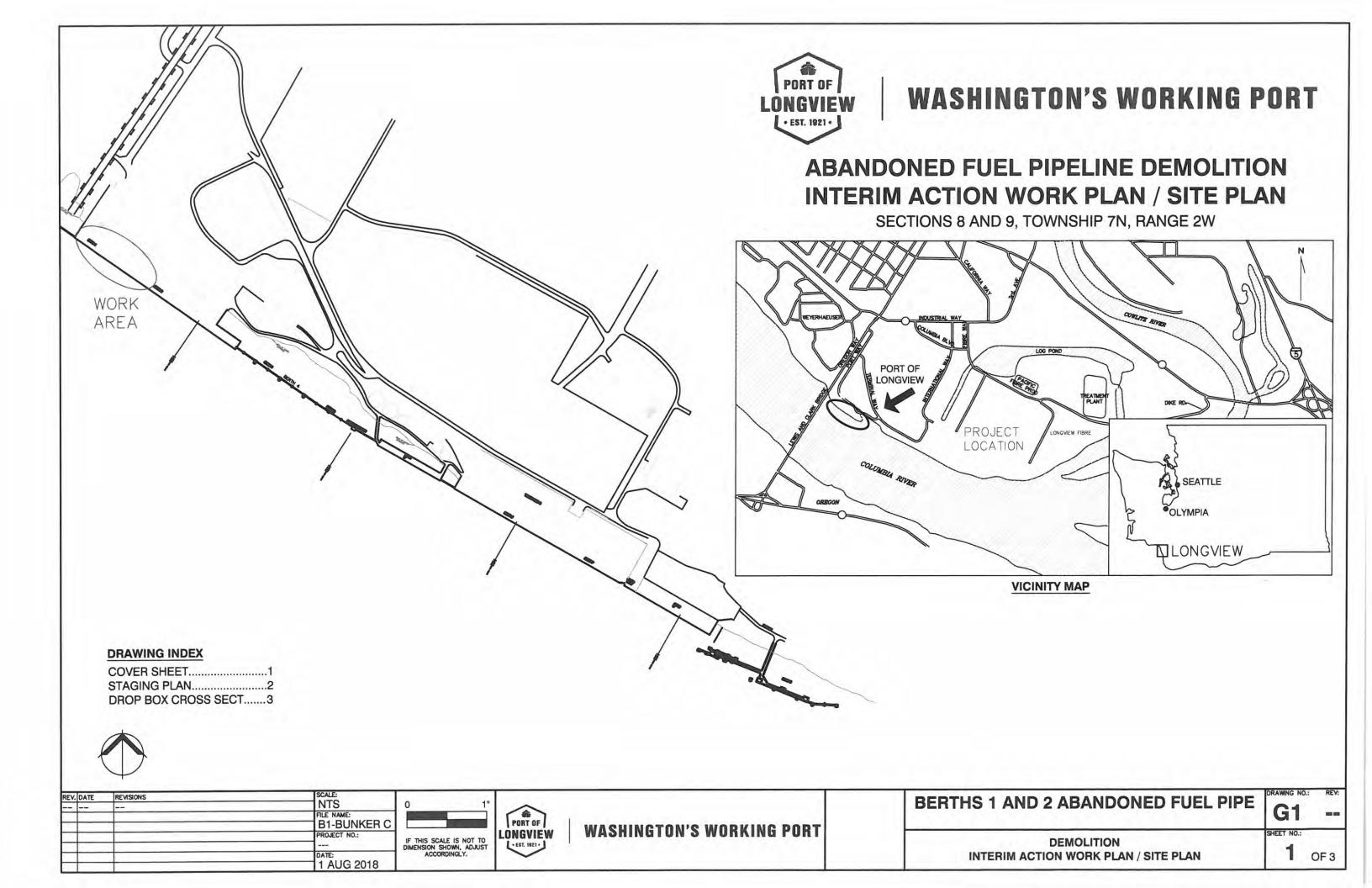
°F Degrees Fahrenheit

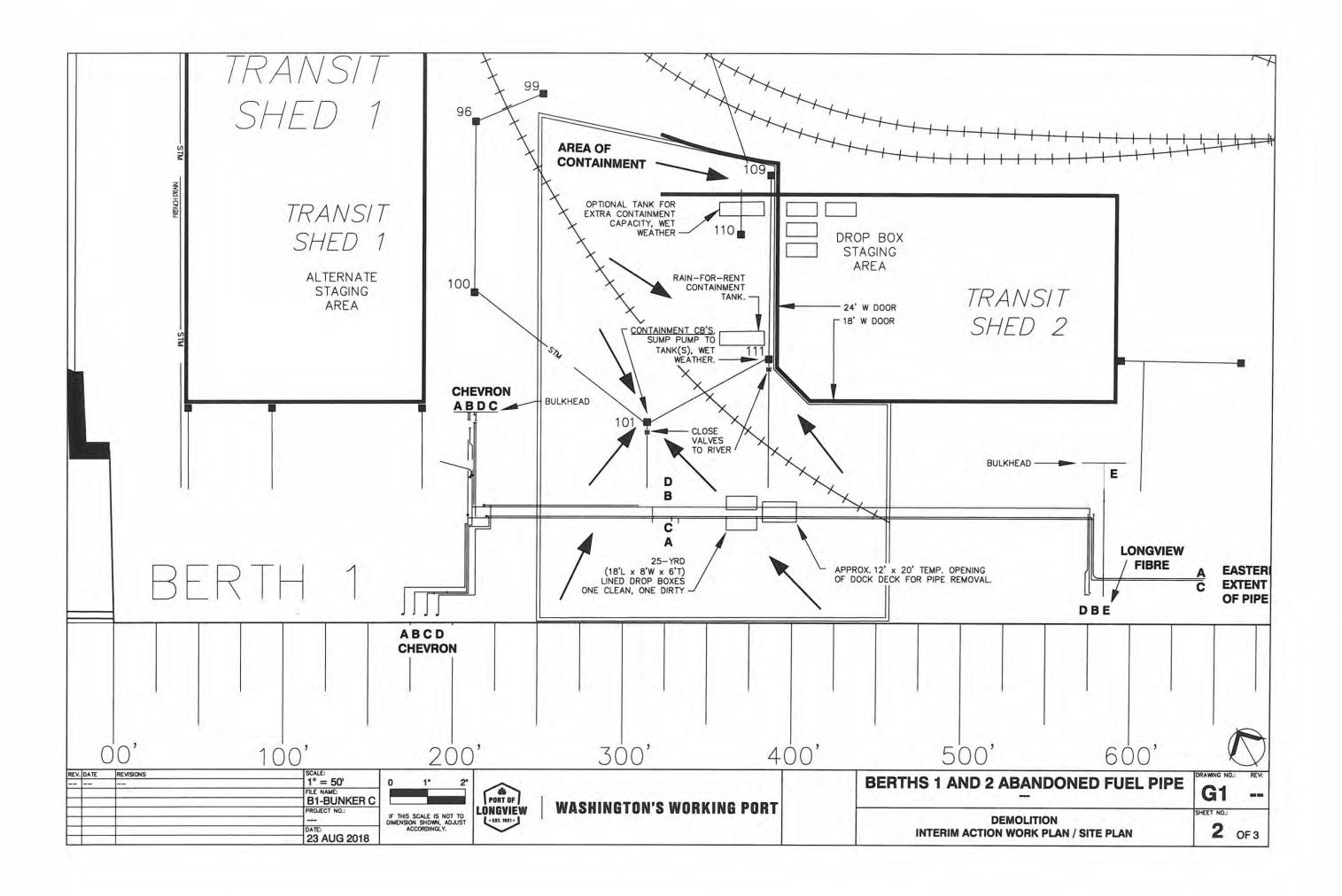
mg/kg Milligrams per kilogram

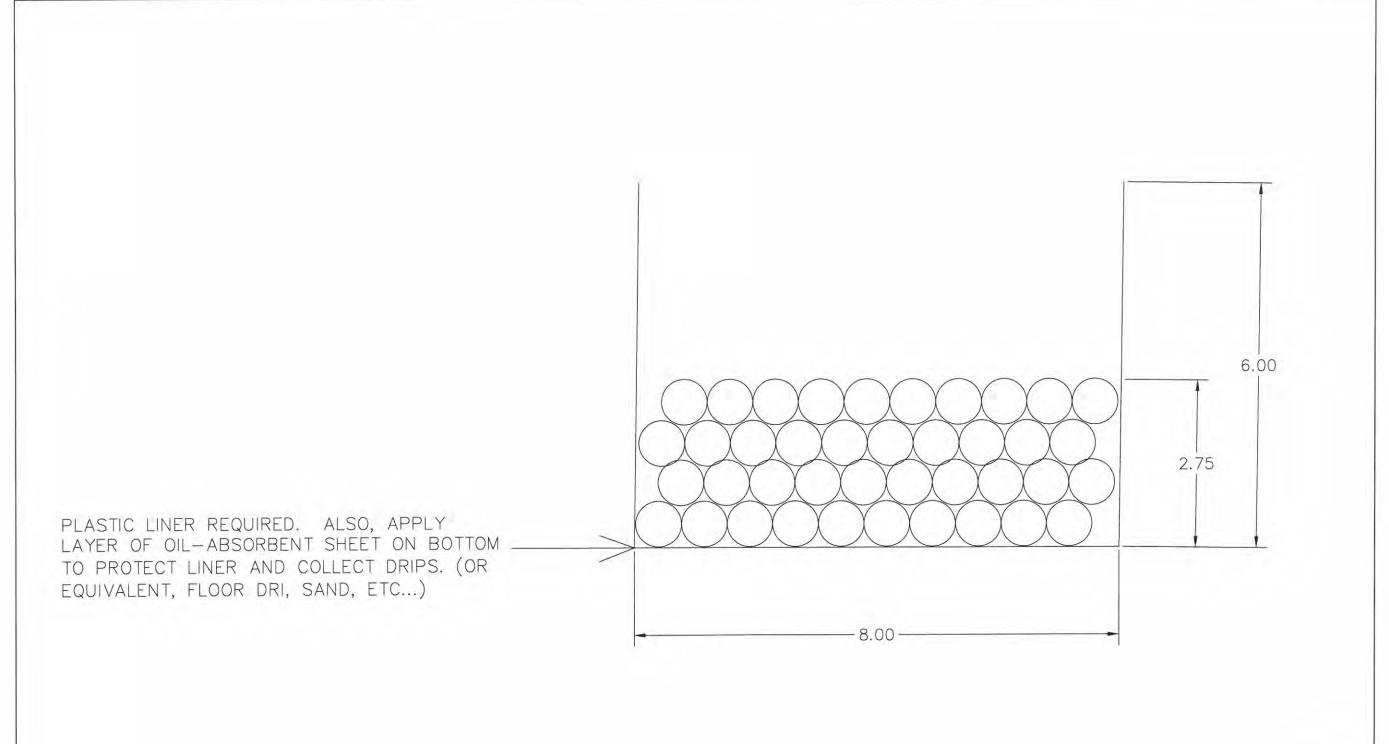

NA Not analyzed

Qualifiers:

- * The continuing calibration verification was outside the control criterion.
- A2 This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard.
- A3 The result was determined to be non-detect based on hydrocarbon pattern recognition. The product was carryover from another hydrocarbon type.
- D The reported result is from a dilution.
- D* The reported result is from a dilution; the laboratory control sample exceeded advisory criterion for this analyte.
- DX The reported result is from a dilution; a matrix interference prevented resolution of benzo(b)fluoranthene and benzo(k)fluoranthene, results for these compounds are reported as benzo(b)fluoranthene.
- DY The reported result is from a dilution; the chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- K Diesel result is biased high due to amount of oil contained in the sample.
- U The analyte was not detected at the given reporting limit.
- Ui The analyte was not detected at the given reporting limit. The method reporting limit/method detection limit of limit of quantification/limit of detection is elevated due to a chromatographic interference.
- UQ The analyte was not detected at the given reporting limit, which is elevated due to sample matrix.

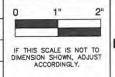

Port of Longview TPH Site Interim Action Work Plan


Figure



Port of Longview TPH Site Interim Action Work Plan

Drawing



REV.	DATE	REVISIONS	SCALE:	
			NTS	0
			FILE NAME: B1-BUNKER C	
			PROJECT NO.:	100
				DIM
			DATE: 1 AUG 2018	

WA	SHI	INGT	ON'S	WOR	KING	PORT

BERTHS 1 AND 2 ABANDONED FUEL PIPE	DRAV
DEMOLITION	SHEE

 G1
SHEET NO.:
0

DEMOLITION
DROP BOX CROSS SECTION

3 OF 3

Port of Longview TPH Site Interim Action Work Plan

Appendix A Laboratory Results

March 29, 2016

Longview, Port of 10 Port Way

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T:+1 360 577 7222

F:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1601826

RE: Berth 1 Pipe

Longview, WA 98632

Dear Sean,

Sean Kelly

Enclosed are the results of the sample(s) submitted to our laboratory February 18, 2016 For your reference, these analyses have been assigned our service request number **K1601826**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3356. You may also contact me via email at Kurt.Clarkson@alsqlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Kurt Clarkson Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626

T: +1 360 577 7222 F: +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms

Qualifiers

State Certifications, Accreditations, And Licenses

Case Narrative

Chain of Custody

General Chemistry

Metals

Diesel and Residual Range Organics

Polychlorinated Biphenyls (PCBs)

Volatile Organic Compounds

Semi-Volatile Organic Compounds by GCMS

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default.aspx	-
ISO 17025	http://www.pjlabs.com/	L14-50
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPermitSupport/LouisianaLaboratoryAccreditationProgram.aspx	03016
Maine DHS	Not available	WA01276
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com_	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS ENVIRONMENTAL

Client:Longview, Port ofService Request No.:K1601826Project:Berth 1 PipeDate Received:02/18/16

Sample Matrix: Oil

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier I data deliverables. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

One oil sample was received for analysis at ALS Environmental on 02/18/16 The sample was received in good condition and consistent with the accompanying chain of custody form. The sample was stored at room temperature upon receipt at the laboratory.

General Chemistry Parameters

Chloride by EPA Method 9056A Modified:

The detection limit was elevated in sample Berth Oil Pipe. The chromatogram indicated the presence of non-target background components. The sample MRL was elevated due to sample matrix. The matrix interference prevented adequate resolution of the target compound at the normal limit. The result was flagged to indicate the matrix interference.

No other anomalies associated with the analysis of this sample were observed.

Total Metals

No anomalies associated with the analysis of these samples were observed.

Diesel Range Organics by EPA Method 8015

Elevated Detection Limits:

Sample required dilution due to the presence of elevated levels of target analyte. The reporting limits were adjusted to reflect the dilution.

Sample Notes and Discussion:

The sample responses appear to be due to weathered unknown fuel oil (Diesel or Bunker C, e.g.) and unknown lubricating oil.

No other anomalies associated with the analysis of this sample were observed.

Approved by Kust Clausson

PCB Aroclors by EPA Method 8082

Second Source Exceptions:

The analysis of PCB Aroclors by EPA 8082 requires the use of dual column confirmation. When the Initial Calibration Verification (ICV) criteria are met for both columns, the lower of the two sample results is generally reported. The criteria were not met for Aroclor 1221 in CAL 14611. The data quality was not affected. No further corrective action was necessary.

Elevated Detection Limits:

The reporting limit is elevated for Aroclor 1016 in this sample. The chromatogram indicated the presence of non-target background components. The matrix interference prevented adequate resolution of the target compound at the reporting limit. The result is flagged to indicate the matrix interference.

No other anomalies associated with the analysis of this sample were observed.

Volatile Organic Compounds by EPA Method 8260

Initial Calibration Exceptions:

The ALS minimum relative response factor criterion for Trichloroethene, Bromodichloromethane, and cis-1,3-Dichloropropene was not met in Initial Calibration (ICAL) ID 14586. In accordance with ALS standard operating procedures, a Method Reporting Limit (MRL) check standard containing the analyte of concern was analyzed each day of analysis. The MRL check standard verified instrument sensitivity was adequate to detect the analyte at the MRL on the day of analysis. Because the sensitivity was shown to be adequate to detect the compound in question the data quality was not significantly affected. No further corrective action was appropriate.

Calibration Verification Exceptions:

The following analytes were flagged as outside the control criterion for Continuing Calibration Verification (CCV) J:\MS18\0301F005.D: trans-1,3-Dichloropropene, 1,2-Dibromo-3-chloropropane, and Naphthalene. In accordance with the EPA Method, 80% or more of the CCV analytes must pass within 20% of the true value. The ALS SOP allows for 40% difference for the remaining analytes. The CCV met these criteria. The quality of the sample data was not significantly affected. No further corrective action was required.

The ALS minimum relative response factor criterion for Trichloroethene and Bromodichloromethane was not met in Continuing Calibration Verification (CCV) J:\MS18\0301F005.D. In accordance with ALS standard operating procedures, a Method Reporting Limit (MRL) check standard containing the analyte of concern was analyzed each day of analysis. The MRL check standard verified instrument sensitivity was adequate to detect the analyte at the MRL on the day of analysis. Because the sensitivity was shown to be adequate to detect the compound in question the data quality was not significantly affected. No further corrective action was appropriate.

Elevated Detection Limits:

Sample Berth Oil Pipe required dilution due to oil matrix. The reporting limits were adjusted to reflect the dilution.

No other anomalies associated with the analysis of this sample were observed.

Semivolatile Organic Compounds by EPA Method 8270

Second Source Exceptions:

The upper control criterion was exceeded for the following analytes in the Initial Calibration Verification (ICV) for calibration CAL14647: Benzidine. The field sample analyzed in this sequence did not contain the analyte in question. Since the apparent problem equates to a potential high bias, the data quality is not affected. No further corrective action was required.

Approved by Kunt Clausson

Calibration Verification Exceptions:

The following analytes were flagged as outside the control criterion for Continuing Calibration Verification (CCV) MS07\0322F002.D: Aniline, 4-Nitroaniline and Benzidine. In accordance with the EPA Method, 80% or more of the CCV analytes must pass within 20% of the true value. The ALS SOP allows for 40% difference for the remaining analytes. The CCV met these criteria. The quality of the sample data was not significantly affected. No further corrective action was required.

Lab Control Sample Exceptions:

The advisory criterion was exceeded for N-Nitrosodimethylamine, Phenol, Bis(2-chloroisopropyl) Ether, Hexachlorocyclopentadiene, N-Nitrosodiphenylamine and Pentachlorophenol in Laboratory Control Sample (LCS) KWG1601819-3. As per the ALS/Kelso Standard Operating Procedure (SOP) for this method, these compounds are not included in the subset of analytes used to control the analysis. The recovery information reported for these analytes is for advisory purposes only (i.e. to provide additional detail related to the performance of each individual compound). No further corrective action was required.

The advisory criterion was exceeded for Bis(2-chloroisopropyl) Ether in Duplicate Laboratory Control Sample (DLCS) KWG1601819-4. As per the ALS/Kelso Standard Operating Procedure (SOP) for this method, this compound is not included in the subset of analytes used to control the analysis. The recovery information reported for this analyte is for advisory purposes only (i.e. to provide additional detail related to the performance of each individual compound). No further corrective action was required.

Elevated Detection Limits:

The sample Berth Oil Pipe required a dilution due to the presence of elevated levels of target and non-target analytes. The reporting limits were adjusted to reflect the dilution.

Sample Notes and Discussion:

Due to a matrix interference that prevented resolution of Benzo(b)fluoranthene and Benzo(k)fluoranthene the results for these compounds in sample Berth Oil Pipe are reported as Benzo(b)fluoranthene. The results were flagged with "X" to indicate the issue.

No other anomalies associated with the analysis of this sample were observed.

Chain of Custody

ALS) Environmental

CHAIN OF CUSTODY

1317 South 13th Ave., Kelso, WA 98626 | 360,577,7222 | 800,695,7222 | 360,636,1068 (fax)

SR# WILLD KONG

	1317 South 13th Ave., Kelso, WA 98626 360,577.72	0.577.7222 800.695.7222	360,636.1068 (fax)	PAGE	OF	#200
PROJECT NAME BETH I P.P.P.	9		1 / 7	(S)		∏euai,
PROJECT MANAGER SOAM Kell		SVIV	1508	00 00	7 EO.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
at to	wayie.	D5 ∕4	D 5/	7 N. 1	DH To	- Indiana
to Port Was		1702.0 102.0 102.0	Selec	ANOS TANOS	1 0	(4.) (4.)
LongVices	98632	St. St. Commercial St	Dicio Bicio	1. EC 00 X = 1. C	E03	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
E-MAIL ADDRESS SKILL @ portof	long views. Com	000 000 000 000 000 000 000 000 000 00	(1) (8) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	N+COUD (MORE)	062 SUBJI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
30, 703, 8246 SAME		/h_ ~	Sepio	000 / CH/ GO HA O P	Device S) हिंद्र
	,	DAH DAH DEG OBB DAH DEG DAH DEG DAH DAH DAH DAH DAH DAH DAH DAH DAH DAH	1014 1180 1100	XO. (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	SK 1	_
SAMPLE I.D. DATE T	~	D /9/2	1 C (S) 7 / 1	0./68/6/2/7	N I	NEWARKS
Both 1 Pipe 2/18/16 10%	10 to Am	>	>	>	7	

A COLUMN TO THE						

REPORT REQUIREMENTS	INVOICE INFORMATION	Circle which metals are to be analyzed;	nalyzed;			
L. Routine Report: Method B.	F.O. # Bill To:	Total Metals: AI (A) Sb ((G) 00 (C) 00 (C)	Course (PB) Mg Mn	Mo Ni K 👰 Na	Se Sr Ti Sn V GD (FG)
Blank, Surrogate, as	Brt of Langview	Dissolved Metals: Al As Sb	Ba Be B Ca Cd Co	Cr Cu Fe Pb Mg Mn	Mo NI K Ag Na	Se Sr Ti Sn V Zn Hg
במלחופת		*INDICATE STATE HYDROCARBON PROCEDURE: AK	OCARBON PROCEDU	CA WI	NORTHWEST OTHER:	(CIRCLE ONE)
report Dup., Mb. Mbu as Tt	TURNAROUND REQUIREMENTS 24 hr. 48 hr.	Recial instructions comments Aun flash point of	🚗	unpreserved cons	containers.	
III. CLP Like Summary (no raw data)	5 day Standard (15 working days)	Call Ton C	on Colligan at	at Floyd Smider	if there	ar Buestion
IV. Data Validation Report		700	0.805, 2166	V		
	Requested Report Date	Sample Shipment con	ntains USDA regulated	Sample Shipment contains USDA regulated soil samples (check box if applicable)	c if applicable)	
RELINQUISHED BY:	DER CIE	RECEIVED BY:	RELINGO	RELINGUISHED BY:	38	RECEIVED BY:
	Signatural Co.	Date Jipe W. K.	Signature	Date/Time	Signature	Date/Time
Printed Name / Firm	Printed Name	Firm	Printed Name	Firm	Printed Name	Firm

Page 11 of 38

Copyright 2012 by ALS Group

PC Kurt

Page___of__

	0 1 - 1	1	Cooler	Receipt a	and Pr	eservati	on Form	1				
Client	VONTOR,	Longvi	PW,			Service R	equest <i>K</i>	16 <u>0</u>	8210		~ /	
Received:_	e/18/16	Opened:_	2/18	<i> 10</i> 1	By:	<u> </u>	Unload	led: <u>21</u>	18/16	_ By:_ <u>(</u>	49	
. Sample	es were received via?	Mail	Fed Ex	UPS	DHL	. PDX	Couri	ier "Ha	nd Delivered	>	/	
,	es were received in: (circle)	Cooler	Box	Envelo	ре	Other				NA	
. Were <u>c</u> ı	ustody seals on coole	ers?	NA Y		lfy	es, how m	any and w	here?				<u> </u>
If prese	ent, were custody sea	ls intact?	Y	N		If present,	were they	signed an	d dated?		Y	N
Raw	Corrected. Raw	Corrected	Corr.	Thermon	eter	Cooler/CC			Tracking #	lumber		NA File
5.7	5.6 5.7	K Temep ⊎laink	Factor				(NA)				<u> </u>	NA File
								···· w. h				
		1			-							
. Packing	g material: (Inserts	Baggies	Bubble Wir	an Gel P	acks	Wet Ice	Drv Ice	Sleeves				
	custody papers proper									NA	Ø	N
	bottles arrive in good	•			in the ta	ble below.				NA	80	N
. Were al	Il sample labels comp	olete (i.e ana)	lysis, preser	vation, etc.)?					NA	D	N
B. Did all s	sample labels and tag	gs agree with	custody pa	pers? India	cate maj	or discrep	ancies in t	he table o	n page 2.	NA	P	N
. Were a	ppropriate bottles/co	ntainers and	volumes rec	ceived for t	he tests	indicated?				NA	0	N
	the pH-preserved bot						A? Indical	te in the to	ible below	(VA)	Y	N
	VOA vials received	without head	space? Indi	icate in the	table be	low.					Y	N
l2. Was C	C12/Res negative?	en la elegación de elegación de	T 22 - 15225	and the second second		at the stage with early	araka alah arases			(NA	Y	N
	Sample ID on Bottle			Sample ID o	n COC				Identified by			
######################################	Sample ID			ut of Head- emp space		pH I	Reagent	Volume	Reagent L Number		nitials	Time
	Sample io	A STATE OF LINE	a i Mha a sa a a a	srip space	DIOKA		zeagem.	· Marrian	(1) A See Le Pillipal	41	ilinais .	1 ime
										-		
		1		1	<u> </u>							
Votes, Dis	screpancies, & Res	olutions:	·									
**************************************				·** ····								

General Chemistry

Analytical Report

Client: Longview, Port of

Project: Berth 1 Pipe

Sample Matrix: Oil

1020A

Analysis Method: Prep Method: None Service Request: K1601826

Date Collected: 02/18/16

Date Received: 02/18/16

Units: deg C

Basis: As Received

Flash Point

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Q
Berth Oil Pipe	K1601826-001	>110	-	1	03/08/16 14:30	
Method Blank	K1601826-MB1	>110	-	1	03/08/16 14:30	
Method Blank	K1601826-MB2	>110	-	1	03/08/16 14:30	

Analytical Report

Client: Longview, Port of

Project: Berth 1 Pipe

Sample Matrix:

Analysis Method:

Oil

9056A Modified

Prep Method: EPA 5050

Service Request: K1601826

Date Collected: 02/18/16

Date Received: 02/18/16

Units: mg/Kg

Basis: As Received

Chloride

Sample Name	Lab Code	Result	MRL	Dil.	Date Analyzed	Date Extracted	Q
Berth Oil Pipe	K1601826-001	ND Ui	50	5	03/09/16 00:28	3/4/16	
Method Blank	K1601826-MB1	ND U	20	2	03/08/16 11:12	3/4/16	

Metals

Analytical Report

Client: Longview, Port of Project Name: Berth 1 Pipe

Project No.: NA
Matrix: Oil

 Service Request :
 K1601826

 Date Collected :
 02/18/16

 Date Received :
 02/18/16

 Date Extracted :
 02/25-03/09/16

Total Metals

Sample Name: Berth Oil Pipe Lab Code: K1601826-001 Units: mg/Kg (ppm)
Basis: As Received

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Arsenic	6010C	1.8	02/26/16	ND	
Barium	6010C	0.4	02/26/16	ND	
Cadmium	6010C	0.09	02/26/16	ND	
Chromium	6010C	0.4	02/26/16	ND	
Lead	6010C	0.9	02/26/16	ND	
Mercury	7471B	0.02	03/09/16	ND	
Selenium	6010C	1.8	02/26/16	3.0	
Silver	6010C	0.4	02/26/16	ND	
Zinc	6010C	0.5	02/26/16	1.4	

Comments:

Analytical Report

Client: Longview, Port of Project Name: Berth 1 Pipe

Project No.: NA
Matrix: Oil

Service Request: K1601826

Date Collected: NA

Date Received: NA

Date Extracted: 02/25-03/09/16

Total Metals

Sample Name: Method Blank
Lab Code: K1601826-MB

Units: mg/Kg (ppm)
Basis: As Received

Analyte	Analysis Method	MRL	Date Analyzed	Sample Result	Result Notes
Arsenic	6010C	2.0	02/26/16	ND	
Barium	6010C	0.4	02/26/16	ND	
Cadmium	6010C	0.1	02/26/16	ND	
Chromium	6010C	0.4	02/26/16	ND	
Lead	6010C	1.0	02/26/16	ND	
Mercury	7471B	0.02	03/09/16	ND	
Selenium	6010C	2.0	02/26/16	ND	
Silver	6010C	0.4	02/26/16	ND	
Zinc	6010C	0.5	02/26/16	ND	

Comments:

Diesel and Residual Range Organics

Analytical Results

Client: Longview, Port of Project: Berth 1 Pipe

Sample Matrix: Oil

Analysis Method:

Service Request: K1601826

Date Collected: 02/18/2016

Date Received: 02/18/2016

Diesel and Residual Range Organics

Sample Name: Berth Oil Pipe
Lab Code: K1601826-001

Extraction Method: EPA 3580A

EPA 3580A 8015C Units: mg/Kg Basis: NA

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	400000 DY	2900	10	03/01/16	03/04/16	KWG1601611	
Residual Range Organics (RRO)	200000 DO	4800	10	03/01/16	03/04/16	KWG1601611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	82	70-130	03/04/16	Acceptable
n-Triacontane	98	70-130	03/04/16	Acceptable

Comments:

 $\begin{array}{llll} Printed: & 03/08/2016 & 11:20:34 \\ u:\Stealth\Crystal.rpt\Form1mNew.rpt & \end{array}$

1 of 1

Page

Analytical Results

Client: Longview, Port of Project: Berth 1 Pipe

Sample Matrix: Oil

Service Request: K1601826

Date Collected: NA
Date Received: NA

Diesel and Residual Range Organics

Sample Name: Method Blank
Lab Code: KWG1601611-4

8015C

Extraction Method: Analysis Method:

KWG1601611-4
EPA 3580A

Level: Low

Basis: NA

Units: mg/Kg

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	ND U	290	1	03/01/16	03/04/16	KWG1601611	
Residual Range Organics (RRO)	ND U	480	1	03/01/16	03/04/16	KWG1601611	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	94	70-130	03/04/16	Acceptable	
n-Triacontane	98	70-130	03/04/16	Acceptable	

Comments:

 $\begin{array}{llll} Printed: & 03/08/2016 & 11:20:38 \\ u:\Stealth\Crystal.rpt\Form1mNew.rpt & \end{array}$

1 of 1

Polychlorinated Biphenyls (PCBs)

Analytical Results

Client: Longview, Port of Project: Berth 1 Pipe

Sample Matrix: Oil

Service Request: K1601826

Date Collected: 02/18/2016

Date Received: 02/18/2016

Polychlorinated Biphenyls (PCBs)

 Sample Name:
 Berth Oil Pipe
 Units:
 mg/Kg

 Lab Code:
 K1601826-001
 Basis:
 NA

 Extraction Method:
 EPA 3580A
 Level:
 Low

Analysis Method: 8082A

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Aroclor 1016	ND Ui	0.98	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1221	ND U	1.9	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1232	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1242	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1248	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1254	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1260	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	89	49-133	03/07/16	Acceptable

Comments:

Merged

Printed: 03/09/2016 10:35:30 Form 1A - Organic Page 1 of 1

SuperSet Reference:

RR186717

Analytical Results

Client: Longview, Port of Project: Berth 1 Pipe

Sample Matrix: Oil

Service Request: K1601826

Date Collected: NA **Date Received:** NA

Polychlorinated Biphenyls (PCBs)

Sample Name: Method Blank
Lab Code: KWG1601610-4

Extraction Method: EPA 3580A **Analysis Method:** 8082A

Units: mg/Kg Basis: NA

Level: Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Aroclor 1016	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1221	ND U	1.9	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1232	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1242	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1248	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1254	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	
Aroclor 1260	ND U	0.93	1	03/01/16	03/07/16	KWG1601610	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Decachlorobiphenyl	88	49-133	03/07/16	Acceptable

Comments:

 $\begin{array}{lll} Printed: & 03/09/2016 & 10:35:34 \\ u:\Stealth\Crystal.rpt\Form1mNew.rpt & \end{array}$

Merged

Form 1A - Organic

SuperSet Reference: RR186717

1 of 1

Page

Volatile Organic Compounds

Analytical Results

Client: Longview, Port of **Project:** Berth 1 Pipe

Sample Matrix: Oil Service Request: K1601826 **Date Collected:** 02/18/2016 **Date Received:** 02/18/2016

Units: mg/Kg

Basis: Wet

Level: Med

Volatile Organic Compounds

Berth Oil Pipe Sample Name: Lab Code: K1601826-001

EPA 5030A/5030B **Extraction Method:**

Analysis Method: 8260C

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Chloromethane	ND		5.0	1	03/01/16	03/01/16	KWG1601657	
Vinyl Chloride	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Bromomethane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Chloroethane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Trichlorofluoromethane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
1,1-Dichloroethene	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Acetone	ND	U	200	1	03/01/16	03/01/16	KWG1601657	
Carbon Disulfide	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Methylene Chloride	ND	U	20	1	03/01/16	03/01/16	KWG1601657	
trans-1,2-Dichloroethene	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
1,1-Dichloroethane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
2,2-Dichloropropane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
cis-1,2-Dichloroethene	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
2-Butanone (MEK)	ND	U	200	1	03/01/16	03/01/16	KWG1601657	
Bromochloromethane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Chloroform	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
1,1,1-Trichloroethane (TCA)	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Carbon Tetrachloride	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
1,1-Dichloropropene	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Benzene	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
1,2-Dichloroethane (EDC)	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Trichloroethene (TCE)	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	*
1,2-Dichloropropane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Dibromomethane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Bromodichloromethane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	*
cis-1,3-Dichloropropene	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	*
4-Methyl-2-pentanone (MIBK)	ND	U	200	1	03/01/16	03/01/16	KWG1601657	
Toluene	27		5.0	1	03/01/16	03/01/16	KWG1601657	
trans-1,3-Dichloropropene	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	*
1,1,2-Trichloroethane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
Tetrachloroethene (PCE)	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	
2-Hexanone	ND	U	200	1	03/01/16	03/01/16	KWG1601657	
1,3-Dichloropropane	ND	U	5.0	1	03/01/16	03/01/16	KWG1601657	

Comments:

Printed: 03/04/2016 10:53:56 $u: \label{lem:limit} w: \label{lem:limit} u: \label{lem:limit} We w. rpt$

Merged

Form 1A - Organic

Page 26 of 38

RR186613

Page 1 of 3

Analytical Results

Client: Longview, Port of Project: Berth 1 Pipe

Sample Matrix: Oil

Service Request: K1601826 Date Collected: 02/18/2016 Date Received: 02/18/2016

Units: mg/Kg

Basis: Wet

Level: Med

Volatile Organic Compounds

Sample Name: Berth Oil Pipe Lab Code: K1601826-001

Extraction Method: EPA 5030A/5030B

Analysis Method: 8260C

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dibromochloromethane	ND U	5.0	1	03/01/16	03/01/16	KWG1601657	
1,2-Dibromoethane (EDB)	ND U	20	1	03/01/16	03/01/16	KWG1601657	
Chlorobenzene	ND U	5.0	1	03/01/16	03/01/16	KWG1601657	
Ethylbenzene	15	5.0	1	03/01/16	03/01/16	KWG1601657	
1,1,1,2-Tetrachloroethane	ND U	5.0	1	03/01/16	03/01/16	KWG1601657	
m,p-Xylenes	77	5.0	1	03/01/16	03/01/16	KWG1601657	
o-Xylene	38	5.0	1	03/01/16	03/01/16	KWG1601657	
Styrene	ND U	5.0	1	03/01/16	03/01/16	KWG1601657	
Bromoform	ND U	5.0	1	03/01/16	03/01/16	KWG1601657	
Isopropylbenzene	ND U	20	1	03/01/16	03/01/16	KWG1601657	
1,1,2,2-Tetrachloroethane	ND U	5.0	1	03/01/16	03/01/16	KWG1601657	
Bromobenzene	ND U	20	1	03/01/16	03/01/16	KWG1601657	
n-Propylbenzene	ND U	20	1	03/01/16	03/01/16	KWG1601657	
1,2,3-Trichloropropane	ND U	5.0	1	03/01/16	03/01/16	KWG1601657	
2-Chlorotoluene	ND U	20	1	03/01/16	03/01/16	KWG1601657	
1,3,5-Trimethylbenzene	49	20	1	03/01/16	03/01/16	KWG1601657	
4-Chlorotoluene	ND U	20	1	03/01/16	03/01/16	KWG1601657	
tert-Butylbenzene	ND U	20	1	03/01/16	03/01/16	KWG1601657	
1,2,4-Trimethylbenzene	230	20	1	03/01/16	03/01/16	KWG1601657	
sec-Butylbenzene	ND U	20	1	03/01/16	03/01/16	KWG1601657	
4-Isopropyltoluene	ND U	20	1	03/01/16	03/01/16	KWG1601657	
1,3-Dichlorobenzene	ND U	5.0	1	03/01/16	03/01/16	KWG1601657	
1,4-Dichlorobenzene	ND U	5.0	1	03/01/16	03/01/16	KWG1601657	
n-Butylbenzene	75	20	1	03/01/16	03/01/16	KWG1601657	
1,2-Dichlorobenzene	ND U	5.0	1	03/01/16	03/01/16	KWG1601657	
1,2-Dibromo-3-chloropropane	ND U	20	1	03/01/16	03/01/16	KWG1601657	*
1,2,4-Trichlorobenzene	ND U	20	1	03/01/16	03/01/16	KWG1601657	
Hexachlorobutadiene	ND U	20	1	03/01/16	03/01/16	KWG1601657	
Naphthalene	780	20	1	03/01/16	03/01/16	KWG1601657	*
1,2,3-Trichlorobenzene	ND U	20	1	03/01/16	03/01/16	KWG1601657	

^{*} See Case Narrative

 $\begin{array}{lll} Printed: & 03/04/2016 & 10:53:56 \\ u:\Stealth\Crystal.rpt\Form1mNew.rpt \end{array}$

Form 1A - Organic

Page 27 of 38

Page 2 of 3

Merged

SuperSet Reference:

RR186613

Analytical Results

Client: Longview, Port of **Project:** Berth 1 Pipe

Sample Matrix: Oil Service Request: K1601826 **Date Collected:** 02/18/2016 **Date Received:** 02/18/2016

Volatile Organic Compounds

Berth Oil Pipe Sample Name: Units: mg/Kg Lab Code: K1601826-001 Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	97	55-132	03/01/16	Acceptable
Toluene-d8	110	81-124	03/01/16	Acceptable
4-Bromofluorobenzene	99	64-132	03/01/16	Acceptable

Comments:

Printed: 03/04/2016 Form 1A - Organic Page 3 of 10:53:56 3 SuperSet Reference: RR186613

Merged

Analytical Results

Client: Longview, Port of **Project:** Berth 1 Pipe

Sample Matrix: Oil Service Request: K1601826 Date Collected: NA Date Received: NA

Units: mg/Kg

Basis: Wet

Level: Med

Volatile Organic Compounds

Sample Name: Method Blank Lab Code: KWG1601657-3

Extraction Method: EPA 5030A/5030B

Analysis Method: 8260C

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Chloromethane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Vinyl Chloride	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Bromomethane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Chloroethane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Trichlorofluoromethane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
1,1-Dichloroethene	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Acetone	ND	U	2.0	1	03/01/16	03/01/16	KWG1601657	
Carbon Disulfide	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Methylene Chloride	ND	U	0.20	1	03/01/16	03/01/16	KWG1601657	
trans-1,2-Dichloroethene	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
1,1-Dichloroethane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
2,2-Dichloropropane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
cis-1,2-Dichloroethene	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
2-Butanone (MEK)	ND	U	2.0	1	03/01/16	03/01/16	KWG1601657	
Bromochloromethane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Chloroform	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
1,1,1-Trichloroethane (TCA)	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Carbon Tetrachloride	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
1,1-Dichloropropene	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Benzene	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
1,2-Dichloroethane (EDC)	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Trichloroethene (TCE)	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	*
1,2-Dichloropropane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Dibromomethane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Bromodichloromethane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	*
cis-1,3-Dichloropropene	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	*
4-Methyl-2-pentanone (MIBK)	ND	U	2.0	1	03/01/16	03/01/16	KWG1601657	
Toluene	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
trans-1,3-Dichloropropene	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	*
1,1,2-Trichloroethane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
Tetrachloroethene (PCE)	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	
2-Hexanone	ND	U	2.0	1	03/01/16	03/01/16	KWG1601657	
1,3-Dichloropropane	ND	U	0.050	1	03/01/16	03/01/16	KWG1601657	

Comments:

Printed: 03/04/2016 $u: \label{lem:linear_stal_rpt_formlmNew.rpt} u: \label{lem:linear_rpt_formlmNew.rpt} u: \label{lem:linear_rpt_rpt_rpt} \\$

10:54:00

Merged

Form 1A - Organic

Page 29 of 38

RR186613

Page 1 of 3

SuperSet Reference:

Analytical Results

Client: Longview, Port of **Project:** Berth 1 Pipe

Sample Matrix: Oil Service Request: K1601826 Date Collected: NA Date Received: NA

Units: mg/Kg

Basis: Wet

Level: Med

Volatile Organic Compounds

Sample Name: Method Blank Lab Code: KWG1601657-3

Extraction Method: EPA 5030A/5030B

Analysis Method: 8260C

Analyta Nama	Result Q	MRL	Dilution Factor	Date Extracted	Date	Extraction Lot	Note
Analyte Name					Analyzed		Note
Dibromochloromethane	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
1,2-Dibromoethane (EDB)	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
Chlorobenzene	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
Ethylbenzene	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
1,1,1,2-Tetrachloroethane	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
m,p-Xylenes	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
o-Xylene	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
Styrene	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
Bromoform	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
Isopropylbenzene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
1,1,2,2-Tetrachloroethane	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
Bromobenzene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
n-Propylbenzene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
1,2,3-Trichloropropane	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
2-Chlorotoluene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
1,3,5-Trimethylbenzene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
4-Chlorotoluene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
tert-Butylbenzene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
1,2,4-Trimethylbenzene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
sec-Butylbenzene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
4-Isopropyltoluene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
1,3-Dichlorobenzene	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
1,4-Dichlorobenzene	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
n-Butylbenzene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
1,2-Dichlorobenzene	ND U	0.050	1	03/01/16	03/01/16	KWG1601657	
1,2-Dibromo-3-chloropropane	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	*
1,2,4-Trichlorobenzene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
Hexachlorobutadiene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	
Naphthalene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	*
1,2,3-Trichlorobenzene	ND U	0.20	1	03/01/16	03/01/16	KWG1601657	

^{*} See Case Narrative

00			nts	
U	ши	He	IIIS.	

Printed: 03/04/2016 10:54:00 $u: \label{lem:linear_stal_rpt_formlmNew.rpt} u: \label{lem:linear_rpt_formlmNew.rpt} u: \label{lem:linear_rpt_rpt_rpt} \\$

Form 1A - Organic

Page 30 of 38

RR186613

SuperSet Reference:

2 of 3

Page

Merged

Analytical Results

Client: Longview, Port of Berth 1 Pipe **Project:**

Oil **Sample Matrix:**

Service Request: K1601826 Date Collected: NA Date Received: NA

Volatile Organic Compounds

Method Blank Sample Name: Units: mg/Kg Lab Code: KWG1601657-3 Basis: Wet

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	96	55-132	03/01/16	Acceptable
Toluene-d8	109	81-124	03/01/16	Acceptable
4-Bromofluorobenzene	97	64-132	03/01/16	Acceptable

Comments:

Printed: 03/04/2016 Form 1A - Organic Page 3 of 10:54:00 3 Page 31 of 38

Merged

SuperSet Reference: RR186613

Semi-Volatile Organic Compounds by GC/MS

Analytical Results

Client: Longview, Port of **Project:** Berth 1 Pipe

Sample Matrix: Oil Service Request: K1601826 **Date Collected:** 02/18/2016 **Date Received:** 02/18/2016

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Berth Oil Pipe Lab Code: K1601826-001

Extraction Method: EPA 3580A **Analysis Method:** 8270D

Basis: Wet Level: Low

Units: mg/Kg

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
N-Nitrosodimethylamine	ND	U	110	5	03/08/16	03/23/16	KWG1601819	*
Aniline	ND	U	440	5	03/08/16	03/23/16	KWG1601819	
Bis(2-chloroethyl) Ether	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Phenol	ND	U	22	5	03/08/16	03/23/16	KWG1601819	*
2-Chlorophenol	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
1,3-Dichlorobenzene	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
1,4-Dichlorobenzene	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
1,2-Dichlorobenzene	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Benzyl Alcohol	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Bis(2-chloroisopropyl) Ether	ND	U	22	5	03/08/16	03/23/16	KWG1601819	*
2-Methylphenol	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Hexachloroethane	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
N-Nitrosodi-n-propylamine	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
4-Methylphenol†	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Nitrobenzene	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Isophorone	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
2-Nitrophenol	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
2,4-Dimethylphenol	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Bis(2-chloroethoxy)methane	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
2,4-Dichlorophenol	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
Benzoic Acid	ND	U	220	5	03/08/16	03/23/16	KWG1601819	
1,2,4-Trichlorobenzene	ND		22	5	03/08/16	03/23/16	KWG1601819	
Naphthalene	1100	D	22	5	03/08/16	03/23/16	KWG1601819	
4-Chloroaniline	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Hexachlorobutadiene	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
4-Chloro-3-methylphenol	ND		110	5	03/08/16	03/23/16	KWG1601819	
2-Methylnaphthalene	3800	D	22	5	03/08/16	03/23/16	KWG1601819	
Hexachlorocyclopentadiene	ND	U	110	5	03/08/16	03/23/16	KWG1601819	*
2,4,6-Trichlorophenol	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
2,4,5-Trichlorophenol	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
2-Chloronaphthalene	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
2-Nitroaniline	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
Acenaphthylene	67	D	22	5	03/08/16	03/23/16	KWG1601819	
Dimethyl Phthalate	ND	U	22	5	03/08/16	03/23/16	KWG1601819	

Comments:

Printed: 03/25/2016 Form 1A - Organic Page 1 of 3 15:13:22 SuperSet Reference: Merged RR187145 Page 33 of 38

Analytical Results

Client: Longview, Port of **Project:** Berth 1 Pipe

Sample Matrix: Oil Service Request: K1601826 **Date Collected:** 02/18/2016 **Date Received:** 02/18/2016

Units: mg/Kg

Basis: Wet

Level: Low

Semi-Volatile Organic Compounds by GC/MS

Berth Oil Pipe Sample Name: Lab Code: K1601826-001

Extraction Method: EPA 3580A **Analysis Method:**

8270D

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
2,6-Dinitrotoluene	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
Acenaphthene	180	D	22	5	03/08/16	03/23/16	KWG1601819	
3-Nitroaniline	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
2,4-Dinitrophenol	ND	U	440	5	03/08/16	03/23/16	KWG1601819	
Dibenzofuran	140	D	22	5	03/08/16	03/23/16	KWG1601819	
4-Nitrophenol	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
2,4-Dinitrotoluene	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
Fluorene	320	D	22	5	03/08/16	03/23/16	KWG1601819	
4-Chlorophenyl Phenyl Ether	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Diethyl Phthalate	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
4-Nitroaniline	ND	U	220	5	03/08/16	03/23/16	KWG1601819	
2-Methyl-4,6-dinitrophenol	ND	U	220	5	03/08/16	03/23/16	KWG1601819	
N-Nitrosodiphenylamine	380	D	110	5	03/08/16	03/23/16	KWG1601819	*
4-Bromophenyl Phenyl Ether	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Hexachlorobenzene	ND	U	22	5	03/08/16	03/23/16	KWG1601819	
Pentachlorophenol	ND	U	220	5	03/08/16	03/23/16	KWG1601819	*
Phenanthrene	760	D	22	5	03/08/16	03/23/16	KWG1601819	
Anthracene	97	D	22	5	03/08/16	03/23/16	KWG1601819	
Di-n-butyl Phthalate	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
Fluoranthene	62	D	22	5	03/08/16	03/23/16	KWG1601819	
Pyrene	490	D	22	5	03/08/16	03/23/16	KWG1601819	
Butyl Benzyl Phthalate	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
3,3'-Dichlorobenzidine	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
Benz(a)anthracene	620	D	22	5	03/08/16	03/23/16	KWG1601819	
Chrysene	980	D	22	5	03/08/16	03/23/16	KWG1601819	
Bis(2-ethylhexyl) Phthalate	ND	U	220	5	03/08/16	03/23/16	KWG1601819	
Di-n-octyl Phthalate	ND	U	220	5	03/08/16	03/23/16	KWG1601819	
Benzo(b)fluoranthene	170	DX	22	5	03/08/16	03/23/16	KWG1601819	
Benzo(k)fluoranthene	ND	UX	22	5	03/08/16	03/23/16	KWG1601819	
Benzo(a)pyrene	270	D	110	5	03/08/16	03/23/16	KWG1601819	
Indeno(1,2,3-cd)pyrene	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
Dibenz(a,h)anthracene	ND	U	110	5	03/08/16	03/23/16	KWG1601819	
Benzo(g,h,i)perylene	73	D	22	5	03/08/16	03/23/16	KWG1601819	

Con	nm	ont	-6.0
CUL			

Printed: 03/25/2016 $u: \label{lem:linear_stal_rpt_formlmNew.rpt} u: \label{lem:linear_rpt_formlmNew.rpt} u: \label{lem:linear_rpt_rpt_rpt} \\$

15:13:22

Merged

Form 1A - Organic

Page 34 of 38

SuperSet Reference:

Page 2 of 3 RR187145

Analytical Results

Client: Longview, Port of Project: Berth 1 Pipe

Sample Matrix: Oil

Service Request: K1601826 Date Collected: 02/18/2016 Date Received: 02/18/2016

$Semi-Volatile\ Organic\ Compounds\ by\ GC/MS$

 Sample Name:
 Berth Oil Pipe
 Units:
 mg/Kg

 Lab Code:
 K1601826-001
 Basis:
 Wet

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	87	50-150	03/23/16	Acceptable
Phenol-d6	103	50-150	03/23/16	Acceptable
Nitrobenzene-d5	105	50-150	03/23/16	Acceptable
2-Fluorobiphenyl	114	50-150	03/23/16	Acceptable
2,4,6-Tribromophenol	97	50-150	03/23/16	Acceptable
Terphenyl-d14	113	50-150	03/23/16	Acceptable

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 03/25/2016 15:13:22 Form 1A - Organic Page 3 of 3

Merged

Page 35 of 38

SuperSet Reference: RR187145

Analytical Results

Client: Longview, Port of Berth 1 Pipe **Project:**

Sample Matrix: Oil Service Request: K1601826 Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Method Blank Lab Code: KWG1601819-5

Extraction Method: EPA 3580A **Analysis Method:** 8270D

Basis:	wet	
Level:	Low	

Units: mg/Kg

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
N-Nitrosodimethylamine	ND	U	20	1	03/08/16	03/22/16	KWG1601819	*
Aniline	ND	U	78	1	03/08/16	03/22/16	KWG1601819	
Bis(2-chloroethyl) Ether	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Phenol	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	*
2-Chlorophenol	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
1,3-Dichlorobenzene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
1,4-Dichlorobenzene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
1,2-Dichlorobenzene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Benzyl Alcohol	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Bis(2-chloroisopropyl) Ether	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	*
2-Methylphenol	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Hexachloroethane	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
N-Nitrosodi-n-propylamine	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
4-Methylphenol†	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Nitrobenzene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Isophorone	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
2-Nitrophenol	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
2,4-Dimethylphenol	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Bis(2-chloroethoxy)methane	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
2,4-Dichlorophenol	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
Benzoic Acid	ND	U	39	1	03/08/16	03/22/16	KWG1601819	
1,2,4-Trichlorobenzene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Naphthalene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
4-Chloroaniline	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Hexachlorobutadiene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
4-Chloro-3-methylphenol	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
2-Methylnaphthalene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Hexachlorocyclopentadiene	ND	U	20	1	03/08/16	03/22/16	KWG1601819	*
2,4,6-Trichlorophenol	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
2,4,5-Trichlorophenol	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
2-Chloronaphthalene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
2-Nitroaniline	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
Acenaphthylene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Dimethyl Phthalate	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	

Comments:

Printed: 03/25/2016 $u: \label{lem:linear_stal_rpt_formlmNew.rpt} u: \label{lem:linear_rpt_formlmNew.rpt} u: \label{lem:linear_rpt_rpt_rpt} \\$

15:13:26

Merged

Form 1A - Organic

Page 36 of 38

RR187145

Page 1 of 3

Analytical Results

Client: Longview, Port of **Project:** Berth 1 Pipe

Sample Matrix: Oil Service Request: K1601826 Date Collected: NA Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

Sample Name: Method Blank Lab Code: KWG1601819-5

Extraction Method: EPA 3580A **Analysis Method:** 8270D

Basis: Wet Level: Low

Units: mg/Kg

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
2,6-Dinitrotoluene	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
Acenaphthene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
3-Nitroaniline	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
2,4-Dinitrophenol	ND	U	78	1	03/08/16	03/22/16	KWG1601819	
Dibenzofuran	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
4-Nitrophenol	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
2,4-Dinitrotoluene	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
Fluorene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
4-Chlorophenyl Phenyl Ether	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Diethyl Phthalate	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
4-Nitroaniline	ND	U	39	1	03/08/16	03/22/16	KWG1601819	
2-Methyl-4,6-dinitrophenol	ND	U	39	1	03/08/16	03/22/16	KWG1601819	
N-Nitrosodiphenylamine	ND	U	20	1	03/08/16	03/22/16	KWG1601819	*
4-Bromophenyl Phenyl Ether	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Hexachlorobenzene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Pentachlorophenol	ND	U	39	1	03/08/16	03/22/16	KWG1601819	*
Phenanthrene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Anthracene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Di-n-butyl Phthalate	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
Fluoranthene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Pyrene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Butyl Benzyl Phthalate	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
3,3'-Dichlorobenzidine	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
Benz(a)anthracene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Chrysene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Bis(2-ethylhexyl) Phthalate	ND	U	39	1	03/08/16	03/22/16	KWG1601819	
Di-n-octyl Phthalate	ND	U	39	1	03/08/16	03/22/16	KWG1601819	
Benzo(b)fluoranthene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Benzo(k)fluoranthene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	
Benzo(a)pyrene	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
Indeno(1,2,3-cd)pyrene	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
Dibenz(a,h)anthracene	ND	U	20	1	03/08/16	03/22/16	KWG1601819	
Benzo(g,h,i)perylene	ND	U	3.9	1	03/08/16	03/22/16	KWG1601819	

Comments:

Printed: 03/25/2016 15:13:26

Merged

Form 1A - Organic

Page 37 of 38

Page 2 of 3 RR187145

Analytical Results

Client: Longview, Port of Project: Berth 1 Pipe

Sample Matrix: Oil

Service Request: K1601826

Date Collected: NA

Date Received: NA

Semi-Volatile Organic Compounds by GC/MS

 Sample Name:
 Method Blank
 Units:
 mg/Kg

 Lab Code:
 KWG1601819-5
 Basis:
 Wet

^{*} See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
2-Fluorophenol	69	50-150	03/22/16	Acceptable
Phenol-d6	72	50-150	03/22/16	Acceptable
Nitrobenzene-d5	76	50-150	03/22/16	Acceptable
2-Fluorobiphenyl	71	50-150	03/22/16	Acceptable
2,4,6-Tribromophenol	76	50-150	03/22/16	Acceptable
Terphenyl-d14	83	50-150	03/22/16	Acceptable

† Analyte Comments

4-Methylphenol

This analyte cannot be separated from 3-Methylphenol.

Comments:

Printed: 03/25/2016 15:13:26 Form 1A - Organic Page 3 of 3

Merged

Page 38 of 38

Specialty Analytical

11711 SE Capps Road, Ste B Clackamas, Oregon 97015 TEL: 503-607-1331 FAX: 503-607-1336 Website: www.specialtyanalytical.com

April 15, 2016

Sean Kelly Port of Longview 10 Port Way Longview, WA 98632

TEL: (360) 425-3305

FAX:

RE: Berth 1 Pipe

Dear Sean Kelly: Order No.: 1603278

Specialty Analytical received 3 sample(s) on 3/29/2016 for the analyses presented in the following report.

REVISED REPORT: Please see case narrative for information on revision.

There were no problems with the analysis and all data for associated QC met EPA or laboratory specifications, except where noted in the Case Narrative, or as qualified with flags. Results apply only to the samples analyzed. Without approval of the laboratory, the reproduction of this report is only permitted in its entirety.

If you have any questions regarding these tests, please feel free to call.

Sincerely,

Marty French Lab Director

MHQ.

Case Narrative

WO#: **1603278**Date: **4/15/2016**

Specialty Analytical

CLIENT: Port of Longview **Project:** Berth 1 Pipe

Revision 1.

Upon further data review 8015FF_S values were corrected and dry-wt correction was removed from all samples.

CLIENT: Port of Longview Collection Date: 3/28/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe

 Lab ID: 1603278-001

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
HYDROCARBON FUEL FINGERPRINT		8015M				Analyst: JRC
Automatric Trans Fluid	ND	5000		mg/Kg	10	4/4/2016 9:43:27 AM
Hydraulic Oil	ND	5000		mg/Kg	10	4/4/2016 9:43:27 AM
Gasoline	ND	2000		mg/Kg	10	4/4/2016 9:43:27 AM
Mineral Spirits	ND	2000		mg/Kg	10	4/4/2016 9:43:27 AM
Kerosene	ND	5000		mg/Kg	10	4/4/2016 9:43:27 AM
Diesel	>99%	5000		mg/Kg	10	4/4/2016 9:43:27 AM
Oil	ND	10000	А3	mg/Kg	10	4/4/2016 9:43:27 AM
Surr: o-Terphenyl	2170	50-150	SMI	%REC	10	4/4/2016 9:43:27 AM
ICP/MS METALS-TOTAL RECOVERAB	BLE	SW6020A				Analyst: JRC
Arsenic	ND	471		μg/Kg	10	4/1/2016 11:23:57 AM
Barium	ND	471		μg/Kg	10	4/1/2016 11:23:57 AM
Cadmium	ND	94.3		μg/Kg	10	4/1/2016 11:23:57 AM
Chromium	ND	943		μg/Kg	10	4/1/2016 11:23:57 AM
Lead	ND	236		μg/Kg	10	4/1/2016 11:23:57 AM
Nickel	ND	471		μg/Kg	10	4/1/2016 11:23:57 AM
Selenium	ND	943		μg/Kg	10	4/1/2016 11:23:57 AM
Silver	ND	94.3		μg/Kg	10	4/1/2016 11:23:57 AM
Zinc	ND	4710		μg/Kg	10	4/1/2016 11:23:57 AM
TOTAL MERCURY		SW 7471B				Analyst: BW
Mercury	ND	0.0159		mg/Kg	1	4/1/2016 10:54:36 AM
VOLATILE ORGANICS BY GC/MS		SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,1,1-Trichloroethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,1,2,2-Tetrachloroethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,1,2-Trichloroethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,1-Dichloroethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,1-Dichloroethene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,1-Dichloropropene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,2,3-Trichlorobenzene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,2,3-Trichloropropane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,2,4-Trichlorobenzene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,2,4-Trimethylbenzene	406000	100000		μg/Kg	10000	3/31/2016 1:25:00 PM
1,2-Dibromo-3-chloropropane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,2-Dibromoethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,2-Dichlorobenzene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM

CLIENT: Port of Longview Collection Date: 3/28/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe

 Lab ID: 1603278-001

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	;	SW8260B				Analyst: CK
1,2-Dichloroethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,2-Dichloropropane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,3,5-Trimethylbenzene	90300	10000		μg/Kg	1000	3/31/2016 4:42:00 PM
1,3-Dichlorobenzene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,3-Dichloropropane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
1,4-Dichlorobenzene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
2,2-Dichloropropane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
2-Butanone	ND	20000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
2-Chlorotoluene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
2-Hexanone	ND	20000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
4-Chlorotoluene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
4-Isopropyltoluene	32500	10000		μg/Kg	1000	3/31/2016 4:42:00 PM
4-Methyl-2-pentanone	ND	20000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Acetone	ND	50000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Benzene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Bromobenzene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Bromochloromethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Bromodichloromethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Bromoform	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Bromomethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Carbon disulfide	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Carbon tetrachloride	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Chlorobenzene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Chloroethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Chloroform	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Chloromethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
cis-1,2-Dichloroethene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
cis-1,3-Dichloropropene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Dibromochloromethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Dibromomethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Dichlorodifluoromethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Ethylbenzene	22400	10000		μg/Kg	1000	3/31/2016 4:42:00 PM
Hexachlorobutadiene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Isopropylbenzene	14800	10000		μg/Kg	1000	3/31/2016 4:42:00 PM
m,p-Xylene	102000	20000		μg/Kg	1000	3/31/2016 4:42:00 PM
Methyl tert-butyl ether	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Methylene chloride	ND	50000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Naphthalene	635000	100000		μg/Kg	10000	3/31/2016 1:25:00 PM
n-Butylbenzene	81800	10000		μg/Kg	1000	3/31/2016 4:42:00 PM

CLIENT: Port of Longview Collection Date: 3/28/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe

 Lab ID: 1603278-001

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	;	SW8260B				Analyst: CK
n-Propylbenzene	58400	10000		μg/Kg	1000	3/31/2016 4:42:00 PM
o-Xylene	59500	10000		μg/Kg	1000	3/31/2016 4:42:00 PM
sec-Butylbenzene	31000	10000		μg/Kg	1000	3/31/2016 4:42:00 PM
Styrene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
tert-Butylbenzene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Tetrachloroethene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Toluene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
trans-1,2-Dichloroethene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
trans-1,3-Dichloropropene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Trichloroethene	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Trichlorofluoromethane	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Vinyl chloride	ND	10000	Q	μg/Kg	1000	3/31/2016 4:42:00 PM
Surr: 1,2-Dichloroethane-d4	83.4	71.5-112		%REC	1000	3/31/2016 4:42:00 PM
Surr: 4-Bromofluorobenzene	96.6	75.7-122		%REC	1000	3/31/2016 4:42:00 PM
Surr: Dibromofluoromethane	87.5	64.3-124		%REC	1000	3/31/2016 4:42:00 PM
Surr: Toluene-d8	98.8	74.9-120		%REC	1000	3/31/2016 4:42:00 PM
PCB'S IN OIL		SW 8082A				Analyst: ajr
Aroclor 1016	ND	1.30		mg/Kg-dry	1	3/30/2016 1:06:00 PM
Aroclor 1221	ND	1.30		mg/Kg-dry	1	3/30/2016 1:06:00 PM
Aroclor 1232	ND	1.30		mg/Kg-dry	1	3/30/2016 1:06:00 PM
Aroclor 1242	ND	1.30		mg/Kg-dry	1	3/30/2016 1:06:00 PM
Aroclor 1248	ND	1.30		mg/Kg-dry	1	3/30/2016 1:06:00 PM
Aroclor 1254	ND	1.30		mg/Kg-dry	1	3/30/2016 1:06:00 PM
Aroclor 1260	ND	1.30		mg/Kg-dry	1	3/30/2016 1:06:00 PM
Aroclor 1262	ND	1.30		mg/Kg-dry	1	3/30/2016 1:06:00 PM
Aroclor 1268	ND	1.30		mg/Kg-dry	1	3/30/2016 1:06:00 PM
Surr: Decachlorobiphenyl	80.4	76.3-151		%REC	1	3/30/2016 1:06:00 PM
IGNITABILITY		SW1010				Analyst: MIS
Ignitability	>140	0		°F	1	3/31/2016 1:20:32 PM
SUB CONTRACTING		SUB_CONTR	ACTING			Analyst: sub
Total Halogens	See Sub Report				1	4/4/2016

CLIENT: Port of Longview Collection Date: 3/25/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe **Lab ID:** 1603278-002

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
HYDROCARBON FUEL FINGERP	RINT	8015M				Analyst: JRC
Automatric Trans Fluid	ND	10000		mg/Kg	20	4/4/2016 10:05:25 AM
Hydraulic Oil	ND	10000		mg/Kg	20	4/4/2016 10:05:25 AM
Gasoline	ND	4000		mg/Kg	20	4/4/2016 10:05:25 AM
Mineral Spirits	ND	4000		mg/Kg	20	4/4/2016 10:05:25 AM
Kerosene	ND	10000		mg/Kg	20	4/4/2016 10:05:25 AM
Diesel	538000	10000		mg/Kg	20	4/4/2016 10:05:25 AM
Oil	295000	20000	A2	mg/Kg	20	4/4/2016 10:05:25 AM
Surr: o-Terphenyl	193	50-150	SMI	%REC	20	4/4/2016 10:05:25 AM
ICP/MS METALS-TOTAL RECOVE	RABLE	SW6020A				Analyst: JRC
Arsenic	ND	485		μg/Kg	10	4/1/2016 11:10:27 AM
Barium	ND	485		μg/Kg	10	4/1/2016 11:10:27 AM
Cadmium	ND	97.1		μg/Kg	10	4/1/2016 11:10:27 AM
Chromium	ND	971		μg/Kg	10	4/1/2016 11:10:27 AM
Lead	ND	243		μg/Kg	10	4/1/2016 11:10:27 AM
Nickel	51300	485		μg/Kg	10	4/1/2016 11:10:27 AM
Selenium	ND	971		μg/Kg	10	4/1/2016 11:10:27 AM
Silver	ND	97.1		μg/Kg	10	4/1/2016 11:10:27 AM
Zinc	ND	4850		μg/Kg	10	4/1/2016 11:10:27 AM
TOTAL MERCURY		SW 7471B				Analyst: BW
Mercury	ND	0.0143		mg/Kg	1	4/1/2016 11:02:36 AM
SEMIVOLATILE ORGANICS-LOW	LEVEL	SW8270D				Analyst: CK
1,2,4-Trichlorobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
1,2-Dichlorobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
1,2-Diphenylhydrazine	ND	500000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
1,3-Dichlorobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
1,4-Dichlorobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
1-Methylnaphthalene	2550000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
2,4,5-Trichlorophenol	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
2,4,6-Trichlorophenol	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
2,4-Dichlorophenol	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
2,4-Dimethylphenol	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
2,4-Dinitrophenol	ND	1000000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
2,4-Dinitrotoluene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
2,6-Dinitrotoluene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
2-Chloronaphthalene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
2-Chlorophenol	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM

CLIENT: Port of Longview Collection Date: 3/25/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe

 Lab ID: 1603278-002

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS-LO	W LEVEL	SW8270D				Analyst: CK
2-Methylnaphthalene	3440000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
2-Methylphenol	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
2-Nitroaniline	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
2-Nitrophenol	ND	500000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
3-&4-Methylphenol	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
3,3-Dichlorobenzidine	ND	500000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
3-Nitroaniline	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
4,6-Dinitro-2-methylphenol	ND	500000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
4-Bromophenyl phenyl ether	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
4-Chloro-3-methylphenol	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
4-Chloroaniline	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
4-Chlorophenyl phenyl ether	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
4-Nitroaniline	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
4-Nitrophenol	ND	500000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Acenaphthene	199000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
Acenaphthylene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Aniline	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Anthracene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Benz(a)anthracene	458000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
Benzidine	ND	500000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Benzo(a)pyrene	237000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
Benzo(b)fluoranthene	159000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
Benzo(g,h,i)perylene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Benzo(k)fluoranthene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Benzoic Acid	ND	2000000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Benzyl Alcohol	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Benzyl butyl phthalate	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Bis(2-chloroethoxy)methane	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Bis(2-chloroethyl)ether	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Bis(2-chloroisopropyl)ether	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Bis(2-ethylhexyl)phthalate	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Carbazole	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Chrysene	890000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
Dibenz(a,h)anthracene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Dibenzofuran	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Diethyl phthalate	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Dimethyl phthalate	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Di-n-butyl phthalate	ND	500000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Di-n-octyl phthalate	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM

CLIENT: Port of Longview Collection Date: 3/25/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe

 Lab ID: 1603278-002

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS-LOW	LEVEL	SW8270D				Analyst: CK
Fluoranthene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Fluorene	294000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
Hexachlorobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Hexachlorobutadiene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Hexachlorocyclopentadiene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Hexachloroethane	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Indeno(1,2,3-cd)pyrene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Isophorone	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Naphthalene	1270000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
Nitrobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
N-Nitrosodimethylamine	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
N-Nitrosodi-n-propylamine	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
N-Nitrosodiphenylamine	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Pentachlorophenol	ND	500000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Phenanthrene	714000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
Phenol	ND	100000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Pyrene	478000	100000		μg/Kg	10	3/30/2016 5:25:00 PM
Pyridine	ND	500000	Q	μg/Kg	10	3/30/2016 5:25:00 PM
Surr: 2,4,6-Tribromophenol	69.1	57.8-119		%REC	10	3/30/2016 5:25:00 PM
Surr: 2-Fluorobiphenyl	85.9	52.6-113.2		%REC	10	3/30/2016 5:25:00 PM
Surr: 2-Fluorophenol	65.3	40.7-111		%REC	10	3/30/2016 5:25:00 PM
Surr: 4-Terphenyl-d14	65.1	49.8-118		%REC	10	3/30/2016 5:25:00 PM
Surr: Nitrobenzene-d5	63.2	44.8-103		%REC	10	3/30/2016 5:25:00 PM
Surr: Phenol-d6	45.1	37.5-117		%REC	10	3/30/2016 5:25:00 PM
VOLATILE ORGANICS BY GC/MS		SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,1,1-Trichloroethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,1,2,2-Tetrachloroethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,1,2-Trichloroethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,1-Dichloroethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,1-Dichloroethene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,1-Dichloropropene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,2,3-Trichlorobenzene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,2,3-Trichloropropane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,2,4-Trichlorobenzene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,2,4-Trimethylbenzene	516000	100000		μg/Kg	2000	3/31/2016 1:58:00 PM
1,2-Dibromo-3-chloropropane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM

CLIENT: Port of Longview Collection Date: 3/25/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe

 Lab ID: 1603278-002

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	5	SW8260B				Analyst: CK
1,2-Dibromoethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,2-Dichlorobenzene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,2-Dichloroethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,2-Dichloropropane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,3,5-Trimethylbenzene	125000	10000		μg/Kg	200	3/31/2016 5:14:00 PM
1,3-Dichlorobenzene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,3-Dichloropropane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
1,4-Dichlorobenzene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
2,2-Dichloropropane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
2-Butanone	ND	20000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
2-Chlorotoluene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
2-Hexanone	ND	20000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
4-Chlorotoluene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
4-Isopropyltoluene	19900	10000		μg/Kg	200	3/31/2016 5:14:00 PM
4-Methyl-2-pentanone	ND	20000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Acetone	ND	50000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Benzene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Bromobenzene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Bromochloromethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Bromodichloromethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Bromoform	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Bromomethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Carbon disulfide	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Carbon tetrachloride	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Chlorobenzene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Chloroethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Chloroform	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Chloromethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
cis-1,2-Dichloroethene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
cis-1,3-Dichloropropene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Dibromochloromethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Dibromomethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Dichlorodifluoromethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Ethylbenzene	48200	10000		μg/Kg	200	3/31/2016 5:14:00 PM
Hexachlorobutadiene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Isopropylbenzene	44500	10000		μg/Kg	200	3/31/2016 5:14:00 PM
m,p-Xylene	190000	20000		μg/Kg	200	3/31/2016 5:14:00 PM
Methyl tert-butyl ether	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Methylene chloride	ND	50000	Q	μg/Kg	200	3/31/2016 5:14:00 PM

CLIENT: Port of Longview Collection Date: 3/25/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe

 Lab ID: 1603278-002

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS		SW8260B				Analyst: CK
Naphthalene	1140000	100000		μg/Kg	2000	3/31/2016 1:58:00 PM
n-Butylbenzene	62400	10000		μg/Kg	200	3/31/2016 5:14:00 PM
n-Propylbenzene	55300	10000		μg/Kg	200	3/31/2016 5:14:00 PM
o-Xylene	97900	10000		μg/Kg	200	3/31/2016 5:14:00 PM
sec-Butylbenzene	20400	10000		μg/Kg	200	3/31/2016 5:14:00 PM
Styrene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
tert-Butylbenzene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Tetrachloroethene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Toluene	51400	10000		μg/Kg	200	3/31/2016 5:14:00 PM
trans-1,2-Dichloroethene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
trans-1,3-Dichloropropene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Trichloroethene	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Trichlorofluoromethane	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Vinyl chloride	ND	10000	Q	μg/Kg	200	3/31/2016 5:14:00 PM
Surr: 1,2-Dichloroethane-d4	78.7	71.5-112		%REC	200	3/31/2016 5:14:00 PM
Surr: 4-Bromofluorobenzene	93.6	75.7-122		%REC	200	3/31/2016 5:14:00 PM
Surr: Dibromofluoromethane	83.7	64.3-124		%REC	200	3/31/2016 5:14:00 PM
Surr: Toluene-d8	98.2	74.9-120		%REC	200	3/31/2016 5:14:00 PM
PCB'S IN OIL		SW 8082A				Analyst: ajr
Aroclor 1016	ND	1.10		mg/Kg-dry	1	3/30/2016 1:24:00 PM
Aroclor 1221	ND	1.10		mg/Kg-dry	1	3/30/2016 1:24:00 PM
Aroclor 1232	ND	1.10		mg/Kg-dry	1	3/30/2016 1:24:00 PM
Aroclor 1242	ND	1.10		mg/Kg-dry	1	3/30/2016 1:24:00 PM
Aroclor 1248	ND	1.10		mg/Kg-dry	1	3/30/2016 1:24:00 PM
Aroclor 1254	ND	1.10		mg/Kg-dry	1	3/30/2016 1:24:00 PM
Aroclor 1260	ND	1.10		mg/Kg-dry	1	3/30/2016 1:24:00 PM
Aroclor 1262	ND	1.10		mg/Kg-dry	1	3/30/2016 1:24:00 PM
Aroclor 1268	ND	1.10		mg/Kg-dry	1	3/30/2016 1:24:00 PM
Surr: Decachlorobiphenyl	93.3	76.3-151		%REC	1	3/30/2016 1:24:00 PM
IGNITABILITY		SW1010				Analyst: MIS
Ignitability	>140	0		°F	1	3/31/2016 2:00:32 PM
SUB CONTRACTING		SUB_CONTRA	CTING			Analyst: sub
Total Halogens Se	ee Sub Report				1	4/4/2016

CLIENT: Port of Longview Collection Date: 3/29/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe **Lab ID:** 1603278-003

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
HYDROCARBON FUEL FINGERPR	INT	8015M				Analyst: JRC
Automatric Trans Fluid	ND	10000		mg/Kg	20	4/4/2016 10:49:33 AM
Hydraulic Oil	ND	10000		mg/Kg	20	4/4/2016 10:49:33 AM
Gasoline	ND	4000		mg/Kg	20	4/4/2016 10:49:33 AM
Mineral Spirits	ND	4000		mg/Kg	20	4/4/2016 10:49:33 AM
Kerosene	ND	10000		mg/Kg	20	4/4/2016 10:49:33 AM
Diesel	229000	10000	K	mg/Kg	20	4/4/2016 10:49:33 AM
Oil	292000	20000	A2	mg/Kg	20	4/4/2016 10:49:33 AM
Surr: o-Terphenyl	107	50-150		%REC	20	4/4/2016 10:49:33 AM
ICP/MS METALS-TOTAL RECOVER	RABLE	SW6020A				Analyst: JRC
Arsenic	533	532		μg/Kg	10	4/1/2016 11:27:19 AM
Barium	ND	532		μg/Kg	10	4/1/2016 11:27:19 AM
Cadmium	ND	106		μg/Kg	10	4/1/2016 11:27:19 AM
Chromium	ND	1060		μg/Kg	10	4/1/2016 11:27:19 AM
Lead	2940	266		μg/Kg	10	4/1/2016 11:27:19 AM
Nickel	38300	532		μg/Kg	10	4/1/2016 11:27:19 AM
Selenium	ND	1060		μg/Kg	10	4/1/2016 11:27:19 AM
Silver	ND	106		μg/Kg	10	4/1/2016 11:27:19 AM
Zinc	ND	5320		μg/Kg	10	4/1/2016 11:27:19 AM
TOTAL MERCURY		SW 7471B				Analyst: BW
Mercury	ND	0.0168		mg/Kg	1	4/1/2016 11:04:36 AM
SEMIVOLATILE ORGANICS-LOW L	.EVEL	SW8270D				Analyst: CK
1,2,4-Trichlorobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
1,2-Dichlorobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
1,2-Diphenylhydrazine	ND	500000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
1,3-Dichlorobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
1,4-Dichlorobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
1-Methylnaphthalene	823000	100000		μg/Kg	10	3/30/2016 4:58:00 PM
2,4,5-Trichlorophenol	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
2,4,6-Trichlorophenol	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
2,4-Dichlorophenol	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
2,4-Dimethylphenol	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
2,4-Dinitrophenol	ND	1000000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
2,4-Dinitrotoluene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
2,6-Dinitrotoluene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
2-Chloronaphthalene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
2-Chlorophenol	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM

CLIENT: Port of Longview **Collection Date:** 3/29/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe **Lab ID:** 1603278-003

analyses	Result	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS-LO	W LEVEL	SW8270D				Analyst: CK
2-Methylnaphthalene	1040000	100000		μg/Kg	10	3/30/2016 4:58:00 PM
2-Methylphenol	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
2-Nitroaniline	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
2-Nitrophenol	ND	500000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
3-&4-Methylphenol	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
3,3-Dichlorobenzidine	ND	500000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
3-Nitroaniline	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
4,6-Dinitro-2-methylphenol	ND	500000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
4-Bromophenyl phenyl ether	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
4-Chloro-3-methylphenol	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
4-Chloroaniline	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
4-Chlorophenyl phenyl ether	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
4-Nitroaniline	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
4-Nitrophenol	ND	500000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Acenaphthene	113000	100000		μg/Kg	10	3/30/2016 4:58:00 PM
Acenaphthylene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Aniline	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Anthracene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Benz(a)anthracene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Benzidine	ND	500000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Benzo(a)pyrene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Benzo(b)fluoranthene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Benzo(g,h,i)perylene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Benzo(k)fluoranthene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Benzoic Acid	ND	2000000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Benzyl Alcohol	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Benzyl butyl phthalate	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Bis(2-chloroethoxy)methane	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Bis(2-chloroethyl)ether	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Bis(2-chloroisopropyl)ether	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Bis(2-ethylhexyl)phthalate	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Carbazole	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Chrysene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Dibenz(a,h)anthracene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Dibenzofuran	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Diethyl phthalate	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Dimethyl phthalate	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Di-n-butyl phthalate	ND	500000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Di-n-octyl phthalate	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM

CLIENT: Port of Longview **Collection Date:** 3/29/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe **Lab ID:** 1603278-003

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILE ORGANICS-LOW L	.EVEL	SW8270D				Analyst: CK
Fluoranthene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Fluorene	135000	100000		μg/Kg	10	3/30/2016 4:58:00 PM
Hexachlorobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Hexachlorobutadiene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Hexachlorocyclopentadiene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Hexachloroethane	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Indeno(1,2,3-cd)pyrene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Isophorone	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Naphthalene	311000	100000		μg/Kg	10	3/30/2016 4:58:00 PM
Nitrobenzene	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
N-Nitrosodimethylamine	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
N-Nitrosodi-n-propylamine	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
N-Nitrosodiphenylamine	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Pentachlorophenol	ND	500000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Phenanthrene	577000	100000		μg/Kg	10	3/30/2016 4:58:00 PM
Phenol	ND	100000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Pyrene	229000	100000		μg/Kg	10	3/30/2016 4:58:00 PM
Pyridine	ND	500000	Q	μg/Kg	10	3/30/2016 4:58:00 PM
Surr: 2,4,6-Tribromophenol	63.9	57.8-119		%REC	10	3/30/2016 4:58:00 PM
Surr: 2-Fluorobiphenyl	93.3	52.6-113.2		%REC	10	3/30/2016 4:58:00 PM
Surr: 2-Fluorophenol	56.5	40.7-111		%REC	10	3/30/2016 4:58:00 PM
Surr: 4-Terphenyl-d14	88.7	49.8-118		%REC	10	3/30/2016 4:58:00 PM
Surr: Nitrobenzene-d5	69.7	44.8-103		%REC	10	3/30/2016 4:58:00 PM
Surr: Phenol-d6	45.3	37.5-117		%REC	10	3/30/2016 4:58:00 PM
VOLATILE ORGANICS BY GC/MS		SW8260B				Analyst: CK
1,1,1,2-Tetrachloroethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,1,1-Trichloroethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,1,2,2-Tetrachloroethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,1,2-Trichloroethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,1-Dichloroethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,1-Dichloroethene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,1-Dichloropropene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,2,3-Trichlorobenzene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,2,3-Trichloropropane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,2,4-Trichlorobenzene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,2,4-Trimethylbenzene	168000	100000		μg/Kg	1000	3/31/2016 4:10:00 PM
1,2-Dibromo-3-chloropropane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM

CLIENT: Port of Longview **Collection Date:** 3/29/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe

 Lab ID: 1603278-003

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/MS	5	SW8260B				Analyst: CK
1,2-Dibromoethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,2-Dichlorobenzene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,2-Dichloroethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,2-Dichloropropane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,3,5-Trimethylbenzene	52900	10000		μg/Kg	100	3/31/2016 5:46:00 PM
1,3-Dichlorobenzene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,3-Dichloropropane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
1,4-Dichlorobenzene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
2,2-Dichloropropane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
2-Butanone	ND	20000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
2-Chlorotoluene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
2-Hexanone	ND	20000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
4-Chlorotoluene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
4-Isopropyltoluene	22000	10000		μg/Kg	100	3/31/2016 5:46:00 PM
4-Methyl-2-pentanone	ND	20000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Acetone	ND	50000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Benzene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Bromobenzene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Bromochloromethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Bromodichloromethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Bromoform	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Bromomethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Carbon disulfide	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Carbon tetrachloride	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Chlorobenzene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Chloroethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Chloroform	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Chloromethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
cis-1,2-Dichloroethene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
cis-1,3-Dichloropropene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Dibromochloromethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Dibromomethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Dichlorodifluoromethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Ethylbenzene	25700	10000		μg/Kg	100	3/31/2016 5:46:00 PM
Hexachlorobutadiene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Isopropylbenzene	10400	10000		μg/Kg	100	3/31/2016 5:46:00 PM
m,p-Xylene	107000	20000		μg/Kg	100	3/31/2016 5:46:00 PM
Methyl tert-butyl ether	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Methylene chloride	ND	50000	Q	μg/Kg	100	3/31/2016 5:46:00 PM

CLIENT: Port of Longview **Collection Date:** 3/29/2016

Date Reported:

15-Apr-16

Project: Berth 1 Pipe

 Lab ID: 1603278-003

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC/M	S	SW8260B				Analyst: CK
Naphthalene	366000	100000		μg/Kg	1000	3/31/2016 4:10:00 PM
n-Butylbenzene	17200	10000		μg/Kg	100	3/31/2016 5:46:00 PM
n-Propylbenzene	22700	10000		μg/Kg	100	3/31/2016 5:46:00 PM
o-Xylene	54200	10000		μg/Kg	100	3/31/2016 5:46:00 PM
sec-Butylbenzene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Styrene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
tert-Butylbenzene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Tetrachloroethene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Toluene	35900	10000		μg/Kg	100	3/31/2016 5:46:00 PM
trans-1,2-Dichloroethene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
trans-1,3-Dichloropropene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Trichloroethene	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Trichlorofluoromethane	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Vinyl chloride	ND	10000	Q	μg/Kg	100	3/31/2016 5:46:00 PM
Surr: 1,2-Dichloroethane-d4	78.5	71.5-112		%REC	100	3/31/2016 5:46:00 PM
Surr: 4-Bromofluorobenzene	92.7	75.7-122		%REC	100	3/31/2016 5:46:00 PM
Surr: Dibromofluoromethane	80.4	64.3-124		%REC	100	3/31/2016 5:46:00 PM
Surr: Toluene-d8	98.2	74.9-120		%REC	100	3/31/2016 5:46:00 PM
PCB'S IN OIL		SW 8082A				Analyst: ajr
Aroclor 1016	ND	1.04		mg/Kg-dry	1	3/30/2016 1:41:00 PM
Aroclor 1221	ND	1.04		mg/Kg-dry	1	3/30/2016 1:41:00 PM
Aroclor 1232	ND	1.04		mg/Kg-dry	1	3/30/2016 1:41:00 PM
Aroclor 1242	ND	1.04		mg/Kg-dry	1	3/30/2016 1:41:00 PM
Aroclor 1248	ND	1.04		mg/Kg-dry	1	3/30/2016 1:41:00 PM
Aroclor 1254	ND	1.04		mg/Kg-dry	1	3/30/2016 1:41:00 PM
Aroclor 1260	ND	1.04		mg/Kg-dry	1	3/30/2016 1:41:00 PM
Aroclor 1262	ND	1.04		mg/Kg-dry	1	3/30/2016 1:41:00 PM
Aroclor 1268	ND	1.04		mg/Kg-dry	1	3/30/2016 1:41:00 PM
Surr: Decachlorobiphenyl	81.1	76.3-151		%REC	1	3/30/2016 1:41:00 PM
IGNITABILITY		SW1010				Analyst: MIS
Ignitability	>140	0		°F	1	3/31/2016 2:20:32 PM
SUB CONTRACTING		SUB_CONTR	ACTING			Analyst: sub
Total Halogens	See Sub Report				1	4/4/2016

WO#:

1603278

15-Apr-16

Specialty Analytical

Port of Longview **Client:**

Project: Berth 1 Pipe TestCode: 6020_S

Sample ID: ICV	SampType: ICV	TestCo	Code: 6020_S Units: µg/Kg Prep Date:		te:	RunNo: 24504					
Client ID: ICV	Batch ID: 11031	TestN	lo: SW6020A	SW3050B		Analysis Da	te: 4/1/201	6	SeqNo: 330569		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4970	50.0	5000	0	99.4	90	110				
Barium	4930	50.0	5000	0	98.6	90	110				
Cadmium	4940	10.0	5000	0	98.7	90	110				
Chromium	4900	100	5000	0	98.1	90	110				
Lead	4990	25.0	5000	0	99.8	90	110				
Nickel	4990	50.0	5000	0	99.8	90	110				
Selenium	4970	100	5000	0	99.4	90	110				
Silver	5070	10.0	5000	0	101	90	110				
Zinc	4840	500	5000	0	96.9	90	110				

Sample ID: MB-11031	SampType: MBLK	TestCode: 6020_S	Units: µg/Kg	Prep Date: 3/30/2016	RunNo: 24504
Client ID: PBS	Batch ID: 11031	TestNo: SW6020A	SW3050B	Analysis Date: 4/1/2016	SeqNo: 330570
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	ND	50.0			
Barium	ND	50.0			
Cadmium	ND	10.0			
Chromium	ND	100			
Lead	ND	25.0			
Nickel	ND	50.0			
Selenium	ND	100			
Silver	ND	10.0			
Zinc	ND	500			

Qualifiers: Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 1 of 18

RSD is greater than RSDlimit

RPD outside accepted recovery limits

Spike Recovery outside accepted reco

1603278 WO#:

15-Apr-16

Specialty Analytical

Port of Longview **Client:**

Project: Berth 1 Pipe TestCode: 6020_S

Sample ID: 1603278-002DDUP Client ID: D	SampType: DUP Batch ID: 11031		le: 6020_S lo: SW6020A	Units: µg/Kg SW3050B		Prep Da Analysis Da	te: 3/30/20		RunNo: 245 SeqNo: 330		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	490						0	0	20	
Barium	ND	490						0	0	20	RF
Cadmium	ND	98.1						0	0	20	
Chromium	ND	981						0	0	20	
Lead	ND	245						0	0	20	
Nickel	52000	490						51300	1.38	20	
Selenium	ND	981						0	0	20	RF
Silver	ND	98.1						0	0	20	
Zinc	ND	4900						0	0	20	RF

Sample ID: 1603278-002DMS	SampType: MS	TestCod	de: 6020_S	Units: µg/Kg		Prep Da	te: 3/30/20	16	RunNo: 245	504	
Client ID: D	Batch ID: 11031	TestN	lo: SW6020A	SW3050B		Analysis Da	te: 4/1/201	6	SeqNo: 330	574	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4840	491	4912	113.5	96.3	70	130				
Barium	5230	491	4912	174.0	103	70	130				
Cadmium	5050	98.2	4912	0	103	70	130				
Chromium	5410	982	4912	125.0	108	70	130				
Lead	5100	246	4912	94.99	102	70	130				
Nickel	56700	491	4912	51300	110	70	130				
Selenium	4770	982	4912	222.0	92.6	70	130				
Silver	5010	98.2	4912	0	102	70	130				
Zinc	6370	4910	4912	1686	95.3	70	130				

Qualifiers: Analyte detected in the associated Method Blank

RSD is greater than RSDlimit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 2 of 18

Spike Recovery outside accepted reco

1603278 WO#:

15-Apr-16

Specialty Analytical

Port of Longview **Client:**

Project: Berth 1 Pipe TestCode: 6020_S

Sample ID: 1603278-002DMSD	SampType: MSD	TestCo	de: 6020_S	Units: µg/Kg		Prep Da	te: 3/30/20	16	RunNo: 245	504	
Client ID: D	Batch ID: 11031	TestN	No: SW6020A	SW3050B		Analysis Da	te: 4/1/201	6	SeqNo: 330	575	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	5190	505	5046	113.5	101	70	130	4844	6.84	20	
Barium	5590	505	5046	174.0	107	70	130	5226	6.69	20	
Cadmium	5340	101	5046	0	106	70	130	5045	5.73	20	
Chromium	5640	1010	5046	125.0	109	70	130	5414	4.02	20	
Lead	5370	252	5046	94.99	105	70	130	5103	5.10	20	
Nickel	56900	505	5046	51300	111	70	130	56680	0.358	20	
Selenium	5150	1010	5046	222.0	97.7	70	130	4771	7.72	20	
Silver	5390	101	5046	0	107	70	130	5009	7.29	20	
Zinc	7240	5050	5046	1686	110	70	130	6368	12.8	20	

Sample ID: LCS-11031	SampType: LCS	TestCod	de: 6020_S	Units: µg/Kg		Prep Dat	te: 3/30/20	16	RunNo: 245	504	
Client ID: LCSS	Batch ID: 11031	TestN	lo: SW6020A	SW3050B	Analysis Date: 4/1/2016			6	SeqNo: 330579		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4910	50.0	5000	0	98.1	73.4	120				
Barium	4940	50.0	5000	0	98.8	80	120				
Cadmium	4970	10.0	5000	0	99.3	80	120				
Chromium	5070	100	5000	0	101	80	120				
Lead	5130	25.0	5000	0	103	80	120				
Nickel	5010	50.0	5000	0	100	80	120				
Selenium	4860	100	5000	0	97.3	79.5	119				
Silver	5140	10.0	5000	0	103	12.3	165				
Zinc	4800	500	5000	0	96.0	69	129				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 3 of 18

RPD outside accepted recovery limits

WO#:

1603278

15-Apr-16

Client: Port of Longview

Specialty Analytical

Project: Port of Berth	1 Pipe					TestCode: 8	015FF_S	
Sample ID: CCV	SampType: CCV	TestCode: 8015FF_S	0 0		·	3/30/2016	RunNo: 24515	
Client ID: CCV	Batch ID: 11030	TestNo: 8015M	SW3580A		Analysis Date:	4/4/2016	SeqNo: 330787	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel	32100	500 30000	0	107	85	115		
Oil	17000	1000 15000	0	113	85	115		
Sample ID: MB-11030	SampType: MBLK	TestCode: 8015FF_S	Units: mg/Kg		Prep Date:	3/30/2016	RunNo: 24515	
Client ID: PBS	Batch ID: 11030	TestNo: 8015M	SW3580A		Analysis Date:	4/4/2016	SeqNo: 330788	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Automatric Trans Fluid	ND	500						
Hydraulic Oil	ND	500						
Gasoline	ND	200						
Mineral Spirits	ND	200						
Kerosene	ND	500						
Diesel	ND	500						
Oil	ND	1000						
Surr: o-Terphenyl	781	1000		78.1	50	150		
Sample ID: CCV	SampType: CCV	TestCode: 8015FF_S	Units: mg/Kg		Prep Date:	3/30/2016	RunNo: 24515	
Client ID: CCV	Batch ID: 11030	TestNo: 8015M	SW3580A		Analysis Date:	4/4/2016	SeqNo: 330792	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Diesel	30700	500 30000	0	102	85	115		
Oil	14300	1000 15000	0	95.1	85	115		

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 4 of 18

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#:

1603278

15-Apr-16

Specialty Analytical

Project: Berth 1 Projects	ipe					Tes	stCode: 8	082_O		
Sample ID: MB-11029	SampType: MBLK	TestCode: 8082_O	Units: mg/Kg		Prep Date:	3/30/2016	6	RunNo: 24 4	173	
Client ID: PBW	Batch ID: 11029	TestNo: SW 8082A	SW3580A		Analysis Date:	3/30/2016	6	SeqNo: 330	310	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	1.00								
Aroclor 1221	ND	1.00								
Aroclor 1232	ND	1.00								
Aroclor 1242	ND	1.00								
Aroclor 1248	ND	1.00								
Aroclor 1254	ND	1.00								
Aroclor 1260	ND	1.00								
Aroclor 1262	ND	1.00								
Aroclor 1268	ND	1.00								
Surr: Decachlorobiphenyl	1010	1000		101	76.3	151				
Sample ID: 1016/1260 CCV	SampType: CCV	TestCode: 8082_O	Units: mg/Kg		Prep Date:			RunNo: 24 4	173	
Client ID: CCV	Batch ID: 11029	TestNo: SW 8082A	SW3580A		Analysis Date:	3/30/2016	6	SeqNo: 330	317	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016/1260	9.43	1.00 10.00	0	94.3	85	115				
Aroclor 1260	10.0	1.00 10.00	0	100	85	115				
Sample ID: CCB-11029	SampType: CCB	TestCode: 8082_O	Units: mg/Kg		Prep Date:			RunNo: 24 4	173	
Client ID: CCB	Batch ID: 11029	TestNo: SW 8082A	SW3580A		Analysis Date:	3/31/2016	6	SeqNo: 330	0451	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	1.00								

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 5 of 18

RSD is greater than RSDlimit

RPD outside accepted recovery limits

Spike Recovery outside accepted reco

1603278 WO#:

15-Apr-16

Specialty Analytical

Client:

Port of Longview

Project: Berth 1 Pipe TestCode: 8082_O

Sample ID: CCB-11029	SampType: CCB	TestCode: 8082_O	Units: mg/Kg		Prep Date:		RunNo: 244	73	
Client ID: CCB	Batch ID: 11029	TestNo: SW 8082A	SW3580A		Analysis Date:	3/31/2016	SeqNo: 330	451	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit Hig	ghLimit RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1221	ND	1.00							
Aroclor 1232	ND	1.00							
Aroclor 1242	ND	1.00							
Aroclor 1248	ND	1.00							
Aroclor 1254	ND	1.00							
Aroclor 1260	ND	1.00							
Aroclor 1262	ND	1.00							
Aroclor 1268	ND	1.00							
Surr: Decachlorobiphenyl	976	1000		97.6	76.3	151			

Sample ID: 1016/1260 CCV	SampType: CCV	TestCode: 8082_O	Units: mg/Kg	Prep D	ate:	RunNo: 24473	
Client ID: CCV	Batch ID: 11029	TestNo: SW 8082A	SW3580A	Analysis D	ate: 3/31/2016	SeqNo: 330454	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Aroclor 1016/1260	9.38	1.00 10.00	0	93.8 85	115		

WO#:

1603278

15-Apr-16

Client: Port of Longview

Specialty Analytical

Project: Berth 1 Pipe	e						T	estCode: 8	260_S		
Sample ID: CCV MSVWS-2050	SampType: CCV	TestCod	de: 8260_S	Units: µg/Kg		Prep Date) :		RunNo: 244	185	
Client ID: CCV	Batch ID: 11035	TestN	lo: SW8260B	5030		Analysis Date	e: 3/31/20	16	SeqNo: 330)455	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,1-Dichloroethene	76.9	10.0	80.00	0	96.2	80	120				
1,2-Dichloropropane	71.7	10.0	80.00	0	89.6	80	120				
Chloroform	80.8	10.0	80.00	0	101	80	120				
Ethylbenzene	78.5	10.0	80.00	0	98.2	80	120				
Toluene	73.0	10.0	80.00	0	91.2	80	120				
Vinyl chloride	72.9	10.0	80.00	0	91.1	80	120				
Sample ID: LCS MSVWS-2051	SampType: LCS	TestCoo	de: 8260_S	Units: µg/Kg		Prep Date	e:		RunNo: 244	185	
Client ID: LCSS	Batch ID: 11035	TestN	lo: SW8260B	5030		Analysis Date	e: 3/31/20	16	SeqNo: 330)456	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,1-Dichloroethene	78.9	10.0	80.00	0	98.6	80	120				
Benzene	76.4	10.0	80.00	0	95.4	80	120				
Chlorobenzene	78.9	10.0	80.00	0	98.6	80	120				
Toluene	73.3	10.0	80.00	0	91.6	80	120				
Trichloroethene	84.4	10.0	80.00	0	106	80	120				
Sample ID: MB	SampType: MBLK	TestCoo	de: 8260_S	Units: µg/Kg		Prep Date			RunNo: 244	l85	
Client ID: PBS	Batch ID: 11035	TestN	lo: SW8260B	5030		Analysis Date	e: 3/31/20	16	SeqNo: 330	1459	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1,1,1,2-Tetrachloroethane	ND	10.0									
1,1,1,2-16114611101061114116											

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 7 of 18

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#:

1603278

15-Apr-16

Specialty Analytical

Client:

Port of Longview

Project: Berth 1 Pipe TestCode: 8260_S

Sample ID: MB	SampType: MBLK		le: 8260_S	Units: µg/Kg	/Kg Prep Date: Analysis Date: 3/31/2016			_	RunNo: 244		
Client ID: PBS	Batch ID: 11035	TestN	o: SW8260B	5030		Analysis Da	te: 3/31/2 0)16	SeqNo: 330	0459	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,2,2-Tetrachloroethane	ND	10.0									
1,1,2-Trichloro-1,2,2-trifluoroethan	e ND	10.0									
1,1,2-Trichloroethane	ND	10.0									
1,1-Dichloroethane	ND	10.0									
1,1-Dichloroethene	ND	10.0									
1,1-Dichloropropene	ND	10.0									
1,2,3-Trichlorobenzene	ND	10.0									
1,2,3-Trichloropropane	ND	10.0									
1,2,4-Trichlorobenzene	ND	10.0									
1,2,4-Trimethylbenzene	ND	10.0									
1,2-Dibromo-3-chloropropane	ND	10.0									
1,2-Dibromoethane	ND	10.0									
1,2-Dichlorobenzene	ND	10.0									
1,2-Dichloroethane	ND	10.0									
1,2-Dichloropropane	ND	10.0									
1,3,5-Trimethylbenzene	ND	10.0									
1,3-Dichlorobenzene	ND	10.0									
1,3-Dichloropropane	ND	10.0									
1,4-Dichlorobenzene	ND	10.0									
2,2-Dichloropropane	ND	10.0									
2-Butanone	ND	20.0									
2-Chlorotoluene	ND	10.0									
2-Hexanone	ND	20.0									
4-Chlorotoluene	ND	10.0									
4-Isopropyltoluene	ND	10.0									
4-Methyl-2-pentanone	ND	20.0									

Qualifiers:

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 8 of 18

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

WO#:

1603278

15-Apr-16

Client: Port of Longview

Specialty Analytical

Project: Berth 1 Pipe TestCode: 8260_S

Sample ID: MB	SampType: MBLK	TestCode: 8260_S	Units: µg/Kg	Prep Date:	RunNo: 24485
Client ID: PBS	Batch ID: 11035	TestNo: SW8260B	5030	Analysis Date: 3/31/2016	SeqNo: 330459
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Acetone	ND	50.0			
Benzene	ND	10.0			
Bromobenzene	ND	10.0			
Bromochloromethane	ND	10.0			
Bromodichloromethane	ND	10.0			
Bromoform	ND	10.0			
Bromomethane	ND	10.0			
Carbon disulfide	ND	10.0			
Carbon tetrachloride	ND	10.0			
Chlorobenzene	ND	10.0			
Chloroethane	ND	10.0			
Chloroform	ND	10.0			
Chloromethane	ND	10.0			
cis-1,2-Dichloroethene	ND	10.0			
cis-1,3-Dichloropropene	ND	10.0			
Dibromochloromethane	ND	10.0			
Dibromomethane	ND	10.0			
Dichlorodifluoromethane	ND	10.0			
Ethylbenzene	ND	10.0			
Hexachlorobutadiene	ND	10.0			
Isopropylbenzene	ND	10.0			
m,p-Xylene	ND	20.0			
Methyl tert-butyl ether	ND	10.0			
Methylene chloride	ND	50.0			
Naphthalene	ND	10.0			
n-Butylbenzene	ND	10.0			

Qualifiers:

Analyte detected in the associated Method Blank

RSD is greater than RSDlimit

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 9 of 18

1603278 WO#:

15-Apr-16

Specialty Analytical

Client: Port of Longview

Project: Berth 1 Pipe TestCode: 8260 S

Project: Berth 1 Pip	le					1 6	stCode: 8.	200_8		
Sample ID: MB	SampType: MBLK	TestCode: 8260_S	Units: µg/Kg		Prep Dat	e:		RunNo: 24	485	
Client ID: PBS	Batch ID: 11035	TestNo: SW8260	B 5030		Analysis Dat	e: 3/31/201	6	SeqNo: 330	0459	
Analyte	Result	PQL SPK value	e SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
n-Propylbenzene	ND	10.0								
o-Xylene	ND	10.0								
sec-Butylbenzene	ND	10.0								
Styrene	ND	10.0								
tert-Butylbenzene	ND	10.0								
Tetrachloroethene	ND	10.0								
Toluene	ND	10.0								
trans-1,2-Dichloroethene	ND	10.0								
trans-1,3-Dichloropropene	ND	10.0								
Trichloroethene	ND	10.0								
Trichlorofluoromethane	ND	10.0								
Vinyl chloride	ND	10.0								
Surr: 1,2-Dichloroethane-d4	100	100.0)	100	71.5	112				
Surr: 4-Bromofluorobenzene	96.4	100.0)	96.4	75.7	122				
Surr: Dibromofluoromethane	98.6	100.0)	98.6	64.3	124				
Surr: Toluene-d8	96.7	100.0)	96.7	74.9	120				
Sample ID: A1603286-001AMS	SampType: MS	TestCode: 8260_S	Units: μg/Kg		Prep Dat	e:		RunNo: 24	485	

Sample ID: A1603286-001AMS	SampType: MS	TestCod	de: 8260_S	Units: µg/Kg	Prep Date:				RunNo: 24485		
Client ID: ZZZZZZ	Batch ID: 11035	TestN	lo: SW8260B	5030		Analysis Da	te: 3/31/20	16	SeqNo: 330	628	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	40.4	10.0	40.00	0	101	46.6	147				
Benzene	38.8	10.0	40.00	0	97.0	65.2	121				
Chlorobenzene	40.4	10.0	40.00	0	101	40.9	122				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 10 of 18

Spike Recovery outside accepted reco

RSD is greater than RSDlimit

WO#:

1603278

15-Apr-16

Specialty Analytical

Client:

Port of Longview

Project: Berth 1 Pipe TestCode: 8260_S

Sample ID: A1603286-001AMS Client ID: ZZZZZZ	SampType: MS Batch ID: 11035		e: 8260_S o: SW8260B	Units: μg/Kg 5030		Prep Dat Analysis Dat		16	RunNo: 244 SeqNo: 330		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene Trichloroethene	38.2 41.7	10.0 10.0	40.00 40.00	0 0	95.4 104	52.1 57.6	127 122				

Sample ID: A1603286-001AMSD	SampType: MSD	TestCod	de: 8260_S	Units: µg/Kg		Prep Dat	te:		RunNo: 24 4	185	
Client ID: ZZZZZZ	Batch ID: 11035	TestN	lo: SW8260B	5030		Analysis Dat	te: 3/31/20	16	SeqNo: 330	0629	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethene	40.9	10.0	40.00	0	102	46.6	147	40.36	1.40	20	
Benzene	39.5	10.0	40.00	0	98.8	65.2	121	38.79	1.86	20	
Chlorobenzene	40.9	10.0	40.00	0	102	40.9	122	40.40	1.16	20	
Toluene	38.5	10.0	40.00	0	96.4	52.1	127	38.15	1.02	20	
Trichloroethene	42.2	10.0	40.00	0	106	57.6	122	41.72	1.19	20	

WO#:

1603278

15-Apr-16

Client: Port of Longview

Specialty Analytical

Project: Berth 1 Pipe TestCode: 8270LL_S

Sample ID: CCV MSSWS-1384 Client ID: CCV	SampType: CCV Batch ID: 11028		de: 8270LL_S No: SW8270D		Prep Date: Analysis Date: 3/30/2016			16	RunNo: 24 4 SeqNo: 33 0		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,4-Dichlorobenzene	34.5	1.00	40.00	0	86.2	80	120				
2,4,6-Trichlorophenol	41.9	1.00	40.00	0	105	80	120				
2,4-Dichlorophenol	42.5	1.00	40.00	0	106	80	120				
2-Nitrophenol	39.5	5.00	40.00	0	98.7	80	120				
4-Chloro-3-methylphenol	46.5	1.00	40.00	0	116	80	120				
Acenaphthene	42.0	1.00	40.00	0	105	80	120				
Benzo(a)pyrene	46.2	1.00	40.00	0	116	80	120				
Di-n-octyl phthalate	43.4	1.00	40.00	0	108	80	120				
Fluoranthene	41.3	1.00	40.00	0	103	80	120				
Hexachlorobutadiene	32.0	1.00	40.00	0	80.1	80	120				
N-Nitrosodiphenylamine	38.3	1.00	40.00	0	95.7	80	120				
Pentachlorophenol	34.8	5.00	40.00	0	87.1	80	120				
Phenol	45.2	1.00	40.00	0	113	80	120				
Sample ID: MB-11028	SampType: MBLK	TestCod	de: 8270LL_S	Units: µg/Kg		Prep Da	te: 3/30/20	116	RunNo: 244	475	

Sample ID: MB-11028	SampType: MBLK	TestCod	e: 8270LL_S	Units: µg/Kg		Prep Date:	3/30/201	6	RunNo: 24 4	175	
Client ID: PBS	Batch ID: 11028	TestN	o: SW8270D	SW3580A		Analysis Date:	3/30/201	6	SeqNo: 330	324	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit Hig	ghLimit l	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	ND	10000									
1,2-Dichlorobenzene	ND	10000									
1,2-Diphenylhydrazine	ND	50000									
1,3-Dichlorobenzene	ND	10000									
1,4-Dichlorobenzene	ND	10000									
1-Methylnaphthalene	ND	10000									

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 12 of 18

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted reco

WO#:

1603278

15-Apr-16

Client: Port of Longview

Specialty Analytical

Project: Berth 1 Pipe TestCode: 8270LL_S

Sample ID: MB-11028	SampType: MBLK	TestCod	de: 8270LL_S	Units: µg/Kg		Prep Da	te: 3/30/2 0)16	RunNo: 24 4	175	
Client ID: PBS	Batch ID: 11028	TestN	lo: SW8270D	SW3580A		Analysis Da	te: 3/30/2 0)16	SeqNo: 330	324	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,4,5-Trichlorophenol	ND	10000									
2,4,6-Trichlorophenol	ND	10000									
2,4-Dichlorophenol	ND	10000									
2,4-Dimethylphenol	ND	10000									
2,4-Dinitrophenol	ND	100000									
2,4-Dinitrotoluene	ND	10000									
2,6-Dinitrotoluene	ND	10000									
2-Chloronaphthalene	ND	10000									
2-Chlorophenol	ND	10000									
2-Methylnaphthalene	ND	10000									
2-Methylphenol	ND	10000									
2-Nitroaniline	ND	10000									
2-Nitrophenol	ND	50000									
3-&4-Methylphenol	ND	10000									
3,3-Dichlorobenzidine	ND	50000									
3-Nitroaniline	ND	10000									
4,6-Dinitro-2-methylphenol	ND	50000									
4-Bromophenyl phenyl ether	ND	10000									
4-Chloro-3-methylphenol	ND	10000									
4-Chloroaniline	ND	10000									
4-Chlorophenyl phenyl ether	ND	10000									
4-Nitroaniline	ND	10000									
4-Nitrophenol	ND	50000									
Acenaphthene	ND	10000									
Acenaphthylene	ND	10000									
Aniline	ND	10000									

Qualifiers:

Analyte detected in the associated Method Blank

RSD is greater than RSDlimit

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

Page 13 of 18

WO#:

1603278

15-Apr-16

Client: Port of Longview

Specialty Analytical

Project: Berth 1 Pipe TestCode: 8270LL_S

Sample ID: MB-11028	SampType: MBLK		le: 8270LL_S				te: 3/30/20		RunNo: 24 4		
Client ID: PBS	Batch ID: 11028	TestN	lo: SW8270D	SW3580A		Analysis Da	te: 3/30/20	016	SeqNo: 330)324	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Anthracene	ND	10000									
Benz(a)anthracene	ND	10000									
Benzidine	ND	50000									
Benzo(a)pyrene	ND	10000									
Benzo(b)fluoranthene	ND	10000									
Benzo(g,h,i)perylene	ND	10000									
Benzo(k)fluoranthene	ND	10000									
Benzoic Acid	ND	200000									
Benzyl Alcohol	ND	10000									
Benzyl butyl phthalate	ND	10000									
Bis(2-chloroethoxy)methane	ND	10000									
Bis(2-chloroethyl)ether	ND	10000									
Bis(2-chloroisopropyl)ether	ND	10000									
Bis(2-ethylhexyl)phthalate	ND	10000									
Carbazole	ND	10000									
Chrysene	ND	10000									
Dibenz(a,h)anthracene	ND	10000									
Dibenzofuran	ND	10000									
Diethyl phthalate	ND	10000									
Dimethyl phthalate	ND	10000									
Di-n-butyl phthalate	ND	50000									
Di-n-octyl phthalate	ND	10000									
Fluoranthene	ND	10000									
Fluorene	ND	10000									
Hexachlorobenzene	ND	10000									
Hexachlorobutadiene	ND	10000									

Qualifiers:

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 14 of 18

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

WO#:

1603278

15-Apr-16

Port of Longview **Client:**

Specialty Analytical

Project: Berth 1 Pipe TestCode: 8270LL_S

Sample ID: MB-11028	SampType: MBLK	TestCode: 8270LL_S	Units: µg/Kg	Prep	Date: 3/30/2016	RunNo: 24475	
Client ID: PBS	Batch ID: 11028	TestNo: SW8270D	SW3580A	Analysis	Date: 3/30/2016	SeqNo: 330324	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLin	nit HighLimit RPD Ref Val	%RPD RPDLimit Qu	ual
Hexachlorocyclopentadiene	ND	10000					
Hexachloroethane	ND	10000					
Indeno(1,2,3-cd)pyrene	ND	10000					
Isophorone	ND	10000					
Naphthalene	ND	10000					
Nitrobenzene	ND	10000					
N-Nitrosodimethylamine	ND	10000					
N-Nitrosodi-n-propylamine	ND	10000					
N-Nitrosodiphenylamine	ND	10000					
Pentachlorophenol	ND	50000					
Phenanthrene	ND	10000					
Phenol	ND	10000					
Pyrene	ND	10000					
Pyridine	ND	50000					
Surr: 2,4,6-Tribromophenol	863000	1000000		86.3 57	'.8 119		
Surr: 2-Fluorobiphenyl	935000	1000000		93.5 52	2.6 113.2		
Surr: 2-Fluorophenol	840000	1000000		84.0 40).7 111		
Surr: 4-Terphenyl-d14	1070000	1000000		107 49).8 118		
Surr: Nitrobenzene-d5	993000	1000000		99.3 44	1.8 103		
Surr: Phenol-d6	793000	1000000		79.3 47	'.5 117		

Qualifiers: Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

Page 15 of 18

Holding times for preparation or analysis exceeded

WO#:

1603278

15-Apr-16

Client:	Port of Longview
CHCHt.	I OIL OI LOILE VICW

Specialty Analytical

Project: Berth 1 Pip	· ·		TestCode: H	G_CTS
Sample ID: LCS-11044 Client ID: LCSS	SampType: LCS Batch ID: 11044	TestCode: HG_CTS Units: mg/Kg TestNo: SW 7471B SW 7471B	Prep Date: 4/1/2016 Analysis Date: 4/1/2016	RunNo: 24500 SeqNo: 330548
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	0.408	0.0167 0.4000 0	102 80 120	
Sample ID: MB-11044	SampType: MBLK	TestCode: HG_CTS Units: mg/Kg	Prep Date: 4/1/2016	RunNo: 24500
Client ID: PBS	Batch ID: 11044	TestNo: SW 7471B SW 7471B	Analysis Date: 4/1/2016	SeqNo: 330549
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.0167		
Sample ID: 1603278-001DDUP	SampType: DUP	TestCode: HG_CTS Units: mg/Kg	Prep Date: 4/1/2016	RunNo: 24500
Client ID: B	Batch ID: 11044	TestNo: SW 7471B SW 7471B	Analysis Date: 4/1/2016	SeqNo: 330551
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	ND	0.0153	0	0 20 RF
Sample ID: 1603278-001DMS	SampType: MS	TestCode: HG_CTS Units: mg/Kg	Prep Date: 4/1/2016	RunNo: 24500
Client ID: B	Batch ID: 11044	TestNo: SW 7471B SW 7471B	Analysis Date: 4/1/2016	SeqNo: 330552
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury	0.282	0.0158 0.3794 0	74.2 75 125	S

Sample ID: 1603278-001DMS	SampType: MS	TestCode: HG	_CTS	Units: mg/Kg		Prep Date	e: 4/1/2010	6	RunNo: 245	00	
Client ID: B	Batch ID: 11044	TestNo: SW	7471B	SW 7471B	A	Analysis Date	e: 4/1/2010	6	SeqNo: 330	552	
Analyte	Result	PQL SPK	value SF	PK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.282	0.0158 0	.3794	0	74.2	75	125				S

Qualifiers: Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 16 of 18

RSD is greater than RSDlimit

RPD outside accepted recovery limits

Spike Recovery outside accepted reco

WO#:

1603278

15-Apr-16

Specialty Analytical

Client: Port of Longview

Project. Rerth 1 Pine TestCode: HG CTS

0.4000

Project: Berth 1 Pi	pe				TestCoo	de: HG_C18	
Sample ID: 1603278-001DMSD Client ID: B	SampType: MSD Batch ID: 11044	TestCode: HG_CTS TestNo: SW 7471	3 3	·	te: 4/1/2016 te: 4/1/2016	RunNo: 24500 SeqNo: 330553	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD F	Ref Val %RPD RPDLimit	Qual
Mercury	0.179	0.0142 0.3405	0	52.6 75	125 (0.2815 44.5 20	SR
Sample ID: CCV Client ID: CCV	SampType: CCV Batch ID: 11044	TestCode: HG_CTS TestNo: SW 7471	0 0	Prep Da Analysis Da	ite: 4/1/2016	RunNo: 24500 SeqNo: 330556	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD F	Ref Val %RPD RPDLimit	Qual

0

93.9

90

110

Mercury

0.376

0.0167

WO#:

1603278

15-Apr-16

20

Specialty Analytical

Port of Longview Client:

Project: Berth 1 Pip	e			TestCode: IO	GN_S
Sample ID: LCS-R24489 Client ID: LCSS	SampType: LCS Batch ID: R24489	TestCode: IGN_S TestNo: SW1010	Units: °F	Prep Date: Analysis Date: 3/31/2016	RunNo: 24489 SeqNo: 330473
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Ignitability	81.0	0 81.00	0	100 98.74 103.76	
Sample ID: 1603278-002CDUP Client ID: D	SampType: DUP Batch ID: R24489	TestCode: IGN_S TestNo: SW1010	Units: °F	Prep Date: Analysis Date: 3/31/2016	RunNo: 24489 SeqNo: 330476
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

- A This sample contains a Gasoline Range Organic not identified as a specific hydrocarbon product. The result was quantified against gasoline calibration standards
- A1 This sample contains a Diesel Range Organic not identified as a specific hydrocarbon product. The result was quantified against diesel calibration standards.
- A2 This sample contains a Lube Oil Range Organic not identified as a specific hydrocarbon product. The result was quantified against a lube oil calibration standard.
- A3 The result was determined to be Non-Detect based on hydrocarbon pattern recognition. The product was carry-over from another hydrocarbon type.
- A4 The product appears to be aged or degraded diesel.
- B The blank exhibited a positive result great than the reporting limit for this compound.
- CN See Case Narrative.
- D Result is based from a dilution.
- E Result exceeds the calibration range for this compound. The result should be considered as estimate.
- F The positive result for this hydrocarbon is due to single component contamination. The product does not match any hydrocarbon in the fuels library.
- G Result may be biased high due to biogenic interferences. Clean up is recommended.
- H Sample was analyzed outside recommended holding time.
- HT At clients request, samples was analyzed outside of recommended holding time.
- J The result for this analyte is between the MDL and the PQL and should be considered as estimated concentration.
- K Diesel result is biased high due to amount of Oil contained in the sample.
- L Diesel result is biased high due to amount of Gasoline contained in the sample.
- M Oil result is biased high due to amount of Diesel contained in the sample.
- MC Sample concentration is greater than 4x the spiked value, the spiked value is considered insignificant.
- MI Result is outside control limits due to matrix interference.
- MSA Value determined by Method of Standard Addition.
- O Laboratory Control Standard (LCS) exceeded laboratory control limits, but meets CCV criteria. Data meets EPA requirements.
- Q Detection levels elevated due to sample matrix.
- R RPD control limits were exceeded.
- RF Duplicate failed due to result being at or near the method-reporting limit.
- RP Matrix spike values exceed established QC limits; post digestion spike is in control.
- S Recovery is outside control limits.
- SC Closing CCV or LCS exceeded high recovery control limits, but associated samples are non-detect. Data meets EPA requirements.
- * The result for this parameter was greater that the maximum contaminant level of the TCLP regulatory limit.

CHAIN OF CUSTODY RECORD

Page 1 of 1

	<u>/</u>
1	

alytical Ċ

Address 10 Port Way, Longview, WA 98632

Contact Person/Project Manager Sean Kelly

Company Port of Longview

Phone 360-703-0216 Fax	Project Name Berth 1 Pipe	Project Site Location OR WAS Other	Invoice To Port of Longview P.O. No.	Analyses For Laboratory Use	TO 100 3278	Shipped Via		A Temperature On Receipt C °C) Ju	요 영 호 휴 및 Specialty Analytical Trip Blanks? □/□	4
Phone	Project No.	Project S	Invoice T			zìer 28, 20 062 062	inel 8 ,8	Org anic	atile SpiC	SIOV	16
	Collected By:	Signature Control	Printed Sean Kelly	SignatureSignature	Printed \ DSAU (DHALSON	Turn Around Time	✓ Normal 5-7 Business Days	Rush	Specify	Rush Analyses Must Be Scheduled With The Lab In Advance	

								eta)(=		
Date	Time	Sami	Sample 1.D.	Matrix	د -	9S 0V	Dd	∍M		TC SIH	or i		ļ	Comments	nts	Labin
3/28/16		8		lia	9/	7	7	Z	7	7	1		-			
3/25/16		Q		31	7 0	7	7	1	13	1,	7		<u> </u>			
अन्वि		ω		1	ر ر	7	7	7	7	1	/		<u> </u>			
				S						-			-			
													-			
													<u> </u>			
													<u> </u>			
													-			
									-	<u> </u>			-			
-													\vdash			
													-			
		-											\vdash	The state of the s		
Relinquished By	d By Sac	and the same	Date Time	Received By:	By:	(0	1000	Bralite	<u>₽</u>	Relinquished By:	ed By:	,		Date	Time
Сотрапу:	Company: But o	PLV	3/3/16 11" AM	Company:		7	1	X	ክደ	ا- د	Company:	7	7	2 SF	3/20/10 1346	3,6
Unless Rect	laimed, Sam∣ 1 beyond 60 d	Unless Reclaimed, Samples Will Be Disposed of 60 Samples held beyond 60 days subject to storage fee(s)	Unless Reclaimed, Samples Will Be Disposed of 60 Days After Receipt. Samples held beyond 60 days subject to storage fee(s))	-	•		<u> </u>	teceived	For Lab	By:	Received For Lab By:	Date	Time
	,									-		2	2	<u> </u>	12/11/10	10HC)

Pink-Customer Copy

Copies: White-Original

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

04/04/2016

Specialty Analytical

11711 SE Capps Rd

Attn: Nikki Bippes

Clackamas, OR 97015

P.O.#: COD

Project: 1603278 Sample Matrix: Oil

Date Sampled: 03/28/2016 Date Received: 03/31/2016

Spectra Project: 2016030843

Client ID	Spectra #	Analyte	Result	Units	Method
В	1	Total Halogens	23	ppm	SW846 9076
D	2	Total Halogens	18	ppm	SW846 9076
E	3	Total Halogens	45	ppm	SW846 9076

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager a7/krd

Page 1 of 1

SPECTRA Laboratories

2221 Ross Way • Tacoma, WA 98421 • (253) 272-4850 • Fax (253) 572-9838 • www.spectra-lab.com

04/04/16

Specialty Analytical 11711 SE Capps Rd

Clackamas, OR 97015

Method:

SW846 9076

Sample Matrix:

Oil/Water

Units:

ppm

Spectra Project:

2016030843

Applies to Spectra #'s: 1, 2, 3

TOTAL HALOGENS QUALITY CONTROL RESULTS

METHOD BLANK

Date Analyzed:

04/04/16

Untis: ppm

Total Halogens (TX)

< 5.0

INITIAL CHECK STANDARD RESULT

Date Analyzed:

04/04/16

Untis: ppm

Known Value

Measured Value

% Recovered

Total Halogens (TX)

100

113.9

113.9

SPECTRA LABORATORIES

Steve Hibbs, Laboratory Manager

CHAIN OF CUSTODY RECORD 10100708479 Contact Person/Project Manager NUKLI CUCDUS

Company Address

Page of

Collected By: Signature_

. /

Project Name PDYL C# UDYDAYICAN

Project No. 1000278 Project Site Location OR_

Phone

Printed	Invoice To	P.O. No.
Signature	Analyses	For Laboratory Use
Printed	SU	Lab Job No.
		Shipped Via
Turn Around Time		Air Bill No.
Mormal 5-7 Business Days	sino D	
C Rush		Temperature On Receipt C
Specify		Specialty Analytical Containers? Y / N
Rush Analyses Must Be Scheduled With The Lab in Advance)]4 on	Specialty Analytical Trip Blanks? Y / N
	<u> </u>	

Date Time	Sample I.D.	Matrix	Comments	Lab I.D.
2/28/10	9			
3/35/10	Q	X		
3/20//110	E			
Relinquished By: NUKL 19U02A	DON Date	Received By: Chescocottalt	Relinquished By:	Time
Company: (30RCXO ITU-	Utry 1329/10 1400	Company: Specta	Сотрапу:	_
Unless Reciaimed, Samp	Unless Reclaimed, Samples Will Be Disposed of 60 Days After Receipt. Samples held beyond 60 days subject to storage fee(s)		Received For Lab By:	Time

Port of Longview TPH Site Interim Action Work Plan

Appendix B Field Notes

Pipe A - Green no product

Pipe B - Yellow 2nd leak WK of 3/21 developed leak again due to work in area - pipe section evacuated to buckets looks like Kerosene buckets sample 3/28 - Specialty

Pipe C - Silver 1 ST leak sample 2/18 - ALS

Pipe D - Drange sample 3/25 - Specialty Thick

Pipe E (no color) sample 3/29 - jar + bas - specialty very thick

Pipe C) 2/18/16

drew samples from buckets used to collect leak Q Berth I Samples taken to ALS 2118/16 Used bottles from ALS

Pipe B

3/28/16

Drew samples from buckets used to empty section of pipe B on 3/24/16 because that section developing leak and determined evacuating product from section was better than trying to stop leak ie not confident the leak could be stopped.

Hole cut in top of pipe. Originally done for sampling but pipe found to be developing leaks in section.

Product evacuated with Mobilube HDPlus pump that last pumped. 80W-90, 85W-140 Filled 4 buckets

Made a composite samples of I for analytical.

Used bottles provided by specialty

Collected samples by dipping HDPE bottle below surface in builteds, allowing to fill lair evacuations, like sw samples

Filled each jar for analytical 1/4 wheali bucket.

22-1-22

Pipe E 3/25/16

> Product in pipe very viscous Working way back from high end with drill hales probing depth + consistency Trying to set to deeper product - \$6 viscosity is less in deeper portion - "skin" on top

_ | ~ test probe (pod) product { thicker < use viscous

> Too thick could not pump Will have to "scoop" into bags, or something

Spoke willike @ Specialty re sample to thick to get in preserved bottles.

Collect one wide mouth glass jar, 200 ml as full as possible fas little air as possible and one 18t freeze bag.

3/29 Sample collected in jar + bag per) Top "skin" with cutting fluid and metal shaving removed before sampling. s cooped with gloved hand and spoon.

Pipe D 3/25/16

> Used parastaltic pump to pump out product into sample bottles. Suction hose to pump placed three

Suction hose to pump placed thru hole cut into pipe and end of hose placed under surface of product.

product Pipe

Note for Pipe D + E sample collection

Hole cut in pipe ~ Z'/z" dia by
pile bucks. Had to cut larger hole in
pile bucks. Had to cut larger hole in
Cutting fluid used - Relton, Option 1
Cutting Fluid used - Relton, Option 1
Cutting Fluid
Every attemp made to avoid getting
cutting fluid and metal shavings in
Samples

- scooping shavings off surface
- syringing cutting fleeid off surface
- removing thick surface in E
- suction tube placed below surface in D

Port of Longview TPH Site Interim Action Work Plan

Appendix C Port of Longview Industrial Wastewater Discharge Permit Compliance Manual

Kennedy/Jenks Consultants

32001 32nd Avenue South, Suite 100 Federal Way, Washington 98001 253-835-6400 FAX: 253-952-3435

Port of Longview Industrial Wastewater Discharge Permit Compliance Manual

28 May 2015

Revised, Port of Longview May: 2016, 2017, 2018

Prepared for

Port of Longview 10 Port Way

Longview, Washington 98632

K/J Project No. 1296002.08

Section 11: Outfall 001 Discharge Procedures

11.1 Outfall 001 Facility Description

The Berth 1 treatment system was designed to collect wash water, dust control water spray, and incidental stormwater runoff from the Berth 1 general import/export facility activities. Currently, all process water is collected and brought to either the Berth 2 or Berth 7 IWTP. Outfall 001 is included in the Port's Permit, but no discharge has occurred for several years.

The past system included a chemical feed system and settling tank. However, the present system at Berth 1 consists of a paved containment area with catch basins and a lift station for water collection. Water is conveyed from the lift station to holding tanks for storage. Rail tanker cars are often used as holding tanks. Water is then transferred to the Berth 2 or Berth 7 wastewater collection sumps for eventual treatment in either the Berth 2 or Berth 7 IWTP.

11.2 Outfall 001 Major Facility Unit Descriptions

11.2.1 Containment Area

The paved containment area at Berth 1 is approximately 57,000 ft² in area.

11.2.2 Lift Station Number (#) 111

Lift station #111 collects water from the Berth 1 catch basins. Wastewater is pumped from lift station #111 to holding tanks using the transfer pump in catch basin #111. The transfer pump is a sump pump, actuated by a level float in the lift station. This pump has a capacity of approximately 50 gallons per minute (gpm). Lift station #111 is equipped with a stormwater bypass pipeline with a hand valve that allows stormwater to drain to the river.

11.2.3 Wastewater Holding

Lift Station #111 pumps wastewater collected in the Berth 1 containment area to holding tanks.

11.3 Outfall 001 Operation

11.3.1 Wastewater Collection

Prior to commencing ship unloading, the operator will stage holding tanks for wastewater collection adjacent to Lift Station #111. The operator should take potential rainfall into consideration when considering the number of holding tanks to initially stage.

The operator must install valves with hose fittings on the discharge points of the holding tanks and install the pump and level float in Lift Station #111. The operator must also install the holding tank fill line from the sump pump to the first tank section to be filled; the operator should take operation traffic into account when determining the path of the fill line.

Finally, the operator must close the stormwater bypass valves in catch basins #101 and #111. The pump in #111 will now automatically pump runoff from the Berth 1 containment area to the selected holding tank. When a tank is filled, the operator must move the fill line to another tank.

After completing ship unloading, the berths are washed down in the containment area while wastewater is collected. Upon completing washdown, the operator will inspect and clean the catch basins and lift station.

After cleaning, the operator will shut down and remove the sump pump and open the bypass valves in catch basins #101 and #111, allowing stormwater to bypass to the river.

11.3.2 Wastewater Transfer, Treatment, and Discharge

11.3.2.1 Conveyance to Berth 7 IWTP for Treatment

Holding tanks are taken to the Truck Loadout at Berth 7, where they are emptied by gravity. The flow rate is controlled by the valves installed on the holding tank discharge points. An underground piping system conveys water from a trench drain collection system in the Truck Loadout to a sump at the Berth 7 IWTP. A lift station in the sump pumps the wastewater to selected tanks in the Berth 7 inlet tank farm to be held for treatment and then discharged through Outfall 004 per that system's operating procedures.

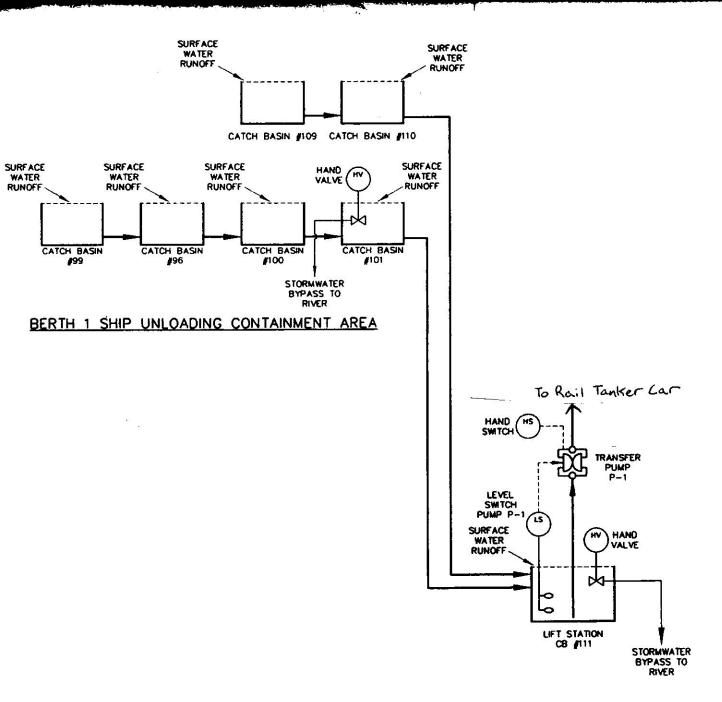
11.3.2.2 Conveyance to Berth 2 IWTP for Treatment

Holding tanks are taken to the proximity of the Berth 2 bulk facility rail dump. Holding tanks are emptied by gravity through a hose hooked to the rail car's discharge point and running to the sump in the basement of the rail dump. A lift station in the sump pumps the wastewater to selected tanks in the Berth 2 IWTP tank farm to be held for treatment and then discharged through Outfall 002 per that system's operating procedures.

11.4 Outfall 001 Facility Maintenance

The operator should inspect the catch basins and lift station after each ship unloading and conduct cleanout, as necessary, to prevent settled solids from discharging to river.

Regular cleaning can be conducted with the Port's drum vacuum system, and the operator may bring in vactor truck services as necessary for effective system operation.


Collected sludge and/or solids from the Berth 1 facility are typically classified as nonhazardous waste. If dewatering of sludge is necessary, sludge can be pumped to a dewater box that drains to Berth 7 IWTP collection system. Solids can be landfilled.

If there is any reason to believe that collected sludge and/or solids are hazardous waste, the waste must be classified and disposed of per state regulations (173-303 WAC). Handling cargos other than salt that may produce hazardous waste or spilling hazardous materials to the Berth 1 containment system would be reasons to believe that collected sludge and/or solids are hazardous waste.

The operator should conduct routine inspections of all treatment facilities and conduct maintenance and corrective actions as identified during inspections. Any leaks should be repaired immediately upon detection.

The sump pump and float switch should be routinely inspected and maintained, as required, according to manufacturers' requirements.

All inspection and maintenance records should be recorded in the log.

Port of Longview TPH Site Interim Action Work Plan

Appendix D Health and Safety Plan

ICS KEY PERSONNEL - NRCES				
Project Manager Randy Legler 503.849.2981				
Project Supervisor	Joe Alexander	503.509.0138		
Site Safety Officer / CPR-FA	Joe Alexander	503.509.0138		
Hospital	Peace Health St. Johns	360.414.2000		
Safety Manager	Torey Grandt	206.300.2822		

Port of Longview Personnel			
Program Manager Josh Johnson 360.261.9533			
Project Superintendent	Sam Hammergren	360.431.9061	

Date:	Start Time:	Job Number:
☐ Land Emergency Response	☐ Marine Emergency Response	

SITE DESCRIPTION

This site-specific Health and Safety Plan has been developed to provide a safe work environment for the contracted work to be performed at the Port of Longview. Longview, WA. General scope of work is to clean and remove piping systems and valves above-ground/over water and below dock/pier structure.

SITE ORIENTATION

Prior to work assignment (layout, ingress; egress; emergency evacuation, Identify & inspect ladders, phones) establish decon area for personnel, tools & equipment. Identify disposal system for different materials, (metals, plastics, PVC,)

LOCKOUT

 Facilities manager will lock out / tagout /block /bleed any residual energized systems (electrical components secured or identified) NRC Project Supvr. will confirm LOTO prior to any pipe system breaking.

SCOPE OF WORK

EQUIPMENT/

MATERIALS

PRE LINE Breaking/DEMO

- Marine Chemist contracted to do atmospheric testing of interior pipe systems
- Ensure positive ventilation of pipe lines, in preparation for breaking/demo
- Install fuel oil recovery materials or equipment prior to line breaking

HYDROCARBON RESIDUE

 Remove hydrocarbon residue from interior of fuel transmission lines to make ready for removal and disposal

REMOVE FUEL TRANSMISSION LINES

- Cut and remove all piping in easily managed sections
- Remove above ground piping and attached valves
- Remove strainers and attached valves
- Load debris into bins for disposal

Vacuum truck 70 bblLine Jetter system, 3k -5k psi steam pressure washer

- December in the Complian
- Decontamination Supplies
- Fuel recovery materials (sorbents)
- Air blowers / air compressors (185 cfm)
- Air monitoring gear (PID/CO/LEL / 02 /H2S meter)
- Metal cutting tools
- Portable generator with GFCI wet environment approved protection

PERSONNEL	 Only properly trained and HAZWOPER certified personnel will be dispatched to work on this project Site supervisor will verify workers against dispatch schedule Site Safety Meetings will be held at each shift start and documented per the enclosed form Equipment operators and drivers will inspect their equipment prior to use to ensure it is in proper working order; additionally, equipment is inspected in the company yard/shop prior to dispatch to ensure working order. Site supervisor will continuously monitor the job to ensure all personnel are working safely and in compliance with regulatory and corporate standards Safety Audits will be periodically performed by either the regional Safety Manager or the
	Area Safety Engineer and formally documented.

PERSONAL PROTECTIVE EQUIPMENT

TASK	Level	MASK /CARTRIDGE /AIR	ADDITIONAL PPE
Establish support area / prepare	D	N/A	Hardhats, safety glasses, coveralls, leather gloves, steel toe neoprene boots, high visible floatation vest (PFD)within 3ft of water or working on deck of vessel
Drain pipe lines with vacuum truck	D	N/A	Hardhat, FR work attire, leather gloves, steel toe neoprene boots,
Operator – Vac truck	D	N/A	Hardhats, safety glasses, hearing protection, FR work attire, canvas/leather outer gloves, leather steel toe boots with anti-static soles, high visible traffic vests, PFD within 3ft of water
Remove pipe sections, valves and pipe hangers	D	N/A	Hardhat, FR work attire, leather gloves over nitrile inner gloves, steel toe neoprene boots, safety glasses and full coverage face shield, hearing protection, PFD within 3ft of water or on deck of vessel
Decontaminate equipment	D	N/A	Hardhats, full-face shields, safety goggles, splash protection neoprene outer gloves nitrile, steel toe boots, high visible traffic vests, PFD within 3ft of water

AIR MONITORING ACTION LEVELS -

Instrument	Reading	Action				
	COMBUSTIBLE GAS INDICATOR – Oxygen					
Continuously Monitor	19.5 – 23.5 %	continue push / pull ventilation				
at multiple areas to		Continue normal operations				
detect % oxygen.		continue use of Level D or C if entry required (Concentration of				
- monitor		contaminants determine level of respiratory protection)				
interior	< 19.5 %	continue push / pull ventilation				
		IDLH situation; Level B if entry required				
	> 23.5%	continue push / pull ventilation				
		IDLH situation; No Entry				
	COMBUST	IBLE GAS INDICATOR – PID				
Four gas with P.I.D. – MX6	5ppm - 10ppm	Stop work activity, initiate ventilation procedures, don A.P.R.				
		if ventilation of space(s) is not effective				

ACTIVITY HAZARD ANALYSIS

ACTIVITY HAZARD ANALYSIS

ACTIVITY HAZARD ANA		rds Throughout the Job					
ITEM							
General Work Area	Slip / trip / fall / pinch points / poke-snag- puncture	 designated pathways cleared of debris use of temporary work floats under dock area move float slowly, ensure pilings and dock timbers are free of spikes & nails cautious hand holds 					
General Work Area –lifting	Strain	 plan and stage to minimize long distance carrying split heavy loads into smaller loads use assistant for heavy (>50 lbs) or awkward load Lift with legs and not back 					
General Work Area -Traffic	Struck by	 Set up visible barricades on access roads; Wear high visibility safety vests Ground guides for backing up 					
Refueling Equipment	Fire Spill	 □ Flammable liquids in explosion proof containers □ No flammable liquids or gas stored in unmarked containers □ Fire extinguisher near refueling and storage areas □ Area in front of extinguishers kept clear □ Spill containment plan discussed and in place □ Grounding and bonding □ Clean up spills A.S.A.P. 					
Ambient weather / PPE load	Rain/cold	□ Follow the ACGIH Recommendations for rest/work □ Drink 4 cups of water per hour/ Electrolyte Replacement □ Change wet clothes when needed □ Provide heated rest area for personnel					
Operate Vacuum Truck	Fire /explosion Slip /trip/fall Struck by Contact Haz Noise Spill Static	Monitor per action levels See attached JHA for specific guidelines PPE as described on page 2 (hearing protection / high visibility ve Ground and bond truck prior to transferring liquid Secure area of non NRCES personnel Vacuum hoses and truck bonded and grounded Qualified vacuum truck operator at machine at all times Fire Extinguisher 20 lb ABC located near truck Ground Guide / Chock Wheels Keep Truck a safe distance from dock edge/water					
Vacuum hoses	Struck by Contact Spill Noise strain	□ PPE on page 2 □ Inspect hoses / pipes at the start of operation and periodically during operation to ensure integrity of hoses □ Use legs / not the back to lift hoses					

Hazards Throughout the Job					
ITEM	HAZARD PREVENTION				
Ladder Safety	Slip Fall	□ All ladders secured □ Personnel work between rails of ladder □ Three point contact at all times □ Inspect ladders prior to using			
Pressure Washer	Noise Contact with contaminants	See JHA for specific guidelines Inspect equipment prior to use Both hands on wand handle at all times during activation PPE specified on page 2 (Hearing protection devices) No pointing end of wand at others or self Do not decon personnel with Pressure washer			

SAFETY EQUIPMENT REQUIRED:

Eyewash / Shower	Decon Pool / Supplies		Hazard Warning signs
First Aid Kit	Fire Extinguisher	•	4 Way air monitoring instrument
Portable lights	Barricades / rope	•	55 gallon drum water / hand pump for hygiene and decon

TRAINING REQUIREMENTS:

HAZWOPER 40 / 24	Confined Space Supervisor	Current 8 Hour Refresher
First Aid /CPR	Hazard Communication (read /understand MSDS)	Qualified Vac Truck operator
LPS Certification	Air monitor instrument	

DECONTAMINATION AND DISPOSAL

DECONTAMINATION PLAN		Establish decon area (visqueen pad) at entry /exit			
		Ensure work area exits through decon line / not around it			
	Ш	Provide safe walkway / visqueen represents slip hazard			
		Place empty lined drums or plastic bags for contaminated PPE			
		Place wash tubs into containment tub			
		Step into containment /wash tubs and wash boots			
		Step out of tub and rinse boots			
		□ Unzip suit / pull off hood			
		☐ Sit down and remove boots			
		Roll down suit and place into container			
		Remove inner gloves			
DISPOSAL PLAN		Place contaminated suits in NRCES 55 gallon drums for disposal			
		Dispose of rust, scale and scrapings in bin for disposal			
		Liquid waste collected for disposal.			

EMERGENCY MEDICAL TREATMENT AND FIRST AID

TYPE CONTACT	FIRST AID
Eyes	 Flush each eyes continuously for 15 minutes; Tilt head to side to ensure liquid runs onto floor not other eye refer to EMT for evaluation
Skin	 Remove contaminated clothing immediately Wash skin continuously for 15 minutes; refer to physician if redness, swelling, or pain persists after washing
Breathing	 Call 911; Remove to fresh air immediately; begin CPR until EMT arrives
Ingestion	aspiration hazarddo not induce vomitingdo not give anything by mouth

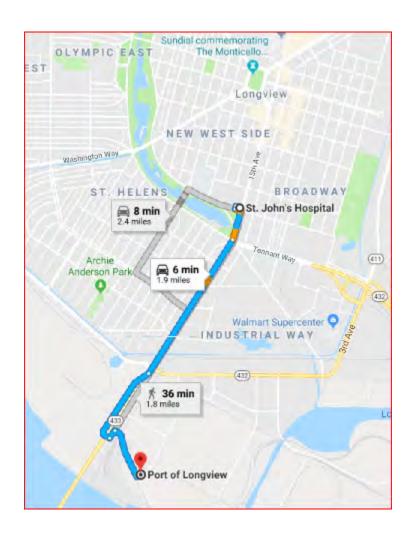
EMERGENCY RESPONSE PLAN

Attach Map to Nearest Hospital (page 9)

Account hap to reduce hospital (page 5)	
ELEMENT	LOCATION, SPECIFICATION OR REASON FOR USE
NEAREST HOSPITAL	Peace Health St John Medical Center
	1615 Delaware St, Longview, WA 98632
NEAREST PHONE	Supervisor cell phone
	·
FIRST AID KIT	Supervisor Truck
FIRE EXTINGUISHER	Supervisor truck and charged extinguishers on site
EYEWASH STATION AND EMERGENCY	Supervisor will determine location on site or provide 55 gallon
SHOWER	drum of water and hand pump
EVACUATION ROUTE / MEETING POINT	To be discussed and diagramed on site before start of job

EMERGENCY PHONE NUMBERS

ELEMENT	PHONE NUMBER
HOSPITAL	360. 414.2000
FIRE DEPARTMENT	911
POLICE DEPARTMENT	911
PORT OF LONGVIEW: LISA HENDRIKSEN	360.430.1855 (c) 360.425.3305 (o) 360.703.0207 (d)


SAFETY PLAN APPROVAL

DateACKNOWLEDGMENTS (must be signed by all NRCES site personnel)		
ate	Print Name	Signature

Port of Longview – St. Johns Hospital

