GROUNDWATER MONITORING REPORT: 3rd Quarter - May 2017

Fife RV Center 3410 Pacific Highway East Fife, Washington 98424

May 23, 2017

Anchorage Seattle

Portland

Cost-effective environmental solutions for the western United States and Alaska

www.AerotechEnvironmental.com

AEROTECH Environmental Consulting Inc.

13925 Interurban Avenue South, Suite 210 Seattle, Washington 98168 (360) 710-5899 512 W. International Airport Road, Suite 201 Anchorage, Alaska 99518 (907) 575-6661

June 7, 2017

Mr. Tony Carl Fife RV Center 3410 Pacific Highway East Fife, Washington 98424

> RE: Groundwater Monitoring Report – 3rd Quarter – May 2017 Fife RV Center 3410 Pacific Highway East, Fife, Washington Fife, Washington 98424

Dear Mr. Carl,

As you are aware, Aerotech Environmental Consulting, Inc. ("Aerotech") has been retained to collect quarterly groundwater samples from six groundwater monitoring wells previously installed at Fife RV Center in Fife, Washington. Aerotech conducted the third round of groundwater monitoring and sampling activities on May 23, 2017. Enclosed, please find the associated tabulated analytical results, site drawings, laboratory analytical report, and standard operating procedure document.

> Petroleum Hydrocarbon and Lead concentrations were below the MTCA Method A Cleanup Levels in samples collected from groundwater monitoring wells MW1, MW2, MW3, MW4, MW5, and MW6 with the exception of Total Petroleum Hydrocarbons as Gasoline ("TPHg") and Benzene, which were present at concentrations above the MTCA Method A Cleanup Levels in groundwater monitoring wells MW2, MW3, and MW4.

Please feel free to contact the Aerotech Geologist, Mr. Justin Foslien, at (206) 257-4211, or the Aerotech Field Sampling Coordinator, Mr. Nicholas Gerkin at (206) 482-2287 if you have any questions regarding work completed at this Site.

Justin F. Foslien State of Washington Licensed Geologist No. 2540

JUSTIN FRANCIS FOSLIEN

Sincerely,

Nick Gerkin Environmental Professional Washington State UST Site Assessor ICC UST Decommissioning Supervisor

APPENDIX

- Analytical Results Table & Figures
- Project Contract Documents
- Laboratory Analytical Results
- Laboratory Chain of Custody
- Low-Flow Groundwater Sampling Standard Operating Procedure
- Field Documentation

ANALYTICAL RESULTS TABLE & FIGURES

GROUNDWATER ANALYTICAL RESULTS

Fife RV Center

3410 Pacific Highway East

Fife, Washington

10100-1																
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.4	11/18/16	1.37	8.37	7.00	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	<2.0	<2.0
	02/20/17	1.19	8.37	7.18	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	<2.0	<2.0
	05/23/17	1.72	8.37	6.65	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	<2.0	<2.0
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	15	15
<u>MW-2</u>																
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.2	11/18/16	2.53	9.40	6.87	18,000	<200	<500	470	18	210	200	<0.01	<1.0	<5.0	<2.0	<2.0
	02/20/17	2.25	9.40	7.15	29,000	<200	<500	720	26	490	700	<0.01	<1.0	<5.0	<2.0	<2.0
	05/23/17	3.02	9.40	6.38	10,000	<200	<500	300	18	93	400	<0.01	<1.0	<5.0	<2.0	<2.0
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	15	15
MW-3																
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.6	11/18/16	2.19	9.43	7.24	42,000	<200	<500	130	16	2,800	120	<0.01	<1.0	<5.0	<2.0	<2.0
	02/20/17	2.02	9.43	7.41	10,000	<200	<500	28	<1,000	620	92	<0.01	<1.0	<5.0	<2.0	<2.0
	05/23/17	2.65	9.43	6.78	6,700	<200	<500	21	1.4	210	57	<0.01	<1.0	<5.0	<2.0	<2.0
		MICA	iviethod A Cleanup	Leveis	800	500	500	5	1,000	700	1,000	0.01	5	20	15	15
10100-2																
Woll	, 	Ground Water	Elevation	Water Level						Ethyl	-	-			Dissolved	Total
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	Dissolved Lead	Total Lead
Well Depth Feet	Sampling Date	Ground Water Level Feet Below TOC	Elevation (TOC north) Feet Above MSL	Water Level Elevation Feet Above MSL	ТРНg µg/L	TPHd μg/L	TPHo μg/L	Benzene	Toluene μg/L	Ethyl- benzene µg/L	Xylenes	EDB μg/L	EDC	MTBE	Dissolved Lead µg/L	Total Lead μg/L
Well Depth Feet 14.5	Sampling Date 11/18/16	Ground Water Level Feet Below TOC 3.31	Elevation (TOC north) Feet Above MSL 10.12	Water Level Elevation Feet Above MSL 6.81	TPHg μg/L 1,900	трнd µg/L <200	TPHo μg/L <500	Benzene μg/L 140	Toluene μg/L <1.0	Ethyl- benzene µg/L 13	Xylenes μg/L 7.70	EDB μg/L <0.01	EDC μg/L <1.0	MTBE μg/L <5.0	Dissolved Lead µg/L <2.0	Total Lead μg/L <2.0
Well Depth Feet 14.5	Sampling Date 11/18/16 02/20/17	Ground Water Level Feet Below TOC 3.31 3.08	Elevation (TOC north) Feet Above MSL 10.12 10.12	Water Level Elevation Feet Above MSL 6.81 7.04	TPHg μg/L 1,900 6,800	TPHd μg/L <200 <200	TPHo μg/L <500 <500	Benzene μg/L 140 220	Toluene μg/L <1.0 35	Ethyl- benzene μg/L 13 340	Xylenes µg/L 7.70 22	EDB μg/L <0.01 <0.01	EDC μg/L <1.0 <1.0	MTBE μg/L <5.0 <5.0	Dissolved Lead μg/L <2.0 <2.0	Total Lead μg/L <2.0 <2.0
Well Depth Feet 14.5	Sampling Date 11/18/16 02/20/17 05/23/17	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanur	Water Level Elevation Feet Above MSL 6.81 7.04 6.24	TPHg μg/L 1,900 6,800 1,600	TPHd μg/L <200 <200 <200 500	TPHo μg/L <500 <500 <500	Benzene μg/L 140 220 120	Toluene μg/L <1.0 35 6.0	Ethyl- benzene μg/L 13 340 12 700	Xylenes μg/L 7.70 22 3.8	EDB μg/L <0.01 <0.01 <0.01	EDC μg/L <1.0 <1.0 <1.0	MTBE μg/L <5.0 <5.0 <5.0	Dissolved Lead μg/L <2.0 <2.0 <2.0	Total Lead μg/L <2.0 <2.0 <2.0
Well Depth Feet 14.5	Sampling Date 11/18/16 02/20/17 05/23/17	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA	Elevation (TOC north) Feet Above MSL 10.12 10.12 10.12 Method A Cleanup	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 b Levels	TPHg μg/L 1,900 6,800 1,600 800	трнd µg/L <200 <200 <200 500	TPHo μg/L <500 <500 <500 500	Benzene μg/L 140 220 120 5	Toluene μg/L <1.0 35 6.0 1,000	Ethyl- benzene μg/L 13 340 12 700	Xylenes μg/L 7.70 22 3.8 1,000	EDB µg/L <0.01 <0.01 <0.01 0.01	EDC μg/L <1.0 <1.0 <1.0 5	MTBE μg/L <5.0 <5.0 <5.0 20	Dissolved Lead μg/L <2.0 <2.0 <2.0 15	Тоtal Lead µg/L <2.0 <2.0 <2.0 <2.0 15
Well Depth Feet 14.5 MW-5 Well Depth	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level	Elevation (TOC north) Feet Above MSL 10.12 10.12 10.12 Method A Cleanup Elevation (TOC north)	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 Levels Water Level Elevation	ТРНg <u>µg/L</u> 1,900 6,800 1,600 800 ТРНg	TPHd μg/L <200 <200 <200 500 TPHd	TPHo μg/L <500	Benzene μg/L 140 220 120 5 Benzene	Toluene μg/L <1.0 35 6.0 1,000 Toluene	Ethyl- benzene μg/L 13 340 12 700 Ethyl- benzene	Xylenes μg/L 7.70 22 3.8 1,000 Xylenes	EDB μg/L <0.01 <0.01 <0.01 0.01 EDB	EDC μg/L <1.0 <1.0 <1.0 5 EDC	MTBE μg/L <5.0 <5.0 <5.0 20 MTBE	Dissolved Lead µg/L <2.0 <2.0 <2.0 15 Dissolved Lead	Total Lead μg/L <2.0
Well Peet 14.5 MW-5 Well Depth Feet	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 Levels Water Level Elevation Feet Above MSL	ТРНg <u>µg/L</u> 1,900 6,800 1,600 800 ТРНg µg/L	ТРНd µg/L <200 <200 <200 500 ТРНd µg/L	TPHo μg/L <500	Benzene μg/L 140 220 120 5 Benzene μg/L	Toluene μg/L <1.0	Ethyl- benzene μg/L 13 340 12 700 Ethyl- benzene μg/L	Хуlenes µg/L 7.70 22 3.8 1,000 Хуlenes µg/L	EDB μg/L <0.01 <0.01 <0.01 EDB μg/L	ЕDC µg/L <1.0 <1.0 <1.0 5 ЕDC µg/L	<u>мтве</u> <u>μg/L</u> <5.0 <5.0 <5.0 20 Мтве μg/L	Dissolved Lead μg/L <2.0 <2.0 <2.0 15 Dissolved Lead μg/L	Total Lead μg/L <2.0
Well Depth Feet I4.5 Well Depth Feet I7.5	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.17	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.27	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 Levels Water Level Elevation Feet Above MSL 6.10	TPHg μg/L 1,900 6,800 1,600 800 TPHg μg/L 2,100	ТРНd <u>µg/L</u> <200 <200 <200 500 ТРНd <u>µg/L</u> <200	TPHo μg/L <500	Benzene μg/L 140 220 120 5 Benzene μg/L 250	Toluene μg/L <1.0	Ethyl- benzene μg/L 13 340 12 700 Ethyl- benzene μg/L 5.6	Хуlenes µg/L 7.70 22 3.8 1,000 Хуlenes µg/L 2.1	EDB µg/L <0.01 <0.01 0.01 EDB µg/L <0.01	EDC µg/L <1.0 <1.0 <1.0 5 EDC µg/L <1.0	MTBE μg/L <5.0	Dissolved <u>Lead</u> μg/L <2.0 <2.0 <2.0 15 Dissolved <u>Lead</u> μg/L <2.0	Total Lead μg/L <2.0
Well Depth Feet 14.5 Well Depth Feet 17.5	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.17 5.16	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.27 11.27	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 Levels Water Level Elevation Feet Above MSL 6.10 6.11	ТРНg µg/L 1,900 6,800 1,600 800 ТРНg µg/L 2,100 700	ТРНd <u>µg/L</u> <200 <200 <200 500 ТРНd <u>µg/L</u> <200 <200	TPHo μg/L <500	Benzene μg/L 140 220 120 5 Benzene μg/L 250 52	Toluene μg/L <1.0	Ethyl- benzene μg/L 13 340 12 700 Ethyl- benzene μg/L 5.6 2.2	Хуlenes µg/L 7.70 22 3.8 1,000 Хуlenes µg/L 2.1 2.4	ЕDВ µg/L <0.01 <0.01 <0.01 0.01 EDB µg/L <0.01 <0.01	ЕDС µg/L <1.0 <1.0 <1.0 5 ЕDС µg/L <1.0 <1.0	<u>мтве</u> μg/L <5.0 <5.0 20 Мтве μg/L <5.0 <5.0	Dissolved Lead µg/L <2.0 <2.0 <2.0 15 Dissolved Lead µg/L <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	Total Lead μg/L <2.0
Well Depth Feet 14.5 Well Depth Feet 17.5	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17	Ground Water Level Feet Below TOC 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.17 5.16 6.34	Elevation (TOC north) Feet Above MSL 10.12 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.27 11.27	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 Levels Water Level Elevation Feet Above MSL 6.11 6.11 4.93	TPHg μg/L 1,900 6,800 1,600 800 TPHg μg/L 2,100 700 <100	TPHd µg/L <200	TPHo µg/L <500	Benzene μg/L 140 220 120 5 Benzene μg/L 250 52	Toluene μg/L <1.0	Ethyl- benzene μg/L 13 340 12 700 Ethyl- benzene μg/L 2.2 <1.0	Xylenes μg/L 7.70 22 3.8 1,000 Xylenes μg/L 2.1 2.4 <1.0	EDB µg/L <0.01 <0.01 0.01 EDB µg/L <0.01 <0.01 <0.01	EDC µg/L <1.0 <1.0 <1.0 5 EDC µg/L <1.0 <1.0 <1.0 <1.0 <1.0	МТВЕ µg/L <5.0 <5.0 20 МТВЕ µg/L <5.0 <5.0 <5.0 <5.0	Dissolved μg/L <2.0	Total Lead μg/L <2.0
Well Depth Feet 14.5 Well Depth Feet 17.5	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.17 5.16 6.34 MTCA	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.27 11.27 Method A Cleanup	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 0 Levels Water Level Elevation Feet Above MSL 6.10 6.11 4.93 Levels	ТРНg µg/L 1,900 6,800 1,600 800 ТРНg µg/L 2,100 700 <100 800	ТРНd µg/L <200 <200 <200 500 ТРНd µg/L <200 <200 <200 <200 500	ТРНо µg/L <500 <500 <500 тРНо µg/L <500 ×500 <500 <500 <500 500	Benzene μg/L 140 220 120 5 8 Benzene μg/L 250 52 <1.0 5	Toluene μg/L <1.0 35 6.0 1,000 Toluene μg/L 1.6 <1.0 <1.0 <1.0 1,000	Ethyl- μg/L 13 340 12 benzene μg/L 5.6 2.2 <1.0 700	Xylenes μg/L 7.70 22 3.8 1,000 Xylenes μg/L 2.1 2.4 <1.0 1,000	ЕDВ µg/L <0.01 <0.01 <0.01 EDB µg/L <0.01 <0.01 <0.01 0.01	EDC µg/L <1.0 <1.0 <1.0 <1.0 EDC µg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	MTBE μg/L <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 20	Dissolved Lead μg/L <2.0 <2.0 <2.0 Issolved Lead μg/L <2.0 <2.0 <2.0 <2.0 <2.0 15	Total Lead μg/L <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0
Well Depth Feet 14.5 Well Depth Feet 17.5 Well MW-6	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.17 5.16 6.34 MTCA	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.27 11.27 11.27 Method A Cleanup	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 0 Levels Water Level Elevation Feet Above MSL 6.10 6.11 4.93 0 Levels	TPHg μg/L 1,900 6,800 800 TPHg μg/L 2,100 700 <100 800	ТРНd µg/L <200 <200 <200 500 ТРНd µg/L <200 <200 <200 <200 <200 500	ТРНо µg/L <500 <500 500 ТРНо µg/L <500 <500 <500 <500 500	Benzene μg/L 140 220 120 5 Benzene μg/L 250 52 <1.0 5	Toluene μg/L <1.0 35 6.0 1 70 μg/L 1.6 <1.0 <1.0 1,000	Ethyl- benzene μg/L 13 340 12 700 Ethyl- benzene μg/L 5.6 2.2 <1.0 700	Xylenes μg/L 7.70 22 3.8 1,000 Xylenes μg/L 2.1 2.4 <1.0 1,000	ЕDВ µg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	EDC µg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	МТВЕ µg/L <5.0 <5.0 <5.0 МТВЕ µg/L <5.0 <5.0 <5.0 <5.0 20	Dissolved µg/L <2.0 <2.0 15 Dissolved Lead µg/L <2.0 <2.0 15	Total Lead μg/L <2.0 <2.0 <2.0 <2.0 Total Lead μg/L <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0
Well Depth Feet 14.5 Well Depth Feet 17.5 WW-6 Well Depth	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.16 6.34 MTCA Ground Water Level	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.27 11.27 Method A Cleanup Elevation (TOC north)	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 Levels Water Level Elevation 6.10 6.11 4.93 Devels Water Level Elevation	ТРНg <u>µg/L</u> 1,900 6,800 1,600 800 ТРНg <u>µg/L</u> 2,100 700 <100 800 ТРНg	TPHd µg/L <200	ТРНо µg/L <500 <500 500 ТРНо <500 <500 <500 500 ТРНо	Benzene µg/L 140 220 120 5 Benzene µg/L 250 52 400 5 8enzene 120 52 52 5 8enzene	Toluene μg/L <1.0	Ethyl- με/L 13 340 12 700 Ethyl- benzene μg/L 5.6 2.2 <1.0	Xylenes μg/L 7.70 22 3.8 1,000 Xylenes μg/L 2.1 2.4 <1.0	ЕDВ µg/L <0.01 <0.01 <0.01 EDB µg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	EDC µg/L <1.0 <1.0 5 EDC µg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 EDC	МТВЕ µg/L <5.0	لنهيم المحالية محالية محالية محالية المحالية محالية محالية محالية محالية المحالية محالية محاليححاليحما مححالية مححاليمع مححاليمع مححاليمع مححاليمع مححاليمع محح	Total Lead μg/L <2.0
Well Depth Feet 14.5 Well Depth Feet 17.5 MW-6 Well Depth Feet	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.17 5.16 6.34 MTCA Ground Water Level Feet Below TOC	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL Elevation (TOC north) Feet Above MSL	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 b Levels Water Level Elevation Feet Above MSL 6.10 6.11 4.93 b Levels Water Level Elevation Feet Above MSL	TPHg μg/L 1,900 6,800 800 TPHg μg/L 2,100 700 <100	ТРНd µg/L <200 <200 500 ТРНd µg/L <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 200<br 200<br 200</td <td>ТРНо µg/L <500</td> <500	ТРНо µg/L <500	Benzene μg/L 140 220 120 5 Benzene Ag(L S S C Ag(L S S Benzene μg/L	Toluene μg/L <1.0	Ethyl- μg/L 3340 12 700 Ethyl- benzene μg/L 5.6 2.2 <1.0	Xylenes μg/L 7.70 22 3.8 1,000 Xylenes μg/L 2.1 2.4 <1.0	EDB µg/L <0.01	ЕDС µg/L <1.0 <1.0 <1.0 5 ЕDС µg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 EDC µg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	МТВЕ µg/L <5.0	Dissolved Lead µg/L <2.0	Total μg/L <2.0
Well Depth Feet 14.5 Well Depth Feet 17.5 WW-6 Well Depth Feet 17.5	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.17 5.16 6.34 MTCA Ground Water Level Feet Below TOC 4.72	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.27 11.27 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.40	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 Levels Water Level Elevation Feet Above MSL 6.11 4.93 Levels Uter Level Elevation Feet Above MSL Feet Above MSL 6.68	TPHg μg/L 1,900 6,800 800 TPHg μg/L 2,100 700 <100	ТРНd µg/L <200 500 ТРНd µg/L <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 200<br 200<br 200</td <td>ТРНо µg/L <500</td> <500	ТРНо µg/L <500	Benzene μg/L 140 220 120 5 Benzene μg/L 250 52 <1.0	Toluene μg/L <1.0	Ethyl- benzene μg/L 3340 12 700 Ethyl- benzene μg/L 5.6 2.2 <1.0	Xylenes μg/L 7.70 22 3.8 1,000 Xylenes μg/L 2.1 2.4 <1.0	EDB µg/L <0.01	EDC µg/L <1.0	МТВЕ µg/L <5.0	Dissolved µg/L <2.0	Total μg/L <2.0
Well Depth Feet 14.5 Well Depth Feet 17.5 WW-6 Well Depth Feet 17.5	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.17 5.16 6.34 MTCA Ground Water Level Feet Below TOC 4.72 4.69	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.27 11.27 11.27 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.40	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 b Levels Water Level Elevation Feet Above MSL 6.10 6.11 4.93 b Levels Water Level Elevation Feet Above MSL 6.68 6.68 6.71	TPHg μg/L 1,900 6,800 800 TPHg μg/L 2,100 700 <100	ТРНd µg/L <200 500 ТРНd µg/L <200 <200 <200 <200 500 ТРНd µg/L <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <	ТРНо µg/L <500	Benzene μg/L 140 220 120 5 Benzene Apple Apple Benzene µg/L <1.0 <1.0 <1.0 <1.0	Toluene μg/L <1.0	Ethyl- με/L 13 340 12 700 Ethyl- benzene με/L 5.6 2.2 <1.0	Xylenes μg/L 7.70 22 3.8 1,000 Xylenes μg/L 2.1 2.4 <1.0	EDB µg/L <0.01	EDC µg/L <1.0	МТВЕ µg/L <5.0	Dissolved µg/L <2.0	Total μg/L <2.0
Well Depth Feet 14.5 Well Depth Feet 17.5 WW-6 Well Depth Feet 17.5	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.17 5.16 6.34 MTCA Ground Water Level Feet Below TOC 4.72 4.69 5.85	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.27 11.27 11.27 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.40	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 bevels Water Level Elevation Feet Above MSL 6.10 6.11 4.93 bevels Water Level Elevation Feet Above MSL 6.68 6.71 5.55	TPHg μg/L 1,900 6,800 1,600 800 TPHg μg/L 2,100 700 <100 800 TPHg μg/L <100 <100 <100 <100 <100	ТРНd µg/L <200 500 ТРНd µg/L <200 <200 <200 <200 500 ТРНd µg/L <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <	ТРНо µg/L <500 <500 500 7500 7500 7500 4500 <500 <500 <500 <500 <500 <500 <500 <500 <500 <500 <500 <500 <500 <500 <500	Benzene μg/L 140 220 120 5 Benzene μg/L 250 52 <1.0 5 Benzene μg/L <1.0 < < < < < < < < < < <	Toluene μg/L <1.0 35 6.0 1,000 Toluene μg/L 1.6 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Ethyl- με/L 13 340 12 700 Ethyl- benzene με/L 5.6 2.2 <1.0 Z Clobel Ethyl- benzene με/L <1.0 <1.0 <1.0 <1.0 <1.0	Xylenes μg/L 7.70 22 3.8 1,000 Xylenes μg/L 2.1 2.4 <1.0 1,000 Xylenes μg/L <1.0 <2.0 <1.0	EDB µg/L <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	EDC µg/L <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	МТВЕ µg/L <5.0 <5.0 20 МТВЕ µg/L <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	Dissolved µɛ/L <2.0 <2.0 15 Dissolved Lead µɛ/L <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0	Total μg/L <2.0 <2.0 15 Total μg/L <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0
Well Depth Feet 14.5 Well Depth Feet 17.5 Well Depth Feet 17.5	Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17 Sampling Date 11/18/16 02/20/17 05/23/17	Ground Water Level Feet Below TOC 3.31 3.08 3.88 MTCA Ground Water Level Feet Below TOC 5.17 5.16 6.34 MTCA Ground Water Level Feet Below TOC 4.72 4.69 5.85 MTCA	Elevation (TOC north) Feet Above MSL 10.12 10.12 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.27 11.27 11.27 Method A Cleanup Elevation (TOC north) Feet Above MSL 11.40 11.40 Method A Cleanup	Water Level Elevation Feet Above MSL 6.81 7.04 6.24 Levels Water Level Elevation Feet Above MSL 6.10 6.11 4.93 Levels Water Level Elevation Feet Above MSL 6.68 6.71 5.55 Levels	ТРНg µg/L 1,900 6,800 1,600 800 TPHg µg/L 2,100 700 <100	ТРНd µg/L <200 <200 500 ТРНd µg/L <200 <200 <200 500 ТРНd µg/L <200 500	ТРНо μg/L <500	Benzene μg/L 140 220 120 5 Benzene μg/L 250 52 <<1.0	Toluene μg/L <1.0	Ethyl- με/L 13 340 12 700 Ethyl- benzen με/L 5.6 2.2 <1.0	Xylenes μg/L 7.70 22 3.8 1,000 Xylenes μg/L 2.1 2.4 <1.0	EDB µg/L <0.01	EDC µg/L <1.0	МТВЕ µg/L <5.0 20 МТВЕ µg/L <5.0 <5.0 20 МТВЕ µg/L <5.0 20 МТВЕ µg/L <5.0 20 МТВЕ	Dissolved µg/L <2.0	Total με/L <2.0

MTCA = Model Toxic Control Act Cleanup Level (WAC173-340-900)

 TOC = Top of Casing
 MSL = Mean Sea Level

 < = not detected at indicated Laboratory Detection Limits</td>
 -- not analyzed
 NM = Not Measured

TPHg - Total Petroleum Hydrocarbons - Gasoline by Method NWTPH-5x TPHd - Total Petroleum Hydrocarbons - Diesel by Method NWTPH-5x TPHd - Total Petroleum Hydrocarbons - Motor Oil by Method NWTPH-Dx extended

Benzene, Toluene, Ethylbenzene and Xylenes by EPA Method 8021B

MTBE = Methyl-tert-butyl-ether EDC = 1,2-Dichloroethane EDB = 1,2-Dibromoethane; by EPA Method 8260B

Total and Dissolved Lead by EPA Method 7010

Bolded numbers and red-shaded cells denote concentrations above the MTCA Method A Cleanup Levels for groundwater

NEIGHBORHOOD STREET MAP

CONSULTING

Ν

Fife RV Center 3410 Pacific Highway East Fife, Washington Date: 12/08/16 By: Nick Gerkin Figure: 2

PROJECT CONTRACT DOCUMENTS

ENVIRONMENTAL CONTRACTOR'S CERTIFICATION

Fife RV Center 3410 Pacific Highway East Fife, Washington 98424

1.	Contr	actor's Name:	Aerotech Envi	Aerotech Environmental Consulting, Inc.					
2.	Contr	actor's Address:	13925 Interur	13925 Interurban Avenue South, Ste. 210, Seattle, Washington 981					
3.	Name	ame and title of person completing this certification: Alan T. Blotch / President							
4.	Answer the following questions about each employee that contractor will have perform the assessment or prepare the report showing the results of the inspection:								
	a.	Name and Title	of Employee:	Alan T. Blotch	– Environmental Professional				
	b.	Length of exper	ience doing envi	ironmental assessm	ents: 31 years				
	c.	Education degree	ees received:	Masters of Bus Juris Doctor – I	iness Administration Environmental Law				
	d.	Relevant trainin	g received:	ASTM E50 Env	vironmental Assessment Committee Meetings				
5.	ldenti progra	fy any certification am or policy to con	s and approvals duct environmer	issued to contractor ntal assessments:	r pursuant to an official Federal, State of local Registered Environmental Assessor Issued by State of California				
6.	Descr	ibe the generally re	cognized standa	rds which the contr	actor will use to perform the assessment.				

- Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903)
- 7. Disclose the nature of any previous environmental inspections contractor has ever performed for the Owner of the property: Phase I Environmental Site Assessment
- 8. Disclose the nature of any affiliation or association contractor now has, or ever had, with the above referenced seller of the property, of the above referenced buyer of the property: N/A
- 9. Describe the liability insurance carried by contractor to cover claims in the event that ir fails to discover adverse environmental conditions during an environmental inspection. Professional Errors & Omissions Coverage \$1,000,000 / claim and \$1,000,000 aggregate liability

THE UNDERSIGNED HEREBY CERTIFIES, UNDER PENALTY OF THE CRIMINAL AND/OR CIVIL PENALTIES IN 18 U.S.C. § 1001 FOR FALSE STATEMENTS TO THE UNITED STATES GOVERNMENT, THAT THE ABOVE INFORMATION IS TRUE AND CORRECT.

<u>6-7-17</u> Date

Signature

LABORATORY ANALYTICAL RESULTS

ADVANCED ANALYTICAL

Environmental Testing Laboratory

May 31, 2017

Nick Gerkin Aerotech Environmental, Inc. 13925 Interurban Avenue South, Suite 210 Seattle, WA 98168

Dear Mr. Gerkin:

Please find enclosed the analytical data report for the Fife RV Center (C70524-2) Project.

Samples were received on *May 24, 2017*. The results of the analyses are presented in the attached tables. Applicable reporting limits, QA/QC data and data qualifiers are included. A copy of the chain-of-custody and an invoice for the work is also enclosed.

ADVANCED ANALYTICAL LABORATORY appreciates the opportunity to provide analytical services for this project. Should there be any questions regarding this report, please contact me at (425) 702-8571.

It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

. Ivanov

Val G. Ivanov, Ph.D. Laboratory Manager

4078 148 Ave NE■ Redmond, WA 98052 425.702-8571 *E-mail: aachemlab@yahoo.com*

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized.

Advanced Analytical Laboratory (425) 702-8571

AAL Job Number: Client: Project Manager: Client Project Name: Client Project Number: Date received: C70524-2 Aerotech Environmental Nick Gerkin Fife RV Center na 05/24/17

AAL Job Number:	C70524-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	05/24/17

8260B, μg/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
MTBE	5.0	nd		nd	nd	nd	nd
1,2-Dichloroethane(EDC)	1.0	nd	83%	nd	nd	nd	nd
1,2-Dibromoethane (EDB)*	0.01	nd		nd	nd	nd	nd
*-instrument detection limits							
Surrogate recoveries							
Dibromofluoromethane		101%	98%	105%	105%	101%	101%
1,2-Dichloroethane-d4		106%	95%	102%	110%	106%	94%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70524-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	05/24/17

Analy	vtical	Resul	ts
/	yucui	1 (CSu	ιJ

8260B, μg/L		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
MTBE 1,2-Dichloroethane(EDC) 1,2-Dibromoethane (EDB)*	5.0 1.0 0.01	nd nd nd	nd nd nd	94%	100%	7%
Surrogate recoveries Dibromofluoromethane 1,2-Dichloroethane-d4		103% 97%	98% 103%	104% 108%	107% 111%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70524-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	05/24/17

Analytical Results

NWTPH-Gx/BTEX		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
NWTPH-Gx, ug/L							
Mineral spirits/Stoddard	100	nd		nd	nd	nd	nd
Gasoline	100	nd		nd	10,000	6,700	1,600
<u>ΒΤΕΧ 8021Β, μg/L</u>							
Benzene	1.0	nd	88%	nd	300	21	120
Toluene	1.0	nd	98%	nd	18	1.4	6.0
Ethylbenzene	1.0	nd		nd	93	210	12
Xylenes	1.0	nd		nd	400	57	3.8
Surrogate recoveries:							
Trifluorotoluene		89%	112%	113%	С	102%	121%
Bromofluorobenzene		105%	107%	113%	128%	128%	129%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not detected at listed reporting limits na - not analyzed C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

C70524-2
Aerotech Environmental
Nick Gerkin
Fife RV Center
na
05/24/17

Analytical Results						
NWTPH-Gx/BTEX		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
NWTPH-Gx, ug/L						

Mineral spirits/Stoddard	100	nd	nd			
Gasoline	100	nd	nd			
BTEX 8021Β, μg/L						
Benzene	1.0	nd	nd	108%	114%	5%
Toluene	1.0	nd	nd	118%	118%	0%
Ethylbenzene	1.0	nd	nd			
Xylenes	1.0	nd	nd			
Surrogate recoveries:						
Trifluorotoluene		105%	109%	130%	128%	
Bromofluorobenzene		123%	117%	120%	117%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C70524-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	05/24/17

NWTPH-Dx, mg/L		MTH BLK	W-MW1	W-MW2	W-MW3	W-MW4	W-MW5	W-MW6	
Matrix	Matrix Water		Water	Water	Water	Water	Water	Water	
Date extracted	Reporting	05/25/17	05/25/17	05/25/17	05/25/17	05/25/17	05/25/17	05/25/17	
Date analyzed	Limits	05/25/17	05/25/17	05/25/17	05/25/17	05/25/17	05/25/17	05/25/17	
Kerosene/Jet fuel	0.20	nd							
Diesel/Fuel oil	0.20	nd							
Heavy oil	0.50	nd							
Surrogate recoveries:									
Fluorobiphenyl		105%	101%	105%	104%	103%	101%	101%	
o-Terphenyl		105%	102%	105%	106%	101%	105%	102%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

C70524-2
Aerotech Environmental
Nick Gerkin
Fife RV Center
na
05/24/17

Metals Total (7010), mg/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
Date analyzed	Limits	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
Lead Total (Pb)	0.002	nd	122%	nd	nd	nd	nd

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 30%

C70524-2
Aerotech Environmental
Nick Gerkin
Fife RV Center
na
05/24/17

Metals Total (7010), mg/L		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
Date analyzed	Limits	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
Lead Total (Pb)	0.002	nd	nd	99%	89%	10%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 30%

AAL Job Number:	C70524-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	05/24/17

Metals Dissolved (7010), mg/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
Date analyzed	Limits	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
Lead Dissolved (Ph)	0.002	nd	122%	nd	nd	nd	nd
	0.002	Tiù	122/0	nu	nu	nu	nu

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 30%

AAL Job Number:	C70524-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	05/24/17

Metals Dissolved (7010), mg/L		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
Date analyzed	Limits	05/26/17	05/26/17	05/26/17	05/26/17	05/26/17
Lead Dissolved (Pb)	0.002	nd	nd	99%	89%	10%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 30% LABORATORY CHAIN OF CUSTODY

	,					Chain o	of Cu	stody F	Recor	d									Page	of
_A	DVANCED ANAL	YTI	CAL		<u> </u>	Laborat	ory Jo	b#: C	705	24.	-2	_	4078 ⁻ Redm (425) ⁻ aache	148 Aver ond, WA 702-857 emlab@	iue NE 98052 1 yahoo	2 2 0.com				
Clien	t Hertech									Proj	ect N	lame:	. 1	Fife	- 1	ev	C	evte	r	
Proje	ect Manager: N. K. Ge	rkin	J							Proj	ect N	lumbe	er:		~				· · · · · · · · · · · · · · · · · · ·	
Addr	ess: 13925 Tuterinh	a A	5 00	·T	k	ale 1	A	-		Colle	ector		· 1	(-10)	rk	1/4	R	id card	latra	
Phon	e: 206 482 2287	Fax:		,	~~~~					Date	e of c	collect	ion:	5/	23	$\frac{1}{5}/1$	7		v gg	
	Sample ID	Time	Motrix	ontainer type	250	VOBILES 892	\$ \$ \$	JUNNIPH STATE	ST ST PH	ot of	D Serie	Jolailes OPAH	PCB5 12015	Pesilides CRAP	Metals	TCS No	als rad	No. 200		of containers
	$(\lambda) - M(\lambda)$	1216	1_{Λ}	Ave Ave	<u> </u>	$\frac{x}{\sqrt{x}}$	٦ ا	(^Ę ()	$\overline{\overline{\mathbf{x}}}$		<u> </u>		<u> </u>	Σ,	Ž	Ĩ	Ŕ	/ NOLES	s, commente	<u>,</u> 4
2	W-MWZ	1440				_	Ŕ	Ď	Ҟ					Ŕ		\mathbf{X}	X	<u>[</u>		-1
3	$i_{\rm M}$ - $M_{\rm M}$ 3	1525	+				X	5	<u></u>							X	X		-	
4	W-MWY	1415					\mathbf{X}	- í×						-15	7	Ń	\mathbf{X}			
5	W-MWS	1323					X	-15	えー					- Íx	1	$\overline{\mathbf{X}}$	\mathbf{X}			
6	W-MWb	1252					X		2					-X		$\overline{\mathbf{X}}$	\mathbf{X}			
7																				_
8																				
9										1 1										
10																			<u></u>	
11	· · · · · · · · · · · · · · · · · · ·								1							1			-	
12	<u>, , , , , , , , , , , , , , , , , , , </u>												-+-		+	· · ·				
		_1	I	L	I	J	11	I		<u></u>	I	I					I I	 Т	naround tim	
	Relinguished by:	Date	/Time	_	R	eceived	d by:		D	ate/Tin	ne	-	Fotal :	# of co	ntaine	ers: 🗾	24	<u>1 UI</u>	Same d	<u></u> ay O
K	m 74 150	5/24	117	V	4	au	$\overline{\mathcal{N}}_{L}$	25/2	4/1:	}		(Condi	tion (te	mp, ^c	C)			24	hr O

	i teninguis neu by.	DaterTime	Ceceived by.	Daternine
Ki	m H DE	5/24/17	V haur 05/24	1/17
Į	Relinguished by:	Date/Time	Received by:	Date/Time

Total # of containers: <u>Z 4</u>
Condition (temp, °C)
Seals (intact?, Y/N)
Comments:

24 hr O 48 hr O Standard

LOW-FLOW GROUNDWATER SAMPLING STANDARD OPERATING PROCEDURE

AEROTECH____

Environmental Consulting Inc.

13925 Interurban Avenue South, Suite No.210 Seattle, Washington 98168 (360)710-5899 2916 NW Bucklin Hill Road, Suite No.126 Silverdale, Washington 98383 (866) 800-4030

512 W. International Airport Road, Suite 201 Anchorage, Alaska 99518 (907) 575-6661 5319 SW Westgate Dr., Suite No.24 Portland, Oregon 97221 (503) 360-4701

LOW-FLOW GROUNDWATER SAMPLING STANDARD OPERATING PROCEDURE

The following protocol and sampling procedures were designed to meet or exceed standards for groundwater monitoring well sampling, as specified by the State of Washington Department of Ecology *"Standard Operating Procedures for Purging and Sampling Monitoring Wells, Version 1.0,"* dated and approved on October 4, 2011. These procedures are strictly adhered to by Aerotech field staff:

Cross-Contamination Mitigation Protocol

A sampling table is set up adjacent to the well head in order to protect field equipment from contact with the ground, to prevent or minimize the possible introduction of foreign materials into the wells, and in general in order to mitigate the possibility of cross-contamination. Where previous laboratory data is available, or where visual of olfactory indicators provide initial evidence, well sampling order is arranged to proceed with the least contaminated well, often the upgradient groundwater monitoring wells, and sampling order proceeds by sampling wells associated with successively higher contamination levels. Thus, the wells exhibiting the highest contamination levels are sampled last, in order to minimize the possibility of cross contamination.

A fresh pair of disposable Nitrile gloves is worn at each well. Equipment neither disposable nor dedicated to wells, is washed in a dedicated container prepared with non-phosphate Alconox detergent and triple rinsed in a second container prepared with distilled and/or deionized water. Surfaces that cannot be readily submerged for the purpose of decontamination, are sprayed with wash water followed by rinse water, and wiped with a fresh disposable paper towel. For shallow wells that require a peristaltic pump, dedicated tubing is left in each well after sampling, however, for deeper wells that require a submersible pump, dedicated tubing is recovered from wells after each use, and deployed to a designated dedicated clean plastic bag, bearing a label indicating well identification information.

Water Level Measurement

Prior to the well purge process and the collection of groundwater samples, groundwater levels are measured at the north side of the ("TOC") with a piezometer/water level indicator, by slowly lowering the sensor into wells prior to purging, in order to minimize disturbances. The water levels are measured twice, with tape a marked in 0.01 foot increments, in order to reduce possible reading error. Where appropriate, free product thickness is measured with gas level indicator paste or an interface indicator. Upon arrival, each well is visual inspected and the condition of the well and well head are noted.

Groundwater Monitoring Well Purge and Sampling Methodologies

Prior to groundwater sample collection, A dedicated length of high density polyethylene tubing is lowered into each well to a level near the middle of the screened interval. A dedicated length of clean silicone tubing is utilized within the pump mechanism. The wells are purged by means of low flow techniques, during which time groundwater is monitored for physical parameters, including temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP), by means of a multi-parameter device mounted upon a flow cell, until such time as values recorded have stabilized and equilibrium conditions are verified according to State guidelines. This protocol ensures that collected groundwater samples are representative of in-situ groundwater conditions. Readings are recorded once every 2 to 5 minutes, including water level measurement. The pumping rate shall remain below 1 L/min during monitoring and sampling procedures. This is verified by periodically filling a one-Liter graduated cylinder and recording the rate, adjusting the pump as necessary. The water column within the well should remain within 5% of the static height during the purge and sample process, if this cannot be achieved, the pump rate will be reduced until the water level stabilizes. The following conditions must be met in three consecutive readings prior to sampling:

•	pH	+/- 0.1 standard units
•	Specific Conductivity	+/- 10.0 mS/cm for values < 1,000 mS/cm +/- 20.0 mS/cm for values > 1,000 mS/cm
•	DO	+/- 0.05 mg/L for values < 1 mg/L +/- 0.2 mg/L for values > 1 mg/L
•	Temperature	+/- 0.1 degrees Celcius
•	ORP	+/- 10 mV

Groundwater samples are collected in containers specified by the laboratory for the analyses established at the Site, and in accordance with State of Washington regulations or guidelines. Sample containers are labeled with site name, well identification, and date of collection information. Each sample is documented on a *Chain of Custody* (""COC") form, and immediately placed in an iced cooler (maintained at 4 degrees Celcius or less) for transport to a certified laboratory for analysis. Please note that any purge water suspected or confirmed to contain concentrations above the MTCA Cleanup Levels is drummed and left on Site

Please feel free to contact the Aerotech Geologist/Hydrogeologist, Mr. James McDermott, at (425) 686-0032, or the Aerotech Environmental Scientist/Field Sampling Coordinator, Mr. Nicholas Gerkin, at (206) 482-2287, if you have questions regarding work completed at this Site.

FIELD DOCUMENTATION

GROUNDWATER MONITORING WELL GAUGING RECORD

FIELD CREW: NAG and RHW	PROJECT NAME: Fife RV Center
DATE: 05/23/17	PROJECT ADDRESS: 3410 Pacific Highway East, Fife, WA

Well ID	Time	Wellhead Elevation	Depth to Water	Groundwater Elevation	Depth of Well	Well Diameter	Comments
	hh:mm	Feet Above MSL	Feet Below TOC	Feet Above MSL	Feet Below TOC	Inches	
MW1	11:46	8.37	1.72	6.65	14.4	2	Well vaults, seals, bolts and plugs are in great condition.
MW2	11:52	9.40	3.02	6.38	14.2	2	Well vaults, seals, bolts and plugs are in great condition.
MW3	11:54	9.43	2.65	6.78	14.6	2	Well vaults, seals, bolts and plugs are in great condition.
MW4	11:50	10.12	3.88	6.24	14.5	2	Well vaults, seals, bolts and plugs are in great condition.
MW5	11:49	11.27	6.34	4.93	17.5	2	Well vaults, seals, bolts and plugs are in great condition.
MW6	11:48	11.40	5.85	5.55	17.5	2	Well vaults, seals, bolts and plugs are in great condition.

EXPLANATION

MSL = Mean Sea Level TOC - Top of Casing

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG and RHW	PROJECT NAME: Fife RV Center
DATE: 05/23/2017	PROJECT ADDRESS:
	3410 Pacific Highway East, Fife, WA

MW-1							
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
11:46	1.72						
12:05	2.06	200	14.4	658	0.39	6.79	-123.5
12:07	2.08	200	14.2	646	0.35	6.77	-124.8
12:09	2.11	200	14.3	645	0.34	6.82	-125.4
12:11	2.12	200	14.2	649	0.31	6.82	-127.1
12:13	2.14	200	14.1	651	0.30	6.82	-128.1
12:15	2.16	200	14.1	655	0.27	6.81	-129.3
Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10	
12:16	SAMPLE		-				
Comments:							

MW-2							
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
11:52	3.02						
14:30	3.48	200	14.6	588.4	0.49	6.92	-123.8
14:32	3.59	200	14.6	585.8	0.36	6.92	-127.3
14:34	3.65	200	14.5	586.0	0.29	6.92	-129.2
14:36	3.70	200	14.5	585.6	0.25	6.93	-133.3
14:38	3.85	200	14.5	585.8	0.25	6.93	-137.1
Ecology Param	Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10
14:40	SAMPLE						
Comments	Comments:						

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG and RHW	PROJECT NAME: Fife RV Center
DATE: 05/23/2017	PROJECT ADDRESS:
	3410 Pacific Highway East, Fife, WA

MW-3							
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
11:54	2.65						
14:56	3.02	200	15.0	630	0.46	6.91	-121.6
14:58	3.03	200	15.3	627	0.37	6.91	-123.3
15:00	3.05	200	15.2	629	0.33	6.91	-124.4
15:02	3.07	200	15.0	631	0.28	6.90	-125.5
15:04	3.09	200	14.8	631	0.29	6.90	-125.7
15:06	3.09	200	14.8	630	0.26	6.90	-126.5
15:08	3.10	200	15.1	630	0.44	6.91	-127.2
15:10	3.11	200	14.8	633	0.29	6.90	-127.5
15:12	3.11	200	15.1	631	0.32	6.90	-127.9
15:14	3.12	200	15.0	633	0.29	6.90	-128.5
15:16	3.13	200	14.6	635	0.26	6.91	-129.0
15:18	3.14	200	14.7	635	0.29	6.90	-128.9
15:20	3.14	200	14.4	634	0.29	6.90	-128.8
15:22	3.14	200	14.5	636	0.28	6.91	-126.0
15:24	3.14	200	14.5	638	0.29	6.91	-124.2
Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10	
15:25	SAMPLE						
Comments:							

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG and RHW	PROJECT NAME: Fife RV Center
DATE: 05/23/2017	PROJECT ADDRESS: 3410 Pacific Highway East, Fife, WA

MW-4							
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
11:50	3.88						
13:48	4.32	175	15.3	638	0.37	6.75	-104.7
13:50	4.40	175	15.4	636	0.32	6.74	-105.9
13:52	4.46	175	15.1	639	0.50	6.74	-107.0
13:54	4.50	175	15.1	634	0.41	6.75	-108.1
13:56	4.52	175	15.2	629	0.46	6.75	-109.3
13:58	4.54	175	15.0	619	0.51	6.76	-110.7
14:00	4.60	175	15.4	610.1	0.39	6.77	-113.5
14:02	4.64	175	15.0	615.7	0.32	6.76	-113.9
14:04	4.70	175	14.7	635	0.39	6.75	-110.0
14:06	4.76	175	14.6	632	0.27	6.76	-110.7
14:08	4.79	175	14.6	628	0.37	6.76	-112.0
14:10	4.82	175	14.7	621.1	0.35	6.77	-113.5
14:12	4.85	175	14.6	615.7	0.34	6.77	-114.0
14:14	4.90	175	14.6	611.9	0.32	6.78	-114.6
Ecology Param	Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10
14:15	SAMPLE						
Comments	:						

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG and RHW DATE: 05/23/2017

PROJECT NAME: Fife RV Center PROJECT ADDRESS: 3410 Pacific Highway East, Fife, WA

MW-5									
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP		
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV		
11:39	5.16								
13:16	5.49	200	14.7	487.6	0.42	6.91	-94.7		
13:18	5.54	200	14.8	487.7	0.34	6.92	-95.2		
13:20	5.59	200	14.7	488.9	0.38	6.91	-95.7		
13:22	5.63	200	14.8	488.8	0.37	6.92	-96.1		
Ecology Parameter Limits (3 Consecutive Readings)			+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10		
13:23	SAMPLE								
Comments:									

MW-6									
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP		
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV		
11:48	5.85								
12:32	6.21	200	15.0	420.7	0.66	6.97	-97.4		
12:34	6.27	200	15.0	420.7	0.58	6.97	-98.6		
12:36	6.33	200	15.3	419.4	0.32	6.96	-100.3		
12:38	6.34	200	15.3	419.4	0.44	6.96	-101.4		
12:40	6.36	200	15.1	420.8	0.44	6.96	-102.3		
12:42	6.38	200	15.1	419.3	0.41	6.96	-102.9		
12:44	6.39	200	14.9	419.7	0.31	6.96	-102.7		
12:46	6.41	200	15.0	419.4	0.32	6.95	-102.8		
12:48	6.40	200	15.1	419.4	0.28	6.96	-104.1		
12:50	6.41	200	15.0	417.4	0.28	6.96	-104.3		
Ecology Parameter Limits (3 Consecutive Readings)			+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10		
12:52	SAMPLE								
Comments:									