GROUNDWATER MONITORING REPORT:

7th Quarterly Sampling

Performed at:
Fife RV Center
3410 Pacific Highway East
Fife, Washington 98424

AEROTECH Environmental Consulting Inc.

July 2, 2018

Anchorage Seattle Portland

Cost-effective environmental solutions for the western United States and Alaska

AEROTECH

Environmental Consulting Inc.

13925 Interurban Avenue South, Suite 210 Seattle, Washington 98168 (360) 710-5899

512 W. International Airport Road, Suite 201 Anchorage, Alaska 99518 (907) 575-6661

July 30, 2018

Mr. Chris LaVerdiere Fife RV Center 3410 Pacific Highway East Fife, Washington 98424

RE: Groundwater Monitoring Report – 7th Quarterly Sampling

Fife RV Center 3410 Pacific Highway East, Fife, Washington Fife, Washington 98424

Dear Mr. LaVerdiere,

As you are aware, Aerotech Environmental Consulting, Inc. ("Aerotech") has been retained to collect quarterly groundwater samples from twelve groundwater monitoring wells previously installed at Fife RV Center in Fife, Washington. Aerotech conducted the last round of groundwater monitoring and sampling activities on July 2, 2018. Enclosed, please find the associated tabulated analytical results, site drawings, laboratory analytical report, and standard operating procedure document.

Petroleum Hydrocarbon and Lead concentrations were below the MTCA Method A Cleanup Levels in samples collected from groundwater monitoring wells MW1, MW3, MW5, MW6, MW7, MW8, MW9, AND MW11. Total Petroleum Hydrocarbons as Gasoline ("TPHg") was present at concentrations above the MTCA Method A Cleanup Level in samples collected from groundwater monitoring wells MW2 and MW4. Benzene was present at concentrations above the MTCA Method A Cleanup Level in samples collected from groundwater monitoring wells MW2, MW4, MW10, and MW12.

Please feel free to contact the Aerotech Geologist, Mr. Simon Payne, at (206) 247-9155, or the Aerotech Field Sampling Coordinator, Mr. Nicholas Gerkin at (206) 482-2287 if you have any questions regarding work completed at this Site.

2712 67 2712 69 2712 69

Simon J. PAYNE

State of Washington

Licensed Geologist No. 2712

Sincerely,

Nick Gerkin

Vice President

Principal Environmental Scientist

APPENDIX

- Tables & Figures
- Project Contract Documents
- Laboratory Analytical Report and Chain of Custody
- Standard Operating Procedure
- Field Documentation

TABLE 1 WELL CONSTRUCTION DETAILS

Fife RV Center 3410 Pacific Highway East Fife, Washington

Well ID	Ecology Well ID	Installation Date	Elevation (TOC north)	Screen Interval	Diameter	Slot Size	Construction Material
			Feet Above MSL	Feet BGS	Inches	Inches	
MW1	BIS683	11/10/16	8.37	4 - 14	2	0.010	Flush - Sched 40 PVC
MW2	BIS684	11/10/16	9.57	4 - 14	2	0.010	Flush - Sched 40 PVC
MW3	BIS685	11/10/16	9.43	4 - 14	2	0.010	Flush - Sched 40 PVC
MW4	BIS686	11/10/16	10.12	4 - 14	2	0.010	Flush - Sched 40 PVC
MW5	BIT785	11/10/16	11.27	4 - 14	2	0.010	Bollard - Sched 40 PVC
MW6	BIT786	11/10/16	11.40	4 - 14	2	0.010	Bollard - Sched 40 PVC
MW7	BJP689	07/14/17	10.09	4 - 14	1	0.010	Flush - Sched 80 PVC
MW8	BJP688	07/14/17	10.26	4 - 14	1	0.010	Flush - Sched 80 PVC
MW9	BJP687	07/14/17	8.84	4 - 14	1	0.010	Flush - Sched 80 PVC
MW10	BJN085	02/23/18	12.94	4 - 14	2	0.020	Bollard - Sched 40 PVC
MW11	*	02/23/18	9.12	2.5 - 9.5	2	0.020	Flush - Sched 40 PVC
MW12	BJN086	02/23/18	11.74	4 - 14	2	0.020	Bollard - Sched 40 PVC

^{* =} Groundwater Monitoring Well MW11 does not have an Ecology Well ID since the Total Depth of the Well in less than 10 feet below ground surface (Feet BGS)

TABLE 2 GROUNDWATER ANALYTICAL RESULTS

Fife RV Center 3410 Pacific Highway East Fife, Washington

MW1

Well	Sampling Date	Ground Water	Elevation	Water Level	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl-	Xylenes	EDB	EDC	MTBE	HVOCs	Naph-	cPAHs*	Dissolved	Total
Depth	д д	Level	(TOC north)	Elevation						benzene	,					thalene		Lead	Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.4	11/18/16	1.37	8.37	7.00	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0		-		<2.0	<2.0
	02/20/17	1.19	8.37	7.18	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0				<2.0	<2.0
	05/23/17	1.72	8.37	6.65	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0				<2.0	<2.0
	08/01/17	2.92	8.37	5.45	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	11/30/17	1.37	8.37	7.00	<100	<200	<500	<1.0	<1.0	<1.0	<1.0								<2.0
	04/03/18	1.97	8.37	6.40	<100	<200	<500	<1.0	<1.0	<1.0	<1.0								<2.0
	07/03/18	2.71	8.37	5.66	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	-							<2.0
		MTCA I	Method A Cleanuյ	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160	0.1	15	15

MW2

Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	HVOCs	Naph- thalene	cPAHs*	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.2	11/18/16	2.53	9.40	6.87	18,000	<200	<500	470	18	210	200	<0.01	<1.0	<5.0				<2.0	<2.0
	02/20/17	2.25	9.40	7.15	29,000	<200	<500	720	26	490	700	<0.01	<1.0	<5.0				<2.0	<2.0
	05/23/17	3.02	9.40	6.38	10,000	<200	<500	300	18	93	400	<0.01	<1.0	<5.0				<2.0	<2.0
	08/01/17	4.40	9.40	5.00	25,000	<200	<500	980	62	540	1,300	<0.01	<1.0	<5.0	ND	4.3	<0.1		<2.0
	11/30/17	2.43	9.40	6.97	64,000	<200	<500	2,800	94	1,800	3,000	<0.01	<1.0	<5.0	ND	25	<0.1		<2.0
	04/03/18 ¹	3.32	9.57	6.25	2,000	<200	<500	65	1	<1.0	120	<0.01	<1.0	<5.0	ND	1.1	<0.1		<2.0
	07/03/18	4.21	9.57	5.36	1,100	<200	<500	35	<1.0	<1.0	28	<0.01	<1.0	<5.0	ND	0.28	<0.1		<2.0
		MTCA I	Method A Cleanu	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	0.1	15	15

MW3

111113																			
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	HVOCs	Naph- thalene	cPAHs*	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.6	11/18/16	2.19	9.43	7.24	42,000	<200	<500	130	16	2,800	120	<0.01	<1.0	<5.0			-	<2.0	<2.0
	02/20/17	2.02	9.43	7.41	10,000	<200	<500	28	<1,000	620	92	<0.01	<1.0	<5.0			-	<2.0	<2.0
	05/23/17	2.65	9.43	6.78	6,700	<200	<500	21	1.4	210	57	<0.01	<1.0	<5.0			-	<2.0	<2.0
	08/01/17	4.05	9.43	5.38	620	<200	<500	<1.0	<1.0	2.4	1.3	<0.01	<1.0	<5.0	ND	0.60	<0.1		<2.0
	11/30/17	2.22	9.43	7.21	830	<200	<500	<1.0	<1.0	3.9	1.7	<0.01	<1.0	<5.0	ND	0.62	<0.1		<2.0
	04/03/18	2.85	9.43	6.58	210	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	1.4	<0.1		<2.0
	07/03/18	3.78	9.43	5.65	240	<200	<500	<1.0	<1.0	<1.0	2.1	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
		MTCA	Method A Cleanu	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	0.1	15	15

MW4

Well	Sampling Date	Ground Water	Elevation	Water Level	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl-	Xylenes	EDB	EDC	MTBE	HVOCs	Naph-	cPAHs*	Dissolved	Total
Depth	Sampling Date	Level	(TOC north)	Elevation	IFIIG	IFIIU	TFIIO	Delizene	Toluelle	benzene	Aylelles	LDB	LDC	IVITBL	HVOCS	thalene	CFAIIS	Lead	Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.5	11/18/16	3.31	10.12	6.81	1,900	<200	<500	140	<1.0	13	7.70	<0.01	<1.0	<5.0				<2.0	<2.0
	02/20/17	3.08	10.12	7.04	6,800	<200	<500	220	35	340	22	<0.01	<1.0	<5.0				<2.0	<2.0
	05/23/17	3.88	10.12	6.24	1,600	<200	<500	120	6.0	12	3.8	<0.01	<1.0	<5.0			-	<2.0	<2.0
	08/01/17	5.61	10.12	4.51	2,100	<200	<500	94	4.4	170	1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	11/30/17	3.15	10.12	6.97	6,400	<200	<500	320	17	370	58	<0.01	<1.0	<5.0	ND	9.90	<0.1		<2.0
	04/03/18	4.10	10.12	6.02	4,100	<200	<500	130	6.3	270	1.0	<0.01	<1.0	<5.0	ND	13	<0.1		<2.0
	07/03/18	5.23	10.12	4.89	1,000	<200	<500	16	1.2	<1.0	1.6	<0.01	<1.0	<5.0	ND	10	<0.1		<2.0
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	i	0.01	5	20	Variable	160*	0.1	15	15

TABLE 2 GROUNDWATER ANALYTICAL RESULTS

Fife RV Center 3410 Pacific Highway East Fife, Washington

MW5

Well	Sampling Date	Ground Water	Elevation	Water Level	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl-	Xylenes	EDB	EDC	MTBE	HVOCs	Naph-	cPAHs*	Dissolved	Total
Depth		Level	(TOC north)	Elevation	8					benzene	,					thalene	0.7110	Lead	Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
17.5	11/18/16	5.17	11.27	6.10	2,100	<200	<500	250	1.6	5.6	2.1	<0.01	<1.0	<5.0			1	<2.0	<2.0
	02/20/17	5.16	11.27	6.11	700	<200	<500	52	<1.0	2.2	2.4	<0.01	<1.0	<5.0				<2.0	<2.0
	05/23/17	6.34	11.27	4.93	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0				<2.0	<2.0
	08/01/17	8.31	11.27	2.96	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	11/30/17	5.07	11.27	6.20	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	04/03/18	6.13	11.27	5.14	110	<200	<500	3.2	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	2.5	<0.1		<2.0
	07/03/18	7.90	11.27	3.37	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	1.9	<0.1		<2.0
		MTCA I	Method A Cleanuյ	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	0.1	15	15

MW6

Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	HVOCs	Naph- thalene	cPAHs*	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
17.5	11/18/16	4.72	11.40	6.68	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0				<2.0	<2.0
	02/20/17	4.69	11.40	6.71	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0				<2.0	<2.0
	05/23/17	5.85	11.40	5.55	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0				<2.0	<2.0
	08/01/17	7.32	11.40	4.08	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	11/30/17	6.72	11.40	4.68	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0					<2.0
	04/03/18	5.67	11.40	5.73	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	07/03/18	6.91	11.40	4.49	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
		MTCA I	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	0.1	15	15

MW7

Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	HVOCs	Naph- thalene	cPAHs*	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.2	08/01/17	5.83	10.09	4.26	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	11/30/17	3.12	10.09	6.97	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0					<2.0
	04/03/18	4.12	10.09	5.97	<100	<200	<500	<1.0	<1.0	<1.0	<1.0								<2.0
	07/03/18	5.28	10.09	4.81	<100	<200	<500	<1.0	<1.0	<1.0	<1.0								<2.0
		MTCA I	Method A Cleanuյ	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	0.1	15	15

MW8

Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	HVOCs	Naph- thalene	cPAHs*	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.1	08/01/17	5.26	10.26	5.00	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	11/30/17	3.16	10.26	7.10	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0					<2.0
	04/03/18	3.78	10.26	6.48	<100	<200	<500	<1.0	<1.0	<1.0	<1.0								<2.0
	07/03/18	4.92	10.26	5.34	<100	<200	<500	<1.0	<1.0	<1.0	<1.0		-						<2.0
		MTCA I	Method A Cleanuբ	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	0.1	15	15

TABLE 2

GROUNDWATER ANALYTICAL RESULTS

Fife RV Center 3410 Pacific Highway East Fife, Washington

MW9

Well	Sampling Date	Ground Water	Elevation	Water Level	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl-	Xylenes	EDB	EDC	MTBE	HVOCs	Naph-	cPAHs*	Dissolved	Total
Depth	Juniphing Dute	Level	(TOC north)	Elevation				Denzene	rordene	benzene	Aylelles		200	22		thalene	6.71.15	Lead	Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.3	08/01/17	3.57	8.84	5.27	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	11/30/17	1.58	8.84	7.26	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0					<2.0
	04/03/18	3.25	8.84	5.59	<100	<200	<500	<1.0	<1.0	<1.0	<1.0								<2.0
	07/03/18	3.47	8.84	5.37	<100	<200	<500	<1.0	<1.0	<1.0	<1.0		-						<2.0
		MTCA I	Method A Cleanu	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160	0.1	15	15

MW10

	•																		
Well	Sampling Date	Ground Water	Elevation	Water Level	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl-	Xvlenes	EDB	EDC	MTBE	HVOCs	Naph-	cPAHs*	Dissolved	Total
Depth	Sampling Date	Level	(TOC north)	Elevation	IFIIG	IFIIG	17110	Delizelle	Totale	benzene	Aylelles	LDB	LDC	IVIIDL	HVOCS	thalene	CFAIIS	Lead	Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	04/03/18	7.01	12.94	5.93	530	<200	<500	17	2.30	<1.0	1.20	<0.01	<1.0	<5.0	ND	0.40	<0.1		<2.0
	07/03/18	7.90	12.94	5.04	610	<200	<500	42	1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	0.94	<0.1		<2.0
		MTCA I	Method A Cleanu	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	0.1	15	15

MW11

Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	HVOCs	Naph- thalene	cPAHs*	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	04/03/18	4.59	9.12	4.53	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	07/03/18	5.94	9.12	3.18	120	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
		MTCA I	Method A Cleanu	p Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	0.1	15	15

MW12

Well	Sampling Date	Ground Water	Elevation	Water Level	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl-	Xvlenes	EDB	EDC	MTBE	HVOCs	Naph-	cPAHs*	Dissolved	Total
Depth	Sampling Date	Level	(TOC north)	Elevation	IFNg	IFIIU	IFIIO	Delizene	Totale	benzene	Aylelles	EDB	EDC	IVIIDE	HVOCS	thalene	СРАПЗ	Lead	Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	04/03/18	7.05	11.74	4.69	240	<200	<500	60	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
	07/03/18	8.46	11.74	3.28	790	<200	<500	170	1.3	<1.0	4.0	<0.01	<1.0	<5.0	ND	<0.1	<0.1		<2.0
MTCA Method A Cleanup Levels		800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160	0.1	15	15			

EXPLANATION

MTCA = Model Toxic Control Act Cleanup Level (WAC173-340-900)

TOC = Top of Casing MSL = Mean Sea Level

< = not detected at indicated Laboratory Detection Limits -- not analyzed NM = Not Measured

TPHg - Total Petroleum Hydrocarbons - Gasoline by Method NWTPH-Gx

TPHd - Total Petroleum Hydrocarbons - Diesel by Method NWTPH-Dx - TPHmo - Total Petroleum Hydrocarbons - Motor Oil by Method NWTPH-Dx extended

Benzene, Toluene, Ethylbenzene and Xylenes by EPA Method 8021B

MTBE = Methyl-tert-butyl-ether EDC = 1,2-Dichloroethane EDB = 1,2-Dibromoethane HVOCs = Halogenated Volatile Organic Compounds; by EPA Method 8260B

PAHs (including Naphthalene) by EPA Method 8270

Total and Dissolved Lead by EPA Method 7010

* = Effective concentration using Toxic Equivalency Factor per WAC 173-340-708(e): SUM(Benzo(a)pyrene (x1), Benzo(a)anthracine (x0.1), Benzo(b)fluoranthene (x0.1), Benzo(k)fluoranthene (x0.1), Chrysene (x0.01), Dibenz(a,h)anthracene (x0.1), Indeno(1,2,3-cd)pyrene (x0.1)

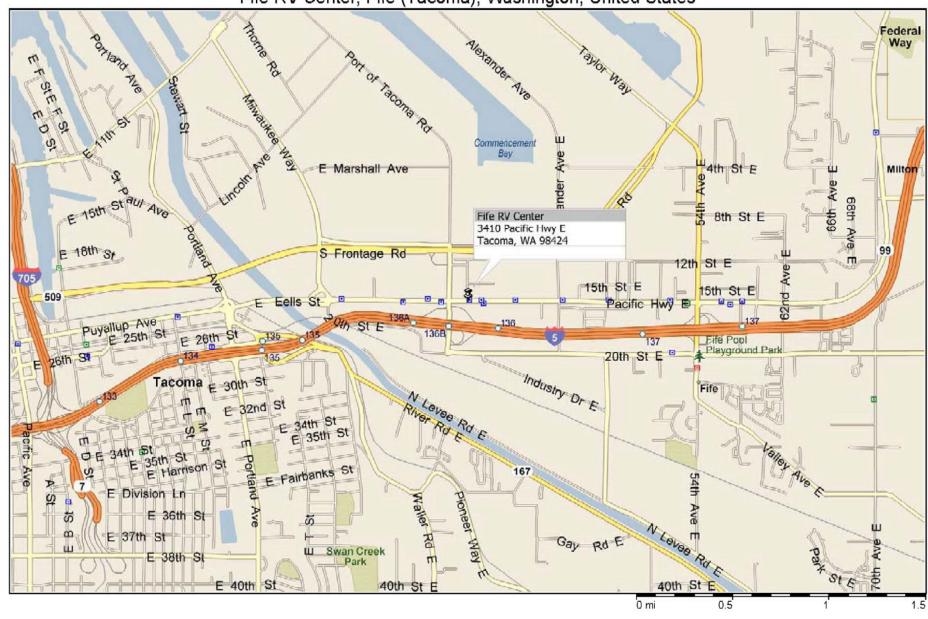
1 = Wells surveyed/resurveyed on 02/28/18

ND = Not Detected above Laboratory Minimum Reporting Limits or applicable cleanup levels (see laboratory report for further detail)

Bolded numbers and red-shaded cells denote concentrations above the MTCA Cleanup Levels for groundwater

AEROTECH

REGIONAL MAP

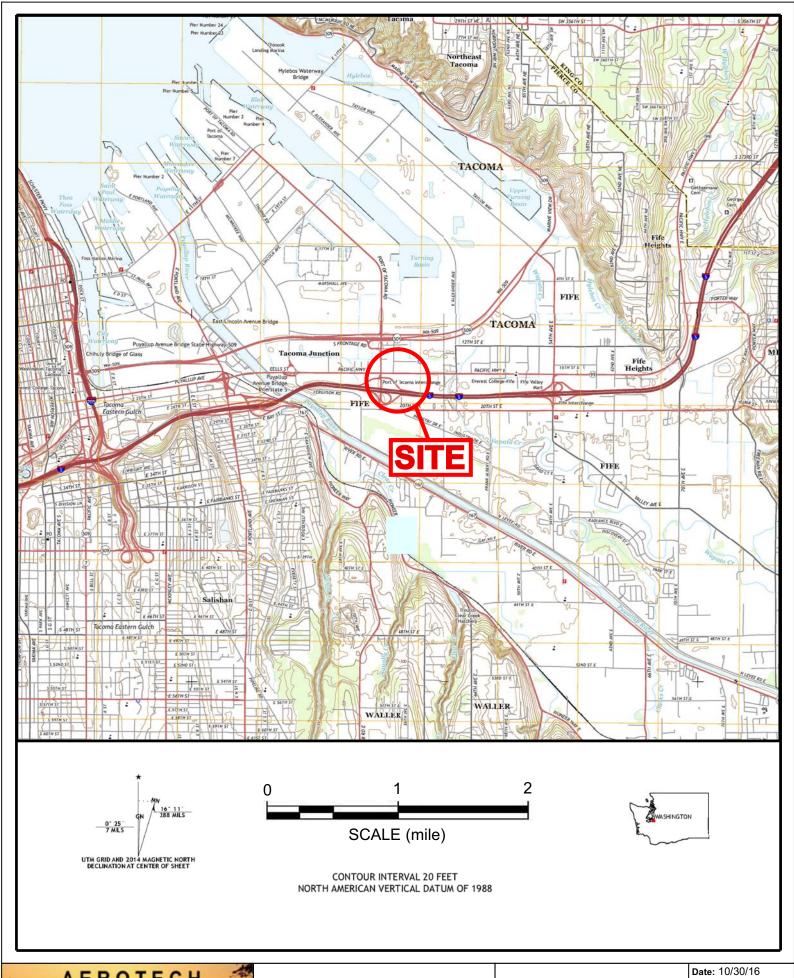

Fife RV Center 3410 Pacific Highway East Fife, Washington

By: Nick Gerkin

Figure:

N

Fife RV Center, Fife (Tacoma), Washington, United States

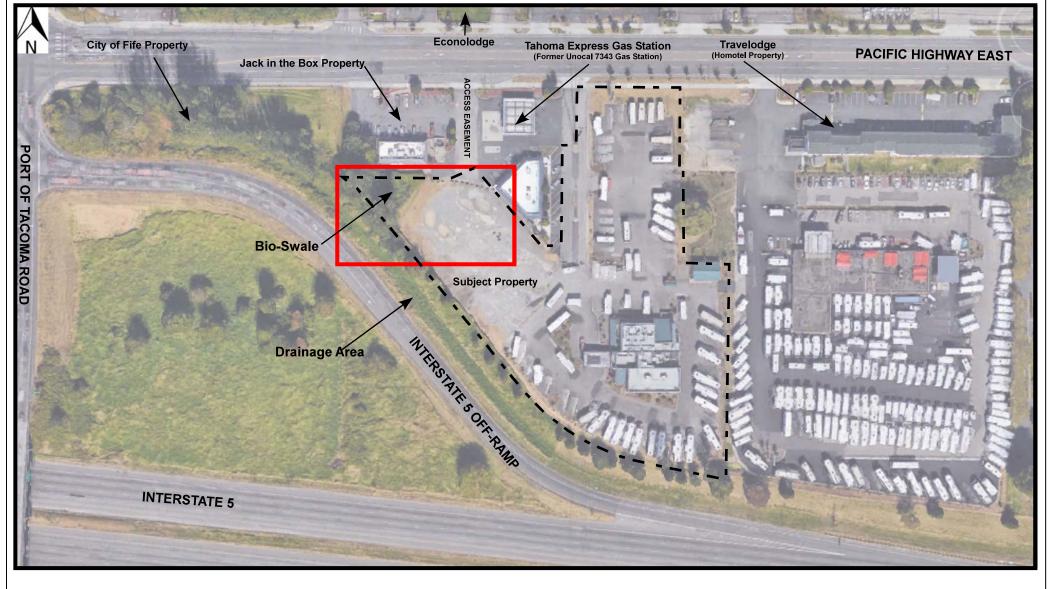


Fife RV Center 3410 Pacific Highway East Fife, Washington Date: 12/08/16

By: Nick Gerkin

Figure:

2



AEROTECH ENVIRONMENTAL CONSULTING

USGS TOPOGRAPHIC MAP

Fife RV Center 3410 Pacific Highway East Fife, Washington By: Nick Gerkin

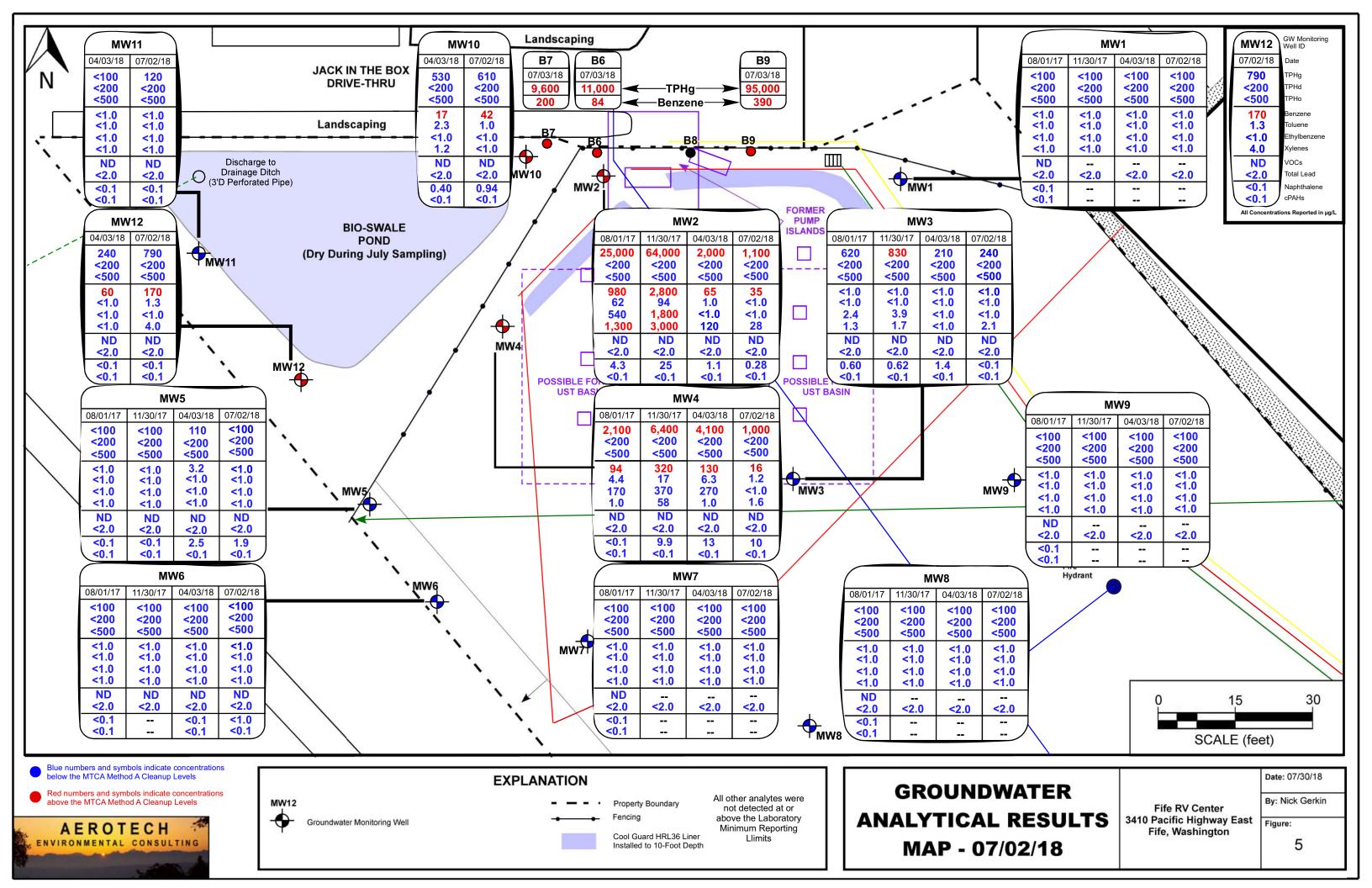
Figure:

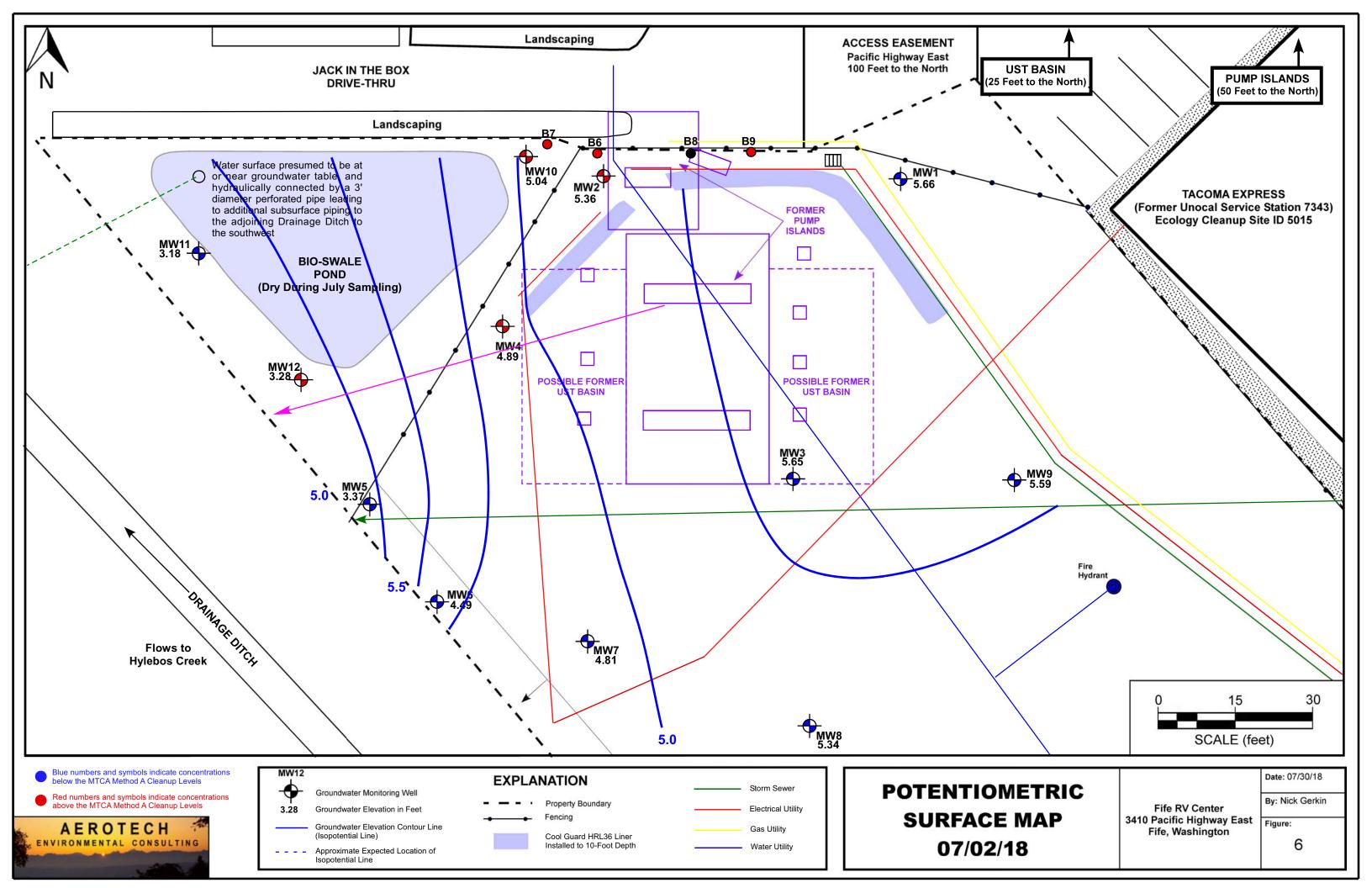
EXPLANATION

AEROTECH ENVIRONMENTAL CONSULTING

SITE VICINITY MAP

Fife RV Center 3410 Pacific Highway East Fife, Washington




Date: 04/27/18

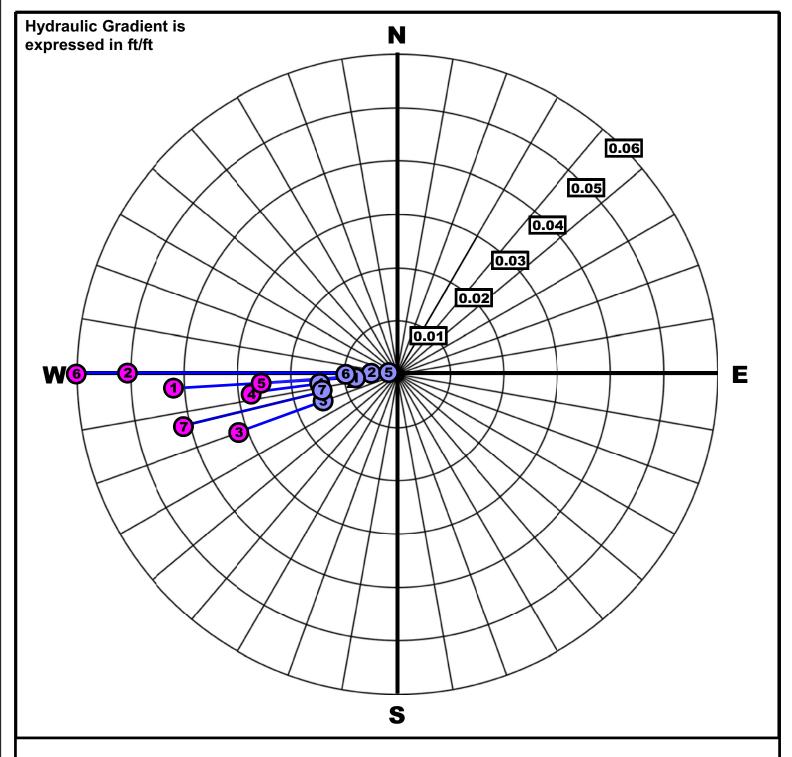
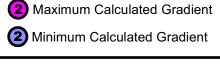

By: Nick Gerkin

Figure:

4



HYDRAULIC GRADIENT RANGE AND SHALLOW GROUNDWATER FLOW **DIRECTION FROM MW3**

- 11/18/16 5 11/30/17
- 02/20/17 6 04/03/18
- 05/23/17 7 07/02/18
- 08/01/17

ROSE DIAGRAM

Fife RV Center 3410 Pacific Highway East Fife, Washington

Date: 07/30/18

By: Nick Gerkin Figure:

7

ENVIRONMENTAL CONTRACTOR'S CERTIFICATION

Fife RV Center 3410 Pacific Highway East Fife, Washington 98424

1. Contractor's Name:

Aerotech Environmental Consulting, Inc.

2. Contractor's Address: 13925 Interurban Avenue South, Ste. 210, Seattle, Washington 98168

3. Name and title of person completing this certification: Alan T. Blotch / President

Answer the following questions about each employee that contractor will have perform the assessment or 4. prepare the report showing the results of the inspection:

Name and Title of Employee: a.

Alan T. Blotch - Environmental Professional

Length of experience doing environmental assessments: b.

31 years

Education degrees received: c.

Masters of Business Administration Juris Doctor - Environmental Law

d. Relevant training received:

ASTM E50 Environmental Assessment Committee Meetings

- 5. Identify any certifications and approvals issued to contractor pursuant to an official Federal, State of local program or policy to conduct environmental assessments: Registered Environmental Assessor Issued by State of California
- 6. Describe the generally recognized standards which the contractor will use to perform the assessment, Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM E 1903)
- 7. Disclose the nature of any previous environmental inspections contractor has ever performed for the Owner of the property: Phase I Environmental Site Assessment
- 8. Disclose the nature of any affiliation or association contractor now has, or ever had, with the above referenced seller of the property, of the above referenced buyer of the property: N/A
- 9. Describe the liability insurance carried by contractor to cover claims in the event that it fails to discover adverse environmental conditions during an environmental inspection.

Professional Errors & Omissions Coverage \$1,000,000 / claim and \$1,000,000 aggregate liability

THE UNDERSIGNED HEREBY CERTIFIES, UNDER PENALTY OF THE CRIMINAL AND/OR CIVIL PENALTIES IN 18 U.S.C. § 1001 FOR FALSE STATEMENTS TO THE UNITED STATES GOVERNMENT, THAT THE ABOVE INFORMATION IS TRUE AND CORRECT.

Signature

7-30-/8 Date

Laboratory Analytical	Report and Chain of Cu	stody	

July 10, 2018

Nick Gerkin Aerotech Environmental, Inc. 13925 Interurban Avenue South, Suite 210 Seattle, WA 98168

Dear Mr. Gerkin:

Please find enclosed the analytical data report for the Fife RV Center (C80704-2) Project.

Samples were received on *July 04, 2018*. The results of the analyses are presented in the attached tables. Applicable reporting limits, QA/QC data and data qualifiers are included. A copy of the chain-of-custody and an invoice for the work is also enclosed.

ADVANCED ANALYTICAL LABORATORY appreciates the opportunity to provide analytical services for this project. Should there be any questions regarding this report, please contact me at (425) 702-8571.

It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

Val G. Ivanov, Ph.D. Laboratory Manager

4078 148 Ave NE

Redmond, WA 98052

425.702-8571

E-mail: aachemlab@yahoo.com

Advanced Analytical Laboratory (425) 702-8571

AAL Job Number: C80704-2

Client: Aerotech Environmental

Project Manager:
Client Project Name:
Client Project Number:
Date received: Nick Gerkin Fife RV Center

na 07/04/18

Client: Aerotech Environmental

Project Manager: Nick Gerkin Client Project Number: Fife RV Center

Date received: 07/04/18

Analytical Results

8260B, µg/L		MTH BLK	LCS	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	07/05/18 0	7/05/18	07/05/18	07/05/18	07/05/18
·	-					
MTBE	5.0	nd		nd	nd	nd
Chloromethane	1.0	nd		nd	nd	nd
Vinyl chloride(*)	0.2	nd		nd	nd	nd
Bromomethane	1.0	nd		nd	nd	nd
Chloroethane	1.0	nd		nd	nd	nd
Trichlorofluoromethane	1.0	nd		nd	nd	nd
1,1-Dichloroethene	1.0	nd		nd	nd	nd
Methylene chloride	1.0	nd		nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd		nd	nd	nd
1,1-Dichloroethane	1.0	nd		nd	nd	nd
2,2-Dichloropropane	1.0	nd		nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd		nd	nd	nd
Chloroform	1.0	nd		nd	nd	nd
1,1,1-Trichloroethane	1.0	nd		nd	nd	nd
Carbontetrachloride	1.0	nd		nd	nd	nd
1,1-Dichloropropene	1.0	nd		nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd		nd	nd	nd
Trichloroethene	1.0	nd	88%	nd	nd	nd
1,2-Dichloropropane	1.0	nd		nd	nd	nd
Dibromomethane	1.0	nd		nd	nd	nd
Bromodichloromethane	1.0	nd		nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd		nd	nd	nd
trans-1,3-Dichloropropene	1.0	nd		nd	nd	nd
1,1,2-Trichloroethane	1.0	nd		nd	nd	nd
Tetrachloroethene	1.0	nd		nd	nd	nd
1,3-Dichloropropane	1.0	nd		nd	nd	nd
Dibromochloromethane	1.0	nd		nd	nd	nd
1,2-Dibromoethane (EDB)*	0.01	nd		nd	nd	nd
Chlorobenzene	1.0	nd	99%	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd		nd	nd	nd
Bromoform	1.0	nd		nd	nd	nd
1,2,3-Trichloropropane	1.0	nd		nd	nd	nd
Bromobenzene	1.0	nd		nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd		nd	nd	nd
2-Chlorotoluene	1.0	nd		nd	nd	nd
4-Chlorotoluene	1.0	nd		nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd		nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd		nd	nd	nd
1,3-Dichlorobenzene	1.0	nd		nd	nd	nd
1,4-Dichlorobenzene	1.0	nd		nd	nd	nd
1,2-Dichlorobenzene	1.0	nd		nd	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd		nd	nd	nd
1,2,4-Trichlorobenzene	1.0	nd		nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd		nd	nd	nd

^{*-}instrument detection limits

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na
Date received: 07/04/18

Analytical Results

Analytical nesults						
8260B, μg/L		MTH BLK	LCS	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	07/05/18 (07/05/18	07/05/18	07/05/18	07/05/18
Surragata racevarias						
Surrogate recoveries		1110/	1000/	1000/	4070/	1010/
Dibromofluoromethane		114%	102%	103%	107%	101%
1,2-Dichloroethane-d4		129%	104%	109%	114%	106%

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin Client Project Number: Fife RV Center

Date received: 07/04/18

Analytical Results

8260B, μg/L		W-MW5	W-MW6	W-MW10	W-MW11	W-MW12
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	07/05/18	07/05/18	07/05/18	07/05/18	07/05/18
MTBE	5.0	nd	nd	nd	nd	nd
Chloromethane	1.0	nd	nd	nd	nd	nd
Vinyl chloride(*)	0.2	nd	nd	nd	nd	nd
Bromomethane	1.0	nd	nd	nd	nd	nd
Chloroethane	1.0	nd	nd	nd	nd	nd
Trichlorofluoromethane	1.0	nd	nd	nd	nd	nd
1,1-Dichloroethene	1.0	nd	nd	nd	nd	nd
Methylene chloride	1.0	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd	nd	nd	nd	nd
2,2-Dichloropropane	1.0	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd
Chloroform	1.0	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	1.0	nd	nd	nd	nd	nd
Carbontetrachloride	1.0	nd	nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd	nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd
Trichloroethene	1.0	nd	nd	nd	nd	nd
1,2-Dichloropropane	1.0	nd	nd	nd	nd	nd
Dibromomethane	1.0	nd	nd	nd	nd	nd
Bromodichloromethane	1.0	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd
trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	nd
Tetrachloroethene	1.0	nd	nd	nd	nd	nd
1,3-Dichloropropane	1.0	nd	nd	nd	nd	nd
Dibromochloromethane	1.0	nd	nd	nd	nd	nd
1,2-Dibromoethane (EDB)*	0.01	nd	nd	nd	nd	nd
Chlorobenzene	1.0	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd
Bromoform	1.0	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	1.0	nd	nd	nd	nd	nd
Bromobenzene	1.0	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd
2-Chlorotoluene	1.0	nd	nd	nd	nd	nd
4-Chlorotoluene	1.0	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd	nd	nd	nd	nd
1,3-Dichlorobenzene	1.0	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd	nd	nd	nd	nd
1,2-Dichloroberizerie 1,2-Dibromo-3-Chloropropane	1.0	nd	nd	nd	nd	nd
1,2,4-Trichlorobenzene	1.0	nd	nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd	nd	nd	nd	nd
1,2,0-1110110100001120110	1.0	HU	HU	nu	nu	HU

^{*-}instrument detection limits

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na
Date received: 07/04/18

Analytical Results

8260B, μg/L		W-MW5	W-MW6	W-MW10	W-MW11	W-MW12
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	07/05/18	07/05/18	07/05/18	07/05/18	07/05/18
Surrogate recoveries						
Dibromofluoromethane		101%	104%	101%	102%	103%
1,2-Dichloroethane-d4		114%	113%	104%	113%	96%

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin Client Project Number: Fife RV Center

Date received: 07/04/18

Analytical Results

Matrix Water Water <t< th=""><th>8260B, μg/L</th><th></th><th>MS</th><th>MSD</th><th>RPD</th></t<>	8260B, μg/L		MS	MSD	RPD
Date analyzed Reporting Limits 07/05/18 07/05/18 07/05/18		Water			
MTBE 5.0 Chloromethane 1.0 Vinyl chloride(*) 0.2 Bromomethane 1.0 Chlorothane 1.0 Trichlorofluoromethane 1.0 Trichlorofluoromethane 1.0 Methylene chloride 1.0 Methylene chloride 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethane 1.0 2,2-Dichloropropane 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 Chloroform 1.0 1,1,1-Trichloroethane 1.0 2,2-Dichloropropane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropane 1.0 1,1-Dichloropropane 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 Dibromomethane 1.0 Romodichloromethane 1.0 Bromodichloromethane 1.0 Bromodichloropropane 1.0 Trichloroethane 1.0 Tetrachloroethane 1.0 Tetrachloroethane 1.0 Tetrachloroethene 1.0 1,2-Dichloropropane 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethane 1.0 Tetrachloroethane 1.0 Tetrachloroethane 1.0 1,2-Dibromochloromethane 1.0 1,2-Dibromochloromethane 1.0 1,2-Dibromochloromethane 1.0 1,2-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dichloropropane 1.0 1,1,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,4-Dichlorobenzene 1.0 1,2,4-Trichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Ja-Trichlorobenzene 1.0 1,2-Ja-Trichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Ja-Trichlorobenzene 1.0 1,2-Ja-Trichlorobenzene 1.0 1,2-Ja-Trichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Ja-Trichlorobenzene 1.0 1,2-Ja-Trichlorobenzene 1.0 1,2-Ja-Trichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0					
Chloromethane 1.0 Vinyl chloride(*) 0.2 Bromomethane 1.0 Chloroethane 1.0 Trichlorofluoromethane 1.0 I,1-Dichloroethene 1.0 Methylene chloride 1.0 I,1-Dichloroethene 1.0 I,1-Dichloroethene 1.0 I,1-Dichloroethene 1.0 I,1-Dichloroethene 1.0 Cs-1,2-Dichloroethene 1.0 Chloroform 1.0 Chloroform 1.0 I,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 I,1-Dichloropropene 1.0 I,2-Dichloropropane 1.0 I,2-Dichloropropane 1.0 I,2-Dichloropropane 1.0 I,2-Dichloropropane 1.0 I,2-Dichloropropane 1.0 Dibromomethane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 Bromodichloromethane 1.0 Irichloroethene 1.0 I,1-2-Trichloroethane 1.0 I,1-2-Trichloroethane 1.0 I,1-2-Trichloroethane 1.0 I,1-2-Trichloroethane 1.0 I,1-2-Trichloroethene 1.0 I,2-Dibromochloromethane 1.0 I,2-Dibromochloromethane 1.0 I,2-Dibromochloromethane 1.0 I,2-Dibromochloromethane 1.0 I,2-Dibromochloromethane 1.0 I,2-Tirchloroethane 1.0 I,2-Tirchloroethane 1.0 I,2-Tirchloropopane 1.0 In I	•	1 0			
Vinyl chloride(*) Bromomethane 1.0 Chloroethane 1.0 Trichlorofluoromethane 1.0 Trichlorofluoromethane 1.0 Trichlorofluoromethane 1.0 Trichloroethene 1.0 Methylene chloride 1.0 1,1-Dichloroethene 1.0 2,2-Dichloroethene 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 Chloroform 1.0 1,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropane 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) Trichloroethane (EDC) Trichloroethane (EDC) 1.0 Trichloroethane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 Cis-1,3-Dichloropropene 1.0 1,1,2-Trichloropropene 1.0 Tetrachloroethene 1.0 Dibromomethane 1.0 Tetrachloroethene 1.0 1,2-Dichloroethane 1.0 Dibromochloromethane 1.0 Tetrachloroethene 1.0 1,2-Dichloropropane 1.0 Tetrachloroethene 1.0 1,2-Dichloropropane 1.0 Tetrachloroethene 1.0 1,1,1,2-Tetrachloroethane 1.0 Thorobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,3-5-Timethylbenzene 1.0 1,3-5-Timethylbenzene 1.0 1,3-5-Timethylbenzene 1.0 1,3-5-Timethylbenzene 1.0 1,3-5-Timethylbenzene 1.0 1,3-5-Timethylbenzene 1.0 1,2-Dichlorobenzene 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MTBE	5.0			
Bromomethane	Chloromethane	1.0			
Chloroethane 1.0 Trichlorofluoromethane 1.0 1,1-Dichloroethene 1.0 Methylene chloride 1.0 trans-1,2-Dichloroethene 1.0 2,2-Dichloroethene 1.0 2,2-Dichloroethene 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 Carbontetrachloride 1.0 1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropane 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethane (EDC) 1.0 Trichloroethane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 Bromodichloromethane 1.0 Bromodichloropropene 1.0 trans-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 Tetrachloroethane 1.0 Tetrachloroethane 1.0 Tetrachloroethene 1.0 1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 Bromodioromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 Bromobenzene 1.0 1,3-5-Trimethylbenzene 1.0 1,3-5-Trimethylbenzene 1.0 1,3-5-Trimethylbenzene 1.0 1,3-5-Trimethylbenzene 1.0 1,3-5-Trimethylbenzene 1.0 1,2-Dichlorobenzene 1.0	Vinyl chloride(*)	0.2			
Trichlorofluoromethane 1.0 1,1-Dichloroethene 1.0 Methylene chloride 1.0 trans-1,2-Dichloroethene 1.0 1,1-Dichloroethane 1.0 2,2-Dichloropane 1.0 2,2-Dichloropane 1.0 Chloroform 1.0 1,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,1-Dichloropropene 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethane (EDC) 1.0 Trichloroethane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 Bromodichloromethane 1.0 Cis-1,3-Dichloropropene 1.0 1,1,2-Trichloroethene 1.0 1,1,2-Trichloroethene 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 Tetrachloroethene 1.0 Dibromochloromethane 1.0 1,2-Dibromochlane (EDB)* 0.01 Chlorobenzene 1.0 1,1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 Bromobenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0	Bromomethane	1.0			
1,1-Dichloroethene	Chloroethane	1.0			
Methylene chloride trans-1,2-Dichloroethane 1.0 1,1-Dichloroethane 1.0 2,2-Dichloropropane 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloropropene 1.0 1,2-Dichloropropene 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 Bromodichloromethane 1.0 1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloroethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,1,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 Bromoform 1.0 1,2,3-Trichloropenae 1.0 1,1,2,2-Tetrachloroethane 1.0 1,0 1.2,3-Trichlorobenzene	Trichlorofluoromethane	1.0			
trans-1,2-Dichloroethane 1.0 1,1-Dichloroethane 1.0 2,2-Dichloropropane 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloropropene 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 Bromodichloropropene 1.0 trans-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethane 1.0 Tetrachloroethane 1.0 Tetrachloroethane 1.0 Tetrachloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromochloromethane 1.0 1,2-Dibromochlane (EDB)* 0.01 Chlorobenzene 1.0 1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,3-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2-Trichlorobenzene 1.0	1,1-Dichloroethene	1.0			
1,1-Dichloroethane 1.0 2,2-Dichloropropane 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloropropene 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 Bromodichloromethane 1.0 1,1,2-Tichloroepropene 1.0 1,1,2-Trichloroepropene 1.0 1,1,2-Trichloroepropene 1.0 1,3-Dichloropropene 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,1,2-Tetrachloroethane 1.0 1,1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 4-Chlorotoluene 1.0 4-Chlorobenzene 1.0 1,3-Dichlorobenzene	Methylene chloride	1.0			
2,2-Dichloropropane 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 1,2-Dichloropropane 1.0 Dibromomethane 1.0 1,2-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,3-Dichloropropene 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,1,2-Tetrachloroethane 1.0 1,1,1,2-Tetrachloroethane 1.0 1,1,2,3-Trichloropropane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 1,2,4-Trimethylbenzene 1.0 1,2-4-Trimethylbenzene 1.0 1,2-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	1.0			
cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 1,2-Dichloropropane 1.0 Dibromomethane 1.0 1,2-Dichloropropane 1.0 Bromodichloromethane 1.0 1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,2-Tetrachloroethane 1.0 1,1,1,2-Tetrachloroethane 1.0 1,1,2,1-Tetrachloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0	1,1-Dichloroethane	1.0			
Chloroform 1.0 1,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 1,2-Dichloropropane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethane 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromochloromethane 1.0 1,2-Dibromochloromethane 1.0 1,2-Dibromochloromethane 1.0 1,2-Dibromochloromethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 Bromobenzene 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,3-Trichlorobenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0		1.0			
1,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 1,2-Dichloropropane 1.0 Dibromomethane 1.0 cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,1,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene <td< td=""><td>cis-1,2-Dichloroethene</td><td>1.0</td><td></td><td></td><td></td></td<>	cis-1,2-Dichloroethene	1.0			
Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethane (EDC) 1.0 Trichloropropane 1.0 1,2-Dichloropropane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethane 1.0 Tetrachloroethane 1.0 Tetrachloropropane 1.0 Dibromochloromethane 1.0 Dibromochloromethane 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromoform 1.0 1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Trichlorobenzene 1.0		1.0			
1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 92% 107% 16% 1,2-Dichloropropane 1.0 1.0 10% 10% 16% 1,2-Dichloropropane 1.0 1.2 1.0 1.2 1.0 1.2	1,1,1-Trichloroethane	1.0			
1,2-Dichloroethane (EDC) 1.0 92% 107% 16% 1,2-Dichloropropane 1.0 92% 107% 16% 1,2-Dichloropropane 1.0 1.0 1	Carbontetrachloride				
Trichloroethene 1.0 92% 107% 16% 1,2-Dichloropropane 1.0 1.0 10% 16% Dibromomethane 1.0 <td< td=""><td></td><td>1.0</td><td></td><td></td><td></td></td<>		1.0			
1,2-Dichloropropane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,1,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 Bromoform 1.0 1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,4-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	1,2-Dichloroethane (EDC)				
Dibromomethane 1.0	Trichloroethene	1.0	92%	107%	16%
Bromodichloromethane 1.0 cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1.0 1.1,2-Trichloroethane 1.0 1.0 1.3-Dichloropropane 1.0 1.0 1.3-Dichloropropane 1.0	1,2-Dichloropropane	1.0			
cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	Dibromomethane	1.0			
trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 102% 117% 13% 1,1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,4-Trichlorobenzene 1.0 1,2,4-Trichlorobenzene 1.0 1,2,4-Trichlorobenzene 1.0 1,2,2-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	Bromodichloromethane	1.0			
1,1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 102% 117% 13% 1,1,1,2-Tetrachloroethane 1.0 102% 117% 13% 1,1,1,2-Tetrachloroethane 1.0	cis-1,3-Dichloropropene	1.0			
Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 102% 117% 13% 1,1,1,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 1.0 1.2 1.0	trans-1,3-Dichloropropene	1.0			
1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 102% 117% 13% 1,1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1	1,1,2-Trichloroethane	1.0			
Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 102% 117% 13% 1,1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 <t< td=""><td>Tetrachloroethene</td><td>1.0</td><td></td><td></td><td></td></t<>	Tetrachloroethene	1.0			
1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 102% 117% 13% 1,1,1,2-Tetrachloroethane 1.0 Bromoform 1.0	1,3-Dichloropropane	1.0			
Chlorobenzene 1.0 102% 117% 13% 1,1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	Dibromochloromethane	1.0			
1,1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	1,2-Dibromoethane (EDB)*	0.01			
Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	Chlorobenzene	1.0	102%	117%	13%
1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	1,1,1,2-Tetrachloroethane	1.0			
Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	Bromoform	1.0			
1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	1,2,3-Trichloropropane				
2-Chlorotoluene 1.0 4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	Bromobenzene	1.0			
4-Chlorotoluene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	1,1,2,2-Tetrachloroethane	1.0			
1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	2-Chlorotoluene	1.0			
1,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.01,2-Dibromo-3-Chloropropane1.01,2,4-Trichlorobenzene1.01,2,3-Trichlorobenzene1.0	4-Chlorotoluene	1.0			
1,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.01,2-Dibromo-3-Chloropropane1.01,2,4-Trichlorobenzene1.01,2,3-Trichlorobenzene1.0					
1,4-Dichlorobenzene1.01,2-Dichlorobenzene1.01,2-Dibromo-3-Chloropropane1.01,2,4-Trichlorobenzene1.01,2,3-Trichlorobenzene1.0		1.0			
1,2-Dichlorobenzene1.01,2-Dibromo-3-Chloropropane1.01,2,4-Trichlorobenzene1.01,2,3-Trichlorobenzene1.0					
1,2-Dibromo-3-Chloropropane 1.0 1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0	1,4-Dichlorobenzene	1.0			
1,2,4-Trichlorobenzene 1.0 1,2,3-Trichlorobenzene 1.0					
1,2,3-Trichlorobenzene 1.0					
		1.0			

^{*-}instrument detection limits

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na
Date received: 07/04/18

Analytical Results

8260B, μg/L		MS	MSD	RPD
Matrix	Water	Water	Water	Water
Date analyzed	Reporting Limits	07/05/18	07/05/18	07/05/18

Surrogate recoveries

Dibromofluoromethane	104%	109%
1,2-Dichloroethane-d4	109%	114%

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

NWTPH-Gx/BTEX		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	07/04/18	07/04/18	07/04/18	07/04/18	07/04/18	07/04/18
NWTPH-Gx, ug/L							
Mineral spirits/Stoddard	100	nd		nd	nd	nd	nd
Gasoline	100	nd		nd	1,100	240	1,000
BTEX 8021B, μg/L							
Benzene	1.0	nd	94%	nd	35	nd	16
Toluene	1.0	nd	106%	nd	nd	nd	1.2
Ethylbenzene	1.0	nd		nd	nd	nd	nd
Xylenes	1.0	nd		nd	28	2.1	1.6
Surrogate recoveries:							
Trifluorotoluene		75%	78%	82%	74%	77%	115%
Bromofluorobenzene		96%	100%	115%	110%	127%	116%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

NWTPH-Gx/BTEX		W-MW5	W-MW6	W-MW7	W-MW8	W-MW9	W-MW10
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	07/04/18	07/04/18	07/04/18	07/04/18	07/04/18	07/04/18
NWTPH-Gx, ug/L							
Mineral spirits/Stoddard	100	nd	nd	nd	nd	nd	nd
Gasoline	100	nd	nd	nd	nd	nd	610
<u>BTEX 8021B, μg/L</u>							
Benzene	1.0	nd	nd	nd	nd	nd	42
Toluene	1.0	nd	nd	nd	nd	nd	1.0
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd
Xylenes	1.0	nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Trifluorotoluene		80%	89%	93%	90%	82%	105%
Bromofluorobenzene		107%	112%	106%	103%	104%	111%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

NWTPH-Gx/BTEX		W-MW11	W-MW12	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	07/04/18	07/04/18	07/04/18	07/04/18	07/04/18
NWTPH-Gx, ug/L						
Mineral spirits/Stoddard	100	nd	nd			
Gasoline	100	120	790			
BTEX 8021B, μg/L						
Benzene	1.0	nd	170	93%	104%	11%
Toluene	1.0	nd	1.3	94%	104%	9%
Ethylbenzene	1.0	nd	nd			
Xylenes	1.0	nd	4.0			
Surrogate recoveries:						
Trifluorotoluene		95%	119%	82%	86%	
Bromofluorobenzene		97%	101%	102%	101%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na
Date received: 07/04/18

Analytical Results

NWTPH-Dx, ug/L		MTH BLK	W-MW1	W-MW2	W-MW3	W-MW4	W-MW5
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	07/06/18	07/06/18	07/06/18	07/06/18	07/06/18	07/06/18
Date analyzed	Limits	07/06/18	07/06/18	07/06/18	07/06/18	07/06/18	07/06/18
Kerosene/Jet fuel	200	nd	nd	nd	nd	nd	nd
Diesel/Fuel oil	200	nd	nd	nd	nd	nd	nd
Heavy oil	500	nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Fluorobiphenyl		98%	90%	94%	87%	86%	85%
o-Terphenyl		101%	94%	99%	91%	89%	88%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na
Date received: 07/04/18

Analytical Results

NWTPH-Dx, ug/L		W-MW6	W-MW7	W-MW8	W-MW9	W-MW10	W-MW11
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	07/06/18	07/06/18	07/06/18	07/06/18	07/06/18	07/06/18
Date analyzed	Limits	07/06/18	07/06/18	07/06/18	07/06/18	07/06/18	07/06/18
Kerosene/Jet fuel	200	nd	nd	nd	nd	nd	nd
Diesel/Fuel oil	200	nd	nd	nd	nd	nd	nd
Heavy oil	500	nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Fluorobiphenyl		88%	84%	84%	83%	82%	83%
o-Terphenyl		91%	81%	87%	86%	85%	86%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na
Date received: 07/04/18

Analytical Results

NWTPH-Dx, ug/L		W-MW12
Matrix	Water	Water
Date extracted	Reporting	07/06/18
Date analyzed	Limits	07/06/18
Kerosene/Jet fuel	200	nd
Diesel/Fuel oil	200	nd
Heavy oil	500	nd
Surrogate recoveries:		
Fluorobiphenyl		85%
o-Terphenyl		83%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

PAH(8270), ug/L		MTH BLK	LCS	W-MW2	W-MW3	W-MW4	W-MW5	W-MW6
Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	07/09/18 0	7/09/18	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18
Date analyzed	Limits	07/09/18 0	7/09/18	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18
Naphthalene	0.1	nd		0.28	nd	10	1.9	nd
1-MethylNaphthalene	0.1	nd		0.30	0.26	3.1	0.72	nd
2-MethylNaphthalene	0.1	nd		0.20	nd	0.46	0.22	nd
Acenaphthylene	0.1	nd		nd	nd	nd	nd	nd
Acenaphthene	0.1	nd	116%	nd	nd	nd	nd	nd
Fluorene	0.1	nd		nd	nd	nd	nd	nd
Phenanthrene	0.1	nd		nd	nd	nd	nd	nd
Anthracene	0.1	nd		nd	nd	nd	nd	nd
Fluoranthene	0.1	nd		nd	nd	nd	nd	nd
Pyrene	0.1	nd	103%	nd	nd	nd	nd	nd
Benzo(a)anthracene	0.1	nd		nd	nd	nd	nd	nd
Chrysene	0.1	nd		nd	nd	nd	nd	nd
Benzo(b)fluoranthene	0.1	nd		nd	nd	nd	nd	nd
Benzo(k)fluoranthene	0.1	nd		nd	nd	nd	nd	nd
Benzo(a)pyrene	0.1	nd		nd	nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene	0.1	nd		nd	nd	nd	nd	nd
Dibenzo(ah)anthracene	0.1	nd		nd	nd	nd	nd	nd
Benzo(ghi)perylene	0.1	nd		nd	nd	nd	nd	nd

Surrogate recoveries:

Carrogate recevence.							
Fluorobiphenyl	79%	59%	67%	78%	80%	76%	79%
o-Terphenyl	100%	97%	98%	102%	99%	101%	102%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 50% TO 150%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

PAH(8270), ug/L		W-MW10	W-MW11	W-MW12	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18
Date analyzed	Limits	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18
Naphthalene	0.1	0.94	nd	nd			
1-MethylNaphthalene	0.1	0.82	nd	nd			
2-MethylNaphthalene	0.1	0.18	nd	nd			
Acenaphthylene	0.1	nd	nd	nd			
Acenaphthene	0.1	nd	nd	nd	114%	115%	1%
Fluorene	0.1	nd	nd	nd			
Phenanthrene	0.1	nd	nd	nd			
Anthracene	0.1	nd	nd	nd			
Fluoranthene	0.1	nd	nd	nd			
Pyrene	0.1	nd	nd	nd	103%	101%	1%
Benzo(a)anthracene	0.1	nd	nd	nd			
Chrysene	0.1	nd	nd	nd			
Benzo(b)fluoranthene	0.1	nd	nd	nd			
Benzo(k)fluoranthene	0.1	nd	nd	nd			
Benzo(a)pyrene	0.1	nd	nd	nd			
Indeno(1,2,3-cd)pyrene	0.1	nd	nd	nd			
Dibenzo(ah)anthracene	0.1	nd	nd	nd			
Benzo(ghi)perylene	0.1	nd	nd	nd			

Surrogate recoveries:

Curregate recevenes.						
Fluorobiphenyl	77%	82%	81%	54%	55%	
o-Terphenyl	95%	101%	98%	97%	99%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 50% TO 150%

Client: Aerotech Environmental

Project Manager: Nick Gerkin Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

Metals Total (7010), ug/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4	W-MW5
Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18
Date analyzed	Limits	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18
Lead Total (Pb)	2.0	nd	76%	nd	nd	nd	nd	nd

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 65% TO 135%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

Metals Total (7010), ug/L		W-MW6	W-MW7	W-MW8	W-MW9	W-MW10	W-MW11
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18
Date analyzed	Limits	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18	07/09/18
Lead Total (Pb)	2.0	nd	nd	nd	nd	nd	nd

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 65% TO 135%

Client: Aerotech Environmental

Project Manager: Nick Gerkin Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

Metals Total (7010), ug	ı/L	W-MW12	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water
Date extracted	Reporting	07/09/18	07/09/18	07/09/18	07/09/18
Date analyzed	Limits	07/09/18	07/09/18	07/09/18	07/09/18
Lead Total (Pb)	2.0	nd	72%	78%	8%

<u>Data Qualifiers and Analytical Comments</u> nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 65% TO 135%

Page |

Laboratory Job #: C8C7C4-2

4078 148 Avenue NE

Redmond, WA 98052

(425) 702-8571

aachemlab@yahoo.com

Client: Aerotec	4					Project N	ame:	FRRV	Cente	1	_
Project Manager:	ele Gerle!	J. Jus	tan Fois	(12N)		Project N	umbe				
Project Manager: // Address: 13925 J	nterurban	Are S.	takuit	a WA		Collector:	$\overline{\mathcal{N}}$	rele Gerl	دیل		_
Phone: 206 482						Date of co			8 May	7/2/18	
			Container type		RH ST RH	TRIVIC SOLIN	Part S	12 12 12 12 12 12 12 12 12 12 12 12 12 1	, Mede		# of containers
Sample I	D Time	e Matrix (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1 67 87	<u> </u>			Notes, comments	4
2 W-MW	2	2/3									
3 W-MW	3		7 🗴	X	X	X					
4 W-MW	4			X	X	X		X			
5 W-MW.	5				X						
6 W-MW	6	1 1 1				$\perp \times \mid$					V
7 WMW	7	74	it								14
8 W-Mh	8						_				11
9 W-MW	9	1									1
10 W-Mu)i ()	7,73			X		_				15
11 W-Mu											Ш,
12 W-Mh)12				X						1
							S	ample receipt info:		Turnaround time:	£
Relinguished		te/Time	<u> </u>	ved by:	D	ate/Time	Т	otal # of containers:		Same day	, O
1/6/4	7/4/	18 0430	han	W 07	04N8	11:0	\mathcal{O}_{C}	condition (temp, °C)		24 hr	· O
Relinguished	by: Da	te/Time	Recei	ved by:	D	ate/Time	S	eals (intact?, Y/N)		48 hr	. O
							C	omments:		Standard	X

July 12, 2018

Nick Gerkin Aerotech Environmental, Inc. 13925 Interurban Avenue South, Suite 210 Seattle, WA 98168

Dear Mr. Gerkin:

Please find enclosed the analytical data report for the Fife RV Center (C80704-3) Project.

Samples were received on *July 04, 2018*. The results of the analyses are presented in the attached tables. Applicable reporting limits, QA/QC data and data qualifiers are included. A copy of the chain-of-custody and an invoice for the work is also enclosed.

ADVANCED ANALYTICAL LABORATORY appreciates the opportunity to provide analytical services for this project. Should there be any questions regarding this report, please contact me at (425) 702-8571.

It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

Val G. Ivanov, Ph.D. Laboratory Manager

Advanced Analytical Laboratory (425) 702-8571

AAL Job Number: C80704-3

Client: Aerotech Environmental

Project Manager:
Client Project Name:
Client Project Number:
Date received: Nick Gerkin Fife RV Center

na 07/04/18

Client: Aerotech Environmental

Project Manager: Nick Gerkin Client Project Name: Fife Client Project Number: na Fife RV Center

Date received: 07/04/18

Analytical Results							Dupl	RPD
NWTPH-Gx/BTEX		MTH BLK	LCS	W-B6	W-B7	W-B9	W-B9	W-B9
Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	07/04/18	07/04/18	07/04/18	07/04/18	07/04/18	07/04/18	07/04/18
NWTPH-Gx, ug/L								
Mineral spirits/Stoddard	100	nd		nd	nd	nd	nd	
Gasoline	100	nd		11,000	9,600	95,000	100,000	5%
BTEX 8021B, μg/L								
Benzene	1.0	nd	94%	84	200	390	500	25%
Toluene	1.0	nd	106%	52	11	94	120	24%
Ethylbenzene	1.0	nd		530	400	2,000	2,200	10%
Xylenes	1.0	nd		7.6	160	1,800	2,300	24%
Surrogate recoveries:								
Trifluorotoluene		75%	78%	С	С	С	С	
Bromofluorobenzene		96%	100%	С	С	С	С	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

NWTPH-Gx/BTEX		MS	MSD	RPD
Matrix	Water	Water	Water	Water
Date analyzed	Reporting Limits	07/04/18	07/04/18	07/04/18
NWTPH-Gx, ug/L				
Mineral spirits/Stoddard	100			
Gasoline	100			
BTEX 8021B, μg/L				
Benzene	1.0	93%	104%	11%
Toluene	1.0	94%	104%	9%
Ethylbenzene	1.0			
Xylenes	1.0			
Surrogate recoveries:				
Trifluorotoluene		82%	86%	
Bromofluorobenzene		102%	101%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

NWTPH-Gx / BTEX		MTH BLK	LCS	B2(5.5)	B3(7)	B4(6)	B5(3.5)	B5(6)
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	077.107.10						
Date analyzed	Limits	07/10/18	07/10/18	07/10/18	07/10/18	07/10/18	07/10/18	07/10/18
NWTPH-Gx, mg/kg								
Mineral spirits/Stoddard	5.0	nd		nd	nd	nd	nd	nd
Gasoline	5.0	nd		nd	70	9.2	nd	nd
BTEX 8021B, mg/kg								
Benzene	0.020	nd	85%	nd	0.070	nd	nd	nd
Toluene	0.050	nd	89%	nd	0.16	nd	nd	nd
Ethylbenzene	0.050	nd		nd	2.4	0.075	nd	nd
Xylenes	0.050	nd		nd	0.99	nd	nd	nd
Surrogate recoveries:								
Trifluorotoluene		86%	87%	70%	73%	80%	82%	75%
Bromofluorobenzene		104%	99%	101%	114%	120%	126%	109%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

C - coelution with sample peaks Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

NWTPH-Gx / BTEX		B6(6)	B6(7)	B7(5)	B7(7)	B8(4)	B9(4)	B9(5)
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting				07/10/18			
Date analyzed	Limits	07/10/18	07/10/18	07/10/18	07/10/18	07/10/18	07/10/18	07/10/18
NWTPH-Gx, mg/kg								
Mineral spirits/Stoddard	5.0	nd						
Gasoline	5.0	190	120	2,400	920	350	1,200	2,800
BTEX 8021B, mg/kg								
Benzene	0.020	0.59	0.12	0.48	6.0	0.70	2.5	2.2
Toluene	0.050	1.2	0.32	1.6	0.86	1.4	2.8	2.0
Ethylbenzene	0.050	3.1	4.2	20	14	3.0	7.4	13
Xylenes	0.050	1.1	nd	34	7.0	1.6	1.8	26
Surrogate recoveries:								
Trifluorotoluene		120%	87%	С	С	78%	С	73%
Bromofluorobenzene		111%	124%	С	С	119%	С	100%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

C - coelution with sample peaks Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

NWTPH-Gx / BTEX		B9(6)	B9(8)	MS	MSD	RPD	MTH BLK	LCS
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	07/10/18	07/10/18	07/10/18	07/10/18	07/10/18	07/12/18	07/12/18
Date analyzed	Limits	07/10/18	07/10/18	07/10/18	07/10/18	07/10/18	07/12/18	07/12/18
NWTPH-Gx, mg/kg								
Mineral spirits/Stoddard	5.0	nd	nd				nd	
Gasoline	5.0	1,100	24				nd	
BTEX 8021B, mg/kg Benzene	0.020	3.9	nd	72%	80%		nd	78%
Toluene	0.050	2.0	nd	79%	82%	3%	nd	83%
Ethylbenzene	0.050	23	0.49				nd	
Xylenes	0.050	4.4	0.11				nd	
Surrogate recoveries:								
Trifluorotoluene		84%	75%	91%	93%		84%	86%
Bromofluorobenzene		109%	123%	108%	103%		104%	103%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

C - coelution with sample peaks Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 07/04/18

Analytical Results

NWTPH-Gx / BTEX		B3(12)
Matrix	Soil	Soil
Date extracted	Reporting	07/12/18
Date analyzed	Limits	07/12/18
NWTPH-Gx, mg/kg		
Mineral spirits/Stoddard	5.0	nd
Gasoline	5.0	6.4
BTEX 8021B, mg/kg Benzene	0.020	nd
Toluene	0.050	nd
Ethylbenzene	0.050	nd
Xylenes	0.050	nd
Surrogate recoveries: Trifluorotoluene		79%
Bromofluorobenzene		107%
DI GITTO GO		107 70

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

C - coelution with sample peaks Results reported on dry-weight basis

Acceptable Recovery limits: 70% TO 130%

kelinguished by:

Date/Time

Laboratory Job #: C80409

4078 148 Avenue NE

Redmond, WA 98052 (425) 702-8571

aschemiah@vahoo.co

4			aa	ichemlab@yahoo.com	
Client: Acritech			Project Name:	FR RV (evter
Project Manager: N. L. Ge	rew, Jis	tw Fostrer	Project Number:		
Address: 3925 Interur	tal Ave S	Tokwila WA	Collector:	ek Gerk	$i \lambda$
Phone: 206 482 2287	Fax:		Date of collection	-Til	_
Şample ID	Time Matrix	Container type	A 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Se legel of the de legel of the	Notes, comments #
1 B2(5.5)					Notes, comments #
2 52(8)	07/0				HOLD I
3 33(7)	CÌD				
4 55(12)	1000				Hetts &
5 34 (6)	1020				Added by
6 35(35)	1845				N Gerkin 07/12/16
7 35(6)	1115				1/7
8 BS(S)	11.20				HOLD
9 36(6)	1200				
10 B(7)	1205 V				V
11 N-Bkg	1240 W				$\frac{1}{4}$
12 37(5)	13,70 \$ 1	34 1			1
			Saı	mple receipt info:	Turnaround time:
Relinguished by:	Date/Time			tal # of containers:	Same day O
	7/4/8 14/30	1/ haya/ 03/04/18	11 13 CC	andition (tomp °C)	24 ha O

Received by:

54.67 7 117.10	10101 11 01 00
18 11 00	Condition (te
Date/Time	Seals (intact
	Comments:

Condition (temp, °C) 24 hr O

Seals (intact?, Y/N) 48 hr O

Standard 🕱

Laboratory Job # C8070Y-3

4078 148 Avenue NE Redmond, WA 98052 (425) 702-8571

1 8 (aacheml	ab@yahoo	.com			
Client: Heritach					Project	l Name	: 174	Ge R	VC	البعر	ter	_
Project Manager: Nik Gerla	edu Sú	Stin Fo	Slien)		Project	t Numb	er:					_
Address: 13925 Intern	Irlan A	Ster For	kuila,u	JA-	Collect	or: /), 2k	Gin	Kin)		
Phone: 206 482 2287	Fax:			,	Date o	f collec	tion:	7/3/	18			- -
Sample ID	Matrix	Container type		Rei and	5 / KH 65 / 65 / 65 / 65 / 65 / 65 / 65 / 65	STO PAY			AT CAS ME	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Notes, comments	# of containers
1 87/7)	1400	175										ス
2 11-67	170 N	1 Tap	X									
3 3 (4)	1450 5	151/	X									2
4 39(4)	1535											
5 376	1550											
6 3975	1355										1-1	
7 6518	1600 V		X								Upreserve 14)	V
8 11-159	1610 (1)	1.5%	X								ilhoreserved	
9											(,	
10										(×)	Preserved in t	he
11											lab 07/04/18	
12												Vit
							Sample re	eceipt info:			Turnaround time:	
Relinguished by:	Date/Time	Rece	eived by:	D	ate/Time		Total # o	of contain	ers:		Same day	0
	74/18013	Vhav	w	07/04	1/18/11	DO	Conditio	n (temp, ^c	°C)		24 hr	0
Relinguished by:	Date/Time		eived by:	7	ate/Time	7	Seals (ir	ntact?, Y/I	٧)		48 hr	0
							Comme	nts:			Standard	Ø

Environmental Consulting Inc.

13925 Interurban Avenue South, Suite No.210 Seattle, Washington 98168 (360)710-5899 512 W. International Airport Road, Suite 201 Anchorage, Alaska 99518 (907) 575-6661

LOW-FLOW GROUNDWATER SAMPLING STANDARD OPERATING PROCEDURE

The following protocol and sampling procedures were designed to meet or exceed standards for groundwater monitoring well sampling, as specified by the State of Washington Department of Ecology "Standard Operating Procedures for Purging and Sampling Monitoring Wells, Version 1.0," dated and approved on October 4, 2011. These procedures are strictly adhered to by Aerotech field staff:

Cross-Contamination Mitigation Protocol

A sampling table is set up adjacent to the well head in order to protect field equipment from contact with the ground, to prevent or minimize the possible introduction of foreign materials into the wells, and in general in order to mitigate the possibility of cross-contamination. Where previous laboratory data is available, or where visual of olfactory indicators provide initial evidence, well sampling order is arranged to proceed with the least contaminated well, often the upgradient groundwater monitoring wells, and sampling order proceeds by sampling wells associated with successively higher contamination levels. Thus, the wells exhibiting the highest contamination levels are sampled last, in order to minimize the possibility of cross contamination.

A fresh pair of disposable Nitrile gloves is worn at each well. Equipment neither disposable nor dedicated to wells, is washed in a dedicated container prepared with non-phosphate Alconox detergent and triple rinsed in a second container prepared with distilled and/or deionized water. Surfaces that cannot be readily submerged for the purpose of decontamination, are sprayed with wash water followed by rinse water, and wiped with a fresh disposable paper towel. For shallow wells that require a peristaltic pump, dedicated tubing is left in each well after sampling, however, for deeper wells that require a submersible pump, dedicated tubing is recovered from wells after each use, and deployed to a designated dedicated clean plastic bag, bearing a label indicating well identification information.

Water Level Measurement

Prior to the well purge process and the collection of groundwater samples, groundwater levels are measured at the north side of the ("TOC") with a piezometer/water level indicator, by slowly lowering the sensor into wells prior to purging, in order to minimize disturbances. The water levels are measured twice, with tape marked in 0.01 foot increments, in order to reduce possible reading error. Where appropriate, free product thickness is measured with gas level indicator paste or an interface indicator. Upon arrival at the well and visual inspection, the condition of the well and well head.

Groundwater Monitoring Well Purge and Sampling Methodologies

Prior to groundwater sample collection, A dedicated length of high density polyethylene tubing is lowered into each well to a level near the middle of the screened interval. A dedicated

length of clean silicone tubing is utilized within the pump mechanism. The wells are purged by means of low flow techniques, during which time groundwater is monitored for physical parameters, including temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP), by means of a multi-parameter device mounted upon a flow cell, until such time as values recorded have stabilized and equilibrium conditions are verified according to State guidelines. This protocol ensures that collected groundwater samples are representative of in-situ groundwater conditions. Readings are recorded once every 2 to 5 minutes, including water level measurement. The pumping rate shall remain below 1 L/min during monitoring and sampling procedures. This is verified by periodically filling a one-Liter graduated cylinder and recording the rate, adjusting the pump as necessary. The water column within the well should remain within 5% of the static height during the purge and sample process, if this cannot be achieved, the pump rate will be reduced until the water level stabilizes. The following conditions must be met in three consecutive readings prior to sampling:

pH +/- 0.1 standard units
 Specific Conductivity +/- 10.0 μmhos/cm for values < 1,000 μmhos/cm +/- 20.0 μmhos/cm for values > 1,000 μmhos/cm
 DO +/- 0.05 mg/L for values < 1 mg/L +/- 0.2 mg/L for values > 1 mg/L
 Temperature +/- 0.1 degrees Celsius
 ORP +/- 10 mV

Groundwater samples are collected in containers specified by the laboratory for the analyses established at the Site, and in accordance with State of Washington regulations or guidelines. Sample containers are labeled with site name, well identification, and date of collection information. Each sample is documented on a *Chain of Custody* (""COC") form, and immediately placed in an iced cooler (maintained at 4 degrees Celsius or less) for transport to a certified laboratory for analysis. Please note that any purge water suspected or confirmed to contain concentrations above the MTCA Cleanup Levels is drummed and left on Site.

Please feel free to contact the Aerotech Geologist Mr. Simon Payne at (206) 741-1651, or the Aerotech Environmental Scientist/Field Sampling Coordinator, Mr. Nicholas Gerkin, at (206) 257-4211, if you have questions regarding work completed at this Site.

GROUNDWATER MONITORING WELL GAUGING RECORD

PROJECT NAME: Fife RV Center

DATE: 07/03/18

PROJECT ADDRESS: 3410 Pacific Highway East, Fife, WA

Well ID	Time	Wellhead Elevation	Depth to Water	Groundwater Elevation	Depth of Well	Well Diameter	Comments
	hh:mm	Feet Above MSL	Feet Below TOC	Feet Above MSL	Feet Below TOC	Inches	
MW1	7:13	8.37	2.71	5.66	14.4	2	Well vaults, seals, bolts and plugs are in adequate condition.
MW2	7:55	9.40	4.21	5.19	14.2	2	Well vaults, seals, bolts and plugs are in adequate condition.
MW3	7:17	9.43	3.78	5.65	14.6	2	Well vaults, seals, bolts and plugs are in adequate condition.
MW4	7:58	10.12	5.23	4.89	14.5	2	Well vaults, seals, bolts and plugs are in adequate condition.
MW5	7:47	11.27	7.90	3.37	17.5	2	Well vaults, seals, bolts and plugs are in great condition.
MW6	7:45	11.40	6.91	4.49	17.5	2	Well vaults, seals, bolts and plugs are in great condition.
MW7	7:22	10.09	5.28	4.81	14.2	1	Well vaults, seals, bolts and plugs are in adequate condition.
MW8	7:19	10.26	4.92	5.34	14.1	1	Well vaults, seals, bolts and plugs are in adequate condition.
MW9	7:15	8.84	3.47	5.37	14.3	1	Well vaults, seals, bolts and plugs are in adequate condition.
MW10	7:56	12.94	7.90	5.04	17.4	2	Well vaults, seals, bolts and plugs are in new condition.
MW11	7:50	9.12	5.94	3.18	9.8	2	Well vaults, seals, bolts and plugs are in new condition.
MW12	7:49	11.74	8.46	3.28	17.2	2	Well vaults, seals, bolts and plugs are in new condition.

EXPLANATION

MSL = Mean Sea Level TOC - Top of Casing

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG

PROJECT NAME: Fife RV Center

DATE: 07/03/18

PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

M\	N 1	Purge Start:	16:01	Purge Stop:	16:15	Purge V (L):	3.50
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:13	2.71						
16:08	3.54	250	15.6	746	2.26	7.06	-73.1
16:10	3.57	250	15.7	746	2.26	7.06	-79.7
16:12	3.57	250	15.7	748	2.18	7.06	-83.2
16:14	3.57	250	15.7	748	2.15	7.06	-85.1
Ecology Parame	Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 10	+/- 0.20	+/- 0.1	+/- 10
16:15	SAMPLE						

Comments:

M	W2	Purge Start:	13:53	Purge Stop:	14:10	Purge V (L):	4.25
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:55	4.21						
13:53	4.20						
13:58	4.82	250	15.0	590.7	0.56	7.16	-90.4
14:00	4.82	250	15.1	591.5	0.47	7.17	-91.7
14:02	4.93	250	15.4	592.0	0.41	7.17	-92.9
14:04	4.93	250	15.5	590.1	0.40	7.17	-94.7
14:06	4.93	250	15.5	591.5	0.38	7.19	-95.6
Ecology Parame	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10
14:10	SAMPLE		-				

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG PROJECT NAME: Fife RV Center

DATE: 07/03/18 PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

M	W3	Purge Start:	15:31	Purge Stop:	15:50	Purge V (L):	4.27
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:17	3.78						
15:38	4.28	225	15.2	526.6	0.59	7.11	-94.0
15:40	4.31	225	15.0	529.0	0.40	7.11	-94.5
15:42	4.33	225	15.1	527.7	0.35	7.12	-94.8
15:44	4.34	225	15.0	528.7	0.32	7.13	-95.4
15:46	4.34	225	15.0	528.4	0.36	7.13	95.8
Ecology Param	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10
15:50	SAMPLE						

Comments:

M\	N 4	Purge Start:	14:59	Purge Stop:	15:15	Purge V (L):	2.80
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:58	5.23				-		
14:58	5.20						
15:06	5.61	175	15.0	645	0.66	7.01	-91.5
15:08	5.61	175	15.0	644	0.54	7.00	-92.1
15:10	5.80	175	15.0	644	0.48	7.00	-92.8
15:12	5.80	175	15.1	641	0.46	6.99	-93.7
15:14	5.80	175	15.1	641	0.44	7.01	-95.7
Ecology Parame	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10
15:15	SAMPLE						

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG PROJECT NAME: Fife RV Center

DATE: 07/03/18 PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

M	W5	Purge Start:	10:49	Purge Stop:	11:10	Purge V (L):	4.20
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	pH	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:47	7.90						
10:56	7.84	200	14.2	522.8	0.81	7.10	-61.0
10:58	8.39	200	14.1	528.4	0.63	7.09	-63.0
11:00	8.55	200	14.5	524.8	0.59	7.07	-66.0
11:02	8.71	200	14.5	523.2	0.51	7.07	-68.9
11:04	8.71	200	14.7	523.5	0.49	7.09	-71.3
11:06	8.71	200	14.8	524.7	0.46	7.09	-74.0
Ecology Param	Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10
11:10	SAMPLE						

Comments:

MW6		10:14	Purge Stop:	10:35	Purge V (L):	#VALUE!
DTW	Purge Rate	Temperature	Specific Conductivity	DO	pH	ORP
feet	mL/min	°C	mS/cm	mg/L	unit	mV
6.91						
6.92						
7.42	190	14.0	416.3	1.81	7.20	-43.9
7.52	190	13.9	417.2	0.86	7.19	-51.7
7.52	190	13.9	417.7	0.60	7.19	-59.8
7.64	190	14.1	417.7	0.54	7.19	-65.7
7.71	190	13.4	417.9	0.50	7.19	-67.8
7.76	190	13.4	417.9	0.47	7.18	-71.1
7.79	190	13.4	417.6	0.46	7.18	-72.5
Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10
SAMPLE						
	feet 6.91 6.92 7.42 7.52 7.52 7.64 7.71 7.76 7.79 er Limits (3 Conse	feet mL/min 6.91 6.92 7.42 190 7.52 190 7.52 190 7.64 190 7.71 190 7.76 190 7.79 190 er Limits (3 Consecutive Readings)	feet mL/min °C 6.91 6.92 7.42 190 14.0 7.52 190 13.9 7.52 190 13.9 7.64 190 14.1 7.71 190 13.4 7.76 190 13.4 7.79 190 13.4 er Limits (3 Consecutive Readings) +/- 0.1	DTW Purge Rate Temperature Conductivity feet mL/min °C mS/cm 6.91 6.92 7.42 190 14.0 416.3 7.52 190 13.9 417.2 7.52 190 13.9 417.7 7.64 190 14.1 417.7 7.71 190 13.4 417.9 7.76 190 13.4 417.9 7.79 190 13.4 417.6 er Limits (3 Consecutive Readings) +/- 0.1 +/- 10	BTW Purge Rate Temperature Conductivity DO feet mL/min °C mS/cm mg/L 6.91 6.92 7.42 190 14.0 416.3 1.81 7.52 190 13.9 417.2 0.86 7.52 190 13.9 417.7 0.60 7.64 190 14.1 417.7 0.54 7.71 190 13.4 417.9 0.50 7.76 190 13.4 417.9 0.47 7.79 190 13.4 417.6 0.46 er Limits (3 Consecutive Readings) +/- 0.1 +/- 0.05	BTW Purge Rate Temperature Conductivity DO pH feet mL/min °C mS/cm mg/L unit 6.91 6.92 7.42 190 14.0 416.3 1.81 7.20 7.52 190 13.9 417.2 0.86 7.19 7.52 190 13.9 417.7 0.60 7.19 7.64 190 14.1 417.7 0.54 7.19 7.71 190 13.4 417.9 0.50 7.19 7.76 190 13.4 417.9 0.47 7.18 7.79 190 13.4 417.6 0.46 7.18 er Limits (3 Consecutive Readings) +/- 0.1 +/- 0.05 +/- 0.1

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG PROJECT NAME: Fife RV Center

DATE: 07/03/18 PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

M	W7	Purge Start:	9:50	Purge Stop:	10:01	Purge V (L):	1.98
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:22	5.28						
9:56	10.54	180	14.1	476.4	0.79	7.15	32.3
9:58	11.93	180	14.0	473.6	0.58	7.12	-22.7
10:00	13.73	180	14.1	481.7	0.59	7.10	-34.9
10:01				PUMPED DR	Y		
17:20	5.30						
Ecology Parameter Limits (3 Consecutive Readings) +/- 0.1				+/- 10	+/- 0.20	+/- 0.1	+/- 10
17:20	SAMPLE						

Comments: Well pumped Dry at 10:01

M۱	N 8	Purge Start:	16:50	Purge Stop:	17:02	Purge V (L):	1.80
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:19	4.92						
16:56	5.35	150	14.8	766	1.62	7.14	-61.2
16:58	5.45	150	14.7	752	1.23	7.14	-63.1
17:00	5.52	150	14.7	749	1.10	7.15	-65.1
17:02	5.59	150	14.6	748	1.08	7.14	-66.8
Ecology Parame	Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 10	+/- 0.20	+/- 0.1	+/- 10
17:05	SAMPLE						

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG PROJECT NAME: Fife RV Center

DATE: 07/03/18 PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

M	W9	Purge Start:	16:25	Purge Stop:	16:38	Purge V (L):	2.27
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	pН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:15	3.47						
16:30	3.49	175	14.8	719	1.56	7.08	-84.6
16:32	3.50	175	14.8	721	1.09	7.10	-95.3
16:34	3.52	175	14.7	708	0.95	7.10	-98.0
16:36	3.52	175	14.7	701	0.92	7.10	-104.3
16:38	3.53	175	14.8	7	0.90	7.10	-105.1
Ecology Parame	Ecology Parameter Limits (3 Consecutive Readings)		+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10
16:40	SAMPLE						

Comments:

MV	V10	Purge Start:	14:33	Purge Stop:	14:50	Purge V (L):	3.57
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	pH	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:56	7.90						
14:33	8.06	210	15.4	626	0.70	7.09	-105.2
14:35	8.08	210	15.3	624	0.71	7.09	-107.7
14:37	8.09	210	15.3	620	0.69	7.10	-112.1
14:39	8.10	210	15.1	617	0.66	7.08	-115.7
14:41	8.10	210	15.1	616	0.59	7.08	-118.6
14:43	8.11	210	15.1	612	0.58	7.08	-120.0
14:45	8.11	210	15.1	610	0.55	7.07	-121.9
Ecology Parame	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10
14:50	SAMPLE						

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG PROJECT NAME: Fife RV Center

DATE: 07/03/18 PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

MV	V11	Purge Start:	12:59	Purge Stop:	13:35	Purge V (L):	8.10
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:50	5.94						
13:07	6.27	225	14.4	493.3	1.20	7.11	-99.5
13:09	6.31	225	14.3	492.1	1.00	7.11	-105.9
13:11	6.35	225	14.3	491.1	0.92	7.10	-109.2
13:13	6.37	225	14.3	490.9	0.82	7.10	-114.1
13:15	6.38	225	14.4	490.9	0.75	7.10	-117.9
13:17	6.40	225	14.3	490.8	0.70	7.10	-120.1
13:19	6.41	225	14.3	491.5	0.70	7.10	-120.1
13:21	6.42	225	14.3	491.4	0.59	7.11	-124.3
10:13	6.43	225	14.2	491.4	0.51	7.11	-124.2
13:31	6.44	225	14.2	491.2	0.48	7.11	-126.8
13:33	6.44	225	14.2	491.4	0.48	7.14	-122.5
Ecology Parame	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 10	+/- 0.20	+/- 0.1	+/- 10
13:35	SAMPLE						

Comments:

MW12		Purge Start:	11:30	Purge Stop:	11:50	Purge V (L):	4.80
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	pН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
7:49	8.46						
11:29	8.44						
11:42	8.93	240	14.4	768	0.55	6.97	-47.5
11:44	8.97	240	14.2	767	0.51	6.97	-48.2
11:46	9.01	240	14.1	766	0.47	6.95	-50.1
11:48	9.04	240	14.1	765	0.46	6.95	-51.1
Ecology Parameter Limits (3 Consecutive Readings)			+/- 0.1	+/- 10	+/- 0.05	+/- 0.1	+/- 10
11:50	SAMPLE						