Groundwater Monitoring Well **Installation Report**

Performed at: Fife RV Center 3410 Pacific Highway East Fife, Washington 98424

August 16, 2017

Anchorage Seattle Portland

Cost-effective environmental solutions for the western United States and Alaska

www.AerotechEnvironmental.com

Groundwater Monitoring Well Installation Report

Performed at: Fife RV Center 3410 Pacific Highway East Fife, Washington 98424

August 16, 2017

Performed by: Aerotech Environmental Consulting, Inc. 13925 Interurban Avenue South, Suite No. 210 Seattle, Washington 98168 Fax (206) 402-3872 (866) 800-4030

www.AeroTechEnvironmental.com

GROUNDWATER MONITORING WELL INSTALLATION REPORT

performed for: **MR. CHRIS LaVERDIERE** 3410 Pacific Highway East Fife, Washington 98424

Clients:	MR. CHRIS LaVERDIERE 3410 Pacific Highway East Fife, Washington 98424
Point of Contact:	Mr. Chris LaVerdiere Representative of Ownership Group
Property:	FIFE RV CENTER 3910 Pacific Highway East Fife, Washington 98424
County:	Pierce County, Washington Parcel Number: 0320111067
Commercial Activity:	RV Retail
Project Number:	217-4025
Licensed Geologist:	James McDermott (Washington State License No. 3063)
Report Date:	August 16, 2017

EXECUTIVE SUMMARY

The subject Property consists of one irregularly-shaped 3.76-acre Parcel of commercial land located on the south side of Pacific Highway East in Fife, Washington. One approximately 10,763 square foot, 2-story structure, occupied by *Fife RV Center*, is situated near the southeastern corner of the Property. Asphalt parking areas surround the structure on all sides and are utilized to display RVs. A 0.77-acre gravel parking lot utilized to store RVs, and the subject of this investigation, is situated on the west side of the Property.

Adjoining to the south is a drainage ditch that appear to discharge to the east, followed by Interstate 5. The neighboring Parcel to the east includes approximately 5.24 acres, currently leased by the Fife RV Center for use as additional storage. The Puyallup River approaches the Site within 3,000 feet to the southwest, and the Blair Waterway and Commencement Bay are located over 3,500 feet to the north.

Formerly included within the same Parcel, and now adjoining to the north, is a Tahoma Express Gas Station and a Jack in the Box restaurant followed by Pacific Highway East and an *Econolodge*. The Tahoma Express Gas Station was listed on Ecology's Site Cleanup List as Site No. 5015. Petroleum hydrocarbons were documented at the Tahoma site prior to remediation, at concentrations above the State Cleanup Levels in soil and groundwater. Ecology issued a No Further Action determination for that site in 1993.

From the mid 1960's to the late 1980's a *Gasamet* gasoline station occupied the western portion of the western gravel paved lot on the Subject Property. Fuel dispenser islands were located south and southeast of the eastern terminus of the current restaurant drive-thru, with Underground Storage Tank Basins situated both to the east and west, and a building farther south. A triangular-shaped wooded water retention area (Bio-Swale) at the west side of the Site. Test pit exploration conducted in 2000 indicated strong petroleum odor in soil both south and southeast of the current restaurant location, in the bio-swale area and the gravel lot.

In 2014, Associated Earth Sciences, Inc. conducted a Supplemental Phase II Environmental Site Assessment at the subject Property. Petroleum hydrocarbons were detected at concentrations above the Model Toxic Control Act ("MTCA") Method A Cleanup Levels in soil and groundwater samples in the vicinity of the former Gasamet pump islands and UST Basins. Based on these results, Mr. Chris LaVerdiere, the Client, requested Langseth Environmental ("Langseth") and Aerotech Environmental Consulting, Inc. ("Aerotech") initiate site remedial excavation and environmental consulting services to address petroleum impacted soils. 1,685.24 tons of petroleum impacted soil were removed to the LRI Landfill in Graham, Washington.

Groundwater Monitoring Well Installation: Summary and Conclusions:

Well Installation and Design: On July 14, 2017, Aerotech Environmental Consulting, Inc. installed three 1-inch PVC Groundwater Monitoring Wells south and east of the former *Gasamet* Pump island and UST areas. Two wells, MW-7 and MW-8, were installed in the cross-gradient groundwater flow direction to the south, and one well, MW9, was installed in the upgradient groundwater flow direction to the east. Screens were placed at 14 feet bgs.

Groundwater Analytical Results: Nine monitoring wells (MW-1 to MW-9) were sampled on August 1, 2017. Gasoline constituent exceedances were documented at only two wells, MW-2 and MW-4. Diesel fuel, VOCs, naphthalenes, and lead were not detected in groundwater. Refer to the July 2017 quarterly groundwater monitoring report for details.

Groundwater Flow Direction: Wellhead elevations were surveyed for new wells. Consistent with previous calculations, groundwater flow was calculated to the west and west-southwest for August 1, 2017, toward the bio-swale and the adjoining drainage ditch. Low water levels reflect the absence of local precipitation between June 18 and August 1.

Soil Analytical Results: Four soil samples collected during well installation operations were analyzed. Lead, gasoline, diesel, and oil constituents were not detected. One additional borehole (B-1) was advanced in the unexcavated water main *hot zone* northwest of MW-3 in order to document additional MCTA Table 830 parameters; PCBs, cPAHs, and fuel additives were not detected or were below CULs, while methylene chloride and trichloroethylene (TCE) exceedances were documented in soil at B-1. Refer to Table 1.

TABLE of CONTENTS

EXECUTIVE SUMMARY
INTRODUCTION
SITE DESCRIPTION
FIELD WORK7Notifications - "Public" Utilities7Site Activities8Drilling Activities8Soil Borings8Soil Sample Collection8Installation and Design of Groundwater Monitoring Wells9Equipment Decontamination9
GEOLOGY AND HYDROGEOLOGY 10 Site and Regional Topography and Hydrology 10 Site and Regional Geology 11 Subsurface and Hydrogeological Characteristics 12
SUMMARY OF SAMPLE ACQUISITION
ANALYTICAL RESULTS
APPLICABLE ANALYTICAL METHODOLOGIES AND PARAMETERS
STATEMENT OF THE LICENSED GEOLOGIST
DEFINITIONS SPECIFIC TO LIMITED & TARGETED PHASE II ASSESSMENT 19
APPENDIX

INTRODUCTION

Aerotech Environmental Consulting, Inc., was retained by Mr. Chris LaVerdiere, the Client to install six recommended groundwater monitoring wells at the subject Property at 3410 Pacific Highway East in Fife, Washington, following the completion of remediation activities at the Site in October 2016. Six groundwater monitoring wells were to be installed around the perimeter of fuel tanks and fuel dispenser pump islands associated with a former Gasamet retail station, formerly located at the western portion of the Fife RV Center gravel parking area. In response to comments in a Department of Ecology opinion letter dated May 31, 2017, the client approved the installation three additional groundwater monitoring wells south and east of the former fuel tank and fuel pump island area.

SECTION I.

SITE DESCRIPTION

Property Exterior Description:

The subject Property consists of one irregularly-shaped 3.76-acre Parcel of commercial land located on the south side of Pacific Highway East in Fife, Washington. One approximately 10,763 square foot, 2-story structure, occupied by *Fife RV Center*, is situated near the southeastern corner of the Property. An approximately 1,000 square foot, 1-story structure is situated northeast of the main building along the eastern Property boundary. Asphalt parking areas surround the structure on all sides and are utilized for the storage and display of the RV inventory. An approximately 0.77 acre gravel parking lot, the subject of this investigation, and utilized to store RV inventory, is situated on the west side of the Property.

Adjoining to the south is a drainage that appears to discharge to the east and then south, followed by Interstate 5. The neighboring Parcel to the east includes approximately 5.24 acres, currently leased by the Fife RV Center for use as additional storage. The Puyallup River is approaches the Site within 3,000 feet to the southwest, and the Blair Waterway and Commencement Bay are located over 3,500 feet to the north. Wapato Creek is situated 2,000 feet to the east and Hylobos Creek is located two miles to the east.

Formerly included within the same Parcel, and now adjoining to the north, is a Tahoma Express Gas Station and a Jack in the Box restaurant followed by Pacific Highway East and an *Econolodge*. The Tahoma Express Gas Station was listed on Ecology's Site Cleanup List as Site No. 5015. Petroleum hydrocarbons were documented historically at the Tahoma site prior to remediation at concentrations above the State Cleanup Levels in soil and groundwater. Ecology issued a No Further Action determination in 1993.

Numerous utilities were located at the Site by private and public locators, included a water main oriented northwest ot southeast, extending from the northwest corner of the Property. Parallel and to the northeast, nearer the Tahoma building, are electrical and natural gas conduits, as well as a storm sewer line. Electrical lines also extend from a power pole along the southern perimeter of the Site toward both the restaurant and the Tahoma building. A storm sewer pipe also extends toward the southwestern corner of the gravel lot, from the vicinity of the Tahoma building. Refer to the attached figures. Updated maps will be available in the July 2017 Groundwater Monitoring Report.

A fenced and wooded water retention pond, known as a bioswale, is situated on the subject Prperty, west of the area of this investigation.

Recognized Environmental Conditions

Site Development Description:

From the mid 1960's until the late 1980's a *Gasamet* gasoline station occupied the southeast portion of the adjoining Jack in the Box Property and the western portion of the western gravel paved lot on the Subject Property. Based upon an as-built plan on file with the City of Fife, fuel dispenser islands were located between 5 and 65 feet south and southeast of the eastern terminus of the restaurant drive-thru, with Underground Storage Tank ("UST") Basins situated both to the east and west, and building farther south. A triangular-shaped wooded water retention area, known as a Bio-Swale, is located on the west corner of the Parcel. A qualitative account of test pit activities conducted in 2000 and available in the permit documents maintained by the City of Fife, indicated strong petroleum odor in soil above depths of four feet.

In 2014, Associated Earth Sciences, Inc. conducted a Supplemental Phase II Environmental Site Assessment at the subject Property. Petroleum hydrocarbons were detected at concentrations above the Model Toxic Control Act ("MTCA") Method A Cleanup Levels in soil and groundwater samples in the vicinity of the former Gasamet pump islands and UST Basins. Based on these results, Mr. Chris LaVerdiere, the Client, requested Langseth Environmental ("Langseth") and Aerotech Environmental Consulting, Inc. ("Aerotech") initiate site remedial excavation and environmental consulting services to petroleum impacted soils.

Previously Identified Contaminants of Concern:

Conclusions derived from previous investigations at the Site identified gasoline range petroleum constituents, benzene, ethyl benzene, toluene, and xylenes as Contaminants of Concern at the subject Property. One additional borehole (B-1) was advanced in the unexcavated water main *hot zone* northwest of MW-3 in order to document additional MCTA Table 830 parameters: PCBs, Carcinogenic PAHs, Chlorinated Volatile Organic Compounds, and fuel additives (EDB, EDC, and MTBE).

Site Observations and Reported Conditions:

With the exception of the above referenced environmental concern, there were no additional Recognized Environmental Conditions or concerns identified as potential impacts to the Property.

SECTION II. FIELD WORK

Notifications - "Public" Utilities:

A public utilities locate notification was performed prior to the start of work. Aerotech Environmental Consulting, Inc.¹ Performed the "public" utilities notification on July 6, 2017, and was issued Ticket Number16334078 by the Utilities Underground Location Center.

According to the Utilities Underground Location Center the utilities necessary for notification included:

Washington Ticket#: 17252517 2 FULL BUSINESS DAYS Transmit Date: 07/06/17Time: 6:06 PM Type of Work: INSTALL MONITORING WELLS Work Being Done For: OWNER Dig Site Location County: PIERCE State: WA Place: FIFE Address / Street: 3410 PACIFIC HWY E Nearest Intersection: PORT OF TACOMA RD											
District	Company	Marking Concerns	Customer Servic	e Repair							
CC7711 COMC		(800)762-0592	(800)266-2278	(888)824-8289							
LKVWLP01	LAKEVIEW LIGHT & POWER CO	(253)584-6060	(253)584-6060	(253)584-6060							
LKWOOD01	LAKEWOOD WATER DISTRICT	(253)588-4423	(253)588-4423	(253)588-4423							
PIERCE01	PIERCE COUNTY UTILITIES	(253)565-3440	(253)565-3440	(253)565-3440							
PUGE07	PUGET SOUND ENERGY ELECTRIC	(888)728-9343	(888)225-5773	(888)225-5773							
PUGG07	PUGET SOUND ENERGY GAS	(888)728-9343	(888)225-5773	(888)225-5773							
QLNWA24	CTLQL-CENTURYLINK(800)778-9140	(800)283-4237	(800)573-1311								
TACH2O01	TACOMA WATER DEPARTMENT	(253)502-8398	(253)502-8344	(253)502-8344							

Private Utilities Location

Additionally, Aerotech engaged personnel of Mountain View Locating Services of Bonney Lake, Washington to locate building and site utilities on July 14, 2017, prior to the start of the on Site drilling activities. No unanticipated or unexpected situations were discovered or encountered during the "private" locating activities.

Based in part upon pavement markings made by utility location technicians; the location of utility fixtures such as water, electrical, or manholes, and the presence of anomalies detected by induction or ground radar methodologies, monitoring well locations were chosen.

Ground Penetrating Radar Survey:

A Ground Penetrating Radar ("GPR") Survey conducted by Mountain View Locating Services staff on July 14, 2017 in order to augment the induced current methodology, and to verify the presence of utility trenches such as sewer and water main trenches. Mr. Dave Schaff of Mountain View Locating Services, LLC employed Radar equipment utilizing Dual Frequency Antennae (300 MHz/800 MHz) manufactured by Geophysical Survey Systems. The locations of the water main and storm sewers were confirmed by means of GPR activities.

¹ Aerotech Environmental Consulting, Inc., was previously issued a Contractor Identification Number by the non-profit Utilities Underground Location Center (www.callbeforeyoudig.com).

Site Activities:

Three groundwater monitoring wells were installed on July 14, 2017, under contract with Aerotech Environmental Consulting, Inc. All the work was performed during normal business hours No unusual or unforeseen circumstances occurred during the Site activities.

Drilling Activities:

Drilling operations employing a Truck-mounted Direct Push Drilling Rig, equipped with 2-foot macro-core sampling tools.

The subsurface soil borings were performed by equipment owned by and operated by a Licensed Driller from Standard Environmental Probe, Inc of Tacoma, Washington. The on Site drilling equipment was operated by personnel employed by SEP. All subsurface work was overseen by State of Washington Licensed Geologist, Mr. James McDermott (State of Washington License No. 3063) and conducted on Site by environmental scientist, Nick Gerkin. The laboratory analytical services were performed by a State of Washington Licensed Lab, Advanced Analytical Labs of Redmond, Washington.

Soil Borings:

A total of four soil borings were advanced and three groundwater monitoring wells were installed in the gravel lot situated south of the Tahoma Gasoline Station convenience store building, south and east of the former Gasamet Gasoline Station tank and fuel pump area.

Soil Sample Collection:

A total of 8 discrete soil samples were collected on July 14, 2017 at four soil boring locations. Olfactory indications believed to reflect the possible presence of petroleum-impacted soil were observed in association with PID responses between 123 and 462ppm at one of four locations, borehole B-1.

Soils collected from each location were visually inspected for color quality and evidence of discoloration, and physically observed for the purpose of recording composition and noting odor, where distinctive. Each sample was handled with a fresh pair of clean latex gloves. Samples were placed in sterile four-ounce glass jars and/or 40cc glass vials preserved with 5ml methanol in accordance with procedures specified for USEPA Method 5035A.

Water samples were collected utilizing a fresh pair of nitrile gloves, utilizing a fresh disposable poly-bailer lowered to the middle of the available water column within temporary wells installed in boreholes, in order to permit suspended silt, where present, to be reduced.

Each sample was given a unique identifier number and placed in an iced cooler for sample preservation. Samples were held in the custody of the project manager, James McDermott, and ice was checked and replenished while samples were held in the evening, and maintained to the time of delivery to the lab. A Chain of Custody was maintained in order to record details associated with the collection and handling of each sample. The remaining soil samples were retained by the laboratory for analysis in the event that the soil samples selected for laboratory analysis revealed elevated levels of constituents. Following the production of the initial Site sample results for soil, no follow-up laboratory analyses were requested for the subject Site, as of the date of this report.

Installation and Design of Groundwater Monitoring Wells:

On July 14, 2017, groundwater monitoring wells MW-7, MW-8, and MW-9 were installed at the subject Site.

At each well location, a one-inch diameter Schedule 80 PVC groundwater monitoring well was installed to a depth between 14. feet bgs, with ten feet of 2-inch diameter no. 10 PVC slotted screen situated between depths of approximately 4 and 14 feet bgs.

The annular space in each case was completed with clean Colorado silica sand sized to the No. 10 screen (No. 10 to 20 grade), to a depth of one foot above the top of the well screen interval. The remaining annular space was sealed with bentonite chips to within one foot of the surface to prevent the infiltration of surface water or contaminants.

The well was completed with a sealable pressure cap, and cement was placed above the bentonite to secure a flush mountedwell-head monument.

Well design details are depicted in the attached Soil Boring Logs. The Department of Ecology does not permit groundwater to be collected from a newly installed groundwater well until the well system has been allowed to chemically equilibrate for a period of at least 72 hours. This delay is intended to permit the groundwater environment to return to its natural chemical and physical state. Groundwater samples were collected on August 1, 2017. Refer to the August 2017 Quarterly Groundwater Sampling Report for additional details.

Well Identification	Well Tag	Total Depth (feet bgs) Approximate Screened Interval (feet bgs)		Elevation of Well Head (feet above MSL)*a
MW-1	BIS 683	14.0	4-14 ft	8.37
MW-2	BIS 684	14.0	4-14 ft	9.40
MW-3	BIS 685	14.0	4-14 ft	9.43
MW-4	BIS 686	15.0	5-15 ft	10.12
MW-5	BIT 785	14.0	4-14 ft	11.27 **
MW-6	BIT786	14.0	4-14 ft	11.40 **
MW-7	BJP689	14.5	4-14.5 ft	10.09
MW-8	BJP788	14.0	4-14.5 ft	10.26
MW-9	BJP787	14.0	4-14.5 ft	8.84

* Estimated relative to Mean Sea Level ("MSL"). Catch Basin along north Site/gravel lot perimeter. BGS = Below ground surface ** Above ground steel monument, otherwise flush mounted. Wells installed in July 2017 are highlighted. *a Adjusted elevations.

Equipment Decontamination:

All sample acquisition equipment was decontaminated before and after the completion of each borehole in order to eliminate the potential for cross-contamination between borings, as required. All reusable sampling equipment for soil sampling, drive rods, and probes were decontaminated after each sampling point by washing with an Alconox-distilled water solution and rinsing with distilled water.

Site Restoration:

Each borehole was completed with bentonite chips, and finished with a concrete concrete pad. No landscape restoration was necessary.

SECTION III.

GEOLOGY AND HYDROGEOLOGY

Site and Regional Topography and Hydrology:

The precise Property location is N 47E 14' 34.44" / W 122E 22' 58.80" as determined by DeLorme mapping data. The Site is located in Universal Transverse Mercator Zone 11, and has an elevation of approximately 9 to 12 feet above mean sea level. As observed during the Site visit and confirmed on the USGS topographic map, the subject Property is relatively flat, with graded gravel or adjoining paved surfaces in the study area sloping toward two storm water catch basins located near the north fence line. The surface within five to ten feet of the southern Property margin slopes markedly to the level of the ditch to the south, which may perhaps as much as 6 to 8 feet below the average grade of the gravel lot.

Similarly, adjoining to the west is a triangular-shaped bioswale in which a pond was observed near its center. The water level in this pond appears to be situated at a depths of approaching 6 to 8 feet below the elevation of the gravel lot, consistent with groundwater depths documented at locations MW-4, MW-5, and MW-6. Although isopleth maps generated by the excavation team in the Remedial Excavation Report dated November 18, 2016, generated by the excavation team's software, were depicted with closed isoconcentration contours beyond (west of) the western perimeter of the current study area (within the fenced bioswale area), based upon observed but unsurveyed bioswale water levels in 2017 (not readily accessible in July and August 2017 due to thick overgrowth), it is assumed that the bioswale is likely unlined and that a hydraulic connection between groundwater at the Site and the adjoining bioswale and ditch does exist. Future investigation is planned in order to measure surface water level elevations at these adjoining surface water bodies.

The Work at the Site in October and November 2016 was completed during a period of exceptionally high rainfall, whereas work completed in July and August were completed during a period characterized by drought conditions. No rainfall was recorded at SeaTacAirport between June 17 and August 11, 2017. Consistent with the limited recharge associated with drought conditions, water levels at the Site were recorded as much as 2 to 3 feet below levels recorded in May 2017. Surface water was not observed in either the adjoining ditch or bioswale, although access and visual obstructions created by heavy overgrowth interfered with observations.

As is commonly the case in low-lying areas near sea level, many roads and properties appear to be elevated as much as four or more feet above the original grade. Evidence of the original grade may be seen in the decrease in elevation evident north of Pacific Highway East, north of the subject Property. The 1897 USGS 15-Minute topographic Map depicts Commencement Bay estuaries and tidelands as they existed prior to development with fill. The subject Site is depicted as located within a few hundred feet of a small embayment, representing the relatively close approach of the high tide mark during that period.

A ditch is located a few tens of feet south of the Property. A second tributary ditch is located east of the property adjoining to the east. Pacific Avenue East is elevated approximately four feet above the Site. A Storm Water Systems Map update, published by the city of Fife, suggests that the adjoining ditch to the south discharges to the east, and is subsequently directed via pipe to the south, underneath Interstate 5, and ultimately to a ditch system parallel to the east side of the Puyallup River levee system, and to Commencement Bay.

The regional topography within the Commencement Bay tidal flats is that of the nearly planar surface generated by the placement of artificial fill material in the later decades of the nineteenth century and the early years of the twentieth century. Elevations on ridges over one mile to the south increase to more than 200 feet MSL, at the northernmost margins of the south Tacoma upland area.

Groundwater Monitoring Well Installation Report - July 2017 Fife RV Center, Fife, Washington

Site and Regional Geology:

The Puget Sound lies within a tectonic trough situated between the Olympic Mountains to the west, and the northern Cascade Mountains to the east. This trough is characterized by fault zones accommodating north-south compressional rotation, commonly resulting in predominant north-south and northwest-southeast oriented faults and fault zones. Elliott Bay lies north of the Seattle Fault Zone while Tacoma's Commencement Bay lies south of the northernmost Tacoma Fault zone rupture. A major fault is mapped below the bluffs on which central Tacoma was developed, along the western margin of Commencement Bay. Commencement Bay and the Puyallup River Basin lie on the down dropped side of the fault. The original surface within Commencement Bay intertidal zone has been elevated by the emplacement of fill throughout the early20th century. The uppermost soils in the Puyallup River Valley are dominated by alluvial and fluvial sediments.

Volcanic mudflow-lahar deposits, commonly 50 to 135 feet in thickness, originating below the slopes of the Mount Rainier volcano 1,500 and 5,700 years bp, serve to provide a somewhat extensive and uniform hydraulic barrier, separating the Holocene alluvial deposits into upper and lower hydraulic units. These alluvial deposits have been progressing northward over the last several millennia since the last ice sheet retreated, so much so that, approximately6,000years before present the estuary and Puget Sound inlet were located near Sumner, Washington. Isopach maps, depicting the thickness of the upper alluvial deposits, the thickness oft the Electron and Osceola mud flow deposits, and the lower alluvial aquifer (the latter deposited near the City of Puyallup andt o the southeast), are attached to an Appendix of this report.

Deep borehole data indicate a total of approximately 1,800 feet of unconsolidated glacial and interglacial sediments in the former tidal flats in the vicinity of the subject Property.

The subject Property and vicinity, south of the Blair Waterway, are mapped as Quaternary Alluvium. These soils are characterized as:

"Gravel, sand, silt, and clay. Deposited chiefly by modern streams, but includes some swamp deposits. Includes marine deposits near the mouth of the Puyallup river.... thickness ranges from a few feet to as much as 600 feet. Yields small to moderate quantities of water to wells. Locally capable of large yields."

Hydrogeologic Framework, Groundwater Movement, and Water Budget in the Puyallup River Watershed and Vicinity, Pierce and King Counties, Washington, U.S. Geological SurveyScientificInvestigations Report 2015-5068, Wendy B. Welch, et al, 2015.

Ground-Water Occurrence and Stratigraphy of Unconsolidated Deposits, Central Pierce County, Washington, Water Supply Bulletin No. 22, State of Washington, Department of Water Resources, Kenneth L. Walters and Grant E. Kimmel, 1968

Geologic Map of the Tacoma North 7.5' Quadrangle, King and Pierce Counties, Washington, USGeological Survey, unpublished draft.

Geologic Map of the City of Tacoma, Pierce County Washington, Mackey Smith, 1977, and unpublished maps on topographic base by Timothy J Walsh, Washington State Department of Natural Resources, circa 1987.

Groundwater Hydrology of the Tacoma-Puyallup Area, Pierce Country, Washington, USGS Water Resources Investigation 99-4013, M.A. Jones, L.A. Orr, J.C. Ebbert, and S.S. Sumioka, 1999.

The following soils were encountered during drilling activities: Approximately 5 to 6 feet

of gravelly well-graded sand fill was generally underlain by 8 or more feet of silt or very fine sand and silt. Two 2-4-foot thick poorly graded sand lens(es) were encountered above or below the silt encountered. Consistent with historical evidence, MW-3 and MW-4appear to have been advanced within the sandy backfilled former underground tank basins situated west and east of the former pump island location. Refer to Figure 3c for a depiction of soils on Site in the form of a Hydrogeologic Cross-section. Expanded geologic cross-sections including data requested by Ecology will be included in a future report.

Soils encountered during the July 2017 well installation and boring activities, are depicted in soil boring logs attached to this report. They are summarized as follows, with upper units indicated first:

UPPER: Gravel and Sand Fill - 2.5 to 10 feet thick; increasing fill thickness to the east

MIDDLE: Silt with some to little fine sand - 1 to 10 feet thick

LOWER: Sand, very fine - at least 2 to 5 feet thick

A Washington Department of Transportation test boring advanced near the intersection of the Port of Tacoma Road and Interstate 5, documents the presence of gravel with sand and sand to a depth of 8 feet, underlain by at least 12 feet of silt or silt with sand. The shallow gravels may represent fill material placed atop natural fluvially and alluvially deposited silts and sandy silts. These fill materials may be expected underneath roadways and developed properties, and are often designed to elevate the surface above shallow groundwater and reduce susceptibility to flooding due to groundwater flooding during wet periods, and flooding due to heavy precipitation or breaches and overtopping of the levee system or the associated ditch systems.

Subsurface and Hydrogeological Characteristics - Groundwater Flow:

The principal aquifers in the Puget Sound Region occur within a series of units of glacial drift, hydraulically separated by less permeable deposits commonly including interglacial deposits. One exception, the Vashon till, serves as an aquitard as well, restricting the vertical and lateral migration of groundwater and of contaminants. These deposits underlie the Puget Lowlands basin to depths often approaching 2,000 feet or more. Sand and gravel units within the glacial drift form the principle aquifers. These aquifers receive ample recharge from the typically heavy precipitation characteristic of western Washington. The glacial drift in the Puget Sound region varies greatly in composition and water yielding capacity. Typically, wells in glacial drift tapping sand- or gravel-rich glacial deposits or till in the region above depths of 100 feet may have yields of 100 gallons or more per minute. Deeper wells tapping thick, confined aquifers of highly permeable gravel and coarse sand, often at depths greater than 250 feet, can yield over 1,000 gallons per minute.

Water levels measured on August 1, 2017 in nine wells on Site were at depths between 2.92 and 8.31 feet, reflect drought conditions in the area, with no precipitation documented at Seatac Airport between June 17 and August 11, 2017. The calculated groundwater flow direction at the Site is to the west and west southwest. Flow, based upon the potentiometric surface map, consistent with that calculated during previous quarterly sampling events, is toward the bioswale to the west and the ditch to the west-southwest. As previously noted, groundwater gradients increased markedly in close proximity to the ditch and bioswale areas, within a few tens of feet of the southwest corner of the Site. Surface water and groundwater data is not yet available for either the ditch or bioswale area. However, visual observations of water levels in the bioswale during 2016 suggest hydraulic connectivity between groundwater and both the bioswale and ditch are likely. The August 1, 2017 potentiometric surface map may be found in the August 2017 Quarterly Monitoring report.

Groundwater Monitoring Well Installation Report - July 2017 Fife RV Center, Fife, Washington

Potentiometric Surface Maps associated with February and May 2017 are attached to this report.

Static water levels north and east of the subject Property have been recorded by other consultants between depths of three to six feet bgs. During the AESI Phase II, water levels were reported to range from three to seven feet bgs on the subject Property. Ditches in the vicinity are estimated to be as much as four to five feet deep. Groundwater flow direction has been documented at the property to the north as flowing to the south-southwest; to the west and southwest at the current *Travelodge* property, adjacent to the east; and at the former Texaco Station, adjacent to the northwest, as flowing to the west-southwest, or to the south or southwest. Topography is not always a reliable basis for predicting groundwater flow direction, and flow may vary considerably from site to site, according to local influences such as the presence of production or irrigation wells and variations in geologic material and the geometry of distinct geologic units.

A groundwater divide, north of which groundwater flow may be expected to flow toward Commencement Bay, is likely present perhaps as near as a few hundred feet to the north of the Site; this groundwater divide may migrate considerable. The straightened and levi-bound Lower Puyallup River channel is located approximately 3,000 feet south west of the subject Property. Groundwater in the vicinity of the Site, based upon water level data may flow predominantly in the direction of the Puyallup River channel, but may also flow to the west or northwest where the groundwater system is influence by elevated Puyallup River water levels during flood stage or the wet winter seasons.

Components of an extensive ditch system are visible south of the Site, along the northern and southern margins of Interstate 5, and north of Pacific Highway East. Portions of the ditch system to the north may discharge to Wapato Creek to the east. Ditches to the south do not appear to be connected to the system to the north. The ditch adjoining the Site appears todischarge to the east, and then to the south via pipe underneath US 5. When the water table is low, during dry summer months, water entering ditches may, in part, infiltrate vertically to a seasonally low water table; when the water table is higher, during wet winter periods, groundwater may discharge to deeper drainage ditches.

Because tidal fluctuations approach 15 or more feet in the Tacoma area, rythmic fluctuations in ground water levels twice daily and flow direction may occur within some low lying areas near Commencement Bay. Under some conditions, tidal fluctuations may potentially influence groundwater flow at the subject Property, given its location approximately 3,000 feet from the Blair Waterway and approximately 3,000 feet northeast of the Puyallup River channel. Groundwater flow direction at low tide may potentially be diverted somewhat to the west or even northwest. The predominant groundwater flow direction south of this nearby section of Pacific Highway appears to be to the west-southwest or west. At this time, insufficient data is available and determinations associated with tidal influence upon groundwater flow direction cannot be made. The Puyallup River in the area has been straightened and is protected by a levy system. Aside from the immedate influence of the designed ditch system at and near the Site, it is at this time expected to represent the primary boundary condition likely to influence overall groundwater flow near the Site.

Jones, Orr and Ebbert depict the shallow alluvial aquifer of Commencement Bay as hydraulically connected to adjoining glacial aquifers above; in general groundwater is expected to flow from the bluffs above, toward Commencement Bay and the Puyallup River, with a significant flow component in the direction of river flow, toward Commencement Bay.

The upper alluvial aquifer is characterized as a distinct hydrogeologic unit, hydraulically connected to more permeable sandy or gravelly units along the valley margins, often lying underneath glacial till:

"Aquifer Qc1 [Jones 1999] is generally a confined aquifer except where it is exposed at the surface, where it is unconfined, or not completely saturated beneath Qvt [Vashon Till]. It consists largely of

Groundwater Monitoring Well Installation Report - July 2017 Fife RV Center, Fife, Washington

sand and gravel deposits but does contain silt and clay within the sand and gravel matrix. ... The altitude of the top of this aquifer ranges from 50 feet below sea level to 509 feet above sea level."

Groundwater Hydrology of the Tacoma-Puyallup Area, Pierce Country, Washington, USGS Water Resources Investigation 99-4013, M.A. Jones, L.A. Orr, J.C. Ebbert, and S.S. Sumioka, 1999.

Ground-Water Occurrence and Stratigraphy of Unconsolidated Deposits, Central Pierce County, Washington, Water Supply Bulletin No. 22, State of Washington, Department of Water Resources, Kenneth L. Walters and Grant E. Kimmel, 1968

Lower Duwamish Waterway, Phase I Remedial Investigation Report, Final, Lower Duwamish Waterway Group, and Development of a Three-Dimensional, Numerical Groundwater Flow Model for the Duwamish River Basin, Booth and Herman 1998.

Tidal Along-shore Groundwater Flow in a Coastal Aquifer, L. Li, D.A. Barry, F. Stagnitti, and J.Y. Parlange, Environmental Modeling and Assessment 4 (1999), pp 179-188.

The shallow gravel and sand fill is generally expected to readily transmit groundwater, and where present, groundwater contaminants, while the underlying silts and sandy silts are generally expected to impede both the vertical and horizontal flow of groundwater, and where present, groundwater contaminants. Where porous fill materials associated with utility trenches, such as those that may be present underneath Pacific Highway East, are present, these trenches may serve to intercept and divert shallow groundwater. The ten-foot well screen intervals at the Site are designed to penetrate both the near-surface gravel fill and the underlying silts and sands.

Puyallup River Levee and Flow:

The lower Puyallup River levee system was constructed in the 1940s:

"The Flood Control Act of June28, 1938 provided for the construction and maintenance of a channel conveyance project. The project provides for a channel with a capacity of 50,000 cfs between the East 11th Street bridge and the lower 2.2 miles at Commencement Bay, by straightening the channel, building levees, and making all necessary bridge changes. The East 11th Street bridge at the lower end of the project is 0.75 mile above the mouth of the Puyallup River. The project was completed in 1950."

During a period of record flooding in January 2009, Puyallup River flow peaked at 41,500 cfs; channel sedimentation during the last six decades is believed to have decreased the channel cross section and therefore capacity. The USACE estimates that, in the absence of flood control efforts imposed by the management of releases from the Mud Mountain Dam, "the peak flow in the Puyallup River at Puyallup would have exceeded 70,000 cfs" in January 2009.

"The Puyallup River enters Commencement Bay in the City of Tacoma. The estuary historically covered an area approximately 5,800 acres in size. From 1877 to 1988, over 98 percent of the estuary was modified, leaving only 187 acres of mudflat, 90 acres of subtidal and intertidal vegetated shallows, and only 57 acres of the original tidal marsh. ... Additional alterations to the Commencement Bay contributed to the now degraded and filled delta region."

"The lower Puyallup River levees are primarily constructed on fine-grained silt and clay, with deposits of clean sand to silty sand and gravelly sand. On a large scale, these soils are generally uniform the levees themselves are composed of a mixture of the existing native deposits with the embankments and nearby foundation soils containing cobbles, boulders, and wood pilings."

"Sediment transport has been estimate to range from 440,000 to 1,400,000 tons annually, with the majority of these sediments characterized as fine sediments..."

Puyallup River Section 905(b) WRDA 86 Analysis, U.S. Army Corps of Engineers, Seattle District, March 18, 2009.

The City of Tacoma supplies potable water within the city limits. The City of Tacoma reports its water source as the upper eastern sections of the Green River watershed along the western flanks of the Cascade Mountains; the city also maintains groundwater production wells within the same area, in the vicinity of the Eagle Gorge Reservoir and the Howard Hanson Dam, some twenty miles east of the subject Property. A municipal well field, utilized during high demand periods, is located near Interstate 5 in south Tacoma, over three miles west of the subject Property.

SUMMARY OF SAMPLE ACQUISITION

A total of 4 soil borings were advanced in the Area of Concern to a maximum depth of 16 feet below ground surface ("bgs"). Two soil samples were collected from each of four boreholes (8 soil samples in total). Three groundwater monitoring wells were subsequently installed in boreholes with the base of 10-foot screens placed at 14.5 feet bgs, and groundwater samples were collected from these and six additional wells on August 1, 2017. Detailed descriptions of each soil boring location, observations made during the acquisition, sampling information, and the field screening process are documented in soil boring logs attached to this report.

SECTION IV.

ANALYTICAL RESULTS

Petroleum Hydrocarbons-Gasoline Constituents, Diesel Fuel and MTCA Table 830 Parameters:

Groundwater Analytical Results:

Nine monitoring wells (MW-1 to MW-9) were sampled on August 1, 2017. Gasoline constituent exceedances were documented at only two wells, MW-2 and MW-4.

At location MW-3, situated within the unexcavated 'hot zone' underneath the water main on Site, Gasoline Range Organics and benzene concentrations have diminished steadily during the last four quarters monitored. Gasoline was present at concentrations of 42,000 μ g/L in November2016 and have diminished to 620 μ g/L in August 2017, perhaps reflecting in part the impact of enhanced biodegradation facilitated by the placement of oxidant pellets in those excavations the former tank and fuel pump areas. Benzene, previously present at 130 μ g/L at MW-3, was not detected in the August 2017 sample.

Diesel fuel, VOCs, naphthalenes, and lead were not detected in groundwater. Refer to the July 2017 quarterly groundwater monitoring report for details.

Soil Analytical Results:

Four soil samples collected during well installation operations were analyzed.

Lead, gasoline, diesel, and oil constituents were not detected in soils. As requested in the May 31, 2017 Ecology Further Action letter, the chromatogram associated with one contaminated sample is attached to this report as evidence indicating that the trace diesel range organics detected represent the common heavy gasoline fraction 'bleed-over' into the diesel range.

One additional borehole (B-1) was advanced in the unexcavated water main *hot zone* northwest of MW-3 in order to document additional MCTA Table 830 parameters; PCBs, cPAHs, and fuel additives were not detected or were below CULs. TPH-gasoline constituents were present at concentrations of 1,200 mg/kg, and benzene was present at concentrations of 2.1 mg/kg, well above MTCA Method A CULs, but considerably less than sample P-25, collected nearby during remedial excavation operations on October 21, 2016, where TPH-gasoline concentrations were 5,200 mg/kg and benzene concentrations were 4.6 mg/kg.

Methylene chloride and trichloroethylene (TCE) exceedances were documented in soil at B-1. Refer to Table 1. As as result, groundwater collected on August 1st was analyzed for VOCs. No VOCs were detected in groundwater on Site.

Groundwater Monitoring Well Installation Report - July 2017 Fife RV Center, Fife, Washington

APPLICABLE ANALYTICAL METHODOLOGIES AND PARAMETERS

The analytical parameters requested were chosen, based upon the results of previous investigations, including the Remedial Excavation Report dated November 1,2016, in order to provide a comprehensive characterization of the subsurface soils and groundwater present at the Site Areas of Concern and to comply with State of Washington recommendations.

Analytical Methodology for Soils:

- Soil: Gasoline Range Organics & Benzene, Ethylbenzene, Toluene, and Xylenes State of Washington NWTPH-Gx/8021B
- Soil: Diesel and Lubricant Range Organics State of Washington NWTPH-Dx/Dx Extended
- Soil: Lead USEPA 7010
- Soil: PCBs USEPA 8082
- Soil: Carcinogenic PAHs USEPA 8270
- Soil: Chlorinated Volatile Organic Compounds USEPA 8260B

Laboratory Analysis:

Laboratory analysis was provided by:

Advanced Analytical Laboratory, LLC 4078 148 Avenue NE Redmond, WA 98052 425.702.8571 (office) aachemlab@yahoo.com

STATEMENT OF QUALITY ASSURANCE

I have performed this Phase II Subsurface Investigation in accordance with generally accepted environmental practices, procedures, and regulatory requirements, as of the date of this Report. I have employed the degree of care and skill ordinarily exercised under similar circumstances by reputable environmental professionals practicing in this area.

I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional as defined in § 312.10 of this part. I have the specific qualifications based upon education, training, and experience necessary to plan and implement subsurface investigations.

STATEMENT OF THE LICENSED GEOLOGIST

As stipulated in the Regulatory Code of the State of Washington Title 18, Chapter 18.220, the undersigned is a licensed Geologist in the State of Washington, and has met the statutory requirements of RCW § 18.220.060 for such licensing including, but not limited to, educational requirements, work and field experience, examination proficiency, and acceptance by the State Licensing Board.

The undersigned Licensed Geologist has supervised the geological work performed as described in attached Report – a majority of said work being performed by employees of the firm which employs undersigned Licensed Geologist – as delineated in RCW Title 18, Chapter 18.220, Paragraph 190.

Wash Signature of Licensed Washington Geologist: 306 Signature - James McDermott (License No. 3063 Censed Geol James G. McDermott

DEFINITIONS SPECIFIC TO LIMITED & TARGETED PHASE II ASSESSMENT

Background Concentration.... the concentration of a target analyte in groundwater, surface water, air, soil gas, sediment, or soil at a referenced location near a release or potential release area under investigation, which is not attributable to the release under investigation. Background samples may contain the target analyte, due to either naturally occurring or manade sources, but not due to the release(s) in question. (See, E 1903-97, § 3.1.3).

Phase II Environmental Site Assessment.... This practice (ASTM E 1903-97, Reapproved 2002) defines a commercially practical process for sound Phase II investigation that includes sampling and chemical testing. Such Phase II investigation is performed, at a minimum, to confirm the actual presence of contamination in environmental media at a property where prior assessment had indicated that contaminants may occur due to releases or potential releases of substances to the environment at the property, or to demonstrate prior to property acquisition that contamination by targeted analytes is absent. (See, E 1903-97, § 1.1.1).

Phase II Environmental Site Assessment Limitations..... "This practice [ASTM E1903-97, Reapproved 2002] recognizes that the *Phase II ESA* process can be applied either to an overall assessment of a property with respect to all releases and potential releases at the property, or to an evaluation targeted to a specific release or potential release. It a property-wide assessment is not necessary to meet the particular *User* objective, then the Phase II investigation process described herein should be applied to generate sound information regarding the specific question of problem to be resolved. If a Phase II investigation does not address all releases and potential releases identified at a property, the report of the assessment must be denoted as a "*Targeted Phase II*" *Environmental Site Assessment*. [E 1903-97, § 1.1.3]"

Phase II Targeted Environmental Site Assessment.... This Phase II Site Assessment is "targeted" as defined by the ASTM *Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process*, Designation E 1903-97 (Reapproved 2002); "an assessment performed in accordance with the process described in this [E 1903-97] practice, which addresses only certain *releases* or potential *releases*, or certain *target analytes*, at a property as selcted by the *User* but which does not address all *releases*, potential *releases*, and *target analytes*.[E 1903-97, § 3.1.43]"

Prior Knowledge.... "This Standard Practice [ASTM E 1903-97, Reapproved 2002] assumes ... that all reasonably ascertainable information, including but not limited to prior Phase I Environmental Site Assessment Reports, will be considered in conducting a Phase II ESA and interpreting its results. [E 1903-97, § 1.1.2]."

Targeted Analytes.... substances that have been released or potentially have been released to environmental media at the site, and which are of interest in the context of the particular Phase II ESA and its objectives, the presence of which will be sought and concentrations of which will be quantified through field screening or chemical testing. (See, E 1903-97, § 3.1.63).

REPORT ENDNOTES

APPENDIX

- Site Location and Photographs
- Project Contract Documents
- Soil Boring Logs
- Laboratory Analytical Results and Chain of Custody
- Supporting Documentation

SITE LOCATION AND PHOTOGRAPHS

Tacoma, Washington, United States

Copyright © and (P) 1988–2006 Microsoft Corporation and/or its suppliers. All rights reserved. http://www.microsoft.com/streets/ Portions © 1990–2006 InstallShield Software Corporation. All rights reserved. Certain mapping and direction data © 2005 NAVTEQ. All rights reserved. The Data for areas of Canada includes information taken with permission from Canadian authorities, including: © Her Majesty the Queen in Right of Canada, © Queen's Printer for Ontario. NAVTEQ and NAVTEQ ON BOARD are trademarks of NAVTEQ. © 2005 Tele Atlas North America, Inc. All rights reserved. Tele Atlas and Tele Atlas North America are trademarks of Tele Atlas, Inc.

Tacoma, Washington, United States

Copyright © and (P) 1988–2006 Microsoft Corporation and/or its suppliers. All rights reserved. http://www.microsoft.com/streets/ Portions © 1990–2006 InstallShield Software Corporation. All rights reserved. Certain mapping and direction data © 2005 NAVTEO. All rights reserved. The Data for areas of Canada includes information taken with permission from Canadian authorities, including: © Her Majesty the Queen in Right of Canada, © Queen's Printer for Ontario. NAVTEQ and NAVTEQ ON BOARD are trademarks of NAVTEQ. © 2005 Tele Atlas North America, Inc. All rights reserved. Tele Atlas and Tele Atlas North America are trademarks of Tele Atlas, Inc.

FIFE RV, 3410 Pacific Hwy East, Fife, Wa - Core samples - MW-7

Core samples - MW-8

Core samples - MW-9

Core samples - B-1

Groundwater Monitoring Well Development

Bioswale Area (View west)

FIGURES

NOAA/NOS/CO-OPS Tide Predictions at 9446484, Tacoma WA From 2017/08/01 12:00 AM LST/LDT to 2017/08/02 11:59 PM LST/LDT

TABLES

TABLE 1 SOIL ANALYTICAL RESULTS Fife RV Center

3410 Pacific Highway East Fife, Washington 1 of 4

Aerotech Environmental Consulting, Inc. - Site Remedial Excavation Report - November 1, 2016

Sample ID	Soil Boring/Point Well ID	Sampling Date	Sample Depth	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Total Xylenes	EDB	EDC	МТВЕ	Methylene Chloride	TCE	PCBs	Lead
			Feet BGS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
P1(10')	P1	10/03/16	10	9.0	<20	<50	0.096	<0.050	<0.050	<0.050							
P2(5')	P2	10/03/16	5	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P3(10')	P3	10/03/16	10	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P4(5')	P4	10/03/16	5	8.5	<20	<50	<0.020	<0.050	0.10	<0.050							
P5(5')	P5	10/03/16	5	53	<20	<50	0.16	0.071	0.84	0.15	<0.005	<0.02	<0.1	<0.02	<0.02		7.8
P5(10')	P5	10/04/16	10	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P6(10')	P6	10/04/16	10	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P7(3')	P7	10/04/16	3	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P8(10')	P8	10/04/16	10	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P9(5')	P9	10/04/16	5	110	<20	<50	0.15	<0.050	5.1	<0.050					-		5.2
P9(10')	P9	10/04/16	10	23	<20	<50	<0.020	<0.050	0.34	<0.050							
P10(10')	P10	10/04/16	10	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P11(10')	P11	10/04/16	10	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P12(5')	P12	10/05/16	5	100	<20	<50	0.42	0.18	1.7	0.54							
P12(10')	P12	10/05/16	10	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P13(5')	P13	10/05/16	5	6.7	<20	<50	<0.020	<0.050	<0.050	<0.050							
P13(10')	P13	10/05/16	10	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P14(5')	P14	10/05/16	5	60	<20	<50	0.15	0.17	0.096	0.16							
P14(10')	P14	10/05/16	10	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
P15(10')	P15	10/06/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
P16(5')	P16	10/06/16	5	1,100	<20	<50	0.72	0.072	7.5	32							7.0
P16(10')	P16	10/06/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
P17(5')	P17	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
P17(10')	P17	10/06/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
P18(5')	P18	10/06/16	5	130			0.29	<0.050	1.5	2.4							
P18(10')	P18	10/06/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
P19(5')	P19	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
P19(10')	P19	10/06/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
TP1(5')	TP1	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP2(5')	TP2	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP2(10')	TP2	10/06/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
TP3(3')	TP3	10/06/16	3	2,500			0.34	0.35	15	10	<0.005	<0.02	<0.1	<0.02	<0.02		
TP3(5')	TP3	10/06/16	5	650			0.53	5.3	7.5	7.3	<0.005	<0.02	<0.1	<0.02	<0.02		
TP3(10')	TP3	10/06/16	10	27			<0.020	<0.050	0.18	0.25							
TP4(3')	TP4	10/06/16	3	<5.0			<0.020	<0.050	<0.050	<0.050							
TP4(5')	TP4	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP4(10')	TP4	10/06/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
M	TCA Method A Clean	up Levels		30	2,000	2,000	0.03	7	6	6	0.005	0.0232*	0.1	0.02	0.03	1	250
TABLE 1 SOIL ANALYTICAL RESULTS

Fife RV Center 3410 Pacific Highway East Fife, Washington 2 of 4

Aerotech Environmental Consulting, Inc. - Site Remedial Excavation Report - November 1, 2016 (continued)

Sample ID	Soil Boring/Point Well ID	Sampling Date	Sample Depth	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Total Xylenes	EDB	EDC	MTBE	Methylene Chloride	TCE	PCBs	Lead
			Feet BGS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
TP5(5')	TP5	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP5(10')	TP5	10/06/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
TP6(5')	TP6	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP6(10')	TP6	10/06/16	10	12			0.071	<0.050	<0.050	<0.050							
TP7(5')	TP7	10/06/16	5	690	<20	<50	0.90	1.9	32	0.33							
TP8(3')	TP8	10/06/16	3	60			<0.020	<0.050	1.2	<0.050							
TP8(5')	TP8	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP9(5') ¹	TP9	10/06/16	5	6,090	<20	<50	4.0	4.0	66	130	<0.005	<0.02	<0.1	<0.02	<0.02		
TP9(10') ¹	TP9	10/06/16	10	240			0.59	1.5	1.6	3.7							
TP11(5')	TP11	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP12(5')	TP12	10/06/16	5	18			<0.020	<0.050	<0.050	0.082							
TP13(5')	TP13	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP14(5')	TP14	10/06/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP14(10')	TP14	10/06/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
TP15(5')	TP15	10/07/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP15(10')	TP15	10/07/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
TP16(3')	TP16	10/07/16	3	<5.0			<0.020	<0.050	<0.050	<0.050							
TP16(5')	TP16	10/07/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP17(3')	TP17	10/07/16	3	<5.0			<0.020	<0.050	<0.050	<0.050							
TP17(5')	TP17	10/07/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
TP18(3')	TP18	10/07/16	3	<5.0			<0.020	<0.050	<0.050	<0.050							
TP19(3')	TP19	10/07/16	3	<5.0			<0.020	<0.050	<0.050	<0.050							
TP19(5')	TP19	10/07/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
P20(5')	P20	10/20/16	5	57			0.065	0.101	0.15	0.16							
P20(10')	P20	10/20/16	10	20			0.24	<0.050	0.09	0.084							
P21(5')	P21	10/20/16	5	1,200			0.65	0.59	8.1	24							
P21(10')	P21	10/20/16	10	66			0.11	0.14	0.34	0.74							
P22(5')	P22	10/20/16	5	1,100			0.83	1.9	20	7.9							
P22(10')	P22	10/20/16	10	34			0.029	<0.050	0.43	0.19							
P22(12')	P22	10/20/16	12	<5.0			<0.020	<0.050	<0.050	<0.050							
P23(5')	P23	10/20/16	5	760			0.46	0.74	4.8	2.4							
P23(10')	P23	10/20/16	10	16			<0.020	<0.050	0.22	0.10							
P24(5')	P24	10/20/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
P24(10')	P24	10/20/16	10	50			0.26	<0.050	1.5	0.86							
P25(5')	P25	10/21/16	5	5,200			4.6	25	35	230							
P25(10')	P25	10/21/16	10	350			0.16	3.4	1.6	16							
P26(10')	P26	10/21/16	10	12			<0.020	<0.050	<0.050	0.41							
P27(5')	P27	10/21/16	5	58			<0.020	<0.050	0.095	0.39							
M	TCA Method A Clean	up Levels		30	2,000	2,000	0.03	7	6	6	0.005	0.0232*	0.1	0.02	0.03	1	250

TABLE 1 SOIL ANALYTICAL RESULTS

Fife RV Center 3410 Pacific Highway East Fife, Washington 3 of 4

Aerotech Environmental Consulting, Inc. - Site Remedial Excavation Report - November 1, 2016 (continued)

Sample ID	Soil Boring/Point Well ID	Sampling Date	Sample Depth	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Total Xylenes	EDB	EDC	MTBE	Methylene Chloride	TCE	PCBs	Lead
			Feet BGS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
P28(5')	P28	10/21/16	5	<5.0			<0.020	<0.050	<0.050	<0.050							
P28(10')	P28	10/21/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
P29(3')	P29	10/24/16	3	<5.0			<0.020	<0.050	<0.050	<0.050							
P30(5')	P30	10/24/16	5	200			0.086	0.19	0.28	0.40					-		
P30(10')	P30	10/24/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
P31(10')	P31	10/24/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
P32(3')	P32	10/24/16	3	<5.0			<0.020	<0.050	<0.050	<0.050							
P33(3')	P33	10/24/16	3	<5.0			<0.020	<0.050	<0.050	<0.050							
P34(3')	P34	10/24/16	3	<5.0		-	<0.020	<0.050	<0.050	<0.050							
M	TCA Method A Clean	up Levels		30	2,000	2,000	0.03	7	6	6	0.005	0.0232*	0.1	0.02	0.03	1	250

Aerotech Environmental Consulting, Inc. - Groundwater Monitoring Well Installation Report - November 17, 2016

Sample ID	Soil Boring/Point Well ID	Sampling Date	Sample Depth	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Total Xylenes	EDB	EDC	MTBE	Methylene Chloride	TCE	PCBs	Lead
			Feet BGS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
MW-1 (4.5')	MW-1	11/10/16	4.5	<5.0			<0.020	<0.050	<0.050	<0.050							
MW-1 (10')	MW-1	11/10/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
MW-2 (4')	MW-2	11/10/16	4	250			0.53	0.54	3.8	0.84							
MW-2 (9')	MW-2	11/10/16	9	24			<0.020	0.065	0.6	0.16							
MW-3 (4.5')	MW-3	11/10/16	4.5	13,000			9.3	2.6	470	5.4							
MW-3 (9')	MW-3	11/10/16	9	51			<0.020	<0.050	0.27	0.096							
MW-3 (14.5')	MW-3	11/10/16	14.5	<5.0			<0.020	<0.050	<0.050	<0.050							
MW-4 (5')	MW-4	11/10/16	5	55			0.061	0.27	0.22	0.2							
MW-4 (10.5)	MW-4	11/10/16	10.5	150			0.51	1.2	1.1	1.7							
MW-4 (14.5)	MW-4	11/10/16	14.5	<5.0			<0.020	<0.050	<0.050	<0.050							
MW-5 (6')	MW-5	11/10/16	6	34			0.090	0.66	0.25	0.31							
MW-5 (10')	MW-5	11/10/16	10	<5.0			<0.020	<0.050	<0.050	<0.050							
MW-6 (9')	MW-6	11/11/16	9	<5.0			<0.020	<0.050	<0.050	<0.050							
MW-6 (10.5')	MW-6	11/11/16	10.5	<5.0			<0.020	<0.050	<0.050	<0.050							
M	CA Method A Clean	up Levels		30	2,000	2,000	0.03	7	6	6	0.005	0.0232*	0.1	0.02	0.03	1	250

TABLE 1SOIL ANALYTICAL RESULTS

Fife RV Center 3410 Pacific Highway East Fife, Washington 4 of 4

Aerotech Environmental Consulting, Inc. - Upgradient Delineation Groundwater Monitoring Well Installation Report - DRAFT

Sample ID	Soil Boring/Point Well ID	Sampling Date	Sample Depth	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Total Xylenes	EDB	EDC	MTBE	Methylene Chloride	TCE	PCBs	Lead
			Feet BGS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
B1(5)	B1	07/13/17	5	1,200	350 ²	<50	2.1	2.4	51	26	<0.005	<0.02	<0.1	0.22	0.29	<0.20	14
B1(9)	B1	07/13/17	9								<0.005	<0.02	<0.1	<0.02	<0.02		
MW7(11)	MW7	07/13/17	11	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							
MW8(5)	MW8	07/13/17	5		<20	<50											
MW8(10)	MW8	07/13/17	10	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							2.9
MW9(3)	MW9	07/13/17	3	<5.0	<20	<50	<0.020	<0.050	<0.050	<0.050							37
MI	CA Method A Clean	up Levels		30	2,000	2,000	0.03	7	6	6	0.005	0.0232*	0.1	0.02	0.03	1	250

MTCA = Model Toxic Control Act Cleanup Level (WAC173-340-900)

BGS = Below Ground Surface mg/kg = milligram of analyte per kilogram of soil

< = not detected at indicated Laboratory Detection Limits -- = not analyzed

Benzen , Toluene, Ethylbenzene, Xylenes by EPA Method 8021B

TPHg - Total Petroleum Hydrocarbons - Gasoline by NWTPH-Gx

TPHd - Total Petroleum Hydrocarbons - Diesel by NWTPH-Dx

TPHo - Total Petroleum Hydrocarbons - Motor Oil by NWTPH-Dx extended

MTBE = Methyl-tert-butyl-ether EDC = 1,2-Dichloroethane EDB = 1,2-Dibromoethane TCE = Tricchloroethene Methylene Chloride; by EPA Method 8260B

Lead by EPA Method 7010

ND = Not Detected (minimum detection limit unknown)

Bolded numbers and red-shaded cells denote concentrations above the MTCA Method A Cleanup Levels for soil

* = Method B Cleanup Level, Ecology does not have a Method A Cleanup Level designated for EDC

1 = Soil from which this sample originated was removed during the Remedial Excavation

2 = Unidentifiable petroleum product in diesel range, possibly creosote (see lab report for further detail and chromatograph)

PAH ANALYTICALRESULTS

FIFE RV SITE, Fife, Washington

Analytical Results				
PAH (8270 sim), mg/kg		B1 (5)	МТСА	МТСА
Matrix	Soil	Soil	Method A	Method B
Date extracted	Reporting	07/19/17	CUL	CUL
Date analyzed	Limits	07/19/17	002	COL
1-Methylnaphthalene	0.10	4.8		34
2-Methylnaphthalene	0.10	7.9		320
Naphthalene	0.10	0.97	5	
Acenaphthylene	0.10	nd		
Acenaphthene	0.10	nd		
Fluorene	0.10	nd		
Phenanthrene	0.10	1.5	n/a	
Anthracene	0.10	0.29	2400	
Fluoranthene	0.10	nd		
Pyrene	0.10	1.5	n/a	
Benzo(a)anthracene	0.10	nd		
Chrysene	0.10	0.68	0.1 benzo	n(a)pyrene equivalency *
Benzo(b)fluoranthene	0.10	nd		
Benzo(k)fluoranthene	0.10	nd		
Benzo(a)pyrene	0.10	nd		
Indeno(1,2,3-cd)pyrene	0.10	nd		
Dibenzo(ah)anthracene	0.10	nd		
Benzo(ghi)perylene	0.10	nd		

* Chrysene's TEF (toxicity equivalency factor is 0.01; 0.68 x TEF = 0.0068) MTCA Tables 708.2 and 708.3

GROUNDWATER ANALYTICAL RESULTS Fife RV Center 3410 Pacific Highway East Fife, Washington

begin Simpling Date Level (Trocorth) Betachen Pitel Betachen Notenne Notenne Notenne Notenne Notenne Notenne Notenne Notenne Notenne Level Betachen Colt	MW1																		
114 111/32/16 1.37 8.37 7.00 4100 200 400 4.0		Sampling Date				TPHg	TPHd	ТРНо	Benzene	Toluene		Xylenes	EDB	EDC	МТВЕ	HVOCs			Total Lead
02/20/17 119 8.87 7.18	Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
05/23/17 1.72 8.37 6.65 <100 2.00 <500 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	14.4	11/18/16	1.37	8.37	7.00	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0			<2.0	<2.0
08/01/17 2.52 8.37 5.45 <100 2.00 4.00		02/20/17	1.19	8.37	7.18	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0			<2.0	<2.0
NUCL NUCL Abselbed A Cleanup Levels 800 500 5 1,000 700 1,000 0.01 5 2.00 Vanable 160* 15.0 1 Weil bard Ground Mater Elevation Weil welk melk		05/23/17	1.72	8.37	6.65	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0			<2.0	<2.0
UNU2. Construction Construction <thconstruction< th=""> Construction</thconstruction<>		08/01/17	2.92	8.37	5.45	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND			<2.0
Well bepth Sampling Date Ground Water Level (TOC Arroll Beavaile) TPHA Beavaile Total walk BED BED MTEA MVOCs Naph Inscitute Level He/L He/L <t< th=""><th></th><th></th><th>MTCA</th><th>Method A Cleanu</th><th>p Levels</th><th>800</th><th>500</th><th>500</th><th>5</th><th>1,000</th><th>700</th><th>1,000</th><th>0.01</th><th>5</th><th>20</th><th>Variable</th><th>160*</th><th>15</th><th>15</th></t<>			MTCA	Method A Cleanu	p Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	15	15
beght Sampling Date Level TOC north Elevation TPH0 TPH0 TPH0 Perto Source Market Work	MW2																		
11/2 11/18/16 2.53 9.40 6.87 18,000 -200 +500 470 18 210 200 -0.01 -1.0 -5.0 1.0.0 1.0.0 1.0.0 <th></th> <th>Sampling Date</th> <th></th> <th></th> <th></th> <th>TPHg</th> <th>TPHd</th> <th>ТРНо</th> <th>Benzene</th> <th>Toluene</th> <th></th> <th>Xylenes</th> <th>EDB</th> <th>EDC</th> <th>MTBE</th> <th>HVOCs</th> <th>•</th> <th></th> <th>Total Lead</th>		Sampling Date				TPHg	TPHd	ТРНо	Benzene	Toluene		Xylenes	EDB	EDC	MTBE	HVOCs	•		Total Lead
02/20/17 2.25 9.40 7.15 29.000 <200 <500 720 26 490 700 <0.01 <1.0 <5.0 - - < < <th< td=""><td>Feet</td><td></td><td>Feet Below TOC</td><td>Feet Above MSL</td><td>Feet Above MSL</td><td>μg/L</td><td>μg/L</td><td>μg/L</td><td>μg/L</td><td>μg/L</td><td>μg/L</td><td>µg/L</td><td>μg/L</td><td>μg/L</td><td>μg/L</td><td>μg/L</td><td>μg/L</td><td>μg/L</td><td>μg/L</td></th<>	Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
05/23/17 3.02 9.40 6.38 10,000 <200 <500 300 18 93 400 <0.01 <1.0 <5.0 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	14.2	11/18/16	2.53	9.40	6.87	18,000	<200	<500	470	18	210	200	<0.01	<1.0	<5.0			<2.0	<2.0
OB/01/17 4.40 9.40 5.00 25,000 <200 <500 980 62 540 1,200 <0.01 <1.0 <5.0 ND 4.3 < MICA Method A Cleanup Levels 800 500 500 5 1,000 700 1,000 0.01 5 2.0 Variable 160° 15 1 Weil Mice Method A Cleanup Levels 800 500 500 5 1,000 700 1,000 0.01 5 2.0 Variable 160° 16 16 16 16 16 16 16 16 2.800 12.0 <0.01		02/20/17	2.25	9.40	7.15	29,000	<200	<500	720	26	490	700	<0.01	<1.0	<5.0			<2.0	<2.0
MW3 MTCA Method A Cleanup Levels 800 500 5 1.000 700 1.000 0.01 5 2.0 Variable 160* 15 1.0 Well Depth Feet Sampling Date Level Ground Water Level Elevation (TOC north) Water Level Elevation TPHg TPHg TPHd ug/L		05/23/17	3.02	9.40	6.38	10,000	<200	<500	300	18	93	400	<0.01	<1.0	<5.0			<2.0	<2.0
WW3 Ground Water Level Elevation (TOC north) Water Level Elevation TPHg (TOC north) TPHg (Level) TPHg (TOC north) TPHg (Level) TPHg (Level) TPHg (Level)		08/01/17	4.40	9.40	5.00	25,000	<200	<500	980	62	540	1,300	<0.01	<1.0	<5.0	ND	4.3		<2.0
Weight Sampling Date Ground Water Elevation Water Level THg TPHd TPHo Benzene Toluene Ethyl- benzene Xylenes EDB EDC MTBE HVCCs Naph- halene Disolved (up/L Up/L			MTCA	Method A Cleanu	p Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	15	15
Depth Sampling Date Level (TOC north) Elevation TPHd PHPd Pair/L up/L	MW3																		
14.6 11/18/16 2.19 9.43 7.24 42,00 <200		Sampling Date	Level			TPHg	TPHd	ТРНо	Benzene	Toluene	-	Xylenes	EDB	EDC	МТВЕ	HVOCs			Total Lead
0/20/17 2.02 9.43 7.41 10,000 <200 <500 28 <1,000 620 92 <0.01 <1.0 <5.0 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <																μg/L	μg/L		μg/L
05/23/17 2.65 9.43 6.78 6,70 <200 <500 21 1.4 210 57 <0.01 <1.0 <5.0 <2.0 <2.0 08/01/17 4.05 9.43 5.38 620 <2.00 <500 <1.0 <1.0 2.4 1.3 <0.01 <1.0 <5.0 ND 0.60 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <td>14.6</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td><2.0</td>	14.6		_									-		-					<2.0
08/01/17 4.05 9.43 5.38 620 <200 <500 <1.0 <1.0 2.4 1.3 <0.01 <1.0 <5.0 ND 0.60 <2.4 MW4 MTCA Method A Cleanup Levels 800 500 500 5 1,000 700 1,000 0.01 5 20 Variable 160* 15 1 MW4 Ground Water Elevation (TOC north) Water Level Levation TPHg TPHg TPHo Benzee Toluene Ethyl- benzee kylenes EDB EDC MTE WOCS Maph- thalene Lead						10,000				,									<2.0
MTCA Method A Cleanup Levels 800 500 500 5 1,000 700 1,000 0.01 5 2.0 Variable 160* 15 1 Well Sampling Date Ground Water Level Control Water Level Elevation TPHg TPHg TPHo Benzene Toluene Ethyl- benzene Xylenes EDB EDC MTBE HVOCs Naph- thalene Dissolved Leval Toluene Feet Feet Above MSL Feet Above MSL ug/L <		05/23/17					<200	<500	21	1.4	210		<0.01	<1.0	<5.0			<2.0	<2.0
MW4 Ground Water Elevation Year Order		08/01/17										-							<2.0
Well Depth Sampling Date Ground Water Level Elevation (TOC north) Water Level Elevation TPHg TPHg TPHo Benzene Toluene Ethyl- benzene Xylenes EDB EDC MTBE HVOCs Naph- thalene Dissolved Lead Toluene Feet Feet Above MSL			MICA	iviethod A Cleanuj	p Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	15	15
Feet Feet Above MSL Feet Above MSL Feet Above MSL μg/L	Well	Sampling Date				TPHg	TPHd	ТРНо	Benzene	Toluene		Xylenes	EDB	EDC	МТВЕ	HVOCs			Total
14.5 11/18/16 3.31 10.12 6.81 1.900 <200						ug/L	ug/L	ug/L	ug/L	ug/I		ug/l	ug/I	ug/l	ug/L	ug/L			Lead µg/L
02/20/17 3.08 10.12 7.04 6,800 <200 <500 220 35 340 22 <0.01 <1.0 <5.0 <2.0 < < 05/23/17 3.88 10.12 6.24 1,600 <200		11/18/16						13.											<2.0
05/23/17 3.88 10.12 6.24 1,600 <200 <500 120 6.0 12 3.88 <0.01 <1.0 <5.0 <2.0 << 08/01/17 5.61 10.12 4.51 2,100 <200 <500 94 4.4 170 1.0 <0.01 <1.0 <5.0 ND <0.1 <2.0 < MICA Method A Cleanup Levels 800 500 500 5 1,000 700 1,00 0.01 5 20 Variable 160* 15 1 Well Depth Sampling Date Ground Water Level Elevation (TOC north) Water Level TPHg TPHg TPHo Benzene Toluene Ethyl-benzene Xylenes EDB EDC MTBE HVOCs Maph-thale Lead Lead <thlead< th=""> Lead Lead</thlead<>			3.08	10.12	7.04		<200	<500	220	35	340	22	<0.01	<1.0	<5.0			<2.0	<2.0
08/01/17 5.61 10.12 4.51 2,100 <200 <500 94 4.4 170 1.0 <0.01 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <1.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0																			<2.0
MTCA Method A Cleanup Levels 800 500 500 5 1,000 700 1,000 0.01 5 20 Variable 160* 15 1 MWS Well Depth Sampling Date Ground Water Level Elevation (TOC north) Water Level Elevation TPHg TPHd TPHo Benzene Toluene Ethyl-benzene Xylenes EDB EDC MTBE HVOCs Naph-thalene Leval Level Leval Mug/L µg/L					4.51		<200		94				< 0.01			ND	<0.1		<2.0
Well DepthSampling DateGround Water LevelEllevation (TOC north)Water Level ElevationTPHgTPHdTPHoBenzeneTolueneEthyl- benzeneXylenesEDBEDCMTBEHVOCsNaph- thaleneDissolved LevalTolueneFeetFeet Below TOCFeet Above MSLFeet Above MSL \mug/L $\mug/$																		15	15
Depth Sampling Date Level (TOC north) Elevation TPHa TPHa TPHo Benzene Toluene benzene Xylenes EDB EDC MTBE HVOcs thalene Lead Lead <thlead< th=""> <thlead< th=""> <thlead< th="" thr<=""><th>MW5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thlead<></thlead<></thlead<>	MW5										•								
17.5 11/18/16 5.17 11.27 6.10 2,100 <200		Sampling Date				TPHg	TPHd	ТРНо	Benzene	Toluene		Xylenes	EDB	EDC	МТВЕ	HVOCs			Total Lead
02/20/17 5.16 11.27 6.11 700 <200 <50 52 <1.0 2.2 2.4 <0.01 <1.0 <5.0 <2.0 <2.0 05/23/17 6.34 11.27 4.93 <100 <200 <500 <1.0 <1.0 <1.0 <0.01 <1.0 <5.0 <2.0 <2.0 <2.0 08/01/17 8.31 11.27 2.96 <100 <200 <500 <1.0 <1.0 <1.0 <0.01 <1.0 <5.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <td>Feet</td> <td></td> <td>Feet Below TOC</td> <td>Feet Above MSL</td> <td>Feet Above MSL</td> <td>μg/L</td>	Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
05/23/17 6.34 11.27 4.93 <100 <200 <500 <1.0 <1.0 <1.0 <0.01 <1.0 <5.0 <2.0 <2.0 08/01/17 8.31 11.27 2.96 <100	17.5	11/18/16	5.17	11.27	6.10	2,100	<200	<500	250	1.6	5.6	2.1	<0.01	<1.0	<5.0			<2.0	<2.0
08/01/17 8.31 11.27 2.96 <100 <200 <500 <1.0 <1.0 <1.0 <0.01 <1.0 <5.0 ND <0.1 <200 <200 <500 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1		02/20/17	5.16	11.27	6.11	700	<200	<500	52	<1.0	2.2	2.4	<0.01	<1.0	<5.0			<2.0	<2.0
08/01/17 8.31 11.27 2.96 <100 <200 <500 <1.0 <1.0 <1.0 <1.0 <0.01 <1.0 <5.0 ND <0.1 <200 <200 <500 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1		05/23/17	6.34	11.27	4.93	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0			<2.0	<2.0
MTCA Method A Cleanup Levels 800 500 500 5 1,000 700 1,000 0.01 5 20 Variable 160* 15 1			8.31	11.27	2.96	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1		<2.0
			MTCA	Method A Cleanu	p Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	15	15

GROUNDWATER ANALYTICAL RESULTS Fife RV Center 3410 Pacific Highway East Fife, Washington

MW6																		
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	HVOCs	Naph- thalene	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
17.5	11/18/16	4.72	11.40	6.68	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0			<2.0	<2.0
	02/20/17	4.69	11.40	6.71	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0			<2.0	<2.0
	05/23/17	5.85	11.40	5.55	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0			<2.0	<2.0
	08/01/17	7.32	11.40	4.08	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1		<2.0
		MTCA	Method A Cleanu	p Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	15	15
MW7																		
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	HVOCs	Naph- thalene	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.2	08/01/17	5.83	10.09	4.26	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1		<2.0
		MTCA	Method A Cleanu	p Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	15	15
MW8																		
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	HVOCs	Naph- thalene	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.1	08/01/17	5.26	10.26	5.00	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1		<2.0
		MTCA	Method A Cleanu	p Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	15	15
MW9																		
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	MTBE	HVOCs	Naph- thalene	Dissolved Lead	Total Lead
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
14.3	08/01/17	3.57	8.84	5.27	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	ND	<0.1		<2.0
		MTCA	Method A Cleanu	p Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	Variable	160*	15	15

MTCA = Model Toxic Control Act Cleanup Level (WAC173-340-900)

TOC = Top of Casing MSL = Mean Sea Level

< = not detected at indicated Laboratory Detection Limits -- not analyzed NM = Not Measured

TPHg - Total Petroleum Hydrocarbons - Gasoline by Method NWTPH-Gx

TPHd - Total Petroleum Hydrocarbons - Diesel by Method NWTPH-Dx TPHmo - Total Petroleum Hydrocarbons - Motor Oil by Method NWTPH-Dx extended

Benzene, Toluene, Ethylbenzene and Xylenes by EPA Method 8021B

MTBE = Methyl-tert-butyl-ether EDE = 1,2-Dichloroethane EDB = 1,2-Dibromoethane HVOCs = Halogenated Volatile Organic Compounds; by EPA Method 8260B

PAHs (including Naphthalene) by EPA Method 8270

Total and Dissolved Lead by EPA Method 7010

* = Method B Cleanup Level (Method A Cleanup Level does not apply to this particular constituent)

ND = Not Detected above Laboratory Minimum Reporting Limits or applicable cleanup levels (see laboratory report for further detail)

Bolded numbers and red-shaded cells denote concentrations above the MTCA Cleanup Levels for groundwater

PROJECT CONTRACT DOCUMENTS

ENVIRONMENTAL CONTRACTOR'S CERTIFICATION

Fife RV Center

3410 Pacific Highway East Fife, Washington 98424

1.	Contrac	ctor's Name:	Aerotech Enviro	nmental Consultin	ıg, Inc.		
2.	Contrac	ctor's Address:	13925 Interurbar	a Avenue South, S	uite 210,	, Seattle, Washir	ngton 98168
3.	Name a	nd title of person c	completing this ce	rtification:	Alan T.	Blotch / Preside	ent
4.		the following que the report showing			itractor w	vill have perform	n the assessment or
	a.	Name and Title o	f Employee:	Alan T. Blotch –	- Environ	mental Professio	onal
	b.	Length of experie	ence doing enviror	nmental assessmer	nts:	33 years	
	c.	Education degree	s received:	Masters of Busin	iess Adm	inistration	
				Juris Doctor - Er	nvironme	ental Law	
	d.	Relevant training	received:	ASTM E50 Envi	ironmenta	al Assessment C	Committee Meetings
5.		any certifications n or policy to cond			Register	to an official Fe red Environmen by State of Calif	
6.	Describ	e the generally rec	ognized standards	which the contra		and a second second fraction of the	
		ed Practice for Env E 1903)	ironmental Site A	ssessments: Phase	e II Envir	ronmental Site A	ssessment Process
7.		e the nature of any roperty: Phase I			s contract	tor has ever perf	formed for the Owne

- 8. Disclose the nature of any affiliation or association contractor now has, or ever had, with the above referenced seller of the property, of the above referenced buyer of the property: N/A
- 9. Describe the liability insurance carried by contractor to cover claims in the event that ir fails to discover adverse environmental conditions during an environmental inspection. Professional Errors & Omissions Coverage \$1,000,000 / claim and \$1,000,000 aggregate liability

THE UNDERSIGNED HEREBY CERTIFIES, UNDER PENALTY OF THE CRIMINAL AND/OR CIVIL PENALTIES IN 18 U.S.C. § 1001 FOR FALSE STATEMENTS TO THE UNITED STATES GOVERNMENT, THAT THE ABOVE INFORMATION IS TRUE AND CORRECT.

08.16.17

Signature

Date

CURRICULUM VITAE

James McDermott

State of Washington Licensed Professional Geologist No. 3063

Mr. McDermott has 15 years experience as a sole proprietor in small business, and 12 years experience in environmental consulting with increasing scope, responsibility, innovation and effective results involving commercial and industrial properties spanning the country from the upper Midwestern states within glacial, alluvial or coastal geologic/hydrogeologic settings to complex bedrock, volcanic and glacial/fluvial settings in the northern Rocky Mountain states, the Pacific Northwest and Alaska. He has conducted field work and mapping in mountainous terrain in northern Wyoming and in central Utah where he has published: Utah Geologic Survey Geologic Quadrangle (Chriss Canvon 7.5 min.). These projects included extensive sampling of soils, rock, surface waters, groundwater, limited submarine sampling, soil borings, monitoring well installations, soil vapor extraction wells and systems, and dual-phase extraction and incineration. He is proficient in the application of aerial photographs, ground penetrating radar imagery, satellite imagery and on-line tools. His work has included compliance activities involving Superfund Sites, and hazardous waste remediation sites, as well as Phase I Environmental Site Assessments, Phase II and III Subsurface Investigations, hydrogeologic studies, pump tests, remediation system design, and groundwater monitoring. His work has required a familiarity with ASTM Protocols as well as local, State, and Federal regulations. He is familiar with Washington State MTCA regulations (petroleum-impacted soils, and evolving programs such as Model Remedies Programs), as well as State of Oregon Risk Based Standards. His academic background has included work in organic chemistry and chemical engineering as well as an undergraduate engineering physics and calculus sequence.

Education	University of Illinois - Urbana, IL – BSci Geology – 1984 (Field Mapping: Sheridan, WY) Northern Illinois University - DeKalb, IL – Graduate research/Published USGS Map, Utah).
Publications	Chriss Canyon 7.5-Min. Geologic Quadrangle, Utah, Coauthor, UGS Map 185, 2003
Professional History	Aerotech Environmental Consulting, Inc. Hydrogeologist/Environmental Professional (2011-Present)
mistory	James McDermott Consulting, Proprietor, Web Design-IT (1995-2010) (Including work with Bank One, Xerox, and IGO Cars)
	Earthscience Consulting, Proprietor, Hydrogeologist (1993-1994)
	ATEC Environmental Associates, Inc., Hydrogeologist (1991-1993)
	EIS Environmental, Inc., Staff Geoscientist (1989-1991)
Certifications and Seminars	OSHA 40-hr Hazwoper, 8hr Refresher (2017) Participation Certificate: Chlorinated Solvent Remediation - Sequential In-Situ Chemical
	Oxidation and Enhanced Anaerobic Biodegredation.
	Geotech Environmental Equipment and Remediation Workshop, Denver, 2016.
Organizations & Memberships	<i>Geological Society of America</i> – Cordilleran Section, Rocky Mountain Section, Environmental and Engineering Geology Division, Hydrogeology Division, Structural Geology and Tectonics Division.
Expertise	Mr. McDermott has performed over 60 Phase I Environmental Assessments, and nearly 200 <i>Phase II and Phase III Subsurface Investigations</i> (commonly training or advising new staff), including LUST and VCP closures. He has conducted preliminary site reconnaissance and historical research, prepared associated <i>Phase I Site Assessment</i> reports, <i>Phase II</i> and <i>Phase III Targeted Subsurface Investigation</i> reports, Remediation Investigation reports, <i>Feasibility Studies, Disproportionate Cost</i>

Analysis reports, and *Corrective Action Plans*. Areas of expertise include guided PCS excavation, DNAPL and NAPL/dissolved plume definition for soil and groundwater; and review and planning related to choice of remediation methodologies. Mr. McDermott has performed analyses and recommendations related to questionable Phase I, Phase II, and other investigations and reports, researched and implemented the application of evolving State Regulatory Guidance such as Washington's Model Remedies Program, has worked extensively with ground penetrating radar (and occasionally GIS systems), and has created a geographically referenced database of digital publications and maps (Federal, State, and professional consultant's) generated as the product of both ongoing project research and professional development in the form of online and other geologic and hydrogeologic research.

He has participated in the design and monitoring of several remediation systems (including soil vapor extraction and pump and treat), participated in oxidant injection treatment, contributed to RCRA landfill compliance monitoring projects and often the associated subsurface investigation and planning. He managed and planned a number of these projects, implemented the investigations, created both preliminary and final reports, and defined and implemented supplemental investigation and long-term monitoring. He has also had the opportunity to assist clients in the preparation of legal cases, after analyzing deficiencies and errors in environmental investigations and reports.

USGS GEOLOGIC MAPPING PROGRAM (Utah Geological Survey): He has contributed to the study and mapping of geologic units as a part of the related US Geological Survey program to complete national coverage of geologic maps at the 1:24,000 scale. He has mapped intrusive and volcanic bodies, salt intrusions, faults, landslide hazards, mineral deposits, hydrothermal alteration, and springs. He has integrated data such as petroleum exploration well logs (gamma/SP), and aerial and satellite imagery.

SUPERFUND SITE INVESTIGATIONS: He has performed subsurface characterization and hydrogeological assessments, including the synthesis of analytical results acquired by multiple consultants with geologic and hydrogeologic data to generate hydrogeologic cross-sections, and occasionally addressing the risks associated with nearby public water supply wells.

RCRA COMPLIANCE: He has participated in the subsurface characterization, hydrogeological assessments, and compliance monitoring at RCRA sites.

UST SITE CHARACTERIZATION & REMEDIATION: He has performed Phase I, Phase II investigation, and planned and participated in successful remediation projects, including the management and on-site supervision of the removal of tanks at a 40-unit nest of 25,000 gallon tanks at a WWII aircraft engine assembly site. Contaminants have included fuels, solvents and lubricants, LNAPLs and DNAPLs. He has performed numerous subsurface characterization and hydrogeological assessments including planning and participation in direct push, hollow stem auger, air rotary, and sonic rig soil boring and well installation, remediation monitoring, and pump test analysis.

REAL ESTATE TRANSFERS: He has performed Phase I and Phase II Subsurface investigation / preliminary hydrogeological evaluations for the purpose of property transfers for lenders, property owners and prospective buyers.

GEOPHYSICAL SURVEYS: He has participated in the performance of a groundwater investigation for the Illinois Geological Survey designed to locate and define gravel channel aquifers in buried bedrock valleys.

BIOREMEDIATION APPLICATIONS: He has participated in a seminar devoted to groundwater bioremediation with particular attention to chlorinated solvents and the use of insitu chemical oxidation and enhanced anaerobic biodegradation. He has participated in the placement of pelletized oxidant in excavations at PCS contaminated sites and pressure injection via monitoring wells.

TERRESTRIAL ECOLOGICAL EVALUATION SCREENING: Completed for numerous sites.

SOIL VAPOR INTRUSION EVALUATION SCREENING: Completed for numerous sites.

Notable Projects and Innovations His subsurface investigation experience has also included field studies and reports on projects such a Superfund property in an industrial park, several RCRA landfill compliance projects, a large underground tank farm (over 40 25,000-gal. tanks and a great variety of fuels, solvents and lubricants) at the location of a former WWII-era aircraft engine plant, a contaminant incineration remediation project at a major LUST site located within a sensitive urban area, the mapping and excavation of over 20,000 yards of contaminated fluvial and alluvial sands in an aging 19th – 20th century riverside industrial complex, landslide mapping, risk assessment and an aquifer mapping project for a State Geological Survey. He has initiated and advanced a project located near a sensitive estuary at which both perched and lower confined aquifers have been monitored, and vintage building demolition and excavation is planned.

> Innovations and improvements he has introduced during his environmental consulting career have included the composition and refinement of numerous Standard Operating Procedures including those related to monitoring well design and encompassing equipment maintenance, calibration and operation. An innovation at the time and place, he initiated the routine incorporation of documentation and analysis of utility and transportation conduits (sewer, storm water and tunnel plans) in considering groundwater and contaminant flow dynamics, and their potential as primary or secondary conduits for the transport of contaminants in groundwater or in surface runoff for Phase I, Phase II and other investigations. For example, in one case in the central Chicago business district where flammable vapors were reported in the basement of a landmark building, he utilized both sewer design plans and subway depth measurements to trace probable vapor pathways and successfully divert the unproven assignment of primary responsibility from his client. In another case he devised and implemented a simple incinerator design change which greatly reduced time and cost associated with automated emergency systems shutdowns. In routinely evaluating previous studies prior to incorporation into his reports, he occasionally discovered and corrected errors in groundwater flow calculations or elevation data (data points are often contoured without consideration of the hydrogeologic context/boundary conditions, and such factors as nearby pumping wells, french drains, sewers, dams, engineered barriers, availability of recharge areas, tidal, river stage, and mounding effects). After once discovering forged soil boring logs at a multi-acre commercial site, he accepts no external data without some minimal scrutiny and verification where the economic and legal concerns of a client might be jeopardized.

Small Business He has fifteen years experience operating a web design and computer consulting business as a sole proprietor with several staff, meeting the unique needs and budgets of the small business and mid-sized business community, employing web design and marketing to increase the profits of one small business by over 1000 percent.

SOIL BORING LOGS

	ROT	CONS		MON	ITOR	ING W	ELL	D:	BORING LOG	#: MW-1	Page 1 of	1		
ww.Aerotec	hEnvir	onment	al.com	-	ect Na ect Nu			V, Fife, Wa 8246	BIS 683	Drilling Informa Drilling Contract Drilling Method:		etech, B A.	sellev	/ue
			-					oma Gas and Jack-in		Borehole Diame Sampler Type:	Stair	nless S		
								ce + 60 east of NWX				Spoon		nple
Borehole	Area	(AOC)	: N-NE (of easter	n terminu	is of upg	gradient	fabric / Former UST	-Pump areas	Driller: Carlos G	ardea (Wa Li	c No 31	143)	
Logged GW End	-				_	Depth: GW Lev				Approx. Surface	Elevation:			
Notes:	Low 2 in	tide C ch PVC	ommen C GW M	cement Ionitorin	: Bay at Ig Well i	0700 - ł nstalled	nigh tide - No 1	e at 1300 - per NOA 0 screen at 4 to 14	AA Tables ft bgs	Start Date: 11-1	0-16 End	Date:	San	ne
Depth (ft)	Groundwater	DID	Visual or Olfactory Evidence	Blow Counts	Recovery		USCS Classification		Soil Classi Descrip				Well Construction	
							GP	Gravel Pavement	Concrete	pad atop bentonite s	seal>		F	
- 1 – - –										n / electrical / storm s	sewer			
- 2 -	-				Air		SW	Air knife to 5.5 ft b	0	graded, with silt, little				
					Knife					ular gravel, gray to ol		,	-	
- 3 -								slightly moist, wet	below 5 ft. Very slig	nt but indistinct odor.				
- 4 -			0824											
		0.3	LAB				SW	Hand auger samp	le from beneath air k	nife hole		_		
- 5 -												_		
				2								-		
- 6 -				3			ML	SILT, trace very fi	ne sand, wet. No fou	l odor.				
- 7 -				3					0.00 Coloredo Cilias	Condin on when one		_		
		0.0	0905			-		NO. 10		Sand in annular spa	ce>	_		
- 8 -														
- 9 -				1										
		0.4	0915	1				SILT, trace very fi	ne sand, roots below	9 ft. very moist to w	et. No foul	_		
- 10 🗕		0.1	LAB	1 3								_		
				3			SP	SAND, very fine to	o fine, trace silt, gray	, wet.		_		
- 11 -		0.0		3					-					
- 12 🗕		<u> </u>										_		
												_		
- 13 –				3								_		
- 14 -		0.1		3			SM		very fine to fine,gray	v, wet.				
		 	LAB	4				No foul odor.	tonk booin to NE	ost likely penetrates	cilt	_	—	
- 15 -	╞								met Station UST ba		SIIL	+	╞	╞
- 16 -	<u> </u>							WELL CONSTRU	CTION DETAIL:			—	F	\vdash
- 17 -										t PVC screen at 4-14 nd + 1bag grout (3ft			╞	
 - 18	1									flush-mount monum		+	1	t
- 10 -								Bottom of borehol				\square		
- 19 -	_									/ell installed at 4 - 14	ft.	—	⊢	
	1				L			Borenole complete	ed with bentonite chi	μο.			_	⊢

			ECH		MON	ITOR	NG W	ELL I	D: I31 Page 2 of		٦
	ENVIRONME	NTAL	CONSU	LTING	Proje	ect Na	me:		Drilling Information		٦
	www.Aerotec	hEnvir	onmenta	Lcom	-		mber:		Drilling Contractor:		
					,						
									Logged by: Start Date: End Da	ato.	
									Start Date. Lift Da	ale.	
	Depth (ft)	Groundwater		Visual or Olfactory Evidence	Blow Counts	Recovery		USCS Classification	Soil Classification/ Description UNIFIED SOIL CLASSIFICATION SYSTEM EXPLANATION	Well Construction	
				-						>	
	L _								GRAVELS, well-graded* OR Gravel+Sand mix, little-no fines		
	L _							GP	GRAVELS, poorly-graded* OR Gravel+Sand mix, little-no fines		-
	L _							GM	GRAVELS, silty OR Gravel-sand-silt mix		
	L _							GC	GRAVELS, clayey OR Gravel-sand-clay mix		
1	L _							•	SAND, well-graded OR Gravelly Sands, little-no fines		
	L _							SP	SAND, poorly-graded OR Gravelly Sands, little-no fines		
	L _								SAND, silty OR Sand-silt mix		
	L _								SAND, clayey OR Sand-clay mix		
								ML	SILT, inorganic (very fine sands, rock flour, silty or clayey fine		
									sands) OR Clayey silts with slight plasticity		
								CL	CLAY, inorganic, low-med plasticity (gravelly, sandy, silty, lean)		
								OL	SILT, organic, AND SILT-CLAY, organic, low plasticity		
								MH	SILT, inorganic (micaceous or diatomaceous fn sndy/silty soils)		
									OR SILTY SOILS, elastic SILTS		11
								СН	CLAY, inorganic, high plasticity, fat clays		11
								ОН	CLAY, organic, med-high plasticity OR Organic SILTS		11
								ΡT	PEAT and other highly organic SOILS		11
									Glacial Till - High density, USCS/color indicates grain size		11
											11
											11
											11
	Γ –										1
											11
									* Terminology clarification: The term "Well graded" is a synonym for		11
						1			"Poorly sorted," both meaning that a wide range of particle sizes are		1
									present. The former term is employed in geotechnical descriptions, while the latter is preferred by the USDA in characterizing topsoils and		11
						1			subsoils.		11
	F -										11
	F -										1
	⊢ –										11
	F -										1
I	┝ -										1
	⊢ –										1
I	┝ -				L						1
	⊢ –				<u> </u>						11
	⊢ –									-+	1
	┝ -										1
I	⊢ –									-+	
	┝ -										1
1	L _						I				l 🛛

PHI - mm COVERSION φ = log ₂ (d in mm) 1μm = 0.001mm	Fractional mm and Decimal inches	(a	TERMS ofter orth,1922)	SIZ	EVE ES	diameters grains sieve size	ofg	nber rains mg	Sett Velo (Qua	ecity artz,	Velo for tr	shold ocity action
(mm	ract			o.	6		•		0.02000	°C)	cm/	sec
-8 - 256	- 10.1"		LDERS -8⊕)	ASTM No. S. Standard)	Tyler Mesh No.	Intermediate of natural equivalent to	Quartz spheres	Natural sand	Spheres (Gibbs, 1971)	Crushed	(Nevin, 1946)	(modified from Hjuistrom, 1939)
-7 - 128 -100 E	- 5.04"		BLES	A (U.S		Inte c equi	0 Å	ž"	- <u>'</u> cm/s	1000	<u>می</u> 200 –	1 m
-6 - 64.0 50 - 53.9 -50 - 45.3 -40 - 33 1	- 2.52"		very coarse	- 2 1/2" - 2.12" -	2"				8		- 150	above bottom
-5- ₃₀ - 32.0 26.9 22.6	- 1.26"		coarse	- 1 1/2" - 1 1/4" - 1.06" -	- 1 1/2" - - 1.05"					- 50	100	
-4 17.0 -4 16.0 - 13.4	- 0.63"	BLES		- 3/4" - 5/8" - 1/2" - 7/16"	742" 525"				- 100 - 90 - 80	- 40	- 100	
-10 $-11.3-3 -$	- 0.32"	PEBB	medium	- 7/16" - 3/8" - 5/16" 265"	371" - 3				- 70 - 60	- 30	- 90 - 80	
-5 - 5.66 4.76 -2 -4 - 4.00 3.36	- 0.16"	-	fine very	- 4 - 5 - 6	- 4 - 5 - 6				- 50 - 40	- 20	- 70 - 60	- 100
-3 - 2.83 -1 -2 - 2.00	-0.08" inches	•••	finé Granules	- 7 - 8 - 10 - 12	- 7 - 8 - 9 - 10				- 30		- 50	
1.63 - 1.41 - 1.19 0 - 1 - 1.00	mm - 1		very coarse	- 14 - 16 - 18	- 12 - 14 - 16	- 1.2	72	6	- 20	- 10 - 9	- 40	- 50 - 40
840 707 545 15500			coarse	- 20 - 25 - 30 - 35	- 20 - 24 - 28 - 32	86 59	- 2.0 - 5.6	- 1.5 - 4.5	- 10 - 8	9 8 7 6	- 30	
4420 3354	77 A.1004	SAND	medium	- 40 - 45 - 50	- 35 - 42 - 48	42	- 15	- 13	- 8 - 7 - 6 - 5 - 4	- 5 - 4 - 3		- 30
2250 2210 177 149	- 1/4		fine	- 60 - 70 - 80 - 100	- 60 - 65 - 80 - 100	30 215	- 43 - 120	- 35 - 91	- 3 - 2	- 2		- 26 mum
3 1 25 .1105 .088 074	- 1/8		very fine	- 120 - 140 - 170 - 200	- 115 - 150 - 170 - 200	155 115	- 350 - 1000	- 240 - 580	1	- 1.0 - 0.5	(Inmar	n,1949) -
4062			coarse	- 230 - 270 - 325 - 400	- 250 - 270 - 325	080	- 2900	- 1700	= 0.329 -		ty	
503037 02	- 1/32		medium		by as scale				- 0.1 - 0.085		begin veloci	une po 1, and
6016	- 1/64	SILT	fine	openings differ ni mm scale		gular to and		gular to	- 0.023 - 0.01	= 6πrηv)	sen the	apove easurec ors.
7008	- 1/128	-	very	e openi phi mm	openings differ % from phi mm	subanç uartz s)		subangular quartz sand	-0.0057	Law (R	n betwe sport s	ite neigni and ocity is measi other factors
	- 1/256		fine Clay/Silt boundary or mineral	e sieve from pl	e open 2% froi	ies to nded q (in mm		2-	- 0.0014 	Stokes L	relation on tran	velocity
003 9002002	- 1/512	CLAY	or mineral analysis	Note: Some sieve openin slightly from phi mm	Note: Sieve openings differ much as 2% from phi mm	Note: Applies to subangular to subrounded quartz sand (inmm)		Note: Applies to subar subrounded quartz	-0.00036	107080	Note: The relation between the beginning of traction transport and the velocity	uepenus on the regnt above the politom that the velocity is measured, and on other factors.
	1/1024			ž	žŁ	ž		ž	-0.0001		ž	5

CALIFORNIA DEPARTMENT OF TRANSPORTATION (CALTRANS)

UNIFIED SOIL CLASSIFICATION SYSTEM

UNIFIED SO	L CLAS	SIFICATION AND SYMBOL CHART
		ARSE-GRAINED SOILS
(more than		aterial is larger than No. 200 sieve size.)
	Clea	n Gravels (Less than 5% fines)
GRAVELS	GW	Well-graded gravels, gravel-sand mixtures, little or no fines
More than 50% of coarse	GP	Poorly-graded gravels, gravel-sand mixtures, little or no fines
fraction larger	Grav	els with fines (More than 12% fines)
than No. 4 sieve size	GM	Silty gravels, gravel-sand-silt mixtures
	GC	Clayey gravels, gravel-sand-clay mixtures
	Clea	n Sands (Less than 5% fines)
SANDS	SW	Well-graded sands, gravelly sands, little or no fines
50% or more of coarse	SP	Poorly graded sands, gravelly sands, little or no fines
fraction smaller	Is with fines (More than 12% fines)	
than No. 4 sieve size	SM	Silty sands, sand-silt mixtures
	SC	Clayey sands, sand-clay mixtures
	FIN	E-GRAINED SOILS
(50% or m	ore of mat	erial is smaller than No. 200 sieve size.)
SILTS AND	ML	Inorganic silts and very fine sands, rock flour, silty of clayey fine sands or clayey silts with slight plasticity
CLAYS Liquid limit less than	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
50%	OL	Organic silts and organic silty clays of low plasticity
SILTS	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
AND CLAYS Liquid limit 50%	СН	Inorganic clays of high plasticity, fat clays
or greater	он	Organic clays of medium to high plasticity, organic silts
HIGHLY ORGANIC SOILS		Peat and other highly organic soils

ENVIRONME	O T N T A L	CONSU	JLTING	MON	IITORI	NG W	ELL	D: BORING LOG #: MW-2 Page	1 of 1		
/ww.Aerotecl	nEnviro	onmenta	al.com	-	ect Na ect Nu			V, Fife, Wa BIS 684 Drilling Information 3246 Drilling Contractor: Drilling Method:	Boretech, H.S.A.	Bellev	vue
								ma Gas and Jack-in-the-Box) There post - Near NE corner of bioswale Borehole Diameter: Sampler Type:	8" Stainless Split Spoo		nple
Borehole	Area ((AOC)	: NW co	rner of t	ank and p	oump isl	and area	(NW corner of fenced lot) Driller: Carlos Gardea	(Wa Lic No	3143)	
Logged I GW Enc	ounte	red: Y	ΈS		Boring Static (GW Lev	el: 3 ft	Approx. Surface Eleva		0	
Notes: Notes:	Low	tide C	ommen	cement	Bay at (0700 - ł	- NO T high tide) screen at 4 to 14 ft bgs Start Date: 11-10-16 e at 1300 - per NOAA Tables	End Date	. Sar	ne
Depth (ft)	Groundwater	DID	Visual or Olfactory Evidence	Blow Counts	Recovery		USCS Classification	Soil Classification/ Description		Well Construction	
							GP	Gravel Pavement			
- 1 —								Air knife to 5.5 ft bgs - Concrete fragment (8 in +) at 2 ft			
					Air		SW				
- 3 -			0948		Knife			FILL - SAND, very fine to coarse, well graded, with silt, little to traditive small to large subround tosubangular gravel, gray to olive grasslightly moist, wet below 5 ft. Moderate gasoline odor.			
- 4		82		LAB			SW	Hand auger sample from beneath air knife hole at 4-4.3 ft			
- 5 -			1037								
- 6 —		38	LAB	2 2 1	-		ML	SILT, some very fine sand, trace clay, wet. Strong gasoline odor a	at 5.5 ft.		
_ / _											
- 8 —			1045								
- 9 -		16.9	LAB	1							
 - 10				1 1			ML	Same as above. Very moist to wet. Very slight gasoline odor abov No foul odor below 9 ft	'e 9 ft.		
 - 11								Silt is generally wet in upper portions; very moist to moist below.			
- 12 —								Note 11-12 ft deep tank basin to NE very likely penetrates this ge			
- 13 —				4				thinner silt unit. Sand lenses may be present between intervals sa by split spoon tool. Note: former Gasamet UST basin was situated			
			1050	1 2							
- 14 -		1.1	LAB	3			SP	SAND, very fine to fine, poorly graded trace silt, gray, wet. No fou	l odor.		ſ
- 15 —										+	╞
 - 16								WELL CONSTRUCTION DETAIL:			t
								2 inch Sched 40 PVC - 10 ft No 10 slot PVC screen at 4-14ft bgs 6.5 x 50 lbs bags of No. 10-20 Silica Sand + 1bag grout (3ft thick	<u> </u>	+	
- 17 —								Finished with 4 sq ft concrete pad and flush-mount monument	<u>,</u>	_	╞
- — - 18 —								Dottom of horoholo at 14.5. fact		1	Ţ
								Bottom of borehole at 14.5 feet Groundwater encountered at 5 ft, rises to 3 ft. Well installed at 14	ft	+	╀
- 19 —				<u> </u>				Borehole completed with bentonite chips.		1	t

A	ER		ECH		MON	IITOR	ING W	ELL	D: BORING LOG #:	MW-3 Page 1 of 1	
www.Ae	rotecl	nEnvir	onmenta	al.com	Proje	ect Nu	mber	: 216-	V, Fife, Wa BIS 685 3246 ma Gas and Jack-in-the-Box)	Drilling Information Drilling Contractor: Boret Drilling Method: H.S.A Borehole Diameter: 8"	ech, Bellevue
Bore	ehole	Locat	tion: 71		and 10 f	t west of			oma Bldg (73 ft to Power Pole)	Sampler Type: Stain	ess Steel Spoon Sampler No 3143)
-	Enc	ounte 2 inc	ered: Y ch PV0	C GW M	lonitorin cement	Static (g Well i	Depth: GW Lev nstalled 0700 - h	/el: 5ft l ∣- No 1		Approx. Surface Elevation: Start Date: 11-10-16 End I	Date: Same
Depth (ft)	-	Groundwater	Old	Visual or Olfactory Evidence	Blow Counts	Recovery		USCS Classification	Soil Classific Descriptio		Well Construction
	_							GP	Gravel Pavement		
- 1									Air knife to 5.5 ft bgs - Concrete fragmen	t (8 in +) at 2 ft	
- 2						Air		SW			
- 3			VPH	1118		Knife			FILL - SAND, fine to coarse, well graded, subround to subangular gravel, gray to ol below 5 ft. Moderately strong gasoline od	live gray, slightly moist, wet	
4			662		LAB			SW	Hand auger sample from beneath air knif	fe hole at 4-4.3 ft	
- 5 - 6 - 7			1 870	1135	3 1 2			SW	FILL- SAND, fine to coarse, well graded, subround to subangular gravel, gray 6.9- gasoline odor.		
- 8 - 9 - 10			LAB 203	1205 LAB	1 1 2			SW	Same as above. Very moist to wet. No fo		
_ 1'									ABSENT	-	
- 12	2										
1; 14 14			9.5		4 3 3			SP	SAND, very fine to medium, few coarse, bottom six inches dark brown, very moist		
- 1	5 —										+ $+$ $+$ $+$
- 16 - 17									WELL CONSTRUCTION DETAIL: 2 inch Sched 40 PVC - 10 ft No 10 slot P 5 x 50 lbs bags of No. 10-20 Silica Sand Finished with 4 sq ft concrete pad and flu	+ 1bag grout (3ft thick)	
- 18	3 —								Bottom of borehole at 14.5 feet		+ $+$ $+$ $+$
- 19	,								Groundwater encountered at 5 ft. Well in	nstalled at 14 ft	
									Borehole completed with bentonite chips.		

· ·	AEF	ROT	ECI	H 💏	MO	NITOR	ING W	/ELL	ID: BORING LOG #: MW-4 Page 1 of 1		
	www.Aerotec	chEnvir	ronment	al.com		ject Na ject Nu			Image: Ny Fife, Wa BIS 686 Drilling Information 8246 Drilling Contractor: Borete Drilling Method: H.S.A.	ch, Belle	vue
										ess Steel poon Sa	
	Borehole	e Area	(AOC)):					Driller: Carlos Gardea (Wa Lic I	No 3143))
	Logged GW End Notes:	-				, e	Depth: GW Lev		Approx. Surface Elevation:	ate: Sa	me
	Depth (ft)	Groundwater	DIG	Visual or Olfactory Evidence	Blow Counts	Recovery		USCS Classification	Soil Classification/ Description	Well Construction	
									Gravel Pavement		
	- 1 -										
	 2										
									FILL - SAND, very fine to coarse, well graded, with silt, little to trace clay, little small to large subround tosubangular gravel, gray to olive gray,		
	- 3 -								moist. Slight gasoline odor.		
	4				49						
			16	1310 LAB	6 8						
	- 5 -		10		0						
	6								This well adjoins the bio-swale area to the west and in which standing water is present (perhaps bottom of basin at 8 approx. ft bgs) - pre- development (post demo of Gasamet Station) test pits in this area		
	- 7 -								indicated strong petrol odors - suspect extensive excavation of impacted		
									soils prior to bio-swale construction, and extending to the vicinity of MW-		
	8										
	_ 9 _		-		2				Possible FILL - SAND, very fine to very coarse, well graded, some clay,		_
	 10			1335	1				trace subrounded gravel, heterogeneous mix of colors: dark brown, gray,		
			19	LAB	1				and light brown,slight odor, very moist. (Possible sluff- no silt present)		
	— 11 –		-								
	12 _										
										├──┼──	+
	_ 13 _				2				SILT, some 1/2" fine sand lenses, and a few clay lenses, few plant		
	— 14 —		0.2	1400 LAB	2 4				fragments, light brown, very moist. No foul odor[Bottom 1.5" brown fine sand, poorly graded.]		
			0.2	LAD	4						
	15								WELL CONSTRUCTION DETAIL:		
	— 16 –								2 inch Sched 40 PVC - 10 ft No 10 slot PVC screen at 4-14ft bgs 5 x 50 lbs bags of No. 10-20 Silica Sand + 1bag grout (3ft thick)		+
		\vdash	-						Finished with 4 sq ft concrete pad and flush-mount monument		+
	17 										
	— 18 —								Bottom of borehole at 14.5 feet		+
	 19								Groundwater encountered at 5 feet. well screened at 4-14 ft bgs.		
									Borehole completed with bentonite chips.		
	20										

A E	ROT	ECH		MON	IITORI	ING W	ELL I	D: BORING LOG #: MW-5 Page 1 of	1	
Boreho Boreho	ion: 34 le Loca le Area	10 Pact tion: 5 (AOC)	ific Hwy ft north o : SW cor	Proje E, Fife,	Wa (Gra	wel lot S d 5 ft eas ea - SE c	of Taho st of wes	Drilling Method: H.S.A Doma Gas and Jack-in-the-Box) Borehole Diameter: 8" Sampler Type: Stainling Sate Driller: Carlos Gardea (Wa Lice)	ess Stee Spoon Sa	Impler
Logged GW Er Notes:	ncounte	ered: Y	′ES	es down	Static (el: 4.5	Approx. Surface Elevation: ft bgs (approx 2 ft below lot level)	oate: Sa	ame
Depth (ft)	Groundwater	DIA	Visual or Olfactory Evidence	Blow Counts	Recovery		USCS Classification	Soil Classification/ Description	Well Construction	
_ 1 _ 1 _ 2		0.1		2 3 3			SW	FILL - SAND, fine to coarse, well graded, trace to little organic silt, trace small subrounded gravel, light brown, dry. No foul odor.		
	11-1	1-16 v	de - 8ar vater fro ft bgs t	m TOC	: 5.46			No foul odor in cutting 1.5 to 5 ft		
5 5		4.1	1514 LAB	2 1 1			SP	SAND, very fine, poorly graded, gray, wet SILT, little very fine sand, gray, trace wood and plant fragments, wet. No foul odor / possible VER faint gasoline odor.		
7 8								Silt is wet in upper portions; very moist to moist below.		
_ 9 _ 10 _ 11		0.6	1522 LAB	1 1 1			ML PT ML	SILT, little very fine sand, common wood and plant fragments and rare peat layers less than 1/4 - 1/2 inch, very moist to wet.Organic odor near peat layers - approx 10 - 10.5 ft	 	
- 11 - 12 - 12 - 13										
14		0.2	1535 LAB	2 2 2			CH ML	CLAY and SILT, trace very fine sand, gray, moist. No foul odor. Clay is highly plastic, SILT, little very fine sand, gray, moist. No foul odor.		
— 15 —								WELL CONSTRUCTION DETAIL: Excavated a limited terrace on the slope SW of gravel lot 2 inch Sched 40 PVC - 10 ft No 10 slot PVC screen at 4-14ft bgs		
_ 17								5 x 50 lbs bags of No. 10-20 Silica Sand + 1bag grout (3ft thick) Finished with 2 sq ft concrete 'base' and above-ground steel monument protected by four bollards		
- 18 - 10								Bottom of borehole at 4.5 feet Groundwater encountered at 4.5 feet. Well screen at 4 - 14 ft bgs		
- 19 - 20								Borehole completed with bentonite chips.		

	NTAL	ECH		мо	NITOR	NG W	/ELL	ID: BORING LOG #: MW-6 Page 1 of 1		
www.Aerotec	hEnviro	onmenta	al.com	-	ect Na ect Nu			V, Fife, Wa BIT 786 Drilling Information 8246 Drilling Contractor: Borete Drilling Method: H.S.A	ech, Belle	vue
Site Locatio	on: 341	10 Paci	ific Hwy	E, Fife	, Wa (Gra	vel lot S	of Tah	oma Gas and Jack-in-the-Box) Borehole Diameter: 8"		
D h 1 -	T 4	·	6 NE - 6	CW	:		20 6		ess Steel	malar
								horth of west fence along prop line Split S berimeter of Property. Driller: Carlos Gardea (Wa Lic	Spoon Sai	
Dorenoic	Alca	(AUC)	. 2410	a cast o	1 101 00 - 5 -	uowiigi	autent p		110 0140)	
Logged	by: J.	McDe	ermott:		Boring	Depth:	14.5 fe			
GW End	ounte	red: Y	ΈS		Static (GW Lev	vel:	Approx. Surface Elevation:		
Notes:								Start Date: 11-11-16 End D	ate: Sa	me
							_			
	<u> </u>		tory	0			USCS Classification		Well Construction	
(ft)	Groundwater	~	Visual or Olfactory Evidence	Blow Counts	ery		sifica	Soil Classification/	truc	
Depth (ft)	hun	PID	or C /idei	Ŭ N	Recovery		Clas	Description	ons	
Ď	Gro		sual F	Blo	L v		CS S			
			N.				ns		ĕ	
- 2 -										
							SW	No foul odor in cutting 1.5 to 4 ft		
_ 4 _		0.1	0859 LAB	2			SC	FILL - SAND, fine-coarse, well graded, brown, moist. No foul odor. FILL - SAND, SILT, little clay, brown. Moist to dry. No foul odor		
		0.1	LAD	2			SP	FILL - SAND, fine-coarse, poorly graded, brown, moist. No foul odor.		
— 5 —				1				SILT, with very fine sand, gray, wet. No foul odor.		
- 6 -										
							ML	Note base of ditch approx 30 ft south estimated near 5-7 ft bgs		
- 7 -								as recorded at location of MW-6 (7 - 9 ft bgs relative to gravel lot)		
- 8 -								-		
			0910					Same as above to 8.7 ft bgs		
— 9 —		0.2		1			PT	PEAT, with silt and clay, gray. Very moist to wet. No foul odor.		
— — — 10 —				1				SILT, with very fine sand, very moist to wet. No foul odor.		
		0.1	LAB	1			N 41	4		
- 11 -			0915				ML			
_ 12 _										
- 13 -			0925	4			SP	SAND, very fine, poorly graded, gray, wet. No foul odor.		
		0.1		4 5			JF			
— 14 —				6						
15								WELL CONSTRUCTION DETAIL:		
	$\left \right $							Excavated a limited terrace on the slope SW of gravel lot 2 inch Sched 40 PVC - 10 ft No 10 slot PVC screen at 4-14ft bgs	$\left - \right $	+
— 16 —			[5 x 50 lbs bags of No. 10-20 Silica Sand + 1bag grout (3ft thick)		+
 17								Finished with 2 sq ft concrete 'base' and above-ground steel		
	$\left - \right $							monument protected by four bollards All wellheads were sealed with twist-lock compression caps		+
— 18 —	\vdash							Bottom of borehole at 14.5 feet		+
 19								Groundwater encountered at 5 feet. Well installed at14.5 ft bgs.		
								Borehole completed with bentonite chips.		
_ 20 _										

AEROTECH BORING LOG #: MW7 ENVIRONMENTAL CONSULTING Site Name: Fife RV Center Drilling Information www.AerotechEnvironmental.com Project Number: 217-4025 Drilling Contractor: SEP, Turnwate																					
www.Aerote	chEnvir	onmenta	l.com											Drillin	-	ntracto			Tumw 1 Direc		
Site Lo	catior	n: 3410) Pacifi	: Hiahw	vay East	Fife. W	/A								oler Ty				sample		
AOC: S	South a	of Form	er UST	Basin	-									ECV	Well T	-00.		virgin BJP6	poly-s	leeve	•
Boreho	ole Lo	cation:	52' So	outhwes	t of MW	3										-					
Logged	d by: N	I. Gerk	in B	oring D	Depth: 1	6 feet		Encount	ered: Y	ES						rface I 07/14		10.5' al		1SL	
Depth (ft)	Groundwater	PID (ppm)	Sample	Blow Counts	Recovery		USCS Classification					l Clas: Descr							Moll Construction		
					1			Gravel	Parking	Surfac	e										
		0.0					GW	sand a silt. No	GRAVEL nd grave petrol o	el, suba dor.	ngular t	o subro	ounde	ed grav	vel, Ŵ	ell gra	ded, ti	race			
- 10 -								Sama	as above												
_ 10 -								Same		;											
- 11 - - 12 - - 13 - - 13 - - 14 - - 14 - - 15 - - 15 - - 16 -	Image: Constraint of the sector of	0.0	Lab				SP		very find ol odor.	e to fine	e, maroc	oon to l	orown	ı, wet,	poorly	y grade	ed, tra	ce silt,			
- 17 -																					
- 18 -																					
— 19 - — -																					
20 -																					
- 21 - 									neter Sc												
22 -									mpleted ite from												
- 23 -																					
- 24 -																					
- 25 -																					

	AEROTECH ENVIRONMENTAL CONSULTING Site Name: Fife RV Center Drilling Information											
			-						•			
w	ww.Aerotec	hEnvir	onmenta	l.com	Proj	ect Nu	mber:	217-		P, Tumwater ch Direct Pu		
Iг										e sampler +	sn	
	Site Loo AOC: S					ay East	, Fife, W	/A		in poly-sleev	e	
	Boreho					WW3				688		
╽┎	Logged	by: Ւ	N. Gerk	in B	oring D	Depth: 1	6 feet	GW	Approx. Surface Elev.: 10.5' Encountered: YES Work Date: 07/14/17	above MSL		
								uo				
	(t)	ater	_ ۲	σ.	ints	≥		Classification		Well Construction		
	Depth (ft)	Groundwater	PID (ppm)	Sample	Blow Counts	Recovery		lassi	Soil Classification/ Description	onstr		
	De	Grot	ЫЧ	ű	Blow	Re		CS C		ell C		
								nscs		8		
									Gravel Parking Surface			
	- 1 -	-							FILL - GRAVEL and SAND, light brown to gray, damp, fine to coarse			
	- 2 -								sand and gravel, subangular to subrounded gravel, Well graded, trace			
			0.0						silt. No petrol odor.			
	- 3 -							GW				
	- 4 -	-							Same as above, increased silt. No petrol odor.			
	 - 5 -		0.0	Lab					Wet at 5'			
									-			
	- 6 -											
	- 7 -							ML	SILT with some very fine Sand, maroon to brown, wet, no petrol odor.			
	- 8 -											
										_		
	- 9 -											
	- 10 -		0.0	Lab								
	 - 11 -											
								ML	SILT, dark brown, satuerated, plastic, some clay. No petrol odor.			
	- 12 -											
	- 13 -					-				_		
	 - 14 -		0.0									
									SAND, very fine to fine, marooon to brown, wet, poorly graded, trace si	+		
	- 15 -							SP	no petrol odor.			
	- 16 -											
╏┟	 - 17 -											
╏┝											+	
	- 18 -											
╏┝	- 19 -	-									+	
	- 20 -											
╟╴	 - 21 -											
╏┝									1" Diameter Schedule 80 PVC, 0.010" Screen from 4 to 14 ft bgs		+	
ЦĿ	- 22 -								Well completed with Colorado Silica Sand from 3 to 14 ft bgs Bentonite from 1 to 3 ft bgs and Concrete from 0.5 to 1 ft bgs			
╏┝	- 23 -	-									+	
╏┟	 - 24 -								1			
\mathbb{H}												
Ш	- 25 -											

SE.	ENV	A E R O T E C H IRONMENTAL CONSULTING Site Name: Fife RV Center Drilling Information																						
			-	-													Drillin	ng Info	ormati	on				
\ 	www	.Aerote	echEr	nviro	nmenta	.com	Proje	ect Nu	mber:	217-	4025						Drillin Drillin	-	tractor	:	SEP, 2-inch			
lſ	6	:4a a			. 2440		. Lliabu	av Faat		/ ^						1	Samp	-			Core s			
								ay East. JST Bas		A											virgin	poly-s)
							st of M										ECY	Well T	ag:		BJP68	87		
	L	ogge	d by	/: N	. Gerki	in B	oring D	epth: 1	6 feet	GW I	Encount	ered: Y	ES						face E 07/14)' above	e MSL	•	
		Depth (ft)	Connector	GIOULIQWALEI	PID (ppm)	Sample	Blow Counts	Recovery		USCS Classification					l Class Descr							Moll Construction	ער פון כטוואנ עכנוטון	
I	_	-									Gravel	Parking	Surfac	е										
		1 - 2 - 3 -			0.0	Lab		-		GW	sand a	GRAVEL nd grave petrol o	el, suba											
	_	4 -			0.0			-		011	Same a Wet at	as above	e, incre	ased sil	t. No pe	etrol o	odor.							
	_	5 -									werat	4.0												
	_	6 -			0.0																			
	-	7			0.0			-			FILL - (GRAVEL	., medi	um suba	angular	r to su	Ibroun	ded, b	rown t	o gray	΄,			
	_									GP	FILL - GRAVEL, medium subangular to subrounded, brown to gray, saturated. No petrol odor.													
	_	8 -									Appear	s to be a	associa	ted with	trench	n fill fo	or the 1	2" sev	wer ne	arby.				
	_	9 -																						
				_				-																
		10 -			0.0					ML		ith some	o vorv fi	no San	d marc	on to	brown	wot	no no	trol or	lor			
	_	11 -			0.0			-			SILT W	101 30110	everyi		u, marc		DIOWI	1, wei,	no pe		101.			
		40						-																
	_	12 -									-													
	_	13 -	-					-																
	_	- 14 -			0.0																			
	_	-		_				-		SP		very fine ol odor.	e to fine	e, maroo	oon to l	brown	, wet,	poorly	grade	d, trad	ce silt,			
		15 -									no pou													
	_	16 -											1				1		1		1			
	_	17 -										-	•	-	•		•	•	•		•			
		18 -		_																				
	_	19 -																						
	_	20 -																						
		21		Ţ																		\vdash		
		22 -		+								neter Sc												
Цļ												mpleteo												
	_	23 -		+										-					-				<u> </u>	
	_	24 -									1													
\mathbb{H}	_	-																						
		25 -		_																				

AE	ROT	ECH						BORING LOG #	: B1			
		-			Name				Drilling Information			
www.Aerote	echEnvir	onmenta	l.com	Proj	ect Nu	mber:	: 217-	4025			umwater, Direct Pus	
Site Lo	ocatior	n: 341() Pacifi	c Hiahw	/ay East	. Fife. W	/A		-	Core sa	mpler +	
AOC: F	ormer	UST E	Basin		, N3 (nea					virgin po N/A	oly-sleev	e
Borend		cation.	15 11		ws (nea		-25)		Approx. Surface Elev.: 10		MSI	
Logge	d by: N	l. Gerk	in B	oring [Depth: 1	6 feet	GW I	Encountered: YES	Work Date: 07/14/17		MOL	
Depth (ft)	Groundwater	PID (ppm)	Sample	Blow Counts	Recovery		USCS Classification	Soil Class Descri			Well Construction	
								Gravel Parking Surface				
_ 1 -								FILL - GRAVEL and SAND, light brow sand and gravel, subangular to subro				
- 2 -	_							petrol odor.	0	_		
_ 3 -		0.0								-		
4			-							_		
	_				-		SW	FILL - SAND, fine to coarse, gray to b subrounded to subangular gravel, ver				
— 5 - — -		462	LAB		-			odor.	, , , , , , , , , , , , , , , , , , , ,	_		
- 6 -												
- 7 -					_							
- 8 -								Same as Above				
										_		
— 9 - — -		123	LAB				SM	Sandy SILT, reddish dark gray, satura petrol odor.	ated, fine-grained sand. Modera	ate		
_ 10 -												
- 11 -												
		0.2			-		ML	SILT with some very fine Sand, maroo	on to brown, wet, no petrol odd	or. –		
										-		
					-					_		
- 14 - - 15 -		0.0					SP	SAND, very fine to fine, marooon to b no petrol odor.	rown, wet, poorly graded, trace	ə silt,		
 _ 16 -												
	+									┝		
- 17 -					 							
— 18 - 												
- 19 -	+									-		
 20 -					1			Dettem of herebols at 40.5				
								Bottom of borehole at 16 feet. No well installed.				
								Borehole completed with bentonite ch	ips.			
_ 22 -										E		
- 23 -	+									\vdash		
 _ 24 -					1					È		
	+											
- 25 -					1							

LABORATORY ANALYTICAL RESULTS AND CHAIN OF CUSTODY DOCUMENTS

Environmental Testing Laboratory

July 20, 2017

Nick Gerkin Aerotech Environmental, Inc. 13925 Interurban Avenue South, Suite 210 Seattle, WA 98168

Dear Mr. Gerkin:

Please find enclosed the analytical data report for the Fife RV Center (C70714-2) Project.

Samples were received on *July 14*, 2017. The results of the analyses are presented in the attached tables. Applicable reporting limits, QA/QC data and data qualifiers are included. A copy of the chain-of-custody and an invoice for the work is also enclosed.

ADVANCED ANALYTICAL LABORATORY appreciates the opportunity to provide analytical services for this project. Should there be any questions regarding this report, please contact me at (425) 702-8571.

It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

. Ivanov

Val G. Ivanov, Ph.D. Laboratory Manager

4078 148 Ave NE■ Redmond, WA 98052 425.702-8571 *E-mail: aachemlab@yahoo.com*

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized.

Advanced Analytical Laboratory (425) 702-8571

AAL Job Number: Client: Project Manager: Client Project Name: Client Project Number: Date received: C70714-2 Aerotech Environmental Nick Gerkin Fife RV Center na 07/14/17

AAL Job Number:	C70714-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	07/14/17

Analy	/tical	Result	s

8260B, μg/kg		MTH BLK	LCS	B1 (5)	MS	MSD	RPD
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting					07/14/17	
Date analyzed	Limits	07/14/17 0	7/14/17 (07/14/17 (07/14/17	07/14/17	07/14/17
	100						
MTBE	100	nd		nd			
Chloromethane	50	nd		nd			
Vinyl chloride	50	nd		nd			
Bromomethane	50	nd		nd			
Chloroethane	50	nd		nd			
Trichlorofluoromethane	50	nd		nd			
1,1-Dichloroethene	50	nd		nd			
Methylene chloride	20	nd		220			
trans-1,2-Dichloroethene	50	nd		nd			
2,2-Dichloropropane	50	nd		nd			
Chloroform	50	nd		nd			
1,1,1-Trichloroethane	50	nd		nd			
Carbontetrachloride	50	nd		nd			
1,1-Dichloropropene	50	nd		nd			
1,2-Dichloroethane(EDC)	20	nd		nd			
Trichloroethene	20	nd	77%	290	91%	98%	8%
1,2-Dichloropropane	50	nd		nd			
Dibromomethane	50	nd		nd			
Bromodichloromethane	50	nd		nd			
cis-1,3-Dichloropropene	50	nd		nd			
trans-1,3-Dichloropropene	50	nd		nd			
1,1,2-Trichloroethane	50	nd		nd			
Tetrachloroethene	50	nd		nd			
1,3-Dichloropropane	50	nd		nd			
Dibromochloromethane	20	nd		nd			
1,2-Dibromoethane (EDB)*	5	nd		nd			
Chlorobenzene	50	nd	95%	nd	111%	104%	7%
1,1,1,2-Tetrachloroethane	50	nd		nd			
1,2,3-Trichloropropane	50	nd		nd			
1,1,2,2-Tetrachloroethane	50	nd		nd			
2-Chlorotoluene	50	nd		nd			
4-Chlorotoluene	50	nd		nd			
1,3-Dichlorobenzene	50	nd		nd			
1,4-Dichlorobenzene	50	nd		nd			
1,2-Dichlorobenzene	50	nd		nd			
1,2-Dibromo-3-Chloropropane	50	nd		nd			
1,2,4-Trichlorobenzene	50	nd		nd			
1,2,3-Trichlorobenzene	50	nd		nd			
	50	nu		nu			

*-instrument detection limits

AAL Job Number:	C70714-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	07/14/17

Analytical Results

8260B, µg/kg		MTH BLK	LCS	B1 (5)	MS	MSD	RPD
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	07/14/17 (07/14/17	07/14/17	07/14/17	07/14/17	07/14/17
Date analyzed	Limits	07/14/17 (07/14/17	07/14/17	07/14/17	07/14/17	07/14/17

Surrogate recoveries						
Dibromofluoromethane	99%	94%	98%	95%	100%	
1,2-Dichloroethane-d4	96%	98%	126%	103%	95%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits M-matrix interference C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70714-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	07/14/17

Analytical	Results

Analytical Results				
8260B, μg/kg		MTH BLK	LCS	B1 (9)
Matrix	Soil	Soil	Soil	Soil
Date extracted	Reporting	07/20/17 0		
Date analyzed	Limits	07/20/17 0	7/20/17 ()7/20/17
MADE	100			
MTBE	100	nd		nd
Chloromethane	50	nd		nd
Vinyl chloride	50	nd		nd
Bromomethane	50	nd		nd
Chloroethane	50	nd		nd
Trichlorofluoromethane	50	nd		nd
1,1-Dichloroethene	50	nd		nd
Methylene chloride	20	nd		nd
trans-1,2-Dichloroethene	50	nd		nd
2,2-Dichloropropane	50	nd		nd
Chloroform	50	nd		nd
1,1,1-Trichloroethane	50	nd		nd
Carbontetrachloride	50	nd		nd
1,1-Dichloropropene	50	nd		nd
1,2-Dichloroethane(EDC)	20	nd		nd
Trichloroethene	20	nd	79%	nd
1,2-Dichloropropane	50	nd		nd
Dibromomethane	50	nd		nd
Bromodichloromethane	50	nd		nd
cis-1,3-Dichloropropene	50	nd		nd
trans-1,3-Dichloropropene	50	nd		nd
1,1,2-Trichloroethane	50	nd		nd
Tetrachloroethene	50	nd		nd
1,3-Dichloropropane	50	nd		nd
Dibromochloromethane	20	nd		nd
1,2-Dibromoethane (EDB)*	5	nd		nd
Chlorobenzene	50	nd	90%	nd
1,1,1,2-Tetrachloroethane	50	nd		nd
1,2,3-Trichloropropane	50	nd		nd
1,1,2,2-Tetrachloroethane	50	nd		nd
2-Chlorotoluene	50	nd		nd
4-Chlorotoluene	50	nd		nd
1,3-Dichlorobenzene	50	nd		nd
1,4-Dichlorobenzene	50	nd		nd
1,2-Dichlorobenzene	50	nd		nd
1,2-Dibromo-3-Chloropropane	50	nd		nd
1,2,4-Trichlorobenzene	50	nd		nd
1,2,3-Trichlorobenzene	50	nd		nd
* instrument detection limite				

*-instrument detection limits

AAL Job Number:	C70714-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	07/14/17

Analytical Re	sults
---------------	-------

8260B, µg/kg		MTH BLK	LCS	B1 (9)
Matrix	Soil	Soil	Soil	Soil
Date extracted	Reporting	07/20/17	07/20/17	07/20/17
Date analyzed	Limits	07/20/17	07/20/17	07/20/17

Surrogate recoveries			
Dibromofluoromethane	101%	99%	101%
1,2-Dichloroethane-d4	92%	100%	101%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits M-matrix interference C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70714-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	07/14/17

Analytical Results							
NWTPH-Gx / BTEX		MTH BLK	LCS	B1 (5)	MW7 (11)	MW8 (10)	MW9 (3)
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	07/15/17 0	7/15/17	07/15/17	07/15/17	07/15/17	07/15/17
Date analyzed	Limits	07/15/17 0	7/15/17	07/15/17	07/15/17	07/15/17	07/15/17
NWTPH-Gx, mg/kg							
Mineral spirits/Stoddard	5.0	nd		nd	nd	nd	nd
Gasoline	5.0	nd		1,200	nd	nd	nd
<u>ΒΤΕΧ 8021Β, μg/kg</u>							
Benzene	20	nd	98%	2,100	nd	nd	nd
Toluene	50	nd	108%	2,400	nd	nd	nd
Ethylbenzene	50	nd		51,000	nd	nd	nd
Xylénes	50	nd		26,000	nd	nd	nd
Surrogate recoveries:							
Trifluorotoluene		111%	105%	М	88%	87%	87%
Bromofluorobenzene		109%	102%	129%	106%	94%	108%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C70714-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	07/14/17

NWTPH-Gx / BTEX		BLANK	MS	MSD	RPD
Matrix	Soil	Soil	Soil	Soil	Soi
Date extracted	Reporting	07/15/17 ()7/15/17	07/15/17	07/15/17
Date analyzed	Limits	07/15/17 ()7/15/17	07/15/17	07/15/17
NWTPH-Gx, mg/kg					
Mineral spirits/Stoddard	5.0	nd			
Gasoline	5.0	nd			
<u>BTEX 8021B, μg/kg</u>				0.40/	000/
Benzene	20	nd	115%	94%	
Toluene	50	nd	118%	108%	9%
Ethylbenzene	50	nd			
Xylenes	50	nd			
Surrogate recoveries:					
Trifluorotoluene		96%	116%	110%	
Bromofluorobenzene		114%	103%	105%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

Results reported on dry-weight basis Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70714-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	07/14/17

Analytical Results								Dupl
NWTPH-Dx, mg/kg		MTH BLK	B1 (5)	MW7 (11)	MW8 (5)	MW8 (10)	MW9 (3)	MW9 (3)
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	07/15/17	07/15/17	07/15/17	07/15/17	07/15/17	07/15/17	07/15/17
Date analyzed	Limits	07/15/17	07/15/17	07/15/17	07/15/17	07/15/17	07/15/17	07/15/17
Kerosene/Jet fuel	20	nd	nd	nd	nd	nd	nd	nd
Diesel/Fuel oil/Creosote	20	nd	350 *	nd	nd	nd	nd	nd
Heavy oil	50	nd	nd	nd	nd	nd	nd	nd
Surrogate recoveries:								
Fluorobiphenyl		127%	115%	115%	118%	114%	111%	109%
o-Terphenyl		129%	102%	106%	109%	105%	104%	106%
* Unidentifiable petroleun	n product in c	liesel range,	possibly crec	osote				

Data Qualifiers and Analytical Comments

na - not analyzed

Results reported on dry-weight basis

M - matrix interference

Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C70714-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	07/14/17

Analytical Results

PAH (8270 sim), mg/kg		MTH BLK	LCS	B1 (5)	MS	MSD	RPD
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	07/19/17	07/19/17	07/19/17	07/19/17	07/19/17	07/19/17
Date analyzed	Limits	07/19/17	07/19/17	07/19/17	07/19/17	07/19/17	07/19/17
	0.40						
1-Methylnaphthalene	0.10	nd		4.8			
2-Methylnaphthalene	0.10	nd		7.9			
Naphthalene	0.10	nd		0.97			
Acenaphthylene	0.10	nd		nd			
Acenaphthene	0.10	nd	110%	nd	110%	108%	2%
Fluorene	0.10	nd		nd			
Phenanthrene	0.10	nd		1.5			
Anthracene	0.10	nd		0.29			
Fluoranthene	0.10	nd		nd			
Pyrene	0.10	nd	108%	1.5	110%	103%	7%
Benzo(a)anthracene	0.10	nd		nd			
Chrysene	0.10	nd		0.68			
Benzo(b)fluoranthene	0.10	nd		nd			
Benzo(k)fluoranthene	0.10	nd		nd			
Benzo(a)pyrene	0.10	nd		nd			
Indeno(1,2,3-cd)pyrene	0.10	nd		nd			
Dibenzo(ah)anthracene	0.10	nd		nd			
Benzo(ghi)perylene	0.10	nd		nd			
Surrogate recoveries:							
2-Fluorobyphenyl		90%		125%	116%	119%	
o-Terphenyl		99%	99%	100%	99%	100%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed M - matrix interference Results reported on dry-weight basis Acceptable Recovery limits: 50% TO 150% Acceptable RPD limit: 50%
AAL Job Number:	C70714-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	07/14/17

Metals (7010), mg/kg		MTH BLK	LCS	B1 (5)	MW8 (10)	MW9 (3)	MS	MSD	RPD
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	07/16/17	07/16/17	07/16/17	07/16/17	07/16/17	07/16/17	07/16/17	07/16/17
Date analyzed	Limits	07/16/17	07/16/17	07/16/17	07/16/17	07/16/17	07/16/17	07/16/17	07/16/17
Lead (Pb)	1.0	nd	106%	14	2.9	37	М	М	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits M- matrix interference Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70714-2
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	07/14/17

8082 (PCBs), mg/kg		MTH BLK	LCS	B1 (5)	MS	MSD	RPD
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Date extracted	Reporting	07/14/17	07/14/17	07/14/17	07/14/17	07/14/17	07/14/17
Date analyzed	Limits	07/14/17	07/14/17	07/14/17	07/14/17	07/14/17	07/14/17
A1221	0.20	nd		nd			
A1232	0.20	nd		nd			
A1242 (A1016)	0.20	nd		nd			
A1248	0.20	nd		nd			
A1254	0.20	nd		nd			
A1260	0.20	nd	121%	nd	96%	99%	3%
Surrogate recoveries:							
Tetrachloro-m-xylene		104%	99%	98%	106%	107%	
Decachlorobiphenyl		106%	122%	70%	124%	123%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

M - matrix interference

Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

			Chain o	f Custod	y Reco	ord						Page o	of
ADVANCED ANALY	TICAL		Laborato	ory Job #:	Cĩ	707/	4-2	 Redn (425) 	148 Avenu nond, WA 9 702-8571 emlab@y	8052	1		
Client: Arenotech			· =	_			ect Na	me:		_		uter	
Project Manager: Nick Ger Address: 13925 Interv	Now Ar	eS		-			ect Nu	Vick	G	erk.	N		_
	Fax:			_		Date	of col	lection:	7	13/	17		_
Sample ID	Time Matrix	Container type	UNIA 100 826	et stermin	SPH-ST SPH-ST SPH-ST NNN	HUT	D Sering	10 ¹⁰ 10	Periodes Periodes	20 M1C5	eds	Notes, comments	# of containers
	0845 5	134	X	ΙΧ́Γ.	X		X	ΧĹ Î	ŃŇ				2
$2 \overline{3}(9)$	0855		\otimes									& Aolelic	
3 MW7 (7)	1300											by N Gerlin	
	1310			\times	Х							1 07/20/17	
5 MW8 (5)	1045				X							•	
	1055			\mathbf{X}	\times				X				
7 MWY (3)	5915			X	X				X				
8 MWG(5)	525 V	\bigvee											\mathbf{V}
9 BLANK		1004		X									1
10													
11													
12												· · · ·	
······	•					h		Samn	le receipt i	nfo [.]		Turnaround time:	
Relinguished by:	Date/Time		Received	by.		Date/Tin	ne	•	# of con			Same day	
	7/1/ 683		9	~		1-11/7 13			lition (ton				-

Relinguished by:	Date/Time	Received by:	Date/Time
M.A	7/11/17 0830	S. Typerte	74-111 8:30
Relinguished by:	, Date/Time	Received by:	Date/Time
S. Timela	7/14/17 1600	S. Lunlo	- 7/19/17 1400
		Vihana	07/14/17 16 to
			l l

Sample receipt into:
Total # of containers:
Condition (temp, °C)
Seals (intact?, Y/N)
Comments:

24 hr O

48 hr O

Standard

Environmental Testing Laboratory

August 08, 2017

Nick Gerkin Aerotech Environmental, Inc. 13925 Interurban Avenue South, Suite 210 Seattle, WA 98168

Dear Mr. Gerkin:

Please find enclosed the analytical data report for the Fife RV Center (C70802-1) Project.

Samples were received on *August 02, 2017*. The results of the analyses are presented in the attached tables. Applicable reporting limits, QA/QC data and data qualifiers are included. A copy of the chain-of-custody and an invoice for the work is also enclosed.

ADVANCED ANALYTICAL LABORATORY appreciates the opportunity to provide analytical services for this project. Should there be any questions regarding this report, please contact me at (425) 702-8571.

It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

. Ivanov

Val G. Ivanov, Ph.D. Laboratory Manager

4078 148 Ave NE■ Redmond, WA 98052 425.702-8571 *E-mail: aachemlab@yahoo.com*

This report is issued solely for the use of the person or company to whom it is addressed. Any use, copying or disclosure other than by the intended recipient is unauthorized.

Advanced Analytical Laboratory (425) 702-8571

AAL Job Number: Client: Project Manager: Client Project Name: Client Project Number: Date received: C70802-1 Aerotech Environmental Nick Gerkin Fife RV Center na 08/02/17

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Analy	/tical	Results

8260B, μg/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	08/04/17	08/04/17	08/04/17	08/04/17	08/04/17	08/04/17
MTBE	5.0	nd		nd	nd	nd	nd
Chloromethane	1.0	nd		nd	nd	nd	nd
Vinyl chloride(*)	0.2	nd		nd	nd	nd	nd
Bromomethane	1.0	nd		nd	nd	nd	nd
Chloroethane	1.0	nd		nd	nd	nd	nd
Trichlorofluoromethane	1.0	nd		nd	nd	nd	nd
1,1-Dichloroethene	1.0	nd		nd	nd	nd	nd
Methylene chloride	1.0	nd		nd	nd	nd	nd
trans-1,2-Dichloroethene	1.0	nd		nd	nd	nd	nd
1,1-Dichloroethane	1.0	nd		nd	nd	nd	nd
2,2-Dichloropropane	1.0	nd		nd	nd	nd	nd
cis-1,2-Dichloroethene	1.0	nd		nd	nd	nd	nd
Chloroform	1.0	nd		nd	nd	nd	nd
1,1,1-Trichloroethane	1.0	nd		nd	nd	nd	nd
Carbontetrachloride	1.0	nd		nd	nd	nd	nd
1,1-Dichloropropene	1.0	nd		nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd		nd	nd	nd	nd
Trichloroethene	1.0	nd	80%	nd	nd	nd	nd
1,2-Dichloropropane	1.0	nd		nd	nd	nd	nd
Dibromomethane	1.0	nd		nd	nd	nd	nd
Bromodichloromethane	1.0	nd		nd	nd	nd	nd
cis-1,3-Dichloropropene	1.0	nd		nd	nd	nd	nd
trans-1,3-Dichloropropene	1.0	nd		nd	nd	nd	nd
1,1,2-Trichloroethane	1.0	nd		nd	nd	nd	nd
Tetrachloroethene	1.0	nd		nd	nd	nd	nd
1,3-Dichloropropane	1.0	nd		nd	nd	nd	nd
Dibromochloromethane	1.0	nd		nd	nd	nd	nd
1,2-Dibromoethane (EDB)*	0.01	nd		nd	nd	nd	nd
Chlorobenzene	1.0	nd	96%	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	1.0	nd		nd	nd	nd	nd
Bromoform	1.0	nd		nd	nd	nd	nd
1,2,3-Trichloropropane	1.0	nd		nd	nd	nd	nd
Bromobenzene	1.0	nd		nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	1.0	nd		nd	nd	nd	nd
2-Chlorotoluene	1.0	nd		nd	nd	nd	nd
4-Chlorotoluene	1.0	nd		nd	nd	nd	nd
1,3,5-Trimethylbenzene	1.0	nd		nd	nd	nd	nd
1,2,4-Trimethylbenzene	1.0	nd		nd	nd	nd	nd
1,3-Dichlorobenzene	1.0	nd		nd	nd	nd	nd
1,4-Dichlorobenzene	1.0	nd		nd	nd	nd	nd
1,2-Dichlorobenzene	1.0	nd		nd	nd	nd	nd
1,2-Dibromo-3-Chloropropane	1.0	nd		nd	nd	nd	nd

C70802-1
Aerotech Environmental
Nick Gerkin
Fife RV Center
na
08/02/17

Analy	/tical	Resul	its
Anar	yucai	1 (Cou	1.3

8260B, μg/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	08/04/17 (08/04/17	08/04/17	08/04/17	08/04/17	08/04/17
1,2,4-Trichlorobenzene	1.0	nd		nd	nd	nd	nd
1,2,3-Trichlorobenzene	1.0	nd		nd	nd	nd	nd
*-instrument detection limits							

Dibromofluoromethane	101%	97%	116%	99%	96%	107%
1,2-Dichloroethane-d4	98%	87%	108%	89%	99%	107%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Analytical	Results

8260B, μg/L		W-MW5	W-MW6	W-MW7	W-MW8	W-MW9	MS
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	08/04/17	08/04/17	08/04/17	08/04/17	08/04/17	08/04/17
MTBE	5.0	nd	nd	nd	nd	nd	
Chloromethane	1.0	nd	nd		nd	nd	
Vinyl chloride(*)	0.2			nd			
Bromomethane	1.0	nd nd	nd nd	nd nd	nd nd	nd nd	
	1.0						
Chloroethane		nd	nd	nd	nd	nd	
Trichlorofluoromethane	1.0	nd	nd	nd	nd	nd	
1,1-Dichloroethene	1.0 1.0	nd	nd	nd	nd	nd	
Methylene chloride		nd	nd	nd	nd	nd	
trans-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
1,1-Dichloroethane	1.0	nd	nd	nd	nd	nd	
2,2-Dichloropropane	1.0	nd	nd	nd	nd	nd	
cis-1,2-Dichloroethene	1.0	nd	nd	nd	nd	nd	
Chloroform	1.0	nd	nd	nd	nd	nd	
1,1,1-Trichloroethane	1.0	nd	nd	nd	nd	nd	
Carbontetrachloride	1.0	nd	nd	nd	nd	nd	
1,1-Dichloropropene	1.0	nd	nd	nd	nd	nd	
1,2-Dichloroethane (EDC)	1.0	nd	nd	nd	nd	nd	
Trichloroethene	1.0	nd	nd	nd	nd	nd	92%
1,2-Dichloropropane	1.0	nd	nd	nd	nd	nd	
Dibromomethane	1.0	nd	nd	nd	nd	nd	
Bromodichloromethane	1.0	nd	nd	nd	nd	nd	
cis-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	
trans-1,3-Dichloropropene	1.0	nd	nd	nd	nd	nd	
1,1,2-Trichloroethane	1.0	nd	nd	nd	nd	nd	
Tetrachloroethene	1.0	nd	nd	nd	nd	nd	
1,3-Dichloropropane	1.0	nd	nd	nd	nd	nd	
Dibromochloromethane	1.0	nd	nd	nd	nd	nd	
1,2-Dibromoethane (EDB)*	0.01	nd	nd	nd	nd	nd	
Chlorobenzene	1.0	nd	nd	nd	nd	nd	96%
1,1,1,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	
Bromoform	1.0	nd	nd	nd	nd	nd	
1,2,3-Trichloropropane	1.0	nd	nd	nd	nd	nd	
Bromobenzene	1.0	nd	nd	nd	nd	nd	
1,1,2,2-Tetrachloroethane	1.0	nd	nd	nd	nd	nd	
2-Chlorotoluene	1.0	nd	nd	nd	nd	nd	
4-Chlorotoluene	1.0	nd	nd	nd	nd	nd	
1,3,5-Trimethylbenzene	1.0	nd	nd	nd	nd	nd	
1,2,4-Trimethylbenzene	1.0	nd	nd	nd	nd	nd	
1,3-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	
1,4-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	
1,2-Dichlorobenzene	1.0	nd	nd	nd	nd	nd	
1,2-Dibromo-3-Chloropropane	1.0	nd	nd	nd	nd	nd	

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Analy	/tical	Results

8260B, μg/L		W-MW5	W-MW6	W-MW7	W-MW8	W-MW9	MS
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	08/04/17	08/04/17	08/04/17	08/04/17	08/04/17	08/04/17
1,2,4-Trichlorobenzene	1.0	nd	nd	nd	nd	nd	
1,2,3-Trichlorobenzene	1.0	nd	nd	nd	nd	nd	
*-instrument detection limits							
Surrogate recoveries							

1,2-Dichloroethane-d4 94% 104% 101% 103% 103% 90%	Dibromofluoromethane	98%	109%	100%	102%	105%	96%
	1,2-Dichloroethane-d4	94%	104%	101%	103%	103%	90%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Analy	vtical	Resi	ilts

Bit Report MSD RPD Matrix Water Water Water Date analyzed Reporting Limits 08/04/17 08/04/17 MTBE 5.0 Chloromethane 1.0 Vinyl chloride(*) 0.2 Bromomethane 1.0 Trichlorofluoromethane 1.0 Trichlorofluoromethane 1.0 1.1-Dichloroethene 1.0 Trichlorofluoromethane 1.0 1.1-Dichloroethene 1.0 Trichlorofluoromethane 1.0 1.1-Dichloroethene 1.0 Trichlorofluoromethane 1.0 1.1-Dichloroethane 1.0 Trichloroethane 1.0 1.1-Dichloroethane 1.0 Trichloroethane 1.0 1.1-Dichloroptopane 1.0 Trichloroethane 1.0 1.1-Dichloroptopane 1.0 Trichloroethane 1.0 1.1-Dichloroptopane 1.0 Trichloroethane 1.0 1.2-Dichloroptopane 1.0 Trichloroethane 1.0 1.2-Dichloroptopane 1.0 Trichloroethane 1.0	Analytical Results			
Date analyzed Reporting Limits 08/04/17 MTBE 5.0 Chloromethane 1.0 Vinyl chloride(*) 0.2 Bromomethane 1.0 Chloromethane 1.0 Trichlorofluoromethane 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroptopane 1.0 1,1-Dichloroptopene 1.0 1,1-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,1,2-Trichloroptopane 1.0 1,1,1,2-Tetrachloroethane </td <td>8260B, μg/L</td> <td></td> <td></td> <td>RPD</td>	8260B, μg/L			RPD
MTBE 5.0 Chloromethane 1.0 Vinyl chloride(*) 0.2 Bromomethane 1.0 Trichlorofluoromethane 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethane 1.0 1,1-Dichloroethane 1.0 1,1-Trichloroethane 1.0 1,1,1-Trichloroethane 1.0 1,1,1-Trichloroethane 1.0 1,2-Dichloropropane 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,1,1-Z-Trichloroethane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,1,1,2-Tretrachloroethane 1.0				
Chloromethane 1.0 Vinyl chloride(*) 0.2 Bromomethane 1.0 Chloroethane 1.0 Trichlorofluoromethane 1.0 1,1-Dichloroethene 1.0 Methylene chloride 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethene 1.0 2,2-Dichloroethene 1.0 1,1-Dichloroethane 1.0 2,2-Dichloropthane 1.0 1,1-Trichloroethane 1.0 1,1-Trichloroethane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,1,2-Trichloroethane 1.0 1,1,2-Trichloroethane 1.0 1,2-Dichloroptopane 1.0 1,1,2-Tichloroethane 1.0 1,2-Dichloroptopane 1.0	Date analyzed	Reporting Limits	08/04/17 (08/04/17
Chloromethane 1.0 Vinyl chloride(*) 0.2 Bromomethane 1.0 Chloroethane 1.0 Trichlorofluoromethane 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethene 1.0 2,2-Dichloroethene 1.0 1,1-Dichloroethane 1.0 2,2-Dichloropthane 1.0 1,1-Trichloroethane 1.0 1,1-Trichloroethane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,1,2-Trichloroethane 1.0 1,1,2-Trichloroethane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,1,2-Trichloroethane 1.0		5.0		
Vinyl chloride(*) 0.2 Bromomethane 1.0 Chloroethane 1.0 Trichlorofluoromethane 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethene 1.0 1,1-Dichloroethene 1.0 2,2-Dichloropthene 1.0 2,2-Dichloropthene 1.0 2,2-Dichloropthene 1.0 1,1-Trichloroethane 1.0 2,2-Dichloropthane 1.0 1,1-Trichloroethane 1.0 1,1-Dichloropthane 1.0 1,1-Dichloropthane 1.0 1,1-Dichloropthane 1.0 1,2-Dichloropthane (EDC) 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,1,2-Trichloropthane 1.0 1,1,2-Trichloropthane 1.0 1,2-Dichloropthane 1.0 1,2-Dichloropthane 1.0 1,2-Dichloropthane 1.0 <tr< td=""><td></td><td></td><td></td><td></td></tr<>				
Bromomethane 1.0 Chloroethane 1.0 Trichlorofluoromethane 1.0 1,1-Dichloroethene 1.0 trans-1,2-Dichloroethene 1.0 1,1-Dichloroethene 1.0 2,2-Dichloropthane 1.0 2,2-Dichloroethane 1.0 2,2-Dichloroptopane 1.0 cis-1,2-Dichloroethane 1.0 1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloroptopane 1.0 1,1-Dichloroptopene 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,1,2-Trichloropthane 1.0 1,1,2-Trichloropthane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloropthane 1.0 1,2-Dichloropthane 1.0 1,2-Dichloropthane				
Chloroethane 1.0 Trichlorofluoromethane 1.0 1,1-Dichloroethene 1.0 Methylene chloride 1.0 trans-1,2-Dichloroethene 1.0 1,1-Dichloroethane 1.0 2,2-Dichloroethene 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1-Trichloroethane 1.0 1,1,1-Trichloroethane 1.0 1,1,1-Trichloroethane 1.0 1,1,1-Trichloroethane 1.0 1,2-Dichloropropene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloropropane 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 1,2-Dibromoethane (EDB)* 0.01 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 1,2,3-Trichloroethane 1.0 1,2,3-Trichloroethane 1.0	-			
Trichlorofluoromethane 1.0 1,1-Dichloroethene 1.0 Methylene chloride 1.0 trans-1,2-Dichloroethene 1.0 1,1-Dichloroethane 1.0 2,2-Dichloroptopane 1.0 cis-1,2-Dichloroethene 1.0 2,2-Dichloroptopane 1.0 1,1-Dichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloroptopene 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,1,2-Trichloroptopene 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane 1.0 1,2-Dibromoethane 1.0 1,2-Dibromoethane 1.0 1,2-Dibromoethane 1.0 1,2-Dibromoethane 1.0 1,2,3-Trichloroptopane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,3-Trichloroptopane <				
1,1-Dichloroethene 1.0 Methylene chloride 1.0 trans-1,2-Dichloroethene 1.0 1,1-Dichloroethane 1.0 2,2-Dichloropropane 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1-Trichloroethane 1.0 1,1-Trichloroethane 1.0 1,1-Dichloropropene 1.0 1,1-Dichloropropene 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethane 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 1,2-Dichloropropane 1.0 1,3-Dichloropropene 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane 1.0 1,2-Dibromoethane 1.0 1,2-Dibromoethane 1.0 1,2,3-Trichloroethane 1.0 1,2,3-Trichloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0				
Methylene chloride 1.0 trans-1,2-Dichloroethene 1.0 1,1-Dichloroethane 1.0 2,2-Dichloropropane 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1,1-Trichloroethane 1.0 1,1,1-Trichloroethane 1.0 1,1,1-Trichloroethane 1.0 1,1-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopene 1.0 1,2-Dichloroptopane 1.0 Dibromomethane 1.0 Scomodichloropropane 1.0 Dibromoethane 1.0 1,1,2-Trichloroptopene 1.0 1,1,2-Trichloropthane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,2,3-Trichloroptopane 1.0 1,2,3-Trichloroptopane 1.0 2,3-Trichloroptopane 1.0 2,3-Trichloropto				
trans-1,2-Dichloroethene 1.0 1,1-Dichloroethane 1.0 2,2-Dichloropropane 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,1-Dichloroptopene 1.0 1,2-Dichloroethane (EDC) 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 1,2-Dichloroptopane 1.0 Dibromomethane 1.0 restrachloroptopane 1.0 1,1,2-Trichloroptopane 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,2,3-Trichloroptopane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,3-Trichloroptopane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,2-Tetrachloroet	,			
1,1-Dichloroethane 1.0 2,2-Dichloropropane 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,1-Dichloropthane (EDC) 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 1,2-Dichloroptopane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 cis-1,3-Dichloropropene 1.0 1,1,2-Trichloroethene 1.0 1,2-Dibromorethane 1.0 1,3-Dichloropropene 1.0 1,2-Dibromothane (EDB)* 0.01 Chlorobenzene 1.0 1,2,3-Trichloroethane 1.0 1,2,3-Trichloropthane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,3-Trichloropthane 1.0 1,2,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,2-Tetrachloroethane 1.0 1,2,2-Tetrachlor	5			
2,2-Dichloropropane 1.0 cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1,1-Trichloroethane 1.0 (arbornetrachloride 1.0 1,1-Dichloropethane 1.0 1,1-Dichloropopene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 1,2-Dichloropropane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 rics-1,3-Dichloropropene 1.0 1,1,2-Trichloroethene 1.0 1,1,2-Trichloroptopene 1.0 1,1,2-Trichloroethene 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,2,3-Trichloroptopane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 1,3,				
cis-1,2-Dichloroethene 1.0 Chloroform 1.0 1,1,1-Trichloroethane 1.0 1,1,1-Trichloroethane 1.0 1,1-Dichloroptane 1.0 1,2-Dichloroptane (EDC) 1.0 1,2-Dichloroptane 1.0 1,2-Dichloroptane 1.0 1,2-Dichloroptane 1.0 1,2-Dichloroptane 1.0 1,2-Dichloroptane 1.0 1,2-Dichloroptane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 rans-1,3-Dichloroptopene 1.0 1,1,2-Trichloroethane 1.0 1,2-Dibromoethane 1.0 1,3-Dichloroptopane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenze				
Chloroform 1.0 1,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 1,2-Dichloroptopane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 cis-1,3-Dichloropropane 1.0 1,1,2-Trichloroethene 1.0 1,3-Dichloroptopane 1.0 1,2-Dibloroptopane 1.0 1,3-Dichloroptopane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,2-Tetrachloroethane 1.0 1,1,2-Tetrachloroethane 1.0 1,1,2-Tetrachloroethane 1.0 1,1,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,3-Di				
1,1,1-Trichloroethane 1.0 Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethane 1.0 1,2-Dichloroptopane 1.0 Dibromomethane 1.0 Bromodichloropropane 1.0 Stromodichloromethane 1.0 stromodichloropropane 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,2,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0				
Carbontetrachloride 1.0 1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 1,2-Dichloroptopane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 retrachloroethene 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibronoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 Bromoform 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0				
1,1-Dichloropropene 1.0 1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 91% 2% 1,2-Dichloropropane 1.0 Dibromomethane 1.0 Dibromomethane 1.0 0 91% 2% 1,2-Dichloropropane 1.0 0 01% 2% 1,2-Dichloropropane 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,1,2 0 1,1,2 1 0 1 1,1,2 0 1 1,1,2 1	, ,			
1,2-Dichloroethane (EDC) 1.0 Trichloroethene 1.0 91% 2% 1,2-Dichloropropane 1.0 Dibromomethane 1.0 Dibromomethane 1.0 0 1.0 Bromodichloromethane 1.0 0 1.0 cis-1,3-Dichloropropene 1.0 1.0 1.1 trans-1,3-Dichloropropene 1.0 1.1 1.1 1,1,2-Trichloroethane 1.0 1.0 1.1 1,3-Dichloropropane 1.0 1.0 1.1 1,3-Dichloropropane 1.0 1.0 1.1 1,2-Dibromochloromethane 1.0 1.0 1.1 1,2-Dibromochloromethane 1.0 101% 5% 1,1,1,2-Tetrachloroethane 1.0 101% 5% 1,1,1,2-Tetrachloroethane 1.0 1.1 1.2,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 1.0 1.1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1.2,4-Trimethylbenzene 1.0 1.3,5-Trimethylbenzene 1.0 1,3,5-Dichlorobenzene 1.0 1.1,2,2-Dichlorobenzen				
Trichloroethene 1.0 91% 2% 1,2-Dichloropropane 1.0 Dibromomethane 1.0 Dibromomethane 1.0 Grad and an and and and and and and and an				
1,2-Dichloropropane 1.0 Dibromomethane 1.0 Bromodichloromethane 1.0 cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,2-Tetrachloroethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,2,3-Trichloropropane 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0	, ,		010/	00/
Dibromomethane 1.0 Bromodichloromethane 1.0 cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,2-Tetrachloroethane 1.0 1,1,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 Bromoform 1.0 1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Di			91%	2%
Bromodichloromethane 1.0 cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,2-Tetrachloroethane 1.0 1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0	, , ,			
cis-1,3-Dichloropropene 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,3-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0				
trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,2-Tetrachloroethane 1.0 1,1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0				
1,1,2-Trichloroethane 1.0 Tetrachloroethene 1.0 1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 1,1,2-Tetrachloroethane 1.0 1,1,2-Tetrachloroethane 1.0 Bromoform 1.0 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1,2,4-Trimethylbenzene 1.0 1,3-Dichlorobenzene 1.0 1,4-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0 1,2-Dichlorobenzene 1.0	· · ·			
Tetrachloroethene1.01,3-Dichloropropane1.0Dibromochloromethane1.01,2-Dibromoethane (EDB)*0.01Chlorobenzene1.01,1,2-Tetrachloroethane1.0Bromoform1.01,2,3-Trichloropropane1.0Bromobenzene1.01,1,2,2-Tetrachloroethane1.01,2,3-Trichloropropane1.01,1,2,2-Tetrachloroethane1.02-Chlorotoluene1.01,3,5-Trimethylbenzene1.01,3,5-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.01,2-Dichlorobenzene1.0	· · ·			
1,3-Dichloropropane 1.0 Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 101% 5% 1,1,1,2-Tetrachloroethane 1.0 101% 5% 1,1,1,2-Tetrachloroethane 1.0 101% 5% 1,2,3-Trichloropropane 1.0 10 1,2,3-Trichloropropane 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 1.1,2,2-Tetrachloroethane 1.0 1.3,3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1.2,4-Trimethylbenzene 1.0 1.3,3-Dichlorobenzene 1.0 1,3-Dichlorobenzene 1.0 1.2,2-Dichlorobenzene 1.0 1.2,2-Dichlorobenzene 1.0	, ,			
Dibromochloromethane 1.0 1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 101% 5% 1,1,1,2-Tetrachloroethane 1.0 101% 5% 1,1,1,2-Tetrachloroethane 1.0 101% 5% Bromoform 1.0 101% 5% 1,2,3-Trichloropropane 1.0 1 1,2,3-Trichloropropane 1.0 Bromobenzene 1.0 1 1,1,2,2-Tetrachloroethane 1.0 1,1,2,2-Tetrachloroethane 1.0 2-Chlorotoluene 1.0 1.0 1.1,3,5-Trimethylbenzene 1.0 1.3,5-Trimethylbenzene 1.0 1,3,5-Trimethylbenzene 1.0 1.2,4-Trimethylbenzene 1.0 1.3-Dichlorobenzene 1.0 1,3-Dichlorobenzene 1.0 1.2-Dichlorobenzene 1.0 1.2-Dichlorobenzene 1.0				
1,2-Dibromoethane (EDB)* 0.01 Chlorobenzene 1.0 101% 5% 1,1,1,2-Tetrachloroethane 1.0 101% 5% 1,1,1,2-Tetrachloroethane 1.0 101% 5% Bromoform 1.0 101% 5% 1,2,3-Trichloropropane 1.0 1.0 1,2,3-Trichloropropane 1.0 1,1,2,2-Tetrachloroethane 1.0 1.1	· · ·			
Chlorobenzene1.0101%5%1,1,1,2-Tetrachloroethane1.0Bromoform1.01,2,3-Trichloropropane1.0Bromobenzene1.01,1,2,2-Tetrachloroethane1.02-Chlorotoluene1.04-Chlorotoluene1.01,3,5-Trimethylbenzene1.01,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.0				
1,1,1,2-Tetrachloroethane1.0Bromoform1.01,2,3-Trichloropropane1.0Bromobenzene1.01,1,2,2-Tetrachloroethane1.02-Chlorotoluene1.04-Chlorotoluene1.01,3,5-Trimethylbenzene1.01,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.01,2-Dichlorobenzene1.0				
Bromoform1.01,2,3-Trichloropropane1.0Bromobenzene1.01,1,2,2-Tetrachloroethane1.02-Chlorotoluene1.04-Chlorotoluene1.01,3,5-Trimethylbenzene1.01,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.01,2-Dichlorobenzene1.0			101%	5%
1,2,3-Trichloropropane1.0Bromobenzene1.01,1,2,2-Tetrachloroethane1.02-Chlorotoluene1.04-Chlorotoluene1.01,3,5-Trimethylbenzene1.01,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.01,2-Dichlorobenzene1.0	1,1,1,2-Tetrachloroethane			
Bromobenzene1.01,1,2,2-Tetrachloroethane1.02-Chlorotoluene1.04-Chlorotoluene1.01,3,5-Trimethylbenzene1.01,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.01,2-Dichlorobenzene1.0				
1,1,2,2-Tetrachloroethane1.02-Chlorotoluene1.04-Chlorotoluene1.01,3,5-Trimethylbenzene1.01,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.01,2-Dichlorobenzene1.0	1,2,3-Trichloropropane	1.0		
2-Chlorotoluene1.04-Chlorotoluene1.01,3,5-Trimethylbenzene1.01,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.0	Bromobenzene	1.0		
4-Chlorotoluene1.01,3,5-Trimethylbenzene1.01,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.0	1,1,2,2-Tetrachloroethane	1.0		
1,3,5-Trimethylbenzene1.01,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.0	2-Chlorotoluene	1.0		
1,2,4-Trimethylbenzene1.01,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.0	4-Chlorotoluene	1.0		
1,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.0	1,3,5-Trimethylbenzene	1.0		
1,3-Dichlorobenzene1.01,4-Dichlorobenzene1.01,2-Dichlorobenzene1.0	1,2,4-Trimethylbenzene	1.0		
1,2-Dichlorobenzene 1.0	-	1.0		
,	1,4-Dichlorobenzene	1.0		
1.2-Dibromo-3-Chloropropane 1.0	1,2-Dichlorobenzene	1.0		
	1,2-Dibromo-3-Chloropropane	1.0		

C70802-1
Aerotech Environmental
Nick Gerkin
Fife RV Center
na
08/02/17

Analytical Results			
8260B, μg/L		MSD	RPD
Matrix	Water	Water	Water
Date analyzed	Reporting Limits	08/04/17 0)8/04/17
1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene *-instrument detection limits	1.0 1.0		
Surrogate recoveries			

Dibromofluoromethane98%1,2-Dichloroethane-d487%	Surrogate recoveries	
1,2-Dichloroethane-d4 87%	Dibromofluoromethane	98%
	1,2-Dichloroethane-d4	87%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Analy	/tical	Results	

NWTPH-Gx/BTEX		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	08/03/17 (08/03/17	08/03/17	08/03/17	08/03/17	08/03/17
<u>NWTPH-Gx, ug/L</u>	100						
Mineral spirits/Stoddard	100	nd		nd	nd	nd	nd
Gasoline	100	nd		nd	25,000	620	2,100
<u>ΒΤΕΧ 8021Β, μg/L</u>							
Benzene	1.0	nd	96%	nd	980	nd	94
Toluene	1.0	nd	102%	nd	62	nd	4.4
Ethylbenzene	1.0	nd		nd	540	2.4	170
Xylenes	1.0	nd		nd	1,300	1.3	1.0
Surrogate recoveries:							
Trifluorotoluene		97%	113%	92%	92%	84%	106%
Bromofluorobenzene		107%	109%	108%	100%	103%	112%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not detected at listed reporting limits na - not analyzed C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Analytical Results							Dupl	
NWTPH-Gx/BTEX		W-MW5	W-MW6	W-MW7	W-MW8	W-MW9	W-MW9	MS
Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	08/03/17	08/03/17	08/03/17	08/03/17	08/03/17	08/03/17	08/03/17
<u>NWTPH-Gx, ug/L</u>	100							
Mineral spirits/Stoddard	100	nd	nd	nd	nd	nd	nd	
Gasoline	100	nd	nd	nd	nd	nd	nd	
<u>ΒΤΕΧ 8021Β, μg/L</u>								
Benzene	1.0	nd	nd	nd	nd	nd	nd	97%
Toluene	1.0	nd	nd	nd	nd	nd	nd	108%
Ethylbenzene	1.0	nd	nd	nd	nd	nd	nd	
Xylenes	1.0	nd	nd	nd	nd	nd	nd	
Surrogate recoveries:								
Trifluorotoluene		88%	114%	85%	91%	81%	90%	112%
Bromofluorobenzene		107%	124%	108%	106%	103%	113%	108%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

na - not detected at listed reporting limits na - not analyzed C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Analytical Results			
NWTPH-Gx/BTEX		MSD	RPD
Matrix	Water	Water	Water
Date analyzed	Reporting Limits	08/03/17 (08/03/17
<u>NWTPH-Gx, ug/L</u> Mineral spirits/Stoddard Gasoline	100 100		
<u>BTEX 8021B, μg/L</u> Benzene Toluene Ethylbenzene Xylenes	1.0 1.0 1.0 1.0	88% 96%	10% 12%
Surrogate recoveries: Trifluorotoluene Bromofluorobenzene		105% 105%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

na - not detected at listed reporting limits na - not analyzed C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130% Acceptable RPD limit: 30%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Analytical Results

NWTPH-Dx, mg/L		MTH BLK	W-MW1	W-MW2	W-MW3	W-MW4	W-MW5
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	08/03/17	08/03/17	08/03/17	08/03/17	08/03/17	08/03/17
Date analyzed	Limits	08/03/17	08/03/17	08/03/17	08/03/17	08/03/17	08/03/17
Kerosene/Jet fuel	0.20	nd	nd	nd	nd	nd	nd
Diesel/Fuel oil	0.20	nd	nd	nd	nd	nd	nd
Heavy oil	0.50	nd	nd	nd	nd	nd	nd
Surrogate recoveries:							
Fluorobiphenyl		97%	94%	95%	97%	96%	94%
o-Terphenyl		99%	95%	95%	97%	96%	94%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

NWTPH-Dx, mg/L		W-MW6	W-MW7	W-MW8	W-MW9
Matrix	Water	Water	Water	Water	Water
Date extracted	Reporting	08/03/17	08/03/17	08/03/17	08/03/17
Date analyzed	Limits	08/03/17	08/03/17	08/03/17	08/03/17
Kerosene/Jet fuel	0.20	nd	nd	nd	nd
Diesel/Fuel oil	0.20	nd	nd	nd	nd
Heavy oil	0.50	nd	nd	nd	nd
Surrogate recoveries:					
Fluorobiphenyl		95%	98%	95%	93%
o-Terphenyl		95%	99%	96%	93%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks Acceptable Recovery limits: 70% TO 130%

Acceptable RPD limit: 30%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Analytical Result	ts
-------------------	----

PAH(8270), ug/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	08/07/17	08/07/17	08/07/17	08/07/17	08/07/17	08/07/17
Date analyzed	Limits	08/07/17	08/07/17	08/07/17	08/07/17	08/07/17	08/07/17
Naphthalene	0.1	nd		nd	4.3	0.60	nd
1-MethylNaphthalene	0.1	nd		nd	1.3	0.22	nd
2-MethylNaphthalene	0.1	nd		nd	0.92	0.14	nd
Acenaphthylene	0.1	nd		nd	nd	nd	nd
Acenaphthene	0.1	nd	109%	nd	nd	nd	nd
Fluorene	0.1	nd		nd	nd	nd	nd
Phenanthrene	0.1	nd		nd	1.0	0.82	0.36
Anthracene	0.1	nd		nd	nd	nd	nd
Fluoranthene	0.1	nd		nd	0.48	0.34	0.18
Pyrene	0.1	nd	108%	nd	0.50	0.36	0.18
Benzo(a)anthracene	0.1	nd		nd	nd	nd	nd
Chrysene	0.1	nd		nd	nd	nd	nd
Benzo(b)fluoranthene	0.1	nd		nd	nd	nd	nd
Benzo(k)fluoranthene	0.1	nd		nd	nd	nd	nd
Benzo(a)pyrene	0.1	nd		nd	nd	nd	nd
Indeno(1,2,3-cd)pyrene	0.1	nd		nd	nd	nd	nd
Dibenzo(ah)anthracene	0.1	nd		nd	nd	nd	nd
Benzo(ghi)perylene	0.1	nd		nd	nd	nd	nd

Surrogate recoveries:						
Fluorobiphenyl	109%	128%	99%	106%	115%	100%
o-Terphenyl	102%	97%	103%	98%	103%	103%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed Acceptable Recovery limits: 50% TO 150% Acceptable RPD limit: 50%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Analy	/tical	Results

PAH(8270), ug/L		W-MW5	W-MW6	W-MW8	W-MW9	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	08/07/17	08/07/17	08/07/17	08/07/17	08/07/17	08/07/17	08/07/17
Date analyzed	Limits	08/07/17	08/07/17	08/07/17	08/07/17	08/07/17	08/07/17	08/07/17
Naphthalene	0.1	nd	nd	nd	nd			
1-MethylNaphthalene	0.1	nd	nd	nd	nd			
2-MethylNaphthalene	0.1	nd	nd	nd	nd			
Acenaphthylene	0.1	nd	nd	nd	nd			
Acenaphthene	0.1	nd	nd	nd	nd	104%	110%	5%
Fluorene	0.1	nd	nd	nd	nd			
Phenanthrene	0.1	nd	nd	nd	nd			
Anthracene	0.1	nd	nd	nd	nd			
Fluoranthene	0.1	nd	nd	nd	nd			
Pyrene	0.1	nd	nd	nd	nd	103%	108%	4%
Benzo(a)anthracene	0.1	nd	nd	nd	nd			
Chrysene	0.1	nd	nd	nd	nd			
Benzo(b)fluoranthene	0.1	nd	nd	nd	nd			
Benzo(k)fluoranthene	0.1	nd	nd	nd	nd			
Benzo(a)pyrene	0.1	nd	nd	nd	nd			
Indeno(1,2,3-cd)pyrene	0.1	nd	nd	nd	nd			
Dibenzo(ah)anthracene	0.1	nd	nd	nd	nd			
Benzo(ghi)perylene	0.1	nd	nd	nd	nd			

Surrogate recoveries:						
Fluorobiphenyl	94%	105%	97%	110%	125%	128%
o-Terphenyl	98%	99%	97%	101%	99%	102%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed Acceptable Recovery limits: 50% TO 150% Acceptable RPD limit: 50%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Metals Total (7010), mg/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	08/02/17	08/02/17	08/02/17	08/02/17	08/02/17	08/02/17
Date analyzed	Limits	08/02/17 (08/02/17	08/02/17	08/02/17	08/02/17	08/02/17
Lead Total (Pb)	0.002	nd	116%	nd	nd	nd	nd

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 30%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Metals Total (7010), mg/L		W-MW5	W-MW6	W-MW7	W-MW8	W-MW9	MS	MSD
Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	08/02/17	08/02/17	08/02/17	08/02/17	08/02/17	08/02/17	08/02/17
Date analyzed	Limits	08/02/17	08/02/17	08/02/17	08/02/17	08/02/17	08/02/17	08/02/17
Lead Total (Pb)	0.002	nd	nd	nd	nd	nd	96%	97%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed Acceptable Recovery limits: 65% TO 135% Acceptable RPD limit: 30%

AAL Job Number:	C70802-1
Client:	Aerotech Environmental
Project Manager:	Nick Gerkin
Client Project Name:	Fife RV Center
Client Project Number:	na
Date received:	08/02/17

Metals Total (7010), mg/L		RPD
Matrix	Water	Water
Date extracted	Reporting	08/02/17
Date analyzed	Limits	08/02/17
Lead Total (Pb)	0.002	1%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits na - not analyzed

Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 30%

,		Chain of Custo	ody Record		Page of
ADVANCED ANA	LYTICAL	Laboratory Job	<u>#: C70802- </u>	4078 148 Avenue NE Redmond, WA 98052 (425) 702-8571	
<u>Client:</u> <u>Aerstech</u>			Project Nan	aachemlab@yahoo.com ne: F1fe RV Cevt	201
Project Manager: Nick Con	2r SIN		Project Num		
Address: 13925 Intervite	wAves,	TUKnila, WH	Collector: /	Vick Gerkin	
Phone: 206 482 2287	Fax:	·		ection: 8/1/17	
Comple ID	Time	Container type	1410H-5+ 2+ 0 1410H-5+ 1410+ 0 1010H-5+ 1410+ 0 105501000 1010H-1010H-1010H-1010 1010H-100H-1010H-100	67 27 255 2510 ¹⁰ 0 10 ¹⁰ 1.55 10 ¹⁰ 28 20 257 25 ¹⁰ 5 ¹⁰ 1.55 10 ¹⁰	Notes, comments
$1 \qquad \qquad$	Time Matrix				Notes, comments
2 $W-MWZ$	1420 1				
3 W-MWS	1315				
4 W-MW2	1340		XX		
5 W-MWS	1130				
6 W - MWG	1105				
7 W-MW7	445 2				4
8 W-MWS	1000				6
9 W-MWM	0925 1				*
10			,		
11					
12					
				Sample receipt info:	Turnaround time:

Relinguished by:	Date/Time	Received by:	Date/Time
766	8/2/17 10/5	Sidnet	Ella ints
Relinguished by:	Date/Time	Received by:	Date/Time
Auto	8/2/12/11:00	1 4'aun vs/02	17 11:05

Sample receipt into.	Turnarou
Total # of containers:	Sa
Condition (temp, °C)	
Seals (intact?, Y/N)	
Comments:	S

Same day O 24 hr O 48 hr O Standard X SUPPORTING DOCUMENTATION

Nick Gerkin

From:	wa@occinc.com
Sent:	Thursday, July 6, 2017 18:06
То:	NICK@DIRTYDIRT.US
Subject:	Ticket: 17252517

WASHINGTON UTILITY NOTIFICATION CENTER

DO NOT REPLY TO THIS EMAIL

Washington Tick	et#:	17252517	2 FUL	L BUSINESS DAYS		
Transmit Date:		7/06/17	Time:	6:06 PM		
Original Call Date	e:	7/06/17	Time:	5:59 PM	Тур	e: CALL
Work to Begin Da	ate:	7/11/17	Time:	12:00 AM		
		Ca	aller Inform	nation		
Company:		AEROTECH		Туре:	NON-MEMBER	
Contact Name:		NICHOLAS GERK	(IN	Phone:	(206) 482-228	7
Alt. Contact:		NICHOLAS - CEL	L.	Phone:	(253) 282-030	6
Best Time:				Fax:	(206) 402-387	2
Address:				O.210; SEATTLE, WA	98168	
Caller Email:		NICK@DIRTYDIR	T.US			
			g Site Info	rmation		
Type of Work:		INSTALL MONIT	OR WELLS			
Work Being Done	For:	PROP OWNER				
		ſ	Dig Site Lo	cation		
County:		PIERCE		State:	WA	
Place:		FIFE				
Address / Street:		3410 PACIFIC H	WY E			
Nearest Intersec	tion:	TIDEHAVEN RD				
Location of Worl	k:					
EXCAVATION SI	TE IS ON 7	THE S SIDE OF TH	HE ROAD. A	DD IS APX 400 FT	E FROM ABV IN	TER
MARK AREA MAR	RKED IN WHI	TE AT ABV ADD				
WORK IS GRAVE	L RV PARKI	ING LOT				
CALLER GAVE G	PS					
Remarks:						
-		CALLER GAVE TOW				
DEST INI ORMATIC		CALLER GAVE TOW	NJIIF, NANG	L, SECTION IN O		
Caller Twp:	20N	Rng: 3E	Sect-Qtr:	2		
Map Twp:	20N	Rng: 3E	-	12-NW,11-NE,2-SE,1	-SW	
Caller Lat:	47.243	Lon: -122.385	Zone:	····, ··-,- ·· -,·	Caller Nad:	83
Excavation Coor					caller fidd.	
		Lon: -122.383633	0 SE Lat:	47.2414478	Lon:	-122.3743288
		Ν	Aembers N	ouned		

1

Repair

ADTEL04	INTEGRA TELECOM	(800)762-0592	(866)468-3472	(866)468-3472
CC7711	COMCAST CABLE	(800)762-0592	(800)266-2278	(888)824-8289
ELCLT01	INTEGRA TELECOM	(800)762-0592	(866)468-3472	(866)468-3472
FIFE01	CITY OF FIFE	(253)922-9315	(253)922-9315	(253)922-9315
MCCHRD01	MC CHORD PIPELINE COMPANY	(253)383-1651	(253)383-1651	(253)383-1651
MTRMED01	ZAYO FNA ABOVENET	(888)267-1063	(443)403-2023	(888)267-1063
OLYPE01	BP/OLYMPIC PIPE LINE COMPANY	(425)981-2517	(425)981-2517	(888)271-8880
PUGE07	PUGET SOUND ENERGY ELECTRIC	(888)728-9343	(888)225-5773	(888)225-5773
PUGG07	PUGET SOUND ENERGY GAS	(888)728-9343	(888)225-5773	(888)225-5773
QLNWA24	CTLQL-CENTURYLINK	(800)778-9140	(800)283-4237	(800)573-1311
TACPWR01	TACOMA PWR & CLICK NETWORK	(253)502-8263	(253)502-8600	(253)383-0982
WSDOT10	WA DOT - OLYMPIC REGION	(360)357-2647	(360)357-2647	(360)357-2647
	_			

Excavator Responsibilities

Please click on the following link to verify and confirm that the area covered represents the correct and complete * work site area.

Link To Map for C_EMAIL

- * If the area covered is incomplete or inaccurate, it is your responsibility to notify the center immediately to update and correct the locate. Failure to do so could result in a delay or an incomplete utility locate.
- * Any other utilities or notification centers not listed, you will need to contact separately.

Did you know that you can submit your tickets online?

- Eliminate hold times.
- Immediately receive a ticket number.
 View, Search, Update, Duplicate, and Print tickets.
 Click the link below to Register for ITIC and start submitting your tickets on line today!
 Washington ITIC