GROUNDWATER MONITORING REPORT:

2nd Quarter - February 2017

Fife RV Center 3410 Pacific Highway East Fife, Washington 98424

AEROTECH Environmental Consulting Inc.

February 20, 2017

Anchorage Seattle Portland

Cost-effective environmental solutions for the western United States and Alaska

AEROTECH

Environmental Consulting Inc.

13925 Interurban Avenue South, Suite 210 Seattle, Washington 98168 (360) 710-5899

512 W. International Airport Road, Suite 201 Anchorage, Alaska 99518 (907) 575-6661

March 8, 2017

Mr. Chris LaVerdiere Fife RV Center 3410 Pacific Highway East Fife, Washington 98424

RE: Groundwater Monitoring Report - 2nd Quarter - February 2017

Fife RV Center

3410 Pacific Highway East, Fife, Washington

ensed Geo

James G. McDermott

Fife, Washington 98424

Dear Mr. LaVerdiere,

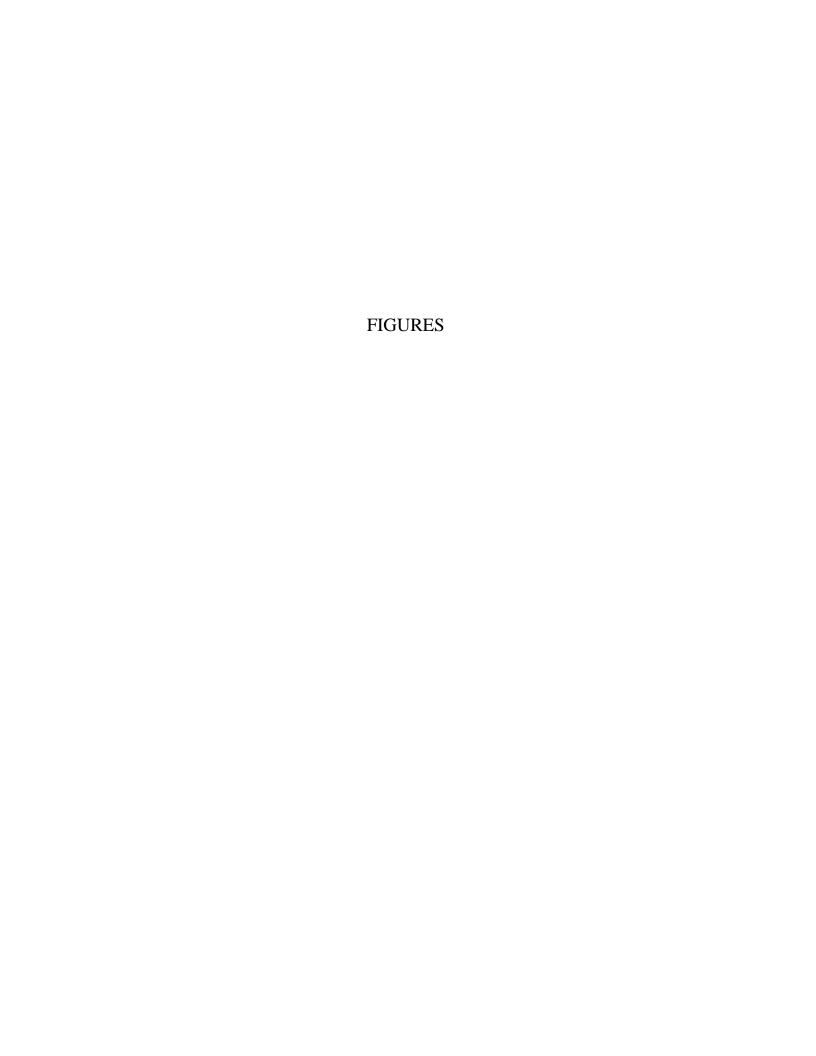
As you are aware, Aerotech Environmental Consulting, Inc. ("Aerotech") has been retained to collect quarterly groundwater samples from six groundwater monitoring wells previously installed at Fife RV Center in Fife, Washington. Aerotech conducted the second round of groundwater monitoring and sampling activities on February 20, 2017. Enclosed, please find the associated tabulated analytical results, site drawings, laboratory analytical report, and standard operating procedure document.

Please feel free to contact the Aerotech Geologist, Mr. James McDermott, at (425) 686-0032, or the Aerotech Field Sampling Coordinator, Mr. Nicholas Gerkin at (206) 482-2287 if you have any questions regarding work completed at this Site.

Sincerely,

James G. McDermott State of Washington

Licensed Geologist No. 308


Nick Gerkin Environmental Professional

Washington State UST Site Assessor

ICC UST Decommissioning Supervisor

APPENDIX

- Figures
- Laboratory Analytical Results
- Laboratory Chain of Custody
- Low-Flow Groundwater Sampling Standard Operating Procedure
- Field Measurement Data Sheets

GROUNDWATER ANALYTICAL RESULTS

Fife RV Center 3410 Pacific Highway East Fife, Washington

Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	Dissolved Lead	Tota Lea
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/
14.4	11/18/16	1.37	8.37	7.00	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	<2.0	<2.
	02/20/17	1.19	8.37	7.18	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	<2.0	<2
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	15	15
1W-2																
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	Dissolved Lead	Tot Lea
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μд
14.2	11/18/16	2.53	9.40	6.87	18,000	<200	<500	470	18	210	200	<0.01	<1.0	<5.0	<2.0	<2
	02/20/17	2.25	9.40	7.15	29,000	<200	<500	720	26	490	700	<0.01	<1.0	<5.0	<2.0	<2
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	15	1
<u>1W-3</u>																
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	Dissolved Lead	To: Lea
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μе
14.6	11/18/16	2.19	9.43	7.24	42,000	<200	<500	130	16	2,800	120	<0.01	<1.0	<5.0	<2.0	<2
	02/20/17	2.02	9.43	7.41	10,000	<200	<500	28	<1,000	620	92	<0.01	<1.0	<5.0	<2.0	<2
		MTCA	Method A Cleanup	Levels	800	500	500	5	1,000	700	1,000	0.01	5	20	15	1
1W-4																_
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	ТРНо	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	Dissolved Lead	To:
Feet	44/40/46	Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μд
14.5	11/18/16	3.31	10.12	6.81	1,900	<200	<500	140	<1.0	13	7.70	<0.01	<1.0	<5.0	<2.0	<2
	02/20/17	3.08	10.12 Method A Cleanup	7.04	6,800	<200	<500	220	35	340	22	<0.01	<1.0	<5.0	<2.0	<2
IW-5		IVITCA	Metriou A Cleanup	Leveis	800	500	500	5	1,000	700	1,000	0.01	5	20	15	1
Well Depth	Sampling Date	Ground Water Level	Elevation (TOC north)	Water Level Elevation	TPHg	TPHd	TPHo	Benzene	Toluene	Ethyl- benzene	Xylenes	EDB	EDC	МТВЕ	Dissolved Lead	To
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	με
17.5	11/18/16	5.17	11.27	6.10	2,100	<200	<500	250	1.6	5.6	2.1	<0.01	<1.0	<5.0	<2.0	<2
	02/20/17	5.16	11.27	6.11	700	<200	<500	52	<1.0	2.2	2.4	<0.01	<1.0	<5.0	<2.0	<2
	02/20/17		Method A Cleanur		800	500	500	5	1.000	700	1.000	0.01	5	20	15	1
W-6	'								, , , , , ,		,					
Nell		Ground Water	Elevation	Water Level				_		Ethyl-					Dissolved	To
epth	Sampling Date	Level	(TOC north)	Elevation	TPHg	TPHd	TPHo	Benzene	Toluene	benzene	Xylenes	EDB	EDC	MTBE	Lead	Le
Feet		Feet Below TOC	Feet Above MSL	Feet Above MSL	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg
17.5	11/18/16	4.72	11.40	6.68	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	<2.0	<2
	02/20/17	4.69	11.40	6.71	<100	<200	<500	<1.0	<1.0	<1.0	<1.0	<0.01	<1.0	<5.0	<2.0	<2
		NATCA.	Method A Cleanup	Lacrata	800	500	500	5	1,000	700	1,000	0.01	5	20	15	1

Total Petroleum Hydrocarbons - Gasoline by Method NWTPH-Gx
NM = Not Measured
TPHg - Total Petroleum Hydrocarbons - Gasoline by Method NWTPH-Gx

TPHd - Total Petroleum Hydrocarbons - Diesel by Method NWTPH-Dx TPHmo - Total Petroleum Hydrocarbons - Motor Oil by Method NWTPH-Dx extended

Benzene, Toluene, Ethylbenzene and Xylenes by EPA Method 8021B

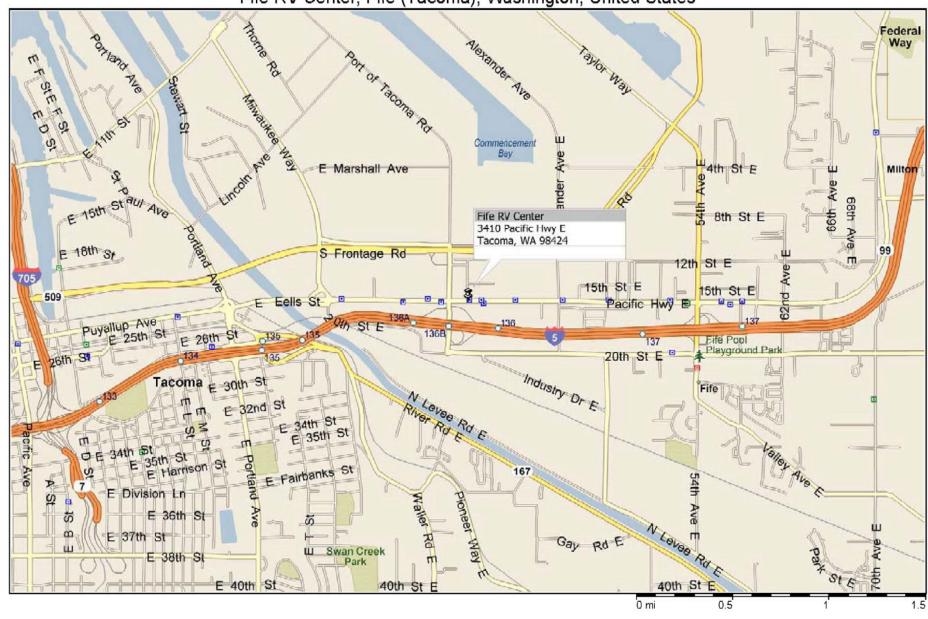
MTBE = Methyl-tert-butyl-ether EDC = 1,2-Dichloroethane EDB = 1,2-Dibromoethane; by EPA Method 8260B

Total and Dissolved Lead by EPA Method 7010

 $Bolded\ numbers\ and\ red-shaded\ cells\ denote\ concentrations\ above\ the\ MTCA\ Method\ A\ Cleanup\ Levels\ for\ groundwater$

AEROTECH

REGIONAL MAP


Fife RV Center 3410 Pacific Highway East Fife, Washington

By: Nick Gerkin

Figure:

N

Fife RV Center, Fife (Tacoma), Washington, United States



Fife RV Center 3410 Pacific Highway East Fife, Washington Date: 12/08/16

By: Nick Gerkin

Figure:

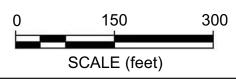
2

AEROTECH ENVIRONMENTAL CONSULTING

USGS TOPOGRAPHIC MAP

Fife RV Center 3410 Pacific Highway East Fife, Washington By: Nick Gerkin

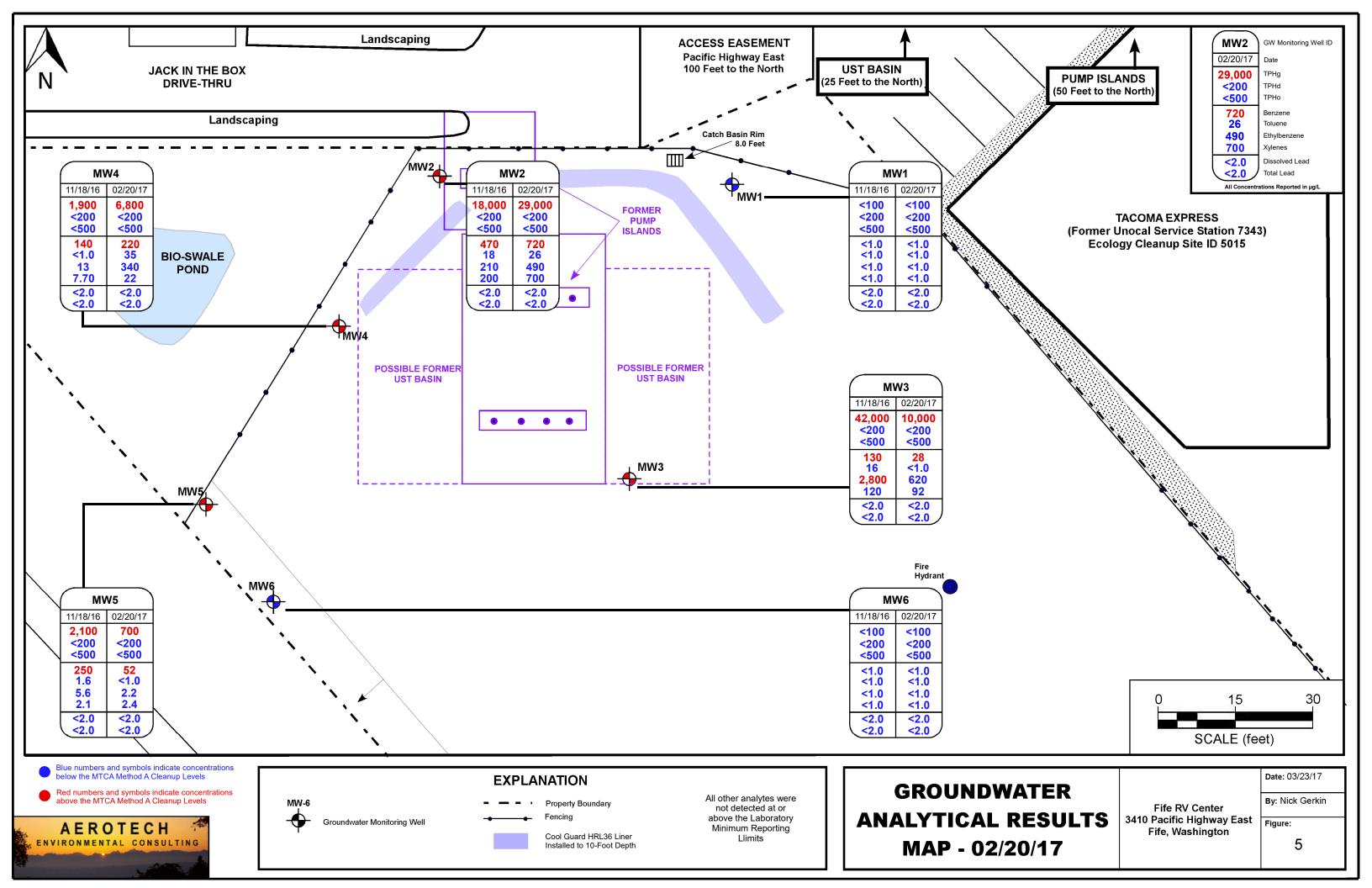
Figure:

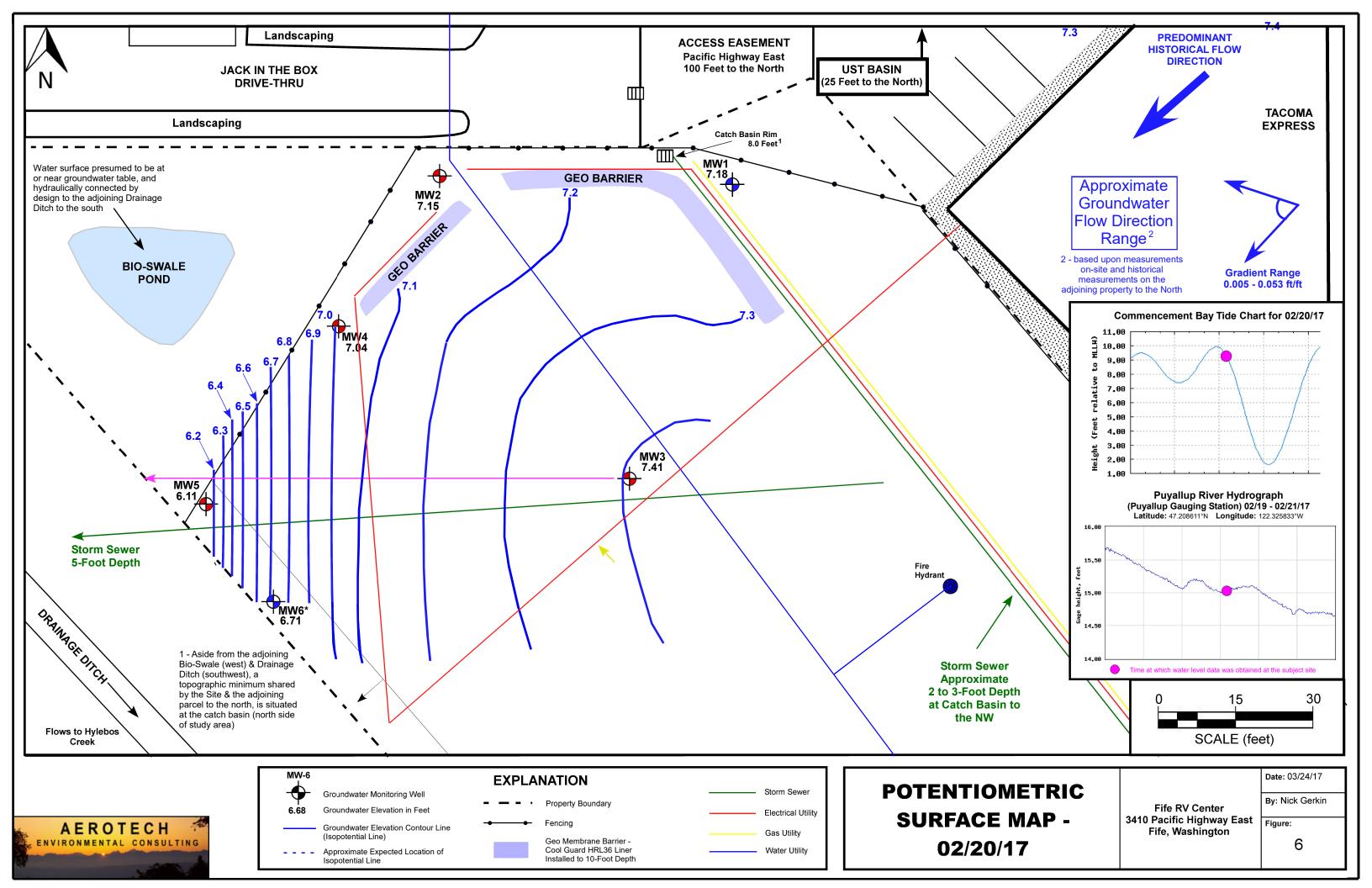

EXPLANATION

AEROTECH ENVIRONMENTAL CONSULTING

SITE VICINITY MAP

Fife RV Center 3410 Pacific Highway East Fife, Washington




Date: 10/30/16

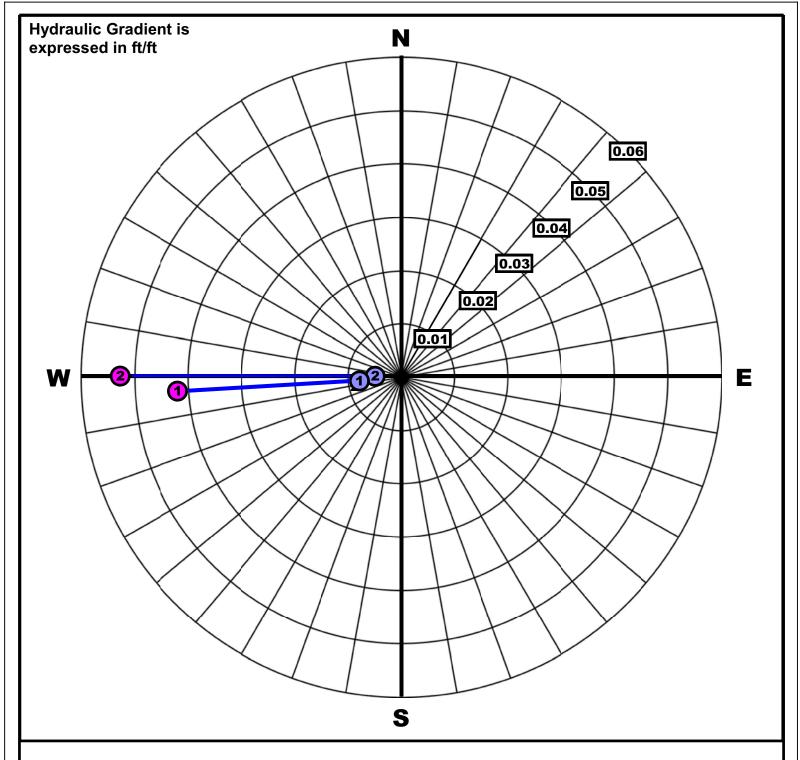
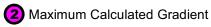

By: Nick Gerkin

Figure:

4



HYDRAULIC GRADIENT RANGE AND SHALLOW GROUNDWATER FLOW DIRECTION FROM MW3

1 11/18/16

2 02/20/17

Minimum Calculated Gradient


ROSE DIAGRAM

Fife RV Center 3410 Pacific Highway East Fife, Washington Date: 03/24/17

By: Nick Gerkin

Figure:

7

March 01, 2017

Nick Gerkin Aerotech Environmental, Inc. 13925 Interurban Avenue South, Suite 210 Seattle, WA 98168

Dear Mr. Gerkin:

Please find enclosed the analytical data report for the Fife RV Center (C70222-3) Project.

Samples were received on *February 22, 2017*. The results of the analyses are presented in the attached tables. Applicable reporting limits, QA/QC data and data qualifiers are included. A copy of the chain-of-custody and an invoice for the work is also enclosed.

ADVANCED ANALYTICAL LABORATORY appreciates the opportunity to provide analytical services for this project. Should there be any questions regarding this report, please contact me at (425) 702-8571.

It was a pleasure working with you, and we are looking forward to the next opportunity to work together.

Sincerely,

Val G. Ivanov, Ph.D. Laboratory Manager

4078 148 Ave NE

Redmond, WA 98052
425.702-8571

E-mail: aachemlab@yahoo.com

Advanced Analytical Laboratory (425) 702-8571

AAL Job Number: C70222-3

Client: Aerotech Environmental

Project Manager:
Client Project Name:
Client Project Number:
Date received: Nick Gerkin Fife RV Center

na 02/22/17

Client: Aerotech Environmental

Project Manager: Nick Gerkin Client Project Number: Fife RV Center

Date received: 02/22/17

Analytical Results

8260B, μg/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	02/24/17	02/24/17	02/24/17	02/24/17	02/24/17	02/24/17
MTBE	5.0	nd		nd	nd	nd	nd
1,2-Dichloroethane (EDC)	1.0	nd	114%	nd	nd	nd	nd
1,2-Dibromoethane (EDB)*	0.01	nd		nd	nd	nd	nd
*-instrument detection limits							
Surrogate recoveries							
Dibromofluoromethane		98%	113%	107%	103%	105%	107%
1,2-Dichloroethane-d4		86%	100%	112%	115%	128%	109%

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin Client Project Number: Fife RV Center

Date received: 02/22/17

Analytical Results

8260B, μg/L		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	02/24/17	02/24/17	02/24/17	02/24/17	02/24/17
MTBE	5.0	nd	nd			
1,2-Dichloroethane (EDC)	1.0	nd	nd	123%	122%	1%
1,2-Dibromoethane (EDB)*	0.01	nd	nd			
*-instrument detection limits						,
Surrogate recoveries						
Dibromofluoromethane		115%	102%	106%	108%	•
1,2-Dichloroethane-d4		110%	96%	123%	110%	

Data Qualifiers and Analytical Comments nd - not detected at listed reporting limits Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 02/22/17

Analytical Results

NWTPH-Gx/BTEX		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date analyzed	Reporting Limits	02/23/17()2/23/17	02/23/17	02/23/17	02/23/17	02/23/17
NWTPH-Gx, ug/L							
Mineral spirits/Stoddard	100	nd		nd	nd	nd	nd
Gasoline	100	nd		nd	29,000	10,000	6,800
BTEX 8021B, μg/L							
Benzene	1.0	nd	102%	nd	720	28	220
Toluene	1.0	nd	103%	nd	26	nd	35
Ethylbenzene	1.0	nd		nd	490	620	340
Xylenes	1.0	nd		nd	700	92	22
Surrogate recoveries:							
Trifluorotoluene		115%	128%	106%	125%	94%	115%
Bromofluorobenzene		117%	119%	109%	110%	126%	С

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin Client Project Name: Fife Client Project Number: na Fife RV Center

Date received: 02/22/17

Analytical Results				Dupl			
NWTPH-Gx/BTEX		W-MW5	W-MW6	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water			
Date analyzed	Reporting Limits	02/23/17	02/23/17	02/23/17	02/23/17	02/23/17	02/23/17
NWTPH-Gx, ug/L							
Mineral spirits/Stoddard	100	nd	nd	nd			
Gasoline	100	700	nd	nd			
BTEX 8021B, μg/L							_
Benzene	1.0	52	nd	nd	97%	104%	6%
Toluene	1.0	nd	nd	nd	93%	97%	4%
Ethylbenzene	1.0	2.2	nd	nd			
Xylenes	1.0	2.4	nd	nd			
Surrogate recoveries:							
Trifluorotoluene		117%	108%	103%	122%	128%	
Bromofluorobenzene		115%	112%	108%	110%	114%	

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na
Date received: 02/22/17

Analytical Results

NWTPH-Dx, mg/L		MTH BLK	W-MW1	W-MW2	W-MW3	W-MW4	W-MW5	W-MW6
Matrix	Water	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	02/22/17	02/22/17	02/22/17	02/22/17	02/22/17	02/22/17	02/22/17
Date analyzed	Limits	02/22/17	02/22/17	02/22/17	02/22/17	02/22/17	02/22/17	02/22/17
Kerosene/Jet fuel	0.20	nd						
Diesel/Fuel oil	0.20	nd						
Heavy oil	0.50	nd						
Surrogate recoveries:								
Fluorobiphenyl		88%	89%	90%	95%	87%	89%	91%
o-Terphenyl		92%	85%	94%	99%	92%	88%	97%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

C - coelution with sample peaks

Acceptable Recovery limits: 70% TO 130%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 02/22/17

Analytical Results

Metals Total (7010), mg/L		MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	02/23/17	02/23/17	02/23/17	02/23/17	02/23/17	02/23/17
Date analyzed	Limits	02/23/17	02/23/17	02/23/17	02/23/17	02/23/17	02/23/17
Lead Total (Pb)	0.002	nd	93%	nd	nd	nd	nd

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 65% TO 135%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na Date received: 02/22/17

Analytical Results

Metals Total (7010), mg/L		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	02/23/17	02/23/17	02/23/17	02/23/17	02/23/17
Date analyzed	Limits	02/23/17	02/23/17	02/23/17	02/23/17	02/23/17
Lead Total (Pb)	0.002	nd	nd	102%	99%	3%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 65% TO 135%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na
Date received: 02/22/17

Analytical Results

Metals Dissolved (7010), mg	J/L	MTH BLK	LCS	W-MW1	W-MW2	W-MW3	W-MW4
Matrix	Water	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	02/23/17 (02/23/17	02/23/17	02/23/17	02/23/17	02/23/17
Date analyzed	Limits	02/23/17 (02/23/17	02/23/17	02/23/17	02/23/17	02/23/17
Lead Dissolved (Pb)	0.002	nd	93%	nd	nd	nd	nd

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 65% TO 135%

Client: Aerotech Environmental

Project Manager: Nick Gerkin
Client Project Name: Fife RV Center

Client Project Number: na
Date received: 02/22/17

Analytical Results

Metals Dissolved (7010), mg/L		W-MW5	W-MW6	MS	MSD	RPD
Matrix	Water	Water	Water	Water	Water	Water
Date extracted	Reporting	02/23/17	02/23/17	02/23/17	02/23/17	02/23/17
Date analyzed	Limits	02/23/17	02/23/17	02/23/17	02/23/17	02/23/17
Lead Dissolved (Pb)	0.002	nd	nd	102%	99%	3%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

na - not analyzed

Acceptable Recovery limits: 65% TO 135%

of

Laboratory Job #: C7C222-3

2821 152 Avenue NE

Redmond, WA 98052

(425) 497-0110 fax: (425) 497-8089

aachemlab@yahoo.com

Client: , terotech			Project N	lame: Fife	EV Ce	Nter	
Project Manager: N.Zk Gerk	cin)		Project N				_
Address: 13925 Interurb	an Ave S,	Tukwila, WA	Collector	: Nrhe (Gerki	\sim	_
Phone: 206 482 2287	Fax:		Date of c	: $N/2$ ke (ollection: $2/2$ 0	117		_
Sample ID 1	Time Matrix 1335 Water 17 1545 1605 1520 1500 1500	Container type				Notes, comments	# of containers
11 12							
				Sample receipt inf	o:	Turnaround time:	

	Relinguished by:	Date/Time	Received by:	Date/Time
776		2/22/17-0700	V. Trans 2/22/	17 15:30
	Relinguished by:	Date/Time	Received by:	Date/Time

Total # of containers:

Condition (temp, °C)

Seals (intact?, Y/N)

Comments:

Same day O

24 hr **O**

48 hr **O**

Standard 🕱

$\begin{array}{c} \text{LOW-FLOW GROUNDWATER SAMPLING STANDARD OPERATING} \\ \text{PROCEDURE} \end{array}$

AEROTECH

Environmental Consulting Inc.

13925 Interurban Avenue South, Suite No.210 Seattle, Washington 98168 (360)710-5899

512 W. International Airport Road, Suite 201 Anchorage, Alaska 99518 (907) 575-6661 2916 NW Bucklin Hill Road, Suite No.126 Silverdale, Washington 98383 (866) 800-4030

> 5319 SW Westgate Dr., Suite No.24 Portland, Oregon 97221 (503) 360-4701

LOW-FLOW GROUNDWATER SAMPLING STANDARD OPERATING PROCEDURE

The following protocol and sampling procedures were designed to meet or exceed standards for groundwater monitoring well sampling, as specified by the State of Washington Department of Ecology "Standard Operating Procedures for Purging and Sampling Monitoring Wells, Version 1.0," dated and approved on October 4, 2011. These procedures are strictly adhered to by Aerotech field staff:

Cross-Contamination Mitigation Protocol

A sampling table is set up adjacent to the well head in order to protect field equipment from contact with the ground, to prevent or minimize the possible introduction of foreign materials into the wells, and in general in order to mitigate the possibility of cross-contamination. Where previous laboratory data is available, or where visual of olfactory indicators provide initial evidence, well sampling order is arranged to proceed with the least contaminated well, often the upgradient groundwater monitoring wells, and sampling order proceeds by sampling wells associated with successively higher contamination levels. Thus, the wells exhibiting the highest contamination levels are sampled last, in order to minimize the possibility of cross contamination.

A fresh pair of disposable Nitrile gloves is worn at each well. Equipment neither disposable nor dedicated to wells, is washed in a dedicated container prepared with non-phosphate Alconox detergent and triple rinsed in a second container prepared with distilled and/or deionized water. Surfaces that cannot be readily submerged for the purpose of decontamination, are sprayed with wash water followed by rinse water, and wiped with a fresh disposable paper towel. For shallow wells that require a peristaltic pump, dedicated tubing is left in each well after sampling, however, for deeper wells that require a submersible pump, dedicated tubing is recovered from wells after each use, and deployed to a designated dedicated clean plastic bag, bearing a label indicating well identification information.

Water Level Measurement

Prior to the well purge process and the collection of groundwater samples, groundwater levels are measured at the north side of the ("TOC") with a piezometer/water level indicator, by slowly lowering the sensor into wells prior to purging, in order to minimize disturbances. The water levels are measured twice, with tape a marked in 0.01 foot increments, in order to reduce possible reading error. Where appropriate, free product thickness is measured with gas level indicator paste or an interface indicator. Upon arrival, each well is visual inspected and the condition of the well and well head are noted.

Groundwater Monitoring Well Purge and Sampling Methodologies

Prior to groundwater sample collection, A dedicated length of high density polyethylene tubing is lowered into each well to a level near the middle of the screened interval. A dedicated length of clean silicone tubing is utilized within the pump mechanism. The wells are purged by means of low flow techniques, during which time groundwater is monitored for physical parameters, including temperature, pH, specific conductivity, dissolved oxygen (DO), and oxidation-reduction potential (ORP), by means of a multi-parameter device mounted upon a flow cell, until such time as values recorded have stabilized and equilibrium conditions are verified according to State guidelines. This protocol ensures that collected groundwater samples are representative of in-situ groundwater conditions. Readings are recorded once every 2 to 5 minutes, including water level measurement. The pumping rate shall remain below 1 L/min during monitoring and sampling procedures. This is verified by periodically filling a one-Liter graduated cylinder and recording the rate, adjusting the pump as necessary. The water column within the well should remain within 5% of the static height during the purge and sample process, if this cannot be achieved, the pump rate will be reduced until the water level stabilizes. The following conditions must be met in three consecutive readings prior to sampling:

•	pH	+/- 0.1 standard units
•	Specific Conductivity	+/- 10.0 mS/cm for values $<$ 1,000 mS/cm +/- 20.0 mS/cm for values $>$ 1,000 mS/cm
•	DO	+/- 0.05 mg/L for values < 1 mg/L +/- 0.2 mg/L for values > 1 mg/L
•	Temperature	+/- 0.1 degrees Celcius
•	ORP	+/- 10 mV

Groundwater samples are collected in containers specified by the laboratory for the analyses established at the Site, and in accordance with State of Washington regulations or guidelines. Sample containers are labeled with site name, well identification, and date of collection information. Each sample is documented on a *Chain of Custody* (""COC") form, and immediately placed in an iced cooler (maintained at 4 degrees Celcius or less) for transport to a certified laboratory for analysis. Please note that any purge water suspected or confirmed to contain concentrations above the MTCA Cleanup Levels is drummed and left on Site

Please feel free to contact the Aerotech Geologist/Hydrogeologist, Mr. James McDermott, at (425) 686-0032, or the Aerotech Environmental Scientist/Field Sampling Coordinator, Mr. Nicholas Gerkin, at (206) 482-2287, if you have questions regarding work completed at this Site.

FIELD MEASUREMENT DATA SHEETS

GROUNDWATER MONITORING WELL GAUGING RECORD

FIELD CREW: NAG

PROJECT NAME: Fife RV Center

PROJECT ADDRESS: 3410 Pacific Highway East, Fife, WA

Well ID	Time	Wellhead Elevation	Depth to Water	Groundwater Elevation	Depth of Well	Well Diameter	Comments	
	hh:mm	Feet Above MSL	Feet Below TOC	Feet Above MSL	Feet Below TOC	Inches		
MW1	12:59	8.37	1.19	7.18	14.4	2	Well vaults, seals, bolts and plugs are in great condition.	
MW2	13:05	9.40	2.25	7.15	14.2	2	Well vaults, seals, bolts and plugs are in great condition.	
MW3	13:06	9.43	2.02	7.41	14.6	2	Well vaults, seals, bolts and plugs are in great condition.	
MW4	13:03	10.12	3.08	7.04	14.5	2	Well vaults, seals, bolts and plugs are in great condition.	
MW5	13:02	11.27	5.16	6.11	17.5	2	Well vaults, seals, bolts and plugs are in great condition.	
MW6	13:00	11.40	4.69	6.71	17.5	2	Well vaults, seals, bolts and plugs are in great condition.	

EXPLANATION

MSL = Mean Sea Level TOC - Top of Casing

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG

PROJECT NAME: Fife RV Center

DATE: 02/20/2017

PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

MW-1							
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	pH	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
12:59	1.19						
13:21	1.73	250	11.20	0.480	1.20	7.06	-105.0
13:23	1.75	250	11.14	0.479	0.79	7.00	-112.8
13:25	1.76	250	11.11	0.479	0.69	6.99	-115.3
13:27	1.77	250	11.11	0.481	0.50	6.98	-116.8
13:29	1.78	250	11.09	0.483	0.49	6.98	-119.1
13:31	1.78	250	11.06	0.484	0.47	6.99	-121.1
Ecology Param	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10
13:35	SAMPLE						

Comments:

Very rainy conditions.

MW-2							
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
13:05	2.25						
15:31	2.90	250	9.81	0.464	0.00	7.18	-84.4
15:32	2.96	250	9.80	0.466	0.14	7.15	-94.6
15:35	2.99	250	9.73	0.466	0.11	7.14	-99.9
15:37	3.01	250	9.69	0.466	0.11	7.13	-104.4
15:39	3.02	250	9.73	0.466	0.07	7.12	-106.5
Ecology Param	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10
15:45	SAMPLE						
Cammanta	_	•	·	•	·	-	-

Comments:

Very rainy conditions.

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

FIELD CREW: NAG

PROJECT NAME: Fife RV Center

DATE: 02/20/2017

PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

MW-3							
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	pH	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
13:06	2.02						
15:53	2.49	250	9.63	0.442	0.11	7.16	-84.9
15:55	2.52	250	9.73	0.442	0.07	7.18	-89.5
15:57	2.54	250	9.81	0.442	0.02	7.20	-96.5
15:59	2.56	250	9.87	0.442	0.04	7.22	-100.7
16:01	2.57	250	9.90	0.441	0.04	7.23	-104.1
Ecology Param	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10
16:05	SAMPLE						

Comments:

Very rainy conditions.

MW-4							
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
13:03	3.08						
15:10	3.70	250	9.54	0.461	0.06	7.11	-60.2
15:12	3.76	250	9.58	0.462	0.11	7.09	-67.2
15:14	3.80	250	9.57	0.466	0.11	7.09	-71.9
15:16	3.81	250	9.54	0.466	0.10	7.08	-75.4
Ecology Param	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10
15:20	SAMPLE						
Comments	•						

Comments:

Very rainy conditions.

GROUNDWATER MONITORING WELL LOW FLOW SAMPLING FIELD LOG

--

FIELD CREW: NAG PROJECT NAME: Fife RV Center

DATE: 02/20/2017 PROJECT ADDRESS:

3410 Pacific Highway East, Fife, WA

MV	MW-5						
Time	DTW	Purge Rate	Temperature	Specific Conductivity	DO	рН	ORP
hr:min	feet	mL/min	°C	mS/cm	mg/L	unit	mV
13:02	5.16		-				
14:47	5.49	250	9.64	0.361	0.25	7.32	-32.2
14:49	5.54	250	9.69	0.364	0.21	7.28	-40.1
14:51	5.59	250	9.68	0.365	0.22	7.26	-47.7
14:53	5.63	250	9.69	0.365	0.22	7.25	-54.1
14:55	5.66	250	9.61	0.370	0.20	7.23	-59.3
14:57	5.68	250	9.61	0.373	0.18	7.22	-62.5
Ecology Parame	eter Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10

--

15:00 Comments:

Very rainy conditions.

SAMPLE

DTW						
DIVV	Purge Rate	Temperature	Specific Conductivity	DO	pН	ORP
feet	mL/min	°C	mS/cm	mg/L	unit	mV
4.69						
5.19	250	11.01	0.324	0.00	7.32	-98.1
5.23	250	10.94	0.319	0.00	7.32	-99.7
5.25	250	10.97	0.316	0.04	7.28	-97.0
5.27	250	11.00	0.316	0.06	7.27	-98.1
5.29	250	10.96	0.316	0.07	7.27	-98.5
er Limits (3 Conse	cutive Readings)	+/- 0.1	+/- 0.1	+/- 0.05	+/- 0.1	+/- 10
SAMPLE						
	4.69 5.19 5.23 5.25 5.27 5.29 or Limits (3 Consection)	4.69 5.19 250 5.23 250 5.25 250 5.27 250 5.29 250 er Limits (3 Consecutive Readings)	4.69 5.19 250 11.01 5.23 250 10.94 5.25 250 10.97 5.27 250 11.00 5.29 250 10.96 er Limits (3 Consecutive Readings)	4.69 5.19 250 11.01 0.324 5.23 250 10.94 0.319 5.25 250 10.97 0.316 5.27 250 11.00 0.316 5.29 250 10.96 0.316 er Limits (3 Consecutive Readings) +/- 0.1 +/- 0.1	4.69 5.19 250 11.01 0.324 0.00 5.23 250 10.94 0.319 0.00 5.25 250 10.97 0.316 0.04 5.27 250 11.00 0.316 0.06 5.29 250 10.96 0.316 0.07 er Limits (3 Consecutive Readings) +/- 0.1 +/- 0.1 +/- 0.05	4.69 5.19 250 11.01 0.324 0.00 7.32 5.23 250 10.94 0.319 0.00 7.32 5.25 250 10.97 0.316 0.04 7.28 5.27 250 11.00 0.316 0.06 7.27 5.29 250 10.96 0.316 0.07 7.27 er Limits (3 Consecutive Readings) +/- 0.1 +/- 0.1 +/- 0.05 +/- 0.1

Very rainy conditions.