

COMPLETION AND COMPLIANCE MONITORING REPORT

SLAG DISPOSAL, BECKWITH PROPERTY SITE SOUTH 218TH STREET AND 90TH AVENUE SOUTH KENT, WASHINGTON

Submitted by: Farallon Consulting, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Farallon PN: 831-022

For: Earle M. Jorgensen Company 10650 Alameda Street Lynwood, California 90262

May 2012

Prepared by:

2 Contraction of the second se

Kristin J. Darnell, E.I.T. Project Scientist

Reviewed by:

eut

Peter Jewett, L.G., L.E.G. Principal

Richard McManus, P.E. Principal Engineer

Amy Essig Desai Senior Scientist

TABLE OF CONTENTS

1.0	ODUCTION1-1					
	1.1	1 COMPLETION REPORT ORGANIZATION				
2.0	SITE DESCRIPTION					
	2.1	BACKGROUND				
	2.2	SITE LOCATION				
	2.3	TOPOGRAPHY				
	2.4	SOIL				
	2.5	SLAG				
	2.6	SURFACE WATER				
	2.7	GROUNDWATER				
	2.8	WETLANDS2-3				
3.0		INICAL ELEMENTS				
	3.1	MEDIA AND CONTAMINANT OF CONCERN				
	3.2	CLEANUP LEVELS				
	3.3	POINTS OF COMPLIANCE				
4.0	PROJ	ECT PLANNING AND PERMITTING				
	4.1	PLANNING DOCUMENTS				
	4.2	PROJECT PLANNING ACTIVITIES 4-1				
		4.2.1 State Environmental Policy Act Application				
		4.2.2 Grading Permit				
		4.2.3 Construction Stormwater General Permit				
		4.2.4 Wastewater Discharge Authorization				
		4.2.5 Wetland Buffer Enhancement/Restoration Plan 4-2				
5.0	CLEANUP ACTION ACTIVITIES					
	5.1	SITE PREPARATION				
		5.1.1 Water Treatment System Relocation				
		5.1.2 Pre-Excavation Test Pits				
		5.1.3 Site Survey and Sample Control Grid Layout 5-2				
		5.1.4 Site Mobilization				
		5.1.5 Access Road Construction				
		5.1.6 Critical Slope Area Protection				
		5.1.7 Temporary Erosion Control				
		5.1.8 Site Clearing				
		5.1.9 Underground Utility Marking				
		5.1.10 Pre-Construction Meetings				
		5.1.11 Weekly Meetings				
		5.1.12 Monthly Progress Reports				
	5.2	SOIL AND SLAG EXCAVATION				
		5.2.1 Temporary Soil Stockpiling				

		5.2.2	Slag Excavation	
		5.2.3	Water Treatment System Operation	
		5.2.4	Site Decontamination	
	5.3			
6.0	COM	IPLIAN	ICE MONITORING	
	6.1	SOIL	MONITORING	
		6.1.1	Performance Monitoring	6-1
		6.1.2	Confirmation Monitoring	
		6.1.3	Field Testing	
		6.1.4	Results	
		6.1.5	Quality Control Samples	
	6.2	AIR N	AONITORING	
		6.2.1	Personal Air Monitoring	
		6.2.2	Perimeter Air Monitoring	
	6.3	SURF	FACE WATER MONITORING	
		6.3.1	Performance Monitoring	
		6.3.2	Compliance Monitoring	
		6.3.3	Compliance Sampling Results	
		6.3.4	Quality Control Samples	
7.0	SITE	REST	ORATION	
	7.1	BACK	KFILL	7-1
	7.2	SITE	DRAINAGE	
	7.3	WETI	LAND BUFFER AREA RESTORATION	
	7.4	EROS	SION CONTROL AND FINAL GRADING	
	7.5	SITE	DEMOBILIZATION	
8.0	ADD	ITIONA	AL DELIVERABLES	
9.0	CON	CLUSI	ONS AND CERTIFICATION	
10.0	REF	ERENC	ES	

FIGURES

Site Location Map
Site Map with Lateral Extent and Thickness of Excavated Slag
Site Map with Wetland Boundaries
Site Map with Surface Water Compliance Sampling Locations
Site Map with Soil Confirmation Sampling Locations

TABLES

- Table 1Slag Disposal Summary
- Table 2Summary of Soil Compliance Sampling Results
- Table 3Summary of Air Monitoring Analytical Results
- Table 4
 Summary of Surface Water Performance Sampling Results
- Table 5
 Summary of Surface Water Compliance Sampling Results

APPENDICES

- Appendix A Wetland Buffer Enhancement/Restoration Plan and Addendum Letter
- Appendix B Stormwater Pollution Prevention Plan for EMJ-Kent Slag Site Cleanup Action
- Appendix C Permits
- Appendix D Photographic Log
- Appendix E Test Pit Logs
- Appendix F As-Built Survey
- Appendix G Monthly Progress Reports
- Appendix H Waste Disposal Documentation
- Appendix I Air Monitoring Analytical Results
- Appendix J Compaction Test Results
- Appendix K Culvert Details
- Appendix L Wetland Buffer Restoration As-Built Report and City of Kent Approval Letter
- Appendix M Professional Engineering Certification

ACRONYMS AND ABBREVIATIONS

Anchor	Anchor QEA, L.L.C.				
bgs	below ground surface				
CAWP	<i>Cleanup Action Work Plan, Slag Disposal Beckwith Property Site,</i> <i>South 218th Street and 90th Avenue South, Kent, Washington</i> dated June 2010, prepared by Farallon Consulting, L.L.C.				
cleanup levels	Site-specific cleanup levels defined by the Washington State Department of Ecology in the Cleanup Action Work Plan dated June 2010, prepared by Farallon.				
Consent Decree	Consent Decree No. 95-2-15301-1 entered into by Earle M. Jorgensen Company and the Washington State Department of Ecology in June 1995				
Construction Plans	Slag Disposal Beckwith Property Site Excavation Project and Specifications, Construction Plans and Specifications, Kent, Washington dated August 2010, prepared by Farallon				
Ecology	Washington State Department of Ecology				
EMJ	Earle M. Jorgensen Company				
Farallon	Farallon Consulting, L.L.C.				
IHS	Indicator Hazardous Substance				
MTCA	Washington State Model Toxics Control Act Cleanup Regulation				
PLS	Professional Land Surveyors of Issaquah, Washington				
SECOR	SECOR International Incorporated				
SEPA Application	State Environmental Policy Act Environmental Checklist				
slag	secondary steel slag				
Site	Slag Disposal Beckwith Property Site in Kent, Washington				
WAC	Washington Administrative Code				

1.0 INTRODUCTION

This Completion and Compliance Monitoring Report (Completion Report) has been prepared on behalf of Earle M. Jorgensen Company (EMJ) to document the cleanup action completed at the property at the southeastern corner of South 218th Street and 90th Avenue South in Kent, Washington (herein referred to as the Site) (Figure 1). The cleanup action has been completed under Consent Decree No. 95-2-15301-1 (Consent Decree) entered into by the Washington State Department of Ecology (Ecology) and EMJ and in accordance with the *Cleanup Action Work Plan, Slag Disposal Beckwith Property Site, South 218th Street and 90th Avenue South, Kent, Washington* dated June 2010, prepared by Farallon Consulting, L.L.C. (Farallon) (CAWP). The CAWP was prepared in accordance with the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) as established in Chapter 173-340 of the Washington Administrative Code (WAC 173-340). The CAWP was reviewed and approved by Ecology and the City of Kent.

The Consent Decree requires that surface water leaving the site not have a pH exceeding 8.5. The cleanup action conducted at the Site was designed to eliminate the discharge of surface water with pH exceeding 8.5 and consisted of removal and off-Site disposal of approximately 58,000 tons of secondary steel slag that contained lime ash (herein referred to as slag). As documented herein, the cleanup action has met the MTCA Threshold Requirements defined in WAC 173-340-360(2)(a), which include protection of human health and the environment; compliance with the cleanup standards defined in the CAWP for the Site; compliance with applicable state and federal laws; and post-excavation compliance monitoring.

The cleanup action is a permanent solution and meets Ecology requirements for closure and delisting the Site from the Ecology Confirmed and Suspected Contaminated Sites List (CSCSL) and the Hazardous Sites List. Ecology will be petitioned to remove the Site from the CSCSL and the Hazardous Sites List. After all monitoring requirements are completed, Ecology will be petitioned to close the Consent Decree.

The cleanup action included:

- Excavation and off-Site disposal of 58,337.64 tons of slag;
- Compliance sampling and analysis of the excavation bottom and sidewalls for soil pH;
- Site restoration, including wetland buffer areas impacted by the cleanup action; and
- Four rounds of compliance sampling and analysis for surface water pH.

1.1 COMPLETION REPORT ORGANIZATION

The Completion Report has been organized into the following sections:

• Section 1.0—Introduction: This section provides the purpose and organization of the Completion Report.

- Section 2.0—Site Description: This section provides a description of the Site background, location, topography, soil, hydrology, and wetlands.
- Section 3.0—Technical Elements: This section provides the technical elements applicable to the cleanup action for the Site.
- Section 4.0—Project Planning and Permitting: This section provides a list of the planning documents referenced during the planning of the cleanup action and describes the planning activities conducted, including obtaining the required permits for the cleanup action prior to commencement of work at the Site.
- Section 5.0—Cleanup Action Activities: This section provides a description of the Site preparation, cleanup action activities, and waste management conducted at the Site.
- Section 6.0—Compliance Monitoring: This section provides a description of the soil, air, and surface water confirmation and compliance monitoring conducted during and after the cleanup action.
- Section 7.0—Site Restoration: This section provides a description of the Site restoration activities conducted at the Site.
- Section 8.0—Additional Deliverables: This section presents additional actions and plans to be performed.
- Section 9.0—Conclusions and Certification: This section provides the conclusions of the cleanup action activities conducted at the Site and certification by a Registered Professional Engineer.
- Section 10.0—References: This section presents a list of the documents cited in this report.

2.0 SITE DESCRIPTION

The following sections present the background, location, description and topography, surface water, soil and slag, groundwater, and wetlands at the Site. A description of the Site prior to slag excavation and Site restoration is provided in the CAWP and the documents cited therein, and in the documents listed in Section 10.0, References. A discussion of previous investigations and cleanup actions is presented in the CAWP.

2.1 BACKGROUND

Slag was placed as fill on the Site between 1984 and 1990. The slag was a waste product from smelting recycled steel. Lime was used in the smelting process, and the slag contained lime ash. The lime ash caused elevated pH in water that came into contact with it.

Interim actions were conducted at the Site in 1995 through 1996 and in 2002 in an effort to mitigate the discharge of surface water with pH exceeding 8.5 from the stormwater detention pond on the northeastern corner of the Site (Figure 2). These actions included installation of an interceptor drain and high-density polyethylene liner in 1995/1996 and installation of an impermeable clay barrier and concrete catch basin in 2002. Ecology (2007) confirmed that the requirements of the Consent Decree had been met at that time and that further monitoring was no longer required.

The City of Kent measured pH of 12.5 to 12.8 in surface water discharging from seeps located on the north and northwest sides of the Site in March 2009 (Ecology 2009a). Based on the pH levels measured in surface water leaving the Site in March 2009, Ecology required implementation of an Interim Action under the existing Consent Decree to mitigate discharge of surface water with pH exceeding 8.5. The interim action consisted of capture of surface water for pre-treatment and disposal to the sanitary sewer system under permit from King County.

The results of investigations conducted at the Site by Farallon (2009a) determined that infiltration of precipitation and surface water that bypassed the interceptor drain and barrier system installed in 1995/1996 reacted with the lime ash in the slag, elevating the pH in surface water that discharged from the seeps.

2.2 SITE LOCATION

The Site is located at the southeastern corner of South 218th Street and 90th Avenue South (also referred to as 88th Avenue South) in Kent, Washington within Section 7, Township 22 North, Range 5 East, at the eastern edge of the Kent Valley approximately 200 feet east of State Route 167 at 60 to 70 feet above mean sea level (Figure 1). The Site is primarily located within a vacant 4.7-acre parcel. The southwestern toe of the Site extends into the City of Kent's right-of-way for 90th Avenue South (Figure 2).

2.3 TOPOGRAPHY

The Site is located at the base of a steep (greater than 40 percent), heavily vegetated, north-south trending, west-facing slope that is approximately 50 feet high. Kent City Code Chapter 11.06 Critical Areas (Ordinance 3746, § 3, 4-19-05) defines this slope as a Landslide Hazard Area. A heavily vegetated slope on the west side of the Site drops steeply to 90th Avenue South approximately 20 feet below (Figure 2).

The majority of the Site gradually slopes eastward so that surface water runoff flows into a culvert and is discharged to the stormwater detention pond at the northeastern corner of the Site. The southwestern-most portion of the Site is very narrow and slopes downward 20 feet to the southwest.

2.4 SOIL

Native soil consists of Quaternary deposits of Vashon sub-glacial till overlain by non-glacial alluvium deposits. The Vashon till is characterized as a poorly graded sand with silt and gravel. The till is dense to very dense and is primarily dark brown in color. The alluvium deposits consist of sandy silt to silt that is reddish-grey to grey and stiff.

2.5 SLAG

The slag placed on the native silt consisted of:

- Dark grey to black, dense, granular, coarse-grained material that was relatively permeable;
- Cobble-sized blocks of lime; and
- White powder (lime ash).

The depth to the contact of slag and underlying native soil prior to the excavation ranged from 1.5 feet below ground surface (bgs) at the entryway on the south side of the Site to 4 feet on the western and eastern sides to 18 feet bgs in the central portion of the Site. The slag had been covered with an approximately 3- to 6-foot-thick cap placed as part of the interim action in 2002. The cap consisted of Class B pit-run gravel and Class A 3-way-mix top soil.

2.6 SURFACE WATER

Surface water occurs at the Site in the following locations:

- The interceptor drain in the east drainage ditch;
- The stormwater detention pond on the northeastern corner of the Site;
- Drainage ditches north of the Site on the south side of South 218th Street,
- Drainage ditches west of the Site on the east side of 90th Avenue South; and
- Intermittent seeps located on the north and northwest sides of the Site (Figure 2).

Surface water runoff from the hillside northeast of the Site flows into a ditch along the northern portion of the Site, into the west drainage ditch, and into a culvert that extends beneath 90th Avenue South (Figure 2). The east drainage ditch captures surface water from the heavily vegetated slope on the east side of the Site. The northern portion of the east drainage ditch discharges into the detention pond on the northeastern corner of the Site (Figure 2). Stormwater in the detention pond discharges through a culvert that extends beneath South 218th Street into Garrison Creek. Surface water collected in the southern portion of the east drainage ditch follows the land topography and drains along the southern portion of the Site to a small stream.

2.7 GROUNDWATER

Regional groundwater occurs in a water-bearing zone at approximately 40 feet bgs under confined conditions and within a deep aquifer that is reported to be greater than 40 feet bgs. The hydraulic conductivity of native soils within 50 feet of the ground surface was estimated to be 0.08 to 0.8 foot per day.

2.8 WETLANDS

Seven wetland areas identified by ESA Adolfson (2006) as Wetlands C, D, I, J, L, M, and N are within or adjacent to the cleanup action area on the Site. Each wetland area is summarized below and shown on Figure 3.

- Wetland C is on the west side of 90th Avenue South and is 0.12 acre in size. This wetland receives water from groundwater and from surface water flow from both State Route 167 and 90th Avenue South.
- Wetland D is on the northeast corner of the Site and is considered part of the approximately 20-acre Middle Fork Garrison Creek Wetland Complex.
- Wetland I includes the stormwater detention pond at the north end of the Site and is 0.03 acre in size. Surface water enters the wetland from the south through the polyvinyl chloride (PVC) pipe in the eastern drainage ditch and exits through a culvert to the north when the water level in the pond is high enough to enter the culvert. Water in the culvert then flows north beneath South 218th Street into Wetland J.
- Wetland J is north of South 218th Street and is considered part of the approximately 20-acre Middle Fork Garrison Creek Wetland Complex.
- Wetland L is in a roadside ditch along the east side of the north end of 90th Avenue South and is 0.04 acre in size. Groundwater and surface water runoff from the adjacent road is the main contributor of Wetland L hydrology. Vegetation in this wetland generally is disturbed by road maintenance activities.
- Wetland M is a small wetland along the east side of 90th Avenue South directly north of the Site entrance and is 0.004 acre in size. Sources of Wetland M hydrology include groundwater and surface water runoff from the adjacent road.

• Wetland N is in a ditch along the east side of 90th Avenue South directly south of the Site entrance, extending up the slope along two small drainage courses, and is 0.30 acre in size. Two small streams flow through the wetland and into the roadside ditch. Groundwater is the main contributor of Wetland N hydrology.

Standard buffer widths were determined by ESA Adolfson (2006) based on the wetland category and habitat score for each wetland. Wetlands are classified as Category I, II, III, or IV based on the Washington State Wetland Rating System for Western Washington in accordance with Kent City Code for Critical Areas, KCC 11.06 Critical Areas (Ordinance 3746, Section 3, April 19, 2005). Wetland J, located approximately north and across South 218th Street from the Site, is part of the Middle Fork Garrison Creek Wetland Complex, which has a standard buffer width of 125 feet as a Category II Wetland and contains a habitat score between 20 and 28 (Figure 3). Other designated wetlands on the Site have a standard buffer width of 50 feet as Category IV Wetlands and have habitat scores of less than 20.

3.0 TECHNICAL ELEMENTS

This section presents the technical elements applicable to the cleanup action for the Site. Described below are the media and contaminant of concern, and cleanup standards and points of compliance applicable to the cleanup action in accordance with MTCA.

3.1 MEDIA AND CONTAMINANT OF CONCERN

The media of concern for the cleanup action were soil, surface water, and perched groundwater within the slag.

The contaminant of concern was lime ash, intermixed with the slag. The lime ash reacted with water to cause surface water with pH exceeding 8.5 ft to be discharged from the Site. In addition, there was a potential for lime ash to migrate from the slag to underlying native soil that could have resulted in a soil to groundwater pathway if the soil contained sufficient lime ash.

3.2 CLEANUP LEVELS

Cleanup levels are the concentrations of the contaminant that will be met for each medium of concern at the points of compliance or conditional points of compliance defined to meet the requirements of MTCA cleanup standards. The cleanup levels are Site-specific based on the information collected on the Site.

The cleanup level for pH in groundwater and surface water as defined in the Consent Decree and a subsequent variance was between 5.5 and 8.5.

There is no cleanup level for lime ash (the contaminant of concern) that reacted with water; therefore, a performance level for an Indicator Hazardous Substance (IHS) was established for soil and slag that would result in surface water meeting the cleanup levels. The IHS used to guide the cleanup activities was slag or native soil with pH exceeding 8.5.

3.3 POINTS OF COMPLIANCE

The points of compliance are defined in MTCA Section 200 of Chapter 173-340 of the Washington Administrative Code (WAC 173-340-200), as the locations where the cleanup levels are to be attained. As defined under MTCA, once the cleanup levels have been attained at the points of compliance, the Site will no longer be a threat to human health or the environment.

The points of compliance for the cleanup action were:

- Soil throughout the Site;
- Surface water on and discharging from the Site; and
- Groundwater from the uppermost level of the saturated zone, extending vertically to the lowest-most depth that potentially could have been affected by the Site.

The points of compliance monitoring locations for soil included native soil exposed once the slag had been removed (as discussed in Section 6.1).

The points of compliance monitoring locations for surface water included:

- SW-1: The southern end of the east drainage ditch;
- SW-2: The discharge culvert on the western boundary of the Site near 90th Avenue South;
- **SW-3**: The seep location near sump 3;
- **SW-4**: The discharge culvert north of the Site across South 218th Street; and
- SW-5: The southern end of the west drainage ditch (Figure 4).

4.0 PROJECT PLANNING AND PERMITTING

This section provides a summary of the documents referenced during the project planning process and a description of the project planning activities conducted, including obtaining the permits required to conduct the cleanup action prior to commencement of field work.

4.1 PLANNING DOCUMENTS

The following documents were approved by Ecology and the City of Kent for use in planning the cleanup action. The cleanup action was conducted in accordance with these documents, which define the specifications and details of the cleanup action. The planning documents included:

- The CAWP, which included a sampling and analysis plan for performance and compliance monitoring of both soil and surface water, a health and safety plan, an air monitoring plan, a quality assurance project plan, and a site restoration plan;
- The construction plans and specifications detailed in *Slag Disposal Beckwith Property Site Excavation Project Construction Plans and Specifications, Kent, Washington* dated August 2010, prepared by Farallon (Construction Plans and Specifications) and provided in the CAWP;
- The *Wetland Buffer Enhancement/Restoration Plan* dated June 2010, prepared by Anchor QEA, LLC (Anchor) and provided in Appendix A;
- The Wastewater Treatment, Monitoring, and Discharge Plan, Slag Disposal/Beckwith Property, Water Remediation System, 88th Avenue South and South 218th Street, Kent, Washington dated December 4, 2009, prepared by Farallon (2009); and
- The Stormwater Pollution Prevention Plan for EMJ Kent Slag Site Cleanup Action, South 218th Street & 88th Avenue South, Kent, Washington 98031 dated August 2010, prepared by Clearcreek Contractors, Inc. of Everett, Washington (Clearcreek) and provided in Appendix B.

4.2 **PROJECT PLANNING ACTIVITIES**

Project planning activities included obtaining permits necessary to meet state and local requirements. A summary of the required applications submitted, permits obtained, and plans prepared for the cleanup action is provided below.

4.2.1 State Environmental Policy Act Application

A State Environmental Policy Act Environmental Checklist (SEPA Application) was completed for the Site and submitted for Ecology review in April 2010. Ecology issued a Determination of Nonsignificance for this project. A copy of the SEPA Application and the Determination of Nonsignificance are included in the CAWP.

4.2.2 Grading Permit

Farallon submitted a Grade and Fill Permit Application to the City of Kent Permit Center requesting a Regular Grade and Fill Permit for the cleanup action. Grade and Fill Permit No. CNST-2101696GF was issued by the City of Kent on August 11, 2010. A copy of the Grade and Fill Permit is included in Appendix C.

4.2.3 Construction Stormwater General Permit

Construction Stormwater General Permit No. WAR-012518 was issued to EMJ by Ecology on July 21, 2010 for stormwater management during cleanup actions at the Site. This permit included provisions for weekly inspections by a Certified Erosion and Sediment Control Lead, turbidity and pH monitoring of stormwater discharge, monthly discharge monitoring reports, and a Stormwater Pollution Prevention Plan. These provisions were fulfilled by Clearcreek. A complete transfer of permit coverage for the Construction Stormwater General Permit was issued October 1, 2011 to transfer operations from EMJ to Clearcreek. A copy of the permit and transfer of coverage is included in Appendix C.

4.2.4 Wastewater Discharge Authorization

King County Discharge Authorization No. 4170-03 previously issued for the interim action at the Site was revised and extended on September 14, 2010. The maximum daily discharge volume was increased to 60,000 gallons per day to accommodate the additional construction dewatering expected during cleanup activities, and a requirement was added to the permit to self-monitor for settleable solids during the construction phase of the cleanup activities. A copy of King County Discharge Authorization No. 4170-04 is included in Appendix C.

4.2.5 Wetland Buffer Enhancement/Restoration Plan

A portion of the 50-foot protective buffer zone at Wetland I was identified as impacted during slag excavation (Figure 3). Anchor developed a mitigation and monitoring plan to enhance and restore the disturbed wetland buffer by removing invasive species and replanting native vegetation within the disturbed wetland buffer area. The *Wetland Buffer Enhancement/Restoration Plan* (Appendix A) includes scheduled inspections to confirm planting survival and was approved by Ecology and the City of Kent.

5.0 CLEANUP ACTION ACTIVITIES

The cleanup action conducted from August 2010 to July 2011 included the following elements:

- Relocating the water treatment system;
- Clearing and grubbing the areas to be excavated;
- Excavating slag throughout the Site;
- Restoring the Site with stockpiled overburden and imported fill; and
- Conducting four surface water compliance monitoring events.

A photographic log depicting the cleanup activities conducted at the Site is provided in Appendix D.

Clearcreek was engaged by EMJ to implement the cleanup action. Farallon provided observation and sampling throughout the cleanup action to guide and document the cleanup action activities, including performance soil and surface water sampling and field analysis, and compliance surface water sampling and analysis. Additional subcontractors were retained as necessary to provide technical support for specific cleanup action activities. Description of Site preparation activities, the cleanup action, and additional technical support roles are provided below.

5.1 SITE PREPARATION

Site preparation activities included water treatment system relocation, pre-excavation test pits, Site survey and sample control grid layout, Site mobilization, access road construction, slope protection, temporary erosion control, Site clearing, underground utility marking, and pre-construction meetings. Each of the Site preparation activities is described below. A summary of the weekly meetings conducted and the monthly progress reports prepared during the course of the cleanup action also are included in this section.

5.1.1 Water Treatment System Relocation

The water treatment system was modified and relocated to the northwest corner of the Site to permit slag excavation activities to proceed unimpeded. The 20,000-gallon tank was replaced with two 10,000-gallons tanks at a location approved by the project geotechnical engineering consultant, Patrick Harron & Associates, Inc. Geotechnical approval was necessary due to proximity to the steep slope at the west side of the Site. The water treatment system operated throughout slag excavation activities and initial Site restoration activities to ensure that water discharge requirements were met.

5.1.2 **Pre-Excavation Test Pits**

Farallon completed four test pit excavations during August 2010 prior to Clearcreek mobilization to the Site to test pH sampling methods, identify lithology, further delineate the extent of slag thickness and placement, and locate the polyethylene liner along the east side of the Site. Field

screening activities consisted of visual observation of slag and liner. Test pit logs are provided in Appendix E.

5.1.3 Site Survey and Sample Control Grid Layout

A 2-foot contour interval topographic survey of the Site was completed by PLS, Inc. of Issaquah, Washington (PLS) in 2009 for use in Site control. The estimated extent of excavation was located and staked at the Site by PLS on August 9, 2010. Field personnel established a 25- by 25-foot grid on the Site to identify soil and surface water sample locations for performance and compliance samples collected during the excavation activities. The 25- by 25-foot grid was marked with stakes and alphanumeric identifiers on August 16 and 17, 2010. The grid was maintained by Farallon throughout the course of the soil and surface water sampling activities and was extended along the south access road as required for slag material discovered outside the estimated excavation area.

PLS performed periodic surveys of the excavation to determine the amount of soil volumes excavated at the Site. PLS conducted the final survey and prepared an as-built drawing showing the final Site grades (Appendix F).

5.1.4 Site Mobilization

Site mobilization initiated by Clearcreek on August 11, 2010 included location of the office trailer adjacent to the relocated water treatment system, construction of employee parking at the northwest end of the Site, installation of a truck decontamination facility at the southwest limit of the estimated excavation area, and installation of two personnel decontamination facilities at the construction trailer adjacent to the water treatment equipment and at the south end of the Site. The Site was partially fenced, and gated access was established at both the north and south ends of the Site. Signs were placed at the west and north perimeters of the Site to notify the public regarding Site background and activities, contact information, and sources of additional information. Fact sheets were also made available at the two sign locations.

5.1.5 Access Road Construction

To facilitate Site excavation activities, an access road was constructed from the existing Site access at 90^{th} Avenue South to the construction entrance established at South 218th Street at the north end of the Site.

5.1.6 Critical Slope Area Protection

Slope protection areas were staked and marked to prevent disturbance of the steep slope areas (slopes greater than 40 percent) east and west of the Site. A 30-foot setback from the steep slope on the west side of the Site was marked "No Stockpile Area" to prevent impacts to the slope from excessive loading. A 15-foot setback from the eastern edge of the estimated excavation area was denoted "Excavation Caution Area" where excavation was monitored by a geotechnical engineer to prevent potential threats to the steep slope above.

5.1.7 Temporary Erosion Control

Temporary erosion control was established adjacent to excavation areas to control surface water run-on and runoff in accordance with the Stormwater Pollution Prevention Plan prepared by Clearcreek (Appendix B). Best Management Practices implemented for temporary erosion control included filter fencing where disturbance of surface soil met existing drainage along the perimeter of the Site, and wattles and hay bales as sediment filters for stormwater runoff at select locations. The City of Kent conducted an erosion control inspection on August 18, 2010 and approved commencement of grading work. A Certified Erosion and Sediment Control Lead performed weekly visits to assess the performance of erosion control practices.

5.1.8 Site Clearing

Clearing and grubbing of vegetation was initiated by Clearcreek on August 6, 2010 to facilitate placement of filter fencing where slag removal was anticipated. The material generated during the clearing and grubbing was shredded and disposed of off the Site.

5.1.9 Underground Utility Marking

When slag was discovered beyond the projected footprint, beneath and adjacent to the south access road (Figure 2), underground utilities along 90th Avenue South were located and marked by public and private utility locating services. Clearcreek maintained and re-marked underground utilities in this additional excavation area as necessary during the course of the cleanup action.

5.1.10 Pre-Construction Meetings

A series of pre-construction meetings were held between July and August 2010 that included representatives from Anchor, the City of Kent, Clearcreek, Ecology, and Farallon. Topics covered during the pre-construction meetings included project roles and responsibilities, work scheduling, key project planning documents and permits, contract procedures such as testing and inspection requirements, submittals, change orders, invoicing, and documentation. The pre-construction meetings included review and discussion of Site-specific health and safety issues for both on-Site personnel and visitors, and discussion of decontamination procedures.

5.1.11 Weekly Meetings

Weekly construction meetings between representatives of Clearcreek and Farallon were held on the Site during the course of the cleanup action. Weekly meetings included review of Site security measures, health and safety issues, update and discussion of current work in progress, City of Kent inspections, discharge permit requirements, confirmation sampling, change order requests and status, and the project schedule looking forward. Copies of weekly meeting notes are maintained in the Farallon project file.

5.1.12 Monthly Progress Reports

Summaries of the weekly meetings were compiled into monthly progress reports. In accordance with the Consent Decree, monthly progress reports were submitted to Ecology for review and courtesy copies were provided to the City of Kent. Copies of the monthly progress reports are included in Appendix G.

5.2 SOIL AND SLAG EXCAVATION

The cleanup action included excavation of secondary steel slag in accordance with the CAWP and the Construction Plans and Specifications. The results of visual observation and soil sampling conducted during the excavation revealed slag extending beyond the estimated projected limits, including:

- At depths greater than projected;
- Beneath the construction access road from 90th Avenue South to the projected limit of the slag footprint and into the buffer area of Wetlands M and N;
- Beyond the northern edge of the projected footprint; and
- Beyond the liner installed during an earlier interim action along the eastern edge of the Site.

Slag was removed in a phased approach, with excavation from east to west and from south to north. Construction haul roads were relocated and built on the Site as necessary to access underlying slag. Trucks entered the Site at the north end from South 218^{th} Street and exited the Site at the south end onto 90^{th} Avenue South after passing through the wheel-wash decontamination facility.

5.2.1 Temporary Soil Stockpiling

Approximately 6 inches of topsoil and 2 to 3.5 feet of overburden soil were stripped and temporarily stockpiled during the cleanup action to provide for construction sequencing. Stockpiled overburden was sampled and confirmed to be below the regulatory limit of 8.5 for pH and suitable for reuse during Site restoration. Temporary soil stockpiles were protected with reinforced plastic sheeting secured with staked sandbags as part of the Site decontamination and erosion control procedures in place at the Site.

5.2.2 Slag Excavation

Slag excavation was initiated on August 23 and completed on November 16, 2010. Slag was removed until the underlying native soil was encountered, based on visual evidence. The visual evidence of slag included:

- Granular, coarse-grained to sand-size material;
- Dense, concrete-like cobbles;
- White powder or large porous black cobbles; and
- Debris such as concrete, bricks, or rebar.

Soil samples were collected from the native silty soil when visual evidence confirmed that the slag had been removed, tested for pH, and compared to the IHS performance level of 8.5 for pH. If the performance level was exceeded, additional soil was removed and the soil was re-sampled and tested.

Slag excavation depths as shown on Figure 2 ranged:

- From 3 to 13 feet bgs at its northern point;
- From 6 to 11 feet bgs along its western edge;
- Up to 18 feet bgs in its center;
- From 1.5 to 7.5 feet bgs at its southern point and beneath the construction access road from 90th Avenue South; and
- From 5.5 to 8 feet bgs along its eastern limit.

Portions of the excavation along the eastern limit of slag extended into the excavation caution area where uncontrolled excavation could potentially threaten the steep slope above. Work was overseen by the project geotechnical engineering consultant. Slot cuts perpendicular to the slope and approximately 25 feet wide were made, one at a time, in these areas to limit landslide events and fill material was immediately placed to restore the area. This limited the area below the slope open at any one time.

The interceptor drain, the remaining portions of the liner, and the clay barrier along the eastern limit of the former slag were maintained and currently remain on the Site (Figure 2). Portions of the liner were removed as required to access slag (Figure 2). Slag beneath the culvert draining the detention pond at South 218th Street was removed and the culvert was rebuilt.

Slag was excavated beneath the southern construction access road from 90th Avenue South and in Wetlands M and N.

A total of 58,337.64 tons of slag was excavated between August 23 and November 16, 2010 and disposed of off the Site.

5.2.3 Water Treatment System Operation

The excavation was dewatered as necessary and construction stormwater and perched groundwater were monitored, treated, and batch-discharged through the on-Site water treatment system to the King County sanitary sewer system under Construction Stormwater General Permit No. WAR-012518 and King County Wastewater Discharge Authorization No. 1470-04. The discharged water was monitored for pH, turbidity, and settleable solids during construction activities.

The high-pH seep water captured in sumps 1 through 4 at the north and northwest ends of the Site was also treated and discharged during the excavation activities. Revisions were made to sump 3 on September 24, 2010 to eliminate surface water discharge to South 218th Street near the northern construction access road. The existing sump was removed and a new, deeper sump was installed. The installation was satisfactory and surface water discharge ceased at this location. Seep water collection and treatment was discontinued on January 10, 2011, 2 months after slag removal was completed. Approximately 1,032,591 gallons of water with pH ranging from 6.02 to 12.40 was treated and discharged to the City of Kent sanitary sewer system between August 1, 2010 and February 15, 2011.

5.2.4 Site Decontamination

The truck wheel wash was operated during the first several weeks of excavation operations. However, use of the wheel wash resulted in silty water sediments being tracked onto 90th Avenue South by haul trucks. To eliminate off-Site impacts, use of the truck wheel wash was discontinued and the construction access road was upgraded to eliminate contact between truck wheels and site soils. The access road was upgraded by installing a layer of geotextile fabric across the road and placing clean, coarse rock on the fabric. In addition, 90th Avenue South and South 218th Street were swept daily during slag loading and off-Site disposal.

5.3 WASTE MANAGEMENT

The slag was a solid waste that met the definition of "Special Waste" with a Conditional Exclusion of a Special Waste as discussed in the CAWP. The excavated slag was loaded into trucks, transported to an intermodal facility in Seattle, Washington, and shipped by railcar to a permitted landfill. Before leaving the Site, the loads were inspected to ensure that no free liquids were present in the truck.

Two permitted landfill facilities were used for slag disposal: the Waste Management Hillsboro Landfill and the Allied Waste Services Roosevelt Regional Landfill. Slag disposed of by Waste Management was transported to the Alaska Street Reload Facility in Seattle, Washington and then shipped to the Hillsboro Landfill in Hillsboro, Oregon. Slag disposed of by Allied Waste Services was transported to the Allied Waste Transfer Station in Seattle, Washington and then shipped to the Roosevelt Regional Landfill in Roosevelt, Washington. Approximately 58,337.64 tons of slag was disposed of, with 35,913.11 tons managed by Waste Management and 22,424.53 tons managed by Allied Waste Services (Table 1). Disposal documentation is provided in Appendix H. Individual truckload waste disposal receipts are maintained in the Farallon project file and are available upon request.

Other waste generated during the cleanup action was removed from the Site for disposal. Specific materials and disposal practices include the following:

- Wastewater generated from the truck wheel wash was treated using the on-Site water treatment system;
- Sediments generated from the truck wheel wash were collected on-Site and periodically disposed of as refuse at either of the two permitted landfills;
- Gloves, plastic sheeting, and other disposable protective materials used by construction workers, oversight personnel, and visitors were collected on-Site and periodically disposed of as refuse at either of the two permitted landfills; and
- Above-grade woody debris and vegetation were chipped and disposed of off-Site by Gilliardi Logging and Construction of Elbe, Washington at their recycle facility in Olympia, Washington.

6.0 COMPLIANCE MONITORING

Compliance monitoring was performed in accordance with the requirements of WAC 173-340-410 to address protection, performance, and confirmation monitoring. The specific requirements for monitoring the cleanup action were presented in the CAWP. A summary of the soil, air, and surface water monitoring conducted as part of the cleanup action is presented below.

6.1 SOIL MONITORING

This section presents the soil performance and confirmation monitoring procedures implemented for the cleanup action, the field-test results of performance and confirmation monitoring, and the quality control procedures followed during the cleanup action. The purpose of the soil monitoring conducted during the cleanup action was to confirm that the cleanup objectives for the excavation areas were attained.

6.1.1 Performance Monitoring

The results of performance soil monitoring were used to guide the overburden removal and lateral and vertical extent of slag and soil excavation to attain the cleanup standards. Soil with pH exceeding 8.5 was selected as the IHS for analysis of soil samples to guide the extent of the excavation. Performance monitoring included field testing using an Oakton 310 Series handheld pH meter. Copies of performance soil sampling results are maintained in the Farallon project file.

Calibration and verification checks of the pH meter were performed daily in accordance with the manufacturer's instructions and as outlined in the CAWP. The pH meter was calibrated at the beginning of each day, and calibration verification was performed after every 10 samples and at the end of each day. Calibration and verification checks were performed using standard buffer solutions that were replaced monthly. Copies of the calibration logs are maintained in the Farallon project file.

6.1.2 Confirmation Monitoring

Confirmation soil monitoring was conducted to confirm that slag and soil with pH greater than 8.5 had been removed. Confirmation soil samples were collected in accordance with the CAWP from the bottom layer of the overburden, grid cells, and sidewalls of the excavation and were tested in the field using the pH meter. The overburden, grid cell, and sidewall sampling procedures are summarized below.

6.1.2.1 Overburden

Test pits were excavated prior to removal of the overburden and a soil sample was collected from the test pit wall at the lower limit of the overburden based on visual inspection. The soil sample was field-tested for pH using the pH meter. Where field testing indicated that pH concentrations were below 8.5, the depth was noted and staked and the overburden was stripped and stockpiled.

6.1.2.2 Grid Cells

Confirmation soil samples were collected from the excavation using the 25- by 25-foot grid established across the excavation. A discrete soil sample was collected from the surface at the center of each cell for field-testing for pH using the pH meter.

6.1.2.3 Sidewalls

Sidewall samples were collected from the limits of excavation using the 25- by 25-foot grid established across the excavation. Discrete soil samples were collected from the top, middle, and bottom thirds of the vertical profile of the sidewall along lines on 25-foot centers or less and were field-tested for pH using the pH meter.

6.1.3 Field Testing

The confirmation soil samples were field-tested for pH following a procedure in general accordance with EPA Method 9045D. Field-testing procedures were conducted in accordance with those outlined in the CAWP. Data review and validation were performed by the Farallon Project Manager and Project QA/QC Officer.

6.1.4 Results

The pH levels were below 8.5 in the 520 confirmation soil samples collected across the excavation. The confirmation soil sample locations are shown on Figure 5 and a summary of confirmation soil sample field-test results is presented in Table 2.

6.1.5 Quality Control Samples

Quality control soil samples were collected in accordance with the quality assurance/quality control protocols presented in the CAWP. The pH levels were below 8.5 in the 32 duplicate confirmation soil samples collected and tested for pH for quality control purposes for the cleanup action.

6.2 AIR MONITORING

This section presents the results of air monitoring and sampling performed during excavation. The objectives of the air monitoring and sampling were to document that workers were not exposed to lime dust or nuisance dust above permissible exposure limits, and that dust mitigation measures were effective in preventing dust migration off the Site.

6.2.1 Personal Air Monitoring

Air samples were collected from the breathing zone of the worker with the greatest exposure to construction operations that generated dust during excavation activities, and were submitted for laboratory analysis for calcium as $CaCO_3$ and total particulates using National Institute for Occupational Safety and Health (NIOSH) Method 7300 (Modified) and NIOSH Method 0500 (Modified). The results of the air sampling did not indicate concentrations of calcium or total particulates above the laboratory method reporting limit in the samples collected. The air

sampling results are summarized in Table 3 and the analytical laboratory results are provided in Appendix I.

6.2.2 Perimeter Air Monitoring

Perimeter air monitoring was performed to confirm that Clearcreek dust control methods were effective in preventing off-Site migration of dust generated from construction operations. Hourly visual monitoring of dust was performed at the perimeter of the Site both upwind and downwind of construction operations. Slight visible dust was noted downwind of the Site on three occasions. Water spray was implemented to reduce airborne dust levels. Copies of the visible dust monitoring logs are maintained in the Farallon project file.

6.3 SURFACE WATER MONITORING

This section presents the surface water performance and compliance monitoring procedures implemented for the cleanup action; the field-test results of performance and compliance monitoring; and the quality control procedures followed during the cleanup action. The purpose of the surface water monitoring conducted during the cleanup action was to assess whether the cleanup objectives for the excavation areas being achieved.

6.3.1 Performance Monitoring

Surface water was monitored daily during excavation activities at the five perimeter locations listed in Section 3.3, Points of Compliance, and shown on Figure 4. Performance monitoring included field-testing using an Oakton 310 series handheld pH meter. The performance surface water sampling results are presented in Table 4.

On September 3, 2010, surface water with pH exceeding 8.5 was recorded at the southwest corner of the Site at location SW-5. Clearcreek had allowed water from the Site to run into the ditch. The surface water was collected, treated on-Site in the water treatment system, and discharged to the sanitary sewer system until sampling confirmed the pH was below 8.5. Corrective measures were taken to prevent water from discharging to the ditch at the southwest corner of the Site.

In addition, the pH of standing surface water that accumulated within the excavation area was tested prior to treatment and/or discharge. No standing surface water with pH exceeding 8.5 was discharged from the Site. Copies of standing surface water sampling results are maintained in the Farallon project file.

Calibration and verification checks of the pH meter were discussed in Section 6.1.1, Performance Monitoring.

6.3.2 Compliance Monitoring

Compliance surface water monitoring was conducted following completion of the excavation activities to assess whether the cleanup levels for pH in surface water were met at the five points of compliance identified in Section 3.3, Points of Compliance. Compliance surface water sample

collection was initiated in November 2010 after completion of the excavation activities and continued in three series at intervals of at least 6 weeks. Samples were collected following significant rain events (i.e., greater than 0.1 inches in 24 hours) from the five perimeter locations and tested in the field using the pH meter. Data review and validation were performed by the Farallon Project Manager and Project QA/QC Officer.

6.3.3 Compliance Sampling Results

The pH levels were below 8.5 in the 20 compliance surface water samples collected at the five perimeter locations. A summary of compliance surface water sample field-test results is presented in Table 5.

6.3.4 Quality Control Samples

A quality control surface water sample was collected in accordance with the quality assurance/quality control protocols presented in the CAWP. The pH level was below 8.5 in the one duplicate confirmation surface water sample collected and tested for pH for quality control purposes for the cleanup action.

7.0 SITE RESTORATION

This section describes the restoration activities conducted at the Site following completion of the excavation. Site restoration was accomplished in a phased approach over several months as weather permitted.

7.1 BACKFILL

Following slag removal and soil confirmation sampling, the excavation was backfilled with stockpiled overburden material and imported fill material. Approximately 4,500 tons of imported fill was brought in and used as slope stabilization for the culvert excavation northwest of the detention pond and as backfill for:

- The western perimeter;
- The slot cuts along the eastern perimeter of the Site in the excavation caution area; and
- The 50-foot buffer area around Wetland I.

Backfill was placed in 1-foot loose lifts and compacted to a minimum of 85 percent of maximum density as determined by the standard Proctor compaction test (ASTM D698). Compaction was verified by Mayes Testing Engineers, Inc. of Tacoma, Washington and test results are provided in Appendix J.

7.2 SITE DRAINAGE

Following backfill placement, the area impacted by construction was graded to drain. The final grades on the southern portion of the Site were consistent with design grades as detailed in the Construction Plans and Specifications. The final grades on the northern end of the Site varied from design grades due to changes in estimated excavation quantities.

To accommodate the final grades on the northern portion of the Site, Farallon developed a revised restoration plan that included installing a culvert, landscaping the wetland buffer areas, and hydroseeding the Site at its current grade. The plan was submitted to the City of Kent and approved on December 9, 2010. A 24-inch diameter culvert was installed through the 50-foot buffer surrounding Wetland I to drain the northern portion of the Site into the detention pond. Culvert details are provided in Appendix K. The culvert was installed January 26, 2011 and plugged to permit Site surface water to be collected, tested, and discharged through the water treatment system to the King County sanitary sewer system. The pH of the standing water was field-tested over a 2-month interval to assess whether the cleanup action objective had been met. The pH of the standing water did not exceed 8.5 during the two months. The culvert plug was removed on February 15, 2011, allowing surface water from the northern portion of the Site to drain into the detention pond. Copies of standing surface water sampling results are maintained in the Farallon project file.

The culvert at the north end of the Site that drains the detention pond was reconstructed to match pre-existing conditions following slag excavation. No other Site drainage features were impacted by excavation or construction activities.

7.3 WETLAND BUFFER AREA RESTORATION

Slag was excavated from the buffer area of Wetland I and the buffer area of Wetlands M and N. These areas were restored in accordance with the *Wetland Buffer Enhancement/Restoration Plan* dated June 2010 and the letter regarding Beckwith Property Slag Site Remediation, Wetland M and N Buffer Work dated November 14, 2010, both prepared by Anchor (Appendix A). During the final week of January 2011, approximately 398 tons of imported fill material was used to rebuild the disturbed buffer area surrounding Wetland I. A cottonwood tree in Wetland M that suffered root damage during slag excavation was cut down and placed in the buffer restoration area of Wetland I. In early February 2011, topsoil supplied by Cedar Grove Composting, Inc. of Maple Valley, Washington was placed in the disturbed buffer areas of Wetlands I, M, and N and inspected by the City of Kent.

Plants were delivered on February 16, 2011, inspected by Anchor personnel, and planted by Double Eagle Landscape of Woodinville, Washington in accordance with the buffer restoration plans. The following trees, shrubs, and groundcover were planted in the restored buffer area at Wetland I:

- Trees: Red Alder, Big-leaf Maple, Douglas Fir, and Western Red Cedar;
- Shrubs: Indian Plum, Salmonberry, Nootka Rose, and Snowberry; and
- Groundcover: Western Sword Fern.

Salmonberry was planted in the buffer area of Wetland M. The disturbed portions of the buffer areas of Wetlands M and N were hydroseeded for stabilization. The trees, shrubs, and groundcover received a 4- to 8-inch layer of mulch after planting and the City of Kent performed an inspection of the restored areas in February 2011. The Wetland Buffer Enhancement/Restoration As-Built Report (Wetland Buffer As-Built Report) prepared by Anchor is provided in Appendix L. The City of Kent approval of the Wetland Buffer As-Built Report is also provided in Appendix L.

The restored buffer areas will be monitored once per year for 3 years to demonstrate that intended wetland buffer functions have been achieved. The inspection will assess the percentage of areal cover, plant survival, and cover of invasive species. The first monitoring inspection will occur in summer 2012.

7.4 EROSION CONTROL AND FINAL GRADING

Straw bales and straw wattles were placed across the Site in the winter months to limit erosion impacts prior to final grading in summer 2011. The filter fencing remained in placed at the Site perimeter. In addition, the Site was hydroseeded with a grass/polymer mixture on February 1, 2011 to provide stabilization to surface soil.

Additional grading of the Site was performed on June 30, 2011 to reduce the potential for standing water at the new culvert. Disturbed areas of the Site were hydroseeded on July 1, 2011.

7.5 SITE DEMOBILIZATION

The temporary contractor facilities were decommissioned in January 2011 during the first phase of Site demobilization. The water treatment system was decommissioned and removed on April 18 and 19, 2011. The silt fencing, sample control grid, temporary fencing, and erosion control measures were removed from the Site after final grading in June 2011. Ecology blocks were placed across the northern and southern access roads to prohibit vehicular entrance to the Site from South 218th Street and 90th Avenue South, respectively.

8.0 ADDITIONAL DELIVERABLES

Following submittal of this final Completion and Compliance Monitoring Report, a de-listing petition will be prepared and submitted to Ecology requesting that the Site be removed from the Ecology Confirmed and Suspected Contaminated Sites list.

The need for a restrictive covenant at the Site is no longer applicable, and a request will be submitted to Ecology to remove this institutional control. After public notice and the opportunity for comment, if Ecology concurs, the restrictive covenant will be removed and recorded with the register of deeds for King County.

An easement will be recorded for Wetlands I and M and the buffer areas associated with Wetlands I and M as required by the City of Kent. The easement will be prepared according to City of Kent requirements.

Annual wetland buffer monitoring and inspection reports addressing areal cover percentages, observed plant and wild life species, and plant counts will be submitted to the City of Kent over a 3-year period beginning summer 2012.

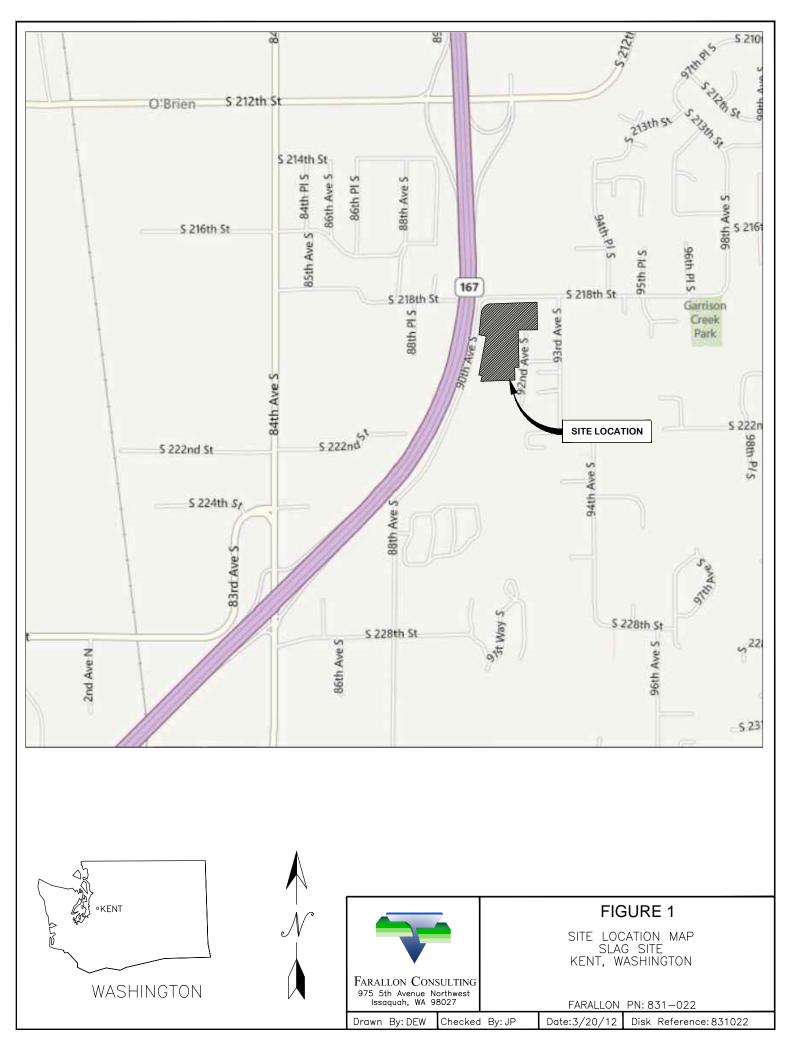
9.0 CONCLUSIONS AND CERTIFICATION

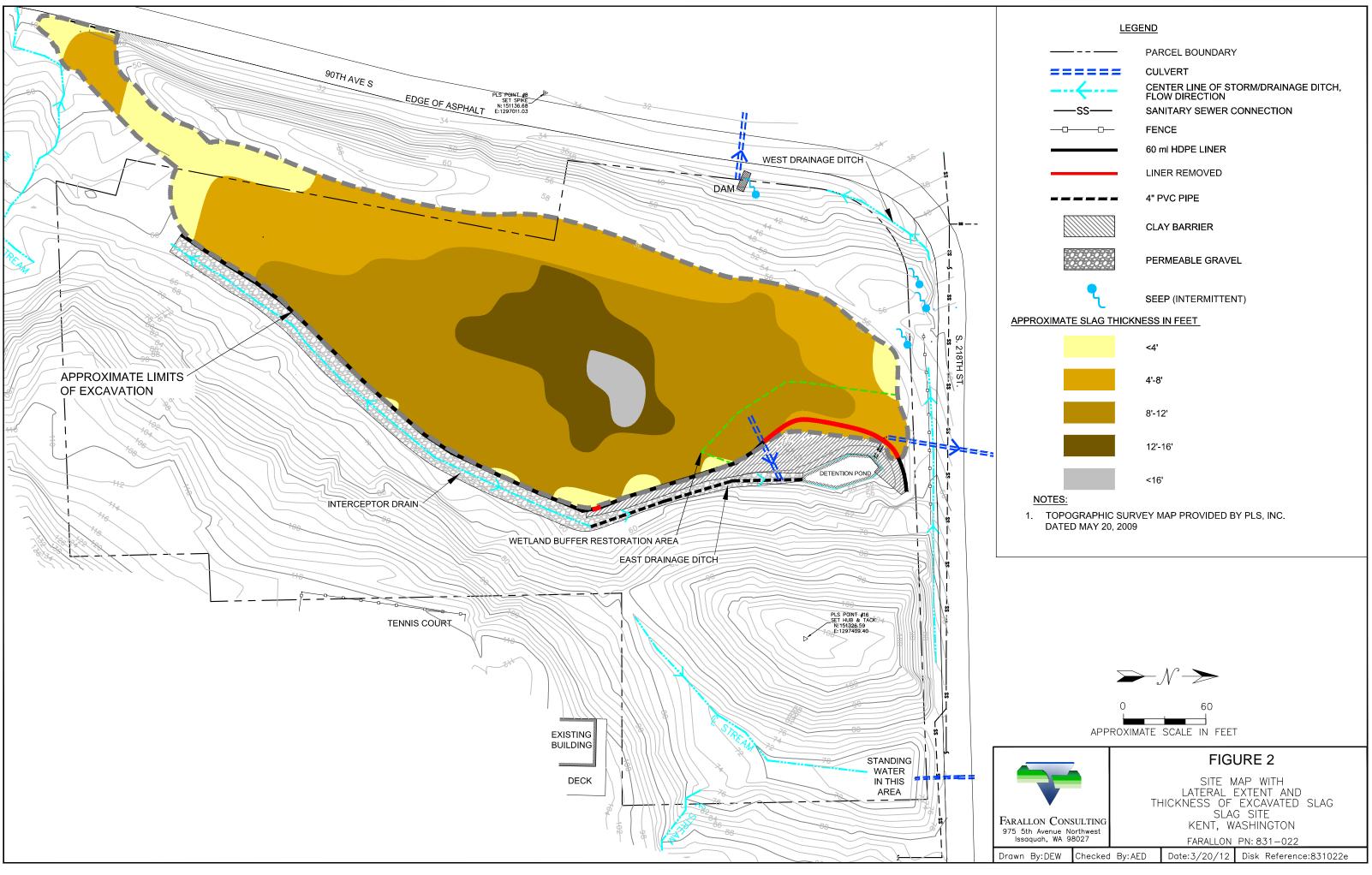
The cleanup action has been completed at the Site in accordance with the requirements of the Consent Decree and design documents approved by Ecology and the City of Kent. The cleanup action completed from August 2010 through July 2011 included excavation of 58,337.64 tons of slag and soil with pH exceeding 8.5 from the Slag Disposal Beckwith Property Site in Kent, Washington. The excavated slag and soil were disposed at the Waste Management Hillsboro Landfill facility in Hillsboro, Oregon and the Allied Waste Roosevelt Regional Landfill facility in Roosevelt, Washington. The analytical results for the 520 confirmation soil samples collected from the excavation area confirm that slag and soil with pH exceeding 8.5 was removed and disposed of off the Site.

The analytical results for surface water samples collected during four consecutive monitoring events at the conditional points of compliance surface water sampling locations indicate that the cleanup action objective has been met and no surface water with pH exceeding 8.5 discharges from the Site.

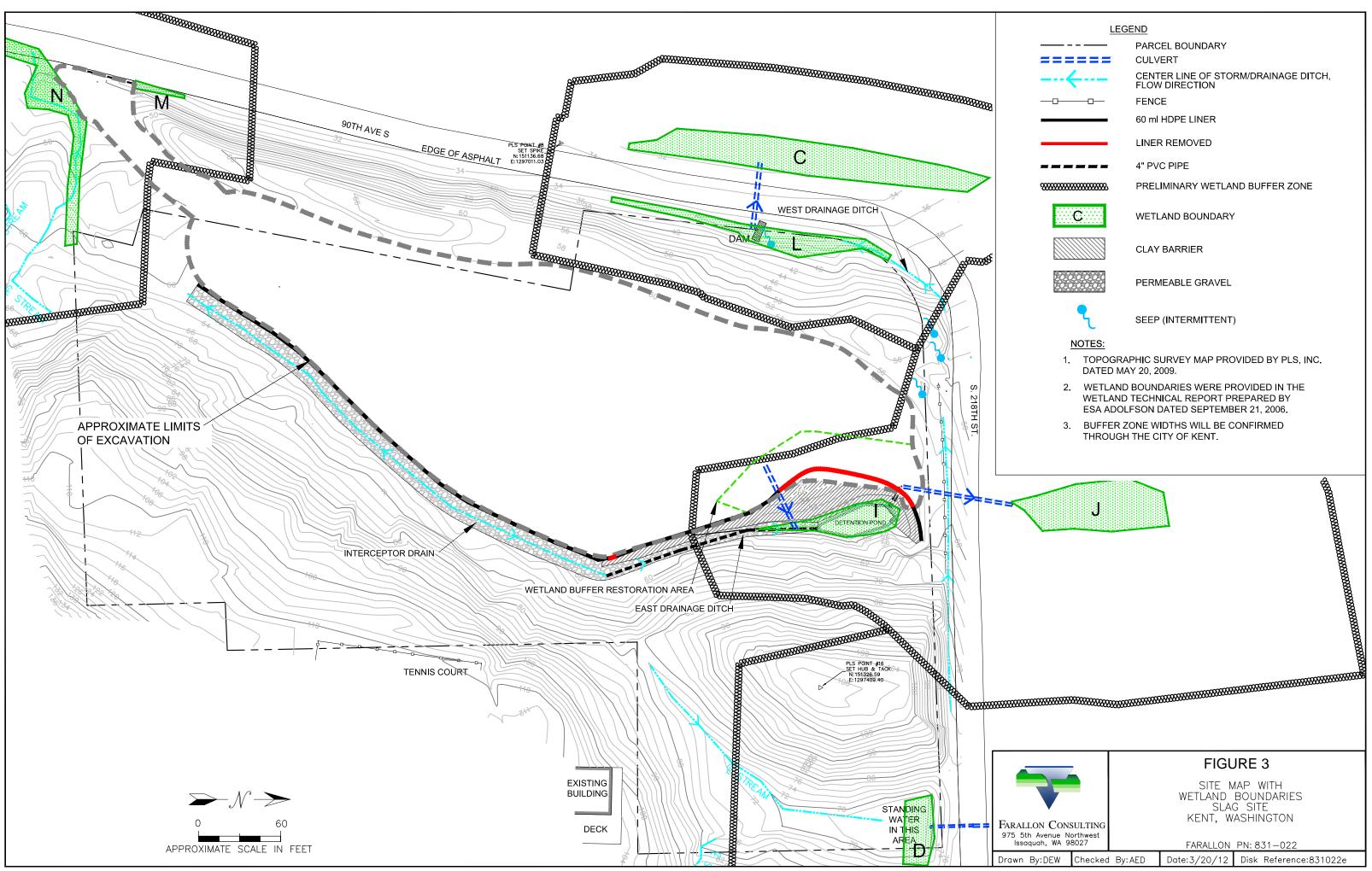
The requirements of the Consent Decree have been met for the Site. Annual inspection of the Wetland Buffer Areas is required for a 3-year period beginning in 2012.

A certification statement from the Professional Engineer attesting to the performance of the cleanup action in substantial compliance with the CAWP is provided in Appendix M.

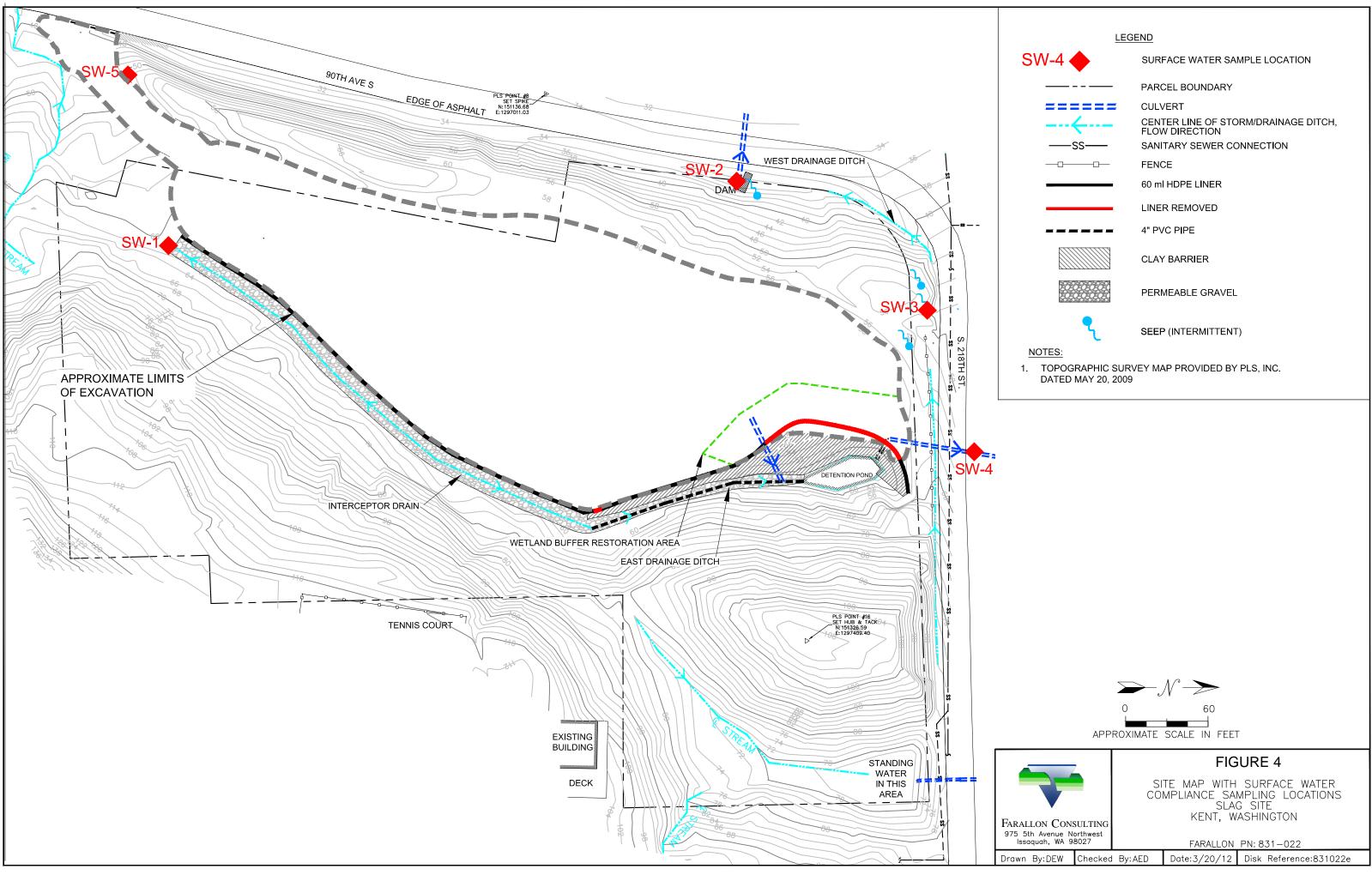

10.0 REFERENCES

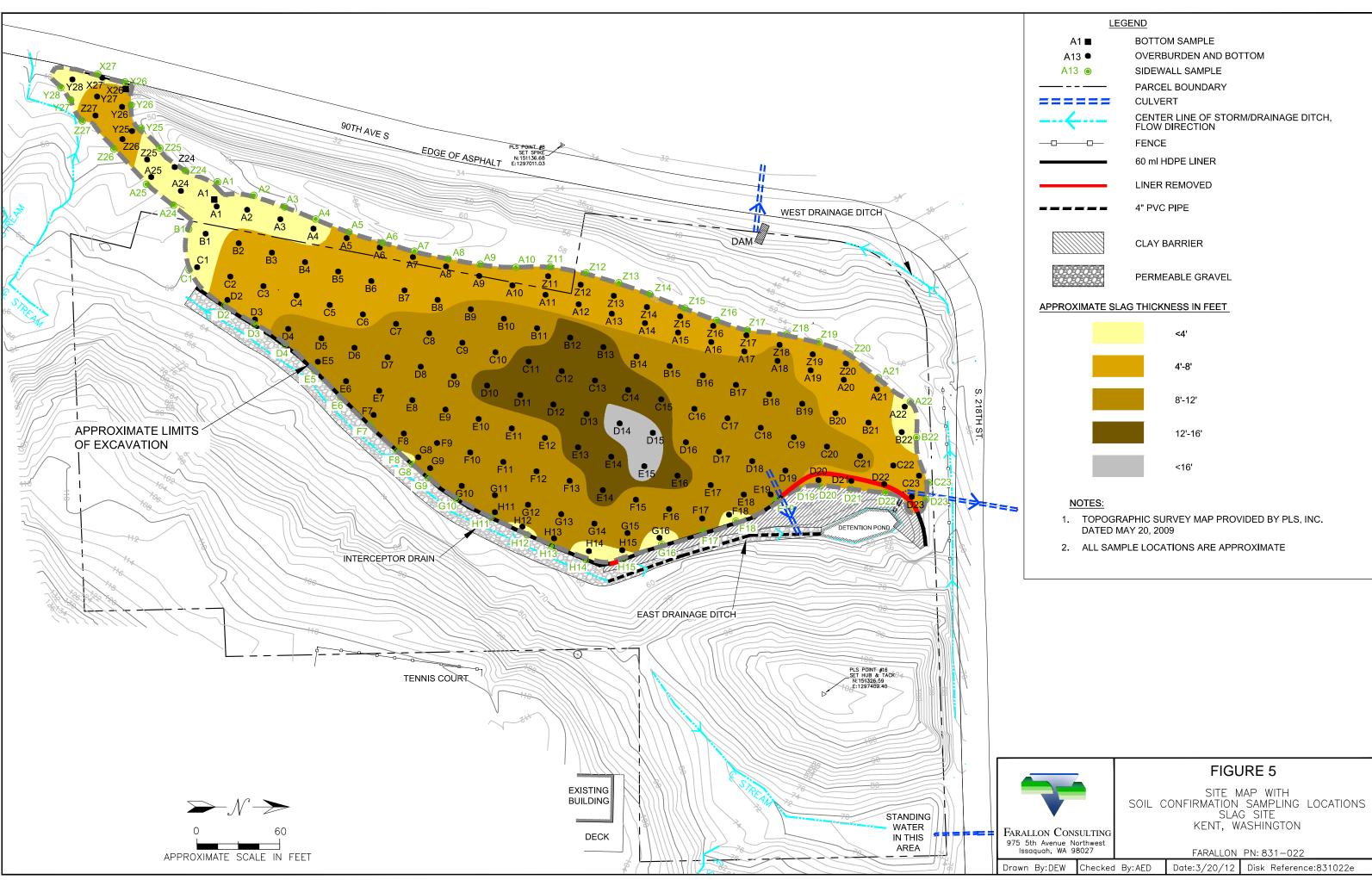

- ESA Adolfson. 2006. South 224th Street Extension Wetland Technical Report. Prepared for City of Kent. September 21.
- Anchor QEA. 2010a. Wetland Buffer Enhancement/Restoration Plan. Prepared for Farallon Consulting L.L.C. June.
- ———. 2010b. Letter Regarding Beckwith Property Slag Site Remediation, Wetland M and N Buffer Work. From Peter Hummel, Project Manager. To Heidi Fischer, Farallon Consulting, LLC. November 14.
- Farallon Consulting, L.L.C. (Farallon). 2009a. *Seep Water Investigation*. Prepared for Earle M. Jorgensen Company. August 10.
 - . 2009b. Wastewater Treatment, Monitoring, and Discharge Plan, Slag Disposal/Beckwith Property, Water Remediation System, 88th Avenue South and South 218th Street, Kent, Washington. Prepared for Earle M. Jorgensen Company, Lynnwood, California. December 4.
 - ——. 2010a. Cleanup Action Work Plan, Slag Disposal Beckwith Property Site, South 218th Street and 90th Avenue South, Kent, Washington. Prepared for Earle M. Jorgensen Company, Lynnwood, California. June.
 - —. 2010b. Slag Disposal Beckwith Property Site Excavation Project Construction Plans and Specifications, Kent, Washington. Prepared for Earle M. Jorgensen Company, Lynnwood, California. August.
- Washington State Department of Ecology. 2007. Letter Regarding Satisfaction of Consent Decree 95-2-15301-1. From Brian S. Sato, P.E., Toxics Cleanup Program. To Gil Leon, Chief Financial Officer, Earle M. Jorgensen Company. October 25.
- ———. 2009a. Memorandum Regarding Slag Disposal, Beckwith Property Cleanup Status. From David South. To File. April 17.

FIGURES


COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022





	7	FIGURE 3			
ARALLON CONS 75 5th Avenue No Issaguoh, WA 90	orthwest	SITE MAP WITH WETLAND BOUNDARIES SLAG SITE KENT, WASHINGTON FARALLON PN: 831-022			
loodqually mit of		FARALLON PN: 631-022			
awn By:DEW	Checker	Bv•∆FD	Date: 3/20/12	Disk Reference:831022e	

Issaquah, WA 9	8027		FARALLON	PN: 831-022
wn By:DEW	Checked	By: AED	Date:3/20/12	Disk Reference:831022e

TABLES

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

Table 1Slag Disposal SummarySlag Disposal Beckwith Property SiteKent, WashingtonFarallon PN: 831-022

	Waste Man	agement	Allied W	aste	Total	
Date	Loads Received	Net Tons	Loads Received	Net Tons	Trucks	Total Tons
8/27/2010	57	1,755.21			57	1,755.21
8/30/2010	53	1,774.67			53	1,774.67
8/31/2010	66	2,063.78	102	3,300.38	168	5,364.16
9/1/2010	88	2,811.10		,	88	2,811.10
9/2/2010	86	2,718.53	39	1,197.57	125	3,916.10
9/3/2010	44	1,351.25	25	805.54	69	2,156.79
9/7/2010	5	163.89	10	307.61	15	471.50
9/14/2010	88	2,835.35	36	1,142.71	124	3,978.06
9/15/2010	68	2,239.36	4	132.85	72	2,372.21
9/22/2010	2	63.66	2	57.59	4	121.25
9/23/2010	72	2,319.95	37	1,166.71	109	3,486.66
9/24/2010	66	2,112.15	38	1,220.20	104	3,332.35
9/25/2010		,	76	2,439.43	76	2,439.43
9/27/2010	57	1,892.15	64	2,064.14	121	3,956.29
9/28/2010	29	846.28	17	519.90	46	1,366.18
9/29/2010	1	30.27			1	30.27
9/30/2010	61	1,890.87	37	1,187.08	98	3,077.95
10/1/2010	13	393.65	15	428.91	28	822.56
10/5/2010	17	526.74	1	31.78	18	558.52
10/6/2010	34	1,064.33	12	366.66	46	1,430.99
10/7/2010	41	1,300.86			41	1,300.86
10/8/2010	2	72.46			2	72.46
10/13/2010	43	1,398.63	39	1,246.45	82	2,645.08
10/14/2010	63	2,027.49	50	1,621.15	113	3,648.64
10/15/2010	26	769.28	66	2,050.25	92	2,819.53
10/18/2010	11	329.14	18	544.32	29	873.46
10/19/2010			4	136.63	4	136.63
10/20/2010			6	200.98	6	200.98
10/21/2010			5	160.14	5	160.14
10/27/2010	11	211.69			11	211.69
10/28/2010	18	304.11			18	304.11
10/29/2010	18	317.56			18	317.56
11/1/2010	3	45.50			3	45.50
11/3/2010	14	226.71	5	73.67	19	300.38
11/12/2010			1	21.88	1	21.88
11/15/2010	1	19.18			1	19.18
11/16/2010	2	37.31			2	37.31
Totals	1,160	35,913.11	709	22,424.53	1,869	58,337.64

Total Tons Slag Disposed

1 of 1

58,337.64

Sample Grid	Sample ID	Date	Depth	pH	Type of Confirmation
A1	A1-01-081910	8/19/2010	2.0	7.64	Overburden
A1	A1-04-110310	11/3/2010	1.0	7.80	Sidewall 1
A1	A1-05-110310	11/3/2010	2.0	8.18	Sidewall 2
A1	A1-06-110310	11/3/2010	3.0	7.50	Sidewall 3
A1	A1-03-082310	8/23/2010	4.0	6.59	Bottom
A1	A1-03-110310	11/3/2010	4.5	6.75	Bottom
A2	A2-01-081910	8/19/2010	2.0	7.29	Overburden
A2	A2-03-110310	11/3/2010	2.0	8.01	Sidewall 1
A2	A2-04-110310	11/3/2010	3.0	8.31	Sidewall 2
A2	A2-05-110310	11/3/2010	4.0	8.00	Sidewall 3
A2	A2-06-110310	11/3/2010	4.0	7.60	Bottom
A3	A3-01-091310	9/13/2010	2.5	6.94	Overburden
A3	A3-03-101910	10/19/2010	2.5	6.88	Sidewall 1
A3	A3-04-101910	10/19/2010	4.0	7.21	Sidewall 2
A3	A3-05-101910	10/19/2010	6.0	7.44	Sidewall 3
A3	A3-02-101810	10/18/2010	4.0	6.55	Bottom
A4	A4-01-091310	9/13/2010	2.5	7.36	Overburden
A4	A4-03-101910	10/19/2010	2.5	6.97	Sidewall 1
A4	A4-04-101910	10/19/2010	4.0	7.08	Sidewall 2
A4	A4-05-101910	10/19/2010	6.0	7.09	Sidewall 3
A4	A4-02-101810	10/18/2010	4.0	6.80	Bottom
A5	A5-01-091310	9/13/2010	2.5	7.80	Overburden
A5	A5-03-101910	10/19/2010	2.5	7.24	Sidewall 1
A5	A5-04-101910	10/19/2010	4.5	7.36	Sidewall 2
A5	A5-05-101910	10/19/2010	6.5	7.96	Sidewall 3
A5	A5-02-101810	10/18/2010	6.0	5.90	Bottom
A6	A6-01-091310	9/13/2010	2.5	7.80	Overburden
A6	A6-03-101910	10/19/2010	2.5	7.54	Sidewall 1
A6	A6-04-101910	10/19/2010	4.5	7.67	Sidewall 2
A6	A6-05-101910	10/19/2010	6.5	7.42	Sidewall 3
A6	A6-02-101510	10/15/2010	7.0	8.04	Bottom
A7	A7-02-101510	10/15/2010	7.0	7.47	Bottom
A7	A7-01-091310	9/13/2010	2.5	7.72	Overburden
A7	A7-03-101910	10/19/2010	2.5	7.38	Sidewall 1
A7	A7-04-101910	10/19/2010	4.5	7.44	Sidewall 2
A7	A7-05-101910	10/19/2010	6.5	7.56	Sidewall 3
A8	A8-01-091310	9/13/2010	2.5	7.64	Overburden
A8	A8-03-101910	10/19/2010	2.5	7.21	Sidewall 1
A8	A8-04-101910	10/19/2010	5.0	6.71	Sidewall 2
A8	A8-05-101910	10/19/2010	7.0	6.77	Sidewall 3
A8	FD-A8-05-101910	10/19/2010	7.0	6.74	FD-Sidewall 3
A8	A8-02-101510	10/15/2010	7.0	7.56	Bottom

Sample Grid	Sample ID	Date	Depth	pH	Type of Confirmation
 A9	A9-01-091310	9/13/2010	2.5	7.53	Overburden
A9	A9-03-101910	10/19/2010	2.0	6.36	Sidewall 1
A9	A9-04-101910	10/19/2010	4.0	7.10	Sidewall 2
A9	A9-05-101910	10/19/2010	6.0	7.16	Sidewall 3
A9	A9-02-101810	10/18/2010	6.5	6.80	Bottom
A10	A10-01-091310	9/13/2010	2.5	7.68	Overburden
A10	A10-03-101910	10/19/2010	2.0	7.46	Sidewall 1
A10	A10-04-101910	10/19/2010	4.0	7.35	Sidewall 2
A10	A10-05-101910	10/19/2010	6.0	7.37	Sidewall 3
A10	A10-02-101810	10/18/2010	6.5	6.78	Bottom
A11	A11-01-091310	9/13/2010	2.5	7.61	Overburden
A11	A11-02-101810	10/18/2010	5.0	6.80	Bottom
A12	A12-01-091310	9/13/2010	2.5	7.89	Overburden
A12	FD-A12-01-091310	9/13/2010	2.5	7.77	FD-Overburden
A12	A12-02-101810	10/18/2010	5.5	6.54	Bottom
A12	FD-A12-02-101810	10/18/2010	5.5	6.56	FD-Bottom
A13	A13-01-091510	9/15/2010	3.0	7.43	Overburden
A13	A13-02-101810	10/18/2010	7.0	6.68	Bottom
A14	A14-01-091610	9/16/2010	2.5	5.87	Overburden
A14	A14-01-091710	9/17/2010	2.5	7.70	Overburden
A14	A14-02-101810	10/18/2010	7.0	6.85	Bottom
A15	A15-01-091610	9/16/2010	2.5	6.28	Overburden
A15	A15-01-091710	9/17/2010	2.5	6.99	Overburden
A15	A15-02-101510	10/15/2010	7.0	7.48	Bottom
A16	A16-01-092110	9/21/2010	3.0	8.43	Overburden
A16	A16-02-101510	10/15/2010	6.5	6.10	Bottom
A17	A17-01-092110	9/21/2010	3.5	8.21	Overburden
A17	A17-02-101510	10/15/2010	6.5	5.51	Bottom
A18	A18-01-092110	9/21/2010	3.5	7.64	Overburden
A18	A18-02-101510	10/15/2010	8.5	6.35	Bottom
A18	FD-A18-03-101510	10/15/2010	8.5	6.42	FD-Bottom
A19	A19-01-092110	9/21/2010	3.5	8.04	Overburden
A19	A19-02-102010	10/20/2010	6.0	6.09	Bottom
A19	FD-A19-02-102010	10/20/2010	6.0	6.01	FD-Bottom
A20	A20-01-092110	9/21/2010	3.0	6.89	Overburden
A20	A20-03-102110	10/21/2010	8.0	6.83	Bottom
A21	A21-01-092110	9/21/2010	3.0	7.89	Overburden
A21	A21-02-101810	10/18/2010	2.5	6.71	Sidewall 1
A21	A21-04-101810	10/18/2010	5.0	6.86	Sidewall 2
A21	A21-06-101910	10/19/2010	6.0	7.46	Sidewall 3
A21	A21-07-101910	10/19/2010	8.0	7.51	Bottom

Sample Grid	Sample ID	Date	Depth	pН	Type of Confirmation
A22	A22-01-101210	10/12/2010	1.0	7.55	Overburden
A22	A22-02-101210	10/12/2010	1.0	7.03	Sidewall 1
A22	A22-03-101210	10/12/2010	2.0	6.94	Sidewall 2
A22	A22-04-101210	10/12/2010	3.0	7.00	Sidewall 3
A22	A22-05-101210	10/12/2010	4.0	6.88	Bottom
A24	A24-02-110310	11/3/2010	1.0	8.25	Overburden
A24	A24-04-110310	11/3/2010	1.0	7.73	Sidewall 1
A24	A24-05-110310	11/3/2010	1.5	7.20	Sidewall 2
A24	A24-06-110310	11/3/2010	2.0	7.29	Sidewall 3
A24	FD-A24-06-110310	11/3/2010	2.0	7.31	FD-Sidewall 3
A24	A24-03-110310	11/3/2010	2.0	7.74	Bottom
A25	A25-02-102910	10/29/2010	1.0	7.99	Overburden
A25	A25-04-102910	10/29/2010	1.0	7.52	Sidewall 1
A25	A25-05-102910	10/29/2010	2.0	7.91	Sidewall 2
A25	A25-06-102910	10/29/2010	3.0	7.66	Sidewall 3
A25	A25-03-102910	10/29/2010	3.5	7.96	Bottom
B1	B1-01-081910	8/19/2010	2.0	7.45	Overburden
B1	B1-03-110310	11/3/2010	2.0	7.38	Sidewall 1
B1	B1-04-110310	11/3/2010	2.5	8.17	Sidewall 2
B1	B1-05-110310	11/3/2010	3.0	7.44	Sidewall 3
B1	B1-02-101210	10/12/2010	3.0	7.02	Bottom
B1	B1-06-110310	11/3/2010	3.5	7.05	Bottom
B2	B2-01-081910	8/19/2010	2.0	7.47	Overburden
B2	B2-02-092910	9/29/2010	4.5	6.77	Bottom
B3	B3-01-082010	8/20/2010	2.5	5.95	Overburden
B3	B3-01-091110	9/11/2010	2.5	7.79	Overburden
B3	B3-02-092910	9/29/2010	4.5	7.61	Bottom
B4	B4-01-082010	8/20/2010	2.5	5.85	Overburden
B4	B4-01-091110	9/11/2010	2.5	7.40	Overburden
B4	B4-02-092810	9/28/2010	7.0	7.21	Bottom
B5	B5-01-091110	9/11/2010	2.5	7.02	Overburden
B5	B5-02-092810	9/28/2010	7.0	7.14	Bottom
B6	B6-01-091110	9/11/2010	2.5	7.54	Overburden
B6	B6-02-092810	9/28/2010	7.0	7.21	Bottom
B7	B7-01-091110	9/11/2010	2.5	7.47	Overburden
B7	B7-02-0902810	9/28/2010	7.0	7.16	Bottom
B8	B8-01-091110	9/11/2010	2.5	7.77	Overburden
B8	B8-02-092810	9/28/2010	7.0	6.91	Bottom
B9	B9-01-091110	9/11/2010	2.5	8.04	Overburden
B9	B9-02-092810	9/28/2010	9.0	6.80	Bottom
B10	B10-01-091110	9/11/2010	2.5	7.05	Overburden
B10	B10-02-092810	9/28/2010	9.0	6.87	Bottom

Sample Grid	Sample ID	Date	Depth	pН	Type of Confirmation
B11	B11-01-091110	9/11/2010	2.5	7.12	Overburden
B11	B11-02-092810	9/28/2010	9.0	6.91	Bottom
B11	FD-B11-02-092810	9/28/2010	9.0	6.88	FD-Bottom
B12	B12-01-091310	9/13/2010	3.0	7.85	Overburden
B12	B12-02-092910	9/29/2010	14.0	7.37	Bottom
B13	B13-01-091310	9/13/2010	3.0	7.80	Overburden
B13	B13-02-092910	9/29/2010	14.0	6.82	Bottom
B14	B14-01-091610	9/16/2010	2.5	6.97	Overburden
B14	B14-01-091710	9/17/2010	2.5	6.76	Overburden
B14	B14-02-100110	10/1/2010	12.0	6.62	Bottom
B15	B15-01-091710	9/17/2010	2.5	6.93	Overburden
B15	B15-02-100110	10/1/2010	12.0	6.75	Bottom
B16	B16-01-092110	9/21/2010	3.0	7.78	Overburden
B16	B16-02-100110	10/1/2010	12.0	6.59	Bottom
B16	FD-B16-02-100110	10/1/2010	12.0	6.64	FD-Bottom
B17	B17-01-092210	9/22/2010	3.5	7.02	Overburden
B17	B17-02-100510	10/5/2010	9.0	7.06	Bottom
B18	B18-01-092210	9/22/2010	3.5	7.07	Overburden
B18	B18-02-100510	10/5/2010	9.0	7.35	Bottom
B19	B19-01-092210	9/22/2010	3.5	7.36	Overburden
B19	B19-02-100510	10/6/2010	13.0	7.06	Bottom
B20	B20-01-092210	9/22/2010	3.5	8.46	Overburden
B20	B20-02-102010	10/20/2010	7.0	6.37	Bottom
B21	B21-02-100910	10/9/2010	2.5	7.45	Overburden
B21	B21-03-100910	10/9/2010	7.0	7.21	Bottom
B22	B22-01-082410	8/24/2010	2.5	7.57	Overburden
B22	B22-02-101210	10/12/2010	1.0	7.24	Sidewall 1
B22	B22-03-101210	10/12/2010	2.0	7.47	Sidewall 2
B22	B22-04-101210	10/12/2010	3.0	7.40	Sidewall 3
B22	B22-05-101210	10/12/2010	4.0	6.06	Bottom
B22	FD- B22-05-101210	10/12/2010	7.2	7.11	FD-Bottom
C1	C1-01-082010	8/20/2010	2.5	6.72	Overburden
C1	C1-03-110310	11/3/2010	2.5	6.40	Sidewall 1
C1	C1-04-110310	11/3/2010	3.0	6.64	Sidewall 2
C1	C1-05-110310	11/3/2010	3.5	6.81	Sidewall 3
C1	C1-06-110310	11/3/2010	3.5	6.73	Bottom
C1	FD-C1-06-110310	11/3/2010	3.5	6.71	FD-Bottom
C2	C2-01-082010	8/20/2010	2.0	6.82	Overburden
C2	C2-02-092910	9/29/2010	4.5	7.45	Bottom
C3	C3-01-082010	8/20/2010	3.0	5.20	Overburden
C3	C3-02-092910	9/29/2010	4.5	7.24	Bottom
C4	C4-01-082010	8/20/2010	3.0	5.23	Overburden
C4	C4-02-091410	9/14/2010	7.0	6.87	Bottom

Sample Grid	Sample ID	Date	Depth	pН	Type of Confirmation
C5	C5-01-082010	8/20/2010	3.0	5.01	Overburden
C5	C5-02-091410	9/14/2010	8.0	6.95	Bottom
C6	C6-01-082010	8/20/2010	2.5	4.72	Overburden
C6	C6-02-091410	9/14/2010	8.0	7.54	Bottom
C7	C7-01-082010	8/20/2010	3.0	5.24	Overburden
C7	C7-02-091410	9/14/2010	9.0	6.97	Bottom
C8	C8-01-082010	8/20/2010	3.0	7.82	Overburden
C8	C8-02-091510	9/15/2010	10.0	7.00	Bottom
C9	C9-01-082510	8/25/2010	3.0	6.89	Overburden
C9	C9-02-091510	9/15/2010	11.0	7.62	Bottom
C10	C10-01-082510	8/25/2010	2.5	6.15	Overburden
C10	C10-02-091510	9/15/2010	12.0	7.68	Bottom
C11	C11-01-082510	8/25/2010	2.5	5.41	Overburden
C11	C11-02-091510	9/15/2010	14.0	6.74	Bottom
C12	C12-01-082510	8/25/2010	2.5	6.45	Overburden
C12	C12-02-091510	9/15/2010	14.0	7.00	Bottom
C12	FD-C12-02-091510	9/15/2010	14.0	6.97	FD-Bottom
C13	C13-01-082510	8/25/2010	3.0	7.66	Overburden
C13	C13-02-092910	9/29/2010	14.0	7.14	Bottom
C14	C14-01-082510	8/25/2010	3.0	7.35	Overburden
C14	C14-02-092910	9/29/2010	14.0	6.98	Bottom
C15	C15-01-082610	8/26/2010	3.0	7.46	Overburden
C15	C15-02-092910	9/29/2010	13.0	7.00	Bottom
C16	C16-01-082510	8/25/2010	3.0	6.82	Overburden
C16	C16-02-092910	9/29/2010	12.0	7.01	Bottom
C17	C17-01-082510	8/25/2010	3.0	6.74	Overburden
C17	C17-02-100510	10/5/2010	9.0	7.10	Bottom
C18	C18-01-082510	8/25/2010	3.0	7.69	Overburden
C18	C18-02-100510	10/5/2010	9.0	7.24	Bottom
C19	C19-01-082510	8/25/2010	3.0	7.69	Overburden
C19	C19-02-100510	10/6/2010	13.0	6.83	Bottom
C20	C20-01-082510	8/25/2010	3.0	8.41	Overburden
C20	C20-02-100710	10/7/2010	13.0	7.42	Bottom
C21	C21-01-082510	8/25/2010	3.0	7.29	Overburden
C21	FD-C21-01-082510	8/25/2010	3.0	7.70	FD-Overburden
C21	C21-02-100710	10/7/2010	13.0	7.08	Bottom
C22	C22-01-082410	8/24/2010	2.5	7.65	Overburden
C22	C22-02-101210	10/12/2010	3.0	7.07	Bottom

Sample Grid	Sample ID	Date	Depth	pН	Type of Confirmation
C23	C23-01-082410	8/24/2010	2.5	7.92	Overburden
C23	C23-02-100910	10/9/2010	2.5	7.00	Sidewall 1
C23	C23-06-101210	10/12/2010	2.0	7.06	Sidewall 1
C23	C23-03-100910	10/9/2010	3.0	7.48	Sidewall 2
C23	C23-07-101210	10/12/2010	4.0	7.82	Sidewall 2
C23	C23-04-100910	10/9/2010	4.0	7.54	Sidewall 3
C23	C23-08-101210	10/12/2010	7.0	7.15	Sidewall 3
C23	C23-05-100910	10/9/2010	4.5	7.76	Bottom
D2	D2-01-080210	8/20/2010	2.5	4.92	Overburden
D2	D2-02-092910	9/29/2010	2.5	7.98	Sidewall 1
D2	D2-03-092910	9/29/2010	3.5	8.16	Sidewall 2
D2	D2-04-0929-10	9/29/2010	4.5	7.86	Sidewall 3
D2	D2-05-092910	9/29/2010	4.5	6.98	Bottom
D3	D3-01-082010	8/20/2010	3.0	6.33	Overburden
D3	D3-06-092810	9/28/2010	3.0	7.89	Sidewall 1
D3	D3-05-092810	9/28/2010	5.0	7.42	Sidewall 2
D3	D3-04-092810	9/28/2010	7.0	7.21	Sidewall 3
D3	D3-02-092810	9/28/2010	7.5	7.28	Bottom
D3	FD-D3-03-092810	9/28/2010	7.5	7.12	FD-Bottom
D4	D4-01-082010	8/20/2010	3.0	6.69	Overburden
D4	D4-02-090710	9/7/2010	3.0	7.14	Sidewall 1
D4	D4-03-090710	9/7/2010	7.0	7.01	Sidewall 2
D4	D4-04-090710	9/7/2010	9.0	6.96	Sidewall 3
D4	D4-05-090710	9/7/2010	9.5	6.94	Bottom
D5	D5-01-082010	8/20/2010	2.5	6.07	Overburden
D5	D5-05-090710	9/7/2010	9.5	6.87	Bottom
D6	D6-01-082010	8/20/2010	3.0	6.20	Overburden
D6	D6-03-090710	9/7/2010	9.0	7.21	Bottom
D7	D7-01-082010	8/20/2010	2.5	4.89	Overburden
D7	D7-03-090710	9/7/2010	9.0	7.88	Bottom
D8	D8-01-082010	8/20/2010	3.0	5.72	Overburden
D8	D8-02-090810	9/8/2010	9.0	7.80	Bottom
D9	D9-01-082010	8/20/2010	3.0	5.42	Overburden
D9	D9-02-090810	9/8/2010	10.0	7.95	Bottom
D10	D10-01-082510	8/25/2010	2.5	6.75	Overburden
D10	D10-02-091010	9/10/2010	15.0	6.32	Bottom
D11	D11-01-082510	8/25/2010	2.5	6.53	Overburden
D11	D11-02-091010	9/10/2010	15.0	6.39	Bottom
D12	D12-01-082510	8/25/2010	2.5	6.47	Overburden
D12	D12-02-091010	9/10/2010	15.0	7.14	Bottom

Sample Grid	Sample ID	Date	Depth	pH	Type of Confirmation
D13	D13-01-082510	8/25/2010	3.0	8.17	Overburden
D13	D13-02-091010	9/10/2010	14.0	6.32	Bottom
D14	D14-01-082610	8/26/2010	3.0	7.30	Overburden
D14	D14-02-091710	9/17/2010	18.0	6.93	Bottom
D15	D15-01-082610	8/26/2010	3.0	7.62	Overburden
D15	D15-02-091710	9/17/2010	17.0	8.23	Bottom
D16	D16-01-082510	8/25/2010	3.0	7.55	Overburden
D16	D16-02-092910	9/29/2010	11.0	7.40	Bottom
D17	D17-01-082510	8/25/2010	3.0	7.90	Overburden
D17	D17-02-100510	10/5/2010	9.0	6.95	Bottom
D18	D18-01-082510	8/25/2010	3.0	7.77	Overburden
D18	D18-02-100510	10/5/2010	9.0	7.02	Bottom
D19	D19-01-082510	8/25/2010	3.0	7.78	Overburden
D19	D19-04-100710	10/7/2010	3.0	7.81	Overburden
D19	D19-03-100710	10/7/2010	3.0	8.24	Sidewall 1
D19	D19-06-100710	10/7/2010	5.0	8.30	Sidewall 2
D19	FD-D19-06-100710	10/7/2010	5.0	7.19	FD-Sidewall 2
D19	D19-07-100710	10/7/2010	6.0	6.63	Sidewall 3
D19	D19-05-100710	10/7/2010	6.0	7.14	Bottom
D20	D20-01-082510	8/25/2010	3.0	8.12	Overburden
D20	D20-01-100710	10/7/2010	3.0	8.41	Overburden
D20	D20-02-100710	10/7/2010	3.0	6.71	Sidewall 1
D20	D20-03-100710	10/7/2010	5.0	7.90	Sidewall 2
D20	D20-04-100710	10/7/2010	6.0	8.26	Sidewall 3
D20	D20-05-100710	10/7/2010	6.5	7.45	Bottom
D20	FD-D20-05-100710	10/7/2010	6.5	7.48	FD-Bottom
D21	D21-01-100710	10/7/2010	3.0	7.48	Overburden
D21	D21-02-100710	10/7/2010	3.0	7.14	Sidewall 1
D21	D21-03-100710	10/7/2010	6.0	6.89	Sidewall 2
D21	D21-04-100710	10/7/2010	8.0	6.95	Sidewall 3
D21	D21-05-100710	10/7/2010	8.0	7.27	Bottom
D22	D22-01-100810	10/8/2010	5.0	7.13	Overburden
D22	D22-03-100810	10/8/2010	5.0	7.59	Sidewall 1
D22	D22-04-100810	10/8/2010	6.0	7.87	Sidewall 2
D22	D22-06-100810	10/8/2010	7.0	8.29	Sidewall 3
D22	D22-02-100810	10/8/2010	7.0	7.62	Bottom
D23	D23-01-101910	10/19/2010	2.0	6.40	Overburden
D23	D23-02-101910	10/19/2010	2.0	6.54	Sidewall 1
D23	D23-03-101910	10/19/2010	4.0	6.67	Sidewall 2
D23	D23-04-101910	10/19/2010	6.0	6.75	Sidewall 3
D23	D23-05-101910	10/19/2010	7.0	6.65	Bottom

Sample Grid	Sample ID	Date	Depth	pН	Type of Confirmation
E5	E5-01-082010	8/20/2010	3.0	5.34	Overburden
E5	E5-02-090710	9/7/2010	3.0	6.92	Sidewall 1
E5	E5-03-090710	9/7/2010	7.0	6.95	Sidewall 2
E5	E5-04-090710	9/7/2010	9.0	6.97	Sidewall 3
E5	E5-05-090710	9/7/2010	9.5	7.04	Bottom
E6	E6-01-082010	8/20/2010	3.0	4.77	Overburden
E6	E6-03090710	9/7/2010	3.0	7.10	Sidewall 1
E6	FD-E6-03-090710	9/7/2010	3.0	6.45	FD-Sidewall 1
E6	E6-07-090710	9/7/2010	7.0	7.08	Sidewall 2
E6	E6-08-090710	9/7/2010	9.0	7.02	Sidewall 3
E6	E6-06-090710	9/7/2010	9.5	7.08	Bottom
E6	FD-E6-06-090710	9/7/2010	9.5	7.10	FD-Bottom
E7	E7-01-082010	8/20/2010	3.0	8.34	Overburden
E7	E7-02-090810	9/8/2010	9.0	7.10	Bottom
E8	E8-01-082010	8/20/2010	3.0	5.06	Overburden
E8	E8-02-090810	9/8/2010	10.0	6.90	Bottom
E9	E9-01-082010	8/20/2010	3.0	4.69	Overburden
E9	E9-02-090810	9/8/2010	10.5	7.27	Bottom
E10	E10-01-082510	8/25/2010	2.5	7.08	Overburden
E10	E10-02-090910	9/9/2010	10.5	7.73	Bottom
E11	E11-01-082510	8/25/2010	2.5	7.55	Overburden
E11	E11-02-090910	9/9/2010	10.5	7.58	Bottom
E12	E12-01-082510	8/25/2010	2.5	5.80	Overburden
E12	E12-02-090910	9/9/2010	12.0	7.42	Bottom
E13	E13-01-082510	8/25/2010	2.5	6.97	Overburden
E13	E13-02-091710	9/17/2010	13.0	8.06	Bottom
E14	E14-01-082510	8/25/2010	3.0	7.44	Overburden
E14	E14-02-091710	9/17/2010	16.0	6.84	Bottom
E15	E15-01-082510	8/25/2010	3.0	8.01	Overburden
E15	E15-02-091710	9/17/2010	17.0	6.95	Bottom
E16	E16-01-082510	8/25/2010	3.0	7.97	Overburden
E16	E16-02-092910	9/29/2010	16.0	7.47	Bottom
E17	E17-01-082510	8/25/2010	3.0	7.89	Overburden
E17	E17-02-100510	10/5/2010	9.0	7.07	Bottom
E18	E18-01-082510	8/25/2010	3.0	7.64	Overburden
E18	E18-02-100510	10/5/2010	9.0	7.40	Bottom
E18	FD-E18-02-100510	10/5/2010	9.0	7.47	FD-Bottom
E19	E19-01-100410	10/4/2010	3.0	7.83	Overburden
E19	E19-04-100410	10/4/2010	3.5	7.91	Sidewall 1
E19	E19-02-100410	10/4/2010	13.0	8.18	Sidewall 2
E19	E19-03-100410	10/4/2010	14.0	7.67	Sidewall 3
E19	E19-05-100610	10/6/2010	16.0	6.51	Bottom

Sample Grid	Sample ID	Date	Depth	pН	Type of Confirmation
F7	F7-01-082310	8/23/2010	3.0	6.20	Overburden
F7	F7-02-111810	11/18/2010	7.06	7.04	Sidewall 1
F7	F7-03-090710	9/7/2010	7.0	7.11	Sidewall 2
F7	F7-04-090710	9/7/2010	9.0	6.90	Sidewall 3
F7	FD-F7-04-090710	9/7/2010	9.0	6.89	FD-Sidewall 3
F7	F7-05-090710	9/7/2010	9.5	7.15	Bottom
F8	F8-01-082010	8/20/2010	3.0	5.74	Overburden
F8	F8-03-090810	9/8/2010	3.0	7.87	Sidewall 1
F8	F8-04-090810	9/8/2010	7.0	6.76	Sidewall 2
F8	F8-05-090810	9/8/2010	9.0	6.48	Sidewall 3
F8	F8-02-090810	9/8/2010	9.5	6.92	Bottom
F9	F9-01-082010	8/20/2010	3.0	5.67	Overburden
F9	F9-02-090810	9/8/2010	11.0	7.10	Bottom
F10	F10-01-082010	8/20/2010	2.5	5.41	Overburden
F10	F10-02-090810	9/8/2010	11.0	7.07	Bottom
F11	F11-01-082010	8/20/2010	3.0	8.24	Overburden
F11	F11-02-090810	9/8/2010	11.0	7.78	Bottom
F12	F12-01-082010	8/20/2010	3.0	6.73	Overburden
F12	F12-02-090810	9/8/2010	11.0	7.01	Bottom
F13	F13-01-082310	8/23/2010	2.5	7.13	Overburden
F13	F13-02-090810	9/8/2010	12.0	7.91	Bottom
F14	F14-01-082310	8/23/2010	2.5	8.08	Overburden
F14	F14-02-090810	9/8/2010	13.0	7.25	Bottom
F15	F15-01-082310	8/23/2010	2.5	7.95	Overburden
F15	F15-02-091710	9/17/2010	11.0	6.84	Bottom
F16	F16-01-082310	8/23/2010	2.5	7.64	Overburden
F16	F16-02-092910	9/29/2010	11.0	7.51	Bottom
F17	F17-01-082310	8/23/2010	2.5	5.76	Overburden
F17	F17-02-092910	9/29/2010	2.5	7.38	Sidewall 1
F17	F17-03-092910	9/29/2010	4.5	7.35	Sidewall 2
F17	F17-04-092910	9/29/2010	9.0	7.53	Sidewall 3
F17	F17-05-092910	9/29/2010	9.0	7.55	Bottom
F17	FD-F17-05-092910	9/29/2010	9.0	7.43	FD-Bottom
F18	F18-01-082310	8/23/2010	2.5	6.78	Overburden
F18	F18-03-100410	10/4/2010	3.5	7.61	Sidewall 1
F18	F18-04-100410	10/4/2010	6.0	7.56	Sidewall 2
F18	F18-05-100410	10/4/2010	8.0	7.54	Sidewall 3
F18	F18-02-100410	10/4/2010	8.0	7.46	Bottom
G8	G8-01-090910	9/9/2010	3.0	7.29	Overburden
G8	G8-03-090910	9/9/2010	3.0	7.38	Sidewall 1
G8	G8-04-090910	9/9/2010	5.0	7.77	Sidewall 2
G8	G8-05-090910	9/9/2010	7.0	7.38	Sidewall 3
G8	G8-02-090910	9/9/2010	7.0	7.43	Bottom

Sample Grid	Sample ID	Date	Depth	pН	Type of Confirmation
G9	G9-01-082010	8/20/2010	3.0	7.66	Overburden
G9	G9-03-090810	9/8/2010	3.0	7.42	Sidewall 1
G9	G9-04-090810	9/8/2010	7.0	7.62	Sidewall 2
G9	G9-05-090810	9/8/2010	10.0	7.96	Sidewall 3
G9	G9-02-090810	9/8/2010	10.0	7.62	Bottom
G10	G10-01-082010	8/20/2010	3.0	5.68	Overburden
G10	G10-03-090810	9/8/2010	3.0	7.60	Sidewall 1
G10	G10-04-090810	9/8/2010	7.0	7.53	Sidewall 2
G10	G10-05-090810	9/8/2010	10.0	8.06	Sidewall 3
G10	FD-G10-05-090810	9/8/2010	10.0	8.06	FD-Sidewall 3
G10	G10-02-090810	9/8/2010	10.0	7.40	Bottom
G11	G11-01-082010	8/20/2010	3.0	6.40	Overburden
G11	G11-02-090810	9/8/2010	10.0	8.41	Bottom
G12	G12-01-082010	8/20/2010	3.0	6.56	Overburden
G12	G12-02-090810	9/8/2010	9.5	7.41	Bottom
G12	FD-G12-02-090810	9/8/2010	9.5	7.43	FD-Bottom
G13	G13-01-082010	8/20/2010	3.0	6.81	Overburden
G13	G13-02-090910	9/9/2010	11.0	6.94	Bottom
G14	G14-01-082310	8/23/2010	2.5	6.81	Overburden
G14	G14-02-090910	9/9/2010	11.0	6.98	Bottom
G15	G15-01-082310	8/23/2010	2.5	6.48	Overburden
G15	G15-02-090910	9/9/2010	11.0	7.24	Bottom
G16	G16-01-082310	8/23/2010	2.5	7.14	Overburden
G16	G16-03-092810	9/28/2010	3.0	6.53	Sidewall 1
G16	G16-04-092810	9/28/2010	4.5	6.46	Sidewall 2
G16	G16-05-092810	9/28/2010	6.0	6.61	Sidewall 3
G16	G16-02-092810	9/28/2010	6.5	6.82	Bottom
H11	H11-01-082010	8/20/2010	2.5	5.24	Overburden
H11	H11-03-090810	9/8/2010	3.0	7.62	Sidewall 1
H11	H11-04-090810	9/8/2010	7.0	7.87	Sidewall 2
H11	H11-05-090810	9/8/2010	9.0	7.18	Sidewall 3
H11	H11-02-090810	9/8/2010	10.0	7.52	Bottom
H12	H12-01-082010	8/20/2010	2.5	5.63	Overburden
H12	H12-03-090910	9/9/2010	3.0	7.55	Sidewall 1
H12	H12-04-090910	9/9/2010	5.0	7.22	Sidewall 2
H12	H12-05-090910	9/9/2010	7.0	7.60	Sidewall 3
H12	H12-02-090910	9/9/2010	8.0	7.20	Bottom
H13	H13-01-082010	8/20/2010	2.5	5.80	Overburden
H13	H13-07-090810	9/8/2010	3.0	7.33	Sidewall 1
H13	H13-03-090810	9/8/2010	7.0	7.13	Sidewall 2
H13	H13-04-090810	9/8/2010	8.0	7.28	Sidewall 3
H13	H13-05-090810	9/8/2010	9.0	7.30	Bottom
H13	FD-H13-05-090810	9/8/2010	9.0	7.32	FD-Bottom

Sample Grid	Sample ID	Date	Depth	pН	Type of Confirmation
H14	H14-01-082310	8/23/2010	2.5	6.73	Overburden
H14	H14-03-090910	9/9/2010	3.0	6.01	Sidewall 1
H14	H14-04-090910	9/9/2010	5.0	7.22	Sidewall 2
H14	H14-05-090910	9/9/2010	6.5	6.39	Sidewall 3
H14	H14-02-090910	9/9/2010	7.0	7.94	Bottom
H15	H15-01-082310	8/23/2010	2.5	5.36	Overburden
H15	H15-03-090918	9/9/2010	2.5	7.66	Sidewall 1
H15	H15-04-090918	9/9/2010	4.0	7.48	Sidewall 2
H15	H15-05-090918	9/9/2010	6.0	7.41	Sidewall 3
H15	FD-H15-05-090910	9/9/2010	6.0	7.46	FD-Sidewall 3
H15	H15-02-090910	9/9/2010	6.0	7.90	Bottom
X26	X26-03-110410	11/4/2010	0.0	8.42	Overburden
X26	X26-05-110410	11/4/2010	0.0	8.43	Overburden
X26	X26-04-110410	11/4/2010	0.5	8.43	Sidewall 1
X26	X26-07-111210	11/12/2010	1.0	8.07	Sidewall 1
X26	X26-08-111210	11/12/2010	1.5	7.97	Sidewall 2
X26	X26-09-111210	11/12/2010	2.0	7.91	Sidewall 3
X26	X26-06-111210	11/12/2010	2.0	7.96	Bottom
X27	X27-04-111610	11/16/2010	0.5	8.19	Overburden
X27	X27-05-111610	11/16/2010	1.0	8.07	Sidewall 1
X27	X27-06-111610	11/16/2010	2.0	8.31	Sidewall 2
X27	X27-07-111610	11/16/2010	2.5	8.14	Sidewall 3
X27	X27-08-111610	11/16/2010	2.5	8.08	Bottom
X27	FD-X27-08-111610	11/16/2010	2.5	8.13	FD-Bottom
Y25	Y25-02-110410	11/4/2010	0.0	7.70	Overburden
Y25	Y25-03-110410	11/4/2010	0.0	8.46	Overburden
Y25	Y25-05-110410	11/4/2010	1.5	8.46	Sidewall 1
Y25	Y25-06-111210	11/12/2010	0.5	7.68	Overburden
Y25	Y25-07-111210	11/12/2010	1.5	8.20	Sidewall 1
Y25	Y25-08-111210	11/12/2010	2.0	8.34	Sidewall 2
Y25	Y25-09-111210	11/12/2010	2.5	8.35	Sidewall 3
Y25	Y25-10-111210	11/12/2010	2.5	8.28	Bottom
Y25	FD-Y25-10-111210	11/12/2010	2.5	8.33	FD-Bottom
Y26	Y26-02-102810	10/28/2010	1.0	8.06	Overburden
Y26	Y26-04-1028/10	10/28/2010	1.0	8.08	Sidewall 1
Y26	Y26-05-102810	10/28/2010	2.0	8.14	Sidewall 2
Y26	Y26-06-102810	10/28/2010	3.0	8.15	Sidewall 3
Y26	Y26-03-102810	10/28/2010	5.0	8.20	Bottom

Sample Grid	Sample ID	Date	Depth	pH	Type of Confirmation
Y27	Y27-03-102810	10/28/2010	1.0	8.22	Overburden
Y27	Y27-05-102810	10/28/2010	1.0	7.97	Sidewall 1
Y27	Y27-06-102810	10/28/2010	3.0	7.38	Sidewall 2
Y27	Y27-07-102810	10/28/2010	4.0	7.76	Sidewall 3
Y27	FD-Y27-07-102810	10/28/2010	4.0	7.76	FD-Sidewall 3
Y27	Y27-04-102810	10/28/2010	5.0	7.75	Bottom
Y28	Y28-01-111510	11/15/2010	0.0	7.12	Overburden
Y28	Y28-02-111510	11/15/2010	2.0	7.50	Sidewall 1
Y28	Y28-04-111510	11/15/2010	3.0	7.37	Sidewall 2
Y28	Y28-05-111510	11/15/2010	3.5	7.23	Sidewall 3
Y28	Y28-06-111510	11/15/2010	3.5	7.26	Bottom
Y28	FD-Y28-06-111510	11/15/2010	3.5	7.27	FD-Bottom
Z11	Z11-05-101910	10/19/2010	2.5	7.99	Overburden
Z11	Z11-01-101910	10/19/2010	2.5	8.15	Sidewall 1
Z11	Z11-02-101910	10/19/2010	4.0	6.89	Sidewall 2
Z11	Z11-03-101910	10/19/2010	6.5	7.16	Sidewall 3
Z11	Z11-04-101910	10/19/2010	6.5	7.28	Bottom
Z12	Z12-05-101910	10/19/2010	2.5	7.01	Overburden
Z12	Z12-01-101910	10/19/2010	2.5	7.03	Sidewall 1
Z12	Z12-02-101910	10/19/2010	4.0	7.20	Sidewall 2
Z12	Z12-03-101910	10/19/2010	6.0	7.29	Sidewall 3
Z12	Z12-04-101910	10/19/2010	6.0	6.85	Bottom
Z13	Z13-05-101910	10/19/2010	2.5	6.67	Overburden
Z13	Z13-01-101910	10/19/2010	2.5	6.68	Sidewall 1
Z13	Z13-02-101910	10/19/2010	4.0	6.39	Sidewall 2
Z13	Z13-03-101910	10/19/2010	6.0	6.48	Sidewall 3
Z13	Z13-04-101910	10/19/2010	6.0	6.60	Bottom
Z14	Z14-01-101910	10/19/2010	2.5	6.75	Overburden
Z14	Z14-02-101910	10/19/2010	2.5	6.73	Sidewall 1
Z14	Z14-03-101910	10/19/2010	4.0	6.83	Sidewall 2
Z14	Z14-04-101910	10/19/2010	6.0	6.64	Sidewall 3
Z14	Z14-05-101910	10/19/2010	6.0	6.85	Bottom
Z14	FD-Z14-05-101910	10/19/2010	6.0	6.67	FD-Bottom
Z15	Z15-01-101910	10/19/2010	2.5	6.64	Overburden
Z15	Z15-02-101910	10/19/2010	2.5	6.54	Sidewall 1
Z15	Z15-03-101910	10/19/2010	4.0	6.50	Sidewall 2
Z15	Z15-04-101910	10/19/2010	6.0	5.84	Sidewall 3
Z15	Z15-05-101910	10/19/2010	6.0	5.95	Bottom
Z15	FD-Z15-05-101910	10/19/2010	6.0	6.09	FD-Bottom
Z16	Z16-01-101910	10/19/2010	2.5	6.41	Overburden
Z16	Z16-02-101910	10/19/2010	2.5	6.36	Sidewall 1
Z16	Z16-03-101910	10/19/2010	4.0	6.42	Sidewall 2
Z16	Z16-04-101910	10/19/2010	6.0	6.97	Sidewall 3
Z16	Z16-05-101910	10/19/2010	6.0	7.07	Bottom

Sample Grid	Sample ID	Date	Depth	рН	Type of Confirmation
Z17	Z14-01-101910	10/19/2010	2.5	7.08	Overburden
Z17	Z17-02-101910	10/19/2010	2.5	7.15	Sidewall 1
Z17	Z17-03-101910	10/19/2010	4.0	6.94	Sidewall 2
Z17	Z17-04-101910	10/19/2010	6.0	6.82	Sidewall 3
Z17	Z17-05-101910	10/19/2010	6.0	6.57	Bottom
Z18	Z18-01-092110	9/21/2010	3.5	7.77	Overburden
Z18	Z18-02-102010	10/20/2010	2.5	6.67	Sidewall 1
Z18	Z18-03-102010	10/20/2010	3.5	6.88	Sidewall 2
Z18	Z18-04-102010	10/20/2010	6.0	5.47	Sidewall 3
Z18	Z18-05-102010	10/20/2010	6.0	6.05	Bottom
Z19	Z19-01-092110	9/21/2010	3.5	7.92	Overburden
Z19	Z19-02-102010	10/20/2010	2.5	6.37	Sidewall 1
Z19	Z19-03-102010	10/20/2010	4.0	6.56	Sidewall 2
Z19	Z19-04-102010	10/20/2010	6.0	6.23	Sidewall 3
Z19	Z19-05-102010	10/20/2010	6.0	6.15	Bottom
Z20	Z20-01-092110	9/21/2010	3.0	7.58	Overburden
Z20	FD-Z20-02-092110	9/21/2010	3.0	7.61	FD-Overburden
Z20	Z20-02-101810	10/18/2010	2.5	6.41	Sidewall 1
Z20	Z20-04-101810	10/18/2010	3.5	6.66	Sidewall 2
Z20	Z20-07-101910	10/19/2010	6.0	7.94	Sidewall 3
Z20	Z20-06-101910	10/18/2010	6.0	6.82	Bottom
Z24	Z24-01-110310	11/3/2010	0.5	8.23	Overburden
Z24	Z24-03-110310	11/3/2010	0.5	8.16	Sidewall 1
Z24	Z24-04-110310	11/3/2010	1.0	8.36	Sidewall 2
Z24	Z24-5-110310	11/3/2010	1.5	7.94	Sidewall 3
Z24	Z24-02-110310	11/3/2010	1.5	7.90	Bottom
Z25	Z25-03-102910	10/29/2010	1.0	8.20	Overburden
Z25	Z25-05-102910	10/29/2010	1.0	8.36	Sidewall 1
Z25	Z25-06-102910	10/29/2010	2.0	7.98	Sidewall 2
Z25	Z25-07-102910	10/29/2010	4.0	7.98	Sidewall 3
Z25	FD-Z25-07-102910	10/29/2010	4.0	7.97	FD-Sidewall 3
Z25	Z25-04-102910	10/29/2010	4.0	7.71	Bottom
Z26	Z26-02-102810	10/28/2010	1.0	7.16	Overburden
Z26	Z26-04-102810	10/28/2010	1.0	6.89	Sidewall 1
Z26	Z26-05-102810	10/28/2010	3.0	6.57	Sidewall 2
Z26	Z26-06-102810	10/28/2010	5.0	6.53	Sidewall 3
Z26	Z26-03-102810	10/28/2010	7.5	6.61	Bottom
Z27	Z27-02-102810	10/28/2010	1.0	8.15	Overburden
Z27	Z27-04-102810	10/28/2010	1.0	7.77	Sidewall 1
Z27	Z27-05-102810	10/28/2010	2.0	8.20	Sidewall 2
Z27	Z27-06-102810	10/28/2010	3.0	7.74	Sidewall 3
Z27	Z27-03-102810	10/28/2010	3.0	7.48	Bottom

Table 3Summary of Air Monitoring Analytical ResultsSlag Disposal Beckwith Property SiteKent, WashingtonFarallon PN: 831-022

		Calcium as CaCO ₃ ¹		Total P	articulates, I	N.O.R. ²	
Sample Identification	Date Collected	(µg)	(mg/m^3)	ppm	(µg)	(mg/m ³)	ppm
EMJS-PA-082010-001	8/20/2010	<50.0	< 0.0521	< 0.0127	<100	< 0.104	
EMJS-PA-082310-02	8/23/2010	<50.0	< 0.0521	< 0.0127	<100	< 0.104	
EMJS-PA-082410-03	8/24/2010	<50.0	< 0.0521	< 0.0127	<100	< 0.104	
EMJS-PA-05-082510	8/25/2010	<50.0	< 0.0521	< 0.0127	<100	< 0.104	
EMJS-PA-05-082610	8/26/2010	<50.0	< 0.0521	< 0.0127	<100	< 0.104	
EMJS-PA-090310-06	9/3/2010	Missing Sample					
EMJS-PA-090910-007	9/9/2010	<50.0	< 0.0694	< 0.017	<100	< 0.139	
EMJS-PA-091610-8	9/16/2010	<50.0	< 0.0694	< 0.017	<100	< 0.139	
EMJS-PA-092310-09	9/23/2010	<50.0	< 0.0694	< 0.017	<100	< 0.139	
EMJS-PA-093010-10	9/30/2010	<50.0	< 0.111	< 0.0271	<100	< 0.222	
EMJS-PA-100710-11	10/7/2010	<50.0	< 0.0397	< 0.00969	<100	< 0.0794	
EMJS-PA-101410-12	10/14/2010	<50.0	< 0.0717	< 0.0175	<100	< 0.143	
EMJS-PA-102110-13	10/21/2010	<50.0	< 0.0794	< 0.0194	<100	< 0.159	
EMJS-PA-102810-14	10/28/2010	<50.0	< 0.0833	< 0.0204	<100	< 0.167	
PEL ³			5 4			5 ⁵	

NOTES:

¹ Analyzed for metals using ICP-AES by NIOSH 7300 (Modified).

² Analyzed for total particulates, N.O.R. by NIOSH 0500 (Modified).

³ Permissible Exposure Limit for 8-hour work period.

⁴ Hydrated lime dust PEL established by the NIOSH Pocket Guide to Chemical

Hazards, DHHS (NIOSH) Publication No. 2005-149, August 2006.

⁵ Nuisance Dust (respirable fraction) PEL established by 29 CFR Part 1910.1000

$CaCO_3 = calcium carbonate$

 $mg/m^3 = micrograms$ per meters cubed $\mu g = micrograms$ N.O.R. = not otherwise regulated ppm = parts per million

Sample Location	Sample Date	Sample Identification	pН
SW-1	8/20/2010	SW1-01-082010	6.69
SW-1	8/23/2010	SW1-02-082310	7.10
SW-1	8/24/2010	SW1-03-082410	7.56
SW-1	8/25/2010	SW1-04-082510	6.84
SW-1	8/26/2010	SW1-05-082610	6.63
SW-1	8/27/2010	SW1-06-082710	6.45
SW-1	8/30/2010	SW1-07-083010	5.49
SW-1	8/31/2010	SW1-08-083110	6.60
SW-1	9/1/2010	SW1-09-090110	7.54
SW-1	9/2/2010	SW1-10-090210	Dry
SW-1	9/3/2010	SW1-11-090310	Dry
SW-1	9/7/2010	SW1-12-090710	Dry
SW-1	9/8/2010	SW1-13-090810	Dry
SW-1	9/9/2010	SW1-14-090910	Dry
SW-1	9/10/2010	SW1-15-091010	Dry
SW-1	9/11/2010	SW1-16-091110	Dry
SW-1	9/13/2010	SW1-17-091310	Dry
SW-1	9/14/2010	SW1-18-091410	Dry
SW-1	9/15/2010	SW1-19-091510	6.88
SW-1	9/16/2010	SW1-20-191610	7.16
SW-1	9/17/2010	SW1-21-091710	7.26
SW-1	9/18/2010	SW1-22-091810	6.64
SW-1	9/20/2010	SW1-23-092010	6.83
SW-1	9/21/2010	SW1-24-092110	6.70
SW-1	9/22/2010	SW1-25-092210	7.24
SW-1	9/23/2010	SW1-26-092310	7.18
SW-1	9/24/2010	SW1-27-092410	7.06
SW-1	9/25/2010	SW1-28-092510	7.13
SW-1	9/27/2010	SW1-29-092710	7.18
SW-1	9/28/2010	SW1-30-092810	7.42
SW-1	9/29/2010	SW1-31-092910	7.23
SW-1	9/30/2010	SW1-32-093010	7.88
SW-1	10/1/2010	SW1-33-100110	7.67
SW-1	10/4/2010	SW1-34-100410	7.64
SW-1	10/5/2010	SW1-35-100510	7.82
SW-1	10/6/2010	SW1-36-100610	7.80
SW-1	10/7/2010	SW1-37-100710	7.36
SW-1	10/8/2010	SW1-38-100810	7.14
SW-1	10/9/2010	SW1-39-100910	7.60
SW-1	10/11/2010	SW1-40-101110	7.20
SW-1	10/12/2010	SW1-41-101210	7.50
SW-1	10/13/2010	SW1-42-101310	7.35
SW-1	10/14/2010	SW1-43-101410	7.18
SW-1	10/15/2010	SW1-44-101510	7.19
SW-1	10/18/2010	SW1-45-101810	6.74
SW-1	10/19/2010	SW1-46-101910	6.99
SW-1	10/20/2010	SW1-47-102010	6.86
SW-1	10/21/2010	SW1-48-102110	6.57
SW-1	10/22/2010	SW1-49-102210	6.86
SW-1	10/25/2010	SW1-50-102510	7.06

Sample Location	Sample Date	Sample Identification	pН
SW-1	10/26/2010	SW1-51-102610	6.94
SW-1	10/27/2010	SW1-52-102710	6.82
SW-1	10/28/2010	SW1-53-102810	6.87
SW-1	10/29/2010	SW1-54-102910	7.10
SW-1	11/3/2010	SW1-55-110310	6.86
SW-1	11/3/2010	FD-SW1-55-110310	6.85
SW-1	11/4/2010	SW1-56-110410	7.22
SW-1	11/8/2010	SW1-57-110810	7.17
SW-1	11/9/2010	SW1-58-110910	7.04
SW-1	11/9/2010	FD-SW1-58-110910	7.01
SW-1	11/10/2010	SW1-59-111010	7.15
SW-1	11/10/2010	FD-SW1-59-111010	7.11
SW-1	11/11/2010	SW1-60-111110	7.12
SW-1	11/11/2010	FD-SW1-60-111110	7.10
SW-1	11/12/2010	SW1-61-111210	6.93
SW-1	11/15/2010	SW1-60-111510	6.98
SW-1	11/16/2010	SW1-61-111610	6.92
SW-1	11/18/2010	SW1-63-111810	6.93
SW-1	11/18/2010	FD-SW1-63-111810	6.95
SW-2	8/20/2010	SW2-01-082010	7.15
SW-2	8/23/2010	SW2-02-082310	7.18
SW-2	8/24/2010	SW2-03-082410	7.29
SW-2	8/25/2010	SW2-04-082410	7.65
SW-2	8/26/2010	SW2-05-082610	6.88
SW-2	8/27/2010	SW2-06-082710	7.64
SW-2	8/30/2010	SW2-07-083010	7.51
SW-2	8/31/2010	SW2-08-083110	7.06
SW-2	9/1/2010	SW2-09-090110	7.49
SW-2	9/2/2010	SW2-10-090210	7.25
SW-2	9/3/2010	SW2-11-090310	7.35
SW-2	9/7/2010	SW2-12-090710	7.39
SW-2	9/8/2010	SW2-13-090810	6.88
SW-2	9/9/2010	SW2-14-090910	7.03
SW-2	9/10/2010	SW2-15-091010	6.92
SW-2	9/11/2010	SW2-16-091110	6.84
SW-2	9/13/2010	SW2-17-091310	6.85
SW-2	9/14/2010	SW2-18-091410	6.75
SW-2	9/15/2010	SW2-19-091510	6.72
SW-2	9/16/2010	SW2-20-091610	6.97
SW-2	9/17/2010	SW2-21-091710	6.87
SW-2	9/18/2010	SW2-22-091810	6.84
SW-2	9/20/2010	SW2-23-092010	6.87
SW-2	9/21/2010	SW2-24-092110	6.88
SW-2	9/22/2010	SW2-25-092210	6.78
SW-2	9/23/2010	SW2-26-092310	6.93
SW-2	9/24/2010	SW2-27-092410	6.84
SW-2	9/25/2010	SW2-28-092510	6.86
SW-2	9/27/2010	SW2-29-092710	7.13
SW-2	9/28/2010	SW2-30-092810	6.73
SW-2	9/29/2010	SW2-31-092910	6.88

Sample Location	Sample Date	Sample Identification	pН
SW-2	9/30/2010	SW2-32-093010	7.17
SW-2	10/1/2010	SW2-33-100110	6.98
SW-2	10/4/2010	SW2-34-100410	6.97
SW-2	10/5/2010	SW2-35-100510	7.08
SW-2	10/6/2010	SW2-36-100610	7.02
SW-2 SW-2	10/7/2010	SW2-37-100710	7.14
SW-2 SW-2	10/8/2010	SW2-38-100810	6.86
SW-2 SW-2	10/9/2010	SW2-39-100910	7.06
SW-2 SW-2	10/11/2010	SW2-40-101110	7.25
SW-2 SW-2	10/12/2010	SW2-40-101110 SW2-41-101210	6.98
SW-2 SW-2	10/13/2010	SW2-41-101210 SW2-42-101310	7.09
SW-2	10/13/2010	SW2-42-101510 SW2-43-101410	6.83
SW-2 SW-2	10/15/2010	SW2-44-101510	7.06
SW-2 SW-2	10/13/2010	SW2-44-101310 SW2-45-101810	6.57
SW-2 SW-2	10/18/2010	SW2-46-101910	6.24
SW-2 SW-2		SW2-47-102010	6.51
SW-2 SW-2	10/20/2010		
	10/21/2010	SW2-48-102110	6.65
SW-2	10/22/2010	SW2-49-102210	6.55
SW-2	10/25/2010	SW2-50-102510	7.02
SW-2	10/26/2010	SW2-51-102610	7.02
SW-2	10/27/2010	SW2-52-102710	7.00
SW-2	10/28/2010	SW2-53-102810	7.09
SW-2	10/29/2010	SW2-54-102910	7.04
SW-2	11/3/2010	SW2-55-110310	6.87
SW-2	11/4/2010	SW2-56-110410	7.00
SW-2	11/8/2010	SW2-57-1100810	6.97
SW-2	11/9/2010	SW2-58-110910	6.97
SW-2	11/10/2010	SW2-59-111010	6.95
SW-2	11/11/2010	SW2-60-111110	7.01
SW-2	11/12/2010	SW2-61-111210	6.67
SW-2	11/15/2010	SW2-60-111510	6.98
SW-2	11/16/2010	SW2-61-111610	6.98
SW-2	11/18/2010	SW2-63-111810	6.91
SW-3	8/20/2010	SW3-01-082010	Dry
SW-3	8/23/2010	SW3-02-082310	Dry
SW-3	8/24/2010	SW3-03-082410	Dry
SW-3	8/25/2010	SW3-04-082510	Dry
SW-3	8/26/2010	SW3-05-082610	Dry
SW-3	8/27/2010	SW3-06-082710	Dry
SW-3	8/30/2010	SW3-07-083010	Dry
SW-3	8/31/2010	SW3-08-083110	Dry
SW-3	9/1/2010	SW3-09-090110	Dry
SW-3	9/2/2010	SW3-10-090210	Dry
SW-3	9/3/2010	SW3-11-090310	Dry
SW-3	9/7/2010	SW3-12-090710	Dry
SW-3	9/8/2010	SW3-12-090810	Dry
SW-3	9/9/2010	SW3-14-090910	Dry
SW-3	9/10/2010	SW3-15-091010	Dry
SW-3	9/11/2010	SW3-16-091110	Dry
SW-3	9/13/2010	SW3-17-091210	Dry

Sample Location	Sample Date	Sample Identification	pН
SW-3	9/14/2010	SW3-18-091410	Dry
SW-3	9/15/2010	SW3-19-091510	Dry
SW-3	9/16/2010	SW3-20-091610	Dry
SW-3	9/17/2010	SW3-21-091710	Dry
SW-3	9/18/2010	SW3-22-091810	Dry
SW-3	9/20/2010	SW3-22-091010 SW3-23-092010	Dry
SW-3	9/20/2010	SW3-24-092110	Dry
SW-3	9/22/2010	SW3-25-092210	Dry
SW-3	9/23/2010	SW3-26-092310	Dry
SW-3	9/23/2010	SW3-27-092410	Dry
SW-3	9/25/2010	SW3-28-092510	Dry
SW-3	9/23/2010	SW3-29-092710	Dry
SW-3	9/28/2010	SW3-30-092810	
SW-3		SW3-31-092910	Dry
SW-3	9/29/2010	SW3-32-093010	Dry
SW-3	9/30/2010	SW3-33-100110	Dry
	10/1/2010		Dry
SW-3	10/4/2010	SW3-34-100410	Dry
SW-3	10/5/2010	SW3-35-100510	Dry
SW-3	10/6/2010	SW3-36-100610	Dry
SW-3	10/7/2010	SW3-37-100710	Dry
SW-3	10/8/2010	SW3-38-100810	Dry
SW-3	10/9/2010	SW3-39-100910	Dry
SW-3	10/11/2010	SW3-40-101110	Dry
SW-3	10/12/2010	SW3-41-101210	Dry
SW-3	10/13/2010	SW3-42-101310	Dry
SW-3	10/14/2010	SW3-43-101410	Dry
SW-3	10/15/2010	SW3-44-101510	Dry
SW-3	10/18/2010	SW3-45-101810	Dry
SW-3	10/19/2010	SW3-46-101910	Dry
SW-3	10/20/2010	SW3-47-102010	Dry
SW-3	10/21/2010	SW3-48-102110	Dry
SW-3	10/22/2010	SW3-49-102210	Dry
SW-3	10/25/2010	SW3-50-102510	Dry
SW-3	10/26/2010	SW3-51-102610	Dry
SW-3	10/27/2010	SW3-52-102710	Dry
SW-3	10/28/2010	SW3-53-102810	Dry
SW-3	10/29/2010	SW3-54-102910	Dry
SW-3	11/3/2010	SW3-55-110310	DRY
SW-3	11/4/2010	SW3-56-110410	DRY
SW-3	11/8/2010	SW3-57-110810	DRY
SW-3	11/9/2010	SW3-58-110910	DRY
SW-3	11/10/2010	SW3-59-111010	DRY
SW-3	11/11/2010	SW3-60-111110	DRY
SW-3	11/12/2010	SW3-61-111210	DRY
SW-3	11/15/2010	SW3-60-111510	DRY
SW-3	11/16/2010	SW3-61-111610	DRY
SW-3	11/18/2010	SW3-63-111810	DRY

Sample Location	Sample Date	Sample Identification	pН
SW-4	8/20/2010	SW4-01-082010	7.09
SW-4	8/23/2010	SW4-02-082310	7.46
SW-4	8/24/2010	SW4-03-082410	7.62
SW-4	8/25/2010	SW4-04-082510	7.68
SW-4	8/26/2010	SW4-05-082610	6.97
SW-4	8/27/2010	SW4-06-082710	7.64
SW-4	8/30/2010	SW4-07-083010	7.63
SW-4	8/31/2010	SW4-08-083110	7.06
SW-4	9/1/2010	SW1000000110	7.89
SW-4	9/2/2010	SW4-09-090110 SW4-10-090210	7.10
SW-4	9/3/2010	SW4-10-090210 SW4-11-090310	6.77
SW-4	9/7/2010	SW4-11-090510 SW4-12-090710	6.86
SW-4	9/8/2010	SW4-12-090710 SW4-13-090810	6.80
SW-4	9/9/2010	SW4-13-090810 SW4-14-090910	6.94
SW-4 SW-4	9/10/2010	SW4-14-090910 SW4-15-091010	6.82
SW-4 SW-4		SW4-15-091010	6.72
SW-4 SW-4	9/11/2010		7.26
	9/13/2010	SW4-17-091310	
SW-4	9/14/2010	SW4-18-091410	6.98
SW-4	9/15/2010	SW4-19-091510	7.12
SW-4	9/16/2010	SW4-20-091610	7.01
SW-4	9/17/2010	SW4-21-091710	7.12
SW-4	9/18/2010	SW4-22-091810	6.84
SW-4	9/20/2010	SW4-23-092010	7.01
SW-4	9/21/2010	SW4-24-092110	6.77
SW-4	9/22/2010	SW4-25-092210	6.81
SW-4	9/23/2010	SW4-26-092310	6.82
SW-4	9/24/2010	SW4-27-092410	6.72
SW-4	9/25/2010	SW4-28-092510	6.69
SW-4	9/27/2010	SW4-29-092710	7.35
SW-4	9/28/2010	SW4-30-092810	6.64
SW-4	9/29/2010	SW4-31-092910	6.70
SW-4	9/30/2010	SW4-32-093010	7.51
SW-4	10/1/2010	SW4-33-100110	6.77
SW-4	10/4/2010	SW4-34-100410	6.85
SW-4	10/5/2010	SW4-35-100510	6.83
SW-4	10/6/2010	SW4-36-100610	6.94
SW-4	10/7/2010	SW4-37-100710	7.22
SW-4	10/8/2010	SW4-38-100810	6.98
SW-4	10/9/2010	SW4-39-100910	7.23
SW-4	10/11/2010	SW4-40-101110	7.05
SW-4	10/12/2010	SW4-41-101210	7.03
SW-4	10/13/2010	SW4-42-101310	7.23
SW-4	10/14/2010	SW4-43-101410	6.84
SW-4	10/15/2010	SW4-44-101510	7.14
SW-4	10/18/2010	SW4-45-101810	6.55
SW-4	10/19/2010	SW4-46-101910	6.30
SW-4	10/20/2010	SW4-47-102010	6.60
SW-4	10/21/2010	SW4-48-102110	6.26
SW-4	10/22/2010	SW4-49-102210	6.49
SW-4	10/25/2010	SW4-50-102510	7.42

Sample Location	Sample Date	Sample Identification	pН
SW-4	10/26/2010	SW4-51-102610	7.39
SW-4	10/27/2010	SW4-52-102710	7.21
SW-4	10/28/2010	SW4-53-102810	7.19
SW-4	10/29/2010	SW4-54-102910	7.24
SW-4	11/3/2010	SW4-55-110310	7.26
SW-4	11/4/2010	SW4-56-110410	7.42
SW-4	11/4/2010	FD-SW4-56-110410	7.40
SW-4	11/8/2010	SW4-57-110810	7.24
SW-4	11/9/2010	SW4-58-110910	6.94
SW-4	11/10/2010	SW4-50-110/10 SW4-59-111010	7.06
SW-4	11/10/2010	SW4-60-111110	7.14
SW-4	11/12/2010	SW4-60-11110 SW4-61-111210	6.94
SW-4	11/12/2010	FD-SW4-61-111210	6.98
SW-4 SW-4	11/12/2010	SW4-60-111510	7.30
SW-4 SW-4	11/15/2010	SW4-61-111610	7.30
SW-4 SW-4	11/16/2010	FD-SW4-61-111610	7.30
SW-4 SW-4	11/18/2010	SW4-63-111810	6.93
	8/20/2010	SW5-01-082010	6.52
<u>SW-5</u> SW-5		SW5-02-082310	7.11
	8/23/2010		
SW-5	8/24/2010	SW5-03-082410	6.81
SW-5	8/25/2010	SW5-04-082510	6.72
SW-5	8/26/2010	SW5-05-082610	6.66
SW-5	8/27/2010	SW5-06-082710	5.50
SW-5	8/30/2010	SW5-07-083010	6.76
SW-5	8/31/2010	SW5-08-083110	6.64
SW-5	9/1/2010	SW5-09-090110	6.98
SW-5	9/2/2010	SW5-10-090210	8.29
SW-5	9/3/2010	SW5-11-090310	9.31
SW-5	9/7/2010	SW5-12-090710	7.46
SW-5	9/8/2010	SW5-13-090810	6.98
SW-5	9/9/2010	SW5-14-090910	6.91
SW-5	9/10/2010	SW5-15-091010	6.86
SW-5	9/11/2010	SW5-16-091110	6.68
SW-5	9/13/2010	SW5-17-091310	6.82
SW-5	9/14/2010	SW5-18-091410	6.87
SW-5	9/15/2010	SW5-19-091510	6.91
SW-5	9/16/2010	SW5-20-091610	6.42
SW-5	9/17/2010	SW5-21-091710	6.56
SW-5	9/18/2010	SW5-22-091810	6.63
SW-5	9/20/2010	SW5-23-092010	6.54
SW-5	9/21/2010	SW5-24-092110	6.48
SW-5	9/22/2010	SW5-25-092210	6.38
SW-5	9/23/2010	SW5-26-092310	6.48
SW-5	9/24/2010	SW5-27-092410	6.87
SW-5	9/25/2010	SW5-28-092510	6.96
SW-5	9/27/2010	SW5-29-092710	6.79
SW-5	9/28/2010	SW5-30-092810	6.54
SW-5	9/29/2010	SW5-31-092910	6.67
SW-5	9/30/2010	SW5-32-093010	7.30
SW-5	10/1/2010	SW5-33-100110	6.85

Sample Location	Sample Date	Sample Identification	pН
SW-5	10/4/2010	SW5-34-100410	6.81
SW-5	10/5/2010	SW5-35-100510	7.05
SW-5	10/6/2010	SW5-36-100610	6.75
SW-5	10/7/2010	SW5-37-100710	7.10
SW-5	10/8/2010	SW5-38-100810	7.28
SW-5	10/9/2010	SW5-39-100910	6.60
SW-5	10/11/2010	SW5-40-101110	7.00
SW-5	10/12/2010	SW5-41-101210	7.00
SW-5	10/13/2010	SW5-42-101310	7.02
SW-5	10/14/2010	SW5-43-101410	6.86
SW-5	10/15/2010	SW5-44-101510	7.00
SW-5	10/18/2010	SW5-45-101810	6.47
SW-5	10/19/2010	SW5-46-101910	6.05
SW-5	10/20/2010	SW5-47-102010	6.45
SW-5	10/21/2010	SW5-48-102110	6.19
SW-5	10/22/2010	SW5-49-102210	6.57
SW-5	10/25/2010	SW5-50-102510	7.06
SW-5	10/26/2010	SW5-51-102610	7.03
SW-5	10/27/2010	SW5-52-102710	6.97
SW-5	10/28/2010	SW5-53-102810	6.92
SW-5	10/29/2010	SW5-54-102910	7.09
SW-5	11/3/2010	SW5-55-110310	6.98
SW-5	11/4/2010	SW5-56-110410	6.97
SW-5	11/8/2010	SW5-57-110810	7.09
SW-5	11/9/2010	SW5-58-110910	6.95
SW-5	11/10/2010	SW5-59-111010	7.01
SW-5	11/11/2010	SW5-60-111110	6.96
SW-5	11/12/2010	SW5-61-111110	6.57
SW-5	11/15/2010	SW5-60-111510	6.80
SW-5	11/16/2010	SW5-61-111610	6.60
SW-5	11/18/2010	SW5-63-111810	6.82

Sample Location	Sample Date	Sample Identification	рН
SW-1	11/17/2010	SW1-62-111710	7.08
SW-1	11/17/2010	FD-SW1-62-111710	7.10
SW-1	12/28/2010	SW1-64-122810	7.17
SW-1	2/8/2011	SW1-65-020811	6.82
SW-1	3/22/2011	SW1-66-032211	6.80
SW-2	11/17/2010	SW2-62-111710	6.97
SW-2	12/28/2010	SW2-64-122810	6.55
SW-2	2/8/2011	SW2-65-020811	6.71
SW-2	3/22/2011	SW2-66-032211	6.67
SW-3	11/17/2010	SW3-62-111710	DRY
SW-3	12/28/2010	SW3-64-122810	6.87
SW-3	2/8/2011	SW3-65-020811	6.95
SW-3	3/22/2011	SW3-66-032211	7.10
SW-4	11/17/2010	SW4-62-111710	7.15
SW-4	12/28/2010	SW4-64-122810	6.12
SW-4	2/8/2011	SW4-65-020811	6.73
SW-4	3/22/2011	SW4-66-032211	7.60
SW-5	11/17/2010	SW5-62-111710	6.88
SW-5	12/28/2010	SW5-64-122810	6.48
SW-5	2/8/2011	SW5-65-020811	6.60
SW-5	3/22/2011	SW5-66-032211	6.37

APPENDIX A WETLAND BUFFER ENHANCEMENT/RESTORATION PLAN AND ADDENDUM LETTER

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

WETLAND BUFFER ENHANCEMENT/RESTORATION PLAN SLAG DISPOSAL BECKWITH PROPERTY SITE

Prepared for Farallon Consulting L.L.C.

Prepared by

Anchor QEA, LLC 1423 Third Avenue Suite 300 Seattle, Washington 98101

June 2010

RECEIVED

JUN 29 2010 CITY OF KENT ENGINEERING DEPT

APPROVED City of Kent P.W. Dept. Environmental Engineering

By: A. Jatos	
Date: 4/30/10	

WETLAND BUFFER ENHANCEMENT/RESTORATION PLAN SLAG DISPOSAL BECKWITH PROPERTY SITE

RECEIVED

Prepared for Farallon Consulting L.L.C.

Prepared by Anchor QEA, LLC 1423 Third Avenue Suite 300 Seattle, Washington 98101

June 2010

TABLE OF CONTENTS

1	INT	RODUCTION	1
2	PRO	JECT BACKGROUND AND DESCRIPTION	2
	2.1	Review of Existing Information	2
	2.2	Project Background	2
	2.3	Project Description	4
3	WE	TLAND AND WETLAND BUFFER AREA DESCRIPTIONS	6
	3.1	Wetland I	7
	3.2	Wetland L	
	3.3	Wetland M	8
	3.4	Wetland N	8
4	WE:	TLAND BUFER IMPACT AREA AND ENHANCEMENT/RESTORATION	
D	ESCRI	IPTION	11
	4.1	Wetland Buffer Impact Area	11
	4.2	Wetland Buffer Enhancement/Restoration	
5	CON	NCEPTUAL WETLAND BUFFER ENHANCEMENT/RESTORATION PLAN	14
	5.1	Mitigation Sequencing	14
	5.1.	.1 Avoidance and Minimization Measures	14
	5.1.		
	5.2	Wetland Buffer Enhancement/Restoration Mitigation	15
	5.2		
	5.2		
	5.2	.3 Performance Measures, Standards of Success, and Contingency Plans	19
6	REF	ERENCES	21

i

List of Tables

Table 1	Sizes, Classifications, and Ratings of Wetlands Located in Close Proximity to	
	Proposed Excavation	7
Table 2	Summary of Vegetation Species Present within the Project Site and Buffer	
	Areas that Would be Temporarily Disturbed	10

List of Figures

Figure 1	Vicinity Map	3
Figure 2	Wetland Buffer Plan	5
Figure 3	Planting Plan	7
Figure 4	Planting Specifications 1	8

1 INTRODUCTION

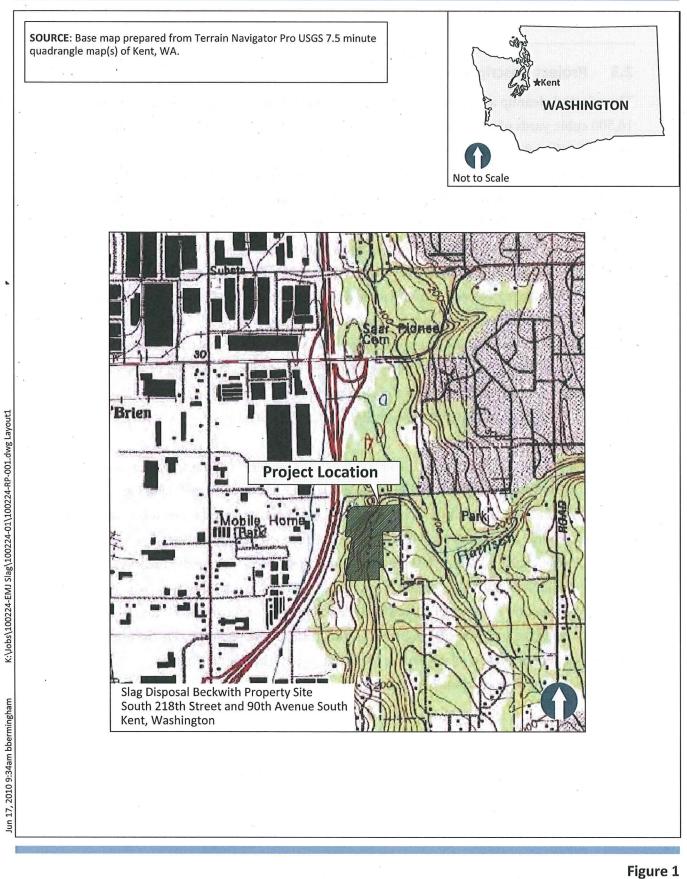
This Wetland Buffer Enhancement/Restoration Report provides the results of a critical areas assessment on an approximately 4.7-acre parcel of land located in the City of Kent, King County, Washington (Township 22 North, Range 5 East, Section 7). The purpose of this report is to assess wetland buffer impacts associated with the Slag Disposal Beckwith Property Site (Project) and to describe proposed wetland buffer restoration measures. The City of Kent has jurisdiction over development in the wetland buffer pursuant to the City of Kent City Code (KCC) Critical Areas Ordinance (CAO), Chapter 11.06 (City of Kent 2010). The Project site is located on the east side of Highway 167 at the intersection of South 218th Street and 88th Avenue South. Site investigations for this report were performed by Anchor QEA ecologists on April 28, 2010.

This report was prepared in accordance with City of Kent criteria, as defined in the KCC CAO (City of Kent 2010). The following sections of this report describe the methods used in the investigation and Anchor QEA's findings. Descriptions of the Project and the Project background are included in Section 2. A description of wetlands and wetland buffers within the site is included in Section 3. Section 4 includes a description of the wetland buffer impact area and the wetland buffer restoration, and Section 5 details a conceptual wetland buffer enhancement/restoration plan. Buffer restoration and enhancement of existing disturbed buffer habitat is proposed. Appendix A includes a vicinity map of the Project site and restoration plan drawings.

1

2 PROJECT BACKGROUND AND DESCRIPTION

The approximately 4.7-acre site is located near the intersection of South 218th Street and 88th Avenue South in the City of Kent, King County, Washington (Township 22 North, Range 5 East, Section 7). The site is located at the base of a north-south-trending, west-facing steep slope. South 218th Street forms the northern boundary of the site. The west side of the site is bordered by 88th Avenue South. Chain link fences and gates are located along the perimeter of the site. Highway 167 is located west of the site, and residential property is located to the north, south, and east. A vicinity map of the Project site is shown on Figure 1.

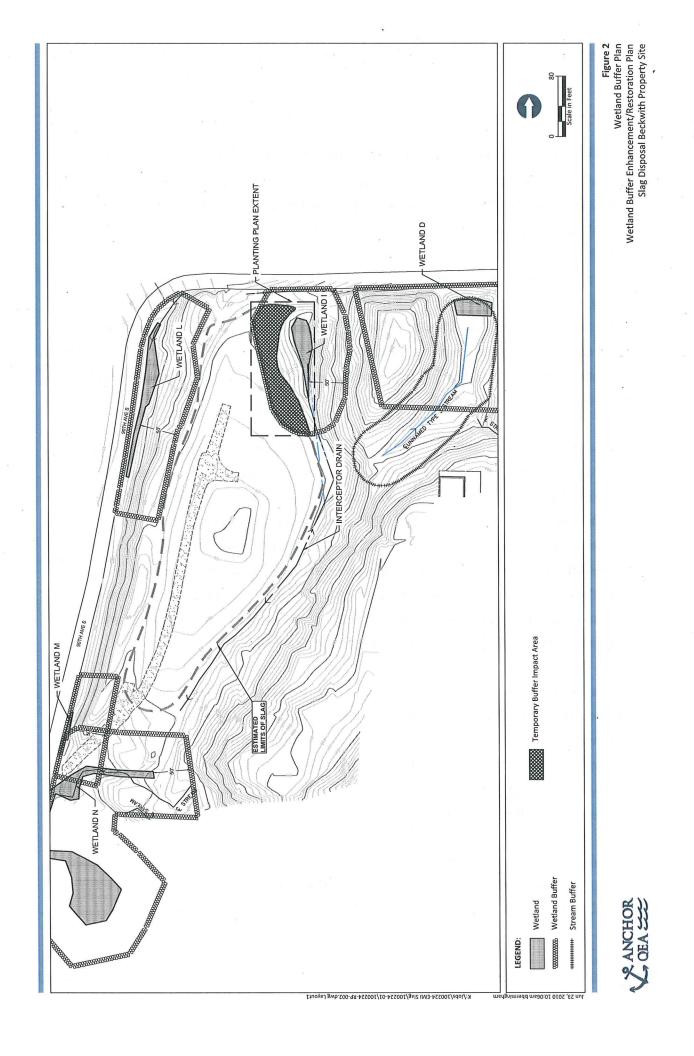

2.1 Review of Existing Information

As part of the analysis to identify and assess impacts to critical areas at the Project site, Anchor QEA ecologists reviewed the following sources of information to support field observations:

- KCC CAO (City of Kent 2010)
- South 224th Street Extension Wetland Technical Report (ESA Adolfson 2006)
- Beckwith Property Slag Disposal Site Wetland Delineation Report (Springwood Associates, Inc. 1995)
- *Slag Disposal Beckwith Property Site Excavation Project Design Plans* (Farallon Consulting L.L.C. 2010a)
- Cleanup Action Work Plan (Farallon Consulting L.L.C. 2010b)
- Aerial photographs

2.2 Project Background

Approximately 16,500 cubic yards of secondary steel slag containing lime ash were used as fill at the site between 1984 and 1990. Surface water reacted with the lime ash within the slag to increase pH to more than the regulatory limit of 8.5, as defined in Consent Decree No. 95-2-15301-1, entered into by the Washington State Department of Ecology (Ecology) and the land owner, Earle M. Jorgensen Company.



V ANCHOR QEA Vicinity Map Wetland Buffer Enhancement/Restoration Plan Slag Disposal Beckwith Property Site

2.3 **Project Description**

The selected cleanup action includes excavation and offsite disposal of the approximately 16,500 cubic yards of slag at the site to reduce the pH of surface water discharging from the site to less than 8.5. Following excavation, the site will be restored and graded to allow surface water to drain approximately as it did prior to slag removal activities. There are five wetlands located within the site (Wetlands D, I, L, M, and N) in the vicinity of the proposed excavation, as described in Section 3. Under the proposed cleanup action, excavation at the site will encroach into protective wetland buffers, as defined by the City of Kent (City of Kent 2010), but will not result in direct impacts to wetlands. The site restoration will include replanting native vegetation within disturbed wetland buffer areas and hydroseeding the remaining disturbed upland areas. The cleanup action will result in a permanent solution to protect human health and the environment and will meet Ecology requirements for closure and de-listing the site from the Ecology Confirmed and Suspected Contaminated Sites List. A more detailed description of the cleanup action is provided in the *Cleanup Action Work Plan* prepared by Farallon Consulting, L.L.C. (2010b).

Under the Project, approximately 0.13 acre (5,440 square feet [sf]) of temporary wetland buffer impacts would occur to the buffer of Wetland I. No wetland buffer impacts would occur to Wetlands D, L, M, or N. The Wetland I buffer impact would occur on the east side of the excavation activity, as shown on Figure 2. Proposed mitigation for the temporary wetland buffer impacts would be the enhancement/restoration of the disturbed wetland buffer by replanting native vegetation within the disturbed wetland buffer area. As described in Section 3, the existing buffer area of Wetland I that would be disturbed is currently degraded and provides poor buffer functions to the wetland. The locations of the existing wetland buffer, wetland buffer impact area, and the wetland buffer enhancement/restoration plantings are shown on Figure 2.

3 WETLAND AND WETLAND BUFFER AREA DESCRIPTIONS

This section provides a description of the five wetlands within the Project site. Four of these wetlands are within close proximity to the proposed excavation and the existing conditions of wetland buffers are described. Wetlands within the Project site were delineated in 1995 and 2006, as identified in the *Beckwith Property Slag Disposal Site Wetland Delineation Report* (Springwood Associates, Inc. 1995) and the *South 224th Street Extension Wetland Technical Report* (ESA Adolfson 2006). Information on wetlands within the project site is based on the information in these documents. Information on wetland buffer conditions is based on these documents and information collected by Anchor QEA during an April 2010 site visit. The cleanup action will result in approximately 0.13 acre (5,440 sf) of temporary impacts to Wetland I buffer habitat.

Five wetlands were identified within the Project site, identified as Wetlands D, I, L, M, and N. Wetlands and the associated wetland buffers are shown on Figure 2. Wetland D, is a Category II wetland (ESA Adolfson 2006) located more than 200 feet east of the east boundary of Wetland I and over 300 feet from the proposed excavation area. In addition, Wetland D is located in a ravine on the east side of the steep sloped hillside/ridge that borders the east side of Wetland I. The ridge separates the drainage supporting Wetland D from the drainage supporting Wetland I. Due to the distance and topography between Wetland D and the proposed excavation and the landform between the wetland and the Project site, Wetland D is not addressed further in this report.

Of the four remaining wetlands in the Project site, proposed excavation will encroach into the wetland buffer of Wetland I and will avoid the buffers of Wetlands L, M, and N. Since the wetlands are depressional, it is important to note that the grading associated with the removal of the slag will not result in changes to the site drainage patterns that support the wetland hydrology. The existing and proposed drainage patterns, and the area draining to each wetland, will remain the same.

Complete descriptions of the four wetlands and associated wetland buffers identified in the Project site are provided in the following subsections. Wetlands in the Project site were rated using the most current version of Ecology guidance in Washington: *State Wetland*

Rating System for Western Washington: Revised (Ecology 2004) and Wetland Rating Form – Western Washington, Version 2 (Ecology 2008), and according to City of Kent criteria, as defined in the KCC CAO Chapter 11.06 (City of Kent 2010). Table 1 presents a summary of the four wetlands in the Project site. For more specific information on wetlands within the Project site, including wetland data plots, please refer to the South 224th Street Extension Wetland Technical Report (ESA Adolfson 2006).

Table 1

Sizes, Classifications, and Ratings of Wetlands Located in Close Proximity to Proposed Excavation

Wetland	Wetland Size (acres)	USFWS (Cowardin) Classification	Hydrogeomorphic Classification	State Rating (Ecology)	City of Kent Rating	City of Kent Wetland Buffer (feet)
I.	0.03	POW	Depressional	IV	IV	50
L	0.04	PEM	Depressional	IV	IV	50
М	0.004	PEM	Depressional	IV	IV	50
Ν	0.03	PEM	Depressional	IV	IV	50

POW = Palustrine Open Water PEM = Palustrine Emergent

3.1 Wetland I

Wetland I is a small (0.03 acre) palustrine open water (POW) wetland dominated by common duckweed (*Lemna minor*). Second-growth forested habitat is located to the east, south, and north. Dominant vegetation in the forested habitat includes western red cedar (*Thuja plicata*), big-leaf maple (*Acer macrophylum*), red alder (*Alnus rubra*), vine maple (*Acer circinatum*), Indian plum (*Oemleria cerasiformis*), salmonberry (*Rubus spectabilis*), and red elderberry (*Sambucus racemosa*). To the west there is a narrow, approximately 25-foot-wide band of young (about 6 to 10 feet tall) western red cedar trees and shrubs such as Indian plum and red elderberry. Most of these plants appear to have been planted following installation of a clay barrier in about 2004. Wetland buffer habitat within this approximately 25-foot area of Wetland I provides good quality buffer habitat for the wetland. The area further than about 25 feet from the wetland boundary is the footprint of the original excavation area. This area is currently dominated by nonnative shrubs such as Himalayan

7

blackberry (*Rubus armeniacus*) and Scot's broom (*Cytisus scoparius*), and grass and herbaceous species such as tall fescue (*Festuca arundinacea*), reed canarygrass (*Phalaris arundinacea*), common velvet grass (*Holcus lanatus*), colonial bentgrass (*Agrostis capillaris*), common dandelion (*Taraxacum officinale*), American vetch (*Vicia americana*), and red clover (*Trifolium pratense*). Patches of bare ground are also common in the area of the slag fill.

3.2 Wetland L

Wetland L is a small (0.04 acre) palustrine emergent (PEM) wetland associated with a ditch located along the east side of 88th Avenue South. The dominant vegetation in Wetland L is reed canarygrass. Second-growth forested habitat similar to what is described for Wetland I is located to the east, south, and north. The original slag fill area, dominated by grass and herbaceous species and nonnative shrubs as described for Wetland I, is located about 40 to 50 feet east of Wetland L.

3.3 Wetland M

Wetland M is a small (0.004 acre) PEM wetland associated with a ditch located along the east side of 88th Avenue South, south of Wetland L. The dominant vegetation in Wetland M is reed canarygrass and giant horsetail (*Equisetum telmateia*). Second-growth forested habitat similar to what is described for Wetland I is located to the east and north. The original slag fill area, dominated by grass and herbaceous species and nonnative shrubs as described for Wetland I, is located about 40 to 50 feet east of Wetland M. An unpaved access road associated with the site is also located to the south and east.

3.4 Wetland N

Wetland N is a small (0.03 acre) PEM wetland associated with a ditch located along the east side of 88th Avenue South, south of Wetland M, and two small seasonal streams. The dominant vegetation in Wetland N is reed canarygrass, American speedwell (*Veronica americana*), giant horsetail, and some patches of salmonberry. Second-growth forested habitat similar to what is described for Wetland I is located to the east and south. The original slag fill area, dominated by grass and herbaceous species and nonnative shrubs as

described for Wetland I, is located about 50 feet north of Wetland N, and the unpaved access road associated with the site is located to the west and north.

A list of vegetation species observed at the site and the presence of plant species within the buffer areas that would be temporarily disturbed during excavation is identified in Table 2.

Table 2

Summary of Vegetation Species Present within the Project Site and Buffer Areas that Would be Temporarily Disturbed

		Vegetation Present within Buffer Areas to be Temporarily	Vegetation Present
Scientific Name	Common Name	Disturbed	within Project Site
Trees			
Acer måcrophylum	Big-leaf maple	No	Yes
Alnus rubra	Red alder	No	Yes
Populus trichocarpa	Black cottonwood	No	Yes
Salix hookeriana	Hooker willow	No	Yes
Thuja plicata	Western red cedar	No	Yes
Shrubs			•
Acer circinatum	Vine maple	No	Yes
Corylus cornuta	Beaked hazelnut	No	Yes
Cytisus scoparius	Scot's broom	Yes	Yes
Lonicera involucrata	Black Twinberry	No	Yes
Oemleria cerasiformis	Indian plum	No	Yes
Rhamnus purshiana	Cascara	No	Yes
Rosa nutkana	Nootka rose	No	Yes
Rubus armeniacus	Himalayan blackberry	Yes	Yes
Rubus parviflorus	Western thimbleberry	No	Yes
Rubus spectabilis	Salmonberry	No	Yes
Symphoricarpos albus	Snowberry	No	Yes
Herbaceous & Ferns			
Agrostis capillaris	Colonial bentgrass	Yes	Yes
Equisetum telmateia	Giant horsetail	Yes	Yes
Festuca arundinacea	Tall fescue	Yes	Yes
Geranium robertianum	Stinky bob	Yes	Yes
Holcus lanatus	Common velvet grass	Yes	Yes
Juncus effusus	Soft rush	Yes	Yes
Phalaris arundinacea	Reed canarygrass	Yes	Yes
Taraxacum officinale	Common dandelion	Yes	Yes
Trifolium pratense	Red clover	Yes	Yes
Veronica americana	American speedwell	No	Yes
Vicia americana	American vetch	Yes	Yes

Wetland Buffer Enhancement/Restoration Plan Slag Disposal Beckwith Property Site

4 WETLAND BUFER IMPACT AREA AND ENHANCEMENT/RESTORATION DESCRIPTION

This section provides a description of the proposed wetland buffer impact area and wetland buffer enhancement and restoration. Wetlands and the associated wetland buffers are shown on Figure 2.

As shown on Table 1, Wetlands I, L, M, and N have 50-foot protective buffers per KCC CAO Chapter 11.06 (City of Kent 2010). According to the KCC CAO, buffer enhancement/ restoration is required when impacts to wetland buffers occur (KCC Chapter 11.06.600E). Buffer enhancement/restoration report requirements are identified in KCC Chapter 11.06.600F and mitigation and monitoring standards are identified in KCC Chapter 11.06.550.

4.1 Wetland Buffer Impact Area

The wetland buffer habitat within the western portion of the existing 50-foot buffer of Wetland I (where wetland buffer impacts will occur) provides poor quality habitat functions. The wetland buffer within the proposed area of excavation is dominated by a mosaic of native and nonnative grass and herbaceous species with no trees, and shrubs are limited to the nonnative species Scot's broom and Himalayan blackberry (see Section 3). Wetland buffer habitat conditions within or near the proposed buffer impact areas are shown on Photograph 1 and 2.

Photograph 1: Wetland I Buffer on Right Side of Photograph, Facing North

Photograph 2: Wetland I Buffer Proposed to be Impacted on Right Side of Photograph, Facing South

Proposed mitigation for temporary impacts to approximately 0.13 acre (5,440 sf) of the wetland buffer of Wetland I include replanting native trees and shrubs within the 50-foot buffer on the west side of the wetland. The location of the wetland buffer impact area and the buffer mitigation planting plan are shown on Figures 2 and 3, respectively.

Habitat features including snags, downed wood, and brush piles that provide foraging and cover habitat for wildlife such as insects, amphibians, birds, and small mammals are not located within the area of temporary wetland buffer impacts.

4.2 Wetland Buffer Enhancement/Restoration

Wetland buffers are vegetated areas surrounding a wetland boundary that protect wetlands from the effects of adjacent land use. Buffers help wetlands function by filtering storm runoff from surrounding developed land uses, trapping sediment, absorbing nutrients, attenuating high flows, and providing wildlife habitat. Buffers also physically separate wetlands from developed areas in order to lessen noise, light, chemical pollution, and other associated human-related disturbances. Due to the interconnectivity between a wetland and the surrounding uplands, impacts to the buffer can damage the ecological functions of the wetland.

As described previously, the areas in which temporary wetland buffer impacts are proposed include disturbed areas with limited plant variety and no tree cover. Wetland buffer habitats under these conditions are generally poor. Proposed enhancement/restoration includes planting native tree and shrub species not currently present within the buffer area of Wetland I that would be disturbed (see Table 2). Overall, replanting native vegetation within the temporarily disturbed buffer area will provide higher quality wetland buffer habitat than existing conditions.

5 CONCEPTUAL WETLAND BUFFER ENHANCEMENT/RESTORATION PLAN

This report was prepared to address the proposed slag excavation, which will encroach into the 50-foot protective wetland buffer of Wetland I, and near, but not within, the 50-foot protective wetland buffers of Wetlands L and M. This section, addressing a wetland buffer enhancement/restoration plan, was prepared based on the KCC CAO criteria for wetland buffer restoration (Chapters 11.06.600E, 11.06.600F, and Chapter 11.06.550(City of Kent 2010). The plan proposes to avoid impacts to Wetlands L, M, and N and mitigate all unavoidable temporary wetland buffer impacts to Wetland I associated with proposed construction with enhancement and restoration.

5.1 Mitigation Sequencing

5.1.1 Avoidance and Minimization Measures

Buffer impacts to the Wetland I buffer from slag excavation are unavoidable. Impacts to wetland buffers will be temporary and mitigated by enhancing and restoring disturbed existing degraded wetland buffers.

5.1.2 Enhancement/Restoration Measures

Mitigation enhancement and restoration measures also include wetland buffer replanting as described in the following section. Establishing native tree and shrub vegetation will enhance the existing wetland buffer functions by replacing habitat dominated by nonnative shrubs and grass and herbaceous vegetation with native plants adjacent to existing higher quality wetland buffer habitat. Overall, establishing native vegetation in the area of the proposed temporary impacts will provide higher quality wetland buffer functions than the existing wetland buffer conditions and add to the higher quality buffer habitat that currently exists within about 25 feet of the west side of Wetland I. As mentioned above, this portion of the buffer appears to have been enhanced/restored with native vegetation when the clay barrier was installed. Buffer species include red alder, big-leaf maple, Douglas fir (*Pseudotsuga menziesii*), *western red cedar (Thuja plicata)*, Indian plum, salmonberry, nootka rose (*Rosa nutkana*), snowberry (*Symphoricarpos albus*), and sword fern (*Polystichum munitum*).

5.2 Wetland Buffer Enhancement/Restoration Mitigation

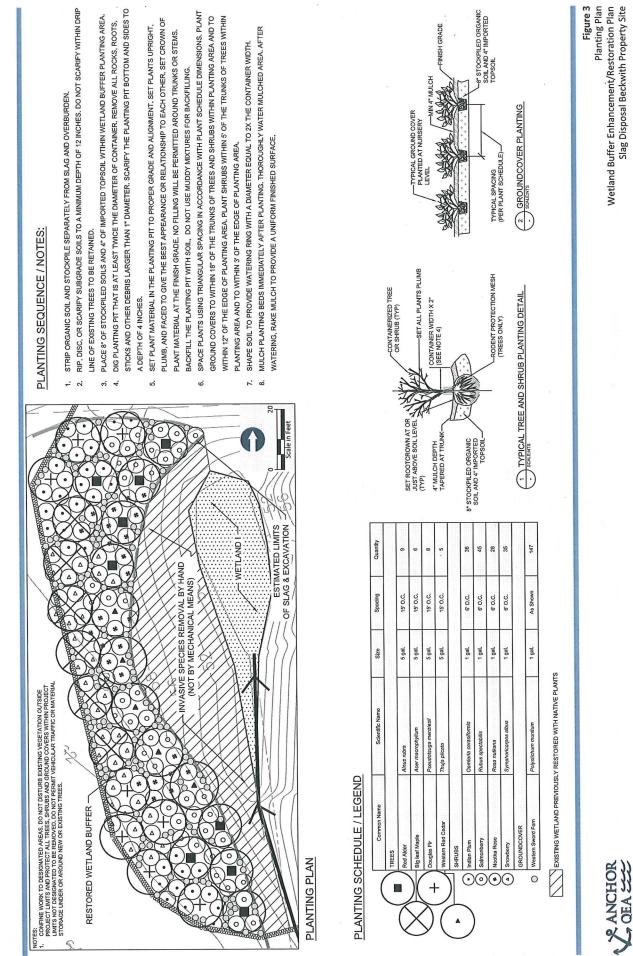
The mitigation action provides compensatory mitigation for unavoidable temporary impacts to 0.13 acre (5,440 sf) of wetland buffer associated with Project construction. Compensation for these unavoidable temporary impacts to wetland buffer will be accomplished through replanting approximately 0.13 acre (5,440 sf) of wetland buffer within the disturbed wetland buffer area.

As described in Section 4, the wetland buffer of Wetland I that would be temporarily disturbed is generally of poor quality due to the dominance of native and non-native grass and herbaceous vegetation and the general lack of native trees and shrubs. No trees are present in the area of proposed impacts. Vegetation removal as part of the Project is not expected to degrade existing baseline conditions. Replanted native wetland buffer vegetation in the disturbed wetland buffer area will be improved in both quantity and species composition over that found at the area of buffer impacts. Topsoils in the restored area of the buffer will include an 8-inch base layer of on-site stockpiled topsoil, and a 4-inch surface layer of imported topsoil, plus a 6-inch mulch layer. The latter two layers will both help retain moisture and suppress weed growth.

In addition, any non-native invasive species in the portion of Wetland I buffer on east of the impacted area, and west of Wetland I (previously restored/enhanced portion of Wetland I buffer) will be removed as part of the mitigation action.

5.2.1 Wetland Buffer Mitigation Goals and Objectives

The overarching goal of the wetland buffer restoration described in this report is to address replacement of wetland buffer functions impacted by the Project and to increase these functions at the Project site. To achieve this goal, proposed wetland buffer enhancement/restoration will include planting native vegetation to replace wetland buffer vegetation removed during construction. This impact area is currently dominated by grassland habitat with nonnative shrub vegetation. Overall, impacted grassland habitat will be replaced with native shrub and forested vegetation communities.


To meet these goals, the following objectives have been used to develop the conceptual planting plan to compensate for loss and damage to the wetland buffer area:

- Provide demonstrable and qualitative replacement of functional elements of the natural system on the site
- Establish native wetland buffer plant communities by planting native species and removing invasive species (completed fall 2010)
- Use native and naturalized plant species commonly found in wetland buffer habitats of the Pacific Northwest (see Figures 3 and 4)
- Simulate, with the plantings, Pacific Northwest native plant communities in terms of composition, cover, and structure
- Replace, at a ratio of at least 1:1, wetland buffer habitat lost due to Project impacts
- Remove any non-native, invasive species (such as Scot's Broom and Himalayan Blackberry) from the portion Wetland I buffer bordering portion to be restored/enhanced (completed fall 2010).

5.2.2 Monitoring Plan

To ensure success of the restoration, per the KCC, a 3-year monitoring and management program will be implemented (City of Kent 2010, Chapter 11.06.600E). The objective of this plan is to ensure the achievement of the prescribed standards of success.

Installed vegetation communities will be monitored annually to assess the performance of the wetland buffer restoration. Prior to the first monitoring visit, an as-built (or Year 0) plan will be prepared to document the implementation of the restoration design. Any minor changes to the approved designs that are required by field conditions present during plan implementation must be documented on the as-built plans. The monitoring period will begin once the as-built plans have been approved. Due to the relatively small size of the wetland buffer restoration area, sample plots will likely not be established and monitoring will include the entire approximately 0.13-acre (5,440-sf) wetland buffer restoration area. Based on as-built plans or record drawings, monitoring will take place near the end of the growing season (summer or early fall) prior to leaf drop.

f1uoval 3wb.E00-99-4/2002/4-01/100224-01/100224-KP-002/240L/:3

medgnimsedd mq81:4 0105 ,ES nul

Slag Disposal Beckwith Property Site

Planting Specifications Wetland Buffer Enhancement/Restoration Plan Kent Slag Site Excavation Project

Figure 4

C OLA LES

PLANTING SPECIFICATIONS CONTINUED

The topsoll mix shall also have the following characteristics:

oval before hauling

Topsoil analysis results of a 5 pound bag from soils resting laboratory, inclusite source and obtain Owner's approval before haufin topsoil to alle.
 Source of the nucleh supply and a 1 galten sample for approval before haufinited.
 Source of the nucleh supply and a 1 galten sample for approval before haufinited.
 Source of the nucleh supply and a 1 galten sample for approval before haufinited.

PLANTING SPECIFICATIONS

Submittals:

- The pH range shall be from 5.5 to 7.5.
 The Sedum Associated net and the test then 6.0.
 The Sedum Associated net and the test then 6.0.
 The Sedum Associated net and the test then 6.0.
 The Sedum Associated net to and the test then 6.0.
 The Sedum Associated net to and the test then 6.0.
 The Sedum Associated net to and the test then 6.0.
 The Sedum Associated net to a start the test then 1.0 part per million (tpm).
 The Sedum Associated net to and the test then 6.0.
 The Sedum Associated net to a start the test the start of the 1.0 part parts rank term and 0.4 theras per hour.
 The solid met valid contributions that the 70 staget to consuldation or comparison.
 The solid met valid containes the motion of part parasitic nonsolves per 100 cubic continuons (cs) of stall.
 The solid met valid containes the motion of part parasitic nucleoses per 100 cubic contained metal of a stall valid metal of the parts matic the net of each contained metal of a stall valid metal of the parts matic the net of each contained metal of a stall valid metal to the parts matic the net of each contained metal of a stall valid metal of the parts of the pa

Mulch:

The Topsol shall consist of 60 percent Sand Component and 40 percent Composied Organic Amendment by volume and shall meel or excood the following specifications:

Notify the Owner at least five working days prior to the installation of plant material

Notifications:

Products:

Topsall:

The Sand Component shall meet the following specifications within reasonable variations:

Percent Passing

Screen Size 6.35 mm

95 20 40

85

Bark er wood chip much shall be derheal from Dauglas fir, pino, er hendeck specieler, it shall be ground so hat a minimum of 35% of the material will genes through a 2-bitch shows and no more than 25%, by loos ouknaw, will gass through a bio, 4 show. The much and not combin readi, turnin, ar of the comparate in quantifies that would be detirmantal to plant file. Arbotist woodchips, sawdurt or wood minimagi, adult for baread an ruich.

Plants:

Comply with sizing and grading standards of th latest adition of "American Standards for Nursery Stock." Protect existing native vegetation from damage caused by landscaping operations.

All plants shall by nursary grown and from a nursary with stirtliar climatic conditions to the locality of the project. Stock turnlahed shall be at least the minimum size indicated.

Provide only sound, theality, vigorous glants free form weeds, defects, surrential kijvales, and abreations of the bank, plant diseases, hance eggs, boores, and all former of intension. All plants and have all biol velophed form which vides, spont spaces, jueleen transvies, tabled abre, fund to re action, kin plants shall be loose in the contribute or poti course.

Planta shall be packed, transported and handled with care. Cover plants transported on open vehicles with a protective covering to prevent vectorum. No plant read will be bound with poso or value in animore that would damage or branchose. If plants carront be planted timmediately upon delivery, protectly protect them with sed, wet peat moss or rule an animer acceptuble to the Owne Water heideds to planteging deliy. On exhibits by functs, some or tops,

Plant material shall be inspected and approved by the Censultant and the Owner on site prior to installation. Remove unsatist material from the site immediately.

Stack shall not be installed when ambient temperatures are below 35 degrees F or above 80 degrees, or when wind velocity exceeds 30 mills per hour. Planting vegetation shall be performed during the period between October 1 and April 1.

Warrant plant material to remain alive and be in healthy, vigorous condition for a peried of one year after the date of Physical Com

Rodant Protection Mash;

Enclode woody tunks of planted trees with thin plantic meta to protect against cambian demage by rodents. Exand meta opfinder 3° to be and 12° above be indehed grade line. Assure that the guage of protectioe warp is such that trees growth will spill the metal optimization.

Valnehance:

Maintain planting until acceptance by Owner. Maintenance shall include cultivating, woading, watering, pruhng (only as directed), and application of appropriate insecticides and fungicides necessary to maintain plants free of insects and disease.

Reset settled plants to proper grade and position. Restore planting watering ring and adjacent material and remove dead material.

week (Including min

Water troos, shrub, and ground cover bods within the first 24 hours of initial planting, and not less than twice per uniti Physical Compilation.

Physical Completion:

Inspection to determine Physical Campilation of planted areas will be made by the Owner, upon the Contractor's request, Provide notification at least 10 working days before requested inspection date.

ance period have been complied with and plant materials Planted areas will be accepted provided all requirements, including the mainte are alive and in a healthy vigorous condition.

Jpon Physical Completion, the Owner will assume plant mail

ntal Protection Agency (EPA).

ed by the U.S. Envl Shall be

6.

Shall be cardified by the Process to Further Reduce Pathoguns (PFRP) guideline for hot compositing as established by EPA. Shall be lufty matue and stable borow usayo. Shall be screened using a eview on firm: than 1/4-ioch and no greater than 1/2-inch. Burard on dry weight of total organic amondment sample, it must comply with the following process to waith the swall presents: The Composed Organic Soil Amendment shall contait of 100 percent decomposed organic mulch material, and shall contait of yard waste debts or other organic waste materials that have been strotted, partout two, perator, and signal, and shall bulky torganics, statabula, and matter (increased). The organicy process shall be for at least 6 months firms and the organic amendment shall have at unform table, and matter (increased). The organicy process shall be for at least 6 months firms and the organic amendment shall have at unform table, and submatching appearance and contrait of 100 percent reocycled content. In addition, the organic amendment shall have at holdowing physical admitteriority. Mens "composited materials" dafinition in VAC 173-350 Section 220, available at: http://www.acy.wa.gov/programafervfatcomposit Has Organio Pendence Contents of Septement and conton Nillogoparationed of 2551. Shall how heavy monitorial one beavy and control to Nillogoparationed of Applicatione (WSDA) per year load limit as followe WSDA-Maxium pounds per acre per year Minimum % 8 95 90 75 70 10 20 0.297 0.079 0.594 1.981 0.019 0.019 0.079 0.732 0.7329 7.329 Maximum % 0 ⁰ 100 100 45 12.7 mm (1/2 Inch) 6.35 mm (1/4 Inch) 1.00 mm 500 mlcron Slovo Slzo 4.76 mm 2.38 mm Motal Arsenic Cadmium Cobalt Lead Mercury Molybdenum Nickel Selentum Zinc #10 #30 #60 #100 #200 N ei + 10

> C1uoysJ gwb.E00-98-452001/10-4525001/gsl2 (M3-452001/sdol/:% mengnim1add me&E:01 0102 ,ES nul

Monitoring activities will focus on the collection of vegetation and wildlife data to evaluate, describe, and quantify (to the extent possible) wetland buffer functions and compliance with the performance measures. Monitoring will also include photographic documentation of site features and the development of habitat on the site. General monitoring methods are:

- Survival of planted trees and shrubs will be assessed
- Aerial cover for native trees and shrubs, both planted and colonizing, will be estimated
- Aerial cover for state-listed noxious weeds will be estimated
- Photographic documentation from photo points will be identified on the as-built plans
- Incidental wildlife sightings or signs will be documented
- Intrusions, vandalism, or other actions that impair the intended functions of the mitigation areas will be reported
- Recommendations will be made for maintenance or repair of the restoration areas

Following each year's monitoring visit, a report will be prepared detailing the findings of the visit. A total of four reports (Years 0, 1, 2, and 3) will be prepared as part of ongoing monitoring reporting.

5.2.3 Performance Measures, Standards of Success, and Contingency Plans

Performance measures and success standards describe specific on-site characteristics that indicate a function is being provided. Performance measures are used to guide management of the mitigation area. Success standards are thresholds to be measured during the monitoring period that demonstrate the mitigation has complied with regulatory requirements and is providing intended functions. The proposed restoration will be monitored for 3 years to demonstrate that intended wetland buffer functions have been achieved. Specific performance measures and success standards will be the following:

- 20 percent cover of native trees, shrubs, groundcover, and emergent species after 1 year
- 50 percent cover of native trees, shrubs, groundcover, and emergent species after 2 years
- 80 percent cover of native trees, shrubs, groundcover, and emergent species after 3

years

- 80 percent survival of native planted and colonizing native trees and shrubs after 3 years
- Less than 20 percent cover of invasive species

Contingency plans describe what actions can be taken to correct site deficiencies. If there is a significant problem with the restoration area meeting its performance standards, a contingency plan will be developed. Contingency plans may include, but are not limited to, the following:

- Plant substitutions of type, species, quantity, and/or location
- Additional plant installation to address survival or cover problems
- Weeding and additional plant installation to address invasive weed cover
- Providing fencing or plant guards around plants to prevent animal damage

Contingency plans will be developed for review and approval by the City of Kent as appropriate. In addition, implemented contingency plans will be described in the monitoring report following each year's visit. Success of the wetland buffer restoration will be based on the mitigation goals, performance standards, and contingency measures.

6 REFERENCES

- City of Kent, 2010. City of Kent City Code. Kent, Washington. Accessed online at http://www.codepublishing.com/wa/kent/ on April 20, 2010.
- ESA Adolfson, 2006. *South 224th Street Extension Wetland Technical Report*. Prepared for City of Kent, Washington.
- Farallon Consulting, 2010a. Slag Disposal Beckwith Property Site Excavation Project Design Plans. Prepared for Earle M. Jorgensen Company, Lynwood, California.
- Farallon Consulting, 2010b. Cleanup Action Work Plan. Prepared for Earle M. Jorgensen Company, Lynwood, California.
- Springwood Associates, Inc., 1995. *Beckwith Property Slag Disposal Site Wetland Delineation Report.* Prepared for SECOR International, Inc. Bellevue, Washington.
- Washington State Department of Ecology (Ecology), 2004. Washington State Wetlands
 Rating System Western Washington: Revised. Publication #04-06-25. Olympia,
 Washington.
- Ecology, 2008. *Washington State Wetland Rating Form Western Washington, version 2.* Olympia, Washington.

1423 Third Avenue, Suite 300 Seattle, Washington 98101 Phone 206.287.9130 Fax 206.287.9131

November 14, 2010

Ms. Heidi Fischer Farallon Consulting, LLC 975 5th Avenue NW Issaquah, Washington 98027

Re: Beckwith Property Slag Site Remediation Wetland M and N Buffer Work

Dear Ms. Fischer:

We have prepared this letter, per our previous discussion, to describe the slag removal work occurring beyond the limits of the Wetland Buffer Mitigation Plan that we prepared. This letter is intended as an addendum to the Wetland Buffer Mitigation Plan.

Additional slag was identified and removed beyond the original estimated excavation limits and extended within the Wetland M and N buffer. More specifically, slag was found along the edge (within a strip approximately 2 feet wide) of the gravel driveway accessing the south end of the property and in a small area (approximately 5x2 feet) near 90th Ave. South. This latter slag area was located adjacent to a 1.5 foot diameter black cottonwood tree that is leaning toward the road. There is also an understory of native salmon berry and snowberry shrubs around the tree.

To remove the slag in these two areas hand tools (shovels, etc.) were used. During this process the black cottonwood tree's roots were disturbed. Anchor QEA recommends that this tree be removed as a safety precaution so it does not fall onto the public roadway at 90th Ave. South. It is also recommended that the small disturbed area at the tree be restored with native shrubs, specifically, salmonberry and/or snow berry. The disturbed areas next to the tree and adjacent to the driveway will be seeded for stabilization. Due to the close proximity of the tree to the driveway and roadway, Anchor QEA does not recommend replanting the tree.

Please let me know if you have any questions about this issue.

Sincerely,

Hum

Peter Hummel, Project Manager Anchor QEA, LLC

Cc: Alicia Toney, Anchor QEA, LLC

APPENDIX B STORMWATER POLLUTION PREVENTION PLAN FOR EMJ-KENT SLAG SITE CLEANUP ACTION

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

Stormwater Pollution Prevention Plan for:

EMJ – Kent Slag Site Cleanup Action South 218th Street & 88th Avenue South Kent, Washington 98031

Operator(s):

Farallon Consulting 975 5th Ave NW Issaquah, WA 98027 P: 425-427-0061 F: 425-427-0067 Consultant

Clearcreek Contractors, Inc. 3203 15th St. Everett, Washington 98201 P: 425-252-5800 F: 425-252-1093 Contractor

SWPPP Contact(s):

Clearcreek Contractors, Inc. 3203 15th St. Everett, Washington 98201 P: 425-252-5800 F: 425-252-1093

SWPPP Preparation Date:

07/28/2010

Estimated Project Dates:

Project Start Date: 08/02/2010 Project Completion Date: 11/22/2010

Contents

SECTION	1: SITE EVALUATION, ASSESSMENT, AND PLANNING	1
1.1	Project/Site Information	1
1.2	Contact Information/Responsible Parties	2
1.3	Nature and Sequence of Construction Activity	
1.4	Soils, Slopes, Vegetation, and Current Drainage Patterns	
1.5	Construction Site Estimates	
1.6	Receiving Waters	
1.7	Site Features and Sensitive Areas to be Protected	
1.8	Potential Sources of Pollution	
1.9	Endangered Species Certification	
1.10	Historic Preservation	
1.11	Applicable Federal, Tribal, State or Local Programs	9
1.12	Maps	9
SECTION	2: EROSION AND SEDIMENT CONTROL BMPS1	0
2.1	Minimize Disturbed Area and Protect Natural Features and Soil1	1
2.2	Phase Construction Activity1	1
2.3	Control Stormwater Flowing onto and through the Project1	4
2.4	Stabilize Soils	4
2.5	Protect Slopes1	5
2.6	Protect Storm Drain Inlets	
2.7	Establish Perimeter Controls and Sediment Barriers1	6
2.8	Retain Sediment On-Site1	6
2.9	Establish Stabilized Construction Exits	7
2.10	Additional BMPs1	
SECTION	3: GOOD HOUSEKEEPING BMPS1	9
3.1	Material Handling and Waste Management1	9
3.2	Establish Proper Building Material Staging Areas2	0
3.3	Designate Washout Areas	
3.4	Establish Proper Equipment/Vehicle Fueling and Maintenance Practices	
3.5	Control Equipment/Vehicle Washing	
3.6	Spill Prevention and Control Plan2	
3.7	Any Additional BMPs2	2
3.8	Allowable Non-Stormwater Discharge Management	2
	4: SELECTING POST-CONSTRUCTION BMPs 2	
	5: INSPECTIONS	
5.1	Inspections	
	6: RECORDKEEPING AND TRAINING	
6.1	Recordkeeping	5
6.2	Training2	5
	7: FINAL STABILIZATION	
	8: CERTIFICATION AND NOTIFICATION	
	APPENDICES 2	8
Append	ix A – Plans	

Appendix B – Inspection Forms Appendix C – Record Keeping Appendix D – Permits

SECTION 1: SITE EVALUATION, ASSESSMENT, AND PLANNING

1.1 Project/Site Information

Instructions:

- In this section, you can gather some basic site information that will be helpful to you later when you file for permit coverage.
- For more information, see *Developing Your Stormwater Pollution Prevention Plan: A SWPPP Guide for Construction Sites* (also known as the *SWPPP Guide*), Chapter 2
- Detailed information on determining your site's latitude and longitude can be found at <u>www.epa.gov/npdes/stormwater/latlong</u>

Project/Site Name: <u>EMJ – Kent Slag Site Cleanup Action</u>

Project Street/Location:	South 218 th Street & 88 th Avenue South			
City: <u>Kent</u>	State:	WA	ZIP Code:	98031

County or Similar Subdivision: King

Latitude/Longitude (Use one of three possible formats, and spec	cify method)
---	--------------

Latitude:	Longitude:
1°'" N (degrees, minutes, seconds)	1°'' W (degrees, minutes, seconds)
2°' N (degrees, minutes, decimal)	2°' W (degrees, minutes, decimal)
3. 47.4059 ° N (decimal)	3. 122.2196 ° W (decimal)
Method for determining latitude/longitude: USGS topographic map (specify scale:)
Is the project located in Indian country? Yes If yes, name of Reservation, or if not part of a Reservation	
Is this project considered a federal facility?	Yes No
NPDES project or permit tracking number*:	
*(This is the unique identifying number assigned to your project	at hy your permitting authority after you have applied

*(This is the unique identifying number assigned to your project by your permitting authority after you have applied for coverage under the appropriate National Pollutant Discharge Elimination System (NPDES) construction general permit.)

1.2 Contact Information/Responsible Parties

Instructions:

- List the operator(s), project managers, stormwater contact(s), and person or organization that prepared the SWPPP. Indicate respective responsibilities, where appropriate.
- Also, list subcontractors expected to work on-site. Notify subcontractors of stormwater requirements applicable to their work.
- See SWPPP Guide, Chapter 2.B.

Operator(s):

Farallon Consulting Richard McManus 975 5th Ave NW Issaquah, WA 98027 P: 425-427-0061 F: 425-427-0067 Consultant

Clearcreek Contractors, Inc. Mark McCullough 3203 15th St Everett, WA 98201 P: 425-252-5800 F: 425-252-1093 Contractor

Project Manager(s) or Site Supervisor(s):

Clearcreek Contractors, Inc. Jim Burke 3203 15th St Everett, WA 98201 P: 425-252-5800 F: 425-252-1093 Contractor

SWPPP Contact(s):

Clearcreek Contractors, Inc. Mark McCullough 3203 15th St Everett, WA 98201 P: 425-252-5800 F: 425-252-1093 Contractor Clearcreek Contractors, Inc.

This SWPPP was Prepared by:

Clearcreek Contractors, Inc. Ben McCartt 3203 15th St Everett, WA 98201 P: 425-252-5800 F: 425-252-1093

Subcontractor(s):

SHJ Electric Dale Harper PO Box 99713 Seattle, WA 98199-0713 P: 206-789-0580 Electric

Emergency 24-Hour Contact:

Clearcreek Contractors, Inc. Mark McCullough/Paul Curnett 206-423-8120/206-423-9967

1.3 Nature and Sequence of Construction Activity

Instructions:

- Briefly describe the nature of the construction activity and approximate time frames (one or more paragraphs, depending on the nature and complexity of the project).
- For more information, see SWPPP Guide, Chapter 3.A.

Describe the general scope of the work for the project, major phases of construction, etc: The cleanup action will involve excavation and off-Site disposal of approximately 16,500 cubic yards of slag and restoration of the Site. Following excavation, the Site will be restored and graded to allow surface water to drain approximately as it did prior to slag removal activities. Site restoration would include hydroseeding areas impacted by construction, wetland buffer area restoration, and construction of drainage features to manage stormwater runoff. Operation of the existing water treatment system will be required throughout the cleanup action and until monitoring demonstrates seep water pH is below 8.5. The overall scope for removing the slag and restoring the Site involves:

- Mobilizing, establishing site controls, and performing pre-construction survey.
- Establishing erosion controls around site perimeter.
- Establishing decontamination facilities, wheel wash facilities, and construction entrance.
- Excavating and stockpiling cap soils containing a pH less than 8.5.
- Excavating, loading, transporting, and disposing of slag.
- Placing, grading, and compacting stockpiled cap soils.
- Operating existing water treatment system as required to capture and treat surface water with a pH above the regulatory limit for the duration of project.
- Hydroseeding disturbed areas.
- Restoring wetland buffer area.
- Reconstructing drainage ditches and interceptor drain.
- Removing construction facilities and demobilizing.
- Decommissioning the water treatment system.

What is the function of the construction activity?

Residential	Commercial	Industrial	Road Construction	Linear Utility
\bigotimes Other (please	specify): Environm	nental Remediati	on	
Estimated Project Start Date:		08/02/2	010	
Estimated Project	t Completion Date:	11/22/2	010	

1.4 Soils, Slopes, Vegetation, and Current Drainage Patterns

Instructions:

- Describe the existing soil conditions at the construction site including soil types, slopes and slope lengths, drainage patterns, and other topographic features that might affect erosion and sediment control.
- Also, note any historic site contamination evident from existing site features and known past usage of the site.
- This information should also be included on your site maps (See *SWPPP Guide*, Chapter 3.C.).
- For more information, see *SWPPP Guide*, Chapter 3.A.

Soil type(s):

Historic documentation indicates the cap consisted of Class B pit-run gravel and Class A 3-way mix top soil.

Slopes (describe current slopes and note any changes due to grading or fill activities):

Site contains significant slopes along the west and south sides of the property and drainage ditches along the eastside of the property.

Drainage Patterns (describe current drainage patterns and note any changes dues to grading or fill activities):

Preconstruction stormwater runoff flows along drainage ditch on eastside of property into

detention pond. Stormwater is also collected and treated on site and discharged into the City of Kent sanitary sewer system.

Vegetation:

The site supports unvegetated soil areas of shrubs, grass, and other undergrowth. Other:

1.5 Construction Site Estimates

Instructions:

- Estimate the area to be disturbed by excavation, grading, or other construction activities, including dedicated off-site borrow and fill areas.
- Calculate the percentage of impervious surface area before and after construction
- Calculate the runoff coefficients before and after construction.
- For more information, see *SWPPP Guide*, Chapter 3.A and Appendix C.

The following are estimates of the construction site.

Total project area:	4.7 acres
Construction site area to be disturbed:	4.7 acres
Percentage impervious area before construction:	<5%
Runoff coefficient before construction:	0.10-0.30
Percentage impervious area after construction:	<5%
Runoff coefficient after construction	0.10-0.30

1.6 Receiving Waters

Instructions:

- List the waterbody(s) that would receive stormwater from your site, including streams, rivers, lakes, coastal waters, and wetlands. Describe each as clearly as possible, such as *Mill Creek, a tributary to the Potomac River*, and so on.
- Indicate the location of all waters, including wetlands, on the site map.
- Note any stream crossings, if applicable.
- List the storm sewer system or drainage system that stormwater from your site could discharge to and the waterbody(s) that it ultimately discharges to.
- If any of the waterbodies above are impaired and/or subject to Total Maximum Daily Loads (TMDLs), please list the pollutants causing the impairment and any specific requirements in the TMDL(s) that are applicable to construction sites. Your SWPPP should specifically include measures to prevent the discharge of these pollutants.
- For more information, see *SWPPP Guide*, Chapter 3.A and 3.B.
- Also, for more information and a list of TMDL contacts and links by state, visit <u>www.epa.gov/npdes/stormwater/tmdl</u>.

Description of receiving waters:

Garrison Creek

Description of storm sewer systems:

N/A

Description of impaired waters or waters subject to TMDLs:

N/A

Other:

1.7 Site Features and Sensitive Areas to be Protected

Instructions:

- Describe unique site features including streams, stream buffers, wetlands, specimen trees, natural vegetation, steep slopes, or highly erodible soils that are to be preserved.
- Describe measures to protect these features.
- Include these features and areas on your site maps.
- For more information, see *SWPPP Guide*, Chapter 3.A and 3.B.

Wetlands and steep slopes surrounding the site will have construction staking and flagging to denote 10-foot buffer zone. Will not impact existing vegetation within the buffer zone or steep slope areas. If slag is determined to extend into buffer zone at any location, engineer will be notified.

Description of unique features that are to be preserved:

N/A

Describe measures to protect these features:

N/A

1.8 Potential Sources of Pollution

Instructions:

- Identify and list all potential sources of sediment, which may reasonably be expected to affect the quality of stormwater discharges from the construction site.
- Identify and list all potential sources of pollution, other than sediment, which may reasonably be expected to affect the quality of stormwater discharges from the construction site.
- For more information, see *SWPPP Guide*, Chapter 3.A.

Potential sources of sediment to stormwater runoff:

- Clearing and grubbing operations
- Grading and site excavation operations
- Vehicle tracking
- Topsoil stripping and stockpiling
- Slag excavation and stockpiling
- Landscaping operations

Potential pollutants and sources, other than sediment, to stormwater runoff:

• Combined Staging Area – Small fueling activities, minor equipment maintenance, sanitary facilities,

Material/Chemical	Stormwater Pollutants	Location
Hydraulic Oil/Fluids	Mineral Oil	Leaks or broken hoses from equipment
Gasoline	Benzene, ethyl benzene, toluene, xylene, MTBE	Secondary containment/staging area
Diesel Fuel	Petroleum distillate, oil & grease, naphthalene, xylenes	Secondary containment/staging area
Antifreeze/Coolant	Ethylene Glycol, Propylene glycol, heavy metals (copper, lead, zinc)	Leaks or broken hoses from equipment
Sanitary Toilets	Bacteria, parasites, and viruses	Staging Area
Secondary Steel Slag	Lime ash (reacts with water)	Excavated Slag

1.9 Endangered Species Certification

Instructions:

- Before beginning construction, determine whether endangered or threatened species or their critical habitats are on or near your site.
- Adapt this section as needed for state or tribal endangered species requirements and, if applicable, document any measures deemed necessary to protect endangered or threatened species or their critical habitats.
- For more information on this topic, see *SWPPP Guide*, Chapter 3.B.
- Additional information on Endangered Species Act (ESA) provisions is at <u>www.epa.gov/npdes/stormwater/esa</u>

Are endangered or threatened species and critical habitats on or near the project area?

 \Box Yes \boxtimes No

Describe how this determination was made:

Washington Department of Fish and Wildlife

If yes, describe the species and/or critical habitat:

If yes, describe or refer to documentation that determines the likelihood of an impact on identified species and/or habitat and the steps taken to address that impact. (Note, if species are on or near your project site, EPA strongly recommends that the site operator work closely with the appropriate field office of the U.S. Fish and Wildlife Service or National Marine Fisheries Service. For concerns related to state or tribal listing of species, please contact a state or tribal official.)

1.10 Historic Preservation

Instructions:

- Before you begin construction, you should review federal and any applicable state, local, or tribal historic preservation laws and determine if there are historic sites on or near your project. If so, you might need to make adjustments to your construction plans or to your stormwater controls to ensure that these historic sites are not damaged.
- For more information, see SWPPP Guide, Chapter 3.B or contact your state or tribal historic preservation officer.

Are there any historic sites on or near the construction site?

 \Box Yes \boxtimes No

Describe how this determination was made:

National Register of Historic Places listings in King County, Washington

If yes, describe or refer to documentation that determines the likelihood of an impact on this historic site and the steps taken to address that impact.

1.11 Applicable Federal, Tribal, State or Local Programs

Instructions:

 Note other applicable federal, tribal, state or local soil and erosion control and stormwater management requirements that apply to your construction site.

N/A

1.12 Maps

Instructions:

 Attach site maps. For most projects, a series of site maps is recommended. The first should show the undeveloped site and its current features. An additional map or maps should be created to show the developed site or for more complicated sites show the major phases of development.

These maps should include the following:

- Direction(s) of stormwater flow and approximate slopes before and after major grading activities;
- Areas and timing of soil disturbance;
- Areas that will not be disturbed;
- Natural features to be preserved;
- Locations of major structural and non-structural BMPs identified in the SWPPP;
- Locations and timing of stabilization measures;
- Locations of off-site material, waste, borrow, or equipment storage areas;
- Locations of all waters of the United States, including wetlands;
- Locations where stormwater discharges to a surface water;
- Locations of storm drain inlets; and
- Areas where final stabilization has been accomplished.
- For more information, see *SWPPP Guide*, Chapter 3.C.

See Appendix A – Plans

SECTION 2: EROSION AND SEDIMENT CONTROL BMPS

Instructions:

- Describe the BMPs that will be implemented to control pollutants in stormwater discharges. For each
 major activity identified, do the following
 - ✓ Clearly describe appropriate control measures.
 - ✓ Describe the general sequence during the construction process in which the measures will be implemented.
 - ✓ Describe the maintenance and inspection procedures that will be used for that specific BMP.
 - ✓ Include protocols, thresholds, and schedules for cleaning, repairing, or replacing damaged or failing BMPs.
 - ✓ Identify staff responsible for maintaining BMPs.
 - ✓ (If your SWPPP is shared by multiple operators, indicate the operator responsible for each BMP.)
- Categorize each BMP under one of the following 10 areas of BMP activity as described below:
 - 2.1 Minimize disturbed area and protect natural features and soil
 - 2.2 Phase Construction Activity
 - 2.3 Control Stormwater flowing onto and through the project
 - 2.4 Stabilize Soils
 - 2.5 Protect Slopes
 - 2.6 Protect Storm Drain Inlets
 - 2.7 Establish Perimeter Controls and Sediment Barriers
 - 2.8 Retain Sediment On-Site and Control Dewatering Practices
 - 2.9 Establish Stabilized Construction Exits
 - 2.10 Any Additional BMPs
- Note the location of each BMP on your site map(s).
- For any structural BMPs, you should provide design specifications and details and refer to them. Attach them as appendices to the SWPPP or within the text of the SWPPP.
- For more information, see *SWPPP Guide*, Chapter 4.
- Consult your state's design manual or one of those listed in Appendix D of the SWPPP Guide.
- For more information or ideas on BMPs, see EPA's National Menu of BMPs <u>http://www.epa.gov/npdes/stormwater/menuofbmps</u>

2.1 Minimize Disturbed Area and Protect Natural Features and Soil

Instructions:

- Describe the areas that will be disturbed with each phase of construction and the methods (e.g., signs, fences) that you will use to protect those areas that should not be disturbed. Describe natural features identified earlier and how each will be protected during construction activity. Also describe how topsoil will be preserved. Include these areas and associated BMPs on your site map(s) also. (For more information, see *SWPPP Guide*, Chapter 4, ESC Principle 1.)
- Also, see EPA's *Preserving Natural Vegetation BMP Fact Sheet* at www.epa.gov/npdes/stormwater/menuofbmps/construction/perserve_veg

BMP C101: Preserving Natural Vegetation BMP C102: Buffer Zones BMP C104: Stake and Wire Fence

2.2 Phase Construction Activity

Instructions:

- Describe the intended construction sequencing and timing of major activities, including any opportunities for phasing grading and stabilization activities to minimize the overall amount of disturbed soil that will be subject to potential erosion at one time. Also, describe opportunities for timing grading and stabilization so that all or a majority of the soil disturbance occurs during a time of year with less erosion potential (i.e., during the dry or less windy season). (For more information, see *SWPPP Guide*, Chapter 4, ESC Principle 2.) It might be useful to develop a separate, detailed site map for each phase of construction.
- Also, see EPA's Construction Sequencing BMP Fact Sheet at http://www.epa.gov/npdes/stormwater/menuofbmps/construction/cons_seq)
- Phase I
 - Strip & Stockpile Topsoil
 - Estimated Start: 08/02/2010 Estimated End: 08/06/2010
 - o BMP C101: Preserving Natural Vegetation
 - o BMP C102: Buffer Zones
 - o BMP C104: Stake and Wire Fence
 - o BMP C105: Stabilized Construction Entrance
 - o BMP C107: Construction Road/Parking Area Stabilization
 - o BMP C123: Plastic Covering
 - o BMP C140: Dust Control
 - o BMP C150: Materials On Hand
 - o BMP C153: Material Delivery, Storage, and Containment
 - o BMP C160: Certified Erosion and Sediment Control Lead
 - o BMP C162: Scheduling
 - o BMP C202: Channel Lining
 - o BMP C220: Storm Drain Inlet Protection
 - o BMP C230: Straw Bale Barrier

- o BMP C233: Silt Fence
- o BMP C235: Straw Wattles
- Phase II
 - Excavate Out Slag to Create Clean Road Bed
 - Estimated Start: 08/09/2010 Estimated End: 08/13/2010
 - BMP C101: Preserving Natural Vegetation
 - o BMP C102: Buffer Zones
 - o BMP C104: Stake and Wire Fence
 - o BMP C105: Stabilized Construction Entrance
 - o BMP C106: Wheel Wash
 - o BMP C107: Construction Road/Parking Area Stabilization
 - o BMP C123: Plastic Covering
 - o BMP C140: Dust Control
 - o BMP C150: Materials On Hand
 - BMP C153: Material Delivery, Storage, and Containment
 - o BMP C160: Certified Erosion and Sediment Control Lead
 - o BMP C162: Scheduling
 - o BMP C202: Channel Lining
 - o BMP C220: Storm Drain Inlet Protection
 - o BMP C230: Straw Bale Barrier
 - o BMP C233: Silt Fence
 - o BMP C235: Straw Wattles
 - Phase III
 - Load/Haul Slag From East Side
 - Estimated Start: 08/16/2010 Estimated End: 08/20/2010
 - BMP C101: Preserving Natural Vegetation
 - BMP C102: Buffer Zones
 - o BMP C104: Stake and Wire Fence
 - o BMP C105: Stabilized Construction Entrance
 - o BMP C106: Wheel Wash
 - o BMP C107: Construction Road/Parking Area Stabilization
 - o BMP C123: Plastic Covering
 - o BMP C140: Dust Control
 - o BMP C150: Materials On Hand
 - o BMP C153: Material Delivery, Storage, and Containment
 - o BMP C160: Certified Erosion and Sediment Control Lead
 - o BMP C162: Scheduling
 - o BMP C202: Channel Lining
 - o BMP C220: Storm Drain Inlet Protection
 - o BMP C230: Straw Bale Barrier
 - o BMP C233: Silt Fence
 - o BMP C235: Straw Wattles
 - Phase IV
 - Move Clean From West to East Build Road On West Edge of Clean Stock Pile
 - Estimated Start: 08/23/2010 Estimated End: 08/27/2010
 - BMP C101: Preserving Natural Vegetation
 - o BMP C102: Buffer Zones

- BMP C104: Stake and Wire Fence
- o BMP C105: Stabilized Construction Entrance
- o BMP C106: Wheel Wash
- o BMP C107: Construction Road/Parking Area Stabilization
- o BMP C123: Plastic Covering
- o BMP C140: Dust Control
- o BMP C150: Materials On Hand
- o BMP C153: Material Delivery, Storage, and Containment
- o BMP C160: Certified Erosion and Sediment Control Lead
- o BMP C162: Scheduling
- o BMP C202: Channel Lining
- o BMP C220: Storm Drain Inlet Protection
- o BMP C230: Straw Bale Barrier
- o BMP C233: Silt Fence
- o BMP C235: Straw Wattles
- Phase V
 - Load Haul Slag From West Side
 - Estimated Start: 08/30/2010 Estimated End: 09/03/2010
 - o BMP C101: Preserving Natural Vegetation
 - o BMP C102: Buffer Zones
 - o BMP C104: Stake and Wire Fence
 - o BMP C105: Stabilized Construction Entrance
 - o BMP C106: Wheel Wash
 - o BMP C107: Construction Road/Parking Area Stabilization
 - o BMP C123: Plastic Covering
 - o BMP C140: Dust Control
 - o BMP C150: Materials On Hand
 - o BMP C153: Material Delivery, Storage, and Containment
 - o BMP C160: Certified Erosion and Sediment Control Lead
 - o BMP C162: Scheduling
 - o BMP C202: Channel Lining
 - o BMP C220: Storm Drain Inlet Protection
 - o BMP C230: Straw Bale Barrier
 - o BMP C233: Silt Fence
 - o BMP C235: Straw Wattles
- Phase VI
 - Final Grading
 - Estimated Start: 09/06/2010 Estimated End: 09/10/2010
 - o BMP C101: Preserving Natural Vegetation
 - o BMP C102: Buffer Zones
 - BMP C104: Stake and Wire Fence
 - o BMP C105: Stabilized Construction Entrance
 - o BMP C120: Temporary and Permanent Seeding
 - BMP C125: Topsoiling
 - o BMP C140: Dust Control
 - o BMP C150: Materials On Hand
 - o BMP C153: Material Delivery, Storage, and Containment
 - o BMP C160: Certified Erosion and Sediment Control Lead

- o BMP C162: Scheduling
- BMP C220: Storm Drain Inlet Protection
- o BMP C233: Silt Fence
- o BMP C235: Straw Wattles

2.3 Control Stormwater Flowing onto and through the Project

Instructions:

 Describe structural practices (e.g., diversions, berms, ditches, storage basins) including design specifications and details used to divert flows from exposed soils, retain or detain flows, or otherwise limit runoff and the discharge of pollutants from exposed areas of the site. (For more information, see *SWPPP Guide*, Chapter 4, ESC Principle 3.)

BMP Description: Temporary Re-Aligned Drainage Ditch		
Installation Schedule:	Prior to excavating	
Maintenance and Inspection:	See Attached Plans	
Responsible Staff:	Mark McCullough	

2.4 Stabilize Soils

Instructions:

- Describe controls (e.g., interim seeding with native vegetation, hydroseeding) to stabilize exposed soils where construction activities have temporarily or permanently ceased. Also describe measures to control dust generation. Avoid using impervious surfaces for stabilization whenever possible. (For more information, see *SWPPP Guide*, Chapter 4, ESC Principle 4.)
- Also, see EPA's Seeding BMP Fact Sheet at www.epa.gov/npdes/stormwater/menuofbmps/construction/seeding

BMP Description: Permanent stabilization will be done immediately after the final design grades are achieved. Native species of plants will be used to establish vegetative cover on exposed soils.

Permanent	Temporary
Installation Schedule:	Portions of the site where construction activities have permanently ceased will be stabilized, as soon as possible
Maintenance and Inspection:	After construction is completed at the site, permanently stabilized areas will be monitored until final stabilization is reached.
Responsible Staff:	Mark McCullough

2.5 Protect Slopes

Instructions:

- Describe controls (e.g., erosion control blankets, tackifiers) including design specifications and details that will be implemented to protect all slopes. (For more information, see *SWPPP Guide*, Chapter 4, ESC Principle 5.)
- Also, see EPA's Geotextiles BMP Fact Sheet at www.epa.gov/npdes/stormwater/menuofbmps/construction/geotextiles

BMP Description: Permanent stabilization will be done immediately after the final design grades are achieved. Native species of plants will be used to establish vegetative cover on exposed soils

Installation Schedule:	Portions of the site where construction activities have permanently ceased will be stabilized, as soon as possible
Maintenance and Inspection:	After construction is completed at the site, permanently stabilized areas will be monitored until final stabilization is reached.
Responsible Staff:	Mark McCullough

2.6 Protect Storm Drain Inlets

Instructions:

- Describe controls (e.g., inserts, rock-filled bags, or block and gravel) including design specifications and details that will be implemented to protect all inlets receiving stormwater from the project during the entire project. (For more information, see *SWPPP Guide*, Chapter 4, ESC Principle 6.)
- Also, see EPA's Storm Drain Inlet Protection BMP Fact Sheet at www.epa.gov/npdes/stormwater/menuofbmps/construction/storm_drain

BMP Description: Catchbasin Filters

Installation Schedule:	Catchbasin Filters - Inserts should be designed by the manufacturer for use at construction sites. The limited sediment storage capacity increases the amount of inspection and maintenance required, which may be daily for heavy sediment loads. The maintenance requirements can be reduced by combining a catchbasin filter with another type of inlet protection. This type of inlet protection provides flow bypass without overflow and therefore may be a better method for inlets located along active rights-of way.
Maintenance and Inspection:	Catch basin filters should be inspected frequently, especially after storm events. If the insert becomes clogged, it should be cleaned or replaced.
Responsible Staff:	Mark McCullough

2.7 Establish Perimeter Controls and Sediment Barriers

Instructions:

- Describe structural practices (e.g., silt fences or fiber rolls) including design specifications and details to filter and trap sediment before it leaves the construction site. (For more information, see *SWPPP Guide*, Chapter 4, ESC Principle 7.)
- Also see, EPA's Silt Fence BMP Fact Sheet at <u>www.epa.gov/npdes/stormwater/menuofbmps/construction/silt_fences</u>, or Fiber Rolls BMP Fact Sheet at <u>www.epa.gov/npdes/stormwater/menuofbmps/construction/fiber_rolls</u>

BMP Description: Buffer Zones

Installation Schedule:	Catch basin filters should be inspected frequently, especially after storm events. If the insert becomes clogged, it should be cleaned or replaced.
Maintenance and Inspection:	Inspect the area frequently to make sure flagging remains in place and the area remains undisturbed.
Responsible Staff:	Mark McCullough

BMP Description: Silt Fence

Installation Schedule:	The contractor shall install and maintain temporary silt fences at the locations shown in the Plans. The silt fences shall be constructed in the areas of clearing, grading, or drainage prior to starting those activities. A silt fence shall not be considered temporary if the silt fence must function beyond the life of the contract. The silt fence shall prevent soil carried by runoff water from going beneath, through, or over the top of the silt fence, but shall allow the water to pass through the fence. See Plans
Maintenance and Inspection:	Any damage shall be repaired immediately.
Responsible Staff:	Mark McCullough

2.8 Retain Sediment On-Site

Instructions:

- Describe sediment control practices (e.g., sediment trap or sediment basin), including design specifications and details (volume, dimensions, outlet structure) that will be implemented at the construction site to retain sediments on-site. (For more information, see *SWPPP Guide*, Chapter 4, ESC Principle 8.)
- Also, see EPA's Sediment Basin BMP Fact Sheet at www.epa.gov/npdes/stormwater/menuofbmps/construction/sediment_basins

BMP Description: Wheel Wash	
Installation Schedule:	See Plans
Maintenance and Inspection:	The wheel wash should start out the day with fresh water. The wash water should be changed a minimum of once per day. On large earthwork jobs where more than 10-20 trucks per hour are expected, the wash water will need to be changed more often. Wheel wash or tire bath wastewater shall be discharged to a separate onsite treatment system, such as closed-loop recirculation or land application, or to the sanitary sewer with proper local sewer district approval.
Responsible Staff:	Mark McCullough

TT77 1 117 •

BMP Description: Silt Fence

Installation Schedule:	The contractor shall install and maintain temporary silt fences at
Instatution Schedule.	the locations shown in the Plans. The silt fences shall be
	constructed in the areas of clearing, grading, or drainage prior to starting those activities. A silt fence shall not be considered temporary if the silt fence must function beyond the life of the contract. The silt fence shall prevent soil carried by runoff water
	from going beneath, through, or over the top of the silt fence, but shall allow the water to pass through the fence. See Plans
Maintenance and Inspection:	Any damage shall be repaired immediately.
Responsible Staff:	Mark McCullough

Establish Stabilized Construction Exits 2.9

Instructions:

- Describe location(s) of vehicle entrance(s) and exit(s), procedures to remove accumulated sediment offsite (e.g., vehicle tracking), and stabilization practices (e.g., stone pads or wash racks or both) to minimize off-site vehicle tracking of sediments and discharges to stormwater. (For more information, see SWPPP Guide, Chapter 4, ESC Principle 9.)
- Also, see EPA's Construction Entrances BMP Fact Sheet at www.epa.gov/npdes/stormwater/menuofbmps/construction/cons_entrance

BMI Description. Stabilized Construction Entrance	
Installation Schedule:	See Plans for details
Maintenance and	• Quarry spalls (or hog fuel) shall be added if the pad is no longer
Inspection:	in accordance with the specifications.
1	• If the entrance is not preventing sediment from being tracked
	onto pavement, then alternative measures to keep the streets free
	of sediment shall be used. This may include street sweeping, an

RMP Description: Stabilized Construction Entrance

	increase in the dimensions of the entrance, or the installation of a wheel wash.
	• Any sediment that is tracked onto pavement shall be removed by
	shoveling or street sweeping. The sediment collected by sweeping
	shall be removed or stabilized on site. The pavement shall not be
	cleaned by washing down the street, except when sweeping is
	ineffective and there is a threat to public safety. If it is necessary
	to wash the streets, the construction of a small sump shall be
	considered. The sediment would then be washed into the sump
	where it can be controlled.
	• Any quarry spalls that are loosened from the pad, which end up
	on the roadway shall be removed immediately.
	• If vehicles are entering or exiting the site at points other than the
	construction entrance(s), fencing (see BMPs C103 and C104)
	shall be installed to control traffic.
	• Upon project completion and site stabilization, all construction
	accesses intended as permanent access for maintenance shall be
	permanently stabilized.
Responsible Staff:	Mark McCullough

BMP Description: Wheel Wash	
Installation Schedule:	See Plans
Maintenance and Inspection:	 The wheel wash should start out the day with fresh water. The wash water should be changed a minimum of once per day. On large earthwork jobs where more than 10-20 trucks per hour are expected, the wash water will need to be changed more often. Wheel wash or tire bath wastewater shall be discharged to a separate onsite treatment system, such as closed-loop recirculation or land application, or to the sanitary sewer with proper local sewer district approval.
Responsible Staff:	Mark McCullough

2.10 Additional BMPs

Instructions:

- Describe additional BMPs that do not fit into the above categories.

N/A

SECTION 3: GOOD HOUSEKEEPING BMPS

Instructions:

- Describe the key good housekeeping and pollution prevention (P2) BMPs that will be implemented to control pollutants in stormwater.
- Categorize each good housekeeping and pollution prevention (P2) BMP under one of the following seven categories:
 - 3.1 Material Handling and Waste Management
 - 3.2 Establish Proper Building Material Staging Areas
 - 3.3 Designate Washout Areas
 - 3.4 Establish Proper Equipment/Vehicle Fueling and Maintenance Practices
 - 3.5 Allowable Non-Stormwater Discharges and Control Equipment/Vehicle Washing
 - 3.6 Spill Prevention and Control Plan
 - 3.7 Any Additional BMPs
- For more information, see *SWPPP Guide*, Chapter 5.
- Consult your state's design manual or resources in Appendix D of the *SWPPP Guide*.
- For more information or ideas on BMPs, see EPA's National Menu of BMPs <u>http://www.epa.gov/npdes/stormwater/menuofbmps</u>

3.1 Material Handling and Waste Management

Instructions:

- Describe measures (e.g., trash disposal, sanitary wastes, recycling, and proper material handling) to prevent the discharge of solid materials to receiving waters, except as authorized by a permit issued under section 404 of the CWA (For more information, see *SWPPP Guide*, Chapter 5, P2 Principle 1.)
- Also, see EPA's General Construction Site Waste Management BMP Fact Sheet at www.epa.gov/npdes/stormwater/menuofbmps/construction/cons_wasteman

BMP Description: All waste material will be collected and disposed of offsite	
Installation Schedule:	Trash bags will be onsite for collection of small construction waste. All other waste will be disposed of at the proper facilities.
Maintenance and Inspection:	Inspecting and maintaining site will be an ongoing process
Responsible Staff:	Mark McCullough

BMP Description: Sanitary facilities will be provided at the site throughout the project.	
Installation Schedule:	Portable toilet will be brought to site once crew has mobilized.
Maintenance and Inspection:	Sanitary waste will be collected weekly throughout the project by a sanitary services provider
Responsible Staff:	Mark McCullough

3.2 Establish Proper Building Material Staging Areas

Instructions:

Describe construction materials expected to be stored on-site and procedures for storage of materials to minimize exposure of the materials to stormwater. (For more information, see SWPPP Guide, Chapter 5, P2 Principle 2.)

N/A

3.3 **Designate Washout Areas**

Instructions:

- Describe location(s) and controls to eliminate the potential for discharges from washout areas for concrete mixers, paint, stucco, and so on. (For more information, see SWPPP Guide, Chapter 5, P2 Principle 3.)
- Also, see EPA's Concrete Washout BMP Fact Sheet at www.epa.gov/npdes/stormwater/menuofbmps/construction/concrete wash

N/A

Establish Proper Equipment/Vehicle Fueling and 3.4 Maintenance Practices

Instructions:

- Describe equipment/vehicle fueling and maintenance practices that will be implemented to control pollutants to stormwater (e.g., secondary containment, drip pans, and spill kits) (For more information, see SWPPP Guide, Chapter 5, P2 Principle 4.)
- Also, see EPA's Vehicle Maintenance and Washing Areas BMP Fact Sheet at www.epa.gov/npdes/stormwater/menuofbmps/construction/vehicile maintain

BMP Description: Several types of vehicles and equipment will be used on-site throughout the project, including excavators, dump trucks and small equipment vehicles. All major equipment/vehicle maintenance will be performed off-site. Only minor equipment maintenance will occur on-site.

Installation Schedule:	BMPs implemented for equipment and vehicle maintenance and fueling activities will begin at the start of the project.
Maintenance and Inspection:	Inspect equipment/vehicle storage areas and fuel tank weekly and after storm events. Vehicles and equipment will be inspected on each day of use. Leaks will be repaired immediately, or the problem vehicle(s) or equipment will be removed from the project site.
Responsible Staff:	Mark McCullough

3.5 Control Equipment/Vehicle Washing

Instructions:

- Describe equipment/vehicle washing practices that will be implemented to control pollutants to stormwater. (For more information, see *SWPPP Guide*, Chapter 5, P2 Principle 5.)
- Also, see EPA's Vehicle Maintenance and Washing Areas BMP Fact Sheet at www.epa.gov/npdes/stormwater/menuofbmps/construction/vehicile_maintain

N/A

3.6 Spill Prevention and Control Plan

Instructions:

- Describe the spill prevention and control plan to include ways to reduce the chance of spills, stop the source of spills, contain and clean up spills, dispose of materials contaminated by spills, and train personnel responsible for spill prevention and control. (For more information, see *SWPPP Guide*, Chapter 5, P2 Principle 6.)
- Also, see EPA's Spill Prevention and Control Plan BMP Fact sheet at www.epa.gov/npdes/stormwater/menuofbmps/construction/spill_control

BMP Description:

- Vehicle Maintenance: Vehicles and equipment will be maintained off-site. All vehicles and equipment including subcontractor vehicles will be checked for leaking oil and fluids. Vehicles leaking fluids will not be allowed on-site.
- Spills: All spills will be cleaned up immediately upon discovery. Spent absorbent materials and rags will be hauled off-site immediately after the spill is cleaned up for disposal at Middletown Landfill. Spills large enough to discharge to surface water will be reported to the National Response Center at 1-800-424-8802.

Installation Schedule:	The spill prevention and control procedures will be
	implemented once construction begins on-site.
Maintenance and	All personnel will be instructed, during tailgate training
Inspection:	sessions, regarding the correct procedures for spill prevention
	and control. The individual who manages day-to-day site
	operations will be responsible for seeing that these procedures

	are followed.
Responsible Staff:	Mark McCullough

3.7 Any Additional BMPs

Instructions:

 Describe any additional BMPs that do not fit into the above categories. Indicate the problem they are intended to address.

N/A

3.8 Allowable Non-Stormwater Discharge Management

Instructions:

- Identify all allowable sources of non-stormwater discharges that are not identified. The allowable nonstormwater discharges identified might include the following (see your permit for an exact list):
 - ✓ Waters used to wash vehicles where detergents are not used
 - ✓ Water used to control dust
 - ✓ Potable water including uncontaminated water line flushings
 - ✓ Routine external building wash down that does not use detergents
 - Pavement wash waters where spills or leaks of toxic or hazardous materials have not occurred (unless all spilled material has been removed) and where detergents are not used
 - ✓ Uncontaminated air conditioning or compressor condensate
 - ✓ Uncontaminated ground water or spring water
 - ✓ Foundation or footing drains where flows are not contaminated with process materials such as solvents
 - ✓ Uncontaminated excavation dewatering
 - ✓ Landscape irrigation
- Identify measures used to eliminate or reduce these discharges and the BMPs used to prevent them from becoming contaminated.
- For more information, see *SWPPP Guide*, Chapter 3.A.

List allowable non-stormwater discharges and the measures used to eliminate or reduce them and to prevent them from becoming contaminated:

BMP Description: Dust control will be implemented as needed once site grading has begun and during windy conditions (forecasted or actual wind conditions of 20 mph or greater) while site grading is occurring.

Installation Schedule:	When necessary
Responsible Staff:	Mark McCullough

SECTION 4: SELECTING POST-CONSTRUCTION BMPs

Instructions:

- Describe all post-construction stormwater management measures that will be installed during the construction process to control pollutants in stormwater discharges after construction operations have been completed. Examples of post-construction BMPs include the following:
 - ✓ Biofilters
 - ✓ Detention/retention devices
 - ✓ Earth dikes, drainage swales, and lined ditches
 - ✓ Infiltration basins
 - ✓ Porous pavement
 - ✓ Other proprietary permanent structural BMPs
 - ✓ Outlet protection/velocity dissipation devices
 - ✓ Slope protection
 - ✓ Vegetated strips and/or swales
- Identify any applicable federal, state, local, or tribal requirements for design or installation.
- Describe how low-impact designs or smart growth considerations have been incorporated into the design.
- For any structural BMPs, you should have design specifications and details and refer to them. Attach them as appendices to the SWPPP or within the text of the SWPPP.
- For more information on this topic, see your state's stormwater manual.
- You might also want to consult one of the references listed in Appendix D of the SWPPP Guide.
- Visit the post-construction section of EPA's Menu of BMPs at: <u>www.epa.gov/npes/menuofbmps</u>

N/A

SECTION 5: INSPECTIONS

5.1 Inspections

Instructions:

- Identify the individual(s) responsible for conducting inspections and describe their qualifications.
 Reference or attach the inspection form that will be used.
- Describe the frequency that inspections will occur at your site including any correlations to storm frequency and intensity.
- Note that inspection details for particular BMPs should be included in Sections 2 and 3.
- You should also document the repairs and maintenance that you undertake as a result of your inspections. These actions can be documented in the corrective action log described in Part 5.3 below.
- For more on this topic, see *SWPPP Guide*, Chapters 6 and 8.
- Also, see suggested inspection form in Appendix B of the SWPPP Guide.
- 1. Inspection Personnel: Identify the person(s) who will be responsible for conducting inspections and describe their qualifications:

Jim Ausburn, City of Kent

2. Inspection Schedule and Procedures:

Describe the inspection schedules and procedures you have developed for your site (include frequency of inspections for each BMP or group of BMPs, indicate when you will inspect, e.g., before/during/and after rain events, spot inspections):

Inspections will be scheduled as per the NPDES general construction permit.

Describe the general procedures for correcting problems when they are identified. Include responsible staff and time frames for making corrections:

Steps for correcting problems will follow procedures agreed to in the contract.

See Appendix B for inspection forms.

SECTION 6: RECORDKEEPING AND TRAINING

6.1 Recordkeeping

Instructions:

- The following is a list of records you should keep at your project site available for inspectors to review:
- Dates of grading, construction activity, and stabilization (which is covered in Sections 2 and 3)
- A copy of the construction general permit (attach)
- The signed and certified NOI form or permit application form (attach)
- A copy of the letter from EPA or/the state notifying you of their receipt of your complete NOI/application (attach)
- Inspection reports (attach)
- Records relating to endangered species and historic preservation (attach)
- Check your permit for additional details
- For more on this subject, see *SWPPP Guide*, Chapter 6.C.

Records will be retained for a minimum period of at least 3 years after the permit is terminated.

Date(s) when major grading activities occur:

All construction activities are recorded daily on the companies Daily Field Report form.

See Appendix C for recordkeeping forms.

6.2 Training

Instructions:

- Training your staff and subcontractors is an effective BMP. As with the other steps you take to prevent stormwater problems at your site, you should document the training that you conduct for your staff, for those with specific stormwater responsibilities (e.g. installing, inspecting, and maintaining BMPs), and for subcontractors.
- Include dates, number of attendees, subjects covered, and length of training.
- For more on this subject, see *SWPPP Guide*, Chapter 8.

Individual(s) Responsible for Training: Jennifer Brown

SECTION 7: FINAL STABILIZATION

EPA SWPPP Template, Version 1.1, September 17, 2007

Instructions:

- Describe procedures for final stabilization. If you complete major construction activities on part of your site, you can document your final stabilization efforts for that portion of the site. Many permits will allow you to then discontinue inspection activities in these areas (be sure to check your permit for exact requirements). You can amend or add to this section as areas of your project are finally stabilized.
- Update your site plans to indicate areas that have achieved final stabilization.
- Note that dates for areas that have achieved final stabilization should be included in Section 6, Part 6.1 of this SWPPP.
- For more on this topic, see *SWPPP Guide*, Chapter 9.

BMP Description: Hydroseeding & Landscaping

	Once excavation and final grading activities have been completed site will be restored to conditions that meet or exceed the conditions of the site prior to the project's work activities.
Responsible Staff:	Mark McCullough

SECTION 8: CERTIFICATION AND NOTIFICATION

Instructions:

 The SWPPP should be signed and certified by the construction operator(s). Attach a copy of the NOI and permit authorization letter received from EPA or the state in Appendix D.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Name:	Title:
Signature:	Date:

Repeat as needed for multiple construction operators at the site

SWPPP APPENDICES

Attach the following documentation to the SWPPP:

Appendix A – Plans Appendix B – Inspection Forms Appendix C – Recordkeeping Appendix D – Permits

APPENDIX C PERMITS

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

STATE OF WASHINGTON

DEPARTMENT OF ECOLOGY

PO Box 47600 • Olympia, WA 98504-7600 • 360-407-6000 711 for Washington Relay Service • Persons with a speech disability can call 877-833-6341

July 21, 2010

Gilbert Leon Earle M. Jorgensen 10650 Alameda Street Lynnwood, CA 90262-1754

Dear Mr. Leon:

RE: Construction Stormwater General Permit Permit Number: WAR-012518

Kent Slag Pile	
South 218 th St and 8	8 th Ave South
Kent, WA	King County
1.7	
Garrison Creek	
	South 218 th St and 8 Kent, WA 1.7

The Washington Department of Ecology (Ecology) has reviewed your application for coverage under the Construction Stormwater General Permit, and has decided to issue permit coverage effective July 21, 2010. Please retain this permit coverage letter with your permit (enclosed), stormwater pollution prevention plan (SWPPP), and site log book. It is the official record of permit coverage for your site.

This letter explains some of the new requirements in the new general permit for construction sites that disturb from one to less than five acres. Please take time to read the new permit, and contact Ecology if you have any questions.

Inspections (Special Condition S4, pages 10-12 for additional information)

- You must conduct weekly visual inspections of your site to ensure your best management practices (BMPs) are functioning properly.
- A Certified Erosion and Sediment Control Lead (CESCL) must inspect your site. Ecology maintains a list of training classes to obtain CESCL certification on its website: http://www.ecy.wa.gov/programs/wq/stormwater/cescl.htm.
- You must keep the inspection results in your site log book and make them available for Ecology or the local jurisdiction to review. You may use the enclosed inspection report template. You must keep these results in your site log book.

Sampling and Analysis (Special Condition S4, pages 10-12 for additional information)

• Operators of sites from one to less than five acres must sample stormwater discharges for turbidity using a turbidity meter or transparency tube, unless the discharge goes to an impaired waterbody

Mr. Leon July 21, 2010 Page 2

- Permittees must sample stormwater discharges for pH if the project involves any amount of engineered soils (cement treated base, cement kiln dust, fly ash, etc.) or over 1,000 cubic yards of poured or recycled concrete.
- Permittees must sample stormwater discharges for pH if the project involves any amount of engineered soils (cement treated base, cement kiln dust, fly ash, etc.) or more than 1,000 cubic yards of poured and/or recycled concrete.
- The permit sets benchmark (target) levels for turbidity, transparency, and pH. When discharge samples exceed a benchmark, you must follow additional permit requirements.
- Submit all sampling data to Ecology each month on the enclosed discharge monitoring report (DMR). The DMR includes instructions on how to perform sampling and reporting. You must submit a DMR to Ecology even if you do not collect any samples.

High Turbidity Phone Reporting (Special Condition S5.A, page 15 for more information)

• If your site discharges stormwater with a turbidity result greater than or equal to 250 NTUs, you must notify Ecology by phone within 24 hours. Call the Ecology regional office and state, "I'm reporting a high turbidity construction stormwater discharge of (your sample result) NTUs." Include all of the following information in your phone message:

1. Your Name / Phone Number	4. Date / Time of Call
2. Permit Number	5. Date / Time of Sample
3. City / County of Project	6. Project Name

Ecology Regional Office & Phone Number

Northwest Region (Kitsap, Snohomish, Island, King, San Juan, Skagit, Whatcom): (425) 649-7000

Discharge Monitoring Reports (Special Condition S5.B, page for additional information)

- Permittees must submit DMRs to Ecology each month, even if there is no discharge to report.
- You must ensure that the DMRs arrive at Ecology by the 15th of each month. Please plan accordingly to meet this requirement.

Discharges to Impaired Waterbodies (Special Condition S9, pages 18-21 for additional information)

• If your site discharges into a water body that is on the impaired waterbodies list (i.e., the "303(d)" list) for turbidity, fine sediment, high pH, or phosphorus, you must sample for more parameters. Ecology will notify you if any additional sampling requirements apply.

2

Mr. Leon July 21, 2010 Page 3

Stormwater Pollution Prevention Plan (Special Condition S9, pages 21-29 for additional information)

- Each site must have a complete Stormwater Pollution Prevention Plan (SWPPP) on the site prior to the start of construction. This plan describes the erosion and sediment control measures used on the site to protect water quality.
- Remember to keep your SWPPP updated. The permit contains specific timelines for SWPPP updates based on inspection results by the CECSL or Ecology inspector.

Permit Transfer

- When you sell or transfer operational control of all, or a portion, of your site to one or more new operator(s), you must also transfer permit coverage.
- To transfer permit coverage, submit a Transfer of Coverage form to Ecology. You can download the form off our website listed at the end of this letter.

Notice of Termination (Special Condition S10, page 29 for additional information)

- You may request termination (cancel) when the site has undergone final stabilization with permanent vegetation or equivalent measures that prevent erosion or when all unstabilized portions of the site have been sold.
- To request termination of permit coverage, submit a Notice of Termination (NOT) to Ecology. If you do not submit an NOT, you will remain responsible for permit compliance and permit fees.

Appeal of Permit Coverage

You may appeal the terms and conditions of a general permit, as they apply to an individual discharger, within 30 days of the effective date of coverage of that discharger (see Chapter 43.21B RCW). This appeal is limited to the general permit's applicability or non-applicability to a specific discharger.

The Revised Code of Washington (RCW) 43.21.B310, contains the procedures and requirements for the appeal process. Appeals should be directed to:

Pollution Control Hearings Board PO Box 40903 Olympia, Washington 98504-0903 Department of Ecology Appeals Coordinator P.O. Box 47608 Olympia, Washington 98504-7608 Mr. Leon July 21, 2010 Page 4

Additional Information

Ecology is committed to providing assistance to you. Please review our web page at <u>http://www.ecy.wa.gov/programs/wq/stormwater/construction/</u>. Now available — a stormwater sampling video that demonstrates appropriate sampling methods!

Questions

For questions about transfers, terminations, and other administrative issues, please contact Clay Keown at 360-407-6048 or Ckeo461@ecy.wa.gov.

Ecology Regional Assistance

If you have questions regarding stormwater management issues at your construction site, please contact Megan Darrow at 425-649-4485 of Ecology's Northwest Regional Office.

If you have questions regarding this letter, please call Clay Keown at 360-407-6048.

Sincerely,

Sell M-

Bill Moore, P.E., Manager Program Development Services Section Water Quality Program

Enclosure: Construction Stormwater General Permit

cc: Ecology Permit Fee Unit, HQ Stormwater File, HQ

PERMIT NUMBER: WAR-012518 CONSTRUCTION STORMWATER GENERAL PERMIT DISCHARGE MONITORING REPORT (DMR) DO NOT ALTER THIS FORM

PROJECT INFORMATION

Site Name: Kent Slag Pile Disturbed Acreage: 1.7 Location: South 218th St and 88th Ave South County: King

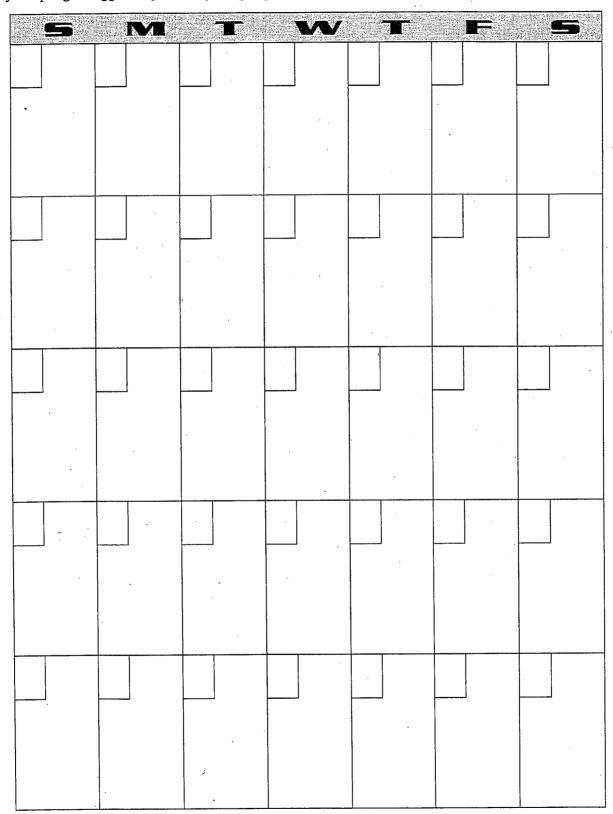
MONITORING DOCUMENTATION

Unique Discharge/Monitoring Point:

Company: Earle M. Jorgensen Permittee/Operator: Gilbert Leon Mailing Address: 10650 Alameda Street Lynnwood, CA 90262-1754

Monitoring Period:

Use same description each month Use one DMR for each monitoring point Month/Year


Please send your Discharge Monitoring Report (DMR) to Ecology every month, <u>even if there is no discharge</u>. Also, read the attached instructions before completing the DMR. If a section does not apply, please annotate "N/A", leaving no blanks.

Weekly Monitoring	Sampling Date Month/Day/Year	Turbidity NTU	Transparency Centimeters Sites less than 5 acres only	pH. If applicable	Treatment BMPs Used Prior to Discharge from Site (List <u>all</u> that apply) P = Sediment Pond/Trap/Tank/Vault C = Chemical Treatment/Sand Filter S = Silt Fence W = Straw Wattles/Coir Wattles D = Check Dam/Triangular Silt Dike O = Other	No Discharge This Week Check if applicable	
Example	10/06/06	32	N/A	NZA	R, S, W		
Week 1					-		
Week 2							
Week 3							
Week 4	•						
Week 5							
	 No soil disturbing construction activities have taken place on the site yet. Construction is expected to begin on						
COMMENTS / EXPLANATIONS (ATTACH EXTRA SHEET IF NECESSARY):							
NAME / PHONE NUMBER OF ON-SITE CONTACT PERSON WHO CAN ANSWER QUESTIONS RELATED TO THIS REPORT:							
I CERTIFY UNDER PENALTY OF LAW THAT I HAVE PERSONALLY EXAMINED AND AM FAMILIAR WITH THE INFORMATION SUBMITTED HEREIN AND BASED ON MY JUDGEMENT OR MY INQUIRY OF THOSE INDIVIDUALS IMMEDIATELY RESPONSIBLE FOR OBTAINING THE INFORMATION; I BELIEVE THE SUBMITTED INFORMATION IS TRUE, ACCURATE, AND COMPLETE. I AM AWARE THAT THERE ARE SIGNIFICANT PENALTIES FOR SUBMITTING FALSE INFORMATION INCLUDING THE POSSIBILITY OF FINE AND IMPRISONMENT. SEE 18 USC § 1001 AND 33 USC § 1319. (PENALTIES UNDER THESE STATUES MAY INCLUDE FINES UP TO \$10,000.00 AND/ OR MAXIMUM IMPRISONMENT OF BETWEEN SIX MONTHS AND FIVE YEARS.)							
NAME/TITLE O	NAME/TITLE OF PERSON WITH SIGNATORTY AUTHORITY (SEE INSTRUCTIONS) DATE: MONTH DAY YEAR						
SIGNATURE OF	PERSON WITH SIC	GNATORY AUTHO	RITY	РНС	DNE NUMBER OF PERSON WITH SIGNATORY AUT	HORITY	

MAIL YOUR DMR (WITHOUT INSTRUCTIONS PAGE) TO: DEPARTMENT OF ECOLOGY, WATER QUALITY PROGRAM – CONSTRUCTION STORMWATER, P.O. BOX 47696, OLYMPIA, WA 98504-7696 3

DAILY TURBIDITY/TRANSPARENCY SAMPLING LOG

Note: Daily sampling is triggered by turbidity sampling results over 250 NTU's, or transparency results less than 6 cm.

MAIL YOUR DMR (WITHOUT INSTRUCTIONS PAGE) TO: DEPARTMENT OF ECOLOGY, WATER QUALITY PROGRAM – CONSTRUCTION STORMWATER, P.O. BOX 47696, OLYMPIA, WA 98504-7696

INSTRUCTIONS AND FREQUENTLY ASKED QUESTIONS FOR COMPLETING THE DMR FORM

PROJECT INFORMATION

1. <u>How can I update contact information and/or mailing addresses?</u> You may update any project information by submitting a Notice of Intent (NOI) Application Form and checking the box in the upper right hand corner next to "Change/Update Permit Information". Complete only the boxes that are being updated and submit the signed form to the same address as the DMR.

MONITORING DOCUMENTATION

1. <u>How often do I sample?</u> Once you disturb the soil, you must conduct sampling at least once every calendar week when stormwater (or authorized non-stormwater) flows off of the site.

2. <u>Where do I sample?</u> You must take samples from all discharge points where stormwater (or authorized non-stormwater such as dewatering water) flows off-site.

3. When stormwater leaves my site from more than one location, what do I need to do?

- a. Use a separate DMR sheet for each location where stormwater is discharged from the site.
- b. Enter a unique name or description of the monitoring location (for example: Pond 1; or West Ditch). You must use the same monitoring location name each month.
- c. Identify all sampling point(s) on the map in your Storm Water Pollution Prevention Plan (SWPPP). You must also clearly mark each sample point in the field with a flag, tape, stake or other visible marker.

4. <u>What if I don't have a discharge off site for an entire week?</u> If there was no discharge during a calendar week, you need not take a sample. Mark an X in the "No Discharge" column for that week on the DMR form. If there was no discharge during a calendar month, mark the "No Discharge" box at the bottom of the table.

5. <u>If it rains at 3 AM on my site, do I have to get up and sample at that hour?</u> You need not sample outside of normal working hours or during unsafe conditions. If you are unable to sample during a monitoring period, you must include a brief explanation in the "Comment/Explanation" box of the DMR.

6. <u>What kind of stormwater turbidity/transparency sampling do I have to do?</u> If construction activity disturbs 5 acres or more, the permit requires you to conduct turbidity sampling, using a turbidity meter. If construction activity disturbs greater than or equal to 1 acre, but less than 5 acres, you may use either a transparency tube or a turbidity meter. You must enter turbidity or transparency values collected each week on the DMR.

7. <u>What if my turbidity result is greater than 250 NTU or my transparency is less than 6 centimeters (cm)?</u> If any discharge is greater than 250 NTU or less than 6 centimeters (cm) transparency, you must begin daily sampling. You must also record the values in the attached sampling log (on page 2). Write the date, sampling result (value), and unit (NTU or cm). Continue to sample daily until:

- a. Turbidity is 25 NTU (or lower); or
- b. Transparency is 31 cm (or greater); or
- c. The CESCL has determined compliance with the water quality standard for turbidity:
 - 1. No more than 5 NTU over background turbidity, if background is less than 50 NTU, or
 - 2. No more than 10% over background turbidity, if background is 50 NTU or greater; or
- d. The discharge stops or is eliminated.

8. <u>When do I have to sample for pH?</u> If construction activity will result in the disturbance of 1 acre or more, **and** involves *significant* concrete work or the use of engineered soils, **and** stormwater from the affected area drains to surface waters of the state or to a storm sewer system, the Permittee must conduct *pH* monitoring:

a. Definitions:

- o Significant Concrete Work means greater than 1,000 cubic yards poured or recycled concrete.
 - For poured concrete, the 1,000 cubic yard threshold is met if a single or multiple concrete pours on the site results in greater than 1,000 cubic yards of concrete curing at the same time. Typical curing time is less than 30 days. If individual concrete pours smaller than 1,000 cubic yards occur more than 30 days apart, pH sampling is not required unless required by Ecology order.
 - For recycled concrete, the 1,000 cubic yard threshold is met if greater than 1,000 cubic yards of concrete is recycled or crushed on-site.
- Engineered Soils means the use of soil amendments including, but not limited to, Portland cement treated base (CTB), cement kiln dust (CKD), or fly ash to achieve certain desirable soil characteristics.

- b. For *significant concrete work*, pH monitoring begins when the concrete is first exposed to precipitation and continues weekly until stormwater pH is 8.5 or less prior to discharge.
- c. For sites with engineered soils, the pH monitoring period commences when the soil amendments are first exposed to precipitation and continues until the area of engineered soils is fully stabilized.
- d. During the pH monitoring period, the Permittee must obtain a representative sample of stormwater and conduct pH analysis at least once per week.
- e. The Permittee must monitor pH in the sediment trap/pond(s) or other locations prior to discharge from the site.
- f. The benchmark value for pH is 8.5 standard units. Any time sampling indicates that pH is 8.5 or greater, the Permittee must: 1. Prevent the high pH water (8.5 or above) from entering the storm sewer systems or surface waters; and
 - 2. If necessary, adjust or neutralize the high pH water using an appropriate treatment BMP such as carbon dioxide (CO₂) sparging or dry ice. The permittee must obtain written approval from Ecology prior to using any form of chemical treatment other than CO₂ sparging or dry ice. Information on CO₂ sparging / dry ice BMP can be found on Ecology's web site at: www.ecy.wa.gov/programs/wq/stormwater.
- g. The Permittee shall perform pH analysis on-site with a calibrated pH meter, pH test kit, or wide range pH indicator paper. The Permittee must record pH monitoring results in the site log book.

9. <u>What do the treatment BMP letter codes on the form mean?</u> For any discharge, report the type of treatment Best Management Practice(s) (BMPs) applied to the stormwater (or non-stormwater) prior to discharge from the site. Use the letter code (e.g., P for Pond) that corresponds to the type of BMP used for the specific discharge. BMP codes are listed on the DMR. If multiple treatment BMPs are used, list the letter code for each type of BMP.

9. <u>What if I haven't started clearing or grading my site?</u> If you have not began initial soil disturbing activity yet, mark an X in the applicable box. Indicate estimated construction start date, and continue to submit the DMR each month.

10. Who should sign the report?

A. This report must be signed as follows:

- 1. Corporations, by a responsible corporate officer of at least the level of vice president of a corporation or a duly authorized representative;
- 2. Partnerships, by a general partner of a partnership or a duly authorized representative;
- 3. Sole proprietorships, by the proprietor or a duly authorized representative; or

4. Municipal, state, or other public facility, by either a principal executive officer, ranking elected official or a duly authorized representative.

- B. A person is a duly authorized representative only if:
 - 1. The authorization is made in writing by a person described above and submitted to the Ecology.
 - 2. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or having overall responsibility for environmental matters.
- C. Changes to authorization:

If an authorization is no longer accurate, submit a new authorization to Ecology prior to (or together with) any reports, information, or applications to be signed by an authorized representative.

ADDITIONAL SAMPLING

1. <u>What if I take additional samples or have more information to submit than will fit on the provided forms?</u> You can submit any additional information on separate sheets of paper. You may also attach lab sheets, if you use a lab for analysis. Please sign, date, and document the site information on those sheets so that they can be included in your file.

ADDITIONAL INFORMATION

1. Mail the DMR to: Department of Ecology, Water Quality Program- Construction Stormwater, P.O. Box 47696, Olympia, WA 98504-7696

2. <u>Who can I call for assistance?</u> If you have questions or concerns, please contact Ecology's Water Quality Reception Desk at (360) 407-6600. Please have your site name, location, and permit number available when calling.

For more information, additional forms and/or additional copies of the permit; please visit our web site: <u>http://www.ecy.wa.gov/programs/wq/stormwater/construction</u>

Instructions for correctly filling out your Construction Stormwater General Permit Discharge Monitoring Report (DMR)

This is an example of the monitoring portion of the DMR that is filled out correctly. The information is typical of data provided by most DMR submitters.

Weekly Monitoring One sample per week unless over 250 NTUs, or under 6cm	Date Sampled Month/Day/Year	Turbidity NTU	Transparency Centimeters Sites less than 5 acres only	pH If applicable	BMPs - List all that apply P = Sediment Pond/Trap/Tank/Vault C = Chemical Treatment/Sand Filter S = Silt Fence W = Straw Wattles/Coir Wattles D = Check Dam/Triangular Silt Dike O = Other	No Discharge This Week Checkif applicable
Week 1	11/01/07	. 13			P, S, W, D	
Week 2	11/08/07					X
Week 3	11/15/07	5.3			P, S, W, D	
Week 4	11/21/07	39			P, S, W, D	
Week 5	11/29/07	6.5	·		P, S, W, D	

Information you must include in your DMR:

- 1) You are required to sample only once a week when an offsite discharge occurs see Week 1, 3, 4 and 5. <u>This sample</u> must be representative of the site discharge. Add installed BMP's for that week.
- 2) If no offsite discharge occurs for a particular week, just place a mark at far right column see example for Week 2.
- 3) If your project disturbs less than 5 acres, you may sample with a transparency tube place this result in the column titled Transparency.
- 4) If your project has more than 1,000 cubic yards of concrete curing at the same time, or has engineered soils, you must also sample for pH in addition to turbidity or transparency.
- 5) If your turbidity is greater than 250 NTUs you must sample every day until the reading falls below 25 NTUs. Use the daily turbidity/transparency sampling log on the back of the DMR form.

When to send DMRs /When to stop submitting DMRs:

- 1) Photocopy the blank DMR (that was included in your permit package) for future monthly submittals (projects can last for years).
- 2) You must fill out and submit a DMR each and every month regardless if a discharge occurred. Submit your DMR by the 10th of the following month.
- 3) You must submit a DMR for the first month of permit coverage even if you haven't broken ground. This is a permit requirement.
- 4) You are required to submit DMRs until your permit coverage is officially canceled or terminated. If you do not cancel your permit, you are still required to submit DMRs even if the project is complete and permanently stabilized. Make sure you submit a Notice of Termination (NOT) form and receive an official termination notice from Ecology. After you receive the notice cancelling your coverage, you may stop submitting DMRs. You may find a copy of a blank NOT form at: http://www.ecy.wa.gov/pubs/ecy02087.pdf

Construction Stormwater SITE INSPECTION CHECKLIST Inspector Date

		_		-		· · ·
Site BMPs		Overa ondit			leed pair?	Comments/Observation
Clearing Limits						•
 Buffer Zones around sensitive areas 	G	F	Ρ	Y	· N	
•	G	F	Ρ	Y	N	
•	G	F	Р	Y	N	
Construction Access/Roads						
 Stabilized site entrance 	G	F	Ρ	Y.	N	
Stabilized roads/parking area	G	F	Ρ	Y	N	-
•	G	F	P	Y	N	
Control Flow Rates						
•Swale	G	F	Ρ.	Υ	• N	
•Dike	G	F	Р	Y	N	
Sediment pond	G	F	Р	Y	N	
Sediment trap	G	F	Ρ	Y	Ν	
•	Ġ	F	Ρ.	Y	N	
•	G	F	Р	Y	N	
Install Sediment Controls	·					
 Sediment pond/trap 	G	F	P	Y	N	
●Silt fence	G	F	Ρ	Y	N	
Straw bale barriers	G	F	Ρ	Y	Ν	
\bullet . The second secon	G	F	Ρ.	Y	N	
•	G	. F	P	Υ·	-N	
•	G	F	Ρ	Y .	. N	· · · · · · · · · · · · · · · · · · ·
Preserve Vegetation/Stabilize Soils	1					
Nets and blankets	G	F	P	Y	N	
Mulch	G,	F	·P	Y.	N	
• Seeding	G	F	Р	Y.	N	
•	G	F	P	Y	N	
•	G	F	·P	Y	N	
Protect Slopes						
•Terrace	G	F	Р	Y	Ν	
•Pipe slope drains	G	F	Р	Y	. N	1
•	G	F	Р	Y	N.	
•	G	.F	Р	Y	Ν	· ·
Protect Drain Inlets	1		•	•		
●Inserts	G	F	Р	Y	N	
•	G	F	P	Y	Ň	
•	G	F	Р	Y	N	
Stabilize Channels and Outlets				1.		
•Conveyance channels	G	E	P	Y	• N	
•Energy dissipators	G	F	P	Y	N	
	G	F	P	Y	·N	
Control Pollutants	<u> </u>	. •		+		
•Chemical Storage Area covered	0	E	Ρ	Y	N	
	G	F F	P	Y	N	
		1	Γ	11	11	1
•Concrete handling			D۰	1V		
	G	F	P ·	Y	N	

G=Good F=Fair P=Poor Y=Yes N=No

Construction Stormwater SITE INSPECTION CHECKLIST

· ·				-	
· · ·	T * / T	. Transator	•	Date	Time
Draigat	Permit No.	- Inspector		Dale	THIC
Project	1 OIIIICI (O.	moptore			

Will existing BMPs need to be modified or removed, or other BMPs installed? YES NO *IF YES*, list the action items to be completed on the following table:

· .	Actions to be Completed	Date Completed/ Initials
1.		
2.		
3.		
4.		
5.		
6.		

Describe current weather conditions

Approximate amount of precipitation since last inspection: ______ inches and precipitation in the past 24 hours*: ______inches *based on an on-site rain gauge or local weather data.

Describe discharging stormwater, if present. Note the presence of suspended sediment, "cloudiness", discoloration, or oil sheen.

Was water quality sampling part of this inspection? YES NO

If yes, record results below (attach separate sheet, if necessary):

Turbidity tube.	meter, laboratory	• .	•	·.	NTU (cm, if tul	be used)
	, kit, meter		,		pH standard u	nits
		•		· · · ·	· · · · · · ·	<u> </u>
	·· .					

Is the site in compliance with the SWPPP and the permit requirements? YES NO

If no, indicate tasks necessary to bring site into compliance on the "Actions to be Completed" table above, and include dates each job WILL BE COMPLETED.

If no, has the non-compliance been reported to Dept. of Ecology? YES NO

If no, should the SWPPP be modified: YES NO

Sign the following certification:

"I certify that this report is true, accurate, and complete, to the best of my knowledge and belief."

Inspection completed on: ______by: (print+signature)__

Title/Qualification of Inspector:_____

Wastewater Treatment Division Industrial Waste Program Department of Natural Resources and Parks 130 Nickerson Street, Suite 200 Seattle, WA 98109-1658 206-263-3000 Fax 206-263-3001 TTY Relay: 711

September 14, 2010

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Gilbert Leon Earle M. Jorgenson Company 10650 Alameda Street Lynwood, CA 90262

Issuance of Wastewater Discharge Authorization No. 4170-04 to Earle M. Jorgenson Company

Dear Mr. Leon:

The King County Industrial Waste Program has reviewed the request submitted by Heidi Fischer of Farallon Consulting to revise and extend the King County Discharge Authorization issued for the Earle M. Jorgenson Company - Kent Slag Site located at the intersection of South 218th Street and 88th Avenue South, Kent, Washington and has issued the enclosed revised Major Discharge Authorization.

The following revisions were made to this authorization:

- 1. Expiration date was revised from December 31, 2010, to July 31, 2011.
- 2. Maximum daily discharge volume was increased from 15,000 gallons per day (gpd) to 60,000 gpd to accommodate additional construction dewatering expected to be generated during the slag extraction and site remediation phase of the project.
- 3. A new requirement was added to self-monitor for settleable solids (Imhoff Cone) during the construction phase of the project.

The enclosed Discharge Authorization No. 4170-04 supersedes and cancels Discharge Authorization 4170-03 effective September 14, 2010. Because this is the third revision made to this Discharge Authorization you will be assessed a fee for issuance of this revised authorization. The fee for issuance of a Major Discharge Authorization in 2010 is \$1,100. You will be sent an invoice for this amount.

This authorization permits you to discharge limited amounts of industrial wastewater into King County's sewer system in accordance with the effluent limitations and other requirements and

Gilbert Leon September 14, 2010 Page 2

conditions set forth in the document and the regulations outlined in King County Code 28.84.060. The formal requirements and fees of a full wastewater permit will not be required as long as you maintain good compliance and do not change the nature and volume of your discharge.

If you propose to increase the volume of your discharge or change the type or quantities of substances discharged, you must contact King County at least 60 days before making these changes.

If at any time you have questions about this discharge authorization, or other questions about your discharge, please feel free to call me at 206-263-3012 or e-mail me at arnaud.girard@kingcounty.gov.

Sincerely,

Arnaud Girard Compliance Investigator

Enclosure

cc: Amy Essig Desai, Farallon Consulting Heidi Fischer, Farallon Consulting Shawn Gilbertson, City of Kent Doug Hilderbrand, King County

MAJOR DISCHARGE AUTHORIZATION

King County Industrial Waste Program 130 Nickerson Street, Suite 200 Seattle, Washington 98109-1658

NUMBER 4170-04

for

Earle M. Jorgenson Company - Kent Slag Site

- Plant Address:S. 218th Street and 88th Avenue S.
Kent, Washington
- Mailing Address: 10650 Alameda Street Lynwood, CA 90262

Phone: 323-923-6120

Industry Type: Groundwater Remediation – Other (pH)

SIC Code: NA EPA Id. #: NA

Sample Site No.: A90871 - Sample tap on discharge pipe from tank

Discharge To: South Treatment Plant

*Note: This authorization is valid only for the specific discharges shown below:

Discharge Process: Wastewater generated by contaminated groundwater seepage

Pre-treatment Process: pH neutralization and gravity separation

Maximum Industrial Volume: 60,000 gallons per day

Effective Date:	April 29, 2009
Revision Date:	September 14, 2010
Expiration Date:	July 31, 2011

Permission is hereby granted to discharge industrial wastewater from the above-identified facility into the King County sewer system in accordance with the effluent limitations and monitoring requirements set forth in this authorization.

If the industrial user wishes to continue to discharge after the expiration date, an application must be filed for re-issuance of this discharge authorization at least 180 days prior to the expiration date. For information concerning this King County Discharge Authorization please call Industrial Waste Compliance Investigator Arnaud Girard at 206-263-3012.

24-HOUR EMERGENCY NOTIFICATION

South Treatment Plant: 206-684-2404

Department of Ecology: 425-649-7000

SPECIAL CONDITIONS

- 1. Within five (5) business days from issuance of this discharge approval, the permittee must contact Sean Wells of the City of Kent at 253-856-5570 to establish a sewer account for assessment of sewer charges.
- 2. Permitted wastewater may be treated and discharged manually in batches. Once power is made available at the site, the permittee may choose to automate the wastewater treatment, monitoring, and discharge systems. Before discharge to the sanitary sewer begins from the proposed automated system, the permittee shall submit an updated *Wastewater Treatment, Monitoring, and Discharge Plan* for King County review and approval. The plan will need to provide details on the following aspects of pretreatment:
 - a. Wastewater sources, quantity, and chemical characteristics to be treated by the pretreatment system.
 - b. Provide the maximum discharge rate of the pump(s) that discharge to the influent pipe of the pretreatment system. Provide pump(s) specifications, including maximum discharge rate in units of gallons per minute (gpm). Please note that the maximum discharge rate of the piping-pump system must be compatible with the instantaneous maximum flow rate for the pretreatment system.
 - c. Site diagram indicating the final location of processes generating wastewater, sump pumps, piping, wastewater treatment systems, sample site, and discharge point.
 - d. Sound engineering justification that indicates that the effluent from the proposed facility will meet applicable permit effluent limitations and/or pretreatment standards.
 - e. Basic design data and sizing calculations of the pretreatment system components (for example pumps, tanks, mixers).
 - f. Description of your treatment process including set points of all control features and the amount and kind of chemicals used in the treatment process.
 - g. Description of your pH and discharge volume monitoring and recording equipment.
 - h. A process flow diagram of the treatment process, illustrating treatment units, piping, pumps, mixers, control features, valves, and sampling location.
- 3. This waste discharge permit grants the discharge of limited amounts of contaminated groundwater and/or surface water seepages from the Earle M. Jorgenson Company Kent Slag Site into the sanitary sewer system. Wastes or contaminants from sources other than permitted herein shall not be discharged to the sanitary sewer without prior approval from King County's Industrial Waste Program.
- 4. The discharge shall not cause hydraulic overloading conditions of the sewerage conveyance system. During periods of peak hydraulic loading King County and City of Kent representatives reserve the authority to request that discharge to the sewer be stopped.
- 5. All wastewater shall be collected and treated in accordance with treatment methods approved by King County. Wastewater shall not bypass treatment systems. Modifications to wastewater treatment systems shall not occur without prior approval from King County.
- 6. An accessible sampling spigot must be installed on the discharge pipe from the last treatment unit of the wastewater treatment system. The sample site shall be representative of all industrial waste streams discharged to the sewer from this site. This sample site shall be accessible to King County representatives when discharge to the sewer is occurring.

- 7. A totalizer, non-resettable water meter must be installed on the discharge pipe to the sewer. The meter shall account for all industrial waste streams discharged to the sewer from this site.
- 8. Wastewater monitoring logs containing the results of the required field monitoring specified in the *Self-Monitoring Requirements* section of this Discharge Authorization must be maintained on-site and must be available for review at reasonable times by authorized representatives of King County.
- 9. All persons responsible for monitoring the discharge to the sanitary sewer shall review a copy of this waste discharge authorization.
- 10. A copy of this waste discharge authorization shall be on site at all times for review and reference.

SELF-MONITORING REQUIREMENTS

Parameter	Frequency	Sample Type				
·	Batch Discharge Mode (manual) = Each Batch	Grab / Meter				
pH	Flow-through Mode (automated) = Continuous	In-line pH meter				
	Monitoring and Recording					
Discharge Volume	Daily	In-line Meter				
Settleable Solids (a)	Each batch (during construction phase only)	Grab / Imhoff Cone				
Hydrogen Sulfide	Only if operating criteria are exceeded.	Meter reading				
Settleable Solids	Only if operating criteria are exceeded.	Grab				
Explosivity	Only if operating criteria are exceeded.	Meter reading				

1. The following self-monitoring requirements shall be met for this discharge authorization:

- (a) The settleable solids field test by Imhoff cone must be performed as follows:
 - 1. Fill cone to one-liter mark with well-mixed sample.
 - 2. Allow 45 minutes to settle.
 - 3. Gently stir sides of cone with a rod or by spinning. Settle 15 minutes longer.
 - 4. Record volume of settleable matter in the cone as ml/L.
- 2. If a violation of any discharge limits or operating criteria is detected in monitoring, you shall notify the Industrial Waste Program immediately upon receipt of analytical data.
- 3. A self-monitoring report shall be filed with Industrial Waste no later than the 15th day of the time period following the sample collection (i.e., the 15th day of the following month for monthly, weekly, daily samples). If no discharge takes place during any monitoring period, it shall be noted on the report.
- 4. Self-monitoring reports shall be signed by an authorized representative of the industrial user. The authorized representative of the industrial user is defined as:
 - a. A principal executive officer of at least the level of vice president, if the industrial user is a corporation;
 - b. A general partner or proprietor if the industrial user is a partnership or proprietorship, respectively;
 - c. A director or highest official appointed or designated to oversee the operation and performance of the industry if the industrial user is a government agency; or
 - d. A duly authorized representative of the individual designated above if such representative is responsible for the overall operation of the facilities from which the indirect discharge originates.
- 5. All self-monitoring data submitted to Industrial Waste, which required a laboratory analysis, must have been performed by a laboratory accredited by the Washington State Department of Ecology for each parameter tested, using procedures approved by 40 CFR 136. This does not apply to field measurements performed by the industrial user such as pH, temperature, flow, atmospheric hydrogen sulfide, total dissolved sulfides, total settleable solids by Imhoff cone, or process control information.
- 6. All sampling data collected by the Permittee and analyzed using procedures approved by 40 CFR 136 or approved alternatives shall be submitted to King County whether required as part of this permit or done voluntarily by the Permittee.

GENERAL DISCHARGE LIMITATIONS

Operating Criteria

There shall be no odor of solvent, gasoline, or hydrogen sulfide (rotten egg odor), oil sheen, unusual color, or visible turbidity. The discharge must remain translucent. If any of the discharge limits are exceeded, you must stop discharging and notify the King County Industrial Waste Program at 206-263-3000.

Corrosive Substances

Limits	
Maximum:	pH 12.0 (s.u.)
Instantaneous Minimum:	pH 5.0 (s.u.)
Daily Minimum:	pH 5.5 (s.u.)

The instantaneous minimum pH limit is violated whenever any single grab sample or any instantaneous recording is less than pH 5.0. The daily minimum pH limit is violated whenever any continuous recording of 15 minutes or longer remains below pH 5.5 or when each pH value of four consecutive grab samples collected at 15-minute intervals or longer within a 24-hour period remains below pH 5.5.

Discharges of more than 50 gallons per day of caustic solutions equivalent to more than five percent (5%) NaOH by weight or greater than pH 12.0 are prohibited unless authorized by King County and subject to special conditions to protect worker safety, the collection system, and treatment works.

Fats, Oils, and Grease (FOG)

Discharge of FOG shall not result in significant accumulations that either alone or in combination with other wastes are capable of obstructing flow or interfere with the operation or performance of sewer works or treatment facilities.

Non-polar FOG (oil and grease from petroleum sources): The industrial user shall not discharge wastes that contain in excess of 100 milligrams per liter (mg/L) of non-polar FOG.

Polar FOG (oil and grease from animal and/or vegetable origin): Dischargers of polar FOG shall minimize free-floating polar FOG. Dischargers may not add emulsifying agents exclusively for the purpose of emulsifying free floating FOG.

Flammable or Explosive Materials

No person shall discharge any pollutant, as defined in 40 CFR 403.5, that creates a fire or explosion hazard in any sewer or treatment works, including, but not limited to, waste streams with a closed cup flashpoint of less than 140° Fahrenheit or 60° Centigrade using the test methods specified in 40 CFR 261.21.

At no time shall two successive readings on an explosion hazard meter, at the point of discharge into the system (or at any point in the system), be more than five percent (5%) nor any single reading be more than ten percent (10%) of the Lower Explosive Limit (LEL) of the meter.

Pollutants subject to this prohibition include, but are not limited to, gasoline, kerosene, naphtha, benzene, toluene, xylene, ethers, alcohols, ketones, aldehydes, peroxides, chlorates, perchlorates, bromates, carbides, hydrides, and sulfides, and any other substances that King County, a fire department, the State, or EPA has notified the user are a fire hazard or a hazard to the system.

Heavy Metals/Cyanide

Heavy Metals & Cyanide	Instantaneous Maximum ppm (mg/L)*	Daily Average ppm (mg/L)**
Arsenic	4.0	1.0
Cadmium	0.6	0.5
Chromium	5.0	2.75
Copper	8.0	3.0
Lead	4.0	2.0
Mercury	0.2	0.1
Nickel	5.0	2.5
Silver	3.0	1.0
Zinc	10.0	5.0
Cyanide	3.0	2.0

The industrial user shall not discharge waste, which exceed the following limitations:

*The instantaneous maximum is violated whenever the concentration of any sample, including a grab within a series used to calculate daily average concentrations, exceeds the limitation.

**The daily average limit is violated: a) for a continuous flow system when a composite sample consisting of four or more consecutive samples collected during a 24-hour period over intervals of 15 minutes or greater exceeds the limitation, or b) for a batch system when any sample exceeds the limitation. A composite sample is defined as at least four grab samples of equal volume taken throughout the processing day from a well-mixed final effluent chamber, and analyzed as a single sample.

High Temperature

The industrial user shall not discharge material with a temperature in excess of 65 °C (150 °F).

Hydrogen Sulfide

Atmospheric hydrogen sulfide: 10.0 ppm (As measured at a monitoring manhole designated by King County)

Soluble sulfide limits may be established on a case-by-case basis depending upon volume of discharge and conditions in the receiving sewer, including oxygen content and existing sulfide concentrations.

Organic Compounds

No person shall discharge any organic pollutants that result in the presence of toxic gases, vapors, or fumes within a public or private sewer or treatment works in a quantity that may cause worker health and safety problems.

Organic pollutants subject to this restriction include, but are not limited to: Any organic pollutants compound listed in 40 CFR Section 433.11 (e) (Total Toxic Organics (TTO) definition), Acetone, 2-butanone (MEK), 4-methyl-2-pentanone (MIBK), and xylenes.

Settleable Solids

Settleable solids concentrations: 7.0 ml/L

GENERAL CONDITIONS

- 1. All requirements of King County Code pertaining to the discharge of wastes into the municipal sewer system are hereby made a condition of this Discharge Authorization.
- 2. The industrial discharger shall implement measures to prevent accidental spills or discharges of prohibited substances to the metropolitan sewer system. Such measures include, but are not limited to, secondary containment of chemicals and wastes, elimination of connections to the metropolitan sewer system, and spill response equipment.
- 3. Any facility changes, which will result in a change in the character or volume of the pollutants discharged to the municipal sewer system, must be reported to your Industrial Waste representative. Any facility changes that will cause the violation of the effluent limitations specified herein will not be allowed.
- 4. In the event the industrial user is unable to comply with any of the conditions of this Discharge Authorization because of breakdown of equipment or facilities, an accident caused by human error, negligence, or any other cause, such as an act of nature the company shall:
 - a. Take immediate action to stop, contain, and clean up the unauthorized discharges and correct the problem.
 - b. Immediately notify the King County Industrial Waste Program, 206-263-3000, so steps can be taken to prevent damage to the sewerage system.
 - Submit a written report within 14 days describing the breakdown, the actual quantity and C. quality of resulting waste discharged, corrective action taken, and the steps taken to prevent recurrence.
- 5. Compliance with these requirements does not relieve the industrial user from responsibility to maintain continuous compliance with the conditions of the Discharge Authorization or the resulting liability for failure to comply.
- 6. The industrial user shall, at all reasonable times, allow authorized representatives of King County to enter that portion of the premises where an effluent source or disposal system is located or in which any records are required to be kept under the terms and conditions of this Discharge Authorization.
- 7. Nothing in the Discharge Authorization shall be construed as excusing the industrial user from compliance with any applicable federal, state, or local statutes, ordinances, or regulations including discharge into waters of the state. Any such discharge is subject to regulation and enforcement action by the Department of Ecology.
- 8. This authorization does not authorize discharge after its expiration date. If the industrial user wishes to continue to discharge after the expiration date, an application must be filed for reissuance of this discharge authorization at least 180 days prior to the expiration date. If the industrial user submits its reapplication in the time specified herein, the industrial user shall be deemed to have an effective waste discharge authorization until Industrial Waste issues or denies the new waste discharge authorization. If the industrial user fails to file its reapplication in the time period specified herein, the industrial user will be deemed to be discharging without a discharge authorization.

Investigator:

Arnaud Girard

Date: $\frac{9/14/10}{14/10}$

PLEASE CIRCLE ALL PERMIT VIOLATIONS	Monthly Max pH & Date	Monthly Min pH & Date	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12		10	9	00	7	σ	G	4	ω	2	Sample Dat (circle) Sample Typ C (Composite) G (grab) BC (batch) Min Max Cadmium, Cd		5		Company Name: Earle M. Jorgenson	King County
10,																																	Chromium, Ci Copper, Cu	ľ			nson Company	aste Month
Due Date: M		8																															Lead, Pb Mercury, Hg				y (EMJ) - Kent Slag	ly selt-Mon
Due Date: Monthly report is due by th																																	Nickel, Ni Silver, Ag				Site	itoring Rep
e 15 th	Maximum	Total Monthly Flow (gallons)																-															Zinc, Zn		This to	<u>I</u>	Sample Site No.	
of each month.	Maximum Daily Flow	w (gallons)																												-			Settleable Solids, Vol - by Imhoff Cone (ml/L)	/	rm is available		A90871	Mail or FAX to:
ד.	6																																Daily <u>Flow</u> (GPD) Industrial		at www.kingco		Permit/DA No.:	King County Industrial Waste 130 Nickerson Street, Suite 20 Seattle, WA 98109-1658 Phone 206-263-3000 / FAX 20
	& Date	the pe an inf rec for	ertify pervo rson d be orma quirin eac	orm is di lief, atio ng a sh p	n in atio irect true n, in a lab arar	acc n su ly re e, a cluc oral nete	ibmi espc ccur ling tory er te	tted onsil ate, the ana stec	e wi ble f and pos ilysi I.	th a asec for g d co sibi s we	sys d on athe mpl lity o ere a	erin ete. of fir	i des inq g the l a lyze	aign ⊎iry ∍ inf m a nd i nd i d by	ed to of the orm ware mpr v a V	o as he p atic e th isor Vas	sur bers on, ti at th	e thi on c ne ii iere nt fo	at q or pe ofori are	uali erso mat sig	fied ons v ion nific	per who sub cant	son ma mitte per	nel nag ed i nalti	prop le th s, to es fo	berly e sy the or su ther ogy	y gal yster bes ubm	ther m, o st of itting	and r th my g fa	l eva ose kno lse	wle	edge	<u>Notes</u> (Indicate Batch Discharges)		This form is available at www.kingcounty.gov/industrialwaste.		0A No.: 4170-04	King County Industrial Waste 130 Nickerson Street, Suite 200 Seattle, WA 98109-1658 Phone 206-263-3000 / FAX 206-263-3001

D

Chilles .	
Constanting of the local division of the loc	KENT: WASHINGTON

PERMIT

Check permit status "online" at www.ci.kent.wa.us/permitcenter

	Permit #:	CNST-2101696GF	IVR #:136139							
and the second s	Project:									
	Permit Name:	EMJ SLAG DISPOSAL SITE - GRADE & FI	LL APN: 7757800265							
	Site Address:		KENT, WA 98031							
	Location:	SE CORNER OF S 218 ST AND 90 AVE S								

OWNER ON APPLICATION

Name: EARLE M JORGENSEN COMPANY

Address: 10650 ALAMEDA ST

LYNNWOOD, CA 90262

Phone: 323-923-6120

E-mail: gleon@emjmetals.com

Stories		Bedrooms		Units				
Square Feet			Valuation					
Zone District	SR-4.5							
Code Edition	2003	2003						

Scope of Work

GRADE & FILL

Conditions

EASEMENTS

It is the owner/applicant's responsibility to check for any public or private easements of record for the property on which this permit is issued. It is the owner/applicant's responsibility to verify that the proposed work to be constructed under this permit is not over or upon the Public Right-of-way or any easement of record. SIGHT DISTANCE Maintain all sight distances for access. DEBRIS Applicant shall keep all streets and sidewalk areas free from debris and other materials which may curtail access by emergency apparatus and/or personnel. ADJACENT PROPERTY ACCESS POINTS Applicant shall coordinate with adjacent property owners to ensure their access points are kept open and maintained at all times DAMAGE REPAIR TIME LIMITS Any cuts or damages to the roads shall be fully repaired to the satisfaction of the Public Works Inspector within 30 days from job completion. STREET CLEANING REQUIREMENT (E001) Applicant shall continuously keep the streets and storm drain system free from all debris attributed to the work performed under the respective building, civil construction, street use, utility or grading and/or fill permit. Tracking mud, dirt or any other substance onto the streets is specifically prohibited. WORK SUSPENSION The Director of Public Works or designate may without advance notice and by posting the 1. work site suspend or revoke a permit issued hereunder. NO NEW PERMIT WILL BE ISSUED OR THE SUSPENSION LIFTED UNTIL THE ABOVE "STREET CLEANING 2. QUIREMENT" (E001) IS MET. 3. Where the Director of Public Works or designate determines that no immediate action has been taken to comply with street cleaning requirement condition No. E001 above, and in his

KENT	PER	MIT	Check permit status "online" at www.ci.kent.wa.us/permitcenter
Permit #:	CNST-2101696GF		IVR #:136139
Project:			
Permit Name:	EMJ SLAG DISPOSAL SITE - GR	ADE & FILL	APN: 7757800265
Site Address:		KENT,	WA 98031
Location:	SE CORNER OF S 218 ST AND 9	0 AVE S	
	Cond	itions (Continue	d)

sole judgement determines that in the best interest of the City that immediate action should be taken, the City shall order the work done and cost thereof shall be charged to the permit holder.

The Director of Public Works or designate may in writing suspend or revoke a permit issued hereunder whenever the permit was issued in error or on the basis of incorrect information supplied or in violation of any other ordinance or regulation of the City. CLEANUP

All cleanup and performance shall be verified by and to the satisfaction of City of Kent Inspectors.

TIME LIMIT

This permit is valid for SIX (6) MONTHS from date of issuance. APPLICANT MUST RE-APPLY FOR EXTENSION PRIOR TO EXPIRATION OF FIRST PERMIT. Traffic Control Plans are valid for 30 days unless otherwise specified on the plans.

GRADING INSPECTION

APPROVAL IS CONTINGENT UPON NOTIFYING YOUR INSPECTOR 24 HOURS PRIOR TO STARTING THE ACTUAL WORK AT (253) 856-5500. PERMITEE SHALL ALSO NOTIFY INSPECTOR AT COMPLETION OF PROJECT FOR A FINAL INSPECTION.

DEMNIFICATION AND HOLD HARMLESS

Le Grantee, its successors and assigns, agrees to protect the City of Kent, its officers and employees and to save them harmless from all claims, actions or damages of every kind and description which may accrue to or be suffered by any person, persons, or property by reason of the acts or omissions of the Grantee, its assigns, agents, contractors, licensees, employees or any person whomsoever, in connection with Grantee's, its assigns', agents', contractors', licensees', or employees' construction, installation, maintenance, operation, use or occupancy of the right of way or in the exercise of this permit. In case any suit or action is brought against the City of Kent, its officers and employees, arising out of or by reason of any of the above causes, the Grantee, its successors or assigns will, upon notice of such action, defend the same at its sole cost and expense and satisfy any judgment against the City of Kent, its officers, or employees: PROVIDED, that if the claims or damages are caused by or result from the concurrent negligence of (a) the City of Kent's agents or employees and (b) the Grantee or Grantee's agents or employees, this indemnity provision shall be valid and enforceable only to the extent of the negligence of the Grantee or the Grantee's agents or employees.

AND

The Grantee, and on behalf of its assigns, agents, licensees, contractors and employees agrees to waive any claims for losses, expenses, damages or lost revenues incurred by it or its agents, contractors, licensees, employees or customers in connection with Grantee's, its assigns', agents', contractors', licensees', or employees' construction, installation, maintenance, operation, use of occupancy of the right of way or in the exercise of this permit against the City of Kent, its agents or employees except the reasonable costs of repair to property resulting from the negligent injury or damage to Grantee's property by the City of Kent, its agents, contractors or employees.

TITLE 51 INDUSTRIAL INSURANCE ACT

Solely for purposes of enforcing the indemnification obligations of a Party under this ption 8, each party expressly waives its immunity under Title 51 of the Revised Code of . .shington, the Industrial Insurance Act, and agrees that the obligation to indemnify, defend and hold harmless provided for in this Section 8 extends to any such claim brought against the indemnified Party by or on behalf of any employee of the indemnifying Party. The

KENT VASHINGTON	PERMIT	Check permit status "online" at www.ci.kent.wa.us/permitcenter
Permit #:	CNST-2101696GF	IVR #:136139
Project:		
Permit Name:	EMJ SLAG DISPOSAL SITE - GRADE & FILL	APN: 7757800265
Site Address:	KEN	T, WA 98031
 Location:	SE CORNER OF S 218 ST AND 90 AVE S	· ·

Conditions (Continued)

foregoing waiver shall not in any way preclude the indemnifying Party from raising such immunity as a defense against any claim brought against the indemnifying Party by any of its employees.

Permit Items

CUBIC YARDS 39500 CUBIC YARDS

Limbulu McArthur

Issued By:

Permit Center Manager

Date: 11-AUG-10

Expiration Date: 07-FEB-11

Transfer of Coverage

Construction Stormwater General Permit

This form transfers permit coverage for all, or a portion Permit # WAR-012518 of a site to one or more new operators.

*Type of permit transfer (check one): Partial transfer

Complete transfer

Specific date that permit responsibility, coverage, and liability, is transferred to new operator: <u>10/01/2010</u> *Please see instructions on page 4 for details on type of transfer.

Current Operator/Permittee Information

*For partial transfers:									
List total area of soil disturbance remaining under your operational control following transfer: 4.7 acres.									
List total size of project/site remaining under your operational control following transfer: 1.7 acres.									
 Submitting this form meets the requirement to submit an updated NOI (General Permit Condition G9) 									
Current Operator/Permittee Name: Gilbert Leon	Company:								
Signature: 10/11/10 Date:	Earle M. Jorgensen Company Title: Vice President, Chief Financial Officer								
Mailing Address: 10680 Alameda Street									
City:	State: Zip:								
Lynwood	CA 90262								
Business Phone: (323) 923-6120 E	xt Fax (Optional):								
E-mail: gleon@emjmetals.com	Cell Phone (Optional):								

New Operator/Permittee Information

I. New Operator/Permittee (Party with operational control over plans and specifications, or day-to-day operational control of activities which ensure compliance with SWPPP and permit conditions. Ecology will send correspondence and permit fee invoices to the permit holder on record.)								
Contact name/ Title: Mark McCullough								
Business Phone: (425) 252-5800 Cell Phone (Optional) (206) 423-8120 Fax (Optional) (425) 252-1093 E-mail markm@clearcreekcon.com	Ext.	Unified Business Identifier (UBI) (9-digit number provided b Dept. of Revenue to business owners. Individuals without a UBI, enter "none.") 602116881						
Mailing address:3203 15 th Street		City: Everett		State: WA	Zip + 4: 98201			
II. On-Site Contact Person(s) (Typically	the Certified Erosic	on and Sedir	nent Control Lead	or Opera	tor/Permittee)			
Contact name: Jay Willcox		Company Clearcreel	name: k Contractors					
Mailing address:3203 15 th Street		City: Everett		State: WA	Zip + 4: 98021			
Business Phone: (425) 252-5800		Ext	Fax (Optional):					
E-mail: jayw@clearcreekcon.com Cell Phone (Optional):								

III. Site/Project Information									
Site or Project Name		Site Acreag		., , .					
Kent Slag Site Street Address or Location D	escription (If the	Total size of your site/project (that <u>you</u> own/control): 4.7acres.							
site lacks a street address, list		<u>4.1</u> acres.							
For example, Intersection of Hi					ce (grading and/or excavating)				
Corner of S 218 th St. & 88 th Ave	ə. S	for <u>your</u> site (Note: 1 acr			e life of the project: <u>1.7</u> acres.				
Parcel ID#: <u>7757800265(</u> Option	nal)	Concrete / E			<u>ls</u> te will be poured? <u>0_</u> yd ³				
Type of Construction Activity (c	heck all that apply):	(estimate)							
Commercial		How many y (<u>estimate</u>)	ards o	of recycle	ed concrete will be used? 0_yd ³				
Highway or Road (city ,cou	nty, state)	14/11		ط ممنام ام	e weed? (For everyles coment				
Utilities (specify): Other (specify): <u>Environmen</u>	tal Cleanup	treated base			e used? (F or example: cement lust, etc.)				
	Zip Code:	Estimated a		atart un	data (mm/dd/uu): 6/11/2010				
City(or nearest city): <u>Kent</u> County: King	98031				date (mm/dd/yy): <u>6/11/2010</u> on date (mm/dd/yy): <u>11/11/2010</u>				
Record the latitude and longitude of the main entrance to the site or the approximate center of site.									
Degrees Minutes Seconds		Degrees Mi	nutes S	Seconds					
Latitude <u>47</u> ° <u>24</u> ' <u>18</u> "N	Longitude -122°	<u>113</u> ' <u>13</u> "W							
IV. Discharge/Receiving Wat									
Discharge: The construction si			er has t	the poter	ntial to discharge :				
To ground with 100% infiltra	ation with no potential	to reach surf	ace wa	aters und	der any condition.				
If your project includes dewater Stormwater Pollution Preventio		e dewatering p	olans a	and disch	arge locations in your site				
Location of Discharge into Rece	eiving Waters:								
Enter the water body name and									
into a water body (enter all loca					rect or indirect through a storm pelines, etc.) may discharge into				
					"unnamed tributary to Bull Run				
Creek." (Attach a separate she									
Receiving Water	Name	La degrees, mi	titude nutes, s	econds	Longitude degrees, minutes, seconds				
Garrison Creek		47°	24' 18N		-122° 13' 09W				
		o	1	N	۰ ، W				
		0	1	N	° ' W				

For assistance with latitude and longitude, refer to any of the following websites: <u>www.getlatlon.com</u>, <u>http://cfpub1.epa.gov/npdes/stormwater/latlong.cfm</u>, or <u>http://www.epa.gov/tri/report/siting_tool/index.htm</u>. Please convert all latitude and longitude coordinates into degrees, minutes, seconds format. For help with this process, go to: <u>http://www.fcc.gov/mb/audio/bickel/DDDMMSS-decimal.html</u> If your site discharges to a water body that is on an impaired waterbodies list, (i.e., 303(d) list), for turbidity, fine sediment, high pH, or phosphorus, you must sample for more parameters. Ecology will notify you if any additional sampling requirements apply. Information on impaired water bodies is available online at: http://www.ecy.wa.gov/programs/wg/stormwater/construction/impaired.html

Before signing, please use the following checklist to ensure this form is complete:

All spaces on this form have been completed (attach additional sheets if necessary).

The transfer form is signed* by both the current permittee and the new permittee(s).

* Federal regulations require this application to be signed by one of the following:

- A. For a corporation: by a principal executive officer of at least the level of vice president.
- B. For a partnership or sole proprietorship: by a general partner or the proprietor, respectively.
- C. For a municipality, state, federal, or other public facility: by either a principal executive officer or ranking elected official.

New Operator/Permittee: Before you submit this form to Ecology, please retain a copy for your records – this will serve as proof of permit coverage until documentation arrives from Ecology.

For a complete transfer (entire site) where the current per mittee will retain no portion of the site, include a Notice of Termination (<u>http://www.ecy.wa.gov/biblio/ecy02087.html</u>) with this submittal.

For partial transfers: Once the original permittee no longer owns, or has operational control over any portion of the site, or if the portions they still own or control meet the criteria for termination, the original permittee must submit a Notice of Termination to terminate permit coverage. (http://www.ecy.wa.gov/biblio/ecy02087.html)

V. Certification of New Permittee

"I certify under penalty of law that this document, and all attachments, were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person, or persons who manage the system, or those directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Printed Name/ Company Mark McCullough /Clearcreel Inc.	c Contractors, Title President
Signature Digitally signed by Mark N. Mc DN: cm=Mark N. McCollough Mark J. McCollough Date: 2010.101.111.9012-970	≈Clearcreek Contractors. 10/11/10

Please sign and return this original document to:

Department of Ecology Stormwater Unit – Construction P. O. Box 47696 Olympia, WA 98504-7696

If you have any questions, please call:

- 360-407-7451 Josh Klimek for city of Seattle or counties: Kitsap, Pierce, and Thurston.
- 360-407-7229 Elaine Tomita for counties: King, Island, and San Juan.
- 360-407-6437 Charles Gilm an for counties: Whatcom, Skagit, Snohomish, Ferry, Stevens, Pend Oreille, Lincoln, Spokane, Grant, Adams, Whitman, Franklin, Walla Walla, Columbia, Garfield, and Asotin.
- 360-407-6858 Joyce Sm ith for counties: Okanogan, Chelan, Douglas, Kittitas, Yakima, Benton, Klickitat, Skamania, Clark, Cowlitz, Wahkiakum, Lewis, Pacific, Grays Harbor, Mason, Jefferson, and Clallam.

To ask about the availability of this document in a version for the visually impaired, call the Water Quality Program at 360-407-6401. Persons with hearing loss may call 711 for Washington Relay Service. Persons with a speech disability may call 877-833-6341.

ECY 020-87a (Rev. 06/09)

Transfer of Coverage Construction Stormwater General Permit This form transfers permit coverage for all, or a portion of, a site to one or more new operators.

This form is used to process two types of permit transfers: 1) Complete Transfer, or 2) Partial Transfer. Determine which type of transfer applies to your situation before filling out this form.

<u>1. Complete Transfer:</u> means the original permittee has sold, or otherwise released control of, the entire site to one or more owner/operator.

Required Paperwork for Complete Transfer:

- Either the current permittee, or the new permittee(s), must submit a complete and accurate Transfer of Coverage form for each new owner/operator to Ecology. The form must be signed by the current permittee and the new permittee(s).
- The current permittee must submit a Notice of Termination (NOT) form. (<u>http://www.ecy.wa.gov/biblio/ecy02087.html</u>) to Ecology.
 - The NOT Form should be submitted <u>at the same time</u> as the signed Transfer of Coverage Form(s), <u>or after</u> the Transfer of Coverage Form(s) is submitted to Ecology.
 - Ecology will not process Transfer of Coverage Forms on sites that have already been granted termination (permit cancelled), unless the complete Transfer of Coverage Form is signed by both parties (new and previous operators) and submitted to Ecology within 60 days after Ecology receives the NOT form.

2. Partial Transfer: Means the original permittee retains control over some portion of the site after selling or releasing control over a portion of the site.

Required Paperwork for Partial Transfer:

- Either the current permittee or the new permittee(s) must submit a complete and accurate Transfer of Coverage Form for each new operator to Ecology. The form must be signed by the current permittee and the new permittee.
- For partial transfers, once all transfers are submitted, the original permittee should submit the Notice of Termination only if they no longer own, or have operational control over any portion of the site, or if the portion(s) they still own or control have undergone final stabilization and meet the criteria for termination.

For Your Information:

- When this form is 1) completed, 2) signed by the current and new permittee, and 3) submitted to Ecology, permit transfers are effective on the date specified at the top of the next page (unless E cology notifies the current permittee and new permittee of its intention to revoke coverage under the General Permit).
- The new permittee should keep a copy of the signed Transfer of Coverage form (which serves as proof of permit coverage) until Ecology sends documentation in the mail.
- Following the transfer, the new permittee must either: (1) use the Stormwater Pollution Prevention Plan (SWPPP) developed by the original operator, and modified as necessary, or (2) develop and use a new SWPPP which meets the requirements of the Construction Stormwater General Permit.

ECY 020-87a (Rev. 06/09)

APPENDIX D PHOTOGRAPHIC LOG

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

SITE PHOTOGRAPHS

Completion and Compliance Monitoring Report Slag Disposal, Beckwith Property Site Kent, Washington Farallon PN: 831-022

Photograph 1:	Removing vegetation on east half of Site, August 9, 2010.
Photograph 2:	Staking sample grid layout at 25-foot intervals, August 17, 2010.
Photograph 3:	Removing topsoil at center of Site, August 18, 2010
Photograph 4:	Removing clean overburden on east half of Site, August 19, 2010.
Photograph 5:	Removing slag on south portion of Site to install wheel wash, August 22, 2010
Photograph 6:	Installing wheel wash on south portion of Site, August 22, 2010.
Photograph 7:	Removing slag on east portion of Site, September 1, 2010
Photograph 8:	Close-up view of slag and lime ash, September 1, 2010.
Photograph 9:	Clean silt, clay bottom, and old liner with pea gravel on east portion of Site, September 7, 2010.
Photograph 10:	Clean backfill on east portion of Site, September 9, 2010.
Photograph 11:	Slot-cut at northeast side of Site, September 16, 2010.
Photograph 12:	Dewater low spot in center of excavation, September 18, 2010.
Photograph 13:	Laying down Geotech fabric to construct new haul road on west side of Site, September 22, 2010.
Photograph 14:	Compacting clean backfill on east half of Site, October 8, 2010.
Photograph 15:	Removing slag and lime ash around culvert on north portion of Site, October 19, 2010.
Photograph 16:	New section of culvert with banding on north portion of Site by 218 th Street, October 19, 2010.
Photograph 17:	Removing slag from between gates at southwest entrance to Site, October 25, 2010.
Photograph 18:	Trench excavation between ponded water and detention pond to install new culvert, January 26, 2011.
Photograph 19:	Rubber buoy in outlet of new culvert on north portion of Site before turbidity test, January 27, 2011.
Photograph 20:	Erosion control wattles, ponded water, and new culvert on east half of Site, February 1, 2011.

- **Photograph 21**: Hydroseed on north portion of Site by detention pond and wetland buffer, February 2, 2011.
- Photograph 22: Completed wetland M restoration near southwest Site entrance, February 25, 2011.
- Photograph 23: Completed wetland buffer restoration on north portion of Site, March 22, 2011.
- Photograph 24: Final grading at north end of Site, June 30, 2011.
- Photograph 25: Restoration of re-graded areas, September 2, 2011.

Photograph 1: Removing vegetation on east half of Site, August 9, 2010.

Photograph 2: Staking sample grid layout at 25-foot intervals, August 17, 2010.

Photograph 3: Removing topsoil at center of Site, August 18, 2010

Photograph 4: Removing clean overburden on east half of Site, August 19, 2010.

Photograph 5: Removing slag on south portion of Site to install wheel wash, August 22, 2010

Photograph 6: Installing wheel wash on south portion of Site, August 22, 2010.

Photograph 7: Removing slag on east portion of Site, September 1, 2010

Photograph 8: Close-up view of slag and lime ash, September 1, 2010.

Photograph 9: Clean silt, clay bottom, and old liner with pea gravel on east portion of Site, September 7, 2010.

Photograph 10: Clean backfill on east portion of Site, September 9, 2010.

Photograph 11: Slot-cut at northeast side of Site, September 16, 2010.

Photograph 12: Dewater low spot in center of excavation, September 18, 2010.

Photograph 13: Laying down Geotech fabric to construct new haul road on west side of Site, September 22, 2010.

Photograph 14: Compacting clean backfill on east half of Site, October 8, 2010.

Photograph 15: Removing slag and lime ash around culvert on north portion of Site, October 19, 2010.

Photograph 16: New section of culvert with banding on north portion of Site by 218th Street, October 19, 2010.

Photograph 17: Removing slag from between gates at southwest entrance to Site, October 25, 2010.

Photograph 18: Trench excavation between ponded water and detention pond to install new culvert, January 26, 2011.

Photograph 19: Rubber buoy in outlet of new culvert on north portion of Site before turbidity test, January 27, 2011.

Photograph 20: Erosion control wattles, ponded water, and new culvert on east half of Site, February 1, 2011.

Photograph 21: Hydroseed on north portion of Site by detention pond and wetland buffer, February 2, 2011.

Photograph 22: Completed wetland M restoration near southwest Site entrance, February 25, 2011.

Photograph 23: Completed wetland buffer restoration on north portion of Site, March 22, 2011.

Photograph 24: Final grading at north end of Site, June 30, 2011.

Photograph 25: Restoration of re-graded areas, September 2, 2011.

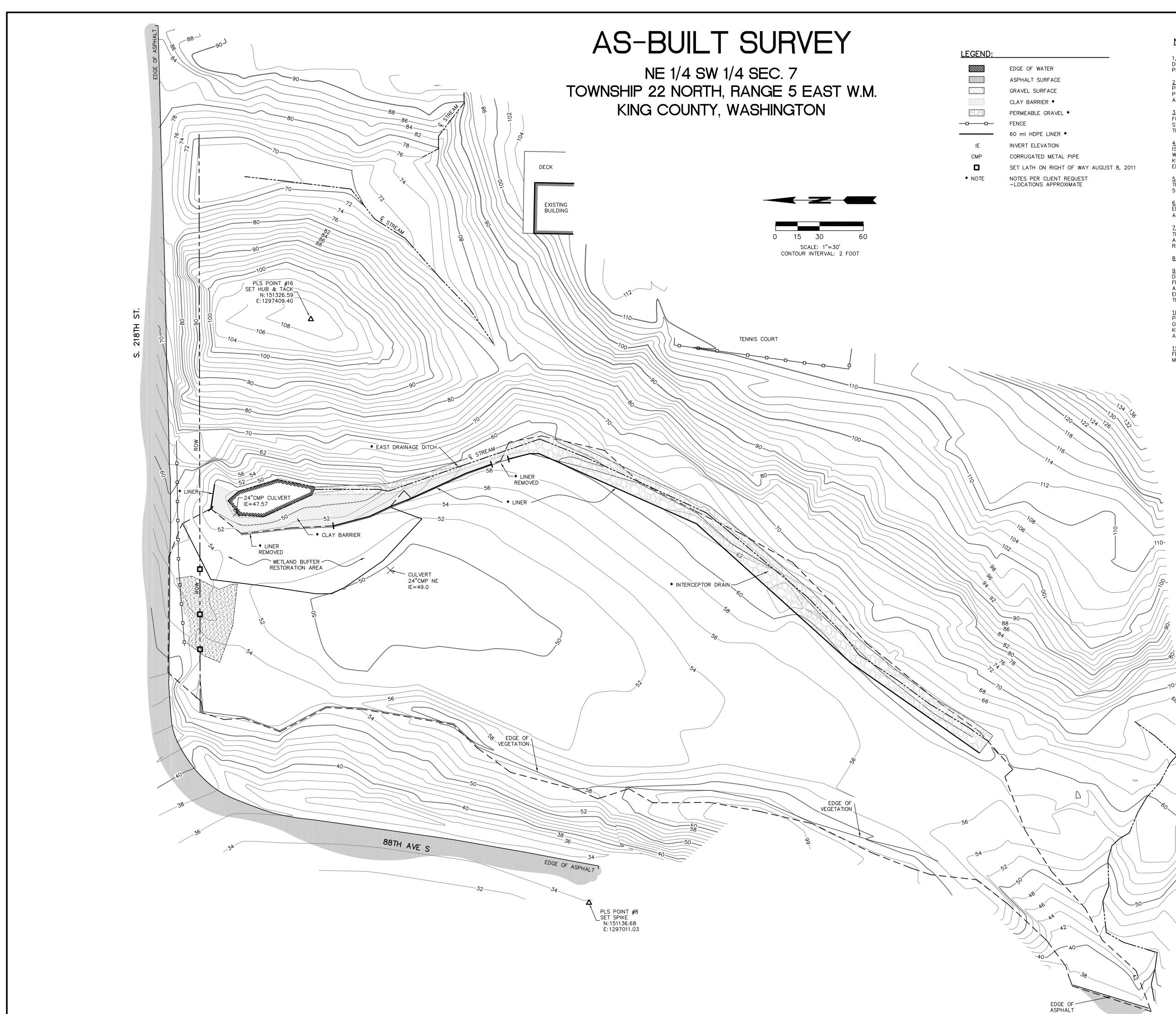
APPENDIX E TEST PIT LOGS

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

	-	FARALLON consulting	Log of Test Pit: TP13						
		975 5th Avenue Northwest Issaquah, Washington 98027						Page 1 of 1	
Clie				/10 @ 0955		pler T	5.00 C	Bucket	
		t: EMJ Slag Site	/10 @ 1145 natsu				(ft bgs): N/A n Depth (ft bgs): 15.0'		
		on: Kent, WA		arcreek					
		on PN: 831-022		l Curnett avator					
Lo	gge	ed By: Ken Scott							
Depth (feet bgs)	Sample Interval	Lithologic Descripti	on		nscs	USGS Graphic	PID (ppmv)	Sample ID Sample Vualyzed	
0-		0.0-0.9' Sandy SILT with gravel (60% silt, 20% sand coarse gravel, brown, moist, no odor.	l, 20% gravel), fine to medium sa	and, fine to	ML				
-		0.9-2.0' Silty SAND (70% sand, 20% silt, 10% grave tan, moist, no odor.	el), fine to medium sand, fine to c	oarse gravel,	SM		NM	-	
-		2.0-4.0' Poorly graded SAND (90% sand, 10% silt), sheen.	fine sand, dark brown, moist, no	odor, no	SP				
-	_	4.0-7.0' Slag (100%), black, dense metal slag with la	arge pares, maist, adar, no shee		FILL				
5-		4.04.0 Sidy (10076), black, dense metal sidy with a	arge pores, moist, ouor, no snee			Õ	NM	TP12-5 @ 11:10	
-			9						
-		7.0-9.0' SILT (100% silt), medium placticity, dark gr	ey, moist, odor, no sheen.		ML				
-		τ.	· · · ·				NM		
-	-	9.0-15.0' SILT (90% silt, 10% clay), high placticity, y	rellowish-gray, moist, no odor, no	o sheen.	ML	++			
10 —									
-			6				NM		
-									
15			8 U						

Issaquah, Washington 98027 Page 1 Client: Earle M. Jorgensen Company Date/Time Started: 8/11/10 @ 1210 Sampler Type: Bucket Project: EMJ Slag Site Date/Time Completed: 8/11/10 @ 1320 Depth of Water (ft bgs): N/A			FARALLON consulting 975 5th Avenue Northwest	Lo	g of Test	Pit:	TF	۲ 1 4		
Logged By: Ken Scott Excavating Method: Excavator (for any stress of the st	Pr Lo	oje oca	t: Earle M. Jorgensen Company ct: EMJ Slag Site tion: Kent, WA	Date/Time Completed: Equipment:	8/11/10 @ 1320 Zaxis 200	Dept	th of '	Water	Bucket (ft bgs): N/A	1 of 1 7.0'
Image: Second state Lithologic Description Sample ID 0 0.0.5' Sandy SILT (70% silt, 30% sand), fine sand, brown, moist, no odor, no sheen. ML 0.5-2.0' Silty SAND (50% sand, 40% silt, 10% gravel), fine sand, fine to coarse gravel, tan, moist, no odor, no sheen. ML 2.0-3.0' GRAVEL (100% gravel), fine to coarse gravel-fill, gray, moist, no odor, no sheen. FILL 2.0-3.0' GRAVEL (100% gravel), fine to coarse gravel-fill, gray, moist, no odor, no sheen. FILL 3.5-6.0' Slag fill (100%), black & dark brown, dense metal slag boulders with large bubble-like pores, moist, odor. Observed construction debris. FILL										
0-0.5' Sandy SILT (70% silt, 30% sand), fine sand, brown, moist, no odor, no sheen. ML 0.5-2.0' Silty SAND (50% sand, 40% silt, 10% gravel), fine sand, fine to coarse gravel, tan, moist, no odor, no sheen. SM 1 SM 2.0-3.0' GRAVEL (100% gravel), fine to coarse gravel-fill, gray, moist, no odor, no sheen. FILL 2.0-3.5' Poorly graded SAND with gravel (70% sand, 20% gravel, 10% silt), fine to medium sand, fine to coarse gravel, tan, moist, no odor, no sheen. SP 3.5-6.0' Slag fill (100%), black & dark brown, dense metal slag boulders with large bubble-like pores, moist, odor. Observed construction debris. FILL	_			ion		nscs	USGS Graphic	PID (ppmv)	Sample ID	Sample Analyzed
6.0-7.0' SILT (100% silt), medium plasticity, dark gray, moist, no odor, no sheen. ML 10- NM	5-		0.5-2.0' Silty SAND (50% sand, 40% silt, 10% grav no odor, no sheen. 2.0-3.0' GRAVEL (100% gravel), fine to coarse gra 2.0-3.5' Poorly graded SAND with gravel (70% san fine to coarse gravel, tan, moist, no odor, no sheen 3.5-6.0' Slag fill (100%), black & dark brown, dense pores, moist, odor. Observed construction debris.	el), fine sand, fine to coarse vel-fill, gray, moist, no odor, d, 20% gravel, 10% silt), fine e metal slag boulders with la	gravel, tan, moist, no sheen. e to medium sand, rge bubble-like	SM FILL SP		NM		


		FARALLON consulting	Lo	g of Test	Pit:	ΤP	15			
		975 5th Avenue Northwest Issaquah, Washington 98027						Page	e 1 of 1	
	ent		Date/Time Started:	8/12/10 @ 0800	Sam			Bucket		
	-	t: EMJ Slag Site	Date/Time Completed: Equipment:	8/12/10 @ 0925 Zaxis 200				(ft bgs): N/A n Depth (ft bgs):	5.0'	
		on:Kent, WA	Excavation Company:	Clearcreek					0.0	
Fai	rallo	on PN: 831-022	Excavation Foreman:	Andy Hinton						
Lo	gge	ed By: Ken Scott	Excavating Method:	Excavator						
Depth (feet bgs)	Sample Interval	Lithologic Description						Sample ID		Sample Analyzed
0-	1 (r					1
Ū		0-0.9' Sandy SILT (65% silt, 30% sand, 5% gravel no odor, no sheen.), fine sand, fine to coarse g	ıravel, tan, moist,	ML					
-		0-0.9' Sandy SILT (60% silt, 30% sand, 10% grave no odor, no sheen.	I), fine sand, fine to coarse	gravel, tan, moist,	ML		NM			
		2.5-4.5' SILT with sand (70% silt, 20% sand, 10% g brown, moist, odor, no sheen.	gravel), fine sand, fine to co	oarse gravel, dark	ML					
-		3.0-5.0' Slag fill (100%), black & dark brown, dense pores, moist, odor.	metal slag boulders with la	rge bubble-like	FILL	000000		3		
5-	_	4.5-5.0' SILT (90% silt, 10% sand & slag), fine sand no sheen. Observed slag boulders mixed in with s	d, medium plasticity, dark g oil to 5' bgs.	ray, moist, odor,	ML		NM			
-				r r			NM			*

		FARALLON Consulting 975 5th Avenue Northwest Issaquah, Washington 98027	Lo	g of Test	Pit:	TP	°16	Page 1 c	of 1
Pro Loc Fai	cati rallo	Earle M. Jorgensen Company : EMJ Slag Site on: Kent, WA on PN: 831-022 : d By: Ken Scott	Date/Time Started: Date/Time Completed: Equipment: Excavation Company: Excavation Foreman: Excavating Method:	8/12/10 @ 0925 8/12/10 @ 1058 Zaxis 200 Clearcreek Andy Hinton Excavator	Sampler Type: Bucket				
Depth (feet bgs)	Sample Interval	Lithologic Descripti	on		USCS	USGS Graphic	PID (ppmv)	Sample ID	Sample Analyzed
0-		0-0.9' Sandy SILT (65% silt, 30% sand, 5% gravel) no odor, no sheen.), fine sand, fine to coarse	gravel, tan, moist,	ML				
-		0.9-2.0' Sandy SILT (60% silt, 30% sand, 10% grav moist, no odor, no sheen.	/el), fine sand, fine to coar	se gravel, brown,	ML		NM		
-		2.5-4.0' SILT with sand (70% silt, 20% sand, 10% g brown, moist, no odor to 3.5' bgs, no sheen.	gravel), fine sand, fine to c	oarse gravel, dark	ML				
-	1	3.5-7.5' Slag fill (100%), black & dark brown, dense pores, moist, odor.	metal slag boulders with la	arge bubble-like	 FILL				
5–							NM		
-		8						а 	
-			8					4. 2	

APPENDIX F AS-BUILT SURVEY

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

NOTES AND COMMENTS:

1.<u>) THE MAPPING SHOWN HEREON</u> WITHIN THE LIMITS OF THE DISTURBED AREA REFLECTS THE RESULTS OF A FIELD SURVEY PERFORMED IN AUGUST 2011.

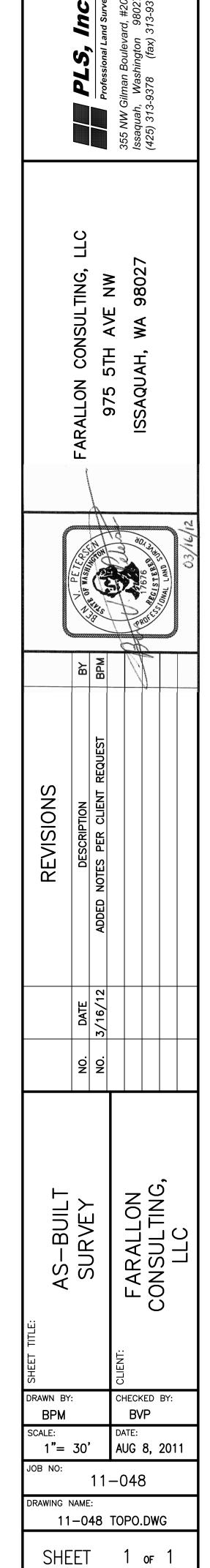
2.) THE REMAINDER OF THE MAP REFLECTS A FIELD SURVEY PERFORMED BY PLS, INC. MAY 20, 2009. FOR CLARITY PURPOSES ONLY THE CONTOURS AND A FEW MAJOR FEATURES ARE DISPLAYED HEREON.

3.) HORIZONTAL DATUM: THE OVERALL HORIZONTAL DATUM FOR THIS PROJECT IS NAD 83/91, WASHINGTON COORDINATE SYSTEM, NORTH ZONE, BASED ON GPS MEASUREMENTS USING THE WASHINGTON STATE REFERENCE NETWORK.

4.) VERTICAL DATUM: THE VERTICAL DATUM FOR THIS SURVEY IS NAVD 88, BASED ON GPS MEASUREMENTS USING THE WASHINGTON STATE REFERENCE NETWORK. REFERENCE TIED TO KING COUNTY BENCHMARK ID 3973 WITH A PUBLISHED ELEVATION OF 297.74 FEET.

5.) FIELD SURVEY METHODOLOGY: FIELD MEASUREMENTS FOR THIS TOPOGRAPHIC SURVEY WERE PERFORMED USING A 5-SECOND OR BETTER ELECTRONIC TOTAL STATION.

6.) INSTRUMENT CALIBRATION: ALL MEASURING INSTRUMENTS EMPLOYED IN THIS SURVEY HAVE BEEN MAINTAINED IN ACCORDANCE WITH MANUFACTURER'S SPECIFICATIONS.


7.) THIS SURVEY WAS PREPARED FOR THE EXCLUSIVE USE OF THE CLIENT NAMED HEREON. ITS' USE DOES NOT EXTEND TO ANY UNNAMED PERSON OR PERSONS WITHOUT THE EXPRESS RECERTIFICATION BY THIS SURVEYOR NAMING SUCH PARTY.

8.) KING COUNTY TAX PARCEL NUMBER: 7757800265

9.) UTILITY INVERT ELEVATIONS AND PIPE / FLOW LINE DIAMETERS SHOWN HEREON ARE BASED ON OBSERVATIONS FROM THE TOP OF THE UTILITY STRUCTURE AND ARE APPROXIMATE ONLY. FOR SAFETY REASONS NO PHYSICAL ENTRY INTO THE UTILITY STRUCTURE WAS PERFORMED DURING THE COURSE OF THIS SURVEY.

10.) NO EFFORT WAS MADE OR REQUESTED TO SURVEY THE PROPERTY BOUNDARY FOR THIS SITE. A BOUNDARY HAS BEEN GRAPHICALLY SHOWN BASED ON GENERAL INFORMATION FROM KING COUNTY IMAP AND TAX ASSESSOR MAP, AND IS APPROXIMATE ONLY.

11.) THE GRAPHIC SIZE AND LOCATION OF SOME PHYSICAL FEATURES SUCH AS FENCES AND UTILITY STRUCTURES MAY BE SLIGHTLY EXAGGERATED FOR CLARITY PURPOSES.

APPENDIX G MONTHLY PROGRESS REPORTS

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

September 10, 2010

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – AUGUST 2010 EMJ SLAG SITE KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during August 2010 at the EMJ Slag Site (herein referred to as the Site) in Kent, Washington. This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during August 2010;
- Analytical results of samples collected during August 2010;
- A summary of deliverables submitted during August 2010;
- A summary of technical and regulatory meetings during August 2010;
- A summary of planned activities, meetings, and deliverables for September and October 2010; and
- A summary of deviations from the schedule anticipated for September and October 2010.

FIELD ACTIVITIES – AUGUST 2010

Pre-construction activities began at the Site on August 6, 2010, which included mobilizing equipment, staking excavation limits, installing erosion control measures, clearing brush, and relocating the water treatment system. The Grade and Fill Permit was issued by the City of Kent on August 11, 2010. Vandalism occurred at the Site on the night of August 17, 2010. The job trailer was broken into and equipment was stolen, and fuel was siphoned from some equipment. A second theft occurred sometime between August 21 and 31, 2010 in which wire for pumps within two sumps was stolen. A report was filed with the City of Kent Police Department for both thefts.

Following relocation of the water treatment system, the system was restarted on August 19, 2010, and weekly routine operation and maintenance was performed, including fueling the generator,

inspecting sump levels, evaluating pump performance, and collecting pH readings. The carbon dioxide Dewar was changed out on August 20, 2010. A total of 4,733 gallons of wastewater was discharged to the City of Kent sanitary sewer system through batch discharge events during the month of August 2010.

The City of Kent conducted an inspection on August 18, 2010 of the erosion control measures installed at the Site. At the conclusion of the inspection, the City of Kent approved the erosion control measures and the commencement of grading work. The following grading activities were completed in August:

- Six inches of top soil across the slag footprint was removed and stockpiled on the Site;
- Approximately 2 to 3 feet of overburden was removed on the east side of the slag footprint and stockpiled on the west side of the Site; and
- Approximately 8,894 tons of slag material was excavated and transported off site.

ANALYTICAL RESULTS – AUGUST 2010

In accordance with the Cleanup Action Work Plan dated June 2010 prepared by Farallon, confirmation soil samples were collected from the overburden material on the east side of the slag footprint and analyzed for pH. Results of the pH testing of the overburden samples confirmed that the overburden material was less than the regulatory limit of 8.5. Surface water sampling was performed daily at five locations. All surface water samples were less than the regulatory limit of 8.5. At the start of excavation activities on August 23, 2010, five consecutive days of real-time dust monitoring were performed. The air samples were analyzed for calcium as calcium carbonate and total particulates. The air sample results were below laboratory detection limits.

DELIVERABLES – AUGUST 2010

A monthly Self-Monitoring Report for July 2010 was submitted to King County Industrial Waste on August 10, 2010.

TECHNICAL AND REGULATORY MEETINGS – AUGUST 2010

The following meetings occurred during August 2010:

- A meeting was held with Jim Ausburn, City of Kent Inspector, and Mark McCullough of Clearcreek Contractors, Inc. at the Site on August 3, 2010 to discuss pre-construction activities that could be completed prior to issuance of the Grade and Fill Permit. Mr. Ausburn approved clearing and relocating the water treatment system prior to issuance of the Grade and Fill Permit.
- A Site visit was performed by Gary Flowers, Geotechnical Engineer with Patrick Harron and Associates, on August 11, 2010 to observe and approve the new location for the water treatment system in the northwest corner of the Site.
- A meeting was held on August 23, 2010 between Ecology and the City of Kent Neighborhood Program Coordinator to discuss the project and possible impacts to surrounding houses and traffic.
- Weekly construction meetings were held at the Site between Clearcreek Contractors and Farallon on August 19 and 26, 2010.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – SEPTEMBER AND OCTOBER 2010

Activities

Routine operation and maintenance activities for the water treatment system will continue during September and October. The water treatment system will remain automated when treating seep water and discharge treated water as necessary. It is anticipated that when construction stormwater is pumped through the water treatment system, the system will be in manual operation mode and settleable solids monitoring will be performed.

Excavation and backfilling activities will continue on the east side of the Site and will move to the west side of the Site in September and October. Final grading and wetland restoration will follow.

Meetings

No regulatory meetings are scheduled for September and October 2010.

Deliverables

The following deliverables will be provided to Ecology during September and October 2010:

• Monthly Progress Report – September 2010 by October 10, 2010.

DEVIATIONS FROM SCHEDULE - SEPTEMBER AND OCTOBER 2010

No deviations from the schedule are anticipated for September and October.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for Ecology. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Minte M. Nuch

Heidi Fischer Project Engineer

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

HF/AED:bw

Amy Essig Desai Senior Project Manager

975 5th Avenue Northwest, Issaquah, Washington 98027 Tel: (425) 295-0800 Fax: (425) 295-0850 www.farallonconsulting.com

October 8, 2010

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – SEPTEMBER 2010 EMJ SLAG SITE KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during September 2010 at the EMJ Slag Site (herein referred to as the Site) in Kent, Washington. This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during September 2010;
- Analytical results of samples collected during September 2010;
- A summary of deliverables submitted during September 2010;
- A summary of technical and regulatory meetings during September 2010;
- A summary of planned activities, meetings, and deliverables for October and November 2010; and
- A summary of deviations from the schedule anticipated for October and November 2010.

FIELD ACTIVITIES - SEPTEMBER 2010

Excavation of slag continued across the Site during the month of September. Through September 30, 2010, 41,950 tons of slag have been excavated and disposed off-Site. It is estimated that approximately 12,050 tons of slag remains on the western perimeter and north and south entrances of the Site. Confirmation soil samples have been collected from the overburden and native soil for analysis for pH. Overburden on the Site was stripped, sampled, and

confirmed to be below the regulatory limit of 8.5 for pH. The overburden was placed and compacted as fill along the east perimeter.

Wastewater Discharge Authorization No. 4170-04 (Discharge Authorization) was issued by the King County Industrial Waste Program on September 14, 2010 and contained the following revisions:

- The Discharge Authorization expiration date was extended from December 31, 2010 to July 31, 2011;
- The maximum daily discharge volume was increased from 15,000 to 60,000 gallons per day;
- Construction stormwater generated during the slag excavation will be treated and discharged through the on-Site water treatment system; and
- Testing for settleable solids will be conducted during the construction phase of the project.

Excavation dewatering began at the Site after receipt of the revised Discharge Authorization and was performed as necessary through the end of September.

Weekly routine operation and maintenance was performed on the water treatment system and included fueling the generator, inspecting sump levels, evaluating pump performance, and collecting pH readings. The carbon dioxide Dewar was replaced on September 27, 2010. A total of 62,060 gallons of wastewater was discharged to the City of Kent sanitary sewer system through batch discharge events during the month of September.

Approximately 2,707 gallons of water containing pH levels between 12.23 and 12.40 was discharged to the City of Kent sanitary sewer system on September 25, 2010. The Discharge Authorization limit for pH is 12.0. During this discharge event, construction stormwater was pumped from the excavation through the water treatment system at flow rate that was too high to treat the water. The water treatment system was temporarily shut down following this event to determine the cause of the discharge. At the time the discharge occurred, the pumps were set to manual operation mode, which caused an override of the alarm controls and the water containing a pH above 12.0 to discharge automatically. Since this event, the discharge pumps have been set to automatic operation mode and the alarm controls are fully operational. The automatic operation mode contains controls that will cause the system to shut down if the treated water does not meet the Discharge Authorization requirements. Since this correction has been made, no Discharge Authorization exceedences have occurred.

ANALYTICAL RESULTS – SEPTEMBER 2010

In accordance with the Cleanup Action Work Plan dated June 2010, prepared by Farallon, confirmation soil samples were collected from the overburden material across the entire slag footprint and analyzed for pH. Results of pH testing of the overburden samples confirmed that pH in overburden material was less than the regulatory limit of 8.5. Confirmation soil samples were also collected from the native soil and analyzed for pH. Results of the pH testing confirm

that pH in soil was less than 8.5 and the excavation limits have been reached in the central and eastern portion of the Site.

Surface water sampling was performed daily at five sampling locations. The results of the surface water sampling have not detected pH above the regulatory limit of 8.5 except during one sampling event. The regulatory limit of 8.5 was exceeded in the surface water sample collected from the southwest corner of the Site on September 3, 2010. Surface water from this location was collected, treated by the water treatment system, and discharged to the sanitary sewer until sampling confirmed the pH was below 8.5. Since that time, the regulatory limit for pH has been met at this location. Real-time dust monitoring was performed weekly. The air samples were analyzed for calcium as calcium carbonate and total particulates. The air sample results were below laboratory detection limits.

DELIVERABLES – SEPTEMBER 2010

A monthly Self-Monitoring Report for August 2010 was submitted to King County Industrial Waste on September 14, 2010.

TECHNICAL AND REGULATORY MEETINGS - SEPTEMBER 2010

The following meetings occurred during September 2010:

- A Site inspection was conducted by Andrea Gates and Shawn Gilbertson of the City of Kent on September 3, 2010. The City of Kent identified two concerns, including discharge of silty water from the wheel wash and excavation of slag near the wetland buffer. Both issues were addressed with the City of Kent and have been resolved.
- Weekly construction meetings were held at the Site between Clearcreek Contractors and Farallon on September 2, 8, 16, 23, and 29, 2010.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – OCTOBER AND NOVEMBER 2010

Activities

Routine operation and maintenance activities for the water treatment system will continue during October and November. The water treatment system will continue to be in automatic operation mode and settleable solids will continue to be monitored.

Excavation of slag will continue on the west perimeter and north and south entrances in October. Backfilling, final grading, and wetland restoration will follow.

Meetings

No regulatory meetings are scheduled for October and November 2010.

Deliverables

The following deliverables will be provided to Ecology during October and November 2010:

• Monthly Progress Report – October 2010 by November 10, 2010.

Washington State Department of Ecology Monthly Progress Report – September 2010 Page 4

DEVIATIONS FROM SCHEDULE - OCTOBER AND NOVEMBER 2010

No deviations from the schedule are anticipated for October and November 2010.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Muile-M. Minter

Heidi Fischer Project Engineer

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

HF/AED:bw

Amy Essig Desai Senior Project Manager

November 10, 2010

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – OCTOBER 2010 EMJ SLAG SITE KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during October 2010 at the EMJ Slag Site (herein referred to as the Site) in Kent, Washington. This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during October 2010;
- Analytical results of samples collected during October 2010;
- A summary of deliverables submitted during October 2010;
- A summary of technical and regulatory meetings during October 2010;
- A summary of planned activities, meetings, and deliverables for November and December 2010; and
- A summary of deviations from the schedule anticipated for November and December 2010.

FIELD ACTIVITIES – OCTOBER 2010

Excavation of slag continued across the Site during the month of October. Through October 29, 2010, 57,450 tons of slag have been excavated and disposed off-Site. Slag underneath the culvert that extends from the detention pond across South 218th Street was removed and the culvert was replaced. It is estimated that approximately 100 tons of slag remains near the southern entrance road of the Site. Confirmation soil samples have been collected from the

overburden and native soil for analysis for pH. Clean overburden was placed and compacted as fill across the Site. Approximately 3,000 tons of import fill material was brought to the Site and used as backfill for slot cuts along the eastern perimeter of the Site and for establishing a new haul road. A portion of the import material for the haul road will be used later as fill to regrade the Site.

Excavation dewatering continued at the Site and was performed as necessary through the end of October. Weekly routine operation and maintenance was performed on the water treatment system and included fueling the generator, inspecting sump levels, evaluating pump performance, and collecting pH readings. A total of 95,622 gallons of wastewater was discharged to the City of Kent sanitary sewer system through batch discharge events during the month of October.

ANALYTICAL RESULTS – OCTOBER 2010

In accordance with the Cleanup Action Work Plan dated June 2010, prepared by Farallon, confirmation soil samples were collected from the native soil and analyzed for pH. Results of the pH testing confirm that pH in soil was less than 8.5 and the excavation limits have been reached at the Site except for the additional slag found at the southern entrance road.

Surface water sampling was performed daily at five sampling locations. The results of the surface water sampling did not detect pH above the regulatory limit of 8.5. Real-time dust monitoring was performed weekly. The air samples were analyzed for calcium as calcium carbonate and total particulates. The air sample results were below laboratory detection limits.

DELIVERABLES – OCTOBER 2010

A monthly Self-Monitoring Report for September 2010 was submitted to King County Industrial Waste on October 5, 2010.

TECHNICAL AND REGULATORY MEETINGS – OCTOBER 2010

The following meetings occurred during October 2010:

- On October 6, 2010 the City of Kent approved Farallon's request to revise the final grading on the Site to facilitate more drainage from the Site to the north. This new drainage pattern corresponds with the natural slope of the native silt/clay layer beneath the slag.
- Weekly construction meetings were held at the Site between Clearcreek Contractors and Farallon on October 7, 12, 21, and 29, 2010.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – NOVEMBER AND DECEMBER 2010

Activities

Routine operation and maintenance activities for the water treatment system will continue during November and December. The water treatment system will continue to be in manual operation mode and settleable solids will continue to be monitored throughout the duration of construction

activities. Upon completion of construction activities, the water treatment system will be operated in automatic operation mode and settleable solids monitoring will no longer be required.

Excavation of slag will continue on the southern entrance road in October. Backfilling, final grading, hydroseeding, and wetland restoration will follow.

Meetings

No regulatory meetings are scheduled for November and December 2010.

Deliverables

The following deliverables will be provided to Ecology during November and December 2010:

• Monthly Progress Report – November 2010 by December 10, 2010.

DEVIATIONS FROM SCHEDULE - NOVEMBER AND DECEMBER 2010

No deviations from the schedule are anticipated for November and December 2010.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Heidi Fischer Project Engineer

Senior Project Manager

cc: Mr. E. Gilbert Leon Jr., EMJMr. William Joyce; Salter Joyce Ziker, PLLCMs. Toni Azzola, City of KentMr. Sean Wells, City of Kent

HF/AED:bw

December 10, 2010

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – NOVEMBER 2010 EMJ SLAG SITE KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during November 2010 at the EMJ Slag Site (herein referred to as the Site) in Kent, Washington. This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during November 2010;
- Analytical results of samples collected during November 2010;
- A summary of deliverables submitted during November 2010;
- A summary of technical and regulatory meetings during November 2010;
- A summary of planned activities, meetings, and deliverables for December 2010 and January 2011; and
- A summary of deviations from the schedule anticipated for December 2010 and January 2011.

FIELD ACTIVITIES – NOVEMBER 2010

Excavation of slag continued at the southern entrance of the Site during the month of November. Excavation and off-Site disposal of all slag was completed on November 16, 2010. A total of 58,395 tons of slag have been excavated and disposed off-Site. Clean overburden was placed and compacted as fill across the Site. Approximately 1,500 tons of additional import fill material was imported to the Site and used as backfill for the western perimeter and around the detention pond within the wetland buffer restoration area.

Washington State Department of Ecology Monthly Progress Report – November 2010 Page 2

Excavation dewatering continued at the Site and was performed as necessary through the end of November. Weekly routine operation and maintenance was performed on the water treatment system and included fueling the generator, inspecting sump levels, evaluating pump performance, and collecting pH readings. A total of 154,658 gallons of wastewater was discharged to the City of Kent sanitary sewer system through batch discharge events during the month of November.

ANALYTICAL RESULTS – NOVEMBER 2010

In accordance with the Cleanup Action Work Plan dated June 2010, prepared by Farallon, confirmation soil samples were collected from the native soil and analyzed for pH. Results of the pH testing confirm that pH in soil was less than 8.5, the excavation limits have been reached at the Site, and all the slag has been excavated and disposed off Site.

Surface water sampling was performed daily at five sampling locations. The results of the surface water sampling did not detect pH above the regulatory limit of 8.5.

DELIVERABLES – NOVEMBER 2010

A monthly Self-Monitoring Report for October 2010 was submitted to King County Industrial Waste on November 11, 2010.

TECHNICAL AND REGULATORY MEETINGS – NOVEMBER 2010

The following meetings occurred during November 2010.

November 5, 2010: A meeting was held at the Site between Clearcreek Contractors, Anchor QEA, and Farallon to discuss restoration of the area west of the southern entrance road. A small volume of slag (less than 3 cubic yards) was excavated from this area, which extended into a wetland buffer zone. Anchor QEA submitted a letter to the City of Kent recommending a restoration plan within the wetland buffer zone. Approval of the restoration plan is pending.

November 22, 2010: A meeting was held at the Site between Clearcreek Contractors, Anchor QEA, and Farallon to discuss the final grades and restoration of the wetland buffer area near the existing detention pond. Subsequent to this meeting, Farallon developed a revised restoration plan that includes installing a culvert to reconnect drainage from the Site to the existing detention pond, landscaping the wetland buffer area, hydroseeding the Site at its current grade, and ceasing work for winter following these activities. Final grading and demobilizing the water treatment system will take place in the spring. This plan was submitted to the City of Kent for review, and was approved on December 9, 2010.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – DECEMBER 2010 AND JANUARY 2011

Activities

Routine operation and maintenance activities for the water treatment system will continue during December and January. The water treatment system will be in manual operation mode and settleable solids will continue to be monitored throughout the duration of construction activities.

Upon completion of construction activities, the water treatment system will be operated in automatic operation mode and settleable solids monitoring will no longer be required.

After obtaining approval from the City of Kent, the Site will undergo final restoration, including the following activities:

- Restoring the wetland buffer zone near the southern entrance;
- Importing fill and topsoil to finalize grades in the wetland buffer near the existing detention pond;
- Landscaping the wetland buffer area near the existing detention pond as shown in the approved design drawings; and
- Hydroseeding the Site at its current grade.

Meetings

No regulatory meetings are scheduled for December 2010 and January 2011.

Deliverables

The following deliverables will be provided to Ecology during December 2010 and January 2011:

• Monthly Progress Report – December 2010 by January 10, 2011.

DEVIATIONS FROM SCHEDULE - DECEMBER 2010 AND JANUARY 2011

No deviations from the schedule are anticipated for December 2010 and January 2011.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Might M. Minha

Heidi Fischer Project Engineer

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

HF/AED:bw

Amy Essig Desai Senior Project Manager

975 5th Avenue Northwest, Issaquah, Washington 98027 Tel: (425) 295-0800 Fax: (425) 295-0850 www.farallonconsulting.com

January 7, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – DECEMBER 2010 EMJ SLAG SITE KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during December 2010 at the EMJ Slag Site (herein referred to as the Site) in Kent, Washington. This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during December 2010;
- Analytical results of samples collected during December 2010;
- A summary of deliverables submitted during December 2010;
- A summary of technical and regulatory meetings during December 2010;
- A summary of planned activities, meetings, and deliverables for January and February 2011; and
- A summary of deviations from the schedule anticipated for January and February 2011.

FIELD ACTIVITIES – DECEMBER 2010

No construction activities occurred in December 2010. A surface water sampling event was conducted on December 28, 2010. Excavation dewatering continued at the Site and was performed as necessary through the end of December. Weekly routine operation and maintenance was performed on the water treatment system and included fueling the generator, inspecting sump levels, evaluating pump performance, and collecting pH readings. A total of

382,578 gallons of wastewater was discharged to the City of Kent sanitary sewer system through batch discharge events during December.

ANALYTICAL RESULTS - DECEMBER 2010

Surface water sampling was performed on December 28, 2010 at five sampling locations. The results of the surface water sampling at the five compliance sampling locations did not detect pH in surface water above the cleanup level of 8.5.

DELIVERABLES – DECEMBER 2010

A monthly Self-Monitoring Report for November 2010 was submitted to King County Industrial Waste on December 3, 2010.

TECHNICAL AND REGULATORY MEETINGS AND APPROVALS – DECEMBER 2010

Wastewater Discharge Authorization No. 4170-04 required settleable solids monitoring of the water treatment system during the construction phase of the project as a result of treating construction dewatering generated during the slag excavation. Farallon submitted a request to the King County Industrial Waste Program on December 6, 2010 to discontinue settleable solids monitoring during the winter period when no construction activities are occurring. King County approved the request on December 6, 2010.

The City of Kent approved a revised restoration plan on December 9, 2010. This plan included installing a culvert to reconnect drainage from the Site to the existing detention pond, landscaping the wetland buffer area, and hydroseeding the Site at its current grade.

The City of Kent approved an addendum to the Wetland Buffer Mitigation Plan on December 27, 2010 that was prepared by Anchor QEA. This addendum was prepared to address the Wetland M and N buffer restoration that developed as a result of excavating a small volume of slag (less than 3 cubic yards) from a wetland buffer zone located west of the southern entrance road (i.e., Wetland M and N).

No technical or regulatory meetings occurred during December 2010.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – JANUARY AND FEBRUARY 2011

Activities

The following activities are anticipated during January and February 21011:

- Routine operation and maintenance of the water treatment system;
- Restoring the wetland buffer zone near the southern entrance;
- Monitoring settleable solids during restoration activities, as needed;
- Importing fill and topsoil to finalize grades in the wetland buffer near the existing detention pond;

Washington State Department of Ecology Monthly Progress Report – December 2010 Page 3

- Landscaping the wetland buffer area near the existing detention pond as shown in the approved design drawings;
- Installing a culvert to reconnect drainage from the Site to the existing detention pond; and
- Hydroseeding the Site at its current grade.

Meetings

No regulatory meetings are scheduled for January and February 2011.

Deliverables

The following deliverables will be provided to Ecology during January and February 2011:

• Monthly Progress Report – January 2011 by February 10, 2011.

DEVIATIONS FROM SCHEDULE - JANUARY AND FEBRUARY 2011

No deviations from the schedule are anticipated for January and February 2011.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Unit-M. nisch

Heidi Fischer Project Engineer

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

HF/AED:bw

Amy Essig Desai Senior Project Manager

February 4, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – JANUARY 2011 EMJ SLAG SITE KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during January 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during January 2011;
- Analytical results of samples collected during January 2011;
- A summary of deliverables submitted during January 2011;
- A summary of technical and regulatory meetings during January 2011;
- A summary of planned activities, meetings, and deliverables for February and March 2011; and
- A summary of deviations from the schedule anticipated for February and March 2011.

FIELD ACTIVITIES - JANUARY 2011

Restoration construction activities began on the Site on January 25, 2011. Activities included;

- Removing a tree near the southern entrance road as a safety precaution because the tree roots had been disturbed by excavation activities. The tree was placed in the wetland buffer area near the existing detention pond as large woody debris.
- Installing a culvert to reconnect drainage from the Site to the existing detention pond.

• Importing fill to finalize grades in the wetland buffer area near the existing detention pond.

Excavation dewatering continued at the Site and was performed as necessary through the end of January. Monitoring of settleable solids was conducted during construction activities. Weekly routine operation and maintenance was performed on the water treatment system, including fueling the generator, inspecting sump levels, evaluating pump performance, and collecting pH readings. The carbon dioxide Dewar was replaced on January 3, 2011. A total of 302,617 gallons of wastewater was discharged to the City of Kent sanitary sewer system through batch discharge events during January.

ANALYTICAL RESULTS - JANUARY 2011

No analytical results were received in January 2011.

DELIVERABLES – JANUARY 2011

A monthly Self-Monitoring Report for December 2010 was submitted to King County Industrial Waste on January 5, 2010.

TECHNICAL AND REGULATORY MEETINGS – JANUARY 2011

No technical or regulatory meetings occurred during January 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – FEBRUARY AND MARCH 2011

Activities

The following activities are anticipated during February and March 2011:

- Routine operation and maintenance of the water treatment system;
- Monitoring of settleable solids during restoration activities as needed;
- Collection of surface water compliance samples;
- Importing of topsoil to finalize grades in the wetland buffer near the existing detention pond;
- Landscaping of the wetland buffer area near the existing detention pond as shown in the approved design drawings;
- Restoration of the wetland buffer zone near the southern entrance; and
- Hydroseeding of the Site at its current grade.

Meetings

No regulatory meetings are scheduled for February and March 2011.

Washington State Department of Ecology Monthly Progress Report – January 2011 Page 3

Deliverables

The following deliverables will be provided to Ecology during February and March 2011:

• Monthly Progress Report – February 2011 by March 10, 2011.

DEVIATIONS FROM SCHEDULE - FEBRUARY AND MARCH 2011

No deviations from the schedule are anticipated for February and March 2011.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Will M. Mich

Heidi Fischer, E.I.T. Project Engineer

Ese o Desai

Senior Project Manager

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

HF/AED:bw

March 7, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – FEBRUARY 2011 EMJ SLAG SITE, KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during February 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during February 2011;
- Analytical results of samples collected during February 2011;
- A summary of deliverables submitted during February 2011;
- A summary of technical and regulatory meetings during February 2011;
- A summary of planned activities, meetings, and deliverables for March and April 2011; and
- A summary of deviations from the schedule anticipated for March and April 2011.

FIELD ACTIVITIES – FEBRUARY 2011

Restoration construction activities continued at the Site during February. Activities included:

- Placing topsoil to finalize grades in the wetland buffer areas;
- Hydroseeding with a grass/polymer mixture at select areas of the Site to limit erosion;
- Placing plants in the wetland buffer areas as outlined in the Planting Plan;
- Placing mulch around new plants in the wetland buffer areas; and

• Removing the buoy/plug from the culvert.

Excavation dewatering continued at the Site and was performed as necessary through February 15, 2011. The buoy/plug was removed from the culvert on February 15 to allow accumulated water to discharge through the culvert to the detention pond. Weekly routine operation and maintenance was performed on the water treatment system, including fueling the generator, inspecting sump levels, evaluating pump performance, and collecting pH readings. A total of 30,284 gallons of wastewater was discharged to the City of Kent sanitary sewer system through batch discharge events during February. Use of the water treatment system has been discontinued.

Monitoring of settleable solids was conducted during construction activities. Monitoring of pH at the five compliance locations was performed, and pH readings were within the cleanup level range of 5.5 to 8.5.

ANALYTICAL RESULTS – FEBRUARY 2011

No analytical results were received in February 2011.

DELIVERABLES – FEBRUARY 2011

A monthly Self-Monitoring Report for January 2010 was submitted to King County Industrial Waste on February 4, 2010.

TECHNICAL AND REGULATORY MEETINGS – FEBRUARY 2011

No technical or regulatory meetings occurred during February 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES - MARCH AND APRIL 2011

Activities

The following activities are anticipated during March and April 2011:

- Monitoring of settleable solids during restoration activities as needed; and
- Collection of surface water samples from the five point-of-compliance sampling locations.

Meetings

No regulatory meetings are scheduled for March and April 2011.

Deliverables

The following deliverable will be provided to Ecology during March and April 2011:

• Monthly Progress Report – March 2011 by April 10, 2011.

DEVIATIONS FROM SCHEDULE - MARCH AND APRIL 2011

No deviations from the schedule are anticipated for March and April 2011.

Washington State Department of Ecology Monthly Progress Report – February 2011 Page 3

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Kristin J. Darnell, E.I.T. Project Scientist

Desai

Senior Project Manager

cc: Mr. E. Gilbert Leon Jr., EMJ
Mr. William Joyce; Salter Joyce Ziker, PLLC
Ms. Toni Azzola, City of Kent
Mr. Sean Wells, City of Kent

April 8, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – MARCH 2011 EMJ SLAG SITE, KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during March 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during March 2011;
- Analytical results of samples collected during March 2011;
- A summary of deliverables submitted during March 2011;
- A summary of technical and regulatory meetings during March 2011;
- A summary of planned activities, meetings, and deliverables for April and May 2011; and
- A summary of deviations from the schedule anticipated for April and May 2011.

FIELD ACTIVITIES - MARCH 2011

Site inspections were performed by Farallon during the compliance monitoring event on March 22, 2011 and by Anchor QEA during the wetland buffer restoration inspection on March 28, 2011. The areas that received hydroseeding were showing new grass. The plants recently installed in the wetland buffer restoration areas appeared mostly healthy, with minor browning at the tips of some red cedars and sword ferns. The majority of the plants did not show significant damage due to winter weather events. Accumulated surface water continues to discharge through the culvert to the detention pond. No wastewater was discharged to the City of Kent

sanitary sewer system during March. The water treatment system remains on-Site but inactive pending final grading and hydroseeding activities.

Turbidity monitoring was conducted on the outflow from the culvert discharging at South 218th Street. The measured turbidity of 6.27 NTUs was well below the permitted level of 250 NTUs. Monitoring of pH at the five point-of-compliance sampling locations for surface water was performed, and pH readings were within the cleanup level range of 5.5 to 8.5.

ANALYTICAL RESULTS - MARCH 2011

No analytical results were received in March 2011.

DELIVERABLES – MARCH 2011

A monthly Self-Monitoring Report for February 2011 was submitted to King County Industrial Waste on March 7, 2011.

TECHNICAL AND REGULATORY MEETINGS – MARCH 2011

No technical or regulatory meetings occurred during March 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES - APRIL AND MAY 2011

Activities

The following activities are anticipated during April and May 2011:

- Final grading and hydroseeding;
- Monitoring of settleable solids during restoration activities as needed;
- Collection of surface water samples from the five point-of-compliance sampling locations;
- Decommissioning and removal of the water treatment system; and
- Preparation of the Completion Report.

Meetings

No regulatory meetings are scheduled for April and May 2011.

Deliverables

The following deliverable will be provided to Ecology during April and May 2011:

• Monthly Progress Report – April 2011 by May 10, 2011.

DEVIATIONS FROM SCHEDULE - APRIL AND MAY 2011

No deviations from the schedule are anticipated for April and May 2011.

aspar for

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

mol

Kristin J. Darnell, E.I.T. Project Scientist

Amy Essig Desai Senior Project Manager

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

May 10, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – APRIL 2011 EMJ SLAG SITE, KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during April 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during April 2011;
- Analytical results of samples collected during April 2011;
- A summary of deliverables submitted during April 2011;
- A summary of technical and regulatory meetings during April 2011;
- A summary of planned activities, meetings, and deliverables for May and June 2011; and
- A summary of deviations from the schedule anticipated for May and June 2011.

FIELD ACTIVITIES - APRIL 2011

The water treatment system, including buried piping, two 10,000-gallon tanks, four sumps, and pH monitoring and treatment equipment, was removed from the Site by Clearcreek Contractors on April 18 and 19, 2011. The wireless video security system was removed and a Site inspection was performed by Farallon on April 18, 2011. Grass was growing well in the areas that received hydroseeding and the Site erosion control measures were performing satisfactorily. Accumulated surface water continues to discharge through the culvert to the detention pond. No wastewater was discharged to the City of Kent sanitary sewer system during April.

ANALYTICAL RESULTS - APRIL 2011

No analytical results were received in April 2011.

DELIVERABLES – APRIL 2011

A monthly Self-Monitoring Report for March 2011 was submitted to King County Industrial Waste on March 31, 2011.

TECHNICAL AND REGULATORY MEETINGS – APRIL 2011

No technical or regulatory meetings occurred during April 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES -- MAY AND JUNE 2011

Activities

The following activities are anticipated during May and June 2011:

- Final grading and hydroseeding;
- Monitoring of settleable solids during restoration activities as needed;
- Performing a final Site survey for the as-built drawings;
- Establishing Site access control through placement of ecology blocks and fencing; and
- Preparing the Completion Report.

Meetings

No regulatory meetings are scheduled for May and June 2011.

Deliverables

The following deliverable will be provided to Ecology during May and June 2011:

• Monthly Progress Report – May 2011 by June 10, 2011.

DEVIATIONS FROM SCHEDULE - APRIL AND MAY 2011

No deviations from the schedule are anticipated for May and June 2011.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Kristin J. Darkel, E.I.T. Project Scientist

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

Amy Essig Desai Senior Project Manager

June 9, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – MAY 2011 EMJ SLAG SITE, KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during May 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during May 2011;
- Analytical results of samples collected during May 2011;
- A summary of deliverables submitted during May 2011;
- A summary of technical and regulatory meetings during May 2011;
- A summary of planned activities, meetings, and deliverables for June and July 2011; and
- A summary of deviations from the schedule anticipated for June and July 2011.

FIELD ACTIVITIES - MAY 2011

The rodent protectors for the trees and the water rings in the mulch for the shrubs and trees in the wetland buffer areas were installed by Double Eagle Landscape, Inc. on May 12, 2011.

ANALYTICAL RESULTS - MAY 2011

No analytical results were received in May 2011.

DELIVERABLES – MAY 2011

A monthly Self-Monitoring Report for April 2011 was submitted to King County Industrial Waste on May 9, 2011.

TECHNICAL AND REGULATORY MEETINGS - MAY 2011

No technical or regulatory meetings occurred during May 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – JUNE AND JULY 2011 Activities

The following activities are anticipated during June and July 2011:

- Final grading and hydroseeding;
- Monitoring of settleable solids during restoration activities as needed;
- Performing a final Site survey for the as-built drawings;
- Establishing Site access control through placement of ecology blocks and fencing; and
- Preparing the Completion Report.

Meetings

No regulatory meetings are scheduled for June and July 2011.

Deliverables

The following deliverable will be provided to Ecology during June and July 2011:

• Monthly Progress Report – June 2011 by July 10, 2011.

DEVIATIONS FROM SCHEDULE – JUNE AND JULY 2011

No deviations from the schedule are anticipated for June and July 2011.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Kristin J. Darnell, E.I.T. Project Scientist

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

Senior Project Manager

July 8, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – JUNE 2011 EMJ SLAG SITE, KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document the activities conducted during June 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during June 2011;
- Analytical results of samples collected during June 2011;
- A summary of deliverables submitted during June 2011;
- A summary of technical and regulatory meetings during June 2011;
- A summary of planned activities, meetings, and deliverables for July and August 2011; and
- A summary of deviations from the schedule anticipated for July and August 2011.

FIELD ACTIVITIES - JUNE 2011

Clearcreek Contractors began grading the Site to its final contours on June 29, 2011. Standing water that had not discharged through the culvert into the detention pond was pumped to facilitate direct infiltration via the ground surface. Grading was performed near the culvert to minimize the area of ponding water by the culvert. The silt fences were removed and repairs were made to the asphalt surface of 90th Avenue South.

ANALYTICAL RESULTS – JUNE 2011

No analytical results were received in June 2011.

DELIVERABLES – JUNE 2011

A monthly Self-Monitoring Report for May 2011 was submitted to King County Industrial Waste on June 11, 2011.

TECHNICAL AND REGULATORY MEETINGS – JUNE 2011

No technical or regulatory meetings occurred during June 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – JULY AND AUGUST 2011

Activities

The following activities are anticipated during July and August 2011:

- Hydroseeding;
- Monitoring of settleable solids during restoration activities as needed;
- Performing a final Site survey for the as-built drawings;
- Establishing Site access control through placement of ecology blocks and fencing; and
- Preparing the Completion Report.

Meetings

No regulatory meetings are scheduled for June and July 2011.

Deliverables

The following deliverable will be provided to Ecology during July and August 2011:

• Monthly Progress Report – July 2011 by August 10, 2011.

DEVIATIONS FROM SCHEDULE – JUNE AND JULY 2011

No deviations from the schedule are anticipated for July and August 2011.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Kristin J. Darnell, E.I.T. Project Scientist

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

Amy Essig Desai Senior Project Manager

August 8, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – JULY 2011 EMJ SLAG SITE, KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document activities conducted during July 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during July 2011;
- Analytical results of samples collected during July 2011;
- A summary of deliverables submitted during July2011;
- A summary of technical and regulatory meetings during July 2011;
- A summary of planned activities, meetings, and deliverables for August and September 2011; and
- A summary of deviations from the schedule anticipated for August and September 2011.

FIELD ACTIVITIES – JULY 2011

Restoration construction activities performed by Clearcreek Contractors included placement of ecology blocks across both the north and south access roads at the Site and hydroseeding areas of the Site disturbed by final grading activities.

There has been no wastewater discharge to the King County sanitary sewer system since March 2011. Because wastewater discharges are no longer occurring, the Discharge Authorization with the King County Industrial Waste Program was terminated in July 2011.

ANALYTICAL RESULTS – JULY 2011

No analytical results were received in July 2011.

DELIVERABLES - JULY 2011 ·

A monthly Self-Monitoring Report for June 2011 was submitted to King County Industrial Waste on July 5, 2011.

TECHNICAL AND REGULATORY MEETINGS - JULY 2011

No technical or regulatory meetings occurred during July 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – AUGUST AND SEPTEMBER 2011

Activities

The following activities are anticipated during August and September 2011:

- Performing a final Site survey for the as-built drawings;
- Establishing Site access control through placement of fencing; and
- Preparing the Completion Report.

Meetings

No regulatory meetings are scheduled for August and September 2011.

Deliverables

The following deliverable will be provided to Ecology during August and September 2011:

- Monthly Progress Report August 2011 by September 10, 2011; and
- Completion Report September 2011.

DEVIATIONS FROM SCHEDULE – AUGUST AND SEPTEMBER 2011

No deviations from the schedule are anticipated for August and September 2011.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Kristin J. Darkell, E.I.T. Project Scientist

cc: Mr. E. Gilbert Leon Jr., EMJ Mr. William Joyce; Salter Joyce Ziker, PLLC Ms. Toni Azzola, City of Kent Mr. Sean Wells, City of Kent

ayen fa

Amy Essig Desai Senior Project Manager

975 5th Avenue Northwest, Issaquah, Washington 98027 Tel: (425) 295-0800 Fax: (425) 295-0850 www.farallonconsulting.com

September 7, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – AUGUST 2011 EMJ SLAG SITE, KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document activities conducted during August 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during August 2011;
- Analytical results of samples collected during August 2011;
- A summary of deliverables submitted during August 2011;
- A summary of technical and regulatory meetings during August 2011;
- A summary of planned activities, meetings, and deliverables for September and October 2011; and
- A summary of deviations from the schedule anticipated for September and October 2011.

FIELD ACTIVITIES - AUGUST 2011

Construction activities included completion of the as-built survey and location of the parcel boundaries by PLS, Inc., and installation of fencing across the north access road by Alpine Fence Company. The ecology blocks remain in place across both the north and south access roads.

ANALYTICAL RESULTS – AUGUST 2011

No analytical results were received in August 2011.

DELIVERABLES – AUGUST 2011

No deliverables were submitted in August 2011.

TECHNICAL AND REGULATORY MEETINGS – AUGUST 2011

No technical or regulatory meetings occurred during August 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – SEPTEMBER AND OCTOBER 2011

Activities

The following activities are anticipated during September and October 2011:

• Submittal of the Completion Report to Ecology during October 2011.

Meetings

No regulatory meetings are scheduled for September or October 2011.

Deliverables

The following deliverable will be provided to Ecology during September and October 2011:

- Monthly Progress Report September 2011 by October 10, 2011; and
- Completion Report October 2011.

DEVIATIONS FROM SCHEDULE – SEPTEMBER AND OCTOBER 2011

No deviations from the schedule are anticipated for September and October 2011.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Kristin J. Darnell/E.I.T. Project Scientist

Amy Essig Desai Senior Project Manager

cc: Mr. E. Gilbert Leon Jr., EMJ Mr. William Joyce; Salter Joyce Ziker, PLLC Ms. Toni Azzola, City of Kent Mr. Sean Wells, City of Kent

October 10, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – SEPTEMBER 2011 EMJ SLAG SITE, KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document activities conducted during September 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during September 2011;
- Analytical results of samples collected during September 2011;
- A summary of deliverables submitted during September 2011;
- A summary of technical and regulatory meetings during September 2011;
- A summary of planned activities, meetings, and deliverables for October and November 2011; and
- A summary of deviations from the schedule anticipated for October and November 2011.

FIELD ACTIVITIES - SEPTEMBER 2011

Farallon inspected the fencing installed by Alpine Fence Company across the north access road.

ANALYTICAL RESULTS – SEPTEMBER 2011

No analytical results were received in September 2011.

DELIVERABLES – SEPTEMBER 2011

No deliverables were submitted in September 2011.

TECHNICAL AND REGULATORY MEETINGS – SEPTEMBER 2011

No technical or regulatory meetings occurred during September 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – OCTOBER AND NOVEMBER 2011

Activities

The following activities are anticipated during October and November 2011:

• Submittal of the Completion Report to Ecology during November 2011.

Meetings

No regulatory meetings are scheduled for October or November 2011.

Deliverables

The following deliverables will be provided to Ecology during October and November 2011:

- Monthly Progress Report October 2011 by November 10, 2011; and
- Completion Report November 2011.

DEVIATIONS FROM SCHEDULE – SEPTEMBER AND OCTOBER 2011

No deviations from the schedule are anticipated for October and November 2011.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

Kristin J. Damell, E.I.T. Project Scientist

cc: Mr. E. Gilbert Leon Jr., EMJ Mr. William Joyce; Salter Joyce Ziker, PLLC Ms. Toni Azzola, City of Kent Mr. Sean Wells, City of Kent

Amy Essig Desai Senior Project Manager

975 5th Avenue Northwest, Issaquah, Washington 98027 Tel: (425) 295-0800 Fax: (425) 295-0850 www.farallonconsulting.com

November 8, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – OCTOBER 2011 EMJ SLAG SITE, KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document activities conducted during October 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during October 2011;
- Analytical results of samples collected during October 2011;
- A summary of deliverables submitted during October 2011;
- A summary of technical and regulatory meetings during October 2011;
- A summary of planned activities, meetings, and deliverables for November and December 2011; and
- A summary of deviations from the schedule anticipated for November and December 2011.

FIELD ACTIVITIES – OCTOBER 2011

No field activities were conducted in October 2011.

ANALYTICAL RESULTS – OCTOBER 2011

No analytical results were received in October 2011.

DELIVERABLES – OCTOBER 2011

No deliverables were submitted in October 2011.

TECHNICAL AND REGULATORY MEETINGS – OCTOBER 2011

No technical or regulatory meetings occurred during October 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – NOVEMBER AND DECEMBER 2011

Activities

The following activities are anticipated during November and December 2011:

• Submittal of the Completion Report to Ecology during December 2011.

Meetings

No regulatory meetings are scheduled for November or December 2011.

Deliverables

The following deliverables will be provided to Ecology during November and December 2011:

- Monthly Progress Report November 2011 by December 10, 2011; and
- Completion Report December 2011.

DEVIATIONS FROM SCHEDULE – OCTOBER AND NOVEMBER 2011

No deviations from the schedule are anticipated for November and December 2011.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C

Kristin J. Darnel E.I.T. Project Scientist

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

Amy Essig Desai Senior Project Manager

975 5th Avenue Northwest, Issaquah, Washington 98027 Tel: (425) 295-0800 Fax: (425) 295-0850 www.farallonconsulting.com

December 9, 2011

Mr. David South Washington State Department of Ecology 3190 160th Avenue Southeast Bellevue, Washington 98009

RE: MONTHLY PROGRESS REPORT – NOVEMBER 2011 EMJ SLAG SITE, KENT, WASHINGTON CONSENT DECREE NO. 95-2-15301-1 FARALLON PN: 831-022

Dear Mr. South:

Farallon Consulting, L.L.C. (Farallon) has prepared this monthly progress report to document activities conducted during November 2011 at the EMJ Slag Site in Kent, Washington (herein referred to as the Site). This monthly progress report was prepared in accordance with the requirements of Consent Decree No. 95-2-15301-1 dated June 22, 1995 between the Washington State Department of Ecology (Ecology) and Earle M. Jorgensen Company.

SCOPE OF WORK

This monthly progress report provides:

- A summary of field activities conducted during November 2011;
- Analytical results of samples collected during November 2011;
- A summary of deliverables submitted during November 2011;
- A summary of technical and regulatory meetings during November 2011;
- A summary of planned activities, meetings, and deliverables for December 2011 and January 2012; and
- A summary of deviations from the schedule anticipated for December 2011 and January 2012.

FIELD ACTIVITIES – NOVEMBER 2011

No field activities were conducted in November 2011.

ANALYTICAL RESULTS – NOVEMBER 2011

No analytical results were received in November 2011.

DELIVERABLES – NOVEMBER 2011

Other than the October 2011 Progress Report, no deliverables were submitted in November 2011.

TECHNICAL AND REGULATORY MEETINGS - NOVEMBER 2011

No technical or regulatory meetings occurred during November 2011.

PLANNED ACTIVITIES, MEETINGS, AND DELIVERABLES – DECEMBER 2011 AND JANUARY 2012

Activities

The following activity is anticipated during December 2011 and January 2012:

• Submittal of the Completion and Compliance Monitoring Report, Slag Disposal Beckwith Property Site, South 218th Street and 90th Avenue South, Kent, Washington to Ecology December 30, 2011.

Meetings

No regulatory meetings are scheduled for December 2011 or January 2012.

Deliverables

The following deliverables will be provided to Ecology during December 2011 and January 2012:

- Monthly Progress Report December 2011 by January 10, 2012; and
- Completion Report December 30, 2011.

DEVIATIONS FROM SCHEDULE – DECEMBER 2011 AND JANUARY 2012

No deviations from the schedule are anticipated for December 2011 and January 2012.

CLOSING

Farallon trusts that this monthly progress report provides sufficient information for your needs. If you have questions regarding this project, please contact either of the undersigned at (425) 295-0800.

Sincerely,

Farallon Consulting, L.L.C.

imta

Kristin J. Darnell, E.I.T. Project Scientist

cc: Mr. E. Gilbert Leon Jr., EMJ
 Mr. William Joyce; Salter Joyce Ziker, PLLC
 Ms. Toni Azzola, City of Kent
 Mr. Sean Wells, City of Kent

Senior Project Manager

APPENDIX H WASTE DISPOSAL DOCUMENTATION

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA

Day of Week	Date	Loads Recv'd	Net Tons
Friday	8/27/2010	57	1755.21
Monday	8/30/2010	53	1774.67
Tuesday	8/31/2010	66	2063.78
Wednesday	9/1/2010	88	2811.10
Thursday	9/2/2010	86	2718.53
Friday	9/3/2010	44	1351.25
Tuesday	9/7/2010	5	163.89
Tuesday	9/14/2010	88	2835.35
Wednesday	9/15/2010	68	2239.36
Wednesday	9/22/2010	2	63.66
Thursday	9/23/2010	72	2319.95
Friday	9/24/2010	66	2112.15
Monday	9/27/2010	57	1892.15
Tuesday	9/28/2010	29	846.28
Wednesday	9/29/2010	1	30.27
Thursday	9/30/2010	61	1890.87
Friday	10/1/2010	13	393.65
Tuesday	10/5/2010	17	526.74
Wednesday	10/6/2010	34	1064.33
Thursday	10/7/2010	41	1300.86
Friday	10/8/2010	2	72.46
Wednesday	10/13/2010	43	1398.63
Thursday	10/14/2010	63	2027.49
Friday	10/15/2010	26	769.28
Monday	10/18/2010	11	329.14
Wednesday	10/27/2010	11	211.69
Thursday	10/28/2010	18	304.11
Friday	10/29/2010	18	317.56
Monday	11/1/2010	3	45.50
Wednesday	11/3/2010	14	226.71
Monday	11/15/2010	1	19.18
Tuesday	11/16/2010	2	37.31

35913.11

1160

Thank You, Lori Mercer Scale Attendant Waste Management - ASRF Phone: 206-763-5025

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 8/27/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
8/27/2010 8:12	21410	1538	99480	40140	59340	29.67
8/27/2010 8:07	21409	BW8	104100	39180	64920	32.46
8/27/2010 8:20	21411	1530	102300	39700	62600	31.30
8/27/2010 8:24	21412	1524	102300	39920	62380	31.19
8/27/2010 8:28	21414	1526	104080	39860	64220	32.11
8/27/2010 8:34	21415	BW16	108280	38940	69340	34.67
8/27/2010 8:38	21416	BW95	101960	45960	56000	28.00
8/27/2010 8:43	21417	BW1	121720	43360	78360	39.18
8/27/2010 9:21	21420	BW8	112260	39180	73080	36.54
8/27/2010 9:23	21421	1538	104740	40140	64600	32.30
8/27/2010 9:32	21423	1530	107860	39700	68160	34.08
8/27/2010 9:39	21425	1524	103380	39920	63460	31.73
8/27/2010 9:42	21426	1526	107660	39860	67800	33.90
8/27/2010 9:36	21424	1176	103740	38660	65080	32.54
8/27/2010 9:58	21429	BW16	111960	38940	73020	36.51
8/27/2010 10:07	21431	BW01	110120	43360	66760	. 33.38
8/27/2010 10:14	21433	C44	99540	40520	59020	29.51
8/27/2010 10:18	21434	BW95	96920	45960	50960	25.48
8/27/2010 10:34	21437	BW8	98700	39180	59520	29.76
8/27/2010 10:37	21438	1538	96120	40140	55980	27.99
8/27/2010 10:44	21439	1530	100200	39700	60500	30.25
8/27/2010 10:50	21441	1524	101860	39920	61940	30.97
8/27/2010 10:52	21442	l176	96320	38660	57660	28.83
8/27/2010 11:02	21444	1526	100480	39860	60620	30.31
8/27/2010 11:21	21445	BW16	96900	38940	57960	28.98
8/27/2010 11:31	21447	BW01	99760	43360	56400	28.20
8/27/2010 11:45	21450	C44	101920	40520	61400	30.70
8/27/2010 11:51	21451	BW95	97620	45960	51660	25.83
8/27/2010 11:53	21452	BW8	103460	39180	64280	32.14
8/27/2010 11:58	21453	1538	100700	40140	60560	30.28
8/27/2010 12:05	21455	1530	105320	39700	65620	32.81
8/27/2010 12:12	21456	1524	102140	39920	62220	31.11
8/27/2010 12:18	21457		102280	38660	63620	31.81

8/27/2010 12:22	21458	1526	98800	39860	58940	29.47
8/27/2010 13:03	21461	BW16	99580	38940	60640	30.32
8/27/2010 13:24	21465	BW01	107140	43360	63780	31.89
8/27/2010 13:26	21466	BW8	105320	39180	66140	33.07
8/27/2010 13:28	21467	C44	97400	40520	56880	28.44
8/27/2010 13:34	21469	BW95	101700	45960	55740	27.87
8/27/2010 13:37	21470	1538	96760	40140	56620	28.31
8/27/2010 13:39	21471	1530	96200	39700	56500	28.25
8/27/2010 13:51	21472	1524	95980	39920	56060	28.03
8/27/2010 13:53	21473	1176	99920	38660	61260	30.63
8/27/2010 13:58	21474	1526	99960	39860	60100	30.05
8/27/2010 14:25	21477	BW16	102380	38940	63440	31.72
8/27/2010 14:51	21478	BW8	101220	39180	62040	31.02
8/27/2010 14:56	21479	. BW01	116720	43360	73360	36.68
8/27/2010 14:57	21480	BW95	100320	45960	54360	27.18
8/27/2010 15:04	21481	1538	92340	40140	52200	26.10
8/27/2010 15:12	21482	1530	99120	39700	59420	29.71
8/27/2010 15:15	21483	1524	95700	39920	55780	27.89
8/27/2010 15:19	21485	1526	107900	39860	68040	34.02
8/27/2010 15:24	21486	1176	93420	38660	54760	27.38
8/27/2010 15:28	21487	I588T	106040	39420	66620	33.31
8/27/2010 15:31	21488	1568	103800	39100	64700	32.35
8/27/2010 16:00	21489	I590T	95860	39320	56540	28.27
8/27/2010 16:02	21490	I586T	97120	39660	57460	28.73

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 8/30/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
8/30/2010 7:32	21491	1538	111920	40140	71780	35.89
8/30/2010 7:39	21494	1524	96380	39920	56460	28.23
8/30/2010 7:43	21495	1528	112620	39160	73460	36.73
8/30/2010 7:46	21496	1526	107440	39860	67580	33.79
8/30/2010 7:56	21499	I586T	110100	39660	70440	35.22
8/30/2010 8:11	21500	BW01	119300	43360	75940	37.97
8/30/2010 8:25	21502	1584	100100	39880	60220	30.11
8/30/2010 8:20	21501	1158	103500	37540	65960	32.98
8/30/2010 8:45	21505	1538	107560	40140	67420	33.71
8/30/2010 8:55	21506	1524	110140	39920	70220	35.11
8/30/2010 9:00	21507	1526	104500	39860	64640	32.32
8/30/2010 9:01	21508	1528	112460	39160	73300	36.65
8/30/2010 9:20	21512	I586T	103600	39660	63940	31.97
8/30/2010 9:13	21509	R24	107720	38780	68940	34.47
8/30/2010 9:19	21510	R30	103620	39360	64260	32.13
8/30/2010 9:37	21516	BW01	114140	43360	70780	35.39
8/30/2010 9:41	21517	1158	104520	37540	66980	33.49
8/30/2010 9:27	21514	R731	114820	39780	75040	37.52
8/30/2010 9:50	21519	1584	106060	39880	66180	33.09
8/30/2010 9:56	21520	1538	105120	40140	64980	32.49
8/30/2010 10:01	21521	1524	111000	39920	71080	35.54
8/30/2010 10:04	21522	1528	106040	39160	66880	33.44
8/30/2010 10:40	21527	R24	107180	38780	68400	34.20
8/30/2010 10:42	21528	R30	100540	39360	61180	30.59
8/30/2010 10:53	21530	BW01	106940	43360	63580	31.79
8/30/2010 10:57	21532	1158	104900	37540	67360	33.68
8/30/2010 11:04	21533	R731	99840	39780	60060	30.03
8/30/2010 11:07	21534	1584	103040	39880	63160	31.58
8/30/2010 11:10	21536	1538	103600	40140	63460	31.73
8/30/2010 11:15	21537	1524	105740	39920	65820	32.91
8/30/2010 11:16	21538	1528	105140	39160	65980	32.99
8/30/2010 11:58	21544	R24	110480	38780	71700	35.85
8/30/2010 12:04	21545	R30	101120	39360	61760	30.88

8/30/2010 12:07	21546	BW01	110960	43360	67600	33.80
8/30/2010 12:16	21547	1158	109960	37540	72420	36.21
8/30/2010 12:32	21549	R731	108560	39780	68780	34.39
8/30/2010 12:34	21550	1584	100100	39880	60220	30.11
8/30/2010 12:36	21551	1538	109380	40140	69240	34.62
8/30/2010 12:44	21553	1524	109380	39920	69460	34.73
8/30/2010 12:46	21554	1528	106980	39160	67820	33.91
8/30/2010 13:34	21557	R24	117120	38780	78340	39.17
8/30/2010 13:39	21558	R30	111840	39360	72480	36.24
8/30/2010 13:41	21559	BW01	106000	43360	62640	31.32
8/30/2010 13:56	21562	1158	99720	37540	62180	31.09
8/30/2010 14:03	21564	R731	105380	39780	65600	32.80
8/30/2010 14:05	21565	1584	97180	39880	57300	28.65
8/30/2010 14:09	21566	1538	102220	40140	62080	31.04
8/30/2010 14:23	21567	1528	100020	39160	60860	30.43
8/30/2010 15:03	21570	R24	121040	38780	82260	41.13
8/30/2010 15:05	21571	R30	102320	39360	62960	31.48
8/30/2010 15:07	21572	BW01	103940	43360	60580	30.29
8/30/2010 15:16	21574	1158	111520	37540	73980	36.99
8/30/2010 15:31	21575	1584	103480	39880	63600	31.80

AK Street Reload Facility

70 South Alaska Street

Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 8/31/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
8/31/2010 7:51	21580	1538	103840	40140	63700	31.85
8/31/2010 7:59	21582	1530	103360	39700	63660	31.83
8/31/2010 8:01	21583	1158	97340	37540	59800	29.90
8/31/2010 8:03	21584	1528	103820	39160	64660	32.33
8/31/2010 8:35	21588	1178	108640	39560	69080	34.54
8/31/2010 8:47	21592	BW95	104060	45960	58100	29.05
8/31/2010 8:54	21595	R30	104160	39360	64800	32.40
8/31/2010 8:44	21591	R22	96700	35940	60760	30.38
8/31/2010 9:19	21599	1538	108240	40140	68100	34.05
8/31/2010 9:23	21600	R731	108920	39780	69140	34.57
8/31/2010 9:33	21602	1524	107140	39920	67220	33.61
8/31/2010 9:39	21603	1528	105040	39160	65880	32.94
8/31/2010 9:41	21604	1158	110240	37540	72700	36.35
8/31/2010 9:54	21605	BW01	105860	43360	62500	31.25
8/31/2010 10:11	21608	R22	89200	35940	53260	26.63
8/31/2010 10:18	21611	1178	98580	39560	59020	29.51
8/31/2010 10:23	21612	BW95	103480	45960	57520	28.76
8/31/2010 10:28	21614	BW8	110280	39180	71100	35.55
8/31/2010 10:40	21618	R30	106720	39360	67360	33.68
8/31/2010 10:46	21619	1538	101980	40140	61840	30.92
8/31/2010 11:05	21624	R731	102780	39780	63000	31.50
8/31/2010 11:16	21626	BW16	100200	38940	61260	30.63
8/31/2010 11:22	21628	1524	103780	39920	63860	31.93
8/31/2010 11:26	21629	1528	101500	39160	62340	31.17
8/31/2010 11:40	21632	1158	101160	37540	63620	31.81
8/31/2010 11:43	21633	BW01	103200	43360	59840	29.92
8/31/2010 11:53	21635	R22	85340	35940	49400	24.70
8/31/2010 12:00	21637	1532	99600	39860	59740	29.87
8/31/2010 12:10	21640	1178	107380	39560	67820	33.91
8/31/2010 12:14	21641	BW95	93580	45960	47620	23.81
8/31/2010 12:16	21642	BW8	97960	39180	58780	29.39
8/31/2010 12:30	21643	R30	111740	39360	72380	36.19
8/31/2010 12:32	21644	1538	102260	40140	62120	31.06

8/31/2010 12:48	21648	I588T	105500	39420	66080	33.04
8/31/2010 12:58	21650	BW16	97800	38940	58860	29.43
8/31/2010 13:03	21651	I590T	105780	39320	66460	33.23
8/31/2010 13:09	21653	1524	103500	39920	63580	31.79
8/31/2010 13:16	21655	1528	100060	39160	60900	30.45
8/31/2010 13:29	21659	1158	94380	37540	56840	28.42
8/31/2010 13:34	21660	BW01	105460	43360	62100	31.05
8/31/2010 13:37	21661	R731	103660	39780	63880	31.94
8/31/2010 13:40	21662	R22	89780	35940	53840	26.92
8/31/2010 13:44	21663	1532	101420	39860	61560	30.78
8/31/2010 14:07	21666	1178	103900	39560	64340	32.17
8/31/2010 14:10	21667	BW95	96560	45960	50600	25.30
8/31/2010 14:12	21668	1176	101440	38660	62780	31.39
8/31/2010 14:14	21669	R30	104900	39360	65540	32.77
8/31/2010 14:30	21672	T21	106860	41300	65560	32.78
8/31/2010 14:32	21673	1588T	93240	39420	53820	26.91
8/31/2010 14:40	21674	T19	99360	37000	62360	31.18
8/31/2010 14:43	21675	SS119	112100	40500	71600	35.80
8/31/2010 14:46	21676	1590T	101820	39320	62500	31.25
8/31/2010 14:49	21677	1524	96460	39920	56540	28.27
8/31/2010 14:53	21679	1526	103880	39860	64020	32.01
8/31/2010 14:56	21680	1528	105300	39160	66140	33.07
8/31/2010 14:58	21681	SS101	96980	37420	59560	29.78
8/31/2010 15:02	21682	TM43	90800	35620	55180	27.59
8/31/2010 15:09	21683	R515	103040	38060	64980	32.49
8/31/2010 15:21	21685	R106	108620	38780	69840	34.92
8/31/2010 15:25	21686	1158	108200	37540	70660	35.33
8/31/2010 15:31	21688	BW01	107500	43360	64140	32.07
8/31/2010 15:35	21689	1532	103360	39860	63500	31.75
8/31/2010 15:40	21690	1530	101400	39700	61700	30.85
8/31/2010 15:43	21691	R22	95640	35940	59700	29.85
8/31/2010 15:48	21692	1178	109200	39560	69640	34.82
8/31/2010 15:50	21693	BW95	102740	45960	56780	28.39

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/1/10

	Voided / Old	New / Revised						
Time In	Ticket No.	Ticket No.	Vehicle ID	Gross (lb)	Tare (Ib)	Net (lb)	Net (ton)	Ļ
9/1/2010 7:22	21695	21835		107140	40520	66620	33.31	
9/1/2010 7:37	21697	21837	C43	101060	40300	60760	30.38	
9/1/2010 7:40	21698	21840	1538	104540	40140	64400	32.20	
9/1/2010 7:42	21699	21842	1530	105980	39700	66280	33.14	
9/1/2010 7:44	21700	21846	1524	103760	39920	63840	31.92	
9/1/2010 7:47	21701	21848	1528	109500	39160	70340	35.17	
9/1/2010 7:50	21702	21849	1160	106320	38480	67840	33.92]
9/1/2010 8:00	21704	21850	BW01	107600	43360	64240	32.12	
9/1/2010 8:03	21705	21852	BW95	105340	45960	59380	29.69	9.5
9/1/2010 8:11	21707	21853	BW16	107920	38940	68980	34.49]
9/1/2010 8:26	21711	21855	R30	105220	39360	65860	32.93	1
9/1/2010 8:38	21713	21858	C44	100040	40520	59520	29.76	1
9/1/2010 8:42	21714	21859	R22	91060	35940	55120	27.56	1
9/1/2010 8:47	21715	21861	1538	102400	40140	62260	31.13	1
9/1/2010 8:50	21716	21863	R731	108400	39780	68620	34.31	1
9/1/2010 8:58	21717	21864	C43	101080	40300	60780	30.39	was 30.33
9/1/2010 9:00	21718	21867	1530	106660	39700	66960	33.48	1
9/1/2010 9:02	21719	21870	1524	94700	39920	54780	27.39	1
9/1/2010 9:08	21721	21871	1528	109000	39160	69840	34.92	1
9/1/2010 9:10	21722	21874	1160	102600	38480	64120	32.06	1
9/1/2010 9:12	21723	21875	BW01	106160	43360	62800	31.40	1
9/1/2010 9:22	21726	21876	BW95	94180	45960	48220	24.11	1
9/1/2010 9:35	21728	21877	BW16	106460	38940	67520	33.76	1
9/1/2010 9:45	21730	21878	R30	103380	39360	64020	32.01	1
9/1/2010 9:54	21731	21879	C44	108580	40520	68060	34.03	1
9/1/2010 9:57	21732	21880	BW8	100200	39180	61020	30.51	s
9/1/2010 10:02	21734	21883	1538	106220	40140	66080	33.04	1
9/1/2010 10:05	21735	21884	R22	90020	35940	54080	27.04	1
9/1/2010 10:13	21737	21885	C43	105740	40300	65440	32.72	1
9/1/2010 10:16	21738	21886	1530	101700	39700	62000	31.00	
9/1/2010 10:18	21739	21887	1524	99480	39920	59560	29.78	
9/1/2010 10:23	21740	21888	1528	105380	39160	66220	33.11	1
9/1/2010 10:33	21741	21889		105900	38480	67420	33.71	1
9/1/2010 10:35	21742	21891		106460	39780	66680	33.34	1
9/1/2010 10:47	21744	21893		114560	43360	71200	35.60	1
9/1/2010 10:50	21745	21894		95420	45960	49460	24.73	1
9/1/2010 10:59	21747	21896		112340	38940	73400	36.70	1

9/1/2010 11:01	21748	21898	R30	104980	39360	65620	32.81
9/1/2010 11:07	21749	21899	BW8	114260	39180	75080	37.54
9/1/2010 11:12	21750	21900	C44	103920	40520	63400	31.70
9/1/2010 11:18	21751	21901	1538	102380	40140	62240	31.12
9/1/2010 11:21	21752	21902	C43	99060	40300	58760	29.38
9/1/2010 11:25	21753	21903	R22	96080	35940	60140	30.07
9/1/2010 11:31	21755	21904	1530	111640	39700	71940	35.97
9/1/2010 11:33	21756	21905	1524	106060	39920	66140	33.07
9/1/2010 11:40	21758	21906	1528	114720	39160	75560	37.78
9/1/2010 11:47	21760	21907	1160	101200	38480	62720	31.36
9/1/2010 11:55	21761	21908	BW01	102040	43360	58680	29.34
9/1/2010 11:58	21762	21909	R731	116280	39780	76500	38.25
9/1/2010 12:14	21763	21932	BW95	111040	45960	65080	32.54
9/1/2010 12:23	21764	21933		102300	38940	63360	31.68
9/1/2010 12:25	21765	21935		102660	39360	63300	31.65
9/1/2010 12:27	21766	21936		105860	39180	66680	33.34
9/1/2010 12:29	21767	21937		104360	40520	63840	- 31.92
9/1/2010 12:34	21769	21938		106640	40140	66500	33.25
9/1/2010 12:37	21770	21941		105460	40300	65160	32.58
9/1/2010 12:45	21772	21945		98020	35940	62080	31.04
9/1/2010 12:53	21773	21946		111580	39700	71880	35.94
9/1/2010 12:55	21774	21948		107360	39920	67440	33.72
9/1/2010 12:57	21775	21951		102600	39160	63440	31.72
9/1/2010 13:10	21776	21952	-	103120	38480	64640	32.32
9/1/2010 13:19	21777	21952		103320	43360	59960	29.98
9/1/2010 13:27	21779	21958		99840	38940	60900	30.45
9/1/2010 13:29	21780	21959		105760	45960	59800	29.90
9/1/2010 13:32	21781	21933		108760	39780	68980	34.49
9/1/2010 13:35	21782	21970		100040	39360	60680	30.34
9/1/2010 13:38	21783	21972		98340	39180	59160	29.58
9/1/2010 13:46	21784	21972		97640	40520	57120	29.58
9/1/2010 13:54	21786	21973	All and the data and the second s	105520	40140	65380	32.69
9/1/2010 13:58	21787	21975		95820	35940	59880	29.94
9/1/2010 14:03	21789	21976		107460	39700	67760	33.88
9/1/2010 14:05	21790	21977		97500	40300	57200	28.60
9/1/2010 14:07	21791	21978		104040	39920	64120	32.06
9/1/2010 14:10	21792	21978		105220	39160	66060	33.03
9/1/2010 14:21	21792	21975		106580	38480	68100	33.03
9/1/2010 14:38	21795	21980		103900	43360	60540	34.03
9/1/2010 14:43	21797	21981		102560	38940	63620	
9/1/2010 14:50	21798	21982		99960	45960	54000	31.81
9/1/2010 14:55	21799	21983		100160	39360	60800	27.00
9/1/2010 14:59	21799	21984		106240	39180		30.40
9/1/2010 15:11	21800	21985				67060	33.53
9/1/2010 15:20	21802	21986		101280	40520	60760	30.38
9/1/2010 15:20				104660	40140	64520	32.26
	21805	21988		95760	35940 39700	59820	29.91
9/1/2010 15:40	21806	21989		106260		66560	33.28
9/1/2010 15:42	21807	21990		102480	39160	63320	31.66
9/1/2010 15:52	21808	21991		109280	39920	69360	34.68
9/1/2010 15:55	21809	21992		97060	40300	56760	28.38
9/1/2010 16:06	21810	21993	1160	104560	38480	66080	33.04

2811.10

Please note original voided ticket # 21717 had the wrong truck number, was R43 (hence wrong tare weight) I corrected that when I re-issued the ticket (revised ticket # 21864) to the correct truck number (C43) and tare weight. The billing for these loads will refer to the revised (corrected) ticket numbers.

Please contact me if you have any questions at all.

Thank You,. Lori Mercer 206-763-5025

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/2/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
9/2/2010 7:32	21811	BW8	98480	39180	59300	29.65
9/2/2010 7:34	21812	BW16	96840	38940	57900	28.95
9/2/2010 7:38	21813	1538	96540	40140	56400	28.20
9/2/2010 7:43	21814	SS101	87340	37420	49920	24.96
9/2/2010 7:46	21815	R30	96860	39360	57500	28.75
9/2/2010 7:55	21817	R22	90400	35940	54460	27.23
9/2/2010 8:02	21820	TM43	89800	35620	54180	27.09
9/2/2010 7:52	21816	R21	102020	42280	59740	29.87
9/2/2010 8:08	21821	R24	92580	38780	53800	26.90
9/2/2010 8:13	21822	CT363	97160	41500	55660	27.83
9/2/2010 8:15	21823	1530	99000	39700	59300	29.65
9/2/2010 8:18	21824	R731	100420	39780	60640	30.32
9/2/2010 8:20	21825	TM37	88160	35920	52240	26.12
9/2/2010 8:01	21819	R23	91180	40660	50520	25.26
9/2/2010 8:25	21826	T21	105960	41300	64660	32.33
9/2/2010 8:45	21827	BW8	104740	39180	65560	32.78
9/2/2010 8:47	21828	BW16	112580	38940	73640	36.82
9/2/2010 8:51	21829	1538	108440	40140	68300	34.15
9/2/2010 8:55	21831	SS101	104160	37420	66740	33.37
9/2/2010 9:01	21832	R30	102260	39360	62900	31.45
9/2/2010 9:10	21833	R21	113640	42280	71360	35.68
9/2/2010 9:12	21834	R22	106520	35940	70580	35.29
9/2/2010 9:17	21836	SS103	94580	35580	59000	29.50
9/2/2010 9:23	21838	TM43	94580	35620	58960	29.48
9/2/2010 9:32	21843	R23	101620	40660	60960	30.48
9/2/2010 9:35	21844	R24	101760	38780	62980	31.49
9/2/2010 9:38	21845	CT363	109420	41500	67920	33.96
9/2/2010 9:41	21847	1530	105440	39700	65740	32.87
9/2/2010 9:51	21851	R731	113660	39780	73880	36.94
9/2/2010 9:55	21854	TM37	95540	35920	59620	29.81
9/2/2010 9:57	21856	T21	101140	41300	59840	29.92
9/2/2010 9:58	21857	BW8	105360	39180	66180	33.09
9/2/2010 10:02	21860	BW16	103780	38940	64840	32.42

9/2/2010 10:04	21862	1528	105920	40140	65780	32.89	
9/2/2010 10:04	21862		96960	37420	59540	29.77	
9/2/2010 10:12	21869		107120	39360	67760	33.88	
9/2/2010 10:10	21805		109200	42280	66920	33.46	
9/2/2010 10:24	21873		97020	35940	61080	30.54	
9/2/2010 10:24	21881		90420	35580	54840	27.42	
9/2/2010 10:34	21882		93840	35620	58220	29.11	
9/2/2010 10:53	21890		100220	40660	59560	29.78	
9/2/2010 10:55	21892		107180	38780	68400	34.20	
9/2/2010 11:02	21897		106720	41500	65220	32.61	
9/2/2010 11:18	21910		115480	39780	75700	37.85	
9/2/2010 11:21	21911		112500	41300	71200	35.60	
9/2/2010 11:22	21912		110940	39180	71760	35.88	
9/2/2010 11:27	21913		91780	35920	55860	27.93	
9/2/2010 11:29	21914		106640	38940	67700	33.85	
9/2/2010 11:32	21915		109140	40140	69000	34.50	
9/2/2010 11:52	21916		103320	37420	65900	32.95	
9/2/2010 11:58	21917		114460	39360	75100	37.55	
9/2/2010 12:11	21918		94460	35580	58880	29.44	
9/2/2010 12:15	21919		98700	35940	62760	31.38	
9/2/2010 12:17	21920		92720	35620	57100	28.55	
9/2/2010 12:20	21921		102780	40660	62120	31.06	
9/2/2010 12:30	21922	R24	111020	38780	72240	36.12	
9/2/2010 12:39	21923		99460	41500	57960	28.98	
9/2/2010 12:47	21924	T21	113660	41300	72360	36.18	
9/2/2010 12:48	21925	BW8	105440	39180	66260	33.13	a)
9/2/2010 12:54	21927	TM37	99220	35920	63300	31.65	
9/2/2010 12:58	21928	1538	99140	40140	59000	29.50	
9/2/2010 13:02	21929	. BW16	108540	38940	69600	34.80	
9/2/2010 13:07	21930	SS101	103480	37420	66060	33.03	
9/2/2010 13:08	21931	R731	107980	39780	68200	34.10	
9/2/2010 13:19	21934	1530	104680	39700	64980	32.49	
9/2/2010 13:25	21939	SS103	95480	35580	59900	29.95	
9/2/2010 13:28	21940	R22	98080	35940	62140	31.07	
9/2/2010 13:36	21942	TM43	91160	35620	55540	27.77	
9/2/2010 13:43	21943	R23	99420	40660	58760	29.38	
9/2/2010 13:47	21944	R24	105520	38780	66740	33.37	
9/2/2010 13:55	21947	СТ363	98960	41500	57460	28.73	
9/2/2010 13:58	21949	T21	116060	41300	74760	37.38	
9/2/2010 14:11	21953	BW8	110140	39180	70960	35.48	
9/2/2010 14:17	21954	TM37	91560	35920	55640	27.82	
9/2/2010 14:20	21955	1538	102000	40140	61860	30.93	
9/2/2010 14:21	21956	BW16	104540	38940	65600	32.80	
9/2/2010 14:28	21960	SS101	103200	37420	65780	32.89	
9/2/2010 14:36	21961	R731	112380	39780	72600	36.30	
9/2/2010 14:38	21962	SS103	100180	35580	64600	32.30	
9/2/2010 14:42	21963	R22	99560	35940	63620	31.81	*
9/2/2010 14:49	21964	TM43	93940	35620	58320	29.16	
9/2/2010 14:51	21965	R23	98120	40660	57460	28.73	
9/2/2010 15:07	21966	R24	112240	38780	73460	36.73	
9/2/2010 15:09	21967	СТ363	101200	41500	59700	29.85	
9/2/2010 15:13	21968	T21	101880	41300	60580	30.29	

9/2/2010 15:16	21969	R21 108286	42280	66006	33.00
96 Loodo					2718.53
86 Loads					2/10.55

AK Street Reload Facility

70 South Alaska Street

Seattle, WA 98134 Phone: 206-763-5025

Filone. 200-703-302

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/3/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (Ib)	Net (ton)
9/3/2010 7:02	21994	C44	105180	40520	64660	32.33
9/3/2010 7:06	21995	SS22	93660	36340	57320	28.66
9/3/2010 7:20	21998	C43	106820	40300	66520	33.26
9/3/2010 7:25	21999	1538	107780	40140	67640	33.82
9/3/2010 7:27	22000	R23	96720	40660	56060	28.03
9/3/2010 7:37	22002	R515	103460	38060	65400	32.70
9/3/2010 7:39	22003	R30	110360	39360	71000	35.50
9/3/2010 7:48	22005	R22	91340	35940	55400	27.70
9/3/2010 7:51	22006	R21	99220	42280	56940	28.47
9/3/2010 7:54	22007	1530	105120	39700	65420	32.71
9/3/2010 7:56	22008	BW16	102980	38940	64040	32.02
9/3/2010 8:02	22010	BW01	107360	43360	64000	32.00
9/3/2010 8:04	22011	BW95	101020	45960	55060	27.53
9/3/2010 7:44	22004	R25	92160	37680	54480	27.24
9/3/2010 8:16	22013	R731	109220	39780	69440	34.72
9/3/2010 8:33	22016	C43	109820	40300	69520	34.76
9/3/2010 8:44	22017	R23	94200	40660	53540	26.77
9/3/2010 8:58	22019	R30	105080	39360	65720	32.86
9/3/2010 9:10	22020	R22	97020	35940	61080	30.54
9/3/2010 9:17	22021	R25	89680	37680	52000	26.00
9/3/2010 9:22	22023	R21	99160	42280	56880	28.44
9/3/2010 9:26	22024	BW16	107560	38940	68620	34.31
9/3/2010 9:51	22025	BW01	109900	43360	66540	33.27
9/3/2010 9:54	22026	BW95	105160	45960	59200	29.60
9/3/2010 10:10	22028	R731	104540	39780	64760	32.38
9/3/2010 10:35	22030	R23	102800	40660	62140	31.07
9/3/2010 10:42	22031	R30	99100	39360	59740	29.87
9/3/2010 10:44	22032	R22	92300	35940	56360	28.18
9/3/2010 10:49	22033	R25	100100	37680	. 62420	31.21
9/3/2010 11:05	22037	R21	102760	42280	60480	30.24
9/3/2010 11:09	22038	1530	104740	39700	65040	32.52
9/3/2010 11:12	22039	BW16	101600	38940 `	62660	31.33
9/3/2010 11:15	22040	BW01	106980	43360	63620	31.81

•

9/3/2010 11:26	22041	BW95	95280	45960	49320	24.66
9/3/2010 11:42	22042	R731	105100	39780	65320	32.66
9/3/2010 11:44	22043	R23	100200	40660	59540	29.77
9/3/2010 11:49	22044	R30	110940	39360	71580	35.79
9/3/2010 11:54	22045	R22	97160	35940	61220	30.61
9/3/2010 12:02	22046	R25	102200	37680	. 64520	32.26
9/3/2010 12:24	22047	1532	92100	39860	52240	26.12
9/3/2010 12:26	22048	R21	95760	42280	53480	26.74
9/3/2010 12:45	22049	BW16	105860	38940	66920	33.46
9/3/2010 12:49	22050	BW01	102920	43360	59560	29.78
9/3/2010 12:53	22051	BW95	101060	45960	55100	27.55

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/7/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (Ib)	Net (lb)	Net (ton)
9/7/2010 8:09	22057	1538	106060	40140	65920	32.96
9/7/2010 8:15	22058	1530	103160	39700	63460	31.73
9/7/2010 8:18	22059	BW8	102760	39180	63580	31.79
9/7/2010 8:22	22060	BW01	108460	43360	65100	32.55
9/7/2010 8:43	22063	R731	109500	39780	69720	34.86

5 Loads

AK Street Reload Facility

70 South Alaska Street Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/14/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
9/14/2010 7:27	22232	1538	110020	40140	69880	34.94
9/14/2010 7:41	22233	1524	106280	39920	66360	33.18
9/14/2010 7:44	22234	1526	111680	39860	71820	35.91
9/14/2010 7:55	22235	CT381	107160	41240	65920	32.96
9/14/2010 7:59	22236	1172	104400	38440	65960	32.98
9/14/2010 8:07	22237	R106	105640	38780	66860	33.43
9/14/2010 8:12	22238	C43	109620	40300	69320	34.66
9/14/2010 8:17	22239	BW8	108920	39180	69740	34.87
9/14/2010 8:20	22240	CT384	108740	42220	66520	33.26
9/14/2010 8:22	22241	BW16	110620	38940	71680	35.84
9/14/2010 8:27	22242	BW95	102920	45960	56960	28.48
9/14/2010 8:33	22243	TM43	95460	35620	59840	29.92
9/14/2010 8:36	22244	TM41	98480	35220	63260	31.63
9/14/2010 8:48	22246	SS100	93280	37340	55940	27.97
9/14/2010 8:50	22247	1538	108900	40140	68760	34.38
9/14/2010 8:56	22248	SS93	100280	36380	63900	31.95
9/14/2010 9:02	22250	1526	108320	39860	68460	34.23
9/14/2010 9:04	22251	1524	105380	39920	65460	32.73
9/14/2010 9:12	22252	C9	105580	36020	69560	34.78
9/14/2010 9:16	22253	CT381	108820	41240	67580	33.79
9/14/2010 9:18	22254	, R106	96840	38780	58060	. 29.03
9/14/2010 9:20	22255	1172	108620	38440	70180	35.09
9/14/2010 9:25	22256	C43	104140	40300	63840	31.92
9/14/2010 9:26	22257	BW8	105560	39180	66380	33.19
9/14/2010 9:28	22258	CT384	114360	42220	72140	36.07
9/14/2010 9:47	22259	TM43	95280	35620	59660	29.83
9/14/2010 10:05	22261	TM41	89420	35220	54200	27.10
9/14/2010 10:07	22262	1538	100460	40140	60320	30.16
9/14/2010 10:08	22263	BW95	97600	45960	51640	25.82
9/14/2010 10:16	22264	SS93	88840	36380	52460	26.23
9/14/2010 10:21	22265	SS100	95240	37340	57900	28.95
9/14/2010 10:22	22266	1526	100540	39860	60680	30.34
9/14/2010 10:25	22267	1524	112420	39920	72500	36.25

9/14/2010 10:33	22268	CT381	101940	41240	60700	30.35
9/14/2010 10:38	22269		100000	36020	63980	31.99
9/14/2010 10:41	22270	-	100040	38780	61260	30.63
9/14/2010 10:43	22271		102880	38440	64440	32.22
9/14/2010 10:52	22272		102320	39180	63140	31.57
9/14/2010 10:52	22272		102320	42220	61200	30.60
9/14/2010 11:00	22273		100760	40300	60460	30.23
9/14/2010 11:03	22274		93600	35620	57980	28.99
9/14/2010 11:23	22273		112300	40140	72160	36.08
9/14/2010 11:35	22278		88900	35220	53680	26.84
9/14/2010 11:42	22280		91620	37340	53080	20.84
	22282		94160	36380	57780	28.89
9/14/2010 11:47	22284				69080	
9/14/2010 11:49			108940	39860		34.54
9/14/2010 11:52	22286		100960	39920	61040	30.52
9/14/2010 11:55	22287	1	108260	41240	67020	33.51
9/14/2010 12:06	22289		99500	36020	63480	31.74
9/14/2010 12:09	22290		96640	38780	57860	28.93
9/14/2010 12:12	22291		100900	38440	62460	31.23
9/14/2010 12:16	22292		108980	39180	69800	34.90
9/14/2010 12:20	22293		96760	45960	50800	25.40
9/14/2010 12:39	22295		103020	42220	60800	30.40
9/14/2010 12:43	22296		103540	40300	63240	31.62
9/14/2010 12:47	22297		91220	35620	55600	27.80
9/14/2010 12:57	22298		105080	40140	64940	32.47
9/14/2010 13:06	22301		99180	35220	63960	31.98
9/14/2010 13:09	22303		97400	37340	60060	30.03
9/14/2010 13:12	22304		97880	36380	61500	30.75
9/14/2010_13:16	22305		108600	39860	68740	34.37
9/14/2010 13:19	22306		104820	39920	64900	32.45
9/14/2010 13:25	22307	CT381	113480	41240	72240	36.12
9/14/2010 13:30	22308	C9	94740	36020	58720	29.36
9/14/2010 13:33	22309		102360	38780	63580	31.79
9/14/2010 13:38	22310	1172	105600	38440	67160	33.58
9/14/2010 13:58	22312	CT384	109040	42220	66820	33.41
9/14/2010 14:03	22313	C43	105640	40300	65340	32.67
9/14/2010 14:05	22314	TM43	105180	35620	69560	34.78
9/14/2010 14:07	22315	BW95	97280	45960	51320	25.66
9/14/2010 14:10	22316	1538	115540	40140	75400	37.70
9/14/2010 14:26	22318	TM41	103720	35220	68500	34.25
9/14/2010 14:42	22319	SS100	103020	37340	65680	32.84
9/14/2010 14:46	22320	1526	109200	39860	69340	34.67
9/14/2010 14:49	22321	SS93	98140	36380	61760	30.88
9/14/2010 14:54	22322	1524	114920	39920	75000	37.50
9/14/2010 14:57	22323	CT381	111000	41240	69760	34.88
9/14/2010 15:02	22324	C9	100460	36020	64440	32.22
9/14/2010 15:06	22325	BW16	109860	38940	70920	35.46
9/14/2010 15:08	22326	R106	107100	38780	68320	34.16
9/14/2010 15:11	22327	1172	108360	38440	69920	34.96
9/14/2010 15:20	22329		115040	40960	74080	37.04
9/14/2010 15:22	22330		102220	35620	66600	33.30
9/14/2010 15:26	22331		110560	40500	70060	35.03
9/14/2010 15:28	22332		110540	40140	70400	35.20

9/14/2010 15:29	22333	C43 104560	40300	64260	32.13
9/14/2010 15:36	22334	BW95 112940	45960	66980	33.49
9/14/2010 15:13	22341	CT384 106680	42220	64460	32.23

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/15/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
9/15/2010 7:32	22343	C43	101060	40300	60760	30.38
9/15/2010 7:37	22344	SS22	97740	36340	61400	30.70
9/15/2010 7:41	22345	1538	105460	40140	65320	32.66
9/15/2010 7:44	22346	1528	104540	39160	65380	32.69
9/15/2010 7:46	22347	1172	98760	38440	60320	30.16
9/15/2010 7:49	22348	C44	104500	40520	63980	31.99
9/15/2010 7:58	22350	W48	106360	35180	71180	35.59
9/15/2010 8:11	22353	W49	108780	35580	73200	36.60
9/15/2010 8:16	22354	1158	108640	37540	71100	35.55
9/15/2010 8:22	22355	W50	106240	35420	70820	35.41
9/15/2010 8:27	22356	BW8	107420	39180	68240	34.12
9/15/2010 8:29	22357	BW95	102580	45960	56620	28.31
9/15/2010 8:33	22358	BW01	111260	43360	67900	33.95
9/15/2010 8:40	22360	BW16	105860	38940	66920	33.46
9/15/2010 8:45	22361	1530	106120	39700	66420	33.21
9/15/2010 8:49	22362	C43	115140	40300	74840	37.42
9/15/2010 8:54	22365	SS22	105660	36340	69320	34.66
9/15/2010 8:57	22366	1538	104380	40140	64240	32.12
9/15/2010 9:00	22367	1528	112320	39160	73160	36.58
9/15/2010 9:06	22368	C44	111260	40520	70740	35.37
9/15/2010 9:25	22369	W48	105320	35180	70140	35.07
9/15/2010 9:34	22370	1524	108120	39920	68200	34.10
9/15/2010 9:38	22371	1158	94360	37540	56820	28.41
9/15/2010 9:42	22373	W49	105900	35580	70320	35.16
9/15/2010 9:44	22374	BW8	100420	39180	61240	30.62
9/15/2010 9:48	22376	BW95	86660	45960	40700	20.35
9/15/2010 9:51	22377	W50	101380	35420	65960	32.98
9/15/2010 9:53	22378	BW01	103640	43360	60280	30.14
9/15/2010 9:58	22379	BW16	100860	38940	61920	30.96
9/15/2010 10:07	22380	1530	104540	39700	64840	32.42
9/15/2010 10:20	22381	SS22	97300	36340	60960	30.48
9/15/2010 10:22	22382	1538	102320	40140	62180	31.09
9/15/2010 10:27	22383	1528	103540	39160	64380	32.19

9/15/2010 10:39	22385	W48	99240	35180	64060	32.03
9/15/2010 10:55	22388	1524	105200	39920	65280	32.64
9/15/2010 11:06	22392	1158	103800	37540	66260	33.13
9/15/2010 11:10	22394	W49	96940	35580	61360	30.68
9/15/2010 11:13	22395	BW8	109460	39180	70280	35.14
9/15/2010 11:16	22396	BW95	98460	45960	52500	26.25
9/15/2010 11:22	22397	BW01	111320	43360	67960	33.98
9/15/2010 11:27	22398	BW16	106640	38940	67700	33.85
9/15/2010 11:32	22399	1530	108140	39700	68440	34.22
9/15/2010 11:36	22400	SS22	98520	36340	62180	31.09
9/15/2010 11:38	22401	1538	106460	40140	66320	33.16
9/15/2010 11:43	22402	1528	106260	39160	67100	33.55
9/15/2010 12:06	22406	1524	108300	39920	68380	34.19
9/15/2010 12:29	22409	1158	108680	37540	71140	35.57
9/15/2010 12:47	22411	BW8	105620	39180	66440	33.22
9/15/2010 12:50	22412	BW95	103740	45960	57780	28.89
9/15/2010 12:54	22413	BW01	111420	43360	68060	34.03
9/15/2010 12:57	22414	BW16	109240	38940	70300	35.15
9/15/2010 13:13	22415	SS22	94140	36340	57800	28.90
9/15/2010 13:16	22416	1530	105700	39700	66000	33.00
9/15/2010 13:18	22417	1538	103340	40140	63200	31.60
9/15/2010 13:19	22418	1528	104600	39160	65440	32.72
9/15/2010 13:28	22421	1524	106100	39920	66180	33.09
9/15/2010 13:38	22423	1158	109500	37540	71960	35.98
9/15/2010 14:05	22425	BW8	105700	39180	66520	33.26
9/15/2010 14:11	22427	BW95	100300	45960	54340	27.17
9/15/2010 14:16	22428	BW01	109000	43360	65640	32.82
9/15/2010 14:18	22429	BW16	107520	38940	68580	34.29
9/15/2010 14:32	22430	SS22	105720	36340	69380	34.69
9/15/2010 14:34	22431	1530	106480	39700	66780	33.39
9/15/2010 14:38	22432	1538	116760	40140	76620	38.31
9/15/2010 14:42	22433	1528	114440	39160	75280	37.64
9/15/2010 14:45	22434	1524	110720	39920	70800	35.40
9/15/2010 15:13	22438	1158	118080	37540	80540	40.27
9/15/2010 15:16	22439	1172	100760	38440	62320	31.16

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/22/10

Time In	Ticket No.	Vehicle ID Gross	(lb) Tare (lb)	Net (lb)	Net (ton)
9/22/2010 13:36	22619	C43 100460	40300	60160	30.08
9/22/2010 14:52	22633	C43 107460	40300	67160	33.58

2 Loads

AK Street Reload Facility

70 South Alaska Street

Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/23/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
9/23/2010 7:37	22647	1538	95780	40140	55640	27.82
9/23/2010 7:42	22648	1530	99600	39700	59900	29.95
9/23/2010 7:57	22651	I568T	89460	39100	50360	25.18
9/23/2010 8:01	22652	BW8	100360	39180	61180	30.59
9/23/2010 8:09	22653	CT427	92060	42220	49840	24.92
9/23/2010 8:13	22654	CT383	96240	40800	55440	27.72
9/23/2010 8:25	22656	CT385	98700	41040	57660	28.83
9/23/2010 8:34	22657	BW01	116060	43360	72700	36.35
9/23/2010 8:38	22658	SF35	98960	38400	60560	30.28
9/23/2010 8:44	22659	R716	111960	39780	72180	36.09
9/23/2010 8:47	22660	R731	109900	39780	70120	35.06
9/23/2010 9:00	22663	1538	115040	40140	74900	37.45
9/23/2010 9:07	22664	1530	113680	39700	73980	36.99
9/23/2010 9:30	22670	I568T	105560	39100	66460	33.23
9/23/2010 9:33	22671	BW8	113220	39180	74040	37.02
9/23/2010 9:36	22672	CT427	108920	42220	66700	33.35
9/23/2010 9:43	22673	CT383	107720	40800	66920	33.46
9/23/2010 9:48	22675	TM121	111060	38400	72660	36.33
9/23/2010 9:52	22676	CT385	110580	41040	69540	34.77
9/23/2010 9:55	22677	BW01	116640	43360	73280	36.64
9/23/2010 9:57	22678	SF35	103940	38400	65540	32.77
9/23/2010 10:03	22679	R716	111740	39780	71960	35.98
9/23/2010 10:13	22680	R731	110600	39780	70820	35.41
9/23/2010 10:16	22681	1538	108960	40140	68820	34.41
9/23/2010 10:19	22682	1530	107440	39700	67740	33.87
9/23/2010 10:36	22683	CT378	108940	41560	67380	33.69
9/23/2010 10:47	22684	I568T	107080	39100	67980	33.99
9/23/2010 10:58	22688	BW8	101580	39180	62400	31.20
9/23/2010 11:00	22689	CT427	106380	42220	64160	32.08
9/23/2010 11:06	22690	СТ383	107640	40800	66840	33.42
9/23/2010 11:13	22692	SS100	96900	37340	59560	29.78
9/23/2010 11:25	22695	CT385	104680	41040	63640	31.82
9/23/2010 11:32	22697	BW01	98920	43360	55560	27.78

9/23/2010 11:34	22698	SF35	99540	38400	61140	30.57
9/23/2010 11:36	22699	R716	112560	39780	72780	36.39
9/23/2010 11:48	22702	R731	111180	39780	71400	35.70
9/23/2010 11:54	22703	1538	106700	40140	66560	33.28
9/23/2010 11:57	22704	1530	102640	39700	62940	31.47
9/23/2010 12:00	22705	CT378	102140	41560	60580	30.29
9/23/2010 12:05	22706	I568T	98080	39100	58980	29.49
9/23/2010 12:09	22707	SS101	97620	37420	60200	30.10
9/23/2010 12:16	22709	SS127	106320	39380	66940	33.47
9/23/2010 12:19	22710	BW8	98700	39180	59520	29.76
9/23/2010 12:26	22712	CT427	100620	42220	58400	29.20
9/23/2010 12:33	22713	CT383	104980	40800	64180	32.09
9/23/2010 12:35	22714	SS100	99940	37340	62600	31.30
9/23/2010 12:45	22715	CT385	105160	41040	64120	32.06
9/23/2010 12:56	22716	BW01	103400	43360	60040	30.02
9/23/2010 13:02	22717	SF35	101440	38400	63040	31.52
9/23/2010 13:05	22718	R716	108840	39780	69060	34.53
9/23/2010 13:18	22720	R731	111180	39780	71400	35.70
9/23/2010 13:21	22721	1538	103660	40140	63520	31.76
9/23/2010 13:26	22722	1530	105120	39700	65420	32.71
9/23/2010 13:29	22723	СТ378	104680	41560	63120	31.56
9/23/2010 13:33	22724	1568T	102080	39100	62980	31.49
9/23/2010 13:39	22725	SS101	100340	37420	62920	31.46
9/23/2010 13:50	22726	SS127	104080	39380 [,]	64700	32.35
9/23/2010 13:58	22727	BW8	98160	39180	58980	29.49
9/23/2010 14:05	22728	СТ427	103660	42220	61440	30.72
9/23/2010 14:11	22729	СТ383	103100	40800	62300	31.15
9/23/2010 14:17	22730	CT385	104000	41040	62960	31.48
9/23/2010 14:20	22731	SS100	93360	37340	56020	28.01
9/23/2010 14:26	22732	SF35	95440	38400	57040	28.52
9/23/2010 14:32	22733	R716	112220	39780	72440	36.22
9/23/2010 14:38	22735	BW01	101420	43360	58060	29.03
9/23/2010 14:42	22736	R731	114640	39780	74860	37.43
9/23/2010 14:44	22737	1538	101640	40140	61500	30.75
9/23/2010 14:48	22738	1530	104380	39700	64680	32.34
9/23/2010 14:52	22739	СТ378	101720	41560	60160	30.08
9/23/2010 14:56	22740	1568T	99760	39100	60660	30.33
9/23/2010 14:58	22741	SS101	100020	37420	62600	31.30
9/23/2010 15:08	22742	SS127	112580	39380	73200	36.60

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/24/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
9/24/2010 8:06	22757	1538	97400	40140	57260	28.63
9/24/2010 8:11	22758	1528	97220	39160	58060	29.03
9/24/2010 8:21	22761	I568T	107520	39100	68420	34.21
9/24/2010 8:34	22763	СТ366	104700	40200	64500	32.25
9/24/2010 8:39	22764	CT378	105600	41560	64040	32.02
9/24/2010 8:42	22765	BW95	98280	45960	52320	26.16
9/24/2010 8:44	22766	CT384	106360	42220	64140	32.07
9/24/2010 8:48	22767	СТ386	102200	40880	61320	30.66
9/24/2010 8:51	22768	R731	109180	39780	69400	34.70
9/24/2010 8:56	22769	CT426	102920	42220	60700	30.35
9/24/2010 8:58	22770	СТ363	108340	41500	66840	33.42
9/24/2010 9:02	22771	CT381	100560	41240	59320	29.66
9/24/2010 9:10	22773	СТ377	105220	40960	64260	32.13
9/24/2010 9:47	22778	1538	107260	40140	67120	33.56
9/24/2010 9:51	22780	1528	113580	39160	74420	37.21
9/24/2010 9:53	22781	I568T	103920	39100	64820	32.41
9/24/2010 9:55	22782	CT427	111260	42220	69040	34.52
9/24/2010 10:01	22783	СТ366	111040	40200	70840	35.42
9/24/2010 10:06	22785	CT378	109580	41560	68020	34.01
9/24/2010 10:14	22787	BW95	107240	45960	61280	30.64
9/24/2010 10:27	22790	CT384	108000	42220	65780	32.89
9/24/2010 10:35	22792	CT386	105500	40880	64620	32.31
9/24/2010 10:47	22794	CT426	108740	42220	66520	33.26
9/24/2010 10:49	22795	R731	115400	39780	75620	37.81
9/24/2010 10:52	22796	СТ363	113720	41500	72220	36.11
9/24/2010 10:54	22797	CT381	114080	41240	72840	36.42
9/24/2010 10:58	22798	CT377	114600	40960	73640	36.82
9/24/2010 11:06	22800	CT365	104620	40100	64520	32.26
9/24/2010 11:17	22802	1538	108440	40140	68300	34.15
9/24/2010 11:26	22804	1528	106120	39160	66960	33.48
9/24/2010 11:28	22805	1568T	101120	39100	62020	31.01
9/24/2010 11:30	22806	CT427	101660	42220	59440	29.72
9/24/2010 11:33	22807	CT366	106280	40200	66080	33.04

9/24/2010 11:43	22809	CT378	107640	41560	66080	33.04
9/24/2010 11:58	22811	BW95	94960	45960	49000	24.50
9/24/2010 12:04	22813	CT384	107060	42220	64840	32.42
9/24/2010 12:10	22815	CT386	103420	40880	62540	31.27
9/24/2010 12:13	22816	CT426	104300	42220	62080	31.04
9/24/2010 12:19	22818	R731	102520	39780	62740	31.37
9/24/2010 12:23	22819	CT363	96960	41500	55460	27.73
9/24/2010 12:25	22820	CT381	103900	41240	62660	31.33
9/24/2010 12:29	22821	CT377	102840	40960	61880	30.94
9/24/2010 12:40	22823	1538	104260	40140	64120	32.06
9/24/2010 12:51	22825	1528	102340	39160	63180	31.59
9/24/2010 12:54	22826	I568T	91800	39100	52700	26.35
9/24/2010 12:58	22828	CT427	102200	42220	59980	29.99
9/24/2010 13:01	22829	CT366	100320	40200	60120	30.06
9/24/2010 13:08	22831	CT378	103520	41560	61960	30.98
9/24/2010 13:14	22832	BW95	96100	45960	50140	25.07
9/24/2010 13:21	22834	CT384	105660	42220	63440	31.72
9/24/2010 13:30	22835	CT386	104200	40880	63320	31.66
9/24/2010 13:35	22836	CT426	105040	42220	62820	31.41
9/24/2010 13:44	22838	R731	110340	39780	70560	35.28
9/24/2010 13:49	22839	СТ363	106340	41500	64840	32.42
9/24/2010 13:51	22840	CT381	109140	41240	67900	33.95
9/24/2010 14:07	22842	CT377	106440	40960	65480	32.74
9/24/2010 14:25	22844	1538	106620	40140	66480	33.24
9/24/2010 14:28	22845	1528	100040	39160	60880	30.44
9/24/2010 14:34	22846	1568T	94280	39100	55180	27.59
9/24/2010 14:50	22848	CT427	112940	42220	70720	35.36
9/24/2010 15:06	22850	СТ366	105440	40200	65240	32.62
9/24/2010 15:10	22851	CT426	106440	42220	64220	32.11
9/24/2010 15:16	22852	СТ378	111000	41560	69440	34.72
9/24/2010 15:26	22853	BW95	107680	45960	61720	30.86
9/24/2010 15:30	22854	СТ384	107840	42220	65620	32.81
9/24/2010 15:37	22855	СТ386	103160	40880	62280	31.14

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/27/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (Ib)	Net (ton)
9/27/2010 7:37	22859	1528	113260	39160	74100	37.05
9/27/2010 7:52	22860	1158	109380	37540	71840	35.92
9/27/2010 8:08	22862	1524	103220	39920	63300	31.65
9/27/2010 8:15	22863	BW8	119760	39180	80580	40.29
9/27/2010 8:20	22864	R731	113820	39780	74040	37.02
9/27/2010 8:49	22868	TM47	108560	42120	66440	33.22
9/27/2010 8:53	22869	CT385	103540	41040	62500	31.25
9/27/2010 8:56	22870	BW01	111380	43360	68020	34.01
9/27/2010 8:58	22871	CT427	100600	42220	58380	29.19
9/27/2010 8:27	22866	CT401	108740	40780	67960	33.98
9/27/2010 9:10	22873	1528	101680	39160	62520	31.26
9/27/2010 9:15	22874	СТ374	116040	43460	72580	36.29
9/27/2010 9:27	22875	1158	102100	37540	64560	32.28
9/27/2010 9:30	22876	1524	106960	39920	67040	33.52
9/27/2010 9:34	22877	BW8	95300	39180	56120	28.06
9/27/2010 9:48	22880	R731	108860	39780	69080	34.54
9/27/2010 10:14	22881	CT410	100840	42060	58780	29.39
9/27/2010 10:21	22883	TM47	102440	42120	60320	30.16
9/27/2010 10:23	22884	CT385	99180	41040	58140	29.07
9/27/2010 10:26	22885	BW01	109940	43360	66580	33.29
9/27/2010 10:36	22887	1528	109380	39160	70220	35.11
9/27/2010 10:38	22888	CT427	100600	42220	58380	29.19
9/27/2010 10:41	22889	CT374	122280	43460	78820	39.41
9/27/2010 10:43	22890	1538	103780	40140	63640	31.82
9/27/2010 10:51	22891	1524	112300	39920	72380	36.19
9/27/2010 10:53	22892	1158	99160	37540	61620	30.81
9/27/2010 11:01	22894	BW8	113160	39180	73980	36.99
9/27/2010 11:03	22895	R731	106600	39780	66820	33.41
9/27/2010 11:09	22896	CT401	102660	40780	61880	30.94
9/27/2010 11:34	22901	CT410	106640	42060	64580	32.29
9/27/2010 11:41	22903	TM47	109440	42120	67320	33.66
9/27/2010 11:43	22904	CT385	98180	41040	57140	28.57
9/27/2010 11:49	22905	BW01	99780	43360	56420	28.21

9/27/2010 11:58	22909	1528	106120	39160	66960	33.48
9/27/2010 12:03	22910	CT427	110340	42220	68120	34.06
9/27/2010 12:07	22911	1538	105740	40140	65600	32.80
9/27/2010 12:09	22912	1524	104620	39920	64700	32.35
9/27/2010 12:20	22913	1158	104580	37540	67040	33.52
9/27/2010 12:24	22914	BW8	98820	39180	59640	29.82
9/27/2010 12:26	22915	CT374	110600	43460	67140	33.57
9/27/2010 12:29	22916	R731	105280	39780	65500	32.75
9/27/2010 12:42	22918	CT401	114800	40780	74020	37.01
9/27/2010 13:04	22920	CT410	107080	42060	65020	32.51
9/27/2010 13:07	22921	TM47	124140	42120	82020	41.01
9/27/2010 13:11	22922	CT385	104880	41040	63840	31.92
9/27/2010 13:32	22925	1528	102220	39160	63060	31.53
9/27/2010 13:35	22926	SS101	103560	37420	66140	33.07
9/27/2010 13:37	22927	BW01	112460	43360	69100	34.55
9/27/2010 13:39	22928	CT427	101840	42220	59620	29.81
9/27/2010 13:44	22929	1538	103320	40140	63180	31.59
9/27/2010 [.] 13:51	22930	1524	104600	39920	64680	32.34
9/27/2010 13:57	22931	1158	107400	37540	69860	34.93
9/27/2010 13:59	22932	BW8	109600	39180	70420	35.21
9/27/2010 14:23	22934	R731	110120	39780	70340	35.17
9/27/2010 14:28	22935	CT401	110640	40780	69860	34.93
9/27/2010 14:36	22936	СТ374	105520	43460	62060	31.03
9/27/2010 14:58	22938	1528	109460	39160	70300	35.15

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/28/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
9/28/2010 7:32	22939	SS22	98520	36340	62180	31.09
9/28/2010 7:37	22941	C43	105240	40300	64940	32.47
9/28/2010 7:55	22943	CT363	108120	41500	66620	33.31
9/28/2010 8:07	22944	BW8	91720	39180	52540	26.27
9/28/2010 8:12	22945	CT366	101460	40200	61260	30.63
9/28/2010 8:23	22946	CT378	99720	41560	58160	29.08
9/28/2010 8:44	22948	BW95	96640	45960	50680	25.34
9/28/2010 8:48.	22949	BW01	99180	43360	55820	27.91
9/28/2010 9:27	22952	SS22	90020	36340	53680	26.84
9/28/2010 9:30	22953	C43	106500	40300	66200	33.10
9/28/2010 9:32	22954	CT363	105340	41500	63840	31.92
9/28/2010 9:36	22955	BW8	96420	39180	57240	28.62
9/28/2010 9:52	22957	CT378	92380	41560	50820	25.41
9/28/2010 10:00	22958	CT366	99080	40200	58880	29.44
9/28/2010 10:04	22960	BW01	95880	43360	52520	26.26
9/28/2010 10:12	22962	BW95	96180	45960	50220	25.11
9/28/2010 10:44	22966	SS22	100200	36340	63860	31.93
9/28/2010 10:47	22967	C43	98480	40300	58180	29.09
9/28/2010 11:04	22969	CT363	102600	41500	61100	30.55
9/28/2010 11:18	22970	BW8	93700	39180	54520	27.26
9/28/2010 11:36	22971	CT378	100600	41560	59040	29.52
9/28/2010 12:05	22974	BW01	103900	43360	60540	30.27
9/28/2010 12:08	22975	BW95	93280	45960	47320	23.66
9/28/2010 12:15	22977	SS22	102240	36340	65900	32.95
9/28/2010 12:22	22978	C43	100020	40300	59720	29.86
9/28/2010 13:43	22990	SS22	81820	36340	45480	22.74
9/28/2010 13:47	22992	C43	89140	40300	48840	24.42
9/28/2010 15:21	23020	SS22	106840	36340	70500	35.25
9/28/2010 15:28	23024	C43	112260	40300	71960	35.98

29 Loads

AK Street Reload Facility 70 South Alaska Street

Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/29/10

Ticket No.	Vehicle ID Gross (Ib)	Tare (lb)	Net (lb)	Net (ton)
23061	SS22 96880	36340	60540	30.27
				30.27

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 9/30/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
9/30/2010 7:23	23172	SS22	99340	36340	63000	31.50
9/30/2010 7:41	23174	1576	106120	39320	66800	33.40
9/30/2010 7:45	23175	M69T	103580	41480	62100	31.05
9/30/2010 8:02	23180	BW95	94760	45960	48800	24.40
9/30/2010 7:48	23176	J304	114140	42240	71900	35.95
9/30/2010 8:09	23181	BW01	103220	43360	59860	29.93
9/30/2010 7:52	23177	1174	106720	38900	67820	33.91
9/30/2010 7:58	23179	D17T	92180	37720	54460	27.23
9/30/2010 8:21	23182	BW16	110760	38940	71820	35.91
9/30/2010 8:35	23185	R731	113020	39780	73240	36.62
9/30/2010 8:39	23187	BW8	112960	39180	73780	36.89
9/30/2010 8:43	23189	1176	106480	38660	67820	33.91
9/30/2010 8:52	23192	SS22	99720	36340	63380	31.69
9/30/2010 8:26	23183	DT302	94740	40620	54120	27.06
9/30/2010 9:03	23195	1576	104480	39320	65160	32.58
9/30/2010 9:10	23197	M69T	103900	41480	62420	31.21
9/30/2010 9:19	23200	J304	116200	42240	73960	36.98
9/30/2010 8:47	23190	1536	97060	37560	59500	29.75
9/30/2010 9:30	23201	1174	107420	38900	68520	34.26
9/30/2010 9:36	23203	BW95	99120	45960	53160	26.58
9/30/2010 9:40	23204	D17T	91880	37720	54160	27.08
9/30/2010 9:56	23210	BW16	109740	38940	70800	35.40
9/30/2010 10:04	23213	DT302	103940	40620	63320	31.66
9/30/2010 10:07	23214	BW01	113980	43360	70620	35.31
9/30/2010 10:11	23216	R731	102860	39780	63080	31.54
9/30/2010 10:15	23217	BW8	105680	39180	66500	33.25
9/30/2010 10:23	23219	l176	102860	38660	64200	32.10
9/30/2010 10:27	23220	1536	101460	37560	63900	31.95
9/30/2010 10:31	23222	SS22	92660	36340	56320	28.16
9/30/2010 10:39	23226	1576	99260	39320	59940	29.97
9/30/2010 10:42	23227	M69T	101180	41480	59700	29.85
9/30/2010 10:55	23232	J304	102780	42240	60540	30.27
9/30/2010 11:00	23234	BW95	95340	45960	49380	24.69

9/30/2010 11:03	23235	D17T	94420	37720	56700	28.35
9/30/2010 11:22	23239	BW16	102680	38940	63740	31.87
9/30/2010 11:28	23241	DT302	95060	40620	54440	27.22
9/30/2010 11:45	23242	BW01	105060	43360	61700	30.85
9/30/2010 11:52	23246	R731	105120	39780	65340	32.67
9/30/2010 11:54	23247	BW8	109500	39180	70320	35.16
9/30/2010 11:56	23248	1176	99460	38660	60800	30.40
9/30/2010 11:59	23249	1536	94760	37560	57200	28.60
9/30/2010 12:01	23250	SS22	102040	36340	65700	32.85
9/30/2010 12:17	23251	1576	97420	39320	58100	29.05
9/30/2010 12:18	23252	M69T	101820	41480	60340	30.17
9/30/2010 13:01	23260	D17T	98120	37720	60400	30.20
9/30/2010 13:02	23261	BW95	99460	45960	53500	26.75
9/30/2010 13:05	23262	J304	106280	42240	64040	32.02
9/30/2010 13:12	23263	DT302	102020	40620	61400	30.70
9/30/2010 13:19	23265	BW01	103820	43360	60460	30.23
9/30/2010 13:46	23266	R731	104360	39780	64580	32.29
9/30/2010 13:49	23268	BW8	101040	39180	61860	30.93
9/30/2010 13:51	23269	1176	97640	38660	58980	29.49
9/30/2010 13:54	23270	1536	85060	37560	47500	23.75
9/30/2010 13:55	23271	SS22	94520	36340	58180	29.09
9/30/2010 13:57	23272	M69T	108340	41480	66860	33.43
9/30/2010 14:00	23273	1576	96960	39320	57640	28.82
9/30/2010 14:21	23275	D17T	100000	37720	62280	31.14
9/30/2010 14:43	23280	BW95	99000	45960	53040	26.52
9/30/2010 15:07	23283	J304	106680	42240	64440	32.22
9/30/2010 15:09	23284	DT302	104200	40620	63580	31.79
9/30/2010 15:13	23285	R731	104320	39780	64540	32.27

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/1/10

Time In	Ticket No.	Vehicle ID	Gross (Ib)	Tare (lb)	Net (lb)	Net (ton)
10/1/2010 7:34	23305	SS22	98820	36340	62480	31.24
10/1/2010 7:40	23306	J304	96440	42240	54200	27.10
10/1/2010 7:55	23310	R731	89540	39780	49760	24.88
10/1/2010 7:57	23311	R716	95800	39780	56020	28.01
10/1/2010 9:00	23317	SS22	96780	36340	60440	30.22
10/1/2010 9:07	23318	J304	100480	42240	58240	29.12
10/1/2010 9:25	23321	R731	102840	39780	63060	31.53
10/1/2010 10:08	23328	SS22	93980	36340	57640	28.82
10/1/2010 10:19	23330	J304	112560	42240	70320	35.16
10/1/2010 10:53	23335	R731	103300	39780	63520	31.76
10/1/2010 11:23	23336	SS22	95000	36340	58660	29.33
10/1/2010 11:40	23340	J304	110340	42240	68100	34.05
10/1/2010 12:42	23346	SS22	101200	36340	64860	32.43

13 Loads

AK Street Reload Facility

70 South Alaska Street

Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/5/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
10/5/2010 7:56	23408	C44	90600	40520	50080	25.04
10/5/2010 8:01	23409	SS22	87580	36340	51240	25.62
10/5/2010 8:10	23411	C43	97560	40300	57260	28.63
10/5/2010 9:11	23414	C44	95180	40520	54660	27.33
10/5/2010 9:17	23416	SS22	99540	36340	63200	31.60
10/5/2010 9:22	23417	C43	104720	40300	64420	32.21
10/5/2010 10:17	23423	C44	103960	40520	63440	31.72
10/5/2010 10:29	23424	SS22	91100	36340	54760	27.38
10/5/2010 10:33	23426	C43	99880	40300	59580	29.79
10/5/2010 11:36	23441	\$\$22	103680	36340	67340	33.67
10/5/2010 11:47	23444	C43	107020	40300	66720	33.36
10/5/2010 12:51	23448	SS22	100260	36340	63920	31.96
10/5/2010 13:33	23452	1538	104240	40140	64100	32.05
10/5/2010 14:04	23456	SS22	103600	36340	67260	33.63
10/5/2010 14:12	23457	C44	102960	40520	62440	31.22
10/5/2010 14:52	23461	1538	114900	40140	74760	37.38
10/5/2010 15:15	23463	SS22	104640	36340	68300	34.15

17 Loads

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/6/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
10/6/2010 7:29	23468	SS22	100900	36340	64560	32.28
10/6/2010 7:35	23469	1176	98960	38660	60300	30.15
10/6/2010 7:42	23470	C43	107620	40300	67320	33.66
10/6/2010 7:54	23472	BW01	94320	43360	50960	25.48
10/6/2010 8:03	23473	R731	114420	39780	74640	37.32
10/6/2010 8:43	23478	SS22	101840	36340	65500	32.75
10/6/2010 8:57	23482	1176	96220	38660	57560	28.78
10/6/2010 9:01	23484	C43	102300	40300	62000	31.00
10/6/2010 9:05	23485	I568T	102260	39100	63160	31.58
10/6/2010 9:14	23486	BW01	100520	43360	57160	28.58
10/6/2010 9:16	23487	R731	98000	39780	58220	29.11
10/6/2010 9:36	23489	I570T	95300	39380	55920	27.96
10/6/2010 9:55	23491	SS22	95100	36340	58760	29.38
10/6/2010 10:09	23495	1176	97280	38660	58620	29.31
10/6/2010 10:21	23498	C43	106640	40300	66340	33.17
10/6/2010 10:29	23501	I568T	94700	39100	55600	27.80
10/6/2010 11:09	23512	BW01	106720	43360	63360	31.68
10/6/2010 11:16	23514	R731	106260	39780	. 66480	33.24
10/6/2010 11:40	23519	I570T	91680	39380	52300	26.15
10/6/2010 12:54	23529	BW01	106260	43360	62900	31.45
10/6/2010 12:56	23530	R731	114760	39780	74980	37.49
10/6/2010 13:10	23534	1176	102860	38660	64200	32.10
10/6/2010 13:16	23535	1570T	96620	39380	57240	28.62
10/6/2010 13:31	23541	I568T	95500	39100	56400	28.20
10/6/2010 13:36	23543	1174	97180	38900	58280	29.14
10/6/2010 13:38	23544	C43	102960	40300	62660	31.33
10/6/2010 13:56	23551	C44	106500	40520	65980	32.99
10/6/2010 14:17	23557	R731	114920	39780	75140	37.57
10/6/2010 14:19	23558	BW01	102260	43360	58900	29.45
10/6/2010 14:38	23563	1176	105040	38660	66380	33.19
10/6/2010 14:40	23564	I570T	103520	39380	64140	32.07
10/6/2010 14:52	23566	I568T	98060	39100	58960	29.48
10/6/2010 14:55	23567	1174	112340	38900	73440	36.72

10/6/2010 15:02	23570	C43 110600	40300	70300	35.15
	and the second second				
34 Loads					1064.33

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/7/10 (Revised 10/14/10)

		Revised						
Time In	Ticket No.	Ticket #	Vehicle ID	Vehicle ID Gross (lb)	Tare (Ib)	Net (Ib)	Net (ton)	
10/7/2010 7:34	23578		SS22	SS22 95580	36340	59240	29.62	
10/7/2010 7:36	23579		C43	C43 103500	40300	63200	31.60	
10/7/2010 7:38	23580		C44	C44 107520	40520	67000	33.50	
10/7/2010 7:56	23581		R22	R22 94080	35940	58140	29.07	
10/7/2010 7:59	23582		R30	R30 101300	39360	61940	30.97	
10/7/2010 8:10	23584		R731	R731 114580	39780	74800	37.40	
10/7/2010 8:15	23585 (voided)	23978	BW95	BW95 103460	37880	65580	32.79	32.79 TARE WAS 45960
10/7/2010 9:04	23588		SS22	SS22 100740	36340	64400	32.20	
10/7/2010 9:06	23589		C43	C43 104040	40300	63740	31.87	
10/7/2010 9:18	23591		C44	C44 108000	40520	67480	33.74	
10/7/2010 9:21	23592		BW01	BW01 115960	43360	72600	36.30	
10/7/2010 9:24	23593		R22	R22 85580	35940	49640	24.82	
10/7/2010 9:27	-23594		R30	R30 99500	39360	60140	30.07	
10/7/2010 9:34	23596 (voided)	23979	BW95	BW95 100140	37880	62260	31.13	31.13 TARE WAS 45960
10/7/2010 9:37	23597		R731	R731 102280	39780	62500	31.25	
10/7/2010 10:22	23601		SS22	SS22 89600	36340	53260	26.63	
10/7/2010 10:24	23602		C43	C43 98900	40300	58600	29.30	

			TARE WAS 45960								TARE WAS 45960								TARE WAS 45960					
31.63	29.70	25.76	31.54 TARE	34.63	34.86	27.36	30.54	34.43	31.52	30.70	31.47 TARE	39.42	37.27	33.94	32.13	26.50	27.56	30.00	31.09 TARE	35.69	33.94	33.41	33.51	1300.86
63260	59400	51520	63080	69260	69720	54720	61080	68860	63040	61400	62940	78840	74540	67880	64260	53000	55120	60000	62180	71380	67880	66820	67020	
20	60	140	80	.80	100	40	00	20	60	140	80	80	60	40	00	20	40	60	80	.80	60	40	00	
C44 103780 40520	BW01 102760 43360	R22 87460 35940	BW95 100960 37880	R731 109040 39780	R30 109080 39360	SS22 91060 36340	C43 101380 40300	C44 109380 40520	BW01 106400 43360	R22 97340 35940	BW95 100820 37880	R731 118620 39780	R30 113900 39360	SS22 104220 36340	C43 104560 40300	C44 93520 40520	R22 91060 35940	BW01 103360 43360	BW95 100060 37880	R731 111160 39780	R30 107240 39360	SS22 103160 36340	C43 107320 40300	
C44	BW01	R22	BW95	R731	R30	SS22	C43	C44	BW01	R22	BW95	R731	R30	SS22	C43	C44	R22	BW01	BW95	R731	R30	SS22	C43	
			23980								23981								23982					
23605	23607	23608	23610 (voided)	23611	23613	23616	23617	23619	23621	23622	23623 (voided)	23625	23626	23627	23630	23633	23638	23639	23640 (voided)	23641	23644	23646	23649	
10/7/2010 10:34	10/7/2010 10:42	10/7/2010 10:44	10/7/2010 10:57	10/7/2010 10:58	10/7/2010 11:31	10/7/2010 11:40	10/7/2010 11:51	10/7/2010 12:00	10/7/2010 12:12	10/7/2010 12:16	10/7/2010 12:24	10/7/2010 12:38	10/7/2010 12:42	10/7/2010 13:10	10/7/2010 13:29	10/7/2010 13:45	10/7/2010 13:58	10/7/2010 14:00	10/7/2010 14:04	10/7/2010 14:09	10/7/2010 14:16	10/7/2010 14:26	10/7/2010 14:37	41 Loads

Bobby Wolford truck BW95 tare weight was incorrect. Original tare entered into system on 8/27/10 @ start of job.

AK Street Reload Facility

70 South Alaska Street Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/8/10

Time In	Ticket No.	Vehicle ID Gro	oss (lb) Tare (lb) Net (lb)	Net (ton)
10/8/2010 8:08	23656	C43 106	800 40300	6650	33.25
10/8/2010 9:38	23663	C43 118	720 40300	7842	20 39.21
2 Loads				91. 19	72.46

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/13/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
10/13/2010 7:09	23786	SS22	97360	36340	61020	30.51
10/13/2010 7:14	23787	C44	109620	40520	69100	34.55
10/13/2010 7:29	23789	C43	106040	40300	65740	32.87
10/13/2010 8:04	23790	CT419	105760	41000	64760	32.38
10/13/2010 8:13	23792	CT421	94620	42880	51740	25.87
10/13/2010 8:24	23794	CT420	101480	39020	62460	31.23
10/13/2010 8:27	23824	BW16	101440	38940	62500	31.25
10/13/2010 8:35	23797	CT402	108040	41120	66920	33.46
10/13/2010 8:39	23798	CT423	106380	41500	64880	32.44
10/13/2010 8:44	23799	CT400	103120	41640	61480	30.74
10/13/2010 9:04	23804	SS22	97040	36340	60700	30.35
10/13/2010 9:06	23805	C44	113420	40520	72900	36.45
10/13/2010 9:13	23806	CT411	103420	42680	60740	30.37
10/13/2010 9:34	23812	C43	105680	40300	65380	32.69
10/13/2010 10:02	23817	CT419	110100	41000	69100	34.55
10/13/2010 10:16	23822	CT421	111060	42880	68180	34.09
10/13/2010 10:18	23823	BW16	115940	38940	77000	38.50
10/13/2010 10:26	23825	CT420	101560	39020	62540	31.27
10/13/2010 10:34	23828	CT402	110180	41120	69060	34.53
10/13/2010 10:40	23830	CT423	109900	41500	68400	34.20
10/13/2010 10:43	23831	CT400	111180	41640	69540	34.77
10/13/2010 11:01	23837	C43	106480	40300	66180	33.09
10/13/2010 11:16	23840	CT419	114920	41000	73920	36.96
10/13/2010 11:38	23842	CT421	108780	42880	65900	32.95
10/13/2010 11:47	23846	BW16	101740	38940	62800	31.40
10/13/2010 12:02	23848	CT402	103300	41120	62180	31.09
10/13/2010 12:11	23850	CT423	102800	41500	61300	30.65
10/13/2010 12:13	23851	CT400	107320	41640	65680	32.84
10/13/2010 12:32	23852	C43	113420	40300	73120	36.56
10/13/2010 12:48	23855	CT419	112460	41000	71460	35.73
10/13/2010 13:15	23863	CT421	98540	42880	55660	27.83
10/13/2010 13:28	23866	BW16	103940	38940	65000	32.50
10/13/2010 13:32	23867	CT402	100020	41120	58900	29.45

10/13/2010 13:47	23871	CT423	105780	41500	64280	32.14
10/13/2010 13:49	23872	CT400	100080	41640	58440	29.22
10/13/2010 13:59	23876	C43	109280	40300	68980	34.49
10/13/2010 14:07	23879	CT419	111260	41000	70260	35.13
10/13/2010 14:32	23889	CT421	104080	42880	61200	30.60
10/13/2010 14:44	23894	BW16	100300	38940	61360	30.68
10/13/2010 14:52	23896	CT402	102700	41120	61580	30.79
10/13/2010 15:05	23899	CT423	103100	41500	61600	30.80
10/13/2010 15:07	23900	CT400	103760	41640	62120	31.06
10/13/2010 15:12	23901	C43	111500	40300	71200	35.60

43 Loads

AK Street Reload Facility

70 South Alaska Street

Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/14/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
10/14/2010 7:22	23907	SS22	98160	36340	61820	30.91
10/14/2010 7:44	23908	R24	104800	38780	66020	33.01
10/14/2010 7:46	23909	R22	96720	35940	60780	30.39
10/14/2010 8:12	23945	BW95	104820	37880	66940	33.47
10/14/2010 8:19	23911	CT381	99680	41240	58440	29.22
10/14/2010 8:24	23912	CT419	94140	41000	53140	26.57
10/14/2010 8:53	23920	CT420	100500	39020	61480	30.74
10/14/2010 9:00	23922	CT384	102640	42220	60420	30.21
10/14/2010 9:06	23924	CT400	104400	41640	62760	31.38
10/14/2010 9:09	23925	CT423	107160	41500	65660	32.83
10/14/2010 9:28	23930	CT403	106600	41340	65260	32.63
10/14/2010 9:31	23931	R24	116580	38780	77800	38.90
10/14/2010 9:38	23933	R22	98800	35940	62860	31.43
10/14/2010 9:40	23934	СТ378	103540	41560	61980	30.99
10/14/2010 9:45	23936	CT381	104820	41240	63580	31.79
10/14/2010 9:51	23939	CT419	110960	41000	69960	34.98
10/14/2010 9:59	23941	CT421	103520	42880	60640	30.32
10/14/2010 10:04	23943	CT420	113020	39020	74000	37.00
10/14/2010 10:13	23944	CT384	106380	42220	64160	32.08
10/14/2010 9:43	23946	BW95	99260	37880	61380	30.69
10/14/2010 10:31	23948	CT400	110980	41640	69340	34.67
10/14/2010 10:35	23949	CT423	111740	41500	70240	35.12
10/14/2010 10:48	23954	CT403	110640	41340	69300	34.65
10/14/2010 10:51	23955	R24	118280	38780	79500	39.75
10/14/2010 10:57	23958	R22	102660	35940	66720	33.36
10/14/2010 11:05	23961	CT378	108520	41560	66960	33.48
10/14/2010 11:22	23966	CT381	106960	41240	65720	32.86
10/14/2010 11:24	23967	BW95	102160	37880	64280	32.14
10/14/2010 11:34	23970	CT419	106600	41000	65600	32.80
10/14/2010 11:41	23972	CT421	100820	42880	57940	28.97
10/14/2010 11:47	23973	CT420	102460	39020	63440	31.72
10/14/2010 11:48	23974	CT384	105600	42220	63380	31.69
10/14/2010 11:56	23975	CT400	107220	41640	65580	32.79

10/14/2010 11:59	23976	CT423	108000	41500	66500	33.25
10/14/2010 12:11	23983	CT403	102000	41340	60660	30.33
10/14/2010 12:16	23984	R24	112840	38780	74060	37.03
10/14/2010 12:27	23986	R22	97940	35940	62000	31.00
10/14/2010 12:41	23987	CT378	104760	41560	63200	31.60
10/14/2010 12:43	23988	CT381	107680	41240	66440	33.22
10/14/2010 12:59	23992	BW95	95260	37880	57380	28.69
10/14/2010 13:09	23996	CT419	102400	41000	61400	30.70
10/14/2010 13:11	23997	CT420	99260	39020	60240	30.12
10/14/2010 13:13	23998	СТ384	102860	42220	60640	30.32
10/14/2010 13:16	23999	CT421	106740	42880	63860	31.93
10/14/2010 13:20	24001	СТ400	103920	41640	62280	31.14
10/14/2010 13:24	24002	CT423	108200	41500	66700	33.35
10/14/2010 13:26	24003	CT403	101680	41340	60340	30.17
10/14/2010 13:34	24006	R24	117360	38780	78580	39.29
10/14/2010 13:46	24008	R22	96520	35940	60580	30.29
10/14/2010 13:49	24009	CT378	106720	41560	65160	32.58
10/14/2010 13:54	24010	CT381	100120	41240	58880	29.44
10/14/2010 14:12	24013	BW95	102500	37880	64620	32.31
10/14/2010 14:19	24014	CT420	103860	39020	64840	32.42
10/14/2010 14:21	24016	CT419	110640	41000	69640	34.82
10/14/2010 14:27	24017	CT384	105280	42220	63060	31.53
10/14/2010 14:32	24018	CT421	103500	42880	60620	30.31
10/14/2010 14:37	24019	CT400	105560	41640	63920	31.96
10/14/2010 14:46	24022	CT423	110980	41500	69480	34.74
10/14/2010 14:49	24023	CT403	106060	41340	64720	32.36
10/14/2010 15:01	24025	R24	106440	38780	67660	33.83
10/14/2010 15:05	24026	R22	94900	35940	58960	29.48
10/14/2010 15:09	24028	CT378	99080	41560	57520	28.76
10/14/2010 15:11	24029	CT381	95200	41240	53960	26.98

63 Loads

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/15/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
10/15/2010 7:40	24038	1172	88940	38440	50500	25.25
10/15/2010 7:44	24039	R24	101620	38780	62840	31.42
10/15/2010 7:47	24040	R22	87280	35940	51340	25.67
10/15/2010 7:51	24041	CT419	94320	41000	53320	26.66
10/15/2010 7:59	24042	CT421	112220	42880	69340	34.67
10/15/2010 8:01	24043	BW95	102980	37880	65100	32.55
10/15/2010 8:06	24044	CT402	104060	41120	62940	31.47
10/15/2010 8:26	24047	CT411	100420	42680	57740	28.87
10/15/2010 8:30	24048	CT423	96920	41500	55420	27.71
10/15/2010 8:20	24046	CT404	100780	41420	59360	29.68
10/15/2010 8:50	24050	I570T	91600	39380	52220	26.11
10/15/2010 9:06	24054	R24	105400	38780	66620	33.31
10/15/2010 9:10	24055	CT419	103000	41000	62000	31.00
10/15/2010 9:20	24058	CT421	106420	42880	63540	31.77
10/15/2010 9:27	24061	BW95	95080	37880	57200	28.60
10/15/2010 9:34	24063	CT402	100920	41120	59800	29.90
10/15/2010 10:26	24073	R22	91880	35940	55940	27.97
10/15/2010 10:34	24075	CT404	101680	41420	60260	30.13
10/15/2010 10:36	24076	CT411	95960	42680	53280	26.64
10/15/2010 10:44	24079	CT423	99280	41500	57780	28.89
10/15/2010 10:56	24082	I570T	96840	39380	57460	28.73
10/15/2010 10:59	24083	1172	98620	38440	60180	30.09
10/15/2010 11:12	24087	CT419	109360	41000	68360	34.18
10/15/2010 11:18	24088	CT421	101420	42880	58540	29.27
10/15/2010 11:31	24090	BW95	95400	37880	57520	28.76
10/15/2010 11:51	24093	CT402	101080	41120	59960	29.98

26 Loads

AK Street Reload Facility

70 South Alaska Street

Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/18/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
10/18/2010 7:57	24124	CT381	98860	41240	57620	28.81
10/18/2010 8:11	24125	CT383	96680	40800	55880	27.94
10/18/2010 8:16	24126	CT386	100000	40880	59120	29.56
10/18/2010 9:08	24134	CT381	101500	41240	60260	30.13
10/18/2010 9:29	24140	CT383	99540	40800	58740	29.37
10/18/2010 9:40	24143	СТ386	90720	40880	49840	24.92
10/18/2010 10:21	24148	CT381	98940	41240	57700	28.85
10/18/2010 10:53	24153	CT383	103400	40800	62600	31.30
10/18/2010 10:58	24154	CT386	103360	40880	62480	31.24
10/18/2010 12:08	24162	CT386	107560	40880	66680	33.34
10/18/2010 13:26	24166	СТ386	108240	40880	67360	33.68

11 Loads

AK Street Reload Facility

70 South Alaska Street Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/27/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
10/27/2010 8:35	24328	C43S	73280	28160	45120	22.56
10/27/2010 9:42	24330	SS22S	62400	24060	38340	19.17
10/27/2010 10:00	24333	C43S	67540	28160	39380	19.69
10/27/2010 10:57	24336	SS22S	59240	24060	35180	17.59
10/27/2010 11:17	24337	C43S	69160	28160	41000	20.50
10/27/2010 12:28	24339	SS22S	60120	24060	36060	18.03
10/27/2010 12:33	24340	C43S	67900	28160	39740	19.87
10/27/2010 13:36	24342	SS22S	56060	24060	32000	16.00
10/27/2010 13:45	24343	C43S	71620	28160	43460	21.73
10/27/2010 14:41	24346	SS22S	59040	24060	34980	17.49
10/27/2010 14:52	24347	C43S	66280	28160	38120	19.06

11 Loads

AK Street Reload Facility

70 South Alaska Street Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/28/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
10/28/2010 7:44	24348	C43S	69540	28160	41380	20.69
10/28/2010 8:09	24349	1590	57980	27000	30980	15.49
10/28/2010 8:17	24350	1534	58020	26920	31100	15.55
10/28/2010 9:07	24357	C43S	72980	28160	44820	22.41
10/28/2010 9:37	24367	1590	62900	27000	35900	17.95
10/28/2010 9:59	24372	I534S	60400	26920	33480	16.74
10/28/2010 10:31	24377	- C43S	69240	28160	41080	20.54
10/28/2010 11:02	24380	1590	61400	27000	34400	17.20
10/28/2010 11:16	24383	I534S	53640	26920	26720	13.36
10/28/2010 11:54	24390	. C43S	61680	28160	33520	16.76
10/28/2010 12:14	24393	1590	54000	27000	27000	13.50
10/28/2010 12:33	24396	I534S	61400	26920	34480	17.24
10/28/2010 13:06	24404	C43S	65540	28160	37380	18.69
10/28/2010 13:25	24405	1590	53520	27000	26520	13.26
10/28/2010 13:41	24408	I534S	59160	26920	32240	16.12
10/28/2010 14:30	24415	C43S	60920	28160	32760	16.38
10/28/2010 14:36	24416	1590	56940	27000	29940	14.97
10/28/2010 14:50	24417	15345	61440	26920	34520	17.26

18 Loads

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 10/28/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (Ib)	Net (ton)
10/29/2010 8:03	24474	C43S	65420	28160	37260	18.63
10/29/2010 8:18	24475	SS22S	56520	24060	32460	16.23
10/29/2010 8:26	24476	C44S	65360	27900	37460	18.73
10/29/2010 9:24	24477	C43S	53860	28160	25700	12.85
10/29/2010 9:32	24479	SS22S	54120	24060	30060	15.03
10/29/2010 9:57	24481	C44S	63580	27900	35680	17.84
10/29/2010 10:39	24482	C43S	63480	28160	35320	17.66
10/29/2010 10:57	24484	SS22S	58260	24060	34200	17.10
10/29/2010 11:23	24485	C44S	65360	27900	37460	18.73
10/29/2010 11:46	24486	C43S	65500	28160	37340	18.67
10/29/2010 12:05	24488	SS22S	56440	24060	32380	16.19
10/29/2010 12:30	24491	C44S	71300	27900	43400	21.70
10/29/2010 12:59	24492	C43S	67960	28160	39800	19.90
10/29/2010 13:23	24494	SS22S	57940	24060	33880	16.94
10/29/2010 13:43	24504	C44S	64480	27900	36580	18.29
10/29/2010 14:13	24509	C43S	65060	28160	36900	18.45
10/29/2010 14:36	24510	SS22S	57220	24060	33160	16.58
10/29/2010 15:02	24517	C44S	63980	27900	36080	18.04

18 Loads

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 11/1/10

Time In	Ticket No.	Vehicle ID 0	Gross (Ib)	Tare (lb)	Net (lb)	Net (ton)
11/1/2010 7:59	24524	C44S 5	6300	27900	28400	14.20
11/1/2010 8:09	24525	C43S 6	0960	28160	32800	16.40
11/1/2010 8:18	24526	SS22S 5	3860	24060	29800	14.90

3 Loads

AK Street Reload Facility 70 South Alaska Street Seattle, WA 98134 Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 11/3/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
11/03/10 08:18:23 AM	24586	SS22S	53380	24060	29320	14.66
11/03/10 08:38:12 AM	24589	C44S	65540	27900	37640	18.82
11/03/10 09:34:12 AM	24590	SS22S	53660	24060	29600	14.80
11/03/10 09:47:17 AM	24591	C44S	60120	27900	32220	16.11
11/03/10 10:50:35 AM	24595	SS22S	53620	24060	29560	14.78
11/03/10 10:57:54 AM	24596	C44S	61180	27900	33280	16.64
11/03/10 11:57:00 AM	24601	SS22S	52440	24060	28380	14.19
11/03/10 12:09:36 PM	24602	C44S	60500	27900	32600	16.30
11/03/10 01:05:24 PM	24606	SS22S	50020	24060	25960	12.98
11/03/10 01:11:14 PM	24607	C44S	59320	27900	31420	15.71
11/03/10 02:18:31 PM	24612	SS22S	57600	24060	33540	16.77
11/03/10 02:21:35 PM	24613	C44S	63860	27900	35960	17.98
11/03/10 02:42:02 PM	24616	1160S	51260	24280	26980	13.49
11/03/10 02:58:09 PM	24619	I196S	72820	25860	46960	23.48

14 Loads

70 South Alaska Street

Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 11/15/10

Time In	Ticket No.	Vehicle ID Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
11/15/2010 9:31	24858	C43S 66520	28160	38360	19.18
1 Load					19.18

Seattle, WA 98134

Phone: 206-763-5025

Customer Name: CLEAR CREEK CONTRACTORS Genetaor Name: Earle M. Jorgensen Company Profile# 105131WA Load Summary for 11/16/10

Time In	Ticket No.	Vehicle ID	Gross (lb)	Tare (lb)	Net (lb)	Net (ton)
11/16/2010 8:53	24875	C44S	65060	27900	37160	18.58
11/16/2010 9:05	24876	C43S	65620	28160	37460	18.73
2 Loads			×		15 5 410	37.3

REGIONAL DISPOSAL INTERMODAL

Job ID: LW-10343	14,755 CLEARCREEK CONTRACTORS	LACTORS
Date Ticket # truck 8/31/10 2:15 am 342,681 SOIL	Container Material 74 SW-CC	Material Code/Des SW-CONT SOIL
8/31/10 2:17 am 342,682 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:18 am 342,683 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:19 am 342,684 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:20 am 342,685 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:21 am 342,686 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:22 am 342,687 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:25 am 342,689 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:26 am 342,690 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:27 am 342,691 SOIL	74 SW-CO	SW-CONT SOIL
8/31/10 2:28 am 342,692 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:30 am 342,693 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:31 am 342,694 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:32 am 342,695 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:33 am 342,696 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:34 am 342,697 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:35 am 342,698 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:36 am 342,699 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:37 am 342,700 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:38 am 342,701 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:39 am 342,702 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:40 am 342,703 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:41 am 342,704 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:42 am 342,705 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:44 am 342,706 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:45 am 342,707 SOIL	74 SW-CC	SW-CONT SOIL
8/31/10 2:45 am 342,708 SOIL	74 SW-CC	SW-CONT SOIL

		KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	KENT	VENIT
		<u>Tons</u> 30.21	33.77	33.63	24.09	27.44	29.60	31.07	38.13	26.32	31.12	30.21	33.70	35.14	35.82	33.41	33.29	32.24	32.02	20 12
		<u>Tare</u> Net 35,76060,420	38,62067,540	39,86067,260	44,08048,180	38,56054,880	36,50059,200	38,84062,140	38,98076,260	35,82052,640	37,96062,240	38,88060,420	38,92067,400	39,00070,280	39,08071,640	39,94066,820	44,20066,580	38,82064,480	38,82064,040	39.42069 860
		<u>Gross</u> 96,180	106,160	107,120	92,260	93,440	95,700	100,980	115,240	88,460	100,200	66,300	106,320	109,280	110,720	106,760	110,780	103,300	102,860	109.280
L	S	Desc IL	_	_	_	_	_	_	_	_	<u> </u>	<u>_</u> _	_	_	_	<u>ب</u>	_	_	_	_

Origin T/KING **T/KING** T/KING T/KING **I/KING** T/KING T/KING T/KING T/KING T/KING T/KING T/KING T/KING **L/KING T/KING L/KING** T/KING T/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING 34.93 37.10 31.78 29.09 30.29 33.22 30,40060,580 59,42069,860 38,36074,200 37,78063,560 36,26058,170 38,42066,440 112,560 101,340 104,860 109,060 94,430 90,980 087,601

KENT/KING KENT/KING

38,62064,640

103,260 111,540

36.45

38,64072,900

KENT/KING

34.68 32.32

39,70069,360

Report period August 2010 REGIONAL DISPOSAL INTERMODAL KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING

28.33 32.20 32.38

28.22 35.48 38.24 28.90 KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING

32.88 31.98 31.00 34.09 34.97 32.55 34.83

8/31/10	8/31/10 2:46 am 342,709	SOIL	74	SW-CONT SOIL	100,400	43,74056,660
8/31/10	8/31/10 2:48 am 342,710	SOIL	74	SW-CONT SOIL	102,940	38,54064,400
8/31/10	2:48 am 342,711	SOIL	74	SW-CONT SOIL	103,420	38,66064,760
8/31/10	8/31/10 2:58 am 342,712	SOIL	74	SW-CONT SOIL	96,560	40,12056,440
8/31/10	8/31/10 2:59 am 342,713	SOIL	74	SW-CONT SOIL	109,960	39,00070,960
8/31/10	8/31/10 3:00 am 342,714	SOIL	74	SW-CONT SOIL	116,220	39,74076,480
8/31/10	8/31/10 3:01 am 342,715	SOIL	74	SW-CONT SOIL	96,900	39,10057,800
8/31/10	8/31/10 3:02 am 342,716	SOIL	74	SW-CONT SOIL	103,780	38,02065,760
8/31/10	8/31/10 3:03 am 342,717	SOIL	74	SW-CONT SOIL	107,860	43,90063,960
8/31/10	8/31/10 3:05 am 342,719	SOIL	74	SW-CONT SOIL	98,440	36,44062,000
8/31/10	8/31/10 3:06 am 342,720	SOIL	74	SW-CONT SOIL	106,860	38,68068,180
8/31/10	8/31/10 3:08 am 342,722	SOIL	74	SW-CONT SOIL	108,980	39,04069,940
8/31/10	8/31/10 3:10 am 342,723	SOIL	74	SW-CONT SOIL	100,740	35,64065,100
8/31/10	8/31/10 3:11 am 342,724	SOIL	74	SW-CONT SOIL	108,600	38,94069,660
8/31/10	8/31/10 3:12 am 342,725	SOIL	74	SW-CONT SOIL	109,540	40,06069,480
8/31/10	8/31/10 3:13 am 342,726	SOIL	74	SW-CONT SOIL	108,720	38,70070,020
8/31/10	8/31/10 3:14 am 342,727	SOIL	74	SW-CONT SOIL	111,900	44,32067,580
8/31/10	8/31/10 3:15 am 342,728	SOIL	74	SW-CONT SOIL	101,860	38,08063,780
8/31/10	8/31/10 3:16 am 342,729	SOIL	74	SW-CONT SOIL	103,900	38,84065,060
8/31/10	8/31/10 3:18 am 342,731	SOIL	74	SW-CONT SOIL	106,120	38,68067,440
8/31/10	8/31/10 3:19 am 342,732	SOIL	74	SW-CONT SOIL	103,880	38,96064,920
8/31/10	8/31/10 3:20 am 342,733	SOIL	74	SW-CONT SOIL	103,540	39,48064,060
8/31/10	8/31/10 3:21 am 342,734	SOIL	74	SW-CONT SOIL	104,760	38,50066,260
8/31/10	8/31/10 3:22 am 342,735	SOIL	74	SW-CONT SOIL	100,260	35,46064,800
8/31/10	8/31/10 3:23 am 342,736	SOIL	74	SW-CONT SOIL	105,460	38,82066,640
8/31/10	8/31/10 3:24 am 342,737	SOIL	74	SW-CONT SOIL	98,720	36,32062,400
8/31/10	8/31/10 3:25 am 342,738	SOIL	74	SW-CONT SOIL	104,720	38,42066,300
8/31/10	8/31/10 3:26 am 342,739	SOIL	74	SW-CONT SOIL	111,260	38,88072,380
8/31/10	8/31/10 3:27 am 342,740	Soll	74	SW-CONT SOIL	102,700	38,36064,340

KENT/KING

31.89

35.01

33.79

34.74

KENT/KING KENT/KING KENT/KING

32.53 33.72 KENT/KING

32.46 32.03 33.13

KENT/KING KENT/KING KENT/KING KENT/KING

32.40

33.32

KENT/KING KENT/KING KENT/KING

33.15

31.20

36.19 32.17

Page 2 of 26

Report period August 2010 REGIONAL DISPOSAL INTERMODAL

104,200	100,760	105,680	105,940	116,020	98,260	086'66	99,700	113,280	110,720	109,080	106,660	102,480	111,360	102,060	98,900	106,880	106,900	110,880	102,460	104,060	91,740	108,280	92,100	97,460	85,640	110,720	94,400	109,080
SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL															
74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
											×	2015	14															
SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL															
8/31/10 3:28 am 342,741	8/31/10 3:29 am 342,742	8/31/10 3:30 am 342,743	8/31/10 3:31 am 342.744	8/31/10 3:32 am 342,745	8/31/10 4:34 am 342,750	8/31/10 7:40 am 342,812	8/31/10 8:05 am 342,821	8/31/10 8:14 am 342,824	8/31/10 8:34 am 342,828	8/31/10 8:39 am 342,831	8/31/10 8:42 am 342,834	8/31/10 9:13 am 342,848	8/31/10 9:14 am 342,850	8/31/10 9:58 am 342,880	8/31/10 10:02 an 342,889	8/31/10 10:04 an 342,895	8/31/10 10:21 an 342,911	8/31/10 10:48 an 342,928	8/31/10 10:50 an 342,930	8/31/10 11:01 an 342,941	8/31/10 11:02 an 342,944	8/31/10 11:06 an 342,950	8/31/10 11:08 an 342,956	8/31/10 11:43 an 342,955	8/31/10 11:49 an 342,962	8/31/10 11:52 an 342,965	8/31/10 11:56 an 342,973	8/31/10 12:08 pn 342,972

UNIV/FINDA	00 00	035 720C5 11	100 000
KENT/KING	28.47	37,46056,940	94,400
KENT/KING	36.33	38,06072,660	110,720
KENT/KING	24.50	36,64049,000	85,640
KENT/KING	29.08	39,30058,160	97,460
KENT/KING	28.24	35,62056,480	92,100
KENT/KING	34.09	40,10068,180	108,280
KENT/KING	27.35	37,04054,700	91,740
KENT/KING	31.26	41,54062,520	104,060
KENT/KING	31.70	39,06063,400	102,460
KENT/KING	36.15	38,58072,300	110,880
KENT/KING	33.27	40,36066,540	106,900
KENT/KING	33.44	40,00066,880	106,880
KENT/KING	30.46	37,98060,920	98,900
KENT/KING	31.39	39,28062,780	102,060
KENT/KING	36.25	38,86072,500	111,360
KENT/KING	32.92	36,64065,840	102,480
KENT/KING	33.68	39,30067,360	106,660
KENT/KING	34.49	40,10068,980	109,080
KENT/KING	36.40	37,92072,800	110,720
KENT/KING	35.16	42,96070,320	113,280
KENT/KING	30.24	39,22060,480	99,700
KENT/KING	30.02	39,94060,040	086'66
KENT/KING	29.64	38,98059,280	98,260
KENT/KING	38.63	38,76077.260	116,020
KENT/KING	34.72	36,50069,440	105,940
KENT/KING	33.88	37,92067,760	105,680
KENT/KING	28.55	43,66057,100	100,760
KENT/KING	32.85	38,50065,700	104,200

Report period August 2010 REGIONAL DISPOSAL INTERMODAL

8/31/10 12:15 pn 342,977	SOIL	74 SW-CONT SOIL	112,140
8/31/10 12:38 pn 342,990	SOIL	74 SW-CONT SOIL	98,200
8/31/10 12:47 pn 342,998	SOIL	74 SW-CONT SOIL	96,040
8/31/10 1:21 pm 343,024	SOIL	74 SW-CONT SOIL	104,000
8/31/10 1:33 pm 343,028	SOIL	74 SW-CONT SOIL	102,400
8/31/10 1:35 pm 343,029	SOIL	74 SW-CONT SOIL	91,360
8/31/10 1:37 pm 343,031	SOIL	74 SW-CONT SOIL	006`66
8/31/10 1:40 pm 343,034	SOIL	74 SW-CONT SOIL	105,480
8/31/10 1:56 pm 343,042	SOIL	74 SW-CONT SOIL	104,000
8/31/10 2:05 pm 343,049	SOIL	74 SW-CONT SOIL	109,660
8/31/10 2:07 pm 343,070	SOIL	74 SW-CONT SOIL	100,800
8/31/10 2:11 pm 343,071	SOIL	74 SW-CONT SOIL	104,840
8/31/10 9:59 pm 343,153	SOIL	74 SW-CONT SOIL	89,100
8/31/10 10:01 pn 343,154	SOIL	74 SW-CONT SOIL	113,000
8/31/10 10:03 pn 343,155	SOIL	74 SW-CONT SOIL	106,000
8/31/10 10:06 pn 343,156	SOIL	74 SW-CONT SOIL	92,460
8/31/10 10:07 pn 343,157	SOIL	74 SW-CONT SOIL	108,900
9/2/10 7:40 am 343,636	SOIL	74 SW-CONT SOIL	94,200
9/2/10 7:41 am 343,637	SOIL	74 SW-CONT SOIL	96,600
9/2/10 7:47 am 343,639	SOIL	74 SW-CONT SOIL	92,220
9/2/10 7:57 am 343,643	SOIL	74 SW-CONT SOIL	84,680
9/2/10 8:09 am 343,647	SOIL	74 SW-CONT SOIL	88,180
9/2/10 8:11 am 343,650	SOIL	74 SW-CONT SOIL	86,680
9/2/10 8:11 am 343,652	SOIL	74 SW-CONT SOIL	88,060
9/2/10 8:21 am 343,651	SOIL	74 SW-CONT SOIL	102,640
9/2/10 8:54 am 343,665	SOIL	74 SW-CONT SOIL	99,420
9/2/10 8:58 am 343,669	SOIL	74 SW-CONT SOIL	110,620
9/2/10 9:05 am 343,670	SOIL	74 SW-CONT SOIL	112,580
9/2/10 9:42 am 343,689	SOIL	74 SW-CONT SOIL	95,640

	40,560 /1,/80	35.89	KENT/KING
98,200 3	39,06059,140	29.57	KENT/KING
96,040 3	38,42057,620	28.81	KENT/KING
104,000 3	37,46066,540	33.27	KENT/KING
102,400 3	38,06064,340	32.17	KENT/KING
91,360 3	36,64054,720	27.36	KENT/KING
99,900 4	41,32058,580	29.29	KENT/KING
105,480 4	40,36065,120	32.56	KENT/KING
104,000 3	39,06064,940	32.47	KENT/KING
109,660 3	38,42071,240	35.62	KENT/KING
100,800 3	38,84061,960	30.98	KENT/KING
104,840 3	39,70065,140	32.57	KENT/KING
89,100 3	37,04052,060	26.03	KENT/KING
113,000 4	41,54071,460	35.73	KENT/KING
106,000 4	40,10065,900	32.95	KENT/KING
92,460 3	35,62056,840	28.42	KENT/KING
108,900 3	39,30069,600	34.80	KENT/KING
94,200 4	40,92053,280	26.64	KENT/KING
96,600 4	43,44053,160	26.58	KENT/KING
92,220 3	38,30053,920	26.96	KENT/KING
84,680 3	35,28049,400	24.70	KENT/KING
88,180 3	37,92050,260	25.13	KENT/KING
86,680 3	36,76049,920	24.96	KENT/KING
88,060 3	37,66050,400	25.20	KENT/KING
102,640 3	37,04065,600	32.80	KENT/KING
99,420 4	40,92058,500	29.25	KENT/KING
110,620 4	42,96067,660	33.83	KENT/KING
112,580 3	38,06074,520	37.26	KENT/KING
95,640 3	36,640 59,000	29.50	KENT/KING

REGIONAL DISPOSAL INTERMODAL

74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL
SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
9/2/10 9:44 am 343,691	9/2/10 9:47 am 343,693	9/2/10 10:09 am 343,709	9/2/10 10:17 am 343,712	9/2/10 10:19 am 343,714	9/2/10 10:58 am 343,746	9/2/10 10:59 am 343,748	9/2/10 11:01 am 343,749	9/2/10 11:41 am 343,777	9/2/10 11:45 ant 343,784	9/2/10 11:47 am 343,788	9/2/10 12:17 pm 343,809	9/2/10 12:22 pm 343,813	9/2/10 12:31 pm 343,819	9/2/10 12:51 pm 343,831	9/2/10 12:54 pm 343,838	9/2/10 1:10 pm 343,845	9/2/10 1:34 pm 343,855	9/2/10 1:36 pm 343,856	9/2/10 1:40 pm 343,860	9/2/10 2:10 pm 343,872	9/2/10 2:12 pm 343,873	9/2/10 2:26 pm 343,886	9/2/10 2:41 pm 343,901	9/2/10 2:48 pm 343,906	9/2/10 2:51 pm 343,908	9/2/10 2:58 pm 343,914	9/3/10 8:10 am 344,070	9/3/10 8:36 am 344,081

94,400 37,04057,360 102,180 40.92061,260 107,720 38,06069,660 100,660 42,96057,700 99,860 35,28064,580 99,080 37,66061,420 97,500 37,92059,580 104,760 40,92063,840	28.68 30.63 34.83	KENT/KING KENT/KING
	30.63 34.83 36.65	KENT/KING
	34.83	
	20.00	KENT/KING
	CQ.07	KENT/KING
	32.29	KENT/KING
	30.71	KENT/KING
	29.79	KENT/KING
	31.92	KENT/KING
110,540 38,06072,480	36.24	KENT/KING
114,660 42,96071,700	35.85	KENT/KING
96,660 36,64060,020	30.01	KENT/KING
100,900 37,66063,240	31.62	KENT/KING
106,020 37,92068,100	34.05	KENT/KING
99,340 40,92058,420	29.21	KENT/KING
104,720 38,06066,660	33.33	KENT/KING
116,580 42,96073,620	36.81	KENT/KING
93,260 36,64056,620	28.31	KENT/KING
99,260 37,66061,600	30.80	KENT/KING
93,320 37,92055,400	27.70	KENT/KING
101,340 40,92060,420	30.21	KENT/KING
109,160 38,06071,100	35.55	KENT/KING
108,900 42,96065,940	32.97	KENT/KING
96,800 37,04059,760	29.88	KENT/KING
98,560 36,64061,920	30.96	KENT/KING
101,680 37,66064,020	32.01	KENT/KING
101,600 37,92063,680	31.84	KENT/KING
105,540 38,42067,120	33.56	KENT/KING
99,140 41,24057,900	28.95	KENT/KING

Report period September 2010 REGIONAL DISPOSAL INTERMODAL KENT/KING KENT/KING

	115.0045	0.00	201203	100000		20 -20	100-001	894-10	0.0	200	1997 - 19	80.008	S	570	65-65	0.00	1.000	10-10	10000									
30.13	32.30	31.65	29.55	35.54	32.74	29.20	30.58	33.61	36.38	31.78	32.95	31.88	28.39	31.81	32.34	32.08	33.46	31.05	31.18	33.48	34.88	36.07	29.08	32.44	31.28	33.02	29.15	31.90
36,08060,260	39,84064,600	38,06063,300	36,64059,100	38,42071,080	41,24065,480	36,08058,400	39,84061,160	38,06067,220	40,00072,760	36,64063,560	41,24065,900	41,24063,760	36,08056,780	39,84063,620	38,06064,680	40,00064,160	36,64066,920	38,42062,100	36,08062,360	41,24066,960	39,84069,760	38,06072,140	35,94058,160	39,98064,880	35,82062,560	38,52066,040	36,72058,300	38,80063,800
96,340	104,440	101,360	95,740	109,500	106,720	94,480	101,000	105,280	112,760	100,200	107,140	105,000	92,860	103,460	102,740	104,160	103,560	100,520	98,440	108,200	109,600	110,200	94,100	104,860	98,380	104,560	95,020	102,600
SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL
74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	NIOS	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL										
8:38 am	9/3/10 8:41 am 344,084	9/3/10 8:52 am 344,085	9/3/10 9:21 am 344,099	9/3/10 9:32 am 344,108	9/3/10 9:49 am 344,119	9/3/10 9:50 am 344,120	9/3/10 9:54 am 344,122	9/3/10 10:00 am 344,127	9/3/10 10:46 am 344,156	9/3/10 10:51 am 344,158	9/3/10 10:54 am 344,160	9/3/10 11:04 am 344,167	9/3/10 11:08 am 344,170	9/3/10 11:16 am 344,177	9/3/10 11:36 am 344,193	9/3/10 12:00 pm 344,216	9/3/10 12-07 pm 344,222	9/3/10 12:09 pm 344,224	9/3/10 12:20 pm 344,235	9/3/10 12:22 pm 344,236	9/3/10 12:31 pm 344,244	9/3/10 12:47 pm 344,257	9/7/10 7:59 ann 344,837	9/7/10 8:04 am 344,842	9/7/10 8:06 am 344,843	9/7/10 8-28 am 344,851	9/7/10 8.30 am 344,853	9/7/10 8:43 am 344,856

Page 6 of 26

KENT/KING

KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING

KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING

KENT/KING KENT/KING KENT/KING KENT/KING

.

Report period September 2010 REGIONAL DISPOSAL INTERMODAL KENT/KING KENT/KING

29.32 29.41

41,30058,640 35,94058,820 32.95 29.06 33.63 34.24 33.42

40,00065.900

35,94058.120 35,76067,260 41,20068,480

9/7/10 8:43 am 344,857	SOIL	74	SW-CONT SOIL	99,940
9/7/10 9:14 am 344,863	SOIL	74	SW-CONT SOIL	94,760
9/7/10 9:18 am 344,864	SOIL	74	SW-CONT SOIL	105,900
9/7/10 9:29 am 344,867	SOIL	74	SW-CONT SOIL	94,060
9/14/10 7:29 am 347,078	SOIL	74	SW-CONT SOIL	103,020
9/14/10 7:52 am 347,088	SOIL	74	SW-CONT SOIL	109,680
9/14/10 8:00 am 347,091	SOIL	74	SW-CONT SOIL	107,580
9/14/10 8:13 am 347,099	SOIL	74	SW-CONT SOIL	106,860
9/14/10 8:20 am 347,101	SOIL	74	SW-CONT SOIL	108,780
9/14/10 8:41 am 347,121	SOIL	74	SW-CONT SOIL	92,920
9/14/10 8:45 am 347,116	SOIL	74	SW-CONT SOIL	93,880
9/14/10 9:11 am 347,139	SOIL	74	SW-CONT SOIL	96,900
9/14/10 9:14 am 347,140	SOIL	74	SW-CONT SOIL	107,720
9/14/10 9:31 am 347,169	SOIL	74	SW-CONT SOIL	113,600
9/14/10 9:38 am 347,186	SOIL	74	SW-CONT SOIL	104,400
9/14/10 9:49 am 347,188	SOIL	74	SW-CONT SOIL	111,000
9/14/10 10:02 an 347,198	SOIL	74	SW-CONT SOIL	97,260
9/14/10 10:41 an 347,208	SOIL	74	SW-CONT SOIL	92,940
9/14/10 10:44 an 347,211	SOIL	74	SW-CONT SOIL	102,140
9/14/10 10:45 an 347,218	SOIL	74	SW-CONT SOIL	104,580
9/14/10 10:52 an 347,225	SOIL	74	SW-CONT SOIL	107,540
9/14/10 11:25 an 347,246	SOIL	74	SW-CONT SOIL	104,500
9/14/10 11:45 an 347,280	SOIL	74	SW-CONT SOIL	100,840
9/14/10 11:57 an 347,290	SOIL	74	SW-CONT SOIL	98,880
9/14/10 12:00 pn 347,292	SOIL	74	SW-CONT SOIL	94,160
9/14/10 12:13 pn 347,318	SOIL	74	SW-CONT SOIL	89,880
9/14/10 12:14 pn 347,302	SOIL	74	SW-CONT SOIL	97,280
9/14/10 12:17 pn 347,305	SOIL	74	SW-CONT SOIL	102,580
9/14/10 12:21 pn 347,311	SOIL	74	SW-CONT SOIL	102,460

KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING

40,74066,980

31.60 36.16 30.70 28.59 32.29 32.08 33.33

> 38,68072,320 35,86061,400

35,76057,180 37,56064,580 40,42064,160 40,88066,660 43,20061,300 41,12059,720

35.21

43,18070,420 41,20063,200

29.49 33.49

28.54 28.98

> 35,92057,960 37,92058,980

31.81

43,24063,620 41,24067,540 35,84057,080

40,74066,840

Page 7 of 26

30.70

KENT/KING KENT/KING

29.86

30.65

KENT/KING KENT/KING KENT/KING KENT/KING

26.64 29.83 29.74

KENT/KING

30.00 28.80

38,88060,000 36,56057,600 36,60053,280 37,62059,660 43,10059,480 41,06061,400

•

••

Report period September 2010 REGIONAL DISPOSAL INTERMODAL

74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	
 SULL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL										
47C, 14C IId C+.21 011+116	9/14/10 1:19 pm 347,350	9/14/10 1:30 pm 347,358	9/14/10 1:34 pm 347,373	9/14/10 1:43 pm 347,378	9/14/10 1:45 pt 347,383	9/14/10 1:46 pm 347,386	9/14/10 1:57 pm 347,437	9/14/10 2:10 pm 347,422	9/14/10 2:36 pm 347,453	9/14/10 3:11 pm 347,456	9/15/10 10:32 an 347,638	9/15/10 11:51 an 347,697	9/15/10 1:02 pm 347,747	9/15/10 2:21 pm 347,797	9/22/10 12:59 pn 349,816	9/22/10 2:19 pm 349,879	9/23/10 7:52 am 350,040	9/23/10 8:03 am 350,043	9/23/10 8:13 am 350,050	9/23/10 8:20 am 350,059	9/23/10 8:37 am 350,066	9/23/10 8:52 am 350,072	9/23/10 8:54 am 350,079	9/23/10 9:25 am 350,083	9/23/10 9:29 am 350,086	9/23/10 9:45 am 350,098	9/23/10 9:56 am 350,108	911 052 up 11:01 01/2/0
	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/14/10	9/15/10 1	9/15/10	9/15/10	9/15/10	9/22/10	9/22/10	9/23/10	9/23/10	9/23/10	9/23/10	9/23/10	9/23/10	9/23/10	9/23/10	9/23/10	9/23/10	9/23/10	01/2/10

| KENT/KING |
|--------------|
| 31.03 | 33.31 | 34.36 | 29.94 | 31.92 | 35.29 | 31.72 | 29.58 | 30.59 | 38.06 | 33.36 | 30.49 | 34.72 | 32.81 | 34.83 | 29.62 | 27.97 | 33.25 | 31.95 | 23.78 | 23.60 | 30.87 | 36.13 | 32.95 | 35.43 | 35.94 | 33.21 | 35.71 | 28.43 |
| 43,04062,060 | 41,68066,620 | 38,76068,720 | 35,64059,880 | 38,22063,840 | 41,84070,580 | 40,82063,440 | 35,88059,160 | 43,00061,180 | 40,92076,120 | 35,52066,720 | 40,52060,980 | 40,50069,440 | 40,34065,620 | 40,28069,660 | 40,42059,240 | 40,30055,940 | 39,38066,500 | 37,34063,900 | 41,42047,560 | 41,50047,200 | 42,96061,740 | 40,06072,260 | 42,70065,900 | 37,34070,860 | 41,42071,880 | 41,50066,420 | 42,96071,420 | 40,06056,860 |
| 105,100 | 108,300 | 107,480 | 95,520 | 102,060 | 112,420 | 104,260 | 95,040 | 104,180 | 117,040 | 102,240 | 101,500 | 109,940 | 105,960 | 109,940 | 099'66 | 96,240 | 105,880 | 101,240 | 88,980 | 88,700 | 104,700 | 112,320 | 108,600 | 108,200 | 113,300 | 107,920 | 114,380 | 96,920 |

*

Report period September 2010 REGIONAL DISPOSAL INTERMODAL KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING

-		_	-			-	-						-			-				_		_					_	
33.03	33.76	30.57	32.55	29.90	27.57	31.21	29.89	30.82	29.37	30.29	30.47	30.09	32.07	34.50	32.36	32.88	32.17	30.06	28.33	34.08	31.59	33.40	30.11	34.39	28.32	29.84	33.00	32.13
42,70066,060	39,38067,520	37,34061,140	41,42065,100	42,96059,800	40,06055,140	42,70062,420	39,38059,780	37,34061,640	41,50058,740	41,42060,580	42,96060,940	40,06060,180	42,70064,140	39,38069,000	37,34064,720	41,50065,760	41,42064,340	42,96060,120	40,06056,660	42,70068,160	39,38063,180	37,34066,800	41,50060,220	39,38068,780	37,40056,640	39,32059,680	39,80066,000	43,12064,260
108,760	106,900	98,480	106,520	102,760	95,200	105,120	66,160	98,980	100,240	102,000	103,900	100,240	106,840	108,380	102,060	107,260	105,760	103,080	96,720	110,860	102,560	104,140	101,720	108,160	94,040	000'66	105,800	107,380
SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL										
74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74
SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL										
9/23/10 10:24 an 350,127	9/23/10 10:32 an 350,137	9/23/10 10:40 an 350,144	9/23/10 11:02 an 350,160	9/23/10 11:22 an 350,178	9/23/10 11:32 an 350,188	9/23/10 11:44 an 350,200	9/23/10 11:56 an 350,208	9/23/10 12:06 pn 350,216	9/23/10 12:23 pn 350,228	9/23/10 12:30 pri 350,235	9/23/10 12:45 pn 350,246	9/23/10 12:59 pn 350,259	9/23/10 1:01 pm 350,263	9/23/10 1:11 pm 350,270	9/23/10 1:15 pm 350,271	9/23/10 1:43 pm 350,300	9/23/10 1:57 pm 350,310	9/23/10 2:05 pm 350,316	9/23/10 2:12 pm 350,322	9/23/10 2:28 pm 350,330	9/23/10 2:35 pm 350,334	9/23/10 2:37 pm 350,337	9/23/10 3:06 pm 350,352	9/23/10 9:17 pm 350,422	9/24/10 7:43 am 350,487	9/24/10 7:53 am 350,489	9/24/10 8:03 am 350,493	9/24/10 8:05 am 350,498

KENT/KING KENT/KING

KENT/KING

KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING

KENT/KING

Page 9 of 26

KENT/KING

KENT/KING

KENT/KING KENT/KING

Report period September 2010 REGIONAL DISPOSAL INTERMODAL

74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL	74 SW-CONT SOIL
SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	NIOS	SOIL	TIOS	SOIL	SOIL	SOIL	SOIL	SOIL								
9/24/10 8:15 ani 350,499	9/24/10 8:23 am 350,502	9/24/10 8:40 am 350,507	9/24/10 8:53 am 350,512	9/24/10 8:58 am 350,509	9/24/10 9:05 am 350,511	9/24/10 9:17 am 350,516	9/24/10 9:25 am 350,521	9/24/10 9:31 am 350,525	9/24/10 10:11 an 350,543	9/24/10 10:13 an 350,544	9/24/10 10:20 an 350,548	9/24/10 10:26 an 350,552	9/24/10 10:38 an 350,558	9/24/10 10:54 an 350,572	9/24/10 11:12 an 350,586	9/24/10 11:22 an 350,594	9/24/10 11:33 an 350,598	9/24/10 11:42 an 350,607	9/24/10 11:51 an 350,619	9/24/10 11:56 an 350,625	9/24/10 12:21 pn 350,647	9/24/10 12:36 pn 350,656	9/24/10 12:41 pn 350,659	9/24/10 12:51 pn 350,665	9/24/10 1:04 pm 350,672	9/24/10 1:12 pm 350,675	9/24/10 1:37 pm 350,694	9/24/10 2:01 pm 350,707

7 KENT/KING	S KENT/KING	I KENT/KING	9 KENT/KING	7 KENT/KING	4 KENT/KING	2 KENT/KING	0 KENT/KING) KENT/KING	7 KENT/KING	KENT/KING	5 KENT/KING	2 KENT/KING	KENT/KING	KENT/KING	2 KENT/KING) KENT/KING	2 KENT/KING	7 KENT/KING	2 KENT/KING	KENT/KING	KENT/KING	KENT/KING	KENT/KING	3 KENT/KING	3 KENT/KING	2 KENT/KING	KENT/KING	S KENT/KING
29.97	29.75	29.71	31.19	32.17	34.54	32.22	35.50	35.99	35.37	29.51	32.56	33.42	35.59	32.71	32.02	35.50	32.92	30.77	33.62	30.79	31.41	32.99	30.89	30.53	28.83	30.72	29.59	32.76
41,28059,940	41,18059,500	41,16059,420	41,10062,380	37,40064,340	39,32069,080	39,80064,440	41,28071,000	43,12071,980	37,40070,740	41,10059,020	39,32065,120	39,80066,840	41,28071,180	43,12065,420	37,40064,040	41,18071,000	41,10065,840	39,32061,540	39,80067,240	41,28061,580	43,12062,820	41,18065,980	41,10061,780	39,32061,060	39,80057,660	41,28061,440	43,12059,180	41,18065,520
101,220	100,680	100,580	103,480	101,740	108,400	104,240	112,280	115,100	108,140	100,120	104,440	106,640	112,460	108,540	101,440	112,180	106,940	100,860	107,040	102,860	105,940	107,160	102,880	100,380	97,460	102,720	102,300	106,700

scale ficket # 208953 missing fram

Page 11 of 26

KENT/KING **KENT/KING** 37.96 KENT/KING KENT/KING KENT/KING KENT/KING 35.43 12.92 33.45 30.10 34.08 31.95 29.67 34.39 33.39 33.60 32.80 30.56 31.13 32.96 32.29 32.48 28.24 30.51 29.04 34.28 33.34 33.95 33.97 33.21 30.88 28.92 30.92 29.33 27.74 37,50075,920 9,66070,860 41,10063,900 39,32059,340 39,36057,840 39,66061,840 39,40058,660 37,50055,480 9,64061,120 8,78062,260 18,28065,920 \$8,68064,580 19,16064,960 8,66056,480 8,08061,020 9,40058,080 9,84068,560 9,32060,200 9,00066,680 8,92067,900 9,36066,900 9,40068,160 9,80068,780 11,28067,940 37,40066,780 9,84066,420 19,32061,760 19,00067,200 \$8,92065,600 97,200 05,000 98,660 09,220 04,180 06,260 01,080 106,200 04,520 01,500 98,060 92,980 100,760 101,040 104,200 103,260 04,120 95,140 99,100 97,480 08,400 99,520 05,680 106,820 106,260 107,560 110,520 113,420 08,580 **REGIONAL DISPOSAL INTERMODAL** SW-CONT SOIL 74 SOIL 9/25/10 10:09 an 350,848 9/24/10 2:17 pm 350,714 9/24/10 2:32 pm 350,725 9/24/10 2:53 pm 350,735 9/24/10 3:20 pm 350,750 9/25/10 8:40 am 350,816 9/25/10 8:41 am 350,817 9/25/10 8:42 am 350,819 9/25/10 8:53 am 350,824 9/25/10 9:01 am 350,825 9/25/10 9:03 am 350,826 9/25/10 9:05 am 350,828 9/25/10 9:05 am 350,829 9/25/10 9:06 am 350,830 9/25/10 9:12 am 350,832 9/25/10 9:14 am 350,833 9/25/10 9:22 am 350,834 9/25/10 9:24 am 350,837 9/25/10 9:38 ат 350,835 9/25/10 9:40 am 350,836 9/25/10 9:44 am 350,838 9/25/10 9:51 am 350,840 9/25/10 9:56 am 350,842 9/25/10 10:01 an 350,844 9/25/10 10:03 an 350,845 9/24/10 2:38 pm 350,728 9/25/10 8:47 am 350,820 9/25/10 8:49 am 350,822 9/25/10 8:49 am 350,823 9/25/10

Activity By Job ID

Report period September 2010

Report period September 2010 REGIONAL DISPOSAL INTERMODAL KENT/KING KENT/KING KENT/KING

39.49

33.62

35.96 34.04 33.26 35.02 32.27 33.99 32.47 32.18 32.78 33.66 31.88 31.32 34.82 32.15 32.32 33.47 27.84

KENT/KING KENT/KING

9/25/10 10:16 an 350,851	Soil	74	SW-CONT SOIL	118,620	39,64078,980
9/25/10 10:19 an 350,852	SOIL	74	SW-CONT SOIL	106,020	38,78067,240
9/25/10 10:20 an 350,853	SOIL	74	SW-CONT SOIL	110,200	38,28071,920
9/25/10 10:26 an 350,854	SOIL	74	SW-CONT SOIL	107,240	39,16068,080
9/25/10 10:28 an 350,855	SOIL	74	SW-CONT SOIL	105,200	38,68066,520
9/25/10 10:31 an 350,861	SOIL	74	SW-CONT SOIL	109,120	39,08070,040
9/25/10 10:34 an 350,858	SOIL	74	SW-CONT SOIL	103,200	38,66064,540
9/25/10 10:39 an 350,860	SOIL	74	SW-CONT SOIL	106,060	38,08067,980
9/25/10 10:40 an 350,862	SOIL	74	SW-CONT SOIL	104,780	39,84064,940
9/25/10 10:43 an 350,863	SOIL	74	SW-CONT SOIL	103,680	39,32064,360
9/25/10 10:45 an 350,864	SOIL	74	SW-CONT SOIL	104,960	39,40065,560
9/25/10 10:48 an 350,866	SOIL	74	SW-CONT SOIL	106,320	39,00067,320
9/25/10 10:53 an 350,867	SOIL	74	SW-CONT SOIL	102,680	38,92063,760
9/25/10 10:58 an 350,869	SOIL	74	SW-CONT SOIL	102,000	39,36062,640
9/25/10 11:03 an 350,871	SOIL	74	SW-CONT SOIL	109,040	39,40069,640
9/25/10 11:09 an 350,872	SOIL	74	SW-CONT SOIL	103,960	39,66064,300
9/25/10 11:14 an 350,873	SOIL	74	SW-CONT SOIL	102,140	37,50064,640
9/25/10 11:23 an 350,875	SOIL	74	SW-CONT SOIL	106,580	39,64066,940
9/25/10 11:28 an 350,876	SOIL	74	SW-CONT SOIL	94,460	38,78055,680
9/25/10 11:29 an 350,877	SOIL	74	SW-CONT SOIL	99,080	38,28060,800
9/25/10 11:41 an 350,884	SOIL	74	SW-CONT SOIL	99,340	38,68060,660
9/25/10 11:43 an 350,885	SOIL	74	SW-CONT SOIL	104,200	39,08065,120
9/25/10 11:45 an 350,886	SolL	74	SW-CONT SOIL	105,780	38,66067,120
9/25/10 11:53 an 350,887	SOIL	74	SW-CONT SOIL	108,260	38,08070,180
9/25/10 11:56 an 350,888	SOIL	74	SW-CONT SOIL	96,540	39,84056,700
9/25/10 12:01 pn 350,889	SOIL	74	SW-CONT SOIL	102,540	39,32063,220
9/25/10 12:07 pn 350,891	SOIL	74	SW-CONT SOIL	96,340	39,40056,940
9/25/10 12:10 pn 350,892	SOIL	74	SW-CONT SOIL	105,560	39,00066,560
9/25/10 12-18 pn 350,893	SOIL	74	SW-CONT SOIL	101,800	38,92062,880

KENT/KING KENT/KING KENT/KING KENT/KING

30.33

32.56 33.56

30.40

KENT/KING KENT/KING KENT/KING KENT/KING

31.61

28.47 33.28 31.44

KENT/KING

28.35

35.09

Page 12 of 26

.

Report period September 2010 REGIONAL DISPOSAL INTERMODAL

9/25/10 12:21 pn 350,894	SOIL	74	SW-CONT SOIL
9/25/10 12:27 pn 350,896	SOIL	74 \$	SW-CONT SOIL
9/25/10 12:29 pn 350,897	SOIL	74 5	SW-CONT SOIL
9/25/10 12:39 pn 350,901	SOIL	74	SW-CONT SOIL
9/25/10 12:45 pn 350,903	SOIL	74	SW-CONT SOIL
9/25/10 12:47 pn 350,904	SOIL	74 \$	SW-CONT SOIL
9/25/10 12:48 pn 350,905	SOIL	74 \$	SW-CONT SOIL
9/25/10 12:53 pn 350,907	SOIL	74 \$	SW-CONT SOIL
9/25/10 12:55 pn 350,908	SOIL	74 \$	SW-CONT SOIL
9/25/10 12:58 pn 350,909	SOIL	74 \$	SW-CONT SOIL
9/25/10 12:58 pn 350,910	SOIL	74 \$	SW-CONT SOIL
9/25/10 1:00 pm 350,911	SOIL	74 \$	SW-CONT SOIL
9/25/10 1:05 pm 350,913	SOIL	74 5	SW-CONT SOIL
9/25/10 1:06 pm 350,914	SOIL	74 5	SW-CONT SOIL
9/25/10 1:09 pm 350,915	SOIL	74 \$	SW-CONT SOIL
9/25/10 1:13 pm 350,916	SOIL	74 \$	SW-CONT SOIL
9/25/10 1:15 pm 350,918	SOIL	74 \$	SW-CONT SOIL
9/25/10 1:20 pm 350,920	SOIL	74 \$	SW-CONT SOIL
9/25/10 1:23 pm 350,921	SOIL	74 \$	SW-CONT SOIL
9/25/10 1:28 pm 350,922	SOIL	74 5	SW-CONT SOIL
9/25/10 1:34 pm 350,924	SOIL	74 \$	SW-CONT SOIL
9/25/10 1:54 pm 350,927	SOIL	74 \$	SW-CONT SOIL
9/25/10 1:59 pm 350,929	SOIL	74 \$	SW-CONT SOIL
9/27/10 7:39 am 351,044	SOIL	74 \$	SW-CONT SOIL
9/27/10 7:58 am 351,052	SOIL	74 5	SW-CONT SOIL
9/27/10 8:00 am 351,053	SOIL	74 \$	SW-CONT SOIL
9/27/10 8:22 am 351,060	SOIL	74 \$	SW-CONT SOIL
9/27/10 8:27 am 351,064	Soil	74 \$	SW-CONT SOIL
9/27/10 8:30 am 351,065	SOIL	74 \$	SW-CONT SOIL

103,940	39,36064,580	32.29	KENT/KING
93,700	39,40054,300	27.15	KENT/KING
105,760	39,66066,100	33.05	KENT/KING
104,160	37,50066,660	33.33	KENT/KING
111,840	39,64072,200	36.10	KENT/KING
106,420	38,78067,640	33.82	KENT/KING
100,740	38,28062,460	31.23	KENT/KING
100,160	39,16061,000	30.50	KENT/KING
101,360	38,68062,680	31.34	KENT/KING
102,960	39,16063,800	31.90	KENT/KING
105,840	39,08066,760	33.38	KENT/KING
92,840	38,66054,180	27.09	KENT/KING
104,700	38,08066,620	33.31	KENT/KING
101,960	39,84062,120	31.06	KENT/KING
109,280	39,32069,960	34.98	KENT/KING
97,080	39,40057,680	28.84	KENT/KING
98,580	39,00059,580	29.79	KENT/KING
93,860	38,92054,940	27.47	KENT/KING
97,220	39,36057,860	28.93	KENT/KING
100,080	39,40060,680	30.34	KENT/KING
97,960	39,66058,300	29.15	KENT/KING
106,100	37,50068,600	34.30	KENT/KING
110,140	39,64070,500	35.25	KENT/KING
101,360	35,92065,440	32.72	KENT/KING
111,740	39,08072,660	36.33	KENT/KING
105,940	37,36068,580	34.29	KENT/KING

KENT/KING **KENT/KING** KENT/KING

31.98 35.32 30.20

41,06063,960 41,34070,640 41,24060,400

105,020 111,980 101,640

.

.

Report period September 2010 REGIONAL DISPOSAL INTERMODAL

9/27/10 8:41 am 351,072	SOIL	74	SW-CONT SOIL	109,060
9/27/10 8:53 am 351,078	SOIL	74	SW-CONT SOIL	102,520
9/27/10 8:59 am 351,081	SOIL	74	SW-CONT SOIL	102,240
9/27/10 9:07 am 351,080	SOIL	74	SW-CONT SOIL	102,900
9/27/10 9:22 am 351,086	SOIL	74	SW-CONT SOIL	86,980
9/27/10 9:28 am 351,091	SOIL	74	SW-CONT SOIL	98,720
9/27/10 9:31 am 351,093	SOIL	74	SW-CONT SOIL	104,240
9/27/10 9:33 am 351,095	SOIL	74	SW-CONT SOIL	110,340
9/27/10 9:59 am 351,107	SOIL	74	SW-CONT SOIL	99,180
9/27/10 10:00 an 351,109	SOIL	74	SW-CONT SOIL	101,380
9/27/10 10:07 an 351,115	SOIL	74	SW-CONT SOIL	112,320
9/27/10 10:17 an 351,122	SOIL	74	SW-CONT SOIL	108,500
9/27/10 10:21 an 351,126	SOIL	74	SW-CONT SOIL	99,520
9/27/10 10:28 an 351,132	SOIL	74	SW-CONT SOIL	105,360
9/27/10 10:30 an 351,134	SOIL	74	SW-CONT SOIL	110,800
9/27/10 10:45 an 351,147	SOIL	74	SW-CONT SOIL	109,860
9/27/10 10:50 an 351,151	SOIL	74	SW-CONT SOIL	96,040
9/27/10 10:52 an 351,185	SOIL	74	SW-CONT SOIL	104,600
9/27/10 10:53 an 351,153	SOIL	74	SW-CONT SOIL	103,300
9/27/10 11:10 an 351,166	SOIL	74	SW-CONT SOIL	104,820
9/27/10 11:21 an 351,176	SOIL	74	SW-CONT SOIL	107,080
9/27/10 11:27 an 351,182	SOIL	74	SW-CONT SOIL	101,500
9/27/10 11:31 an 351,186	SOIL	74	SW-CONT SOIL	108,580
9/27/10 11:35 an 351,190	SOIL	74	SW-CONT SOIL	98,700
9/27/10 11:46 an 351,197	SOIL	74	SW-CONT SOIL	103,340
9/27/10 12:01 pn 351,210	SOIL	74	SW-CONT SOIL	105,720
9/27/10 12:19 pn 351,226	SOIL	74	SW-CONT SOIL	101,220
9/27/10 12:21 pn 351,228	SOIL	74	SW-CONT SOIL	92,100
9/27/10 12:23 pn 351,231	SOIL	74	SW-CONT SOIL	99,120

109,060	40,92068,140	34.07	KENT/KING
102,520	38,60063,920	31.96	KENT/KING
102,240	38,88063,360	31.68	KENT/KING
102,900	40,80062,100	31.05	KENT/KING
86,980	35,92051,060	25.53	KENT/KING
98,720	39,08059,640	29.82	KENT/KING
104,240	37,36066,880	33.44	KENT/KING
110,340	43,10067,240	33.62	KENT/KING
99,180	41,06058,120	29.06	KENT/KING
101,380	41,34060,040	30.02	KENT/KING
112,320	41,24071,080	35.54	KENT/KING
108,500	40,92067,580	33.79	KENT/KING
99,520	38,60060,920	30,46	KENT/KING
105,360	40,80064,560	32.28	KENT/KING
110,800	38,88071,920	35.96	KENT/KING
109,860	39,08070,780	35.39	KENT/KING
96,040	35,92060,120	30.06	KENT/KING
104,600	43,00061,600	30.80	KENT/KING
103,300	37,36065,940	32.97	KENT/KING
104,820	41,06063,760	31.88	KENT/KING
107,080	41,34065,740	32.87	KENT/KING
101,500	41,24060,260	30.13	KENT/KING
108,580	40,92067,660	33.83	KENT/KING
98,700	38,60060,100	30.05	KENT/KING
103,340	40,80062,540	31.27	KENT/KING
105,720	38,88066,840	33.42	KENT/KING
101,220	39,08062,140	31.07	KENT/KING
92,100	37,36054,740	27.37	KENT/KING
99,120	35,92063,200	31.60	KENT/KING

REPORT period September 2010 REGIONAL DISPOSAL INTERMODAL

 9 pn 351,24 11 pn 351,23 15 pn 351,23 14 pn 351,26 14 pn 351,26 15 pn 351,26 15 pn 351,26 16 pn 351,26 17 pn 351,32 16 pn 351,32 17 pn 351,32 17 pn 351,32 17 pn 351,32 18 pn 351,33 3 pn 351,33 3 pn 351,33 3 pn 351,33 3 pn 351,32 4 pn 351,33 3 pn 351,33 	 0 12:29 pn 351,23 0 12:31 pn 351,23 0 12:35 pn 351,23 0 12:35 pn 351,26 0 12:44 pn 351,26 0 12:58 pn 351,26 0 12:58 pn 351,26 0 12:58 pn 351,26 0 1:57 pn 351,32 1 1:47 pn 351,32 1 1:52 pn 351,33 1 2:16 pn 351,33 1 2:18 pn 351,33 1 2:28 pn 351,33 1 2:28 pn 351,33 1 2:28 pn 351,33 1 2:28 pn 351,33 1 2:33 pn 351,33 1 2:33 pn 351,33 1 2:34 pn 351,33 1 2:35 pn 351,33 1 2:35 pn 351,33 1 2:33 pn 351,33 1 2:34 pn 351,33 1 2:35 pn 351,33
	0 12:3 0 12:3 0 12:5 0 12:5 0 12:5 0 12:5 0 12:5 0 12:5 0 12:5 0 12:5 0 12:5 0 14:4 0 14:5 0 14:4 0 14:5 0 14:5 0 14:5 0 155 0 155 0 2:14 0 2:51 0 2:51 0 2:54 0 2:54 0 2:54 0 2:54 0 2:54 0 2:54 0 2:54 0 2:54 0 2:55 0 2:54 0 2:54 0 2:54 <t< td=""></t<>

109,680	41,16068,520	34.26	KENT/KING
98,760	39,70059,060	29.53	KENT/KING
107,580	41,06066,520	33.26	KENT/KING
110,680	41,34069,340	34.67	KENT/KING
108,100	40,56067,540	33.77	KENT/KING
109,820	43,10066,720	33.36	KENT/KING
117,420	41,06076,360	38.18	KENT/KING
112,880	40,92071,960	35.98	KENT/KING
91,840	38,60053,240	26.62	KENT/KING
105,560	40,80064,760	32.38	KENT/KING
91,500	35,54055,960	27.98	KENT/KING
107,580	38,88068,700	34.35	KENT/KING
106,920	39,08067,840	33.92	KENT/KING
97,160	35,92061,240	30.62	KENT/KING
99,140	37,36061,780	30.89	KENT/KING
108,020	41,06066,960	33.48	KENT/KING
105,560	41,34064,220	32.11	KENT/KING
106,160	41,16065,000	32.50	KENT/KING
104,440	40,22064,220	32.11	KENT/KING
96,860	37,44059,420	29.71	KENT/KING
103,600	40,78062,820	31.41	KENT/KING
110,760	41,24069,520	34.76	KENT/KING
107,100	40,92066,180	33.09	KENT/KING
102,980	38,60064,380	32.19	KENT/KING
112,420	43,10069,320	34.66	KENT/KING
104,380	40,80063,580	31.79	KENT/KING
109,200	38,88070,320	35.16	KENT/KING
100,940	35,22065,720	32.86	KENT/KING
107,220	39,06068,160	34.08	KENT/KING

Report period September 2010 REGIONAL DISPOSAL INTERMODAL

9/28/10 8:07 am 351,517	SOIL	74	SW-CONT SOIL	100
9/28/10 8:18 am 351,521	SOIL	74	SW-CONT SOIL	6
9/28/10 8:20 am 351,520	SOIL	74	SW-CONT SOIL	10
9/28/10 8:24 am 351,525	SOIL	74	SW-CONT SOIL	6
9/28/10 8:42 am 351,539	SOIL	74	SW-CONT SOIL	.6
9/28/10 8:55 am 351,541	SOIL	74	SW-CONT SOIL	10
9/28/10 9:40 am 351,563	SOIL	74	SW-CONT SOIL	102
9/28/10 9:41 am 351,564	SOIL	74	SW-CONT SOIL	10(
9/28/10 9:52 am 351,570	SOIL	74	SW-CONT SOIL	6
9/28/10 9:57 am 351,569	SOIL	74	SW-CONT SOIL	6
9/28/10 10:21 an 351,582	SOIL	74	SW-CONT SOIL	96
9/28/10 11:10 an 351,621	SOIL	74	SW-CONT SOIL	100
9/28/10 11:20 an 351,630	SOIL	74	SW-CONT SOIL	301
9/28/10 11:26 an 351,646	SOIL	74	SW-CONT SOIL	96
9/28/10 11:37 an 351,657	SOIL	74	SW-CONT SOIL	6
9/28/10 11:52 an 351,663	SOIL	74	SW-CONT SOIL	101
9/30/10 7:53 am 352,299	SOIL	74	SW-CONT SOIL	101
9/30/10 7:55 am 352,300	SOIL	74	SW-CONT SOIL	102
9/30/10 8:16 am 352,306	SOIL	74	SW-CONT SOIL	102
9/30/10 8:21 am 352,312	SOIL	74	SW-CONT SOIL	105
9/30/10 9:20 am 352,326	SOIL	74	SW-CONT SOIL	101
9/30/10 9:22 am 352,329	SOIL	74	SW-CONT SOIL	100
9/30/10 9:34 am 352,338	SOIL	74	SW-CONT SOIL	105
9/30/10 9:44 am 352,343	SOIL	74	SW-CONT SOIL	101
9/30/10 10:35 an 352,374	SOIL	74	SW-CONT SOIL	101
9/30/10 10:37 an 352,378	SOIL	74	SW-CONT SOIL	96
9/30/10 10:55 an 352,395	SOIL	74	SW-CONT SOIL	104
9/30/10 11:08 an 352,400	SOIL	74	SW-CONT SOIL	107
9/30/10 11:10 an 352,478	SOIL	74	SW-CONT SOIL	102

KENT/KING KENT/KING 31.96 30.20 30.38 28.66 27.45 31.31 31.44 32.40 30.39 34.27 30.23 28.06 32.34 32.63 30.31 25.32 30.42 34.71 27.57 31.65 34.88 34.85 33.69 31.00 35.12 29.79 32.70 34.59 31.99 38,38063,920 39,52060,400 39,40068,540 39,02060,460 41.12056,120 39,06064,680 39,40065,260 39,52060,760 38,96060,620 41,12050,640 39,06057,320 39,52060,840 39,40069,420 40,98055,140 38,94054,900 39,06062,620 37,70063,300 39,58062,880 38,12069,180 38,12064,800 39,24069,760 37,70069,700 39,58060,780 38,12067,380 39,24062,000 37,70070,240 39,58059,580 39,24065,400 38,40063,980 02,300 99,920 07,940 99,480 97,240 03,740 04,660 00,280 99,580 91,760 96,380 00,360 08,820 96,120 3,840 11,680 000,10 12,460 12,920 0000'60 1,240 7,940 14,640 7,400 0,360 5,500 091'60 7,300 12,380

Page 16 of 26

Report period September 2010 REGIONAL DISPOSAL INTERMODAL

9/30/10 11:	9/30/10 11:52 an 352,442	SOIL	74	SW-CONT SOIL	100,
9/30/10 11:	9/30/10 11:56 an 352,448	SOIL	74	SW-CONT SOIL	92,4
9/30/10 12:	9/30/10 12:07 pn 352,455	SOIL	74	SW-CONT SOIL	,66
9/30/10 12:	9/30/10 12:23 pn 352,472	SOIL	74	SW-CONT SOIL	108,0
9/30/10 12:	9/30/10 12:27 pn 352,477	SOIL	74	SW-CONT SOIL	102,4
9/30/10 1:0	9/30/10 1:08 pm 352,504	SOIL	74	SW-CONT SOIL	100,
9/30/10	9/30/10 1:13 pm 352,508	SOIL	74	SW-CONT SOIL	100,
9/30/10 1:1	9/30/10 1:17 pm 352,517	SOIL	74	SW-CONT SOIL	104,
9/30/10 1:2	9/30/10 1:21 pm 352,512	SOIL	74	SW-CONT SOIL	102,
9/30/10 1:3	9/30/10 1:39 pm 352,524	SOIL	74	SW-CONT SOIL	101,
9/30/10 1:4	9/30/10 1:47 pm 352,534	SOIL	74	SW-CONT SOIL	103,9
9/30/10 2:2	9/30/10 2:31 pm 352,560	SOIL	74	SW-CONT SOIL	100,
9/30/10 2:4	9/30/10 2:43 pm 352,567	SOIL	74	SW-CONT SOIL	103,
9/30/10 2:4	9/30/10 2:47 pm 352,569	SOIL	74	SW-CONT SOIL	100,(
9/30/10 2:5	9/30/10 2:54 pm 352,577	SOIL	74	SW-CONT SOIL	101,
9/30/10 3:(9/30/10 3:05 pm 352,584	SOIL	74	SW-CONT SOIL	103,
9/30/10 3:1	9/30/10 3:18 ptr 352,593	SOIL	74	SW-CONT SOIL	106,9
3/30/10 3:2	9/30/10 3:29 pm 352,614	SOIL	74	SW-CONT SOIL	106,3
9/30/10 3:2	9/30/10 3:34 pm 352,617	SOIL	74	SW-CONT SOIL	108,
9/30/10 3::	9/30/10 3:36 pm 352,618	SOIL	74	SW-CONT SOIL	108,6
9/30/10 3::	9/30/10 3:39 pm 352,625	SOIL	74	SW-CONT SOIL	94,
3:20/10	9/30/10 3:53 pm 352,626	Soll	74	SW-CONT SOIL	98,
9/30/10 3::	9/30/10 3:54 pm 352,631	SOIL	74	SW-CONT SOIL	106,
9/30/10 4:0	9/30/10 4:08 pm 352,637	SOIL	74	SW-CONT SOIL	.66
10/1/10 7:	10/1/10 7:35 am 352,765	TIOS	74	SW-CONT SOIL	102,
101/1/01	10/1/10 7:45 am 352,767	SOIL	74	SW-CONT SOIL	91,0
10/1/10 8:0	10/1/10 8:06 am 352,772	SOIL	74	SW-CONT SOIL	84,
10/1/10 8:0	10/1/10 8:09 am 352,773	SOIL	74	SW-CONT SOIL	104,0
10/1/10	10/1/10 9:01 am 352,788	SOIL	74	SW-CONT SOIL	100,

KENT/KING KENT/KING KENT/KING KENT/KING KENT/KING **KENT/KING** KENT/KING 28.69 30.57 30.45 32.69 34.40 31.74 31.67 25.47 22.95 31.27 26.42 35.25 30.62 32.49 31.43 31.35 32.90 31.56 31.97 30.25 31.02 34.81 35.25 32.91 31.93 30.08 31.64 29.91 32.01 40,08050,940 12,94061,140 37,70062,540 39,58052,840 39,24060,160 38,12070,500 38,40064,020 37,70063,280 39,58061,240 39,14064,980 39,240,62,860 38,40062,700 38,12065,800 37,70063,120 39,24063,940 39,58060,500 39,14062,040 38,40065,380 38,12068,800 42,72063,480 39,12069,620 38,42070,500 37,20057,380 38,84059,820 40,42065,820 35,46063,860 39,22063,340 39,00045,900 39,22060,900 ,240 740 920 ,020 900 ,420 ,400 ,620 ,420 980 ,820 ,120 ,100 ,100 ,920 ,820 ,180 ,080 ,180 ,780 920 ,200 580 ,660 ,240 320 560 ,080 ,120

Report period October 2010 REGIONAL DISPOSAL INTERMODAL

10/1/10 9:02 am 352 790	IUS	TA CIN CONT COIL
10/1/10 9:16 am 352,792		74 SW-CONT SOIL
10/1/10 9:20 am 352,794	SOIL	74 SW-CONT SOIL
10/1/10 10:06 an 352,813	SOIL	74 SW-CONT SOIL
10/1/10 10:12 an 352,819	SOIL	74 SW-CONT SOIL
10/1/10 10:43 an 352,840	SOIL	74 SW-CONT SOIL
10/1/10 10:53 an 352,849	SOIL	74 SW-CONT SOIL
10/1/10 11:26 an 352,871	SOIL	74 SW-CONT SOIL
10/1/10 11:36 an 352,877	SOIL	74 SW-CONT SOIL
10/1/10 12:53 pn 352,929	Soll	74 SW-CONT SOIL
10/5/10 3:22 pm 353,900	SOIL	74 SW-CONT SOIL
10/6/10 7:35 am 354,069	SOIL	74 SW-CONT SOIL
10/6/10 7:47 am 354,072	SOIL	74 SW-CONT SOIL
10/6/10 8:02 am 354,076	2 Soll	74 SW-CONT SOIL
10/6/10 9:35 am 354,104	SOIL	74 SW-CONT SOIL
10/6/10 10:53 an 354,155	SOIL	74 SW-CONT SOIL
10/6/10 11:53 an 354,223	SOIL	74 SW-CONT SOIL
10/6/10 11:55 an 354,230	SOIL	74 SW-CONT SOIL
10/6/10 11:57 an 354,237	SOIL	74 SW-CONT SOIL
10/6/10 11:59 an 354,240	SOIL	74 SW-CONT SOIL
10/6/10 12:06 pn 354,225	SOIL	74 SW-CONT SOIL
10/6/10 1:21 pm 354,281	SOIL	74 SW-CONT SOIL
10/6/10 2:49 pm 354,322	SOIL	74 SW-CONT SOIL
10/13/10 7:25 at 356,146	SOIL	74 SW-CONT SOIL
10/13/10 7:39 ai 356,152	SOIL	74 SW-CONT SOIL
10/13/10 8:04 ai 356,167	SOIL	74 SW-CONT SOIL
10/13/10 8:28 ai 356,176	SOIL	74 SW-CONT SOIL
10/13/10 8:53 ai 356,179	SOIL	74 SW-CONT SOIL
10/13/10 9:06 al 356, 194	SOIL	74 SW-CONT SOIL

00 CC	001 23000 0V		
10,440	40,000,04	26.57	NENUNG
90,800	39,00051,800	25.90	KENT/KING
100,980	42,94058,040	29.02	KENT/KING
101,820	39,22062,600	31.30	KENT/KING
102,140	40,08062,060	31.03	KENT/KING
79,320	39,00040,320	20.16	KENT/KING
100,640	42,94057,700	28.85	KENT/KING
105,340	39,22066,120	33.06	KENT/KING
100,660	40,08060,580	30.29	KENT/KING
102,460	39,22063,240	31.62	KENT/KING
103,680	40,12063,560	31.78	KENT/KING
101,440	39,60061,840	30.92	KENT/KING
98,780	38,76060,020	30.01	KENT/KING
95,140	39,44055,700	27.85	KENT/KING
98,680	38,76059,920	29.96	KENT/KING
103,520	38,76064,760	32.38	KENT/KING
006'66	38,20061,700	30.85	KENT/KING
660	35,68063,980	31.99	KENT/KING
104,220	39,74064,480	32.24	KENT/KING
97,480	39,32058,160	29.08	KENT/KING
101,900	38,76063,140	31.57	KENT/KING
96,320	35,62060,700	30.35	KENT/KING
94,500	35,58058,920	29.46	KENT/KING
103,980	38,56065,420	32.71	KENT/KING
96,260	39,16057,100	28.55	KENT/KING
100,320	42,08058,240	29.12	KENT/KING
103,860	41,44062,420	31.21	KENT/KING
102,720	39,16063,560	31.78	KENT/KING

KENT/KING

43,42057,140 28.57

100,560

•

•

,

Report period October 2010 REGIONAL DISPOSAL INTERMODAL

10/13/10 9-43 at 356,200	SOIL	74 SW-CONT SOIL	- SOIL
10/13/10 9:59 at 356,210	SOIL	74 SW-CONT SOIL	- SOIL
10/13/10 10:20 a 356,238	SOIL	74 SW-CONT SOIL	- SOIL
10/13/10 10:33 a 356,244	SOIL	74 SW-CONT SOIL	- SOIL
10/13/10 10:34 a 356,245	SOIL	74 SW-CONT SOIL	- SOIL
10/13/10 10:37 a 356,246	SOIL	74 SW-CONT SOIL	- SOIL
10/13/10 10:55 a 356,251	SOIL	74 SW-CONT SOIL	- SOIL
10/13/10 11:20 a 356,307	NIOS	74 SW-CONT SOIL	SOIL
10/13/10 11:26 a 356,272	NIOS	74 SW-CONT SOIL	- SOIL
10/13/10 11:31 a 356,311	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 11:52 a 356,297	NIOS	74 SW-CONT SOIL	SOIL
10/13/10 12:00 p 356,304	SOIL	74 SW-CONT SOIL	JIOS .
10/13/10 12:03 p 356,308	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 12:05 p 356,310	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 12:15 p 356,321	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 12:41 p 356,345	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 12:43 p 356,341	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 1:04 pi 356,356	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 1:06 pi 356,359	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 1:08 pi 356,362	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 1:11 pr 356,365	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 1:13 pi 356,367	SOIL	74 SW-CONT SOIL	JIOS .
10/13/10 1:16 pi 356,370	SOIL	74 SW-CONT SOIL	JIOS .
10/13/10 1:30 pr 356,381	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 1:49 pi 356,389	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 2:07 pi 356,401	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 2:14 pi 356,403	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 2:16 pi 356,406	SOIL	74 SW-CONT SOIL	SOIL
10/13/10 2:25 pi 356,414	SOIL	74 SW-CONT SOIL	SOIL

7 KENT/KING	7 KENT/KING	8 KENT/KING	I KENT/KING	0 KENT/KING	9 KENT/KING	2 KENT/KING	0 KENT/KING	9 KENT/KING	I KENT/KING	8 KENT/KING	0 KENT/KING	4 KENT/KING	5 KENT/KING	2 KENT/KING	3 KENT/KING	8 KENT/KING	5 KENT/KING	0 KENT/KING	9 KENT/KING	4 KENT/KING	7 KENT/KING	0 KENT/KING	2 KENT/KING	2 KENT/KING	2 KENT/KING	9 KENT/KING	0 KENT/KING	KENT/KING
40 36.67	40 33.37	60 32.08	20 34.71	00 38.20	80 31.89	40 32.52	00 32.50	80 34.89	20 32.11	60 33.28	00 33.50	80 32.54	00 30.25	40 30.02	60 33.33	60 35.28	00 33.65	00 29.00	80 28.39	80 31.04	40 30.07	00 28.60	40 29.42	40 30.12	40 34.82	80 29.89	00 33.30	20 30.86
42,08073,340	41,44066,740	41,32064,160	40,94069,420	40,22076,400	36,26063,780	42,08065,040	42,92065,000	41,44069,780	42,94064,220	43,42066,560	40,94067,000	40,22065,080	36,26060,500	42,08060,040	40,84066,660	41,44070,560	43,42067,300	43,24058,000	42,94056,780	40,22062,080	40,94060,140	36,26057,200	42,08058,840	40,66060,240	41,44069,640	43,42059,780	40,22066,600	40,94061,720
115,420	108,180	105,480	110,360	116,620	100,040	107,120	107,920	111,220	107,160	109,980	107,940	105,300	96,760	102,120	107,500	112,000	110,720	101,240	99,720	102,300	101,080	93,460	100,920	100,900	111,080	103,200	106,820	102,660

Report period October 2010 REGIONAL DISPOSAL INTERMODAL

01/01/01	U24,005 id 45:2 01/01/01	SUIL 74	SW-CONT SOIL
10/13/10	10/13/10 2:40 pi 356,428	SOIL 74	SW-CONT SOIL
10/13/10	2:42 pi 356,429	SOIL 74	SW-CONT SOIL
10/13/10	10/13/10 2:44 pi 356,432	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 7:46 ai 356,570	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 8:04 ai 356,582	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 8:06 at 356,576	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 8:11 at 356,586	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 8:13 at 356,589	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 8:28 ai 356,598	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 8:38 at 356,600	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 8:45 at 356,603	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 8:55 al 356,605	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 8:56 ai 356,612	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 8:59 at 356,602	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 9:02 ai 356,618	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 9:07 at 356,608	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 9:34 at 356,626	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 9:36 at 356,627	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 10:00 a 356,639	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 10:07 a 356,645	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 10:17 a 356,652	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 10:23 a 356,656	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 10:27 a 356,662	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 10:32 a 356,667	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 10:44 a 356,677	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 11:15 a 356,704	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 11:25 a 356,714	SOIL 74	SW-CONT SOIL
10/14/10	10/14/10 11:31 a 356,721	SOIL 74	SW-CONT SOIL

102,360 36,26066,100 104.340 43,24061 100
42,94064,300
42,08064,920
38,28061,980
40,90058,740
39,06063,720
41,06060,020
40,74060,920
40,96056,240
40,90065,220
41,06060,300
35,82058,340
41,18068,860
39,06069,720
40,78058,860
38,28071,440
41,06064,860
40,74064,140
40,90074,260
41,06065,300
35,82065,580
41,18064,520
39,06070,820
40,78071,540
41,06066,420
40,90066,540
41,06066,120

35,82060,720 30.36 KENT/KING

96,540

Report period October 2010 REGIONAL DISPOSAL INTERMODAL

74	SW-CONT SOIL	104.960
74	SW-CONT SOIL	109,860
74	SW-CONT SOIL	105,460
74	SW-CONT SOIL	105,980
74	SW-CONT SOIL	113,960
74	SW-CONT SOIL	106,360
74	SW-CONT SOIL	95,820
74	SW-CONT SOIL	95,720
74	SW-CONT SOIL	94,580
74	SW-CONT SOIL	104,200
74	SW-CONT SOIL	104,200
74	SW-CONT SOIL	105,160
74	SW-CONT SOIL	102,440
74	SW-CONT SOIL	107,260
74	SW-CONT SOIL	102,620
74	SW-CONT SOIL	106,840
74	SW-CONT SOIL	103,940
74	SW-CONT SOIL	110,660
74	SW-CONT SOIL	107,520
74	SW-CONT SOIL	106,920
74	SW-CONT SOIL	106,620
74	SW-CONT SOIL	112,380
74	SW-CONT SOIL	108,760
74	SW-CONT SOIL	110,620
74	SW-CONT SOIL	94,980
74	SW-CONT SOIL	98,820
74	SW-CONT SOIL	83,900
74	SW-CONT SOIL	111,960
74	SW-CONT SOIL	112,880
	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

KENT/KING 31.89 35.40 32.34 29.29 32.46 36.61 27.38 29.95 32.19 32.78 35.82 33.93 34.78 29.58 22.58 32.73 27.84 31.51 32.57 30.69 33.26 30.86 32.89 34.06 34.74 33.37 33.93 40,90067,860 41,06069,560 35,82059,160 40,24058,580 38,74045,160 41,18063,780 40,74071,640 41,06065,560 39,06070,800 40,78064,680 41,06064,920 40,74073,220 40,90065,460 41,06054,760 35,82059,900 38,90055,680 41,18063,020 39,06065,140 40,78064,380 41,06061,380 40,74066,520 40,90061,720 41,06065,780 35,82068,120 41,18069,480 40,78066,740 39,06067,860

KENT/KING KENT/KING

39,22072,740 36.37

37.34

38,20074,680

Report period REGIONAL DISPOS

3

10/15/10 7:47 ai 357,032	032	SOIL	74	SW-CONT SOIL
10/15/10 8:06 at 357,038	038	SOIL	74	SW-CONT SOIL
10/15/10 8:07 at 357,040	040	SOIL	74	SW-CONT SOIL
10/15/10 8:20 at 357,049	049	SOIL	74	SW-CONT SOIL
10/15/10 8:29 at 357,048	048	SOIL	74	SW-CONT SOIL
10/15/10 8:44 at 357,057	057	SOIL	74	SW-CONT SOIL
10/15/10 8:50 ai 357,060	090	SOIL	74	SW-CONT SOIL
10/15/10 8:55 ai 357,062	062	SOIL	74	SW-CONT SOIL
10/15/10 8:57 ai 357,063	363	SOIL	74	SW-CONT SOIL
10/15/10 9:12 ai 357,071	171	SOIL	74	SW-CONT SOIL
10/15/10 9:15 ai 357,073	073	SOIL	74	SW-CONT SOIL
10/15/10 9.33 ai 357,080	080	SOIL	74	SW-CONT SOIL
10/15/10 9:36 at 357,082	082	SOIL	74	SW-CONT SOIL
10/15/10 9:55 al 357,097	797	SOIL	74	SW-CONT SOIL
10/15/10 10:06 a 357,108	108	SOIL	74	SW-CONT SOIL
10/15/10 10:12 a 357,111	111	SOIL	74	SW-CONT SOIL
10/15/10 10:14 a 357,113	113	SOIL	74	SW-CONT SOIL
10/15/10 10:26 a 357,122	122	SOIL	74	SW-CONT SOIL
10/15/10 10:28 a 357,124	124	SOIL	74	SW-CONT SOIL
10/15/10 10:33 a 357,133	133	SOIL	74	SW-CONT SOIL
10/15/10 10:34 a 357,127	127	SOIL	74	SW-CONT SOIL
10/15/10 10:49 a 357,139	139	SOIL	74	SW-CONT SOIL
10/15/10 10:55 a 357,142	142	SOIL	74	SW-CONT SOIL
10/15/10 11:23 a 357,163	163	SOIL	74	SW-CONT SOIL
10/15/10 11:28 a 357,167	167	SOIL	74	SW-CONT SOIL
10/15/10 11:31 a 357,170	170	SOIL	74	SW-CONT SOIL
10/15/10 11:37 a 357,176	176	SOIL	74	SW-CONT SOIL
10/15/10 11:47 a 357,186	186	SOIL	74	SW-CONT SOIL
10/15/10 11:48 a 357,188	188	SOIL	74	SW-CONT SOIL

d.	od October 2010		
SA	SAL INTERMODAL		
_	SW-CONT SOIL	108,580	41,48
-	SW-CONT SOIL	99,680	41,12
	SW-CONT SOIL	101,400	41,22

| KENT/KING |
|--------------|
| 33.55 | 29.28 | 30.09 | 29.09 | 32.58 | 34.70 | 31.97 | 33.53 | 27.99 | 32.26 | 29.43 | 33.61 | 30.54 | 29.92 | 28.80 | 30.76 | 29.80 | 27.79 | 28.11 | 35.05 | 31.62 | 30.44 | 32.42 | 33.83 | 32.44 | 34.40 | 27.59 | 33.33 | 30.83 |
| 41,48067,100 | 41,12058,560 | 41,22060,180 | 41,26058,180 | 40,24065,160 | 40,90069,400 | 39,20063,940 | 38,20067,060 | 38,74055,980 | 41,12064,520 | 41,22058,860 | 41,26067,220 | 40,24061,080 | 40,90059,840 | 39,22057,600 | 38,20061,520 | 38,74059,600 | 41,48055,580 | 41,12056,220 | 38,52070,100 | 41,22063,240 | 41,26060,880 | 40,24064,840 | 40,90067,660 | 39,22064,880 | 38,20068,800 | 38,74055,180 | 41,12066,660 | 41,48061,660 |
| 108,580 | 99,680 | 101,400 | 99,440 | 105,400 | 110,300 | 103,140 | 105,260 | 94,720 | 105,640 | 100,080 | 108,480 | 101,320 | 100,740 | 96,820 | 99,720 | 98,340 | 97,060 | 97,340 | 108,620 | 104,460 | 102,140 | 105,080 | 108,560 | 104,100 | 107,000 | 93,920 | 107,780 | 103,140 |

Report period October 2010 REGIONAL DISPOSAL INTERMODAL

10/15/10 12-00 r 357 198	IUS	
10/15/10 12:05 F 357,202		74 SW-CONT SOIL
10/15/10 12:17 p 357,214	2 SOIL	74 SW-CONT SOIL
10/15/10 12:19 p 357,228	2 SOIL	74 SW-CONT SOIL
10/15/10 12:22 F 357,221	2 Soil	74 SW-CONT SOIL
10/15/10 12:35 p 357,233	2 SOIL	74 SW-CONT SOIL
10/15/10 12:40 p 357,235	SOIL 74	
10/15/10 12:46 g 357,247	2 SOIL	74 SW-CONT SOIL
10/15/10 12:48 p 357,240	SOIL 74	t SW-CONT SOIL
10/15/10 12:52 p 357,250	2 Soll	74 SW-CONT SOIL
10/15/10 12:53 p 357,248	SOIL 74	t SW-CONT SOIL
10/15/10 1:00 pi 357,251	2 Soll	74 SW-CONT SOIL
10/15/10 1:03 pi 357,253	SOIL 74	t SW-CONT SOIL
10/15/10 1:11 pi 357,260	2 SOIL	74 SW-CONT SOIL
10/15/10 1:16 pi 357,264	SOIL 74	t SW-CONT SOIL
10/15/10 1:23 pi 357,269	2 SOIL	74 SW-CONT SOIL
10/15/10 1:31 pi 357,271	2 SOIL	74 SW-CONT SOIL
10/15/10 1:40 pi 357,277	SOIL 74	t SW-CONT SOIL
10/15/10 1:45 pi 357,280	2 Soll	74 SW-CONT SOIL
10/15/10 1:47 pt 357,281	SOIL 74	t SW-CONT SOIL
10/15/10 1:56 pi 357,287	2 SOIL	74 SW-CONT SOIL
10/15/10 1:57 pi 357,289	2 Soll	74 SW-CONT SOIL
10/15/10 2:06 pi 357,294	SOIL 7	74 SW-CONT SOIL
10/15/10 2:08 pi 357,296	2 Soil	74 SW-CONT SOIL
10/15/10 2:09 pi 357,298	2 SOIL	74 SW-CONT SOIL
10/15/10 2:14 pi 357,304	2 Soll	74 SW-CONT SOIL
10/15/10 2:20 pi 357,308	2 SOIL	74 SW-CONT SOIL
10/15/10 2:24 pi 357,309	2 Solt	74 SW-CONT SOIL
10/15/10 2:31 pi 357,312	20IL 7	74 SW-CONT SOIL

Page 23 of 26

Report period October 2010 REGIONAL DISPOSAL INTERMODAL

10/12/10	10/15/10 2:36 pr 357,315	SOIL	74	SWLCONT SOIL
10/12/10	10/15/10 3:04 pi 357,332		74	SW-CONT SOIL
10/15/10	3:14 pi 357,337	SOIL	74	SW-CONT SOIL
10/12/10	10/15/10 3:19 pi 357,342	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 7:39 al 357,554	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 8:12 at 357,575	SOIL	74	SW-CONT SOIL
01/81/01	10/18/10 8:16 ai 357,576	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 8:23 ai 357,581	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 8:49 ai 357,590	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 9:32 ai 357,613	SOIL	74	SW-CONT SOIL
01/81/01	10/18/10 9:40 at 357,617	TIOS	74	SW-CONT SOIL
10/18/10	10/18/10 9:46 al 357,621	SOIL	74	SW-CONT SOIL
01/81/01	10/18/10 9:56 at 357,626	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 10:39 a 357,648	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 10:51 a 357,656	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 11:11 a 357,677	SOIL	74	SW-CONT SOIL
01/8/10	10/18/10 11:12 a 357,679	Soil	74	SW-CONT SOIL
10/18/10	10/18/10 12:18 p 357,729	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 12:27 p 357,736	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 1:31 pi 357,776	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 1:38 pi 357,784	SOIL	74	SW-CONT SOIL
10/18/10	10/18/10 2:51 pi 357,827	SOIL	74	SW-CONT SOIL
01/61/01	10/19/10 8:03 al 357,991	SOIL	74	SW-CONT SOIL
01/61/01	10/19/10 10:30 a 358,053	SOIL	74	SW-CONT SOIL
01/61/01	10/19/10 12:19 p 358,135	SOIL	74	SW-CONT SOIL
01/61/01	10/19/10 1:36 pi 358,190	SOIL	74	SW-CONT SOIL
10/20/10	10/20/10 8:10 at 358,357	SOIL	74	SW-CONT SOIL
10/20/10	10/20/10 9:39 at 358,403	SOIL	74	SW-CONT SOIL
10/20/10	10/20/10 11:02 a 358,458	SOIL	74	SW-CONT SOIL

Activity By Job ID Report period October 2010 REGIONAL DISPOSAL INTERMODAL

SOIL	TIOS	TIOS	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
10/20/10 12:20 p 358,529	10/20/10 1:50 pi 358,579	10/20/10 3:29 pi 358,636	10/21/10 8:10 at 358,774	10/21/10 9:42 ai 358,816	10/21/10 11:13 a 358,893	10/21/10 12:45 p 358,953	10/21/10 2:08 pi 359,013	11/3/10 8:30 am 362,274	11/3/10 10:04 an 362,303	11/3/10 11:22 an 362,355	11/3/10 12:38 pn 362,418	11/3/10 1:49 pm 362,456	11/12/10 3:37 pi 365,331

10	10	Q	Q	D	Ð	Ŋ	2	Ð	Ð	Ŋ	D	DI	g	
KENT/KIN	33.85 KENT/KING	KENT/KIN	KENT/KING	KENT/KING	KENT/KIN	KENT/KIN	KENT/KING	KENT/KIN	KENT/KIN	KENT/KIN	KENT/KING	KENT/KING	KENT/KIN	NT.
34.67	33.85	37.87	35.88	31.20	32.41	31.38	29.27	13.05	14.36	16.70	15.42	14.14	21.88	22397.82 TN
39,06069,340 34.67 KENT/KING	38,74067,700	38,50075,740 37.87 KENT/KING	38,94071,760 35.88	38,96062,400 31.20	38,88064,820 32.41 KENT/KING	39,06062,760 31.38 KENT/KING	38,52058,540 29.27	25,70026,100 13.05 KENT/KING	25,36028,720 14.36 KENT/KING	25,32033,400 16.70 KENT/KING	25,58030,840 15.42	25,52028,280 14.14	27,86043,760 21.88 KENT/KING	
108,400	106,440	114,240	110,700	101,360	103,700	101,820	090'26	51,800	54,080	58,720	56,420	53,800	71,620	708 Loads
74 SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	SW-CONT SOIL	LW-10343
74	74	74	74	74	74	74	74	74	74	74	74	74	74	Total For Job LW-10343

REGIONAL DISPOSAL INTERMODAL Grand Total

709 708 Loads

ZZ, 424.53 TN

APPENDIX I AIR MONITORING ANALYTICAL RESULTS

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

August 30, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Amy Essig Desai

Work Order:PTH1272Project Name:EMJ Slag; 831022Project Number:Jorgenson Slag / 831-022Date Received:08/23/10Final Report:08/30/10 16:10

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Amy Essig Desai 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Project: EMJ Slag; 831022 Project Number: Jorgenson Slag / 831-022

PTH1272

Received: 08/23/10 Reported: 08/30/10 16:10

SAMPLE IDENTIFICATION

EMJS-PA-082010-001

LAB NUMBER PTH1272-01

Work Order:

COLLECTION DATE

08/20/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1272	Received: Reported:	08/23/10 08/30/10 16:10
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Amy Essig Desai	Project Number	Jorgenson Slag / 831-022		

ANALYTICAL REPORT

Analyte		- Result		Qual	Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIO	SH 7300 (Modified)							
Sample ID: PTH1272-01 (E	CMJS-PA-082010-001)	Filter		Sample A	ir Volume:960	L	Sampled: 08	/20/10
	ug, Total	mg/m3	ppm				Prepared: 08	8/25/10 15:09
Calcium as CaCO3	<50.0	< 0.0521	< 0.0127		8/26/2010	br	50.0	N7300
Total Particulates, N.O.R. by N	NIOSH 0500 (Modified)							
Sample ID: PTH1272-01 (E	CMJS-PA-082010-001)	Filter		Sample A	ir Volume:960	L	Sampled: 08	/20/10
	ug, Total	mg/m3	ppm				Prepared: 08	8/25/10 12:01
Total Particulates, N.O.R.	<100	< 0.104			8/25/2010	ZN	100 N	IOSH 0500 (Modified

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1272	Received: Reported:	08/23/10 08/30/10 16:10
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Amy Essig Desai	Project Number:	Jorgenson Slag / 831-022		

PROJECT QUALITY CONTROL DATA

				Blan	ĸ							
Analyte	Blank Value		Qual	Units		Q.C. Bat	tch	Target Range		Lab	Number	Analyzed Date
Metals using ICP-AES by NI	OSH 7300 (Modified)											
10H0930-BLK1												
Calcium as CaCO3	<50.0			ug, Total		10H093	30			10H0	930-BLK1 08	8-26-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modifi	ed)										
10H0914-BLK1												
Total Particulates, N.O.R.	<100			ug, Total		10H091	14			10H0	0914-BLK1 08	8-25-2010
				LCS								
										Target		Analyzed
Analyte	Known V	al.	An	alyzed Val	Qu	al	Units	% Re	c.	Range	Batch	Date
Metals using ICP-AES by NI	OSH 7300 (Modified)											
10H0930-BS1												
Calcium as CaCO3	1310			1301			ug, Total	99%		80-120	10H0930	08-26-2010
10H0930-BS2												
Calcium as CaCO3	1310			1345			ug, Total	103%	, D	80-120	10H0930	08-26-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modifi	ed)										
10H0914-BS1												
Total Particulates, N.O.R.	200			170.0			ug, Total	85%		29-116	10H0914	08-25-2010
				LCS D	up							
Analyte	Orig. Val. Du	uplicate	Qual	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date
								· · · · · · · ·		····		
Metals using ICP-AES by NI 10H0930-BSD1	USH /SUU (MOUIIIEA)											
Calcium as CaCO3		1313		ug, Total	1310	100%	80-120	0.914	25	10H0930		08-26-2010
10H0930-BSD2												
Calcium as CaCO3		1373		ug, Total	1310	105%	80-120	2.07	25	10H0930		08-26-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modifi	ed)										
10H0914-BSD1					_			_				
Total Particulates, N.O.R.		220.0		ug, Total	200	110%	29-116	25.6	47	10H0914		08-25-2010

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1272	 08/23/10 08/30/10 16:10
Issaquah, WA 98027 Amy Essig Desai		EMJ Slag; 831022 Jorgenson Slag / 831-022	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

TAI -0045 (0409)	() and)		All services are performed subject to the Terms & Conditions on the reverse side
1			
			2-20-10 1720 Hon Heles
		Pomploo Bolinerii fort Bri	
		•	Instructions / Special Requirements:
		515-PA-0820102/12/12/12/12/12/12/12/12/12/12/12/12/12	1.0 EM35
	Total Area Number of Volume In Wiped Media per Liters in cm2 Sample	Sample Information Sample Collection Identification Date Start Time Stop Time Minutes	Lab # Media Type Pump (internal Use (Filter, Passive Name or Only) Badge, Tube or Wipe) ID Number (Liters/minute)
		charges apply)	Iotal # of Containers:Subject to scheduling and availability (surcharges apply)
		ys *	Custody Seals Intact: Yes No Standard 5 Working Days
· · ·		_ 96 Hours	s: YesNo
Analysis Method(S)/Analyte(S)		48 Hours	Temperature O 0 - 24 Hours 48 Hours
		E-Mail Results: Y	E-Mail Address: Ars O esai to Formation which this
	z	Fax Results: γ	Phone: 427-29 52822 Fax: 425-245-0850
		P.O. Number:	1
			City, State, Zip: ISTAn, JAA, IWA, 98227
		Project Name: TORLYSING SILAG	Address: 97,5 5-61 Ave NW.
		Sampler: V K	Name: TARALLAN
7t21HLd		-	m of call toll free 866.//2.522/
			waan too too oo o
Fao Nuillioel	IN G		[X] Main Lab - 4625 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 602.454.9303
		THE I FADER IN ENVIRONMENTAL TEST	· · ·

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

August 30, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Amy Essig Desai

Work Order:PTH1419Project Name:EMJ Slag; 831022Project Number:EMJ Slag; / 831-022Date Received:08/25/10Final Report:08/30/10 16:14

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Amy Essig Desai 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Project: EMJ Slag; 831022 Project Number: EMJ Slag; / 831-022

PTH1419

Received: 08/25/10 Reported: 08/30/10 16:14

SAMPLE IDENTIFICATION

EMJS-PA-082310-02

LAB NUMBER PTH1419-01

Work Order:

COLLECTION DATE

08/23/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1419	Received: Reported:	08/25/10 08/30/10 16:14
Issaquah, WA 98027	Project:	EMJ Slag; 831022	1	
Amy Essig Desai	Project Number:	EMJ Slag; / 831-022		
	5			

ANALYTICAL REPORT

Analyte		- Result		Qual	Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIO	SH 7300 (Modified)							
Sample ID: PTH1419-01 (E	EMJS-PA-082310-02)	Filter		Sample A	ir Volume:960	L	Sampled: 08	/23/10
	ug, Total	mg/m3	ppm				Prepared: 08	8/25/10 15:09
Calcium as CaCO3	<50.0	< 0.0521	< 0.0127		8/26/2010	br	50.0	N7300
Total Particulates, N.O.R. by N	IOSH 0500 (Modified)							
Sample ID: PTH1419-01 (E	EMJS-PA-082310-02)	Filter		Sample A	ir Volume:960	L	Sampled: 08	/23/10
	ug, Total	mg/m3	ppm				Prepared: 08	8/25/10 13:05
Total Particulates, N.O.R.	<100	< 0.104			8/25/2010	ZN	100 N	IOSH 0500 (Modifie

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1419	Received: Reported:	08/25/10 08/30/10 16:14
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Amy Essig Desai	Project Number:	EMJ Slag; / 831-022		

PROJECT QUALITY CONTROL DATA

				Blan	k							
Analyte	Blank Va	lue	Qual	Units		Q.C. Bat	tch	Target Range		Lab	Number	Analyzed Date
Metals using ICP-AES by NI	OSH 7300 (Modif	ied)										
10H0930-BLK1												
Calcium as CaCO3	<50.	0		ug, Tota	l	10H093	30			10H0	930-BLK1 0	8-26-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Ma	odified)										
10H0914-BLK1												
Total Particulates, N.O.R.	<100)		ug, Tota	l	10H091	14			10H0	0914-BLK1 0	8-25-2010
				LCS	5							
										Target		Analyzed
Analyte	Kno	wn Val.	Aı	nalyzed Val	Qu	al	Units	% Re	c.	Range	Batch	Date
Metals using ICP-AES by NI	OSH 7300 (Modif	ied)										
10H0930-BS1												
Calcium as CaCO3	1	310		1301			ug, Total	99%		80-120	10H0930	08-26-2010
10H0930-BS2												
Calcium as CaCO3	1	310		1345			ug, Total	103%	Ó	80-120	10H0930	08-26-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Me	dified)										
10H0914-BS1												
Total Particulates, N.O.R.	:	200		170.0			ug, Total	85%		29-116	10H0914	08-25-2010
				LCS D	up							
					Spike		Target				Sample	Analyzed
Analyte	Orig. Val.	Duplicate	Qual	Units	Conc	% Rec.	Range	RPD	Limit	Batch	Duplicated	Date
Metals using ICP-AES by NI	OSH 7300 (Modif	ied)										
10H0930-BSD1		1212		ug Totel	1210	1000/	80.120	0.014	25	1000020		08 26 2010
Calcium as CaCO3		1313		ug, Total	1310	100%	80-120	0.914	25	10H0930		08-26-2010
10H0930-BSD2												
Calcium as CaCO3		1373		ug, Total	1310	105%	80-120	2.07	25	10H0930		08-26-2010
Fotal Particulates, N.O.R. by	NIOSH 0500 (Ma	odified)										
10H0914-BSD1												
Total Particulates, N.O.R.		220.0		ug, Total	200	110%	29-116	25.6	47	10H0914		08-25-2010

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1419	Received: Reported:	08/25/10 08/30/10 16:14
Issaquah, WA 98027 Amy Essig Desai	Project: Project Number:	EMJ Slag; 831022 EMJ Slag; / 831-022	Ĩ	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5000, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

Page or Sample: Array Hubbs Project Name: How Starper	[X] Main Lab - 4625 E. Cotton Center Blvd., Suite 189 www.testamericainc.com or call toll free 866.772.5227 Customer Number: Customer Number: Address: The Societ With Content of the Societ With City, State, Zip: City, State, Zip: Loss Content of the Societ With City, State, Zip: Contact: The Societ With City, State, Zip: Phone: VLS-With City, Societ With City, State, Zip:	No °C Yes No	YesNo	Lab # Media Type Pump (Internal Use Badge, Tube or Wipe) ID Number (I		1	Instructions / Special Requirements:	Date: Time:	12/25/30	formed subject to the Terms & Co
Image: State of the state o	THE LEADER IN Phoenix, AZ 85040 602.437.3340 - FAX 602.454.9303 Page	Turn Around/Request 24 Hours 48 Hours 72 Hours 96 Hours 72 Hours 96 Hours Standard 5 Working Days	. ሮ .	Sample Identification					A DE Carly	pathons on the reverse side.
Area Number of Number of Sample R			2	Start Time Stop Time Minutes						
C C C C C C C C C C C C C C C C C C C		Analysis Method(S)/Analyte(S)		Area Wiped In cm2				Received By:	Sul grad	÷ 1

festAmerica

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

August 30, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Amy Essig Desai

Work Order:PTH1420Project Name:EMJ Slag; 831022Project Number:EMJ Slag / 831-022Date Received:08/25/10Final Report:08/30/10 16:16

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC.Work Order:PTH1420Received:08/25/10975 5th Ave. NWReported:08/30/10 16:16Issaquah, WA 98027Project:EMJ Slag; 831022Amy Essig DesaiProject Number:EMJ Slag / 831-022

SAMPLE IDENTIFICATION

EMJS-PA-082410-03

LAB NUMBER PTH1420-01

COLLECTION DATE

08/24/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1420	Received: Reported:	08/25/10 08/30/10 16:16
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Amy Essig Desai	Project Number:	EMJ Slag / 831-022		

ANALYTICAL REPORT

Analyte		- Result		Qual	Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIO	SH 7300 (Modified)							
Sample ID: PTH1420-01 (H	EMJS-PA-082410-03)	Filter		Sample A	ir Volume:960	L	Sampled: 08	/24/10
	ug, Total	mg/m3	ppm				Prepared: 08	8/25/10 15:09
Calcium as CaCO3	<50.0	< 0.0521	< 0.0127		8/26/2010	br	50.0	N7300
Total Particulates, N.O.R. by N	NOSH 0500 (Modified)							
Sample ID: PTH1420-01 (F	EMJS-PA-082410-03)	Filter		Sample A	ir Volume:960	L	Sampled: 08	/24/10
	ug, Total	mg/m3	ppm				Prepared: 08	8/25/10 13:05
Total Particulates, N.O.R.	<100	< 0.104			8/25/2010	ZN	100 N	IOSH 0500 (Modified)

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1420	iteeeer ea.	08/25/10 08/30/10 16:16
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Amy Essig Desai	Project Number:	EMJ Slag / 831-022		

PROJECT QUALITY CONTROL DATA

				Blan	k							
Analyte	Blank Val	ue	Qual	Units		Q.C. Bat	tch	Target Range		Lab	Number	Analyzed Date
Metals using ICP-AES by NI	OSH 7300 (Modifie	ed)										
10H0930-BLK1												
Calcium as CaCO3	<50.0			ug, Total		10H093	30			10H0	0930-BLK1 08	8-26-2010
Fotal Particulates, N.O.R. by	NIOSH 0500 (Mod	lified)										
10H0914-BLK1	, , , , , , , , , , , , , , , , , , ,											
Total Particulates, N.O.R.	<100			ug, Total		10H091	14			10H0	0914-BLK1 08	8-25-2010
				LCS								
										Target		Analyzed
Analyte	Know	n Val.	Ar	nalyzed Val	Qual		Units	% Re	ю.	Range	Batch	Date
Metals using ICP-AES by NI	OSH 7300 (Modifie	ed)										
10H0930-BS1	10	1310		1201			T 1	0.00/		00.100	1010020	00.00.0010
Calcium as CaCO3	13	10	1301				ug, Total	99%		80-120	10H0930	08-26-2010
10H0930-BS2												
Calcium as CaCO3	13	10	1345				ug, Total	103%	6	80-120	10H0930	08-26-2010
Fotal Particulates, N.O.R. by	NIOSH 0500 (Mod	lified)										
10H0914-BS1												
Total Particulates, N.O.R.	20	00		170.0			ug, Total	85%)	29-116	10H0914	08-25-2010
				LCS D	up							
					Spike		Target				Sample	Analyzed
Analyte	Orig. Val.	Duplicate	Qual	Units	Conc	% Rec.	Range	RPD	Limit	Batch	Duplicated	Date
Metals using ICP-AES by NI	OSH 7300 (Modifie	ed)										
IOH0930-BSD1 Calcium as CaCO3		1313		ug, Total	1310	100%	80-120	0.914	25	10H0930		08-26-2010
		1010		ug, 10tal	1310	100/0	00-120	0.914	22	10110750		00-20-2010
10H0930-BSD2						40.55	00.45-			4 0 7 7 0 0 5 -		
Calcium as CaCO3		1373		ug, Total	1310	105%	80-120	2.07	25	10H0930		08-26-2010
Fotal Particulates, N.O.R. by	NIOSH 0500 (Mod	lified)										
10H0914-BSD1												
Total Particulates, N.O.R.		220.0		ug, Total	200	110%	29-116	25.6	47	10H0914		08-25-2010

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1420	Received: Reported:	08/25/10 08/30/10 16:16
Issaquah, WA 98027 Amy Essig Desai	Project: Project Number:	EMJ Slag; 831022 EMJ Slag / 831-022		
	5	-		

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

TestAmerica	
THE LEADER IN ENVIRONMENTAL TESTING	Lab Number
www.testamericainc.com or call toll free 866.772.5227	PTH 1420
ter Number:	
Name: Forg/lon Consections Sampler: Journa Marian	
e, Zip: DJ. 1 & grand , (1) & grand	
LADI ESSE Verte	
295-0800 Fax: 47.5-2.95-0850 Fax Results:	
ا=-Mail Address: م حراث مراح المن المن المن المن المن المن المن المن	Analysis Method(s)/Analyte(s)
°° '°	
No	
Total # of Containers:	
Subject to scheduling and availability (surcitarges apply)	
Sample Information	
Lab # Media Type Pump Flow Rate Sample Collection Total Volume In Wiped Media per (Internal Use (Filter, Passive Name or Flow Rate Sample Collection Total Volume In Wiped Media per Only) Badge, Tube or Wipe) ID Number Identification Date Start Time Stop Time Minutes Liters in cm2 Sample	
F. Her - Enss-PAOS2410-03 8/24/10 6730 1.530	
Instructions / Special Requirements:	
Date: Time: Samples Relinquished By:	Received By:
Jente	
15th this Cased	- The second
nices are notioning subject to the Terms & Conditions on the reverse side.	TAL-0045 (0409)

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

August 30, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Heidi Fischer

Work Order:PTH1471Project Name:EMJ Slag; 831022Project Number:EMJ Slag / 831-022Date Received:08/26/10Final Report:08/30/10 16:19

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1471	Received: Reported:	08/26/10 08/30/10 16:19
Issaquah, WA 98027 Heidi Fischer	Project: Project Number:	EMJ Slag; 831022 EMJ Slag / 831-022	ľ	

SAMPLE IDENTIFICATION

EMJS-PA-05-082510

LAB NUMBER PTH1471-01

COLLECTION DATE

08/25/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1471	Received: Reported:	08/26/10 08/30/10 16:19
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Heidi Fischer	Project Number:	EMJ Slag / 831-022		
	5			

ANALYTICAL REPORT

Analyte		- Result		Qual	Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIOS	SH 7300 (Modified)							
Sample ID: PTH1471-01 (E	MJS-PA-05-082510)	Filter		Sample A	ir Volume:960	L	Sampled: 08	/25/10
	ug, Total	mg/m3	ppm				Prepared: 08	3/26/10 16:09
Calcium as CaCO3	<50.0	< 0.0521	< 0.0127		8/27/2010	br	50.0	N7300
Total Particulates, N.O.R. by N	IOSH 0500 (Modified)							
Sample ID: PTH1471-01 (E	MJS-PA-05-082510)	Filter		Sample A	ir Volume:960	L	Sampled: 08	/25/10
	ug, Total	mg/m3	ppm				Prepared: 08	8/26/10 13:06
Total Particulates, N.O.R.	<100	< 0.104			8/26/2010	ZN	100 N	IOSH 0500 (Modified

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1471	100001100	08/26/10 08/30/10 16:19
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Heidi Fischer	Project Number:	EMJ Slag / 831-022		

PROJECT QUALITY CONTROL DATA

			Blan	k								
Analyte	Blank Value	Qual	Units		Q.C. Ba	tch	Target Range		Lab Number		Analyzed Date	
Metals using ICP-AES by NIC	OSH 7300 (Modified)											
10H0991-BLK1 Calcium as CaCO3	<50.0		ug, Total		10H099	91			10H0	0991-BLK1 0	8-27-2010	
Total Particulates, N.O.R. by 1	NIOSH 0500 (Modified)											
10H0975-BLK1 Total Particulates, N.O.R.	<100		ug, Total		10H097	75			10H0)975-BLK1 0	8-26-2010	
			LCS	ł								
Analyte	Known Val.	A	nalyzed Val	Qu	Qual Units		% Re	c.	Target Range	Batch	Analyzed Date	
Metals using ICP-AES by NIC	OSH 7300 (Modified)											
10H0991-BS1 Calcium as CaCO3	1310		1306			ug, Total	100%	6	80-120	10H0991	08-27-2010	
Total Particulates, N.O.R. by 1	NIOSH 0500 (Modified)											
10H0975-BS1												
Total Particulates, N.O.R.	200		210.0			ug, Total	105%	ó	29-116	10H0975	08-26-2010	
			LCS D	up								
Analyte	Orig. Val. Duplic	ate Qual	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date	
Metals using ICP-AES by NIC 10H0991-BSD1	OSH 7300 (Modified)											
Calcium as CaCO3	1300)	ug, Total	1310	99%	80-120	0.434	25	10H0991		08-27-2010	
Total Particulates, N.O.R. by	NIOSH 0500 (Modified)											
10H0975-BSD1 Total Particulates, N.O.R.	210.	0	ug, Total	200	105%	29-116	0	47	10H0975		08-26-2010	

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1471	Received: Reported:	08/26/10 08/30/10 16:19
Issaquah, WA 98027 Heidi Fischer	Project: Project Number:	EMJ Slag; 831022 EMJ Slag / 831-022	.	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

TestAmerica	Main Lab - 4825 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 602.454.9303	n or call toll free 866.772.5227 Page / of / Sampler: //, on ///// Project Name: / # // 5/ e.	1555 1555	Receipt Turn Around F °C × No °C Yes No	Pump Flow Rate Sample Collection	10 Number (Littersminute) Identification Date Start time Stop time Minutes Litters in cm2 - $ E/MS-PA-06-02326 B/h.g/p 6730 1575 -$			cial Requirements:	Time: Samples Relinquished By: Received By:	
	[X] Main Lab - 4625 E. Cotton Cente	www.testamericainc.com or call toll f Customer Number: Name: 70,000,000 Address: 75,500		Sample Receibt Temperature Custody Seals: Yes No Custody Seals Intact: Yes No Total # of Containers:	Lab # Media Type (Internal Use (Fitter, Passive	Only) Badge. Tube or Wipe			I Instructions / Special Requirements:	Date: Time:	2:0/ u/

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

August 30, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Heidi Fischer

Work Order:PTH1557Project Name:EMJ Slag; 831022Project Number:EMJ Slag / 831-022Date Received:08/27/10Final Report:08/30/10 14:29

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC.Work Order:PTH1557Received:08/27/10975 5th Ave. NWReported:08/30/10 14:29Issaquah, WA 98027Project:EMJ Slag; 831022Heidi FischerProject Number:EMJ Slag / 831-022

SAMPLE IDENTIFICATION

EMJS-PA-05-082610

LAB NUMBER PTH1557-01

COLLECTION DATE

08/26/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1557	Received: Reported:	08/27/10 08/30/10 14:29
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Heidi Fischer	Project Number:	EMJ Slag / 831-022		

ANALYTICAL REPORT

Analyte		- Result		Qual	Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIO	SH 7300 (Modified)							
Sample ID: PTH1557-01 (I	EMJS-PA-05-082610)	Filter		Sample A	ir Volume:960	L	Sampled: 08	/26/10 07:30
	ug, Total	mg/m3	ppm				Prepared: 08	8/27/10 16:11
Calcium as CaCO3	<50.0	< 0.0521	< 0.0127		8/30/2010	br	50.0	N7300
Total Particulates, N.O.R. by N	NIOSH 0500 (Modified)							
Sample ID: PTH1557-01 (I	EMJS-PA-05-082610)	Filter		Sample A	ir Volume:960	L	Sampled: 08	/26/10 07:30
	ug, Total	mg/m3	ppm				Prepared: 08	8/27/10 12:24
Total Particulates, N.O.R.	<100	< 0.104			8/27/2010	ZN	100 N	IOSH 0500 (Modified

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1557	Received: Reported:	08/27/10 08/30/10 14:29
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Heidi Fischer	Project Number:	EMJ Slag / 831-022		

PROJECT QUALITY CONTROL DATA

			Blan	ĸ							
Analyte	Blank Value	Qual	Units		Q.C. Bat	tch	Target Range		Lab	Number	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10H1037-BLK1 Calcium as CaCO3	<50.0		ug, Total		10H103	37			10H1	037-BLK1 0	8-30-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modified)										
10H1016-BLK1 Total Particulates, N.O.R.	<100		ug, Total		10H101	6			10H1	016-BLK1 0	8-27-2010
			LCS								
Analyte	Known Val.	An	alyzed Val	Qu	al	Units	% Re	ec.	Target Range	Batch	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10H1037-BS1 Calcium as CaCO3	1250		1342			ug, Total	107%	6	80-120	10H1037	08-30-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modified)										
10H1016-BS1 Total Particulates, N.O.R.	200		230.0			ug, Total	115%	6	29-116	10H1016	08-27-2010
			LCS D	up							
Analyte	Orig. Val. Duplicate	e Qual	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10H1037-BSD1 Calcium as CaCO3	1353		ug, Total	1250	108%	80-120	0.828	25	10H1037		08-30-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modified)										
10H1016-BSD1 Total Particulates, N.O.R.	190.0		ug, Total	200	95%	29-116	19	47	10H1016		08-27-2010

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTH1557	Received: Reported:	08/27/10 08/30/10 14:29
Issaquah, WA 98027 Heidi Fischer	Project: Project Number:	EMJ Slag; 831022 EMJ Slag / 831-022	T	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1003, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

(D	
	とう	
	÷	
7		
1		
· .	Ç	3
)	
0	D	
	2	
	-	•
()	
Ċ	Ś	
\mathbf{r}	2	

2 D-0 ~ (1409)	(reverse side.	All services are performed subject to the Terms & Conditions on the reverse side
C/27/10 1030	1 Jack		
-	<i>U</i> (), .		222 W 2201 mb10
Received By:		Samples Relinquished By:	
		· · ·	Instructions / Special Requirements:
-			
	· ·		
		>	(
] 1]	EMJS-PAOS-08260 8/246 0770 1550	Filter
	Total Area Number of Total Volume In Wiped Media per Minutes Liters in cm2 Sample	Sample Collection Identification Date Start Time Stop Time	Lab # Media Type Pump (Internal Use (Filter, Passive Name or Only) Badge, Tube or Wipe) ID Number (Liters/minute)
		Sample Information	
,		Subject to scheduling and availability (surcharges apply)	
		orking Days	Custody Seals Intact: YesNo Standard 5 Working Days
· · · · · · · · · · · · · · · · · · ·		96 Hours	Custody Seals: YesNo 72 Hours
		48 Hours	י° א
A Satisfic Matterays //Association		Tim A format Bearingst	Mail Address: a for the design of the second seco
	Ø		Phone: 425 295 000 / Fax: 425-295-0
		20-12	(d' Devai
		Project Number: 277022	Dity, State, Zip: Isroguely, UIA 9700
		Project Name: CMT (1/00)	S:
		ler:	2
		Page / of /	Customer Number:
PTH 1537			www.testamericainc.com or call toll free 866.772.5227
	•	•	X] Main Lab - 4625 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 602.454.9303
Lab Number	TESTING	THE LEADER IN ENVIRONMENTAL	

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

September 15, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Amy Essig Desai

Work Order:PTI0746Project Name:EMJ Slag; 831022Project Number:Jorg Slag / 831-022Date Received:09/14/10Final Report:09/15/10 15:40

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Amy Essig Desai 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Project: EMJ Slag; 831022 Project Number: Jorg Slag / 831-022

PTI0746

Received: 09/14/10 Reported: 09/15/10 15:40

SAMPLE IDENTIFICATION

EMJS-PA-090910-007

LAB NUMBER PTI0746-01

Work Order:

COLLECTION DATE

09/09/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTI0746	Received: Reported:	09/14/10 09/15/10 15:40
Issaquah, WA 98027	Project:	EMJ Slag; 831022	-	
Amy Essig Desai	Project Number:	Jorg Slag / 831-022		

ANALYTICAL REPORT

Analyte		Result				Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIO	SH 7300 (Modified)							
Sample ID: PT10746-01 (EMJS-PA-090910-007) Filter			Sample A	ir Volume:720	Sampled: 09/09/10			
	ug, Total	mg/m3	ppm				Prepared: 09	/14/10 17:45
Calcium as CaCO3	<50.0	< 0.0694	< 0.017		9/15/2010	br	50.0	N7300
Total Particulates, N.O.R. by N	IOSH 0500 (Modified)							
Sample ID: PTI0746-01 (EN	MJS-PA-090910-007)	Filter		Sample A	ir Volume:720	L	Sampled: 09	/09/10
	ug, Total	mg/m3	ppm				Prepared: 09	/14/10 15:25
Total Particulates, N.O.R.	<100	< 0.139			9/14/2010	ZN	100 N	IOSH 0500 (Modified)

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTI0746	100001.00	09/14/10 09/15/10 15:40
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Amy Essig Desai	Project Number:	Jorg Slag / 831-022		

PROJECT QUALITY CONTROL DATA

			Blan	k							
Analyte	Blank Value	Qual	Units		Q.C. Bat	ch	Target Range		Lab	Number	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
1010458-BLK1 Calcium as CaCO3	<50.0		ug, Total		101045	8			1010	0458-BLK1 0	9-15-2010
Total Particulates, N.O.R. by 1	NIOSH 0500 (Modified)										
1010447-BLK1 Total Particulates, N.O.R.	<100		ug, Total		10I044	7			1010)447-BLK1 0	9-14-2010
			LCS								
Analyte	Known Val.	I	Analyzed Val	Qu	al	Units	% Re	c.	Target Range	Batch	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
1010458-BS1 Calcium as CaCO3	1310		1326			ug, Total	101%	<i></i>	80-120	10I0458	09-15-2010
Total Particulates, N.O.R. by 1	NIOSH 0500 (Modified)										
10I0447-BS1	(10001 0000 (110011100)										
Total Particulates, N.O.R.	200		220.0			ug, Total	110%	ó	29-116	10I0447	09-14-2010
			LCS D	up							
Analyte	Orig. Val. Duplic	ate Qual	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10I0458-BSD1 Calcium as CaCO3	1322	!	ug, Total	1310	101%	80-120	0.266	25	1010458		09-15-2010
Total Particulates, N.O.R. by]	NIOSH 0500 (Modified)										
1010447-BSD1 Total Particulates, N.O.R.	190.0)	ug, Total	200	95%	29-116	14.6	47	10I0447		09-14-2010

THE LEADER IN ENVIRONMENTAL TESTING 4625 E

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTI0746	Received: Reported:	09/14/10 09/15/10 15:40
Issaquah, WA 98027 Amy Essig Desai	Project: Project Number:	EMJ Slag; 831022 Jorg Slag / 831-022	Ĩ	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1003, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

Pestamer.º	
[X] Main Lab - 4825 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 602.454.9303	Lab Number
5227 Page 1 of 1 Sampler: אל דיסים 6 Project Name: ביבים 6	
255Agu 2525Agu 15-250	Analysis Method(s)/Analyte(s)
Subject	- A Dore f
Lab # Lab # Only Media Type Filter: Passive Only Pump Filter: Passive Badge, Tube or Wipe) Pump Filter: Passive Number of Minutes Potal Filter: Passive Nime in Nime of Nime in Collection Area Total Number of Nime Nime in Collection Total Start Time Area Total Number of Nime Nime in Coll Area Notal Nime in Coll Number of Nime Area Nime in Nime in Coll Number of Nime Area Notal Nime in Coll Number of Nime Area Nime Number of Nime Area Nime Number of Nime Number of Nime Number of Nime Number of Nime Area Nime Number of Nime Number of Nime	DA11 PT074
Instructions / Special Requirements:	
Date: Time: An Samples Relinquished By:	Received By:
10:10 V:10	

All services are performed subject to the Terms & Conditions on the reverse side.

TAL-0045 (0409)

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

September 24, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Amy Essig Desai

Work Order:PTI1112Project Name:EMJ Slag; 831022Project Number:Jorgenson Slag / 831-022Date Received:09/21/10Final Report:09/24/10 16:18

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

Americ

THE LEADER IN ENVIRONMENTAL TESTING

Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Amy Essig Desai

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

EMJ Slag; 831022 Project: Project Number: Jorgenson Slag / 831-022

PTI1112

09/21/10 Received: Reported:

09/24/10 16:18

SAMPLE IDENTIFICATION

EMJS-PA-091610-8

LAB NUMBER PTI1112-01

Work Order:

COLLECTION DATE

09/21/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTI1112	Received: Reported:	09/21/10 09/24/10 16:18
Issaquah, WA 98027	Project:	EMJ Slag; 831022	·F · · · · ·	
Amy Essig Desai	Project Number:	Jorgenson Slag / 831-022		

ANALYTICAL REPORT

Analyte		Result				Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIOS	H 7300 (Modified)							
Sample ID: PTI1112-01 (EMJS-PA-091610-8) Filter			Sample A	ir Volume:720	Sampled: 09/21/10			
	ug, Total	mg/m3	ppm				Prepared: 09	/23/10 14:27
Calcium as CaCO3	<50.0	< 0.0694	< 0.017		9/24/2010	br	50.0	N7300
Total Particulates, N.O.R. by NI	OSH 0500 (Modified)							
Sample ID: PTI1112-01 (EI	MJS-PA-091610-8)	Filter		Sample A	ir Volume:720	L	Sampled: 09	/21/10
	ug, Total	mg/m3	ppm				Prepared: 09	/21/10 12:38
Total Particulates, N.O.R.	<100	< 0.139			9/21/2010	ZN	100 N	IOSH 0500 (Modified)

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTI1112	Received: Reported:	09/21/10 09/24/10 16:18
Issaquah, WA 98027	Project:	EMJ Slag; 831022	-	
Amy Essig Desai	Project Number:	Jorgenson Slag / 831-022		
	-			

PROJECT QUALITY CONTROL DATA

				Blan	ĸ							
Analyte	Blank Valu	e	Qual	Units		Q.C. Bat	ch	Target Range		Lab	Number	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modifie	d)										
1010822-BLK1 Calcium as CaCO3	<50.0			ug, Total		101082	2			1010	0822-BLK1 0	9-24-2010
Total Particulates, N.O.R. by 1	NIOSH 0500 (Mod	ified)										
1010705-BLK1 Total Particulates, N.O.R.	<100			ug, Total		101070	5			1010	0705-BLK1 0	9-21-2010
				LCS								
Analyte	Knowr	n Val.	Aı	nalyzed Val	Qu	al	Units	% Re	c.	Target Range	Batch	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modifie	d)										
10I0822-BS1												
Calcium as CaCO3	131	0		1258			ug, Total	96%		80-120	10I0822	09-24-2010
Total Particulates, N.O.R. by 1	NIOSH 0500 (Mod	ified)										
10I0705-BS1												
Total Particulates, N.O.R.	20	0		210.0			ug, Total	105%	Ó	29-116	1010705	09-21-2010
				LCS D	up							
Analyte	Orig. Val.	Duplicate	Qual	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modifie	d)										
1010822-BSD1 Calcium as CaCO3		1252		ug, Total	1310	96%	80-120	0.465	25	10I0822		09-24-2010
Total Particulates, N.O.R. by 1	NIOSH 0500 (Mod	ified)										
1010705-BSD1 Total Particulates, N.O.R.		190.0		ug, Total	200	95%	29-116	10	47	1010705		09-21-2010

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTI1112	Received: Reported:	09/21/10 09/24/10 16:18
Issaquah, WA 98027 Amy Essig Desai	Project: Project Number:	EMJ Slag; 831022 Jorgenson Slag / 831-022	1	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

Lab Number	FTT III/C	Analysis Method(s)/Analyte(s)	W}7 & ISC			Received By:	$\frac{\alpha}{2t} \int \frac{1}{t0} \frac{1}{12t} \frac{1}{20}$ TAL-0045 (0409)
[X] Main Lab - 4625 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 602.454.9303	toll free 86	LOC TO CAME TO CONTRACT OF CONTRACT. CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT. CONTRACT. CONTRACT OF CONTRACT. CONTRACT OF CONTRACT. CONTRACT. CONTRACT. CONTRACT. CONTRACT OF CONTRACT. CON	No 72 Hours 96 Hours Refer to statistical statis statistical statis statistical statis statisti statistica	Lab # Media Type Pump Flow Rate Round of Flow Rate Yotal Area Area Area Area Area Area Area Area			Micka 10 207 10 Jacob 10 Jac

0

All services are performed subject to the Terms & Conditions on the reverse side.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

October 06, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Amy Essig Desai

Work Order:PTI1520Project Name:EMJ Slag; 831022Project Number:Jorgenson Slag / 831-022Date Received:09/28/10Final Report:10/06/10 15:01

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

Americ

THE LEADER IN ENVIRONMENTAL TESTING

Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Amy Essig Desai

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

EMJ Slag; 831022 Project: Project Number: Jorgenson Slag / 831-022

PTI1520

09/28/10 Received: Reported:

10/06/10 15:01

SAMPLE IDENTIFICATION

EMJS-PA-092310-09

LAB NUMBER PTI1520-01

Work Order:

COLLECTION DATE

09/23/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTI1520	Received: Reported:	09/28/10 10/06/10 15:01
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Amy Essig Desai	Project Number:	Jorgenson Slag / 831-022		
	-			

ANALYTICAL REPORT

Analyte	Result			Qual	Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIO	SH 7300 (Modified)							
Sample ID: PTI1520-01 (EMJS-PA-092310-09)		Filter		Sample Air Volume:720L			Sampled: 09/23/10	
	ug, Total	mg/m3	ppm				Prepared: 10	0/01/10 16:55
Calcium as CaCO3	<50.0	< 0.0694	< 0.017		10/4/2010	br	50.0	N7300
Total Particulates, N.O.R. by N	NOSH 0500 (Modified)							
Sample ID: PTI1520-01 (E	MJS-PA-092310-09)	Filter		Sample Air Volume:720L		Sampled: 09/23/10		
	ug, Total	mg/m3	ppm				Prepared: 09	0/28/10 11:26
Total Particulates, N.O.R.	<100	< 0.139			9/28/2010	ZN	100 N	IOSH 0500 (Modified)

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTI1520	Received: Reported:	09/28/10 10/06/10 15:01
Issaquah, WA 98027	Project:	EMJ Slag; 831022	-	
Amy Essig Desai	Project Number:	Jorgenson Slag / 831-022		

PROJECT QUALITY CONTROL DATA

				Blanl	K							
Analyte	Blank Value	2	Qual	Units		Q.C. Bat	ch	Target Range Lab Number		Number	Analyzed Date	
Metals using ICP-AES by NIC	OSH 7300 (Modified	1)										
10J0042-BLK1 Calcium as CaCO3	<50.0		ug, Total			10J0042				10J0	0042-BLK1 1	0-04-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modi	ified)										
1010980-BLK1 Total Particulates, N.O.R.	<100	-		ug, Total		101098	0			1010	0980-BLK1 0	9-28-2010
				LCS								
Analyte	Known	Val.	Aı	nalyzed Val	Qu	al	Units	% Re	ec.	Target Range	Batch	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified	l)										
10J0042-BS1 Calcium as CaCO3	131	0		1268			ug, Total	97%		80-120	10J0042	10-04-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modi	ified)										
1010980-BS1 Total Particulates, N.O.R.	200			190.0			ug, Total	95%		29-116	1010980	09-28-2010
				LCS D	up							
Analyte	Orig. Val.	Duplicate	Qual	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified	1)										
10J0042-BSD1 Calcium as CaCO3		1282		ug, Total	1310	98%	80-120	1.08	25	10J0042		10-04-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modi	ified)										
1010980-BSD1 Total Particulates, N.O.R.		150.0		ug, Total	200	75%	29-116	23.5	47	1010980		09-28-2010

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTI1520	Received: Reported:	09/28/10 10/06/10 15:01
Issaquah, WA 98027 Amy Essig Desai	Project: Project Number:	EMJ Slag; 831022 Jorgenson Slag / 831-022	1	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

<u>⊳</u> 18⊺	-	1			
Annual of the services are nerformed subject to the Terms & Conditions on the reverse side.	Date: Time: Samples Relinquished By:	Instructions / Special Requirements:	Sample Information Lab # (Internal Use Only) Media Type (Filter, Passive Badge, Tube or Wipe) Pump Name or Unersitute) Flow Rate Identification Collection Date Stop Time Total Minutes Area Volume in Wiped Munice of Media per Media per Liters/minute) F: /-R2 1.5 2.475-PA-09 1310-09 9/13/V4 7.30 15/32 4/800 in om2 Sample F: /-R2 1.5 2.475-PA-09 1310-09 9/13/V4 7.30 15/32 4/800 in om2 Sample	s: 975 544 Averwe Alw ate, Zip: 755 Aqwah ya A 98027 1: Any 553 Desai 2053 Desai Address A 20 574 Desai Address A 20 574 Brandlew coust Huig Address A 20 574 Brandlew coust Huig Address A 20 574 Brandlew coust Huig Sample Receipt ture °C 24 Hours Seals: Yes No 72 Hours Seals intact: Yes No Standard 5 Working De Seals intact: Yes No Standard 5 Working De	DER IN ENVIRON
TAL-0045 (0409	Received By:			Analysis Method (s) Analysis a second	PTT 16720

.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

November 03, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Heidi Fischer

Work Order:PTJ1732Project Name:EMJ Slag; 831022Project Number:Jorgenson Slag / 831-022Date Received:10/28/10Final Report:11/03/10 15:08

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Heidi Fischer

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

EMJ Slag; 831022 Project: Project Number: Jorgenson Slag / 831-022

PTJ1732

10/28/10Received: Reported:

11/03/10 15:08

SAMPLE IDENTIFICATION

EMJS-PA-102110-13

LAB NUMBER PTJ1732-01

Work Order:

COLLECTION DATE

10/21/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTJ1732	Received: Reported:	10/28/10 11/03/10 15:08
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Heidi Fischer	Project Number:	Jorgenson Slag / 831-022		

ANALYTICAL REPORT

Analyte		Result			Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIOS	SH 7300 (Modified)							
Sample ID: PTJ1732-01 (EMJS-PA-102110-13)		Filter		Sample Air Volume:630L			Sampled: 10/21/10	
	ug, Total	mg/m3	ppm				Prepared: 11	/02/10 17:35
Calcium as CaCO3	<50.0	< 0.0794	< 0.0194		11/3/2010	BR	50.0	N7300
Total Particulates, N.O.R. by N	IOSH 0500 (Modified)							
Sample ID: PTJ1732-01 (EMJS-PA-102110-13)		Filter		Sample Air Volume:630L		L	Sampled: 10/21/10	
	ug, Total	mg/m3	ppm				Prepared: 11	/01/10 15:25
Total Particulates, N.O.R.	<100	< 0.159			11/1/2010	ZN	100 N	IOSH 0500 (Modified)

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTJ1732	Received: Reported:	10/28/10 11/03/10 15:08
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Heidi Fischer	Project Number:	Jorgenson Slag / 831-022		

PROJECT QUALITY CONTROL DATA

			Blan	ĸ							
Analyte	Blank Value	Qual	Units		Q.C. Ba	tch	Target Range		Lab Number		Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10K0101-BLK1 Calcium as CaCO3	<50.0		ug, Total		10K0101				10K0	0101-BLK1 1	1-03-2010
Total Particulates, N.O.R. by 1	NIOSH 0500 (Modified)										
10K0033-BLK1 Total Particulates, N.O.R.	<100		ug, Total		10K003	33			10K0	0033-BLK1 1	1-01-2010
			LCS								
Analyte	Known Val.	А	nalyzed Val	Qu	al	l Units		c.	Target Range Batch		Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10K0101-BS1 Calcium as CaCO3	1310		1282		ug, Total		98% 80-120		80-120	10K0101	11-03-2010
Total Particulates, N.O.R. by 1	NIOSH 0500 (Modified)										
10K0033-BS1 Total Particulates, N.O.R.	200		170.0			ug, Total	85%)	29-116	10K0033	11-01-2010
			LCS D	up							
Analyte	Orig. Val. Duplicat	te Qual	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10K0101-BSD1 Calcium as CaCO3	1280		ug, Total	1310	98%	80-120	0.145	25	10K0101		11-03-2010
Total Particulates, N.O.R. by 1	NIOSH 0500 (Modified)										
10K0033-BSD1 Total Particulates, N.O.R.	160.0		ug, Total	200	80%	29-116	6.06	47	10K0033		11-01-2010

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTJ1732	Received: Reported:	10/28/10 11/03/10 15:08
Issaquah, WA 98027 Heidi Fischer	Project: Project Number:	EMJ Slag; 831022 Jorgenson Slag / 831-022	.1	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1003, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

	Lab Number	PT31332		Analysis Method(s)/Analyte(s)	Acres and the second stands	Received By: /0 28/10 1030 TAL-0045 (0409)
Test Americo	[X] Main Lab - 4625 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 602.454.9303	www.testamericainc.com or call toll free 866.772.5227 Page & of & statements and a statement and a	or lensuting of the same we agand	De Fax: Fax: Fax Results: De FA (1) (w) word they could E-Mail Results:		Date: Time: Samples Relinquished By: P/22/10/63/20 Kan

All services are performed subject to the Terms & Conditions on the reverse side.

•3

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

October 07, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Amy Essig Desai

Work Order:PTJ0023Project Name:EMJ Slag; 831022Project Number:Jorg Slag / 831-022Date Received:10/01/10Final Report:10/07/10 16:35

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Amy Essig Desai 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Project: EMJ Slag; 831022 Project Number: Jorg Slag / 831-022

PTJ0023

Received: 10/01/10 Reported: 10/07/10 16:35

SAMPLE IDENTIFICATION

EMJS-PA-093010-10

LAB NUMBER PTJ0023-01

Work Order:

COLLECTION DATE

09/30/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	РТЈ0023	Received: Reported:	10/01/10 10/07/10 16:35
Issaquah, WA 98027	Project:	EMJ Slag; 831022	-	
Amy Essig Desai	Project Number:	Jorg Slag / 831-022		
	-			

ANALYTICAL REPORT

Analyte		- Result		Qual	Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIO	OSH 7300 (Modified)							
Sample ID: PTJ0023-01 (I	EMJS-PA-093010-10)	Filter		Sample A	ir Volume:450	L	Sampled: 09	/30/10
	ug, Total	mg/m3	ppm				Prepared: 10)/05/10 19:13
Calcium as CaCO3	<50.0	< 0.111	< 0.0271		10/7/2010	br	50.0	N7300
Total Particulates, N.O.R. by N	NIOSH 0500 (Modified)							
Sample ID: PTJ0023-01 (I	EMJS-PA-093010-10)	Filter		Sample A	ir Volume:450	L	Sampled: 09	/30/10
	ug, Total	mg/m3	ppm				Prepared: 10)/05/10 17:45
Total Particulates, N.O.R.	<100	< 0.222			10/5/2010	AY	100 N	IOSH 0500 (Modified

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:		Received: Reported:	10/01/10 10/07/10 16:35
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Amy Essig Desai	Project Number:	Jorg Slag / 831-022		

PROJECT QUALITY CONTROL DATA

			Blan	k							
Analyte	Blank Value	Qual	Units		Q.C. Bat	ch	Target Range		Lab	Number	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10J0149-BLK1 Calcium as CaCO3	<50.0		ug, Tota	1	10J014	9			10J0	0149-BLK1 1	0-07-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modifi	ed)									
10J0145-BLK1 Total Particulates, N.O.R.	<100		ug, Tota	1	10J014:	5			10J0	0145-BLK1 1	0-05-2010
			LCS	5							
Analyte	Known V	al.	Analyzed Val	Qu	al	Units	% Re	c.	Target Range	Batch	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10J0149-BS1 Calcium as CaCO3	1310		1278			ug, Total	98%		80-120	10J0149	10-07-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modifi	ed)									
10J0145-BS1 Total Particulates, N.O.R.	200	,	220.0			ug, Total	110%	6	29-116	10J0145	10-05-2010
			LCS D	սր							
Analyte	Orig. Val. Du	uplicate Qua	l Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date
Metals using ICP-AES by NIC	-										
10J0149-BSD1 Calcium as CaCO3		1458	ug, Total	1310	111%	80-120	13.1	25	10J0149		10-07-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modifi	ed)									
10J0145-BSD1 Total Particulates, N.O.R.		220.0	ug, Total	200	110%	29-116	0	47	10J0145		10-05-2010

THE LEADER IN ENVIRONMENTAL TESTING 4625 East Cotto

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	РТЈ0023	Received: Reported:	10/01/10 10/07/10 16:35
Issaquah, WA 98027 Amy Essig Desai	Project: Project Number:	EMJ Slag; 831022 Jorg Slag / 831-022	Ĩ	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1003, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

	\bigcirc	
	\bigcirc	
۲		
	$\overline{\mathbb{O}}$	
	C	
	K	
1000		
	S	2 distance in the
_	(\mathbb{D})	
		THE OWNER

Lab Number

[X] Main Lab - 4625 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 602.454.9303

www.testamericainc.com or call toll free 866.772.5227 Customer Number: Pervellen Con Suf	r Fr Page L of L		
Hor lensed times	Sampler: Reg con	<i>H</i> ibbs	
	an	Shurey	
. Steel, we h	シスラ Project Number: るが~	لأوار	
Contact: Romy Esser Drew	P.O. Number: 23/- っええ		
0	Fax Results:		
a televin	Lensed for my and E-Mail Results:	S S	
			Analysis Method(s)/Analyte(s)
Temperature °C 24 H	24 Hours 48 Hours		
Custody Seals: Yes No 72 H	72 Hours96 Hours		
Custody Seals Intact: YesNoX Stan	Standard 5 Working Days		
Total # of Containers:			
Subject to some	Subject to scheduling and availability (surcharges apply)		
	Samule Information		
Lab # Media Type Pump Flow (imernal Use (Filter, Passive Name or Only) Badge, Tube or Wipe) ID Number (Liters)	Flow Rate Sample Collection (Liters/minute) Identification Date	tion time Start Time Stop Time Minutes Liters In cm2 Sample	(
Fiter	5	0.700 BCD	12002301
			•
	· · ·		
			·····
Instructions / Special Requirements:			
Date: Time:	Samples Relinquished By:	be Byg Byg	Received By?
	trata		
		162	C
10/01/10 10:30	I all	UT Great	el real
s ai	ns on the reverse side		TAL-0045 (0409)

tAmeric

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

October 19, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Heidi Fischer

Work Order: PTJ0830 Project Name: Project Number: Jergens 10/13/10 Date Received: Final Report: 10/19/10 12:23

EMJ Slag; 831022

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

> HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

> PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Heidi Fischer 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Project: EMJ Slag; 831022 Project Number: Jergens

PTJ0830

Received: 10/13/10 Reported: 10/19/10 12:23

SAMPLE IDENTIFICATION

EMJS-PA-100710-11

LAB NUMBER PTJ0830-01

Work Order:

COLLECTION DATE

10/07/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	РТЈ0830	Received: Reported:	10/13/10 10/19/10 12:23
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Heidi Fischer	Project Number:	Jergens		

ANALYTICAL REPORT

Analyte		Result		Qual	Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method
Metals using ICP-AES by NIO	SH 7300 (Modified)							
Sample ID: PTJ0830-01 (E	CMJS-PA-100710-11)	Filter		Sample Ai	r Volume:1260	L	Sampled: 10	/07/10
	ug, Total	mg/m3	ppm				Prepared: 10)/17/10 14:49
Calcium as CaCO3	<50.0	< 0.0397	< 0.00969		10/18/2010	br	50.0	N7300
Total Particulates, N.O.R. by N	NIOSH 0500 (Modified)							
Sample ID: PTJ0830-01 (E	CMJS-PA-100710-11)	Filter		Sample Ai	r Volume:1260	L	Sampled: 10	/07/10
	ug, Total	mg/m3	ppm				Prepared: 10)/14/10 10:02
Total Particulates, N.O.R.	<100	< 0.0794			10/14/2010	ZN	100 N	IOSH 0500 (Modified

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTJ0830	 10/13/10 10/19/10 12:23
Issaquah, WA 98027	Project:	EMJ Slag; 831022	
Heidi Fischer	Project Number:	Jergens	

PROJECT QUALITY CONTROL DATA

			Blan	k							
Analyte	Blank Value	Qual	Units		Q.C. Ba	tch	Target Range		Lab	Number	Analyzed Date
Metals using ICP-AES by NIO	SH 7300 (Modified)										
10J0617-BLK1 Calcium as CaCO3	<50.0		ug, Tota	1	10J061	7			10J0	0617-BLK1 1	0-18-2010
Total Particulates, N.O.R. by N	IOSH 0500 (Modified)									
10J0543-BLK1 Total Particulates, N.O.R.	<100		ug, Tota	1	10J054	3			10J0)543-BLK1 1	0-14-2010
			LCS	5							
Analyte	Known Val.		Analyzed Val	Qu	ıal	Units	% Re	c.	Target Range	Batch	Analyzed Date
Metals using ICP-AES by NIO	SH 7300 (Modified)										
10J0617-BS1 Calcium as CaCO3	1310		1069			ug, Total	82%)	80-120	10J0617	10-18-2010
Total Particulates, N.O.R. by N	IOSH 0500 (Modified)									
10J0543-BS1 Total Particulates, N.O.R.	200	,	230.0			ug, Total	115%	6	29-116	10J0543	10-14-2010
			LCS D	up							
Analyte	Orig. Val. Dupl	icate Qual	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date
Metals using ICP-AES by NIO	SH 7300 (Modified)										
10J0617-BSD1 Calcium as CaCO3	12	70	ug, Total	1310	97%	80-120	17.2	25	10J0617		10-18-2010
Total Particulates, N.O.R. by N	IOSH 0500 (Modified)									
10J0543-BSD1 Total Particulates, N.O.R.	230	0.0	ug, Total	200	115%	29-116	0	47	10J0543		10-14-2010

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	РТЈ0830	Received: Reported:	10/13/10 10/19/10 12:23
Issaquah, WA 98027 Heidi Fischer	Project: Project Number:	EMJ Slag; 831022 Jergens	.1	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

Date: Time: /u/7(k) /noc /u/noc /u/7(k) /noc /u/noc All services are performed subject to the Terms & Conditions on the reverse side.	Instructions / Special Requirements: .	IS: Yes No No Is Intact: Yes No Intainers:	www.testamericainc.com or call toll free 866.772.5227 Customer Number: Name: FAAALLON Address: 9.7.5 54 Ave N City, State, Zip: T53A2WAA Contact: AML 23552 D23A1 Phone: 425-1475 Ave N Phone: 425-1475 Ave N E-Mail Address: A & D23A1 E-Mail Address: A & D23A1 E-Mail Address: A & D23A1 E-Mail Address: A & D23A1 Sample Receipt	[X] Main Lab - 4625 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 602.454.9303
& Conditions on the reverse s		72 Hours Standard 5 Wo et to scheduling and ave the scheduling are scheduling and ave the scheduling are scheduling are scheduling and ave the scheduling are sche	366.772.5227 Pag VC VL Proj San San VC VL Fax: H A. Fax: H SS-295-26550 Fax: H SS-26550 Fax: H SS	, 189, Phoenix, AZ 85040 60
amples Relinquished By:		Information Total Total Area Number of Number	$\frac{e}{\sqrt{2}} \int \frac{dt}{\sqrt{2}} d$	THE LEADER IN ENVIRONMENTAL TESTING
Received By: $\frac{10}{13} \frac{1}{10} \frac{525}{100} \frac{525}{100}$ $\frac{20.0^{5}}{10} \frac{1000}{100} \frac{1000}{100}$ TAL-0045 (0409)		X Lime Asht Dush	NTT NT N Analysis Wethod(s)/Analysis Nethod(s)/Analysis	Lab Number

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

October 25, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Amy Essig Desai

Work Order:PTJ1136Project Name:EMJ Slag; 831022Project Number:Jorgenson Slag / 831-022Date Received:10/18/10Final Report:10/25/10 13:40

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

Americ

THE LEADER IN ENVIRONMENTAL TESTING

Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Amy Essig Desai

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

EMJ Slag; 831022 Project: Project Number: Jorgenson Slag / 831-022

PTJ1136

10/18/10 Received: Reported:

10/25/10 13:40

SAMPLE IDENTIFICATION

EMJS-PA-101410-12

LAB NUMBER PTJ1136-01

Work Order:

COLLECTION DATE

10/14/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTJ1136	Received: Reported:	10/18/10 10/25/10 13:40
Issaquah, WA 98027	Project:	EMJ Slag; 831022	1	
Amy Essig Desai	Project Number:	Jorgenson Slag / 831-022		
	-			

ANALYTICAL REPORT

Analyte		- Result		Qual	Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method	
Metals using ICP-AES by NIO	SH 7300 (Modified)								
Sample ID: PTJ1136-01 (EMJS-PA-101410-12)		Filter		Sample Air	r Volume:697.5	5L	Sampled: 10/14/10		
	ug, Total	mg/m3	ppm				Prepared: 10	/21/10 18:16	
Calcium as CaCO3	<50.0	< 0.0717	< 0.0175		10/22/2010	br	50.0	N7300	
Total Particulates, N.O.R. by N	NIOSH 0500 (Modified)								
Sample ID: PTJ1136-01 (E	EMJS-PA-101410-12)	Filter		Sample Air	r Volume:697.5	5L	Sampled: 10	/14/10	
	ug, Total	mg/m3	ppm				Prepared: 10	/19/10 09:50	
Total Particulates, N.O.R.	<100	< 0.143			10/19/2010	ZN	100 N	IOSH 0500 (Modified)	

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC.	Work Order:	PTJ1136	recourveu.	10/18/10
975 5th Ave. NW			Reported:	10/25/10 13:40
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Amy Essig Desai	Project Number:	Jorgenson Slag / 831-022		

PROJECT QUALITY CONTROL DATA

			Blan	k							
Analyte	Blank Value	Qual	Units		Q.C. Bat	tch	Target Range		Lab	Number	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10J0812-BLK1 Calcium as CaCO3	<50.0		ug, Total		10J081	2			10J0	0812-BLK1 1	0-22-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modified)										
10J0704-BLK1 Total Particulates, N.O.R.	<100		ug, Total		10J070	14			10J0	0704-BLK1 1	0-19-2010
			LCS	ł							
Analyte	Known Val.	A	nalyzed Val	Qu	al	Units	% Re	ec.	Target Range	Batch	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10J0812-BS1 Calcium as CaCO3	1310		1248			ug, Total	95%	, D	80-120	10J0812	10-22-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modified)										
10J0704-BS1 Total Particulates, N.O.R.	200		230.0			ug, Total	115%	6	29-116	10J0704	10-19-2010
			LCS D	up							
Analyte	Orig. Val. Duplic	ate Qual	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10J0812-BSD1 Calcium as CaCO3	1321	l	ug, Total	1310	101%	80-120	5.67	25	10J0812		10-22-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modified)										
10J0704-BSD1 Total Particulates, N.O.R.	230.0)	ug, Total	200	115%	29-116	0	47	10J0704		10-19-2010

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTJ1136	Received: Reported:	10/18/10 10/25/10 13:40	
Issaquah, WA 98027 Amy Essig Desai	Project: Project Number:	EMJ Slag; 831022 Jorgenson Slag / 831-022	Reported.		

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

To standing of 000	
X Main Lab - 4625 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 602.454.9303	Lab Number
www.testamericainc.com or call toll free 866.772.5227 Customer Number: Name: EAPALLON Name: EAPALLON Address: 975 Sth Ave	
Association P.O. Number: Description P.O. Number: Number: P.O. Number: <t< td=""><td>Analysis Method(s)/Analyte(s)</td></t<>	Analysis Method(s)/Analyte(s)
No X Standard 5 Working Days Subject to scheduling and availability (surcharges apply) Sample Information Sample Information Total	9w;1++5
Lab # Media Type Pump Flow Rate Sample Collection Total Volume In Wiped Media Per Vitemal Use (Filter, Passive Name or	pt1136-01
Instructions / Special Requirements: Date: Time: Samples Relinquished By:	Received By:
	10 / 18 / 10 / 130

All services are performed subject to the Terms & Conditions on the reverse side.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

November 09, 2010

LABORATORY REPORT

Client: Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Attn: Amy Essig Desai

Work Order:PTK0088Project Name:EMJ Slag; 831022Project Number:Jorgenson Slag / 831-022Date Received:11/02/10Final Report:11/09/10 16:56

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Laboratories, Inc., Phoenix Laboratory certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(602)437-3340

Analyses included in this report were performed by the laboratory shown at the top of this report unless otherwise indicated.

CASE NARRATIVE: SAMPLE RECEIPT: Samples were received intact, at 20°C and with chain of custody documentation.

HOLDING TIMES: All samples were analyzed within prescribed holding times and/or in accordance with the TestAmerica Sample Acceptance Policy unless otherwise noted in the report.

PRESERVATION: Samples requiring preservation were verified prior to sample analysis. QA/QC CRITERIA: All analyses met method criteria, except as noted in the report with data qualifiers.

COMMENTS: No significant observations were made.

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

Approved By:

Denise Harrington

Denise Harrington Project Manager

THE LEADER IN ENVIRONMENTAL TESTING

Farallon Consulting, LLC. 975 5th Ave. NW Issaquah, WA 98027 Amy Essig Desai 4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Project: EMJ Slag; 831022 Project Number: Jorgenson Slag / 831-022

PTK0088

Received: 11/02/10 Reported: 11/09/10 16:56

SAMPLE IDENTIFICATION

EMJS-PA-102810-14

LAB NUMBER PTK0088-01

Work Order:

COLLECTION DATE

10/28/10

CONTAINER TYPE

PVC Filter, 5 micron, 37-mm Pre-weighed; 3-piece.

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTK0088	Received:	11/02/10 11/09/10 16:56
Issaquah, WA 98027	Project:	EMJ Slag; 831022	Reported:	11/09/10 10:50
Amy Essig Desai	Project Number:	Jorgenson Slag / 831-022		

ANALYTICAL REPORT

Analyte		- Result		Qual	Date Analyzed	Analyst	Rpt Limit (ug, Total)	Method	
Metals using ICP-AES by NIO	SH 7300 (Modified)								
Sample ID: PTK0088-01 (EMJS-PA-102810-14)		Filter		Sample Air Volume:600L			Sampled: 10/28/10		
	ug, Total	mg/m3	ppm				Prepared: 11	/05/10 16:35	
Calcium as CaCO3	<50.0	< 0.0833	< 0.0204		11/8/2010	BR	50.0	N7300	
Total Particulates, N.O.R. by N	NIOSH 0500 (Modified)								
Sample ID: PTK0088-01 (I	EMJS-PA-102810-14)	Filter		Sample A	ir Volume:600	L	Sampled: 10	/28/10	
	ug, Total	mg/m3	ppm				Prepared: 11	/05/10 15:45	
Total Particulates, N.O.R.	<100	< 0.167			11/5/2010	ZN	100 N	IOSH 0500 (Modified)	

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC.	Work Order:	PTK0088	Received:	11/02/10
975 5th Ave. NW			Reported:	11/09/10 16:56
Issaquah, WA 98027	Project:	EMJ Slag; 831022		
Amy Essig Desai	Project Number:	Jorgenson Slag / 831-022		

PROJECT QUALITY CONTROL DATA

			Blan	k							
Analyte	Blank Value	Qual	Units		Q.C. Ba	tch	Target Range		Lab	Number	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10K0256-BLK1 Calcium as CaCO3	<50.0		ug, Total		10K025	56			10K0)256-BLK1 1	1-08-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modified)										
10K0305-BLK1 Total Particulates, N.O.R.	<100		ug, Total		10K030)5			10K0)305-BLK1 1	1-05-2010
			LCS	ł							
Analyte	Known Val.	А	nalyzed Val	Qu	al	Units	% Re	с.	Target Range	Batch	Analyzed Date
Metals using ICP-AES by NIC	OSH 7300 (Modified)										
10K0256-BS1 Calcium as CaCO3	1310		1308			ug, Total	100%	D	80-120	10K0256	11-08-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modified)										
10K0305-BS1 Total Particulates, N.O.R.	200		110.0			ug, Total	55%		29-116	10K0305	11-05-2010
			LCS D	up							
Analyte	Orig. Val. Duplicat	e Qual	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date
Metals using ICP-AES by NI											
10K0256-BSD1 Calcium as CaCO3	1301		ug, Total	1310	99%	80-120	0.566	25	10K0256		11-08-2010
Total Particulates, N.O.R. by	NIOSH 0500 (Modified)										
10K0305-BSD1 Total Particulates, N.O.R.	150.0		ug, Total	200	75%	29-116	30.8	47	10K0305		11-05-2010

THE LEADER IN ENVIRONMENTAL TESTING

4625 East Cotton Center Blvd. Ste 189 Phoenix, AZ 85040 * (602) 437-3340 * Fax (602) 454-9303

Farallon Consulting, LLC. 975 5th Ave. NW	Work Order:	PTK0088	Received: Reported:	11/02/10 11/09/10 16:56
Issaquah, WA 98027 Amy Essig Desai	Project: Project Number:	EMJ Slag; 831022 Jorgenson Slag / 831-022	Reported.	

CERTIFICATION SUMMARY

Analyses included in this report were performed by TestAmerica Phoenix, 4625 E. Cotton Center Boulevard, Building 3, Suite 189, Phoenix, AZ 85040.

TestAmerica Phoenix (Lab ID 154268) is accredited by the American Industrial Hygiene Association (AIHA) in the industrial hygiene program for the analytical techniques noted on the scope of accreditation for the following methods: NIOSH 0500, NIOSH 0600, NIOSH 1003, NIOSH 1005, NIOSH 1007, NIOSH 1010, NIOSH 1015, NIOSH 1022, NIOSH 1300, NIOSH 1400, NIOSH 1401, NIOSH 1403, NIOSH 1405, NIOSH 1450, NIOSH 1457, NIOSH 1500, NIOSH 1501, NIOSH 1550, NIOSH 1602, NIOSH 1604, NIOSH 1606, NIOSH 1609, NIOSH 1610, NIOSH 1611, NIOSH, 1613, NIOSH 1615, NIOSH 2000, NIOSH 2016, NIOSH 2532, NIOSH 2546, NIOSH 2551, NIOSH 5500, NIOSH 5503, NIOSH 5506, NIOSH 5600, NIOSH 6006, NIOSH 6009, NIOSH 6010, NIOSH 7300, NIOSH 7303, NIOSH 7600, NIOSH 7903, NIOSH 9100, NIOSH 9102, EPA IP-6A, EPA IP-6C, OSHA PV2120, OSHA 7, OSHA 42, OSHA 47, OSHA 48, OSHA 64, OSHA 69, OSHA 111, OSHA ID-140, OSHA ID-121, OSHA ID-125G, OSHA IS-215, OSHA 1001, OSHA 1002, OSHA 1004, OSHA 1005 and OSHA Chemical and Sampling Information for Silane. Volatile organic compounds on 3M Organic Vapor Monitors, Assay Technology Passive Monitors and SKC Passive Monitors. Formaldehyde and other aldehydes and ketones on Assay Technology Passive Monitor. Aldehydes and ketones by EPA TO-11A.

The TestAmerica Phoenix is also licensed through the State of Arizona (AZ0728) for EPA method TO-15.

TestAmerica Phoenix also holds NELAC accreditation through the State of Oregon (AZ100001) for the analytical techniques noted on the scope of accreditation and the State of New York (11898) for NIOSH 6009.

Samples were analyzed using methods outlined in references such as:

-OSHA - Occupational Safety and Health Administration, U. S. Department of Labor, OSHA Analytical Methods Manual.

-NIOSH - National Institute for Occupational Safety and Health, U. S. Department of Health and Human Services, NIOSH Manual of Analytical Methods, Fourth Edition, 1994, and Updates. NIOSH Method 7300 analyses are performed using a modified digestion procedure to eliminate the use of perchloric acid.

-EPA - U. S. Environmental Protection Agency, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, 1999.

-EPA - U. S. Environmental Protection Agency, Analytical Methods, Emission Measurement Center (EMC).

Analytical Comments:

Unless otherwise noted, all method blanks and laboratory control spikes met method and/or laboratory quality control objectives for the analyses included in this report.

Unless otherwise noted, sample results have been corrected for method blank values.

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

	Lab Number	ATT AND A CAREER A	Analysis Method(s)/Analyte(s)	Area Number of Wiped Media per in cm2 Sample				Received By:	- 0 / TAL-0045 (0409)
TestAmerico	THE LEADER IN ENVIRONMENTAL TESTING 10 602.437.3340 - FAX 602.454.9303	Page of Page of Sampler: [] Sampler: [] Project Name: [] Project Number: [] P.O. Number: [] P.O. Number: [] Fax Results: []	Bequest 48 Hours 48 Hours 96 Hours 96 Hours 96 Hours 96 Hours	Sample Information sample collection Identification Date Start Time Stop Time Minutes Liters	77			Samples Relinquished By:	verse side.
	THE LEAD! [X] Main Lab - 4625 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 602.437.3340 - FAX 602.	www.testamericainc.com or call toll free 866.772.5227 Customer Number: Name: FABALLON Address: 975 554 Auculue Nu Address: 975 554 Auculue Nu City, State, Zip: T5534 JaA. 98 022 Contact: Any £5554 0234 Phone: 41-57295 2520 Fax: 425-2935 0854	E-Mail Address: As0oc Area (with the second seco	Lab # Media Type Pump Flow Rate (Internal Use Relow Rate Mane Type Name (Internal Use Relow Type Name (Liters/minute))	Futer extra 1.5		Instructions / Special Requirements:	Dates Times 1 Ley Frank	P a a

۲

APPENDIX J COMPACTION TEST RESULTS

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

MAYES TESTING ENGINEERS, INC.

Project No.T10137ProjectKent Slag SiteAddressSouth 228th Street & 88th Avenue South, Kent, WAPermit No.CNST-2101696GFBldg Dept.City of Kent

Owner Earl Jorgenson Contractor Clear Creek

Record No.001Date9-10-10WeatherOvercastInspectionSoils CompactionSample(s)(1) Proctor

Seattle Office 20225 Cedar Valley Road Suite 110 Lynnwood, WA 98036 ph 425.742.9360 fax 425.745.1737

Tacoma Office 10029 S. Tacoma Way Suite E-2

Suite E-2 Tacoma, WA 98499 ph 253.584.3720 fax 253.584.3707

Portland Office 7911 NE 33rd Drive Suite 190 Portland, OR 97211 ph 503.281.7515 fax 503.281.7579

Performed soil compaction testing using a nuclear density/moisture gauge along east edge of site from approximate grid lines D5 to G9. Contractor had previously placed and compacted brown silty sand with gravel using large vibratory roller. Results of compaction tests were preliminary pending proctor results from sample obtained this day. Fill was firm, stable and unyielding. See attached field density test report for data.

After completion of proctor analysis, all tests met the minimum compaction requirement of 95%.

To the best of our knowledge, all items inspected today are in conformance with approved plans and specifications.

Inspector: John Opgenorth

Reviewed by: Swiss

Shaun W. Sevigny, P.E. Branch Manager

MAYES TESTING ENGINEERS, INC

Page 1 of	1
-----------	---

20225 Cedar Valley Road, Suite 110	Ph	425.742.9360		Project No.:	T10	137	Date:	9/10/2010
Lynnwood, WA 98036	Fax	425.745.1737	Soil	Proiect:		Kent SI	ag Site	
		253.584.3720 253.584.3707	FIELD DENSITY TEST REPORT	Inspector:	John Opgenorth			1
		503.281.7515 503.281.7579	ASTM D 6938	MTE Nuclear Gauge No.:				20

		Depth or	Backscatter /	Labora	atory	Field					
Test # Location: East end		site	Elevation (feet)	Direct Transmission	Max Dry Density (PCF)	OMC %	Wet Density (PCF)	Dry Density (PCF)	Moisture Content %	Compaction %	Soil Type Description
1	E5		~61'	DT	137.5	5.8	138	130.3	5.9	95	Brown Silty Sand with Gravel
2	E8		~61'	DT	137.5	5.8	143.6	135.4	6.1	98	Brown Silty Sand with Gravel
3	F6.5		~61'	DT	137.5	5.8	143.6	133.8	7.3	97	Brown Silty Sand with Gravel
4	F7		~61'	DT	137.5	5.8	140.8	132.2	6.5	96	Brown Silty Sand with Gravel
5	F8		~61'	DT	137.5	5.8	142.6	133	7.2	97	Brown Silty Sand with Gravel
6	G9		~61'	DT	137.5	5.8	138.2	131	5.5	95	Brown Silty Sand with Gravel
	tion Compaction and Material :	95	%	In our opinion, fill generally meets specifications as indicated by test numbers:							
	M D 1557 (Modified Proctor) M D 698 (Standard Proctor)			_							
	Number of earth moving units:	Doz	zer		In our opini	on, fill do	es not meet :	specifications	as indicated	by test numbe	irs:
Type and	Number of Compaction units:	Large Vit	be Roller	✓	Fill test me	ets comp	action specifi	cations			
				✓	Contractor	Advised					
Number of	of Passes: Thickne	ss of lift:			Full-time of	oservatio	n 🗸 Pa	art-time obser	vation		
	f Adding Moisture:				Sample:	Test No	.: 2	Dry De	ensity:	135.1 M	pisture %: 6
Commen	s: Fill was in place upon arrival.	Fill was firm	, stable and	unyielding.							

MAYES TESTING ENGINEERS, INC.

Project No.T10137ProjectKent Slag SiteAddressSouth 228th Street & 88th Avenue South, Kent, WAPermit No.CNST-2101696GFBldg Dept.City of Kent

Owner Earl Jorgenson Contractor Clear Creek

Record No.002Date9-11-10WeatherPartly SunnyInspectionSoils

Seattle Office 20225 Cedar Valley Road Suite 110 Lynnwood, WA 98036 ph 425.742.9360 fax 425.745.1737

 Tacoma Office

 10029 S. Tacoma Way

 Suite E-2

 Tacoma, WA 98499

 ph 253.584.3720

 fax 253.584.3707

Portland Office 7911 NE 33rd Drive Suite 190 Portland, OR 97211 ph 503.281.7515 fax 503.281.7579

Performed soil density testing on the onsite fill material (brown silty sand with gravel) that had already been backfilled and compacted by the contractor upon arrival. This material was being placed along the east side of the site where the contractor had already excavated with removal of all the contaminated soil. A nuclear density gauge was used for testing as a preliminary inspection. The sample that had been obtained for a modified proctor was not completed yet. All test results will be known when this sample is completed. All information recorded on the nuclear density gauge was given to the contractor. See the attached field density test report.

After completion of proctor analysis, all tests met the minimum compaction requirement of 90%.

To the best of our knowledge, all items inspected today are in conformance with approved plans and specifications.

Inspector: Daniel Quehl

Reviewed by:

Sw.S

Shaun W. Sevigny, P.E. Branch Manager

Page 1 of 1

MAYES TESTING ENGINEERS, INC

Page 1 of 1

425.742.9360		Project No.:	T10137	Date:	9/11/2010
425.745.1737	Soil	Project:	Kent	Slag Site	
253.584.3720			5		
253.584.3707	FIELD DENSITY TEST REPORT	Inspector:	Daniel Quehl		
503.281.7515 503.281.7579	ASTM D 6938	MTE Nuclear G	MTE Nuclear Gauge No.:		
4 2 2 5	25.745.1737 253.584.3720 253.584.3707 603.281.7515	Soil 53.584.3720 53.584.3707 FIELD DENSITY TEST REPORT 603.281.7515	Soil Project: 53.584.3720 FIELD DENSITY TEST REPORT 53.284.3707 FIELD DENSITY TEST REPORT 503.281.7515 ASTM D 6938	Soil Project: Kent 253.584.3720 FIELD DENSITY TEST REPORT Inspector: Dan 203.281.7515 ASTM D 6938 MTE Nuclear Course No.1	Soil Project: Kent Slag Site 53.584.3720 FIELD DENSITY TEST REPORT Inspector: Daniel Quehl 603.281.7515 ASTM D 6938 MTE Nuclear Course No.1

		Depth or	Backscatter /	Backscatter / Laboratory Field							
Test #	Location:	Elevation (feet)	Direct Transmission	Max Dry Density (PCF)	OMC %	Wet Density (PCF)	Dry Density (PCF)	Moisture Content %	Compaction %	Soil Type Description	
1	10' W of E side of excavation in grid section 8	At Grade	DT	137.5	5.8	137.1	129.8	5.6	94	Brown Silty Sand with Gravel	
2	10' W of E side of excavation in grid section 9	At Grade	DT	137.5	5.8	134.2	127.1	5.6	92	Brown Silty Sand with Gravel	
3	10' W of E side of excavation in grid section 10	At Grade	DT	137.5	5.8	134.9	127.7	5.6	93	Brown Silty Sand with Gravel	
4	15' W of E side of excavation in grid section 11	At Grade	DT	137.5	5.8	136.6	129.5	5.5	94	Brown Silty Sand with Gravel	
5	15' W of E side of excavation in grid section 12	-1'	DT	137.5	5.8	140.3	133.7	5	97	Brown Silty Sand with Gravel	
6	15' W of E side of excavation in grid section 13	-1'	DT	137.5	5.8	134.8	128	5.3	93	Brown Silty Sand with Gravel	
	Specification Compaction and Material : 90%		In our opinion, fill generally meets specifications as indicated by test numbers:								
	M D 698 (Standard Proctor) I Number of earth moving units:	ackhoe		In our opinion, fill does not meet specifications as indicated by test numbers:							
Type and Number of Compaction units: Vibratory Roller			·	Fill test me	-	action specifi	ications				
Number	of Passes: Thickness of lift:	1'	· <u> </u>	Full-time of		ມ ບ	art-time obser	vation			
	f Adding Moisture:			Sample:					127.3 Me	oisture %: 5.5	
Commen	ts: Fill was in place and compacted upon arriv	val.									

MAYES TESTING ENGINEERS, INC.

Project No.T10137ProjectKent Slag SiteAddressSouth 228th Street & 88th Avenue South, Kent, WAPermit No.CNST-2101696GFBldg Dept.City of Kent

Owner Earl Jorgenson Contractor Clear Creek

Record No.003Date9-14-10WeatherOvercastInspectionSoils

Performed soil compaction testing using a nuclear density gauge along east side of site along grid line E from 6 to 11.5 at approximate elevation 64'. Fill was in place and compacted upon inspector's arrival. Fill was firm, stable and unyielding. Results of compaction tests are preliminary pending completion of proctor, see attached field density test report for data.

After completion of proctor analysis, all tests met the minimum compaction requirement of 90%.

To the best of our knowledge, all items inspected today are in conformance with approved plans and specifications.

Inspector: John Opgenorth

Reviewed by:

Shaun W. Sevigny, P.E. Branch Manager

Seattle Office 20225 Cedar Valley Road Suite 110 Lynnwood, WA 98036 ph 425.742.9360 fax 425.745.1737

 Tacoma Office

 10029 S. Tacoma Way

 Suite E-2

 Tacoma, WA 98499

 ph 253.584.3720

 fax 253.584.3707

Portland Office 7911 NE 33rd Drive Suite 190 Portland, OR 97211 ph 503.281.7515 fax 503.281.7579

MAYES TESTING ENGINEERS, INC

Page 1 of 1

20225 Cedar Valley Road, Suite 110	Ph	425.742.9360		Project No.:	T10137	Date:	9/14/2010
Lynnwood, WA 98036	Fax	425.745.1737	Soil	Project:	Ke	nt Slag Site	
		253.584.3720 253.584.3707	FIELD DENSITY TEST REPORT	Inspector:	John Opgenorth		
		503.281.7515 503.281.7579	ASTM D 6938	MTE Nuclear	Gauge No.:		T15

		Depth or Backscatter / Laboratory Field									
Test #	Location:		Elevation (feet)	Direct Transmission	Max Dry Density (PCF)	OMC %	Wet Density (PCF)	Dry Density (PCF)	Moisture Content %	Compaction %	Soil Type Description
1	E/11.5		~64'	DT	137.5	5.8	134.5	127.5	5.5	93	Brown Silty Sand with Gravel
2	E/11		~64'	DT	137.5	5.8	137.1	129.3	6	94	Brown Silty Sand with Gravel
3	E/10		~64'	DT	137.5	5.8	135.3	127.8	5.9	93	Brown Silty Sand with Gravel
4	E/9		~64'	DT	137.5	5.8	135.6	128.1	5.8	93	Brown Silty Sand with Gravel
5	E/7		~64'	DT	137.5	5.8	135.1	127.6	5.9	93	Brown Silty Sand with Gravel
6	E/6		~64'	DT	137.5	5.8	133.2	127.2	4.7	93	Brown Silty Sand with Gravel
	tion Compaction and Material : TM D 1557 (Modified Proctor)	90%	, D	In our opinion, fill generally meets specifications as indicated by test numbers:							
	TM D 698 (Standard Proctor)	Doze	er	In our opinion, fill does not meet specifications as indicated by test numbers:							
Type and	Number of Compaction units:	Vibratory	Roller	·		-	action specifi	cations			
					Contractor						
Number	of Passes: Thicknes	ss of lift:						art-time obser	vation		
Method c	f Adding Moisture:			QC	Sample:	Test No.	.: 2	Dry D	ensity:	Mo	bisture %:
Commen	ts: Fill was firm, stable and unyiel	ding.									

MAYES TESTING ENGINEERS, INC.

Project No.T10137ProjectKent Slag SiteAddressSouth 228th Street & 88th Avenue South, Kent, WAPermit No.CNST-2101696GFBldg Dept.City of Kent

Owner Earl Jorgenson Contractor Clear Creek

Record No.004Date9-17-10WeatherCloudyInspectionSoils

Performed in place density tests on brown silty sand with gravel used as fill in area where slag has been removed. Material was placed with a trackhoe and dozer and compacted with a vibratory roller.

All tests met minimum compaction requirements today. Please see field density report for locations and results.

To the best of our knowledge, all items inspected today are in conformance with approved plans and specifications.

Inspector: Gary Lutz

Suite 110 Lynnwood, WA 98036 ph 425.742.9360 fax 425.745.1737 **Tacoma Office** 10029 S. Tacoma Way

10029 S. Tacoma Way Suite E-2 Tacoma, WA 98499 ph 253.584.3720 fax 253.584.3707

Portland Office 7911 NE 33rd Drive Suite 190 Portland, OR 97211 ph 503.281.7515 fax 503.281.7579

Shaun W. Sevigny, P.E. Branch Manager

Seattle Office 20225 Cedar Valley Road

MAYES TESTING ENGINEERS, INC

Fax

Ph Fax

Ph Fax

20225 Cedar Valley Road, Suite 110 Ph Lynnwood, WA 98036 Fax

10029 S. Tacoma Way, Suite E-2 Tacoma, WA 98499

7911 NE 33rd Drive, Suite 190 Portland, OR 97211

rage i u i	Page	1	of	1
------------	------	---	----	---

425.742.9360		Project No.:	T10137	Date:	9/17/2010			
425.745.1737	Soil	Project:	Project: Kent Slag Site					
253.584.3720 253.584.3707	FIELD DENSITY TEST REPORT	Inspector:						
503.281.7515 503.281.7579	ASTM D 6938	MTE Nuclear G	Gauge No.:	T	15			

		Depth or	Backscatter /	Labora	atory		Fi			
Test #	Location: Removed slag fill area	Elevation (feet)	Direct Transmission	Max Dry Density (PCF)	OMC %	Wet Density (PCF)	Dry Density (PCF)	Moisture Content %	Compaction %	Soil Type Description
1	Line 6 east side	Subgrade	DT	137.5	5.8	136.8	128.3	6.6	93	Brown Silty Sand with Gravel
2	Line 7.5 west side	Subgrade	DT	137.5	5.8	136	128.4	5.9	93	Brown Silty Sand with Gravel
3	Line 9.5 middle	Subgrade	DT	137.5	5.8	134.1	125.3	7.1	91	Brown Silty Sand with Gravel
4	Line D.5 middle	Subgrade	DT	137.5	5.8	133.8	124.7	7.7	91	Brown Silty Sand with Gravel
	tion Compaction and Material :90 FM D 1557 (Modified Proctor)	%		In our opinion, fill generally meets specifications as indicated by test numbers:						
	TM D 698 (Standard Proctor) I Number of earth moving units: Dozer/T	rackhoe		In our opinion, fill does not meet specifications as indicated by test numbers:						
••	• <u> </u>				- 4					
Type and	I Number of Compaction units: Vibrator	y Roller		Contractor	•	action specif	Ications			
Number	of Passes: Varied Thickness of lift:	12"		Full-time of	oservatio	n 🗌 Pa	art-time obser	vation		
Method c	f Adding Moisture: None		QC	Sample:	Test No.	.:	Dry D	ensity:	M	oisture %:
Commen	ts:									

MAYES TESTING ENGINEERS, INC.

Project No.T10137ProjectKent Slag SiteAddressSouth 228th Street & 88th Avenue South, Kent, WAPermit No.CNST-2101696GFBldg Dept.City of Kent

Owner Earl Jorgenson Contractor Clear Creek

Record No.005Date9-22-10WeatherOvercastInspectionSoils

Performed soil density testing on the brown silty sand with gravel material being used for onsite fill. This material was already backfilled and compacted upon arrival from grid section E-9 to E-13. Testing was performed using a nuclear density gauge and a proctor value of 137.5 pcf at 5.8% optimum moisture. All tests met the 90% required compaction and contractor was informed of these results. See the attached field density test report.

To the best of our knowledge, all items inspected today are in conformance with approved plans and specifications.

Inspector: Daniel Quehl

Reviewed by: \mathcal{S}_{ω}

Shaun W. Sevigny, P.E. Branch Manager

Seattle Office 20225 Cedar Valley Road Suite 110 Lynnwood, WA 98036 ph 425.742.9360 fax 425.745.1737

 Tacoma Office

 10029 S. Tacoma Way

 Suite E-2

 Tacoma, WA 98499

 ph 253.584.3720

 fax 253.584.3707

Portland Office 7911 NE 33rd Drive Suite 190 Portland, OR 97211 ph 503.281.7515 fax 503.281.7579

MAYES TESTING ENGINEERS, INC

Page 1 of	1
-----------	---

20225 Cedar Valley Road, Suite 110	Ph	425.742.9360		Project No.:	T10137	Date:	9/22/2010
Lynnwood, WA 98036	Fax	425.745.1737	Soil	Project:	Ker	nt Slag Site	
		253.584.3720 253.584.3707	FIELD DENSITY TEST REPORT	Inspector:		aniel Quehl	
,		503.281.7515 503.281.7579	ASTM D 6938	MTE Nuclear	Gauge No.:		16

		De	Depth or	Backscatter /	Labora	atory		F			
Test #	Location: At grid section		evation (feet)	Direct Transmission	Max Dry Density (PCF)	OMC %	Wet Density (PCF)	Dry Density (PCF)	Moisture Content %	Compaction %	Soil Type Description
1	E-9	At	Grade	Direct	137.5	5.8	142.4	134.4	5.9	98	Brown Silty Sand with Gravel
2	E-10	At	Grade	Direct	137.5	5.8	141.9	133.2	6.5	97	Brown Silty Sand with Gravel
3	E-11		-4'	Direct	137.5	5.8	134.6	126.2	6.6	92	Brown Silty Sand with Gravel
4	E-12		-9'	Direct	137.5	5.8	136.1	129.1	5.4	94	Brown Silty Sand with Gravel
	tion Compaction and Material : IM D 1557 (Modified Proctor)	90%			In our opini	on, fill ge	nerally meets	s specification	ns as indicate	d by test numb	pers:
ASTM D 698 (Standard Proctor) Type and Number of earth moving units: (1) Dozer & Trackhoe			ackhaa	In our opinion, fill does not meet specifications as indicated by test numbers:							
••								. ,.			
Type and	I Number of Compaction units:	(1) Vibratory F	Roller		Contractor		action specifi	ications			
Number of Passes: Thickness of lift:					Full-time ob	servatior	n 🗸 Pa	art-time obsei	vation		
	of Adding Moisture:				Sample:					126.1 Mo	oisture %: 6.5
Commen	ts: The material was already in p	blace and compac	cted upo	n arrival.							

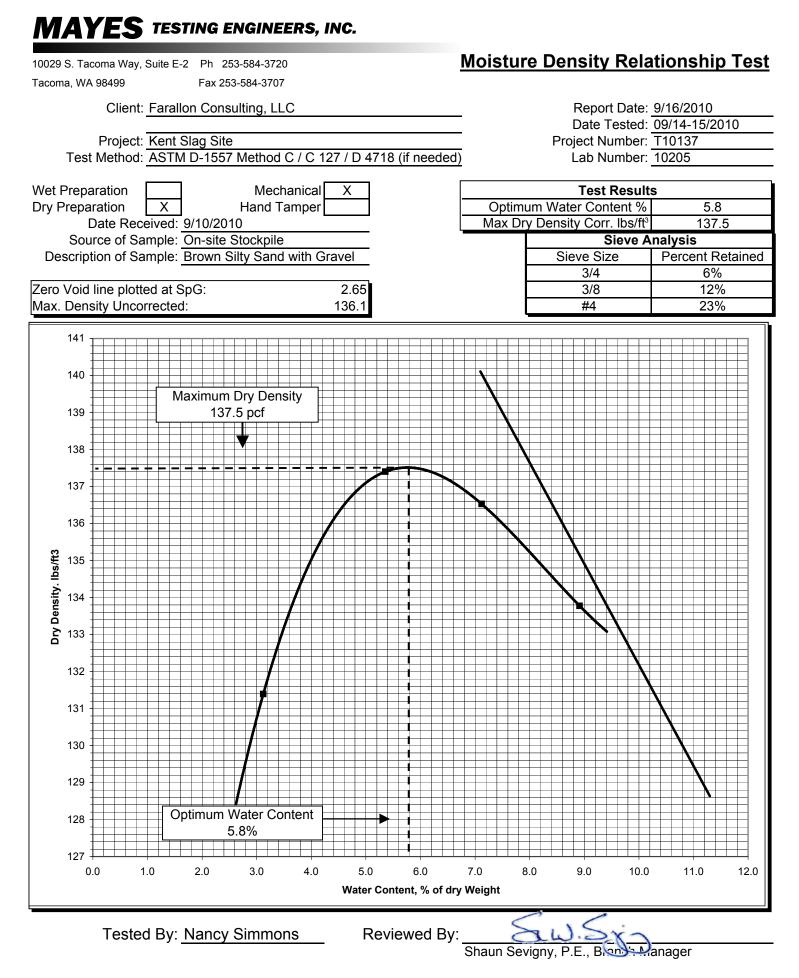
MAYES TESTING ENGINEERS, INC.	Seattle Office 20225 Cedar Valley Road Suite 110 Lynnwood, WA 98036 ph 425.742.9360 fax 425.745.1737
DATE: 9/16/2010	Tacoma Office
CLIENT: Farallon Consulting, LLC	10029 S. Tacoma Way Suite E-2 Tacoma, WA 98499
PROJECT: Kent Slag Site	ph 253.584.3720 fax 253.584.3707
PROJECT # T10137	Portland Office
LAB. # 10205	7911 NE 33rd Drive Suite 190 Portland, OR 97211 ph 503.281.7515
SAMPLE DESCRIPTION:	

Brown Silty Sand with Gravel

On-site Stockpile

Date Sample Received: 9/10/2010

TEST RESULTS:

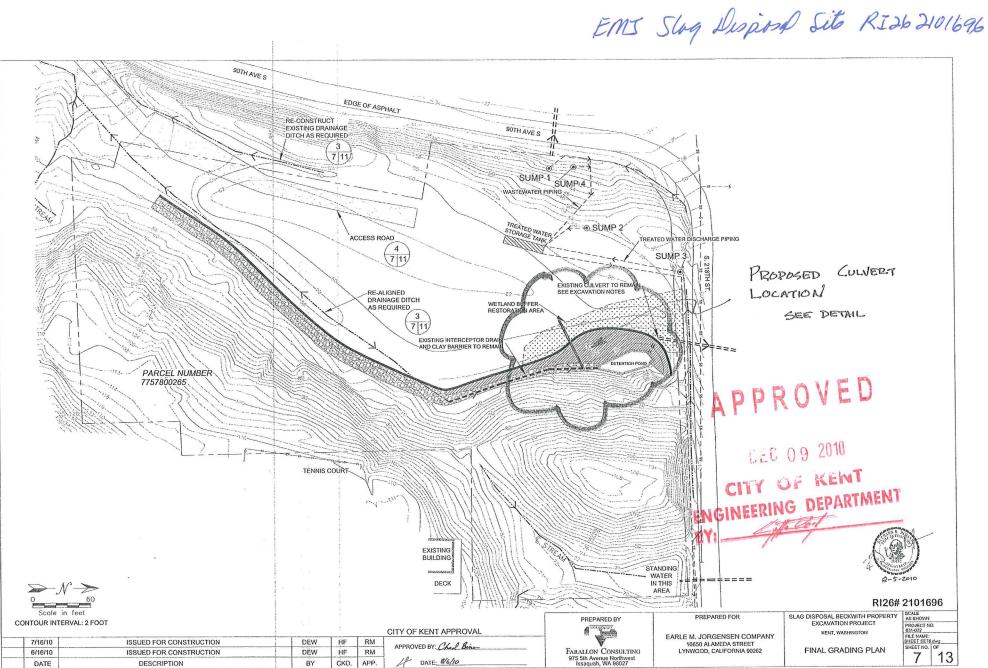

Proctor Analysis (ASTM D698, D1557 or AASHTO T99, T180)

See attached analysis sheet.

Tested By: Nancy Simmons Date Tested: <u>09/14-15/2010</u> Reviewed By:

Manager Shaun Sevigny, P.E

Information in this report applies only to the actual samples tested and shall not be reproduced except in full, without the approval of Mayes Testing Engineers, Inc.



Information in this report applies only to the actual samples tested and shall not be reproduced except in full, without the approval of Mayes Testing Engineers, Inc.

APPENDIX K CULVERT DETAILS

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

L____

q = T

APPROVED

Computation Sheet CEC 0 9 2010 200 0f. CITY OF KENT ENGINEERING DEPARTMENT 60 the Day Date . Date . Sheet. NETGAND BUFF-ER2 N 5 Borrow 50 Fr MiN. WINI. 500 05 SLOPE QUAREY Rak TRASH 70 SPALLS RACK 50 5 = 1% min ----VZ Prepared By Checked by T: 425.427-0061 F: 425.427-0067 1115 24" CMP PLUMIMUM BIZ SPEUMONZED 0 7 40 TNVERT INCET EL 40 40. EC 320 3rd Avenue NE, Issaquah, WA 98027 ONSU 40 20 40 50 0 30 60 10 2 6 6 FARALLON Project # 231 LULVERT DETAIL Project Name. VERT SCALE : 1"=5" Subject HORIZ SCALE : 1" = 10'

APPENDIX L WETLAND BUFFER RESTORATION AS-BUILT REPORT AND CITY OF KENT APPROVAL LETTER

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

WETLAND BUFFER ENHANCEMENT/RESTORATION AS-BUILT REPORT KENT SLAG EXCAVATION PROJECT

Prepared for Farallon Consulting, LLC

Prepared by Anchor QEA, LLC 720 Olive Way Suite 1900 Seattle, WA 98101

April 2011

WETLAND BUFFER ENHANCEMENT/RESTORATION AS-BUILT REPORT KENT SLAG SITE EXCAVATION PROJECT

Prepared for Farallon Consulting L.L.C.

Prepared by Anchor QEA, LLC 720 Olive Way Suite 1900 Seattle, Washington 98101

April 2011

TABLE OF CONTENTS

1	INT	RO	DUCTION	1
2	PRC	OJEC	CT WETLAND BUFFER ENHANCEMENT/RESTORATION MONITORING	
B	ACKG	RO	UND AND STATUS	4
	2.1	Ex	isting Information	4
3	WE	TLA	AND BUFFER ENHANCEMENT/RESTORATION MITIGATION GOALS AND	
0	BJEC	FIV	ES	5
4	PRE	E-CC	ONSTRUCTION CONDITIONS	6
	4.1	Re	sults of the Habitat Assessment	6
5	WE	TLA	AND BUFFER ENHANCEMENT/RESTORATION PLAN IMPLEMENTATION	7
	5.1	Ap	pproach	7
	5.1	.1	Compensation	7
	5.2	Pla	anting Plan Concept	7
	5.2	.1	Planting Layout	8
	5.2	.2	Construction Documents and Planting Specifications	9
6	POS	ST-C	CONSTRUCTION AS-BUILT CONDITIONS1	0
	6.1	Do	ocumented Conditions1	0
	6.1	.1	Preliminary Site Preparation1	0
	6.1	.2	Planting Plan and Construction Drawings1	0
	6.1	.3	As-Built Conditions1	1
7	MO	NIT	ORING METHODS AND STANDARDS OF SUCCESS	3
	7.1	Mo	onitoring1	3
	7.2	Pe	rformance Measures, Standards of Success, and Contingency Plans1	4
8	REF	ERI	ENCES1	6

List of Tables

Table 1	Wetland Buffer Enhancement/Restoration Monitoring Status April 2011	4
Table 2	Sizes, Classifications, and Ratings of Wetlands Located	
	within the Project Site	6
Table 3	Plant Species Identified in the Wetland Buffer Planting Plan	8
Table 4	Plant Species and Quantities Planted at the Wetland Buffer	
	Enhancement/Restoration Area in February 2011	9

List of Figures

Figure 1	Vicinity Map	3
Figure 2	Wetland Buffer Plan 1	2

List of Appendices

Appendix A	Wetland Buffer Planting Plans
Appendix B	Monitoring Site Photograhs

1 INTRODUCTION

This *Wetland Buffer Enhancement/Restoration As-Built Report* documents the baseline results of the Kent Slag Site Excavation Project (Project) wetland buffer enhancement/restoration. Wetland buffer mitigation was implemented as part of the approved *Wetland Buffer Enhancement/Restoration Plan* (Anchor QEA 2010a) for wetland buffer impacts associated with the Project. The *Wetland Buffer Enhancement/Restoration Plan* provided information necessary for code compliance and permit approval by the City of Kent (City). The wetland buffer enhancement/restoration planting area for the Project is located on an approximately 4.7-acre parcel of land located in the City of Kent, King County, Washington (Township 22 North, Range 5 East, Section 7). The Project site is located on the east side of Highway 167 at the intersection of South 218th Street and 88th Avenue South (Figure 1).

The purpose of this Wetland Buffer Enhancement/Restoration As-built Report is to document field changes or modifications during construction and to serve as a baseline (Year 0) from which future monitoring can take place. This report has also been written and organized in an effort to provide project background and to document field changes or modifications during construction. Based on site observations, data collection, and analysis performed for this report, several follow-up actions were identified. The amount of clearing of the Wetland I buffer is slightly larger than as identified in the *Wetland Buffer* Enhancement/Restoration Plan (Anchor QEA 2010a). The approximate amount of area associated with Wetland I restored during construction is approximately 0.144 acre (6,260 square feet [sf]), slightly more area than the 0.13 acre (5,440 sf) identified in the construction plans. This increased area includes an edge of coir log at the eastern edge of the planting area, the preservation of two existing trees, and the placement of three logs. The overall planting density has not changed. Second, a small area—approximately 0.006 acre (260 sf) of wetland buffer associated with Wetland M-was cleared during construction that was not identified on the construction plans. This area is adjacent to the existing unpaved access road within the site. Seven native shrubs, including salmonberry (Rubus spectabilis), were planted in this temporarily disturbed wetland buffer area and are included in the monitoring area. In addition, two items to be installed at the site per the as-built construction drawings were not observed during the March 2011 site inspection (Anchor QEA 2011b): rodent

protection mesh around the planted trees, and water rings around the planted trees and shrubs.

Documentation of as-built site conditions contained in this report include a narrative of observations, data collected during the site visit, site photographs, and vegetation planting information. Information from the approved mitigation plan is summarized or included by reference in this report. With the submittal of this report, reporting requirements will be complete for the as-built Year 0 monitoring of the wetland buffer enhancement/restoration area. In accordance with the specifications and commitments outlined in the mitigation plan (Anchor 2010a), a 3-year monitoring effort of the wetland buffer enhancement/restoration is underway and will continue. Original, as-built construction drawings from the *Wetland Buffer Enhancement/Restoration Plan* (Anchor QEA 2010a) are included in Appendix A. As-built monitoring site photographs are provided in Appendix B.

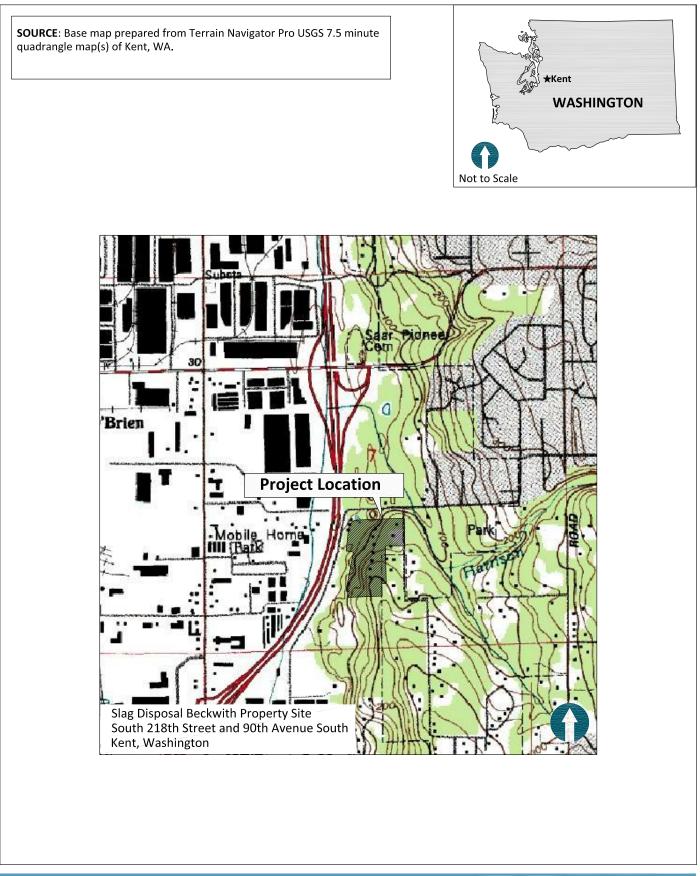


Figure 1 Vicinity Map Wetland Buffer Enhancement/Restoration As-Built Report Slag Disposal Beckwith Property Site

2 PROJECT WETLAND BUFFER ENHANCEMENT/RESTORATION MONITORING BACKGROUND AND STATUS

The status of wetland buffer enhancement/restoration monitoring activities associated with the Project as of April 2011 is summarized in Table 1.

Mitigation Element	Wetland Buffer Enhancement/Restoration Area
Planting Completion	February 2011
As-Built Report	April 2011
Year 1 Monitoring	Scheduled Summer/Fall 2011
Year 2 Monitoring	Scheduled Summer/Fall 2012
Year 3 Monitoring	Scheduled Summer/Fall 2012

 Table 1

 Wetland Buffer Enhancement/Restoration Monitoring Status April 2011

2.1 Existing Information

Several reports have been completed that are relevant to wetland buffer enhancement/restoration activities for the Project. These documents are listed as follows to provide a background summary of Project mitigation activities. Information from these documents is included by reference in this report:

- South 224th Street Extension Wetland Technical Report (ESA Adolfson 2006)
- *Beckwith Property Slag Disposal Site Wetland Delineation Report* (Springwood Associates, Inc. 1995)
- *Kent Slag Site Excavation Project Design Plans* (Farallon Consulting L.L.C. 2010a)
- Draft Cleanup Action Work Plan (Farallon Consulting L.L.C. 2010b)
- Wetland Buffer Enhancement/Restoration Plan (Anchor QEA 2010a)
- *Wetland Buffer Planting Plan* (Anchor QEA 2010b)
- Inspection of Delivered Plants and Planting Procedures Field Report (Anchor QEA 2011a)
- Inspection of Planting Areas Field Report (Anchor QEA 2011b)

3 WETLAND BUFFER ENHANCEMENT/RESTORATION MITIGATION GOALS AND OBJECTIVES

The overarching goal of the wetland buffer restoration is to address replacement of wetland buffer functions impacted by the Project and to increase these functions at the Project site. To achieve this goal, wetland buffer enhancement/restoration included planting native vegetation to replace wetland buffer vegetation removed during construction. The impact area was dominated by grassland habitat with non-native shrub vegetation. Overall, impacted grassland habitat was replaced with native shrub and forested vegetation communities.

Monitoring is performed to determine whether a project has met the ecological and functional goals of the design. To meet these goals, the following objectives were developed during the Project mitigation planning process to compensate for loss and damage to the wetland buffer area:

- Provide demonstrable and qualitative replacement of functional elements of the natural system on the site
- Establish native wetland buffer plant communities by planting native species and removing invasive species
- Use native and naturalized plant species commonly found in wetland buffer habitats of the Pacific Northwest
- Simulate, with the plantings, Pacific Northwest native plant communities in terms of composition, cover, and structure
- Replace, at a ratio of at least 1:1, wetland buffer habitat lost due to Project impacts
- Remove any non-native invasive species, such as Scot's broom (*Cytisus scoparius*) and Himalayan blackberry (*Rubus discolor*), from the portion of Wetland I buffer bordering the portion to be enhanced/restored
- Adhere to performance standards as detailed in the Project mitigation plan (Anchor QEA 2010a)

4 PRE-CONSTRUCTION CONDITIONS

The *Wetland Buffer Enhancement/Restoration Plan* identified and described preconstruction habitat baseline conditions (Anchor QEA 2010a). A summary of information from that report is provided in the following section.

4.1 Results of the Habitat Assessment

Four wetlands were identified within the Project site, identified as Wetlands I, L, M, and N. Of these four wetlands, excavation encroached into the wetland buffer of Wetlands I and M and avoided the buffers of Wetlands L and N. Wetlands and the associated wetland buffers are shown on the design plans in Attachment A. Table 2 presents a summary of the four wetlands in the Project site.

Table 2Sizes, Classifications, and Ratings of Wetlands Located within the Project Site

	Wetland	USFWS		State		City of Kent
	Size	(Cowardin)	Hydrogeomorphic	Rating	City of Kent	Wetland Buffer
Wetland	(acres)	Classification	Classification	(Ecology)	Rating	(feet)
I	0.03	POW	Depressional	IV	IV	50
L	0.04	PEM	Depressional	IV	IV	50
М	0.004	PEM	Depressional	IV	IV	50
Ν	0.03	PEM	Depressional	IV	IV	50

USFWS = U.S. Fish and Wildlife Service POW = Palustrine Open Water PEM = Palustrine Emergent

The wetland buffer habitat within the existing 50-foot buffers of Wetlands M and I (where wetland buffer impacts occurred) provides poor quality habitat functions. The wetland buffer within the area of excavation was dominated by a mosaic of native and nonnative grass and herbaceous species with no trees, and shrubs are limited to the non-native species Scot's broom and Himalayan blackberry. The wetland buffer habitat associated with Wetland M that was disturbed included some native shrub species, but is a very small area adjacent to the existing unpaved access road.

5 WETLAND BUFFER ENHANCEMENT/RESTORATION PLAN IMPLEMENTATION

5.1 Approach

The approved *Wetland Buffer Enhancement/Restoration Plan* provided information necessary for code compliance and permit approval by the City (Anchor QEA 2010a). The wetland buffer enhancement/restoration area is shown on the design plan (Appendix A).

5.1.1 Compensation

Based on the information collected during pre-construction site visits and the final disturbance area following construction, the following on-site wetland buffer enhancement/restoration actions for impacts associated with the Project were implemented:

- Plant 0.144 acre (6,260 sf) of native vegetation associated with the wetland buffer of Wetland I in accordance with the *Wetland Buffer Planting Plan* (Appendix A) (slightly more area than the 0.13 acre [5,440 sf] identified in the construction plans)
- Plant seven salmonberry shrubs in the approximately 0.006 acre (260 sf) area of wetland buffer for Wetland M for temporary buffer impacts that were not identified in the *Wetland Buffer Planting Plan* (Appendix A)
- Conduct a 3-year monitoring of the wetland buffer enhancement/restoration in accordance with the specifications and conditions outlined in the *Wetland Buffer Enhancement/Restoration Plan* (Anchor QEA 2010)

5.2 Planting Plan Concept

The *Wetland Buffer Planting Plan* prepared in 2010 for wetland buffer enhancement/restoration associated with the Project includes as-built construction drawings and the list of plant species planted at the enhancement/restoration area. The *Wetland Buffer Planting Plan* is included in Appendix A. Planting of the enhancement/restoration area was initiated and completed in February 2011 (Anchor QEA 2011a and 2011b). Species identified in the planting plan and species planted in February 2011 are also identified in Table 3.

Table 3

Scientific Name	Common Name
Trees	
Acer macrophylum	Big-leaf maple
Alnus rubra	Red alder
Pseudotsuga menziesii	Douglas fir
Thuja plicata	Western red cedar
Shrubs	
Oemleria cerasiformis	Indian plum
Rosa nutkana	Nootka rose
Rubus spectabilis	Salmonberry
Symphoricarpos albus	Snowberry
Groundcover	
Polystichum munitum	Sword fern

Plant Species Identified in the Wetland Buffer Planting Plan

The wetland buffer planting plan (Appendix A) includes plant lists and the planting design for the entire enhancement/restoration area (due to the relatively small size of the enhancement/restoration area). The spacing of the plantings per the construction drawings is 15-foot on-center (OC) for tree species and 6-foot OC for shrub species. The planted area soils were amended to encourage rapid growth and plant health.

5.2.1 Planting Layout

Planting of trees, shrubs, and groundcover ferns occurred in February 2011, which was the first winter season after construction, when the soil moisture was near the ground surface and soil temperatures were favorable for establishing roots and plant growth (Anchor QEA 2011b). A total of 28 trees, 144 shrubs, and 147 ferns were planted in the wetland buffer enhancement/restoration area. A list of the plant species and quantities planted at the enhancement/restoration area is provided in Table 4.

Table 4

Plant Species and Quantities Planted at the Wetland Buffer Enhancement/Restoration Area in February 2011

Scientific Name	Common Name	Number Planted
Trees		
Acer macrophylum	Big-leaf maple	6
Alnus rubra	Red alder	9
Pseudotsuga menziesii	Douglas fir	8
Thuja plicata	Western red cedar	5
Total		28
Shrubs		·
Oemleria cerasiformis	Indian plum	36
Rosa nutkana	Nootka rose	28
Rubus spectabilis	Salmonberry	45
Symphoricarpos albus	Snowberry	35
Total		144
Groundcover		
Polystichum munitum	Sword fern	147
Total		147

5.2.2 Construction Documents and Planting Specifications

Construction documents and planting specifications prepared in 2010 associated with the wetland buffer enhancement/restoration accompanied the approved *Wetland Buffer Enhancement/Restoration Plan* (Anchor QEA 2010a) (Appendix A). In addition, an inspection of plants delivered to the Project site for planting was performed in February 2011 (Anchor QEA 2011a), and a post-planting site inspection was performed in March 2011 (Anchor QEA 2011b).

6 POST-CONSTRUCTION AS-BUILT CONDITIONS

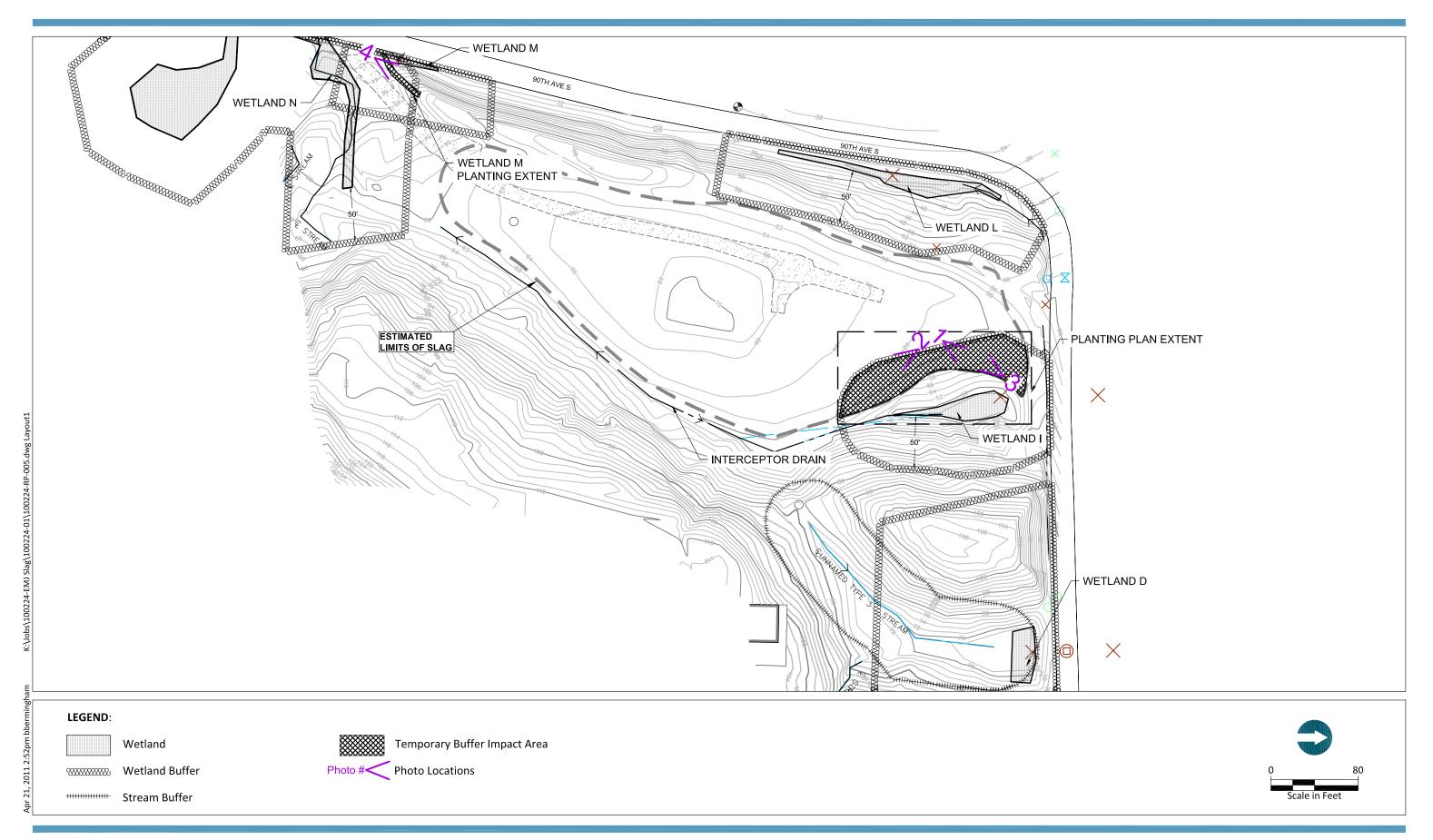
6.1 Documented Conditions

During the as-built survey conducted on March 28, 2011, site grading, vegetation plantings, and other general site conditions were observed within the wetland buffer enhancement/restoration area. Due to the relatively small size of the enhancement/restoration area (approximately 6,260 sf for Wetland I buffer and approximately 260 sf for Wetland M buffer), annual monitoring of the entire enhancement/restoration area for Years 1 through 3 is proposed instead of establishing sample plots within these small areas. Plant spacing measurements were taken as part of a semi-quantitative vegetation inventory to verify through quantity, species, and size whether or not the plantings were installed per the approved planting plan. In addition, a series of photographs documenting photo points for future monitoring and a photographic record of existing site conditions can be found in Photographs 1 through 4 in Appendix B. The photo point locations are illustrated in Figure 2.

6.1.1 Preliminary Site Preparation

The site preparation objectives were achieved.

6.1.2 Planting Plan and Construction Drawings


The planting plan was followed without significant modification to size or density. Modifications included a slightly larger area of Wetland I buffer cleared during construction, approximately 0.144 acre (6,260 sf) compared to 0.13 acre (5,440 sf) identified in the construction plans, and an approximately 0.006 acre (260 sf) area of Wetland M buffer cleared during construction that was not identified on the construction plans. The Wetland M buffer area was replanted with seven salmonberry shrubs. The planting plan in Appendix A depicts the planting plan and specifications that were used for installation of trees, shrubs, and groundcover (with the exception of the seven salmonberry shrubs in the Wetland M buffer that was not identified as an area with construction impacts in the original plans).

Two items that were to be installed at the site per the as-built construction drawings were not observed during the March 2011 site inspection (Anchor QEA 2011b): rodent protection mesh around the planted trees, and water rings around the planted trees and shrubs. These

items should be installed to better ensure the survivability of the planted trees and shrubs at the site.

6.1.3 As-Built Conditions

Trees and shrubs were interspersed on approximate 15-foot and 6-foot centers, respectively. All plant material appeared to be healthy, vigorous (although many species were dormant), and properly installed. All species specified (that could be accurately identified in winter) were well-represented within the wetland buffer enhancement/restoration area.

Figure 2 Wetland Buffer Plan Wetland Buffer Enhancement/Restoration As-Built Report Slag Disposal Beckwith Property Site

7 MONITORING METHODS AND STANDARDS OF SUCCESS

The wetland buffer enhancement/restoration mitigation area was designed to function as a restored wetland buffer with plant communities similar to adjacent and existing systems that provide enhanced biological productivity and wildlife habitat. Beginning in summer/fall 2011 (Year 1), this mitigation area will be evaluated on the success of the native plantings and forested and shrub native vegetation areal cover 3 years after planting. Monitoring will also include photographic documentation of site features and the development of habitat on the site. Monitoring reports will be submitted annually to the City.

As specified in the approved wetland mitigation plan (Anchor 2010a), this as-built Year 0 monitoring report was completed following implementation of the planting plan and is intended to be used to determine if the mitigation was properly implemented. No need for corrective actions was found. This report documents post-construction conditions in the wetland buffer enhancement/restoration area and will serve as the baseline from which achievement of mitigation objectives can be measured. Each monitoring report in Years 1 through 3 will document project success relative to the performance standards contained in the approved wetland mitigation plan.

7.1 Monitoring

Due to the relatively small size of the wetland buffer enhancement/restoration area (approximately 6,260 sf for Wetland I buffer and approximately 260 sf for Wetland M buffer), annual monitoring for Years 1 through 3 will include the entire enhancement/restoration area instead of establishing sample plots within these small areas. Annual monitoring will take place near the end of the growing season (summer or early fall) prior to leaf drop.

Monitoring activities will focus on the collection of vegetation and wildlife data to evaluate, describe, and quantify (to the extent possible) wetland buffer functions and compliance with the performance measures. Monitoring will also include photographic documentation of site features and the development of habitat on the site. Specific monitoring methods are described as follows.

During the monitoring, areal cover of all planted and colonizing shrub and tree species within the wetland buffer enhancement/restoration area will be estimated and the number of shrubs and trees will be counted. Shrub and tree heights will be measured and averaged for each species. Plant heights that exceeded 7 feet will be estimated. General plant conditions will be evaluated.

Total shrub, tree, and overall herbaceous vegetation areal cover percentages will be estimated. A list of all colonizing species observed at the site during the monitoring will be recorded.

Using the above information, annual growth and areal cover comparisons will be made. Monitoring visits will identify and record all tree and shrub species, whether planted or introduced since planting, and record the areal cover of each species within the vegetative layers. Plant counts will be used to identify the survival of planted species and colonization of additional species during the monitoring period.

The wetland buffer enhancement/restoration area was photographed from four designated photo point locations. To allow for growth comparisons from year to year and to provide a long-term photographic record, photographs will be taken during each monitoring period. Year 0 photographs are presented in Appendix B.

Wildlife observed during the monitoring site visits will be identified and recorded. Any breeding or nesting activity in the mitigation area will be documented. No trapping or systematic surveys will be conducted. A cumulative list of all wildlife species observed in the mitigation area during the monitoring periods will be presented.

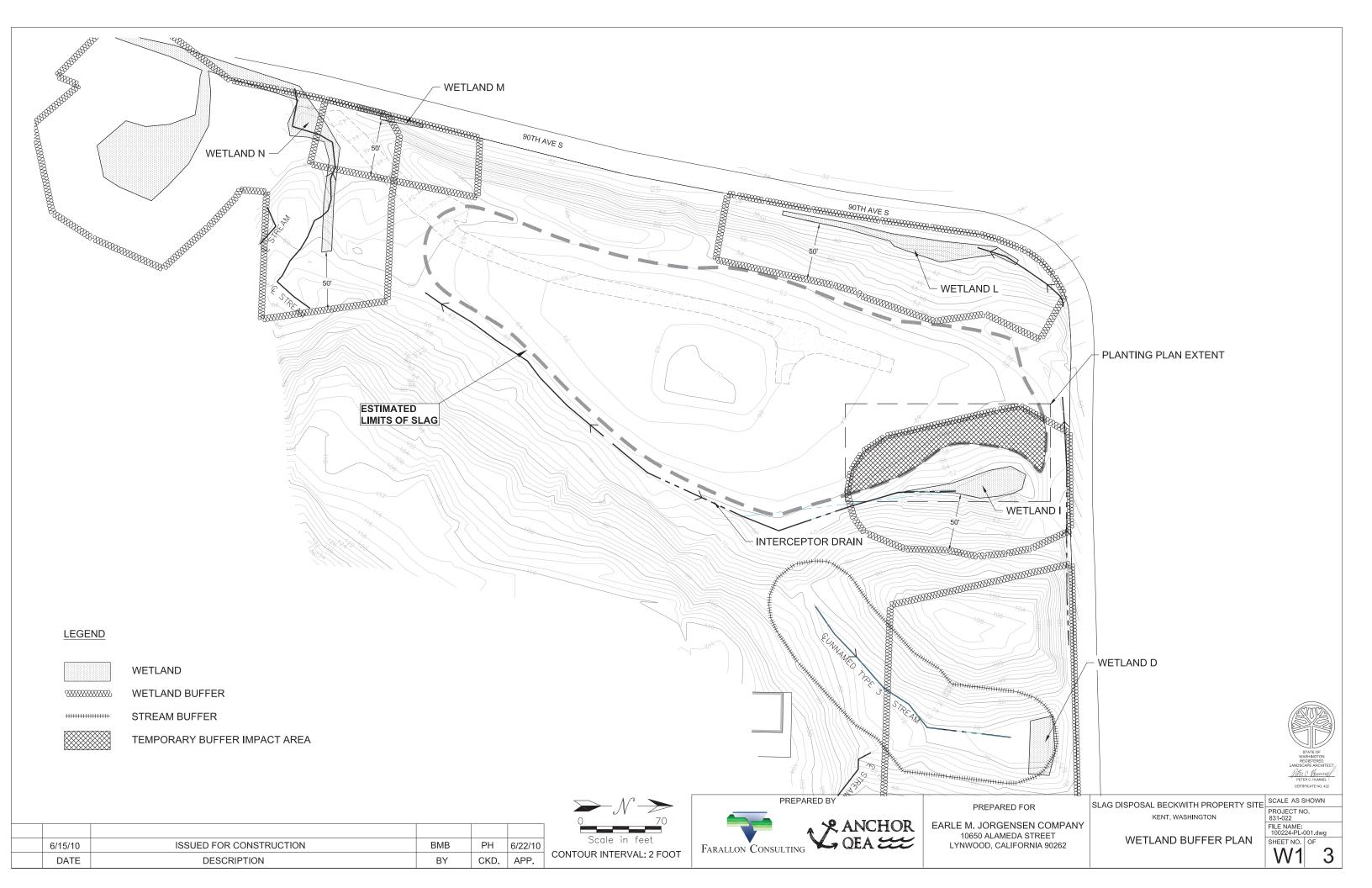
Evidence of human intrusion and/or vandalism in the mitigation area, if present, will be documented.

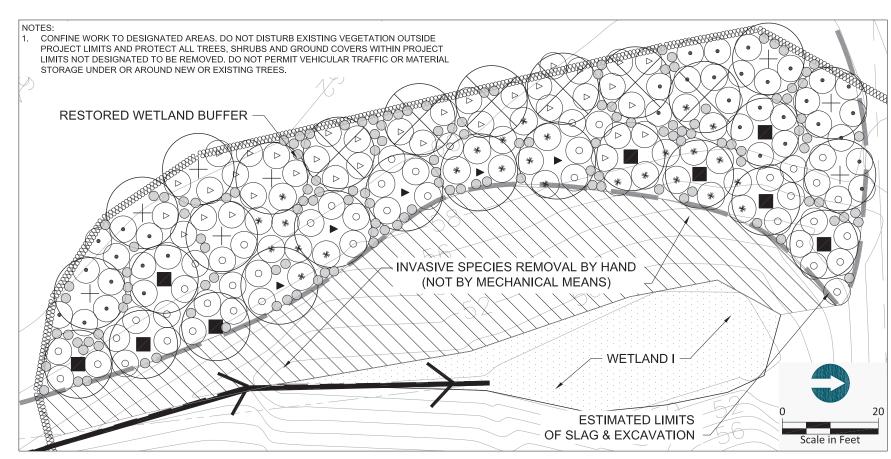
7.2 Performance Measures, Standards of Success, and Contingency Plans

Performance measures and success standards describe specific on-site characteristics that indicate a function is being provided. Performance measures are used to guide management of the mitigation area. Success standards are thresholds to be measured during the monitoring period that demonstrate the mitigation has complied with regulatory requirements and is providing intended functions. The enhancement/restoration will be monitored for 3 years to demonstrate that intended wetland buffer functions have been achieved. Specific performance measures and success standards will be the following:

- 20 percent cover of native trees, shrubs, and groundcover species after 1 year
- 50 percent cover of native trees, shrubs, and groundcover species after 2 years
- 80 percent cover of native trees, shrubs, and groundcover species after 3 years
- 80 percent survival of planted and colonizing native trees and shrubs after 3 years
- Less than 20 percent cover of invasive species

Contingency plans describe what actions can be taken to correct site deficiencies. If there is a significant problem with the enhancement/restoration area meeting its performance standards, a contingency plan will be developed. Contingency plans may include, but are not limited to, the following:


- Plant substitutions of type, species, quantity, and/or location
- Additional plant installation to address survival or cover problems
- Weeding and additional plant installation to address invasive weed cover
- Providing fencing or plant guards around plants to prevent animal damage


Contingency plans will be developed for review and approval by the City as appropriate. In addition, implemented contingency plans will be described in the monitoring report following each year's visit. Success of the wetland buffer enhancement/restoration will be based on the mitigation goals, performance standards, and contingency measures.

8 **REFERENCES**

- Anchor QEA LLC (Anchor QEA). 2010a. Wetland Buffer Enhancement/Restoration Plan Kent Slag Site Excavation Project. Prepared for Farallon Consulting L.L.C, Seattle, Washington.
- Anchor QEA LLC (Anchor QEA). 2010b. *Wetland Buffer Planting Plan Kent Slag Site Excavation Project.* Prepared for Farallon Consulting L.L.C, Seattle, Washington.
- Anchor QEA LLC (Anchor QEA). 2011a. Inspection of Delivered Plants and Planting Procedures Field Report. Prepared for Farallon Consulting L.L.C, Seattle, Washington.
- Anchor QEA LLC (Anchor QEA). 2011b. *Inspection of Planting Areas Field Report.* Prepared for Farallon Consulting L.L.C, Seattle, Washington.
- City of Kent, 2010. City of Kent City Code. Kent, Washington. Accessed online at http://www.codepublishing.com/wa/kent/ on April 20, 2010.
- ESA Adolfson, 2006. *South 224th Street Extension Wetland Technical Report*. Prepared for City of Kent, Washington.
- Farallon Consulting, 2010a. Kent Slag Site Excavation Project Design Plans. Prepared for Earle M. Jorgensen Company, Lynwood, California.
- Farallon Consulting, 2010b. *Draft Cleanup Action Work Plan*. Prepared for Earle M. Jorgensen Company, Lynwood, California.
- Springwood Associates, Inc., 1995. Beckwith Property Slag Disposal Site Wetland Delineation Report. Prepared for SECOR International, Inc. Bellevue, Washington.

APPENDIX A WETLAND BUFFER PLANTING PLAN

PLANTING SEQUENCE / NOTES:

- LINE OF EXISTING TREES TO BE RETAINED.
- A DEPTH OF 4 INCHES.
- PLANTING AREA AND TO WITHIN 3' OF THE EDGE OF PLANTING AREA.
- WATERING, RAKE MULCH TO PROVIDE A UNIFORM FINISHED SURFACE.

PLANTING PLAN

6/15/10 DATE

PLANTING SCHEDULE / LEGEND

Common Name	Scientific Name	Size	Spacing	Quantity	
TREES		CONTAINERIZED TREE			
Red Alder	Alnus rubra	5 gal.	15' O.C.	9	OR SHRUB (TYP)
Big leaf Maple	Acer macrophyllum	5 gal.	15' O.C.	6	SET ROOTCROWN AT OR JUST ABOVE SOIL LEVEL
Douglas Fir	Pseudotsuga menziesii	5 gal.	15' O.C.	8	
Western Red Cedar	Thuja plicata	5 gal.	15' O.C.	5	4" MULCH DEPTH TAPERED AT TRUNK (SEE NOTE 4)
SHRUBS					
Indian Plum	Oemleria cerasiformis	1 gal.	6' O.C.	36	8" STOCKPILED ORGANIC
O Salmonberry	Rubus spectabilis	1 gal.	6' O.C.	45	8" STOCKPILED ORGANIC SOIL AND 4" IMPORTED TOPSOIL
* Nootka Rose	Rosa nutkana	1 gal.	6' O.C.	28	
△ Snowberry	Symphoricarpos albus	1 gal.	6' O.C.	35	(TREES ONLY)
GROUNDCOVER				1	1 TYPICAL TREE AND SHRUB PLANTING DETAIL
Western Sword Fern	Polystichum munitum	1 gal.	As Shown	147	

						PREPARED BY		PREPARED
							IOR	EARLE M. JORGEN
0	ISSUED FOR CONSTRUCTION	BMB	PH	6/22/10		Farallon Consulting VG QEA 2	$\underline{\omega}$	10650 ALAMED LYNWOOD, CALIF
E	DESCRIPTION	BY	CKD.	APP.	CONTOUR INTERVAL: 2 FOOT			

1. STRIP ORGANIC SOIL AND STOCKPILE SEPARATELY FROM SLAG AND OVERBURDEN.

2. RIP, DISC, OR SCARIFY SUBGRADE SOILS TO A MINIMUM DEPTH OF 12 INCHES. DO NOT SCARIFY WITHIN DRIP

3. PLACE 8" OF STOCKPILED SOILS AND 4" OF IMPORTED TOPSOIL WTIHIN WETLAND BUFFER PLANTING AREA. 4. DIG PLANTING PIT THAT IS AT LEAST TWICE THE DIAMETER OF CONTAINER, REMOVE ALL ROCKS, ROOTS, STICKS AND OTHER DEBRIS LARGER THAN 1" DIAMETER. SCARIFY THE PLANTING PIT BOTTOM AND SIDES TO

5. SET PLANT MATERIAL IN THE PLANTING PIT TO PROPER GRADE AND ALIGNMENT. SET PLANTS UPRIGHT, PLUMB, AND FACED TO GIVE THE BEST APPEARANCE OR RELATIONSHIP TO EACH OTHER. SET CROWN OF PLANT MATERIAL AT THE FINISH GRADE. NO FILLING WILL BE PERMITTED AROUND TRUNKS OR STEMS. BACKFILL THE PLANTING PIT WITH SOIL, DO NOT USE MUDDY MIXTURES FOR BACKFILLING.

6. SPACE PLANTS USING TRIANGULAR SPACING IN ACCORDANCE WITH PLANT SCHEDULE DIMENSIONS. PLANT GROUND COVERS TO WITHIN 18" OF THE TRUNKS OF TREES AND SHRUBS WITHIN PLANTING AREA AND TO WITHIN 12" OF THE EDGE OF PLANTING AREA. PLANT SHRUBS WITHIN 5' OF THE TRUNKS OF TREES WITHIN

7. SHAPE SOIL TO PROVIDE WATERING RING WITH A DIAMETER EQUAL TO 2X THE CONTAINER WIDTH. 8. MULCH PLANTING BEDS IMMEDIATELY AFTER PLANTING. THOROUGHLY WATER MULCHED AREA. AFTER

TYPICAL SPAC (PER PLANT SC		H GRADE
D FOR	SLAG DISPOSAL BECKWITH PROPERTY SITE	SCALE AS SHOWN PROJECT NO.
NSEN COMPANY	KENT, WASHINGTON	831-022
DA STREET		100224-PL-002.dwg
IFORNIA 90262	PLANTING PLAN	
		VVZ 3

PLANTING SPECIFICATIONS

Submittals:

- 1. Topsoil analysis results of a 5 pound bag from soils testing laboratory, indicate source and obtain Owner's approval before hauling topsoil to site.
- 2. Source of the mulch supply and a 1 gallon sample for approval before installation.
- 3. List of nurseries supplying all plant species with Name and phone number of contact person. Submit representative color, dated photographs of each plant species.

Notifications:

Notify the Owner at least five working days prior to the installation of plant material.

Products:

Topsoil:

The Topsoil shall consist of 60 percent Sand Component and 40 percent Composted Organic Amendment by volume and shall meet or exceed the following specifications:

The Sand Component shall meet the following specifications within reasonable variations:

Screen Size	Percent Passing
6.35 mm	95
#10	85
#30	50
#60	40
#100	20
#200	10

The Composted Organic Soil Amendment shall consist of 100 percent decomposed organic mulch material, and shall consist of yard waste debris or other organic waste materials that have been sorted, ground up, aerated, and aged, and shall be fully composted, stable, and mature (non-aerobic). The composting process shall be for at least 6 months' time and the organic amendment shall have a uniform dark. soil-like appearance and consist of 100 percent recycled content. In addition, the organic amendment shall have the following physical characteristics:

- 1. Shall be certified by the Process to Further Reduce Pathogens (PFRP) guideline for hot composting as established by EPA. Shall be fully mature and stable before usage
- 2. Shall be screened using a sieve no finer than 1/4-inch and no greater than 1/2-inch. Based on dry weight of total organic amendment sample, it must comply with the following percent by weight passing:

Sieve Size	Maximum %	Minimum %
12.7 mm (1/2 inch)	0	100
6.35 mm (1/4 inch)	100	95
4.76 mm	100	90
2.38 mm	100	75
1.00 mm	45	70
500 micron	30	0

Meets "composted materials" definition in WAC 173-350 Section 220, available at: http://www.ecy.wa.gov/programs/swfa/compost/ 3.

Has Organic Matter Content 35 to 65 percent and Carbon to Nitrogen ratio of 25.1.

Shall have heavy metal concentrations below the Washington State Department of Agriculture (WSDA) per year load limits as follows: 5.

Metal	WSDA-Maxium pounds per acre per year
Arsenic	0.297
Cadmium	0.079
Cobalt	0.594
Lead	1.981
Mercury	0.019
Molybdenum	0.079
Nickel	0.713
Selenium	0.055
Zinc	7.329

6. Shall be certified by PFRP guidelines for composting as established by the U.S. Environmental Protection Agency (EPA)

PLANTING SPECIFICATIONS CONTINUED

The topsoil mix shall also have the following characteristics:

- 1. The pH range shall be from 5.5 to 7.5.
- The Sodium Adsorption Ratio shall be less than 6.0. 2.
- 3. The Saturation Extract Concentration of Boron shall be less than 1.0 part per million (ppm).
- The Water Percolation/Infiltration Rate of the disturbed soil sample shall be a minimum of 0.4 inches per hour. 4
- The Soil Structure shall be loose, friable, and not subject to consolidation or compaction. 5.
- 6. The soil mix shall contain less than 100 plant parasitic nematodes per 100 cubic centimeters (cc) of soil.
- The soil mix shall be relatively free of soil-borne plant pathogens. 7.
- 8. Minimal weed seed shall be present, based on germination testing of a representative sample.
- 9. Non-soil components shall be less than 1 percent by volume (i.e., plastic, sticks, glass, etc.).
- 10. The Final Topsoil Mix shall contain sufficient quantities of available nitrogen, phosphorus, potassium, calcium, magnesium, sulfate, copper, zinc, manganese, iron, and boron to support normal plant growth. In the event of nutrient inadequacies, provisions shall be made to add required materials prior to planting.

Mulch:

Bark or wood chip mulch shall be derived from Douglas fir, pine, or hemlock species. It shall be ground so that a minimum of 95% of the material will pass through a 2-inch sieve and no more than 25%, by loose volume, will pass through a No. 4 sieve. The mulch shall not contain resin, tannin, or other compounds in quantities that would be detrimental to plant life. Arborist woodchips, sawdust or wood shavings shall not be used as mulch.

Plants:

Comply with sizing and grading standards of th latest edition of "American Standards for Nursery Stock."

Protect existing native vegetation from damage caused by landscaping operations

All plants shall by nursery grown and from a nursery with similar climatic conditions to the locality of the project. Stock furnished shall be at least the minimum size indicated

Provide only sound, healthy, vigorous plants free from weeds, defects, sunscald injuries, and abrasions of the bark, plant diseases, insect eggs, borers, and all forms of infestation. All plants shall have a fully developed form without voids, open spaces, broken branches, bruised bark, flush cuts or stubs. No plants shall be loose in the container or pot bound.

Plants shall be packed, transported and handled with care. Cover plants transported on open vehicles with a protective covering to prevent wind burn. No plant material will be bound with rope or wire in a manner that would damage or break the branches. If plants cannot be planted immediately upon delivery, properly protect them with soil, wet peat moss, or in a manner acceptable to the Owner. Water heeled in plantings daily. Do not handle plants by trunks, stems or tops,

Plant material shall be inspected and approved by the Consultant and the Owner on site prior to installation. Remove unsatisfactory material from the site immediately.

Planting vegetation shall be performed during the period between October 1 and April 1.

Stock shall not be installed when ambient temperatures are below 35 degrees F or above 80 degrees, or when wind velocity exceeds 30 miles per hour.

Warrant plant material to remain alive and be in healthy, vigorous condition for a period of one year after the date of Physical Completion.

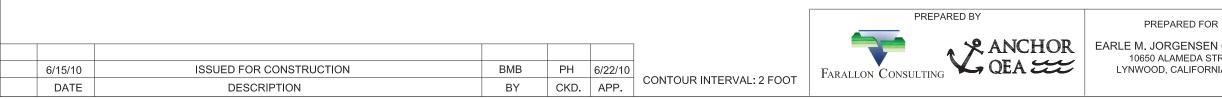
Rodent Protection Mesh

Encircle woody trunks of planted trees with thin plastic mesh to protect against cambian damage by rodents. Extend mesh cylinder 3" below and 12" above the finished grade line. Assure that the guage of protective wrap is such that tree growth will split the material if it is not physically removed.

Maintenance:

Maintain planting until acceptance by Owner. Maintenance shall include cultivating, weeding, watering, pruning (only as directed), and application of appropriate insecticides and funcicides necessary to maintain plants free of insects and diseas

Reset settled plants to proper grade and position. Restore planting watering ring and adjacent material and remove dead material.


Water trees, shrub, and ground cover beds within the first 24 hours of initial planting, and not less than twice per week (including rain) until Physical Completion.

Physical Completion:

Inspection to determine Physical Completion of planted areas will be made by the Owner, upon the Contractor's request. Provide notification at least 10 working days before requested inspection date.

Planted areas will be accepted provided all requirements, including the maintenance period have been complied with and plant materials are alive and in a healthy vigorous condition

Upon Physical Completion, the Owner will assume plant maintenance.

100224-PL-002.dwa

3

SHEET NO. OF

W3

EARLE M. JORGENSEN COMPANY 10650 ALAMEDA STREET LYNWOOD, CALIFORNIA 90262

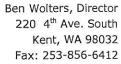
SLAG DISPOSAL BECKWITH PROPERTY SITE PROJECT NO. KENT, WASHINGTON 831-022 FILE NAME:

PLANTING SPECIFICATIONS

APPENDIX B MONITORING SITE PHOTOGRAPHS

Photograph 1 Photo Point 1: Wetland I Buffer Facing North from West Side of Buffer

Photograph 2 Photo Point 2: Wetland I Buffer Facing South from West Side of Buffer



Photograph 3 Photo Point 3: Wetland I Buffer Facing South from Middle of Buffer

Photograph 4 Photo Point 4: Wetland M Buffer Facing North from East Side of Buffer

ECDD DEVELOPMENT ENGINEERING

PHONE: 253-856-5300

JUN 28 2011

RECEIVED

June 27, 2011

Farallon Consulting, L.L.C.

Ms. Amy Essig Desai Farallon Consulting, LLC 975 5th Avenue Northwest Issaquah, Washington 98027

RE: Wetland Buffer Enhancement/Restoration As-Built Mitigation Plan Kent Slag Excavation Project KIVA #RI26-2101696

Dear Amy:

The City of Kent Development Engineering Section has reviewed the Wetland Buffer Enhancement/Restoration As-Built Mitigation Plan Kent Slag Excavation Project, prepared by Anchor QEA, LLC dated April 2011. I am pleased to inform you that the City of Kent hereby grants approval of the report.

The three (3) year mitigation maintenance and monitoring period has now commenced. Annual monitoring reports shall be completed by your biologist and submitted to me for review and approval. Please note the Year 1 Monitoring Report is due spring 2012, one year from date of the as-built report.

Please feel free to contact me at (253) 856-5556 if you have any questions regarding this letter.

Sincerely,

Andrea Jeker

Andrea Jedel, PWS Wetland Ecologist

cc: Mr. Rich McManus, Anchor QEA, LLC File

APPENDIX M PROFESSIONAL ENGINEERING CERTIFICATION

COMPLETION AND COMPLIANCE MONITORING REPORT Slag Disposal, Beckwith Property Site South 218th Street and 90th Avenue South Kent, Washington

Farallon PN: 831-022

PROFESSIONAL ENGINEER CERTIFICATION

This is to certify that the cleanup action at the Beckwith Property Slag Disposal Site in Kent, Washington was completed in substantial compliance with the Cleanup Action Work Plan and the Construction Plans and Specifications prepared by Farallon Consulting, L.L.C.

12 DATE: < u BY: (Signature) Print Name and Title: RICHARD W. Mc Manlus P.E. Principal Engineer

