WASHINGTON RANKING METHOD

ROUTE SCORES SUMMARY AND RANKING CALCULATION SHEET

Site name: Zwight Logging	Region: Cru
City, county: Yakıma, Yakım	
This site was ranked on <u>August 12, 1991</u> , <u>259</u> assessed/scored sites.	based on quintile values from
Route Quintile Pathway Score(s) Group number(s)	Priority scores:
SW-HH 1.2 ($\frac{4 + 4 + 1}{8} = \frac{9}{8} = \frac{11}{2}$
GW-HH 35.3 Z	
Sed-HH	25+2
SW-En 2.5	$\frac{H^2 + 2L}{7} - \frac{37}{7} = 3.9.9$
Air-En 36.5 .	
Sed-En	Human Environment Health
Use the matrix presented to the right, along with the two priority scores, to determine the site ranking. N/A refers to where there is no applicable pathway.	5 4 3 2 1 N/A 5 1 1 1 1 1 1 1 4 1 2 2 2 3 4 3 1 2 3 4 4 5 2 2 3 4 4 5 5 1 2 3 4 5 5 5 N/A 3 4 5 5 5 5
DRAFT / FINAL	N/A 3 4 5 5 5 5
Matrix ("bin") Ranking:, or	r No Further Action
CONFIDENCE LEVEL: The relative position	
almost into the next l right in the middle, w X almost into the next l	unlikely to ever change.
rev. 8/91	

WORKSHEET 1 SUMMARY SCORE SHEET

		·		
Site Name: Zwight Logging				
Site Location: (City, County, or Se	ection/Township/l	Range)		
222 Keys Road Yakima, Washington Section 20 T13N R19E W.M.		akima County)		
Site Description: (Include manage	•	•	· ·	
A Screening Site Inspection volatile organics in three monitoring wells. Soil sam 19 unidentified alkanes and	naintenance slastewater from th, 1986 to July of a sprayfrontamination of began. San mg/1) in an occific analyse off-site dringling conducted by hydrocarbons	hop, several diesel m the cleaning facil une, 1987. In June, ield began accepting of a well with oil a mples taken in 1986 onsite well and surfes are known to have y Ecology's PA/SI unking wells, one onsted at this time inds from the washpad a	oil tanks, and ity was disposed in the second solvents and solvents and solvents and solvents and solvents (.45) and been performation May, 19 attention to solvents and solvents are solvents and solvents and solvents and solvents are solvents are solvents and solvents are solvents and solvents are solve	nd a steam- osed of in an ite treatment ater. In April, six weeks after nd grease (1.8 mg/1) in an off med at this time 990 showed no 11 and two onsit resence of 18 to specific com-
pounds were quantified. De	tergents con	taining dodecylbenze	ne sulfonate	and glycol ethe
Special Considerations: (Include ling) which are important in evaluating		-	be accomodated	lin the model, but
which are important in evaluating	the fish associati	ed with the site,		
				·
		•		
•				
,			•	
		· · · · · · · · · · · · · · · · · · ·		
ROUTE SCORES:				V 7.4
Ground Water/Human:	31.8	Overall Rank:	· _	<u> </u>
Surface Water/Human:	1.2			
Air/Human:	8.7			
Air/Environmental:	36.5			
Surface Water/Environmental:	2.5	N.	,	

WORKSHEET 2 ROUTE DOCUMENTATION

SURFACE WATER ROUTE	
List substances to be considered for scoring. 1, GLYCOL ETHER 2. DOBECYLBENZENE SULFUNATE 3. NAPTHALENE	Source:
Explain basis for choice of substances to be used in scoring. THESE SUBSTANCES ARE USED ON THE STIE. THE FIRST TWO ARE CONSTITUENTS	
OF DETERGENTS. NAPTHALENE IS AN IMPORTANT CONSTITUENT OF DIESEL FUEL.	
List management units to be considered in scoring:	Source:
1. SPRAYFIELD 2. DRAINFIELD	
Explain basis for choice of unit used in scoring. THE DRAINFIELD WAS USED IN SCORING, THE SPRINGFIELD WAS CO TO BE A "PERMITTED" RELEASE FOR PURPOSES OF THE SHA.	NSIDERED
AIR ROUTE	
List substances to be <u>considered</u> for scoring. 1. GLYCUL ETHER 2. DODE CYLBENZENE SULFONATE 3. NAPTHALENE	Source:
Explain basis for choice of substances to be used in scoring. THESE SUBSTANCES ARE USED ON THE SITE. THE FIRST TWO ARE CONSTITUENT OF DETERGENTS, NAPTHALENE IS AN IMPORTANT CONSTITUENT OF DIESEL FULL	۲ د د د د د د د د د د د د د د د د د د د
List management units to be considered in scoring:	Source: 7
1. SPRAYFIELD 2. DRAINFIELD	
Explain basis for choice of unit used in scoring. THE DRAINFIELD WAS USED IN SCORING, THE SPRAYFIELD WAS TO BE A "PERMITTED" RELEASE FOR PURPOSES OF THE SHA,	S CONSIDERED

WORKSHEET 2 (CONTINUED) ROUTE DOCUMENTATION

GROUND WATER ROUTE							
CHOOLD WATER HOUSE							
List substances to be considered for scoring.	Source:						
1. GLYCOL ETHER 2. DODECYLBENZENE SULFONATE							
3. NAPTHALENE Explain basis for choice of substances to be used in scoring.	·						
THESE SUBSTANCES ARE USED ON THE SITE, THE FIRST TWO ARE CONST OF DETERGENTS. NAPTHALENE IS AN IMPORTANT CONSTITUENT OF DIESEL FUL	i) Tuents El.						
List management units to be considered in scoring:	Source:						
1. DRAINEICLD 2. SPRAYFICLD							
Explain basis for choice of unit used in scoring.							
THE DRAINFIELD WAS USED IN SCORING. THE SPRAYFIELD CONSIDERED TO BE A "PERMITTED" RELEASE FOR FURPOSES OF THE SHA.	WAS						
	·						
	:						
	·						

WORKSHEET3 SUBSTANCE CHARACTERISTIC WORKSHEET FOR MULTIPLE UNIT/SUBSTANCE SITES

	Combination 1	Combination 2	Combination 3.
Unit: Substance:		·	
AIR ROUTE			
Human Toxicity/Mobility Value:			
Environmental Toxicity/ Mobility Value:			
Containment Value:			
Air Human Subscore:			
Air Environmental Score:			
SURFACE WATER ROUTE			
Human Toxicity Value:			
Environmental Toxicity Value:	X		
Containment Value:			
Surface Water Human Subscore:	\ <u>\</u>		
Surface Water Environmental Subscore:			-
GROUND WATER ROUTE			
Human Toxicity/Mobility Value:			
Containment Value:			
Ground Water Subscore:			
<u>/</u>			

WORKSHEET 4 SURFACE WATER ROUTE

4	^	011	DOT		^-	~ 111		AT-		
1.	U	อบ	B2 17	4N	しヒ	UH/	AHA	CTF	HIS I	IC:S

1.1 **Human Toxicity**

Substance	Orinking Water Std.		Chronic Toxicit	y	Acute Toxicity	T 6	Carcinogencity Potency		
	(µg/1)	Value	mg/kg/day	Value	mg/kg-bw	Value	WOE		Value
ETHANCH, 2-HETHORY 1. GLYCOL ETHER	1. ×	T-	1, ×		1,2460 LDSD OFAL PAT	3	1. ×	_	
2 DODECH BENZENE SUL	FUNATE 2. X		2. ×	—	2. —	_	2. ×	<u> </u>	-
3. NAPTHALENE	3, ★		3004RD	3	3, 490 LDS PEAL RAT	5	3. ×	_	<u> </u>
5:	1			-			1		
5.					,	i			1
				ļ		<u>. </u>			

Source: _3 Highest Value: +2 Bonus Points?: Value:

1.2 **Environmental Toxicity**

Substance	Acute Criteria (µg/L)	Non-human mammalian acute toxicity (mg/kg)	Value
1. GLYCOL ETHER 2.DDG (YLBENZEM SUL) 3. NAPTHALENE 4. 5. 6.	ONATE 2. X	1. 2460 LPSO OPAL RAT 2. — 3. 490 LD _{SO} ORAL RAT	3 - 2

Source: 3, 4, 5 Value: 3

- PAGE 9 1.3 Substance Quantity Explain basis: DRAINFIELD SIZE UNKNOWN (SOURCE 7 PAGE 5) CONTAMINATED SOIL "AT LEAST 5,000
- 2.0 MIGRATION POTENTIAL
- 2.1 Containment Explain basis: DRAINFIELD _ SPILL IN SUBSURFACE AT SITE. Surface Soil Permeability: HIGH, SAND, GRAVEL 2.2 2.3

Source: 7 Value: 0

Source: 7 Value: 7

Total Annual Precipitation: 7.2 INCHES

PAGE 7 Source: 7 Value: 1 Source: 2 Value: 1

2.4 Maximum 2-Year 24-Hr Precipitation: . 8 To I INCH Source: 10 Value: 1

2.5 Flood Plain: LOCATED IN 100 YR FLOOD PLAIN (PROTECTED BY LEVEE) Source: <u>7, 8</u> Value: ____2_ Source: 9 Value: ____

2.6 Terrain Slope: ESTIMATE

WORKSHEET 4 (CONTINUED) SURFACE WATER ROUTE

·	SURFACE WATER HOUTE				
3.0 3.1 3.2 3.3 3.4 3.5	TARGETS Distance to Surface Water: 3600 FEET CPOND) Population Served within 2 miles: O Area Irrigated by Sources within 2 miles: 20 ACRES75 V20 Distance to Fishery Resource: 16,000 FEET (YAKIMA RIVER) Distance to Sensitive Environment: _, 3 MILE 14,00 FEET List:	PAGE 8	Source: 9 Source: 11,12 Source: 11 Source: 9 Source: 7	Value: _ Value: _ Value: _	<u>0</u> 3
4.0	RELEASE Explain basis: None Documented.		Source: 7	Value: _	0

WORKSHEET 5 AIR ROUTE

- 1.0 SUBSTANCE CHARACTERISTICS
- 1.1 Introduction - please review before scoring
- 1.2 **Human Toxicity**

Substance	Air Std.		Chronic Toxicity		Acute Toxicity	Carcinogencity Potency			
	<i>μ</i> g/m ³	Value	mg/kg/day	Value	mg/kg-bw	Value	WOE	Factor	Value
. GLYCCL ETHER	/. ×		X		1, 1500 PPM LCs, PAT = 4757	1 5	Х	199	pp
DUDECAL BENSONE SI	LEONATE 2, X		×	_	2. ×	1-	l x l		ريشي
NAPTHALENE	3,166.5	4	×	4	3 . ★	l	ľχ	-	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	^	6		_	^	_	-
			į į				1		

Source: 3.4.6 Highest Válué: ___ +2 Bonus Points?: O Toxicity Value: ___5___

1.	3	Mobility
٠.	J	IVIODIIILY

1.4

1.3.1	Gaseous Mobility		mm Hg						
	Vapor Pressure: _	1.	X	2.	X	3.	.081		
	Value	1	- <u>-</u>		×	3			

Source: 3

Particulate Mobility 1.3.2

Soil Type: ____ Erodibility: __

Source: ____

Climatic Factor: _ Value:

Particulate Mobility Potential

Final Human Health Toxicity/Mobility Matrix: TOXICITY - 5

MOBILITY - 3

Value: 8

1.5 Environmental Toxicity/Mobility

Substance	Non-hu Acute 1	uman mammalian Foxicity	Value	Mobility	Value
1. GLYCOL ETHER 2. DODELY LBENZEIK S 3. NAPTHALENG 4. 5. 6.	VLFONATE	1. 1500 PPM = 4757 2. * 3. *	5	3	

Environmental Toxicity Mobility Matrix:

Source: 3 4 Value: 8

Substance Quantity: AT LEAST 5000 FT2 1.6

PAGE 9 Source: 7 Value: 5

WORKSHEET 5 (CONTINUED) AIR ROUTE

MIGRATION PO		orace with	NO VAPOR		Source: 7	Value:
	SPILL IN SUSS	URFACE WITH	770 071010		Journal	
TARGETS		A. J. C.	í	DAGE. S	Source: 7	Value:
		11.6 1: 1000 FEET		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Source: <u>7, 9</u>	
List: YAK	IMA RIVER					
Population with	hin 1/2 mile:	379		PAGE 8	Source: 7_	Value: _
RELEASE:	NONE DO	CUMENTED		PAGE "	Source:	Value: _
			r			
				•		

WORKSHEET 6 GROUND WATER ROUTE

SUBSTANCE CHARACTERISTICS 1.0

Human Toxicity 1.1

	Drinking Water Std.		Chronic Toxicity	,	Acute Toxicity		Carcinogencity Potency		
Substance	to/I	Value	mg/kg/d ay	Value	mg/kg-bw	Value	WOE	Fector	Value
1. GLYCOL ETHER 2 DODECYL BENZENE 3. NAPTHALENE 4.	srefounte ² , X 3, X	-	1. × 2. × 3.1004 BD OME	3	1 2460 LDs, OPAL PAT 2 X 3. 490 LDs, OPAL RAT	3 - 5	√×× ×××	Jrce: 3	(1)

Drinking Water Std.		Chronic Toxicity		Acute Toxicity		Carcinogencity			
Jubstance	tol	Value	mg/kg/day	Value	mg/kg-bw	Value	WOE	Potency Fector	Value
GLYCOL ETHER DODECYL BENZENE NAPTHALENE	1, 1/	<u>-</u>	2. 7 3.,004 ADOM	3	1 2460 LDS, DEAL RAT 2 X 3. 490 LDS, DEAL RAT	3 - 5	% × 2. × 3 ×	1 1	
		<u> </u>		<u> </u>		!	Sou	rce: _3	3 . 4
							hest Va	ılue:	5
-		÷				+2 Bon			
			. OGTAINED E	OR THI	S COMPOUND		Va	due: _	_5
	•			VIX I · · · ·					
	oility		mg/l	2500		Sourc	a . 3	Value	: <u> </u>
Sub	stance: SOLVIB	12174: 1.	* 2 , * 3 , - 2, - 3	<u>, 30</u>		000.0	ـــــــ	70.00	<u> </u>
	VAL	ves . I	, – 2,) , I	•				. 🤈
1.3 Sub	stance Quant	ity	Assumed De	PTH	PACE 9	Sourc	e:	value	:
Exc	lain basis: (5	000 FT2) (3 FEET)(1 Y	$\frac{0^3}{FT^3}$ = 556 YD ³		·		
,=:-1				27	F1 • 7 ———				
		ENTIAL							
	RATION POT	ENTIAL			•	Source	e: <u>7</u>	Value	: 10
	ntainment				•••	000.00	·· <u> </u>		·
Exp	olain basis: D	RAINFIE	LD = 16 C	ONTRI	NMENT VALUE,				
							_		
2.2 Net	Precipitation:	NOV A	PRIL 3,3	INCHE	S PAGE 7	Source	e: <u></u>	Value	:
23 Sub	osurface Hydra	aulic Cond	luctivity: > 10) -3 € \$ <u>€</u> C	SAND. GRAVEL PAGE 7	Source	e: <u>7</u>	Value	:
2.4 Ver	tical Denth to	Ground W	/ater: /0-	-20 <u>r</u> -6	ET PAGE 7	Source	e: <u>7</u>	Value	:8
Z.4 VEI	lical Depth to	G , G G , G							
	RGETS	_		W #7.0	A.ATC	Source	יםי	Value	e: <u>9</u>
3.1 Grd	ound Water Us	age: <u>Po</u>	RLIC. NO	ALIETE	NATE				
3.2 Dis	tance to Near	est Drinkir	ng Water Well	: <u>LESS 71</u>	HAN . 25 MILE PAGE	Sourc	;e:/_	valu	e. <u> </u>
3.3 Poj	oulation Serve	d with 2 m	niles: <u>44/7 <i>P0</i></u>	RLIC +	111 DOMESTIL V4528	Sourc	ce: <u>11,12</u>	. Valu	e: <u>6 /</u>
3.4 Are	a Irrigated by	Wells with	nin 2 miles: <u>/</u>	165 AC	rees .75 √1465	Source	:e: <u> </u>	Valu	e: <u>29</u>
SIT MIC	3)		_						
	LEASE		_			Sour	ce: 7	Valu	e: <u>0</u>
Exp	olain basis:	NONE	DOCUMEN	ITED.		J0011	<u></u>		-· <u>-v</u>

WORKSHEET 7 SOURCES USED IN SCORING

- 1. PRELIMINARY ASSESSMENT REPORT ZWIGHT LOGGING, VAKIMA , WASHINGTON ECOLOGY AND ENVIRONMENT, INC., 1988.
- 2. WASHINGTON CLIMATE FOR THESE COUNTIES GRANT KITTITAS KLICKITAT YAKIMA, COOPERATIVE EXTENSION SERVICE, WASHINGTON STATE UNIVERSITY.
- 3. WASHINGTON DEPORTMENT OF HEALTH GUIDE TO PHYSICO-CHEMICAL, TOXICOLOGICAL AND
- 4. PTECE MINELL FOR PRIORITY POLLUTANTS, MOMA KIMBELL ET AL, PRAFT, JULY 1990, RTECS, NIOSH, APRIL 1987.
- 5. QUALTY CRITERIA FOR MATER, 1986, US EPA.
- 6. CONTROLS FOR NEW SOURCES OF TOXIC AIR POLLUTANTS, WAL 173-460, DRAFT, DEPT. OF ECOLOGY.
- 7. SCREENING SITE INSPECTION ZWIGHT LOGGING, M. J. SPENCER AND B. ROGOWSKI, OCTOBER, 1900,
- 8. FLORD BOUNDARY AND FLOODWAY MAP, COMMUNITY PANEL NO. 530217 1055.
- 9. YAKIMA EAST QUADRAUGLE, USGS 7.5 MINUTE TOPO MAP.
- 10. ISOPLUVIALS OF 2-YR 24-HR PRECIPITATION IN TENTHS OF AN INCH, NOAA ATLAS 2, VOLUME IX, U.S. DEFT. OF COMMERCE.
- 11, RECORDED WATER RIGHTS OF THE DEPARTMENT OF ECOLOGY REGION 4, 9/16/90.
- 12. PUBLIC WATER SUPPLY SYSTEM LISTING, DEPT. OF HEALTH, 11/8/89.