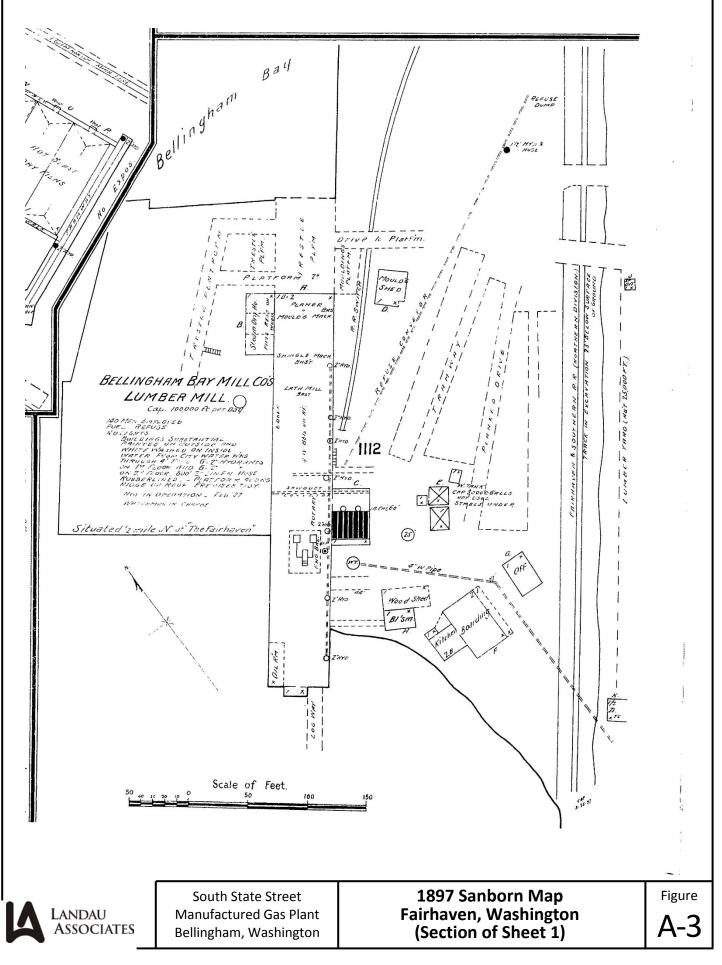
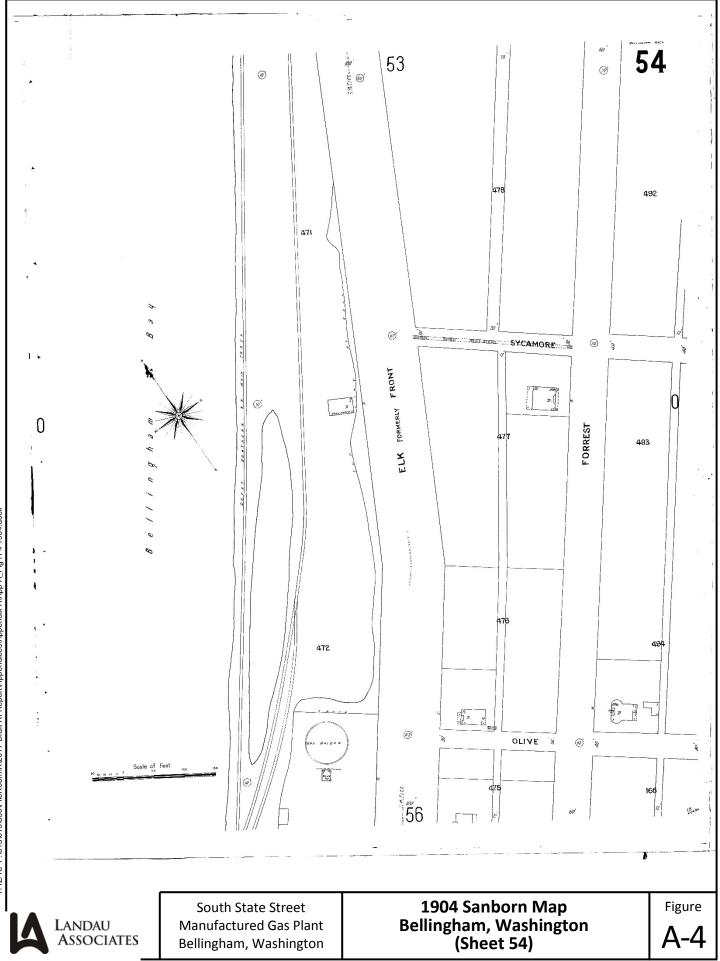
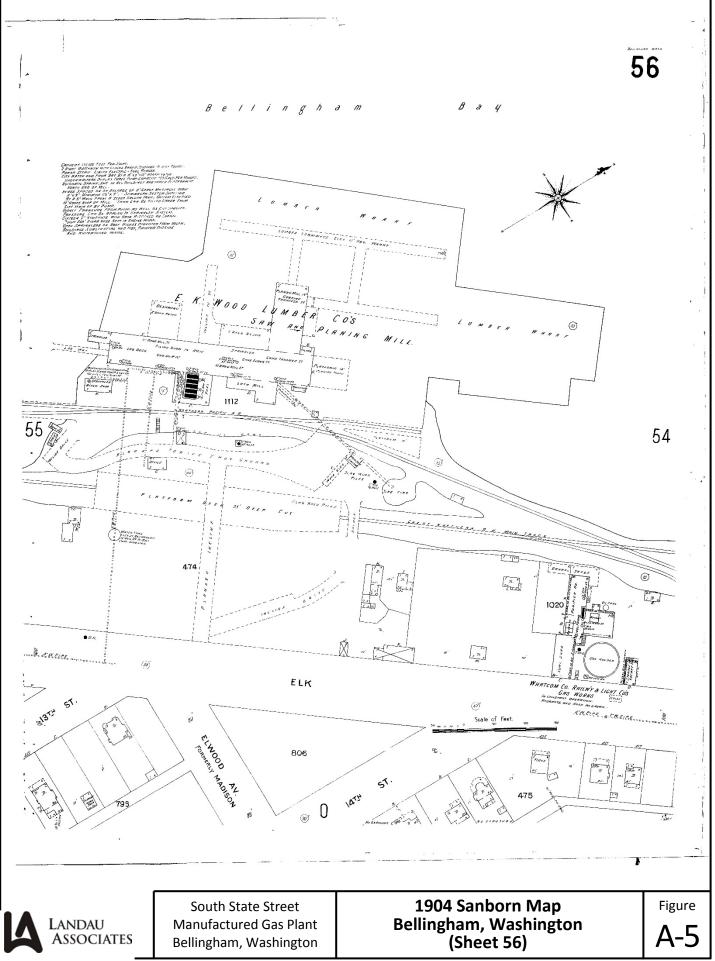
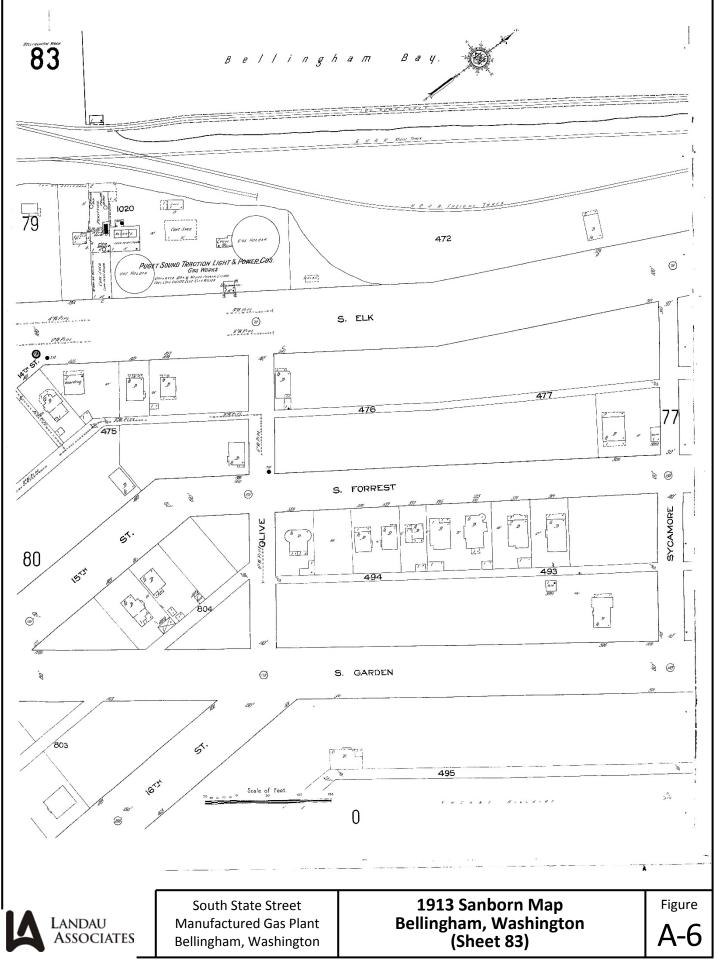

APPENDIX A

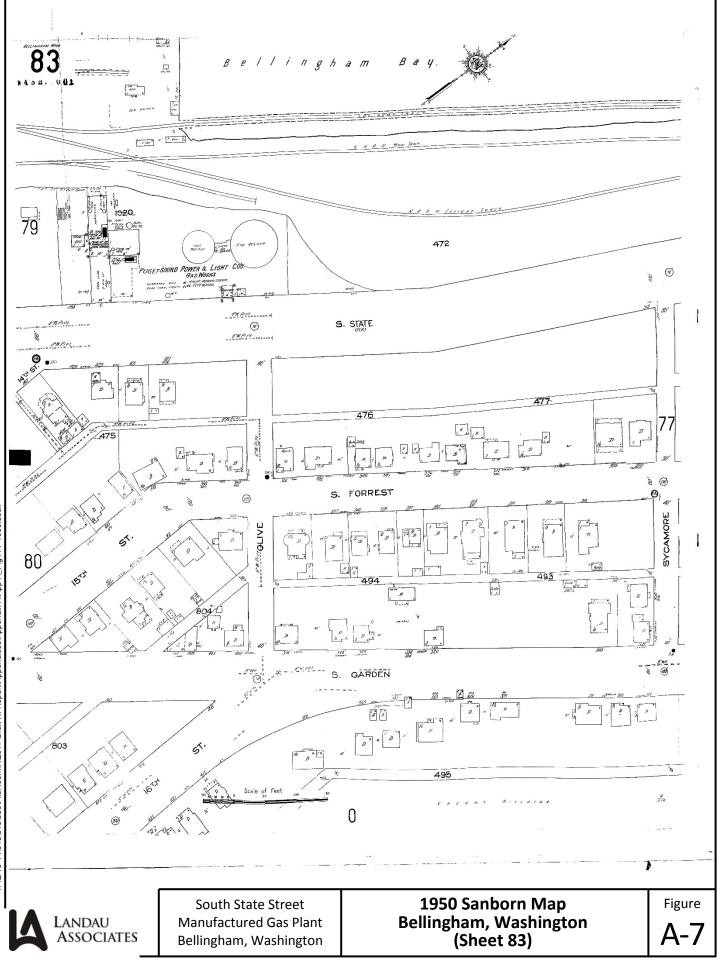

Historical Maps and Photographs


APPENDIX A-1

Historical Maps

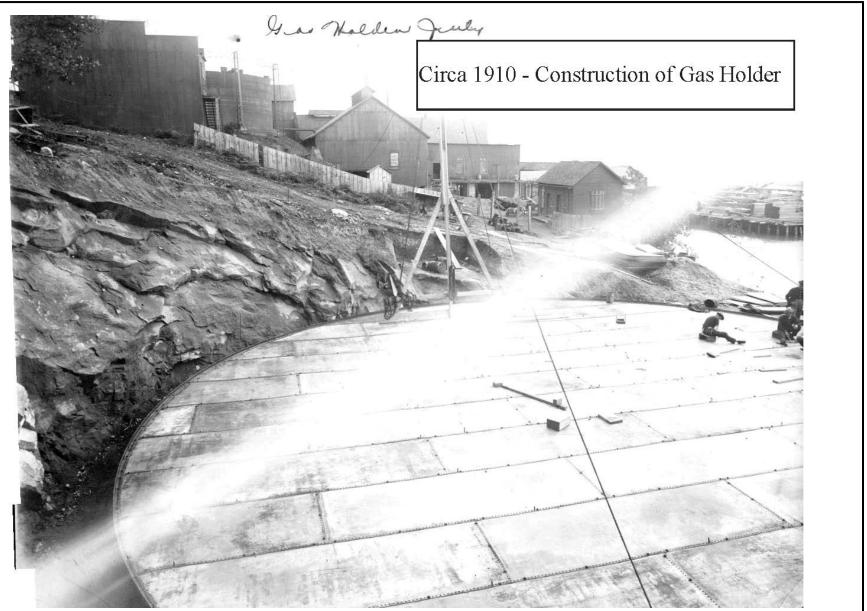





7/12/18 P:\015\015\050\FileRoom\R\2017 Draft RI Report\Appendices\Appendix A\App A_Fig A-4 1904.docx

7/12/18 P:\015\015\050\FileRoom\R\2017 Draft RI Report\Appendices\Appendix A\App A_Fig A-5 1904.docx

7/12/18 P:\015\015\050\FileRoom\R\2017 Draft RI Report\Appendices\Appendix A\App A_Fig A-6 1913.docx



7/12/18 P:\015\015\050\FileRoom\R\2017 Draft RI Report\Appendices\Appendix A\App A_Fig A-7 1950.docx

APPENDIX A-2

Historical and Aerial Photographs

7/13/18 P:\015\015\050\FileRoom\R\MASTER RI Files 033018\Appendices\Appendix A\App A_Fig A-8 1910.docx

LANDAU ASSOCIATES South State Street Manufactured Gas Plant Bellingham, Washington

Circa 1910 Gas Holder Construction Photograph

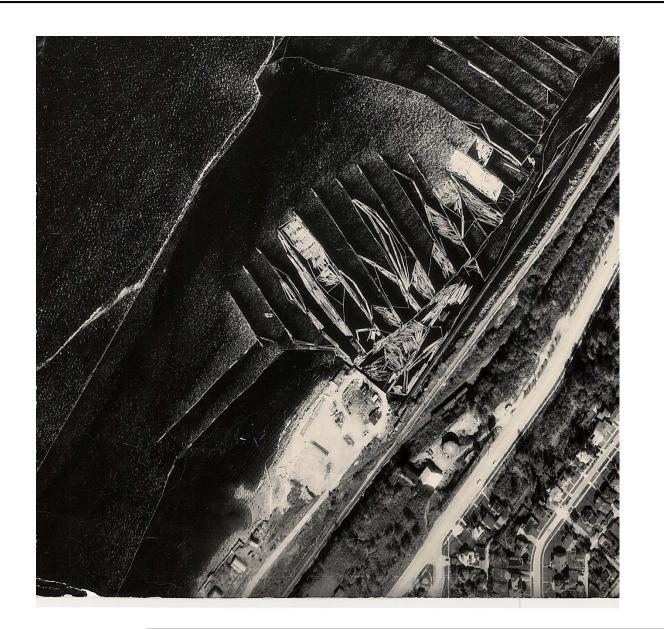
South State Street Manufactured Gas Plant Bellingham, Washington

1930–1940 Gas Holder Photograph



South State Street Manufactured Gas Plant Bellingham, Washington

1950 Aerial Photograph


Figure

A-10

LANDAU Associates South State Street Manufactured Gas Plant Bellingham, Washington

1955 Aerial Photograph

South State Street Manufactured Gas Plant Bellingham, Washington

1963 Aerial Photograph

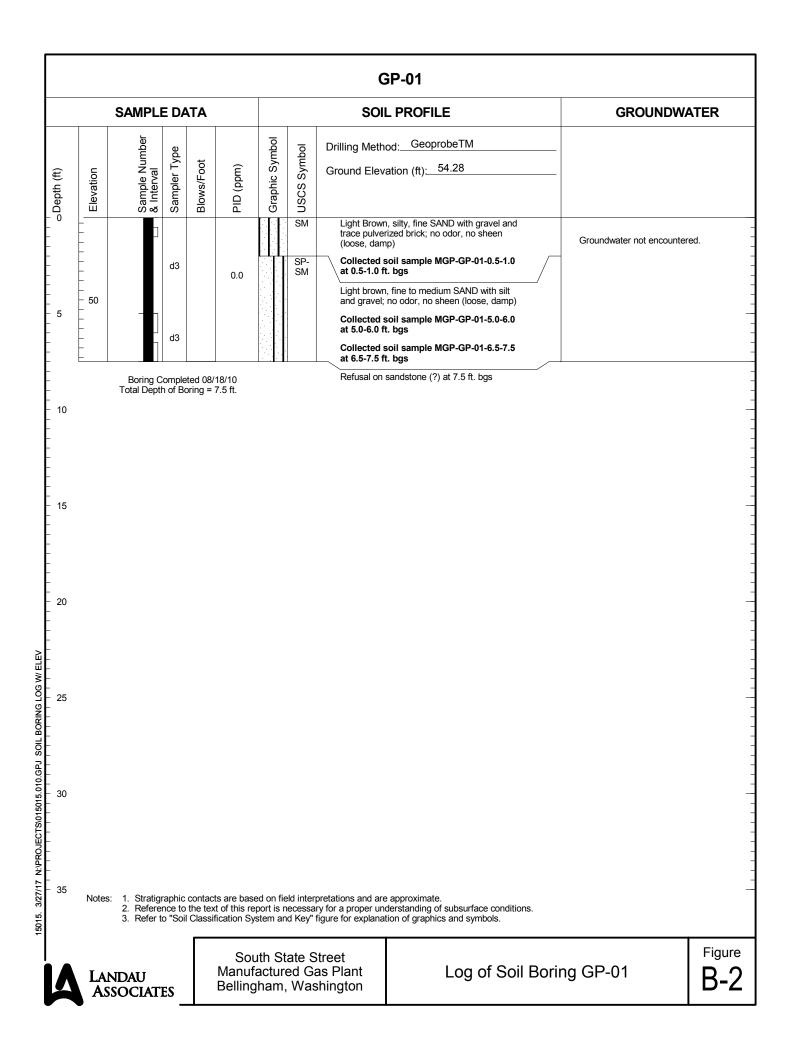
APPENDIX B

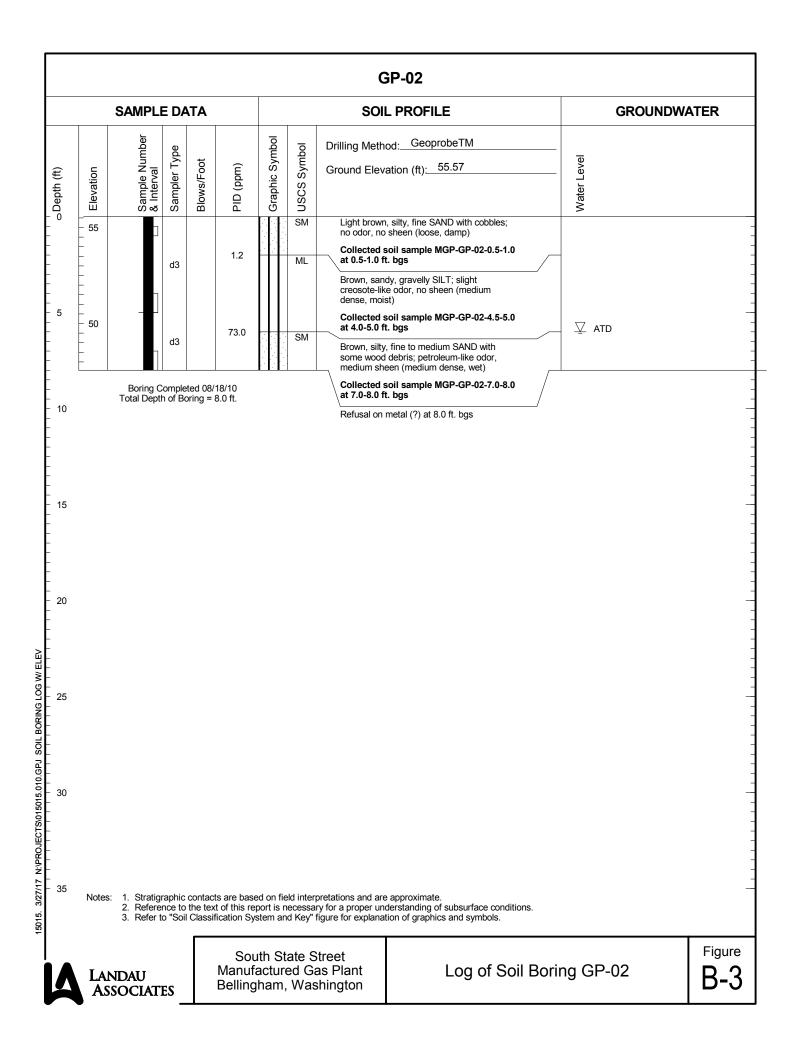
Exploration Details

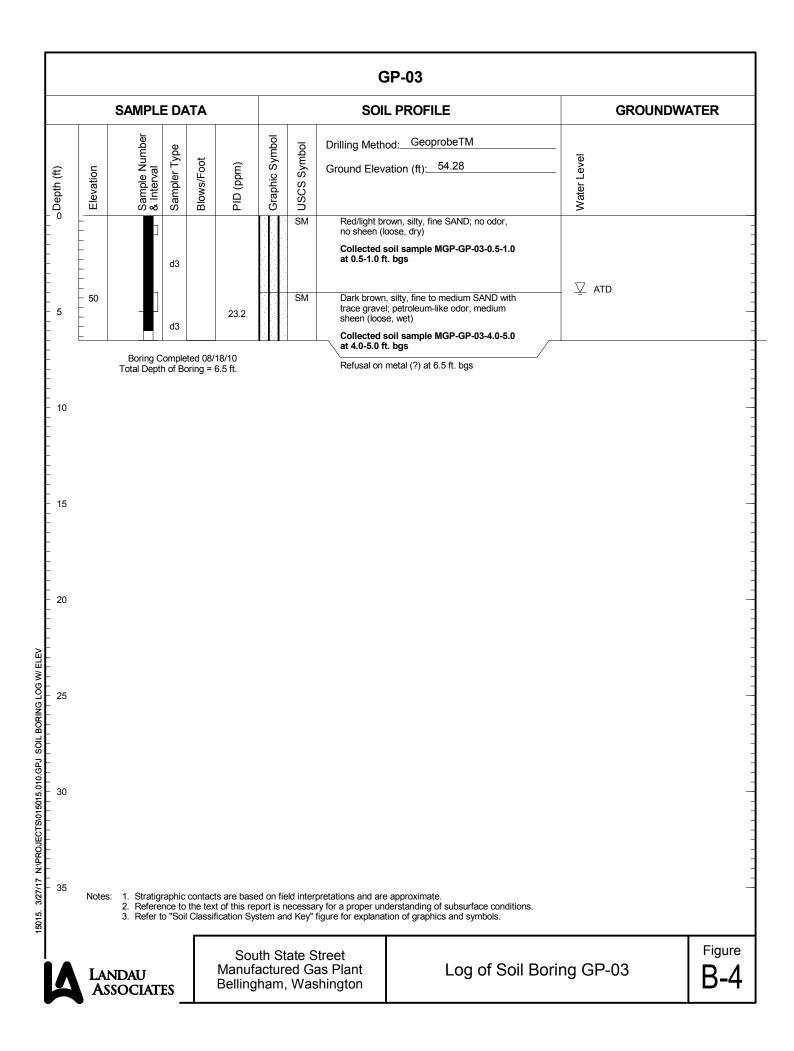
Table B-1 Soil Sample Analysis Summary South State Street Manufactured Gas Plant Site Bellingham, Washington

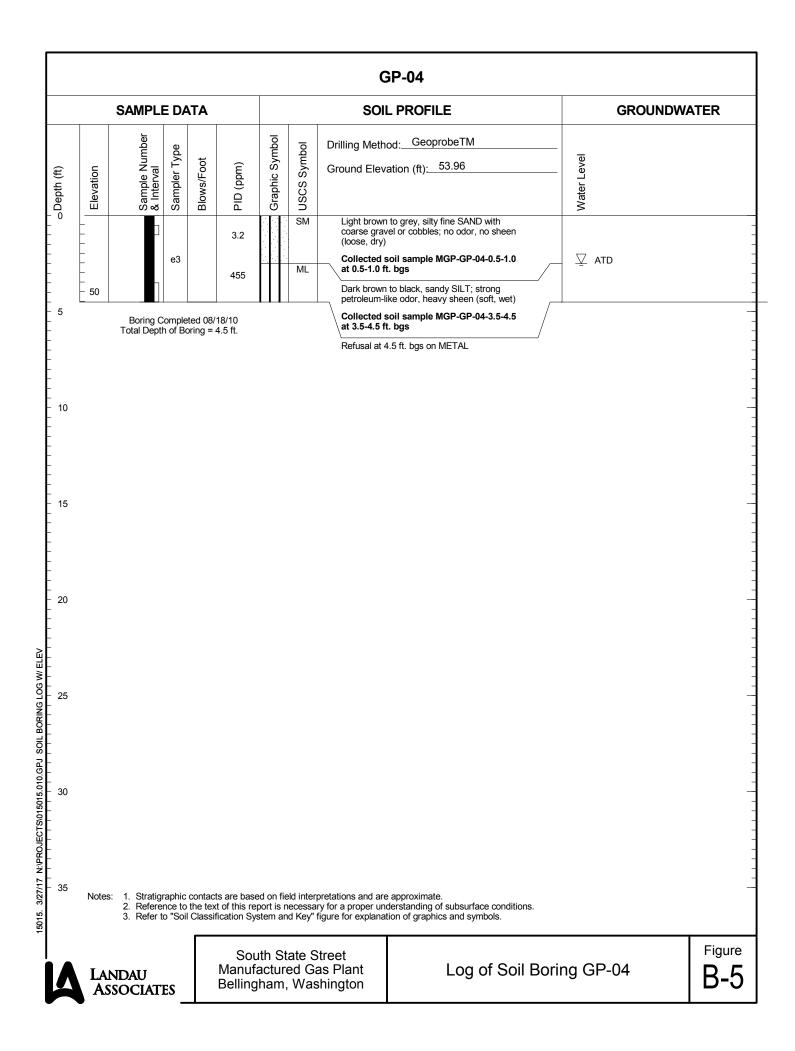
		Exploration		
Exploration		Depth		Exploration
Name	Exploration Type ^a	(feet)	Exploration Method	Date
GP-01	Soil Boring	7.5	Geoprobe	8/18/2010
GP-02	Soil Boring	8.0	Geoprobe	8/18/2010
GP-03	Soil Boring	6.5	Geoprobe	8/18/2010
GP-04	Soil Boring	4.5	Geoprobe	8/18/2010
GP-05	Soil Boring	8.1	Geoprobe	8/16/2010
GP-06A	Soil Boring	2.0	Geoprobe	8/18/2010
GP-06B	Soil Boring	5.0	Geoprobe	8/18/2010
GP-07	Soil Boring	14	Geoprobe	8/18/2010
GP-08	Soil Boring	15	Geoprobe	8/18/2010
GP-09	Soil Boring	15	Geoprobe	8/18/2010
GP-10	Soil Boring	16	Geoprobe	8/18/2010
GP-11	Soil Boring	7.5	Geoprobe	8/16/2010
GP-12	Soil Boring	7.0	Geoprobe	8/16/2010
GP-13	Soil Boring	6.5	Geoprobe	8/16/2010
GP-14	Soil Boring	6.5	Geoprobe	8/16/2010
GP-15	Soil Boring	17.0	Geoprobe	8/17/2010
GP-16	Soil Boring	26.0	Geoprobe	8/17/2010
GP-17	Soil Boring	8.1	Geoprobe	8/17/2010
GP-18	Soil Boring	16.0	Geoprobe	8/17/2010
GP-19	Soil Boring	22.0	Geoprobe	8/17/2010
GP-20	Soil Boring	6.5	Geoprobe	8/16/2010
GP-21	Soil Boring	5.6	Geoprobe	8/16/2010
GP-22	Soil Boring	17.0	Geoprobe	8/18/2010
GP-23A	Soil Boring	23.0	Geoprobe	8/17/2010
GP-23B	Soil Boring	15.0	Geoprobe	8/18/2010
GP-24	Soil Boring	16.0	Geoprobe	8/18/2010
GP-25	Soil Boring	17.0	Geoprobe	8/18/2010
GP-26	Soil Boring	4.5	Geoprobe	8/19/2010
GP-27	Soil Boring	7.0	Geoprobe	8/19/2010
GP-28	Soil Boring	15.0	Geoprobe	8/19/2010
GP-29	Soil Boring	15.1	Geoprobe	8/19/2010
GP-30	Soil Boring	12.0	Geoprobe	8/19/2010
GP-31	Soil Boring	12.0	Geoprobe	8/19/2010
GP-31 GP-32	Soil Boring	13.0	Geoprobe	8/19/2010
GP-33	Soil Boring	12.1	Geoprobe	8/19/2010
GP-34	Soil Boring	15.0	Geoprobe	8/20/2010
GP-35	Soil Boring	19.0	Geoprobe	8/19/2010
GP-36	Soil Boring	22.0	Geoprobe	8/20/2010
GP-30 GP-37	Soil Boring	25.0	Geoprobe	
GP-37 GP-38	Soil Boring	25.0	Geoprobe	8/20/2010 8/19/2010
	0			
GP-39 GP-40	Soil Boring	31.0 20.0	Geoprobe Geoprobe	8/20/2010 8/20/2010
GP-40 GP-41	Soil Boring		Geoprobe	
	Soil Boring	29.0		8/30/2010
GP-42	Soil Boring	36.0	Geoprobe	8/20/2010
GP-44	Soil Boring	14.0	Geoprobe	8/18/2010
GP-45	Soil Boring	15.0	Geoprobe	8/19/2010
GP-56	Soil Boring	16.0	Geoprobe	10/3/2012
GP-57	Soil Boring	22.0	Geoprobe	10/3/2012

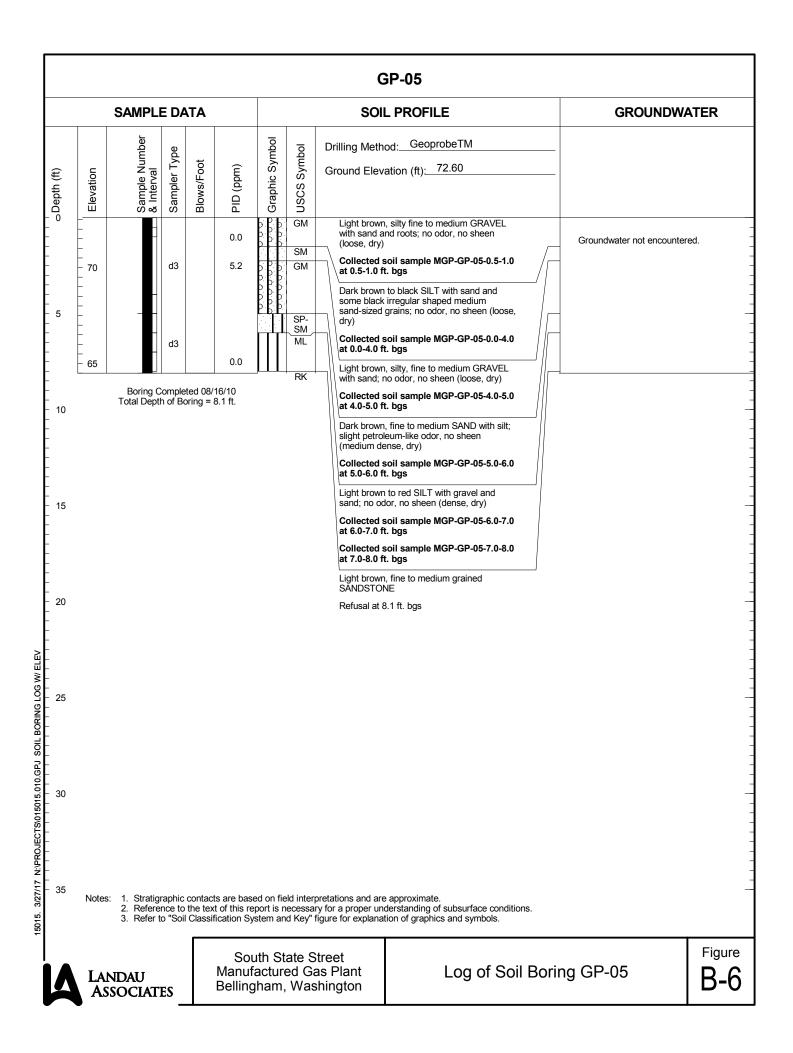
Table B-1 Soil Sample Analysis Summary South State Street Manufactured Gas Plant Site Bellingham, Washington

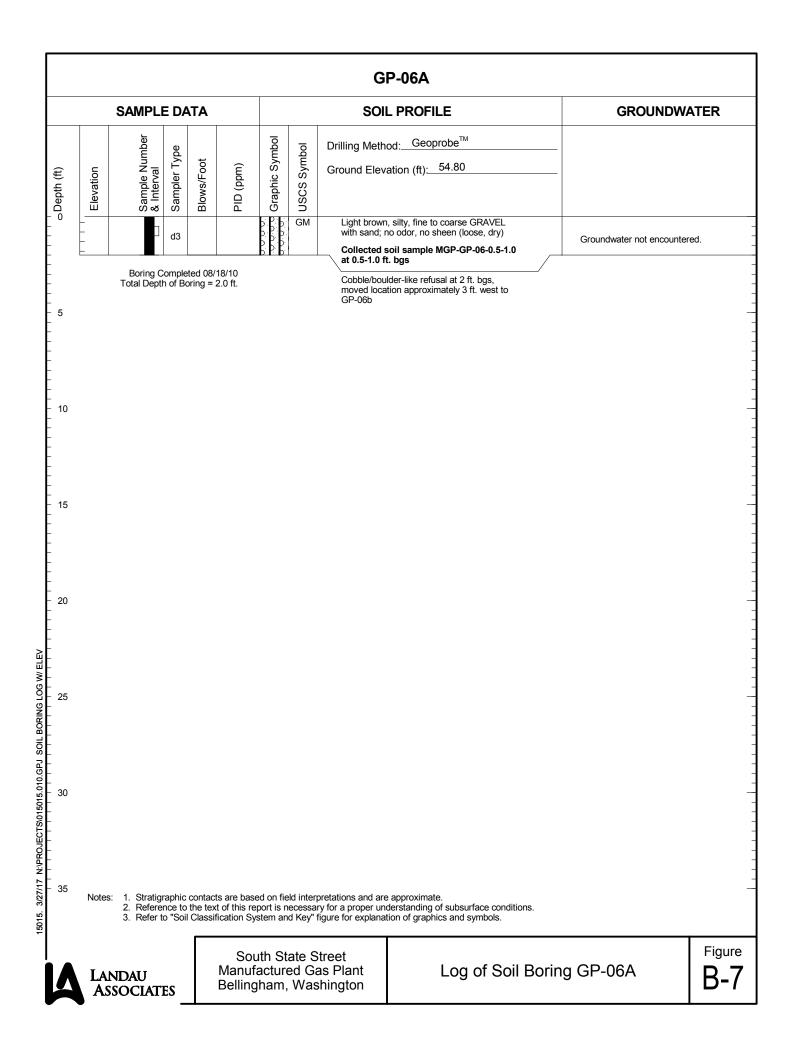

Exploration	Fundamentian Tumo ^a	Exploration Depth	Fundamation Mathead	Exploration
Name	Exploration Type ^a	(feet)	Exploration Method	Date
HA-01	Soil Boring	0.5	Hand Auger	8/26/2010
HA-02	Soil Boring	0.5	Hand Auger	8/26/2010
HA-03	Soil Boring	1.0	Hand Auger	8/26/2010
HA-04	Soil Boring	0.5	Hand Auger	8/26/2010
HA-05	Soil Boring	1.0	Hand Auger	8/26/2010
HA-06	Soil Boring	1.0	Hand Auger	8/26/2010
HA-07	Soil Boring	0.5	Hand Auger	8/26/2010
HA-08	Soil Boring	1.0	Hand Auger	8/26/2010
HA-09	Soil Boring	1.0	Hand Auger	8/26/2010
HA-10	Soil Boring	1.0	Hand Auger	8/26/2010
HA-11	Soil Boring	1.0	Hand Auger	8/26/2010
HA-12	Soil Boring	1.0	Hand Auger	8/26/2010
HA-13	Soil Boring	1.5	Hand Auger	9/20/2010
HA-14	Soil Boring	1.5	Hand Auger	9/20/2010
HS-26	Soil Boring	10.2	Hollow-stem Auger	8/23/2010
HS-43	Soil Boring	18.0	Hollow-stem Auger	8/26/2010
MW-07	Monitoring Well	13.5	Hollow-stem Auger	8/26/2010
MW-19	Monitoring Well	13.5	Hollow-stem Auger	8/26/2010
MW-24	Monitoring Well	15.0	Hollow-stem Auger	8/26/2010
MW-28	Monitoring Well	15.0	Hollow-stem Auger	8/23/2010
MW-29	Monitoring Well	15.0	Hollow-stem Auger	8/24/2010
MW-31	Monitoring Well	11.5	Hollow-stem Auger	8/23/2010
MW-34	Monitoring Well	15.2	Hollow-stem Auger	8/23/2010
MW-36	Monitoring Well	24	Hollow-stem Auger	8/24/2010
MW-38	Monitoring Well	27.0	Hollow-stem Auger	8/25/2010
MW-40	Monitoring Well	35.0	Hollow-stem Auger	8/25/2010
MW-42	Monitoring Well	36.0	Hollow-stem Auger	8/23/2010
MW-44	Monitoring Well	14.0	Hollow-stem Auger	8/26/2010
MW-45	Monitoring Well	13.0	Hollow-stem Auger	8/25/2010
MW-46	Monitoring Well	11.17	Hollow-Stem Auger	2/1/2012
MW-53	Monitoring Well	11.67	Hollow-Stem Auger	2/1/2012
MW-54	Monitoring Well	14.83	Hollow-Stem Auger	2/3/2012
MW-55	Monitoring Well	37.33	Hollow-Stem Auger	2/2/2012
MW-58	Monitoring Well	15.1	Hollow-Stem Auger	6/8/2016
SV-04	Temporary Soil Vapor Well	4.0	Geoprobe	8/30/2010
SV-12	Temporary Soil Vapor Well	5.0	Geoprobe	8/30/2010
SV-18	Temporary Soil Vapor Well	8.0	Geoprobe	8/30/2010
SV-25 (1)	Temporary Soil Vapor Well	8.0	Geoprobe	8/30/2010
SV-25 (2)	Temporary Soil Vapor Well	6.0	Geoprobe	7/25/2011
SV-32	Temporary Soil Vapor Well	6.0	Geoprobe	8/30/2010
SV-44	Temporary Soil Vapor Well	6.0	Geoprobe	8/30/2010
SV-49	Temporary Soil Vapor Well	8.0	Geoprobe	7/25/2011
SV-50	Temporary Soil Vapor Well	8.0	Geoprobe	7/25/2011
SV-51	Temporary Soil Vapor Well	11.0	Geoprobe	7/25/2011
SV-52	Temporary Soil Vapor Well	6.0	Geoprobe	7/25/2011
SB-01	Sediment Boring	11.0	Geoprobe	8/20/2010
SB-02	Sediment Boring	10.1	Geoprobe	8/20/2010
SB-03	Sediment Boring	5.0	Hollow-Stem Auger	9/8/2010

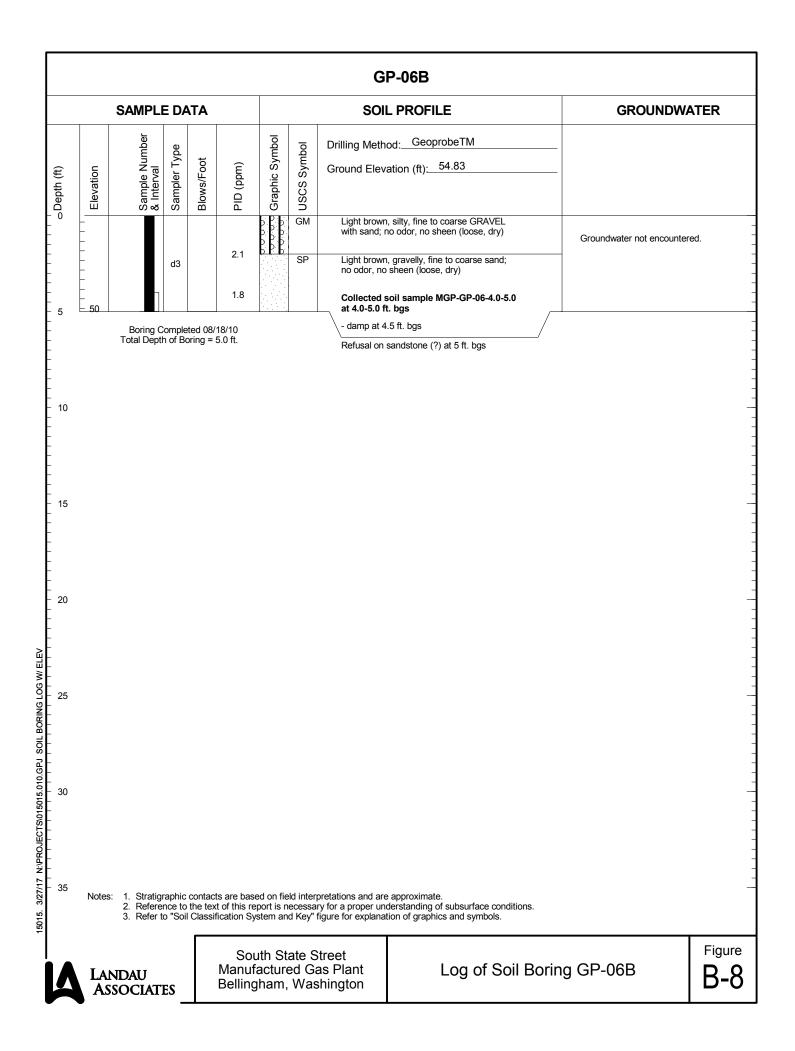

Table B-1 Soil Sample Analysis Summary South State Street Manufactured Gas Plant Site Bellingham, Washington

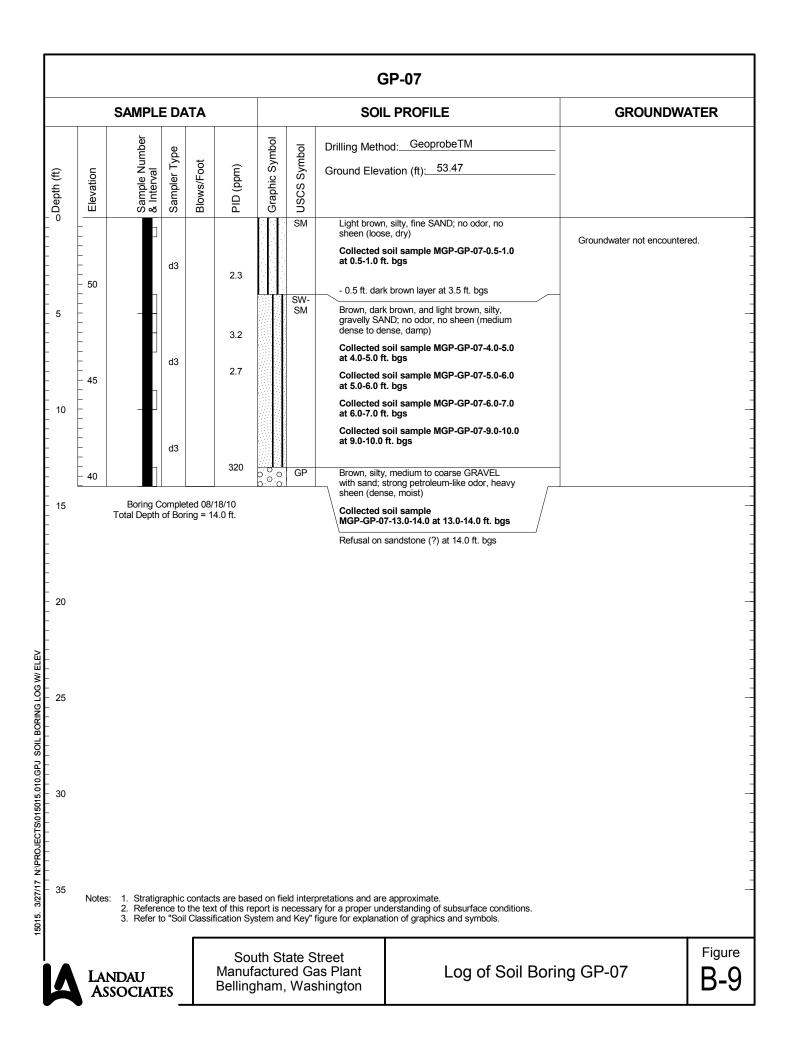

		Exploration		
Exploration		Depth		Exploration
Name	Exploration Type ^a	(feet)	Exploration Method	Date
SB-04	Sediment Boring	13.0	Geoprobe	8/20/2010
SB-05	Sediment Boring	6.0	Hollow-stem Auger	9/8/2010
SB-06	Sediment Boring	13.5	Hollow-stem Auger	9/7/2010
SB-07	Sediment Boring	18.5	Hollow-Stem Auger	9/9/2010
SB-08	Sediment Boring	24.5	Hollow-Stem Auger	9/8/2010
SB-09	Sediment Boring	39.5	Hollow-Stem Auger	9/7/2010
SB-10	Sediment Boring	31	Hollow-Stem Auger	9/9/2010
SB-11	Sediment Boring	50.0	Hollow-Stem Auger	9/8/2010
SB-12	Sediment Boring	51.5	Hollow-Stem Auger	9/9/2010
SB-14	Sediment Boring	14.0	Vibracore	9/24/2015
SB-15	Sediment Boring	11.9	Vibracore	9/25/2015
SB-16	Sediment Boring	7.1	Vibracore	9/24/2015
SB-17	Sediment Boring	6.0	Vibracore	9/24/2015
SB-18	Sediment Boring	5.5	Vibracore	9/24/2015
SB-19	Sediment Boring	14	Vibracore	9/24/2015
SB-21	Sediment Boring	14.0	Vibracore	9/25/2015
SB-22	Sediment Boring	14.0	Vibracore	9/23/2015
SB-23	Sediment Boring	10.75	Vibracore	9/23/2015
SB-25	Sediment Boring	14	Vibracore	9/24/2015
SB-31	Sediment Boring	6.0	Vibracore	9/25/2015
SS-02	Surface Sediment Grab	0.39	Hand Tools	9/2/2010
SS-04	Surface Sediment Grab	0.39	Hand Tools	9/2/2010
SS-06	Surface Sediment Grab	0.39	Van Veen Powergrab	9/2/2010
SS-07	Surface Sediment Grab	0.39	Van Veen Powergrab	9/2/2010
SS-08	Surface Sediment Grab	0.39	Van Veen Powergrab	9/2/2010
SS-13	Surface Sediment Grab	0.39	Hand Tools	9/24/2015
SS-14	Surface Sediment Grab	0.39	Van Veen Powergrab	9/22/2015
SS-15	Surface Sediment Grab	0.39	Van Veen Powergrab	9/22/2015
SS-16	Surface Sediment Grab	0.39	Van Veen Powergrab	9/22/2015
SS-17	Surface Sediment Grab	0.39	Van Veen Powergrab	9/22/2015
SS-18	Surface Sediment Grab	0.39	Van Veen Powergrab	9/22/2015
SS-19	Surface Sediment Grab	0.39	Van Veen Powergrab	9/22/2015
SS-20	Surface Sediment Grab	0.39	Van Veen Powergrab	9/22/2015
SS-21	Surface Sediment Grab	0.39	Van Veen Powergrab	9/22/2015
SS-22	Surface Sediment Grab	0.39	Van Veen Powergrab	9/22/2015
SS-23	Surface Sediment Grab	0.39	Van Veen Powergrab	9/23/2015
SS-24	Surface Sediment Grab	0.39	Hand Tools	9/24/2015
SS-25	Surface Sediment Grab	0.39	Van Veen Powergrab	9/23/2015
SS-26	Surface Sediment Grab	0.39	Van Veen Powergrab	9/23/2015
SS-27	Surface Sediment Grab	0.39	Van Veen Powergrab	9/23/2015
SS-28	Surface Sediment Grab	0.39	Van Veen Powergrab	9/23/2015
SS-29	Surface Sediment Grab	0.39	Van Veen Powergrab	9/23/2015
SS-30	Surface Sediment Grab	0.39	Van Veen Powergrab	9/23/2015
SS-31	Surface Sediment Grab	0.39	Van Veen Powergrab	9/22/2015

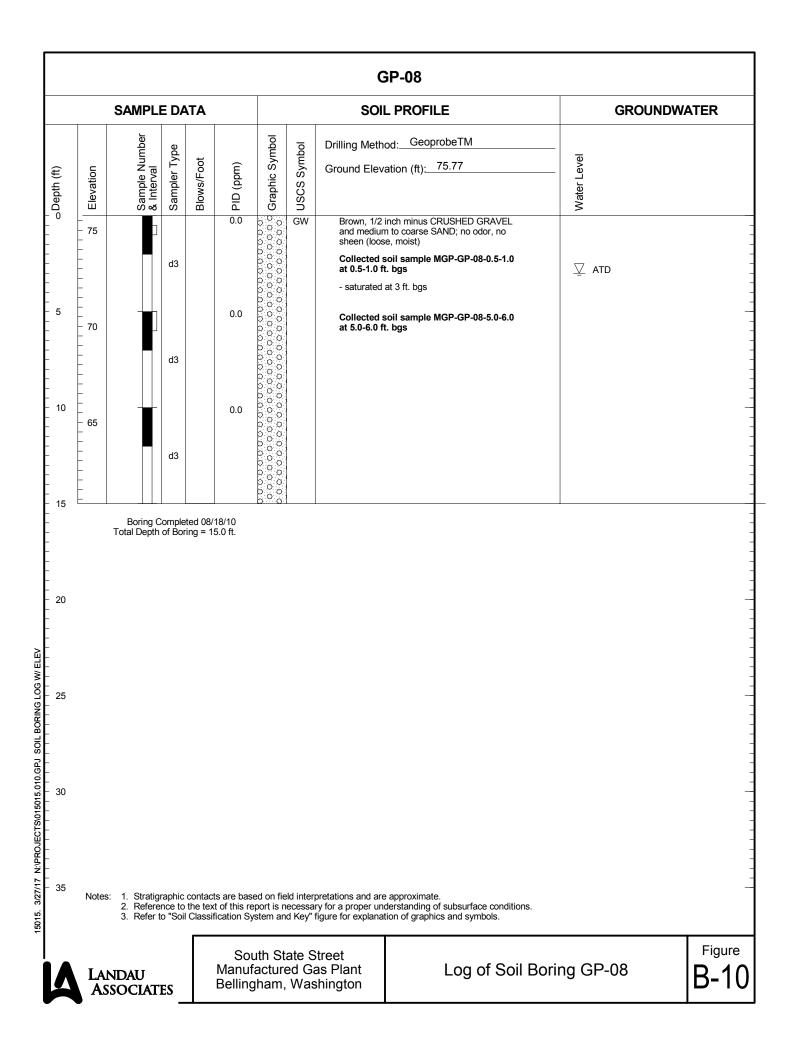

^a Exploration logs for surface sediment grabs are not included.

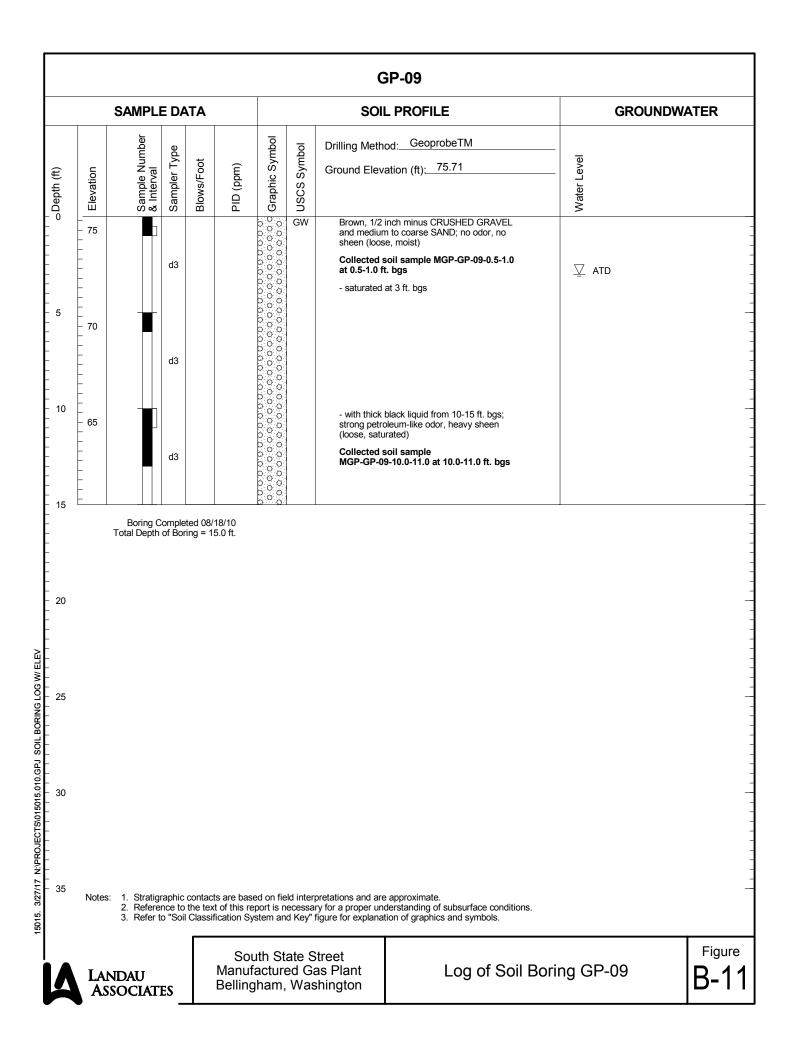

	MAJOR DIVISIONS		GRAPHIC SYMBOL	cation Sys USCS CLETTER SYMBOL ⁽¹⁾	TYPICAL DESCRIPTIONS ⁽²⁾⁽³⁾	
	GRAVEL AND	CLEAN GRAVEL			Well-graded gravel; gravel/sand mixture(s); little or no fine	es
COARSE-GRAINED SOIL (More than 50% of material is larger than No. 200 sieve size)	GRAVELLY SOIL	(Little or no fines)		GP	Poorly graded gravel; gravel/sand mixture(s); little or no fin	nes
IE U mate sieve	(More than 50% of coarse fraction retained	GRAVEL WITH FINES (Appreciable amount of		GM	Silty gravel; gravel/sand/silt mixture(s)	
GRAINEU 50% of mate No. 200 siev	on No. 4 sieve)	fines)	<u>IIII</u>	GC	Clayey gravel; gravel/sand/clay mixture(s)	
	SAND AND SANDY SOIL	CLEAN SAND (Little or no fines)		SW	Well-graded sand; gravelly sand; little or no fines	
COARSE- (More than larger than I		, ,		SP	Poorly graded sand; gravelly sand; little or no fines	
COA (Mor largei	(More than 50% of coarse fraction passed	SAND WITH FINES (Appreciable amount of	IJIJIJ	SM	Silty sand; sand/silt mixture(s)	
	through No. 4 sieve)	fines)	<u> </u>	SC	Clayey sand; sand/clay mixture(s)	fino
NE-GRAINED SOIL (More than 50% of material is smaller than No. 200 sieve size)	SILT AND CLAY			ML	Inorganic silt and very fine sand; rock flour; silty or clayey fine sand or clayey silt with slight plasticity Inorganic clay of low to medium plasticity; gravelly clay; sandy clay; silty clay; lean clay	
50% 50% e siz	Liquid limi	(Liquid limit less than 50)		CL		
AINE Jan 5 s smč s smč			<u> </u>	OL	Organic silt; organic, silty clay of low plasticity	
E-GRAINEU (More than 50% aterial is smalle No. 200 sieve s	SILT A	SILT AND CLAY (Liquid limit greater than 50)		MH	Inorganic silt; micaceous or diatomaceous fine sand	
PINE mate No	(Liquid limit			СН	Inorganic clay of high plasticity; fat clay	
<u> </u>				CH	Organic clay of medium to high plasticity; organic silt	
	HIGHLY O	RGANIC SOIL		A PT	Peat; humus; swamp soil with high organic content	
	OTHER MAT	ERIALS	SYMBOL	C LETTER SYMBOL	TYPICAL DESCRIPTIONS	
	PAVEME	INT	•	AC or PC	Asphalt concrete pavement or Portland cement pavement	
	ROCI	(RK	Rock (See Rock Classification)	
	WOO)	<u> Şarşar</u>	WD	Wood, lumber, wood chips	
	DEBR	S		DB	Construction debris, garbage	
Me 3. Soil	thod for Classification of S	oils for Engineering Purposes	s, as outlined in the absence	n ASTM D 2487. of laboratory test	d, soil classifications are based on the Standard Test data) of the percentages of each soil type and is defined	
	Secondary C	onstituents: $> 30\%$ and ≤ 50 $> 15\%$ and ≤ 30 onstituents: $> 5\%$ and $\le 15\%$)% - "very grav)% - "gravelly,' 5% - "with grav	" "sandy," "silty," e vel," "with sand," "	,́," "very silty," etc. etc. 'with silt," etc.	
4. Soil	Secondary C Additional C density or consistency des	onstituents:> 30% and \leq 50> 15% and \leq 30onstituents:> 5% and \leq 15 \leq 5 \leq 5scriptions are based on judge	0% - "very grav 0% - "gravelly,' 5% - "with grav 5% - "with trac ement using a	velly," "very sandy " "sandy," "silty," e vel," "with sand," " æ gravel," "with tra	ý," "very silty," etc. etc.	
4. Soil	Secondary C Additional C density or consistency dee nditions, field tests, and lab	onstituents:> 30% and \leq 50> 15% and \leq 30onstituents:> 5% and \leq 15<	0% - "very grav 0% - "gravelly," 5% - "with grav 5% - "with trac ement using a	velly," "very sandy " "sandy," "silty," e vel," "with sand," " æ gravel," "with tra	ý," "very silty," etc. etc. 'with silt," etc. ace sand," "with trace silt," etc., or not noted.	
4. Soil cor	Secondary C Additional C I density or consistency des Iditions, field tests, and lab Drilling a SAMPLER TYPE	onstituents: $> 30\%$ and ≤ 50 $> 15\%$ and ≤ 30 onstituents: $> 5\%$ and ≤ 15 $\le 5\%$ and ≤ 15 scriptions are based on judge oratory tests, as appropriate.	0% - "very grav 0% - "gravelly," 5% - "with grav 5% - "with trac ement using a	velly," "very sandy " "sandy," "silty," ¢ vel," "with sand," " æ gravel," "with tra combination of sa	ý," "very silty," etc. etc. 'with silt," etc. ace sand," "with trace silt," etc., or not noted. ampler penetration blow counts, drilling or excavating Field and Lab Test Data	
4. Soil cor a 3.25 b 2.00 c She d Gra e Sing f Dou g 2.50 h 3.00 i Oth 1 300	Secondary C Additional C I density or consistency dea Iditions, field tests, and lab Drilling a SAMPLER TYPE Description 5-inch O.D., 2.42-inch I.D. 3 Iby Tube b Sample gle-Tube Core Barrel ble-Tube	onstituents: > 30% and ≤ 50 > 15% and ≤ 30 onstituents: > 5% and ≤ 15 ≤ 5 scriptions are based on judge pratory tests, as appropriate. Ind Sampling Ke SAMPLE N Split Spoon Split Spoon Split Spoon MSDOT Mod. California	0% - "very grav 0% - "gravelly," 5% - "with grav 5% - "with trace ement using a Y NUMBER & Sample Identi — Recover] ← Sampl – Portion of S for Arc	Velly," "very sandy " "sandy," "silty," vel," with sand," " e gravel," "with tra combination of sa <u>INTERVAL</u> ification Number ry Depth Interval le Depth Interval le Depth Interval Sample Retained chive or Analysis	ý," "very šilty," etc. etc. 'with silt," etc. ace sand," "with trace silt," etc., or not noted. ampler penetration blow counts, drilling or excavating	ata
4. Soil cor a 3.25 b 2.00 c She d Gra e Sing f Dou g 2.50 h 3.00 i Oth 1 300 2 140	Secondary C Additional C I density or consistency dea additions, field tests, and lab Drilling a SAMPLER TYPE Description 5-inch O.D., 2.42-inch I.D. 3 Iby Tube b Sample Je-Tube Core Barrel Jo-inch O.D., 2.00-inch I.D. 4 Jo-inch O.D., 2.375-inch I.D. er - See text if applicable -Ib Hammer, 30-inch Drop -Ib Hammer, 30-inch Drop	onstituents: > 30% and ≤ 50 > 15% and ≤ 30 onstituents: > 5% and ≤ 15 ≤ 5 scriptions are based on judge pratory tests, as appropriate. IND Sampling Ke SAMPLE N Split Spoon Split Spoon Split Spoon MSDOT Mod. California	0% - "very grav 0% - "gravelly," 5% - "with grav 5% - "with trac ement using a 2 NUMBER & Sample Identi — Recover] ← Sampl — Portion of S	Velly," "very sandy " "sandy," "silty," vel," with sand," " e gravel," "with tra combination of sa <u>INTERVAL</u> ification Number ry Depth Interval le Depth Interval le Depth Interval Sample Retained chive or Analysis	y," "very silty," etc. etc. 'with silt," etc. acce sand," "with trace silt," etc., or not noted. ampler penetration blow counts, drilling or excavating Field and Lab Test Data Ocde Description PP = 1.0 Pocket Penetrometer, tsf TV = 0.5 Torvane, tsf PID = 100 Photoionization Detector VOC screenin W = 10 Moisture Content, % D = 120 Dry Density, pcf -200 = 60 Material smaller than No. 200 sieve, % GS Grain Size - See separate figure for da AL Atterberg Limits - See separate figure for da AL Other Geotechnical Testing	ata
4. Soil cor a 3.25 b 2.00 c She d Gra e Sing f Dou g 2.50 h 3.00 i Oth 1 300 2 140 3 Pus 4 Vibr	Secondary C Additional C I density or consistency dea additions, field tests, and lab Drilling a SAMPLER TYPE Description 5-inch O.D., 2.42-inch I.D. 3 Iby Tube b Sample Je-Tube Core Barrel Jo-inch O.D., 2.00-inch I.D. 4 Jo-inch O.D., 2.375-inch I.D. er - See text if applicable -Ib Hammer, 30-inch Drop -Ib Hammer, 30-inch Drop	e) anstituents: > 30% and ≤ 50 > 15% and ≤ 30 onstituents: > 5% and ≤ 15 ≤ 5 Sociptions are based on judge oratory tests, as appropriate. Ind Sampling Ke SAMPLE N Split Spoon MSDOT Mod. California	0% - "very grav 0% - "gravelly," 5% - "with grav 5% - "with trace ement using a EY NUMBER & Sample Identii — Recover Groundw poroximate wat	Velly," "very sandy " "sandy," "silty," vel," with sand," " e gravel," "with tra combination of sa <u>INTERVAL</u> ification Number ry Depth Interval le Depth Interval le Depth Interval Sample Retained chive or Analysis	f," "very silty," etc. etc. 'with silt," etc. acce sand," "with trace silt," etc., or not noted. ampler penetration blow counts, drilling or excavating Field and Lab Test Data Code Description PP = 1.0 Pocket Penetrometer, tsf TV = 0.5 Torvane, tsf PID = 100 Photoionization Detector VOC screenin W = 10 Moisture Content, % D = 120 Dry Density, pcf -200 = 60 Material smaller than No. 200 sieve, % GS Grain Size - See separate figure for da AL Atterberg Limits - See separate figure for da AL Chemical Analysis f drilling (ATD) Fidilling (ATD)	ata

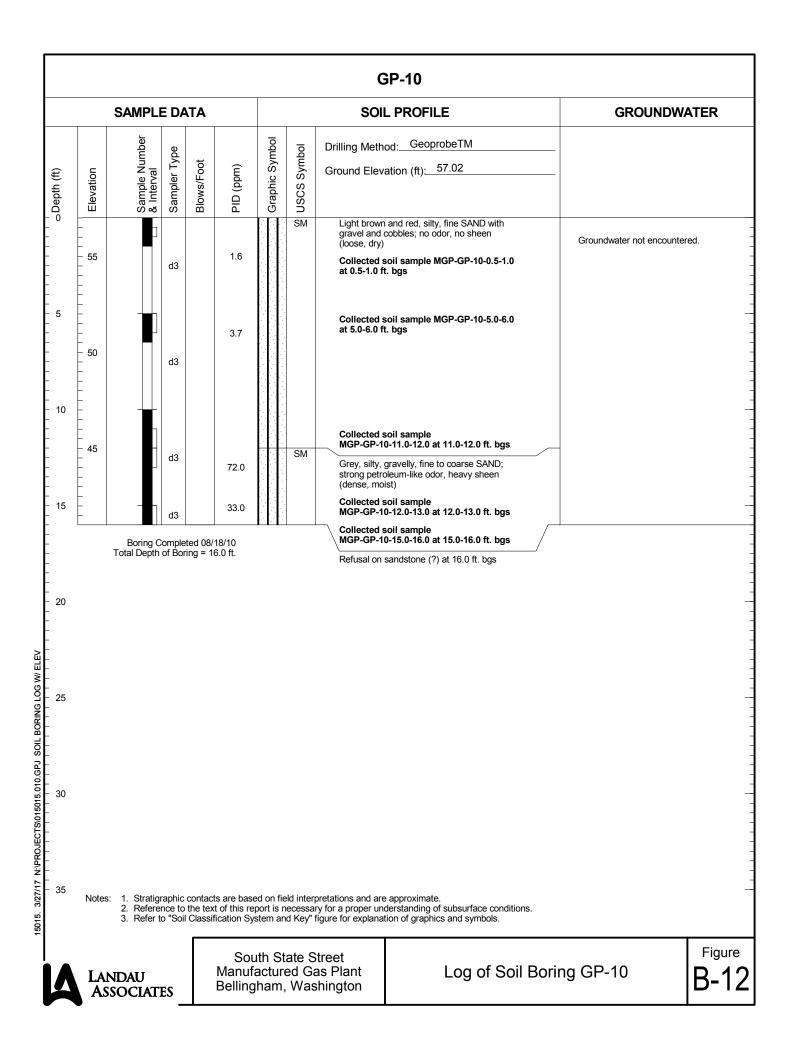


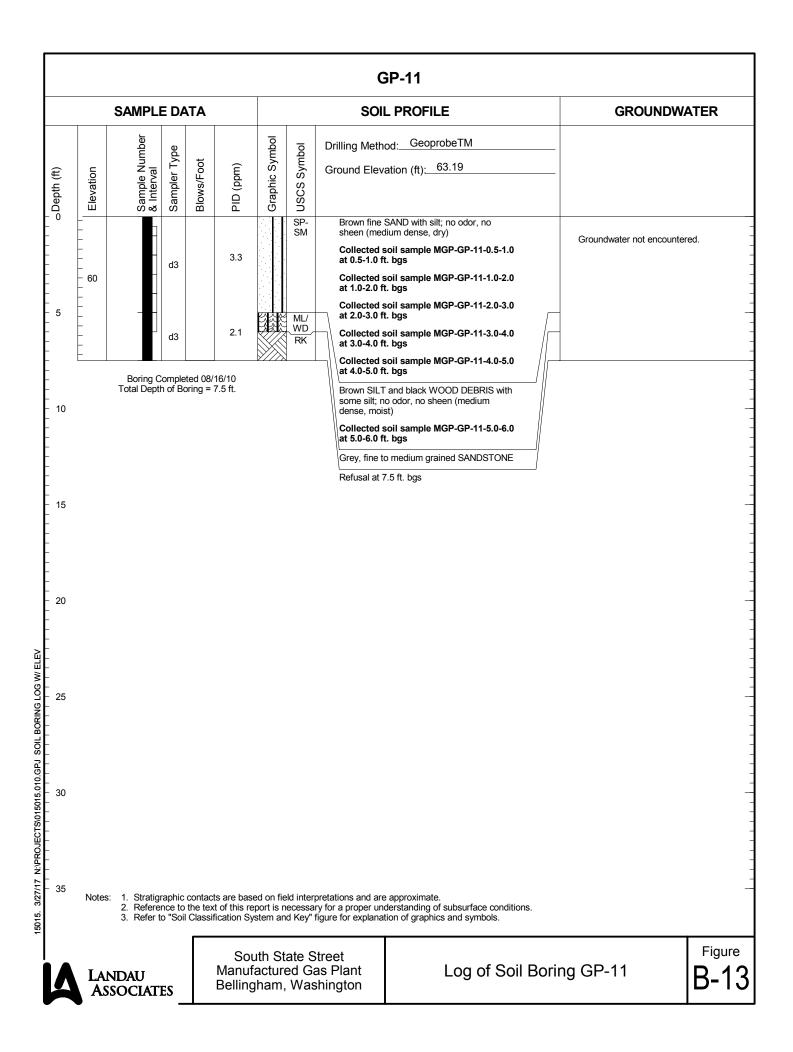


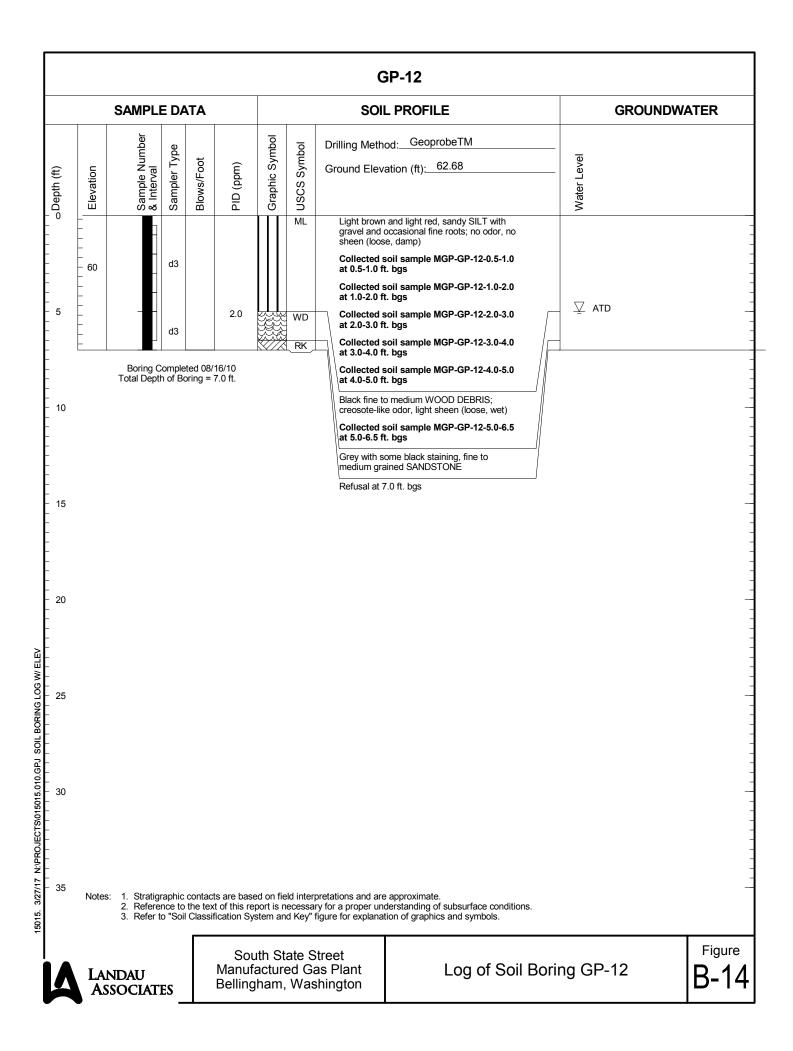


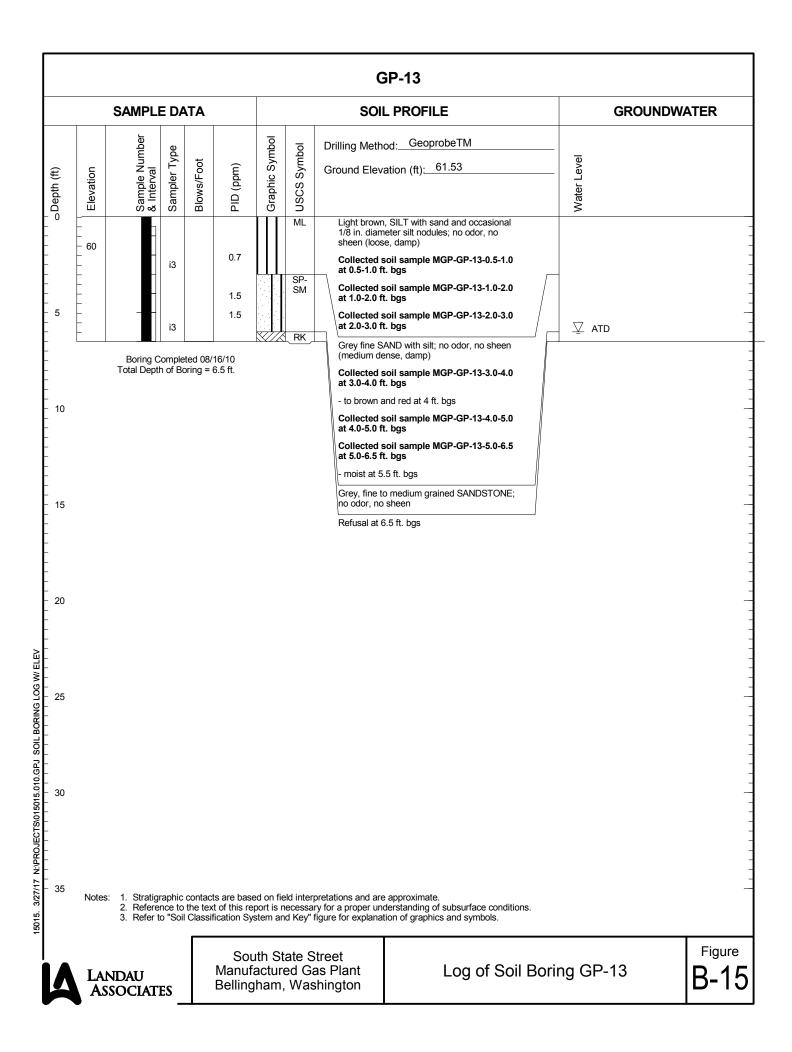


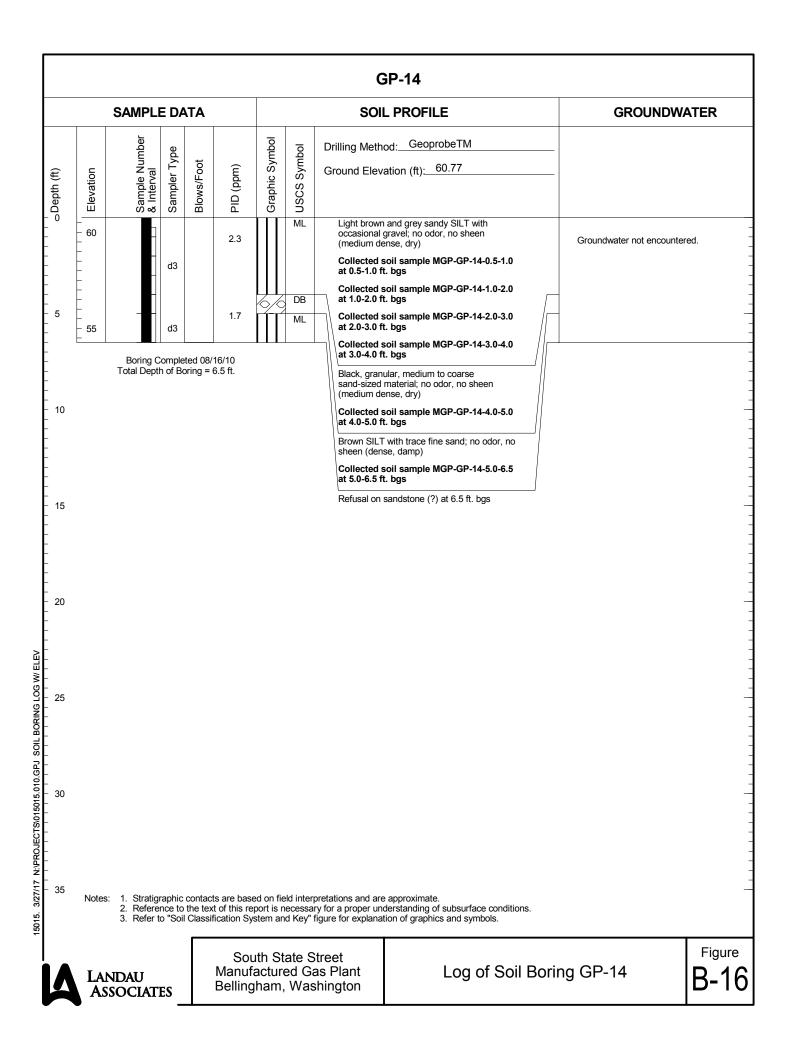


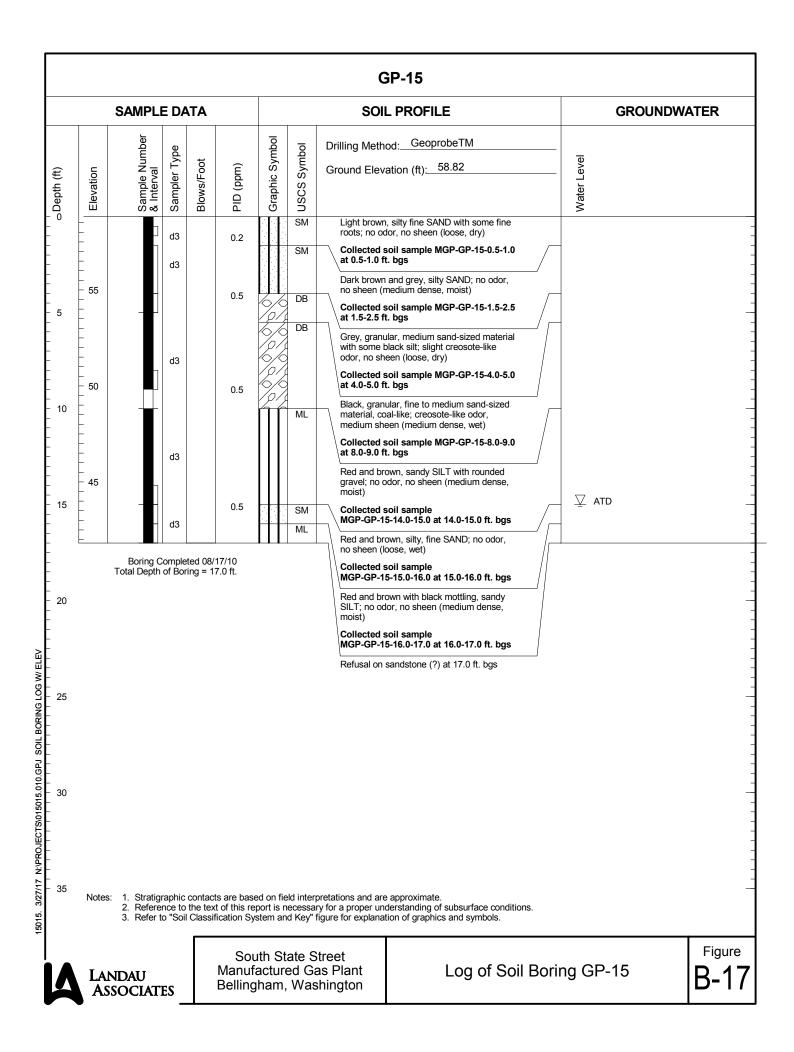


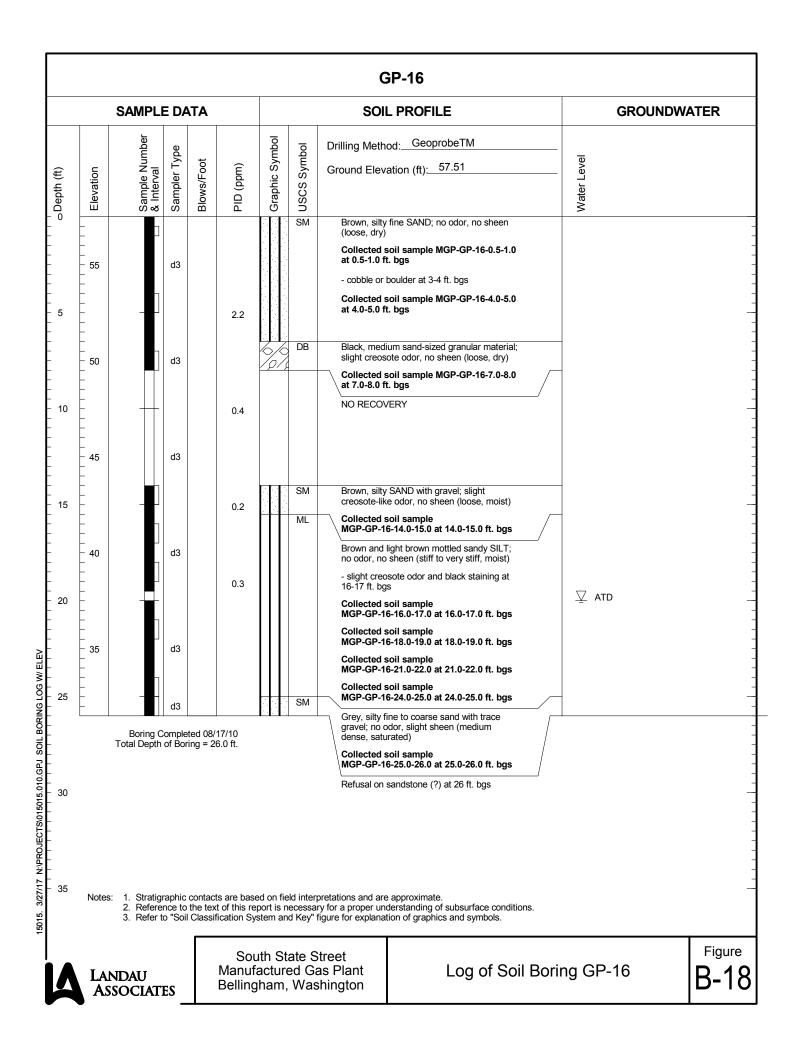


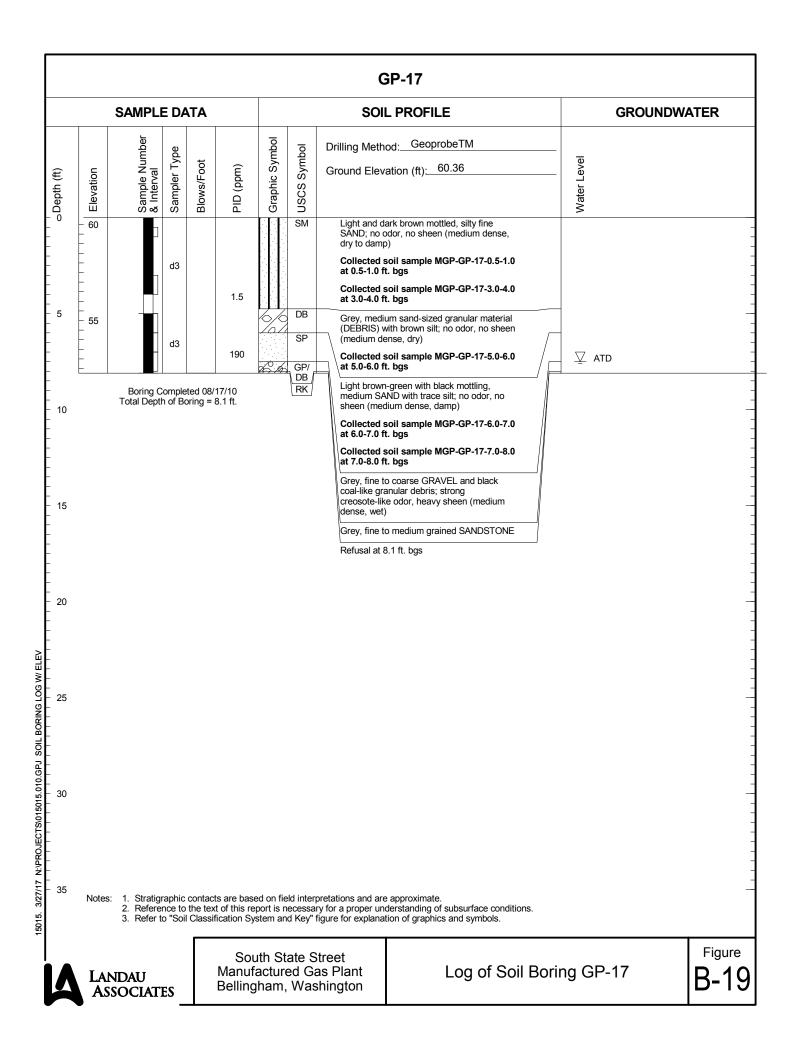


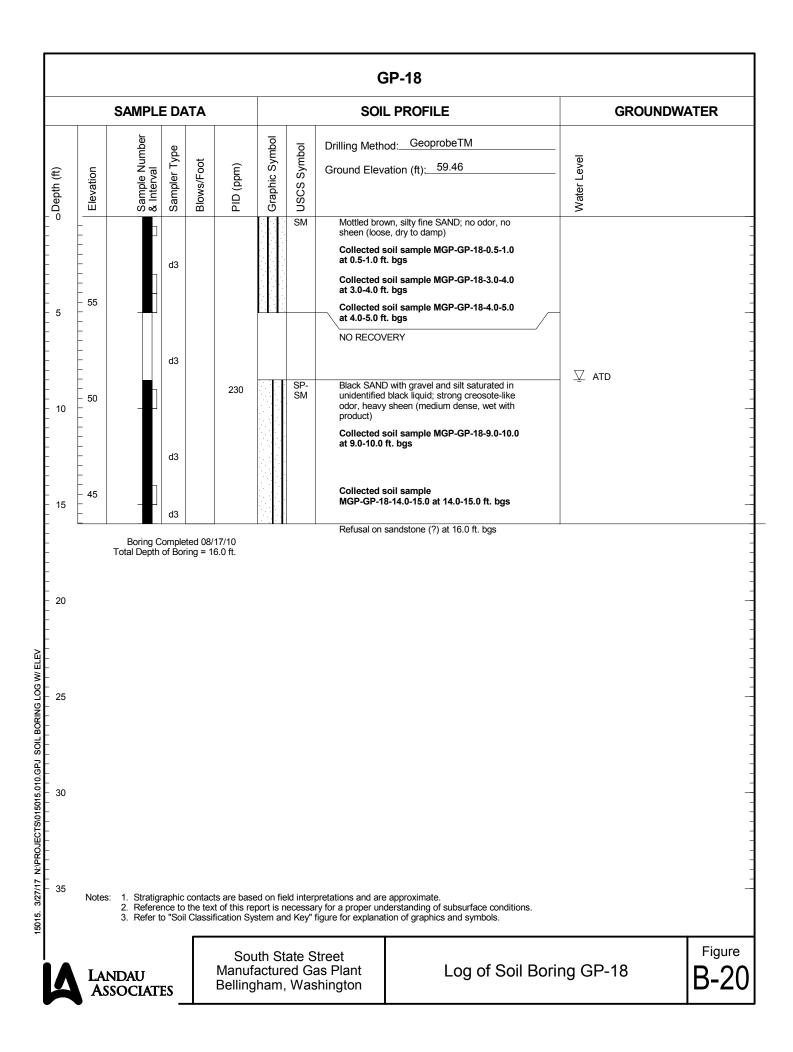


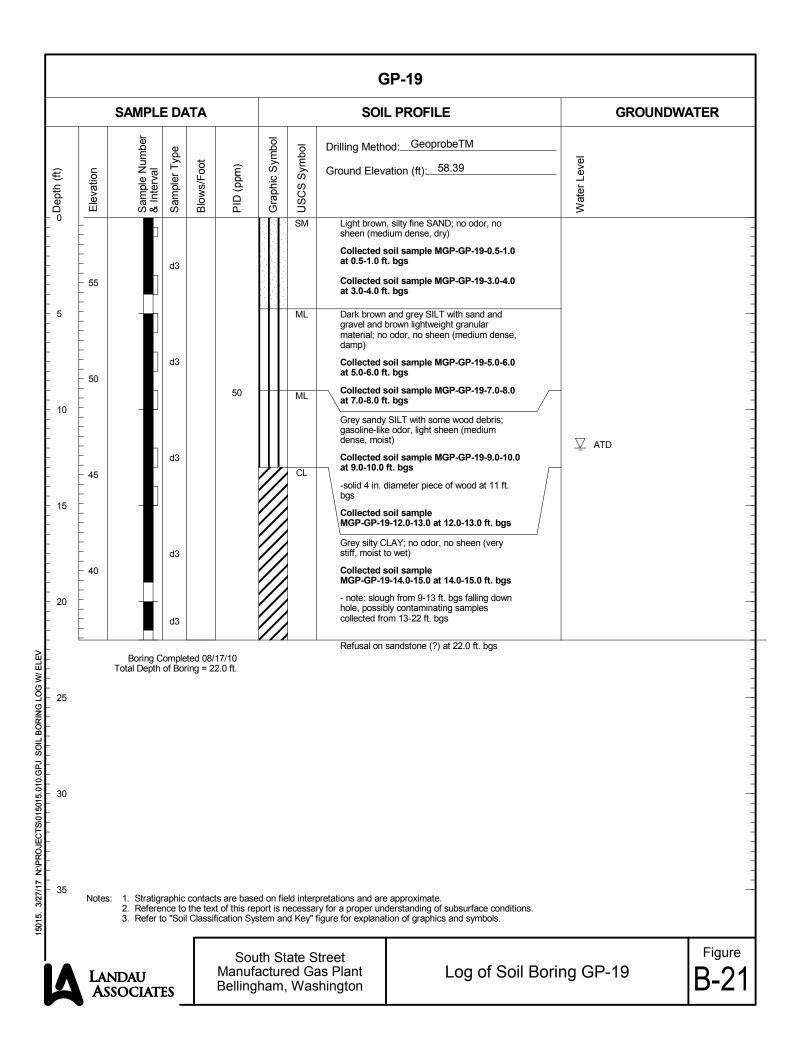


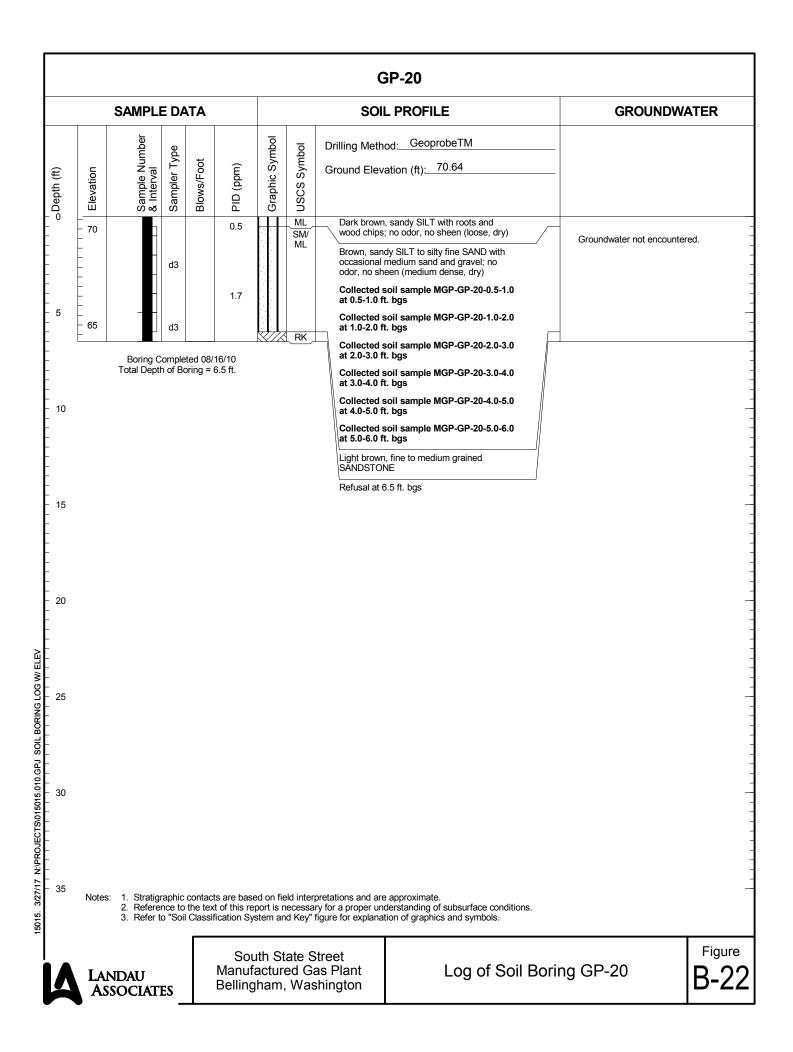


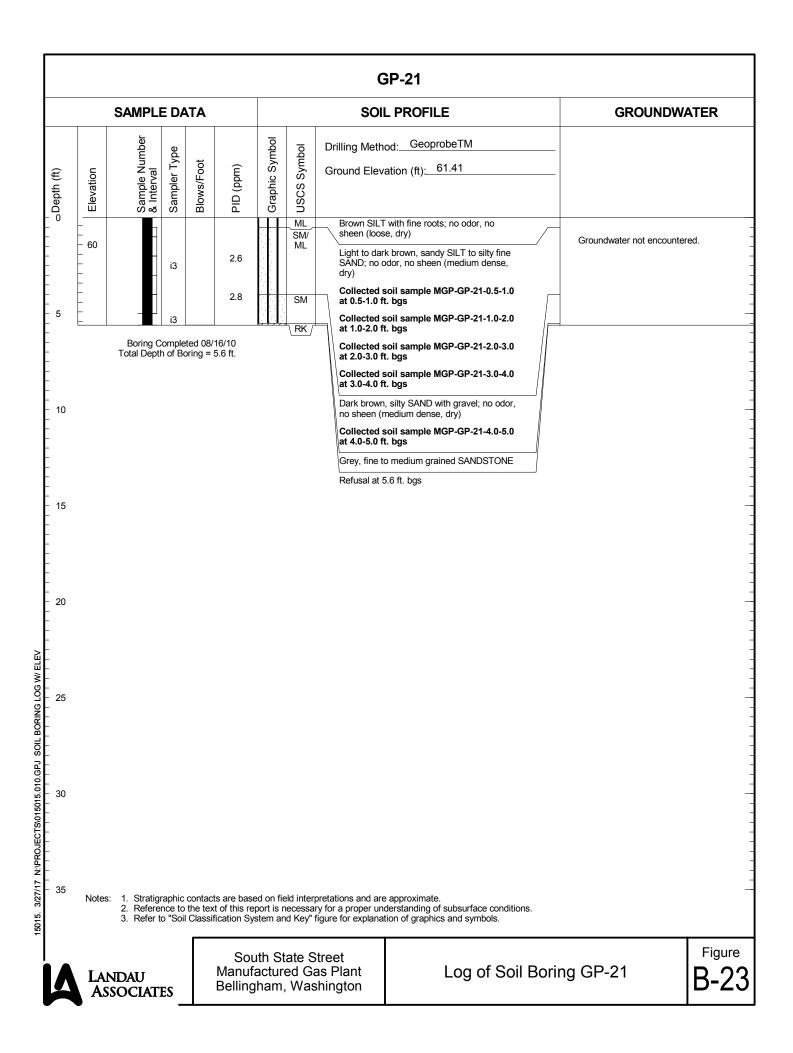


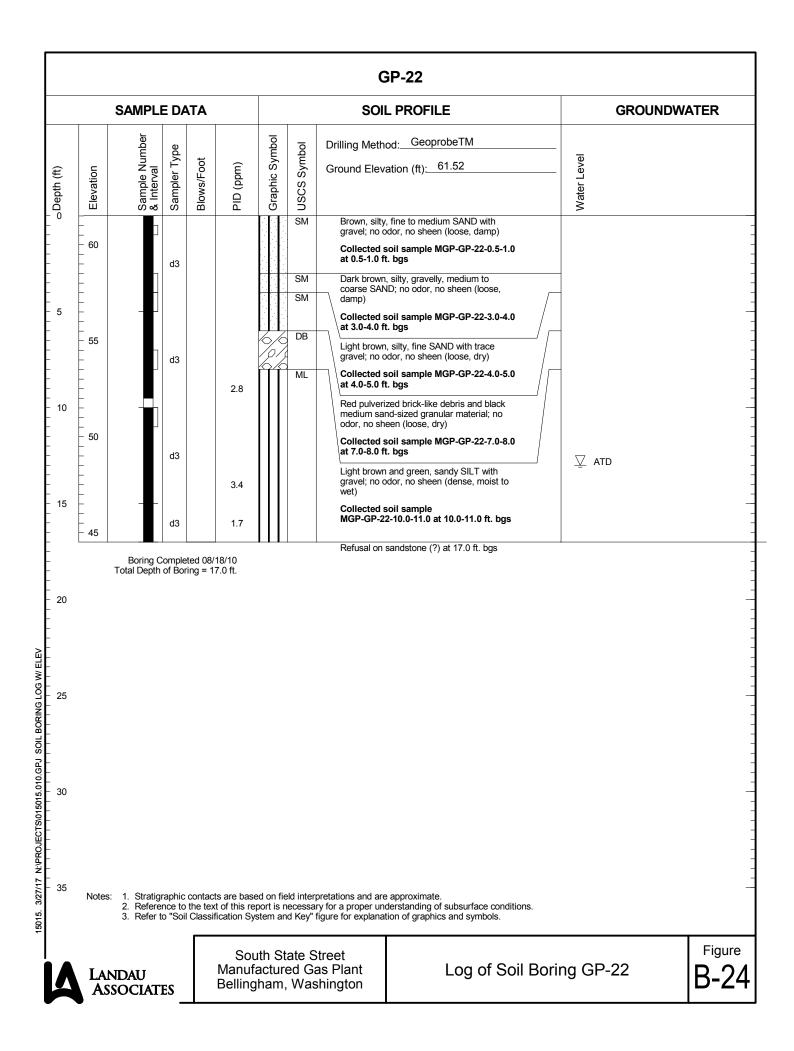


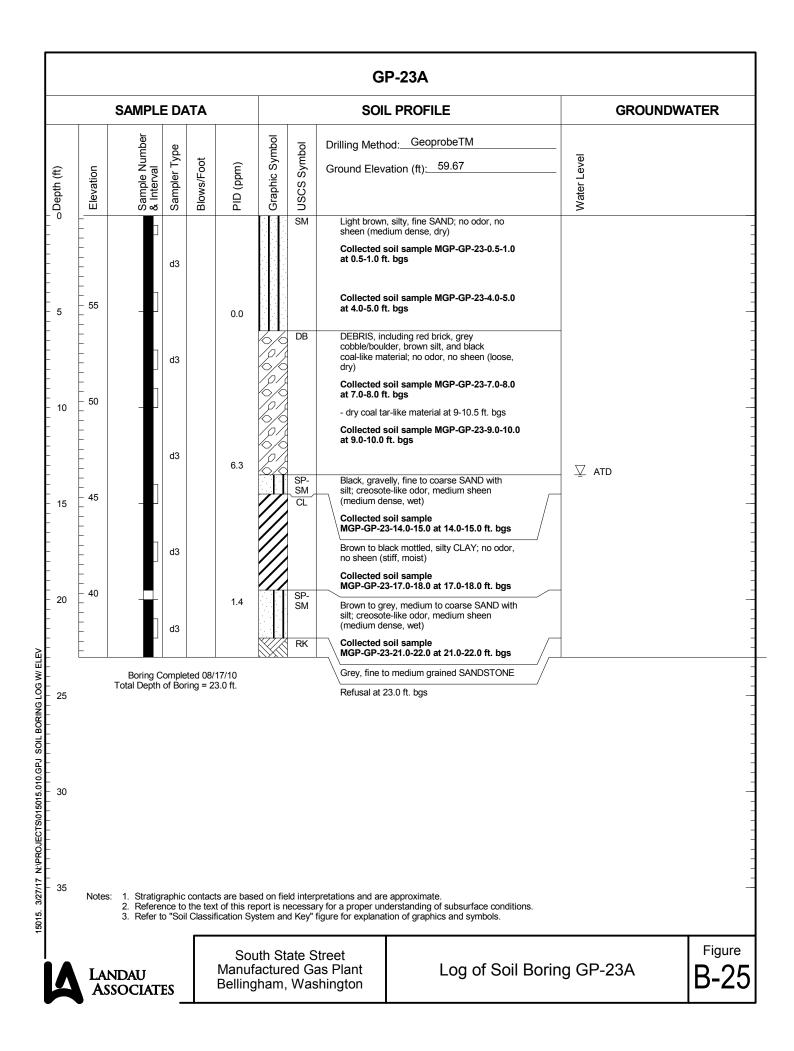


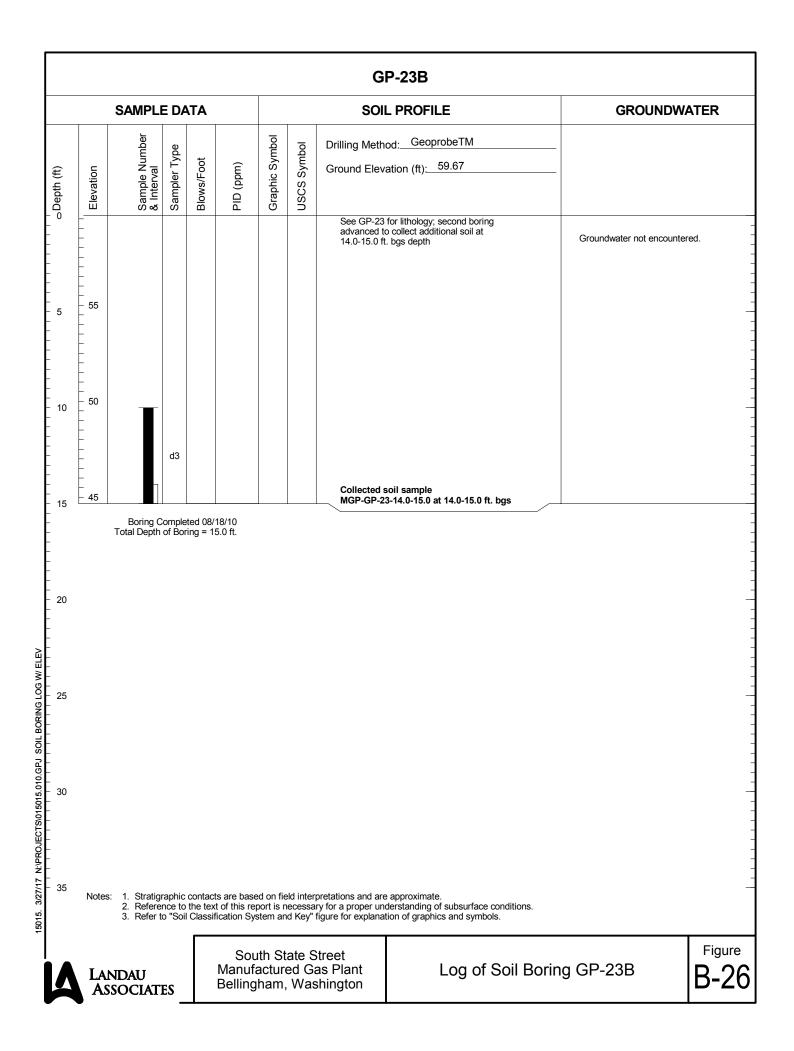


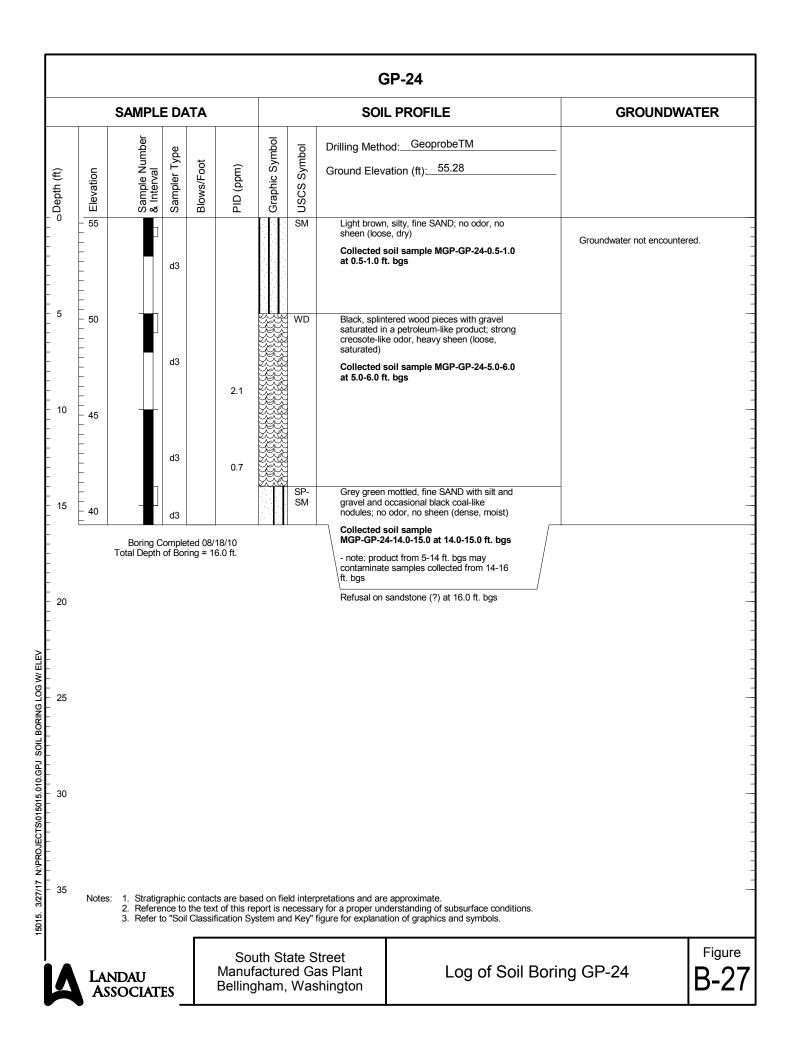


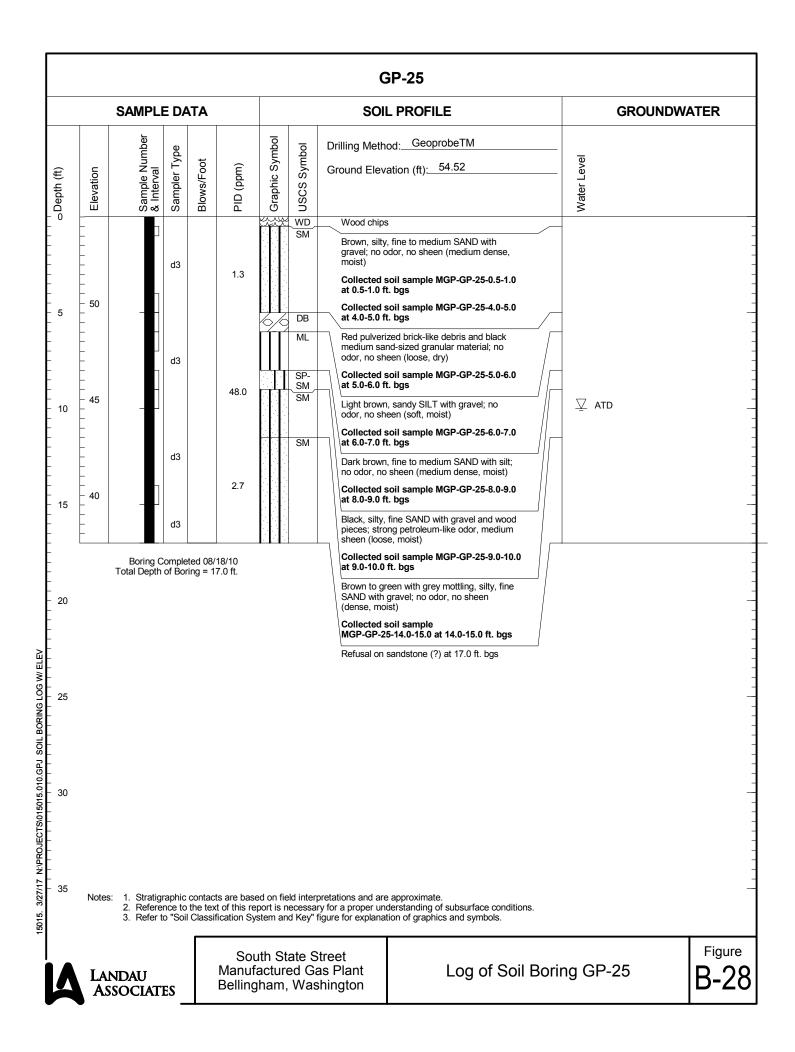


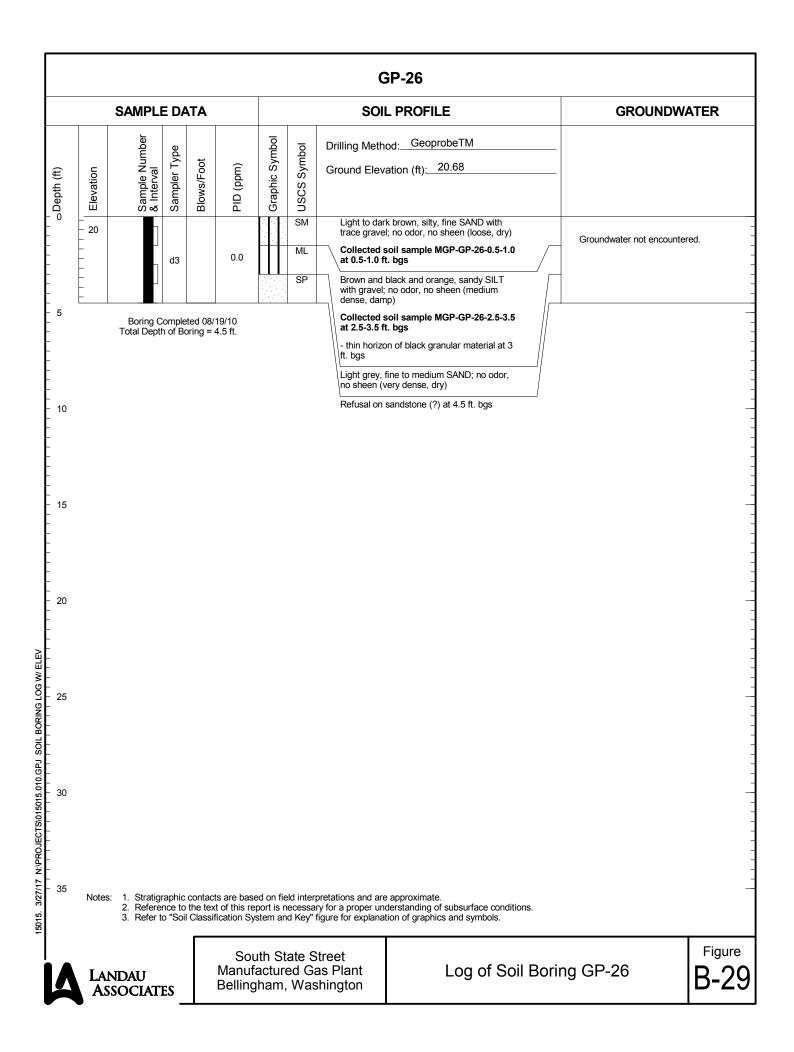


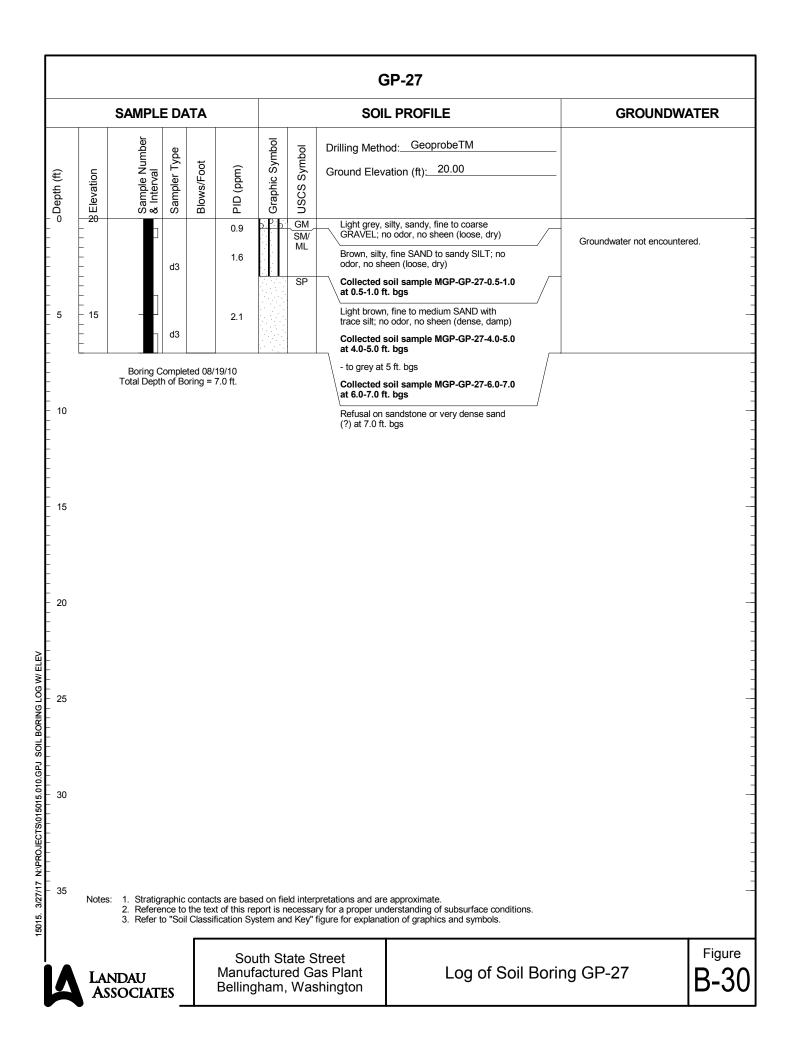


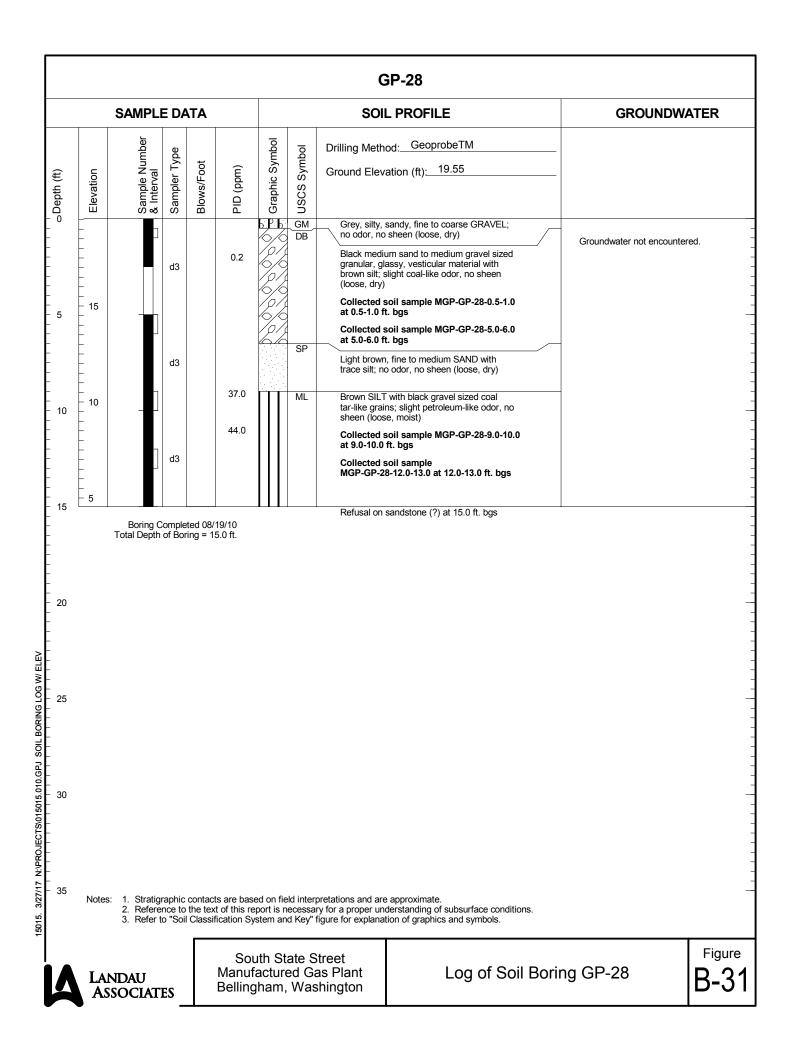


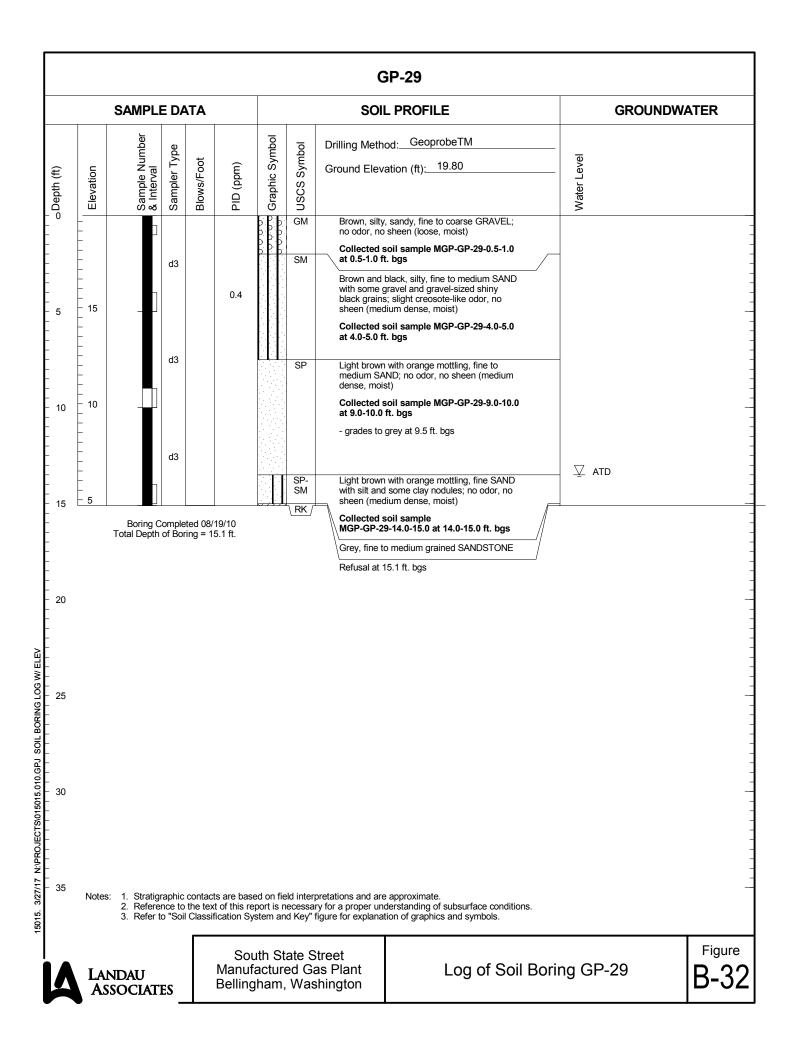


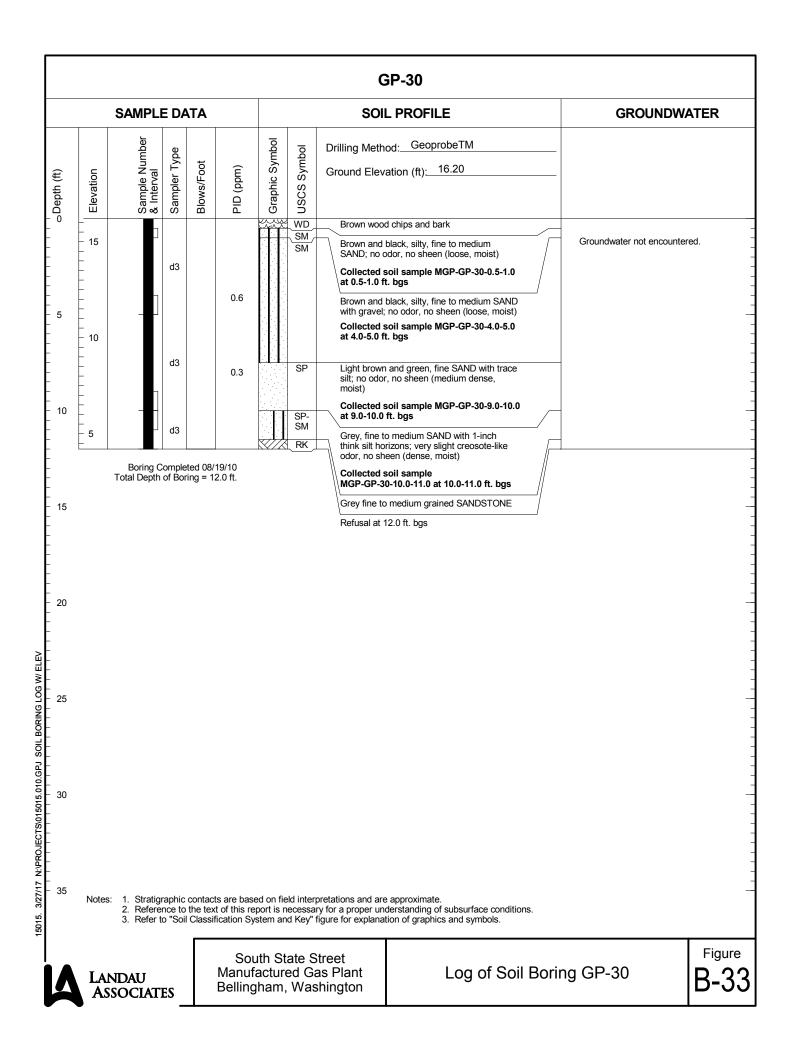


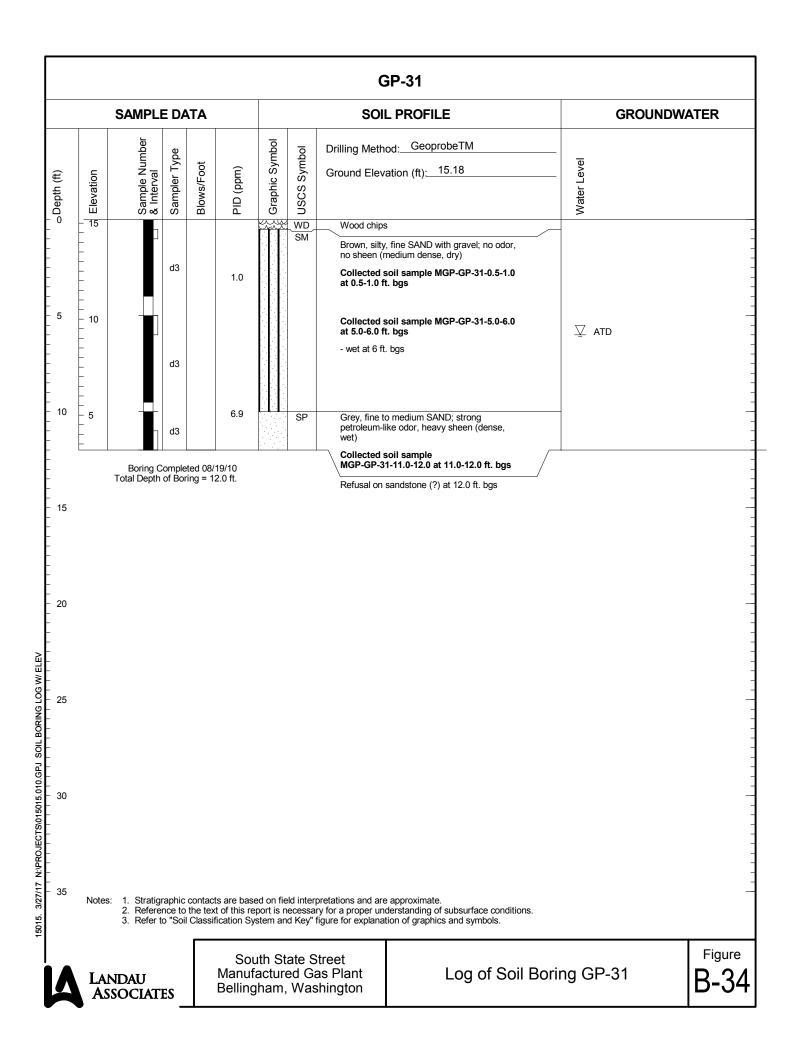


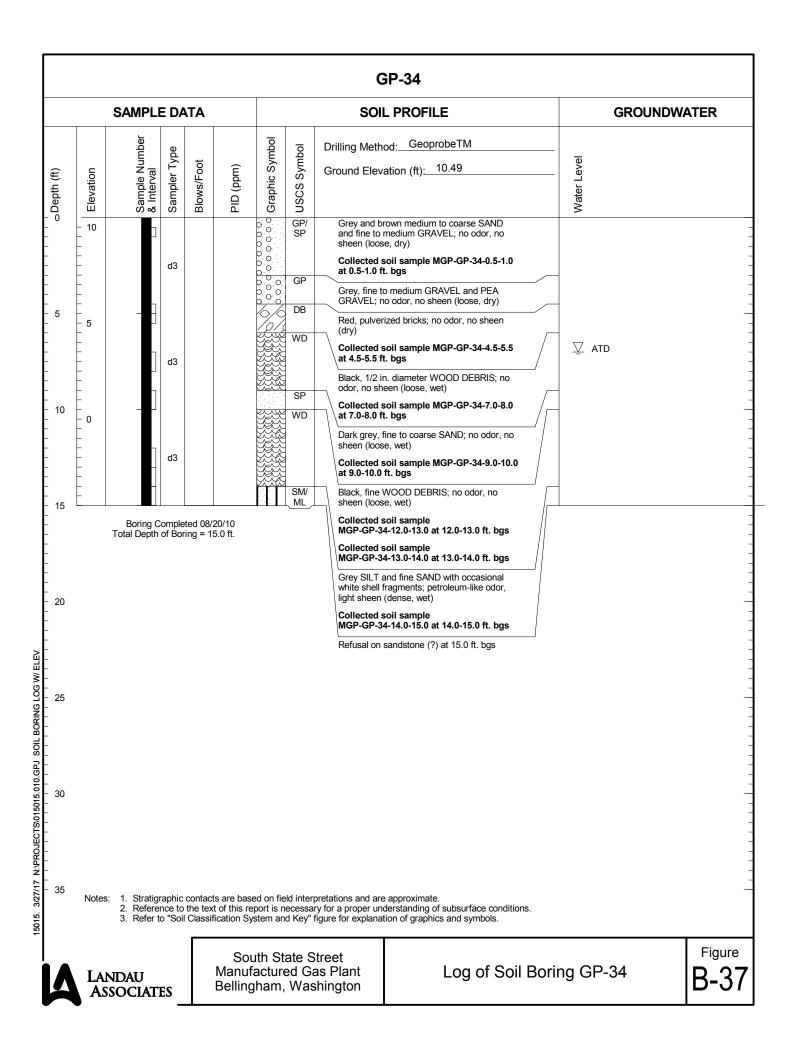


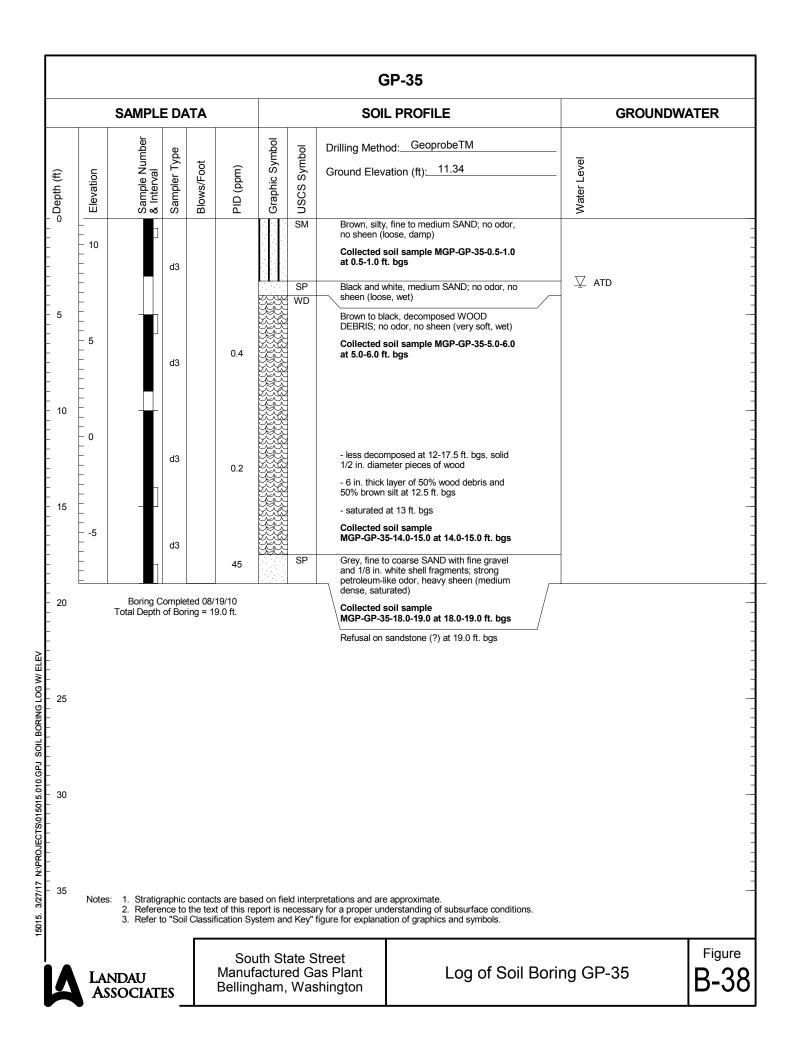


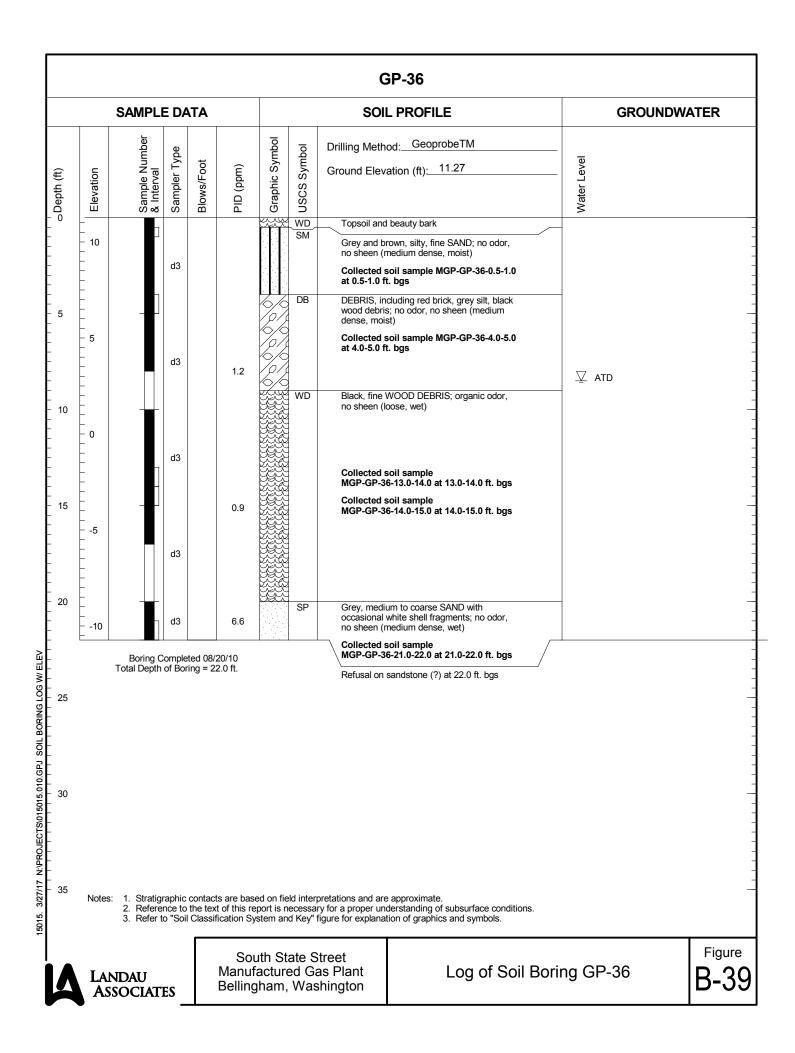


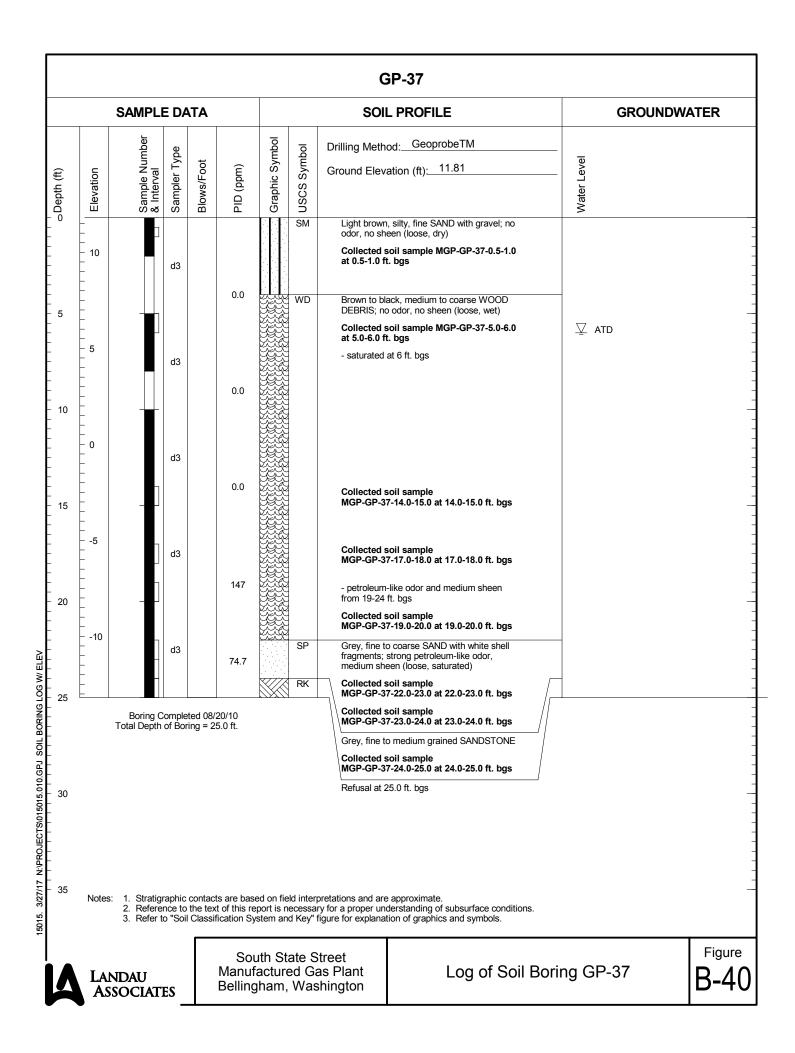


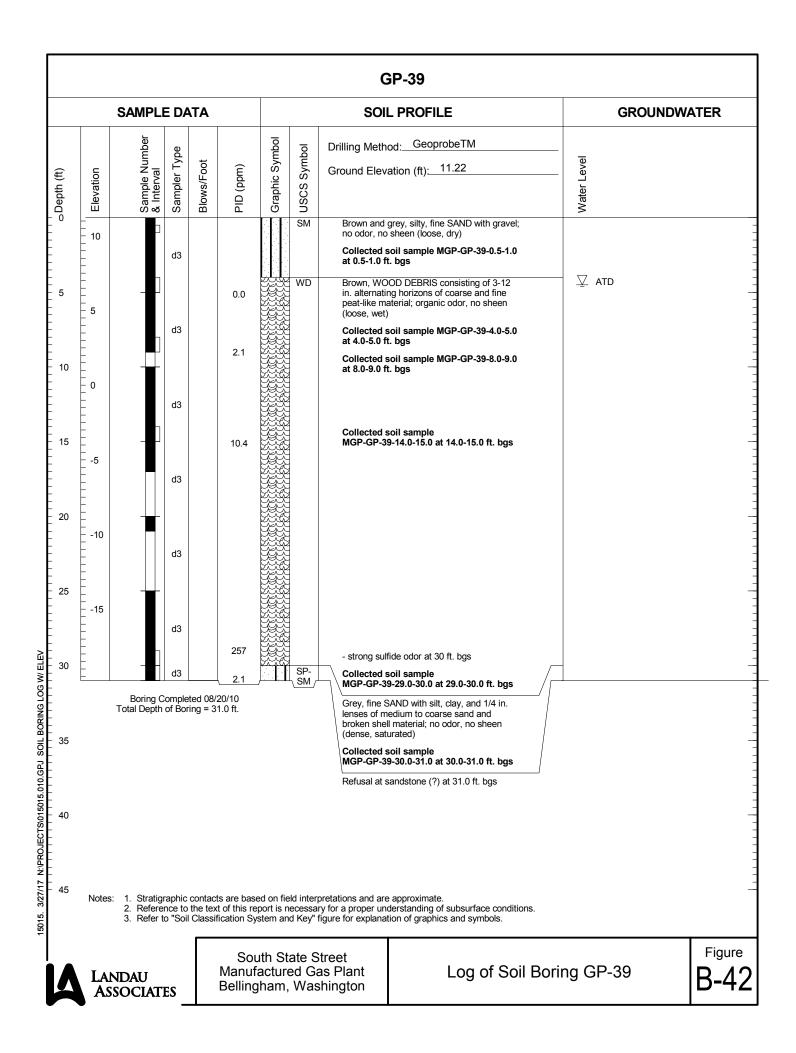


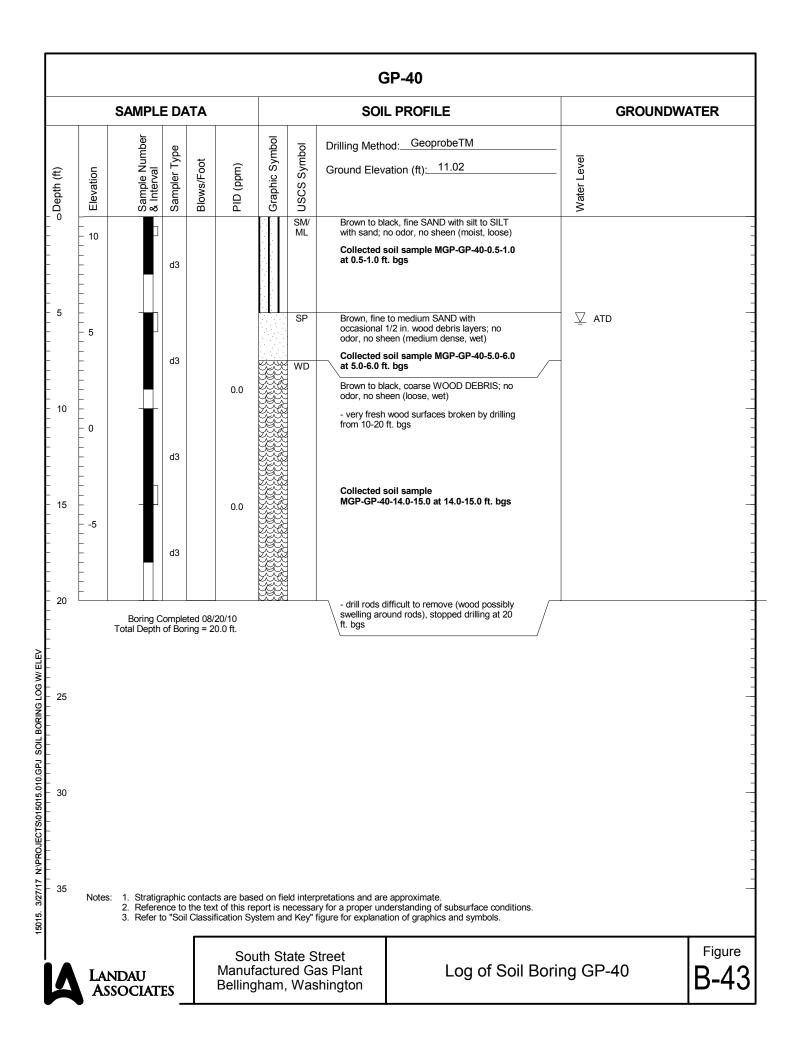


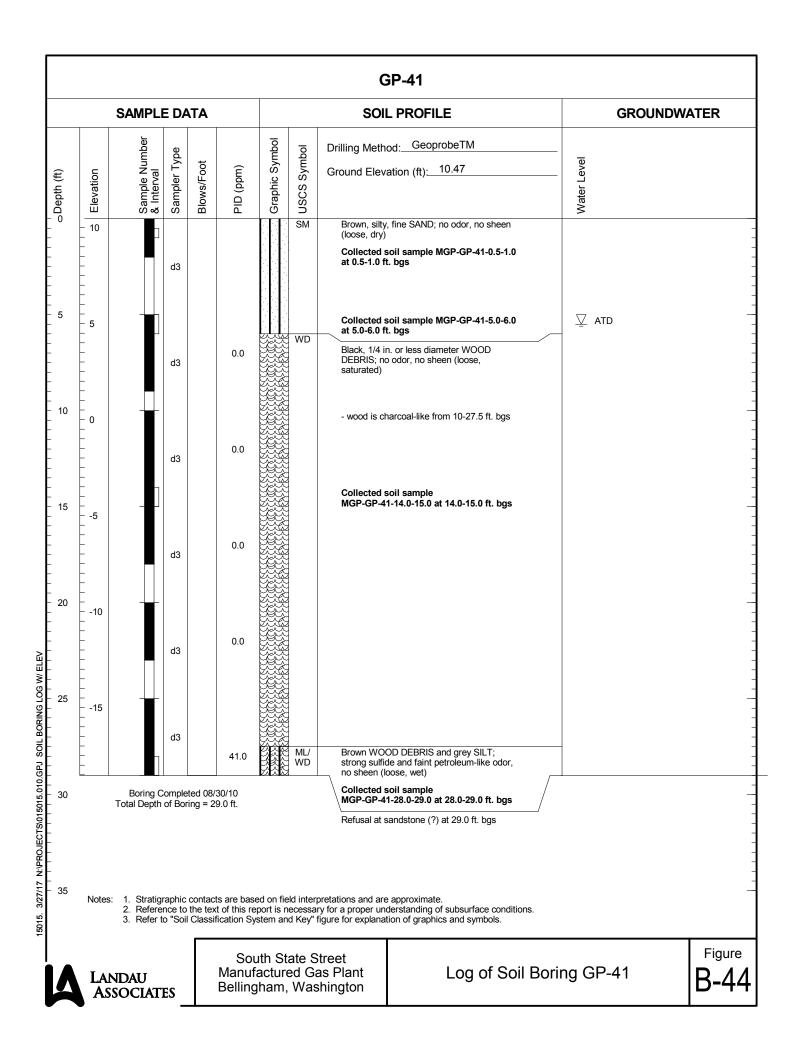


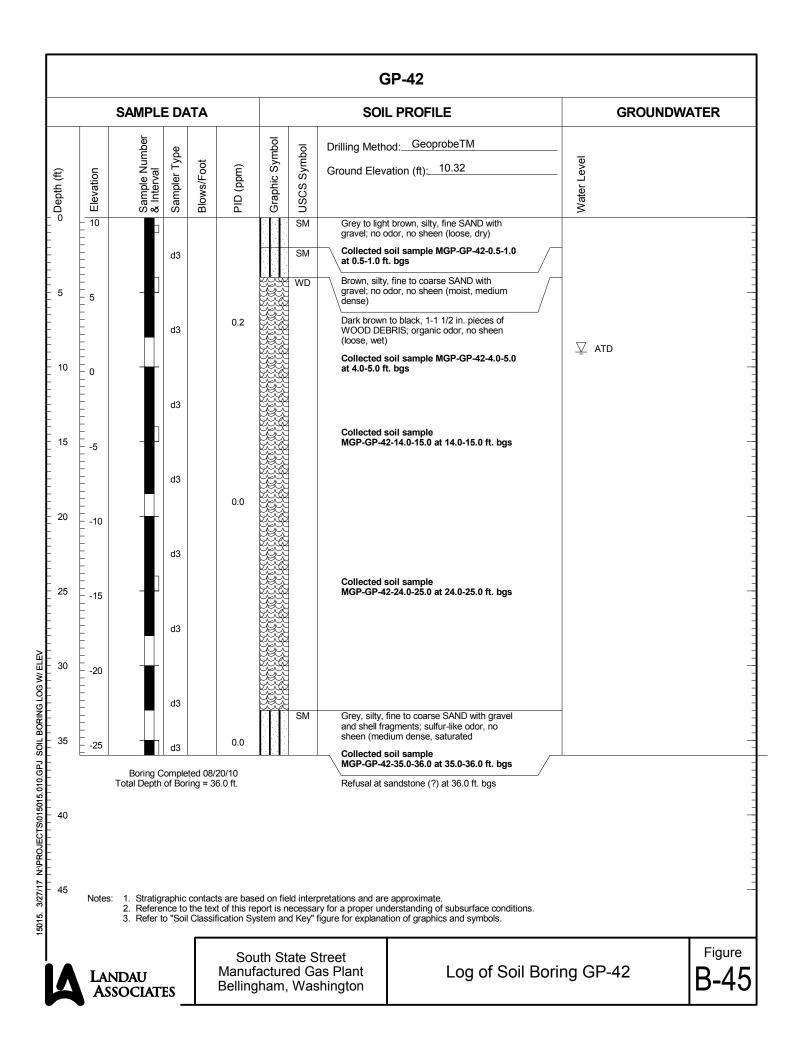


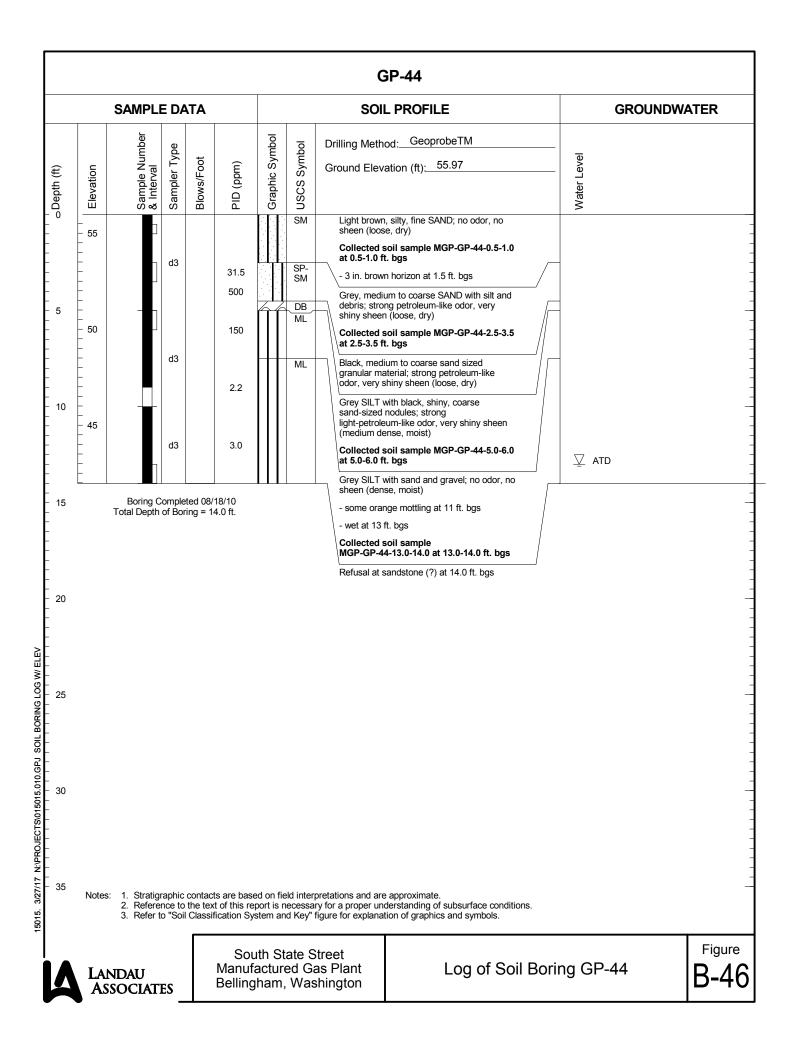


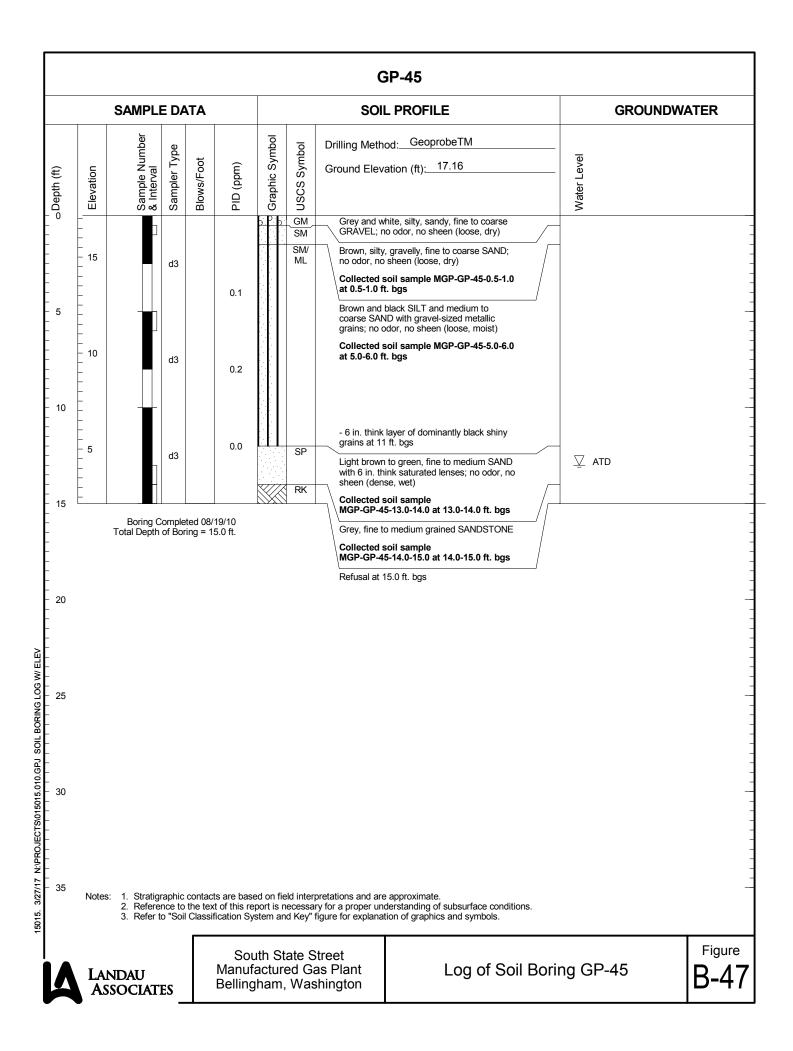


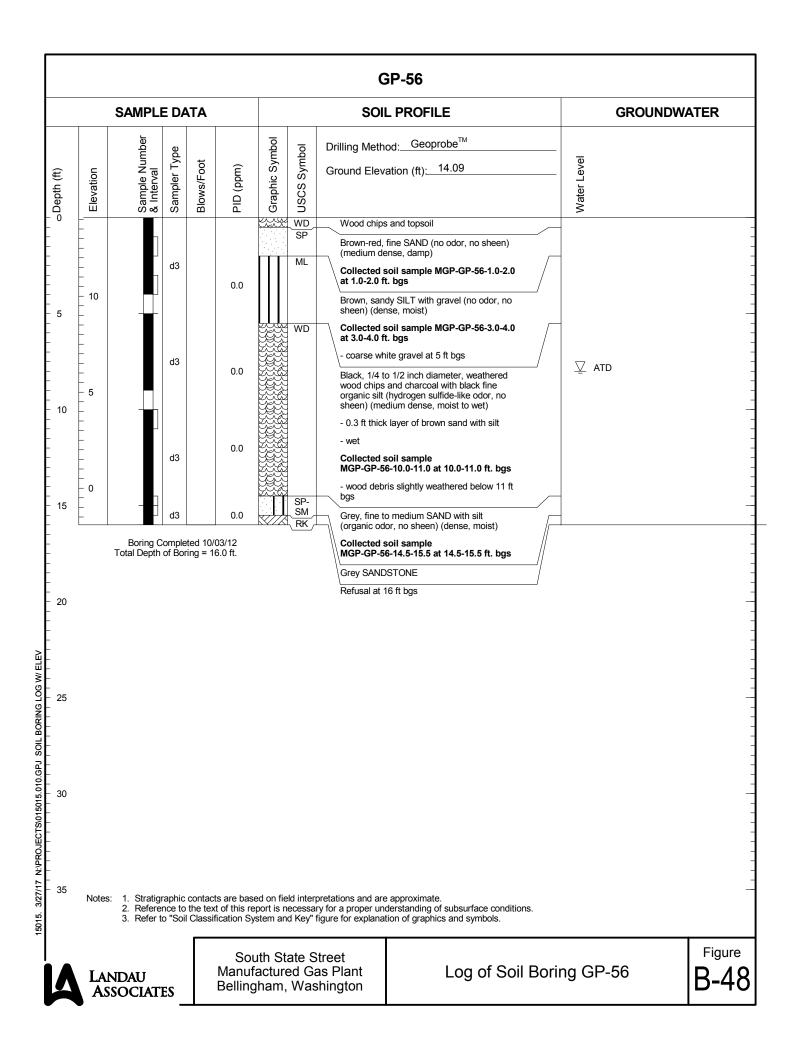


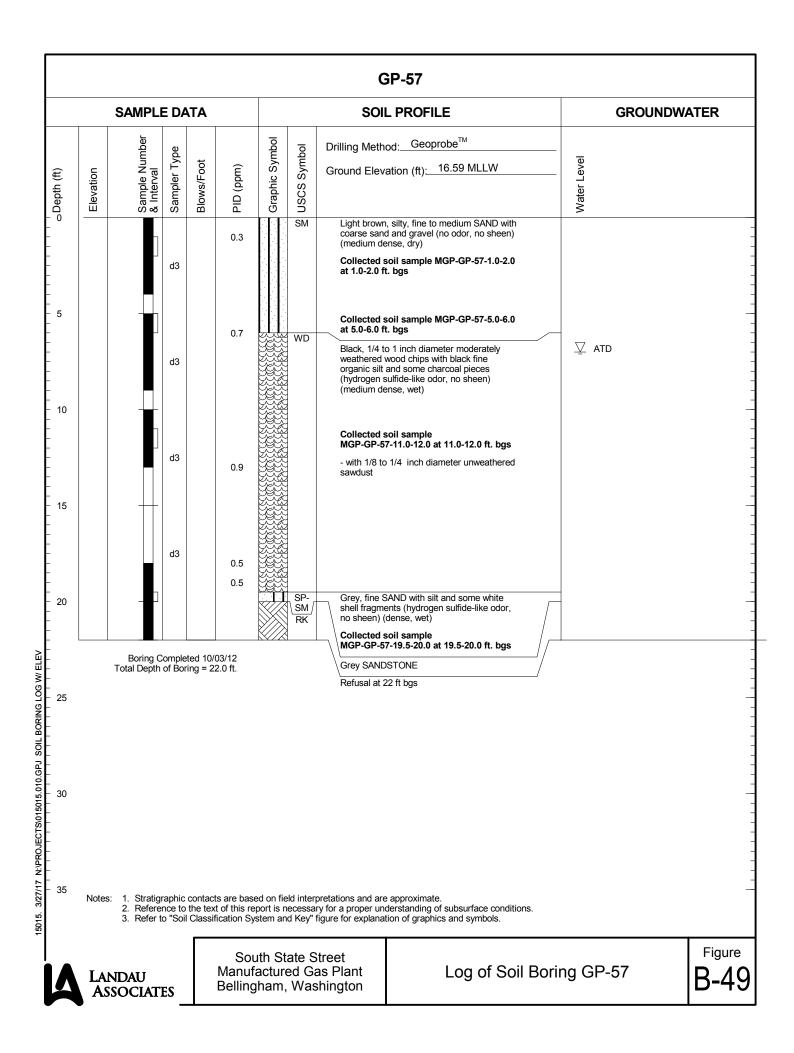


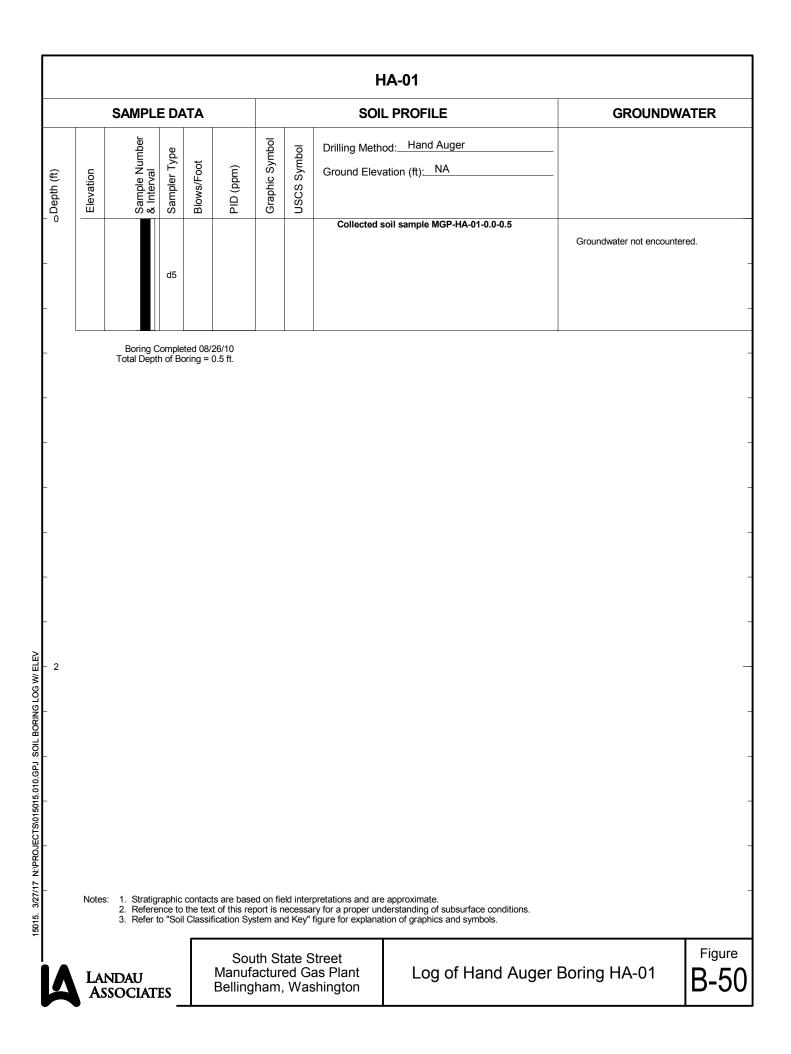


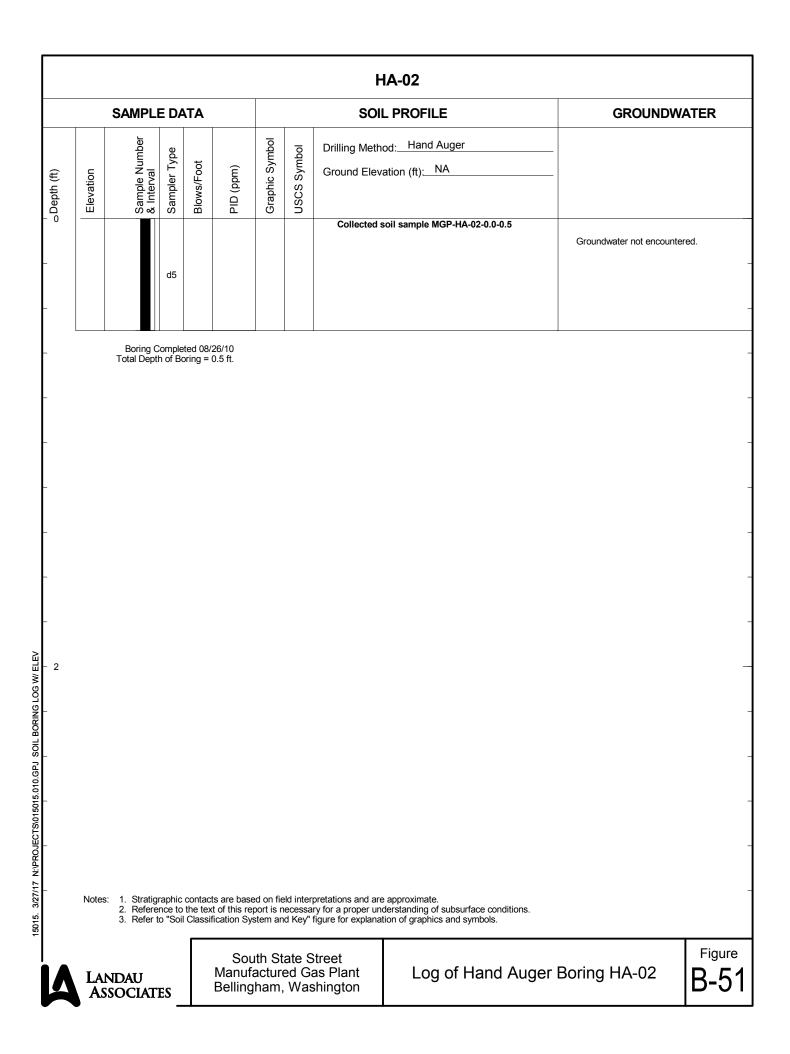


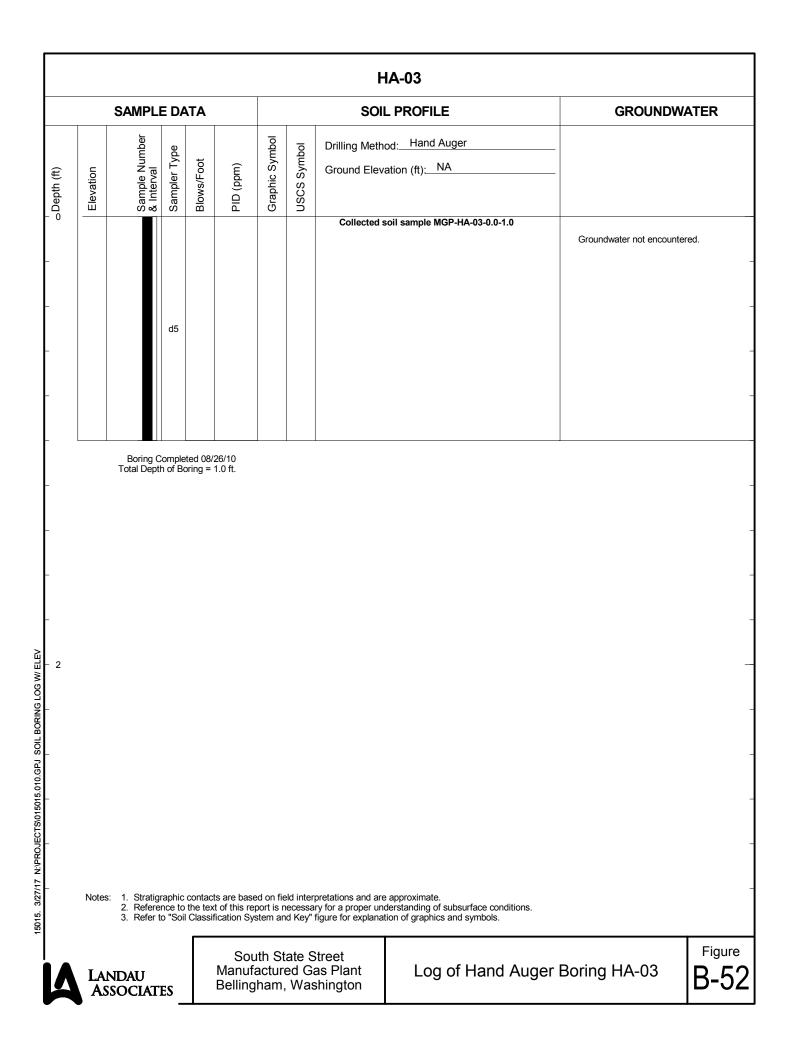


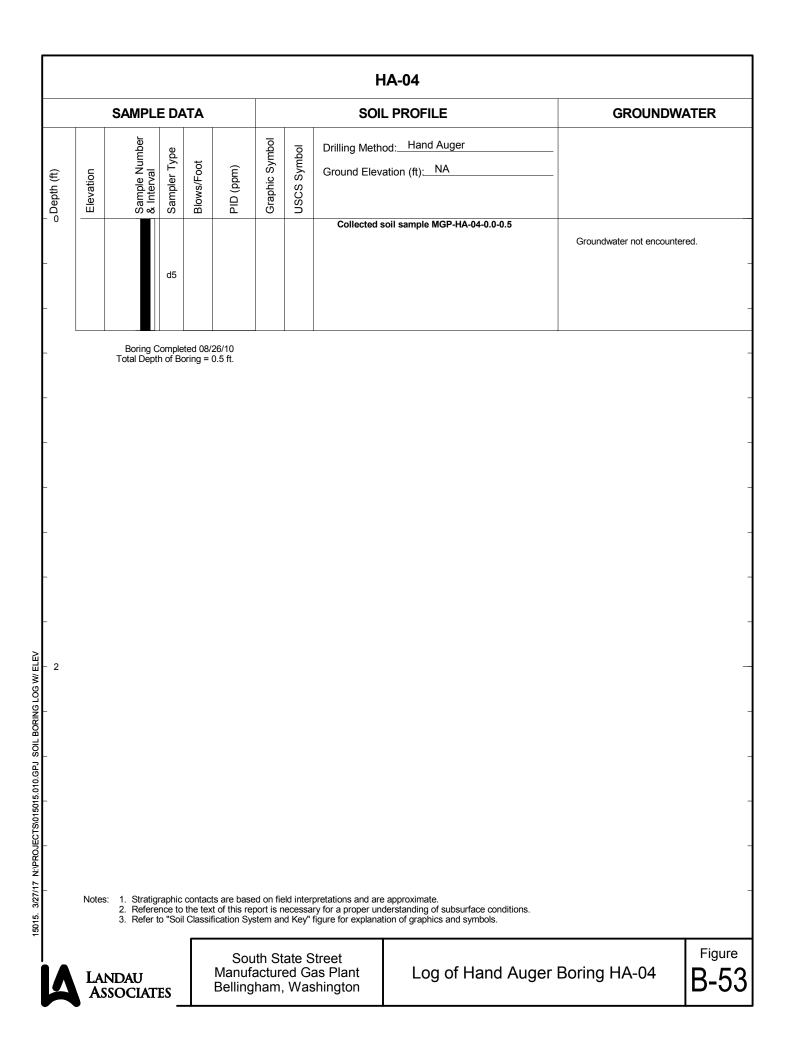


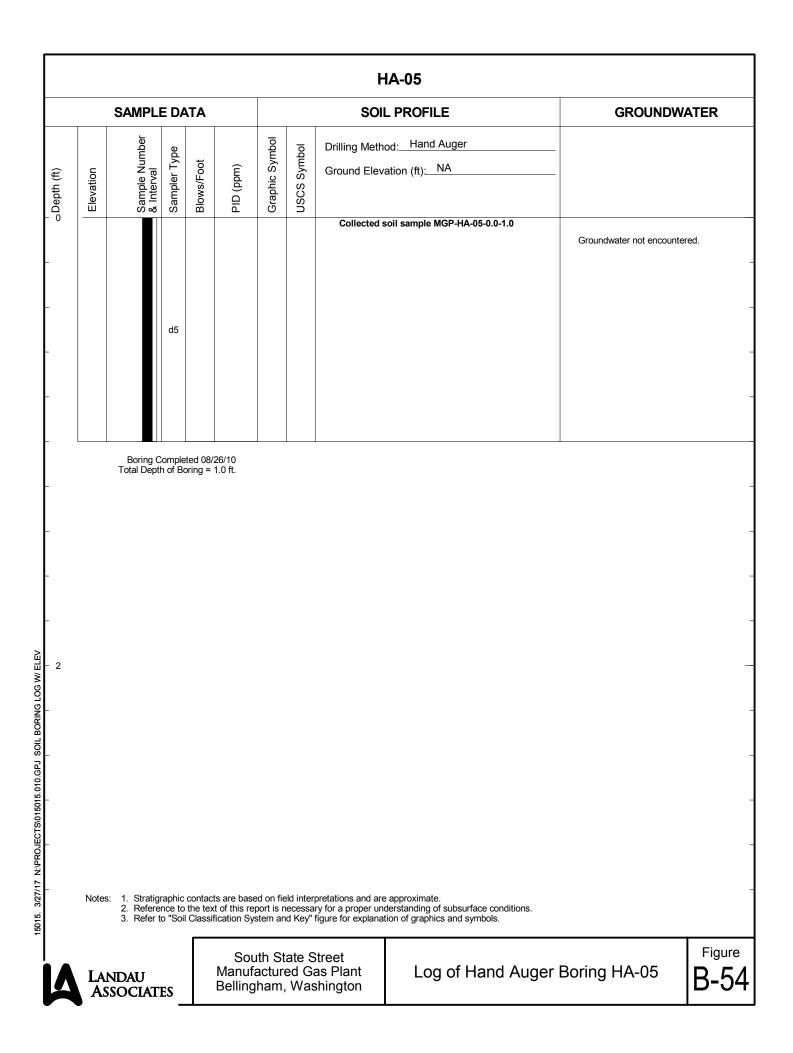


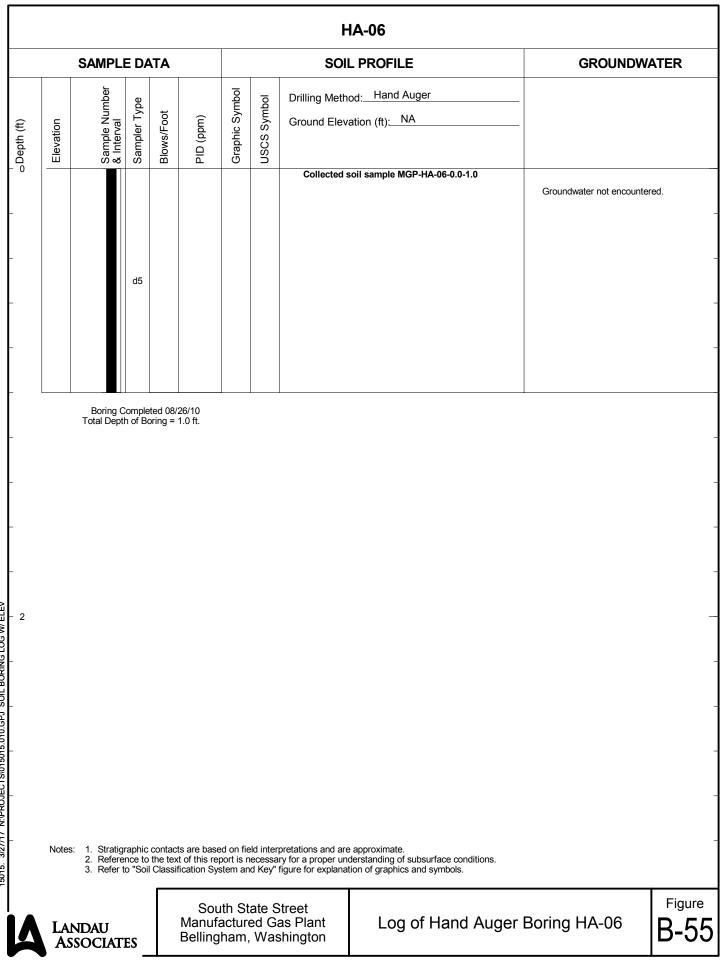


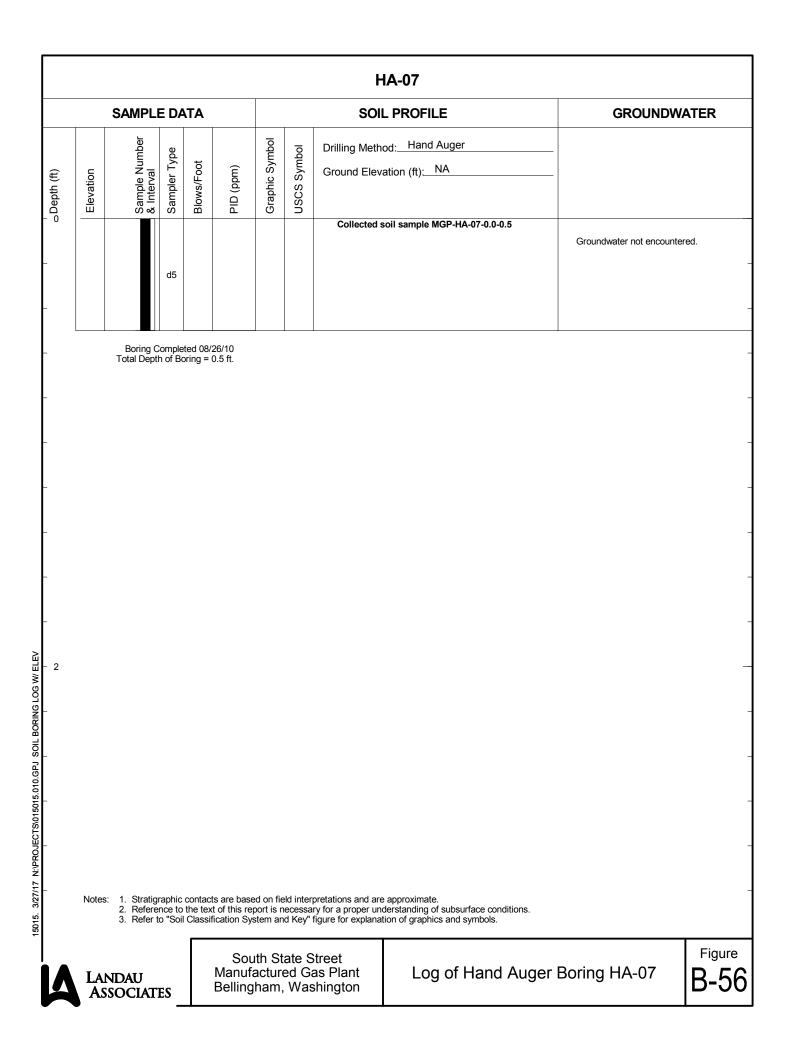


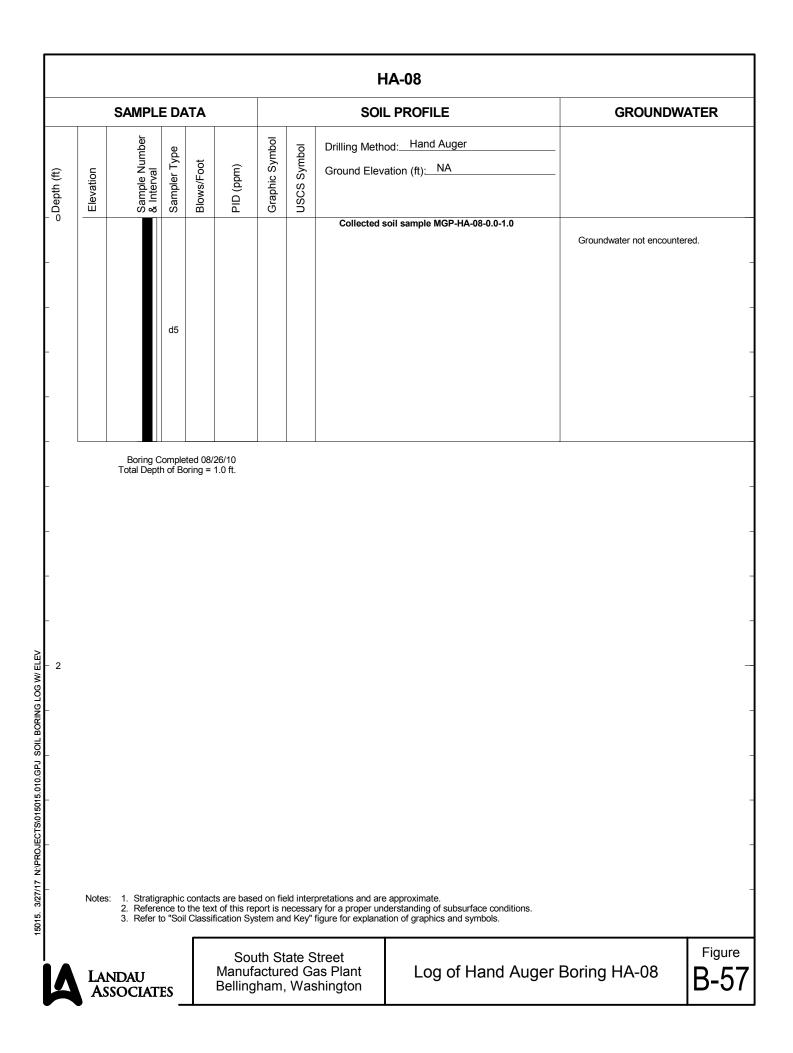


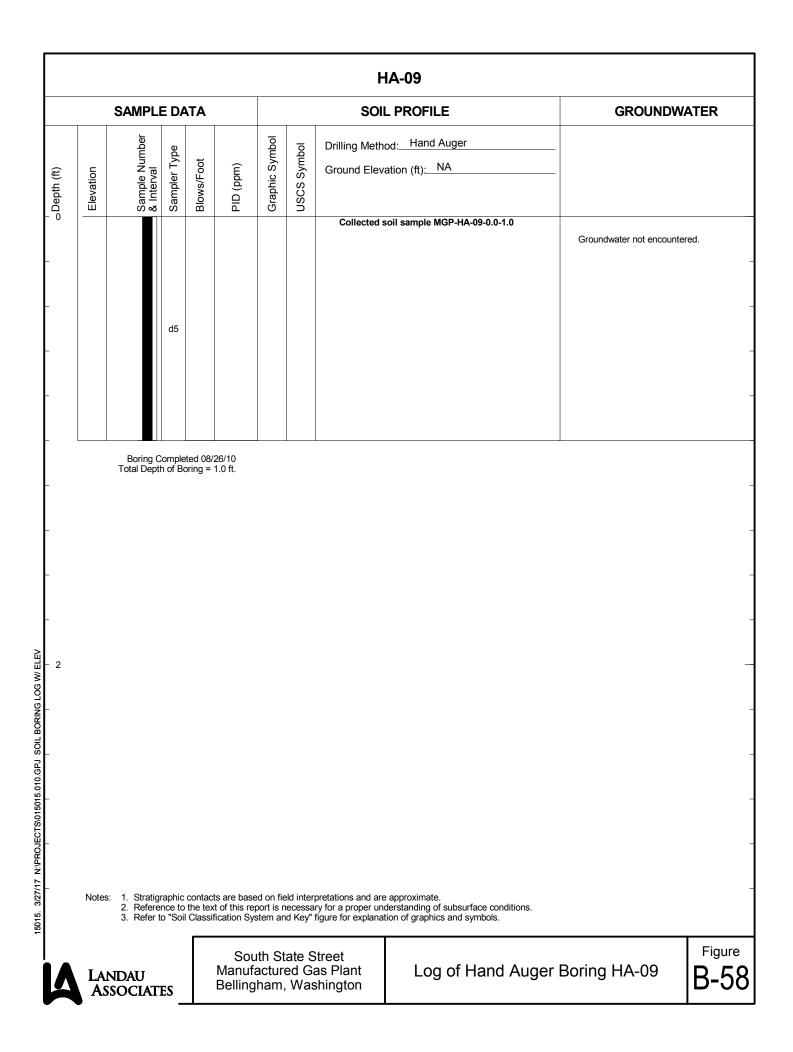


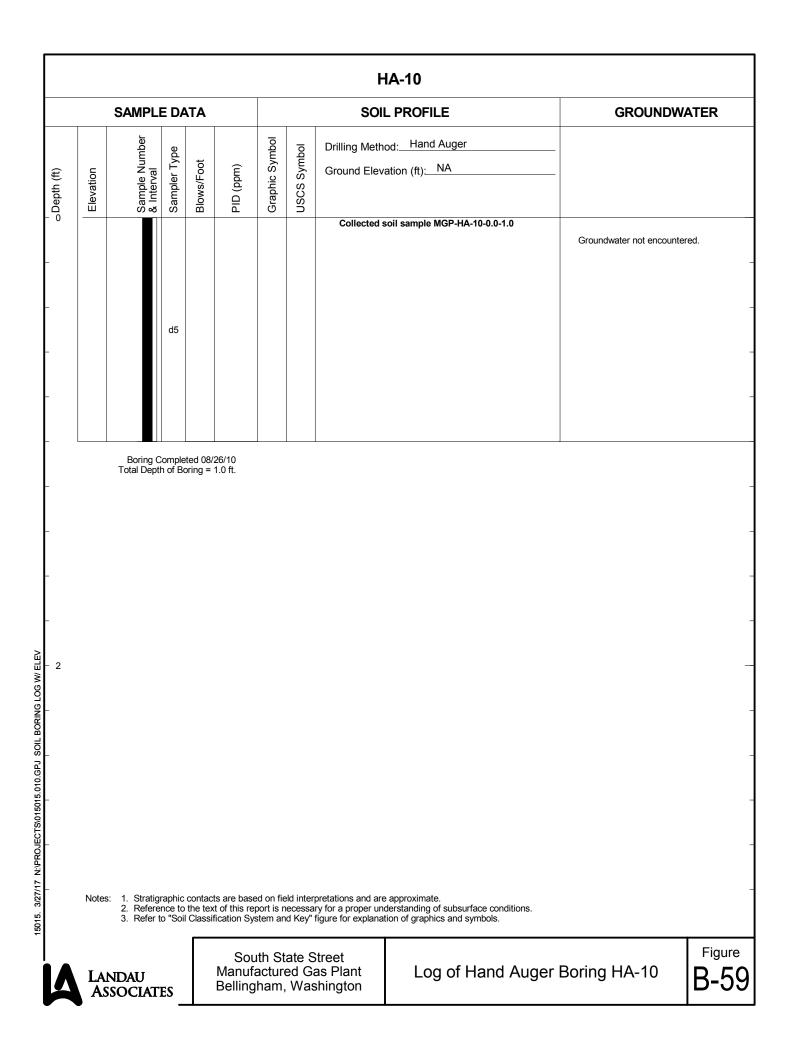




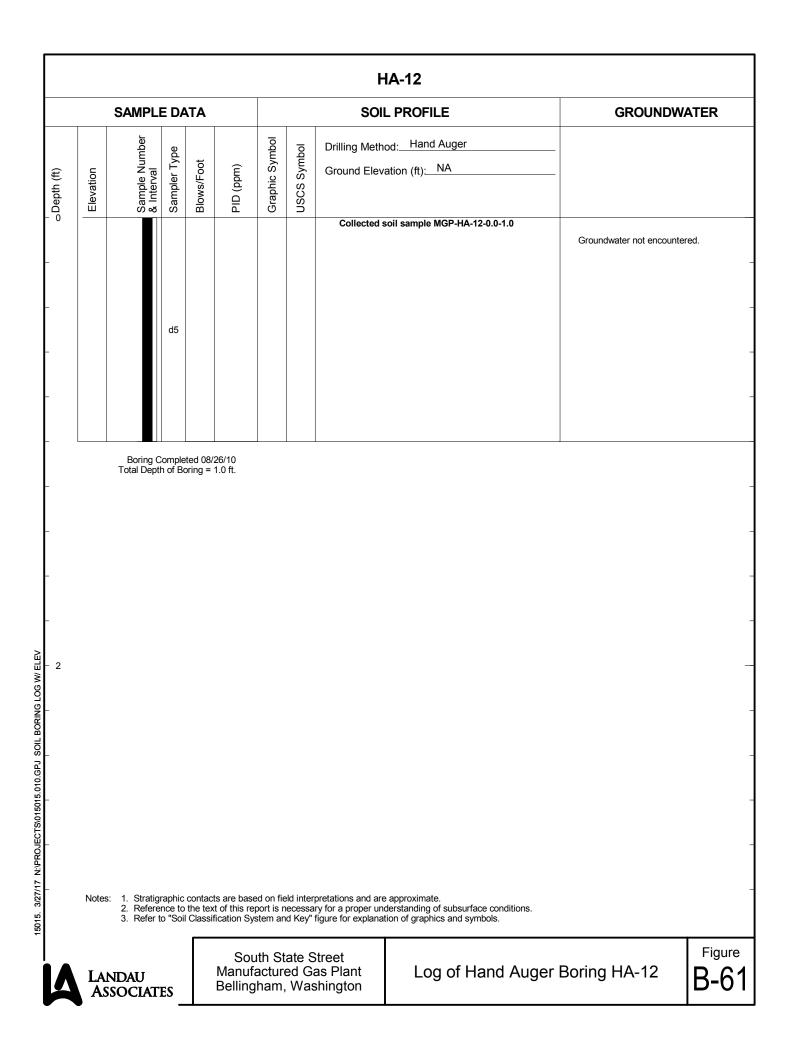


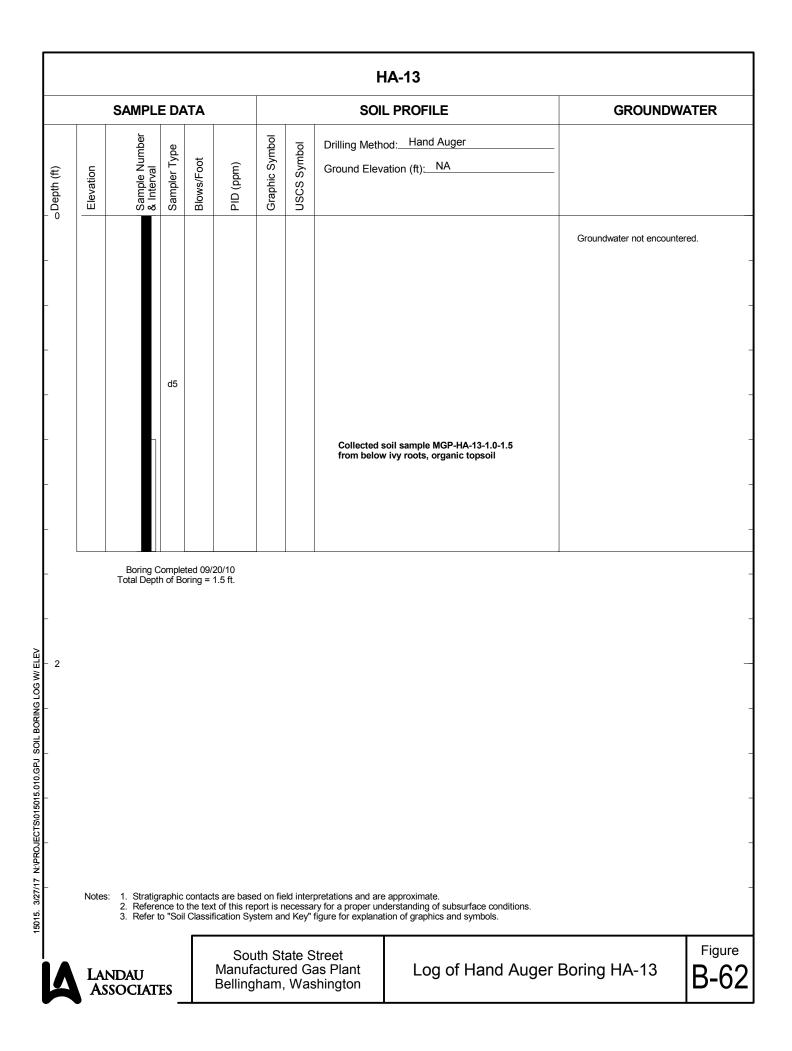


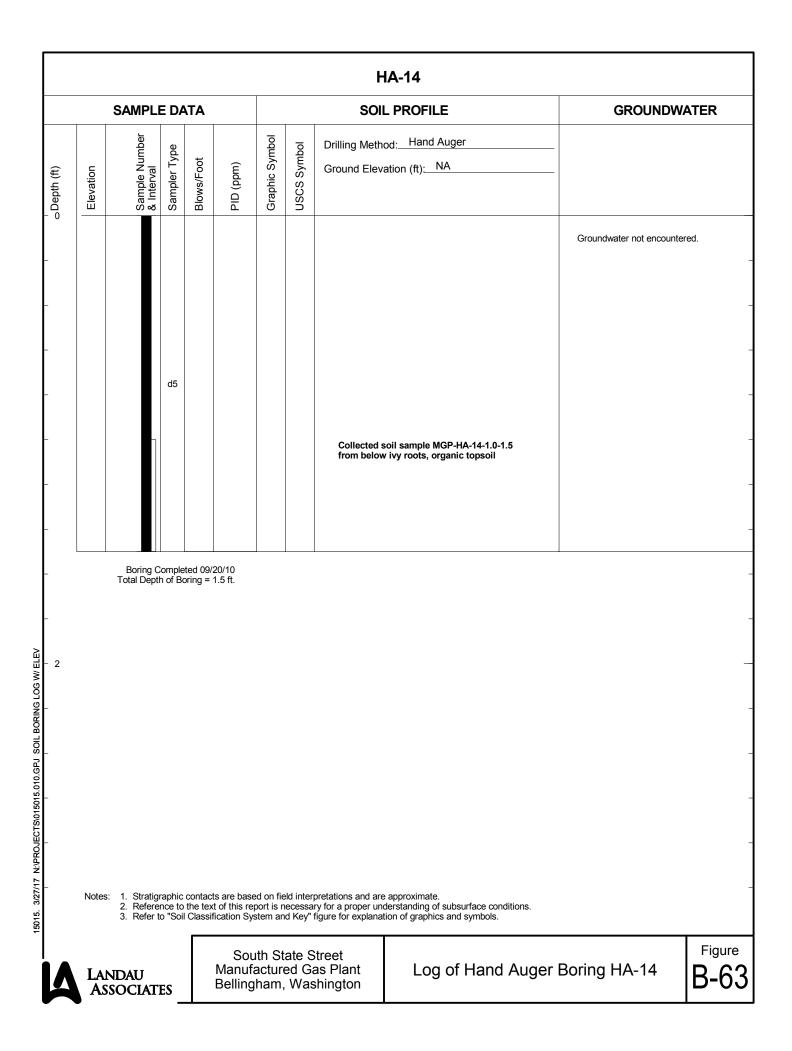


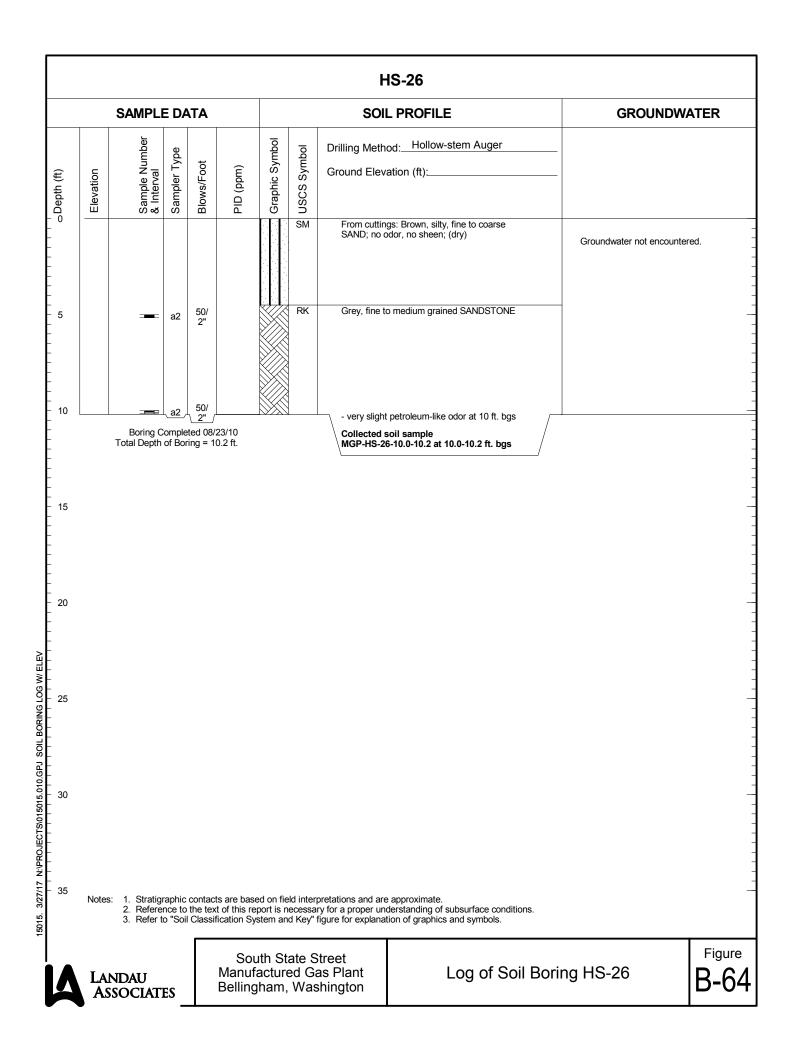


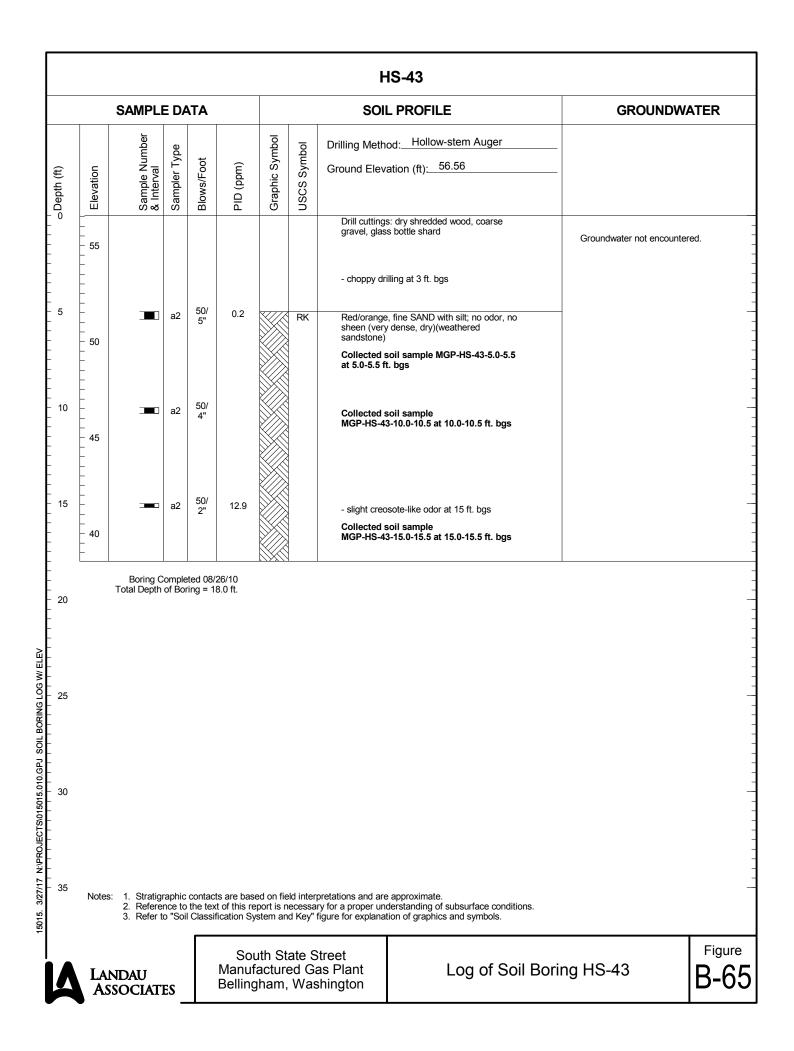
15015. 3/27/17 N:\PROJECTS\015015.010.GPJ SOIL BORING LOG W/ ELEV

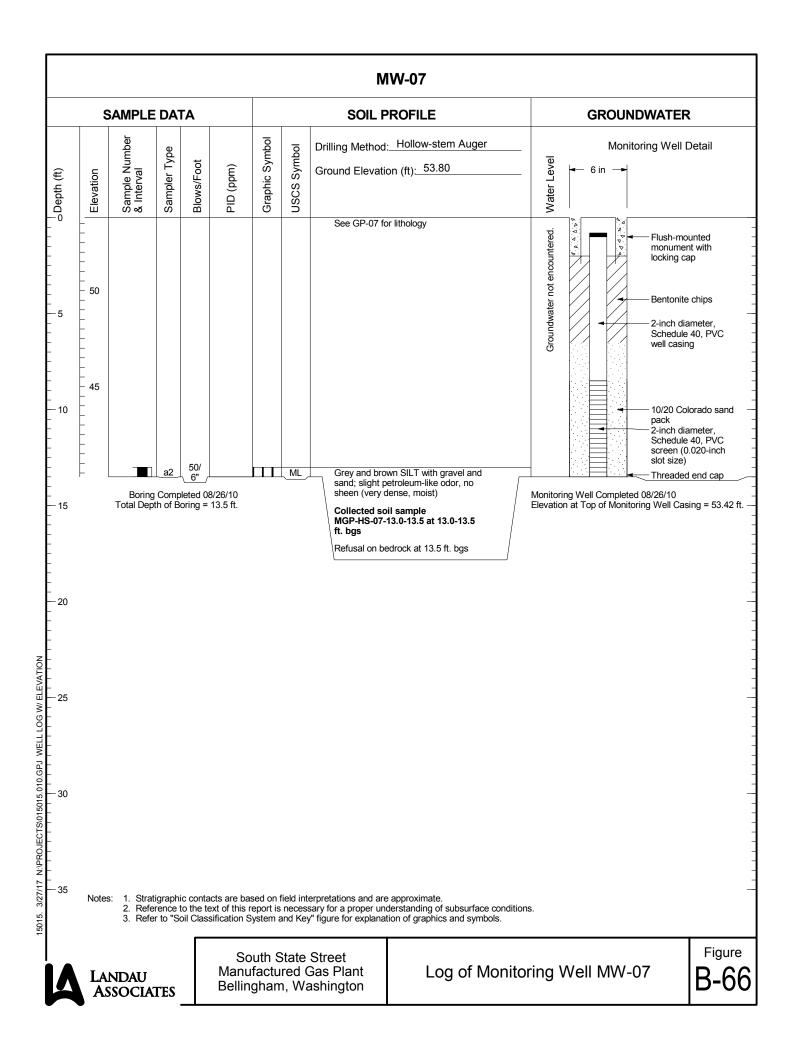


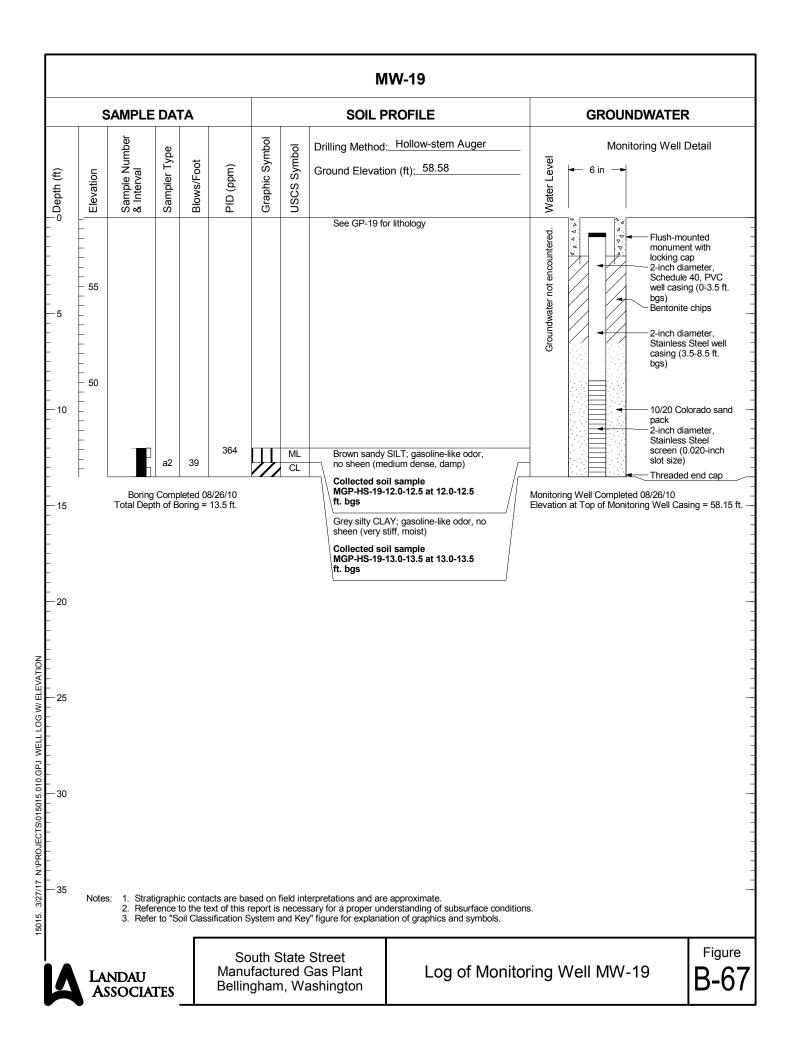


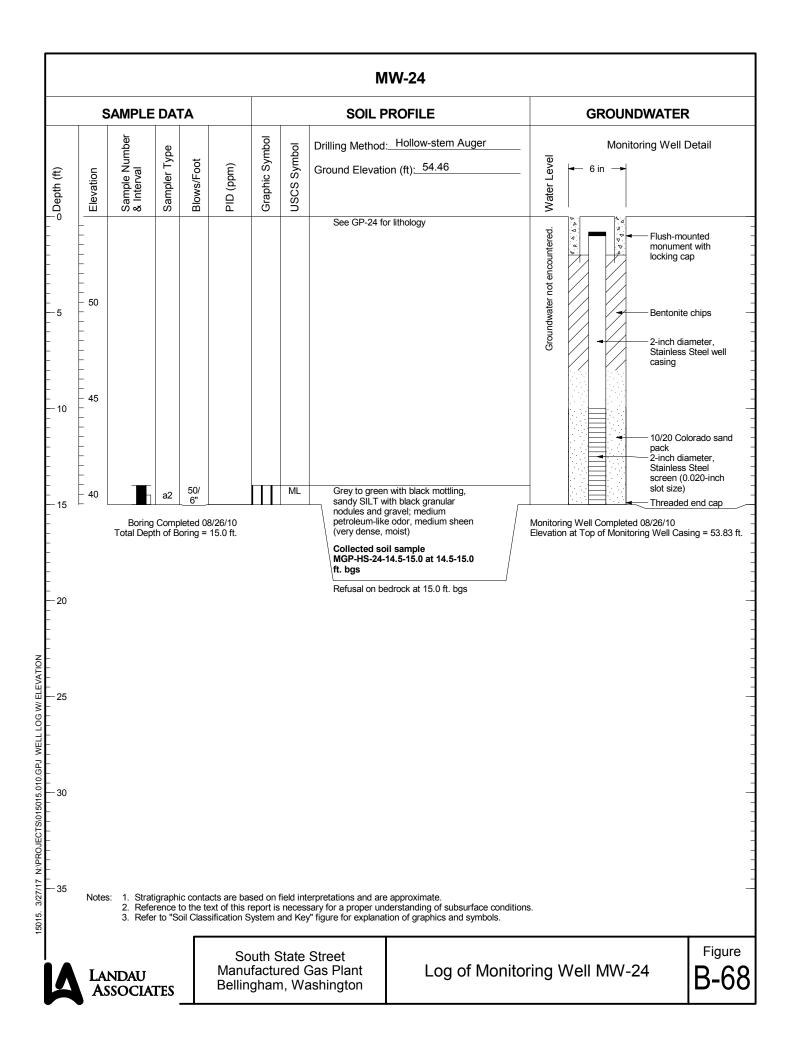


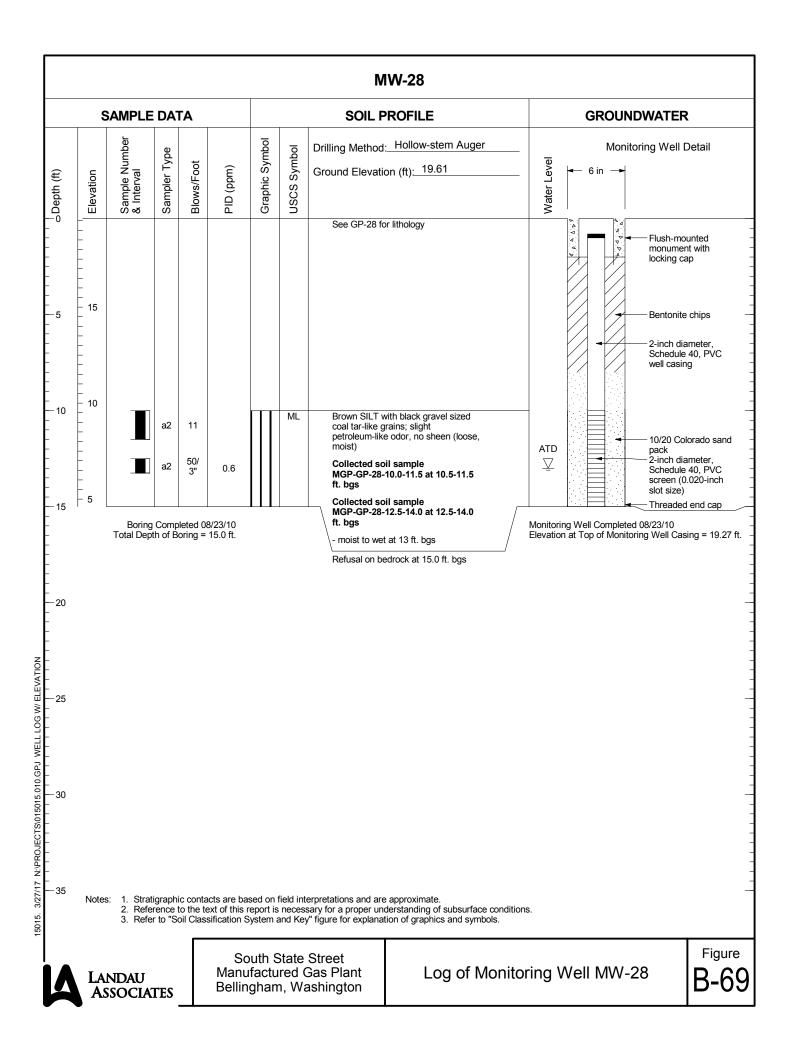


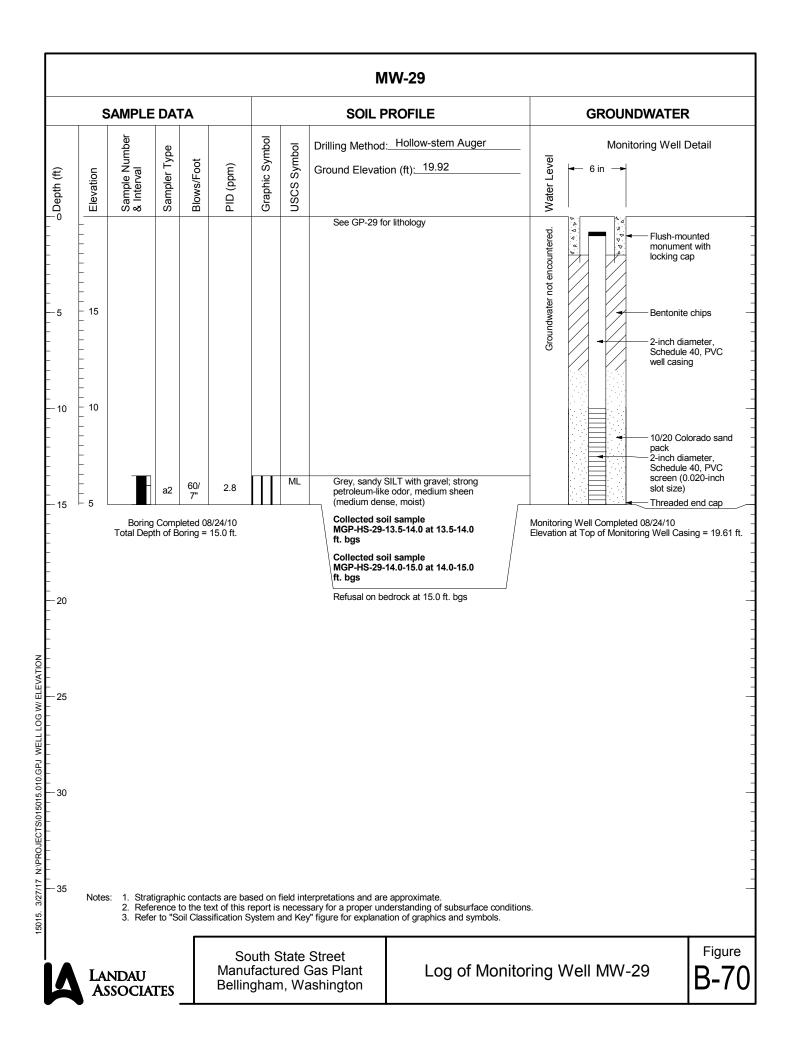


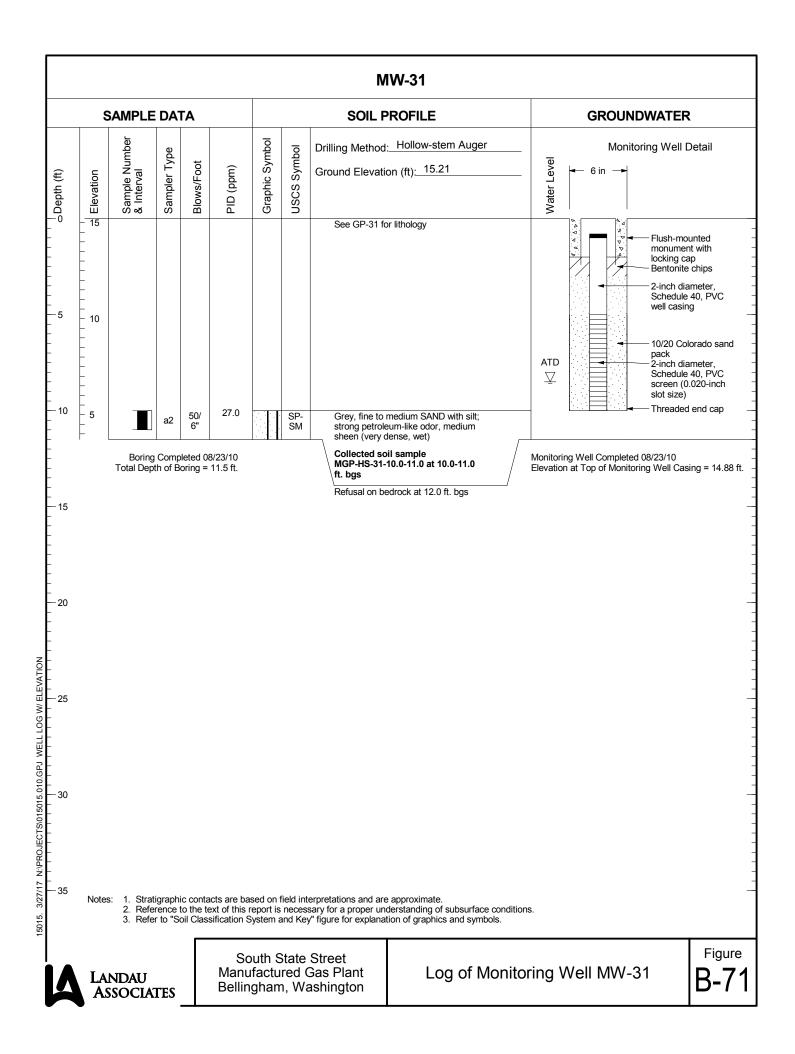


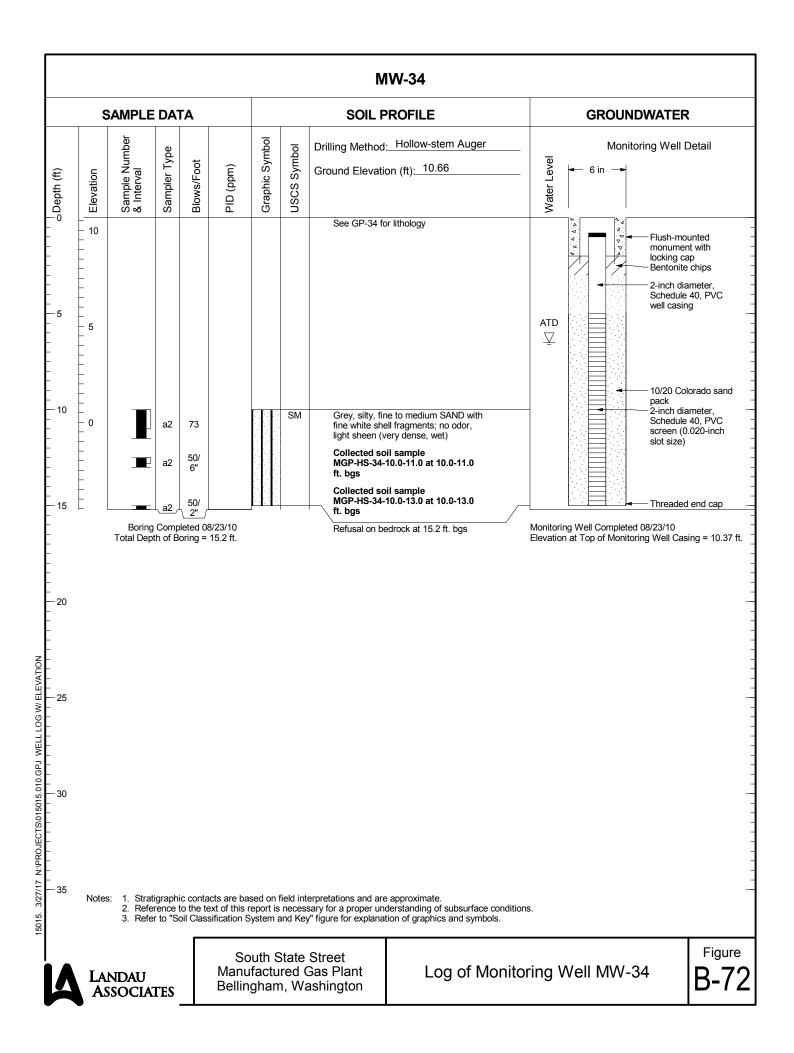


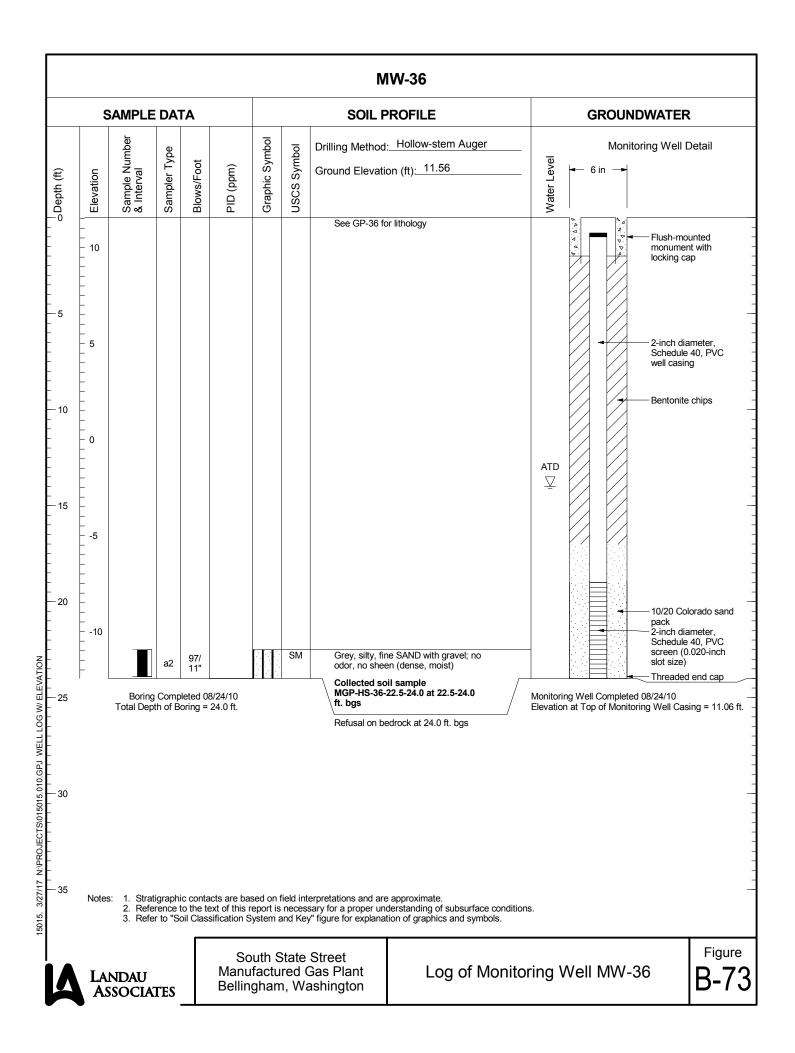


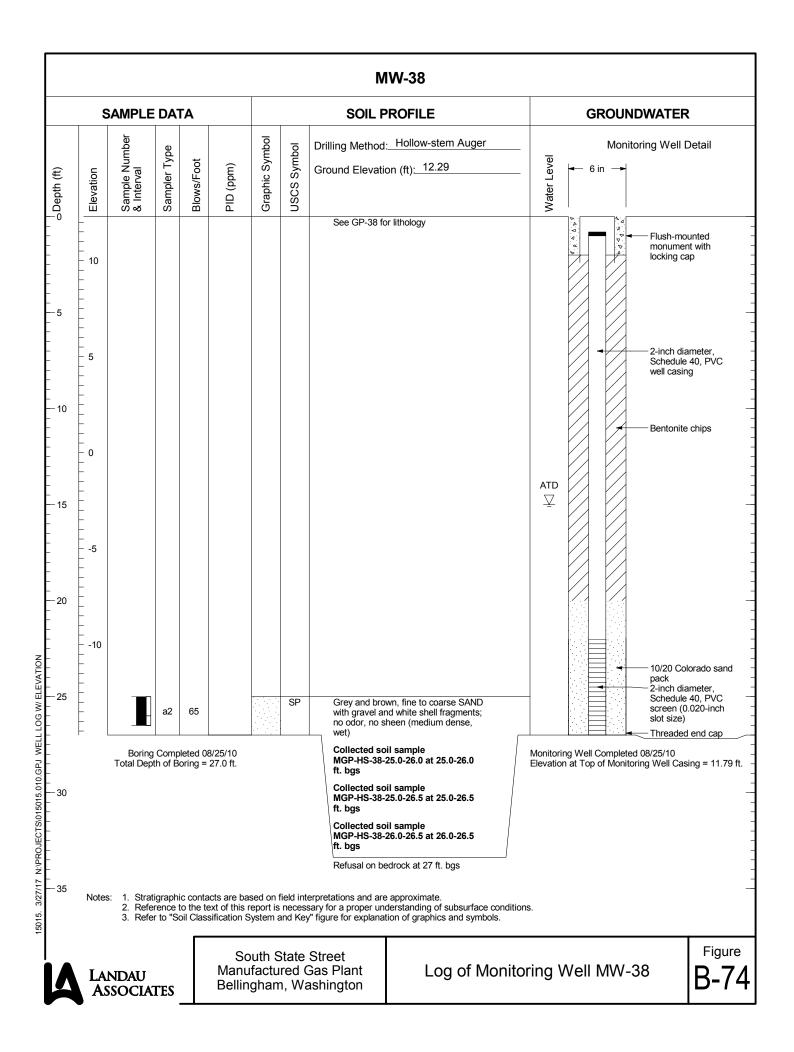


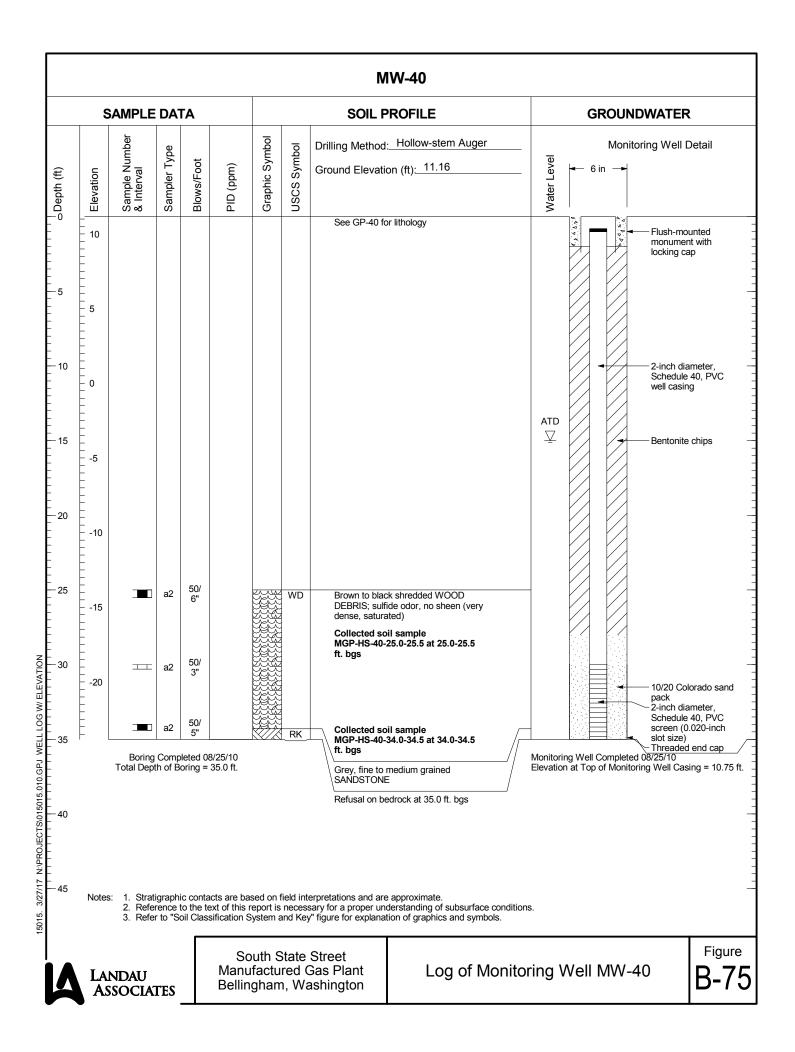


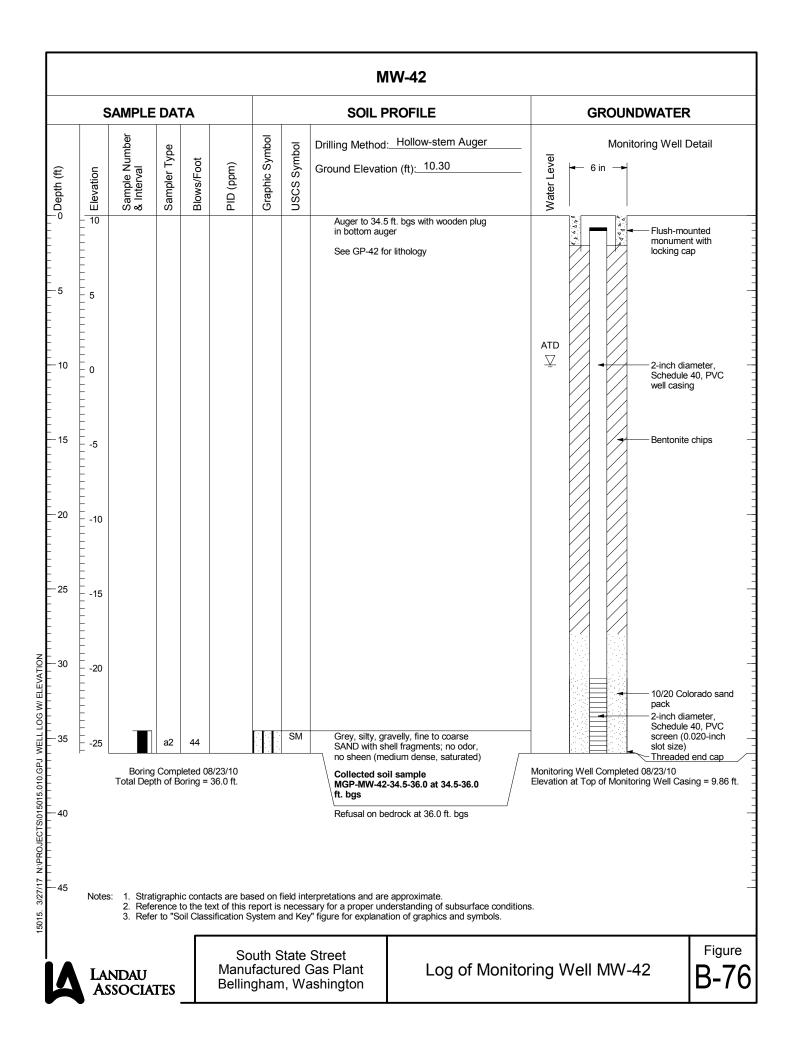


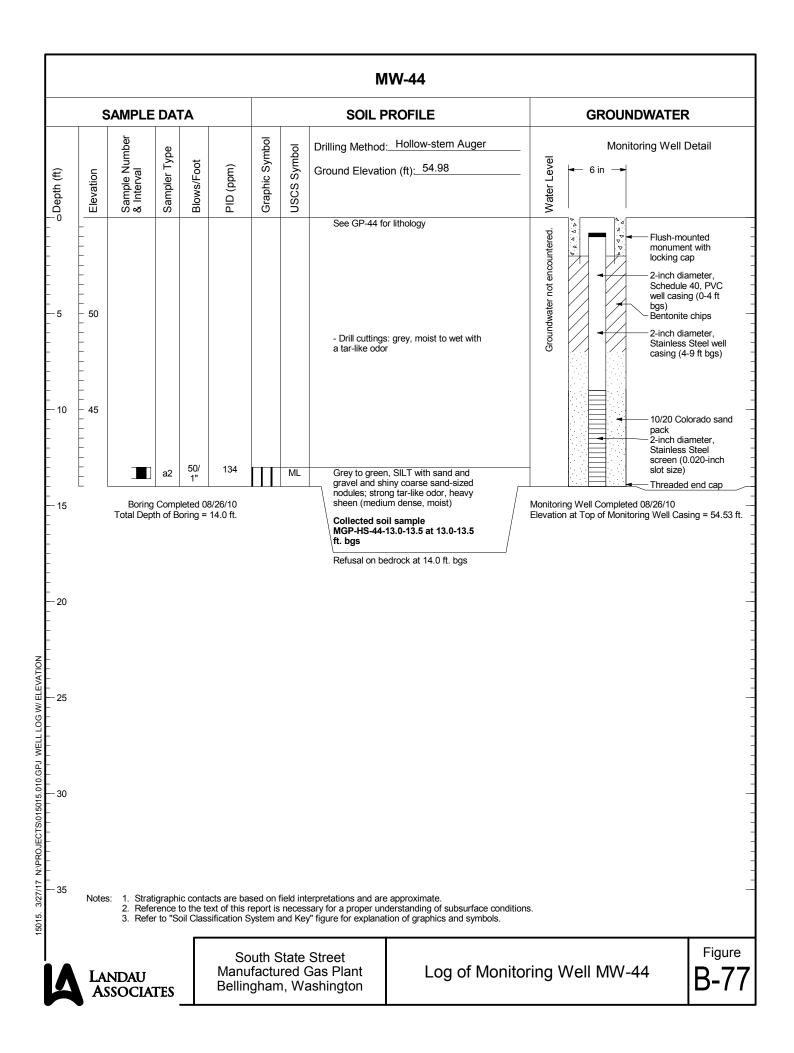


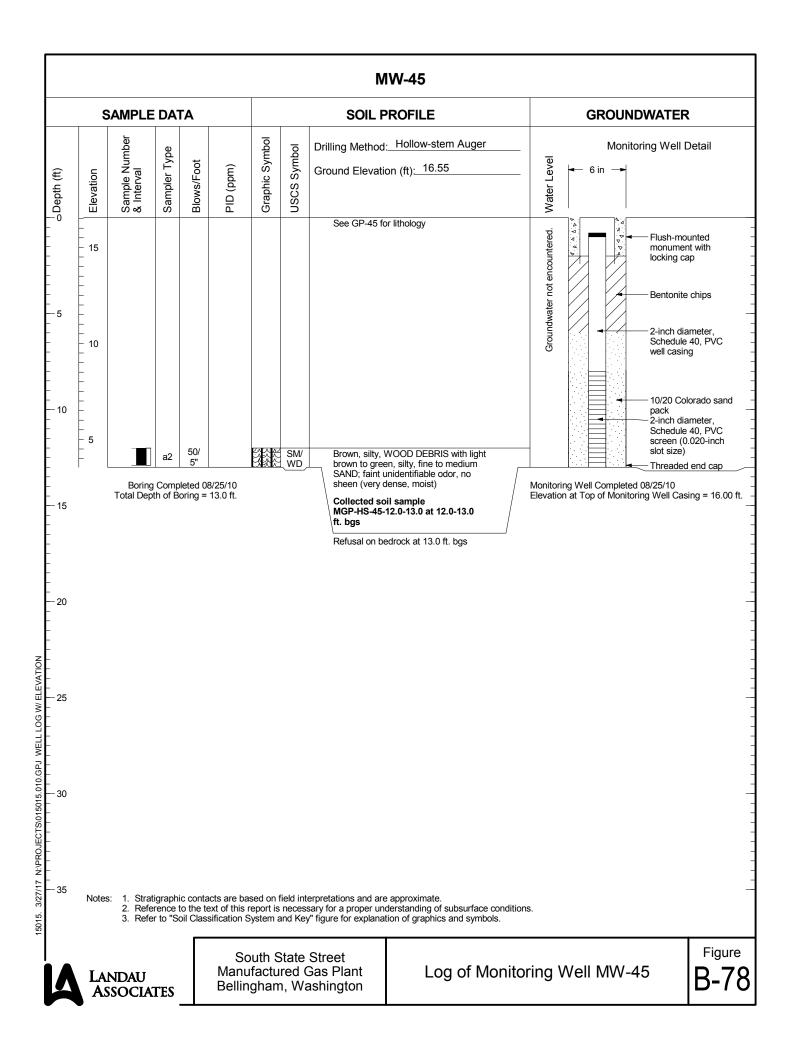


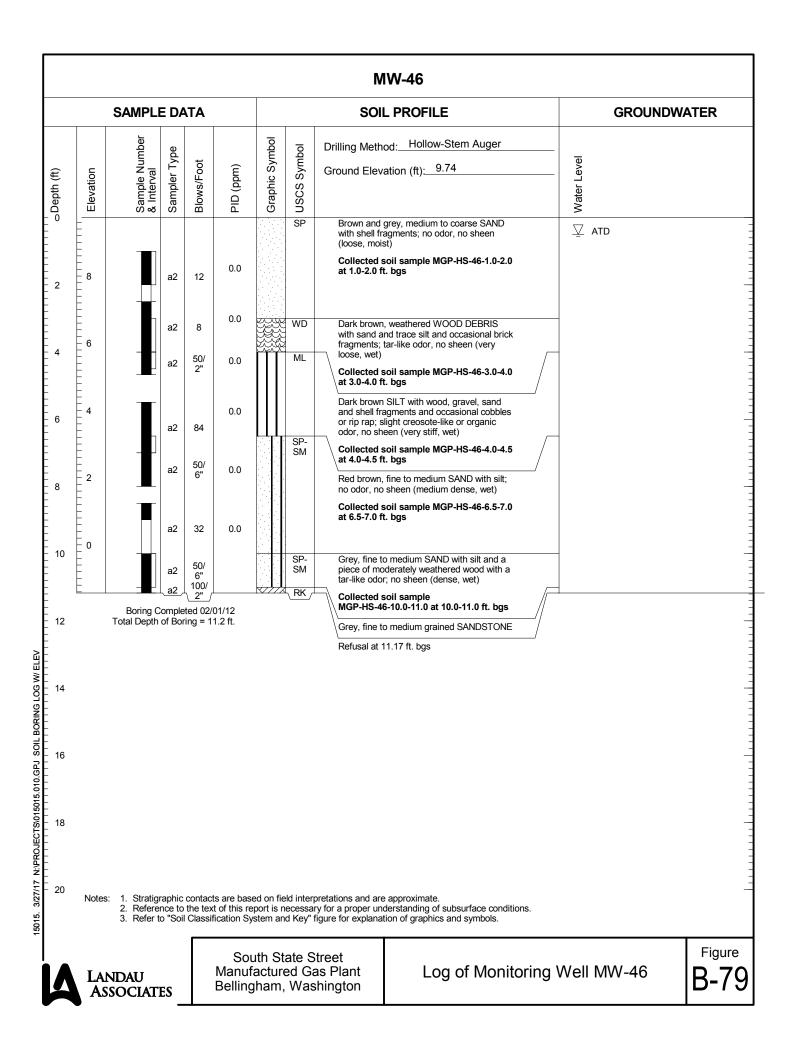


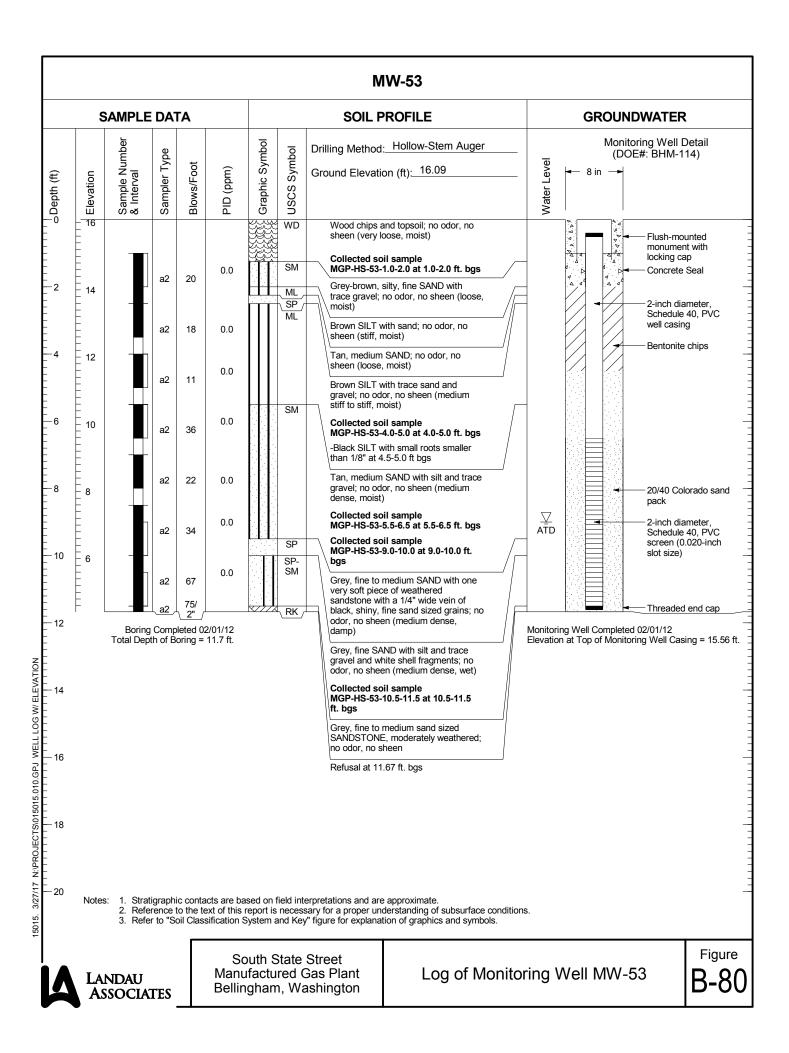


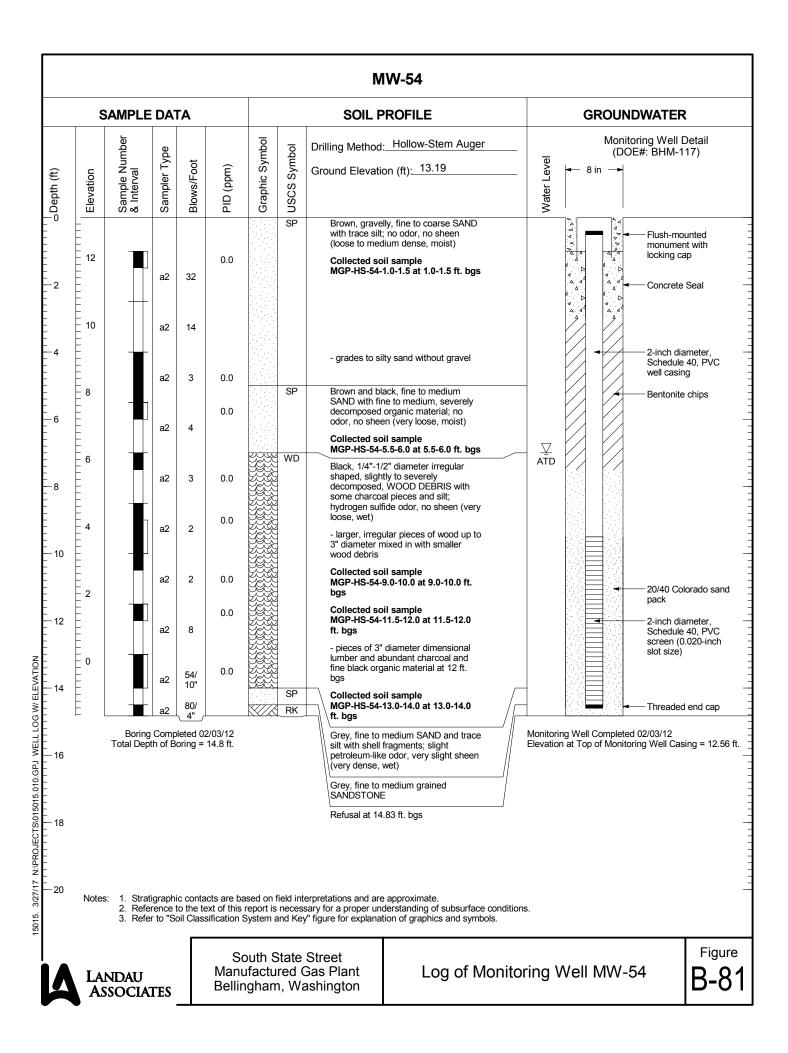


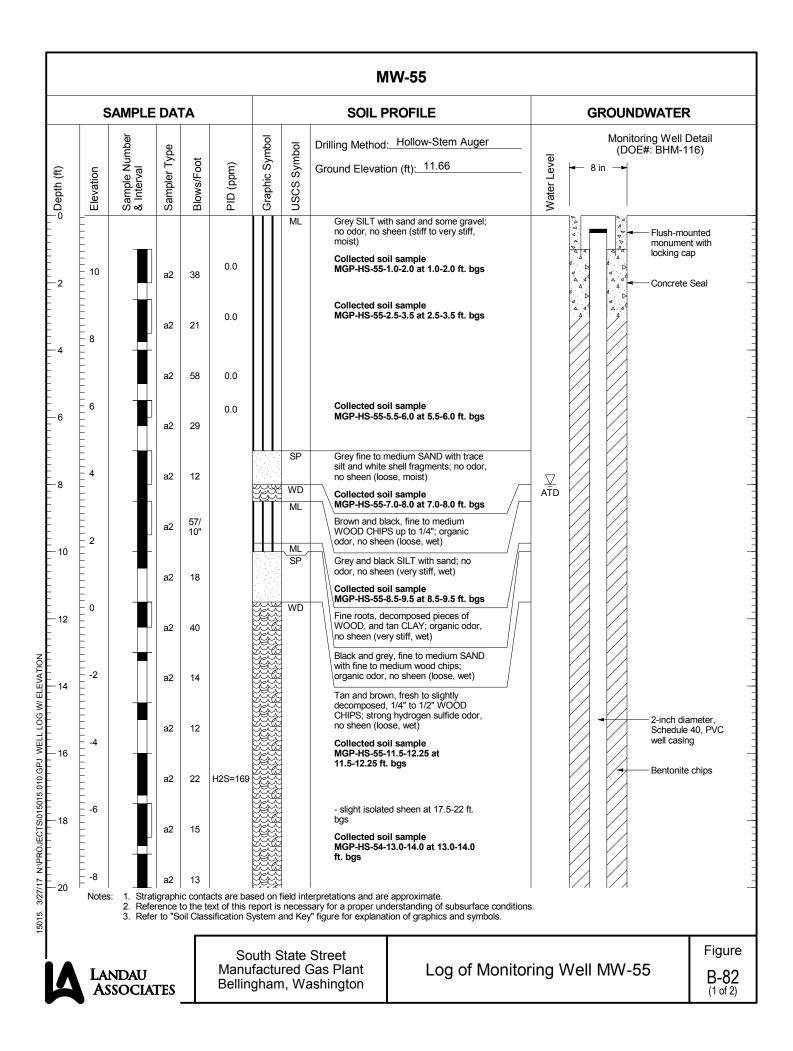


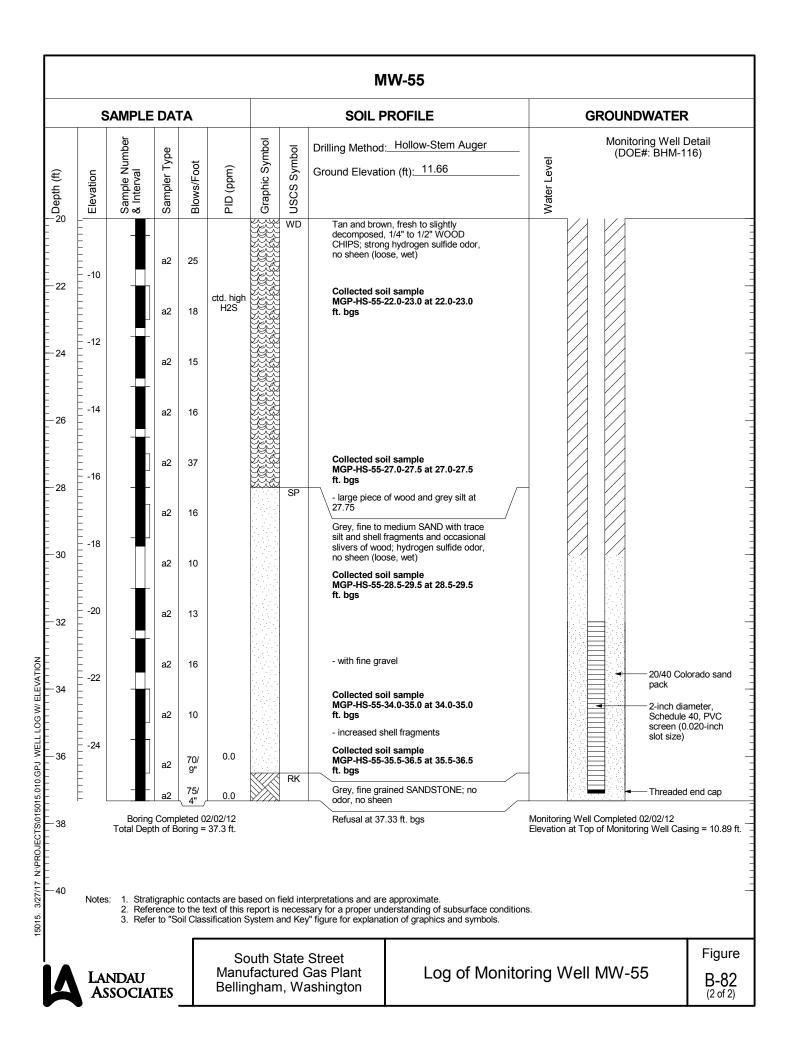


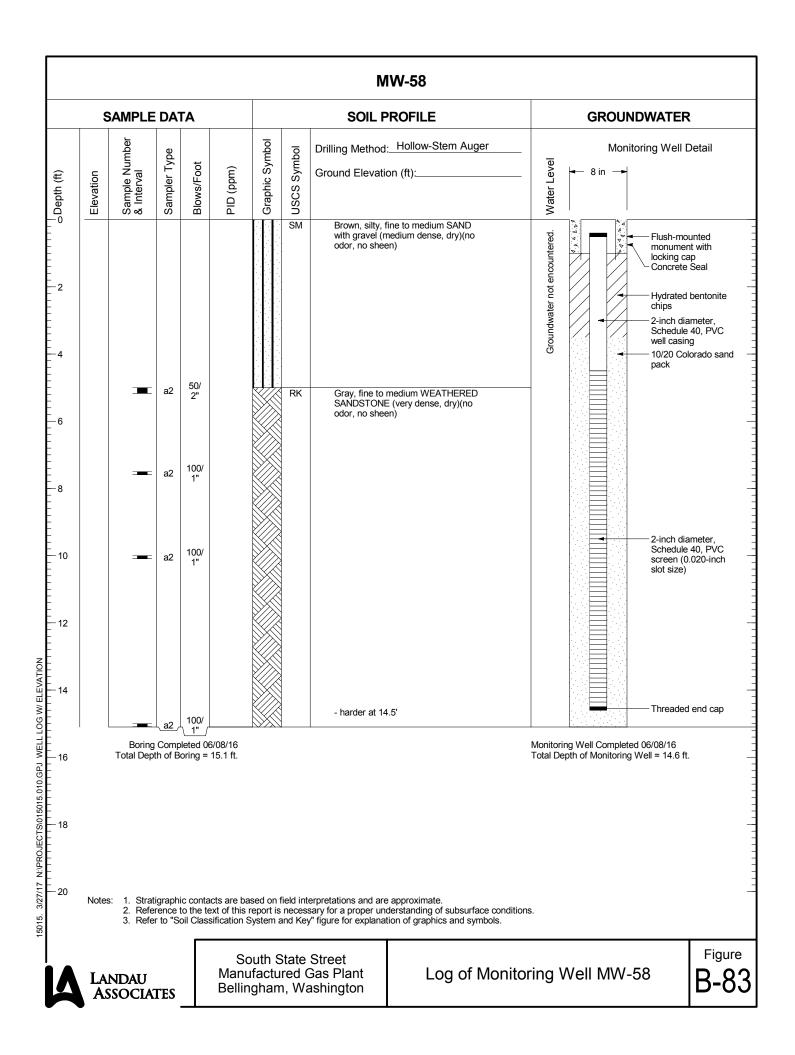


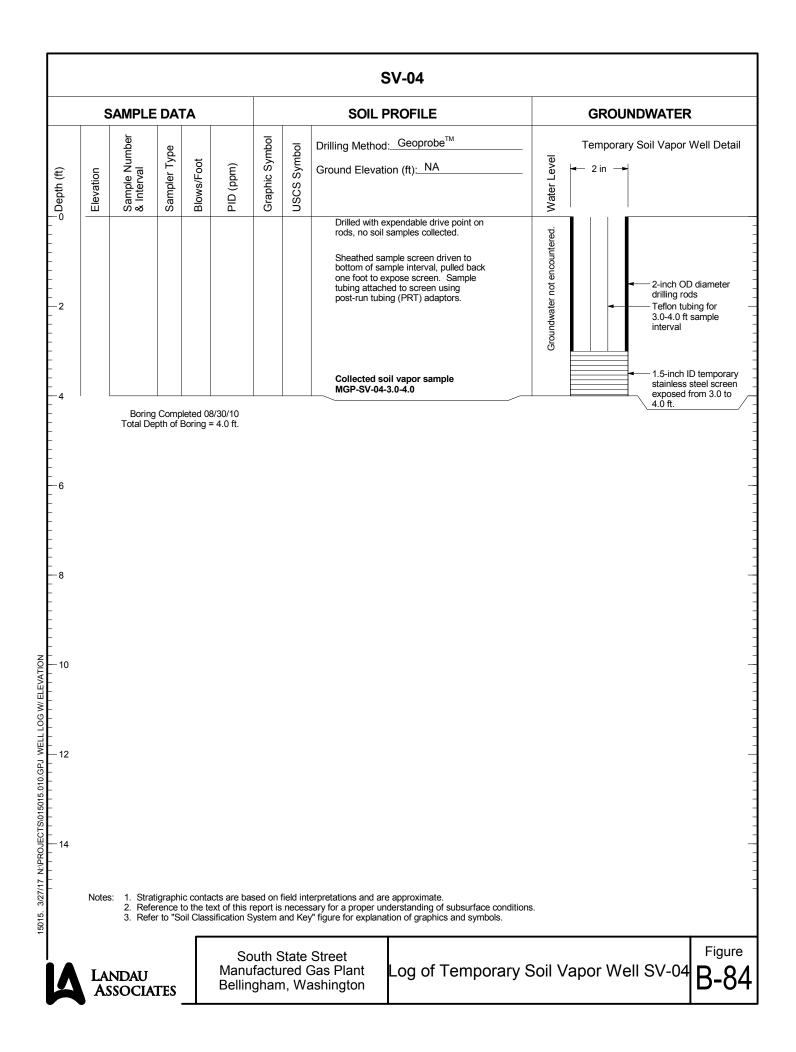


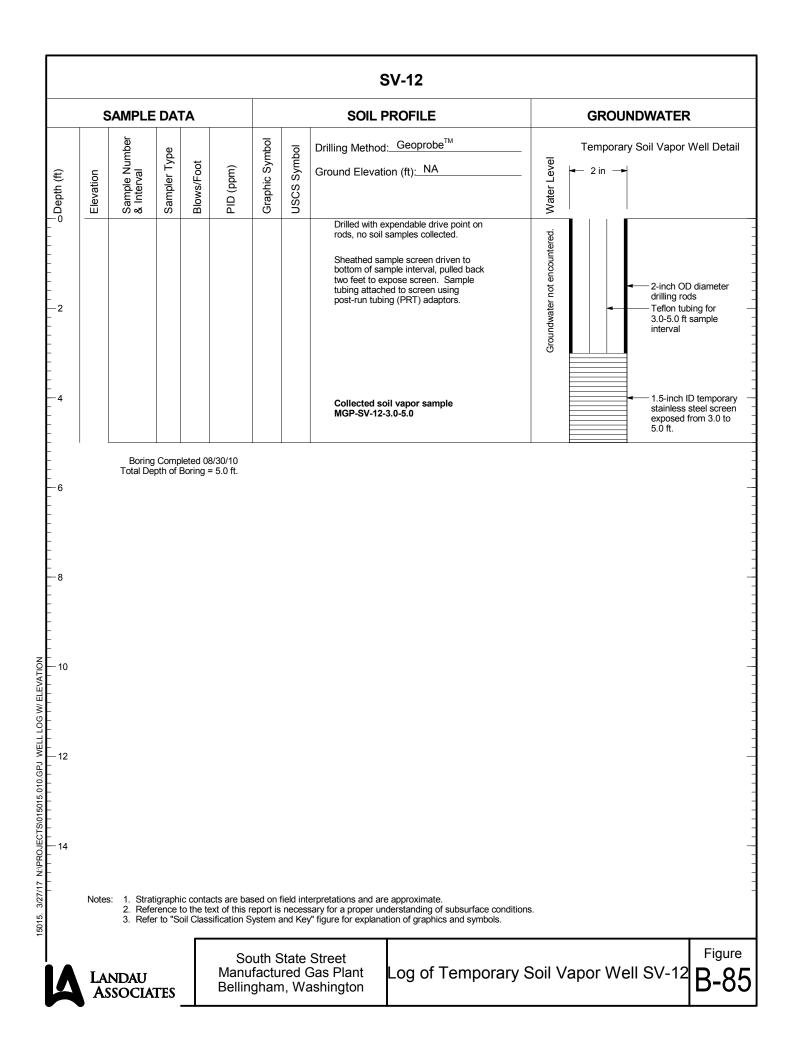


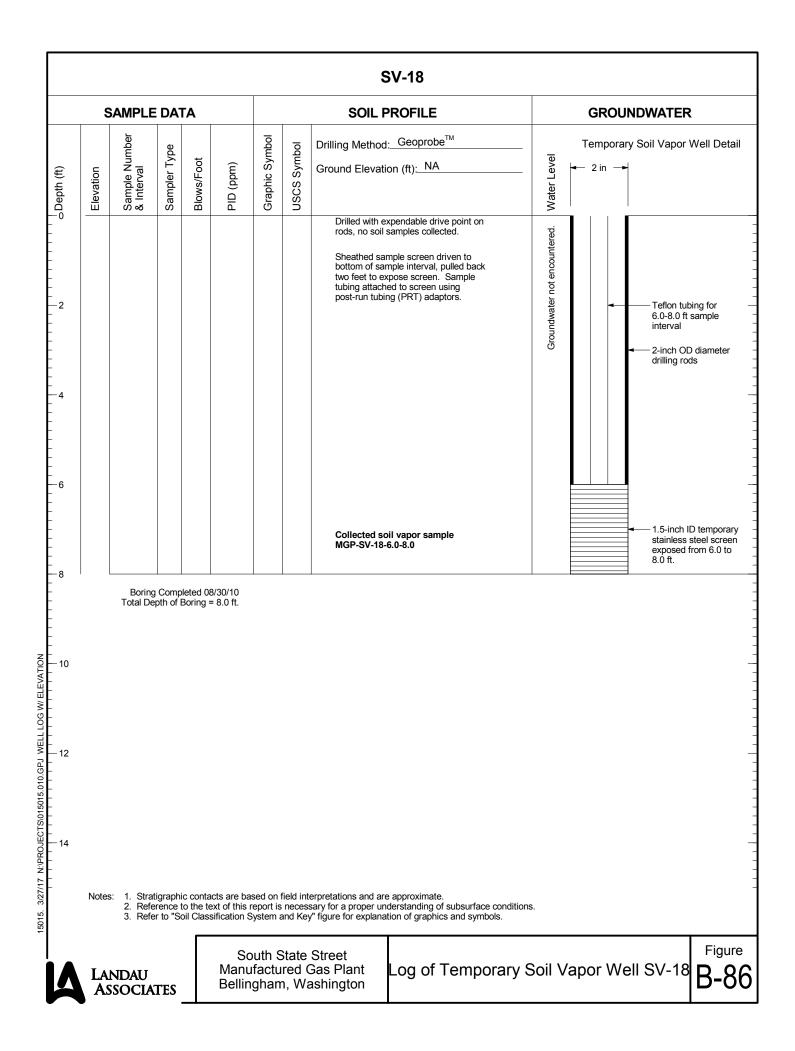


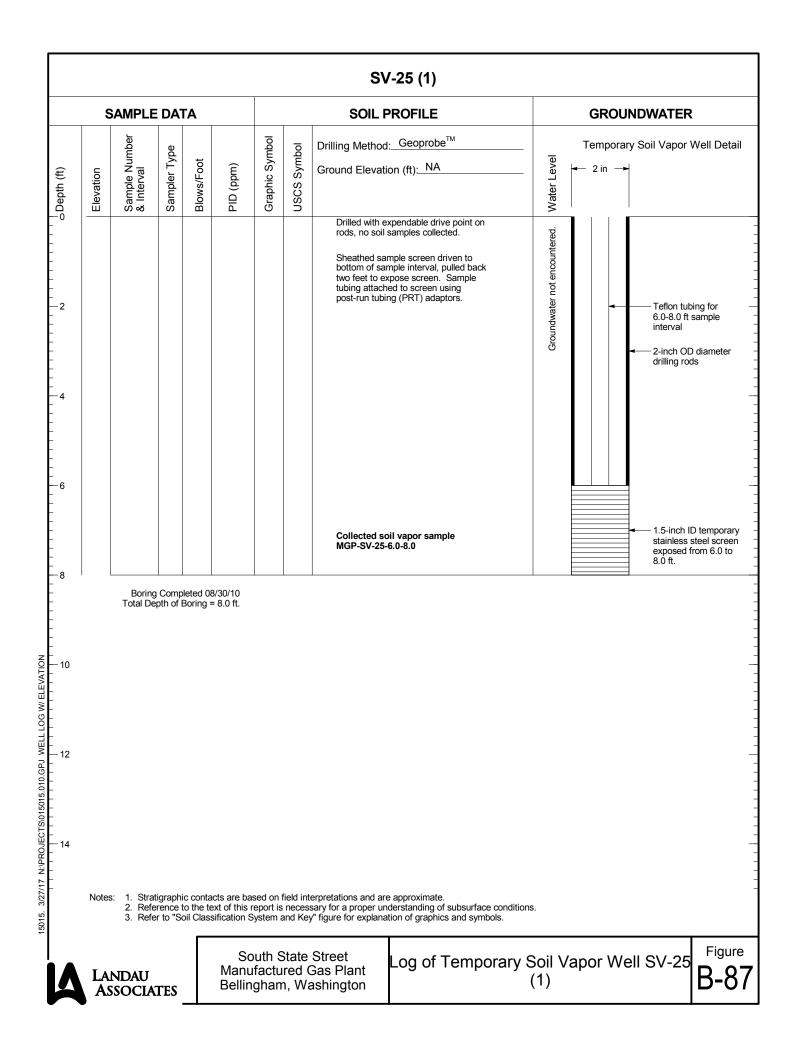


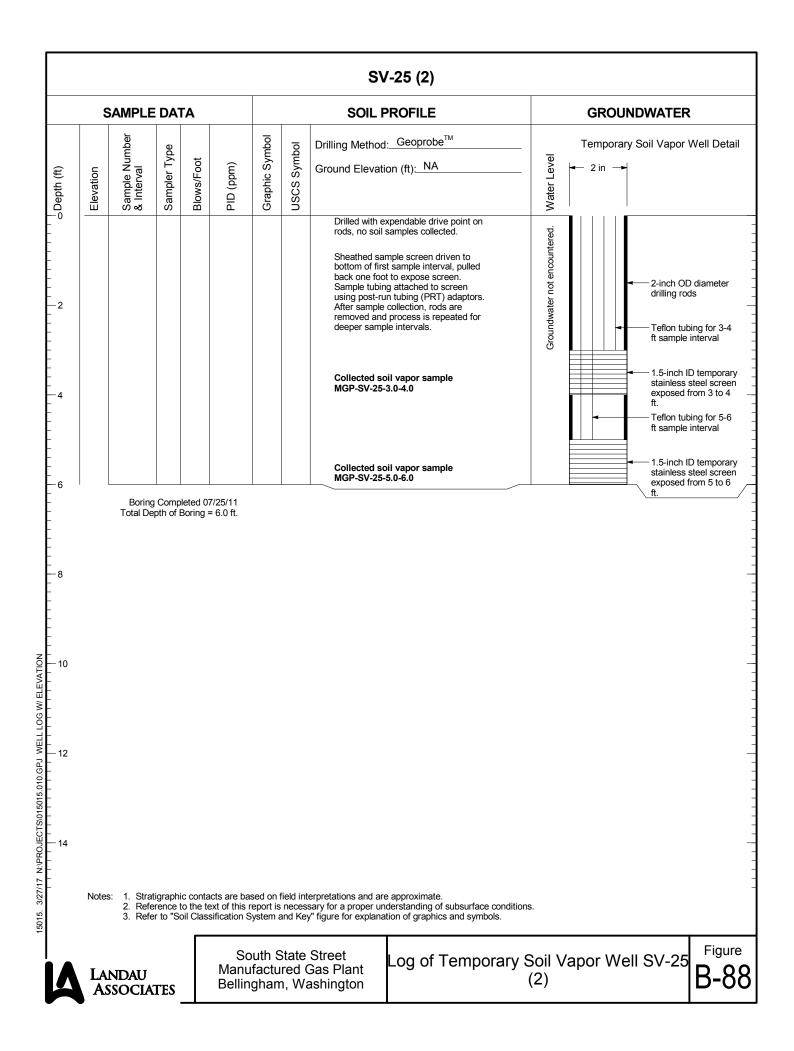


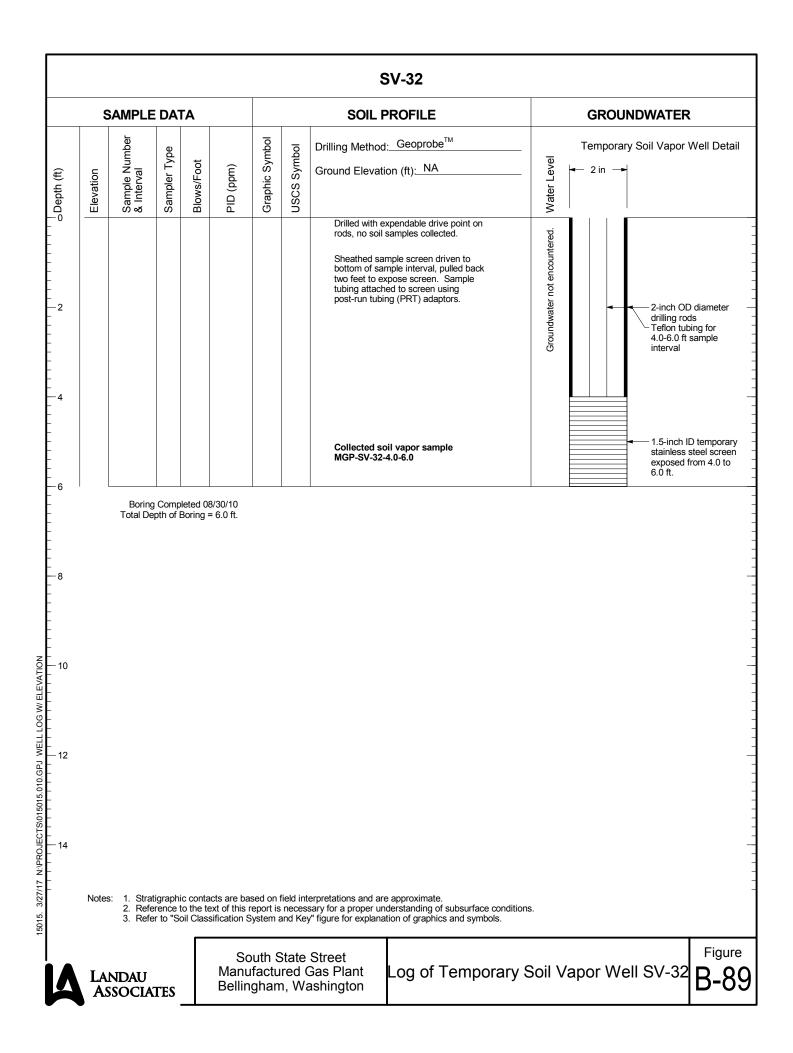


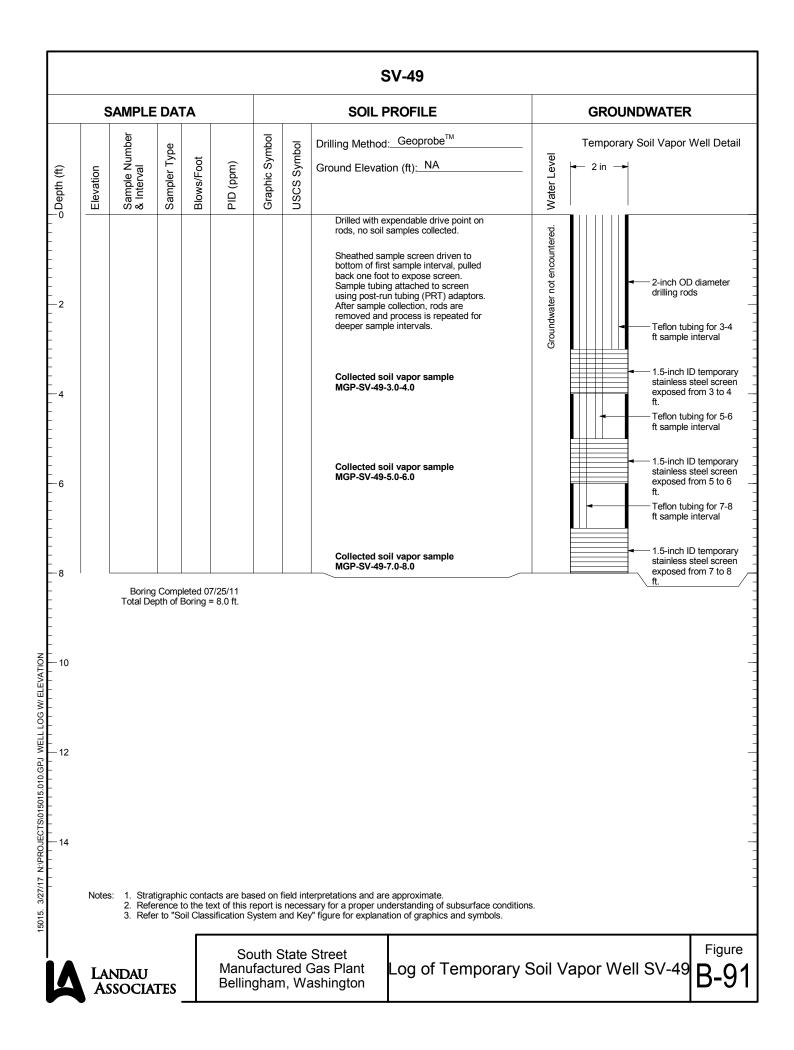


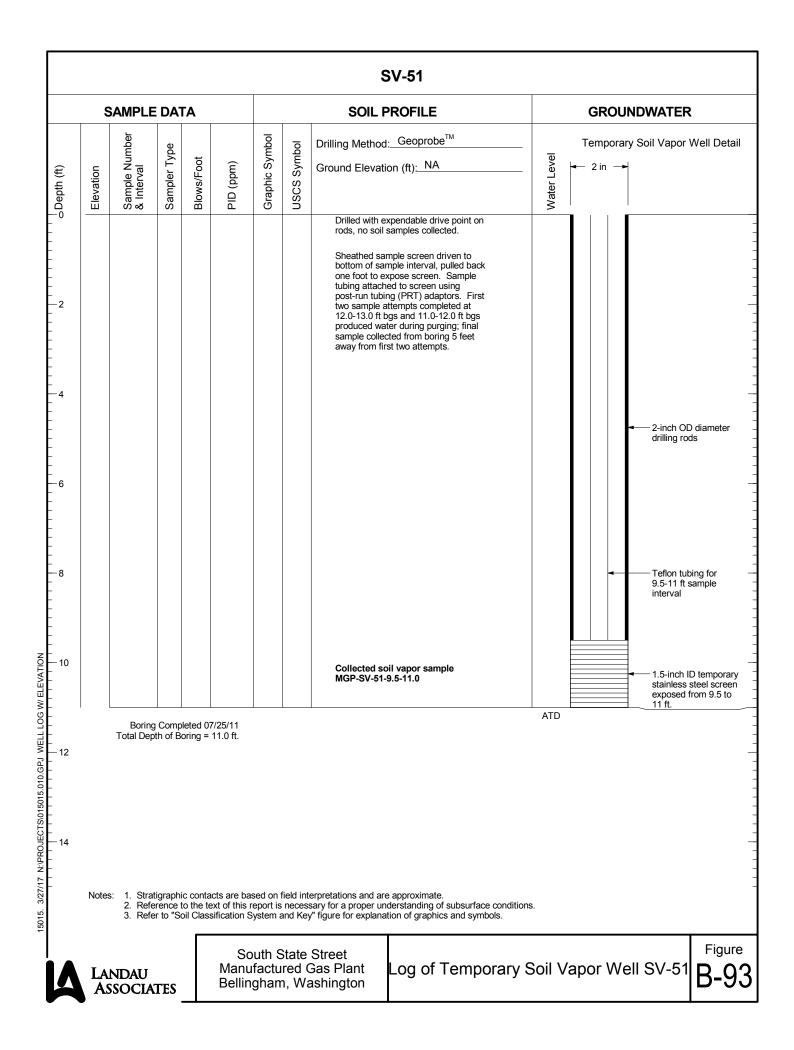


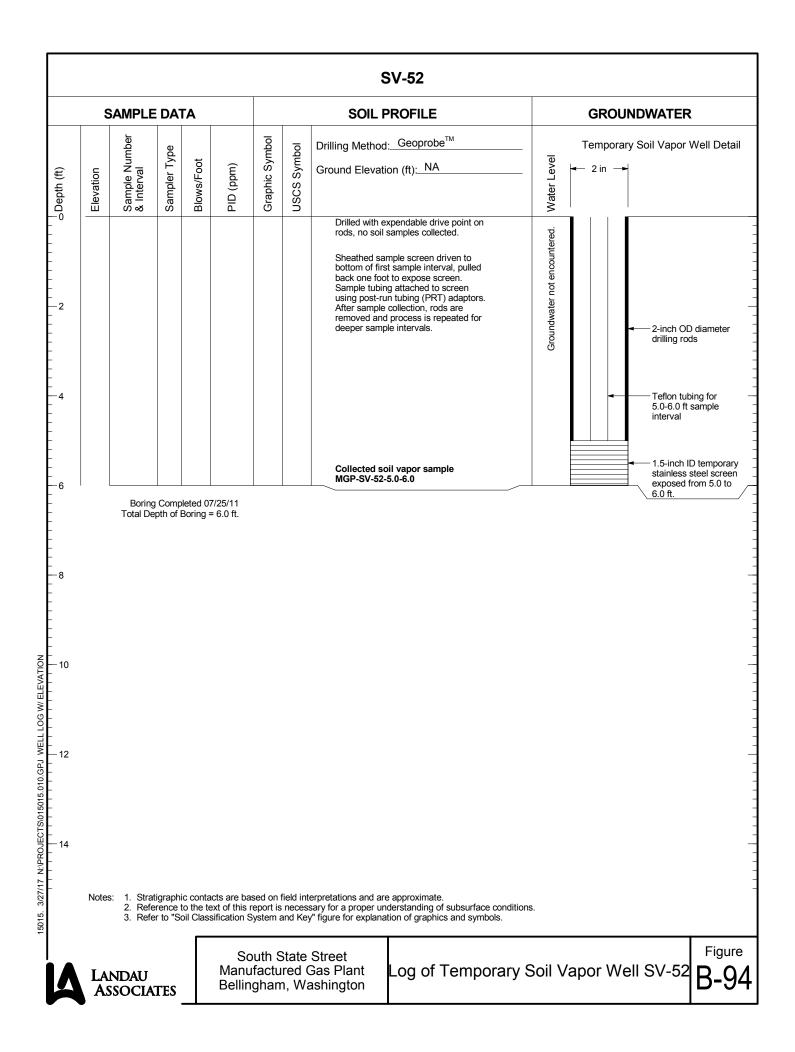


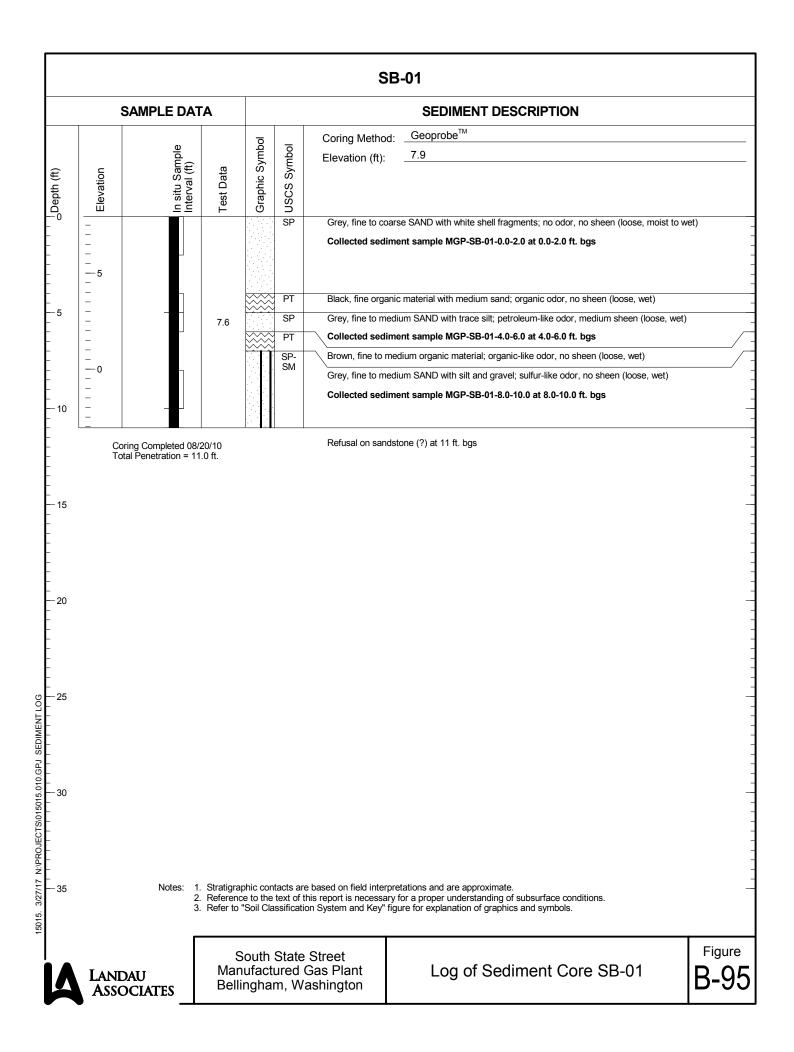


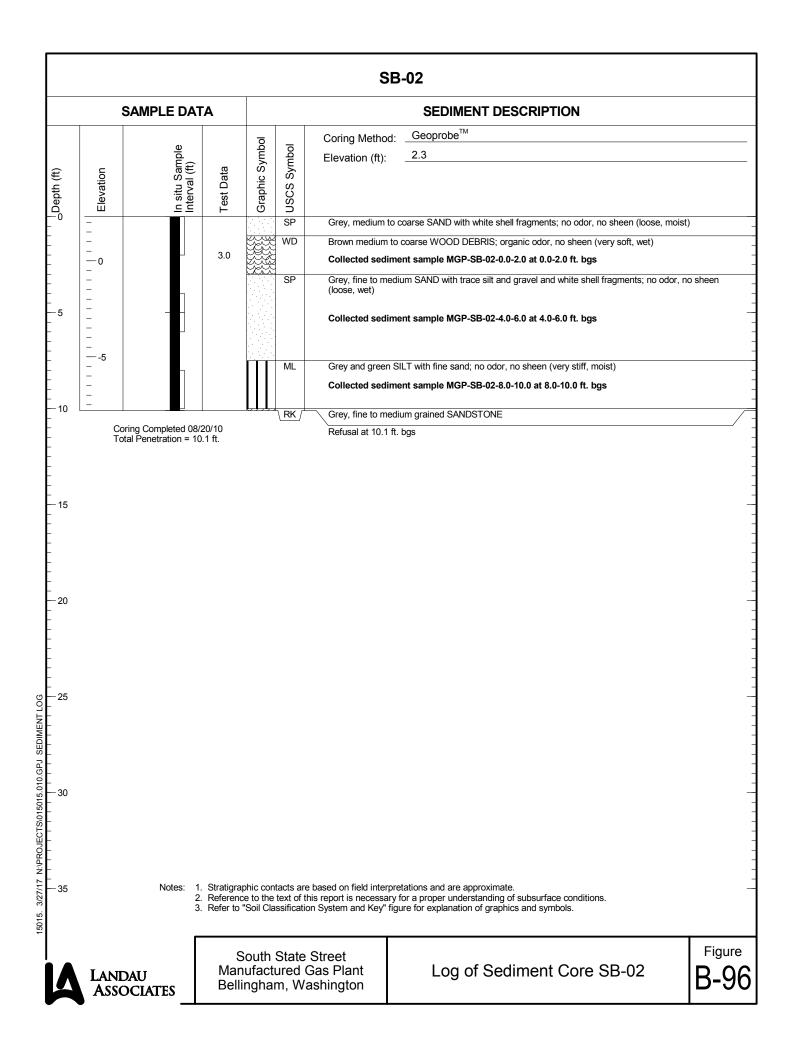


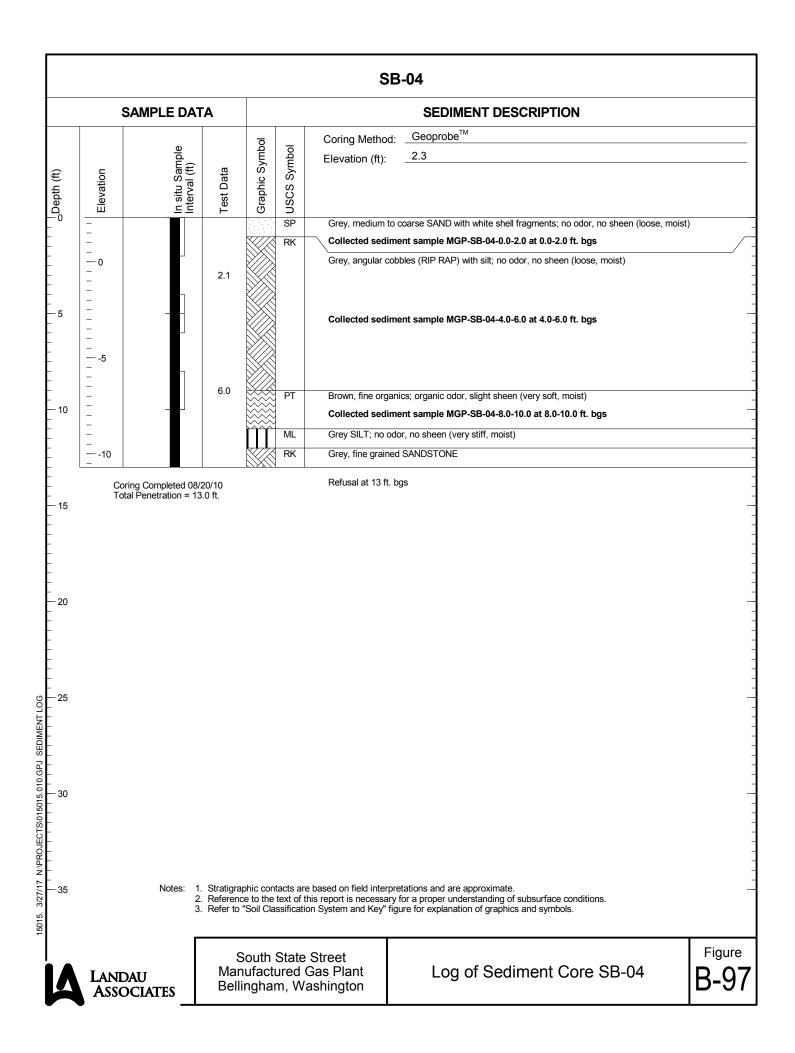












SEDIMENT BORING LOG KEY

Majo	r Divisions	Sym	nbols	Typical Names	
		GW		Well-graded gravels	or gravel-sand mixtures, little to no fines
(əz	Gravels	GP		Poorly-graded grave	Is or gravel-sand mixtures, little to no fines
oils D sieve si	(More than 50% coarse fraction > no. 4 sieve	GM		Silty gravels, gravel-	sand-silt mixtures
ained So >No. 200	-	GC		Clayey gravels or gra	avel-sand-clay mixtures
I rse Gr a /2 of soil	_	SW		Well-graded sands c	r gravel-sand mixtures, little to no fines
Coarse Grained Soils (More than 1/2 of soil >No. 200 sieve size)	Sands (Less than 50% coars fraction > no. 4 sieve)	SP		poorly-graded sands	or gravelly sands, little to no fines
S		SM		Silty sands, sand-silt	mixtures
		SC		Clayey sands, sand-	clay mixtures
size)		ML		Inorganic silts and ve plasticity	ery fine sands, silty or clayey fine sands or clayey silts with slight
oils 00 sieve	Silts & Clays Liquid limit* less than 50%	CL	·····	Inorganic clays of lov clays	w to medium plasticity, gravelly clays, sandy or silty clays, lean
iined So ii <no. 2<="" td=""><td>-</td><td>OL</td><td></td><td>Organic silts and org</td><td>anic silty clays of low plasticity</td></no.>	-	OL		Organic silts and org	anic silty clays of low plasticity
Fine Gra		MH		Inorganic silts, micad	zeous or ditomaceous fine sand or silty soils, elastic silts
Fine Grained Soils (More than 1/2 of soil <no. 200="" sieve="" size)<="" td=""><td>Silts & Clays Liquid limit* greater than 50%</td><td>СН</td><td></td><td>Inorganic clays of hig</td><td>gh plasticity, fat clays</td></no.>	Silts & Clays Liquid limit* greater than 50%	СН		Inorganic clays of hig	gh plasticity, fat clays
e	-	ОН		Organic clays of med	dium to high plasticity, organic silty clay, organic silts
		Pt		Peat or other highly	organic soils

*Liquid limit represents the moisture contnet (in percent) of a soil at which point the soil no longer behaves like a plastic and starts to behave like a liquid.

Boring Log Symbols

Sample Interval

Groundwater, First Observed

Sample Types

- SS Split Spoon
- G Grab
- ST Shelby Tube
- GS Geoprobe Sampler

Sheen Types

- NS No Sheen Observed Slight Sheen observed (Spotty
- SS coverage of sheen pan, no irridescence)
- MS Moderate Sheen (Full Coverage)
- Heavy Sheen (Full Coverage,
- HS Irredescent)

Sample Moisture

- Dry No Moisture, dry to touch
- Moist Damp but no visible moisture
- Wet Visible free water

35-35.5*

- * Indicates sample was selected for analysis
- 321 Summerland Road Bellingham, Washington 98229

Herrenkohl Consulting LLC

Based on Unified Soil Classification System and ASTM Standard D2487 and D2488

(360) 319-0721 mherrenkohl@msn.com

Partical Size Range (Course-Grained Soils)

Sand - Fine, Medium, Coarse

Gravel - Fine, Course

Sample Plasticity (Fine-Grained Soils)

Non-Plastic - Cannot be rolled at any moisture content

Low - Barely rolled, lump cannot be formed when drier than plastic limit

High - Easily rolled yet takes considerable time to reach the plastic limit, lump

can be formed without crumbling when drier than the plastic limit

Medium - Easily rolled, lump crumbles when drier than plastic limit

		OHL C 321 Summe Bellingham,	erland WA	Road 98229		IG LL	с		BOREHOLE NUMBER MGP-SB-03 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/8/2010 1635
(36)	0) 319-07		-	647-69	980		1		-
Sample ID	SAM	Blow Counts Counts	% Recovery		Sheen	Sample Depth (ft)	Depth (ft)	STRATA	DESCRIPTION USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
0-1.5*	1635	4/6/8	67 (1.0		N	0-1.5	- - - 1	SM/ OH	Grey to black, silty F-M SAND overlying brown organic sandy SILT with abundant wood debris (chips, fibers) and moderate sulfide odor
							- 2		
2.5-3.0 3.0-4.0*	1640	10/23/50	80 (1.2	3.5 ft)	N 	2.5-4.0	- 3	PT SM	Creosote-treated wood fragment with moderate odor (3.0-4.0 ft sample collected for grain size analysis) Grey, silty F SAND with moderate shell fragments and slight indiscernible odor (fine gravels above bedrock)
5.0-5.5	1645	50-4in	66 (0.3 f	t)	N	4.0-5.0	- - - 5		Base of Boring @ 4 ft. (weathered sandstone) Drilled into bedrock 1.0 ft (weathered sandstone)
	· · · · · · · · · · · · · · · · · · ·			+ + +	·		- - 6		
				 	 		7		
				 			- 8 - - 9		
······					·		-		LOCATION SKETCH
DRILLING DRILLING SAMPLIN COORDII SURFAC DATUM	G METH IG EQU NATES	HOD JIPMENT	R			Cascad Hollow DM Sp E 1238 N 6366 -1.8 ft MLLW	Ster lit Sp 3202 640.6	m Aug poon .07	

	ENK) 319-07	OHL C 321 Summe Bellingham, 21 FAX	erland WA 9	Road		IG LLO	С		BOREHOLE NUMBER PROJECT MGP-SB-05 LOCATION SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/8/2010 1535
(000		IPLE INFO			00		T		DESCRIPTION
Sample ID	Time	Counts	% Recovery		Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
0-1.5	1535	1-18in	33 (0.5	J	N	0-1.5	- - - 1	SM	Grey to black, silty F-M SAND with shell fragments and a few eel grass blades and slight sulfide odor
·	·			·	 		- 2		
2.5-4.0*	1538	1-18in	87 (1.3	0.3 ft)	N	2.5-4.0	3	он	Brown, organic sandy SILT with abundant fine wood debris (chips, fibers) and slight to moderate sulfide odor
	·		 	·	 		- 4		
5.0-6.0* 6.0-6.5	1542	35/40/41	67 (1.0 f	 	N	5.0-6.5	5	он	Brown, organic sandy SILT with abundant wood debris (chips, fibers), scattered shell fragments, and strong sulfide odor
			<u> </u>	ŕ				sw	Sands and Gravels with shell hash overlying bedrock
			+				6	_	Base of Boring @ 6.0 ft.
·	·			·	 	·	- 7		(No odor in bedrock - grey Chuckanut sandstone)
·					 		-		
 	 				 	·	- 8		
						·	9		
- -									
DRILLING CONTRACTOR Cascade D DRILLING METHOD Hollow Ster SAMPLING EQUIPMENT DM Split Sp COORDINATES E 1238105. N 636596.8 SURFACE ELEVATION -2.4 ft DATUM MLLW									Deer/Barge LOCATION SKETCH SB-05 N Not to scale

HERR		321 Summ Bellingham	erland , WA s	Road		IG LLO	С		BOREHOLE NUMBER PROJECT MGP-SB-06 DOCATION SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/7/2010 1535
(PLE INFO	. ,				Ι		DESCRIPTION
Sample ID	Time	Blow Counts	%Recovery	OId	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
							-		
0-2.0	1535		15	J	N	0-2.0	-	он	Brown, organic sandy SILT with abundant wood chips and a few
			(0.3	ft)			1		eelgrass blades and root fragments, slight to moderate sulfide odor
							-		
							-		
					<u> </u>		-		
							2		clay and silt increasing with depth
2.0-4.0*	1542		65	1.3	Ν	2.0-4.0	3	он	Brown, organic clayey, sandy SILT with moderate to abundant wood
			(1.3	ft)			-		chips and fibers, moderate sulfide odor
							-		
							-		
							4		
							-		
							-		
4.0-6.0	1545		15		N	4.0-6.0		он	Organic debris increasing, large piece of bark at bottom of sampler
			(0.3 f	t)			5		
							6		More abundant wood fibers
							-		
							-		Shell hash layer
							-		
6.0-8.0*	1554		90		N	6.0-8.0	7	он	Same as above with moderate to strong sulfide odor
0.0 0.0	1004		(1.8 f	J		0.0 0.0	-	0.1	- field duplicate collected, SB-66 - 6.0-8.0 for analysis
				ŕ					
	+			1	1	1			
]		8		
8.0-9.0	1600		20	<u> </u>	Ν	8.0-9.0		он	Same as above
			(0.2 f	t)	 				
							9		
				 			-		
							•		
DRILLING CONTRACTOR Cascade D DRILLING METHOD Hollow Ster SAMPLING EQUIPMENT Osterberg- COORDINATES E 1238139 N 636661.6 SURFACE ELEVATION -6.1 ft DATUM MLLW									Der/Barge y/DM Split Spoon N Not to scale

الله الله الله الله الله الله الله الله	ND with F gravels, abundant shell
a b a b a b a b a b a b a b a	ring, cementation, geologic interpretation, etc. ILT with wood debris (chips, ND with F gravels, abundant shell
International and the second secon	ND with F gravels, abundant shell
10-10.5 1610 - 100 1.1 N 10-11.5 10.5-12* 1618 8/12/40 87 - N 10.5-12 10.5-12* 1618 8/12/40 87 - N 10.5-12 11 (1.3 ft) - N 10.5-12 MH fibers) 12-13.5* 1623 20/25/35 87 - N 12-13.5 13- 14- 15- 14- 15- 15- 14- 15- 15- 15- 14- 15-	ND with F gravels, abundant shell
10.5-12* 1618 8/12/40 87 N 10.5-12 11- grading to olive to grey, silty F-C S/ hash, and slight to moderate sulfide 12-13.5* 1623 20/25/35 87 - N 12-13.5 12- SM Same as above - <td></td>	
(1.3 ft) 11- (1.3 ft) 11- 12-13.5* 1623 20/25/35 87 (1.3 ft) 12-13.5 12-13.5* 1623 20/25/35 87 (1.3 ft) 12-13.5 SM Same as above	
12-13.5* 1623 20/25/35 87 N 12-13.5 12-13.5* 1623 20/25/35 87 N 12-13.5 SM Same as above SM Same as above </td <td></td>	
12-13.5* 1623 20/25/35 87 N 12-13.5 13- - - - - - - 13- - - - - - - 14- - - - - - - 14- - - - - - - 12- - - - - - - 14- - - - - - - 14- - - - - - - - 14- - - - - - - - - 14- - - - - - - - - - 1	
12-13.5* 1623 20/25/35 87 N 12-13.5 SM Same as above	
12-13.5* 1623 20/25/35 87 N 12-13.5 SM Same as above	
- large gravel in catcher	
Image: Second	
Image: Second	
	ckanut Sandstone
18-	
+++++	
······································	
DRILLING CONTRACTOR Cascade Drilling DRILLING METHOD Hollow Stem Auger/Barge SAMPLING EQUIPMENT Osterberg-Shelby/DM Split Spoon COORDINATES E 1238139.01 N 636661.65 N SURFACE ELEVATION -6.1 ft DATUM MLLW	LOCATION SKETCH

HERR		321 Summo Bellingham	erland , WA	Road		IG LL	C		BOREHOLE NUMBER MGP-SB-07 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/9/2010 1736				
(000		PLE INFO			00				DESCRIPTION				
٥							(ft)	A					
Sample ID	Time	Blow Counts	% Recovery	OIA	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.				
0-1.5	1736	5/6/7	20	J	N	0-1.5		SM	Grey to black, silty F-C SAND with F gravel, brick fragment in bottom				
	·		(0.3	(ft)			1		of sampler				
	<u> </u>		1	<u> </u>	[
]]		2						
2.5-4.0*	1741	4/3/3	73	<u> </u>	N	2.5-4.0		SM	Grey to black, silty F-C SAND with a chunk of wood at bottom of				
			(1.1	ft)					sampler, strong sulfide odor, brick fragments, and scattered fine				
	<u> </u>		+				3		gravels				
	†		+										
							4						
	·												
5.0-6.5*	1744	4/4/4	47		N	5.0-6.5	5	SM	Same as above with more fine gravels and brick fragments				
			(0.7 f	1									
	·		Ì	İ									
							6						
			+										
	<u> </u>		+		<u> </u>		7						
	<u> </u>		+										
7.5-9.0	1746	2/4/4	33		Ν	7.5-9.0		SM	Same as above but no brick fragments observed and wood piece				
_							8		lodged in bottom of sampler				
	<u> </u>												
	<u> </u>		+		 								
			+				9						
			1				1						
	<u> </u>		1			·							
DRILLING CONTRACTOR Cascade DRILLING METHOD Hollow St SAMPLING EQUIPMENT DM Split COORDINATES E 123800 SURFACE ELEVATION -1.1 ft DATUM MLLW								m Aug boon .18	Der/Barge LOCATION SKETCH				

HERR		321 Summ Bellingham	erland , WA	Road		IG LL	С		BOREHOLE NUMBER PROJECT MGP-SB-07 SSSMGP RI/FS SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/9/2010 1736
(000					.00				DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	G	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
10-11.5	1748	1/1/2	67 (1.0 f	 (t)	N	10-11.5	11	SM/ OH	Same as above but grading to organic sandy SILT
. <u></u>							-	РТ	Wood chunk and debris (mostly fibers) in bottom of sampler
12.5-14	1751	1/2/2	60	 	 N	12.5-14	12	он	Brown organic clayey, sandy (F) SILT with abundant wood debris (chips, fibers), and slight to moderate sulfide odor, scattered fine shell hash
			(0.9 f	t)		12.0 14	- 13	-	
						·	14	-	
·					 		- 15-	-	
15-16.5*	1754	2/2/3	60 (0.9 f	 t)	N	15-16.5	-	он	Same as above but with brick fragments
				·	 	·	16-		
17.5-19*	1756	15/20/50	-4	4	N	17.5-18.	17 5	он	
	·		(1.1 f	τ) 	 	·	- 18	OH/ SM	odor Blackened organics with slight creosote-like odor into surface of bedrock, and sand/gravels at bottom of sampler
·	 		 	 	 	·	- - 19		Base of Boring @ 18.5 ft - Grey Chuckanut Sandstone
·							-		
DRILLING CONTRACTOR Cascade I DRILLING METHOD Hollow Ste SAMPLING EQUIPMENT DM Split S COORDINATES E 1238005 N 636591. SURFACE ELEVATION -1.1 ft								m Aug poon .18	
SURFACE ELEVATION -1.1 ft DATUM MLLW									Not to scale

HERR		321 Summ Bellingham	erland	Road 98229		IG LLO	C		BOREHOLE NUMBER MGP-SB-08 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/8/2010 1320
(PLE INFO					1		DESCRIPTION
Sample ID	Time	Blow Counts	%Recovery	DID	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
	4000				<u></u> -			~	
0-2.0*	1320		55		N	0-2.0		он	Brown, organic sandy (F) SILT with abundant wood chips and fibers,
			(1.1	ft)			1		and moderate sulfide odor
							2		
2.0-3.0	1324		90		Ν	2.0-3.0		PT	Mostly wood debris and strong sulfide odor
			(0.9	ft)					Large chunk of wood at 3 ft
							3		
3.0-5.0*	1332		30		N	3.0-5.0		он	Prove organic condu (E) SILT with abundant wood debrie (abine
3.0-3.0	1002		(0.6 f	t)		0.0-0.0		011	Brown, organic sandy (F) SILT with abundant wood debris (chips, and fibers), and strong sulfide odor
			<u></u>	ŕ			4		
							5		
5.0-7.0	1336		70	<u> </u>	N	5.0-7.0			Chunks of wood from 5.0-5.5 ft
			(1.4 f	t) 				PT	Brown, organic, sandy (F) SILT with abundant wood debris (chips,
							6		and fibers), and strong sulfide odor grading to mostly wood
									debris in bottom of sampler
							_		
							7		
7.0-9.0	1342		85	41	Ν	7.0-9.0		он	Brown, organic, sandy (F) SILT with abundant wood debris including
			(1.7	ft)					large wood chips and bark, and strong sulfide odor
							8		
	·								
	++		+		 				+
	++			 			·		
9.0-10*	1350		70	59	Ν	9.0-10	9	РТ	All wood debris with slight petroleum-like odor
	 		(0.7 f	t)]]		
					_		1		
DRILLING CONTRACTOR Cascade D DRILLING METHOD Hollow Ste SAMPLING EQUIPMENT Osterberg- COORDINATES E 1238059 N 636660. SURFACE ELEVATION -5.3 ft DATUM MLLW									y/DM Split Spoon Not to scale

HERR		321 Summ Bellingham	erland , WA	Road		IG LL	С		BOREHOLE NUMBER MGP-SB-08 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/8/2010 1320
(000		PLE INFO			00		Ι		DESCRIPTION
Sample ID	Time	Blow Counts	%Recovery	DIA	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
10-11*	1356		30 (0.3	 ft)	N	10-11	- 11	OH/ PT	Mostly wood debris with sandy SILT and slight petroleum-like odor
11-12.5*	1402	1/2/2	100	J	Y	11-12.5	5	РТ	
			(1.5	ft)		·	12	ML	Grey to olive, organic clayey SILT with F sand and slight petroleum- like odor with slight sheen in bottom of sampler
12.5-14	1405	1/1/2	87 (1.3	 ft)	N	12.5-14	13	он	Brown, organic sandy (F) SILT with abundant organics and wood debris, and moderate sulfide odor
14-15.5	1410	1/1/1	80 (1.2 f	 t)	N	14-15.5	14-		Same as above
				·			- 15-	SM	Shell hash layer in silty F-M SAND matrix
15.5-17	1412	1/2/2	100 (1.5	2.2 ft)	N	15.5-17	16-	SM	Grey, silty F-C SAND with fine gravel and moderate shell fragments
17-18.5	1415	NR	0 (0 ft)	 	17-18.5	17		No recovery
18.5-20	1419	3/4/4	100 (1.5 f	J	N	18.5-20	18 - - - 19	SM	Grey silty F gravelly F-C SAND with moderate shell fragments
							-		
DRILLING DRILLING SAMPLIN COORDII SURFAC DATUM	G METH IG EQU NATES	iod IIPMENT	۲				Ster erg- 3059 660.1	m Aug Shelb .96	y/DM Split Spoon Not to scale

	HERRENKOHL CONSULTING LLC 321 Summerland Road Bellingham, WA 98229 (360) 319-0721 FAX (360) 647-6980 SAMPLE INFORMATION								BOREHOLE NUMBERMGP-SB-08PROJECTSSSMGP RI/FSLOCATIONBoulevard Park, Bellingham, WAPROJECT NUMBERHCL-017LOGGED BYMark Herrenkohl, LEGDATE AND TIME9/8/2010 1320Page 3 of 3					
	SAM	PLE INFO	RMA	TION				-	DESCRIPTION					
Sample ID	Time	Blow Counts	%Recovery	DIA	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.					
20-21.5*	1421	4/4/4	47 (0.7	 ' ft)	N	20-21.5	21	SM	Grey, silty, fine gravelly F-C SAND with abundant shell fragments/hash, and slight sulfide odor - grain size analysis					
21.5-23*	1423	4/4/5	53 (0.8	·	N	21.5-23	22	SM	Same as above					
23-24* 24-24.5	1428	10/15/40) 80 (1.2 f	 it)	N	23-24.5	23	SM	Same as above but silt increasing with depth and few coarse gravels, no obvious odor					
					 		24		Base of Boring @ 24.5 ft - Grey Chuckanut Sandstone					
	······		 		 	·	25							
	······		··		 		26							
							27							
					 		28							
······				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	29							
DRILLING CONTRACTOR Cascade DRILLING METHOD Hollow Str SAMPLING EQUIPMENT Osterberg COORDINATES E 123805 N 636660 SURFACE ELEVATION -5.3 ft DATUM MLLW														

									BOREHOLE NUMBER MGP-SB-09				
HERR	ENK	OHL C	ON	SUL		IG LL	С		PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA				
									PROJECT NUMBER HCL-017				
		321 Summ Bellingham							LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/7/2010 1200				
(360	0) 319-07:	•	(360)		980				Page 1 of 4				
		PLE INFO	ORMA	TION					DESCRIPTION				
Sample ID	Time	Blow Counts	e Recovery	PID	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.				
			%										
					1	·	-						
0-2.0*	1200		90		N	0-2.0		он	Brown, organic SILT with fine sand and bark fragments and moderate				
			(1.8	s ft)			1		sulfide odor				
							1						
							2						
2.0-4.0	1215		75		N	2.0-4.0		он	Same as above				
			(1.5	i ft)									
					 		3						
							-						
							-						
							-						
							4						
4.0-6.0*	1220		70	0.3	N	4.0-6.0	-	он	Same as above				
			(1.4 f	1			-						
			Ť	ŕ			_						
					1		5						
]	<u> </u>		SM	Grey, organic silty F-M SAND with fine shell fragments and scattered				
									wood chips and moderate sulfide odor				
			 		 		6						
					 		-						
6090	1230		65	0.6	N	6.0-8.0	-						
6.0-8.0	1230			1		0.0-0.0	-	PT	Brown, organic SILT with silty SAND lenses, slight to moderate sulfide				
			(1.3	<u>σπ)</u>		·	7		odor, and bark fragments and wood chips				
							-						
							-						
					1	†	1						
	1				1	†	8						
	1			1	1	1							
8.0-10	1240		91		Ν	8.0-10		РТ	Mostly wood chips and bark				
			(1 ft)			9		(only 1.1 ft penetration into the wood debris)				
					ļ		ľ						
DRILLING DRILLING SAMPLIN COORDII SURFAC	G METH IG EQU NATES	iod IIPMENT		<u> </u>	1	Osterb E 1238 N 6367 -8.9 ft	Ster erg- 088	m Au <u>(</u> Shelb .20	ger/Barge y/DM Split Spoon N				
DATUM MLLW									Not to scale				

									BOREHOLE NUMBER MGP-SB-09
HERR	FNK	оні с	ON	su	ΤΙΛ	IGII	c		PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA
				501			0		PROJECT NUMBER HCL-017
		321 Summ	erland	Road					LOGGED BY Mark Herrenkohl, LEG
		Bellingham							DATE AND TIME 9/7/2010 1200
(360	0) 319-07	21 FAX	(360)	647-69	80				Page 2 of 4
	SAM	IPLE INFO	ORMA	TION					DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	DID	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
								1	
						1			
	+					*	-		
	+					+		PT/	Brown, organic SILT with abundant wood chips, fibers, and bark
	+					ł	- 11	-	
						·	-	он	fragments, strong sulfide odor
						ł	-		
						·	-		
							12-		
							_		
							_		
							- 13		
							13-		
						1			
						†	-		
	+					+	- 14-		
	+					<u> </u>	-		Wood debris boundary at about 15 ft
						·	-		
	·					<u> </u>	-		
						<u> </u>	15		+
							-		
15-17*	1250		95	4	N	15-17	-	ML	0.3 ft shell hash lense near 15.5 ft
			(1.9 f	t)			_		Grey to olive, organic sandy SILT with slight to moderate sulfide odor
							- 16-		
							_		
								L_	
			1			1	17		Macoma shell half at 17 ft.
							1/		
17-19*	1300		85		Ν	17-19		SM	Grey to olive, silty F SAND with scattered Macoma shells
			(1.7	ft)		<u> </u>			- grain size analysis
	+			<u></u>		·	-		
ŀ	+			<u> </u>		<u> </u>	- 18	1	
	+				 	<u> </u>	-		
	+					<u> </u>	-		
						 -	-		
							19-	-	Concentrated shell fragments at 19 ft.
	+								
					 	 	-		
DRILLING CONTRACTOR Cascade D DRILLING METHOD Hollow Ster SAMPLING EQUIPMENT Osterberg- COORDINATES E 1238088 N 636719. SURFACE ELEVATION -8.9 ft DATUM MLLW								m Au Shelb .20	
<u> </u>									

HERR		321 Summo Bellingham	erland , WA	Road		IG LLO	С		BOREHOLE NUMBER MGP-SB-09 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/7/2010 1200
(300					00		I		DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	QL	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
19-20.5	1310	3/4/4	33		Ν	19-20.5	5	SM	Same as above.
			(0.5	ft)			_		(attempted with Osterberg-Shelby but no recovery, then sampled with
							-		DM split spoon - blow counts are not representative)
	4005	0/0/0	07			00.5.00	21		
20.5-22	1325	6/8/6	87		N	20.5-22	-	SM	Grey, silty F-M SAND with abundant shell hash
			(1.3 f	π) 			-		
							-		
							- 22		
							-		
			-				-		
							23		
							23	L	
23-24.5	1330	4/5/5	100	0.9	Ν	23-24.5	5		
			(1.5 f	it)			_	ML	Grey, clayey SILT with fine sand, no obvious odor
							- 24-		
							-		
							-		
							-		
25.5-27*	1331	4/5/5	100		N	25.5-27	25	ML	Same as above but sample is more saturated with water
			(1.5 f	J		2010 21	-		- grain size analysis
			<u> </u>	ŕ			-		
							26-	1	
							_		
							_		
							27		
					l		-		
							-		
			-		 		-		
28-29.5	1337	5/6/6	87	0.6	N	28-29.5	28	ML/	Clay increasing, not as wet
			(1.3	J			-	CL	Grey (slight mottling), silty CLAY to clayey SILT with fine sand, smooth
	1		<u></u>				1		texture
	1		1		<u> </u>		20		
			I				29	1	
							_		
			. 		 				
DRILLING DRILLING SAMPLIN COORDII SURFAC DATUM	G METH IG EQU NATES	iod Iipment		<u> </u>	<u> </u>		Ster erg-3 8088 719.6	m Aug Shelb .20	ger/Barge y/DM Split Spoon N N N N N N N N N N N N N N N N N N

HERR		OHL C 321 Summ Bellingham	erland	Road	.TIN	IG LL	С		BOREHOLE NUMBERMGP-SB-09PROJECTSSSMGP RI/FSLOCATIONBoulevard Park, Bellingham, WAPROJECT NUMBERHCL-017LOGGED BYMark Herrenkohl, LEGDATE AND TIME9/7/2010 1200
(360	0) 319-07			647-69	80		T		Page 4 of 4
Sample ID	SAM	BIOW Counts	Recovery WW		Sheen	Sample Depth (ft)	Depth (ft)	STRATA	DESCRIPTION USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
š		Ŭ	%			° 0			
							-		
					<u></u>		-		
30.5-32	1348	4/4/5	100	J	N	30.5-32	-	ML/	Same as above
			(1.5	ft)			- 31	CL	
	·						-		
	·						-		
							-		
							32		
				<u> </u>		<u> </u>	-		
				<u> </u>		<u> </u>	-		
	+						-		
							- 33		
33-34.5	1350	4/5/5	100	1.2	N	33-34.5		ML	Grey, clayey SILT with fine sand and scattered fine gravels
			(1.5 f	4			-		Giey, dayey Sill i with the sand and scattered the graves
				<u>,</u>			-		(sand increasing with depth)
						¦	- 34-		
							-		
							-		
						¦	35		
35.5-37*	1355	5/5/6	100		Ν	35.5-37	,	ML	Grey, sandy (F), clayey SILT with scattered fine gravels
			(1.5 f	t)		†			¥¥`
							36-		
							- 30-		
							37		
				 	 	ļ			
				 		ļ	_		
				ļ		 	- 38		
				 		 	-	┝	+
	4055	40/05/01	100		<u></u> -	00.00	<u>-</u>		
38-39.5*	1357	10/25/28		J	N	38-39.5	2	SM	Grey, silty, F-C SAND with clay and fine gravel (and 1 coarse gravel)
	 		(1.5 f	ι) 			39		
			+				ŀ		
							-		
	+		+				ŀ		Base of Boring @ 39.5 - Weathered Chuckanut Sandstone
DRILLING DRILLING SAMPLIN COORDIN SURFACI DATUM	G METH IG EQL NATES	iod Jipment		1	1		Ster erg-3 8088 719.6	m Aug Shelb .20	Jer/Barge y/DM Split Spoon Not to scale

HERR		321 Summ Bellingham	ierland i, WA S	Road 98229		IG LL	С		BOREHOLE NUMBER PROJECT MGP-SB-10 DOCATION SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/9/2010 1507
(360) 319-072		(360) 6		80		T		
Sample ID	SAM EI EI	BIOW BIOW Counts	% Recovery		Sheen	Sample Depth (ft)	Depth (ft)	STRATA	DESCRIPTION USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
0-1.0	1507		40		N	0-1.0	-	он/	Grey to black, organic silty F SAND with abundant fine wood debris and
1.0-1.5	1510		(0.4 f 100 (0.5 f		N	1.0-1.5	- 1	PT	scattered shell fragments, moderate to strong sulfide odor, and scattered eelgrass blades and roots - samples from 0-1.0 and 1.0-1.5 ft were combined and archived. - larger wood chips
2.0-4.0*	1521		55 (1.1 f	 t)	N	2.0-4.0	2	PT	Brown, wood debris (primarily chips) with strong sulfide odor
				·	 	·	- 3		
4.0-6.0	1525		45 (0.9 f	 t)	N	4.0-6.0	- 5	PT	Brown, wood debris (primarily chips and fibers) with moderate sulfide odor
 				·	 	·	6		
7.0-8.0*	1530		85 (1.7 f	64.9 t)	N	6.0-8.0	-	РТ	Same as above
	·			·	 	·	- 7	он	7.0-8.0 tested for PID - elevated reading from H2S? Grey, organic, sandy SILT with clay and abundant wood debris and strong sulfide odor
	4525						8	PT OH PT	- large wood chunks in thin layers observed at depth
8.0-10	1535		100 (2.0 f		N	8.0-10	9	OH PT OH	- same as above but with wood debris layers (chips and fibers)
							-	РТ	LOCATION SKETCH
DRILLING DRILLING SAMPLIN COORDIN	G METH	IOD					Ste erg- 996	m Au <u>(</u> Shelb .66	ger/Barge y/DM Split Spoon ↑ ↑ ↑ SB-10
SURFACI DATUM	E ELEV	ATION				-4.7 ft MLLW			Not to scale

									BOREHOLE NUMBER MGP-SB-10
HERR	FNK	OHL C	ON	su	TIN	IGII	C		PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA
			011	001			•		PROJECT NUMBER HCL-017
		321 Summe							LOGGED BY Mark Herrenkohl, LEG
		Bellingham,							DATE AND TIME 9/9/2010 1507
(360	0) 319-07	21 FAX	(360)	647-69	80		1		Page 2 of 4
	SAM	IPLE INFO		TION			÷	⊲	DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	OId	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
			•						
	+					ł	-		
10-12	1543		0			10-12	-		Na Desevery
10-12	1040			<u> </u>		10-12	-		No Recovery
			(0 ft	:) 1			- 11	-	
						<u> </u>	-		
						.	-		
							_		
							12		
12-14	1551		45	171	Ν	12-14		РТ	Brown to grey, wood debris (chips, fibers, some bark fragments) with
			(0.9	ft)					sandy SILT matrix and moderate to strong sulfide odor
				<u> </u>		1			- PID reading due to strong sulfide odor?
	+					<u> </u>	- 13		
	+					+	-		
	+						-		
						<u> </u>	-		
	+					+	- 14-		
14-15.5	1603	1/2/2	33		N	14-15.5		РТ	
14-15.5	1003		J			14-15.5	-	FI	Same as above
			(0.5 f	1		·	-		
						·	15-		
						.	-		
							_		
							_		
							16-		
								L	
15.5-17	1605	1/1 for12	67		Ν	15.5-17	,		
		((1.0 f	t)		1		он	Grey to brown, organic, sandy SILT to silty F SAND with abundant
				1					wood debris and moderate sulfide odor
						1	17	1	
						<u> </u>	-		
	+			†		<u> </u>			
	+			<u> </u>		<u> </u>	1		
17-18.5	1608	1 for 18	73	9.0	N	17-18.5	18	┝	+
17-10.5	1000	1 101 10		J		17-10.0	-	ML	Create a diversity of the state
	+		(1.1	<u>ft)</u>		<u> </u>	-	IVIL	Grey to olive, clayey SILT with fine sand and strong sulfide odor and
				 		 	-		scattered wood fragments
			 				19		
			 						
19-19.5	1610	1/1/1	53	<u> </u>	N	18.5-20	2	⊢	
19.5-21.5*		((0.8 f	t)					
							1	SM	
DRILLING SAMPLIN COORDII	G METH IG EQU NATES	JIPMENT	R			Osterb E 1237 N 6366 -4.7 ft	Ster erg-3 7996 559.1	m Au <u>(</u> Shelb .66	y/DM Split Spoon N N LOCATION SKETCH
DATUM						MLLW			Not to scale

	ENK) 319-07	OHL C 321 Summe Bellingham, 221 FAX (erland WA 9	Road		IG LL	С		BOREHOLE NUMBER MGP-SB-10 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/9/2010 1507
(000		IPLE INFO					1		DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	DIA	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
	1612	2/2 for12	67 (1.0	 ft)	N	20-21.5	21	GM	Grey, silty, F-C sandy F GRAVEL with moderate shell fragments and hash, and moderate sulfide odor - 19.5-21.5 sample was composited for analysis.
21.5-23	1614	2/3/4	80 (1.2	 ft)	N	21.5-23	22		Same as above grading to grey, silty, F gravelly F-C SAND with abundant shell fragments and slight sulfide odor
23-24.5	1619	2/2/3	87	1.4	 N	23-24.5	23	SM	Crow oithy E grouplly E C SAND with objindopt shall fragments and
	1019		1.3 f	J			24-		Grey, silty, F gravelly F-C SAND with abundant shell fragments and slight sulfide odor
24.5-26	1622	2/3/3	87 1.3 f	J	N	24.5-26	25-		Same as above - Macoma clam shells observed
26-27.5	1628	3/3/4	87	1.7	 N	26-27.5	26-	 ML	Grey, clayey SILT with fine sand and smooth texture
·			(1.3	J	 		27		
27.5-29	1630		67 1.0 f	J	N	27.5-29	28		Same as above
29-31*	1632	3/4/4	67		N	29-30.5	29	ML	Grey, clayey SILT with F-C sand and F gravels at bottom of sample
		(1.0 f	t)	ļ				- Field duplicate collected for 29-31 ft (SB-20 - 29-31)
DRILLING DRILLING SAMPLIN COORDIN SURFACE DATUM	6 METH G EQL NATES	JIPMENT	2				Ster erg-3 7996 559.1	m Aug Shelb .66	Jeer/Barge y/DM Split Spoon N SB-10 Not to scale

		OHL C 321 Summe Bellingham,	erland WA	Road 98229		IG LL	с		BOREHOLE NUMBER MGP-SB-10 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/9/2010 1507
(360) 319-07			647-69	80		1		
Sample ID	SAM	PLE INFO Blow Counts	% Recovery		Sheen	Sample Depth (ft)	Depth (ft)	STRATA	DESCRIPTION USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
									- 29 - 31 ft samples were composited for analysis
				1			-		
29-31*	1635	50 for 6	100		N	30.5-31	1	ML	Grey, clayey, SILT with F-C sand and F gravels at bottom of sample
			(0.5	1		†	-		
			(1			- 31		Base of Boring @ 31 ft - Grey Chuckanut Sandstone
							-		
						·	-		
						·	-		
							- 32		
						<u> </u>	-		
							-		
						·	-		
				<u> </u>			- 33		
						<u> </u>	-		
							-		
							-		
							- 34-		
							_		
						. <u></u>	_		
							_		
			<u> </u>				- 35-]	
			<u> </u>	<u> </u>					
							- 36-		
							- 30-]	
							07		
							- 37		
						1			
			1	1	1	1	-		
	1		1			1	1_		
	1		1		1	1	- 38-	1	
	1		1		1	1			
	1		1			1	-		
	1		1			†	-		
	1		†		1		- 39-	1	
							-		
DRILLING DRILLING SAMPLIN COORDIN SURFACI DATUM	G METH G EQU NATES	HOD JIPMENT	र	L	L		v Ste perg-: 7996 659.2	m Au Shelb .66	LOCATION SKETCH ger/Barge y/DM Split Spoon N SB-10 Not to scale

HERR	:	321 Summ Bellingham	nerland n, WA	Road 98229		IG LL	С		BOREHOLE NUMBER MGP-SB-11 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/8/2010 0839
(360	,		(360)		180		I		-
Sample ID	Time	PLE INFO	% Recovery		Sheen	Sample Depth (ft)	Depth (ft)	STRATA	DESCRIPTION USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
							-		
0-2.0*	0839		50		N	0-2.0	-	он	Brown to grey, organic sandy SILT with abundant wood debris (chips,
			(1.0 f	ft)			-	•	fibers) and scattered shell hash, with one fine gravel in upper sample,
			(1.01	1			1		moderate to strong sulfide odor
	++						-		
						<u> </u>	-		
							-		
							2		
						ł	-		
2.0-4.0	0849		40	30	N	2.0-4.0	-		Some as above, financing with depth
2.0 4.0	0040		(0.8 f	·		2.0 4.0	-		Same as above, fines increasing with depth - PID reading may be from strong sulfides?
	++		(0.01	1		·	3		
	++		·				-		
							-		
						ł	-		
						ł	4		
4.0-5.0*	0855		50		N	4.0-5.0	-	он	Brown, organic, sandy SILT with clay and abundant wood debris
4.0 0.0	0000		(1.0 f	[ft)		4.0 0.0	-	0.1	
	++		1.01	1		·	-		(fibers, chips, bark) and scattered shell hash with strong sulfide odor
	···					<u> </u>	5		- encountered large wood fragment at 5 ft (bark)
	++						-		
	++						-		
	++		·			ł	-		
	++		·			ł	6		
	···					<u> </u>	-		
6.0-8.0	0904		65		N	6.0-8.0	-	он	O and a second the large statement and at hetters of a second se
0.0-0.0	0904		(1.3 f	1		0.0-0.0	-	ОП	Same as above with large stringy bark at bottom of sampler
			(1.51	1			7		- sand is decreasing
	···					<u> </u>	-		
	···					<u> </u>	-		
	┟╌╌╌┤					<u> </u>	-		
	·{					<u> </u>	8	⊢	+
	·{			<u> </u>		<u> </u>	-	РТ	Concentrated wood for success (abing the sec)
8.0-10	0909		05	68.9	N	8.0-10	-1		Concentrated wood fragments (chips, fibers) - PID reading from strong sulfide odor?
0.0-10	0000		(1.9 f	J		0.0-10	-	⊢	
	++		(1.91				9		
	<u>+</u>						ł	<u>он</u> /	Crow proposition playary SII T with finances of mandematic wanted databatic and
	·{			<u> </u>		<u> </u>	-	ML	Grey, organic, clayey, SILT with fine sand, moderate wood debris and
							·		strong sulfide odor
DRILLING DRILLING SAMPLIN COORDII SURFAC DATUM	G METH IG EQU NATES	OD IPMENT		<u>.</u>			Stere erg- 3014 730.3	m Au <u>(</u> Shelb .12	ger/Barge y/DM Split-Spoon N Not to scale

HERR		321 Summ Bellingham	erland , WA	Road		IG LLO	С		BOREHOLE NUMBER PROJECT MGP-SB-11 DOCATION SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/8/2010 0839
(000		PLE INFO			00				DESCRIPTION
Sample ID	Time	Counts Counts	% Recovery	Q	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
<u>ح</u>	0927		60	+	N	<u><u></u></u>	11 12 13 14 15 16		Grey, organic, clayey SILT with fine sand, moderate wood debris and moderate sulfide odor
16-18	0940		40	J	N	16-18	· 17 · 18 · 19	ML	Olive, organic, sandy (F) SILT with clay, moderate wood debris in upper sample, sandy greater at depth, trace shell fragments, and moderate sulfide odor
DRILLING DRILLING SAMPLIN COORDII SURFAC DATUM	G METH IG EQU NATES	IOD IIPMENT	λ				Ster erg-9 014 730.3	m Au <u>(</u> Shelb .12	ger/Barge y/DM Split-Spoon

HERR		321 Summ Bellingham	erland , WA	Road		IG LL	С		BOREHOLE NUMBER MGP-SB-11 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9/8/2010 0839
(000					00				DESCRIPTION
Sample ID	Time	Counts	% Recovery	QI	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
20-21	0947		0 (0 ft)	 	20-21	- - - 21	SM	No Recovery - switch to DM split spoon - from bottom of sampler - grey, silty F SAND with abundant shell hash and scattered wood debris (fibers)
22-23.5	1000	2/3/5	100 (1.5 f	1.6	N	22-23.5	- 22	ML	Grey to olive, clayey SILT with fine sand, smooth texture, and slight sulfide odor
	· · · · · · · · · · · · · · · · · · ·				 		- 24-		
24.5-26*	1005	2/6/6	87 (1.3 f	 it)	N	24.5-26	<u>-</u> 25-	ML	Same as above - grain size analysis
 	·			·	 	·	- 26- -		
			+				- 27	SM	Grey, silty F SAND layer
27-27.5 27.5-28.5	1012	5/5/6	80 (1.2 f	J	N 	27-28.5	- 28 -	ML	Grey, clayey SILT with fine sand, slight sulfide odor, and scattered shell fragments - PID reading on sample collected from 27-27.5 ft
29.5-31	1021	5/5/6	67 (1.0 f	 t)	N	29.5-31			Same as above but clay increasing
DRILLING DRILLING SAMPLIN COORDIN SURFACE DATUM	G EQU	iod Iipment					v Ster berg-3 3014 730.3 ft	m Auថ Shelb .12	ger/Barge y/DM Split-Spoon N Not to scale

									BOREHOLE NUMBER MGP-SB-11
HERR	ENK	OHL C	ON	รมเ	TIN	IG LL	С		PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA
	_,,,,	•••= •	•				•		PROJECT NUMBER HCL-017
		321 Summe							LOGGED BY Mark Herrenkohl, LEG
		Bellingham,							DATE AND TIME 9/8/2010 0839
(360) 319-07			647-69	080		T		Page 4 of 5
	SAM	PLE INFO		TION	1		£	.∢	DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	DID	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
				<u> </u>			- 31		
							31-		
				<u> </u>					
				<u> </u>					
							32-		
							02		
32-33.5	1023	3/4/5	80		Ν	32-33.5	5	ML	Grey, clayey SILT with fine sand, no obvious odor
		((1.2	it)					- thin sand lenses within sample
			<u> </u>				- 33		
			<u> </u>						
							_		
							_		
							- 34-		
							_		
							_		
34.5-35.5*	1027	11/6/5	67	ł	N	34.5-36	6	ML	Grey, clayey sandy (F) SILT
35.5-36		((1.0)	ft)			- 35-		- sand increasing
							_		- PID reading on sample from 34.5-35.5 ft
							_		
							-		
							- 36-	SM	Grey, silty F-M SAND with slight sulfide odor
			+				-		+
			+				-		
			+				-	ML	
							37		Grey, clayey, sandy SILT
			+			·	-		
37-37.5*	1030	18/30/50) 47		N	37-38.5	5		
37.5-38.5	1000		(0.7 1	4		07 00.0	-		
			1	1		+	- 38-		+
			+			¦	-		
			1				-	SM	Grey, silty F-M SAND, with no obvious odor
			+				-		
			1				- 39-	-	
			1						
			1						
DRILLING DRILLING SAMPLIN COORDIN SURFACI	G EQL	HOD JIPMENT	2			Osterb E 1238 N 6367 -14.01	Ster Sold Sold 730.3	m Au Shelb .12	ger/Barge y/DM Split-Spoon
DATUM						MLLW			Not to scale

									BOREHOLE NUMBER MGP-SB-11 PROJECT SSSMGP RI/FS
HERR	ENK	OHL CO	ON	SUL		IG LL	С		LOCATION Boulevard Park, Bellingham, WA
									PROJECT NUMBER HCL-017
		321 Summe							LOGGED BY Mark Herrenkohl, LEG
(Bellingham,							DATE AND TIME 9/8/2010 0839
(360) 319-07			647-698	30		-		Page 5 of 5
	SAN	IPLE INFO		TION		1	÷	∢	DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	OId	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
							_		
							_		
39.5-41*	1042	16/25/40	80	1.3	N	39.5-41	-	SM	Grey (some olive mottling), silty F-M SAND with no obvious odor
		((1.2 f	t)			- 41		
			<u> </u>				_ ··		
							1		
	1						- 42		
42-43.5*	1048	7/10/15	87		Ν	42-43.5	5	ML/	Grey, clayey, sandy SILT with sand lenses interlayed throughout
	<u> </u>		(1.3 f	it)			-	SM	sample
	<u> </u>		Ì	ŕ			-		
	<u> </u>						- 43		
	<u> </u>						-		
							-		
							-		
							- 44		
							-		
	4054	0/40/00					-		
44.5-45.5	1054	8/16/30	67		N	44.5-46		ML/	44.5-45.5 ft ML with increasing F-M sand and F gravel
45.5-48*		((1.0 f	t)			45	SM	
							-		
							-		
							_		
							46	GM	Grey, silty, F-C sand F-C GRAVEL with no obvious odor
							_		- coarse gravel in bottom of sample
							_		
							_		- 45.5-48 ft composited for analysis
							47		
							_		
45.5-48*	1100	33/50-6	53	1.4	Ν	47-48	_	SM/	Grey, silty, F-C gravelly F-C SAND with no obvious odor
		((0.8 f	t)			_	SW	
	<u> </u>		 		l	<u> </u>	- 48		
	 		<u> </u>		<u> </u>	<u> </u>			
			<u> </u>	<u> </u>		<u> </u>			
			<u> </u>						
			[[40		
	I			Ι		I	49	1	
49.5-50	1107	50- 2in	33	[Ν	49.5-50)		
	1	((0.2 f	t)	1		1		Base of Boring @ 50.0 ft - Grey Chuckanut Sandstone
				Τ					
DRILLING DRILLING SAMPLIN COORDIN SURFACE DATUM	G EQU NATES	IOD JIPMENT					v Ster berg-\$ 3014. 730.3 ft	m Au <u>(</u> Shelb .12	ger/Barge y/DM Split-Spoon
									Not to scale

HERR		321 Summo Bellingham	erland , WA s	Road		IG LLO	0		BOREHOLE NUMBER MGP-SB-12 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9 Sept 10 1913
(***		PLE INFO							DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	OId	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
0-1.5	1913	4/4/4	33 (0.5 f		N	0-1.5		SM	Grey to black, silty, F-M SAND with live littleneck clam, eelgrass blades roots, and moderate sulfide odor
					 		2		
2.5-4.0	1916	2/3/3	0 (0 ft)		 	2.5-4.0	3		No Recovery
					 		4		????
					 		5		
5.0-6.5*	1917	2/2/2	53 (0.8 f	 t)	N	5.0-6.5	6	PT	Wood debris (chips, fibers) with moderate sulfide odor
·					 	·	7		
7.5-9.0	1919	1/1/2	20 (0.3 f	 t)	N	7.5.9.0	8	PT	Same as above but with strong sulfide odor
							9		
DRILLING DRILLING SAMPLIN COORDIN	G METH	IOD	2			DM Sp E 1237 N 6366	Stei lit Sp 932	m Aug 200n .19	
SURFACE ELEVATION -3.2 ft DATUM MLLW									SB-12

									BOREHOLE NUMBER MGP-SB-12
HERR	FNK	оні с	:ON	su	TIN	IG I I I	C		PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA
		0112 0	011	001			•		PROJECT NUMBER HCL-017
		321 Summ	erland	Road					LOGGED BY Mark Herrenkohl, LEG
		Bellingham							DATE AND TIME 9 Sept 10 1913
(360	0) 319-07			647-69	80		-		Page 2 of 6
	SAM	PLE INFO		TION	-		÷	⊲	DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	DIA	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
10-11.5*	1920	2/2/1	40		Ν	10-11.5		PT	Same as above.
			(0.6 f	t)					
					1				
							11-		
									- Large chunk of wood in bottom of sampler
							12-	1	
							-		
12.5-14	1922	1/1/2	<10		N	12.5-14		РТ	Same as above (sample only in shoe)
			(0.1 f	4			-		- not much fines in sample
			1	<u>,</u>			13-		
							-		
							•		
							-		
							14-	1	
							-		
							-		
							•		
							15-	1	
15-16.5	1925	1/1/2	47		N	15-16.5		РТ	
13-10.3	1323		(0.7 f	4		10-10.5	-		Same as above
			(0.7)	1			-		
							16-	ł	
							-		
							-		
							-		
							17-		
							-		
							-		
17.5-19	1928	1/1/2	40		N	17.5-19		РТ	Same as above
	1020		(0.6 f	i it)			18-	1	
			1	<u>,</u>		<u> </u>	-		
			+	<u> </u>		<u> </u>	-		
			+	<u> </u>		<u> </u>	-		
			+				19-	1	
	†						1		
	++					<u> </u>	1		
	 		+		······		1		
DRILLING CONTRACTOR Cascade Dr DRILLING METHOD Hollow Sterr SAMPLING EQUIPMENT DM Split Sp COORDINATES E 1237932. N 636659.50 SURFACE ELEVATION -3.2 ft DATUM MLLW								m Aug poon .19	LOCATION SKETCH ger/Barge N ° Not to scale SB-12 SB-12

HERR		321 Summ Bellingham	erland , WA 🤉	Road		IG LLO	C		BOREHOLE NUMBER MGP-SB-12 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9 Sept 10 1913
	SAM	PLE INFO	RMA	TION	-		()	STRATA	DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	PID	Sheen	Sample Depth (ft)	Depth (ft)		USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
20-21.5	1930	1/1/1	53	I	Ν	20-21.5		РТ	Same as above
			(0.8 f	t)		·	21		
						·			
							22		
						 			
						<u> </u>		<u> </u>	+
						<u> </u>			
22.5-24	1932	0/1/1	67		N	22.5-24	23	он/	Grey to olive, clayey SILT with fine sand, scattered to moderate
			(1.0 f	t)				ML	organics, and moderate sulfide odor
							24		
			-			·	25		
25-26.5	1934	0/1/1	87	42.3	Ν	25-26.5		ML	organics decreasing
			(1.3 f	t)		·			- PID reading due to sulfides?
							26-		
								SM	Olive to grey, silty F-M SAND with moderate shell fragments and
								0	moderate sulfide odor
							27		
							27		- fines (clay) increasing with depth
						 			
						<u> </u>			
27.5-29*	1936	1/1/2	73		N	27.5-29	28	SM	Same as above
			(1.1 f	l					
							29		- increasing shell fragments from 28.5 to 29 ft
	ļ				 		_		
						 			
			+		 		-		
DRILLING CONTRACTOR Cascade D DRILLING METHOD Hollow Ste SAMPLING EQUIPMENT DM Split S COORDINATES E 1237932 N 636659. SURFACE ELEVATION -3.2 ft									Der/Barge N ○ Not to scale SB-12
DATUM <u>MLLW</u>									

HERR		321 Summe Bellingham,	erland WA	Road		IG LL	С		BOREHOLE NUMBER MGP-SB-12 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9 Sept 10 1913
	SAM	PLE INFO	RMA	TION					DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	DIA	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
30-31.5*	1939	2/2/2	67 (1.0 f	 it)	N	30-31.5		SM	Same as above with abundant shell fragments
·							31		
			 		 	·	· 32		
32.5-34*	1941	4/4/5	53 (0.8 f	it)	N	32.5-34	33	SM	Same as above
·				·	 	·	34	ML	Olive, sandy SILT with abundant shell fragments, no obvious odor
35-36.5	1943	3/3/3	67		N	35-36.5	35	ML	Grey to olive, sandy, clayey SILT with scattered to moderate shell
			(1.0 f	ít)	 		36		fragments, and no obvious odor
						·	37		
37.5-39	1945		67 (1.0 f	J	N	37.5-39		ML	Grey to olive, clayey SILT with fine sand and smooth texture
·	 				 	·			
·····		······					• 39		
			 						
DRILLING CONTRACTOR Cascade D DRILLING METHOD Hollow Ste SAMPLING EQUIPMENT DM Split S COORDINATES E 1237932 N 636659.									
SURFACE ELEVATION -3.2 ft DATUM MLLW									SB-12

HERRENKOHL CONSULTING LLC 321 Summerland Road Bellingham, WA 98229 (360) 319-0721 FAX (360) 647-6980									BOREHOLE NUMBER MGP-SB-12 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG DATE AND TIME 9 Sept 10 1913
		PLE INFO	RMA			1	£	۲.	DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	DIA	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
40-41.5	1952	4/4/6	47		N	40-41.5	5	ML	Same as above
			(0.7 f	it)			-		 - F-M sand lense from 40.7 to 41 ft
						 	41		
							-	SM	Grey, silty F-M SAND with scattered shell fragments and fine gravels
·							42		at bottom of sample
							-		
42.5-44	1956	5/5/5	80		N	42.5-44	-	ML	Grey to olive, F-M sandy SILT with fine gravels and scattered shell
			(1.2 f	it)			43	-	fragments
							-		
							44	-	
							-		
							45-		
							-		
45-46.5	1959	5/5/5	87 (1.3 f	 (t)	N	45-46.5	-	ML	Same as above
				Ĺ			46-		
							-		
							47		
							-		
47.5-49*	2001	5/5/5	93	1.5	N	47.5-49	48	L	
			(1.4 f	it)			-	SM	
							-		Grey to olive, silty F-C SAND
							49		
								ML	Olive, sandy, clayey SILT
DRILLING CONTRACTOR Cascade Dr DRILLING METHOD Hollow Stem SAMPLING EQUIPMENT DM Split Sp COORDINATES E 1237932. SURFACE ELEVATION -3.2 ft DATUM MLLW							Ste lit S 932 559.5	m Aug poon .19	ger/Barge N ○ Not to scale SB-12 SB-12

HERRENKOHL CONSULTING LLC 321 Summerland Road									BOREHOLE NUMBER MGP-SB-12 PROJECT SSSMGP RI/FS LOCATION Boulevard Park, Bellingham, WA PROJECT NUMBER HCL-017 LOGGED BY Mark Herrenkohl, LEG
		Bellingham,							DATE AND TIME 9 Sept 10 1913
(360)	319-07				30		1		Page 6 of 6
	SAM	IPLE INFOR	_	TION	1	1	÷	∢	DESCRIPTION
Sample ID	Time	Blow Counts	% Recovery	뎹	Sheen	Sample Depth (ft)	Depth (ft)	STRATA	USCS group name, moisture content and plasticity, color, minor and MAJOR constituents with grain size range, odor, sheen, texture, weathering, cementation, geologic interpretation, etc.
							-		
	0005	00/40/50			- <u>.</u> .	50 54 5	_		
51-51.5	2005		L		N	50-51.5	2	ML/	Olive, sandy SILT with large gravel above bedrock
		(0.5 f	t)			- 51	GM	
							-		
							-		
							-		Base of Boring @ 51.5 ft - Grey Chuckanut Sandstone
							- 52		
							-		
							-		
							-		
					+		- 53		
							-		
							-		
							-		
							- 54		
							-		
					+		-		
							-		
							- 55-		
							-		
					+		-		
					+		-		
					+		- 56-		
							-		
							-		
							-		
							- 57	-	
							-		
					+		-		
					+		-		
					+		- 58	-	
					+				
					+				
					+				
					+		- 59	-	
DRILLING CONTRACTOR Cascade Di DRILLING METHOD Hollow Ster SAMPLING EQUIPMENT DM Split Sp COORDINATES E 1237932. N 636659.5 SURFACE ELEVATION -3.2 ft DATUM MLLW							Ster Ster 7932 659.5	m Aug 200n .19	ger/Barge N ○ Not to scale

PO Box 1000 Lopez Island, WA 98261 (360) 319-0721								CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE	SS Bel HC DH	ected: 9/24/15, processed: 9/25/15 Page 1 of 1
	SAM	PLE INFORMA			t)	ft/ft)				DESCRIPTION
Sample ID	Time	Sample Depth (ft)	Grain Size	Range	Depth (ft)	Recovery (ft/ft)	STRATA			re, color, minor, MAJOR constituents, odor, sheen, entation, geologic interpretation, etc.
SB-14-0-2	845	0-2					РТ	Eelgrass over dark brown sa of lumber, medium dense, me		sized WOOD with silt, occasional brick fragments, chunks sulfide odor, medium sheen
								Unweathered SAWDUST, me	edium	dense, medium sulfide odor, no sheen
					2			- charcoal layers from appro	oximate	ly 1.0-1.25 and 2.25-2.5'
SB-14-2-4	855	2-4			2					
					4	100%				
SB-14-4-6	905	4-6			4					
					6		РТ	<u></u>		
								<u></u>		
								<u></u>		
SB-14-6-8	915	6-8						<u></u>		
								<u></u>		
								<u></u>		
					8			<u></u>		
SB-14-8-9	925	8-9			0			<u></u>		
								└		
								No recovery from 9.0-14.0		
					10			<u></u>		
					10			<u></u>		
					12	0%				
					-					
					14					
								14.0 ft of penetration	1	
SAMPI IN		TRACTOR		Marine Sar	molio	a Sveter	ns Inc			LOCATION SKETCH
SAMPLIN				Coring/Ves	· ·	<u>ə</u> əyətər				
SAMPLING EQUIPMENT Vibracorer POSITIONING METHOD GPS										
									-	
COORDINATES <u>48 43.99829N</u> 122 30.10950W						,			- ↑	
WATER D				12.8'					Ν	Not to scale
WATER L			• ()	+8.6'					_	
		ATION (MLL		-4.2'	071/	58° ⊑			-	
WEATHER cloudy, breezy,						JU F			-	

HERRENKOHL CONSULTING LLC

PO Box 1000 Lopez Island, WA 98261

MGP-SB-15
SSSMGP RI/FS
Bellingham Bay
HCL040/015015.070
DHF
collected: 9/25/15, processed: 9/25/15

		(360) 319-072	21				Page 1 of 1
SAMPLE INFORMATION					t/ft)		DESCRIPTION
Sample ID	Time	Sample Depth (ft)	Grain Size Range	Depth (ft)	Recovery (ft/ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc.
SB-15-0-2	1115	0-2				он	Eelgrass over dark brown SILT with sawdust and some chunks of wood, soft, moderate sulfide odor, no sheen
				2			Unweathered SAWDUST, occasional brown/slightly weathered layers, soft, moderate sulfide odor, no sheen
SB-15-2-4	1125	2-4		2	100%		
				4			
SB-15-4-6	1135	4-6				РТ	- sawdust settled in core duirng transport
				6			
SB-15-6-8	1145	6-8			69%		
				8			
SB-15-8-10	1155	8-10					
				10			
					0%		No recovery from 10.0-11.9
				12			
							Refusal at 11.9 ft, 10.0 ft recovery
				14			
SAMPLING CONTRACTOR Marine Sar SAMPLING METHOD Coring/Ves SAMPLING EQUIPMENT Vibracorer					g Systen	ns, Inc.	LOCATION SKETCH
POSITION	IETHOD	GPS 48 43.978 122 30 14				↑	

Ν

Not to scale

WATER DEPTH WATER LEVEL (TIDE) SEDIMENT ELEVATION (MLLW) WEATHER

122 30.14975W

showers, 55° F

6.5'

+1.4' -5.1'

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE MGP-SB-16 SSSMGP RI/FS Bellingham Bay HCL040/015015.070 DHF collected: 9/24/15, processed: 9/24/15

PO Box 1000 Lopez Island, WA 98261

		(360) 319-072			Page				
SAMPLE INFORMATION							DESCRIPTION		
Sample ID	Time	Sample Depth (ft)	Grain Size Range	Depth (ft)	Recovery (ft/ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc.		
SB-16-0-2	1120	0-2			100%	РТ	Brown to red-brown, slightly weathered SAWDUST with occasional silt and slightly weathered wood chunks, soft, strong sulfide odor, medium sheen, PID reading of 0.7 ppm		
SB-16-2-2.3	1125	2-2.3		2			No recovery from 2.3 to 7.1 ft		
				4					
				6	0%				
				0			Refusal at 7.1 ft, 2.3 ft recovery, wood chunk in shoe		
				8					
				10					
				12					
				14					
SAMPLIN		TRACTOR	Marina Sa		a Svoton		LOCATION SKETCH		
SAMPLING CONTRACTOR Marine Sa SAMPLING METHOD Coring/Ver SAMPLING EQUIPMENT Vibracorer POSITIONING METHOD GPS COORDINATES 48 44.010 122 30.12						ns, Inc.			
WATER D WATER L SEDIMEN WEATHEF	TIDE) /ATION (MLLV	17.0' +3.4'				N Not to scale			

HERRENKOHL CONSULTING LLC

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

MGP-SB-17
SSSMGP RI/FS
Bellingham Bay
HCL040/015015.070
DHF
collected: 9/24/15, processed: 9/24/15

PO Box 1000 Lopez Island, WA 98261

		(360) 319-072	21			Page 7				
SAMPLE INFORMATION					(f t)		DESCRIPTION			
Sample ID	Time	Sample Depth (ft)	Grain Size Range	Depth (ft)	Recovery (ft/ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc.			
SB-17-0-2	1030	0-2					Dark brown/black organic SILT with trace sand, soft, slight sulfide odor, no sheen			
						он				
							Dark brown SILT with abundant fine to medium stringy chips of wood debris, very soft, slight			
SB-17-2-4	1040	2-4		2			sulfide odor, no sheen			
					78%					
						он				
SB-17-4-6	1050	4-6		4						
						PT	Dark brown, stringy, unprocessed WOOD DEBRIS with silt, very soft, slight sulfide odor, no sheen			
				6						
	[0			Stop core penetration at 6.0 ft, resistant wood layer observed below 6.0 ft in previous attempts			
							attempts			
	[
				8						
				0						
				10						
				10						
				12						
				12						
				14						
			-				LOCATION SKETCH			
		TRACTOR			ig Syster	ns, Inc.				
SAMPLIN SAMPLIN			Coring							
SAMPLING EQUIPMENT Vibracorer POSITIONING METHOD GPS										
COORDINATES 48 44.05131N							↑			
WATER D				.07709W	/		Not to scale			
WATER D		TIDE)	<u>26.8'</u> +1.0'				N Not to scale			
		ATION (MLLV								
WEATHER		`	cloudy,	55° F						

HERR		OHL CON PO Box 1000 Lopez Island, WA (360) 319-072	98261	.C			CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE	MGP-SB-18 SSSMGP RI/FS Bellingham Bay HCL040/015015.070 DHF collected: 9/24/15, proces	sed: 9/24/15 Page 1 of 1
	SAM	PLE INFORMA		_	t/ft)			DESCRIPTION	
Sample ID	Time	Sample Depth (ft)	Grain Size Range	Depth (ft)	Recovery (ft/ft)	STRATA	USCS group name, density, organics, biology, weathering	moisture, color, minor, MAJOR cor g, cementation, geologic interpretat	nstituents, odor, sheen, tion, etc.
SB-18-0-2	1630	0-2					Dark brown/black organic SI	T with trace sand and wood chips	and sawdust, very soft,
							medium sulfide odor, no she	en	
				2					
SB-18-2-4	1640	2-4					- wood content increasing wi	th depth	
					76%	он			
				4					
SB-18-4-5.5	1650	4-5.5		4					
							Refusal at 5.5 ft, 4.2 ft of rec	overy	
				6			Wood in catcher.		
				8					
				10					
				12					
				14					
SAMPLINA			Morie - 1	Samelia	a Sustan	me Inc		LOCATION	ISKETCH
SAMPLING CONTRACTOR Marine Sampling SAMPLING METHOD Coring/Vessel						ns, inc.		-	
SAMPLING EQUIPMENT Vibracorer									
POSITIONING METHOD GPS								4	
COORDINATES <u>48 44.03792N</u> 122 30.91615W								4	
WATER D	EPTH		27.0'					l.	
WATER L	EVEL (+7.7'] Ť	
		VATION (MLL)		ouder C	0° E				Not to scale
WEATHER partly cloudy, 60								Ν	NOL LO SCALE

PO Box 1000 Lopez Island, WA 98261 (360) 319-0721	;		CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE	MGP-SB-19 SSSMGP RI/FS Bellingham Bay HCL040/015015.07 DHF collected: 9/24/15, p
SAMPLE INFORMATION		t/ft)		DESCRIPTION

	MGP-SB-19	
	SSSMGP RI/FS	
	Bellingham Bay	
ER	HCL040/015015.070	
	DHF	
	collected: 9/24/15, processed: 9/24/2	15
		Page 1 of 1

Depth (ft) Grain Size Range Sample ID Sample Depth (ft) Recovery (STRATA Time USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc. SB-19-0-2 1510 0-2 Dark brown/black SILT with abundant wood chips, soft, slight to medium sulfide odor, no shee SB-DUP2-0-2 1800 0-2 ОН gravelly at 1.75 ft 2--SB-19-2-4 1520 2-4 Dark brown WOOD DEBRIS (chips and large fresh chunks) with silt and trace gravel, soft, medium sulfide odor, no sheen РТ 4--SB-19-4-6 1530 4-6 ML Grey SILT with sand and gravel, soft, no odor, no sheen Grey fine to medium SAND with white shell fragments, occasional coarse gravel, loose, ocear 6-like odor, no sheen SB-19-6-8 1540 6-8 89% 8--SB-19-8-10 1550 8-10 SP Fresh piece of slightly weathered WOOD (log?) from 9.5-10.5 ft 10-SB-19-10-12 1600 10-12 12-14-14 ft penetration, 12.5 ft recovery LOCATION SKETCH SAMPLING CONTRACTOR Marine Sampling Systems, Inc. SAMPLING METHOD Coring/Vessel SAMPLING EQUIPMENT Vibracorer POSITIONING METHOD GPS COORDINATES 48 44.02329N 122 29.98085W WATER DEPTH 12.8' WATER LEVEL (TIDE) +8.0' SEDIMENT ELEVATION (MLLW) -4.8' Ν Not to scale WEATHER partly sunny, breezy, 60° F

PO Box 1000 Lopez Island, WA 98261 (360) 319-0721								CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE	MGP-SB-21 SSSMGP RI/FS Bellingham Bay HCL040/015015.070 DHF collected: 9/25/15, processed: 9/25/15 Page 1 of	1
	SAM	PLE INFORMA	TION		-	t/ft)			DESCRIPTION	
Sample ID	Time	Sample Depth (ft)	Grain Size	Kange	Depth (ft)	Recovery (ft/ft)	STRATA		moisture, color, minor, MAJOR constituents, odor, sheen, , cementation, geologic interpretation, etc.	
SB-21-0-2	1000	0-2					ОН	Dark brown/black organic SIL	T with trace sand, soft, medium sulfide odor, no sheen	
								Dark brown/grey SILT with tra sulfide odor, no sheen	ace sand, abundant chunks of processed lumber, soft, mediun	1
					2		ML			
SB-21-2-4	1010	2-4			2					
					4	100%		Grey SILT with occasional lar	ge shell fragments, medium stiff, no odor, no sheen	
SB-21-4-6	1020	4-6			4					
							ML			
					6					
SB-21-6-7	1030	6-7								
								 		
								No recovery from 7.0-14.0 ft		
					8					
					10					
						0%				
					10					
					12					
					14					
		L						14 ft penetration, 7.0 ft recover		
SAMPLING CONTRACTOR Marine Samplin SAMPLING METHOD Coring/Vessel						g Syster	ns, Inc.		LOCATION SKETCH	
SAMPLING EQUIPMENT Vibracorer POSITIONING METHOD GPS							4			
COORDINATES 48 44.08610N					10N				1	
	רחדיי			122 30.003	370W				4	
WATER DEPTH 24.1' WATER LEVEL (TIDE) +0.6'									┨	
SEDIMENT ELEVATION (MLLW) -23.5'									Not to scale	
WEATHER cloudy, 55° F									4	

HERR		OHL CON PO Box 1000 opez Island, WA (360) 319-072	98261	LC			CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE	MGP-SB-22 SSSMGP RI/FS Bellingham Bay HCL040/015015.070 DHF collected: 9/23/15, processed: 9/23/15 Page 1 of 1
	SAM	PLE INFORMA	TION		(ft)			DESCRIPTION
Sample ID	Time	Sample Depth (ft)	Grain Size Range	Depth (ft)	Recovery (ft/ft)	STRATA		moisture, color, minor, MAJOR constituents, odor, sheen, g, cementation, geologic interpretation, etc.
SB-22-0-2	1745	0-2					Dark brown/black SILT with to logs?), soft, no odor, no shee	race sand and abundant wood debris (large unprocessed wood, en
				2				
SB-22-2-4	1735	2-4						
				4	62%	он	- with abundant wood debris	3.0-6.5 ft
SB-22-4-6	1730	4-6		'				
				6				
SB-22-6-8	1715	6-8		0			Brown/dark grey SILT, stiff, n	io odor, no sheen
				8				
SB-22-8-10	1705	8-10					- with large shells from 8.5-9.	5
				10	100%	ML		
SB-22-10-12	1650	10-12						
				12				
				12				
				14			14 ft penetration, 12.5 ft reco	very
SAMPLING CONTRACTOR Marine Sampling SAMPLING METHOD Coring/Vessel SAMPLING EQUIPMENT Vibracorer POSITIONING METHOD GPS COORDINATES 48 44.09669N					g Syster	ns, Inc.	·	LOCATION SKETCH
WATER DEPTH 36.5' WATER LEVEL (TIDE) +8.3' SEDIMENT ELEVATION (MLLW) -28.2' WEATHER partly sunny, 65°								■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

HERRENKOHL CONSULTING LLC	
---------------------------	--

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE MGP-SB-23 SSSMGP RI/FS Bellingham Bay HCL040/015015.070 DHF collected: 9/23/15, processed: 9/24/15

PO Box 1000 Lopez Island, WA 98261

(360) 319-0721						Page 1 of 1				
SAMPLE INFORMATION					(/ft)		DESCRIPTION			
Sample ID	Time	Sample Depth (ft)	Grain Size Range	Depth (ft)	Recovery (ft/ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc.			
SB-23-0-2	900	0-2					Dark brown/black SILT with trace sand, soft, slight sulfide odor, no sheen			
						ML				
	[]						- brown film/slime at 1.0 ft			
	J			2						
SB-23-2-4	910	2-4				PT	Brown WOOD DEBRIS (processed lumber), moderately weathered, no odor, no sheen			
					100%	SM	Brown and tan fine-medium SAND w/ silt and white shell frags, med dense, no odor or sheen			
							Grey fine to medium SAND with large shell fragments and silt, medium dense, no odor, no sheen			
SB 33 4 5	025	A E		4		SM				
SB-23-4-5	925	4-5								
	}									
	<u> </u> 4									
				6						
	[8	9%					
				10-						
						RK?	Squared WOOD/board over grey, highly weathered fine to medium grained SANDSTONE in shoe (Chuckanut Formation?)			
							10.75 ft penetration, 4.9 ft recovery			
				12-	-					
				14						
					-					
							LOCATION SKETCH			
				ne Sampli	ng Syster	ms, Inc.				
SAMPLING METHOD Coring/Vessel SAMPLING EQUIPMENT Vibracorer				×						
POSITIONING METHOD GPS COORDINATES 48 44.08598N 122 30.16649W										
					v					
WATER D	EPTH		37.5		v					
WATER L			+7.7				^			
SEDIMEN		VATION (MLLV		v sunny, 6	5° F		Not to scale			
					<u> </u>					

PO Box 1000 Lopez Island, WA 98261 (360) 319-0721								CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE	MGP-SB-25 SSSMGP RI/FS Bellingham Bay HCL040/015015.070 DHF collected: 9/24/15, processed: 9/24/15 Page 1 of 1
	SAM	IPLE INFORMA	TION			(ft)			DESCRIPTION
Sample ID	Time	Sample Depth (ft)	Grain Size	Range	Depth (ft)	Recovery (ft/ft)	STRATA		moisture, color, minor, MAJOR constituents, odor, sheen, , cementation, geologic interpretation, etc.
SB-25-0-2	1400	0-2						Dark brown/black SILT with t no sheen	race sand and occasional wood chips, soft, medium sulfide odor,
							ML		
	[]				2				
SB-25-2-4	1410	2-4			2				
								- black at 2.5-3.0 ft	
							РТ	Brown SAWDUST with silt, se	oft, medium sulfide odor, no sheen
			1			100%		Brown SILT with sand, mediu	Im sfiff, medium sulfide odor, no sheen
SB-25-4-6	1420	4-6	1		4				
			<u> </u>				ML		
			<u> </u>						
			<u> </u>						
SB-25-6-7.5	1430	6-7.5			6				
	1430						SM	Brown, silty, fine to medium S sheen	SAND with large shells, medium dense, medium sulfide odor, no
	[]				8				
					0				
	[]		[
					10				
			1		10				
			1			0%	SM?		
	[]		1						
			1						
			1		12				
			<u> </u>						
			<u> </u>					Sandy large SHELLS over lo	ose fine to medium SAND with silt in shoe
				······	14			14 ft penetration, 7.5 ft recov	
			<u>.</u>				l	· · · · · · · · · · · · · · · · · · ·	LOCATION SKETCH
SAMPLIN	G CON	ITRACTOR		Marine Sam	npling	g Systen	ns, Inc.		
SAMPLING METHOD Coring/Vessel									
SAMPLING EQUIPMENT Vibracorer									-
POSITIONING METHOD GPS COORDINATES 48 43.98009N					9N				4
CCORDIN				122 30.248					1
WATER D	EPTH			39.9']
WATER L			• 0	+6.9'					_↓ ↑
		VATION (MLL)	/V)	-33.0	E				Not to scale
WEATHER cloudy, 60° F									N Not to scale

CORE NUMBER PROJECT LOCATION PROJECT NUMBER LOGGED BY DATE

MGP-SB-31
SSSMGP RI/FS
Bellingham Bay
HCL040/015015.070
DHF
collected: 9/25/15, processed: 9/25/15

PO Box 1000 Lopez Island, WA 98261

(360) 319-0721							Page 1 of 1
	SAMPLE INFORMATION						DESCRIPTION
Sample ID	Time	Sample Depth (ft)	Grain Size Range	Depth (ft)	Recovery (ft/ft)	STRATA	USCS group name, density, moisture, color, minor, MAJOR constituents, odor, sheen, organics, biology, weathering, cementation, geologic interpretation, etc.
SB-31-0-2	1200	0-2					Dark brown/black organic SILT, soft, medium sulfide odor, no sheen
SB-DUP3-0-2	1300	0-2				он	
SB-31-2-4	1210	2-4		2		он	Dark brown SILT with wood chips and processed wood chunks, soft, medium sulfide odor, no sheen
30-31-2-4	1210	2-4			4000/	ОП	
					100%		
							Grey SILT with sand and occasional shell fragments, soft, no odor, no sheen
				4		ML	
SB-31-4-5	1220	4-5					
					0%		No recovery
				6			Refusal at 6.0 ft, 5.0 ft of recovery
							Wood debris below 6 ft, pile-drived previous coring attempts at this location.
				8			
				10			
				12			
				1			
				1			
				14			
		TRACTOR	Marina Sc	molio	a Sveton	no Ino	LOCATION SKETCH
SAMPLIN			Marine Sa Coring/Ve		y Oysten	115, 1110.	
SAMPLIN			Vibracore				
POSITIONING METHODGPSCOORDINATES48 44.15721N							
	ЕРТИ		122 30.00	788W			
WATER D WATER LI			<u>26.5'</u> +0.8'				
							↑
	SEDIMENT ELEVATION (MLLW) -25.7 WEATHER showers, 5						Not to scale
			· · · · · ·				

APPENDIX C

Terrestrial Ecological Evaluation

APPENDIX C

TERRESTRIAL ECOLOGICAL EVALUATION

South State Street Manufactured Gas Plant RI/FS

Prepared for

City of Bellingham

Parks and Recreation Department 3424 Meridian Street Bellingham, Washington 98225 **Puget Sound Energy**

Environmental Services 10885 NE 4th Street PSE-11N Bellevue, Washington 98004

Prepared by

Landau Associates 130 2nd Avenue South Edmonds, Washington, 98020

CONTENTS

LI LI	ST OI ST OI	F FIGUR F TABLE	CHMENTSiii ESiii ESiii ND ABBREVIATIONSiv
1	INTE	RODUCI	FION
	1.1		ESCRIPTION AND BACKGROUND1-1
	1.2	EVALU	JATION FRAMEWORK
		1.2.1	Tier One - Exclusions Evaluation
		1.2.2	Simplified TEE Qualification Evaluation
2	ECO	LOGICA	AL SETTING
	2.1	COVER	2-1 2-1
	2.2	WILDL	IFE
	2.3	SENSIT	TIVE SPECIES
3	LAN	D USE, I	ECOLOGICAL GOALS, AND POINTS OF COMPLIANCE
	3.1	LAND	USE AND ECOLOGICAL GOALS
	3.2	POINTS	S OF COMPLIANCE
4	SITE	-SPECII	FIC TERRESTRIAL ECOLOGICAL EVALUATION
	4.1	PROBL	EM FORMULATION
		4.1.1	Constituents of Potential Ecological Concern
			Exposure Pathways Evaluation
			Receptors of Concern
			Potential Toxic Effects
	4.2		URE ASSESSMENT
			Exposure Areas
		4.2.2	Soil Reasonable Maximum Exposure Point Concentrations
		4.2.3	Bioaccumulation Factors
	12		Wildlife Exposure Parameters
	. –		AD CHARACTERIZATION
			TAINTY ANALYSIS
5			AND CONCLUSIONS
6			ES
U	NEL		-0-1

LIST OF ATTACHMENTS

Attachment C-1. Ecological Survey of the Uplands Portion of the SSSMGP Site Attachment C-2. ProUCL Output Files – Site Soil UCLs Attachment C-3. Supplemental Screening for Identification of COPECs Attachment C-4. ProUCL Output Files – Exposure Area Soil UCLs Attachment C-5. Wildlife Exposure Models and Soil Screening Levels

LIST OF FIGURES

Figure C-1.	Site Vicinity Map
Figure C-2.	MTCA Terrestrial Ecological Evaluation Framework
Figure C-3.	Soil Sample Locations
Figure C-4.	Ecological Conceptual Exposure Model

C C

'1 O

LIST OF TABLES

CD (

· 1 E

1

10

Table C-1.	Screening of Son Constituents of Potential Ecological Concern
Table C-2.	Exposure Area Characteristics
Table C-3.	Derivation of Earthworm Bioaccumulation Factors for Polycyclic Aromatic Hydrocarbons
Table C-4.	Derivation of Plant and Earthworm Bioaccumulation Factors for Selenium
Table C-5.	Wildlife Exposure Factors
Table C-6.	Earthworm Toxicity Test Data from Kreitinger et al. (2007)
Table C-7.	Mammalian Toxicity Reference Values for PAHs
Table C-8.	Mammalian and Avian Toxicity Reference Values for Selenium
Table C-9.	Hazards for Soil Biota
Table C-10.	Hazards for Wildlife from PAHs
Table C-11.	Hazards for Wildlife from Selenium in the Upper Area
Table C-12.	ProUCL Outlier Test for Naphthalene in Upper Exposure Area Soil Samples

C

ACRONYMS AND ABBREVIATIONS

BAFs	bioaccumulation factors
bgs	below ground surface
BNSF	Burlington Northern Santa Fe Railway
CEM	conceptual exposure model
City	City of Bellingham
COPCs	constituents of potential concern
EISC	ecological indicator soil concentration
EPA	Environmental Protection Agency
EPC	exposure point concentration
HI	hazard index
HPAHs	high molecular weight PAHs
HQ	hazard quotient
LOAEC	lowest observed adverse effect concentration
LPAHs	low molecular weight PAHs
MGP	manufactured gas plant
MTCA	Model Toxics Control Act
NOAEC	no observed adverse effect concentration
ORNL	Oak Ridge National Laboratory
PAHs	polycyclic aromatic hydrocarbons
POC	point of compliance
RGAF	gut absorption factor
RI/FS	Remedial Investigation/Feasibility Study
SSL	soil screening level
SSSMGP	South State Street Manufactured Gas Plant
SVOCs	semivolatile organic compounds
TEE	Terrestrial Ecological Evaluation
TRUs	toxicity reference values
UCL	upper confidence limit
VOCs	volatile organic compounds
WAC	Washington Administrative Code
WDNR	Washington State Department of Natural Resources

1 INTRODUCTION

This terrestrial ecological evaluation (TEE) was conducted as part of the remedial investigation and feasibility study (RI/FS) for the South State Street Manufactured Gas Plant cleanup site (Site) located in Bellingham, Washington (Figure C-1). The purpose of this TEE is to assess ecological hazards associated with the potential exposure of terrestrial ecological receptors to constituents present in Site soil. This TEE complies with Model Toxics Control Act (MTCA) requirements under Chapters 173-340-7490 through 7494 Washington Administrative Code (WAC).

1.1 SITE DESCRIPTION AND BACKGROUND

The Site is defined as the location where contamination is present due to releases or migration of those releases, and includes both an upland site and a marine site (Figure C-1). The uplands portion of the Site is situated on the northern portion of Boulevard Park, which is a City of Bellingham (City) managed park. This portion includes an upper park and lower park area, which is bisected by a steep slope (referred to as the slope area) and an active railroad tracks owned and managed by Burlington Northern Santa Fe Railway (BNSF; referred to as the BNSF area). The park is connected to the South Bay Trail which runs along the shoreline north and south of the park. The park is bounded by South State Street and single family and multi-family residential area to the southeast. The marine portion of the Site is situated in Bellingham Bay, adjacent to the park.

From approximately 1890 to the late 1940s, a coal gasification plant operated on the upper park area of the Site (Herrenkohl Consulting and Landau Associates 2010 and references therein). The facility manufactured gas from coal and supplied residents and local businesses of Bellingham with gas for heating, cooking, and lighting. The gas plant consisted of above-ground gas holder tanks, fuel oil tanks, a retort and purifying facility, a coal shed and a coke shed used for storage. Of the original gas plant structures, a concrete aboveground gas holder tank, a small brick utility building, remnants of concrete foundations and likely some underground piping remain in the upper park portion of the Site. The lower park area was originally developed as a lumber mill in 1884. The mill was located almost exclusively on a large wood dock/wharf supported by wood pilings that extended for approximately 1,200 ft along the shoreline and 400 ft out into Bellingham Bay. The mill was closed after a fire destroyed it on September 30, 1925. Over the next 50 years, most of the remaining pier and pilings were cut to the mudline or removed and the area was filled from local sources (e.g., demolition materials from the Fairhaven Hotel, wood debris from the mill) (Griffin 2007).

Residential developers purchased the property in the 1960s. In 1975, the City acquired ownership of the majority of the gas plant property from a private owner and Burlington Northern Railroad Company (Griffin 2007). Boulevard Park was dedicated by the City for public use in June 1980.

1.2 EVALUATION FRAMEWORK

The MTCA TEE framework for evaluating constituent concentrations in soil includes three tiers (Figure C-2). Tier 1 (Exclusions from Evaluation in the TEE) consists of a set of criteria that are used to determine if a site can be excluded from further consideration. If the site does not qualify for an exclusion, it may qualify for a simplified TEE, considered a Tier 2 evaluation. The simplified TEE evaluates potential ecological exposures and pathways, and compares constituent concentrations in site soil to default screening concentrations protective of plants and/or animals. If the site passes all Tier 2 criteria no further evaluation is required. If the site does not pass Tier 2 criteria for the simplified TEE, a site-specific TEE, or Tier 3 evaluation is conducted. MTCA provides a general framework for conducting a Tier 3 evaluation. The comments below summarize the evaluation framework for the Site; further explanation is presented in the sections below:

1.	Does the Site qualify for an exclusion?	\rightarrow	No
2.	Does the Site qualify for a simplified TEE?	\rightarrow	No
3.	Conduct site-specific TEE:		
4.	Are Site conditions protective for terrestrial receptors?	\rightarrow	No

Based on this evaluation, the Site must adopt screening levels in Table 749-3 or screening levels shall be developed based on site-specific evaluation

1.2.1 Tier One - Exclusions Evaluation

MTCA¹ provides four criteria for determining if a site is required to conduct a TEE. If any of the four criteria are met, no TEE is required because ecological exposure pathways are incomplete (*de minimus*) or constituent concentrations are below a level of concern. The four criteria are:

Criterion 1: No further evaluation is required if contamination is below the POC and if institutional controls are in place (or will be in place) to prevent excavation of soil below 6 ft below ground surface (bgs).

The Site does not qualify for exclusion based on this criterion, since contamination is present above the standard and conditional POC.

Criterion 2: No further evaluation is required if exposure to contamination will be prevented by a physical barrier such as buildings or pavement.

As shown on Figure C-3, many soil sample locations are not covered by a physical barrier, and it is not likely that a physical barrier will be installed covering the entirety of the affected area. As

¹ 173-340-7491 WAC

a result, the Site does not qualify for exclusion based on this criterion, since a physical barrier that would prevent contact with terrestrial wildlife is not presently in place or planned.

Criterion 3: No further evaluation is required if a Site is so small that it is unlikely to pose an ecological hazard because of limited ecological exposure to constituents present in the soil.

Figure C-1 shows that more than 1.5 acres of contiguous undeveloped land exists on or within 500 feet of the site². The upland portion of the Site covers approximately 4.2 acres, of which approximately 75 percent is undeveloped. As a result, the Site dos not qualify for exclusion based on this criterion, since the size of the Site are large enough that a potential ecological hazard could exist.

Criterion 4: No further evaluation is required if soil poses only a de minimus ecological hazard because concentrations are below natural background levels.

Inorganic and some organic (polycyclic aromatic hydrocarbons – PAHs) constituents detected in soil at the Site are naturally occurring. The Agency of Toxic Substances and Disease Registry (ATSDR 2002) characterized the background concentrations of PAHs in rural, agricultural, and urban soils in the United States. Maximum detected concentrations of PAHs in soils at the Site exceed these background concentrations. As a result, the Site dos not qualify for exclusion based on this criterion, since concentrations of some parameters exceed the background levels.

Since none of the four exclusion criteria are met, it is concluded that the Site does not qualify for an exclusion from conducting a simplified or site-specific TEE.

1.2.2 Simplified TEE Qualification Evaluation

Since the Site does not qualify for an exclusion, the next step in the TEE process to determine whether the site qualifies for a simplified TEE evaluation in accordance with MTCA guidance. MTCA³ provides four criteria for evaluating whether a site qualifies for a simplified TEE. If any of the four criteria is met, it is concluded that the site does not qualify for a simplified TEE and a site-specific TEE must be performed. The four criteria are:

 $^{^{2}}$ Although the railroad line bisecting the Site is considered a development that would effectively reduce the potential use of the site by wildlife (e.g., mammals will not readily move between the upper and lower portions of the site), sufficient contiguous undeveloped land is associated with the lower and upper areas to fail Criterion 3. 3 173-340-7491(2) WAC

Criterion 1: The site is located on, or directly adjacent to, an area where management or land use plans will maintain or restore native or semi-native vegetation.

The Site is connected to the South Bay Trail which runs along Bellingham Bay and is designated for public land use as an open space. The goals for these uses are to $provide^{4}$:

- "...high quality, diversified open space system that preserves and enhances significant environmental resources and features to protect threatened species, preserve habitat, retain migration corridors, preserve agricultural lands or natural meadows, and protect water resources."
- "...an interconnected system of high quality, accessible multi-use trails and greenway corridors that offer diverse, healthy outdoor experiences within a rich variety of landscapes and natural habitats, accessing significant environmental features, public facilities and developed local neighborhoods and business districts."

Since the Site is located directly adjacent to an area where land use plans include the maintenance of native or semi-native vegetation (i.e., Bay View Trail), the Site does not qualify for a simplified TEE based on this criterion.

Criterion 2: The site is used by threatened or endangered species, Washington State wildlife priority species or species of concern, or Washington State endangered, threatened, or sensitive plant species.

This criterion assesses the potential for exposure of threatened, endangered, or otherwise listed sensitive species to become exposed to constituents present in soil. A formal request to federal and state agencies for information regarding listed or sensitive species use of the Site has not been made. However, the urban nature of the general area, the developed nature of the Site, and a review of information concerning the occurrence of threatened, endangered, and sensitive species occurring in and around Bellingham Bay⁵, suggest it is unlikely that any threatened, endangered, or other sensitive species use the terrestrial portion of the Site. Therefore, the Site does not meet criterion 2.

Criterion 3: The site is located on a property that contains at least ten acres of native vegetation within 500 feet of the site.

This criterion assesses the potential for significant ecological resources to become exposed to constituents present in soil. The Site consists primarily of landscaped areas covered by non-native turfgrass, a parking lot, and shrub/tree plantings. The hillside sloping from the upper portion of the site to the railroad bed is a highly modified habitat supporting a mixture of invasive plants species (e.g., Himalayan blackberry and English ivy) and native plant species

 $[\]frac{4}{2}$ See the City of Bellingham Comprehensive Plan (accessed on 3/16/2013) at

http://www.cob.org/documents/parks/development/pro-plan/5-goals.pdf

⁵ The bald eagle, marbled murrelet, and peregrine falcon are species that use terrestrial habitats in the Bellingham Bay area, but are considered unlikely to become exposed to constituents present in Site soil.

(e.g., red alder, big leaf maple, vine maple, and sword fern). The Site does not contain any areas of native plant communities (Franklin and Dyrness 1988) and therefore does not meet criterion 3.

Criterion 4: Ecology determines that the site may present a hazard to significant wildlife populations.

Ecology has not made this determination, and therefore the site does not meet criterion 4.

Based upon Criterion 1, it is concluded that the Site requires a site-specific TEE (Tier 3) to assess ecological hazards.

To support the site-specific TEE, Sections 2 and 3 provide additional Site information regarding the ecological setting and land use, ecological goals, and points of compliance. The site-specific TEE is presented in Section 4, and the results are summarized in Section 5.

2 ECOLOGICAL SETTING

This section describes the terrestrial cover types present at the Site and biota observed and likely to occur at the Site. These descriptions are supported by an ecological field survey that was conducted on the Site on July 28 and August 8, 2011 (Attachment C-1). This survey included observations of plants, soil biota, and wildlife. In addition, earthworm populations and rooting depths were measured in turfgrass areas.

Discussion in the following sections is discussed relative to distinct areas within the upland portion of the Site. The upland portions of the Site occupies approximately 4.2 acres, and can be seen as consisting of four areas (Figure C-1):

- Upper Park Area a relatively flat area of approximately 1.2 acres which was the location of the former MGP facility and now serves as a public use area of Boulevard Park;
- Slope Area a steep area of approximately 0.2 acres which now serves as a non-public use area of Boulevard Park;
- Lower Park Area a relatively flat area of approximately 2.8 acres which was the location of the former lumber mill facility and now serves as a public use area of Boulevard Park; and
- BNSF Railway Right of Way this active railroad runs at the base of the Slope Area, along the east side of the lower area.

2.1 COVER TYPES

Five major cover types were identified at the Site: turfgrass, shrub/tree landscaping, covered areas, vegetated slope, and railroad bed (see Figure 1 in Attachment C-1).

The upper and lower portions of the Site are a blend of turfgrass, shrub/tree landscape plantings, and covered area (see Figure 2 in Attachment C-1). Extensive turfgrass plantings occur in the upper and lower areas. Perennial ryegrass forms a dense cover which contains a mixture of herbaceous weeds at a low density. Plant root depth in the turfgrass areas ranged from 8 to 12 inches in the upper area and 8 to 21 inches in the lower area (see Table 5 and Figure 3 in Attachment C-1). Earthworms are present throughout the turfgrass areas. Both deep-burrowing night-crawlers (*Lumbricus terrestris*) and shallower burrowing species are present (see Table 6 in Attachment C-1). All earthworms found at the Site are non-native species introduced from Europe. Several beetles were also observed during the Site survey. Turfgrass is mowed approximately twice weekly. While the upper area is not irrigated, the lower area is irrigated at least 4-times weekly during summer.

Tree and shrubs landscape plantings cover a significant part of the upper and lower portions of the Site (see Figure 2 in Attachment C-1). Both native (e.g., big leaf maple, red alder, salal,

Oregon grape) and exotic (e.g., American elm, sycamore maple, red osier dogwood, rhododendron) species have been planted. The open ground under some of the trees and shrubs have been colonized by native and exotic species of forbs. Paved paths and structures prohibit ecological exposure to soil in portions of the upper and lower portions of the Site.

The upper park and lower park portions of the Site are heavily used for recreational purposes. Both humans and their pets frequent these areas. Given the high human use and high level of maintenance activities, wildlife use of these areas is expected to be limited to occasional foraging by urbanized species. Birds may occasionally nest in the trees and shrubs. No signs of burrowing mammals were noted on the Site during the field survey.

The slope area of the Site is very steep (see Figure 2 in Attachment C-1). During park development, it was planted with English ivy and Himalayan blackberry (both exotic species) to help stabilize the slope and discourage human use. Plants from the surrounding areas have partially recolonized the slope area since it was planted. Recolonizing plants include both native (e.g., Douglas fir, big leaf maple, stinging nettles, sword fern, fireweed) and exotic (e.g., American elm, old man's beard, common tansy) species, but Himalayan blackberry and English ivy still form a major component of the flora. The slope area provides cover and food for a relatively wide variety of local wildlife species.

In the BNSF Railway Right of Way, the BNSF railroad occupies a narrow strip of land along the east side of the lower area (see Figure 2 in Attachment C-1). It is covered by coarse gravel (ballast) that effectively limits use of the area by plants and animals. BNSF has an active program to control vegetation along the railroad rights-of-way for safety⁶, maintenance purposes, and to comply with federal, state, and local regulations that govern weed control. Control is achieved using a combination of chemical and mechanical methods. Since no potential ecological exposures occur and no soil samples were collected from the BNSF area, this area is excluded from further evaluation in this TEE.

The Site is connected to the South Bay Trail which runs along the Bellingham Bay shoreline. The trail is vegetated with native plants and provides a corridor for wildlife movement.

2.2 WILDLIFE

Wildlife species common to urban areas were not observed during the ecological field survey, but are expected to utilize the upper park and lower park portions of the Site for foraging and possibly nesting/denning. Birds likely to use these areas include the American robin, northern flicker, Canada goose, European starling, house sparrow, and American crows. Mammals likely to use the upper park and lower park portions of the Site include Eastern grey squirrels and a variety of rodents (mice/voles/rats). A wider variety of wildlife species are likely to utilize the slope area including chickadees, nuthatches, sparrows, towhees, raccoon, mountain beaver and

⁶ Available online at <u>http://www.arema.org/files/library/2001_Conference_Proceedings/00008.pdf</u>.

shrews/moles. Deer may occasionally be present at the park, though none have been observed while collecting data for the RI.

2.3 SENSITIVE SPECIES

Given the highly modified natures of the Site, sensitive species were not observed during the ecological field survey, and are not expected to occur there. Several sensitive species that utilize terrestrial habitats occur in the Bellingham Bay area including the bald eagle, marbled murrelet, and peregrine falcon. Based on foraging patterns and habitat requirements, these species are not expected to become exposed to contaminants present in Site soil.

3 LAND USE, ECOLOGICAL GOALS, AND POINTS OF COMPLIANCE

This section provides the land use, ecological goals, and points of compliance used to complete the site-specific TEE.

3.1 LAND USE AND ECOLOGICAL GOALS

MTCA uses land use to help determine the appropriate ecological goal for the TEE [WAC 173-340-7490(3)]. The 2011 Comprehensive Plan for the City indicates the land use designation for the Site is public $(6)^{\underline{7}}$. The use qualifier for areas zoned as public land is parks and open space/school. The City plans to continue managing the Site in its current form, as a park in the foreseeable future.

For industrial or commercial properties, the ecological goal is the protection of wildlife (i.e., birds and mammals). For all other land uses, the ecological goal is protection of plants, soil biota (i.e., invertebrates living in and on the soil), and wildlife. Since the upper park portion, slope area, and lower park portion of the Site do not qualify as a commercial/industrial property under MTCA (WAC 173-340-7490(2)(3)(c)), the goal of this TEE is for the protection of plants, soil biota, and wildlife. However, plants are omitted from this list as though some native species have also been planted or have encroached from nearby areas, vegetation on the Site predominantly consists of either non-native landscape plantings or invasive non-native plants (e.g., Himalayan blackberry, reed canary grass). Though a possible goal under the TEE process is the protection of native or semi-native vegetation, since all the vegetation on the Site was planted for ornamental and landscape purposes, MTCA provides for an exclusion for the protection of plants⁸. Therefore, the goal of the TEE for the Site is the protection of soil biota and wildlife.

Section 2.3 states that sensitive species will not become exposed to chemicals present in soil at the Site. Therefore, the overall goal of this TEE is the protection of populations of soil biota and wildlife from significant adverse effects that impair reproduction, growth, or survival (WAC 173-340-7490(3)).

3.2 POINTS OF COMPLIANCE

The standard POC for a TEE extends from the soil surface to a depth of 15 feet (WAC 173-340-7490(4)). MTCA also allows the use of a conditional POC which represents the bioactive soil layer extending from 0-6 ft below ground surface. The conditional POC represents a conservative estimate of the maximum depth of rooting and burrowing of soil biota and wildlife.

² See description for the South Hill Neighborhood at <u>http://www.cob.org/services/planning/neighborhoods/plans-and-zoning.aspx</u> (accessed on 3/12/2013).

⁸ See response to General Question (GQ) 14.3.5 in the Concise Explanatory Statement for the Amendments to MTCA (Ecology 2001).

However, site-specific conditions may limit the bioactive soil layer to less than the default bioactive layer of 0-6 ft. MTCA provides for the development of a site-specific POC for the TEE based upon analysis of the biological and physical conditions present at the site.

A conditional POC (0-6 ft) was selected for this TEE in the upper park and lower park portions of the Site. Bedrock and groundwater occur at a depth of greater than 6 ft across most of the upper area. In the lower area, bedrock occurs at a depth of greater than 6 ft, while groundwater levels, influenced by higher tides may reach levels of less than 6 ft in some locations during certain times of the year. Nevertheless, the conditional POC was also used for the lower area.

The slope area consists of a thin soil layer over bedrock. A review of the boring logs for 10 of the 12 soil samples collected from the slope area in 2011 shows the maximum depth to bedrock was two feet. Therefore, a site-specific POC of 0 to 2 ft was selected for this TEE in the slope area.

It should be noted that the standard POC (0-15 ft) is used in the RI report to assess compliance with screening levels developed for protection of human health and the environment, outside the scope of this evaluation for terrestrial biota and wildlife.

4 SITE-SPECIFIC TERRESTRIAL ECOLOGICAL EVALUATION

The site-specific TEE for the Site is organized into five sections:

- Problem Formulation (Section 4.1)
- Exposure Assessment (Section 4.2)
- Toxicity Assessment (Section 4.3)
- Hazard Characterization (Section 4.4)
- Uncertainty Analysis (Section 4.5)

4.1 **PROBLEM FORMULATION**

The problem formulation identifies constituents of potential ecological concern (COPECs), identifies complete exposure pathways, identifies receptors of concern, and describes potential toxic effects from COPECs.

4.1.1 Constituents of Potential Ecological Concern

The COPECs for this Site are defined by the following criteria:

- 1. The reasonable maximum exposure point concentration (EPC) is greater than the ecological indicator soil concentrations (EISC) provided in MTCA Table 749-3; and
- 2. For metals, the EPC also greater than the soil natural background concentration as determined for the Puget Sound region (Ecology 1994).
- 3. If fewer than 10 percent of the detected concentrations of a constituent were greater than the EISC in Table 749-3, AND, the detection frequency for that constituent was less than 5 percent (greater than 95 percent non-detect), AND, the maximum detected concentration was less than 2-times the EISC, then the constituent was not considered a COPEC⁹.

A constituent would generally be evaluated by all three criteria to be identified as a candidate COPEC. However, constituents that were detected at a frequency of greater than 5 percent and had an EPC greater than the natural background concentration for the Puget Sound region were also identified as candidate COPECs.

⁹ Although the 10 percent and 2-times rules are used for soil compliance monitoring under MTCA (WAC 173-340-740(7)), Ecology recommended these rules be used here to address the possible existence of hotspots (i.e., localized soil areas containing very high concentrations of constituents).

Soil EPCs were calculated using Site soil data collected from an upper interval depth of 6 ft or less (i.e., data within the conditional POC). The EPC was the lesser of the 95 percent upper confidence limit (UCL) and the maximum detected concentration of samples analyzed in this depth interval. The UCLs were calculated using the U.S. Environmental Protection Agency's (EPA) ProUCL statistical software¹⁰. ProUCL output files are provided in Attachment C-2 showing calculated UCLs. A summary statistics table including the UCLs and EPCs is provided at the front of Attachment C-2.

Results of this initial COPEC screening are shown in Table C-1^{\pm 1}. These results show that 38 constituents are identified as candidate COPECs.

A supplemental evaluation of the 38 candidate COPECs was conducted to determine which constituents are applicable to the protection of only soil biota and wildlife, and not inclusive of plants, as determined in Section 3.1. This supplemental evaluation determined that lead and zinc are not applicable to soil biota and wildlife, and are not identified as COPECs in Table C-1. Results of the supplemental evaluation are presented in Attachment C-3.

Table C-1 lists the final COPECs and which receptor group EISC is exceeded.

4.1.2 Exposure Pathways Evaluation

An ecological conceptual site exposure model (CEM) for the Site is shown in Figure C-4. The CEM shows the potential sources of contamination, release/transport mechanisms, exposure media, receptors, and exposure routes.

The primary sources of contamination include the former MGP by-products, former lumber mill, railroad activities, and fill material. Coal tar and other process wastes from MGPs are potential sources of volatile organic compounds (VOCs), PAHs and other semivolatile organic compounds (SVOCs), heavy metals, and cyanide¹². Fill material was placed on the upper and lower portions of the Site following cessation of industrial activities. The amount of mixing of fill material with the underlying industrial layer is unknown. In addition, the origin of the fill material is largely unknown and it may have contained contaminants including metals and PAHs.

Contamination in soil may be taken-up by plants and soil biota. Therefore, exposure media include soil, plants, and soil biota. Terrestrial ecological receptors include plants, soil biota, and wildlife. Plants are potentially exposed through direct contact with the soil. Soil biota are potentially exposed through direct dermal contact with soil, ingestion of soil, and ingestion of plant and soil biota. Wildlife are potential exposed through ingestion of plants and soil biota, and incidental ingestion of soil.

¹⁰ ProUCL version 4.1.01 was used and is available online at <u>http://www.epa.gov/osp/hstl/tsc/software.htm</u>. ¹¹ Dioxins/furans and PCBs are not considered to be site-related (See Section 2 of the main body of the RI for more information) and were not included in the COPEC screening process.

¹² Wikipedia accessed on 3/23/2013 online at <u>http://en.wikipedia.org/wiki/Coal_gasification</u>.

4.1.3 Receptors of Concern

The ecological goal for this TEE, as described in Section 3.1, includes the protection of soil biota and wildlife.

Soil biota is a group that includes all macro-arthropods. Earthworms are a subgroup of arthropods that occur at the Site. Based on their presence at the Site and well-documented soil biota toxicity in literature, they are identified as appropriate receptors of concern for this site-specific TEE.

Wildlife are generally interpreted to include all terrestrial vertebrates. However, the MTCA TEE process focuses on mammalian and avian wildlife because there is considerable toxicity data available for these receptors. Three specific wildlife receptors are identified in MTCA for evaluating cleanup sites: the shrew, vole, and robin. The shrew and robin are insectivorous species that are highly exposed to soil-borne constituents. The vole is herbivorous and also highly exposed to soil-borne constituents. The shrew, robin, and vole are expected to occur on the Site and are identified as receptors of concern for this site-specific TEE.

4.1.4 **Potential Toxic Effects**

The following sources of comprehensive ecotoxicological information describe the effects of COPECs on soil biota and wildlife:

- Contaminant Hazard Review Reports by the U.S. Fish and Wildlife Service available at http://www.pwrc.usgs.gov/infobase/eisler/reviews.cfm
- Environmental Contaminants Encyclopedia by the National Park Service available at http://www.nature.nps.gov/hazardssafety/toxic/index.cfm
- Toxicity profiles in the Risk Assessment Information System by the U.S. Department of Energy available at http://rais.ornl.gov/tools/tox_profiles.html
- Toxicity profiles on the Ecological Toxicity Information website for U.S. EPA Region 5 available at <u>http://www.epa.gov/R5Super/ecology/toxprofiles.htm</u>
- Toxicity Literature Online (TOXLINE) by the U.S. National Library of Medicine includes ecotoxicology information and is available at <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?TOXLINE</u>
- Ecotoxicological Profiles for Selected Metals and Other Inorganic Chemicals by the U.S. Department of Energy Oak Ridge National Laboratory available at http://www.esd.ornl.gov/programs/ecorisk/guidance_docs.html

4.2 EXPOSURE ASSESSMENT

The exposure assessment identifies exposure areas, describes how reasonable maximum exposure point concentrations (EPCs) are calculated, identifies appropriate bioaccumulation factors (BAFs), and identifies appropriate wildlife exposure factors.

4.2.1 Exposure Areas

For the purposes of this TEE, the upland portion of the Site was divided into three (3) ecological exposure areas: upper, slope, and lower areas. These divisions were based upon cover type, human use level, land management practices, connectivity among exposure areas, and the analyte list for each area (Figure C-1 and Table C-2).

4.2.2 Soil Reasonable Maximum Exposure Point Concentrations

Reasonable maximum exposure point concentrations (EPCs) for soil were calculated for the upper, slope, and lower exposure areas. EPCs are the lesser of the 95 percent UCL and the maximum detected concentration. The UCLs were calculated using EPA's ProUCL statistical software¹³. ProUCL output files showing UCLs are provided in Attachment C-4. Attachment C-4 includes an upfront summary statistics table presenting the UCLs and EPCs for each exposure area.

4.2.3 Bioaccumulation Factors

EPA has developed ecological soil screening levels (EcoSSLs) for use in screening hazardous waste sites across the nation. The bioaccumulation factors (BAFs) provided were developed for PAHs (EPA 2007a) but not mercury or selenium.

For plants, EcoSSLs (EPA 2007a) are segregated the PAHs into low molecular weight PAHs (LPAHs) and high molecular weight PAHs (HPAHs). Experimental data using rinsed foliage was considered most appropriate as ingestion of soil particles or dust on leaves by wildlife is included in food chain models as incidental soil ingestion. In addition, use of rinsed foliage data showed the best fit (i.e., highest coefficient of determination). The log-log regressions¹⁴ for estimating PAHs accumulation in plants are shown in Equations 1 and 2.

Equation 1: Bioaccumulation of LPAHs into plants

$$ln(Cp) = 0.4544 x ln(Cs) - 1.3205$$

Equation 2: Bioaccumulation of HPAHs into plants

¹³ Version 4.1 of ProUCL was used to calculate UCLs and is available on-line at http://www.epa.gov/osp/hstl/tsc/software.htm

¹⁴ EPA states that log-log regression models for estimating bioaccumulation require a coefficient of determination (r^2) of greater than 0.2 for acceptance; if r^2 is ≤ 0.2 , the median BAF is used to estimate bioaccumulation.

$\ln(Cp) = 0.9469 x \ln(Cs) - 1.7026$

Where:

Cp = concentration in plant tissue (mg/kg dry weight)Cs = concentration in soil (mg/kg dry weight)

Use of these log-log regression equations to derive bioaccumulation factors $(BAFs)^{15}$ indicates the BAF will vary with soil concentration in each ecological exposure area.

The best available science indicates that many contaminants become less bioavailable as the soil weathers and ages (Alexander 2000). This is because the more mobile fractions are either lost from the soil through leaching and/or volatilization or are degraded resulting in a residual fraction that is more strongly bound to particles of soil (e.g., clays) and organic matter. These residual concentrations are much less bioavailable than the newly released constituents. Many of the available literature-based BAFs were derived using studies where biota were exposed to constituents that were freshly applied to the test soil. Use of these literature-based BAFs at sites that have undergone significant weathering and aging can cause a significant over-estimation of bioaccumulation.

Unfortunately, no scientific data was identified that characterizes the uptake of weathered PAHs into plants. Although EPA's EcoSSL log-log regressions for plant uptake of PAHs are not considered representative of potential uptake at MGP site, they are considered the next best alternative estimate of PAH accumulation in plants. However, Kreitinger et al. (2007) provide useful information for characterizing the bioaccumulation of PAHs from soil into earthworms at MGP sites.

Soils collected in urban and industrial environments often contain anthropogenic sources of hard or black carbon (e.g., charcoal, coal, coal tar pitch, coke, and soot) that strongly sorb and reduce bioavailability of nonpolar organic compounds such as PAHs (Kreitinger et al. 2007). This is more apparent at MGP sites that used coal and produced coal tar pitch and soot as manufacturing byproducts. Kreitinger et al. (2007) evaluated the toxicity and bioaccumulation of PAHs into earthworms using soil samples collected from 16 different MGP sites. These 16 sites had been closed for approximately 50 years and had varying levels of PAHs and anthropogenic carbon in the soils. A similar condition exists at the Site. Therefore, this study was selected for development of BAFs for PAHs at the Site.

Kreitinger et al. (2007) derived biota soil accumulation factors (BSAFs) using both field and laboratory methods. The BSAFs are expressed as the PAH concentration in the lipid fraction of the earthworm divided by the PAH concentration in the soil organic carbon. Although not significantly different, accumulation of PAHs in earthworms in the laboratory tests was 37 to

 $[\]frac{15}{5}$ BAFs are calculated by dividing the tissue concentration estimated using the regression model by the soil concentration.

54 percent lower than in the field collected earthworms. Therefore, the field collected earthworm data was used to derive more conservative BAFs for PAHs for use at the Site.

In the field study, collocated earthworms and soil samples were collected from three MGP sites with a range of PAH and carbon contents (Kreitinger et al. 2007). BSAFs were derived for 16 PAHs and each of the three samples. Table C-3 shows how the BSAFs were converted to BAFs for use in food chain models (Section 4.4). Table C-3 shows that variation among the BAFs for the three soil samples were fairly consistent; typically a factor of 2 to 5 for each of the PAHs. The geometric mean BAF for each PAH was calculated using the three samples and was used to estimate the bioaccumulation of PAHs into earthworms at the Site.

The COPEC screening (Table C-1) shows that mercury exceeds the EISC for soil biota, but not for wildlife. Therefore, it is not necessary to evaluate hazards to wildlife from mercury, and BAFs do not need to be derived for the Site.

The COPEC screening (Table C-1) shows that selenium exceeds the EISC for wildlife, but not for soil biota. Therefore, it is necessary to evaluate hazards to wildlife from selenium and BAFs for plants and soil biota are needed to evaluate food-chain exposures. EPA (2007) provides log-log regression equations for estimating the bioaccumulation of selenium into plants (Equation 3) and earthworms (Equation 4), as described below:

Equation 3: Bioaccumulation of selenium into plants

ln(Cp) = 1.104 x ln(Cs) - 0.677

Equation 4: Bioaccumulation of selenium into earthworms

 $ln(Ce) = 0.733 \ x \ ln(Cs) - 0.075$

Where:

Cp = concentration in plant tissue (mg/kg dry weight) Ce = concentration in earthworm tissue (mg/kg dry weight) Cs = concentration in soil (mg/kg dry weight)

Selenium was not detected in soil samples from the lower and slope areas of the Site, so exposure estimates and hazard calculations were not required in these areas. Table C-4 shows the selenium BAFs for plants and earthworms for the upper area.

4.2.4 Wildlife Exposure Parameters

EPA also developed wildlife exposure factors to support the development of the EcoSSLs (EPA 2007a). The wildlife exposure factors provided in the EcoSSLs are used in this TEE. As noted earlier, the MTCA TEE process uses the vole, shrew, and robin to assess hazards to wildlife. EPA used a wider variety of wildlife receptors which included the vole, shrew, and American woodcock. The robin and woodcock have similar feeding strategies; both consume earthworms

and other invertebrates. The food and soil ingestion rates for the woodcock (EPA 2007a) are higher than those for the robin (MTCA Table 749-4). Therefore, the exposure factors for the woodcock were used herein as a conservative measure for assessing potential exposure to the robin. Incorporation of the EPA wildlife exposure factors into this TEE does not alter the wildlife receptors of concern identified in Section 4.1.3 (i.e., the shrew, vole, and robin).

Exposure factors for the shrew, vole, and robin for this Site are shown in Table C-5. Exposure factors from both the EcoSSLs and MTCA (Table 749-4) are presented, as EPA did not provide values for the proportion of contaminated food in diet (P) or the gut absorption factor (RGAF).

4.3 TOXICITY ASSESSMENT

The toxicity assessment identifies toxicity values to assess hazards from COPECs. The EPA's EcoSSLs were derived using more recent and comprehensive data then the MTCA EISCs. EPA (2007b) derived toxicity data for two major groups of PAHs; LPAHs and HPAHs. For soil biota, the EcoSSLs are 29 mg/kg for LPAHs and 18 mg/kg for HPAHs. These values are not significantly different from the MTCA soil biota EISC for fluorene (30 mg/kg). However, a shortcoming of these toxicity values is they are primarily based on exposing soil biota to soils freshly spiked with PAHs. As noted in Section 4.2.3, soils at the Site are well-aged and weathered making the residual PAHs much less bioavailable and thus less toxic to soil biota.

The study by Kreitinger et al. (2007) provides an assessment of the toxicity of PAHs to soil biota at MGP sites that is considerably more relevant to the Site than either the MTCA EISC or EPA EcoSSL. Kreitinger et al. (2007) conducted a 14-day study of earthworm bioassays on 16 soil samples from MGP sites with varying soil total PAH (tPAH) concentrations and carbon contents; the results are presented in Table C-6. There was a poor correlation between tPAH concentrations and earthworm survival (r = 0.05). Earthworm survival was 100 percent at MGP sites with soils having a tPAH concentration of up to 42,100 mg/kg. This is because much of the tPAH concentration found in soil at MGP sites is strongly bound to soil carbon so not bioavailable or toxic. In general, mortality occurred when the rapidly released fraction of PAHs was approximately 0.80 or greater. An exception to this generality is soil sample CG10 which had a rapidly released fraction of 0.25 and a 25 percent survival. This anomaly was not explained by Kreitinger et al. (2007). Some of the soil samples included in this study had exceptionally high carbon concentrations which were associated with visible soot (OG2 and OG10). Although not measured in Site soil, it would be unlikely to find organic matter contents this high at the Site. Normal organic matter contents for loam soils range from > 1 to 5 percent. The sample with the highest no-observed-adverse-effect-concentration (NOAEC) below the lowest-observedadverse-effect-concentration (LOAEC) is sample CG2 with a tPAH concentration of 307 mg/kg. The sample with the lowest LOAEC is CG10 with a tPAH concentration of 521 mg/kg. Consistent with EPA's EcoSSL process, the soil screening level (SSL) for the protection of soil biota at the Site was calculated as the geometric mean of the NOAEC and LOAEC value and is 400 mg/kg.

The toxicological data used by EPA to derive the wildlife toxicity reference values (TRVs) for PAHs (EPA 2007a) is relatively current, comprehensive, and is state of the art. EPA conducted comprehensive literature surveys and identified ecotoxicity publications meeting specific scientific criteria for use in deriving TRVs for birds and mammals (EPA 2003). A preliminary review of each article was conducted to determine if the article contains data suitable for TRV derivation. For example, studies based on acute exposure, reporting results for dead animals, using mixtures of constituents, studies lacking experimental controls, studies not reporting a test duration, and studies reporting data from research not conducted by the author were deemed unsuitable. Each study was then reviewed in detail and scored using ten data quality criteria (EPA 2007c). Total scores range from 0 to 100 and a minimum score of 66 was required for acceptance of the study. Finally, NOAEL and LOAEL TRVs were derived for each study and expressed as a daily dose of constituent (mg/kg/d).

EPA (2007) determined there was insufficient toxicity data to develop a TRV for PAHs and birds. This is consistent with MTCA (Ecology 2000). Only mammal TRVs based on LOAEL toxicity data were used to derive the TRVs for this site-specific TEE. This approach is consistent with MTCA methodology (WAC 173-340-7493(4)(a). Toxicity data for growth, reproduction, and survival endpoints were used. A minimum of three acceptable toxicity values were needed to derive an alternative TRV consistent with EPA EcoSSL methodology (EPA 2003, 2007c). The tenth percentile value of the LOAELs was selected as the alternative TRV. The tenth percentile value is considered sufficiently protective and reduces uncertainties associated with toxicity values occurring at the extremes of the data distribution (i.e., data outliers)¹⁶. The mammalian TRVs derived from this process are 138 mg/kg/d for LPAHs and 15.72 mg/kg/d for HPAHs and the toxicity data used to derive those values are provided in Table C-7.

The MTCA Table 749-3 EISC for mercury to soil biota is 0.1 mg/kg. This value comes from Oak Ridge National Laboratory (ORNL) benchmark report (Efroymson et al. 1997) and was based on a 1983 study where the investigators applied mercury as mercuric chloride at several concentrations to the soil to which earthworms were exposed. Mercury in the form of mercuric chloride is very soluble and bioavailable and is not considered to be representative of mercury exposure at the Site. Efroymson et al. (1997) rated the confidence in this benchmark as low because it was based on a single study. A literature survey was conducted to identify more recent and appropriate toxicity data.

No appropriate published literature was found that assessed the chronic effects of mercury in weathered soil on soil biota. Zagury et al. (2006) evaluated the survival of earthworms exposed to three soil samples collected from a chlor-alkali plant. Survival was 100 percent in soils with 295 and 568 mg/kg mercury and 0 percent in the heavily contaminated soil sample

¹⁶ Published results of individual toxicity tests are subject to many vagaries associated with the test design and responses of the organisms. Examination of the mammalian and avian toxicity data presented in the EPA EcoSSL documents shows that the NOAEL and LOAEL datasets vary by several orders of magnitude, even when evaluating the same toxic endpoint and the same or similar species. There are typically some very low and very high toxicity values in the databases. So, instead of using the lowest NOAEL. Therefore, EPA selected the median NOAEL value to represent the TRV. Selection of the tenth percentile LOAEL as the TRV in this TEE is a more conservative approach than EPA's use of the median TRV.

(11,500 mg/kg). Lock and Janssen (2001) evaluated the effect of mercury, applied as mercuric chloride, on the reproduction of three soil biota: the earthworm *Eisenia fetida*, the potworm Enchytracus albidus, and the springtail Folsomia candida. The results of the chronic exposure tests showed the exposure concentrations at which there was a 50 percent reduction in reproduction (EC₅₀) were 9.16 mg/kg for the earthworm, 22 mg/kg for the potworm, and 3.26 mg/kg for the springtail. Liu et al. (2010) calculated a chronic reproduction EC_{50} for springtails of 9.29 mg/kg, which is similar to the findings of Lock and Janssen (2001). Gudbrandsen et al. (2007) evaluated the toxicity of mercury, applied as mercuric chloride, to two groups of earthworms (*Eisenia fetida*) – one group was pre-exposed to a non-lethal concentration of mercury in the soil (22 mg/kg) for one week and the other group was not pre-exposed. Glutathione is important in the cellular defense against mercury toxicity and pre-exposure to mercury can increase tolerance by increasing levels of glutathione. Gudbrandsen et al. (2007) found the lethal concentration at which 50 percent of earthworm died (LC_{50}) to rise from 170 mg/kg in non-pre-exposed earthworms to 545 mg/kg in pre-exposed earthworms. The reproduction (cocoon production at 28 days) EC₅₀ values were 9.2 mg/kg in the non-pre-exposed earthworms and 16.5 mg/kg in the pre-exposed earthworms. The chronic earthworm reproduction EC₅₀ value reported by Gudbrandsen et al. (2007) for non-pre-exposed earthworms is identical to the value reported by Lock and Janssen (2001). Based on this information, the selected SSL is 3.26 mg/kg for mercury. This level comes from the study by Lock and Janssen (2001) and is both the chronic reproduction EC_{50} and LOAEC for the most sensitive organisms, the springtail.

Wildlife TRVs for selenium were derived using the process described above for the mammalian TRVs for PAHs. The mammalian TRV for selenium derived from this process is 0.239 mg/kg/d and the avian TRV is 0.287 mg/kg/d. The toxicity data used to derive the selenium TRVs are provided in Table C-8.

4.4 HAZARD CHARACTERIZATION

The Hazard characterization describes how hazards are calculated and provides quantitative hazard estimates. Hazards are assessed by comparing the soil EPCs for the upper, slope, and lower exposure areas to EISCs for soil biota and wildlife. The SSLs for soil biota are presented in Section 4.3 and are 400 mg/kg for tPAHs and 3.26 mg/kg for mercury.

The wildlife SSLs for PAHs were derived using BAFs presented in Table C-3, exposure factors presented in Table C-5, and TRVs presented in Table C-7. The standard MTCA (Table 749-4) wildlife exposure models were used to derive the wildlife SSLs and the model details are presented in Attachment C-5.

Hazard quotients (HQs) are used to help interpret hazards. HQs are calculated by dividing the soil EPC by the SSL for each COPEC. An HQ greater than one (1) suggests a potential ecological hazard.

Hazards for soil biota are shown in Table C-9. The HQs for mercury are below 1 for all exposure areas indicating hazards from mercury are below a level of concern. The HQs are above 1 for tPAHs in the upper and lower exposure areas suggesting that PAHs in soil may pose a hazard to soil biota in these areas.

Earthworms are considered a fairly sensitive indicator of soil contamination and are a standard soil bioassay test organism. Results of earthworm sampling presented in the ecological survey of the Site (Attachment C-1) show that earthworms were present at all 6 sample locations in the upper and lower exposure areas. Both night crawlers (Lumbricus terrestris) and other species of earthworms were present suggesting a diverse assemblage. Night crawlers form vertical burrows up to three feet deep and forage at night on organic matter on the soil surface. Other earthworm species form horizontal burrows usually in the upper foot of soil and feed on organic matter mixed in the soil. The total number of earthworms present in the 30 cm x 30 cm sample area at each location ranged from 2 to 16. Although the purpose of the earthworm survey was not to provide a quantitative population analysis, the number and variety of earthworms found during the Site survey appear comparable to earthworm populations found in turfgrass at other locations in western Washington¹⁷. In addition, the sampling results do not show a significant difference in the number of earthworms per sample location between the lower and upper exposure areas despite a relatively large difference in tPAH concentrations (i.e., EPCs are 1,556 mg/kg in the lower area and 12,819 mg/kg in the upper area). As shown in the study by Kreitinger et al. (2007), anthropogenic carbon sources at MGP sites can effectively immobilize PAHs in soil making them non-toxic to soil biota at relatively high PAH concentrations (i.e., 100 percent earthworm survival at 42,100 mg/kg tPAHs). This information does not support the screening results that suggest PAHs pose a hazard to soil biota.

Hazards to wildlife from PAHs in soil are shown in Table C-10. HQs are equal to or below one for all individual PAHs in all exposure areas suggesting they do not pose a hazard to wildlife. The hazard index (HI) is the sum of HQs for the LPAHs and HPAHs and is equal to or below one for all exposure areas with the exception of the LPAHs in the upper exposure area for the shrew which had an HI=2. A review of Table C-10 shows that naphthalene is the driver for the HI in the upper exposure area. The EPC for naphthalene in the upper exposure area is significantly greater than the naphthalene EPCs in the lower and slope areas and also significantly higher than the EPCs for all other PAHs in the upper area. This information suggests that PAHs may pose a hazard to wildlife in the upper area.

Hazards to wildlife from selenium in the lower exposure area are shown in Table C-11. HQs are ≤ 1 for all wildlife receptors suggesting that selenium does not pose a hazard to wildlife in the lower exposure area.

¹⁷ The author of this TEE (Dr. Dana Houkal) has conducted earthworm surveys at several locations in Washington State.

4.5 UNCERTAINTY ANALYSIS

Uncertainties are inherent in each step of the TEE process and affect the interpretation of results. The major uncertainties associated with the TEE for the Site are described below.

Several methods were used to identify COPECs in soil. Results of COPEC screening (Section 4.1.1) show that no constituents were eliminated as COPECs based upon the 5 percent frequency of detection criteria. Seventeen constituents were detected at a frequency of greater than 5 percent, but were not identified as COPECs based on supplemental information presented in Attachment C-3. In some instance, little or no toxicity information was available to evaluate the potential environmental effects of constituents detected in Site soils (e.g., little information was available to assess impacts of VOCs on plants and soil biota). Instead, factors such as chemical fate characteristics, bioaccumulation potential, conservative wildlife toxicity assessments, and field observations of the status of plants and soil biota communities on the Site were used to help identify COPECs. The use of these factors could result in an underestimation of potential adverse environmental effects, but the magnitude of uncertainty is considered low.

Evaluation of the toxicity of mercury and PAHs to soil biota is an important source of uncertainty. Although MTCA provides soil biota EISCs for mercury (0.1 for inorganic mercury) and one PAH (30 mg/kg for fluorene), alternative SSLs were developed for this site-specific TEE. The SSL for mercury is 3.62 mg/kg and is based on an up-to-date review of the scientific literature. The SSL for total PAHs is 400 mg/kg and is based on a comprehensive study of the toxicity of PAHs in soils to earthworms from 16 MGP sites. The SSL for mercury was based on 4 scientific studies that evaluated the effect of mercury on three different species of soil biota and included both reproductive and survival toxic endpoints. One of the studies used field collected soils in laboratory toxicity tests (i.e., aged and weathered soils more comparable to conditions present at the Site), while the other three studies applied mercury as mercuric chloride to test soils in the laboratory. The four studies showed comparable results and were deemed sufficient for development of an alternative SSL. As noted previously, the earthworm testing conducted to derive toxicity data exposed biota to a highly bioavailable form of mercury (mercuric chloride), so likely overestimates the actual hazards associated with exposure to the weathered/aged mercury present at the Site.

The soil biota SSL for tPAHs comes from a study of earthworm toxicity to PAHs present in soils at 16 MGP sites. This study is considered applicable to the Site because the test soils have comparable soil characteristics with respect to their weathered/aged nature and the presence of coal tar and soot. These characteristics cause the PAHs to become slightly bound to the soil reducing bioavailability and toxicity. Unfortunately, a dose-response curve could not be generated from this study because there were multiple factors that affected toxicity. Therefore, the SSL was calculated as the geometric mean of the highest NOAEC and lowest LOAEC. The direction and magnitude of uncertainty associated with this SSL derivation process is unknown. However, the soil biota SSL for tPAHs is based on results of a 14-day earthworm toxicity test having survival as the endpoint. Survival may not be the most sensitive endpoint and tests of longer duration may also show increased sensitivity. Therefore, the soil biota SSL for tPAHs may underestimate toxicity by an unknown magnitude.

Results of a site-specific ecological survey were used to help evaluate the effects of mercury and PAHs on soil biota. This survey was not intended to provide a quantitative assessment of the soil biota community present at the Site nor did it generate comparative reference area data. However, results of the survey show that a soil biota community (i.e., earthworms) is present within turfgrass located in the lower and upper exposure areas of the Site, which are comparable to communities found at other turfgrass areas in western Washington. There is a high degree of uncertainty associated with the survey results, although the direction of uncertainty is unknown.

There is some uncertainty in the BAFs for PAHs used in developing the wildlife SSLs. MTCA provides a default plant BAF for benzo(a)pyrene of 0.011 based upon a relationship between the log K_{ow} of non-ionic organic constituents and plant uptake. EPA in their EcoSSL program developed regression equations for estimating the plant uptake of LPAHs and HPAHs based upon published studies that measured PAH concentrations in collocated soil and plant samples. EPA's equations were selected for developing BAFs for the TEE because they are considered state-of-the-science. The resulting BAFs for the three exposure areas at the Site ranged from 0.002 to 0.019 for LPAHs and 0.125 to 0.133 for HPAHs. A thorough review of the studies EPA used to derive the plant BAF regression equations for PAHs was not conducted. However, it is unlikely that any of these studies included data from MGP sites where the bioavailability of PAHs should be lower than in non-MGP sites. Therefore, use of EPA's plant BAF regression equations may overestimate bioaccumulation of PAHs into plants.

MTCA provides a default earthworm BAF for benzo(a)pyrene of 0.43 which was calculated as the mean BAF from two published studies of bioaccumulation from sediment confined disposal facilities. Soil characteristics at confined disposal facilities are not expected to be comparable to soil characteristics found at MGP sites. Therefore, a recent published study characterizing earthworm bioaccumulation of PAHs from MGP sites was identified for deriving BAFs. The study provided bioaccumulation data for three soil samples with varying PAH concentrations and varying carbon contents. The BAFs derived using this data ranged from 0.013 to 0.099 for individual PAHs (the BAF was 0.082 for benzo(a)pyrene). There is some uncertainty associated with these BAFs because they were based on relatively few samples, but the direction and magnitude of uncertainties is unknown.

The plant and earthworm BAFs for selenium were obtained from the EPA's EcoSSL program. The EPA used log-log regression equations to characterize the bioaccumulation of selenium over a range of selenium concentrations in soil. The magnitude and direction of uncertainty associated with the use of the EPA EcoSSL BAFs for selenium is largely unknown.

Insufficient toxicological data are available to derive avian TRVs for PAHs. The direction and magnitude of this uncertainty is largely unknown. However, available avian toxicity data provided in EPA's EcoSSL document for PAHs (EPA 2007b) are higher than mammalian toxicity values used in this site-specific TEE suggesting that hazard estimates for mammalian receptors should be protective of avian receptors.

MTCA provides default mammalian wildlife TRVs for benzo(a)pyrene of 1.19 mg/kg/day for the shrew and 0.91 mg/kg/day for the vole. These values are based on a NOAEL value obtained

from a 1981 study on reproductive impacts on mice reported in the ORNL wildlife screening benchmark study. The 1981 study did not report a NOAEL, but ORNL extrapolated a NOAEL from the reported LOAEL by dividing the LOAEL by a safety factor of 10. Normally, MTCA uses LOAEL TRVs to derive EISCs for wildlife, but because of uncertainties associated with the lack of data characterizing the toxicity of benzo(a)pyrene to birds, plants and soil biota, the mammalian NOAEL TRV was used. EPA (2007b) compiled a comprehensive number of LOAEL TRVs for PAHs for growth, reproduction and survival endpoints. Table C-7 shows there are 18 LOAELs for LPAHs and 15 LOAELs for HPAHs. The TRVs for the site-specific TEE at the Site were derived from this comprehensive dataset which represents the state of the science. The HPAH TRV of 15.72 mg/kg/d is not significantly different from the benzo(a)pyrene TRV of 10 mg/kg/day reported in the ORNL study. Uncertainties associated with the use of the LPAH and HPAH mammalian TRVs derived in this TEE are considered small.

As noted in Section 4.4, the shrew HI of 2 for LPAHs in the upper ecological exposure area is driven by a high naphthalene concentration, attributable to a single subsurface soil sample (MGP-GP-24-5.0-6.0) which has a naphthalene concentration of 63,000 mg/kg. The naphthalene concentration in surface soil at the same location (MGP-GP-24-0.5-1.0) is 22 mg/kg and the next highest naphthalene concentration in soil samples from the upper area is 2,200 mg/kg. An outlier test was performed on the naphthalene soils data from the upper area using ProUCL and results showed that the naphthalene concentration for sample MGP-GP-24-5.0-6.0 is a statistical outlier (Table C-12). Furthermore, when this statistical outlier is removed from the dataset, the EPC for naphthalene from the upper exposure area drops from 13,152 mg/kg to 805.6 mg/kg. The HQ for naphthalene and the HI for LPAHs drop to below one when using a naphthalene EPC of 805.6 mg/kg for the upper exposure area. The naphthalene concentration in subsurface soil at location MGP-GP-24 is not representative of naphthalene concentrations in soils within the conditional point of compliance across the upper area. Review of all the PAH data for sample location MGP-GP-24 does show that concentrations for all PAH are elevated in the subsurface soil sample compared to the surface soil sample indicating the presence of a possible hotspot¹⁸. However, since wildlife are assumed to have the same probability of exposure to soils across the upper area, significant exposure to the elevated subsurface soil naphthalene level at sample location MGP-GP-24 it is considered unlikely and hazards to wildlife are probably overestimated.

There is limited uncertainty associated with other parameters used to estimate hazards to wildlife.

One final uncertainty relates to the overall goal of this TEE which is the protection of populations of soil biota and wildlife from adverse effects from constituents present in Site soil. Although the definition of a population varies greatly among scientists and resource managers, we can safely assume these populations occupy an area considerably larger than the Site. For example, the Site forms part of the South Bay Trail which provides a relatively continuous greenbelt along Bellingham Bay. If we conservatively assume that local populations of interest

¹⁸ The elevated PAH concentrations in subsurface soil sample MGP-GP-24-5.0-6.0 will be evaluated further in the feasibility study.

occupy the South Bay Trail corridor, the area occupied by these populations can be estimated to be approximately 55 acres (i.e., the trail extends for 2.3 miles¹⁹ and has an average width of 200 feet). The upland Site occupies approximately 4.2 acres or 6 percent of the area occupied by these local populations. It can be readily seen that these local populations will have limited exposure to soil contaminants at the Site. Therefore, results of the TEE for the likely overestimate hazards to local populations of soil biota and wildlife.

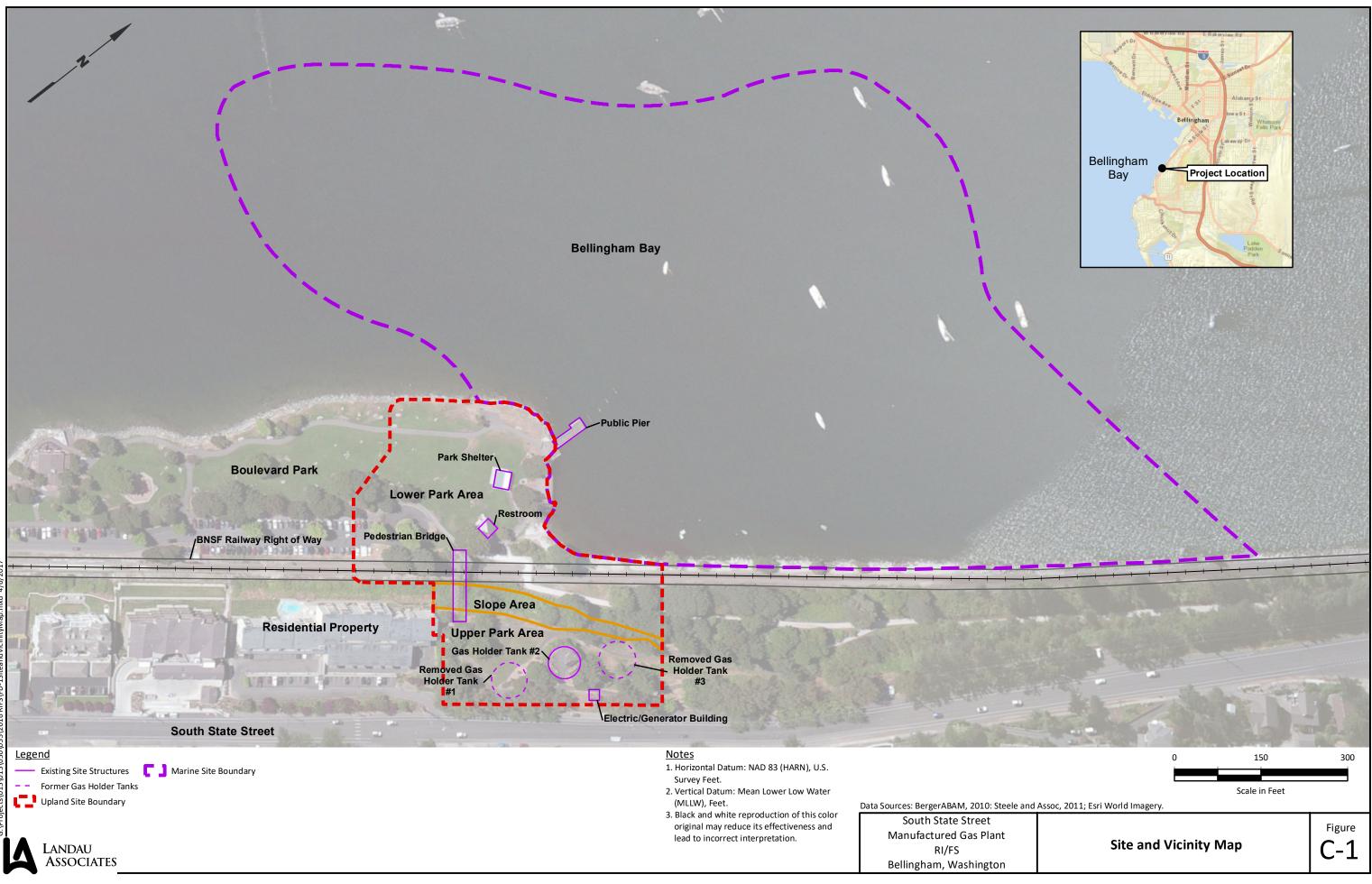
¹⁹ Source <u>http://www.cob.org/documents/parks/parks-trails/trail-guide/south_bay.pdf</u> .

5 SUMMARY AND CONCLUSIONS

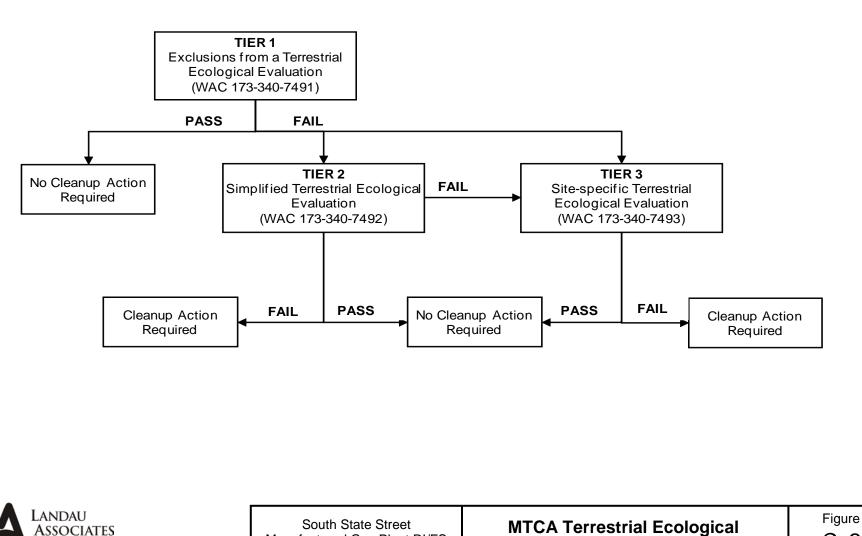
The Site did not qualify for exclusion from the TEE, or for a simplified version of the TEE, so a site-specific TEE was required. Receptors of concern for the Site included soil biota and wildlife. Plants were not identified as receptors of concern because vegetation at the Site (i.e., consisting of extensive turfgrass areas interplanted with exotic and native shrubs and trees) was planted for landscape and ornamental purposes. The TEE identified mercury, selenium, and 17 individual PAHs as COPECs, and these constituents were carried into the detailed evaluation of ecological hazards. Mercury presented a potential hazard only to soil biota, selenium presented a potential hazard only to wildlife, and PAHs presented potential hazards to soil biota and wildlife.

BAFs were developed for the evaluation to estimate the concentrations of COPECs that would accumulate in plants and soil biota from the soil, and in turn be consumed by wildlife. A soil biota SSL for mercury was derived using published literature values and for PAHs, was derived from a study of the toxicity to earthworms of soils collected from 16 MGPs sites. Wildlife TRVs were developed from toxicity data provided in EPA's recent EcoSSL document for PAHs and selenium. Wildlife SSLs for PAHs and selenium were developed using the BAFs and TRVs generated in the site-specific TEE.

Results of this evaluation indicate that mercury and selenium do not pose an unacceptable ecological hazard. Results of a comparison of tPAH soil concentrations in the lower and upper exposure areas to a threshold protective of soil biota (e.g., earthworms) suggested a potential hazard to soil biota. However, empirical evidence at the Site through the site-specific field survey show diverse communities of earthworms inhabit both areas and they appear comparable to communities found in turfgrass habitats elsewhere in western Washington. Therefore, it is concluded that tPAHs do not pose a hazard to soil biota. Wildlife hazards for individual PAHs were below a level of concern (i.e., HQ < 1). Likewise, the cumulative effect of LPAHs and HPAHs in the lower and slope area and HPAHs in the upper area were below a level of concern (i.e., $HI \le 1$). However, the cumulative effect of LPAHs in the upper area was found to pose a potential hazard to one of the two wildlife receptors (i.e., shrew). Evaluation of the cumulative effect of LPAHs on the shrew in the upper exposure area presented in the uncertainty analysis shows the hazards were driven by a single soil sample result for naphthalene (i.e., MGP-GP-24-5.0-6.0) which was identified as a statistical outlier and not considered representative of Site conditions within the conditional POC. When the outlier sample was removed from the soil data set, the hazards from LPAHs dropped below a level of concern. Although sample MGP-GP-24-5.0-6.0 may represent a PAH hot spot, the limited potential exposure of the shrew to this location within the upper ecological exposure area suggests that wildlife hazards from LPAHs may be over-estimated beyond the immediate vicinity of the potential hot spot, which will be addressed in the FS.


A comprehensive list of potential uncertainties associated with this TEE is presented in the previous section. These types of uncertainties are typical and are not anticipated to result in underestimating the overall hazards to terrestrial ecology. As a result of this evaluation,

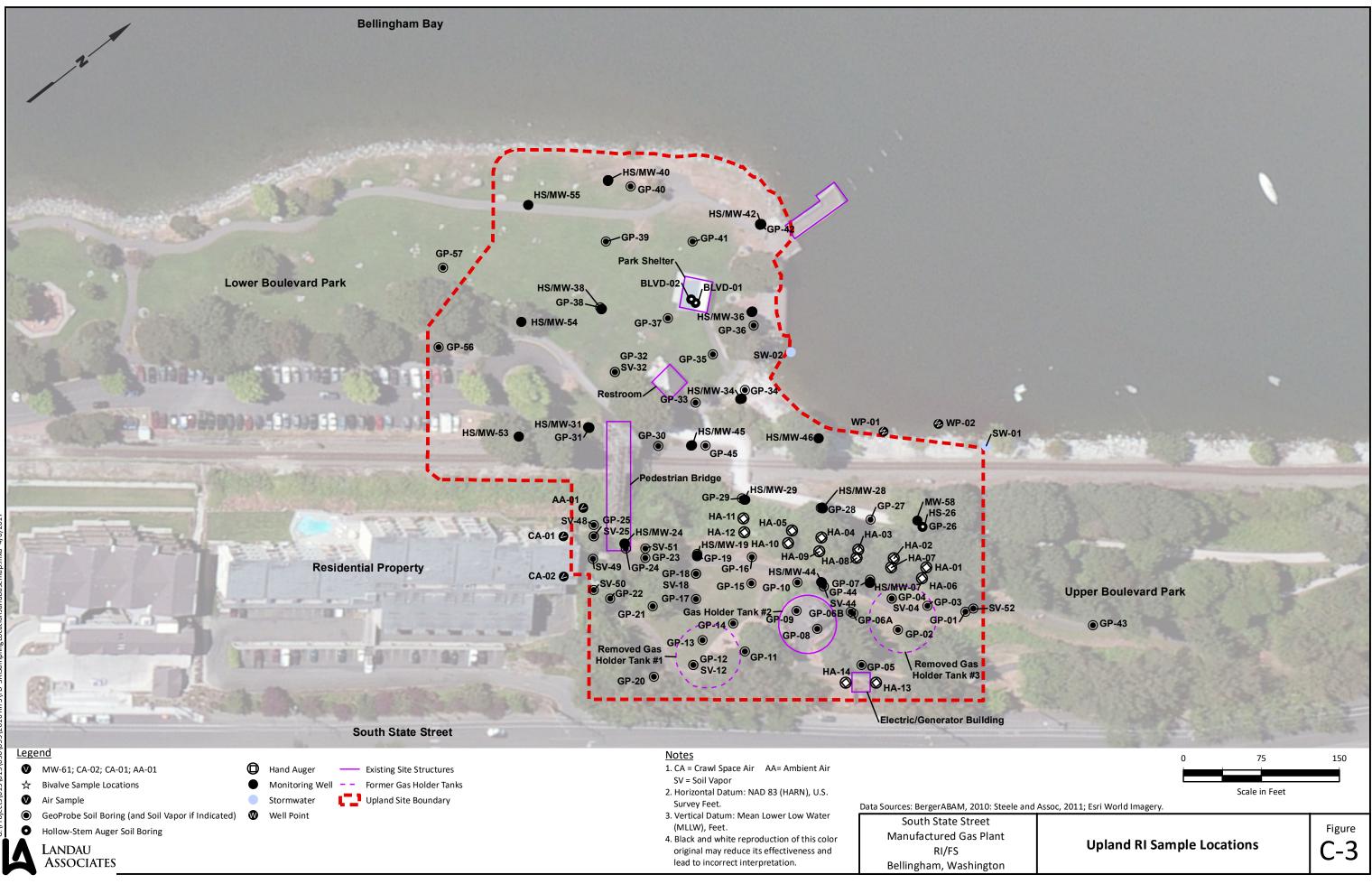
protection of groundwater, surface water, sediment and marine ecology, and human health through direct contact and consumption of potentially affected marine organisms will be the primary factors for developing cleanup levels for the Site.

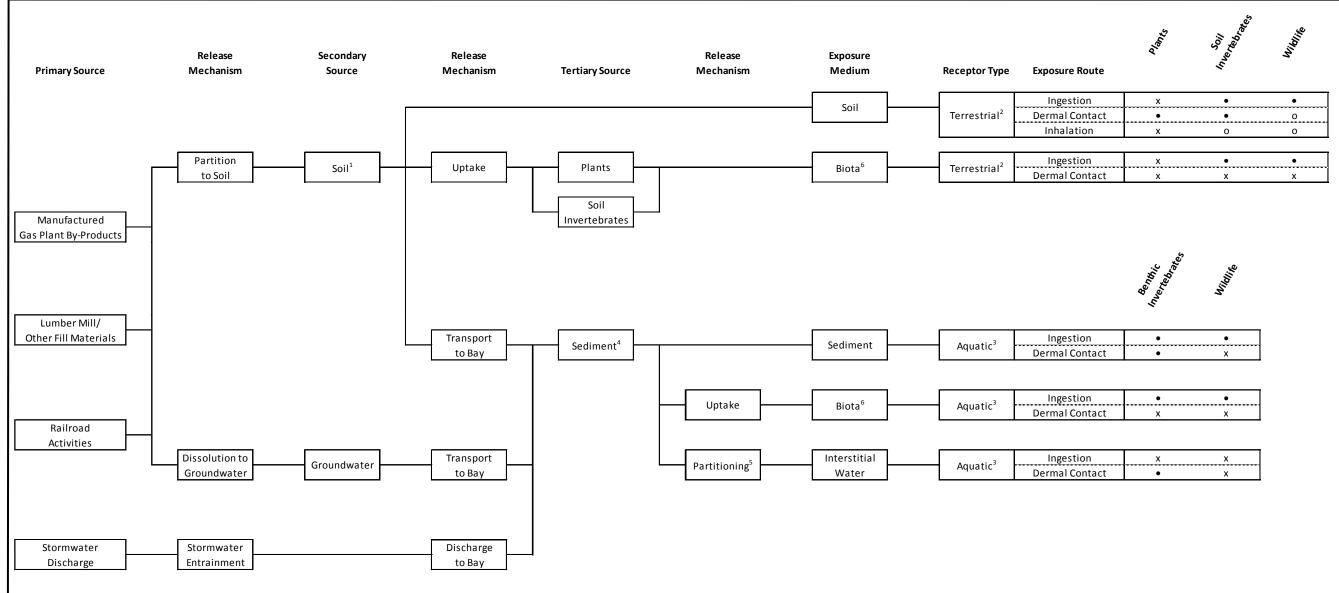

6 **REFERENCES**

- Alexander, M. 2000. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science & Technology 34(20): 4259-4265.
- Agency for Toxic Substances and Disease Registry (ATSDR). 2002. Toxicological Profile for Polycyclic Aromatic hydrocarbons. U.S. Department of Health and Human Services, ATSDR, Atlanta, Georgia. Available online at http://www.atsdr.cdc.gov/toxprofiles/index.asp.
- Ecology. 1994. Natural Background Soil Metals concentrations in Washington State. Ecology Publication #94-115. Available online at <u>https://fortress.wa.gov/ecy/publications/summarypages/94115.html</u>.
- Ecology. 2000. Technical Addendum to Sections 7490-7493. July, 2000.
- Ecology. 2001. Concise Explanatory Statement for the Amendments to the Model Toxics Control Act Cleanup Regulation Chapter 173-340 WAC. Publication Number: 01-09-043. Available online at <u>www.ecy.wa.gov/biblio/0109043.html</u>.
- Efroymson, R.A., M.E Will, and G.W. Suter II. 1997b. Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Processes: 1997 Revision. Oak Ridge National Laboratory, Oak Ridge TN. ES/ER/TM-126/R2. Available online at http://www.esd.ornl.gov/programs/ecorisk/benchmark_reports.html.
- Franklin, Jerry F. and C.T. Dyrness. 1988. Natural vegetation of Oregon and Washington. Corvallis, OR: Oregon State University Press. 452 pp.
- Griffin. Brian L. 2007. Boulevard Park & Taylor Avenue Dock, on the Old Bellingham Waterfront. Knox Cellars Publishing Company, Bellingham, Washington. 224 pages.
- Gudbrandsen, M., L.E. Sverdrup, S. Aamodt, and J. Stenersen. 2007. Short-term pre-exposure increases earthworm tolerance to mercury. European journal of Soil Biology 43: S261 S267.
- Kreitinger, J.P., A. Quinones-Rivera, E.F. Neuhauser, M. Alexander, and S.B. Hawthorns. 2007. Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas site soils. Environmental Toxicology and Chemistry 26(9): 1809-1817.
- Liu, Y., Y Zheng, L. Zhang, Y. Luan, and J. He. 2010. Effects of mercury on reproduction, avoidance, and heat shock protein gene expression of the soil springtail Folsomia candida. Environmental Toxicology and Chemistry 29 (3): 654-659.

- Lock, K., and C.R. Jenssen. 2001. Ecotoxicity of mercury to *Eisenia fetida, Enchytreaus albidus* and *Folsomia candida*. Biology and Fertility of Soils 34: 219-221.
- U.S. Environmental Protection Agency (EPA). 2003. Attachment 4-2. Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs), Eco-SSL Standard Operating Procedure (SOP) #3: Wildlife Toxicity Reference Values Literature Search and Retrieval. OSWER Directive 92857-55. Available on-line at <u>http://www.epa.gov/ecotox/ecossl/</u>.
- U.S. Environmental Protection Agency (EPA). 2007a. Attachment 4-1. Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs), Exposure Factors and Bioaccumulation Models for Derivation of Wildlife Eco-SSLs. OSWER Directive 9285.7-55. Available on-line at <u>http://www.epa.gov/ecotox/ecossl/</u>.
- U.S. Environmental Protection Agency (EPA). 2007b. Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs), Interim Final. Available online at http://www.epa.gov/ecotox/ecossl/.
- U.S. Environmental Protection Agency (EPA). 2007c. Attachment 4-3. Guidance for Developing Ecological Soil Screening Levels (Eco-SSLs), Eco-SSL Standard Operating Procedure (SOP) #4: Wildlife Toxicity reference Value Literature Review, Data Extraction, and Coding. OSWER Directive 92857-55. Available on-line at http://www.epa.gov/ecotox/ecossl/.
- U.S. Environmental Protection Agency (EPA). 2007d. Ecological Soil Screening Levels for Selenium, Interim Final. Available online at <u>http://www.epa.gov/ecotox/ecossl/</u>.
- Zagury, G.J., C. Neculita, C. Bastien, and L. Deschenes. 2006. Mercury fractionation, bioavailability, and ecotoxicity in highly contaminated soils from chlor-alkali plants. Environmental Toxicology and Chemistry 25(4): 1138-1147.

ASSOCIATES




Manufactured Gas Plant RI/FS

Bellingham, Washington

C-2

Evaluation Framework

Legend

• = Complete and potentially significant pathway

o = Complete but insignificant pathway

x = Incomplete or not applicable pathway

Notes

1. The terrestrial ecological evaluation (WAC 173-340-7490 through 7494) only considers exposure to soil and biota that may accumulate constituents from soil. For ecological exposure to soil, the evaluation will use the conditional point of compliance of 0-6 ft below ground surface.

2. Terrestrial receptor exposure may take place in both the upper and lower portions of the site.

3. Aquatic receptor exposure may take place in the lower portion of the site.

invertebrates which then become prey for wildlife. Benthic invertebrates (e.g., polychaetes, clams) are sessile organisms which live in intimate contact with site sediments and whose tissue constituent concentrations are more closely related to the site sediment constituent concentrations then pelagic organisms (e.g., fish, shrimp). This assessment and CEM do not address constituents present in over-lying sea water because these are transient in nature and may not be site-related. In addition, the primary site-related constituents are PAHs, which have limited water solubility. Pelagic organisms are mobile, can have large home ranges, are not closely associated with sediments, and typically accumulate constituents from the water column and from consumption of organisms that have accumulated constituents in their tissues. Since potential exposure of pelagic organisms to constituents present in site sediments is considered to be negligible, pelagic organisms are not the subject of this assessment.

5. Constituents partition between sediment and interstitial water based upon the physical and chemical properties of the sediment, interstitial water, and constituent. Partitioning is a dynamic two directional process which is rarely at equilibrium.

6. Biota in this case refers to benthic invertebrates. See note 4 for further discussion.

South State Street Manufactured Gas Plant Bellingham, Washington

Ecological Conceptual Exposure Model

Figure

C-4

Table C-1. Screening of Chemicals of Potential Ecological Concern in Soil

Table C-1. Screening of Che	micals of F	Potential E	cological C		itistics usir	ng Detecte	d Observa	itions ¹					-	cal Indica		Nat. Soil			
Constituent	# Detects	# Non- detects	% Non- detects	Min. Conc.	Max. Conc.	Mean	Median	Stand. Dev.	MAD / 0.675	Skew- ness	cv	EPC ¹	Plants	Soil Biota	Wild-life	Back- ground ³	Candidate COPEC?	Final COPEC?	Rationale
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	0	7	100% 100%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A						No No	No No	Not detected Not detected
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroe 1,1,2-Trichloroethane	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A						No No No	No No No	Not detected Not detected Not detected
1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloropropene	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A						No No No	No No No	Not detected Not detected Not detected
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A			20 20			No No No	No No No	Not detected Not detected Not detected
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	5 0	2 7	29% 100%	0.012 N/A	120 N/A	45.93 N/A	37 N/A	51 N/A	53.91 N/A	0.734 N/A	1.11 N/A	70.14		20			Yes No	No No	See Attachment C-3 Not detected
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A			700			No No No	No No No	Not detected Not detected Not detected
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichloropropane	3 0 0	4 7 7	57% 100% 100%	0.0035 N/A N/A	52 N/A N/A	17.41 N/A N/A	0.24 N/A N/A	29.95 N/A N/A	0.351 N/A N/A	1.732 N/A N/A	1.72 N/A N/A	52					Yes No No	No No No	See Attachment C-3 Not detected Not detected
1,4-Dichlorobenzene 1-Methylnaphthalene 2,2-Dichloropropane	0 73 0	7 19 7	100% 21% 100%	N/A 0.0052 N/A	N/A 7500 N/A	N/A 122.9 N/A	N/A 0.07 N/A	N/A 885.1 N/A	N/A 0.093 N/A	N/A 8.284 N/A	N/A 7.205 N/A	611.9	20 ^a	20 30^b	12°		No Yes No	No Yes No	Not detected EPC > all EISCs Not detected
2,2'-Oxybis(1-Chloropropane) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A		4	9 10			No No No	No No No	Not detected Not detected Not detected
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	0 1 0	7 6 7	100% 86% 100%	N/A 81 N/A	N/A 81 N/A	N/A 81 N/A	N/A 81 N/A	N/A N/A N/A	N/A 0 N/A	N/A N/A N/A	N/A N/A N/A	81	20				No Yes No	No No No	Not detected See Attachment C-3 Not detected
2,4-Dinitrotoluene 2,6-Dinitrotoluene	0	7 7 7	100% 100%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A N/A		20				No No	No No	Not detected Not detected
2-Butanone 2-Chloroethylvinylether 2-Chloronaphthalene	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A						No No No	No No No	Not detected Not detected Not detected
2-Chlorophenol 2-Chlorotoluene 2-Hexanone	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A						No No No	No No No	Not detected Not detected Not detected
2-Methylnaphthalene 2-Methylphenol 2-Nitroaniline	80 1 0	12 6 7	13% 86% 100%	0.0054 86 N/A	13000 86 N/A	190.1 86 N/A	0.0765 86 N/A	1462 N/A N/A	0.0956 0 N/A	8.746 N/A N/A	7.691 N/A N/A	1054 86	20ª	30 ⁶	12°		Yes Yes No	Yes No No	EPC > all EISCs See Attachment C-3 Not detected
2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline	0 0 0 0	7 7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A						No No No	No No No	Not detected Not detected Not detected
4,6-Dinitro-2-Methylphenol 4-Bromophenyl-phenylether 4-Chloro-3-methylphenol	0 0 0 0 0	7 7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A						No No No	No No No	Not detected Not detected Not detected Not detected Not detected
4-Chloroaniline 4-Chlorophenyl-phenylether	0 0	7 7	100% 100%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A						No No	No No	Not detected Not detected
4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-Pentanone (MIBK)	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A						No No No	No No No	Not detected Not detected Not detected
4-Methylphenol 4-Nitroaniline 4-Nitrophenol	1 0 0	6 7 7	86% 100% 100%	210 N/A N/A	210 N/A N/A	210 N/A N/A	210 N/A N/A	N/A N/A N/A	0 N/A N/A	N/A N/A N/A	N/A N/A N/A	210		7			Yes No No	No No No	See Attachment C-3 Not detected Not detected
Acenaphthene Acenaphthylene Acetone	43 84 2	49 8 5	53% 9% 71%	0.0044 0.0053 0.04	250 2600 0.066	8.659 43.73 0.053	0.063 0.135 0.053	40.02 291.7 0.0184	0.0845 0.173 0.0193	5.664 8.419 N/A	4.622 6.67 0.347	22.09 221.6 0.66	20 20 ^a	30 ^b 30 ^b	12° 12°		Yes Yes Yes	Yes Yes No	EPC > plant and wildlife EISCs EPC > all EISCs See Attachment C-3
Acrolein Acrylonitrile Anthracene	0 0 75	7 7 17	100% 100% 18%	N/A N/A 0.0059	N/A N/A 1000	N/A N/A 22.34	N/A N/A 0.29	N/A N/A 123.3	N/A N/A 0.415	N/A N/A 7.285	N/A N/A 5.52	90.92	20ª	30 ⁶	12°		No No Yes	No No Yes	Not detected Not detected EPC > all EISCs
Antimony Aroclor 1016	4 0 0	87 2	96% 100%	0.2 N/A	1.9 N/A	0.9 N/A	0.75 N/A	0.726 N/A	0.519 N/A	1.099 N/A	0.806 N/A	0.27	5 40	30	0.65	NA	No No	No No	EPC < all EISCs Not detected
Aroclor 1221 Aroclor 1232 Aroclor 1242	0	2 2 2	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A		40 40 40		0.65 0.65 0.65		No No No	No No No	Not detected Not detected Not detected
Aroclor 1248 Aroclor 1254 Aroclor 1260	0 0 0	2 2 2	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A		40 40 40		0.65 0.65 0.65		No No No	No No No	Not detected Not detected Not detected
Arsenic Barium Benzo(a)anthracene	90 98 99	1 0 5	1% 0% 5%	2.1 0.049 0.0075	33.6 724 650	5.764 177.3 20.87	4.35 138.5 0.44	4.574 143.6 90.2	1.26 75.02 0.632	3.632 2.142 6.077	0.793 0.81 4.321	6.573 240.6 73.83	10 500 20°	60 30^b	132 (7) ^e 102 12^c	7 255	No Yes Yes	No No Yes	UCL < EISCs See Attachment C-3 EPC > all EISCs
Benzo(a)pyrene Benzo(g,h,i)perylene Benzoic Acid	100 89 0	4 3 7	4% 3% 100%	0.0028 0.007 N/A	810 360 N/A	22.25 10.06 N/A	0.645 0.48 N/A	94.41 40.18 N/A	0.926 0.692 N/A	6.905 7.789 N/A	4.242 3.996 N/A	78.15 35.49	20 ⁸ 20 ⁸	30 ^b 30 ^b	12° 12°		Yes Yes No	Yes Yes No	EPC > all EISCs EPC > all EISCs Not detected
Benzyl Alcohol bis(2-Chloroethoxy) Methane Bis-(2-Chloroethyl) Ether	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A						No No No	No No No	Not detected Not detected Not detected
bis(2-Ethylhexyl)phthalate Bromobenzene Bromochloromethane	0 0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A						No No No	No No No	Not detected Not detected Not detected
Bromodichloromethane Bromoethane	0	7	100% 100%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A						No No	No No	Not detected Not detected
Bromoform Bromomethane Butylbenzylphthalate	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A						No No No	No No No	Not detected Not detected Not detected
Cadmium Carbon Disulfide Carbon Tetrachloride	53 0 0	45 7 7	46% 100% 100%	0.2 N/A N/A	70 N/A N/A	1.758 N/A N/A	0.3 N/A N/A	9.568 N/A N/A	0.148 N/A N/A	7.249 N/A N/A	5.441 N/A N/A	2.239	4	20	14	1	No No No	No No No	EPC < EISCs Not detected Not detected
Chlorobenzene Chloroethane Chloroform	0 0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A			40			No No No	No No No	Not detected Not detected Not detected
Chloromethane Chromium Chrysene	0 90 101	7 1 3	100% 1% 3%	N/A 9 0.0033	N/A 63 670	N/A 29.84 20.62	N/A 27 0.44	N/A 10.26 87.7	N/A 7.413 0.629	N/A 0.772 6.211	N/A 0.344 4.253	31.52 72.99	42 20 ^a	42 30 ^b	67 12°	48	No No Yes	No No Yes	Not detected UCL < EISCs EPC > all EISCs
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Copper	0 0 91	7 7 0	100% 100% 0%	N/A N/A 1.4	N/A N/A 143	N/A N/A 36.78	N/A N/A 28.9	N/A N/A 23.92	N/A N/A 9.489	N/A N/A 2.14	N/A N/A 0.65	47.72	100	50	217	36	No No No	No No No	Not detected Not detected UCL < EISCs
Cyanide Dibenz(a,h)anthracene Dibenzofuran	9 84 51	4 20 41	31% 19% 45%	0.125 0.0029 0.0053	76.4 83 280	13.17 2.707 8.535	1.46 0.19 0.084	24.91 9.703 41.24	1.979 0.264 0.111	2.53 7.146 6.152	1.891 3.585 4.831	20.15 7.567 24.92	20ª	30 ^b	12° 12°		Yes No Yes	No No Yes	See Attachment C-3 EPC < EISCs EPC > plant and wildlife EISCs
Dibromochloromethane Dibromomethane	0 0	7 7	100% 100%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		20-				No No	No No	Not detected Not detected
Diesel Range Organics Diethylphthalate	7	0 7	0% 100%	41 N/A	1200 N/A	473 N/A	510 N/A	422 N/A	578.2 N/A	0.741 N/A	0.892 N/A	783	100	200	6000 (2000) ^d		Yes No	No No	See Attachment C-3 Not detected
Dimethylphthalate Di-n-Butylphthalate Di-n-Octyl phthalate	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A		200	200			No No No	No No No	Not detected Not detected Not detected
Ethylbenzene Ethylene Dibromide Fluoranthene	6 0 90	1 7 2	14% 100% 2%	0.0075 N/A 0.013	140 N/A 960	47.07 N/A 37.01	14 N/A 1	61.38 N/A 150.4	17.49 N/A 1.445	1.032 N/A 5.502	1.304 N/A 4.064	138.6 133.1	20ª	30 ^b	12°		Yes No Yes	No No Yes	See Attachment C-3 Not detected EPC > all EISCs
Fluorene Gasoline Range Organics	63 6	29 1	32% 14%	0.0049 28	1400 15000	31.83 6846	0.104 5450	184.2 6765	0.139 7948	7.015 0.445	5.787 0.988	121.5 10857	20 ^a	30 100	12° 5000 (1000) ^d		Yes Yes	Yes No	EPC > all EISCs See Attachment C-3
Hexachlorobenzene Hexachlorobutadiene	0 0 0	7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A		10		17		No No No	No No No	Not detected Not detected Not detected
Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	0 0 99 0	7 7 5 7	100% 5%	N/A 0.0061	N/A N/A 330 N/A	N/A 8.431	N/A 0.4	N/A N/A 35.24 N/A	N/A 0.574	N/A 8.079	N/A 4.18	29.11	20ª	30 ⁶	12°		No Yes	No Yes	Not detected EPC > plant and wildlife EISCs Not detected
Isophorone Isopropylbenzene Lead	0 91	7	100% 100% 0%	N/A N/A 3	N/A 747	N/A N/A 72.34	N/A N/A 35	N/A 118.1	N/A N/A 29.65	N/A N/A 3.563	N/A N/A 1.632	91.23	50	500	118	24	No No No	No No No	Not detected Protection of plants not a goal of TEE
Lube Oil m, p-Xylene	7 6 89	0 1 2	0% 14% 2%	6 0.017 0.03	1300 220 1.37	481.3 90.92 0.162	280 62 0.09	474.1 96.46 0.225	266.9 90.8 0.0593	1.114 0.646 3.298	0.985 1.061 1.39	829.5 148.3 0.202	0.3	0.1	5.5	0.07	Yes Yes Yes	No No Yes	See Attachment C-3 See Attachment C-3 EPC > soil biota EISC and background
Mercury Methyl Iodide Methyl tert-Butyl Ether	0	7	100% 100%	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A				(0.4) ^f		No No	No No	Not detected Not detected
Methylene Chloride Naphthalene n-Butylbenzene	0 82 0	7 10 7	100% 11% 100%	N/A 0.0088 N/A	N/A 63000 N/A	N/A 846.6 N/A	N/A 0.185 N/A	N/A 6960 N/A	N/A 0.236 N/A	N/A 9.011 N/A	N/A 8.221 N/A	5036	20 ^a	30 ^b	12 ^c		No Yes No	No Yes No	Not detected EPC > all EISCs Not detected
Nitrobenzene N-Nitroso-Di-N-Propylamine N-Nitrosodiphenylamine	0 0 0	7 7 7 7	100% 100% 100%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A			40 20			No No No	No No No	Not detected Not detected Not detected Not detected
n-Propylbenzene o-Xylene	0 6	7	100% 14%	N/A 0.014	N/A 91	N/A 38.85	N/A 31.5	N/A 38.3	N/A 45.88	N/A 0.468	N/A 0.986	61.55	2		A.F.		No Yes	No No	Not detected See Attachment C-3
Pentachlorophenol Phenanthrene Phenol	0 90 1	7 2 6	100% 2% 86%	N/A 0.01 270	N/A 2900 270	N/A 60.06 270	N/A 0.61 270	N/A 347.6 N/A	N/A 0.859 0	N/A 7.262 N/A	N/A 5.788 N/A	282.7 270	3 20ª 70	6 30^b 30	4.5 12°		No Yes Yes	No Yes No	Not detected EPC > all EISCs See Attachment C-3
Pyrene sec-Butylbenzene	90 0	2 7	2% 100%	0.017 N/A	1400 N/A	54.42 N/A	1.3 N/A	224 N/A	1.858 N/A	5.449 N/A	4.117 N/A	197.6	20 ^a	30 ^b	12°		Yes No	Yes No	EPC > all EISCs Not detected

				Raw Sta	tistics usi	ng Detecte	d Observa	ntions ¹					Ecological Indicator Soil Concentrations ²		-	Nat. Soil	Candidate	Final		
Constituent	# Detects	# Non- detects	% Non- detects	Min. Conc.	Max. Conc.	Mean	Median	Stand. Dev.	MAD / 0.675	Skew- ness	cv	EPC ¹	Plants	Soll Biota	Wild-life	Back- ground ³	COPEC?	COPEC?	Rationale	
Selenium	1	90	99%	2	2	2	2	N/A	0	N/A	N/A	2	1	70	0.3	NA	Yes	Yes	Although the FOD < 5%, the maximum detected concentration > 2-times wildlife EISC	
Silver	4	87	96%	0.2	0.4	0.3	0.3	0.0816	0.0741	2.1E-15	0.272	0.21	2			NA	No	No	EPC < all EISCs	
Styrene	1	6	86%	150	150	150	150	N/A	0	N/A	N/A	150	300				No	No	EPC < EISC	
TEQ cPAH	102	2	2%	0.000313	1016	27.86	0.693	117	0.995	6.982	4.198	98.3	20 ^a	30 ^b	12 ^c		No	No	cPAH not relevant for ecological receptors	
tert-Butylbenzene	0	7	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						No	No	Not detected	
Tetrachloroethene	0	7	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						No	No	Not detected	
Toluene	7	0	0%	0.0047	220	58.19	39	78.71	57.41	1.746	1.353	220	200				Yes	No	See Attachment C-3	
Total Benzofluoranthenes	101	3	3%	0.0028	930	22.86	0.97	99.51	1.4	7.985	4.354	82.3	20 ^a	30 ^b	12°		Yes	Yes	EPC > all EISCs	
Total Xylenes	6	1	14%	0.031	311	129.8	93.5	134.6	136.7	0.597	1.037	209.8					Yes	No	See Attachment C-3	
trans-1,2-Dichloroethene	0	7	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						No	No	Not detected	
trans-1,3-Dichloropropene	0	7	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						No	No	Not detected	
trans-1,4-Dichloro-2-butene	0	7	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						No	No	Not detected	
Trichloroethene	0	7	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						No	No	Not detected	
Trichlorofluoromethane	0	7	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						No	No	Not detected	
Vinyl Acetate	0	7	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						No	No	Not detected	
Vinyl Chloride	0	7	100%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						No	No	Not detected	
Weak Acid Dissoc. Cyanide	5	8	62%	0.14	7.6	2.258	0.59	3.182	0.667	1.671	1.409	2.084					Yes	No	See Attachment C-3	
Zinc	90	1	1%	33	430	90.97	77.5	58.67	22.98	3.469	0.645	101.4	86	200	360	85	Yes	No	Protection of plants not a goal of TEE	

¹ Summary statistics were calculated using ProUCL using detected values only. Reasonable maximum exposure point concentrations (EPCs) were the lesser of the maximum detect concentration or the 95% upper confidence limit (UCL). UCLs were calculated using ProUCL and ² Ecological indicator soil concentrations (EISCs) are from MTCA Table 749-3.
 ³ Natural soil background concentrations for metals in the Puget Sound region are from Ecology (1994).
 ^a The EISC for the protection of plants from PAHs is the EISC for acenaphthene.

^b The EISC for the protection of soil biota from PAHs is the EISC for fluorene.

^c The EISC for the protection of wildlife from PAHs is the EISC for benzo(a)pyrene ^d Value is EISC and value in parenthesis if soil saturation concentration.

Value is ErSC and value in parentness in solin saturation concentration.
 Value is for arsenic V, value in parenthesis is for arsenic III.
 ^f Value is for inorganic mercury, value in parenthesis is for organic mercury.
 All concentrations are expressed in mg/kg (ppm).
 Highlighted constituents are COPECs.
 Bolded EISCs are less than the EPC for COPECs.

Num Ds - number of samples with detected values Num NDs - number of samples with nondetected values

% NDs - percent of samples with nondetected values Minimum - minimum detected value (mg/kg)

Maximum - maximum detected value (mg/kg) Mean - mean concentrations (mg/kg)

Median - median concentration (mg/kg)

SD - standard deviation (mg/kg)

MAD/0.675 - mean absolute deviation divided by 0.675 (a robust estimate of variability)

Skewness - skewness statistic

CV - coefficient of variation (mg/kg)

UCL - 95 percent upper confidence limit (mg/kg); obtained from ProUCL UCL calculations shown below EPC - reasonable maximum exposure point concentration (mg/kg); lesser of maximum detected value and UCL

|--|

Characteristic		Exposure Area	
Characteristic	Upper	Slope	Lower
Cover Type	Landscaped plantings of turfgrass, shrubs, and trees with some covered areas; low quality habitat for wildlife	Ruderal vegetation consisting of a mixture of exotic and native species; moderate quality habitat for wildlife	Landscaped plantings of turfgrass, shrubs, and trees with some covered areas; low quality habitat for wildlife
Human Use	Heavily used by park visitors	Not used by park visitors	Heavily used by park visitors
Management Practices	Intensive -mowing	Limited	Intensive - mowing, irrigation
Connectivity	Directly connected to slope area	Directly connected to upper area	Separated from upper and slope areas by BNSF railroad
Analyte List	VOCs, non-PAH SVOCs, PAHs, Metals, Cyanide	PAHs, Metals	PAHs, Metals, Cyanide

Table C-3. Derivation of Earthworm Bioaccumulation Factors for Polycyclic Aromatic Hydrocarbons

	Soil		Conc. Worm ² (ug/g	Conc. Soil ³	Soil Total Carbon ¹	Conc. Soil ⁴	Conc. Worm⁵		Geo-mean
Constituent	Sample #	BSAF ¹	lipid)	(ug/g OC)	(%)	(ug/g DW)	(ug/g DW)	BAF ⁶	BAF
	CG12	0.028	10	357.1	7.9	28.214	0.692	0.025	
Acenaphthene	CG15	0.063	3	47.6	24.1	11.476	0.208	0.018	0.028
	CG17	0.09	3	33.3	12.5	4.167	0.208	0.050	
	CG12	0.05	80	1600.0	7.9	126.400	5.538	0.044	
Anthracene	CG15	0.6	12	20.0	24.1	4.820	0.831	0.172	0.099
	CG17	0.23	63	273.9	12.5	34.239	4.362	0.127	
	CG12	0.059	220	3728.8	7.9	294.576	15.231	0.052	
Benzo(a)anthracene	CG15	0.16	57	356.3	24.1	85.856	3.946	0.046	0.067
	CG17	0.23	86	373.9	12.5	46.739	5.954	0.127	
	CG12	0.063	210	3333.3	7.9	263.333	14.538	0.055	
Benzo(a)pyrene	CG15	0.25	84	336.0	24.1	80.976	5.815	0.072	0.082
	CG17	0.25	101	404.0	12.5	50.500	6.992	0.138	
	CG12	0.061	480	7868.9	7.9	621.639	33.231	0.053	
Benzo(b&k)fluoranthene	CG15	0.16	139	868.8	24.1	209.369	9.623	0.046	0.064
. ,	CG17	0.19	139	731.6	12.5	91.447	9.623	0.105	
	CG12	0.13	280	2153.8	7.9	170.154	19.385	0.114	
Benzo(e)pyrene	CG15	0.4	136	340.0	24.1	81.940	9.415	0.115	0.154
	CG17	0.5	133	266.0	12.5	33.250	9.208	0.277	
	CG12	0.053	100	1886.8	7.9	149.057	6.923	0.046	
Benzo(g,h,i)perylene	CG15	0.25	58	232.0	24.1	55.912	4.015	0.072	0.081
benzo(B)n)/per frene	CG17	0.29	71	244.8	12.5	30.603	4.915	0.161	0.001
	CG12	0.06	220	3666.7	7.9	289.667	15.231	0.053	
Chrysene	CG12 CG15	0.18	90	500.0	24.1	120.500	6.231	0.055	0.066
enrysene	CG13 CG17	0.18	89	468.4	12.5	58.553	6.162	0.105	0.000
	CG12	0.15	30	750.0	7.9	59.250	2.077	0.035	
Dibenz(a,h)anthracene	CG12 CG15	0.22	17	730.0	24.1	18.623	1.177	0.063	0.051
Dischiz(d)injuntin deene	CG15 CG17	0.11	9	81.8	12.5	10.023	0.623	0.061	0.051
	CG17	0.06	460	7666.7	7.9	605.667	31.846	0.001	
Fluoranthene	CG12 CG15	0.00	100	476.2	24.1	114.762	6.923	0.060	0.072
Tuorantilene	CG13 CG17	0.21	100	533.3	12.5	66.667	7.754	0.000	0.072
	CG17 CG12	0.033	35	1060.6	7.9	83.788	2.423	0.029	
Fluorene	CG12 CG15	0.033	4	40.0	24.1	9.640	0.277	0.029	0.041
nuorene	CG15 CG17	0.1	5	33.3	12.5	4.167	0.277	0.029	0.041
			20	-	7.9			0.003	
Indeno(1,2,3-cd)perylene	CG12 CG15	0.01	8	2000.0	24.1	158.000	1.385	0.009	0.013
indeno(1,2,5-cu)perviene						53.556	0.554		0.015
	CG17	0.039	12 10	307.7 294.1	12.5	38.462	0.831	0.022	
Nanhthalana	CG12	0.034			7.9	23.235	0.692	0.030	0.059
Naphthalene	CG15	0.16	16	100.0	24.1	24.100	1.108	0.046	0.058
	CG17	0.26	10	38.5	12.5	4.808	0.692	0.144	
Dondono	CG12	0.099	80	808.1	7.9	63.838	5.538	0.087	0.071
Perylene	CG15	0.16	17	106.3	24.1	25.606	1.177	0.046	0.071
	CG17	0.16	18	112.5	12.5	14.063	1.246	0.089	
Dhaman thurson	CG12	0.041	290	7073.2	7.9	558.780	20.077	0.036	0.050
Phenanthrene	CG15	0.15	33	220.0	24.1	53.020	2.285	0.043	0.052
	CG17	0.16	56	350.0	12.5	43.750	3.877	0.089	
	CG12	0.056	310	5535.7	7.9	437.321	21.462	0.049	
Pyrene	CG15	0.23	141	613.0	24.1	147.743	9.762	0.066	0.072
	CG17	0.21	139	661.9	12.5	82.738	9.623	0.116	

Notes:

BSAF - biota soil accumulation factor calculated as earthworm concentration (ug/g lipid)/soil concentrations (ug/g carbon)

OC - organic carbon

DW - dry weight

BAF - bioaccumulation factor calculated as earthworm concentration (ug/g DW)/soil concentration (ug/g DW)

¹ Source: Figure 1 in Kreitinger et al. (2007)

² Source: Figure 2 in Kreitinger et al. (2007)

³ Calculated as (PAH Conc. Earthworm (ug/g lipid))/(BSAF)

⁴ Calculated as [(PAH Conc. Soil (ug/g OC))*(Soil Total Carbon (%)/100)]

⁵ Calculated as [(PAH Conc. Earthworm (ug/g lipid)/Earthworm lipid content (percent))/(100 - earthworm moisture content (percent)]. Earthworm lipid content is 0.018 percent (Kreitinger et al. 2007) and earthworm moisture content is 0.83 percent (EPA 1993).

⁶ Calculated as (PAH Conc. Earthworm (ug/g DW))/(PAH Conc. Soil (ug/g DW))

Table C-4. Derivation of Plant and Earthworm Bioaccumulation Factors for Selenium for the Upper Area

Receptor	Bioaccumulation Regression Model	Cs	Ln(Cp or Ce)	Cp or Ce	BAF
Plants	Ln (Cp) = 1.104 * Ln (Cs) - 0.667	2	0.098	1.103	0.552
Earthworms	Ln (Ce) = 0.733 * Ln (Cs) - 0.075	2	0.433	1.542	0.771

Cp = concentration in plant tissue (mg/kg dry weight)

Ce = concentration in earthworm tissue (mg/kg dry weight)

Cs = exposure point concentration in soil (mg/kg dry weight) (Attachment C-4)

BAF = bioaccumulation factor calculated as Cp/Cs or Ce/Cs.

Table C-5. Wildlife Exposure Factors

Factor	Units	Shrew	Robin	Vole	Source
Food Ingestion Rate (FIR)	kg dry food/kg body weight/d	0.209	0.214	0.0875	EPA (2007)
Proportion of Contaminated Food in Diet (P)	unitless	0.5	0.52	1	MTCA Table 749-4
Soil Ingestion Rate (SIR) ¹	kg dry soil/kg body weight/d	0.00627	0.0351	0.0028	EPA (2007)
Gut Absorption Factor (RGAF) ²	unitless	1	1	1	MTCA Table 749-5

¹ EPA (2007) expressed the soil ingestion as the 90^{th} percentile of the percent soil in the diet (vole = 3.2%, shrew = 3.0%, woodcock = 16.4%). These were converted to a soil ingestion rate by multiplying the food ingestion rate by the percent soil in the diet.

 2 The gut absorption factor is a constituent-specific factor that estimates the absorption of a constituent from soil relative to its absorption from food. Although it is likely that a significant proportion of the COPECs will be tightly bound to soil and not absorbed by the gut, the assumption was made that 100% of the concentration present in the soil will be absorbed.

Soil Sample	tPAH	Total Carbon (%)	Molar C:H ratio ^b	tPAH	SFE rapidly	Worm Survival
	Concentration ^a (Concentration	released	(%)
	ug/g soil)			(ug/g C)	fraction ^c	
OG14	168	2.9	1.2	5,790	0.49	100
CG2	307	2.6	0.6	11,800	0.59	100
CG10	521	3.7	1.6	14,100	0.25	25
CG18	554	4.6	1.0	12,000	0.56	100
CG17	577	12.5	1.8	4,620	0.32	100 ^d
CG15	1,020	24.1	3.5	4,200	0.25	100 ^d
CG1	1,520	4.6	1.0	33,000	0.81	0
OG13	1,700	6.5	1.4	26,200	0.27	100
OG5	1,870	6.9	2.4	27,100	0.43	100
CG12	3,790	7.9	1.1	48,000	0.18	100 ^d
CG3	4,100	7.5	0.9	54,700	0.87	0
OG2	6,760	59.4	6.3	11,400	0.22	100
CG11	15,600	29.3	2.3	53,200	0.07	100
OG17	17,200	47.3	5.7	36,400	0.32	100
OG18	17,300	25.5	2.5	67,900	0.80	0
OG10	42,100	86.6	5.0	48,600	0.37	100

Table C-6. Earthworm Toxicity Test Results from Kreitinger et al. (2007).

^a Sum of 16 compounds (naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[*a*]anthracene, chrysene, benzo[b+k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, and benzo[ghi]perylene).

^b Molar carbon to hydrogen ratio.

^c Rapidly released fraction of total PAHs determined by mild supercritical CO₂ extraction (SFE).

^d Earthworms (*Aporrectodea caliginosa* and *Lumbricus rubellus*) were observed in soil at the time of sample collection. tPAH - total polycyclic aromatic hydrocarbon

Mammalian TRVs (n	ng/kg/d) as LOAELs for
Reproduction, G	rowth, and Survival
LPAHs	HPAHs
50.0	3.07
110	12.4
150	20.7
267	24
300	26.4
300	26.4
300	26.4
300	27.3
300	40
328	45.9
450	50
500	50
630	63.4
630	98
630	118
700	15.72
1460	15
1470	
138	
18	

Table C-7. Mammalian Toxicity Reference Values for PAHs

Highlighted values are the final TRVs represented as the 10th percentile of the individual TRVs. Bolded values are the number of observations.

Data Source: EPA (2007b)

TRVs - toxicity reference values

LPAH - low molecular weight polycyclic aromatic hydrocarbons

HPAH - high molecular weight polycyclic aromatic hydrocarbons

	TRVs	(mg/kg/d) as	LOAELs for R	eproduction,	Growth, and	Survival	
		Mammals				Birds	
0.089	0.39	0.712	0.98	4.55	0.0911	0.826	5.75
0.0908	0.411	0.72	0.984	4.57	0.0912	0.855	6.08
0.0968	0.42	0.733	0.984	4.57	0.0988	0.859	6.14
0.13	0.425	0.747	0.988	5.01	0.12	0.859	6.99
0.145	0.434	0.749	1.02	5.01	0.127	0.896	7.98
0.156	0.435	0.754	1.11	5.96	0.127	0.898	8.32
0.157	0.435	0.763	1.11	6	0.13	1.08	11.5
0.163	0.435	0.763	1.19	6.03	0.18	1.13	11.7
0.166	0.44	0.763	1.21	6.36	0.275	1.14	11.9
0.168	0.441	0.763	1.21	6.39	0.306	1.19	12.3
0.205	0.454	0.767	1.23	6.39	0.355	1.2	29
0.209	0.47	0.768	1.28	6.39	0.368	1.23	
0.215	0.489	0.769	1.31	20	0.37	1.29	
0.215	0.49	0.769	1.51	20	0.371	1.38	
0.221	0.493	0.776	1.51	25.4	0.408	1.4	
0.232	0.498	0.776	1.54		0.412	1.44	
0.235	0.504	0.794	1.59		0.425	1.55	
0.254	0.51	0.794	1.59		0.426	1.72	
0.265	0.521	0.794	1.59		0.429	1.73	
0.267	0.521	0.794	1.59		0.438	1.78	
0.273	0.523	0.809	1.59		0.456	1.78	
0.273	0.54	0.809	1.62		0.5	2.27	
0.274	0.54	0.817	1.71		0.5	2.44	
0.275	0.543	0.817	1.79		0.5	2.76	
0.276	0.548	0.823	1.79		0.524	2.9	
0.282	0.55	0.823	1.81		0.546	3.44	
0.296	0.55	0.869	1.94		0.546	3.48	
0.303	0.564	0.869	1.94		0.579	3.64	
0.304	0.567	0.869	2.27		0.58	4.19	
0.307	0.57	0.869	2.28		0.614	4.26	
0.323	0.577	0.869	3.54		0.629	4.49	
0.33	0.58	0.88	3.54		0.675	4.53	
0.34	0.589	0.892	3.74		0.702	4.53	
0.345	0.632	0.903	3.74		0.721	4.75	
0.352	0.653	0.904	4.17		0.78	4.8	
0.378	0.667	0.968	4.18		0.788	4.94	
0.385	0.704	0.975	4.18		0.823	4.94	
				0.239			0.287
				163			85

Table C-8. Mammalian and Avian Toxicity Reference Values for Selenium

Highlighted values are the final TRVs represented as the 10th percentile of the individual TRVs.

Bolded values are the number of observations.

Data Source: EPA (2007d)

TRVs - toxicity reference values

Table C-9. Hazards for Soil Biota

Constituent	Exposure Area	Soil EPC (mg/kg)	SSL (mg/kg)	HQ
	Lower	1,556	400	4
tPAHs	Slope	517.6	400	1
	Upper	12,819	400	32
	Lower	0.402	3.26	0
Mercury	Slope	0.54	3.26	0
	Upper	0.245	3.26	0

EPC - reasonable maximum exposure point concentration

SSL - soil screening level

HQ - hazard quotient

tPAHs - total polycyclic aromatic hydrocarbons

							Ecologi	cal Exposu	ire Area						
Constituent			Lower Area	à				Slope Area	3		Upper Area				
Constituent	Soil EPC	SSL_{shrew}	SSL_{vole}	HQ _{shrew}	HQ _{vole}	Soil EPC	SSL_{shrew}	SSL_{vole}	HQ _{shrew}	HQ _{vole}	Soil EPC	SSL_{shrew}	SSL_{vole}	HQ _{shrew}	HQ _{vole}
	(mg/kg)	(mg/kg)	(mg/kg)	shrew	Vole	(mg/kg)	(mg/kg)	(mg/kg)	shrew	Vole	(mg/kg)	(mg/kg)	(mg/kg)	shrew	Vole
1-Methylnapthene	7.322	11,172	37,165	0	0	1.725	11,172	30,926	0	0	1590	11,172	38,865	0	0
2-Methynaphthene	12.09	11,172	37,165	0	0	3.531	11,172	30,926	0	0	2741	11,172	38,865	0	0
Acenaphthalene	2.265	14,993	37,165	0	0	0.722	14,993	30,926	0	0	57.28	14,993	38,865	0	0
Acenaphthene	37.92	14,993	37,165	0	0	19.59	14,993	30,926	0	0	567.1	14,993	38,865	0	0
Anthracene	28.89	8,320	37,165	0	0	9.107	8,320	30,926	0	0	229.4	8,320	38,865	0	0
Benz(a)anthracene	203.1	1,183	1,147	0	0	49.4	1,183	1,091	0	0	128.1	1,183	1,264	0	0
Benzo(a)pyrene	171.9	1,060	1,147	0	0	65.79	1,060	1,091	0	0	97.63	1,060	1,264	0	0
Benzo(g,h,i)perylene	152.6	1,065	1,147	0	0	27.87	1,065	1,091	0	0	22.75	1,065	1,264	0	0
Chrysene	210.6	1,195	1,147	0	0	49.64	1,195	1,091	0	0	118.4	1,195	1,264	0	0
Dibenzofuran	5.948	13,073	37,165	0	0	1.077	13,073	30,926	0	0	63.82	13,073	38,865	0	0
Fluoranthene	393.9	10,026	37,165	0	0	68.55	10,026	30,926	0	0	235.1	10,026	38,865	0	0
Fluorene	10.07	13,073	37,165	0	0	2.15	13,073	30,926	0	0	312.9	13,073	38,865	0	0
Indeno(1,2,3-cd)perylene	105.1	2,075	1,147	0	0	26.13	2,075	1,091	0	0	21.97	2,075	1,264	0	0
Naphthalene	16.99	11,172	37,165	0	0	4.462	11,172	30,926	0	0	13152	11,172	38,865	1	0
Phenanthrene	49.64	11,836	37,165	0	0	24.8	11,836	30,926	0	0	711	11,836	38,865	0	0
Pyrene	580.9	1,137	1,147	1	1	118.8	1,137	1,091	0	0	352.4	1,137	1,264	0	0
total Benzofluoranthenes	292.7	1,216	1,147	0	0	70.03	1,216	1,091	0	0	73.5	1,216	1,264	0	0
		F	II LPAHs =	0	0		F	II LPAHs =	0	0		ŀ	II LPAHs =	2	1
		Н	I HPAHs =	1	1		н	I HPAHs =	0	0		н	I HPAHs =	1	1

Table C-10. Hazards for Wildlife from PAHs

EPC - reasonable maximum exposure point concentration

SSL - soil screening level

HQ - hazard quotient and calculated as Soil EPC/SSL

HI = hazard index (i.e., sum of HQs)

Note: HQs and His were rounded to the nearest whole number and HQs > 1 suggest a potential hazard to wildlife

Table C-11. Hazards for Wildlife from Selenium in the Upper Area

Soil EPC	SSL_{shrew}	SSL_{vole}	SSL _{robin}	но	HQ _{shrew} HQ _{vole}	
(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	$\mathrm{HQ}_{\mathrm{shrew}}$	novole	ΠQ _{robin}
2	2.74	4.68	2.37	1	0	1

EPC - reasonable maximum exposure point concentration

SSL - soil screening level

HQ - hazard quotient and calculated as Soil EPC/SSL

Note: HQs and His were rounded to the nearest whole number and HQs > 1 suggest a potential hazard to wildlife

Table C-12. ProUCL Outlier Test for Naphthalene in Upper Area Soil Samples

Outlier Tests for Selected Variables

User Selected Options

From File WorkSheet.wst

Full Precision OFF

Test for Suspected Outliers with Dixon test 1

Test for Suspected Outliers with Rosner test 1

Rosner's Outlier Test for Naphthalene - Upper Exposure Area

Mean 1308 Standard Deviation 8651 Number of data 53

Number of suspected outliers 1

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value	value (5%)	value (1%)
1	1308	8569	63000	53	7.2	3.151	3.504

For 5% Significance Level, there is 1 Potential Outlier

Therefore, Observation 63000 is a Potential Statistical Outlier

For 1% Significance Level, there is 1 Potential Outlier Therefore, Observation 63000 is a Potential Statistical Outlier

ATTACHMENT C-1

Ecological Survey of the Uplands Portion of the SSSMGP Site

321 Summerland Road Bellingham, WA 98229

telephone: 360.319.0721 mherrenkohl@msn.com

MEMORANDUM

To:	Mark Herrenkohl, LEG
From:	Jeff Ninnemann, PWS, LG
Date:	August 31, 2011
Subject:	Terrestrial Ecological Field Survey of the SSSMGP Site
Project Name:	South State Street Manufactured Gas Plant Site, Bellingham, WA
Project No.:	HCL017

On behalf of Herrenkohl Consulting LLC, I visited the SSSMGP Site on July 28 and August 8, 2011 to gather field information in support of the terrestrial ecological evaluation (TEE) for the remedial investigation (RI). The purpose of the field survey is to help identify ecological receptors and exposure pathways by which receptors may be exposed to constituents present in soil at the Site. The following memorandum summarizes my findings.

Methods

Field methods followed those identified for the Site by Dana Houkal of Herrenkohl Consulting in a July 18 memorandum. The project site was divided into five major habitat types and included:

- <u>Turfgrass</u> large turfgrass areas are present in the upper and lower portions of the Site.
- <u>Shrub/tree landscape</u> landscaped areas consisting of planted shrubs and trees are present in the upper and lower portions of the Site.
- <u>Vegetated hillside</u> a steep hillside vegetated with native and exotic plants parallel the east side of the BNSF railroad.
- <u>Railroad bed</u> a railroad bed covered by ballast bisects the Site.
- <u>Covered areas</u> asphalt paths and structures are present on the Site.

These habitats were delimited on an aerial photograph for use in the field survey (Figure 1).

Intrusive soil sampling complied with the Site Health and Safety Plan presented in the Sampling and Analysis Plan (Herrenkohl and Landau 2010).

Steve Nordeen, a City of Bellingham Parks and Recreation Department representative was contacted to obtain information concerning redevelopment activities during the creation of Boulevard Park. Mr. Nordeen also described the current maintenance practices (e.g., irrigation, mowing regime, fertilization, pest control) as well as routine observations by Park staff on use of the Site by wildlife and incidences of wildlife morbidity/mortality.

Methods for Plant Survey

The plant survey consisted of Site walks to identify the dominant plant species in each of the major habitats (from Houkal 2011). The relative abundance of each dominant species was noted along with its native status (i.e., native versus exotic species). Relative abundance was recorded as an estimate of the 100% cover each species occupied per habitat type. Photos of the general vegetative characteristics of each habitat were collected using a digital camera (attached).

It is assumed that the rooting depth of shrubs and trees across much of the Site extends through the biological active zone [i.e., 0 to 6 foot depth per WAC 173-340-7490(4)(a)]. However, the rooting depth of turfgrass is considerably less. Turfgrass root depth was measured in the field at three locations on the upper portion of the Site and three locations on the lower portion of the Site. A large plastic bag was placed on the ground near each sample location. A 30-centimeter by 30-centimeter square mat of turfgrass was carefully removed from the sample location and placed on the plastic bag root-side down. Soil was then excavated to a depth of approximately 30 centimeters and placed on the plastic bag. The turfgrass root depth was measured on a clean sidewall of the excavation (i.e., a knife with an 8 to 10-inch blade was used to expose a clean sidewall) using a ruler, to measure to the nearest centimeter. Rooting depth was documented using a digital camera and the presence of soil invertebrates was noted. The excavation was refilled with the loose soil, followed by the turfgrass mat which was compacted to the surrounding turfgrass height by foot. Approximate sample locations were noted using a GPS and recorded on an aerial photograph (Figure 1).

Methods for Soil Biota Survey

A liquid extraction sampling technique was used to survey for the presence of earthworms at the Site (from Houkal 2011). Earthworms are particularly important as food-chain vectors of soil constituents to wildlife. The MTCA TEE process uses two wildlife receptors that forage on earthworms (i.e., shrew and robin) to develop soil cleanup levels protective of wildlife (MTCA Table 749-4).

Liquid extraction sampling was conducted using a non-toxic fumigant (an aqueous solution of dry mustard powder) following the methods described by Gunn (1992) and the University of Minnesota¹. Liquid extraction sampling does not require any intrusive soil activities. One-third of a cup of dry mustard powder was mixed into one gallon of tap water. To aid in visually locating emerging earthworms, turfgrass in the sample location was trimmed to a height of approximately 0.5 inch with a pair of hand shears. A 30centimeter by 30-centimeter area was wetted with the mustard solution. One-half gallon of mustard solution was applied to each plot and allowed to slowly percolate into the soil. From each sample area, emerging earthworms were counted and identified as being either night crawler (*Lumbricus terrestris*) or non-night crawler species.

Specific liquid extraction sample locations were determined in the field. Three locations were sampled in both the upper and lower portions of the Site. Samples were located in turfgrass areas. Zones of low or high soil moisture were not sampled because earthworms avoid these conditions. One sample from the upper and lower portions of the Site was located proximal to shrub or tree landscape plantings, because balled and burlapped ornamental shrub and tree plantings are likely sources of introduced earthworms. Approximate liquid extraction sample locations were located by GPS and noted on an aerial photograph. The soil biota sample plots were located adjacent to the turfgrass rooting depth sample locations.

The presence of other soil-dwelling arthropods was noted at each of the liquid extraction and turfgrass root depth sample locations. Arthropods were identified down to the family level and their relative abundance noted.

Methods for Wildlife Survey

A wildlife survey of the Site was performed coincidently while conducting the plant and soil biota surveys (from Houkal 2011). The species observed were noted along with their relative abundance and native status (i.e., native versus exotic). Wildlife signs (e.g., footprints, scat, nests, rodent runs, and mole mounds) were also noted.

Results

Discussions with Steve Nordeen were conducted on August 15, 2011. Mr. Nordeen indicated that the upper site is not irrigated and the lower site is irrigated four days every week during most of the summer and daily during the dries months of the summer. Mowing is conducted twice weekly. Fertilizer (21-4-17 30% CRN) is applied in the spring and fall. A minimal amount of Rodeo (Round-up Pro) herbicide is used at the site. Mr. Nordeen indicated that mostly birds are observed at the site, but an occasional harbor seal will also be spotted along the shoreline.

¹Available online at <u>http://www.nrri.umn.edu/worms/research/methods_worms.html</u>.

Plant Survey Results

The results for the habitat areas identified in Figure 1 are shown in the following tables (Tables 1 - 4). Pictures characteristic of the Turfgrass, Shrub/tree, Vegetated Hillside, and Railroad Bed habitats are shown in Figure 2. The Covered Area habitat had no vegetation, and is therefore not represented in a table. Root depth and soil characteristics and photos are shown in Table 5 and Figure 3.

Common Name	Latin Name	Layer	Location	Relative Abundance	Native Status
Silver Weed	Argentina egedii	Herb	Turfgrass	<u>≤</u> 1	Native
Perennial ryegrass	Lolium perenne	Herb	Turfgrass	<u><</u> 1	Intro
3-way Perennial ryegrass	Lolium perenne	Herb	Turfgrass	95	Intro
Pineapple weed	Matricaria disoidea	Herb	Turfgrass	<u>≤</u> 1	Intro
English plantain	Plantago laneolata	Herb	Turfgrass	<u>≤</u> 1	Intro
Common plantain	Plantago major	Herb	Turfgrass	≤1	Intro
Common dandelion	Taraxacum officinate	Herb	Turfgrass	<u>≤</u> 1	Intro
White clover	Trifolium repens	Herb	Turfgrass	≤1	Intro
Red maple	Acer rubrum	Tree	Turfgrass	≤1	Intro

Table 1. Turfgrass Habitat

Table 2. Shrub/Tree Habitat

Common Name	Latin Name	Layer	Location	Relative Abundance	Native Status
Yarrow	Achillea millefolium	Herb	Shrub Tree	≤1	Native
Colonial bentgrass	Agrostis capillaris	Herb	Shrub Tree	≤1	Intro
Lady fern	Athyrium filix-femina	Herb	Shrub Tree	2	Native
Lamb's quarters	Chenopodium album	Herb	Shrub Tree	≤1	Intro
Orchard grass	Dacttkus gkinerata	Herb	Shrub Tree	≤1	Intro
Fireweed	Epilobium angustifolium	Herb	Shrub Tree	≤1	Native
Field horsetail	Equisetum arvense	Herb	Shrub Tree	≤1	Native
Giant horsetail	Equisetum telmatiea	Herb	Shrub Tree	≤1	Native
Cleavers	Galium aparine	Herb	Shrub Tree	≤1	Native
Dovefoot geranium	Geranium molle	Herb	Shrub Tree	≤1	Intro
Ocean spray	Holodiscus discolor	Herb	Shrub Tree	≤1	Native
Wall Barley	Hordeum murinum	Herb	Shrub Tree	≤1	Intro
Soft rush	Juncus effusus	Herb	Shrub Tree	≤1	Native
Wall lettuce	Lactuca muralis	Herb	Shrub Tree	≤1	Intro
Oxeye daisy	Leucanthemum vulgare	Herb	Shrub Tree	≤1	Intro
Perennial ryegrass	Lolium perenne	Herb	Shrub Tree	≤1	Intro
Pineapple weed	Matricaria disoidea	Herb	Shrub Tree	≤1	Intro
American vetch	Vicia americana	Herb	Shrub Tree	≤1	Native
Five stemened mitrewort	Mitella pentandra	Herb	Shrub Tree	≤1	Native
English plantain	Plantago laneolata	Herb	Shrub Tree	≤1	Intro

Common Name	Latin Name	Layer	Location	Relative Abundance	Native Status
Common plantain	Plantago major	Herb	Shrub Tree	≤1	Intro
Creeping buttercup	Ranunculus repens	Herb	Shrub Tree	≤1	Intro
Sheep sorrel	Rumex acetosella	Herb	Shrub Tree	≤1	Intro
Common tansy	Tanacetum vulgare	Herb	Shrub Tree	2	Intro
Common dandelion	Taraxacum officinate	Herb	Shrub Tree	2	Intro
Fringecup	Tellima grandiflora	Herb	Shrub Tree	≤1	Native
Field pennycress	Thlaspi arvense	Herb	Shrub Tree	≤1	Intro
White clover	Trifolium repens	Herb	Shrub Tree	≤1	Intro
Redosier dogwood	Cornus sericea	Shrub	Shrub Tree	3	Native
Salal	Gaultheria shallon	Shrub	Shrub Tree	2	Native
Tall Oregon grape	Mahonia aquifolium	Shrub	Shrub Tree	2	Native
Dwarf Oregon grape	Mahonia nervosa	Shrub	Shrub Tree	2	Native
Indian plum	Oemleria cerasiformis	Shrub	Shrub Tree	2	Native
Sword fern	Polystichum munitum	Shrub	Shrub Tree	2	Native
Sumac	Rhus	Shrub	Shrub Tree	2	Intro
Nootka rose	Rosa nutkana	Shrub	Shrub Tree	2	Native
Himalayan blackberry	Rubus armeniacus	Shrub	Shrub Tree	≤1	Intro
Elderberry	Sambucus racemosa	Shrub	Shrub Tree	≤1	Native
Hardhack	Spiraea douglasii	Shrub	Shrub Tree	2	Native
Snowberry	Symphoricarpos albus	Shrub	Shrub Tree	2	Native
exotic rody	rhododendron	Shrub	Shrub Tree	≤1	Intro
Big leaf maple	Acer macrophyllum	Tree	Shrub Tree	15	Native
Sycamore Maple	Acer pseudoplatanus	Tree	Shrub Tree	5	Intro
Norway Maple	Acer platanoides	Tree	Shrub Tree	5	Intro
Red Alder	Alnus Rubra	Tree	Shrub Tree	5	Native
Paper birch	Betula papyrifera	Tree	Shrub Tree	5	Native
Gary Oak	Quercus garryana	Tree	Shrub Tree	≤1	Native
Scouler's willow	Salix scouleriana	Tree	Shrub Tree	2	Native
American elm	Ulmus americana	Tree	Shrub Tree	2	Intro
Crab Apple	Pyrus fusca	Tree	Shrub Tree	≤1	Native
Old man's beard	Clematis vitalba	Vine	Shrub Tree	15	Intro
English ivy	Hedera helix	Vine	Shrub Tree	2	Intro
Nightshade	Solanum dulcamara	Vine	Shrub Tree	≤1	Intro

Table 2. Shrub/Tree Habitat (Continued)

Common Name	Latin Name	Layer	Location	Relative Abundance	Native Status
Yarrow	Achillea millefolium	Herb	Vegetated Hillslope	5	Native
Lady fern	Athyrium filix-femina	Herb	Vegetated Hillslope	≤1	Native
Bull thistles	Cirsium vulgare	Herb	Vegetated Hillslope	≤1	Intro
Field Bindweed	Convolvulus arvensis	Herb	Vegetated Hillslope	≤1	Intro
Orchard grass	Dacttkus gkinerata	Herb	Vegetated Hillslope	≤1	Intro
Fox glove	Digitalis purpurea	Herb	Vegetated Hillslope	≤1	Native
Fireweed	Epilobium angustifolium	Herb	Vegetated Hillslope	≤1	Native
California Poppy	Eschscholzia californica	Herb	Vegetated Hillslope	≤1	Intro
Cleavers	Galium aparine	Herb	Vegetated Hillslope	≤1	Native
Bedstraw	Galium triflorum	Herb	Vegetated Hillslope	2	Native
Dovefoot geranium	Geranium molle	Herb	Vegetated Hillslope	≤1	Native
White/Purple Dame's Rocket	Hesperis matronalis	Herb	Vegetated Hillslope	≤1	Intro
Velvet grass	Holcus lanatus	Herb	Vegetated Hillslope	≤1	Intro
Wall Barley	Hordeum murinum	Herb	Vegetated Hillslope	≤1	Intro
Wall Lettuce	Lactuca muralis	Herb	Vegetated Hillslope	<u>≤</u> 1	Intro
Oxeye daisy	Leucanthemum vulgare	Herb	Vegetated Hillslope	≤1	Intro
Perennial ryegrass	Lolium perenne	Herb	Vegetated Hillslope	≤1	Intro
Pineapple weed	Matricaria disoidea	Herb	Vegetated Hillslope	≤1	Intro
American vetch	Micia americana	Herb	Vegetated Hillslope	5	Native
Forget-me-nots	Myosotis laxa	Herb	Vegetated Hillslope	2	Intro
English plantain	Plantago laneolata	Herb	Vegetated Hillslope	2	Intro
Common plantain	Plantago major	Herb	Vegetated Hillslope	2	Intro
Sword fern	Polystichum munitum	Herb	Vegetated Hillslope	2	Native
Bracken fern	Pteridium aquilinum	Herb	Vegetated Hillslope	<u>≤1</u>	Native
Sheep sorrel	Rumex acetosella	Herb	Vegetated Hillslope	2	Intro
Curled dock	Rumex crispus	Herb	Vegetated Hillslope	≤1	Intro
Dock	Rumex occidentalis	Herb	Vegetated Hillslope	≤1	Native
Common Tansy	Tanacetum vulgare	Herb	Vegetated Hillslope	3	Intro
Common dandelion	Taraxacum officinate	Herb	Vegetated Hillslope	3	Intro
Field Pennycress	Thlaspi arvense	Herb	Vegetated Hillslope	3	Intro
White clover	Trifolium repens	Herb	Vegetated Hillslope	3	Intro
Stinging Nettles	Urtica dioica	Herb	Vegetated Hillslope	2	Native

Table 3. Vegetated Hillside Habitat

Common Name	Latin Name	Layer	Location	Relative Abundance	Native Status
Scotch broom	Cytisus scoparius	Shrub	Vegetated Hillslope	≤1	Intro
Ocean spray	Holodiscus discolor	Shrub	Vegetated Hillslope	5	Native
Indian plum	Oemleria cerasiformis	Shrub	Vegetated Hillslope	≤1	Native
Sumac	Rhus	Shrub	Vegetated Hillslope	≤1	Intro
Himalayan blackberry	Rubus armeniacus	Shrub	Vegetated Hillslope	20	Intro
Thimbleberry	Rubus parviflorus	Shrub	Vegetated Hillslope	≤1	Native
Elderberry	Sambucus racemosa	Shrub	Vegetated Hillslope	≤1	Native
Snowberry	Symphoricarpos albus	Shrub	Vegetated Hillslope	3	Native
Big leaf maple	Acer macrophyllum	Tree	Vegetated Hillslope	20	Native
Red Alder	Alnus Rubra	Tree	Vegetated Hillslope	5	Native
Shore Pine	Pinus controrta	Tree	Vegetated Hillslope	10	Native
Douglas Fir	Pseudotsuga menziesii	Tree	Vegetated Hillslope	10	Native
American elm	Ulmus americana	Tree	Vegetated Hillslope	40	Intro
Old man's beard	Clematis vitalba	Vine	Vegetated Hillslope	20	Intro
English ivy	Hedera helix	Vine	Vegetated Hillslope	20	Intro
Nightshade	Solanum dulcamara	Vine	Vegetated Hillslope	2	Intro

 Table 3. Vegetated Hillside Habitat (Continued)

Table 4. Railroad Bed Habitat

Common Name	Latin Name	Layer	Location	Relative Abundance	Native Status
Yarrow	Achillea millefolium	Herb	Railroad Bed	2	Native
Colonial bentgrass	Agrostis capillaris	Herb	Railroad Bed	2	Intro
Pearly Everlasting	Anaphalis margaritacea	Herb	Railroad Bed	≤1	Native
Burdock	Artium minus	Herb	Railroad Bed	≤1	Native
Butterfly bush	Buddleja davidii	Herb	Railroad Bed	≤1	Native
Lamb's quarters	Chenopodium album	Herb	Railroad Bed	≤1	Intro
Bull thistles	Cirsium vulgare	Herb	Railroad Bed	2	Intro
Fireweed	Epilobium angustifolium	Herb	Railroad Bed	5	Native
Field horsetail	Equisetum arvense	Herb	Railroad Bed	2	Native
Giant horsetail	Equisetum telmatiea	Herb	Railroad Bed	2	Native
Dovefoot geranium	Geranium molle	Herb	Railroad Bed	2	Intro
Velvet grass	Holcus lanatus	Herb	Railroad Bed	5	Intro
Wall Barley	Hordeum murinum	Herb	Railroad Bed	≤1	Intro
Wall Lettuce	Lactuca muralis	Herb	Railroad Bed	≤1	Intro

Common Name	Latin Name	Layer	Location	Relative Abundance	Native Status
Oxeye daisy	Leucanthemum vulgare	Herb	Railroad Bed	≤1	Intro
Perennial ryegrass	Lolium perenne	Herb	Railroad Bed	3	Intro
Pineapple weed	Matricaria disoidea	Herb	Railroad Bed	≤1	Intro
American vetch	Micia americana	Herb	Railroad Bed	2	Native
Forget-me-nots	Myosotis laxa	Herb	Railroad Bed	≤1	Intro
English plantain	Plantago laneolata	Herb	Railroad Bed	≤1	Intro
Common plantain	Plantago major	Herb	Railroad Bed	≤1	Intro
Sheep sorrel	Rumex acetosella	Herb	Railroad Bed	≤1	Intro
Common Tansy	Tanacetum vulgare	Herb	Railroad Bed	3	Intro
Common dandelion	Taraxacum officinate	Herb	Railroad Bed	3	Intro
White clover	Trifolium repens	Herb	Railroad Bed	≤1	Intro
Stinging Nettles	Urtica dioica	Herb	Railroad Bed	2	Native
Mullein	Verbascum thapsus	Herb	Railroad Bed	≤1	Intro
European beach grass	Ammophila arenaria	Herb	Railroad Bed	≤1	Intro
Red Alder	Alnus Rubra	Shrub	Railroad Bed	2	Native
English Holly	Ilex aquifolium	Shrub	Railroad Bed	≤1	Intro
Himalayan blackberry	Rubus armeniacus	Shrub	Railroad Bed	3	Intro
Trailing Blackberry	Rubus ursinus	Shrub	Railroad Bed	≤1	Native
Old man's beard	Clematis vitalba	Vine	Railroad Bed	5	Intro
Nightshade	Solanum dulcamara	Vine	Railroad Bed	≤1	Intro

Table 4. Railroad Bed Habitat (Continued)

Soil Plot Id	Longitude (West)	Latitude (North)	Root Depth	Site Location	Soil Observation
			(cm)		
1	122°30'3.221"	48°43'56.924"	15	Lower	Silty Loam with Gravel
2	122°30'3.455"	48°43'57.972"	8	Lower	Hard packed Sandy loam with Gravels
3	122°30'4.607"	48°43'58.038"	21	Lower	Silty Loam
4	122°29'59.559"	48°43'56.623"	12	Upper	Silty Loam with Gravel, very compact
5	122°29'57.857"	48°43'58.14"	9	Upper	top 6 cm Silty Loam, below 6 cm was gravel, refusal at 18 cm
6	122°30'0.693"	48°43'56.144"	8	Upper	Silty Loam with Gravel, very compact

Soil Biota Results

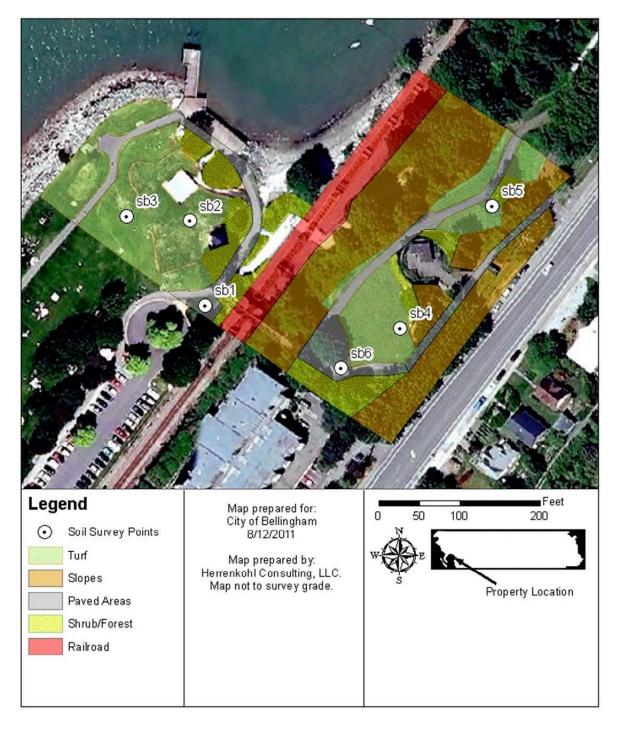
Table 6.	Soil Biota					
Soil Plot Id	Longitude (West)	Latitude (North)	Site Location	Night crawlers	Other worms	Arthopods
1	122°30'3.2 21"	48°43'56. 924"	Lower	6	0	1-beetle escaped 1-Coleoptera Carobidae
2	122°30'3.4 55"	48°43'57. 972"	Lower	3	0	0
3	122°30'4.6 07"	48°43'58. 038"	Lower	13	3	1-Coleoptera Carobidae
4	122°29'59. 559"	48°43'56. 623"	Upper	2	0	2-Coleoptera Staphylinidae 1-Julia Parajulidae 1-Coleoptera Carobidae
5	122°29'57. 857"	48°43'58. 14"	Upper	11	4	1-beetle escaped
6	122°30'0.6 93"	48°43'56. 144"	Upper	2	0	3-Coleoptera Staphylinidae

The results for the soil biota survey are shown in the following table.

Wildlife Survey Results

During my site visits several animals were observed using the Site including the following:

- Two Garter snakes (*Thamnophis sp.*) near the Railroad Bed area.
- Bees (Honey, Wasps, Yellow Jackets) throughout the Site.
- A mating pair of White-crested Sparrows (Zonotrichia leucophrys) perching near the walking bridge at the upper portion of Site.
- One American crow (*Corvus brachyrhynchos*) flying and perching in lower portion of Site.
- Multiple Glaucous Gulls (*Larus hyperboreus*) perched near pier, along shore, flying overhead, on water, etc.
- Four Canadian geese (Branta Canadensis) floating offshore.
- Dragon flies.
- Domestic dogs with owners.
- Possibly a river otter observed (*Lutra Canadensis*).
- Harbor seal sightings as reported by Park employees.
- A Black-capped Chickadee (*Poecile atricapillus*) was heard in the trees of the upper park giving an alert call.


References

Gunn, A. 1992. The use of mustard to estimate earthworm populations. Pedobiologia 36: 65-67.

Herrenkohl Consulting LLC and Landau Associated Inc. 2010. Work Plan, South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study. Prepared for the City of Bellingham, Parks & Recreation Dept., Bellingham, WA.

Houkal, Dana. 2011. Methodology for Conducting a Terrestrial Ecological Field Survey of the SSSMGP Site. Memorandum. July 18, 2011.

Knoke, Don 2004. "Vascular Plant List Whatcom County" Washington Native Plant Society, http://www.wnps.org/plant_lists/counties/whatcom/whatcom_county.html

Figure 2. Photos for the Turfgrass, Shrub/tree, Vegetated Hillside, Railroad Bed habitat

Turfgrass habitat type lower Site

Turfgrass habitat type upper Site

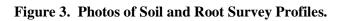
Hillslope habitat type upper Site near State Street

Hillslope habitat type upper Site near State Street

Hillslope habitat type between upper and lower Site

Shrub/Tree habitat type lower Site

Shrub/Tree habitat type upper Site



Railroad bed looking west.

Railroad bed looking east.

Soil Profile #1

Soil Profile #2

Soil Profile #3 📓

Soil Profile #4

Soil Profile #5

Soil Profile #6

ATTACHMENT C-2

ProUCL Output Files – Site Soil UCLs

Attachment C-2. ProUCL Output Files - Site Soil UCLs

From File: C:\Users\admin\Desktop\SSSMGP soil data 1-100.wst

Summary Statistics for Raw Data Sets with NDs using Detected Data Only

Constituent #	Constituent Name	Raw Statistics using Detected Observations												
		Num Ds	NumNDs	% NDs	Minimum		Mean	Median	SD	MAD/0.675	Skewness	CV	UCL	EPC
1	1,1,1,2-Tetrachloroethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2	1,1,1-Trichloroethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3	1,1,2,2-Tetrachloroethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4	1,1,2-Trichloro-1,2,2-trifluoroethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
5	1,1,2-Trichloroethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6	1,1-Dichloroethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
7	1,1-Dichloroethene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
8	1,1-Dichloropropene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
9	1,2,3-Trichlorobenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
10	1,2,3-Trichloropropane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
11	1,2,4-Trichlorobenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
12	1,2,4-Trimethylbenzene	5	2	28.57%	0.012	120	45.93	37	51	53.91	0.734	1.11	70.14	70.14
13	1,2-Dibromo-3-chloropropane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
14	1,2-Dichlorobenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
15	1,2-Dichloroethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
16	1,2-Dichloropropane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
17	1,3,5-Trimethylbenzene	3	4	57.14%	0.0035	52	17.41	0.24	29.95	0.351	1.732	1.72	123.6	52
18	1,3-Dichlorobenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
19	1,3-Dichloropropane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
20	1,4-Dichlorobenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
21	1-Methylnaphthalene	73	19	20.65%	0.0052	7500	122.9	0.07	885.1	0.093	8.284	7.205	611.9	611.9
22	2,2-Dichloropropane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
23	2,2'-Oxybis(1-Chloropropane)	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
24	2,4,5-Trichlorophenol	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
25	2,4,6-Trichlorophenol	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
26	2,4-Dichlorophenol	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
27	2,4-Dimethylphenol	1	6	85.71%	81	81	81	81	N/A	0	N/A	N/A	N/A	81
28	2,4-Dinitrophenol	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
29	2,4-Dinitrotoluene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
30	2,6-Dinitrotoluene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
31	2-Butanone	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
32	2-Chloroethylvinylether	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
33	2-Chloronaphthalene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
34	2-Chlorophenol	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
35	2-Chlorotoluene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
36	2-Hexanone	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
37	2-Methylnaphthalene	80	12	13.04%	0.0054	13000	190.1	0.0765	1462	0.0956	8.746	7.691	1054	1054
	2-Methylphenol	1	6	85.71%	86	86	86	86	N/A	0	N/A	N/A	N/A	86
	2-Nitroaniline	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	2-Nitrophenol	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	3,3'-Dichlorobenzidine	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	3-Nitroaniline	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	4,6-Dinitro-2-Methylphenol	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
44	4-Bromophenyl-phenylether	0	/			IN/A				IN/A				

		-												
46	4-Chloroaniline	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
47	4-Chlorophenyl-phenylether	•	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
48	4-Chlorotoluene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
49	4-Isopropyltoluene	, v	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
50	4-Methyl-2-Pentanone (MIBK)	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
51	4-Methylphenol	1	6	85.71%	210	210	210	210	N/A	0	N/A	N/A	N/A	210
52	4-Nitroaniline	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
53	4-Nitrophenol	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
54	Acenaphthene	43	49	53.26%	0.0044	250	8.659	0.063	40.02	0.0845	5.664	4.622	22.09	22.09
55	Acenaphthylene	84	8	8.70%	0.0053	2600	43.73	0.135	291.7	0.173	8.419	6.67	221.6	221.6
56	Acetone	2	5	71.43%	0.04	0.066	0.053	0.053	0.0184	0.0193	N/A	0.347	0.0783	0.066
57	Acrolein	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
58	Acrylonitrile	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
59	Anthracene	75	17	18.48%	0.0059	1000	22.34	0.29	123.3	0.415	7.285	5.52	90.92	90.92
60	Antimony	4	87	95.60%	0.2	1.9	0.9	0.75	0.726	0.519	1.099	0.806	0.27	0.27
61	Aroclor 1016	0	2	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
62	Aroclor 1221	0	2	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
63	Aroclor 1232	0	2	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
64	Aroclor 1242	0	2	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
65	Aroclor 1248	0	2	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
66	Aroclor 1254	0	2	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
67	Aroclor 1260	0	2	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
68	Arsenic	90	1	1.10%	2.1	33.6	5.764	4.35	4.574	1.26	3.632	0.793	6.573	6.573
69	Barium	98	0	0.00%	0.049	724	177.3	138.5	143.6	75.02	2.142	0.81	240.6	240.6
70	Benzo(a)anthracene	99	5	4.81%	0.0075	650	20.87	0.44	90.2	0.632	6.077	4.321	73.83	73.83
71	Benzo(a)pyrene	100	4	3.85%	0.0028	810	22.25	0.645	94.41	0.926	6.905	4.242	78.15	78.15
72	Benzo(g,h,i)perylene	89	3	3.26%	0.007	360	10.06	0.48	40.18	0.692	7.789	3.996	35.49	35.49
73	Benzoic Acid	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
74	Benzyl Alcohol	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
75	bis(2-Chloroethoxy) Methane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
76	Bis-(2-Chloroethyl) Ether	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
77	bis(2-Ethylhexyl)phthalate	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
78	Bromobenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
79	Bromochloromethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
80	Bromodichloromethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
81	Bromoethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
82	Bromoform	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
83	Bromomethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
84	Butylbenzylphthalate	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
85	Cadmium	53	45	45.92%	0.2	70	1.758	0.3	9.568	0.148	7.249	5.441	2.239	2.239
86	Carbon Disulfide	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
87	Carbon Tetrachloride	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
88	Chlorobenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
89	Chloroethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
90	Chloroform	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
91	Chloromethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
92	Chromium	90	1	1.10%	9	63	29.84	27	10.26	7.413	0.772	0.344	31.52	31.52
93	Chrysene	101	3	2.88%	0.0033	670	20.62	0.44	87.7	0.629	6.211	4.253	72.99	72.99
94	cis-1,2-Dichloroethene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	cis-1,3-Dichloropropene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
95														

97	Cyanide	9	4	30.77%	0.125	76.4	13.17	1.46	24.91	1.979	2.53	1.891	20.15	20.15
97	Dibenz(a,h)anthracene	9 84	20	19.23%	0.0029	83	2.707	0.19	9.703	0.264	7.146	3.585	7.567	7.567
99	Dibenzofuran	51	41	44.57%	0.0023	280	8.535	0.084	41.24	0.204	6.152	4.831	24.92	24.92
100	Dibromochloromethane	0	7	100.00%	N/A	N/A	N/A	N/A	41.24 N/A	N/A	N/A	4.831 N/A	N/A	N/A
100	Dibromomethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
101	Diesel Range Organics	7	0	0.00%	41	1200	473	510	422	578.2	0.741	0.892	783	783
102	Diethylphthalate	0	7	100.00%	41 N/A	N/A	473 N/A	N/A	422 N/A	N/A	N/A	0.892 N/A	785 N/A	N/A
103	Direthylphthalate	0	7	100.00%	N/A	N/A N/A	N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A
104	Di-n-Butylphthalate	0	7	100.00%	N/A	N/A N/A	N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A
105	Di-n-Octyl phthalate	0	7	100.00%	N/A	N/A N/A	N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A N/A
100		6			0.0075			14	61.38	17.49	1.032	1.304	138.6	138.6
107	Ethylbenzene	0	1 7	14.29% 100.00%	0.0075 N/A	140 N/A	47.07		N/A	N/A	N/A	N/A	N/A	N/A
	Ethylene Dibromide	90	2				N/A	N/A 1						
109	Fluoranthene	90 63		2.17%	0.013	960	37.01		150.4	1.445	5.502	4.064	133.1	133.1
110	Fluorene	6	29	31.52%	0.0049	1400	31.83	0.104	184.2	0.139	7.015	5.787	121.5	121.5
111	Gasoline Range Organics		1	14.29%	28	15000	6846	5450	6765	7948	0.445	0.988	10857	10857
112	Hexachlorobenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
113	Hexachlorobutadiene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
114	Hexachlorocyclopentadiene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
115	Hexachloroethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
116	Indeno(1,2,3-cd)pyrene	99	5	4.81%	0.0061	330	8.431	0.4	35.24	0.574	8.079	4.18	29.11	29.11
117	Isophorone	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
118	Isopropylbenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
119	Lead	91	0	0.00%	3	747	72.34	35	118.1	29.65	3.563	1.632	91.23	91.23
120	Lube Oil	7	0	0.00%	69	1300	481.3	280	474.1	266.9	1.114	0.985	829.5	829.5
121	m, p-Xylene	6	1	14.29%	0.017	220	90.92	62	96.46	90.8	0.646	1.061	148.3	148.3
122	Mercury	89	2	2.20%	0.03	1.37	0.162	0.09	0.225	0.0593	3.298	1.39	0.202	0.202
123	Methyl Iodide	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
124	Methyl tert-Butyl Ether	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
125	Methylene Chloride	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
126	Naphthalene	82	10	10.87%	0.0088	63000	846.6	0.185	6960	0.236	9.011	8.221	5036	5036
127	n-Butylbenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
128	Nitrobenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
129	N-Nitroso-Di-N-Propylamine	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
130	N-Nitrosodiphenylamine	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
131	n-Propylbenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
132	o-Xylene	6	1	14.29%	0.014	91	38.85	31.5	38.3	45.88	0.468	0.986	61.55	61.55
133	Pentachlorophenol	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
134	Phenanthrene	90	2	2.17%	0.01	2900	60.06	0.61	347.6	0.859	7.262	5.788	282.7	282.7
135	Phenol	1	6	85.71%	270	270	270	270	N/A	0	N/A	N/A	N/A	N/A
136	Pyrene	90	2	2.17%	0.017	1400	54.42	1.3	224	1.858	5.449	4.117	197.6	197.6
137	sec-Butylbenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
138	Selenium	1	90	98.90%	2	2	2	2	N/A	0	N/A	N/A	N/A	2
139	Silver	4	87	95.60%	0.2	0.4	0.3	0.3	0.0816	0.0741	2.13E-15	0.272	0.21	0.21
140	Styrene	1	6	85.71%	150	150	150	150	N/A	0	N/A	N/A	N/A	150
141	TEQ cPAH	102	2	1.92%	0.000313	1016	27.86	0.693	117	0.995	6.982	4.198	98.3	98.3
142	tert-Butylbenzene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
143	Tetrachloroethene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
144	Toluene	7	0	0.00%	0.0047	220	58.19	39	78.71	57.41	1.746	1.353	795.1	220
145	Total Benzofluoranthenes	101	3	2.88%	0.0028	930	22.86	0.97	99.51	1.4	7.985	4.354	82.3	82.3
146	Total Xylenes	6	1	14.29%	0.031	311	129.8	93.5	134.6	136.7	0.597	1.037	209.8	209.8
147	trans-1,2-Dichloroethene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

148	trans-1,3-Dichloropropene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
149	trans-1,4-Dichloro-2-butene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
150	Trichloroethene	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
151	Trichlorofluoromethane	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
152	Vinyl Acetate	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
153	Vinyl Chloride	0	7	100.00%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
154	Weak Acid Dissoc. Cyanide	5	8	61.54%	0.14	7.6	2.258	0.59	3.182	0.667	1.671	1.409	2.084	2.084
155	Zinc	90	1	1.10%	33	430	90.97	77.5	58.67	22.98	3.469	0.645	101.4	101.4

Notes:

Num Ds - number of samples with detected values

Num NDs - number of samples with nondetected values

% NDs - percent of samples with nondetected values

Minimum - minimum detected value (mg/kg)

Maximum - maximum detected value (mg/kg)

Mean - mean concentrations (mg/kg)

Median - median concentration (mg/kg)

SD - standard deviation (mg/kg)

MAD/0.675 - mean absolute deviation divided by 0.675 (a robust estimate of variability)

Skewness - skewness statistic

CV - coefficient of variation (mg/kg)

UCL - 95 percent upper confidence limit (mg/kg); obtained from ProUCL UCL calculations shown below

EPC - reasonable maximum exposure point concentration (mg/kg); lesser of maximum detected value and UCL

General UCL	. Statistics for	Data Sets with	Non-Detects
-------------	------------------	----------------	-------------

User Selected Options	
From File	C:\Users\admin\Desktop\SSSMGP soil data 1-100.wst
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

General Statistics

Number of Valid Data	7	Number of Detected Data	0
Number of Distinct Detected Data	0	Number of Non-Detect Data	7
		Percent Non-Detects	100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 1 was not processed!

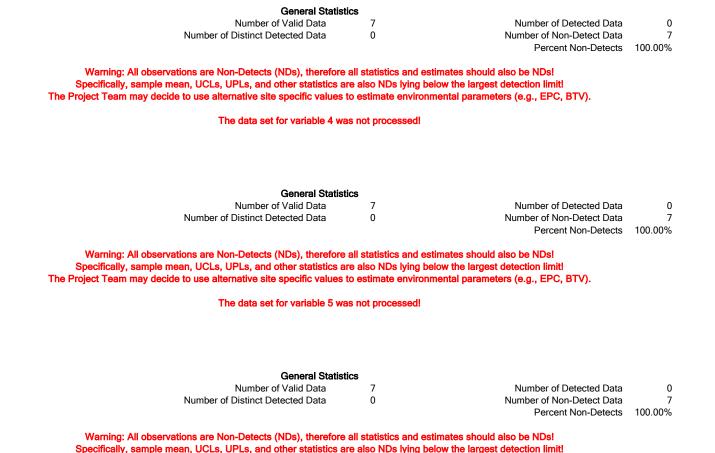
Conorol Statistics

1

	5		
Number of Valid Data	7	Number of Detected Data	0
Number of Distinct Detected Data	0	Number of Non-Detect Data	7
		Percent Non-Detects	100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 2 was not processed!


General Statistics	
Number of Valid Date	7

Gonoral otation			
Number of Valid Data	7	Number of Detected Data	0
Distinct Detected Data	0	Number of Non-Detect Data	7
		Percent Non-Detects	100.00%

Number of D

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 3 was not processed!

5

6

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 6 was not processed!

Number of Valid Data Number of Distinct Detected Data	2 5 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	(- 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are The Project Team may decide to use alternative site specific values to	e also NDs lying be	low the largest detection limit!	
The data set for variable 7 was	not processed!		
General Statistic Number of Valid Data		Number of Detected Data	
Number of Distinct Detected Data	7 0	Number of Non-Detected Data Number of Non-Detect Data Percent Non-Detects	-
		Percent Non-Delects	100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are The Project Team may decide to use alternative site specific values to	e also NDs lying be	imates should also be NDs! low the largest detection limit!	100.00%
Specifically, sample mean, UCLs, UPLs, and other statistics are	e also NDs lying be o estimate environm	imates should also be NDs! low the largest detection limit!	100.009
Specifically, sample mean, UCLs, UPLs, and other statistics are The Project Team may decide to use alternative site specific values to	e also NDs lying bei o estimate environn s not processed!	imates should also be NDs! low the largest detection limit!	100.009
Specifically, sample mean, UCLs, UPLs, and other statistics and The Project Team may decide to use alternative site specific values to The data set for variable 8 was	e also NDs lying bei o estimate environn s not processed!	imates should also be NDs! low the largest detection limit!	100.00%

The data set for variable 9 was not processed!

0
7
100.00%

General Statistics

Number of Valid Data Number of Distinct Detected Data

Number of Valid Data

Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

7 0

7

0

The data set for variable 10 was not processed!

1

Number of Detected Data 0 Number of Non-Detect Data 7 Percent Non-Detects 100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

General Statistics

The data set for variable 11 was not processed!

7 5	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	5 2 28.57%
	Log-transformed Statistics	
12	Minimum Detected	-4.423
20	Maximum Detected	4.787
93	Mean of Detected	1.561
51	SD of Detected	3.931
18	Minimum Non-Detect	-6.32
53	Maximum Non-Detect	3.97
	Number treated as Non-Detect	5
	Number treated as Detected	2
	Single DL Non-Detect Percentage	71.43%

Number of Valid Data

General Statistics

Number of Distinct Detected Data

Raw Statistics

Minimum Detected	0.012
Maximum Detected	120
Mean of Detected	45.93
SD of Detected	51
Minimum Non-Detect	0.0018
Maximum Non-Detect	53

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

UCL Statistics

Normal Distribution Test with Detected Values Only		
Shapiro Wilk Test Statistic	0.904	

5% Shapiro Wilk Critical Value	0.762
Shapiro Wilk Test Statistic	0.904

Data appear Normal at 5% Significance Level

DL/2 Substitution Method	
Mean	36.59
SD	45.24
95% DL/2 (t) UCL	69.82

Maximum Likelihood Estimate(MLE) Method N/A
MLE method failed to converge properly

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic	0.853
5% Shapiro Wilk Critical Value	0.762

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	0.581
SD	4.683
95% H-Stat (DL/2) UCL	6.24E+17

Log ROS Method

Mean in Log Scale	-0.074
SD in Log Scale	4.46

- Mean in Original Scale 32.83
 - SD in Original Scale 47.27
 - 95% t UCL 67.55
- 95% Percentile Bootstrap UCL 61.85
 - 95% BCA Bootstrap UCL 67.09
 - 95% H-UCL 7.75E+15

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

Gamma Distribution Test with Detected values Only	
k star (bias corrected)	0.255
Theta Star	180.2
nu star	2.548
A-D Test Statistic	0.408
5% A-D Critical Value	0.739
K-S Test Statistic	0.739
5% K-S Critical Value	0.38
Data appear Gamma Distributed at 5% Significance Level	
Assuming Gamma Distribution	
Gamma ROS Statistics using Extrapolated Data	
Minimum	0.012
Maximum	120
Mean	33.63
Median	4.397
SD	46.65
k star	0.277
Theta star	121.3
Nu star	3.88
AppChi2	0.675
95% Gamma Approximate UCL (Use when n >= 40)	193.4
95% Adjusted Gamma UCL (Use when n < 40)	353.2
Note: DL/2 is not a recommended method.	

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	34.15
SD	43.31
SE of Mean	18.52
95% KM (t) UCL	70.14
95% KM (z) UCL	64.62
95% KM (jackknife) UCL	69.17
95% KM (bootstrap t) UCL	85.93
95% KM (BCA) UCL	72.09
95% KM (Percentile Bootstrap) UCL	68.58
95% KM (Chebyshev) UCL	114.9
97.5% KM (Chebyshev) UCL	149.8
99% KM (Chebyshev) UCL	218.4
Potential UCLs to Use	
95% KM (t) UCL	70.14
95% KM (Percentile Bootstrap) UCL	68.58

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

cs 7 0	Number of Detected Data Number of Non-Detect Data	07
	Percent Non-Detects	100.00%
e also NDs lying bel	ow the largest detection limit!	
as not processed!		
		,
		(
0	Percent Non-Detect Data	ر 100.00%
e also NDs lying bel o estimate environm	ow the largest detection limit!	
cs		
7	Number of Detected Data	
	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
	0 all statistics and estive also NDs lying bel to estimate environment as not processed! ics 7 0 all statistics and estive re also NDs lying bel	7 Number of Detected Data 0 Number of Non-Detect Data Percent Non-Detects Percent Non-Detects all statistics and estimates should also be NDs! Percent Non-Detects re also NDs lying below the largest detection limit! Percent Non-Detects to estimate environmental parameters (e.g., EPC, BTV). Percent Non-Detected Data as not processed! Number of Detected Data 0 Number of Non-Detect Data Percent Non-Detects Percent Non-Detects all statistics and estimates should also be NDs! Percent Non-Detects all statistics and estimates should also be NDs! Percent Non-Detects

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 15 was not processed!

14

Number of Detected Data	0
Number of Non-Detect Data	7
Percent Non-Detects	100.00%

General Statistics

7

0

Number of Valid Data Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 16 was not processed!

Number of Detected Data Number of Non-Detect Data Percent Non-Detects	3 4 57.14%
Log-transformed Statistics	
Minimum Detected	-5.655
Maximum Detected	3.951
Mean of Detected	-1.044
SD of Detected	4.815
Minimum Non-Detect	-6.32
Maximum Non-Detect	4.025

Note: Data have multiple DLs - Use of KM Method is recommended	Number treated as Non-Detect	7
For all methods (except KM, DL/2, and ROS Methods),	Number treated as Detected	0
Observations < Largest ND are treated as NDs	Single DL Non-Detect Percentage	100.00%

Warning: There are only 3 Distinct Detected Values in this data set

General Statistics

7

3

0.0035

17.41

29.95

0.0018

52

56

Number of Valid Data

Minimum Detected

Maximum Detected

Maximum Non-Detect

DL/2 Substitution Method

Maximum Likelihood Estimate(MLE) Method

MLE method failed to converge properly

95% DL/2 (t) UCL

Mean of Detected

SD of Detected Minimum Non-Detect

Number of Distinct Detected Data

Raw Statistics

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods. However, results obtained using 4 to 9 distinct values may not be reliable. It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

> Mean SD

UCL Statist	ics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values On	ly
Shapiro Wilk Test Statistic	0.753	Shapiro Wilk Test Statistic	0.995
5% Shapiro Wilk Critical Value	0.767	5% Shapiro Wilk Critical Value	0.767
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	

16.46

19.85

31.05

N/A

Assuming	Lognormal	Distribution
----------	-----------	--------------

DL/2 Substitution Method	
Mean	-0.199
SD	4.564
95% H-Stat (DL/2) UCL	3.79E+16
Log ROS Method	
Mean in Log Scale	-4.14
SD in Log Scale	4.701
Mean in Original Scale	7.468
SD in Original Scale	19.64
95% t UCL	21.89
95% Percentile Bootstrap UCL	22.29
95% BCA Bootstrap UCL	29.75
95% H-UCL	7.63E+15

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

- N/A k star (bias corrected) Theta Star N/A
 - nu star N/A
 - A-D Test Statistic N/A
- 5% A-D Critical Value N/A
 - K-S Test Statistic N/A
- 5% K-S Critical Value N/A

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	N/A
Maximum	N/A
Mean	N/A
Median	N/A
SD	N/A
k star	N/A
Theta star	N/A
Nu star	N/A
AppChi2	N/A
95% Gamma Approximate UCL (Use when n >= 40)	N/A
95% Adjusted Gamma UCL (Use when n < 40)	N/A

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	10.47
SD	20.77
SE of Mean	11.37
95% KM (t) UCL	32.57
95% KM (z) UCL	29.18
95% KM (jackknife) UCL	31.31
95% KM (bootstrap t) UCL	2436
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	52
95% KM (Chebyshev) UCL	60.05
97.5% KM (Chebyshev) UCL	81.5
99% KM (Chebyshev) UCL	123.6

Potential UCLs to Use

99% KM (Chebyshev) UCL 123.6

95% Adjusted Gamma UCL (Use who

Warning: Recommended UCL exceeds the maximum observation

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Distinct Detected Data	cs 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are the Project Team may decide to use alternative site specific values to	e also NDs lying be	low the largest detection limit!	
The data set for variable 18 wa	s not processed!		
General Statistic	s		
Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are	e also NDs lying be	low the largest detection limit!	
he Project Team may decide to use alternative site specific values to			
The Project Team may decide to use alternative site specific values to The data set for variable 19 wa		······	
The data set for variable 19 wa	s not processed!	······	
	s not processed!	Number of Detected Data	0
The data set for variable 19 wa General Statistic	s not processed!		0 7 100.00%

The data set for variable 20 was not processed!

Number of Detected Data	73
Number of Non-Detect Data	19
Percent Non-Detects	20.65%

Log-transformed Statistics

Minimum Detected	-5.259
Maximum Detected	8.923
Mean of Detected	-1.877
SD of Detected	2.799
Minimum Non-Detect	-5.382
Maximum Non-Detect	-0.236
Number treated as Non-Detect	76

Number treated as Non-Detect	70
Number treated as Detected	16

Single DL Non-Detect Percentage	82.61%
---------------------------------	--------

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.133
5% Lilliefors Critical Value	0.104
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-2.46
SD	2.798
95% H-Stat (DL/2) UCL	15.77
Log ROS Method	
Mean in Log Scale	-2.819
SD in Log Scale	3.187
Mean in Original Scale	97.49
SD in Original Scale	788.9
95% t UCL	234.2
95% Percentile Bootstrap UCL	258.7
95% BCA Bootstrap UCL	355.4
95% H-UCL	50.62

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

97.49
784.6
82.37
234.4
233
234.2

General Statistics

Number of Valid Data	92
Number of Distinct Detected Data	66

Number of Distinct Detected Data

Raw Statistics

Minimum Detected	0.0052
Maximum Detected	7500
Mean of Detected	122.9
SD of Detected	885.1
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.79

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics	
Normal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.493
5% Lilliefors Critical Value	0.104
Data not Normal at 5% Significance Level	
Assuming Normal Distribution	

DL/2 Substitution Method Mean 97.49 SD 788.9 95% DL/2 (t) UCL 234.2 Maximum Likelihood Estimate(MLE) Method N/A

MLE yields a negative mean

Gamma Distribution Test with Detected Values Only

	k star (bias corrected)	0.123			
	Theta Star	999			
	nu star	17.96			
	A-D Test Statistic	16.39			
	5% A-D Critical Value	0.979			
	K-S Test Statistic	0.979			
	5% K-S Critical Value	0.119			
Data not Gamma Distributed at 5% Significance Level					
Assuming Gamma Distribution	n				

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001	95% KM (bootstrap t) UCL
Maximum	7500	95% KM (BCA) UCL
Mean	97.49	95% KM (Percentile Bootstrap) UCL
Median	0.0405	95% KM (Chebyshev) UCL
SD	788.9	97.5% KM (Chebyshev) UCL
k star	0.0962	99% KM (Chebyshev) UCL
Theta star	1013	
Nu star	17.7	Potential UCLs to Use
AppChi2	9.177	97.5% KM (Chebyshev) UCL
95% Gamma Approximate UCL (Use when n >= 40)	188.1	
95% Adjusted Gamma UCL (Use when n < 40)	190.1	

4279

261 258.6

456.5

611.9

611.9

917

95% Adjusted Gamma UCL (Use when n < 40) Note: DL/2 is not a recommended method.

> Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Distinct Detected Data	cs 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are the Project Team may decide to use alternative site specific values to	e also NDs lying be	elow the largest detection limit!	
The data set for variable 22 was	s not processed!		
General Statistic	cs		
Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are 'he Project Team may decide to use alternative site specific values to	e also NDs lying be	elow the largest detection limit!	
Specifically, sample mean, UCLs, UPLs, and other statistics are	e also NDs lying be o estimate environi	elow the largest detection limit!	
Specifically, sample mean, UCLs, UPLs, and other statistics are the Project Team may decide to use alternative site specific values to The data set for variable 23 was General Statistic	e also NDs lying be o estimate environr is not processed! cs	elow the largest detection limit!	
Specifically, sample mean, UCLs, UPLs, and other statistics are The Project Team may decide to use alternative site specific values to The data set for variable 23 was	e also NDs lying be o estimate environr is not processed!	elow the largest detection limit!	0 7 100.00%

The data set for variable 24 was not processed!

	stics		-
Number of Valid Data	7	Number of Detected Data	(
Number of Distinct Detected Data	0	Number of Non-Detect Data Percent Non-Detects	7 100.00%
		reiteni Noll-Deletis	100.00%
Warning: All observations are Non-Detects (NDs), therefor	e all statistics and esti	mates should also be NDs!	
Specifically, sample mean, UCLs, UPLs, and other statistics	are also NDs lying belo	ow the largest detection limit!	
he Project Team may decide to use alternative site specific value	s to estimate environm	ental parameters (e.g., EPC, BTV).	
The data set for variable 25	was not processed!		
General Stati	stics		
Number of Valid Data	7	Number of Detected Data	(
Number of Distinct Detected Data	0	Number of Non-Detect Data	
	0		7 100.00%
	e all statistics and esti are also NDs lying belo	Percent Non-Detects mates should also be NDsI ow the largest detection limit!	
Number of Distinct Detected Data Warning: All observations are Non-Detects (NDs), therefor Specifically, sample mean, UCLs, UPLs, and other statistics	re all statistics and esti are also NDs lying belo s to estimate environm	Percent Non-Detects mates should also be NDsI ow the largest detection limit!	
Number of Distinct Detected Data Warning: All observations are Non-Detects (NDs), therefor Specifically, sample mean, UCLs, UPLs, and other statistics he Project Team may decide to use alternative site specific value	e all statistics and estinate also NDs lying belows to estimate environm was not processed!	Percent Non-Detects mates should also be NDsI ow the largest detection limit!	
Number of Distinct Detected Data Warning: All observations are Non-Detects (NDs), therefor Specifically, sample mean, UCLs, UPLs, and other statistics he Project Team may decide to use alternative site specific value The data set for variable 26	e all statistics and esti are also NDs lying belo s to estimate environm was not processed!	Percent Non-Detects mates should also be NDsI ow the largest detection limit!	100.00%
Number of Distinct Detected Data Warning: All observations are Non-Detects (NDs), therefor Specifically, sample mean, UCLs, UPLs, and other statistics he Project Team may decide to use alternative site specific value The data set for variable 26 General Stati	re all statistics and estin are also NDs lying belo s to estimate environm was not processed! stics	Percent Non-Detects mates should also be NDsI ow the largest detection limit! ental parameters (e.g., EPC, BTV).	

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 27 was not processed!

26

Number of Distinct Detected Data	s 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are 'he Project Team may decide to use alternative site specific values to	also NDs lying be	low the largest detection limit!	
The data set for variable 28 was	s not processed!		
General Statistic	s		
Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are he Project Team may decide to use alternative site specific values to	also NDs lying be	low the largest detection limit!	
The data set for variable 29 was	s not processed!		
The data set for variable 29 was General Statistic Number of Valid Data		Number of Detected Data	0
General Statistic	s	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%

The data set for variable 30 was not processed!

Number of Valid Data Number of Distinct Detected Data	s 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are 'he Project Team may decide to use alternative site specific values to	also NDs lying be	elow the largest detection limit!	
The data set for variable 31 was	s not processed!		
General Statistic	s		
Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a			
Specifically, sample mean, UCLs, UPLs, and other statistics are he Project Team may decide to use alternative site specific values to			
	estimate environr		
he Project Team may decide to use alternative site specific values to	estimate environr		
The Project Team may decide to use alternative site specific values to The data set for variable 32 was	estimate environr		0 7 100.00%

The data set for variable 33 was not processed!

	General Statisti Number of Valid Data Number of Distinct Detected Data	cs 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Specifically, sample	ervations are Non-Detects (NDs), therefore e mean, UCLs, UPLs, and other statistics ar ecide to use alternative site specific values t	e also NDs lying bel	ow the largest detection limit!	
	The data set for variable 34 wa	s not processed!		
	General Statisti	cs		
	Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Specifically, sample	ervations are Non-Detects (NDs), therefore a e mean, UCLs, UPLs, and other statistics ar ecide to use alternative site specific values t	e also NDs lying bel	ow the largest detection limit!	
Specifically, sample	e mean, UCLs, UPLs, and other statistics ar	e also NDs lying bel o estimate environm	ow the largest detection limit!	
Specifically, sample	e mean, UCLs, UPLs, and other statistics ar acide to use alternative site specific values t The data set for variable 35 wa	e also NDs lying bel o estimate environm Is not processed!	ow the largest detection limit!	
Specifically, sample	e mean, UCLs, UPLs, and other statistics ar acide to use alternative site specific values t	e also NDs lying bel o estimate environm Is not processed!	ow the largest detection limit!	0

The data set for variable 36 was not processed!

Number of Detected Data	80
Number of Non-Detect Data	12
Percent Non-Detects	13.04%

Log-transformed Statistics

Minimum Detected	-5.221
Maximum Detected	9.473
Mean of Detected	-1.749
SD of Detected	2.788
Minimum Non-Detect	-5.382
Maximum Non-Detect	-0.236
Number treated as Non-Detect	75

Number treated as Non-Detect	/5
Number treated as Detected	17

Single DL Non-Detect Percentage	81.52%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.154
5% Lilliefors Critical Value	0.0991
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-2.108
SD	2.824
95% H-Stat (DL/2) UCL	24.72
Log ROS Method	
Mean in Log Scale	-2.325
SD in Log Scale	3.066
Mean in Original Scale	165.3
SD in Original Scale	1364
95% t UCL	401.5
95% Percentile Bootstrap UCL	442
95% BCA Bootstrap UCL	744.7
95% H-UCL	50.46

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics Kaplan Mojor (KM) Mothod

Kaplan-Meier (KM) Method		
Mean	165.3	
SD	1356	
SE of Mean	142.3	
95% KM (t) UCL	401.7	

General Statistics

Number of Valid Data	92
Number of Distinct Detected Data	68

Raw Statistics

Minimum Detected	0.0054
Maximum Detected	13000
Mean of Detected	190.1
SD of Detected	1462
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.79

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics		ics
Normal Distribution Test with Detected Values Only	у	
Lilliefors Te	est Statistic	0.494
5% Lilliefors Cri	itical Value	0.0991
Data not Normal at 5% Significance Level		
Assuming Normal Distribution		

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	165.3
SD	1364
95% DL/2 (t) UCL	401.5
Maximum Likelihood Estimate(MLE) Method	N/A

MLE yields a negative mean

Gamma Distribution Test with Detected Values Only

	k star (bias corrected)	0.118
	Theta Star	1608
	nu star	18.91
	A-D Test Statistic	18.83
	5% A-D Critical Value	0.989
	K-S Test Statistic	0.989
	5% K-S Critical Value	0.114
Data not Gamma Distributed at 5% Significance Level		

Assuming Gamma Distribution		95% KM (z) UCL	399.3
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	401.5
Minimum	0.000001	95% KM (bootstrap t) UCL	7675
Maximum	13000	95% KM (BCA) UCL	450.7
Mean	165.3	95% KM (Percentile Bootstrap) UCL	432.6
Median	0.061	95% KM (Chebyshev) UCL	785.4
SD	1364	97.5% KM (Chebyshev) UCL	1054
k star	0.101	99% KM (Chebyshev) UCL	1581
Theta star	1639		
Nu star	18.55	Potential UCLs to Use	
AppChi2	9.791	97.5% KM (Chebyshev) UCL	1054
95% Gamma Approximate UCL (Use when $n \ge 40$)	313.1		
95% Adjusted Gamma UCL (Use when $n < 40$)	316.4		
ot a recommended method.			
Note: Suggestions regarding the selection of a 95% UCL are provi These recommendations are based upon the results of the simula For additional insight, the user may	ition studies su	Immarized in Singh, Maichle, and Lee (2006).	

Note: DL/2 is not a

General Statistic	S		
Number of Valid Data	7	Number of Detected Data	1
Number of Distinct Detected Data	1	Number of Non-Detect Data	6
		Percent Non-Detects	85.71%

Number of Detected Data

Percent Non-Detects 100.00%

Number of Non-Detect Data

0

7

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 38 was not processed!

39

General Statistics
Number of Valid Data 7
Number of Distinct Detected Data 0

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 39 was not processed!

General Statist	ics		
Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data	0 7
		Percent Non-Detects	100.00%
Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics a The Project Team may decide to use alternative site specific values	re also NDs lying be	low the largest detection limit!	
The data set for variable 40 w	as not processed!		
General Statist	ics		
Number of Valid Data	7	Number of Detected Data	0
Number of Distinct Detected Data	0	Number of Non-Detect Data Percent Non-Detects	7 100.00%
The data set for variable 41 w	as not processed!		
The data set for variable 41 w	as not processed!		
The data set for variable 41 w General Statist	·		
General Statist Number of Valid Data	ics 7	Number of Detected Data	
General Statist	ics	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	7
General Statist Number of Valid Data	ics 7 0 all statistics and es re also NDs lying be	Number of Non-Detect Data Percent Non-Detects timates should also be NDs! slow the largest detection limit!	7
General Statist Number of Valid Data Number of Distinct Detected Data Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics a	ics 7 0 all statistics and es re also NDs lying be to estimate environr	Number of Non-Detect Data Percent Non-Detects timates should also be NDs! slow the largest detection limit!	7
General Statist Number of Valid Data Number of Distinct Detected Data Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics a The Project Team may decide to use alternative site specific values The data set for variable 42 w	ics 7 0 all statistics and es re also NDs lying be to estimate environr as not processed!	Number of Non-Detect Data Percent Non-Detects timates should also be NDs! slow the largest detection limit!	7
General Statist Number of Valid Data Number of Distinct Detected Data Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics a The Project Team may decide to use alternative site specific values	ics 7 0 all statistics and es re also NDs lying be to estimate environr as not processed!	Number of Non-Detect Data Percent Non-Detects timates should also be NDs! slow the largest detection limit!	0 7 100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 43 was not processed!

General Statistics Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore al Specifically, sample mean, UCLs, UPLs, and other statistics are The Project Team may decide to use alternative site specific values to	also NDs lying	g below the largest detection limit!	
The data set for variable 44 was	not processed	11	
General Statistics Number of Valid Data		Number of Detected Data	0
Number of Distinct Detected Data	7 0	Number of Non-Detect Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore al Specifically, sample mean, UCLs, UPLs, and other statistics are The Project Team may decide to use alternative site specific values to	also NDs lying	g below the largest detection limit!	
The data set for variable 45 was	not processed	<u>1</u> !	
General Statistics			
Number of Valid Data	, 7	Number of Detected Data	0
Number of Distinct Detected Data	0	Number of Non-Detect Data Percent Non-Detects	7 100.00%
Warning: All observations are Non-Detects (NDs), therefore al Specifically, sample mean, UCLs, UPLs, and other statistics are			

vvarning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 46 was not processed!

General Statisti Number of Valid Data Number of Distinct Detected Data	cs 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics ar The Project Team may decide to use alternative site specific values t	e also NDs lying be	low the largest detection limit!	
The data set for variable 47 wa	is not processed!		
General Statisti	cs		
Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics ar The Project Team may decide to use alternative site specific values t	e also NDs lying be	low the largest detection limit!	
The data set for variable 48 wa	as not processed!		
General Statisti	~s		
Number of Valid Data	7	Number of Detected Data	0
Number of Distinct Detected Data	0	Number of Non-Detect Data Percent Non-Detects	7 100.00%

The data set for variable 49 was not processed!

General Statistics Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore all Specifically, sample mean, UCLs, UPLs, and other statistics are The Project Team may decide to use alternative site specific values to	also NDs lyir	ng below the largest detection limit!	
The data set for variable 50 was	not processe	ed!	
General Statistics			
Number of Valid Data Number of Distinct Detected Data	7 1	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	1 6 85.71%
Warning: Only one distinct data value was detected! ProUCL (or any o It is suggested to use alternative site specific values determined by the Project			
The data set for variable 51 was	not process	edl	
General Statistics Number of Valid Data		Number of Detected Data	0
Number of Distinct Detected Data	7 0	Number of Non-Detect Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore all Specifically, sample mean, UCLs, UPLs, and other statistics are The Project Team may decide to use alternative site specific values to	also NDs lyir	ng below the largest detection limit!	

The data set for variable 52 was not processed!

51

Num	ber of D)etecte	ed Data

Number of Non-Detect Data 7 Percent Non-Detects 100.00%

0

General Statistics Number of Valid Data Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

7

0

The data set for variable 53 was not processed!

General Statistics Number of Valid Data 92

92	Number of Detected Data
40	Number of Non-Detect Data

Percent Non-Detects 53.26%

43

49

Log-transformed Statistics

Minimum Detected	-5.426
Maximum Detected	5.521
Mean of Detected	-2.089
SD of Detected	2.626
Minimum Non-Detect	-5.382
Maximum Non-Detect	-0.236
Number treated as Non-Detect	84

Number treated as Detected	8
Single DL Non-Detect Percentage	91.30%

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic	0.919
5% Shapiro Wilk Critical Value	0.943
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-3.595
SD	2.458
95% H-Stat (DL/2) UCL	1.575
Log ROS Method	
Mean in Log Scale	-4.736
SD in Log Scale	3.259
Mean in Original Scale	4.048
SD in Original Scale	27.53
95% t UCL	8.818
95% Percentile Bootstrap UCL	9.366

95% BCA Bootstrap UCL

- 6 BCA Bootstrap UCL 13.41 95% H-UCL 10.1
 - 3370 H-OCL 1

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

4.051
27.38
2.888
8.851
8.802
8.821

Number of Distinct Detected Data

Raw Statistics

Minimum Detected	0.0044
Maximum Detected	250
Mean of Detected	8.659
SD of Detected	40.02
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.79

_

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

	UCL Statistics	
Normal Distribution Test with Detected Values Only		
	Shapiro Wilk Test Statistic	0.241
	5% Shapiro Wilk Critical Value	0.943
Data not Normal at 5% Si	gnificance Level	
Assuming Normal Distribution		

DL/2 Substitution Method Mean 4.059 SD 27.53 95% DL/2 (t) UCL 8.829 Maximum Likelihood Estimate(MLE) Method N/A

MLE yields a negative mean

Gamma Distribution Test with Detected Values Only

Gamma Distribution Test with Detected	values only	
	k star (bias corrected)	0.18
	Theta Star	48.16
	nu star	15.46
	A-D Test Statistic	6.243
	5% A-D Critical Value	0.919
	K-S Test Statistic	0.919
	5% K-S Critical Value	0.15
Data not Gamma Distributed at 5% Significance Level		
Assuming Gamma Distribution		

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001	95% KM (
Maximum	250	95%
Mean	4.047	95% KM (Percentile
Median	0.000001	95% KM (0
SD	27.53	97.5% KM (0
k star	0.0896	99% KM (0
Theta star	45.18	
Nu star	16.48	Potential UCLs to
AppChi2	8.302	97.5% KM (0
en n >= 40)	8.033	
hen n < 40)	8.124	

95% KM (bootstrap t) UCL	85.68
95% KM (BCA) UCL	9.315
95% KM (Percentile Bootstrap) UCL	9.589
95% KM (Chebyshev) UCL	16.64
97.5% KM (Chebyshev) UCL	22.09
99% KM (Chebyshev) UCL	32.79

to Use

(Chebyshev) UCL 22.09

95% Gamma Approximate UCL (Use when n

95% Adjusted Gamma UCL (Use when n < 40)

Note: DL/2 is not a recommended method.

Number of Detected Data	
Number of Non-Detect Data	

8.70% Percent Non-Detects

84

8

Log-transformed Statistics

Minimum Detected	-5.24
Maximum Detected	7.863
Mean of Detected	-1.389
SD of Detected	2.748
Minimum Non-Detect	-5.426
Maximum Non-Detect	-3.73
Number treated as Non-Detect	25

Number treated as Non-Detect	25
Number treated as Detected	67

Number treated as Detected	07
Single DL Non-Detect Percentage	27.17%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.136
5% Lilliefors Critical Value	0.0967
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-1.73
SD	2.859
95% H-Stat (DL/2) UCL	41.08
Log ROS Method	
Mean in Log Scale	-1.855
SD in Log Scale	3.057
Mean in Original Scale	39.93
SD in Original Scale	278.9
95% t UCL	88.24
95% Percentile Bootstrap UCL	90.82
95% BCA Bootstrap UCL	138.4

95% H-UCL 78.17

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

39.93
277.4
29.09
88.27
87.78
88.25

General Statistics

Number of Valid Data	92
Number of Distinct Detected Data	67

_

Number of Distinct Detected Data

Raw Statistics

Minimum Detected	0.0053
Maximum Detected	2600
Mean of Detected	43.73
SD of Detected	291.7
Minimum Non-Detect	0.0044
Maximum Non-Detect	0.024

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

	UCL	Stat	tistics

Normal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.457
5% Lilliefors Critical Value	0.0967
Data not Normal at 5% Significance Level	

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	39.93
SD	278.9
95% DL/2 (t) UCL	88.25
Maximum Likelihood Estimate(MLE) Method	N/A

MLE yields a negative mean

Gamma Distribution Test with Detected Values Only

	k star (bias corrected)	0.152	
	Theta Star	288.6	
	nu star	25.46	
	A-D Test Statistic	14.08	
	5% A-D Critical Value	0.959	
	K-S Test Statistic	0.959	
	5% K-S Critical Value	0.11	
Data not Gamma Distributed at 5% Significance Level			
Assuming Gamma Distribution			

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001	95% KM (boo
Maximum	2600	95% KN
Mean	39.93	95% KM (Percentile Bo
Median	0.096	95% KM (Che
SD	278.9	97.5% KM (Che
k star	0.131	99% KM (Che
Theta star	305.3	
Nu star	24.07	Potential UCLs to Us
AppChi2	13.9	97.5% KM (Che
en n >= 40)	69.14	
hen n < 40)	69.76	

95% KM (bootstrap t) UCL	740.6
95% KM (BCA) UCL	98.18
95% KM (Percentile Bootstrap) UCL	94.93
95% KM (Chebyshev) UCL	166.7
97.5% KM (Chebyshev) UCL	221.6
99% KM (Chebyshev) UCL	329.4

se

ebyshev) UCL 221.6

95% Gamma Approximate UCL (Use when n

95% Adjusted Gamma UCL (Use when n < 40)

Note: DL/2 is not a recommended method.

Gonoral	Statistics
General	Statistics

	13103		
Number of Valid Data	7	Number of Detected Data	2
Number of Distinct Detected Data	2	Number of Non-Detect Data	5
		Percent Non-Detects	71.43%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.04	Minimum Detected	-3.219
Maximum Detected	0.066	Maximum Detected	-2.718
Mean of Detected	0.053	Mean of Detected	-2.968
SD of Detected	0.0184	SD of Detected	0.354
Minimum Non-Detect	0.92	Minimum Non-Detect	-0.0834
Maximum Non-Detect	280	Maximum Non-Detect	5.635
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	7
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	0
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	100.00%

Warning: Data set has only 2 Distinct Detected Values. This may not be adequate enough to compute meaningful and reliable test statistics and estimates. The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods. However, results obtained using 4 to 9 distinct values may not be reliable. It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

MLE method failed to converge properly

UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values	Only
Shapiro Wilk Test Statistic	N/A	Shapiro Wilk Test Statistic	N/A
5% Shapiro Wilk Critical Value	N/A	5% Shapiro Wilk Critical Value	N/A
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	62.51	Mean	1.666
SD	66.5	SD	3.749
95% DL/2 (t) UCL	111.4	95% H-Stat (DL/2) UCL	9.86E+11
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	

Log ROS Method

- Mean in Log Scale N/A
- SD in Log Scale N/A
- Mean in Original Scale N/A
- SD in Original Scale N/A
 - 95% t UCL N/A
- 95% Percentile Bootstrap UCL N/A
 - 95% BCA Bootstrap UCL N/A
 - 95% H-UCL N/A

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Gamma Distribution Test with Detected Values Only

- k star (bias corrected) N/A
 - Theta Star N/A
 - nu star N/A
 - A-D Test Statistic N/A
 - 5% A-D Critical Value N/A
 - K-S Test Statistic N/A
 - 5% K-S Critical Value N/A

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

	Culture 1000 Oldibiles using Exitupolated Data
N/A	Minimum
N/A	Maximum
N/A	Mean
N/A	Median
N/A	SD
N/A	k star
N/A	Theta star
N/A	Nu star
N/A	AppChi2
N/A	95% Gamma Approximate UCL (Use when n >= 40)
N/A	95% Adjusted Gamma UCL (Use when n < 40)

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	0.053
SD	0.013
SE of Mean	0.013
95% KM (t) UCL	0.0783
95% KM (z) UCL	0.0744
95% KM (jackknife) UCL	0.0861
95% KM (bootstrap t) UCL	0.0725
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	0.066
95% KM (Chebyshev) UCL	0.11
97.5% KM (Chebyshev) UCL	0.134
99% KM (Chebyshev) UCL	0.182

Potential UCLs to Use

95% KM (t) UCL	0.0783
95% KM (% Bootstrap) UCL	0.066

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Warning: Recommended UCL exceeds the maximum observation

Number of Detected Data	0
Number of Non-Detect Data	7
Percent Non-Detects	100.00%

General Statistics Number of Valid Data

Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

7

0

7

0

The data set for variable 57 was not processed!

Number of Detected Data 0 Number of Non-Detect Data 7 Percent Non-Detects 100.00%

Number of Distinct Detected Data Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs!

Number of Valid Data

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

General Statistics

The data set for variable 58 was not processed!

Number of Detected Data	75
Number of Non-Detect Data	17
Percent Non-Detects	18.48%

Log-transformed Statistics

Minimum Detected	-5.133
Maximum Detected	6.908
Mean of Detected	-1.038
SD of Detected	2.676
Minimum Non-Detect	-5.426
Maximum Non-Detect	-3.73
Number treated as Non-Detect	28

Number treated as Non-Delect	20
Number treated as Detected	64

Single DL Non-Detect Percentage	30.43%
engle bernen bereen ereenage	00.1070

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.0859
5% Lilliefors Critical Value	0.102
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-1.863
SD	2.99
95% H-Stat (DL/2) UCL	59.4
Log ROS Method	
Mean in Log Scale	-2.093
SD in Log Scale	3.313
Mean in Original Scale	18.21
SD in Original Scale	111.5
95% t UCL	37.53
95% Percentile Bootstrap UCL	39.36
95% BCA Bootstrap UCL	56.68
95% H-UCL	178.6

Data Distribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	18.21
SD	110.9
SE of Mean	11.64
95% KM (t) UCL	37.56
95% KM (z) UCL	37.36
95% KM (jackknife) UCL	37.53

General Statistics

Number of Valid Data	92
Number of Distinct Detected Data	66

Number of Distinct Detected Data

Raw Statistics

Minimum Detected	0.0059
Maximum Detected	1000
Mean of Detected	22.34
SD of Detected	123.3
Minimum Non-Detect	0.0044
Maximum Non-Detect	0.024

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

	U	CL	Sta	atis	tics

Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0 447	
5% Lilliefors Critical Value	0.102	
Data not Normal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	18.21
SD	111.5
95% DL/2 (t) UCL	37.53
Maximum Likelihood Estimate(MLE) Method	N/A

MLE yields a negative mean

Gamma Distribution Test with Detected Values Only

Gamma Biolibaton 1000 man Botootoa	Valace entry		
	k star (bias corrected)	0.182	
	Theta Star	122.7	
	nu star	27.31	
	A-D Test Statistic	9.232	
	5% A-D Critical Value	0.927	
	K-S Test Statistic	0.927	
	5% K-S Critical Value	0.115	
Data not Gamma Distributed at 5% Significance Level			
Assuming Gamma Distribution	on		

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001	95% KM (bootstrap t) UCL
Maximum	1000	95% KM (BCA) UCL
Mean	18.21	95% KM (Percentile Bootstrap) UCL
Median	0.11	95% KM (Chebyshev) UCL
SD	111.5	97.5% KM (Chebyshev) UCL
k star	0.128	99% KM (Chebyshev) UCL
Theta star	141.9	
Nu star	23.61	Potential UCLs to Use
AppChi2	13.55	97.5% KM (Chebyshev) UCL
en n >= 40)	31.72	

212.5

40.23

39.21

68.96

90.92

134.1

90.92

AppChi2	13.55
95% Gamma Approximate UCL (Use when n >= 40)	31.72

95% Adjusted Gamma UCL (Use when n < 40) 32.01

Note: DL/2 is not a recommended method.

General Stati	stics		
Number of Valid Data	91	Number of Detected Data	4
Number of Distinct Detected Data	4	Number of Non-Detect Data	87
		Percent Non-Detects	95.60%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.2	Minimum Detected	-1.609
Maximum Detected	1.9	Maximum Detected	0.642
Mean of Detected	0.9	Mean of Detected	-0.396
SD of Detected	0.726	SD of Detected	0.939
Minimum Non-Detect	0.2	Minimum Non-Detect	-1.609
Maximum Non-Detect	1	Maximum Non-Detect	0
Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs		Number treated as Non-Detect Number treated as Detected Single DL Non-Detect Percentage	90 1 98.90%

Warning: There are only 4 Distinct Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

UCL Stat	UCL Statistics		
Normal Distribution Test with Detected Values Only		L I	
Shapiro Wilk Test Statistic	0.94		
5% Shapiro Wilk Critical Value	0.748		
Data appear Normal at 5% Significance Level			
Assuming Normal Distribution			
DL/2 Substitution Method			
Mean	0.154		
SD	0.218		
95% DL/2 (t) UCL	0.192		
Maximum Likelihood Estimate(MLE) Method MLE method failed to converge properly	N/A		
Gamma Distribution Test with Detected Values Only			
k star (bias corrected)	0 624		

Lognormal Distribution Test with Detected Values Only

ognormal Distribution Test with Detected Values Only		
Shapiro Wilk Test Statistic	0.985	
5% Shapiro Wilk Critical Value	0.748	
Data appear Lognormal at 5% Significance Level		

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-2.117
SD	0.514
95% H-Stat (DL/2) UCL	0.152
Log ROS Method	
Mean in Log Scale	-5.799
SD in Log Scale	2.432
Mean in Original Scale	0.0529
SD in Original Scale	0.227
95% t UCL	0.0926
95% Percentile Bootstrap UCL	0.0955
95% BCA Bootstrap UCL	0.121
95% H-UCL	0.161
Distribution Test with Detected Values Onl	v

Data Distribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Gamma	Distribution	Test with	Detected	Va	alues	Only

0.634	k star (bias corrected)
1.419	Theta Star
5.074	nu star
0.2	A-D Test Statistic

Nonparametric Statistics

5% A-D Critical Value	0.661	Kaplan-Meier (KM) Method
K-S Test Statistic	0.661	Mean
5% K-S Critical Value	0.398	SD
Data appear Gamma Distributed at 5% Significance Level		SE of Mean
		95% KM (t) UCL
Assuming Gamma Distribution		95% KM (z) UCL
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL
Minimum	0.000001	95% KM (bootstrap t) UCL
Maximum	1.9	95% KM (BCA) UCL
Mean	0.0396	95% KM (Percentile Bootstrap) UCL
Median	0.000001	95% KM (Chebyshev) UCL
SD	0.228	97.5% KM (Chebyshev) UCL
k star	0.0877	99% KM (Chebyshev) UCL
Theta star	0.451	
Nu star	15.96	Potential UCLs to Use
AppChi2	7.932	95% KM (t) UCL
95% Gamma Approximate UCL (Use when n >= 40)	0.0796	95% KM (Percentile Bootstrap) UCL
95% Adjusted Gamma UCL (Use when n < 40)	N/A	
Note: DL/2 is not a recommended method.		

0.231 0.195 0.0236 0.27 0.485 0.275 N/A 0.933 0.334 0.379 0.466

> 0.27 0.933

Number of Detected Data	0
Number of Non-Detect Data	2
Percent Non-Detects	100.00%

2 Number of Valid Data Number of Distinct Detected Data 0

Warning: This data set only has 2 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable 61 was not processed!

General Statistics

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

62

General Statistics

Number of Valid Data	2	Number of Detected Data	0
Number of Distinct Detected Data	0	Number of Non-Detect Data	2
		Percent Non-Detects	100.00%

Warning: This data set only has 2 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable 62 was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

General Statistics

Number of Valid Data Number of Distinct Detected Data

2 0

Number of Detected Data 0 Number of Non-Detect Data 2 Percent Non-Detects 100.00%

Warning: This data set only has 2 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable 63 was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Number of Detected Data	0
Number of Non-Detect Data	2
Percent Non-Detects	100.00%

Number of Detected Data

Percent Non-Detects 100.00%

Number of Non-Detect Data

0

2

General Statistics 2 Number of Valid Data Number of Distinct Detected Data 0

Warning: This data set only has 2 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable 64 was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

General Statistics

Number of Valid Data	2	Number of Detected Data	0
Number of Distinct Detected Data	0	Number of Non-Detect Data	2
		Percent Non-Detects	100.00%

Warning: This data set only has 2 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable 65 was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

General Statistics

2

Number of Valid Data Number of Distinct Detected Data

0

Warning: This data set only has 2 observations! Data set is too small to compute reliable and meaningful statistics and estimates!

The data set for variable 66 was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

General Statistics

Number of Valid Data2Number of Distinct Detected Data0

Number of Detected Data0Number of Non-Detect Data2Percent Non-Detects100.00%

Warning: This data set only has 2 observations! Data set is too small to compute reliable and meaningful statistics and estimates! The data set for variable 67 was not processed!

It is suggested to collect at least 8 to 10 observations before using these statistical methods! If possible, compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Number of Detected Data	90
Number of Non-Detect Data	1

Percent Non-Detects 1.10%

Log-transformed Statistics

Minimum Detected	0.742
Maximum Detected	3.515
Mean of Detected	1.588
SD of Detected	0.508
Minimum Non-Detect	-1.609
Maximum Non-Detect	-1.609

Lognormal Distribution Test with Detected Values Only

9	,
Lilliefors Test Statistic	0.186
5% Lilliefors Critical Value	0.0934
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	1.545
SD	0.649
95% H-Stat (DL/2) UCL	6.62
Log ROS Method	
Mean in Log Scale	1.574
SD in Log Scale	0.523
Mean in Original Scale	5.716
SD in Original Scale	4.572
95% t UCL	6.512
95% Percentile Bootstrap UCL	6.562
95% BCA Bootstrap UCL	6.772
95% H UCL	6.131
Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

UCL Statistics

General Statistics

Number of Valid Data

Minimum Detected

Maximum Detected

Minimum Non-Detect

Maximum Non-Detect

Mean of Detected

SD of Detected

Number of Distinct Detected Data

91

51

2.1

33.6

5.764

4.574

0.2

0.2

Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.292	
5% Lilliefors Critical Value	0.0934	

Data not Normal at 5% Significance Level

Assuming	Normal	Distribution
----------	--------	--------------

Raw Statistics

DL/2 Substitution Method	
Mean	5.702
SD	4.587
95% DL/2 (t) UCL	6.501
Maximum Likelihood Estimate(MLE) Method	
Maximum Likelihood Estimate(MLE) Method Mean	5.679
	5.679 4.601
Mean	

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	3.116	
Theta Star	1.85	
nu star	560.8	
A-D Test Statistic	6.182	
5% A-D Critical Value	0.758	
K-S Test Statistic	0.758	
5% K-S Critical Value	0.0948	
Data not Gamma Distributed at 5% Significance Level		

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

0.000001
33.6
5.701

Nonparametric Statistics

Nonparametric Otatiotico	
Kaplan-Meier (KM) Method	
Mean	5.724
SD	4.539
SE of Mean	0.479
95% KM (t) UCL	6.519
95% KM (z) UCL	6.511
95% KM (jackknife) UCL	6.519
95% KM (bootstrap t) UCL	6.86
95% KM (BCA) UCL	6.573
95% KM (Percentile Bootstrap) UCL	6.496

Median	4.3	95% KM (Chebyshev) UCL
SD	4.588	97.5% KM (Chebyshev) UCL
k star	1.653	99% KM (Chebyshev) UCL
Theta star	3.449	
Nu star	300.9	Potential UCLs to Use
AppChi2	261.7	95% KM (BCA) UCL
95% Gamma Approximate UCL (Use when n >= 40)	6.555	
95% Adjusted Gamma UCL (Use when n < 40)	6.569	
and the second		

7.81 8.713 10.49

6.573

Note: DL/2 is not a recommended method.

General Statistics

Number of Valid Observations 98

Raw Statistics

Minimum 0.049 Maximum 724 Mean 177.3 Geometric Mean 120.5 Median 138.5 SD 143.6 Std. Error of Mean 14.51 Coefficient of Variation 0.81 Skewness 2.142

Relevant UCL Statistics

Normal Distribution Test

Lilliefors Test Statistic 0.215 Lilliefors Critical Value 0.0895

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 201.4

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 204.6 95% Modified-t UCL (Johnson-1978) 202

Gamma Distribution Test

k star (bias corrected) 1.399 Theta Star 126.7 MLE of Mean 177.3 MLE of Standard Deviation 149.9 nu star 274.3 Approximate Chi Square Value (.05) 236.9 Adjusted Level of Significance 0.0476 Adjusted Chi Square Value 236.4

Anderson-Darling Test Statistic 3.066 Anderson-Darling 5% Critical Value 0.772 Kolmogorov-Smirnov Test Statistic 0.147 Kolmogorov-Smirnov 5% Critical Value 0.0922

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 205.3 95% Adjusted Gamma UCL (Use when n < 40) 205.8

Potential UCL to Use

Number of Distinct Observations 83

Log-transformed Statistics

Minimum of Log Data -3.016 Maximum of Log Data 6.585 Mean of log Data 4.791 SD of log Data 1.324

Lognormal Distribution Test

Lilliefors Test Statistic 0.233 Lilliefors Critical Value 0.0895

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 410.3 95% Chebyshev (MVUE) UCL 503.4 97.5% Chebyshev (MVUE) UCL 598 99% Chebyshev (MVUE) UCL 783.9

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95% CLT UCL 201.2 95% Jackknife UCL 201.4 95% Standard Bootstrap UCL 201.2 95% Bootstrap t UCL 201.2 95% Hall's Bootstrap UCL 205.2 95% Percentile Bootstrap UCL 202.6 95% BCA Bootstrap UCL 203.5 95% Chebyshev(Mean, Sd) UCL 240.6 97.5% Chebyshev(Mean, Sd) UCL 268

99% Chebyshev(Mean, Sd) UCL 321.7

Use 95% Chebyshev (Mean, Sd) UCL 240.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

General Statistics

0.0075

650 20.87

90.2

Number of Valid Data	104
Number of Distinct Detected Data	85

Minimum Detected

Maximum Detected

Mean of Detected SD of Detected

99 Number of Detected Data Number of Non-Detect Data Percent Non-Detects 4.81%

5

Log-transformed Statistics

Minimum Detected	-4.893
Maximum Detected	6.477
Mean of Detected	-0.433
SD of Detected	2.68
Minimum Non-Detect	-5.382
Maximum Non-Detect	-4.269
Number treated as Non-Detect	10

Number treated as Detected 94

Single DL Non-Detect Percentage 9.62%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.098
5% Lilliefors Critical Value	0.089

5% Lilliefors Critical Value

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

-0.692
2.86
103.2

Log ROS Method

Mean in Log Scale	-0.734
SD in Log Scale	2.942
Mean in Original Scale	19.87
SD in Original Scale	88.09
95% t UCL	34.21

- 95% Percentile Bootstrap UCL 35.44
 - 95% BCA Bootstrap UCL 42.06
 - 95% H UCL 134.3

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Raw Statistics

Minimum Non-Detect	0.0046
Maximum Non-Detect	0.014

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.409	
5% Lilliefors Critical Value	0.089	

Data not Normal at 5% Significance Level

Assuming Normal Distribution

	DL/2 Substitution Method
19.87	Mean
88.09	SD
34.21	95% DL/2 (t) UCL
	Maximum Likelihood Estimate(MLE) Method
13 18	Mean

Mean	13.18
SD	93.01
95% MLE (t) UCL	28.31
95% MLE (Tiku) UCL	27.03

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.211
Theta Star	99.08
nu star	41.71

A-D Test Statistic	8.337	Nonparametric Statistics
5% A-D Critical Value	0.908	Kaplan-Meier (KM) Method
K-S Test Statistic	0.908	Mean
5% K-S Critical Value	0.0994	SD
Data not Gamma Distributed at 5% Significance Level		SE of Mean
•		95% KM (t) UCL
Assuming Gamma Distribution		95% KM (z) UCL
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL
Minimum	0.000001	95% KM (bootstrap t) UCL
Maximum	650	95% KM (BCA) UCL
Mean	19.87	95% KM (Percentile Bootstrap) UCL
Median	0.295	95% KM (Chebyshev) UCL
SD	88.09	97.5% KM (Chebyshev) UCL
k star	0.185	99% KM (Chebyshev) UCL
Theta star	107.7	
Nu star	38.39	Potential UCLs to Use
AppChi2	25.2	97.5% KM (Chebyshev) UCL
95% Gamma Approximate UCL (Use when $n \ge 40$)	30.27	
95% Adjusted Gamma UCL (Use when $n < 40$)	30.45	
(0 is not a common dad mathed		

19.87

87.67

8.64

34.21

34.08

34.21

78.09

38.57

35.16

57.53

73.83

105.8

73.83

Note: DL/2 is not a recommended method.

Number of Detected Data	100
Number of Non-Detect Data	4
Percent Non-Detects	3.85%

Log-transformed Statistics

Minimum Detected	-5.878
Maximum Detected	6.697
Mean of Detected	-0.225
SD of Detected	2.678
Minimum Non-Detect	-5.382
Maximum Non-Detect	-4.269
Number treated as Non-Detect	7

Number treated as Detected	97

Single DL Non-Detect Percentage	6.73%
---------------------------------	-------

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.0874
5% Lilliefors Critical Value	0.0886
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-0.438
SD	2.837
95% H-Stat (DL/2) UCL	122.3
Log ROS Method	
Mean in Log Scale	-0.458
SD in Log Scale	2.876
Mean in Original Scale	21.4
SD in Original Scale	92.66
95% t UCL	36.48
95% Percentile Bootstrap UCL	37.42
95% BCA Bootstrap UCL	45.25
95% H UCL	138.5

Data Distribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

ŀ
3
3
5
3

General Statistics

Number of Valid Data	104
Number of Distinct Detected Data	83

Raw Statistics

Minimum Detected	0.0028
Maximum Detected	810
Mean of Detected	22.25
SD of Detected	94.41
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.014

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics		
Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.407	
5% Lilliefors Critical Value	0.0886	
Data not Normal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	21.4
SD	92.66
95% DL/2 (t) UCL	36.48
Maximum Likelihood Estimate(MLE) Method	
Mean	16.63
SD	96.05
95% MLE (t) UCL	32.26
95% MLE (Tiku) UCL	30.72

Gamma Distribution Test with Detected Values Only

	k star (bias corrected)	0.218
	Theta Star	101.9
	nu star	43.66
	A-D Test Statistic	7.606
	5% A-D Critical Value	0.904
	K-S Test Statistic	0.904
	5% K-S Critical Value	0.0987
Data not Gamma Distributed at 5% Significance Level		

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001	95% KM (bootstrap t) UCL
Maximum	810	95% KM (BCA) UCL
Mean	21.4	95% KM (Percentile Bootstrap) UCL
Median	0.48	95% KM (Chebyshev) UCL
SD	92.66	97.5% KM (Chebyshev) UCL
k star	0.195	99% KM (Chebyshev) UCL
Theta star	109.8	
Nu star	40.53	Potential UCLs to Use
AppChi2	26.94	97.5% KM (Chebyshev) UCL
95% Gamma Approximate UCL (Use when n >= 40)	32.19	
95% Adjusted Gamma UCL (Use when n < 40)	32.38	

67.57

40.6 37.46

61.01

78.15

111.8

78.15

Note: DL/2 is not a recommended method.

General Statistics

~ ~

Number of Valid Data	92
ber of Distinct Detected Data	72

_

Number of Distinct Detected Data

. .

Raw Statistics

Minimum Detected	0.007
Maximum Detected	360
Mean of Detected	10.06
SD of Detected	40.18
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.014

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics		
Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.401	
5% Lilliefors Critical Value	0.0939	
Data not Normal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	9.729
SD	39.56
95% DL/2 (t) UCL	16.58
Maximum Likelihood Estimate(MLE) Method	
Mean	5.929
SD	42.42
95% MLE (t) UCL	13.28
95% MLE (Tiku) UCL	12.74

Gamma Distribution Test with Detected Values Only

	valuee entry	
	k star (bias corrected)	0.244
	Theta Star	41.27
	nu star	43.37
	A-D Test Statistic	5.081
	5% A-D Critical Value	0.892
	K-S Test Statistic	0.892
	5% K-S Critical Value	0.104
Data not Gamma Distributed at 5% Signi	ficance Level	
Assuming Gamma Distributio	n	

Gamma ROS Statistics using Extrapolated Data

Number of Detected Data	89
Number of Non-Detect Data	3
Percent Non-Detects	3.26%

Log-transformed Statistics

Minimum Detected	-4.962
Maximum Detected	5.886
Mean of Detected	-0.608
SD of Detected	2.6
Minimum Non-Detect	-5.382
Maximum Non-Detect	-4.269
Number treated as Non-Detect	11

- 81 Number treated as Detected
- Single DL Non-Detect Percentage 11.96%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.0944
5% Lilliefors Critical Value	0.0939
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-0.774
SD	2.714
95% H-Stat (DL/2) UCL	62.99
Log ROS Method	
Mean in Log Scale	-0.802
SD in Log Scale	2.773
Mean in Original Scale	9.729
SD in Original Scale	39.56
95% t UCL	16.58
95% Percentile Bootstrap UCL	17.15
95% BCA Bootstrap UCL	23.15
95% H UCL	75.66

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	9.729
SD	39.34
SE of Mean	4.125
95% KM (t) UCL	16.58
95% KM (z) UCL	16.51
95% KM (jackknife) UCL	16.58

0.000001 95% KM (bootstra	0.000001	Minimum
360 95% KM (B	360	Maximum
9.729 95% KM (Percentile Bootst	9.729	Mean
0.475 95% KM (Chebysh	0.475	Median
39.56 97.5% KM (Chebysh	39.56	SD
0.219 99% KM (Chebysh	0.219	k star
44.42	44.42	Theta star
40.3 Potential UCLs to Use	40.3	Nu star
26.75 97.5% KM (Chebysh	26.75	AppChi2
14.65	14.65	en n >= 40)
14.75	14.75	hen n < 40)

95% KM (bootstrap t) UCL	29.07
95% KM (BCA) UCL	17.13
95% KM (Percentile Bootstrap) UCL	17.51
95% KM (Chebyshev) UCL	27.71
97.5% KM (Chebyshev) UCL	35.49
99% KM (Chebyshev) UCL	50.77

nev) UCL 35.49

95% Gamma Approximate UCL (Use when n >= 40

95% Adjusted Gamma UCL (Use when n < 40)

Note: DL/2 is not a recommended method.

s 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
also NDs lying belo	ow the largest detection limit!	
s not processed!		
s		
7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
also NDs lying belo	ow the largest detection limit!	
s not processed!		
s		
7	Number of Detected Data	0
0	Number of Non-Detect Data Percent Non-Detects	7 100.00%
	7 0 II statistics and estii also NDs lying bek estimate environm a not processed! S 7 0 II statistics and estii also NDs lying bek estimate environm a not processed! S 7	7 Number of Detected Data 0 Number of Non-Detect Data Percent Non-Detects Percent Non-Detects II statistics and estimates should also be NDs! also NDs lying below the largest detection limit! estimate environmental parameters (e.g., EPC, BTV). anot processed! s 7 Number of Detected Data 0 Number of Non-Detects II statistics and estimates should also be NDs! also NDs lying below the largest detection limit! estimate environmental parameters (e.g., EPC, BTV). s II statistics and estimates should also be NDs! also NDs lying below the largest detection limit! estimate environmental parameters (e.g., EPC, BTV). s s not processed! s s 7 Number of Detected Data 0 Number of Non-Detects

The data set for variable 75 was not processed!

ed Data 0 ect Data 7 Detects 100.00%
ed Data 0
ect Data 7 Detects 100.00%

The data set for variable 78 was not processed!

Number of Valid Data Number of Distinct Detected Data	s 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are 'he Project Team may decide to use alternative site specific values to	also NDs lying bel	ow the largest detection limit!	
The data set for variable 79 was	not processed!		
General Statistic	s		
Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
	Il statistics and esti		
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are he Project Team may decide to use alternative site specific values to			
Specifically, sample mean, UCLs, UPLs, and other statistics are	estimate environm		
Specifically, sample mean, UCLs, UPLs, and other statistics are he Project Team may decide to use alternative site specific values to	estimate environm		
Specifically, sample mean, UCLs, UPLs, and other statistics are The Project Team may decide to use alternative site specific values to The data set for variable 80 was General Statistic Number of Valid Data	estimate environm s not processed! s 7	nental parameters (e.g., EPC, BTV).	0
Specifically, sample mean, UCLs, UPLs, and other statistics are The Project Team may decide to use alternative site specific values to The data set for variable 80 was General Statistic	estimate environm s not processed! s	iental parameters (e.g., EPC, BTV).	0 7 100.00%

The data set for variable 81 was not processed!

so NDs lying bel	imates should also be NDs! low the largest detection limit! nental parameters (e.g., EPC, BTV).	
ot processed!		
7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
so NDs lying bel	low the largest detection limit!	
ot processed!		
7	Number of Detected Data	0
0	Number of Non-Detect Data Percent Non-Detects	7 100.00%
atistics and est	imates should also be NDs!	
	0 atistics and est o NDs lying be timate environn t processed! 7 0 atistics and est o NDs lying be	0 Number of Non-Detect Data Percent Non-Detects atistics and estimates should also be NDs! Non-Detects to NDs lying below the largest detection limit! Imate environmental parameters (e.g., EPC, BTV). t processed! 7 7 Number of Detected Data Number of Non-Detect Data 0 Number of Non-Detect Data

The data set for variable 84 was not processed!

Number of Detected Data	53
Number of Non-Detect Data	45
Percent Non-Detects	45.92%

Log-transformed Statistics

Minimum Detected	-1.609
Maximum Detected	4.248
Mean of Detected	-0.903
SD of Detected	0.879
Minimum Non-Detect	-2.865
Maximum Non-Detect	3.258
Number treated as Non-Detect	97

	0,
Number treated as Detected	1
Single DL Non-Detect Percentage	98.98%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.242
5% Lilliefors Critical Value	0.122
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-1.381
SD	1.055
95% H-Stat (DL/2) UCL	0.561
Log ROS Method	
Mean in Log Scale	-1.611
SD in Log Scale	1.086
Mean in Original Scale	0.998

- SD in Original Scale 7.054
 - 95% t UCL 2.182
- 95% Percentile Bootstrap UCL 2.418
- 95% BCA Bootstrap UCL 3.22
 - 95% H-UCL 0.466

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics 12 - -----

Kaplan-Meier (KM) Method	
Mean	1.051
SD	7.012
SE of Mean	0.715
95% KM (t) UCL	2.239
95% KM (z) UCL	2.227
95% KM (jackknife) UCL	2.233

General Statistics

Number of Valid Data	98
----------------------	----

_

Number of Distinct Detected Data 9

Raw Statistics

Minimum Detected	0.2
Maximum Detected	70
Mean of Detected	1.758
SD of Detected	9.568
Minimum Non-Detect	0.057
Maximum Non-Detect	26

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics	
Normal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.498
5% Lilliefors Critical Value	0.122
Data not Normal at 5% Significance Level	
Accuming Normal Distribution	

Assuming Normal Distribution

g	
DL/2 Substitution Method	
Mean	1.174
SD	7.156
95% DL/2 (t) UCL	2.374
Maximum Likelihood Estimate(MLE) Method	N/A

Maximum Likelihood Estimate(MLE) Method MLE method failed to converge properly

Gamma Distribution Test with Detected Values Only

k star (bias corre	ected) 0.429	
Theta	a Star 4.1	
n	u star 45.46	
A-D Test St	atistic 14.61	
5% A-D Critical	Value 0.829	
K-S Test St	atistic 0.829	
5% K-S Critical	Value 0.13	
Data not Gamma Distributed at 5% Significance Level		
Assuming Gamma Distribution		

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001	95% KM (bootstrap t) UCL	37.18
Maximum	70	95% KM (BCA) UCL	2.494
Mean	0.953	95% KM (Percentile Bootstrap) UCL	2.464
Median	0.2	95% KM (Chebyshev) UCL	4.168
SD	7.06	97.5% KM (Chebyshev) UCL	5.517
k star	0.122	99% KM (Chebyshev) UCL	8.166
Theta star	7.79		
Nu star	23.98	Potential UCLs to Use	
AppChi2	13.83	95% KM (t) UCL	2.239
95% Gamma Approximate UCL (Use when n >= 40)	1.652	95% KM (% Bootstrap) UCL	2.464
95% Adjusted Gamma UCL (Use when n < 40)	1.666		

Note: DL/2 is not a recommended method.

Number of Distinct Detected Data	s 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are the Project Team may decide to use alternative site specific values to	also NDs lying bel	low the largest detection limit!	
The data set for variable 86 was	s not processed!		
General Statistic	s		
Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are the Project Team may decide to use alternative site specific values to	also NDs lying bel	low the largest detection limit!	
The data set for variable 87 was	s not processed!		
General Statistic	s		
General Statistic Number of Valid Data	s 7	Number of Detected Data	C
	-	Number of Detected Data Number of Non-Detect Data	0 7

The data set for variable 88 was not processed!

General Statisti Number of Valid Data Number of Distinct Detected Data	cs 7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
ean, UCLs, UPLs, and other statistics ar	e also NDs lying belo	ow the largest detection limit!	
The data set for variable 89 wa	s not processed!		
General Statisti	cs		
Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
ean, UCLs, UPLs, and other statistics ar	e also NDs lying belo		
e to use alternative site specific values t			
e to use alternative site specific values to			
The data set for variable 90 wa	is not processed!		
	is not processed!	Number of Detected Data	0
	Number of Distinct Detected Data tions are Non-Detects (NDs), therefore a san, UCLs, UPLs, and other statistics ar a to use alternative site specific values to The data set for variable 89 wa General Statisti Number of Valid Data Number of Distinct Detected Data	Number of Distinct Detected Data 0 tions are Non-Detects (NDs), therefore all statistics and estinan, UCLs, UPLs, and other statistics are also NDs lying below to use alternative site specific values to estimate environme. The data set for variable 89 was not processed! General Statistics Number of Valid Data 7 Number of Distinct Detected Data 0 tions are Non-Detects (NDs), therefore all statistics and esting	Number of Distinct Detected Data 0 Number of Non-Detect Data Percent Non-Detects Data Percent Non-Detects tions are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! san, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! Image: Comparison of Compa

The data set for variable 91 was not processed!

Number of Detected Data	90
Number of Non-Detect Data	1
Percent Non-Detects	1.10%

Log-transformed Statistics

Minimum Detected	2.197
Maximum Detected	4.143
Mean of Detected	3.337
SD of Detected	0.355
Minimum Non-Detect	1.099
Maximum Non-Detect	1.099

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.1
5% Lilliefors Critical Value	0.0934
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	3.304
SD	0.468
95% H-Stat (DL/2) UCL	33.25
Log ROS Method	
Mean in Log Scale	3.326
SD in Log Scale	0.367
Mean in Original Scale	29.63
SD in Original Scale	10.4
95% t UCL	31.45
95% Percentile Bootstrap UCL	31.43
95% BCA Bootstrap UCL	31.6
95% H UCL	31.88

General Statistics

Number of Valid Data	91
----------------------	----

Number of Distinct Detected Data 61

Raw Statistics

9
63
29.84
10.26
3
3

UCL Statistics

Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.12	
5% Lilliefors Critical Value	0.0934	

Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	29.53
SD	10.63
95% DL/2 (t) UCL	31.38

Maximum Likelihood Estimate(MLE) Method

Mean	29.51
SD	10.64
95% MLE (t) UCL	31.36
95% MLE (Tiku) UCL	31.37

Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	8.3
Theta Star	3.596
nu star	1494

- A-D Test Statistic 0.697
- 5% A-D Critical Value 0.753
- K-S Test Statistic 0.753
- 5% K-S Critical Value 0.0942

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001
Maximum	63
Mean	29.52
Median	27
SD	10.68
k star	2.196
Theta star	13.44
Nu star	399.7
AppChi2	354.4
95% Gamma Approximate UCL (Use when n >= 40)	33.29
95% Adjusted Gamma UCL (Use when n < 40)	33.36

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	29.61
SD	10.38
SE of Mean	1.094
95% KM (t) UCL	31.43
95% KM (z) UCL	31.41
95% KM (jackknife) UCL	31.42
95% KM (bootstrap t) UCL	31.57
95% KM (BCA) UCL	31.52
95% KM (Percentile Bootstrap) UCL	31.39
95% KM (Chebyshev) UCL	34.38
97.5% KM (Chebyshev) UCL	36.45
99% KM (Chebyshev) UCL	40.5
Potential UCLs to Use	

95% KM (BCA) UCL 31.52

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Detected Data	101
Number of Non-Detect Data	3
Percent Non-Detects	2.88%
ransformed Statistics	

Log-tra

Minimum Detected	-5.714
Maximum Detected	6.507
Mean of Detected	-0.332
SD of Detected	2.648
Minimum Non-Detect	-5.382
Maximum Non-Detect	-5.319
Number treated as Non-Detect	4

Number treated as Detected	100
Single DL Non-Detect Percentage	3.85%

Lognormal Distribution Test with Detected Values Only

	Data not Lognormal at 5% Significance Level	0.0002
Lillefors Test Statistic 0.0978	5% Lilliefors Critical Value	0.0882
Lilliafana Taat Chatiatia 0.0070	Lilliefors Test Statistic	0.0978

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-0.496
SD	2.78
95% H-Stat (DL/2) UCL	94
Log ROS Method	
Mean in Log Scale	-0.51
SD in Log Scale	2.81
Mean in Original Scale	20.02
SD in Original Scale	86.48
95% t UCL	34.1
95% Percentile Bootstrap UCL	34.39
95% BCA Bootstrap UCL	43.41
95% H UCL	103.1

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	20.02
SD	86.06
SE of Mean	8.481
95% KM (t) UCL	34.1
95% KM (z) UCL	33.97
95% KM (jackknife) UCL	34.1

General Statistics

Number of Valid Data	104
Number of Distinct Detected Data	83

.....

Raw Statistics

Minimum Detected	0.0033
Maximum Detected	670
Mean of Detected	20.62
SD of Detected	87.7
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.0049

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics	
Normal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.407
5% Lilliefors Critical Value	0.0882
Data not Normal at 5% Significance Level	

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	20.02
SD	86.48
95% DL/2 (t) UCL	34.1
Maximum Likelihood Estimate(MLE) Method	
Mean	17.55
SD	88.06
95% MLE (t) UCL	31.88
95% MLE (Tiku) UCL	30.29

Gamma Distribution Test with Detected Values Only

	k star (bias corrected)	0.217
	Theta Star	95.19
	nu star	43.76
	A-D Test Statistic	8.165
	5% A-D Critical Value	0.905
	K-S Test Statistic	0.905
	5% K-S Critical Value	0.0985
Data not Gamma Distributed at 5% Significance Level		

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001	95% KM (bootstrap t) UCL
Maximum	670	95% KM (BCA) UCL
Mean	20.02	95% KM (Percentile Bootstrap) UCL
Median	0.355	95% KM (Chebyshev) UCL
SD	86.48	97.5% KM (Chebyshev) UCL
k star	0.199	99% KM (Chebyshev) UCL
Theta star	100.7	
Nu star	41.37	Potential UCLs to Use
AppChi2	27.63	97.5% KM (Chebyshev) UCL
95% Gamma Approximate UCL (Use when n >= 40)	29.98	
95% Adjusted Gamma UCL (Use when n < 40)	30.15	

60.25

35.95

34.89

56.99

72.99

104.4

72.99

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Detected Data	0
Number of Non-Detect Data	7
Percent Non-Detects	100.00%

General Statistics Number of Valid Data

Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

7

0

The data set for variable 94 was not processed!

Number of Detected Data0Number of Non-Detect Data7Percent Non-Detects100.00%

Number of Valid Data7Number of Distinct Detected Data0

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

General Statistics

The data set for variable 95 was not processed!

General Statistics

Number of Valid Observations 91

Raw Statistics

Minimum 1.4 Maximum 143 Mean 36.78 Geometric Mean 31.25 Median 28.9 SD 23.92 Std. Error of Mean 2,508 Coefficient of Variation 0.65 Skewness 2.14

Relevant UCL Statistics

Normal Distribution Test

Lilliefors Test Statistic 0.257 Lilliefors Critical Value 0.0929

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 40.95

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 41.51 95% Modified-t UCL (Johnson-1978) 41.05

Gamma Distribution Test

k star (bias corrected) 3.122 Theta Star 11.78 MLE of Mean 36.78 MLE of Standard Deviation 20.82 nu star 568.3 Approximate Chi Square Value (.05) 514 Adjusted Level of Significance 0.0474 Adjusted Chi Square Value 513.2

Anderson-Darling Test Statistic 4.05 Anderson-Darling 5% Critical Value 0.758 Kolmogorov-Smirnov Test Statistic 0.191 Kolmogorov-Smirnov 5% Critical Value 0.0943

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 40.67 95% Adjusted Gamma UCL (Use when n < 40) 40.74

Number of Distinct Observations 76

Log-transformed Statistics

Minimum of Log Data 0.336 Maximum of Log Data 4.963 Mean of log Data 3.442 SD of log Data 0.59

Lognormal Distribution Test

Lilliefors Test Statistic 0.153 Lilliefors Critical Value 0.0929 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 41.85 95% Chebyshev (MVUE) UCL 47.84 97.5% Chebyshev (MVUE) UCL 52.49 99% Chebyshev (MVUE) UCL 61.62

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95% CLT UCL 40.91 95% Jackknife UCL 40.95 95% Standard Bootstrap UCL 40.86 95% Bootstrap-t UCL 41.62 95% Hall's Bootstrap UCL 41.53 95% Percentile Bootstrap UCL 41.08 95% BCA Bootstrap UCL 41.63 95% Chebyshev(Mean, Sd) UCL 47.72 97.5% Chebyshev(Mean, Sd) UCL 52.45 99% Chebyshev(Mean, Sd) UCL 61.74

Potential UCL to Use

Use 95% Chebyshev (Mean, Sd) UCL 47.72

9

4 30.77%

-2.079

4.336

0.708

2.293

-2.244

-2.226

-1.062

3.356

9.122

21.3

19.65

19.82

26.69

171215

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

	SUCS	General Statis
Number of Detected Data	13	Number of Valid Data
Number of Non-Detect Data	9	Number of Distinct Detected Data
Percent Non-Detects		
Log-transformed Statistics		Raw Statistics
Minimum Detected	0.125	Minimum Detected
Maximum Detected	76.4	Maximum Detected
Mean of Detected	13.17	Mean of Detected
SD of Detected	24.91	SD of Detected
Minimum Non-Detect	0.106	Minimum Non-Detect
Maximum Non-Detect	0.108	Maximum Non-Detect

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Number treated as Non-Detect	4
Number treated as Detected	9
Single DL Non-Detect Percentage	30.77%

Log ROS Method

Mean in Log Scale

Mean in Original Scale

95% Percentile Bootstrap UCL

95% BCA Bootstrap UCL

SD in Original Scale

SD in Log Scale

95% t UCL

95% H UCL

Warning: There are only 9 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

UCL Statist	ics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.606	Shapiro Wilk Test Statistic	0.932
5% Shapiro Wilk Critical Value	0.829	5% Shapiro Wilk Critical Value	0.829
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	9.136	Mean	-0.412
SD	21.29	SD	2.561
95% DL/2 (t) UCL	19.66	95% H-Stat (DL/2) UCL	1485

Maximum Likelihood Estimate(MLE) Method

Mean	3.051
SD	26.15
95% MLE (t) UCL	15.98
95% MLE (Tiku) UCL	16.56

Data Distribution Test with Detected Values Only Data appear Gamma Distributed at 5% Significance Level

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.313
Theta Star	42.1
nu star	5.632

- A-D Test Statistic 0.474
- 5% A-D Critical Value 0.797
- K-S Test Statistic 0.797
- 5% K-S Critical Value 0.299

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001
Maximum	76.4
Mean	9.12
Median	0.376
SD	21.3
k star	0.152
Theta star	59.92
Nu star	3.957
AppChi2	0.705
95% Gamma Approximate UCL (Use when n >= 40)	51.2
95% Adjusted Gamma UCL (Use when n < 40)	67.13

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	9.158
SD	20.45
SE of Mean	6.016
95% KM (t) UCL	19.88
95% KM (z) UCL	19.05
95% KM (jackknife) UCL	19.67
95% KM (bootstrap t) UCL	64.65
95% KM (BCA) UCL	20.15
95% KM (Percentile Bootstrap) UCL	19.62
95% KM (Chebyshev) UCL	35.38
97.5% KM (Chebyshev) UCL	46.73
99% KM (Chebyshev) UCL	69.01
Potential UCLs to Use	

95% KM (BCA) UCL 20.15

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Detected Data	84
Number of Non-Detect Data	20
Percent Non-Detects	19.23%

Log-transformed Statistics

Minimum Detected	-5.843
Maximum Detected	4.419
Mean of Detected	-1.516
SD of Detected	2.307
Minimum Non-Detect	-5.426
Maximum Non-Detect	-3.73
Number treated as Non-Detect	36

Number treated as Detected	68

Single DL Non-Detect Percentage	34.62%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.0882
5% Lilliefors Critical Value	0.0967
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method		
Mean	-2.324	
SD	2.668	
95% H-Stat (DL/2) UCL	10.24	
Log ROS Method		
Mean in Log Scale	-2.447	
SD in Log Scale	2.848	
Mean in Original Scale	2.187	
SD in Original Scale	8.776	
95% t UCL	3.615	
95% Percentile Bootstrap UCL	3.804	
95% BCA Bootstrap UCL	4.717	
	17.04	

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.276
Theta Star	9.807
nu star	46.36
A-D Test Statistic	5.194
5% A-D Critical Value	0.876
K-S Test Statistic	0.876
5% K-S Critical Value	0.106

Number of Distinct Detected Data

Raw Statistics

0.0029
83
2.707
9.703
0.0044
0.024

General Statistics

Number of Valid Data

104

67

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCI	L Sta	tistics
-----	-------	---------

Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.39	
5% Lilliefors Critical Value	0.0967	
Data not Normal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	2.187
SD	8.776
95% DL/2 (t) UCL	3.615
Maximum Likelihood Estimate(MLE) Method	N/A

MLE yields a negative mean

95% H-UCL 17.04

Data Distribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics Kaplan Mojor (KM) Method

2.187
8.733

Data not Gamma Distributed at 5% Significance Level

95% KM (t) UCL Assuming Gamma Distribution 95% KM (z) UCL Gamma ROS Statistics using Extrapolated Data 95% KM (jackknife) UCL Minimum 0.000001 95% KM (bootstrap t) UCL Maximum 83 95% KM (BCA) UCL Mean 2.186 95% KM (Percentile Bootstrap) UCL Median 0.0815 95% KM (Chebyshev) UCL SD 8.776 97.5% KM (Chebyshev) UCL 0.165 99% KM (Chebyshev) UCL k star Theta star 13.29 34.22 Potential UCLs to Use Nu star AppChi2 21.84 97.5% KM (Chebyshev) UCL 3.425 95% Gamma Approximate UCL (Use when $n \ge 40$) 95% Adjusted Gamma UCL (Use when n < 40) 3.447

SE of Mean

0.862

3.617

3.604

3.614

5.84

4.001

3.773

5.942

7.567

10.76

7.567

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Detected Data	51
Number of Non-Detect Data	41
Percent Non-Detects	44.57%

Log-transformed Statistics

Minimum Detected	-5.24
Maximum Detected	5.635
Mean of Detected	-1.932
SD of Detected	2.527
Minimum Non-Detect	-5.382
Maximum Non-Detect	-0.236
Number treated as Non-Detect	82

Number treated as Non-Detect	
Number treated as Detected	

Number treated as Detected	10
Single DL Non-Detect Percentage	89.13%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.119
5% Lilliefors Critical Value	0.124
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

Kaplan-Meier (KM) Method

DL/2 Substitution Method	
Mean	-3.248
SD	2.55
95% H-Stat (DL/2) UCL	3.015
Log ROS Method	
Mean in Log Scale	-4.312
SD in Log Scale	3.414
Mean in Original Scale	4.732
SD in Original Scale	30.86
95% t UCL	10.08
95% Percentile Bootstrap UCL	10.87
95% BCA Bootstrap UCL	15.86

95% H-UCL

Mean

SD

30.34

4.736

30.69

Gamma Distribution Test with Detected Values Only

0.04	valuee entry	
	k star (bias corrected)	0.185
	Theta Star	46.05
	nu star	18.91
	A-D Test Statistic	7.439
	5% A-D Critical Value	0.919
	K-S Test Statistic	0.919
	5% K-S Critical Value	0.138

99

Number of Distinct Detected Data

Raw Statistics

0.0053
280
8.535
41.24
0.0046
0.79

General Statistics

92

46

Number of Valid Data

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics	L I	JCL	Statistics
----------------	-----	-----	------------

Normal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.443
5% Lilliefors Critical Value	0.124
Data not Normal at 5% Significance Level	

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	4.745
SD	30.86
95% DL/2 (t) UCL	10.09
Maximum Likelihood Estimate(MLE) Method	N/A

MLE yields a negative mean

Data not Gamma Distributed at 5% Significance Level

95% KM (t) UCL Assuming Gamma Distribution 95% KM (z) UCL Gamma ROS Statistics using Extrapolated Data 95% KM (jackknife) UCL Minimum 0.000001 95% KM (bootstrap t) UCL Maximum 280 95% KM (BCA) UCL Mean 4.732 95% KM (Percentile Bootstrap) UCL Median 0.0079 95% KM (Chebyshev) UCL SD 97.5% KM (Chebyshev) UCL 30.86 0.0975 99% KM (Chebyshev) UCL k star Theta star 48.54 17.94 Potential UCLs to Use Nu star AppChi2 9.345 97.5% KM (Chebyshev) UCL 9.082 95% Gamma Approximate UCL (Use when $n \ge 40$) 95% Adjusted Gamma UCL (Use when n < 40) 9.179

SE of Mean

3.232

10.11

10.05

10.08

61.57

10.64

10.7

18.82

24.92

36.89

24.92

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Detected Data	0
Number of Non-Detect Data	7
Percent Non-Detects	100.00%

General Statistics Number of Valid Data

Number of Valid Data

Number of Distinct Detected Data

Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

7

0

7 0

The data set for variable 100 was not processed!

General Statistics

Number of Detected Data	0
Number of Non-Detect Data	7
Percent Non-Detects	100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 101 was not processed!

General Statistics

Number of Valid Observations 7

Raw Statistics

Minimum 41 Maximum 1200 Mean 473 Geometric Mean 282.3 Median 510 SD 422 Std. Error of Mean 159.5 Coefficient of Variation 0.892 Skewness 0.741

Number of Distinct Observations 7

Log-transformed Statistics

Lognormal Distribution Test

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

Data Distribution

Data appear Normal at 5% Significance Level

Shapiro Wilk Test Statistic 0.914

Shapiro Wilk Critical Value 0.803

95% Chebyshev (MVUE) UCL 1585

99% Chebyshev (MVUE) UCL 2948

97.5% Chebyshev (MVUE) UCL 2044

95% H-UCL 5701

Minimum of Log Data 3.714 Maximum of Log Data 7.09 Mean of log Data 5.643 SD of log Data 1.242

Warning: A sample size of 'n' = 7 may not adequate enough to compute meaningful and reliable test statistics and estimates!

It is suggested to collect at least 8 to 10 observations using these statistical methods! If possible compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Warning: There are only 7 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.906 Shapiro Wilk Critical Value 0.803

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 783

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 783.1 95% Modified-t UCL (Johnson-1978) 790.4

Gamma Distribution Test

k star (bias corrected) 0.727 Theta Star 650.7 MLE of Mean 473 MLE of Standard Deviation 554.8 nu star 10.18

102

Approximate Chi Square Value (.05) 4.053 Adjusted Level of Significance 0.0158 Adjusted Chi Square Value 2.973

Anderson-Darling Test Statistic 0.349 Anderson-Darling 5% Critical Value 0.726 Kolmogorov-Smirnov Test Statistic 0.227 Kolmogorov-Smirnov 5% Critical Value 0.319 Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 1188 95% Adjusted Gamma UCL (Use when n < 40) 1619

Potential UCL to Use

Nonparametric Statistics

95% CLT UCL 735.4 95% Jackknife UCL 783 95% Standard Bootstrap UCL 710.8 95% Bootstrap-t UCL 852.4 95% Hall's Bootstrap UCL 830 95% Percentile Bootstrap UCL 724.3 95% BCA Bootstrap UCL 751.4 95% Chebyshev(Mean, Sd) UCL 1168 97.5% Chebyshev(Mean, Sd) UCL 1469 99% Chebyshev(Mean, Sd) UCL 2060

Use 95% Student's-t UCL 783

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

1	General Statisti Number of Valid Data	7	Number of Detected Data	C
Number of D	Distinct Detected Data	0	Number of Non-Detect Data	7
			Percent Non-Detects	100.00%
Narning: All observations are Non-	-Detects (NDs), therefore	all statistics and estir	mates should also be NDs!	
ecifically, sample mean, UCLs, UF			•	
ct Team may decide to use altern	ative site specific values t	to estimate environme	ental parameters (e.g., EPC, BTV).	
The c	lata set for variable 103 w	as not processed!		
	General Statisti			
	Number of Valid Data	7	Number of Detected Data	(
			Number of Non-Detect Data	
Number of D	JISTINCT Detected Data	0		
	Distinct Detected Data	0	Percent Non-Detects	7 100.00%
Varning: All observations are Non- ecifically, sample mean, UCLs, UF act Team may decide to use altern	-Detects (NDs), therefore PLs, and other statistics ar	all statistics and estir re also NDs lying belo to estimate environme	Percent Non-Detects mates should also be NDs!	-
Varning: All observations are Non- ecifically, sample mean, UCLs, UF act Team may decide to use altern	-Detects (NDs), therefore PLs, and other statistics ar lative site specific values t data set for variable 104 w	all statistics and estir re also NDs lying belo to estimate environmo ras not processed!	Percent Non-Detects mates should also be NDsI bw the largest detection limit!	-
Naming: All observations are Non- ecifically, sample mean, UCLs, UF act Team may decide to use altern The c	-Detects (NDs), therefore PLs, and other statistics an ative site specific values t	all statistics and estir re also NDs lying belo to estimate environmo ras not processed!	Percent Non-Detects mates should also be NDsI bw the largest detection limit!	
Naming: All observations are Non- ecifically, sample mean, UCLs, UF act Team may decide to use altern The c	-Detects (NDs), therefore PLs, and other statistics ar lative site specific values t data set for variable 104 w General Statisti	all statistics and estir re also NDs lying belo to estimate environme ras not processed!	Percent Non-Detects mates should also be NDsI ow the largest detection limit! ental parameters (e.g., EPC, BTV).	100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 105 was not processed!

Number of Valid Data7Number of Distinct Detected Data0

Number of Detected Data0Number of Non-Detect Data7Percent Non-Detects100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 106 was not processed!

General Statistics

Number of Valid Data	7
Number of Distinct Detected Data	6

Raw Statistics

Minimum Detected	0.0075
Maximum Detected	140
Mean of Detected	47.07
SD of Detected	61.38
Minimum Non-Detect	0.0018
Maximum Non-Detect	0.0018

Warning: There are only 6 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

UCL Statistics

Mean

Mean

SD

SD

Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.767	Shapiro Wilk Test Statistic	0.818
5% Shapiro Wilk Critical Value	0.788	5% Shapiro Wilk Critical Value	0.788
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	

40.34

58.79

83.52

34.93

60.91

79.67

78.28

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	0.636
SD	4.704
95% H-Stat (DL/2) UCL	9.56E+17
· · · ·	

Number of Detected Data

Percent Non-Detects

Minimum Detected Maximum Detected

Mean of Detected

Minimum Non-Detect

Maximum Non-Detect

SD of Detected

Number of Non-Detect Data

Log-transformed Statistics

6

1

14.29%

-4.893

4.942

1.91

3.593

-6.32

-6.32

Log ROS Method

Mean in Log Scale	0.766
SD in Log Scale	4.464
Mean in Original Scale	40.34
SD in Original Scale	58.79
95% t UCL	83.52
95% Percentile Bootstrap UCL	76.06
95% BCA Bootstrap UCL	79.72

95% BCA Bootstrap UCL

95% H UCL 1.91E+16

Data Dist	tribution Tea	st with Dete	ected Value	es Only
-----------	---------------	--------------	-------------	---------

Data appear Gamma Distributed at 5% Significance Level

Gamma	Distribution	Test with D	etected Va	alues Only
-------	--------------	-------------	------------	------------

Assuming Normal Distribution

k star (bias corrected)	0.285
Theta Star	165.4
nu star	3.415

DL/2 Substitution Method

Maximum Likelihood Estimate(MLE) Method

95% DL/2 (t) UCL

95% MLE (t) UCL

95% MLE (Tiku) UCL

A-D Test Statistic	0.315
5% A-D Critical Value	0.759
K-S Test Statistic	0.759
5% K-S Critical Value	0.355
Data appear Gamma Distributed at 5% Significance Level	
Assuming Gamma Distribution	
Gamma ROS Statistics using Extrapolated Data	
Minimum	0.000001
Maximum	140
Mean	40.34
Median	11
SD	58.79
k star	0.201
Theta star	200.9
Nu star	2.811
AppChi2	0.319
95% Gamma Approximate UCL (Use when n >= 40)	355.8
95% Adjusted Gamma UCL (Use when n < 40)	690.9
2 is not a recommanded method	

0.201 99% KM (Chebyshev) UCL 200.9 2.811 **Potential UCLs to Use** 0.319 95% KM (Chebyshev) UCL 355.8

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Nonparametric Statistics Kaplan-Meier (KM) Method

Mean

SE of Mean 95% KM (t) UCL

95% KM (z) UCL

95% KM (jackknife) UCL

95% KM (BCA) UCL

95% KM (bootstrap t) UCL

95% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

95% KM (Percentile Bootstrap) UCL

SD

40.35

54.43 22.53

84.13

77.41

83.28

329.4

78.77

79.4

138.6

181.1

264.6

138.6

7

0

Number of Detected Data0Number of Non-Detect Data7Percent Non-Detects100.00%

Number of Valid Data Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 108 was not processed!

Number of Detected Data	90
Number of Non-Detect Data	2
Percent Non-Detects	2.17%

Log-transformed Statistics

Minimum Detected	-4.343
Maximum Detected	6.867
Mean of Detected	0.231
SD of Detected	2.682
Minimum Non-Detect	-5.382
Maximum Non-Detect	-5.319
Number treated as Non-Detect	2

- Number treated as Non-Detect Number treated as Detected
- Number treated as Detected90Single DL Non-Detect Percentage2.17%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.105
5% Lilliefors Critical Value	0.0934
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	0.0945
SD	2.807
95% H-Stat (DL/2) UCL	210
Log ROS Method	
Mean in Log Scale	0.0826
SD in Log Scale	2.834
Mean in Original Scale	36.2
SD in Original Scale	148.8
95% t UCL	61.99
95% Percentile Bootstrap UCL	65
95% BCA Bootstrap UCL	75.85
95% H UCL	229.5

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

General Statistics

Number of Valid Data	92

_

Number of Distinct Detected Data 79

Raw Statistics

Minimum Detected	0.013
Maximum Detected	960
Mean of Detected	37.01
SD of Detected	150.4
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.0049

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.411	
5% Lilliefors Critical Value	0.0934	
Data not Normal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	36.2
SD	148.8
95% DL/2 (t) UCL	61.99
Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL	33.85 150 59.83 56.77

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.215 Theta Star 171.8 nu star 38.78

A-D Test Statistic	7.16	Nonparametric
5% A-D Critical Value	0.905	Kaplan
K-S Test Statistic	0.905	-
5% K-S Critical Value	0.104	
Data not Gamma Distributed at 5% Significance Level		
Assuming Gamma Distribution		
Gamma ROS Statistics using Extrapolated Data		95%
Minimum	0.000001	95% K
Maximum	960	
Mean	36.2	95% KM (Perce
Median	0.96	95% K
SD	148.8	97.5% K
k star	0.201	99% K
Theta star	179.7	
Nu star	37.07	Potential UCL
AppChi2	24.13	97.5% K
95% Gamma Approximate UCL (Use when $n \ge 40$)	55.61	
95% Adjusted Gamma UCL (Use when $n < 40$)	56	

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

ic Statistics

Kaplan-Meier (KM) Method
Mean
SD

Mean	36.2
SD	148
SE of Mean	15.52
95% KM (t) UCL	61.99
95% KM (z) UCL	61.73
95% KM (jackknife) UCL	61.99
95% KM (bootstrap t) UCL	101.3
95% KM (BCA) UCL	62.99
95% KM (Percentile Bootstrap) UCL	63.42
95% KM (Chebyshev) UCL	103.8
97.5% KM (Chebyshev) UCL	133.1
99% KM (Chebyshev) UCL	190.6

CLs to Use

97 5% KM	(Chebyshev) UCI	133.1
57.070 TKW	ChicbyShev	, 00L	100.1

Number of Detected Data	63
Number of Non-Detect Data	29
Percent Non-Detects	31.52%

Percent Non-Detects

Log-transformed Statistics

Minimum Detected	-5.319
Maximum Detected	7.244
Mean of Detected	-1.721
SD of Detected	2.766
Minimum Non-Detect	-5.426
Maximum Non-Detect	-0.236
Number treated as Non-Detect	75

- Number treated as Non-Detect
- 17 Number treated as Detected Single DL Non-Detect Percentage 81.52%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.134
5% Lilliefors Critical Value	0.112
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-2.813
SD	2.874
95% H-Stat (DL/2) UCL	14.71
Log ROS Method	
Mean in Log Scale	-3.487
SD in Log Scale	3.566
Mean in Original Scale	21.8
SD in Original Scale	152.8
95% t UCL	48.27

95% Percentile Bootstrap UCL 51.62

- 95% BCA Bootstrap UCL 72.56
 - 95% H-UCL 138.7

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

General Statistics

Number of Valid Data	92
----------------------	----

_

Number of Distinct Detected Data 51

Raw Statistics

0.0049
1400
31.83
184.2
0.0044
0.79

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics	
Normal Distribution Test with Detected Values Only	
Lilliefors Test Statis	tic 0.466
5% Lilliefors Critical Value	ue 0.112
Data not Normal at 5% Significance Level	
Accuming Normal Distribution	

Assuming Normal Distribution

	DL/2 Substitution Method
21.8	Mean
152.8	SD
48.27	95% DL/2 (t) UCL
N/A	Maximum Likelihood Estimate(MLE) Method

MLE yields a negative mean

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.152 Theta Star 209.3 nu star 19.16

A-D Test Statistic	10.73	Nonparametric Statistics
5% A-D Critical Value	0.949	Kaplan-Meier (KM) Method
K-S Test Statistic	0.949	Mean
5% K-S Critical Value	0.126	SD
Data not Gamma Distributed at 5% Significance Level		SE of Mean
		95% KM (t) UCL
Assuming Gamma Distribution		95% KM (z) UCL
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL
Minimum	0.000001	95% KM (bootstrap t) UCL
Maximum	1400	95% KM (BCA) UCL
Mean	21.8	95% KM (Percentile Bootstrap) UCL
Median	0.025	95% KM (Chebyshev) UCL
SD	152.8	97.5% KM (Chebyshev) UCL
k star	0.099	99% KM (Chebyshev) UCL
Theta star	220.1	
Nu star	18.22	Potential UCLs to Use
AppChi2	9.552	97.5% KM (Chebyshev) UCL
95% Gamma Approximate UCL (Use when n >= 40)	41.59	····· (-····) ····
95% Adjusted Gamma UCL (Use when n < 40)	42.03	

21.8

151.9 15.97

48.34

48.07

48.27

512.2 52.69

52.14

91.41

121.5

180.7

121.5

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

General Statistics

Number of Valid Data	7
Number of Distinct Detected Data	5

Raw Statistics

Assuming Normal Distribution

28
15000
6846
6765
6.6
6.6

Number of Detected Data	6
Number of Non-Detect Data	1
Percent Non-Detects	14.29%

Log-transformed Statistics

Minimum Detected	3.332
Maximum Detected	9.616
Mean of Detected	7.462
SD of Detected	2.644
Minimum Non-Detect	1.887
Maximum Non-Detect	1.887

Warning: There are only 6 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

UCL Statistics

Mean

Mean

SD

SD

DL/2 Substitution Method

Maximum Likelihood Estimate(MLE) Method

95% DL/2 (t) UCL

95% MLE (t) UCL

95% MLE (Tiku) UCL

Normal Distribution Test with Detected Values Only Lognormal Distribution Test with Detected Values On		у	
Shapiro Wilk Test Statistic	0.843	Shapiro Wilk Test Statistic	0.819
5% Shapiro Wilk Critical Value	0.788	5% Shapiro Wilk Critical Value	0.788
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	

5869

6695

10786

5294

6982

10422

10356

Assuming Lognormal Distribution

ion Method	DL/2 Su	
Mean		6.566
SD		3.382
(DL/2) UCL	95% H	1.09E+12
. ,		

Log ROS Method

Mean in Log Scale	6.592
SD in Log Scale	3.335
Mean in Original Scale	5869
SD in Original Scale	6695
95% t UCL	10786
95% Percentile Bootstrap UCL	10129
95% BCA Bootstrap UCL	10150

95% H UCL 6.28E+11

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

Gamma Distribution Test with Detected v	alues Only		
k	star (bias corrected)	0.345	
	Theta Star	19824	
	nu star	4.144	
	A-D Test Statistic	0.515	
5	5% A-D Critical Value	0.741	
	K-S Test Statistic	0.741	
5	5% K-S Critical Value	0.35	
Data appear Gamma Distributed at 5% Sign	ificance Level		
Assuming Gamma Distribution			
Gamma ROS Statistics usi	ng Extrapolated Data		
	Minimum	28	
	Maximum	15000	
	Mean	5876	
	Median	4900	
	SD	6687	
	k star	0.317	
	Theta star	18554	
	Nu star	4.434	
	AppChi2	0.9	
95% Gamma Approximate UCL	_ (Use when n >= 40)	28942	

 95% Gamma Approximate UCL (Use when n >= 40)
 28942

 95% Adjusted Gamma UCL (Use when n < 40)</td>
 50404

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	5872
SD	6195
SE of Mean	2565
95% KM (t) UCL	10857
95% KM (z) UCL	10091
95% KM (jackknife) UCL	10783
95% KM (bootstrap t) UCL	14228
95% KM (BCA) UCL	9993
95% KM (Percentile Bootstrap) UCL	10150
95% KM (Chebyshev) UCL	17053
97.5% KM (Chebyshev) UCL	21891
99% KM (Chebyshev) UCL	31394
Potential UCLs to Use	
	10057

95% KM (t) UCL	10857
95% KM (Percentile Bootstrap) UCL	10150

Number of Valid Data	7	Number of Detected Data	0
Number of Distinct Detected Data	0	Number of Non-Detect Data Percent Non-Detects	7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics ar The Project Team may decide to use alternative site specific values t	e also NDs lying bel	ow the largest detection limit!	
The data set for variable 112 w	as not processed!		
General Statisti			
Number of Valid Data Number of Distinct Detected Data	7 0	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%
Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics ar The Project Team may decide to use alternative site specific values t	e also NDs lying bel	ow the largest detection limit!	
The data set for variable 113 w	as not processed!		
General Statisti			
Number of Valid Data	cs 7	Number of Detected Data	0
	0	Number of Non-Detect Data Percent Non-Detects	7 100.00%
Number of Distinct Detected Data			

The data set for variable 114 was not processed!

7 Number of Detected Data 0 Number of Non-Detect Data Percent Non-Detects 100.00%

0

7

Number of Valid Data Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 115 was not processed!

Number of Detected Data	99
Number of Non-Detect Data	5
Percent Non-Detects	4.81%

Log-transformed Statistics

Minimum Detected	-5.099
Maximum Detected	5.799
Mean of Detected	-0.877
SD of Detected	2.595
Minimum Non-Detect	-5.382
Maximum Non-Detect	-4.269
Number treated as Non-Detect	16

Number treated as Detected	88
Single DL Non-Detect Percentage	15.38%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.0982
5% Lilliefors Critical Value	0.089
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-1.115
SD	2.746
95% H-Stat (DL/2) UCL	44.92
Log ROS Method	
Mean in Log Scale	-1.162
SD in Log Scale	2.839
Mean in Original Scale	8.025
SD in Original Scale	34.42
95% t UCL	13.63
95% Percentile Bootstrap UCL	14.28
95% BCA Bootstrap UCL	18.71
95% H UCL	59.81

General Statistics

Number of Valid Data	104
Number of Distinct Detected Data	84

Raw Statistics

Minimum Detected	0.0061
Maximum Detected	330
Mean of Detected	8.431
SD of Detected	35.24
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.014

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

	UCL Statistics	
Normal Distribution Test with Detected Values Only		
	Lilliefors Test Statistic	0.406
5%	Lilliefors Critical Value	0.089
Data not Normal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method		
Mean	8.026	
SD	34.42	
95% DL/2 (t) UCL	13.63	
Maximum Likelihood Estimate(MLE) Method		
Mean	3.581	
SD	37.8	
95% MLE (t) UCL	9.732	
95% MLE (Tiku) UCL	9.397	

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.237
Theta Star	35.51
nu star	47.01
A-D Test Statistic	6.262
5% A-D Critical Value	0.895

- K-S Test Statistic 0.895
- 5% K-S Critical Value 0.0988

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001
Maximum	330
Mean	8.025
Median	0.28
SD	34.42
k star	0.205
Theta star	39.11
Nu star	42.68
AppChi2	28.7
95% Gamma Approximate UCL (Use when n >= 40)	11.93
95% Adjusted Gamma UCL (Use when n < 40)	12

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	8.026
SD	34.25
SE of Mean	3.376
95% KM (t) UCL	13.63
95% KM (z) UCL	13.58
95% KM (jackknife) UCL	13.63
95% KM (bootstrap t) UCL	24.08
95% KM (BCA) UCL	14.19
95% KM (Percentile Bootstrap) UCL	13.98
95% KM (Chebyshev) UCL	22.74
97.5% KM (Chebyshev) UCL	29.11
99% KM (Chebyshev) UCL	41.61
Detential LIOL et al. Line	

Potential UCLs to Use

97.5% KM (Chebyshev) UCL 29.11

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Detected Data	0
Number of Non-Detect Data	7
Percent Non-Detects	100.00%

General Statistics Number of Valid Data

Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

7

0

7

0

The data set for variable 117 was not processed!

General Statistics

Number of Detected Data 0 Number of Non-Detect Data 7 Percent Non-Detects 100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit!

Number of Valid Data

Number of Distinct Detected Data

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 118 was not processed!

118

General Statistics

Number of Valid Observations 91

Raw Statistics

Minimum 3 Maximum 747 Mean 72.34 Geometric Mean 35.21 Median 35 SD 118.1 Std. Error of Mean 12.38 Coefficient of Variation 1.632 Skewness 3.563

Relevant UCL Statistics

Normal Distribution Test

Lilliefors Test Statistic 0.284 Lilliefors Critical Value 0.0929

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 92.92

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 97.64 95% Modified-t UCL (Johnson-1978) 93.69

Gamma Distribution Test

k star (bias corrected) 0.802 Theta Star 90.23 MLE of Mean 72.34 MLE of Standard Deviation 80.79 nu star 145.9 Approximate Chi Square Value (.05) 119 Adjusted Level of Significance 0.0474 Adjusted Chi Square Value 118.6

Anderson-Darling Test Statistic 3.373 Anderson-Darling 5% Critical Value 0.791 Kolmogorov-Smirnov Test Statistic 0.175 Kolmogorov-Smirnov 5% Critical Value 0.0972

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 88.7 95% Adjusted Gamma UCL (Use when n < 40) 88.99

Number of Distinct Observations 59

Log-transformed Statistics

Minimum of Log Data 1.099 Maximum of Log Data 6.616 Mean of log Data 3.561 SD of log Data 1.15

Lognormal Distribution Test

Lilliefors Test Statistic 0.0875 Lilliefors Critical Value 0.0929 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 91.23 95% Chebyshev (MVUE) UCL 111.7 97.5% Chebyshev (MVUE) UCL 130.9 99% Chebyshev (MVUE) UCL 168.5

Data Distribution

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

95% CLT UCL 92.7 95% Jackknife UCL 92.92 95% Standard Bootstrap UCL 92.17 95% Bootstrap-t UCL 101.8 95% Hall's Bootstrap UCL 99.76 95% Percentile Bootstrap UCL 95.44 95% BCA Bootstrap UCL 98.69 95% Chebyshev(Mean, Sd) UCL 126.3 97.5% Chebyshev(Mean, Sd) UCL 149.7 99% Chebyshev(Mean, Sd) UCL 195.5

Potential UCL to Use

ProUCL computes and outputs H-statistic based UCLs for historical reasons only. H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide. It is therefore recommended to avoid the use of H-statistic based 95% UCLs. Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

General Statistics

Number of Valid Observations 7

Raw Statistics

Minimum 69 Maximum 1300 Mean 481.3 Geometric Mean 300.6 Median 280 SD 474.1 Std. Error of Mean 179.2 Coefficient of Variation 0.985 Skewness 1.114

Number of Distinct Observations 7

Log-transformed Statistics

Minimum of Log Data 4.234 Maximum of Log Data 7.17 Mean of log Data 5.706 SD of log Data 1.091

Warning: A sample size of 'n' = 7 may not adequate enough to compute meaningful and reliable test statistics and estimates!

It is suggested to collect at least 8 to 10 observations using these statistical methods! If possible compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Warning: There are only 7 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.844 Shapiro Wilk Critical Value 0.803

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 829.5

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 856.6 95% Modified-t UCL (Johnson-1978) 842.1 Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.962 Shapiro Wilk Critical Value 0.803 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 3177 95% Chebyshev (MVUE) UCL 1362 97.5% Chebyshev (MVUE) UCL 1741 99% Chebyshev (MVUE) UCL 2485

Gamma Distribution Test

k star (bias corrected) 0.782 Theta Star 615.5 MLE of Mean 481.3 MLE of Standard Deviation 544.3 nu star 10.95 Approximate Chi Square Value (.05) 4.542 Adjusted Level of Significance 0.0158 Adjusted Chi Square Value 3.382

Anderson-Darling Test Statistic 0.268 Anderson-Darling 5% Critical Value 0.725 Kolmogorov-Smirnov Test Statistic 0.162 Kolmogorov-Smirnov 5% Critical Value 0.319

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 1160 95% Adjusted Gamma UCL (Use when n < 40) 1558

Potential UCL to Use

Data Distribution Data appear Normal at 5% Significance Level

Nonparametric Statistics

95% CLT UCL 776 95% Jackknife UCL 829.5 95% Standard Bootstrap UCL 759.1 95% Bootstrap-t UCL 1217 95% Hall's Bootstrap UCL 2481 95% Percentile Bootstrap UCL 755.7 95% BCA Bootstrap UCL 817.1 95% Chebyshev(Mean, Sd) UCL 1600 99% Chebyshev(Mean, Sd) UCL 2264

Use 95% Student's-t UCL 829.5

General Statistics

Number of Valid Data	7
Number of Distinct Detected Data	6

Raw Statistics

Minimum Detected	0.017
Maximum Detected	220
Mean of Detected	90.92
SD of Detected	96.46
Minimum Non-Detect	0.0018
Maximum Non-Detect	0.0018

Number of Detected Data	6
Number of Non-Detect Data	1
Percent Non-Detects	14.29%

Log-transformed Statistics

Minimum Detected	-4.075
Maximum Detected	5.394
Mean of Detected	2.545
SD of Detected	3.717
Minimum Non-Detect	-6.32
Maximum Non-Detect	-6.32

Warning: There are only 6 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

UCL Statistics

Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.842	Shapiro Wilk Test Statistic	0.808
5% Shapiro Wilk Critical Value	0.788	5% Shapiro Wilk Critical Value	0.788
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	

Assuming Normal Distribution		Assumi
DL/2 Substitution Method		
Mean	77.93	
SD	94.52	
95% DL/2 (t) UCL	147.4	
Maximum Likelihood Estimate(MLE) Method		

Maximum Likelihood Estimate(MLE) Method

Mean	69.65
SD	98.42
95% MLE (t) UCL	141.9
95% MLE (Tiku) UCL	140.7

Assuming Lognormal Distribution

-	DL/2 Substitution Method	
	Mean	1.18
	SD	4.957
	95% H-Stat (DL/2) UCL	1.45E+20

Log ROS Method Moon in Log Scolo

20911001104	
Mean in Log Scale	1.355
SD in Log Scale	4.629
Mean in Original Scale	77.93
SD in Original Scale	94.52
95% t UCL	147.4
95% Percentile Bootstrap UCL	135.4
95% BCA Bootstrap UCL	146
	E 455 47

95% H UCL 5.45E+17

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

Note: DL/2 is not a recommended method.

Gamma Distribution Test with Detected Values Only	
k star (bias corrected)	0.283
Theta Star	321.5
nu star	3.394
A-D Test Statistic	0.481
5% A-D Critical Value	0.76
K-S Test Statistic	0.76
5% K-S Critical Value	0.355
Data appear Gamma Distributed at 5% Significance Level	
Assuming Gamma Distribution	
Gamma ROS Statistics using Extrapolated Data	
Minimum	0.017
Maximum	220
Mean	78.73
Median	58
SD	93.78
k star	0.294
Theta star	268.1
Nu star	4.111
AnnChi2	0 766

0.017
220
78.73
58
93.78
0.294
268.1
4.111
0.766
422.4
756.1

Nonparametric Statistics

Kaplan-Meier (KM) Method		
Mean	77.93	
SD	87.51	
SE of Mean	36.23	
95% KM (t) UCL	148.3	
95% KM (z) UCL	137.5	
95% KM (jackknife) UCL	147.3	
95% KM (bootstrap t) UCL	227	
95% KM (BCA) UCL	142.6	
95% KM (Percentile Bootstrap) UCL	141.7	
95% KM (Chebyshev) UCL	235.9	
97.5% KM (Chebyshev) UCL	304.2	
99% KM (Chebyshev) UCL	438.4	
Potential UCLs to Use		
95% KM (t) UCL	148.3	

141.7

95% KM (Percentile Bootstrap) UCL

Number of Detected Data	89
Number of Non-Detect Data	2

Percent Non-Detects 2.20%

Log-transformed Statistics

Minimum Detected	-3.507
Maximum Detected	0.315
Mean of Detected	-2.287
SD of Detected	0.839
Minimum Non-Detect	-3.912
Maximum Non-Detect	-2.996
Number treated as Non-Detect	14

- Number treated as Non-Detect 77
- Single DL Non-Detect Percentage 15.38%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.142
5% Lilliefors Critical Value	0.0939
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

-2.328
0.877
0.174
-2.324
0.871
0.159
0.223
0.197
0.199
0.206
0.174

General Statistics

Number of Valid Data 91

_

Number of Distinct Detected Data 29

Raw Statistics

Minimum Detected	0.03
Maximum Detected	1.37
Mean of Detected	0.162
SD of Detected	0.225
Minimum Non-Detect	0.02
Maximum Non-Detect	0.05

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.323
5% Lilliefors Critical Value	0.0939
Data not Normal at 5% Significance Level	

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	0.159
SD	0.223
95% DL/2 (t) UCL	0.197
Maximum Likelihood Estimate(MLE) Method	
Mean	0.135
SD	0 247

SE	0.247
95% MLE (t) UCI	0.178
95% MLE (Tiku) UCL	0.176

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Gamma Distribution Test with Detected Values Only

1.182
0.137
210.4

A-D Test Statistic 6.76

- 5% A-D Critical Value 0.778
- K-S Test Statistic 0.778 0.0971
- 5% K-S Critical Value

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001
Maximum	1.37
Mean	0.158
Median	0.08
SD	0.223
k star	0.826
Theta star	0.191
Nu star	150.4
AppChi2	123
95% Gamma Approximate UCL (Use when n >= 40)	0.193
95% Adjusted Gamma UCL (Use when n < 40)	0.194

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	0.159
SD	0.222
SE of Mean	0.0234
95% KM (t) UCL	0.198
95% KM (z) UCL	0.197
95% KM (jackknife) UCL	0.198
95% KM (bootstrap t) UCL	0.209
95% KM (BCA) UCL	0.202
95% KM (Percentile Bootstrap) UCL	0.2
95% KM (Chebyshev) UCL	0.261
97.5% KM (Chebyshev) UCL	0.305
99% KM (Chebyshev) UCL	0.391
Potential UCLs to Use	

95% KM (BCA) UCL 0.202

Note: DL/2 is not a recommended method.

Number of Valid Data	:s 7	Number of Detected Data	C
Number of Distinct Detected Data	0	Number of Non-Detect Data	7
		Percent Non-Detects	100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are the Project Team may decide to use alternative site specific values to	also NDs lying bel	low the largest detection limit!	
The data set for variable 123 wa	s not processed!		
General Statistic	-		
Number of Valid Data	7	Number of Detected Data	(
Number of Distinct Detected Data	0	Number of Non-Detect Data Percent Non-Detects	7 100.00%
Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are			
he Project Team may decide to use alternative site specific values to	estimate environm	nental parameters (e.g., EPC, BTV).	
	s not processed!		
The data set for variable 124 wa			
The data set for variable 124 wa			
		Number of Detected Data	C
General Statistic	5	Number of Detected Data Number of Non-Detect Data Percent Non-Detects	0 7 100.00%

Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 125 was not processed!

124

General Statistics 92

Number of Valid Data	92
Imber of Distinct Detected Data	72

Number of Distinct Detected Data

Raw Statistics

Minimum Detected	0.0088
Maximum Detected	63000
Mean of Detected	846.6
SD of Detected	6960
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.53

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

	UCL Statistics
Normal Distribution Test with Detected Values Only	

Lilliefors Test Statistic	0.497	
5% Lilliefors Critical Value	0.0978	
Data not Normal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	754.6
SD	6572
95% DL/2 (t) UCL	1893
Maximum Likelihood Estimate(MLE) Method	N/A

MLE yields a negative mean

Number of Detected Data	82
Number of Non-Detect Data	10
Percent Non-Detects	10.87%

Log-transformed Statistics

Minimum Detected	-4.733
Maximum Detected	11.05
Mean of Detected	-1.059
SD of Detected	2.825
Minimum Non-Detect	-5.382
Maximum Non-Detect	-0.635
Number treated as Non-Detect	66

26 Number treated as Detected

Single DL Non-Detect Percentage	71.74%
olingio DE Holi Dotoot i oloolitago	,,

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.161
5% Lilliefors Critical Value	0.0978
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-1.492
SD	2.976
95% H-Stat (DL/2) UCL	81.63

Log ROS Method

Mean in Log Scale	-1.645
SD in Log Scale	3.183

- SD in Log Scale
- Mean in Original Scale 754.5 6572
- SD in Original Scale 95% t UCL 1893
- 95% Percentile Bootstrap UCL 2124
 - 95% BCA Bootstrap UCL 2898 95% H-UCL 161.2

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Gamma Distribution Test with Detected Values Only k star (bias corrected)

only	
pias corrected)	0.108
Theta Star	7840
nu star	17.71

1

- A-D Test Statistic 21.09
- 5% A-D Critical Value 1
 - K-S Test Statistic
- 5% K-S Critical Value 0.113

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001
Maximum	63000
Mean	754.5
Median	0.135
SD	6572
k star	0.0949
Theta star	7950
Nu star	17.46
AppChi2	9.004
95% Gamma Approximate UCL (Use when n >= 40)	1463
95% Adjusted Gamma UCL (Use when n < 40)	1479

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	754.5
SD	6536
SE of Mean	685.6
95% KM (t) UCL	1894
95% KM (z) UCL	1882
95% KM (jackknife) UCL	1893
95% KM (bootstrap t) UCL	22683
95% KM (BCA) UCL	2125
95% KM (Percentile Bootstrap) UCL	2124
95% KM (Chebyshev) UCL	3743
97.5% KM (Chebyshev) UCL	5036
99% KM (Chebyshev) UCL	7576

Potential UCLs to Use

97.5% KM (Chebyshev) UCL 5036

Note: DL/2 is not a recommended method.

General Statisti			-
Number of Valid Data Number of Distinct Detected Data	7	Number of Detected Data Number of Non-Detect Data	0
Number of Distinct Detected Data	0	Number of Non-Detect Data Percent Non-Detects	/ 100.00%
		Percent Non-Detects	100.00%
Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics ar he Project Team may decide to use alternative site specific values t	e also NDs lying belo	ow the largest detection limit!	
The data set for variable 127 w	as not processed!		
General Statisti			
Number of Valid Data	7	Number of Detected Data	C
		Number of Non-Detect Data	7
Number of Distinct Detected Data	0		-
Number of Distinct Detected Data	U	Percent Non-Detects	-
Number of Distinct Detected Data Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics ar he Project Team may decide to use alternative site specific values t The data set for variable 128 w	all statistics and estin re also NDs lying belo to estimate environm	Percent Non-Detects mates should also be NDsI bw the largest detection limit!	-
Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics ar he Project Team may decide to use alternative site specific values t	all statistics and estin e also NDs lying belo o estimate environm as not processed!	Percent Non-Detects mates should also be NDsI bw the largest detection limit!	-
Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics ar he Project Team may decide to use alternative site specific values t The data set for variable 128 w General Statisti Number of Valid Data	all statistics and estin e also NDs lying belo o estimate environm as not processed!	Percent Non-Detects mates should also be NDsI ow the largest detection limit! ental parameters (e.g., EPC, BTV).	100.00%
Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics ar he Project Team may decide to use alternative site specific values t The data set for variable 128 w General Statisti	all statistics and estin e also NDs lying belo o estimate environm as not processed! cs	Percent Non-Detects mates should also be NDsI ow the largest detection limit! ental parameters (e.g., EPC, BTV).	, 100.00% 0 7 100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 129 was not processed!

128

Number of Detected Data	0
Number of Non-Detect Data	7
Percent Non-Detects	100.00%

General Statistics Number of Valid Data

Number of Valid Data

Number of Distinct Detected Data

Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

7

0

7

0

The data set for variable 130 was not processed!

General Statistics

Number of Detected Data 0 Number of Non-Detect Data 7 Percent Non-Detects 100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 131 was not processed!

General Statistics

Number of Valid Data	7	
Number of Distinct Detected Data	6	

Raw Statistics

Minimum Detected	0.014
Maximum Detected	91
Mean of Detected	38.85
SD of Detected	38.3
Minimum Non-Detect	0.0018
Maximum Non-Detect	0.0018

Number of Detected Data6Number of Non-Detect Data1Percent Non-Detects14.29%

Log-transformed Statistics

-4.269
4.511
1.929
3.433
-6.32
-6.32

Warning: There are only 6 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

UCL Statistics

Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Onl	у
Shapiro Wilk Test Statistic	0.892	Shapiro Wilk Test Statistic	0.8
5% Shapiro Wilk Critical Value	0.788	5% Shapiro Wilk Critical Value	0.788
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	33.3
SD	37.92
95% DL/2 (t) UCL	61.15
Maximum Likelihood Estimate(MLE) Method	
Mean	30.04
SD	39.55

05	00.00
95% MLE (t) UCL	59.1
95% MLE (Tiku) UCL	58.73

Assuming Lognormal Distribution

DL/2 Substitution Metho	bd
Mea	an 0.651
S	D 4.609
95% H-Stat (DL/2) UC	CL 1.92E+17

Log ROS Method

Mean in Log Scale	0.839
SD in Log Scale	4.26
Mean in Original Scale	33.3
SD in Original Scale	37.92
95% t UCL	61.15
95% Percentile Bootstrap UCL	56.43
95% BCA Bootstrap UCL	59.59

95% H UCL 7.85E+14

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Distribution Test with Detected Volues Only _

Gamma Distribution Test with Detected Values Only		
	k star (bias corrected)	0.303
	Theta Star	128.4
	nu star	3.631
		0.401
	A-D Test Statistic	0.491
	5% A-D Critical Value	0.754
	K-S Test Statistic	0.754
	5% K-S Critical Value	0.353
Data appear Gamma Distributed at 5% Significance Level		
Assuming Gamma Distribution Gamma ROS Statistics us		
	Minimum	0.014
	Maximum	91
	Mean	33.72
	Median	27
	SD	37.51
	k star	0.316
	Theta star	106.7
	Nu star	4.424
	AppChi2	0.896

- 95% Gamma Approximate UCL (Use when n >= 40) 166.5
- 95% Adjusted Gamma UCL (Use when n < 40) 290.1

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	33.3
SD	35.11
SE of Mean	14.54
95% KM (t) UCL	61.55
95% KM (z) UCL	57.21
95% KM (jackknife) UCL	61.12
95% KM (bootstrap t) UCL	80.39
95% KM (BCA) UCL	58.01
95% KM (Percentile Bootstrap) UCL	58.73
95% KM (Chebyshev) UCL	96.66
97.5% KM (Chebyshev) UCL	124.1
99% KM (Chebyshev) UCL	177.9
Potential UCLs to Use	
95% KM (t) UCL	61.55
95% KM (Percentile Bootstrap) UCL	58.73

7

0

Number of Detected Data Number of Non-Detect Data Percent Non-Detects 100.00%

0

7

Number of Valid Data Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 133 was not processed!

Number of Detected Data	90
Number of Non-Detect Data	2

Percent Non-Detects 2.17%

Log-transformed Statistics

Minimum Detected	-4.605
Maximum Detected	7.972
Mean of Detected	-0.351
SD of Detected	2.724
Minimum Non-Detect	-5.382
Maximum Non-Detect	-5.319
Number treated as Non-Detect	2

- Number treated as Non-Detect Number treated as Detected
- Number treated as Detected90Single DL Non-Detect Percentage2.17%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.0784
5% Lilliefors Critical Value	0.0934
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method		
Mean	-0.475	
SD	2.82	
95% H-Stat (DL/2) UCL	124.6	
Log ROS Method		
Mean in Log Scale	-0.501	
SD in Log Scale	2.876	
Mean in Original Scale	58.75	
SD in Original Scale	343.9	
95% t UCL	118.3	
95% Percentile Bootstrap UCL	123.8	
95% BCA Bootstrap UCL	154.2	
95% H UCL	149.6	

General Statistics

Number of Valid Data	92

Number of Distinct Detected Data 83

Raw Statistics

Minimum Detected	0.01
Maximum Detected	2900
Mean of Detected	60.06
SD of Detected	347.6
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.0049

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.459	
5% Lilliefors Critical Value	0.0934	
Data not Normal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	58.75
SD	343.9
95% DL/2 (t) UCL	118.3
Maximum Likelihood Estimate(MLE) Method	
Mean	53.15
SD	346.3
95% MLE (t) UCL	113.1

95% MLE (t) UCL 113.1 95% MLE (Tiku) UCL 105.9

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.171
Theta Star	350.2
nu star	30.87

- A-D Test Statistic 12.01
- 5% A-D Critical Value 0.942
- K-S Test Statistic 0.942 5% K-S Critical Value 0.106
- 5% K-S Critical Value

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001	
Maximum	2900	
Mean	58.75	
Median	0.575	
SD	343.9	
k star	0.163	
Theta star	360	
Nu star	30.03	
AppChi2	18.52	
95% Gamma Approximate UCL (Use when n >= 40)	95.28	
95% Adjusted Gamma UCL (Use when n < 40)	96.03	

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	58.75
SD	342
SE of Mean	35.86
95% KM (t) UCL	118.3
95% KM (z) UCL	117.7
95% KM (jackknife) UCL	118.3
95% KM (bootstrap t) UCL	617.3
95% KM (BCA) UCL	122.6
95% KM (Percentile Bootstrap) UCL	123.5
95% KM (Chebyshev) UCL	215.1
97.5% KM (Chebyshev) UCL	282.7
99% KM (Chebyshev) UCL	415.5

Potential UCLs to Use

97.5% KM (Chebyshev) UCL 282.7

Note: DL/2 is not a recommended method.

Number of Detected Data	1
Number of Non-Detect Data	6
Percent Non-Detects	85.71%

General Statistics Number of Valid Data

Number of Distinct Detected Data

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

7

1

The data set for variable 135 was not processed!

Number of Detected Data	90
Number of Non-Detect Data	2

Percent Non-Detects 2.17%

Log-transformed Statistics

Minimum Detected	-4.075
Maximum Detected	7.244
Mean of Detected	0.479
SD of Detected	2.711
Minimum Non-Detect	-5.382
Maximum Non-Detect	-5.319
Number treated as Non-Detect	2

- Number treated as Non-Detect Number treated as Detected
- Number treated as Detected90Single DL Non-Detect Percentage2.17%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.0869
5% Lilliefors Critical Value	0.0934
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	0.337
SD	2.846
95% H-Stat (DL/2) UCL	309.5
Log ROS Method	
Mean in Log Scale	0.33
SD in Log Scale	2.865
Mean in Original Scale	53.24
SD in Original Scale	221.7
95% t UCL	91.65
95% Percentile Bootstrap UCL	95.26
95% BCA Bootstrap UCL	115.8
95% H UCL	329

General Statistics

	N	umt	ber o	of V	alio	d Da	ata	92	
								= 0	

Number of Distinct Detected Data 78

Raw Statistics

Minimum Detected	0.017
Maximum Detected	1400
Mean of Detected	54.42
SD of Detected	224
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.0049

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.411	
5% Lilliefors Critical Value	0.0934	
Data not Normal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	53.24
SD	221.7
95% DL/2 (t) UCL	91.65
Maximum Likelihood Estimate(MLE) Method	
Mean	49.73
SD	223.4
95% MLE (t) UCL	88.43
95% MLE (Tiku) UCL	83.87

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.208
Theta Star	261.1
nu star	37.52
A-D Test Statistic	7.678
5% A-D Critical Value	0.908
K-S Test Statistic	0.908
5% K-S Critical Value	0.104
Data not Gamma Distributed at 5% Significance Level	
Assuming Gamma Distribution	
Gamma ROS Statistics using Extrapolated Data	
Minimum	0.000001
Maximum	1400
Mean	53.24

	0.000001
Maximum	1400
Mean	53.24
Median	1.09
SD	221.7
k star	0.195
Theta star	272.8
Nu star	35.91
AppChi2	23.19
95% Gamma Approximate UCL (Use when $n \ge 40$)	82.42
95% Adjusted Gamma UCL (Use when n < 40)	83

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	53.24
SD	220.5
SE of Mean	23.12
95% KM (t) UCL	91.65
95% KM (z) UCL	91.26
95% KM (jackknife) UCL	91.65
95% KM (bootstrap t) UCL	140.9
95% KM (BCA) UCL	98.94
95% KM (Percentile Bootstrap) UCL	94.14
95% KM (Chebyshev) UCL	154
97.5% KM (Chebyshev) UCL	197.6
99% KM (Chebyshev) UCL	283.3

Potential UCLs to Use

97.5% KM (Chebyshev) UCL	197.6
--------------------------	-------

Note: DL/2 is not a recommended method.

Number of Detected Data	0
Number of Non-Detect Data	7
Percent Non-Detects	100.00%

General Statistics Number of Valid Data

Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

7

0

91

1

The data set for variable 137 was not processed!

Number of Detected Data1Number of Non-Detect Data90Percent Non-Detects98.90%

General Statistics Number of Valid Data Number of Distinct Detected Data

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 138 was not processed!

137

Gene	eral S	Statis	tic

General Statistics			
Number of Valid Data	91	Number of Detected Data	4
Number of Distinct Detected Data	3	Number of Non-Detect Data	87
		Percent Non-Detects	95.60%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.2	Minimum Detected	-1.609
Maximum Detected	0.4	Maximum Detected	-0.916
Mean of Detected	0.3	Mean of Detected	-1.233
SD of Detected	0.0816	SD of Detected	0.285
Minimum Non-Detect	0.2	Minimum Non-Detect	-1.609
Maximum Non-Detect	1	Maximum Non-Detect	0
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	91
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	0
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	100.00%

Warning: There are only 3 Distinct Detected Values in this data set The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods. However, results obtained using 4 to 9 distinct values may not be reliable. It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

UCL Statistic	cs
Normal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.944
5% Shapiro Wilk Critical Value	0.748
Data appear Normal at 5% Significance Level	

Assuming Normal Distribution

/ totaling / torinal Biotribation	
DL/2 Substitution Method	
Mean	0.132
SD	0.0815
95% DL/2 (t) UCL	0.146
Maximum Likelihood Estimate(MLE) Method	N/A
MLE method failed to converge properly	

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.931

5% Shapiro Wilk Critical Value 0.748

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-2.133
SD	0.402
95% H-Stat (DL/2) UCL	0.139
Log ROS Method	
Mean in Log Scale	-2.818
SD in Log Scale	0.716
Mean in Original Scale	0.0774
SD in Original Scale	0.0645
95% t UCL	0.0886
95% Percentile Bootstrap UCL	0.0899
95% BCA Bootstrap UCL	0.0911
95% H-UCL	0.09

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	4.453
Theta Star	0.0674
nu star	35.62

- A-D Test Statistic 0.341
- 5% A-D Critical Value 0.657 K-S Test Statistic 0.657
- K-S Test Statistic 0.657 5% K-S Critical Value 0.394
- Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001
Maximum	0.4
Mean	0.0147
Median	0.000001
SD	0.0643
k star	0.0973
Theta star	0.151
Nu star	17.72
AppChi2	9.186
95% Gamma Approximate UCL (Use when n >= 40)	0.0284
95% Adjusted Gamma UCL (Use when n < 40)	N/A

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	0.205
SD	0.0264
SE of Mean	0.00334
95% KM (t) UCL	0.21
95% KM (z) UCL	0.21
95% KM (jackknife) UCL	0.268
95% KM (bootstrap t) UCL	0.209
95% KM (BCA) UCL	N/A
95% KM (Percentile Bootstrap) UCL	0.304
95% KM (Chebyshev) UCL	0.219
97.5% KM (Chebyshev) UCL	0.226
99% KM (Chebyshev) UCL	0.238
Potential UCLs to Use	
95% KM (t) UCL	0.21

95% KIVI (I) UCL	0.21
95% KM (Percentile Bootstrap) UCL	0.304

Note: DL/2 is not a recommended method.

Number of Detected Data	1
Number of Non-Detect Data	6
Percent Non-Detects	85.71%

General Statistics Number of Valid Data

Number of Distinct Detected Data

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

7

1

The data set for variable 140 was not processed!

Number of Detected Data	102
Number of Non-Detect Data	2

Percent Non-Detects 1.92%

Log-transformed Statistics

Minimum Detected	-8.069
Maximum Detected	6.924
Mean of Detected	-0.1
SD of Detected	2.85
Minimum Non-Detect	-5.382
Maximum Non-Detect	-5.319
Number treated as Non-Detect	5

- Number treated as Non-Detect Number treated as Detected
- Number treated as Detected99Single DL Non-Detect Percentage4.81%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.0706
5% Lilliefors Critical Value	0.0877
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-0.214
SD	2.939
95% H-Stat (DL/2) UCL	223.4
Log ROS Method	
Mean in Log Scale	-0.217
SD in Log Scale	2.945
Mean in Original Scale	27.33
SD in Original Scale	115.9
95% t UCL	46.19
95% Percentile Bootstrap UCL	48.17
95% BCA Bootstrap UCL	61.53
95% H UCL	227.8

General Statistics

Number of Valid Data	104
Number of Distinct Detected Data	102

Raw Statistics

Minimum Detected	0.000313
Maximum Detected	1016
Mean of Detected	27.86
SD of Detected	117
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.0049

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Stat	istics
Normal Distribution Test with Detected Values Only	
Lilliefors Test Statistic	0.406
5% Lilliefors Critical Value	0.0877
Data not Normal at 5% Significance Level	

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	27.33
SD	115.9
95% DL/2 (t) UCL	46.19
Maximum Likelihood Estimate(MLE) Method	
Mean	23.16
SD	118.7
95% MLE (t) UCL	42.48
95% MLE (Tiku) UCL	40.41

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

	valuee only	
	k star (bias corrected)	0.213
	Theta Star	130.8
	nu star	43.44
	A-D Test Statistic	7.016
	5% A-D Critical Value	0.907
	K-S Test Statistic	0.907
	5% K-S Critical Value	0.0983
Data not Gamma Distributed at 5% Signi	ficance Level	
Assuming Gamma Distributio Gamma ROS Statistics us		

Communico Ofationes doing Extrapolated Data	
Minimum	0.000001
Maximum	1016
Mean	27.33
Median	0.597
SD	115.9
k star	0.201
Theta star	135.9
Nu star	41.81
AppChi2	27.99
95% Gamma Approximate UCL (Use when n >= 40)	40.82
95% Adjusted Gamma UCL (Use when n < 40)	41.05

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	27.33
SD	115.3
SE of Mean	11.36
95% KM (t) UCL	46.19
95% KM (z) UCL	46.02
95% KM (jackknife) UCL	46.19
95% KM (bootstrap t) UCL	84.32
95% KM (BCA) UCL	50.89
95% KM (Percentile Bootstrap) UCL	47.99
95% KM (Chebyshev) UCL	76.86
97.5% KM (Chebyshev) UCL	98.3
99% KM (Chebyshev) UCL	140.4

Potential UCLs to Use

97.5% KM (Chebyshev) UCL	98.3
--------------------------	------

Note: DL/2 is not a recommended method.

Number of Detected Data	0
Number of Non-Detect Data	7
Percent Non-Detects	100.00%

General Statistics Number of Valid Data

Number of Valid Data

Number of Distinct Detected Data

Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

7

0

7

0

The data set for variable 142 was not processed!

General Statistics

Number of Detected Data 0 Number of Non-Detect Data 7 Percent Non-Detects 100.00%

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 143 was not processed!

General Statistics

Number of Valid Observations 7

Raw Statistics

Minimum 0.0047 Maximum 220 Mean 58.19 Geometric Mean 3.115 Median 39 SD 78.71 Std. Error of Mean 29.75 Coefficient of Variation 1.353 Skewness 1.746

Number of Distinct Observations 7

Log-transformed Statistics

Minimum of Log Data -5.36 Maximum of Log Data 5.394 Mean of log Data 1.136 SD of log Data 4.289

Warning: A sample size of 'n' = 7 may not adequate enough to compute meaningful and reliable test statistics and estimates!

It is suggested to collect at least 8 to 10 observations using these statistical methods! If possible compute and collect Data Quality Objectives (DQO) based sample size and analytical results.

Warning: There are only 7 Values in this data Note: It should be noted that even though bootstrap methods may be performed on this data set, the resulting calculations may not be reliable enough to draw conclusions

The literature suggests to use bootstrap methods on data sets having more than 10-15 observations.

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.778 Shapiro Wilk Critical Value 0.803

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 116

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 128.1 95% Modified-t UCL (Johnson-1978) 119.3 Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.857 Shapiro Wilk Critical Value 0.803 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 1.66E+15 95% Chebyshev (MVUE) UCL 2404 97.5% Chebyshev (MVUE) UCL 3244 99% Chebyshev (MVUE) UCL 4896

Gamma Distribution Test

k star (bias corrected) 0.234 Theta Star 248.2 MLE of Mean 58.19 MLE of Standard Deviation 120.2 nu star 3.282 Approximate Chi Square Value (.05) 0.461 Adjusted Level of Significance 0.0158 Adjusted Chi Square Value 0.24

Anderson-Darling Test Statistic 0.503 Anderson-Darling 5% Critical Value 0.805 Kolmogorov-Smirnov Test Statistic 0.258 Kolmogorov-Smirnov 5% Critical Value 0.339

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 414.5 95% Adjusted Gamma UCL (Use when n < 40) 795.1

Potential UCL to Use

Recommended UCL exceeds the maximum observation

Use 95% Adjusted Gamma UCL 795.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Data Distribution Data appear Gamma Distributed at 5% Significance Level

Nonparametric Statistics

95% CLT UCL 107.1 95% Jackknife UCL 116 95% Standard Bootstrap UCL 103 95% Bootstrap-t UCL 169.3 95% Hall's Bootstrap UCL 291.3 95% Percentile Bootstrap UCL 110.3 95% BCA Bootstrap UCL 121 95% Chebyshev(Mean, Sd) UCL 187.9 97.5% Chebyshev(Mean, Sd) UCL 244 99% Chebyshev(Mean, Sd) UCL 354.2

Number of Detected Data	101
Number of Non-Detect Data	3
Percent Non-Detects	2.88%

Log-transformed Statistics

Minimum Detected	-5.878
Maximum Detected	6.835
Mean of Detected	0.00679
SD of Detected	2.616
Minimum Non-Detect	-5.382
Maximum Non-Detect	-5.319
Number treated as Non-Detect	4

110		
١	lumber treated as Detected	100

Single DL Non-Detect Percentage	3.85%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.0877
5% Lilliefors Critical Value	0.0882
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-0.167
SD	2.771
95% H-Stat (DL/2) UCL	126.4
Log ROS Method	
Mean in Log Scale	-0.17
SD in Log Scale	2.776
Mean in Original Scale	22.2
SD in Original Scale	98.13
95% t UCL	38.17
95% Percentile Bootstrap UCL	40.74
95% BCA Bootstrap UCL	56.35
95% H UCL	128.4

General Statistics

Number of Valid Data	104
Number of Distinct Detected Data	84

Raw Statistics

Minimum Detected	0.0028
Maximum Detected	930
Mean of Detected	22.86
SD of Detected	99.51
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.0049

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics		
Normal Distribution Test with Detected Values Only		
Lilliefors Test Statistic	0.409	
5% Lilliefors Critical Value	0.0882	
Data not Normal at 5% Significance Level		

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	22.2
SD	98.13
95% DL/2 (t) UCL	38.17
Maximum Likelihood Estimate(MLE) Method	
Mean	19.39
SD	99.91
95% MLE (t) UCL	35.65
95% MLE (Tiku) UCL	33.84

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.23
Theta Star	99.27
nu star	46.51

- A-D Test Statistic 6.94
- 5% A-D Critical Value 0.899 K-S Test Statistic 0.899
- K-S Test Statistic 0.899 5% K-S Critical Value 0.0982
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001	
Maximum	930	
Mean	22.2	
Median	0.62	
SD	98.13	
k star	0.21	
Theta star	105.9	
Nu star	43.6	
AppChi2	29.46	
95% Gamma Approximate UCL (Use when n >= 40)	32.85	
95% Adjusted Gamma UCL (Use when n < 40)	33.03	

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	22.2
SD	97.66
SE of Mean	9.624
95% KM (t) UCL	38.17
95% KM (z) UCL	38.03
95% KM (jackknife) UCL	38.17
95% KM (bootstrap t) UCL	70.37
95% KM (BCA) UCL	40.33
95% KM (Percentile Bootstrap) UCL	39.77
95% KM (Chebyshev) UCL	64.14
97.5% KM (Chebyshev) UCL	82.3
99% KM (Chebyshev) UCL	117.9

Potential UCLs to Use

97.5% KM (Chebyshev) UCL 82.3

Note: DL/2 is not a recommended method.

General Statistics

Number of Valid Data	7	
Number of Distinct Detected Data	6	

Raw Statistics

Assuming Normal Distribution

Minimum Detected	0.031
Maximum Detected	311
Mean of Detected	129.8
SD of Detected	134.6
Minimum Non-Detect	0.0018
Maximum Non-Detect	0.0018

Number of Detected Data	6
Number of Non-Detect Data	1
Percent Non-Detects	14.29%

Log-transformed Statistics

Minimum Detected	-3.474
Maximum Detected	5.74
Mean of Detected	2.986
SD of Detected	3.612
Minimum Non-Detect	-6.32
Maximum Non-Detect	-6.32

Warning: There are only 6 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

UCL Statistics

Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Onl	y
Shapiro Wilk Test Statistic	0.858	Shapiro Wilk Test Statistic	0.806
5% Shapiro Wilk Critical Value	0.788	5% Shapiro Wilk Critical Value	0.788
Data appear Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	

111.2

132.3

208.4

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	1.558
SD	5.015
95% H-Stat (DL/2) UCL	6.21E+20

Log ROS Method Moon in Log Scale

Mean in Log Scale	1.832
SD in Log Scale	4.494
Mean in Original Scale	111.2
SD in Original Scale	132.3
95% t UCL	208.4
95% Percentile Bootstrap UCL	190.3
95% BCA Bootstrap UCL	199.7
	0.005.10

95% H UCL 9.02E+16

DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method

Mean	99.71
SD	137.8
95% MLE (t) UCL	201
95% MLE (Tiku) UCL	199.3

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

Gamma Distribution Test with Detected values Only	
k star (bias corrected)	0.289
Theta Star	448.4
nu star	3.473
A-D Test Statistic	0.481
5% A-D Critical Value	0.758
K-S Test Statistic	0.758
5% K-S Critical Value	0.354
Data appear Gamma Distributed at 5% Significance Level	
Assuming Gamma Distribution	
Gamma ROS Statistics using Extrapolated Data	
Minimum	0.031
Maximum	311
Mean	112.4
Median	85
SD	131.2
k star	0.301
Theta star	373.8
Nu star	4.209
AppChi2	0.806
95% Gamma Approximate UCL (Use when n >= 40)	586.9
95% Adjusted Gamma UCL (Use when n < 40)	1042
Note: DL/2 is not a recommended method.	

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	111.2
SD	122.5
SE of Mean	50.72
95% KM (t) UCL	209.8
95% KM (z) UCL	194.7
95% KM (jackknife) UCL	208.3
95% KM (bootstrap t) UCL	290.4
95% KM (BCA) UCL	204.8
95% KM (Percentile Bootstrap) UCL	192.6
95% KM (Chebyshev) UCL	332.3
97.5% KM (Chebyshev) UCL	428
99% KM (Chebyshev) UCL	615.8
Potential UCLs to Use	
95% KM (t) UCL	209.8
95% KM (Percentile Bootstrap) UCL	192.6

Number of Valid Data	7	Number of Detected Data	0
Number of Distinct Detected Data	0	Number of Non-Detect Data	7
		Percent Non-Detects	100.00%
Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics ar The Project Team may decide to use alternative site specific values t	e also NDs lying bel	ow the largest detection limit!	
The data set for variable 147 w	as not processed!		
General Statisti			
Number of Valid Data	7	Number of Detected Data	(
Number of Distinct Detected Data	0	Number of Non-Detect Data	7
		Percent Non-Detects	100.00%
Warning: All observations are Non-Detects (NDs), therefore Specifically, sample mean, UCLs, UPLs, and other statistics ar The Project Team may decide to use alternative site specific values t The data set for variable 148 w	e also NDs lying bel o estimate environm	imates should also be NDsI ow the largest detection limit!	100.00%
Specifically, sample mean, UCLs, UPLs, and other statistics and The Project Team may decide to use alternative site specific values to	e also NDs lying bel o estimate environm as not processed!	imates should also be NDsI ow the largest detection limit!	
Specifically, sample mean, UCLs, UPLs, and other statistics ar The Project Team may decide to use alternative site specific values t The data set for variable 148 w General Statisti	e also NDs lying bel o estimate environm as not processed! cs	imates should also be NDs! ow the largest detection limit! rental parameters (e.g., EPC, BTV).	100.00% 0 7

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 149 was not processed!

148

0	Number of Detected Data	7	General Statistic Number of Valid Data
7 100.00%	Number of Non-Detect Data Percent Non-Detects	0	Number of Distinct Detected Data
	v the largest detection limit!	e also NDs lying below o estimate environmen	Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are he Project Team may decide to use alternative site specific values to The data set for variable 150 wa
		as not processeu:	
		cs	General Statistic
0	Number of Detected Data	7	Number of Valid Data
7 100.00%	Number of Non-Detect Data Percent Non-Detects	0	Number of Distinct Detected Data
		e also NDs lying below	Warning: All observations are Non-Detects (NDs), therefore a Specifically, sample mean, UCLs, UPLs, and other statistics are 'he Project Team may decide to use alternative site specific values to
			The data set for variable 151 wa
			The data set for variable 151 wa
	ntal parameters (e.g., EPC, BTV).	as not processed! CS	General Statistic
0		as not processed!	

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 152 was not processed!

151

7

0

Number of Detected Data Number of Non-Detect Data Percent Non-Detects 100.00%

0

7

Number of Valid Data Number of Distinct Detected Data

Warning: All observations are Non-Detects (NDs), therefore all statistics and estimates should also be NDs! Specifically, sample mean, UCLs, UPLs, and other statistics are also NDs lying below the largest detection limit! The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable 153 was not processed!

Number of Valid Data	13
Number of Distinct Detected Data	5

Raw Statistics

0.14
7.6
2.258
3.182
0.1
0.14

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

Number of Detected Data Number of Non-Detect Data Percent Non-Detects 61.54%

5

8

Log-transformed Statistics

Minimum Detected	-1.966
Maximum Detected	2.028
Mean of Detected	-0.254
SD of Detected	1.757
Minimum Non-Detect	-2.303
Maximum Non-Detect	-1.966
Number treated as Non-Detect	8

Number treated as Detected	5
Single DL Non-Detect Percentage	61.54%

Warning: There are only 5 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

UCL Statistics

Normal Distribution Test with Detected Values Only 0.773 Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	0.905
SD	2.148
95% DL/2 (t) UCL	1.967
Maximum Likelihood Estimate(MLE) Method	N/A
MLE yields a negative mean	

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic	0.906
5% Shapiro Wilk Critical Value	0.762
Data appear Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-1.838
SD	1.654
95% H-Stat (DL/2) UCL	4.347
Log ROS Method	
Mean in Log Scale	-3.973
SD in Log Scale	3.358
Mean in Original Scale	0.87
SD in Original Scale	2.163
95% t UCL	1.94
95% Percentile Bootstrap UCL	1.982
95% BCA Bootstrap UCL	2.568
95% H-UCL	9483

Data Distribution Test with Detected Values Only Data appear Normal at 5% Significance Level

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.366
Theta Star	6.173
nu star	3.658

- A-D Test Statistic 0.373
- 5% A-D Critical Value 0.707 K-S Test Statistic 0.707
- K-S Test Statistic 0.707 5% K-S Critical Value 0.37

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001
Maximum	7.6
Mean	0.868
Median	0.000001
SD	2.164
k star	0.125
Theta star	6.922
Nu star	3.262
AppChi2	0.454
95% Gamma Approximate UCL (Use when n >= 40)	6.238
95% Adjusted Gamma UCL (Use when n < 40)	8.424

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	0.955
SD	2.044
SE of Mean	0.634
95% KM (t) UCL	2.084
95% KM (z) UCL	1.997
95% KM (jackknife) UCL	1.997
95% KM (bootstrap t) UCL	10.37
95% KM (BCA) UCL	2.482
95% KM (Percentile Bootstrap) UCL	2.308
95% KM (Chebyshev) UCL	3.717
97.5% KM (Chebyshev) UCL	4.912
99% KM (Chebyshev) UCL	7.26
Potential UCLs to Use	
95% KM (t) UCI	2 084

95% KW (I) UCL	2.004
95% KM (Percentile Bootstrap) UCL	2.308

Note: DL/2 is not a recommended method.

Number of Detected Data	90
Number of Non-Detect Data	1
Percent Non-Detects	1.10%

Log-transformed Statistics

Minimum Detected	3.497
Maximum Detected	6.064
Mean of Detected	4.389
SD of Detected	0.453
Minimum Non-Detect	1.386
Maximum Non-Detect	1.386

UCL Statistics

General Statistics

Number of Valid Data

Minimum Detected

Maximum Detected

Minimum Non-Detect

Maximum Non-Detect

Mean of Detected

SD of Detected

Number of Distinct Detected Data

91

56

33 430

90.97

58.67

4

4

Normal Distribution Test with Detected Values Only	Lognormal Distribution Test v	
Lilliefors Test Statistic	0.242	L
5% Lilliefors Critical Value	0.0934	5% L
Data not Normal at 5% Significance Level		Data not Lognormal at 5

Assuming Normal Distribution

Raw Statistics

DL/2 Substitution Method	
Mean	89.99
SD	59.09
95% DL/2 (t) UCL	100.3
Maximum Likelihood Estimate(MLE) Method	
Maximum Likelihood Estimate(MLE) Method Mean	89.72
	89.72 59.27
Mean	

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.145
5% Lilliefors Critical Value	0.0934
Data not Lognormal at 5% Significance Level	

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	4.348
SD	0.594
95% H-Stat (DL/2) UCL	104
Log ROS Method	
Mean in Log Scale	4.376
SD in Log Scale	0.468
Mean in Original Scale	90.23
SD in Original Scale	58.76
95% t UCL	100.5
95% Percentile Bootstrap UCL	100.3
95% BCA Bootstrap UCL	103.4
95% H UCL	97.06

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Gamma Distribution Test with Detected Values Only

Valueo only	
k star (bias corrected)	4.134
Theta Star	22.01
nu star	744.1

- A-D Test Statistic 3.4
- 5% A-D Critical Value 0.755
- K-S Test Statistic 0.755
- 5% K-S Critical Value 0.0945

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Minimum	0.000001
Maximum	430
Mean	89.97
Median	77
SD	59.12
k star	1.707
Theta star	52.7
Nu star	310.7
AppChi2	270.8
95% Gamma Approximate UCL (Use when n >= 40)	103.2
95% Adjusted Gamma UCL (Use when n < 40)	103.4

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	90.33
SD	58.34
SE of Mean	6.15
95% KM (t) UCL	100.6
95% KM (z) UCL	100.4
95% KM (jackknife) UCL	100.5
95% KM (bootstrap t) UCL	105
95% KM (BCA) UCL	101.4
95% KM (Percentile Bootstrap) UCL	100.9
95% KM (Chebyshev) UCL	117.1
97.5% KM (Chebyshev) UCL	128.7
99% KM (Chebyshev) UCL	151.5

Potential UCLs to Use

95% KM (BCA) UCL 101.4

Note: DL/2 is not a recommended method.

ATTACHMENT C-3

Supplemental Screening for Identification of COPECs

Attachment C-3: Supplemental Screening for Identification of COPECs

1.0 Introduction

A preliminary screening to identify COPECs is presented in Section 4.1.1 of the TEE (Appendix C). A total of 38 constituents were identified as candidate COPECs. Additional information is presented in this supplemental screen to refine the COPEC list to those constituents of primary concern.

2.0 Metals

Four metals were identified as candidate COPECs in Section 4.1.1: barium, lead, mercury, and zinc. A more detailed comparison of Site concentrations to natural background was conducted for these four metals.

These metals are naturally occurring in soils and rock, but are also present in a number of manufactured products. Natural background data for lead, mercury and zinc was obtained from the dataset used to develop natural background soil metals concentrations for Washington State (Washington State Department of Ecology [Ecology] 1994). Natural background data from the Puget Sound region was deemed most suitable for comparison to Site data. Ecology (1994) did not provide natural background data for barium. So natural background data was obtained from the dataset generated by the U.S. Geological Survey for the United States (Shacklette and Boerngen 1984), but only data from Washington State was included in this evaluation. For barium, the evaluation uses the background value reported by Ecology for Washington State (Ecology 1994).

Background comparisons were made to test the hypothesis that the mean/median concentrations of metals were less than or equal to the mean/median concentrations in samples from natural background areas. The software and statistical methods recommended in EPA's ProUCL statistical software package were used to make the background comparisons¹. Nonparametric hypothesis testing methods were used for making the background comparisons. Nonparametric methods were selected because:

- They can be used on data sets with normal and non-normal distributions.
- They have good performance for a wide variety of data distributions.
- They are not unduly affected by outlier observations.
- They can handle data sets with nondetect values.

Following EPA's ProUCL recommendations, the nonparametric Wilcoxon-Mann-Whitney (WMW) test was used when less than 40 percent of the samples from either the Site or background data sets contained non-detect values².

¹ ProUCL version 4.1.00 was used and is available online at <u>http://www.epa.gov/osp/hstl/tsc/software.htm</u>.

² Although ProUCL recommends the Quantile test be run in parallel with the Wilcoxon-Mann-Whitney test, the Quantile test is only used to detect a shift to the right in the right tails of the site and background data sets. Since the Quantile test has several statistical limitations that may apply to SSSMGP site data sets, it was not used in the background comparisons.

Results of the background comparisons along including summary statistics for the Site and background datasets is shown in Table 1. Results show that the Site data are equal to or below background for barium, but that the Site is above background for lead, mercury, and zinc. Therefore, barium is not identified as COPEC.

3.0 Cyanide

The gas produced at manufactured gas plants contained Prussic acid (HCN) which was removed by precipitation onto iron oxides (Trapp and Christiansen 2003). The resulting residue contained high concentrations of cyanide typically in the form of iron complexes, such as Prussian blue (Fe₄[Fe(CN)₆]₃). Free cyanide (HCN or CN-) was rarely present (Trapp and Christiansen 2003). These residues were potentially released to the soil around the former MGP facility at the Site.

Natural sources of cyanide include various species of bacteria, algae, fungi, and higher plants (Eisler 1991). Cyanide is produced in thousands of species of plants. A major threat to livestock and terrestrial mammals is through the ingestion of plants containing high levels of cyanogenic glycosides (Eisler 1991).

The fate of cyanide in soil is dependent upon concentration, pH, temperature, metal content, concentration of microbes, availability of nutrients, and acclimation of microbes (ATSDR 2006). Cyanide may occur in a variety of forms in soil including hydrogen cyanide, alkali metal salts, or as immobile metallocyanide complexes. Cyanide present at low concentrations will readily biodegrade under both aerobic and anaerobic soil conditions (ATSDR 2006). Cyanide has low biological availability in soils because it is either complexed by trace metals, metabolized by various microorganisms, or lost through volatilization (Eisler 1991). Soils at MGP sites contain probably some bioavailable cyanide, but most cyanide is complexed and far less toxic to plants and animals (Trapp and Christiansen 2003). Cyanide is highly reactive and readily metabolized in organisms demonstrating low bioaccumulation potential (Eisler 1991). Plants have evolved a number of strategies to detoxify cyanide (Trapp and Christiansen 2003). Trapp and Christiansen (2003) showed that trees can be successfully used to phytoremediate soils at an MGP site with total cyanide concentrations ranging from 41.8 to 452.4 mg/kg. Also, wildlife can detoxify sublethal doses of cyanide and excrete it as thiocyanate in urine (Eisler 1991).

Two types of cyanide analysis were performed on soil sample from the Site: total cyanide and weak acid dissociable (WAD) cyanide. The total cyanide or strong acid dissociable analysis used a strong acid and high heat extraction process that measures free cyanide, simple cyanides, and complex metal cyanides. The WAD analysis uses a weak acid extraction process that measures free cyanide, simple cyanide, simple cyanides, and metallocyanides. Results of WAD cyanide analysis provide an estimate of the bioavailable fraction of cyanide. Trapp and Christiansen (2003) found that between 2.6 and 9.6 percent of the total cyanide present in soils at a MGP site was measures as WAD cyanide.

A total of 13 soil samples from within the conditional POC were analyzed for cyanide. Nine samples are located in the upper portion of the Site and four are located in the lower portion of the Site. Table 2 presents a summary of the cyanide results.

The fraction of total cyanide measured as WAD cyanide varied between 6.5 and 11.9 percent³ which agrees well with the results from Trapp and Christiansen (2003).

Since plants naturally produce cyanogenic compounds and have evolved mechanisms of detoxification, it is unlikely that cyanide would present a hazard to plants at the Site. This is supported by the observation that apparently healthy vegetation is observed across the Site. No information was found to evaluate hazards of cyanide to soil biota. Sample et al. (1996) derived cyanide concentrations in food protective of a variety of mammalian wildlife species. These no-observed-adverse-effects-level (NOAEL) based concentrations ranged from 236.5 to 954.2 mg/kg. Since cyanide is not considered to be bioaccumulative, a comparison of the maximum detected soil concentration of total cyanide to the lowest protective concentration in mammalian food provides a conservative screen of hazards to mammals. This approach assumes that soil is the sole food source. Since the maximum detected soil concentration of total cyanide at the Site (76.4 mg/kg) is well below the minimum protective food concentration (236.5 mg/kg), it can be safely concluded that cyanide does not pose a hazard to mammalian wildlife. No toxicity data were available for avian wildlife.

Based on the preceding information, cyanide does not bioaccumulate and is unlikely to pose an ecological hazard. Additionally, the remedial investigation uses a very low screening level (1.01 mg/kg) to evaluate cyanide in the unsaturated zone, which is well below even the lowest screening level recommended by Ecology for this evaluation (5 mg/kg). Therefore, cyanide is not identified as a COPEC and the cleanup will mitigate cyanide to a lower level than would be achieved otherwise for protection of terrestrial species.

4.0 Volatile Organic Compounds

Six volatile organic compounds (VOCs) were identified as candidate COPECs in Section 4.1.1 including acetone, ethylbenzene, m,p-xylene, o-xylene, total xylenes, and toluene. All six VOCs were detected at a frequency of greater than 5 percent, but only toluene had an ecological indicator soil concentration (EISC). The EISC for toluene is 200 mg/kg which is based on the protection of plants and the soil EPC for toluene is 220 mg/kg.

VOC analysis was limited to seven soil samples collected from the 0 to 6-foot strata in the upper portion of the Site. The sample depth for these seven samples ranged from 2.5 to 6.5 feet. Table C-1 of Appendix C shows that acetone was detected in 2 of 7 samples, ethylbenzene and xylenes were detected in 6 of 7 samples, and toluene was detected in all 7 samples. Although the maximum detected concentration of acetone was relatively low (0.066 mg/kg), the maximum detected concentrations of the other six VOCs were relatively high ranging from 91 to 311 mg/kg.

Ethylbenzene, toluene, and xylenes are associated with coal tar⁴, but are also found in gasoline and many solvents.

³ This is based on samples with detections of both total and WAD cyanide and excludes one sample with detections at or slightly above the detection limit.

⁴ See <u>http://www.epa.gov/reg3hwmd/bf-lr/regional/industry/manufactured.htm</u>.

Acetone, ethylbenzene, toluene, and xylenes are weakly to moderately bound to soil (ATSDR 1994, 2000, 2007, 2010). Significant transport mechanisms in soil include volatilization and leaching. In addition, biodegradation of these VOCs is significant in soil. The six VOCs have log K_{ow} values less than 3.5 (see Table 3) indicating that they have a low potential to bioaccumulate.

Very little information is available concerning the hazards of the VOCs to plants and soil biota probably because of the limited ability of these constituents to persist in soil and bioaccumulate. The single available MTCA EISC is for toluene is based on a plant value reported by Efroymson et al. (1997a). This study reported a reduced growth rate in corn and soybeans at a toluene soil concentration of 200 mg/kg. The authors rated confidence in the value as low because it was based on a limited published data. A second study cited by Efroymson et al. (1997a) reported an effects concentration that caused a 50 percent reduction in the growth of lettuce of greater than 1,000 mg/kg. Toluene is not actively taken up by plants and is known to be oxidatively detoxified by plants (Efroymson et. al. 1997a).

There were no overt signs of phytotoxicity or stress to soil biota observed during the Site ecological survey or during several Site visits. This could indicate the VOCs are not toxic to these receptors or possibly that plant roots and soil biota do not come into contact with the VOCs because they primarily occupy the upper 1 to 2 feet of the soil horizon where concentrations of VOCs are expected to be low due to volatilization and biodegradation.

Acetone and toluene are common laboratory contaminants (EPA 1991) which may lead to false positive results. Acetone concentrations in Site soils were relatively low and may be associated with laboratory contamination.

In addition, very little information is available concerning the hazards of the VOCs to terrestrial wildlife. VOCs present in soil are generally not considered to pose a potential hazard to mammalian and avian species because of their relatively low potential to bioaccumulate and persist in soil. Nonetheless, the wildlife exposure models described in Section 4.2 of Appendix C were used to estimate provisional wildlife soil screening levels (SSLs) for acetone, ethylbenzene, toluene, and xylenes. The models consist of exposure parameters for three indicator wildlife species (i.e., shrew, vole, and robin), chemicalspecific bioaccumulation factors, and chemical- and species-specific toxicity reference values (TRVs). Wildlife exposure parameter values are described in Section 4.2.4 of Appendix C and bioaccumulation factors were estimated using methodologies described in MTCA (see MTCA Table 749-5). Since avian toxicity data for the 4 VOCs is very limited or non-existent, exposure models for the shrew and vole were used to evaluate potential impacts to wildlife.

Wildlife toxicity values are typically based on toxicological endpoints of ecological relevance that potentially manifest themselves by decreasing individual and/or population fitness. Acceptable toxicity endpoints for wildlife toxicity values include growth, reproduction, and survival. MTCA stipulates toxicity values be based on the lowest observed adverse effect level (LOAEL) from a toxicological study or group of studies [WAC 173-340-7493(4)(a)]. Toxicological studies evaluating relevant ecological endpoints on

wildlife species are limited for the 4 VOCs of interest. Therefore, this evaluation utilizes toxicity data from U.S. EPA's Integrated Risk Information System (IRIS)⁵ as a source of mammalian toxicity values.

IRIS provides protective oral reference doses (RfDs) for use in human health risk assessments that include summaries of the toxicological studies on which the RfD was based. These studies are typically conducted in the laboratory on rats and mice, but occasionally are based on epidemiological studies in occupational settings. Endpoints for the RfD toxicological studies do not typically include growth, reproduction, or survival, but usually include more sensitive endpoints such as increased organ weight, altered blood chemistry, and histopathological effects on specific organs. The ecological relevance for some of the RfD toxicity endpoints is unclear. For example, a rat's liver weight might increase in response to chemical exposure, but the impact of increased liver weight on growth, reproduction, or survival to animal in the wild is uncertain. In general, health protective RfD toxicity endpoints are considered protective of mammalian wildlife. The LOAEL from the primary RfD toxicological study was preferentially selected as the mammalian toxicity value for the 4 VOCs.

Table 3 presents the results of the quantitative evaluation of the potential ecological hazards posed by acetone, ethylbenzene, toluene, and xylene to wildlife. Provisional SSLs for the shrew (insectivorous mammal) and vole (herbivorous mammal) where calculated to evaluate the major routes of wildlife (mammalian) exposure to soil-borne chemicals. A comparison of the provisional SSLs to the soil EPCs at the Site shows the ISCs are 26 to 32,432 times greater. These results indicate that acetone, ethylbenzene, toluene, and xylenes do not pose a hazard to wildlife at the Site.

Additionally, the remedial investigation currently evaluates these VOCs using concentrations developed to be protective of the vapor intrusion pathway, which are lower and more-protective than the lowest values recommended by Ecology for this evaluation. For example, the remedial investigation uses 4.5 mg/kg for ethylbenzene (lower than Ecology's recommended value of 5.16 mg/kg for protection of the masked shrew) and 3.8 mg/kg for toluene (lower than Ecology's recommended value of 5.45 mg/kg). Based on the preceding evaluation and the lower, more restrictive values that will be used in order to protect indoor air from vapor intrusion, acetone, ethylbenzene, toluene, and xylenes were not identified as COPECs for this evaluation.

5.0 Semi-volatile Organic Compounds

Six non-PAH semi-volatile organic compounds (SVOCs) were detected in soil sample within the conditional point compliance (0-6 feet) at the Site. These SVOCs included 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2,4-dimethylphenol, 2-methylphenol, 4-methylphenol, and phenol. All seven of the samples analyzed for these constituents were collected from the upper portion of the Site from a depth ranging from 2.5-3.5 feet to 5.0-6.5 feet. The four phenolic compounds were detected in 1 of 7 samples at maximum concentrations ranging from 81 to 270 mg/kg (Table C-1 of Appendix C). However, 1,2,4-trimethylbenzen was detected in 5 of 7 samples at a maximum concentration of 120 mg/kg and 1,3,5-trimethylbenze was detected in 3 of 7 samples at a maximum concentration of 52 mg/kg.

⁵ Available online at <u>http://www.epa.gov/iris/search_keyword.htm</u>.

1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2,4-dimethylphenol, 2-methylphenol, 4-methylphenol, and phenol are associated with coal tar and hence with MGP sites. However, the methylbenzenes are also associated with gasoline and the phenols are naturally occurring in plants and are breakdown products of wood degradation⁶.

Both 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene have relatively low mobility in soil, can volatilize from soil, and are subject to biodegradation⁷. Since the log K_{ow} values of these two compounds are less than 4 (Table 4), they are not expected to bioaccumulate.

The four phenolic compounds have moderate to high mobility in soil, are able to volatilize from soil, and are readily biodegraded (ATSDR 2008a,b). Since the log K_{ow} values of these four compounds are less than 4 (Table 4), they are not expected to bioaccumulate.

No MTCA EISCs are available concerning the ecological hazards of 1,2,4-trimethylbenzene, 1,3,5trimethylbenzene, 2,4-dimethylphenol, 2-methylphenol, and 4-methylphenol to plants and soil biota probably because of the limited ability of these constituents to persist in soil and bioaccumulate. An internet search for toxicity information on these five SVOCs also failed to identify any suitable toxicity data. However, there were no overt signs of phytotoxicity or stress to soil biota observed during the site survey or during several site visits. This could indicate the SVOCs are not toxic to these receptors or possibly that plant roots and soil biota do not come into contact with the SVOCs because they primarily occupy the upper 1 to 2 feet of the soil horizon where concentrations of SVOCs are expected to be low due to volatilization and biodegradation.

The plant and soil biota EISCs for phenol were obtained from Efroymson et al. (1997a and 1997b). These reports rate confidence in both values as low because of a small number of published reports characterizing their potential toxicity. These types of plant and soil biota toxicity studies are typically conducted in the laboratory where soils are treated with the constituent and then the test subjects are exposed to the treated soil for a period time to evaluate their responses. Constituents present in soils at the Site have been there many years since park development and have been the subject of aging and degradation that have further altered their bioavailability and toxicity (Alexander 2000). Phenol is soluble in water and is expected to readily leach from soil (ATSDR 2008c). Phenol biodegrades rapidly in soil under both aerobic and anaerobic soil conditions with a half-life of generally less than 5 days. Since phenol is soluble in water, the potential for bioaccumulation is low (ATSDR 2008c). Although plants readily uptake phenol, they are capable of metabolizing phenol such that it does not accumulate in plant tissues. Given the fact that there were no overt signs of phytotoxicity or stress to soil biota observed during the site survey or during several site visits, it seems unlikely phenol present in the soil would pose a hazard to these receptors.

 ⁶ Information obtained from the Hazardous Substance Database available online at <u>http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB</u> and <u>http://www.epa.gov/reg3hwmd/bf-lr/regional/industry/manufactured.htm</u>.
 ⁷ Information obtained from the Hazardous Substance Database available online at <u>http://toxnet.nlm.nih.gov/cgi-</u>

bin/sis/htmlgen?HSDB.

In addition, very little information is available concerning the hazards of the six SVOCs to terrestrial wildlife. A conservative screening of potential hazards of these six SVOCs to wildlife was performed using the methodology described in Section 4.0 of Appendix C. Results of this evaluation are shown in Table 4. Mammalian toxicity reference values were not available for 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, or 4-methylphenol, so potential wildlife hazards could not be assessed. However, a comparison of the provisional SSLs to the soil EPCs at the Site for 2,4-dimethylphenol, 2-methylphenol, and phenol shows the ISCs are 1 to 19 times greater.

Additionally, for phenol, Ecology requested that this evaluation include a comparison of the Site data to a screening level developed for protection of the masked shrew (120 mg/kg). There was only one detection of phenol in Site soil, which was 0.25 mg/kg, well below the protective concentration.

Results of this evaluation suggest these SVOCs do not pose a hazard to wildlife, and 1,2,4trimethylbenzene, 1,3,5-trimethylbenzene, 2,4-dimethylphenol, 2-methylphenol, 4-methylphenol, and phenol were not identified as COPECs.

6.0 Petroleum Products

Three petroleum products were detected in Site soils: diesel range organics (DRO), gasoline range organics (GRO), and lube oil. The seven soil samples that were analyzed for petroleum products are all located in the upper portion of the Site and were collected from depths ranged from 2.5 - 3.5 feet to 5.0 – 6.5 feet. Table C-1 in Appendix C shows that GRO was detected in 6 of 7 samples, while DRO and lube oil were detected in 7 of 7 samples. Detected concentrations ranged from 41 to 1,200 mg/kg for DRO, 28 to 15,000 mg/kg for GRO, and 69 to 1,300 mg/kg for lube oil. Table C-1 also shows that the EPCs for DRO (783 mg/kg) and GRO (10,857 mg/kg) were above the EISCs for soil biota, and the EPC for GRO was also above the wildlife EISC. No EISCs are available for lube oil.

The risk-based EISCs for DRO and GRO are based on exposing biota to fresh product. The petroleum products detected in upper area soils are either associated with fill brought to the Site during Boulevard Park development around 1980 or are associated with historical MGP operations which ceased in the late 1940s. As petroleum products weather and age in soil, many of the more toxic components (e.g., benzene in GRO) are lost to evaporation and degradation processes, and the residual constituents become more strongly bound to the soil making them less bioavailable and toxic (Alexander 2000).

GRO, DRO, and lube oil are comprised of complex mixtures of petroleum hydrocarbons that can be grouped into two fractions: aliphatic hydrocarbons and aromatic hydrocarbons. The aliphatic fraction is comprised of straight-chained and branched alkanes, cycloalkanes, and alkenes. The aromatic fraction includes monocyclic aromatic hydrocarbons (e.g., benzene, ethylbenzene, toluene, and xylene) and polycyclic aromatic hydrocarbons (PAHs) (e.g., anthracene, benzo(a)pyrene, fluorene, and pyrene). The aromatic fraction is the more toxic fraction and the aromatic fraction is addressed as individual compounds in this TEE.

The aliphatic fraction of petroleum products in soil are subject to volatilization, leaching, and biodegradation (ATSDR 1999). In general, the lower the carbon number, the more volatile and soluble

the compound. In addition, the organic carbon-water partition coefficient generally increases with carbon number such that the compound becomes more strongly bound to the organic carbon in the soil. For example, aliphatic compounds 5 and 6 carbons are readily removed from soil through volatilization and leaching, while aliphatic compounds with 16 to 35 carbon atoms are strongly bound to the organic carbon in the soil. Aliphatic compounds are subject to biodegradation by soil microbes (ATSDR 1999). In general, straight chain aliphatic compounds are degraded more rapidly than highly branched aliphatic compounds. Also, aliphatic compounds with lower carbon numbers (6 to 8) are readily degraded, while aliphatic compounds with more than 22 carbon atoms are not available to degrading microbes.

Since the more toxic components of DRO, GRO, and lube oil are addressed as individual compounds in this TEE and the residual aliphatic hydrocarbon fraction remaining in the soil likely has low toxicity and bioavailability, DRO, GRO, and lube oil are not identified as COPECs for this site-specific TEE. Additionally, Ecology requested that this evaluation compare Site data to screening levels developed for protection of soil biota. These screening levels are 260 mg/kg for DRO and 120 mg/kg for GRO. For GRO, the remedial investigation uses a screening level of 30 mg/kg, which is well below and therefore more protective than the value of 120 mg/kg. For DRO, the remedial investigation uses a larger value, 2,000 mg/kg. However, as discussed above, empirical demonstration of healthy soil biota confirms existing concentrations are protective. Additionally, the TPH detected at the Site is co-located with other indicator hazardous substance, and will be remediated as part of the cleanup action.

7.0 Conclusions

Based upon information presented in this attachment, barium, cyanide, acetone, ethylbenzene, toluene, xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2,4-dimethyphenol, 2-methylphenol, 4methylphenol, DRO, GRO, and lube oil are note identified as COPECs for TEE of the SSSMGP Site. These conclusions are based on the evaluation of potential ecological hazards, environmental fate characteristics of the constituents, and observations of stress to plants and soil biota inhabiting the Site. In addition, the ecological hazards associated with DRO, GRO, and lube oil is assessed through the evaluation of the most toxic components of these complex petroleum hydrocarbon mixtures (i.e., PAHs, BTEX).

There are several sources of uncertainty associated with these conclusions. The most important uncertainty is the lack of toxicity information with which to assess hazards of many of these constituents to plants, soil biota, and birds. The main reason for this lack of toxicity information is that most of these constituents do not persist in the soil and do not bioaccumulate from soil into terrestrial plants and soil biota where they can enter terrestrial food chains. These characteristics suggest that these constituents are unlikely to pose ecological hazards at the relatively low concentrations present at the Site. In addition, no overt signs of stress to plants or soil biota (earthworms) were noted during the site survey and site visits. Although the toxicity of many constituents to birds could not be directly evaluated, toxicity to mammals was conservatively evaluated. Birds may be more or less sensitive to particular constituents than mammals, however, the relatively low hazards estimated for mammals is likely to be protective of birds.

8.0 References

- Agency for Toxic Substances and Disease Registry (ATSDR). 1994. Toxicological Profile for Acetone. U.S. Department of Health and Human Services, ATSDR, Atlanta, Georgia. Available online at http://www.atsdr.cdc.gov/toxprofiles/index.asp.
- Agency for Toxic Substances and Disease Registry (ATSDR). 1999. Toxicological Profile for Total Petroleum hydrocarbons. U.S. Department of Health and Human Services, ATSDR, Atlanta, Georgia. Available online at <u>http://www.atsdr.cdc.gov/toxprofiles/index.asp</u>.
- Agency for Toxic Substances and Disease Registry (ATSDR). 2000. Toxicological Profile for Toluene. U.S. Department of Health and Human Services, ATSDR, Atlanta, Georgia. Available online at <u>http://www.atsdr.cdc.gov/toxprofiles/index.asp</u>.
- Agency for Toxic Substances and Disease Registry (ATSDR). 2006. Toxicological Profile for Cyanide. U.S. Department of Health and Human Services, ATSDR, Atlanta, Georgia. Available online at <u>http://www.atsdr.cdc.gov/toxprofiles/index.asp</u>.
- Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile for Xylenes. U.S. Department of Health and Human Services, ATSDR, Atlanta, Georgia. Available online at <u>http://www.atsdr.cdc.gov/toxprofiles/index.asp</u>.
- Agency for Toxic Substances and Disease Registry (ATSDR). 2008a. Toxicological Profile for Phenol. U.S. Department of Health and Human Services, ATSDR, Atlanta, Georgia. Available online at http://www.atsdr.cdc.gov/toxprofiles/index.asp.
- Agency for Toxic Substances and Disease Registry (ATSDR). 2008b. Toxicological Profile for Cresols. U.S. Department of Health and Human Services, ATSDR, Atlanta, Georgia. Available online at http://www.atsdr.cdc.gov/toxprofiles/index.asp.
- Agency for Toxic Substances and Disease Registry (ATSDR). 2008c. Toxicological Profile for Phenol. U.S. Department of Health and Human Services, ATSDR, Atlanta, Georgia. Available online at http://www.atsdr.cdc.gov/toxprofiles/index.asp.
- Agency for Toxic Substances and Disease Registry (ATSDR). 2010. Toxicological Profile for Ethylbenzene. U.S. Department of Health and Human Services, ATSDR, Atlanta, Georgia. Available online at <u>http://www.atsdr.cdc.gov/toxprofiles/index.asp</u>.
- Alexander, M., 2000. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science & Technology 34(20): 4259-4265.
- Eisler, R. 1991. Cyanide Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service. Contaminant Hazard Reviews, Report 23. Available online at <u>http://www.pwrc.usgs.gov/infobase/eisler/reviews.cfm</u>.

- Efroymson, R.A., M.E. Will, G.W. Suter II, and A.C. Wooten. 1997a. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. Oak Ridge National Laboratory, Oak Ridge, TN. 128 pp. ES/ER/TM-85/R3. Available online at http://www.esd.ornl.gov/programs/ecorisk/benchmark_reports.html.
- Efroymson, R.A., M.E Will, and G.W. Suter II. 1997b. Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Processes: 1997 Revision. Oak Ridge National Laboratory, Oak Ridge TN. ES/ER/TM-126/R2. Available online at <u>http://www.esd.ornl.gov/programs/ecorisk/benchmark_reports.html</u>.
- Sample, B.E., D.M. Opresko, and G.W. Suter II. 1996. Toxicological Benchmarks for Wildlife: 1996 Revision. Oak Ridge National Laboratory, ES/ER/TM-86/R3. Available online at http://www.esd.ornl.gov/programs/ecorisk/benchmark_reports.html.
- Shacklette, H.T., and J.G. Boerngen. 1984. Element Concentration in Soils and Other Surficial Material of the Conterminous United States. U.S. Geological Survey Professional Paper 1270. Available online at http://pubs.usgs.gov/pp/1270/pdf/PP1270_508.pdf.
- Trapp, S.A.J., and H. Christiansen. 2003. Phytoremediation of Cyanide Polluted Soils. In Phytoremediation: Transformation and Control of Contaminants. S.C. McCutcheon and J.L. Schnoor, eds. John Wiley & Sons, Inc., Hoboken, New Jersey.
- U.S. Environmental Protection Agency (EPA). 1991. Guidance for Data Useability in Risk Assessment (Part A). Office of research and Development, Washington, D.C. EPA/540R-92/003. Available online at http://rais.ornl.gov/documents/USERISKA.pdf.
- Washington Stated Department of Ecology (Ecology). 1994. Natural Background Soil Metals concentrations in Washington State. Ecology Publication #94-115. Available online at https://fortress.wa.gov/ecy/publications/summarypages/94115.html.

Note: This table contains output files from EPA's ProUCL statistical package.

From File: WorkSheet.wst

Summary Statistics for Raw Data Sets with NDs using Detected Data Only

		Raw Statistics using Detected Observations									
Variable	Num Ds	NumNDs	% NDs	Minimum	Maximum	Mean	Median	SD	MAD/0.675	Skewness	CV
Barium - site	91	0	0.00%	32.2	724	187.9	144	143.1	78.72	2.205	0.762
Lead - site	91	0	0.00%	3	747	72.34	35	118.1	29.65	3.563	1.632
Mercury - site	89	2	2.20%	0.03	1.37	0.162	0.09	0.225	0.0593	3.298	1.39
Zinc - site	90	1	1.10%	33	430	90.97	77.5	58.67	22.98	3.469	0.645
Barium - background	-	-	-	-	-	255	-	-	-	-	-
Lead - background	26	15	36.59%	3.8	397	27.9	12	75.65	8.006	5.019	2.712
Mercury - background	41	0	0.00%	0.012	0.107	0.0508	0.052	0.0189	0.0148	0.392	0.372
Zinc - background	41	0	0.00%	12	135	55.84	54	25.93	23.72	1.051	0.464

Notes:

Num Ds - number of samples with detected values

Num NDs - number of samples with nondetected values

 $\% \mbox{ NDs}$ - percent of samples with nondetected values

Minimum - minimum detected value (mg/kg)

Maximum - maximum detected value (mg/kg) Mean - mean concentrations (mg/kg)

wearr - mean concentrations (mg/kg)

Median - median concentration (mg/kg) SD - standard deviation (mg/kg)

SD - Standard deviation (mg/kg)

MAD/0.675 - mean absolute deviation divided by 0.675 (a robust estimate of variability)

Skewness - skewness statistic

CV - coefficient of variation (mg/kg)

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Data Sets with Non-Detects

User Selected Options

 From File
 WorkSheet.wst

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Substantial Difference (S)
 0

 Selected Null Hypothesis
 Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1)

 Alternative Hypothesis
 Site or AOC Mean/Median Greater Than Background Mean/Median

Area of Concern Data: Barium

Background Data: Barium

Selected Null Hypothesis Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1)

Area of Concern Data: Lead Background Data: Lead

Raw Statistics

	Site	Background
Number of Valid Data	91	41
Number of Non-Detect Data	0	15
Number of Detect Data	91	26
Minimum Non-Detect	N/A	4
Maximum Non-Detect	N/A	5
Percent Non detects	0.00%	36.59%
Minimum Detected	3	3.8
Maximum Detected	747	397
Mean of Detected Data	72.34	27.9
Median of Detected Data	35	12
SD of Detected Data	118.1	75.65

Wilcoxon-Mann-Whitney Site vs Background Test

All observations <= 5 (Max DL) are ranked the same Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Site or AOC <= Mean/Median of Background

Site Rank Sum W-Stat 7376 WMW Test U-Stat 6.508 WMW Critical Value (0.050) 1.645 P-Value 3.8E-11

Conclusion with Alpha = 0.05 Reject H0, Conclude Site > Background P-Value < alpha (0.05)

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Data Sets with Non-Detects

User Selected Options

WorkSheet.wst From File Full Precision OFF Confidence Coefficient 95% Substantial Difference (S) 0 Selected Null Hypothesis Site or AOC Mean/Median Less Than or Equal to Background Mean/Median (Form 1) Alternative Hypothesis Site or AOC Mean/Median Greater Than Background Mean/Median

Area of Concern Data: Mercury **Background Data: Mercury**

Raw Statistics

	Site	Background
Number of Valid Data	91	41
Number of Non-Detect Data	2	0
Number of Detect Data	89	41
Minimum Non-Detect	0.02	N/A
Maximum Non-Detect	0.05	N/A
Percent Non detects	2.20%	0.00%
Minimum Detected	0.03	0.012
Maximum Detected	1.37	0.107
Mean of Detected Data	0.162	0.0508
Median of Detected Data	0.09	0.052
SD of Detected Data	0.225	0.0189

Wilcoxon-Mann-Whitney Site vs Background Test Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Site or AOC <= Mean/Median of Background

Site Rank Sum W-Stat 6980 WMW Test U-Stat 4.561 WMW Critical Value (0.050) 1.645 P-Value 2.54E-06

Conclusion with Alpha = 0.05 Reject H0, Conclude Site > Background P-Value < alpha (0.05)

User Selected Options

Wilcoxon-Mann-Whitney Site vs Background Comparison Test for Data Sets with Non-Detects

From File	WorkSheet.wst
Full Precision	OFF
Confidence Coefficient	95%
Substantial Difference (S)	0
Selected Null Hypothesis	Site or AOC Mean/Media
	0 ¹ 10011 11

ian Less Than or Equal to Background Mean/Median (Form 1) Alternative Hypothesis Site or AOC Mean/Median Greater Than Background Mean/Median

Area of Concern Data: Zinc **Background Data: Zinc**

Raw Statisti	cs	
	Site	Background
Number of Valid Data	91	41
Number of Non-Detect Data	1	0
Number of Detect Data	90	41
Minimum Non-Detect	4	N/A
Maximum Non-Detect	4	N/A
Percent Non detects	1.10%	0.00%
Minimum Detected	33	12
Maximum Detected	430	135
Mean of Detected Data	90.97	55.84
Median of Detected Data	77.5	54

SD of Detected Data 58.67 25.93

Wilcoxon-Mann-Whitney Site vs Background Test Wilcoxon-Mann-Whitney (WMW) Test

H0: Mean/Median of Site or AOC <= Mean/Median of Background

Site Rank Sum W-Stat 7024 WMW Test U-Stat 4.777 WMW Critical Value (0.050) 1.645 P-Value 8.88E-07

Conclusion with Alpha = 0.05 Reject H0, Conclude Site > Background P-Value < alpha (0.05)

Table 2. Summary	of C	yanide	Data	for	Site	Soils
------------------	------	--------	------	-----	------	-------

Parameter	Upper Exp	osure Area	Lower Exposure Area			
	Total Cyanide	WAD Cyanide	Total Cyanide	WAD Cyanide		
Number of Samples	9	9	4	4		
Number of Samples with Detected Concentrations	5	3	4	2		
Minimum Detected Concentration (mg/kg)	0.125	0.14	0.376	0.59		
Maximum Detected Concentration (mg/kg)	76.4	7.6	23.6	2.8		

WAD - weak acid dissociable

Table 3. Provisional Wildlife Ecological Soil Screening Levels for Detected Volatile Organic Compounds

Constituent	Is Constituent Chlorinated?	Log K _{ow} ^a	Mammalian Toxicity Value (mg/kg/d) ^b	Toxicity Value Comment	Earthworm BAF ^c	Plant BAF ^d	Shrew SSL (mg/kg)	Vole SSL (mg/kg)	EPC (mg/kg) ^e	Ratio Shrew SSL to EPC	Ratio Vole SSL to EPC
Acetone	No	-0.24	1,700	LOAEL subchronic oral rat study based on increased kidney and liver weight	0.7	53.30	21,405	364	0.66	32,432	552
Ethyl benzene	No	3.15	291	LOAEL chronic rat oral study based on histopathological changes to liver and kidney	0.7	0.58	3,664	5,392	138.6	26	39
Toluene	No	2.73	446	LOAEL subchronic oral rat study based on increased kidney weight	0.7	1.02	5,616	4,832	220	26	22
Total Xylenes	No	3.12	500	LOAEL chronic oral rat study oral study based on decreased body weight and survival	0.7	0.61	6,296	8,920	209.8	30	43

Notes:

^aLog octanol/water partition coefficient (Log Kow) values were obtained from the National Library of Medicine's Hazardous Substances Data Bank (HSDB) available at http://toxnet.nlm.nih.gov/.

^bMammalian toxicity values were obtained from U.S. EPA's Integrated Risk Information System (IRIS) available online at http://toxnet.nlm.nih.gov/.

^c MTCA (Table 749-5) default bioaccumulation factors (BAFs) for organic chemicals in earthworms are:

Nonchlorinated organic chemicals: Log Kow < 5 = 0.7 Log Kow > 5 = 0.9 Chlorinated organic chemicals: Log Kow < 5 = 4.7

Log Kow > 5 = 11.8

^e MTCA (Table 749-5) default BAFs for organic chemicals in plants are calculated as 10^{(1.588-(0.5781*LogKow))}

^e These values are the reasonable maximum exposure point concentrations (EPCs) from Table C-1 of Appendix C. For xylenes, the total xylene EPC was used which is the sum of m,p-xylene and o-xylene EPCs.

BAF - bioaccumulation factor

SSL - soil screening level

LOAEL - lowest observed adverse effect level

Constituent	Is Constituent Chlorinated?	Log K _{ow} a	Mammal Toxicity Value (mg/kg/d) ^b	Toxicity Value Comment	Earth- worm BAF ^c	Plant BAF ^d	Shrew SSL (mg/kg)	Vole SSL (mg/kg)	EPC (mg/kg) ^e	Ratio Shrew SSL to EPC	Ratio Vole SSL to EPC
1,2,4-Trimethylbenzene	No	3.78	NA		0.7	0.25	NA	NA	70.14	NA	NA
1,3,5-Trimethylbenzene	No	3.42	NA		0.7	0.41	NA	NA	52	NA	NA
2,4-Dimethylphenol	No	2.3	250	LOAEL subchronic oral mouse study based on clinical signs and hematological changes	0.7	1.81	3,148	1,549	81	39	19
2-Methylphenol	No	1.95	150	LOAEL subchronic oral rat study based on decreased body weight and neurotoxicity	0.7	2.89	1,889	587	86	22	7
4-Methylphenol	No	1.94	NA		0.7	2.93	NA	NA	210	NA	NA
Phenol	No	1.46	120	LOAEL for decreased maternal body weight gain in rats	0.7	5.55	1,511	246	270	6	1

Table 4. Provisional Wildlife Soil Screening Levels for Detected Semi-volatile Organic Compounds

Notes:

^aLog octanol/water partition coefficient (Log Kow) values were obtained from the National Library of Medicine's Hazardous Substances Data Bank (HSDB) available at http://toxnet.nlm.nih.gov/.

^bMammalian toxicity values were obtained from U.S. EPA's Integrated Risk Information System (IRIS) available online at http://toxnet.nlm.nih.gov/.

^c MTCA (Table 749-5) default bioaccumulation factors (BAFs) for organic chemicals in earthworms are:

Nonchlorinated organic chemicals: Log Kow < 5 = 0.7Log Kow > 5 = 0.9Chlorinated organic chemicals: Log Kow < 5 = 4.7Log Kow > 5 = 11.8

^e MTCA (Table 749-5) default BAFs for organic chemicals in plants are calculated as 10^{(1.588-(0.5781*LogKow))}

^e These values are the reasonable maximum exposure point concentrations (EPCs) from Table C-1 of Appendix C.

BAF - bioaccumulation factor

SSL - soil screening level

LOAEL - lowest observed adverse effect level

NA - not available

ATTTACHMENT C-4

ProUCL Output Files – Exposure Area Soil UCLs

Attachment C-4. ProUCL Output Files - Exposure Area Soil UCLs

From File: C:\Users\admin\Desktop\PAH data.wst

Summary Statistics for Raw Data Sets with NDs using Detected Data Only

						Raw S	tatistics (using De	etected O	bservat	ions				
Variable #	Exposure Area	Variable Name	Num Ds	Num NDs	% NDs	Min.	Max.	Mean	Median	SD	MAD/0.675	Skewness	cv	UCL	EPC
L21	Lower	1-Methylnaphthalene	18	9	33.33%	0.0097	16	1.431	0.0565	3.981	0.0549	3.365	2.782	7.322	7.322
S21	Slope	1-Methylnaphthalene	12	0	0.00%	0.021	3.4	0.794	0.395	1.088	0.415	1.839	1.371	1.725	1.725
U21	Upper	1-Methylnaphthalene	43	10	18.87%	0.0052	7500	207.8	0.048	1151	0.0614	6.354	5.541	1590	1590
L37	Lower	2-Methylnaphthalene	22	5 1	18.52%	0.013	28 6.3	1.828	0.0615	6.08	0.0541	4.195	3.326	12.09	12.09
S37 U37	Slope	2-Methylnaphthalene	11 47	6	8.33% 11.32%	0.036	13000	1.284 322.3	0.46	1.911 1904	0.543	2.189 6.701	1.489 5.908	3.531 2741	3.531 2741
L54	Upper Lower	2-Methylnaphthalene Acenaphthene	15	12	44.44%	0.0034	4.6	0.521	0.008	1.335	0.0875	2.707	2.561	2.265	2.265
S54	Slope	Acenaphthene	11	1	8.33%	0.0044	1.1	0.283	0.029	0.374	0.129	1.591	1.32	0.722	0.722
U54	Upper	Acenaphthene	17	36	67.92%	0.0044	250	21.26	0.48	62.63	0.623	3.501	2.946	57.28	57.28
L55	Lower	Acenaphthylene	25	2	7.41%	0.0093	88	5.079	0.095	17.97	0.108	4.474	3.539	37.92	37.92
S55	Slope	Acenaphthylene	12	0	0.00%	0.041	34	5.886	1.25	10.65	1.601	2.21	1.809	19.59	19.59
U55	Upper	Acenaphthylene	47	6	11.32%	0.0053	2600	73.96	0.087	388.9	0.115	6.294	5.258	567.1	567.1
L59	Lower	Anthracene	24	3	11.11%	0.012	56	4.6	0.24	13.65	0.298	3.331	2.967	28.89	28.89
S59	Slope	Anthracene	12	0	0.00%	0.048	14	3.677	1.075	5.113	1.379	1.336	1.39	9.107	9.107
U59	Upper	Anthracene	39	14	26.42%	0.0059	1000	38.99	0.12	170	0.167	5.246	4.359	229.4	229.4
L70	Lower	Benzo(a)anthracene	35	1	2.78%	0.0075	650	23.63	0.44	110.1	0.638	5.747	4.657	203.1	203.1
S70	Slope	Benzo(a)anthracene	12	0	0.00%	0.34	76	20.18	7.35	27.8	9.451	1.302	1.378	49.4	49.4
U70	Upper	Benzo(a)anthracene	52	4	7.14%	0.012	570	19.18	0.195	85.92	0.26	5.814	4.481	128.1	128.1
L71 S71	Lower	Benzo(a)pyrene	36 12	0	0.00%	0.0028	810 120	30.67 27.24	0.48 9.25	135.6 39.96	0.687	5.736	4.423	171.9 65.79	171.9 65.79
U71	Slope Upper	Benzo(a)pyrene Benzo(a)pyrene	52	4	7.14%	0.74	430	15.28	0.29	65	0.397	5.756	4.254	97.63	97.63
L72	Lower	Benzo(g,h,i)perylene	27	0	0.00%	0.010	360	19.33	0.23	69.58	0.638	4.866	3.599	152.6	152.6
S72	Slope	Benzo(g,h,i)perylene	12	0	0.00%	0.47	46	13.02	6.05	15.15	7.961	1.263	1.163	27.87	27.87
U72	Upper	Benzo(g,h,i)perylene	50	3	5.66%	0.0092	80	4.335	0.13	14.02	0.173	4.664	3.234	22.75	22.75
L93	Lower	Chrysene	35	1	2.78%	0.011	670	25.3	0.47	113.7	0.673	5.686	4.494	210.6	210.6
S93	Slope	Chrysene	12	0	0.00%	0.44	76	21.06	8.05	27.89	10.16	1.257	1.324	49.64	49.64
U93	Upper	Chrysene	54	2	3.57%	0.0033	520	17.48	0.25	77.66	0.338	5.825	4.442	118.4	118.4
L98	Lower	Dibenz(a,h)anthracene	33	3	8.33%	0.0029	83	3.679	0.11	14.54	0.139	5.396	3.953	26.53	26.53
S98	Slope	Dibenz(a,h)anthracene	12	0	0.00%	0.18	15	3.871	1.25	5.155	1.394	1.426	1.332	8.581	8.581
U98	Upper	Dibenz(a,h)anthracene	39	17	30.36%	0.0065	19	1.525	0.12	4.142	0.162	3.81	2.716	5.755	5.755
L99 S99	Lower	Dibenzofuran	17 11	10 1	37.04%	0.0057	12 1.9	1.209	0.045	3.327	0.0531	2.876	2.753	5.948 1.077	5.948
U99	Slope Upper	Dibenzofuran Dibenzofuran	23	30	8.33% 56.60%	0.013	280	0.409	0.12	0.562 60.76	0.159	2.176	1.373 3.406	63.82	1.077 63.82
L109	Lower	Fluoranthene	23	0	0.00%	0.0033	940	45.21	1.2	182.1	1.572	4.931	4.028	393.9	393.9
S109	Slope	Fluoranthene	12	0	0.00%	0.45	110	28.74	10	39.23	12.38	1.428	1.365	68.55	68.55
U109	Upper	Fluoranthene	51	2	3.77%	0.015	960	34.61	0.28	150.4	0.378	5.497	4.346	235.1	235.1
L110	Lower	Fluorene	18	9	33.33%	0.0066	18	1.959	0.0525	5.484	0.0578	2.725	2.8	10.07	10.07
S110	Slope	Fluorene	12	0	0.00%	0.012	4.1	0.893	0.268	1.252	0.357	1.814	1.402	2.15	2.15
U110	Upper	Fluorene	33	20	37.74%	0.0049	1400	59.38	0.12	253.2	0.167	5.05	4.263	312.9	312.9
L116	Lower	Indeno(1,2,3-cd)pyrene	35	1	2.78%	0.0061	330	13.55	0.29	56.17	0.417	5.577	4.145	105.1	105.1
S116	Slope	Indeno(1,2,3-cd)pyrene	12	0	0.00%	0.48	41	12.28	5.4	13.94	7.102	1.081	1.136	26.13	26.13
U116	Upper	Indeno(1,2,3-cd)pyrene	52	4	7.14%	0.0076	85	4.097	0.11	14.14	0.148	4.945	3.45	21.97	21.97
L126	Lower	Naphthalene	26	1	3.70%	0.022	39	2.267	0.13	7.866	0.143	4.477	3.47	16.99	16.99
S126	Slope	Naphthalene	11 45	1 8	8.33% 15.09%	0.081	7.3 63000	1.812 1541	0.72	2.259 9385	0.771	1.669	1.247 6.091	4.462	4.462
U126 L134	Upper Lower	Naphthalene	45 27	0	0.00%	0.0088	150	9.765	0.16	33.18	0.2	6.675 3.77	3.398	13152 49.64	13152 49.64
S134	Slope	Phenanthrene	12	0	0.00%	0.01	52	10.93	4.6	15.24	5.671	2.082	1.394	24.8	24.8
U134	Upper	Phenanthrene Phenanthrene	51	2	3.77%	0.011	2900	98.24	0.2	459.4	0.274	5.441	4.676	711	711
L136	Lower	Pyrene	27	0	0.00%	0.017	1400	64.76	1.2	269.5	1.542	5.042	4.162	580.9	580.9
S136	Slope	Pyrene	12	0	0.00%	0.61	170	40.87	12.5	58.59	15.49	1.467	1.434	118.8	118.8
U136	Upper	Pyrene	51	2	3.77%	0.021	1400	52.13	0.42	225.2	0.572	5.312	4.319	352.4	352.4
L145	Lower	Total Benzofluoranthenes	35	1	2.78%	0.019	930	35.89	0.73	157.6	1.048	5.694	4.391	292.7	292.7
S145	Slope	Total Benzofluoranthenes	12	0	0.00%	1.1	99	31.82	12.4	37.95	16.31	1.066	1.193	70.03	70.03
U145	Upper	Total Benzofluoranthenes	54	2	3.57%	0.0028	280	12.42	0.325	47.06	0.445	5.041	3.79	73.5	73.5
L156	Lower	Total HMW PAHs	35	0	0.00%	0.0775	5233	268.3	6.26	962.6	8.082	4.617	3.588	1284	1284
S156	Slope	Total HMW PAHs	12	0	0.00%	5.08	587	170.3	64.75	220.9	86.34	1.249	1.297	392.3	392.3
U156	Upper	Total HMW PAHs	56	0	0.00%	0.0184	3383	118	1.662	511.8	2.273	5.664	4.339	545.1	545.1
L157 S157	Lower	Total LMW PAHs Total LMW PAHs	27 12	0	0.00%	0.117 0.924	1290 198.3	70.85 54.46	2.414 21.19	257.8 71.45	2.912 25.9	4.499	3.638 1.312	380.7 127	380.7 127
U157	Slope Upper	Total LMW PAHs	53	0	0.00%	0.924	92890	2036	0.879	12786	1.191	7.17	6.279	13004	13004
L158	Lower	Total PAHs	35	0	0.00%	0.023	6523	323	7.177	1168	9.345	4.837	3.618	1556	1556
S158	Slope	Total PAHs	12	0	0.00%	6.004	765	224.8	87.56	288.8	106.9	1.192	1.285	517.6	517.6
U158	Upper	Total PAHs	55	0	0.00%	0.0344	96273	1892	2.127	12976	2.926	7.392	6.859	12819	12819
L122	Lower	Mercury	25	1	3.85%	0.04	1.01	0.186	0.08	0.264	0.0445	2.309	1.42	0.402	0.402
S122	Slope	Mercury	12	0	0.00%	0.11	0.84	0.257	0.15	0.225	0.0519	1.93	0.877	0.54	0.54
U122	Upper	Mercury	52	1	1.89%	0.03	1.37	0.128	0.08	0.2	0.0445	5.111	1.557	0.245	0.245
	Lower	Selenium ^a	1	25	4.00%	2	2								2
	Clana	Selenium ^a	0	12	100.00%										
	Slope	Selemum	-	53											

Num Ds - number of samples with detected values Num NDs - number of samples with nondetected values % NDs - percent of samples with nondetected values Minimum - minimum detected value (mg/kg) Maximum - maximum detected value (mg/kg) Mean - mean concentrations (mg/kg) Median - median concentration (mg/kg) SD - standard deviation (mg/kg) MAD/0.675 - mean absolute deviation divided by 0.675 (a robust estimate of variability) Skewness - skewness statistic CV - coefficient of variation (mg/kg) UCL - 95 percent upper confidence limit (mg/kg) EPC - reasonable maximum exposure point concentration (mg/kg)

^a Running the selenium soils data through ProUCL was not required because selenium was only detected in 1 of 90 samples.

Notes:

General UCL Statistics for Data Sets with Non-Detects

User Selected Options

C:\Users\admin\Desktop\PAH data.wst From File Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

L21

General Stat			
Number of Valid Data	27	Number of Detected Data	18
Number of Distinct Detected Data	18	Number of Non-Detect Data	9
		Percent Non-Detects	33.33%
– – – – –			
Raw Statistics	0 0007	Log-transformed Statistics	4 000
Minimum Detected		Minimum Detected	-4.636
Maximum Detected	16	Maximum Detected	2.773
Mean of Detected	1.431	Mean of Detected	-2.27
SD of Detected	3.981	SD of Detected	2.057
Minimum Non-Detect	0.015	Minimum Non-Detect	-4.2
Maximum Non-Detect	0.79	Maximum Non-Detect	-0.236
Note: Data have multiple Dia. Line of KM Method is recommended		Number treated as Non-Detect	24
Note: Data have multiple DLs - Use of KM Method is recommended			24
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	88.89%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	alues Only
Shapiro Wilk Test Statistic	0.417	Shapiro Wilk Test Statistic	0.823
5% Shapiro Wilk Critical Value	0.897	5% Shapiro Wilk Critical Value	0.897
Data not Normal at 5% Significance Level	0.007	Data not Lognormal at 5% Significance	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.973	Mean	-2.833
SD	3.287	SD	1.964
95% DL/2 (t) UCL	2.052	95% H-Stat (DL/2) UCL	1.876
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-3.105
		SD in Log Scale	2.107
		Mean in Original Scale	0.958
		SD in Original Scale	3.291
		95% t UCL	2.038
		95% Percentile Bootstrap UCL	2.069
		95% BCA Bootstrap UCL	2.73
		95% H-UCL	2.353
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	es Only
k star (bias corrected)	0.26	Data do not follow a Discernable Distribution	on (0.05)
Theta Star	5.509		
nu star	9.352		
A-D Test Statistic	2.867	Nonparametric Statistics	
5% A-D Critical Value	0.856	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.856	Mean	0.961
5% K-S Critical Value	0.222	SD	3.229
Data not Gamma Distributed at 5% Significance Level		SE of Mean	0.639
		95% KM (t) UCL	2.051
Assuming Gamma Distribution		95% KM (z) UCL	2.012
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	2.04
Minimum	1E-06	95% KM (bootstrap t) UCL	8.32
Maximum	16	95% KM (BCA) UCL	2.146
Mean	0.954	95% KM (Percentile Bootstrap) UCL	2.129
Median	0.03	95% KM (Chebyshev) UCL	3.748
SD	3.292	97.5% KM (Chebyshev) UCL	4.953
k star	0.14	99% KM (Chebyshev) UCL	7.322
Those stor	6 833		

Potential UCLs to Use

99% KM (Chebyshev) UCL 7.322

- Theta star 6.833
- Nu star 7.539
- AppChi2 2.471
- 95% Gamma Approximate UCL (Use when $n \ge 40$) 2.911
- 95% Adjusted Gamma UCL (Use when n < 40) 3.142

Note: DL/2 is not a recommended method.

General Statistics

Number of Valid Observations 12

Raw Statistics

Minimum 0.021

- Maximum 3.4 Mean 0.794
- Geometric Mean 0.321
 - Median 0.395
 - SD 1.088
- Std. Error of Mean 0.314
- Coefficient of Variation 1.371
 - Skewness 1.839

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.713 Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

- 95% Student's-t UCL 1.358 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 1.489
 - 95% Modified-t UCL (Johnson-1978) 1.386

Gamma Distribution Test

- k star (bias corrected) 0.559
 - Theta Star 1.42
 - MLE of Mean 0.794
 - MLE of Standard Deviation 1.062
 - nu star 13.41
 - Approximate Chi Square Value (.05) 6.169
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 5.437
 - Anderson-Darling Test Statistic 0.328
 - Anderson-Darling 5% Critical Value 0.772
 - Kolmogorov-Smirnov Test Statistic 0.162
 - Kolmogorov-Smirnov 5% Critical Value 0.256
- Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 1.725 95% Adjusted Gamma UCL (Use when n < 40) 1.957

Potential UCL to Use

Number of Distinct Observations 12

Minimum of Log Data -3.863

Maximum of Log Data 1.224

Mean of log Data -1.137

SD of log Data 1.526

Log-transformed Statistics

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.977 Shapiro Wilk Critical Value 0.859

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 6.332 95% Chebyshev (MVUE) UCL 2.689 97.5% Chebyshev (MVUE) UCL 3.477 99% Chebyshev (MVUE) UCL 5.026

Data Distribution

Jata appear Gamma Distributed at 5% Significance Leve

Nonparametric Statistics

- 95% CLT UCL 1.31 95% Jackknife UCL 1.358 95% Standard Bootstrap UCL 1.285
 - 95% Bootstrap-t UCL 2.501
- 95% Hall's Bootstrap UCL 3.903
- 95% Percentile Bootstrap UCL 1.373
 - 95% BCA Bootstrap UCL 1.466
- 95% Chebyshev(Mean, Sd) UCL 2.163
- 97.5% Chebyshev(Mean, Sd) UCL 2.756
- 99% Chebyshev(Mean, Sd) UCL 3.92

Use 95% Approximate Gamma UCL 1.725

General Statis	tics
Number of Valid Data	53
Number of Distinct Detected Data	39

Minimum Detected 0.0052

7500

207.8

1151

0.048

168.6 1038 407.3

0.118

Maximum Detected

Mean of Detected

SD of Detected

Minimum Non-Detect 0.0046

Log-transformed Statistics Minimum Detected Maximum Detected Mean of Detected SD of Detected Minimum Non-Detect Maximum Non-Detect Number treated as Non-Detect

Maximum Non-Detect
Note: Data have multiple DLs - Use of KM Method is recommended
For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

Raw Statistics

UCL Statistics

- Shapiro Wilk Test Statistic 0.194 5% Shapiro Wilk Critical Value 0.943
- Data not Normal at 5% Significance Level

Assuming Normal Distribution
DL/2 Substitution Method
Mean
SD
95% DL/2 (t) UCL

Maximum Likelihood Estimate(MLE) Method N/A MLE yields a negative mean

Lognormal Distrib	oution Test with Detected V	alues Only
	Shapiro Wilk Test Statistic	0.821
5%	Shapiro Wilk Critical Value	0.943

Number treated as Detected

Single DL Non-Detect Percentage

Number of Detected Data

Percent Non-Detects

Number of Non-Detect Data

43

10

18.87%

-5.259

8.923

-1.92

-5.382

-3.037

58.49%

33

31

22

Data not Lognormal at 5% Significance Level Accuming Lognormal Distribution

Assuming Lognormal Distribution		
DL/2 Substitution Method		
Mean	-2.57	
SD	3.284	
95% H-Stat (DL/2) UCL	209	
Log ROS Method		
Mean in Log Scale	-3.05	
SD in Log Scale	3.856	
Mean in Original Scale	168.6	
SD in Original Scale	1038	
050/ 11101	407.0	

- 95% t UCL 407.3 448.8
- 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 734.8
 - 95% H-UCL 2441

Gamma Distribution Test with Detected Values Only

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	168.6
SD	1028
SE of Mean	142.9
95% KM (t) UCL	407.8
95% KM (z) UCL	403.6
95% KM (jackknife) UCL	407.3
95% KM (bootstrap t) UCL	7499
95% KM (BCA) UCL	427.5
95% KM (Percentile Bootstrap) UCL	448.1
95% KM (Chebyshev) UCL	791.3
97.5% KM (Chebyshev) UCL	1061
99% KM (Chebyshev) UCL	1590
Potential UCLs to Use	
99% KM (Chebyshev) UCL	1590

k star (bias corrected)

- 1756 Theta Star nu star 10.17
- 9.155
- A-D Test Statistic 5% A-D Critical Value 0.96
- K-S Test Statistic
- 0.96 5% K-S Critical Value 0.153
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	7500
Mean	168.6
Median	0.036
SD	1038
k star	0.0963
Theta star	1751
Nu star	10.2
AppChi2	4.069
95% Gamma Approximate UCL (Use when n >= 40)	422.6
95% Adjusted Gamma UCL (Use when n < 40)	434.2

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

N

General Stati	SUCS			
lumber of Valid Data	27	Number of Detected Data	22	
stinct Detected Data	20	Number of Non-Detect Data	5	
		Percent Non-Detects	18.52%	
		Log-transformed Statistics		
Minimum Detected	0.013	Minimum Detected	-4.343	
Maximum Detected	28	Maximum Detected	3.332	
Mean of Detected	1.828	Mean of Detected	-2.223	
SD of Detected	6.08	SD of Detected	1.994	
/inimum Non-Detect	0.015	Minimum Non-Detect	-4.2	
laximum Non-Detect	0.79	Maximum Non-Detect	-0.236	
recommended		Number treated as Non-Detect	24	
s),		Number treated as Detected	3	
		Single DL Non-Detect Percentage	88.89%	
UCL Statist	ics			
d Values Only	L	ognormal Distribution Test with Detected Va	lues Only	
ro Wilk Test Statistic	0.336	Shapiro Wilk Test Statistic	0.799	

Lognormai	Distribution	i est with	Detected	values	Oni
	Shapi	ro Wilk To	est Statisti	c C	.79

Data not Lognormal at 5% Significance Leve	I
5% Shapiro Wilk Critical Value	0.91

1

Assuming Lognormal Distribution DL/2 Substitution Method	
Mean	-2.522
SD	2.008
95% H-Stat (DL/2) UCL	2.973
Log ROS Method	
Mean in Log Scale	-2.756
SD in Log Scale	2.175
Mean in Original Scale	1.492
SD in Original Scale	5.512
95% t UCL	3.301
95% Percentile Bootstrap UCL	3.407
95% BCA Bootstrap UCL	4.987
95% H UCL	4.278

95% H UCL

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	1.494
SD	5.408
SE of Mean	1.065
95% KM (t) UCL	3.311
95% KM (z) UCL	3.246
95% KM (jackknife) UCL	3.303
95% KM (bootstrap t) UCL	13.1
95% KM (BCA) UCL	3.295
95% KM (Percentile Bootstrap) UCL	3.451
95% KM (Chebyshev) UCL	6.137
97.5% KM (Chebyshev) UCL	8.147
99% KM (Chebyshev) UCL	12.09
Potential UCLs to Use	
99% KM (Chebyshev) UCL	12.09

General Statistics

Number of Valid Data	27

Number of Dis

Raw Statistics

Minimum Detected	0.013
Maximum Detected	28
Mean of Detected	1.828
SD of Detected	6.08
Minimum Non-Detect	0.015
Maximum Non-Detect	0.79

Note: Data have multiple DLs - Use of KM Method is re For all methods (except KM, DL/2, and ROS Methods) Observations < Largest ND are treated as NDs

Normal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic 0.336 5% Shapiro Wilk Critical Value 0.911

Data not Normal at 5% Significance Level

Assuming Normal Distribution

stribution			
DL/2 Substitution Method			
Mean	1.506		
SD	5.508		
95% DL/2 (t) UCL	3.314		

Maximum Likelihood Estimate(MLE) Method

- Mean 16.92
- SD 10.81 95% MLE (t) UCL 20.46
- 95% MLE (Tiku) UCL 27.25

Gamma Distribution Test with Detected Values Only

- k star (bias corrected) 0.247 Theta Star 7.395 nu star 10.88
- A-D Test Statistic 3.902 5% A-D Critical Value 0.869
- K-S Test Statistic 0.869
- 5% K-S Critical Value 0.203
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

tranolated Dat Gamma ROS Statist

Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	28
Mean	1.49
Median	0.042
SD	5.512
k star	0.167
Theta star	8.938
Nu star	8.999
AppChi2	3.327
oximate UCL (Use when n >= 40)	4.03

95% Gamma Appro 95% Adjusted Gamma UCL (Use when n < 40) 4.312

Note: DL/2 is not a recommended method.

General Statistics

Number of Valid Data	12
	12

Number of Distinct Detected Data 11

-	 		

Minimum Detected	0.036
Maximum Detected	6.3
Mean of Detected	1.284
SD of Detected	1.911
Minimum Non-Detect	0.53

Maximum Non-Detect 0.53

UCL Statisti	ics
Normal Distribution Test with Detected Values Only	Lognormal Dis
Shapiro Wilk Test Statistic	0.695

Shapiro wilk Test Statistic	0.695
5% Shapiro Wilk Critical Value	0.85
Data not Normal at 5% Significance Level	

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	1.199
SD	1.846
95% DL/2 (t) UCL	2.156

Maximum Likelihood Estimate(MLE) Method N/A MLE yields a negative mean

Number of Detected Data 11 Number of Non-Detect Data 1 Percent Non-Detects 8.33%

Log-transformed Statistics

'g uune		
	Minimum Detected	-3.324
	Maximum Detected	1.841
	Mean of Detected	-0.756
	SD of Detected	1.586
I	Minimum Non-Detect	-0.635
Ν	laximum Non-Detect	-0.635

istribution Test with Detected Values Only

Shapiro Wilk Test Statistic	0.983
5% Shapiro Wilk Critical Value	0.85

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-0.803
SD	1.521
95% H-Stat (DL/2) UCL	8.663
Log ROS Method	
Mean in Log Scale	-0.846
SD in Log Scale	1.543
Mean in Original Scale	1.19
SD in Original Scale	1.851
95% t UCL	2.149
95% Percentile Bootstrap UCL	2.141
95% BCA Bootstrap UCL	2.468
95% H-UCL	9.031

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.50
Theta Star	2.53
pu ctor	11.1

11.14 nu star

- A-D Test Statistic 0.32
- 5% A-D Critical Value 0.773
- K-S Test Statistic 0.773
- 5% K-S Critical Value 0.267
- Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	6.3
Mean	1.177

Median	0.35
SD	1.859

. .

- k star 0.308
- Theta star 3.815
- Nu star 7.402
- AppChi2 2.394
- 95% Gamma Approximate UCL (Use when n >= 40) 3.638 4.393

95% Adjusted Gamma UCL (Use when n < 40)

Gamma

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Data Distribution Test with Detected Values Only

06 Jata appear Gamma Distributed at 5% Significance Leve 36

Nonparametric Statistics Kaplan-Meier (KM) Method

Mean	1.193
SD	1.771
SE of Mean	0.536
95% KM (t) UCL	2.156
95% KM (z) UCL	2.075
95% KM (jackknife) UCL	2.152
95% KM (bootstrap t) UCL	3.989
95% KM (BCA) UCL	2.092
95% KM (Percentile Bootstrap) UCL	2.111
95% KM (Chebyshev) UCL	3.531
97.5% KM (Chebyshev) UCL	4.542
99% KM (Chebyshev) UCL	6.529
Potential UCLs to Use	

95% KM	Cheb	vshev		3.531
3070101	CIICD	y Shic v	JUUL	0.001

3	Number of Detected Data	47	
ļ	Number of Non-Detect Data	6	
	Percent Non-Detects	11.32%	
	Log-transformed Statistics		
ŀ	Minimum Detected	-5.221	
)	Maximum Detected	9.473	
3	Mean of Detected	-1.76	
Ļ	SD of Detected	3.263	
6	Minimum Non-Detect	-5.382	
ļ	Maximum Non-Detect	-3.73	
	Number treated as Non-Detect	19	
	Number treated as Detected	34	
	Single DL Non-Detect Percentage	35.85%	

General Statistics

Number of Valid Data	53	Number of Detected Data
Number of Distinct Detected Data	44	Number of Non-Detect Data
		Percent Non-Detects

Raw Statistics

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution	Test with Detected	Values Only

Shapiro Wilk Test Statistic 0.181 5% Shapiro Wilk Critical Value 0.946

Data not Normal at 5% Significance Level

Assuming Normal Distribution

rmai Distribution		
DL/2 Substitution Method	d	
Mear	ın 285.9	
SE	D 1794	
95% DL/2 (t) UCI	L 698.6	

Maximum Likelihood Estimate(MLE) Method N/A MLE yields a negative mean

Lognormal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic 0.815

5% Shapiro Wilk Critical Value	0.946
Data not Lognormal at 5% Significance Lo	evel

Assuming Lognormal Distribution

/ toouning Eognomial Diotibution	
DL/2 Substitution Method	
Mean	-2.193
SD	3.311
95% H-Stat (DL/2) UCL	345.8
Log ROS Method	
Mean in Log Scale	-2.459
SD in Log Scale	3.676
Mean in Original Scale	285.9
SD in Original Scale	1794
95% t UCL	698.5
95% Percentile Bootstrap UCL	771.7
95% BCA Bootstrap UCL	1267

95% H-UCL 1656

Gamma Distribution Test with Detected Values Only

	Data Distribution Test with Detected Values Only
0.114	Data do not follow a Discernable Distribution (0.05)
0000	

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	285.9
SD	1777
SE of Mean	246.7
95% KM (t) UCL	699.1
95% KM (z) UCL	691.7
95% KM (jackknife) UCL	698.6
95% KM (bootstrap t) UCL	13362
95% KM (BCA) UCL	771.6
95% KM (Percentile Bootstrap) UCL	776
95% KM (Chebyshev) UCL	1361
97.5% KM (Chebyshev) UCL	1827
99% KM (Chebyshev) UCL	2741
Potential UCLs to Use	
99% KM (Chebyshev) UCL	2741

k star (bias corrected)

- Theta Star 2822 nu star 10.74
- A-D Test Statistic 10.52 5% A-D Critical Value 0.966
 - K-S Test Statistic
- 0.966 5% K-S Critical Value 0.147

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma R

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	13000
Mean	285.9
Median	0.055
SD	1794
k star	0.101
Theta star	2842
Nu star	10.66
AppChi2	4.36
95% Gamma Approximate UCL (Use when n >= 40)	699.1
95% Adjusted Gamma UCL (Use when n < 40)	717.6

Note: DL/2 is not a recommended method.

L54

Number of Distinct Detected Data	15	Number of Non-Detect Data	12
		Percent Non-Detects	44.44%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0044	Minimum Detected	-5.426
Maximum Detected	4.6	Maximum Detected	1.526
Mean of Detected	0.521	Mean of Detected	-3.243
SD of Detected	1.335	SD of Detected	2.098
Minimum Non-Detect	0.015	Minimum Non-Detect	-4.2
Maximum Non-Detect	0.79	Maximum Non-Detect	-0.236
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	25
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	2
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	92.59%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	lues Only
Shapiro Wilk Test Statistic	0.447	Shapiro Wilk Test Statistic	0.843
5% Shapiro Wilk Critical Value		5% Shapiro Wilk Critical Value	0.881
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance	_evel
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.315	Mean	-3.541
SD	1.01	SD	1.766
95% DL/2 (t) UCL	0.646	95% H-Stat (DL/2) UCL	0.489
Movimum Likelikaad Estimate/MLE) Mathad	NI/A	Log DOS Mothod	
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method Mean in Log Scale	-3.923
MLE method failed to converge properly		SD in Log Scale	1.779
		Mean in Original Scale	0.294
		8	
		SD in Original Scale 95% t UCL	1.013 0.627
		95% Percentile Bootstrap UCL	0.636
		95% BCA Bootstrap UCL 95% H-UCL	0.806 0.347
		33 / 11-002	0.047
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	
k star (bias corrected)		Data do not follow a Discernable Distributio	n (0.05)
Theta Star			
nu star	7.828		
A-D Test Statistic	2.293	Nonparametric Statistics	
5% A-D Critical Value	0.848	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.848	Mean	0.295
5% K-S Critical Value	0.242	SD	0.994
Data not Gamma Distributed at 5% Significance Level		SE of Mean	0.198

General Statistics

27

Number of Detected Data

95% KM (t) UCL

95% KM (z) UCL

95% KM (jackknife) UCL

95% KM (BCA) UCL

95% KM (bootstrap t) UCL

95% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

Potential UCLs to Use

95% KM (Percentile Bootstrap) UCL

0.633

0.621

0.627

10.84

0.637

0.641

1.158

1.532

2.265

2.265

15

Number of Valid Data

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	4.6
Mean	0.29
Median	0.0047
SD	1.015
k star	0.13
Theta star	2 227

7.022 Nu star

AppChi2 2.183

95% Gamma Approximate UCL (Use when n >= 40) 0.932

95% Adjusted Gamma UCL (Use when n < 40) 1.01

Note: DL/2 is not a recommended method.

Gene	C	totiot	inn

Number of Valid Data	12

Number of Distinct Detected Data 11

Raw Statistics

Minimum Detected	0.012
Maximum Detected	1.1
Mean of Detected	0.283
SD of Detected	0.374
Minimum Non-Detect	0.014
Maximum Non-Detect	0 0 1 4

imum Non-Detect 0.014

UCL Statistics

Normal Distribution Test with Detected Values Only	

- Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	0.26
SD	0.366
95% DL/2 (t) UCL	0.45

Maximum Likelihood Estimate(MLE) Method

- Mean 0.219
- SD 0.399
- 95% MLE (t) UCL 0.426
- 95% MLE (Tiku) UCL 0.421

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.545
Theta Star	0.52
nu star	11.99

- 0.403 A-D Test Statistic
- 5% A-D Critical Value 0.769
- K-S Test Statistic 0.769
- 5% K-S Critical Value 0.266

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma

ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	1.1
Mean	0.26
Median	0.076
SD	0.366
k star	0.334
Theta star	0.779
Nu star	8.008
AppChi2	2.74
a Approximate UCL (Use when n >= 40)	0.76

95% Gamma Approximate UCL (Use when n >= 40)

95% Adjusted Gamma UCL (Use when n < 40) 0.908

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

0.743 Shapiro Wilk Test Statistic 0.85 5% Shapiro Wilk Critical Value

0.85 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

Lognormal Distribution Test with Detected Values Only

Number of Detected Data

Percent Non-Detects

Minimum Detected

Maximum Detected

Minimum Non-Detect

Maximum Non-Detect

Mean of Detected

SD of Detected

Number of Non-Detect Data

Log-transformed Statistics

11

8.33%

-4.423

0.0953

-2.174

1.515

-4.269

-4.269

0.953

1

DL/2 Substitution Method	
Mean	-2.406
SD	1.654
95% H-Stat (DL/2) UCL	2.897
Log ROS Method	
Mean in Log Scale	-2.402
SD in Log Scale	1.646
Mean in Original Scale	0.26
SD in Original Scale	0.366
95% t UCL	0.45
95% Percentile Bootstrap UCL	0.439
95% BCA Bootstrap UCL	0.488
95% H UCL	2.826

Data Distribution Test with Detected Values Only

545)ata appear Gamma Distributed at 5% Significance Leve .52

Nonparametric Statistics Kaplan-Meier (KM) Method

Kapian-Weier (KW) Wethod	
Mean	0.261
SD	0.35
SE of Mean	0.106
95% KM (t) UCL	0.451
95% KM (z) UCL	0.435
95% KM (jackknife) UCL	0.45
95% KM (bootstrap t) UCL	0.761
95% KM (BCA) UCL	0.459
95% KM (Percentile Bootstrap) UCL	0.442
95% KM (Chebyshev) UCL	0.722
97.5% KM (Chebyshev) UCL	0.922
99% KM (Chebyshev) UCL	1.315
Potential UCLs to Use	

95% KM (Chebyshev) UCL 0.722

Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods),

General Stat	istics			
Number of Valid Data	53	Number of Detected Data	17	
Distinct Detected Data	16	Number of Non-Detect Data	36	
		Percent Non-Detects	67.92%	
		Log-transformed Statistics		
Minimum Detected	0.0044	Minimum Detected	-5.426	
Maximum Detected	250	Maximum Detected	5.521	
Mean of Detected	21.26	Mean of Detected	-1.015	
SD of Detected	62.63	SD of Detected	3.215	
Minimum Non-Detect	0.0046	Minimum Non-Detect	-5.382	
Maximum Non-Detect	0.24	Maximum Non-Detect	-1.427	
is recommended		Number treated as Non-Detect	44	
ods),		Number treated as Detected	9	
		Single DL Non-Detect Percentage	83.02%	

Lognormal Distribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level Assuming Lognormal Distribution

Shapiro Wilk Test Statistic

5% Shapiro Wilk Critical Value

0.939

0 892

-3.892

Observations < Largest ND are treated as NDs UCL Statistics

Normal Distribution	Test with Detected	d Values Only

Raw Statistics

Shapiro Wilk Test Statistic	0.397
5% Shapiro Wilk Critical Value	0.892

Data not Normal at 5% Significance Level

Assuming	Normal	Distribution
Assummu	NUTHIAL	Distribution

DL/2 Substitution Method	
Mean	6.827
SD	36.16
95% DL/2 (t) UCL	15.14

0.397

Number of Valid Data Number of Distinct Detected Data

Maximum Likelihood Estimate(MLE) Method N/A MLE yields a negative mean

95%	SD H-Stat (DL/2) UCL	2.832 7.609	
	Log ROS Method		

DL/2 Substitution Method

Mean

Mean in Log Scale	-5.996
SD in Log Scale	4.274
Mean in Original Scale	6.819
SD in Original Scale	36.16
95% t UCL	15.14
95% Percentile Bootstrap UCL	16.06
95% BCA Bootstrap UCL	24.36

95% H-UCL 1469

Nonparametric Statistics

Kaplan-Meier (KM) Method

95% KM (jackknife) UCL

95% KM (BCA) UCL

95% KM (bootstrap t) UCL

95% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

Potential UCLs to Use 99% KM (Chebyshev) UCL

95% KM (Percentile Bootstrap) UCL

Mean

95% KM (t) UCL

95% KM (z) UCL

SD SE of Mean 6.822

35.81

5.071

15.31

15.16

15.14

17.57

16.31

28.93

38.49

57.28

57.28

141

Gamma Distribution Test with Detected Values Only

cted Values Only		Data Distribution Test with Detected Values Only
k star (bias corrected)	0.19	Data appear Lognormal at 5% Significance Level
Theta Star	111.8	

- nu star 6.463
- A-D Test Statistic 1.66
- 5% A-D Critical Value 0.889
- K-S Test Statistic 0.889
- 5% K-S Critical Value 0.232

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS St

Gamma ROS Statistics using Extrapolated Data		
Minimum	1E-06	
Maximum	250	
Mean	6.819	
Median	1E-06	
SD	36.16	
k star	0.081	
Theta star	84.19	
Nu star	8.585	
AppChi2	3.078	
95% Gamma Approximate UCL (Use when n >= 40)	19.02	
95% Adjusted Gamma UCL (Use when n < 40)	19.6	

Note: DL/2 is not a recommended method.

L55

Number of Valid Data	27	Number of Detected Data	25
Number of Distinct Detected Data	24	Number of Non-Detect Data	2
		Percent Non-Detects	7.41%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0093	Minimum Detected	-4.678
Maximum Detected	88	Maximum Detected	4.477
Mean of Detected	5.079	Mean of Detected	-1.677
SD of Detected	17.97	SD of Detected	2.294
Minimum Non-Detect	0.0044	Minimum Non-Detect	-5.426
Maximum Non-Detect	0.024	Maximum Non-Detect	-3.73
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	6
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	21
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	22.22%
UCL Statistics			
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	lues Only
Shapiro Wilk Test Statistic	0.318	Shapiro Wilk Test Statistic	0.884
5% Shapiro Wilk Critical Value	0.918	5% Shapiro Wilk Critical Value	0.918
Data not Normal at 5% Significance Level	Data not Normal at 5% Significance Level Data not Lognormal at 5% Significance Level		
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	4.704	Mean	-1.943
SD	17.32	SD	2.415
95% DL/2 (t) UCL	10.39	95% H-Stat (DL/2) UCL	24.93
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	1.296	Mean in Log Scale	-2.009
SD	19.8	SD in Log Scale	2.522
95% MLE (t) UCL	7.795	Mean in Original Scale	4.703
95% MLE (Tiku) UCL	7.705	SD in Original Scale	17.32
		95% t UCL	10.39
		95% Percentile Bootstrap UCL	10.78
		95% BCA Bootstrap UCL	14.46
		95% H UCL	36.84
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	
k star (bias corrected)	0.22	Data do not follow a Discernable Distributio	n (0.05)
Theta Star	23.1		
pu ctor	11		

Nonparametric Statistics	
Kanlan-Meier (KM) Method	

Kaplan-Meier (KM) Method	
Mean	4.704
SD	17
SE of Mean	3.339
95% KM (t) UCL	10.4
95% KM (z) UCL	10.2
95% KM (jackknife) UCL	10.39
95% KM (bootstrap t) UCL	39
95% KM (BCA) UCL	11.6
95% KM (Percentile Bootstrap) UCL	10.8
95% KM (Chebyshev) UCL	19.26
97.5% KM (Chebyshev) UCL	25.55
99% KM (Chebyshev) UCL	37.92
Potential UCLs to Use	
99% KM (Chebyshev) UCL	37.92

Gamma [

11 nu star

General Statistics

- 3.715 A-D Test Statistic
- 5% A-D Critical Value 0.887
- K-S Test Statistic 0.887
- 5% K-S Critical Value 0.193
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

nolated D Gamma ROS Statistics using Ex

xtrapolated Data	
Minimum	1E-06
Maximum	88
Mean	4.703
Median	0.087
SD	17.32
k star	0.186
Theta star	25.32
Nu star	10.03
AppChi2	3.96

95% Gamma Approximate UCL (Use when n >= 40) 11.91 95% Adjusted Gamma UCL (Use when n < 40) 12.68

Note: DL/2 is not a recommended method.

General Statistics

Number of Valid Observations 12

Raw Statistics

- Minimum 0.041
- Maximum 34
- Mean 5.886
- Geometric Mean 1.129
 - Median 1.25
 - SD 10.65
- Std. Error of Mean 3.074
- Coefficient of Variation 1.809 Skewness 2.21

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.617 Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 11.41

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 13.04
 - 95% Modified-t UCL (Johnson-1978) 11.73

Gamma Distribution Test

k star (bias corrected) 0.355)ata appear Gamma Distributed at 5% Significance Leve

- Theta Star 16.6
- MLE of Mean 5.886
- MLE of Standard Deviation 9.885
 - nu star 8.509
- Approximate Chi Square Value (.05) 3.033
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 2.556
- Anderson-Darling Test Statistic 0.577 Anderson-Darling 5% Critical Value 0.805
- Kolmogorov-Smirnov Test Statistic 0.232
- Kolmogorov-Smirnov 5% Critical Value 0.262
- Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 16.51
 - 95% Adjusted Gamma UCL (Use when n < 40) 19.59

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 12

Log-transformed Statistics

Minimum of Log Data -3.194 Maximum of Log Data 3.526 Mean of log Data 0.121 SD of log Data 2.069

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.966 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 233.4 95% Chebyshev (MVUE) UCL 24.46 97.5% Chebyshev (MVUE) UCL 32.26 99% Chebyshev (MVUE) UCL 47.59

Data Distribution

Nonparametric Statistics

- 95% CLT UCL 10.94
- 95% Jackknife UCL 11.41
- 95% Standard Bootstrap UCL 10.75
 - 95% Bootstrap-t UCL 29.97
- 95% Hall's Bootstrap UCL 34.69
- 95% Percentile Bootstrap UCL 11.39 95% BCA Bootstrap UCL 12.9
- 95% Chebyshev(Mean, Sd) UCL 19.28
- 97.5% Chebyshev(Mean, Sd) UCL 25.08 99% Chebyshev(Mean, Sd) UCL 36.47

Use 95% Adjusted Gamma UCL 19.59

U55

General Stat	istics		
Number of Valid Data	53	Number of Detected Data	47
Number of Distinct Detected Data	41	Number of Non-Detect Data	6
		Percent Non-Detects	11.32%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0 0053	Minimum Detected	-5.24
Maximum Detected	2600	Maximum Detected	7.863
			-1.621
Mean of Detected SD of Detected	73.96 388.9	Mean of Detected SD of Detected	
			3.027
Minimum Non-Detect		Minimum Non-Detect	-5.382
Maximum Non-Detect	0.024	Maximum Non-Detect	-3.73
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	19
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	34
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	35.85%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	lues Only
Shapiro Wilk Test Statistic	0.21	Shapiro Wilk Test Statistic	0.875
5% Shapiro Wilk Critical Value	0.946	5% Shapiro Wilk Critical Value	0.946
Data not Normal at 5% Significance Level	0.540	Data not Lognormal at 5% Significance I	
Data not Normal at 5% Significance Level		Data not Eugnormal at 5 % Significance i	-9461
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	65.58	Mean	-2.04
SD	366.5	SD	3.093
95% DL/2 (t) UCL	149.9	95% H-Stat (DL/2) UCL	147.8
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-2.253
···· ·································		SD in Log Scale	3.4
		Mean in Original Scale	65.58
		SD in Original Scale	366.5
		95% t UCL	149.9
		95% Percentile Bootstrap UCL	160.4
		95% BCA Bootstrap UCL	228.7
		95% BCA Boolstrap UCL 95% H-UCL	499.7
		95% H-UCL	499.7
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	
k star (bias corrected)	0.138	Data do not follow a Discernable Distributio	n (0.05)
Theta Star	536.5		
nu star	12.96		
A-D Test Statistic	8.64	Nonparametric Statistics	
5% A-D Critical Value	0.95	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.95	Mean	65.58
5% K-S Critical Value	0.146	SD	363
Data not Gamma Distributed at 5% Significance Level		SE of Mean	50.41
		95% KM (t) UCL	150
Assuming Gamma Distribution		95% KM (z) UCL	148.5
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	140.5
Minimum	1E-06	95% KM (Jackkine) OCL 95% KM (bootstrap t) UCL	1753
Mannum Maximum	2600	· · · · ·	163.6
		95% KM (BCA) UCL	
Mean	65.58	95% KM (Percentile Bootstrap) UCL	163.9
Median	0.059	95% KM (Chebyshev) UCL	285.3
SD	366.5	97.5% KM (Chebyshev) UCL	380.4
k star Thete star	0.118	99% KM (Chebyshev) UCL	567.1
Thete star	55/1		

General Statistics

SD	363
SE of Mean	50.41
95% KM (t) UCL	150
95% KM (z) UCL	148.5
95% KM (jackknife) UCL	149.9
95% KM (bootstrap t) UCL	1753
95% KM (BCA) UCL	163.6
95% KM (Percentile Bootstrap) UCL	163.9
95% KM (Chebyshev) UCL	285.3
97.5% KM (Chebyshev) UCL	380.4
99% KM (Chebyshev) UCL	567.1
Potential LICLs to Lise	

Potential UCLs to Use 99% KM (Chebyshev) UCL 567.1

95% Adjusted Gamma UCL (Use when n < 40) 151.1 Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Theta star

Nu star

AppChi2

95% Gamma Approximate UCL (Use when $n \ge 40$)

557.1 12.48

5.544

147.6

General Statis	tics	
Number of Valid Data	27	Number of Detected Data
istinct Detected Data	23	Number of Non-Detect Data Percent Non-Detects

Log-transformed Statistics Minimum Detected -4.423 4.025 Maximum Detected Mean of Detected -1.192 SD of Detected 2 161 Minimum Non-Detect -5.426Maximum Non-Detect -3.73 Number treated as Non-Detect 4 Number treated as Detected 23 14.81%

24

11.11%

3

Single DL Non-Detect Percentage

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.923 5% Shapiro Wilk Critical Value 0.916 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution DL/2 Substitution Method -1.675 Mean

SD	2.476
95% H-Stat (DL/2) UCL	42.2
Log ROS Method	
Mean in Log Scale	-1.725
SD in Log Scale	2.549
Mean in Original Scale	4.089
SD in Original Scale	12.92
95% t UCL	8.33
95% Percentile Bootstrap UCL	8.688
95% BCA Bootstrap UCL	10.53

95% H UCL 54.84

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	4.09
SD	12.68
SE of Mean	2.492
95% KM (t) UCL	8.341
95% KM (z) UCL	8.19
95% KM (jackknife) UCL	8.33
95% KM (bootstrap t) UCL	39.25
95% KM (BCA) UCL	8.704
95% KM (Percentile Bootstrap) UCL	8.456
95% KM (Chebyshev) UCL	14.95
97.5% KM (Chebyshev) UCL	19.65
99% KM (Chebyshev) UCL	28.89
Potential UCLs to Use	

99% KM (Chebyshev) UCL

28.89

Number of Valid Data	27	
	00	

Number of Dis

Raw Statistics

Minimum Detected	0.012
Maximum Detected	56
Mean of Detected	4.6
SD of Detected	13.65
Minimum Non-Detect	0.0044
Maximum Non-Detect	0.024

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.377 5% Shapiro Wilk Critical Value 0.916

Data not Normal at 5% Significance Level

Assuming I	lormal Distribution
	DL/2 Substitution Method

ubstitution method	
Mean	4.089
SD	12.92
95% DL/2 (t) UCL	8.33

Maximum Likelihood Estimate(MLE) Method

- 2.567 Mean
- SD 14 7.162 95% MLE (t) UCL
- 95% MLE (Tiku) UCL 6.904
- Gamma Distribution Test with Detected Values Only
 - k star (bias corrected) 0.255 Theta Star 18.04
 - nu star 12.24

 - A-D Test Statistic 2.992
 - 5% A-D Critical Value 0.868
 - K-S Test Statistic 0.868 5% K-S Critical Value 0.195
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

lics using Exitapolated Data	
Minimum	1E-06
Maximum	56
Mean	4.089
Median	0.17
SD	12.92
k star	0.19
Theta star	21.52
Nu star	10.26
AppChi2	4.103
ate UCL (Use when $n \ge 40$)	10.22

95% Gamma Approxima 95% Adjusted Gamma UCL (Use when n < 40) 10.87

Note: DL/2 is not a recommended method.

Number of Valid Observations 12

Raw Statistics

- Minimum 0.048
- Maximum 14
- Mean 3.677
- Geometric Mean 1.048
 - Median 1.075
 - SD 5.113
- Std. Error of Mean 1.476
- Coefficient of Variation 1.39
 - Skewness 1.336

Relevant UCL Statistics

Normal Distribution Test

- Shapiro Wilk Test Statistic 0.721 Shapiro Wilk Critical Value 0.859
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 6.328

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 6.713

95% Modified-t UCL (Johnson-1978) 6.423

Gamma Distribution Test

- k star (bias corrected) 0.434)ata appear Gamma Distributed at 5% Significance Leve
 - Theta Star 8.465
 - MLE of Mean 3.677
- MLE of Standard Deviation 5.579
 - nu star 10.43
- Approximate Chi Square Value (.05) 4.21
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 3.627
- Anderson-Darling Test Statistic 0.448 Anderson-Darling 5% Critical Value 0.785
- Kolmogorov-Smirnov Test Statistic 0.178
- Kolmogorov-Smirnov 5% Critical Value 0.259

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 9.107 95% Adjusted Gamma UCL (Use when n < 40) 10.57

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 12

Log-transformed Statistics

Minimum of Log Data -3.037 Maximum of Log Data 2.639 Mean of log Data 0.0468 SD of log Data 1.884

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.951 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 89.57 95% Chebyshev (MVUE) UCL 16.26 97.5% Chebyshev (MVUE) UCL 21.33 99% Chebyshev (MVUE) UCL 31.29

Data Distribution

Nonparametric Statistics

- 95% CLT UCL 6.105
- 95% Jackknife UCL 6.328
- 95% Standard Bootstrap UCL 5.999
- 95% Bootstrap-t UCL 7.878
- 95% Hall's Bootstrap UCL 5.729
- 95% Percentile Bootstrap UCL 6.098
- 95% BCA Bootstrap UCL 6.566
- 95% Chebyshev(Mean, Sd) UCL 10.11
- 97.5% Chebyshev(Mean, Sd) UCL 12.9
- 99% Chebyshev(Mean, Sd) UCL 18.36

Use 95% Approximate Gamma UCL 9.107

U59

General Stat	istics		
Number of Valid Data	53	Number of Detected Data	39
Number of Distinct Detected Data	37	Number of Non-Detect Data	14
		Percent Non-Detects	26.42%
Raw Statistics		Log-transformed Statistics	
Minimum Detected		Minimum Detected	-5.133
Maximum Detected	1000	Maximum Detected	6.908
Mean of Detected	38.99	Mean of Detected	-1.277
SD of Detected	170	SD of Detected	3.106
Minimum Non-Detect	0.0046	Minimum Non-Detect	-5.382
Maximum Non-Detect	0.024	Maximum Non-Detect	-3.73
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	24
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	29
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	45.28%
obolivations - Eargost ND alo abated as NDS			10.2070
UCL Statist	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	lues Only
Shapiro Wilk Test Statistic	0.259	Shapiro Wilk Test Statistic	0.916
5% Shapiro Wilk Critical Value	0.939	5% Shapiro Wilk Critical Value	0.939
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance I	_evel
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
DE/2 Substitution Method Mean	28.69	Mean	-2.391
		SD	
SD	146.3		3.269
95% DL/2 (t) UCL	62.36	95% H-Stat (DL/2) UCL	232
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-3.003
		SD in Log Scale	4.005
		Mean in Original Scale	28.69
		SD in Original Scale	146.3
		95% t UCL	62.36
		95% Percentile Bootstrap UCL	66.24
		95% BCA Bootstrap UCL	92.87
		95% H-UCL	5920
Gamma Distribution Test with Detected Values Only	0.10	Data Distribution Test with Detected Value	
k star (bias corrected)	0.16	Data do not follow a Discernable Distributio	11 (0.05)
Theta Star	243.7		
nu star	12.48		
A-D Test Statistic	5.13	Nonparametric Statistics	
5% A-D Critical Value	0.929	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.929	Mean	28.69
5% K-S Critical Value	0.158	SD	145
Data not Gamma Distributed at 5% Significance Level		SE of Mean	20.17
		95% KM (t) UCL	62.47
Assuming Gamma Distribution		95% KM (z) UCL	61.87
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	62.36
Minimum	1E-06	95% KM (bootstrap t) UCL	486.8
Maximum	1000	95% KM (BCA) UCL	67.17
Mean	28.69	95% KM (Percentile Bootstrap) UCL	66.31
Median		95% KW (Percentile Bootstrap) UCL	116.6

General Statistics

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	1000
Mean	28.69
Median	0.039
SD	146.3
k star	0.109
Theta star	263.8
Nu star	11.53
AppChi2	4.918
95% Gamma Approximate UCL (Use when n >= 40)	67.26
95% Adjusted Gamma UCL (Use when n < 40)	68.95

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

95% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

Potential UCLs to Use 99% KM (Chebyshev) UCL 116.6

154.7

229.4

229.4

	0.00
Number of Valid Data	36

Number of Distinct Detected Data 31		
	Number of Distinct Detected Data	31

Number of Non-Detect Data	1
Percent Non-Detects	2.78%

35

0.968

0.934

-0.698

2.704

170.9

-0.729

2.771

22.98

108.5

53.54

58.19

76.21

220.1

Number of Detected Data

Log-transformed Statistics

Lognormal Distribution Test with Detected Values Only

5% Shapiro Wilk Critical Value

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution DL/2 Substitution Method

Shapiro Wilk Test Statistic

95% H-Stat (DL/2) UCL

Log ROS Method

Mean in Log Scale

Mean in Original Scale

SD in Original Scale

SD in Log Scale

95% t UCL

95% H UCL

Minimum Detected	-4.893
Maximum Detected	6.477
Mean of Detected	-0.547
SD of Detected	2.584
Minimum Non-Detect	-5.319
Maximum Non-Detect	-5.319

Mean

SD

Raw Statistics

Minimum Detected	0.0075
Maximum Detected	650
Mean of Detected	23.63
SD of Detected	110.1
Minimum Non-Detect	0.0049
Maximum Non-Detect	0.0049

UCL Statistics

Normal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.23
5% Shapiro Wilk Critical Value	0.934

Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	22.98
SD	108.5
95% DL/2 (t) UCL	53.54

Maximum Likelihood Estimate(MLE) Method

SD 108.8

- 95% MLE (t) UCL 51.4
- 95% MLE (Tiku) UCL 47.84

Gamma Distribution Test with Detected Values Only

- k star (bias corrected) 0.201
 - Theta Star 117.8
 - nu star 14.04
 - A-D Test Statistic 4.085
 - 5% A-D Critical Value 0.9
 - K-S Test Statistic 0.9
- 5% K-S Critical Value 0.165

Data not Gamma Distributed at 5% Significance Level

95% Gamma Approximate UCL (Use when n >= 40)

95% Adjusted Gamma UCL (Use when n < 40)

Assuming Gamma Distribution

Gamma ROS Statisti

1E-06
650
22.98
0.37
108.5
0.187
122.7
13.48
6.218

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

95% Percentile Bootstrap UCL

95% BCA Bootstrap UCL

Nonparametric Statistics Kaplan-Meier (KM) Method

Mean	22.98
SD	107
SE of Mean	18.1
95% KM (t) UCL	53.56
95% KM (z) UCL	52.75
95% KM (jackknife) UCL	53.54
95% KM (bootstrap t) UCL	357.8
95% KM (BCA) UCL	59.39
95% KM (Percentile Bootstrap) UCL	57.94
95% KM (Chebyshev) UCL	101.9
97.5% KM (Chebyshev) UCL	136
99% KM (Chebyshev) UCL	203.1
Potential UCLs to Use	
000/ I/M (Ohahuahau) LIOI	202.1

99% KM (Chebyshev) UCL 203.1

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

49.82

51.68

Number of Valid Observations 12

Raw Statistics

- Minimum 0.34
- Maximum 76
- Mean 20.18
- Geometric Mean 5.947
 - Median 7.35
 - SD 27.8
- Std. Error of Mean 8.026 Coefficient of Variation 1.378
 - Skewness 1.302

Relevant UCL Statistics

Normal Distribution Test

- Shapiro Wilk Test Statistic 0.719 Shapiro Wilk Critical Value 0.859
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 34.59

95% UCLs (Adjusted for Skewness)

- 95% Adjusted-CLT UCL (Chen-1995) 36.6
 - 95% Modified-t UCL (Johnson-1978) 35.09

Gamma Distribution Test

- k star (bias corrected) 0.443)ata appear Gamma Distributed at 5% Significance Leve
 - Theta Star 45.5
 - MLE of Mean 20.18
- MLE of Standard Deviation 30.3
 - nu star 10.64
- Approximate Chi Square Value (.05) 4.347
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 3.753
- Anderson-Darling Test Statistic 0.536 Anderson-Darling 5% Critical Value 0.784
- Kolmogorov-Smirnov Test Statistic 0.191
- Kolmogorov-Smirnov 5% Critical Value 0.258

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 49.4 95% Adjusted Gamma UCL (Use when n < 40) 57.22

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 12

Log-transformed Statistics

Minimum of Log Data -1.079 Maximum of Log Data 4.331 Mean of log Data 1.783 SD of log Data 1.829

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.938 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

- 95% H-UCL 398.4 95% Chebyshev (MVUE) UCL 83.79 97.5% Chebyshev (MVUE) UCL 109.7 99% Chebyshev (MVUE) UCL 160.7
 - Data Distribution

Nonparametric Statistics

- 95% CLT UCL 33.38
- 95% Jackknife UCL 34.59
- 95% Standard Bootstrap UCL 32.71
 - 95% Bootstrap-t UCL 40.1
- 95% Hall's Bootstrap UCL 30.8
- 95% Percentile Bootstrap UCL 33.86
- 95% BCA Bootstrap UCL 35.55
- 95% Chebyshev(Mean, Sd) UCL 55.16
- 97.5% Chebyshev(Mean, Sd) UCL 70.3 99% Chebyshev(Mean, Sd) UCL 100

Use 95% Approximate Gamma UCL 49.4

Raw Statistics

52
4
7.14%
-4.423
6.346
-0.868
2.696
-5.382
-4.269
6
50

Single DL Non-Detect Percentage

Lognormal Distribution Test with Detected Values Only

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution DL/2 Substitution Method

Lilliefors Test Statistic

5% Lilliefors Critical Value

95% H-Stat (DL/2) UCL

Log ROS Method

Mean in Log Scale

Mean in Original Scale

95% Percentile Bootstrap UCL

Data Distribution Test with Detected Values Only

Nonparametric Statistics

Kaplan-Meier (KM) Method

95% BCA Bootstrap UCL

SD in Original Scale

SD in Log Scale

95% t UCL

95% H UCL

Mean

95% KM (t) UCL

95% KM (z) UCL

95% KM (jackknife) UCL

95% KM (BCA) UCL

95% KM (bootstrap t) UCL

95% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

Potential UCLs to Use 99% KM (Chebyshev) UCL

95% KM (Percentile Bootstrap) UCL

SD SE of Mean 10.71%

0.151

0 123

-1.218

2.894

148.9

-1.304

3.044

17.81

82.89

36.34

37.99

51.85

258.6

17.81

82.14

11.08

36.35

36.04

36.34

208.8

36.46

38.08

66.12

87.03

128.1

128.1

Mean

SD

SD of Detected 85 92 Minimum Non-Detect 0.0046 Maximum Non-Detect 0.014 Note: Data have multiple DLs - Use of KM Method is recommended

For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics

General Statistics

56

49

0.012 570

19.18

Number of Valid Data

Minimum Detected

Maximum Detected Mean of Detected

Number of Distinct Detected Data

Normal Distribution Test with Detected Values Only

Lilliefors Test Statistic 0.429 5% Lilliefors Critical Value 0.123

Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	17.81

SD 82.89 95% DL/2 (t) UCL 36.34

Maximum Likelihood Estimate(MLE) Method

- 10.71 Mean
- SD 87.74
- 95% MLE (t) UCL 30.32
- 95% MLE (Tiku) UCL 28.77
- Gamma Distribution Test with Detected Values Only
 - 0.195 k star (bias corrected) Data do not follow a Discernable Distribution (0.05)
 - 98.23 Theta Star
 - nu star 20.3
 - A-D Test Statistic 5.698 0.912
 - 5% A-D Critical Value K-S Test Statistic 0.912
 - 5% K-S Critical Value 0.137
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using

Gamma ROS Statistics using Extrapolated Data		
Minimum	1E-06	
Maximum	570	
Mean	17.81	
Median	0.165	
SD	82.89	
k star	0.166	
Theta star	107.4	
Nu star	18.56	
AppChi2	9.8	
95% Gamma Approximate UCL (Use when n >= 40)	33.73	
95% Adjusted Gamma UCL (Use when n < 40)	34.32	

Note: DL/2 is not a recommended method.

Number of Valid Observations 36

Raw Statistics

Minimum 0.0028

- Maximum 810 Mean 30.67
- Geometric Mean 0.691
 - Median 0.48
 - SD 135.6
- Std. Error of Mean 22.61
- Coefficient of Variation 4.423
 - Skewness 5.736

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.245 Shapiro Wilk Critical Value 0.935

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 68.86

95% UCLs (Adjusted for Skewness)

- 95% Adjusted-CLT UCL (Chen-1995) 90.95
- 95% Modified-t UCL (Johnson-1978) 72.47

Gamma Distribution Test

- k star (bias corrected) 0.197
 - Theta Star 155.6
- MLE of Mean 30.67
- MLE of Standard Deviation 69.07
 - nu star 14.19
- Approximate Chi Square Value (.05) 6.704
 - Adjusted Level of Significance 0.0428
 - Adjusted Chi Square Value 6.47
- Anderson-Darling Test Statistic 3.762 Anderson-Darling 5% Critical Value 0.903
- Kolmogorov-Smirnov Test Statistic 0.268
- Kolmogorov-Smirnov 5% Critical Value 0.163

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 64.93 95% Adjusted Gamma UCL (Use when n < 40) 67.27

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 33

Log-transformed Statistics

Minimum of Log Data -5.878 Maximum of Log Data 6.697 Mean of log Data -0.369 SD of log Data 2.768

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.981 Shapiro Wilk Critical Value 0.935 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 312.1 95% Chebyshev (MVUE) UCL 82.84 97.5% Chebyshev (MVUE) UCL 109.5 99% Chebyshev (MVUE) UCL 161.9

Data Distribution

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

- 95% CLT UCL 67.85
- 95% Jackknife UCL 68.86
- 95% Standard Bootstrap UCL 67.17
- 95% Bootstrap-t UCL 258.9
- 95% Hall's Bootstrap UCL 229.4
- 95% Percentile Bootstrap UCL 74.04
- 95% BCA Bootstrap UCL 105.2
- 95% Chebyshev(Mean, Sd) UCL 129.2
- 97.5% Chebyshev(Mean, Sd) UCL 171.9
- 99% Chebyshev(Mean, Sd) UCL 255.6

Use 97.5% Chebyshev (Mean, Sd) UCL 171.9

Number of Valid Observations 12

Raw Statistics

Minimum 0.74

- Maximum 120
- Mean 27.24
- Geometric Mean 8.34 Median 9.25
 - SD 39.96
- Std. Error of Mean 11.53
- Coefficient of Variation 1.467
 - Skewness 1.671

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.71

Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 47.95

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 52.16 95% Modified-t UCL (Johnson-1978) 48.88

Gamma Distribution Test

Theta Star 59.95

- MLE of Mean 27.24
- MLE of Standard Deviation 40.41
 - nu star 10.9
- Approximate Chi Square Value (.05) 4.514
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 3.906
- Anderson-Darling Test Statistic 0.534 Anderson-Darling 5% Critical Value 0.782
- Kolmogorov-Smirnov Test Statistic 0.199
- Kolmogorov-Smirnov 5% Critical Value 0.258
- Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 65.79 95% Adjusted Gamma UCL (Use when n < 40) 76.03

Potential UCL to Use

Mean of log Data 2.121 SD of log Data 1.728

Number of Distinct Observations 12

Minimum of Log Data -0.301

Maximum of Log Data 4.787

Log-transformed Statistics

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.939 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 363.4 95% Chebyshev (MVUE) UCL 98.61 97.5% Chebyshev (MVUE) UCL 128.7

99% Chebyshev (MVUE) UCL 187.7

Data Distribution

k star (bias corrected) 0.454)ata appear Gamma Distributed at 5% Significance Leve

Nonparametric Statistics

- 95% Jackknife UCL 47.95
- 95% Standard Bootstrap UCL 45.1
 - 95% Bootstrap-t UCL 68.32
- 95% Hall's Bootstrap UCL 54.36
- 95% Percentile Bootstrap UCL 46.72
- 95% Chebyshev(Mean, Sd) UCL 77.51
- 97.5% Chebyshev(Mean, Sd) UCL 99.27
- 99% Chebyshev(Mean, Sd) UCL 142

Use 95% Approximate Gamma UCL 65.79

- 95% CLT UCL 46.21

- 95% BCA Bootstrap UCL 53.3

Number of Detected Data Number of Non-Detect Data Percent Non-Detects	52 4 7.14%
Log-transformed Statistics	
Minimum Detected	-4.135
Maximum Detected	6.064
Mean of Detected	-0.666

mount of Dotooted	0.000
SD of Detected	2.552
Minimum Non-Detect	-5.382
Maximum Non-Detect	-4.269
Number treated as Non-Detect	4
Number treated as Detected	52
	52 7.14%

Lognormal Distribution Test with Detected Values Only

Lilliefors Test Statistic	0.132
5% Lilliefors Critical Value	0.123
Data not Lognormal at 5% Significance Le	evel

A	 Distribution	

Assuming Lognormal Distribution	
DL/2 Substitution Method	
Mean	-1.03
SD	2.795
95% H-Stat (DL/2) UCL	119.6
Log ROS Method	
Mean in Log Scale	-1.085
SD in Log Scale	2.894
Mean in Original Scale	14.19
SD in Original Scale	62.72
95% t UCL	28.21
95% Percentile Bootstrap UCL	29.24
95% BCA Bootstrap UCL	39.56
0.50/ 11/10/	

95% H UCL 169.7

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	14.19
SD	62.15
SE of Mean	8.387
95% KM (t) UCL	28.22
95% KM (z) UCL	27.98
95% KM (jackknife) UCL	28.21
95% KM (bootstrap t) UCL	133.2
95% KM (BCA) UCL	32.49
95% KM (Percentile Bootstrap) UCL	29.34
95% KM (Chebyshev) UCL	50.75
97.5% KM (Chebyshev) UCL	66.56
99% KM (Chebyshev) UCL	97.63
Potential UCLs to Use	

99% KM (Chebyshev) UCL 97.63

General Statistics

	-
Number of Valid Data	56

Number of Distinct Detected Data 47

Raw Statistics

Minimum Detected	0.016
Maximum Detected	430
Mean of Detected	15.28
SD of Detected	65
Minimum Non-Detect	0.0046
Maximum Non-Detect	0.014

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

UCL Statistics

Normal Distribution Test with Detected Values Only

Lilliefors Test Statistic 0.407

5% Lilliefors Critical Value 0.123 Data not Normal at 5% Significance Level

Assuming Normal Distribution

anning ree	
	DL/2 Substitution Method

- 14.19 Mean SD 62.72
- 95% DL/2 (t) UCL 28.21

Maximum Likelihood Estimate(MLE) Method

- 10.76 Mean
- SD 64.9
- 95% MLE (t) UCL 25.27
- 95% MLE (Tiku) UCL 23.87
- Gamma Distribution Test with Detected Values Only
 - k star (bias corrected) 0.215 Theta Star 71.07
 - nu star 22.36
 - A-D Test Statistic 5.09
 - 5% A-D Critical Value 0.901
 - K-S Test Statistic
 - 0.901 5% K-S Critical Value 0.136
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

stranglated Dat Gamma ROS Statisti

1E-06
430
14.19
0.265
62.72
0.179
79.39
20.02
10.86
26.14
26.58

Note: DL/2 is not a recommended method.

Number of Valid Observations 27

Raw Statistics

Minimum 0.007

- Maximum 360
- Mean 19.33 Geometric Mean 0.768
 - Median 0.53
 - SD 69.58
- Std. Error of Mean 13.39
- Coefficient of Variation 3.599
 - Skewness 4.866

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.304 Shapiro Wilk Critical Value 0.923

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 42.17

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 54.76
 - 95% Modified-t UCL (Johnson-1978) 44.26

Gamma Distribution Test

- k star (bias corrected) 0.224
 - Theta Star 86.36
- MLE of Mean 19.33
- MLE of Standard Deviation 40.86
 - nu star 12.09
- Approximate Chi Square Value (.05) 5.286
 - Adjusted Level of Significance 0.0401
 - Adjusted Chi Square Value 5
- Anderson-Darling Test Statistic 2.69 Anderson-Darling 5% Critical Value 0.885
- Kolmogorov-Smirnov Test Statistic 0.261
- Kolmogorov-Smirnov 5% Critical Value 0.185

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 44.22 95% Adjusted Gamma UCL (Use when n < 40) 46.75

Potential UCL to Use

Number of Distinct Observations 24

Log-transformed Statistics

Minimum of Log Data -4.962 Maximum of Log Data 5.886 Mean of log Data -0.264 SD of log Data 2.572

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.959 Shapiro Wilk Critical Value 0.923 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 261.8 95% Chebyshev (MVUE) UCL 54.1 97.5% Chebyshev (MVUE) UCL 71.49 99% Chebyshev (MVUE) UCL 105.6

Data Distribution

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

- 95% CLT UCL 41.36
- 95% Jackknife UCL 42.17
- 95% Standard Bootstrap UCL 40.47
 - 95% Bootstrap-t UCL 135.8
- 95% Hall's Bootstrap UCL 133.6
- 95% Percentile Bootstrap UCL 45.18
 - 95% BCA Bootstrap UCL 59.52
- 95% Chebyshev(Mean, Sd) UCL 77.7
- 97.5% Chebyshev(Mean, Sd) UCL 103
- 99% Chebyshev(Mean, Sd) UCL 152.6

Use 99% Chebyshev (Mean, Sd) UCL 152.6

Number of Valid Observations 12

Raw Statistics

- Minimum 047
- Maximum 46
- Mean 13.02
- Geometric Mean 5.459
 - Median 6.05
 - SD 15.15
- Std. Error of Mean 4.373
- Coefficient of Variation 1.163
 - Skewness 1.263

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.816 Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 20.87

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 21.92
 - 95% Modified-t UCL (Johnson-1978) 21.14

Gamma Distribution Test

- k star (bias corrected) 0.577)ata appear Gamma Distributed at 5% Significance Leve
 - Theta Star 22.55
 - MLE of Mean 13.02
 - MLE of Standard Deviation 17.14
 - nu star 13.86
- Approximate Chi Square Value (.05) 6.473
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 5.72
- Anderson-Darling Test Statistic 0.337 Anderson-Darling 5% Critical Value 0.77
- Kolmogorov-Smirnov Test Statistic 0.157
- Kolmogorov-Smirnov 5% Critical Value 0.256

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 27.87
 - 95% Adjusted Gamma UCL (Use when n < 40) 31.54

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 11

Log-transformed Statistics

Minimum of Log Data -0.755 Maximum of Log Data 3.829 Mean of log Data 1.697 SD of log Data 1.551

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.942 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 117.9 95% Chebyshev (MVUE) UCL 47.66 97.5% Chebyshev (MVUE) UCL 61.71 99% Chebyshev (MVUE) UCL 89.31

Data Distribution

Nonparametric Statistics

- 95% CLT UCL 20.21
- 95% Jackknife UCL 20.87
- 95% Standard Bootstrap UCL 19.96
- 95% Bootstrap-t UCL 23.98
- 95% Hall's Bootstrap UCL 23.97
- 95% Percentile Bootstrap UCL 20.62
- 95% BCA Bootstrap UCL 21.82
- 95% Chebyshev(Mean, Sd) UCL 32.08
- 97.5% Chebyshev(Mean, Sd) UCL 40.33
- 99% Chebyshev(Mean, Sd) UCL 56.53

Use 95% Approximate Gamma UCL 27.87

General Stat	istics		
Number of Valid Data	53	Number of Detected Data	50
Number of Distinct Detected Data	43	Number of Non-Detect Data	3
		Percent Non-Detects	5.66%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0092	Minimum Detected	-4.689
Maximum Detected	80	Maximum Detected	4.382
Mean of Detected	4.335	Mean of Detected	-1.348
SD of Detected	14.02	SD of Detected	2.483
Minimum Non-Detect	0.0046	Minimum Non-Detect	-5.382
Maximum Non-Detect	0.014	Maximum Non-Detect	-4.269
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	9
For all methods (except KM, DL/2, and ROS Methods), Number treated as Detecter		Number treated as Detected	44
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	16.98%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	lues Only
Shapiro Wilk Test Statistic	0.343	Shapiro Wilk Test Statistic	0.921
5% Shapiro Wilk Critical Value	0.947	5% Shapiro Wilk Critical Value	0.947
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance	Level
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	4.09	Mean	-1.593
SD	13.65	SD	2.617
95% DL/2 (t) UCL	7.229	95% H-Stat (DL/2) UCL	32.56
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	2.165	Mean in Log Scale	-1.652
SD	15.15	SD in Log Scale	2.724
95% MLE (t) UCL	5.65	Mean in Original Scale	4.09
95% MLE (Tiku) UCL	5.494	SD in Original Scale	13.65
		95% t UCL	7.229
		95% Percentile Bootstrap UCL	7.573
		95% BCA Bootstrap UCL	9.128

95% H UCL 46.55

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics	
Kaplan-Meier (KM) Method	
Mean	4.09
SD	13.52
SE of Mean	1.876
95% KM (t) UCL	7.231
95% KM (z) UCL	7.175
95% KM (jackknife) UCL	7.23
95% KM (bootstrap t) UCL	17.53
95% KM (BCA) UCL	7.77
95% KM (Percentile Bootstrap) UCL	7.409
95% KM (Chebyshev) UCL	12.27
97.5% KM (Chebyshev) UCL	15.8
99% KM (Chebyshev) UCL	22.75
Potential UCLs to Use	

99% KM (Chebyshev) UCL

22.75

nu star

A-D Test Statistic 3.591

Theta Star

0.25

17.32

25.02

5% A-D Critical Value 0.884

k star (bias corrected)

- K-S Test Statistic 0.884
- 5% K-S Critical Value 0.137
- Data not Gamma Distributed at 5% Significance Level

Gamma Distribution Test with Detected Values Only

Assuming Gamma Distribution Gamma ROS Statistics usin

ng Extrapolated Data	
Minimum	1E-06
Maximum	80
Mean	4.09
Median	0.11
SD	13.65
k star	0.211
Theta star	19.34
Nu star	22.42
AppChi2	12.65
L (Use when n >= 40)	7.247

95% Gamma Approximate UCL 95% Adjusted Gamma UCL (Use when n < 40) 7.367

Note: DL/2 is not a recommended method.

Number of Valid Data	36

Minimum Detected	0.011
Maximum Detected	670
Mean of Detected	25.3
SD of Detected	113.7
Minimum Non-Detect	0.0049
Maximum Non-Detect	0.0049

UCL Statistics

Normal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.24
5% Shapiro Wilk Critical Value	0.934

5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	24.6
SD	112.1
95% DL/2 (t) UCL	56.18

Maximum Likelihood Estimate(MLE) Method

Mean	22.32
------	-------

- SD 112.4
- 95% MLE (t) UCL 53.97
- 95% MLE (Tiku) UCL 50.3

Gamma Distribution Test with Detected Values Only

- k star (bias corrected) 0.208
 - Theta Star 121.7
 - nu star 14.56
 - A-D Test Statistic 4.191
 - 5% A-D Critical Value 0.897
 - K-S Test Statistic 0.897
 - 5% K-S Critical Value 0.164

Data not Gamma Distributed at 5% Significance Level

95% Gamma Approximate UCL (Use when $n \ge 40$)

95% Adjusted Gamma UCL (Use when n < 40)

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	670
Mean	24.6
Median	0.395
SD	112.1
k star	0.193
Theta star	127.3
Nu star	13.91

Minimum Detected	-4.51
Maximum Detected	6.507
Mean of Detected	-0.312
SD of Detected	2.493

Number of Detected Data

Percent Non-Detects

Number of Non-Detect Data

Log-transformed Statistics

Minimum Non-Detect -5.319Maximum Non-Detect -5.319

35

2.78%

1

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic	0.961
5% Shapiro Wilk Critical Value	0.934

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-0.471
SD	2.635
95% H-Stat (DL/2) UCL	160.6
Log ROS Method	
Mean in Log Scale	-0.487
SD in Log Scale	2.672
Mean in Original Scale	24.6
SD in Original Scale	112.1
95% t UCL	56.18
95% Percentile Bootstrap UCL	60.78
95% BCA Bootstrap UCL	81.63
95% H UCL	184.4

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Nonparametric Statistics an-Meier (KM) Method

Kaplan-Meier (KM) Method	
Mean	24.6
SD	110.6
SE of Mean	18.7
95% KM (t) UCL	56.19
95% KM (z) UCL	55.35
95% KM (jackknife) UCL	56.18
95% KM (bootstrap t) UCL	299.8
95% KM (BCA) UCL	62.3
95% KM (Percentile Bootstrap) UCL	61.87
95% KM (Chebyshev) UCL	106.1
97.5% KM (Chebyshev) UCL	141.4
99% KM (Chebyshev) UCL	210.6
Potential UCLs to Use	
000/ I/M (Ohehushau) 1101	210.0

99% KM (Chebyshev) UCL 210.6

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

AppChi2

6.512

52.56

54.48

Number of Valid Observations 12

Raw Statistics

Minimum 0.44

- Maximum 76
- Mean 21.06
- Geometric Mean 6.906 Median 8.05
 - SD 27.89
- Std. Error of Mean 8.052
- Coefficient of Variation 1.324
 - Skewness 1.257

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.73 Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 35.52

95% UCLs (Adjusted for Skewness)

- 95% Adjusted-CLT UCL (Chen-1995) 37.43
- 95% Modified-t UCL (Johnson-1978) 36.01

Gamma Distribution Test

Theta Star 44.3

- MLE of Mean 21.06
- MLE of Standard Deviation 30.54
 - nu star 11.41
- Approximate Chi Square Value (.05) 4.842
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 4.208
- Anderson-Darling Test Statistic 0.498 Anderson-Darling 5% Critical Value 0.78
- Kolmogorov-Smirnov Test Statistic 0.181
- Kolmogorov-Smirnov 5% Critical Value 0.258

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 49.64 95% Adjusted Gamma UCL (Use when n < 40) 57.12

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 11

Log-transformed Statistics

Minimum of Log Data -0.821 Maximum of Log Data 4.331 Mean of log Data 1.932 SD of log Data 1.742

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.94 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 318.3 95% Chebyshev (MVUE) UCL 83.58 97.5% Chebyshev (MVUE) UCL 109.1 99% Chebyshev (MVUE) UCL 159.2

Nonparametric Statistics

- 95% CLT UCL 34.31
- 95% Jackknife UCL 35.52
- 95% Standard Bootstrap UCL 33.92
 - 95% Bootstrap-t UCL 41.3
- 95% Hall's Bootstrap UCL 31.37
- 95% Percentile Bootstrap UCL 34.42
- 95% BCA Bootstrap UCL 38.49
- 95% Chebyshev(Mean, Sd) UCL 56.16
- 97.5% Chebyshev(Mean, Sd) UCL 71.35
- 99% Chebyshev(Mean, Sd) UCL 101.2

Use 95% Approximate Gamma UCL 49.64

Data Distribution

k star (bias corrected) 0.475)ata appear Gamma Distributed at 5% Significance Leve

Number of Valid Data	56	Number of Detected Data	54
Number of Distinct Detected Data	51	Number of Non-Detect Data	2
		Percent Non-Detects	3.57%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0033	Minimum Detected	-5.714
Maximum Detected	520	Maximum Detected	6.254
Mean of Detected	17.48	Mean of Detected	-0.848
SD of Detected	77.66	SD of Detected	2.68
Minimum Non-Detect	0.0046	Minimum Non-Detect	-5.382
Maximum Non-Detect	0.0049	Maximum Non-Detect	-5.319
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	3
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	53
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	5.36%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	ues Onlv
Lilliefors Test Statistic	0.432	Lilliefors Test Statistic	0.137
	0.452		
5% Lilliefors Critical Value	0.432	5% Lilliefors Critical Value	0.121
			0.121
5% Lilliefors Critical Value Data not Normal at 5% Significance Level		5% Lilliefors Critical Value Data not Lognormal at 5% Significance L	0.121
5% Lilliefors Critical Value		5% Lilliefors Critical Value	0.121
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution	0.121	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution	0.121 evel
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method		5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method	0.121 evel -1.034
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean	0.121	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method Mean	0.121 evel
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL	0.121 16.86 76.31	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	0.121 evel -1.034 2.805
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD	0.121 16.86 76.31 33.92	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	0.121 evel -1.034 2.805 124.4
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	0.121 16.86 76.31 33.92 13.78	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	0.121 evel -1.034 2.805 124.4 -1.058
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean	0.121 16.86 76.31 33.92	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	0.121 evel -1.034 2.805 124.4
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD	0.121 16.86 76.31 33.92 13.78 78.09 31.23	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	0.121 evel -1.034 2.805 124.4 -1.058 2.853
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	0.121 16.86 76.31 33.92 13.78 78.09 31.23	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	0.121 evel -1.034 2.805 124.4 -1.058 2.853 16.86
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	0.121 16.86 76.31 33.92 13.78 78.09 31.23	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	0.121 evel -1.034 2.805 124.4 -1.058 2.853 16.86 76.31
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	0.121 16.86 76.31 33.92 13.78 78.09 31.23	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale	0.121 evel -1.034 2.805 124.4 -1.058 2.853 16.86 76.31 33.92
5% Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	0.121 16.86 76.31 33.92 13.78 78.09 31.23	5% Lilliefors Critical Value Data not Lognormal at 5% Significance L Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	0.121 evel -1.034 2.805 124.4 -1.058 2.853 16.86 76.31 33.92 35.22

Gamma Distribution Test with Detected Values Only

- k star (bias corrected) 0.2 87.45 Theta Star
 - nu star 21.59
 - A-D Test Statistic 5.617
- 5% A-D Critical Value 0.909
- K-S Test Statistic 0.909
- 5% K-S Critical Value 0.134
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistic

Gamma ROS Statistics using Extrapolated Data		
Minimum	1E-06	
Maximum	520	
Mean	16.86	
Median	0.2	
SD	76.31	
k star	0.183	
Theta star	92.15	
Nu star	20.49	
AppChi2	11.21	
95% Gamma Approximate UCL (Use when n >= 40)	30.81	
95% Adjusted Gamma UCL (Use when n < 40)	31.32	

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Nonnerametric Statistics

Data Distribution Test with Detected Values Only

Data do not follow a Discernable Distribution (0.05)

Nonparametric Stausucs	
Kaplan-Meier (KM) Method	
Mean	16.86
SD	75.62
SE of Mean	10.2
95% KM (t) UCL	33.93
95% KM (z) UCL	33.64
95% KM (jackknife) UCL	33.92
95% KM (bootstrap t) UCL	183.2
95% KM (BCA) UCL	39.39
95% KM (Percentile Bootstrap) UCL	34.88
95% KM (Chebyshev) UCL	61.32
97.5% KM (Chebyshev) UCL	80.56
99% KM (Chebyshev) UCL	118.4
Potential UCLs to Use	

99% KM (Chebyshev) UCL 118.4

General Stat	istics		
Number of Valid Data	36	Number of Detected Data	33
Number of Distinct Detected Data	32	Number of Non-Detect Data	3
		Percent Non-Detects	8.33%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0029	Minimum Detected	-5.843
Maximum Detected	83	Maximum Detected	4.419
Mean of Detected	3.679	Mean of Detected	-1.783
SD of Detected	14.54	SD of Detected	2.338
Minimum Non-Detect	0.0044	Minimum Non-Detect	-5.426
Maximum Non-Detect	0.0049	Maximum Non-Detect	-5.319
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	4
For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs		Number treated as Detected Single DL Non-Detect Percentage	32 11.11%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	lues Onlv
Shapiro Wilk Test Statistic	0.275	Shapiro Wilk Test Statistic	0.943
5% Shapiro Wilk Critical Value	0.931	5% Shapiro Wilk Critical Value	0.931
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance	Level
Assuming Normal Distribution DL/2 Substitution Method		Assuming Lognormal Distribution DL/2 Substitution Method	
Mean	3.373	Mean	-2.139
		Wicall	2.100
SD.	13 94	SD	2 5 3 7
SD 95% DL/2 (t) UCL	13.94 7.299	SD 95% H-Stat (DL/2) UCL	2.537 20.45

Maximum Likelihood Estimate(MLE) Method

Mean	2.149
SD	14.74

95% MLE (t) UCL	6.3
95% MLE (Tiku) UCL	5.981

Gamma	Distribution	Test with	Detected	Values Only

- k star (bias corrected) 0.232 Theta Star 15.87
 - nu star 15.31
- A-D Test Statistic 3.659
- 5% A-D Critical Value 0.885
- K-S Test Statistic 0.885 0.169
- 5% K-S Critical Value
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Gamma ROS Statistics using Extrapolated Data		
Minimum	1E-06	
Maximum	83	
Mean	3.373	
Median	0.0815	
SD	13.94	
k star	0.189	
Theta star	17.84	
Nu star	13.61	
AppChi2	6.305	
95% Gamma Approximate UCL (Use when n >= 40)	7.28	
95% Adjusted Gamma UCL (Use when n < 40)	7.55	

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Nonparametric Statistics

Data Distribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

Kaplan-Meier (KM) Method	
Mean	3.373
SD	13.75
SE of Mean	2.327
95% KM (t) UCL	7.305
95% KM (z) UCL	7.2
95% KM (jackknife) UCL	7.299
95% KM (bootstrap t) UCL	22.56
95% KM (BCA) UCL	8.074
95% KM (Percentile Bootstrap) UCL	7.806
95% KM (Chebyshev) UCL	13.52
97.5% KM (Chebyshev) UCL	17.91
99% KM (Chebyshev) UCL	26.53
Potential UCLs to Use	

Log ROS Method Mean in Log Scale

SD in Log Scale

95% t UCL

95% H UCL

Mean in Original Scale

95% Percentile Bootstrap UCL

95% BCA Bootstrap UCL

SD in Original Scale

-2.182

2.608

3.373

13.94

7.299

7.978

10.73

26

99% KM (Chebyshev) UCL 26.53

Number of Valid Observations 12

Raw Statistics

- Minimum 0.18
- Maximum 15
- Mean 3.871
- Geometric Mean 1.49
 - Median 1.25
 - SD 5.155
- Std. Error of Mean 1.488
- Coefficient of Variation 1.332
 - Skewness 1.426

Relevant UCL Statistics

Normal Distribution Test

- Shapiro Wilk Test Statistic 0.739 Shapiro Wilk Critical Value 0.859
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 6.543

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 6.973 95% Modified-t UCL (Johnson-1978) 6.645

Gamma Distribution Test

- - Theta Star 7.217
 - MLE of Mean 3.871
 - MLE of Standard Deviation 5.285
 - nu star 12.87

 - Approximate Chi Square Value (.05) 5.807 Adjusted Level of Significance 0.029

 - Adjusted Chi Square Value 5.1
 - Anderson-Darling Test Statistic 0.531 Anderson-Darling 5% Critical Value 0.774
 - Kolmogorov-Smirnov Test Statistic 0.171
- Kolmogorov-Smirnov 5% Critical Value 0.256
- Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 8.581
 - 95% Adjusted Gamma UCL (Use when n < 40) 9.769

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 12

Log-transformed Statistics

Minimum of Log Data -1.715 Maximum of Log Data 2.708 Mean of log Data 0.399 SD of log Data 1.523

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.942 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 29.01 95% Chebyshev (MVUE) UCL 12.41 97.5% Chebyshev (MVUE) UCL 16.05 99% Chebyshev (MVUE) UCL 23.2

Data Distribution

k star (bias corrected) 0.536)ata appear Gamma Distributed at 5% Significance Leve

Nonparametric Statistics

- 95% CLT UCL 6.319
- 95% Jackknife UCL 6.543
- 95% Standard Bootstrap UCL 6.239
- 95% Bootstrap-t UCL 8.249
- 95% Hall's Bootstrap UCL 6.458
- 95% Percentile Bootstrap UCL 6.223
- 95% BCA Bootstrap UCL 7.079
- 95% Chebyshev(Mean, Sd) UCL 10.36
- 97.5% Chebyshev(Mean, Sd) UCL 13.16
- 99% Chebyshev(Mean, Sd) UCL 18.68

Use 95% Approximate Gamma UCL 8.581

General Stat	istics		
Number of Valid Data	56	Number of Detected Data	39
Number of Distinct Detected Data	33	Number of Non-Detect Data	17
		Percent Non-Detects	30.36%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0 0065	Minimum Detected	-5.036
Maximum Detected	19	Maximum Detected	2.944
Maximum Detected Mean of Detected	1.525	Maximum Detected Mean of Detected	-1.88
SD of Detected	4.142	SD of Detected	2.236
Minimum Non-Detect		Minimum Non-Detect	-5.382
Maximum Non-Detect	0.024	Maximum Non-Detect	-3.73
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	27
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	29
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	48.21%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	lues Only
Shapiro Wilk Test Statistic	0.401	Shapiro Wilk Test Statistic	0.94
5% Shapiro Wilk Critical Value	0.939	5% Shapiro Wilk Critical Value	0.939
Data not Normal at 5% Significance Level	0.000	Data appear Lognormal at 5% Significance	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	1.064	Mean	-3.026
SD	3.514	SD	2.575
95% DL/2 (t) UCL	1.849	95% H-Stat (DL/2) UCL	6.919
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-3.382
		SD in Log Scale	3.01
		Mean in Original Scale	1.063
		SD in Original Scale	3.515
		95% t UCL	1.849
		95% Percentile Bootstrap UCL	1.863
		95% BCA Bootstrap UCL	2.352
		95% H-UCL	27.85
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	e Only
k star (bias corrected)	0.294		
Theta Star	5.195	Data appear Lognormal at 5% Significance	Level
nu star	22.9		
A-D Test Statistic	2.433	Nonparametric Statistics	
5% A-D Critical Value	0.858	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.858	Mean	1.064
5% K-S Critical Value	0.153	SD	3.483
Data not Gamma Distributed at 5% Significance Level		SE of Mean	0.471
•		95% KM (t) UCL	1.853
Assuming Gamma Distribution		95% KM (z) UCI	1.84

1.84

1.85

3.653

1.975

1.98

3.119

4.009

5.755

5.755

95% KM (z) UCL

95% KM (jackknife) UCL

95% KM (BCA) UCL

95% KM (bootstrap t) UCL

95% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

Potential UCLs to Use 99% KM (Chebyshev) UCL

95% KM (Percentile Bootstrap) UCL

General Statistics

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS	Statistics u	using Extra	polated Data

1E-06	
19	
1.062	
0.0315	
3.515	
0.144	
7.376	
16.13	
8.053	
2.127	
2.168	
	19 1.062 0.0315 3.515 0.144 7.376 16.13 8.053 2.127

Note: DL/2 is not a recommended method.

L99

	10000		
Number of Valid Data	27	Number of Detected Data	17
Number of Distinct Detected Data	17	Number of Non-Detect Data	10
		Percent Non-Detects	37.04%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0057	Minimum Detected	-5.167
Maximum Detected	12	Maximum Detected	2.485
Mean of Detected	1.209	Mean of Detected	-2.723
SD of Detected	3.327	SD of Detected	2.173
Minimum Non-Detect		Minimum Non-Detect	-5.36
Maximum Non-Detect	0.79	Maximum Non-Detect	-0.236
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	25
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	23
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	92.59%
Observations < Largest ND are treated as NDS		Single DL Non-Delect Percentage	92.39%
UCL Statis			
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	•
Shapiro Wilk Test Statistic	0.415	Shapiro Wilk Test Statistic	0.843
5% Shapiro Wilk Critical Value	0.892	5% Shapiro Wilk Critical Value	0.892
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance I	_evel
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.779	Mean	-3.282
SD	2.672	SD	2.01
95% DL/2 (t) UCL	1.657	95% H-Stat (DL/2) UCL	1.399
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	-3.767
		SD in Log Scale	2.291
		Mean in Original Scale	0.763
		SD in Original Scale	2.676
		95% t UCL	1.642
		95% Percentile Bootstrap UCL	1.747
		95% BCA Bootstrap UCL	2.058
		95% H-UCL	2.437
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	s Only
k star (bias corrected)	0.241	Data do not follow a Discernable Distributio	
Theta Star	5.02		
nu star	8.186		
	0 700		
A-D Test Statistic	2.796	Nonparametric Statistics	
5% A-D Critical Value	0.864	Kaplan-Meier (KM) Method	0 700
K-S Test Statistic	0.864	Mean	0.766
	0 220	SD	2 625

General Statistics

5% K-S Critical Value 0.229

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution Gamma ROS Statistics using Ex

Gamma ROS Statistics using Extrapolated Data		
Minimum	1E-06	
Maximum	12	
Mean	0.761	
Median	0.01	
SD	2.677	
k star	0.132	
Theta star	5.762	
Nu star	7.132	
AppChi2	2.243	
95% Gamma Approximate UCL (Use when n >= 40)	2.419	
95% Adjusted Gamma UCL (Use when n < 40)	2.619	

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Kaplan-Meier (KM) Method	
Mean	0.766
SD	2.625
SE of Mean	0.521
95% KM (t) UCL	1.654
95% KM (z) UCL	1.622
95% KM (jackknife) UCL	1.644
95% KM (bootstrap t) UCL	28.48
95% KM (BCA) UCL	1.677
95% KM (Percentile Bootstrap) UCL	1.667
95% KM (Chebyshev) UCL	3.036
97.5% KM (Chebyshev) UCL	4.018
99% KM (Chebyshev) UCL	5.948
Potential UCLs to Use	
99% KM (Chebyshev) UCL	5.948

Number of Valid Data 1	12

Number of Distinct Detected Data 11

Raw Statistics

- Minimum Detected 0.013 Maximum Detected 1.9
- Mean of Detected 0.409 SD of Detected 0.562 Minimum Non-Detect 0.53
- Maximum Non-Detect 0.53

UCL Statistics

0.72

0.85

- Normal Distribution Test with Detected Values Only
 - Shapiro Wilk Test Statistic
 - 5% Shapiro Wilk Critical Value
 - Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	0.397
SD	0.537
95% DL/2 (t) UCL	0.676

Maximum Likelihood Estimate(MLE) Method N/A
MLE yields a negative mean

Number of Detected Data 11 Number of Non-Detect Data 1 Percent Non-Detects 8.33%

Log-transformed Statistics

Minimum Detected	-4.343
Maximum Detected	0.642
Mean of Detected	-1.771
SD of Detected	1.502
Minimum Non-Detect	-0.635
Maximum Non-Detect	-0.635

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic0.9735% Shapiro Wilk Critical Value0.85

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-1.734
SD	1.438
95% H-Stat (DL/2) UCL	2.539
Log ROS Method	
Mean in Log Scale	-1.821
SD in Log Scale	1.442
Mean in Original Scale	0.383
SD in Original Scale	0.543
95% t UCL	0.665
95% Percentile Bootstrap UCL	0.661
95% BCA Bootstrap UCL	0.758
95% H-UCL	2.367
Data Distribution Test with Detected Values	Only

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	0.563)ata appear Gamma Distributed at 5% Significance Leve
Theta Star	0.728
nu star	12.38

A-D Test Statistic 0.325

- 5% A-D Critical Value 0.767
- K-S Test Statistic 0.767
- 5% K-S Critical Value 0.266

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data	

Minimum 0.013 Maximum 1.9 Mean 0.384 Median 0.114 SD 0.543 k star 0.587 Theta star 0.655 Nu star 14.08 AppChi2 6.625

0.923

Nonparametric Statistics Kaplan-Meier (KM) Method Mean

0.388

SD	0.52
SE of Mean	0.158
95% KM (t) UCL	0.672
95% KM (z) UCL	0.648
95% KM (jackknife) UCL	0.671
95% KM (bootstrap t) UCL	1.025
95% KM (BCA) UCL	0.653
95% KM (Percentile Bootstrap) UCL	0.673
95% KM (Chebyshev) UCL	1.077
97.5% KM (Chebyshev) UCL	1.375
99% KM (Chebyshev) UCL	1.96

Potential UCLs to Use

95% KM	(Chebyshev) UCL	1.077

95% Gamma Approximate UCL (Use when n >= 40) 0.816

95% Adjusted Gamma UCL (Use when n < 40) Note: DL/2 is not a recommended method.

General Stat	isucs		
Number of Valid Data	53	Number of Detected Data	23
Number of Distinct Detected Data	23	Number of Non-Detect Data	30
		Percent Non-Detects	56.60%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0053	Minimum Detected	-5.24
Maximum Detected	280	Maximum Detected	5.635
Mean of Detected	17.84	Mean of Detected	-1.424
SD of Detected	60.76	SD of Detected	3.049
Minimum Non-Detect		Minimum Non-Detect	-5.382
Maximum Non-Detect	0.0046	Maximum Non-Detect	-5.382 -0.734
	0.10		0.701
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	45
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	8
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	84.91%
UCL Statis	tice		
Normal Distribution Test with Detected Values Only	uco	Lognormal Distribution Test with Detected Va	lues Only
Shapiro Wilk Test Statistic	0.334	Shapiro Wilk Test Statistic	0.928
5% Shapiro Wilk Critical Value	0.914	5% Shapiro Wilk Critical Value	0.914
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance	e Level
Assuming Normal Distribution		Accurring Lognormal Distribution	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method	7 7 4 0	DL/2 Substitution Method	0 570
Mean	7.749	Mean	-3.573
SD	40.51	SD	2.878
95% DL/2 (t) UCL	17.07	95% H-Stat (DL/2) UCL	12.67
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-5.824
		SD in Log Scale	4.62
		Mean in Original Scale	7.741
		SD in Original Scale	40.51
		95% t UCL	17.06
		95% Percentile Bootstrap UCL	18.19
		95% BCA Bootstrap UCL	25.1
		95% H-UCL	16008
Occurre Distrikution Testurith Detected Melans Och			- O-1-
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	•
k star (bias corrected)	0.181	Data appear Lognormal at 5% Significance) Level
Theta Star	98.67		
nu star	8.315		
A-D Test Statistic	2.665	Nonparametric Statistics	
5% A-D Critical Value	0.904	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.904	Mean	7.745
5% K-S Critical Value	0.202	SD	40.13
Data not Gamma Distributed at 5% Significance Level		SE of Mean	5.636
•		95% KM (t) UCL	17.18
Assuming Gamma Distribution		95% KM (z) UCL	17.02
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	17.06
Miaimon Miaimon	10 06	0E% KM (beststrep t) UC	160.9

95% KM (bootstrap t) UCL 95% KM (BCA) UCL

95% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

Potential UCLs to Use 99% KM (Chebyshev) UCL

95% KM (Percentile Bootstrap) UCL

160.8 18.14

18.32

32.31

42.94

63.82

63.82

General Statistics

Gamma ROS Statistics using Extrapolated Data		
Minimum	1E-06	
Maximum	280	
Mean	7.741	
Median	1E-06	
SD	40.51	
k star	0.0877	
Theta star	88.28	
Nu star	9.294	
AppChi2	3.505	
95% Gamma Approximate UCL (Use when n >= 40)	20.52	
95% Adjusted Gamma UCL (Use when n < 40)	21.12	
recommended method		

Note: DL/2 is not a recommended method.

Number of Valid Observations 27

Raw Statistics

- Minimum 0.013
- Maximum 940
- Mean 45.21
- Geometric Mean 1.533
 - Median 1.2 SD 182.1
- Std. Error of Mean 35.05
- Coefficient of Variation 4.028
 - Skewness 4.931

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.269

Shapiro Wilk Critical Value 0.923

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 105

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 138.4
 - 95% Modified-t UCL (Johnson-1978) 110.5

Gamma Distribution Test

- k star (bias corrected) 0.216
 - Theta Star 209.5
- MLE of Mean 45.21
- MLE of Standard Deviation 97.32
 - nu star 11.65
- Approximate Chi Square Value (.05) 4.999
 - Adjusted Level of Significance 0.0401
 - Adjusted Chi Square Value 4.723
- Anderson-Darling Test Statistic 3.194 Anderson-Darling 5% Critical Value 0.889
- Kolmogorov-Smirnov Test Statistic 0.273
- Kolmogorov-Smirnov 5% Critical Value 0.186

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 105.4
 - 95% Adjusted Gamma UCL (Use when n < 40) 111.6

Potential UCL to Use

Minimum of Log Data -4.343

Number of Distinct Observations 25

Log-transformed Statistics

Maximum of Log Data 6.846 Mean of log Data 0.427 SD of log Data 2.503

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.961 Shapiro Wilk Critical Value 0.923 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 387.2 95% Chebyshev (MVUE) UCL 91.94 97.5% Chebyshev (MVUE) UCL 121.3

99% Chebyshev (MVUE) UCL 178.9

Data Distribution

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

- 95% CLT UCL 102.9
- 95% Jackknife UCL 105
- 95% Standard Bootstrap UCL 100.7
 - 95% Bootstrap-t UCL 1320
- 95% Hall's Bootstrap UCL 825.9
- 95% Percentile Bootstrap UCL 112.7
 - 95% BCA Bootstrap UCL 157.7
- 95% Chebyshev(Mean, Sd) UCL 198
- 97.5% Chebyshev(Mean, Sd) UCL 264.1
- 99% Chebyshev(Mean, Sd) UCL 393.9

Use 99% Chebyshev (Mean, Sd) UCL 393.9

Number of Valid Observations 12

Raw Statistics

Minimum 0.45

- Maximum 110
- Mean 28.74
- Geometric Mean 9.116
 - Median 10
 - SD 39.23
- Std. Error of Mean 11.32
- Coefficient of Variation 1.365
 - Skewness 1.428

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.735 Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 49.07

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 52.35 95% Modified-t UCL (Johnson-1978) 49.85

Gamma Distribution Test

k star (bias corrected) 0.465)ata appear Gamma Distributed at 5% Significance Leve Theta Star 61.81

- MLE of Mean 28.74
- MLE of Standard Deviation 42.15
 - nu star 11.16
- Approximate Chi Square Value (.05) 4.678
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 4.057
- Anderson-Darling Test Statistic 0.405 Anderson-Darling 5% Critical Value 0.781
- Kolmogorov-Smirnov Test Statistic 0.182
- Kolmogorov-Smirnov 5% Critical Value 0.258

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 68.55 95% Adjusted Gamma UCL (Use when n < 40) 79.04

Potential UCL to Use

Number of Distinct Observations 12

Log-transformed Statistics

Minimum of Log Data -0.799 Maximum of Log Data 4.7 Mean of log Data 2.21 SD of log Data 1.778

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.958 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 489.9 95% Chebyshev (MVUE) UCL 117.5 97.5% Chebyshev (MVUE) UCL 153.6 99% Chebyshev (MVUE) UCL 224.5

Data Distribution

Nonparametric Statistics

- 95% CLT UCL 47.36
- 95% Jackknife UCL 49.07
- 95% Standard Bootstrap UCL 46.37
 - 95% Bootstrap-t UCL 68.52
- 95% Hall's Bootstrap UCL 54.5
- 95% Percentile Bootstrap UCL 47.25
- 95% BCA Bootstrap UCL 50.33
- 95% Chebyshev(Mean, Sd) UCL 78.1
- 97.5% Chebyshev(Mean, Sd) UCL 99.46
- 99% Chebyshev(Mean, Sd) UCL 141.4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Use 95% Approximate Gamma UCL 68.55

General Stat	istics		
Number of Valid Data	53	Number of Detected Data	51
Number of Distinct Detected Data	46	Number of Non-Detect Data	2
		Percent Non-Detects	3.77%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.015	Minimum Detected	-4.2
Maximum Detected	960	Maximum Detected	6.867
Mean of Detected	34.61	Mean of Detected	-0.339
SD of Detected	150.4	SD of Detected	2.748
Minimum Non-Detect	0.0046	Minimum Non-Detect	-5.382
Maximum Non-Detect	0.0049	Maximum Non-Detect	-5.319
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	2
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	51
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	3.77%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Val	ues Only
Lilliefors Test Statistic	0.435	Lilliefors Test Statistic	0.155
5% Lilliefors Critical Value	0.124	5% Lilliefors Critical Value	0.124
Data not Normal at 5% Significance Level		Determined in the second state of the second s	and a little state of the state
Data not Normal at 5 % Significance Level		Data not Lognormal at 5% Significance L	evei
Assuming Normal Distribution		Assuming Lognormal Distribution	evei
-			evei
Assuming Normal Distribution	33.3	Assuming Lognormal Distribution	-0.554
Assuming Normal Distribution DL/2 Substitution Method	33.3 147.6	Assuming Lognormal Distribution DL/2 Substitution Method	
Assuming Normal Distribution DL/2 Substitution Method Mean		Assuming Lognormal Distribution DL/2 Substitution Method Mean	-0.554
Assuming Normal Distribution DL/2 Substitution Method Mean SD	147.6	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD	-0.554 2.91
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL	147.6	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	-0.554 2.91
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	147.6 67.26	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	-0.554 2.91 296
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean	147.6 67.26 29.18	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	-0.554 2.91 296 -0.588
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD	147.6 67.26 29.18 149.5	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	-0.554 2.91 296 -0.588 2.98
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	147.6 67.26 29.18 149.5 63.58	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	-0.554 2.91 296 -0.588 2.98 33.3
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	147.6 67.26 29.18 149.5 63.58	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	-0.554 2.91 296 -0.588 2.98 33.3 147.6
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	147.6 67.26 29.18 149.5 63.58	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL	-0.554 2.91 296 -0.588 2.98 33.3 147.6 67.26
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	147.6 67.26 29.18 149.5 63.58	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	-0.554 2.91 296 -0.588 2.98 33.3 147.6 67.26 69.26
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	147.6 67.26 29.18 149.5 63.58	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	-0.554 2.91 296 -0.588 2.98 33.3 147.6 67.26 69.26 88.5 385
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL	147.6 67.26 29.18 149.5 63.58	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL	-0.554 2.91 296 -0.588 2.98 33.3 147.6 67.26 69.26 88.5 385 s Only
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (MLE) Method Mean SD 95% MLE (Tiku) UCL	147.6 67.26 29.18 149.5 63.58 59.74	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL	-0.554 2.91 296 -0.588 2.98 33.3 147.6 67.26 69.26 88.5 385 s Only

Nonparametric Statistics

Nonparametric Stausucs	
Kaplan-Meier (KM) Method	
Mean	33.3
SD	146.2
SE of Mean	20.29
95% KM (t) UCL	67.27
95% KM (z) UCL	66.67
95% KM (jackknife) UCL	67.26
95% KM (bootstrap t) UCL	393.3
95% KM (BCA) UCL	70.42
95% KM (Percentile Bootstrap) UCL	69.9
95% KM (Chebyshev) UCL	121.7
97.5% KM (Chebyshev) UCL	160
99% KM (Chebyshev) UCL	235.1
Potential UCLs to Use	
99% KM (Chebyshev) UCL	235.1

Gamma D

- A-D Test Statistic 5.531
- 5% A-D Critical Value 0.914 K-S Test Statistic 0.914
- 5% K-S Critical Value 0.138
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics us

Gamma ROS Statistics using Extrapolated Data		
Minimum	1E-06	
Maximum	960	
Mean	33.3	
Median	0.28	
SD	147.6	
k star	0.176	
Theta star	189.6	
Nu star	18.62	
AppChi2	9.842	
95% Gamma Approximate UCL (Use when n >= 40)	63.01	
OE0/ Adjusted Common LICI (Liss when n < 40)	C/ 10	

95% Adjusted Gamma UCL (Use when n < 40) 64.18

Note: DL/2 is not a recommended method.

General Stat	istics		
Number of Valid Data	27	Number of Detected Data	18
Number of Distinct Detected Data	18	Number of Non-Detect Data	9
		Percent Non-Detects	33.33%
Raw Statistics		Log-transformed Statistics	
Minimum Detected		Minimum Detected	-5.021
Maximum Detected	18	Maximum Detected	2.89
Mean of Detected	1.959	Mean of Detected	-2.468
SD of Detected	5.484	SD of Detected	2.206
Minimum Non-Detect		Minimum Non-Detect	-5.426
Maximum Non-Detect	0.79	Maximum Non-Detect	-0.236
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	25
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	2
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	92.59%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	•
Shapiro Wilk Test Statistic	0.392	Shapiro Wilk Test Statistic	0.822
5% Shapiro Wilk Critical Value	0.897	5% Shapiro Wilk Critical Value	0.897
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance I	-evei
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	1.324	Mean	-3.093
SD	4.528	SD	2.166
95% DL/2 (t) UCL	2.81	95% H-Stat (DL/2) UCL	2.958
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly	11/7	Mean in Log Scale	-3.533
WEE method laned to converge property		SD in Log Scale	2.45
		Mean in Original Scale	1.308
		SD in Original Scale	4.532
		95% t UCL	2.796
		95% Percentile Bootstrap UCL	2.712
		95% BCA Bootstrap UCL	3.324
		95% H-UCL	5.872
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	
k star (bias corrected)	0.228	Data do not follow a Discernable Distributio	n (0.05)
Theta Star	8.585		
nu star	8.214		
A-D Test Statistic	3.263	Nonparametric Statistics	
5% A-D Critical Value	0.872	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.872	Mean	1.311
5% K-S Critical Value	0.224	SD	4.447
Data not Gamma Distributed at 5% Significance Level		SE of Mean	0.881
-		95% KM (t) UCL	2.813
Assuming Gamma Distribution		95% KM (z) UCL	2.759
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	2.798
Minimum	10 06	05% KM (bootstrop t) LICI	60.04

95% KM (bootstrap t) UCL 95% KM (BCA) UCL

97.5% KM (Chebyshev) UCL

Potential UCLs to Use 99% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 69.04 2.73 2.716

5.149

6.81

10.07

10.07

DS Statistics using Extrapolated Data		
Minimum	1E-06	
Maximum	18	
Mean	1.306	
Median	0.022	
SD	4.533	
k star	0.133	
Theta star	9.842	
Nu star	7.164	
AppChi2	2.261	
pproximate UCL (Use when n >= 40)	4.137	

95% Gamma Ap 95% Adjusted Gamma UCL (Use when n < 40) 4.478

Note: DL/2 is not a recommended method.

Number of Valid Observations 12

Raw Statistics

- Minimum 0.012
- Maximum 4.1
- Mean 0.893
- Geometric Mean 0.276
 - Median 0.268
 - SD 1.252
- Std. Error of Mean 0.361
- Coefficient of Variation 1.402
 - Skewness 1.814

Relevant UCL Statistics

Normal Distribution Test

- Shapiro Wilk Test Statistic 0.744 Shapiro Wilk Critical Value 0.859
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 1.542

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 1.69
 - 95% Modified-t UCL (Johnson-1978) 1.573

Gamma Distribution Test

k star (bias corrected) 0.457)ata appear Gamma Distributed at 5% Significance Leve

- Theta Star 1.955
- MLE of Mean 0.893
- MLE of Standard Deviation 1.321
 - nu star 10.96
- Approximate Chi Square Value (.05) 4.553
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 3.942
- Anderson-Darling Test Statistic 0.334 Anderson-Darling 5% Critical Value 0.782
- Kolmogorov-Smirnov Test Statistic 0.178
- Kolmogorov-Smirnov 5% Critical Value 0.258

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 2.15 95% Adjusted Gamma UCL (Use when n < 40) 2.484

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 12

Log-transformed Statistics

Minimum of Log Data -4.423 Maximum of Log Data 1.411 Mean of log Data -1.288 SD of log Data 1.827

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.961 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 18.28 95% Chebyshev (MVUE) UCL 3.87 97.5% Chebyshev (MVUE) UCL 5.067 99% Chebyshev (MVUE) UCL 7.419

Data Distribution

Nonparametric Statistics

- 95% CLT UCL 1.487
- 95% Jackknife UCL 1.542
- 95% Standard Bootstrap UCL 1.477
 - 95% Bootstrap-t UCL 2.062
- 95% Hall's Bootstrap UCL 1.879
- 95% Percentile Bootstrap UCL 1.46
- 95% Chebyshev(Mean, Sd) UCL 2.468
- 99% Chebyshev(Mean, Sd) UCL 4.488

Use 95% Approximate Gamma UCL 2.15

- 95% BCA Bootstrap UCL 1.594

97.5% Chebyshev(Mean, Sd) UCL 3.15

General Stat	istics		
Number of Valid Data	53	Number of Detected Data	33
Number of Distinct Detected Data	29	Number of Non-Detect Data	20
		Percent Non-Detects	37.74%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0049	Minimum Detected	-5.319
Maximum Detected	1400	Maximum Detected	7.244
Mean of Detected	59.38	Mean of Detected	-1.47
SD of Detected	253.2	SD of Detected	3.262
Minimum Non-Detect	0.0046	Minimum Non-Detect	-5.382
Maximum Non-Detect	0.048	Maximum Non-Detect	-3.037
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	33
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	20
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	62.26%
UCL Statis	tice		
Normal Distribution Test with Detected Values Only	ucs	Lognormal Distribution Test with Detected Va	lues Only
Shapiro Wilk Test Statistic	0.263	Shapiro Wilk Test Statistic	0.898
5% Shapiro Wilk Critical Value	0.931	5% Shapiro Wilk Critical Value	0.931
Data not Normal at 5% Significance Level	0.001	Data not Lognormal at 5% Significance I	
As a second as a block of Disability of an			
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method	20.07	DL/2 Substitution Method	2.015
Mean	36.97	Mean	-3.015
SD 95% DL/2 (t) UCL	200.7 83.14	SD 95% H-Stat (DL/2) UCL	3.284 133.5
55% <u>567</u> (1) 552	00.11		100.0
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-4.233
		SD in Log Scale	4.519
		Mean in Original Scale	36.97
		SD in Original Scale	200.7
		95% t UCL	83.14
		95% Percentile Bootstrap UCL	89.67
		95% BCA Bootstrap UCL	118.4
		95% H-UCL	40397
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	es Only
k star (bias corrected)	0.147	Data do not follow a Discernable Distributio	n (0.05)
Theta Star	403.2		
nu star	9.72		
A-D Test Statistic	4.968	Nonparametric Statistics	
5% A-D Critical Value	0.931	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.931	Mean	36.97
5% K-S Critical Value	0.172	SD	198.8
Data not Gamma Distributed at 5% Significance Level		SE of Mean	27.73
•		95% KM (t) UCL	83.41
Accuming Commo Distribution		05% KM (7) UCI	92 50

82.59

83.14

951.1

89.39

89.42

157.9

210.2

312.9

312.9

95% KM (z) UCL

95% KM (jackknife) UCL

95% KM (BCA) UCL

95% KM (bootstrap t) UCL

95% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

Potential UCLs to Use 99% KM (Chebyshev) UCL

95% KM (Percentile Bootstrap) UCL

Assuming Gamma Distribution

Gamma RO

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	1400
Mean	36.97
Median	0.013
SD	200.7
k star	0.0928
Theta star	398.3
Nu star	
AppChi2	3.841
95% Gamma Approximate UCL (Use when n >= 40)	94.7
95% Adjusted Gamma UCL (Use when n < 40)	97.35

Note: DL/2 is not a recommended method.

	aonorai otatiotioo	
Number	of Valid Data	36

Number of Distinct Detected Data	34	

Raw Statistics

Minimum Detected	0.0061
Maximum Detected	330
Mean of Detected	13.55
SD of Detected	56.17
Minimum Non-Detect	0.0049
Maximum Non-Detect	0.0049

UCL Statistics

Normal Distribution Test with Detected Values Only	
Shapiro Wilk Test Statistic	0.263

- 5% Shapiro Wilk Critical Value
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	13.17
SD	55.41
95% DL/2 (t) UCL	28.78

Maximum Likelihood Estimate(MLE) Method

- Mean 12.06
- SD 55.55

0.934

- 95% MLE (t) UCL 27.7
- 95% MLE (Tiku) UCL 25.89

Gamma Distribution Test with Detected Values Only

- k star (bias corrected) 0.214
 - Theta Star 63.41
 - nu star 14.96

 - A-D Test Statistic 3.766 5% A-D Critical Value 0.894
 - K-S Test Statistic 0.894
 - 5% K-S Critical Value 0.164
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	330
Mean	13.17
Median	0.265
SD	55.41
k star	0.199
Theta star	66.32
Nu star	14.3
AppChi2	6.778
95% Gamma Approximate UCL (Use when n >= 40)	27.8
95% Adjusted Gamma UCL (Use when n < 40)	28.79

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Detected Data35Number of Non-Detect Data1Percent Non-Detects2.78%

Log-transformed Statistics

Minimum Detected	-5.099
Maximum Detected	5.799
Mean of Detected	-0.816
SD of Detected	2.547
Minimum Non-Detect	-5.319
Maximum Non-Detect	-5.319

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic	0.96
5% Shapiro Wilk Critical Value	0.934

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-0.961
SD	2.655
95% H-Stat (DL/2) UCL	107.1
Log ROS Method	
Mean in Log Scale	-0.995
SD in Log Scale	2.73
Mean in Original Scale	13.17
SD in Original Scale	55.41
95% t UCL	28.78
95% Percentile Bootstrap UCL	31.1
95% BCA Bootstrap UCL	42.36
95% H UCL	141.8

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Nonparametric Statistics Kaplan-Meier (KM) Method

Mean	13.17
SD	54.63
SE of Mean	9.239
95% KM (t) UCL	28.78
95% KM (z) UCL	28.37
95% KM (jackknife) UCL	28.78
95% KM (bootstrap t) UCL	99.58
95% KM (BCA) UCL	31.65
95% KM (Percentile Bootstrap) UCL	31.1
95% KM (Chebyshev) UCL	53.44
97.5% KM (Chebyshev) UCL	70.87
99% KM (Chebyshev) UCL	105.1
Potential UCLs to Use	
99% KM (Chebyshey) UCI	105.1

99% KM (Chebyshev) UCL 105.1

Number of Valid Observations 12

Raw Statistics

- Minimum 048
- Maximum 41
- Mean 12.28
- Geometric Mean 5.214
 - Median 5.4
 - SD 13.94
- Std. Error of Mean 4.024
- Coefficient of Variation 1.136
 - Skewness 1.081

Relevant UCL Statistics

Normal Distribution Test

- Shapiro Wilk Test Statistic 0.825 Shapiro Wilk Critical Value 0.859
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 19.5

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 20.24
 - 95% Modified-t UCL (Johnson-1978) 19.71

Gamma Distribution Test

k star (bias corrected) 0.584)ata appear Gamma Distributed at 5% Significance Leve

- Theta Star 21.01
- MLE of Mean 12.28
- MLE of Standard Deviation 16.06
 - nu star 14.02
- Approximate Chi Square Value (.05) 6.588
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 5.828
- Anderson-Darling Test Statistic 0.366 Anderson-Darling 5% Critical Value 0.769
- Kolmogorov-Smirnov Test Statistic 0.173
- Kolmogorov-Smirnov 5% Critical Value 0.256

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 26.13 95% Adjusted Gamma UCL (Use when n < 40) 29.55

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 11

Log-transformed Statistics

Minimum of Log Data -0.734 Maximum of Log Data 3.714 Mean of log Data 1.651 SD of log Data 1.536

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.937 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 106.8 95% Chebyshev (MVUE) UCL 44.45 97.5% Chebyshev (MVUE) UCL 57.52 99% Chebyshev (MVUE) UCL 83.18

Data Distribution

Nonparametric Statistics

- 95% CLT UCL 18.9
- 95% Jackknife UCL 19.5
- 95% Standard Bootstrap UCL 18.73
 - 95% Bootstrap-t UCL 21.7
- 95% Hall's Bootstrap UCL 19.44
- 95% Percentile Bootstrap UCL 18.82
 - 95% BCA Bootstrap UCL 19.33
- 95% Chebyshev(Mean, Sd) UCL 29.82
- 97.5% Chebyshev(Mean, Sd) UCL 37.41
- 99% Chebyshev(Mean, Sd) UCL 52.32

Use 95% Approximate Gamma UCL 26.13

Number of Valid Data	56	Number of Detected Data	52
Number of Distinct Detected Data	47	Number of Non-Detect Data	4
		Percent Non-Detects	7.14%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0076	Minimum Detected	-4.88
Maximum Detected	85	Maximum Detected	4.443
Mean of Detected		Mean of Detected	-1.502
SD of Detected	14.14	SD of Detected	2.49
Minimum Non-Detect		Minimum Non-Detect	-5.382
Maximum Non-Detect		Maximum Non-Detect	-4.269
lote: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	12
or all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	44
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	21.43%
			21.10%
UCL Statis			
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	•
Lilliefors Test Statistic	0.386	Lilliefors Test Statistic	0.132
5% Lilliefors Critical Value	0.123	5% Lilliefors Critical Value	0.123
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance	_evel
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	3.805	Mean	-1.807
SD	13.65	SD	2.644
95% DL/2 (t) UCL	6.857	95% H-Stat (DL/2) UCL	30.43
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	1.219	Mean in Log Scale	-1.887
SD	15.67	SD in Log Scale	2.786
95% MLE (t) UCL	4.722	Mean in Original Scale	3.805
95% MLE (Tiku) UCL	4.656	SD in Original Scale	13.65
		95% t UCL	6.857
		95% Percentile Bootstrap UCL	7.142
		95% BCA Bootstrap UCL	8.671
		95% H UCL	49.15
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	e Only
Gamma Distribution Test with Detected Values Only		Sata Sistibution 1000 mill Boteoteu Value	o only

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	3.805
SD	13.53
SE of Mean	1.826
95% KM (t) UCL	6.86
95% KM (z) UCL	6.808
95% KM (jackknife) UCL	6.858
95% KM (bootstrap t) UCL	17.64
95% KM (BCA) UCL	7.454
95% KM (Percentile Bootstrap) UCL	6.99
95% KM (Chebyshev) UCL	11.76
97.5% KM (Chebyshev) UCL	15.21
99% KM (Chebyshev) UCL	21.97
Potential UCLs to Use	
99% KM (Chebyshev) UCL	21.97

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.243 16.83 Theta Star nu star 25.32

General Statistics

- A-D Test Statistic 3.943
- 5% A-D Critical Value 0.888
- K-S Test Statistic 0.888 5% K-S Critical Value 0.135
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	85
Mean	3.805
Median	0.1
SD	13.65
k star	0.2
Theta star	19.07
Nu star	22.34
AppChi2	12.6
95% Gamma Approximate UCL (Use when n >= 40)	6.749
95% Adjusted Gamma UCL (Use when n < 40)	6.854

Note: DL/2 is not a recommended method.

Gonom	Statistics

Number of Valid Data	27

Number of Distinct Detected Data	24

Raw Statistics

Minimum Detected	0.022
Maximum Detected	39
Mean of Detected	2.267
SD of Detected	7.866
Minimum Non-Detect	0.015
Maximum Non-Detect	0.015

UCL Statistics

- Shapiro Wilk Test Statistic 0.318
- 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	2.183
SD	7.725

95% DL/2 (t) UCL 4.719

Maximum Likelihood Estimate(MLE) Method

- Mean 1.979
- SD 7.755

0.92

- 95% MLE (t) UCL 4.524
- 95% MLE (Tiku) UCL 4.245

Gamma Distribution Test with Detected Values Only

- 0.273 k star (bias corrected)
 - Theta Star 8.304
 - nu star 14.19
 - A-D Test Statistic 3.874
 - 5% A-D Critical Value 0.86
 - K-S Test Statistic 0.86
- 5% K-S Critical Value 0.187

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	39
Mean	2.183
Median	0.12
SD	7.725
k star	0.243
Theta star	8.998

Nu star 13.1

AppChi2 5.96

95% Gamma Approximate UCL (Use when n >= 40) 4.798 95% Adjusted Gamma UCL (Use when n < 40) 5.058

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Detected Data 26 Number of Non-Detect Data 1 Percent Non-Detects 3.70%

Log-transformed Statistics

Minimum Detected	-3.817
Maximum Detected	3.664
Mean of Detected	-1.676
SD of Detected	1.868
Minimum Non-Detect	-4.2

Maximum Non-Detect -4.2

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic	0.875
5% Shapiro Wilk Critical Value	0.92

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-1.796
SD	1.933
95% H-Stat (DL/2) UCL	4.768
Log ROS Method	
Mean in Log Scale	-1.842
SD in Log Scale	2.023
Mean in Original Scale	2.183
SD in Original Scale	7.725
95% t UCL	4.719
95% Percentile Bootstrap UCL	4.944
95% BCA Bootstrap UCL	6.543
95% H UCL	6.176

Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics Kaplan-Meier (KM) Method

rapian motor (ran) moutou	
Mean	2.184
SD	7.581
SE of Mean	1.488
95% KM (t) UCL	4.721
95% KM (z) UCL	4.631
95% KM (jackknife) UCL	4.719
95% KM (bootstrap t) UCL	23.52
95% KM (BCA) UCL	5.058
95% KM (Percentile Bootstrap) UCL	4.888
95% KM (Chebyshev) UCL	8.669
97.5% KM (Chebyshev) UCL	11.47
99% KM (Chebyshev) UCL	16.99
Potential UCLs to Use	
99% KM (Chebyshey) UCL	16.99

99% KM (Chebyshev) UCL 16.99

	-
Number of Valid Data	12

Number of Distinct Detected Data 11

Number of Non-Detect Data Percent Non-Detects

Raw Statistics

- Minimum Detected
 - Maximum Detected 7.3 Mean of Detected 1.812 SD of Detected 2 2 5 9

0.081

0.85

- Minimum Non-Detect 0 53
- Maximum Non-Detect 0.53

UCL Statistics

- Normal Distribution Test with Detected Values Only 0.773
 - Shapiro Wilk Test Statistic
 - 5% Shapiro Wilk Critical Value
 - Data not Normal at 5% Significance Level

Assuming Normal Distribution

1.683
2.2
2.823

Maximum Likelihood Estimate(MLE) Method

- Mean 0.86
- SD 3.014
- 95% MLE (t) UCL 2.422
- 95% MLE (Tiku) UCL 2.639

Mean in Log Scale -0.328 SD in Log Scale 1.418

1.677 Mean in Original Scale SD in Original Scale 2.204 95% t UCL 2.82 95% Percentile Bootstrap UCL 2.745 95% BCA Bootstrap UCL 3.075

95% H-Stat (DL/2) UCL

Log ROS Method

Number of Detected Data

Minimum Detected

Maximum Detected

Minimum Non-Detect

Maximum Non-Detect

Mean of Detected

SD of Detected

Log-transformed Statistics

Lognormal Distribution Test with Detected Values Only

5% Shapiro Wilk Critical Value

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution DL/2 Substitution Method

Shapiro Wilk Test Statistic

11

-2.513

1.988

-0.209

1 4 2 4

-0.635

-0.635

0.962

0.85

-0.302

1.395

9.201

1 8.33%

95% H UCL 9.699

Mean

SD

Gamma Distribution Test with Detected Values Only

k star (bias corrected) Theta Star 3.006 nu star 13.26

- A-D Test Statistic 0.379
- 5% A-D Critical Value 0.763
- K-S Test Statistic 0.763
- 5% K-S Critical Value 0.265

Data appear Gamma Distributed at 5% Significance Level

95% Gamma Approximate UCL (Use when n >= 40)

Note: DL/2 is not a recommended method.

95% Adjusted Gamma UCL (Use when n < 40)

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data		
Minimum	1E-06	

Maximum	7.3
Mean	1.661
Median	0.65
SD	2.217
k star	0.327
Theta star	5.084
Nu star	7.84
AppChi2	2.643

4.927

5.905

Data Distribution Test with Detected Values Only 0.603 Jata appear Gamma Distributed at 5% Significance Leve

Nonparametric Statistics Kaplan-Meier (KM) Method

Mean	1.678
SD	2.11
SE of Mean	0.639
95% KM (t) UCL	2.825
95% KM (z) UCL	2.729
95% KM (jackknife) UCL	2.82
95% KM (bootstrap t) UCL	3.577
95% KM (BCA) UCL	2.725
95% KM (Percentile Bootstrap) UCL	2.802
95% KM (Chebyshev) UCL	4.462
97.5% KM (Chebyshev) UCL	5.667
99% KM (Chebyshev) UCL	8.034
Potential UCLs to Use	

95% KM (Chebyshev) UCL 4.462

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

General Stat	istics		
Number of Valid Data	53	Number of Detected Data	45
Number of Distinct Detected Data	44	Number of Non-Detect Data	8
		Percent Non-Detects	15.09%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0088	Minimum Detected	-4.733
Maximum Detected	63000	Maximum Detected	11.05
Mean of Detected	1541	Mean of Detected	-0.909
SD of Detected	9385	SD of Detected	3.439
Minimum Non-Detect	0.0046	Minimum Non-Detect	-5.382
Maximum Non-Detect	0.016	Maximum Non-Detect	-4.135
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	9
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	44
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	16.98%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	•
Shapiro Wilk Test Statistic	0.171	Shapiro Wilk Test Statistic	0.779
5% Shapiro Wilk Critical Value	0.945	5% Shapiro Wilk Critical Value	0.945
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance L	.evel
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method			
		DL/2 Substitution Method	
Mean	1308	DL/2 Substitution Method Mean	-1.607
Mean SD	1308 8651		-1.607 3.583
		Mean	
SD 95% DL/2 (t) UCL	8651	Mean SD 95% H-Stat (DL/2) UCL	3.583
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	8651 3298	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	3.583 2390
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean	8651 3298 20.84	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	3.583 2390 -1.967
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD	8651 3298 20.84 9512	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	3.583 2390 -1.967 4.059
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	8651 3298 20.84 9512 2209	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	3.583 2390 -1.967 4.059 1308
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD	8651 3298 20.84 9512	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	3.583 2390 -1.967 4.059 1308 8651
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	8651 3298 20.84 9512 2209	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL	3.583 2390 -1.967 4.059 1308 8651 3298
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	8651 3298 20.84 9512 2209	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	3.583 2390 -1.967 4.059 1308 8651 3298 3683
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	8651 3298 20.84 9512 2209	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	3.583 2390 -1.967 4.059 1308 8651 3298 3683 5944
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	8651 3298 20.84 9512 2209	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	3.583 2390 -1.967 4.059 1308 8651 3298 3683
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	8651 3298 20.84 9512 2209	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	3.583 2390 -1.967 4.059 1308 8651 3298 3683 5944 22857
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL	8651 3298 20.84 9512 2209	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL	3.583 2390 -1.967 4.059 1308 8651 3298 3683 5944 22857 s Only
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL	8651 3298 20.84 9512 2209 2112	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL	3.583 2390 -1.967 4.059 1308 8651 3298 3683 5944 22857 s Only
SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL 95% MLE (Tiku) UCL Gamma Distribution Test with Detected Values Only k star (bias corrected)	8651 3298 20.84 9512 2209 2112 0.107	Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL	3.583 2390 -1.967 4.059 1308 8651 3298 3683 5944 22857 s Only

Nonparametric Statistics

Nonparametric Stausucs	
Kaplan-Meier (KM) Method	
Mean	1308
SD	8569
SE of Mean	1190
95% KM (t) UCL	3302
95% KM (z) UCL	3266
95% KM (jackknife) UCL	3298
95% KM (bootstrap t) UCL	37604
95% KM (BCA) UCL	3729
95% KM (Percentile Bootstrap) UCL	3649
95% KM (Chebyshev) UCL	6497
97.5% KM (Chebyshev) UCL	8742
99% KM (Chebyshev) UCL	13152
Potential UCLs to Use	
99% KM (Chebyshev) UCL	13152

A-D Test Statistic 10.63

- 5% A-D Critical Value 0.984
- K-S Test Statistic 0.984

0.15

5% K-S Critical Value

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	63000
Mean	1308
Median	0.1
SD	8651
k star	0.0907
Theta star	14425
Nu star	9.614
AppChi2	3.702
95% Gamma Approximate UCL (Use when n >= 40)	3398
95% Adjusted Gamma UCL (Use when n < 40)	3494

Note: DL/2 is not a recommended method.

Number of Valid Observations 27

Raw Statistics

Minimum 0.01

- Maximum 150 Mean 9.765
- Geometric Mean 0.528
 - Median 0.54
 - SD 33.18
- Std. Error of Mean 6.386
- Coefficient of Variation 3.398
 - Skewness 3.77

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.325 Shapiro Wilk Critical Value 0.923

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 20.66

95% UCLs (Adjusted for Skewness)

- 95% Adjusted-CLT UCL (Chen-1995) 25.22
- 95% Modified-t UCL (Johnson-1978) 21.43

Gamma Distribution Test

- k star (bias corrected) 0.242
 - Theta Star 40.37
- MLE of Mean 9.765
- MLE of Standard Deviation 19.86
 - nu star 13.06
- Approximate Chi Square Value (.05) 5.934
 - Adjusted Level of Significance 0.0401
 - Adjusted Chi Square Value 5.628
- Anderson-Darling Test Statistic 3.951 Anderson-Darling 5% Critical Value 0.877
- Kolmogorov-Smirnov Test Statistic 0.336
- Kolmogorov-Smirnov 5% Critical Value 0.185

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 21.49 95% Adjusted Gamma UCL (Use when n < 40) 22.66

Potential UCL to Use

Nonparametric Statistics

- 95% CLT UCL 20.27
- 95% Jackknife UCL 20.66
- 95% Standard Bootstrap UCL 20.09
- 95% Bootstrap-t UCL 286.8
- 95% Hall's Bootstrap UCL 209.2
- 95% Percentile Bootstrap UCL 20.97
- 95% BCA Bootstrap UCL 26.59
- 95% Chebyshev(Mean, Sd) UCL 37.6
- 97.5% Chebyshev(Mean, Sd) UCL 49.64 99% Chebyshev(Mean, Sd) UCL 73.3

Use 97.5% Chebyshev (Mean, Sd) UCL 49.64

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.932 Shapiro Wilk Critical Value 0.923 Data appear Lognormal at 5% Significance Level

Number of Distinct Observations 26

Minimum of Log Data -4.605

Maximum of Log Data 5.011

Mean of log Data -0.639

SD of log Data 2.133

Log-transformed Statistics

Assuming Lognormal Distribution

95% H-UCL 30.53 95% Chebyshev (MVUE) UCL 13.79 97.5% Chebyshev (MVUE) UCL 17.99 99% Chebyshev (MVUE) UCL 26.24

Data Distribution Data appear Lognormal at 5% Significance Level

Number of Valid Observations 12

Raw Statistics

- Minimum 0.21
- Maximum 52
- Mean 10.93 Geometric Mean 3.966
 - Median 4.6
 - SD 15.24
- Std. Error of Mean 4.399
- Coefficient of Variation 1.394
 - Skewness 2.082

Relevant UCL Statistics

Normal Distribution Test

- Shapiro Wilk Test Statistic 0.733
- Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 18.83

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 20.99

95% Modified-t UCL (Johnson-1978) 19.27

Gamma Distribution Test

k star (bias corrected) 0.512)ata appear Gamma Distributed at 5% Significance Leve

- Theta Star 21.36
- MLE of Mean 10.93
- MLE of Standard Deviation 15.28
 - nu star 12.28
- Approximate Chi Square Value (.05) 5.414
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 4.736
- Anderson-Darling Test Statistic 0.225 Anderson-Darling 5% Critical Value 0.777
- Kolmogorov-Smirnov Test Statistic 0.135
- Kolmogorov-Smirnov 5% Critical Value 0.257

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 24.8 95% Adjusted Gamma UCL (Use when n < 40) 28.35

Potential UCL to Use

Number of Distinct Observations 12

Log-transformed Statistics

Minimum of Log Data -1.561 Maximum of Log Data 3.951 Mean of log Data 1.378 SD of log Data 1.663

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.98 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 132.5 95% Chebyshev (MVUE) UCL 41.93 97.5% Chebyshev (MVUE) UCL 54.56

99% Chebyshev (MVUE) UCL 79.38

Data Distribution

- 95% CLT UCL 18.17
- 95% Jackknife UCL 18.83
- 95% Standard Bootstrap UCL 17.96
 - 95% Bootstrap-t UCL 27.85
- 95% Hall's Bootstrap UCL 47.12
- 95% Percentile Bootstrap UCL 18.73
 - 95% BCA Bootstrap UCL 21.27
- 95% Chebyshev(Mean, Sd) UCL 30.11
- 97.5% Chebyshev(Mean, Sd) UCL 38.4
- 99% Chebyshev (Mean, Sd) UCL 54.7

Use 95% Approximate Gamma UCL 24.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Nonparametric Statistics

General Stat	istics		
Number of Valid Data	53	Number of Detected Data	51
Number of Distinct Detected Data	47	Number of Non-Detect Data	2
		Percent Non-Detects	3.77%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.011	Minimum Detected	-4.51
Maximum Detected	2900	Maximum Detected	7.972
Mean of Detected	98.24	Mean of Detected	-0.606
SD of Detected	459.4	SD of Detected	3.066
Minimum Non-Detect	0.0046	Minimum Non-Detect	-5.382
Maximum Non-Detect	0.0049	Maximum Non-Detect	-5.319
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	2
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	51
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	3.77%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Val	ues Only
Lilliefors Test Statistic	0.482	Lilliefors Test Statistic	0.138
5% Lilliefors Critical Value	0.124	5% Lilliefors Critical Value	0.124
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance L	evel
Data not Normal at 5% Significance Level Assuming Normal Distribution		Data not Lognormal at 5% Significance L Assuming Lognormal Distribution	evel
•		• •	evel
Assuming Normal Distribution	94.53	Assuming Lognormal Distribution	evel -0.811
Assuming Normal Distribution DL/2 Substitution Method	94.53 450.9	Assuming Lognormal Distribution DL/2 Substitution Method	
Assuming Normal Distribution DL/2 Substitution Method Mean		Assuming Lognormal Distribution DL/2 Substitution Method Mean	-0.811
Assuming Normal Distribution DL/2 Substitution Method Mean SD	450.9	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD	-0.811 3.183
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL	450.9	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL	-0.811 3.183
Assuming Normal Distribution DL/2 Substitution Method SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method	450.9 198.3	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method	-0.811 3.183 757.5
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean	450.9 198.3 81.85	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale	-0.811 3.183 757.5 -0.882
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD	450.9 198.3 81.85 456.6	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale	-0.811 3.183 757.5 -0.882 3.32
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	450.9 198.3 81.85 456.6 186.9	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	-0.811 3.183 757.5 -0.882 3.32 94.53
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	450.9 198.3 81.85 456.6 186.9	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	-0.811 3.183 757.5 -0.882 3.32 94.53 450.9
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	450.9 198.3 81.85 456.6 186.9	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale	-0.811 3.183 757.5 -0.882 3.32 94.53 450.9 198.3
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	450.9 198.3 81.85 456.6 186.9	Assuming Lognormal Distribution DL/2 Substitution Method SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	-0.811 3.183 757.5 -0.882 3.32 94.53 450.9 198.3 204.9
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL	450.9 198.3 81.85 456.6 186.9	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	-0.811 3.183 757.5 -0.882 3.32 94.53 450.9 198.3 204.9 264.7 1342
Assuming Normal Distribution DL/2 Substitution Method Mean SD 95% DL/2 (t) UCL Maximum Likelihood Estimate(MLE) Method Mean SD 95% MLE (t) UCL 95% MLE (Tiku) UCL	450.9 198.3 81.85 456.6 186.9	Assuming Lognormal Distribution DL/2 Substitution Method Mean SD 95% H-Stat (DL/2) UCL Log ROS Method Mean in Log Scale SD in Log Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H UCL	-0.811 3.183 757.5 -0.882 3.32 94.53 450.9 198.3 204.9 264.7 1342 s Only

Nonpai	ametric S	Statisti	CS
Kanl	an-Maiar	(KM) N	lothod

Kaplan-Meier (KM) Method	
Mean	94.53
SD	446.6
SE of Mean	61.96
95% KM (t) UCL	198.3
95% KM (z) UCL	196.4
95% KM (jackknife) UCL	198.3
95% KM (bootstrap t) UCL	1302
95% KM (BCA) UCL	229.2
95% KM (Percentile Bootstrap) UCL	207
95% KM (Chebyshev) UCL	364.6
97.5% KM (Chebyshev) UCL	481.5
99% KM (Chebyshev) UCL	711
Potential UCLs to Use	
99% KM (Chebyshev) UCL	711

Gamma

- Theta Star nu star 15.57
- A-D Test Statistic 7.387
- 5% A-D Critical Value 0.942
- K-S Test Statistic 0.942
- 5% K-S Critical Value 0.14
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution Gamma ROS Statistics using Ex

Gamma ROS Statistics using Extrapolated Data		
Minimum	1E-06	
Maximum	2900	
Mean	94.53	
Median	0.19	
SD	450.9	
k star	0.142	
Theta star	663.7	
Nu star	15.1	
AppChi2	7.33	
95% Gamma Approximate UCL (Use when n >= 40)	194.7	
$0E^{9/}$ Adjusted Commo LICL (Las when $n < 10$)	100 0	

95% Adjusted Gamma UCL (Use when n < 40) 198.8

Note: DL/2 is not a recommended method.

Number of Valid Observations 27

Raw Statistics

Minimum 0.017

- Maximum 1400
- Mean 64.76 Geometric Mean 1.809
 - Median 1.2
 - SD 269.5
- Std. Error of Mean 51.87
- Coefficient of Variation 4.162
 - Skewness 5.042

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.259 Shapiro Wilk Critical Value 0.923

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 153.2

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 203.9
 - 95% Modified-t UCL (Johnson-1978) 161.6

Gamma Distribution Test

- k star (bias corrected) 0.207
 - Theta Star 313.1
 - MLE of Mean 64.76
- MLE of Standard Deviation 142.4
 - nu star 11.17
- Approximate Chi Square Value (.05) 4.685
 - Adjusted Level of Significance 0.0401
 - Adjusted Chi Square Value 4.418
- Anderson-Darling Test Statistic 3.253 Anderson-Darling 5% Critical Value 0.894
- Kolmogorov-Smirnov Test Statistic 0.281
- Kolmogorov-Smirnov 5% Critical Value 0.186

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 154.4
 - 95% Adjusted Gamma UCL (Use when n < 40) 163.7

Potential UCL to Use

Data appear Lognormal at 5% Significance Level

Number of Distinct Observations 26

Minimum of Log Data -4.075

Mean of log Data 0.593

SD of log Data 2.56

Maximum of Log Data 7.244

Log-transformed Statistics

Assuming Lognormal Distribution

Lognormal Distribution Test

95% H-UCL 586.3 95% Chebyshev (MVUE) UCL 124.1 97.5% Chebyshev (MVUE) UCL 163.9

Shapiro Wilk Test Statistic 0.963

Shapiro Wilk Critical Value 0.923

99% Chebyshev (MVUE) UCL 242.1

Data Distribution

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

- 95% CLT UCL 150.1
- 95% Jackknife UCL 153.2
- 95% Bootstrap-t UCL 1243
- 95% Hall's Bootstrap UCL 1038
- 95% Percentile Bootstrap UCL 166.5
 - 95% BCA Bootstrap UCL 226.5

- 99% Chebyshev(Mean, Sd) UCL 580.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Use 99% Chebyshev (Mean, Sd) UCL 580.9

95% Standard Bootstrap UCL 147.1

- 95% Chebyshev(Mean, Sd) UCL 290.9

97.5% Chebyshev(Mean, Sd) UCL 388.7

Number of Valid Observations 12

Raw Statistics

Minimum 0.61

- Maximum 170
- Mean 40.87 Geometric Mean 11.33
 - Median 12.5
 - SD 58.59
- Std. Error of Mean 16.91
- Coefficient of Variation 1.434
 - Skewness 1.467

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.723

Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 71.24

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 76.34
 - 95% Modified-t UCL (Johnson-1978) 72.43

Gamma Distribution Test

k star (bias corrected) 0.427)ata appear Gamma Distributed at 5% Significance Leve

- Theta Star 95.64
- MLE of Mean 40.87
- MLE of Standard Deviation 62.52
 - nu star 10.25
- Approximate Chi Square Value (.05) 4.102
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 3.528
- Anderson-Darling Test Statistic 0.553 Anderson-Darling 5% Critical Value 0.786
- Kolmogorov-Smirnov Test Statistic 0.201
- Kolmogorov-Smirnov 5% Critical Value 0.259

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 102.2
 - 95% Adjusted Gamma UCL (Use when n < 40) 118.8

Potential UCL to Use

- 97.5% Chebyshev(Mean, Sd) UCL 146.5
- 99% Chebyshev(Mean, Sd) UCL 209.1

Use 95% Adjusted Gamma UCL 118.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 12

Minimum of Log Data -0.494

Maximum of Log Data 5.136

Mean of log Data 2.427

SD of log Data 1.858

Log-transformed Statistics

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.938 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 863.1 95% Chebyshev (MVUE) UCL 168 97.5% Chebyshev (MVUE) UCL 220.2 99% Chebyshev (MVUE) UCL 322.7

Data Distribution

Nonparametric Statistics

- 95% CLT UCL 68.69
- 95% Jackknife UCL 71.24
- 95% Standard Bootstrap UCL 67.01
 - 95% Bootstrap-t UCL 93.01
- 95% Hall's Bootstrap UCL 68.91
- 95% Percentile Bootstrap UCL 68.6
 - 95% BCA Bootstrap UCL 75.28
- 95% Chebyshev(Mean, Sd) UCL 114.6

General Stat	isucs			
Number of Valid Data	53	Number of Detected Data	51	
Number of Distinct Detected Data	43	Number of Non-Detect Data	2	
		Percent Non-Detects	3.77%	
Raw Statistics		Log-transformed Statistics		
Minimum Detected	0.021	Minimum Detected	-3.863	
Maximum Detected	1400	Maximum Detected	7.244	
Mean of Detected	52.13	Mean of Detected	-0.0391	
SD of Detected	225.2	SD of Detected	2.778	
Minimum Non-Detect		Minimum Non-Detect	-5.382	
Maximum Non-Detect		Maximum Non-Detect	-5.319	
	0.0010		0.010	
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	2	
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	51	
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	3.77%	
, and the second se		5 5		
UCL Statistics				
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Va	lues Only	
Lilliefors Test Statistic	0.44	Lilliefors Test Statistic	0.142	
5% Lilliefors Critical Value	0.124	5% Lilliefors Critical Value	0.124	
Data not Normal at 5% Significance Level Data not Lognormal at 5% Significa		Data not Lognormal at 5% Significance I	_evel	
Assuming Normal Distribution		Assuming Lognormal Distribution		
DL/2 Substitution Method		DL/2 Substitution Method		
Mean	50.17	Mean	-0.266	
SD	221	SD	2.959	
95% DL/2 (t) UCL	101	95% H-Stat (DL/2) UCL	485.3	
Maximum Likelihood Estimate(MLE) Method		Log ROS Method		
Mean	43.99	Mean in Log Scale	-0.291	
SD	223.9	SD in Log Scale	3.013	
95% MLE (t) UCL	95.5	Mean in Original Scale	50.17	
95% MLE (Tiku) UCL	89.76	SD in Original Scale	221	
		95% t UCL	101	
		95% Percentile Bootstrap UCL	103	
		95% BCA Bootstrap UCL	136.5	
		95% H UCL	595.2	
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Value	es Only	
k star (bias corrected)	0.188	Data do not follow a Discernable Distributio	n (0.05)	
Theta Star	276.6			
nu star	19.22			

Nonparametric Statistics
Kanlan-Meier (KM) Method

50.17
218.9
30.37
101
100.1
101
558.1
113.1
105
182.6
239.9
352.4
352.4

- nu star 19.22
- A-D Test Statistic 5.698
- 5% A-D Critical Value 0.917
- K-S Test Statistic 0.917
- 5% K-S Critical Value 0.138
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	1400
Mean	50.17
Median	0.41
SD	221
k star	0.172
Theta star	292
Nu star	18.21
AppChi2	9.546
95% Gamma Approximate UCL (Use when n >= 40)	95.72
95% Adjusted Gamma UCL (Use when n < 40)	97.52

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

General Statistics

Kaplan-Meier (KM) Method	
Mean	50.17
SD	218.9
SE of Mean	30.37
95% KM (t) UCL	101
95% KM (z) UCL	100.1
95% KM (jackknife) UCL	101
95% KM (bootstrap t) UCL	558.1
95% KM (BCA) UCL	113.1
95% KM (Percentile Bootstrap) UCL	105
95% KM (Chebyshev) UCL	182.6
97.5% KM (Chebyshev) UCL	239.9
99% KM (Chebyshev) UCL	352.4
Potential UCLs to Use	

Number of Valid Data	36

Number of	Distinct	Detected	Data	34
	Distinct	Delected	Data	J 4

Raw Statistics

Minimum Detected	0.019
Maximum Detected	930
Mean of Detected	35.89
SD of Detected	157.6
Minimum Non-Detect	0.0049
Maximum Non-Detect	0.0049

UCL Statistics

Normal Distribution Test wit	h Detected Values	Only

- Shapiro Wilk Test Statistic 0.245 5% Shapiro Wilk Critical Value
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	34.89
SD	155.4
95% DL/2 (t) UCL	78.66

Maximum Likelihood Estimate(MLE) Method

- Mean 31.74
- SD 155.8

0.934

- 95% MLE (t) UCL 75.61
- 95% MLE (Tiku) UCL 70.53

Gamma Distribution Test with Detected Values Only

- 0.212 k star (bias corrected)
 - Theta Star 168.9
 - nu star 14.87

 - A-D Test Statistic 3.954 0.895
 - 5% A-D Critical Value 0.895
 - K-S Test Statistic 5% K-S Critical Value 0.164
- Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	930

Waximum	300
Mean	34.89
Median	0.62
SD	155.4
k star	0.197
Theta star	177.5
Nu star	14.15
AppChi2	6.674
hen $n \ge 40$	73 97

76.65

95% Gamma Approximate UCL (Use when n >= 95% Adjusted Gamma UCL (Use when n < 40)

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Detected Data 35 Number of Non-Detect Data 1 Percent Non-Detects 2.78%

Log-transformed Statistics

Minimum Detected	-3.963
Maximum Detected	6.835
Mean of Detected	0.132
SD of Detected	2.499
Minimum Non-Detect	-5.319
Maximum Non-Detect	-5.319

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic	0.959
5% Shapiro Wilk Critical Value	0.934

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-0.0384
SD	2.668
95% H-Stat (DL/2) UCL	283.7
Log ROS Method	
Mean in Log Scale	-0.0433
SD in Log Scale	2.679
Mean in Original Scale	34.89
SD in Original Scale	155.4
95% t UCL	78.66
95% Percentile Bootstrap UCL	85.22
95% BCA Bootstrap UCL	116.3
95% H UCL	296

Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level

Nonparametric Statistics Kaplan-Meier (KM) Method

rapian motor (ran) moutou	
Mean	34.89
SD	153.3
SE of Mean	25.92
95% KM (t) UCL	78.67
95% KM (z) UCL	77.52
95% KM (jackknife) UCL	78.66
95% KM (bootstrap t) UCL	328.8
95% KM (BCA) UCL	88.13
95% KM (Percentile Bootstrap) UCL	83.81
95% KM (Chebyshev) UCL	147.9
97.5% KM (Chebyshev) UCL	196.7
99% KM (Chebyshev) UCL	292.7
Potential UCLs to Use	
00% KM (Chebyshey) LICI	202.7

99% KM (Chebyshev) UCL 292.7

Number of Valid Observations 12

Raw Statistics

- Minimum 1.1
- Maximum 99
- Mean 31.82
- Geometric Mean 12.46
 - Median 12.4
 - SD 37.95
- Std. Error of Mean 10.96
- Coefficient of Variation 1.193 Skewness 1.066

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.771 Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 51.49

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 53.44 95% Modified-t UCL (Johnson-1978) 52.05

Gamma Distribution Test

- Theta Star 58.47
- MLE of Mean 31.82
- MLE of Standard Deviation 43.13
 - nu star 13.06
- Approximate Chi Square Value (.05) 5.933
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 5.218
- Anderson-Darling Test Statistic 0.443 Anderson-Darling 5% Critical Value 0.773
- Kolmogorov-Smirnov Test Statistic 0.161
- Kolmogorov-Smirnov 5% Critical Value 0.256

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 70.03
 - 95% Adjusted Gamma UCL (Use when n < 40) 79.64

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 12

Log-transformed Statistics

Minimum of Log Data 0.0953 Maximum of Log Data 4.595 Mean of log Data 2.523 SD of log Data 1.598

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.931 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 322.6 95% Chebyshev (MVUE) UCL 117.9 97.5% Chebyshev (MVUE) UCL 153.1

99% Chebyshev (MVUE) UCL 222

Data Distribution

k star (bias corrected) 0.544)ata appear Gamma Distributed at 5% Significance Leve

Nonparametric Statistics

- 95% CLT UCL 49.84
- 95% Jackknife UCL 51.49
- 95% Standard Bootstrap UCL 49.2
 - 95% Bootstrap-t UCL 57.23
- 95% Hall's Bootstrap UCL 46.86
- 95% Percentile Bootstrap UCL 50.33
- 95% BCA Bootstrap UCL 52.81
- 95% Chebyshev(Mean, Sd) UCL 79.57
- 97.5% Chebyshev(Mean, Sd) UCL 100.2 99% Chebyshev(Mean, Sd) UCL 140.8

Use 95% Approximate Gamma UCL 70.03

General Stat			
Number of Valid Data	56	Number of Detected Data	54
Number of Distinct Detected Data	46	Number of Non-Detect Data	2
		Percent Non-Detects	3.57%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0028	Minimum Detected	-5.878
Maximum Detected	280	Maximum Detected	5.635
Mean of Detected	12.42	Mean of Detected	-0.634
SD of Detected	47.06	SD of Detected	2.552
Minimum Non-Detect	0.0046	Minimum Non-Detect	-5.382
Maximum Non-Detect	0.0049	Maximum Non-Detect	-5.319
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	3
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	53
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	5.36%
UCL Statis	tics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Val	ues Only
Lilliefors Test Statistic	0.396	Lilliefors Test Statistic	0.122
5% Lilliefors Critical Value	0.121	5% Lilliefors Critical Value	0.121
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance L	evel
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	11.97	Mean	-0.827
SD	46.26	SD	2.703
95% DL/2 (t) UCL	22.32	95% H-Stat (DL/2) UCL	101.7
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	10.13	Mean in Log Scale	-0.835
SD	47.37	SD in Log Scale	2.719
95% MLE (t) UCL	20.72	Mean in Original Scale	11.97
95% MLE (Tiku) UCL	19.63	SD in Original Scale	46.26
		95% t UCL	22.32
		95% Percentile Bootstrap UCL	22.71
		95% BCA Bootstrap UCL	26.46
		95% H UCL	107.4
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values	s Only
k star (bias corrected)	0.228	Data do not follow a Discernable Distribution	า (0.05)

- Theta Star 54.41
 - nu star 24.65

Nonparametric Statistics

Kaplan-Meier (KM) Method

Mean

SE of Mean 95% KM (t) UCL

95% KM (z) UCL

95% KM (jackknife) UCL

95% KM (BCA) UCL

95% KM (bootstrap t) UCL

95% KM (Chebyshev) UCL

99% KM (Chebyshev) UCL

97.5% KM (Chebyshev) UCL

Potential UCLs to Use 99% KM (Chebyshev) UCL

95% KM (Percentile Bootstrap) UCL

SD

11.97

45.84

6.183

22.32

22.14

22.32

76.61

24.43

23.35

38.93

50.59

73.5

73.5

- A-D Test Statistic 4.557
- 5% A-D Critical Value 0.895
- K-S Test Statistic 0.895
- 5% K-S Critical Value 0.133

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics using Ext

Gamma ROS Statistics using Extrapolated Data		
Minimum	1E-06	
Maximum	280	
Mean	11.97	
Median	0.28	
SD	46.26	
k star	0.205	
Theta star	58.3	
Nu star	23	
AppChi2	13.09	
95% Gamma Approximate UCL (Use when n >= 40)	21.04	
	01 00	

95% Adjusted Gamma UCL (Use when n < 40) 21.36

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Number of Valid Observations 35

Raw Statistics

Minimum 0.0775

- Maximum 5233
- Mean 268.3 Geometric Mean 8.494
 - Median 6.26
 - SD 962.6
- Std. Error of Mean 162.7
- Coefficient of Variation 3.588
 - Skewness 4.617

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.32 Shapiro Wilk Critical Value 0.934

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 543.4

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 671.6
 - 95% Modified-t UCL (Johnson-1978) 564.6

Gamma Distribution Test

- k star (bias corrected) 0.212
 - Theta Star 1264
- MLE of Mean 268.3
- MLE of Standard Deviation 582.4
 - nu star 14.86
- Approximate Chi Square Value (.05) 7.162
 - Adjusted Level of Significance 0.0425
 - Adjusted Chi Square Value 6.909
- Anderson-Darling Test Statistic 3.914 Anderson-Darling 5% Critical Value 0.895
- Kolmogorov-Smirnov Test Statistic 0.301
- Kolmogorov-Smirnov 5% Critical Value 0.164

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 556.6 95% Adjusted Gamma UCL (Use when n < 40) 577

Potential UCL to Use

- 95% Standard Bootstrap UCL 530
- 95% Bootstrap-t UCL 2008
- 95% Hall's Bootstrap UCL 1774
- 95% Percentile Bootstrap UCL 561.5
- 95% BCA Bootstrap UCL 731.7
- 95% Chebyshev(Mean, Sd) UCL 977.6
- 97.5% Chebyshev(Mean, Sd) UCL 1284 99% Chebyshev(Mean, Sd) UCL 1887
- Use 97.5% Chebyshev (Mean, Sd) UCL 1284

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 35

Minimum of Log Data -2.558

Maximum of Log Data 8.563

Mean of log Data 2.139

SD of log Data 2.582

Log-transformed Statistics

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.96 Shapiro Wilk Critical Value 0.934

Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 2015 95% Chebyshev (MVUE) UCL 634.9 97.5% Chebyshev (MVUE) UCL 836 99% Chebyshev (MVUE) UCL 1231

Data Distribution

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

- 95% CLT UCL 535.9
- 95% Jackknife UCL 543.4

Number of Valid Observations 12

Raw Statistics

Minimum 5.08

- Maximum 587
- Mean 170.3 Geometric Mean 59.43
 - Median 64.75
 - SD 220.9
- Std. Error of Mean 63.76
- Coefficient of Variation 1.297
 - Skewness 1.249

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.74 Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 284.8

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 299.8
 - 95% Modified-t UCL (Johnson-1978) 288.7

Gamma Distribution Test

- Theta Star 342.8
- MLE of Mean 170.3
- MLE of Standard Deviation 241.6
 - nu star 11.93
- Approximate Chi Square Value (.05) 5.179
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 4.519
- Anderson-Darling Test Statistic 0.483 Anderson-Darling 5% Critical Value 0.778
- Kolmogorov-Smirnov Test Statistic 0.182
- Kolmogorov-Smirnov 5% Critical Value 0.257

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 392.3 95% Adjusted Gamma UCL (Use when n < 40) 449.6

Potential UCL to Use

Lognormal Distribution Test Shapiro Wilk Test Statistic 0.932 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Number of Distinct Observations 12

Minimum of Log Data 1.625

Maximum of Log Data 6.375

Mean of log Data 4.085

SD of log Data 1.677

Log-transformed Statistics

Assuming Lognormal Distribution

95% H-UCL 2099 95% Chebyshev (MVUE) UCL 643.4 97.5% Chebyshev (MVUE) UCL 837.7 99% Chebyshev (MVUE) UCL 1219

Data Distribution

k star (bias corrected) 0.497)ata appear Gamma Distributed at 5% Significance Leve

Nonparametric Statistics

- 95% CLT UCL 275.2
- 95% Jackknife UCL 284.8
- 95% Standard Bootstrap UCL 270.8
 - 95% Bootstrap-t UCL 333.3
- 95% Hall's Bootstrap UCL 263.4
- 95% Percentile Bootstrap UCL 271.7
- 95% BCA Bootstrap UCL 292.6
- 95% Chebyshev(Mean, Sd) UCL 448.2
- 97.5% Chebyshev(Mean, Sd) UCL 568.5
- 99% Chebyshev(Mean, Sd) UCL 804.7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Use 95% Approximate Gamma UCL 392.3

Number of Valid Observations 56

Raw Statistics

Minimum 0.0184

- Maximum 3383
- Mean 118
- Geometric Mean 2.782
 - Median 1.662
 - SD 511.8
- Std. Error of Mean 68.4
- Coefficient of Variation 4.339 Skewness 5.664

Relevant UCL Statistics

- Normal Distribution Test Lilliefors Test Statistic 0.416
 - Lilliefors Critical Value 0.118
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

- 95% Student's-t UCL 232.4
- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 285.8
 - 95% Modified-t UCL (Johnson-1978) 241

Gamma Distribution Test

- k star (bias corrected) 0.198
 - Theta Star 595.1
 - MLE of Mean 118
- MLE of Standard Deviation 265
 - nu star 22.2
- Approximate Chi Square Value (.05) 12.49
 - Adjusted Level of Significance 0.0457
 - Adjusted Chi Square Value 12.3
- Anderson-Darling Test Statistic 5.106 Anderson-Darling 5% Critical Value 0.911
- Kolmogorov-Smirnov Test Statistic 0.228
- Kolmogorov-Smirnov 5% Critical Value 0.132

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 209.7 95% Adjusted Gamma UCL (Use when n < 40) 213

Potential UCL to Use

Use 97.5% Chebyshev (Mean, Sd) UCL 545.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 56

Log-transformed Statistics

Minimum of Log Data -3.995 Maximum of Log Data 8.127 Mean of log Data 1.023 SD of log Data 2.82

Lognormal Distribution Test

Lilliefors Test Statistic 0.108 Lilliefors Critical Value 0.118 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 1034 95% Chebyshev (MVUE) UCL 402.8 97.5% Chebyshev (MVUE) UCL 529.6 99% Chebyshev (MVUE) UCL 778.6

Data Distribution

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

- 95% CLT UCL 230.5
- 95% Jackknife UCL 232.4
- 95% Standard Bootstrap UCL 225.4
- 95% Bootstrap-t UCL 1162
- 95% Hall's Bootstrap UCL 797
- 95% Percentile Bootstrap UCL 243.2
- 95% BCA Bootstrap UCL 299.6
- 95% Chebyshev(Mean, Sd) UCL 416.1
- 97.5% Chebyshev(Mean, Sd) UCL 545.1
- 99% Chebyshev(Mean, Sd) UCL 798.5

Number of Valid Observations 27

Raw Statistics

- Minimum 0.117
- Maximum 1290
- Mean 70.85
- Geometric Mean 3.451 Median 2.414

 - SD 257.8
- Std. Error of Mean 49.61
- Coefficient of Variation 3.638
 - Skewness 4.499

Relevant UCL Statistics

- Normal Distribution Test
 - Shapiro Wilk Test Statistic 0.307 Shapiro Wilk Critical Value 0.923
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

- 95% Student's-t UCL 155.5
- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 198.3
 - 95% Modified-t UCL (Johnson-1978) 162.6

Gamma Distribution Test

- k star (bias corrected) 0.235
 - Theta Star 300.9
 - MLE of Mean 70.85
- MLE of Standard Deviation 146
 - nu star 12.71
- Approximate Chi Square Value (.05) 5.7
 - Adjusted Level of Significance 0.0401
 - Adjusted Chi Square Value 5.401
- Anderson-Darling Test Statistic 3.828 Anderson-Darling 5% Critical Value 0.88
- Kolmogorov-Smirnov Test Statistic 0.322
- Kolmogorov-Smirnov 5% Critical Value 0.185

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 158
 - 95% Adjusted Gamma UCL (Use when n < 40) 166.8

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 27

Log-transformed Statistics

Minimum of Log Data -2.144 Maximum of Log Data 7.163 Mean of log Data 1.239 SD of log Data 2.155

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.913 Shapiro Wilk Critical Value 0.923 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 216.5 95% Chebyshev (MVUE) UCL 94.59 97.5% Chebyshev (MVUE) UCL 123.5

99% Chebyshev (MVUE) UCL 180.3

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

- 95% CLT UCL 152.5
- 95% Jackknife UCL 155.5
- 95% Standard Bootstrap UCL 151.7
 - 95% Bootstrap-t UCL 1291
- 95% Hall's Bootstrap UCL 1133
- 95% Percentile Bootstrap UCL 155.1
- 95% BCA Bootstrap UCL 226.6
- 95% Chebyshev(Mean, Sd) UCL 287.1
- 97.5% Chebyshev(Mean, Sd) UCL 380.7
- 99% Chebyshev(Mean, Sd) UCL 564.5

Use 97.5% Chebyshev (Mean, Sd) UCL 380.7

Number of Valid Observations 12

Raw Statistics

Minimum 0.924

- Maximum 198.3
- Mean 54.46
- Geometric Mean 18.37 Median 21.19
 - SD 71.45
- Std. Error of Mean 20.63 Coefficient of Variation 1.312
 - Skewness 1.325

Relevant UCL Statistics

Normal Distribution Test Shapiro Wilk Test Statistic 0.751

Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 91.5

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 96.81 95% Modified-t UCL (Johnson-1978) 92.81

Gamma Distribution Test

Theta Star 112.3

- MLE of Mean 54.46
- MLE of Standard Deviation 78.19
 - nu star 11.64
- Approximate Chi Square Value (.05) 4.991
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 4.346
- Anderson-Darling Test Statistic 0.398 Anderson-Darling 5% Critical Value 0.779
- Kolmogorov-Smirnov Test Statistic 0.178
- Kolmogorov-Smirnov 5% Critical Value 0.258

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 127
 - 95% Adjusted Gamma UCL (Use when n < 40) 145.9

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 12

Log-transformed Statistics

Minimum of Log Data -0.079 Maximum of Log Data 5.29 Mean of log Data 2.911 SD of log Data 1.737

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.955 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 828.7 95% Chebyshev (MVUE) UCL 220.4 97.5% Chebyshev (MVUE) UCL 287.6

99% Chebyshev (MVUE) UCL 419.7

Data Distribution

k star (bias corrected) 0.485)ata appear Gamma Distributed at 5% Significance Leve

Nonparametric Statistics

- 95% CLT UCL 88.38
- 95% Jackknife UCL 91.5
- 95% Standard Bootstrap UCL 86.62
 - 95% Bootstrap-t UCL 113.9
- 95% Hall's Bootstrap UCL 90.98
- 95% Percentile Bootstrap UCL 89.2
- 95% BCA Bootstrap UCL 96.34
- 95% Chebyshev(Mean, Sd) UCL 144.4
- 97.5% Chebyshev(Mean, Sd) UCL 183.3
- 99% Chebyshev(Mean, Sd) UCL 259.7

Use 95% Approximate Gamma UCL 127

Number of Valid Observations 53

Raw Statistics

Minimum 0.023 Maximum 92890

- Mean 2036
- Geometric Mean 2.373
 - Median 0.879
 - SD 12786
- Std. Error of Mean 1756
- Coefficient of Variation 6.279 Skewness 7.17

Relevant UCL Statistics

Normal Distribution Test Lilliefors Test Statistic 0.485

Lilliefors Critical Value 0.122

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 4978

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 6773

95% Modified-t UCL (Johnson-1978) 5266

Gamma Distribution Test

- k star (bias corrected) 0.124
 - Theta Star 16473
- MLE of Mean 2036
- MLE of Standard Deviation 5792
 - nu star 13.1
- Approximate Chi Square Value (.05) 5.963
 - Adjusted Level of Significance 0.0455
 - Adjusted Chi Square Value 5.828
- Anderson-Darling Test Statistic 10.28 Anderson-Darling 5% Critical Value 0.965
- Kolmogorov-Smirnov Test Statistic 0.356
- Kolmogorov-Smirnov 5% Critical Value 0.138

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 4475 95% Adjusted Gamma UCL (Use when n < 40) 4579

Potential UCL to Use

Use 97.5% Chebyshev (Mean, Sd) UCL 13004

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 53

Log-transformed Statistics

Minimum of Log Data -3.772 Maximum of Log Data 11.44 Mean of log Data 0.864 SD of log Data 3.207

Lognormal Distribution Test

Lilliefors Test Statistic 0.167 Lilliefors Critical Value 0.122 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 4509 95% Chebyshev (MVUE) UCL 1026 97.5% Chebyshev (MVUE) UCL 1362 99% Chebyshev (MVUE) UCL 2022

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

- 95% CLT UCL 4925
- 95% Jackknife UCL 4978
- 95% Standard Bootstrap UCL 4911
- 95% Bootstrap-t UCL 48549
- 95% Hall's Bootstrap UCL 37884
- 95% Percentile Bootstrap UCL 5497
- 95% BCA Bootstrap UCL 8886
- 95% Chebyshev(Mean, Sd) UCL 9692
- 97.5% Chebyshev(Mean, Sd) UCL 13004
- 99% Chebyshev(Mean, Sd) UCL 19511

Number of Valid Observations 35

Raw Statistics

Minimum 0.213

- Maximum 6523
- Mean 323
- Geometric Mean 11.5 Median 7.177
 - SD 1168
- Std. Error of Mean 197.5
- Coefficient of Variation 3.618
 - Skewness 4.837

Relevant UCL Statistics

- Normal Distribution Test
 - Shapiro Wilk Test Statistic 0.317 Shapiro Wilk Critical Value 0.934
- Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 656.9

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 820.3
 - 95% Modified-t UCL (Johnson-1978) 683.8

Gamma Distribution Test

- k star (bias corrected) 0.218
 - Theta Star 1481
 - MLE of Mean 323
- MLE of Standard Deviation 691.5
 - nu star 15.27
- Approximate Chi Square Value (.05) 7.449
 - Adjusted Level of Significance 0.0425
 - Adjusted Chi Square Value 7.19
- Anderson-Darling Test Statistic 4.159 Anderson-Darling 5% Critical Value 0.892
- Kolmogorov-Smirnov Test Statistic 0.303
- Kolmogorov-Smirnov 5% Critical Value 0.164

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 662 95% Adjusted Gamma UCL (Use when n < 40) 685.9

Potential UCL to Use

Use 97.5% Chebyshev (Mean, Sd) UCL 1556

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 35

Log-transformed Statistics Minimum of Log Data -1.547 Maximum of Log Data 8.783 Mean of log Data 2.443 SD of log Data 2.451

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.944 Shapiro Wilk Critical Value 0.934 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

- 95% H-UCL 1612 95% Chebyshev (MVUE) UCL 625.4
- 97.5% Chebyshev (MVUE) UCL 820.4
- 99% Chebyshev (MVUE) UCL 1204

Data Distribution

Data appear Lognormal at 5% Significance Level

Nonparametric Statistics

- 95% CLT UCL 647.8
- 95% Jackknife UCL 656.9
- 95% Standard Bootstrap UCL 640.2
- 95% Bootstrap-t UCL 2067
- 95% Hall's Bootstrap UCL 2133
- 95% Percentile Bootstrap UCL 678.7
- 95% BCA Bootstrap UCL 1009
- 95% Chebyshev(Mean, Sd) UCL 1184
- 97.5% Chebyshev(Mean, Sd) UCL 1556
- 99% Chebyshev(Mean, Sd) UCL 2288

Number of Valid Observations 12

Raw Statistics

Minimum 6.004

- Maximum 765 Mean 224.8
- Geometric Mean 78.47
 - Median 87.56
 - SD 288.8
- Std. Error of Mean 83.38
- Coefficient of Variation 1.285
 - Skewness 1.192

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.739 Shapiro Wilk Critical Value 0.859

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 374.5

- 95% UCLs (Adjusted for Skewness)
 - 95% Adjusted-CLT UCL (Chen-1995) 392.6
 - 95% Modified-t UCL (Johnson-1978) 379.3

Gamma Distribution Test

- Theta Star 452.2
- MLE of Mean 224.8
- MLE of Standard Deviation 318.8
 - nu star 11.93
- Approximate Chi Square Value (.05) 5.182
 - Adjusted Level of Significance 0.029
 - Adjusted Chi Square Value 4.521
- Anderson-Darling Test Statistic 0.509 Anderson-Darling 5% Critical Value 0.778
- Kolmogorov-Smirnov Test Statistic 0.192
- Kolmogorov-Smirnov 5% Critical Value 0.257

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

- 95% Approximate Gamma UCL (Use when n >= 40) 517.6
 - 95% Adjusted Gamma UCL (Use when n < 40) 593.2

Potential UCL to Use

Maximum of Log Data 6.64 Mean of log Data 4.363

Number of Distinct Observations 12

Log-transformed Statistics

SD of log Data 1.684

Minimum of Log Data 1.792

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.932 Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 2851 95% Chebyshev (MVUE) UCL 859.7 97.5% Chebyshev (MVUE) UCL 1120 99% Chebyshev (MVUE) UCL 1630

Data Distribution

k star (bias corrected) 0.497)ata appear Gamma Distributed at 5% Significance Leve

Nonparametric Statistics

- 95% CLT UCL 361.9
- 95% Jackknife UCL 374.5
- 95% Standard Bootstrap UCL 353.9
 - 95% Bootstrap-t UCL 419.4
- 95% Hall's Bootstrap UCL 335.4
- 95% Percentile Bootstrap UCL 362
- 95% BCA Bootstrap UCL 384.1
- 95% Chebyshev(Mean, Sd) UCL 588.2
- 97.5% Chebyshev(Mean, Sd) UCL 745.5
- 99% Chebyshev(Mean, Sd) UCL 1054

Use 95% Approximate Gamma UCL 517.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Valid Observations 55

Raw Statistics

Minimum 0.0344 Maximum 96273 Mean 1892 Geometric Mean 4.866 Median 2.127

SD 12976

Std. Error of Mean 1750 Coefficient of Variation 6.859

Skewness 7.392

Relevant UCL Statistics

Normal Distribution Test Lilliefors Test Statistic 0.498

Lilliefors Critical Value 0.119

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 4820

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 6633

95% Modified-t UCL (Johnson-1978) 5111

Gamma Distribution Test

- k star (bias corrected) 0.136
 - Theta Star 13879
- MLE of Mean 1892
- MLE of Standard Deviation 5124
 - nu star 14.99
- Approximate Chi Square Value (.05) 7.257
 - Adjusted Level of Significance 0.0456
 - Adjusted Chi Square Value 7.112
- Anderson-Darling Test Statistic 9.664 Anderson-Darling 5% Critical Value 0.957
- Kolmogorov-Smirnov Test Statistic 0.347
- Kolmogorov-Smirnov 5% Critical Value 0.136

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 3908 95% Adjusted Gamma UCL (Use when n < 40) 3988

Potential UCL to Use

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Use 97.5% Chebyshev (Mean, Sd) UCL 12819

These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Distinct Observations 55

Log-transformed Statistics

Minimum of Log Data -3.371 Maximum of Log Data 11.47 Mean of log Data 1.582 SD of log Data 2.996

Lognormal Distribution Test

Lilliefors Test Statistic 0.125 Lilliefors Critical Value 0.119 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 3709 95% Chebyshev (MVUE) UCL 1152 97.5% Chebyshev (MVUE) UCL 1521 99% Chebyshev (MVUE) UCL 2247

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

- 95% CLT UCL 4770
- 95% Jackknife UCL 4820
- 95% Standard Bootstrap UCL 4714
- 95% Bootstrap-t UCL 62088
- 95% Hall's Bootstrap UCL 61979
- 95% Percentile Bootstrap UCL 5395
- 95% BCA Bootstrap UCL 7241
- 95% Chebyshev(Mean, Sd) UCL 9518
- 97.5% Chebyshev(Mean, Sd) UCL 12819 99% Chebyshev(Mean, Sd) UCL 19301

General UCL Statistics for Data Sets with Non-Detects

User Selected Options	
From File	WorkSheet.wst
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

L122

General S	Statistics		
Number of Valid Data	26	Number of Detected Data	25
Number of Distinct Detected Data	14	Number of Non-Detect Data	1
		Percent Non-Detects	3.85%
Raw Statistics		Log-transformed Statistics	
Raw Statistics Minimum Detected	0.04	Log-transformed Statistics Minimum Detected	-3.219
	0.04 1.01	•	-3.219 0.00995

Mean of Detected	0.186	Mean of Detected
SD of Detected	0.264	SD of Detected
Minimum Non-Detect	0.05	Minimum Non-Detect
Maximum Non-Detect	0.05	Maximum Non-Detect

ι	JCL	Sta	tist	ics

UCL Statistics				
Normal Distribution Test with Detected Values Only	.og	normal Distribution Test with Detected Va	lues Onl	
Shapiro Wilk Test Statistic	0.578	Shapiro Wilk Test Statistic	0.825	
5% Shapiro Wilk Critical Value	0.918	5% Shapiro Wilk Critical Value	0.918	
Data not Normal at 5% Significance Level	Data not Lognormal at 5% Significance Level			
Assuming Normal Distribution		Assuming Lognormal Distribution		

Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.179	Mean	-2.314
SD	0.26	SD	0.975
95% DL/2 (t) UCL	0.267	95% H-Stat (DL/2) UCL	0.257
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	0.143	Mean in Log Scale	-2.309
SD	0.294	SD in Log Scale	0.967
95% MLE (t) UCL	0.241	Mean in Original Scale	0.18
95% MLE (Tiku) UCL	0.239	SD in Original Scale	0.26
		95% t UCL	0.267
		95% Percentile Bootstrap UCL	0.27
		95% BCA Bootstrap UCL	0.3
		95% H UCL	0.256

Data	Distribution	Tost with	Detected	Values	Only
Data	DISUIDUUUII	1031 10101	Delected	values	

0.953

-2.996

-2.996

0.91 Data do not follow a Discernable Distribution (0.05)

Gamma Distribution Test with Detected Values Only	
k star (bias corrected)	
Theta Star	(

Theta St	tar 0.204
nu st	tar 45.48
A-D Test Statis	tic 2.767
5% A-D Critical Valu	ue 0.773
K-S Test Statis	tic 0.773
5% K-S Critical Valu	ue 0.18
Data not Gamma Distributed at 5% Significance Lo	evel
Assuming Opming Distribution	

Assuming Gamma Distribution

Gamma ROS Statistics using Extrapolated Data	
Minimum	1E-06
Maximum	1.01
Mean	0.178
Median	0.08
SD	0.261
k star	0.58
Theta star	0.308
Nu star	30.15
AppChi2	18.61
95% Gamma Approximate UCL (Use when n >= 40)	0.289
95% Adjusted Gamma UCL (Use when n < 40)	0.299
Note: DL/2 is not a recommended method.	

Nonparametric Statistics
Kaplan-Meier (KM) Method
Maria

Mean	0.18
SD	0.255
SE of Mean	0.051
95% KM (t) UCL	0.267
95% KM (z) UCL	0.264
95% KM (jackknife) UCL	0.267
95% KM (bootstrap t) UCL	0.348
95% KM (BCA) UCL	0.275
95% KM (Percentile Bootstrap) UCL	0.262
95% KM (Chebyshev) UCL	0.402
97.5% KM (Chebyshev) UCL	0.499
99% KM (Chebyshev) UCL	0.688

Potential UCLs to Use

95% KM (Chebyshev) UCL	0.402

ote: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006) For additional insight, the user may want to consult a statistician.

Number of Valid Observations 12

Raw Statistics

Minimum 0.11 Maximum 0.84 Mean 0.257 Geometric Mean 0.199 Median 0.15 SD 0.225 Std. Error of Mean 0.065 Coefficient of Variation 0.877 Skewness 1.93

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.701 Shapiro Wilk Critical Value 0.859 Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 0.373 **95% UCLs (Adjusted for Skewness)** 95% Adjusted-CLT UCL (Chen-1995) 0.402 95% Modified-t UCL (Johnson-1978) 0.379

Gamma Distribution Test

k star (bias corrected) 1.649 Theta Star 0.156 MLE of Mean 0.257 MLE of Standard Deviation 0.2 nu star 39.58 Approximate Chi Square Value (.05) 26.17 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 24.52

Anderson-Darling Test Statistic 1.168 Anderson-Darling 5% Critical Value 0.741 Kolmogorov-Smirnov Test Statistic 0.268 Kolmogorov-Smirnov 5% Critical Value 0.248

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL (Use when n >= 40) 0.388 95% Adjusted Gamma UCL (Use when n < 40) 0.414

Potential UCL to Use

Number of Distinct Observations 9 Log-transformed Statistics

Minimum of Log Data -2.207 Maximum of Log Data -0.174 Mean of log Data -1.613 SD of log Data 0.683

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.82 Shapiro Wilk Critical Value 0.859 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 0.412 95% Chebyshev (MVUE) UCL 0.466 97.5% Chebyshev (MVUE) UCL 0.561 99% Chebyshev (MVUE) UCL 0.748

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95% CLT UCL 0.364 95% Jackknife UCL 0.373 95% Standard Bootstrap UCL 0.378 95% Bootstrap UCL 0.483 95% Hall's Bootstrap UCL 0.384 95% Percentile Bootstrap UCL 0.369 95% Chebyshev(Mean, Sd) UCL 0.54 97.5% Chebyshev(Mean, Sd) UCL 0.603 99% Chebyshev(Mean, Sd) UCL 0.904

Use 95% Chebyshev (Mean, Sd) UCL 0.54

ote: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCI These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Number of Valid Data	53
Number of Distinct Detected Data	19

Raw Statistics

stics	Log-transformed Statistics		
Minimum Detected	0.03	Minimum Detected	-3.
Maximum Detected	1.37	Maximum Detected	0.
Mean of Detected	0.128	Mean of Detected	-2
SD of Detected	0.2	SD of Detected	0
Minimum Non-Detect	0.02	Minimum Non-Detect	-3
Maximum Non-Detect	0.02	Maximum Non-Detect	-3.

UCL Statistics

Normal Distribution Test with Detected Values Only	.0
Lilliefors Test Statistic	0.323
5% Lilliefors Critical Value	0.123
Data not Normal at 5% Significance Level	

Assuming Normal Distribution

DL/2 Substitution Method	
Mean	0.126
SD	0.199
95% DL/2 (t) UCL	0.172

Maximum Likelihood Estimate(MLE) Method	
Mean	0.124
SD	0.199
95% MLE (t) UCL	0.17
95% MLE (Tiku) UCL	0.165

Gamma Distribution Test with Detected Values Only

k star (bias corrected)	1.32
Theta Star	0.0971
nu star	137.3
A-D Test Statistic	4.251

5% A-D Critical Value	0.77
K-S Test Statistic	0.77
5% K-S Critical Value	0.126

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

1E-06	
1.37	
0.126	
0.08	
0.199	
0.928	
0.136	
98.36	
76.48	
0.162	
0.163	
	1.37 0.126 0.08 0.199 0.928 0.136 98.36 76.48 0.162

Note: DL/2 is not a recommended method.

ote: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCI These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006) For additional insight, the user may want to consult a statistician.

3.507 0 315

Number of Detected Data

Percent Non-Detects

Number of Non-Detect Data

Maximum Delected	0.515
Mean of Detected	-2.455
SD of Detected	0.743
Minimum Non-Detect	-3.912
Maximum Non-Detect	-3.912

52

1

1.89%

gnormal Distribution Test with Detected Values Onl

gnormar bioa	Badon Tool Man Bolooloa	v uluoo	0
	Lilliefors Test Statistic	0.	169
	5% Lilliefors Critical Value	0.	123

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

DL/2 Substitution Method	
Mean	-2.496
SD	0.793
95% H-Stat (DL/2) UCL	0.142
Log ROS Method	
Mean in Log Scale	-2.49
SD in Log Scale	0.777
Mean in Original Scale	0.126
SD in Original Scale	0.198
95% t UCL	0.172
95% Percentile Bootstrap UCL	0.175
95% BCA Bootstrap UCL	0.201
95% H UCL	0.141

Data Distribution Test with Detected Values Only

1.32 Data do not follow a Discernable Distribution (0.05) .0971

Nonparametric Statistics

Kaplan-Meier (KM) Method	
Mean	0.126
SD	0.196
SE of Mean	0.0272
95% KM (t) UCL	0.172
95% KM (z) UCL	0.171
95% KM (jackknife) UCL	0.172
95% KM (bootstrap t) UCL	0.232
95% KM (BCA) UCL	0.18
95% KM (Percentile Bootstrap) UCL	0.178
95% KM (Chebyshev) UCL	0.245
97.5% KM (Chebyshev) UCL	0.297
99% KM (Chebyshev) UCL	0.397
Potential UCLs to Use	
95% KM (Chebyshev) UCL	0.245

ATTACHMENT C-5

Wildlife Exposure Models and Soil Screening Levels

Attachment C-5 Wildlife Exposure Models and Soil Screening Levels

Wildlife Exposure Model:

SSL = TRV/[(FIR*P*BAF)+(SIR*RGAF)]

Where:

SSL = soil screening level (mg/kg)

TRV = wildlife toxicity reference value (mg/kg/d)

FIR = food ingestion rate (kg/kg/d)

P = proportion of contaminated food in diet (unitless)

BAF = bioaccumulation factor (unitless)

SIR = soil ingestion rate (kg/kg/d)

RGAF = gut absorption factor (unitless)

SHREW - ALL AREAS PAHs

PAH Group	LMW	LMW	LMW	HMW	HMW	HMW	HMW	HMW	LMW	LMW	LMW	HMW	LMW	LMW	HMW	LMW	LMW	
	Acenaphthene	Acenaphthalene	Anthracene	Benz(a) anthracene	Benzo(a)pyrene	total Benzofluoranthenes	Benzo(g,h,i)perylene	Chrysene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3-cd)perylene	Naphthalene	Phenanthrene	Pyrene	1-Methylnapthene	2-Methynaphthene	Source
SSL_{shrew}	14,993	14,993	8,320	1,183	1,060	1,216	1,065	1,195	13,073	10,026	13,073	2,075	11,172	11,836	1,137	11,172	11,172	Calculated
TRV	138	138	138	15.72	15.72	15.72	15.72	15.72	138	138	138	15.72	138	138	15.72	138	138	See Table C-7
FIR	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	0.209	See Table C-5
Р	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	See Table C-5
SIR	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	0.00627	See Table C-5
RGAF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	See Table C-5
BAFworm	0.028	0.028	0.099	0.067	0.082	0.064	0.081	0.066	0.041	0.072	0.041	0.013	0.058	0.052	0.072	0.058	0.058	See Table C-3

Worm BAFs derived from Kreitinger et al. (2007) were not available for all PAH Site COPECs. BAFs were assigned based on structural similarities. The BAF for naphthalene was used for 1-methylnaphthalene and 2-methylnaphthalene. The BAF for fluorene was used for dibenzofuran. The BAF for acenaphthene was used for acenaphthalene.

VOLE - LOWER AREA PAHs

PAH Group	LMW	LMW	LMW	HMW	HMW	HMW	HMW	HMW	LMW	LMW	LMW	HMW	LMW	LMW	HMW	LMW	LMW	
	Acenaphthene	Acenaphthalene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	total Benzofluoranthenes	Benzo(g,h,i)perylene	Chrysene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3-cd)perylene	Naphthalene	Phenanthrene	Pyrene	1-Methylnapthene	2-Methynaphthene	Source
SSL _{vole}	37,165	37,165	37,165	1,147	1,147	1,147	1,147	1,147	37,165	37,165	37,165	1,147	37,165	37,165	1,147	37,165	37,165	Calculated
TRV	138	138	138	15.72	15.72	15.72	15.72	15.72	138	138	138	15.72	138	138	15.72	138	138	See Table C-5
FIR	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	See Table C-5
Р	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	See Table C-5
SIR	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	See Table C-5
RGAF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	See Table C-5
BAF_{plant}	0.010	0.010	0.010	0.125	0.125	0.125	0.125	0.125	0.010	0.010	0.010	0.125	0.010	0.010	0.125	0.010	0.010	See Equations 1 and 2

Total LMW PAHs		Total HMW PAHs	
$BAF_{plant} = Cp/Cs =$	0.010	BAF _{plant} = Cp/Cs =	0.125
Cp = Exp[ln(Ce)] =	3.973	Ce = Exp[In(Cp)] =	159.98
Ln(Cp) = 0.4544 * Ln(Cs) - 1.3205 =	1.380	Ln(Cp) = 0.9469 * Ln(Cs) - 1.7026 =	5.075
Cs (Lower Area) =	380.7	Cs (Lower Area) =	1284

VOLE - SLOPE AREA PAHs

PAH Group	LMW	LMW	LMW	HMW	HMW	HMW	HMW	HMW	LMW	LMW	LMW	HMW	LMW	LMW	HMW	LMW	LMW	
	Acenaphthene	Acenaphthalene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	total Benzofluoranthenes	Benzo(g,h,i)perylene	Chrysene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3-cd)perylene	Naphthalene	Phenanthrene	Pyrene	1-Methylnapthene	2-Methynaphthene	Source
SSL _{vole}	30,926	30,926	30,926	1,091	1,091	1,091	1,091	1,091	30,926	30,926	30,926	1,091	30,926	30,926	1,091	30,926	30,926	Calculated
TRV	138	138	138	15.72	15.72	15.72	15.72	15.72	138	138	138	15.72	138	138	15.72	138	138	See Table C-5
FIR	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	See Table C-5
Р	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	See Table C-5
SIR	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	See Table C-5
RGAF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	See Table C-5
BAF_{plant}	0.019	0.019	0.019	0.133	0.133	0.133	0.133	0.133	0.019	0.019	0.019	0.133	0.019	0.019	0.133	0.019	0.019	See Equations 1 and 2

Total LMW PAHs		Total HMW PAHs	
BAF _{plant} = Cp/Cs =	0.019	BAF _{plant} = Cp/Cs =	0.133
Cp = Exp[ln(Ce)] =	2.413	Ce = Exp[ln(Cp)] =	52.056
Ln(Cp) = 0.4544 * Ln(Cs) - 1.3205 =	0.881	Ln(Cp) = 0.9469 * Ln(Cs) - 1.7026 =	3.952
Cs (Slope Area) =	127	Cs (Slope Area) =	392.3

VOLE - UPPER AREA PAHs

PAH Group	LMW	LMW	LMW	HMW	HMW	HMW	HMW	HMW	LMW	LMW	LMW	HMW	LMW	LMW	HMW	LMW	LMW	
	Acenaphthene	Acenaphthalene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	total Benzofluoranthenes	Benzo(g,h,i)perylene	Chrysene	Dibenzofuran	Fluoranthene	Fluorene	Indeno(1,2,3-cd)perylene	Naphthalene	Phenanthrene	Pyrene	1-Methylnapthene	2-Methynaphthene	Source
SSL _{vole}	47,051	47,051	47,051	1,106	1,106	1,106	1,106	1,106	47,051	47,051	47,051	1,106	47,051	47,051	1,106	47,051	47,051	Calculated
TRV	138	138	138	15.72	15.72	15.72	15.72	15.72	138	138	138	15.72	138	138	15.72	138	138	See Table C-7
FIR	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	0.0875	See Table C-5
Р	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	See Table C-5
SIR	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	0.0028	See Table C-5
RGAF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	See Table C-5
BAF_{plant}	0.002	0.002	0.002	0.130	0.130	0.130	0.130	0.130	0.002	0.002	0.002	0.130	0.002	0.002	0.130	0.002	0.002	See Equations 1 and 2

	Total HMW PAHs	
0.002	$BAF_{plant} = Cp/Cs =$	0.130
19.767	Ce = Exp[ln(Cp)] =	71
2.984	Ln(Cp) = 0.9469 * Ln(Cs) - 1.7026 =	4.264
13004	Cs (Upper Area) =	545.1
	19.767 2.984	0.002 BAF _{plant} = Cp/Cs = 19.767 Ce = Exp[ln(Cp)] = 2.984 Ln(Cp) = 0.9469 * Ln(Cs) - 1.7026 =

Selenium Upper Area

	Shrew	Vole	Robin	Source
SSL	2.74	4.68	2.37	Calculated
TRV	0.239	0.239	0.287	See Table E-8
FIR	0.209	0.0875	0.214	See Table E-5
Р	0.5	1	0.52	See Table E-5
SIR	0.0067	0.0028	0.0351	See Table E-5
RGAF	1	1	1	See Table E-5
BAF	0.771	0.552	0.771	See Table E-4

APPENDIX D

Data Validation Reports

TECHNICAL MEMORANDUM

DATE: October 6, 2010

RE: CITY OF BELLINGHAM SOUTH STATE STREET MANUFACTURED GAS PLANT SOIL VAPOR SAMPLING LABORATORY DATA QUALITY EVALUATION

This technical memorandum provides the results of a focused data validation associated with 6 soil vapor samples collected on August 30, 2010 at the South State Street Manufactured Gas Plant in Bellingham, Washington. Samples were analyzed by Air Toxics, Ltd. (Air Toxics), located in Folsom, California. This data quality evaluation covers Air Toxics data packages 1009022A and 1009022B. Samples submitted to Air Toxics were analyzed for volatile organic compounds (VOCs) [U.S. Environmental Protection Agency (EPA) Method Modified TO-15] and aliphatic/aromatic air phase petroleum hydrocarbons (EPA Method Modified TO-15).

Sample data were evaluated in accordance with applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999) and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl and Landau 2010). The following parameters were evaluated:

- Chain-of-custody (COC) records
- Holding times
- Blank results (laboratory method)
- Surrogate recoveries
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) results
- Quantitation limits
- Audit/corrective action records
- Completeness and overall data quality.

Data validation qualifiers are added to samples based on the evaluation of data quality. The absence of a data qualifier indicates that the reported result is acceptable without qualification. The data quality evaluation is summarized below.

CHAIN-OF-CUSTODY RECORDS

A signed chain-of-custody record was attached to each data package. The laboratory received all samples in good condition and all analyses were performed as requested.

HOLDING TIMES

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times. No qualification of the data is necessary.

BLANK RESULTS

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks. No qualification of the data is necessary.

SURROGATE RECOVERIES

Appropriate compounds were used as surrogate spikes for the VOC analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits. No qualification of the data is necessary. Surrogates were not reported by the laboratory for the APH analysis.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

At least one LCS and/or LCSD sample was analyzed with each batch of samples for the VOC analysis. Recoveries and RPD for the LCS/LCSD and associated duplicates were within the current laboratory-specified control limits with the following exception. The percent recovery value for the LCSD associated with the VOC analysis for naphthalene was above the laboratory-specified control limits. All associated sample results were not detected. No qualification of the data is necessary. An LCS and/or LCSD was not reported by the laboratory for the APH analysis.

QUANTITATION LIMITS

Project-specified quantitation limits were met for all samples.

COMPLETENESS AND OVERALL DATA QUALITY

The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

Data precision was evaluated through laboratory control sample duplicates. Data accuracy was evaluated through laboratory control samples and surrogate spikes. Based on this data quality evaluation, all of the data were determined to be acceptable without qualification. No data were rejected.

REFERENCES

EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. October.

Herrenkohl Consulting LLC and Landau Associates Inc. 2010. South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan. Prepared for City of Bellingham and Puget Sound Energy. August 6.

TECHNICAL MEMORANDUM

TO:	Chip Halbert	ocil
	VES	ASH
FROM:	Kristi Schultz and A	nne Halvorsen

DATE: December 1, 2010

RE: AUGUST AND SEPTEMBER 2010 SEDIMENT SAMPLES LABORATORY DATA QUALITY EVALUATION CITY OF BELLINGHAM SOUTH STATE STREET MANUFACTURED GAS PLANT REMEDIAL INVESTIGATION/FEASIBILITY STUDY

This technical memorandum provides the results of a focused data validation associated with 42 sediment samples collected on August 20, 2010 and September 8-9, 2010 at the South State Street Manufactured Gas Plant in Bellingham, Washington. Samples were analyzed by Analytical Resources, Inc. (ARI), located in Tukwila, Washington. This data quality evaluation covers ARI data packages RJ85, RM22/RM27, and RM42. Samples submitted to ARI were analyzed for semivolatile organic compounds (SVOCs) [U.S. Environmental Protection Agency (EPA) Method Puget Sound Dredged Disposal Analysis (PSDDA) SW8270D], polycyclic aromatic hydrocarbons (PAHs) (EPA Method SW8270D-SIM), total metals (EPA Methods 200.8 and 7471A), and conventionals, including total organic carbon (Plumb 1981).

Sample data were evaluated in accordance with applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999), applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 2004), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl and Landau Associates 2010). The following parameters were evaluated:

- Chain-of-custody (COC) records
- Holding times
- Blank results (laboratory method)
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) and laboratory duplicate results
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) results
- Blind field duplicate results
- Quantitation limits
- Audit/corrective action records
- Completeness and overall data quality.

Data validation qualifiers are added to samples based on the evaluation of data quality. The absence of a data qualifier indicates that the reported result is acceptable without qualification. The data quality evaluation is summarized below.

CHAIN-OF-CUSTODY RECORDS

A signed chain-of-custody (COC) record was attached to each data package. The laboratory received all samples in good condition, and all analyses were performed as requested. Upon receipt by ARI, the sample jar information was compared to the associated COC and the cooler temperatures were recorded. All coolers were received within the EPA-recommended limits of $4^{\circ}C\pm2^{\circ}C$.

HOLDING TIMES

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times. No qualification of the data is necessary. All samples were frozen to protect holding times.

BLANK RESULTS

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks with the following exceptions:

- The method blank associated with the SVOC analysis in data package RJ85 contained bis(2ethylhexyl)phthalate. Associated samples were not detected; therefore no qualification of the data is necessary.
- The method blanks associated with the SVOC analysis in data packages RM22/RM27 and RM42 contained phenol. Several samples contained a detection of phenol below the action level¹; therefore, the associated sample results are qualified as not detected (U), as indicated in Table 1.

SURROGATE RECOVERIES

Appropriate compounds were used as surrogate spikes for the various analyses. Recovery values for the surrogate spikes were within the current laboratory-specified control limits with the following exceptions:

¹ The action level is defined as 10 times the concentration in the blank for common volatile laboratory contaminants (methylene chloride, acetone, 2-butanone, and cyclohexane), or 5 times the concentration for other target compounds (EPA 1999).

• Recovery of the surrogate d5-nitrobenzene associated with the SVOC analysis for sample MGP-SB-01-4.0-6.0 in data package RJ85 exceeded the laboratory-specified control limits. SVOC sample surrogate qualification requires that two or more surrogates of the same fraction to be outside of laboratory-specified control limits; therefore, no qualification of the data is necessary.

MATRIX SPIKE (MS)/MATRIX SPIKE DUPLICATE (MSD) AND LABORATORY REPLICATE RESULTS

A MS and/or laboratory duplicate sample was analyzed with the SVOCs, PAHs, total metals, and conventionals analyses in several data packages. The recovery values for each required spiking compound were within the laboratory- and project-specified control limits for all project samples with the following exceptions:

- The MS/MSD recovery for 4-chloroaniline associated with the SVOC analysis for sample MGP-SB-03-3.0-4.0 in data package RM22/RM27 was below the laboratory-specified control limits; the MS/MSD recovery for fluoranthene exceeded the laboratory-specified control limits. The associated sample results were qualified as estimated (UJ/J), as indicated in Table 1.
- The MS/MSD recoveries for 3,3'-dichlorobenzidine associated with the SVOC analysis for sample MGP-SB-03-3.0-4.0 in data package RM22/RM27 were not calculated due to a negative recovery of the spiking solution. No qualification of the data is necessary.
- The MS recovery for silver associated with the total metals analysis for sample MGP-SB-12-5.0-6.5 in data package RM42 was below the laboratory-specified control limit; the associated sample result was qualified as estimated (UJ), as indicated in Table 1.
- The MS/MSD recoveries for several compounds associated with the PAH analysis for sample MGP-SB-07-5.0-6.5 in data package RM42 were not calculated due to a negative recovery of the spiking solution. No qualification of the data is necessary.

A laboratory-specified control limit of 20 percent was used to evaluate the relative percent differences (RPDs) between the laboratory replicate results and a project-specified control limit of 35 percent was used to evaluate the RPDs between the MS/MSDs, except when the samples were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus two times the reporting limit was used. The RPDs between the laboratory replicate results or MS/MSD were within the current laboratory- and project-specified control limits for all project samples with the following exceptions:

- The MS/MSD RPD for 2,4-dimethylphenol associated with the SVOC analysis for sample MGP-SB-04-8.0-10.0 in data package RJ85 exceeded the laboratory-specified control limits. The associated sample result was not detected; therefore no qualification of the data is necessary.
- The MS/MSD RPD for 4-chloroaniline associated with the SVOC analysis for sample MGP-SB-03-3.0-4.0 in data package RM22/RM27 exceeded the laboratory-specified control limits. The associated sample result was not detected; therefore no qualification of the data is necessary.

- The MS/MSD RPD for 3,3'-dichlorobenzidine associated with the SVOC analysis for sample MGP-SB-03-3.0-4.0 in data package RM22/RM27 was not calculable due to incalculable percent recoveries of the spiking solution. No qualification of the data is necessary.
- The MS/MSD RPDs for several compounds associated with the SVOC analysis for sample MGP-SB-07-5.0-6.5 in data package RM42 were not calculable due to incalculable percent recoveries of the spiking solution. No qualification of the data is necessary.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

At least one LCS and/or LCSD or standard reference material (SRM) sample was analyzed with each batch of samples for each analysis. Recoveries and RPD for the LCS/LCSD were within the current laboratory-specified control limits with the following exceptions:

• The LCS/LCSD recoveries and the LCS/LCSD RPDs for benzyl alcohol associated with the SVOC analysis in data packages RM22/RM27 and RM42 were not calculated due to a negative recovery of the spiking solution; therefore, no qualification of the data is necessary.

BLIND FIELD DUPLICATES

One pair of blind field duplicate sediment samples (MGP-SB-20-29.0-31.0/MGP-SB-10-29.0-31.0) was submitted for analysis with data packages RM42 and analyzed for SVOCs, total metals, and conventionals.

A project-specified control limit of 35 percent was used to evaluate the RPDs between the duplicate sediment samples, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus two times the reporting limit was used. RPDs for the duplicate sample pair submitted for analysis were within the project-specified control limits. No qualification of the data is necessary.

QUANTITATION LIMITS

Project-specified quantitation limits were met for all samples, except for the following:

- Instances where samples required dilutions based on high concentrations of target analytes may have elevated reporting limits.
- The 9/30/10 and 10/4/10 SVOC continuing calibration (CCAL) in data package RM22/RM27 were out of control (low) for benzyl alcohol; the associated sample results were qualified as estimated (UJ), as indicated in Table 1.
- The 9/23/10 PAH CCAL in data package RM22/RM27 was out of control (low) for benzo(g,h,i)perylene; the associated sample results were qualified as estimated (J), as indicated in Table 1.
- The 9/30/10 SVOC CCAL in data package RM42 was out of control (low) for benzidine. The compound was analyzed for by the lab, but was not requested to be reported; no qualification of the data is necessary.

• The internal standard area of chrysene-d12 associated with the PAHs analysis for sample MGP-SB-05-2.5-4.0 in data package RM22/RM27 was outside control limits (high). The sample was re-analyzed at a dilution with all internal standard areas within control limits; no qualification of the data is necessary. Report results from the re-analysis.

COMPLETENESS AND OVERALL DATA QUALITY

Data precision was evaluated through field duplicates, laboratory replicates, matrix spike duplicates, and laboratory control sample duplicates. Data accuracy was evaluated through matrix spikes, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

REFERENCES

EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA-540/R-04-004. U.S. Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, D.C. October.

EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. October.

Herrenkohl Consulting LLC and Landau Associates Inc. 2010. *South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan.* Prepared for City of Bellingham and Puget Sound Energy. August 6.

TABLE 1 SUMMARY OF DATA QUALIFIERS SOUTH STATE STREET MANUFACTURED GAS PLANT SEDIMENT SAMPLING

Data Package	Analyte	Result	Qualifier	Sample Number	Reason
RM22/RM27	Benzyl Alcohol	100 U	UJ	MGP-SB-08-11.0-12.5	Low continuing calibration recovery
RM22/RM27	Benzyl Alcohol	89 U	UJ	MGP-SB-08-23.0-24.0	Low continuing calibration recovery
RM22/RM27	Benzyl Alcohol	87 U	UJ	MGP-SB-05-5.0-6.0	Low continuing calibration recovery
RM22/RM27	Benzyl Alcohol	19 U	UJ	MGP-SB-03-3.0-4.0	Low continuing calibration recovery
RM22/RM27	4-Chloroaniline	97 U	UJ	MGP-SB-03-3.0-4.0	Low MS/MSD recovery
RM22/RM27	Fluoranthene	320	J	MGP-SB-03-3.0-4.0	High MS/MSD recovery
RM22/RM27	Phenol	150	U	MGP-SB-08-11.0-12.5	Method blank contamination
RM22/RM27	Phenol	49	U	MGP-SB-08-23.0-24.0	Method blank contamination
RM22/RM27	Phenol	96	U	MGP-SB-05-5.0-6.0	Method blank contamination
RM22/RM27	Phenol	35	U	MGP-SB-03-3.0-4.0	Method blank contamination
RM22/RM27	Benzo(g,h,i)perylene	980	J	MGP-SB-08-0.0-2.0	Low continuing calibration recovery
RM22/RM27	Benzo(g,h,i)perylene	1100	J	MGP-SB-08-3.0-5.0	Low continuing calibration recovery
RM22/RM27	Benzo(g,h,i)perylene	23,000	J DNR	MGP-SB-08-9.0-10.0	Low continuing calibration recovery DNR - use dilution
RM22/RM27	Benzo(g,h,i)perylene	27,000	J DNR	MGP-SB-08-10.0-11.0	Low continuing calibration recovery DNR - use dilution
RM22/RM27	Benzo(g,h,i)perylene	9.8	J	MGP-SB-08-21.5-23.0	Low continuing calibration recovery
RM22/RM27	Benzo(g,h,i)perylene	3900	J DNR	MGP-SB-05-2.5-4.0	Low continuing calibration recovery DNR - use dilution
RM22/RM27	Benzo(g,h,i)perylene	2200	J DNR	MGP-SB-03-0.0-1.5	Low continuing calibration recovery DNR - use dilution
RM22/RM27	Benzo(g,h,i)perylene	520	J DNR	MGP-SB-11-0.0-2.0	Low continuing calibration recovery DNR - use dilution
RM22/RM27	All PAHs	All		MGP-SB-05-2.5-4.0-DL	Report diluted results
RM22/RM27	All PAHs	All		MGP-SB-05-2.5-4.0	DNR initial results (internal standard out of control high on initial run)
RM42	Phenol	32	U	MGP-SB-12-47.5-49.0	Method blank contamination
RM42	Phenol	28	U	MGP-SB-10-29.0-31.0	Method blank contamination
RM42	Phenol	31	U	MGP-SB-20-29.0-31.0	Method blank contamination
RM42	Phenol	52	U	MGP-SB-07-17.5-19.0	Method blank contamination
RM42	Silver	0.8 U	UJ	MGP-SB-12-5.0-6.5	Low MS recovery

Notes

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

 $\mathsf{U}=\mathsf{Indicates}$ the compound was undetected at the reported concentration.

DNR = Do Not Report

TECHNICAL MEMORANDUM

TO:	Chip Halbert	arit
	KES	ASH
FROM:	Kristi Schultz and A	Anne Halvorsen

DATE: December 1, 2010

RE: AUGUST AND SEPTEMBER 2010 GROUNDWATER AND SURFACE WATER SAMPLES LABORATORY DATA QUALITY EVALUATION CITY OF BELLINGHAM SOUTH STATE STREET MANUFACTURED GAS PLANT REMEDIAL INVESTIGATION/FEASIBILITY STUDY

This technical memorandum provides the results of a focused data validation associated with 3 surface water samples, 9 groundwater samples, and 3 trip blanks collected on September 6, September 28, and September 29, 2010 at the South State Street Manufactured Gas Plant in Bellingham, Washington. Samples were analyzed by Analytical Resources, Inc. (ARI), located in Tukwila, Washington. This data quality evaluation covers ARI data packages RL89 and RP01/RP09. Samples submitted to ARI were analyzed for volatile organic compounds (VOCs) [U.S. Environmental Protection Agency (EPA) Method SW8260C], semivolatile organic compounds (SVOCs) (EPA Method SW8270D), diesel- and oil-range petroleum hydrocarbons [Washington State Department of Ecology (Ecology) Method NWTPH-Dx], gasoline-range petroleum hydrocarbons (Ecology Method NWTPH-Gx), total and dissolved metals (EPA Method 160.2), total dissolved solids (TDS) (EPA Method 160.1), salinity (SM 2520.B), total cyanide (EPA Method 335.4), weak acid dissociable (WAD) cyanide (SM4500CN-I), and total organic carbon (TOC) and dissolved organic carbon (DOC) (EPA Method 415.1).

Sample data were evaluated in accordance with applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999), applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 2004), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl and Landau Associates 2010). The following parameters were evaluated:

- Chain-of-custody (COC) records
- Holding times
- Blank results (laboratory method and field trip)
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) and laboratory duplicate results
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) results
- Blind field duplicate results

- Quantitation limits
- Audit/corrective action records
- Completeness and overall data quality.

Data validation qualifiers are added to samples based on the evaluation of data quality. The absence of a data qualifier indicates that the reported result is acceptable without qualification. The data quality evaluation is summarized below.

CHAIN-OF-CUSTODY RECORDS

A signed chain-of-custody (COC) record was attached to each data package. The laboratory received all samples in good condition, and all analyses were performed as requested. Upon receipt by ARI, the sample jar information was compared to the associated COC and the cooler temperatures were recorded. All coolers were received within the EPA-recommended limits of $4^{\circ}C\pm2^{\circ}C$.

HOLDING TIMES

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times with the following exceptions:

- In data package RL89 for the SVOCs analysis, samples were extracted on 9/10/10 and analyzed on 9/16/10 within the method recommended holding time. Due to surrogate recovery difficulties, samples MGP-SW-02 and MGP-SW-01 were re-extracted on 9/21/10 and re-analyzed on 9/23/10, outside of the method recommended holding time. The associated sample results were qualified as estimated (J/UJ), as indicated in Table 1. The re-analysis results should not be reported and the original analysis results should be used.
- In data package RP01/RP09 for the conventionals analysis, sample MGP-GW-MW-45 exceeded the 7 day method-recommended hold time by 6 days for TDS. The associated sample result was qualified as estimated (J), as indicated in Table 1.

BLANK RESULTS

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks with the following exceptions:

• Dissolved solids were detected in both of the method blanks associated with the conventionals analysis in data package RP01/RP09. The associated sample results were all detected at levels greater than the action level¹; therefore no qualification of the data is necessary.

Field Trip Blanks

Trip blanks were submitted for VOC analysis with data package RP01/RP09 and for gasolinerange petroleum hydrocarbon analysis with data package RL89. No contamination was detected in any of the trip blanks with the following exception:

• The trip blanks associated with the VOC analysis in data package RP01/RP09 contained methylene chloride. The associated samples were all not detected; therefore no qualification of the data is necessary.

SURROGATE RECOVERIES

Appropriate compounds were used as surrogate spikes for the various analyses. Recovery values for the surrogate spikes were within the current laboratory-specified control limits with the following exceptions:

- Recovery of the several surrogates associated with the SVOCs analysis for samples MGP-SW-02 and MGP-SW-01 in data package RL89 were below the laboratory-specified control limits. The associated sample results were qualified as estimated (UJ), as indicated in Table 1.
- Recovery of the surrogate 2,4,6-tribromophenol associated with the SVOCs analysis for samples MGP-SW-02RE, MGP-SW-03, and the 9/21/10 LCSD in data package RL89 exceeded the laboratory-specified control limits. Recoveries of the surrogates 2-fluorophenol and d5-nitrobenzene associated with the SVOC analysis for sample MGP-GW-MW-19 in data package RP01/RP09 also exceeded the laboratory-specified control limits. SVOC sample surrogate qualification requires two or more surrogates of the same fraction to be outside laboratory-specified control limits; therefore no qualification of the data is necessary.
- Surrogate recoveries were diluted out of two samples associated with the SVOCs analysis in data package RP01/RP09; no qualification of the data is necessary.

¹ The action level is defined as 10 times the concentration in the blank for common volatile laboratory contaminants (methylene chloride, acetone, 2-butanone, and cyclohexane), or 5 times the concentration for other target compounds (EPA 1999).

MATRIX SPIKE (MS)/MATRIX SPIKE DUPLICATE (MSD) AND LABORATORY REPLICATE RESULTS

A MS and/or laboratory duplicate sample was analyzed with the total metals, dissolved metals, and conventionals analyses in several data packages. The recovery values for each required spiking compound were within the laboratory-specified control limits for all project samples. No qualification of the data is necessary.

A laboratory-specified control limit of 20 percent was used to evaluate the relative percent differences (RPDs) between the laboratory replicate results, except when the samples were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the laboratory replicate results were within the current laboratory-specified control limits for all project samples. No qualification of the data is necessary.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

At least one LCS and/or LCSD or standard reference material (SRM) sample was analyzed with each batch of samples for each analysis. Recoveries and RPD for the LCS/LCSD and associated duplicates were within the current laboratory-specified control limits with the following exceptions:

- The 9/23/10 LCS/LCSD recoveries for carbazole associated with the SVOCs analysis in data package RL89 were below the laboratory-specified control limit. The associated sample results were qualified as estimated (UJ), as indicated in Table 1; however, these recoveries are associated with the re-analysis of MGP-SW-02 and MGP-SW-01 and these results should not be reported (see above).
- The 9/16/10 LCS and/or LCSD recoveries for benzyl alcohol, 2,4-dinitrophenol, and 4,6dinitro-2-methylphenol and the LCS/LCSD RPD for hexachlorocyclopentadiene associated with the SVOCs analysis in data package RL89 exceeded the laboratory-specified control limits. The associated sample results were not detected; therefore no qualification of the data is necessary.
- The 10/16/10 LCS/LCSD recovery for acrolein associated with the VOCs analysis in data package RP01/RP09 exceeded the laboratory-specified control limits. The associated sample results were not detected; therefore no qualification of the data is necessary.
- The LCSD recovery for hexachlorocyclopentadiene associated with the SVOC analysis in data package RP01/RP09 exceeded the laboratory-specified control limits. Because the LCS recovery is acceptable, and the LCSD is only slightly below the control limits, no qualification of the data is necessary.

BLIND FIELD DUPLICATES

One pair of blind field duplicate sediment samples (MGP-GW-MW-34/MGP-GW-MW-64) was submitted for analysis with data packages RP01/RP09 and analyzed for SVOCs, total and dissolved metals, TPH-D, and TDS.

A project-specified control limit of 20 percent was used to evaluate the RPDs between the duplicate water samples, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. RPDs for the duplicate sample pair submitted for analysis were within the project-specified control limits. No qualification of the data is necessary.

QUANTITATION LIMITS

Project-specified quantitation limits were met for all samples, except for the following:

- The 9/16/10 SVOC continuing calibration (CCAL) in data package RL89 was out of control (high) for several compounds. The associated sample results were not detected; therefore no qualification of the data is necessary.
- The 9/16/10 SVOC CCAL in data package RL89 was also out of control (low) for 2,4dinitrophenol; the associated sample results were qualified as estimated (UJ), as indicated in Table 1.
- The 9/23/10 SVOC CCAL in data package RL89 was out of control (low) for several compounds. The associated sample results were qualified as estimated (UJ), as indicated in Table 1; however, the 9/23/10 SVOC CCAL is associated with the re-analysis of MGP-SW-02 and MGP-SW-01 and these results should not be reported (see above).
- The 10/6/10 VOC CCAL in data package RP01/RP09 was out of control (low) for bromomethane and out of control high for acrolein. This CCAL is associated with the analysis of the trip blanks; therefore no qualification of the data is necessary.
- The 10/2/10 SVOC CCAL in data package RP01/RP09 is out of control (high) for several compounds. The 10/5/10 SVOC CCAL is out of control (high) for 2,4-dinitrophenol and 4-chlorophenyl-phenylether. All associated samples are not detected for these compounds; therefore no qualification of the data is necessary.
- The 10/5/10 SVOC CCAL at 14:48 in data package RP01/RP09 is out of control (high) for fluorene. Associated sample results are qualified as estimated (J), as indicated in Table 1.

COMPLETENESS AND OVERALL DATA QUALITY

Data precision was evaluated through field duplicates, laboratory replicates, , and laboratory control sample duplicates. Data accuracy was evaluated through matrix spikes, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

REFERENCES

EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA-540/R-04-004. U.S. Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, D.C. October.

EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. October.

Herrenkohl Consulting LLC and Landau Associates Inc. 2010. South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan. Prepared for City of Bellingham and Puget Sound Energy. August 6.

TABLE 1 SUMMARY OF DATA QUALIFIERS SOUTH STATE STREET MANUFACTURED GAS PLANT GROUNDWATER AND SURFACE WATER SAMPLING

Data Package	Analyte	Result	Qualifier	Sample Number	Reason
RL89	ALL SVOCs	ALL	U, UJ DNR	MGP-SW-02-RE	Exceeded holding time by 1 day - DNR
RL89	ALL SVOCs	ALL	U, UJ DNR	MGP-SW-01-RE	Exceeded holding time by 1 day - DNR
RL89	ALL SVOCs	ALL	U, UJ	MGP-SW-02	Low surrogate recovery
RL89	ALL SVOCs	ALL	U, UJ	MGP-SW-01	Low surrogate recovery
RL89	2,4-Dinitrophenol	10 U	UJ	MGP-SW-02	Low continuing calibration recovery
RL89	2,4-Dinitrophenol	10 U	UJ	MGP-SW-03	Low continuing calibration recovery
RL89	2,4-Dinitrophenol	10 U	UJ	MGP-SW-01	Low continuing calibration recovery
RL89	2,2'-Oxybis(1-Chloropropane)	1.0 U	UJ DNR	MGP-SW-02 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	N-Nitroso-Di-N-Propylamine	1.0 U	UJ DNR	MGP-SW-02 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	2-Nitroaniline	5.0 U	UJ DNR	MGP-SW-02 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	2,4-Dinitrophenol	10 U	UJ DNR	MGP-SW-02 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	4,6-Dinitro-2-Methylphenol	10 U	UJ DNR	MGP-SW-02 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	Butylbenzylphthalate	1.0 U	UJ DNR	MGP-SW-02 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	2,2'-Oxybis(1-Chloropropane)	1.0 U	UJ DNR	MGP-SW-01 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	N-Nitroso-Di-N-Propylamine	1.0 U	UJ DNR	MGP-SW-01 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	2-Nitroaniline	5.0 U	UJ DNR	MGP-SW-01 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	2,4-Dinitrophenol	10 U	UJ DNR	MGP-SW-01 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	4,6-Dinitro-2-Methylphenol	10 U	UJ DNR	MGP-SW-01 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	Butylbenzylphthalate	1.0 U	UJ DNR	MGP-SW-01 RE	Low continuing calibration recovery, DNR Use original analysis
RL89	Carbazole	1.0 U	UJ DNR	MGP-SW-02 RE	Low LCS/LCSD recovery, DNR - Use original analysis
RL89	Carbazole	1.0 U	UJ DNR	MGP-SW-01 RE	Low LCS/LCSD recovery, DNR - Use original analysis
RP01/RP09	Total Dissolved Solids	1210	J	MGP-GW-MW-45	Exceeded holding time by 6 days
RP01/RP09	Fluorene	47	J	MGP-GW-MW-24	High continuing calibration recovery
RP01/RP09	Fluorene	26	J DNR	MGP-GW-MW-28 DL	High continuing calibration recovery, DNF use original analysis
RP01/RP09	Fluorene	38	J DNR	MGP-GW-MW-29 DL	High continuing calibration recovery, DNF use original analysis

Notes

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate. DNR = Do Not Report

TECHNICAL MEMORANDUM

TO:	Chip Halbert
	Kristi Schultz and Anne Halvorsen
FROM:	Kristi Schultz and Anne Halvorsen

DATE: December 1, 2010

RE: AUGUST AND SEPTEMBER 2010 SOIL SAMPLES LABORATORY DATA QUALITY EVALUATION CITY OF BELLINGHAM SOUTH STATE STREET MANUFACTURED GAS PLANT REMEDIAL INVESTIGATION/FEASIBILITY STUDY

This technical memorandum provides the results of a focused data validation for the analysis of 157 soil samples and 8 trip blanks collected on August 16-30, 2010 and September 20, 2010 at the South State Street Manufactured Gas Plant in Bellingham, Washington. Samples were analyzed by Analytical Resources, Inc. (ARI), located in Tukwila, Washington. This data quality evaluation covers ARI data packages RJ02/RJ03, RJ24, RJ49, RJ50, RJ51, RJ78, RJ80, RJ81, RJ84, RJ85, RK34, RK79, RK94, RL26, RN85, and RP57. Samples submitted to ARI were analyzed for volatile organic compounds (VOCs) [U.S. Environmental Protection Agency (EPA) Method SW8260C], semivolatile organic compounds (SVOCs) (EPA Method SW8270D), polycyclic aromatic hydrocarbons (PAHs) (EPA Method SW8270D-SIM), polychlorinated biphenyls (PCBs) (EPA Method SW8082), total metals (EPA Method SU8270D, Sand 7471A), diesel- and oil-range petroleum hydrocarbons (TPH-D) [Washington State Department of Ecology (Ecology) Method NWTPH-Dx], gasoline-range petroleum hydrocarbons (TPH-G) (Ecology Method NWTPH-Gx), extractable petroleum hydrocarbons (EPH) (Method WA EPH), volatile petroleum hydrocarbons (VPH) (Method WA VPH), and conventionals, including total cyanide (EPA Method 335.4) and weak acid dissociable (WAD) cyanide (SM4500CN-I).

Sample data were evaluated in accordance with applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999), applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 2004), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl and Landau Associates 2010). The following parameters were evaluated:

- Chain-of-custody (COC) records
- Holding times
- Blank results (laboratory method and field trip)
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) and laboratory duplicate results
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) results

- Blind field duplicate results
- Quantitation limits
- Audit/corrective action records
- Completeness and overall data quality.

Data validation qualifiers are added to samples based on the evaluation of data quality. The absence of a data qualifier indicates that the reported result is acceptable without qualification. The data quality evaluation is summarized below.

CHAIN-OF-CUSTODY RECORDS

A signed chain-of-custody (COC) record was attached to each data package. The laboratory received all samples in good condition, and all analyses were performed as requested. Upon receipt by ARI, the sample jar information was compared to the COC and the cooler temperatures were recorded. Several coolers were received below the EPA-recommended limits of $4^{\circ}C\pm 2^{\circ}C$. Data were not qualified based on the cooler temperature.

HOLDING TIMES

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times. No qualification of the data is necessary. All samples, with the exception of samples for VOC and TPH-G analysis, were frozen at the laboratory upon receipt to protect holding times.

BLANK RESULTS

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks with the following exceptions:

- Barium was detected in the method blank associated with the total metals analysis included in data package RN85. The samples associated with this method blank had concentrations of barium higher than the action level¹. No qualification of the data is necessary.
- Naphthalene was detected in the method blank associated with the PAH analysis in data package RJ80. The samples associated with this method blank had concentrations of naphthalene higher than the action level. No qualification of the data is necessary.

¹ The action level is defined as 10 times the concentration in the blank for common volatile laboratory contaminants (methylene chloride, acetone, 2-butanone, and cyclohexane), or 5 times the concentration for other target compounds (EPA 1999).

- Methylene chloride was detected in the method blank associated with the VOC analysis in data package RK34. Methylene chloride was detected in sample MGP-HS-29-13.5-14.0 at a concentration below the action level; therefore, the result is qualified as not detected (U), as indicated in Table 1.
- Methylene chloride was detected in the method blanks associated with the VOC analysis in data package RJ81. Associated samples were either not detected or were detected above the action level, with the exception of sample MGP-GP-32-12.0-13.0, which had a detection of methylene chloride below the action level; therefore the associated sample result was qualified as not detected (U), as indicated in Table 1. The method blank associated with the trip blank analysis had an action level higher than the trip blank detection; therefore the trip blank detection was qualified as not detected (U).
- Diesel was detected in the method blank associated with the TPH-D analysis in data package RJ81. Associated samples were detected above the action level; no qualification of the data is necessary.
- Naphthalene was detected in the method blank associated with the PAH analysis in data package RJ02/RJ03. Associated samples were either not detected or were detected above the action level with the exception of MGP-GP-12-0.5-1.0, MGP-GP-13-0.5-1.0, and MGP-GP-14-0.5-1.0; these sample results were qualified as not detected (U), as indicated in Table 1.
- Methylene chloride was detected in the method blanks associated with the VOC analysis in data package RJ84. Associated samples were detected above the action level with the exception of the trip blank. The method blank associated with the trip blank analysis had an action level higher than the trip blank detection; therefore the trip blank detection was qualified as not detected (U). No qualification of the data is necessary.
- C8-C10 aromatics were detected in the method blank associated with the EPH analysis in data package RJ24. Associated samples were not detected; therefore no qualification of the data is necessary.

Field Trip Blanks and Field Equipment Blanks

Trip blanks were submitted for VOC and gasoline-range petroleum hydrocarbon analysis with data packages RJ02/RJ03, RJ24, RJ50, RJ81, RJ84, RK34, RK79, and RL26. No contamination was detected in any of the trip blanks with the following exceptions:

- Chloromethane and methylene chloride were detected in the trip blank associated with the VOC analysis in data package RK34. All associated sample results were either not detected or were detected above the action levels; therefore no qualification of the data is necessary.
- Methylene chloride was detected in the trip blank associated with the VOC analysis in data package RJ81. The method blank contamination mentioned in the Blank Results section above qualified the trip blank detection as not detected; therefore no qualification of the data is necessary.
- Methylene chloride was detected in the trip blank associated with the VOC analysis in data package RJ24. All associated sample results were either not detected or were detected above the action level; therefore no qualification of the data is necessary.

SURROGATE RECOVERIES

Appropriate compounds were used as surrogate spikes for the various analyses. Recovery values for the surrogate spikes were within the current laboratory-specified control limits with the following exceptions:

- The laboratory noted that surrogate recoveries for numerous samples for various analyses in several data packages were outside laboratory-specified control limits due to dilution; no qualification of the data is deemed necessary.
- The MS sample MGP-GP-13-0.5-1.0 associated with the PAH analysis in data package RJ02/RJ03 did not have surrogates added due to an analyst error. No qualification of the data is deemed necessary.
- Recovery of the surrogate d4-1,2-dichlorobenzene associated with the SVOC analysis for sample MGP-GP-44-5.0-6.0 in data package RJ50 was below the laboratory-specified control limits; recovery of the surrogate d5-nitrobenzene associated with the SVOC analysis for sample MGP-GP-09-10.0-11.0 in data package RJ50 exceeded the laboratory-specified control limits. SVOC sample surrogate qualification requires two or more surrogates of the same fraction to be outside laboratory-specified control limits; therefore no qualification of the data is necessary.
- Recovery of the surrogate bromofluorobenzene associated with the VOC analysis for sample MGP-HS-40-34.0-34.5 in data package RK79 exceeded the laboratory-specified control limits; the laboratory re-analyzed the sample with surrogate recoveries within control limits; because the re-analysis was diluted, report the original date results, and qualify all detects as estimated (J), as indicated in Table 1.
- Recovery of the surrogate o-Terphenyl associated with the TPH-D analysis for sample MGP-HS-40-34.0-34.5 in data package RK79 was below the laboratory-specified control limits. The laboratory re-extracted and re-analyzed the sample with surrogate recoveries within control limits; the re-analysis results for this sample should be reported.
- Recovery of the surrogate d10-2-methylnaphthalene associated with the PAH analysis for sample MGP-GP-41-14.0-15.0 in data package RL26 was slightly below the laboratory-specified control limits; other surrogate recoveries were within limits. No qualification of the data is deemed necessary.

MATRIX SPIKE (MS)/MATRIX SPIKE DUPLICATE (MSD) AND LABORATORY REPLICATE RESULTS

A MS and/or laboratory duplicate sample was analyzed with the VOCs, SVOCs, PAHs, PCBs, TPH-D, TPH-G, EPH, total metals, and conventionals analyses in several data packages. The recovery values for each required spiking compound were within the laboratory-specified control limits for all project samples with the following exceptions:

- Data package RJ02/03:
 - The MS/MSD recoveries for pyrene and chrysene associated with the PAH analysis for sample MGP-GP-13-0.5-1.0 were below the laboratory-specified control limits; the associated sample results were qualified as estimated (J), as indicated in Table 1.

- The MS recovery for benzo(a)pyrene associated with the PAH analysis for sample MGP-GP-13-0.5-1.0 was below the laboratory-specified control limits. The MSD recovery was within control limits; therefore no qualification of the data is deemed necessary.
- The MS recovery for antimony associated with the total metals analysis for sample MGP-GP-05-5.0-6.0 was below the laboratory-specified control limits; the associated sample result was qualified as estimated (UJ), as indicated in Table 1.
- The MS recovery for barium associated with the total metals analysis for sample MGP-GP-05-5.0-6.0 exceeded the laboratory-specified control limits; the MS recovery is not applicable due to the high concentration of the target analyte in the original sample. No qualification of the data is necessary.

• Data package RJ24:

- The MS/MSD recoveries for 2-methylnaphthalene associated with the SVOC analysis for sample MGP-GP-19-9.0-10.0 were below the laboratory-specified control limits; the associated sample result was qualified as estimated (J), as indicated in Table 1.
- The MS recovery for naphthalene associated with the SVOC analysis for sample MGP-GP-19-9.0-10.0 was below the laboratory-specified control limits; the MSD recovery was not applicable due to the high concentration of the target analyte in the original sample. No qualification of the data is necessary.
- The MS recoveries for fluoranthene and phenanthrene associated with the PAH analysis for sample MGP-GP-19-0.5-1.0 were below the laboratory-specified control limits. The MSD recoveries were within control limits; therefore no qualification of the data is necessary.
- The MS/MSD recoveries for several compounds associated with the EPH analysis for sample MGP-GP-17-7.0-8.0 are not applicable due to the high concentration of the target analyte in the original sample. No qualification of the data is necessary.
- The MS recovery for antimony associated with the total metals analysis for sample MGP-GP-17-7.0-8.0 was below the laboratory-specified control limits; the MS recovery for barium exceeded the laboratory-specified control limits. The associated sample results were qualified as estimated (J/UJ), as indicated in Table 1.

• Data package RJ49:

- The MSD recovery for several compounds associated with the PAH analysis for sample MGP-GP-02-0.5-1.0 exceeded the laboratory-specified control limits. The MS recoveries are all within control limits; therefore no qualification of the data is necessary.
- The MS/MSD recoveries for diesel associated with the TPH-D analysis and the MS recovery for total cyanide associated with the conventionals analysis for sample MGP-GP-23-14.0-15.0 were not calculated due to a negative recovery of the spiking solution; no qualification of the data is necessary.
- The MS recovery for antimony associated with the total metals analysis for sample MGP-GP-06-0.5-1.0 was below the laboratory-specified control limits; the associated sample result was qualified as estimated (UJ), as indicated in Table 1.
- The MS recovery for mercury associated with the total metals analysis for sample MGP-GP-06-0.5-1.0 exceeded the laboratory-specified control limits; the MS recovery is not applicable due to the high concentration of the target analyte in the original sample. No qualification of the data is necessary.

• Data package RJ50:

- The MS/MSD recoveries for 2,4-dimethylphenol and benzo(g,h,i)perylene associated with the SVOC analysis for sample MGP-GP-03-4.0-5.0 were below the laboratoryspecified control limits. The associated sample results were qualified as estimated (J/UJ), as indicated in Table 1.
- The MS or MSD recoveries for several compounds associated with the SVOC analysis for sample MGP-GP-03-4.0-5.0 were outside the laboratory-specified control limits either low or high. The corresponding MSD or MS recoveries were within control limits; therefore no qualification of the data is necessary.
- The MS/MSD recoveries for benzoic acid associated with the SVOC analysis for sample MGP-GP-03-4.0-5.0 were not calculated due to a negative recovery of the spiking solution. No qualification of the data is necessary.
- The MS recovery for antimony and silver associated with the total metals analysis for sample MGP-GP-24-5.0-6.0 were below the laboratory-specified control limits; the MS recoveries for copper and zinc exceeded the laboratory-specified control limits. The associated sample results were qualified as estimated (J/UJ), as indicated in Table 1.
- The MS recovery for lead associated with the total metals analysis for sample MGP-GP-24-5.0-6.0 was below the laboratory-specified control limits; however, the MS recovery is not applicable due to the high concentration of the target analyte in the original sample. No qualification of the data is necessary.

• Data package RJ51:

- The MS/MSD recoveries for fluoranthene associated with the PAH analysis for sample MGP-GP-10-0.5-1.0 were below the laboratory-specified control limits; the associated result was qualified as estimated (J), as indicated in Table 1.
- The MS/MSD recoveries for phenanthrene and pyrene associated with the PAH analysis for sample MGP-GP-10-0.5-1.0 were not calculated due to a negative recovery of the spiking solution. No qualification of the data is necessary.
- The MSD recovery for chrysene associated with the PAH analysis for sample MGP-GP-10-0.5-1.0 was below the laboratory-specified control limits. The MS recovery was within control limits; therefore no qualification of the data is necessary.
- The MS recovery for antimony associated with the total metals analysis for sample MGP-GP-22-0.5-1.0 was below the laboratory-specified control limits; the associated result was qualified as estimated (UJ), as indicated in Table 1.
- Data package RJ78:
 - The MS recovery for antimony, silver, and zinc associated with the total metals analysis for sample MGP-GP-33-0.5-1.0 were below the laboratory-specified control limits; the MS recovery for copper exceeded the laboratory-specified control limits. The associated sample results were qualified as estimated (J/UJ), as indicated in Table 1.
 - The MS recovery for barium associated with the total metals analysis for sample MGP-GP-33-0.5-1.0 exceeded the laboratory-specified control limits; the MS recovery is not applicable due to the high concentration of the target analyte in the original sample. No qualification of the data is necessary.

• Data package RJ80:

- The MS/MSD recoveries for 2-methylnaphthalene associated with the PAH analysis for sample MGP-GP-45-0.5-1.0 were below the laboratory-specified control limits; the associated result is qualified as estimated (J), as indicated in Table 1.
- The MS/MSD recoveries for naphthalene associated with the PAH analysis for sample MGP-GP-45-0.5-1.0 were not calculated due to a negative recovery of the spiking solution. No qualification of the data is necessary.
- The MS recovery for antimony and silver associated with the total metals analysis for sample MGP-GP-30-0.5-1.0 were below the laboratory-specified control limits; the MS recovery for mercury exceeded the laboratory-specified control limits. The associated sample results are qualified as estimated (UJ/J), as indicated in Table 1.
- The MS recovery for barium associated with the total metals analysis for sample MGP-GP-30-0.5-1.0 was below the laboratory-specified control limits; the percent recovery is not applicable due to the high concentration of barium in the original sample; no qualification of the data is necessary.
- The MS recovery for total cyanide associated with the conventional analysis for sample MGP-GP-30-0.5-1.0 was below the laboratory-specified control limits; the associated result is qualified as estimated (J), as indicated in Table 1.

• Data package RJ81:

- The MS/MSD recoveries for several compounds associated with the PAH analysis for sample MGP-GP-31-11.0-12.0 were not calculated due to the high concentration of the target analyte in the original sample; no qualification of the data is necessary.
- The MS/MSD recoveries for diesel associated with the TPH-D analysis for sample MGP-GP-33-11.0-12.0 was not calculated due to the high concentration of the target analyte in the original sample; no qualification of the data is necessary.
- The MS recovery for antimony associated with the total metals analysis for sample MGP-GP-28-9.0-10.0 was below the laboratory-specified control limits; the associated sample result has been qualified as estimated (UJ), as indicated in Table 1.

• Data package RJ84:

- The MS/MSD recoveries for 1,1-dichloroethene and acrylonitrile associated with the VOC analysis and for dibenz(a,h)anthracene associated with the SVOC analysis for sample MGP-GP-37-23.0-24.0 exceeded the laboratory-specified control limits. The associated sample results are not detected; therefore no qualification of the data is necessary.
- The MS recovery for chrysene associated with the SVOC analysis for sample MGP-GP-37-23.0-24.0 was below the laboratory-specified control limits; the MSD recovery exceeded the laboratory-specified control limits; the associated sample result was qualified as estimated (J), as indicated in Table 1.
- The MS/MSD recoveries for several compounds associated with the SVOC analysis for sample MGP-GP-37-23.0-24.0 were not calculated due to a negative recovery of the spiking solution; the MS/MSD recoveries for several other compounds were not applicable due to the high concentration of the target analyte in the original sample. No qualification of the data is necessary.

- The MS or MSD recoveries for several compounds associated with the SVOC analysis for sample MGP-GP-37-23.0-24.0 either exceeded or were below the laboratoryspecified control limits. The associated MSD or MS recoveries were within control limits; therefore no qualification of the data is necessary.
- The MS recovery for antimony associated with the total metals analysis for sample MGP-GP-37-23.0-24.0 was below the laboratory-specified control limits; the associated sample result was qualified as estimated (UJ), as indicated in Table 1.

• Data package RJ85:

- MS recovery for several compounds associated with the PAH analysis for sample MGP-GP-34-4.5-5.5 exceeded the laboratory-specified control limits. The MSD recoveries were within laboratory-specified control limits; therefore no qualification of the data is necessary.
- The MS recovery for antimony associated with the total metals analysis for sample MGP-GP-34-0.5-1.0 was below the laboratory-specified control limits; the MS recovery for barium exceeded the laboratory-specified control limits. The associated sample results were qualified as estimated (UJ/J), as indicated in Table 1.

• Data package RK34:

The MS recovery for diesel associated with the TPH-D analysis for sample MGP-HS-29-14.0-15.0 was below the laboratory-specified control limits; the MSD recovery exceeded the laboratory-specified control limits. The associated result is qualified as estimated (J), as indicated in Table 1.

• Data package RK79:

- The MS recoveries for antimony and silver associated with the total metals analysis for sample MGP-HS-38-25.0-26.0 were below the laboratory-specified control limits; the associated results are qualified as estimated (UJ), as indicated in Table 1.

• Data package RK94:

- The MS/MSD recoveries for fluoranthene, benzo(a)anthracene, and chrysene associated with the PAH analysis for sample MGP-HA-07-0.0-0.5 exceeded the laboratory-specified control limits; the MS recovery for phenanthrene was below laboratory-specified control limits and the MSD recovery exceeded laboratory-specified control limits. The associated sample results were qualified as estimated (J), as indicated in Table 1.
- The MSD recovery for naphthalene and dibenz(a,h)anthracene associated with the PAH analysis for sample MGP-HA-07-0.0-0.5 exceeded the laboratory-specified control limits; the MS recoveries were within control limits. No qualification of the data is necessary.
- The MS recovery for pyrene and benzo(a)pyrene associated with the PAH analysis for sample MGP-HA-07-0.0-0.5 were not calculated due to a negative recovery of the spiking solution; the MSD recoveries are not applicable due to the high concentration of target analytes in the original samples. No qualification of the data is necessary.
- The MS/MSD recoveries for indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene associated with the PAH analysis for sample MGP-HA-07-0.0-0.5 were not calculated due to a negative recovery of the spiking solution. No qualification of the data is necessary.

- The MS recovery for total benzofluoranthenes associated with the PAH analysis for sample MGP-HA-07-0.0-0.5 was not calculated due to a negative recovery of the spiking solution; the MSD recovery was within the laboratory-specified control limits. No qualification of the data is necessary.
- The MS recovery for antimony associated with the total metals analysis for sample MGP-HA-11-0.0-1.0 was below the laboratory-specified control limits; the associated sample result has been qualified as estimated (UJ), as indicated in Table 1.
- The MS recovery for barium associated with the total metals analysis for sample MGP-HA-11-0.0-1.0 was below the laboratory-specified control limits; the MSD recovery is not applicable due to the high concentration of target analyte in the original sample. No qualification of the data is necessary.

• Data package RL26:

- The MS/MSD recoveries for numerous compounds associated with the VOC analysis for sample MGP-GP-41-0.5-1.0 were below the laboratory-specified control limits; the MS recovery for antimony associated with the total metals analysis was also below the laboratory-specified control limits. The associated sample results were qualified as estimated (J/UJ), as indicated in Table 1.
- The MSD recoveries for 2-butanone, methyl iodide, and acrylonitrile associated with the VOC analysis for sample MGP-GP-41-28.0-29.0 were below the laboratory-specified control limits. The MS recoveries were within control limits; therefore no qualification of the data is necessary.
- The MS/MSD recoveries for multiple compounds associated with the VOC analysis for sample MGP-GP-41-28.0-29.0 were not calculated due to a negative recovery of the spiking solution. No qualification of the data is necessary.
- The MS/MSD recoveries for 2-methylnaphthalene associated with the SVOC analysis for sample MGP-GP-41-28.0-29.0 exceeded the laboratory-specified control limits; the associated result was qualified as estimated (J), as indicated in Table 1.
- The MS/MSD recoveries for several compounds associated with the SVOC analysis for sample MGP-GP-41-28.0-29.0 exceeded the laboratory-specified control limits. The associated results were not detected; therefore no qualification of the data is necessary.
- The MS/MSD recoveries for several compounds associated with the SVOC analysis for sample MGP-GP-41-28.0-29.0 and the MS recovery for barium associated with the total metals analysis for sample MGP-GP-41-0.5-1.0 were not calculated due to either a negative recovery of the spiking solution or a high concentration of the target analyte in the original sample. No qualification of the data is necessary.
- The MS recovery for diesel associated with the TPH-D analysis for sample MGP-GP-41-28.0-29.0 was below the laboratory-specified control limits. The MSD recovery exceeded the control limits; the associated result was qualified as estimated (J), as indicated in Table 1.
- Data package RN85:
 - The MS/MSD recoveries for fluoranthene associated with the PAH analysis for sample MGP-HA-14-1.0-1.5 exceeded the laboratory-specified control limits; the associated result is qualified as estimated (J), as indicated in Table 1.
 - The MS recovery for several compounds associated with the PAH analysis for sample MGP-HA-14-1.0-1.5 exceeded the laboratory-specified control limits. The MSD recoveries were within control limits; therefore no qualification of the data is necessary.

- The MS recovery for antimony and lead associated with the total metals analysis for sample MGP-HA-13-1.0-1.5 were below the laboratory-specified control limits; the associated results are qualified as estimated (J/UJ), as indicated in Table 1.

A laboratory-specified control limit of 20 percent was used to evaluate the relative percent differences (RPDs) between the laboratory replicate results or a project-specified control limit of 35 percent was used to evaluate the RPDs between the MS/MSDs, except when the samples were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus two times the reporting limit was used. The RPDs between the laboratory replicate results or MS/MSD were within the current laboratory- or project-specified control limits for all project samples with the following exceptions:

• Data package RJ24:

- The laboratory replicate RPD for several compounds associated with the total metals analysis for sample MGP-GP-17-7.0-8.0 exceeded the laboratory-specified control limit; the associated sample results were qualified as estimated (J), as indicated in Table 1.
- Data package RJ49:
 - The MS/MSD RPD for several compounds associated with the PAH analysis for sample MGP-GP-02-0.5-1.0 exceeded the laboratory-specified control limit; the associated sample results were qualified as estimated (J), as indicated in Table 1.
 - The laboratory replicate RPD for total cyanide associated with the conventionals analysis for sample MGP-GP-23-14.0-15.0 exceeded the laboratory-specified control limit; the associated sample result was qualified as estimated (J), as indicated in Table 1.

• Data package RJ50:

- The MS/MSD RPD for 2,4-dimethylphenol associated with the SVOC analysis for sample MGP-GP-03-4.0-5.0 exceeded the laboratory-specified control limits; the associated sample result was not detected; therefore no qualification of the data is necessary.
- The MS/MSD RPD for benzoic acid associated with the SVOC analysis for sample MGP-GP-03-4.0-5.0 was not calculable due to incalculable percent recoveries of the spiking solution; no qualification of the data is necessary.
- The laboratory replicate RPD for several compounds associated with the total metals analysis for sample MGP-GP-24-5.0-6.0 exceeded the laboratory-specified control limit; the associated sample results were qualified as estimated (J), as indicated in Table 1.
- Data package RJ51:
 - The MS/MSD RPDs for phenanthrene and pyrene associated with the PAH analysis for sample MGP-GP-10-0.5-1.0 was not calculable due to incalculable percent recoveries of the spiking solution. No qualification of the data is necessary.
- Data package RJ80:
 - The MS/MSD RPD for naphthalene associated with the PAH analysis for sample MGP-GP-45-0.5-1.0 was not calculable due to incalculable percent recoveries of the spiking solution. No qualification of the data is necessary.

- The laboratory replicate RPD for barium associated with the total metals analysis for sample MGP-GP-30-0.5-1.0 exceeded the laboratory-specified control limit; the associated result is qualified as estimated (J), as indicated in Table 1.

• Data package RJ81:

 The MS/MSD RPD for several compounds associated with the PAH analysis for sample MGP-GP-31-11.0-12.0 were not calculable due to incalculable percent recoveries of the spiking solution; no qualification of the data is necessary.

• Data package RJ84:

 The MS/MSD RPDs for several compounds associated with the SVOC analysis for sample MGP-GP-37-23.0-24.0 were not calculable due to incalculable percent recoveries of the spiking solution; no qualification of the data is necessary.

• Data package RJ85:

- The laboratory replicate RPD for mercury associated with the total metals analysis for sample MGP-GP-34-0.5-1.0 exceeded the laboratory-specified control limit. The associated result is qualified as estimated (J), as indicated in Table 1.

• Data package RK94:

- The MS/MSD RPD for phenanthrene associated with the PAH analysis for sample MGP-HA-07-0.0-0.5 exceeded the project-specified control limit; the associated sample result is qualified as estimated (J), as indicated in Table 1.
- The MS/MSD RPDs for several compounds associated with the PAH analysis for sample MGP-HA-07-0.0-0.5 were not calculable due to incalculable percent recoveries of the spiking solution; no qualification of the data is necessary.
- The laboratory replicate RPD for barium, lead, and zinc associated with the total metals analysis for sample MGP-HA-11-0.0-1.0 exceeded the laboratory-specified control limit; the associated sample results are qualified as estimated (J), as indicated in Table 1.

• Data package RL26:

- The MS/MSD RPDs for numerous compounds associated with the SVOC analysis and for diesel associated with the TPH-D analysis for sample MGP-GP-41-28.0-29.0 exceeded the project-specified control limits; the associated results are qualified as estimated (J), as indicated in Table 1.
- The MS/MSD RPDs for several compounds associated with the VOC and SVOC analyses for sample MGP-GP-41-28.0-29.0 were not calculable due to incalculable percent recoveries of the spiking solution. No qualification of the data is necessary.
- The MS/MSD RPDs for bromoethane and acrylonitrile associated with the VOC analysis and for phenol and 4-methylphenol associated with the SVOC analysis for sample MGP-GP-41-28.0-29.0 exceeded the project-specified control limits. The associated sample results were not detected; therefore no qualification of the data is necessary.

• Data package RN85:

 The MS/MSD RPDs for several compounds associated with the PAH analysis for sample MGP-HA-14-1.0-1.5 exceeded the project-specified control limit; the associated results are qualified as estimated (J), as indicated in Table 1.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

At least one LCS and/or LCSD or one standard reference material (SRM) sample was analyzed with each batch of samples for each analysis. Recoveries and RPDs for the LCS/LCSD samples were within the current laboratory-specified control limits with the following exceptions:

- Data package RJ02/03:
 - The LCS and/or LCSD recoveries for several compounds associated with the VOC analysis and for benzyl alcohol associated with the SVOC analysis exceeded the laboratory-specified control limits. The associated sample results were not detected; therefore no qualification of the data is necessary.
- Data package RJ24:
 - The LCS/LCSD recoveries for benzyl alcohol associated with the SVOC analysis exceeded the laboratory-specified control limits. The associated sample results were not detected; therefore no qualification of the data is necessary.
- Data package RJ81:
 - The LCS/LCSD recoveries for several compounds associated with the VOC analysis exceeded the laboratory-specified control limits. The associated sample results were not detected; therefore no qualification of the data is necessary.
- Data package RJ84:
 - The LCS/LCSD recoveries for several compounds associated with the SVOC analysis exceeded the laboratory-specified control limits. The associated sample results were not detected; therefore no qualification of the data is necessary.
 - The LCSD recoveries and LCS/LCSD RPDs for several compounds associated with the PAH analysis exceeded the laboratory-specified control limits; the associated sample results were qualified as estimated (J), as indicated in Table 1.
- Data package RK34:
 - The LCS recovery for 1,1-dichloroethene and the LCSD recovery for acrylonitrile associated with the VOC analysis and the LCS recoveries for several compounds associated with the SVOC analysis exceeded the laboratory-specified control limits. The associated samples results were not detected; therefore no qualification of the data is necessary.
 - The LCS recovery for benzo(b)fluoranthene and benzo(k)fluoranthene associated with the SVOC analysis exceeded the laboratory-specified control limits; the associated sample results were qualified as estimated (J), as indicated in Table 1.
- Data package RK79:
 - The LCS/LCSD recoveries for several compounds associated with the SVOC analysis exceeded the laboratory-specified control limits. The associated samples results were not detected; therefore no qualification of the data is necessary.
- Data package RL26:
 - The LCS/LCSD recoveries for 2,4-dimethylphenol associated with the SVOC analysis were below the project-specified control limits; the associated sample result is qualified as estimated (UJ), as indicated in Table 1.

- The LCS/LCSD RPD for pentachlorophenol associated with the SVOC analysis exceeded the project-specified control limit. The associated sample result was not detected; therefore no qualification of the data is necessary.
- Data package RN85:
 - The LCS/LCSD recoveries for aroclor 1016 associated with the PCB analysis exceeded the laboratory-specified control limits. The associated samples results were not detected; therefore no qualification of the data is necessary.

BLIND FIELD DUPLICATES

Nine pairs of blind field duplicates soil samples (MGP-GP-61-13.0-14.0/MGP-GP-34-13.0-14.0, MGP-GP-62-14.0-15.0/MGP-GP-36-14.0-15.0, MGP-GP-60-11.0-12.0/MGP-GP-31-11.0-12.0, MGP-GP-59-9.0-10.0/MGP-GP-28-9.0-10.0, MGP-GP-57-14.0-15.0/MGP-GP-23-14.0-15.0, MGP-GP-58-7.0-8.0/MGP-GP-02-7.0-8.0, MGP-GP-14-4.0-5.0/MGP-GP-54-4.0-5.0, MGP-GP-56-7.0-8.0/MGP-GP-17-7.0-8.0, and MGP-HA-30-0.0-1.0/MGP-HA-08-0.0-1.0) were submitted for analysis with data packages RJ02/RJ03, RJ24, RJ25, RJ49, RJ50, RJ78, RJ81, RJ85, RK94, and RP57. These were analyzed for total metals, PAHs, VOCs, TPH-G, or cyanide.

A project-specified control limit of 35 percent was used to evaluate the RPDs between the duplicate soil samples, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus two times the reporting limit was used. RPDs for the duplicate sample pairs submitted for analysis were within the project-specified control limits with the following exceptions:

• Data package RJ02/03:

- The RPDs for several compounds associated with the PAH analysis for sample pair MGP-GP-14-4.0-5.0/MGP-GP-54-4.0-5.0 exceeded the project-specified control limit. The results are qualified as estimated (J), as indicated in Table 1.
- Data package RJ24:
 - The RPD for gasoline associated with the TPH-G analysis for sample pair MGP-GP-56-7.0-8.0/MGP-GP-17-7.0-8.0 exceeded the project-specified control limit. The results are qualified as estimated (J), as indicated in Table 1.
- Data package RJ49:
 - The RPDs for several compounds associated with the total metals analysis for sample pair MGP-GP-57-14.0-15.0/MGP-GP-23/14.0-15.0 exceeded the project-specified control limit. The results are qualified as estimated (J), as indicated in Table 1.
- Data package RJ50:
 - The RPDs for several compounds associated with the VOC, SVOC, PAH, TPH-D, and TPH-G analyses for sample pair MGP-GP-58-7.0-8.0/MGP-GP-02-7.0-8.0 exceeded the project-specified control limit. The results are qualified as estimated (J), as indicated in Table 1.

- Data package RJ78/RJ81:
 - The RPDs for several compounds associated with the PAH analysis and the RPD for total cyanide associated with the conventional analysis for sample pair MGP-GP-60-11.0-12.0/MGP-GP-31-11.0-12.0 exceeded the project-specified control limit. The results are qualified as estimated (J), as indicated in Table 1.
- Data package RJ81:
 - The RPDs for benzene, toluene, and naphthalene associated with the VOC analysis for sample pair MGP-GP-59-9.0-10.0/MGP-GP-28-9.0-10.0 exceeded the project-specified control limit. The results are qualified as estimated (J), as indicated in Table 1.
- Data package RJ85:
 - RPDs for several compounds associated with the PAH analysis and the RPDs for barium and mercury associated with the total metals analysis for sample pair MGP-GP-34-13.0-14.0/MGP-GP-61-13.0-14.0 exceeded the project-specified control limit. The results are qualified as estimated (J), as indicated in Table 1.
 - The RPD for anthracene associated with the PAH analysis and the RPDs for arsenic and lead associated with the total metals analysis for sample pair MGP-GP-36-14.0-15.0/MGP-GP-62-14.0-15.0 exceeded the project-specified control limit. The results are qualified as estimated (J), as indicated in Table 1.
- Data package RK94:
 - The RPD for dibenz(a,h)anthracene associated with the PAH analysis and the RPDs for antimony, lead, and mercury associated with the total metals analysis for sample pair MGP-HA-30-0.0-1.0/MGP-HA-08-0.0-1.0 exceeded the project-specified control limit. The results are qualified as estimated (J/UJ), as indicated in Table 1.
- Data package RP57:
 - The RPD for lead for the total metals re-analysis for sample pair MGP-GP-36-14.0-15.0/MGP-GP-62-14.0-15.0 exceeded the project-specified control limit. The results are qualified as estimated (J), as indicated in Table 1.

QUANTITATION LIMITS

Project-specified quantitation limits were met for all samples, except for the following:

- Instances where samples required dilutions based on high concentrations of target analytes may have elevated reporting limits.
- Data package RJ02/03:
 - The 8/17/10 VOC continuing calibration (CCAL) was out of control (low) for 1,1,1,2-tetrachloroethane; the associated sample results were qualified as estimated, do not report (UJ DNR), as indicated in Table 1.
 - The 8/21/10 VOC CCAL was out of control (low) for chloroethane and trichlorofluoromethane; the 8/30/10 SVOC CCAL was out of control low for 2,4dinitrophenol. The associated sample results were qualified as estimated (UJ), as indicated in Table 1.
 - The 8/17/10 VOC CCAL was out of control (high) for trans-1,4-dichloro-2-butene, 4isopropylbenzene, and n-butylbenzene and the 8/21/10 VOC CCAL was out of control

(high) for 4-methyl-2-pentanone. The associated sample results were not detected; therefore no qualification of the data is necessary.

The internal standard d4-1,4-dichlorobenzene associated with the VOC analysis was out of control (low) on both project samples (not the trip blank) in the original analysis run on 8/17/10. A follow-up run was performed on 8/21/10 with all internal standards in control and both sets of results were provided for review; the re-analysis results should be reported.

• Data package RJ24:

The 8/26/10 VOC CCAL was out of control (low) for several compounds; the SVOC CCAL was out of control (low) for 2,4-dinitrophenol. The associated sample results were qualified as estimated (UJ), as indicated in Table 1.

• Data package RJ49:

 The 9/8/10 SVOC CCAL was out of control (low) for 2,4-dinitrophenol. The associated samples were the LCS/LCSD; therefore no qualification of the data is necessary.

• Data package RJ50:

 The 8/27/10 VOC CCAL was out of control (low) for chloromethane, acetone, and methyl tert-butyl ether; the SVOC CCAL was out of control low for 2,4-dinitrophenol. The associated sample results were qualified as estimated (UJ/J), as indicated in Table 1.

• Data package RJ81:

- The 8/31/10 VOC CCAL was out of control (low) for chloromethane; the SVOC CCAL was out of control low for 2,4-dinitrophenol. The associated sample results were qualified as estimated (UJ), as indicated in Table 1.
- The 8/30/10 VOC CCAL was out of control (high) for methyl iodide and secbutylbenzene. The results from the associated samples were not detected; therefore no qualification of the data is necessary.

• Data package RJ84:

- The 8/30/10 VOC CCAL was out of control (high) for methyl iodide and secbutylbenzene. The associated sample results were not detected; therefore no qualification of the data is necessary.
- The 9/9/10 SVOC CCAL was out of control (low) for 2,4-dinitrophenol and hexachlorocyclopentadiene. This CCAL is associated with the LCS/LCSD; therefore no qualification of the data is necessary.

• Data package RK79:

- The 9/7/10 and 9/8/10 VOC CCALs were out of control (low) for acetone. The associated sample results are qualified as estimated (J), as indicated in Table 1.
- The 9/7/10 VOC CCAL was also out of control (high) for isopropylbenzene, sbutylbenzene, 4-isopropyltoluene, and n-butylbenzene and the 9/8/10 VOC CCAL was out of control high for n-butylbenzene. The 4-isopropylbenzene results from the associated samples are qualified as estimated (J), as indicated in Table 1. The isopropylbenzene, s-butylbenzene, and n-butylbenzene results from the associated samples were not detected; therefore no qualification of the data is necessary.

- Data package RL26:
 - The VOC CCAL was out of control (low) for acetone and the SVOC CCAL was out of control (low) for hexachlorocyclopentadiene, 2,4-dinitrophenol, and 4,6-dinitro-2methylphenol. The results from the associated sample are qualified as estimated (J/UJ), as indicated in Table 1.
 - The VOC CCAL was out of control (high) for n-butylbenzene. The result from the associated sample is not detected; therefore no qualification of the data is necessary.
- Data package RN85:
 - The PAH CCAL was out of control (high) for 2-methylnaphthalene. The results from the associated samples are qualified as estimated (J), as indicated in Table 1.

COMPLETENESS AND OVERALL DATA QUALITY

Data precision was evaluated through field duplicates, laboratory replicates, and laboratory control sample duplicates. Data accuracy was evaluated through matrix spikes, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

REFERENCES

EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA-540/R-04-004. U.S. Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, D.C. October.

EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. October.

Herrenkohl Consulting LLC and Landau Associates Inc. 2010. South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan. Prepared for City of Bellingham and Puget Sound Energy. August 6.

ata Package	Analyte	Result	Qualifier	Sample Number	Reason
RJ02/03	1,1,1,2-Tetrachloroethane	1.1U	UJ DNR	MGP-GP-05-5.0-6.0	Low continuing calibration recovery DNR use re-analysis results
RJ02/03	1,1,1,2-Tetrachloroethane	2.6 U	UJ DNR	MGP-GP-12-5.0-6.5	Low continuing calibration recovery DNR use re-analysis results
RJ02/03	Chloroethane	1.8 U	UJ	MGP-GP-05-5.0-6.0 RE	Low continuing calibration recovery
RJ02/03	Trichlorofluoromethane	1.8 U	UJ	MGP-GP-05-5.0-6.0 RE	Low continuing calibration recovery
RJ02/03	Chloroethane	2.2 U	UJ	MGP-GP-12-5.0-6.5 RE	Low continuing calibration recovery
RJ02/03	Trichlorofluoromethane	2.2 U	UJ	MGP-GP-12-5.0-6.5 RE	Low continuing calibration recovery
RJ02/03	ALL VOCs	ALL	DNR	MGP-GP-05-5.0-6.0	DNR - use re-analysis results, internal standards out of control low
RJ02/03	ALL VOCs	ALL	DNR	MGP-GP-12-5.0-6.5	DNR - use re-analysis results, internal standards out of control low
RJ02/03	2,4-Dinitrophenol	1900 U	UJ	MGP-GP-05-5.0-6.0	Low continuing calibration recovery
RJ02/03	2,4-Dinitrophenol	1900 U	UJ	MGP-GP-12-5.0-6.5	Low continuing calibration recovery
RJ02/03	Acenaphthylene	330	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Fluorene	160	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Phenanthrene	4800	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Anthracene	1500	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Fluoranthene	9600	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Pyrene	10,000	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Benzo(a)anthracene	4800	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Chrysene	4800 5100	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Benzo(a)pyrene	7300	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Indeno(1,2,3-cd)pyrene	4200	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03		740	J	MGP-GP-14-4.0-5.0	0
	Dibenz(a,h)anthracene				High field duplicate RPD
RJ02/03	Benzo(g,h,i)perylene	5300	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Total Benzofluoranthenes	8600	J	MGP-GP-14-4.0-5.0	High field duplicate RPD
RJ02/03	Acenaphthylene	130	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Fluorene	48	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Phenanthrene	1000	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Anthracene	250	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Fluoranthene	1900	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Pyrene	2100	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Benzo(a)anthracene	1600	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Chrysene	1900	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Benzo(a)pyrene	3600	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Indeno(1,2,3-cd)pyrene	2500	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Dibenz(a,h)anthracene	510	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Benzo(g,h,i)perylene	3200	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Total Benzofluoranthenes	4100	J	MGP-GP-54-4.0-5.0	High field duplicate RPD
RJ02/03	Pyrene	150	J	MGP-GP-13-0.5-1.0	Low MS/MSD recovery
RJ02/03	Chrysene	100	J	MGP-GP-13-0.5-1.0	Low MS/MSD recovery
RJ02/03	Naphthalene	16	U	MGP-GP-12-0.5-1.0	Method blank contamination
RJ02/03	Naphthalene	9.5	U	MGP-GP-13-0.5-1.0	Method blank contamination
RJ02/03	Naphthalene	14	U	MGP-GP-14-0.5-1.0	Method blank contamination
RJ02/03	Antimony	0.2 U	UJ	MGP-GP-05-5.0-6.0	Low MS recovery
RJ24	Chloromethane	49,000 U	UJ	MGP-GP-17-7.0-8.0	Low continuing calibration recovery
RJ24	Acetone	240,000 U	UJ	MGP-GP-17-7.0-8.0	Low continuing calibration recovery
RJ24	1,1,1-Trichloroethane	49,000 U	UJ	MGP-GP-17-7.0-8.0	Low continuing calibration recovery
RJ24	Methyl tert-butyl ether	49,000 U	UJ	MGP-GP-17-7.0-8.0	Low continuing calibration recovery
RJ24	Chloromethane	120,000 U	UJ	MGP-GP-18-9.0-10.0	Low continuing calibration recovery
RJ24	Acetone	600,000 U	UJ	MGP-GP-18-9.0-10.0	Low continuing calibration recovery
RJ24	1,1,1-Trichloroethane	120,000 U	UJ	MGP-GP-18-9.0-10.0	Low continuing calibration recovery
RJ24	Methyl tert-butyl ether	120,000 U	UJ	MGP-GP-18-9.0-10.0	Low continuing calibration recovery
RJ24	Chloromethane	89,000 U	UJ	MGP-GP-18-14.0-15.0	Low continuing calibration recovery
RJ24	Acetone	440,000 U	UJ	MGP-GP-18-14.0-15.0	Low continuing calibration recovery
RJ24	1,1,1-Trichloroethane	89,000 U	UJ	MGP-GP-18-14.0-15.0	Low continuing calibration recovery
1.02 1					
RJ24	Methyl tert-butyl ether	89,000 U	UJ	MGP-GP-18-14.0-15.0	Low continuing calibration recovery

ata Package	Analyte	Result	Qualifier	Sample Number	Reason
RJ24	Acetone	190,000 U	UJ	MGP-GP-19-12.0-13.0	Low continuing calibration recovery
RJ24	1,1,1-Trichloroethane	38,000 U	UJ	MGP-GP-19-12.0-13.0	Low continuing calibration recovery
RJ24	Methyl tert-butyl ether	38,000 U	UJ	MGP-GP-19-12.0-13.0	Low continuing calibration recovery
RJ24	Chloromethane	51,000 U	UJ	MGP-GP-56-7.0-8.0	Low continuing calibration recovery
RJ24	Acetone	260,000 U	UJ	MGP-GP-56-7.0-8.0	Low continuing calibration recovery
RJ24	1,1,1-Trichloroethane	51,000 U	UJ	MGP-GP-56-7.0-8.0	Low continuing calibration recovery
RJ24 RJ24			UJ	MGP-GP-56-7.0-8.0	
	Methyl tert-butyl ether	51,000 U			Low continuing calibration recovery
RJ24	2,4-Dinitrophenol	620 U	UJ	MGP-GP-17-7.0-8.0	Low continuing calibration recovery
RJ24	2,4-Dinitrophenol	62,000 U	UJ	MGP-GP-18-9.0-10.0	Low continuing calibration recovery
RJ24	2,4-Dinitrophenol	52,000 U	UJ	MGP-GP-18-14.0-15.0	Low continuing calibration recovery
RJ24	2,4-Dinitrophenol	630 U	UJ	MGP-GP-19-9.0-10.0	Low continuing calibration recovery
RJ24	2,4-Dinitrophenol	1800 U	UJ	MGP-GP-19-12.0-13.0	Low continuing calibration recovery
RJ24	2-Methylnaphthalene	510	J	MGP-GP-19-9.0-10.0	Low MS/MSD recovery
RJ24	Gasoline	4200	J	MGP-GP-17-7.0-8.0	High field duplicate RPD
RJ24	Gasoline	2000	J	MGP-GP-56-7.0-8.0	High field duplicate RPD
RJ24	Arsenic	1.8	J	MGP-GP-17-7.0-8.0	High laboratory replicate RPD
RJ24	Barium	52.2	J	MGP-GP-17-7.0-8.0	High laboratory replicate RPD
RJ24	Chromium	11.5	J	MGP-GP-17-7.0-8.0	High laboratory replicate RPD
RJ24	Lead	6	J	MGP-GP-17-7.0-8.0	High laboratory replicate RPD
RJ24	Zinc	40	J	MGP-GP-17-7.0-8.0	High laboratory replicate RPD
RJ24	Antimony	0.2 U	UJ	MGP-GP-17-7.0-8.0	Low MS recovery
RJ24	Barium	52.2	J	MGP-GP-17-7.0-8.0	High MS recovery
1021	Danam	02.2	Ũ		
RJ49	Naphthalene	25	J	MGP-GP-02-0.5-1.0	High MS/MSD RPD
RJ49	2-Methylnaphthalene	14	J	MGP-GP-02-0.5-1.0	High MS/MSD RPD
RJ49	Fluoranthene	72	J	MGP-GP-02-0.5-1.0	High MS/MSD RPD
RJ49	Pyrene	90	J	MGP-GP-02-0.5-1.0	High MS/MSD RPD
RJ49	Benzo(a)anthracene	43	J	MGP-GP-02-0.5-1.0	High MS/MSD RPD
RJ49	Chrysene	54	J	MGP-GP-02-0.5-1.0	High MS/MSD RPD
RJ49	Benzo(a)pyrene	51	J	MGP-GP-02-0.5-1.0	High MS/MSD RPD
RJ49	Total Benzofluoranthenes	74	J	MGP-GP-02-0.5-1.0	High MS/MSD RPD
RJ49	Antimony	0.2 U	UJ	MGP-GP-06-0.5-1.0	Low MS recovery
					-
RJ49	Arsenic	4.8	J	MGP-GP-23-14.0-15.0	High field duplicate RPD
RJ49	Chromium	30.2	J	MGP-GP-23-14.0-15.0	High field duplicate RPD
RJ49	Lead	8	J	MGP-GP-23-14.0-15.0	High field duplicate RPD
RJ49	Mercury	0.37	J	MGP-GP-23-14.0-15.0	High field duplicate RPD
RJ49	Arsenic	2.3	J	MGP-GP-57-14.0-15.0	High field duplicate RPD
RJ49	Chromium	14.9	J	MGP-GP-57-14.0-15.0	High field duplicate RPD
RJ49	Lead	5	J	MGP-GP-57-14.0-15.0	High field duplicate RPD
RJ49	Mercury	0.04	J	MGP-GP-57-14.0-15.0	High field duplicate RPD
RJ49	Total Cyanide	68.3	J	MGP-GP-23-14.0-15.0	High laboratory replicate RPD
RJ50	Benzene	21,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50 RJ50	Toluene	17,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Ethylbenzene	24,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	m,p-Xylene	16,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Naphthalene	110,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Benzene	14,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Toluene	4600	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Ethylbenzene	12,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	m,p-Xylene	8000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Naphthalene	54,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Chloromethane	17,000 U	UJ	MGP-GP-24-5.0-6.0	Low continuing calibration recovery
RJ50	Acetone	84,000 U	UJ	MGP-GP-24-5.0-6.0	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	17,000 U	UJ	MGP-GP-24-5.0-6.0	Low continuing calibration recovery
RJ50	Chloromethane	1400 U	UJ	MGP-GP-25-9.0-10.0	Low continuing calibration recovery
RJ50	Acetone	6800 U	UJ	MGP-GP-25-9.0-10.0	Low continuing calibration recovery
RJ50		1400 U	UJ	MGP-GP-25-9.0-10.0	
	Methyl tert-butyl ether				Low continuing calibration recovery
RJ50	Chloromethane	40,000 U 200,000 U	UJ	MGP-GP-10-12.0-13.0 MGP-GP-10-12.0-13.0	Low continuing calibration recovery Low continuing calibration recovery
RJ50	Acetone				

ata Package	Analyte	Result	Qualifier	Sample Number	Reason
RJ50	Methyl tert-butyl ether	40,000 U	UJ	MGP-GP-10-12.0-13.0	Low continuing calibration recovery
RJ50	Chloromethane	7000 U	UJ	MGP-GP-10-15.0-16.0	Low continuing calibration recovery
RJ50	Acetone	35,000 U	UJ	MGP-GP-10-15.0-16.0	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	7000 U	UJ	MGP-GP-10-15.0-16.0	Low continuing calibration recovery
RJ50	Chloromethane	50,000 U	UJ	MGP-GP-44-2.5-3.5	Low continuing calibration recovery
RJ50	Acetone	250,000 U	UJ	MGP-GP-44-2.5-3.5	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	50,000 U	UJ	MGP-GP-44-2.5-3.5	Low continuing calibration recovery
RJ50	Chloromethane	53,000 U	UJ	MGP-GP-44-5.0-6.0	Low continuing calibration recovery
RJ50	Acetone	260,000 U	UJ	MGP-GP-44-5.0-6.0	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	53,000 U	UJ	MGP-GP-44-5.0-6.0	Low continuing calibration recovery
RJ50	Chloromethane	890 U	UJ	MGP-GP-44-13.0-14.0	Low continuing calibration recovery
RJ50	Acetone	4400 U	UJ	MGP-GP-44-13.0-14.0	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	890 U	UJ	MGP-GP-44-13.0-14.0	Low continuing calibration recovery
RJ50	Chloromethane	81,000 U	UJ	MGP-GP-07-13.0-14.0	Low continuing calibration recovery
RJ50	Acetone	400,000 U	UJ	MGP-GP-07-13.0-14.0	Low continuing calibration recovery
RJ50			UJ	MGP-GP-07-13.0-14.0	
	Methyl tert-butyl ether	81,000 U			Low continuing calibration recovery
RJ50	Chloromethane	4200 U	UJ	MGP-GP-02-7.0-8.0	Low continuing calibration recovery
RJ50	Acetone	21,000 U	UJ	MGP-GP-02-7.0-8.0	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	4200 U	UJ	MGP-GP-02-7.0-8.0	Low continuing calibration recovery
RJ50	Chloromethane	940 U	UJ	MGP-GP-58-7.0-8.0	Low continuing calibration recovery
RJ50	Acetone	4700 U	UJ	MGP-GP-58-7.0-8.0	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	940 U	UJ	MGP-GP-58-7.0-8.0	Low continuing calibration recovery
RJ50	Chloromethane	180 U	UJ	MGP-GP-03-4.0-5.0	Low continuing calibration recovery
RJ50	Acetone	920 U	UJ	MGP-GP-03-4.0-5.0	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	180 U	UJ	MGP-GP-03-4.0-5.0	Low continuing calibration recovery
RJ50	Chloromethane	0.9 U	UJ	MGP-GP-01-6.5-7.5	Low continuing calibration recovery
RJ50	Acetone	90	J	MGP-GP-01-6.5-7.5	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	0.9 U	UJ	MGP-GP-01-6.5-7.5	Low continuing calibration recovery
RJ50	Chloromethane	33,000 U	UJ	MGP-GP-09-10.0-11.0	Low continuing calibration recovery
RJ50	Acetone	170,000 U	UJ	MGP-GP-09-10.0-11.0	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	33,000 U	UJ	MGP-GP-09-10.0-11.0	Low continuing calibration recovery
RJ50	Chloromethane	56,000 U	UJ	MGP-GP-04-3.5-4.5	Low continuing calibration recovery
RJ50	Acetone	280,000 U	UJ	MGP-GP-04-3.5-4.5	Low continuing calibration recovery
RJ50	Methyl tert-butyl ether	56,000 U	UJ	MGP-GP-04-3.5-4.5	Low continuing calibration recovery
RJ50	4-Methylphenol	840	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Naphthalene	95,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	2-Methylnaphthalene	49,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Acenaphthylene	20,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Acenaphthene	2000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Dibenzofuran	1800	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Fluorene	12,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Phenanthrene	31,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Carbazole	620	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Anthracene	9000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
			J		
RJ50	Fluoranthene	9200	J	MGP-GP-02-7.0-8.0 MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Pyrene Banza (a) anthropona	12,000	J		High field duplicate RPD
RJ50	Benzo(a)anthracene	4100	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Chrysene	3700	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Benzo(b)fluoranthene	2300	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Benzo(k)fluoranthene	2300	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Benzo(a)pyrene	3400	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Indeno(1,2,3-cd)pyrene	570	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Benzo(g,h,i)perylene	530	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	1-Methylnaphthalene	29,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	4-Methylphenol	530	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Naphthalene	46,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	2-Methylnaphthalene	21,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Acenaphthylene	8300	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Acenaphthene	1300	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
	Dibenzofuran	930	J	MGP-GP-58-7.0-8.0	High field duplicate RPD

ata Package	Analyte	Result	Qualifier	Sample Number	Reason
RJ50	Fluorene	4500	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Phenanthrene	14,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Carbazole	330	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Anthracene	3100	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Fluoranthene	3300	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Pyrene	4200	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Benzo(a)anthracene	2000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Chrysene	1900	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Benzo(b)fluoranthene		J	MGP-GP-58-7.0-8.0	High field duplicate RPD
	()	1100			
RJ50	Benzo(k)fluoranthene	1100	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Benzo(a)pyrene	1700	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Indeno(1,2,3-cd)pyrene	270	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Benzo(g,h,i)perylene	250	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	1-Methylnaphthalene	13,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	2,4-Dinitrophenol	1100 U	UJ	MGP-GP-25-9.0-10.0	Low continuing calibration recovery
RJ50	2,4-Dinitrophenol	1900 U	UJ	MGP-GP-44-5.0-6.0	Low continuing calibration recovery
RJ50	2,4-Dinitrophenol	620 U	UJ	MGP-GP-44-13.0-14.0	Low continuing calibration recovery
RJ50	2,4-Dinitrophenol	1800 U	UJ	MGP-GP-07-13.0-14.0	Low continuing calibration recovery
RJ50	2,4-Dinitrophenol	610 U	UJ	MGP-GP-02-7.0-8.0	Low continuing calibration recovery
RJ50	2,4-Dinitrophenol	570 U	UJ	MGP-GP-03-4.0-5.0	Low continuing calibration recovery
RJ50	2,4-Dinitrophenol	600 U	UJ	MGP-GP-01-6.5-7.5	Low continuing calibration recovery
RJ50	2,4-Dinitrophenol	1900 U	UJ	MGP-GP-09-10.0-11.0	Low continuing calibration recovery
RJ50	2,4-Dimethylphenol	57 U	UJ	MGP-GP-03-4.0-5.0	Low MS/MSD recovery
RJ50		100	J	MGP-GP-03-4.0-5.0	
	Benzo(g,h,i)perylene				Low MS/MSD recovery
RJ50	Naphthalene	130,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	2-Methylnaphthalene	61,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	1-Methylnaphthalene	35,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Acenaphthylene	22,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Acenaphthene	3000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Fluorene	11,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Phenanthrene	33,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Anthracene	11,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Fluoranthene	10,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Pyrene	15,000	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Benzo(a)anthracene	5900	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Chrysene	5700	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Benzo(a)pyrene	5100	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Indeno(1,2,3-cd)pyrene	1400	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Benzo(g,h,i)perylene	1400	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Dibenzofuran		J	MGP-GP-02-7.0-8.0	
		2300			High field duplicate RPD
RJ50	Total Benzofluoranthenes	4600	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Naphthalene	60,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	2-Methylnaphthalene	28,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	1-Methylnaphthalene	16,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Acenaphthylene	9300	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Acenaphthene	1800	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Fluorene	5500	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Phenanthrene	16,000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Anthracene	4500	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Fluoranthene	4100	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Pyrene	7600	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Benzo(a)anthracene	2400	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Chrysene	2300	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Benzo(a)pyrene				
		2200	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Indeno(1,2,3-cd)pyrene	550	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Benzo(g,h,i)perylene	550	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Dibenzofuran	1100	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Total Benzofluoranthenes	2000	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Diesel	510	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Motor Oil	640	J	MGP-GP-02-7.0-8.0	High field duplicate RPD

Data Package	Analyte	Result	Qualifier	Sample Number	Reason
RJ50	Diesel	260	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Motor Oil	350	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Gasoline	970	J	MGP-GP-02-7.0-8.0	High field duplicate RPD
RJ50	Gasoline	230	J	MGP-GP-58-7.0-8.0	High field duplicate RPD
RJ50	Arsenic	9.6	J	MGP-GP-24-5.0-6.0	High laboratory replicate RPD
RJ50	Cadmium	0.8	J	MGP-GP-24-5.0-6.0	High laboratory replicate RPD
RJ50	Copper	39.4	J	MGP-GP-24-5.0-6.0	High laboratory replicate RPD
RJ50	Lead	412	J	MGP-GP-24-5.0-6.0	High laboratory replicate RPD
RJ50	Zinc	350	J	MGP-GP-24-5.0-6.0	High laboratory replicate RPD
RJ50	Antimony	0.3 U	UJ	MGP-GP-24-5.0-6.0	Low MS recovery
RJ50	Copper	39.4	J	MGP-GP-24-5.0-6.0	High MS recovery
RJ50	Silver	0.3 U	UJ	MGP-GP-24-5.0-6.0	Low MS recovery
RJ50	Zinc	350	J	MGP-GP-24-5.0-6.0	High MS recovery
1000	Zino	000	0		rightide receivery
RJ51	Fluoranthene	280	J	MGP-GP-10-0.5-1.0	Low MS/MSD recovery
RJ51	Antimony	0.2 U	UJ	MGP-GP-22-0.5-1.0	Low MS recovery
RJ78/RJ81	Naphthalene	22,000	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	2-Methylnaphthalene	9200	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	1-Methylnaphthalene	11,000	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Acenaphthylene	940	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Acenaphthene	8000	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Fluorene	4100	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Phenanthrene	14,000	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Anthracene	3800	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Pyrene	6800	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Benzo(a)anthracene	2300	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Chrysene	2300	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
	,		J		- ·
RJ78/RJ81	Dibenz(a,h)anthracene Dibenzofuran	310		MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81		1400	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Total Benzofluoranthenes	2500	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Naphthalene	15,000	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	2-Methylnaphthalene	6300	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	1-Methylnaphthalene	6200	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Acenaphthylene	570	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Acenaphthene	5000	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Fluorene	2800	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Phenanthrene	9600	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Anthracene	2400	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Pyrene	4500	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Benzo(a)anthracene	1600	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Chrysene	1600	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Dibenz(a,h)anthracene	190	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Dibenzofuran	980	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Total Benzofluoranthenes	1700	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ78	Antimony	0.2 U	UJ	MGP-GP-33-0.5-1.0	Low MS recovery
RJ78	Copper	55.1	J	MGP-GP-33-0.5-1.0	High MS recovery
RJ78	Silver	0.2 U	UJ	MGP-GP-33-0.5-1.0	Low MS recovery
RJ78	Zinc	85	J	MGP-GP-33-0.5-1.0	Low MS recovery
	Total Ousside	4 47			Ligh field duplicate DDD
RJ78/RJ81	Total Cyanide	1.47	J	MGP-GP-60-11.0-12.0	High field duplicate RPD
RJ78/RJ81	Total Cyanide	2.21	J	MGP-GP-31-11.0-12.0	High field duplicate RPD
RJ80	2-Methylnaphthalene	61	J	MGP-GP-45-0.5-1.0	Low MS/MSD recovery
RJ80	Barium	424	J	MGP-GP-30-0.5-1.0	High laboratory replicate RPD
RJ80	Antimony	0.2 U	UJ	MGP-GP-30-0.5-1.0	Low MS recovery
RJ80	Mercury	0.63	J	MGP-GP-30-0.5-1.0	High MS recovery
RJ80	Silver	0.2 U	UJ	MGP-GP-30-0.5-1.0	Low MS recovery
RJ80	Total Cyanide	23.6	J	MGP-GP-30-0.5-1.0	Low MS recovery

ata Package	Analyte	Result	Qualifier	Sample Number	Reason
RJ81	Methylene Chloride	930	U	MGP-GP-32-12.0-13.0	Method blank contamination
RJ81	Chloromethane	1900 U	UJ	MGP-GP-31-11.0-12.0	Low continuing calibration recovery
RJ81	2,4-Dinitrophenol	650 U	UJ	MGP-GP-31-11.0-12.0	Low continuing calibration recovery
RJ81	Antimony	2.0 U	UJ	MGP-GP-28-9.0-10.0	Low MS recovery
RJ81	Benzene	63,000	J	MGP-GP-59-9.0-10.0	High field duplicate RPD
RJ81	Toluene	110,000	J	MGP-GP-59-9.0-10.0	High field duplicate RPD
RJ81	Naphthalene	810,000	J	MGP-GP-59-9.0-10.0	High field duplicate RPD
RJ81	Benzene	13,000	J	MGP-GP-28-9.0-10.0	High field duplicate RPD
RJ81	Toluene	31,000	J	MGP-GP-28-9.0-10.0	High field duplicate RPD
RJ81	Naphthalene	460,000	J	MGP-GP-28-9.0-10.0	High field duplicate RPD
RJ84	Chrysene	4600	J	MGP-GP-37-23.0-24.0	Low MS recovery, high MSD recovery
RJ84	Naphthalene	400	J	MGP-GP-42-0.5-1.0	High LCSD recovery
RJ84	2-Methylnaphthalene	160	J	MGP-GP-42-0.5-1.0	High LCSD recovery
RJ84	Phenanthrene	22	J	MGP-GP-42-0.5-1.0	High LCSD recovery
RJ84	Naphthalene	430	J	MGP-GP-42-4.0-5.0	High LCSD recovery
RJ84	2-Methylnaphthalene	220	J	MGP-GP-42-4.0-5.0	High LCSD recovery
RJ84	Phenanthrene	700	J	MGP-GP-42-4.0-5.0	High LCSD recovery
RJ84	Naphthalene	4000	J	MGP-GP-42-14.0-15.0	High LCSD recovery
RJ84	2-Methylnaphthalene	1000	J	MGP-GP-42-14.0-15.0	High LCSD recovery
RJ84	Phenanthrene	13,000	J	MGP-GP-42-14.0-15.0	High LCSD recovery
RJ84	Naphthalene	65	J	MGP-GP-42-35.0-36.0	High LCSD recovery
RJ84	2-Methylnaphthalene	26	J	MGP-GP-42-35.0-36.0	High LCSD recovery
RJ84	Phenanthrene	820	J	MGP-GP-42-35.0-36.0	High LCSD recovery
RJ84	Naphthalene	61	J	MGP-GP-40-0.5-1.0	High LCSD recovery
RJ84	2-Methylnaphthalene	37	J	MGP-GP-40-0.5-1.0	High LCSD recovery
RJ84	Phenanthrene	220	J	MGP-GP-40-0.5-1.0	High LCSD recovery
RJ84	Naphthalene	46	J	MGP-GP-40-5.0-6.0	High LCSD recovery
RJ84	2-Methylnaphthalene	48 29	J	MGP-GP-40-5.0-6.0	High LCSD recovery
RJ84	Phenanthrene	540	J	MGP-GP-40-5.0-6.0	High LCSD recovery
RJ84	Naphthalene	22	J	MGP-GP-39-0.5-1.0	High LCSD recovery
		13	J		0
RJ84	2-Methylnaphthalene			MGP-GP-39-0.5-1.0	High LCSD recovery
RJ84	Phenanthrene	110	J	MGP-GP-39-0.5-1.0	High LCSD recovery
RJ84	Naphthalene	160	J	MGP-GP-39-4.0-5.0	High LCSD recovery
RJ84	2-Methylnaphthalene	67	J	MGP-GP-39-4.0-5.0	High LCSD recovery
RJ84	Phenanthrene	360	J	MGP-GP-39-4.0-5.0	High LCSD recovery
RJ84	Naphthalene	9.7	J	MGP-GP-39-30.0-31.0	High LCSD recovery
RJ84	Phenanthrene	5.3	J	MGP-GP-39-30.0-31.0	High LCSD recovery
RJ84	Naphthalene	64	J	MGP-GP-37-0.5-1.0	High LCSD recovery
RJ84	2-Methylnaphthalene	25	J	MGP-GP-37-0.5-1.0	High LCSD recovery
RJ84	Phenanthrene	47	J	MGP-GP-37-0.5-1.0	High LCSD recovery
RJ84	Naphthalene	210	J	MGP-GP-37-5.0-6.0	High LCSD recovery
RJ84	2-Methylnaphthalene	63	J	MGP-GP-37-5.0-6.0	High LCSD recovery
RJ84	Phenanthrene	720	J	MGP-GP-37-5.0-6.0	High LCSD recovery
RJ84	Naphthalene	2,600,000	J	MGP-GP-37-19.0-20.0	High LCSD recovery
RJ84	2-Methylnaphthalene	560,000	J	MGP-GP-37-19.0-20.0	High LCSD recovery
RJ84	Phenanthrene	3,100,000	J	MGP-GP-37-19.0-20.0	High LCSD recovery
RJ84	Naphthalene	7800	J	MGP-GP-37-22.0-23.0	High LCSD recovery
RJ84	2-Methylnaphthalene	1400	J	MGP-GP-37-22.0-23.0	High LCSD recovery
RJ84	Phenanthrene	4500	J	MGP-GP-37-22.0-23.0	High LCSD recovery
RJ84	Naphthalene	400	J	MGP-GP-42-0.5-1.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	160	J	MGP-GP-42-0.5-1.0	High LCS/LCSD RPD
RJ84	Phenanthrene	22	J	MGP-GP-42-0.5-1.0	High LCS/LCSD RPD
RJ84	Naphthalene	430	J	MGP-GP-42-4.0-5.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	220	J	MGP-GP-42-4.0-5.0	High LCS/LCSD RPD
RJ84	Phenanthrene	700	J	MGP-GP-42-4.0-5.0	High LCS/LCSD RPD
RJ84	Naphthalene	4000	J	MGP-GP-42-14.0-15.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	1000	J	MGP-GP-42-14.0-15.0	High LCS/LCSD RPD
RJ84	Phenanthrene	13,000	J	MGP-GP-42-14.0-15.0	High LCS/LCSD RPD

ata Package	Analyte	Result	Qualifier	Sample Number	Reason
RJ84	Naphthalene	65	J	MGP-GP-42-35.0-36.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	26	J	MGP-GP-42-35.0-36.0	High LCS/LCSD RPD
RJ84	Phenanthrene	820	J	MGP-GP-42-35.0-36.0	High LCS/LCSD RPD
RJ84	Naphthalene	61	J	MGP-GP-40-0.5-1.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	37	J	MGP-GP-40-0.5-1.0	High LCS/LCSD RPD
RJ84	Phenanthrene	220	J	MGP-GP-40-0.5-1.0	High LCS/LCSD RPD
RJ84	Naphthalene	46	J	MGP-GP-40-5.0-6.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	29	J	MGP-GP-40-5.0-6.0	High LCS/LCSD RPD
RJ84	Phenanthrene	540	J	MGP-GP-40-5.0-6.0	•
					High LCS/LCSD RPD
RJ84	Naphthalene	22	J	MGP-GP-39-0.5-1.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	13	J	MGP-GP-39-0.5-1.0	High LCS/LCSD RPD
RJ84	Phenanthrene	110	J	MGP-GP-39-0.5-1.0	High LCS/LCSD RPD
RJ84	Naphthalene	160	J	MGP-GP-39-4.0-5.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	67	J	MGP-GP-39-4.0-5.0	High LCS/LCSD RPD
RJ84	Phenanthrene	360	J	MGP-GP-39-4.0-5.0	High LCS/LCSD RPD
RJ84	Naphthalene	9.7	J	MGP-GP-39-30.0-31.0	High LCS/LCSD RPD
RJ84	Phenanthrene	5.3	J	MGP-GP-39-30.0-31.0	High LCS/LCSD RPD
RJ84	Naphthalene	64	J	MGP-GP-37-0.5-1.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	25	J	MGP-GP-37-0.5-1.0	High LCS/LCSD RPD
RJ84	Phenanthrene	47	J	MGP-GP-37-0.5-1.0	High LCS/LCSD RPD
RJ84	Naphthalene	210	J	MGP-GP-37-5.0-6.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	63	J	MGP-GP-37-5.0-6.0	High LCS/LCSD RPD
RJ84	Phenanthrene	720	J	MGP-GP-37-5.0-6.0	High LCS/LCSD RPD
RJ84	Naphthalene	2,600,000	J	MGP-GP-37-19.0-20.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene		J	MGP-GP-37-19.0-20.0	High LCS/LCSD RPD
		560,000			0
RJ84	Phenanthrene	3,100,000	J	MGP-GP-37-19.0-20.0	High LCS/LCSD RPD
RJ84	Naphthalene	7800	J	MGP-GP-37-22.0-23.0	High LCS/LCSD RPD
RJ84	2-Methylnaphthalene	1400	J	MGP-GP-37-22.0-23.0	High LCS/LCSD RPD
RJ84	Phenanthrene	4500	J	MGP-GP-37-22.0-23.0	High LCS/LCSD RPD
RJ84	Antimony	0.2 U	UJ	MGP-GP-37-23.0-24.0	Low MS recovery
RJ85	Mercury	0.05	J	MGP-GP-34-0.5-1.0	High laboratory replicate RPD
RJ85	Antimony	0.2 U	UJ	MGP-GP-34-0.5-1.0	Low MS recovery
RJ85	Barium	77.4	J	MGP-GP-34-0.5-1.0	High MS recovery
RJ85	Barium	99.7	J	MGP-GP-34-13.0-14.0	High field duplicate RPD
RJ85	Mercury	0.04	J	MGP-GP-34-13.0-14.0	High field duplicate RPD
RJ85	Barium	69.8	J	MGP-GP-61-13.0-14.0	High field duplicate RPD
RJ85			J		
	Mercury	0.44		MGP-GP-61-13.0-14.0	High field duplicate RPD
RJ85	Arsenic	4.8	J	MGP-GP-36-14.0-15.0	High field duplicate RPD
RJ85	Lead	1480	J	MGP-GP-36-14.0-15.0	High field duplicate RPD
RJ85	Arsenic	2.7	J	MGP-GP-62-14.0-15.0	High field duplicate RPD
RJ85	Lead	31	J	MGP-GP-62-14.0-15.0	High field duplicate RPD
RJ85	Naphthalene	1800	J	MGP-GP-34-13.0-14.0	High field duplicate RPD
RJ85	2-Methylnaphthalene	760	J	MGP-GP-34-13.0-14.0	High field duplicate RPD
RJ85	1-Methylnaphthalene	660	J	MGP-GP-34-13.0-14.0	High field duplicate RPD
RJ85	Acenaphthylene	540	J	MGP-GP-34-13.0-14.0	High field duplicate RPD
RJ85	Acenaphthene	770	J	MGP-GP-34-13.0-14.0	High field duplicate RPD
RJ85	Fluorene	600	J	MGP-GP-34-13.0-14.0	High field duplicate RPD
RJ85	Phenanthrene	4300	J	MGP-GP-34-13.0-14.0	High field duplicate RPD
RJ85	Dibenzofuran	370	J	MGP-GP-34-13.0-14.0	High field duplicate RPD
RJ85	Naphthalene	3600	J	MGP-GP-61-13.0-14.0	High field duplicate RPD
RJ85		1900	J	MGP-GP-61-13.0-14.0	
	2-Methylnaphthalene				High field duplicate RPD
RJ85	1-Methylnaphthalene	1500	J	MGP-GP-61-13.0-14.0	High field duplicate RPD
RJ85	Acenaphthylene	810	J	MGP-GP-61-13.0-14.0	High field duplicate RPD
RJ85	Acenaphthene	1100	J	MGP-GP-61-13.0-14.0	High field duplicate RPD
RJ85	Fluorene	1100	J	MGP-GP-61-13.0-14.0	High field duplicate RPD
RJ85	Phenanthrene	7100	J	MGP-GP-61-13.0-14.0	High field duplicate RPD
RJ85	Dibenzofuran	680	J	MGP-GP-61-13.0-14.0	High field duplicate RPD
RJ85	Anthracene	990	J	MGP-GP-36-14.0-15.0	High field duplicate RPD

ata Package	Analyte	Result	Qualifier	Sample Number	Reason
RK34	Methylene Chloride	200	U	MGP-HS-29-13.5-14.0	Method blank contamination
RK34 RK34	Benzo(b)fluoranthene	200	J	MGP-HS-29-13.5-14.0 MGP-HS-29-13.5-14.0	High LCS recovery
					o i
RK34	Benzo(k)fluoranthene	220	J	MGP-HS-29-13.5-14.0	High LCS recovery
RK34	Diesel	540	J	MGP-HS-29-14.0-15.0	Low MS recovery, high MSD recovery
RK79	Acetone	24	J	MGP-HS-38-26.0-26.5	Low continuing calibration recovery
RK79	4-Isopropyltoluene	4.6	J	MGP-HS-38-26.0-26.5	High continuing calibration recovery
RK79	Acetone	27	J	MGP-HS-38-25.0-26.0	Low continuing calibration recovery
RK79	4-Isopropyltoluene	16	J	MGP-HS-38-25.0-26.0	High continuing calibration recovery
RK79	Acetone	140	J	MGP-HS-40-34.0-35.0	Low continuing calibration recovery
RK79	4-Isopropyltoluene	370	J	MGP-HS-40-34.0-35.0	High continuing calibration recovery
RK79	ALL VOCs	ALL	DNR	MGP-HS-40-34.0-34.5 RE	DNR - use original results
RK79	Acetone	1000 U	UJ DNR	MGP-HS-40-34.0-34.5 RE	Low continuing calibration recovery - DI Use original results
RK79	Carbon Disulfide	3.0	J	MGP-HS-40-34.0-34.5	High surrogate recovery
RK79	Acetone	140	J	MGP-HS-40-34.0-34.5	High surrogate recovery
RK79	4-Isopropyltoluene	370	J	MGP-HS-40-34.0-34.5	High surrogate recovery
RK79 RK79	Diesel	11	J DNR	MGP-HS-40-34.0-34.5 MGP-HS-40-34.0-34.5	Low surrogate recovery
					DNR - use re-analysis results
RK79	Motor Oil	27	J DNR	MGP-HS-40-34.0-34.5	Low surrogate recovery DNR - use re-analysis results
RK79	Antimony	0.2 U	UJ	MGP-HS-38-25.0-26.0	Low MS recovery
RK79	Silver	0.2 U	UJ	MGP-HS-38-25.0-26.0	Low MS recovery
RK94	Dibenz(a,h)anthracene	5300	J	MGP-HA-30-0.0-1.0	High field duplicate RPD
RK94	Dibenz(a,h)anthracene	2500	J	MGP-HA-08-0.0-1.0	High field duplicate RPD
RK94	Phenanthrene	210	J	MGP-HA-07-0.0-0.5	Low MS recovery, high MSD recover
RK94	Fluoranthene	450	J	MGP-HA-07-0.0-0.5	High MSD recovery (MS was not calcula
RK94	Benzo(a)anthracene	340	J	MGP-HA-07-0.0-0.5	High MSD recovery (MS was not calculat
RK94	Chrysene	440	J	MGP-HA-07-0.0-0.5	High MSD recovery (MS was not calcula
RK94	Phenanthrene	210	J	MGP-HA-07-0.0-0.5	High MS/MSD RPD
RK94	Barium	601	J	MGP-HA-11-0.0-1.0	High laboratory replicate RPD
RK94	Lead	65	J	MGP-HA-11-0.0-1.0	High laboratory replicate RPD
RK94	Zinc	182	J	MGP-HA-11-0.0-1.0	High laboratory replicate RPD
RK94	Antimony	0.2 U	UJ	MGP-HA-11-0.0-1.0	Low MS recovery
RK94	Antimony	0.6	J	MGP-HA-30-0.0-1.0	High field duplicate RPD
RK94	Lead	124	J	MGP-HA-30-0.0-1.0	High field duplicate RPD
RK94	Mercury	1.06	J	MGP-HA-30-0.0-1.0	High field duplicate RPD
RK94	Antimony	0.2 U	UJ	MGP-HA-08-0.0-1.0	High field duplicate RPD
RK94	Lead	84	J	MGP-HA-08-0.0-1.0	High field duplicate RPD
RK94	Mercury	0.62	J	MGP-HA-08-0.0-1.0	High field duplicate RPD
RL26	1,1-Dichloroethane	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	trans-1,2-Dichloroethene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	cis-1,2-Dichloroethene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Chloroform	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,2-Dichloroethane	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,1,1-Trichloroethane	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Carbon Tetrachloride	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Vinyl Acetate	20 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL20 RL26	Bromodichloromethane	20 U 3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26 RL26	1,2-Dichloropropane	3.9 U 3.9 U	UJ	MGP-GP-41-28.0-29.0 MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL20 RL26	, , , ,	3.9 U 3.9 U	UJ		Low MS/MSD recovery
	cis-1,3-Dichloropropene			MGP-GP-41-28.0-29.0	
RL26	Trichloroethene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Dibromochloromethane 1,1,2-Trichloroethane	3.9 U 3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery Low MS/MSD recovery
RL26			111	MGP-GP-41-28.0-29.0	

Data Package	Analyte	Result	Qualifier	Sample Number	Reason
RL26	Benzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	trans-1,3-Dichloropropene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Bromoform	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	4-Methyl-2-Pentanone (MIBK)	20 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	2-Hexanone	20 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Tetrachloroethene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,1,2,2-Tetrachloroethane	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Toluene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Chlorobenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Ethylbenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	m,p-Xylene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	o-Xylene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,2-Dichlorobenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,3-Dichlorobenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,4-Dichlorobenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,1-Dichloropropene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Dibromomethane	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,1,1,2-Tetrachloroethane	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,2-Dibromo-3-chloropropane	20 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,2,3-Trichloropropane	7.8 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	trans-1,4-Dichloro-2-butene	20 U	UJ	MGP-GP-41-28.0-29.0	Low MS recovery (MSD not calculable)
RL26	1,3,5-Trimethylbenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,2,4-Trimethylbenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Hexachlorobutadiene	20 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Ethylene Dibromide	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Bromochloromethane	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	2,2-Dichloropropane	3.9 U 3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	1,3-Dichloropropane	3.9 U 3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26					Low MS/MSD recovery
RL26 RL26	Isopropylbenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	
	n-Propylbenzene Bromobenzene	3.9 U		MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26		3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	2-Chlorotoluene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	4-Chlorotoluene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	tert-Butylbenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	sec-Butylbenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	4-Isopropyltoluene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	n-Butylbenzene	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Naphthalene	35	J	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Methyl tert-butyl ether	3.9 U	UJ	MGP-GP-41-28.0-29.0	Low MS/MSD recovery
RL26	Acetone	100	J	MGP-GP-41-28.0-29.0	Low continuing calibration recovery
RL26	Hexachlorocyclopentadiene	9600 U	UJ	MGP-GP-41-28.0-29.0	Low continuing calibration recovery
RL26	2,4-Dinitrophenol	19,000 U	UJ	MGP-GP-41-28.0-29.0	Low continuing calibration recovery
RL26	4,6-Dinitro-2-Methylphenol	19,000 U	UJ	MGP-GP-41-28.0-29.0	Low continuing calibration recovery
RL26	2,4-Dimethylphenol	1900 U	UJ	MGP-GP-41-28.0-29.0	Low LCS/LCSD recovery
RL26	2-Methylnaphthalene	6300	J	MGP-GP-41-28.0-29.0	High MS/MSD recovery
RL26	Naphthalene	21,000	J	MGP-GP-41-28.0-29.0	High MS/MSD RPD
RL26	2-Methylnaphthalene	6300	J	MGP-GP-41-28.0-29.0	High MS/MSD RPD
RL26	Acenaphthylene	48,000	J	MGP-GP-41-28.0-29.0	High MS/MSD RPD
RL26	Acenaphthene	190,000	J DNR	MGP-GP-41-28.0-29.0	High MS/MSD RPD DNR - use dilution
RL26	Dibenzofuran	170,000	J DNR	MGP-GP-41-28.0-29.0	High MS/MSD RPD DNR - use dilution
RL26	Fluorene	230,000	J DNR	MGP-GP-41-28.0-29.0	High MS/MSD RPD DNR - use dilution
RL26	Phenanthrene	700,000	J DNR	MGP-GP-41-28.0-29.0	High MS/MSD RPD DNR - use dilution
RL26	Carbazole	8700	J	MGP-GP-41-28.0-29.0	High MS/MSD RPD
RL26	Anthracene	290,000	J DNR	MGP-GP-41-28.0-29.0	High MS/MSD RPD DNR - use dilution

ta Package	Analyte	Result	Qualifier	Sample Number	Reason
RL26	Fluoranthene	560,000	J DNR	MGP-GP-41-28.0-29.0	High MS/MSD RPD DNR - use dilution
RL26	Pyrene	420,000	J DNR	MGP-GP-41-28.0-29.0	High MS/MSD RPD DNR - use dilution
RL26	Benzo(a)anthracene	230,000	J DNR	MGP-GP-41-28.0-29.0	High MS/MSD RPD DNR - use dilution
RL26	Chrysene	240,000	J DNR	MGP-GP-41-28.0-29.0	High MS/MSD RPD DNR - use dilution
RL26	Benzo(b)fluoranthene	140,000	J	MGP-GP-41-28.0-29.0	High MS/MSD RPD
RL26	Benzo(k)fluoranthene	140,000	J	MGP-GP-41-28.0-29.0	High MS/MSD RPD
RL26	Benzo(a)pyrene	240,000	J DNR	MGP-GP-41-28.0-29.0	High MS/MSD RPD DNR - use dilution
RL26	Indeno(1,2,3-cd)pyrene	94,000	J	MGP-GP-41-28.0-29.0	High MS/MSD RPD
RL26	Dibenz(a,h)anthracene	40,000	J	MGP-GP-41-28.0-29.0	High MS/MSD RPD
RL26	Benzo(g,h,i)perylene	91,000	J	MGP-GP-41-28.0-29.0	High MS/MSD RPD
RL26	1-Methylnaphthalene	100,000	J	MGP-GP-41-28.0-29.0	High MS/MSD RPD
RL26	Diesel	1300	J	MGP-GP-41-28.0-29.0	Low MS recovery, high MSD recovery High MS/MSD RPD
RL26	Antimony	0.2 U	UJ	MGP-GP-41-0.5-1.0	Low MS recovery
RN85	Fluoranthene	85	J	MGP-HA-14-1.0-1.5	High MS/MSD recovery
RN85	Acenaphthylene	9.3	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Phenanthrene	39	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Anthracene	8.3	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Fluoranthene	85	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Pyrene	96	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Benzo(a)anthracene	37	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Chrysene	48	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Benzo(a)pyrene	45	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Indeno(1,2,3-cd)pyrene	27	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Dibenz(a,h)anthracene	11	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Benzo(g,h,i)perylene	28	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	Total Benzofluoranthenes	61	J	MGP-HA-14-1.0-1.5	High MS/MSD RPD
RN85	2-Methylnaphthalene	36	J	MGP-HA-13-1.0-1.5	High continuing calibration recovery
RN85	2-Methylnaphthalene	5.4	J	MGP-HA-14-1.0-1.5	High continuing calibration recovery
RN85	Antimony	0.2 U	UJ	MGP-HA-13-1.0-1.5	Low MS recovery
RN85	Lead	51	J	MGP-HA-13-1.0-1.5	Low MS recovery
RP57	Lead	50	J	MGP-GP-36-14.0-15.0	High field duplicate RPD
RP57	Lead	154	J	MGP-GP-62-14.0-15.0	High field duplicate RPD

Notes

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

U = Indicates the compound was undetected at the reported concentration. DNR = Do Not Report

Data Validation Report

South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Bellingham, Washington

2010 Groundwater Samples

Prepared for:

Landau Associates Inc. 130 2nd Avenue South Edmonds, WA 98020

Prepared by:

Pyron Environmental, Inc. 3530 32nd Way NW Olympia, WA 98502

December 22, 2010

Data Validation Report Pyron Environmental, Inc. City of Bellingham RI/FS_Groundwater

ACRONYMS

%D	percent difference
%D _f	percent drift
%R	percent recovery
%RSD	percent relative standard deviation
AMU	atomic mass unit
BFB	bromofluorobenzene
ССВ	continuing calibration blank
CCC	calibration check compound
CCV	continuing calibration verification
CF	calibration factor
CLP	U.S. EPA Contract Laboratory Program
сос	chain-of-custody
DFTPP	decafluorotriphenylphosphine
DOC	dissolved organic carbon
EPA	U.S. Environmental Protection Agency
FID	flame ionization detector
GC/MS	gas chromatograph/mass spectrometer
ICAL	initial calibration
ICB	initial calibration blank
ICP	inductively coupled plasma
ICP/MS	inductively coupled plasma/mass spectrometer
ICSA	ICP interference check sample solution A
ICV	initial calibration verification
IDL	instrument detection limit
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
MDL	method detection limit
μg/L	microgram per liter
mg/L	milligram per liter
MS	matrix spike
MSD	matrix spike duplicate
NFGs	CLP National Functional Guidelines for Data Review (EPA 2008 – Organics, EPA 2004 - Inorganics)

Data Validation Report Pyron Environmental, Inc. City of Bellingham RI/FS_Groundwater

QAPP	quality assurance project plan
QA/QC	quality assurance/quality control
RF	response factor
RL	reporting limit
RPD	relative percent difference
RRT	relative retention time
SDG	sample delivery group
SRM	standard reference material
SVOCs	semi-volatile organic compounds
TDS	total dissolved solids
ТРН	total petroleum hydrocarbon
VOCs	volatile organic compounds
WAD	weak acid dissociable

INTRODUCTION

This report presents and discusses findings of the data validation performed on analytical data for groundwater samples collected during September 2010 for the referenced project. The laboratory report validated herein was submitted by Analytical Resources, Inc. (ARI), assigned ARI Job ID Number: RO79.

A Stage IV data validation was performed on this laboratory report. The validation followed the procedures specified in USEPA CLP Functional Guidelines ([NFGs], EPA 2008 – Organics and EPA 2004 – Inorganics) with modifications to accommodate project and analytical method requirements. The numerical quality assurance/quality control (QA/QC) criteria applied to the validation were in accordance with those specified in the quality assurance project plans ([QAPPs], Herrenkohl & Landau 2010) and the current performance-based control limits established by the laboratory (laboratory control limits). Instrument calibration, frequency of QC analyses, and analytical sequence requirements were evaluated against the respective analytical methods.

Validation findings are discussed in each section pertinent to the QC parameter for each type of analysis. Qualified data with applied data qualifiers are summarized in the **Summary** section at the end of this report.

				Analysis					
Field Sample ID	Laboratory Sample ID	Sampling Date	Matrix	TPH-G VOCs	SVOCs	Metals	TPH-Dx	CN	Inorganic
MGP-GW-MW-38	RO79A&F	9/28/2010	GW	х	х	х	х	Х	х
MGP-GW-MW-42	RO79B&G	9/28/2010	GW	х	х	х	х	Х	х
MGP-GW-MW-31	RO79C	9/28/2010	GW	х	х	х		Х	Hardness
TRIP BLANKS	RO79D	9/28/2010	GW	VOCs					
MGP-GW-MW-40	RO79E&H	9/28/2010	GW	х	х	х	х	Х	х

Samples and the associated analyses validated herein are summarized as follows:

Notes:

X - The analysis was requested and performed on the sample.

TPH-G – Gasoline range total petroleum hydrocarbon (TPH)

VOCs – Volatile organic compounds

SVOCs – Semi-volatile organic compounds

Metals – Total and Dissolved arsenic, barium, cadmium, calcium, chromium, copper, lead, magnesium, mercury, selenium, silver, and zinc.

TPH-Dx – Diesel and motor oil range TPH

CN - Total and weak-acid-dissociable (WAD) cyanide

Inorganic – Conductivity, total dissolved solids (TDS), total organic carbon (TOC), dissolved organic carbon (DOC), hardness, and salinity.

Analytical methods in respect to analytical parameters validated herein and the laboratory performing the analyses are summarized below:

Parameter	rameter Analytical Method				
VOCs	SW846 Method 8260C	Laboratory			
SVOCs	SW846 Method 8270D				
Metals	SW846 Methods 6010B/7470A				
Antimony	EPA Method 200.8				
TPH-Gasoline Range	NWTPH-Gx				
TPH-Diesel and Oil Ranges	NWTPH-Dx				
Total Cyanide	EPA Method 335.4	Analytical Resources, Inc. (ARI), Tukwila, Washington			
WAD Cyanide	SM 4500CN-I				
Hardness	SW846 Method 6010B				
Conductivity	EPA Method 120.1				
Total Dissolved Solids	EPA Method 160.1				
TOC and DOC	EPA Method 415.1				
Salinity	SM 2520B				

Notes:

1. SW846 Methods - USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, December 1996.

2. EPA Method - USEPA Methods for Chemical Analysis of Water and Wastes, EPA–600/4-79-020, March 1983 Revision.

3. NWTPH Methods - Analytical Methods for Petroleum Hydrocarbons, ECY 97-602, Washington State Department of Ecology, June 1997.

4. SM - Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 20th Edition, 1995.

DATA VALIDATION FINDINGS

1. VOCs by GC/MS (EPA Method SW8260C)

1.1 Sample Management and Holding Time

Samples were received in the laboratory intact and in consistence with the accompanying chain-of-custody (COC) documentation. No anomalies were identified in relation to sample preservation, handling, and transport, except that sample MGP-GW-MW-42 was received in the laboratory with pH value at 7, greater than the method recommended pH value of 2. The sample was analyzed three days past the recommend seven-day holding time for un-preserved samples. VOCs results for sample MGP-GW-MW-42 were qualified (UJ) for non-detects and (J) for detects as estimated.

Acid-preserved water samples should be analyzed within 14 days of collection. All samples were analyzed within the required holding time.

1.2 GC/MS Instrument Performance Check

Bromofluorobenzene (BFB) tuning was performed at the beginning of each 12-hour interval. All required ion abundance ratios met the method requirements.

1.3 Initial Calibration

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.995, and (3) if six-point non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

The National Functional Guidelines (NFGs) require that the average response factor (RF) be > 0.01 for poor response compounds and > 0.05 for all other compounds.

An initial calibration verification standard (second source standard) was to be analyzed to verify the calibration curve. The percent difference (%D) values should be within ±20% for target compounds.

The initial calibrations met all the criteria above.

1.4 Calibration Verification

The analytical method and NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method

blank and samples, (2) the %D values be within $\pm 20\%$, and (3) the RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

Calibration verification analyses were performed at the required frequency. The RFs for numerous analytes in the calibration verification analyses were less than 0.05. The individual RFs of these analytes in the initial calibrations and all continuing calibration verifications indicated stable responses for the analytes. No data qualifying action was taken on this basis.

The calibration verification %D values met the criteria for all target compounds in all analytical sequences, except for the following:

CCV ID	Analyte	%D	Bias	Affected Sample	Data Qualifier
Instrument: NT5 Date: 09/23/2010	Bromomethane	-25.1%	Low	MGP-GW-MW-38 MGP-GW-MW-42 TRIP BLANKS	IJ

1.5 Blanks

Method Blanks: Method blanks were prepared and analyzed as required. Target compounds were not detected at or above the method detection limits (MDLs).

Trip Blank: Methylene chloride was detected in the trip blank at 0.7 μ g/L, but not detected in any of the field samples. Data qualifying action was not required.

1.6 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD were prepared and analyzed as required by the method. All percent recovery (%R) and relative percent difference (RPD) values either met the laboratory control criteria, or the target compounds were not detected in the associated samples in cases where the %R values exceeded the upper control limits.

1.7 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike %R values were within the project control limits.

1.8 Matrix Spike (MS) and MS Duplicate (MSD)

MS/MSD analyses were performed on sample MGP-GW-MW-40. All %R and RPD values either met the laboratory control criteria, or the target compounds were not detected in

sample MGP-GW-MW-40 in cases where the %R values exceeded the upper control limits.

1.9 Internal Standard

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample met the criteria.

1.10 Reporting Limits and Target Compound Quantitation

Reporting limits (RLs) were supported with adequate initial calibration concentrations. Sample MGP-GW-MW-31 required dilution at 50 folds due to the elevated concentrations of numerous target compounds in the sample. The sample-specific MDLs and RLs were raised proportionally.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

1.11 Overall Assessment of VOCs Data Usability

VOCs data are of known quality and acceptable for use, as qualified.

2. SVOCs by GC/MS (EPA Method SW8270D)

2.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Water samples should be extracted within seven days of collection; extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

2.2 GC/MS Instrument Performance Check

Decafluorotriphenylphosphine (DFTPP) tuning was performed at the beginning of each 12-hour interval. All required ion abundance ratios met the method requirements.

2.3 Initial Calibration

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.995, and (3) if six-point non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

The NFGs criteria require that the average RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

An initial calibration verification standard (second source standard) was to be analyzed to verify the calibration curve. The %D values should be within ±20% for target compounds.

All of the criteria above were met, except that %RSD values for a number of target compounds exceeded 15% in the NT4, 09/03/2010 ICAL. The %RSD exceedance had no effects on data quality for compounds not detected in samples. Compounds detected in samples associated with this ICAL were affected and qualified as follows:

ICAL ID	Analyte	%RSD (%)	Affected Sample	Data Qualifier
Instrument: NT4 Date: 09/03/2010	Naphthalene	18.2%	MGP-GW-MW-42 MGP-GW-MW-31	J
Instrument: NT4 Date: 09/03/2010	1-Methylnaphthalene 2-Methylnaphthalene Anthracene Carbazole Dibenzofuran Fluoranthene Fluorene Phenanthrene Pyrene	18.1% 17.1% 17.5% 19.4% 19.5% 19.4% 17.3% 18.7% 19.2%	MGP-GW-MW-31	L

2.4 Calibration Verification

The analytical method and NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method blank and samples, (2) the %D be within $\pm 20\%$, and (3) the RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

Calibration verifications either met all the criteria above, or the %D values were biased high where the compounds were not detected in associated samples.

2.5 Method Blanks

Method blanks were prepared and analyzed as required. Target compounds were not detected at or above the MDLs in the method blank.

2.6 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All %R values were within the laboratory control limits.

2.7 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD were prepared and analyzed as required by the method. All %R and RPD values either met the laboratory control criteria, or the target compounds were not detected in the associated samples in cases where the %R values exceeded the upper control limits.

2.8 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample MGP-GW-MW-40. All %R and RPD values either met the laboratory control criteria, or the target compounds were not detected in sample MGP-GW-MW-40 in cases where the %R values exceeded the upper control limits.

2.9 Internal Standards

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample and associated QC analyses met the criteria.

2.10 Reporting Limits and Target Compound Quantitation

The sample-specific MDLs and RLs were adjusted with sample amount extracted and the RLs were supported with adequate initial calibration concentrations.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

2.11 Overall Assessment of SVOCs Data Usability

SVOCs data are of known quality and acceptable for use, as qualified.

3. Total/Dissolved Metals and Hardness (EPA Methods SW6010B, SW6020 and SW7470A)

3.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Water samples should be analyzed within 180 days for ICP metals and 28 days for mercury. Samples were analyzed within the required holding times.

3.2 ICP/MS Tuning

Instrument tuning was performed at the required frequency. The stability check (%RSD <5%), mass calibration (mass difference <0.1 AMU), and resolution check (peak width <1.0 AMU at 5% peak height) met the NFG and method criteria.

3.3 Initial Calibration

The ICP methods requires that (1) a blank and one calibration standard be used in establishing the analytical curve, and (2) the average of replicate exposures be reported for all standards, QC, and sample analyses.

For mercury, the method requires that (1) a blank and three calibration standards be employed to establish the analytical curve, and (2) the linearity of the calibration curve should meet the criteria of correlation coefficient \geq 0.995. The associated initial calibrations met the method requirements.

All initial calibrations for metals met the criteria above.

A RL check standard containing target analytes at the reporting limit levels was analyzed at the beginning of each analytical run. The check results were either within the NFGs criteria of 70-130% criteria, or if outside the control limits, the associated sample results were greater than the 2x RLs.

3.4 Calibration Verification (ICV and CCV)

Initial calibration verifications (ICVs) and continuing calibration verifications (CCVs) were analyzed at the required frequency. The %R values met the control criteria (90 - 110% for ICP metals, 80 - 120% for mercury).

3.5 Blanks

Calibration Blanks: Initial calibration blanks (ICBs) and continuing calibration blanks (CCBs) were analyzed at the method-required frequency. Target analytes were not detected in ICBs/CCBs at or above the instrument detection limits (IDLs).

Negative detections for mercury and manganese were found in ICB and selected CCBs at levels where their absolute values were between those of IDLs and RLs. These negative detections were determined to have no significant effects on samples results.

Preparation Blanks: Method blanks were prepared and analyzed as required. Target analytes were not detected in the method blanks at or above the RLs.

3.6 ICP Interference Check Sample (ICS)

The method requires that (1) an interelement interference check sample be analyzed at the beginning of each analytical run, and (2) the results should be within \pm 20% of the true value. ICP interference check sample analyses met the requirements.

Several non-interfernt analytes were detected at low levels (less than RLs) in the solution containing only the interferents (ICSA). Since the interferent concentrations in the associated samples were less than 50% of the concentrations in ICSA samples, no action was taken.

3.7 Laboratory Control Sample (LCS)

LCS analyses were performed on all target analytes as required by the methods. All %R values met the project control limits.

3.8 Matrix Spike (MS)

MS analyses were performed on sample MGP-GW-MW-40. The %R values for calcium and magnesium were not applicable because their native concentrations in sample MGP-GW-MW-40 were greater than four times the spiking levels. %R values for other target analytes were within the laboratory control limits.

3.9 Laboratory Duplicate Analysis

Duplicate analysis was performed on sample MGP-GW-MW-40. All RPD values were within the laboratory control limits.

3.10 Internal Standards

At least three internal standards were added to all field and QC samples for ICP/MS analyses. All percent relative intensity values were within the method criteria (30 - 120% of those for the associated calibration blank).

3.11 ICP Serial Dilution

Serial dilution analysis was performed on sample MGP-GW-MW-40. The %D values for positive results greater than 50xMDL were within 10%.

3.12 Reporting Limits and Target Analyte Quantitation

The project requirements for quantitation limits were achieved. A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

3.13 Overall Assessment of Metals and Hardness Data Usability

Metals and hardness data are of known quality and acceptable for use, as qualified.

4. TPH-Gasoline by GC/FID (Method NWTPH-Gx)

4.1 Holding Time

Water samples should be analyzed within 14 days of collection. All samples were extracted and analyzed within the required holding times.

4.2 Initial Calibration

The method requires that (1) a minimum of 5-point calibration be performed using individual petroleum product reference standards to ensure the proper identification and quantitation of petroleum hydrocarbons in samples, (2) the calibration curve includes a sufficiently low standard to provide the necessary reporting limits, and (3) the linear working range of the instrument be defined.

The ICAL met the method requirements. The linearity of the ICAL curve was verified with %RSD of RFs (%RSD \leq 20%, according to EPA SW 846 Method 8000), and was acceptable.

4.3 Calibration Verification

The method requires that (1) a mid-range check standard be analyzed prior to and after each analytical batch, and (2) the percent drift value be within $\pm 15\%$ of the true value. All calibration verification analyses met the method requirements.

4.4 Method Blank

Method blanks were prepared and analyzed as required. TPH-Gasoline was not detected at or above the MDL in the method blank.

4.5 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike %R values were within the laboratory control limits.

4.6 Laboratory Control Samples (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed as required. All %R and RPD values met the laboratory control limits.

4.7 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample MGP-GW-MW-40. All %R and RPD values met the laboratory control criteria.

4.8 Target Compound Identification

The laboratory reported TPH-Gasoline results as integrated response between toluene and the C_{12} marker, which complies with the method.

4.9 Reporting Limits and Target Compound Quantitation

The reported RLs were supported with adequate ICAL concentrations. The RL goals identified in the QAPP were met.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

4.10 Overall Assessment of TPH-Gasoline Data Usability

TPH-Gasoline data are of known quality and acceptable for use.

5. TPH-Diesel & Motor Oil by GC/FID (Method NWTPH-Dx)

5.1 Holding Time

Water samples should be extracted within seven days of collection; extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

5.2 Initial Calibration

The method requires that (1) a minimum of 5-point calibration be performed using individual petroleum product reference standards to ensure the proper identification and quantitation of petroleum hydrocarbons in samples, (2) the calibration curve includes a sufficiently low standard to provide the necessary reporting limits, and (3) the linear working range of the instrument be defined.

The ICAL met the method requirements. The linearity of the ICAL curve was verified with %RSD of RFs (%RSD \leq 20%, according to EPA SW 846 Method 8000), and was acceptable for both TPH-Diesel and TPH-Motor Oil.

5.3 Calibration Verification

The method requires that (1) a mid-range check standard be analyzed prior to and after each analytical batch, and (2) the percent drift value be within $\pm 15\%$ of the true value. All calibration verification analyses met the method requirements.

5.4 Method Blank

Method blanks were prepared and analyzed as required. TPH-Diesel or Motor Oil was not detected at or above the MDLs in the method blank.

5.5 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike %R values were within the laboratory control limits.

5.6 Laboratory Control Samples (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed as required. All %R and RPD values met the laboratory control limits.

5.7 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample MGP-GW-MW-40. All %R and RPD values met the laboratory control criteria.

5.8 Target Compound Identification

The laboratory reported TPH-Diesel results as integrated response between the C_{12} and C_{24} markers and TPH-Motor Oil between the C_{24} and C_{38} markers, which complies with the method.

5.9 Reporting Limits and Target Compound Quantitation

The reported RLs were supported with adequate ICAL concentrations and achieved the quantitation limit goals identified in the QAPP.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

5.10 Overall Assessment of TPH-Diesel & Motor Oil Data Usability

TPH-Diesel and Motor Oil data are of known quality and acceptable for use.

6. Inorganic Parameters (TDS, TOD, DOC, Conductivity, Salinity, Total Cyanide, and WAD Cyanide)

6.1 Sample Management and Holding Time

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Samples should be analyzed within 7 days of collection for TDS, 14 days for total and WAD cyanide, and 28 days for TOC and DOC. All samples were analyzed within the required holding times.

6.2 Instrument Calibration

The initial calibrations were established for ammonia, total sulfide, and TOC using one blank and at least five levels of standards. The correlation coefficients (r) of the initial calibration curves were >0.995, and met the method criteria.

6.3 Calibration Verification

ICV and CCV analyses were performed for cyanide and sulfide as required by the methods. All ICV and CCV %R values were within the laboratory control limits (90 – 110%).

6.4 Blanks

Calibration Blanks: ICBs and CCBs were analyzed as required by the method. No target analytes were positively reported in ICBs and CCBs at or above the RLs.

Method Blanks: Method blanks were prepared and analyzed as required by the method. Target analytes were not detected at or above the RLs in the method blank.

6.5 Laboratory Duplicate

Laboratory duplicate analyses were formed on project samples as required. The RPD or concentration difference values were within the control criterion.

6.6 Matrix Spike (MS)

MS analyses were performed on project samples as required. The %R values were within the project control limits.

6.7 Laboratory Control Samples (LCS) and Standard Reference Material (SRM)

LCS and/or SRM analyses were performed as required by the methods. All %R values were within the laboratory control limits.

6.8 Reporting Limits and Target Analyte Quantitation

The RLs were supported with adequate initial calibration concentrations. Sample-specific RLs achieved the project requirements for quantitation limits.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

6.9 Overall Assessment of Inorganic Data Usability

Inorganic data are of known quality and acceptable for use, as qualified.

SUMMARY

Sample ID	Analyte	Data Qualifier	Reason	Report Section
MGP-GW-MW-42	All VOCs	נח/נ	The sample was analyzed past the recommend holding time for kun-preserved sample.	1.1
MGP-GW-MW-38 MGP-GW-MW-42 TRIP BLANKS	Bromomethane	IJ	The CCV %D value biased low.	1.4
MGP-GW-MW-42 MGP-GW-MW-31	Naphthalene	J	The initial calibration %RSD value exceeded 15%.	2.3
MGP-GW-MW-31	1-Methylnaphthalene 2-Methylnaphthalene Anthracene Carbazole Dibenzofuran Fluoranthene Fluorene Phenanthrene Pyrene	J	The initial calibration %RSD value exceeded 15%.	2.3

I. Data qualification is summarized as follows:

II. Data Qualifiers are defined as follows:

Data Qualifier	Definition
L	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The result was rejected and could not be used.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
IJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Approved By:

Date:

12/22/2010

Mingta Lin, Senior Project Chemist

REFERENCES

- USEPA *Test Methods for Evaluating Solid Waste (SW-846).* 3rd ed. and Revised Update IIIA. Office of Solid Waste and Emergency Response, Washington, D.C. April 1998.
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, October 2004, USEPA 540/R-04/004.
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, June 2008, USEPA-540-R-08-01.
- USEPA Methods for Chemical Analysis of Water and Wastes (MCAWW) USEPA/600/4-79-020, revised March 1983.
- PSEP Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound, Puget Sound Water Quality Authority, March 1986.
- PSEP Recommended Guidelines for Measuring Organic Compounds in Puget Sound Water, Sediment and Tissue Samples, Puget Sound Water Quality Authority, April 1997.
- Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 20th Edition, 1995
- Washington State Department of Ecology *Analytical Methods for Petroleum Hydrocarbons.* Publication ECY 97-602. June 1997.
- City of Bellingham & Puget Sound Energy, *Work Plan for South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study, Bellingham, Washington.* Herrenkohl Consulting LLC. & Landau Associates Inc., August 2010.

Data Validation Report

South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Bellingham, Washington

2010 Groundwater Samples

Prepared for:

Landau Associates Inc. 130 2nd Avenue South Edmonds, WA 98020

Prepared by:

Pyron Environmental, Inc. 3530 32nd Way NW Olympia, WA 98502

December 22, 2010

Data Validation Report Pyron Environmental, Inc. City of Bellingham RI/FS_Groundwater

ACRONYMS

%D	percent difference
%D _f	percent drift
%R	percent recovery
%RSD	percent relative standard deviation
AMU	atomic mass unit
BFB	bromofluorobenzene
ССВ	continuing calibration blank
CCC	calibration check compound
CCV	continuing calibration verification
CF	calibration factor
CLP	U.S. EPA Contract Laboratory Program
сос	chain-of-custody
DFTPP	decafluorotriphenylphosphine
DOC	dissolved organic carbon
EPA	U.S. Environmental Protection Agency
FID	flame ionization detector
GC/MS	gas chromatograph/mass spectrometer
ICAL	initial calibration
ICB	initial calibration blank
ICP	inductively coupled plasma
ICP/MS	inductively coupled plasma/mass spectrometer
ICSA	ICP interference check sample solution A
ICV	initial calibration verification
IDL	instrument detection limit
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
MDL	method detection limit
μg/L	microgram per liter
mg/L	milligram per liter
MS	matrix spike
MSD	matrix spike duplicate
NFGs	CLP National Functional Guidelines for Data Review (EPA 2008 – Organics, EPA 2004 - Inorganics)

Data Validation Report Pyron Environmental, Inc. City of Bellingham RI/FS_Groundwater

QAPP	quality assurance project plan
QA/QC	quality assurance/quality control
RF	response factor
RL	reporting limit
RPD	relative percent difference
RRT	relative retention time
SDG	sample delivery group
SRM	standard reference material
SVOCs	semi-volatile organic compounds
TDS	total dissolved solids
ТРН	total petroleum hydrocarbon
VOCs	volatile organic compounds
WAD	weak acid dissociable

INTRODUCTION

This report presents and discusses findings of the data validation performed on analytical data for groundwater samples collected during September 2010 for the referenced project. The laboratory report validated herein was submitted by Analytical Resources, Inc. (ARI), assigned ARI Job ID Number: RO79.

A Stage IV data validation was performed on this laboratory report. The validation followed the procedures specified in USEPA CLP Functional Guidelines ([NFGs], EPA 2008 – Organics and EPA 2004 – Inorganics) with modifications to accommodate project and analytical method requirements. The numerical quality assurance/quality control (QA/QC) criteria applied to the validation were in accordance with those specified in the quality assurance project plans ([QAPPs], Herrenkohl & Landau 2010) and the current performance-based control limits established by the laboratory (laboratory control limits). Instrument calibration, frequency of QC analyses, and analytical sequence requirements were evaluated against the respective analytical methods.

Validation findings are discussed in each section pertinent to the QC parameter for each type of analysis. Qualified data with applied data qualifiers are summarized in the **Summary** section at the end of this report.

						Analys	sis		
Field Sample ID	Laboratory Sample ID	Sampling Date	Matrix	TPH-G VOCs	SVOCs	Metals	TPH-Dx	CN	Inorganic
MGP-GW-MW-38	RO79A&F	9/28/2010	GW	х	х	х	х	Х	х
MGP-GW-MW-42	RO79B&G	9/28/2010	GW	х	х	х	х	Х	х
MGP-GW-MW-31	RO79C	9/28/2010	GW	х	х	х		Х	Hardness
TRIP BLANKS	RO79D	9/28/2010	GW	VOCs					
MGP-GW-MW-40	RO79E&H	9/28/2010	GW	х	х	х	х	Х	х

Samples and the associated analyses validated herein are summarized as follows:

Notes:

X - The analysis was requested and performed on the sample.

TPH-G – Gasoline range total petroleum hydrocarbon (TPH)

VOCs – Volatile organic compounds

SVOCs – Semi-volatile organic compounds

Metals – Total and Dissolved arsenic, barium, cadmium, calcium, chromium, copper, lead, magnesium, mercury, selenium, silver, and zinc.

TPH-Dx – Diesel and motor oil range TPH

CN - Total and weak-acid-dissociable (WAD) cyanide

Inorganic – Conductivity, total dissolved solids (TDS), total organic carbon (TOC), dissolved organic carbon (DOC), hardness, and salinity.

Analytical methods in respect to analytical parameters validated herein and the laboratory performing the analyses are summarized below:

Parameter	Analytical Method	Laboratory
VOCs	SW846 Method 8260C	
SVOCs	SW846 Method 8270D	
Metals	SW846 Methods 6010B/7470A	
Antimony	EPA Method 200.8	
TPH-Gasoline Range	NWTPH-Gx	
TPH-Diesel and Oil Ranges	NWTPH-Dx	
Total Cyanide	EPA Method 335.4	Analytical Resources, Inc. (ARI), Tukwila, Washington
WAD Cyanide	SM 4500CN-I	
Hardness	SW846 Method 6010B	
Conductivity	EPA Method 120.1	
Total Dissolved Solids	EPA Method 160.1	
TOC and DOC	EPA Method 415.1	
Salinity	SM 2520B	

Notes:

1. SW846 Methods - USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, December 1996.

2. EPA Method - USEPA Methods for Chemical Analysis of Water and Wastes, EPA–600/4-79-020, March 1983 Revision.

3. NWTPH Methods - Analytical Methods for Petroleum Hydrocarbons, ECY 97-602, Washington State Department of Ecology, June 1997.

4. SM - Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 20th Edition, 1995.

DATA VALIDATION FINDINGS

1. VOCs by GC/MS (EPA Method SW8260C)

1.1 Sample Management and Holding Time

Samples were received in the laboratory intact and in consistence with the accompanying chain-of-custody (COC) documentation. No anomalies were identified in relation to sample preservation, handling, and transport, except that sample MGP-GW-MW-42 was received in the laboratory with pH value at 7, greater than the method recommended pH value of 2. The sample was analyzed three days past the recommend seven-day holding time for un-preserved samples. VOCs results for sample MGP-GW-MW-42 were qualified (UJ) for non-detects and (J) for detects as estimated.

Acid-preserved water samples should be analyzed within 14 days of collection. All samples were analyzed within the required holding time.

1.2 GC/MS Instrument Performance Check

Bromofluorobenzene (BFB) tuning was performed at the beginning of each 12-hour interval. All required ion abundance ratios met the method requirements.

1.3 Initial Calibration

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.995, and (3) if six-point non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

The National Functional Guidelines (NFGs) require that the average response factor (RF) be > 0.01 for poor response compounds and > 0.05 for all other compounds.

An initial calibration verification standard (second source standard) was to be analyzed to verify the calibration curve. The percent difference (%D) values should be within ±20% for target compounds.

The initial calibrations met all the criteria above.

1.4 Calibration Verification

The analytical method and NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method

blank and samples, (2) the %D values be within $\pm 20\%$, and (3) the RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

Calibration verification analyses were performed at the required frequency. The RFs for numerous analytes in the calibration verification analyses were less than 0.05. The individual RFs of these analytes in the initial calibrations and all continuing calibration verifications indicated stable responses for the analytes. No data qualifying action was taken on this basis.

The calibration verification %D values met the criteria for all target compounds in all analytical sequences, except for the following:

CCV ID	Analyte	%D	Bias	Affected Sample	Data Qualifier
Instrument: NT5 Date: 09/23/2010	Bromomethane	-25.1%	Low	MGP-GW-MW-38 MGP-GW-MW-42 TRIP BLANKS	נט

1.5 Blanks

Method Blanks: Method blanks were prepared and analyzed as required. Target compounds were not detected at or above the method detection limits (MDLs).

Trip Blank: Methylene chloride was detected in the trip blank at 0.7 μ g/L, but not detected in any of the field samples. Data qualifying action was not required.

1.6 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD were prepared and analyzed as required by the method. All percent recovery (%R) and relative percent difference (RPD) values either met the laboratory control criteria, or the target compounds were not detected in the associated samples in cases where the %R values exceeded the upper control limits.

1.7 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike %R values were within the project control limits.

1.8 Matrix Spike (MS) and MS Duplicate (MSD)

MS/MSD analyses were performed on sample MGP-GW-MW-40. All %R and RPD values either met the laboratory control criteria, or the target compounds were not detected in

sample MGP-GW-MW-40 in cases where the %R values exceeded the upper control limits.

1.9 Internal Standard

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample met the criteria.

1.10 Reporting Limits and Target Compound Quantitation

Reporting limits (RLs) were supported with adequate initial calibration concentrations. Sample MGP-GW-MW-31 required dilution at 50 folds due to the elevated concentrations of numerous target compounds in the sample. The sample-specific MDLs and RLs were raised proportionally.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

1.11 Overall Assessment of VOCs Data Usability

VOCs data are of known quality and acceptable for use, as qualified.

2. SVOCs by GC/MS (EPA Method SW8270D)

2.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Water samples should be extracted within seven days of collection; extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

2.2 GC/MS Instrument Performance Check

Decafluorotriphenylphosphine (DFTPP) tuning was performed at the beginning of each 12-hour interval. All required ion abundance ratios met the method requirements.

2.3 Initial Calibration

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.995, and (3) if six-point non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

The NFGs criteria require that the average RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

An initial calibration verification standard (second source standard) was to be analyzed to verify the calibration curve. The %D values should be within ±20% for target compounds.

All of the criteria above were met, except that %RSD values for a number of target compounds exceeded 15% in the NT4, 09/03/2010 ICAL. The %RSD exceedance had no effects on data quality for compounds not detected in samples. Compounds detected in samples associated with this ICAL were affected and qualified as follows:

ICAL ID	Analyte	%RSD (%)	Affected Sample	Data Qualifier
Instrument: NT4 Date: 09/03/2010	Naphthalene	18.2%	MGP-GW-MW-42 MGP-GW-MW-31	J
Instrument: NT4 Date: 09/03/2010	1-Methylnaphthalene 2-Methylnaphthalene Anthracene Carbazole Dibenzofuran Fluoranthene Fluorene Phenanthrene Pyrene	18.1% 17.1% 17.5% 19.4% 19.5% 19.4% 17.3% 18.7% 19.2%	MGP-GW-MW-31	L

2.4 Calibration Verification

The analytical method and NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method blank and samples, (2) the %D be within $\pm 20\%$, and (3) the RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

Calibration verifications either met all the criteria above, or the %D values were biased high where the compounds were not detected in associated samples.

2.5 Method Blanks

Method blanks were prepared and analyzed as required. Target compounds were not detected at or above the MDLs in the method blank.

2.6 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All %R values were within the laboratory control limits.

2.7 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD were prepared and analyzed as required by the method. All %R and RPD values either met the laboratory control criteria, or the target compounds were not detected in the associated samples in cases where the %R values exceeded the upper control limits.

2.8 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample MGP-GW-MW-40. All %R and RPD values either met the laboratory control criteria, or the target compounds were not detected in sample MGP-GW-MW-40 in cases where the %R values exceeded the upper control limits.

2.9 Internal Standards

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample and associated QC analyses met the criteria.

2.10 Reporting Limits and Target Compound Quantitation

The sample-specific MDLs and RLs were adjusted with sample amount extracted and the RLs were supported with adequate initial calibration concentrations.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

2.11 Overall Assessment of SVOCs Data Usability

SVOCs data are of known quality and acceptable for use, as qualified.

3. Total/Dissolved Metals and Hardness (EPA Methods SW6010B, SW6020 and SW7470A)

3.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Water samples should be analyzed within 180 days for ICP metals and 28 days for mercury. Samples were analyzed within the required holding times.

3.2 ICP/MS Tuning

Instrument tuning was performed at the required frequency. The stability check (%RSD <5%), mass calibration (mass difference <0.1 AMU), and resolution check (peak width <1.0 AMU at 5% peak height) met the NFG and method criteria.

3.3 Initial Calibration

The ICP methods requires that (1) a blank and one calibration standard be used in establishing the analytical curve, and (2) the average of replicate exposures be reported for all standards, QC, and sample analyses.

For mercury, the method requires that (1) a blank and three calibration standards be employed to establish the analytical curve, and (2) the linearity of the calibration curve should meet the criteria of correlation coefficient \geq 0.995. The associated initial calibrations met the method requirements.

All initial calibrations for metals met the criteria above.

A RL check standard containing target analytes at the reporting limit levels was analyzed at the beginning of each analytical run. The check results were either within the NFGs criteria of 70-130% criteria, or if outside the control limits, the associated sample results were greater than the 2x RLs.

3.4 Calibration Verification (ICV and CCV)

Initial calibration verifications (ICVs) and continuing calibration verifications (CCVs) were analyzed at the required frequency. The %R values met the control criteria (90 - 110% for ICP metals, 80 - 120% for mercury).

3.5 Blanks

Calibration Blanks: Initial calibration blanks (ICBs) and continuing calibration blanks (CCBs) were analyzed at the method-required frequency. Target analytes were not detected in ICBs/CCBs at or above the instrument detection limits (IDLs).

Negative detections for mercury and manganese were found in ICB and selected CCBs at levels where their absolute values were between those of IDLs and RLs. These negative detections were determined to have no significant effects on samples results.

Preparation Blanks: Method blanks were prepared and analyzed as required. Target analytes were not detected in the method blanks at or above the RLs.

3.6 ICP Interference Check Sample (ICS)

The method requires that (1) an interelement interference check sample be analyzed at the beginning of each analytical run, and (2) the results should be within \pm 20% of the true value. ICP interference check sample analyses met the requirements.

Several non-interfernt analytes were detected at low levels (less than RLs) in the solution containing only the interferents (ICSA). Since the interferent concentrations in the associated samples were less than 50% of the concentrations in ICSA samples, no action was taken.

3.7 Laboratory Control Sample (LCS)

LCS analyses were performed on all target analytes as required by the methods. All %R values met the project control limits.

3.8 Matrix Spike (MS)

MS analyses were performed on sample MGP-GW-MW-40. The %R values for calcium and magnesium were not applicable because their native concentrations in sample MGP-GW-MW-40 were greater than four times the spiking levels. %R values for other target analytes were within the laboratory control limits.

3.9 Laboratory Duplicate Analysis

Duplicate analysis was performed on sample MGP-GW-MW-40. All RPD values were within the laboratory control limits.

3.10 Internal Standards

At least three internal standards were added to all field and QC samples for ICP/MS analyses. All percent relative intensity values were within the method criteria (30 - 120% of those for the associated calibration blank).

3.11 ICP Serial Dilution

Serial dilution analysis was performed on sample MGP-GW-MW-40. The %D values for positive results greater than 50xMDL were within 10%.

3.12 Reporting Limits and Target Analyte Quantitation

The project requirements for quantitation limits were achieved. A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

3.13 Overall Assessment of Metals and Hardness Data Usability

Metals and hardness data are of known quality and acceptable for use, as qualified.

4. TPH-Gasoline by GC/FID (Method NWTPH-Gx)

4.1 Holding Time

Water samples should be analyzed within 14 days of collection. All samples were extracted and analyzed within the required holding times.

4.2 Initial Calibration

The method requires that (1) a minimum of 5-point calibration be performed using individual petroleum product reference standards to ensure the proper identification and quantitation of petroleum hydrocarbons in samples, (2) the calibration curve includes a sufficiently low standard to provide the necessary reporting limits, and (3) the linear working range of the instrument be defined.

The ICAL met the method requirements. The linearity of the ICAL curve was verified with %RSD of RFs (%RSD \leq 20%, according to EPA SW 846 Method 8000), and was acceptable.

4.3 Calibration Verification

The method requires that (1) a mid-range check standard be analyzed prior to and after each analytical batch, and (2) the percent drift value be within $\pm 15\%$ of the true value. All calibration verification analyses met the method requirements.

4.4 Method Blank

Method blanks were prepared and analyzed as required. TPH-Gasoline was not detected at or above the MDL in the method blank.

4.5 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike %R values were within the laboratory control limits.

4.6 Laboratory Control Samples (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed as required. All %R and RPD values met the laboratory control limits.

4.7 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample MGP-GW-MW-40. All %R and RPD values met the laboratory control criteria.

4.8 Target Compound Identification

The laboratory reported TPH-Gasoline results as integrated response between toluene and the C_{12} marker, which complies with the method.

4.9 Reporting Limits and Target Compound Quantitation

The reported RLs were supported with adequate ICAL concentrations. The RL goals identified in the QAPP were met.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

4.10 Overall Assessment of TPH-Gasoline Data Usability

TPH-Gasoline data are of known quality and acceptable for use.

5. TPH-Diesel & Motor Oil by GC/FID (Method NWTPH-Dx)

5.1 Holding Time

Water samples should be extracted within seven days of collection; extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

5.2 Initial Calibration

The method requires that (1) a minimum of 5-point calibration be performed using individual petroleum product reference standards to ensure the proper identification and quantitation of petroleum hydrocarbons in samples, (2) the calibration curve includes a sufficiently low standard to provide the necessary reporting limits, and (3) the linear working range of the instrument be defined.

The ICAL met the method requirements. The linearity of the ICAL curve was verified with %RSD of RFs (%RSD \leq 20%, according to EPA SW 846 Method 8000), and was acceptable for both TPH-Diesel and TPH-Motor Oil.

5.3 Calibration Verification

The method requires that (1) a mid-range check standard be analyzed prior to and after each analytical batch, and (2) the percent drift value be within $\pm 15\%$ of the true value. All calibration verification analyses met the method requirements.

5.4 Method Blank

Method blanks were prepared and analyzed as required. TPH-Diesel or Motor Oil was not detected at or above the MDLs in the method blank.

5.5 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike %R values were within the laboratory control limits.

5.6 Laboratory Control Samples (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed as required. All %R and RPD values met the laboratory control limits.

5.7 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample MGP-GW-MW-40. All %R and RPD values met the laboratory control criteria.

5.8 Target Compound Identification

The laboratory reported TPH-Diesel results as integrated response between the C_{12} and C_{24} markers and TPH-Motor Oil between the C_{24} and C_{38} markers, which complies with the method.

5.9 Reporting Limits and Target Compound Quantitation

The reported RLs were supported with adequate ICAL concentrations and achieved the quantitation limit goals identified in the QAPP.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

5.10 Overall Assessment of TPH-Diesel & Motor Oil Data Usability

TPH-Diesel and Motor Oil data are of known quality and acceptable for use.

6. Inorganic Parameters (TDS, TOD, DOC, Conductivity, Salinity, Total Cyanide, and WAD Cyanide)

6.1 Sample Management and Holding Time

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Samples should be analyzed within 7 days of collection for TDS, 14 days for total and WAD cyanide, and 28 days for TOC and DOC. All samples were analyzed within the required holding times.

6.2 Instrument Calibration

The initial calibrations were established for ammonia, total sulfide, and TOC using one blank and at least five levels of standards. The correlation coefficients (r) of the initial calibration curves were >0.995, and met the method criteria.

6.3 Calibration Verification

ICV and CCV analyses were performed for cyanide and sulfide as required by the methods. All ICV and CCV %R values were within the laboratory control limits (90 – 110%).

6.4 Blanks

Calibration Blanks: ICBs and CCBs were analyzed as required by the method. No target analytes were positively reported in ICBs and CCBs at or above the RLs.

Method Blanks: Method blanks were prepared and analyzed as required by the method. Target analytes were not detected at or above the RLs in the method blank.

6.5 Laboratory Duplicate

Laboratory duplicate analyses were formed on project samples as required. The RPD or concentration difference values were within the control criterion.

6.6 Matrix Spike (MS)

MS analyses were performed on project samples as required. The %R values were within the project control limits.

6.7 Laboratory Control Samples (LCS) and Standard Reference Material (SRM)

LCS and/or SRM analyses were performed as required by the methods. All %R values were within the laboratory control limits.

6.8 Reporting Limits and Target Analyte Quantitation

The RLs were supported with adequate initial calibration concentrations. Sample-specific RLs achieved the project requirements for quantitation limits.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

6.9 Overall Assessment of Inorganic Data Usability

Inorganic data are of known quality and acceptable for use, as qualified.

SUMMARY

Sample ID	Analyte	Data Qualifier	Reason	Report Section
MGP-GW-MW-42	All VOCs	נח/נ	The sample was analyzed past the recommend holding time for kun-preserved sample.	1.1
MGP-GW-MW-38 MGP-GW-MW-42 TRIP BLANKS	Bromomethane	IJ	The CCV %D value biased low.	1.4
MGP-GW-MW-42 MGP-GW-MW-31	Naphthalene	J	The initial calibration %RSD value exceeded 15%.	2.3
MGP-GW-MW-31	1-Methylnaphthalene 2-Methylnaphthalene Anthracene Carbazole Dibenzofuran Fluoranthene Fluorene Phenanthrene Pyrene	J	The initial calibration %RSD value exceeded 15%.	2.3

I. Data qualification is summarized as follows:

II. Data Qualifiers are defined as follows:

Data Qualifier	Definition
L	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The result was rejected and could not be used.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
IJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Approved By:

Date:

12/22/2010

Mingta Lin, Senior Project Chemist

REFERENCES

- USEPA *Test Methods for Evaluating Solid Waste (SW-846).* 3rd ed. and Revised Update IIIA. Office of Solid Waste and Emergency Response, Washington, D.C. April 1998.
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, October 2004, USEPA 540/R-04/004.
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, June 2008, USEPA-540-R-08-01.
- USEPA Methods for Chemical Analysis of Water and Wastes (MCAWW) USEPA/600/4-79-020, revised March 1983.
- PSEP Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound, Puget Sound Water Quality Authority, March 1986.
- PSEP Recommended Guidelines for Measuring Organic Compounds in Puget Sound Water, Sediment and Tissue Samples, Puget Sound Water Quality Authority, April 1997.
- Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 20th Edition, 1995
- Washington State Department of Ecology *Analytical Methods for Petroleum Hydrocarbons.* Publication ECY 97-602. June 1997.
- City of Bellingham & Puget Sound Energy, *Work Plan for South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study, Bellingham, Washington.* Herrenkohl Consulting LLC. & Landau Associates Inc., August 2010.

Data Validation Report

South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Bellingham, Washington

2010 Soil Samples

Prepared for:

Landau Associates Inc. 130 2nd Avenue South Edmonds, WA 98020

Prepared by:

Pyron Environmental, Inc. 3530 32nd Way NW Olympia, WA 98502

December 22, 2010

Data Validation Report Pyron Environmental, Inc. City of Bellingham RI/FS_Soil

ACRONYMS

%D	percent difference
%D _f	percent drift
%R	percent recovery
%RSD	percent relative standard deviation
AMU	atomic mass unit
BFB	bromofluorobenzene
ССВ	continuing calibration blank
CCC	calibration check compound
CCV	continuing calibration verification
CF	calibration factor
CLP	U.S. EPA Contract Laboratory Program
сос	chain-of-custody
DFTPP	decafluorotriphenylphosphine
DOC	dissolved organic carbon
EPA	U.S. Environmental Protection Agency
FID	flame ionization detector
GC/MS	gas chromatograph/mass spectrometer
ICAL	initial calibration
ICB	initial calibration blank
ICP	inductively coupled plasma
ICP/MS	inductively coupled plasma/mass spectrometer
ICSA	ICP interference check sample solution A
ICV	initial calibration verification
IDL	instrument detection limit
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
MDL	method detection limit
µg/kg	microgram per kilogram
mg/kg	milligram per kilogram
MS	matrix spike
MSD	matrix spike duplicate
NFGs	CLP National Functional Guidelines for Data Review (EPA 2008 – Organics, EPA 2004 - Inorganics)

Data Validation Report Pyron Environmental, Inc. City of Bellingham RI/FS_Soil

PAHs	polycyclic aromatic hydrocarbons						
QAPP	quality assurance project plan						
QA/QC	quality assurance/quality control						
RF	response factor						
RL	reporting limit						
RPD	relative percent difference						
RRT	relative retention time						
SDG	sample delivery group						
SIM	selective ion monitoring						
SRM	standard reference material						
SVOCs	semi-volatile organic compounds						
TDS	total dissolved solids						
ТРН	total petroleum hydrocarbon						
VOCs	volatile organic compounds						
WAD	weak acid dissociable						

INTRODUCTION

This report presents and discusses findings of the data validation performed on analytical data for soil samples collected during August 2010 for the referenced project. The laboratory reports validated herein were submitted by Analytical Resources, Inc. (ARI), assigned ARI Job ID Numbers: RJ25 and RK11.

A Stage IV data validation was performed on this laboratory report. The validation followed the procedures specified in USEPA CLP Functional Guidelines ([NFGs], EPA 2008 – Organics and EPA 2004 – Inorganics) with modifications to accommodate project and analytical method requirements. The numerical quality assurance/quality control (QA/QC) criteria applied to the validation were in accordance with those specified in the quality assurance project plans ([QAPPs], Herrenkohl & Landau 2010) and the current performance-based control limits established by the laboratory (laboratory control limits). Instrument calibration, frequency of QC analyses, and analytical sequence requirements were evaluated against the respective analytical methods.

Validation findings are discussed in each section pertinent to the QC parameter for each type of analysis. Qualified data with applied data qualifiers are summarized in the **Summary** section at the end of this report.

				Analysis					
Field Sample ID	Lab ID	Sampling Date	Matrix	VOCs TPH-G	SVOCs	PAHs	Metals	TPH-Dx	CN
MGP-GP-23-14.0-15.0	RJ25A	08/17/10	Soil	Х					
MGP-GP-23-17.0-18.0	RJ25B	08/17/10	Soil	х	х	х	х	х	х
MGP-GP-23-21.0-22.0	RJ25C	08/17/10	Soil	Х	х	х	х	х	х
TRIP BLANKS	RJ25D	08/17/10	Water	х					
MGP-GP-23-0.5-1.0	RJ25E	08/17/10	Soil			х	х		х
MGP-GP-23-4.0-5.0	RJ25F	08/17/10	Soil			х	х		х
MGP-GP-16-0.5-1.0	RJ25G	08/17/10	Soil			х	х		
MGP-GP-16-7.0-8.0	RJ25H	08/17/10	Soil			х	х		
MGP-GP-16-4.0-5.0	RJ25I	08/17/10	Soil			х	х		
MGP-GP-16-14.0-15.0	RJ25J	08/17/10	Soil			х	х		
MGP-GP-16-16.0-17.0	RJ25K	08/17/10	Soil			х	х		
MGP-GP-16-18.0-19.0	RJ25L	08/17/10	Soil			Х	х		
MGP-GP-16-21.0-22.0	RJ25M	08/17/10	Soil			Х	х		
MGP-GP-16-24.0-25.0	RJ25N	08/17/10	Soil			Х	х		

Samples and the associated analyses validated herein are summarized as follows:

Data Validation Report Pyron Environmental, Inc. City of Bellingham RI/FS_Soil

				Analysis					
Field Sample ID	Lab ID	Sampling Date	Matrix	VOCs TPH-G	SVOCs	PAHs	Metals	TPH-Dx	CN
MGP-GP-15-0.5-1.0	RJ250	08/17/10	Soil			х	x		
MGP-GP-15-4.0-5.0	RJ25P	08/17/10	Soil			х	х		
MGP-GP-15-8.0-9.0	RJ25Q	08/17/10	Soil			х	x		
MGP-GP-15-14.0-15.0	RJ25R	08/17/10	Soil			х	х		
MGP-GP-15-15.0-16.0	RJ25S	08/17/10	Soil			х	x		
MGP-GP-55-14.0-15.0	RJ25T	08/17/10	Soil			х	х		
MGP-HS-31-10.0-11.0	RK11C	08/23/10	Soil	Х	х			х	
MGP-HS-34-10.0-11.5	RK11E	08/23/10	Soil	х	х			х	
Trip Blanks	RK11J	08/23/10	Water	х					

Notes:

X - The analysis was requested and performed on the sample.

TPH-G – Gasoline range total petroleum hydrocarbon (TPH)

VOCs – Volatile organic compounds

SVOCs – Semi-volatile organic compounds

PAHs – Polycyclic aromatic hydrocarbons

Metals – Arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc.

TPH-Dx – Diesel and motor oil range TPH

CN - Total and weak-acid-dissociable (WAD) cyanide

Analytical methods in respect to analytical parameters validated herein and the laboratory performing the analyses are summarized below:

Parameter	Analytical Method	Laboratory		
VOCs	SW846 Method 8260C			
SVOCs	SW846 Method 8270D			
PAHs	SW846 Method 8270D-SIM			
Metals	EPA Method 200.8			
Mercury	SW846 Method 7471A	Analytical Resources, Inc. (ARI), Tukwila, Washington		
TPH-Gasoline Range	NWTPH-Gx			
TPH-Diesel and Oil Ranges	NWTPH-Dx	-		
Total Cyanide	EPA Method 335.4			
WAD Cyanide	SM 4500CN-I			

Notes:

- 1. SW846 Methods USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, December 1996.
- 2. EPA Method USEPA Methods for Chemical Analysis of Water and Wastes, EPA–600/4-79-020, March 1983 Revision.
- 3. NWTPH Methods Analytical Methods for Petroleum Hydrocarbons, ECY 97-602, Washington State Department of Ecology, June 1997.
- 4. SM *Standard Methods for the Examination of Water and Wastewater,* American Public Health Association, 20th Edition, 1995.

DATA VALIDATION FINDINGS

1. VOCs by GC/MS (EPA Method SW8260C)

1.1 Sample Management and Holding Time

Samples were received in the laboratory intact and in consistence with the accompanying chain-of-custody (COC) documentation. No anomalies were identified in relation to sample preservation, handling, and transport.

Soil samples should be extracted and analyzed within 14 days of collection. All samples were analyzed within the required holding time.

1.2 GC/MS Instrument Performance Check

Bromofluorobenzene (BFB) tuning was performed at the beginning of each 12-hour interval. All required ion abundance ratios met the method requirements.

1.3 Initial Calibration

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.995, and (3) if six-point non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

The National Functional Guidelines (NFGs) require that the average response factor (RF) be > 0.01 for poor response compounds and > 0.05 for all other compounds.

An initial calibration verification standard (second source standard) was to be analyzed to verify the calibration curve. The percent difference (%D) values should be within ±20% for target compounds.

The initial calibrations met the criteria above, except that %RSD values exceeded 15% (but less than 20%) for a number of target compounds. These compounds were not detected in associated samples; the %RSD exceedance had no adverse effects on data quality. No data qualifying action was taken on this basis.

1.4 Calibration Verification

The analytical method and NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method

blank and samples, (2) the %D values be within $\pm 20\%$, and (3) the RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

Calibration verification analyses were performed at the required frequency. The RFs for numerous analytes in the calibration verification analyses were less than 0.05. The individual RFs of these analytes in the initial calibrations and all continuing calibration verifications indicated stable responses for the analytes. No data qualifying action was taken on this basis.

The calibration verification %D values met the criteria for all target compounds in all analytical sequences, except for the following:

CCV ID	Analyte	%D	Bias	Affected Sample	Data Qualifier
Instrument: FINN5 Date: 08/26/2010	1,1,1-Trichloroethane Acetone Chloromethane Methyl- <i>tert</i> -Butyl Ether	-21.3% -23.2% -22.5% -23.1%	Low	MGP-GP-23-14.0-15.0 MGP-GP-23-17.0-18.0 MGP-GP-23-21.0-22.0 TRIP BLANKS	IJ
Instrument: FINN5 Date: 08/31/2010	Chloromethane	-20.2%	Low	MGP-HS-34-10.0-11.5	נט

1.5 Blanks

Method Blanks: Method blanks were prepared and analyzed as required. Target compounds were not detected at or above the method detection limits (MDLs), exceptr for the following:

Method Blank ID	Analyte	Detection in Blank	Affected Sample	Original Result	Adjusted Results	Unit
MB-083010	Methylene Chloride	340	Trip Blank (8/23/2010) MGP-HS-31-10.0-11.0	5.2 4200	5.2 U 4200 U	µg/Kg

Trip Blank: One trip blank was submitted with each of the two sample delivery groups (SDGs) collected on 8/17/2010 and 8/23/2010. Methylene chloride was detected in the 8/17/2010 trip blank at 2.4 μ g/kg, but not detected in any of the associated field samples. Methylene chloride was detected in the 8/23/2010 trip blank; the detection was qualified as a non-detect based on the method blank result. Data qualifying action was not required in either case.

1.6 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD were prepared and analyzed as required by the method. All percent recovery (%R) and relative percent difference (RPD) values either met the laboratory control criteria, or the target compounds were not detected in the associated samples in cases where the %R values exceeded the upper control limits.

1.7 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike %R values were within the project control limits.

1.8 Matrix Spike (MS) and MS Duplicate (MSD)

MS/MSD analyses were not performed on project samples in these two SDGs.

1.9 Internal Standard

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample met the criteria.

1.10 Reporting Limits and Target Compound Quantitation

Reporting limits (RLs) were supported with adequate initial calibration concentrations. Selected samples required significant dilutions due to the elevated concentrations of target and non-target compounds in these samples; sample-specific MDLs and RLs were therefore raised proportionally in these cases. The dilutions were determined as justified; the project goals for quantitation limits were attained.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

1.11 Overall Assessment of VOCs Data Usability

VOCs data are of known quality and acceptable for use, as qualified.

2. SVOCs by GC/MS (EPA Method SW8270D)

2.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Soil samples should be extracted within 14 days of collection; extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

2.2 GC/MS Instrument Performance Check

Decafluorotriphenylphosphine (DFTPP) tuning was performed at the beginning of each 12-hour interval. All required ion abundance ratios met the method requirements.

2.3 Initial Calibration

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.995, and (3) if six-point non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

The NFGs criteria require that the average RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

An initial calibration verification standard (second source standard) was to be analyzed to verify the calibration curve. The %D values should be within ±20% for target compounds.

The initial calibrations met the criteria above, except that %RSD values exceeded 15% (but \leq 20%) for a number of target compounds. These compounds were not detected in associated samples; the %RSD exceedance had no adverse effects on data quality. No data qualifying action was taken on this basis.

2.4 Calibration Verification

The analytical method and NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method blank and samples, (2) the %D be within $\pm 20\%$, and (3) the RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

The calibration verification %D values met the criteria above for all target compounds in all analytical sequences, except for the following:

CCV ID	Analyte	%D	Bias	Affected Sample	Data Qualifier
Instrument: NT6 Date: 08/30/2010	2,4-Dinitrophenol	-30.2%	Low	MGP-GP-23-17.0-18.0 MGP-GP-23-21.0-22.0	IJ

2.5 Method Blanks

Method blanks were prepared and analyzed as required. Target compounds were not detected at or above the MDLs in the method blank.

2.6 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All %R values were within the laboratory control limits.

2.7 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD were prepared and analyzed as required by the method. All %R and RPD values either met the laboratory control criteria, or the target compounds were not detected in the associated samples in cases where the %R values exceeded the upper control limits.

2.8 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample MGP-HS-34-10.0-11.5. All %R and RPD values either met the laboratory control criteria, or the target compounds were not detected in sample MGP-HS-34-10.0-11.5 in cases where the %R values exceeded the upper control limits, with the following exceptions:

		% R MS MSD		Control		Data
Parent Sample ID	Analyte			Limit	Affected Sample	Qualifier
MGP-HS-34-10.0-11.5	Benzoic Acid 2,4-Dinitrophenol	0 0	0 0	21-123% 20-140%	MGP-HS-34-10.0-11.5	R

2.9 Internal Standards

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration

standard. All internal standards in the sample and associated QC analyses met the criteria.

2.10 Method Reporting Limits and Target Compound Quantitation

MRLs were supported with adequate initial calibration concentrations. Selected samples required significant dilutions due to the elevated concentrations of target and non-target compounds in the sample; sample-specific MDLs and MRLs were therefore raised proportionally in these cases. The dilutions were determined as justified; the project goals for quntitation limits were attained to.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

2.11 Overall Assessment of SVOCs Data Usability

SVOCs data are of known quality and acceptable for use, as qualified.

3. PAHs by GC/MS (EPA Method SW8270D-SIM)

3.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Soil samples should be extracted within 14 days of collection; extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

3.2 GC/MS Instrument Performance Check

Decafluorotriphenylphosphine (DFTPP) tuning was performed at the beginning of each 12-hour interval. All required ion abundance ratios met the method requirements.

3.3 Initial Calibration

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.995, and (3) if six-point non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

The NFGs criteria require that the average RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

An initial calibration verification standard (second source standard) was to be analyzed to verify the calibration curve. The %D values should be within ±20% for target compounds.

The initial calibration met all the criteria above.

3.4 Calibration Verification

The analytical method and NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method blank and samples, (2) the %D be within $\pm 20\%$, and (3) the RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

Calibration verifications met all the criteria above.

3.5 Method Blanks

Method blanks were prepared and analyzed as required. Target compounds were not detected at or above the MDLs in the method blank.

3.6 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All %R values were within the laboratory control limits.

3.7 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD were prepared and analyzed as required by the method. All %R and RPD values either met the laboratory control criteria, or the target compounds were not detected in the associated samples in cases where the %R values exceeded the upper control limits.

3.8 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample MGP-GP-23-0.5-1.0. All %R and RPD values met the laboratory control criteria, except for the following:

		% R		Control		Data
Parent Sample ID	Analyte	MS	MSD	Limit	Affected Sample	Qualifier
MGP-GP-23-0.5-1.0	Naphthalene	13.2%	22.5%	37-100%	MGP-GP-23-0.5-1.0	J

3.9 Internal Standards

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample and associated QC analyses met the criteria.

3.10 Field Duplicates

Samples MGP-GP-55-14.0-15.0 and MGP-GP-15-14.0-15.0 were field duplicates. The RPD or concentration difference values and data qualification are summarized in **Appendix A**.

3.11 Reporting Limits and Target Compound Quantitation

RLs were supported with adequate initial calibration concentrations. Selected samples required significant dilutions due to the elevated concentrations of target and non-target compounds in these samples; sample-specific MDLs and RLs were therefore raised proportionally in these cases. The dilutions were determined as justified; the project goals for quantitation limits were attained.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

3.12 Overall Assessment of PAHs Data Usability

PAHs data are of known quality and acceptable for use, as qualified.

4. Total Metals (EPA Method 200.8 and SW7471A)

4.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Soil samples should be digested and analyzed within 180 days for ICP metals and 28 days for mercury. Samples were digested and analyzed within the required holding times.

4.2 ICP/MS Tuning

Instrument tuning was performed at the required frequency. The stability check (%RSD <5%), mass calibration (mass difference <0.1 AMU), and resolution check (peak width <1.0 AMU at 5% peak height) met the NFG and method criteria.

4.3 Initial Calibration

The ICP methods requires that (1) a blank and one calibration standard be used in establishing the analytical curve, and (2) the average of replicate exposures be reported for all standards, QC, and sample analyses.

For mercury, the method requires that (1) a blank and three calibration standards be employed to establish the analytical curve, and (2) the linearity of the calibration curve should meet the criteria of correlation coefficient \geq 0.995. The associated initial calibrations met the method requirements.

A RL check standard containing target analytes at the reporting limit levels was analyzed at the beginning of each analytical run. The check results were either within the NFGs criteria of 70-130% criteria, or if outside the control limits, the associated sample results were greater than the 2x RLs.

4.4 Calibration Verification (ICV and CCV)

Initial calibration verifications (ICVs) and continuing calibration verifications (CCVs) were analyzed at the required frequency. The %R values met the control criteria (90 - 110% for ICP metals, 80 - 120% for mercury).

4.5 Blanks

Calibration Blanks: Initial calibration blanks (ICBs) and continuing calibration blanks (CCBs) were analyzed at required frequency. Target analytes were not detected in ICBs/CCBs at or above the instrument detection limits (IDLs).

Negative detections for mercury and manganese were found in ICB and selected CCBs at levels where their absolute values were between those of IDLs and RLs. These negative detections were determined to have no significant effects on samples results.

Preparation Blanks: Method blanks were prepared and analyzed as required. Target analytes were not detected in the method blanks at or above the RLs.

4.6 ICP Interference Check Sample (ICS)

The method requires that (1) an interelement interference check sample be analyzed at the beginning of each analytical run, and (2) the results should be within \pm 20% of the true value. ICP interference check sample analyses met the requirements.

Several non-interfernt analytes were detected at low levels (less than RLs) in the solution containing only the interferents (ICSA). Since the interferent concentrations in the associated samples were less than 50% of the concentrations in ICSA samples, no action was taken.

4.7 Laboratory Control Sample (LCS)

LCS analyses were performed on all target analytes as required by the methods. All %R values met the project control limits.

4.8 Matrix Spike (MS)

MS analyses were performed on sample MGP-GP-23-17.0-18.0. The %R values met the laboratory control limits, except for the following:

Parent Sample	Analyte	MS % R	Control Limit	Affected Sample	Data Qualifier
MGP-GP-23-17.0-18.0	Antimony Chromium	6.0% 74.2%	75-125%	MGP-GP-23-17.0-18.0 MGP-GP-23-21.0-22.0 MGP-GP-23-0.5-1.0 MGP-GP-23-4.0-5.0 MGP-GP-16-0.5-1.0 MGP-GP-16-7.0-8.0 MGP-GP-16-14.0-15.0 MGP-GP-16-14.0-15.0 MGP-GP-16-18.0-19.0 MGP-GP-16-21.0-22.0 MGP-GP-16-24.0-25.0 MGP-GP-15-0.5-1.0 MGP-GP-15-0.5-1.0 MGP-GP-15-4.0-5.0 MGP-GP-15-14.0-15.0 MGP-GP-15-14.0-15.0 MGP-GP-55-14.0-15.0	IJ J

4.9 Laboratory Duplicate Analysis

Duplicate analysis was performed on sample MGP-GP-23-17.0-18.0. All RPD values were within the laboratory control limits, except for the following:

Parent Sample	Analyte	RPD or Difference	Control Limit	Affected Sample	Data Qualifier
MGP-GP-23-17.0-18.0	Chromium Lead Mercury	20.5% 40.5% 0.05 mg/kg	20% 20% 0.02 mg/kg	MGP-GP-23-17.0-18.0 MGP-GP-23-21.0-22.0 MGP-GP-23-0.5-1.0 MGP-GP-23-4.0-5.0 MGP-GP-16-0.5-1.0 MGP-GP-16-7.0-8.0 MGP-GP-16-4.0-5.0 MGP-GP-16-14.0-15.0 MGP-GP-16-18.0-17.0 MGP-GP-16-18.0-19.0 MGP-GP-16-21.0-22.0 MGP-GP-16-24.0-25.0 MGP-GP-15-0.5-1.0 MGP-GP-15-4.0-5.0 MGP-GP-15-4.0-5.0 MGP-GP-15-14.0-15.0 MGP-GP-15-15.0-16.0 MGP-GP-55-14.0-15.0	J

Note: Mercury was not detected in sample MGP-GP-15-15.0-16.0; the mercury result for this sample was not qualified.

4.10 Internal Standards

At least three internal standards were added to all field and QC samples for ICP/MS analyses. All percent relative intensity values were within the method criteria (30 - 120% of those for the associated calibration blank).

4.11 ICP Serial Dilution

Serial dilution analysis was performed on sample MGP-GP-23-17.0-18.0. The %D values for positive results greater than 50xMDL were within 10%.

4.12 Field Duplicates

Samples MGP-GP-55-14.0-15.0 and MGP-GP-15-14.0-15.0 were field duplicates. The RPD or concentration difference values and data qualification are summarized in **Appendix A**.

4.13 Reporting Limits and Target Analyte Quantitation

The project requirements for quantitation limits were achieved. A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

4.14 Overall Assessment of Metals Data Usability

Metals data are of known quality and acceptable for use, as qualified.

5. TPH-Gasoline by GC/FID (Method NWTPH-Gx)

5.1 Holding Time

Soil samples should be extracted and analyzed within 14 days of collection. All samples were extracted and analyzed within the required holding times.

5.2 Initial Calibration

The method requires that (1) a minimum of 5-point calibration be performed using individual petroleum product reference standards to ensure the proper identification and quantitation of petroleum hydrocarbons in samples, (2) the calibration curve includes a sufficiently low standard to provide the necessary reporting limits, and (3) the linear working range of the instrument be defined.

The ICAL met the method requirements. The linearity of the ICAL curve was verified with %RSD of RFs (%RSD \leq 20%, according to EPA SW 846 Method 8000), and was acceptable.

5.3 Calibration Verification

The method requires that (1) a mid-range check standard be analyzed prior to and after each analytical batch, and (2) the percent drift value be within $\pm 15\%$ of the true value. All calibration verification analyses met the method requirements.

5.4 Blanks

Method Blank: Method blanks were prepared and analyzed as required. TPH-Gasoline was not detected at or above the MDL in the method blank.

Trip Blank: One trip blank was submitted with each of the two sample delivery groups (SDGs) collected on 8/17/2010 and 8/23/2010. TPH-Gasoline was not detected at or above the MDL in the trip blanks.

5.5 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike %R values were within the laboratory control limits.

5.6 Laboratory Control Samples (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed as required. All %R and RPD values met the laboratory control limits.

5.7 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were not performed on project samples in these SDGs.

5.8 Target Compound Identification

The laboratory reported TPH-Gasoline results as integrated response between toluene and the C_{12} marker, which complies with the method.

5.9 Reporting Limits and Target Compound Quantitation

The reported RLs were supported with adequate ICAL concentrations. The RL goals identified in the QAPP were met.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

5.10 Overall Assessment of TPH-Gasoline Data Usability

TPH-Gasoline data are of known quality and acceptable for use.

6. TPH-Diesel & Motor Oil by GC/FID (Method NWTPH-Dx)

6.1 Holding Time

Soil samples should be extracted within 14 days of collection; extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

6.2 Initial Calibration

The method requires that (1) a minimum of 5-point calibration be performed using individual petroleum product reference standards to ensure the proper identification and quantitation of petroleum hydrocarbons in samples, (2) the calibration curve includes a sufficiently low standard to provide the necessary reporting limits, and (3) the linear working range of the instrument be defined.

The ICAL met the method requirements. The linearity of the ICAL curve was verified with %RSD of RFs (%RSD \leq 20%, according to EPA SW 846 Method 8000), and was acceptable for both TPH-Diesel and TPH-Motor Oil.

6.3 Calibration Verification

The method requires that (1) a mid-range check standard be analyzed prior to and after each analytical batch, and (2) the percent drift value be within $\pm 15\%$ of the true value. All calibration verification analyses met the method requirements.

6.4 Method Blank

Method blanks were prepared and analyzed as required. TPH-Diesel or Motor Oil was not detected at or above the MDLs in the method blank.

6.5 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike %R values were within the laboratory control limits.

6.6 Laboratory Control Samples (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed as required. All %R and RPD values met the laboratory control limits.

6.7 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample MGP-HS-34-10.0-11.5. All %R and RPD values met the laboratory control criteria.

6.8 Target Compound Identification

The laboratory reported TPH-Diesel results as integrated response between C_{12} and C_{24} markers, and TPH-Motor Oil between the C_{24} and C_{38} markers, which complies with the method.

6.9 Reporting Limits and Target Compound Quantitation

The reported RLs were supported with adequate ICAL concentrations and achieved the quantitation limit goals identified in the QAPP.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

6.10 Overall Assessment of TPH-Diesel & Motor Oil Data Usability

TPH-Diesel and Motor Oil data are of known quality and acceptable for use.

7. Total and WAD Cyanide (EPA Method 335.4 and SM Method 4500CN-I)

7.1 Sample Management and Holding Time

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Soil samples should be extracted and analyzed within 28 days of collection. All samples were extracted and analyzed within the required holding time.

7.2 Instrument Calibration

The initial calibrations were established using one blank and at least five levels of standards. The correlation coefficients (r) of the initial calibration curves were >0.995, and met the method criteria.

7.3 Calibration Verification

ICV and CCV analyses were performed as required by the methods. All ICV and CCV %R values were within the laboratory control limits (90 - 110%).

7.4 Blanks

Calibration Blanks: ICBs and CCBs were analyzed as required by the method. No target analytes were positively reported in ICBs and CCBs at or above the RLs.

Method Blanks: Method blanks were prepared and analyzed as required by the method. Target analytes were not detected at or above the RLs in the method blank.

7.5 Laboratory Duplicate

Laboratory duplicate analyses were formed on project samples as required. The RPD or concentration difference values were within the control criterion.

7.6 Matrix Spike (MS)

MS/MSD analyses were not performed on project samples in these SDGs.

7.7 Standard Reference Material (SRM)

SRM analyses were performed as required by the methods. The %R values were within the laboratory control limits.

7.8 Reporting Limits and Target Analyte Quantitation

The RLs were supported with adequate initial calibration concentrations. Sample-specific RLs achieved the project requirements for quantitation limits.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

7.9 Overall Assessment of Total and WAD Cyanide Data Usability

Total and WAD cyanide data are of known quality and acceptable for use, as qualified.

SUMMARY

I. Data qualification is summarized as follows:

Sample ID	Analyte	Data Qualifier	Reason	Report Section
MGP-GP-23-14.0-15.0 MGP-GP-23-17.0-18.0 MGP-GP-23-21.0-22.0 TRIP BLANKS	1,1,1-Trichloroethane Acetone Chloromethane Methyl- <i>tert</i> -Butyl Ether	IJ	The calibration verification %D value biased low.	1.4
MGP-HS-34-10.0-11.5	Chloromethane	IJ	The calibration verification %D value biased low.	1.4
MGP-GP-23-17.0-18.0 MGP-GP-23-21.0-22.0	2,4-Dinitrophenol	IJ	The calibration verification %D value biased low.	2.4
MGP-HS-34-10.0-11.5	Benzoic Acid 2,4-Dinitrophenol	R	The matrix spike %R was <10%.	2.8
MGP-GP-23-0.5-1.0	Naphthalene	J	The matrix spike %R biased low.	3.8
MGP-GP-23-17.0-18.0 MGP-GP-23-21.0-22.0 MGP-GP-23-0.5-1.0 MGP-GP-23-4.0-5.0 MGP-GP-16-0.5-1.0 MGP-GP-16-7.0-8.0 MGP-GP-16-4.0-5.0 MGP-GP-16-14.0-15.0 MGP-GP-16-16.0-17.0 MGP-GP-16-18.0-19.0 MGP-GP-16-21.0-22.0 MGP-GP-16-24.0-25.0 MGP-GP-15-0.5-1.0 MGP-GP-15-0.5-1.0 MGP-GP-15-4.0-5.0 MGP-GP-15-15.0-16.0 MGP-GP-55-14.0-15.0	Antimony	IJ	The matrix spike %R biased low.	4.8

		Data		Report
Sample ID	Analyte	Qualifier	Reason	Section
MGP-GP-23-17.0-18.0				
MGP-GP-23-21.0-22.0				
MGP-GP-23-0.5-1.0				
MGP-GP-23-4.0-5.0				
MGP-GP-16-0.5-1.0				
MGP-GP-16-7.0-8.0				
MGP-GP-16-4.0-5.0				
MGP-GP-16-14.0-15.0			The MS %R value biased low and	
MGP-GP-16-16.0-17.0	Chromium	J	duplicate analyses RPD value	4.8
MGP-GP-16-18.0-19.0			exceeded 20%.	4.9
MGP-GP-16-21.0-22.0				
MGP-GP-16-24.0-25.0				
MGP-GP-15-0.5-1.0				
MGP-GP-15-4.0-5.0				
MGP-GP-15-8.0-9.0				
MGP-GP-15-14.0-15.0				
MGP-GP-15-15.0-16.0				
MGP-GP-55-14.0-15.0				
MGP-GP-23-17.0-18.0				
MGP-GP-23-21.0-22.0				
MGP-GP-23-0.5-1.0				
MGP-GP-23-4.0-5.0				
MGP-GP-16-0.5-1.0				
MGP-GP-16-7.0-8.0				
MGP-GP-16-4.0-5.0				
MGP-GP-16-14.0-15.0				
MGP-GP-16-16.0-17.0	Lead	J	The duplicate analyses RPD	4.9
MGP-GP-16-18.0-19.0		-	value exceeded 20%.	
MGP-GP-16-21.0-22.0				
MGP-GP-16-24.0-25.0				
MGP-GP-15-0.5-1.0				
MGP-GP-15-4.0-5.0				
MGP-GP-15-8.0-9.0				
MGP-GP-15-14.0-15.0				
MGP-GP-15-15.0-16.0				
MGP-GP-55-14.0-15.0				
MGP-GP-23-17.0-18.0				
MGP-GP-23-21.0-22.0				
MGP-GP-23-0.5-1.0				
MGP-GP-23-4.0-5.0				
MGP-GP-16-0.5-1.0				
MGP-GP-16-7.0-8.0				
MGP-GP-16-4.0-5.0				
MGP-GP-16-14.0-15.0			The duplicate analyses	
MGP-GP-16-16.0-17.0	Mercury	J	concentration difference value	4.9
MGP-GP-16-18.0-19.0			exceeded the control limit.	
MGP-GP-16-21.0-22.0				
MGP-GP-16-24.0-25.0				
MGP-GP-15-0.5-1.0				
MGP-GP-15-4.0-5.0				
MGP-GP-15-8.0-9.0				
MGP-GP-15-14.0-15.0				
MGP-GP-55-14.0-15.0				

II. Data affected by associated blanks are qualified and results adjusted as follows:

Sample ID	Analyte	Original Result	Adjusted Result	Unit	Report Section
Trip Blank (8/23/2010) MGP-HS-31-10.0-11.0	Methylene Chloride	5.2 4200	5.2 U 4200 U	μg/kg	1.5

III. Data Qualifiers are defined as follows:

Data Qualifier	Definition
ſ	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The result was rejected and could not be used.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
IJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Approved By:

mingulin

Date:

12/22/2010

Mingta Lin, Senior Project Chemist

REFERENCES

- USEPA *Test Methods for Evaluating Solid Waste (SW-846).* 3rd ed. and Revised Update IIIA. Office of Solid Waste and Emergency Response, Washington, D.C. April 1998.
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, October 2004, USEPA 540/R-04/004.
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, June 2008, USEPA-540-R-08-01.
- USEPA Methods for Chemical Analysis of Water and Wastes (MCAWW) USEPA/600/4-79-020, revised March 1983.
- Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 20th Edition, 1995.
- Washington State Department of Ecology *Analytical Methods for Petroleum Hydrocarbons*. Publication ECY 97-602. June 1997.
- City of Bellingham & Puget Sound Energy, *Work Plan for South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study, Bellingham, Washington.* Herrenkohl Consulting LLC. & Landau Associates Inc., August 2010.

Appendix A

The precision criterion of 35% specified in the QAPP was applied to evaluating the RPD values of sediment field duplicate results $\geq 5xRL$. For results that are <5xRL, an advisory criterion of $\pm 2xRL$ was applied to evaluating the concentration differences. The RPD (or concentration difference as applicable) values and data qualification for detected compounds in field duplicates are presented as follows:

			Sample ID & Results				
Analytes	Unit	MRL	MGP-GP-55-14.0-15.0	MGP-GP-55-14.0-15.0	RPD	Concentration Difference	Data Qualification
Antimony	mg/kg	0.2	ND	ND	-	0	
Arsenic	mg/kg	0.2	3.7	4.1	10%	-	
Barium	mg/kg	0.6	109	113	4%	-	
Cadmium	mg/kg	0.2	ND	ND	-	0	
Chromium	mg/kg	3	54	48	12%	-	
Copper	mg/kg	0.6	33.8	32.2	5%	-	
Lead	mg/kg	1	4	4	-	0	
Mercury	mg/kg	0.03	0.03	0.04	-	0.01	
Selenium	mg/kg	0.6	ND	ND	-	0	
Silver	mg/kg	0.2	ND	ND	-	0	
Zinc	mg/kg	4	49	49	0%	-	
Naphthalene	µg/kg	4.8	ND	ND	-	0	
2-Methylnaphthalene	µg/kg	4.8	ND	ND	-	0	
1-Methylnaphthalene	µg/kg	4.8	ND	ND	-	0	
Acenaphthylene	µg/kg	4.8	ND	ND	-	0	
Acenaphthene	µg/kg	4.8	ND	ND	-	0	
Fluorene	µg/kg	4.8	ND	ND	-	0	
Phenanthrene	µg/kg	4.8	ND	5.4	-	5.4	
Anthracene	µg/kg	4.8	ND	ND	-	0	
Fluoranthene	µg/kg	4.8	5.8	ND	-	0	
Pyrene	µg/kg	4.8	6.3	ND	-	0	
Benzo(a)anthracene	µg/kg	4.8	ND	ND	-	0	
Chrysene	µg/kg	4.8	ND	ND	-	0	
Benzo(a)pyrene	µg/kg	4.8	ND	ND	-	0	
Indeno(1,2,3-cd)pyrene	µg/kg	4.8	ND	ND	-	0	
Dibenz(a,h)anthracene	µg/kg	4.8	ND	ND	-	0	
Benzo(g,h,i)perylene	µg/kg	4.8	ND	ND	-	0	
Dibenzofuran	µg/kg	4.8	ND	ND	-	0	
Total Benzofluoranthenes	µg/kg	4.8	4.8	ND	-	4.8	

Note: ND – Not detected at or above the MRL.

Data Validation Report

South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Bellingham, Washington

2010 Sediment Samples

Prepared for:

Landau Associates Inc. 130 2nd Avenue South Edmonds, WA 98020

Prepared by:

Pyron Environmental, Inc. 3530 32nd Way NW Olympia, WA 98502

December 23, 2010

Data Validation Report Pyron Environmental, Inc. City of Bellingham RI/FS_Sediment

ACRONYMS

%D	percent difference
%D _f	percent drift
%R	percent recovery
%RSD	percent relative standard deviation
AMU	atomic mass unit
ССВ	continuing calibration blank
ССС	calibration check compound
CCV	continuing calibration verification
CF	calibration factor
CLP	U.S. EPA Contract Laboratory Program
сос	chain-of-custody
DFTPP	decafluorotriphenylphosphine
EPA	U.S. Environmental Protection Agency
GC/MS	gas chromatograph/mass spectrometer
ICAL	initial calibration
ICB	initial calibration blank
ICP/MS	inductively coupled plasma/ mass spectrometer
ICSA	ICP interference check sample solution A
ICV	initial calibration verification
IDL	instrument detection limit
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
MDL	method detection limit
µg/kg	microgram per kilogram
mg/kg	milligram per kilogram
MS	matrix spike
MSD	matrix spike duplicate
NFGs	CLP National Functional Guidelines for Data Review (EPA 2008 – Organics, EPA 2004 - Inorganics)
PAHs	polycyclic aromatic hydrocarbons
PSEP	Puget Sound Estuary Program
QAPP	quality assurance project plan
QA/QC	quality assurance/quality control

Data Validation Report Pyron Environmental, Inc. City of Bellingham RI/FS_Sediment

RF	response factor
RL	reporting limit
RPD	relative percent difference
RRT	relative retention time
SDG	sample delivery group
SIM	selective ion monitoring
SRM	standard reference material
SVOCs	semi-volatile organic compounds
тос	total organic carbon

INTRODUCTION

This report presents and discusses findings of the data validation performed on analytical data for sediment samples collected during September 2010 for the referenced project. The laboratory reports validated herein were submitted by Analytical Resources, Inc. (ARI), assigned ARI Job ID Numbers: RL74 and RM01.

A Stage IV data validation was performed on this laboratory report. The validation followed the procedures specified in the USEPA CLP Functional Guidelines ([NFGs], EPA 2008 – Organics and EPA 2004 – Inorganics) and the Data Validation Guidance Manual (PTI, 1989) with modifications to accommodate project and analytical method requirements. The numerical quality assurance/quality control (QA/QC) criteria applied to the validation were in accordance with those specified in the quality assurance project plans ([QAPPs], Herrenkohl & Landau, 2010) and the current performance-based control limits established by the laboratory (laboratory control limits). Instrument calibration, frequency of QC analyses, and analytical sequence requirements were evaluated against the respective analytical methods.

Validation findings are discussed in each section pertinent to the QC parameter for each type of analysis. Qualified data with applied data qualifiers are summarized in the **Summary** section at the end of this report.

				Analysis				
Field Sample ID	Laboratory Sample ID	Sampling Date	Matrix	SVOCs	PAHs	Metals	тос	Ammonia Sulfide
Samish Bay REF 2	RL74A	9/2/2010	Sediment				х	х
Samish Bay REF 3	RL74B	9/2/2010	Sediment				х	х
MGP-SS-07	RL74C	9/2/2010	Sediment		х	Х	х	х
MGP-SS-08	RL74D	9/2/2010	Sediment		х	х	х	х
MGP-SS-06	RL74E	9/2/2010	Sediment		х	Х	х	х
MGP-SS-02	RL74F	9/2/2010	Sediment	х			х	х
MGP-SS-04	RL74G	9/2/2010	Sediment	х			х	х
MGP-SB-09-0.0-2.0	RM01A	9/7/2010	Sediment		х	х	х	
MGP-SB-09-4.0-6.0	RM01B	9/7/2010	Sediment		х	х	х	
MGP-SB-09-15.0-17.0	RM01C	9/7/2010	Sediment		х	х	х	
MGP-SB-09-35.5-37.0	RM01D	9/7/2010	Sediment		х	х	х	
MGP-SB-09-38.0-39.5	RM01E	9/7/2010	Sediment	х		х	х	1
MGP-SB-06-2.0-4.0	RM01F	9/7/2010	Sediment		х	х	х	1
MGP-SB-06-6.0-8.0	RM01G	9/7/2010	Sediment		х	х	х	

Samples and the associated analyses validated herein are summarized as follows:

				Analysis				
Field Sample ID	Laboratory Sample ID	Sampling Date	Matrix	SVOCs	PAHs	Metals	тос	Ammonia Sulfide
MGP-SB-66-6.0-8.0	RM01H	9/7/2010	Sediment		х	х	х	
MGP-SB-06-10.5-12.0	RM01I	9/7/2010	Sediment		х	х	х	
MGP-SB-06-12.0-13.5	RM01J	9/7/2010	Sediment	х		х	х	

Notes:

X - The analysis was requested and performed on the sample

SVOCs – Semi-volatile organic compounds

PAHs – Polycyclic aromatic hydrocarbons

Metals - Antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc.

TOC – Total organic carbon

Analytical methods in respect to analytical parameters validated herein and the laboratory performing the analyses are summarized below:

Parameter	Analytical Method	Laboratory
SVOCs	SW846 Method 8270D	
PAHs	SW846 Method 8270D - SIM	
Metals	SW846 Methods 6020B/7471A	
Total Sulfide	EPA Method 376.2	Analytical Resources, Inc. (ARI), Tukwila, Washington
Ammonia	EPA Method 350.1M	
тос	Plumb 1981	
Total Solids	EPA Method 160.3	

Notes:

1. SW846 Methods - USEPA Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, December 1996.

2. EPA Method - USEPA Methods for Chemical Analysis of Water and Wastes, EPA–600/4-79-020, March 1983 Revision.

3. Plumb 1981 - *Procedures for Handling and Chemical Analysis of Sediment and Water Samples*. Technical Report, EPA/CE-B1-1. U.S. Army Corps of Engineers. Plumb, R.H. 1981.

4. SM - *Standard Methods for the Examination of Water and Wastewater,* American Public Health Association, 20th Edition, 1995.

DATA VALIDATION FINDINGS

1. SVOCs by GC/MS (EPA Method SW8270D)

1.1 Sample Management and Holding Time

Samples were received in the laboratory intact and in consistence with the accompanying chain-of-custody (COC) documentation. No anomalies were identified in relation to sample preservation, handling, and transport.

Sediment samples should be extracted within 14 days (one year if frozen at -20°C) of collection; extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

1.2 GC/MS Instrument Performance Check

Decafluorotriphenylphosphine (DFTPP) tuning was performed at the beginning of each 12-hour interval. All required ion abundance ratios met the method requirements.

1.3 Initial Calibration

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.995, and (3) if six-point non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

The National Functional Guidelines (NFGs) require that the average response factor (RF) be > 0.01 for poor response compounds and > 0.05 for all other compounds.

An initial calibration verification standard (second source standard) was to be analyzed to verify the calibration curve. The percent difference (%D) values should be within ±20% for target compounds.

Initial calibrations met all the criteria above, except that %RSD values for a number of target compounds exceeded 15% in the NT6, 09/28/2010 ICAL. The %RSD exceedance had no effects on data quality for compounds not detected in samples. Compounds detected in samples associated with this ICAL were affected and qualified as follows:

ICAL ID	Analyte	%RSD	Affected Sample	Data Qualifier
Instrument: NT6 Date: 09/28/2010	Benzoic Acid	19.0%	MGP-SS-07	I
Instrument: NT4 Date: 09/03/2010	1-Methylnaphthalene 2-Methylnaphthalene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Carbazole Chrysene Dibenzofuran Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene	18.1% 17.1% 17.5% 19.9% 17.4% 15.3% 16.9% 19.4% 19.7% 19.5% 19.4% 17.3% 18.2% 18.2% 18.7% 19.2%	MGP-SS-02 MGP-SS-04 MGP-SB-06-12.0-13.5	J (detects)

1.4 Calibration Verification

The analytical method and NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method blank and samples, (2) the %D values be within $\pm 20\%$, and (3) the RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

Calibration verification analyses were performed at the required frequency. The RFs for numerous analytes in the calibration verification analyses were less than 0.05. The individual RFs of these analytes in the initial calibrations and all continuing calibration verifications indicated stable responses for the analytes. No data qualifying action was taken on this basis.

The calibration verification %D values met the criteria for all target compounds in all analytical sequences, except for the following:

CCV ID	Analyte	%D	Bias	Affected Sample	Data Qualifier
Instrument: NT4 Date: 09/27/2010	2,4-Dinitrophenol 4,6-Dinitro-2-Methylphenol Benzo(g,h,i)perylene Benzoic Acid	-49.3% -20.7% -25.4% -46.2%	Low	MGP-SS-02 MGP-SS-04 MGP-SB-09-38.0-39.5 MGP-SB-06-12.0-13.5	J (detects) UJ (non-detects)
Instrument: NT6 Date: 10/04/2010	Benzyl Alcohol	-34.7%	Low	MGP-SS-07	IJ
Instrument: NT6 Date: 10/05/2010	Benzyl Alcohol	-25.4%	Low	MGP-SS-06 MGP-SS-08	IJ
Instrument: NT6 Date: 10/05/2010	Pyrene	21.3%	High	MGP-SS-06 MGP-SS-08	J

1.5 Blanks

Method Blanks: Method blanks were prepared and analyzed as required. Target compounds were not detected at or above the method detection limits (MDLs), except noted below. Sample result less than five times (10 times for common laboratory contaminants) the detection in method blanks were qualified (U) as non-detects at the reporting limits (RLs), if detected below the RL, or the reported concentration (if > RL).

Note that the blanks and sample results were evaluated based on the on-column concentrations, which excluded factors such as sample amount, moisture content, and dilution.

Method Blank ID	Analyte	Detection in Blank	Affected Sample	Original Result	Adjusted Results	Unit
MB-100210 MB-100410	Phenol	67 570	MGP-SS-07 MGP-SS-08 MGP-SS-06 MGP-SS-02 MGP-SS-04	900 280 97 60 79	900 U 280 U 97 U 60 U ^(A) 79 U ^(A)	µg/Kg
MB-100410	Benzoic Acid	150 J	MGP-SS-08	110 J	360 U	µg/Kg

Note:

J – The value was at a level between the MDL and MRL, and considered as estimated.

^(A) – Phenol was not detected in the associated method blank, but consistently present in method blanks associated with project samples in different preparation batches. The result was qualified herein as a conservative measure.

1.6 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD were prepared and analyzed as required by the method. All percent recovery (%R) and relative percent difference (RPD) values met the laboratory control criteria, except for the following:

		% R (%)		% R (%)		%R Control		Data
LCS ID	Analyte	LCS	LCSD	Limit (%)	Affected Sample	Qualification		
LCS-100210 LCS-100410	Benzyl Alcohol	0 0	0 0	10-100	MGP-SS-07 MGP-SS-08 MGP-SS-06	R		

1.7 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All surrogate spike %R values were within the project control limits, except that the %R value (15.7%) for 2,4,6-tribromopehnol in sample MGP-SB-06-12.0-13.0 was less than the lower control limit (33-118%). The recovery of internal standards and other surrogate spikes were within control limits; no data qualifying action was necessary.

1.8 Matrix Spike (MS) and MS Duplicate (MSD)

MS/MSD analyses were performed on sample MGP-SB-09-38.0-39.0. All %R and RPD values were within the control limits, except that the %R value (18.2%) for 2,4-dimethylphenol was slightly less than the lower control limit (19-100%). The recovery of the MSD and LCS/LCSD was within the control limits; no data qualifying action was necessary.

1.9 Internal Standard

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample and associated QC analyses met the criteria.

1.10 Reporting Limits and Target Compound Quantitation

The sample-specific MDLs and RLs were adjusted with sample amount extracted and RLs were supported with adequate initial calibration concentrations. The project requirements for quantitation limits were achieved.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

1.11 Field Duplicates

Field duplicates were not submitted for SVOCs analyses in this SDG.

1.12 Overall Assessment of SVOCs Data Usability

SVOCs data are of known quality and acceptable for use, as qualified.

2. PAHs by GC/MS (EPA Method SW8270D - SIM)

2.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Sediment samples should be extracted within 14 days (one year if frozen at -20°C) of collection; extracts should be analyzed within 40 days of extraction. All samples were extracted and analyzed within the required holding times.

2.2 GC/MS Instrument Performance Check

DFTPP tuning was performed at the beginning of each 12-hour interval. All required ion abundance ratios met the method requirements.

2.3 Initial Calibration

The method linearity criteria require that (1) if linear average RFs is chosen as the quantitation option, the %RSD of RFs be \leq 15% for the analyte, (2) if least-square linear regression is chosen for quantitation, the correlation coefficient (r) be \geq 0.995, and (3) if six-point non-linear (quadratic) curve is chosen for quantitation, the coefficient of determination (r²) be \geq 0.99.

The NFGs criteria require that the average RF be > 0.01 for poor response compounds and >0.05 for all other compounds.

An initial calibration verification standard (second source standard) was analyzed to verify the calibration curve. The %D values were within ±20% for target compounds.

Initial calibrations for all target compounds met the criteria above.

2.4 Calibration Verification

The analytical method and NFGs criteria require that (1) continuing calibrations be analyzed at the beginning of each 12-hour analysis period prior to the analysis of method blank and samples, (2) the %D be within $\pm 20\%$, and (3) the RF be > 0.01 for poor response compounds and >0.05 for all other compounds. Calibration verifications met all the criteria above.

2.5 Method Blanks

Method blanks were prepared and analyzed as required. Target compounds were not detected at or above the MDLs in the method blank.

2.6 Surrogate Spikes

Surrogate spikes were added to all samples as required by the method. All %R values were within the laboratory control limits.

2.7 Laboratory Control Sample (LCS) and LCS Duplicate (LCSD)

LCS and LCSD analyses were performed as required by the method. All %R and RPD values were within the project control limits.

2.8 Matrix Spike and Matrix Spike Duplicate (MS/MSD)

MS/MSD analyses were performed on sample MGP-SB-06-10.5-12.0. All %R and RPD values were within the control limits.

2.9 Internal Standards

The method requires that (1) internal standard retention time be within ± 30 seconds from that of the associated 12-hour calibration standard, and (2) the area counts of all internal standards be within -50% to +100% of the associated 12-hour calibration standard. All internal standards in the sample and associated QC analyses met the criteria.

2.10 Reporting Limits and Target Compound Quantitation

The sample-specific MDLs and RLs were adjusted with sample amount extracted and the RLs were supported with adequate initial calibration concentrations.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

2.11 Field Duplicates

Samples MGP-SB-06-6.0-8.0 and MGP-SB-66-6.0-8.0 were field duplicates. RPD (or concentration difference) values and data qualification are summarized in **Appendix A**.

2.12 Overall Assessment of PAHs Data Usability

PAHs data are of known quality and acceptable for use, as qualified.

3. Total Metals (EPA Methods SW6020B and SW7471A)

3.1 Sample Management and Holding Times

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Sediment and water samples should be analyzed within 180 days for metals and 28 days for mercury. Samples were analyzed within the required holding time.

3.2 ICP/MS Tuning

Instrument tuning was performed at the required frequency. The stability check (%RSD <5%), mass calibration (mass difference <0.1 AMU), and resolution check (peak width <1.0 AMU at 5% peak height) met the NFG and method criteria.

3.3 Initial Calibration

The ICP methods requires that (1) a blank and one calibration standard be used in establishing the analytical curve, and (2) the average of replicate exposures be reported for all standards, QC, and sample analyses.

For mercury, the methods require that (1) a blank and five calibration standards be employed to establish the analytical curve, and (2) the linearity of the calibration curve should meet the criteria of correlation coefficient \geq 0.995. The associated initial calibrations met the method requirements.

A RL check standard containing target analytes at the reporting limit levels was analyzed at the beginning of each analytical run. The check results were either within the NFGs criteria of 70-130% criteria, or if outside the control limits, the associated sample results were greater than the 2x RLs.

3.4 Calibration Verification (ICV and CCV)

Initial calibration verifications (ICVs) and continuing calibration verifications (CCVs) were analyzed at the required frequency. The %R values met the control criteria (90 - 110% for ICP metals, 80 - 120% for mercury).

3.5 Blanks

Calibration Blanks: Initial calibration blanks (ICBs) and continuing calibration blanks (CCBs) were analyzed at the method-required frequency. Target analytes were not detected in ICBs/CCBs at or above the instrument detection limits (IDLs).

Negative detections for mercury and manganese were found in ICB and selected CCBs at levels where their absolute values were between those of IDLs and RLs. These negative detections were determined to have no significant effects on samples results.

Preparation Blanks: Method blanks were prepared and analyzed as required. Target analytes were not detected in the method blanks at or above the RLs.

3.6 ICP Interference Check Sample (ICS)

The method requires that (1) an interelement interference check sample be analyzed at the beginning of each analytical run, and (2) the results should be within \pm 20% of the true value. ICP interference check sample analyses met the requirements.

Several non-interfernt analytes were detected at low levels (less than RLs) in the solution containing only the interferents (ICSA). Since the interferent concentrations in the associated samples were less than 50% of the concentrations in ICSA samples, no action was taken.

3.7 Laboratory Control Sample (LCS)

LCS analyses were performed on all target analytes as required by the methods. All %R values met the project control limits.

3.8 Matrix Spike (MS)

MS analyses were performed on samples MGP-SS-07 and MGP-SB-09-0.0-2.0. The %R values met the laboratory control limits, except for the following:

Parent Sample	Analyte	MS % R	Control Limit	Affected Sample	Data Qualification
MGP-SS-07	Silver	66.1%	75-125%	MGP-SS-02 MGP-SS-04 MGP-SS-06 MGP-SS-07 MGP-SS-08	נט
MGP-SB-09-0.0-2.0	Silver	49.1%	75-125%	MGP-SB-09-0.0-2.0 MGP-SB-09-4.0-6.0 MGP-SB-09-15.0-17.0 MGP-SB-09-35.5-37.0 MGP-SB-09-38.0-39.5 MGP-SB-06-2.0-4.0 MGP-SB-06-6.0-8.0 MGP-SB-06-6.0-8.0 MGP-SB-06-10.5-12.0 MGP-SB-06-12.0-13.5	IJ

3.9 Laboratory Duplicate Analysis

Duplicate analysis was performed on samples MGP-SS-07 and MGP-SB-09-0.0-2.0. All RPD values were within the laboratory control limits, except for the flowing:

Parent Sample	Analyte	RPD	Control Limit	Affected Sample	Data Qualification
MGP-SS-07	Lead	25%	20%	MGP-SS-02 MGP-SS-04 MGP-SS-06 MGP-SS-07 MGP-SS-08	J
MGP-SB-09-0.0-2.0	Zinc	52.6%	20%	MGP-SB-09-0.0-2.0 MGP-SB-09-4.0-6.0 MGP-SB-09-15.0-17.0 MGP-SB-09-35.5-37.0 MGP-SB-09-38.0-39.5 MGP-SB-06-2.0-4.0 MGP-SB-06-6.0-8.0 MGP-SB-06-6.0-8.0 MGP-SB-06-10.5-12.0 MGP-SB-06-12.0-13.5	J

3.10 Internal Standards

At least three internal standards were added to all field and QC samples for ICP/MS analyses. All percent relative intensity values were within the method criteria (30 - 120% of those for the associated calibration blank).

3.11 ICP Serial Dilution

Serial dilution analysis was performed on samples MGP-SS-07 and MGP-SB-09-0.0-2.0. The %D values for positive results greater than 50xMDL were within 10%.

3.12 Reporting Limits and Target Analyte Quantitation

The project requirements for quantitation limits were achieved. A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

3.13 Field Duplicates

Samples MGP-SB-06-6.0-8.0 and MGP-SB-66-6.0-8.0 were field duplicates. RPD (or concentration difference) values and data qualification are summarized in **Appendix A**.

3.14 Overall Assessment of Metals Data Usability

Metals data are of known quality and acceptable for use, as qualified.

4. Conventional Chemistry Parameters (Ammonia, Total Sulfide, TOC, and TS)

4.1 Sample Management and Holding Time

No anomalies were identified in relation to sample preservation, handling, and transport, as discussed in Section 1.1.

Sediment samples should be analyzed within 7 days of collection for total sulfide and ammonia, and six months for TOC and TS. All samples were analyzed within the required holding times.

4.2 Instrument Calibration

The initial calibrations were established for ammonia, total sulfide, and TOC using one blank and at least five levels of standards. The correlation coefficients (r) of the initial calibration curves were >0.995, and met the method criteria.

4.3 Calibration Verification

ICV and CCV analyses were performed as required by the methods. All ICV and CCV %R values were within the laboratory control limits (90 - 110%).

4.4 Blanks

Calibration Blanks: ICBs and CCBs were analyzed as required by the method. No target analytes were positively reported in ICBs and CCBs at or above the MRLs.

Method Blanks: Method blanks were prepared and analyzed as required by the method. Target analytes were not detected at or above the MRLs in the method blanks.

4.5 Laboratory Replicate

Laboratory triplicate analyses were formed on project sample Samish Bay REF2 for TS, TOC, ammonia, and total sulfide. The %RSD values were within the control criterion (20%), except for the following:

Parent Sample	Analyte	%RSD	Control Limit	Affected Sample	Data Qualification
				Samish Bay REF 2	
				Samish Bay REF 3	
				MGP-SS-07	
Samish Bay REF2	Ammonia	20.1%	20%	MGP-SS-08	J
				MGP-SS-06	
				MGP-SS-02	
				MGP-SS-04	

4.6 Matrix Spike (MS)

MS/MSD analyses were performed on project samples as required. The %R and RPD values were within the laboratory control limits (75-125%).

4.7 Laboratory Control Samples (LCS) and Standard Reference Material (SRM)

LCS and/or SRM analyses were performed as required by the methods. All %R values were within the laboratory control limits (80-120%).

4.8 Field Duplicates

Samples MGP-SB-06-6.0-8.0 and MGP-SB-66-6.0-8.0 were field duplicates submitted for TOC analyses. The RPD value and data qualification are summarized in **Appendix A**.

4.9 Reporting Limits and Target Analyte Quantitation

The RLs were supported with adequate initial calibration concentrations. Sample-specific RLs achieved the project requirements for quantitation limits.

A verification calculation was performed on 10% of the reported calibrations, laboratory QC analysis, and sample results. No transcription and calculation anomalies were found.

4.10 Overall Assessment of TOC, TS, Ammonia, and Total Sulfide Data Usability

TOC, TS, ammonia, and total sulfide data are of known quality and acceptable for use, as qualified.

SUMMARY

I. Data qualification is summarized as follows:

Sample ID	Analyte	Data Qualifier	Reason	Report Section
MGP-SS-07	Benzoic Acid	J	The ICAL %RSD value exceeded 15%.	1.3
MGP-SS-02 MGP-SS-04 MGP-SB-06-12.0-13.5	1-Methylnaphthalene 2-Methylnaphthalene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Carbazole Chrysene Dibenzofuran Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene	L	The ICAL %RSD value exceeded 15%.	1.3
MGP-SS-02 MGP-SS-04 MGP-SB-09-38.0-39.5 MGP-SB-06-12.0-13.5	2,4-Dinitrophenol 4,6-Dinitro-2-Methylphenol Benzo(g,h,i)perylene Benzoic Acid	I/U	The CCV %D value biased low.	1.4
MGP-SS-07	Benzyl Alcohol	IJ	The CCV %D value biased low.	1.4
MGP-SS-06 MGP-SS-08	Benzyl Alcohol	IJ	The CCV %D value biased low.	1.4
MGP-SS-06 MGP-SS-08	Pyrene	J	The CCV %D value biased high.	1.4
MGP-SS-07 MGP-SS-08 MGP-SS-06	Benzyl Alcohol	R	The LCS/LCSD %R value was <10%.	1.6
MGP-SS-02 MGP-SS-04 MGP-SS-06 MGP-SS-07 MGP-SS-08 MGP-SB-09-0.0-2.0 MGP-SB-09-4.0-6.0 MGP-SB-09-15.0-17.0 MGP-SB-09-35.5-37.0 MGP-SB-09-38.0-39.5 MGP-SB-06-2.0-4.0 MGP-SB-06-2.0-4.0 MGP-SB-06-6.0-8.0 MGP-SB-06-10.5-12.0 MGP-SB-06-12.0-13.5	Silver	IJ	The MS %R value biased low.	3.8

Sample ID	Analyte	Data Qualifier	Reason	Report Section
MGP-SS-02 MGP-SS-04 MGP-SS-06 MGP-SS-07 MGP-SS-08	Lead	J	The laboratory duplicate analysis RPD value exceeded 20%.	3.9
MGP-SB-09-0.0-2.0 MGP-SB-09-4.0-6.0 MGP-SB-09-15.0-17.0 MGP-SB-09-35.5-37.0 MGP-SB-09-38.0-39.5 MGP-SB-06-2.0-4.0 MGP-SB-06-6.0-8.0 MGP-SB-06-6.0-8.0 MGP-SB-06-10.5-12.0 MGP-SB-06-12.0-13.5	Zinc	J	The laboratory duplicate analysis RPD value exceeded 20%.	3.9
Samish Bay REF 2 Samish Bay REF 3 MGP-SS-07 MGP-SS-08 MGP-SS-06 MGP-SS-02 MGP-SS-04	Ammonia	ı	The laboratory replicate analysis %RSD value exceeded 20%.	4.5
MGP-SB-06-6.0-8.0 MGP-SB-66-6.0-8.0	Zinc Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene Total Benzofluoranthenes	J	The field duplicate RPD value exceeded 35%.	Appendix A

Note: J/UJ - Detects were qualified (J) and non-detects qualified (UJ).

II. Data affected by associated blanks are qualified and results adjusted as follows:

Sample ID	Analyte	Original Result	Adjusted Result	Unit	Report Section
MGP-SS-07 MGP-SS-08 MGP-SS-06 MGP-SS-02 MGP-SS-04	Phenol	900 280 97 60 79	900 U 280 U 97 U 60 U 79 U	μg/kg	1.5
MGP-SS-08	Benzoic Acid	110 J	360 U	μg/kg	1.5

Data Validation Report Pyron Environmental, Inc. City of Bellingham RI/FS_Sediment

III. Data Qualifiers are defined as follows:

Data Qualifier	Definition
ſ	The analyte was detected above the reported quantitation limit, and the reported concentration was an estimated value.
R	The result was rejected and could not be used.
U	The analyte was analyzed for, but was considered not detected at the reporting limit or reported value.
IJ	The analyte was analyzed for, and the associated quantitation limit was an estimated value.

Approved By:

Date:

12/23/2010

Mingta Lin, Senior Project Chemist

REFERENCES

- USEPA *Test Methods for Evaluating Solid Waste (SW-846).* 3rd ed. and Revised Update IIIA. Office of Solid Waste and Emergency Response, Washington, D.C. April 1998.
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, October 2004, USEPA 540/R-04/004.
- USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, Office of Superfund Remediation and Technical Innovation, U.S. Environmental Protection Agency, June 2008, USEPA-540-R-08-01.
- USEPA Methods for Chemical Analysis of Water and Wastes (MCAWW) USEPA/600/4-79-020, revised March 1983.
- PSEP Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound, Puget Sound Water Quality Authority, March 1986.
- PSEP Recommended Guidelines for Measuring Organic Compounds in Puget Sound Water, Sediment and Tissue Samples, Puget Sound Water Quality Authority, April 1997.
- Washington State Department of Ecology, Data Validation Guidance Manual for Selected Sediment Variables, PTI, June 1989.
- City of Bellingham & Puget Sound Energy, *Work Plan for South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study, Bellingham, Washington.* Herrenkohl Consulting LLC. & Landau Associates Inc., August 2010.

Appendix A

Field duplicate RPD is indicative of field and laboratory precision and sample homogeneity in combination. The precision criterion of 35% specified in the QAPP was applied to evaluating the RPD values of sediment field duplicate results $\geq 5xRL$. For results that are <5xRL, an advisory criterion of $\pm 2xRL$ was applied to evaluating the concentration differences. The RPD (or concentration difference as applicable) values and data qualification for detected compounds in field duplicates are presented as follows:

			Sample II				
Analytes	Unit	RL	MGP-SB-06-6.0-8.0	MGP-SB-66-8.0-9.0	RPD	Concentration Difference	Data Qualification
Total Solids	%	0.01	40.4	39.8	1%	0.6	
Total Organic Carbon	%	0.116	10	12.1	19%	-	
Arsenic	mg/kg	0.5	2.8	3.3	16%	-	
Cadmium	mg/kg	0.5	0.6	0.8	-	0.2	
Chromium	mg/kg	1	33	34	3%	-	
Copper	mg/kg	1	25	27	8%	-	
Lead	mg/kg	2	10	11	10%	-	
Mercury	mg/kg	0.05	0.12	0.14	-	0.02	
Silver	mg/kg	0.5	ND	ND	-	0	
Zinc	mg/kg	9	69	104	40%	-	۱/۱
Naphthalene	µg/kg	250	12000	16000	29%	-	
2-Methylnaphthalene	µg/kg	250	2400	2200	9%	-	
1-Methylnaphthalene	µg/kg	250	2600	2800	7%	-	
Acenaphthylene	µg/kg	250	300	360	-	60	
Acenaphthene	µg/kg	250	3900	5200	29%	-	
Fluorene	µg/kg	250	2000	2300	14%	-	
Phenanthrene	µg/kg	250	6100	8800	36%	-	۱/۱
Anthracene	µg/kg	250	3700	6000	47%	-	۱/۱
Fluoranthene	µg/kg	250	11000	17000	43%	-	۱/۱
Pyrene	µg/kg	250	11000	17000	43%	-	۱/۱
Benzo(a)anthracene	µg/kg	250	3600	6300	55%	-	۱/۱
Chrysene	µg/kg	250	3600	6500	57%	-	۱/۱
Benzo(a)pyrene	µg/kg	250	4400	7800	56%	-	۱/۱
Indeno(1,2,3-cd)pyrene	µg/kg	250	2000	3500	55%	-	۱/۱
Dibenz(a,h)anthracene	µg/kg	250	600	1100	59%	-	۱/۱
Benzo(g,h,i)perylene	µg/kg	250	2300	3900	52%	-	۱/۱
Dibenzofuran	µg/kg	250	1700	2100	21%	-	
Total Benzofluoranthenes	µg/kg	250	5100	8900	54%	-	۱/۱

TECHNICAL MEMORANDUM

TO: Chip Halbert

FROM: Kristi Schultz and Anne Halvorsen ASH

DATE: January 14, 2011

RE: AUGUST AND SEPTEMBER 2010 SOIL SAMPLES LABORATORY DATA QUALITY EVALUATION OF BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES (BTEX) ANALYSIS CITY OF BELLINGHAM SOUTH STATE STREET MANUFACTURED GAS PLANT REMEDIAL INVESTIGATION/FEASIBILITY STUDY

This technical memorandum provides the results of a focused data validation for the analysis of 21 soil samples collected on August 17-24, 2010 at the South State Street Manufactured Gas Plant in Bellingham, Washington. Samples were analyzed by Analytical Resources, Inc. (ARI), located in Tukwila, Washington. This data quality evaluation covers ARI data packages SB16/SB17. Samples submitted to ARI were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) [U.S. Environmental Protection Agency (EPA) Method SW8021Mod].

Sample data were evaluated in accordance with applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999) and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl and Landau Associates 2010). The following parameters were evaluated:

- Chain-of-custody (COC) records
- Holding times
- Blank results (laboratory method)
- Surrogate recoveries
- Matrix spike/matrix spike duplicate (MS/MSD) and laboratory duplicate results
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) results
- Blind field duplicate results
- Quantitation limits
- Audit/corrective action records
- Completeness and overall data quality.

Data validation qualifiers are added to samples based on the evaluation of data quality. The absence of a data qualifier indicates that the reported result is acceptable without qualification. The data quality evaluation is summarized below.

CHAIN-OF-CUSTODY RECORDS

A signed COC record was attached to each data package. The laboratory received all samples in good condition, and all analyses were performed as requested. Upon receipt by ARI, the sample jar information was compared to the COC and the cooler temperatures were recorded. Several coolers were received slightly below the EPA-recommended limits of $4^{\circ}C\pm2^{\circ}C$. Data were not qualified based on the cooler temperature.

HOLDING TIMES

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times. No qualification of the data is necessary.

BLANK RESULTS

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks. No qualification of the data is necessary.

SURROGATE RECOVERIES

Appropriate compounds were used as surrogate spikes for the various analyses. Recovery values for the surrogate spikes were within the current laboratory-specified control limits. No qualification of the data is necessary.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

At least one LCS and/or LCSD was analyzed with each batch of samples for each analysis. Recoveries and relative percent difference (RPD) for the LCS/LCSD samples were within the current laboratory-specified control limits with the following exceptions:

• The 8/26/10 LCSD recovery for benzene associated with the BTEX analysis in data package SB16/SB17 slightly exceeded the laboratory-specified control limits; the associated sample results were qualified as estimated (J), as indicated in Table 1.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) AND LABORATORY REPLICATE RESULTS

No matrix spike or laboratory duplicate samples were analyzed with this data package.

BLIND FIELD DUPLICATES

One pair of blind field duplicate soil samples (MGP-GP-56-7.0-8.0/MGP-GP-17-7.0-8.0) was submitted for BTEX analysis with data package SB16/SB17. A project-specified control limit of 35 percent was used to evaluate the RPDs between the duplicate soil samples, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus two times the reporting limit was used. RPDs for the duplicate sample pair submitted for analysis were within the project-specified control limits with the following exceptions:

• The RPDs for m,p-xylene and o-xylene associated with the BTEX analysis exceeded 35 percent. The results are qualified as estimated (J), as indicated in Table 1.

QUANTITATION LIMITS

Project-specified quantitation limits were met for all samples, except for instances where samples required dilutions based on high concentrations of target analytes and may have elevated reporting limits.

COMPLETENESS AND OVERALL DATA QUALITY

Data precision was evaluated through field duplicates and laboratory control sample duplicates. Data accuracy was evaluated through laboratory control samples and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

REFERENCES

EPA. 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. EPA-540/R-08-01. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. June.

Herrenkohl Consulting LLC and Landau Associates Inc. 2010. *South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan.* Prepared for City of Bellingham and Puget Sound Energy. August 6.

TABLE 1 SUMMARY OF DATA QUALIFIERS SOUTH STATE STREET MANUFACTURED GAS PLANT **BTEX SOIL SAMPLING**

Data Package	Analyte	Result	Qualifier	Sample Number	Reason
SB16/SB17	Benzene	3400	J	MGP-GP-34-14.0-15.0	High LCSD recovery
SB16/SB17	m,p-Xylene	20,000	J	MGP-GP-17-7.0-8.0	High field duplicate RPD
SB16/SB17	o-Xylene	11,000	J	MGP-GP-17-7.0-8.0	High field duplicate RPD
SB16/SB17	m,p-Xylene	6700	J	MGP-GP-56-7.0-8.0	High field duplicate RPD
SB16/SB17	o-Xylene	3900	J	MGP-GP-56-7.0-8.0	High field duplicate RPD

<u>Notes</u>

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

TECHNICAL MEMORANDUM

TO:	Chip Halbert
	Kristi Schultz and Stacy Lane
FROM:	Kristi Schultz and Stacy Lane

DATE: September 7, 2011

RE: ARCHIVED SEDIMENT SAMPLES LABORATORY DATA QUALITY EVALUATION CITY OF BELLINGHAM SOUTH STATE STREET MANUFACTURED GAS PLANT REMEDIAL INVESTIGATION/FEASIBILITY STUDY

This technical memorandum provides the results of a Stage 2B verification and validation check of analytical data for 22 sediment samples collected on August 20 and September 9, 2010 at the South State Street Manufactured Gas Plant in Bellingham, Washington. All sample analyses were conducted at Analytical Resources, Inc. (ARI) laboratory, located in Tukwila, Washington. Samples submitted to ARI were analyzed for low level polycyclic aromatic hydrocarbons [PAHs; U.S. Environmental Protection Agency (EPA) Method SW8270D-SIM]; polychlorinated biphenyls [PCBs; Puget Sound Dredged Disposal Analysis (PSDDA) Method]; dioxins and furans (EPA Method 1613B); total metals (EPA Methods 6010B and 7470A); and total organic carbon (TOC; Method Plumb 1981). The analytical results are reported in the ARI laboratory data package identified as TD69. Sample identifications and sample collection, extraction, and analysis dates are provided in Table 1.

The Stage 2B verification and validation check was conducted in accordance with EPA's *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999), applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 2004), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl Consulting and Landau Associates 2010). The Stage 2B verification and validation check for each laboratory data package included the following:

- Verification that the laboratory data package contained all necessary documentation, including chain-of-custody records (COCs); identification of samples received by the laboratory; date and time of receipt of the samples at the laboratory; sample conditions upon receipt at the laboratory; date and time of sample analysis; and, if applicable, date of extraction, definition of laboratory data qualifiers, all sample-related quality control data, and quality control acceptance criteria.
- Verification that all requested analyses, special cleanups, and special handling methods were performed.
- Verification that quality control samples were performed as specified in the Work Plan.
- Evaluation of sample holding times.

- Evaluation of quality control data compared to acceptance criteria, including method blanks, surrogate recoveries, matrix spike and matrix spike duplicate results, laboratory duplicate and/or replicate results, laboratory control sample results, and blind field duplicate results.
- Evaluation of reporting limits compared to target reporting limits specified in the Work Plan.
- Verification that initial calibration data are provided for all requested analytes and linked to the field samples reported, and that the appropriate number and concentration of initial calibration standards are present.
- Verification that continuing calibration data are provided for all requested analytes and are linked to the field samples reported, and that reported samples are bracketed by continuing calibration verification and continuing calibration blank standards as appropriate.
- Verification that method specific instrument performance checks are present as appropriate.
- Verification that frequency of instrument quality control samples is appropriate.
- Comparison of instrument-related quality control data to the document requirements and guidelines present in the USEPA functional guidelines for data review identified above.

Data validation qualifiers are added to the sample results, as appropriate, based on the Stage 2B verification and validation check. The results of the verification and validation check are summarized below.

LABORATORY DATA PACKAGE COMPLETENESS

Each laboratory data package contained a signed COC, a cooler receipt form documenting the condition of the samples upon receipt at the laboratory, a cooler temperature compliance form, sample analytical results, and quality control results (method blanks, surrogate recoveries, laboratory control sample results, replicate sample results, initial and continuing calibrations, and instrument performance checks and quality control samples). A case narrative identifying any complications was also provided with each laboratory data package. Definitions of laboratory qualifiers and quality control acceptance criteria were provided, as appropriate.

SAMPLE CONDITIONS AND ANALYSIS

The laboratory received all samples in good condition; select samples were archived and frozen upon initial receipt. Upon client request, select samples were removed from archive and thawed for analysis; all analyses were performed as requested.

HOLDING TIMES

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times with the following exceptions:

• Samples analyzed for mercury and TOC were analyzed in excess of 9 months outside the method-recommended hold time (28 days) due to the inability to freeze samples for these analyses to extend the hold time. The analyses were completed by the laboratory at the request of the client, knowing the hold time had been exceeded. Associated sample results have been flagged as estimated (J/UJ), as indicated in Table 2.

BLANK RESULTS

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks with the following exception:

• Several compounds were detected above the reporting limit in the method blank associated with the dioxins/furans analysis. The samples associated with this method blank had concentrations of these compounds greater than the action level¹. No qualification of the data is necessary.

Field Trip Blanks

No field trip blanks were submitted for analysis.

SURROGATE RECOVERIES

Appropriate compounds were used as surrogate spikes for each organic analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits with the following exceptions:

- Recovery of surrogate d14-Dibenzo(a,h)anthracene associated with the PAH analysis for sample MGP-SB-12-12.5-14.0 exceeded the laboratory-specified upper control limit during the initial analysis. The results of the initial analysis also exceeded the instrument calibration range. The sample was reanalyzed at a dilution with all surrogate recoveries within control limits. The dilution results will be reported; therefore, no qualification of the data is necessary.
- Surrogate recoveries were diluted out of several samples. No qualification of the data is necessary.

¹ The action level is defined as 10 times the concentration in the blank for common volatile laboratory contaminants (methylene chloride, acetone, 2-butanone, and cyclohexane), or 5 times the concentration for other target compounds (EPA 1999).

MATRIX SPIKE (MS)/MATRIX SPIKE DUPLICATE (MSD) AND LABORATORY REPLICATE RESULTS

A MS and a MSD or laboratory replicate sample was analyzed with the PAHs, PCBs, total metals, and TOC analyses. The recovery values for each spiking compound were within the laboratory-specified control limits for all project samples with the following exceptions:

- The MS/MSD recoveries for fluoranthene and pyrene associated with the PAH analysis of sample MGP-SB-08-15.5-17.0 exceeded the laboratory-specified upper control limits; the associated sample results were qualified as estimates (J), as indicated in Table 2.
- The MS or MSD recovery for phenanthrene, anthracene, benzo(a)anthracene, chrysene, and benzo(a)pyrene associated with the PAH analysis of sample MGP-SB-08-15.5-17.0 exceeded the laboratory-specified upper control limits. However, the corresponding MSD or MS was within the laboratory-specified control limits; therefore, no qualification of the data is necessary.

A laboratory-specified control limit of 20 percent was used to evaluate the relative percent differences (RPDs) between the laboratory replicate results, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the laboratory replicate results were within the current laboratory-specified control limits for all project samples with the following exceptions:

• The laboratory replicate RPD for chromium and zinc associated with the total metals analysis of sample MGP-SB-08-12.5-14.0 exceeded the laboratory-specified upper control limit. The associated sample results were qualified as estimates (J), as indicated in Table 2.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

At least one LCS and/or LCSD or standard reference material (SRM) sample was analyzed with each batch of samples for each analysis. Recoveries and RPDs for the LCS/LCSD and SRMs were within the current laboratory-specified control limits. No qualification of the data is necessary.

BLIND FIELD DUPLICATES

No field duplicates were submitted for analysis.

REPORTING LIMITS

The reporting limits for PAHs, total metals, and TOC in several samples were above the target reporting limits due to dilution. The reporting limit for OCDD in sample MGP-SB05-2.5-4.0 during the dioxins/furans analysis was also above the target reporting limit due to dilution. Dilution was required due to high concentrations of target analytes in the samples. A list of the samples with raised reporting limits is provided in Table 3.

INITIAL AND CONTINUING CALIBRATION

Initial and continuing calibration verifications and instrument performance and quality control checks were performed for all requested analyses and were appropriate in number and frequency based on laboratory requirements. Laboratory-specified calibration limits for initial and continuing calibrations were met for all analyses. No qualification of the data is necessary.

COMPLETENESS AND OVERALL DATA QUALITY

Data precision was evaluated through matrix spike duplicates, laboratory replicates, and laboratory control sample duplicates. Data accuracy was evaluated through matrix spikes, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

REFERENCES

EPA. 2009. *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use*. OSWER No. 9200.1-85 EPA 540-R-08-005. U.S. Environmental Protection Agency. January.

EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA-540/R-04-004. U.S. Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, D.C. October.

EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. October.

Herrenkohl Consulting LLC and Landau Associates Inc. 2010. *South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan.* Prepared for City of Bellingham and Puget Sound Energy. August 6.

ATTACHMENTS

Table 1 – Sample Names and Dates of Sample Collection, Extraction, and Analysis

- Table 2 Summary of Data Qualifiers
- Table 3 Target Reporting Limit Exceedances

TABLE 1

SAMPLE NAMES AND DATES OF SAMPLE COLLECTION, EXTRACTION, AND ANALYSIS ARCHIVED SEDIMENT SAMPLING ANALYSIS SOUTH STATE STREET MANUFACTURED GAS PLANT BELLINGHAM, WASHINGTON

Sample Name	Lab Sample ID	Sample Collection Date	Sample Extraction Date	Sample Analysis Date
MGP-SB-06-8.0-9.0	TD69A	9/7/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/21-7/23/11 (PAHs)
MGP-SB-07-7.5-9.0	TD69B	9/9/10	7/14/11 (PAHs)	7/22/11 (PAHs); 7/26/11 (TOC)
MGP-SB-07-10.0-11.5	TD69C	9/9/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/22-7/23/11 (PAHs)
MGP-SB-07-12.5-14.0	TD69D	9/9/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/22-7/23/11 (PAHs)
MGP-SB-08-12.5-14.0	TD69E	9/8/10	7/13/11 (Total Metals); 7/14/11 (PAHs)	7/14-7/18 (Total Metals); 7/20/11 (TOC); 7/22-7/23/11 (PAHs)
MGP-SB-08-14.0-15.5	TD69F	9/8/10	7/13/11 (Total Metals); 7/14/11 (PAHs)	7/14-7/18 (Total Metals); 7/20/11 (TOC); 7/22-7/23/11 (PAHs)
MGP-SB-08-15.5-17.0	TD69G	9/8/10	7/13/11 (Total Metals); 7/14/11 (PAHs)	7/14-7/18 (Total Metals); 7/20/11 (TOC); 7/22/11 (PAHs)
MGP-SB-09-6.0-8.0	TD69H	9/7/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/22-7/23/11 (PAHs)
MGP-SB-09-8.0-10.0	TD69I	9/7/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/22-7/23/11 (PAHs)
MGP-SB-10-8.0-10.0	TD69J	9/9/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/22-7/23/11 (PAHs)
MGP-SB-10-12.0-14.0	TD69K	9/9/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/22-7/23/11 (PAHs)
MGP-SB-10-14.0-15.5	TD69L	9/9/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/23/11 (PAHs)
MGP-SB-11-6.0-8.0	TD69M	9/8/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/23/11 (PAHs)
MGP-SB-11-8.0-10.0	TD69N	9/8/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/23/11 (PAHs)
MGP-SB-11-12.0-14.0	TD69O	9/8/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/23/11 (PAHs)
MGP-SB-12-12.5-14.0	TD69P	9/9/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/23/11 (PAHs)
MGP-SB-12-15.0-16.5	TD69Q	9/9/10	7/14/11 (PAHs)	7/20/11 (TOC); 7/23/11 (PAHs)
MGP-SB-01-4.0-6.0	TD69R	8/20/10	7/14/11 (PCBs; Dioxins/Furans)	7/19/11 (Dioxins/Furans); 7/21/11 (PCBs)
MGP-SB-02-0-2.0	TD69S	8/20/10	7/14/11 (PCBs; Dioxins/Furans)	7/19/11 (Dioxins/Furans); 7/21/11 (PCBs)
MGP-SB-05-2.5-4.0	TD69T	9/8/10	7/14/11 (PCBs; Dioxins/Furans)	7/19/11 (Dioxins/Furans); 7/21/11 (PCBs)
MGP-SB-08-9.0-10.0	TD69U	9/8/10	7/14/11 (PCBs; Dioxins/Furans)	7/19/11 (Dioxins/Furans); 7/21/11 (PCBs)
MGP-SB-09-4.0-6.0	TD69V	9/7/10	7/14/11 (PCBs; Dioxins/Furans)	7/19/11 (Dioxins/Furans); 7/21/11 (PCBs)

TABLE 2 SUMMARY OF DATA QUALIFIERS SOUTH STATE STREET MANUFACTURED GAS PLANT ARCHIVED SEDIMENT SAMPLING ANALYSIS

ata Package	Analyte	Result	Qualifier	Sample Number	Reason
TD69	Fluoranthene	410	J	MGP-SB-08-15.5-17.0	High MS/MSD recovery
TD69	Pyrene	430	J	MGP-SB-08-15.5-17.0	High MS/MSD recovery
TD69	Mercury	0.21	J	MGP-SB-08-12.5-14.0	Analyzed outside method-recommende hold time
TD69	Mercury	0.06	J	MGP-SB-08-14.0-15.5	Analyzed outside method-recommende hold time
TD69	Mercury	0.02U	UJ	MGP-SB-08-15.5-17.0	Analyzed outside method-recommende hold time
TD69	Chromium	44	J	MGP-SB-08-12.5-14.0	High laboratory duplicate RPD
TD69	Zinc	66	J	MGP-SB-08-12.5-14.0	High laboratory duplicate RPD
TD69	TOC	21.1	J	MGP-SB-06-8.0-9.0	Analyzed outside method-recommende hold time
TD69	тос	4.42	J	MGP-SB-07-7.5-9.0	Analyzed outside method-recommende hold time
TD69	тос	13.0	J	MGP-SB-07-10.0-11.5	Analyzed outside method-recommende hold time
TD69	тос	10.5	J	MGP-SB-07-12.5-14.0	Analyzed outside method-recommende hold time
TD69	тос	12.6	J	MGP-SB-08-12.5-14.0	Analyzed outside method-recommende hold time
TD69	тос	4.17	J	MGP-SB-08-14.0-15.5	Analyzed outside method-recommende hold time
TD69	тос	0.836	J	MGP-SB-08-15.5-17.0	Analyzed outside method-recommende hold time
TD69	TOC	17.3	J	MGP-SB-09-6.0-8.0	Analyzed outside method-recommende hold time
TD69	тос	27.2	J	MGP-SB-09-8.0-10.0	Analyzed outside method-recommende hold time
TD69	TOC	13.7	J	MGP-SB-10-8.0-10.0	Analyzed outside method-recommende hold time
TD69	тос	47.9	J	MGP-SB-10-12.0.14.0	Analyzed outside method-recommende hold time
TD69	тос	42.7	J	MGP-SB-10-14.0-15.5	Analyzed outside method-recommende hold time
TD69	TOC	15.2	J	MGP-SB-11-6.0-8.0	Analyzed outside method-recommende hold time
TD69	TOC	11.6	J	MGP-SB-11-8.0-10.0	Analyzed outside method-recommende hold time
TD69	TOC	11.2	J	MGP-SB-11-12.0-14.0	Analyzed outside method-recommende hold time
TD69	TOC	53.6	J	MGP-SB-12-12.5-14.0	Analyzed outside method-recommende hold time
TD69	тос	71.5	J	MGP-SB-12-15.0-16.5	Analyzed outside method-recommende hold time

Notes

J = Indicates the analyte was positively identified; the associated numerical value is the approximate

concentration of the analyte in the sample.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

TABLE 3 TARGET REPORTING LIMIT EXCEEDANCES ARCHIVED SEDIMENT SAMPLING ANALYSIS SOUTH STATE STREET MANUFACTURED GAS PLANT BELLINGHAM, WASHINGTON

Sample Name	Lab Sample ID	Analyte	Target Quantitation Limit	Sample Reporting Limit	Sample Result
	Gampio in	/ liaiyto			
MGP-SB-08-12.5-14.0	TD69E	Arsenic	0.2 mg/kg	13 mg/kg	13U mg/kg
MGP-SB-08-12.5-14.0	TD69E	Silver	0.2 mg/kg	0.8 mg/kg	0.8U mg/kg
MGP-SB-08-14.0-15.5	TD69F	Silver	0.2 mg/kg	0.5 mg/kg	0.5U mg/kg
	TDGOC	Aroonio	0.0 ma/ka	6.2 maller	C 211 mg/kg
MGP-SB-08-15.5-17.0	TD69G	Arsenic	0.2 mg/kg	6.3 mg/kg	6.3U mg/kg
MGP-SB-08-15.5-17.0	TD69G	Cadmium	0.2 mg/kg	0.3 mg/kg	0.3U mg/kg
MGP-SB-08-15.5-17.0	TD69G	Silver	0.2 mg/kg	0.4 mg/kg	0.4U mg/kg

TECHNICAL MEMORANDUM

TO:	Chip Halbert
	Kristi Schultz and Stacy Lane
FROM:	Kristi Schultz and Stacy Lane

DATE: September 7, 2011

RE: ARCHIVED SOIL SAMPLES LABORATORY DATA QUALITY EVALUATION CITY OF BELLINGHAM SOUTH STATE STREET MANUFACTURED GAS PLANT REMEDIAL INVESTIGATION/FEASIBILITY STUDY

This technical memorandum provides the results of a Stage 2B verification and validation check of analytical data for 13 soil samples collected between August 16 and 20, 2010 at the South State Street Manufactured Gas Plant in Bellingham, Washington. All sample analyses were conducted at Analytical Resources, Inc. (ARI) laboratory, located in Tukwila, Washington. Samples submitted to ARI were analyzed for low level carcinogenic polycyclic aromatic hydrocarbons [cPAHs; U.S. Environmental Protection Agency (EPA) Method SW8270D-SIM]. The analytical results are reported in the ARI laboratory data package identified as TD68. Sample identifications and sample collection, extraction, and analysis dates are provided in Table 1.

The Stage 2B verification and validation check was conducted in accordance with EPA's Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (EPA 2009), applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl Consulting and Landau Associates 2010). The Stage 2B verification and validation check for each laboratory data package included the following:

- Verification that the laboratory data package contained all necessary documentation, including chain-of-custody records (COCs); identification of samples received by the laboratory; date and time of receipt of the samples at the laboratory; sample conditions upon receipt at the laboratory; date and time of sample analysis; and, if applicable, date of extraction, definition of laboratory data qualifiers, all sample-related quality control data, and quality control acceptance criteria.
- Verification that all requested analyses, special cleanups, and special handling methods were performed.
- Verification that quality control samples were performed as specified in the Work Plan.
- Evaluation of sample holding times.
- Evaluation of quality control data compared to acceptance criteria, including method blanks, surrogate recoveries, matrix spike and matrix spike duplicate results, laboratory duplicate and/or replicate results, laboratory control sample results, and blind field duplicate results.
- Evaluation of reporting limits compared to target reporting limits specified in the Work Plan.

- Verification that initial calibration data are provided for all requested analytes and linked to the field samples reported, and that the appropriate number and concentration of initial calibration standards are present.
- Verification that continuing calibration data are provided for all requested analytes and are linked to the field samples reported, and that reported samples are bracketed by continuing calibration verification and continuing calibration blank standards as appropriate.
- Verification that method specific instrument performance checks are present as appropriate.
- Verification that frequency of instrument quality control samples is appropriate.
- Comparison of instrument-related quality control data to the document requirements and guidelines present in the USEPA functional guidelines for data review identified above.

If appropriate, data validation qualifiers are added to the sample results; however, based on this Stage 2B verification and validation check, no qualification of the data was determined necessary. The results of the verification and validation check are summarized below.

LABORATORY DATA PACKAGE COMPLETENESS

Each laboratory data package contained a signed COC, a cooler receipt form documenting the condition of the samples upon receipt at the laboratory, a cooler temperature compliance form, sample analytical results, and quality control results (method blanks, surrogate recoveries, laboratory control sample results, replicate sample results, initial and continuing calibrations, and instrument performance checks and quality control samples). A case narrative identifying any complications was also provided with each laboratory data package. Definitions of laboratory qualifiers and quality control acceptance criteria were provided, as appropriate.

SAMPLE CONDITIONS AND ANALYSIS

The laboratory received all samples in good condition; select samples were archived and frozen upon initial receipt. Upon client request, select samples were removed from archive and thawed for analysis; all analyses were performed as requested.

HOLDING TIMES

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times. No qualification of the data is necessary.

BLANK RESULTS

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks. No qualification of the data was necessary.

Field Trip Blanks

No field trip blanks were submitted for analysis.

SURROGATE RECOVERIES

Appropriate compounds were used as surrogate spikes for each organic analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits with the exception of surrogate recoveries being diluted out of several samples. No qualification of the data is necessary.

MATRIX SPIKE (MS)/MATRIX SPIKE DUPLICATE (MSD) AND LABORATORY REPLICATE RESULTS

A MS and a MSD were analyzed with the cPAHs analysis. The recovery values for each spiking compound were within the laboratory-specified control limits. No qualification of the data is necessary.

A laboratory-specified control limit of 20 percent was used to evaluate the relative percent differences (RPDs) between the MS/MSD, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the MS/MSD results were within the current laboratory-specified control limits. No qualification of the data is necessary.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

One LCS/LCSD sample was analyzed with the batch of samples. Recoveries and RPDs for the LCS/LCSD were within the current laboratory-specified control limits. No qualification of the data is necessary.

BLIND FIELD DUPLICATES

No field duplicates were submitted for analysis.

REPORTING LIMITS

Target reporting limits were achieved for all non-detected results.

INITIAL AND CONTINUING CALIBRATION

Initial and continuing calibration verifications and instrument performance and quality control checks were performed for all requested analyses and were appropriate in number and frequency based on laboratory requirements. Laboratory-specified calibration limits for initial and continuing calibrations were met for all analyses. No qualification of the data is necessary.

COMPLETENESS AND OVERALL DATA QUALITY

Data precision was evaluated through matrix spike duplicates and laboratory control sample duplicates. Data accuracy was evaluated through matrix spikes, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

REFERENCES

EPA. 2009. *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use*. OSWER No. 9200.1-85 EPA 540-R-08-005. U.S. Environmental Protection Agency. January.

EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. October.

Herrenkohl Consulting LLC and Landau Associates Inc. 2010. South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan. Prepared for City of Bellingham and Puget Sound Energy. August 6.

ATTACHMENTS

Table 1 – Sample Names and Dates of Sample Collection, Extraction, and Analysis

TABLE 1

SAMPLE NAMES AND DATES OF SAMPLE COLLECTION, EXTRACTION, AND ANALYSIS ARCHIVED SOIL SAMPLING ANALYSIS SOUTH STATE STREET MANUFACTURED GAS PLANT BELLINGHAM, WASHINGTON

Sample Name	Lab Sample ID	Sample Collection Date	Sample Extraction Date	Sample Analysis Date	
MGP-GP-11-3.0-4.0	TD68A	8/16/10 7/14/11 (thawed as of 7/8/11)		7/21/11	
MGP-GP-17-3.0-4.0	TD68B	8/17/10 (thawed as of 7/8/11)	8/17/10 7/14/11 7/22/ (thawed as of		
MGP-GP-23-9.0-10.0	TD68C	8/17/10 (thawed as of 7/8/11)	7/14/11	7/21/11-7/22/11	
MGP-GP-25-6.0-7.0	TD68D	8/18/10 (thawed as of 7/8/11)	7/14/11	7/21/11	
MGP-GP-27-6.0-7.0	TD68E	8/19/10 (thawed as of 7/8/11)	7/14/11	7/22/11	
MGP-GP-29-9.0-10.0	TD68F	8/19/10 (thawed as of 7/8/11)	7/14/11	7/22/11	
MGP-GP-37-14.0- 15.0	TD68G	8/20/10 (thawed as of 7/8/11)	7/14/11	7/22/11	
MGP-GP-38-12.0- 13.0	TD68H	8/19/10 (thawed as of 7/8/11)	7/14/11	7/22/11	
MGP-GP-39-8.0-9.0	TD68I	8/20/10 (thawed as of 7/8/11)	7/14/11	7/22/11	
MGP-GP-39-14.0- 15.0	TD68J	8/20/10 (thawed as of 7/8/11)	7/14/11	7/22/11	
MGP-GP-40-14.0- 15.0	TD68K	8/20/10 (thawed as of 7/8/11)	7/14/11	7/22/11	
MGP-GP-34-7.0-8.0	TD68L	8/20/10 (thawed as of 7/8/11)	7/14/11	7/22/11	
MGP-GP-34-9.0-10.0	TD68M	8/20/10 (thawed as of 7/8/11)/11	7/14/11	7/22/11	

TECHNICAL MEMORANDUM

Chip Halbert

TO:

FROM: Kristi Schultz and Stacy Lane

DATE: October 5, 2011

RE: MARCH 2011 GROUNDWATER AND SURFACE WATER SAMPLES LABORATORY DATA QUALITY EVALUATION CITY OF BELLINGHAM SOUTH STATE STREET MANUFACTURED GAS PLANT REMEDIAL INVESTIGATION/FEASIBILITY STUDY

This technical memorandum provides the results of a Stage 2B verification and validation check of analytical data for 14 groundwater samples and 3 surface water samples collected on March 22, 23, and 30, 2011 at the South State Street Manufactured Gas Plant in Bellingham, Washington. All sample analyses were conducted at Analytical Resources, Inc. (ARI) laboratory, located in Tukwila, Washington. Samples submitted to ARI were analyzed for volatile organic compounds (VOCs) [U.S. Environmental Protection Agency (EPA) Method SW8260C]; semivolatile organic compounds (SVOCs) (EPA Method SW8270D); low level carcinogenic polycyclic aromatic hydrocarbons (cPAHs; EPA Method SW8270D-SIM); diesel- and oil-range petroleum hydrocarbons [TPH-D and TPH-O; Washington State Department of Ecology (Ecology) Method NWTPH-Dx]; gasoline-range petroleum hydrocarbons (TPH-G; Ecology Method NWTPH-Gx); benzene, toluene, ethylbenzene, and xylenes (BTEX; Modified EPA Method SW8021B); total and dissolved metals (EPA Methods 200.8, 6010B, and 7470A); and conventionals, including total suspended solids (TSS) (EPA Method 160.2), total dissolved solids (TDS) (EPA Method 160.1), salinity (SM 2520B), conductivity (EPA Method 120.1), total cyanide (EPA Method 335.4), weak acid dissociable (WAD) cyanide (SM 4500CN-I), and total organic carbon (TOC) and dissolved organic carbon (DOC) (EPA Method 415.1). Hardness was also calculated using the analytical results for the total and dissolved metals. The analytical results are reported in ARI laboratory data packages identified as SO46, SO63/SO66, and SP77/SP80. Sample identifications and sample collection, extraction, and analysis dates are provided in Table 1.

The Stage 2B verification and validation check was conducted in accordance with EPA's *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999), applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 2004), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl Consulting and Landau Associates 2010). The Stage 2B verification and validation check for each laboratory data package included the following:

130 2nd Avenue South • Edmonds, WA 98020 • (425) 778-0907 • fax (425) 778-6409 • www.landauinc.com

- Verification that the laboratory data package contained all necessary documentation, including chain-of-custody records (COCs); identification of samples received by the laboratory; date and time of receipt of the samples at the laboratory; sample conditions upon receipt at the laboratory; date and time of sample analysis; and, if applicable, date of extraction, definition of laboratory data qualifiers, all sample-related quality control data, and quality control acceptance criteria.
- Verification that all requested analyses, special cleanups, and special handling methods were performed.
- Verification that quality control samples were performed as specified in the Work Plan.
- Evaluation of sample holding times.
- Evaluation of quality control data compared to acceptance criteria, including method blanks, surrogate recoveries, matrix spike and matrix spike duplicate results, laboratory duplicate and/or replicate results, laboratory control sample results, and blind field duplicate results.
- Evaluation of reporting limits compared to target reporting limits specified in the Work Plan.
- Verification that initial calibration data are provided for all requested analytes and linked to the field samples reported, and that the appropriate number and concentration of initial calibration standards are present.
- Verification that continuing calibration data are provided for all requested analytes and are linked to the field samples reported, and that reported samples are bracketed by continuing calibration verification and continuing calibration blank standards as appropriate.
- Verification that method specific instrument performance checks are present as appropriate.
- Verification that frequency of instrument quality control samples is appropriate.
- Comparison of instrument-related quality control data to the document requirements and guidelines present in the USEPA functional guidelines for data review identified above.

Data validation qualifiers are added to the sample results, as appropriate, based on the Stage 2B verification and validation check. The results of the verification and validation check are summarized below.

LABORATORY DATA PACKAGE COMPLETENESS

Each laboratory data package contained a signed COC, a cooler receipt form documenting the condition of the samples upon receipt at the laboratory, a cooler temperature compliance form, sample analytical results, and quality control results (method blanks, surrogate recoveries, laboratory control sample results, replicate sample results, initial and continuing calibrations, and instrument performance checks and quality control samples). A case narrative identifying any complications was also provided with each laboratory data package. Definitions of laboratory qualifiers and quality control acceptance criteria were provided, as appropriate.

SAMPLE CONDITIONS AND ANALYSIS

The laboratory received all samples in good condition, and all analyses were performed as requested with the following exception:

• The laboratory noted in data package SO63/SO66, the COC requested analysis for cPAHs for sample MGP-GW-MW-44; however, no sample container was submitted for the analysis because of limited groundwater availability from this location. The sample was therefore not analyzed for cPAHs.

Upon receipt by ARI, the sample container information was compared to the associated COC and the cooler temperatures were recorded. Seven of the ten coolers containing samples were received at the laboratory with temperatures of slightly below the EPA-recommended limit of $4^{\circ}C\pm2^{\circ}C$ (1.1°C, 1.5°C, 1.6°C, 1.8°C, 1.8°C, 1.8°C, and 1.9°C). No qualification was determined necessary due to the slightly low cooler temperatures.

HOLDING TIMES

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times. No qualification of the data is necessary.

BLANK RESULTS

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks. No qualification of the data was necessary.

Field Trip Blanks

Trip blanks were submitted for VOC analysis with data packages SO46 and SO63/SO66 and for gasoline-range petroleum hydrocarbon analysis with data packages SO46, SO63/SO66, and SP77/SP80. No contamination was detected in any of the trip blanks. No qualification of the data was necessary.

SURROGATE RECOVERIES

Appropriate compounds were used as surrogate spikes for each organic analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits with the following exceptions:

• Recovery of the surrogate d10-2-methylnaphthalene associated with the cPAH analyses for sample MGP-GW-MW-07 reported in data package SO63 exceeded the laboratory-specified upper control limit. However, the data was not qualified because the USEPA functional guidelines for data quality require two or more surrogates of the same fraction to be out of control limits to qualify SVOC results.

• The recovery of the surrogate associated with the 4/1/11 TPH-G continuing calibration (CCAL) in data package SP77/SP80 exceeded the laboratory-specified upper control limit. All other quality control and sample surrogate recoveries were in control; therefore, no qualification of the data is necessary.

MATRIX SPIKE (MS)/MATRIX SPIKE DUPLICATE (MSD) AND LABORATORY REPLICATE RESULTS

A MS and a MSD or laboratory duplicate sample was analyzed with the VOCs, SVOCs, cPAHs, TPH-G and BTEX, TPH-D and TPH-O, total metals, dissolved metals, and conventionals analyses in one or more data package. The recovery values for each spiking compound were within the laboratory-specified control limits for all project samples with the following exceptions:

- The MS recovery for 4-nitroaniline associated with the SVOCs analysis of sample MGP-GW-MW-40 included in data package SO46 exceeded the laboratory-specified upper control limit. 4-Nitroaniline was not detected in the associated sample; therefore, no qualification of the data is necessary.
- The MS/MSD recoveries for chloromethane, bromomethane, cis-1,3-dichloropropene, styrene, and acrolein associated with the VOCs analysis of sample MGP-GW-MW-40 included in data package SO46 were below the laboratory-specified lower control limits; the associated sample results were qualified as estimates (UJ), as indicated in Table 2.
- The MS/MSD recoveries for carbon disulfide associated with the VOCs analysis of sample MGP-GW-MW-40 included in data package SO46 exceeded the laboratory-specified upper control limit; the associated sample result was qualified as an estimate (J), as indicated in Table 2.
- The MS/MSD recoveries for 2-chloroethylvinylether associated with the VOCs analysis of sample MGP-GW-MW-40 included in data package SO46 were not calculated because this compound was not detected in the MS/MSD samples; no qualification of the data was determined necessary.
- The MS/MSD recoveries for vinyl chloride, vinyl acetate, 4-methyl-2-pentanone, 2hexanone, and 1,2-dibromo-3-chloropropane associated with the VOCs analysis of sample MGP-GW-MW-40 included in data package SO46 exceeded the laboratory-specified upper control limits; these compounds were not detected in the associated sample; therefore, no qualification of the data is necessary.
- The MS or MSD recovery for chloroethane, 1,1-dichloroethene, trans-1,3-dichloropropene, methyl iodide, and methyl tert-butyl ether associated with the VOCs analysis for sample MGP-GW-MW-40 in data package SO46 exceeded the laboratory-specified upper control limits. However, the corresponding MSD or MS was within the laboratory-specified control limits; therefore, no qualification of the data is necessary.
- The MS/MSD recoveries for benzene, toluene, and o-xylene associated with the BTEX analysis for sample MGP-GW-MW-40 included in data package SO46 exceeded the laboratory-specified upper control limits. These compounds were not detected in the associated sample; therefore, no qualification of the data is necessary.
- The MS recovery for selenium associated with the total metals analysis of sample MGP-GW-MW-40 included in data package SO46 was below the laboratory-specified lower

control limit; the associated sample result was qualified as estimated (J), as indicated in Table 2.

- The MS recovery for WAD cyanide associated with the conventionals analysis of sample MGP-GW-MW-40 included in data package SO46 was below the laboratory-specified lower control limit; the associated sample result was qualified as estimated (UJ), as indicated in Table 2.
- The MS recovery for antimony associated with the total metals analysis of sample MGP-SW-02 included in data package SP77/SP80 was below the laboratory-specified lower control limit; the associated sample result was qualified as estimated (J), as indicated in Table 2.
- The MS recovery for n-nitrosodiphenylamine associated with the SVOCs analysis for sample MGP-SW-02 included in data package SP77/SP80 was below the laboratory-specified lower control limit; the associated sample result was qualified as estimated (UJ), as indicated in Table 2.

A laboratory-specified control limit of 20 percent was used to evaluate the relative percent differences (RPDs) between the laboratory replicate results, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the laboratory replicate results were within the current laboratory-specified control limits for all project samples with the following exceptions:

- The MS/MSD RPD for 3,3'-dichlorobenzidine associated with the SVOCs analysis of sample MGP-GW-MW-40 included in data package SO46 exceeded the laboratory-specified upper control limit. 3,3'-dichlorobenzidine was not detected in the associated sample; therefore, no qualification of the data is necessary.
- The MS/MSD RPD for bromomethane, cis-1,3-dichloropropane, trans-1,3-dichloropropene, styrene, methyl iodide, and 2,2-dichloropropane associated with the VOCs analysis of sample MGP-GW-MW-40 included in data package SO46 exceeded the laboratory-specified upper control limit. These compounds were not detected in the associated sample; therefore, no qualification of the data is necessary.
- The MS/MSD RPD for 2-chloroethylvinylether associated with the VOCs analysis of sample MGP-GW-MW-40 included in data package SO46 was not calculated because this compound was not detected in the MS/MSD samples. No qualification of the data is necessary.
- The MS/MSD RPD for acrolein associated with the VOCs analysis of sample MGP-GW-MW-40 in data package SO46 was not calculated because this compound was not detected in the MS sample. No qualification of the data is necessary.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

At least one LCS and/or LCSD or standard reference material (SRM) sample was analyzed with each batch of samples for each analysis. Recoveries and RPDs for the LCS/LCSD and SRMs were within the current laboratory-specified control limits with the following exceptions:

- The 3/24/11 LCS/LCSD recoveries for bromoform associated with the VOCs analyses reported in data package SO46 were below the laboratory-specified lower control limit. The associated sample results were qualified as estimated (UJ), as indicated in Table 2.
- The 3/25/11 and 3/28/11 LCS/LCSD recoveries for 2-chloroethylvinylether associated with the VOCs analyses reported in data package SO63/SO66 were below the laboratory-specified lower control limit. The associated sample results were qualified as estimated (UJ), as indicated in Table 2.
- The 3/25/11 LCS/LCSD recovery for 2,2-dichloropropane and the 3/28/11 LCS/LCSD recoveries for 2,2-dichloropropane and 2-hexanone associated with the VOCs analysis in data package SO63/SO66 exceeded the laboratory-specified upper control limits. These compounds were not detected in the associated samples; therefore, no qualification of the data is necessary.
- The LCS/LCSD RPD for 2,4-dinitrophenol associated with the SVOC analyses reported in data package SO63/SO66 exceeded the laboratory-specified upper control limit. 2,4-dinitrophenol was not detected in the associated sample result; therefore, no qualification of the data is necessary.

BLIND FIELD DUPLICATES

One pair of blind field duplicate groundwater samples (MGP-GW-MW-34/MGP-GW-MW-64) was submitted for analysis with data package SO63/SO66 and analyzed for SVOCs, cPAHs, TPH-D and TPH-O, total and dissolved metals, and TDS. One pair of blind field duplicate surface water samples (MGP-SW-01/MGP-SW-04) was submitted for analysis with data package SP77/SP80 and analyzed for SVOCs, cPAHs, TPH-D and TPH-O, BTEX, TPH-G, total metals, TSS, and TOC.

A project-specified control limit of 20 percent was used to evaluate the RPDs between the duplicate water samples, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. RPDs for the duplicate sample pair submitted for analysis were within the project-specified control limits with the following exception:

- The RPDs for benzo(a)pyrene and total benzofluoranthenes associated with the cPAHs analysis of the blind field duplicate pair MGP-GW-MW-34/MGP-GW-MW-64 exceeded the project-specified control limit. The results are qualified as estimates (J), as indicated in Table 2.
- The RPD for total benzofluoranthenes associated with the cPAHs analysis of the blind field duplicate pair MGP-SW-01/MGP-SW-04 exceeded the project-specified control limit. The results are qualified as estimates (J), as indicated in Table 2.

REPORTING LIMITS

The reporting limits for VOCs in several samples were above the target reporting limits due to dilution. Dilution was required due to high concentrations of benzene and naphthalene in the samples.

During revisions to the project Work Plan (Herrenkohl Consulting and Landau Associates 2010), it was agreed that VOCs would be analyzed using EPA Method 8260, not EPA Method 8260-SIM. The target quantitation limits in Table C-2 do not reflect that update for two chemicals: vinyl chloride and 1,1-dichloroethene. The laboratory reporting limits achieved for these analytes are consistent with target reporting limits for EPA Method 8260 and are not considered a deviation from the Work Plan.

A list of the samples with raised reporting limits is provided in Table 3.

INITIAL AND CONTINUING CALIBRATION

Initial and continuing calibration verifications and instrument performance and quality control checks were performed for all requested analyses and were appropriate in number and frequency based on laboratory requirements. Laboratory-specified calibration limits for initial and continuing calibrations were met for all analyses, except for the following:

- The SVOC initial calibrations for analyses reported in data packages SO46, SO63/SO66, and SP77/SP80 were high for benzidine and the continuing calibrations (CCALs) for benzidine were low. Benzidine was not a requested compound for analysis; therefore no qualification of the data is necessary.
- The SVOC CCALs for analyses reported in data packages SO46, SO63/SO66, and SP77/SP80 were low for 2,4-dinitrophenol; the associated sample results were qualified as estimates (UJ), as indicated in Table 1.
- The TPH-D and TPH-O CCALs for analyses reported in data packages SO46, SO63/SO66, and SP77/SP80 were high for AK Motor Oil. AK Motor Oil was not a requested compound for analysis; therefore no qualification of the data is necessary.
- The 3/25/11 and 3/28/11 VOC CCALs for analyses reported in data package SO63/SO66 were high for 2,2-dichloropropane. This compound was not detected in the associated samples; therefore no qualification of the data is necessary.
- The 3/25/11 VOC CCAL for analyses reported in data package SO63/SO66 was low for 2chloroethylvinylether and the 3/28/11 VOC CCAL was low for 2-chloroethylvinylether and acetone; the associated sample results were qualified as estimated (UJ), as indicated in Table 1.
- The 3/28/11 VOC CCAL for analyses reported in data package SO63/SO66 was high for dichlorofluoromethane. Dichlorofluoromethane was not a requested compound for analysis; therefore no qualification of the data is necessary.
- The BTEX CCALs in data packages SO46 and SO63/SO66 were low for methyl tert-butyl ether. Methyl tert-butyl ether was not a requested compound for analysis; therefore no qualification of the data is necessary.
- The VOC CCAL for analyses reported in data package SO46 was low for bromoform; the associated sample results were qualified as estimated (UJ), as indicated in Table 1.

COMPLETENESS AND OVERALL DATA QUALITY

Data precision was evaluated through blind field duplicate samples, matrix spike duplicates, laboratory replicates, and laboratory control sample duplicates. Data accuracy was evaluated through matrix spikes, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

REFERENCES

EPA. 2009. *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use*. OSWER No. 9200.1-85 EPA 540-R-08-005. U.S. Environmental Protection Agency. January.

EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA-540/R-04-004. U.S. Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, D.C. October.

EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. October.

Herrenkohl Consulting LLC and Landau Associates Inc. 2010. South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan. Prepared for City of Bellingham and Puget Sound Energy. August 6.

ATTACHMENTS

Table 1 – Sample Names and Dates of Sample Collection, Extraction, and Analysis

- Table 2 Summary of Data Qualifiers
- Table 3 Target Reporting Limit Exceedances

TABLE 1

SAMPLE NAMES AND DATES OF SAMPLE COLLECTION, EXTRACTION, AND ANALYSIS MARCH 2011 GROUNDWATER AND SURFACE WATER SAMPLING SOUTH STATE STREET MANUFACTURED GAS PLANT BELLINGHAM, WASHINGTON

Lab Sample Sample Sa Sample Name ID Collection Date		Sample Extraction Date	Sample Analysis Date			
MGP-GW-MW-31	SO46A	3/22/11	3/24/11	3/24/11 (VOCs, TDS); 3/25/11 (SVOCs, cPAHs, TPH-D and TPH-O, TPH-G, BTEX, total and dissolved metals, conductivity, salinity, total and WAD cyanide)		
MGP-GW-MW-40	SO46B	3/22/11	3/24/11	3/24/11 (VOCs, TDS, TOC, DOC); 3/25/11 (SVOCs, cPAHs, TPH-D and TPH-O, TPH-G, BTEX, total and dissolved metals, conductivity, salinity, total and WAD cyanide)		
MGP-GW-MW-45	SO46C	3/22/11	3/24/11	3/24/11 (VOCs, TDS); 3/25/11 (SVOCs, cPAHs, TPH-D and TPH-O, TPH-G, BTEX, total and dissolved metals, conductivity, salinity, total and WAD cyanide)		
MGP-GW-MW-38	SO63A	3/23/11	3/25/11 (cPAHs, total and dissolved metals), 3/26/11 (SVOCs), 3/28/11 (TPH-D and TPH-O)	3/24/11 (TDS, DOC), 3/25/11 (VOCs, TPH-G, BTEX, total and dissolved metals, conductivity, salinity, total and WAD cyanide, TOC), 3/28/11 (SVOCs, cPAHs, TPH-D and TPH-O, total and dissolved metals)		
MGP-GW-MW-24	SO63B	3/23/11	3/25/11 (cPAHs, total and dissolved metals), 3/26/11 (SVOCs), 3/28/11 (TPH-D and TPH-O)	3/24/11 (TDS), 3/25/11 (VOCs, TPH-G, BTEX, total and dissolved metals, total and WAD cyanide), 3/28/11 (SVOCs, cPAHs, TPH-D and TPH-O, total and dissolved metals)		
MGP-GW-MW-19	SO63C	3/23/11	3/25/11 (cPAHs, total and dissolved metals), 3/26/11 (SVOCs), 3/28/11 (TPH-D and TPH-O)	3/24/11 (TDS), 3/25/11 (VOCs, TPH-G, BTEX, total and dissolved metals, total and WAD cyanide), 3/28/11 (SVOCs, TPH-D and TPH-O, total and dissolved metals), 3/29/11 (cPAHs)		
MGP-GW-MW-34	SO63D	3/23/11	3/25/11 (cPAHs, total and dissolved metals), 3/26/11 (SVOCs), 3/28/11 (TPH-D and TPH-O)	3/24/11 (TDS, TOC, DOC), 3/25/11 (TPH-G, BTEX, total and dissolved metals, conductivity, salinity, total and WAD cyanide), 3/28/11 (SVOCs, VOCs, TPH-D and TPH-O, total and dissolved metals), 3/29/11 (cPAHs)		
MGP-GW-MW-42	SO63E	3/23/11	3/25/11 (cPAHs, total and dissolved metals), 3/26/11 (SVOCs). 3/28/11 (TPH-D and TPH-O)	3/24/11 (TDS, TOC, DOC), 3/25/11 (TPH-G, BTEX, total and dissolved metals, conductivity, salinity, total and WAD cyanide), 3/28/11 (SVOCs, VOCs, TPH-D and TPH-O, total and dissolved metals), 3/29/11 (cPAHs)		
MGP-GW-MW-36	SO63F	3/23/11	3/25/11 (cPAHs, total and dissolved metals), 3/26/11 (SVOCs), 3/28/11 (TPH-D and TPH-O)	3/24/11 (TDS, TOC, DOC), 3/25/11 (VOCs, TPH-G, BTEX, total and dissolved metals, conductivity, salinity, total and WAD cyanide), 3/28/11 (SVOCs, TPH-D and TPH-O, total and dissolved metals), 3/29/11 (cPAHs)		
MGP-GW-MW-64	SO63G	3/23/11	3/25/11 (cPAHs, total and dissolved metals), 3/26/11 (SVOCs), 3/28/11 (TPH-D and TPH-O)	3/24/11 (TDS), 3/25/11 (total and dissolved metals), 3/28/11 (SVOCs, TPH-D and TPH-O, total and dissolved metals), 3/29/11 (cPAHs)		
MGP-GW-MW-44	SO66A	3/24/11		3/25/11 (VOCs, TPH-G, BTEX)		
MGP-GW-MW-07	SO66B	3/24/11	3/25/11 (cPAHs)	3/25/11 (TPH-G, BTEX), 3/28/11 (VOCs), 3/29/11 (cPAHs)		

TABLE 1

SAMPLE NAMES AND DATES OF SAMPLE COLLECTION, EXTRACTION, AND ANALYSIS MARCH 2011 GROUNDWATER AND SURFACE WATER SAMPLING SOUTH STATE STREET MANUFACTURED GAS PLANT BELLINGHAM, WASHINGTON

Lab Sample Sample Name ID		Sample Collection Date	Sample Extraction Date	Sample Analysis Date	
MGP-GW-MW-29	SO66C	3/24/11	3/25/11 (cPAHs, total and dissolved metals), 3/26/11 (SVOCs), 3/28/11 (TPH-D and TPH-O)	3/24/11 (TDS), 3/25/11 (VOCs, TPH-G, BTEX, total and dissolved metals, conductivity, salinity), 3/28/11 (SVOCs, TPH-D and TPH-O, total and dissolved metals, total and WAD cyanide), 3/29/11 (cPAHs)	
MGP-GW-MW-28	SO66D	3/24/11	3/25/11 (cPAHs, total and dissolved metals), 3/26/11 (SVOCs), 3/28/11 (TPH-D and TPH-O)	3/24/11 (TDS), 3/25/11 (TPH-G, BTEX, total and dissolved metals, conductivity, salinity), 3/28/11 (SVOCs, VOCs, TPH-D and TPH-O, total and dissolved metals, total and WAD cyanide), 3/29/11 (cPAHs)	
MGP-SW_02	SP77A	3/30/11	4/1/11 (TPH-D and TPH- O, total metals), 4/2/11 (SVOCs); 4/4/11 (cPAHs, total metals)	4/1/11 (TPH-G, BTEX, TSS, TOC), 4/4/11 (SVOCs, cPAHs, TPH-D and TPH-O, total metals), 4/5/11 (total metals)	
MGP-SW-01	SP80A	3/31/11	4/1/11 (TPH-D and TPH- O, total metals), 4/2/11 (SVOCs); 4/4/11 (cPAHs, total metals)	4/1/11 (TPH-G, BTEX, TSS, TOC), 4/4/11 (SVOCs, cPAHs, TPH-D and TPH-O, total metals), 4/5/11 (total metals)	
MGP-SW-04	SP80B	3/31/11	4/1/11 (TPH-D and TPH- O, total metals), 4/2/11 (SVOCs); 4/4/11 (cPAHs, total metals)	4/1/11 (TPH-G, BTEX, TSS, TOC), 4/4/11 (SVOCs, cPAHs, TPH-D and TPH-O, total metals), 4/5/11 (total metals)	

TABLE 2 SUMMARY OF DATA QUALIFIERS SOUTH STATE STREET MANUFACTURED GAS PLANT GROUNDWATER AND SURFACE WATER SAMPLING

ata Package	Analyte	Result	Qualifier	Sample Number	Reason
SO46	Bromoform	0.2U	UJ	MGP-GP-MW-31	Low LCS/LCSD recovery; low continuir calibration recovery
SO46	Bromoform	0.2U	UJ	MGP-GP-MW-40	Low LCS/LCSD recovery; low continuir calibration recovery
SO46	Bromoform	0.2U	UJ	MGP-GP-MW-45	Low LCS/LCSD recovery; low continuir calibration recovery
SO46	Chloromethane	0.5U	UJ	MGP-GP-MW-40	Low MS/MSD recovery
SO46	Bromomethane	1.0U	UJ	MGP-GP-MW-40	Low MS/MSD recovery
SO46	Carbon Disulfide	1.3	J	MGP-GP-MW-40	High MS/MSD recovery
SO46	cis-1,3-Dichloropropene	0.2U	ŰĴ	MGP-GP-MW-40	Low MS/MSD recovery
SO46	Styrene	0.2U	UJ	MGP-GP-MW-40	Low MS/MSD recovery
	Acrolein		UJ		-
SO46		5.0U		MGP-GP-MW-40	Low MS/MSD recovery
SO46	2,4-Dinitrophenol	10U	UJ	MGP-GP-MW-31	Low continuing calibration recovery
SO46	2,4-Dinitrophenol	10U	UJ	MGP-GP-MW-40	Low continuing calibration recovery
SO46	2,4-Dinitrophenol	10U	UJ	MGP-GP-MW-45	Low continuing calibration recovery
SO46	Selenium	0.1	J	MGP-GP-MW-40	Low MS recovery
SO46	WAD Cyanide	0.005U	UJ	MGP-GP-MW-40	Low MS recovery
SO63/SO66	2-Chloroethylvinylether	1.0U	UJ	MGP-GW-MW-38	Low LCS/LCSD recovery; low continuir calibration recovery
SO63/SO66	2-Chloroethylvinylether	200U	UJ	MGP-GW-MW-24	Low LCS/LCSD recovery; low continuin calibration recovery
SO63/SO66	2-Chloroethylvinylether	1.0U	UJ	MGP-GW-MW-19	Low LCS/LCSD recovery; low continuin calibration recovery
SO63/SO66	2-Chloroethylvinylether	1.0U	UJ	MGP-GW-MW-34	Low LCS/LCSD recovery; low continuit calibration recovery
SO63/SO66	2-Chloroethylvinylether	1.0U	UJ	MGP-GW-MW-42	Low LCS/LCSD recovery; low continuit calibration recovery
SO63/SO66	2-Chloroethylvinylether	1.0U	UJ	MGP-GW-MW-36	Low LCS/LCSD recovery; low continui calibration recovery
SO63/SO66	2-Chloroethylvinylether	200U	UJ	MGP-GW-MW-44	Low LCS/LCSD recovery; low continuit calibration recovery
SO63/SO66	2-Chloroethylvinylether	50U	UJ	MGP-GW-MW-07	Low LCS/LCSD recovery; low continuit calibration recovery
SO63/SO66	2-Chloroethylvinylether	1.0U	UJ	MGP-GW-MW-29	Low LCS/LCSD recovery; low continuit calibration recovery
SO63/SO66	2-Chloroethylvinylether	100U	UJ	MGP-GW-MW-28	Low LCS/LCSD recovery; low continuin calibration recovery
SO63/SO66	Acetone	5.0U	UJ	MGP-GW-MW-34	Low continuing calibration recovery
SO63/SO66	Acetone	5.0U	UJ	MGP-GW-MW-42	Low continuing calibration recovery
SO63/SO66	Acetone	250U	UJ	MGP-GW-MW-07	Low continuing calibration recovery
SO63/SO66	Acetone	500U	UJ	MGP-GW-MW-28	Low continuing calibration recovery
SO63/SO66	2,4-Dinitrophenol	10U	UJ	MGP-GW-MW-38	Low continuing calibration recovery
SO63/SO66	2,4-Dinitrophenol	10U	UJ	MGP-GW-MW-24	Low continuing calibration recovery
SO63/SO66	2,4-Dinitrophenol	10U	UJ	MGP-GW-MW-19	Low continuing calibration recovery
SO63/SO66	2,4-Dinitrophenol	10U	UJ	MGP-GW-MW-34	Low continuing calibration recovery
SO63/SO66	2,4-Dinitrophenol	10U	UJ	MGP-GW-MW-42	Low continuing calibration recovery
SO63/SO66	2,4-Dinitrophenol	10U	UJ	MGP-GW-MW-36	Low continuing calibration recovery
SO63/SO66	2,4-Dinitrophenol	10U	UJ	MGP-GW-MW-64	Low continuing calibration recovery
SO63/SO66	2,4-Dinitrophenol	10U	UJ	MGP-GW-MW-29	Low continuing calibration recovery
SO63/SO66	2,4-Dinitrophenol	10U	UJ	MGP-GW-MW-28	Low continuing calibration recovery
	<u> </u>				
SO63/SO66 SO63/SO66	Benzo(a)pyrene	0.015	J	MGP-GW-MW-34	High field duplicate RPD
	Benzo(a)pyrene	0.030	J	MGP-GW-MW-64	High field duplicate RPD
SO63/SO66 SO63/SO66	Total Benzofluoranthenes Total Benzofluoranthenes	0.016 0.030	J J	MGP-GW-MW-34 MGP-GW-MW-64	High field duplicate RPD High field duplicate RPD
SP77/SP80	2,4-Dinitrophenol	10U	UJ	MGP-SW-02	Low continuing calibration recovery
SP77/SP80	2,4-Dinitrophenol	10U	UJ	MGP-SW-01	Low continuing calibration recovery
SP77/SP80	2,4-Dinitrophenol	10U	UJ	MGP-SW-04	Low continuing calibration recovery
SP77/SP80	N-Nitrosodiphenylamine	1.0U	UJ	MGP-SW-02	Low MS recovery
SP77/SP80	Antimony	0.3	J	MGP-SW-02 MGP-SW-02	Low MS recovery
	Total Benzofluoranthenes	0.3		MGP-SW-02 MGP-SW-01	High field duplicate RPD
SP77/SP80 SP77/SP80			J		÷ .
SU///SU80	Total Benzofluoranthenes	0.19	J	MGP-SW-04	High field duplicate RPD

Notes

 \overline{J} = Indicates the analyte was positively identified; the associated numerical value is the approximat concentration of the analyte in the sample

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate

TABLE 3 TARGET REPORTING LIMIT EXCEEDANCES MARCH 2011 GROUNDWATER AND SURFACE WATER SAMPLING SOUTH STATE STREET MANUFACTURED GAS PLANT BELLINGHAM, WASHINGTON

Lab Sample Name Sample ID Analyte		Target Quantitation Limit	Sample Reporting Limit	Sample Result	
MGP-GW-MW-24	SO63B	Chloromethane	0.5 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-24	SO63B	Bromomethane	1.0 µg/L	200 µg/L	200U µg/L
MGP-GW-MW-24	SO63B	Vinyl Chloride	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Chloroethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Methylene Chloride	0.5 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-24	SO63B	Acetone	5.0 µg/L	1000 µg/L	1000U µg/L
MGP-GW-MW-24	SO63B	Carbon Disulfide	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,1-Dichloroethene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,1-Dichloroethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	trans-1,2- Dichloroethene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	cis-1,2-Dichloroethene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Chloroform	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,2-Dichloroethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	2-Butanone	5.0 µg/L	1000 µg/L	1000U µg/L
MGP-GW-MW-24	SO63B	1,1,1-Trichloroethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Carbon Tetrachloride	0.2 µg/L	40 μg/L	40U µg/L
MGP-GW-MW-24	SO63B	Vinyl Acetate	1.0 μg/L	200 µg/L	200U µg/L
MGP-GW-MW-24	SO63B	Bromodichloromethane	0.2 µg/L	40 μg/L	40U μg/L
MGP-GW-MW-24	SO63B	1,2-Dichloropropane	0.2 µg/L	40 μg/L	40U µg/L
MGP-GW-MW-24	SO63B	cis-1,3- Dichloropropene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Trichloroethene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Dibromochloromethane	0.2 µg/L	40 μg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,1,2-Trichloroethane	0.2 µg/L	40 μg/L	40U μg/L
MGP-GW-MW-24	SO63B	trans-1,3-	0.2 µg/L	40 μg/L 40 μg/L	400 µg/L
		Dichloropropene			10
MGP-GW-MW-24	SO63B	2-Chloroethylvinylether	1.0 µg/L	200 µg/L	200U µg/L
MGP-GW-MW-24	SO63B	Bromoform	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	4-Methyl-2-Pentanone (MIBK)	5.0 μg/L	1000 µg/L	1000U µg/L
MGP-GW-MW-24	SO63B	2-Hexanone	5.0 µg/L	1000 µg/L	1000U µg/L
MGP-GW-MW-24	SO63B	Tetrachloroethene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,1,2,2- Tetrachloroethane	0.2 μg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Chlorobenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Trichlorofluoromethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,1,2-Trichloro-1,2,2- trifluoroethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,2-Dichlorobenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,3-Dichlorobenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,4-Dichlorobenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Acrolein	5.0 µg/L	1000 µg/L	1000U µg/L
MGP-GW-MW-24	SO63B	Methyl Iodide	0.2 µg/L	200 µg/L	200U µg/L
MGP-GW-MW-24	SO63B	Bromoethane	0.2 µg/L	40 µg/L	40U μg/L
MGP-GW-MW-24	SO63B	Acrylonitrile	1.0 µg/L	200 µg/L	200U µg/L
MGP-GW-MW-24	SO63B	1,1-Dichloropropene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Dibromomethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,1,1,2- Tetrachloroethane	0.2 μg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,2-Dibromo-3- chloropropane	0.5 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-24	SO63B	1,2,3-Trichloropropane	0.5 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-24	SO63B	trans-1,4-Dichloro-2- butene	1.0 μg/L	200 µg/L	200U µg/L
MGP-GW-MW-24	SO63B	Ethylene Dibromide	0.2 µg/L	40 µg/L	40U µg/L
	00000	Bromochloromethane	0.2 µg/L	40 μg/L	40U µg/L

Sample Name	Lab Sample ID	Analyte	Target Quantitation Limit	Sample Reporting Limit	Sample Result
MGP-GW-MW-24	SO63B	2,2-Dichloropropane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,3-Dichloropropane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Isopropylbenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	n-Propylbenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	Bromobenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	2-Chlorotoluene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	4-Chlorotoluene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	tert-Butylbenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	sec-Butylbenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	4-Isopropyltoluene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	n-Butylbenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-24	SO63B	1,2,4-Trichlorobenzene	0.5 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-24	SO63B	1,2,3-Trichlorobenzene	0.5 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-44	SO66A	Chloromethane	0.5 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-44	SO66A	Bromomethane	1.0 μg/L	200 µg/L	200U µg/L
MGP-GW-MW-44	SO66A	Vinyl Chloride	0.2 µg/L	40 µg/L	40U μg/L
MGP-GW-MW-44	SO66A	Chloroethane	0.2 µg/∟ 0.2 µg/L	40 μg/L 40 μg/L	400 μg/L 40U μg/L
MGP-GW-MW-44	SO66A	Methylene Chloride	0.2 μg/L 0.5 μg/L	100 μg/L	100U μg/L
MGP-GW-MW-44	SO66A	Acetone	5.0 µg/L	1000 µg/L	1000 µg/L
MGP-GW-MW-44	SO66A	Carbon Disulfide	0.2 µg/L	40 µg/L	40U μg/L
MGP-GW-MW-44	SO66A	1,1-Dichloroethene	0.2 µg/L	40 µg/L	400 μg/L 40U μg/L
MGP-GW-MW-44	SO66A	1,1-Dichloroethane	0.2 µg/L 0.2 µg/L	40 µg/L	400 µg/L
MGP-GW-MW-44	SO66A	trans-1,2-	0.2 µg/L	40 µg/L	400 µg/L
		Dichloroethene			
MGP-GW-MW-44	SO66A	cis-1,2-Dichloroethene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Chloroform	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	1,2-Dichloroethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	2-Butanone	5.0 µg/L	1000 µg/L	1000U µg/L
MGP-GW-MW-44	SO66A	1,1,1-Trichloroethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Carbon Tetrachloride	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Vinyl Acetate	1.0 µg/L	200 µg/L	200U µg/L
MGP-GW-MW-44	SO66A	Bromodichloromethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	1,2-Dichloropropane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	cis-1,3- Dichloropropene	0.2 μg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Trichloroethene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Dibromochloromethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	1,1,2-Trichloroethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	trans-1,3- Dichloropropene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	2-Chloroethylvinylether	1.0 µg/L	200 µg/L	200U µg/L
MGP-GW-MW-44	SO66A	Bromoform	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	4-Methyl-2-Pentanone (MIBK)	5.0 μg/L	1000 µg/L	1000U µg/L
MGP-GW-MW-44	SO66A	2-Hexanone	5.0 µg/L	1000 µg/L	1000U µg/L
MGP-GW-MW-44	SO66A	Tetrachloroethene	0.2 μg/L	40 μg/L	40U μg/L
MGP-GW-MW-44	SO66A	1,1,2,2-	0.2 µg/L	40 µg/L	40U µg/L
	3000A	Tetrachloroethane	0.2 µg/L	40 µg/L	
MGP-GW-MW-44	SO66A	Chlorobenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Styrene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Trichlorofluoromethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	1,1,2-Trichloro-1,2,2- trifluoroethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	1,2-Dichlorobenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	1,3-Dichlorobenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	1,4-Dichlorobenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Acrolein	5.0 µg/L	1000 µg/L	1000U µg/L
MGP-GW-MW-44	SO66A	Methyl Iodide	0.2 µg/L	200 µg/L	200U µg/L

Sample Name	Lab Sample Name Sample ID		Target Quantitation Limit	Sample Reporting Limit	Sample Result
MGP-GW-MW-44	SO66A	Bromoethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Acrylonitrile	1.0 µg/L	200 µg/L	200U µg/L
MGP-GW-MW-44	SO66A	1,1-Dichloropropene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Dibromomethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	1,1,1,2-	0.2 µg/L	40 µg/L	40U µg/L
		Tetrachloroethane			
MGP-GW-MW-44	SO66A	1,2-Dibromo-3-	0.5 µg/L	100 µg/L	100U µg/L
		chloropropane			
MGP-GW-MW-44	SO66A	1,2,3-Trichloropropane	0.5 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-44	SO66A	trans-1,4-Dichloro-2-	1.0 µg/L	200 µg/L	200U µg/L
		butene		100 //	(00) // //
MGP-GW-MW-44	SO66A	Hexachlorobutadiene	0.5 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-44	SO66A	Ethylene Dibromide	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Bromochloromethane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	2,2-Dichloropropane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	1,3-Dichloropropane	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Isopropylbenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	n-Propylbenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	Bromobenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	2-Chlorotoluene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	4-Chlorotoluene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	tert-Butylbenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	sec-Butylbenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	4-Isopropyltoluene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	n-Butylbenzene	0.2 µg/L	40 µg/L	40U µg/L
MGP-GW-MW-44	SO66A	1,2,4-Trichlorobenzene	0.5 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-44	SO66A	1,2,3-Trichlorobenzene	0.5 µg/L	100 µg/L	100U µg/L
	00000	Obleasestheses	0.5	05	0511
MGP-GW-MW-07	SO66B	Chloromethane	0.5 µg/L	25 µg/L	25U µg/L
MGP-GW-MW-07	SO66B	Bromomethane	1.0 µg/L	50 µg/L	50U µg/L
MGP-GW-MW-07	SO66B	Vinyl Chloride	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07 MGP-GW-MW-07	SO66B SO66B	Chloroethane Mathylana Chlorida	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Methylene Chloride Acetone	0.5 μg/L 5.0 μg/L	25 μg/L 250 μg/L	25U μg/L 250U μg/L
MGP-GW-MW-07	SO66B	Carbon Disulfide	0.2 μg/L		10U µg/L
MGP-GW-MW-07	SO66B	1,1-Dichloroethene	0.2 µg/L 0.2 µg/L	10 μg/L 10 μg/L	100 µg/L
MGP-GW-MW-07	SO66B	1,1-Dichloroethane	0.2 µg/L	10 μg/L 10 μg/L	100 µg/L
MGP-GW-MW-07	SO66B	trans-1,2-	0.2 µg/L	10 µg/L	100 µg/L
	30000	Dichloroethene	0.2 µg/∟	TO µg/L	100 µg/L
MGP-GW-MW-07	SO66B	cis-1,2-Dichloroethene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Chloroform	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1,2-Dichloroethane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	2-Butanone	5.0 µg/L	250 µg/L	250U µg/L
MGP-GW-MW-07	SO66B	1,1,1-Trichloroethane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Carbon Tetrachloride	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Vinyl Acetate	1.0 µg/L	50 µg/L	50U µg/L
MGP-GW-MW-07	SO66B	Bromodichloromethane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1,2-Dichloropropane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	cis-1,3-	0.2 µg/L	10 µg/L	10U µg/L
	00000	Dichloropropene	0.0	40"	4011 //
MGP-GW-MW-07	SO66B	Trichloroethene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Dibromochloromethane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1,1,2-Trichloroethane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	trans-1,3- Dichloropropene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	2-Chloroethylvinylether	1.0 µg/L	50 µg/L	50U µg/L
MGP-GW-MW-07	SO66B	Bromoform	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	4-Methyl-2-Pentanone	5.0 µg/L	250 µg/L	250U µg/L
		(MIBK)	. 0	-	

Lab Sample Name Sample ID		Analyte	Target Quantitation Limit	Sample Reporting Limit	Sample Result
MGP-GW-MW-07	SO66B	2-Hexanone	5.0 µg/L	250 µg/L	250U µg/L
MGP-GW-MW-07	SO66B	Tetrachloroethene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1,1,2,2-	0.2 µg/L	10 µg/L	10U µg/L
		Tetrachloroethane			
MGP-GW-MW-07	SO66B	Chlorobenzene	0.2 μg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Styrene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Trichlorofluoromethane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1,1,2-Trichloro-1,2,2- trifluoroethane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1,2-Dichlorobenzene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1,3-Dichlorobenzene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1,4-Dichlorobenzene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Acrolein	5.0 µg/L	250 µg/L	250U µg/L
MGP-GW-MW-07	SO66B	Methyl Iodide	0.2 µg/L	50 µg/L	50U µg/L
MGP-GW-MW-07	SO66B	Bromoethane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Acrylonitrile	1.0 µg/L	50 µg/L	50U µg/L
MGP-GW-MW-07	SO66B	1,1-Dichloropropene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Dibromomethane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1.1.1.2-	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Tetrachloroethane 1,2-Dibromo-3-	10		
		chloropropane	0.5 µg/L	25 µg/L	25U µg/L
MGP-GW-MW-07	SO66B	1,2,3-Trichloropropane	0.5 µg/L	25 µg/L	25U µg/L
MGP-GW-MW-07	SO66B	trans-1,4-Dichloro-2- butene	1.0 µg/L	50 μg/L	50U µg/L
MGP-GW-MW-07	SO66B	Hexachlorobutadiene	0.5 µg/L	25 µg/L	25U µg/L
MGP-GW-MW-07	SO66B	Ethylene Dibromide	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Bromochloromethane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	2,2-Dichloropropane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1,3-Dichloropropane	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	n-Propylbenzene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	Bromobenzene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	2-Chlorotoluene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	4-Chlorotoluene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	tert-Butylbenzene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	sec-Butylbenzene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	4-Isopropyltoluene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	n-Butylbenzene	0.2 µg/L	10 µg/L	10U µg/L
MGP-GW-MW-07	SO66B	1,2,4-Trichlorobenzene	0.5 µg/L	25 µg/L	25U µg/L
MGP-GW-MW-07	SO66B	1,2,3-Trichlorobenzene	0.5 µg/L	25 µg/L	25U µg/L
MGP-GW-MW-28	SO66D	Chloromethane	0.5 µg/L	50 μg/L	50U µg/L
MGP-GW-MW-28	SO66D	Bromomethane	1.0 µg/L	100 µg/L	100U µg/L
MGP-GW-MW-28	SO66D	Vinyl Chloride	0.2 µg/L	20 µg/L	20U µg/L
MGP-GW-MW-28	SO66D	Chloroethane	0.2 µg/L	20 µg/L	20U µg/L
MGP-GW-MW-28	SO66D	Methylene Chloride	0.5 µg/L	50 µg/L	50U µg/L
MGP-GW-MW-28	SO66D	Acetone	5.0 µg/L	500 µg/L	500U µg/L
MGP-GW-MW-28	SO66D	Carbon Disulfide	0.2 µg/L	20 µg/L	20U µg/L
MGP-GW-MW-28	SO66D	1,1-Dichloroethene	0.2 µg/L	20 µg/L	20U µg/L
MGP-GW-MW-28	SO66D	1,1-Dichloroethane	0.2 µg/L	20 µg/L	20U µg/L
MGP-GW-MW-28	SO66D	trans-1,2- Dichloroethene	0.2 µg/L	20 µg/L	20U µg/L
MGP-GW-MW-28	SO66D	cis-1,2-Dichloroethene	0.2 µg/L	20 µg/L	20U µg/L
MGP-GW-MW-28	SO66D	Chloroform	0.2 µg/L	20 µg/L	20U µg/L
MGP-GW-MW-28	SO66D	1,2-Dichloroethane	0.2 µg/L	20 µg/L	20U µg/L
MGP-GW-MW-28	SO66D	2-Butanone	5.0 µg/L	500 µg/L	500U µg/L
MGP-GW-MW-28	SO66D	1,1,1-Trichloroethane	0.2 μg/L	20 µg/L	20U µg/L
MGP-GW-MW-28	SO66D	Carbon Tetrachloride	0.2 µg/L	20 µg/L	200 µg/L
			- rg/ -	-~ ry -	

Lab Sample Name Sample ID		Target Analyte Quantitation Limit		Sample Reporting Limit	Sample Result	
MGP-GW-MW-28	SO66D	Bromodichloromethane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,2-Dichloropropane	0.2 μg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	cis-1,3- Dichloropropene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Trichloroethene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Dibromochloromethane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,1,2-Trichloroethane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	trans-1,3- Dichloropropene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	2-Chloroethylvinylether	1.0 µg/L	100 µg/L	100U µg/L	
MGP-GW-MW-28	SO66D	Bromoform	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	4-Methyl-2-Pentanone (MIBK)	5.0 µg/L	500 µg/L	500U µg/L	
MGP-GW-MW-28	SO66D	2-Hexanone	5.0 µg/L	500 µg/L	500U µg/L	
MGP-GW-MW-28	SO66D	Tetrachloroethene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,1,2,2- Tetrachloroethane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Chlorobenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Trichlorofluoromethane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,1,2-Trichloro-1,2,2- trifluoroethane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,2-Dichlorobenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,3-Dichlorobenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,4-Dichlorobenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Acrolein	5.0 µg/L	500 µg/L	500U µg/L	
MGP-GW-MW-28	SO66D	Methyl Iodide	0.2 µg/L	100 µg/L	100U µg/L	
MGP-GW-MW-28	SO66D	Bromoethane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Acrylonitrile	1.0 µg/L	100 µg/L	100U µg/L	
MGP-GW-MW-28	SO66D	1,1-Dichloropropene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Dibromomethane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,1,1,2- Tetrachloroethane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,2-Dibromo-3- chloropropane	0.5 µg/L	50 µg/L	50U µg/L	
MGP-GW-MW-28	SO66D	1,2,3-Trichloropropane	0.5 µg/L	50 µg/L	50U µg/L	
MGP-GW-MW-28	SO66D	trans-1,4-Dichloro-2- butene	1.0 µg/L	100 µg/L	100U µg/L	
MGP-GW-MW-28	SO66D	1,3,5-Trimethylbenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Hexachlorobutadiene	0.5 µg/L	50 µg/L	50U µg/L	
MGP-GW-MW-28	SO66D	Ethylene Dibromide	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Bromochloromethane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	2,2-Dichloropropane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,3-Dichloropropane	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Isopropylbenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	n-Propylbenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	Bromobenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	2-Chlorotoluene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	4-Chlorotoluene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	tert-Butylbenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	sec-Butylbenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	4-Isopropyltoluene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	n-Butylbenzene	0.2 µg/L	20 µg/L	20U µg/L	
MGP-GW-MW-28	SO66D	1,2,4-Trichlorobenzene	0.5 µg/L	50 µg/L	50U µg/L	
MGP-GW-MW-28	SO66D	1,2,3-Trichlorobenzene	0.5 µg/L	50 µg/L	50U µg/L	
-			1° 3°	1° 0°	· r o	

TECHNICAL MEMORANDUM

LANDAU ASSOCIATES

TO:	Chip Halbert	/
	Kristi Schultz and S	GN
FROM	Kristi Schultz and S	tacy Lane

DATE: January 14, 2013

RE: 2012 SOIL AND GROUNDWATER SAMPLES LABORATORY DATA QUALITY EVALUATION CITY OF BELLINGHAM SOUTH STATE STREET MANUFACTURED GAS PLANT REMEDIAL INVESTIGATION/FEASIBILITY STUDY

This technical memorandum provides the results of a Stage 2B verification and validation check of analytical data for 8 soil samples and 3 groundwater sample collected on October 3, 2012 at the South State Street Manufactured Gas Plant in Bellingham, Washington. All sample analyses were conducted at Analytical Resources, Inc. (ARI) laboratory, located in Tukwila, Washington. Soil samples submitted to ARI for analysis were analyzed for low level polycyclic aromatic hydrocarbons [PAHs; U.S. Environmental Protection Agency (EPA) Method SW8270D-SIM]. Groundwater samples were analyzed for weak acid dissociable (WAD) cyanide (Method SM4500-CN-I). The analytical results are reported in ARI laboratory data packages VL92 and VU15. Sample identifications and sample collection, extraction, and analysis dates are provided in Table 1.

The Stage 2B verification and validation check was conducted in accordance with EPA's *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009), applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999), applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 2004), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Work Plan; Herrenkohl Consulting and Landau Associates 2010). The Stage 2B verification and validation check for each laboratory data package included the following:

- Verification that the laboratory data package contained all necessary documentation, including chain-of-custody records (COCs); identification of samples received by the laboratory; date and time of receipt of the samples at the laboratory; sample conditions upon receipt at the laboratory; date and time of sample analysis; and, if applicable, date of extraction, definition of laboratory data qualifiers, all sample-related quality control data, and quality control acceptance criteria.
- Verification that all requested analyses, special cleanups, and special handling methods were performed.
- Verification that quality control samples were performed as specified in the Work Plan.
- Evaluation of sample holding times.

- Evaluation of quality control data compared to acceptance criteria, including method blanks, surrogate recoveries, matrix spike and matrix spike duplicate results, laboratory duplicate and/or replicate results, laboratory control sample results, and blind field duplicate results.
- Evaluation of reporting limits compared to target reporting limits specified in the Work Plan.
- Verification that initial calibration data are provided for all requested analytes and linked to the field samples reported, and that the appropriate number and concentration of initial calibration standards are present.
- Verification that continuing calibration data are provided for all requested analytes and are linked to the field samples reported, and that reported samples are bracketed by continuing calibration verification and continuing calibration blank standards as appropriate.
- Verification that method specific instrument performance checks are present as appropriate.
- Verification that frequency of instrument quality control samples is appropriate.
- Comparison of instrument-related quality control data to the document requirements and guidelines present in the USEPA functional guidelines for data review identified above.

If appropriate, data validation qualifiers are added to the sample results. The results of the verification and validation check are summarized below.

LABORATORY DATA PACKAGE COMPLETENESS

Each laboratory data package contained a signed COC, a cooler receipt form documenting the condition of the samples upon receipt at the laboratory, a cooler temperature compliance form, sample analytical results, and quality control results (method blanks, surrogate recoveries, laboratory control sample results, replicate sample results, initial and continuing calibrations, and instrument performance checks and quality control samples). A case narrative identifying any complications was also provided with each laboratory data package. Definitions of laboratory qualifiers and quality control acceptance criteria were provided, as appropriate.

SAMPLE CONDITIONS AND ANALYSIS

The laboratory received all samples in good condition; soil samples were frozen upon initial receipt to protect holding times. Water samples were preserved upon receipt and were centrifuged prior to analysis per client request; all analyses were performed as requested.

HOLDING TIMES

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times. No qualification of the data was necessary.

BLANK RESULTS

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks. No qualification of the data was necessary.

Field Trip Blanks

No field trip blanks were submitted for analysis.

SURROGATE RECOVERIES

Appropriate compounds were used as surrogate spikes for each organic analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits. No qualification of the data was necessary.

MATRIX SPIKE (MS)/MATRIX SPIKE DUPLICATE (MSD) AND LABORATORY DUPLICATE RESULTS

The Work Plan specifies a matrix spike (MS)/matrix spike duplicate (MSD) should be analyzed for all organic analyses; no MS/MSD was analyzed with the cPAH analysis.

A MS and a laboratory duplicate were analyzed with the cyanide analysis. The recovery values for each spiking compound were within the laboratory-specified control limits. No qualification of the data was necessary.

A laboratory-specified control limit of 20 percent was used to evaluate the relative percent differences (RPDs) between the original sample and the laboratory duplicate, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the duplicate results were within the current laboratory-specified control limits. No qualification of the data was necessary.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

One LCS/LCSD sample was analyzed with the batch of samples. Recoveries and RPDs for the LCS/LCSD were within the current laboratory-specified control limits. No qualification of the data was necessary.

BLIND FIELD DUPLICATES

One pair of blind field duplicate soil samples (MGP-GP-57-11.0-12.0/MGP-GP-72-11.0-12.0) was submitted for analysis of cPAHs.

A project-specified control limit of 35 percent was used to evaluate the RPDs between the duplicate soil samples, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus two times the reporting limit was used. RPDs for the duplicate sample pair submitted for analysis were within the project-specified control limits with the following exception:

• The RPDs for benzo(a)anthracene, chrysene, and total benzofluoranthenes exceeded the project-specified control limit. The results for the parent sample and the duplicate sample were qualified as estimated (J), as indicated in Table 2. The high RPD may be due to sample heterogeneity and, therefore, no other project sample results were qualified.

REPORTING LIMITS

Target reporting limits were achieved for all non-detected results.

INITIAL AND CONTINUING CALIBRATION

Initial and continuing calibration verifications and instrument performance and quality control checks were performed for all requested analyses and were appropriate in number and frequency based on laboratory requirements. Laboratory-specified calibration limits for initial and continuing calibrations were met for all analyses. No qualification of the data was necessary.

COMPLETENESS AND OVERALL DATA QUALITY

Data precision was evaluated through laboratory control sample duplicates. Data accuracy was evaluated through a matrix spike, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

References

EPA. 2009. *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use*. OSWER No. 9200.1-85 EPA 540-R-08-005. U.S. Environmental Protection Agency. January.

EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA-540/R-04-004. U.S. Environmental Protection Agency. Office of Superfund Remediation and Technology Innovation (OSRTI). Washington, D.C. October.

EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. October.

Herrenkohl Consulting LLC and Landau Associates Inc. 2010. *South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan.* Prepared for City of Bellingham and Puget Sound Energy. August 6.

ATTACHMENTS

- Table 1 Sample Names and Dates of Sample Collection, Extraction, and Analysis
- Table 2 Summary of Data Qualifiers

TABLE 1 SAMPLE NAMES AND DATES OF SAMPLE COLLECTION, EXTRACTION, AND ANALYSIS 2012 SOIL AND GROUNDWATER SAMPLING ANALYSIS SOUTH STATE STREET MANUFACTURED GAS PLANT BELLINGHAM, WASHINGTON

Sample Name	Lab Sample ID	Sample Collection Date	Sample Extraction Date	Sample Analysis Date
MGP-GP-GW-MW-56	VL92A	10/03/12	NA	10/9/12 (WAD Cyanide)
MGP-GP-GW-MW-71	VL92B	10/03/12	NA	10/9/12 (WAD Cyanide)
MGP-GP-GW-MW-57	VL92C	10/03/12	NA	10/9/12 (WAD Cyanide)
MGP-GP-56-1.0-2.0	VL92D	10/03/12	10/11/12 (PAHs)	10/11/12 (PAHs)
MGP-GP-56-3.0-4.0	VL92E	10/03/12	10/11/12 (PAHs)	10/11/12 (PAHs)
MGP-GP-56-14.5-	VL92F	10/03/12	10/11/12 (PAHs)	10/11/12 (PAHs)
15.5				
MGP-GP-57-1.0-2.0	VL92H	10/03/12	10/11/12 (PAHs)	10/11/12 (PAHs)
MGP-GP-57-5.0-6.0	VL921	10/03/12	10/11/12 (PAHs)	10/11/12 (PAHs)
MGP-GP-57-11.0-	VL92J	10/03/12	10/11/12 (PAHs)	10/11/12 (PAHs)
12.0				
MGP-GP-72-11.0-	VL92L	10/03/12	10/13/12 (PAHs)	10/15/12 (PAHs)
12.0				
MGP-GP-56-10.0-	VU15A	10/03/12	11/29/12 (PAHs)	11/30/12 (PAHs)
11.0				

TABLE 2 SUMMARY OF DATA QUALIFIERS SOUTH STATE STREET MANUFACTURED GAS PLANT 2012 SOIL AND GROUNDWATER SAMPLING

Data Package	Analyte	Result	Qualifier	Sample Number	Reason
VL92	Benzo(a)anthracene	4.5J	J	MGP-GP-57-11.0-12.0	High field duplicate RPD
VL92	Benzo(a)anthracene	15	J	MGP-GP-72-11.0-12.0	High field duplicate RPD
VL92	Chrysene	5.1	J	MGP-GP-57-11.0-12.0	High field duplicate RPD
VL92	Chrysene	15	J	MGP-GP-72-11.0-12.0	High field duplicate RPD
VL92	Total Benzofluoranthenes	9.4	J	MGP-GP-57-11.0-12.0	High field duplicate RPD
VL92	Total Benzofluoranthenes	27	J	MGP-GP-72-11.0-12.0	High field duplicate RPD

Notes

J = Indicates the analyte was positively identified; the associated numerical value is the approximat concentration of the analyte in the sample

TO:	Chip Halbert
-----	--------------

FROM: Kristi Schultz and Anne Halvorsen

DATE: March 7, 2013

RE: CITY OF BELLINGHAM SOUTH STATE STREET MANUFACTURED GAS PLANT SOIL VAPOR SAMPLING LABORATORY DATA QUALITY EVALUATION

This technical memorandum provides the results of a focused data validation associated with 3 soil vapor samples collected on February 26, 2013 at the South State Street Manufactured Gas Plant in Bellingham, Washington. Samples were analyzed by Air Toxics, Ltd. (Air Toxics), located in Folsom, California. This data quality evaluation covers Air Toxics data package 1302520. Samples submitted to Air Toxics were analyzed for benzene [U.S. Environmental Protection Agency (EPA) Method Modified TO-15 SIM].

Sample data were evaluated in accordance with applicable portions of the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (EPA 1999) and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl and Landau 2010). The following parameters were evaluated:

- Chain-of-custody (COC) records
- Holding times
- Blank results (laboratory method)
- Surrogate recoveries
- Laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) results
- Quantitation limits
- Completeness and overall data quality.

Data validation qualifiers are added to samples based on the evaluation of data quality. The absence of a data qualifier indicates that the reported result is acceptable without qualification. The data quality evaluation is summarized below.

CHAIN-OF-CUSTODY RECORDS

A signed chain-of-custody record was attached to the data package. The laboratory received all samples in good condition and all analyses were performed as requested.

HOLDING TIMES

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times. No qualification of the data is necessary.

BLANK RESULTS

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks. No qualification of the data is necessary.

SURROGATE RECOVERIES

Appropriate compounds were used as surrogate spikes for the benzene analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits. No qualification of the data is necessary.

LABORATORY CONTROL SAMPLE AND LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

At least one LCS and/or LCSD sample was analyzed with each batch of samples for the benzene analysis. Recoveries and RPD for the LCS/LCSD were within the current laboratory-specified control limits. No qualification of the data is necessary.

QUANTITATION LIMITS

Project-specified quantitation limits were met for all samples.

COMPLETENESS AND OVERALL DATA QUALITY

The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

Data precision was evaluated through laboratory control sample duplicates. Data accuracy was evaluated through laboratory control samples and surrogate spikes. Based on this data quality evaluation, all of the data were determined to be acceptable without qualification. No data were rejected.

References

EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. U.S. Environmental Protection Agency. Office of Emergency and Remedial Response. Washington, D.C. October.

Herrenkohl Consulting LLC and Landau Associates Inc. 2010. *South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan.* Prepared for City of Bellingham and Puget Sound Energy. August 6.

Technical Memorandum

TO:	Chip Halbert
FROM:	Kristi Schultz and Anne Halvorsen
DATE:	December 1, 2015
RE:	2015 Sediment Samples Laboratory Data Quality Evaluation City of Bellingham South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study

This technical memorandum provides the results of a Stage 2B verification and validation check of analytical data for 37 sediment samples collected on September 22-25, 2015 at the South State Street Manufactured Gas Plant in Bellingham, Washington. All sample analyses were conducted at Analytical Resources, Inc. (ARI) laboratory, located in Tukwila, Washington. Samples submitted to ARI were analyzed for some or all of the following: semivolatile organic compounds (SVOCs; US Environmental Protection Agency [EPA] Method SW8270D); low level SVOCs (SIM SVOCs; EPA Method SW8270D-SIM); total metals (EPA Method 200.8/7471A); total organic carbon (TOC) (Plumb 1981); and total solids (SM 2540G). The analytical results are reported in ARI laboratory data packages identified as ANE3, ANI0, ANL9, and AOK5. Sample identifications and sample collection, extraction, and analysis dates are provided in Table 1.

The Stage 2B verification and validation check was conducted in accordance with EPA's Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (EPA 2009), and with guidance from applicable portions of the National Functional Guidelines for Organic Data Review (EPA 1999, 2008) and the National Functional Guidelines for Inorganic Data Review (EPA 2004, 2010), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl Consulting LLC and Landau Associates 2010). The Stage 2B verification and validation check for each laboratory data package included the following:

- Verification that the laboratory data package contained all necessary documentation (including chain-of-custody records; identification of samples received by the laboratory; date and time of receipt of the samples at the laboratory; sample conditions upon receipt at the laboratory; date and time of sample analysis; and, if applicable, date of extraction, definition of laboratory data qualifiers, all sample-related QC data, and QC acceptance criteria).
- Verification that all requested analyses, special cleanups, and special handling methods were performed.
- Verification that QC samples were performed as specified in the Quality Assurance Project Plan (QAPP).
- Evaluation of sample holding times.
- Evaluation of quality control data compared to acceptance criteria, including method blanks, surrogate recoveries, matrix spike results, laboratory duplicate and/or replicate results, and laboratory control sample results.

- Evaluation of reporting limits compared to target reporting limits specified in the Work Plan.
- Verification that initial and continuing calibration data are provided for all requested analytes and are linked to the field samples reported, and that reported samples are bracketed by continuing calibration verification (CCV) and continuing calibration blank (CCB) standards as appropriate.
- Method specific instrument performance checks are present as appropriate (e.g., DDT/Endrin breakdown checks for pesticides and aroclors)
- Frequency of instrument QC samples is checked for appropriateness (e.g., GC-MS tunes have been run every 12 hours)
- Sample results are evaluated by comparing instrument-related QC data to the requirements and guidelines present in national or regional data validation documents, analytical methods, or contract.

Data validation qualifiers are added to the sample results, as appropriate, based on the Stage 2B verification and validation check; a summary of the data validation qualifiers is presented in Table 2. The results of the verification and validation check are summarized below.

Laboratory Data Package Completeness

Each laboratory data package contained a signed COC, a cooler receipt form documenting the condition of the samples upon receipt at the laboratory, a cooler temperature compliance form, sample analytical results, and quality control results (method blanks, surrogate recoveries, laboratory control sample results, replicate sample results, initial and continuing calibrations, and instrument performance checks and quality control samples). A case narrative identifying any complications was also provided with each laboratory data package. Definitions of laboratory qualifiers and quality control acceptance criteria were provided, as appropriate.

Sample Conditions and Analysis

The laboratory received all samples in good condition, and all analyses were performed as requested. Upon receipt by ARI, the sample container information was compared to the associated COC and the cooler temperatures were recorded. All coolers were received at the laboratory with temperatures less than the EPA-recommended limit of 6°C.

Holding Times

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times, with the following exceptions:

• The mercury analysis associated with data package AOK5 was completed between 3 and 4 days outside the method-recommended hold time per the client's request. Associated sample results were qualified as estimated (J, UJ), as indicated in Table 2.

• The TOC analysis associated with data package AOK5 was completed 25 days outside the method-recommended hold time per the client's request. Associated sample results were qualified as estimated (J, UJ), as indicated in Table 2.

Blank Results

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. No contamination was detected in any of the method blanks, with the following exceptions:

- Cadmium and lead were detected in the method blank associated with the total metals analysis in data package ANE3. The associated samples contained concentrations of the affected compounds in excess of the associated action levels¹; therefore, no qualification of the data was necessary.
- Phenol was detected in the method blank associated with the SVOC analysis in data package ANIO. Associated sample concentrations of phenol that were less than the associated action level were qualified as not detected (U), as indicated in Table 2.
- Lead was detected in the method blanks associated with the total metals analyses in data packages ANIO and ANL9. The associated samples contained concentrations of lead in excess of the associated action levels; therefore, no qualification of the data was necessary.

Surrogate Recoveries

Appropriate compounds were used as surrogate spikes for each organic analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits with the following exceptions:

- Surrogate spikes were diluted out during required SVOC dilution reanalyses in data package AOK5. No qualification of the data was necessary.
- Recovery of the surrogate d14-p-terphenyl exceeded the laboratory-specified control limits in the method blank and laboratory control sample duplicate associated with the SVOC analysis in data package ANE3. All project sample surrogate recoveries were within laboratory-specified control limits; therefore, no qualification of the data was determined necessary.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) and Laboratory Replicate Results

A MS and a MSD or laboratory duplicate sample was analyzed with the SVOCs, SIM SVOCs, total metals, and TOC analyses in one or more data packages. The recovery values for each spiking compound were within the laboratory-specified control limits for all project samples with the following exceptions:

¹ The action level is defined as 10 times the concentration in the method blank for common volatile laboratory contaminants (methylene chloride, acetone, 2-butanone, and cyclohexane), and 5 times the concentration for other target compounds (EPA 1999).

- The MS recoveries for lead and zinc associated with the total metals analysis of sample MGP-SS-15 in data package ANE3 were below the laboratory-specified control limit; the associated sample results were qualified as estimated (J, UJ), as indicated in Table 2.
- The MS recovery for zinc associated with the total metals analysis of sample MGP-SB-19-0-2 in data package ANL9 exceeded the laboratory-specified control limit; the associated sample result was qualified as estimated (J), as indicated in Table 2.
- The MS/MSD recoveries for several compounds associated with the SVOC analysis of sample MGP-SB-15-0-2 in data package AOK5 were not available due to a negative calculated recovery or an undetected spike. No qualification of the data was determined necessary.
- The MS or MSD recovery for multiple compounds associated with the SVOC analysis of sample MGP-SB-15-0-2 in data package AOK5 were outside laboratory-specified control limits; the corresponding MS or MSD recovery was within laboratory-specified control limits. No qualification of the data was determined necessary.
- The MS recoveries for several compounds associated with the total metals analysis of sample MGP-SB-14-0-2 in data package AOK5 were either below or exceeded the laboratory-specified control limits. The associated sample results were qualified as estimated (J, UJ), as indicated in Table 2.

A project-specified control limit of 35 percent (organic analyses) or 20 percent (inorganic analyses) was used to evaluate the relative percent differences (RPDs) between the MS/MSD or laboratory replicate results, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus two times the reporting limit was used. The RPDs between the MS/MSDs or laboratory replicate results were within the current laboratory-specified control limits for all project samples with the following exceptions:

- The MS/MSD RPDs for 2,4-dimethylphenol associated with both the SVOC and SIM SVOC analysis of sample MGP-SS-14 in data package ANE3 exceeded the project-specified control limit. 2,4-Dimethylphenol was not detected in the associated sample; therefore, no qualification of the data was necessary.
- The laboratory duplicate RPDs for lead and zinc associated with the total metals analysis of sample MGP-SS-15 in data package ANE3 exceeded the project-specified control limit. The associated sample results were qualified as estimated (J), as indicated in Table 2.
- The laboratory duplicate RPD for arsenic associated with the total metals analysis of sample MGP-SS-13 in data package ANIO exceeded the project-specified control limit. The associated sample result was qualified as estimated (J), as indicated in Table 2.
- The laboratory duplicate RPD for lead associated with the total metals analysis of sample MGP-SB-19-0-2 in data package ANL9 exceeded the project-specified control limit. The associated sample result was qualified as estimated (J), as indicated in Table 2.
- The laboratory duplicate RPD for TOC associated with the conventionals analysis of sample MGP-SB-19-0-2 in data package ANL9 exceeded the project-specified control limit. The associated sample result was qualified as estimated (J), as indicated in Table 2.

- The MS/MSD RPD for n-nitrosodiphenylamine associated with the SVOC analysis of sample MGP-SB-15-0-2 in data package AOK5 exceeded the project-specified control limit. n-Nitrosodiphenylamine was not detected in the associated sample; therefore, no qualification of the data was necessary.
- The laboratory duplicate RPDs for several compounds associated with the total metals analysis of sample MGP-SB-14-0-2 in data package AOK5 exceeded the project-specified control limit. The associate sample results were qualified as estimated (J), as indicated in Table 2.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

At least one LCS and/or LCSD or standard reference material (SRM) sample was analyzed with each batch of samples for each analysis. Recoveries and RPDs for the LCS/LCSD and SRMs were within the current laboratory- and project-specified control limits, with the following exceptions:

- The LCS/LCSD RPD for 2,4-dimethylphenol associated with the SVOCs analysis in data package ANE3 exceeded the project-specified control limit; the associated sample results were qualified as estimated (J), as indicated in Table 2.
- The LCS/LCSD RPDs for 2,4-dimethylphenol and benzyl alcohol associated with the SIM SVOCs analysis in data package ANE3 exceeded the project-specified control limit; the associated sample results were qualified as estimated (J), as indicated in Table 2.
- The LCS/LCSD RPD for benzyl alcohol associated with the SVOCs analysis in data package ANIO exceeded the project-specified control limit. Benzyl alcohol was not detected in the associated samples; therefore, no qualification of the data was necessary.
- The LCS/LCSD RPD for benzo(a)pyrene associated with the SVOCs analysis in data package ANL9 exceeded the project-specified control limit; the associated sample results were qualified as estimated (J), as indicated in Table 2.
- The LCSD percent recovery for benzyl alcohol associated with the SIM SVOCs analysis in data package ANL9 was below the laboratory-specified control limit; the associated sample results were qualified as estimated (J, UJ), as indicated in Table 2.
- The LCS/LCSD RPD for benzyl alcohol associated with the SIM SVOCs analysis in data package ANL9 exceeded the project-specified control limit. Benzyl alcohol was not detected in the associated samples; therefore, no qualification of the data was necessary.

Blind Field Duplicates

Two pairs of blind field duplicate sediment samples (MGP-SB-DUP2-0-2 / MGP-SB-19-0-2 and MGP-SS-DUP1 / MGP-SS-20) were submitted for analysis with data package ANE3 and ANL9 and analyzed for SVOCs, SIM SVOCs, total metals, and conventionals. A project-specified control limit of 35 percent was used to evaluate the RPDs between the duplicate sediment samples, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus two times the reporting limit was used. RPDs for the duplicate sample pair submitted for analysis were within the project-specified control limits with the following exceptions:

- The RPDs for several compounds associated with the SVOCs analyses of the blind field duplicate pair MGP-SS-DUP1 / MGP-SS-20 in data package ANE3 exceeded the project-specified control limit. The associated sample results were qualified as estimated (J), as indicated in Table 2.
- The RPDs for several compounds associated with the SVOCs analyses of the blind field duplicate pair MGP-SB-DUP2-0-2 / MGP-SB-19-0-2 in data package ANL9 exceeded the project-specified control limit. The associated sample results were qualified as estimated (J), as indicated in Table 2.
- The RPDs for chromium and zinc associated with the total metals analysis of the blind field duplicate pair MGP-SB-DUP2-0-2 / MGP-SB-19-0-2 in data package ANL9 exceeded the project-specified control limit. The associated sample results were qualified as estimated (J), as indicated in Table 2.

Reporting Limits

The reporting limits for SVOCs and SIM SVOCs in several samples were above the target reporting limits due to either percent moisture of the sample, or required dilution due to high concentrations of target analytes in the samples. A list of the samples with raised reporting limits that did not contain detectable concentrations is provided in Table 3.

Initial and Continuing Calibration

Initial and continuing calibration verifications and instrument performance and quality control checks were performed for all requested analyses and were appropriate in number and frequency based on laboratory requirements. Laboratory-specified calibration limits for initial and continuing calibrations were met for all requested analyses, with the following exceptions:

- The SVOC continuing calibration verifications (CCVs) in data packages ANE3 and ANL9 were low for several compounds. The associated sample analyses were required dilution reanalyses and the results will not be reported; therefore, no qualification of the data was necessary.
- The SIM SVOC CCV in data package ANE3 was low for pentachlorophenol and the surrogate 2fluorophenol; associated sample results were qualified as estimated (J, UJ), as indicated in Table 2.
- The SIM SVOC CCVs in data package ANIO and ANL9 were low for the surrogate 2fluorophenol; as all project sample surrogate recoveries were within laboratory-specified control limits, no qualification of the data was determined necessary.
- The SVOC CCV in data package AOK5 was high for several compounds; the associated sample detections were qualified as estimated (J), as indicated in Table 2.
- The SIM SVOC CCV in data package AOK5 was low for benzyl alcohol; the associated sample results were qualified as estimated (J, UJ), as indicated in Table 2.

Additional Corrective Actions

Several of the SIM SVOC results in data package AOK5 were "E" qualified as the concentrations exceeded the laboratory instrument calibration. Since the samples had also been analyzed with

quantifiable detections at a standard level (SW8270D), no dilution reanalysis of the samples was performed. No qualification of the data was necessary.

Completeness and Overall Data Quality

Data precision was evaluated through matrix spike duplicates, laboratory replicates, and laboratory control sample duplicates. Data accuracy was evaluated through matrix spikes, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

Use of this Report

This data validation summary report has been prepared for the exclusive use of the City of Bellingham and its designated representatives for specific application to the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau Associates. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Landau Associates, shall be at the user's sole risk. Landau Associates warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

7

This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

nist Schult

Kristi E. Schultz Assistant Scientist/Project Coordinator

anne Halvorsen

Anne S. Halvorsen Senior Project Scientist

ASH/KES [P:\015\070\T\DV\SSSMGP SEDIMENT SAMPLING STAGE 2B DV MEMO.DOCX]

Attachments

- Table 1 Sample Names and Dates of Sample Collection, Extraction, and Analysis
- Table 2 Summary of Data Qualifiers
- Table 3 Target Reporting Limit Exceedances

References

- EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. edited by Office of Emergency and Remedial Response. Washington, D.C.: US Environmental Protection Agency.
- EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. edited by Office of Superfund Remediation and Technology Innovation: US Environmental Protection Agency.
- EPA. 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. edited by Office of Superfund Remediation and Technology Innovation. Washington, D.C.: US Environmental Protection Agency.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Anlaytical Data for Superfund Use. US Environmental Protection Agency.
- EPA. 2010. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. edited by Office of Superfund Remediation and Technology Innovation. Washington, D.C.: US Environmental Protection Agency.
- Herrenkohl Consulting LLC and Landau Associates. 2010. South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan.

Table 1 Sample Names and Dates of Sample Collection, Extraction, and Analysis 2015 Sediment Sampling South State Street Manufactured Gas Plant Bellingham, Washington

	Lab Sample	Sample		
Sample Name	ID	Collection Date	Sample Extraction Date	Sample Analysis Date
MGP-SS-15	ANE3A	9/22/15	9/28/15 (Metals, SIM SVOCs); 9/29/15 (SVOCs)	9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SIM SVOCs); 10/3-10/7/15 (SVOCs); 10/6/15 (TOC)
MGP-SS-16	ANE3B	9/22/15	9/28/15 (Metals, SIM SVOCS); 9/29/15 (SVOCs)	9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SVOCs, SIM SVOCs); 10/6/15 (TOC)
MGP-SS-14	ANE3C	9/22/15	9/28/15 (Metals, SIM SVOCS); 9/29/15 (SVOCs)	9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SVOCs, SIM SVOCs); 10/6/15 (TOC)
MGP-SS-19	ANE3D	9/22/15	9/28/15 (Metals, SIM SVOCS); 9/29/15 (SVOCs)	9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SIM SVOCs); 10/3-10/7/15 (SVOCs); 10/6/15 (TOC)
MGP-SS-17	ANE3E	9/22/15	9/28/15 (Metals, SIM SVOCS); 9/29/15 (SVOCs)	9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SVOCs, SIM SVOCs); 10/6/15 (TOC)
MGP-SS-18	ANE3F	9/22/15	9/28/15 (Metals, SIM SVOCS); 9/29/15 (SVOCs)	9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SVOCs, SIM SVOCs); 10/6/15 (TOC)
MGP-SS-20	ANE3G	9/22/15	9/28/15 (Metals, SIM SVOCS); 9/29/15 (SVOCs)	9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SIM SVOCs); 10/6/15 (SVOCs); 10/6/15 (TOC)
MGP-SS-21	ANE3H	9/22/15	9/28/15 (Metals, SIM SVOCS); 9/29/15 (SVOCs)	9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SVOCs, SIM SVOCs); 10/6/15 (TOC)
MGP-SS-22	ANE3I	9/22/15	9/28/15 (Metals, SIM SVOCS); 9/29/15 (SVOCs)	9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SVOCs, SIM SVOCs); 10/6/15 (TOC)
MGP-SS-28	ANE3J	9/22/15	9/28/15 (Metals)	10/2/15 (Metals)
MGP-SS-29	ANE3K	9/22/15	9/28/15 (Metals)	10/2/15 (Metals)
MGP-SS-30	ANE3L	9/22/15	9/28/15 (Metals)	10/2/15 (Metals)
MGP-SS-31	ANE3M	9/22/15	9/28/15 (Metals)	10/2/15 (Metals)
MGP-SS-25	ANE3N	9/23/15	9/28/15 (Metals)	10/2/15 (Metals)
MGP-SS-26	ANE3O	9/23/15	9/28/15 (Metals)	10/2/15 (Metals)
MGP-SS-27 MGP-SS-23	ANE3P ANE3Q	9/23/15 9/23/15	9/28/15 (Metals) 9/28/15 (Metals, SIM SVOCS); 9/29/15 (SVOCs)	10/2/15 (Metals) 9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SVOCs, SIM SVOCs); 10/6/15 (TOC)
MGP-SS-Dup1	ANE3R	9/22/15	9/28/15 (Metals, SIM SVOCS); 9/29/15 (SVOCs)	9/29/15 (Total Solids); 9/30-10/2/15 (Metals); 10/3/15 (SIM SVOCs); 10/6/15 (SVOCs); 10/6/15 (TOC)
MGP-SS-13	ANIOA	9/24/15	9/29/15 (Metals); 9/30/15 (SIM SVOCs, SVOCs)	9/29/15 (Total Solids); 10/1-10/2/15 (Metals); 10/5/15 (SIM SVOCs, SVOCs, TOC)
MGP-SB-17-0-2	ANIOB	9/24/15	9/29/15 (Metals); 9/30/15 (SIM SVOCs, SVOCs)	9/29/15 (Total Solids); 10/1-10/2/15 (Metals); 10/5/15 (SIM SVOCs, SVOCs, TOC)
MGP-SB-17-2-4	ANIOC	9/24/15	9/29/15 (Metals); 9/30/15 (SIM SVOCs, SVOCs)	9/29/15 (Total Solids); 10/1-10/2/15 (Metals); 10/5/15 (SIM SVOCs, SVOCs, TOC)
MGP-SS-24	ANIOD	9/24/15	9/29/15 (Metals)	10/2/15 (Metals)
MGP-SB-19-0-2	ANL9A	9/24/15	10/1/15 (Metals, SIM SVOCs, SVOCs)	10/1/15 (Total Solids); 10/2-10/6/15 (Metals); 10/8/15 (SIM SVOCs, SVOCs); 10/13/15 (TOC)
MGP-SB-19-2-4	ANL9B	9/24/15	10/1/15 (Metals, SIM SVOCs, SVOCs)	10/1/15 (Total Solids); 10/2-10/6/15 (Metals); 10/8/15 (SIM SVOCs); 10/8- 10/10/15 (SVOCs); 10/13/15 (TOC)

Table 1 Sample Names and Dates of Sample Collection, Extraction, and Analysis 2015 Sediment Sampling South State Street Manufactured Gas Plant Bellingham, Washington

	Lab Sample	Sample		
Sample Name	ID .	Collection Date	Sample Extraction Date	Sample Analysis Date
MGP-SB-19-6-8	ANL9C	9/24/15	10/1/15 (Metals, SIM	10/1/15 (Total Solids); 10/2-10/6/15
			SVOCs, SVOCs)	(Metals); 10/8/15 (SIM SVOCs, SVOCs);
				10/13/15 (TOC)
MGP-SB-18-0-2	ANL9D	9/24/15	10/1/15 (Metals, SIM	10/1/15 (Total Solids); 10/2-10/6/15
			SVOCs, SVOCs)	(Metals); 10/9/15 (SIM SVOCs, SVOCs);
				10/13/15 (TOC)
MGP-SB-18-2-4	ANL9E	9/24/15	10/1/15 (Metals, SIM	10/1/15 (Total Solids); 10/2-10/6/15
			SVOCs, SVOCs)	(Metals); 10/9/15 (SIM SVOCs, SVOCs);
				10/13/15 (TOC)
MGP-SB-DUP2-0-2	ANL9F	9/24/15	10/1/15 (Metals, SIM	10/2-10/6/15 (Metals); 10/5/15 (Total
			SVOCs, SVOCs)	Solids); 10/9/15 (SIM SVOCs, SVOCs);
				10/13/15 (TOC)
MGP-SB-14-0-2	AOK5A	9/25/15	10/16/15 (SIM SVOCs,	10/16/15 (Total Solids); 10/22/15 (SIM
			SVOCs); 10/22-10/26/15	SVOCs); 10/22-10/27/15 (SVOCs); 10/23-
			(Metals)	10/27/15 (Metals); 11/3/15 (TOC)
MGP-SB-14-2-4	AOK5B	9/25/15	10/16/15 (SIM SVOCs,	10/16/15 (Total Solids); 10/22/15 (SIM
			SVOCs); 10/22-10/26/15	SVOCs); 10/22-10/27/15 (SVOCs); 10/23-
			(Metals)	10/27/15 (Metals); 11/3/15 (TOC)
MGP-SB-14-6-8	AOK5C	9/25/15	10/16/15 (SIM SVOCs,	10/16/15 (Total Solids); 10/22/15 (SIM
			SVOCs); 10/22-10/26/15	SVOCs); 10/22-10/27/15 (SVOCs); 10/23-
		- / /	(Metals)	10/27/15 (Metals); 11/3/15 (TOC)
MGP-SB-15-0-2	AOK5D	9/25/15	10/16/15 (SIM SVOCs,	10/16/15 (Total Solids); 10/22/15 (SIM
			SVOCs); 10/22-10/26/15	SVOCs); 10/22-10/27/15 (SVOCs); 10/23-
		- / /	(Metals)	10/27/15 (Metals); 11/3/15 (TOC)
MGP-SB-15-2-4	AOK5E	9/25/15	10/16/15 (SIM SVOCs,	10/16/15 (Total Solids); 10/22/15 (SIM
			SVOCs); 10/22-10/26/15	SVOCs); 10/22-10/27/15 (SVOCs); 10/23-
		a /a= / / =	(Metals)	10/27/15 (Metals); 11/3/15 (TOC)
MGP-SB-15-6-8	AOK5F	9/25/15	10/16/15 (SIM SVOCs,	10/16/15 (Total Solids); 10/22/15 (SIM
			SVOCs); 10/22-10/26/15	SVOCs); 10/22-10/28/15 (SVOCs); 10/23-
		a /a . /	(Metals)	10/27/15 (Metals); 11/3/15 (TOC)
MGP-SB-16-0-2	AOK5G	9/24/15	10/16/15 (SIM SVOCs,	10/16/15 (Total Solids); 10/23/15 (SIM
			SVOCs); 10/22-10/26/15	SVOCs, SVOCs); 10/23-10/27/15 (Metals);
	A 0// 5/1	0/24/15	(Metals)	11/3/15 (TOC)
MGP-SB-17-4-6	AOK5H	9/24/15	10/16/15 (SIM SVOCs,	10/16/15 (Total Solids); 10/23/15 (SIM
			SVOCs); 10/22-10/26/15	SVOCs); 10/23-10/28/15 (SVOCs); 10/23-
	40%51	0/24/45	(Metals)	10/27/15 (Metals); 11/3/15 (TOC)
MGP-SB-18-4-5.5	AOK5I	9/24/15	10/16/15 (SIM SVOCs,	10/16/15 (Total Solids); 10/23/15 (SIM
			SVOCs); 10/22-10/26/15	SVOCs); 10/23-10/28/15 (SVOCs); 10/23-
			(Metals)	10/27/15 (Metals); 11/3/15 (TOC)

Table 2 Summary of Data Qualifiers South State Street Manufactured Gas Plant 2015 Sediment Sampling

Data Package	Analytical Group	Analyte	Result	Qualifier	Sample Number	Reason
ANE3	SVOCs	Naphthalene	1400		MGP-SS-20	High field duplicate RPD
ANE3	SVOCs	2-Methylnaphthalene	540	J	MGP-SS-20	High field duplicate RPD
ANE3	SVOCs	Fluorene	290	J	MGP-SS-20	High field duplicate RPD
ANE3	SVOCs	Phenanthrene	1000	J	MGP-SS-20	High field duplicate RPD
ANE3	SVOCs	1-Methylnaphthalene	540	J	MGP-SS-20	High field duplicate RPD
ANE3	SVOCs	Naphthalene	740	J	MGP-SS-Dup1	High field duplicate RPD
ANE3	SVOCs	2-Methylnaphthalene	270	J	MGP-SS-Dup1	High field duplicate RPD
ANE3	SVOCs	Fluorene	80	J	MGP-SS-Dup1	High field duplicate RPD
ANE3	SVOCs	Phenanthrene	620	J	MGP-SS-Dup1	High field duplicate RPD
ANE3	SVOCs	1-Methylnaphthalene	200	J	MGP-SS-Dup1	High field duplicate RPD
ANE3	SVOCs	2,4-Dimethylphenol	280	J	MGP-SS-19	High LCS/LCSD RPD
ANE3	SIM SVOCs	2,4-Dimethylphenol	30	J	MGP-SS-15	High LCS/LCSD RPD
ANE3	SIM SVOCs	2,4-Dimethylphenol	30	J	MGP-SS-16	High LCS/LCSD RPD
ANE3 ANE3	SIM SVOCs	2,4-Dimethylphenol	250 94	J	MGP-SS-19	High LCS/LCSD RPD
ANE3 ANE3	SIM SVOCs SIM SVOCs	Benzyl Alcohol 2,4-Dimethylphenol	94 22 J	1	MGP-SS-17 MGP-SS-18	High LCS/LCSD RPD High LCS/LCSD RPD
ANE3	SIM SVOCs	2,4-Dimethylphenol	22 J 24 J	1	MGP-SS-20	High LCS/LCSD RPD
ANE3	SIM SVOCs	Benzyl Alcohol	100	J	MGP-SS-20 MGP-SS-21	High LCS/LCSD RPD
ANE3	SIM SVOCs	Benzyl Alcohol	59	J	MGP-SS-23	High LCS/LCSD RPD
ANE3	SIM SVOCs	2,4-Dimethylphenol	14 J	J	MGP-SS-Dup1	High LCS/LCSD RPD
ANE3	SIM SVOCs	Pentachlorophenol	120 Q	J	MGP-SS-15	Low continuing calibration recovery
ANE3	SIM SVOCs	Pentachlorophenol	30 Q	-	MGP-SS-16	Low continuing calibration recovery
ANE3	SIM SVOCs	Pentachlorophenol	19 U	UJ	MGP-SS-14	Low continuing calibration recovery
ANE3	SIM SVOCs	Pentachlorophenol	19 U	UJ	MGP-SS-19	Low continuing calibration recovery
ANE3	SIM SVOCs	Pentachlorophenol	19 U	UJ	MGP-SS-17	Low continuing calibration recovery
ANE3	SIM SVOCs	Pentachlorophenol	12 J	J	MGP-SS-18	Low continuing calibration recovery
ANE3	SIM SVOCs	Pentachlorophenol	12 J	J	MGP-SS-20	Low continuing calibration recovery
ANE3	SIM SVOCs	Pentachlorophenol	14 J	J	MGP-SS-21	Low continuing calibration recovery
ANE3	SIM SVOCs	Pentachlorophenol	23	J	MGP-SS-22	Low continuing calibration recovery
ANE3	SIM SVOCs	Pentachlorophenol	19 U	UJ	MGP-SS-23	Low continuing calibration recovery
ANE3	SIM SVOCs	Pentachlorophenol	12 J	J	MGP-SS-Dup1	Low continuing calibration recovery
ANE3	Metals	Lead	66.3	J	MGP-SS-15	High lab duplicate RPD + low MS recovery
ANE3	Metals	Zinc	170	J	MGP-SS-15	High lab duplicate RPD + low MS recovery
ANI0	SVOCs	Phenol	8.6 JB	U	MGP-SS-13	Method blank contamination
ANI0	SVOCs	Phenol	67 B	U	MGP-SB-17-0-2	Method blank contamination
ANI0	Metals	Arsenic	3.0	J	MGP-SS-13	High lab duplicate RPD
ANL9	SVOCs	Phenol	340	J	MGP-SB-19-0-2	High field duplicate RPD
ANL9	SVOCs	Naphthalene	5200	J	MGP-SB-19-0-2	High field duplicate RPD
ANL9	SVOCs	Dibenzofuran	59 U	UJ	MGP-SB-19-0-2	High field duplicate RPD
ANL9	SVOCs	1-Methylnaphthalene	1700	J	MGP-SB-19-0-2	High field duplicate RPD
ANL9	SVOCs	Phenol	170	J	MGP-SB-Dup2-0-2	High field duplicate RPD
ANL9	SVOCs	Naphthalene	3600	J	MGP-SB-Dup2-0-2	High field duplicate RPD
ANL9	SVOCs	Dibenzofuran	410	J	MGP-SB-Dup2-0-2	High field duplicate RPD
ANL9	SVOCs	1-Methylnaphthalene	1100	J	MGP-SB-Dup2-0-2	High field duplicate RPD
ANL9	SVOCs	Benzo(a)pyrene	1600	J	MGP-SB-19-0-2	High LCS/LCSD RPD
ANL9	SVOCs	Benzo(a)pyrene	1600	J	MGP-SB-19-2-4	High LCS/LCSD RPD
ANL9	SVOCs	Benzo(a)pyrene	18 J	J	MGP-SB-19-6-8	High LCS/LCSD RPD
ANL9	SVOCs	Benzo(a)pyrene	510	J	MGP-SB-18-0-2	High LCS/LCSD RPD
ANL9	SVOCs	Benzo(a)pyrene	290	J	MGP-SB-18-2-4	High LCS/LCSD RPD
ANL9	SVOCs	Benzo(a)pyrene	1700	J	MGP-SB-Dup2-0-2	High LCS/LCSD RPD
ANL9	SIM SVOCs	Benzyl Alcohol	59 U	UJ	MGP-SB-19-0-2	Low LSCD recovery
ANL9	SIM SVOCs	Benzyl Alcohol	60 U	UJ	MGP-SB-19-2-4	Low LSCD recovery
ANL9 ANL9	SIM SVOCs SIM SVOCs	Benzyl Alcohol Benzyl Alcohol	19 U 20 U	UJ UJ	MGP-SB-19-6-8 MGP-SB-18-0-2	Low LSCD recovery Low LSCD recovery
ANL9 ANL9	SIM SVOCs	Benzyl Alcohol	19 U	UJ	MGP-SB-18-0-2 MGP-SB-18-2-4	Low LSCD recovery
ANL9 ANL9	SIM SVOCs	Benzyl Alcohol	19 U	UJ	MGP-SB-18-2-4 MGP-SB-Dup2-0-2	Low LSCD recovery Low LSCD recovery
ANL9 ANL9	Metals	Lead	8.8	1	MGP-SB-19-0-2	High lab duplicate RPD
ANL9 ANL9	Metals	Zinc	45	J	MGP-SB-19-0-2	High MS recovery
ANL9	Metals	Chromium	29	J	MGP-SB-19-0-2	High field duplicate RPD
ANL9	Metals	Zinc	45	J	MGP-SB-19-0-2	High field duplicate RPD
ANL9	Metals	Chromium	41.4	J	MGP-SB-Dup2-0-2	High field duplicate RPD
ANL9	Metals	Zinc	77	J	MGP-SB-Dup2-0-2	High field duplicate RPD
ANL9	Conv.	Total Organic Carbon	15.5	J	MGP-SB-19-0-2	High lab duplicate RPD
AOK5	SVOCs	4-Methylphenol	5700 Q	1	MGP-SB-14-2-4 (DL)	High continuing calibration recovery
AOK5	SVOCs	4-Methylphenol	8200 Q	J	MGP-SB-14-2-4 (DL)	High continuing calibration recovery
				-		
AOK5	SVOCs	4-Methylphenol	4900 Q	J	MGP-SB-15-2-4 (DL)	High continuing calibration recovery

Table 2 Summary of Data Qualifiers South State Street Manufactured Gas Plant 2015 Sediment Sampling

	Analytical						
Data Package	Group	Analyte	Result	Qualifier	Sample Number	Reason	
AOK5	SVOCs	4-Methylphenol	2400 Q	J	MGP-SB-17-4-6 (DL)	High continuing calibration recovery	
AOK5	SIM SVOCs	Benzyl Alcohol	58 U	UJ	MGP-SB-14-0-2	Low continuing calibration recovery	
AOK5	SIM SVOCs	Benzyl Alcohol	20 U	UJ	MGP-SB-14-2-4	Low continuing calibration recovery	
AOK5	SIM SVOCs	Benzyl Alcohol	20 U	UJ	MGP-SB-14-6-8	Low continuing calibration recovery	
AOK5	SIM SVOCs	Benzyl Alcohol	20 U	UJ	MGP-SB-15-0-2	Low continuing calibration recovery	
AOK5	SIM SVOCs	Benzyl Alcohol	20 U	UJ	MGP-SB-15-2-4	Low continuing calibration recovery	
AOK5	SIM SVOCs	Benzyl Alcohol	20 U	UJ	MGP-SB-15-6-8	Low continuing calibration recovery	
AOK5	SIM SVOCs	Benzyl Alcohol	59 U	UJ	MGP-SB-16-0-2	Low continuing calibration recovery	
AOK5	SIM SVOCs	Benzyl Alcohol	20 U	UJ	MGP-SB-17-4-6	Low continuing calibration recovery	
AOK5	SIM SVOCs	Benzyl Alcohol	58 U	UJ	MGP-SB-18-4-5.5	Low continuing calibration recovery	
AOK5	Metals	Cadmium	1.0	J	MGP-SB-14-0-2	High lab duplicate RPD	
AOK5	Metals	Chromium	43	J	MGP-SB-14-0-2	High lab duplicate RPD	
AOK5	Metals	Lead	100	J	MGP-SB-14-0-2	High lab duplicate RPD	
AOK5	Metals	Mercury	0.06	J	MGP-SB-14-0-2	High lab duplicate RPD	
AOK5	Metals	Chromium	43	J	MGP-SB-14-0-2	Low MS recovery	
AOK5	Metals	Lead	100	J	MGP-SB-14-0-2	High MS recovery	
AOK5	Metals	Silver	0.5 U	UJ	MGP-SB-14-0-2	Low MS recovery	
AOK5	Metals	Mercury	0.06	J	MGP-SB-14-0-2	Analyzed outside hold time	
AOK5	Metals	Mercury	0.07 U	UJ	MGP-SB-14-2-4	Analyzed outside hold time	
AOK5	Metals	Mercury	0.1 U	UJ	MGP-SB-14-6-8	Analyzed outside hold time	
AOK5	Metals	Mercury	0.14	J	MGP-SB-15-0-2	Analyzed outside hold time	
AOK5	Metals	Mercury	0.09 U	IJ	MGP-SB-15-2-4	Analyzed outside hold time	
AOK5	Metals	Mercury	0.08 U	IJ	MGP-SB-15-6-8	Analyzed outside hold time	
AOK5	Metals	Mercury	0.20	J	MGP-SB-16-0-2	Analyzed outside hold time	
AOK5	Metals	Mercury	0.30	J	MGP-SB-17-4-6	Analyzed outside hold time	
AOK5	Metals	Mercury	0.35	J	MGP-SB-18-4-5.5	Analyzed outside hold time	
AOK5	Conv.	Total Organic Carbon	23.5	J	MGP-SB-14-0-2	Analyzed outside hold time	
AOK5	Conv.	Total Organic Carbon	35.3	J	MGP-SB-14-2-4	Analyzed outside hold time	
AOK5	Conv.	Total Organic Carbon	51.8	J	MGP-SB-14-6-8	Analyzed outside hold time	
AOK5	Conv.	Total Organic Carbon	20.1	J	MGP-SB-15-0-2	Analyzed outside hold time	
AOK5	Conv.	Total Organic Carbon	44.9	J	MGP-SB-15-2-4	Analyzed outside hold time	
AOK5	Conv.	Total Organic Carbon	22.2	J	MGP-SB-15-6-8	Analyzed outside hold time	
AOK5	Conv.	Total Organic Carbon	24.5	J	MGP-SB-16-0-2	Analyzed outside hold time	
AOK5	Conv.	Total Organic Carbon	8.71	J	MGP-SB-17-4-6	Analyzed outside hold time	
AOK5	Conv.	Total Organic Carbon	8.19	J	MGP-SB-18-4-5.5	Analyzed outside hold time	

Notes

J = Indicates the analyte was positively identified; the associated numerical value is the approximate

concentration of the analyte in the sample.

U = Indicates the compound was undetected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

Page 2 of 2

Table 3 Target Reporting Limit Exceedances 2015 Sediment Sampling South State Street Manufactured Gas Plant Bellingham, Washington

Sample Name	Lab Sample ID	Analyte	Target Quantitation Limit	Sample Reporting Limit	Sample Result
MGP-SS-15	ANE3A	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
WGP-33-15	ANESA	Hexaciliorobulaciene	11 ug/kg	20 ug/ kg	20 0 ug/kg
MGP-SS-16	ANE3B	1,4-Dichlorobenzene	37 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-16	ANE3B	1,2-Dichlorobenzene	35 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-16	ANE3B	1,2,4-Trichlorobenzene	31 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-16	ANE3B	Hexachlorobutadiene	11 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-16	ANE3B	Dimethylphthalate	24 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-16	ANE3B	N-Nitrosodiphenylamine	28 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-16	ANE3B	Hexachlorobenzene	22 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-16	ANE3B	Butylbenzylphthalate	21 ug/kg	39 ug/kg	39 U ug/kg
		, ,,	0, 0	0, 0	0, 0
MGP-SS-14	ANE3C	Hexachlorobutadiene	11 ug/kg	19 ug/kg	19 U ug/kg
MGP-SS-19	ANE3D	Hexachlorobutadiene	11 ug/kg	19 ug/kg	19 U ug/kg
10101 33 13	ANESD	Tiexaemorobataalene	II UG/ NG	15 06/16	15 0 06/16
MGP-SS-17	ANE3E	Hexachlorobutadiene	11 ug/kg	19 ug/kg	19 U ug/kg
MGP-SS-18	ANE3F	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
MGP-SS-20	ANE3G	1,4-Dichlorobenzene	37 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-20	ANE3G	1,2-Dichlorobenzene	35 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-20	ANE3G	1,2,4-Trichlorobenzene	31 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-20	ANE3G	Hexachlorobutadiene	11 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-20	ANE3G	Dimethylphthalate	24 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-20	ANE3G	N-Nitrosodiphenylamine	28 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-20	ANE3G	Hexachlorobenzene	22 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-20	ANE3G	Butylbenzylphthalate	21 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-21	ANE3H	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
			11 ll	20 //	20.11 //
MGP-SS-22	ANE3I	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
MGP-SS-23	41/20	Hexachlorobutadiene	11.00/100	10	10 11 11 //1/2
IVIGP-55-23	ANE3Q	Hexacilloropulatiene	11 ug/kg	19 ug/kg	19 U ug/kg
MGP-SS-Dup1	ANE3R	1,4-Dichlorobenzene	37 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-Dup1	ANE3R	1,2-Dichlorobenzene	35 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-Dup1	ANE3R	1,2,4-Trichlorobenzene	31 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-Dup1	ANE3R	Hexachlorobutadiene	11 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-Dup1	ANE3R	Dimethylphthalate	24 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-Dup1	ANE3R	N-Nitrosodiphenylamine	28 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-Dup1	ANE3R	Hexachlorobenzene	22 ug/kg	39 ug/kg	39 U ug/kg
MGP-SS-Dup1	ANE3R	Butylbenzylphthalate	21 ug/kg	39 ug/kg	39 U ug/kg
	7	Bacynoenzynprichalaite	== %8/ %8	00 08/ 18	00 0 08/18
MGP-SS-13	ANIOA	Hexachlorobutadiene	11 ug/kg	19 ug/kg	19 U ug/kg
MGP-SB-17-0-2	ANIOB	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
MGP-SB-17-2-4	ANIOC	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
MGP-SB-19-0-2	ANL9A	1,3-Dichlorobenzene	57 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-19-0-2	ANL9A	1,4-Dichlorobenzene	37 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-19-0-2	ANL9A	1,2-Dichlorobenzene	35 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-19-0-2	ANL9A	Hexachloroethane	47 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-19-0-2	ANL9A	1,2,4-Trichlorobenzene	31 ug/kg	59 ug/kg	59 U ug/kg

Table 3 Target Reporting Limit Exceedances 2015 Sediment Sampling South State Street Manufactured Gas Plant Bellingham, Washington

	Lab Sample		Target	Sample Reporting	
Sample Name	ID .	Analyte	Quantitation Limit	Limit	Sample Result
MGP-SB-19-0-2	ANL9A	Hexachlorobutadiene	11 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-19-0-2	ANL9A	Dimethylphthalate	24 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-19-0-2	ANL9A	N-Nitrosodiphenylamine	28 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-19-0-2	ANL9A	Hexachlorobenzene	22 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-19-0-2	ANL9A	Butylbenzylphthalate	21 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-19-0-2	ANL9A	Hexachlorobutadiene	11 ug/kg	15 ug/kg	15 U ug/kg
	,	Hexadinorobatadiene	22 00/ 10	20 00/ 10	20 0 0.0/ 1.8
MGP-SB-19-2-4	ANL9B	1,3-Dichlorobenzene	57 ug/kg	60 ug/kg	60 U ug/kg
MGP-SB-19-2-4	ANL9B	1,4-Dichlorobenzene	37 ug/kg	60 ug/kg	60 U ug/kg
MGP-SB-19-2-4	ANL9B	1,2-Dichlorobenzene	35 ug/kg	60 ug/kg	60 U ug/kg
MGP-SB-19-2-4	ANL9B	Hexachloroethane	47 ug/kg	60 ug/kg	60 U ug/kg
MGP-SB-19-2-4	ANL9B	1,2,4-Trichlorobenzene	31 ug/kg	60 ug/kg	60 U ug/kg
MGP-SB-19-2-4	ANL9B	Hexachlorobutadiene	11 ug/kg	60 ug/kg	60 U ug/kg
MGP-SB-19-2-4	ANL9B	Dimethylphthalate	24 ug/kg	60 ug/kg	60 U ug/kg
MGP-SB-19-2-4	ANL9B	N-Nitrosodiphenylamine	28 ug/kg	60 ug/kg	60 U ug/kg
MGP-SB-19-2-4	ANL9B	Hexachlorobenzene	22 ug/kg	60 ug/kg	60 U ug/kg
MGP-SB-19-2-4	ANL9B	Butylbenzylphthalate	21 ug/kg	60 ug/kg	60 U ug/kg
MGP-SB-19-2-4	ANL9B	Hexachlorobutadiene	11 ug/kg	15 ug/kg	15 U ug/kg
MGP-SB-19-6-8	ANL9C	Hexachlorobutadiene	11 ug/kg	19 ug/kg	19 U ug/kg
MGP-SB-18-0-2	ANL9D	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
WGI -5D-18-0-2	ANESD	Trexactilorobutadiene	II UG/ Kg	20 08/ 18	20 0 ug/ kg
MGP-SB-18-2-4	ANL9E	Hexachlorobutadiene	11 ug/kg	19 ug/kg	19 U ug/kg
MGP-SB-DUP2-0-2	ANL9F	1,3-Dichlorobenzene	F7	50 ug/kg	50 LL
MGP-SB-DUP2-0-2	ANL9F	1,4-Dichlorobenzene	57 ug/kg	59 ug/kg	59 U ug/kg
			37 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-DUP2-0-2	ANL9F	1,2-Dichlorobenzene	35 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-DUP2-0-2	ANL9F	Hexachloroethane	47 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-DUP2-0-2	ANL9F	1,2,4-Trichlorobenzene	31 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-DUP2-0-2	ANL9F	Hexachlorobutadiene	11 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-DUP2-0-2	ANL9F	Dimethylphthalate	24 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-DUP2-0-2	ANL9F	N-Nitrosodiphenylamine	28 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-DUP2-0-2	ANL9F	Hexachlorobenzene	22 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-DUP2-0-2	ANL9F	Butylbenzylphthalate	21 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-DUP2-0-2	ANL9F	Hexachlorobutadiene	11 ug/kg	15 ug/kg	15 U ug/kg
MGP-SB-14-0-2	AOK5A	1,3-Dichlorobenzene	57 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-14-0-2	AOK5A	1,4-Dichlorobenzene	37 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-14-0-2	AOK5A	1,2-Dichlorobenzene	35 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-14-0-2	AOK5A	Hexachloroethane	47 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-14-0-2	AOK5A	1,2,4-Trichlorobenzene	31 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-14-0-2	AOK5A	Hexachlorobutadiene	11 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-14-0-2 MGP-SB-14-0-2	AOK5A	Dimethylphthalate	24 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-14-0-2 MGP-SB-14-0-2	AOK5A	N-Nitrosodiphenylamine	24 ug/kg 28 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-14-0-2 MGP-SB-14-0-2	AOK5A AOK5A	Hexachlorobenzene	ð: ð	58 ug/kg	
			22 ug/kg		58 U ug/kg
MGP-SB-14-0-2	AOK5A	Butylbenzylphthalate	21 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-14-0-2	AOK5A	Hexachlorobutadiene	11 ug/kg	15 ug/kg	15 U ug/kg
MGP-SB-14-2-4	AOK5B	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
MGP-SB-14-6-8	AOK5C	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
			1	1	1
MGP-SB-15-0-2	AOK5D	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg

Table 3 Target Reporting Limit Exceedances 2015 Sediment Sampling South State Street Manufactured Gas Plant Bellingham, Washington

	Lab Sample		Target	Sample Reporting	
Sample Name	ID .	Analyte	Quantitation Limit	Limit	Sample Result
MGP-SB-15-2-4	AOK5E	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
MGP-SB-15-6-8	AOK5F	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
MGP-SB-16-0-2	AOK5G	1,3-Dichlorobenzene	57 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-16-0-2	AOK5G	1,4-Dichlorobenzene	37 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-16-0-2	AOK5G	1,2-Dichlorobenzene	35 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-16-0-2	AOK5G	Hexachloroethane	47 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-16-0-2	AOK5G	1,2,4-Trichlorobenzene	31 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-16-0-2	AOK5G	Hexachlorobutadiene	11 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-16-0-2	AOK5G	Dimethylphthalate	24 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-16-0-2	AOK5G	N-Nitrosodiphenylamine	28 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-16-0-2	AOK5G	Hexachlorobenzene	22 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-16-0-2	AOK5G	Butylbenzylphthalate	21 ug/kg	59 ug/kg	59 U ug/kg
MGP-SB-16-0-2	AOK5G	Hexachlorobutadiene	11 ug/kg	15 ug/kg	15 U ug/kg
MGP-SB-17-4-6	AOK5H	Hexachlorobutadiene	11 ug/kg	20 ug/kg	20 U ug/kg
MGP-SB-18-4-5.5	AOK5I	1,3-Dichlorobenzene	57 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-18-4-5.5	AOK5I	1,4-Dichlorobenzene	37 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-18-4-5.5	AOK5I	1,2-Dichlorobenzene	35 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-18-4-5.5	AOK5I	Hexachloroethane	47 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-18-4-5.5	AOK5I	1,2,4-Trichlorobenzene	31 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-18-4-5.5	AOK5I	Hexachlorobutadiene	11 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-18-4-5.5	AOK5I	Dimethylphthalate	24 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-18-4-5.5	AOK5I	N-Nitrosodiphenylamine	28 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-18-4-5.5	AOK5I	Hexachlorobenzene	22 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-18-4-5.5	AOK5I	Butylbenzylphthalate	21 ug/kg	58 ug/kg	58 U ug/kg
MGP-SB-18-4-5.5	AOK5I	Hexachlorobutadiene	11 ug/kg	15 ug/kg	15 U ug/kg

TO:	Chip Halbert
FROM:	Kristi Schultz and Danille Jorgensen
DATE:	October 25, 2016
RE:	2016 Groundwater Samples Laboratory Data Quality Evaluation City of Bellingham South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study

This technical memorandum provides the results of a Stage 2B verification and validation check of analytical data for 11 groundwater samples collected on June 21-22, 2016 at the South State Street Manufactured Gas Plant in Bellingham, Washington. All sample analyses were conducted at Analytical Resources, Inc. (ARI) laboratory, located in Tukwila, Washington. Samples submitted to ARI were analyzed for some or all of the following: benzene, toluene, ethylbenzene, and xylenes (BTEX; US Environmental Protection Agency [EPA] Method SW8260C); low-level semivolatile organic compounds (SIM SVOCs; EPA Method SW8270D-SIM); total and dissolved metals (EPA Method 6010C/6020A), including hardness calculation; total cyanide (SM4500-CNE); and weak acid dissociable (WAD) cyanide (SM4500CN-I). The analytical results are reported in ARI laboratory data packages identified as BCI3 and BCI7. Sample identifications and sample collection, extraction, and analysis dates are provided in Table 1.

The Stage 2B verification and validation check was conducted in accordance with EPA's Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (EPA 2009), and with guidance from applicable portions of the National Functional Guidelines for Organic Data Review (EPA 1999, 2008) and the National Functional Guidelines for Inorganic Data Review (EPA 2004, 2010), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl Consulting LLC and Landau Associates 2010). The Stage 2B verification and validation check for each laboratory data package included the following:

- Verification that the laboratory data package contained all necessary documentation (including chain-of-custody records; identification of samples received by the laboratory; date and time of receipt of the samples at the laboratory; sample conditions upon receipt at the laboratory; date and time of sample analysis; and, if applicable, date of extraction, definition of laboratory data qualifiers, all sample-related quality control (QC) data, and QC acceptance criteria).
- Verification that all requested analyses, special cleanups, and special handling methods were performed.
- Verification that QC samples were performed as specified in the Quality Assurance Project Plan (QAPP).
- Evaluation of sample holding times.

- Evaluation of QC data compared to acceptance criteria, including method blanks, surrogate recoveries, matrix spike results, laboratory duplicate and/or replicate results, and laboratory control sample results.
- Evaluation of reporting limits compared to target reporting limits specified in the Work Plan.
- Verification that initial and continuing calibration data are provided for all requested analytes and are linked to the field samples reported, and that reported samples are bracketed by continuing calibration verification (CCV) and continuing calibration blank (CCB) standards as appropriate.
- Method-specific instrument performance checks are present as appropriate (e.g., DDT/Endrin breakdown checks for pesticides and aroclors).
- Frequency of instrument QC samples is checked for appropriateness (e.g., GC-MS tunes have been run every 12 hours)
- Sample results are evaluated by comparing instrument-related QC data to the requirements and guidelines present in national or regional data validation documents, analytical methods, or contract.

Data validation qualifiers are added to the sample results, as appropriate, based on the Stage 2B verification and validation check; a summary of the data validation qualifiers is presented in Table 2. The results of the verification and validation check are summarized below.

Laboratory Data Package Completeness

Each laboratory data package contained a signed COC, a cooler receipt form documenting the condition of the samples upon receipt at the laboratory, a cooler temperature compliance form, sample analytical results, and quality control results (method blanks, surrogate recoveries, laboratory control sample results, replicate sample results, initial and continuing calibrations, and instrument performance checks and quality control samples). A case narrative identifying any complications was also provided with each laboratory data package. Definitions of laboratory qualifiers and quality control acceptance criteria were provided, as appropriate.

Sample Conditions and Analysis

The laboratory received all samples in good condition, and all analyses were performed as requested. Upon receipt by ARI, the sample container information was compared to the associated COC and the cooler temperatures were recorded. All coolers were received at the laboratory with temperatures less than the EPA-recommended limit of 6°C.

Holding Times

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times, with the following exceptions:

• The total and WAD cyanide analyses associated with samples MGP-GW-MW-40, MGP-GW-MW-42, and MGP-GW-MW-55 in data package BCI3 were completed 1 day outside the method-recommended hold time. Associated sample results were qualified as estimated (J), as indicated in Table 2.

Blank Results

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. Target analytes were not detected at concentrations greater than the reporting limits in the associated method blanks. No qualification of the data was necessary.

Field Trip Blanks

At least one field (trip) blank was analyzed with each batch of samples submitted to the laboratory. Target analytes were not detected at concentrations greater than the reporting limits in the associated field blanks. No qualification of the data was necessary.

Surrogate Recoveries

Appropriate compounds were used as surrogate spikes for each organic analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits with the following exceptions:

• Surrogate spikes were diluted out during required SIM SVOC dilution reanalyses in data package BCI7. No qualification of the data was necessary.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) and Laboratory Replicate Results

A MS and a MSD or laboratory duplicate sample was analyzed with the BTEX, SIM SVOCs, total and dissolved metals, and total and WAD cyanide analyses in data package BCI3. The recovery values for each spiking compound were within the laboratory-specified control limits for all project samples with the following exceptions:

• The MS/MSD recoveries for fluoranthene associated with the SIM SVOCs analysis of sample MGP-GW-MW-42 in data package BCI3 were below the laboratory-specified control limit; the associated sample result was qualified as estimated (J), as indicated in Table 2.

- The MS recoveries for calcium and magnesium associated with the total metals analysis of sample MGP-GW-MW-42 in data package BCI3 were below the laboratory-specified control limits. The original sample concentrations were equal to or greater than four times the spike concentrations; therefore, no qualification of the data was necessary.
- The MS recovery for calcium associated with the dissolved metals analysis of sample MGP-GW-MW-42 in data package BCI3 was below the laboratory-specified control limit. The original sample concentration was equal to or greater than four times the spike concentration; therefore, no qualification of the data was necessary.

A project-specified control limit of 35 percent (organic analyses) or 20 percent (inorganic analyses) was used to evaluate the relative percent differences (RPDs) between the MS/MSD or laboratory replicate results, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the MS/MSDs or laboratory replicate results were within the current laboratory-specified control limits for all project samples. No qualification of the data was necessary.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

At least one LCS and/or LCSD or standard reference material (SRM) sample was analyzed with each batch of samples for each analysis. Recoveries and RPDs for the LCS/LCSD and SRMs were within the current laboratory- and project-specified control limits, with the following exceptions:

• The LCS/LCSD RPD for naphthalene, 2-methylnaphthalene, and 1-methylnaphthalene associated with the SIM SVOCs analysis in data package BCI7 exceeded the project-specified control limit; the associated sample results were qualified as estimated (J), as indicated in Table 2.

Blind Field Duplicates

One pair of blind field duplicate groundwater samples (MGP-GW-DUP-1 / MGP-GW-MW-34) was submitted for analysis with data package BCI7 and analyzed for BTEX, SIM SVOCs, total and dissolved metals, and total and WAD cyanide. A project-specified control limit of 20 percent was used to evaluate the RPDs between the duplicate groundwater samples, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. RPDs for the duplicate sample pair submitted for analysis were within the project-specified control limits with the following exceptions:

- The RPDs for several compounds associated with the SIM SVOCs analyses of the blind field duplicate pair MGP-GW-DUP-1 / MGP-GW-MW-34 exceeded the project-specified control limit. The associated sample results were qualified as estimated (J), as indicated in Table 2.
- The RPDs for arsenic and lead associated with the total metals analysis of the blind field duplicate pair MGP-GW-DUP-1 / MGP-GW-MW-34 exceeded the project-specified control limit. The associated sample results were qualified as estimated (J), as indicated in Table 2.

Total and Dissolved Metals Concentrations

The analytical results for total and dissolved metals were compared for each project sample. A project-specified control limit of 20 percent was used to evaluate the RPDs between the total and dissolved metals results, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the total and dissolved metals results were within the project-specified control limits for all project samples. No qualification of the data was necessary.

Reporting Limits

The reporting limits for BTEX, SIM SVOCs, and metals in several samples were above the target reporting limits due to either limited sample volume or required dilution due to high concentrations of target analytes in the samples. A list of the samples with raised reporting limits that did not contain detectable concentrations is provided in Table 3.

Initial and Continuing Calibration

Initial and continuing calibration verifications and instrument performance and QC checks were performed for all requested analyses and were appropriate in number and frequency based on laboratory requirements. No qualification of the data was necessary.

Completeness and Overall Data Quality

Data precision was evaluated through matrix spike duplicates, laboratory replicates, and laboratory control sample duplicates. Data accuracy was evaluated through matrix spikes, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

Use of this Report

This data validation summary report has been prepared for the exclusive use of the City of Bellingham and its designated representatives for specific application to the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau Associates, Inc. (LAI). Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by LAI, shall be at the user's sole risk. LAI warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied. This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

riste Schultz

Kristi Schultz Data Specialist

Danille Jorgensen Environmental Data Manager

KES/DRJ/Ijc [P:\015\015\070\T\DV\2016 GROUNDWATER SAMPLING DV MEMO\SSSMGP 2016 GROUNDWATER SAMPLING STAGE 2B DV MEMO.DOCX]

Attachments: Table 1. Sample Names and Dates of Sample Collection, Extraction, and Analysis Table 2. Summary of Data Qualifiers Table 3. Target Reporting Limit Exceedances

6

References

- EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. Office of Emergency and Remedial Response, US Environmental Protection Agency.
- EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA 540-R-04-004. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency.
- EPA. 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. USEPA-540-R-08-01. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. US Environmental Protection Agency.
- EPA. 2010. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. USEPA-540-R-10-011. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency.
- Herrenkohl Consulting LLC and Landau Associates. 2010. Report: South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan. August 6.

7

Table 1 Sample Names and Dates of Sample Collection, Extraction, and Analysis 2016 Groundwater Sampling South State Street Manufactured Gas Plant Bellingham, Washington

	Lab Sample	Sample		
Sample Name	ID	Collection Date	Sample Extraction Date	Sample Analysis Date
MGP-GW-MW-46	BCI3A/	6/21/16	6/24/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/27/16
	BCI3F		6/27-6/29/16 (Metals)	(BTEX); 6/27-6/28/16 (SIM SVOCs); 7/5-
				7/11/16 (Metals)
MGP-GW-MW-36	BCI3B/	6/21/16	6/24/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/27/16
	BCI3G		6/27-6/29/16 (Metals)	(BTEX, SIM SVOCs); 7/5-7/8/16 (Metals)
MGP-GW-MW-40	BCI3C/	6/21/16	6/24/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/27/16
	BCI3H		6/27-6/29/16 (Metals)	(BTEX, SIM SVOCs); 7/5-7/8/16 (Metals)
MGP-GW-MW-42	BCI3D/	6/21/16	6/24/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/27/16
	BCI3I		6/27-6/29/16 (Metals)	(BTEX, SIM SVOCs); 7/5-7/11/16 (Metals)
MGP-GW-MW-55	BCI3E/	6/21/16	6/24/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/27/16
	BCI3J		6/27-6/29/16 (Metals)	(BTEX, SIM SVOCs); 7/5-7/11/16 (Metals)
MGP-GW-WP-01	BCI3K	6/21/16	6/24/16 (SIM SVOCs)	6/27/16 (BTEX, SIM SVOCs)
Trip Blanks	BCI3M	6/21/16	NA	6/27/16 (BTEX)
MGP-GW-MW-28	BCI7A/	6/22/16	6/28/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/28-
	BCI7D		6/27-6/29/16 (Metals)	6/29/16 (BTEX); 6/30-7/2/16 (SIM SVOCs);
				7/5-7/11/16 (Metals)
MGP-GW-MW-34	BCI7B/	6/22/16	6/28/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/29/16
	BCI7E		6/27-6/29/16 (Metals)	(BTEX); 7/2/16 (SIM SVOCs); 7/5-7/11/16
				(Metals)
MGP-GW-Dup-1	BCI7C/	6/22/16	6/28/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/28/16
	BCI7F		6/27-6/29/16 (Metals)	(BTEX); 7/2/16 (SIM SVOCs); 7/5-7/11/16
				(Metals)
MGP-GW-WP-02	BCI7G	6/22/16	6/28/16 (SIM SVOCs)	6/28/16 (BTEX); 7/2/16 (SIM SVOCs)
MGP-GW-MW-58	BCI7H	6/22/16	NA	6/27/16 (BTEX)
Trip Blanks	BCI7I	6/22/16	NA	6/27/16 (BTEX)

Table 2 Summary of Data Qualifiers South State Street Manufactured Gas Plant 2016 Groundwater Sampling

Data Package	Analytical Group	Analyte	Result	Qualifier	Sample Number	Reason
BCI3	Conv.	Total Cyanide	0.017		MGP-GW-MW-40	Analyzed outside hold time
BCI3	Conv.	Weak Acid Dissociable Cyanide	0.005	J	MGP-GW-MW-40	Analyzed outside hold time
BCI3	Conv.	Total Cyanide	0.012	J	MGP-GW-MW-42	Analyzed outside hold time
BCI3	Conv.	Weak Acid Dissociable Cyanide	0.006	J	MGP-GW-MW-42	Analyzed outside hold time
BCI3	Conv.	Total Cyanide	0.022	J	MGP-GW-MW-55	Analyzed outside hold time
BCI3	Conv.	Weak Acid Dissociable Cyanide	0.006	J	MGP-GW-MW-55	Analyzed outside hold time
BCI3	SIM SVOCs	Fluoranthene	0.071	J	MGP-GW-MW-42	Low MS/MSD recovery
BCI3	SIM SVOCs	Acenaphthene	1.0 E	DNR	MGP-GW-MW-46	Do not report; use dilution analysis
BCI3	SIM SVOCs	Fluoranthene	1.5 E	DNR	MGP-GW-MW-46	Do not report; use dilution analysis
BCI3	SIM SVOCs	Pyrene	1.6 E	DNR	MGP-GW-MW-46	Do not report; use dilution analysis
BCI3	SIM SVOCs	Naphthalene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	2-Methylnaphthalene	0.10 U	DNR DNR	MGP-GW-MW-46-DL MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3 BCI3	SIM SVOCs	1-Methylnaphthalene	0.10 U 0.10 U	DNR	MGP-GW-MW-46-DL MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs SIM SVOCs	Acenaphthene Fluorene	0.10 0	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis Do not report; use original analysis
BCI3	SIM SVOCs	Phenanthrene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Anthracene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Benzo(a)anthracene	0.10	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Chrysene	0.12	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Benzo(a)pyrene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Indeno(1,2,3-cd)pyrene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Dibenz(a,h)anthracene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Benzo(g,h,i)perylene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Dibenzofuran	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Total Benzofluoranthenes	0.20 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI7	Total Metals	Arsenic	8	J	MGP-GW-MW-34	High field duplicate RPD
BCI7	Total Metals	Lead	11	J	MGP-GW-MW-34	High field duplicate RPD
BCI7	Total Metals	Arsenic	22	J	MGP-GW-Dup-1	High field duplicate RPD
BCI7	Total Metals	Lead	57	J	MGP-GW-Dup-1	High field duplicate RPD
BCI7	BTEX	Benzene	3000 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
BCI7	BTEX	Toluene	190	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	BTEX	Ethylbenzene	190	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	BTEX	m,p-Xylene	240	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	BTEX	o-Xylene	320	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	SIM SVOCs	Naphthalene	2,200	J	MGP-GW-MW-28	High MS/MSD RPD
BCI7	SIM SVOCs	2-Methylnaphthalene	200	J	MGP-GW-MW-28	High MS/MSD RPD
BCI7	SIM SVOCs	1-Methylnaphthalene	330	J	MGP-GW-MW-28	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	Naphthalene	0.74	J	MGP-GW-MW-34	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	2-Methylnaphthalene	0.069	J	MGP-GW-MW-34	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	1-Methylnaphthalene	0.11	J	MGP-GW-MW-34	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	Acenaphthylene	0.14	J	MGP-GW-MW-34	High field duplicate RPD
BCI7	SIM SVOCs	Naphthalene	0.27	J	MGP-GW-Dup-1	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	2-Methylnaphthalene	0.022	J	MGP-GW-Dup-1	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	1-Methylnaphthalene	0.034	J	MGP-GW-Dup-1	High MS/MSD RPD, High field duplicate RPD
DC17	SIM SVOCs	Acenaphthylene	0.029	J		High field duplicate DDD
BCI7		Acenaphicitylene	0.029	J	MGP-GW-Dup-1	High field duplicate RPD
BCI7 BCI7	SIM SVOCs	Naphthalene	0.029	J	MGP-GW-Dup-1 MGP-GW-WP-02	High MS/MSD RPD
	SIM SVOCs SIM SVOCs		-			
BCI7		Naphthalene	0.16	J	MGP-GW-WP-02	High MS/MSD RPD
BCI7 BCI7	SIM SVOCs	Naphthalene 1-Methylnaphthalene	0.16 0.02	J	MGP-GW-WP-02 MGP-GW-WP-02	High MS/MSD RPD High MS/MSD RPD
BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene Naphthalene	0.16 0.02 130 E	J J DNR	MGP-GW-WP-02 MGP-GW-WP-02 MGP-GW-MW-28	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene Naphthalene 2-Methylnaphthalene	0.16 0.02 130 E 70 E	J J DNR DNR	MGP-GW-WP-02 MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene	0.16 0.02 130 E 70 E 85 E 26 E 16 E	J J DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenarthrene Naphthalene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E	J J DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene Naphthalene 2-Methylnaphthalene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E	J J DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E	J J DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BC17 BC17 BC17 BC17 BC17 BC17 BC17 BC17	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4	J JNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Anthracene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4 3.4	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Anthracene Fluoranthene	0.16 0.02 130 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4 3.4 1.2	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis Do not report; use original analysis Do not report; use original analysis
BC17 BC17 BC17 BC17 BC17 BC17 BC17 BC17	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Fluoranthene Fluoranthene Pyrene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4 3.4 1.2 1.3	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4 3.4 3.4 1.2 1.3 1.0 U	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis
BC17 BC17 BC17 BC17 BC17 BC17 BC17 BC17	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 260 E 110 E 8.4 3.4 1.2 1.3 1.0 U 1.0 U	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4 3.4 3.4 1.2 1.3 1.0 U	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis

Table 2 Summary of Data Qualifiers South State Street Manufactured Gas Plant 2016 Groundwater Sampling

	Analytical					
Data Package	Group	Analyte	Result	Qualifier	Sample Number	Reason
BCI7	SIM SVOCs	Benzo(g,h,i)perylene	1.0 U	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	SIM SVOCs	Dibenzofuran	6.1	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	SIM SVOCs	Total Benzofluoranthenes	2.0 U	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	SIM SVOCs	Acenaphthene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Fluorene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Phenanthrene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Anthracene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Fluoranthene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Pyrene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Benzo(a)anthracene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Chrysene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Benzo(a)pyrene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Indeno(1,2,3-cd)pyrene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Dibenz(a,h)anthracene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Benzo(g,h,i)perylene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Dibenzofuran	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Total Benzofluoranthenes	80 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis

Notes

DNR = Do not report

J = Indicates the analyte was positively identified; the associated numerical value is the approximate

concentration of the analyte in the sample.

U = Indicates the compound was undetected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

Table 3 Target Reporting Limit Exceedances 2016 Groundwater Sampling South State Street Manufactured Gas Plant Bellingham, Washington

Sample Name	Lab Sample ID	Analyte	Target Quantitation Limit	Sample Reporting Limit	Sample Result
MGP-GW-MW-46	BCI3A	Fluoranthene	0.01 ug/L	0.10 ug/L	2.0 ug/L
MGP-GW-MW-46	BCI3A	Total Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-46	BCI3A	Total Calcium	50 ug/L	100 ug/L	264,000 ug/L
MGP-GW-MW-46	BCI3A	Total Magnesium	50 ug/L	100 ug/L	599,000 ug/L
MGP-GW-MW-46	BCI3A	Total Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-46	BCI3A	Total Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-46	BCI3F	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-46	BCI3F	Dissolved Calcium	50 ug/L	100 ug/L	274,000 ug/L
MGP-GW-MW-46	BCI3F	Dissolved Magnesium	50 ug/L	100 ug/L	610,000 ug/L
MGP-GW-MW-46	BCI3F	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-46	BCI3F	Dissolved Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-36	BCI3B	Total Arsenic	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-36	BCI3B	Total Calcium	50 ug/L	100 ug/L	281,000 ug/L
MGP-GW-MW-36	BCI3B	Total Magnesium	50 ug/L	100 ug/L	523,000 ug/L
MGP-GW-MW-36	BCI3B	Total Selenium	0.5 ug/L	5 ug/L	5 U ug/L
MGP-GW-MW-36	BCI3B	Total Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-36	BCI3G	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-36	BCI3G	Dissolved Calcium	50 ug/L	100 ug/L	300,000 ug/L
MGP-GW-MW-36	BCI3G	Dissolved Magnesium	50 ug/L	100 ug/L	554,000 ug/L
MGP-GW-MW-36	BCI3G	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-36	BCI3G	Dissolved Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-40	BCI3C	Total Arsenic	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-40	BCI3C	Total Calcium	50 ug/L	100 ug/L	250,000 ug/L
MGP-GW-MW-40	BCI3C	Total Magnesium	50 ug/L	100 ug/L	694,000 ug/L
MGP-GW-MW-40	BCI3C	Total Selenium	0.5 ug/L	5 ug/L	5 U ug/L
MGP-GW-MW-40	BCI3C	Total Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-40	BCI3H	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-40	BCI3H	Dissolved Calcium	50 ug/L	100 ug/L	248,000 ug/L
MGP-GW-MW-40	BCI3H	Dissolved Magnesium	50 ug/L	100 ug/L	687,000 ug/L
MGP-GW-MW-40	BCI3H	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-40	BCI3H	Dissolved Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-42	BCI3D	Total Arsenic	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-42	BCI3D	Total Calcium	50 ug/L	100 ug/L	293,000 ug/L
MGP-GW-MW-42	BCI3D	Total Magnesium	50 ug/L	100 ug/L	875,000 ug/L
MGP-GW-MW-42	BCI3D	Total Selenium	0.5 ug/L	5 ug/L	5 U ug/L
MGP-GW-MW-42	BCI3D	Total Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-42	BCI3I	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-42	BCI3I	Dissolved Calcium	50 ug/L	100 ug/L	299,000 ug/L
MGP-GW-MW-42	BCI3I	Dissolved Magnesium	50 ug/L	100 ug/L	890,000 ug/L
MGP-GW-MW-42	BCI3I	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-42	BCI3I	Dissolved Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-55	BCI3E	Total Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-55	BCI3E	Total Calcium	50 ug/L	100 ug/L	200,000 ug/L
MGP-GW-MW-55	BCI3E	Total Magnesium	50 ug/L	100 ug/L	673,000 ug/L
MGP-GW-MW-55	BCI3E	Total Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-55	BCI3E	Total Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-55	BCI3J	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-55	BCI3J	Dissolved Calcium	50 ug/L	100 ug/L	198,000 ug/L
MGP-GW-MW-55	BCI3J	Dissolved Magnesium	50 ug/L	100 ug/L	672,000 ug/L
MGP-GW-MW-55	BCI3J	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L

Table 3 Target Reporting Limit Exceedances 2016 Groundwater Sampling South State Street Manufactured Gas Plant Bellingham, Washington

	Lab Sample		Target	Sample Reporting	
Sample Name	ID	Analyte	Quantitation Limit	Limit	Sample Result
MGP-GW-MW-55	BCI3J	Dissolved Silver	0.2 ug/L	4 ug/L	4 U ug/L
			-	-	-
MGP-GW-WP-01	BCI3K	Fluoranthene	0.01 ug/L	0.020 ug/L	0.16 ug/L
					-
MGP-GW-MW-28	BCI7A	Benzene	0.2 ug/L	20 ug/L	3400 ug/L
MGP-GW-MW-28	BCI7A	Toluene	0.2 ug/L	4.0 ug/L	220 ug/L
MGP-GW-MW-28	BCI7A	Ethylbenzene	0.2 ug/L	4.0 ug/L	250 ug/L
MGP-GW-MW-28	BCI7A	m,p-Xylene	0.4 ug/L	8.0 ug/L	290 ug/L
MGP-GW-MW-28	BCI7A	o-Xylene	0.2 ug/L	4.0 ug/L	410 ug/L
MGP-GW-MW-28	BCI7A	Fluoranthene	0.01 ug/L	0.1 ug/L	1.2 ug/L
MGP-GW-MW-28	BCI7A	Naphthalene	0.1 ug/L	40 ug/L	2200 ug/L
MGP-GW-MW-28	BCI7A	2-Methylnaphthalene	0.1 ug/L	40 ug/L	200 ug/L
MGP-GW-MW-28	BCI7A	1-Methylnaphthalene	0.1 ug/L	40 ug/L	330 ug/L
MGP-GW-MW-28	BCI7A	Acenaphthylene	0.1 ug/L	40 ug/L	120 ug/L
MGP-GW-MW-28	BCI7A	Fluorene	0.1 ug/L	1.0 ug/L	29 ug/L
MGP-GW-MW-28	BCI7A	Phenanthrene	0.1 ug/L	1.0 ug/L	19 ug/L
MGP-GW-MW-28	BCI7A	Total Calcium	50 ug/L	100 ug/L	87,100 ug/L
MGP-GW-MW-28	BCI7A	Total Magnesium	50 ug/L	100 ug/L	32,700 ug/L
MGP-GW-MW-28	BCI7D	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-28	BCI7D	Dissolved Calcium	50 ug/L	100 ug/L	85,900 ug/L
MGP-GW-MW-28	BCI7D	Dissolved Lead	1.0 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-28	BCI7D	Dissolved Magnesium	50 ug/L	100 ug/L	32,700 ug/L
MGP-GW-MW-28	BCI7D	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-28	BCI7D	Dissolved Silver	0.2 ug/L	4 ug/L	4 U ug/L
			<u>,</u>		
MGP-GW-MW-34	BCI7B	Total Arsenic	0.2 ug/L	4 ug/L	8 ug/L
MGP-GW-MW-34	BCI7B	Total Calcium	50 ug/L	100 ug/L	272,000 ug/L
MGP-GW-MW-34	BCI7B	Total Lead	1.0 ug/L	2 ug/L	11 ug/L
MGP-GW-MW-34	BCI7B	Total Magnesium	50 ug/L	100 ug/L	707,000 ug/L
MGP-GW-MW-34	BCI7B	Total Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-34	BCI7B	Total Silver	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-34	BCI7E	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-34	BCI7E	Dissolved Calcium	50 ug/L	100 ug/L	273,000 ug/L
MGP-GW-MW-34	BCI7E	Dissolved Lead	1.0 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-34	BCI7E	Dissolved Magnesium	50 ug/L	100 ug/L	715,000 ug/L
MGP-GW-MW-34	BCI7E	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-34	BCI7E	Dissolved Silver	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-Dup-1	BCI7C	Total Arsenic	0.2 ug/L	4 ug/L	22 ug/L
MGP-GW-Dup-1	BCI7C	Total Calcium	50 ug/L	100 ug/L	268,000 ug/L
MGP-GW-Dup-1	BCI7C	Total Lead	1.0 ug/L	2 ug/L	57 ug/L
MGP-GW-Dup-1	BCI7C	Total Magnesium	50 ug/L	100 ug/L	690,000 ug/L
MGP-GW-Dup-1	BCI7C	Total Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-Dup-1	BCI7C	Total Silver	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Calcium	50 ug/L	250 ug/L	279,000 ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Lead	1.0 ug/L	2 ug/L	2 U ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Magnesium	50 ug/L	250 ug/L	756,000 ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Silver	0.2 ug/L	4 ug/L	4 U ug/L
			~0/ -		
MGP-GW-WP-02	BCI7G	Fluoranthene	0.01 ug/L	0.017 ug/L	0.022 ug/L

TO:	Chip Halbert
FROM:	Kristi Schultz and Danille Jorgensen
DATE:	October 25, 2016
RE:	2016 Groundwater Samples Laboratory Data Quality Evaluation City of Bellingham South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study

This technical memorandum provides the results of a Stage 2B verification and validation check of analytical data for 11 groundwater samples collected on June 21-22, 2016 at the South State Street Manufactured Gas Plant in Bellingham, Washington. All sample analyses were conducted at Analytical Resources, Inc. (ARI) laboratory, located in Tukwila, Washington. Samples submitted to ARI were analyzed for some or all of the following: benzene, toluene, ethylbenzene, and xylenes (BTEX; US Environmental Protection Agency [EPA] Method SW8260C); low-level semivolatile organic compounds (SIM SVOCs; EPA Method SW8270D-SIM); total and dissolved metals (EPA Method 6010C/6020A), including hardness calculation; total cyanide (SM4500-CNE); and weak acid dissociable (WAD) cyanide (SM4500CN-I). The analytical results are reported in ARI laboratory data packages identified as BCI3 and BCI7. Sample identifications and sample collection, extraction, and analysis dates are provided in Table 1.

The Stage 2B verification and validation check was conducted in accordance with EPA's Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (EPA 2009), and with guidance from applicable portions of the National Functional Guidelines for Organic Data Review (EPA 1999, 2008) and the National Functional Guidelines for Inorganic Data Review (EPA 2004, 2010), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl Consulting LLC and Landau Associates 2010). The Stage 2B verification and validation check for each laboratory data package included the following:

- Verification that the laboratory data package contained all necessary documentation (including chain-of-custody records; identification of samples received by the laboratory; date and time of receipt of the samples at the laboratory; sample conditions upon receipt at the laboratory; date and time of sample analysis; and, if applicable, date of extraction, definition of laboratory data qualifiers, all sample-related quality control (QC) data, and QC acceptance criteria).
- Verification that all requested analyses, special cleanups, and special handling methods were performed.
- Verification that QC samples were performed as specified in the Quality Assurance Project Plan (QAPP).
- Evaluation of sample holding times.

- Evaluation of QC data compared to acceptance criteria, including method blanks, surrogate recoveries, matrix spike results, laboratory duplicate and/or replicate results, and laboratory control sample results.
- Evaluation of reporting limits compared to target reporting limits specified in the Work Plan.
- Verification that initial and continuing calibration data are provided for all requested analytes and are linked to the field samples reported, and that reported samples are bracketed by continuing calibration verification (CCV) and continuing calibration blank (CCB) standards as appropriate.
- Method-specific instrument performance checks are present as appropriate (e.g., DDT/Endrin breakdown checks for pesticides and aroclors).
- Frequency of instrument QC samples is checked for appropriateness (e.g., GC-MS tunes have been run every 12 hours)
- Sample results are evaluated by comparing instrument-related QC data to the requirements and guidelines present in national or regional data validation documents, analytical methods, or contract.

Data validation qualifiers are added to the sample results, as appropriate, based on the Stage 2B verification and validation check; a summary of the data validation qualifiers is presented in Table 2. The results of the verification and validation check are summarized below.

Laboratory Data Package Completeness

Each laboratory data package contained a signed COC, a cooler receipt form documenting the condition of the samples upon receipt at the laboratory, a cooler temperature compliance form, sample analytical results, and quality control results (method blanks, surrogate recoveries, laboratory control sample results, replicate sample results, initial and continuing calibrations, and instrument performance checks and quality control samples). A case narrative identifying any complications was also provided with each laboratory data package. Definitions of laboratory qualifiers and quality control acceptance criteria were provided, as appropriate.

Sample Conditions and Analysis

The laboratory received all samples in good condition, and all analyses were performed as requested. Upon receipt by ARI, the sample container information was compared to the associated COC and the cooler temperatures were recorded. All coolers were received at the laboratory with temperatures less than the EPA-recommended limit of 6°C.

Holding Times

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times, with the following exceptions:

• The total and WAD cyanide analyses associated with samples MGP-GW-MW-40, MGP-GW-MW-42, and MGP-GW-MW-55 in data package BCI3 were completed 1 day outside the method-recommended hold time. Associated sample results were qualified as estimated (J), as indicated in Table 2.

Blank Results

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. Target analytes were not detected at concentrations greater than the reporting limits in the associated method blanks. No qualification of the data was necessary.

Field Trip Blanks

At least one field (trip) blank was analyzed with each batch of samples submitted to the laboratory. Target analytes were not detected at concentrations greater than the reporting limits in the associated field blanks. No qualification of the data was necessary.

Surrogate Recoveries

Appropriate compounds were used as surrogate spikes for each organic analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits with the following exceptions:

• Surrogate spikes were diluted out during required SIM SVOC dilution reanalyses in data package BCI7. No qualification of the data was necessary.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) and Laboratory Replicate Results

A MS and a MSD or laboratory duplicate sample was analyzed with the BTEX, SIM SVOCs, total and dissolved metals, and total and WAD cyanide analyses in data package BCI3. The recovery values for each spiking compound were within the laboratory-specified control limits for all project samples with the following exceptions:

• The MS/MSD recoveries for fluoranthene associated with the SIM SVOCs analysis of sample MGP-GW-MW-42 in data package BCI3 were below the laboratory-specified control limit; the associated sample result was qualified as estimated (J), as indicated in Table 2.

- The MS recoveries for calcium and magnesium associated with the total metals analysis of sample MGP-GW-MW-42 in data package BCI3 were below the laboratory-specified control limits. The original sample concentrations were equal to or greater than four times the spike concentrations; therefore, no qualification of the data was necessary.
- The MS recovery for calcium associated with the dissolved metals analysis of sample MGP-GW-MW-42 in data package BCI3 was below the laboratory-specified control limit. The original sample concentration was equal to or greater than four times the spike concentration; therefore, no qualification of the data was necessary.

A project-specified control limit of 35 percent (organic analyses) or 20 percent (inorganic analyses) was used to evaluate the relative percent differences (RPDs) between the MS/MSD or laboratory replicate results, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the MS/MSDs or laboratory replicate results were within the current laboratory-specified control limits for all project samples. No qualification of the data was necessary.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

At least one LCS and/or LCSD or standard reference material (SRM) sample was analyzed with each batch of samples for each analysis. Recoveries and RPDs for the LCS/LCSD and SRMs were within the current laboratory- and project-specified control limits, with the following exceptions:

• The LCS/LCSD RPD for naphthalene, 2-methylnaphthalene, and 1-methylnaphthalene associated with the SIM SVOCs analysis in data package BCI7 exceeded the project-specified control limit; the associated sample results were qualified as estimated (J), as indicated in Table 2.

Blind Field Duplicates

One pair of blind field duplicate groundwater samples (MGP-GW-DUP-1 / MGP-GW-MW-34) was submitted for analysis with data package BCI7 and analyzed for BTEX, SIM SVOCs, total and dissolved metals, and total and WAD cyanide. A project-specified control limit of 20 percent was used to evaluate the RPDs between the duplicate groundwater samples, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. RPDs for the duplicate sample pair submitted for analysis were within the project-specified control limits with the following exceptions:

- The RPDs for several compounds associated with the SIM SVOCs analyses of the blind field duplicate pair MGP-GW-DUP-1 / MGP-GW-MW-34 exceeded the project-specified control limit. The associated sample results were qualified as estimated (J), as indicated in Table 2.
- The RPDs for arsenic and lead associated with the total metals analysis of the blind field duplicate pair MGP-GW-DUP-1 / MGP-GW-MW-34 exceeded the project-specified control limit. The associated sample results were qualified as estimated (J), as indicated in Table 2.

Total and Dissolved Metals Concentrations

The analytical results for total and dissolved metals were compared for each project sample. A project-specified control limit of 20 percent was used to evaluate the RPDs between the total and dissolved metals results, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the total and dissolved metals results were within the project-specified control limits for all project samples. No qualification of the data was necessary.

Reporting Limits

The reporting limits for BTEX, SIM SVOCs, and metals in several samples were above the target reporting limits due to either limited sample volume or required dilution due to high concentrations of target analytes in the samples. A list of the samples with raised reporting limits that did not contain detectable concentrations is provided in Table 3.

Initial and Continuing Calibration

Initial and continuing calibration verifications and instrument performance and QC checks were performed for all requested analyses and were appropriate in number and frequency based on laboratory requirements. No qualification of the data was necessary.

Completeness and Overall Data Quality

Data precision was evaluated through matrix spike duplicates, laboratory replicates, and laboratory control sample duplicates. Data accuracy was evaluated through matrix spikes, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

Use of this Report

This data validation summary report has been prepared for the exclusive use of the City of Bellingham and its designated representatives for specific application to the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau Associates, Inc. (LAI). Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by LAI, shall be at the user's sole risk. LAI warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied. This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

riste Schultz

Kristi Schultz Data Specialist

Danille Jorgensen Environmental Data Manager

KES/DRJ/Ijc [P:\015\015\070\T\DV\2016 GROUNDWATER SAMPLING DV MEMO\SSSMGP 2016 GROUNDWATER SAMPLING STAGE 2B DV MEMO.DOCX]

Attachments: Table 1. Sample Names and Dates of Sample Collection, Extraction, and Analysis Table 2. Summary of Data Qualifiers Table 3. Target Reporting Limit Exceedances

6

References

- EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. Office of Emergency and Remedial Response, US Environmental Protection Agency.
- EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA 540-R-04-004. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency.
- EPA. 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. USEPA-540-R-08-01. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. US Environmental Protection Agency.
- EPA. 2010. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. USEPA-540-R-10-011. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency.
- Herrenkohl Consulting LLC and Landau Associates. 2010. Report: South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan. August 6.

7

Table 1 Sample Names and Dates of Sample Collection, Extraction, and Analysis 2016 Groundwater Sampling South State Street Manufactured Gas Plant Bellingham, Washington

	Lab Sample	Sample		
Sample Name	ID	Collection Date	Sample Extraction Date	Sample Analysis Date
MGP-GW-MW-46	BCI3A/	6/21/16	6/24/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/27/16
	BCI3F		6/27-6/29/16 (Metals)	(BTEX); 6/27-6/28/16 (SIM SVOCs); 7/5-
				7/11/16 (Metals)
MGP-GW-MW-36	BCI3B/	6/21/16	6/24/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/27/16
	BCI3G		6/27-6/29/16 (Metals)	(BTEX, SIM SVOCs); 7/5-7/8/16 (Metals)
MGP-GW-MW-40	BCI3C/	6/21/16	6/24/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/27/16
	BCI3H		6/27-6/29/16 (Metals)	(BTEX, SIM SVOCs); 7/5-7/8/16 (Metals)
MGP-GW-MW-42	BCI3D/	6/21/16	6/24/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/27/16
	BCI3I		6/27-6/29/16 (Metals)	(BTEX, SIM SVOCs); 7/5-7/11/16 (Metals)
MGP-GW-MW-55	BCI3E/	6/21/16	6/24/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/27/16
	BCI3J		6/27-6/29/16 (Metals)	(BTEX, SIM SVOCs); 7/5-7/11/16 (Metals)
MGP-GW-WP-01	BCI3K	6/21/16	6/24/16 (SIM SVOCs)	6/27/16 (BTEX, SIM SVOCs)
Trip Blanks	BCI3M	6/21/16	NA	6/27/16 (BTEX)
MGP-GW-MW-28	BCI7A/	6/22/16	6/28/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/28-
	BCI7D		6/27-6/29/16 (Metals)	6/29/16 (BTEX); 6/30-7/2/16 (SIM SVOCs);
				7/5-7/11/16 (Metals)
MGP-GW-MW-34	BCI7B/	6/22/16	6/28/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/29/16
	BCI7E		6/27-6/29/16 (Metals)	(BTEX); 7/2/16 (SIM SVOCs); 7/5-7/11/16
				(Metals)
MGP-GW-Dup-1	BCI7C/	6/22/16	6/28/16 (SIM SVOCs);	6/24/16 (Total and WAD Cyanide); 6/28/16
	BCI7F		6/27-6/29/16 (Metals)	(BTEX); 7/2/16 (SIM SVOCs); 7/5-7/11/16
				(Metals)
MGP-GW-WP-02	BCI7G	6/22/16	6/28/16 (SIM SVOCs)	6/28/16 (BTEX); 7/2/16 (SIM SVOCs)
MGP-GW-MW-58	BCI7H	6/22/16	NA	6/27/16 (BTEX)
Trip Blanks	BCI7I	6/22/16	NA	6/27/16 (BTEX)

Table 2 Summary of Data Qualifiers South State Street Manufactured Gas Plant 2016 Groundwater Sampling

Data Package	Analytical Group	Analyte	Result	Qualifier	Sample Number	Reason
BCI3	Conv.	Total Cyanide	0.017		MGP-GW-MW-40	Analyzed outside hold time
BCI3	Conv.	Weak Acid Dissociable Cyanide	0.005	J	MGP-GW-MW-40	Analyzed outside hold time
BCI3	Conv.	Total Cyanide	0.012	J	MGP-GW-MW-42	Analyzed outside hold time
BCI3	Conv.	Weak Acid Dissociable Cyanide	0.006	J	MGP-GW-MW-42	Analyzed outside hold time
BCI3	Conv.	Total Cyanide	0.022	J	MGP-GW-MW-55	Analyzed outside hold time
BCI3	Conv.	Weak Acid Dissociable Cyanide	0.006	J	MGP-GW-MW-55	Analyzed outside hold time
BCI3	SIM SVOCs	Fluoranthene	0.071	J	MGP-GW-MW-42	Low MS/MSD recovery
BCI3	SIM SVOCs	Acenaphthene	1.0 E	DNR	MGP-GW-MW-46	Do not report; use dilution analysis
BCI3	SIM SVOCs	Fluoranthene	1.5 E	DNR	MGP-GW-MW-46	Do not report; use dilution analysis
BCI3	SIM SVOCs	Pyrene	1.6 E	DNR	MGP-GW-MW-46	Do not report; use dilution analysis
BCI3	SIM SVOCs	Naphthalene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	2-Methylnaphthalene	0.10 U	DNR DNR	MGP-GW-MW-46-DL MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3 BCI3	SIM SVOCs	1-Methylnaphthalene	0.10 U 0.10 U	DNR	MGP-GW-MW-46-DL MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs SIM SVOCs	Acenaphthene Fluorene	0.10 0	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis Do not report; use original analysis
BCI3	SIM SVOCs	Phenanthrene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Anthracene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Benzo(a)anthracene	0.10	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Chrysene	0.12	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Benzo(a)pyrene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Indeno(1,2,3-cd)pyrene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Dibenz(a,h)anthracene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Benzo(g,h,i)perylene	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Dibenzofuran	0.10 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI3	SIM SVOCs	Total Benzofluoranthenes	0.20 U	DNR	MGP-GW-MW-46-DL	Do not report; use original analysis
BCI7	Total Metals	Arsenic	8	J	MGP-GW-MW-34	High field duplicate RPD
BCI7	Total Metals	Lead	11	J	MGP-GW-MW-34	High field duplicate RPD
BCI7	Total Metals	Arsenic	22	J	MGP-GW-Dup-1	High field duplicate RPD
BCI7	Total Metals	Lead	57	J	MGP-GW-Dup-1	High field duplicate RPD
BCI7	BTEX	Benzene	3000 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
BCI7	BTEX	Toluene	190	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	BTEX	Ethylbenzene	190	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	BTEX	m,p-Xylene	240	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	BTEX	o-Xylene	320	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	SIM SVOCs	Naphthalene	2,200	J	MGP-GW-MW-28	High MS/MSD RPD
BCI7	SIM SVOCs	2-Methylnaphthalene	200	J	MGP-GW-MW-28	High MS/MSD RPD
BCI7	SIM SVOCs	1-Methylnaphthalene	330	J	MGP-GW-MW-28	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	Naphthalene	0.74	J	MGP-GW-MW-34	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	2-Methylnaphthalene	0.069	J	MGP-GW-MW-34	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	1-Methylnaphthalene	0.11	J	MGP-GW-MW-34	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	Acenaphthylene	0.14	J	MGP-GW-MW-34	High field duplicate RPD
BCI7	SIM SVOCs	Naphthalene	0.27	J	MGP-GW-Dup-1	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	2-Methylnaphthalene	0.022	J	MGP-GW-Dup-1	High MS/MSD RPD, High field duplicate RPD
BCI7	SIM SVOCs	1-Methylnaphthalene	0.034	J	MGP-GW-Dup-1	High MS/MSD RPD, High field duplicate RPD
DC17	SIM SVOCs	Acenaphthylene	0.029	J		High field duplicate DDD
BCI7		Acenaphicitylene	0.029	J	MGP-GW-Dup-1	High field duplicate RPD
BCI7 BCI7	SIM SVOCs	Naphthalene	0.029	J	MGP-GW-Dup-1 MGP-GW-WP-02	High MS/MSD RPD
	SIM SVOCs SIM SVOCs		-			
BCI7		Naphthalene	0.16	J	MGP-GW-WP-02	High MS/MSD RPD
BCI7 BCI7	SIM SVOCs	Naphthalene 1-Methylnaphthalene	0.16 0.02	J	MGP-GW-WP-02 MGP-GW-WP-02	High MS/MSD RPD High MS/MSD RPD
BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene Naphthalene	0.16 0.02 130 E	J J DNR	MGP-GW-WP-02 MGP-GW-WP-02 MGP-GW-MW-28	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene Naphthalene 2-Methylnaphthalene	0.16 0.02 130 E 70 E	J J DNR DNR	MGP-GW-WP-02 MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene	0.16 0.02 130 E 70 E 85 E 26 E 16 E	J J DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenarthrene Naphthalene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E	J J DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene Naphthalene 2-Methylnaphthalene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E	J J DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E	J J DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BC17 BC17 BC17 BC17 BC17 BC17 BC17 BC17	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4	J JNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use dilution analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Anthracene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4 3.4	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Anthracene Fluoranthene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4 3.4 1.2	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis Do not report; use original analysis Do not report; use original analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Fluoranthene Fluoranthene Pyrene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4 3.4 1.2 1.3	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4 3.4 3.4 1.2 1.3 1.0 U	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis
BC17 BC17 BC17 BC17 BC17 BC17 BC17 BC17	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 260 E 110 E 8.4 3.4 1.2 1.3 1.0 U 1.0 U	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis
BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7 BCI7	SIM SVOCs SIM SVOCs	Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Fluorene Phenanthrene 2-Methylnaphthalene 1-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthylene Fluoranthene Fluoranthene Pyrene Benzo(a)anthracene	0.16 0.02 130 E 70 E 85 E 26 E 16 E 500 E 180 E 260 E 110 E 8.4 3.4 3.4 1.2 1.3 1.0 U	J J DNR DNR DNR DNR DNR DNR DNR DNR DNR DNR	MGP-GW-WP-02 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28 MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL MGP-GW-MW-28-DL	High MS/MSD RPD High MS/MSD RPD Do not report; use dilution analysis Do not report; use original analysis

Table 2 Summary of Data Qualifiers South State Street Manufactured Gas Plant 2016 Groundwater Sampling

Data Package	Analytical Group	Analyte	Result	Qualifier	Sample Number	Reason
BCI7	SIM SVOCs	Benzo(g,h,i)perylene	1.0 U	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	SIM SVOCs	Dibenzofuran	6.1	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	SIM SVOCs	Total Benzofluoranthenes	2.0 U	DNR	MGP-GW-MW-28-DL	Do not report; use original analysis
BCI7	SIM SVOCs	Acenaphthene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Fluorene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Phenanthrene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Anthracene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Fluoranthene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Pyrene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Benzo(a)anthracene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Chrysene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Benzo(a)pyrene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Indeno(1,2,3-cd)pyrene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Dibenz(a,h)anthracene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Benzo(g,h,i)perylene	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Dibenzofuran	40 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis
BCI7	SIM SVOCs	Total Benzofluoranthenes	80 U	DNR	MGP-GW-MW-28-DL2	Do not report; use original analysis

Notes

DNR = Do not report

J = Indicates the analyte was positively identified; the associated numerical value is the approximate

concentration of the analyte in the sample.

U = Indicates the compound was undetected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

Table 3 Target Reporting Limit Exceedances 2016 Groundwater Sampling South State Street Manufactured Gas Plant Bellingham, Washington

Sample Name	Lab Sample ID	Analyte	Target Quantitation Limit	Sample Reporting Limit	Sample Result
MGP-GW-MW-46	BCI3A	Fluoranthene	0.01 ug/L	0.10 ug/L	2.0 ug/L
MGP-GW-MW-46	BCI3A	Total Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-46	BCI3A	Total Calcium	50 ug/L	100 ug/L	264,000 ug/L
MGP-GW-MW-46	BCI3A	Total Magnesium	50 ug/L	100 ug/L	599,000 ug/L
MGP-GW-MW-46	BCI3A	Total Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-46	BCI3A	Total Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-46	BCI3F	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-46	BCI3F	Dissolved Calcium	50 ug/L	100 ug/L	274,000 ug/L
MGP-GW-MW-46	BCI3F	Dissolved Magnesium	50 ug/L	100 ug/L	610,000 ug/L
MGP-GW-MW-46	BCI3F	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-46	BCI3F	Dissolved Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-36	BCI3B	Total Arsenic	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-36	BCI3B	Total Calcium	50 ug/L	100 ug/L	281,000 ug/L
MGP-GW-MW-36	BCI3B	Total Magnesium	50 ug/L	100 ug/L	523,000 ug/L
MGP-GW-MW-36	BCI3B	Total Selenium	0.5 ug/L	5 ug/L	5 U ug/L
MGP-GW-MW-36	BCI3B	Total Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-36	BCI3G	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-36	BCI3G	Dissolved Calcium	50 ug/L	100 ug/L	300,000 ug/L
MGP-GW-MW-36	BCI3G	Dissolved Magnesium	50 ug/L	100 ug/L	554,000 ug/L
MGP-GW-MW-36	BCI3G	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-36	BCI3G	Dissolved Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-40	BCI3C	Total Arsenic	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-40	BCI3C	Total Calcium	50 ug/L	100 ug/L	250,000 ug/L
MGP-GW-MW-40	BCI3C	Total Magnesium	50 ug/L	100 ug/L	694,000 ug/L
MGP-GW-MW-40	BCI3C	Total Selenium	0.5 ug/L	5 ug/L	5 U ug/L
MGP-GW-MW-40	BCI3C	Total Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-40	BCI3H	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-40	BCI3H	Dissolved Calcium	50 ug/L	100 ug/L	248,000 ug/L
MGP-GW-MW-40	BCI3H	Dissolved Magnesium	50 ug/L	100 ug/L	687,000 ug/L
MGP-GW-MW-40	BCI3H	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-40	BCI3H	Dissolved Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-42	BCI3D	Total Arsenic	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-42	BCI3D	Total Calcium	50 ug/L	100 ug/L	293,000 ug/L
MGP-GW-MW-42	BCI3D	Total Magnesium	50 ug/L	100 ug/L	875,000 ug/L
MGP-GW-MW-42	BCI3D	Total Selenium	0.5 ug/L	5 ug/L	5 U ug/L
MGP-GW-MW-42	BCI3D	Total Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-42	BCI3I	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-42	BCI3I	Dissolved Calcium	50 ug/L	100 ug/L	299,000 ug/L
MGP-GW-MW-42	BCI3I	Dissolved Magnesium	50 ug/L	100 ug/L	890,000 ug/L
MGP-GW-MW-42	BCI3I	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-42	BCI3I	Dissolved Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-55	BCI3E	Total Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-55	BCI3E	Total Calcium	50 ug/L	100 ug/L	200,000 ug/L
MGP-GW-MW-55	BCI3E	Total Magnesium	50 ug/L	100 ug/L	673,000 ug/L
MGP-GW-MW-55	BCI3E	Total Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-55	BCI3E	Total Silver	0.2 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-55	BCI3J	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-55	BCI3J	Dissolved Calcium	50 ug/L	100 ug/L	198,000 ug/L
MGP-GW-MW-55	BCI3J	Dissolved Magnesium	50 ug/L	100 ug/L	672,000 ug/L
MGP-GW-MW-55	BCI3J	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L

Table 3 Target Reporting Limit Exceedances 2016 Groundwater Sampling South State Street Manufactured Gas Plant Bellingham, Washington

	Lab Sample		Target	Sample Reporting	
Sample Name	ID	Analyte	Quantitation Limit	Limit	Sample Result
MGP-GW-MW-55	BCI3J	Dissolved Silver	0.2 ug/L	4 ug/L	4 U ug/L
			-	-	-
MGP-GW-WP-01	BCI3K	Fluoranthene	0.01 ug/L	0.020 ug/L	0.16 ug/L
					-
MGP-GW-MW-28	BCI7A	Benzene	0.2 ug/L	20 ug/L	3400 ug/L
MGP-GW-MW-28	BCI7A	Toluene	0.2 ug/L	4.0 ug/L	220 ug/L
MGP-GW-MW-28	BCI7A	Ethylbenzene	0.2 ug/L	4.0 ug/L	250 ug/L
MGP-GW-MW-28	BCI7A	m,p-Xylene	0.4 ug/L	8.0 ug/L	290 ug/L
MGP-GW-MW-28	BCI7A	o-Xylene	0.2 ug/L	4.0 ug/L	410 ug/L
MGP-GW-MW-28	BCI7A	Fluoranthene	0.01 ug/L	0.1 ug/L	1.2 ug/L
MGP-GW-MW-28	BCI7A	Naphthalene	0.1 ug/L	40 ug/L	2200 ug/L
MGP-GW-MW-28	BCI7A	2-Methylnaphthalene	0.1 ug/L	40 ug/L	200 ug/L
MGP-GW-MW-28	BCI7A	1-Methylnaphthalene	0.1 ug/L	40 ug/L	330 ug/L
MGP-GW-MW-28	BCI7A	Acenaphthylene	0.1 ug/L	40 ug/L	120 ug/L
MGP-GW-MW-28	BCI7A	Fluorene	0.1 ug/L	1.0 ug/L	29 ug/L
MGP-GW-MW-28	BCI7A	Phenanthrene	0.1 ug/L	1.0 ug/L	19 ug/L
MGP-GW-MW-28	BCI7A	Total Calcium	50 ug/L	100 ug/L	87,100 ug/L
MGP-GW-MW-28	BCI7A	Total Magnesium	50 ug/L	100 ug/L	32,700 ug/L
MGP-GW-MW-28	BCI7D	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-28	BCI7D	Dissolved Calcium	50 ug/L	100 ug/L	85,900 ug/L
MGP-GW-MW-28	BCI7D	Dissolved Lead	1.0 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-28	BCI7D	Dissolved Magnesium	50 ug/L	100 ug/L	32,700 ug/L
MGP-GW-MW-28	BCI7D	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-28	BCI7D	Dissolved Silver	0.2 ug/L	4 ug/L	4 U ug/L
			<u>,</u>		
MGP-GW-MW-34	BCI7B	Total Arsenic	0.2 ug/L	4 ug/L	8 ug/L
MGP-GW-MW-34	BCI7B	Total Calcium	50 ug/L	100 ug/L	272,000 ug/L
MGP-GW-MW-34	BCI7B	Total Lead	1.0 ug/L	2 ug/L	11 ug/L
MGP-GW-MW-34	BCI7B	Total Magnesium	50 ug/L	100 ug/L	707,000 ug/L
MGP-GW-MW-34	BCI7B	Total Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-34	BCI7B	Total Silver	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-34	BCI7E	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-MW-34	BCI7E	Dissolved Calcium	50 ug/L	100 ug/L	273,000 ug/L
MGP-GW-MW-34	BCI7E	Dissolved Lead	1.0 ug/L	2 ug/L	2 U ug/L
MGP-GW-MW-34	BCI7E	Dissolved Magnesium	50 ug/L	100 ug/L	715,000 ug/L
MGP-GW-MW-34	BCI7E	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-MW-34	BCI7E	Dissolved Silver	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-Dup-1	BCI7C	Total Arsenic	0.2 ug/L	4 ug/L	22 ug/L
MGP-GW-Dup-1	BCI7C	Total Calcium	50 ug/L	100 ug/L	268,000 ug/L
MGP-GW-Dup-1	BCI7C	Total Lead	1.0 ug/L	2 ug/L	57 ug/L
MGP-GW-Dup-1	BCI7C	Total Magnesium	50 ug/L	100 ug/L	690,000 ug/L
MGP-GW-Dup-1	BCI7C	Total Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-Dup-1	BCI7C	Total Silver	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Arsenic	0.2 ug/L	4 ug/L	4 U ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Calcium	50 ug/L	250 ug/L	279,000 ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Lead	1.0 ug/L	2 ug/L	2 U ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Magnesium	50 ug/L	250 ug/L	756,000 ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Selenium	0.5 ug/L	10 ug/L	10 U ug/L
MGP-GW-Dup-1	BCI7F	Dissolved Silver	0.2 ug/L	4 ug/L	4 U ug/L
			~0/ -		
MGP-GW-WP-02	BCI7G	Fluoranthene	0.01 ug/L	0.017 ug/L	0.022 ug/L

TO:	Jeremy Davis
FROM:	Kristi Schultz and Danille Jorgensen
DATE:	November 18, 2016
RE:	September 2016 Groundwater Samples Laboratory Data Quality Evaluation City of Bellingham South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study

This technical memorandum provides the results of a Stage 2B verification and validation check of analytical data for 10 groundwater samples collected on September 14-15, 2016 at the South State Street Manufactured Gas Plant in Bellingham, Washington. All sample analyses were conducted at Analytical Resources, Inc. (ARI) laboratory, located in Tukwila, Washington. Samples submitted to ARI were analyzed for some or all of the following: benzene, toluene, ethylbenzene, and xylenes (BTEX; US Environmental Protection Agency [EPA] Method SW8260C); low-level semivolatile organic compounds (SIM SVOCs; EPA Method SW8270D-SIM); total and dissolved metals (EPA Method 6010C/6020A) including hardness calculation; total cyanide (SM4500-CNE); and weak acid dissociable (WAD) cyanide (SM4500-CNI). The analytical results are reported in ARI laboratory data packages identified as 1610216 and 1610219. Sample identifications and sample collection, extraction, and analysis dates are provided in Table 1.

The Stage 2B verification and validation check was conducted in accordance with EPA's Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (EPA 2009), and with guidance from applicable portions of the National Functional Guidelines for Organic Data Review (EPA 1999, 2008) and the National Functional Guidelines for Inorganic Data Review (EPA 2004, 2010), and the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan (Herrenkohl Consulting LLC and Landau Associates 2010). The Stage 2B verification and validation check for each laboratory data package included the following:

- Verification that the laboratory data package contained all necessary documentation (including chain-of-custody records; identification of samples received by the laboratory; date and time of receipt of the samples at the laboratory; sample conditions upon receipt at the laboratory; date and time of sample analysis; and, if applicable, date of extraction, definition of laboratory data qualifiers, all sample-related quality control (QC) data, and QC acceptance criteria).
- Verification that all requested analyses, special cleanups, and special handling methods were performed.
- Verification that QC samples were performed as specified in the Quality Assurance Project Plan (QAPP).
- Evaluation of sample holding times.

- Evaluation of QC data compared to acceptance criteria, including method blanks, surrogate recoveries, matrix spike results, laboratory duplicate and/or replicate results, and laboratory control sample results.
- Evaluation of reporting limits compared to target reporting limits specified in the Work Plan.
- Verification that initial and continuing calibration data are provided for all requested analytes and are linked to the field samples reported, and that reported samples are bracketed by continuing calibration verification (CCV) and continuing calibration blank (CCB) standards as appropriate.
- Method-specific instrument performance checks are present as appropriate (e.g., DDT/Endrin breakdown checks for pesticides and aroclors).
- Frequency of instrument QC samples is checked for appropriateness (e.g., GC-MS tunes have been run every 12 hours)
- Sample results are evaluated by comparing instrument-related QC data to the requirements and guidelines present in national or regional data validation documents, analytical methods, or contract.

Data validation qualifiers are added to the sample results, as appropriate, based on the Stage 2B verification and validation check; a summary of the data validation qualifiers is presented in Table 2. The results of the verification and validation check are summarized below.

Laboratory Data Package Completeness

Each laboratory data package contained a signed COC, a cooler receipt form documenting the condition of the samples upon receipt at the laboratory, a cooler temperature compliance form, sample analytical results, and quality control results (method blanks, surrogate recoveries, laboratory control sample results, replicate sample results, initial and continuing calibrations, and instrument performance checks and quality control samples). A case narrative identifying any complications was also provided with each laboratory data package. Definitions of laboratory qualifiers and quality control acceptance criteria were provided, as appropriate.

Sample Conditions and Analysis

The laboratory received all samples in good condition, and all analyses were performed as requested. Upon receipt by ARI, the sample container information was compared to the associated COC and the cooler temperatures were recorded. All coolers were received at the laboratory with temperatures less than the EPA-recommended limit of 6°C.

Holding Times

For all analyses and all samples, the time between sample collection, extraction (if applicable), and analysis was determined to be within EPA- and project-specified holding times. No qualification of the data was necessary.

Blank Results

Laboratory Method Blanks

At least one method blank was analyzed with each batch of samples for each analysis. Target analytes were not detected at concentrations greater than the reporting limits in the associated method blanks. No qualification of the data was necessary.

Field Trip Blanks

At least one field (trip) blank was analyzed with each batch of samples submitted to the laboratory. Target analytes were not detected at concentrations greater than the reporting limits in the associated field blanks. No qualification of the data was necessary.

Surrogate Recoveries

Appropriate compounds were used as surrogate spikes for each organic analysis. Recovery values for the surrogate spikes were within the current laboratory-specified control limits with the following exceptions:

- Recoveries of surrogate fluoranthene-d10 associated with the SIM SVOCs analysis of sample MGP-GW-MW-40 in data package 16l0219 was below the laboratory-specified control limits. EPA National Functional Guidelines require two or more surrogates of the same fraction to be outside laboratory-specified control limits for qualification of the data based on surrogate recoveries; therefore, no qualification of the data was necessary.
- Recoveries of surrogate 2-methylnaphthalene-d10 associated with the SIM SVOCs analysis of sample MGP-GW-MW-28 in data package 1610219 was below the laboratory-specified control limits. EPA National Functional Guidelines require two or more surrogates of the same fraction to be outside laboratory-specified control limits for qualification of the data based on surrogate recoveries; therefore, no qualification of the data was necessary.
- Recovery of surrogate 4-bromofluorobenzene exceeded laboratory-specified control limits in one of the continuing calibrations associated with the BTEX analysis in data package 16I0219. The associated project sample surrogate recoveries were within laboratory-specified control limits; therefore, no qualification of the data was considered necessary.

Matrix Spike (MS)/Matrix Spike Duplicate (MSD) and Laboratory Replicate Results

A MS and a MSD or laboratory duplicate sample was analyzed with the BTEX, SIM SVOCs, total and dissolved metals, and total and WAD cyanide analyses in data package 16I0219; and with the dissolved metals analysis in data package 16I0216. The recovery values for each spiking compound were within the laboratory-specified control limits for all project samples with the following exceptions:

- The MS recoveries for calcium and magnesium associated with the total metals analysis of sample MGP-GW-MW-42 in data package 16I0219 were below the laboratory-specified control limits. The original sample concentrations were equal to or greater than four times the spike concentrations; therefore, no qualification of the data was necessary.
- The MS recoveries for calcium and magnesium associated with the dissolved metals analysis of sample MGP-GW-MW-34 in data package 16l0216 and sample MGP-GW-MW-42 in data package 16l0219 were below the laboratory-specified control limits. The original sample concentrations were equal to or greater than four times the spike concentrations; therefore, no qualification of the data was necessary.

A project-specified control limit of 35 percent (organic analyses) or 20 percent (inorganic analyses) was used to evaluate the relative percent differences (RPDs) between the MS/MSD or laboratory replicate results, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the MS/MSDs or laboratory replicate results were within the current laboratory-specified control limits for all project samples. No qualification of the data was necessary.

Laboratory Control Sample and Laboratory Control Sample Duplicate Results

At least one LCS and/or LCSD or standard reference material (SRM) sample was analyzed with each batch of samples for each analysis. Recoveries and RPDs for the LCS/LCSD and SRMs were within the current laboratory- and project-specified control limits. No qualification of the data was necessary.

Blind Field Duplicates

One pair of blind field duplicate groundwater samples (MGP-GW-DUP-1 / MGP-GW-MW-34) was submitted for analysis with data package 1610216 and analyzed for BTEX, SIM SVOCs, total and dissolved metals, and total and WAD cyanide. A project-specified control limit of 20 percent was used to evaluate the RPDs between the duplicate groundwater samples, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. RPDs for the duplicate sample pair submitted for analysis were within the project-specified control limits with the following exceptions:

- The RPD for lead associated with the total metals analysis of the blind field duplicate pair MGP-GW-DUP-1 / MGP-GW-MW-34 exceeded the project-specified control limit. The associated sample results were qualified as estimated (J), as indicated in Table 2.
- The RPDs for acenaphthylene associated with the SIM SVOCs analyses of the blind field duplicate pair MGP-GW-DUP-1 / MGP-GW-MW-34 exceeded the project-specified control limit. The associated sample results were qualified as estimated (J), as indicated in Table 2.

Total and Dissolved Metals Concentrations

The analytical results for total and dissolved metals were compared for each project sample. A project-specified control limit of 20 percent was used to evaluate the RPDs between the total and dissolved metals results, except when the sample results were within five times the reporting limit. In these cases, a project-specified control limit of plus or minus the reporting limit was used. The RPDs between the total and dissolved metals results were within the project-specified control limits for all project samples. No qualification of the data was necessary.

Reporting Limits

The reporting limits for BTEX, SIM SVOCs, and metals in several samples were above the target reporting limits due to either limited sample volume or required dilution due to high concentrations of target analytes in the samples. A list of the samples with raised reporting limits that did not contain detectable concentrations is provided in Table 3.

Initial and Continuing Calibration

Initial and continuing calibration verifications and instrument performance and QC checks were performed for all requested analyses and were appropriate in number and frequency based on laboratory requirements. Calibration verifications were within laboratory-specified control limits, with the following exceptions:

• The initial calibration verification was low for benzo(g,h,i)perylene associated with the SIM SVOC analyses in data packages 1610216 and 1610219. Associated sample results were qualified as estimated (J, UJ), as indicated in Table 2.

Completeness and Overall Data Quality

Data precision was evaluated through matrix spike duplicates, laboratory replicates, and laboratory control sample duplicates. Data accuracy was evaluated through matrix spikes, laboratory control samples, and surrogate spikes. Based on this data quality evaluation, the data reported, as qualified, are considered to be usable for meeting project objectives. No data were rejected. The completeness for this data set is 100 percent, which meets the project-specified goal of 95 percent minimum.

Use of this Report

This data validation summary report has been prepared for the exclusive use of the City of Bellingham and its designated representatives for specific application to the South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Landau Associates, Inc. (LAI). Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by LAI, shall be at the user's sole risk. LAI warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

This document has been prepared under the supervision and direction of the following key staff.

LANDAU ASSOCIATES, INC.

Kriste Schult

Kristi Schultz Data Specialist

Danille Jorgensen Environmental Data Manager

KES/DRJ/Ijc [P:\015\070\T\DV\2016 SEPTEMBER GROUNDWATER SAMPLING DV MEMO\SSSMGP SEPT 2016 GROUNDWATER SAMPLING STAGE 2B DV MEMO.DOCX]

Attachments: Table 1. Sample Names and Dates of Sample Collection, Extraction, and Analysis Table 2. Summary of Data Qualifiers Table 3. Target Reporting Limit Exceedances

References

- EPA. 1999. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA-540/R-99-008. Office of Emergency and Remedial Response, US Environmental Protection Agency.
- EPA. 2004. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA 540-R-04-004. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency.
- EPA. 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. USEPA-540-R-08-01. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. US Environmental Protection Agency.
- EPA. 2010. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review. USEPA-540-R-10-011. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency.
- Herrenkohl Consulting LLC and Landau Associates. 2010. Report: South State Street Manufactured Gas Plant Remedial Investigation/Feasibility Study Work Plan. August 6.

Table 1 Sample Names and Dates of Sample Collection, Extraction, and Analysis September 2016 Groundwater Sampling South State Street Manufactured Gas Plant Bellingham, Washington

	Lab Sample Sample Sample			
Sample Name	ID	Collection Date	Prep/Extraction Date	Sample Analysis Date
MGP-GW-MW-34	1610216-01/	9/15/16	9/19-9/20/16 (Metals);	9/21-9/23/16 (Metals); 9/22/16 (Cyanide);
	1610216-07		9/21/16 (Cyanide, SIM	9/26/16 (SIM SVOCs); 9/28/16 (BTEX)
			SVOCs); 9/28/16 (BTEX)	
MGP-GW-MW-36	1610216-02/	9/15/16	9/19-9/20/16 (Metals);	9/21-9/23/16 (Metals); 9/22/16 (Cyanide);
	1610216-08		9/21/16 (Cyanide, SIM	9/24/16 (BTEX); 9/26/16 (SIM SVOCs)
			SVOCs); 9/24/16 (BTEX)	
MGP-GW-DUP-1	1610216-03/	9/15/16	9/19-9/20/16 (Metals);	9/21-9/23/16 (Metals); 9/22/16 (Cyanide);
	1610216-09		9/21/16 (Cyanide, SIM	9/24/16 (BTEX); 9/26/16 (SIM SVOCs)
			SVOCs); 9/24/16 (BTEX)	
MGP-GW-MW-46	1610216-04/	9/15/16	9/19-9/20/16 (Metals);	9/21-9/23/16 (Metals); 9/22/16 (Cyanide);
	1610216-10		9/21/16 (Cyanide, SIM	9/24/16 (BTEX); 9/26-9/27/16 (SIM SVOCs)
			SVOCs); 9/24/16 (BTEX)	
MGP-GW-WP-02	1610216-05	9/15/16	9/21/16 (SIM SVOCs);	9/24/16 (BTEX); 9/26/16 (SIM SVOCs)
			9/24/16 (BTEX)	
Trip Blanks	1610216-06	9/15/16	9/22/16 (BTEX)	9/23/16 (BTEX)
MGP-GW-MW-42	1610219-01/	9/14/16	9/15-9/16/16 (Metals);	9/15-9/21/16 (Metals); 9/20/16 (BTEX);
	1610219-07		9/20/16 (BTEX); 9/21/16	9/22/16 (Cyanide); 9/26/16 (SIM SVOCs)
			(Cyanide, SIM SVOCs)	
MGP-GW-MW-55	1610219-02/	9/14/16	9/15-9/16/16 (Metals);	9/15-9/21/16 (Metals); 9/20/16 (BTEX);
	1610219-08		9/20/16 (BTEX); 9/21/16	9/22/16 (Cyanide); 9/26/16 (SIM SVOCs)
			(Cyanide, SIM SVOCs)	
MGP-GW-MW-40	1610219-03/	9/14/16	9/15-9/16/16 (Metals);	9/15-9/21/16 (Metals); 9/20/16 (BTEX);
	1610219-09		9/20/16 (BTEX); 9/21/16	9/22/16 (Cyanide); 9/26/16 (SIM SVOCs)
			(Cyanide, SIM SVOCs)	
MGP-GW-WP-01	1610219-04	9/14/16	9/15/16 (Metals); 9/20/16	9/15-9/20/16 (Metals); 9/20/16 (BTEX);
			(BTEX); 9/21/16 (Cyanide,	9/22/16 (Cyanide); 9/26-9/27/16 (SIM
			SIM SVOCs)	SVOCs)
MGP-GW-MW-28	1610219-05/	9/14/16	9/15-9/16/16 (Metals);	9/15-9/21/16 (Metals); 9/20-9/24/16 (BTEX);
	1610219-010		9/20/16 (BTEX); 9/21/16	9/22/16 (Cyanide); 9/26-9/27/16 (SIM
			(Cyanide, SIM SVOCs)	SVOCs)
Trip Blanks	1610219-06	9/14/16	9/20/16 (BTEX)	9/20/16 (BTEX)

Table 2 Summary of Data Qualifiers South State Street Manufactured Gas Plant September 2016 Groundwater Sampling

	Analytical							
Data Package	Group	Analyte	Result	Qualifier	Sample Number	Reason		
3	Total Metals	Lead	7.02	J	MGP-GW-DUP-1	High field duplicate RPD		
1610216	Total Metals	Lead	2.4	J	MGP-GW-MW-34	High field duplicate RPD		
1610216	SIM SVOCs	Acenaphthylene	0.049	J	MGP-GW-DUP-1	High field duplicate RPD		
1610216	SIM SVOCs	Acenaphthylene	0.035	L L	MGP-GW-MW-34	High field duplicate RPD		
16I0216 16I0216	SIM SVOCs SIM SVOCs	Benzo(g,h,i)perylene Benzo(g,h,i)perylene	0.01 U 0.01 U	UJ	MGP-GW-DUP-1 MGP-GW-MW-34	Low continuing calibration recovery Low continuing calibration recovery		
16/0216	SIM SVOCs	Benzo(g,h,i)perylene	0.01 U	UJ	MGP-GW-MW-36	Low continuing calibration recovery		
1610216	SIM SVOCs	Benzo(g,h,i)perylene	0.01 U	UJ	MGP-GW-MW-46	Low continuing calibration recovery		
1610216	SIM SVOCs	Benzo(g,h,i)perylene	0.021	J	MGP-GW-WP-02	Low continuing calibration recovery		
1610216	SIM SVOCs	Pyrene	1.48 E	DNR	MGP-GW-MW-46	Do not report; use dilution analysis		
1610216	SIM SVOCs	Fluoranthene	1.41 E	DNR	MGP-GW-MW-46	Do not report; use dilution analysis		
1610216	SIM SVOCs	Acenaphthylene	1.02	DNR	MGP-GW-MW-46	Do not report; use dilution analysis		
1610216	SIM SVOCs	Anthracene	0.1 U	DNR	MGP-GW-MW-46	Do not report; use original analysis		
1610216	SIM SVOCs	Dibenzofuran	0.1 U	DNR	MGP-GW-MW-46	Do not report; use original analysis		
1610216	SIM SVOCs	Benzo(g,h,i)perylene	0.1 U	DNR	MGP-GW-MW-46	Do not report; use original analysis		
1610216	SIM SVOCs	Indeno(1,2,3-cd)pyrene	0.1 U	DNR	MGP-GW-MW-46	Do not report; use original analysis		
16I0216 16I0216	SIM SVOCs SIM SVOCs	Chrysene Benzo(a)pyrene	0.121 0.1 U	DNR DNR	MGP-GW-MW-46 MGP-GW-MW-46	Do not report; use original analysis Do not report; use original analysis		
16/0216	SIM SVOCs	Dibenzo(a,h)anthracene	0.1 U	DNR	MGP-GW-MW-46	Do not report; use original analysis		
16/0216	SIM SVOCs	Benzo(a)anthracene	0.114	DNR	MGP-GW-MW-46	Do not report; use original analysis		
1610216	SIM SVOCs	Acenaphthene	0.115	DNR	MGP-GW-MW-46	Do not report; use original analysis		
1610216	SIM SVOCs	Phenanthrene	0.1 U	DNR	MGP-GW-MW-46	Do not report; use original analysis		
1610216	SIM SVOCs	Fluorene	0.615	DNR	MGP-GW-MW-46	Do not report; use original analysis		
1610216	SIM SVOCs	1-Methylnaphthalene	0.1 U	DNR	MGP-GW-MW-46	Do not report; use original analysis		
1610216	SIM SVOCs	Naphthalene	0.1 U	DNR	MGP-GW-MW-46	Do not report; use original analysis		
1610216	SIM SVOCs	2-Methylnaphthalene	0.1 U	DNR	MGP-GW-MW-46	Do not report; use original analysis		
1610216	SIM SVOCs	Total Benzofluoranthenes	0.1 U	DNR	MGP-GW-MW-46	Do not report; use original analysis		
100010	CINA C) (OC-	Denne (a. h. S) and an a	0.1.11	UJ	MCD CW/ MW/ 20			
16I0219 16I0219	SIM SVOCs SIM SVOCs	Benzo(g,h,i)perylene Benzo(g,h,i)perylene	0.1 U 0.1 U	UJ	MGP-GW-MW-28 MGP-GW-MW-40	Low continuing calibration recovery Low continuing calibration recovery		
16 0219	SIM SVOCs	Benzo(g,h,i)perylene	0.1 U	UJ	MGP-GW-MW-40 MGP-GW-MW-42	Low continuing calibration recovery		
1610219	SIM SVOCs	Benzo(g,h,i)perylene	0.1 U	UJ	MGP-GW-MW-55	Low continuing calibration recovery		
1610219	SIM SVOCs	Benzo(g,h,i)perylene	0.049	J	MGP-GW-WP-01	Low continuing calibration recovery		
1610219	SIM SVOCs	Anthracene	2.26 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis		
1610219	SIM SVOCs	Pyrene	1.44 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis		
1610219	SIM SVOCs	Dibenzofuran	2.88 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis		
1610219	SIM SVOCs	Fluoranthene	1.34 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis		
1610219	SIM SVOCs	Acenaphthylene	8.69 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis		
1610219	SIM SVOCs	Acenaphthene	4.14 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis		
16/0219	SIM SVOCs	Phenanthrene	4.78 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis		
16I0219 16I0219	SIM SVOCs SIM SVOCs	Fluorene 1-Methylnaphthalene	7.35 E 8.2 E	DNR DNR	MGP-GW-MW-28 MGP-GW-MW-28	Do not report; use dilution analysis Do not report; use dilution analysis		
16/0219	SIM SVOCs	Naphthalene	12.1 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis		
1610219	SIM SVOCs	2-Methylnaphthalene	5.29 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis		
1610219	SIM SVOCs	Benzo(g,h,i)perylene	1 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Indeno(1,2,3-cd)pyrene	1 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Acenaphthylene	139 E	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Chrysene	1 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Benzo(a)pyrene	1 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Dibenzo(a,h)anthracene	1 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Benzo(a)anthracene	10	DNR	MGP-GW-MW-28	Do not report; use original analysis		
16/0219	SIM SVOCs	1-Methylnaphthalene	299 E	DNR	MGP-GW-MW-28	Do not report; use original analysis		
16I0219 16I0219	SIM SVOCs SIM SVOCs	Naphthalene 2-Methylnaphthalene	597 E 136 E	DNR DNR	MGP-GW-MW-28 MGP-GW-MW-28	Do not report; use original analysis Do not report; use original analysis		
16/0219	SIM SVOCS	Total Benzofluoranthenes	130 E	DNR	MGP-GW-MW-28	Do not report; use original analysis Do not report; use original analysis		
1610219	SIM SVOCs	Anthracene	30 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Pyrene	30 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Dibenzofuran	30 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Benzo(g,h,i)perylene	30 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Indeno(1,2,3-cd)pyrene	30 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Fluoranthene	30 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Chrysene	30 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Benzo(a)pyrene	30 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Dibenzo(a,h)anthracene	30 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Benzo(a)anthracene	30 U	DNR	MGP-GW-MW-28	Do not report; use original analysis		
1610219	SIM SVOCs	Acenaphthene Phenanthrene	30 U 30 U	DNR DNR	MGP-GW-MW-28 MGP-GW-MW-28	Do not report; use original analysis Do not report; use original analysis		
			500	DINK	IVIGP-GW-IVIW-28	Do not report; use original analysis		
1610219	SIM SVOCs				MGP_G\/_M\//_28			
	SIM SVOCs SIM SVOCs SIM SVOCs	Fluorene Total Benzofluoranthenes	37.6 30 U	DNR DNR	MGP-GW-MW-28 MGP-GW-MW-28	Do not report; use original analysis Do not report; use original analysis		

Table 2 Summary of Data Qualifiers South State Street Manufactured Gas Plant September 2016 Groundwater Sampling

	Analytical					
Data Package	Group	Analyte	Result	Qualifier	Sample Number	Reason
1610219	SIM SVOCs	Anthracene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Dibenzofuran	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Benzo(g,h,i)perylene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Indeno(1,2,3-cd)pyrene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Fluoranthene	0.329	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Acenaphthylene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Chrysene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Benzo(a)pyrene	0.12	DNR	MGP-GW-WP-01	Do not report; use original analysis
16/0219	SIM SVOCs	Dibenzo(a,h)anthracene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Benzo(a)anthracene	0.107	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Acenaphthene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Phenanthrene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Fluorene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
16/0219	SIM SVOCs	1-Methylnaphthalene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Naphthalene	0.233	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	2-Methylnaphthalene	0.1 U	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	SIM SVOCs	Total Benzofluoranthenes	0.16	DNR	MGP-GW-WP-01	Do not report; use original analysis
1610219	BTEX	Benzene	213 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
1610219	BTEX	Ethylbenzene	143 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
1610219	BTEX	Toluene	98.7 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
1610219	BTEX	m,p-Xylene	140 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
1610219	BTEX	o-Xylene	158 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
1610219	BTEX	Benzene	2930 E	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
1610219	BTEX	Ethylbenzene	66.9	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
1610219	BTEX	Toluene	84.7	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
1610219	BTEX	m,p-Xylene	80 U	DNR	MGP-GW-MW-28	Do not report; use dilution analysis
1610219	BTEX	o-Xylene	136	DNR	MGP-GW-MW-28	Do not report; use dilution analysis

Notes

DNR = Do not report

J = Indicates the analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

U = Indicates the compound was undetected at the reported concentration.

UJ = The analyte was not detected in the sample; the reported sample reporting limit is an estimate.

Table 3 Target Reporting Limit Exceedances September 2016 Groundwater Sampling South State Street Manufactured Gas Plant Bellingham, Washington

Sample Name	Lab Sample ID	Analyte	Target Quantitation Limit	Sample Reporting Limit	Sample Result
MGP-GW-MW-34	1610216-02	Total Silver	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-34	1610216-07	Dissolved Lead	1.0 μg/L	1.0 μg/L	2.0 U μg/L
MGP-GW-MW-34	1610216-07	Dissolved Silver	0.2 μg/L	0.2 μg/L	4.0 U μg/L
MGP-GW-MW-34	1610216-02	Total Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-34	1610216-02	Total Selenium	0.5 μg/L	10.0 µg/L	10.0 U μg/L
MGP-GW-MW-34	1610216-07	Dissolved Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-34	1610216-07	Dissolved Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L
	1010210 07		010 µ8/ =	2010 48/ 2	2010 0 48/2
MGP-GW-MW-36	1610216-02	Total Lead	1.0 μg/L	2.0 μg/L	2.0 U μg/L
MGP-GW-MW-36	16 0216-02	Total Silver	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-36	16/0216-08	Dissolved Lead	1.0 μg/L	1.0 μg/L	2.0 U μg/L
MGP-GW-MW-36	1610216-08	Dissolved Silver	0.2 μg/L	0.2 μg/L	4.0 U μg/L
MGP-GW-MW-36	16/0216-02	Total Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-36	16 0216-02	Total Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L
MGP-GW-MW-36	1610216-08	Dissolved Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-36	1610216-08	Dissolved Selenium	0.2 μg/L	10.0 μg/L	10.0 U μg/L
10101 -000-10100-50	1010210-00	Dissolved Seleman	0.5 µg/L	10.0 µg/ L	10.0 0 μg/ ι
MGP-GW-DUP-1	16 0216-03	Total Silver	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-DUP-1	1610216-09	Dissolved Lead	1.0 μg/L	1.0 μg/L	2.0 U μg/L
MGP-GW-DUP-1	1610216-09	Dissolved Silver	0.2 μg/L	0.2 μg/L	4.0 U μg/L
MGP-GW-DUP-1	16 0216-03	Total Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-DUP-1	1610216-03	Total Selenium	0.2 μg/L	10.0 μg/L	10.0 U μg/L
MGP-GW-DUP-1	16 0216-09	Dissolved Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-DUP-1	16 0216-09	Dissolved Selenium	0.2 μg/L 0.5 μg/L	4.0 μg/L 10.0 μg/L	4.0 0 μg/L 10.0 U μg/L
MGP-GW-DUP-1	1010210-09	Dissolved Selenium	0.5 μg/L	10.0 µg/L	10.0 0 µg/L
MGP-GW-MW-46	1610216-04	Total Lead	1.0 μg/L	2.0 μg/L	2.0 U μg/L
MGP-GW-MW-46	16/0216-04	Total Silver	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-46	16/0216-04	Dissolved Lead			2.0 U μg/L
	16/0216-10	Dissolved Silver	1.0 μg/L	1.0 μg/L	18
MGP-GW-MW-46			0.2 μg/L	0.2 μg/L	4.0 U μg/L
MGP-GW-MW-46	1610216-04	Total Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-46	1610216-04	Total Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L
MGP-GW-MW-46	1610216-10	Dissolved Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-46	1610216-10	Dissolved Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L
	100010.05	2 Mathulaanhthalana	0.01	0.011	0.011.11
MGP-GW-WP-02	1610216-05	2-Methylnaphthalene Acenaphthene	0.01 μg/L	0.011 μg/L	0.011 U μg/L
MGP-GW-WP-02	1610216-05	Dibenzofuran	0.01 μg/L	0.011 μg/L	0.011 U μg/L
MGP-GW-WP-02	1610216-05		0.01 μg/L	0.011 μg/L	0.011 U μg/L
MGP-GW-WP-02	1610216-05	Fluorene	0.01 μg/L	0.011 μg/L	0.011 U μg/L
MGP-GW-WP-02	1610216-05	Dibenz(a,h)anthracene	0.01 μg/L	0.011 μg/L	0.011 U μg/L
MGP-GW-WP-02	1610216-05	1-Methylnaphthalene	0.01 μg/L	0.011 μg/L	0.011 U μg/L
	1610210.01	Total	1.0//	20//	2011
MGP-GW-MW-42	1610219-01	Total Lead	1.0 μg/L	2.0 μg/L	2.0 U μg/L
MGP-GW-MW-42	1610219-07	Total Silver	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-42	1610219-01	Dissolved Lead	1.0 μg/L	1.0 μg/L	2.0 U μg/L
MGP-GW-MW-42	1610219-07	Dissolved Silver	0.2 μg/L	0.2 μg/L	4.0 U μg/L
MGP-GW-MW-42	1610219-01	Total Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-42	1610219-07	Total Selenium	0.5 μg/L	10.0 µg/L	10.0 U μg/L
MGP-GW-MW-42	1610219-01	Dissolved Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-42	1610219-07	Dissolved Selenium	0.5 μg/L	10.0 µg/L	10.0 U μg/L
MGP-GW-MW-55	1610219-02	Total Lead	1.0 μg/L	2.0 μg/L	2.0 U μg/L
MGP-GW-MW-55	1610219-08	Total Silver	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-55	1610219-02	Dissolved Lead	1.0 μg/L	1.0 μg/L	2.0 U μg/L
MGP-GW-MW-55	1610219-08	Dissolved Silver	0.2 μg/L	0.2 μg/L	4.0 U μg/L

Table 3 Target Reporting Limit Exceedances September 2016 Groundwater Sampling South State Street Manufactured Gas Plant Bellingham, Washington

	Lab Sample		Target	Sample Reporting	
Sample Name	ID	Analyte	Quantitation Limit	Limit	Sample Result
MGP-GW-MW-55	1610219-02	Total Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-55	1610219-08	Total Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L
MGP-GW-MW-55	1610219-02	Dissolved Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-55	1610219-08	Dissolved Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L
MGP-GW-MW-40	1610219-03	Total Lead	1.0 μg/L	2.0 μg/L	2.0 U μg/L
MGP-GW-MW-40	1610219-09	Total Silver	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-40	1610219-03	Dissolved Lead	1.0 μg/L	1.0 μg/L	2.0 U μg/L
MGP-GW-MW-40	1610219-09	Dissolved Silver	0.2 μg/L	0.2 μg/L	4.0 U μg/L
MGP-GW-MW-40	1610219-03	Total Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-40	1610219-09	Total Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L
MGP-GW-MW-40	1610219-03	Dissolved Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-40	1610219-09	Dissolved Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L
MGP-GW-WP-01	1610219-04	Total Lead	1.0 μg/L	2.0 μg/L	2.0 U μg/L
MGP-GW-WP-01	1610219-04	Total Silver	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-WP-01	1610219-04	Total Arsenic	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-WP-01	1610219-04	Total Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L
MGP-GW-MW-28	1610219-05	Total Lead	1.0 μg/L	2.0 μg/L	2.0 U μg/L
MGP-GW-MW-28	1610219-10	Total Silver	0.2 μg/L	4.0 μg/L	4.0 U μg/L
MGP-GW-MW-28	1610219-05	Dissolved Lead	1.0 μg/L	1.0 μg/L	2.0 U μg/L
MGP-GW-MW-28	1610219-10	Dissolved Silver	0.2 μg/L	0.2 μg/L	4.0 U μg/L
MGP-GW-MW-28	1610219-10	Total Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L
MGP-GW-MW-28	1610219-10	Dissolved Selenium	0.5 μg/L	10.0 μg/L	10.0 U μg/L