

Data Memorandum

January 8, 2019

- To: Mike Brose and Bryan Lust, Kimberly-Clark Corporation
- From: Nathan Soccorsy and Clay Patmont, Anchor QEA, LLC
- cc: Steve Germiat, Aspect Consulting

Re: Everett East Waterway Combined Sewer Overflow Solids Sampling Data Memorandum

This data memorandum summarizes sampling and analysis of combined sewer overflow (CSO) conveyance solids in the lower portion of the City of Everett (City) CSO Puget Sound Outfall Number 4 (PS04) conveyance system. Prior to fall 2018, PS04 wastewaters were routed under the Kimberly-Clark Worldwide, Inc. (KC), property and into the Everett East Waterway (Figure 1). The City recently decommissioned the KC conveyance, rerouting PS04 wastewaters south along an alignment west of the railroad right-of-way into the adjacent PS05 system.

The data summarized in this memorandum were obtained as part of the remedial investigation/feasibility study (RI/FS) of the East Waterway Site in Everett, Washington, under Agreed Order DE 11350 between the Washington State Department of Ecology (Ecology), KC, and other potentially liable parties. All activities were performed in accordance with the Ecology-approved Sampling and Quality Assurance Project Plan (SQAPP; Anchor QEA 2018).

Sampling of PS04 conveyance solids was conducted on September 26, 2018, during relatively lowtide conditions in accordance with the SQAPP, as modified in the field following Ecology consultation. The sampling team was composed of Anchor QEA and KC staff with oversight from Ecology and support from the City. The City's consultant, Floyd|Snider, observed the sampling and collected split samples for separate physical and chemical testing that are not included in this data memorandum. All sample collection was conducted from the surface with a decontaminated stainless-steel container attached to a telescoping rod.

Following a review of health, safety, and sampling procedures, the sampling team mobilized to the first sampling station SMHQ03, located within the railroad right-of-way (Figure 1). City staff opened the bolted structure cover. The approximately 12-foot-deep structure was half filled with water. Probing with the telescoping rod revealed the structure did not contain significant accumulation of sediments suitable for sampling.

In accordance with the SQAPP, the sampling team re-mobilized to the next downgradient structure on the KC property, station SMHQ01 (Figure 1). While the conveyance channel did not contain sediment accumulations, sandy sediments suitable for sampling were identified on the southern ledge of the structure. Similar granular material was found on ledges in the two, additional accessible

DRAFT

downgradient structures, SMHQ16 and SMHP02. While it had not rained for several days prior to the sampling event, the SMHQ16 structure was partially filled with water. Evaluation of the upgradient and downgradient structures suggested that there was an obstruction in the downgradient pipe that impeded flow. The observation is consistent with historical City notations of solids accumulation in that pipe segment. Observations during sampling are summarized in Figure 1 from field forms included in Attachment 1.

The samples were submitted for physical and chemical testing in accordance with the SQAPP. Laboratory reports and data validation reports are included as Attachments 2 and 3, respectively. All data are suitable for use as qualified by the validator.

Validated PS04 conveyance solid data are summarized in Table 1. In general, the samples did not contain any measurable fines (clay and silt fractions) and were classified as gravelly sands with relatively low total organic carbon content (less than 0.5% by dry weight). While these coarse-grained sediment data are not representative of characteristic organic-rich wastewater solids transported through the CSO conveyance system(s), these data may nevertheless be useful for source control and recontamination assessments when used in combination with other information to be collected during the RI/FS (e.g., wastewater suspended sediments collected during overflow events). The details of future data collection efforts will be developed as part of the forthcoming Everett East Waterway RI/FS Work Plan.

References

Anchor QEA (Anchor QEA, LLC), 2018. *Sampling and Quality Assurance Project Plan*. Everett East Waterway PSO4 Combined Sewer Overflow Characterization. Prepared for Kimberly-Clark Corporation. August 2018.

Table

Table 1Everett East Waterway PSO4 Solids Results

	Task Location ID Sample ID Sample Date	EEW2018 SMHPO2_2018 KC-S-SMHP02-180926 9/26/2018	EEW2018 SMHQ01_2018 KC-S-SMHQ01-180926 9/26/2018	EEW2018 SMHQ16_2018 KC-S-SMHQ116-180926 9/26/2018	EEW2018 SMHQ16_2018 KC-S-SMHQ16-180926 9/26/2018
	Sample Type Matrix X		N CSO Solids 1301930.414	FD CSO Solids 1301701.454	N CSO Solids 1301701.454
Conventional Parameters (pct)	Y	362175.789	362184.828	362127.123	362127.123
Total organic carbon	SW9060A	0.45	0.17		0.28
Total Solids	SM2540G	74.83	82.7		73.51
Grain Size (pct)					
Gravel	PSEP-PS	15.9	23.4		2.7
Sand, very coarse Sand, coarse	PSEP-PS PSEP-PS	<u>10.3</u> 25.5	14.1 23.8		9.9 31.7
Sand, medium	PSEP-PS	29.4	27.8		43.7
Sand, fine	PSEP-PS	12.5	9.3		10.2
Sand, very fine	PSEP-PS	4.2	1		1.1
Silt, coarse	PSEP-PS	2.2 U	0.6 U		0.7 U
Silt, medium	PSEP-PS	2.2 U	0.6 U		0.7 U
Silt, fine Silt, very fine	PSEP-PS PSEP-PS	2.2 U 2.2 U	0.6 U 0.6 U		0.7 U 0.7 U
Clay, coarse	PSEP-PS	2.2 U	0.6 U		0.7 U
Clay, medium	PSEP-PS	2.2 U	0.6 U		0.7 U
Clay, fine	PSEP-PS	2.2 U	0.6 U		0.7 U
Metals (mg/kg)					
Arsenic	SW6020A	5.86	3.45		2.95
Cadmium	SW6020A	0.09 J	0.1 J		0.09 J
Chromium Lead	SW6020A SW6020A	<u>40.7</u> 25.9	24.5 J 697		36.7 J 11.5
Mercury	SW7471B	0.0587	0.103		0.0265 U
Silver	SW6020A	0.04 J	0.07 J		0.04 J
Zinc	SW6020A	84.4	101		65
Semivolatile Organics (µg/kg)					
1,2,4-Trichlorobenzene	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
1,2,4-Trichlorobenzene	SW8270DSIM	4.9 U	4.9 U	4.8 U	4.8 U
1,2-Dichlorobenzene	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	SW8270DSIM SW8270D	4.9 U 19.4 U	4.9 U 19.5 U	4.8 U 19.4 U	4.8 U 19.3 U
1,3-Dichlorobenzene	SW8270DSIM	4.9 U	4.9 U	4.8 U	4.8 U
1,4-Dichlorobenzene	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
1,4-Dichlorobenzene	SW8270DSIM	4.9 U	4.9 U	4.8 U	4.8 U
2,2'-Oxybis (1-chloropropane)	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
2,4,5-Trichlorophenol	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
2,4,6-Trichlorophenol	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
2,4-Dichlorophenol 2,4-Dimethylphenol	SW8270D SW8270D	97.1 U 97.1 U	97.7 U 97.7 U	96.9 U 96.9 U	96.5 U 96.5 UJ
2,4-Dimethylphenol	SW8270D SW8270DSIM	24.3 U	24.4 U	24.2 U	24.1 UJ
2,4-Dinitrophenol	SW8270D	194 UJ	195 UJ	194 UJ	193 UJ
2,4-Dinitrotoluene	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
2,6-Dinitrotoluene	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
2-Chloronaphthalene	SW8270DSIM	0.5 U	4.89 U	0.47 U	0.47 U
2-Chlorophenol	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
2-Methylphenol (o-Cresol)	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
2-Methylphenol (o-Cresol) 2-Nitroaniline	SW8270DSIM SW8270D	4.9 U 97.1 U	4.9 U 97.7 U	4.8 U 96.9 U	4.8 U 96.5 U
2-Nitrophenol	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
3,3'-Dichlorobenzidine	SW8270D	97.1 U	97.7 UJ	96.9 U	96.5 UJ
3-Nitroaniline	SW8270D	97.1 U	97.7 U	96.9 U	96.5 UJ
4-Bromophenyl-phenyl ether	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
4-Chloro-3-methylphenol	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
4-Chloroaniline	SW8270D	97.1 U	97.7 U	96.9 U	96.5 UJ
4-Chlorophenyl phenyl ether	SW8270D SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
4-Methylphenol (p-Cresol) 4-Methylphenol (p-Cresol)	SW8270D SW8270DSIM	19.4 U 4.9 U	19.5 U 4.9 U	19.4 U 4.8 U	19.3 U 4.8 U
4-Nitroaniline	SW8270D	97.1 U	97.7 U	96.9 U	96.5 UJ
4-Nitrophenol	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
Benzoic acid	SW8270D	194 U	195 U	194 U	193 U
Benzoic acid	SW8270DSIM	66.7 J	55.9 J	58 J	37.5 J
Benzyl alcohol	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Benzyl alcohol	SW8270DSIM	19.4 U	19.5 U	19.4 U	19.3 U
bis(2-Chloroethoxy)methane	SW8270D	19.4 U	19.5 U	19.4 U 19.4 U	19.3 U
bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate	SW8270D SW8270D	19.4 U 108	19.5 U 52.8	19.4 U 80.6	19.3 U 96
Butylbenzyl phthalate	SW8270D	108 17.9 J	19.5 U	9.4 J	8.3 J
Butylbenzyl phthalate	SW8270DSIM	15.2	5.4	6.3	6.2
Dibenzofuran	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Diethyl phthalate	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Diethyl phthalate	SW8270DSIM	19.4 U	19.5 U	19.4 U	19.3 U
Dimethyl phthalate	SW8270D	19.4 U 4.9 U	19.5 U 4.9 U	19.4 U 4.8 U	19.3 U 4.8 U

Results Memorandum

Everett East Waterway PSO4 Combined Sewer Overflow Characterization

Page 1 of 5 December 2018

	Location ID	EEW2018 SMHPO2_2018	EEW2018 SMHQ01_2018	EEW2018 SMHQ16_2018	EEW2018 SMHQ16_2018
		KC-S-SMHP02-180926		KC-S-SMHQ116-180926	KC-S-SMHQ16-180926
	Sample Date	9/26/2018	9/26/2018	9/26/2018	9/26/2018
	Sample Type	N	N	FD	N
	Matrix	CSO Solids	CSO Solids	CSO Solids	CSO Solids
	X Y	1301136.943 362175.789	1301930.414 362184.828	1301701.454 362127.123	1301701.454 362127.123
Di-n-butyl phthalate	SW8270D	9.9 J	16.3 J	11.2 J	13.8 J
Dinitro-o-cresol (4,6-Dinitro-2-methylphenol)	SW8270D	194 U	195 U	194 U	193 U
Di-n-octyl phthalate	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Hexachlorobenzene	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Hexachlorocyclopentadiene	SW8270D	97.1 U	97.7 U	96.9 U	96.5 U
Hexachloroethane	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Isophorone	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Nitrobenzene	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
n-Nitrosodimethylamine	SW8270D	38.8 U	39.1 U	38.7 U	38.6 UJ
n-Nitrosodimethylamine	SW8270DSIM	24.3 U	24.4 U	24.2 U	24.1 U
n-Nitrosodi-n-propylamine	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
n-Nitrosodi-n-propylamine	SW8270DSIM	19.4 U	19.5 U	19.4 U	19.3 U
n-Nitrosodiphenylamine	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
n-Nitrosodiphenylamine	SW8270DSIM	4.9 U	4.9 U	4.8 U	4.8 UJ
Pentachlorophenol	SW8270D	97.1 UJ	97.7 UJ	96.9 UJ	96.5 UJ
Pentachlorophenol	SW8270DSIM	5.7 J	4.4 J	6.3 J	3.9 J
Phenol	SW8270D	19.4 U	19.5 U	19.4 U	19.3 U
Phenol	SW8270DSIM	5.4	5.9	5.6	6.3
blycyclic Aromatic Hydrocarbons (μg/kg)	0.1/00-00-000	4.5			
1-Methylnaphthalene	SW8270DSIM	1.3	2.48 J	0.71	1.05
1-Methylphenanthrene	SW8270DSIM	1.91	5.53	1.29	1.69
2,3,5-Trimethylnaphthalene (1,6,7-Trimethylnaphthalene)		0.37 J	4.89 U	0.18 J	0.59
2,6-Dimethylnaphthalene	SW8270DSIM	1.42	4.89 U	0.56	0.99
2-Methylnaphthalene	SW8270DSIM	2.94	4.52 J	1.32	1.65
Acenaphthene	SW8270DSIM	0.5	4.16 J	0.47 J	1.49
Acenaphthylene	SW8270DSIM	1.36	4.89 U	0.75	0.81
Anthracene	SW8270DSIM	2.18	12.7	2.37	2.49
Benzo(a)anthracene	SW8270DSIM	6	39.6	11.4	3.78
Benzo(a)pyrene	SW8270DSIM	8.04	36.6	9.12	3.21
Benzo(b)fluoranthene	SW8270DSIM SW8270DSIM	8.85 10.2	23.4 24.5	9.83 8.58	4.59 4.83
Benzo(e)pyrene		10.2	23.6	9.78	<u>4.83</u> 7.09
Benzo(g,h,i)perylene Benzo(j)fluoranthene	SW8270DSIM SW8270DSIM	3.31	16.2	4.26	1.65
Benzo(k)fluoranthene	SW8270DSIM	3.8	17.5	5.03	1.87
Biphenyl (1,1'-Biphenyl)	SW8270DSIM	0.92	4.89 U	0.42 J	0.6
Carbazole	SW8270DSIM	1.22	5.29	1.3	0.85
Chrysene	SW8270DSIM	9.76	43.1	13.1	7.18
Dibenzo(a,h)anthracene	SW8270DSIM	1.92	4.56 J	1.75	0.75
Dibenzothiophene	SW8270DSIM	0.75	10.4	0.58	0.9
Fluoranthene	SW8270DSIM	13.4	70.8	20.2	16
Fluorene	SW8270DSIM	1.17	3.21 J	0.72	1.9
Indeno(1,2,3-c,d)pyrene	SW8270DSIM	6.56	17.7	5.45	2.77
Naphthalene	SW8270DSIM	7.11	5 J	2.62	3.28
Phenanthrene	SW8270DSIM	11.3	40.9	8.58	11.3 J
Pyrene	SW8270DSIM	13.3	69	17.2	13.5
Total cPAH TEQ (7 minimum CAEPA 2005) (U = $1/2$)		10.8506	47.307 J	12.597	4.6578
Total Benzofluoranthenes (b,j,k) (U = 0)		15.96	57.1	19.12	8.11
Total cPAH TEQ (7 minimum CAEPA 2005) (U = 0)		10.8506	47.307 J	12.597	4.6578
Total HPAH (SMS) (U = 0)		89.64	362.06 J	107.12	62.39
Total LPAH (SMS) (U = 0)		23.62	65.97 J	15.51 J	21.27 J
esticides (µg/kg)					
Hexachlorobenzene	SW8081B	0.5 U	0.49 U	0.48 U	0.48 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	SW8081B	0.5 U	0.49 U	0.48 U	0.48 U
oxin Furans (ng/kg)					
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	E1613B	0.275 J	0.157 J	0.047 U	0.188 J
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B	1.25	0.378 J	0.587 J	0.494 J
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	1.74	0.486 J	0.725 J	0.898 J
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	3.77	1.95	1.51	2.55 J
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	3.37	1.15	1.5	1.73
	E1613B	90	39.3	39.5	74.3 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B	741	169	302	790 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	E1613B	8.9	2.64	2.85	5.82 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD) Total Tetrachlorodibenzo-p-dioxin (TCDD)		8.44	2.47	3.6	5.71 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD) Total Tetrachlorodibenzo-p-dioxin (TCDD) Total Pentachlorodibenzo-p-dioxin (PeCDD)	E1613B				
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD) 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD) Total Tetrachlorodibenzo-p-dioxin (TCDD) Total Pentachlorodibenzo-p-dioxin (PeCDD) Total Hexachlorodibenzo-p-dioxin (HxCDD)	E1613B	34.5	14.3	13	25.6 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)Total Tetrachlorodibenzo-p-dioxin (TCDD)Total Pentachlorodibenzo-p-dioxin (PeCDD)Total Hexachlorodibenzo-p-dioxin (HxCDD)Total Heptachlorodibenzo-p-dioxin (HpCDD)	E1613B E1613B	144	64.4	62.3	120 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)Total Tetrachlorodibenzo-p-dioxin (TCDD)Total Pentachlorodibenzo-p-dioxin (PeCDD)Total Hexachlorodibenzo-p-dioxin (HxCDD)Total Heptachlorodibenzo-p-dioxin (HpCDD)2,3,7,8-Tetrachlorodibenzofuran (TCDF)	E1613B E1613B E1613B	144 7.27	64.4 0.414 J	62.3 0.261 J	120 J 0.23 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)Total Tetrachlorodibenzo-p-dioxin (TCDD)Total Pentachlorodibenzo-p-dioxin (PeCDD)Total Hexachlorodibenzo-p-dioxin (HxCDD)Total Heptachlorodibenzo-p-dioxin (HpCDD)2,3,7,8-Tetrachlorodibenzofuran (TCDF)1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B E1613B E1613B E1613B E1613B	144 7.27 1.94	64.4 0.414 J 0.318 J	62.3 0.261 J 0.997 U	120 J 0.23 J 0.996 UJ
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)Total Tetrachlorodibenzo-p-dioxin (TCDD)Total Pentachlorodibenzo-p-dioxin (PeCDD)Total Hexachlorodibenzo-p-dioxin (HxCDD)Total Heptachlorodibenzo-p-dioxin (HxCDD)Total Heptachlorodibenzo-p-dioxin (HpCDD)2,3,7,8-Tetrachlorodibenzofuran (TCDF)1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B E1613B E1613B E1613B E1613B E1613B	144 7.27 1.94 0.791 J	64.4 0.414 J 0.318 J 0.176 J	62.3 0.261 J 0.997 U 0.15 J	120 J 0.23 J 0.996 UJ 0.173 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)Total Tetrachlorodibenzo-p-dioxin (TCDD)Total Pentachlorodibenzo-p-dioxin (PeCDD)Total Hexachlorodibenzo-p-dioxin (HxCDD)Total Heptachlorodibenzo-p-dioxin (HpCDD)2,3,7,8-Tetrachlorodibenzofuran (TCDF)1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	E1613B E1613B E1613B E1613B E1613B E1613B E1613B	144 7.27 1.94 0.791 J 1.52	64.4 0.414 J 0.318 J 0.176 J 0.409 J	62.3 0.261 J 0.997 U 0.15 J 0.396 J	120 J 0.23 J 0.996 UJ 0.173 J 0.505 J
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)Total Tetrachlorodibenzo-p-dioxin (TCDD)Total Pentachlorodibenzo-p-dioxin (PeCDD)Total Hexachlorodibenzo-p-dioxin (HxCDD)Total Heptachlorodibenzo-p-dioxin (HxCDD)Total Heptachlorodibenzo-p-dioxin (HpCDD)2,3,7,8-Tetrachlorodibenzofuran (TCDF)1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	E1613B E1613B E1613B E1613B E1613B E1613B	144 7.27 1.94 0.791 J	64.4 0.414 J 0.318 J 0.176 J	62.3 0.261 J 0.997 U 0.15 J	120 J 0.23 J 0.996 UJ 0.173 J

Results Memorandum

Everett East Waterway PSO4 Combined Sewer Overflow Characterization

Page 2 of 5 December 2018

	Task	EEW2018	EEW2018	EEW2018	EEW2018
	Location ID	SMHPO2_2018 KC-S-SMHP02-180926	SMHQ01_2018 KC-S-SMHQ01-180926	SMHQ16_2018 KC-S-SMHQ116-180926	SMHQ16_2018 KC-S-SMHQ16-180926
	Sample Date	9/26/2018	9/26/2018	9/26/2018	9/26/2018
	Sample Type	N	N	FD	N
	Matrix	CSO Solids	CSO Solids	CSO Solids	CSO Solids
	х	1301136.943	1301930.414	1301701.454	1301701.454
	Y	362175.789	362184.828	362127.123	362127.123
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	E1613B	19.4	3.31	8.63	13.1 J
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	E1613B	1.41	0.173 J	0.506 J	0.75 J
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	E1613B	77	8.5	30.6	58.9 J
Total Tetrachlorodibenzofuran (TCDF)	E1613B	18.2	4.01	2.96	2.77 J
Total Pentachlorodibenzofuran (PeCDF)	E1613B	10.9	3.7	3.81	3.96
Total Hexachlorodibenzofuran (HxCDF)	E1613B	22.1	5.98	10	13.6 J
Total Heptachlorodibenzofuran (HpCDF) Total Dioxin/Furan TEQ 2005 (Mammal) (U = 1/2)	E1613B	59.3 5.171 J	9.51 1.57502 J	24.7 1.804795 J	45.2 J 2.61551 J
Total Dioxin/Furan TEQ 2005 (Mammal) (U = $1/2$)		5.171 J	1.57502 J	1.76634 J	2.60057 J
PCB Congeners (ng/kg)		5.1715	1.575025	1.700343	2.000373
PCB-001	E1668A	0.807 J	1.84	0.503 U	0.39 U
PCB-002	E1668A	0.866 J	1.17 J	0.664 J	0.363 U
PCB-003	E1668A	1.34 U	2.44 U	1.41 U	0.385 U
PCB-004	E1668A	0.507 J	3.43	2.21	2.33
PCB-005	E1668A	0.378 U	0.441 U	1.31 U	0.423 U
PCB-006	E1668A	0.312 U	0.954	1.08 U	0.349 U
PCB-007	E1668A	0.368 U	0.428 U	1.27 U	0.411 U
PCB-008	E1668A	0.927	4.54	0.978	0.656 J
PCB-009	E1668A	0.338 U	0.388 U	1.15 U	0.373 U
PCB-010	E1668A	0.362 U	0.42 U	0.595 U	0.369 U
PCB-011	E1668A	32.5	91.1	27.6	26.9
PCB-012/013	E1668A	0.378 U	0.434 U	1.29 U	0.417 U
PCB-014	E1668A	0.374 U	0.437 U	1.3 U	0.42 U
PCB-015	E1668A	5.39	5.76	2.43	2.26
PCB-016 PCB-017	E1668A	0.6 U 0.957 J	4.91 4.67	1.04 U 1 U	0.78 U 1.61 J
PCB-017 PCB-018/030	E1668A E1668A	1.36 J	8.63	2.88 J	2.79
PCB-019	E1668A	1.72	2.1 J	1.81	1.05 J
PCB-020/028	E1668A	4.68	11.7	4.47 J	4.18 J
PCB-021/033	E1668A	1.26 J	6.87	1.43 U	1.32 J
PCB-022	E1668A	1.18	3.63 J	1.36 U	0.995 J
PCB-023	E1668A	0.493 U	0.821 U	1.55 U	0.711 U
PCB-024	E1668A	0.423 U	0.69 U	0.69 U	0.518 U
PCB-025	E1668A	0.407 U	0.65 U	1.22 U	0.563 U
PCB-026/029	E1668A	0.497 U	2.01	1.52 U	0.699 U
PCB-027	E1668A	0.881 J	0.727 U	0.726 U	0.545 U
PCB-031	E1668A	2.58	9.46	2.8	2.54
PCB-032	E1668A	2.24	3.76	2.5	1.94
PCB-034	E1668A	0.495 U	0.817 U	1.54 U	0.707 U
PCB-035	E1668A	0.98 J	0.824 U	1.55 U	0.714 U
PCB-036	E1668A	0.417 U	0.695 U	1.31 U	0.601 U
PCB-037	E1668A	2.51 J	4.84	2.36	2.02
PCB-038	E1668A	0.457 U	0.783 U	1.47 U	0.677 U
PCB-039	E1668A	0.458 U	0.775 U	1.46 U	0.671 U
PCB-040/071	E1668A	5.86	7.55 J	4.55	3.92
PCB-041 PCB-042	E1668A E1668A	0.666 U 2.85	0.691 U 4.44	1.15 U 2.67	0.603 U 2.13 J
PCB-042 PCB-043	E1668A E1668A	0.513 U	4.44 0.486 U	0.812 U	0.424 U
PCB-043 PCB-044/047/065	E1668A	13.9	16.3	10.812 0	11.3
PCB-044/04/7005	E1668A	5.32	5.22	1.09 J	1.92 J
PCB-046	E1668A	2.99	2.19 J	0.998 U	0.668 J
PCB-048	E1668A	0.548 U	2.59 J	0.855 U	0.447 U
PCB-049/069	E1668A	7.22	9.22	5.74 J	5.55 J
PCB-050/053	E1668A	8.02 J	5.03	3.08	2.97
PCB-051	E1668A	2.42 J	0.512 J	0.813 J	0.798 J
PCB-052	E1668A	30.1	29	19.6	18.8
PCB-054	E1668A	0.265 U	0.342 U	0.47 U	0.29 U
PCB-055	E1668A	0.478 U	0.411 U	0.664 U	0.386 U
PCB-056	E1668A	4.3 J	5.32	4.22	4.73 J
PCB-057	E1668A	0.52 U	0.445 U	0.719 U	0.418 U
PCB-058	E1668A	0.466 U	0.391 U	0.632 U	0.367 U
PCB-059/062/075	E1668A	2.92	1.87 J	1.48 J	0.823 J
PCB-060	E1668A	2.55	2.43	2.39	2.24 J
PCB-061/070/074/076	E1668A	21.5	25.1	16.3	17.8
PCB-063	E1668A	0.573 U	0.479 U	0.774 U	0.45 U
PCB-064	E1668A	7.83	9.95	6.19	4.93
PCB-066	E1668A	10.4	11.4	7.3	8.78
		0.46 U	0.38 U	0.615 U	0.357 U
PCB-067	E1668A		0.440.11	0 700 11	0 4 2 2 1 2
PCB-068	E1668A	0.525 U	0.449 U	0.726 U	0.422 U
PCB-068 PCB-072	E1668A E1668A	0.491 U	0.407 U	0.657 U	0.382 U
PCB-068	E1668A				

Results Memorandum

Everett East Waterway PSO4 Combined Sewer Overflow Characterization

Page 3 of 5 December 2018

Table 1Everett East Waterway PSO4 Solids Results

	Task Location ID Sample ID Sample Date Sample Type Matrix X	EEW2018 SMHPO2_2018 KC-S-SMHP02-180926 9/26/2018 N CSO Solids 1301136.943	EEW2018 SMHQ01_2018 KC-S-SMHQ01-180926 9/26/2018 N CSO Solids 1301930.414	EEW2018 SMHQ16_2018 KC-S-SMHQ116-180926 9/26/2018 FD CSO Solids 1301701.454	EEW2018 SMHQ16_2018 KC-S-SMHQ16-180926 9/26/2018 N CSO Solids 1301701.454
202.072	Υ	362175.789	362184.828	362127.123	362127.123
PCB-079 PCB-080	E1668A E1668A	2.5 J 0.502 U	2.29 0.422 U	0.614 U 0.682 U	0.357 U 0.396 U
PCB-081	E1668A	0.559 U	0.422 0 0.51 U	0.824 U	0.479 U
PCB-082	E1668A	20	11.3	8.5	6.91
PCB-083	E1668A	11.5	6.34	2.04 J	2.63 J
PCB-084	E1668A	78.2	35.4	20.6	18.1
PCB-085/116	E1668A	23.4	11.9 J	8.72 J	9.11 J
PCB-086/087/097/108/119/125 PCB-088	E1668A E1668A	90.5 0.781 U	54.2 0.854 U	34 1.48 U	33.1 0.711 U
PCB-089	E1668A	1.59 J	0.726 U	1.26 U	0.605 U
PCB-090/101/113	E1668A	128	83	46.1	49.1
PCB-091	E1668A	41.1	12.3	7.8	8.36
PCB-092	E1668A	34	17.3	10.3	10.4
PCB-093/100 PCB-094	E1668A E1668A	0.777 U 0.881 U	0.803 U 0.833 U	1.39 U 1.45 U	0.669 U 0.694 U
РСБ-094 РСВ-095	E1668A	240	97.8	50.7	54.5
PCB-096	E1668A	1.43	0.42 U	0.595 U	0.364 U
PCB-098	E1668A	0.702 U	0.754 U	1.31 U	0.628 U
PCB-099	E1668A	57	29.1	19.2	19.4
PCB-102	E1668A	4.14 J	2.01 J	0.956 U	1.23 J
PCB-103	E1668A	1.97	0.694 U	1.21 U	0.578 U
PCB-104 PCB-105	E1668A E1668A	0.245 U 45.4	0.343 U 33.2	0.486 U 21.6	0.297 U 21.8
PCB-106	E1668A	0.524 U	0.523 U	0.908 U	0.435 U
PCB-107/124	E1668A	4.36 J	3.31 J	2.54	2.38
PCB-109	E1668A	8.43 J	5.29	3.76	4.05
PCB-110	E1668A	262	132	79.8	75.7
PCB-111	E1668A	0.548 U	0.554 U	0.962 U	0.461 U
PCB-112 PCB-114	E1668A	0.468 U	0.461 U	0.8 U	0.384 U
PCB-114 PCB-115	E1668A E1668A	1.75 J 0.505 U	1.39 J 0.46 U	1.19 U 0.799 U	0.487 U 0.383 U
PCB-117	E1668A	3.79	2.06 J	1.02 U	1.21
PCB-118	E1668A	93.4	62.6	42.3	41.8
PCB-120	E1668A	0.449 U	0.462 U	0.803 U	0.385 U
PCB-121	E1668A	0.504 U	0.494 U	0.857 U	0.411 U
PCB-122 PCB-123	E1668A E1668A	2.63 J 1.75 J	<u>1.85</u> 1.57	1.48 U 0.897 U	0.603 U 1.41
PCB-125 PCB-126	E1668A	1.02 U	0.923 U	1.17 U	0.636 U
PCB-127	E1668A	0.499 U	0.538 U	1.01 U	0.476 U
PCB-128/166	E1668A	70.2	30.4	17.1 J	19.2
PCB-129/138/163	E1668A	306	170	98.4	93.6
PCB-130	E1668A	22.7	12.9	8.57	7.67
PCB-131	E1668A	4.85	0.482 U	0.828 U	1.6
PCB-132 PCB-133	E1668A E1668A	<u> </u>	<u>60.8</u> 2.16	32.4 0.718 U	32.7 1.02 J
PCB-134	E1668A	25.1	10.5 J	5.26 J	7.29
PCB-135/151	E1668A	106	50.8	22.5 J	24.5
PCB-136	E1668A	39.2	23.7	11.3	11.7
PCB-137	E1668A	15.2	9.09	5.28	4.98
PCB-139/140	E1668A	5.87	3.43 J	0.699 U	1.73 J
PCB-141 PCB-142	E1668A E1668A	51.1 0.545 U	30.3 0.487 U	12.9 J 0.835 U	15.7 0.406 U
PCB-143	E1668A	0.459 U	0.419 U	0.719 U	0.35 U
PCB-144	E1668A	16.3	7.44 J	4.4 J	4.45
PCB-145	E1668A	0.277 U	0.295 U	0.54 U	0.263 U
PCB-146	E1668A	38.8	17.6	11.6	10.5
PCB-147/149 PCB-148	E1668A E1668A	248 0.487 U	121 0.421 U	65.6 0.723 U	63.7 0.352 U
PCB-148 PCB-150	E1668A	0.303 U	0.314 U	0.723 0 0.575 U	0.352 U 0.28 U
PCB-152	E1668A	0.263 U	0.274 U	0.501 U	0.244 U
PCB-153/168	E1668A	207	110	58.9	61.7
PCB-154	E1668A	3.18	1.16 J	0.667 U	0.639 J
PCB-155	E1668A	0.272 U	0.274 U	0.502 U	0.245 U
PCB-156/157 PCB-158	E1668A E1668A	26.3 32.5	<u> </u>	10.6 8.46 J	10.6 8.75 J
PCB-158 PCB-159	E1668A	1.02 U	0.622 U	1.07 U	0.638 U
PCB-160	E1668A	0.414 U	0.368 U	0.631 U	0.307 U
PCB-161	E1668A	0.343 U	0.31 U	0.532 U	0.259 U
	F1CC0A	1.22 U	0.704 U	1.22 U	0.722 U
PCB-162	E1668A				
PCB-162 PCB-164	E1668A	22.7	11.9	7.7	6.81
PCB-162			11.9 0.359 U 5.94	7.7 0.616 U 4.55	6.81 0.3 U 4.31

Results Memorandum

Everett East Waterway PSO4 Combined Sewer Overflow Characterization

Page 4 of 5 December 2018

Table 1Everett East Waterway PSO4 Solids Results

	Task Location ID Sample ID Sample Date Sample Type	EEW2018 SMHPO2_2018 KC-S-SMHP02-180926 9/26/2018 N	EEW2018 SMHQ01_2018 KC-S-SMHQ01-180926 9/26/2018 N	EEW2018 SMHQ16_2018 KC-S-SMHQ116-180926 9/26/2018 FD	EEW2018 SMHQ16_2018 KC-S-SMHQ16-180926 9/26/2018 N
	Matrix X	CSO Solids 1301136.943	CSO Solids 1301930.414	CSO Solids 1301701.454	CSO Solids 1301701.454
PCB-170	Y E1668A	<u>362175.789</u> 60.6	<u>362184.828</u> 32.2	<u>362127.123</u> 26.7	<u>362127.123</u> 25.5
PCB-171/173	E1668A	21.9	9.26	6.76 J	7.2
PCB-172	E1668A	10.8 J	4.93	5.78	3.66
PCB-174	E1668A	70.1	35.6	26	22.6
PCB-175	E1668A	3.19 J	1.01 U	1.15 U	0.488 U
PCB-176	E1668A	10.2	5.56	2.31	2.18 J
PCB-177	E1668A	37.1		13.8	14.2
PCB-178	E1668A	14	7.24	5.35	4.77 J
PCB-179	E1668A	29.1	17.2	8.93	9.59
PCB-180/193	E1668A	141	67.3	52.4	47.2
PCB-181	E1668A	0.809 U	0.895 U	1.01 U	0.432 U
PCB-182	E1668A	0.766 U	0.835 U	0.947 U	0.404 U
PCB-182	E1668A	43.3	23.2	15.7	12.8
PCB-163 PCB-184	E1668A	43.5 0.346 U	0.357 U	0.555 U	0.328 U
	E1668A	6.56	1 U	1.13 U	0.328 0 2.71 J
PCB-185 PCB-186	E1668A	0.309 U	0.334 U	0.518 U	0.306 U
PCB-180 PCB-187	E1668A	96.4	44.8	34.6	<u> </u>
PCB-188	E1668A	0.325 U	0.318 U	0.493 U	0.291 U
PCB-189	E1668A	0.769 U	0.566 U	10	0.666 U
PCB-190	E1668A	11.2	4.1 J	3.53 J	3.87 J
PCB-191	E1668A	2.18	0.819 U	0.929 U	0.874 J
PCB-192	E1668A	0.634 U	0.707 U	0.802 U	0.341 U
PCB-194	E1668A	31.5	11.6 J	14.9	13.5
PCB-195	E1668A	11.7	5.24	4.1 J	3.34 J
PCB-196 PCB-197	E1668A	19.3	8.88	5.45 J	5.8 J
	E1668A	1.4	0.444 U	1.24 U	0.439 U
PCB-198/199	E1668A	43.2	17.7 J	18.8	15.2
PCB-200	E1668A	5.7	2.29	2.82 J	2.04
PCB-201	E1668A	7.87	2.84 J	2.4	1.84 J
PCB-202	E1668A	11.3	6.67	4.87 J	4.24
PCB-203	E1668A	27.4	11.7 J	9.06 J	7.78
PCB-204	E1668A	0.42 U	0.439 U	1.23 U	0.434 U
PCB-205	E1668A	0.795 U	0.861 U	1.95 U	0.908 U
PCB-206	E1668A	25.3	12.6	11.5 J	11
PCB-207	E1668A	3.16	1.64	0.864 U	0.589 U
PCB-208	E1668A	8.29	4.14	4.81	3.22
PCB-209	E1668A	11.4	5.03	6.64	7.22
Total PCB Congener (U = 1/2)		3505.906 J	2012.886 J	1215.1 J	1176.959 J
Total PCB Congener (U = 0)		3487.685 J	1991.456 J	1170.655 J	1157.933 J
Total PCB Congener TEQ 2005 (Mammal) (U = 1/2)		0.08370039 J	0.06663199 J	0.08158541	0.05318775
Total PCB Congener TEQ 2005 (Mammal) (U = 0)		0.005755 J	0.003897 J	0.0026655	0.0026986

Notes:

Bold: detected result

Data Qualifiers:

J: estimated value

U: Compound analyzed, but not detected above detection limit

UJ: Compound analyzed, but not detected above estimated detection limit

Abbreviations:

µg/kg: micrograms per kilogram

CAEPA: California Environmental Protection Agency

cPAH: carcinogenic polycyclic aromatic hydrocarbons

CSO: combined sewer overflow

FD: field duplicate

HPAH: high-molecular-weight polycyclic aromatic hydrocarbons

LPAH: low-molecular-weight polycyclic aromatic hydrocarbons mg/kg: milligrams per kilogram N: normal sample ng/kg: nanograms per kilogram PCB: polychlorinated biphenyl pct: percent PSEP: Puget Sound Estuary Program SMS: Sediment Management Standards TEQ: toxic equivalency

Results Memorandum

Everett East Waterway PSO4 Combined Sewer Overflow Characterization

Page 5 of 5 December 2018

Figure

QEA CEC

Figure 1 CSO Sampling Location and Notes Everett East Waterway Attachment 1 Field Forms

	Daily Log	
V QI	NCHOR EA ####	Anchor QEA, LLC 720 Olive Way, Suite 1900 Seattle, WA 98101 Phone 206.287.9130 Fax 206.287.9131
		DATE: 9/26/18
SITE ADDRES	S: WIND FROM: N NE E SE S SW W	PERSONNEL: NWS/NB/A.Kallus/(W./B.L.vst
WEATHER.	SUNNY CLOUDY RAIN	/ NW LIGHT MEDIUM HEAVY ? TEMPERATURE: ° F . ° C [Circle appropriate units] [Circle appropriate units] . ° C
TIME	COMMENTS	
9:45 10-	HES meeting tsee divily HAS; City arrives	Linn -
10:05	Access paradient structur bilts and opened. White was depth to bottom 12.2" Prob sevented hard bottom. Hard Ecology Discussed sen	studily to approve 6
10:27 10:32	Revent no collection is po re-evaluate when the structu Mobilized to vegratient aven it Bryan L. described pipe configu	ossible. Potential to Ne is dematiced. Kc Property "SMHac driv and above
10:44	Sumple collected from bench	Hving KC Property of SM HQ 01. Structure place 6" pipe invert from Sample consisted of Sand
1:08 1:18 1:22	Sample processing complete. Mob to SMHQID. Standing Checked down gradient MH - Sh standing where the observe	Water ~ 2' nHPOY. No significant
[]:50]/:56	Observed SmHQ14 - Going to SmHQ16 Sample Collected - Limited Sighon	
11:44 11:55 12:17 12:46	Springle processing Humogenete duplicate taken	SMHQILD (2-402\$ 1402) plo from Ness Sides Jurth shelf

Signature:

Safety Comments: 5 Thy focused

near

open

when working

manholes.

Daily Safety Briefing		V, QEA THE
Date: 9 26 1 Project No: 17C Project Name: Everet E	8 1092-01.01 1st Waterway PS04	
Person Conducting Meeting: N. Bacher	Health & Safety Officer: C. Torell	Project Soccorsy Manager: N. Soccorsy
TOPICS COVERED:		1
Ewergency Procedures and Evacuation Route	Lines of Authority	🖄 Lifting Techniques
Directions to Hospital		Slips, Trips, and Falls
K HASP Review and Location	Site Security	Hazard Exposure Routes
Safety Equipment Location	Vessel Safety Protocols	☑– Heat and Cold Stress
Proper Safety Equipment Use	Work Zones	Overhead and Underfoot Hazards
 Employee Right-to-Know/ SDS Location 	Vehicle Safety and Driving/ Road Conditions	🕰 Chemical Hazards
□ Fire Extinguisher Location	Equipment Safety and Operation	Flammable Hazards
Eye Wash Station Location	S_Proper Use of PPE	\blacksquare Biological Hazards
□ Buddy System	Secontamination Procedures	□ Eating/Drinking/Smoking
Self and Coworker Monitoring	Near Miss Reporting Procedures	 Reviewed Prior Lessons Learned
	or Emergency Purposes (Confidential):	
Other:		
Weather Conditions: OVer		Attendees
	Printed	Name Signature
	A Hellian S	Carker MA
Daily Work Scope: Collect	Schols	lilson the
		11 11 CAR STILL
from manholes	(PSO4) Anolyd	allas analytales
	BRYAN	LUST Stud
	Nikz	ichor Unfarm
Site-specific Hazards: Workin	y over open	
Manholes uneven q		
heavy lifting tra	ins <u>Er</u>	nd of Day Wellness Check

O O O O PLAYING IT SAFE

VE ANCHOR QEA		Storm Drain	n Solids Collection Log
Project Name: EEW	PSOM SamplingProject No:	160105-02.02	Station ID: 5MHQØ1 SS canister on extended pol
Field Personnel:	NBINS	Sampling Method:	SS canistor on extended pl
Sample Date:	9 26 18	Catchment Type:	
Station Coordinates: N/La	at.	Weather:	Overcast, 505
Horizontal Datum:	ong.		
Sample ID: Analyses:	KC-S-SMHQØ1-1809	26 Sample Location:	SMHQØ1
Depth of CB: $\sim \mathscr{C}^{i}$	DTW:N/A	Grab Recovery:	N/A
	Time: <u>1054</u> g., color, clarity, sheen, odor):	Sample Interval: Ma	Not measured, sampled terral available on structure
	ested in channel	- 15	5 (11021 00
No appreciable	e flow observed.		
11			
Solids (Sediment) Description	<u>n:</u>	* minar	51+(<1070)
gray, moist, 1 few glass s	hards. no oder, no s	sand w/ scatte	end gravel up to 3/4".
Additional Observations/Com	A		
Sample collect			structure

Recorded by:_

Nathalins

V ANCHO			n Solids Collection Log
Project Name: EEW	PSOY Sampling Project No: 16 NB NS	0105-02.02	Station ID: SMHQ16
Field Personnel:	NB N'S	Sampling Method:	55 canister on extended pe
	9/26/18	Catchmont Type:	
Station Coordinates:	√/Lat.	Weather:	Över cust, 50s
-	E/Long.	-	t
Horizontal Datum:			
Sample ID:	KC-S-SMHQ16-160926	Sample Location:	SMHQ16
Analyses:		-	
		-	
Depth of CB: ~ $\mathscr{G}^{^{l}}$	DTW: N/A	Grab Recovery:	N/A
	Time:1144		N/A Not measured
		Sample Interval:	Not mensioned
tormwater Observations	e.g., color, clarity, sheen, odor):	<u> </u>	
Flaw observe	ut water M bottom o	t structure.	No appreciable
FILL OUSERVE			
olids (Sediment) Descript	on:		
gray, wet, med	ium sand u/ trace sil	t, few gravel	up to $3/4'$
no dor no sh	een,	/)	
dditional Observations/Co			
	plizate @ this state	04	
Sample collec	ted through some B =		ter on southern
ledge of 5	tructure.		
J			

MmBalm Recorded by:

V ANCHOI	R	Storm Drain	n Solids Collection Log
Project Name: EEW	PS04 Sampling Project No: 16	105-02.02	Station ID: SM HP 2
Field Personnel:	NB, NS 9[26/18]	_ Sampling Method:	55 canister on extended pola
Sample Date:	9 26 18	Catchment Type:	1
Station Coordinates:	N/Lat.	Weather:	Overlash 50s
	E/Long.	_	
Horizontal Datum:			
Sample ID:	KC-S-SMH702-180926	Sample Location:	SMHPOZ
- Analyses:			
Depth of CB: <u>~ 7 .5 ⁽</u>	DTW: N/A	Crah Basawanu	NA
Depth of CB:		Grab Recovery:	N/A Not measured
	Time:	Sample Interval:	Not measured
Stormwater Observations	(e.g., color, clarity, sheen, odor):		
	she flow observed.		
11			
Solids (Sediment) Descrip	tion:		
gay, wet, mer	lim to coarse cand n sheen	1 trace silt	, four gravel up to 3/4"
" no oder, no	sheen		
		176-16-11 constant	31
Additional Observations/C			
Sample was		en & south	en ledges of
the smith	NC.	ci i de difici	
		a an ann an a	
		1	
1			
		n - 1,- <u>-</u> //	

Recorded by:

	Iurn-around	Iurn-around Requested			Page:	• • •	of	unar			(-	Analytica	Analytical Resources, Incorporated
AND: DEA		Phone: 206-25	287-9130	0	Date:	26/18	lce Present?	It?			L	4611 Sou Tukwila, V	4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact: Client Brainer O	Oreitro				No. of Coolers:	-	Cooler Temps:)	206-695-6200 20 www.arilabs.com	206-695-6200 206-695-6201 (fax) www.arilabs.com
Jate		1 4052	PSOU / SON / SON TIMESTA	ection to	ł			Analysis Requested	equested				Notes/Comments
- 01.01	Sil	icher, N	J. Solcorsi	Orsv	(al)16, 571	Ai	IS INSAM	anstr	HIS S	9861 3215	JAI		
Sample ID	Date	Time	Matrix	No. Containers	ATAM AOSOD)906)01	2191 \$/11x010	991	-0428 2015	PSEP SPAIN :	+>>+		
KC-S-SMH @ 21-180926	9/26/18	H501	rt-	Sed.	\times	\times	×	×	×	, ×	×	5	le may
KC-S-SMH1016-180926		11111	B	Sed.	\times	×	×	×	×	~	$\langle \rangle$		The extra 402.
KC-5-SMH0116-180726		1158	M	Sed.			×	>	</td <td><</td> <td><</td> <td></td> <td>far MS/MSD.</td>	<	<		far MS/MSD.
-5-5414902-130926	-A	1226	T	Sed.	×	×	X			>	×		
1		/		/			/		,	((
					/								
	/		/					ſ			ľ		
						/						7	
1		/		/			/					ľ	
	/	0	/		/			/		1			
	Heimquished by: (Signatute)	Bull	1	Received by: (Signature) D/1 CUNIU - 1 (1) A 1	CUNIL	I DW		Relinquished by: (Signature)				Received by:	
<u> </u>		Bacher	A	Printed Name:	ICLINIU.	MI		Printed Name:				Printed Name:	
	Company:	JQ		Company:	1021		ŏ	Company:				Company:	
	9 27 18	ball 8	ba	Date & Time:	141-	0101		Date & Time:				Date & Time:	

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrart, purchase order or co-

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate

Attachment 2 Laboratory Reports Attachment 3 Data Validation Reports

November 21, 2018

Anchor QEA, LLC 720 Olive Way, Suite 900 Seattle, WA 98101 ATTN: Ms. Cindy Fields

SUBJECT: REVISED Everett East Waterway, Data Validation

Dear Ms. Fields,

Enclosed are the revised validation reports for the fractions listed below. This SDG was received on October 30, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

• Added the MS/MSD outlier.

LDC Project #43524_RV1:

SDG #

<u>Fraction</u>

18I0403/B2663 Semivolatiles, Polynuclear Aromatic Hydrocarbons, Chlorinated Pesticides, Metals, Polychlorinated Dioxins/Dibenzofurans, Polychlorinated Biphenyls as Congeners

The data validation was performed under Stage 2B guidelines. The analyses were validated using the following documents, as applicable to each method:

- Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combine Sewer Overflow Characterization; August 2018
- USEPA National Functional Guidelines for Organic Superfund Methods Data Review; January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review; January 2017
- USEPA Contract Laboratory Program National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins and Chlorinated Dibenzofurans Data Review; September 2011
- USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review; April 2016
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely

eisting Rink

Christina Rink Project Manager/Senior Chemist

LDC #43524 (Anchor Environmental-Seattle WA / Everett East Waterway) LDC SDG4 DATE (STD0) (0) (STD0) SDVA (STD0) PAtis (STD0) PAtis (STD0) (Patis) (SSD4) (Patis) (SSD4) PAtis (SSD4) PAtis (SSD4) PAtis (SSD4) PAtis		3,988 pages-AD																																		
LDC DATE REC'D DATE DUE SVOA (8270D- (8270D- SIM/DSL) SIM/DSL) Pest. (1688) Cong. (1668A) Metals (1668A) Hg (7471B) Dioxins (1613B) Solids (2540G) TOC (95EP) Size (95EP) Image: 100 mining (100 mining (10		EDD Stage 2B			LD	C #	435	24	(An	cho	or E	nvi	ron	me	nta	I-Se	eatt	le \	NA	/ E	vere	ett I	Eas	t W	ate	rwa	ıy)									
	LDC	SDG#		DATE	SV (827	OA 70D)	(827 SIM/	70D- DSL)	(827 SIM	70D- /LL)	Pe	st.	Co	ng.	Me	als	(747	'1B)	(161	3B)	Sol	ids	тс (906	DC 50A)	Si	ze										
A 180043082663 103018 11/2078 0 4 0 5 0 4 0 4 0 3 <td>Matri</td> <td></td> <td></td> <td></td> <td></td> <td>S</td> <td></td> <td>W</td> <td></td> <td>W</td> <td>S</td> <td>W</td> <td>s</td> <td>W</td> <td>S</td> <td>W</td> <td>S</td> <td>W</td> <td>S</td>	Matri					S																			W		W	S	W	s	W	S	W	S	W	S
	А	18I0403/B2663	10/30/18	11/20/18	0	4	0	4	0	5	0	4	0	4	0	3	0	3	0	4	0	3	0	3	0	3										\vdash
																																				\vdash
																																				┢──┦
																																				┟──┦
																																				\vdash
																																				┢──┘
																																				┢──┦
																																				┟──┦
																																				\vdash
																																				┢──┘
								-																												┢──┤
								-																												┢──┤
						<u> </u>				<u> </u>	<u> </u>		L		L													<u> </u>	L							\vdash
																																				\vdash
																																				\vdash
Total J/CR 0 4 0 4 0 5 0 4 0 4 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 0 0 0	Total	UCR.			0	4	0	4	0	5	0	4	0	1	0	3	0	3	0	1	0	3	0	3	0	3	0	0	0	0	0	0	0	0	0	40

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date: November 9, 2018

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270D

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
09/21/18	2,4-Dinitrophenol Pentachlorophenol	45.6 30.5	All samples in SDG 18I0403	UJ (all non-detects) UJ (all non-detects)	A

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/08/18	3,3'-Dichlorobenzidine	28.0	KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	UJ (all non-detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
KC-S-SMHQ016-180926MS/MSD (KC-S-SMHQ016-180926)	4-Chloroaniline 3-Nitroaniline 4-Nitroaniline 3,3'-Dichlorobenzidine 2,4-Dimethylphenol N-Nitrosodimethylamine	26.6 (50-150) 38.9 (50-150) 40.9 (50-150) 30.8 (50-150) - -	27.4 (50-150) 39.3 (50-150) - 33.8 (50-150) 43.6 (50-150) 49.5 (50-150)	UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
Di-n-butylphthalate	13.8	11.2	21 (≤50)
Butylbenzylphthalate	8.3	9.4	12 (≤50)
Bis(2-ethylhexyl)phthalate	96.0	80.6	17 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to ICV %D, continuing calibration %D, and MS/MSD %R, data were qualified as estimated in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Everett East Waterway Semivolatiles - Data Qualification Summary - SDG 18l0403

Sample	Compound	Flag	A or P	Reason
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926 KC-S-SMHQ116-180926 KC-S-SMHP02-180926	2,4-Dinitrophenol Pentachlorophenol	UJ (all non-detects) UJ (all non-detects)	A	Initial calibration verification (%D)
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	3,3'-Dichlorobenzidine	UJ (all non-detects)	A	Continuing calibration (%D)
KC-S-SMHQ016-180926 4-Chloroaniline 3-Nitroaniline 4-Nitroaniline 3,3'-Dichlorobenzidine 2,4-Dimethylphenol N-Nitrosodimethylamine		UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R)

Everett East Waterway Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 1810403

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: ////// Page: ___of___ Reviewer: _____ 2nd Reviewer: _____

Laboratory: Analytical Resources, Inc.

LDC #: 43524A2a

SDG #: 1810403

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270D)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A	_
11.	GC/MS Instrument performance check	A	
	Initial calibration/ICV	A KW	REDE 20/0. Y- 10/= 30/0 CCV < 20/0
IV.	Continuing calibration	IN	$acv \leq 2\delta/\delta$
<u>V.</u>	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	W	
IX.	Laboratory control samples	A	103
Х.	Field duplicates	w	0=2+3
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
3	KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
4	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
5	KC-S-SMHQ016-180926MS	1810403-02MS	Sediment	09/26/18
6	KC-S-SMHQ016-180926MSD	1810403-02MSD	Sediment	09/26/18
7				
8				
Note	<u>S:</u>			

HB_BETOOTBA	4			
	1			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

WETTOD. GO/WIS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	11. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2.Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2.Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. Biphenyl	G1. 2-Acetylaminofluorene	I2.Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	

 $\supset \mathcal{R}$ LD

VALIDATION FINDINGS WORKSHEET Initial Calibration Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

YN NA	Were all %D
YN N/A	Was an initi
Please see q	Jaimcations perc

e qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Was an initial calibration verification standard analyzed after each ICAL for each instrument? Were all %D within the validation criteria of \leq 30 %D ?

#	Date	Standard ID Compound Finding %D		Finding %D (Limit: <u><</u> 30.0%)	Associated Samples	Qualifications	
	9/2/18	55103P-5CV/	HH	45.6 30.5	AII (ND)	AVUN	
	/ /.		11	30.5			
				·			
			<u></u>	· · · · · · · · · · · · · · · · · · ·			
					· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
			. <u></u>				

LDC #:-

VALIDATION FINDINGS WORKSHEET Continuing Calibration

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?

<u>Y(N)N/A</u> Were percent differences (%D) ≤20 % and relative response factors (RRF) within the method criteria?

Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
0/8/18	NTT018/00802	BBB	28.0		1-2.5-6.MB	VUNA
//					(ND)	
					. ,	
		- ····				
		·				
		·····				
		Date Standard ID IPSIN NTTOIS/OOSO > IPSIN IPSIN IPSIN IPSIN	Date Standard ID Compound IP IP	Date Standard ID Compound Finding %D (Limit: \$20.0%) Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID Image: Standard ID	Date Standard ID Compound Finding %D (Limit; 20.0%) Finding RRF (Limit) Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image: Compound Image:	DateStandard IDCompoundFinding %D (Limit: $< 0.0\%$)Finding RRF (Limit)Associated SamplesIPADNTIO IS IMBO -IPADI

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates</u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

N N/A

Was a MS/MSD analyzed every 20 samples of each matrix?

A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		5/6	-	26.5 50-150	27.4 (50-150	()	2(ND)	J/W A
		/	FF	38.9 (,)	39.3 ()	()		
		······································	00	40.9 ()	()	()		
			BBB	30.8 ()	33.8 ()	()		
			0	()	43.6 ()	()		/
			000	()	495 ()	()		
				()	()	()		
		····		()	()	()		
<u> </u>			<u> </u>	()	()	()		
				()	()	()		
				()	()	()		
└──┤				()	()	()		
\vdash				()	()	()		
┣╂				()	()	()	······	
┝─┼				()	()	()		
				()	()	()		
				()	()	()		
$\left \right $				()	()	()		
\vdash				()	()	()	· · · · · · · · · · · · · · · · · · ·	
┝──┼				()	()	()		
				()	()	()		
				()	()	()		
			1	()	()	()		
				()	, ,	()	······	
				()	()	()		
				()	()	()		

LDC#: 2304 20

Page: <u>(of</u> Reviewer: <u></u> 2nd Reviewer: <u></u>

METHOD: GCMS SVOA 8270D

	Concentrat	(≤50)	
Compound	2	3	RPD
XX	13.8	11.2	21
ААА	8.3	9.4	12
EEE	96.0	80.6	17

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\43524A2a.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date: November 20, 2018

Parameters: Semivolatiles

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	1810403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	1810403-02MSD	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Semivolatile Organic Compounds (SVOCs) by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode Dual Scan List

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds with the following exceptions:

Date	Compound	%D	Associated Samples	Flag	A or P
10/08/18	Pentachlorophenol	37.7	KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	J (all detects)	A
10/09/18	Benzoic acid Pentachlorophenol	25.6 33.7	KC-S-SMHQ116-180926 KC-S-SMHP02-180926	J (all detects) J (all detects)	A

All of the continuing calibration relative response factors (RRF) were within validation criteria.
V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BGJ0007-BLK2	10/02/18	Diethylphthalate	5.5 ug/Kg	All samples in SDG 18I0403

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>10X for common contaminants, >5X for other contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
KC-S-SMHQ01-180926	Diethylphthalate	6.5 ug/Kg	19.5U ug/Kg
KC-S-SMHQ016-180926	Diethylphthalate	7.3 ug/Kg	19.4U ug/Kg
KC-S-SMHQ116-180926	Diethylphthalate	10.5 ug/Kg	19.4U ug/Kg
KC-S-SMHP02-180926	Diethylphthalate	7.1 ug/Kg	19.3U ug/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
KC-S-SMHQ016-180926MS/MSD	2,4-Dimethylphenol	-	45.5 (50-150)	UJ (all non-detects)	A
(KC-S-SMHQ016-180926)	N-Nitrosodiphenylamine	-	49.8 (50-150)	UJ (all non-detects)	

Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
Phenol	6.3	5.6	12 (≤50)
Benzoic acid	37.5	58.0	43 (≤50)
Diethylphthalate	7.1	7.3	3 (≤50)
Pentachlorophenol	3.9	6.3	47 (≤50)
Butylbenzylphthalate	6.2	6.3	2 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to continuing calibration %D and MS/MSD %R, data were qualified as estimated in four samples.

 \mathcal{A}

Due to laboratory blank contamination, data were qualified as not detected in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Everett East Waterway Semivolatiles - Data Qualification Summary - SDG 18l0403

Sampla	Compound	Flag	A or P	Reason
Sample	Compound	Flay	AUL	ICeason
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	Pentachlorophenol	J (all detects)	A	Continuing calibration (%D)
KC-S-SMHQ116-180926 KC-S-SMHP02-180926	Benzoic acid Pentachlorophenol	J (all detects) J (all detects)	A	Continuing calibration (%D)
KC-S-SMHQ016-180926	2,4-Dimethylphenol N-Nitrosodiphenylamine	UJ (all non-detects) UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (%R)

Everett East Waterway Semivolatiles - Laboratory Blank Data Qualification Summary - SDG 18l0403

Sample	Compound	Modified Final Concentration	A or P
KC-S-SMHQ01-180926	Diethylphthalate	19.5U ug/Kg	A
KC-S-SMHQ016-180926	Diethylphthalate	19.4U ug/Kg	А
KC-S-SMHQ116-180926	Diethylphthalate	19.4U ug/Kg	А
KC-S-SMHP02-180926	Diethylphthalate	19.3U ug/Kg	А

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 11/7/	8
Page: 106	
Reviewer:	
2nd Reviewer:	•
n List) U	

SDG #: <u>1810403</u> Laboratory: <u>Analytical Resources, Inc.</u>

LDC #: 43524A2

SVOAS

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270D-SIM Dual Scan List)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	~
-111.	Initial calibration/ICV	ATE	\$<35€\$70. γ ² 1=1=3070
IV.	Continuing calibration	AM	
V	Laboratory Blanks	m	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	(
VIII.	Matrix spike/Matrix spike duplicates	AC	,v-l
IX.	Laboratory control samples	$\overline{47}$	Les
Χ.	Field duplicates	in	B=3+4
X1.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	· · · · · · · · · · · · · · · · · · ·

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
2—	-KC-3-SMHQ01-180928RE	1810403-01RE	Sediment	09/26/18
3	KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
4	KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
5	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
6	KC-S-SMHQ016-180926MS	1810403-02MS	Sediment	09/26/18
7	KC-S-SMHQ016-180926MSD	1810403-02MSD	Sediment	09/26/18
8				
Note	<u>3:</u>			
10	B750007-B42			
I T				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K, Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2.Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2.Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. Biphenyl	G1. 2-Acetylaminofluorene	I2.Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	JZ_Benzocj+fuoran+

COMPNDL_SVOA long list plus.wpd

LDC #: 13521 A-20

VALIDATION FINDINGS WORKSHEET **Continuing Calibration**

METHOD: GC/MS BNA (EPA SW 846 Method 8270D) Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

ase see qualifi <u>N N/A</u> V N N/AV	Vere percent differences ((%D) ≤20 % and rel				<u> </u>
Date	Standard ID	Compound	Finding %D (Limit: <u><</u> 20.0%)	Finding RRF (Limit)	Associated Samples	Qualifications
10/8/8	NT10181008035	· TT	37.7		1,3,6-T.MB	JUN/A
				· · · · · · · · · · · · · · · · · · ·	(dets)	
10/9/8	NTTO181009065	+2PP	25.6	· · · · · · · · · · · · · · · · · · ·	4-5 (det3)	-VUL A
			33.7			- qr
		<u></u>				
						u,
				<u> </u>		
				· · · · · · · · · · · · · · · · · · ·		•
						<u></u>
						<u></u>
						-

Privileged and Confidential

VALIDATION FINDINGS WORKSHEET

<u>Blanks</u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a method blank analyzed for each matrix?

Was a method blank analyzed for each concentration preparation level?

A Was a method blank associated with every sample?

N/A Was the blank contaminated? If yes, please see qualification below.

Blank extraction date: 19918 Blank analysis date: 19918 Conc. units: 49978 Associated Samples:

Compound	Blank ID		Sample Identification						
	AT-BA	2 (5x)	1	N	4	5			
Bis(2-ethylhexyl)phthalate									
44	55	<u>5,5)</u>	6.5/9.54	73/97.4	10.5/941	T./9.34			
			<u> </u>						

AI

Blank extraction date:_____ Blank analysis date:____

Conc. units:_

Associated Samples:

Compound	Blank ID	Sample Identification					
		 			 ·		
		 		l 	 	 	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were qualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

BLANKS2.2SD

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_\	of
Reviewer:	a
2nd Reviewer:	ul-

METHOD : GC/MS SVOA (EPA SW 846 Method 8270D-DIM)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

Y_N_N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Y N N/A Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
		6/7	0	()	45.5 (50-150)		3	J/UJ/A (ND)
			QQ	()	49.8 (50-150)	()		
				()	()	()		
				()	()	()		
		· · ·		()	()	()		
				()	()	()		
				()	()	· · · · · · · · · · · · · · · · · · ·		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		·
				()	()	()		
				()	()	()		
				()	()	()		
				()	(;)			
				()	()	()		
				()	()	()	· · · · · · · · · · · · · · · · · · ·	
				()	()			
				()	()	()		
		· · ·		()	()			
			1	()	()	()	·····	
				()	()	()		
╟──┤				()	()	· · · · · · · · · · · · · · · · · · ·		

Page:___of____ Reviewer:_____ 2nd Reviewer:_____

METHOD: GCMS SVOA 8270D-SIM

	Concentrati	Concentration (ug/KG)		
Compound	3	4	RPD	
А	6.3	5.6	12	
PPP	37.5	58.0	43	
LL	7.1	7.3	3	
ТТ	3.9	6.3	47	
AAA	6.2	6.3	2	

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\43524A2a.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date: November 14, 2018

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ01-180926DL	18I0403-01DL	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode Low Level

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For compounds where average relative response factors (RRFs) were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BGJ0028-BLK1	10/04/18	Acenaphthylene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Benzo(g,h,i)perylene	0.07 ug/Kg 0.12 ug/Kg 0.09 ug/Kg 0.27 ug/Kg 0.15 ug/Kg 0.15 ug/Kg 0.16 ug/Kg 0.12 ug/Kg 0.11 ug/Kg 0.12 ug/Kg 0.33 ug/Kg	All samples in SDG 18I0403

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
KC-S-SMHQ016-180926MS/MSD (KC-S-SMHQ016-180926)	Phenanthrene	37.3 (≤35)	J (all detects)	A

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/Kg)	
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
Naphthalene	3.28	2.62	22 (≤50)
2-Methylnaphthalene	1.65	1.32	22 (≤50)
Acenaphthylene	0.81	0.75	8 (≤50)
Acenaphthene	1.49	0.47	104 (≤50)
Biphenyl	0.60	0.42	35 (≤50)
2,6-Dimethylnaphthalene	0.99	0.56	55 (≤50)
Fluorene	1.90	0.72	90 (≤50)
Phenanthrene	11.3	8.58	27 (≤50)
Anthracene	2.49	2.37	5 (≤50)
2,3,5-Trimethylnaphthalene	0.59	0.18	106 (≤50)
Fluoranthene	16.0	20.2	23 (≤50)
Pyrene	13.5	17.2	24 (≤50)
Benzo(a)anthracene	3.78	11.4	100 (≤50)
Dibenzothiophene	0.90	0.58	43 (≤50)
Chrysene	7.18	13.1	58 (≤50)
Benzo(b)fluoranthene	4.59	9.83	73 (≤50)
Benzo(k)fluoranthene	1.87	5.03	92 (≤50)
Carbazole	0.85	1.30	42 (≤50)
1-Methylphenanthrene	1.69	1.29	27 (≤50)

	Concentration (ug/Kg)		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
Benzo(j)fluoranthene	1.65	4.26	88 (≤50)
Benzo(a)pyrene	3.21	9.12	96 (≤50)
Indeno(1,2,3-cd)pyrene	2.77	5.45	65 (≤50)
Dibenzo(a,h)anthracene	0.75	1.75	80 (≤50)
Benzo(g,h,i)perylene	7.09	9.78	32 (≤50)
1-Methylnaphthalene	1.05	0.71	39 (≤50)
Benzo(e)pyrene	4.83	8.58	56 (≤50)
Benzofluoranthenes, total	8.12	19.1	81 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were deemed not reportable as follows:

Sample	Compound	Reason	Flag	A or P
KC-S-SMHQ01-180926	Fluoranthene Pyrene	Results exceeded calibration range.	Not reportable	-
KC-S-SMHQ01-180926DL	All compounds except Fluoranthene Pyrene	Results from undiluted analyses were more usable.	Not reportable	-

Due to MS/MSD RPD, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Everett East Waterway Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 18I0403

Sample	Compound	Flag	A or P	Reason
KC-S-SMHQ016-180926	Phenanthrene	J (all detects)	А	Matrix spike/Matrix spike duplicate (RPD)
KC-S-SMHQ01-180926	Fluoranthene Pyrene	Not reportable	. 	Overall assessment of data
KC-S-SMHQ01-180926DL All compounds except Fluoranthene Pyrene		Not reportable	-	Overall assessment of data

Everett East Waterway

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 18I0403

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: <u>43524A2c</u> VALI SDG #: <u>1810403</u> Laboratory: <u>Analytical Resources, Inc.</u>

Stage 2B

Date: 11/17/1 & Page: _____of [_____ Reviewer: ______ 2nd Reviewer: ______

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270D-SIM Low Level)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	/
١١.	GC/MS Instrument performance check	\mathbf{A}	
.	Initial calibration/ICV	AM	KSON \$70. Y - 10/2 3070
IV.	Continuing calibration	Aatt	ec1 < 2070
V.	Laboratory Blanks	À	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	w/	
IX.	Laboratory control samples		109
X . 1	Field duplicates	1/1/	D=2+3
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N /	
XV.	Overall assessment of data	W	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID	Lab ID	Matrix	Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	1810403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	1810403-02MSD	Sediment	09/26/18
4102	-0(D2	V	X
otes:			

u	B& 50028-B#1			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

ILTIOD. CONIS SVOA				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	11. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2.Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2.Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEE. Biphenyl	G1. 2-Acetylaminofluorene	I2.Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	

VALIDATION FINDINGS WORKSHEET Blanks

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Was a method blank analyzed for each matrix?

Was a method blank analyzed for each concentration preparation level? N N/A

NN N/A Was a method blank associated with every sample?

Y N/A Was the blank contaminated? If yes, please see qualification below. Blank extraction date: 10/41 Blank analysis date: 10/9/18

Conc. units:

Associated Samples:

Compound	Blank ID		Sample Identification					
340	20-8- 13	+ (5x)						
Bis(2-ethylhexyl)phthalate	OPT	0.35						
ИИ	0.12	060						
VV	0.09	0.45						
УУ	0.27	1.35						
22	0.30	1.50						
CCC	0.15	0.75						
DDD	0.16	0.80						

AI

Blank extraction date: Blank analysis date:

Conc.	

Acception Samples

Associated Samples.										
Compound	Blank ID		Sample Identification							
444	0.12	0,60								
++++	0.11	0.55								
	0.12	0.60								
444	0.33	0.60								

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated method blank concentration were gualified as not detected, "U". Other contaminants within five times the method blank concentration were also qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:_	<u>of</u>
Reviewer:	· 9
2nd Reviewer:	2

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>PON N/A</u>	Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated
C	MS/MSD. Soil / Water.

<u>X/N_N/A</u> Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	5/6	иИ	()	. ()	RPD (Limits)	2 (det=)	Jots A
	1		()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
)	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

LDC#:

METHOD: GCMS PAHs 8270D-SIM

	Concentrat	(≤50)	
Compound	2	3	RPD
S	3.28	2.62	22
W	1.65	1.32	22
DD	0.81	0.75	8
GG	1.49	0.47	104
EEEE	0.60	0.42	35
XXX	0.99	0.56	55
NN	1.90	0.72	90
υυ	11.3	8.58	27
W	2.49	2.37	5
YYY	0.59	0.18	106
YY	16.0	20.2	23
ZZ	13.5	17.2	24
ссс	3.78	11.4	100
АААА	0.90	0.58	43
DDD	7.18	13.1	58
GGG	4.59	9.83	73
ННН	1.87	5.03	92
ww	0.85	1.30	42
нннн	1.69	1.29	27
J2	1.65	4.26	88
111	3.21	9.12	96
JJJ	2.77	5.45	65
ккк	0.75	1.75	80
LLL	7.09	9.78	32
ТТТ	1.05	0.71	39
www	4.83	8.58	56
Benzofluoranthenes, Total	8.12	19.1	81

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\43524A2b.wpd

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

	Page:	
	Reviewer:	<u> </u>
2nd	Reviewer:	

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y NNA

Was the overall quality and usability of the data acceptable?

#	Date	Compound	Finding	Associated Samples	Qualifications
		1	Finding YY. Z > caleb All lxcept YY. Z	lange	NR
		7	All except YX. 2	2	

Comments: _____

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date: November 14, 2018

Parameters: Chlorinated Pesticides

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	1810403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18

_1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Chlorinated Pesticides by Environmental Protection Agency (EPA) SW 846 Method 8081B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC Instrument Performance Check

Instrument performance was checked at 12 hour intervals.

The individual 4,4'-DDT and Endrin breakdowns (%BD) were less than or equal to 15.0%.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates/Internal Standards

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Column	Surrogate	%R (Limits)	Affected Compound	Flag	A or P
KC-S-SMHP02- 180926	STX-CLP	Tetrachloro-m-xylene	784 (30-160)	All compounds	NA	-

3

All internal standard areas and retention times were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples.

XI. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Everett East Waterway Chlorinated Pesticides - Data Qualification Summary - SDG 18/0403

No Sample Data Qualified in this SDG

Everett East Waterway

Chlorinated Pesticides - Laboratory Blank Data Qualification Summary - SDG 1810403

No Sample Data Qualified in this SDG

LDC #: <u>43524A3a</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: <u>18I0403</u>	Stage 2B
Laboratory: Analytical Resource	es, Inc.

Date: 1/7/18-
Page: 105
Reviewer:
2nd Reviewer
0

METHOD: GC Chlorinated Pesticides (EPA SW846 Method 8081B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A	-
П.	GC Instrument Performance Check	A	
111.	Initial calibration/ICV	AA	7750 = 20/0 /cV = 20/0 acr = 20/0
IV.	Continuing calibration	A	acr = 2078
V.	Laboratory Blanks	A	1
VI.	Field blanks	N	
VII.	Surrogate spikes /IS	-un/s	(IS out - Not assid to appl)
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	\triangleleft	109
Χ.	Field duplicates	ND	0=273
XI.	Compound quantitation/RL/LOQ/LODs	N	
XII.	Target compound identification	N	
XIII.	System Performance	N,	
xıv	Overall assessment of data	A	T

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate					
TB = Trip blank					
EB = Equipment blank					

SB=Source blank OTHER:

	Client ID					Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926					1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926					1810403-02	Sediment	09/26/18
3	KC-S-SMHQ116-180926		·			1810403-03	Sediment	09/26/18
4	KC-S-SMHP02-180926					1810403-04	Sediment	09/26/18
5	KC-S-SMHQ016-180926MS					1810403-02MS	Sediment	09/26/18
6	KC-S-SMHQ016-180926MSD					1810403-02MSD	Sediment	09/26/18
7								
8								
Э								
10								
lote	S:							
\neg			······································					

LDC #:434

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:_ <u>/_</u> of_ <u>/</u> _
Reviewer:
2nd Reviewer

	/	
METHOD:	√ GC	HPLC

Are surrogates required by the method? Yes____ or No____.

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N/A Were surrogates spiked into all samples and blanks?

Ý (N)N/A Did all surrogate recoveries (%R) meet the QC limits?

#	Sample ID		Detector/ Column	Surrogate Compound		%R (Limits)			Qualifications		
	4	51	x-C/	× ×		784 * (30-	160) 1	letz	\$ (NO)	
				1 /		()		\ /	
					<u> </u>	lab reported a	S NH	is the			
						ER was calcu	ilata	d usie			
					l	aw data? ()			
)			
						. ()			
						()			
						()			
Î						(1			
					_			/			
)		······································	
						(
\vdash					-			/			
<u> </u>											
+					_					· · · · · · · · · · · · · · · · · · ·	
						()			
	<u> </u>				_						
						()			
				·		()			
	i					()			
	Surrogate Compour	nd		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound	
A	Chlorobenzene (CBZ)		G	Octacosane	М	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene	
В	4-Bromofluorobenzene (B	FB)	н	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrotoluene	Z	1,2-Dinitrobenzene	
С	a,a,a-Trifluorotoluene		1	Fluorobenzene (FBZ)	0			Tripentyltin			
P	Bromochlorobenene		J	n-Triacontane	P	1-methylnaphthalene	V	Tri-n-propyltin			
E	1,4-Dichlorobutane		к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)		Tributyl Phosphate			
F	1.4-Difluorobenzene (DF	<u>B) </u>	L	Bromobenzene	R	4-Nitrophenol	X	Triphenyl Phosphate			

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: November 14, 2018

Parameters: Metals

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	18I0403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18
KC-S-SMHQ016-180926DUP	18I0403-02DUP	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Arsenic, Cadmium, Chromium, Lead, Silver, and Zinc by Environmental Protection Agency (EPA) SW 846 Method 6020A Mercury by EPA SW 846 Method 7471B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. ICPMS Tune

The mass calibration was within 0.1 AMU and the percent relative standard deviation (%RSD) was less than or equal to 5%.

III. Instrument Calibration

Initial and continuing calibrations were performed as required by the methods.

The initial calibration verification (ICV) and continuing calibration verification (CCV) standards were within QC limits.

IV. ICP Interference Check Sample Analysis

The frequency of interference check sample (ICS) analysis was met. All criteria were within QC limits with the following exceptions:

ICS ID	Date/ Time	Analyte	%R (Limits)	Associated Samples	Flag	A or P
IFB1	10/09/18 (16:24)	Chromium	134 (80-120)	KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	J (all detects)	A

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Chromium	0.07 mg/Kg	KC-S-SMHQ01-180926 KC-S-SMHQ016-180926
ICB/CCB	Chromium	0.138 ug/L	KC-S-SMHQ01-180926

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V:\LOGIN\ANCHOR\EVERETT EAST WATERWAY\43524A4A_AN3.DOC

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
KC-S-SMHQ016-180926MS/MSD (KC-S-SMHQ01-180926 KC-S-SMHQ016-180926)	Chromium	39.2 (75-125)	62.9 (72-125)	J (all detects)	A

Relative percent differences (RPD) were within QC limits.

VIII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
KC-S-SMHQ016-180926DUP (KC-S-SMHQ01-180926 KC-S-SMHQ016-180926)	Chromium	45 (≤25)	J (all detects)	A

IX. Serial Dilution

Serial dilution was not performed for this SDG.

X. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits.

XI. Field Duplicates

No field duplicates were identified in this SDG.

XII. Internal Standards (ICP-MS)

Raw data were not reviewed for Stage 2B validation.

XIII. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to ICS %R, MS/MSD %R, and DUP RPD, data were qualified as estimated in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.
Everett East Waterway Metals - Data Qualification Summary - SDG 18l0403

Sample	Analyte	Flag	A or P	Reason
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	Chromium	J (all detects)	A	ICP interference check sample analysis (%R)
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	Chromium	J (all detects)	A	Matrix spike/Matrix spike duplicate (%R)
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926	Chromium	J (all detects)	А	Duplicate sample analysis (RPD)

Everett East Waterway Metals - Laboratory Blank Data Qualification Summary - SDG 18l0403

No Sample Data Qualified in this SDG

ALIDATION COMPLETENESS WORKSHE

Stage 2B

LDC #: <u>43524A4a</u> **VALI** SDG #: <u>1810403</u> Laboratory: <u>Analytical Resources, Inc.</u> Date: 11/14/18 Page: _ Of _ 1 Reviewer: _ ATU 2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6020A/7471B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
П.	ICP/MS Tune	A	
111.	Instrument Calibration	A	
IV.	ICP Interference Check Sample (ICS) Analysis	SW	
V.	Laboratory Blanks	SW/	
VI.	Field Blanks	N	
VII.	Matrix Spike/Matrix Spike Duplicates	SW/	(4,5)
VIII.	Duplicate sample analysis	SW/	6
IX.	Serial Dilution	N	
Х.	Laboratory control samples	A	LCS
XI.	Field Duplicates	Ň	
XII.	Internal Standard (ICP-MS)	N	
XIII.	Sample Result Verification	N	
	Overall Assessment of Data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
3	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
4	KC-S-SMHQ016-180926MS	1810403-02MS	Sediment	09/26/18
5	KC-S-SMHQ016-180926MSD	1810403-02MSD	Sediment	09/26/18
6	KC-S-SMHQ016-180926DUP	1810403-02DUP	Sediment	09/26/18
7				
8				
9				
10				
11				
12				
lote	PS:			

LDC #: 43524A42

F

VALIDATION FINDINGS WORKSHEET Sample Specific Element Reference

Page: 1 of 1 Reviewer: 411 2nd reviewer:

All circled elements are applicable to each sample.

Sample ID	Matrix	Target Analyte List (TAL)
173	S	Al, SbAs Ba, Be,Cd Ca,Cr, Co, Cu, Fe,Pb Mg, Mn Hg Ni, K, SeAg Na, TI, V Zn Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
QC		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
4,5,6	S	AI, Sb, As Ba, Be, Cd) Ca Cr, Co, Cu, Fe (Pb) Mg, Mn, Hg) Ni, K, Se (Ag) Na, TI, V, (Zn) Mo, B, Sn, Ti,
·		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
·	·	Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		Analysis Method
ICP		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
ICP-MS		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
GFAA		Al, Sb, As, Ba, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Hg, Ni, K, Se, Ag, Na, Tl, V, Zn, Mo, B, Sn, Ti,
		by CV/AA if porformed

Comments: Mercury by CVAA if performed

VALIDATION FINDINGS WORKSHEET **ICP Interference Check Sample**

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

VN_N/A Were ICP interference check samples performed as required? Y (N)N/A

Were the AB solution percent recoveries (%R) within the control limits of 80-120%?

LEVEL IV ONLY: Y N (N/A)

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	Date	ICS Identification	Analyte	Finding	Associated Samples	Qualifications
	10/09/18	IFB1 (16:24)	Cr-53	134 (80-120)	1,2	Jdet/A (all detect)
						· · · · · · · · · · · · · · · · · · ·
ЦЦ						
\parallel						
Ш						
\parallel						
\mathbb{H}						
Щ						
\parallel						
\parallel						
\mathbb{H}						
\parallel						
\parallel						
\parallel						
Ľ						

Comments:

VALIDATION FINDINGS WORKSHEET <u>PB/ICB/CCB QUALIFIED SAMPLES</u>

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: <u>mg/kg</u> Soil preparation factor applied: NA Associated Samples: 1,2

Analyte	Maximum PB ^a (mg/Kg)	PB ^a	ICB/CCB ^a						
Cr-53	0.07			0.35				-	

Sample Concentration units, unless otherwise noted: mg/kg

Associated Samples: 1

Analyte	Maximum PB ^a (mg/Kg)	PB*	Maximum ICB/CCB ^a (ug/L)						
Cr-53			0.138	0.0345					

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were gualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: Trace metals (EPA SW 846 Method 6010/6020/7000)

بالجهease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YALN/A Was a matrix spike analyzed for each matrix in this SDG?

Y(N/N/AWere matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken. or 4 or more, no action was taken. 25Were all duplicate sample relative percent differences (RPD) $\leq 29\%$ for samples?

(Ŷ)<u>n n/a</u>

LEVEL IV ONLY: <u>Y N (N/A)</u>

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications
	4/5	S	Cr-53	39.2 (75-125)	62.9 (75-125)		1,2	J/UJ/A (detect)

Comments:

VALIDATION FINDINGS WORKSHEET **Duplicate Analysis**

Reviewer: ATL 2nd Reviewer:

METHOD: Trace Metals (EPA SW 846 Method 6010/6020/7000)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

(Y) N N/A Was a duplicate sample analyzed for each matrix in this SDG?

Was a duplicate sample analyzed for each matrix in this SUG? $\frac{35}{5}$ Were all duplicate sample relative percent differences (RPD) $\leq 20\%$ for water samples and $\leq 35\%$ for soil samples? If no, see qualifications below. A control Y(N)N/A limit of +R.L. (+2X R.L. for soil) was used for sample values that were <5X the R.L., including the case when only one of the duplicate sample values was <5X R.L.. If field blanks were used for laboratory duplicates, note in the Overall Assessment.

LEVEL-IV ONLY:

Y N(N/A)Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	Date	Duplicate ID	Matrix	Analyte	RPD (Limits)	Difference (Limits)	Associated Samples	Qualifications
		6	S	Cr-53	45 (<u><</u> 25%)		1,2	J/UJ/A (all detect)
							·	
Щ								
			l					

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Everett East Waterway

LDC Report Date: November 14, 2018

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	1810403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926DUP1	18I0403-02DUP1	Sediment	09/26/18
KC-S-SMHQ016-180926DUP2	1810403-02DUP2	Sediment	09/26/18

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Total Solids by Standard Method 2540G

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

Particle Size by Puget Sound Estuary Protocol (PSEP)

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

2

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Standard Reference Materials

Standard reference materials (SRM) were analyzed as required by the method. The results were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

1

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

Everett East Waterway Wet Chemistry - Data Qualification Summary - SDG 18I0403

No Sample Data Qualified in this SDG

Everett East Waterway Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 18I0403

No Sample Data Qualified in this SDG

VALIDATION	COMPL	FTENESS	WORKSHEET

Stage 2B

Date: 11/14/18 Page: of 1 Reviewer: 410 2nd Reviewer:

METHOD: (Analyte) Total Solids (SM 2540G), TOC EPA SW 846 Method 9060A), Particle Size (PSEP)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AA	
11	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	Ů
VII.	Duplicate sample analysis	A	5,6
VIII.	Laboratory control samples	A	SRM
IX.	Field duplicates	N	
X .	Sample result verification	N	
	Overall assessment of data	A	

Note:

LDC #: 43524A6

Laboratory: Analytical Resources, Inc.

SDG #: 1810403

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
3	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
4	KC-S-SMHQ016-180926MS	1810403-02MS	Sediment	09/26/18
5	KC-S-SMHQ016-180926DUP	1810403-02DUP	Sediment	09/26/18
6	КС-S-SMHQ016-180926TRP DUP2	1810403-02TRP DP7	Sediment	09/26/18
7				
8				
9				
10				
11				
12				
13				
14				
Note	S:	······································		

DC #: 43524AG

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: <u>1</u> of <u>1</u> Reviewer: <u>ATL</u> 2nd reviewer:

.

Il circled methods are applicable to each sample.

<u>Sample ID</u>	Parameter
1,2,3	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK CN NH3 TKN TOC Cr6+ CIO4 (TS) (TOC) (particle SISE)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
QC	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
5,6	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄ (TS)
QC 516 41516	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN foc Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
Walken T. St. House House and the American	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
and and the first of the second state of the second state of the second state of the second state of the second	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Everett East Waterway
LDC Report Date:	November 14, 2018
Parameters:	Polychlorinated Dioxins/Dibenzofurans
Validation Level:	Stage 2B
Laboratory:	Analytical Resources, Inc.

Sample Delivery Group (SDG): 1810403

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926DUP	18I0403-02DUP	Sediment	09/26/18

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review (September 2011). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Dioxins/Dibenzofurans by Environmental Protection Agency (EPA) Method 1613B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all homologues. The chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomer was less than or equal to 25%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration and Initial Calibration Verification

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were within the QC limits for unlabeled compounds and labeled compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration results were within the QC limits for unlabeled compounds and labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BGJ0793-BLK1	10/02/18	1,2,3,7,8-PeCDF 1,2,3,4,6,7,8-HpCDF OCDD Total PeCDF Total HpCDF	0.0508 ng/Kg 0.0406 ng/Kg 0.188 ng/Kg 0.0508 ng/Kg 0.0406 ng/Kg	All samples in SDG 18l0403

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
KC-S-SMHQ016-180926	1,2,3,7,8-PeCDF	0.136 ng/Kg	0.996U ng/Kg
KC-S-SMHQ116-180926	1,2,3,7,8-PeCDF	0.121 ng/Kg	0.997U ng/Kg

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates/Duplicate Sample Analysis

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits with the following exceptions:

DUP ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
KC-S-SMHQ016-180926DUP (KC-S-SMHQ016-180926)	1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD Total TCDF Total TCDF Total TCDD Total PeCDD Total HxCDF Total HxCDF Total HxCDF Total HpCDF Total HpCDD	$\begin{array}{c} 43.9 \ (\leq\!35) \\ 41.8 \ (\leq\!35) \\ 50.3 \ (\leq\!35) \\ 82.1 \ (\leq\!35) \\ 48.5 \ (\leq\!35) \\ 52.9 \ (\leq\!35) \\ 76.1 \ (\leq\!35) \\ 75.5 \ (\leq\!35) \\ 96.8 \ (<\!35) \\ 35.5 \ (\leq\!35) \\ 35.5 \ (\leq\!35) \\ 74.4 \ (\leq\!35) \\ 62.6 \ (\leq\!35) \\ 37.8 \ (\leq\!35) \\ 75.8 \ (\leq\!35) \\ 69.2 \ (\leq\!35) \\ 75.9 \ (\leq\!35) \end{array}$	J (all detects) J (all detects)	A

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ng/Kg)		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
2,3,7,8-TCDF	0.230	0.261	13 (≤50)
2,3,7,8-TCDD	0.188	0.997U	Not calculable
1,2,3,7,8-PeCDF	0.136	0.121	12 (≤50)
2,3,4,7,8-PeCDF	0.173	0.150	14 (≤50)
1,2,3,7,8-PeCDD	0.494	0.587	17 (≤50)
1,2,3,4,7,8-HxCDF	0.505	0.396	24 (≤50)
1,2,3,6,7,8-HxCDF	0.411	0.397	3 (≤50)
2,3,4,6,7,8-HxCDF	0.674	0.567	17 (≤50)
1,2,3,7,8,9-HxCDF	0.307	0.126	84 (≤50)
1,2,3,4,7,8-HxCDD	0.898	0.725	21 (≤50)
1,2,3,6,7,8-HxCDD	2.55	1.51	51 (≤50)
1,2,3,7,8,9-HxCDD	1.73	1.50	14 (≤50)
1,2,3,4,6,7,8-HpCDF	13.1	8.63	41 (≤50)
1,2,3,4,7,8,9-HpCDF	0.750	0.506	39 (≤50)
1,2,3,4,6,7,8-HpCDD	74.3	39.5	61 (≤50)
OCDF	58.9	30.6	63 (≤50)
OCDD	790	302	89 (≤50)

	Concentra		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
Total TCDF	2.77	2.96	7 (≤50)
Total TCDD	5.82	2.85	69 (≤50)
Total PeCDF	3.96	3.81	4 (≤50)
Total PeCDD	5.71	3.60	45 (≤50)
Total HxCDF	13.6	10.0	31 (≤50)
Total HxCDD	25.6	13.0	65 (≤50)
Total HpCDF	45.2	24.7	59 (≤50)
Total HpCDD	120	62.3	63 (≤50)

X. Labeled Compounds

All percent recoveries (%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 18l0403	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to DUP RPD and results reported as EMPC, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

7

Everett East Waterway Polychlorinated Dioxins/Dibenzofurans - Data Qualification Summary - SDG 18l0403

Sample	Compound	Flag	A or P	Reason
KC-S-SMHQ016-180926	1.2,3,7,8-PeCDF 1.2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDF 0CDD Total TCDF Total TCDF Total PeCDD Total PeCDD Total HxCDF Total HxCDF Total HpCDD	J (all detects) J (all detects)	A	Duplicate sample analysis (RPD)
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926 KC-S-SMHQ116-180926 KC-S-SMHP02-180926	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)

Everett East Waterway

Polychlorinated Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG 18I0403

Sample	Compound	Modified Final Concentration	A or P
KC-S-SMHQ016-180926	1,2,3,7,8-PeCDF	0.996U ng/Kg	A
KC-S-SMHQ116-180926	1,2,3,7,8-PeCDF	0.997U ng/Kg	A

LDC #: 43524A2	1 VALIDATION COMPLETENESS WORKSHEET
SDG #: 1810403	Stage 2B
Laboratory: Analy	ical Resources, Inc.

Date: 11/7/8	•
Page: fof	-
Reviewer:	
2nd Reviewer	

METHOD: HRGC/HRMS Polychlorinated Dioxins/Dibenzofurans (EPA Method 1613B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A	
<u> </u>	HRGC/HRMS Instrument performance check	A	
<u>III.</u>	Initial calibration/ICV	AA	REDE 20/35%, ICV = RC Limite
IV.	Continuing calibration	\square	cov = ac limits
<u>v.</u>	Laboratory Blanks	AN	-
VI.	Field blanks	N	
VII.	Matrix spike/Matrix spike duplicates /out	NAW	
VIII.	Laboratory control samples	A	Les
IX.	Field duplicates	TW	b=a+3
Х.	Labeled Compounds		
XI.	Compound quantitation RL/LOQ/LODs	N	EMPC - Joets A
XII.	Target compound identification	N	
XIII.	System performance	N	
XIV.	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID				Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926				1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926	****			1810403-02	Sediment	09/26/18
3	KC-S-SMHQ116-180926				1810403-03	Sediment	09/26/18
4	KC-S-SMHP02-180926				1810403-04	Sediment	09/26/18
5	KC-S-SMHQ016-180926DUP				1810403-02DUP	Sediment	09/26/18
6							
7							
8							
9			te dan menerati kata se da da se				
Note	S:						
	1.						
					· · · · · · · · · · · · · · · · · · ·		

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290A)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:_____

LDC #: <u>43524A21</u>

VALIDATION FINDINGS WOR/UHEET <u>Blanks</u>

METHOD: HRGC/HRMS Dioxins (EPA Method 1613B)

Blank extraction Conc. units: ng/k	Blank analysis date: 10/5/18 Associated samples: All_qual U										
Compound	Blank ID					S	ample Ide	ntification	 		
	BGI0793-BLK1	5X	2	3							
	0.0508	0.254	0.136/0.996	0.121/0.997							
0	0.0406	0.203									
G	0.188	0.94									
w	0.0508	0.254									
Y	0.0406	0.203									

LDC #:

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA-SW 846 Method 8290A)-16135)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y (N/A

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

Y N NA

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

	Dete			MS (Lissita)	MSD %R (Limits)		A	
#	Date	MS/MSD ID	Compound	%R (Limits)		RPD (Limits)	$\frac{\text{Associated Samples}}{2}$	Qualifications
		6	Ŧ	()	()	43.9 (335)	- (dots)	hets/A
			ĸ	()	()	43.9 (< 35)	·····	
			M	()	()	50.3 () 52.1 ()		
				()	()		· · · · · · · · · · · · · · · · · · · ·	
			D	()	()	48.5 ()		
			0	()	()	3		
			Ŧ	()	()	76.1 () 75.5 ()		
			R	()	()	75.5 ()		
			4	()	()	968 () 355 ()		
			\mathbf{V}^{\dagger}	()	()	35.5 ()		
			R	()	()	62.6 ()		
			M	()	()	62.6 ()		
			×	()	()	37.8 ()		
			T	()	()	75.8 ()		
				()	()	69.2()		/
			<i>/U</i>	()	()	T5.9 (V)		V
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B

	Concentra	(≤ 50)	
Compound	2	3	RPD
Н	0.230*	0.261	13
A	0.188*	0.997U	NC
1	0.136	0.121	12
J	0.173	0.150	14
В	0.494	0.587*	17
к	0.505*	0.396	24
L	0.411	0.397*	3
М	0.674	0.567	17
N	0.307*	0.126*	84
с	0.898	0.725	21
D	2.55	1.51	51
E	1.73	1.50	14
0	13.1	8.63	41
Ρ	0.750	0.506*	39
F	74.3	39.5	61
Q	58.9	30.6	63
G	790	302	89
v	2.77	2.96	7
R	5.82	2.85	69
w	3.96	3.81	4
S	5.71	3.60	45
x	13.6	10.0	31
Т	25.6	13.0	65
Y	45.2	24.7	59
U	120	62.3	63

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Everett East Waterway
LDC Report Date:	November 14, 2018
Parameters:	Polychlorinated Biphenyls as Congeners
Validation Level:	Stage 2B

Analytical Resources, Inc./SGS North America, Inc. Laboratory:

Sample Delivery Group (SDG): 1810403/B2663

•

са. •

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
KC-S-SMHQ016-180926MS	1810403-02MS	Sediment	09/26/18
KC-S-SMHQ016-180926MSD	18I0403-02MSD	Sediment	09/26/18

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Sampling and Quality Assurance Project Plan for Everett East Waterway PSO4 Combined Sewer Overflow Characterization (August 2018) and a modified outline of the USEPA National Functional Guidelines (NFG) for High Resolution Superfund Methods Data Review (April 2016). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polychlorinated Biphenyls (PCBs) as Congeners by Environmental Protection Agency (EPA) Method 1668A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required frequency.

Retention time windows were established for all congeners. The chromatographic resolution between the congeners PCB-23 and PCB-34 and congeners PCB-182 and PCB-187 was resolved with a valley of less than or equal to 40%.

The static resolving power was at least 10,000 (10% valley definition).

III. Initial Calibration

A five point initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

All of the continuing calibration percent differences (%D) between the initial calibration RRF and the continuing calibration RRF were less than or equal to 30.0% for unlabeled compounds and less than or equal to 50.0% for labeled compounds.

The ion abundance ratios for all compounds were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
MB B2663_16243	10/18/18	Monochlorobiphenyl Dichlorobiphenyl Tetrachlorobiphenyl PCB-3 PCB-11 PCB-52	1.25 pg/g 4.24 pg/g 0.888 pg/g 1.25 pg/g 4.24 pg/g 0.888 pg/g	All samples in SDG 18I0403/B2663

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
KC-S-SMHQ01-180926	Monochlorobiphenyl	4.28 pg/g	4.28U pg/g
	PCB-3	2.44 pg/g	2.44U pg/g
KC-S-SMHQ116-180926	Monochlorobiphenyl	1.41 pg/g	1.41U pg/g
	PCB-3	1.41 pg/g	1.41U pg/g
KC-S-SMHP02-180926	Monochlorobiphenyl	3.01 pg/g	3.01U pg/g
	PCB-3	1.34 pg/g	1.34U pg/g

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
KC-S-SMHQ016-180926MS/MSD (KC-S-SMHQ016-180926)	PCB-126	153 (50-150)	-	NA	-

Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples KC-S-SMHQ016-180926 and KC-S-SMHQ116-180926 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	Concentration (pg/g)			
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)		
Monochlorobiphenyl	0.388U	1.41	Not calculable		
Dichlorobiphenyl	32.1 33.2		3 (≤50)		
Trichlorobiphenyl	9.28	9.46	2 (≤50)		
Tetrachlorobiphenyl	71.5	81.7	13 (≤50)		
Pentachlorobiphenyl	348	347	0 (≤50)		
Hexachlorobiphenyl	381	315	19 (≤50)		
Heptachlorobiphenyl	173	192	10 (≤50)		
Octachlorobiphenyl	42.8	36	17 (≤50)		
Nonachlorobiphenyl	14.2	4.81	99 (≤50)		
Decachlorobiphenyl	7.22	6.64	8 (≤50)		
PCB-2	0.363U	0.664	Not calculable		
PCB-3	0.385U	1.41	Not calculable		
PCB-4	2.33	2.21	5 (≤50)		
PCB-8	0.656	0.978	39 (≤50)		
PCB-11	26.9	27.6	3 (≤50)		
PCB-15	2.26	2.43	7 (≤50)		
PCB-19	1.05	1.81	53 (≤50)		
PCB-30/18	2.79	2.88	3 (≤50)		
PCB-17	1.61	1U	Not calculable		
PCB-32	1.94	2.5	25 (≤50)		
PCB-31	2.54	2.8	10 (≤50)		
PCB-28/20	4.18	4.47	7 (≤50)		

	Concentra	Concentration (pg/g)		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)	
PCB-21/33	1.32	1.43U	Not calculable	
PCB-22	0.995	1.36U	Not calculable	
PCB-37	2.02	2.36	16 (≤50)	
PCB-50/53	2.97	3.08	4 (≤50)	
PCB-45	1.92	1.09	55 (≤50)	
PCB-51	0.798	0.813	2 (≤50)	
PCB-52	18.8	19.6	4 (≤50)	
PCB-69/49	5.55	5.74	3 (≤50)	
PCB-44/47/65	11.3	10.9	4 (≤50)	
PCB-59/62/75	0.823	1.48	57 (≤50)	
PCB-42	2.13	2.67	23 (≤50)	
PCB-71/40	3.92	4.55	15 (≤50)	
PCB-64	4.93	6.19	23 (≤50)	
PCB-61/70/74/76	17.8	16.3	9 (≤50)	
PCB-66	8.78	7.3	18 (≤50)	
PCB-56	4.73	4.22	11 (≤50)	
PCB-60	2.24	2.39	6 (≤50)	
PCB-77	3.01	2.94	2 (≤50)	
PCB-95	54.5	50.7	7 (≤50)	
PCB-102	1.23	0.956U	Not calculable	
PCB-91	8.36	7.8	7 (≤50)	
PCB-84	18.1	20.6	13 (≤50)	

.

	Concentra			
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)	
PCB-92	10.4	10.3	1 (≤50)	
PCB-113/90/101	49.1	46.1	6 (≤50)	
PCB-83	2.63	2.04	25 (≤50)	
PCB-99	19.4	19.2	1 (≤50)	
PCB-108/119/86/97/125/87	33.1	34	3 (≤50)	
PCB-117	1.21	1.02U	Not calculable	
PCB-116/85	9.11	8.72	4 (≤50)	
PCB-110	75.7	79.8	5 (≤50)	
PCB-82	6.91	8.5	21 (≤50)	
PCB-107/124	2.38	2.54	7 (≤50)	
PCB-109	4.05	3.76	7 (≤50)	
PCB-123	1.41	0.897U	Not calculable	
PCB-118	41.8	42.3	1 (≤50)	
PCB-105	21.8	21.6	1 (≤50)	
PCB-136	11.7	11.3	3 (≤50)	
PCB-151/135	24.5	22.5	9 (≤50)	
PCB-154	0.639	0.667U	Not calculable	
PCB-144	4.45	4.4	1 (≤50)	
PCB-147/149	63.7	65.6	3 (≤50)	
PCB-134	7.29	5.26	32 (≤50)	
PCB-139/140	1.73	0.699U	Not calculable	
PCB-131	1.6	0.828U	Not calculable	

:

	Concentra	ation (pg/g)		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)	
PCB-132	32.7	32.4	1 (≤50)	
PCB-133	1.02	0.718U	Not calculable	
PCB-146	10.5	11.6	10 (≤50)	
PCB-153/168	61.7	58.9	5 (≤50)	
PCB-141	15.7	12.9	20 (≤50)	
PCB-130	7.67	8.57	11 (≤50)	
PCB-137	4.98	5.28	6 (≤50)	
PCB-164	6.81	7.7	12 (≤50)	
PCB-163/138/129	93.6	98.4	5 (≤50)	
PCB-158	8.75	8.46	3 (≤50)	
PCB-128/166	19.2	17.1	12 (≤50)	
PCB-167	4.31	4.55	5 (≤50)	
PCB-156/157	10.6	10.6	0 (≤50)	
PCB-179	9.59	8.93	7 (≤50)	
PCB-176	2.18	2.31	6 (≤50)	
PCB-178	4.77	5.35	11 (≤50)	
PCB-187	30.3	34.6	13 (≤50)	
PCB-183	12.8	15.7	20 (≤50)	
PCB-185	2.71	1.13U	Not calculable	
PCB-174	22.6	26	14 (≤50)	
PCB-177	14.2	13.8	3 (≤50)	
PCB-171/173	7.2	6.76	6 (≤50)	

.

	Concentra		
Compound	KC-S-SMHQ016-180926	KC-S-SMHQ116-180926	RPD (Limits)
PCB-172	3.66	5.78	45 (≤50)
PCB-180/193	47.2	52.4	10 (≤50)
PCB-191	0.874	0.929U	Not calculable
PCB-170	25.5	26.7	5 (≤50)
PCB-190	3.87	3.53	9 (≤50)
PCB-202	4.24	4.87	14 (≤50)
PCB-201	1.84	2.4	26 (≤50)
PCB-200	2.04	2.82	32 (≤50)
PCB-198/199	15.2	18.8	21 (≤50)
PCB-196	5.8	5.45	6 (≤50)
PCB-203	7.78	9.06	15 (≤50)
PCB-195	3.34	4.1	20 (≤50)
PCB-194	13.5	14.9	10 (≤50)
PCB-208	3.22	4.81	40 (≤50)
PCB-206	11	11.5	4 (≤50)
PCB-209	7.22	6.64	8 (≤50)

X. Internal Standards

•

All internal standard recoveries (%R) were within QC limits.

XI. Compound Quantitation

All compound quantitations were within validation criteria with the following exceptions:

Sample	Compound	Flag	A or P
All samples in SDG 18I0403/B2663	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identification

Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

Raw data were not reviewed for Stage 2B validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to results reported as EMPC, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as not detected in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Everett East Waterway Polychlorinated Biphenyls as Congeners - Data Qualification Summary - SDG 1810403/B2663

Sample	Compound	Flag	A or P	Reason
KC-S-SMHQ01-180926 KC-S-SMHQ016-180926 KC-S-SMHQ116-180926 KC-S-SMHP02-180926	All compounds reported as estimated maximum possible concentration (EMPC).	J (all detects)	A	Compound quantitation (EMPC)

Everett East Waterway Polychlorinated Biphenyls as Congeners - Laboratory Blank Data Qualification Summary - SDG 1810403/B2663

Sample	Compound	Modified Final Concentration	A or P
KC-S-SMHQ01-180926	Monochlorobiphenyl PCB-3	4.28U pg/g 2.44U pg/g	A
KC-S-SMHQ116-180926	Monochlorobiphenyl PCB-3	1.41U pg/g 1.41U pg/g	A
KC-S-SMHP02-180926	Monochlorobiphenyl PCB-3	3.01U pg/g 1.34U pg/g	A

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Laboratory: Analytical Resources, Inc./SGS North America, Inc.

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A	
11.	HRGC/HRMS Instrument performance check	A	
111.	Initial calibration	A	153 5 20/3570
IV.	Continuing calibration		138 5 20/3570 CCV 5 30/50/0.
V.	Laboratory Blanks	Trul	
VI.	Field blanks	N	
VII.	Matrix spike/Matrix spike duplicates	Ŵ	
VIII.	Laboratory control samples	A	109
IX.	Field duplicates	/us/	7=2+3
Х.	Labeled Compounds	A	(-
XI.	Compound quantitation RL/LOQ/LODs	N	ELPC - Joles A
XII.	Target compound identification	N	
XIII.	System performance	N	
XIV.	Overall assessment of data	A	

Note:

LDC #: 43524A31

SDG #: 18I0403/B2663

N = Not provided/applicable SW = See worksheet

A = Acceptable

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate							
TB =	Trip blank						
EB =	Equipment blank						

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	KC-S-SMHQ01-180926	1810403-01	Sediment	09/26/18
2	KC-S-SMHQ016-180926	1810403-02	Sediment	09/26/18
3	KC-S-SMHQ116-180926	1810403-03	Sediment	09/26/18
4	KC-S-SMHP02-180926	1810403-04	Sediment	09/26/18
5	KC-S-SMHQ016-180926MS	1810403-02MS	Sediment	09/26/18
6	KC-S-SMHQ016-180926MSD	1810403-02MSD	Sediment	09/26/18
7				
8				
9				
Note	S:			

LDC #: <u>43524A31</u>

VALIDATION FINDINGS WORKSHEET Blanks

METHOD:HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

Compound	Blank ID					S	ample Identifi	cation		
	MB B2663_16243	5X	1	3	4					
Mono-CB	1.25	6.25	4.28	1.41	3.01*					
Di-CB	4.24	21.2								
Tetra-CB	0.888*	4.44								
PCB-3	1.25	6.25	2.44	1.41	1.34*					
PCB-11	4.24	21.2								
PCB-52	0.888*	4.44								

* EMPC

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N = N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG?

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	5/6	703-1-26		()	()	2(NO)	Lets A
		N .	()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	. ()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

	Concentrat	(≤ 5 0)	
Compound	2	3	RPD
Mono-CB	0.388U	1.41	NC
Di-CB	32.1	33.2	3
Tri-CB	9.28	9.46	2
Tetra-CB	71.5	81.7	13
Penta-CB	348	347	0
Hexa-CB	381	315	19
Hepta-CB	173	192	10
Octa-CB	42.8	36	17
Nona-CB	14.2	4.81	99
Deca-CB	7.22	6.64	8
PCB-2	0.363U	0.664*	NC
PCB-3	0.385U	1.41	NC
PCB-4	2.33	2.21	5
PCB-8	0.656	0.978	39
PCB-11	26.9	27.6	3
PCB-15	15 2.26		7
PCB-19	1.05*	1.81	53
PCB-30/18	2.79	2.88*	3
PCB-17	1.61*	1U	NC
PCB-32	1.94	2.5	25
PCB-31	2.54	2.8	10
PCB-28/20	4.18*	4.47*	7
PCB-21/33	1.32*	1.43U	NC
PCB-22	0.995*	1.36U	NC
PCB-37	2.02 2.36		16
PCB-50/53	2.97	3.08	4
PCB-45	1.92*	1.09*	55
PCB-51	0.798*	0.813*	2
PCB-52	18.8	19.6	4

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

	Concentra	(≤50)	
Compound	2	3	RPD
PCB-69/49	5.55*	5.74*	3
PCB-44/47/65	11.3	10.9	4
PCB-59/62/75	0.823*	1.48	57
PCB-42	2.13*	2.67	23
PCB-71/40	3.92	4.55	15
PCB-64	4.93	6.19	23
PCB-61/70/74/76	17.8	16.3	9
PCB-66	8.78	7.3	18
PCB-56	4.73*	4.22	11
PCB-60	2.24*	2.39	6
PCB-77	3.01	2.94	2
PCB-95	54.5	50.7	7
PCB-102	PCB-102 1.23*		NC
PCB-91	8.36	7.8	7
PCB-84	18.1	20.6	13
PCB-92 10.4		10.3	1
PCB-113/90/101 49.1		46.1	6
PCB-83	2.63*	2.04*	25
PCB-99	19.4	19.2	1
PCB-108/119/86/97/125/87	33.1	34	3
PCB-117	1.21	1.02U	NC
PCB-116/85	9.11*	8.72*	4
PCB-110	75.7	79.8	5
PCB-82	6.91	8.5	21
PCB-107/124	2.38	2.54	7
PCB-109	4.05 3.76		7
PCB-123	1.41 0.897U		NC
PCB-118	41.8	42.3	1
PCB-105	21.8	21.6	1

LDC#: 25-431

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

	Concentra	ition (pg/g)	(≤ 5 0)
Compound	2	3	RPD
PCB-136	11.7	11.3	3
PCB-151/135	24.5	22.5*	9
PCB-154	0.639*	0.667U	NC
PCB-144	4.45	4.4*	1
PCB-147/149	63.7	65.6	3
PCB-134	7.29	5.26*	32
PCB-139/140	1.73*	0.699U	NC
PCB-131	1.6	0.828U	NC
PCB-132	32.7	32.4	1
PCB-133	1.02*	0.718U	NC
PCB-146	10.5	11.6	10
PCB-153/168	61.7	58.9	5
PCB-141	CB-141 15.7		20
PCB-130	PCB-130 7.67		11
PCB-137	4.98	5.28	6
PCB-164 6.81		7.7	12
PCB-163/138/129	93.6	98.4	5
PCB-158	8.75*	8.46*	3
PCB-128/166	19.2	17.1*	12
PCB-167	4.31	4.55	5
PCB-156/157	10.6	10.6	0
PCB-179	9.59	8.93	7
PCB-176	2.18*	2.31	6
PCB-178	4.77*	5.35	11
PCB-187	30.3	34.6	13
PCB-183	12.8	15.7	20
PCB-185	2.71*	1.13U	NC
PCB-174	22.6	26	14
PCB-177	14.2	13.8	3

METHOD: HRGC/HRMS Polychlorinated Biphenyl Congeners (EPA Method 1668A)

	Concentra	(≤50)	
Compound	2	3	RPD
PCB-171/173	7.2	6.76*	6
PCB-172	3.66	5.78	45
PCB-180/193	47.2	52.4	10
PCB-191	0.874*	0.929U	NC
PCB-170	25.5	26.7	5
PCB-190	3.87*	3.53*	9
PCB-202	PCB-202 4.24		14
PCB-201	1.84*	2.4	26
PCB-200	2.04	2.82*	32
PCB-198/199	15.2 18.8		21
PCB-196	5.8*	5.45*	6
PCB-203	PCB-203 7.78		15
PCB-195	3.34*	4.1*	20
PCB-194	13.5	14.9	10
PCB-208	3.22 4.81		40
PCB-206	11 11.5*		4
PCB-209	7.22	6.64	8

* ZUPC

V:\FIELD DUPLICATES\Field Duplicates\FD_Organics\2018\43524A31.wpd

EDD POPULATION COMPLETENESS WORKSHEET

Anchor

The LDC job number listed above was entered by	FM
Entered from Body or Summary	

	EDD Process	Y/N	Initial	Comments/Action
I.	EDD Completeness	U_	TM	
Ia.	- All methods present?	4	1	
Ib.	- All samples present/match report?	Ч		
Ic.	- All reported analytes present?	4		
Id.	10% pr 100% verification of EDD?	4		
	\mathcal{O}		an the second second	
II.	EDD Preparation/Entry	<u>y</u>	FM	
IIa.	- QC Level applied? (EPAStage2B or EPAStage4)	Y		
IIb.	- Laboratory EMPC qualified results qualified (J with reason code 23)?	9		
III.	Reasonableness Checks	U)	FM	
IIIa.	- Do all qualified ND results have ND qualifier (e.g. UJ)?	4	 	
IIIb.	- Do all qualified detect results have detect qualifier (e.g. J)?	<u>y</u>		
IIIc.	- If reason codes are used, do all qualified results have reason code field populated, and vice versa?	У		
IIId.	- Do blank concentrations in report match EDD, where data was qualified due to blank?	У		
IIIe.	- Is the detect flag set to "N" for all "U" qualified blank results?	Ч		
IIIf.	- Were there multiple results due to dilutions/reanalysis? If so, were results qualified appropriately?	y/ng		
IIIg.	-Are all results marked reportable "Yes" unless rejected for overall assessment in the data validation report?	Y		
IIIh.	-Are there any lab "R" qualified data? / Are the entry columns blank for these results?	NA		
IIIi.	-Are there any discrepancies between the data packet and the EDD?	N	N	

Notes: <u>*see discrepancy sheet</u>

EDD Populatoin Checklist-Anchor (word).docx