

January 21, 2019

Mr. Steve Teel
Site Manager/Hydrogeologist
Washington State Department of Ecology
Toxics Cleanup Program, Southwest Regional Office
P.O. Box 47775
Olympia, Washington 98504-7775

Subject: Groundwater Monitoring Report, November 2018

CenturyLink Longview Facility

1305 Washington Way, Longview, Washington 98632

Dear Mr. Teel:

This letter provides a summary of the groundwater sampling event conducted on November 16, 2018. Groundwater monitoring events are being conducted as a continuation of the Groundwater Monitoring Plan developed in 2008 under the Voluntary Cleanup Program. Groundwater monitoring was conducted in accordance with the Final Direct-Push Sampling Plan, dated March 2, 2015, and approved by Washington State Department of Ecology (Ecology).

Groundwater Levels

The depth to groundwater was measured using an electronic static water level indicator that was lowered into each well. Depth to groundwater was measured to the nearest hundredth of a foot from the top of the well casing. Static water levels ranged from 1.58 to 3.02 feet above mean sea level (amsl) and are summarized in the table below and shown on Figure 1. Groundwater levels were approximately 1.2 to 2.5 feet higher than observed in May 2017.

NOVEMBER 16, 2018 GROUNDWATER ELEVATIONS

Location	Surveyed Top of Casing (ft amsl)	November 16, 2018 Depth to Water (ft)	November 16, 2018 Groundwater Elevation (ft amsl)
MW-01	15.64	13.23	2.41
MW-02	16.17	13.15	3.02
MW-03	15.02	12.62	2.40
MW-04	14.55	12.97	1.58
MW-05	14.75	12.49	2.26

Notes:

ft Feet

ft amsl Feet above mean sea level

Based on groundwater level data shown on Figure 1, the direction of groundwater flow appears to be toward the north, with a gradient of approximately 0.015 foot per foot. Historically, groundwater flow direction has typically ranged from west to northwest. Sitewide groundwater levels during this

event are less uniform and there is a steeper than normal gradient, possibly resulting from early November 2018 precipitation and uneven infiltration rates.

Groundwater Sample from Permanent Monitoring Wells

Groundwater samples were obtained from all five permanent monitoring wells at the facility on November 16, 2018 and a duplicate sample was collected from well MW-02. After groundwater level measurements were documented, field personnel collected groundwater samples using a peristaltic pump. New dedicated tubing was used to collect the sample at each well. In accordance with the work plan, low-flow sampling procedures were used. Sampling flow rates were 150 milliliters per minute for purging and groundwater sample collection.

A calibrated YSI 600 multi-probe water meter was used to measure field parameters during well purging, and before and after sampling. A HACH 2100Q meter was used to measure turbidity. Water quality parameters measured with the YSI 600 included pH, dissolved oxygen, oxidation-reduction potential, and specific conductance. Low-flow pumping continued until field parameters stabilized within acceptable parameter limits before samples were collected. Attachment A includes the logs of field parameters measured during the low-flow sampling.

Groundwater Sample Analysis

Once obtained, groundwater samples were labeled in accordance with Tetra Tech, Inc. (Tetra Tech) standard operating procedures, placed in a cooler, and chilled to below 4 degrees Celsius. Samples were delivered directly to ALS Laboratories (ALS), located at 1317 S. 13th Avenue in Kelso, Washington. Samples were delivered following standard chain-of-custody protocol. Chain-of-custody forms are included with the laboratory data packages in Attachment B.

ALS analyzed the samples for total petroleum hydrocarbons-diesel (TPH-DRO) and total petroleum hydrocarbons-residual range organics (TPH-RRO) by Method Northwest Total Petroleum Hydrocarbons-Diesel Extended Range (Ecology 1997), without silica gel cleanup. ALS also analyzed the samples for polycyclic aromatic hydrocarbons (PAH) by modified U.S. Environmental Protection Agency Method 625-Selected Ion Monitoring. The samples were filtered with a 0.7-micron (µm) filter before analysis by the PAH method.

Groundwater Sample Analytical Results

Table 1 presents analyte concentrations for the sample analyses of permanent groundwater wells sampled during the November 16, 2018 event. Low concentrations of TPH-DRO were detected in samples from the wells; concentrations ranged from 48 to 96 micrograms per liter (μ g/L). Concentrations in all five monitoring wells were below the Washington Model Toxic Control Act (MTCA) Method A cleanup level for groundwater of 500 μ g/L.

TPH-RRO was detected in all five wells, ranging from 110 to 380 μ g/L. Concentrations from all five wells were below the 500 μ g/L TPH-RRO MTCA Method A cleanup level for groundwater.

Most of the TPH-DRO and TPH-RRO detections have an associated J qualifier which indicates the concentration is estimated because the constituent was detected below the reporting limit, but above the method detection limit.

The laboratory method blank contained TPH-DRO at a concentration of 17 μ g/L with a J qualifier and TPH-RRO at 50 μ g/L with a J qualifier. These detections could be used to revise and lower the reported concentrations for the field samples, but such revisions would not significantly affect the results or change the conclusions in this report.

Low concentrations of PAHs were detected in all monitoring wells; Table 1 summarizes these results. There are no total PAH or compound-specific MTCA Method A cleanup levels for PAHs. The MTCA Method A cleanup level of 0.1 μ g/L for PAHs is based on the benzo(a)pyrene toxic equivalent quotient (BaP TEQ). Table 1 also shows the BaP TEQ results, which are based on the individual PAH analytical results in Appendix B. The BaP TEQ results ranged from 0.00019 to 0.00026 μ g/L, well below the MTCA Method A cleanup level.

Table 2 summarizes the historical results for DRO and RRO for each well. Table 3 summarizes the historical results for BaP TEQ for each well.

Conclusions and Recommendations

For this sole sampling event of 2018, analytical results for samples from all five wells were below MTCA Method A cleanup levels for BaP TEQ, TPH-DRO, and TPH-RRO.

The results from November 2018 were similar to previous fall and late summer season sample results, when all concentrations were below the 500 µg/L cleanup level for TPH-DRO and TPH-RRO. Continued low groundwater TPH concentrations at downgradient wells MW-04 and MW-05 indicate that the TPH plume is stable and not migrating downgradient at significant concentrations.

Tetra Tech recommends that groundwater sampling at the five monitoring wells continue every 18 months to monitor plume stability and continued attenuation of contaminant concentrations to below MTCA Method A cleanup levels. These groundwater sampling events would alternate between spring and fall to obtain groundwater concentration data from high and low groundwater conditions, respectively. This monitoring schedule was discussed with you during our March 22, 2017 teleconference. Accordingly, the next groundwater monitoring events will be conducted in spring 2020 and fall 2021.

If you have any questions or concerns, please contact me at (303) 312-8856 or david.berestka@tetratech.com.

Sincerely.

David Berestka, P.E. Project Manager

Tetra Tech, Inc.

cc: Ed Clement, Regional Environmental Health and Safety Manager, CenturyLink

Mark Reisig, Tetra Tech Program Manager

Attachments:

В

A Low-Flow Groundwater Sampling Parameter Forms

Laboratory Analytical Reports and Chain-of-Custody Records

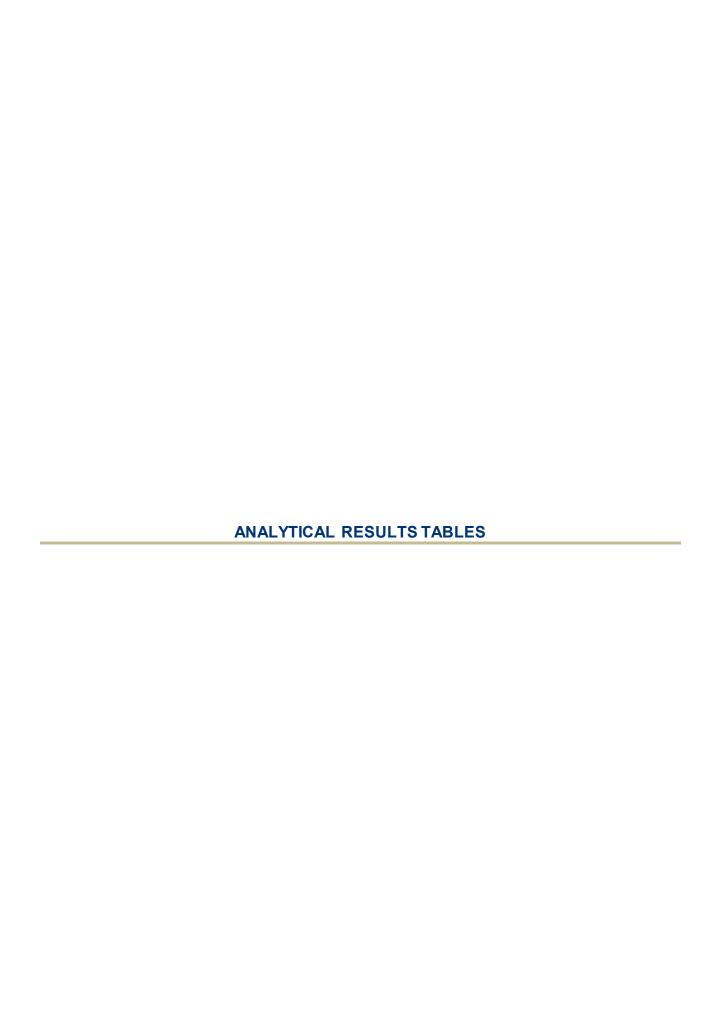


TABLE 1 **GROUNDWATER SAMPLE ANALYTICAL RESULTS** CENTURYLINK LONGVIEW, WASHINGTON FACILITY

Analy	rte	TPH-DRO	TPH-RRO	Total PAH	BaP TEQ
MTCA Method A Cleanup Level		500 (μg/L)	500 (μg/L)	NA	0.1 (μg/L)
Location	Date				
MW-01	11/16/2018	48 J	130J	0.039	0.00020
MW-02	11/16/2018	96 J	140 J	0.098	0.00021
MW-02 DUP	11/16/2018	93 J	140 J	0.107	0.00026
MW-03	11/16/2018	61 J	240 J	0.044	0.00020
MW-04	11/16/2018	60 J	110 J	0.794	0.00023
MW-05	11/16/2018	77 J	380 J	0.068	0.00019

Notes:

All concentrations in micrograms per liter (µg/L)

BaP TEQ

Benzo(a)Pyrene Toxic Equivalent Quotient Data qualifier indicating that the result is an estimated quantity below the reporting limit

Model Toxics Control Act Method A for groundw ater MTCA NA

PAH

Not applicable (no applicable MTCA standard)
Polycyclic aromatic hydrocarbon
Total petroleum hydrocarbons diesel range organics TPH-DRO TPH-RRO Total petroleum hydrocarbons residual range organics

TABLE 2 HISTORICAL GROUNDWATER SAMPLE RESULTS - DRO AND RRO CENTURYLINK LONGVIEW, WASHINGTON FACILITY

II Analyte I lista I		Sampling Method	MW-01	MW-02	MW-03	MW-04	MW-05
	3/25/1992	Bailer	82	112	<50		
	12/16/2003	Bailer	<250	<250	<250		
	8/10/2006	Bailer	<50	140	<50		
	9/23/2008	Bailer				<50	140
	2/26/2010	Bailer				<25	100
	9/2/2011	Bailer				73	120
	2/26/2013	Bailer				1,700	<51
	6/3/2013	Bailer	<50	66	<50	210	<50
TPH-DRO	12/5/2013	Bailer	97	72	47	1,500	100
TI II BILO	3/27/2014	Bailer	63	87	<250	550	47
(MTCA Method A	6/25/2014	Bailer	50	33	<260	1,100	<260
Cleanup Level =	9/10/2014	Bailer	240	90	36	790	48
500 μg/L)	3/5/2015	Low Flow	22	82	20	20	27
	7/20/2015	Low Flow	22	77	21	24	30
	12/18/15	Low Flow	38	83	46	96	120
	3/31/16	Low Flow	41	1,500	58	30	30
	7/7/2016	Low Flow	24	330	22	34	21
	10/13/2016	Low Flow	23	130	39	39	48
	12/09/2016	Low Flow	37	120	63	70	67
	5/04/2017	Low Flow	42	570	47	24	23
	11/16/2018	Low Flow	48	96	61	60	77
	3/25/1992	Bailer	<200	<200	<200		
	8/10/2006	Bailer	<250	<250	<250		
	9/23/2008	Bailer				<250	<250
	2/26/2010	Bailer				140	200
	9/2/2011	Bailer				350	210
	2/26/2013	Bailer				11,000	220
	6/3/2013	Bailer	150	<100	<100	1,600	<100
	12/5/2013	Bailer	440	120	120	11,000	170
TPH-RRO	3/27/2014	Bailer	370	63	<500	3,900	190
(4470444 (4 14	6/25/2014	Bailer	340	62	21	8,400	51
(MTCA Method A Cleanup Level =	9/10/2014	Bailer	1,500	140	120	6,600	82
500 μg/L)	3/5/2015	Low Flow	43	70	37	48	53
, ,	7/20/2015	Low Flow	52	71	49	52	42
	12/18/15	Low Flow	84	160	81	81	82
	3/31/16	Low Flow	83	340	110	54	53
	7/7/2016	Low Flow	44	140	41	33	34
	10/13/2016	Low Flow	94	130	98	90	100
	12/09/2016	Low Flow	140	180	130	110	110
	5/04/2017	Low Flow	86	200	54	37	31
	11/16/2018	Low Flow	130	140	240	110	380

All concentrations in micrograms per liter (µg/L)

Bold values indicate exceedance of the MTCA Method A Cleanup Level

For wells with duplicate samples, the highest value reported is shown for each constituent MTCA Model Toxics Control Act Method A for groundw ater TPH-DRO Total petroleum hydrocarbons diesel range organics Total petroleum hydrocarbons residual range organics Not sampled TPH-RRO

< 0.01 Concentration is less than the method detection limit show n

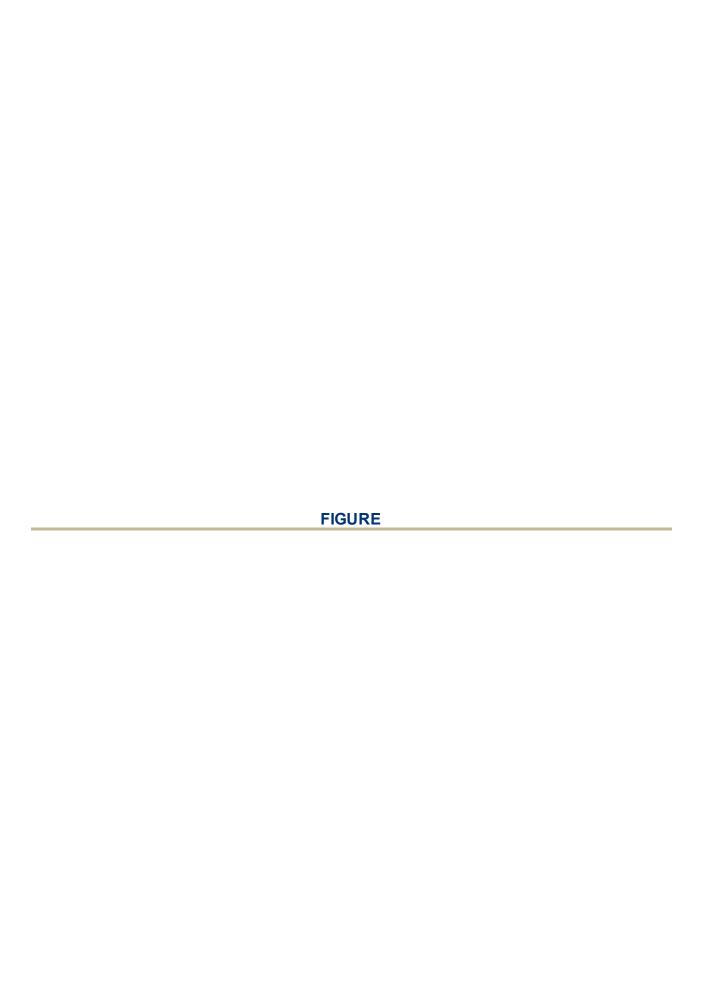
TABLE 3 HISTORICAL GROUNDWATER SAMPLE ANALYTICAL RESULTS -**BAP TEQ AND TOTAL PAH** CENTURYLINK LONGVIEW, WASHINGTON FACILITY

Analyte	Date	Sampling Method	MW-01	MW-02	MW-03	MW-04	MW-05
BaP TEQ	6/3/2013	Bailer	2.2	< 0.1	< 0.1	0.36	< 0.1
	12/5/2013	Bailer	0.20	0.027	0.074	1.4	0.0062
Unfiltered analysis	3/27/2014	Bailer	0.37	0.080	0.049	0.27	0.073
(MTCA Method A Cleanup Level = 0.1	6/25/2014	Bailer	0.39	0.012	0.00033	0.40	0.0054
μg/L)	9/10/2014	Bailer	0.14	0.090	0.0037	0.39	0.0051
	12/5/2013	Bailer	0.00033		0.00068	0.00084	
	3/27/2014	Bailer	< 0.019	< 0.019		< 0.019	< 0.019
	6/25/2014	Bailer	< 0.020			< 0.200	
D D 750	9/10/2014	Bailer	0.00030	0.00027		< 0.020	
BaP TEQ	3/5/2015	Low Flow	0.00074	0.00038	< 0.019	0.00044	0.00029
Filtered analysis	7/20/2015	Low Flow	0.00029	< 0.020	< 0.021	< 0.021	< 0.021
i intorou unaryoro	12/18/2015	Low Flow	0.0065	0.00029	< 0.019	0.00050	0.00039
(MTCA Method A	3/31/2016	Low Flow	0.00035	< 0.020	< 0.020	0.00026	< 0.020
Cleanup Level = 0.1 µg/L)	7/7/2016	Low Flow	< 0.020	< 0.020	0.00027	0.00035	< 0.020
μg/L)	10/13/2016	Low Flow	<0.0026	<0.0026	0.00028	0.00040	0.00041
	12/09/2016	Low Flow	0.00028	< 0.020	0.00032	0.00032	<0.020
	5/04/2017	Low Flow	0.00026	< 0.020	0.00020	0.00023	0.00024
	11/16/2018	Low Flow	0.00020	0.00026	0.00020	0.00023	0.00019
Total PAH	6/3/2013	Bailer	16	1.6	< 0.1	8.7	< 0.1
	12/5/2013	Bailer	1.7	0.83	0.85	16	2.4
Unfiltered analysis	3/27/2014	Bailer	3.5	1.3	0.50	3.1	0.80
(No MTCA Method A	6/25/2014	Bailer	3.9	2.3	0.12	4.8	0.37
Cleanup Level)	9/10/2014	Bailer	1.2	1.5	0.049	6.0	5.5
	12/5/2013	Bailer	0.028		0.043	0.52	
	3/27/2014	Bailer	0.018	0.21		0.080	0.064
	6/25/2014	Bailer	0.063			0.11	
	9/10/2014	Bailer	0.012	0.041		0.42	
Total PAH	3/5/2015	Low Flow	0.046	0.58	0.013	0.24	0.26
Filtered analysis	7/20/2015	Low Flow	0.0077	0.019	0.0056	0.29	0.15
c a analyons	12/18/2015	Low Flow	0.039	1.9	< 0.019	9.7	8.5
(No MTCA Method A	3/31/2016	Low Flow	0.0035	0.032	< 0.020	0.041	0.0092
Cleanup Level)	7/7/2016	Low Flow	< 0.020	0.019	0.0092	2.2	0.024
	10/13/2016	Low Flow	0.0083	0.034	0.016	0.68	2.8
	12/09/2016	Low Flow	0.0028	0.0070	0.029	4.7	1.1
	5/04/2017	Low Flow	0.015	0.70	0.01	0.017	0.0096
	11/16/2018	Low Flow	0.039	0.107	0.044	0.794	0.068

Notes:

All concentrations in micrograms per liter (µg/L)

Bold values indicate exceedance of the MTCA Cleanup Level


For wells with duplicate samples, the highest value reported is shown for each constituent BaP TEQ Benzo(a) Pyrene Toxic Equivalent Quotient

MTCA Model Toxics Control Act Method A for groundw ater

PAH Polycyclic aromatic hydrocarbon

Not analyzed

< 0.01 Concentration is less than the method detection limit shown

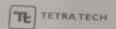
		ATTACHMENT A		
FIELD NOTES A	ND LOW-FLOW		SAMPLING PARAM	ETER FORMS
FIELD NOTES A	ND LOW-FLOW			ETER FORMS
FIELD NOTES A	ND LOW-FLOW			ETER FORMS
FIELD NOTES A	ND LOW-FLOW			ETER FORMS

Λ		
ALS	Enuironm	E

SR#				
COC Set_1	of	1		
COC#				

(ALS) Enuir	onmental	1317 Sou	ds 1366	Ave. Kee	so. WA 9862	6 Phone G	60) 577-	7222 / 600-695-7222 / FAX (360)	COC	#
Name CTL LONGWEW WA	10343080237-01		70	140		www.ais	grobal co			Page 1 of 1
PANE DEPEST TRA TELH TOTAL ZIG IG THE STREET TOTAL ZIG IG THE STREET	DAND. BESTSTYADITE Sampler Printed Name SCOTT M DUZAN	NUMBER OF WAANERS	STOD / PAH S	W.F. War SVM	WTPH-DX (NW, TPH			Remarks	*	
CLIENT SAMPLE ID	LABID SAMPLING Date Time	Matrix				17	-	- CHIGHTO		
DVP 11.16.18	11.16.18 —	GW 3	X	X	4					
MW-05	1 0dH0	1 1	1	1						
NW-04	1125									
MW-03	1410									
MW-02	1545									
MS	1753		351		1					
MSD	1 1800	LÍ	上	1			-			
Report Requirements I. Routine Report: Method Blank, Surrogate, as required	Invoice Information P.O.# 1159337 Bill To: PM							Be B Ca Cd Co Cr	n metals are to be analyzed. Cu Fe Pb Mg Mn Mo Ni K Ag Na	
II. Report Dup., MS, MSD as required		Space	CONTRACTOR	COLUMN TO SERVICE SERV	ns/Comm	101 - 200000	50 B	Control of the Control of the Control	r Cu Fe Pb Mg Mn Mo Ni K Ag N Hydrocarbon Procedure: AK CA WI	
III. CLP Like Summary (no raw data) IV. Data Validation Report V. EDD. VERIEY V/ FM	Turnaround Requirement 24 fr 46 fv. 5 Day Standard Requested Report Cole	nts	an make	19000	narconini	ienia:		mulcate State	Tryotocardon Procedure. Ar. CA WI	Totaline on
Relinquished By:	Received By:	R	elinq	uish	ed By:			Received By:	Relinquished By:	Received By:
and make	Signature from Many	Signatur	100				ignatu		Signature	Signature
Tr in Duzan	Printed Name	Printed N	Name			P	rinted	Name	Printed Name	Printed Name
A TECH	AS Enganolis	Firm				F	im		Firm.	Firm
me 1442	Date/Time 11/1/1/ 1914()	Date/Tim	10		10	10	ate/Ti	me	Date/Time	Date/Time

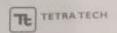
-				
TE	TET	RA	TE	CH


Sui	bject: FALL 7018	FIELD A	CTIVITY DAIL			
100	bject: FALL 2019	PANI	Project Name		WAIDA	1 0
	ation: 1305 WASH	HINLTON WAY, LO	NEVIEW . WA		08023	1.01
4 Ht	ther Conditions: / 1 0	DY III I WAT CUM	WERS Date: 11.16.	₿ Pa	ge /	of 3 Pages
Time		vities:			98.00	
0325	Arrive on-site.	Solup traffic o	ontrol measur	es at 1	NW-S &	nd Mw-4.
0340	Prep and unlo	al equipment.				
0415	Setup for W	ell graging				
0440	MWS TH	ND: 19.63'	Divr.	12.49	Ľø	Water in Nant
0453	MW4	19.73'	1	12.97	11	11
0516	Mw3	19.93		12.62	VI.	No Water in Mant
0530	MWI	19.59		13.23	4"ø	v
0556	Mw2 -	19.93'	1	13.15	2"Ø	
10.000	Prep for Samp	in (althorse	YC1 3 11.			
0705					,	
		DIBULTINITY -1	.715 ms/cm_	14.02	0,22	99 ms/cm -> 1.438
9715	(2) OH [7-0	, , ,		1.74		
0125	3 pH [4.0]] 15.1300, 2	77pH -7	3.91		
0735	(9) eH [10.0	1][5.110, 9	1.95 - H ->	9.96		
0745					2111 2	
	61 00 F100	0.0 mV] 14!	01 6, 470	· huh	MIL	
0155	(8) DO [100	O7 saturated]	, 11.57%	, 87.77	·29+ ->	47.8
0810	(Turbidity	[SONTO] 1	9.8 NTV			
0813	(8) Turkity	[100 NTV] 91	9.8 Niv			
Tetra Tech P	ersonnel On Site:	SD	Visit	or(s) On Sit	te:	
Telephone Ca	all(s):	NA	Com	ments:	NA	1
Tetra Tech Re	epresentative:	SD	Sign	ature:	Sol	\nAV

TE	TETRA TECH
----	------------

FIELD ACTIVITY DAILY LOG

Pages
HERM
,
=====


TE TETRATECH			
Subject: SAME FIELD	ACTIVITY DAILY LO		
	Project Name:	SAME	
Location: SAME		SAME	
Weather Conditions: SAME	Date: 11-16.18	Page 3 of	2 Pages
Time Description Of Activities:	TO A SHOOT STATE OF	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN 1	
1600 Demob from MW-01. Trans	sternexisting prior	water from S-n	al bekete
to empty SS-gal steel 10	on dram. Locata	I on SE comes 3	- 613-6
near former VST-2)		, , , , , , , , , , , , , , , , , , , ,	roj
160 Solop's prep at MW-02			-
1633 Start Purging MN-OV			
1735 6 de Malal: My 1	(24,7		
1735 Sample calleded: MW-02	(3 Ambers)		
1742 Sample collected: Dup 11.1	6.18 [Blind Dy	from MW-027	(3 Ambers)
1153 Sample collected: NS [Blind from MW-02] (3 Ambers)	
800 Sample collected: MSD	[Blind from MW-C]	17 (3 Ambres)	
310 Begin deanup and pack-	do	2) () "	
	Ψ.		
850 Prip Sample coolers.			L. Lake
10 Exit site to provine more	ice for sample,	coolors.	1
20 load 10 carrole confess >1	ed I and for	1.4	6
18 Arrive a lab. Lall for sa. 12 Transfer samples to lab 10 Depart lab for retrin bri	and a comment	14/-1	
man T	mple leceiving.	Wart.	
1 Iranster samples to lab	and get copy	of coc.	
a Depart lab for retrin his	o to Costilo		
79-57-10-11	in sealife.		
Tech Personnel On Site: AD		• • • • • • • • • • • • • • • • • • • •	
	Visitor(s) (
hone Call(s): ABEW	Comments	· I NA	
Tech Representative: SD	Signature:	1.14	~

MAY AL

Project Name: (TL LONG/HEV)
Project Number: 103,P308,0237.01
Laboratory: ALS BIV

Pump Setting FIELD PARAM	METERS Discharge	CORNEL DESCRIPTION OF THE PARTY	Time 12	evitial 150	e mi/m Final	50 ml/m	Spec.	rge Volume gallons	Notes
1503 1506 1506 1512 1515 1514 1524 1527 1536	150 150 150 150 150 150 150	900 900 1850 1850 1250 2700 5150 3100 4050	73.29	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	107.0 115.3 114.4 119.0 117.7 119.0 116.7 116.7	15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	0.160	19.00 19.00 19.00 19.00 19.00 19.00 19.00	(LENGINGO
bilization Crit d Equipment np Info (Make / Meter 1 Info (I Meter 2 Info (I dity Meter Info tr Level Meter ment Provider	/ Model Serial Make / Model Make / Model O (Make / Mo Info (Make / M	#): Serial #): Serial #):	SAA	± 0.1	± 10 mV	±1*	± 3%	± 10%	
ition of water of Notes: tion of well: Water Disposi		LOTS OF	CEDIMENT	I IN NOW		berry seally Sulvati co			

Project Name: (TL LONGNIEW Project Number: 103P30G0237.01 Laboratory: ALS EN

Well No. No. Sampled by Date 11-16 PURGE VOLUN Casing Diamete Total Depth of Oil be Depth to Oil be Depth to Water Pump Intake (In Purge Time 12.) Pump Settings (In In I	IW-02 IN Time E D (In Inches) Casing TD (In fe slow TDC below TOC, W seet) 16	2" pet) 10 NA	13.15	Well Well Mor	Material DPN storing Point De Volume o	puritor Estractive Steel Purge METHOD Bailer-Type Submersible Purge Submer	NEPISTAL NEPISTAL	M_	
FIELD PARAME Time (24Hr) (25) (25) (25) (25) (25) (27) (2	TERS Discharge Rate (ml/m) 150 150 150 150 150 260 100 200 200 200 200 200 20	Volume Purget 9 CO 9 CO 9 CO 9 CO 9 CO 9 CO 9 CO 9 CO	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Service of the servic	ORP (mV) 75.1 63.5 77.1 67.1 07.3 64.7 105.1 109.7 110.7 110.7	0 C C C C C C C C C C C C C C C C C C C	Spec. Cond. (mS/cm) (1.01 0.271 0.271 4 0.271 4 0.250	Turbidity NEW YORK TO BE TO SERVICE THE PROPERTY OF THE PROPE	SUPERTURBUD II II CLEAKING UV II II II II II II II II II
Pump Info (Make WQ Meter 1 Info WQ Meter 2 Info Turbidity Meter I Water Level Mete Equipment Provided Turbidity Meter I Water Level Meter Equipment Provided Turbidition of wat Other Notes. Condition of well Purge Water Dispess Purging Deput Well Same as for 1735 MW 1742 DV	e / Model Senso o (Make / Mod o (Make / Mod o (Make / Mod o (Make / Mod er Info (Make / der. ber during purg the posal opth to Water b or METHOD or Purging or Ol	el Serial #): el Serial #): lodel Serial # / Model Serial ging (turbidit) NO Y DEE DELI elow TOC, FA	Pine Er r, color, odor): Pul Mol	SUPER TO NUMENT 13.84 MS/MS	rbid, cho	NR-	to cead:	Page:	l of l

Project Name: CIL CONCUIEN
Project Number: 103 P 308 0257.01
Laboratory: ALS ENN

PURGE VOLU Casing Diame Total Depth to Oil to Depth to Wat Pump Intake I PURGE TIME Start Time	-10	2" (vect) 19.	time 50	We Mo	il Material: Y P nitoring Point Di	onitor Stract VC Steel escription (Notch, I) PURGE METHOD Baller-Type Submersible P Other-Specify Other-Specify	PERISTA NA	CALL Stadder gallons	□ Other
FIELD PARAM Time (24Hy) (52L) (323 (52L) (52L) (53T) (53T) (53T) (53H) (34H) (34H) (34H) (35H) (35H)	Discharge Rate (ml/m) 150	450 450 1350 1350 1350 2250 2700 3150 3600 4050 4050 4050	55.1 0 H 35.5 H 55.1 O.5 H 55.1 O	6.66.66.66.66.66.66.66.66.66.66.66.66.6	59.0 47.6 40.1 29.1 21.5 21.5 13.4 11.5 9.7	16.04 16.05 16.05 16.05 16.05 16.05 16.05 16.05	Spec. Cond. (mS/cm) 0.111 0.110 0.117 0.171 0.171 0.172 0.171 0.171 0.171 0.171	Turbidity (NTU) 12.50 13.20 13.20 12.70 10.75 0.75 0.02 0.40	CLEAR "
Q Meter 1 Infi Q Meter 2 Infi urbidity Meter later Level Met pulpment Provi andition of wal ther Notes andition of wel inge Water Dis st Purging De ELL SAMPLIN Same as for	e / Model Serio o (Make / Mod o (Make / Mod o (Make / Mod o (Make / M er Info (Make / der der during purg to posal: oth to Water b	el Serial #): el Serial #): lodel Serial #) / Model Serial ging (turbidity RAIN) NO WAT SPUM elow TOC, FM	Pine Er (CF IN N VI. (In feet)	TURNIO TURNIO TO AFOUR MINUMEN 12.71	WI BROWN	S GREEN SHOP PLACK P	EDIMENT	EING IN N	of 1

Project Name: (TL LONGVIER Project Number: 10383090237-01 Laboratory: ALS ENVIOLENT

Total Depth of Depth to Oil b	ME ter, D (in inches Casing TD (in inches elow TOC below TOC v in feet)	NA	13' 12.91'	Wel Mor	I Material: Y PV nitoring Point De	ponitor	PERISTAL NA		CI Other
Time (24Hr) (24Hr) (05 I (05 I (105 I		Volume Pursed 150 150 100 1350 1200 2250 2700 3150 3150	30.0 35.9 23.1 23.1 15.1 15.1 11.7	pH (pH unit) 1.5 6.52 6.55 6.55 6.55 6.55 6.55	0RP 93.5 06.7 10.7 10.9 11.0	15.00 15.00 15.05 15.06 15.07 15.07 15.09 15.09	Spec. Cond. (mS/cm) 0.\S.7 0.\S.7 0.\S.1 0.\S.1 0.\S.1 0.\S.3 0.\S.3 0.\S.3	Turbidity (NTU) 9.51 9.61 7.63 7.63 7.60 6.70 1.01 6.45	Notes (box Slight)
Stabilization C	riteria		± 10%	± 0.1	± 10 mV	±1º	± 3%	± 10%	
Pump Info (Mai WQ Meter 1 Inf WQ Meter 2 Inf Turbidity Meter Water Level Me Equipment Prov Condition of wa Other Notes: Condition of we Purge Water Dis Post Purging De WELL SAMPLIN Same as fo	te / Model Ser o (Make / Model Ser o (Make / Model Info (Make / Make Info (Make / Make Info (Make Info (Make	del Serial #): del Serial #): Model Serial # / Model Serial ging (twbidit VATIER DE below TOC F	Pine i	12.84"	, SUGHT	LOTS OF SEI		SAMPLINT Page:	1 of 1

Project Name: CTL LONG/IEN
Project Number: 103 P 3 0 3 0 3 3 7. 01
Laboratory: ALS ENV.

PURGE VOLU Casing Diamet Total Depth of Depth to Oil b Depth to Wate Pump Intake (i	ME ter, D (In Inche) Casing TD (In elow TOC er below TOC \ in feet)	feet) [4.] NA VL (In feet) _	12.49'	1	Well Material: 1 Monitoring Poin Volun	PVC Ste t Description (Note PURGE METH Bailer-Type: Submersible	h, N, etck	urbine Blad	-
Start Time (90) Pump Settings	(Cycles):	132 Elapsed	: Time 32	Initial 150	ml/m Final	150 ml/m	21.15	gallons	
Time (24Hr) ()9 (0	Discharge Rate (ml/m)	Volume Purged	DO	pH (pH unit)	ORP (mV)	Temperature ("F or "C)	Spec. Cond. (mS/cm)	Turbidity (NTU)	Notes
0918	150 150 150 150	450 900 1350 1800	49.1 47.2 40.9 39.4	6.29	96.4 91.5 91.7 70.2 50.1	15.14 15.20 15.23 15.21	0.27) 0.211 0.211 0.212 0.212	2.59 2.59 2.31 2.20 2.09	Odor Slight
0925 0925 0931	150 150 150	7250 2700 3150	\$9.1 39.6 50.3 37.0	6.24	46.3 43.1 39.8	S.25 S.25 S.19 S.20	0.210 0.210 0.210	7.00	71
Stabilization Cri	teria	du Ex	± 10%	± 0.1	± 10 mV	±1"	± 3%	± 10%	
Field Equipment Pump Info (Make WQ Meter 1 Info WQ Meter 2 Info Furbidity Meter In Vater Level Meter quipment Provid	/ Model Seria (Make / Mode (Make / Mode ifo (Make / Mo r Info (Make /	l Serial #): I Serial #): odel Serial #):	HA HE	CH Z100 EN INSTR vironmental Se	MENTS ervices, Inc.	ROUGH (ELL 7319 6631 PIPPER -T	1 03218°	27120	
ondition of water ther Notes: ondition of well: urge Water Dispo ost Purging Depti	osal:	WATER I	N WONG		SHEEN	ODOR LOTS OF S	EDIMENT	ALSO_	
Same as for P	urging	500ml A	lmber Amber t	(C)	Other – des	cribe		Page:	of \

LABORATORY ANALYTICAL	ATTACHMENT B REPORTS AND CHAIN-OF-CUS	TODY RECORDS
LABORATORY ANALYTICAL	ATTACHMENT B REPORTS AND CHAIN-OF-CUS	TODY RECORDS

Service Request No:K1811274

David Berestka Tetra Tech EM, Incorporated 216 16th St, Suite 1500 Denver, CO 80202

Laboratory Results for: CTL Longview WA

Dear David,

Enclosed are the results of the sample(s) submitted to our laboratory November 16, 2018 For your reference, these analyses have been assigned our service request number **K1811274**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3275. You may also contact me via email at Chris.Leaf@ALSGlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Chris Leaf

Project Manager

Narrative Documents

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Client: Tetra Tech EM, Incorporated Service Request: K1811274

Project: CTL Longview WA Date Received: 11/16/2018

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), Matrix/Duplicate Matrix Spike (MS/DMS), Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt:

Eight water samples were received for analysis at ALS Environmental on 11/16/2018. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Semivolatiles by GC/MS:

Method 8270D, Polynuclear Aromatic Hydrocarbons: The recovery of Carbazole in Laboratory Control Sample KWG1806098-1/2 was outside the control limits listed in the results summary. The limits are default values temporarily in use until sufficient data points are generated to calculate statistical control limits. Based on the method and historic data, the recoveries observed were in the range expected for this procedure. No further corrective action was taken.

Method 8270D, Polynuclear Aromatic Hydrocarbons: The following analytes were flagged as outside the control criterion for the Continuing Calibration Verification (CCV): Pyrene. In accordance with the EPA Method, 80% or more of the CCV analytes must have passed within 20% of the true value. The remaining analytes are allowed a 40% difference as per the ALS SOP. The CCV met these criteria. No further corrective action was required.

Method 8270D, Polynuclear Aromatic Hydrocarbons: The results reported for the following compounds in samples MW-04 and MW-05 may contain a slight bias: Acenaphthylene, Fluorene. The chromatogram indicated the presence of non-target background components. The matrix interference may have resulted in a slight high bias in the affected samples. The results were flagged with "X" to indicate the issue.

Semivoa GC:

Method NWTPH-Dx, Diesel and Residual Range Organics: The upper control criterion was exceeded for Diesel Range Organics in Continuing Calibration Verification (CCV) KWG1806188-2. The field samples analyzed in this sequence did not contain the analyte in question above the MRL. Since the apparent problem indicated a potential high bias, the data quality was not affected. No further corrective action was required.

Method NWTPH-Dx, Diesel and Residual Range Organics: Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

Approved by	- (Leo/	Date	12/17/2018
	~)/ \		

8270D SIM

SAMPLE DETECTION SUMMARY

CLIENT ID: DUP 11-16-18		La	b ID: K1811	274-001		
Analyte	Results	Flag	MDL	MRL	Units	Method
Naphthalene	0.0053	J	0.0014	0.020	ug/L	8270D SIM
2-Methylnaphthalene	0.0035	J	0.0013	0.020	ug/L	8270D SIM
1-Methylnaphthalene	0.0022	J	0.0013	0.020	ug/L	8270D SIM
Dibenzofuran	0.0032	J	0.00096	0.020	ug/L	8270D SIM
Fluorene	0.0041	J	0.0011	0.020	ug/L	8270D SIM
Phenanthrene	0.0045	J	0.0011	0.020	ug/L	8270D SIM
Fluoranthene	0.0080	J	0.00082	0.020	ug/L	8270D SIM
Pyrene	0.074		0.0010	0.020	ug/L	8270D SIM
Benz(a)anthracene	0.0026	J	0.00097	0.020	ug/L	8270D SIM
Diesel Range Organics (DRO)	93	J	13	280	ug/L	NWTPH-Dx
Residual Range Organics (RRO)	140	J	22	560	ug/L	NWTPH-Dx
CLIENT ID: MW-05		La	b ID: K1811	274-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Naphthalene	0.0088	J	0.0014	0.020	ug/L	8270D SIM
2-Methylnaphthalene	0.0058	J	0.0013	0.020	ug/L	8270D SIM
1-Methylnaphthalene	0.0036	J	0.0013	0.020	ug/L	8270D SIM
Acenaphthylene	0.0081	JX	0.0011	0.020	ug/L	8270D SIM
Acenaphthene	0.0038	J	0.0012	0.020	ug/L	8270D SIM
Dibenzofuran	0.0035	J	0.00096	0.020	ug/L	8270D SIM
Fluorene	0.013	JX	0.0011	0.020	ug/L	8270D SIM
Phenanthrene	0.0068	J	0.0011	0.020	ug/L	8270D SIM
Anthracene	0.0047	J	0.00082	0.020	ug/L	8270D SIM
Fluoranthene	0.0037	J	0.00082	0.020	ug/L	8270D SIM
Pyrene	0.0040	J	0.0010	0.020	ug/L	8270D SIM
Benz(a)anthracene	0.0019	J	0.00097	0.020	ug/L	8270D SIM
Diesel Range Organics (DRO)	77	J	13	290	ug/L	NWTPH-Dx
Residual Range Organics (RRO)	380	J	22	580	ug/L	NWTPH-Dx
CLIENT ID: MW-04		La	b ID: K1811	274-003		
Analyte	Results	Flag	MDL	MRL	Units	Method
Naphthalene	0.041		0.0014	0.020	ug/L	8270D SIM
2-Methylnaphthalene	0.0058	J	0.0013	0.020	ug/L	8270D SIM
1-Methylnaphthalene	0.015	J	0.0013	0.020	ug/L	8270D SIM
Acenaphthylene	0.017	JX	0.0011	0.020	ug/L	8270D SIM
Acenaphthene	0.58		0.0012	0.020	ug/L	8270D SIM
Dibenzofuran	0.0070	J	0.00096	0.020	ug/L	8270D SIM
Fluorene	0.039	Χ	0.0011	0.020	ug/L	8270D SIM
Phenanthrene	0.0072	J	0.0011	0.020	ug/L	8270D SIM
Anthracene	0.019	J	0.00082	0.020	ug/L	8270D SIM
Carbazole	0.029		0.0011	0.020	ug/L	8270D SIM
□ (b	0.0000		0.0000	0.000	- /1	00700 0114

0.00082

0.020

ug/L

0.0020

Fluoranthene

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-04		Lal	D: K1811	274-003				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Pyrene	0.030		0.0010	0.020	ug/L	8270D SIM		
Benz(a)anthracene	0.0023	J	0.00097	0.020	ug/L	8270D SIM		
Diesel Range Organics (DRO)	60	J	14	300	ug/L	NWTPH-Dx		
Residual Range Organics (RRO)	110	J	23	600	ug/L	NWTPH-Dx		
CLIENT ID: MW-03	Lab ID: K1811274-004							
Analyte	Results	Flag	MDL	MRL	Units	Method		
Naphthalene	0.015	J	0.0014	0.020	ug/L	8270D SIM		
2-Methylnaphthalene	0.0042	J	0.0013	0.020	ug/L	8270D SIM		
1-Methylnaphthalene	0.0029	J	0.0013	0.020	ug/L	8270D SIM		
Acenaphthene	0.0049	J	0.0012	0.020	ug/L	8270D SIM		
Dibenzofuran	0.0035	J	0.00096	0.020	ug/L	8270D SIM		
Fluorene	0.0031	J	0.0011	0.020	ug/L	8270D SIM		
Phenanthrene	0.0055	J	0.0011	0.020	ug/L	8270D SIM		
Fluoranthene	0.0014	J	0.00082	0.020	ug/L	8270D SIM		
Pyrene	0.0016	J	0.0010	0.020	ug/L	8270D SIM		
Benz(a)anthracene	0.0020	J	0.00097	0.020	ug/L	8270D SIM		
Diesel Range Organics (DRO)	61	J	13	280	ug/L	NWTPH-Dx		
Residual Range Organics (RRO)	240	J	22	560	ug/L	NWTPH-Dx		
CLIENT ID: MW-01		Lal	D: K1811	274-005				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Naphthalene	0.0081	J	0.0014	0.020	ug/L	8270D SIM		
2-Methylnaphthalene	0.0055	J	0.0013	0.020	ug/L	8270D SIM		
1-Methylnaphthalene	0.0035	J	0.0013	0.020	ug/L	8270D SIM		
Acenaphthene	0.0030	J	0.0012	0.020	ug/L	8270D SIM		
Dibenzofuran	0.0036	J	0.00096	0.020	ug/L	8270D SIM		
Fluorene	0.0033	J	0.0011	0.020	ug/L	8270D SIM		
Phenanthrene	0.0065	J	0.0011	0.020	ug/L	8270D SIM		
Fluoranthene	0.0014	J	0.00082	0.020	ug/L	8270D SIM		
Pyrene	0.0017	J	0.0010	0.020	ug/L	8270D SIM		
Benz(a)anthracene	0.0020	J	0.00097	0.020	ug/L	8270D SIM		
Diesel Range Organics (DRO)	48	J	13	280	ug/L	NWTPH-Dx		
Residual Range Organics (RRO)	130	J	22	560	ug/L	NWTPH-Dx		
CLIENT ID: MW-02		Lal	o ID: K1811	274-006				
Analyte	Results	Flag	MDL	MRL	Units	Method		
Naphthalene	0.0057	J	0.0014	0.020	ug/L	8270D SIM		
2-Methylnaphthalene	0.0031	J	0.0013	0.020	ug/L	8270D SIM		
1-Methylnaphthalene	0.0025	J	0.0013	0.020	ug/L	8270D SIM		
Dibenzofuran	0.0033	J	0.00096	0.020	ug/L	8270D SIM		
Fluorene	0.0044	J	0.0011	0.020	ug/L	8270D SIM		

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-02		La	b ID: K1811	274-006		
Analyte	Results	Flag	MDL	MRL	Units	Method
Fluoranthene	0.0077	J	0.00082	0.020	ug/L	8270D SIM
Pyrene	0.064		0.0010	0.020	ug/L	8270D SIM
Benz(a)anthracene	0.0021	J	0.00097	0.020	ug/L	8270D SIM
Diesel Range Organics (DRO)	96	J	12	280	ug/L	NWTPH-Dx
Residual Range Organics (RRO)	140	J	21	550	ug/L	NWTPH-Dx

Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Tetra Tech EM, Incorporated Service Request:K1811274

Project: CTL Longview WA/103P3080237.01

Client:

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
K1811274-001	DUP 11-16-18	11/16/2018	
K1811274-002	MW-05	11/16/2018	0940
K1811274-003	MW-04	11/16/2018	1125
K1811274-004	MW-03	11/16/2018	1410
K1811274-005	MW-01	11/16/2018	1545
K1811274-006	MW-02	11/16/2018	1735
K1811274-007	MS	11/16/2018	1753
K1811274-008	MSD	11/16/2018	1800

94278

CHAIN OF CUSTODY

94278

001	SR# (1012 +
,	COC Set of
	COC#

1317 South 13th Ave, Kelso, WA 98626 Phone (360) 577-7222 / 800-695-7222 / FAX (360) 636-1068 www.alsglobal.com

Page 1 of 1

Project Name CTL LONGVIEW WA	10343080237.01]	6	٤	3												
Project Manager TAVE BERESTY	-A				,,	H	_		_	-	1								
Company TERA TELY		NTAINERS																	
Address 216 16TH STREET	DONER	, (0 Bo	202		NA		SVM	TPH			ı			•					
Phone # 343 - 512 - 4456	DAVIO	. PEREST	KAATE	1944	U		llter 8	Š					Ì						
Sampler Signature	Sampler Pr	rinted Name			ER O	PAH	/M/F	/xū-				ı							
AND M TOLD	SOT	TMDU			NUMBER	8270D / PAH	Filter SVM / Filter	NWTPH-Dx/NW_TPH	_	7		4	ω.	Remarks					
CLIENT SAMPLE ID	LABID	SAMF Date	LING Time	Matrix	ĺ								- 1						
1. DVP 11-16-18		11.16.18	111116	GW	3	X	X	7	-		$\neg \dagger$	_†		, 	\dashv				
2. MW-05		1	0940		1	,	1				寸	寸			7				
3. NW-04			1125		1		71					7	1						
4. MW-03			1410																
5. MW-01			1545																
6. MW-02			1735																
7. MS			1753			Ш	Ш					\bot							
8. MSD		<u> </u>	1,800	<u>.</u>	<u>_L</u>	1	4	7											
9.																			
10.												\perp							
Report Requirements	Invoi P.O.#_\	ice Infor	mation	Į.										Circle wh	vhich n	netals are to be analyzed			
I. Routine Report: Method Blank, Surrogate, as	Bill To:				Total Metais: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr Tl Sn V Zn Hg														
required				_		Di	ssolve	ed Me	etals:	Aì	As :	Sh	Ra I	Be B Ca Cd Co	Cr	Cu Fe Pb Mg Mn Mo Ni K Ag N	a Se Sr Ti Sn V Zn Ho		
II. Report Dup., MS, MSD as required				S	pecia											ydrocarbon Procedure: AK CA WI			
III. CLP Like Summary	Turnaro			its "	0000	11,00	uotro	,,,,,,	201111	110110	.			masoate Otal		ydrodaibon i roccdare. Zuv ozv vvi	(Office Offic)		
(no raw data)	24 h	hr. ay	48 hr.																
IV. Data Validation Report	X Star	ndard																	
V. EDD VERIFY W/ PM	R	Requested Report	Date																
Relinquished By:	Received By:				Relinquished By:								R	eceived By:	***************************************	Relinquished By:	Received By:		
Signature M	Signature	Ly gh /8		Signa	ture	ıre					Sig	natu	ire	······································		Signature	Signature		
SUTT M DUZAN	Printed Nat		Suk	Printe	d Na	l Name					Pri	nted	Nan	ne		Printed Name	Printed Name		
TETRA TELH	Firm	Engrange	h (Firm							Firm					Firm	Firm		
Date/Time 1942	Date/Time 11/16/8 19:4(1 Date					Time					Dat	te/Tii	me			Date/Time	Date/Time		

Cooler Receipt and Preservation Form

ent	TETRA	TE	H	Cooler	Nece	ibt ar				r orm Juest <i>K18</i>	s // 2	74			
	11-16-18)	Opened:	11-17	7-18	B		15 ₁ D	_	Unloaded		7-18	By:	JSP)	
Sampl	es were rece les were rece custody seals	ived via? ived in: (ci	USPS	Fed Ex	Box	PS	DHI Envelo	pe		Courie her		d Delivere	<i>d</i> >	NA	
	sent, were cu	_		, 177. Y		N N				-	igned and	dated?		Y	N
Raw oler Temp	Corrected.	Raw Temp Blank	Corrected Temp Blank	Corr. Factor	The	rmome ID			r/COC			Tracking I	Number	- Ch	Fil
170	0.1	NV	N	+0.(1	3 93		94	278						1 "
2.4	2.6	45_	0.7	10,2	-	523		ył.	• '						
															1
Packi	ng materiaK	Inserts	Baggies	Bubble W	Vrap	Gel Pa	cks (Wet Ic	e) Di	ry Ice S	leeves _				
Were	custody pap	ers properly	y filled out	(ink, signe	ed, etc.))?	~	And Street, and other property of	,				NA	$(\hat{\mathbf{Y}})$	N
Were	samples rec	_	od conditio plicable, tis	, .			,	ndicate Fro z		e table bei Partiall y		Thawed	NA	Ť	N
Were	all sample la	bels compl	ete (i.e ana	lysis, pres	ervatio	n, etc.)	?						NA	\bigcirc	N
	ll sample lab	_	-						-	ncies in th	e table on	page 2.	NA	⊗ /	N
	appropriate												NA	$\langle \lambda \rangle$	N
	e the pH-pre							-	te pH?	? Indicate	in the tab	le below	(NA)	Y	١
	e VOA vials		ithout head	space? In	idicate	in the i	table be	elow.					NA	Y	N
. Was	C12/Res ne	gative?		1						1			(NA	Y	N
	Sample ID	on Bottle			Samp	le ID or	n COC					ldentified b	<u>y:</u>	<u> </u>	·
	Sample I	D		e Count le Type	Out of Temp		Broke	рН	R	eagent	Volume added	Reagent Numbe		nitials	Time
									-			· 			
					ļ		ļ		<u> </u>						
					 		 	ļ	 		1				
					<u> </u>	<u> </u>	<u>L</u>	<u></u>	<u></u>	,	1	,			
Votes, 1	Discrepanc	ies, & Res	olutions:_									<u> </u>			
*					· · · · · · · · · · · · · · · · · · ·										
				·	······································	_·		<u>-</u>							
-,		· ·									·				
7/25/	/16											1	Page	of_	

Page 10 of 38

Miscellaneous Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- \boldsymbol{Q} $\;\;$ See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client:Tetra Tech EM, IncorporatedService Request:K1811274Project:CTL Longview WA/103P3080237.01Date Collected:11/16/18

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 DUP 11-16-18
 Units: ug/L

 Lab Code:
 K1811274-001
 Basis: NA

Polynuclear Aromatic Hydrocarbons

Analysis Method: 8270D SIM **Prep Method:** EPA 3511

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.0053 ј	0.020	0.0014	1	11/28/18 17:06	11/21/18	
2-Methylnaphthalene	0.0035 J	0.020	0.0013	1	11/28/18 17:06	11/21/18	
1-Methylnaphthalene	0.0022 ј	0.020	0.0013	1	11/28/18 17:06	11/21/18	
Acenaphthylene	ND U	0.020	0.0011	1	11/28/18 17:06	11/21/18	
Acenaphthene	ND U	0.020	0.0012	1	11/28/18 17:06	11/21/18	
Dibenzofuran	0.0032 J	0.020	0.00096	1	11/28/18 17:06	11/21/18	
Fluorene	0.0041 J	0.020	0.0011	1	11/28/18 17:06	11/21/18	
Phenanthrene	0.0045 J	0.020	0.0011	1	11/28/18 17:06	11/21/18	
Anthracene	ND U	0.020	0.00082	1	11/28/18 17:06	11/21/18	
Carbazole	ND U	0.020	0.0011	1	11/28/18 17:06	11/21/18	*
Fluoranthene	0.0080 J	0.020	0.00082	1	11/28/18 17:06	11/21/18	
Pyrene	0.074	0.020	0.0010	1	11/28/18 17:06	11/21/18	
Benz(a)anthracene	0.0026 J	0.020	0.00097	1	11/28/18 17:06	11/21/18	
Chrysene	ND U	0.020	0.00076	1	11/28/18 17:06	11/21/18	
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	11/28/18 17:06	11/21/18	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	11/28/18 17:06	11/21/18	
Benzo(a)pyrene	ND U	0.020	0.0011	1	11/28/18 17:06	11/21/18	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	11/28/18 17:06	11/21/18	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	11/28/18 17:06	11/21/18	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	11/28/18 17:06	11/21/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluorene-d10	97	42 - 131	11/28/18 17:06	
Fluoranthene-d10	92	42 - 133	11/28/18 17:06	
p-Terphenyl-d14	90	32 - 129	11/28/18 17:06	

Analytical Report

Client:Tetra Tech EM, IncorporatedService Request:K1811274Project:CTL Longview WA/103P3080237.01Date Collected:11/16/18 09:40

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 MW-05
 Units: ug/L

 Lab Code:
 K1811274-002
 Basis: NA

Polynuclear Aromatic Hydrocarbons

Analysis Method: 8270D SIM **Prep Method:** EPA 3511

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.0088 Ј	0.020	0.0014	1	11/28/18 17:32	11/21/18	
2-Methylnaphthalene	0.0058 J	0.020	0.0013	1	11/28/18 17:32	11/21/18	
1-Methylnaphthalene	0.0036 Ј	0.020	0.0013	1	11/28/18 17:32	11/21/18	
Acenaphthylene	0.0081 JX	0.020	0.0011	1	11/28/18 17:32	11/21/18	
Acenaphthene	0.0038 J	0.020	0.0012	1	11/28/18 17:32	11/21/18	
Dibenzofuran	0.0035 Ј	0.020	0.00096	1	11/28/18 17:32	11/21/18	
Fluorene	0.013 JX	0.020	0.0011	1	11/28/18 17:32	11/21/18	
Phenanthrene	0.0068 J	0.020	0.0011	1	11/28/18 17:32	11/21/18	
Anthracene	0.0047 ј	0.020	0.00082	1	11/28/18 17:32	11/21/18	
Carbazole	ND U	0.020	0.0011	1	11/28/18 17:32	11/21/18	*
Fluoranthene	0.0037 J	0.020	0.00082	1	11/28/18 17:32	11/21/18	
Pyrene	0.0040 J	0.020	0.0010	1	11/28/18 17:32	11/21/18	
Benz(a)anthracene	0.0019 J	0.020	0.00097	1	11/28/18 17:32	11/21/18	
Chrysene	ND U	0.020	0.00076	1	11/28/18 17:32	11/21/18	
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	11/28/18 17:32	11/21/18	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	11/28/18 17:32	11/21/18	
Benzo(a)pyrene	ND U	0.020	0.0011	1	11/28/18 17:32	11/21/18	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	11/28/18 17:32	11/21/18	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	11/28/18 17:32	11/21/18	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	11/28/18 17:32	11/21/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluorene-d10	102	42 - 131	11/28/18 17:32	
Fluoranthene-d10	99	42 - 133	11/28/18 17:32	
p-Terphenyl-d14	99	32 - 129	11/28/18 17:32	

Analytical Report

Client:Tetra Tech EM, IncorporatedService Request:K1811274Project:CTL Longview WA/103P3080237.01Date Collected:11/16/18 11:25

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 MW-04
 Units: ug/L

 Lab Code:
 K1811274-003
 Basis: NA

Polynuclear Aromatic Hydrocarbons

Analysis Method: 8270D SIM **Prep Method:** EPA 3511

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.041	0.020	0.0014	1	11/28/18 17:57	11/21/18	
2-Methylnaphthalene	0.0058 Ј	0.020	0.0013	1	11/28/18 17:57	11/21/18	
1-Methylnaphthalene	0.015 ј	0.020	0.0013	1	11/28/18 17:57	11/21/18	
Acenaphthylene	0.017 JX	0.020	0.0011	1	11/28/18 17:57	11/21/18	
Acenaphthene	0.58	0.020	0.0012	1	11/28/18 17:57	11/21/18	
Dibenzofuran	0.0070 ј	0.020	0.00096	1	11/28/18 17:57	11/21/18	
Fluorene	0.039 X	0.020	0.0011	1	11/28/18 17:57	11/21/18	
Phenanthrene	0.0072 Ј	0.020	0.0011	1	11/28/18 17:57	11/21/18	
Anthracene	0.019 ј	0.020	0.00082	1	11/28/18 17:57	11/21/18	
Carbazole	0.029	0.020	0.0011	1	11/28/18 17:57	11/21/18	*
Fluoranthene	0.0020 Ј	0.020	0.00082	1	11/28/18 17:57	11/21/18	
Pyrene	0.030	0.020	0.0010	1	11/28/18 17:57	11/21/18	
Benz(a)anthracene	0.0023 Ј	0.020	0.00097	1	11/28/18 17:57	11/21/18	
Chrysene	ND U	0.020	0.00076	1	11/28/18 17:57	11/21/18	
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	11/28/18 17:57	11/21/18	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	11/28/18 17:57	11/21/18	
Benzo(a)pyrene	ND U	0.020	0.0011	1	11/28/18 17:57	11/21/18	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	11/28/18 17:57	11/21/18	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	11/28/18 17:57	11/21/18	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	11/28/18 17:57	11/21/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluorene-d10	99	42 - 131	11/28/18 17:57	
Fluoranthene-d10	93	42 - 133	11/28/18 17:57	
p-Terphenyl-d14	88	32 - 129	11/28/18 17:57	

Analytical Report

Client:Tetra Tech EM, IncorporatedService Request:K1811274Project:CTL Longview WA/103P3080237.01Date Collected:11/16/18 14:10

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 MW-03
 Units: ug/L

 Lab Code:
 K1811274-004
 Basis: NA

Polynuclear Aromatic Hydrocarbons

Analysis Method: 8270D SIM **Prep Method:** EPA 3511

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.015 ј	0.020	0.0014	1	11/28/18 18:23	11/21/18	
2-Methylnaphthalene	0.0042 Ј	0.020	0.0013	1	11/28/18 18:23	11/21/18	
1-Methylnaphthalene	0.0029 ј	0.020	0.0013	1	11/28/18 18:23	11/21/18	
Acenaphthylene	ND U	0.020	0.0011	1	11/28/18 18:23	11/21/18	
Acenaphthene	0.0049 J	0.020	0.0012	1	11/28/18 18:23	11/21/18	
Dibenzofuran	0.0035 Ј	0.020	0.00096	1	11/28/18 18:23	11/21/18	
Fluorene	0.0031 J	0.020	0.0011	1	11/28/18 18:23	11/21/18	
Phenanthrene	0.0055 J	0.020	0.0011	1	11/28/18 18:23	11/21/18	
Anthracene	ND U	0.020	0.00082	1	11/28/18 18:23	11/21/18	
Carbazole	ND U	0.020	0.0011	1	11/28/18 18:23	11/21/18	*
Fluoranthene	0.0014 J	0.020	0.00082	1	11/28/18 18:23	11/21/18	
Pyrene	0.0016 Ј	0.020	0.0010	1	11/28/18 18:23	11/21/18	
Benz(a)anthracene	0.0020 Ј	0.020	0.00097	1	11/28/18 18:23	11/21/18	
Chrysene	ND U	0.020	0.00076	1	11/28/18 18:23	11/21/18	
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	11/28/18 18:23	11/21/18	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	11/28/18 18:23	11/21/18	
Benzo(a)pyrene	ND U	0.020	0.0011	1	11/28/18 18:23	11/21/18	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	11/28/18 18:23	11/21/18	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	11/28/18 18:23	11/21/18	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	11/28/18 18:23	11/21/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluorene-d10	103	42 - 131	11/28/18 18:23	
Fluoranthene-d10	98	42 - 133	11/28/18 18:23	
p-Terphenyl-d14	95	32 - 129	11/28/18 18:23	

Analytical Report

Client:Tetra Tech EM, IncorporatedService Request:K1811274Project:CTL Longview WA/103P3080237.01Date Collected:11/16/18 15:45

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 MW-01
 Units: ug/L

 Lab Code:
 K1811274-005
 Basis: NA

Polynuclear Aromatic Hydrocarbons

Analysis Method: 8270D SIM **Prep Method:** EPA 3511

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.0081 Ј	0.020	0.0014	1	11/28/18 18:48	11/21/18	
2-Methylnaphthalene	0.0055 J	0.020	0.0013	1	11/28/18 18:48	11/21/18	
1-Methylnaphthalene	0.0035 J	0.020	0.0013	1	11/28/18 18:48	11/21/18	
Acenaphthylene	ND U	0.020	0.0011	1	11/28/18 18:48	11/21/18	
Acenaphthene	0.0030 J	0.020	0.0012	1	11/28/18 18:48	11/21/18	
Dibenzofuran	0.0036 J	0.020	0.00096	1	11/28/18 18:48	11/21/18	
Fluorene	0.0033 J	0.020	0.0011	1	11/28/18 18:48	11/21/18	
Phenanthrene	0.0065 J	0.020	0.0011	1	11/28/18 18:48	11/21/18	
Anthracene	ND U	0.020	0.00082	1	11/28/18 18:48	11/21/18	
Carbazole	ND U	0.020	0.0011	1	11/28/18 18:48	11/21/18	*
Fluoranthene	0.0014 J	0.020	0.00082	1	11/28/18 18:48	11/21/18	
Pyrene	0.0017 J	0.020	0.0010	1	11/28/18 18:48	11/21/18	
Benz(a)anthracene	0.0020 J	0.020	0.00097	1	11/28/18 18:48	11/21/18	
Chrysene	ND U	0.020	0.00076	1	11/28/18 18:48	11/21/18	
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	11/28/18 18:48	11/21/18	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	11/28/18 18:48	11/21/18	
Benzo(a)pyrene	ND U	0.020	0.0011	1	11/28/18 18:48	11/21/18	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	11/28/18 18:48	11/21/18	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	11/28/18 18:48	11/21/18	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	11/28/18 18:48	11/21/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluorene-d10	100	42 - 131	11/28/18 18:48	
Fluoranthene-d10	97	42 - 133	11/28/18 18:48	
p-Terphenyl-d14	78	32 - 129	11/28/18 18:48	

Analytical Report

Client:Tetra Tech EM, IncorporatedService Request:K1811274Project:CTL Longview WA/103P3080237.01Date Collected:11/16/18 17:35

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 MW-02
 Units: ug/L

 Lab Code:
 K1811274-006
 Basis: NA

Polynuclear Aromatic Hydrocarbons

Analysis Method: 8270D SIM **Prep Method:** EPA 3511

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.0057 ј	0.020	0.0014	1	11/28/18 19:15	11/21/18	
2-Methylnaphthalene	0.0031 Ј	0.020	0.0013	1	11/28/18 19:15	11/21/18	
1-Methylnaphthalene	0.0025 Ј	0.020	0.0013	1	11/28/18 19:15	11/21/18	
Acenaphthylene	ND U	0.020	0.0011	1	11/28/18 19:15	11/21/18	
Acenaphthene	ND U	0.020	0.0012	1	11/28/18 19:15	11/21/18	
Dibenzofuran	0.0033 Ј	0.020	0.00096	1	11/28/18 19:15	11/21/18	
Fluorene	0.0044 Ј	0.020	0.0011	1	11/28/18 19:15	11/21/18	
Phenanthrene	0.0049 Ј	0.020	0.0011	1	11/28/18 19:15	11/21/18	
Anthracene	ND U	0.020	0.00082	1	11/28/18 19:15	11/21/18	
Carbazole	ND U	0.020	0.0011	1	11/28/18 19:15	11/21/18	*
Fluoranthene	0.0077 J	0.020	0.00082	1	11/28/18 19:15	11/21/18	
Pyrene	0.064	0.020	0.0010	1	11/28/18 19:15	11/21/18	
Benz(a)anthracene	0.0021 Ј	0.020	0.00097	1	11/28/18 19:15	11/21/18	
Chrysene	ND U	0.020	0.00076	1	11/28/18 19:15	11/21/18	
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	11/28/18 19:15	11/21/18	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	11/28/18 19:15	11/21/18	
Benzo(a)pyrene	ND U	0.020	0.0011	1	11/28/18 19:15	11/21/18	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	11/28/18 19:15	11/21/18	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	11/28/18 19:15	11/21/18	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	11/28/18 19:15	11/21/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluorene-d10	97	42 - 131	11/28/18 19:15	
Fluoranthene-d10	92	42 - 133	11/28/18 19:15	
p-Terphenyl-d14	87	32 - 129	11/28/18 19:15	

Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Analytical Report

Client: Tetra Tech EM, Incorporated

Service Request: K1811274 **Date Collected:** 11/16/18 CTL Longview WA/103P3080237.01

Project: Sample Matrix: Water

Date Received: 11/16/18 19:42

Sample Name: DUP 11-16-18 Units: ug/L Lab Code: K1811274-001 Basis: NA

Diesel and Residual Range Organics

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Da	te Extracted	Q
Diesel Range Organics (DRO)	93 ј	280	13	1	11/28/18 12:41	11/26/18	
Residual Range Organics (RRO)	140 Л	560	22	1	11/28/18 12:41	11/26/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	95	50 - 150	11/28/18 12:41	
n-Triacontane	102	50 - 150	11/28/18 12:41	

Analytical Report

Client: Tetra Tech EM, Incorporated Service Request: K1811274

Project: CTL Longview WA/103P3080237.01 **Date Collected:** 11/16/18 09:40

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 MW-05
 Units: ug/L

 Lab Code:
 K1811274-002
 Basis: NA

Diesel and Residual Range Organics

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Date Extracted	l Q
Diesel Range Organics (DRO)	77 J	290	13	1	11/28/18 13:02 11/26/18	
Residual Range Organics (RRO)	380 л	580	22	1	11/28/18 13:02 11/26/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	92	50 - 150	11/28/18 13:02	
n-Triacontane	107	50 - 150	11/28/18 13:02	

Analytical Report

Client: Tetra Tech EM, Incorporated Service Request: K1811274

Project: CTL Longview WA/103P3080237.01 **Date Collected:** 11/16/18 11:25

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 MW-04
 Units: ug/L

 Lab Code:
 K1811274-003
 Basis: NA

Diesel and Residual Range Organics

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Date Extracted	l Q
Diesel Range Organics (DRO)	60 Ј	300	14	1	11/28/18 13:24 11/26/18	
Residual Range Organics (RRO)	110 л	600	23	1	11/28/18 13:24 11/26/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	92	50 - 150	11/28/18 13:24	
n-Triacontane	97	50 - 150	11/28/18 13:24	

Analytical Report

Client: Tetra Tech EM, Incorporated Service Request: K1811274

Project: CTL Longview WA/103P3080237.01 **Date Collected:** 11/16/18 14:10

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 MW-03
 Units: ug/L

 Lab Code:
 K1811274-004
 Basis: NA

Diesel and Residual Range Organics

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Date Ex	xtracted Q
Diesel Range Organics (DRO)	61 Ј	280	13	1	11/28/18 13:46 11/2	26/18
Residual Range Organics (RRO)	240 Л	560	22	1	11/28/18 13:46 11/2	26/18

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q	
o-Terphenyl	93	50 - 150	11/28/18 13:46		
n-Triacontane	104	50 - 150	11/28/18 13:46		

Analytical Report

Client: Tetra Tech EM, Incorporated Service Request: K1811274

Project: CTL Longview WA/103P3080237.01 **Date Collected:** 11/16/18 15:45

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 MW-01
 Units: ug/L

 Lab Code:
 K1811274-005
 Basis: NA

Diesel and Residual Range Organics

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Date Extracted	Q
Diesel Range Organics (DRO)	48 J	280	13	1	11/28/18 14:29 11/26/18	_
Residual Range Organics (RRO)	130 J	560	22	1	11/28/18 14:29 11/26/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	93	50 - 150	11/28/18 14:29	
n-Triacontane	99	50 - 150	11/28/18 14:29	

Analytical Report

Client: Tetra Tech EM, Incorporated Service Request: K1811274

Project: CTL Longview WA/103P3080237.01 **Date Collected:** 11/16/18 17:35

Sample Matrix: Water Date Received: 11/16/18 19:42

 Sample Name:
 MW-02
 Units: ug/L

 Lab Code:
 K1811274-006
 Basis: NA

Diesel and Residual Range Organics

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Date Extracted	Q
Diesel Range Organics (DRO)	96 Ј	280	12	1	11/28/18 14:08 11/26/18	
Residual Range Organics (RRO)	140 Л	550	21	1	11/28/18 14:08 11/26/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	94	50 - 150	11/28/18 14:08	
n-Triacontane	100	50 - 150	11/28/18 14:08	

QC Summary Forms

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

Semivolatile Organic Compounds by GC/MS

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

QA/QC Report

Client: Tetra Tech EM, Incorporated Service Request: K1811274

Project: CTL Longview WA/103P3080237.01

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Polynuclear Aromatic Hydrocarbons

Analysis Method: 8270D SIM **Extraction Method:** EPA 3511

		Fluoranthene-d10	Fluorene-d10	p-Terphenyl-d14
Sample Name	Lab Code	42 - 133	42 - 131	32 - 129
DUP 11-16-18	K1811274-001	92	97	90
MW-05	K1811274-002	99	102	99
MW-04	K1811274-003	93	99	88
MW-03	K1811274-004	98	103	95
MW-01	K1811274-005	97	100	78
MW-02	K1811274-006	92	97	87
Lab Control Sample	KWG1806098-1	104	102	94
Duplicate Lab Control Sample	KWG1806098-2	105	103	95
Method Blank	KWG1806098-3	102	102	103

Analytical Report

Client: Tetra Tech EM, Incorporated Service Request: K1811274

Project:CTL Longview WA/103P3080237.01Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:KWG1806098-3Basis: NA

Polynuclear Aromatic Hydrocarbons

Analysis Method: 8270D SIM **Prep Method:** EPA 3511

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed	Date Extracted	Q
Naphthalene	0.0046 Ј	0.020	0.0014	1	11/28/18 11:15	11/21/18	
2-Methylnaphthalene	0.0032 Ј	0.020	0.0013	1	11/28/18 11:15	11/21/18	
1-Methylnaphthalene	0.0021 ј	0.020	0.0013	1	11/28/18 11:15	11/21/18	
Acenaphthylene	ND U	0.020	0.0011	1	11/28/18 11:15	11/21/18	
Acenaphthene	ND U	0.020	0.0012	1	11/28/18 11:15	11/21/18	
Dibenzofuran	0.0029 ј	0.020	0.00096	1	11/28/18 11:15	11/21/18	
Fluorene	0.0020 ј	0.020	0.0011	1	11/28/18 11:15	11/21/18	
Phenanthrene	0.0049 J	0.020	0.0011	1	11/28/18 11:15	11/21/18	
Anthracene	ND U	0.020	0.00082	1	11/28/18 11:15	11/21/18	
Carbazole	ND U	0.020	0.0011	1	11/28/18 11:15	11/21/18	*
Fluoranthene	ND U	0.020	0.00082	1	11/28/18 11:15	11/21/18	
Pyrene	0.0010 J	0.020	0.0010	1	11/28/18 11:15	11/21/18	
Benz(a)anthracene	0.0018 J	0.020	0.00097	1	11/28/18 11:15	11/21/18	
Chrysene	ND U	0.020	0.00076	1	11/28/18 11:15	11/21/18	
Benzo(b)fluoranthene	ND U	0.020	0.00083	1	11/28/18 11:15	11/21/18	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	11/28/18 11:15	11/21/18	
Benzo(a)pyrene	ND U	0.020	0.0011	1	11/28/18 11:15	11/21/18	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	11/28/18 11:15	11/21/18	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	11/28/18 11:15	11/21/18	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	11/28/18 11:15	11/21/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
Fluorene-d10	102	42 - 131	11/28/18 11:15	
Fluoranthene-d10	102	42 - 133	11/28/18 11:15	
p-Terphenyl-d14	103	32 - 129	11/28/18 11:15	

QA/QC Report

Client:Tetra Tech EM, IncorporatedService Request:K1811274Project:CTL Longview WA/103P3080237.01Date Analyzed:11/28/18Sample Matrix:WaterDate Extracted:11/21/18

Duplicate Lab Control Sample Summary Polynuclear Aromatic Hydrocarbons

 Analysis Method:
 8270D SIM
 Units:
 ug/L

 Prep Method:
 EPA 3511
 Basis:
 NA

Analysis Lot: KWG1806383

Lab Control Sample KWG1806098-1

Duplicate Lab Control Sample KWG1806098-2

Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
1-Methylnaphthalene	1.95	2.78	70	2.07	2.78	74	47-119	6	30
2-Methylnaphthalene	1.91	2.78	69	2.04	2.78	73	48-120	7	30
Acenaphthene	2.32	2.78	84	2.32	2.78	83	63-121	<1	30
Acenaphthylene	2.38	2.78	86	2.40	2.78	86	58-124	1	30
Anthracene	2.65	2.78	95	2.59	2.78	93	68-127	2	30
Benz(a)anthracene	2.67	2.78	96	2.60	2.78	93	74-124	3	30
Benzo(a)pyrene	2.83	2.78	102	2.77	2.78	100	75-131	2	30
Benzo(b)fluoranthene	2.77	2.78	100	2.72	2.78	98	73-136	2	30
Benzo(g,h,i)perylene	2.41	2.78	87	2.31	2.78	83	63-127	4	30
Benzo(k)fluoranthene	2.69	2.78	97	2.60	2.78	94	74-134	3	30
Carbazole	1.38	2.78	50 *	1.27	2.78	46 *	68-135	9	30
Chrysene	2.58	2.78	93	2.52	2.78	91	74-132	2	30
Dibenz(a,h)anthracene	2.72	2.78	98	2.67	2.78	96	59-135	2	30
Dibenzofuran	2.37	2.78	85	2.32	2.78	84	56-132	2	30
Fluoranthene	2.41	2.78	87	2.34	2.78	84	70-127	3	30
Fluorene	2.48	2.78	89	2.41	2.78	87	68-121	3	30
Indeno(1,2,3-cd)pyrene	2.72	2.78	98	2.67	2.78	96	63-136	2	30
Naphthalene	2.01	2.78	72	2.09	2.78	75	52-115	4	30
Phenanthrene	2.49	2.78	90	2.41	2.78	87	64-126	3	30
Pyrene	2.45	2.78	88	2.43	2.78	88	72-127	1	30

Semivolatile Organic Compounds by GC

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

QA/QC Report

Client: Tetra Tech EM, Incorporated Service Request: K1811274

Project: CTL Longview WA/103P3080237.01

Sample Matrix: Water

SURROGATE RECOVERY SUMMARY Diesel and Residual Range Organics

Analysis Method: NWTPH-Dx **Extraction Method:** EPA 3510C

		n-Triacontane	o-Terphenyl	
Sample Name	Lab Code	50 - 150	50 - 150	
DUP 11-16-18	K1811274-001	102	95	
MW-05	K1811274-002	107	92	
MW-04	K1811274-003	97	92	
MW-03	K1811274-004	104	93	
MW-01	K1811274-005	99	93	
MW-02	K1811274-006	100	94	
Lab Control Sample	KWG1806123-1	99	97	
Duplicate Lab Control Sample	KWG1806123-2	101	99	
Method Blank	KWG1806123-3	98	91	

Analytical Report

Client: Tetra Tech EM, Incorporated Service Request: K1811274

Project:CTL Longview WA/103P3080237.01Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name:Method BlankUnits: ug/LLab Code:KWG1806123-3Basis: NA

Diesel and Residual Range Organics

Analyte Name	Result	MRL	MDL	Dil.	Date Analyzed Date Extracted	Q
Diesel Range Organics (DRO)	17 ј	250	11	1	11/28/18 11:14 11/26/18	
Residual Range Organics (RRO)	50 J	500	19	1	11/28/18 11:14 11/26/18	

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
o-Terphenyl	91	50 - 150	11/28/18 11:14	
n-Triacontane	98	50 - 150	11/28/18 11:14	

QA/QC Report

Client: Tetra Tech EM, Incorporated

CTL Longview WA/103P3080237.01

Service Request: K1811274 **Date Analyzed:**

Project: Sample Matrix: Water

Date Extracted:

11/28/18 11/26/18

Duplicate Lab Control Sample Summary Diesel and Residual Range Organics

Analysis Method: NWTPH-Dx

Units:

ug/L

Prep Method: EPA 3510C

Basis:

NA

Analysis Lot:

KWG1806188

Lab Control Sample

Duplicate Lab Control Sample

KWG1806123-1

KWG1806123-2

		Spike			Spike		% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)	3050	3200	95	2810	3200	88	46-140	8	30
Residual Range Organics (RRO)	1620	1600	101	1510	1600	95	45-159	7	30