F/5 ID 27 22 3439

Mr. Mark Dunbar Washington State Department of Ecology Central Region 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902-3452

Subject:

Annual Groundwater Monitoring Report 2011
Chevron Service Station No. 9-8944
1323 Lee Boulevard
Richland, Washington
VCP Project No. CE0238

Dear Mr. Dunbar:

On behalf of Chevron Environmental Management Company (Chevron EMC), ARCADIS U.S., Inc. (ARCADIS) has prepared this Annual Groundwater Monitoring Report to document groundwater monitoring activities performed at Chevron Service Station No. 9-8944 (the Site) located at 1323 Lee Boulevard in Richland, Benton County, Washington (Figure 1). The monitoring activities were conducted on September 9, 2011. Monitoring activities included collecting depth to water data and groundwater samples from five monitoring wells located at the Site.

Site Background

The Site is a former Standard Oil/Chevron branded service station. The Site is located on the southeast corner of Lee Boulevard and Gillespie Street. The Site is currently occupied by a Subway Restaurant building and parking lot. The areas to the south and southeast of the Site are primarily residential and the areas to the east, north and west are primarily commercial.

The former gasoline service station was originally constructed in 1960 and operated as a Chevron station until 1976, at which time the station was decommissioned.

There are five onsite wells, MW-4 through MW-8.

ARCADIS U.S., Inc.
320 Commerce
Suite 200
Irvine
California 92602-1363
Tel 714 730 9052
Fax 714 730 9345
www.arcadis-us.com

ENVIRONMENT

Date:

November 17, 2011

Contact:

Mr. Allen C. Just

Phone:

714.508.2677

Email:

allen.just@arcadis-us.com

Our ref

B0047580.0000.00001

Annual Groundwater Monitoring Event - September 2011

The scope of work for the annual monitoring event included the following:

- Collected water level measurements (relative to the top of casing) in five monitoring wells, MW-4, MW-5, MW-6, MW-7, and MW-8.
- Purged and sampled monitoring wells MW-4, MW-5, MW-6, MW-7, and MW-8.
- Analyzed all wells for:
 - Total lead by United States Environmental Protection Agency (USEPA) Method 6020.
- Analyzed wells MW-4, MW-6, and MW-8 for:
 - Total petroleum hydrocarbons heavy range organics (TPH-HRO) by Northwest Method NWTPH-Dx 97-602 with silica clean-up gel;
 - Total petroleum hydrocarbons diesel range organics (TPH-DRO) by Northwest Method NWTPH-Dx 97-602 with silica clean-up gel; and
 - Total petroleum hydrocarbons gasoline range organics (TPH-GRO) by Northwest Method NWTPH-Gx 97-602.
- Analyzed well MW-8 for:
 - Benzene, Toluene, Ethylbenzene and Xylene (BTEX) by United States Environmental Protection Agency (USEPA) Method 8260B; and
 - Naphthalene by USEPA Method 8260B.
- Included a duplicate sample of well MW-8 for Quality Assurance/Quality Control purposes.

 Prepared this letter report documenting the field activities and analytical results.

Groundwater Monitoring Activities

On September 9, 2011, Blaine Tech Services, Inc. (Blaine Tech), an ARCADIS subcontractor, visited the Site to collect groundwater samples from monitoring wells MW-4, MW-5, MW-6, MW-7, and MW-8. Prior to purging or sampling, depth to groundwater was measured in each well using a static water level indicator. Depth to groundwater ranged from 13.18 to 13.85 feet below the top of the well casings. These values were used to develop groundwater contours and calculate a hydraulic gradient of 0.002 feet per foot (ft/ft) to the southwest. Groundwater elevation data are presented in Table 1 and on Figure 2.

Wells MW-4, MW-5, MW-6, MW-7, and MW-8 were then purged and sampled using a peristaltic pump and dedicated tubing per standard operating procedures (Attachment A). During the purging process, the pH, electrical conductivity, turbidity, dissolved oxygen, oxidation reduction potential and temperature were monitored and recorded on the sampling data sheets included as Attachment B. Purging continued until these parameters were stabilized.

The samples were shipped under chain-of-custody documentation to Lancaster Laboratories of Lancaster, Pennsylvania. Strict chain-of-custody procedures were followed from the time the samples were collected until the time they were shipped to the laboratory. Copies of the chain-of-custody documentation and laboratory report are included as Attachment C.

Summary of Results

Groundwater elevation data are summarized in Table 1 and Figure 2. Historical groundwater analytical results are summarized in Table 1. Analytical results from the samples collected on September 9, 2011 are also presented on Figure 2.

Groundwater samples collected during the monitoring event indicated the following:

 TPH-GRO concentrations reported for the groundwater samples collected from wells MW-4, MW-6, and MW-8 ranged from 180 micrograms per liter (μg/L) to 2,100 μg/L (well MW-8). The TPH-GRO concentration in well MW-8 is above the Model Toxics Control Act (MTCA) Method A Cleanup Level of 1,000 $\mu g/L$.

- TPH-DRO concentrations reported for the groundwater samples collected from wells MW-4, MW-6, and MW-8 ranged from not detected above the laboratory reporting limit of 29 μg/L to 130 μg/L (well MW-8). The TPH-DRO concentrations are below the MTCA Method A Cleanup Level of 500 μg/L.
- TPH-HRO concentrations were analyzed for in wells MW-4, MW-6, and MW-8.
 TPH-HRO concentrations were not detected above laboratory reporting limits in any of the groundwater samples collected during this monitoring event.
- Benzene was not detected above laboratory reporting limit of 0.05 μg/L in the groundwater sample collected from well MW-8.
- Toluene concentration reported for the groundwater sample collected from well MW-8 was 0.5 μg/L. The toluene concentration is below the MTCA Method A Cleanup Level of 1,000 μg/L.
- Ethylbenzene concentration reported for the groundwater sample collected from well MW-8 was 45 μg/L. The ethylbenzene concentration is below the MTCA Method A Cleanup Level of 700 μg/L.
- Total xylenes concentration reported for the groundwater sample collected from well MW-8 was 4 μg/L. The total xylenes concentration is below the MTCA Method A Cleanup Level of 1,000 μg/L.
- Naphthalene concentration reported for the groundwater sample collected from well MW-8 was 24 μg/L. The naphthalene concentration is below the MTCA Method A Cleanup Level of 160 μg/L.
- Total lead concentrations reported for the groundwater samples collected from wells MW-4, MW-5, MW-6, MW-7, and MW-8 ranged from 0.15 μg/L to 0.77 μg/L (well MW-6). The total lead concentrations are below the MTCA Method A Cleanup Level of 15 μg/L.

Mr. Mark Dunbar November 17, 2011

Quality Assurance / Quality Control

Three QA/QC samples were submitted for chemical analysis during the September 2011 monitoring event. The first QA/QC sample consisted of one trip blank. The trip blank sample was analyzed for TPH-GRO and BTEX. The trip blank sample did not contain any of the analyzed constituents above the laboratory reporting limits.

The second QA/QC sample consisted of a duplicate sample. Duplicate samples help assess the precision of the analyses. A duplicate sample was collected from well MW-8 and submitted to Lancaster Laboratories for chemical analysis. Both the original sample (MW-8) and duplicate sample (DUP) were analyzed for TPH-GRO, TPH-DRO, TPH-HRO, naphthalene, total lead and BTEX. A low relative percent difference (less than 30%) indicates good precision.

Analytical results for MW-8 and the duplicate sample indicated relative percent differences (RPDs) for total xylenes and naphthalene of 0.0% each. Analytical results for toluene and ethylbenzene indicated RPDs of 18.2% and 2.2%, respectively. Analytical results for TPH-GRO and TPH-DRO indicated RPDs of 4.7% and 8.0%, respectively. Analytical results for total lead indicated an RPD of 6.7%. Analytical results for concentrations of benzene and TPH-HRO were not detected in either MW-8 or DUP above the laboratory reporting limits during this monitoring event.

The third QA/QC sample consisted of an equipment blank. The equipment blank was analyzed for TPH-GRO, TPH-DRO, TPH-HRO, BTEX, naphthalene and total lead. The equipment blank sample did not contain any of the analyzed constituents above the laboratory reporting limits.

Project Schedule

The next annual monitoring event is tentatively scheduled for September 2012. ARCADIS will provide Ecology Headquarters with a minimum 72-hour advance notice prior to conducting the monitoring event. The field activities will be performed in accordance with the standard procedures utilized during previous monitoring events

Please contact Allen Just at 714.508.2677, if you have any questions or comments regarding this report.

Sincerely,

ARCADIS U.S., Inc.

Allen C. Just, P.E. Principal Engineer

Rebecca Andresen, L.G.

Technical Expert

2588 Geoloo

Rebecca K. Andresen

Attachments:

Table 1 Groundwater Monitoring Data and Analytical Results

Figure 1 Topographic Map of Site Location and Vicinity

Figure 2 Groundwater Contour Map – September 9, 2011

Figure 3 Groundwater Concentration Map – September 9, 2011

Attachment A Standard Operating Procedures – Groundwater Sampling

Attachment B Groundwater Monitoring and Sampling Data Package

Attachment C Chain-of-Custody Form and Laboratory Analytical Data

Copies:

Jean Wong, Chevron Environmental Management Company Russell Cazier – Cazier Properties, LLC, Property Owner

Attachments

Table

TABLE 1
GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS
CHEVRON SITE NO. 9-8944
RICHLAND, WASHINGTON

					אטוה	HYDROCARBONS	,	4	PRIMARY VOCS	3	+		+	מין ושניים					SHA	2			I
				,	O	OS	OS					ped		0X SW8020	809Z8W8 X0	alene	a)anthracene	əu	anarthratoull(d	enertheneut)fluorene	s)bλιene	t,2,3-cd)pyrene	enecene)anthracene
Location	Date	700	WLQ	GWE	19-H9T	:G-H9T	TPH-HF	۵	<u></u>	ш	×	vlossiC	[610]	∮ 38TM	1 38TM	didqsV)ozuəg	eskiųg)ozuag)ozuə8)ozuag	ouepu	znediC
ATCA Method A	MTCA Method A Cleanup Levels		-		800/1000	200	200	6	1000	П			15	ž	50	160	¥	≱	¥	≨	¥	¥	ž
	Units	=	=	ft-amsl	7/6rl	na/L	1/6/	na/r	1/6/1	Hg/L) 17/61	7,61	ng/L	7/61	hg/L	101	1/6/1		ng/L	h	텖		J M
MW.1	08/11/1994	93.98	7.03	86 95	1		1	1	1	1	L	1	1	ŧ	1		,	1	-	1	1	-	-
MW.1	T.	93.00	2 6	88.33	1	1	:	,		1	1	-		1	: 1	1]						
MW-1	T	93.98	200.	86.98	ı	ı	ı	ı	ı	ı	+		-	-	-		1	1	1	1	i	1	1
MW-1	-	93.98	7.29	86.69	14,400	-	-	94.4	15.5	325	1		-	1	1	1	1	ı	ı	1	1	,	ı
MW-1		93.98	8.58	85.40	16,200	1	1	11.7	<8.00	+	<u> </u>		-	<25.0		1	1	-		-	-	1	1
MW-1		93.98	8.66	85.32	6,320	1	1	38.3	9.30	+	64.1			15.4	<4.00	1	1	-	1	1	1	1	ł
MW-1		93.98	9.95	84.03					1	H		1		1		1	ı	ı	1	ı	1	1	ı
MW-1	1	93.98	9.14	84.84	8,450	-		48.4	1.8	_				<50.0	<50.0	1	1	1	i	ī	1	1	1
MW-1		93.98	83.	84.13	6,650	Į	1	49.2	17.0	÷	97.9		-	16.8	\$5.00	1	1	ı	ı	ı	1	1	1
MW-T	02/04/2002		10.01	83.27	08 4 ,r	1	1	1.81	39:1-5	+				1	00.00	1	1	ı	1		1	1	1
MW-T		83.80	1 04	1 60	1 8	1	1	1 0	1 0	- 2	۱۹		1	1 0	1	ı	ı	ı	ı	1	ı	ı	1
MW-1					- 82	1 1	1 1	808	200	2 5	4	1 1	, ,	0.50	; 1	;]	1 1	1 1	1 1	1 1	1 1		1 1
MW-1	02/19/2004		11.79	1		***	1	1	1		1		1	ì	,	ı	:	,	1	1	,	ı	ı
MW-1	08/10/20041		10.97	. i	1		,		ı	1			1	1	-	1	-	1	-	1	1	1	1
MW-1			11.39			1	i	1	1	1				1		1	1	1		1		1	ı
MW-1		93.98	1	1	1	1	1	1	1	1			1	1	1	1	1	i	ŧ	ł	1	t	ī
MW-1	10/23/2007*		ı	ı	1	ı	1	ı	ı	1	1.			ı	1	l				1	1	1	1
2,747, 2	7007117000	20	40	07 44						F	-				***************************************		-					-	
MW-2	T	93.21	6.11	87.10	1	1	ı	1	1	,	1	1	1	1	-	1	1	1	1	1	,	1	1
MW-2		93.21	6.11	87.10	èrei	**	t	1	1	ŧ	1		1	1	ı	ı	1	ı	ı	1	1	ı	ı
MW-2	08/12/1996	93.21	6.40	86.81	17,400	1	ł	152	*****	,				ı	1	1	1	1	1	1	1	;	1
MW-2	02/27/2000	93.21	7.77	85.44	7,500	ı	ı	99.8		_		ı	1	<10.0	1	1	1	1	ı	ı	ı	ı	ı
MW-2	02/21/2001	93.21	7.84	85.37	1,510	1	1	20.1	5,43	31.9	67.2			×2.00	27.00	1	1	1	1	1	1	ı	I
MW-Z	05/22/2001	93.21	4 6	20.02	4,310	1	1	20 4	÷			Andreas d'habban delesado		11.6	00.00	1	1	ī	ı	ı	ı	ı	
MW-2	11/10/2001	23.23	× 0	8 5	1,870		-	14.6	+			manufic arrangement and a second		0.623.0	00.00	1	1	*	L	ı		1	1
MW-2	02/04/2002	93.21	90 0	23.75 23.75	4.500	1 1	1	33.3	+	_	.]		,	- 2	20.5	1 1	1						1
MW-2	08/24/2002	93.21	9.48	84.03	3,400	1	1	4	+	-}	. [1		<2.5	3 -	1	1	ļ	1	;	,	ı	ı
MW-2	ļ	93.21	9.78	_	2,600	1	1	7.3	 	+ -	32	1	1	<2.5	1	ı	1	1	1	1	1	1	1
MW-2	08/21/2003	93.21	10.52		840	l	ſ	2.1		-		1	-	<2.5	1	i	1	ı	ı	ı	ı	1	ı
MW-2	02/19/2004		11.06		950	ı	ı	<5.0				ı		<2.5	ı	1	1	f	1	\$	*	ı	ı
MW-2	08/10/2004	···· ÷	10.16	83.05	×50	1	1	<0.5	-		<1.5	1	-	<2.5	'	ı	ŀ	ı	1	1	1	1	1
MW-2	12/03/2004		10.68	1	<48	1	,	40.5	+		4.5	1		<2.5	1	****		1	1	1	1	1	,
MW-2	02/21/2006	93.21	11.52	81.69				Manage A Manage A Manage (141)			-	1		1	ı	١	1	1	1	1	1	1	1
MW-2	10/23/2007	1	1		1	1	1	-	1	1	1	1		1	1	l man	1	ı		ı		ı	ı
MW-3	08/11/1994	94.57	7.63	86.94	1	1	,	1			-	1		1		-	-	1		1	1		,
MW-3	08/25/1994	94.57	7.59	86.98		1	1	1	1	-	<u> </u>	1		1		1	ı	1	1	I	1	1	1
MW-3	09/23/1994	94.57	7.59	86.98	ı	ı		J		ı		ı	1	ı	ı	ı	-	1	-	1	-	1	1
MW-3	08/12/1996	94.57	7.89	86.68	37,700	1	1	84.6	77.1	1,190	- 1	1	,	:	ſ	į	ì	ł	ı	ı	ı	ı	ı
MW-3	02/27/2000	94.57	9.18		30,700	*	ŧ	45.4	$^{+}$				*	<25.0	1	1	ı	1	1	ı	1	1	ı
MW-3	02/21/2001	94.57	9.73		060'9	1		29.9	€.07	182	293	-		8.75	4.00	1	1	;		1	-	1	1

TABLE 1 GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS CHEVRON SITE NO. 9-8944 RICHLAND, WASHINGTON

П	21122011111111111111111111111111111111	∢ =	3	Γ.				,				,	,	,	,	210					, [,]		310		Ţ	1	Τ,		T.T	010		1	,	4/44/44		,		010		,	Γ
	อกอวณาทำกล(ก่,ธ)รถอdiG	+	-	H	1		1		ı	1	-	+	1	+	1	10 <0.010	1		1	***************************************	+	+	1	10 <0.010	1	+	I I	+			10 <0.010			1	The same of the sa	+	' 	-	10 <0.010	1	1	ļ
	aneıvq(bɔ-ɛˌʔ,t)onebni	+	-	-	1	1	1	1	1	1	1	1	1	1	1	21 <0.010	1	1	1	1	1	1	1	20 <0.010	1	1	131	1	1	1	0 <0.010	1	1	1	I MANAGEMENT	1	1	1	1 <0.010	1	1	
	Benzo(a)pyrene	X S	S	1	1	1	1	1	1	1	1	!	1	1	1	0 <0.021	1	1	1	1	1	1	J	<0.010 <0.020	1		1 1			1	<0.020		1	1	1	1	1		0.021	l	į	
PAHs	Велхо(к) Лиогалі і і в	¥ §		1	1	ŧ	ı	1	ı	1	1	-	1	1	1	<0.010	t	١	١	1	1	1	L		ı	1	1 1	1	1	1	<0.010	1	1	1	1	1	ı	-	<0.010	ŧ	1	
ď	Benzo(b)fluoranthene	¥	1	1	1	1	l	1	1	1	1	1	1	1	1	<0.010	1	ī		1	-	1	,	<0.010	1	1	1 1	omentana va	1	1	<0.010	1	1	1	1	1	1	1	<0.010	Anne	1	
	Суилевив	¥	1	ı	ı		ı	1	ı	1	1	1	ı	ı	1	<0.010	f	t	*************	1	-	1	ı	<0.010	1		1 1		ı	ł	<0.010	ı	*	1	1	THE OWNER WAS ARREST			<0.010	1	1	TO SHANK STATE A SECOND STATE OF THE SECOND ST
	Benzo(a)anthracene	AN I	1784	1	1	ı	ı	ı	1	ı	1	1	1	1	ı	<0.010	1	ı	ł	ı	1	ı	1	<0.010	-	1	ı #	ı		1	<0.010	ł	1	-	1	1	1	1	<0.010	1	1	CHANGE CONTRACTOR
	Naphthalene	160	1	1	ı	ı	ı	١	ı	1	1	1	1	!	I	2.3	1	,	1	ı	1	ŀ	ı	0.020	1	1	1 1	1	1	1	2.8	1	,	1	ı	1	+	1	0.031	1	1	
ATES	MTBE by SW8260B	02	1	1	ı	ı	1	1	ı		1		1	ı	1	\$1.0	۸.5	<0.5	6.5	40.5	1		ī	<0.14	۸ 0.	δ. τ.	0.00	3	The same of the sa	1	<0.14	۸. م.	<0.5	<0.5	<0.5	1	1	1	40.14	4.0	<0.5	
OXYGENATES	W 1ВЕ р\ 2М8020	AN DE	1	-	ı	ı	1	ı	ı	ı	-	ı	,	ı	:	1	ı		-	-	1	1	1	-	ı	1		1	1	-	1	ł	ı	1		1	1	ı	I	1	ı	
LEAD	JeżoT	15	7/64	-	1	1	ı	1		1	1	1	1	1	1	20	24	0.21	0.16	0.18 J	0.18	140	2	6.9	27	0.11	18.0	0.44		0.16	27	29	2.0	1.5	0.92	0.76		0.77	13	33	0.070	
7	Devolved	4 5		-	1	1	J	1	1	1	-	-	1	1		<2.0	0.	1		-				<2.0	<2.0		1 1	-	 -	1	3.0	<2.0	1	1	1				<2.0	<2.0	1	
		1000 NA	-1		1	-	'		100				-+	-	-	17.1	L		-		-		-	0.799 <2	<2.0 <2				-			3	<0.5		H	+		-	1 1	<2.0 <2		
္ဌ		200	4	,	1	-	ı		1	1	1		1	1	ı	78	-	-	- 1	\rightarrow	1	1		0.49 0	4.0		0.00	+	1	1	0.41	 -	<0.5	-	-		1	-	+	-	<0.5 ×	÷
PRIMARY VOCS		1000	┨		1		1	1	1		1		1		ı			<0.5			1		-	-		-	200	+		ł	<0.066		<0.5	-	+	1	1	1	<0.066			٤
PRIN		5 1	1	,	1	ı	-	1	1	Contraction of a factorist and a standard		1	1					<0.5	-	+	1	1 1	-		+		0.00	-		1	<0.10 <		<0.5	- 1	+	1		1	H	1	<0.5 *	
_	<u> </u>	- 5				ļ.,	•			Name of the last o					_	o	V	A	∀	٧	4		_	₽	٧	∀ \	/\V				8	٧	٧	V	¥		1		₽	⊽	Ÿ	
BONS	оян-нат	200		1	ı	١	1	1	1	ANTON	1	-	1	1	I	<250	\$240	95	96	4/2	4150	787	7	<250	<240	8	267	5 1	-	1	<260	<240	96	96	295	ŝ	1	89	<260	<240	-68°	
HYDROCARBO	ОЯО-НЧТ	200		1	ı	ı	1	1	ı	TOTAL AND THE THE SELECTION AND	-	***************************************	-	ı	ı	610	280	110	270	84	2,600	200	67/	<120	×120	112	600	1	1	1	670	830	330	2	150	3	1	4	×130	<120	<76	
HAD	ояэ-нат	800/1000		1	ı	ı	1		ı	To be deleted by the second	OTTO A STATE OF A STAT	+	1	1	1	2,800	1,700	570	460	ಜ	2,600 J	180	3	51	\$50	130	99	3 1	1		3,400	1,100	200	200	280	9/4	1	610	73	\$20	<50 <50	
1	GWE	ft-ams1	0	85.05	ı	1	ı		1	1	The second secon	1	1	ı		346.50	345.19	344.98	346.17	345.65	345.28	345.41	1	346.65	345.34	345.14	145.77	345.46	45.72	345.72	346.71	345.43	345.16	333.79	345.82	345.51	345.65	345.67	346.38	345.01	144.82	
	W.L	#	1	9.52	+	1	1	ı	ı	ı	***	1	ı	1	1							3.78	2	2.42	13.73 3	13.93 345.14	3.30	13.61 3	3.35	3.35	2.14 3	3.42	13.69					13.18				
ŀ	20	=	:	94.57	1	94.57	34.57	94.57	94.57	94.57	94.57	94.57	94.57	7c.46	1	359.19 12.69	359.19 14.00	59.19	359.19	359.19 1	359.19 13.91	359 19 13.07	200.00			359.07		359 07 1	359.07 13.35	59.07	58.85	58.85	358.85 13.69	358.85	358.85 13.03	338.83	358.85	358.85 1	359.01	359.01	59.01	
		lels			1						Ì	1	t	Ţ.			-	ļ	Ī		-			П	1	1	T				1.		-	1		-				į		ĺ
	Date	Seanup Lev		05/22/2001	08/11/2001	11/10/2001 ²	02/04/2002	08/24/2002³	02/20/2003	08/21/2003	02/19/2004	08/10/2004*	12/03/2004	10/22/1/2006	10.459.401	10/23/2007	03/24/2008	05/12/2008	07/28/2008	11/03/2008	02/11/2009	09/09/2010	03/00/00	10/23/2007	03/24/2008	05/12/2008	11/03/2008	02/10/2009	08/11/2010	09/09/2011	10/23/2007	03/24/2008	05/12/2008	07/28/2008	11/03/2008	02/11/20	08/11/2010	09/09/2011	10/23/2007	03/24/2008	05/12/2008	
	Location	MTCA Method A Cleanup Levels Units		MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	e-ww	MVV-3	C. AAIAI	MW-4	MW4	MW-4	MW-4	MW.4	MW 4	MW/A	1	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-7	MW-7	MW-7	
	Č	MTC		Z	Ž	Ž	ž	22	2	2	2	2 :	2 3	2 2	2	Z	2	2	2	2	2 2	2 2	2	2	2	2 2	2 2	Σ	2	2	Σ	ž	2	2	2	2	2	2	7	\$	\$ ≥	≅ ≥ ≥

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS CHEVRON SITE NO. 9-8944 RICHLAND, WASHINGTON TABLE 1

LEGEND

MTCA = Model. Toxics. Control. Act Cleanup. Regulations [WAC 173-340-720(2)(a)(1), as amended February 2001]

NA = No applicable MTCA Method A cleanup level

TOC = Top of Casing

DTW = Depth to Water

GROUNDWATER MONITORING DATA AND ANALYTICAL RESULTS CHEVRON SITE NO. 9-8944 RICHLAND, WASHINGTON **TABLE 1**

		_	
	ənəɔsɪdina(d,s)xnədiQ	Ν	ng/L
	anatyq(bɔ-ɛ,2,t)onabni	ΝA	1/6ri
	Benzo(a)pyrene	NA	ng/L
ts t	Велго(к)Пиоталіћене	A	ng/L
PAHS	Senzo(b)fluoranthene	NA	ng/L
	Chrysene	NA	1/Brt
	Benzo(a)anthracene	NA	hd/L
	ənəlsritiqsM	160	Hg/L
VATES	MTBE by SW6260B	20	T/Brl
OXYGE	WLBE Py SW8020	Ϋ́	no/L
LEAD	lstoī	15	hg/L
	DavlossiO	¥	hd/L
	×	1000	hd/F
VOCS	Ш	700	T/bri
PRIMARY	1	1000	J/bri
ă.	æ	S	na/L
SNS	оян-нат	009	7/bn
HYDROCARBO	ояа-нат	200	nd/L
HYD	ояэ-нөт	800/1000	na/L
	GWE		ft-ams1
	TOC DTW		¥
	TOC		¥
	Date	fethod A Cleanup Levels	Units
	Location	MTCA Method A	

GWE = Groundwater elevation (ft-amsl) = Feet Above Mean sea level

ft = Feet

ugut = Micrograms per Liter
TPH-DRO = Total Petroleum Hydrocarbons - Diesei Range Organics
TPH-GRO = Total Petroleum Hydrocarbons - Gasoline Range Organics
TPH-HRO = Total Petroleum Hydrocarbons - Oil Range Organics
TPH-HRO = Total Petroleum Hydrocarbons - Oil Range Organics
BTEX = Benzene, toluene, ethylbenzene, xylenes
VOCs = Volatile organic compounds
MTBE = Methyl terliary buryl enher
PAHs = Polycyclic aromatic hydrocarbons
- = Not available / not applicable

< x = Not detected above laboratory method detection limit J \approx Estimated concentration 1 = Not sampled due to insufficient water

2 = Inaccessible

³ = Dry ⁴ = Destroyed ⁵ = Inaccessible - Paved over

NOTES:

Concentrations in bold exceed MTCA Method A Cleanup Levels

Figures

LEGEND:

MW-5
MONITORING WELL LOCATION AND IDENTIFICATION

MW-2 X DESTROYED MONITORING WELL LOCATION

(345.72) GROUNDWATER ELEVATIONS (FT AMSL)

GROUNDWATER ELEVATION 345.00 = = = CONTOURS - DASHED WHERE INFERRED (FT AMSL)

GROUNDWATER FLOW DIRECTION AND GRADIENT (ft/ft)

FEET PER FOOT

HISTORICAL GROUNDWATER FLOW DIRECTION 2008 TO 2011

NOTES:

- BASE MAP PROVIDED BY CONESTOGA-ROVERS & ASSOCIATES, DATED 11/3/2008, AT A SCALE OF 1"=30'.
- 2. ALL SITE FEATURES AND LOCATIONS ARE APPROXIMATE.

CHEVRON SERVICE STATION NO. 9-8944 RICHLAND, WASHINGTON

GROUNDWATER CONTOUR MAP SEPTEMBER 9, 2011

FIGURE

LEGEND:

180

<67

[120]

- MW-5 MONITORING WELL LOCATION AND IDENTIFICATION
 - TPH-GRO/TPH-DRO/TPH-HRO/B/T/E/X/TOTAL LEAD/NAPHTHALENE CONCENTRATIONS IN MICROGRAMS PER LITER (µg/L)
 - CONCENTRATION NOT DETECTED ABOVE LABORATORY REPORTING LIMIT
 - DUPLICATE SAMPLE CONCENTRATION IN (µg/L)
- TPH-GRO TOTAL PETROLEUM HYDROCARBONS GASOLINE
 - RANGE ORGANICS
- TPH-DRO TOTAL PETROLEUM HYDROCARBONS DIESEL
 - RANGE ORGANICS
- TPH-HRO TOTAL PETROLEUM HYDROCARBONS HEAVY
 - RANGE ORGANICS
 - B BENZENE
 - T TOLUENE
 - E ETHYLBENZENE
 - TOTAL XYLENES
 - NOTE: CONCENTRATIONS IN BOLD EXCEED MTCA

METHOD A GROUNDWATER CLEANUP LEVELS

NOTES:

- BASE MAP PROVIDED BY CONESTOGA-ROVERS & ASSOCIATES, DATED 11/3/2008, AT A SCALE OF 1"=30".
- 2. ALL SITE FEATURES AND LOCATIONS ARE APPROXIMATE.

CHEVRON SERVICE STATION NO. 9-8944 RICHLAND, WASHINGTON

GROUNDWATER CONCENTRATIONS MAP SEPTEMBER 9, 2011

FIGURE

Attachment A

Standard Operating Procedures – Groundwater Sampling

ATTACHMENT A STANDARD OPERATING PROCEDURES FOR LOW-FLOW GROUNDWATER SAMPLING

USING PERISTALTIC PUMP Chevron Facility No. 9-8944 Richland, Washington

Objectives:

- Collect samples representative of groundwater conditions in the geologic formation of interest and reduce the potential for sample bias due to the sampling technique or equipment.
- Minimize the potential for cross-contamination of samples through the combined use of proper decontamination procedures and dedicated equipment / supplies.

Site Specific Issues:

none

Equipment and Supplies:

- Tools (wrench, sockets, hex key, well lock key, pry bar, scissors)
- Decontamination supplies (buckets, brushes, potable and distilled water, and Liqui-Nox[®] or equivalent non-phosphate detergent)
- Electronic water level meter
- Interface probe
- Multi-meter (pH, specific conductivity, turbidity, DO, and temperature)
- Flow through cell for multi-meter (optional)
- Peristaltic pump
- Power source (generator, extension cord, 12-volt battery, etc.)
- Polyethylene tubing
- Silicon tubing (for pump head roller assembly)
- In-line 0.45 micron disposable filter (field filtering for dissolved metal analyses)
- Plastic sheeting
- Graduated cylinder (metric)
- Laboratory-supplied sample containers / labels
- Resealable plastic bags
- Site Plan
- Field sheets
- Health and Safety Plan / Job Safety Analysis (JSA)
- Safety cones / caution tape
- Cooler and ice
- Clear packing tape
- · Electrical tape or zip ties
- Bubble wrap
- Large, heavy-duty plastic bags
- Trip blanks (laboratory prepared)
- Organic-free water provided by laboratory (for preparing equipment and field blanks)
- Chain-of-custody
- Department of Transportation (DOT)-approved 55-gallon, steel drums / labels

Standard Procedures:

1.0 Instrument Calibration

- 1.1 Calibrate multi-meter before going into the field.
- 1.2 Calibration procedure and frequency should follow manufacturer's instructions. Document calibration on field data sheet or in a Calibration Log.

2.0 Pre-purging Activities

- 2.1 Prior to the monitoring event, review the *Groundwater Monitoring Scope of Work* prepared for the Site.
- 2.2 Conduct Health and Safety meeting at the start of each work day. Personnel must read and abide by the requirements presented in the site-specific Health and Safety Plan. Review Job Safety Analysis.

3.0 Groundwater Level Measurements

- 3.1 Wells are monitored and sampled based on the previous analytical results. Start with the well with the lowest concentrations and proceed systematically to the well with the highest concentrations.
- 3.2 Define work area around well with safety cones and/or caution tape, if deemed necessary.
- 3.3 Remove the well lid. Unlock and remove the well plug.
- 3.4 Turn on the electronic water level meter and slowly lower the probe into the well until an audible tone is heard. Measure the depth to water to the nearest 0.01 foot relative to the top of casing. Measure from the reference point located on the north side of the casing (usually a V-cut or distinguishable mark). Several attempts may be needed to determine the exact depth to water. Measure the total depth of the well if the depth is not indicated in the scope of work or can not be obtained from previous field data sheet. See Standard Operating Procedure for Separate-phase Hydrocarbon Monitoring, for the gauging of well MW-1.
- 3.5 Record the time, depth to water, and total well depth on field data sheet.
- 3.6 Decontaminate the water level indicator probe and tape using a standard three-bucket wash. Allow to air dry.
- 3.7 Check condition of well box, casing, and lid. Record deficiencies on field data sheet.
- 3.8 Replace the well plug and secure well lid. Move to the well with next highest concentrations.
- 3.9 Repeat steps 3.2 through 3.8 for each well.

4.0 Low-flow Purging and Sampling

- 4.1 Purge and sample in the order established in Step 3.1, if possible.
- 4.2 Define work area around well with safety cones and/or caution tape, if deemed necessary. Remove the well lid. Place clean, dedicated plastic sheeting around the well. The plastic sheeting must be large enough to prevent direct contact between the sampling equipment (pump and tubing) and the ground surface.
- 4.3 Remove the well plug.
- 4.4 Install new length of silicon tubing in pump head per manufacturer's instructions. Attach clean or dedicated polyethylene tubing to the silcon tubing installed in the pump head.
- 4.5 Slowly lower the polyethylene tubing into well to avoid mixing water column and/or dislodging particulates from the inside of the well casing. The use of a stainless steel tubing weight is recommended so the tubing can be lowered to a specific depth without curling.
- 4.6 Position the end of the tubing at the sampling depth indicated in the scope of work. If the sampling depth is not indicated in the scope of work, position the end of the tubing in the middle of the screen interval indicated in the scope of work. If neither the sampling depth or screen interval is indicated in the scope of work, calculate the approximate depth to the middle of the submerged screen interval ((total well depth depth to water) / 2) + (depth to water), which will be referred to as the sampling depth.
- 4.7 Connect the in-line monitoring cell and multi-meter probe to the discharge line of the pump (optional).
- 4.8 Turn "on" pump. Begin pumping and adjust flow rate to less than 0.5 liters per minute (0.13 gallons per minute). Use a graduated cylinder and stop watch to determine the actual flow rate.
- 4.9 Record pH, specific conductivity, oxygen/reduction potential (ORP), turbidity, dissolved oxygen, and temperature readings at three to five minute intervals until stabilization is achieved.
- 4.10 Stabilization is achieved when three successive readings vary by no more than ±0.1 Standard Units for pH; ±3% for specific conductivity; ±10 mV for ORP; ±10% for turbidity; and ±10% for dissolved oxygen.
- 4.11 Following stabilization, disconnect in-line monitoring cell and multi-meter probe (if applicable). Fill the appropriate, laboratory-supplied sample containers (see scope of work for list of sample containers). Sample containers should be filled by allowing the pump discharge to slowly flow down the inside of the containers until full. Fill the sample containers by group (i.e. fill all containers for VOC analysis before filling containers for other analyses). Analyses that require filtering (i.e. dissolved metals) should be done last. In addition, sample containers larger than 250 ml should be filled in alternating 250 ml aliquots. This

- will help insure that the samples are aliquots of same sample and were taken at approximately the same time.
- 4.12 If samples are to be analyzed for dissolved metals, connect disposable, in-line 0.45 micron filter to the discharge hose. Collect sample using same technique as indicated in Step 4.11.
- 4.13 Label sample containers, place sample containers in re-sealable plastic bags, and transfer containers to ice-chilled cooler. Indicate sample ID, sample date and time, and required analyses on chain of custody (COC). See Section 6.0 regarding the handling of samples.
- 4.14 Remove tubing from well. If tubing is not dedicated to the well, decontaminate outside of tubing using standard three-bucket wash. Circulate detergent solution through tubing for approximately five minutes in order to decontaminate the inside of the tubing. Rinse by circulating potable water through the tubing for approximately three minutes, followed by distilled water for approximately two minutes.
- 4.15 If tubing is dedicated to well, suspend tubing within the well casing or place tubing in plastic bag labeled with the well identification.
- 4.16 Secure the well and move to the next sampling location.
- 4.17 Repeat Steps 4.2 through 4.16.

5.0 QA/QC Samples

- 5.1 Quality assurance/quality control (QA/QC) samples consist of field duplicates, trip blanks, equipment blanks, split samples, and field blanks. Split samples are only required if specifically requested by the client, consultant, or regulatory agency. In addition, field blanks are only prepared and submitted for analysis if requested by the consultant or if site conditions warrant submittal of a field blank. Site conditions that may warrant submittal of a field blank include: air-borne dust, organic vapors, unusual odors, specific site activities (e.g. painting, solvent use, etc.), or the dispensing of gasoline at or near the Site.
- 5.2 Field duplicate samples are collected at a frequency of one for every 10 samples. If less than 10 samples are submitted to the laboratory for analysis, one duplicate sample will be submitted. Select wells in the middle of the sampling order for the collection of duplicate samples. Collect duplicate using the same technique as the original sample (refer to Step 4.11). Fill the sample containers by group (i.e. fill all containers for VOC analysis before filling containers for other analyses). Analyses that require field filtering (i.e. dissolved metals) should be done last. In addition, sample containers larger than 250 ml should be filled in alternating 250 ml aliquots. This will help insure that the samples are aliquots of same sample and were taken at approximately the same time. Duplicate samples will be named and identified on COC as "DUPLICATE", "DUPLICATE 2", "DUPLICATE 3", etc.
- 5.3 Trip blanks are supplied by the laboratory and accompany the sample containers and samples to and from the laboratory. Trip blanks are never to be prepared outside the laboratory. In most cases, one set (2 trip blanks) is submitted in each

cooler containing samples requiring analysis for volatile organic compounds (VOCs). Each set of trip blank samples will be named and identified on COC as "TRIP BLANK", "TRIP BLANK 2", "TRIP BLANK 3", etc.

- 5.4 Equipment blanks are collected to verify decontamination procedures are effective. Collect one equipment blank at the beginning of each sampling event by pumping organic-free water (provided by laboratory) through the sample tubing and collecting the water in the appropriate sample containers. A sampling event is defined as the sampling activities conducted in a day. Follow the procedures described in Step 4.11. Equipment blank samples will be named and identified on COC as "EQUIPMENT", "EQUIPMENT 2", "EQUIPMENT 3", etc. Equipment blanks are not required if new or dedicated tubing is used at each sampling location.
- 5.5 Split samples are aliquots of the sample that are submitted to two separate laboratories. Transfer the sample to be split to two sets of identical containers following the procedures described in Step 4.11. Fill the sample containers by group (i.e. fill all containers for VOC analysis before filling containers for other analyses). Analyses requiring field filtering (i.e. dissolved metals) should be done last. In addition, sample containers larger than 250 ml should be filled in alternating 250 ml aliquots. This will help insure that the samples are aliquots of same sample and were taken at approximately the same time. Split samples will be named and identified on COC as "SPLIT", "SPLIT 2", "SPLIT 3", etc. Split samples are only required if specifically requested by the client, consultant, or regulatory agency.
- 5.6 Field blanks are prepared in the field in order to evaluate the potential for sample contamination by site contaminants not associated with the sample collected. Field blanks are prepared by pouring organic-free water (provided by laboratory) into the appropriate sample containers, at site location(s) where volatile organics are expected. A laboratory-prepared trip blank, transferred from the original sample container to another appropriate sample container, can also be used as a field blank. Field blank samples will be named and identified on COC as "FIELD BLANK", "FIELD BLANK 2", "FIELD BLANK 3", etc. Field blanks are only prepared and submitted for analysis if requested by the consultant, or if site conditions warrant submittal of a field blank.

6.0 Sample Handling / Shipping

- 6.1 Following collection, groundwater samples must immediately be placed in an ice-chilled cooler. Make sure cooler is in good condition and the drain plug is in place and secure. Wet ice should be placed in the cooler prior to initiating sampling activities and the cooler should contain sufficient ice to completely cover all sample containers. Check the cooler periodically throughout the day to insure there is sufficient ice to cover the samples. Drain excessive water from the cooler and add additional wet ice as needed. Use of "blue ice" is not acceptable.
- 6.2 Sufficient ice must be placed in the cooler prior to transport or shipment to ensure ice is still present in the cooler when the samples are received at the laboratory.

- 6.3 When hand delivering samples to the laboratory, the samples must remain in the cooler at all times. Samples should not be transferred from one cooler to another after leaving the Site. In addition, do not remove any samples from the cooler until the laboratory has measured and recorded the temperature of the cooler/samples on the chain of custody. Properly chilled coolers / samples should be approximately 4° Celsius. Check sample IDs and number of samples against the chain of custody. Sign and date the chain of custody.
- When shipping samples to the laboratory via air, the inside of the cooler should be lined with a large, heavy-duty plastic bag.
- 6.5 Check sample IDs and number of samples against the chain of custody. Sign and date the chain of custody. Place chain-of-custody documentation in a resealable plastic bag and tape the plastic bag to the inside of the cooler lid.
- 6.6 Wrap the sample containers with "bubble wrap" and place the samples in reseable plastic bags. Place all samples in the large plastic bag lining the inside of the cooler. Cover the samples with ice and securely fasten the top of the plastic bag lining the cooler with electrical tape or zip ties.
- 6.7 Close and securely tape the top of the cooler shut using packing tape. If warranted, chain-of-custody seals should be affixed to the cooler so the cooler cannot be opened without breaking the seals.
- 6.8 Shipping cooler(s) should be marked "This End Up" and arrows should indicate the upward position of the cooler. A label containing the name and address of the shipper should be affixed to the cooler and secured with clear shipping tape.

7.0 Waste Management

7.1 Purge water to be removed from site the same day via sampling truck.

8.0 References

Barcelona, Michael J., and Robert W. Puls, 1996. U.S. EPA Ground Water Issue: Low-flow (Minimal Drawdown) Ground-water Sampling Procedures. Washington, DC: April 1996.

United States Environmental Protection Agency, Region 4. 2001. Groundwater Sampling. Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (EISOPQAM). Athens, GA: November 2001.

Attachment B

Groundwater Monitoring and Sampling Data Package

WELL GAUGING DATA

Project	#_110909 -531	Date _	09109/11	Client _	CHEWRON	*
Site	1323 LEE BLUD	/ KE1:22	EWICK			

		T		T	True?		1	 	r <u></u>			
		Well	1	Depth to	Thickness of	Volume of Immiscibles				irvey		
		Size	Sheen /		Immiscible			5		oint:		
Well ID	Time	(in.)	Odor		Liquid (ft.)		Depth to water	Depth to well	10	OB or	١	
Well ID	Line	(111.)	Odol	Elquia (II.)	Liquia (R.)	(mi)	(ft.)	bottom (ft.)	[]	<u>(20</u>	N	otes
1,											Tu	ያ የ
Mr. 4	613.2	2	<u> </u>				13.78	23:75				
_	1											
Mw.5	0618	ュ					13.35	23,42			{	
4-0115	PELLO	2					13.18	24.30			1	
							12110	21,50	\dashv		$\vdash +$	
r-win	0633	2					13.71	22.00				
	1000	<u> </u>					13.11	<u>ૢૢૢૢૢૢૢૢૢૢૢૢ</u>	\dashv		-	
8. wn	0637	2							1	,	1	,
1111112	1002 1	5					13.85	24.70	<u> </u>			
-												

]]						_					
					-							
					-		1	l		Í		
												
										- [i
			[1			-			Ì		
												İ
		•	1									
		Ì			1	1						1
]				İ					
				1		, I	ŀ			1		
		1	1				-					
		1		1	ŀ	ľ				T		
												1
									-,,			
		l	1			j						

				T				
Project #	1: 110-	09	53/	Client:	CHEUR	حج		
Sampler	· <u>53</u>			Gauging I	Date:	ilo ca lli		
Well I.D	.: Mo	- 4		1	neter (in.)			3
Total Wo	ell Depth (Depth to \				
1	Free Prod			Thickness				
Reference	ed to:	(PVC)	Grade	Flow Cell				
Purge Meth Sampling N Start Purge		2" Grundi Dedicated	Tubing		Peristaltic I New Tubin	Pump	Bladder Pump Other	
		76 <u> </u>	T	300 0	7011		Pump Depth:	14,
Time	Temp.	рН	Cond. (mS/cm or (µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gais. of mL)	Depth to Water (ft.)
0807	18.60	7.19	985	16	0.58	34.4	900	13.81
0813	18-80	1.18	88L	12	0.53	33.8	1800	13.81
0815	18.61	517	<i>3</i> 87	9	0,48	31.7	2700	13.81
08/8	18.64	J77.J	882	= =	C4.0	30.6	3600	13.81
0821	18.66	7.17	882	\$	0.47	30.1	4500	13.81
				·				
								· · · · · · · · · · · · · · · · · · ·
Did well	lewater?	Yes (No)		Amount a	ctually e	vacuated: 🔾 :	=
Sampling	Time:	°&೨೨			Sampling	D-4	=10gl),,	
Sample I.I					Laborator			
Analyzed			втех мтв			~	XPOTER_	
	t Blank I.I		@				H-H TOTAL	- rews
	ech Send		Ilms C	835	Duplicate	1.1.1		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Project #	: //0=	10 9 - ~	31	Client:	CHGO	カロン		
Sampler:				Gauging I		=1098	11	
Well I.D.	un :	5		Well Dian				3
Total We	ell Depth (ft.): '১৯	.48	Depth to \	Water (ft.)	13,	<u>ک ت</u>	
1	Free Prod	-		Thickness				
Referenc	ed to:	(PVC)	Grade	Flow Cell				4-2
Purge Meth Sampling M	lethod:	2" Grundf Dedicated		,	Peristaltic I New Tubin	Pump	Bladder Pump Other	
Start Purge	Time: <u>でにい</u>	<u>a</u> .	Flow Rate: _	300 m	MIN	······································	Pump Depth:	18.51
Time	Temp.	pН	Cond. (mS/cm or (µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	Depth to Water
0842	18.87	1.79	1031	17	1,20	55.9	00P	13,40
0678	18.85	6.81	1043		1.11	54.6	1800	13,40
0F2/	18.87	6.86	1052	٩	1.09	53.3	ס מריב	13,40
0654	18.89	18.7	1053	9	1.06	52.9	3600	13,40
0657	18.91	6.87	1053	10	1.05	51.7	4500	13.40
Did well o	dewater?	Yes (N ₀)		Amount a	actually e	vacuated:	- }
Sampling	Time:	0653			Sampling	Date	व्याज्या।	<u>.5 L</u>
Sample I.I	D.: <i>11/10</i>	- 5			Laborator	-r(; t	CESTOR	
Analyzed	for:	TPH-G	втех мтв	E TPH-D	(Other	TOTAL LEA	<u></u>
Equipmen	t Blank I.I	D.;	@ Time		Duplicate	-	1	\
Blaine To	ech Servi	ces, Ind	. 1680 Ro		-		95112 (408)	573-0555

Project #	!: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9 4 - 53	. \	Client:	CHEUSO			-
Sampler:				Gauging I		=10 3]11		
Well I.D	· culti	· 6						3
Total We	ell Depth (4.30	Depth to V				
	Free Prod			Thickness		1		
Referenc	ed to:	(PVC)	Grade	Flow Cell				
Purge Meth Sampling N	lethod:	2" Grunds Desicated	fos Pump Tubing		Peristaltic New Tubir	Pump	Bladder Pump Other	
Start Purge	Time: 0'\2	<u> </u>		300 t	Mon		Pump Depth:	17'
Time	Temp,	pH	Cond. (mS/cm or (s/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. op mL)	Depth to Wate
1410	17.65	7.07	511	9	1,42	56.5	700	13.20
0141	17.67	6.70	912	6_	0.13	53.0	<u> </u>	13.20
074,1	17:17	P8.0	PIP	_5	0.63	51.8	2700	13.20
6750	17.69	6.89	914	_5	0.62	51.6	3600	13.20
					7			
Did well d	lewater?	Yes (Amount a	ctually e	vacuated: 2	.6 L
Sampling	Time:	075	1		Sampling		03/08/11	. 6 ~
Sample I.I).; <i>Mis</i>				Laborator	~	951ER	
Analyzed	for:	(TPH-G)	втех мтв			Othori		
Equipmen	t Blank I.I).:	@ Time		Duplicate		JATOT, H-HS	KAD
Blaine Te	ch Servi	ces, Inc	. 1680 Ro	gers Ave.	, San Jo	se, CA 9	5112 (408) 5	73-0555

					~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	J 171711	OXXE	
Project	#: \\os	30 0	38)	Client:	CHCION	ے م		
Sampler	: - 33		······································	Gauging I	<u> </u>	=1091	. 1	
Well I,I): Wr	. c		Well Diar	neter (in.)			3
Total W	ell Depth (ft.): 2	3.80	Depth to	Water (ft.)	: 13;	\\	***********
Depth to	Free Prod			Thickness				
Reference	ed to:	(FVC)	Grade	Flow Cell			•	The same of the sa
Purge Met Sampling I	Method:	2" Grundi Dedicated		-	Peristaltic I	Pump	Bladder Pump Other	
Start Purge	Time: <u>0 \\</u>	<u> </u>	Flow Rate: _	300 m	Cura		Pump Depth:	14,
Time	Temp.	pН	Cond. (mS/cm or (µS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals, or mL))	Depth to Water
11/10	16.53	131	937	10	5.08	52.5	900	13.73
0)1)	TE:131	7,31	937		191	519	1800	13.73
0750	18:10	7.30	940	5	4:7=7	51,3	2700	13,73
<i>ల</i> ుఎస్త	16.74	7.30	942 -	4	4.74	50.8	3600	13.73
0126	16:24	7.30	942	Ц	4.75	50.5	4500	13.73
· · · · · · · · · · · · · · · · · · ·							,	
								·
Did well	dewater?	Yes (No)		Amount a	ctually e	vacuated: 🖳	- 1
Sampling	Time:	0727	\		Sampling		09109/11) (
Sample I.	D.: 671	w ~"7			Laborator			
Analyzed			втех мтв			Other		
Equipmen	nt Blank I.I		@ Time		Duplicate	<u> </u>	LOLUT JEUL	>
			1985		~ upitoate	1,1,0,0		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

LOW FLOW WELL MONITORING DATA SHEET Project #: Client: 187-80F011 CHEWBAD Sampler: Gauging Date: ्जी ॐो।। Well I.D.: Well Diameter (in.): B. um 6 Total Well Depth (ft.): ユリーつ Depth to Water (ft.): Depth to Free Product: Thickness of Free Product (feet): Referenced to: PVC Flow Cell Type: 국소도556 Grade Purge Method: 2" Grundfos Pump Reristaltic Pump Bladder Pump Sampling Method: Dedicated Tubing New Tubing Other Start Purge Time: 0849 Flow Rate: 300 mulmin <u>19.5</u>' Pump Depth: Cond. Temp, (mS/cm or Turbidity D.O. ORP Water Removed Depth to Water Time (°C) pr °F) $(\mu S/cm)$ pΗ (NTUs) (mg/L)(mV) (gals. of mL) (ft.) 0952 18.04 7.25 18 42.0 OOF 13.87 0455 18.07 926 <u>00. 0</u> II1200 13.87 095-53 <u>1名,0ユ</u> 884 7 -30.6 ムイゴ 2700 13.87 2901 CO.21 393 ন্ -35.1 14,0 3600 MOPE 17.99 1.73 ব $\mathcal{L}P.O$ -43.4 4500 13.57 りょうく 17:74 1.72 Ą. <u>5400</u> 14.0 -45.9 387 0110 17.77 879 8 140 -48,6 6300 3.87 Did well dewater? Yes No Amount actually evacuated: Sampling Time: Sampling Date: 09/11/1 Sample I.D.: S. WILL Laboratory: LONORSTER Analyzed for: TPH-G ATEX MTBE (TPH-D) Other:) TPH-H, TOTAL KAD, NAPTH

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

Duplicate I.D.:

0

Equipment Blank I.D.:

WELLHEAD INSPECTION FORM

Client;	CHEURON-	>	_ S	ite:	چد	23.	<u> </u>	ट्य	<i>×</i> >	_\	٧<		X.	با در	'	Date 09/09/11
Job #:	110909	<u>-55</u>	1			. Те	echni	cian:	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	5/2	>					Date <u>09/09/11</u> Page <u>1</u> of <u>1</u>
								licates							n	
\	Well ID	Well inspected - No Corrective Action Required	Cap non-functional	Lock non-functional	Lock missing	Botts missing (list qty.)	Tabs stripped (list qty.)					Trip Hazard	Below Grade	Other (explain in notes)	Wall Not Inspected (explain in notes)	Notes (list if cap or lock replaced, if there are access issues associated with repairs, if traffic control is required, if stand pipe damaged, or any specific details not covered by checkes!)
Mr) <u>.</u> 4	X														
M	<u>) - </u>	X											 			
W		Х													 -	
	, - \	Х												X		GRAINKERS, SCALIS 6000
<u>mv</u>		X														S (T) SELECTIONS
			·													
											÷					
	-				1				7	7						
												7				24
						寸			7	7	7	\dashv				
			-							1	1	7	7	$-\parallel$		
			1	\top					+	1	_	\neg		\parallel		
				1	7		_	+	\dashv	\dashv	+	\dashv				
Notes:	·	11_			L.		L	L	I_			!.				
·							·····	<u></u>					·····			

CHEVRON TYPE A BILL OF LADING

SOURCE RECORD BILL OF LADING

FOR NON-HAZARDOUS PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT CHEVRON FACILITIES IN THE STATE OF WASHINGTON OR OREGON. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUNDWATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY EMERALD SERVICES

The contractor performing this work is BLAINE TECH SERVICES, INC. 22727 72ND Ave South, Suite D – 102, Kent, WA 98032. BTS Seattle adress. Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY (CHEVRON) to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BTS; from one Chevron facility to BTS via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of CHEVRON.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9.594	Ц		
CHEVRON#		Chevron Enginee	r
_1323 LEE	61120	KANTINCK	WA
street number	street name	city	state

SAMPLE

	;
WELL I.D. GALS.	WELL I.D. GALS.
m10-4 / 1.5	
mo.5 / 1,5	
mw-6 / /	
Z./ / [-wm	
mw.8 12	
added equip.	any other adjustments /
TOTAL GALS. RECOVERED \0	loaded onto BTS vehicle # _ G
BTS event#	time date
signature	<u>0930 09/09/11</u>
****	*****
REC'D AT	time date / /
unloaded by signature	

Attachment C

Chain-of-Custody and Laboratory Report

CHAIN C STODY FORM

∨ئ.ر. ⊘	ron Env	rironmen	tal Managen	nent Company =	6001 Bol	ar Canyon Roa	d =	San	Ra	mon,	CA	945	83-2	2324	<u> </u>	CO	C of
Chevron Site Number	9-8944			Chevron Consultant: ARCADIS					ANALYSES					KE	QUIRE H	D	Preservation Codes
Program Designation:	<u>CMP</u>			Address: 3240 El Camino Real, Irvine, CA			H		#	n		п	1		17		H =HCL T= Thiosulfate
Site Address (street, o	city, state /	county): <u>132</u>	3 Lee Bivd.	Consultant Contact: Janet Newman				,									N *HNO ₃ B = NaOH
Kennewick, WA				Consultant Phone	No. (949)293-2445	<u> </u>	() Bac)	\$0C)	sac)	밆	ļ						S = H ₂ SO ₄ O = Other
Chevron PM:				Consultant Project No. 110909 -581				Dx w/)x w	ETBEO	ĺ		İ				C-112/6740
Chevron PM Phone No.:				Sampling Company: Blaine Tech Services				трн	1.H.C.	D.							Lip alb 4
☐ Retail and Terminal Business Unit (RTBU) Job		Job	Sampled By (Print): Swenner Bus Propose			(NWTPH-Dxw	(NW	WN)	TAMED							acct #13036 ap #1265740 sonple# GHO1859-66	
☐ Construction/Retail Job			Sampler Signature:			102M)	602M	102M)	0 3ED								
Charge Code: NWRTB GOSITE NUMBER-0- OML			AI .	Lancaster Other Lab Temp. Blank Check Time Temp.			97.6	CLEANUP (97-602M) (NWTPH-DX	-/6) c	TBAC MTBEC	-	İ					Special Instructions *Use a 10-gram
WBS ELEMENTS:				Laboratories		9800 3°	CLEANUP	NA.		EDOCII BTEXX	8270 SIM	3x)					column when silica gel cleanup is
SITE ASSESSMENT: A1L SITE MONITORING: OML				123 Lancaster, PA Lab Contact: Megan		<u> </u>											requested
				Moeller 2425 New Holland Pike,			GEL	A GEL	GEL	60	.8□	ř.	<u>3</u>				
A-Adj				Lancaster, PA 17601 Phone No:			SILICA	Z	100	NO.	сРАН'8⊡	ΛŢF	9				
				(717)656-2300			_ ₹	*	8	FULL LISTO ETHANOLO		TPH-G (NWTPH-GX)	E E		ENE		
	SAMPL	EID			# of Containers	Container Type	TPH-DRO	TPH-ORO	TPH-HRO W SILICA	8260B F	PAH's□	H-G	TOTAL LEAD (6020)	<u> </u>	NAPTHALENE		
Field Point Name	Matrix	Top Depth	Date (yymmdd)	Sample Time				Ē		826	à	Į.					Notes/Comments
MW-4	W		110909	0922	9	VARIOUS	X		X			X	X		ļ		
MW-5	W		<u> </u>	0658	1	POLY	<u> </u>	ļ	<u> </u>				X	<u> </u>		1-1-	
MVV-6	W			6751	9	VARIOUS	X	ļ	X	ļ		X	X	<u> </u>	<u> </u>	$\bot \bot$	
MVV-7.	w			0727	1	POLY	<u> </u>	<u> </u>	<u> </u>				ΪX	<u> </u>		1	
MW-8	W			11.50	9	VARIOUS	X		X	X		×	X	-	X	$\vdash \vdash$	
DUP	GW				9	VARIOUS	X	╀	X	X_	<u> </u>	X	ĺΧ	-	X	╁┼	-
EB.	R		<u> </u>	0835	9	VARIOUS	×	<u> </u>	X	X	├	X	X	-	X	╂╌╂╸	
QA	T		Y	0615	2	VOA	+		1	X	├-	×	╂	╁		++	
		1					 	 	\vdash	-		<u> </u>	-	+	 	++	
	<u> </u>					Data (Fire-		<u> </u>	-		d Tim		_		1		
						72 Hours□											
Relinquished By	Retinquished By Company Date/Time Relinquished To Company Date/Time Sample Integrity: (Check by lab on arrival)																
		• •••							Int	act:		n loe:	: _	ノ⊤	emp:	09.	13.4
Relinquished By	Com	pany	Date/Time	Relinquished To	Company 1 + 4	Pate/Time	৩৩৩			***************************************				C	OC#	:	
L				7 11/	<u>U1</u>	ξυ	- •		1								

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Chevron Environmental Mgmt Co 6101 Bollinger Canyon Road San Ramon CA 94583

October 03, 2011

Project: 98944

Submittal Date: 09/10/2011 Group Number: 1265749 PO Number: 0015076717 Release Number: MACLEOD State of Sample Origin: WA

Client Sample Description	Lancaster Labs (LLI) #
MW-4 Water Sample	6401859
MW-5 Water Sample	6401860
MW-6 Water Sample	6401861
MW-7 Water Sample	6401862
MW-8 Water Sample	6401863
DUP Water Sample	6401864
EB Water Sample	6401865
QA Water Sample	6401866

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC

ARCADIS

Attn: Janet Newman

COPY TO

ELECTRONIC

Attn: Robin Simon

COPY TO

ARCADIS

Analysis Report

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 *717-656-2300 Fax: 717-656-2681 * www.lancasterlabs.com

Questions? Contact your Client Services Representative Megan A Moeller at (717) 656-2300 Ext. 1246

Respectfully Submitted,

Dorothy M. Love

Dorthy M. Sove

Group Leader

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-4 Water Sample

Facility# 98944

1323 Lee Blvd - Kennewick, WA

LLI Sample # WW 6401859

LLI Group # 1265749

Account # 13036

Project Name: 98944

Collected: 09/09/2011 08:22

by JB

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 09/10/2011 10:00 Reported: 10/03/2011 10:11

LBK04

CAT No. Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	ECY 97-60	2 NWTPH-Gx	ug/l	ug/l	ug/l	
08273 NWTPH-Gx water C	7-C12	n.a.	180	50	250	1
GC Petroleum	ECY 97-60	2 NWTPH-Dx	ug/l	ug/l	ug/l	
Hydrocarbons	modified					
02211 DRO C12-C24 w/Si	Gel	n.a.	N.D.	29	96	1
02211 HRO C24-C40 w/Si	Gel	n.a.	N.D.	67	240	1
The reverse surrogate	, capric acid, w	as present at	0%.			
N als	SW-846 60	20	mg/l	mg/l	mg/l	
5 Lead		7439-92-1	0,00015	0.000080	0.0010	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

,								
CAT Yo.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
98273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH Gx	- 1	11258B20A	09/17/2011	23:54	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	11258B20A	09/17/2011	23:54	Catherine J Schwarz	1
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	112570005A	09/28/2011	00:21	Anita M Dale	1
02135	Extraction - DRO Water Special	ECY 97-602 NWTPH Dx 06/97	- 1	112570005A	09/14/2011	07:50	Cynthia J Salvatori	1
06035	Lead	SW-846 6020	1	112556050006A	09/13/2011	12:47	Choon Y Tian	1
6050	ICP/MS SW-846 Water Digest	SW-846 3010A	1	112556050006	09/12/2011	13:24	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-5 Water Sample

Facility# 98944

1323 Lee Blvd - Kennewick, WA

LLI Sample # WW 6401860

LLI Group # 1265749

Account # 13036

Project Name: 98944

Collected: 09/09/2011 06:58

by JB

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

Submitted: 09/10/2011 10:00 Reported: 10/03/2011 10:11

San Ramon CA 94583

LBK05

CAT Analysis Name

CAS Number

As Received

As Received Method Detection Limit*

As Received Limit of Quantitation

Dilution

No.

Result

mg/l

mg/l

Factor

Metals 06035 Lead SW-846 6020

7439-92-1

mg/l 0.00016

0.000080

0.0010

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Tim	ne		Factor
06035	Lead	SW-846 6020	1	112556050006A	09/13/2011	12:48	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	112556050006	09/12/2011	13:24	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-6 Water Sample

Facility# 98944

1323 Lee Blvd - Kennewick, WA

LLI Sample # WW 6401861

LLI Group # 1265749 Account # 13036

Project Name: 98944

Collected: 09/09/2011 07:51

by JB

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

00

San Ramon CA 94583

Submitted: 09/10/2011 10:00 Reported: 10/03/2011 10:11

LBK06

CAT No. Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC Volatiles	ECY 97-602	NWTPH-Gx	ug/l	ug/l	ug/l	
08273 NWTPH-Gx water C7	-C12	n.a.	610	50	250	1
GC Petroleum	ECY 97-602	NWTPH-Dx	ug/l	ug/l	ug/l	
Hydrocarbons	modified					
02211 DRO C12-C24 w/Si	Gel	n.a.	44	29	97	1
02211 HRO C24-C40 w/Si	Gel	n.a.	N.D.	68	240	1
The reverse surrogate,	capric acid, wa	as present at	0%.			
M 1s	SW-846 602	20	mg/l	mg/l	mg/l	
Lead		7439-92-1	0.00077	0.000080	0.0010	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tir	ne	Analyst	Dilution Factor
)8273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH- Gx	- 1	11258B20A	09/18/2011	00:16	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	11258B20A	09/18/2011	00:16	Catherine J Schwarz	1
)2211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH- Dx modified	- 1	112570005A	09/28/2011	00:42	Anita M Dale	1
2135	Extraction - DRO Water Special	ECY 97-602 NWTPH- Dx 06/97	- 1	112570005A	09/14/2011	07:50	Cynthia J Salvatori	1
06035	Lead	SW-846 6020	1	112556050006A	09/13/2011	12:53	Choon Y Tian	1
6050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	112556050006	09/12/2011	13:24	James L Mertz	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-7 Water Sample

Facility# 98944

1323 Lee Blvd - Kennewick, WA

LLI Sample # WW 6401862

13036

LLI Group # 1265749

Project Name: 98944

Collected: 09/09/2011 07:27

by JB

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

Submitted: 09/10/2011 10:00

Reported: 10/03/2011 10:11

San Ramon CA 94583

ĽBK07

No.

CAT Analysis Name

CAS Number

As Received Result

As Received Method Detection Limit* As Received

Limit of Quantitation

Dilution Factor

Metals

SW-846 6020

mg/l

mg/l

mg/l

06035 Lead

7439-92-1

0.00060

0.000080

0.0010

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis		Analyst	Dilution
No.					Date and Ti	me		Factor
6035	Lead	SW-846 6020	1	112556050006A	09/13/2011	12:54	Choon Y Tian	1
6050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	112556050006	09/12/2011	13:24	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-8 Water Sample

Facility# 98944

1323 Lee Blvd - Kennewick, WA

LLI Sample # WW 6401863

LLI Group # 1265749 Account # 13036

Project Name: 98944

Collected: 09/09/2011 09:11

by JB

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 09/10/2011 10:00 Reported: 10/03/2011 10:11

LBK08

CAT No.	Analysis Name			CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-84	6 826	0В	ug/l	ug/l	ug/l	
10943	Benzene			71-43-2	N.D.	0.5	1	1
10943	Ethylbenzene			100-41-4	45	0.5	1	1
10943	Naphthalene			91-20-3	24	1	4	1
10943	Toluene			108-88-3	0.5	0.5	1	1
10943	Xylene (Total)			1330-20-7	4	0.5	1	1
C Vo	latiles	ECY 9	7-602	NWTPH-Gx	ug/l	ug/1	ug/l	
08273	NWTPH-Gx water C7-C	12		n.a.	2,100	50	250	1
. e	troleum	ECY 9	7-602	NWTPH-Dx	ug/l	ug/1	ug/l	
Iydro	carbons	modif	ied					
02211	DRO C12-C24 w/Si Ge	1		n.a.	130	29	95	1
02211	HRO C24-C40 w/Si Ge	1		n.a.	N.D.	67	240	1
The	reverse surrogate, ca	apric a	cid, wa	s present at	0%.			
ietal:	3	SW-84	6 602	0	mg/l	mg/l	mg/l	
06035	Lead			7439-92-1	0.00029	0.000080	0.0010	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

1								
AT	Analysis Name	Method	Trial#	Batch#	Analysis	2	Analyst	Dilution
No.					Date and Time			Factor
10943	BTEX/Naphthalene - Water	SW-846 8260B	1	D112581AA	09/15/2011 13	:22 I	Daniel H Heller	1
21163	GC/MS VOA Water Prep	SW-846 5030B	1	D112581AA	09/15/2011 13	:22 I	Daniel H Heller	1
)8273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH Gx	- 1	11258B20A	09/18/2011 00		Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	11258B20A	09/18/2011 00		Catherine J Schwarz	1
72211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	112570005A	09/28/2011 01	.:03 I	Anita M Dale	1
2135	Extraction - DRO Water Special	ECY 97-602 NWTPH Dx 06/97	- 1	112570005A	09/14/2011 07		Cynthia J Salvatori	1
06035	Lead	SW-846 6020	1	112556050006A	09/13/2011 12	:56	Choon Y Tian	1
)6050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	112556050006	09/12/2011 13	:24	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • Www.lancasterlabs.com

Page 1 of 1

Sample Description: DUP Water Sample

Facility# 98944

1323 Lee Blvd - Kennewick, WA

LLI Sample # WW 6401864

LLI Group # 1265749 Account # 13036

Project Name: 98944

Collected: 09/09/2011

by JB

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 09/10/2011 10:00 Reported: 10/03/2011 10:11

LBKFD

CAT No.	Analysis Name			CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-84	46 826	0B	ug/l	ug/l	ug/l	
10943	Benzene			71-43-2	N.D.	0.5	1	1
10943	Ethylbenzene			100-41-4	46	0.5	1	1
10943	Naphthalene			91-20-3	24	1	4	1
10943	Toluene			108-88-3	0.6	0.5	1	1
10943	Xylene (Total)			1330-20-7	4	0.5	1	1
3C Vo	latiles	ECY S	97-602	NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-C	12		n.a.	2,200	50	250	1
. et	troleum	ECY S	97-602	NWTPH-Dx	ug/l	ug/l	ug/l	
Iyaro	carbons	modi	fied					
02211	DRO C12-C24 w/Si Ge	1.		n.a.	120	29	96	1
02211	HRO C24-C40 w/Si Ge	1		n.a.	N.D.	67	240	1
The	reverse surrogate, ca	ipric a	cid, wa	s present at ()			
ietal:	3	SW-84	46 602	0	mg/l	mg/l	mg/l	
06035	Lead			7439-92-1	0.00031	0.000080	0.0010	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

TA: No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
10943	BTEX/Naphthalene - Water	SW-846 8260B	1	D112581AA	09/15/2011	14:31	Daniel H Heller	1
91163	GC/MS VOA Water Prep	SW-846 5030B	1	D112581AA	09/15/2011	14:31	Daniel H Heller	1
)8273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH	- 1	11258B20A	09/18/2011	01:00	Catherine J Schwarz	1
01146	GC VOA Water Prep	SW-846 5030B	1	11258B20A	09/18/2011	01:00	Catherine J Schwarz	1
72211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	112570005A	09/28/2011	01;24	Anita M Dale	1
2135	Extraction - DRO Water Special	ECY 97-602 NWTPH Dx 06/97	- 1	112570005A	09/14/2011	07:50	Cynthia J Salvatori	1
06035	Lead	SW-846 6020	1	112556050006A	09/13/2011	12:58	Choon Y Tian	1
)6050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	112556050006	09/12/2011	13:24	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: EB Water Sample

Facility# 98944

1323 Lee Blvd - Kennewick, WA

LLI Sample # WW 6401865

LLI Group # 1265749 Account # 13036

Project Name: 98944

Collected: 09/09/2011 08:35

by JB

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 09/10/2011 10:00 Reported: 10/03/2011 10:11

LBKEB

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846 8	260B	ug/l	ug/l	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10943	Naphthalene		91-20-3	N.D.	1	4	1
10943	Toluene		108-88-3	N.D.	0.5	1	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
3C Vo	latiles	ECY 97-6	02 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7	-C12	n.a.	N.D.	50	250	1
. e	troleum	ECY 97-6	02 NWTPH-Dx	ug/l	ug/l	ug/l	
Ivaro	carbons	modified					
02211	DRO C12-C24 w/Si	Gel	n.a.	N.D.	29	98	1
02211	HRO C24-C40 w/Si		n.a.	N.D.	68	240	1
	,						
4etal:	9	SW-846 6	020	mg/l	mg/l	mg/l	
06035	Lead		7439-92-1	N.D.	0.000080	0.0010	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

AT Io.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Tim	ne	Analyst	Dilution Factor
10943	BTEX/Naphthalene - Water	SW-846 8260B	1	D112581AA	09/15/2011	12:37	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D112581AA	09/15/2011	12:37	Daniel H Heller	1
78273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH Gx	- 1	11262B20A	09/20/2011	18:00	Catherine J Schwarz	1
)1146	GC VOA Water Prep	SW-846 5030B	1	11262B20A	09/20/2011	18:00	Catherine J Schwarz	1
02211	NWTPH-Dx water w/Si Gel	ECY 97-602 NWTPH Dx modified	- 1	112570005A	09/28/2011	01:44	Anita M Dale	1
2135	Extraction - DRO Water Special	ECY 97-602 NWTPH Dx 06/97	- 1	112570005A	09/14/2011	07:50	Cynthia J Salvatori	1
06035	Lead	SW-846 6020	1	112556050006A	09/13/2011	12:59	Choon Y Tian	1
06050	ICP/MS SW-846 Water Digest	SW-846 3010A modified	1	112556050006	09/12/2011	13:24	James L Mertz	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: QA Water Sample

Facility# 98944

1323 Lee Blvd - Kennewick, WA

LLI Sample # WW 6401866

LLI Group # 1265749 Account # 13036

Project Name: 98944

Collected: 09/09/2011 06:15

Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 09/10/2011 10:00 Reported: 10/03/2011 10:11

LBKTB

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
GC/MS	Volatiles	SW-846	8260B	ug/1	ug/1	ug/l	
10943	Benzene		71-43-2	N.D.	0.5	1	1
10943	Ethylbenzene		100-41-4	N.D.	0.5	1	1
10943	Toluene		108-88-3	N.D.	0.5	1	1
10943	Xylene (Total)		1330-20-7	N.D.	0.5	1	1
JC Vo	latiles	ECY 97-	602 NWTPH-Gx	ug/l	ug/l	ug/l	
08273	NWTPH-Gx water C7-0	12	n.a.	N.D.	50	250	1

General Sample Comments

State of Washington Lab Certification No. C259

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
TO.					Date and Time		Factor
10943	BTEX 8260B Water	SW-846 8260B	1	D112581AA	09/15/2011 12:5:	Daniel H Heller	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	D112581AA	09/15/2011 12:5	Daniel H Heller	1
08273	NWTPH-Gx water C7-C12	ECY 97-602 NWTPH	[- 1	11262B20A	09/20/2011 18:2:	Catherine J	1
		Gx				Schwarz	
)1146	GC VOA Water Prep	SW-846 5030B	1	11262B20A	09/20/2011 18:2:	Catherine J	1
ì						Schwarz	

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Quality Control Summary

Client Name: Chevron Environmental Mgmt Co

Reported: 10/03/11 at 10:11 AM

Group Number: 1265749

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOO</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: D112581AA	Sample numb	per(s): 64	101863-640	1866					
Benzene	N.D.	0.5	1	ug/l	110		79-120		
Ethylbenzene	N.D.	0.5	1	ug/l	102		79-120		
Naphthalene	N.D.	1.	4	ug/l	89		62-120		
Toluene	N.D.	0.5	1	ug/l	100		79-120		
Xylene (Total)	N.D.	0.5	1	ug/l	100		80-120		
Batch number: 11258B20A	Sample numb	per(s): 64	101859.640	1861,6401863	8-64018	64			
NWTPH-Gx water C7-C12	N.D.	50.	250	ug/l	100	100	75-135	0	30
Batch number: 11262B20A	Sample numb	per(s): 64	101865-640	1866					
NWTPH-Gx water C7-C12	N.D.	50.	250	ug/l	109	109	75-135	0	30
atch number: 112570005A	Sample numb	per(s): 64	101859.640	1861,6401863	8-64018	65			
DRO C12-C24 w/Si Gel	N.D.	30.	100	ug/1	74	80	56-103	8	20
HRO C24-C40 w/Si Gel	N.D.	70.	250	ug/l					
Batch number: 112556050006A	Sample numb	per(s): 64	101859-640	1865					
Lead	N.D.	0.00008	0.0010	mg/l	102		90-115		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP Conc	DUP RPD	Dup RPD Max
Batch number: D112581AA	Sample	number(s): 6401863	3-6401	866 UNS	PK: 640186	3		
Benzene	120	115	80-126	4	30				
Ethylbenzene	166*	101	71-134	18	30				
Naphthalene	139*	94	52-125	19	30				
Toluene	110	106	80-125	3	30				
Xylene (Total)	111	105	79-125	5	30				
Batch number: 112556050006A	Sample	number(s): 6401859	9-6401	365 UNSI	PK: P40115	1 BKG: P401	151	
Lead	100	102	83-120	2	20	N.D.	N.D.	0 (1)	20

Surrogate Quality Control

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Group Number: 1265749

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.fancasterfabs.com

Page 2 of 3

Quality Control Summary

Client Name: Chevron Environmental Mgmt Co

Reported: 10/03/11 at 10:11 AM

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: UST VOCs by 8260B - Water

Batch	number:	D112581AA	
	Dilema		

	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene	
6401863	103	96	96	110	
6401864	100	96	96	111	
6401865	102	96	95	103	
6401866	101	98	96	103	
Blank	102	99	97	102	
LCS	101	102	96	107	
MS	102	101	98	109	
MSD	102	101	97	108	
Limits:	80-116	77-113	80-113	78-113	

Analysis Name: NWTPH-Gx water C7-C12

Batch number: 11258B20A

Trifluorotoluene-F

114
121
165*
159*
94
117
120

Limits: 63-135

Analysis Name: NWTPH-Gx water C7-C12

Batch number: 11262B20A

Trifluorotoluene-F

6401865	97
6401866	96
Blank	95
LCS	123
LCSD	122

Limits: 63-135

Analysis Name: NWTPH-Dx water w/Si Gel Batch number: 112570005A

Orthoterphenyl

6401859	92
6401861	89
6401863	97
6401864	85
6401865	82
Blank	92
LCS	91
LCSD	101

*- Outside of specification

- **-This limit was used in the evaluation of the final result for the blank
- 1) The result for one or both determinations was less than five times the LOQ.
- 2) The unspiked result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterfabs.com

Page 3 of 3

Quality Control Summary

Surrogate Quality Control

Client Name: Chevron Environmental Mgmt Co Reported: 10/03/11 at 10:11 AM

Group Number: 1265749

Limits: 50-150

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D. TNTC IU	Reporting Limit none detected Too Numerous To Count International Units	BMQL MPN CP Units NTU	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
C	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
ug	microgram(s)	mg	milligram(s)
ml	milliliter(s)	1	liter(s)
m3	cubic meter(s)	ul	microliter(s)

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

Ingraphia Ovalities

- ppb parts per billion
- **Dry weight**basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
C	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Organia Qualifiara

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH

MAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for k shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.